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Preface

This is the second volume of the book series of Sciences of Geodesy. This series of
reference books describes different, but complementary fields involving geodesy in
seven chapters. Each chapter describes the history, theory, objectives, technology,
development and highlights of the research and applications of the individual field.
In addition, challenges and future directions are discussed. The subjects covered
by this reference book include Computation of Green’s Functions for Ocean Tide
Loading, General Relativity and Space Geodesy, Global Terrestrial Reference
Systems and their Realisations, Photogravimetry, Regional Gravity Field Model-
ling, Regularisation and Adjustment, and Very Long Baseline Interferometry for
Geodesy and Astronomy.

The first volume in this series contains chapters that detail the subjects:
Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with
Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit
Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algo-
rithms and Its Inference, Marine Geodesy, Satellite Laser Ranging, Supercon-
ducting Gravimetry and Synthetic Aperture Radar Interferometry.

The above mentioned fields cover the most active areas related to geodesy.
These individual subjects are, for the first time, combined in a two-volume series
thereby providing a comprehensive overview of the multi-disciplinary nature of
geodesy. The series serves as a reference for teaching and learning the basic
principles of many subjects related to geodesy. The material is suitable for high-
level geodetic researchers, educators as well as engineers and students. Some of
the chapters are written to fill voids in the current literature of the related areas.
Most chapters are written by international scientists, well known in their specific
field of expertise.

The chapters are arranged in alphabetical order of their titles. Summaries of the
individual chapters and introductions of their authors and co-authors are as
follows:

Chapter 1 ‘‘Computation of Green’s Functions for Ocean Tide Loading’’
describes the theory and the methods of the point load problem for a radially
symmetric, elastic Earth. A researcher or Ph.D. student who wants to learn more
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about this classic topic will find in this chapter a good starting point where all
assumptions are clearly explained and where enough details are given to imple-
ment the equations into a computer program. First, the differential equations for
the gravitational elastic deformations are derived from first principles. Then the
boundary conditions to solve these equations are presented, and analytical solu-
tions and numerical values of Love numbers for two simple Earth models are
discussed. This chapter also contemplates the problem related to periodic loading
of a model Earth with a fluid core as the period goes to infinity, the so-called
Longman paradox. The degree-1 deformation, the centre-of-mass centre-of-ref-
erence problem, receives special attention. Next, several numerical methods to
solve the equations are explained. Finally, the formulas for computing Green’s
functions are listed.

The author and co-authors of Chap. 1 are Dr. Machiel Bos and Dr. Hans-Georg
Scherneck.

Machiel Bos studied Aerospace Engineering at Delft University of Technology,
The Netherlands. After his graduation in 1996 he performed his Ph.D. research at
Proudman Oceanographic Laboratory, Liverpool, United Kingdom. In 2001 he
spent 7 months as postdoc at Onsala Space Observatory, Sweden. From 2001 to
2003 he worked as a postdoc at the Faculty of Geodesy of Delft University of
Technology. From 2003 to 2008 he held a postdoc position at the Astronomical
Observatory of Porto, Portugal and since 2008 he has been working at CIIMAR
(Centre of Marine and Environmental Research of the University of Porto). His
scientific interests include ocean tide loading, GPS time-series analysis and the
geoid.

Hans-Georg Scherneck studied Physics and Geophysics at J. W. Goethe
University in Frankfurt/M., Germany. He received a Ph.D. degree in geodesy from
Uppsala University in 1986. In 1993 he joined the Department of Earth and Space
Science at Chalmers University of Technology, Gothenburg, Sweden. He holds a
Docent degree (associate professor) in geodynamic measurement techniques and
occupies a position as a Lecturer. His major research interests are the use of
gravity and space geodetic techniques in application to solid earth deformation,
most prominently Glacial Isostatic Adjustment.

Chapter 2 ‘‘General Relativity and Space Geodesy’’ introduces the general and
special relativity theory as it is applied to space geodesy. Section 1 sketches some
basic implications of GRT for space geodesy and the need to incorporate GRT in
all high accuracy space geodetic applications. Section 2 discusses GRT implica-
tions for satellite laser ranging, specifically the Shapiro delay and accelerations as
described by the Schwarzschild field, Lense–Thirring precession (frame dragging)
and de Sitter (geodesic) precession. A short discussion on using SLR to test the
effects of GRT is included and Sect. 2 is concluded with sections on lunar laser
ranging and interplanetary laser ranging. Special and general relativity theory
considerations for GPS are discussed in some detail in Sect. 3, including reference
frame issues, effects on GPS satellites’ clocks and how GRT corrections are
incorporated. Section 4 consists of a short overview of VLBI estimates of
parameterised post-Newtonian parameter Gamma.
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The author of Chap. 2 is Dr. Ludwig Combrinck of the Hartebeesthoek Radio
Astronomy Observatory (HartRAO) located near Krugersdorp, South Africa, a
facility of the National Research Foundation (NRF). Ludwig Combrinck was
awarded a Ph.D. by the University of Cape Town in 2000; his thesis focussed on
GNSS applications for precise positioning. He is responsible for the Space
Geodesy Programme at HartRAO, which includes the NASA satellite laser ranging
station, MOBLAS-6. In 2009 he was appointed as Professor-extraordinaire at the
University of Pretoria. His main research interests currently include applications of
space geodetic techniques, specifically related to tests of general relativity theory,
reference frame development for Africa and the development of a new high
accuracy satellite and lunar laser ranger for South Africa. His diverse interests in
the applications of space geodesy have resulted in the establishment of geodetic
stations throughout Africa, Marion Island and Antarctica, in collaboration with
international partners.

Chapter 3 is entitled ‘‘Global Terrestrial Reference Systems and their Real-
izations’’. It is organised in six parts. In Sect. 1 the authors give an introduction
and address the key role of geodetic reference systems and frames for measuring
the surface structure, the rotation and the gravity field of the Earth along with its
variations in time, which is a prerequisite for Earth system studies and for the
monitoring of physical processes of global change. The next section provides some
basic concepts and fundamentals for the definition and realisation of reference
systems. Section 3 deals with the International Terrestrial Reference System
(ITRS), its definition and the conventional modelling of station positions and
displacements of reference points, which materialise the system. The next two
sections focus on its realisation, the International Terrestrial Reference Frame
(ITRF), which is the key topic of this chapter. Thereby Sect. 4 provides some
general information and gives an overview about the history and the latest
developments in the field of global terrestrial reference frame realisations.
Section 5 deals with the latest realisation, the ITRF2008, which has been computed
from a combination of time series of station positions and Earth orientation
parameters from VLBI, SLR, GPS and DORIS observations. In the last section, the
present status of the terrestrial reference frame computations is discussed and
challenges for future improvements are provided.

The author and co-authors of Chap. 3 are Dr. Detlef Angermann, Dr. Manueal
Seitz and Prof. Dr. Hermann Drewes.

Detlef Angermann has been senior research scientist at Deutsches Geodätisches
Forschungsinstitut (DGFI) in Munich since 1999. He graduated in geodesy from
University Hannover in 1985 and received his Ph.D. from Technical University in
Berlin in 1991. He occupied the following positions: Scientific Assistant at
Technical University in Berlin (1985–1990); research scientist at DGFI
(1990–1992); senior scientist at GeoForschungsZentrum (GFZ) Potsdam
(1992–1999); senior scientist at DGFI (since 1999), where he has been head of the
research field ‘‘Earth system observations’’ since 2002. Major areas of scientific
interests are GNSS and SLR data analysis for geodetic research and geodynamics,
the combination of space geodetic techniques and the realisation of geodetic
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reference systems. He served as chair and as a member in various sub-commis-
sions and working groups of the International Association of Geodesy (IAG) and
as a principal investigator of various research projects at DGFI. In 2009, he was
nominated as the Secretary of the GGOS Bureau for Standards and Conventions
and took over the responsibility of the Director in 2011.

Manuela Seitz studied Geodesy at the Technische Universität Dresden (TUD).
After her graduation in 2001 she joined the Deutsches Geodätisches Forschungs-
institut (DGFI) in Munich, where she collaborated on various projects in the field of
combination of space geodetic techniques for the realisation of reference systems.
She developed strategies for the realisation of the International Terrestrial Reference
System (ITRS) on the basis of normal equations for which she obtained her doctorate
from TUD in 2008. In addition to her research activities she was strongly involved in
the computation of the DGFI solution of the International Terrestrial Reference
Frame ITRF2005 and was responsible for the computation of the recent realisation
DTRF2008. Her main scientific interests are the global as well as regional realisation
of the ITRS as well as the consistent realisation of terrestrial and celestial reference
systems. Her focus of attention also comprises the development of combination
strategies for the generation of other combined geodetic products, e.g., Earth
orientation parameter or tropospheric parameter series.

Hermann Drewes is the Secretary General of the IAG and the past Director of
the German Geodetic Research Institute (Deutsches Geodätisches Forschungsin-
stitut, DGFI), Munich, Germany. He graduated (Dipl.-Ing.) and received his
doctor’s degree (Dr.-Ing.) from Technische Universität Hannover, Germany,
where he worked as assistant professor and chief engineer. From 1977 to 1979 he
was a professor at Universidad del Zulia in Maracaibo, Venezuela. His scientific
work concentrated at that time on precise gravimetry and geoid determination.
In 1979 he moved to DGFI and changed the field of research to geodynamics and
geodetic reference systems. In parallel he got a lectureship at Technische
Universität München (TUM) and at Universität der Bundeswehr, München.
In 1994 he became the Director of DGFI and received an honorary professorship at
TUM. From 1995 to 2003 he was at first the Secretary and then the President of the
IAG/COSPAR Commission on Space Techniques for Geodesy and Geodynamics
(CSTG), and from 2003 to 2007 the President of the IAG Commission on Ref-
erence Frames. Since 1994 he has been the IAG representative to the Sistema de
Referencia Geocéntrico para las Américas (SIRGAS), and since 2003 the repre-
sentative of IUGG to the Pan-American Institute for Geography and History
(PAIGH). In 2007 he became the IAG Secretary General. In the same year he was
awarded the Order of Merit of the Federal Republic of Germany.

Chapter 4 ‘‘Photogrammetry’’ gives an overview about the methods and appli-
cations of aerial photogrammetry, focusing on those for geoinformation acquisition.
After a short introduction in Sect. 1, three sections follow: Image Acquisition, Image
Georeferencing and Image Processing. Large format analogue and digital aerial
cameras are described in Sect. 2, as well as the aspects to consider when planning a
photo flight. Section 3 deals with several strategies for establishing a georeference for
aerial images considering the cases of frame and line scanner images. Spatial
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resection, ground and GNSS supported triangulation and GPS/IMU supported photo
flights are presented in this section. Section 4 describes the most important photo-
grammetric products and how they are obtained today: line maps, 3-D elevation
models, 3-D urban models, orthophotos and realistic virtual models.

The author of Chap. 4 is Prof. Dr. Paula Redweik. She is an Assistant Professor
at the Faculty of Sciences of the University of Lisbon, Portugal, in the Department
of Geographic Engineering, Geophysics and Energy. She is also a researcher at the
Centre of Geology of the same faculty. After obtaining a B.Sc. in Mathematics in
1983 and a degree in Geographic Engineering from the University of Lisbon in
1985, she worked as a researcher in the Institut für Photogrammetrie und
Ingenieurvermessungen (IPI) of the University of Hannover, Germany, where
during 1993 she obtained a Ph.D. in Photogrammetry. Since 1993 she has been
responsible for the education in photogrammetry in several bachelor and master
courses at the University of Lisbon; currently, she is the coordinator of the Geo-
graphic Engineering bachelor course. She worked in projects for modelling coastal
retreat and has supervised M.Sc. theses and co-supervised Ph.D. theses in this
subject. She is co-author of one book (two volumes) about topography and several
papers on different applications of photogrammetry.

Chapter 5 ‘‘Regional Gravity Field Modeling: Theory and Practical Results’’
gives an overview of high-precision gravity field modelling on a provincial to
national and continental scale. In this context, the geoid and quasigeoid are of
major interest, e.g., for the transformation between the purely geometric GNSS
(Global Navigation Satellite System) ellipsoidal heights and physical heights
in geodesy, for the modelling of dynamic ocean topography, as well as for
geophysical applications, requiring accuracies at the level of about 1 cm or even
below. After the motivation, some fundamentals of physical geodesy are provided,
including reference systems, basic gravity field properties, the geoid and height
systems, the normal gravity field, as well as some remarks about temporal gravity
field variations, tidal systems and atmospheric effects; the intention of this section
is to provide the basics for regional gravity field modelling with as few approxi-
mations as possible. The next section covers the methodology of gravity field
modelling, where the disturbing potential is the primary quantity of interest; in
particular, geodetic boundary value problems, the linearisation of the boundary
conditions (observation equations), the spherical and constant radius approxima-
tions and the associated classical integral formulas of Poisson, Hotine and Stokes,
solutions of Molodensky’s and Stokes’s boundary value problem, the spectral
combination approach, least squares collocation, astronomical leveling, as well as
the remove-compute-restore technique are described, the latter providing the basis
for regional computations. The subsequent section gives some practical results
related to the European geoid and quasigeoid calculations carried out at the Institut
für Erdmessung (IfE), Leibniz Universität Hannover (LUH), Germany; the data
requirements, the collected gravity field data sets and the development and eval-
uation of the European Gravimetric (Quasi) Geoid model EGG2008 are discussed.
Finally, a short summary of the results and an outlook are given.
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The author of Chap. 5 is Dr. Heiner Denker, a senior scientist employed at the
Leibniz Universität Hannover (LUH), Germany. His major areas of scientific
interest are regional and global gravity field modelling (especially geoid and
quasigeoid), including the combination of terrestrial and satellite data, vertical
reference systems and height determination, as well as geodynamics research.
Heiner Denker graduated in 1984 from Universität Hannover (now LUH) and
received a Ph.D. in 1988, also from Universität Hannover. In 1989 he was
employed as a researcher at The Ohio State University, Columbus, U.S.A., where
he investigated the global analysis of satellite altimeter data for dynamic ocean
topography estimation. At the end of 1989, Heiner Denker returned to Universität
Hannover on a permanent position, where he specialised in gravity field modelling
and has given lectures since 1996, covering the areas of physical geodesy, advanced
physical geodesy, geometric geodesy and signal analysis. Since 1990, Heiner
Denker has been responsible for the computation of the geoid and quasigeoid in
Europe, a task supported by the International Association of Geodesy (IAG)
in different ways, presently as IAG Sub-Commission 2.4a ‘‘Gravity and Geoid in
Europe’’ (Chair: H. Denker). Furthermore, he chaired an IAG Special Study Group,
has been a member of several special study groups as well as the advisory boards of
some IAG bodies, and since 2008 he has served as Associate Editor for ‘‘Geodetic
Theory and Applications’’ of the scientific journal ‘‘Marine Geodesy’’.

Chapter 6 ‘‘Regularization and Adjustment’’ consists of two parts. The first part
focuses on regularised solutions for ill-posed problems, while the second provides
an overview of the adjustment theory. Following a brief introduction in the first
part of the chapter, unstable and ill-posed problems, regularisation algorithms and
determination of the regularisation parameters (including suitable examples) are
discussed. In the second part, least squares adjustment, sequential application of
least squares adjustment via accumulation, sequential least squares adjustment,
conditional least squares adjustment, a sequential application of conditional least
squares adjustment, block-wise least squares adjustment and a sequential appli-
cation of block-wise least squares adjustment are described. In addition, an
equivalent algorithm to form the eliminated observation equation system and the
algorithm to diagonalise the normal equation and equivalent observation equation,
a priori constrained adjustment, a priori datum method and a quasi-stable datum
method are discussed, before a short summary.

The author and co-author of Chap. 6 are Prof. Dr. Yunzhong Shen and
Dr. Guochang Xu.

Yunzhong Shen is a professor in the Department of Surveying and
Geo-informatics Engineering of Tongji University where he was the dean from
2003 to 2006. He graduated from Tongji University with a bachelor’s degree in
Surveying Engineering in 1983, and obtained his master’s degree in Geodetic Data
Processing in 1986 and a Ph.D. degree in Geophysical Geodesy in 2001 from the
Institute of Geodesy and Geophysics. He is an editor of ‘‘Acta Geodetica et
Cartographica Sinica’’. His main research interests are theory of geodetic data
processing, satellite positioning and satellite gravimetry. He was a visiting member
of the staff of Stuttgart University in Germany (1999–2000), visiting scientist of
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GeoForschunsZentrum GFZ Potsdam (8.-11.2006), research fellow of Hong Kong
Polytechnic University (5.-6.2008) and professorial visiting staff in Queensland
University of Technology (5.-6.2009). In the past 5 years, he has published more
than 40 refereed journal papers in geophysical geodesy, GNSS theory and appli-
cation, geodetic data processing theory, of which six papers have appeared in
Journal of Geodesy, four in GPS Solutions, and the others in J Surveying Engi-
neering, Chinese Science Bulletin etc.

After graduating in Mathematics and Geodesy from Wuhan University and the
Chinese Academy of Sciences (CAS) in 1982 and 1984 respectively, I, Guochang
Xu, obtained the Dr.-Ing. degree from the Technical University (TU) Berlin in
1992. Having worked as a research associate at the TU Berlin from 1986 to 1993,
as a scientist at the GFZ Potsdam from 1993 to 1998 and as a senior scientist at the
National Survey and Cadastre, Denmark, from 1998 to 1999, I returned to GFZ as
a senior scientist in 1999. I have authored and co-authored several scientific books
and software and acted as supervisor of several Ph.D. and post-doctoral studies.
From 2003 to 2008 I was an overseas assessor, adjunct professor, and winner of an
overseas outstanding scholar fund of CAS. I have been an overseas communication
assessor of Education Ministry China since 2005, adjunct professor of Chang’an
University since 2005, National Time Service Center, CAS, Neubrandenburg
University of Applied Sciences since 2009, and National Distinguished Expert of
Chinese Academy of Space Technology since 2010. In 2011 I was honoured by an
appointment as an honorary professor by the South-west Jiaotong University.

Chapter 7 entitled ‘‘Very Long Baseline Interferometry for Geodesy and
Astrometry’’ provides an overview of this space geodetic technique which is
essential for the determination of the complete set of Earth orientation parameters
as well as for the celestial reference frame. After an introduction in Sect. 1 with
information about the concept of VLBI and the historical and technological
developments, the computation of the delays is discussed in detail in Sect. 2.
It covers all models necessary to reach mm-accuracy of the theoretical delays.
Section 3 deals with the least squares adjustment which is widely used for the
estimation of geodetic parameters in VLBI analysis, such as the Earth orientation
parameters, the celestial reference frame expressed by radio source coordinates, or
the terrestrial reference frame realized by station coordinates. VLBI observations
are coordinated globally by the International VLBI Service for Geodesy and
Astrometry (IVS; Sect. 4), and ideas and plans for VLBI2010, the next generation
VLBI system, are given in Sect. 5.

The author and co-author of Chap. 7 are Prof. Dr. Harald Schuh and Prof. Dr.
Johannes Böhm.

Harald Schuh is a full professor and Director of the Institute of Geodesy and
Geophysics, Vienna University of Technology, Austria. Major areas of scientific
interest are Very Long Baseline Interferometry (VLBI), Earth rotation, investiga-
tions of the troposphere and ionosphere. He graduated in 1979 from Bonn
University, Germany and received his Ph.D. in 1986. He occupied the following
positions: Scientific assistant and associate professor at Bonn University
(1980–1988); program scientist at the German Air and Space Agency (1989–1995),
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senior scientist and head of the Earth Rotation Division at DGFI, Munich
(1995–2000); Chair of the IVS Directing Board since 2007; President of IAU
(International Astronomical Union) Commission 19 ‘‘Rotation of the Earth’’
(2009–2012); President of the Austrian Geodetic Commission since 2008 and
President of the Austrian National Committee of the IUGG since 2009; Vice-Pres-
ident of the IAG (International Association of Geodesy) since 2011; member of
various directing and governing boards; editorial board of the Journal of Geodesy
(2003–2007), and served as president, chair, member or consultant of various
commissions, sub-commissions and working groups in geodesy (IAG) and astron-
omy (IAU); coordinator of the German Research Group on Earth Rotation
(1999–2003); supervisor, co-supervisor, or examinator of more than 25 disserta-
tions. In 2009 Harald Schuh received the degree of a doctor honoris causa (Dr. h.c.)
and in 2011 the Vening-Meinesz Medal of the European Geosciences Union.

Johannes Böhm is associate professor at the Institute of Geodesy and
Geophysics, Vienna University of Technology, Austria, where atmospheric effects
in space geodesy and very long baseline interferometry (VLBI) are his main fields
of interest and research. In 1999 he graduated from the Vienna University of
Technology with a thesis about modern geopotential models and received his
Ph.D. in 2004 with a dissertation on troposphere delays in VLBI. Troposphere
delay modelling for all space geodetic techniques at radio wavelengths with the
application of numerical weather models was the topic of his habilitation thesis in
2008. Johannes Böhm is President of IAG Sub-Commission 1.4 ‘‘Interaction of
Celestial and Terrestrial Reference Frames’’, and he has been chair or member of
various working groups of the IVS and the IAG. He has been on the editorial board
of Journal of Geodesy since 2007 and has been leading various research projects
related to VLBI at the Vienna University of Technology. Johannes Böhm received
the Guy Bomford Prize of the IAG in 2011.

The book has been subjected to an individual review of chapters. I am grateful to
reviewers Prof. Trevor Baker of the Proudman Oceanographic Laboratory in the
United Kingdom, Dr. Bert Vermeersen of Technical University Delft, Dr. Roberto
Peron of the Institute of Physics of Planetary Space (IFSI-INAF) in Rome, Prof.
Zhiping Lü and Dr. Xiguang Zhang of Zhengzhou Institute of Surveying and
Mapping (ISM), Prof. Shulong Zhu of Zhengzhou ISM, Prof. Rene Forsberg of
Danish Space Centre, Dr. Karsten Jacobsen, Dr. Ludger Timmen of the University
Hannover, Prof. Wolfgang Torge and Dipl.-Ing. Christian Voigt of the Leibniz
Universität Hannover, Prof. Bernhard Heck of Karlsruher Institut für Technologie,
Prof. Guigen Ni of the Information Engineering University (IEU) in Zhengzhou,
Prof. Yuanxi Yang and Dr. Tianhe Xu of the Institute of Surveying and Mapping
(ISM) in Xi’an, Dr. Axel Nothnagel of the University Bonn, Prof. Ludwig Combr-
inck of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), Dr. Svetozar
Petrovic, Dr. Monika Korte, and Dr. Matthias Förster of GFZ. As editor I made a
general review of the whole book. A grammatical check of technical English writing
has been performed by Springer Heidelberg.
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I wish to thank sincerely the key authors of the individual chapters: Dr. Machiel
Bos of University Porto, Dr. Hans-Georg Scherneck of Chalmers University of
Technology in Sweden, Dr. Ludwig Combrinck of Hartebeesthoek Radio
Astronomy Observatory, Dr. Detlef Angermann, Dr. Manueal Seitz and Prof.
Hermann Drewes of DGFI in Munich, Prof. Paula Redweik of University of
Lisbon, Dr. Heiner Denker of Leibniz University Hannover, Prof. Yunzhong Shen
of Tonji University in Shanghai, Prof. Harald Schuh and Prof. Johannes Böhm of
Technical University Vienna. Without their consistent efforts such a book would
never have become available. I also wish to sincerely thank those scientists
who made great efforts for enriching this book. They are Dr. Ludger Timmen of
Leibniz University Hannover, Dr. Luisa Bastos of University Porto, Dr. Dietrich
Ewert of University Berlin, Prof. Cheinway Hwang and Prof. Tianyuan Shih of
Central University of Taiwan.

I wish to express my gratitude towards the former directors Prof. Dr. Ch. Reigber
and Prof. Dr. Markus Rothacher of GFZ for their support and trust during my research
activities at the GFZ and for granting me special freedom of research. Acting heads
Dr. Christoph Förste, Dr. Frank Flechtner and Dr. Jens Wickert of GFZ are thanked
for supporting my editorial activities in this book series. I also wish to thank sincerely
Prof. Yuanxi Yang of ISM in Xi’an, Prof. Qin Zhang of Chang’an University in
Xi’an, Prof. Heping Sun, Prof. Jikun Ou and Prof. Yunbin Yuan of IGG in Wuhan for
their friendly support by organising the International Geodetic Forum Xi’an 2006,
which is the origin of the idea to write and edit such a series of scientific books. The
Chinese Academy of Sciences is thanked for the Outstanding Overseas Chinese
Scholars Fund, which greatly supported the valuable scientific activities.

Special thanks go to Springer, Heidelberg; their support and their evaluation for
such a series of books are preconditions for successfully organising this publication.
I am also grateful to Dr. Chris Bendall of Springer, Heidelberg for his valuable
advice.

November 2011 Guochang Xu
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Chapter 1
Computation of Green’s Functions
for Ocean Tide Loading

M. S. Bos and H.-G. Scherneck

The devil is in the details

1 Introduction

This chapter will discuss the computation of the deformation of the solid Earth due
to external forces. It is a classical problem that was studied more than a century ago
by famous people such as Thomson and Tait (1867) and Lamb (1895). They were
followed by Love (1911) and Hoskins (1920) in the beginning of the twentieth
century. Since then it has been studied extensively by seismologists who are
interested in modelling the free oscillations of the Earth that occur after large
earthquakes. Important contributions to this area were made by Pekeris and Jarosch
(1958) and Alterman et al. (1959) which still forms the basis of what we will
describe in this chapter. A thorough description of the the theory of the free
oscillations of the Earth can be found in the textbook by Dahlen and Tromp (1998).
An older but still good reference is the review article by Takeuchi and Saito (1972).

The reader could therefore accuse us of writing about a topic that has already
been described. However, we feel that current literature does not pay much
attention to the practical details of how a given profile of the density and elastic
properties of the Earth are to be used to compute these deformations and it is our
objective to fill this gap. We hope that a researcher or Ph.D. student who wants to
learn more about this topic finds in our chapter a good starting point where all
assumptions are clearly explained and where enough details are given to imple-
ment the equations into a computer program.
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We will only look at deformations caused by the varying weight of the ocean
tides, also known as ocean tide loading (OTL). With the current accuracy by which
these tidal deformations can be observed at the surface, we can ignore the ellip-
ticity of the Earth and its rotation and assume that the mechanical properties of the
Earth are the same for all orientations and only vary along the radius of the Earth.
With sufficient accuracy we can also assume that the deformation is elastic or at
least deviates only slightly from a pure elasticity.

Next, the weight of the ocean tides is normally decomposed into a sum of point
loads. The advantage is that, once you know the deformation of the Earth under a
single point load, and assuming that the deformations are small enough so that the
principle of superposition holds, you can compute the deformation of all point
loads in a similar way and add them up to get the total. The deformation due to a
point load, which is a Dirac delta function, is called a Green’s function. One of the
first attempts to compute such a Green’s function was given by Slichter and
Caputo (1960) although they used a circular disc load instead of the actual limit of
reducing the radius of the disc to zero and they ignored any gravity effects due to
the mass distribution inside the Earth.

Longman (1962, 1963) was the first to develop the point load into a sum of
Legendre polynomials and computed this sum up to degree 40. Farrell (1972)
continued the work of Longman and extended the summation up to a degree of
10,000. Farrell’s contribution was also a better understanding of the problem at
degree 1 where the deformation is invariant with respect to a simple translation of
the whole Earth. He also emphasised the use of the analytical solution of the
deformation of a half-space as the asymptotic solution of the deformations of
the spherical Earth. These asymptotic solutions can not only be used to check the
numerical solutions but are also essential to find the value of the infinite sum of
Legendre polynomials.

Longman and Farrell used the elastic properties and density profiles of the Earth
that were computed by seismologists. An example is the Preliminary Reference
Earth Model (PREM) published by Dziewonski and Anderson (1981). The earth-
quakes that are being studied by seismologists have periods of several seconds and,
since tides have a period of several hours, one can wonder whether the same elastic
properties should be used. So far, no observations that challenge this assumption
have ever been presented.

In this chapter we explain how the these elastic properties and density profiles
can be transformed in so-called Love numbers. These numbers can be used to
compute the necessary Green’s functions. The summation of Love numbers has
already been described in detail by, among others, Farrell (1972), Francis and
Mazzega (1990), Jentzsch (1997), Guo et al. (2004) and recently by Agnew
(2007), and therefore will only be discussed briefly. It is the computation of the
Love numbers that we will focus on. We will start at the very beginning, which
means we need to start by deriving the set of differential equations that govern the
deformation of the solid Earth.
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2 Equations of Motions and Rheology

This section will derive the linearized equations of motion in the same way as
Dahlen (1974) although we give more attention to the interpretation of all the terms.

We restrict our discussion to models of the Earth that are symmetric, non-
rotating and elastic isotropic (SNREI) and everywhere in hydrostatic equilibrium.
The positions of the mass particles of the Earth are denoted by x: At the same time
we will use these initial locations to label the particles. Let rðx; tÞ be the position
of particle with label and initial position x after the deformation at time t. Now we
can write the Lagrangian displacement sLðx; tÞ as (Dahlen 1974)

rðx; tÞ ¼ xþ sLðx; tÞ ð1:1Þ

Instead of following the deformation of a particle with label x that was initially
at position x; one may describe the deformation over time one finds at the fixed
position r inside the Earth. This is the Eulerian description of the deformation.

It will be convenient to write the changes in density q and potential / as small
perturbations from a reference state. We have (Dahlen 1974)

qLðx; tÞ ¼ q0ðxÞ þ qL
1ðx; tÞ ð1:2Þ

qEðr; tÞ ¼ q0ðrÞ þ qE
1 ðr; tÞ ð1:3Þ

/Lðx; tÞ ¼ /0ðxÞ þ /L
1ðx; tÞ ð1:4Þ

/Eðr; tÞ ¼ /0ðrÞ þ /E
1 ðr; tÞ ð1:5Þ

The subscript or superscript L and E indicate whether we are dealing with a
Lagrangian or a Eulerian function. Generally, the coefficients of the functions qL

and qE are not equal, neither those of /L and /E; because they depend on a
different set of variables, the Lagrangian or Eulerian positions. Nevertheless, they
describe the same changes in density and potential in the Earth. The subscript 0
represents the reference state. The subscript 1 indicates that it is a perturbed
quantity.

It is good to be aware of the difference between the Lagrangian and Eulerian
description, especially at the boundaries. However, we will derive here a linearized
set of equations that describe small perturbations from the reference state. As a
result, we will encounter many situations where this difference of description is of
no importance. An example is the case where the reference density is multiplied by
a small value �: In these case we have q0ðxÞ� � q0ðrÞ�; where x and r are related
through (1.1). In addition, for the perturbed density we have qE

1 ðx; tÞ � qE
1 ðr; tÞ.

Similar relations hold for the reference potential /0 and the perturbed potential /1:
We will assume that no mass is created or destroyed which leads to the

following equation of continuity:

Computation of Green’s Functions for Ocean Tide Loading 3



qE
1 ðr; tÞ þ q0ðrÞr � sLðx; tÞ þ sLðx; tÞr � q0ðrÞ ¼ 0

qE
1 ðr; tÞ ¼ �r � q0ðxÞsLðx; tÞ½ �

ð1:6Þ

Note the change of q0ðrÞ to q0ðxÞ in the second line of this equation which is
allowed as long as s is small.

In words, the first line of (1.6) states that the sum of the perturbed density in a
small element plus the density change caused by the deformation of the element
plus moving the element to another position where the reference density is dif-
ferent is constant.

Note that we have written the changes in density as the sum of the reference
state plus a small perturbation. The small element can thus be considered to have a
density q1 and to be floating through a reference density field of q0:

The gradient in density can be smooth or abrupt. At a layer interface the
gradient is abrupt. A vertical displacement of the interface implies a density
perturbation in the Eulerian system, and this density perturbation appears in
Poisson’s equation as the source of the perturbed potential to be discussed next.

Poisson’s equation relates the gravitational potential to the density inside the
Earth. Before we present this equation, the sign convention of the potential must
be discussed. Normally, a potential /0 of a particle represents the amount of
energy it contains. Thus, if we consider a particle above the Earth’s surface, then
the higher it is, the more gravitational potential energy it will have.

To get the reference gravitational force per unit mass, g0; at a fixed point inside
the Earth, one must take the negative gradient of the potential /0 :

g0ðrÞ ¼ �r/0ðrÞ ð1:7Þ

The perturbed gravity force per unit volume:

q0ðrÞgE
1 ðr; tÞ ¼ �q0ðrÞr/E

1 ðr; tÞ � qE
1 ðr; tÞr/0ðrÞ

¼ �q0ðxÞr/E
1 ðx; tÞ � r � q0ðxÞsLðx; tÞ½ �g0ðxÞ

ð1:8Þ

Here we have made use of (1.6) to substitute q1 and again replaced r vectors for
x vectors.

In geodesy, one sometimes inverses the sign of / to make the force equal to the
gradient of the potential, without adding a minus sign (Jekeli 2007). Depending on
the sign convention of /; Poisson’s equation is

r2/0ðrÞ ¼ �4pq0ðrÞG ð1:9Þ

r2/E
1 ðr; tÞ ¼ �4pqE

1 ðr; tÞG ð1:10Þ

where G is the gravitational constant. Farrell (1972), Dahlen (1974), Wu and
Peltier (1982) and Dahlen and Tromp (1998) all use the plus sign while Pekeris
and Jarosch (1958) and Alterman et al. (1959) used the minus sign in (1.9). Since
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the work of Alterman et al. was very influential, their convention has been fol-
lowed by many people such as Kaula (1963), Okubo (1988), Sun and Sjöberg
(1999) and Guo et al. (2004). In this chapter we will follow the definition of
Dahlen (1974) which means that we keep the potential energy interpretation of /
and use the plus sign in (1.9) and (1.10).

Next, since we assume that the Earth is in hydrostatic equilibrium, there is a
uniform pressure p0 at each depth layer in the reference state. This pressure p0

inside the Earth increases with depth because the weight of the layers of rock
above increases. A particle that is displaced to a deeper layer will therefore
experience an upward buoyancy force bL: Remembering that we have to take the
negative gradient to compute the force of our potential, the buoyancy force per unit
volume to first order is

bLðx; tÞ ¼ r sLðx; tÞ � q0ðxÞg0ðxÞ½ �
¼ �r sLðx; tÞ � q0ðxÞr/0ðxÞ½ �

ð1:11Þ

In addition, a force is required in a solid body to change the relative distances
between the particles. In fact, it is the gradient of the change in distances between
the particles, the strain, that relates linearly with the elastic force. This is called
Hooke’s law, and it is a linear law for small displacements. In three dimensions
this linear relation for an isotropic material is given by the Cauchy stress tensor
TL: It requires a constant for the change in volume, the bulk modulus j; and
another constant for the amount of shearing called l: For our purpose we will
assume that we can use the adiabatic bulk modulus. The relation of the Cauchy
stress tensor TL with the deformations sLðx; tÞ; also known as the constitutive law,
is given by

TLðx; tÞ ¼ j� 2l
3

� �
ðr � sLðx; tÞÞIþ l rsLðx; tÞ þ rsLðx; tÞð ÞT

� �
ð1:12Þ

where I is the identity tensor. We again add a subscript L to T to indicate it is
Lagrangian: The elastic forces act on the deforming body. We implicitly assume
that these deformations are so small that there is no significant change in the
surface of the body. Otherwise the amount of pressure that is acting on the body
would be different before and after the deformation. It is convenient to introduce
another variable k which is defined as k ¼ j� 2l=3: The pair k and l are called
the Lamé parameters. The elastic parameters are the entry point where—more
generally speaking—the rheology of the Earth can enter. Rheology is the umbrella
concept under which elasticity may be generalised to comprise a range of prop-
erties of solids describing how they deform, either instantaneously, by creep, or, in
the extreme limit, by fluid-like flow or brittle failure. We will remain in the realm
of linear laws (ignore stress-dependence of the moduli), avoid the brittle regime,
and also ignore heat flow, convective instabilities and phase changes.

From (1.12) it is clear that when there are no displacements, there is no elastic
force. However, the Earth is already in a strained situation even without external
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forcing because of the weight of the layers inside the Earth that are pressing on
the layers beneath them (Love 1911). This weight causes the hydrostatic pressure
p0 discussed before for the buoyancy force. Therefore, (1.12) must be interpreted
as the deviatoric stress tensor, which is the stress difference with respect to the
reference stress state T0: Any additional stresses introduced into the Earth due to,
for example, earthquakes, plate tectonics or mantle convection, which would
create a 1

3trðT0Þ 6¼ p0; are neglected.
The last equation we need is Newton’s second law of motion, linearised, that

states that the acceleration of a small element is determined by the sum of the
gravity force of (1.8), the buoyancy force bL of (1.11), the divergence of the stress
tensor TL and a body force f: It is also known as the momentum equation

q0ðxÞD2
t sLðx; tÞ ¼ �q0ðxÞr/E

1 ðx; tÞ�
r � q0ðxÞsLðx; tÞ½ �g0ðxÞ�
r sLðx; tÞ � q0ðxÞg0ðxÞ½ � þ r � TLðx; tÞ þ fðx; tÞ

ð1:13Þ

The term D2
t on the left is the second order material (or Lagrangian) derivative

with respect to time t. The fðx; tÞ is body force per volume and assumed to be
small enough so that fðx; tÞ ¼ fðr; tÞ:

Equations 1.10 and 1.13 are the same as those presented by Farrell (1972). Note
that /E

1 is the only Eulerian variable which will require some attention at the
boundaries.

3 Spheroidal and Toroidal Motions

The tensor equations derived in Sect. 1.2 are concise and clear but they are not
very convenient for numerical computations. To solve the tensor equations of
motions we will chose a reference frame with the origin at the centre of mass of the
undeformed Earth and use spherical coordinates ðr; h; kÞ containing the radius, co-
latitude and longitude, and unit direction vectors er; eh and ek: This will produce
expressions for the gradient, divergence and Laplacian that are more complicated
than for a Cartesian coordinate system but it will facilitate the definition of the
boundary conditions that will be discussed in Sect. 1.6

Since the east, north and up direction are always orthogonal to each other, one
can avoid the theory of general curvilinear tensor components and use the more
straightforward method described by Malvern (1969, App. II), Arfken (1985,
Chap. 2) and Dahlen and Tromp (1998, App. A) to derive the desired expressions.
Malvern and Dahlen and Tromp also list the expression for the Cauchy stress
tensor in spherical coordinates. Hoskins (1910, 1920) and Pekeris and Jarosch
(1958) present a complete set of all equations of motion expressed in spherical
coordinates.
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We will now repeat their derivation of these equations, but to do so we first
need to put some limits on the shape of our deformation. According to Helmholtz’s
theorem, any differentiable vector field, thus also our deformations s; can be
represented as the sum of an irrotational vector field which is the gradient of a
scalar potential f plus a solenoidal (equivoluminal) vector field which is the curl of
a vector potential A; see Arfken (1985, Chap. 1) and Malvern (1969, Chap. 8):

s ¼ rf þr � A ð1:14Þ

with r � A ¼ 0: In the presence of a body force b the equation of motion in terms
of the potentials is

ðkþ 2lÞr r2f þ lr�r2Aþ qb ¼ qr o2f

ot2
þ qr�r o2A

ot2
ð1:15Þ

This equation is separable into a solenoidal part, independent of f, and a
spheroidal part, independent of A; if we know how to partition the body force b
into a curl-free and a divergence-less component (Lamb 1895). If the body force is
zero, then (1.15) decouples into the two seismic wave equations, compressional

waves with speed va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and shear waves with speed vb ¼

ffiffiffiffiffiffiffiffi
l=q

p
:

The division of s into a spheroidal part which is both compressible and curl-
free, and a complementary solenoidal part affords us a road fork in our story.
Before we start to walk down the spheroidal road, let us remind ourselves of the
decomposition of the vector potential A into a poloidal and a toroidal part
according to Backus (1986):

r� A ¼ r2ðgrÞ þ r � ðhrÞ ¼ Sþ T ð1:16Þ

where

S ¼ r o

or
ðr gÞ

� �
� rr2g ð1:17Þ

T ¼ �r� ðrhÞ ð1:18Þ

It shows that the divergence-free displacements can themselves be related to
scalar potentials g and h. The poloidal part, S; will take part in the deformation due
to a gravitating surface load with traction along the surface normal; the toroidal
part, T; is insensitive to potential forces but susceptible to surface shear tractions.

In a radially symmetric planet the body force is due to the gravity potential of
the load, and thus the curl of this force is zero. However, this part can be regarded
as a particular solution of a non-homogeneous problem. The general problem with
zero boundary conditions contains both the spheroidal and the toroidal part, and its
solution the full array of free oscillations. We will restrict ourselves to the sphe-
roidal part:

s ¼ rf þr2ðgrÞ ð1:19Þ
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For deformations due to traction, see Merriam (1985, 1986). Expanding (1.19)
into its spherical coordinates gives us

s ¼
u
v
w

0
@

1
A ¼

df

dr
� 1

r

d2g

dh2 �
1

r tan h
dg

dh
� 1

r sin2 h

d2g

dk2

1
r

df

dh
þ 1

r

dg

dh
þ d2g

drdh
1

r sin h
df

dk
þ 1

sin h
1
r

dg

dk
þ d2g

drdk

� �

0
BBBBBB@

1
CCCCCCA

ð1:20Þ

Owing to radial symmetry, the spheroidal deformation can be decomposed with
spherical harmonics as angular base functions and radial factor functions for the
depth-dependence:

u ¼
X1
n¼0

Xn

m¼�n

Um
n ðrÞYm

n ðh; kÞ ð1:21Þ

v ¼
X1
n¼0

Xn

m¼�n

Vm
n ðrÞ

dYm
n ðh; kÞ
dh

ð1:22Þ

w ¼
X1
n¼0

Xn

m¼�n

Vm
n ðrÞ

dYm
n ðh; kÞ

sin h dk
ð1:23Þ

We can see that UðrÞ is associated with the radial deformation and VðrÞ with
the horizontal deformation. We may regard

W ¼
X1
n¼0

Xn

m¼�n

Vm
n ðrÞYm

n ðh; kÞ ð1:24Þ

as a potential of horizontal displacement, delivering the vectorial components

when we let the horizontal gradient operator ½ĥdh; k̂ðsin hÞ�1dk� act on it.
The perturbed potential /1 that appeared in (1.13) can also be written as the

sum of spherical harmonics and, following tradition, the part containing the radial
function will be represented by PðrÞ: Note that for the horizontal displacement we
need to differentiate the spherical harmonics by h or k:

As we will argue below, we can restrict our treatment of the Spherical Har-
monics of order m ¼ 0; i.e. Legendre Polynomials of the first kind. At the same
time we can avoid discussing normalisation and in particular the different variants
that you may encounter in the literature.

The restriction to m ¼ 0 comes without any sacrifice as to physics, since the
physically relevant properties relate only to the spherical harmonic degree, while
the spherical harmonic order carries information about such arbitrary things like
pole location and azimuthal orientation; after all our model planet is radially
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symmetric (Phinney and Burridge 1973). Thus, for (1.21) we can equally well
write

u ¼
X1
n¼0

Um
n ðrÞ

Xn

m¼�n

CnmYm
n ðh; kÞ

and mutatis mutandis for v and w, where the dimensionless coefficients Cnm come
from the expansion of the forcing field (so the same set applies to u, v and w). We
are only interested in the radial functions, so contemplating the simplest case for
m, m ¼ 0 suffices.

If we now fill in (1.20) for given degree n and order 0 into the equations of
motion, (1.10) and (1.13), in spherical coordinates and drop the subscript n and
superscript 0 from the coefficients U0

n ; V0
n and P0

n; we get (Alterman et al. 1959;
Wu and Peltier 1982)

x2q0U � q0
dP

dr
þ g0q0X � q0

d

dr
ðg0UÞ þ d

dr
ðkX þ 2l

dU

dr
Þþ

l
r2

4
dU

dr
r � 4U þ nðnþ 1Þð�U � r

dV

dr
þ 3VÞ

� �
¼ 0

ð1:25Þ

q0x
2Vr � q0P� g0q0U þ kX þ r

d

dr
l

dV

dr
� V

r
þ U

r

� �� �

þ l
r

5U þ 3r
dV

dr
� V � 2nðnþ 1ÞV

� �
¼ 0

ð1:26Þ

d2P

dr2
þ 2

r

dP

dr
� nðnþ 1Þ

r2
P ¼ 4pGðdq0

dr
U þ q0XÞ ð1:27Þ

with

X ¼ dU

dr
þ 2

r
U � nðnþ 1Þ

r
V ð1:28Þ

Equation 1.28 represents the dilatation of the material. Due to the sign differ-
ence in Poisson’s equation, Alterman et al. use �P in (1.25)–(1.27). In addition,
we have assumed that the deformation is periodic with an angular velocity of x:
The second time derivative of the deformation s can in this case be written as
�x2s:

Next, (1.25) and (1.27) have been divided by Y0
n and (1.26) has been divided by

dY0
n=dh: This is important to remember for the case n ¼ 0 which results in

dY0
n=dh ¼ 0: For n ¼ 0 one should simply set V ¼ 0 and discard (1.26).
To derive (1.25)–(1.27) from (1.10) and (1.13) we not only needed the

expressions of the gradient and divergence in spherical coordinates but also made
use of the following relation:
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d2Y0
n

dh2 þ cot h
dY0

n

dh
¼ �nðnþ 1ÞY0

n ð1:29Þ

The result is that we have reduced the set of coupled differential equations from
three to one dimensions, although one has to compute them repetitively for all
values of degree n. In addition, since we are using spherical coordinates, we can
more easily define the boundary conditions.

While some numerical methods, such as the spectral method discussed in Sect.
1.9, may integrate the second-order differential equations (1.25)–(1.28) with suf-
ficient accuracy, we also give the six equations of first order in or; using the
auxiliary variables

a ¼ jþ 4
3
l b ¼ j� 2

3
l g ¼ 3jþ 2l

R ¼ srr S ¼ srh

ð1:30Þ

where a and b relate to the seismic longitudinal (compressional) and shear
velocities

va ¼
ffiffiffiffiffiffiffiffi
a=q

p
vb ¼

ffiffiffiffiffiffiffiffi
b=q

p
ð1:31Þ

respectively, parameters that are normally tabulated by seismologists for vari-
ous depths of the Earth. As before, j is the bulk modulus, which is the inverse of
the compressibility, and l is the shear modulus or rigidity. R and S are two
components from our Cauchy stress tensor TL and represent the radial and shear
stress. Rewriting their definition provides us with two of the six first order dif-
ferential equations:

dU

dr
¼ 1

a
� 2b

r
U þ nðnþ 1Þb

r
V þ R

� �
ð1:32Þ

dV

dr
¼ � 1

r
U þ 1

r
V þ 1

l
S ð1:33Þ

Note that to here we deviate from (Dahlen and Tromp 1998, p. 271) who define
our scalar V as nðnþ 1ÞV : The third equation is provided by rewriting the defi-
nition of the auxiliary variable Q which denotes the perturbed gravity plus a term
ðnþ 1ÞP=r :

dP

dr
¼ �4pGqU � nþ 1

r
P þ Q ð1:34Þ

In Sect. 1.6 we will see that this auxiliary variable will facilitate defining the
boundary condition at the surface. Filling in the definitions of R, S and Q into
(1.25, 1.26, 1.27) gives us (Dahlen and Tromp 1998):
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dR

dr
¼ �x2qþ 12jl

ar2
� 4gq

r

� �
U þ nðnþ 1Þ � 6jl

ar2
þ gq

r

� �
V

� 4l
ar

R þ nðnþ 1Þ
r

S þ qQ

ð1:35Þ

dS

dr
¼ � 6jl

ar2
þ gq

r

� �
U � x2qþ lðn2 þ n� 2Þ

r2

� �
V

þ q
r

P � b
ar

R � 3
r

S

ð1:36Þ

dQ

dr
¼ � 4pGq

r
ðnþ 1ÞU � nðnþ 1ÞV½ � þ n� 1

r
Q ð1:37Þ

Gravity acceleration g ¼ gðrÞ can be computed from the density model. To
derive these equations we also made use of the relation:

dg0

dr
¼ � 2g0

r
þ 4pGq0 ð1:38Þ

Outside the Earth, only the first term on the right side of (1.38) would be
necessary. However, inside the Earth to the second term is also necessary. With the

usual notation y ¼ ½U; V ; P; R; S; Q�T :

dy

dr
¼ Ay ð1:39Þ

Another convention followed, for example, by Alterman et al. (1959), Long-
man (1962, 1963) and Farrell (1972) is to label vector y as ½y1; . . .; y6�: However,
note that the definition of y6 by Alterman et al. (1959) is different from our
Q because it lacks the ðnþ 1ÞP=r part and represents the true perturbed gravity
value. We prefer our semi-perturbed gravity parameter Q because it simplifies the
formulation of the boundary condition at the surface.

At large n the radial functions run over many orders of magnitude, so that the
equation system needs stabilisation. One method is to replace r and Y as follows

~r ¼ r

a
; q ¼ ðnþ 1Þ log~r and Y ¼ LZ ð1:40Þ

respectively, where a is the mean radius of the Earth and

L ¼ exp diag a
ffiffi
~r
p
; na

ffiffi
~r
p
; agðaÞ

ffiffi
~r
p
;

jð0Þ
ffiffiffiffi
~r3
p

ðnþ 1Þ ; jð0Þ
ffiffiffiffi
~r3
p

; gðaÞ
ffiffiffiffi
~r3
p

" #( )

ð1:41Þ
where j0 is the maximum incompressibility in the Earth, and to transform (1.39)
according to Lyapunov (Gantmacher 1950) into
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dZ

dq
¼ BZ ð1:42Þ

where

B ¼ L�1 a

nþ 1
exp

q

nþ 1

� �
AL� dL

dq

� �
ð1:43Þ

in which

L�1 dL

dq
¼ 3

2ðnþ 1Þ diag 1; 1; 1; 3; 3; 3½ � ð1:44Þ

Matrix B has been given in full in Appendix 1. This scaling is particularly
useful when one uses a numerical integration method such as Runga–Kutta to
solve the differential equations; see Sect. 1.9

4 Fluid Core

So far we have assumed that the Earth is a solid body but seismologists tell us that
the Earth has a fluid core. A fluid differs from a solid by having zero rigidity. Thus,
by setting the shear modulus l to zero in the Cauchy stress tensor, the equations
presented in Sect. 1.3 continue to be applicable and we are treating the fluid as a
very weak solid.

However, problems arise when the forcing period is taken to infinity to simulate
static forcing. This phenomenon has received a relatively large amount of attention
in the literature. We will now try to point out some main conclusions that have
been derived.

It was Longman (1963) who showed that, for the case of x ¼ 0; the (1.25) and
(1.26) are no longer independent in the fluid core. This can be seen by writing
these two equations in the following form:

d

dr
q0ðP� g0UÞ þ kX½ � þ q0g0X � ðP� g0UÞ dq0

dr
¼ 0 ð1:45Þ

q0ðP� g0UÞ þ kX ¼ 0 ð1:46Þ

From (1.46) one can deduce that the term within the square brackets of (1.45)
must be zero. If (1.46) is then used to rewrite (1.45) we have:

g0q0

k
þ 1

q0

dq0

dr

� �
X ¼ 0 ð1:47Þ

�N2

g0
X ¼ 0 ð1:48Þ
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Here we made use of the definition of the Brunt–Väisälä frequency NðrÞ that is
related to the stratification of the fluid:

N2ðrÞ ¼ � g2
0q0

j
� g0

q0

dq0

dr
ð1:49Þ

In a fluid k ¼ j: As was explained before, X is the dilatation of the material; see
(1.28). For a real Earth the dilatation is not always zero which leads us to the
conclusion that N ¼ 0 in (1.47) and this puts a new condition on the properties of
the fluid that was not needed before. This situation corresponds to the so-called
Adams–Williamson or neutral buoyancy condition. It means that the compress-
ibility of the fluid is such that, when a small parcel of liquid is pushed to a deeper
and denser layer, it will compress exactly to a volume with the same density as the
surrounding fluid. If, however, the parcel afterwards rises up again, then the
stratification of the fluid is stable, N [ 0: If the parcel continues to sink the
stratification is unstable, N\0:

The fact that the fluid core can only be in neutral buoyancy seems strange and is
called the Longman paradox (Dahlen 1974; Wunsch 1974; Chinnery 1975). One part
of the solution of this paradox is that one should be careful when taking the limit of
x! 0: The result of this limit also depends on the real stratification of the fluid.

If the stratification is unstable, a boundary layer develops that gets thinner for
increasing forcing period. In the extreme case of x ¼ 0; it represents an infinitely
thin layer but it still has a finite influence on the dynamics. The radial stress
experiences a jump in the boundary layer and is zero in the fluid. Because in a fluid
the radial stress is proportional to the dilatation, this means that X is zero in fluid
after all and that the Adams–Williams condition, or neutral buoyancy, is no longer
necessary to satisfy (1.47). In Sect. 1.7 we will discuss a homogeneous fluid which
means dq0=dr ¼ 0 and N\0: Thus, the stratification is unstable and, near the
boundary of the fluid core with the mantle, such a boundary layer develops.
Pekeris and Accad (1972) also discuss the results for a fluid with N ¼ 0: In this
case no boundary layer develops. For a stable stratified fluid, N [ 0; core oscil-
lations develop which get shorter and shorter wave-lengths for x! 0:

Although Pekeris and Accad (1972) provide analytically correct solutions for
the static deformation of the Earth with a fluid core, the fact that for an unstable
stratification the horizontal displacement goes to infinity in the boundary layer and
the fact that for a stable stratification an infinite amount of core oscillations are
produced, indicates that there are still some problems.

Dahlen and Fels (1978) opposed the notion of trying to solve a Fourier-trans-
formed problem in a fluid at the limit x ¼ 0 from extrapolating solutions for small
jxj[ 0: Before we revisit the arguments of Dahlen and Fels (1978) we give our
conclusion and recommendation. The static response cannot be obtained from
sinusoidal load responses as a limit x! 0; we endorse the use of a non-zero
frequency when solving the load problem.

Stripping the problem down to the essentials, Dahlen and Fels (1978) showed
that the same problem occurs in a stratified fluid in a box with hard side walls and a
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deformable lid exposed to a laterally homogeneous gravity field. The normal
modes of this system pile up around zero frequency. The inverse Fourier transform
employs the Cauchy principal value theorem for cases like this; however, as the
open interval (0, X) contains infinitely many poles, albeit countably many, the
principal value does not converge. In fact, if you expect a finite displacement to
result, the Fourier integral of such a signal does not exist, since it is not square-
integrable. Thus, if you expect a finite response at zero frequency (a doubtful
concept per se), or, alternately, a finite response at infinite time, in Fourier the time
is indistinguishable whether it is þ1 or �1: Thus, you need to involve causality.
Thus, Laplace transform and a Heaviside load history is the concept that is
applicable, not Fourier transform.

Our task is perhaps not to estimate the time it takes for the system to reach the
finite state within a given margin, but rather to determine the finite state. For that
purpose, Dahlen and Fels (1978) suggest that an ad hoc viscosity be used for the
core fluid. This will displace the poles of the inviscid system from the real fre-
quency axis, giving them a slight imaginary part. The system can now be solved
using the residual value theorem. The bottom line is that you would continue to
exploit the 6� 6 differential equations, changing the role of the shear modulus into
a viscosity and Laplace-transform the equations such that the constitutive relation
is expressed by

r ¼ 2l_� � � 	 ~r ¼ 2sl~� ð1:50Þ

and the �x2 factors are replaced by s2; s being the Laplace transform parameter.
Farrell (1972) circumvented these difficulties by setting x equal to the tidal

period of harmonic M2 (12.42 h). Since our main interest is to compute Green’s
functions for ocean tide loading, this approach is sufficient for us. Thus, it seems
more instructive to represent the problem for non-vanishing x; and again we
follow Dahlen and Tromp (1998, Chap. 8).

The vanishing shear stress in a fluid region has the consequence that horizontal
displacement becomes directly related to vertical displacement, potential pertur-
bation, and vertical stress:

V ¼ q0gðrÞU þ q0P� R

x2q0r
ð1:51Þ

This equation has been derived from (1.26) by setting l ¼ 0 and using the fact
that the radial stress R is in this case equal to kX: One can use (1.51) to substitute V
in (1.25) and (1.27) after which we are left with two second order differential
equations.

When we use the six first order differential equations, then in the fluid we lose
two rows from the differential equations, which reduce to
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dU

dr
¼ x2g0nðnþ 1Þ

r2
� 2

r

� �
U þ 1

j
� nðnþ 1Þ

x2q0r2

� �
R

þ nðnþ 1Þ
x2r2

P

ð1:52Þ

dR

dr
¼ �x2q0 �

4q0g0

r
þ nðnþ 1Þq0g2

0

x2r2

� �
U � nðnþ 1Þg0

x2r2
R

þ nðnþ 1Þq0g0

x2r2
� q0ðnþ 1Þ

r

� �
Pþ q0Q

ð1:53Þ

dP

dr
¼ �4pGq0U � nþ 1

r
Pþ Q ð1:54Þ

dQ

dr
¼ 4pGq0

nðnþ 1Þg0

x2r2
� nþ 1

r

� �
U � 4pG

nðnþ 1Þ
x2r2

R

þ 4pGq0
nðnþ 1Þ

x2r2
Pþ n� 1

r
Q

ð1:55Þ

At n ¼ 0; the matrix elements on the right-hand side simplify considerably. The
outcome being fairly obvious, we do not write it out. Since V ¼ 0 for n ¼ 0 the
Earth just inflates or deflates a bit but remains spherically symmetric (Dahlen and
Tromp 1998). As a result, the perturbed gravity is zero. If this is so, then we have
the following relation for our semi-perturbed gravity parameter Q :

Q ¼ � 1
r

P ð1:56Þ

which also provides us with the relation that states that no potential perturbation
is possible except for the Bouguer effect due to vertical displacement:

dP

dr
¼ �4pGq0U

If we do not suppose a solid inner core, the differential equations for the fluid
interior can for n ¼ 0 be shortened to a 2� 2 system in U and R (Longman 1963):

dU

dr
¼ � 2

r
U þ 1

j
R ð1:57Þ

dR

dr
¼ � x2q0 þ

4g0q0

r

� �
U ð1:58Þ

The general solution in a homogeneous sphere (constant j) is
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UðrÞ ¼ r exp
�i x

k
r

� �
C2 L �2� 2 i g

k x
; 3;

2 i x
k

r

� �	

þC1 U 2þ 2 i g

k x
; 4;

2 ix
k

r

� �
 ð1:59Þ

RðrÞ ¼ j exp
�i x

k
r

� �
2 C2 j r L �2� 2 i g

k x
; 3;

2 i x
k

r

� �	

þC1 � 2� i
x
k

r
� �

U 2þ 2 i g

k x
; 4;

2 i x
k

r

� �
 ð1:60Þ

where k ¼
ffiffiffiffiffiffiffiffi
j=q

p
the compressional wave speed in the fluid, La

nðzÞ ¼ Lðn; a; zÞ is
the generalised Laguerre polynomial and Uða; b; zÞ the Confluent Hypergeometric
function of the second kind. The latter is singular at r ¼ 0 so we only need the Ls.

5 Resonance Effects

We will tacitly assume that the Earth–Moon system has reached a stationary
situation. If you assume for the moment that there is no Moon and it suddenly
appears, you will have some start up effects, among others starting seismic free
oscillations which, owing to internal friction, slowly die out, resulting in the
periodic tidal deformations that we experience today. So, when we say that we
solve the tidal loading problem, we assume that the load acts on the surface with a
temporal periodicity sufficiently different from the resonance frequencies that
mode excitation can be neglected. In a purely elastic Earth, resonance occurs at
sharply defined frequencies; however, in a visco-elastic mantle the resonance loses
quality and the susceptible frequencies widen to finite intervals. As much as we are
aware of this complication, we will avoid it by restricting the claims of our
simplified approach to load frequencies well below one cycle per hour.

However, there is one resonance that needs attention, and it comes from the
shape and fluidity of the core in a rotating planet. The core and the mantle rotate
around slightly different axes, and the relative motion is known as Free Core
Nutation or Nearly-Diurnal Free Wobble. Both astronomical tides of degree two
and order one with a nearly-diurnal frequency and the associated ocean tides are
able to excite the resonance although none of the forcing frequency exactly
matches the 1 ? 1/435 cycles per sidereal day frequency of the resonance. Wahr
and Sasao (1981) have solved this problem by separating out the resonance in the
load Love numbers and adding the effect to the normal Love numbers h2; k2 and l2

(see Sect. 1.7 for their definition). This is possible since the resonance effects are
primarily in the degree n ¼ 2; order m ¼ 1 spherical harmonics, and the excitation
is due to the corresponding pro-grade ocean tide harmonic coefficients Cþ21 for
amplitude and �þ21 for phase; see Lambeck and Balmino (1974) for the notations. It
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adds a complex-valued contribution that can conveniently be computed for dif-
ferent ocean models with the parametrisation in Scherneck (1991):

Dh2ðxÞ
Dl2ðxÞ
Dk2ðxÞ

9=
; ¼ �i

4pGqwaX
5ðx� XRÞ

Cþ21

Un
expði�þ21Þ

S0h
S0l
S0k

8<
: ð1:61Þ

where XR is the angular rate of the resonance, Un the potential coefficient of the
luni-solar tide that generated the ocean tide whose pro-grade order-1 surface height
is represented by ðCþ21; �

þ
21Þ and the S0 coefficients signify the resonance strength in

the respective load Love numbers (Wahr and Sasao specified S0h ¼ �2:88 � 10�4;

S0l ¼ 9:16 � 10�6 and S0k ¼ �1:45 � 10�4Þ: Further modification is needed unless
an observed tide at the exact frequency x has been used to compute ðCþ21; �

þ
21Þ: If

we are forced to resort to frequency-domain interpolation, a factor is needed to
take the effect of resonance in the body and load tide Love numbers into account at
the instance of ocean tide generation, and possibly we have additional knowledge
of the variation in ocean dynamics across the resonance band. These are the factors
Rðx;x0Þ and Dðh; k;x;x0Þ in Wahr and Sasao (1981, Eqs. 4.5 and 4.6).

6 Boundary Conditions

Now that the differential equations are in place, we will address the boundary
conditions that they have to fulfil. Since our set of equations are only valid in
material that shows smooth variations in density and elastic properties (their radial
derivative must exist), we need to divide our Earth into spherical layers in order to
cope with the jumps in density and elastic properties. As a result, we must pre-
scribe boundary conditions at the Earth’s centre, at the boundaries between the
layers and at the Earth’s surface. We will start with the boundary conditions at
the centre of the Earth where the solutions are regular. This means that, for n 6¼ 1;
the displacements and perturbed potential are zero. Mathematically this statement
can be presented as

Uð0Þ ¼ 0; Vð0Þ ¼ 0; Pð0Þ ¼ 0 ð1:62Þ

In the case n ¼ 1 we have a situation where displacements and potential per-
turbation require an additional constraint owing to the fact that a rigid translation
can be added to the displacements. The only effect of this translation is a gravity
term dP ¼ �g=uc: While this will be dealt with in detail in Sect. 1.8, we note for
the conditions in the centre that the particular displacement field that causes no
perturbation of gravity potential at both r ¼ 0 and r ¼ a does imply a shift of the
figure and thus of its centre. The relation with the normal-stress function S is as
follows:
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Uð0Þ ¼ � 48pGqþ 3x2

ð8pGqÞ2q� 80pGq2x2 � 3qx4
Sð0Þ ð1:63Þ

at n ¼ 1 if x 6¼ 0 and

Uð0Þ ¼ 3
4Gpq2

Sð0Þ ð1:64Þ

if x ¼ 0: That Uð0Þ ¼ Vð0Þ ¼ 0 may be deduced from the fact that we have a
symmetric loading for n 6¼ 1 which cannot affect the position of the origin. The
reason Pð0Þ=0 can be seen from Poisson’s equation

r2 PðrÞY0
n ðcos hÞ

� �
¼ �4pGr � q UðrÞY0

n ðcos hÞr̂ þ VðrÞohY0
n ðcos hÞĥ

h i� �

ð1:65Þ

Lifting the divergence from this equation and working out the components of
the gradient, the h-component of the equation tells us that

1
r

PðrÞohY0
n ðcos hÞ ! Vð0ÞohY0

n ðcos hÞ for r ! 0 ð1:66Þ

If Vð0Þ would some how settle at a non-zero value, the left-hand side would
grow to infinity, which is a contradiction. And obviously, horizontal displacement
cannot grow as Oð1=rÞ when r ! 0: Thus, both Vð0Þ and Pð0Þ are zero.

Next, at the interface of two solid layers we have continuity in radial and
horizontal displacements, in radial and horizontal stresses and in semi-perturbed
gravity and potential. Mathematically this is represented as

RðrþÞ ¼ Rðr�Þ; SðrþÞ ¼ Sðr�Þ; QðrþÞ ¼ Qðr�Þ
UðrþÞ ¼ Uðr�Þ; VðrþÞ ¼ Vðr�Þ; PðrþÞ ¼ Pðr�Þ

ð1:67Þ

where r denotes the radius of the interface, rþ just above it and r� just below it. Of
course the true perturbed gravity is also continous over the boundary, y6ðrþÞ ¼
y6ðr�Þ: At the boundary of a solid and fluid layer the situation is a little different. If
we indicate the radius of this mantle core boundary by c and assume the mantle
lies above the core, we have SðcþÞ ¼ 0 while shear stresses in the fluid core are
undefined because l ¼ 0: Furthermore, continuity in the horizontal displacement
V is no longer required, so this equation disappears. Another relation we have at
the mantle-core boundary for n ¼ 0 is

QðcþÞ ¼ dP

dr


r¼c�
þ4pGqUðc�Þ þ 1

r
Pðc�Þ

¼ 1
r

Pðc�Þ
ð1:68Þ
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Finally, we need to describe the boundary conditions at the surface which
depend on the type of loading is applied. Since we are interested in ocean tide
loading, we assume that we have a parcel of tide-water lying on the Earth’s
surface. This parcel has a mass that generates a perturbation in the potential field
of the solid Earth. Due to its weight, this parcel also presses on the ocean bottom.
Therefore, in the ocean loading problem we must prescribe at the surface a per-
turbation in the potential and a normal stress. For the tidal deformation of the Earth
caused by the Moon and Sun, this surface stress is zero.

Now it becomes important to distinguish between the Lagrangian and Eulerian
descriptions that were explained in Sect. 1.2 The perturbed potential is a Eulerian
function, evaluated at the undeformed boundary layers. Since deformation moves
mass, the perturbed potential sees a ‘Bouguer’ effect. The stresses and displace-
ments are evaluated at the deformed boundaries (Lagrangian) but to second order
one can also just evaluate them at the undeformed boundaries.

To define our boundary conditions at the Earth’s surface, it is convenient to
assume that we have a unit point mass mu at a distance R away from the Earth’s
centre; see Fig. 1.1. The external potential /e of this unit point mass mu can be
written as a sum of spherical harmonics:

/eðr; hÞ ¼ �
G

d
¼ �G

a

X1
n¼0

r

a

� �n
Y0

n ðcos hÞ for r\R ð1:69Þ

We have added a minus sign because the potential should increase, become less
negative, with increasing distance. Since the Earth is not completely rigid, it
deforms due to the presence of this external potential, creating an additional
internal potential /i: Outside the Earth this internal perturbed potential can also be
written as a sum of spherical harmonics:

/iðr; hÞ ¼ �
G

a

X1
n¼0

knðaÞ
a

r

� �nþ1
Y0

n ðcos hÞ for r [ a ð1:70Þ

where knðaÞ are some unknown constants which will be determined later. Inside
the Earth (1.70) is not valid. The total perturbed potential is /1 ¼ /e þ /i: In Sect.
1.3 we have shown that for each degree n the radial part of /1 can be written as a
function PðrÞ: Using the same scaling of Sect. 1.3 and setting r ¼ a we have
Pe ¼ G=a and Pi ¼ k0nðaÞG=a: At the surface the radial derivatives of these
functions are

e

i

R

d
r

Earth

a

Fig. 1.1 In the left panel the
definition of angle and
distances is given. In the right
panel we schematically show
the behaviour of the external
and internal perturbed
potential
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dPeðrÞ
dr

¼ n

r
PeðrÞ underneath the load ð1:71Þ

dPiðrÞ
dr

¼ � nþ 1
r

PiðrÞ above the surface ð1:72Þ

The perturbed gravity just below (�) and above (þ) the surface should be equal.
Remembering that the Earth’s surface has been displaced due to the deformation
our equation of continuity of perturbed gravity is

r/E
1 ðx; tÞ

� þ sLðx; tÞ� � r2/0ðx; tÞ� ¼ r/E
1 ðx; tÞ

þ þ sLðx; tÞþ � r2/0ðx; tÞþ

ð1:73Þ

Using Poisson’s relation, one can replace the r2/�0 on the left side of the
equation with 4pGq0 while the same term on the right is zero because we neglect
the density of the atmosphere and put q0 ¼ 0 outside the Earth.

To first order, we will only need to consider the radial derivative and can
replace the r operator by d=dr: If we again decompose (1.73) into spherical
harmonics, then for each degree n we have

dP�

dr
þ 4pGq0U ¼ dPþ

dr
ð1:74Þ

If for the moment we assume that there is no external potential Pe and use (1.72)
to substitute the term on the right:

dPi

dr
þ nþ 1

r
Pi þ 4pGq0U ¼ 0 ð1:75Þ

If we add the both the internal and external potential in (1.74), we get at the
surface

dP

dr
þ nþ 1

r
Pþ 4pGq0U 
 Q ¼ � 2nþ 1

a

G

a

� �
ð1:76Þ

Equation 1.76 provides the boundary condition for the semi-perturbed gravity
Q at the surface. The beauty of (1.76) is that it does not contain the unknown
internal potential /i explicitly.

Now we will derive the expression for a unit point load r: According to
Longman (1962), the Legendre expansion of the Dirac d-function on a sphere with
radius a is

r ¼
X1
n¼0

2nþ 1
4pa2

Y0
n ðcos hÞ

¼ G

a

� �X1
n¼0

2nþ 1
4pGa

Y0
n ðcos hÞ

ð1:77Þ
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Our unit mass exerts a point load of magnitude �g at the surface which means
that the boundary condition for the normal stress R for degree n is

R ¼ � 2nþ 1
a

g

4pG

G

a

� �
ð1:78Þ

Together with the boundary condition that the horizontal stress is zero, S ¼ 0;
(1.76) and (1.78) provide three boundary conditions at the surface.

7 Simple Earth Models and Love Numbers

At this point it is instructive to discuss the deformation of an elastic solid Earth
with constant density and constant elastic properties. For this particular situation
there exist three analytical solutions for each parameter which, combined, describe
the radial and horizontal deformation and perturbed potential throughout the Earth.
These analytical solutions are provided by Dahlen and Tromp (1998) and are
reproduced in Appendix 2. For example, the radial displacement, for degree n, is

UðrÞ ¼ UþðrÞ þ U�ðrÞ þ U�ðrÞ
¼ y11 jnðcþrÞ þ y12 jnðc�rÞ þ y13 rn ð1:79Þ

Note that these solutions automatically produce zero displacements and dis-
turbed gravity at the Earth’s centre.

In the second line of (1.79), we have factored out the terms containing the
spherical Bessel functions jn and rn and formed new coefficients y11; y12 and y13

(Okubo 1988). This is not necessary but has been done to emphasise the fact that
each term depends on a different function. The solutions for the horizontal dis-
placement V and perturbed potential P can be written in the same format. All these
coefficients can be grouped in a matrix:

D ¼
y11 y12 y13

y31 y32 y33

y51 y52 y53

8<
:

9=
; ð1:80Þ

The displacement vector s can now be computed as DJh where J is a 3� 3
matrix with our jnðcþrÞ; jnðc�rÞ and rn terms on the diagonal. Vector h contains
scale factors because each separate solution can be multiplied with an arbitrary
constant.

From the solutions for U, V and P, we can derive the analytical solutions for the
radial stress R, tangential stress S and semi-perturbed gravity Q. Again we can
factor out the jnðcþrÞ; jnðc�rÞ and rn terms and form a new matrix E in such a way

that the vector ðR; S;QÞT is EJh: Matrix E is defined in a similar ways as matrix D:
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E ¼
y21 y22 y23

y41 y42 y43

y61 y62 y63

8<
:

9=
; ð1:81Þ

Each row of matrix E is associated with the radial stress, tangential stress and
semi-perturbed gravity. For example, the radial stress is written as

RðrÞ ¼ y21 jnðcþrÞ þ y22 jnðc�rÞ þ y23 rn ð1:82Þ

Our next task is to estimate the scale factors h in order to fulfil the boundary
conditions at the surface described in Sect. 1.6 Following Okubo (1988) we will
compute the scaling factors for the three solutions for the body tide and load tide
simultaneously. These boundary conditions, for degree n, at the surface are stored
in the columns of the following matrix x :

x ¼ 2nþ 1
a

0 g
4pG

0 0
1 1

0
@

1
A ð1:83Þ

The first column of x shows that for the body tide, only the potential is non-zero
at the surface. In the second column, one can see that for the load tide there is an
additional radial stress. Note that the factor �G=a has disappeared. Instead of a
unit-mass, we are computing the deformation due to a unit-potential.

The scale factors h are determined with ðEJðaÞÞ�1x: Since the matrix EJ can be
ill-conditioned, it makes sense to scale each row of EJ in such a way that the
largest entry is 1. This will not change the value of h if vector x is scaled by the
same factors, but will improve its numerical accuracy.

Now that these scale factors are known, we can compute the deformations
U and V and the perturbed potential P at any radius r using DJðrÞh: Remember that
we have computed the radial deformations UðrÞ for a unit potential load on the
Earth’s surface. It was Love who represented these deformations as the product of
a function hnðrÞ divided by g. For any other external potential /e; that again can be
developed into spherical harmonics with a radial function at the surface PeðaÞ; the
radial deformations are, for degree n

UðrÞ ¼ �hnðrÞ
PeðaÞ

g
ð1:84Þ

For the tangential displacements a similar function lnðrÞ is defined:

VðrÞ ¼ �lnðrÞ
PeðaÞ

g
ð1:85Þ

The same can be done for the perturbed potential although it is customary to
introduce a function kn that is only associated to the internal perturbed potential /i :

PðrÞ ¼ ð1þ knðrÞÞPeðaÞ ð1:86Þ
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The minus sign in (1.84) and (1.85) is the result of our definition of the potential
with the opposite sign as Love (1911) and Alterman et al. (1959). The definitions
of the functions hnðrÞ and lnðrÞ already have a long tradition and it would cause too
much confusion if we were to define new Love numbers with the opposite sign.
Wu and Peltier (1982) follow the same sign convention of the potential as we use
here but compute the deformation of the Earth due to a negative unit potential.
This causes the minus sign to disappear in the definition of hnðrÞ and lnðrÞ but then
it reappears in (1.86).

Normally, the values of hnðrÞ; lnðrÞ and knðrÞ are only given for the Earth’s
surface which turns them into numbers instead of functions. The lnðaÞ Love
number is also called the Shida number. The Love numbers are needed to compute
our Green’s functions to compute the ocean tide loading as we announced in Sect.
1.1 and which we will explain in more depth in Sect. 1.11

Love (1911) studied the deformation of the Earth due to the tidal force of the
Moon and thus had no pressure forces on the surface. To distinguish between load
Love numbers and the body tide Love numbers, the former are normally written as
h0n; l0n and k0n; a notation that was introduced by Munk and MacDonald (1960). As
an example, we give the values of normal Love numbers and load Love numbers
for a homogeneous Earth, called model b: The values for the Gravitational con-
stant G, the mean radius of the Earth a and the angular velocity of the forcing x
(corresponding to the main tidal period of 12.42 h) are given in Table 1.1. The
properties of the homogeneous Earth are listed in Table 1.2 and were taken from
Alterman et al. (1959). The results are listed in Table 1.3 where we have multi-
plied the l, l0, k and k0 numbers by degree n, just to get a convenient size. The
functions h0nðrÞ and k0nðrÞ are plotted in Figs. 1.2 and 1.3 for various degrees
n. Note that for high values of degree n, the functions h0nðrÞ and k0nðrÞ are very
small throughout the Earth and only increase near the surface. As a result, the

Table 1.1 General constants Constant Unit Value

G m3kg�1s�2 6.673�10�11

a m 6.371�106

x rad=s 1.40526�10�4

Table 1.2 Properties of a
homogeneous Earth (model
b) and an Earth with a
homogeneous mantle and a
fluid core with a radius of
0:55a (model a)

Model b Model a

Constant Unit All Core Mantle

Mean density q (kg=m3) 5517 11020 4460
Shear modulus l (GPa) 146 0 174
Lamé parameter k (GPa) 347 950 231

1 Almost ignore; you need to assume that gðrÞ=r ¼ const: in order to retain the structure of the
analytical solution (Vermeersen et al. 1996).
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properties of the Earth just underneath the station increase in importance for
increasing degree n.

Another interesting case is the deformation of an Earth with homogeneous
mantle and a homogeneous liquid core. Following Alterman et al. (1959), we will
call this model a: Its density and elastic properties are given in Table 1.2 . In each
layer, analytical solutions for the deformation can be derived; see Appendix 2.
However, in contrast to the case of the completely homogeneous Earth, in the
mantle we now also need spherical Bessel functions of the second kind and
solutions that contain 1=rn terms. Therefore, we must extend our D;E and J
matrices discussed before to include these terms; see Martinec (1989).

As we discussed in Sect. 1.4 and Appendix 2, in a fluid we can derive the
tangential displacement and stress from the other parameters: U, R, P and Q. In

Table 1.3 The normal and load Love numbers for Earth model b for several degrees

Degree hn nln nkn h0n nl0n nk0n
1 -18.22448 -18.22448 -18.22448 -0.18599 0.14700 0.00000
2 0.52221 0.28413 0.60384 -0.58502 -0.02167 -0.44057
10 0.10622 0.01229 0.14818 -0.88125 0.14981 -0.91403
100 0.01167 0.00014 0.01736 -1.00537 0.22378 -1.14968
1000 0.00118 0.00000 0.00177 -1.02022 0.23250 -1.17926
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Fig. 1.2 The load love
numbers h0n for n ¼ 2; 10 and
100 for a homogeneous Earth
as a function of the Earth’s
radius
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Fig. 1.3 The same as
Fig. 1.2 but for k0n
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addition, we only have one solution of the spherical Bessel functions of the first
kind. As a result, our E becomes a 2� 2 matrix.

We will ignore the fact that the gravity can no longer be described as 4pGq0r=3
throughout the Earth, which was one of the assumptions in deriving these ana-
lytical solutions.1

Of course we can generalise this procedure and divide the Earth into multiple
layers with constant density and constant elastic properties. Describing the prob-
lem of the deformation of the Earth as a set of propagating matrices is called the
Thomson–Haskell method (Gilbert and Backus 1966) and is popular among post-
glacial rebound modellers although they use something more complicated than just
constant elastic properties.

Returning to our model a; the normal Love numbers for several values of the
forcing period are given in Table 1.4 and the radial stress R is plotted in Fig. 1.4. In
this last figure one can see that, for decreasing period, a boundary layer develops
underneath the core–mantle boundary. Since in the fluid core the radial stress is
related to dilatation through R ¼ kX; one can see that in the limit x! 0;X ¼ 0
throughout the core and that the Adams–Williams condition is not needed as an
extra condition (Pekeris and Accad 1972).

It is interesting to see what these Love numbers would be when the limit of
x! 0 is taken. Now we should remember that the stratification of our homoge-
neous fluid is unstable and that a boundary layer develops (Pekeris and Accad
1972). If the jump through the boundary layer is taken into account, then we get
the Love numbers listed in the last line of Table 1.4.

Table 1.4 Love numbers for our model a Earth for degree n ¼ 2 for different periods of forcing
(T ¼ 2p=x)

T h2 2l2 2k2 h02 2l02 2k02
6 h 0.69216 0.27579 0.72544 -0.87766 -0.08390 -0.65887
12 h 0.68037 0.27254 0.71343 -0.86444 -0.08128 -0.64730
24 h 0.67741 0.27174 0.71048 -0.86035 -0.08067 -0.64433
1 0.67633 0.27148 0.70949 -0.85782 -0.08051 -0.64316
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Fig. 1.4 The radial stress
R inside the Earth for
different values of the forcing
period
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8 Degree-1 Response and Translational Invariance

At this point we take the opportunity to look at much discussed problem of
separating displacement into a whole-body rigid translation and deformation
notably at spherical harmonic degree 1; see, for instance, Blewitt (2003).

For degree 1 the situation is a little different because the load is not symmetric
and this causes the Earth to move in space, in addition to deforming it. First, we
will discuss the translation of the Earth in space which is equivalent to a constant
sL: As a result, rsL ¼ 0: Looking at the Cauchy stress tensor, (1.12), we see that a
translation of the Earth in space does not introduce any stress.

As a side note, assume for the moment that we have a homogeneous Earth with
constant density. In this case, the gradient of the reference density q0 is zero. From
the continuity equation, (1.6), it follows that a translation of the solid Earth cannot
perturb the density: q1 ¼ 0: Applying Poisson’s equation we see that the perturbed
potential /E

1 is also zero and we can conclude that for a homogeneous Earth, a
translation of the whole Earth does not affect our equations although it will have an
effect on our boundary conditions.

For a non-homogeneous Earth, a translation will create a non-zero perturbed
density q1 and perturbed potential /E

1 field. This is the consequence of defining a
reference density q0 and potential /0 field at the origin of the undeformed Earth,
fixed in space, and describing the deformations as perturbations with respect to this
reference field. A translation z along the h ¼ 0 direction causes a perturbation in
the potential equal to

/1 ¼ ðrx2 � g0Þz cos h ð1:87Þ

Here we have added the potential produced by the acceleration of the trans-
lation. For tidal periods, rx2 is much smaller than g0 and has therefore probably
been neglected by Farrell (1972).

So far we have only discussed a translation of the whole Earth. However, there
also exists a degree one deformation that will generate a perturbed potential in the
same way as we described in the previous sections. The only difference is that, due
to the asymmetric loading, we no longer have zero displacements and a zero
perturbed gravity value at the centre of the Earth and require three new boundary
conditions.

To find these three new boundary conditions at the centre, we must realise that
in a small ball with radius d around this centre the Earth can be considered to be
homogeneous. Repeating the results presented in Sect. 1.7 and invoking the
associated mathematics from Appendix 2, we note that only the analytical solution
that depends on rn can produce displacements that are non-zero at the centre. This
solution has been reproduced here (for n ¼ 1Þ :
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U� ¼ cr
n

r
r ¼ cr

V� ¼ cr
1
r

r ¼ cr

P� ¼ crðx2r � 4p
3

GqrÞ ¼ crðx2r � g0Þ

R� ¼ cr
2nðn� 1Þl

r2
r ¼ 0

S� ¼ cr
2ðn� 1Þl

r2
r ¼ 0

Q� ¼ cr
ð2nþ 1Þx2 � 8pGqnðn� 1Þ=3

r
r ¼ 3crx

2

ð1:88Þ

where cr is to be determined from the boundary condition at the surface. From
(1.88) we can see that three new possible boundary conditions are: Uð0Þ ¼
Vð0Þ;Rð0Þ ¼ 0 and Sð0Þ ¼ 0: The other analytical solutions for a homogeneous
sphere containing the spherical Bessel functions j1 produce zero displacements and
stresses at the Earth’s centre. The solutions containing terms with 1=r or the
spherical Bessel functions y1 are infinite at the Earth’s centre and therefore need to
be set to zero.

Now that we know our new boundary conditions at the Earth’s centre, let us
discuss the Love numbers for our a and b Earth models discussed in Sect. 1.7 For
the homogeneous Earth one can see in Table 1.3 that all normal Love numbers are
the same. Because the Earth is homogeneous, no differential forces occur and the
Earth does not deform but only oscillates back and forth in space. The amplitude of
these oscillations is larger the longer the period of forcing. These forces produce
the motion of the Earth around the solar system and are not of interest us here
where we want to study tidal phenomena and our equations are only valid for small
perturbations from the undeformed reference state.

The situation for the load Love numbers is different because, in addition to the
gravitational attraction of the unit potential, it exerts a load on the surface in
the opposite direction. That this produces a zero internal perturbed potential at the
surface is just a peculiarity of a homogeneous Earth. For our Earth with a
homogeneous mantle and fluid core the Love numbers for degree one are given in
Table 1.5 . One can see that now the normal Love numbers are not all the same
because the Earth is no longer homogeneous. Also the k01 load Love number is now
different from zero.

Table 1.5 The same as Table 1.3 but for Earth model a:

Degree hn ln kn h0n l0n k0n
1 -12.80564 -14.38607 -13.12949 -0.52853 -0.27453 -0.32385
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It is customary to keep the origin of the reference frame fixed to the centre of
mass of the deformed solid Earth. For n 6¼ 1 this always coincided with the
position of the origin of the undeformed solid Earth which was the origin of our
reference frame in the previous sections. However, now we must shift the frame.
The centre of mass of the solid Earth has the property that it has a zero value for
the perturbed potential at the surface. To achieve this we need to adjust our load
Love numbers as follows (Farrell 1972):

½h01�CE ¼ h01 � k01
½l01�CE ¼ l01 � k01
½k01�CE ¼ k01 � k01 ¼ 0

ð1:89Þ

For other choices for the origin of the reference frame, see Blewitt (2003). We
only want to point out that all associated translations of the reference frame and
modifications of the load Love numbers can be derived from our original load
Love numbers h01; l01 and k01:

9 Numerical Methods

In Sect. 1.7 we computed the deformation of the Earth using the Thomson–Haskell
method that uses the analytical solutions of the deformation inside each layer with
constant density and constant elastic properties. We have already briefly men-
tioned that we ignored the fact that the gravity can no longer be described by
4=3pGq0r throughout the Earth. Although there are ways to minimise this last
problem, one would still face problems that the deeper layers in most recent Earth
models, such as PREM (Dziewonski and Anderson 1981), have density and elastic
properties that vary inside each layer. Instead of also trying to minimise this
problem, for example by sub-dividing these layers into layers with constant
properties, we will now present methods that solve the differential equations
numerically. These numerical methods are slightly more elaborate to implement
than the Thomson–Haskell method but provide more flexibility. The most popular
method of solving the six differential (1.32)–(1.37) is the Runge–Kutta method
(Alterman et al. 1959). As with the Tomson-Haskell method, these equations are
solved in each layer separately. One starts by integrating the equations from the
centre of the Earth upwards to the boundary of the first layer. The computed values
for the six parameters U, V, P, R, S and Q at the upper boundary are the starting
values for the integration in the next layer. This process is repeated until one
reaches the surface.

Starting at the centre of the Earth sounds simple. However, inspection of the
differential equations shows that they are singular at r ¼ 0: Secondly, we should
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not forget that the high spherical harmonic degrees for which we seek the load
Love numbers imply extremely small deformation in the deep interior. Factoring
out a scaling function and mapping the radial coordinate on a logarithmic scale
helps to overcome the numerical problems. This is the Lyapunov transformation
mentioned in Sect. 1.3. However, the convenience the trick gives with one hand it
takes away with the other: we need starting solutions for a tiny homogeneous
sphere in order to avoid the singularity problem. This has already been discussed
in Sect. 1.7 but we would like to add that because of the small radius, the spherical
Bessel functions of the first kind, jn; may be approximated for radii\epsilon in the
range 1–10 km,

jnð�Þ ¼
ffiffiffi
p
p

2Cðnþ 3=2Þ
�

2

� �n
ð1:90Þ

where C represents the Gamma function if ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 3=2

p
; which is always ful-

filled except at a few small values of n. Below n ¼ 10 the spherical Bessel
functions are unproblematic.

For the case of an Earth model with a fluid core at its centre we can also
compute these analytical solution using a power-series ansatz. First, we replace g0

in (1.52)–(1.55) with 4pGq0r=3: With power series

UðrÞ
RðrÞ
PðrÞ
QðrÞ

0
BB@

1
CCA ¼

X1
j¼1

uj=r
sj

pj

qj=r

0
BB@

1
CCArnþj�1 ð1:91Þ

the differential equations produce a set of coupled recursion relations:

�jq ½4p G q nðnþ 1Þ � 3 ðjþ nÞx2� uj þ 3 ½n ðnþ 1Þ j ðsj � q pjÞ� ¼ 3 qx2 sj�2

q ½ð4p G qÞ2 nðnþ 1Þ � 48p G q x2 � 9 x4� uj

� 3 ½4p G q nðnþ 1Þ þ 3 ðjþ n� 1Þx2� sj

� 3q ½ðnþ 1Þ ð4p Gq n � x2Þ pj þ 3 x2 qj� ¼ 0

4p G q uj þ ð2nþ jÞ pj � qj ¼ 0

4p
3

G q ðnþ 1Þ ð4p G qn � 3 x2Þ uj

� 4p G nðnþ 1Þ ðsj � q pjÞ þ ð1� jÞx2 qj ¼ 0
ð1:92Þ

with starting equations
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q ½ð4p G qÞ2 nðnþ 1Þ � 48p G qx2 � 9 x4�
� 3n ½4p G q ðnþ 1Þ þ 3 x2� s1

� 3q ½ðnþ 1Þð4p G q n � x2Þ p1 þ 3 x2 q1� ¼ 0

q ð4p G q n � 3 x2Þ u1 � 3 n ðs1 � q p1Þ ¼ 0 ð1:93Þ

The resolved equations are shown in Appendix 3. The recursion starts with
u1 ¼ 0; an arbitrary s1 and a compatible p1 ¼ s1=q: From this, q1 can be com-
puted, and the recursion can step ahead to j ¼ 3; 5; . . .:

For degree n 6¼ 1; we know that at the Earth’s centre U ¼ V ¼ P ¼ 0: How-
ever, we do not know the starting values of the radial and tangential stresses R and
S, nor the starting value of the semi-perturbed gravity Q. The solution of this
problem is to solve the differential equations three times and each time set another
one of these three unknowns to 1 and the other two to zero. These three solutions
have to be scaled afterwards to fit the boundary conditions. If we remember that in
Sect. 1.3 we had written our six first order linear differential equations as, 1.39:

dy

dr
¼ Ay ð1:94Þ

with y ¼ ½U; V ; P; R; S; Q�T ¼ ½y1; . . .; y6�; then for the case of ocean tide
loading we can write the three solutions yð1Þ; yð2Þ and yð3Þ at the surface as:

yð1Þ2 c1 þ yð2Þ2 c2 þ yð3Þ2 c3 ¼
2nþ 1

a

g

4pG
ð1:95Þ

yð1Þ4 c1 þ yð2Þ4 c2 þ yð3Þ4 c3 ¼ 0 ð1:96Þ

yð1Þ6 c1 þ yð2Þ6 c2 þ yð3Þ6 c3 ¼
2nþ 1

a
ð1:97Þ

Solving (1.95)–(1.97) provides us the scale factors c1; c2 and c3:
We would like to emphasise that we are solving a set of non-homogeneous

differential equations. In principle, we can add to these the solutions for the homo-
geneous differential equations that correspond to the free-oscillation of the Earth.
In fact, the procedure described above is exactly how these free-oscillations of the
Earth are computed. One computes the solutions of the homogeneous differential
equations for various values of the forcing period T ¼ 2p=x until (1.95)–(1.97)
become linearly dependent, which indicates that a resonance period has been found.

As before, complications arise due to the existence of a fluid core. If we for the
moment we assume that there is no solid inner core, then only need to integrate U,
P, R and Q from the centre of the Earth to the core–mantle boundary as was
explained in Sect. 1.4. This involves only two unknowns: R and Q. At the bottom
of the mantle the tangential stress S is zero, and only the horizontal displacement
V is unknown and takes the place of S in the procedure described above. If we have
a solid inner core, then the situation is a little more complicated. As before, we
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need to compute three solutions for unit values of R, S and Q at the Earth’s centre.
Since we know that the tangential stress is zero at the boundary of the inner and
outer core, one of the scale factors can already be written as a function of the other
two. Again, we are left with three unknowns and the rest of the procedure remains
the same as before.

For degree n ¼ 1 we have different conditions at the Earth’s centre which
causes other problems because now we no longer know the values of Uð0Þ;Vð0Þ
and Pð0Þ: However, now Rð0Þ ¼ Sð0Þ ¼ 0 and we know that Uð0Þ ¼ Vð0Þ which
is sufficient information to solve the equations.

Another numerical method that is very suitable to solve the differential equa-
tions is the spectral method where the solution is approximated by a sum of basis
functions (Boyd 2000). In our case, we will use Chebychev polynomials as basis
functions and our method is thus better described as the Chebychev collocation
method. Its use to compute the deformation of the Earth was pioneered by Guo
et al. (2001, 2004).

To explain its principles, assume that the radial displacement function UðrÞ can
be approximated by:

UðrÞ � UNðrÞ ¼
XN

i¼0

aiwiðrÞ ð1:98Þ

where wi is a Chebychev polynomial of degree i and ai is a constant. Similar
approximations can be made for VðrÞ and PðrÞ: Since polynomials are easily
differentiated, we can insert these approximations into our second order differential
equations (1.25)–(1.27). If we evaluate these equations at N þ 1 positions inside
the Earth, called nodes, we have created 3ðN þ 1Þ equations with 3ðN þ 1Þ
unknowns: the coefficients ai of UN ; VN and PN : This system of linear equations
can be solved and, once we know the values of the coefficients ai; we have an
approximation for the solution of the differential equations.

The distribution of these nodes should be done in such a way so as to optimize
the accuracy of the approximation. It turns out that there are two good distribu-
tions, called Gauss-Radau and Gauss-Lobbato (Boyd 2000). The only significant
difference between the two is that the Gauss-Radau distribution includes the end
points while Gauss-Lobbato does not. Guo et al. (2001) advocate the use of the
latter to avoid the singularities at the Earth’s centre. However, it is convenient to
replace the differential equations at these start and end nodes with the boundary
conditions. At the same time singularity problems are avoided. Thus, we will use
the Gauss-Radau distribution of nodes:

xj ¼ cos
pj

N
; j ¼ 0. . .N ð1:99Þ

where x lies between -1 and 1. We must thus scale the radius r in each layer to fit
this interval. This scaling should not be forgotten when one takes the derivatives
of wi:
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A disadvantage of using the three second-order differential equations is that
these include the radial derivative of the elastic properties. However, these
properties are normally given as low-degree polynomials, which ensures us that
these derivatives can be computed easily. Another detail that might require some
attention occurs again in the fluid core. Since in a fluid only four boundary con-
ditions are needed, we must evaluate (1.26) on all nodes and not substitute the start
and end points with boundary conditions. At the Earth’s centre we know that for
n 6¼ 1;U ¼ V ¼ 0 so one can make an exception and replace the differential
equation on the start node at r ¼ 0 with the boundary condition. For degree n ¼ 1
we know that U ¼ V which removes any remaining singularities in a fluid at the
Earth’s centre.

As a final remark, we note that for high values of degree n; the core hardly
deforms and one could in principle set the boundary conditions U ¼ V ¼ P ¼ 0 at
the core–mantle boundary.

10 Rheology: Viscosity and Anelasticity

When the temperature of rock materials is high enough yet still safely below the
melting point, elastic stress will relax with time. The material will creep under
stress. Whether or not this deformation recovers determines whether the material is
termed anelastic or inelastic, respectively (Nowick and Berry 1972).

Basic properties can be illustrated with rheological circuit diagrams. Consider
for instance the Maxwell body (Fig. 1.5a) as an example of irreversible deforma-
tion. When stress is applied, the viscous element starts creeping, but when the stress
is removed it remains in the deformed position. Application of a single Maxwell
model to explain delayed recovery from deformation is commonly proposed in the
problem of Glacial Iostatic Adjustment (GIA). This is a phenomenon on a time
scale of 1,000–100,000 years. At the time scale of tides the viscosity that is inferred
from GIA studies produces very small effects of inelasticity, and we may wonder

1

2

(a) (b)Fig. 1.5 Elementary
rheological models, a the
Maxwell body, b the Zener
body
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whether other approaches viable in long-period seismology might not be better
suited.

We serve ourselves from developments in seismology that were set out to
explain Q, the quality factor that describes the attenuation of seismic waves along
their paths, or, if you wish, the decay of free oscillations over time (Knopoff 1964).
The recipes that follow below will end in what is known in seismology as Gen-
eralised Maxwell rheology and the Standard Linear Solid.

Parallel connection of the dash-pot with a spring element is a simple model for
recoverable strain, since now elastically stored energy is left to do work on the
viscous element. By the same token the body shows stress relaxation when a strain
is prescribed as a step. In the model referred to as Zener body or, alternatively,
Standard Linear Solid (Fig. 1.5b), shortly after deformation, much force is put on
the viscous element. As time goes by, the viscous element relaxes and stress is
shared by two elastic elements in series.

We leave the solid state physics of stress relaxation or strain retardation aside
and concentrate instead on how rheology enters into our differential equations.

First of all, the temporal aspect adds a phase-shifted relation between stress and
strain. Fourier-transforming the shear deformation

r
2l
¼ �

(elastic), respectively

_r
2l
þ r

2g
¼ _�

(Maxwell) gives

ix
2l
þ 1

2g

� �
r ¼ ix� ð1:100Þ

or

lðixÞ ¼ ixlg
ixgþ l

ð1:101Þ

which, at x!1; displays unaltered elasticity l; but at x! 0; the resistance to
shear is zero. The quantity g=l is called relaxation time or Maxwell time. Thus,
the only effect is that the equations need to be doubled with an imaginary part. The
stress and gravity boundary conditions remain real-valued.

Slightly more complicated, the following exercise considers the Zener body.
Here

lðs; ixÞ ¼ l2ðl1 þ ixgÞ
l1 þ l2 þ ixg

¼ l1l2ð1þ ixsÞ
l2 þ l1ð1þ ixsÞ
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with relaxation time s ¼ g=l1: Its zero- and infinite-frequency responses are the
relaxed compliance 1=lr ¼ 1=l1 þ 1=l2 and the unrelaxed one lu ¼ 1=l2;
respectively.

In order to widen the discrete circuitry to a continuum, we may imagine a
spectrum of relaxation times distributed over an infinite chain of Zener elements.
The resulting model body is designated as the Standard Linear Solid (Fig. 1.6).
Strain is now described as the integral over this infinite number of elements given
the stress

�ðixÞ ¼
Z s2

s1

AðsÞ ds
2lðs; ixÞ

� �
rðixÞ ð1:102Þ

For normalisation of AðsÞ; the compliance—the integral in (1.102)—is to
evaluate the relaxed and unrelaxed values at zero and infinite frequency, respec-
tively, which amounts to demanding

Z s2

s1

AðsÞ ds ¼ 1

Zschau (1983) gave an expression for the shear compliance of the absorption band
model:

1 2

1 2

oo

(a)

(b)

Fig. 1.6 Continuous rheological models, a an infinite chain of Zener elements, b the Generalised
Maxwell Body. If the range of relaxation times is finite, the bodies may serve as models for the
seismic absorption band. Extrapolation to non-seismic frequencies might be daring
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1
lðixÞ ¼

1
l1

(
1þ D

� ixa
1þ a

D

sa
2 � sa

1

s1þaFð1þ a; 1; 2þ a;�ixsÞ
� �s2

s1


 ð1:103Þ

where F is the hypergeometric function, D the creep strength of the body

D ¼ �ðt!1Þ � �ðt ¼ 0Þ
�ðt ¼ 0Þ

(the ratio of after-effect strain to initial strain) and l1 the shear modulus at ultra-
seismic frequencies. The elegance of this model lies in the parsimony with three
parameters, a;D and l1:

Let us end this section by mentioning another generalised body, this time based
on an infinite parallel coupling of Maxwell bodies with a spectrum of relaxation
times, the Generalised Maxwell Body (b in Fig. 1.6). Instead of prescribing stress
we now prescribe strain and formulate how the stress relaxes

rðixÞ ¼ 2
Z

AðsÞlðix; sÞ ds

� �
�ðixÞ

where lðix; sÞ is now taken from (1.101). Closed formulas for the Generalised
Maxwell Body are generally not possible; however Müller (1983) has shown such
expressions for fractional integer exponents A / s1=n: The banded nature of A as it
appears limited between two finite relaxation times might appear as rather artifi-
cial. However, this so-called high-temperature background or absorption-band
model has been shown to own some realism in laboratory studies of rock samples
(Kampfmann and Berckhemer 1985). It can be argued that the absorption band
model has an upper limit where Maxwell rheology (irreversible deformation)
exceeds the relaxation that the generalised Zener body accomplishes, so that it is
the lower band edge that is more critical to determine, but at the same time it is
more accessible to observation owing to studies of seismic wave propagation.

11 Green’s Functions

Computation of loading effects at a field point due to the tide loads distributed over
the ocean surfaces of the planet is conveniently carried out using convolution with
a Green’s kernel function. The method and its alternative decompose the load into
surface spherical harmonics and multiplication of the wave number spectrum with
the load Love number spectrum has been presented comprehensively in Agnew
(2007), including the extension to infinite harmonic degree in the point load
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problem and the generation of Green’s functions using Kummer transforms. We
refer to this work as seminal.

Farrell (1972) also considered disk loads in order to avoid the Gibbs phe-
nomenon when loads are treated as if condensed to singular mass points. This
creates a problem particularly when the loads are known at a few locations or on
sparse grids only. As it turned out, the assumption of loading mass distributed over
a circular disk of certain size attenuates the high-degree terms when summing over
the load Love numbers and helps to speed up the convergence of the infinite sums
in the Green’s functions. The ever increasing spatial resolution of modern ocean
tide models render this approach mostly obsolete today. However, the assumption
of disk-distributed masses might still be necessary in a few cases.

In gravity, near-by masses exert a notable attraction effect if gravimeter and
load mass are located at different heights, more specifically when a big correction �
is required in the equation

cos /
d2
¼ �1

4a2 sin h=2
þ �

where d is slope distance, / the zenith angle under which the gravimeter ‘‘sees’’
the load, and h the arc distance of the two points after mapping them on the sphere.
An example of this effect is described by Bos et al. (2002). However, cylindrical
disk loads will in general be inept to represent the actual mass distribution, and
consequently, the specific geometry of the load needs to be accounted for. This
amounts to have to sample the land-sea distribution with high resolution while the
details of tide height in the wet areas will be uncritical.

In tilt as measured by vertical pendulums or fluid-filled tubes (Ruotsalainen
2001), loads at close distance have both a strong direct attraction effect and sen-
sible influence due to deformation. As a third complication, the infinite sum in the
Green’s function converges most slowly among those considered by Farrell (1972)
and Agnew (2007), even when the Kummer trick is utilised (numerical precision in
the then final sums becoming critical).

We exemplify Green’s function computation only in the case of tilt. The
function is given as

GtiltðhÞ ¼
G Ml

g a2
t0
X1
n¼1

ðt�n � h0n þ k0nÞ
dPnðcos hÞ

dh

with t the station height ratio ðaþ hÞ=a and t0 ¼ t if h\0 else t0 ¼ 1: With the
disc factor included, the sum terms receive a factor Dn ¼ DnðdÞ according to
Farrell (1972):

Dn ¼ �
1þ cos d

nðnþ 1Þ sin d
dPnðcos dÞ

dd

and the sum
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X1
n¼0

DnPnðcos hÞ ¼ 0; h [ d
1; h� d

	

Ultimately, the point load problem cannot avoid dealing with the deformation
in the asymptotic limit of an infinitely large pressure on an infinitely small surface
area. This is the point where the analytical half-space solutions of Farrell (1972)
come into play. The load Love numbers obtained are h01 and ðNl0Þ1; and

ðNk0Þ1 �
3q0ðaÞ

2�q
ðh01 þ ðNl0Þ1Þ ð1:104Þ

appears to be a good approximation (�q is the mean density of the Earth). For
exercising the Kummer transformation we utilise that

h0n ! h01 nk0n ! ðNk0Þ1
as n!1; so we need evaluations or expressions of the infinite sums

X1
n¼1

t�nDn
dPnðcos hÞ

dh

X1
n¼1

Dn
dPnðcos hÞ

dh

X1
n¼1

Dn

n

dPnðcos hÞ
dh

S

L

’

’

Fig. 1.7 Geometry when
integrating over a disk load
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Instead of scanning volumes of forgotten lore for analytical expressions, we can
evaluate these sums without the disk factor and disk-integrate the resulting ana-
lytical expressions numerically (not forgetting the cosine of the azimuth):

X1
n¼1

t�nDn Pnðcos hÞ ¼
Z d

0

Z 2p

0

cos a sin d0 dk0 dd0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2t cos h0 þ t2
p

Since we deal with short distances, the spherical trigonometric relations between
the angles h0; a0 and d0; k0 (see Fig. 1.7) can be approximated with plane
trigonometry.

X1
n¼1

t�n dPnðcos hÞ
dh

¼ � t sin h

ð1� 2t cos hþ t2Þ3=2 ð1:105Þ

X1
n¼1

1
n

dPnðcos hÞ
dh

¼ � 1
2

cotðh=2Þ 1þ 2 sinðh=2Þ
1þ sinðh=2Þ ð1:106Þ

To be complete, we now give the definitions of the Green’s function for the
other type of deformations; see also Agnew (2007). In all cases we assume a
distribution of mass elements dm0 over the oceanic areas O and a solution to a
deformation problem where radial symmetry of the planet’s properties causes
deformation under the load depending only on the the arc distance h0 ¼ \r; r0

between load and field point.
Vertical displacement

uðrÞ ¼ G

g a

Z
O
Guðh0Þ dm0

GuðhÞ ¼
X1
n¼0

h0n Pnðcos hÞ
ð1:107Þ

Horizontal displacement in the directions n̂ (north) and ê (east)

vnðrÞ
veðrÞ



¼ G

g a

Z
O
Gvðh0Þ

cos a0

sin a0

	 

dm0

GvðhÞ ¼
X1
n¼1

l0n
dPnðcos hÞ

dh

ð1:108Þ

Gravity on deforming surface
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DgðrÞ ¼ G

a2

Z
O
GDgðh0Þ dm0

GDgðhÞ ¼
X1
n¼0

½2h0n � ðnþ 1Þk0n� Pnðcos hÞ

� z=aþ 2 sin2 h=2

½ðz=aÞ2 þ 4ð1þ z=aÞ sin2 h=2�3=2

ð1:109Þ

where z is the topographic height of the station, (error in Agnew (2007), who has

½ �3=2 instead of ½ �3=2 in the denominator; see also Appendix 4).
Geoid height

NðrÞ ¼ G

g a

Z
O
GNðh0Þ dm0

GNðhÞ ¼
X1
n¼0

ð1þ k0nÞ Pnðcos hÞ
ð1:110Þ

Tide raising potential

PðrÞ ¼ G

a

Z
O
GPðh0Þ dm0

GPðhÞ ¼
X1
n¼0

ð1þ k0n � h0nÞ Pnðcos hÞ
ð1:111Þ

Tilt in the directions n̂ (north) and ê (east)

tnðrÞ
teðrÞ



¼ � G

g a2

Z
O
Gtðh0Þ

cos a0

sin a0

	 

dm0

GtðhÞ ¼
X1
n¼1

ð1þ k0n � h0nÞ
dPnðcos hÞ

dh

ð1:112Þ

Astronomical deflection of the vertical in n̂ (north) and ê (east)

g ¼ inðrÞ
n ¼ ieðrÞ



¼ � G

g a2

Z
O
Gtðh0Þ

cos a0

sin a0

	 

dm0

GiðhÞ ¼
X1
n¼1

ð1þ k0n � l0nÞ
dPnðcos hÞ

dh

ð1:113Þ

Strain in n̂ (north) and ê (east)
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�nnðrÞ �neðrÞ
�neðrÞ �eeðrÞ

� �
¼ G

g a2

Z
O

T
Ghhðh0Þ 0

0 Gaaðh0Þ

� �
T>dm0

GhhðhÞ ¼
X1
n¼0

½h0n � nðnþ 1Þl0n � l0n cot h
d

dh
� Pnðcos hÞ

GaaðhÞ ¼
X1
n¼0

ðh0n þ l0n cot hÞ Pnðcos hÞ

ð1:114Þ

T ¼
cos a0 sin a0

� sin a0 sin a0

� �
ð1:115Þ

We give useful formulas for arc distance h0 and azimuth a0 :

h0 ¼ 2 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 b0 � b

2

� �
þ sin2 k0 � k

2

� �
cos b cos b0

s
ð1:116Þ

a0 ¼ atan2
sin b0 � cos h0 sin b

cos h0
; cos b0 sinðk0 � kÞ

� �

¼ atan2ðcos a0; sin a0Þ
ð1:117Þ

where b is latitude, k longitude, the dashed coordinates are associated with the
load points and the undashed with the field point.

12 Final Remarks

We have presented here the derivation of the differential equations for the elastic-
gravitational deformation of the Earth. As we have noted in our introduction, this
is a classic topic that has been discussed extensively in the literature. However, we
felt that current literature does not provide much information on how these
equations can be implemented into a computer program. For that reason, we have
tried to put more emphasis on the differences in sign conventions and definitions of
variables that one may find in various publications. We also have presented here
all boundary conditions explicitly and have paid particular attention to the prob-
lems related to the existence of a fluid core. Although we have focussed on ocean
tide loading, where the period of the forcing is finite, we have shown which
problems occur in the fluid core when the forcing period becomes infinite. We
recalled the results of Pekeris and Accad (1972) who showed that for a fluid with
an unstable stratification, an infinitely thin boundary layer develops that has a finite
influence on the deformation. However, we pointed out that one is interested in
computing the static deformation of the Earth, and some kind of dissipation should
be taken into account (Wunsch 1974; Dahlen and Fels 1978).
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Next, we put more emphasis than usual on the degree 1 deformation. This
deformation differs from the other degrees by the fact that it causes a shift of the
whole Earth in space. We also explicitly described the new boundary conditions at
the centre of the Earth for this degree which is rarely done.

As examples, we presented the deformation of a homogeneous Earth and an
Earth with a homogeneous mantle and fluid. For these simple cases analytical
solutions exist that involve spherical Bessel functions of the first and second kind.
Since we are interested in ocean tide loading where we need to compute load Love
numbers up to degree 10,000, we have presented in Appendix 2 an algorithm to
achieve this. The results can be used to validate the implementation of other
numerical methods such as Runge–Kutta and Chebychev collocation. The case of
a homogeneous Earth is also used to solve the singularity problem at the Earth’s
centre for the Runge–Kutta method.

In our short treatise the ocean tide loading response of the Earth is still assumed
to be completely elastic. However, we showed how the elastic properties need to
be changed to represent more realistic rheology. Finally, we discussed the for-
mulas that transform the set of Love numbers into Greens functions.

Appendix 1: Lyapunov-Transformed Matrices

The Lyapunov-transformed matrix designated B in (1.43) is

�2ð3 j�2 lÞ
ðnþ1Þ ð3 jþ4 lÞ

n2 ð3 j�2 lÞ
3 jþ4 l 0 3 j0 Z2

ð1þnÞ2 ð3jþ4 lÞ 0 0

�1
n ðnþ1Þ

1
nþ1 0 0 j0 Z2

l nðnþ1Þ 0
�4 p q a G Z

g0 ðnþ1Þ 0 �1 0 0 Z2

nþ1

a2

j0

� 36 j l
a2 ð3 jþ4 lÞ Z2 � x2q� 4 g q

a Z

� n2 ðnþ1Þ
j0 Z2

�
a g q Z � 18 j l

3jþ4 l

� �a g0 ð1þnÞq
j0 Z

�12 l
ðnþ1Þ ð3jþ4 lÞ n ðnþ 1Þ a g0 q Z

j0

1
ðnþ1Þj0 Z2

�
a g q Z � 18 jl

3jþ4 l

�
a2 n

ðnþ1Þ j0

� 6 ð2 n ðnþ1Þ�1Þj lþ4 ðnðnþ1Þ�2Þ l2

a2 ð3 jþ4 lÞZ2 � x2q
� a g0 q

ðnþ1Þ j0 Z
�3 jþ2 l

ðnþ1Þ2 ð3 jþ4 lÞ
�3

nþ1 0

� 4p q a G
g0 Z

4pq a G n2

g0 Z2 0 0 0 n�1
nþ1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð1:118Þ

where Z ¼ exp q
nþ1, and j and l have been made dimensionless by scaling with

respect to j0 at the centre.
The matrix for the fluid case in the variables U, S, P and Q is

� 5
2 ð1þnÞ þ

g n x2

a Z

Z2
j �

n ð1þnÞ
a2 qx2

� �
ðnþ1Þ2

n
a2 x2 0

a2 q � 4 g
a Z þ

g2 n ð1þnÞ
a2 Z2 x2 � x2

� �
� 3

2 ð1þnÞ�
g n

a Z x2

ð1þnÞ q �1þ g n

a Z x2

� �
a g0 Z q

� 4 a2 G p q
ð1þnÞ 0 �1� 3

2 ð1þnÞ
a g0 Z
1þn

4 G pq ðg n�a Z x2Þ
g0 Z2 x2 � 4 G n p

a g0 ð1þnÞ Z x2
4 G n pq
a g0 Z x2 1� 7

2 ð1þnÞ

0
BBBBBBB@

1
CCCCCCCA

ð1:119Þ
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Appendix 2: Analytical Solution for a Homogeneous Earth

In Sect. 1.7 we discussed the computation of the Love numbers for a homogeneous
Earth. In this case there exist, for each degree n, analytical solutions for the radial
and tangential displacements U and V and for the perturbed potential P. These
were presented for degree 2 by Love (1911) and Pekeris and Jarosch (1958). For
all degrees n these were presented by Okubo (1988) and Dahlen and Tromp (1998)
although they both contain small sign errors. Therefore, we will present them
again, hopefully without errors, in this appendix.

The analytical solutions contain spherical Bessel functions which are defined as

jnðzÞ ¼
ffiffiffiffiffi
p
2z

r
Jnþ1=2ðzÞ ð1:120Þ

where n is our usual degree, z a complex number and J the normal Bessel function
of the first kind. For n ¼ 0 and n ¼ 1; these spherical Bessel functions are

j0ðzÞ ¼
eiz � e�iz

2iz
¼ sin z

z
ð1:121Þ

j1ðzÞ ¼
eiz � e�iz

2iz2
� eiz þ e�iz

2z
¼ sin z

z2
� cos z

z
ð1:122Þ

As it turns out, we shall only be using values of z that are real or purely
imaginary. In the first case we are dealing with fractions containing trigonometric
functions. In the second we are dealing with fractions containing exponentials. To
avoid numerical problems for large values of z, it is convenient to work with the
logarithm of jnðzÞ: Higher orders of jnðzÞ can in principle be computed using the
following recurrence relation:

jnþ1ðzÞ ¼
2nþ 1

z
jnðzÞ � jn�1ðzÞ ð1:123Þ

However, this recursive equation is numerically unstable for increasing values
of n. To compute the higher orders, we should use the algorithm of Rothwell
(2008) who introduced the ratio Rn :

Rn ¼
jn�1ðzÞ
jnðzÞ

¼ 1
ð2n� 1Þ=z� Rn�1

ð1:124Þ

RnðzÞ ¼
2nþ 1

z
� 1

Rnþ1ðzÞ
ð1:125Þ

The continued fraction can for each degree n be computed using Lentz’s
method which is numerically stable (Press et al. 1988). After Rn has been com-
puted using Lentz’s method for the largest value of n, the other values of Rn can be
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computed using (1.125). The logarithm of jnðzÞ; with n� 1; can now be computed
as

log jnðzÞ ¼ log j0ðzÞ �
Xn

k¼1

log Rk ð1:126Þ

Note in these equations that the logarithm functions include their analytical
continuation in the complex plane because Rn can be complex valued. Since the Rn

are either purely real or purely complex in our application we have

log ijxj ¼ log jxj þ i
p
2

log�jxj ¼ log jxj þ ip
ð1:127Þ

so the sum in (1.126) accumulates a factor of �ðinÞ: A gain in accuracy can be
achieved if the summation in (1.126) is carried out separately on the characteristic
and the mantissa.

We will now assume that the solutions are of the form

U ¼ Aur�1jnðcrÞ þ Bucjnþ1ðcrÞ ð1:128Þ

V ¼ Avr�1jnðcrÞ þ Bvcjnþ1ðcrÞ ð1:129Þ

P ¼ ApjnðcrÞ ð1:130Þ

That the solutions contain a combination of jn and jnþ1 makes sense because
you can write the first and second derivatives of these two functions again as a sum
of parts containing jn and jnþ1. Furthermore, one has to use jn=r and jnþ1 to ensure
that both are of the same order of r. That the perturbed potential solution does not
contain a jnþ1 part seems odd at first glance. However, from Poisson’s equation,
(1.10), we know that the Laplacian of the perturbed potential depends on the
perturbed density. The latter depends on the divergence of the displacement and
one can prove that the jnþ1 terms cancel out in the divergence (1.28).

Our task is to determine the six constants: Au; Bu; Av; Bv; Ap and c: This can be
done using a computer algebra program such as Mathematica or Maxima. How-
ever, we will directly present the answer in the same format as that of Dahlen and
Tromp (1998, Chap. 8) who introduced the following auxiliary variables and
solution for c :

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
ð1:131Þ

c2 ¼ x2

2v2
b

þ
x2 þ 16

3 pGq

2v2
a

� 1
2

x2

v2
b

�
16
3 pGq

v2
a

 !2

þ 8pGkq
3vavb

� �2
2
4

3
5

1=2

ð1:132Þ

f ¼ 3
4
ðpGqÞ�1v2

bðc2 � x2=v2
bÞ ð1:133Þ
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n ¼ f� ðnþ 1Þ ð1:134Þ

where va and vb are the compressional and shear wave velocities, respectively.
Besides solutions that contain spherical Bessel function, there exist solutions
containing terms with rn: To summarise, for each of the radial and tangential
displacements U and V and the perturbed potential P we have three independent
solutions:

U� ¼ nn
r

jnðcrÞ � fcjnþ1ðcrÞ ; U� ¼ nrn�1 ð1:135Þ

V� ¼ n
r

jnðcrÞ þ cjnþ1ðcrÞ ; V� ¼ rn�1 ð1:136Þ

P� ¼ �4pGqfjnðcrÞ ; P� ¼ ðx2 � 4
3
pGqnÞrn ð1:137Þ

As explained by Dahlen and Tromp the symbol � needs to be understood as two
solutions, one for each solution of c: The � symbol is associated with solutions
containing an rn term. For the radial and tangential stresses, R and S, and perturbed
gravity Q we have the following three solutions:

R� ¼ � ðjþ 4
3
lÞfc2 � 2nðn� 1Þlnr�2

h i
jnðcrÞ

þ 2lð2fþ k2Þcr�1jnþ1ðcrÞ
ð1:138Þ

R� ¼ 2nðn� 1Þlrn�2 ð1:139Þ

S� ¼ l c2 þ 2ðn� 1Þnr�2
� �

jnðcrÞ � 2lðfþ 1Þcr�1jnþ1ðcrÞ ð1:140Þ

S� ¼ 2ðn� 1Þlrn�2 ð1:141Þ

Q� ¼ �4pGqr�1 k2 þ ðnþ 1Þf
� �

jnðcrÞ ð1:142Þ

Q� ¼ ð2nþ 1Þx2 � 8
3
pGqnðn� 1Þ

h i
rn�1 ð1:143Þ

Sometimes it is assumed that the Earth is built up of spherical layers with
constant properties. In this case the solutions listed above apply but in addition we
need spherical Bessel functions of the second kind, also called spherical Neumann
functions yn; and solutions that depend on 1=rn (represented by the � superscript).
The two solutions associated with the spherical Neuman functions can be found by
simply replacing the jn terms with yn. We indicate this with superscripts �j and
�y; respectively in (1.148). These functions may be computed using the relation

ynðzÞ ¼ ð�1Þn�1j�n�1ðzÞ: Equation 1.123 may be used to compute j�n�1ðzÞ
because the index of j is now decreasing. The solutions associated with 1=r are
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U� ¼ � nþ 1
rnþ2

V� ¼ 1
rnþ2

P� ¼ �
x2 þ 4

3pGqðnþ 1Þ
� �

rnþ1
ð1:144Þ

R� ¼ 2l
ðnþ 1Þðnþ 2Þ

rnþ3

S� ¼ �2l
nþ 2
rnþ3

Q� ¼ 4pGqðnþ 1Þ
rnþ2

ð1:145Þ

If the Earth is divided up into spherical layers with constant properties, the
gravity inside this Earth is mostly different from that of a homogeneous Earth. To
keep using the presented above equations, one therefore scales in each layer the
term 4

3pGq to the mean value of g=r inside this layer (Vermeersen et al. 1996).
At this point the concept of Haskell propagator matrices (Haskell 1953) can be

invoked. We have an analytical expression that relates the values of the radial
solution functions between two consecutive interfaces j and jþ 1 :

yðrjþ1Þ ¼ Pðrjþ1; rjÞ yðrjÞ ð1:146Þ

and

yðrÞ ¼ A a ð1:147Þ

where A is the 6� 6 layer matrix composed of solutions ðU;V;P;R; S;QÞ> where

A ¼
U� U� Uþj Uþy U�j U�y

V� V� . . .
. . .
. . . Q�y

0
BB@

1
CCA ð1:148Þ

The propagator matrix is then

Pðrjþ1; rjÞ ¼ Aðrjþ1ÞA�1ðrjÞ ð1:149Þ

so it can be stepped from j ¼ 1 to the surface. The a vector is finally determined
from the boundary conditions. The reader will realise at this point that the account
needs substantially more detail, for instance how the layer matrix can be inverted
with elegance. We therefore refer him or her to the original source where the
method is described at necessary depth, Martinec (1989). We only repeat Marti-
nec’s advice on how to treat a fluid layer. In this case, V and S are taken out of the
equations, and the characteristic root is single-valued,

c2 ¼ 1
v2
a

x2 þ 16p
3

Gq� 4pGkq
3x

� �2
" #

ð1:150Þ

so we obtain a 4� 4 matrix for A:
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When x! 0; these equations no longer hold in the fluid. Pekeris and Accad
(1972) showed that a boundary layer develops at the core–mantle interface that
becomes infinitely thin but still has a finite effect on the dynamics. Instead of fol-
lowing their derivation, we will compute the jumps in U, R and Q (there is no jump in
P) in the boundary layer for x! 0 by taking the limit of our equations involving
spherical Bessel functions of the first kind. To do so, it will be convenient to define

A ¼ 4
3
pGq ð1:151Þ

Using (1.150), one can derive the limit value of c :

lim
x!0

c ¼ kAi

va

1
x

ð1:152Þ

Using this result, we can compute the limit of the spherical Bessel function:

lim
x!0

jnðcrÞ ¼ � vax
2kAr

ekAr=ðvaxÞ ð1:153Þ

The sign of the limit depends on the degree n. Of course the exponential grows
fast to infinity but we are allowed to scale our solutions with any constant so we
choose it in such a way to make the jnðbcÞ ¼ 1 at the boundary, where b is the
radius of the boundary (Pekeris and Accad 1972). Below the core–mantle inter-
face, jnðrcÞ ¼ 0 and it thus nicely represents the jump through the boundary layer.
Other results are

f ¼ �x2

A
n ¼ �ðnþ 1Þ ð1:154Þ

0 20000 40000 60000 80000 100000
n

0

100

200
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Fig. 1.8 The characteristic roots cþ and Im(c�Þ; also providing the radial scale for the spherical
Bessel functions vs spherical harmonic degree n Both functions are similar and difficult to discern
in the diagram

46 M. S. Bos and H.-G. Scherneck



If we now collect all terms which are not zero when x! 0, then we have the
following solutions for our jump:

U�ðbÞ ¼ � nðnþ 1Þ
b

ð1:155Þ

R�ðbÞ ¼ �4
3
pGqk

j
v2
a

ð1:156Þ

Q�ðbÞ ¼ � 4pGqk2

b
ð1:157Þ

These equations should be added to the � solutions to fulfil the boundary
conditions at the core–mantle interface. Inside the fluid core, only the + solutions
apply.

Finally, we would like to remark that the roots c� are nicely bounded. For our
homogeneous Earth, model b; their values have been plotted in Fig. 1.8.

Appendix 3: Analytical Solution for a Homogeneous Fluid
Inner Sphere

In a fluid the shear modulus l ¼ 0: Here we distinguish four cases n ¼ 0; n [ 0;
and x ¼ 0;x 6¼ 0: First n [ 0: Since the region includes r ¼ 0; we can dismiss the
irregular solutions involving the Neumann yn-functions and the � functions.

Dahlen and Tromp (1998) give the solution for n [ 0. The matrix of the dif-
ferential equation simplifies to a 4� 4 system in the same variable as before
except for horizontal displacement and shear stress.

Dahlen and Tromp (1998) give the solution for n [ 0. The matrix of the dif-
ferential equation simplifies to a 4 9 4 system in the same variable as before
except for horizontal displacement and shear stress.

d
dr

U
R
P
Q

0
BB@

1
CCA ¼

4pqGnðnþ1Þ
3rx2 � 2

r
1
j�

nðnþ1Þ
r2qx2

nðnþ1Þ
r2x2 0

� q
9 48pGq� 16p2G2q2nðnþ1Þ

x2 þ 9x2
� �

� 4pGqnðnþ1Þ
3r2x2

ðnþ1Þqð4npG�3x2

3rx2 q

�4pq 0 � nþ1
r 1

�4pGqðnþ1Þð4npGq�3x2Þ
3r2x2 � 4pGnðnþ1Þ

r2x2 � 4pGqnðnþ1Þ
3r2x2 � nþ1

r

0
BBBB@

1
CCCCA:

U
R
P
Q

0
BB@

1
CCA

ð1:158Þ
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with the solutions

Uþ ¼ nn
r

jnðcrÞ � fcjnþ1ðcrÞ ð1:159Þ

Rþ ¼ �jfc2jnðcrÞ ð1:160Þ

Pþ ¼ �4pGqfjnðcrÞ ð1:161Þ

Qþ ¼ � 4pGq
r
ðnþ 1Þðnþ fÞjnðcrÞ ð1:162Þ

and

U� ¼ nrnþ1; P� ¼ ðx2 � 4p
3

GqnÞrn ð1:163Þ

R� ¼ 0; Q� ¼ ½ð2nþ 1Þx2 � 8p
3

Gqnðnþ 1Þ�rn�1 ð1:164Þ

where c was given in (1.150) and

f ¼ � 3x2

4pGq
n ¼ f� ðnþ 1Þ ð1:165Þ

These equations follow from what what discussed before, but it becomes
interesting when one takes the limit of x! 0. Unfortunately, these solutions
cannot be used for x! 0. Instead, we refer to Longman (1963) who solves a
2� 2 system in the gravity variables only. At the core–mantle boundary, vertical
and horizontal displacement start with arbitrary values into the mantle, horizontal
shear stress is zero, vertical normal stress starts as

R ¼ qgðrÞU � qP ð1:166Þ

and the gravity variable Q as

Q ¼ H � qU ð1:167Þ

The 2� 2 system in the core is

d

dr
P
H

� �
¼ 0 1

nðnþ1Þ
r2 � q2

j � 2
r

� �
� P

H

� �
ð1:168Þ

The solution of this system is

P ¼ C

ffiffiffiffiffiffiffi
2c0

r

r
jnðc0rÞ ð1:169Þ

H ¼ C

ffiffiffiffiffiffiffi
2c0
p

r

nffiffi
r
p jnðc0rÞ þ c0

ffiffi
r
p

jnþ1ðc0rÞ
� �

ð1:170Þ
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where

c0 ¼ q

ffiffiffiffiffiffiffiffiffi
4pG

j

r
ð1:171Þ

and C is an arbitrary constant.

Appendix 4: Tiny Fluid Sphere

The recursion relations for a tiny homogenous fluid sphere in the variables U, S, P
and Q (1.91) are

u1 ¼ 0; p1 ¼ s1=q ¼ c ð1:172Þ

q1 ¼
ð�8 G n ð1þ nÞ p qþ ð1� 2 nÞx2Þ p1

3 x2
ð1:173Þ

with an arbitrary c as a start. Then, for j ¼ 3; 5; . . .

qj ¼ 4 G ð1þ nÞ pq 32 G2 n2 ð1þ nÞ p2 q2 � 4 G n ð4� jþ j2
�

þ2 nþ 2 j nÞ p qx2 þ 3 ðj� 1Þ ðjþ 2 nÞx4Þ
�
sj�2

1
3 ðj� 1Þ ðjþ 2 nÞ jx2 ½8 G n ð1þ nÞ p q� ðj� 1Þ ðjþ 2 nÞx2�

ð1:174Þ

uj ¼ 32 G2 n2 ð1þ nÞ2 p2 q2 � 4 G n ð1þ nÞ ½4þ j2
n

�10 nþ j ðþ2 n � 7Þ� pq x2

�3 ðj� 1Þ ½j2 þ 2 ðn� 1Þ nþ j ð3 n � 1Þ�x4
�

sj�2

1
3 ðj� 1Þ ðjþ 2 nÞ jx2 ½8 G n ð1þ nÞ p q� ðj� 1Þ ðjþ 2 nÞx2�

ð1:175Þ

sj ¼ q 128 G3 n2 ðnþ 1Þ2 p3 q3 � 16 G2 n ðnþ 1Þ ½22þ j2
n

� 4 nþ j ð2 n � 1Þ� p2 q2 x2 þ 24 G ½2 j2 þ 3 j ðn� 1Þ
�4 n ð2þ nÞ� pq x4 þ 9 ðj� 1Þ ðjþ 2 nÞx6

�
sj�2

1
9 ðj� 1Þ ðjþ 2 nÞ jx2 ½8 G n ðnþ 1Þ p q� ðj� 1Þ ðjþ 2 nÞx2�

ð1:176Þ

pj ¼ �
4 G p q

ðj� 1Þ ðjþ 2 nÞ j sj�2 ð1:177Þ
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Appendix 5: Gravity Green’s Function and Kummer
Transform

We noted another error in Agnew (2007) where he specified the Kummer trans-
formation of the Green’s function for surface gravity. With our notation,

GDgðhÞ ¼
X1
n¼0

½2h0n � ðnþ 1Þk0n� Pnðcos hÞ � z=aþ 2 sin2 h=2

½ðz=aÞ2 þ 4ð1þ z=aÞ sin2 h=2�3=2

ð1:178Þ

Since

lim
n!1

nk0n ¼ ðNk0Þ1 6¼ 0

the Kummer transformation of the sum term should read

2h00 þ
X1
n¼1

2ðh0n � h01Þ � ðnþ 1Þ k0n �
ðNk0Þ1

n

� �� �
Pnðcos hÞ

þ h01
sin h=2

� ðNk0Þ1
1

2 sin h=2
� 1� log sin

h
2
þ sin2 h

2

� �� � ð1:179Þ
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Chapter 2
General Relativity and Space Geodesy

Ludwig Combrinck

1 Background

Newton’s final version (published in 1726) of Philosophiae Naturalis Principia
Mathematica was a great scientific achievement of the time and contained suffi-
cient information to allow calculation of the dynamics of terrestrial and celestial
bodies; it also expounded on the absolute nature of time and space. As examples,
Newton’s statements (Newton 1726) that ‘‘Absolute, true, and mathematical time,
of itself, and from its own nature flows equably without regard to anything
external’’ and ‘‘Absolute space, in its own nature, without regard to anything
external, remains always similar and immovable’’ were fundamental to Newtonian
calculations. These Newtonian concepts of space and time were challenged and
proven to be only approximate by Einstein through his 1905 paper on special
relativity, as well as his discovery of general relativity in 1915.

According to Einstein (1920), the geometrical properties of space–time are
dependent on the distribution of matter in space–time, so that if the accuracy of our
calculations increases, small departures from the theory of Newton become
apparent, though they may escape the test of our observations as these deviations
are very small. In more modern terms, the geometrical properties of space–time
(in particular the space–time metric gÞ are dependent and determined to some
extent, through the field equation, by the distribution of mass-energy and
mass-energy currents in space. It is now also true to say that, in many astrophysical
systems, the departures from Newtonian predictions are not small, although these
effects resort under the strong-field regime of general relativity theory (GRT),
whereas space geodesy operates within the weak-field regime. The small
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deviations from Newtonian theory are also fundamental to experiments designed
to evaluate general relativity in this weak-field regime.

Currently, the four main space geodetic techniques, Very Long Baseline
Interferometry (VLBI), Global Navigation Satellite Systems (GNSS), Satellite or
Lunar Laser Ranging (SLR/LLR) and Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS), have improved in accuracy to such an extent that
for their optimal use one cannot disregard the effects of GRT. Analyses of the
resulting data have to be done within the framework of a post-Newtonian
formalism (Klioner 2003). In order to analyse the data correctly, the complete
context within which the modelling is performed, i.e. reference and time frames,
solar body ephemerides, signal propagation and observables (such as laser pulse
travel time and satellite clock frequency) must consider GRT (Müller et al. 2008).
These corrections are routinely done in advanced geodetic analysis software.

1.1 Introduction

In this chapter there is no space to describe the various space geodetic techniques
in detail; however, the corrections and implications of GRT will be discussed in
enough detail so as to allow practical application in software development, with
adequate reference material for additional reading. Basically this chapter follows
the recommendations of the international earth rotation service (IERS); see IERS
Conventions (2003) (McCarthy and Petit 2003), IERS Conventions 2010 (Petit and
Luzum 2010).

Solutions of GRT pertaining to space geodesy are weak-field, slow motion
approximations. These approximations are valid as the gravitational field the
solutions refer to has a potential U of small magnitude and the velocities v involved
for any of the satellites are much less than the speed of light c: Therefore one has
U
�

c2 � 1 and v=c� 1 so that Einstein’s field equations may be linearised and
expressed in a form similar to Maxwellian equations of electromagnetism.

Space geodetic techniques depend to a large extent on the accuracy and stability
of clocks; without these clocks the high accuracy measurements obtained currently
would not be achieved. The timing aspect is therefore important and the high
(atomic) clock accuracies have allowed an increase in measurement accuracy to
such an extent that GRT must be applied to exploit the full potential of these
techniques. A hydrogen maser clock is a requirement for VLBI (Wei-qun et al.
2001) with typical clock frequency accuracy of ±5 9 10-13 and stability of
9.7 9 10-15 in a 24 h period (geodetic VLBI experiments are normally of 24 h
duration). Clock stability and accuracy are normally expressed in parts per so
many counts; therefore a stability of 9.7 9 10-15 indicates that there are 9.7
excess counts for every 1 9 1015 counts or pulses in a 24 h period.

Apart from certain limitations (set by the atmosphere, spectral purity and stability
of electronic equipment such as local oscillators and frequency multipliers),
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the coherence time of a VLBI system is determined by the frequency standard,
which normally acts as the fundamental frequency source for the other equipment.

The impact of clock phase stability can be seen in (2.1) which expresses VLBI
signal to noise ratio:

SNR ¼ SA
ffiffiffiffiffiffiffiffiffiffi
2Bsc
p

kTs
: ð2:1Þ

In (2.1) the source density flux is denoted by S; the geometric mean of the
telescope collecting areas is A; B is the bandwidth, sc is the coherent integration
time, k is Boltzmann’s constant and Ts is the geometric mean of the system
temperatures of the radio telescopes (Moran 1989).

The coherent integration time sc is approximately

x� sc � ryðTÞ ¼ 1: ð2:2Þ

In (2.2) x is the local oscillator frequency in radians per second and ryðTÞ is the
two-sample Allan variance. To provide an example, in order to achieve signal
coherence for an observation period of 1,000 s, where the local oscillator
frequency has been set to 8.0 GHz, the two frequency standards at each end of the
interferometer need to maintain relative stability of *2 9 10-14. As the
observables in the VLBI technique are in principle recorded signals measured in
the proper time of the station clocks, the influence of clock stability extends
throughout the VLBI hardware.

In the IERS GRT model for VLBI time delay as amended 1 June 2004,
(McCarthy and Petit 2003), the final result is kept accurate to picosecond level by
including all terms of order 10-13 s or larger. The component of error in the total
delay due to error in gravitational delay (*2 mm) is therefore a small fraction of
the total delay error budget, especially in comparison to the total delay model’s
errors ascribed to the troposphere (*20 mm), radio source structure and antenna
structure (*10 mm each) (Sovers et al. 1998). Therefore VLBI implementations
of GRT corrections are currently at an appropriate level and their contribution to
reduce the total modelling error is clear. The drive towards millimetre precision
within the framework of the global geodetic observing system (GGOS)
(see Beutler et al. 2005a in terms of historical motivation for GGOS) will require
GRT modelling at\1 mm accuracy if its error contribution to the total is to remain
proportionally small; GGOS aims for millimetre accuracy, so other error sources
will have to be reduced by a factor of at least ten.

A main objective of GGOS is to improve dramatically our understanding of the
implications of surface changes and mass transport and how these processes affect
the dynamics of our planet. One of the main challenges of GGOS (Drewes 2007) is
the combination of geometric and gravimetric methods in a common procedure,
which will have to include consistent approaches, constants, conventions, models
and parameters. Considering the complexity of the different techniques, processing
software and independent research strategies, such a combination will have to be
done without constraining independent and original model contributions, as this
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could lead to scientific stagnation. As time observations are the basic observable in
space geodesy, observations should be done using the same time system
[e.g. Geocentric Coordinate Time (TCG—temps-coordonnée géocentrique)], and
fundamental constants should be referred to the same time system. By implication
a consistent GRT approach needs to be implemented in all space geodetic tech-
niques to comply with and support the GGOS initiative.

1.2 Basic Implications of GRT for Space Geodesy Techniques

The basic effects of GRT on space geodetic measurements are related to how GRT
affects the different observables and the dynamics of satellite orbits. Table 2.1
contains the main techniques and relativistic implications on their observables.
Geometrically speaking, the Earth, Sun, Moon, planets and in fact all mass in the
universe cause a curvature of space–time at some level in the immediate vicinity of
the mass (in fact, in all the space–time). For instance, the curvature of space–time
increases the up and down leg travel time of a laser pulse emitted by an SLR
station to a satellite.

The effect on the main observable, time-of-flight (ToF), is an increase of several
millimetres in the measured range (derived from the ToF) in the case of a
LAGEOS satellite. In the case of near-Earth satellites, the effect of GRT can be
modelled in the barycentric celestial reference system (BCRS) or geocentric
celestial reference system (GCRS). Here we mainly consider the GCRS. The main
relativistic effect on satellites in near-Earth orbit is due to the Schwarzschild field.
Using LAGEOS as an example, the largest dynamical effect is the well known
perigee advance, which for LAGEOS is *9 mas/d (milli-arc-second per day).

Another smaller effect is the Lense–Thirring (frame dragging) effect (Lense and
Thirring 1918), which causes a precession in the longitude of the ascending node
(longitude of XÞ of *31 mas/year (equal to about 1.8 m/year along-track
displacement) and a change in the mean motion of a satellite. This precession is
always in the direction of the rotation of the Earth. Frame dragging also advances
the argument of perigee by *31.6 mas/year. De Sitter (or geodesic) precession (de
Sitter 1916) is due to the motion of the Earth through the gravitational field of the
Sun and leads to a precession of the orbital plane of the satellite.

2 Satellite Laser Ranging

Satellite laser ranging (SLR) is introduced in Sciences of Geodesy I (Chap. 9).
Considering SLR there are several GRT effects which need to be taken into
account; these will be described in detail and examples of how they influence
orbital determination will be given, using the LAGEOS satellites as ranging targets.
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2.1 Shapiro Delay

Data obtained by the SLR system are converted to a normal point (NP) and by
utilising the speed of light and incorporating some additional corrections; the
Normal Point Range (NPR) can be calculated from the following:

NPRi ¼
NPtof i
1�1012 � c

� �
2

� Dai þ DCoMi � DRbi � DGRi � Dei: ð2:3Þ

In (2.3) the main observable NPtofi is the normal point time-of-flight (in ps) at a
certain epoch and c is (Kaplan 2005) the speed of light (299,792,458.0 m/s). The
range given by the first term on the right-hand side of (2.3) needs to be corrected
by taking into account the effects of the atmosphere Dai; subsequent terms are a
satellite dependent centre-of-mass correction DCoMi; SLR station range-bias
DRbi ; a relativistic correction (Shapiro 1964) (referred to as the Shapiro delay)
DGRi and other ðDeiÞ errors. If one uses LAGEOS as an example, the Shapiro
delay correction is about 7 mm. According to McCarthy and Petit (2003),

t2 � t1 ¼
x!2 t2ð Þ � x!1 t1ð Þ

����
c

þ
X

J

ð1þ cÞGMJ

c3
ln

rJ1 þ rJ2 þ q
rJ1 þ rJ2 � q

� �
: ð2:4Þ

In (2.4), c is the parameterised post-newtonian (PPN) (Eddington 1923; Rob-
ertson 1962) parameter which should equal unity if GRT is valid, t2 � t1 denotes
the total time delay considering a laser pulse emitted from coordinate x1 (SLR
station) at time t1 and the return pulse is received at coordinate x2 (SLR station) at
time t2: The PPN formalism (Will and Nordtvedt 1972) is a framework designed to
classify various theories of gravity according to five attributes, which include
curvature of space–time and nonlinearity of gravity. This formalism is valuable in
tests and evaluations of GRT. In (2.4) the range defined by q ¼ x2

!� x1
!�� �� is the

uncorrected (for GRT) range; in addition rJ1 ¼ x1
!� xJ

!�� �� and rJ2 ¼ x2
!� xJ

!�� ��:
This formulation was first derived by Holdridge (1967), which was a more elegant
solution than previous solutions which involved angles. The last term in (2.4)
describes the (Shapiro) correction for space curvature. Similar to the calculation of
the numerator of the first term in (2.4), determination of the relativistically
uncorrected range q is not simply the subtraction of two vectors, but involves an
iterative solution of two light-time equations for the uplink and downlink path.
This procedure is described in Montenbruck and Gill (2001) and Combrinck
(2010). For the upleg (SLR station to satellite) a fixed-point iteration with

sðiþ1Þ
u ¼ 1=c � ~rðt � sdÞ �~R t � sd � sðiÞu

� ���� ��� ð2:5Þ

is executed in a loop until su achieves an accuracy threshold that has been defined
in the software algorithm. Four to five iterations are normally adequate. All cal-
culations are done in an inertial (geocentric) reference frame (for example J2000).
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Considering the downleg, the initial condition is s0 ¼ 0; then consecutive solutions
are done using the fixed-point iteration

sðiþ1Þ
d ¼ 1=c�~r t � si

	 

�~RðtÞ

�� ��: ð2:6Þ

The average of upleg range qu and downleg range qd; can then be used to find the
range q ¼ x2

!� x1
!�� �� in (2.4) where

q ¼ 0:5ðqu þ qdÞ: ð2:7Þ

In the formulation given by (2.4), the sum is carried over all bodies J with mass
MJ centred at xJ (McCarthy and Petit 2003). In practice, only the Earth needs to be
considered as J for near-Earth satellites (including LAGEOS), as analysis is done
in the geocentric frame of reference (Ries et al. 1988; Huang et al. 1990).

2.2 GRT Accelerations

A satellite experiences a variety of accelerations when in orbit and accelerations
due to GRT can be separated from those that are purely Newtonian (at least in the
weak-field and slow motion regime). One can therefore write the perturbing
acceleration as

~€r ¼ �GM�
r3

~r þ~f ; ð2:8Þ

where (extending the notation of Tapley et al. 2004) the total perturbing force~f is
made up of a number of additional forces which perturb the orbit in addition to the
first term in (2.8), which can be written as

~f ¼~fNS þ~fTC þ~f3B þ~fg þ~fDrag þ~fSRP þ~fERP þ~fother þ~fEmp ð2:9Þ

In (2.9) ~fNS results from the uneven Earth mass-distribution, while the temporal

variations of the static gravity field are represented by~fTC: Perturbations caused by

the gravitational forces from the Sun, Moon and planets are denoted by~f3B; GRT is

described by~fg; atmospheric drag is~fDrag; ~fSRP is due to solar radiation,~fERP is the

Earth radiation pressure and~fOther contains other (very small) forces such as ther-
mal, satellite rotation dependent effects. Once per-cycle-per-revolution empirical
corrections, usually expressed in a local frame and divided into radial, tangential

and normal (RTN) components are given by ~fEmp: A brief discussion of these
perturbing forces is made in Book I (Chap. 9) of this series. Additional discussions
can be found in the literature (cf. Hoffman-Wellenhof and Moritz 2005).

The IERS 2003 (McCarthy and Petit 2003) recommendations discuss the
relativistic correction to the acceleration of a satellite in Earth orbit where
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D~€r ¼ GM�
c2r3

2 bþ cð ÞGM�
r
� c ~_r �~_r
� �� �

~r þ 2 1þ cð Þ ~r �~_r
� �

~_r

 �

þ 1þ cð ÞGM�
c2r3

3
r2

~r �~_r
� �

~r �~J
	 


þ ~_r �~J
� �� �

þ 1þ 2cð Þ ~_R� �GMs~R

c2R3

 !" #
�~_r

( ) ð2:10Þ

is the correction which includes as:

• First term, the nonlinear Schwarzschild field of the Earth ð� 10�9 m s�2Þ
• Second term, Lense–Thirring precession (frame dragging) ð� 10�11 m s�2Þ
• Third term, de Sitter (geodesic) precession ð� 10�11 m s�2Þ

Equation (2.10) is due to the formalism of Damour et al. (1994).
In (2.10), the speed of light is denoted by c; and PPN parameters b; c equal

unity if general relativity is valid. The parameter b (Eddington 1923; Robertson
1962) questions how much nonlinearity there is in the superposition law for
gravity (refer to Will and Nordtvedt 1972 for a modern description of PPN
parameters). The position of the satellite relative to the Earth is ~r and ~R is the
position of the Earth relative to the Sun. Earth’s angular momentum per unit mass
is described (Petit and Luzum 2010) by ~J

�� �� ffi 9:8� 108 m2s�1; GM� is the
gravitational coefficient of Earth (also l in this chapter or GM) and GMs the
gravitational coefficient of the Sun.

Although these accelerations are small, they must be included for precise orbit
determination (POD) purposes as there are some long term periodic and secular
effects (Huang and Liu 1992) of the orbit. Precession of perigee results from the
Schwarzschild effect, de Sitter precession can lead to long-period variations of
some orbital elements ðX; x; MÞ and Lense–Thirring precession leads to secular
rates (Ciufolini and Wheeler 1995) in the orbital elements X and x: Refer to
Table 2.1 for comparative rates between GNSS and LAGEOS.

Following Hugentobler (2008), it is quite informative to have a closer look
at the separate terms of (2.10) in more detail, which will be done in the
following sections for the three relativistic components. The Gaussian pertur-
bations of a satellite orbit (Beutler et al. 2005b; Xu 2007) is given by (cf.
Vallado 2001, for a discussion on limitations of the Gaussian form of the
variation of parameters)

_a ¼
ffiffiffiffiffiffiffiffi

p

GM

r
2a

1� e2
e sin m � Rþ p

r
� S

h i
; ð2:11Þ

_e ¼
ffiffiffiffiffiffiffiffi

p

GM

r
sin m � Rþ ðcos mþ cos EÞ � S½ 
; ð2:12Þ
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_i ¼ r cos u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p �W ; ð2:13Þ

_X ¼ r sin u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin i
�W ; ð2:14Þ

_x ¼ 1
e

ffiffiffiffiffiffiffiffi
p

GM

r
� cos m � Rþ 1þ r

p

� �
sin m � S

� �
� _X cos i; ð2:15Þ

_M0 ¼
1� e2

nae
cos m� 2e

r

p

� �
� R� 1þ r

p

� �
sin m � S

� �
� 3n

2a
ðt � t0Þ _a: ð2:16Þ

Here a is the semi-major axis, m is the true anomaly, u is the argument of
latitude and the argument of perigee is denoted by x: The distance from the
primary focus to the orbit (semiparameter, also known as ‘‘semi-latus rectum’’) is
given by p ¼ að1� e2Þ and the average angular velocity is described by

n ¼ 2p
T
¼ a�3=2l1=2; ð2:17Þ

where l ¼ GM and the period of the satellite motion T can be written (Xu 2007)
as

T ¼ pab
1
2 h
¼ 2pabffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la ð1� e2Þ
p ¼ 2pa0:7ex3=2l�0:7ex1=2: ð2:18Þ

Considering secular perturbations and circular orbits ðe ¼ 0Þ; the radial ðRÞ;
along-track ðSÞ and cross-track ðWÞ perturbing accelerations are directed parallel

to the vectors ~r;~_r and ~r �~_r respectively. For non-circular orbits the along-track
axis ðSÞ is not parallel (except at perigee and apogee) to the velocity vector.
During processing, the position and velocity vectors of a satellite (including
gravity gradients etc.) are normally transformed into an inertial reference frame
such as ICRF/EME2000. The position, velocity and angular momentum vectors
can then be written in a frame with the z axis orthogonal to the orbital plane as

~r ¼ aðcos m; sin m; 0Þ
~v ¼ anð� sin m; cos m; 0Þ

~r �~m ¼ a2nð0; 0; 1Þ:
ð2:19Þ

The unit vectors (direction vectors) of the perturbing accelerations can be
written as

êR ¼ ðcos m; sin m; 0Þ
êS ¼ ð� sin m; cos m; 0Þ
êW ¼ ð0; 0; 1Þ:

ð2:20Þ
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2.2.1 Nonlinear Schwarzschild Field Contribution to Acceleration

The first term of (2.10) is the contribution of the Schwarzschild metric (static part
of the field generated by the central mass) to the GRT acceleration. Schwarzschild
(1873–1916) was a German astrophysicist who found the first rigorous solution of
Einstein’s field equations. This solution is suitable (to a good approximation) for
application to satellites in orbit around Earth. His original paper (Schwarzschild
1916) utilises as a background theme the excess beyond pure Newtonian motion of
the perihelion of Mercury. While located at the Russian front, Karl Schwarzschild
solved this problem by taking into account Einstein’s requirements for a solution
to the motion of the perihelion of Mercury. Consequently he found the solution to
‘‘the line element that forms the exact solution of Einstein’s problem’’ and con-
tinued to derive the motion of a point in the gravitational field, i.e. the geodesic
line corresponding to the line element.

When a topological space is described locally by Euclidean geometry, it is a
manifold. In the immediate vicinity of a point in the manifold, there is a neigh-
bourhood of points which is nearly flat. This reminds one that all statements
regarding the principle of equivalence are local in nature. Einstein’s solution of the
Mercury perihelion problem was only to first order, whereas Schwarzschild’s
solution was exact. Mercury’s total observed perigee advance is 574 arcsec per
century, mostly due to planetary gravitational perturbations. The excess is about
43 arcsec, in agreement with GRT; this was one of the first ‘proofs’ of the validity
of GRT. In space geodesy, when considering satellite orbits in the immediate
vicinity of Earth (including high Earth orbiters such as GLONASS and GPS), it is
convenient to use the Schwarzschild geometry as Earth’s gravity field model even
though it excludes the rotational effect of Earth in the gravity field. The metric of a
space is basically its distance measure. Considering the metric of the Schwarzs-
child geometry (static spherically symmetric geometry), it has the form

ds2 ¼ � 1� 2GM

rc2

� �
c2dt2 þ 1� 2GM

rc2

� ��1

dr2 þ r2dh2 þ r2 sin2 hd/2: ð2:21Þ

This form (Schwarzschild coordinates) is only simple when unperturbed and
unmodified; furthermore it is not in isotropic coordinates (Misner et al. 1973). In
(2.21) the universal gravitational constant is denoted by G; and M is a parameter
with dimensions of mass, which for our purposes is the mass of Earth. The quantity
s is the proper time in seconds, r is the radial coordinate in metres, t is the time
coordinate in seconds, h is the colatitude and / is the longitude (both in radians). If
M was set to zero, the result would be equal to the Minkowskian (gravity-free
space–time) four-dimensional metric expressed in spherical polar spatial coordi-
nates. Minkowski space is recovered when M=r !1:

The Schwarzschild line element can be modified to isotropic coordinates so that
the relationship between r; h;/ and x; y; z can be described in the usual manner,
with r ¼ ðx2 þ y2 þ z2Þ becoming an isotropic coordinate [see (2.85) and (2.86)],
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which should not be confused with r in the Schwarzschild coordinates (see Misner
et al. 1973).

Experimental confirmation during the last 3 centuries using optical instruments
and radar observations since 1966 has provided credibility for GRT theory. Some
polemic still surrounds the issue, as several other parameters could also affect the
exact value of the advance, e.g. the quadrupole, J2; which is not yet very accu-
rately determined, contribution of the Sun as well as the (small) gravitomagnetic
contribution resulting from the angular momentum of the Sun. A detailed account
of the drama surrounding the initial proof and resistance to acceptance of GRT can
be found in Crelinsten (2006) and more technical details can be obtained from
Ciufolini and Wheeler (1995).

Following Hugentobler (2008), if we set GM ¼ n2a3 the Schwarzschild
acceleration for a circular orbit can be written as

D~€rS ¼
GM

c2a3
4

GM

a
� v2

� �
~r

¼ GM

c2a3
4

GM

a
� GM

a

� �
~r

¼ 3
GMð Þ2

c2a4
�~r:

ð2:22Þ

The radial component of the Schwarzschild acceleration is then

R ¼~eR � D~€rS ¼ 3
ðGMÞ2

c2a3
; ð2:23Þ

whereas the alongtrack and crosstrack accelerations are both equal to zero:

S ¼~eS � D~€rS ¼ 0 and W ¼~eW � D~€rS ¼ 0: ð2:24Þ

Considering the sign convention of gravitational acceleration as per (2.8) it is
clear that the radial component of the Schwarzschild field imparts an outward
acceleration, which reduces the Newtonian component, effectively changing GM
so that

~eR �~€rtot ¼ �
GM

a2
þ R

¼ �GM

a2
1� Ra2

GM

� �

¼ �GM0

a2
: ð2:25Þ

Using Kepler’s third law written as (2.17) where l ¼ GM and keeping the period
T of the satellite motion (2.18) fixed and setting a0 ¼ aþ Da; then

a03n2 ¼ GM0 ð2:26Þ
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and to first order

Da ¼ � 1
3

Ra3

GM
: ð2:27Þ

Substituting R from (2.23) into (2.27) one can then write (Hugentobler 2008)

Da ¼ �GM

c2
¼ �4:43 mm: ð2:28Þ

The Schwarzschild acceleration on a satellite in orbit is thus a radial, in-plane
effect, with zero magnitude effects in the alongtrack and crosstrack directions.

2.2.2 Lense–Thirring Precession

The second term of (2.10) is due to Lense–Thirring precession; it is clear that the
Earth’s angular momentum J plays a major role in the generation of the Lense–
Thirring effect. In the case of LAGEOS, the effect is very small (*31 mas/year)
and is therefore extremely difficult to measure (Ciufolini 1986). The secular rates
of the ascending node and perigee of a body orbiting a central rotating mass is
given by (Lense and Thirring 1918)

_XLT ¼
2GJ

c2a3 1� e2ð Þ3=2
ð2:29Þ

and

_xLT ¼ �
6GJ cos i

c2a3 1� e2ð Þ3=2
; ð2:30Þ

where G is the gravitational constant, c denotes the speed of light, J is the proper
angular momentum of Earth, and a, e and i are the semi-major axis, eccentricity
and inclination of the orbit respectively. Following Hugentobler (2008) the angular
momentum vector can be written in the reference frame as defined by (2.19) as

~J ¼ Jð0; sin i; cos iÞ: ð2:31Þ

In the case of a circular orbit, therefore,

~r �~J ¼ aJ sin i sin m and~_r �~J ¼ anJ cos m cos i; sin m cos i;� sin m sin ið Þ: ð2:32Þ

The radial, alongtrack and crosstrack components are then

R ¼ D~€rLT �~eR ¼ 2
GM

c2a4
~r � ~_r �~J
� �

¼ 2
GM

c2a4
~J � ~r �~_r
� �

¼ 2
GM

c2a2
nJ cos i; ð2:33Þ

S ¼ D~€rLT �~eS ¼ 0; ð2:34Þ
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W ¼ D~€rLT �~eW

¼ 2
GM

c2a3

3
a2

a2naJ sin i sin m� anJ sin i sin m

� �

¼ 4
GM

c2a2
nJ sin i sin m:

ð2:35Þ

The semi-major axis undergoes a reduction of

Da ¼ � 2
3

anJ

c2
cos i / a�1=2; ð2:36Þ

due to the constant radial acceleration. If the orbit is perpendicular to the equa-
torial plane there is no radial acceleration or change in semi-major axis due to the
cos i factor in (2.36). Changes in the semi-major axis are inversely proportional to
the square root of the semi-major axis, so that higher orbit satellites experience a
smaller effect.

Considering (2.14) and setting u ¼ m (true anomaly is undefined for circular
orbits as they have no periapsis) in the case of a circular orbit,

_XLT ¼
sin u

na sin i
�W

¼ 4
GM

c2a3J sin2 u

¼ 2
GM

c2a3J 1� cos 2uð Þ : ð2:37Þ

The precession of the node is not dependent on the inclination i of the orbit as it
is a frame precession effect; it is inversely related to a3 so that it decreases very
rapidly. Iorio (2007) provides an alternative discussion on the (RTN) radial ~rð Þ;
transverse ~tð Þ and out-of-plane ~nð Þ projections of the perturbing acceleration,
commencing with the Gaussian perturbation equations of a satellite orbit.

2.2.3 de Sitter (Geodesic) Precession

Geodesic precession is basically a result of the motion of Earth through the Sun’s
gravitational field. The consequences are that a satellite’s orbital pole precesses
about the normal to the ecliptic at a rate of 19.2 milliarcseconds (mas) per year and
the ascending node of the satellite’s orbit on the ecliptic increases in celestial
longitude by 19.2 mas per year (Moyer 2000). In addition, geodesic precession
decreases the general precession by 19.2 mas.

Both de Sitter precession and Lense–Thirring precession are manifestations of
frame-dragging as clearly shown by Ashby and Shahid-Saless (1990). Within an
appropriately chosen coordinate system and without incorporating spatial curva-
ture, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning
mass can be remoulded as a Lense–Thirring frame-dragging effect. Geodesic
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precession and Lense–Thirring precession can therefore be described in terms of
two components of a single gravitomagnetic effect. As applied to SLR, the Lense–
Thirring component is due to the spin angular momentum of Earth whereas the
deSitter precession can be ascribed to the orbital angular momentum of Earth as it
revolves around the origin of the appropriately selected quasi-inertial coordinates.
This interpretation is still a matter of debate however, (cf. Ciufolini and Wheeler
1995; Ciufolini 2007) where some interpretations regard the de Sitter effect and the
Lense–Thirring drag as fundamentally different phenomena.

Following Hugentobler (2008), in curved space–time, a parallel transported
(local inertial) reference frame undergoes precession with respect to distant stars.
For a satellite the precession rate (19.2 mas/year in the vicinity of Earth) does not
depend on the distance from the Earth. The equation describing the resulting
acceleration [refer to (2.10)] is

D~€rdS ¼ �2 � 3
2

GMS

c2R3
~R�~_R

� �
�~r: ð2:38Þ

Equation (2.38) has the form of a Coriolis term. The Coriolis acceleration of a
satellite in orbit around the Earth due to geodesic precession is

~€r ¼ 2~X� _r; ð2:39Þ

where the angular velocity vector due to geodesic precession (Moyer 2000) is

~X ¼
GMS cþ 1

2

	 

c2R3

~R�~_R
� �

: ð2:40Þ

The formulations at (2.39) and (2.40) [instead of (2.38)] are useful if the PPN
parameter c needs to be included in an estimation process and is equivalent to the
third term of (2.10). In (2.38) MS is the mass of the Sun and R is the distance to it,
respectively. The precession vector ~xdS of the global frame (the term in brackets)
is relative to the precessing (local inertial) frame and it points to the southern
ecliptic pole. If the frame defined in (2.19) is redefined by keeping the z-axis the
same but rotating the x-axis towards the ascending node with respect to the ecliptic
plane (Hugentobler 2008), the precession vector of the global frame can be written
as

~xdS ¼ � 3
2

GMS

c2R3
~R�~_R

¼ � 3
2

GMS

c2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
nS 0; sin b; cos bð Þ:

ð2:41Þ

In (2.41) the mean motion of Earth around the Sun is denoted by nS and the
inclination of the orbital plane to the ecliptic is represented by b: The inclination is
in the range ði� e; iþ eÞ and can be calculated using

cos b ¼ cos e cos iþ sin e sin i cos X; ð2:42Þ

2 General Relativity and Space Geodesy 67



with the obliquity of the ecliptic e ¼ 23�260: In the defined frame, for a circular
orbit the relation

~R�~_R
� �

�~_r ¼ R2nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
an � cos b cos m;� cos b sin m; sin b sin mð Þ ;

ð2:43Þ

can be written and consequently (Hugentobler 2008) the perturbing accelerations
are

R ¼ D~€rdS �~eR ¼ �3
GMS

c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
an cos b; ð2:44Þ

S ¼ D~€rdS �~eS ¼ 0; ð2:45Þ

W ¼ D~€rdS �~eW ¼ 3
GMS

c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
an sin b sin m: ð2:46Þ

Considering the cos b factor in the radial component, orbits which are per-
pendicular to the ecliptic plane experience no change in semi-major axis and no
radial acceleration as the Coriolis acceleration is perpendicular to the orbital plane.

The negative radial acceleration increases the semi-major axis by

Da ¼ þGMS

c2

a

R

nS

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
cos b / a5=2: ð2:47Þ

Using (2.14) and setting u ¼ m for a circular orbit the precession of the
ascending node with respect to the ecliptic plane can be calculated as

_XdS ¼
sin u

na sin b
�W

¼ 3
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c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
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q
sin2 u
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
s 1� cos 2uð Þ:

ð2:48Þ

Figure 2.1 illustrates the acceleration values of the radial components of the
three terms of (2.10), as described by (2.23, 2.33) and (2.44). Considering LAG-
EOS, the acceleration due to the radial component of the de Sitter effect is slightly
larger than the component due to the frame-dragging effect. The Lense–Thirring
effect dominates the de Sitter effect for semi-major axes that are less than
11,000 km. Table 2.1 summarizes some of the relativistic accelerations and
advances of perigee and the node due to the three terms of (2.10).

According to the IERS Conventions 2010 (Petit and Luzum 2010), the mag-
nitude and observable effects of these relativistic components depend to some
extent on the satellite orbital characteristics and the analysis setup strategy. For
instance, the satellite height changes during its orbital path so that a ’ r for near
circular orbits, so the slightly simplified examples here for circular orbits will
provide slightly different answers compared to a rigorous implementation of (2.10),

68 L. Combrinck



even though LAGEOS and GPS satellites have very nearly circular orbits. If
(as suggested by Petit and Luzum 2010) orbital parameters are adjusted and the
Schwarzschild term is not taken into account, there would be an apparent 4.4 mm
decrease in orbital radius as described using the formulations of Hugentobler
(2008). This stresses the necessity for consistent application of the formulation at
(2.10), as different strategies (and different values of, for instance, the Earth’s
angular momentum per unit mass) will lead to different results.

2.3 SLR Tests of General Relativity Theory

In the immediate environment of our solar system, the linearised weak-field and
slow-motion approximation is adequate and is the regime where space geodesy can
be utilised to test GRT. As mentioned by Einstein (1920), these deviations beyond
pure Newtonian dynamics may escape the test of our observations as these
deviations are very small. This certainly is still the case to some extent, as
experiments designed to test GRT are often very difficult and expensive. For
example, the next higher accuracy tests are likely to come from GAIA (a space-
based astrometric mission). The GAIA mission (Turon et al. 2005) has as its
objective the creation of a three-dimensional map of our galaxy, which will
improve our knowledge of its composition, formation and evolution. In addition,
new tests of general relativity are included in its projected five-year mission, with a

Fig. 2.1 Radial acceleration as a function of satellite height for circular orbits (Hugentobler
2008)
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launch date currently estimated for 2013. Estimated accuracy for the evaluation of
PPN parameter c with GAIA is *2 9 10-7 (Vecchiato et al. 2003). Estimated
angular accuracy [this is a best scenario case as this accuracy is a function of
magnitude and ecliptic latitude of the object (Lindegren 2009)] is � 10 las
(Perryman et al. 2001), which is a factor of ten or more better than what is
(currently) routinely achieved with VLBI. Included in its mission objectives are
tests for light deflection, time delay, and Doppler frequency shift as well as
perihelion precession. Even though missions such as these will constantly be added
to the list of attempts to improve the accuracy of GRT tests (Turyshev 2009), space
geodesy has its own role to play; for instance, SLR can be used to measure frame
dragging, gravitational delay, and can also be used to estimate PPN parameters c
and b:

2.3.1 Tests of Frame Dragging (Lense–Thirring Effect)

SLR has been used in attempts to detect frame dragging. Using SLR and the
LAGEOS satellite to detect frame dragging was initially proposed by Cugusi and
Proverbio (1977), see also Cugusi and Proverbio (1978). The first reported results
were by Ciufolini et al. (1996) who analysed the SLR range observations of
satellites LAGEOS and LAGEOS II utilising the software package GEODYN II
(Pavlis et al. 2007). They obtained the first direct measurement of the Lense–
Thirring effect, or dragging of inertial frames, and the first direct experimental
evidence for the gravitomagnetic field. The stated accuracy of their measurement
was *30%. This work was very valuable in that it created opportunity for more
investigation using improved gravity models and higher accuracy perturbation
models; it also started a competitive and critically evaluated research avenue.

This first report was followed by Ciufolini et al. (1998), claiming an improved
result of 20%; the parameter l is introduced, which measures the strength of the
Lense–Thirring effect (in GRT, l  1). Initially both nodes of LAGEOS I and II
were used as well as the argument of perigee of LAGEOS II. Satellite LAGEOS I
has a smaller eccentricity (*0.004) than LAGEOS II (*0.14), which makes
detection of the advance in the argument of perigee of LAGEOS I more difficult,
and in addition the frame dragging effect is nearly twice the value for LAGEOS II
than for LAGEOS I.

Subsequent estimates used only the nodes (Ciufolini and Pavlis 2004, Ciufolini
et al. 2006) in a ‘butterfly’ configuration of the retrograde LAGEOS I (i = 109.8�)
and the prograde LAGEOS II (i = 52.6�) orbits. A very dedicated effort to create a
realistic error budget is contained within the Ciufolini et al. (2006) paper, where
several gravity models are used. Best estimates were obtained by using the
EIGEN-GRACE02S model, where l = 0.99, with a total error between 5 and 10%
of the GRT predicted value of the Lense–Thirring effect. The improved results are
directly related to the improved gravity models, as the frame dragging tests can be
strongly affected by mismodelling of the even zonal harmonic coefficients. Other
sources of error which have a smaller impact result from model imperfections of
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any factor which causes orbit perturbations including the solid Earth and pole tides
as they modulate the static gravity field.

The results of the most recent SLR-based tests in determining frame dragging
using the LAGEOS satellites have been questioned by Iorio (2010b). The con-
tributions by Iorio are important in that a careful scrutiny of the techniques
employed, evaluation of error sources, and independent tests are necessary to
ensure that results are scientifically valid. These tests are not trivial as the small
effects which are being investigated are easily obscured by classical phenomena
which are explained in Newtonian terms. According to Iorio (2010b), the sys-
tematic error dl in the Lense–Thirring measurements published to date should be
increased by a factor of 3–4 times. Following the literature, a healthy debate has
developed and continues regarding these tests and there are numerous publications
concerning the validity of these tests (Iorio 2006). The effect of Iorio’s work has
been that much more attention has been given to evaluation of the magnitude and
influence of errors on estimates of frame dragging.

2.3.2 Estimation of Perigee Shift in the Schwarzschild
Gravitoelectric Field

In the previous section we had a glimpse of the activities of researchers deter-
mining the effects of gravitomagnetism. The general relativity shift of the perigee
of LAGEOS II resulting from the Schwarzschild gravitoelectric field has been
estimated by Lucchesi (2003) during a simulation of a measurement and error
budget. Using the gravity model EGM96, Lucchesi demonstrated the potential to
estimate LAGEOS II’s general relativistic shift with 2% accuracy. Error budget
estimation covered an observational period of approximately 7 years. Similar to
the determination of frame dragging due to gravitomagnetism, the largest errors
are due to the uncertainties in the even zonal harmonics of the Earth’s gravity field
and to a lesser extent the mismodelling of non-gravitational perturbations. The
result obtained may be viewed as a 2% accuracy derivation of the PPN parameters
c and b: Details of error sources and their possible influence are given.

2.3.3 Estimation of Perigee Shift in the Schwarzschild Gravitoelectric
and Gravitomagnetic Field

A very interesting approach was taken recently by Lucchesi and Peron (2010),
placing moreover new constraints on non-Newtonian gravity. They analysed
13 years of SLR data of the LAGEOS satellites with the GEODYN II (Pavlis et al.
2007) software; the models for general relativity were not included in the orbit
determination, thereby obtaining the relativistic signal in the residuals. Utilising
LAGEOS II pericentre residuals they were able to obtain a 99.8% agreement with
the predictions of Einstein’s theory. Basically this approach is a measurement in the
field of the Earth of the combination of the c and b PPN parameters of general
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relativity. This work is different from other approaches as it measures all the rela-
tivistic secular effects simultaneously. It is unfortunately not able to separate the
PPN parameters c and b; as this result, essentially from the ‘‘Schwarzschild’’ signal,
places a constraint only on the combination of c and b: Other, separate constraints
would be required to disentangle them. The signals from the Lense–Thirring and de
Sitter components could provide information on c; but their signal-to-noise ratios in
the case of LAGEOS I are too small to be really useful in this respect (Peron, 3 Mar
2011, ‘‘personal communication’’). This unique approach in the PPN framework can
be considered as a 0.03% measurement of the combination of c and b PPN
parameters. The results of Lucchesi and Peron (2010) also constrain possible
deviations from the gravitational inverse-square law in favour of new weak inter-
actions parameterised by a Yukawa-like potential with strength a and range k:

2.3.4 Direct Estimates of PPN Parameters

The estimation of PPN parameters c and b can be done directly within the least-
squares solution of precise orbital determination. A first attempt was undertaken
by Combrinck (Combrinck 2008), providing an error of *5 9 10-4 on c: In these
tentative initial results, the PPN parameter was evaluated as a solve-for parameter
in an analysis of five months of LAGEOS II SLR data. A rejection filter was used
to constrain the orbital integration and parameter estimation. However, it was
noted that careful analyses of the effects of alternative strategies such as different
gravity models and a priori constraints on other solve-for or consider parameters
need to be done to evaluate this technique. The consider parameters are parameters
which could be estimated, but by setting their a priori constraints very high (i.e.
very low error values), they essentially obtain fixed values but are affected by their
uncertainties. This evaluation includes the Schwarzschild terms and the effects of
rotational frame-dragging (Lense–Thirring precession), de Sitter (geodesic) pre-
cession and Shapiro delay. The solved for PPN parameters are fed back into the
least-squares process during the analysis.

In this approach, the radial component of the SLR measurements is the strength
of the technique; the relativistic acceleration on LAGEOS is mainly a radial
component. This preliminary study solved for c in the least-squares sense utilising
SLR data in a strategy where the O–C residuals indicate better observation/
modelling fits, through different levels of O–C residual rejection levels. This
strategy assigns greater weight to SLR measurement accuracy than to the mod-
elling parameters. Basically the filter consists of low-pass and high-pass criteria set
to an O–C standard deviation based on a selected number of iterations during the
least-squares fitting process. This effectively creates a bandpass filter, which
rejects observations which fall outside the rejection criteria level.

Additional work done since included estimates of both c and b using a longer
time series of *4 years (Combrinck 2011). In this work, the suggestion by Iorio
(2010a) that possible imprinting of GRT in the gravity field models could
adversely affect tests of GRT is taken into account. Therefore certain gravity field

72 L. Combrinck



spherical harmonic coefficients, J2 � J5; C21 and S21; are estimated. This requires a
step by step approach where currently 20 iterations in the least-squares solution are
required, with certain parameters being estimated at certain iterations. Coefficients
C21 and S21 together with J2 are estimated to determine pole tide. In comparison to
c the estimate for b is weaker using this technique, as b is only evaluated in the
Schwarzschild term of the GRT acceleration, whereas c is present in all the terms
of (2.10) and in the second term of (2.4). The values obtained in (Combrinck 2011)
are somewhat inferior but more rigorous with respect to the initial (Combrinck
2008) tentative results. New results obtained were: values of c� 1 are 6:5�
10�4 � 7:4� 10�4 and 9:0� 10�4 � 9:6� 10�4 for LAGEOS 1 and 2 respec-
tively, and values of b� 1 are 1:2� 10�3 � 1:4� 10�3 and 1:4� 10�3 � 1:5�
10�3 for LAGEOS 1 and 2 respectively. New work is underway, which includes
improvement in modelling of the range delay due to the atmosphere, by including
an azimuth dependent range delay correction in the SLR analysis software as the
atmosphere exhibits nonlinear behaviour (Botai et al. 2010).

2.3.5 Lunar Laser Ranging

Lunar laser ranging (LLR) entails laser ranging to arrays of corner cube reflectors
placed on the Moon (see Merkowitz 2010 and references therein for an overview).
This high accuracy laser ranging (using equipment similar to SLR, with some
system modifications, e.g. using an event timer instead of an interval counter to
measure the ToF of the laser pulse) translates to a very accurate orbit determi-
nation. The highly accurate orbit can be used for (amongst others) fundamental
physics. Placement of the reflectors was done by the Apollo 11, 14 and 15
astronauts, while two French-built reflector arrays were added by the Soviet Luna
17 (the lander carrying robotic rover Lunakhod 1) and Luna 21 missions. Rover
Lunakhod 1 was lost in 1971 but relocated using images obtained by the lunar
reconnaissance orbiter (LRO). It was consequently ranged to with LLR by Tom
Murphy and his team [Apache Point Observatory Lunar Laser-Ranging Operation
(APOLLO)], see (Murphy et al. 2007), using the 3.5 m telescope at the Apache
Point Observatory in New Mexico. LLR is a sensitive technique to test the
equivalence principle (EP).

The EP is the backbone of GRT and involves the equality of gravitational and
inertial mass (Newtonian EP). In essence, Einstein’s EP (EEP) requires that in local
freely falling frames, all physical laws must be independent of the velocity of the
frame (i.e. local Lorentz invariance). Furthermore, that two different bodies (such as
Earth and the Moon) in a gravitational field (such as that of the Sun) the bodies will
experience the same acceleration [weak equivalence principle (WEP)], i.e. EEP
requires that the WEP be valid. The strong equivalence principle (SEP) includes the
gravitational self-energy of a body in the counting of its total energy content. LLR
can also be used to evaluate b; the geodetic precession and _G

�
G; c is conveniently

used from other high level estimates [such as using the result (Bertotti et al. 2003) of
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the radiometric tracking data of the Cassini spacecraft on its approach to Saturn,
which gave the best results to date of c� 1 ð2:1� 2:3� 10�5Þ].

Similar to SLR, LLR has seen a constant improvement in results due to model
and technology improvements. The Earth-Moon-Sun system provides the best
laboratory for testing the SEP, with LLR being the only available solar system
technique at this time, which may be augmented with interplanetary laser ranging
(ILR) in the future. The SEP parameter g is related to the PPN parameters:

g ¼ 4b� c� 3; ð2:49Þ

where in GRT g ¼ 0:
Variation of G in time will be reflected in anomalous evolution of the orbital

period of the Moon. If G changes, it will affect the monthly lunar orbit as well as
the annual Earth-Moon orbit around the Sun. This is quite evident (Merkowitz
2010) considering Kepler’s third law

P2 ¼ 4p2r3

Gm
; ð2:50Þ

and by taking the time derivative and re-arranging:

_G

G
¼ 3

_r

r
� 2

_P

P
� _m

m
: ð2:51Þ

After considering factors which make up the non-anomalous orbital evolution
(solar perturbation, tidal friction, etc.) (see Williams et al. 1996 for more details)
and utilising raging data to the Moon, the anomalous orbital evolution can be
estimated and an estimate for _G derived. In the case of a violation of the EP, a
displacement of the lunar orbit along the Earth-Sun line will occur, which will be
evidenced in a range signature having a 29.53 day synodic period (not the same as
the lunar orbit period of 27 days) (Williams et al. 2009). Some of the LLR tests
relating to the fundamental nature of gravity are summarized in Murphy (2009),
with short descriptions of the phenomenologies related to SEP, time-rate-of-
change of the gravitational constant, gravitomagnetism, inverse square law, and
preferred frame effects.

Recent results (Williams et al. 2004) for PPN parameter b are based on
g ¼ 4b� c� 3; and are very sensitive to b: Utilising the result of the Cassini
spacecraft determination (Bertotti et al. 2003) of c� 1 2:1� 2:3� 10�5

	 

; in combi-

nation with g ¼ 4b� c� 3 ¼ ð4:4� 4:5Þ � 10�4; results in b� 1 ¼ ð1:2� 1:1Þ�
10�4:Their test of temporal variation of the gravitational constant delivered the value

_G

G
¼ 4� 9ð Þ � 10�13yr�1:

The LLR network is currently limited to three operational LLR stations, all in
the Northern hemisphere. Two stations are located in the USA, the McDonald laser
ranging station (MLRS) near Ft. Davis (0.75 m telescope) and the Texas APOLLO
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at the Apache Point Observatory in New Mexico (3.5 m telescope). One station
(Centre d’Etudes et de Recherche en Géodynamique et Astronomie, CERGA) in
France, located at the Observatoire de la Côte d’Azur (OCA) on the Plateau de
Calern near Grasse (France), is equipped with a 1.54 m Cassegrain telescope. Even
though the LLR network has received a boost through the addition of APOLLO,
biases could exist in the ranging solutions as all ranging data are obtained from the
Northern hemisphere. In collaboration with OCA and NASA, the Hartebeesthoek
Radio Astronomy Observatory (HartRAO) has commenced with a project to
develop an LLR system based on an ex-OCA 1 m aperture telescope. This LLR
should be operational by 2015 and as it would be dedicated to LLR, should add
significantly to the database and strengthen the geometry of the network.

2.3.6 Interplanetary Laser Ranging

Interplanetary laser ranging (ILR) will be able to make a contribution to the dynamics
of the solar system and to evaluations of general relativity or alternative theories of
gravity by, for instance, ranging to laser transponders placed on suitable planets such
as Mars, or ranging to interplanetary probes equipped with laser transponders. In
May 2005, timed observations of laser pulses between the Mercury Laser Altimeter
(MLA) instrument, which is located onboard the MESSENGER spacecraft, and the
Goddard Geophysical Astronomical Observatory (GGAO) (using a 1.2 m telescope)
measured the two-way ToF (range) with sub-nanosecond precision (Smith et al.
2006). In addition, a one-way only optical experiment was executed a few months
later between GGAO and the Mars Orbiter Laser Altimeter (MOLA) aboard the Mars
Global Surveyor (MGS) spacecraft. The distance involved was 81 Gm (0.54 AU).
These successful tests demonstrate the possibility of interplanetary communication
and precise ranging using modest power (Neumann et al. 2006).

Several possible scenarios utilising ILR have been proposed, including placing
an active laser transponder on the Martian moon Phobos with the possibility of
millimetre-level ranging resolution (Turyshev et al. 2010). The primary objective
of this proposed mission is to measure PPN parameter c to a level of 2� 10�7

which would improve today’s best result (as determined by radiometric tracking
data from the Cassini mission; see Bertotti et al. 2003) by two orders of magnitude.
Included in the objectives is a measurement of _G; the time-rate-of-change of the
gravitational constant.

It is expected that ILR will make a huge impact on GRT tests, although there
will be technical challenges due to the large distances involved. With regard to
these future ILR missions, Iorio (2011) has numerically investigated how the
ranges between the Earth, the inner planets, as well as Jupiter and Saturn, could be
influenced by specified Newtonian and non-Newtonian dynamical effects. This
was done by the simultaneous integration of the equations of motion of all the
major bodies of the solar system, including Ceres, Pallas, Vesta, Pluto and Eris in
the Solar System Barycentric reference frame over a 2 year period, except Mars,
Jupiter and Saturn for which a period of 5 years was used.
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3 Global Positioning System

The GPS satellites orbit at a height of *20,200 km. They have an orbital period of
about 718 min and a velocity of about 3,874 m/s. This velocity, relative to the
geocentre, Earth’s rotation and the difference in gravitational potential between
observer and the GPS satellite, make it absolutely essential that GRT needs to be
considered in timing (frequency) and orbital parameters. The basic theoretical
timescale for geodesy and geophysics is Geocentric Coordinate Time, TCG; which
is the coordinate time of the GCRS, which has coordinates ðT ;~XÞ (Müller et al.
2008; Petit and Luzum 2010).

There are two relativistic effects which affect the clocks of GPS satellites: time
dilation and gravitational redshift. The relative motion between the observer (GPS
receiver) and the GPS satellite results in special relativistic time dilation, whereas
differences in the gravitational potential as experienced by the observer and satellite
result in gravitational redshift. As a consequence of these two relativistic effects, so
as to align approximately the GPS clocks with terrestrial time (TT), the onboard
oscillators require a small frequency (i.e. frequency but not phase aligned, which
means a phase delay or advance exists) offset adjustment. Second-order effects
resulting from the non-circular orbits have to be corrected in the GPS receiver
during processing of observational data by applying a correction of the order of

2ð~r �~_rÞ=c2; where~r is the position vector of the satellite (Senior et al. 2008).

3.1 Reference Frame Issues

In the earth-centred inertial (ECI) frame, the special relativistic theory is valid to a high
level. The ECI frame is basically a freely falling, local, non-rotating inertial frame with
its origin at the centre of the Earth. Although the Earth is accelerating towards the Sun,
in this frame, the speed of light can be assumed to be constant. For the purposes of GPS
and in general of satellites with clocks on board, it is most convenient (Ashby 2003) to
describe their motions in the ECI frame. This approach makes the Sagnac effect
irrelevant although the Sagnac effect on Earth-based (moving) receivers must still be
taken into account (see Sect. 3.2.3). In the Earth Centred Earth Fixed Frame (ECEF),
which is a rotating frame, clock synchronisation is difficult as light travels in a spiral
path due to the Sagnac effect. Practically, the ECI is used for the establishment of
positions by the GPS; afterwards a rotation to the ECEF is performed.

3.2 Clock and Frequency Effects

Similar to the other space geodetic techniques, the technological basis for GPS is
founded on the very stable and accurate atomic clocks used to generate frequencies
utilised in the satellite systems, and in the stable quartz oscillators used in GPS
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receivers. Higher quality receivers are equipped with better (more stable) oscillators,
and for certain demanding applications, for instance the international GNSS service
(IGS) receiver (HRAO) at HartRAO, the 5 MHz signal of an external Hydrogen
MASER is used as clock reference. A comparison of the modified Allan deviation
(MDEV) as calculated from IGS (final product) 30 s satellite clocks active over the
period 15 June–5 July 2007 was made by Senior et al. (2008). The MDEV is more
suitable when estimating short-term stability and allows distinguishing between
white and flicker phase noise (see Riley 2007 for definition and formulation). The
comparison includes a listing of the atomic frequency standard (AFS) (caesium or
rubidium) and PRN numbers (pseudo-random noise) which is very useful. Included
in the comparison were five ground clocks, which were among the highest weighted
clocks realizing the IGST (IGS Final) timescale for that period. The HartRAO IGS
station (HRAO) using an Oscilloquartz EFOS C passive H-maser as external
frequency standard was included, as well as BRUS (Quartzlock CH1-75 active
H-maser), BREW (Sigma Tau passive H-maser), STJO (passive H-maser) and NRC1
(Kvarz CH-175 active H-maser).

It is clear from the comparison by Senior et al. (2008) that the GPS satellites
have instabilities that are five times greater than the ground clocks. In addition,
satellite clock behaviour is dependent on AFS type and constellation block. Block
IIA (older block) satellites exhibit 12 h variations (there are also shorter period
variations but of lower amplitude, of which the 6 h variation is also significant) up
to 8 ns, Block IIR 0.1–0.3 ns and Block IIR-M 0.12 ns. For very accurate appli-
cations these variations need to be included in modelling. These clock variations
are much smaller than the relativistic effects. The stability of the GPS caesium
clocks is such that, after initialisation and an interval of 1 day, the clock would still
be correct to *5 parts in 1014, which is about 4 ns (4 9 10-9s), which is small
compared to relativistic effects (Ashby 2003).

3.2.1 Gravitational Redshift

A clock in orbit experiences relativistic shifts which have both constant and time
varying components. The constant component can be compensated for by incor-
porating a fixed offset, which lowers the frequency of the on-board oscillator.

Orbital eccentricity and the quadrupole (including higher order terms) of the
Earth’s gravity field are primarily responsible for the time varying components
(Larson et al. 2007). An arbitrary atomic clock’s time s is associated with TCG in
non-rotating GCRS coordinates by (Müller et al. 2008) so that

ds
dTCG

¼ 1� 1
c2

U þ 1
2
~v2

� �
þO c�4

	 

; ð2:52Þ

where the speed of light in vacuum is denoted by c; ~v is the GCRS speed of the
satellite and the GCRS gravitational potential at the clock is U: Several gravita-
tional components are contained within U: Earth’s tidal potential UE is the main
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constituent, although also included are the tidal potentials of the Sun, Moon and
planets Utidal and Uiner; an inertial component. A more detailed description of these
components can be found in Müller et al. (2008).

As an example (Müller et al. 2008), if two clocks are located on an equipo-
tential surface, the rates of the clocks will be the same. If however, one clock is
moved to a height of 1 km, their rates would differ by about 10-13. The gravi-
tational redshift can then be written (Larson et al. 2007) in terms of the Newtonian
gravitational potential Uð~rÞ at the point~r of the GPS satellite in orbit as

Df

f
¼ Uð~rÞ � U0

c2
: ð2:53Þ

In (2.53) U0 is the gravity potential (including the centrifugal potential resulting
from the rotation of Earth) at the reference clock located on Earth’s geoid. The
International Astronomical Union (IAU) has defined (IAU Resolutions 2000,
Resolution B1.9) the relation U0

�
c2 by setting the relation between TCG and TT

to have a rate of �6:969 290 134� 10�10 (Kaplan 2005; Burša et al. 2007).
Considering the reference clock located on the geoid, the potential at U0 is
approximately (cf. Cazenave 1995; Kouba 2004; Ashby and Nelson 2009)

U0 ¼ �
GM

rh
1�

J2 � r2
eq

r2
h

� 1
2

3 sin2 h� 1
	 
 !

� 1
2
ðxrh cos hÞ2; ð2:54Þ

where the first term makes up the static component and the second is the centrifugal
component. In (2.54), h is measured north or south from the equator, rh is the radius
of Earth at the specified latitude and req ¼ 6:378 137� 106 m is the equatorial radius
of Earth. The angular velocity of Earth’s rotation is x ¼ 7:291 151 467� 10�5 rad/s.
Earth’s quadrupole moment (coefficient) J2 ¼ 1:08268� 10�3 accounts for the
oblateness of the Earth. Considering a reference clock on the equator (clocks on the
equator essentially run at the same rate as clocks that are not on the equator due to
higher gravitational redshift at higher latitudes, more time dilation on the equator and
a correction due to the quadrupole; these effects compensate to a high level; see
Ashby 2006), one can rewrite (2.54) where h ¼ 0; as

U0 ¼ �
GM

req
1þ J2

2

� �
� 1

2
xreq

	 
2
: ð2:55Þ

Earth’s quadrupole’s effect on the potential at the GPS satellite is approxi-
mately one part in 1014 (Ashby 2005), so in the case of the potential at the satellite,
the contribution of the quadrupole can be ignored in most cases (GPS orbits are
high enough to be nearly Keplerian); there is also no centrifugal component so that
the gravitational potential at the GPS satellite is to a good approximation

UGPS ¼
�GM

~rj j : ð2:56Þ
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The total gravitational frequency shift of the clock onboard the GPS satellite
can then be calculated using (2.53) as (Ashby 2003, 2006; Larson et al. 2007)

Df

f
¼ UGPS � U0

c2

¼ � GM

c2~rj j � �GM

rec2
1þ J2

2

� �� �

� 5:288� 10�10 � 45:688 ls:d�1:

ð2:57Þ

Ignoring this increase of the satellite clock frequency will lead to a timing error
and consequent navigational (one way range q) error (per day) of

qerror ¼ c� Df

f

¼ 299792458:0� 4:5688� 10�5

� 13:697 km: ð2:58Þ

3.2.2 Special Relativity: Second Order Doppler Effect

As a consequence of the high speed (*3874 m/s) of GPS satellites, the special
relativity theory of Einstein needs to be applied. The time dilation effect causes the
GPS satellite to appear to run slow by about 7 ls: d�1: Using the mathematical
formalism of general relativity, a specified reference system is fixed by the specific
form of the metric tensor gabðt; xiÞ: The metric tensor allows (Soffel et al. 2003)
calculation of the 4-distance ds between any two events xa and xa þ dxa following
the rule

ds2 ¼ gab t; xið Þdxadxb

 g00c2dt2 þ 2g0icdtdxi þ gijdxidx j:
ð2:59Þ

In (2.59) Einstein’s summation convention is implied. Four coordinates
xa ¼ x0; xið Þ ¼ x0; x1; x2; x3ð Þ describe the four-dimensional space–time reference
system. Greek indices adopt the values 0, 1, 2 and 3; Latin indices adopt the values
1, 2 and 3. Indices 1, 2 and 3 refer to the three spatial coordinates and index
0 refers to the time variable. For dimensional reasons, x0 ¼ ct is normally used.
Here the speed of light is denoted by c and t is a time variable. Translational and
rotational equations of motion of bodies can be derived using the metric, allowing
one to describe the propagation of light and to model the process of observation.
For instance, one can model the relationship between the observed (proper) time s
of an observer and the coordinate time t: Proper time is the time actually read at
the clock. Coordinate time is the time specified by the time coordinate x0. In terms
of a specific model, these components can be combined into a relativistic model.
Refer to Soffel et al. (2003) for more details.
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Following Nelson and Ely (2006), we derive the relativistic effect (one of the
many formulations of it, cf. Larson et al. 2007) on a GPS satellite’s clock time in
general, including the relativistic time dilation, and conclude with approximate
formulations (typically used) of the corrections to be applied to the satellite clocks.

In an ECI frame the components of the metric tensor can be written as
(cf. Soffel et al. 2003, discussion of the metric tensor for space–time coordinate
systems t;~xð Þ; which are centred at the barycentre of an ensemble of masses)

�g00 � 1� 2U
�

c2

g0j ¼ 0
gij � dij;

ð2:60Þ

as an approximation in the analysis of clock transport. In (2.60) the Newtonian
gravitational potential is denoted by U and dij is the Kronecker delta. For a clock
on board the GPS satellite, the elapsed coordinate time can be expressed in terms
of the proper time by the integral

Dt ¼
Zs

s0

1þ 1
c2

U þ 1
2

1
c2

v2

� �
ds: ð2:61Þ

In (2.61) under the integral, proper time, gravitational redshift and time dilation
are the first, second and third term respectively. The magnitude of the time dilation
can be expressed as (Zhang et al. 2006)

Dfr  fs 1�
~_rT

c

 !
v2

2c2

� �
¼ fsv2

2c2
� fs~_rT v2

2c3
� fs

2
v2

c2
: ð2:62Þ

In (2.62)~_rT is the GPS satellite transversal velocity, v is its tangential velocity,
fr is the frequency received at the receiver and fs is the original frequency of the
transmitter. The GPS L1 and L2 frequencies are in the Gigahertz range, so the
frequencies are high enough (for L1 k = 1.57542 GHz, for L2 k = 1.22760 GHz)
to make the Doppler effect considerable, as

D  fr � fs ¼
~_rT

c
fs ¼

1
k
~_rT ð2:63Þ

Considering that fr [ 0:1 Hz, which translates to more than 2 cm/s error in the
range rate, the second-order Doppler effect cannot be neglected for geodetic
applications. The order of magnitude of the time dilation effect is (Ashby 2006)

� 1
2

v2

c2
� �8:35� 10�11: ð2:64Þ

As the reference clock (in the receiver) is also moving, although at a lower
speed (*465 m/s) relative to the GPS satellite, the fractional frequency difference
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due to time dilation between a GPS satellite clock and a reference clock on the
equator can be obtained by calculating the difference,

Df

f
¼ � 1

2
v2

c2
� � 1

2
xreð Þ2

c2

 !
¼ �8:228� 10�11: ð2:65Þ

In (2.65) x is the angular velocity of Earth and re is Earth’s equatorial radius.
This fractional frequency shift, if not considered, would lead to a navigational
error of 2.13 km/day (Ashby 2006). The negative value indicates that the satellite
clock runs slow relative to the reference clock on the equator.

Continuing with the reasoning of Nelson and Ely (2006), a new coordinate time
can be defined (in the ECEF frame) by applying a change of scale:

Dt0 ¼ 1� 1
c2

W0

� �
Dt ¼

Zs

s0

1þ 1
c2

U �W0ð Þ þ 1
2

1
c2

v2

 �
ds: ð2:66Þ

In (2.66) W0 equals U0 as defined in (2.54) and (2.55) and U equals U ~rð Þ as
defined in (2.53) and (2.56) where for our purposes U ~rð Þ ¼ UGPS: Coordinate time
Dt0 represents proper time of the reference clock at rest on the geoid and is
therefore the coordinate clock. The elapsed coordinate time for the GPS satellite
clock after integration is (Nelson and Ely 2006)

Dt0 ¼ 1þ 3
2

1
c2

GM

a
� 1

c2
W0

� �
Dsþ 2

c2

ffiffiffiffiffiffiffiffiffiffi
GMa
p

e sin E: ð2:67Þ

In (2.67) a; e and E are the semi-major axis, eccentricity and eccentric anomaly
of the GPS satellite orbit respectively. A constant rate offset is contained within the
first term; this offset is between the satellite clock and a reference clock on the
geoid whereas the second term results from orbital eccentricity and leads to a small
relativistic periodic correction (amplitude of *30 ns), which has to be corrected
by the GPS receiver software. According to Ashby (2003) the clocks in the
GLONASS satellite are adjusted before broadcast. It would seem that the GPS
system carries some historical baggage, as the decision to have the user make the
orbital eccentricity correction was due to the weak computing power available in
the early GPS satellite vehicles.

In (2.67) there are two constant rate corrections in the first term. Extending
(Ashby 2003) and adding the time dilation contribution as described by (2.65) so
that the formulation equals that of Ashby (2006) one has three constant rate terms

3
2

1
c2

GM

a
� U0

c2
� 1

2
xreð Þ2

c2
¼ �4:4647� 10�10: ð2:68Þ

This constant rate in (2.68) can be explained (Ashby 2006) by reviewing the total
contribution of the fractional frequency shift, which is obtained by addition. If one
combines (2.57) with (2.65),
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net

¼ � GM

c2~rj j � �GM
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1þ J2

2

� �� �
þ � 1

2
v2

c2
� � 1

2
xreð Þ2

c2

 ! !
; ð2:69Þ

considering that the total energy per unit mass of the satellite is

1
2

v2 � GM

r
¼ �GM

2a
ð2:70Þ

In (2.70) a ¼ 26:562� 103 km is the semi-major axis of a GPS satellite orbit. The
velocity term in (2.69) can be removed by keeping r and a; which (Ashby 2006)
leads to the equation

Df

f
¼ � 2GM

c2

1
r
� 1

a

� �
� 3GM

2c2a
þ GM

c2re
1þ J2

2

� �
þ 1

2
xreð Þ2

c2
: ð2:71Þ

In (2.71) the first term will disappear when the orbit has zero eccentricity. This
leaves us with the constant part as described by (2.68).

The GPS satellite clocks are adjusted for the three constant rate corrections
before launching them into orbit, the negative sign of (2.68) implying that the
satellite clock has a higher frequency in orbit than on the ground (read geoid,
where the clock frequency should be 10.23 MHz) and its proper frequency should
therefore be reduced to

1� 4:4647� 10�10
	 


� 10:23 MHz ¼ 10:229 999 995 43 MHz: ð2:72Þ

The second term in (2.67) (to be corrected by the user’s software) may be
written as

Dtrel ¼
2
c2

ffiffiffiffiffiffiffiffiffiffi
GMa
p

e sin E ð2:73Þ

and (2.73) can be written as

Dtrel ¼
2~r �~_r

c2
ð2:74Þ

The dot product of the position vector~r and velocity vector~_r in (2.74) is a scalar;
one can therefore use it in the ECI or in the ECEF coordinate system. Equations
(2.73) and (2.74) are formulations (which include only the main monopole con-
tribution of Earth’s gravity field) often used in precise geodetic applications and
are accurate to a sufficient level for most GPS applications, but are inadequate
when evaluating lower orbits such as GRACE (Larson et al. 2007). More exact
formulations of (2.73) and (2.74) can be found in Kouba (2004) and Larson et al.
(2007).
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3.2.3 Sagnac Effect

In addition to the gravitational red (blue)-shift and time-dilation effects, a further
effect involves the second postulate of special relativity (the constancy of the
speed of light), the fundamental principle on which the Global Positioning System
is based. As already mentioned, it is convenient to synchronise clocks in an ECI
frame as light does not travel in a straight line in a rotating frame. This excludes an
ECEF frame from being used to synchronise clocks, due to the Sagnac effect. A
stationary GPS receiver located on the equator will have a velocity of *465 m/s
through the ECI frame as the Earth rotates. The corresponding Sagnac correction
can be as large as 133 ns (equal to 86 ms signal propagation). This correction is
also applied in the receiver. Allowing for the Sagnac effect in the ECEF is
equivalent to correcting for the receiver’s motion in the ECI frame (Ashby 2002).

Following Ashby (2006), to determine position using the GPS, three satellites
are required for position and four are required to determine position and time.
Clocks onboard the satellites are synchronised in the ECI frame. A user GPSuser

will receive time signals at a specific time and position, whereas the GPS satellites
will transmit signal messages containing the time and position of the transmission
events, so that

GPSuser ¼ tu;~ruf g
GPSsat ¼ tj;~rj

� �
j ¼ 1. . .n;

ð2:75Þ

where j is the number of the GPS satellite from which data are being received and
n is the total number in view. The constancy of the speed of light is then repre-
sented by

c t � tj

	 

¼ ~r �~rj

�� ��; j ¼ 1. . .n: ð2:76Þ

The nonlinear system (2.76) needs to be solved to provide the user’s position; this
can be done by linearising the equations and initialising an iterative algorithm with
an a priori position. Due to the motion of the GPS receiver, the navigation
equations in (2.76) are not valid in the ECEF frame. Most of the time, of course,
users would want their positions in the ECEF, not in an ECI frame. In the ECEF,
the rotation of Earth will move the GPS receiver while the GPS signal is propa-
gating to Earth, so (2.76) needs to be altered to account for this as

t ¼ tj þ
~r tð Þ �~rj

�� ��
c

¼
~r tj
	 

þ~v� t � tj

	 

�~rj

�� ��
c

: ð2:77Þ

In (2.77) the receiver position at time t is denoted by~r tð Þ and~v is the velocity of
the receiver at the time of the GPS satellite transmission. The velocity of the
receiver is far less than that of c; and therefore the equations can be solved through
an iteration algorithm. An iteration algorithm was also required to find the two-
range as determined through SLR as discussed in Sect. 2.2.1. The range from GPS
satellite to receiver can be defined as
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~R ¼~r tj

	 

�~rj ð2:78Þ

and excluding the velocity term we get the time of arrival of the signal if it were in
the ECI frame:

t ¼ tj þ
~r tj
	 

�~rj

�� ��
c

¼ tj þ
R

c
: ð2:79Þ

If t is substituted back into (2.77) then one can find (Ashby 2006)

t ¼ tj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2~R �~v t � tj

	 
q
c

� R

c
þ
~R �~v

c2
: ð2:80Þ

In the case where the receiver’s velocity is only a result of the rotation of Earth,
then

~v ¼ ~x�~r tj

	 

ð2:81Þ

and one can rewrite the Sagnac correction term as

DtSagnac ¼
~R �~v

c2
¼ 2~x �~A

c2
ð2:82Þ

with the vector area ~A being given by

~A ¼ 1
2
~r tj
	 

�~R: ð2:83Þ

In (2.81) and (2.82) ~x ¼ 0; 0;xð Þ: The dot product in (2.82) projects area ~A
(the Sagnac correction is proportional to this area) onto a plane that is parallel to

the equatorial plane. Area ~A is created by the sweeping vector from the rotation
axis to tip of the signal pulse as it propagates from transmitter to receiver (Ashby

2004). Area ~A is therefore swept out by the electromagnetic pulse as it propagates
from the GPS satellite transmitter to the receiver.

3.3 General Relativistic Accelerations

The relativistic accelerations in the weak-field and slow motion approximation as
described by the standard IERS formulation (2.10) for the Schwarzschild field,
frame dragging and de Sitter precession are additional relativistic effects, which
should be taken into account during POD. Table 2.1 lists the magnitude of these
effects when considering GPS satellites.
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3.4 Spatial Curvature Effect on Geodetic Distance

The proper distance between a receiver on the surface of the Earth at radius r1 and
a GPS satellite at radius r2 is approximately (Ashby 2003)

Zr2

r1

1þ GM

c2r

� �
dr ¼ r2 � r1 þ

GM

c2
ln

r2

r1

� �
: ð2:84Þ

Using (2.84) and, in addition, calculating the coordinate distance, the difference
between proper and coordinate distance is about 6.3 mm ((2.4) as applied to SLR).

4 Very Long Baseline Interferometry

Observations of compact extragalactic radio sources using the technique of VLBI
are very well suited to the study of Earth orientation in space, as these sources
serve as an excellent approximation to an inertial frame. The VLBI technique is
unique in that it provides Earth orientation measurements of high accuracy in an
inertial frame of reference (Sovers et al. 1998). Similar to the other space geodetic
techniques, the reduction of VLBI data requires consideration of a large range of
effects, which include the effects of the Earth’s internal structure on its dynamics,
the VLBI site velocity as caused by tectonic plate motion, terrestrial tidal effects,
and quantification of tropospheric and ionospheric parameters. In addition, con-
sideration must be given to special relativity in the interpretation of the radio
signals travelling from the distant sources, as well as to general relativistic
retardation. For a thorough introduction to VLBI the reader should refer to the
chapter by Harald Schuh and Johannes Böhm in this volume, in which is included
a discussion of the VLBI GRT model for propagation. I will attempt to provide
additional information which could be read in the context of and as ancillary
material to the Schuh and Böhm chapter without unnecessary repetition.

4.1 Gravitational Delay

According to GRT, an electromagnetic signal will experience retardation in terms
of its travel time when propagating in a gravitational potential relative to its
propagation in gravity field-free space. This has implications for VLBI, as the
value determined for the difference in arrival time at the VLBI stations in question
must be corrected for gravitational effects. Furthermore, considering the impli-
cations of GRT, one must take into account both a time delay (Shapiro 1964) and a
bending delay (deviation from a straight-line path) (Shapiro 1967). The current
general relativistic VLBI model for propagation used by international VLBI
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service (IVS) analysis centres is the IERS (Petit and Luzum 2010) recommended
‘‘consensus model’’ (Eubanks 1991) which provides an accuracy below 1 ps as
described inChap.11of the IERS Conventions. According to Petit (2009) there are
no changes expected in the short term, although a review is possible in the light of
future VLBI accuracy improvements. This is true specifically with regard to
VLBI2010, which will require that the consensus model be re-evaluated to ensure
that it includes all terms down to the order of 0.3 ps (Heinkelmann and Schuh
2009). Objectives of VLBI2010 include 1 mm position accuracy over a 24 h
observing session (on global baselines), 0.1 mm/year station velocity accuracy,
continuous observations, and delivery of initial results within 24 h after taking
data (MacMillan et al. 2011)

4.2 General Relativistic Tests Using VLBI

VLBI currently achieves very high accuracies, better than 0.1 mas. These high
accuracies make VLBI an excellent tool for GRT tests and evaluation and there-
fore the geodetic VLBI technique has often been used to evaluate the space cur-
vature parameter c introduced in (2.4). Tests of special and general relativity were
quickly launched after Einstein’s publications. Acceptance of relativity was not
instantaneous and general acceptance was fraught with misunderstanding, political
viewpoints, self-serving attitudes and the typical slow acceptance of a new sci-
entific doctrine. A very good review of the early tests and human drama involving
astronomers of the early twentieth century is given in Crelinsten (2006). These
tests involved gravitational redshift and light bending (primarily light deflection at
the Sun’s limb during eclipses). Currently one of the most accurate methods to
evaluate c is by utilising VLBI.

The space–time geometry around the Sun can be described by a static and
spherically symmetric metric (Schwarzschild 1916). However, Eddington (1923)
provided an isotropic formulation of Schwarzschild’s original anisotropic version
of the metric (2.21) (where, as noted by Eddington, in the original coordinates, the
speed of light is not the same for transverse and radial directions), which can be
written as

ds2 ¼ � 1� 2
GM

c2r
þ 2

GM

c2r

� �2
 !

cdtð Þ2þ 1þ 2
GM

c2r

� �
dx2 þ dy2 þ dz2
� �

:

ð2:85Þ

Here the gravitational constant is G; the speed of light is given by c and M is the
mass of the star (Sun). The PPN parameters c and b are the most physically
significant of the ten parameters in the PPN formalism and this is demonstrated by
their placement (Margot and Giorgini 2009) in (2.85):
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ds2 ¼ � 1� 2
GM

c2r
þ 2b

GM

c2r

� �2
 !

cdtð Þ2þ 1þ 2c
GM

c2r

� �
dx2 þ dy2 þ dz2
� �

:

ð2:86Þ

In the first term on the right-hand side of (2.86) b describes the degree of
nonlinearity in the superposition law for gravity, while the second term (spatial
part) contains PPN c; which describes how much curvature is produced by unit rest
mass, and can be tested by deflection of light, bending of radio waves and Shapiro
delay experiments. In GRT both parameters c and b are equal to unity, whereas the
other eight PPN parameters are zero (Will and Nordtvedt 1972).

4.2.1 Evaluation of PPN Parameter c

The classical test by Eddington on the deflection of light by the Sun (Dyson et al.
1920) and the delay of an electromagnetic signal as it propagates near the Sun
(Shapiro et al. 1968) essentially measure the propagation of photons in curved space
near the Sun; these measurements depend on the PPN parameter c: The amount of
space curvature per unit mass is related to c through the proportional relationship

dh / 1=2ð1þ cÞ: ð2:87Þ

Following Will (2006), an electromagnetic signal (ray of light or radio signal from
VLBI source) passing close to the Sun at distance d will be deflected by an angle,

dh ¼ 1
2

1þ cð Þ 4m�=dð Þ 1þ cos Uð Þ=2½ 
; ð2:88Þ

where the mass of the Sun is denoted by m� and U is the angle formed between the
direction of the incoming electromagnetic signal and the line between Earth and
the Sun. The relative angular separation may be changed when the line-of-sight of
one of the sources moves close to the Sun. This angular separation is given by

dh ¼ 1
2

1þ cð Þ � 4m�
d

cos vþ 4m�
dr

1þ cos Ur

2

� �� �
:

ð2:89Þ

In (2.89) the points of closest approach to the Sun in terms of distance are given by
d and dr for the source and reference rays, respectively. The angle created by the
Sun-source and Sun-reference directions, projected against the plane of the sky, is
given by v and Ur denotes the angle between the reference source and the Sun. More
details can be obtained from Will (2006). This short introduction describes the basics
for the determination of the varying relative angular separation as would be deter-
mined using VLBI, when the line-of-sight of a radio source is close to the Sun,
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d�R�; dr � d

and v is varying with time. Of course the Sun could be replaced by a large planet such
as Jupiter (see for instance Schuh et al. 1988; Fomalont and Kopeikin 2003) and the
radio source could be a transmitter on board an interplanetary probe. The literature
abounds with comparisons between the results of different (e.g. radar determined)
techniques but here we focus on VLBI (cf. Pitjeva 2005; Turyshev 2009).

Constant instrumental and data analysis upgrades throughout the development
of the VLBI technique have delivered a continuous increase in the accuracy of the
evaluations of PPN parameter c: This continuous improvement is illustrated in
Fig. 2.2, which is based on the table of c estimates spanning the period 1972–2009
as provided by Heinkelmann and Schuh (2009). Figure 2.2 contains the standard
error of the various c estimates, reflecting the accuracy of the parameter evaluation.
An exponential fit constrained to the first and last estimate provides a value of
± 2.5 9 10-5, when using the fitted function to predict towards 2020. If this
predicted accuracy level is achieved by VLBI, perhaps supported by the devel-
opments around VLBI2010 in the GGOS framework, it would be comparable to the
accuracy (currently the best) of the estimate of c (±2.3 9 10-5) achieved during
the microwave tracking of the Cassini spacecraft on its approach to Saturn (Bertotti
et al. 2003). Evaluations represented in Fig. 2.2 are contained in Table 2.2.

The gravitational signal retardation (Shapiro effect) is described by

sgrav ¼ 1þ cð Þ � GM

c3
� ln

~X1

�� ��þ~X1 �~k
~X2

�� ��þ~X2 �~k

" #
; ð2:90Þ

where ~Xi is the position vector of the individual VLBI antennas relative to the
centre of the gravitating body and the unit vector towards the radio source as

viewed from the Earth-bound baseline is denoted by ~k: Following Heinkelmann
and Schuh (2009), the partial derivative of the delay relative to c can be written as

os
oc
¼ GM

c3
� ln

~X1

�� ��þ~X1 �~k
~X2

�� ��þ~X2 �~k

" #
; ð2:91Þ

which will be required for the estimation of c utilising the Shapiro delay in a least-
squares process. A typical value for the Shapiro delay due to the gravitational field
of the Earth (see Table 2.1) for a baseline of 6000 km, is about 21 ps (Klioner
1991). The Shapiro time delay that results from the Sun for the same baseline
length can vary from 17 9 104 ps for an electromagnetic ray grazing the Sun’s
limb to about 17 ps when the rays are incident at about 90� from the Sun. Models
for the gravitational delay are continuously improved (cf. Klioner and Kopeikin
1992; Kopeikin and Schäfer 1999). An additional delay, which is caused by the
effect due to the finite speed of the propagation of gravity, may have to be included
(Kopeikin 2001). This delay could be at the level of several ps; however, recent
refinements and the formulation of higher level models (utilising these refine-
ments) have not completely been incorporated into the standard IERS formulation.
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5 Concluding Remarks

It is very rewarding to see, throughout the development of the Space Geodetic
techniques, how theory, experiment, human innovation and the constant drive
towards better science and higher accuracies have meshed to form global networks
of instruments and people. Applications of space geodesy extend from outer space
to the core of the Earth; they utilise and are capable of testing and evaluating GRT.

Future improvements, within the framework of GGOS, will provide improved
accuracies and a better understanding of the space and world in which we live.
General relativity will continue to be tested by scientific experiments in which
space geodesy has its own specific role to play, providing certainty on the levels to
which GRT can reliably be used; eventually, however, experiments will lead to a
post-GRT theory. Exciting scientific projects based on space geodesy are on the
horizon which will play a role in the evaluation of GRT. These include
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Fig. 2.2 Standard errors associated with geodetic VLBI evaluations of PPN parameter c:
Continuous improvement is due to instrumentation, software and model development as well as
longer time series of data

Table 2.2 Standard errors associated with geodetic VLBI evaluations of PPN parameter c

Authors Standard error

Counselman et al. (1974) ±0.06
Fomalont and Sramek (1975) ±0.022
Fomalont and Sramek (1976) ±0.018
Robertson and Carter (1984) ±0.005
Carter et al. (1985 ±0.003
Robertson et al. (1991) ±0.002
Lebach et al. (1995) ±0.0017
Eubanks et al. (1997) ±0.00031
Shapiro et al. (2004) ±0.00021
Lambert and Le Poncin-Lafitte (2009) ±0.000152
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densification and upgrade of the existing International Laser Ranging Service
Network (ILRS) SLR network, the development of VLBI2010, ILR and expansion
of the LLR network to the southern hemisphere with the development of an LLR
system at HartRAO, South Africa.
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Chapter 3
Global Terrestrial Reference Systems
and Their Realizations

Detlef Angermann, Manuela Seitz and Hermann Drewes

1 Introduction

Geodetic reference systems are fundamental requisites for accurate and reliable
geodetic results. Unambiguous reference systems are needed to refer the geodetic
observations and estimated parameters to a unique global basis. Highly accurate,
consistent and reliable realizations of the terrestrial reference systems are required
for measuring and mapping the Earth’s surface and its variations in time. These
terrestrial reference frames are the basis for many practical applications, such as
national and regional geodetic networks, engineering, precise navigation,
geo-information systems, etc. as well as for scientific investigations in the Earth’s
system (e.g., tectonic plate motion, sea level change, seasonal and secular loading
signals, atmosphere dynamics and Earth orientation excitation).

Historically, the establishment of global reference systems was first addressed
in the late 1960s when space geodesy observations became available with the
advent of artificial satellites. A decade later, the space technique of very long
baseline interferometry (VLBI) was able to provide a direct link to extragalactical
radio sources. While in the early days the measurement accuracy and its resolution
was comparatively poor, today’s space geodetic observation techniques have made
enormous progress in precision and reliability. Today, space geodetic observation
techniques allow one to determine geodetic parameters (e.g., station positions,
Earth rotation) with a precision of a few millimetres (or even better). However,
to exploit fully the potential of the space geodetic observations for investigations
of various global and regional, short-term, seasonal and secular phenomena in the
Earth’s system, the reference frames must be realized with the highest accuracy,
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spatial and temporal consistency and stability over decades. This is a prerequisite
for the monitoring of physical processes of global change.

One of the difficulties for the definition and realization of global reference
systems, however, is that the Earth itself is not a rigid body. With its atmosphere,
oceans, ice cover, land surfaces, its interior and forces from external bodies, the
Earth is a restless planet, which is subject to a large variety of dynamic processes.
This makes the data analysis, modelling and interpretation of results more
complicated and requires extreme efforts and care. On the other hand, observations
and studies of the Earth system can only be improved if the underlying reference
systems are realized with adequate quality.

The importance of reference systems and frames has long been recognised by
many national and international organizations investing resources in the estab-
lishment and maintenance of reference frames. On the international level, the
‘‘Global Geodetic Observing System’’ (GGOS, Rothacher 2000), now a full
component of the International Association of Geodesy (IAG), is the geodetic
contribution to a comprehensive global observing system as it is presently set up
by the ‘‘Group on Earth Observation’’ (GEO) in the form of the ‘‘Global Earth
Observing System of Systems’’ (GEOSS) (Plag and Pearlman 2009). A key task
and major goal of GGOS is the development of an observing system capable of
measuring the Earth’s variable shape, gravity field and rotation with an accuracy
and consistency at the 1 mm level with high temporal and spatial resolution. As
the linking element between these three pillars (see Fig. 3.1), the reference frames
have to be established with the accuracy level specified by the GGOS require-
ments. The goal is to achieve a consistency and accuracy at the mm-level with a
stability of 0.1 mm/year.

One prominent example for global change is the monitoring of global sea level
rise, which is also an important driving factor for the accuracy requirements of
geodetic reference frames. For almost 20 years satellite altimetry has provided
accurate measurements for the determination of the current rate of sea level rise. The
results of the computations performed at DGFI are shown in Fig. 3.2 (Bosch 2008).

Fig. 3.1 Central role of
reference frames (from Plag
and Pearlman 2009)
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The obtained rate of 3.4 mm/year is in good agreement with other studies and
with the results published in the ‘‘Intergovernmental Panel on Climate Change
(IPCC)’’ report (IPCC 2007). The present-day sea level change is much higher
than the estimates for the twentieth century, which show a global average sea level
rise of about 1.7 mm/year. This is probably an indication for an acceleration of this
global change phenomenon. A precise and reliable observation of the present-day
sea level change is of considerable interest because of its potential impact on
human populations living in coastal regions and on islands as well as on the wider
natural environment.

The estimated rates of global sea level rise from satellite altimetry strongly
depend on the accuracy and long-term stability of the underlying reference frames.
Any possible errors in station positions and velocities will have an impact on the
orbit positions of the altimeter satellites, which then directly affects the results
obtained for the global sea level change. A crucial factor is also the realization of
the geodetic datum of the terrestrial reference frame (i.e., the origin and scale
including their rates). Thus, a reliable monitoring of sea level change requires a
high accuracy for geodetic reference frames with a high long-term stability over
decades.

In geodesy, two fundamental reference systems, a celestial (space-fixed) and
terrestrial reference system (earth-fixed) are required for the description of motion
of astronomical bodies like the Earth, artificial satellites, or planets, as well as for
the analysis of the space geodetic observations and the representation of results. In
this chapter the focus is on global terrestrial reference systems and their realiza-
tions. After the introduction of some basic information, the authors give an
overview about the terrestrial reference system and its definition. The next part is
related to its realization, the terrestrial reference frame. In this context, the general
concept, the history and the latest developments in the field of global reference
frame realizations are addressed. Finally, the present status is discussed and
challenges for future improvements are provided.

Fig. 3.2 Sea level rise obtained from multi-mission satellite altimetry using data from 1993 until
2007 (Bosch 2008)
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2 Basic Concepts and Fundamentals

Reference coordinate systems in satellite geodesy are global and geocentric in
nature, because the satellite motion refers to the center of mass of the earth
(geocenter). In a Cartesian coordinate system with the axes x, y, z the position of a
point P is given by its position vector Xp (Fig. 3.3).

Conventionally, a terrestrial reference system is a spatial reference system
co-rotating with the Earth. The origin of such a system is located in the geocenter,
the orientation is equatorial (the z axis in the direction of the mean pole), and the
scale is defined by an SI meter. The advantage of such a definition is that positions
of points attached to the solid surface of the Earth have coordinates which undergo
only small variation with time. These variations are mainly due to geophysical
effects caused by various dynamic processes and forces from external bodies.

The International Terrestrial Reference System (ITRS) has been formally
adopted and recommended for Earth Science studies by the International Union for
Geodesy and Geophysics (IUGG) at its General Assembly in 2007 (IUGG 2007).
For a unique relation between the reference system and coordinates of points, it is
necessary to define constants, conventions, physical models and model parameters
(e.g., Earth and ocean tide models, Love numbers). The ITRS is based on the
conventions of the International Earth Rotation and Reference Systems Service
(IERS), which serve as the necessary basis for the mathematical representation of
geometric and physical quantities (Petit and Luzum 2010). Although, the
coordinates in the ITRS are fully defined, they are not necessarily accessible.

To make the ITRS available to the users, a set of accessible parameters must be
constructed to materialize the system (e.g., by a set of physical points with
precisely determined coordinates in a Cartesian coordinate system). The ITRS is
realized by a set of station coordinates and velocities for a global network at a
given epoch, which constitutes a terrestrial reference frame. Thus, reference
frames realize the reference system physically, i.e., by a solid materialisation of

Fig. 3.3 Cartesian
coordinate system
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points, and mathematically, i.e., by the determination of parameters (e.g.,
geometric coordinates). The realization of the ITRS is called the International
Terrestrial Reference Frame (ITRF).

The geodetic datum of the reference frame fixes unequivocally the relation
between a frame and a system by allocating a set of ‘‘given’’ parameters, e.g., the
coordinates of the origin of the system (x0, y0, z0), the direction of the coordinate
axes x, y, z, and the scale as a unit of length.

These concepts have been defined extensively by the astronomical and geodetic
communities (e.g., Kovalevski et al. 1989; Boucher 2001; Drewes 2009a). In
addition, some basic considerations and fundamentals related to reference systems,
reference frames and the geodetic datum are given in Drewes (2009a). There it is
pointed out that the definition of the reference system, the realization by a frame,
and the allocation of the geodetic datum have to be strictly coherent. Reference
systems, the geodetic datum, and reference frames form an order of hierarchy:

• The definition of a reference system must be completely unaffected by the
realization of the reference frame and the geodetic datum, i.e., the realization of
the system by the frame and the allocation of the datum must not change its
definition.

• The definition of the datum has to be done by methods independent of the
measurements of the reference frame, i.e., measurement errors or physical
changes altering the observations of the frame must not affect the datum.

• The mathematical realization of the reference system has to be done by algorithms
that keep the datum parameters fixed and follow strictly the principles defined by
the reference system.

3 International Terrestrial Reference System

3.1 ITRS Definition

The International Terrestrial Reference System (ITRS), realized and maintained by
the IERS, has been formally adopted and recommended for scientific and
technological applications. According to IUGG Resolution 2 (IUGG 2007), the
ITRS is a specific Geocentric Terrestrial Reference System (GTRS) for which the
orientation is operationally maintained in continuity with past international
agreements (i.e., BIH orientation).

The ITRS definition fulfils the following conditions (Petit and Luzum 2010):

• It is geocentric, the center of mass being defined for the whole Earth, including
oceans and atmosphere.

• The unit length is the meter (SI). This scale is consistent with the TCG time
coordinate for a geocentric local frame, in agreement with ‘‘International
Astronomical Union’’ (IAU) and IUGG resolutions. This is obtained by
appropriate relativistic modelling.
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• Its orientation was initially given by the Bureau International de l’Heure (BIH)
orientation of the BIH Terrestrial System (BTS) at epoch 1984.0.

• The time evolution of the orientation is ensured by using a no-net-rotation (NNR)
condition with regard to horizontal tectonic motions over the whole Earth.

The ITRS is defined as geocentric, equatorial, and metric. This means that the
coordinates given to the origin must be zero in order to refer to the geocenter:
x0 = y0 = z0 = 0. The orientation of the z axis is close to the (varying) Earth’s
rotation axis, and the x and y axes are in the equatorial plane. According to The
Metre Convention (http://www.bipm.org/en/convention/) the scale is metric. Some
aspects related to the datum definition are addressed below; more details are given
in Drewes (2009a).

3.1.1 Origin

The geocentric origin can be realized by gravimetric parameters because the
geocenter is defined as the Earth’s center of mass (M = total mass of the Earth):

x0 ¼
RRR

x dm=M

y0 ¼
RRR

y dm=M

z0 ¼
RRR

z dm=M: ð3:1Þ

The equations at (3.1) are related to the formulas below for the spherical
harmonic coefficients of the Earth’s gravity field (a = semi-major Earth axis):

C11 ¼
RRR

x dm=a M

S11 ¼
RRR

y dm=a M

C10 ¼
RRR

z dm=a M: ð3:2Þ

This means that if in satellite positioning a gravity field model with
C11 = S11 = C10 = 0 is used for the determination of the satellite orbits, a
coordinate system with the origin x0 = y0 = z0 = 0 (in the geocenter) is intro-
duced. There is no degree of freedom for these three datum parameters.
All satellite ephemerides are unequivocally and at any time estimated in the
geocentric reference system. The geocentric ephemerides are related to the station
coordinates of the terrestrial reference frame by distance measurements between
satellites and ground stations, e.g., by Satellite Laser Ranging (SLR). They are also
geocentric unless additional constraints are introduced, e.g., by fixing some
terrestrial coordinates. Such constraints shall be avoided to conserve the datum
given by the dynamics of the orbits. This holds true for all observation epochs: the
origin is always in the geocenter, thus there cannot be a motion of the origin with
respect to the geocenter or vice versa. The definition of the origin of the terrestrial
reference frame is subject of various publications (e.g., Blewitt 2003; Dong et al.
2002; Wu et al. 2012).
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3.1.2 Orientation

The orientation of the coordinate axes of the reference frame could, theoretically,
also be defined by the Earth’s gravity field, namely by the second degree and order
spherical harmonic coefficients which are related to the orientation of the principal
axis of inertia. This definition of the orientation is not used in practice because its
determination is not as precise as for the origin, and the satellite orbits are not so
sensitive w.r.t. its variations. Instead, the orientation of the ITRS is conventionally
defined to be consistent with the orientation of the BTS at epoch 1984.0.
Consistency between the sequent ITRF solutions is ensured by applying a NNR
condition, that the actual realization is not rotated w.r.t. to the previous one. Thus
the definition of the orientation is purely geometrical and arbitrary and not related
to physical Earth parameters as is the case for origin and scale. That means that the
orientation is not reproducible independently but depends on the previous ITRF
realization. This is not satisfactory as errors and uncertainties in the realization of
the orientation are propagated into the following ITRF solutions. An issue to be
solved is the time evolution of the orientation from the reference epoch to all the
other epochs. According to the ITRS definition, the time evolution is ensured by
using an NNR-condition with regard to horizontal motions over the whole Earth.
For the realization of the kinematic datum of the ITRF the geologic-geophysical
model NNR-NUVEL-1A (Argus and Gordon 1991; DeMets et al. 1994) has been
used (Altamimi et al. 2007).

3.1.3 Scale

The metric scale of the reference system is defined via the meter definition by the
speed of light in vacuum. All the space techniques contain, in principle, information
to realize the scale by fixing the speed of light. In the atmosphere, however, refraction
effects caused by the ionosphere and troposphere have to be taken into account.
As distances are determined by measurements of travel time, the electronic reference
points (phase centers) have to be localized w.r.t. the geometric (materialized)
reference points. Furthermore, it has to be investigated what other technique-specific
biases and deficiencies regarding the modelling of the individual techniques may
affect the realization of their scale. This is essential to assess the accuracy of the scale
from space geodetic techniques.

3.2 Positions and Displacements of Reference Points

The definition of a conventional model to describe the station motions on a
deformable Earth is complicated in nature. The reference points on the Earth’s
crust undergo a variety of motions: tidal displacements due to Earth’s body tides
and ocean tides (including ocean loading), polar motion, loading signals from
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atmospheric and hydrologic mass movements, tectonic motions, and other motions
from internal mass movements. Certain reference points are also affected by
volcanic effects or seismic events in the form of coseismic and postseismic
displacements.

The ITRS is realized basically by a set of terrestrial points (reference points of
tracking instruments or geodetic markers) referred to the solid Earth crust.
According to the IERS Conventions (Petit and Luzum 2010), the station positions
and displacements are described by coordinates of a reference point and constant
velocities. This set of coordinates describes the secular evolution of the polyhedron
over time. However, the application of such a linear model is not suitable for a
description of the actual station motions on the Earth’s crust, since these motions
are to a large extent nonlinear caused by various geophysical effects. This is the
reason that a so-called regularized position xR(t) is introduced by applying
conventional corrections Dxi(t) in order to get a position with regular (nearly linear)
time evolution. The general model connecting the instantaneous a priori position of
a point on the Earth’s crust at epoch t, x(t), and a regularized position xR(t) is

xðtÞ ¼ xRðtÞ þ
X

DxiðtÞ: ð3:3Þ

In the conventional linear station motion model the regularized station position
xR(t) at an epoch t is expressed as

xRðtÞ ¼ x0 þ v0 � ðt � t0Þ; ð3:4Þ

with the station position x0 at a reference epoch t0 and a constant velocity v0. The
numerical values x0 and v0 of a set of stations (reference points) constitute a
specific realization of the ITRS. For some stations, it is necessary to consider
several discrete linear segments in order to account for abrupt discontinuities in
position (for example, due to earthquakes or changes in observing equipment).

From (3.3) it becomes obvious that the ITRS definition must include also
well-defined conventions for the computation of the correction terms Dxi(t), which
are given in the IERS Conventions (Petit and Luzum 2010). In the analysis of the
space geodetic observations, these conventions shall be consistently applied by all
analysis groups for the reduction of the space geodetic observations.

The displacements of reference points due to various geophysical phenomena
and other effects is addressed in detail in Chap. 7 of the IERS Conventions 2010
(Petit and Luzum 2010). Three kinds of displacement are distinguished:

• Conventional displacements of reference points.
• Non-conventional displacements.
• Displacements of reference points of instruments.

The conventional displacements of reference markers on the crust include
deformations of the solid Earth due to the body tides arising from the direct effect
of the external tide-generating potential, displacement due to ocean tidal loading
and to diurnal and semidiurnal atmospheric pressure loading, as well as those due
to centrifugal perturbations caused by Earth rotation variations, including the pole
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tide. The displacements are described by geophysical models or gridded
convolution results derived from geophysical models.

The second category includes non-conventional displacements of reference
markers on the crust such as non-tidal motions associated with changing environ-
mental loads (e.g., from atmosphere, ocean, continental water, post-glacial rebound),
post seismic displacements, as well as other secular, episodic or seasonal variations
caused, e.g., by mass redistributions within the Earth’s system. The currently
available models to account for these effects are usually less accurate, than those of
the first category and also some deviations (up to several millimeters) between
different models still exist. Thus, it is recommended by the IERS Conventions 2010
presently not to include such models in operational solutions for the generation of
IERS products in order to get consistent results. However, the consequence of this
recommendation is that the corresponding non-tidal loading displacements and other
non-modelled effects will remain as signals in the geodetic time series results and will
affect also the ITRF. To achieve further progress in this field, it is stimulated by the
IERS that appropriate models should be made available to the user community
through the IERS Global Geophysical Fluids Centre and its Special Bureaux,
together with all necessary supporting information, implementation documentation,
and software. These models should then be used and tested for data analyses and
further studies.

The third category includes models for displacements of reference points of
instruments which are to be considered when relating different instruments
(e.g., SLR and VLBI) to each other or relating them to a physical marker. Typical
examples are antenna phase center offsets and variations as well as thermal
expansion of VLBI antennas. These effects are technique-dependent and the
conventional models for these effects are kept and updated by the IAG services for
the space techniques: the International GNSS Service (IGS) (Dow et al. 2009), the
International Laser Ranging Service (ILRS) (Pearlman et al. 2007), the International
VLBI Service for Geodesy and Astrometry (IVS) (Schlüter and Behrend 2007),
and the International DORIS Service (IDS) (Willis et al. 2010). As some of these
technique-specific effects depend on local environmental conditions, conventional
models need to be based on reference values (e.g., for local temperature). A con-
ventional model to determine the reference temperature that is recommended in
the IERS Conventions 2010 is the global pressure and temperature (GPT) model
(Böhm et al. 2007). The current version of the IERS Conventions includes also a
model for VLBI antenna thermal deformation (Nothnagel 2008) which shall be
used within the IVS, and a model for absolute phase center corrections for satellite
and receiver antennas (Schmid et al. 2007) which has been applied by the IGS
since November 2006.

Finally, a few remarks concerning the conventional approach and the
application of correction models for station displacements shall be provided: If the
station motions are represented by such a linear model as given in (3.4), in
the ideal case, all nonlinear displacements of reference positions shall be captured
by using conventional corrections Dxi(t). However, in practise this requirement
cannot be fulfilled, since it is not possible to describe the irregular (nonlinear)

3 Global Terrestrial Reference Systems 105



station motions caused by various dynamic processes in the Earth system com-
pletely by conventional models. As a consequence, deviations of the nonlinear part
of the real station motions from the conventional corrections will become visible
as residuals in the reference point coordinate time series. This means, in other
words, that the instantenous ITRF position of a reference point differs from the
actual position estimated from space geodetic observations at a specific epoch.
This can be considered as one of the limiting factors for the accuracy of present
realizations of the terrestrial reference system. This issue is subject of ongoing
discussions within the scientific community (see Sect. 6.3).

4 International Terrestrial Reference Frame

The IERS is responsible for the establishment and maintenance of the International
Terrestrial Reference Frame (ITRF), a realization of the ITRS. The definition of the
ITRS and the geophysical models to be used for its realization are specified in the
IERS conventions (Petit and Luzum 2010). The ITRF is realized by the positions at a
reference epoch and constant velocities for the IERS network stations derived from a
combination of solutions. The contributing space techniques are VLBI, Satellite and
Lunar Laser Ranging (SLR/LLR), Global Positioning System (GPS), and Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS).

Realizations of the ITRS are produced by the ITRS Centre hosted at the
Institute Géographique National (IGN) in Paris, France. Within the re-organized
IERS structure (since 2001), the ITRS Centre (formally called ITRS Terrestrial
Reference Frame Section) is supplemented by ITRS Combination Centres which
were included as additional IERS components to ensure redundancy for the ITRF
computations and to allow for a decisive validation and quality control of the
combination results. Three ITRS Combination Centres are established at Deutsches
Geodätisches Forschungsinstitut (DGFI), IGN, and National Resources Canada
(NRCan).

4.1 IERS Network

4.1.1 Definition of the IERS Network

In its first materialization which was the BTS 1984 (BTS84), the global network of
geodetic reference stations was defined through all SLR, LLR, VLBI and Doppler/
TRANSIT tracking instruments used by the various individual analysis centres
contributing to the BIH (as the predecessor of the IERS) at that time (Boucher and
Altamimi 1985). In the course of time, GPS stations from the IGS were added as
well as the sites of the DORIS tracking network. Since its inception, the network
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also included a selection of ground markers, specifically those used for mobile
equipment and those currently included in local surveys performed for monitoring
local eccentricities between instruments of co-location sites or for site stability
checks.

Each point is currently identified by the attribution of a DOMES number.
Historically, the DOMES numbering system was designed at the start of the
MERIT campaign in the early 1980s in order to give an unambiguous identifier to
all instrument reference points and markers involved in this MERIT project
(Monitoring of Earth Rotation and Intercomparison of Techniques). This infor-
mation was first published in a catalogue by the Bureau International de l’Heure
(BIH) and entitled ‘‘Directory of MERIT Sites’’, hence DOMES (MERIT/COTES
1983). Since the official start of the IERS in 1988, the TRF section of the IERS
Central Bureau continued this task for all ITRF contributing stations. Neighboring
points are clustered into a site. The current rule is that all points which could be
linked by a co-location survey (up to 30 km) should be included in a single site of
the IERS network having a single DOMES site number.

Due to the progress within the space geodetic community and the huge effort of
the technique-specific services, the IERS network was continuously expanded.
Currently, about 40 VLBI-, 30 SLR-, 60 DORIS- and more than 300 GPS stations
contribute to the IERS network (see Fig. 3.4).

Fig. 3.4 Spatial distribution of technique-specific station networks
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4.1.2 Co-Location Sites

A co-location site is defined by the fact that two or more space geodesy instruments
are occupying or have occupied simultaneously or sequentially at close locations.
Typically, the distances between the different instruments are a few hundred
meters, in some cases they are several kilometers. The connection between the
reference points of different instruments shall be very precisely surveyed in three
dimensions using classical surveys or GPS surveys. Today’s accuracy requirement
of 1 mm for these terrestrial reference vectors (geodetic local ties) is currently not
achieved in most cases. It also has to be considered that there are different situations
for the co-location sites such as simultaneous or non-simultaneous measurements
and instruments using the same or different techniques. Usually, co-located points
should belong to a unique IERS site. As an example, the Geodetic Observatory
Wettzell (Bavarian Forest, Germany) is shown in Fig. 3.5.

Both the co-location sites and the geodetic local ties represent a key element in
the ITRF computation. The ITRF relies strongly on the availability and quality of
local ties in co-location sites as well as on a sufficient number and spatial distri-
bution of these sites over the globe. Currently, there are about 90 co-location sites
(see Fig. 3.6). These sites are equipped with (at least two) instruments of the four
major observing techniques (VLBI, SLR, GPS, DORIS). Many of them are still

Fig. 3.5 Geodetic Observatory Wettzell (Germany) with co-located VLBI, SLR, and GPS
instruments. The observatory is jointly operated by the Bundesamt für Kartographie und
Geodäsie (BKG) and the Forschungseinrichtung Satellitengeodäsie (FESG), Technische Univer-
sität München. Clearly visible are the recently installed twin telescopes, the 20 m radiotelescope
and two laser ranging systems (Courtesy: A. Neidhardt, FESG)
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operating, but some others are mobile stations or stations that are not operating any
more. For the ITRF2008 combination the co-location sites are distributed as
follows: 60 sites with 2 techniques, 22 sites with 3 techniques, and 7 sites with 4
techniques. There are about ten co-location sites where no local tie information
was available and several local ties show large discrepancies ([2 cm) w.r.t. the
space geodetic estimates (e.g., Angermann et al. 2004; Krügel and Angermann
2007; Seitz et al. 2012).

It is obvious from Figs. 3.4 and 3.6 that the station networks and the co-location
sites are rather inhomogeneously distributed. In particular, in the Southern hemi-
sphere large regions with a sparse spatial distribution do exist. The majority of
co-locations are between GPS and the other space techniques; there are only a few
co-locations between VLBI and SLR. Thus, the GPS network plays a dominant role
for the integration of the different techniques, which is rather problematic for the
identification of the remaining technique-specific biases. Various local surveys
have been performed during the last few years to determine the local tie vectors at
co-location sites. The local tie vectors, which were used in the ITRF2008
combination, are available at http://itrf.ensg.ign.fr/local_surveys.php (Altamimi
et al. 2011).

It shall be recalled that, without sufficient co-location sites and highly accurate
local tie information, it is impossible to establish a unique and common reference
frame for all major space techniques. Moreover, co-location sites are crucial for
the comparison and validation of the individual space technique solutions to detect
technique-specific biases. They provide the basis to combine parameters common
to more than one technique, which strengthens the reference frame realizations.

Fig. 3.6 Global distribution of ITRF2008 co-location sites
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The station velocities of co-located techniques can be combined directly, whereas
the combination of station positions of different reference points is only possible if
the geodetic local ties are introduced as additional observations.

4.2 History of ITRS Realizations

The history of the ITRF goes back to 1984 when, for the first time, a terrestrial
reference frame (called BTS 1984 BTS84) was established (Boucher and Altamimi
1985). Three other successive BTS realizations were then generated by BIH,
ending with BTS87, before 1988, the IERS was created by IUGG and IAU.

Until now, 12 versions of the ITRF were published, starting with ITRF88 and
ending with ITRF2008, each of which superseded its predecessor (see Petit and
Luzum 2010). An updating of ITRF realizations was performed (mostly every
1–3 years); since the tracking networks of the contributing space techniques is
evolving, the period of data available increases with time, and finally the
modelling and data analysis strategies as well as the combination methods were
continuously improved in the last two decades.

The first realization was the ITRF88 followed by ITRF89 and ITRF90. These
three realizations were computed by combining mean station positions (without
station velocities) of VLBI, SLR, and LLR observing networks. At that time, it
was recommended to adopt the AM0-2 model of Minster and Jordan (1978) for the
velocities. Starting with ITRF91 and till ITRF93, combined velocity fields were
estimated. The ITRF91 orientation rate was aligned to that of the NNR-NUVEL-1
model (Argus and Gordon 1991), and ITRF92–NNR-NUVEL-1A (DeMets et al.
1994), while ITRF93 was aligned to the IERS EOP series. Since ITRF94, full
variance matrices of the individual solutions incorporated in the ITRF computa-
tions were used (Boucher et al. 1996). The ITRF96 was then aligned to ITRF94,
and the ITRF97 to the ITRF96 using 14 parameter similarity transformations
(Boucher et al. 1998, 1999). The ITRF2000 was intended to be a standard solution
for geo-referencing and Earth science applications. Therefore, in addition to
primary core stations observed by VLBI, SLR, LLR, GPS, and DORIS, the
ITRF2000 was densified by regional GPS networks in Alaska, Antartica, Asia,
Europe, North and South America, and the Pacific region (Altamini et al. 2002;
Boucher et al. 2004).

Table 3.1 summarizes the number of stations and solutions for the ten ITRF
realizations from ITRF88 till ITRF2000, compiled by the IERS Terrestrial
Reference Frame Section, IGN, France. The ITRF network has improved with time
in terms of the number of sites and co-locations as well as their distribution over
the globe. GPS solutions have been included since 1991 and DORIS since 1994.

Since the re-organization of the IERS structure in 2001, the ITRS Centre,
hosted at the Institute Geographique National (IGN), France, is supplemented by
the ITRS Combination Centres (DGFI, IGN, NRCan). All these institutions (and
also other groups) contributed to the development of refined combination
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strategies for the terrestrial reference frame computations. One focus was on the
investigation of the time evolution of the terrestrial reference frame by analyzing
time series of station positions and geophysical parameters (origin, scale) obtained
from VLBI, SLR, GPS, and DORIS solutions (Angermann et al. 2005; Meisel
et al. 2005). The time series analysis allows one to detect discontinuities
(e.g., those due to geophysical events such as earthquakes or instrumentation
changes) that can be accounted for by piecewise-linear modeling. Furthermore, the
investigation of the temporal behavior of the physical frame parameters (namely
the origin and scale) has been performed, which provides insight into the
individual space-geodetic solutions.

Based on these developments a completely refined strategy for the ITRF
computations was defined by the ITRS Centre and the ITRS Combination Centres.
This new strategy has then been applied, for the first time, to the ITRF2005
computations and was then also adopted to generate the ITRF2008. It is based on a
time series of input solutions/normal equations with station positions and Earth
orientation parameters (EOP) of the different space techniques, including the full
variance covariance matrices. This enables one to account for discontinuities in the
station positions by a piecewise linear parameterization and to detect other non-
linear station motions (e.g., seasonal variations) as well as possible systematic
effects in the time series. Furthermore, the EOP that were included in the
ITRF2005 and ITRF2008 computations provide, as common parameters to all
techniques, valuable information for the combination of the different space
techniques (the so-called inter-technique combination).

The ITRF2005 and ITRF2008 computations also benefit from the re-organized
IERS structure, since for both ITRS realizations two complete solutions were
computed by the ITRS Combination Centres at IGN and DGFI; in addition,
NRCan provided valuable input, in particular for GPS. The fact that IGN and
DGFI use their own software packages and also apply different combination

Table 3.1 Overview of the ITRF realizations compiled by the IERS terrestrial reference frame
section, IGN France, from ITRF88 until ITRF2000; see http://lareg.ensg.ign.fr/ITRF

Realizations # Stations # Solutions # Solutions

VLBI SLR GPS DORIS Total

ITRF88 120 5 6 – – 11
ITRF89 113 6 8 – – 14
ITRF90 120 4 7 – – 11
ITRF91 131 5 7 1 – 13
ITRF92 155 5 6 6 – 17
ITRF93 260 6 4 5 - 15
ITRF94 209 6 1 5 3 15
ITRF96 290 4 2 7 3 16
ITRF97 309 4 5 6 3 18
ITRF2000 477 3 9 6 ? 8* 3 21 ? 8*

Regional GPS solutions that were included in the ITRF2000 are represented by *
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strategies allows for a decisive validation of the combination results, ensures an
independent quality control, and provides the basis for an accuracy assessment of
the ITRF.

In October 2006, the ITRF2005 was released by the ITRS Centre (Altamimi
et al. 2007; Angermann et al. 2007, 2009). The ITRF2005 includes a time series of
the space geodetic observations until the end of 2005. In November 2008, the
IERS released a call for participation and solicited input data sets from the IERS
Technique Centres (IGS, ILRS, IVS, IDS) and their related analysis centers for a
new realization, the ITRF2008, to take full benefit of the latest developments.
Since ITRF2005, 3 years of additional observation data have become available,
new sites have been added to the ITRF network, possible changes in station
motions need to be detected, and new geodetic local surveys have been performed.
The models and standards for the data analysis of the different observation
techniques have been continuously improved and unified to a much higher level as
has been achieved for the ITRF2005.

In preparation for the ITRF2008, the IAG Services, together with their
respective Analysis and Combination Centres, achieved significant improvements
for the modeling and processing of the space geodetic observations. It was a
remarkable effort to enable the capabilities for a self-consistent re-processing and
per-technique combination of the VLBI, SLR, GPS, and DORIS observation time
series covering (almost) the full history of observations. The data were processed
by applying state-of-the-art models and parameterizations.

5 The Latest Realization, the ITRF2008

5.1 ITRF2008 Input Data

The input data sets for the ITRF2008 are time series of solutions or normal
equations of station positions and EOP, including the full variance covariance
matrices. The data were provided in the SINEX format by the corresponding
Services of the IAG, namely the IGS, ILRS, IVS, and IDS. Remarkable progress
has been achieved within these services regarding improved analysis strategies and
re-processing capabilities of the long-observation time series. For the first time, for
each of the contributing space-techniques, self-consistent reprocessed time series
were generated, which cover time spans of more than 10 years for GPS and
DORIS and about 25 years for SLR and VLBI. The homogeneously re-processed
time series provide a fundamental basis for improved terrestrial reference frame
computations.

The individual time series were combined per-technique by the four responsible
techniques’ combination centers, namely the NRCan for the IGS (Ferland 2010),
the Institute for Geodesy and Geoinformation (IGG) of the University Bonn,
Germany, for the IVS (Böckmann et al. 2010), the Agenzia Spaziale Italiana (ASI)
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for the ILRS (Bianco et al. 2000), and the Collecte Localisation par Satellite (CLS)
in cooperation with the Centre National d’Etudes Spatiales (CNES), France, and
NASA’s Goddard Space Flight Center (GSFC), U.S.A., for the IDS (Valette et al.
2010; Willis et al. 2010).

The time resolution of the SINEX files is weekly for the satellite observations
(GPS, SLR, DORIS) and daily (24 h session-wise) for VLBI. The VLBI data were
provided in the form of unconstrained normal equations, and the data of the
satellite techniques as solutions with loose or minimal constraints. This new type
of input data provides the opportunity to analyze the time series of station posi-
tions and datum parameters such as the origin and scale of the contributing
technique-specific networks. This enables one to account for discontinuities in the
station positions and to detect other nonlinear station motions (e.g., seasonal
variations) as well as possible systematic effects in the time series. Furthermore,
the EOP provide as parameters common to all techniques valuable information for
the combination of the different space techniques (the so-called inter-technique
combination).

Compared to the ITRF2005 submissions, in particular the following improve-
ments were achieved:

• New absolute phase center offsets and variation models for satellites and GPS
receivers were used for the reprocessing of the GPS time series (Schmid et al.
2007). Furthermore a new tropospheric model (Böhm et al. 2006a, b) has been
implemented by the IGS Analysis Centres.

• The consistently re-processed VLBI observations (back to 1980) account for the
mean pole tide correction following the IERS Conventions (Petit and Luzum
2010). The new tropospheric model was also implemented by the IVS Analysis
Centers and the thermal deformations of the VLBI antennas were modelled
(Nothnagel 2008).

• The improved SLR time series (back to 1983) take into account new range bias
values, a refined tropospheric modelling (Mendes and Pavlis 2004) as well as
other station-dependent corrections (Pavlis et al. 2010).

• For the DORIS time series (back to 1993) the IDS achieved for the first time a
self-consistent processing and per-technique combination of seven individual
analysis center solutions. Furthermore, improved models for solar radiation
pressure and for atmospheric drag estimation were implemented (Gobinddass
et al. 2009).

Table 3.2 summarizes the major characteristics of the ITRF2008 input data. All
the data files contain station positions and a set of EOP. The parameters and their
time resolution provided by the individual techniques are given in Table 3.3.

In addition to these observation time series, the ITRF2008 input data comprise
the geodetic local tie information, a key element for the integration of the different
space techniques (inter-technique combination). All the local ties used in the
ITRF2008 computation are provided in SINEX format and are available at the
webpage of the ITRS Centre at http://itrf.ign.fr/local_surveys.php (Altamimi et al.
2011). The distribution of co-location sites is shown in Fig. 3.6.
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5.2 ITRF2008 Data Analysis

The ITRS Combination Centres at IGN and DGFI applied their preferred data
analysis strategy by using their own combination software packages. The com-
bination strategy of IGN is on the solution level by simultaneously estimating
similarity transformation parameters with respect to the combined frame along
with the adjustment of station positions, velocities, and EOP (Altamimi et al. 2007,
2011). The strategy applied at DGFI is based on the normal equation level and on
the common adjustment of station positions, velocities, and EOP (Angermann
et al. 2009; Seitz et al. 2012). A comparison of the data analysis and combination
strategies of both ITRS Combination Centres is provided in Table 3.4.

Despite some differences between both strategies, the general procedure for the
ITRF2008 computation is similar, which is based on two main parts:

• The accumulation (stacking) of the time series per technique to generate tech-
nique-specific solutions/normal equations.

• The combination of the per-technique solutions/normal equations.

In the following, the data analysis strategy applied at DGFI for the computation
of the DTRF2008 is described. The computations have been performed with the
DGFI Orbit and Geodetic Parameter Estimation Software (DOGS-CS) (Gerstl
et al. 2000). Figure 3.7 gives an overview of the data flow and the data analysis
procedure. Details on the methodology and the mathematical background are
given in various publications (e.g., Angermann et al. 2004, 2007; Drewes et al.
2006; Seitz 2009; Seitz et al. 2012).

Table 3.3 Parameter included in ITRF2008 input data

Parameter GPS VLBI SLR_1 SLR_2 DORIS

Station positions w s 14d w w
Offsets of terrestrial pole d s 3d d d
Rates of terrestrial pole d s
UT1–UTC s
LOD d s 3d d
Nutation offsets s

Resolutions are: d daily, 3d three-daily, s 24h session-wise, w weekly, 14d fortnightly. SLR_1
specifies the time interval 1980 until 1993, whereas SLR_2 denotes the period from 1993 to 2009

Table 3.2 Input data sets for ITRF2008 (TC: techniques’ combination centre, NEQ:
constraint-free normal equation)

Technique Service/TC Data Time period

GPS IGS/NRCan Weekly solutions 1997–2009
VLBI IVS/IGG 24 h session NEQ 1980–2009
SLR ILRS/ASI Weekly solutions 1983–2009
DORIS IDS/CLS-CNES-GSFC Weekly solutions 1993–2009
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5.2.1 Accumulation of Time Series Per Technique

According to the combination methodology at DGFI, normal equations have to be
generated from the ITRF2008 input data sets. For VLBI, the datum-free normal
equations were used as they were provided by the IVS. In the case of SLR, normal
equations were generated from the loosely constrained solutions. For GPS and
DORIS the SINEX files were provided with minimum datum information. Since
both techniques should not contribute to define the datum of the DTRF2008
solution, seven similarity transformation parameters were set up in the weekly
normal equations. For each of the observation techniques stations with too few
observations, which do not allow for the estimation of reliable station positions
and velocities, were reduced.

Table 3.4 Comparison of the combination strategies of IGN and DGFI

IGN DGFI

Software CATREF DOGS-CS
Solution name ITRF2008 DTRF2008
Strategy Solution level Normal equation level
Time series

combination
Stacking of minimum constrained

solutions by applying 7 parameter
transformations

Accumulation of normal equations

Inter-technique
combination

Combination of per-technique
solutions by applying 14 parameter
transformations, IGN selected set
of local ties

Accumulation of per-technique
datum-free normal equations,
without similarity transformations,
DGFI selected set of local ties

Datum
Origin SLR SLR
Scale VLBI ? SLR (weighted mean) VLBI ? SLR (weighted mean)
Rotation 3 NNR cond. w.r.t. ITRF2005 3 NNR cond. w.r.t. ITRF2005

Fig. 3.7 Data flow and
combination procedure for
the DTRF2008 computation
at the ITRS Combination
Centre at DGFI
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The resulting time series of epoch normal equations were analysed to detect
nonlinear behavior in station position movement. In the first iteration, constant
velocity parameters were set up in the epoch normal equations to parameterize
linear station motions. The station positions of the weekly normal equations were
transformed to positions at the reference epoch 2005.0 of the DTRF2008 solution.
From the analysis of position time series discontinuities were identified in the
station positions. The discontinuities are parameterized by setting up new position
and velocity parameters for the corresponding stations. Most of the discontinuities
were introduced for the GPS time series, which are in many cases caused by
instrumentation changes. The VLBI and SLR time series are much less affected by
discontinuities in station positions, which is of great advantage for the long-term
stability of the reference frame. The number of discontinuities per space technique
is given in Table 3.5.

As an example for the time series analysis, Fig. 3.8 shows the residual position
time series for the GPS station Yuzhno-Sakhalin (YSSK), Russia, located in a
geodynamically very active region, the Sakhalin seismic belt. Two large earth-
quakes both with a magnitude of 8.3, at Hokkaido (25.09.2003) and at Kuril Island
(15.11.2006) caused discontinuities of about 1–2 cm in the position time series, in
particular in the north and east component. The station velocity in the north
component was changed by about 5 mm/year after the first earthquake, going back
to its nominal value after about 2 years. Two discontinuities were introduced at the
epochs of the earthquakes, and different positions and velocities were estimated for
each of the three segments.

Taking into account the results of the time series analysis, the epoch normal
equations were accumulated per technique. Technique-specific multi-year solutions
were generated by adding minimum datum conditions w.r.t. the previous terrestrial
reference frame realization, the ITRF2005. The time series analysis, the accumu-
lation of the epoch normal equations, and the generation of multi-year solutions per
technique were performed in an iterative procedure.

Based on the repeatability of the position time series, standard deviations of
mean station positions were estimated, which were then used to estimate scaling
factors for the technique-specific normal equations. This procedure was applied for
each space technique by using a suitable subset of stations with long observation
time spans. The resulting intra-technique solutions contain station positions,
velocities, and daily EOP. For stations with discontinuities, separate positions and
velocities were estimated for each segment. Statistical tests were applied to decide
whether or not the estimated velocities for two different segments can be equated.

Table 3.5 Number of
stations and discontinuities
per space technique in
DTRF2008

Technique # Stations # Discontinuities

GPS 560 372
DORIS 132 48
SLR 124 30
VLBI 107 22

116 D. Angermann et al.



5.2.2 Inter-Technique Combination

Inputs for the combination of different techniques are the accumulated normal
equations for DORIS, GPS, SLR and VLBI. The parameters include station
positions, velocities and daily EOP. The connection of the different techniques’
observations is given by local tie measurements between the instruments’ refer-
ence points at co-location sites. These co-location sites (including the local tie
vectors) are crucial elements for the inter-technique combination. They are
essential to compare the individual space geodetic solutions and to integrate them
into a common frame.

In a first step, the technique-specific solutions are compared with the local tie
vectors at co-location sites. As an example, Fig. 3.9 displays the three-dimensional
(3D) discrepancies between coordinate differences of the space geodetic solutions
and the local tie vectors for 32 VLBI-GPS co-location sites. For some sites there is
excellent agreement, but for a few others there are discrepancies of more than
2 cm. A similar result has been obtained for the comparison between GPS and
SLR solutions and the corresponding local tie vectors at 30 co-location sites. The
situation for a direct comparison between VLBI and SLR solutions is not
satisfying, since there are only nine co-location sites between these two techniques
and the observed discrepancies are mostly above 1 cm.

Fig. 3.8 Time series of station positions for GPS station yuzhno-sakhalin (YSSK), Russia
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An interpretation of the discrepancies between the terrestrial tie vectors and the
coordinates differences obtained from the space geodetic solutions is rather
difficult since various factors have to be considered. So, uncertainties in the
measurements of the local ties, systematic effects in the solutions of the space
techniques, uncertainties in the definition of the reference points of the instruments
(e.g., antenna phase center), distance and height differences between co-located
instruments (e.g., local effects, troposphere), discontinuities in station position, and
velocity differences of co-located instruments may have an impact on the results.

The fact that the number and the spatial distribution of ‘‘high quality’’
co-location sites is not optimal and that there are several sites with rather large
discrepancies between the space geodetic solutions and the local tie vectors can be
considered as one of the major limiting factors for the inter-technique combina-
tion. Thus, the selection and handling of the local tie vectors is a crucial issue
within the combination. The EOP estimates are used as a criterion to validate the
selected local ties and to stabilize the inter-technique combination as additional
‘‘global ties’’. In the ideal case (without systematic errors) the EOP estimates must
be (statistically) identical for all space techniques. The procedure, which has been
applied at DGFI for the selection and handling of local ties, is described in,
e.g., Krügel and Angermann (2007) and Seitz et al. (2012).

Other tasks of the inter-technique combination include the weighting of the
different space techniques and the equating of station velocities at co-location sites.
The relative weighting of the techniques is necessary, as their stochastic models are
affected by inadequacies in the observation modelling. The station velocities of

Fig. 3.9 3D differences between space geodetic solutions and local tie vectors for 32 VLBI and
GPS co-location sites
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co-located instruments were estimated as separate parameters. The velocities were
equated by applying conditions if the differences are statistically not significant. To
generate the final DTRF2008 solution, minimum datum conditions have to be
added to the combined normal equations, and the complete normal equation system
has to be inverted. The origin (translations and their rates) is realized by the con-
tributing SLR solutions and the scale and its time variation by SLR and VLBI. The
orientation of the DTRF2008 is realized by NNR conditions w.r.t. ITRF2005.
Altogether six condition equations are applied, three for the positions at the
reference epoch 2005.0 and three for the velocities. The conditions were applied by
using the position estimations of stable and globally distributed stations.

5.3 ITRF2008 Results

The ITRS Combination Centres at IGN and DGFI each computed a combined
inter-technique solution for ITRF2008. The exchange of information (disconti-
nuity lists, preliminary results, etc.) between both institutions contributed to the
high quality of the final ITRF2008 results. The analysis and comparison of both
solutions has shown that they are of the same high quality. There are only small
discrepancies between both solutions, although they are based on different
combination strategies and software packages.

It was decided by the ITRS Centre to release the ITRF2008 solution computed
at IGN as the official ITRF2008 (Altamimi et al. 2011). The ITRF2008 network
comprises 934 stations located at 580 sites, of which only 20% are located in the
Southern hemisphere. All ITRF2008 data files and results are available at the ITRF
web site: http://itrf.ign.fr/ITRF_solutions/2008/.

The ITRF2008 solution computed at DGFI is labeled as DTRF2008 (Seitz et al.
2012). The DGFI solution is available at the anonymous ftp server of DGFI at
ftp://www.dgfi.badw.de/pub/DTRF2008.

The ITRF2008 results comprise station positions, station velocities, coordinates
of the terrestrial pole as well as UT1-UTC and the Length of Day (LOD). The
reference epoch of the station positions is 2005.0. Due to the fact, that quite a large
number of discontinuities were introduced in the ITRF2008 computation, several
stations get various solutions. This implies that the station positions and velocities
are valid only for a certain time period, which has also been provided to the users.

Figure 3.10 shows the horizontal station velocities of the DTRF2008 solution
computed at DGFI, which are dominated by plate tectonics. The station velocities are
given in different colors for the different space-techniques. The majority of stations
are located in the Northern hemisphere with clusters in Western Europe and North
America. It shall also be noted that co-location sites may have different station
velocities for co-located instruments if their estimated velocities differ significantly.

Figure 3.11 displays the station height velocities of the DTRF2008. Whereas
for most of the stations, the height velocities are rather small (mostly below
1–2 mm/year), the stations located in Fennoscania show very nicely uplift rates in
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the order of several mm/year, which are in good agreement with postglacial
rebound models (e.g., Peltier 2004). The largest height velocity has been estimated
for a GPS station in Bogota (Columbia), which is located on a building. Since this
building is situated in a basin with soft ground it is subsiding at a rate of more than
5 cm/year. There are some other stations with rather large vertical velocities
([5 mm/year), which have to be interpreted with care, since local site effects and
possible instrumentation effects may have an impact on the results.

As an additional result of the ITRF2008 computations, time series of station
positions and datum parameters were obtained. These time series provide valuable
information for detailed investigations of the combination results.

5.4 Comparison of ITRF2008 and DTRF2008

A comparison of the ITRF2008 and DTRF2008 ensures an independent quality
control of the combination results and provides a valuable basis for an accuracy
assessment of the ITRF. In principle, the station positions and velocities of both
solutions can be compared directly without performing any transformation.
However, it has to be considered that any possible datum differences between both
solutions will directly enter into the comparison results. As a consequence it is not
possible to distinguish between differences in the datum definition and discrep-
ancies of the network geometry. Thus, the comparison of the ITRF2008 and
DTRF2008 solutions was done by performing 14 parameter similar transforma-
tions (3 translations, 3 rotations, 1 scale, and their rates). These transformations
were done separately for each space technique by using ‘‘high quality’’ and
globally distributed core stations. As a result of these comparisons, two quality
estimations were obtained for each technique-specific network: (1) the

Fig. 3.10 Horizontal station velocities of the DTRF2008 solution computed at DGFI
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transformation parameters between the ITRF2008 and DTRF2008 as a measure for
the accuracy of the datum definition (see Table 3.6) and (2) RMS differences for
station positions and velocities as a measure for the accuracy of the network
geometry (see Table 3.7) (Seitz et al. 2012).

The transformation parameters between ITRF2008 and DTRF2008 (given in
Table 3.6) quantify the accuracy of the datum definition. The results indicate an
accuracy of the datum parameters of about 5–6 mm for the positions (offsets at
epoch 2005.0) and below 1 mm/year for the rates. These values represent the
overall accuracy of the datum parameters (i.e., the squared sum of the individual
transformation parameters) and reflect the accuracy of the ITRF2008 datum. The
results indicate that clear differences exist between the different network parts. For
SLR, which defines the ITRF2008 origin, the differences between both solutions
are rather small, but the network parts of the other space-techniques show larger
variations. This result is not surprising, since the relatively sparse distribution of
co-location sites and the (partly) different selection and handling of local ties in the
IGN and DFGI solutions certainly have an impact on the combination results. It
can be concluded that the current distribution of co-location sites and the misfits
between local ties and space-geodetic solutions do not allow for a realization of the
ITRF2008 datum of better than 5 mm.

The RMS differences given in Table 3.7 reflect the agreement of the network
geometries for the different space techniques. The best agreement has been
achieved for VLBI, which can be explained by the fact that this space technique
has the longest time span of almost 30 years of observations accompanied by only
22 discontinuities in total for all the 107 VLBI stations. In the case of GPS, the

Fig. 3.11 Station height velocities of DTRF2008 solution

3 Global Terrestrial Reference Systems 121



large number of discontinuities and the shorter observation time period may be the
major reasons for the larger discrepancies. The discrepancies for the SLR and
DORIS network parts are larger compared to VLBI and GPS. They are in the range
of 2–3 mm for the positions and 0.8–1.0 mm/year for the station velocities. The
fact that the accuracy of the network geometries is better than for the datum
parameter indicates that the datum realization is more critical in the ITRF
computations. A key problem in this context is the relatively sparse distribution of
high quality co-location sites and the observed misfits between local ties and space
geodetic solutions. Progress in these fields is essential for further improvements of
ITRF accuracy.

5.5 Transformation Parameters from ITRF2008 to Past
ITRF Realizations

Table 3.8 lists the transformation parameters between ITRF2008 and their
previous realizations. The values are extracted from the IERS Conventions 2010
(Petit and Luzum 2010) where the formulas for the 14 parameter similarity
transformations are also given. It shall be noted that the transformation parameters

Table 3.6 Transformation parameters of DTRF2008 with respect to ITRF2008

Space technique Translations Rotations Scale

Tx Ty Tz Rx Ry Rz Sc

SLR
Offsets (mm) -0.1 0.0 -0.3 0.5 -1.0 1.8 -2.0
Rates (mm/year) -0.2 -0.5 0.1 0.3 0.4 0.4 0.1
VLBI
Offsets (mm) -1.8 1.3 -0.9 0.1 -1.3 5.3 2.1
Rates (mm/year) 0.4 0.4 -0.1 0.0 0.0 -0.1 -0.1
GPS
Offsets (mm) -1.1 0.1 -4.9 0.4 -1.3 0.1 -2.9
Rates (mm/year) 0.1 -0.1 0.0 0.0 0.1 0.0 0.0
DORIS
Offsets (mm) 1.3 0.1 -3.0 0.0 -2.7 -3.3 3.2
Rates (mm/year) -0.1 0.4 0.8 0.0 0.0 0.0 -0.1

The epoch of the transformations is 2005.0. Please note that the units for all transformation
parameters are (mm) and (mm/year)

Table 3.7 RMS differences for station positions and velocities of DTRF2008 w.r.t. ITRF2008

VLBI SLR GPS DORIS

Positions (mm) 0.38 2.02 1.33 3.22
Velocities (mm/year) 0.09 0.82 0.19 0.98

The epoch of the transformations is 2005.0
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are adjusted values which depend on the weighting as well as on the number and
distribution of the sites common to these frames. Therefore, using different subsets
of common stations between two ITRF realizations to estimate transformation
parameters would not necessarily yield values consistent with those displayed in
Table 3.8. However, if reasonable station distributions are used for the transfor-
mations, the estimated parameters will only be changed slightly and the general
outcome will not be affected.

The time series of the scale and translation parameters (in particular for the
z-component) show a clear trend over time which may indicate some systematic
effects in the series of ITRF realizations. This can be explained reasonably well by
transferring imperfect modeled common network movements to the datum
parameters (Drewes 2009a), which may enter into the transformation parameters
between networks. The observed drifts between different ITRF realizations
indicate that the datum definition is not stable over time.

In fact, the long-term stability of the terrestrial reference frame does not
satisfy the accuracy requirements that have been specified for the Global
Geodetic Observation System (GGOS). A prominent example for the monitoring

Table 3.8 Transformation parameters from ITRF2008 to past ITRF realizations

Translations (mm) Scale (ppb) Rotations (mas)

Tx Ty Tz Sc Rx Ry Rz

ITRF2005 -2.0 -0.9 -4.7 0.94 0.00 0.00 0.00
Rates 0.3 0.0 0.0 0.00 0.00 0.00 0.00
ITRF2000 -1.9 -1.7 -10.5 1.34 0.00 0.00 0.00
Rates 0.1 0.1 -1.8 0.08 0.00 0.00 0.00
ITRF97 4.8 2.6 -33.2 2.92 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
ITRF96 4.8 2.6 -33.2 2.92 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
ITRF94 4.8 2.6 -33.2 2.92 0.00 0.00 0.06
Rates 0.1 -0.5 3.2 0.09 0.00 0.00 0.02
ITRF93 -24.0 2.4 -38.6 3.41 0.00 -1.48 -0.30
Rates -2.8 -0.1 -2.4 0.09 0.00 -0.19 -0.07
ITRF92 12.8 4.6 -41.2 2.21 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
ITRF91 24.8 18.6 -47.2 3.61 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
ITRF90 22.8 14.6 -63.2 3.91 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
ITRF89 27.9 38.6 -101.2 7.31 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
ITRF88 22.8 2.6 -125.2 10.41 0.00 0.00 0.06
Rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ppb refers to parts per billion (10-9 ) and mas is the standard abbreviation for milliarcseconds.
The units for rates are per year. The epoch for all transformations is 2000. 0
Source IERS conventions 2010
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of global change is the sea-level rise, which is in the order of 3 mm/year. For a
reliable estimation of this rather small quantity the accuracy should be signifi-
cantly better (i.e., by an order of magnitude). This means for the scale realiza-
tion, which is directly correlated with station heights, that an accuracy of about
0.3 mm/year is required, which is equivalent to 0.5 ppb/year. The scale differ-
ences between the ITRF realizations indicate that this accuracy has not been
achieved yet.

6 Discussion and Challenges for the Future

During the last two or three decades since space geodetic observations became
available remarkable progress has been achieved in the field of global terrestrial
reference frame computations. The establishment of the IAG Services for the
space-techniques GPS, SLR, VLBI and DORIS and the tremendous effort of the
participating organizations and institutions in their functions as station operators,
data, analysis and combination centres contributes significantly to this success.
The high accuracy level of today’s space geodetic observations, the improve-
ments of the station networks and the refinements of the modelling and data
analysis procedures are a key pre-requisite for the high quality of the input data
sets that were available for the latest realizations of the terrestrial reference
frames.

Furthermore, the combination methodologies for the reference frame computa-
tions have also been significantly improved during the history of ITRF realizations.
Starting with the combination of station positions (only) for the ITRF88, ITRF89 and
ITRF90, the methodologies have been continuously improved. The current proce-
dure is based on the time series combination of station positions and EOP based on
self-consistently processed time series of VLBI, SLR, GPS and DORIS observations.
Within the re-organized structure of the IERS, the ITRS Centre is supplemented by
the ITRS Combination Centres. The fact, that IGN and DGFI computed each two
fully combined solutions for the ITRF2005 and ITRF2008 provided a fundamental
basis for the analysis of the terrestrial reference frame results and for a ‘‘quasi-
independent’’ accuracy evaluation.

Although remarkable progress has been achieved in the fields mentioned above,
there are still some limiting factors for the accuracy of terrestrial reference frame
realizations and challenges for future improvements. The following issues are
discussed in this section:

• IERS Network, co-location sites and local tie vectors (Sect. 6.1).
• Input data for the ITRF computations (Sect. 6.2).
• Nonlinear station motions (Sect. 6.3).
• Effect of large earthquakes (Sect. 6.4).
• Combination methodology and datum definition (Sect. 6.5).
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6.1 IERS Network, Co-Location Sites and Local Tie Vectors

One major limiting factor for the integration of the different space geodetic
techniques, the inter-technique combination, is the rather inhomogeneous distri-
bution of stations and the sparse distribution of ‘‘high quality’’ co-location sites.
Table 3.9 gives an overview about the present status in this field.

The results clearly indicate that the discrepancies between the space geodetic
solutions and the local tie vectors are too large (i.e.,[1 cm) for many co-location
sites. For about half of the co-locations, the discrepancies are above 1 cm. As
already mentioned the interpretation of the discrepancies is difficult since various
influence factors have to be considered. However, this topic is a key issue to
improve the quality of the terrestrial reference frames and thus it shall be the
subject of further investigations.

It is obvious that the long-term maintenance of co-location sites, their distri-
bution, and the quality of the local tie measurements need to be improved. GGOS
shall provide the frame to reinforce the international cooperation on co-location
sites for long-term stability of the global reference frame. The goal specified in the
GGOS2020 document (Plag and Pearlman 2009) is that a core network with about
40 globally well-distributed core stations shall be established. These stations shall
co-locate the major geodetic observation techniques and a variety of additional
sensors. In addition to the ‘‘classical’’ co-location on Earth, a challenge for the
future would be the co-location of sensors in space.

6.2 Input Data for the ITRF Computations

The IAG Services, together with their respective Analysis and Combination
Centers have achieved significant improvements for the modelling and processing
of the space geodetic observations during the last years. However, there are still
some deficiencies, e.g.:

Table 3.9 Three-dimensional differences (mm) between space geodetic solutions (DTRF2008)
and local tie vectors

Co-locations # Sites \5 mm 5–10 mm 10–20 mm [20 mm

GPS–VLBI 32 7 11 11 3
GPS–SLR 29 4 13 9 3
GPS–DORIS 40 2 12 16 10
VLBI–SLR 9 1 2 4 2
Total 110 14 38 40 18

Note that only those co-locations are considered which have a reasonable long time series (i.e.,
[2 years) of space geodetic observations
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• Most of the analysis centers have adopted and implemented the standards and
models according to the most recent set of conventions, but most likely there are
still some inconsistencies (e.g., different troposphere models, usage of different
Earth’s gravity field models, etc.). The adoption of exactly the same standards
for the modelling and parameterization by all analysis centres is crucial to obtain
really consistent results.

• Although capabilities for a self-consistent reprocessing of time series of station
positions and EOP have been achieved, this is still a time consuming business
(in particular for the large amount of GPS data) and a major limiting factor for a
more frequent computation of subsequent ITRS realizations.

• Another issue is that most of the input data are provided as solutions with loose
or minimum constraints which have to be removed from the input data. Even
loose constraints may affect the combination results if they are applied manifold.
The necessary inversion of the solutions may cause loss of precision by
numerical effects (Drewes and Angermann 2003; Gerstl 2003). The IVS
provided constraint-free normal equations for the ITRF2005/ITRF2008. DGFI
also recommends the other services to provide such input data.

• Discontinuity tables for station positions need to be refined and must be fully
consistent between techniques (e.g., for co-location sites affected by earthquakes)
which has not yet been achieved. Discontinuities caused by instrumentation
changes shall be avoided to the highest possible extent and of course they need to
be recorded properly. It shall be kept in mind, that a large number of disconti-
nuities weaken the long-term stability of the reference frame.

6.3 Nonlinear Station Motions

The combination of time series of station positions and EOP as carried out for the
ITRF2005 and ITRF2008 computations provides valuable results to identify
nonlinear effects in station motions. For many stations seasonal variations are
visible, especially in the height component (see Fig. 3.12 as an example). This
illustrates a shortcoming of the current ITRF approach, since the ITRF2008 station
coordinates obtained with the linear model do not represent the ‘‘real’’ station
positions. The differences between the actual position at a certain epoch and the

Fig. 3.12 Seasonal height variation for GPS station Irkutsk (IRKT), Siberia
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ITRF2008 coordinates can reach the level of up to 2 cm. As a consequence, the
transformation of epoch solutions (e.g., campaign-style results) to the ITRF2008 is
affected by these seasonal positions variations and this will lead to errors in the
realized datum. The seasonal variations will also affect the velocity estimations, in
particular for stations with relatively short observation time spans (i.e.,\2 years).
Thus, the current handling of nonlinear station motions is a major limiting factor
for the accuracy of the terrestrial reference frame.

For an interpretation of the observed seasonal variations we recall the ITRS
definition, which describes the station motions by a linear model for regularized
positions xR(t) taking into account the conventional corrections Dxi(t) [see (3.3) and
(3.4)]. As a consequence, any geophysical effects that are not considered in the
conventional corrections will become visible as residuals in the position time series.
Thus, the shape of the ‘‘residual’’ nonlinear station motions strongly depends on the
models which are used for the reduction of the original observations. Part of the
seasonal variations will disappear if, for example, atmospheric loading corrections
are applied. As recommended in the IERS Conventions 2010, it was specified for
the ITRF2008 input data, that all services shall not apply non-tidal loading
corrections (e.g., atmospheric and hydrological loading). Thus, all these non-tidal
loading effects on station positions are visible in the residual time series. The station
height time series were compared with geophysical model results and it was found
that a large part of the observed annual signals can be explained by non-tidal
atmospheric and hydrologic loading variations (Seitz and Krügel 2009). However,
as already mentioned in Sect. 3.2, the application of such geophysical models in
operational processing is critical, and thus this issue is the subject of further studies.
Another possibility is to extend the current linear model for the parameterization of
station motions and to represent the seasonal variations mathematically by annual
and semi-annual functions. However, the computation of a mean (averaged) annual
motion is problematic, in particular if the seasonal variations are different over the
observation time span. Furthermore, the additional parameters will affect the sta-
bility of the solutions, which is a particular problem for stations with relative short
observation time spans. Thus, an appropriate handling of seasonal variations in
station positions is a challenge for future ITRS realizations.

6.4 Effect of Large Earthquakes

The realizations of the ITRS consist of a set of site coordinates and velocities,
i.e., a linear representation of site locations. It is known, however, that such a
reference frame can be destroyed by a large earthquake within minutes over a very
large region of the globe. Figure 3.13 shows the station displacements caused by
the earthquake (M = 8.8) which occurred on 27 February 2010 in Chile.

The station CONZ (Conceptión, Chile) was affected by a coseismic displacement
of more than 3 m in a SW direction. More than 20 stations of the SIRGAS reference
frame (Sànchez and Brunini 2009; Sànchez et al. 2012) were displaced by more than
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1.5 cm. Among them are also stations on the eastern site of the South American
continent, at a distance of much more than 1,000 km from the epicentre. The
stations are not only affected by a coseismic displacement—the station motions also
differ significantly from the long-term velocities. Thus, it is evident, that after such a
large earthquake, the ITRF coordinates and velocities of sites in a large region
around the epicentre cannot be used as reference sites any longer. It is, therefore, an
important goal to develop the necessary strategies and methods for providing
terrestrial reference frame results much more frequently (e.g., as weekly or monthly
epoch solutions) in addition to the ‘‘classical’’ multi-year reference frames.

6.5 Combination Methodology and Datum Definition

During the last few years remarkable progress has been achieved regarding the
development of refined combination methods for the terrestrial reference frames,
but further improvements are necessary to ensure that the results are fully

Fig. 3.13 Station displacements caused by the large (M = 8.8) earthquake on 27 February 2010
in Chile (Sànchez et al. 2012)
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consistent and to make optimal use of the strengths of the individual space
techniques. Below several issues are addressed:

• Refined combination methods have to be developed to take into account the
observed nonlinear station motions. As mentioned in Sect. 6.4 different possi-
bilities for the handling of these nonlinear effects do exist in principle. However,
the ‘‘optimal’’ strategy is not yet defined, and thus further studies are necessary
in this field.

• Another important topic is the integration of the different space techniques. The
current situation regarding the spatial distribution of co-location sites and the
observed discrepancies between space geodetic solutions and geodetic local
vectors is not satisfactory. Progress in this field is essential to achieve further
improvements for the accuracy and consistency of the terrestrial reference frame
results.

• Earlier it was shown, that after large earthquakes, the ITRF coordinates and
velocities of the ‘‘classical’’ multi-year reference frames cannot be used in large
regions. Therefore, there is a need to develop new methods for the combination
of the different space techniques on an epoch basis (e.g., weekly or monthly).

• According to the ITRS definition, the origin of the terrestrial reference system shall
be fixed in the geocenter, and coordinate changes caused by the station movements
must go to the individual station coordinates and not into the datum. This is not
ensured for the ITRF, since all common motions of the stations of the reference
network are transformed into the similarity parameters (translation, orientation,
expansion factor), and, thus violate the definition of the reference system.

• In current realizations of the terrestrial reference system, the orientation is aligned
to that of the previous ITRF, and its rate is aligned, conventionally, to that of the
geological model NNR-NUVEL-1A (e.g., DeMets et al. 1994). This geophysical
model does not fulfil the NNR-condition of the ITRS definition because (1) it
contains only 14 rigid plates (deformation zones are not included) and (2) the
model reflects plate motions averaged over millions of years. Significant devia-
tions from present-day motions are observed (e.g., Angermann et al. 1999;
Altamimi et al. 2003). Thus, the kinematic datum shall be given by a present-day
crustal motion and deformation model (e.g., APKIM2005; see Drewes 2009b).
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Chapter 4
Photogrammetry

Paula Redweik

1 Introduction

1.1 Definition and Short History

The term Photogrammetry, meaning at its origin measuring on photographs, has been
defined as the science and technique of interpreting and evaluating the form,
dimension and position of objects by analyzing and measuring images of them. The
result of photogrammetric procedures is a precise three-dimensional geometric
reconstruction of the object that can be orthogonally projected onto a plane (normally
horizontally or vertically) at a certain scale or visualized in a perspective static or
dynamic representation in a computer monitor for further evaluation. Due to the fact
that the measuring does not occur directly on the object, photogrammetry is
considered a remote sensing technique. Historically, this last term appeared about
90 years after Meydenbauer had invented in 1867 the German word Photogram-
metrie to name his method of measuring on photographs for architectural surveys
(Grimm 2007).

Although the frontier between photogrammetry and remote sensing became
more and more permeable, there is a general tendency of applying the first term to
the methods involving photographs while the second is reserved for those dealing
with images from the Earth surface captured by artificial satellites, including non
visible radiation sensors.

Two branches with partial independent development can be considered in
photogrammetry: terrestrial and aerial including space. Terrestrial photogrammetry
includes all the projects in which the camera has somehow a physical contact with
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the Earth surface, while aerial photogrammetry deals with photographs taken by
cameras on aerial platforms (airplanes, helicopters, unmanned aerial vehicles
(UAV), balloons, kites, space shuttles, orbital stations or even early satellites).

According to Konecny (2002) the history of photogrammetry can be divided
into four relevant phases, successive in time, having nevertheless co-existed during
one or two decades in the transition:

• From 1850 to 1900: plane table photogrammetry. Elevations or plans of the
object are compiled through graphical methods applied to measurements of
angles and directions in convergent photos.

• From 1901 onwards: analogical photogrammetry. Stereoscopy is used in optical
and mechanical stereoplotters to reconstruct the object from stereo pairs.

• From 1953 onwards: analytical photogrammetry. Mathematical models are used
to translate the geometric relations between photos and object.

• From 1972 onwards: digital photogrammetry. The process is carried out on
digital photographs allowing application of the mathematical models from
analytical photogrammetry together with digital image processing operators.

Origins of photogrammetry might be located at the time of the Italian
Renaissance (fifteenth and sixteenth centuries), as painters first used geometric
rules, based on the observation of the surrounding world, in order to represent
three-dimensional scenes in a two-dimensional plane surface (wall or canvas),
producing a depth sensation in the observer. Those were the rules of linear per-
spective, probably invented in 1420 by the Italian architect Brunnelleschi and
applied by several other painters such as Piero de la Francesca, Leonardo da Vinci
and Albrecht Dürer.

The objective of photogrammetry is somehow to perform the reverse operation.
A photograph is already a perspective representation of a scene in a 2D plane
surface. From two (or more) different perspectives of the same scene it is possible
to reconstruct geometrically a spatial scene (3D).

Pioneers of this technique were the French colonel Aimé Laussedat and the
already mentioned German engineer Albrecht Meydenbauer. While the former
compiled maps from photos obtained by a camera in a kite or in other high situated
platforms (hill tops and roofs), the latter used photogrammetry for architectural
surveys and later also for topographic plans. Worth mentioning is the, to a large
extent still existing, archive of metric photographs that Meydenbauer founded in
1885 containing high quality metric images of several monuments in Germany and
in the near east. Glass plates obtained with Meydenbauer’s self built metric
cameras, presenting unusual original dimensions up to 40 9 40 cm2, are still part
of the archive (Albertz 2008).

Several inventions in the late nineteenth and beginning of the twentieth centu-
ries represented technical milestones for photogrammetry: the floating mark (1892
by F. Stolze) for 3D measuring in stereoscopic models, the stereocomparator (1901
by C. Pulfrich), the stereoautograph (1908 by E. von Orel) and the double projector
(1917 by M. Gasser) were the foundation for countless plotting instruments
developed in the twentieth century, turning photogrammetry into a productive
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science and technique. The last mentioned was the first photogrammetric
instrument to be designed for vertical photography. As an ideal platform for the
photographic camera in the acquisition of near vertical photos, the invention of the
airplane by the Wright brothers in 1903 was quickly adopted for cartography after
less successful trials on platforms that included balloons, kites and even pigeons.
The invention of the serial-photo aerial camera (1915 by O. Messter) allowed aerial
photo coverage for systematic mapping. In the 1930s aerial stereo photogrammetry
became the principal method for map production.

The invention of the electronic computer (1941 by K. Zuse) and its rapid
development permitted the implementation of analytical solutions that had been
proposed for a long time principally by S. Finsterwalder, T. von Scheimpflug and
O. von Gruber. Their complexity had inhibited its adoption until then. Algorithms
for orientation and triangulation have been improved and the most precise
photogrammetric instruments ever made were developed: analytical plotters.
Analytic calibration of terrestrial cameras as well as solutions using series of
convergent photos in terrestrial photogrammetry were implemented, enlarging the
scope of applications and increasing the popularity of photogrammetry in other
fields of application.

The step to the digital era was a short one with great consequences. The success
of digital image processing techniques, developed to be first applied to satellite
Earth images (first computer readable Earth images sent in 1972 by Landsat-1),
and its automation potential attracted photogrammetry researchers. In the 1980s
film aerial photographs began to be scanned so that the same digital processing
methods could be applied. Since photos could be handled in a digital format, the
necessity for mechanical and optical components for photogrammetric instruments
no longer existed. Except for a scanner, necessary for the analog–digital trans-
formation of the photos, a computer was all that was needed to perform photo-
grammetric operations. These included not only stereo plotting but also
orthorectification. Software packages based on the programs already applied in
analytical plotters soon included both options. This development turned out to be
very revolutionary from an economic point of view. Producers of scanners and
scanning services were quick in coming. Traditional producers of photogram-
metric instruments (stereoplotters and orthorectifiers) saw the competition increase
from plain software producers. Small size companies emerged, no longer needing
a great investment in expensive instruments to participate in projects. Traditional
photogrammetry producers lost their monopoly in the market.

The digital photogrammetric process could now be partially automated, shifting
the emphasis from the acquisition to the quality control. Since 2000, when the first
digital aerial cameras were presented to the photogrammetric community at the
Amsterdam Congress of the International Society for Photogrammetry and Remote
Sensing (ISPRS), aerial photos can be acquired directly in digital format. It
became possible to acquire simultaneously in one flight panchromatic, colour and
near-infrared photos. There was no need to scan the photos any more. There was
also no longer a need for photographic laboratories. Digital format prevailed from
image acquisition to the end products.
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1.2 Applications and Limitations

The scope of applications for photogrammetry is large, the principal fields being
the following:

• Mapping and acquisition of geoinformation
• Documentation
• Monument preservation and architecture
• Aerial, terrestrial and underwater archaeology
• Monitoring earth surface and building deformations
• Civil engineering studies
• Automobile, aeronautical and nautical industries
• Dental, orthopaedic medicine and biomechanics
• Forensic applications

From all fields, mapping and geoinformation acquisition is the most important
application in terms of work volume. In fact, since the 1930s either new topo-
graphic maps or updates of existing maps are executed by means of photogram-
metry. Typical scales produced reach from 1:1,000 to 1:25,000. Greater map scales
are mostly required only for limited areas being surveyed by topographic methods.
Smaller scales can be produced by means of cartographic generalization.

Several facets of monument preservation activity take advantage of photo-
grammetric techniques: from the photographic archive of architecturally or his-
torically important buildings, of façades along a street or even of a whole town
district, to the individual survey of a monument for restoration.

Archaeologists use photogrammetry not only for detecting sites from the air but
also for mapping and documenting different stages of diggings and to survey
underwater sites.

For deformation detection and evaluation on the Earth surface (due to mining
activities or underground works) as well as on buildings photogrammetric mon-
itoring has the advantage of delivering not only geometric but also pictorial
information of the object in each of the observation epochs. This can be of interest
for the interpretation of results.

Photogrammetry can also be applied to studies of civil engineering, for instance
in laboratory tests of dam and bridge prototypes and for real dam monitoring
(in conjunction with laser scanning).

Industry as well as medicine turns to photogrammetry due to the fact that it is a
non invasive technique. Automobile, aeronautical and nautical industries apply it
in the monitoring of articulated robots and in the quality control of products.
In crash tests photogrammetry is also applied in order to evaluate deformations in
particular parts of the tested car.

Forensic applications involve documentation and evaluation of traffic accidents
and crime scenes, identification of intruders by means of surveillance video
cameras and association of a crime weapon to the injuries or damages caused.

136 P. Redweik



Comparing with other methods for measuring and evaluating objects,
photogrammetry offers several advantages such as:

• Relative short on-site work that includes the time of image acquisition (in the case
where they are not acquired by fixed (video) cameras) and the time for an eventual
ground control acquisition. The principal part of the work is done at the office.

• The prime material, the photographic image, is a dense register of information
of the object.

• Once the image is acquired, the information can be recovered any time (a day, a
month, a year, 50 years, a century after) as long as the image is preserved.

• Moving phenomena can be evaluated.
• It is a non invasive technique.
• It allows one to acquire information about unreachable objects, due either to

distance or to a dangerous environment.

Nevertheless some limitations are also present in this technique. In fact, only
what can be seen on the photograph can also be evaluated. A proper measurement
of an object can be inhibited by deep shadows or occlusion by neighbouring
objects.

The majority of terrestrial photogrammetry projects are close-range applica-
tions with objectives other than mapping. Refer to Luhmann et al. (2006) for
consolidation of this matter. The following sections will be focused on aerial
photogrammetry as a technique to produce geoinformation.

2 Image Acquisition

2.1 Aerial Cameras

Aerial photogrammetry is based on photographs of a part of the Earth surface
taken by high precision cameras specially built to be mounted in an aerial plat-
form. Evaluation of aerial photographs can be focused on interpretation or mea-
suring/mapping. For interpretation of details, images with high geometric and
radiometric resolution are needed. These can be obtained by a camera in a vertical
or oblique axis position depending on the aim of the operation. Geometric prop-
erties of the camera and its lenses are not a priority for this type of evaluation. For
measuring, instead, a high geometric resolution and stable geometry of the camera,
as well as a near distortion free objective, are required. Radiometric resolution is
not a priority, although a higher radiometric resolution improves differentiation of
objects.

For mapping purposes, vertical aerial photos are used. Oblique aerial photos
have also been used in recent years for 3D urban modelling.

The cameras described in the next sections are metric cameras designed for
photogrammetry.
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2.1.1 Analogue Cameras

Analogue aerial cameras capture the images on film. Some of the older cameras
also used photographic glass plates as sensor. Although the production of analogue
cameras has been stopped since digital aerial cameras have been adopted by the
photogrammetric community, analogue cameras prevailed for more than 80 years
and several are still operational today.

An aerial camera is normally designed to be mounted over an aperture in the
lower fuselage of an airplane with its objective looking downwards (Fig. 4.1). For
special missions, cameras have been mounted in a space shuttle, an orbital station
and in early satellites.

The analogue camera is composed of the following principal components
(Fig. 4.2):

• A camera mount
• A lens cone
• A film magazine
• A motor
• Instruments for navigation and camera control

The camera mount is the interface to the aircraft and can be gyro-stabilized. In
its center there is a circular opening where the lens cone is inserted. On the focal
plane of the objective there is a frame containing the fiducial marks. These were
four in number in the older models of analogue cameras, located either in the
corners or in the middles of the sides. Since the 1990s the newer models showed

Fig. 4.1 Analogue cameras
inside an aircraft
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eight fiducial marks in corners and sides (RMK-TOP, RC30). Furthermore, some
models presented coded fiducial marks in order to allow their automatic detection
and identification during the later processing. The film magazine contained two
film spools and was placed over the lens cone so that a portion of the unwrapped
film could occupy the focal plane. A vacuum device ensured the film was held flat
on the focal plane during exposure. Analogue cameras had several instruments for
camera control and navigation help. Online monitoring of the course, allowing
corrections of effects caused by aircraft drift and relevant changes in ground relief,
was normally assured by an overlap controller and a navigation telescope. The
overlap controller consisted of a device mounted parallel to the camera over an
aperture through which the navigator could see the ground passing by under
the airplane. A moving chain could be seen in the field of view sliding with a
velocity according to the chosen overlap between photos along the strip. If the
ground and the chain moved asynchronously the overlap value, which controlled
the elapsed time between exposures, had to be adjusted. The navigation telescope
was also mounted parallel to the camera axis over an aperture and had a field of
view of 908. Its axis was normally looking forwards with an inclination of 40–50�

Fig. 4.2 Components of an
analogue aerial camera Zeiss
RMK-A. From bottom to top:
line 1 several camera mounts;
line 2 lens cones for different
focal length (15, 21 and
30 cm); line 3 film magazine,
overlap controller, navigation
periscopes; line 4 motor
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under the horizon. Its function was to help maintain the course along a strip. Later
models combined these two instruments into one and the integration of Global
Navigation Satellite Systems (GNSS) into the navigation allowed a more auto-
matic photo flight, based on the planned mission and on the position information of
the GNSS. A computer became an essential accessory of the aerial camera and the
navigation telescope became a control instrument (Fig. 4.3).

Since 1982, camera film magazines began to incorporate a mechanism for
Forward Motion Compensation—FMC, allowing still sharper aerial photographs
(Hobbie 2010).

The principal producers of analogue aerial cameras in Europe were the German
companies Carl Zeiss Jena and Zeiss Oberkochen (both later Zeiss-Intergraph) and
the Swiss company Wild Heerbrugg (later Leica Geosystems). More than 4,000
exemplars (2,500 Zeiss cameras and 1,600 Wild cameras) were sold for civil
applications all around the world (Hobbie 2010; Fricker et al. 2003). An even
greater number were produced for military applications, especially during World
War II. In the United States of America, the principal producer of aerial cameras
was the Fairchild Camera and Instruments Corporation. By the 1930s the Fairchild
K-17 camera used the proportions 6 inches focal length to 9 9 9 square inches
photo format. This soon became a standard for aerial mapping cameras: wide angle
objective (15 cm) and 23 9 23 cm2 format. European cameras earlier than 1956
used rather smaller formats (13 9 13 cm2, 13 9 18 cm2, 18 9 18 cm2).

2.1.2 Digital Cameras

Analogue aerial cameras, together with the aerial photographic film industry,
reached a performance level that became standard for the development of digital
cameras. The first large format digital aerial cameras that could compete with the

Fig. 4.3 Analogue aerial
camera Leica RC30 with
navigation periscope and
computer with navigation
software (Leica Geosystems)
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analogue ones for mapping purposes were presented to the photogrammetric
community at the ISPRS Congress in Amsterdam in 2000: the Z/I-Imaging DMC
and the Leica ADS. Just a few years later digital cameras had already conquered
the market. UltraCamD from Vexcel (now Microsoft) was the third camera of this
type to appear.

Medium format digital cameras also began to respond to the needs for aerial
photos for instance in association with airborne LIDAR (Leica ALS with camera
Leica RCD105 and Optech ALTM with camera DiMAC Ultralight). Medium format
system cameras are also being developed by Intergraph Z/I Imaging (RMK-D)
and Vexcel Imaging (UltraCamL).

Smaller cameras equipped with Bayer pattern have also found a market for
smaller projects (e.g. DSS Applanix, IGI DigiCam, DLR-3 K), for example traffic
monitoring, remote sensing, forestry, corridor mapping and orthoimage generation.
Nearly every year new concepts and models are being presented to the photo-
grammetric world.

Digital aerial cameras, like common digital cameras, do not need film for
keeping the images. These are captured in electronic photosensors placed in the
focal plane of an objective and are saved in an electromagnetic memory unit. The
photosensors used so far are CCD. The size limitation for feasible and economic
CCD array arrangements up to 2010 was less than the usual image format in aerial
photogrammetry. This fact drove researchers toward solutions to achieve a per-
formance comparable to the last generation of analogue aerial cameras in terms of
format and resolution. Two different concepts were adopted in this development:
the linear array sensor and the matrix sensor. Unlike analogue cameras for map-
ping purposes, digital ones were designed to capture panchromatic, colour and
near infrared images in the same flight and with the same camera. This fact
contributed significantly to the success of digital cameras.

Linear Array Sensor Cameras

The concept of the linear array sensor camera had its origin in the three line
sensors developed by Deutsches Zentrum für Luft und Raumfahrt (DLR) as
MOMS camera used in 1993 in the Spacelab and in 1996 in the Priroda Spaces-
tation, as WAOSS for the 1994 MARS Mission and as HRSC for the 1996 Mars
mission (Albertz et al. 1992). The objective of this sensor was to obtain three
different perspectives from the same trajectory, allowing automatic generation of a
digital model of the ground and the following generation of maps, height models
and orthoimages. Adapted to Earth reality, this concept led to an aerial camera
with one objective and a set of linear array sensors located in the focal plane,
occupying several parallel positions oriented transverse to the flight direction.
Basically three arrays are responsible for the panchromatic image acquisition: one
for the nadir perspective, one for the forward and one for the backward perspec-
tives. The Leica Airborne Digital Scanner is a system of this kind for cartographic
purposes as well as the Jenoptik JAS-150 and the Wehrli 3-DAS-1. The Leica
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ADS80 has a focal length of approximately 62 mm and a field of view of 64�
across track. Each sensor array has 12,000 pixels with 6.5 9 6.5 lm2 pixel
dimension. The position and quantity of sensor arrays on the focal plane can vary
according to the version and purpose of the actual camera. Each panchromatic
channel can consist of one or two lines shifted by half a pixel (staggered arrays).
Additional single arrays are responsible for the multi-spectral (MS) channels
(Red ? Green ? Blue ? Near Infra Red). The basic variant of ADS presents ten
lines with the disposition presented in Fig. 4.4 (left).

The images are acquired in a push-broom technique along the flight line. Each
array captures an image line of a determined perspective from a particular aircraft
position and attitude at a particular time.

The original scenes are built by composition of adjacent image lines. The deliv-
ered images are rectified after correction for attitude changes of the sensor. These
are recovered from position and orientation data acquired during the flight. Therefore
a high quality Inertial Measuring Unit (IMU) is integrated in the camera. There are as
many original scenes as sensor arrays, each of them having the format of a long strip.
The forward and the backward looking perspectives build different angles with the
nadir looking perspective (28.4� and 14.2�) at the projection centre (Fig. 4.5). This
allows for several stereoscopic evaluation alternatives (backw. ? forw., back-
w. ? nadir, nadir ? forw.). A tetrachroid filter (Fig. 4.6) is used for splitting the
arriving multispectral radiation from an elementary area on the ground in their red,
green, blue and near Infra Red components, allowing each of them to be captured by a
different sensor array while guaranteeing the co-registering of the different channels
(Fig. 4.7).

The photogrammetric processing of ADS images is not compatible with the
established mapping production workflow, needing extra software solutions. At the

Fig. 4.4 Some variants for line array disposition on the focal plane and line designation of the
ADS 80. Left: the basic variant (adapted from Leica Geosystems)
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beginning of the digital camera era this might have been an obstacle for the ADS
to become widespread. Meanwhile most of the photogrammetric software pro-
viders offer solutions for the processing of line scanner images.

Fig. 4.5 Angles on the projection centre between each perspective and the nadir perspective
planes of the ADS 80 (adapted from Leica Geosystems)

Fig. 4.6 Tetrachroid filter
used in the ADS camera
(Leica Geosystems)
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Matrix Sensor Cameras

The concept of the matrix sensor for an aerial camera is based on the simultaneous
light exposure of a set of CCD sensors arranged in a bidimensional matrix,
allowing the capture of an instantaneous image of an object. The ideal solution for
digital aerial cameras would be the use of a CCD matrix sensor on the focal plane
with at least the same information content as analogue aerial cameras (area
23 9 23 cm2). This solution was not achievable at the launch of large format
digital matrix cameras. In order to achieve an image area acceptable for carto-
graphic purposes, camera developers had to search for innovative solutions using
these relatively small CCD matrixes. Basically, the solutions found had already
been applied in an analogue version in the early years of photogrammetric map-
ping as a trial to increase the model area (McCurdy et al. 1944). Instead of one,
multiple cameras had to be assembled and the multiple images obtained had to be
fused in the end into a bigger one that could then be processed. Large format
digital aerial cameras are in fact several cameras each with its own objective and
shutter and one or more matrix sensors in its own focal plane. Also medium format
cameras consist of a single or several cameras. Due to their reduced image
dimensions, the use of medium format cameras for small photogrammetric
projects is only economic if they are integrated with GNSS/IMU positioning and
orientation systems. Large format matrix cameras, however, are independent from
such a system.

The next paragraphs focus on the two dominating cameras of this type: the
Digital Mapping Camera (DMC) from Intergraph Z/I Imaging and the UltraCam
from Vexcel (a Microsoft company). They have nearly totally replaced analogue
cameras in the acquisition of aerial photographs for mapping and remote sensing
purposes.

The DMC consists of a sensor module and mass memory units. The sensor
module incorporates eight cameras disposed as shown in Fig. 4.8. Each of the four
central cameras contains a 7,168 9 4,096 pixels CCD chip with 12 lm pixel
dimension and an objective with 120 mm focal length and maximum aperture f/4.
These cameras capture the high resolution sub-images for the panchromatic
channel. The four peripheral cameras are the multispectral cameras (MS). They
have a 3,072 9 2,048 pixels CCD chip with 12 lm pixel dimension and an

Fig. 4.7 A RGB composite image acquired with an ADS camera and corrected from attitude
variation (Leica Geosystems)
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objective with 25 mm focal length, maximum aperture f/4. Colour filters ensure
that each of the cameras captures a distinct portion of the electromagnetic spec-
trum (R, G, B and NIR). The MS images have less resolution than the panchro-
matic ones.

The four panchromatic cameras are assembled with their axis slightly tilted so
that the four images have a small overlap. The four MS cameras are instead
mounted in a vertical configuration. Each MS camera captures the whole area
covered by the panchromatic mosaic (Fig. 4.9). A final high resolution panchro-
matic image with 13,824 9 7,680 pixels is built from the four original panchro-
matic sub-images in a post-processing step. This includes a platform calibration
(determination of the 3D orientation of all the cameras in relation to an internal
reference system through bundle adjustment using common points in the over-
lapping areas of the four images) after consideration of the individual camera
calibration parameters (interior orientation) and a projection of the original image
pixels to a virtual plane. The resulting virtual image is a distortion free central
perspective of the object as taken from a single objective camera with 120 mm
focal length (Cramer 2004). The pixel dimension is 12 lm square and the shorter
side of the image is parallel to the flight direction. The colour and near infrared
channels are also projected onto the same virtual plane.

The technique of pan-sharpening is then applied to obtain RGB, near infrared
(NIR) and false colour infrared (CIR) images with the same geometric resolution
as the panchromatic image. Pan-sharpening consists, for example, of dividing the

Fig. 4.8 DMC: (left) sensor module and solid state disk for mass memory; (centre) sensor head
showing the eight objectives; (right) camera disposition (Intergraph)

Fig. 4.9 Areas covered by
the panchromatic mosaic
(black) and by each MS
camera (outer grey rectangle)
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pixels of the MS images to become the same pixel dimension as the panchromatic
image, transforming the pixel values of the RGB colour space to the Intensity,
Hue, Saturation (IHS) space, substituting the I value in each pixel through the
corresponding pan value and retransforming in the RGB space (Fig. 4.10).

The generation of the final virtual image is independent of navigation data
(GNSS/IMU). The frame rate of the DMC, the time needed for saving the images
after each exposure, is 2.1 s. This camera uses Time Delay and Integration (TDI)
sensors for compensating for the aircraft’s movement along the flight line during
exposure, allowing a longer exposure time. It works like an electronic FMC. Short
frame rates and TDI allow for small ground sample distances (GSD) and sharp
images even from lower altitudes.

The UltraCam large format digital camera from the Austrian company Vexcel
Imaging, a Microsoft Company since 2006, is also based on multiple cameras with
several matrix CCDs. Launched onto the market in 2003, this camera has rapidly
evolved from the first presented model UltraCamD to the latest UltraCam Xp WA.
The evolution goes through nearly all the components, involving the sizes of the
CCD matrix, of the sensors, of the virtual image and the type of objectives and
respective focal length. However, the basic concept has been maintained. Ultra-
Cam presents eight individual cameras with parallel aligned axes. Four of them,
aligned in the flying direction, capture panchromatic images and the other four are
provided with optical filters for MS image capture (Fig. 4.11). The pan cameras all
have the same field of view but the sensors are located in distinct positions in the
focal plane. In the foremost camera there is one CCD matrix sensor. The second
camera contains two, the third (the master cone) contains four and the last one
again has two CCD matrix sensors. Since the projection centres of the cameras are
shifted, Vexcel developed the concept of syntopic imagery for the acquisition of
the panchromatic channel. The individual shutters are triggered with certain time

Fig. 4.10 Obtaining a colour image (right) through pan-sharpening (Intergraph)
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delays depending on the flying speed, so that all panchromatic images are actually
captured from the same space position of the projection centres (Fig. 4.12). This
process has the disadvantage of making the camera sensitive to strong vibrations.

The final panchromatic virtual image, built by stitching the nine original sub-
images on the frame defined by the four matrixes in the master cone, is one large
format central perspective. For this operation, the interior orientation parameters of
each camera head (focal length, principal point, radial distortions) and for each
CCD matrix (shift, scale, shear and perspective distortions), determined by cali-
bration in the laboratory, first have to be applied to the sub-images. These, which
have a small overlap, are then used to calculate the eventual tilts between the
camera axes and to define the relative orientation of the four camera heads through
bundle adjustment. The final panchromatic image is theoretically distortion free
(Leberl and Gruber 2005). The geometric problems of merging the nine sub-
matrixes have been improved by so-called monolithic stitching, transforming the
nine sub-matrixes into the homogenous green image with lower resolution
(Ladstätter et al. 2010). As this monolithic stitching is contradictory to the syn-
topic mode, the synchronous acquisition mode of all cameras is preferred.

Table 4.1 indicates the image parameters for several models of the UltraCam
large format camera (Leberl and Gruber 2005; Wiechert and Gruber 2009). The
colour channels are composed for obtaining lower resolution colour or colour
infrared (CIR) images (Table 4.2). High resolution RGB and CIR images are
obtained by pan-sharpening after projecting the composite images of the several
channels into the same frame of the high-resolution panchromatic image. TDI is

Fig. 4.11 Large format camera UltraCam from Microsoft Vexcel Imaging (Vexcel)

Fig. 4.12 Syntopic image acquisition with UltraCam large format camera (Vexcel)
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also used in the acquisition of the original sub-images in order to compensate for
the aircraft’s forward motion, improving image sharpness. As smaller sensors need
longer exposure, the frame rate, the minimum time interval between two frames,
has been growing as the pixel dimension has been getting smaller (Table 4.1).

The evolution by digital aerial cameras has been very fast. Since all the above-
mentioned digital cameras are built in a modular concept it is easy to replace their
obsolete components by newly developed ones. Numbers from 2008 (Gruber 2008)
reveal a total of 244 digital aerial cameras sold around the world, sharing ADS40
25%, DMC 30% and UltraCam 42% of the market.

With the now available large format CCD matrixes from DALSA the situation
has changed. Z/I Imaging developed the DMC II equipped with just one large
format panchromatic CCD matrix and four cameras for RGB and NIR. The large
size homogenous panchromatic CCD-matrix has the advantage of very small
systematic image errors (Jacobsen 2011) (Table 4.3).

The high number of pixels used by the DMC II accommodate more information
than analogue aerial photos. A comparison of the details which could be extracted

Table 4.1 Parameters of the high resolution virtual image in several UltraCam models

Model Phase-in Frame
rate (s)

Focal length (mm) Number of pixels Pixel size (lm)

UltraCamD 2003 0.75 100 7,500 9 11,500 9
UltraCamX 2006 1.35 100 9,420 9 14,430 7.2
UltraCamXp 2008 2.0 100 11,310 9 17,310 6
UltraCamXp WA 2009 2.0 70 11,310 9 17,310 6

Table 4.2 Parameters of RGB and CIR composite images in several UltraCam models

Model Focal length (mm) Number of pixels Pixel size (lm)

UltraCamD 28 3,680 9 2,400 9
UltraCamX 33 4,992 9 3,328 7.2
UltraCamXp 33 5,770 9 3,770 6
UltraCamXp WA 23 5,770 9 3,770 6

Table 4.3 Technical data of the DMC II versions with base to height relation for 60% end lap l

Camera Number of
pixels

Focal
length
(mm)

Pixel
size
(lm)

Frame
rate (s)

b/h
(l = 60%)

GSD at
h = 1,000 m
(cm)

Relation
pan/MS

DMC II
140

12,096 9 11,200 92 7.2 2 0.35 7.8 1: 2.0

DMC II
230

15,104 9 14,400 92 5.6 1.7 0.35 6.1 1: 2.5

DMC II
250

17,216 9 14,656 112 5.6 1.7 0.29 5.0 1: 3.2
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for topographic mapping from DMC, UltraCAM and ADS40 images as well as
scanned aerial photos having different GSD show that only 8,5202 pixels are
required for the information contents of scanned aerial photos compared with
original digital images, when these are not degraded by lower effective resolution
(Jacobsen 2009). The better geometric performance of digital cameras compared to
analogue photos has been demonstrated by the camera test of the German Society of
Photogrammetry, Remote Sensing and Geoinformation (Jacobsen et al. 2010).

2.2 Planning the Photo Flight

The flight mission, specially performed for the acquisition of a set of aerial
photos that can be processed photogrammetrically, must be carefully planned
according to the objectives of the coverage and the restrictions to the flight.
Nowadays several camera producers offer software that supports the mission
planning. Most of them go further and also support the photo mission based on what
has been previously planned in terms of course and overlaps. This requires satellite
positioning supported navigation and connections with receiver and camera.

Items to define at the beginning of the planning include:

• Area to survey, its location, dimensions and spatial disposition (two dimensional
or one dimensional extent)

• Photo scale or GSD
• Pretended overlap
• Aerial camera/objective to use
• Aircraft
• Epoch of the year and time of day for the photo flight

The area to survey is usually defined in digital format. In the case of a two-
dimensional extent, the boundary of the area can be delivered to the planner as a
closed polygon (e.g. the boundary of a county) or as a set of coordinates of the
vertexes. In the case of a one-dimensional region the axis of the region must be
delivered as an open polygon or a set of coordinates of its vertexes, as well as the
width for each side of the axis that should be surveyed. The first case applies to
standard mapping projects while the second concerns special surveying projects,
known as corridor mapping along rivers, coastline and terrain where highways or
railways, for instance, exist or are to be constructed. The flight plan shall consider
straight strips over the region to survey. All the necessary plane turns should be
specified outside. While one-dimensional regions are covered by strips with
straight axis whose orientation varies, two-dimensional regions are covered by
parallel strips (Fig. 4.13).

The photo scale, in a planning context, is the relation between focal length and
flying height. In a processing context, however, it is a factor for both measurement
accuracy and the amount of information of the object that can be obtained from the
image. Since digital images began to be photogrammetrically processed the
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concept of GSD, meaning the distance on the ground between the centres of two
adjacent pixels, began to be applied instead of the photo scale. Like the photo
scale, the GSD is also normally not constant along the image area, varying due
to photo axis inclination and ground relief. Assuming a square pixel, a mean GSD
can be computed from the image pixel (linear) size multiplied by the denominator
of the mean photo scale.

Photogrammetric flight missions are planned in order to obtain the coverage of
a region composed by strips of vertical photos with a certain overlap between
successive photos. In the case of several strips these should also partially overlap.
In this way, the same object on the ground will generally be pictured in two or
more aerial images. The overlap is expressed as a percentage of the side dimension
of the photo, along (end lap l) and across (side lap q) the flight direction. The
objective of the end lap is pairwise stereoscopic plotting, measuring and corre-
lating while the side lap normally has the function of avoiding gaps between strips.
Nevertheless, both end and side lap are important for good geometric stability in
the triangulation of the whole block of strips. Typical overlaps for different types
of projects are indicated in Table 4.4.

Table 4.5 gathers the formulas used to calculate some parameters of the photo
flight. The meaning of the variables is illustrated in Fig. 4.14. Although the
example shown refers to stereoscopic coverage, the formulas are valid for all other
cases. These formulas are also used in the elaboration of a budget for the flying
mission by setting a standard price for a flying hour and for one image.

Fig. 4.13 Flying course for one-dimensional (left) and for two-dimensional (right) regions

Table 4.4 Typical overlaps in photogrammetric coverages

Objective of the coverage % End lap % Side lap Notes

Stereo plotting/measuring/correlating 60 20–30
Triangulation (high precision) 60 30–60 Plus cross strips
Orthoimage production (existing DEM)
Urban 60–80 60–80
Rural 30 30
Photointerpretation
Features 30–60 20
Terrain 60 20
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Variables in Table 4.5:
A Distance between strip axes
B Real basis: distance between successive exposure points
F Calibrated focal length
s1 Image side along the flight direction
s2 Image side across the flight direction
h Height above the ground
Z Terrain height
Zo Plane’s absolute height
v Plane’s mean speed during photo mission
L Strip length
Q Block width

An end lap of 60% guarantees total stereoscopy of the strips and a theoretical
constant overlap of 20% between triplets (three successive photos) along the strip
except for the first and last pair of photos. For better homogeneity of the results,
the mission should be planned so that those pairs lie outside the project area.

For high precision triangulation, the overlap combination 60/60 plus cross strips
also with 60/60 (main strips) and 60/30 (cross strips) is preferred, increasing the
number of photos where each object point appears and can be measured.

For the production of orthoimages (Sect. 4.3), since the contents of the image
will be transferred to the final product, the radial distortion due to objects’ height
can be a problem. If a digital terrain model is applied in the orthorectification, high
objects will appear distorted, the top of the object in a false planimetric position

Table 4.5 Photo flight parameters

Photo scale Ef = 1/mf = f/h
Photo side on the ground

Along flight direction S1 = s1 � mf

Across flight direction S2 = s2 � mf

Photo basis b = B/mf

Flying height above ground h = f � mf

Absolute flying height Z0 = h ? Z
End lap % ‘ = (1 - B/S1) 100
Side lap % q = (1 - A/S2) 100
Basis length for ‘% end lap B = S1 (1 - ‘/100)
Strip axes distance for q% side lap A = S2 (1 - q/100)
Area covered by a photo on the ground Af = S1 � S2 = s1 � mf � s2 � mf

Area covered by a stereo model Am = (S1 - B) S2

Area of model overlapping Asm = (S1 - 2B) S2

New area covered by a model from the second strip on An = A�B
Number of stereo models per strip Nm = int((L/B) ? 1)
Number of photos per strip Nf = Nm ? 1
Number of strips in the block Ns = int((Q/A) ? 1)
Time interval between photos Dt [s] = B[m]/v[m/s]

Note int (x) = integer part of x
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and vertical planes, like building façades that should be invisible, appear projected
on the ground causing an undesired leaning buildings effect and occlusions on the
orthoimage. If a digital surface model is used instead, occlusions caused by the
radial distortion of higher objects in the aerial photo turn into gaps of radiometric
information for the rectification operation (Fig. 4.15). Therefore, aerial coverages
for orthoimage projects should present as little radial distortion as possible. In rural
environments where high buildings are not so common, a 30/30 or even lesser
overlap would be sufficient since stereoscopy is not necessary for orthoimage
production. Such a coverage could only be used in a case where no aerial trian-
gulation is required for the determination of the image orientation, which seldom
happens.

In urban environments, the end lap should be larger to allow a view to the
streets and to make it possible to limit the orthorectification to just a central square
of the photo where radial distortion is tolerable. Since the radial distortion Dr of a
point depends on:

• the radial distance r of the point to the centre of the vertical aerial photo.
• the height difference Dh between the point and the projection of the photo

centre on the ground (actually the projection of the principal point on the
ground).

• the flying height above ground, h0.

Fig. 4.14 Photo flight scheme
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the side dimension of the central square to rectify, sqs, can vary according to (4.1)
where rmax is the maximum radial distance corresponding to the tolerable radial
distortion Drtol affecting objects with the maximum height difference Dhmax

referred to the ground principal point.

sqs ¼ rmax

ffiffiffi
2
p

rmax ¼ Drtol:
h0

Dhmax
¼ Drtol:

f �mf

Dhmax

ð4:1Þ

The square side, multiplied by the scale denominator, defines, in this case, the
distance B to fly between successive exposures. The distance A between adjacent
strip axes should also be defined by sqs in the same way, so that there are no gaps
between adjacent central squares (Fig. 4.16).

The overlaps for coverages intended to be photointerpreted depend on the
objective of the interpretation. For landforms interpretation stereoscopy is indis-
pensable, requiring a 60/20 overlap, while, for projects related to feature counting
and ground cover classification, stereoscopy can be often dispensed and a
30/20 overlap is enough if no aerial triangulation is required.

For all measuring projects, although requiring more photographs, a 30% side
lap is preferable to 20%. The effective area, meaning the area to be processed in
each photo reaching from its centre to half the overlap to all adjacent photos
(Fig. 4.17) is smaller in the first case, reducing the effects of radial distortion due
to relief and object’s height.

The aerial camera to be used must be chosen according to the mission’s
objective. The option between analogue or digital camera tends to disappear but it
still exists. Analogue cameras have alternative objectives with several focal lengths
allowing coverages of the same scale from different heights and of several scales
from the same height. Digital cameras often have just one focal length. For a
smaller GSD (bigger scale), cameras can reach their limits when the time to save the

Fig. 4.15 Radial distorted high buildings in aerial photo (left) and gaps (in black) corresponding
to occlusions in orthoimage (right) (Oda et al. 2004)
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captured images is longer than the required time interval between exposures for the
pretended end lap. As derived from (4.1), the focal length f influences the radial
distortion due to relief or the object’s height, Dr, in the opposite way. The longer the
focal length, the smaller the distortion. That is an aspect to consider, especially for
projects covering high mountains and deep valleys or urban regions with high
buildings. Flying height and pretended GSD also play a role in this matter.

The choice of an aircraft at this stage of the photo flight planning is related to
the size of the project. If there are alternatives, a plane should be chosen according
to its autonomy (flying time without need to refuel), minimum flying speed and
maximum flying height. Double engine planes are preferable.

Fig. 4.16 Disposition of aerial photos for central squares orthorectification

Fig. 4.17 Theoretical
effective area (grey region)
of an aerial photograph in an
intermediate strip
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To guarantee both good luminosity of the photographs and a reduction of
shadow sizes, photo flights should normally be done when the sky is clear and the
sun is high above the horizon. A generally adopted threshold for the sun angle
above the horizon is 30� but because of higher sensitivity for digital cameras this
may be reduced to 20�. The daily temporal window, during which a photo flight
can be made having a sun angle greater than 30�, varies with the season and
decreases with the latitude of the region. For a latitude greater than 73.43� N or S
the sun never reaches that height. For those lands (Antarctica, some islands in
North Canada, Greenland and a small part of Siberia) that threshold cannot be
maintained. As trees can cover important details photo flights should be done when
foliage is reduced to a minimum, which is just before the leaves sprout in
deciduous trees in early spring. For some projects of photo interpretation, shadows
can be an advantage, helping to identify objects. In that case, the photo flight
should be done with a lower sun angle. Digital camera images possess a higher
dynamic range than analogue images (12 bit instead of 8 bit), allowing visibility
and measuring of details in shadow areas. Consequently, flight temporal windows
can be enlarged for digital images.

For planning objectives it is assumed at first that the terrain is horizontal and the
photos vertical (vertical axis). Knowledge about the terrain relief, normally
through map information, must be used to refine the planning.

The output of flight mission planning is a flying map in digital format. It
consists of the planned course of the plane as a set of oriented straight lines
containing the planned location of the exposure points over a geographic basis
(Fig. 4.18). Some flight mission supporting software produce interfaces to virtual
globes available on the internet, allowing visualization of the planned image
footprints on the ground, which is represented as a 3D terrain model with realistic
texture, and the detection of gaps due to the influence of relief in the overlaps
(Fig. 4.19). The accuracy of the footprint projection depends on the quality of the
DTM used by the mapping program in the region of interest.

For mountainous areas the accuracy and information content has to be fulfilled
at the lowest ground height, while the overlap has to be planned considering the
highest ground elevation. A photo flight parallel to the contour lines is preferred.

3 Image Georeferencing

3.1 Coordinate Systems in Photogrammetry

The main objective of photogrammetry, no matter to which field of application it is
applied, is to measure quantities on images or stereo models and transform them in
corresponding quantities in the photographed object. To perform the transforma-
tion from image into object space and reverse, coordinate systems in each space
(image space, model space, object space) are required. The most important system

4 Photogrammetry 155



in the image space is the so-called image coordinate system or photo coordinate
system. Its origin is located in the projection centre with focal length f, also called
principal distance, as z-value. The axes form a right handed system. The per-
pendicular projected origin in the image plane, parallel to the xy plane, is repre-
sented by the principal point of auto collimation (PPA). For analogue photos this
point is related to the fiducial marks by the camera calibration. Fiducial marks are
images of references that exist in the focal plane of an analogue camera. The
coordinates of the PPA referred to the fiducial centre (FC) are normally designated
by (xo,yo). Instead of the principal point of auto collimation, the adjusted principal
point of best symmetry (PPS) is normally used. For digital cameras the principal
point is expressed by its pixel address.

Digital images, scanned or captured with digital cameras, have an associated pixel
coordinate system. It is normally left-handed Cartesian with the origin in the centre or
corner of the upper left pixel (0,0). The integer coordinates of a pixel indicate the row
and column of its position on the image. For scanned analogue images the relation
between image and camera is determined by the fiducial marks. For original digital
images there are no fiducial marks. The relation to the camera is obtained through the

Fig. 4.18 Flying map showing strips, start and end exposure points and flying height in feet
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pixel positions in the image because, other than by film cameras, the image support is
fixed to the camera and is not removed from its original location inside the camera
after each exposure as it happens in film cameras. The pixel coordinates have to
be transformed into metric quantities and the pixel coordinate system must be
transformed into a right handed one before further processing (Fig. 4.20).

The model space is an interface between images and object. It is a virtual
Cartesian 3D space that can be perceived by stereoscopic observation of a stereo
pair although it doesn’t physically exist. In analogue plotting instruments a model
space could be materialized through mechanical axes of the instrument and 3D
model coordinates could be measured instead of photo coordinates. The origin of
this system is arbitrary as well as the scale. Most of the photogrammetric problems
are solved today without resorting to this intermediate space, but some software
still refers to model coordinates in a stage between relative and absolute orien-
tation of stereo pairs.

Fig. 4.20 Fiducial (dashed)
image (grey) and pixel
(black) coordinate systems in
analogue and digital images

Fig. 4.19 Projection of the flight mission on Google Earth

4 Photogrammetry 157



In most cases the national coordinate system is used as the object coordinate
system. It is not exactly a Cartesian and right-handed system, so the geometric
difference to a Cartesian coordinate system has to be respected, for example, by
Earth curvature correction. In some cases local coordinate systems tangential to
the Earth ellipsoid are used. The following scheme shows the sequence of the
transformations needed. For details see Seeber (2003) and Krakiwsky (1973).

Photogrammetric object (ground) coordinates (X, Y, Z)
= topocentric coordinates (X, Y, Z)

Geocentric rectangular coordinates (X, Y, Z)G

Elipsoidic curvilinear coordinates (ϕ, λ, η)

Map coordinates (E, N) + orthometric height (H)

3.2 Indirect Georeferencing

If the object of a photogrammetric project is a portion of the Earth surface,
georeferencing the images is mandatory so that the results can be integrated with
other geoinformation data in a common reference. Georeferencing must be done
before image processing for feature extraction, generation of terrain models or
orthoimages.

In photogrammetry, images are georeferenced through the determination of the
six exterior orientation parameters that describe the original spatial relation existing
between the photo and the object coordinate systems at the moment the image was
captured. This set of parameters is called the exterior orientation of the image and
consists of three object coordinates of the projection centre (X0, Y0, Z0) and three
rotation angles around the object coordinates axes defining the spatial orientation of
the photographic axis in the object space, (x, u, j) (Fig. 4.21). The exterior
orientation of a photo can be determined in an indirect, a semi-direct and a direct way.

3.2.1 Ground Control Points

The indirect georeferencing needs information about the object, normally in the
form of a set of ground control points (GCP). These are points in the object space
whose object coordinates are known. In close-range photogrammetry it is also
common to use other types of geometric information on the object, such as dis-
tances and geometric constraints for object lines, for instance parallelism, per-
pendicularity, verticality and horizontality.

There are two types of ground control points: natural and targeted. Natural
points are conspicuous points on the ground or on built objects where the
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assignment between image and ground situation should be most certain, such as
corners of sidewalks or walls, crossroads, etc. Fig. 4.22). Symmetric objects
should be preferred. Targeted control points have to be signalized on the ground
before the photo flight takes place. Their location must be planned based on the
flying map and they should be set in near horizontal places with no occluding
objects in the immediate neighbourhood in order to be seen from the air in several
photos, that is, from several perspectives. They consist of a central regular geo-
metric figure (circle, square or equilateral triangle) and two to four identification
strips, depending the number on the available place in loco (Fig. 4.23). They are
marked with canvas, plastic film or paint in a contrasting colour to the surrounding
ground, white, yellow or red being the preferred colours (Fig. 4.24). The centre of
the central figure is actually the GCP to be coordinated.

Normally the whole target is built as a function of just one parameter which is
the diameter of the central circle, the side of the central square or triangle, the
dimension of which depends on the pretended image scale in order to be easily
identifiable and measurable.

GCP coordinates are determined through geodetic positioning techniques.
Whenever possible, satellite positioning systems are used. The uncertainty asso-
ciated with the GCP coordinates should be less than the GSD in planimetry and
less than the mean flying height above ground multiplied by 10-4 for altimetry.

Targeted GCPs allow higher accuracy of the georeferencing but the targeting
operation is an expensive one. Independent of the kind of GCP, the surveyor that
coordinates them must elaborate a localization scheme of each point and its sur-
roundings so that it can be identified and measured in the aerial image. Current
coordinating missions often revert to internet mapping programs or virtual globes

Fig. 4.21 Elements of
interior and exterior
orientation
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to indicate the location of the coordinated points (Fig. 4.25). For greater regions a
small data base is organized including the GCPs, their coordinates and pictorial
information in the form of map and image extracts.

Fig. 4.22 Location of a natural GCP

Fig. 4.23 Shapes for targeted GCPs and construction rules
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3.2.2 Spatial Resection

Indirect georeferencing is based on the analytical relation between image
coordinates and object coordinates expressed by the collinearity (4.2, 4.3) valid for
a central projection:

x ¼ x0 � f r11ðX�X0Þþr21ðY�Y0Þþr31ðZ�Z0Þ
r13ðX�X0Þþr23ðY�Y0Þþr33ðZ�Z0Þ

y ¼ y0 � f r12ðX�X0Þþr22ðY�Y0Þþr32ðZ�Z0Þ
r13ðX�X0Þþr23ðY�Y0Þþr33ðZ�Z0Þ

(
ð4:2Þ

Fig. 4.24 Targeting operation

Fig. 4.25 GCP management using Google Earth
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X ¼ X0 þ ðZ � Z0Þ r11ðx�x0Þþr12ðy�y0Þ�r13:f
r31ðx�x0Þþr32ðy�y0Þ�r33:f

Y ¼ Y0 þ ðZ � Z0Þ r21ðx�x0Þþr22ðy�y0Þ�r23:f
r31ðx�x0Þþr32ðy�y0Þ�r33:f

(
ð4:3Þ

In (4.2) and (4.3):

• x, y are the image coordinates of a point
• X, Y, Z are the object coordinates of the same point
• x0, y0, f are interior orientation parameters (offset of the principal point to the

fiducial centre or to the image centre and principal distance)
• X0, Y0, Z0 are the object coordinates of the projection centre (three parameters of

the exterior orientation)
• rij are the elements of the spatial rotation matrix existing between image and

object coordinate systems (functions of x, u and j, the remaining three
parameters of the exterior orientation)

The image coordinates may be improved for systematic image errors, lens
distortion and other geometric effects, adapting the mathematical model to the
physical one.

The linearization of (4.2) yields a pair of linear observation equations relating
observed image coordinates to small variations (corrections) of all the parameters
involved in the collinearity conditions (4.4).
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In (4.4):

– vx,vy are the corrections to the image coordinates
– d u is the correction to the generic parameter u
– (qx/qu)0 is the derivative of the first equation of (4.2) relating to the parameter

u calculated for approximate values of the parameters
– (qy/qu)0 is the derivative of the second equation of (4.2) relating to the

parameter u calculated for approximate values of the parameters
– dx0, dy0 are corrections to the approximate offset values of the principal point
– �x;�y—are the observed (measured) image coordinates
– x0, y0 are image coordinates calculated by (4.2) using approximate parameters

Refer to Kraus (1993) or Luhmann et al. (2006) for the explicit formulas of the
derivatives.
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In the case of a frame image whose interior orientation is known, at least three
non-collinear GCPs that appear on the image are needed to determine the six
parameters of exterior orientation. For each GCP a pair of observation equations
can be formulated where the terms in dx0, dy0, dc, dX, dY and dZ are all null, only
remaining the terms of the exterior orientation parameters. Derivatives are cal-
culated with approximate values for those parameters. Three GCPs yield six
equations with six unknowns which are the corrections to the approximate values.
The problem, called spatial resection, is solved iteratively.

In the case where the interior orientation parameters of the image are also
unknown, after defining an approximate value for f and considering x0, y0 equal zero,
the observation (4.4) will have nine unknowns (corrections to the approximate
parameters: six of exterior and three of interior orientations) which can be solved
iteratively with the information of at least five non-collinear GCPs. With normal
aerial images based on GCPs located approximately in a plane, the interior orientation
parameters cannot be determined if no projection centre coordinates are available.

3.2.3 Triangulation

Photogrammetric triangulation consists of consistently determining the spatial
orientation of a set of images, based on imaging geometry of the set (not just of
one image) and ground information, using a reduced number of well distributed
GCPs, instead of three per photo as required by spatial resection. Two basic
mathematical models are alternatively applied to perform a photogrammetric
triangulation: the spatial similarity transformation (4.5) and the above-mentioned
collinearity (4.2, 4.3). The triangulation can be solved strip- or blockwise
depending on the consideration of the photogrammetric unit as being a strip or a
whole block of models or images.

The spatial similarity transformation is used in the historical so-called inde-
pendent models adjustment.

X ¼ X0m þ mRxm ð4:5Þ

In (4.5):

• X denotes the object coordinates of a point
• xm denotes the model coordinates of the same point
• X0m denotes the object coordinates of the origin of the model coordinates system
• m denotes the scale factor existing between model and object coordinate systems
• R denotes the spatial rotation matrix between model and object coordinate

systems, function of three rotation angles X, U, J

This method was often applied in the era of analogue instruments.
The collinearity equations are the basis of the so-called bundle adjustment. In

this method there is no need to recover the relative orientation, since the obser-
vations are photo coordinates and not model coordinates. The method consists on
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measuring photo coordinates of GCPs as well as of tie points between images in
any overlapping area (Fig. 4.26). Observation equations like (4.4) are formulated
for all measured points in every photo they appear in. The discrepancy between the
real image geometry, being the same along the block, and the perspective geometry
can be determined by a set of additional parameters. A least squares adjustment
yields the six exterior orientation parameters of each of the photos, georeferencing
them. Furthermore, the three object coordinates of each measured point and the
additional parameters related to the camera are also delivered as a result. This type
of triangulation is the most flexible because it can be applied to any coverage, it can
include images from several cameras and it can be used to calibrate a camera. It is
the most widely applied method in analytical/digital photogrammetry.

The measurement of tie points for triangulation can be substantially simplified
through an automatic detection of homologous points in neighbouring images.
This operation is based on several digital image processing techniques and is
optimized in digital photogrammetric software for the kind of textures appearing
in the images. Template matching and feature based matching are the general
concepts underlying those techniques. Most automatic triangulation routines use
pyramids composed of a sequence of images with decreasing geometric resolution,
built by resampling of the original full resolution aerial image. Feature based
matching algorithms are applied to the highest pyramid level of neighbouring
images in order to detect similar structures. The candidates’ locations are trans-
ferred to the immediate lower level in the pyramid, corresponding to images of
which the geometric resolution is higher. Candidates’ matching is again tested and
new candidates are searched for. The process is repeated down to the lowest level
of the pyramid corresponding to the original image pair. Here, patches around the
final candidates are searched with template matching algorithms in order to locate
one pair of homologous points within the patch. A least squares adjustment refines
the homologous positions in the sub-pixel domain. The detection of tie points can
be spread all over the image area or be limited just to the positions of the classical
distribution shown in Fig. 4.26, left. The strategic regions shown there in each

Fig. 4.26 Classical distribution of block triangulation points. Left tie points (circles). Right
GCPs (triangles—planimetry and height, circles—just height). Distances between GCPs along
the strip: three to four bases
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model correspond to the location of the six von Gruber points. They represent the
preferential location of homologous point pairs for the determination of the rela-
tive orientation between images. In the case of automatic aerial triangulation quite
a higher number of tie points is preferred as shown in Fig. 4.27.

3.3 Semi-Direct Georeferencing

While indirect georeferencing is based exclusively on ground control points, semi-
direct georeferencing takes advantage of other positioning technologies. As the
spatial component of the Global Positioning System (GPS), a navigation satellite
system maintained by the government of the United States, became operational in
the 1990s, efforts were made by photogrammetry scientists to use this technique
for the direct determination of the position of the camera projection centre. By
relative kinematic GNSS positioning, the object coordinates X0, Y0, Z0 of the
projection centres can be determined. Each measured projection centre becomes a
ground control point. Having so many spatial GCPs, theoretically no more control
on the ground would be needed. In fact, the quantity required is significantly
reduced, which represents a great economy for photogrammetry projects. Today,
GNSS is standard for any flying mission.

A photo flight for triangulation with GNSS requires an airplane equipped with a
GNSS receiver and an aerial camera with an exposure moment register. Further-
more, a second GNSS receiver has to be placed on the ground within a radius of
50 km to the surveying area. In this way a relative kinematic positioning of the
receiver on board can be made, based on carrier phase measurements, with a
relative accuracy of up to ±5 cm. A permanent GNSS ground network, if dense
enough, can also be used for this purpose, dispensing from the receiver on the
ground. The trajectory of the aircraft during the photo flight can be determined in
post-processing with an absolute accuracy better than 0.5 m.

Fig. 4.27 Triangulated block with automatic determined tie points
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The flight/navigation plan should preview broader turns between strips in order
to avoid signal interruptions to some satellites due to strong wing inclination.
Signal interruptions require a re-initialization of the system not always possible to
perform on a flight, causing positioning errors in the subsequent trajectory. The
flight plan should preferably include additional crossing strips covering the
beginnings and ends of the standard strips to allow a determination of systematic
errors in the GNSS positioning. Crossing strips should also be repeated every 30
bases when standard strips are too long. The experience showed that, although
very reduced, some GCPs are still needed. Recommended configurations are
shown in Fig. 4.28 (Jacobsen 2004).

Triangulation with GNSS data includes an additional set of observation equa-
tions for each projection centre observed. These equations, three per image, relate
the object coordinates of the projection centre with the post-processed geodetic
coordinates of the centre of the GNSS antenna at the exposure moment of the
image, interpolated from the trajectory. In analogue cameras this projection centre
is the exterior node of the objective. In digital cameras it is a virtual point
determined during the process of image mosaicing.
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In (4.6):

• (X0j, Y0j, Z0j) are the object coordinates of the projection centre of photo j
• (Xj

GNSS, Yj
GNSS, Zj

GNSS) are the object coordinates of the GNSS antenna at the
exposure moment of photo j

• (dx, dy, dz) is the offset existing between antenna and projection centre in the
aircraft, given in the camera coordinate system (usually directly measured)

Fig. 4.28 Ground control configuration for blocks with (left) or without (right) crossing strips
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• Rxuj is the rotation matrix between camera (image) and object coordinate
system (equals plane attitude if the camera is fixed to the plane)

• (ax, ay, az) and (bx, by, bz) are considered constant in each strip k and are the
constant offset and the linear drift of the GNSS positioning, the latter depending
on time interval (t - t0)

As GNSS coordinates refer to WGS84 and GCP coordinates refer to a local
datum, both sets have to be transformed to a common coordinate system following
the scheme shown in Sect. 3.1 before they can be integrated in the photogram-
metric adjustment. Geoids undulation must also be considered for height
conversion.

3.4 Direct Georeferencing

Direct georeferencing of aerial images can be achieved by applying a device on the
aircraft that integrates GNSS positioning with inertial positioning. An Inertial
Measuring Unit (IMU) is a device composed of accelerometers and gyroscopes
that measure linear and angular accelerations of a moving body along and around
three perpendicular axes. Attached to an aerial camera during a photo flight, those
accelerations, after double integration, deliver not only the position coordinates for
the exposure moment but also the attitude angles in relation to an initial position of
the camera. Converted to a convenient coordinate system, those data result in the
exterior orientation parameters of the camera for each exposure moment.

Both positioning systems, GNSS and IMU, have their pros and cons. While a
good absolute accuracy is possible using GNSS techniques, IMU is known by
its good relative accuracy. GNSS is more or less stable with time while IMU
shows significant drift with time. GNSS positioning fails when not enough
satellites (minimum of four) are being received. IMU is independent of any other
system. GNSS needs to be re-initialized after each interruption in order to solve
ambiguities. IMU works continuously, having a high data delivering rate, while
GNSS’s delivering rate is not so high. IMU has the above-mentioned advantage of
also delivering orientation angles of the body it is attached to.

An integration of the two systems has several advantages regarding the
robustness of the positioning system. IMU can be initialized at the same rate as
GNSS delivers absolute positions, significantly reducing the effects of drift on the
IMU results. GNSS can be reinitialized after a lack of signal with the position
delivered by IMU. The trajectory of the plane during a photo mission can thus be
reliably determined.

GNSS/IMU systems on the market are capable of determining positions with an
accuracy of 5–30 cm and orientation angles with an accuracy of 0.004–0.01�.
They are indispensable for airborne laser scanning (LIDAR) missions, which
require the most precise systems, and for digital cameras with linear array sensors.
For photogrammetry projects, the use of a GNSS/IMU system allows direct

4 Photogrammetry 167



georeferencing, meaning acquiring the six exterior orientation parameters of all
photos of a coverage without GCPs (except for the ground station of the second
GNSS receiver) and without triangulation. A theoretical reduction of global pro-
ject costs along with the feasibility of ‘unorthodox’ projects, such as irregular
blocks, inaccessible terrain, regions of poor contrast where matching algorithms
fail (dense forests, sand, water bodies) and small format images, made the use of
GNSS/IMU very attractive. Nevertheless, the system has to be often calibrated
because the calibration may not be stable for long periods of time.

In order to achieve reliable georeferencing it is recommended to fly a figure
eight shaped initialization curve before the exposures, which has to be repeated in
the case of long strips, and to photograph over a calibration field before, during or
after the actual project flight. The configuration of the calibration flight should be
as shown in Fig. 4.29: two strips flown in opposite directions over a field covered
with targeted GCPs in the classical distribution shown in Fig. 4.26, right.

This configuration will allow us to determine the shift between projection
centre and IMU centre as well as the misalignment of the IMU axes relative to the
image/camera coordinate system (Fig. 4.29, left). Corrections to the GNSS
antenna offset can also be determined. These calibration parameters are estimated
from the differences between observed (by GNSS/IMU) and calculated (by tri-
angulation) exterior orientation parameters. If the calibration flight cannot be done
at the same scale as the project flight, a third strip at a different height is necessary
in order to model the influence of height in the interior orientation parameters
(Redweik and Jacobsen 2007). The calibration area can be located inside or out-
side the project area. Most flying companies maintain a calibration field in the
neighbourhood of the airport where their airplanes take off and land. If the cali-
bration zone is far away from the project area, one must take geoids undulation and
map projection scale variations into account.

The actual project flight can have an arbitrary strip configuration and can
include coastal regions, water bodies, forests, sand deserts, etc. There is no need
for ground control except for the GNSS receiver station when a GNSS permanent
network cannot be used. The strips should be started two bases before the area to
be covered for stabilization of the IMU after a turn.

Fig. 4.29 Calibration parameters (left) and calibration flight (right)
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The GNSS/IMU delivered data for the project flight have to be corrected by the
calibration parameters in order to result in exterior orientation parameters for each
photo. Again the transformation for a local datum has to be considered.

3.4.1 Integrated Sensor Orientation

Since the IMU is not so accurate in the determination of the attitude angle cor-
responding to k (yaw or heading) as for the other two angles, problems may occur
in the stereo visualization of pairs and consequently in the 3D feature extraction in
direct georeferenced images. The quality of the georeference by means of GNSS/
IMU can be improved if the exterior parameters are adjusted in a bundle trian-
gulation without ground control points, in order to achieve a minimum of dis-
crepancies in a set of well distributed tie points. This operation is called integrated
sensor orientation and is particularly useful for mapping projects.

Due to miscalibration or lack of knowledge about the geoid in certain regions,
the direct georeference data are not accurate enough for projects requiring a higher
accuracy. It is always recommended to test the reliability of the data for the
purpose in mind by means of a set of check points on the ground.

3.4.2 Georeferencing of Linear Array Images

Linear array images cannot be triangulated in the same way as frame images. As
already mentioned in Linear Array Sensor Cameras, these images are captured by a
camera with several linear arrays in the focal plane of the unique objective. Taking the
example of ADS80, JAS-150 or Wehrli 3-DAS-1, the cameras have a high quality
IMU associated with it that delivers attitudes at a high rate. The GNSS receiver
delivers positions at a lower rate. The post processed trajectory is interpolated for
sensor position and attitude at intervals of the sampling rate. This would correspond to
the capture time interval between two successive lines in a scene, meaning there are
exterior orientation parameters available for each image line. The georeference sup-
ported on GNSS/IMU data proved to be good enough for some applications, but more
accurate mapping applications need more accuracy than the system can afford. A
triangulation based on ground control points is needed not only for a better geore-
ference but also to calibrate system components (sensor lines ? GNSS ? IMU).

Original scenes, called level 0, are first transformed into level 1 scenes by
means of the GNSS/IMU derived exterior orientations for each line. They are
rectified to a plane. In the rectified images it is possible to detect homologous
points between the three scenes (backwards, nadir and forwards) automatically.
For the triangulation, the scene coordinates of each point (line and sample) have to
be back transformed to the coordinates in level 0, the original image. Ground
control points are interactively measured on all the scenes. Orientation fixes are
then determined. These are discrete points of the trajectory, identified in the
timeline, to which six exterior orientation parameters of the sensor correspond.
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The triangulation aims the adjustment of the exterior orientation parameters in
the orientation fixes. In the first versions of the triangulation software for linear
array images, orientation fixes should be equally spaced in time and their distance
should be equivalent to the short base. The short base corresponds to the ground
distance between backward and nadir ground lines (corresponding to the smaller
aperture angle in flight direction at the projection centre in Fig. 4.5). This con-
figuration assures the best quality in the results. Recent versions of the algorithm
allow for different spaced orientation fixes along the flight lines according to the
pretended project accuracy.

xij ¼ �f r11jðXi�X0jÞþr21jðYi�Y0jÞþr31jðZi�Z0jÞ
r13jðXi�X0jÞþr23jðYi�Y0jÞþr33jðZi�Z0jÞ

yij ¼ �f r12jðXi�X0jÞþr22jðYi�Y0jÞþr32jðZi�Z0jÞ
r13jðXi�X0jÞþr23jðYi�Y0jÞþr33jðZi�Z0jÞ

8<
: ð4:7Þ

X0j ¼ ajX0k þ ð1� ajÞX0kþ1 � dX0j

Y0j ¼ ajY0k þ ð1� ajÞY0kþ1 � dY0j

� � �
kj ¼ ajkk þ ð1� ajÞkkþ1 � dkj ð4:8Þ
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� � �
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k
þ ð1� ajÞkIMU

kþ1
� kIMU

j
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The mathematical model applied is the relation between image coordinates and
ground coordinates, and is based on collinearity equations expressed as a function
of the orientation parameters at the two neighbouring fixes and the time interval
between the actual line and those fixes (4.7–4.9). For details see Hinsken et al.
(2002); Gruen and Zhang (2003) and Hinsken and Boehrer (2010).

In (4.7–4.9):

• xij, yij denote the scene coordinates of a point i captured at the time point tj
• Xi, Yi, Zi the corresponding ground coordinates
• rlm j the elements of the rotation matrix for the time point tj
• f the principal distance
• the indexes k and k ? 1 denote parameters corresponding to the neighbouring

fixes before and after the time point tj
• a is an interpolation coefficient
• the superscript indexes GPS and IMU indicate the source of the data

As in frame images, triangulation tie points are needed between the three scenes
of each strip and between neighbouring strips.
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4 Image Processing

Several kinds of geoinformation can be produced today by photogrammetric
processing of aerial images. One can divide them between vector and raster
geoinformation if the criteria respect the format under which they are saved.
Another classification will be 2D, 2.5D or 3D products according to the spatial
dimension of the extracted information. Non-geometric information can also be
obtained by photo interpretation, so that a division can be made between geo-
metric/graphic and semantic information. The principal photogrammetric prod-
ucts are line maps, orthoimages, digital terrain/elevation models and 3D urban
models.

Photogrammetric image processing is done today at digital photogrammetric
workstations. These stations are essentially powerful computers where the pho-
togrammetric software runs and include some hardware to enable stereoscopic
viewing on the monitor for an interactive evaluation.

Line maps (vector, 2D ? 1D) have been the traditional photogrammetric
product since the 1920s and are still being produced, though with newer methods,
instruments and objectives. Line maps have the advantage of being a very concise
abstract representation of the Earth surface. Orthoimages (raster, 2D) are another
very popular product because they are faster and less expensive to produce than
line maps, having the information content of an image and the geometry of a map.
They present much more visual information than a line map but have the disad-
vantage of being neither filtered nor interpreted, requiring extra effort from the
user when searching for information. Orthoimage production, for average preci-
sion, is fully automatic once a digital elevation model is provided. Digital ele-
vation models (vector or raster, 2.5D) began to be just a means to an end,
consisting of surface covering altimetry necessary for orthoimage production. Now
they constitute an independent product required for several other applications,
such as visualization of 3D extending phenomena. More recent products are 3D
city models (vector and/or raster, 3D) whose geometric components can essentially
be extracted by aerial and terrestrial photogrammetry. Apart from the visual
products previous referred to, photogrammetry can also be applied for measuring
the object by means of georeferenced vertical or oblique aerial images, for instance
for cadastral purposes.

The photogrammetric methods used for geographic data generation for
cartography or GIS (Geographic Information Systems) are essentially two:
stereoplotting and orthorectification. Multiple-image plotting, a technique
involving measurements in coverages of convergent images, has been optimized
for close-range applications and has also started to be introduced in aerial
applications for geoinformation extraction in the domain of city modelling
(3D-GIS).
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4.1 Stereoplotting

Stereoplotting is a feature extraction method that requires a floating mark and
stereoscopic visualization of the common part of a pair of images, taken with
approximately parallel axes. Several stereoscopy methods are available in digital
photogrammetric workstations. The most advantageous are the method of alter-
nating images visualized with active shutter glasses (Fig. 4.30) and the method of
polarized images visualized with passive polarized filter glasses. Some workstations
also provide other stereo view options like anaglyph mode or split screen. A floating
mark is a device with a geometric regular shape, materialized in various ways and
visible in the 3D space. It allows the measurement of 3D object coordinates of every
visible point in the stereo model once the exterior orientations of the two images or
the absolute orientation of the stereo model are recovered. By means of the floating
mark points, lines, and polygons can be measured to define the geometric details of
the objects existing on the Earth surface and visible in both images. The relief can
also be extracted from the stereo model using the floating mark, in the form either of
contour lines or of a dense set of isolated height points (Fig. 4.31).

Which objects are to be extracted and how they have to be defined, geometrically
and semantically, depend on the purpose of the collected features and has to be
predefined in the form of a catalogue before the plotting operation. In the case of a
feature collection for an official line map, the catalogues are defined by a land or
national cartographic authority. Most existing catalogues contain long lists of
feature codes and their corresponding graphic attributes (e.g. line type, line weight,
symbol), without any other intelligence associated, i.e. non-graphic attributes.
Those catalogues were designed with the final aim of a graphic representation of the
information. The query potential of graphic data structures is very limited, turning
their conversion into an object relational GIS database rather difficult. More
recently, following the trend that photogrammetric products are not a final product
but input data for GIS, there is a strong demand to integrate directly elements being
photogrammetrically collected in a GIS compatible database format. These
so-called GIS shapefiles contain graphic and non-graphic attributes as well as
topology (relationship to neighbouring features). Solutions are also being provided
to convert already acquired graphic data into a compatible structure for GIS.

4.2 Three-Dimensional Modelling

4.2.1 DTM and DSM

Relief on the Earth surface can be modelled in several ways:

• By a discrete set of height points in a regular or irregular distribution over the surface
• By contour lines with constant height and variable orientation in the horizontal

plane
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• By profiles with constant orientation in the horizontal plane and variable height
• By a function Z = f(X,Y) yielding one height value for each point (X,Y)

The function Z = f(X,Y) approximates the real relief and it is generally called a
digital elevation model (DEM). It is a 2D surface immersed in a 3D space and
must be estimated from a sample of real height points. The denser the sample, the
better the approximation. On the other hand, a dense sample often becomes a huge
amount of data, difficult to process and to manage once it is processed. So a
compromise has to be found. Two types of digital elevation models are normally
considered: digital terrain model (DTM), when only the ground is modelled and
digital surface model (DSM), when built objects and trees are included in the
height model (Fig. 4.32). Therefore, differences between a DTM and a DSM
are greater in urban areas. A normalized DSM (nDSM) is obtained by subtracting

Fig. 4.30 Intergraph digital photogrammetric workstation with shutter glasses (left) and working
environment (right)

Fig. 4.31 Stereoplotted information for a line map at scale 1:5000
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the DTM from the DSM. In this product only built objects and trees are shown
with their height from the ground to the top, independently from ellipsoids or
geoids surface. All ground points have zero height except under bridges.

Stereoplotting is one of the most reliable methods to acquire the primary data
sample. The time-consuming but high quality interactive collection of discrete 3D
points or contours can be supported, in areas without vegetation and favourable
texture, by automatic stereo-correlation algorithms. Airborne LIDAR and airborne
radar are other methods used for the same purpose. Samples obtained in this way
can be very dense and cover large areas in a very short time.

To generate the surface from the primary height sample two basic approaches
are normally adopted depending on the spatial distribution of the sample on the XY
plane, which can be irregular or regular.

To an irregular distributed sample a triangular tessellation in the XY plane is
applied following the criteria of Delaunay, in order that all the points of the sample
are vertexes of triangles, as Fig. 4.33 demonstrates. Equation (4.10) shows
one condition each Delaunay triangle ABC must fulfil. D is a generic point from
the sample different from A, B and C. This corresponds to the condition that every
other point of the sample lies outside the circumcircle of ABC.

XA � XD YA � YD ðX2
A � X2

DÞ þ ðY2
A � Y2

DÞ
XB � XD YB � YD ðX2

B � X2
DÞ þ ðY2

B � Y2
DÞ

XC � XD YC � YD ðX2
C � X2

DÞ þ ðY2
C � Y2

DÞ

������
������� 0 ð4:10Þ

This is the so-called Triangulated Irregular Network (TIN) model. The height
for a generic point (X,Y) is interpolated on the corresponding triangular plane
facet.

If the sample point distribution is regular in the XY plane, like a matrix, two sorts
of models can be generated by a square tessellation of the plane: one with square
cells of constant height centred on each sample point, the other with curved surfaces
limited by squares on the XY plane, whose vertexes are the sample height points.
The height of a generic point (X,Y) is the height of the corresponding cell in the first
case. In the second model the height must be interpolated from the heights of the

Fig. 4.32 Digital Elevation
Models: DSM (black), DTM
(dashed), nDSM (bottom)
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vertexes of the corresponding cell or also of neighbouring cells. Both models are
classified as GRID models in most literature sources. From an irregular distributed
primary sample it is also possible to build a GRID model, creating first a TIN and
then interpolating the heights for the points of a regular sample. This produces a
secondary sample over which the GRID model is built. The nodes of the grid do not
correspond with original heights any more (Fig. 4.34).

As the Earth relief presents discontinuities like stream lines, ridges, cliff top lines,
etc., these are normally included in the height sample as breaklines that the model
algorithm shall preserve. Stereoplotting is a very efficient technique for the accurate
acquisition of terrain breaklines (Fig. 4.35). TIN models can easily integrate
breaklines in the primary sample, while in GRID models a variable mesh density,
being higher in the neighbourhood of breaklines, improves the terrain model.

Airborne LIDAR samples can be classified in order to separate ground and
non-ground elevations, so that it is possible to produce both a DTM and a DSM
from the same initial sample. This is particularly useful in forest regions, where the
laser impulse that presents a flying height dependent footprint diameter is reflected
partially from the foliage and partially from the ground itself, generating multiple
returns for the same impulse.

In the generation of a DSM from a sample, it must be considered that every
vertical surface of the object is a discontinuity of the height surface. Therefore,
buildings’ boundaries, bridges and other vertical limits of objects have to be
included as breaklines in the primary sample (Fig. 4.36).

Fig. 4.33 Digital elevation model generated by a TIN
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4.2.2 3D City Models

Three dimensional city models are a virtual 3D copy of the real world focused on
the description and visualization of cities and urban centres. Apart from the
attractive appearance and immediate visual interpretation potential of such models
by a normal user, with a lifetime acquaintance with a 3D environment and natu-
rally able to recognise objects in 3D, such models are useful in georeferenced
applications in fields where the third dimension is essential for a suitable analysis.
Examples of such fields are the following:

• Mapping of buildings and their heights
• Simulation of new buildings and developments
• Updating and keeping cadastral data
• Pervious and impervious surface inventories

Fig. 4.34 Generation of GRID models
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• Tree registers
• Disaster management
• Security and intelligence
• Line-of-sight and view shed analysis

Fig. 4.35 Perspective representation of a DTM obtained from stereoplotted data

Fig. 4.36 Chromostereoscopic representation of a DSM obtained from LIDAR data
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• Sound propagation and noise control
• Radio network planning
• Tourism

A 3D city model describes geospatial objects existing on an urban environment
(buildings, streets, vegetation, city furniture, etc.) allying their positional, geo-
metrical and graphical components to topological relations and semantic attributes.

Three-dimensional city models can have different scales and levels of detail
according to the objective. A standardization of representation and semantic rules has
been developed over the last few years within the Open Geospatial Consortium (OGC)
in order to allow that 3D city models, built in different environments, can be con-
nected, analysed and updated (Döllner et al. 2006). According to the initiators of this
proceeding, 3D city models can be classified in five levels of detail (LOD) as follows:

• LOD 0 a 2.5-D digital surface model with or without an orthoimage or a map
draped on it

• LOD 1 block representation of buildings with prismatic solids and flat roofs
• LOD 2 buildings with differentiated roof structures and surfaces
• LOD 3 buildings showing architectural details (windows, balconies, dormers,

etc.) eventually with photorealistic textures, streets, vegetation and city furniture
• LOD 4 buildings with interior structures (rooms, doors, stairs, furniture, etc.)

Photogrammetric methods are normally applied to build the graphic/geometric
component of LOD 0 models. Data for LOD 1 and LOD 2 models can also be
produced by stereo plotting or from LIDAR data (Fig. 4.37). LOD 3 can involve
terrestrial photogrammetric surveys of relevant buildings and terrestrial LIDAR
surveys of characteristic objects (Fig. 4.38). Details for LOD 4 models are nor-
mally produced by means of CAD. The photogrammetric data acquisition must
follow the specifications for a 3D GIS, somewhat different from the specifications
for a graphic line map or a 2D GIS, in order to achieve a city describing data
structure that can be queried across geographic, geometric and semantic attributes.

4.3 Orthorectification

The rectification of aerial images is an economical method of producing geoin-
formation by transforming a central perspective into an orthogonal projection.
A frame aerial image constitutes one central perspective of the terrain, while by
linear array images each line of each scene is a different central perspective. The
result of the orthorectification, in both cases, is an image with homogeneous scale,
where objects lie in the correct planimetric position, and with the same information
density of the original aerial image. This image is denominated orthoimage and is
geometrically a map like product. The already presented collinearity (4.2) are,
once again, the mathematical model for the transformation. Orthoimages are
generated for each aerial image of a coverage in an automatic process provided
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that a DTM already exists. For an orthoimage map sheet with a predefined rect-
angular terrain area, normally a mosaic of orthoimages must be built, which
requires a subsequent radiometric adjustment in the transition areas. For a paper
support output, a map grid is normally superimposed onto the image, as well as
some text information. Altimetry can also be superimposed in the form of contour
lines derived from the DTM. For the sake of legibility, the set of contour lines is
reduced. Figure 4.39 illustrates the required sequence of analytical transformations
for the orthoimage generation. The output image pixels are associated with the
object coordinate system. A pixel (X, Y), still without information (colour), is
projected in the DTM, which yields a Z value. The terrain point (X, Y, Z) is then
transformed by means of collinearity equations to the input aerial image whose
interior and exterior orientations are known. From the neighbouring pixels of the
calculated image position (x, y), an interpolated grey value gint is calculated and
then attributed to the initial pixel (X, Y) of the output image. This procedure that

Fig. 4.37 LOD 1–3D city model: University of Lisbon—Part of the Campus

Fig. 4.38 Details of a LOD 3—3D city model of Lisbon (Branco 2008)
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begins and ends in the output image guarantees the absence of gaps in the final
image.

4.3.1 True Orthos

The quality of an orthoimage depends on the resolution of the aerial images that
are at its origin, on the accuracy of the orientation parameters and on the quality of
the digital elevation model used in the rectification algorithm. Normal orthoimages
are produced using a DTM, correcting the images for radial distortion caused by
relief at ground level. In urban areas, however, an orthoimage produced in this way
seldom yields a satisfying product, because elevated objects may appear more or
less leaning, depending on the position relative to the image centre they had in the
original image. The top of the objects is not imaged at the correct planimetric
position, only the ground. Furthermore, there is no ground information ‘under’ the
leaning buildings. Wider objective angles and lower flying heights increase the
leaning buildings effect.

The use of a high precision DSM where all the elevated objects are modelled,
allow the production of an orthoimage where the top and the base of vertical
objects coincide and the planimetric position of every pixel is correct. Such DSM
can be obtained by stereoplotting or by combination of this with LIDAR data for
the height information.

It remains a question as to where to get the lost radiometric information after
the rectification with a DSM, meaning the objects that were occluded by higher
objects. A solution normally adopted is to fly with a higher overlapping, as already
mentioned in Sect. 2.2.

The images obtained capture the elevated objects from several different
perspectives and the leaning effect occurs in different radial directions, showing in
each picture a different part of the ground (or other occluded objects) in the direct

Fig. 4.39 Orthoimage
generation
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neighbourhood of the elevated object. The orthoimages generated with DSM from
neighbouring images show gaps at different locations. Because every pixel in
every orthoimage is in its correct planimetric position, a mosaic can be generated
by simply filling the gaps with patches of radiometric information from the other
rectified pictures and adjusting the radiometry of the final product (Fig. 4.40).

Several image processing algorithms are being implemented in order to auto-
mate the production of true orthoimages. Nevertheless, because of the high pre-
cision DSM required and the eventual intensive editing operations, it is a much
more expensive product than the normal orthoimage. A true ortho is geometrically

Fig. 4.40 Generation of true orthos (adapted from Oda et al. 2004)

Fig. 4.41 Perspective representation of a DTM with draped orthoimage (Porto Santo Island)
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a true map: an orthogonal projection of every object of the Earth surface on the XY
plane. They are also applied as georeferenced photo realistic texture for static and
dynamic perspective 3D representations of the terrain (Fig. 4.41).
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Chapter 5
Regional Gravity Field Modeling:
Theory and Practical Results

Heiner Denker

1 Introduction

Geodesy, with its three core areas positioning and reference systems, Earth rotation
determination, and gravity field modeling, is striving for a relative accuracy of at
least 10-9 for all relevant quantities, and to a great extent this goal has already
been reached (10-9 corresponds to about 6 mm relative to the Earth’s radius and
10�8 ms�2 ¼ 1 lGal in terms of gravity). Regarding gravity field modeling, the
highest accuracy demands are from geodesy, especially Global Navigation
Satellite System (GNSS) positioning, oceanography, and geophysics. In this
context, the geoid and quasigeoid are of major interest; e.g., these quantities are
required for the transformation between the purely geometric GNSS (ellipsoidal)
heights and gravity field related heights as well as for the modeling of the (mean)
dynamic ocean topography (DOT), requiring accuracies at the level of about 1 cm
or even below. In this way, the importance of geoid and quasigeoid modeling has
increased considerably—also for economic reasons—and as early as 1982 Torge
(1982) postulated a ‘‘renaissance of the geoid.’’

Over the past decades, significant progress has been achieved in the collection of
high-resolution gravity and terrain data, computing and modeling techniques, as
well as the operational availability of satellite data from several altimetry and
gravity field missions. Of special interest are the results from the CHAllenging
Minisatellite Payload (CHAMP, active from 2000 to 2010), Gravity Recovery And
Climate Experiment (GRACE, operational since 2002), and Gravity field and
steady-state Ocean Circulation Explorer (GOCE, launched in 2009) missions; while
the CHAMP and GRACE missions already delivered the long wavelength geoid
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with an accuracy of about 1 cm up to a resolution (half wavelength) of 650 and
200 km, respectively, the GOCE mission is targeting at an accuracy of 1–2 cm for
the geoid and 1 mGal for gravity, both at a resolution of approximately 100 km. In
addition, the GRACE mission allows the determination of the long wavelength
geoid (up to about 350 km resolution) with an accuracy of 1 mm on a monthly basis,
from which time variations of the geoid can be deduced. However, due to the
required satellite altitudes of at least a few 100 km (below this level, satellite orbits
become unstable due to air drag, etc.), the pure satellite gravity field solutions alone
can only provide long wavelength gravity field models associated with an omission
error (gravity field components not included in the model) of several decimeters
regarding the geoid. Consequently, even in the future, only a combination of the
satellite gravity fields with high-resolution terrestrial (mainly gravity and terrain)
data can provide the complete geoid spectrum (all wavelengths) with an accuracy of
1 cm or even better. In this context, the satellite and terrestrial data ideally com-
plement each other, with the satellite data providing accurately the long wavelength
gravity field structures, while the terrestrial data sets, with potential weaknesses in
the large-scale accuracy and coverage, mainly contribute the short wavelength
features.

Altogether, there is considerable interest in high-resolution regional gravity
field modeling, i.e., on a provincial to national and continental scale (several
1,000 km), especially with regard to the geoid and quasigeoid. At present, the
combination of terrestrial data sets with up-to-date satellite gravity field models
allows the calculation of geoid and quasigeoid models with accuracies of a few
centimeters, provided that high-resolution and high-quality terrestrial and satellite
data are utilized; furthermore, in view of the GOCE mission, the accuracy may be
improved to the level of about 1 cm in the near future, being close to the general
accuracy goal of 10-9 in geodesy.

This chapter specifically refers to the experiences gained at the Institut für
Erdmessung (IfE), Leibniz Universität Hannover (LUH), Germany, within the
field of gravity field modeling, especially the calculation of the geoid and quasi-
geoid. IfE has a long tradition in local and regional geoid and quasigeoid deter-
minations, starting even before the (GNSS) Global Positioning System (GPS) era,
when at the beginning of the 1970s a test network was set up in the Harz
mountains in Northern Germany, this being the classic geoid research area of
Helmert (Torge 1977). Then, with the advent of the GPS, studies on geoid and
quasigeoid modeling with centimeter accuracy were intensified, and in a small test
area near Hannover, Germany, it could be shown for the first time that an
agreement between gravimetric and GPS/leveling results at the centimeter level is
in fact possible (Denker and Wenzel 1987). These computations were subse-
quently extended to larger regions, covering Lower Saxony, Germany (Denker
1988), and the whole of Germany (Denker 1989). Based on these experiences, IfE
proposed to perform corresponding computations for the whole of Europe, and this
task has been supported by the International Association of Geodesy (IAG) since
1990; IfE served as the computing center within the IAG Geoid Sub-Commission
for Europe from 1990 to 2003, from 2003 (when the new IAG structure was
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implemented) to 2011 the work was supported in the form of an IAG
Commission 2 Project ‘‘CP2.1—European Gravity and Geoid Project (EGGP),’’
and since 2011 this task has continued as IAG Sub-Commission 2.4a ‘‘Gravity and
Geoid in Europe.’’ Major results of this IAG enterprise are the high-resolution
European geoid and quasigeoid models EGG1997 (Denker and Torge 1998) and
EGG2007/2008 (see Sect. 4).

After providing the motivation for preparing this chapter, the necessary
fundamentals of physical geodesy are described in Sect. 2, including reference
systems, basic gravity field properties, the geoid and height systems, the normal
gravity field, as well as some remarks about temporal gravity field variations, tidal
systems, and atmospheric effects. The intention of this section is to provide all the
basics needed for high-precision gravity field modeling with as few approximations
as possible. Section 3 describes the methodology of gravity field modeling, where
the disturbing potential is the primary quantity of interest. The emphasis is on the
spatial gravity field description related to quantities defined at the Earth’s surface,
such as the disturbing potential as well as the height and gravity anomalies, which
require no assumptions about the Earth’s interior gravity field (in contrast to the
geoid). After giving an overview on geodetic boundary value problems, the line-
arization of the boundary conditions (observation equations) is discussed, aiming at
the rigorous implementation of a high-degree geopotential model as a reference
field. Then the spherical and constant radius approximations are introduced,
leading to the classical Poisson, Hotine, Stokes, and other integral formulas.
Afterwards, the solution of Molodensky’s boundary value problem (related to the
Earth’s surface) and Stokes’s boundary value problem (related to the geoid) are
outlined. In addition, the spectral combination technique, least-squares collocation,
and astronomical leveling are mentioned. Although most of these modeling
techniques can be utilized globally, they are primarily used at regional (provincial
to national and continental) scale in connection with the remove–compute–restore
(RCR) technique and topographic reductions as well as a global geopotential
model, which is described at the end of Sect. 3. Finally, Sect. 4 gives some practical
results related to the European geoid and quasigeoid calculations carried out at IfE,
starting with a discussion of the data requirements, then an outline of the European
gravity and geoid project and the collected gravity and terrain data sets is given,
followed by an overview on the development and evaluation of the European
Gravimetric (Quasi)Geoid model EGG2008.

2 Fundamentals of Physical Geodesy

2.1 Reference Systems

The definition and realization of reference systems has become a major part of
geodesy. Length, mass, and time are basic quantities used in geodesy, the units being
meter (m), kilogram (kg), and second (s), respectively, as defined through the
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International System of Units (SI), see BIPM (2006). Furthermore, fundamental
constants (e.g., the gravitational constant) are regularly updated and recommended
by the Committee on Data for Science and Technology (CODATA); the latest set of
constants originates from 2006 (Mohr et al. 2008).

For the modeling of the Earth’s gravity field, global and local reference systems
are needed. In this context, a terrestrial reference system (TRS), also denoted as
Earth-fixed (global) reference system, is of vital importance. A TRS is a spatial
reference system co-rotating with the Earth in its diurnal motion in space, in which
points at the solid Earth’s surface undergo only small variations with time
(e.g., due to geophysical effects related to tectonics or tides). With regard to the
terminology, it is fundamental to distinguish between a ‘‘reference system,’’ which
is based on theoretical considerations or conventions, and its realization, the
‘‘reference frame,’’ to which users have access. The International Earth Rotation
and Reference Systems Service (IERS) is in charge of defining, realizing and
promoting the International Terrestrial and Celestial Reference System (ITRS and
ICRS, respectively), including the necessary transformations; the use of these
reference systems is recommended by the International Astronomical Union (IAU)
and the International Union of Geodesy and Geophysics (IUGG).

The ITRS origin is at the center of mass of the whole Earth including oceans
and atmosphere (geocenter), the unit of length is the meter (SI), the orientation is
equatorial and initially given by the Bureau International de l’Heure (BIH) ter-
restrial system at epoch 1984.0, and the time evolution of the orientation is ensured
by using a no-net-rotation condition with regard to the horizontal tectonic motions
over the whole Earth. Accordingly, the Z-axis is directed towards the IERS ref-
erence pole (i.e., the mean terrestrial North Pole), the axes X and Y span the
equatorial plane, with the X-axis being defined by the IERS reference meridian
(Greenwich), such that the coordinate triplet X, Y, Z forms a right-handed Carte-
sian system. The instantaneous North Pole (more precisely, the Celestial Inter-
mediate Pole, CIP, which is defined conventionally by the IERS precession and
nutation models) deviates from the IERS reference pole by the effect of polar
motion (described by rectangular coordinates xP, yP). The ITRS is materialized by
the International Terrestrial Reference Frame (ITRF), consisting of the three-
dimensional positions and velocities of stations observed by space geodetic
techniques, where the positions are regularized in the sense that high-frequency
time variations (mainly geophysical ones) are removed by conventional correc-
tions. The most recent realization of the ITRS is the ITRF2008 with the reference
epoch 2005.0. The accuracy of the geocentric positions (X, Y, Z) is at the level of
1 cm or better. For further details including Earth orientation parameters (EOPs)
and transformations see IERS (2010), Kovalevsky and Seidelmann (2004), and
Angermann et al. (2012). A corresponding TRS is the World Geodetic System
1984 (WGS84) which is intended to be as closely coincident as possible with the
ITRS; it is maintained by the National Geospatial-Intelligence Agency (NGA),
U.S.A., for use with the NAVSTAR Global Positioning System (GPS). The latest
realization of WGS84 (i.e., the terrestrial reference frame, TRF) is denoted as
‘‘Reference Frame G1150;’’ it agrees with the ITRF at the level of 1 cm.
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Moreover, the WGS84 definitions also include the parameters of a level ellipsoid
(see Sect. 2.5); for further details see NIMA (1997 and 2002).

Customarily, owing to the Earth’s general shape (approximately spherical with
a slight flattening at the poles), ellipsoidal geographic coordinates (ellipsoidal
latitude, longitude, and height, u, k, h, also known as geodetic coordinates), based
on an ellipsoid of revolution (ellipse rotating about its minor (polar) axis), are
employed in many geodetic applications; regarding the ITRF solutions; IERS
(2010) recommends the Geodetic Reference System 1980 (GRS80) ellipsoid (for
further details see Sect. 2.5). In addition, spherical coordinates (polar distance or
spherical colatitude, spherical longitude, radius, h, k, r; the spherical and ellip-
soidal longitudes are identical) are of great significance in gravity field modeling.
After introducing a reference ellipsoid (e.g., by the geometrical parameters
a = semimajor axis and e = first eccentricity), the following relation holds:

X ¼
X
Y
Z

0
@

1
A ¼

ðN þ hÞ cos u cos k
ðN þ hÞ cos u sin k
ðð1� e2ÞN þ hÞ sin u

0
@

1
A ¼

r sin h cos k
r sin h sin k

r cos h

0
@

1
A: ð5:1Þ

N is the prime vertical radius of curvature of the reference ellipsoid, which can be
computed as

N ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 u

p : ð5:2Þ

The inversion of the system (5.1) is straightforward for the spherical case and can
be carried out iteratively for the ellipsoidal case (Torge 2001); in addition, formula
(5.1) can be used to transform ellipsoidal into spherical coordinates (e.g., needed in
connection with spherical harmonic expansions; see Sects. 2.2 and 3.3) and vice
versa.

In this context, it should be noted that historically many ellipsoidal systems and
the associated Cartesian systems (i.e., national reference frames) were non-
geocentric. This is mainly due to the orientation of the classical geodetic networks
by astronomical observations, which provide only direction information, but no
direct access to the geocenter. In this case, the non-geocentric Xng, Yng, Zng system
can be transformed to the X, Y, Z system by a three-dimensional similarity
transformation (Torge 2001):

X ¼ X0 þ ð1þ mÞRðeXng ; eYng ; eZngÞXng ð5:3Þ

with

X0 ¼
X0

Y0

Z0

0
@

1
A; RðeXng ; eYng ; eZngÞ ¼

1 eZng �eYng

�eZng 1 eXng

eYng �eXng 1

0
@

1
A; ð5:4Þ

where X0 is a translation vector with the coordinates of the origin of the Xng, Yng,
Zng system with respect to the geocenter, m is a (small) scale correction, R is a
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rotation matrix with three (small) Eulerian angles, and Xng is the coordinate vector
in the non-geocentric system. It should be noted that the transformation model
(5.3) is a linearized formula which is sufficient due to the small size of the rotation
angles; furthermore, the sign conventions are according to Torge (2001). The
geodetic datum describes the orientation of any geodetic system with respect to the
global geocentric system (seven transformation parameters of (5.3)) and also
includes the parameters of the reference ellipsoid employed. Numerous examples
of national (non-geocentric) geodetic datums can be found in NIMA (1997) and
Torge (2001); the translation parameters can reach several hundreds of meters, the
scale corrections may be in the order of 10-5, the rotation angles are usually quite
small at the level of 1 arc second or below (due to the orientation by astronomical
observations), and miscellaneous reference ellipsoids were employed for national
geodetic surveys, carried out since the nineteenth century.

After introducing ellipsoidal coordinates in the vectors X and Xng in (5.3),
while also allowing a change of ellipsoid parameters, the following transformation
formula is obtained for the ellipsoidal heights:

h ¼ hng þ cos u cos k X0 þ cos u sin k Y0 þ sin u Z0 � Daþ a sin2 u Df ; ð5:5Þ

with the ellipsoidal heights h and hng in the geocentric and non-geocentric system,
respectively, and the changes in the ellipsoid parameters Da = a - ang (semi-
major axis) and Df = f - fng (flattening). The above formula is based on spherical
approximations (terms of the order of the flattening o(f) are neglected), where the
rotation angles have no effect. The translation parameters (X0, Y0, Z0) can be
converted into changes in the ellipsoidal coordinates of a fundamental station, and
hence be interpreted as height shift and tilts in north–south and east–west direction
of the respective ellipsoid surfaces. Formula (5.5) is applied, e.g., for the trans-
formation of geoid and quasigeoid heights. Corresponding formulas for the
transformation of latitudes and longitudes (ung, kng ? u, k) can be found in Torge
(2001); in addition, more precise transformation formulas without the usual
spherical approximations are given in Heck (2003). Finally, it is assumed in the
following that all coordinates refer directly (e.g., through the application of space
geodetic techniques) or have been converted (from national geodetic datums)
consistently to an IERS reference frame (e.g., ITRF 2008, epoch 2005.0).

Because most geodetic and astronomical observations refer to the Earth’s
gravity field by orientating observation instruments along the local vertical
(through levels or plummets), local coordinate systems related to the Earth’s
gravity field are introduced. These local astronomical (Cartesian) systems have
their origin at the observation point P, the z-axis points toward the zenith (tangent
of the plumb line, outer normal of the level surface), while the x-axis (north) and
y-axis (east) span the horizontal plane, which is tangential to the level surface
at P. The local astronomical system (x, y, z) is left-handed. As the direction of the
plumb line (local vertical) with respect to the global geocentric system is given by
the astronomical latitude U and longitude K (see Fig. 5.1), the coordinate vector
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x in the local astronomical system can be transformed into a coordinate difference
vector DX in the global geocentric system by

DX ¼ Ax x ð5:6Þ

with

Ax ¼ AxðU;KÞ ¼
� sin U cos K � sin K cos U cos K
� sin U sin K cos K cos U sin K

cos U 0 sin U

0
@

1
A : ð5:7Þ

The transformation matrix Ax is orthogonal, thus

A�1
x ¼ AT

x : ð5:8Þ

Accordingly, local ellipsoidal and spherical (Cartesian) coordinate systems can be
introduced as needed, for example in connection with the rigorous calculation of
parameters related to the actual, normal, or anomalous gravity field (see Sects. 2.3,
2.5, and 3.2). Regarding the local ellipsoidal system (xe, ye, ze), the ze-axis points
toward the ellipsoidal zenith (ellipsoidal normal), with the xe-axis (north) and
ye-axis (east) being perpendicular to it. On the other hand, in the local spherical
system (xs, ys, zs), the zs-axis points radially outwards (along the geocentric radius
vector), with the axes xs, ys (north and east) again being perpendicular to it (see
Fig. 5.2). Analogous to (5.6), the transformation to the global system is given by

DX ¼ Axe xe; Axe ¼ Axeðu; kÞ; ð5:9Þ

DX ¼ Axs xs; Axs¼ Axsð90� � h; kÞ : ð5:10Þ

Fig. 5.1 Earth-fixed global
geocentric and local
astronomical system
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The above transformation matrices Axe and Axs are defined according to (5.7); the
only difference is that the parameters U, K are replaced by u, k and 90� - h, k,
respectively. The transformation matrices also relate to the coordinate basis vectors
of the corresponding Cartesian coordinate systems, e.g., if eX, eY, eZ are unit
vectors along the coordinate axes X, Y, Z, and exs ; eys ; ezs are the corresponding
vectors along the axes xs, ys, zs, the following relation holds (see also Wenzel 1985):

eX

eY

eZ

0
@

1
A¼ Axs

exs

eys

ezs

0
@

1
A ¼

� cos h cos k � sin k sin h cos k
� cos h sin k cos k sin h sin k

sin h 0 cos h

0
@

1
A exs

eys

ezs

0
@

1
A: ð5:11Þ

Moreover, the transformation formulas can also be combined to transform coor-
dinates and basis vectors from one local system to another.

2.2 Newton’s Law of Gravitation and Potential

According to Newton’s law of gravitation, two point masses m1 and m2 attract each
other with gravitational (attractive) force which is directly proportional to the
product of their masses and inversely proportional to the square of the distance l
between them. The gravitational force is directed from either point mass to the
other and applies equally to one mass as the other. The vector form of Newton’s
law is given by

Fb ¼ �G
m1m2

l2
l

l
; ð5:12Þ

where l/l is a unit vector pointing from m1 to m2, Fb is the gravitational force
vector attached to m2 and pointing to m1, and G is known as Newton’s

Fig. 5.2 Global ellipsoidal,
local ellipsoidal, and local
spherical system
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gravitational constant. G can be determined by experiment and the current best
value (recommended by CODATA 2006; Mohr et al. 2008) is

G ¼ ð6:67428 � 0:00067Þ � 10�11 m3 kg�1 s�2 : ð5:13Þ

The SI unit of force is m kg s-2 with the special name ‘‘newton’’ and symbol
‘‘N,’’—see BIPM (2006). In this context, gravitation is exclusively based on
Newton’s classical formulation; for a discussion of some aspects related to Ein-
stein’s theory of general relativity consult Kovalevsky and Seidelmann (2004),
IERS (2010), Jekeli (2009), or Müller et al. (2008).

A gravitational acceleration (also termed gravitation) can be ascribed to the
gravitational force Fb, which represents the acceleration that one mass undergoes
due to the gravitational attraction of the other. From (5.12) it follows, for the
attracted point P (after dropping the indices),

b ¼ �G
m

l2
l

l
; ð5:14Þ

where m is the attracting mass, l = r 2 r0, with r and r0 being the position vectors
of the attracted point P and the source point P0, respectively. By the law of
superposition, the gravitational acceleration of an extended body like the Earth can
be computed as the vector sum of the accelerations generated by the individual
point masses (or mass elements), yielding

b ¼ bðrÞ ¼ �G

ZZZ
Earth

r� r0

r� r0j j3
dm ¼ �G

ZZZ
Earth

r� r0

r� r0j j3
qdv ; q ¼ qðr0Þ ;

ð5:15Þ

where dm is the differential mass element, q is the volume density (unit kg m-3),
and dv is the volume element. The SI unit of acceleration is ms-2 (BIPM 2006).
However, the non-SI unit gal is still used frequently in geodesy and geophysics,
and it is also listed in BIPM (2006) under ‘‘non-SI units accepted for use with the
SI, Table 9’’ (name of unit: gal; symbol of unit: Gal):

1 Gal = 1 cm s�2¼ 0:01 m s�2; 1K Gal = 10 m s�2; 1 mGal = 10�5 m s�2;

1lGal = 10�8 m s�2 :

ð5:16Þ

The gravitational acceleration vectors b form a conservative vector field, also
known as potential field. A conservative vector field is a vector field which is the
gradient of a scalar potential function. It has the important property that line
integrals from one point to another are path independent and, conversely, path
independence is equivalent to the vector field being conservative. Conservative
vector fields are also irrotational or non-vortical, meaning that (in three dimensions)
they have vanishing curl; the converse of this property (i.e., fields with vanishing
curl are conservative) is also true if the domain is simply connected (Kellog 1953).
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The gravitational acceleration vector b can be represented as the gradient of the
gravitational potential V:

b ¼ grad V : ð5:17Þ

The gradient vector has the properties that it points in the direction of greatest
change of the potential function V, its magnitude equals the rate of change with
respect to the distance in this direction, and it is everywhere normal to a surface of
constant potential V. Furthermore, the directional derivative of V with respect to
the distance in a particular direction (specified by a vector d) is the projection of
gradV onto that direction.

For a point mass m, see (5.14), the gravitational potential is given by

V ¼ Gm

l
; with lim

l!1
V ¼ 0 ; ð5:18Þ

and correspondingly for the Earth, see (5.15), the potential is obtained by

V ¼ VðrÞ ¼ G

ZZZ
Earth

dm

l
¼ G

ZZZ
Earth

q dv

l
; with lim

l!1
V ¼ 0 ; ð5:19Þ

where in both cases the latter condition implies that the potential is regular at
infinity. It can easily be shown that the acceleration vectors in (5.14) and (5.15)
result from (5.18) and (5.19) by applying the gradient operator, respectively. In
this context, it should be noted that the potential V is defined with a positive sign in
geodesy, in contrast to physics, where it is usually defined with opposite sign
(conceptually closer to potential energy; Jekeli 2009).

According to potential theory, the gravitational effect of concentric homoge-
neous mass shells is equal to the effect of the entire mass being concentrated at the
center of mass of the object. This property is useful for approximating the effect of
celestial bodies at larger distances or the computation of atmospheric effects (see
Sect. 2.6). On the other hand, this relates to the inverse problem of potential
theory; the inverse problem (determination of the masses from the potential), in
contrast to the direct problem (determination of the potential from the masses), has
no unique solution, because, in general, there are infinitely many mass distribu-
tions possible, which are in accordance with a given exterior potential function.

The gravitational potential at a point P indicates the work done by gravitation in
order to move the unit mass from infinity (V = 0) to P (Sigl 1985; Torge 2001).
The unit of the potential is m2s-2. If the density structure and geometry of the
entire Earth were known, (5.19) would permit the calculation of the gravitational
potential and its functionals. In reality, of course, this information is not available
with sufficient accuracy, e.g., densities are known with only two or three signifi-
cant digits, and global Earth models merely consider radial density structures.
Therefore, the determination of the exterior potential field can be solved only by
measurements performed at or above the Earth’s surface (boundary value prob-
lems; see Sects. 3.1–3.5); for a comprehensive presentation of this and further
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specialized topics of potential theory (e.g., existence and uniqueness theorems, or
the classical integral theorems of Gauss, Green, and Stokes, which are of great
importance in physical geodesy), reference should be made to the textbooks of
Kellog (1953), MacMillan (1958), and Sigl (1985); furthermore, a concise over-
view is given in Jekeli (2009).

The gravitational (volume) potential V according to (5.19) and its first deriv-
atives are continuous and bounded everywhere; this holds even in the case that the
evaluation point P is on the bounding surface or inside the mass distributions (case
l = 0, weak singularity; see Jekeli 2009; Torge 2001). The second derivatives of
V satisfy under certain conditions on the mass density q (so-called Hölder con-
ditions; see Kellogg 1953; Heck 1997) the following partial differential equation,
known as Poisson’s equation:

DV ¼ o2V

ox2
þ o2V

oy2
þ o2V

oz2
¼ Vxx þ Vyy þ Vzz ¼ �4pGq ; ð5:20Þ

where D is the Laplace operator, and x, y, z are coordinates in any Cartesian
system. Consequently, the second derivatives of V exhibit discontinuities where
abrupt changes of the mass density q occur. A special case of the above equation
applies for those regions where the density vanishes (i.e., in free space); then
Poisson’s equation turns into the Laplace equation:

DV ¼ 0 : ð5:21Þ

The Laplace operator D may also be defined as the divergence of a gradient field, i.e.,

DV ¼ div ðgrad VÞ : ð5:22Þ

As the divergence operator represents the (gravitational) flux generated per unit
volume at each point of the field, (5.22) emphasizes that the sources of the
gravitational field are the masses, i.e., the divergence of the field is zero in free
space and non-zero inside the masses. A vector field with constant zero divergence
is also called solenoidal (or incompressible).

The solutions of the Laplace equation are known as harmonic functions, which
are important in many fields of mathematics and physics, such as potential fields
related to gravitation, electrostatics, magnetics, etc. For instance, every Newtonian
potential is a harmonic function in free space, and conversely, every harmonic
function can be represented as a Newtonian potential of a mass distribution (Jekeli
2009). Formally, (5.21) represents a partial differential equation of second order for
V, which holds in the exterior space of the Earth (the atmosphere, etc., are neglected
for the moment). Like any differential equation, a complete solution is obtained
only with the application of boundary conditions (conditions which the solution
must satisfy at the boundary of the region, i.e., the Earth’s surface; Jekeli 2009).

Laplace’s equation (5.21) can be solved by introducing an appropriate
coordinate system. In geodesy, the solution based on spherical polar coordinates
(h, k, r) is of great significance. A solution of DV = 0, rewritten in spherical
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coordinates, can be found by the method of separation of variables, where the
solution of V is postulated as V(h, k, r) = f(h) g(k) h(r). The general solution can
be written as

Vðh; k; rÞ ¼ GM

a

X1
n¼0

a

r

� �nþ1Xn

m¼0

Cnm cos mkþ Snm sin mkð ÞPnmð cos hÞ ; ð5:23Þ

where n, m are integers denoted as degree and order of the expansion, GM is the
geocentric gravitational constant (gravitational constant G times the mass of the
Earth M), a is in the first instance an arbitrary constant, but is typically set equal to
the semimajor axis of a reference ellipsoid, Pnmðcos hÞ are the associated Legendre
functions of the first kind, and Cnm; Snm are the spherical harmonic coefficients
(also denoted as Stokes’s constants). In particular in satellite geodesy, sometimes
the following conventions are used:

Jnm ¼ �Cnm; Knm ¼ �Snm; for n 6¼ 0 or m 6¼ 0 ;

J00 ¼ C00 ¼ 1; for n ¼ 0 and m ¼ 0 :
ð5:24Þ

For the case m = 0, the index m is usually dropped, leading to the coefficients Jn

and the Legendre polynomials Pnðcos hÞ.
The (unitless) spherical harmonic coefficients Cnm; Snm represent mass integrals,

as the spherical harmonic expansion (5.23) is just another way of expressing the
volume integral over the Earth’s masses in (5.19). Furthermore, the low degree
coefficients have a simple physical interpretation. The coefficient C00 ¼ 1 leads to
the zero degree term GM/r of the gravitational potential, which represents the
effect of a point mass, or equivalently a radially layered spherical Earth. The
degree one terms are associated with the coordinates of the Earth’s center of mass;
they are forced to zero if the coordinate system is geocentric. The terms of degree
two are connected with the moments and products of inertia (see Torge 2001).
Regarding the magnitude of the harmonic coefficients, C20 (J2 ¼ �C20 is also
known as the dynamical form factor, characterizing the Earth’s flattening) is more
than three orders of magnitude smaller than the central term, and the remaining
coefficients contribute again at least two to three orders of magnitude less than C20;
indicating that the bulk of the potential can be described by an ellipsoidal model.

For numerical reasons, it is convenient to introduce the so-called fully normalized
associated Legendre functions and corresponding spherical harmonic coefficients:

Pnmðcos hÞ ¼ Fnm Pnmðcos hÞ ; Cnm

Snm

( )
¼ 1

Fnm

Cnm

Snm

� �
;

Fnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð2nþ 1Þ ðn� mÞ!

ðnþ mÞ!

s
with k ¼

1 for m ¼ 0

2 for m 6¼ 0

�
:

ð5:25Þ

With (5.25), the spherical harmonic expansion (5.23) can be written compactly as
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Vðh; k; rÞ ¼
X1
n¼0

a

r

� �nþ1 Xn

m¼�n

VnmYnmðh; kÞ; ð5:26Þ

with

Ynmðh; kÞ ¼ Pn mj jðcos hÞ cos mk for m� 0
sin mj jk for m\0

�
; Vnm ¼

GM

a

Cnm for m� 0

Snm for m\0

(
:

ð5:27Þ

The functions r�ðnþ1ÞYnmðh; kÞ in (5.26) are called solid spherical harmonics,
while Ynmðh; kÞ are called Laplace’s surface spherical harmonics, fulfilling the
orthogonality relations

1
4p

ZZ
r

Ynmðh; kÞYn0m0 ðh; kÞ dr ¼ 1 for n ¼ n0 and m ¼ m0

0 otherwise

�
; ð5:28Þ

where r is the unit sphere, and dr is the corresponding surface element. In this
context, the spherical harmonic expansion may also be regarded as a complete
system of orthogonal basis functions (eigenfunctions), with the coefficients being
the corresponding eigenvalues, which can be interpreted as the spectrum on the
sphere (Jekeli 2009).

The infinite spherical harmonic series (5.23), or equivalently (5.26), converges
uniformly for all r [ Rc, where Rc is the radius of the sphere that encloses all
terrestrial masses (the so-called Brillouin sphere), while the convergence below
this sphere down to the Earth’s surface (i.e., in free space) has been a subject of
controversy in the literature and is still not fully solved. However, due to the
theorem of Runge-Krarup, any regular harmonic function can be approximated
arbitrarily well by a spherical harmonic series in the mass-free space, and hence
convergence of the series can be assumed there for all practical applications,
including truncated spherical harmonic series. For further details on this topic, see,
e.g., Moritz (1980) or Jekeli (1983, 2009). Besides the spherical harmonic series
expansion, which is of outstanding importance in geodesy, other solutions of the
Laplace equation (5.21) also exist for specific coordinate types. Of some relevance
are the ellipsoidal harmonics, which are based on elliptical coordinates (b, k, u;
b = reduced latitude; k = ellipsoidal longitude; u = semiminor axis of a confocal
ellipsoid; see Heiskanen and Moritz 1967). Ellipsoidal harmonics are used, e.g., in
connection with the (ellipsoidal) normal gravity field (Heiskanen and Moritz 1967)
or for intermediate results within the development of high-degree global geopo-
tential models (Pavlis et al. 2008); the elliptical coordinates, b, k, u, should not be
confused with the ellipsoidal geographic coordinates, u, k, h, which do not admit a
separation of variables solution of the Laplace equation (Grafarend 1988, Jekeli
2009).
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2.3 The Earth’s Gravity Field

A body rotating with the Earth experiences the resultant of the gravitational force,
Fb, and the centrifugal force, Fc, due to the Earth’s rotation, while an artificial
satellite, not rotating with the Earth, is affected only by gravitation. Regarding the
centrifugal force, Fc, again an acceleration (acting on a unit mass) can be ascribed
to it, which is directed outwards and perpendicular to the rotation axis. Based on
the Earth-fixed reference system (X, Y, Z; see Sect. 2.1), the centrifugal acceler-
ation is given by

z ¼ zðpÞ ¼ x2 p; pT ¼ X Y 0ð Þ; p ¼ pj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
; ð5:29Þ

where x is the angular velocity, and p is the distance vector from the rotation axis
(Z), with p and z having the same direction.

The centrifugal acceleration vectors z also form a conservative vector field and
hence can be represented as the gradient of a potential function Z. With

z ¼ grad Z ; ð5:30Þ

the centrifugal potential Z becomes

Z ¼ ZðpÞ ¼ x2

2
p2 : ð5:31Þ

Applying the Laplace operator on Z yields

DZ ¼ 2 x2 ; ð5:32Þ

i.e., the centrifugal potential Z is not harmonic, as opposed to V.
The gravity acceleration (or gravity) vector g is the resultant of the gravitation

b and the centrifugal acceleration z:

g ¼ bþ z : ð5:33Þ

The force of gravity Fg is obtained by multiplying g by the mass m of the
attracted object, i.e., Fg = m g. The direction of g is the direction of the plumb line
(vertical), the magnitude g is called the gravity intensity (or often just gravity; see
Torge 2001). In this context, time variations are not considered here, assuming that
they are taken into account by appropriate reductions (see Sect. 2.6).

Finally, with

g ¼ gradW ¼ bþ z ¼ gradV þ grad Z ; ð5:34Þ

the gravity potential W of the Earth is given by

W ¼ WðrÞ ¼ V þ Z ¼ G

ZZZ
Earth

dm

l
þ x2

2
p2 : ð5:35Þ
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From (5.20) and (5.32), the generalized Poisson equation is obtained:

DW ¼ �4pGqþ 2 x2; ð5:36Þ

which reduces to the generalized Laplace equation in free space:

DW ¼ 2 x2: ð5:37Þ

The gravity vector g and accordingly the gradient operator can be expressed in
various coordinate systems. Regarding the global Cartesian Earth-fixed coordinate
system X, Y, Z, the following representations are common:

g ¼ grad W ¼

oW

oX
oW

oY
oW

oZ

0
BBBBB@

1
CCCCCA
¼

WX

WY

WZ

0
@

1
A ¼ WX½ � ¼ WXeX þWY eY þWZeZ; ð5:38Þ

where the gradient vector is first defined as a column vector, and second written by means
of the unit vectors eX, eY, eZ, pointing along the coordinate axes X, Y, Z, respectively.
In the case where spherical coordinates h, k, r are employed (e.g., in connection with
a spherical harmonic expansion of the gravitational potential V), it is convenient
to represent g with respect to the local spherical system (xs, ys, zs; see Sect. 2.1):

g ¼ grad W ¼

oW

oxs

oW

oys

oW

ozs

0
BBBBB@

1
CCCCCA
¼

Wxs

Wys

Wzs

0
@

1
A ¼ Wxs½ � ¼ Wxs exs þWys eys þWzs ezs ; ð5:39Þ

where exs ; eys ; ezs are again unit vectors pointing along the local coordinate axes xs, ys,
zs, respectively. The derivatives of W with respect to the local spherical system can be
obtained by using the chain rule for differentiation (Tscherning 1976a, b), e.g.,

o

oxs
¼ oh

oxs

o

oh
þ ok

oxs

o

ok
þ or

oxs

o

or
; and

o

oys
;

o

ozs
accordingly, ð5:40Þ

which, given (5.1) and (5.10), leads to

Wxs½ � ¼ � 1
r Wh

1
r sin h Wk Wr

� �T
; ð5:41Þ

with Wh being the derivative with respect to h, etc. Then with (5.10) or (5.11), the
transformation to the Earth-fixed system yields

WX½ �¼ Axs Wxs½ � : ð5:42Þ

On the other hand, in the Earth-fixed system, the components of the gravity vector
g can also be expressed by the astronomical latitude and longitude U, K (plumb
line parameters; see Fig. 5.1):
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g ¼ �gn ¼ �g
cos U cos K
cos U sin K

sin U

0
@

1
A; ð5:43Þ

which together with (5.38) yields

sin U ¼ � 1
g

WZ ; cos U ¼ 1
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

X þW2
Y

q
;

sin K ¼ � WY

g cos U
¼ � WYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2
X þW2

Y

p ; cos K ¼ � WX

g cos U
¼ � WXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2
X þW2

Y

p ;

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

X þW2
Y þW2

Z

q
:

ð5:44Þ

U, K, and W(X, Y, Z) form the so-called natural coordinates (Torge 2001).
A surface of constant gravity potential W is designated as equipotential, level,
or geopotential surface, and the gravity vector g is everywhere normal to it.

Following the line of thought used for deriving (5.41), the second derivatives of
the gravity potential W with respect to the local spherical system are given by
(Moritz 1971; Tscherning 1976a)

Wxsxs½ � ¼ grad g ¼ gradðgrad WÞ ¼
Wxsxs Wxsys Wxszs

Wysxs Wysys Wyszs

Wzsxs Wzsys Wzszs

0
B@

1
CA

¼

1
r Wr þ 1

r2 Whh
1

r2 sin h
ðcot h Wk �WhkÞ 1

r2 Wh � 1
r Whr

� � � cot h
r2 Wh þ 1

r Wr þ 1
r2 sin2 h

Wkk
1

r sin h � 1
r Wk þWkr

� �
� � � � � � Wrr

0
BB@

1
CCA;

ð5:45Þ

where, e.g., Whh is the second derivative with respect to h, etc. The corresponding
matrix with respect to the Earth-fixed system (X, Y, Z) is given by

WXX½ �¼ Axs Wxsxs½ �ðAxsÞT : ð5:46Þ

The matrix of the second derivatives of W, e.g., in the form (5.45) or (5.46), is also
denoted as gravity gradient tensor, Eötvös tensor, or Marussi tensor; it can be
expressed by means of curvature parameters, which completely describe the
geometry (curvature) of the level surfaces and the plumb lines (Marussi 1985).
The gravity gradient tensor includes only five independent elements; the matrix is
symmetric (because of curl g = curl grad W = 0, i.e., Wxy = Wyx, etc.) and the
trace must fulfil the conditions (5.36) or (5.37), respectively.

The approach of computing, in the first instance the (first and second) derivatives
with respect to the local spherical system, followed by a transformation to the Earth-
fixed system, involves no approximations (Wenzel 1985) and is particularly suitable
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in connection with spherical harmonic expansions, e.g., the high-degree geopo-
tential model EGM2008 (Pavlis et al. 2008). It should also be noted that (5.41) and
(5.42) for the first derivatives as well as (5.45) and (5.46) for the second derivatives
can be utilized accordingly for each of the components of W, i.e., V and Z; moreover,
they may be used in connection with the disturbing potential and its functionals (see
Sect. 3.2). With regard to the presently active satellite mission GOCE (ESA 1999;
Rummel et al. 2011), the second derivatives of V are of special interest. Finally, the
results in the Earth-fixed system can be further transformed to any other Cartesian
system of interest.

At this point it is emphasized that the primary goal of physical geodesy is the
determination of the gravity potential W as a function of position; if W(r) were
known, then all parameters of interest could be derived from it, including the
gravity vector g (direction parameters, U, K, and magnitude, g, see (5.44)), the
curvature of the level surfaces and plumb lines (depending on the second
derivatives of W, e.g., (5.46)), as well as the form of the equipotential surfaces (by
solving the equation W(X, Y, Z) = const.). However, as mentioned above, the
gravity potential W cannot be computed directly based on (5.35) due to
the insufficient knowledge about the density structure of the entire Earth; instead,
the determination of the exterior potential field must be solved by measurements
performed at or above the Earth’s surface (see Sect. 3).

2.4 The Geoid and Heights

The geoid is of great importance in geodesy, oceanography, geophysics, and other
Earth sciences, serving as a reference surface for heights over the continents as
well as for the dynamic ocean topography (DOT). The geoid was introduced by
C.F. Gauss as an equipotential surface of the Earth’s gravity field, coinciding with
the mean sea level (MSL) of the idealized oceans (i.e., homogeneous water masses
at rest, subject only to the time-invariable force of gravity; see Torge 2001). The
basis of this definition, i.e., the geoid being a selected equipotential surface of the
Earth’s gravity field (with W = W0), is of fundamental importance and is still
useful today. Given the gravity potential value W0, the equation of the geoid is

W ¼ WðrÞ ¼ W0 : ð5:47Þ

As discussed in the previous section, the geoid is a closed and continuous surface,
even inside the Earth; however, inside the masses, the curvature of the geoid may
exhibit discontinuities where abrupt density changes occur. The vertical distance
between the geoid and a given reference ellipsoid is denoted as the geoid height or
geoid undulation.

The geoid is conceptionally chosen to approximate (in some mathematical
sense) the mean ocean surface (Rapp 1995). However, mean sea level (MSL),
derived by averaging the instantaneous sea surface over a sufficiently long time
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span (e.g., at least 1 year), may also vary over longer time spans (for instance, due
to the global secular sea level rise of about 1–2 mm/year, observed over the past
100 years; Torge 2001), and furthermore it does not coincide with a level surface
due to the forcing of the oceans by winds, atmospheric pressure, and buoyancy (as
a result of density differences associated with corresponding temperature and
salinity differences) in combination with gravity and the Earth’s rotation. The
deviation of MSL from a best fitting equipotential surface (geoid) is denoted as the
(mean) dynamic ocean topography DOT. The DOT reaches maximum values of
about ±2 m (Rapp and Balasubramania 1992; Bosch and Savcenko 2010) and
is of vital importance for oceanographers, as it allows the derivation of the
absolute circulation of the oceans (Wunsch and Gaposchkin 1980; Condi and
Wunsch 2004).

Accordingly, a refined definition of the geoid is needed, which could be based
on a (global) minimum condition with regard to the deviation of MSL from a best
fitting level surface, and which should also consider that MSL is not constant in
time. In principle, two options exist: either the geoid definition has to refer to a
certain epoch of MSL, or a time-dependent geoid linked to the respective MSL
could be introduced. However, corresponding to the general geodetic practice of
reducing time-variable quantities to a quasi-static state (see also Sect. 2.6), mainly
the first option is feasible (e.g., for employing the geoid as a height reference
surface). Nevertheless, the gravity potential of a best fitting level surface of MSL
at a given point in time may be expressed by the (static) geoid potential W0

(associated with a certain reference epoch) and a linear change with time in first
approximation (e.g., completely corresponding to the ITRF station positions and
velocities). Finally, a refined geoid definition must also include specifications
regarding the treatment of the notable permanent tide effects (see Sect. 2.6). For
further details on the definition and realization of the geoid as well as the W0

aspect see Heck (2004) and Heck and Rummel (1990).
The numerical value for the geoid potential W0 can in principle be deduced

from the MSL spatial positions with respect to the (global) Earth-fixed reference
system and a geopotential model such as EGM2008 (Pavlis et al. 2008), possibly
supplemented by an oceanographic or geodetic model of the mean DOT; the
(absolute) gravity potential W is derived for the MSL (or MSL minus MDOT)
points from the geopotential model (W = V ? Z; (5.26) and (5.31), presupposing
that V is regular at infinity), and finally some averaging procedure is applied to
reduce random effects. The MSL positions can be taken from satellite altimetry
(available within the latitude band ±86�; see Andersen et al. 2010), providing
directly the sea surface height (SSH), or from tide gauge and Global Navigation
Satellite System (GNSS) observations (see Fig. 5.3). The first approach based on
satellite altimetry gives access to almost the entire ocean domain and was applied
by Bursa et al. (2002), while the latter approach is restricted to the existing tide
gauge stations at the coasts. Furthermore, it is noted that a numerical value for W0

(based on the satellite altimetry approach; Bursa et al. 2002) is provided in the
IERS conventions (IERS 2010):
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W0 ¼ 62; 636; 856:0 m2s�2 : ð5:48Þ

However, Sanchez (2008) published W0 values, differing by about 2–3 m2s-2 from
the above value (corresponds to a vertical distance of about 2–3 dm).

After defining the geoid by a (conventional) value W0, it is still necessary to
realize it, i.e., to find the position of the geoid in space, or equivalently to find for a
given point P at the Earth’s surface the vertical distance between P and the geoid,
which corresponds to determining the potential difference W0 - WP (see Fig. 5.3).
The most promising procedure is to use GNSS stations or networks together with a
global geopotential model (e.g., EGM2008), ideally supplemented by local gravity
observations; based on the ITRF positions for the GNSS sites, the corresponding
(absolute) gravity potential (WP) can be computed (from the global model, pos-
sibly plus local gravity data), yielding then the potential difference W0 - WP and
hence the position of the geoid. Another option for realizing the geoid is to use tide
gauge stations (or connected leveling stations) together with a DOT model (see
Fig. 5.3). Naturally, several stations should be employed in either approach to
average out random effects.

The definition of a world height system and the W0 topic have been discussed
for more than 25 years; within the International Association of Geodesy (IAG),
this subject has been treated recently within the Inter-Commission Project 1.2,
Vertical Reference Frames (Ihde 2009) and is now continued within the GGOS
(Global Geodetic Observing System) project. Corresponding to the IERS
approach, most likely, there will be an ideal ‘‘vertical reference system’’ (VRS)
with corresponding conventions (including a conventional W0 value), and a real-
ization, the ‘‘vertical reference frame’’ (VRF). In this context, Heck (2004)
emphasizes that the absolute gravity potential (including W0) is dependent on the
assumption of regularity at infinity, see (5.19), and that the numerical value of the

Fig. 5.3 Geoid, quasigeoid, heights, continental topography, mean sea level (MSL), and
dynamic ocean topography (DOT)
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absolute potential W0 is not needed at all in practice, as only potential differences
are relevant for the determination and connection of vertical reference systems.
Further details on the concepts for a world height system and the unification of
national systems can be found, e.g., in Rapp (1983a, 1995), Rummel and Teun-
issen (1988), Heck and Rummel (1990), Rapp and Balasubramania (1992), Heck
(2004), Ihde and Sanchez (2005), and Ihde (2009).

Historically, height systems (vertical datums) were related to mean sea level
(MSL) through one or more tide gauge stations (the introduction of more than one
tide gauge may lead to additional network distortions). Therefore, due to the
existence of the DOT, these systems have different reference surfaces (W ¼ Wi

0),
implying inconsistencies up to a level of about ±2 m; examples of this kind can be
found in Rapp and Balasubramania (1992) and Ihde and Sanchez (2005). The
existing height systems are almost exclusively based on geometric leveling (also
called spirit leveling). Geometric leveling is a quasi-differential technique, pro-
viding height differences dn (backsight minus foresight reading) with respect to the
local astronomical system (see Fig. 5.1). Over longer distances, the non-parallel-
ism of the level surfaces cannot be neglected, as it results in a path dependence of
the results. This problem can be overcome by introducing potential differences,
which are path independent because the gravity field is conservative (see Sects. 2.2
and 2.3). With

dW ¼ oW

ox
dxþ oW

oy
dyþ oW

oz
dz ¼ gradW ds ¼ g ds ¼ �g dn ; ð5:49Þ

dn being the distance along the outer normal of the level surface (zenith), the
geopotential number C is defined as

C ¼ W0 �WP ¼ �
ZP

P0

dW ¼
ZP

P0

g dn ; ð5:50Þ

where P0 is an arbitrary point on the geoid (height reference surface) and P is a
point on the Earth’s surface. Thus, in addition to the leveling results (dn), gravity
observations (g) are also needed along the path between P0 and P (with regard to
the required spacing and accuracy of the gravity points, see Torge 2001).
Historically, the geopotential numbers were referred to local reference surfaces
(Wi

0), but henceforth no distinction is made between Wi
0 (local reference surface)

and W0 (geoid).
The geopotential numbers are ideal quantities for describing the direction of

water flow, i.e., water flows from points with higher geopotential numbers C to
points with lower values. However, the geopotential numbers have the unit m2s-2

(or 10 m2s-2 = 1 kGal m = 1 gpu), and are thus somewhat inconvenient in dis-
ciplines like civil engineering, etc. Therefore, a conversion to metric heights is
desirable, which can be achieved by dividing the C values by an appropriate
gravity value. Widely used are the orthometric heights (e.g., U.S.A., Canada,
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Austria, and Switzerland) and normal heights (e.g., Germany, and many other
European countries), which also play an important role in gravity field modeling
due to the strong height dependence of various gravity field quantities (Sect. 3).

The orthometric height H is defined as the distance between the surface point
P and the geoid, measured along the curved plumb line (see Fig. 5.3), which
explains the common understanding as ‘‘height above sea level’’ (Torge 2001).
The orthometric height can be derived from (5.50) by expanding the right side by
H and integrating along the plumb line from the geoid to the surface point P:

H ¼ C

�g
; �g ¼ 1

H

ZH

0

g dH; ð5:51Þ

where �g is the mean gravity along the plumb line (inside the Earth). As �g cannot be
observed directly (besides some stations with borehole gravity data; Strange 1982),
hypotheses about the interior gravity field are necessary, which is one of the main
drawbacks of the orthometric heights. Assuming a constant density of the topo-
graphic masses (2,670 kgm-3) as well as a flat topography (so-called Poincaré-
Prey reduction) leads to

�g½ms�2� ¼ gP ½ms�2� þ 0:424� 10�6H½m� ; ð5:52Þ

where gP is the gravity value at the surface point P. The heights based on the mean
gravity estimate (5.52) are denoted as Helmert-orthometric heights HH (they are
used, e.g., for the North American Vertical Datum, NAVD88; Zilkoski et al. 1995).
For a discussion on refined procedures for the computation of �g, see Marti and
Schlatter (2001), Flury and Rummel (2009), or Sjöberg (2010). Lastly, it is noted
that points with equal orthometric heights are normally associated with slightly
different level surfaces, which is due to the non-parallelism of the level surfaces.

In order to avoid the hypotheses about the Earth’s interior gravity field, the
normal heights HN were introduced by Molodensky (e.g., Molodenskii et al. 1962).
The normal height is defined as

HN ¼ C
�c

; �c ¼ 1
HN

ZHN

0

c dHN ; ð5:53Þ

where �c is a mean normal gravity value along the normal plumb line, and c is the
magnitude of the normal gravity vector (for further details see next section). Con-
sequently, the normal height HN is measured along the slightly curved normal plumb
line (Heiskanen and Moritz 1967; Torge 2001); it is in the first instance defined as the
elevation of the telluroid above the ellipsoid, but can also be considered as the
elevation of the surface point P above the quasigeoid (for details see Sect. 3.2 and
Fig. 5.3). The quasigeoid is not a level surface and has no physical interpretation.
Hence, the concept of the normal height and quasigeoid is less illustrative than that of
the orthometric height and geoid, respectively, but it has the significant advantage
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that it is exclusively based on quantities of the Earth’s exterior gravity field, avoiding
any hypotheses about the interior field. Furthermore, it is noted that Heck (2003)
defines the normal height in a conceptually different way as the ellipsoidal height
(measured along the straight ellipsoidal normal) of the telluroid; in this case, (5.53)
has to be adapted by computing the corresponding mean normal gravity value along
the ellipsoidal normal, using the normal gravity component in the direction of the
ellipsoidal normal instead of the absolute value of normal gravity itself. However,
due the small length difference between the ellipsoidal normal and the normal plumb
line (see below), the concept from Heck (2003) and the classical formulation can be
considered as equivalent for all practical applications.

Another option is the so-called dynamic height Hdyn, which is defined as

Hdyn ¼ C

c45
0

; ð5:54Þ

where c45
0 is a constant normal gravity value, usually at the ellipsoid surface at 45�

latitude. As the dynamic heights differ from the geopotential numbers only by a
constant factor, points with the same Hdyn are located on the same level surface. As
the dynamic heights have no geometric interpretation, and because the corrections
to the raw leveling are quite large, they are not very widely used in practice.

Historically, when no gravity values were available for the computation of the
geopotential numbers C, normal gravity values were used in some cases, resulting
in the so-called normal-orthometric heights HNO (e.g., still in use in Australia,
Featherstone et al. 2011, or employed formerly in Germany, Heck 2003); these
heights can be regarded as an approximation to the normal heights (Wolf 1974),
but have the significant disadvantage of being path-dependent, in contrast to the
above defined heights H, HN, and Hdyn. Therefore, the HNO are unsuitable for a
modern height system.

It is also worth mentioning that the raw leveling results along lines (Dn) can be
converted directly into corresponding height differences (DH, DHN, DHdyn) by the
orthometric, normal, and dynamic corrections, respectively (Torge 2001; Heck
2003). Moreover, although the precision of geometric leveling is rather high
(standard deviation for a 1 km traverse about 0.2–1.0 mm), it is important to keep
in mind, that geometric leveling is a differential technique and hence susceptible to
systematic errors; examples are the differences between the second and third
geodetic leveling in Great Britain (about 0.2 m in north–south direction over about
1,000 km distance; Kelsey 1972), corresponding differences between the old and
new leveling in France (about 0.25 m from the Mediterranean Sea to the North
Sea, also mainly in north–south direction, distance about 900 km; Rebischung
et al. 2008), as well as inconsistencies of more than 1 m across Canada and the
U.S.A. (differences between different levelings and with respect to an accurate
geoid; Véronneau et al. 2006; Smith et al. 2010). Regarding Canada and the
U.S.A., this led to the decision to abandon geometric leveling completely and to
use GNSS techniques together with a so-called ‘‘geoid based vertical datum,’’
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which shall be introduced by 2013 (Canada) and 2021 (U.S.A.), respectively
(Smith et al. 2010).

In recent years, some authors (e.g., Steinberg and Papo 1998; Kumar 2005)
became proponents of purely (geometric) ellipsoidal height systems, which neglect
the effect of gravity. However, these are considered as unsuitable for any appli-
cation involving fluid flow, among others (Vaníček 1998). However, the approach
of using the GNSS technique and a geoid based vertical datum, as initiated in
Canada and the U.S.A., appears to be a good alternative to avoid the time-con-
suming and expensive geometric leveling, especially in view of the now possible
geoid and quasigeoid accuracies (see Sect. 4).

The geoid and quasigeoid serve as the zero height surfaces (vertical datum) for
the orthometric and normal heights, respectively. With regard to the ellipsoidal
heights h (from GNSS observations), the following relation holds:

h ¼ H þ N ¼ HN þ f ; ð5:55Þ

where N is the geoid height or geoid undulation, and f is the quasigeoid height or
height anomaly (see also Fig. 5.3). The above equation neglects that in the strict
sense the relevant quantities are measured along slightly different lines in space.
The ellipsoidal height (h) of a point in space is measured along the straight
ellipsoidal normal, while the corresponding normal height (HN) is measured along
the slightly curved normal plumb line (see Fig. 5.3); the length difference between
both paths can be estimated from the curvature of the normal plumb line, yielding
less than 10-7 m for a point 10 km above the ellipsoid, which can be safely
neglected. For the orthometric heights, the corresponding length difference can be
roughly estimated by means of the deflection of the vertical (the angle between the
actual plumb line and the ellipsoidal normal; see Fig. 5.3), resulting in an effect of
about 0.4 mm for a station height of 10 km and an extreme deflection of the
vertical of 10. Hence, (5.55) is accurate at the millimeter level for all practical
cases; another possibility would be to work with the corresponding potentials
instead of the heights.

A transformation between the orthometric and normal heights, or geoid and
quasigeoid heights, is possible by combining (5.51), (5.53), and (5.55), giving

HN � H ¼ N � f ¼ �g� �c
�c

H ¼ �g� �c
�g

HN 	 DgB

�c
H : ð5:56Þ

The difference HN - H or N - f is mainly depending on the station height as well
as �g� �c; which is approximately the (simple) Bouguer anomaly DgB (Heiskanen
and Moritz 1967; Torge 2001). In this context, it is noted that the Bouguer
approximation in (5.56) is virtually exact in connection with the Helmert-ortho-
metric heights (Forsberg and Tscherning 1997). The magnitude of the difference
HN - H or N - f can reach several centimeters to about 1 dm in low mountain
ranges, about 3–5 dm (or even more) in the high mountains such as the European
Alps or Rocky Mountains, and about 3 m in the Himalayan Mountains (Rapp
1997; Marti and Schlatter 2001; Tenzer et al. 2005; Flury and Rummel 2009). On
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the oceans, the geoid and quasigeoid practically coincide (Torge 2001), as the
effect of the DOT is only marginal.

Finally, regarding the orthometric heights, the various procedures in use for the
computation of the mean gravity value �g (e.g., (5.52) or more sophisticated
methods) may lead to substantially different results (e.g., Marti and Schlatter 2001;
Flury and Rummel 2009); therefore, it is essential to ensure that the heights H and
the corresponding geoid undulations N are consistent such that (5.55) is satisfied.

2.5 The Normal Gravity Field

The normal gravity field is introduced as an approximation of the Earth’s gravity
field. On the one hand it should provide a reasonably good agreement with the real
field, since it is used for the linearization of the observation equations, and on the
other hand it should be simple to compute, as well as useful for other disciplines
(Torge 2001). Based on these considerations, the level ellipsoid (or so-called
Somigliana-Pizetti normal field) is almost exclusively used; another argument may
also be the utilization of an ellipsoid for station coordinates (see Sect. 2.1). However,
today, with the availability of very accurate satellite gravity field models (e.g., from
the GRACE and GOCE missions), it is also worth considering the employment of a
complete spherical harmonic expansion up to some maximum degree nmax.

Corresponding to the gravity potential W, the normal gravity potential U is
introduced as the sum of the normal gravitational potential VN and the normal
centrifugal potential ZN:

U ¼ VN þ ZN : ð5:57Þ

The associated normal gravity vector is given by

c ¼ grad U : ð5:58Þ

The direction of c is the direction of the normal plumb line, the magnitude c is the
normal gravity (intensity).

The normal gravity field of the level ellipsoid solely depends on four parameters.
These can be two parameters describing the size and shape of the ellipsoid (for
example, the semimajor axis, aN, and flattening, fN), the Earth’s rotation rate, xN,
and the total mass of the Earth, MN. Numerical values for such parameters are
recommended from time to time by the IUGG, IAG, etc. The latest set of constants
was recommended by the IUGG and IAG in 1979 at the XVIIth General Assembly of
the IUGG in Canberra (e.g., Moritz 2000), known as the Geodetic Reference System
1980 (GRS80), with the four defining parameters being aN, JN

2 , xN, and GMN. An
updated (current best) set of parameters is also provided in IERS (2010). Besides
GRS80, the WGS84 level ellipsoid is frequently used (NIMA 1997). It is defined by
the geometrical parameters aN and fN and the physical parameters GMN and xN;
apart from the significantly different GMN values of GRS80 and WGS84, the aN and

208 H. Denker



xN parameters are identical, while the flattening parameters show only marginal
differences (corresponding to 3 9 10-5 m with respect to the semiminor axis).

All parameters related to the normal gravity field of the level ellipsoid can be
computed by closed formulas based on ellipsoidal harmonics (Heiskanen and
Moritz 1967). However, the normal gravitational potential of the level ellipsoid
can also be expanded in a rapidly converging spherical harmonic series; due to the
symmetry with respect to the rotational axis as well as the equator, only the even
zonal coefficients are non-zero, and an expansion up to degree 10 is fully sufficient.
The spherical harmonic series approach, proposed by Tscherning (1976a), is well
suited for the computation of U and its first and second derivatives, gives accurate
results everywhere in space (including satellite positions), is easy to use in con-
nection with high-degree Earth gravity field models such as EGM2008, and can
also be generalized to more complicated normal gravity fields, e.g., based on a
complete spherical harmonic gravitational model up to some degree nmax.

Considering a complete spherical harmonic expansion of the normal gravita-
tional potential (up to degree nmax) as well as the centrifugal potential (with
p ¼ r sin h) according to (5.26) and (5.31), respectively, yields

Uðh; k; rÞ ¼ VN þ ZN ¼
Xnmax

n¼0

aN

r

� �nþ1 Xn

m¼�n

V
N
nmYnmðh; kÞ þ

x2
N

2
r2sin2h; ð5:59Þ

with

V
N
nm ¼

GMN

aN

C
N
nm for m� 0

S
N
nm for m\0

(
: ð5:60Þ

The first and second derivatives of U with respect to the spherical coordinates
h, k, r can be derived easily from the above equation (require the derivatives of the
associated Legendre functions), which can then be used to compute the derivatives
with respect to the local spherical system (xs, ys, zs) in analogy to (5.41) and (5.45).
Regarding the normal gravity vector, the transformation to the Earth-fixed system
yields

c ¼ UX½ �¼ Axs Uxs½ � ¼ �c
cos uc cos kc

cos uc sin kc

sin uc

0
@

1
A; ð5:61Þ

where uc; kc, describing the direction of the normal gravity vector (in corre-
spondence with (5.43)), as well as c can be computed by applying (5.44)
accordingly. This procedure is exact, involves no approximations, and works
everywhere in space. In the case of the level ellipsoid, uc, kc, are identical with the
normal latitude and longitude, uN, kN, with k = kN (the normal plumb line of the
level ellipsoid is only slightly curved in the meridian plane).

The first and second derivatives of U can be expressed as well with respect to a
local coordinate system oriented at the normal gravity vector. Corresponding to the
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local ellipsoidal system (see Sect. 2.1), a Cartesian system (xc, yc, zc) is introduced,
where the zc-axis points in the opposite direction to that of c, and the axes xc, yc are
pointing north and east, respectively. The local system (xc, yc, zc) and the local
ellipsoidal system (xe, ye, ze) deviate by the curvature of the normal plumb line.
In the local system (xc, yc, zc), the horizontal components (xc, yc) of the normal
gravity vector are zero and the vertical component (zc) is equal to the negative
value of c. With the transformation matrix Axc ¼ Axcðuc; kcÞ, defined analog
to (5.7), the second derivatives of U with respect to the local system (xc, yc, zc)
are given by (Tscherning 1976a)

Uxcxc½ �¼ ðAxcÞTAxs Uxsxs½ �ðAxsÞTAxc : ð5:62Þ

Equations (5.61) and (5.62) were programmed and tested for the level ellipsoid
(with nmax = 10); the agreement with the results from closed formulas on the basis
of ellipsoidal harmonics (Heiskanen and Moritz 1967) was better than 10-5 m2 s-2

for the potential U and 10-11 m s-2 in c (everywhere in space; the results are based
on 8 byte variables and the remaining differences are mainly due to rounding errors,
etc.). Regarding the level ellipsoid, further testing is possible, as the components of
the matrix (5.62) must fulfil the following conditions (Tscherning 1976a):

Uxcyc ¼ Uyczc ¼ 0

Uxcxc þ Uycyc þ Uzczc � 2x2
N ¼ 0

)
everywhere in space,

Uxcxc ¼ � c
M

; Uycyc ¼ � c
N

o
at the ellipsoid surface:

ð5:63Þ

The first set of conditions results from the fact the plumb lines of the level ellipsoid
are only curved in the meridian plane, the second condition is based on the gen-
eralized Laplace equation, and third, at the surface of the level ellipsoid, the
second derivatives of U in the direction of xc, yc are associated with the principal
radii of curvature of the ellipsoid (M: meridian; N: prime vertical).

Traditionally, near the Earth’s surface, the normal gravity of the level ellipsoid
is computed from a Taylor series expansion with respect to the ellipsoidal height:

c ¼ c0 þ
oc
oh

	 

0

hþ 1
2

o2c
oh2

	 

0

h2 þ 1
6

o3c
oh3

	 

0

h3 þ 1
24

o4c
oh4

	 

0

h4 þ � � � : ð5:64Þ

The normal gravity at the level ellipsoid is given by the (rigorous) formula of
Somigliana (e.g., Torge 2001):

c0 ¼
aN ca cos2 uþ bN cb sin2 uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
N cos2 uþ b2

N sin2 u
q ¼ ca

1þ k sin2 uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

N sin2 u
q with k ¼ bN cb

aN ca
� 1 ;

ð5:65Þ

where aN, bN are the semimajor and semiminor axes of the ellipsoid, eN is the first
eccentricity, and ca, cb are the normal gravity values at the equator and pole,
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respectively. The computation of the partial derivatives in (5.64) was investigated
in detail by Wenzel (1989), suggesting that the first derivative be computed from
the Bruns equation and the higher derivatives be taken from a spherical harmonic
expansion of U based on JN

2 only. This procedure can be slightly improved by also
considering JN

4 in the second derivative term, yielding

oc
oh

	 

0

¼ �c0
1
M
þ 1

N

	 

� 2x2

N

¼ � c0

aN ð1� e2
NÞ
ð1� e2

N sin2 uÞ1=2ð2� e2
Nð1þ sin2 uÞÞ � 2x2

N ;

o2c
oh2

	 

0

¼ GMN

r4
6� 60

aN

r

� �2
JN

2 P2ðcos hÞ � 210
aN

r

� �4
JN

4 P4ðcos hÞ
	 


;

o3c
oh3

	 

0

¼ GMN

r5
�24þ 360

aN

r

� �2
JN

2 P2ðcos hÞ
	 


;

o4c
oh4

	 

0

¼ 120
GMN

r6
:

ð5:66Þ

Equations (5.64)–(5.66) were also programmed, and the results were compared
with those from closed formulas based on ellipsoidal harmonics; the differences
were always below 2 9 10-9 m s-2 (0.2 lGal) for stations up to h = 10 km, with
the fourth order term being insignificant (max. 3 9 10-10 m s-2 = 0.03 lGal).
Furthermore, if the derivative terms in (5.64) are computed by expansions with
respect to the flattening fN (see Heiskanen and Moritz 1967), terms up to the
second order of fN, oðf 2

NÞ; are needed for the first vertical derivative of c (or better
apply the Bruns equation, which is rigorous), terms up to o(fN) should be used for
the second derivative, while the third derivative can be based on a spherical
approximation, yielding an accuracy of about 1 9 10-8 m s-2 = 1 lGal. On the
other hand, formulas considering only terms up to o(fN) in the first vertical
derivative of c and a spherical approximation of the second derivative (as found
frequently in textbooks, e.g., Heiskanen and Moritz 1967; Torge 2001) may result
in errors with a magnitude of about 1 9 10-6 m s-2 = 100 lGal (again for
heights up to 10 km), which is insufficient.

Finally, the Taylor series (5.64) opens a simple way to compute the mean
normal gravity value

c ¼ 1
h

Zh

0

c dh ¼ c0 þ
oc
oh

	 

0

h

2
þ o2c

oh2

	 

0

h2

6
þ o3c

oh3

	 

0

h3

24
þ o4c

oh4

	 

0

h4

120
þ . . .;

ð5:67Þ

as needed in connection with normal heights.
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2.6 Temporal Gravity Field Variations and the Atmosphere

The Earth’s body and gravity field undergo changes at different temporal and
spatial scales, which has been described in detail, e.g., by Torge (1989). The
acquisition, analysis, description, and interpretation of such changes are treated in
the field of geodynamics. The largest temporal variations are due to tidal effects
(mainly moon and sun, but also planets), leading to (mostly) periodical defor-
mations of the Earth’s crust with maximum amplitudes of about 30 cm and cor-
responding gravity changes with amplitudes up to about 200 lGal (roughly
10-7 g); for details see Torge (1989, 2001) and Timmen (2010). Generally,
gravimetric measurements are reduced for the effect of tides, atmospheric mass
redistributions (mainly by simple admittance functions), and Earth rotation vari-
ations (Torge et al. 1987; Torge 1989; Timmen 2010). In general, the Earth’s
gravity field varies with time due to mass redistributions in the geosphere,
atmosphere, hydrosphere (including the cryosphere), and biosphere; selected
examples related to hydrology (ground water) and postglacial rebound (Fenno-
scandia) are presented in Timmen (2010). According to Torge (2001), gravity
changes due to mass redistributions do not exceed the order of 10-9–10-8 g.

Since 2002, the US–German GRACE satellite mission is providing the Earth’s
time-variable and static gravity field globally with unprecedented temporal and
spatial resolution, which has greatly improved the understanding of mass redistri-
butions in the atmosphere, oceans, water reservoirs, and cryosphere. An overview on
the GRACE mission and early results is given in Tapley et al. (2004a, b), while
reviews of recent GRACE results can be found in Wahr (2009) as well as Cazenave
and Chen (2010). The GRACE results are mainly provided as monthly global
spherical harmonic models, which can then be employed for studying periodic and
secular variations of the Earth’s gravity field; for this purpose, the GRACE models
are usually restricted to a ground resolution of about 300–400 km, because the
GRACE errors become larger with increasing resolution (e.g., Tapley et al. 2004a;
Wahr 2009). The largest-amplitude signals are related to water storage variability on
land (Wahr 2009); they have mainly annual periods with amplitudes up to about
10 mm and 10 lGal in terms of geoid and gravity, respectively. Figure 5.4 shows the
linear (secular) trend of the geoid as derived from a sequence of 103 monthly
GRACE solutions (Release 04) from GFZ (Helmholtz-Centre Potsdam—German
Research Centre for Geosciences, GFZ); the GRACE data, covering the time span
August 2002–September 2011, were smoothed by applying a Gaussian filter with a
radius of 400 km. The largest geoid trends are related to the ice losses in Greenland
(–2 mm/year), Alaska, and Antarctica, as well as water storage changes in the
Amazon region, but also the post glacial rebound signals over North America (about
+1 mm/year) and Fennoscandia (about 0.5 mm/year) are clearly visible.

In the following it is assumed that temporal variations of the Earth’s body and
gravity field have been taken into account by appropriate reductions or have been
averaged out over sufficiently long time periods (this includes the station coor-
dinates as realized, e.g., by the ITRF solutions). In this context, the largest
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variations are due to tidal effects, which can be reduced relatively easily with
sufficient accuracy (e.g., Timmen 2010). On the other hand, effects like ground
water changes or postglacial rebound are more difficult to handle (e.g., Timmen
2010). In general, the reduction of all relevant data sets to a certain epoch is an
appropriate solution to reach a (quasi) static state; considering the postglacial
rebound signal in Fennoscandia as an example, this can be done by means of
models (e.g., the existing uplift model of Ågren and Svensson 2007) or observation
time series (e.g., from GRACE).

The tidal attraction acts in a direct and indirect way. The direct (or gravita-
tional) attraction deforms the elastic Earth, which causes an (additional) indirect
change of the gravitational potential (deformation potential). While the direct
effects can be computed easily by astronomical tidal theory, the calculation of the
indirect effects requires knowledge about the Earth’s elastic parameters (primarily
Love and Shida numbers). Regarding the tidal reductions of geodetic parameters
(e.g., potential, gravity, station coordinates, physical heights), both the direct and
indirect effects contain time-dependent (periodic) parts as well as time-indepen-
dent (permanent, zero frequency) parts; the computation of the latter portion of the
indirect (deformation) effects requires the fluid (secular) Love numbers, which
differ substantially from the standard (second degree) elastic values and are
unobservable (cannot be determined experimentally). In this context, a long-last-
ing and still ongoing discussion relates to the handling of the notable permanent
parts of the tidal potential (see below), e.g., documented by the publication of
Ekman (1996) with the title ‘‘the permanent problem of the permanent tide.’’ A
comprehensive treatise of the permanent tide subject is given in Ekman (1989a, b),

Fig. 5.4 Linear (secular) geoid trends derived from a sequence of 103 monthly GRACE
solutions (Release 04) from GFZ, covering the time span August 2002 to September 2011, after
Gaussian filtering with a radius of 400 km
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and further reviews can be found, e.g., in Rapp et al. (1991), Ekman (1996),
Poutanen et al. (1996), Heck (2004), or Mäkinen and Ihde (2009). As a conse-
quence, based on the report from Rapp (1983b), the International Association of
Geodesy (IAG) adopted at the IAG/IUGG General Assembly in Hamburg, 1983,
the resolution no. 16, stating that ‘‘for the uniform treatment of tidal corrections to
various geodetic quantities such as gravity and station positions, the indirect effect
due to the permanent yielding of the Earth be not removed’’ (IAG 1984).

Altogether, the following cases are to be distinguished:

• The ‘‘zero tide system’’ is the one recommended by IAG. In this system, the
direct effects are removed completely, but the indirect deformation effects
associated with the permanent tidal deformation are retained. This implies that
the masses of the moon, sun, and planets are shifted to infinity, while the
permanent deformation effects are left untouched, avoiding the problem with the
fluid Love numbers. Moreover, the zero tide system is also suitable for solving
boundary value problems (BVPs) in physical geodesy, requiring that no masses
exist external to the boundary surface (harmonicity condition; see Sect. 3).

• In the ‘‘mean tide system,’’ only the periodic tidal effects are removed, but the
permanent parts (both direct and indirect) are retained. Thus, the mean values
reflect the mean situation (shape) in the presence of the moon, sun, and planets,
which is the natural system in connection with oceanography and satellite
altimetry observations as well as station positions, noting that the mean and zero
crust (station positions) are identical (both include the permanent deformation
effects). On the other hand, the mean tide system has the disadvantage that it is
not free of external masses (i.e., unsuitable for solving BVPs in physical
geodesy); to overcome this problem, Zeman (1987) suggested modifying the
normal gravity potential.

• The ‘‘tide-free system’’ (or non-tidal system) is aiming at the removal of all tidal
effects (periodic and permanent direct and indirect effects). In this case, the
required (unobservable) fluid Love numbers have to be replaced by conventional
values; therefore, this system is also denoted sometimes as ‘‘conventionally tide-
free.’’

Further discussions on advantages and disadvantages of each of the three
concepts can be found in the references mentioned above. IAG has recommended
the zero tide system, oceanographic applications may require the mean tide
system, while the positioning domain (including the ITRF solutions; see IERS
2010) mainly uses the non-tidal system, thus not following the IAG
recommendations.

Therefore, since different applications are usually associated with particular
tidal systems, transformation formulas are needed for the conversion from one
system to another. Considering only the dominating degree two terms of the tidal
potential, each of the three tidal systems is directly associated with a corre-
sponding C20 potential coefficient. Following IERS (2010), a quantity
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DC
perm

20 ¼ A0 H0 k20 ¼ �1:39141� 10�8k20 ð5:68Þ

is introduced; then with the potential Love number k20, the following relations
hold:

C
nt
20 ¼ C

zt
20 � DC

perm

20 ; ð5:69Þ

C
mt
20 ¼ C

zt
20 þ DC

perm

20

�
k20; ð5:70Þ

where the superscripts nt, zt, and mt stand for non-tidal (tide-free), zero tide, and
mean tide system, respectively. Starting with the zero tide coefficient C zt

20 ¼
�484:16948� 10�6 (epoch J2000.0) and k20 = 0.29525 from IERS (2010), the
above equations give the non-tidal and mean tide coefficients C nt

20 ¼
�484:16537� 10�6 and C mt

20 ¼ �484:18339� 10�6; respectively. Corresponding
transformation formulas for geoid undulations can be obtained on the basis of the
above coefficients and the spherical harmonic expansion (5.26) with r = a,
u & 90� - h, and a mean (normal) gravity value:

Nnt
½m� ¼ Nzt

½m� þ 0:0879½m� sin2 u� 0:0293½m�; ð5:71Þ

Nmt
½m� ¼ Nzt

½m� � 0:2977½m� sin2 uþ 0:0992½m�: ð5:72Þ

Further transformation formulas for other quantities such as gravity and heights
can be found, e.g., in Ekman (1989a) or Mäkinen and Ihde (2009); the derivation
of refined transformation formulas is described in Ihde et al. (2008).

To a first approximation, the atmospheric effect can be computed by using
spherical approximations and a radially layered spherical density model, ignoring
the topography. Then for a point P with radius r above the reference sphere (with
radius R) the gravitational attraction can be split into an exterior and interior part,
associated with the masses below and above the point P, respectively. Now it is
well known from potential theory that the potential inside a spherical shell is
constant, and thus the attraction is zero. Since the exterior gravitational field of
concentric homogeneous mass shells is equal to the effect of the entire mass being
concentrated at the center of mass of the object, the effect of the atmosphere on
gravity is given by

gA ¼ G mðrÞ
r2

; ð5:73Þ

where m(r) is the mass of all atmospheric layers below P. Introducing the total
mass of the atmosphere, MA, and m(r) = MA - M(r), yields

gA ¼ G MA

r2
� G MðrÞ

r2
¼ G MA

r2
� dgA; ð5:74Þ
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where M(r) is the atmospheric mass above P. Accordingly, the gravitational
potential of the atmosphere is given by

VA ¼ G MA

r
þ G

Z1

r

G MðrÞ
r2

dr ¼ G MA

r
� dVA; ð5:75Þ

MðrÞ ¼ 4p
Z1

r

qAðrÞ r2dr : ð5:76Þ

The respective first terms on the right side of (5.74) and (5.75) represent the effect
of a point mass (MA); they are included in the normal potential (GMN includes the
mass of the solid Earth and atmosphere). On the other hand, the second terms on
the right side represent the non-harmonic contributions; they are denoted as the
atmospheric gravity and potential corrections dgA and dVA, respectively. The sign
convention is here in accordance with IAG (1970), and Moritz (2000); the sign is
defined such that the corrections have to be added to the observed quantities (i.e.,
the non-harmonic atmospheric contribution is reduced); then after gravity field
modeling, the correction terms may be subtracted again from the final results to be
consistent with what is being observed within the atmosphere. The correction
terms can be tabulated easily based on an atmospheric model; examples are the
values recommended by IAG (1970), which are based on ellipsoidal density
models suggested by Ecker and Mittermayer (1969), or those computed by Wenzel
(1985), using spherical approximations. The potential effect, dVA, has a maximum
value of only about 0.06 m2/s2 (at the reference sphere with radius R), and is
commonly neglected. The atmospheric gravity corrections, dgA, can be approxi-
mated by the following formula derived by Wenzel (1985):

dgA
½mGal� ¼ 0:874� 9:9� 10�5h ½m� þ 3:5625� 10�9h2

½m� : ð5:77Þ

The above formula is based on spherical theory and applicable for heights up to
about 8 km; the results differ by not more than 0.005 mGal from the values rec-
ommended by IAG (1970), considering ellipsoidal density models. Both quantities,
the atmospheric gravity and potential corrections dgA and dVA, depend on the
masses above a given station P, and hence go to zero for large radii (elevations);
therefore, they need not be considered at satellite altitude. Further details on
atmospheric effects can be found in Ecker and Mittermayer (1969), Rummel and
Rapp (1976), Christodoulidis (1979), Moritz (1980), as well as Andersen et al.
(1975), Andersen (1976), and Sjöberg and Nahavandchi (2000), also considering
topographic information. The accuracy of the atmospheric potential based on the
simple spherical model without topography may be estimated as about 0.1 m2/s2

(Christodoulidis 1979; Denker 1988). In the future, improvements of the atmo-
spheric correction scheme may be necessary (see also Forsberg 2010), as imple-
mented already in connection with the GRACE gravity field mission (Flechtner
et al. 2010) or absolute gravimetry (Gitlein and Timmen 2006).
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3 Gravity Field Modeling

3.1 Geodetic Boundary Value Problems

In mathematics, within the field of differential equations, a boundary value
problem (BVP) is a differential equation together with a set of additional con-
straints, called the boundary conditions, which the solution to the BVP must
satisfy. BVPs arise in several branches of physics, engineering, etc., in connection
with any differential equation (e.g., Morse and Feshbach 1953). To be useful in
applications, a BVP should be well-posed, i.e., a unique solution should exist with
respect to the given input. Much theoretical work in the field of partial differential
equations is devoted to proving that boundary value problems arising from sci-
entific and engineering applications are in fact well-posed.

Potential theory may be defined as the study of potential functions related to
conservative vector fields (or potential fields). With regard to gravitation, solutions
of the Laplace and Poisson differential equations are sought (divergence-free and
divergence-involving problems). Sometimes, potential theory is also defined
exclusively as the study of harmonic functions, i.e., the solution of Laplace’s
equation. In this context, a BVP consists of finding a harmonic function V in the
space outside of the closed (star-shaped) boundary surface, which fulfils the
boundary conditions and is regular at infinity. Commonly, three types of BVPs are
distinguished (Sigl 1985; Jekeli 2009):

• BVP of the first kind, also known as the Dirichlet problem. Solve for the
potential function V in the exterior space, given its values on the boundary
surface.

• BVP of the second kind, also known as the Neumann problem. Solve for V in the
exterior space, given its normal derivatives on the boundary surface (derivatives
in the direction of the surface normal).

• BVP of the third kind, also known as the mixed BVP or Robin problem. Solve
for V in the exterior space, given a linear combination of V and its normal
derivative on the boundary surface.

In addition, the category of oblique derivative problems can be introduced,
related to the cases where the derivatives of the potential function are not given in
the direction of the boundary surface normal. Furthermore, interior and exterior
problems can be distinguished, related to the space interior and exterior to the
boundary. However, in geodesy, the exterior BVPs are of prime importance.

Geodetic boundary value problems (GBVPs) may be considered as the com-
bined determination of the Earth’s figure and gravity field from geodetic obser-
vations (at the Earth’s surface or its exterior). Besides the traditional terrestrial
geodetic observations, such as potential (differences), gravity, and astronomical
latitudes and longitudes, new types of boundary data become available from
satellite techniques, etc., involving new types of GBVPs (e.g., mixed and
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overdetermined GBVPs). A comprehensive overview on GBVPs is given in Sansò
(1995) as well as Heck (1997), where the latter publication specifically highlights
that the primary unknown, to be solved in the framework of the GBVPs, is the
exterior gravity potential W outside the boundary surface. In this connection,
W can only be computed indirectly from the boundary data by solving a GBVP,
while a direct computation is not possible, mainly due to insufficient knowledge
about the Earth’s density structures. However, once the potential function W is
known, all relevant quantities can be derived from it (see Sect. 2.3). The basic
assumptions in the following are that the Earth behaves like a rigid and non-
deformable body, uniformly rotating about a body-fixed axis (Moritz 1980; Heck
1997); i.e., all time-variable effects have to be taken into account by appropriate
reductions in order to reach a quasi-static state (e.g., by referring all quantities to a
given epoch; see Sect. 2.6).

Depending on the type of boundary data as well as the type and number of
unknown functions to be solved from geodetic observational data, several GBVP
formulations can be distinguished (Heck 1997). At first, a subdivision into fixed
and free GBVPs is appropriate, involving the assumption of a known or unknown
boundary surface, respectively. Hence, fixed GBVPs are always associated with a
completely known boundary surface (e.g., fixed by coordinate vectors X derived
from GNSS techniques), and therefore the only remaining unknown is the potential
function W; this leads to the fixed gravimetric GBVP when employing gravity
observations (provide the magnitude of the gravity vector) as the most important
boundary data. On the other hand, regarding the free GBVPs, the information on
the geometry of the boundary is either incomplete or missing entirely. When
employing again gravity observations as boundary data, this results in Moloden-
sky’s boundary value problem (Molodenskii et al. 1962), i.e., the classical free
gravimetric GBVP, which can be further subdivided into the vectorial free GBVP
(astronomical variant of Molodensky’s problem), where the position of the
boundary is completely unknown (in total four unknowns; i.e., three coordinates in
X and the potential W), and the scalar free GBVP (geodetic variant of Moloden-
sky’s problem), where the horizontal positions are known (e.g., gravity points with
given ellipsoidal latitudes and longitudes), resulting in only two unknowns, one for
the vertical coordinate (e.g., the ellipsoidal height) and a second one for the
potential W (Heck 1997). The latter case can be considered as quite close to the
hitherto applied geodetic practice, where, e.g., the horizontal coordinates of
gravity stations were traditionally based on geodetic networks, mostly allowing a
transformation to the Earth-fixed system with sufficient accuracy.

3.2 Linearization of the Boundary Conditions

The most important boundary data are gravity observations, carried out at (or near)
the Earth’s surface. Two essential cases can be distinguished with respect to
the available station coordinates. The first case is related to the scalar-free GBVP
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and corresponds to the more traditional geodetic practice, where the vertical
coordinates (physical heights) are mainly derived from geometric leveling, while
the horizontal station coordinates (ellipsoidal latitudes and longitudes) are usually
based on corresponding national horizontal control networks. In this context, it is
assumed that the ellipsoidal coordinates are finally referred to the Earth-fixed
system, either by adequate transformations from the national networks or directly
by GNSS observations. Hence, in the scalar free GBVP, the horizontal coordinates
are known, but the vertical spatial positions (ellipsoidal heights) of the observation
sites (boundary) are unknown. The second case is related to the (scalar) fixed
GBVP, where the geometry of the boundary is assumed to be completely known.
This corresponds to the modern geodetic practice, where in many cases GNSS
techniques are employed, giving directly the entire position vector X of all
observation sites (boundary) with respect to the Earth-fixed system (either coor-
dinates X, Y, Z or u, k, h). However, also with GNSS techniques, the vertical
accuracy is never as good as the horizontal accuracy, and, in addition, some effort
is required to get an accurate connection to the ITRF.

The boundary conditions for various geodetic boundary value problem (GBVP)
formulations are in general nonlinear. This means that the relevant observations
(boundary data) depend in a nonlinear way on the unknown gravity potential
function W; they can be considered as nonlinear functionals of W, see (5.44). As no
mathematical tools exist for solving nonlinear GBVPs (Heck 1997), the boundary
conditions (observation equations) must be linearized. For this purpose, a known
reference potential must be introduced, and, in addition, a known reference surface
has to be adopted in the case of the free GBVPs. Regarding the reference potential,
traditionally the level ellipsoid is used, but today one of the highly accurate
satellite models from the recent satellite missions GRACE and GOCE can also be
employed. The question of the reference surface is related to the definition of
telluroid; for details on different telluroid mappings (Molodensky, Hirvonen,
isozenithal, Marussi, and gravimetric telluroid) see Heck (1986). With respect to
both the reference potential and the reference surface, it is important that the
approximate values are sufficiently close to the real situation, such that a one-step
solution is sufficient, or a convergent iteration process can be constructed
(e.g., Rummel 1988; Heck 1997).

In the first instance, the normal gravity field of the level ellipsoid is employed
for approximating the gravity potential. Moreover, it is supposed that at least the
horizontal positions (ellipsoidal latitudes and longitudes) and in the case of fixed
GBVPs also the ellipsoidal heights, referring to the Earth-fixed system, are known
for the observation sites; this is considered as realistic with respect to today’s
geodetic practice. In addition, without going into detail about different telluroid
mappings (Grafarend 1978a; Heck 1986), the reference surface or telluroid is
defined according to Molodensky (Heck 1986, 1997):

uQ ¼ uP ; kQ ¼ kP ; UQ ¼ U0 � C ¼ U0 � ðW0 �WPÞ : ð5:78Þ
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The above equations associate each point P at the Earth’s surface with a corre-
sponding telluroid point Q, serving then as a known linearization point. The first
two conditions fix the horizontal position of the telluroid point Q, requiring that the
surface point P and the telluroid point Q are located on the same ellipsoidal
normal, while the third condition defines the vertical position of Q based on the
(observable) geopotential number C and the reference potential U0, which is
usually identified with the constant potential of the surface of the level ellipsoid; in
principle, a known value of W0 could also be employed, but this option is not
pursued any further here. Regarding most of the existing geopotential numbers,
these were historically referred to a fundamental datum point Pi

0 with a corre-
sponding local reference surface Wi

0 (with the exact numerical value being typi-
cally unknown); in the following, no distinction is made between a local vertical
datum ðWi

0Þ and the global case (with W0 related to the geoid; for further details
see Sect. 2.4). Furthermore, the reference potentials (W0 and Wi

0) may be con-
sidered as additional unknowns in the solution of the GBVPs, which must be
counterbalanced by additional observations (GNSS and leveling); for details see
Rummel and Teunissen (1988) or Heck and Rummel (1990). Finally it is also
worth mentioning that the above telluroid definition according to Molodensky and
the definition from Hirvonen, where the point Q is put on the same normal plumb
line as P, are practically equivalent (Heck 1986); especially for the vertical
component, the difference between both telluroid definitions is completely negli-
gible due to the very small curvature of the normal plumb lines.

If the normal potential U is associated with the level ellipsoid, then the ellip-
soidal height of the telluroid point Q, defined according to (5.78), is virtually
identical with the normal height HN (see Fig. 5.5); this results from (5.53) with
C = U0 - UQ and the fact that the ellipsoidal height (h) and the normal height
(HN) of Q differ by less than 10-7 m for heights up to 10 km (see Sect. 2.4). In
addition, the position anomaly vector, defined as the difference of the position
vectors of P and Q, respectively, has zero horizontal components with respect to
the local ellipsoidal system in Q, while the vertical component is the height
anomaly fP (see Fig. 5.5).

The disturbing (or anomalous) potential is defined for an arbitrary point P in
space by

TP ¼ WP � UP : ð5:79Þ

Assuming that the centrifugal parts in W and U are identical, the disturbing
potential T may also be expressed as, see (5.35), and (5.57),

TP ¼ VP � VN
P ; ð5:80Þ

and hence T is harmonic outside the Earth’s surface and regular at infinity, see
(5.19) and (5.21):

DT ¼ 0; lim
l!1

T ¼ 0 : ð5:81Þ
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With regard to the solution of the free GBVPs, the domain of harmonicity of T has
to be extended down to the surface of the (known) telluroid, which causes a small
problem from the theoretical side (Heck 1997).

Corresponding to the disturbing potential T, the gravity disturbance vector is
defined as

dgP ¼ gP � cP ¼ grad WP � grad UP ¼ grad TP ; ð5:82Þ

while the scalar gravity disturbance is given by

dgP ¼ gP � cP ; ð5:83Þ

noting that the term ‘‘disturbance’’ is always used for one-point functions related to
the same point in space (Grafarend 1978a; Heck 1997). Besides the observations in
gP (U, K, g), the computation of the gravity disturbance vector dgP requires the
spatial coordinates of P with respect to the Earth-fixed system (e.g., from GNSS)
in order to be able to compute cP.

Corresponding to (5.79) and (5.82) or (5.83), the potential anomaly

DWP ¼ WP � UQ ¼ TP þ ðUP � UQÞ ; ð5:84Þ

and the gravity anomaly vector

DgP ¼ gP � cQ ¼ dgP þ ðcP � cQÞ ¼ grad TP þ ðgrad UP � grad UQÞ ; ð5:85Þ

are introduced. Thus the ‘‘anomalies’’ are two-point functions related to the sur-
face point P and the telluroid point Q (Grafarend 1978a; Heck 1997). The com-
putation of the normal gravity vector cQ requires the spatial position vector of Q,
e.g., its ellipsoidal latitude, longitude, and height, the latter being virtually iden-
tical with the normal height HN (see above and Sect. 2.4), derived from geometric
leveling through the geopotential number C.

Fig. 5.5 Earth’s surface,
telluroid, ellipsoid, actual and
normal gravity, deflection of
the vertical according to
Molodensky
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Moreover, the gravity anomaly vector, DgP, according to (5.85), can be
expressed by the scalar equations (Heck 1997)

Du
c

P ¼ UP � uc
Q ¼ nM

P ;

Dk
c

P ¼ KP � kc
Q ¼ gM

P = cos uc
Q ;

DgP ¼ gP � cQ ;

ð5:86Þ

where nM
P ; g

M
P are the deflections of the vertical in north–south and east–west

direction according to the definition of Molodensky (angles between the gravity
vector at P and the normal gravity vector at Q), and DgP is the scalar gravity
anomaly, also denoted as the surface free-air gravity anomaly.

In this context, the height anomaly is also a two-point function, given by

fP ¼ hP � hQ: ð5:87Þ

Considering now the Molodensky telluroid, the combination of (5.78) and
(5.84) yields DWP = W0 - U0, while a Taylor development of the normal
potential U around the telluroid point Q gives

UP ¼ UQ þ
oU

oh

	 

Q

fP þ . . . ¼ UQ � cQ fP þ . . . : ð5:88Þ

Finally, by inserting both expressions into (5.84), Bruns’s formula is obtained as

fP ¼
TP

cQ
�W0 � U0

cQ
: ð5:89Þ

In the above formula, the second term is neglected in many cases, thus
assuming that the condition W0 = U0 holds. Furthermore, (5.89) is based only on
the first term of the series expansion (5.88), i.e., a linear approximation, neglecting
the nonlinear terms. In addition, it is noted that within the framework of linear
approximations, e.g., the quantities T, f, dg, Dg, etc., are considered as small of
first order, while products of such terms are small, of second order, and thus
negligible, leading to TQ & TP, gradTQ & gradTP, etc. (Moritz 1980). Conse-
quently, if the point P is unknown, which applies to the free GBVPs, TP cannot be
evaluated and has to be replaced by TQ in (5.89). However, if the position of the
point P in space is known, e.g., associated with the fixed GBVPs, a virtually
rigorous version of formula (5.89), neglecting only the slightly different directions
of the ellipsoidal normal and the normal plumb line, can be derived by expressing
UP � UQ ¼ ��cQP fP, corresponding to (5.53), where �cQP is the mean normal
gravity value along the line from Q to P (e.g., Wenzel 1985), giving

fP ¼
TP

�cQP
�W0 � U0

�cQP
with �cQP ¼

1
hP � hQ

ZhP

hQ

cdh: ð5:90Þ
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Given the point P in space, the use of (5.89) instead of (5.90) leads to maximum
errors in the height anomalies of about a few millimeters (see also Wenzel 1985),
and hence, as the mean normal gravity value �cQP is easy to compute, in the
simplest case as �(cQ ? cP), (5.90) should be preferred (noting that it is not
consistent with the concept of linear approximations explained above).

The linearization of the nonlinear boundary conditions (observation equations)
related to the scalar fixed (dgP), the vectorial free (DgP), and the scalar free GBVP
(DgP) is treated in detail in Heck (1997) and Seitz (1997), also investigating the
nonlinear terms and the resulting linearization errors (the nonlinearities arise from
the free boundary as well as the use of the norm operator to compute the vector
lengths, e.g., (5.83) and (5.86)). A rigorous linearization of the boundary
conditions is not intended here. Therefore, considering only linear approximations
(see above) of (5.89), (5.83), and (5.86) results in

fP ¼
T

c
�W0 � U0

c
; ð5:91Þ

dgP ¼ �
oT

oze
¼ � oT

oh
; ð5:92Þ

nM
P ¼ �

1
c

oT

oxe
¼ � 1

c ðM þ hÞ
oT

ou
; ð5:93Þ

gM
P ¼ �

1
c

oT

oye
¼ � 1

c ðN þ hÞ cos u
oT

ok
; ð5:94Þ

DgP ¼ �
oT

oh
þ 1

c
oc
oh

T � 1
c

oc
oh
ðW0 � U0Þ: ð5:95Þ

where the right sides of the above formulas have to be evaluated at the boundary
surface, i.e., the telluroid in the case of the free GBVPs. The negative sign in the
vertical deflection components follows from the sign conventions for the height
anomalies and the vertical deflections (Torge 2001). For the derivation of (5.95), a
Taylor series expansion of cP - cQ, analogous to (5.88), is used; the equation is
also denoted as the fundamental equation of physical geodesy. Furthermore, the
introduction of spherical approximations in the above formula system, i.e., the
omission of terms of the order o(f) with f & 1/300 (often called ellipsoidal
effects), not affecting (5.91), gives

dgP ¼ �
oT

or
; ð5:96Þ

nM
P ¼ �

1
c r

oT

ou
; ð5:97Þ

gM
P ¼ �

1
c r cos u

oT

ok
; ð5:98Þ
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DgP ¼ �
oT

or
� 2

r
T þ 2

r
ðW0 � U0Þ; ð5:99Þ

where qc/qh = qc/qr = -2c/r (spherical approximation) is utilized. Moreover, the
subscripts P and Q are dropped on the right sides of (5.91)–(5.99), noting again
that the linearized boundary conditions hold on the (known) boundary surface,
which is the Earth’s surface for the fixed GBVPs and the telluroid for the free
GBVPs, respectively; hence, the linearization process is associated with a trans-
formation of the free GBVPs into fixed ones, with the telluroid then serving as the
(known) boundary. In this context, it has to be stressed that the boundary condi-
tions in spherical approximation also still relate to the Earth’s surface (fixed
GBVPs) or the telluroid (free GBVPs); in other words, spherical approximations
include only the omission of ellipsoidal terms, but do not imply that the boundary
is replaced by a sphere (see also Moritz 1980 and Heck 1997). In addition, planar
approximations, also neglecting terms of the order o(h/R) associated with a mean
Earth radius R, may be used for very local applications (e.g., Moritz 1980), but are
not discussed here. Considering the linearized boundary conditions (5.91)–(5.99),
it is clear that the derivatives of T are in general not normal to the (known)
boundary surface (Earth’s surface or telluroid, respectively), leading to the so-
called oblique derivative BVPs (Heck 1997; Sideris 2011a). Furthermore, in the
boundary condition for the gravity disturbance the radial derivative of T appears,
while in the corresponding equation for the gravity anomaly a linear combination
of the radial derivative of T and T itself occurs, similar to the second (Neumann)
and third (Robin) BVP of potential theory, involving normal derivatives.

So far it has been assumed that the level ellipsoid is used for the linearization of
the observation equations, implying that the height anomalies, i.e., the separation
between the Earth’s surface and the telluroid, following closely the Earth’s sur-
face, reach maximum values of about 100 m with an RMS (root-mean-square)
value of roughly 30 m. Thus the use of spherical approximations, i.e., the omission
of terms of the order o(f) with f & 1/300, may in certain cases lead to significant
errors at the milligal and decimeter level in the derived gravity and height
anomalies, respectively (Heck 1997; Hipkin 2004). Obviously, the non-spherical
and nonlinear terms cannot be neglected in precise gravity field modeling, and thus
have to be considered by appropriate reductions (see, e.g., Heck 1991), especially
in view of the present accuracy requirements for regional and global computations
(e.g., the GRACE and GOCE satellite missions), aiming at accuracies at the
millimeter to centimeter level for height anomalies.

On the other hand, the effect of the linearization and spherical approximation
errors can be substantially reduced by introducing a higher degree reference field,
e.g., a complete spherical harmonic model derived from the satellite missions
GRACE (e.g., Mayer-Gürr et al. 2010; Kurtenbach et al. 2009) and GOCE (e.g.,
Pail et al. 2011) or the combined model EGM2008 (Pavlis et al. 2008), extended
by a centrifugal component. In this context, it is important to stress that the
satellite-only models are inherently unaffected by any spherical approximations,
etc., while EGM2008 is derived on the basis of ellipsoidal harmonics and thus also
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hardly affected by such effects. In addition, it is essential that the gravity field
parameters derived from the high-degree models are computed rigorously without
any (spherical, etc.) approximations, as outlined in Sect. 2.3, such that the resid-
uals with respect to the global model are virtually exact. Now, if the normal
gravity field of the level ellipsoid is replaced by a global geopotential model
complete to degree and order 100, 200, and 360, the residual height anomalies
reduce to about 1.0, 0.4, and 0.2 m RMS, with corresponding maximum values of
about 18, 11, and 4 m, respectively. Hence, a high-degree reference field leads to a
much better approximation of the real situation, with the separation between the
Earth’s surface and the corresponding telluroid reducing by about one to two
orders of magnitude, as compared to the linearization with respect to the level
ellipsoid. Accordingly, the effect of linear and spherical approximations decreases
in the modeling of the (rigorously derived) residual gravity field parameters, such
that height anomalies may be deduced with accuracies at the centimeter to a few
millimeters level; this is also supported by the numerical investigations in Heck
(1997) and Seitz (1997). Further insight into this problem can be gained as well
through closed-loop simulations with synthetic data (see, e.g., Wolf 2008).

The rigorous implementation of a high-degree geopotential model as a refer-
ence field in the linearization process must strictly follow the procedure described
above for the level ellipsoid; the geopotential model is associated with a gravity
potential

WM ¼ VM þ ZM ; ð5:100Þ

based on a spherical harmonic expansion of the gravitational part VM as well as a
centrifugal component ZM. Correspondingly, the gravity vector is defined as

gM ¼ grad WM ¼ grad VM þ grad ZM : ð5:101Þ

The notation is chosen here in line with the real gravity potential of the Earth and
its functionals, because the currently available high-degree geopotential models
allow a quite good approximation of the real gravity field. Now, within the line-
arization process, WM and gM have to take the place of U and c, respectively.
Hence, the disturbance quantities related to a single point P in space with given
coordinates can be computed directly, while the anomaly quantities require the
definition of a telluroid associated with the geopotential model. In accordance with
(5.78) it follows that

uQ
 ¼ uP ; kQ
 ¼ kP ; WM
Q
 ¼ UQ ¼ U0 � C ¼ U0 � ðW0 �WPÞ; ð5:102Þ

where Q* is the telluroid point in conjunction with the geopotential model. The
advantage of employing a high-degree reference field instead of the level ellipsoid is
that the point Q* is much closer to P than Q (see above as well as Fig. 5.6). Again it is
assumed that the ellipsoidal latitude and longitude of P and thus Q* are given, while
the ellipsoidal height of P is unknown and that of Q* can in principle be computed
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iteratively, starting with hQ
 ð0Þ ¼ hQ ¼ HN and WM
Q
 ð0ÞðuQ
; kQ
; hQ
 ð0ÞÞ, while

then the equation

hQ
 ðiÞ ¼ hQ
 ði�1Þ þ
1

gM
Q
 ði�1Þ

WM
Q
 ði�1Þ ðuQ
; kQ
; hQ
 ði�1ÞÞ �WM

Q


� �
;

i ¼ 1; . . . ;1 ;

ð5:103Þ

has to be iterated until convergence, with the nominal potential value being WM
Q
 ¼

UQ ¼ U0 � C; which is deduced from leveling and a conventional U0 value. The
time-consuming part in this iteration process is the calculation of the potential
values WM, requiring the evaluation of the spherical harmonic expansion; however,
the convergence of (5.103) is very good, e.g., regarding a geopotential model
complete to degree and order 360, the maximum error of hQ
 was found to be less
than 1 9 10-5 m after only two iterations (i = 2). Furthermore, it is noted that the
geopotential model gravity value gM

Q
 ði�1Þ in (5.103) can be replaced by practically

any constant (normal) gravity value c, as the term in parentheses on the right side
of (5.103) goes to zero within the iteration process.

After all, it is convenient to express also WM as the sum of the potential of the
level ellipsoid U and a corresponding disturbing potential TM. Considering (5.79),
this leads directly to the disturbing potential, associated with the high-degree
geopotential model

T
P ¼ WP �WM
P ¼ ðUP þ TPÞ � ðUP þ TM

P Þ ¼ TP � TM
P ; ð5:104Þ

and the corresponding height anomaly (of P with respect to Q*; see Fig. 5.6)

f
P ¼ hP � hQ
 ¼ ðhP � hQÞ � ðhQ
 � hQÞ ¼ fP � fM
Q
 ; ð5:105Þ

which, following the line of thought used to derive (5.89), can be expressed in
linear approximation as

f
P ¼
T
P
gM

Q

�W0 � U0

gM
Q


; ð5:106Þ

and accordingly fM
Q
 is given by

fM
Q
 ¼

TM
Q

cQ

; ð5:107Þ

noting that more rigorous versions of the above two equations can be obtained
analogous to (5.90) by introducing corresponding mean gravity values �gM

Q
P and
�cQQ
, respectively.

In the same way, the gravity disturbance and anomaly vectors with respect to
the geopotential model are given by
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dg
P ¼ gP � gM
P ¼ ðcP þ dgPÞ � ðcP þ dgM

P Þ ¼ dgP � dgM
P ; ð5:108Þ

Dg
P ¼ gP � gM
Q
 ¼ ðcQ þ DgPÞ � ðcQ þ DgM

Q
Þ ¼ DgP � DgM
Q
 : ð5:109Þ

Consequently, the rigorous linearization with respect to a high-degree geopo-
tential model leads to residual quantities, which closely correspond to those used
in the well-known remove-compute-restore (RCR) technique, in which topo-
graphic (or mass) information is additionally taken into account (see Sect. 3.9). In
this context, it is pointed out again that the parameters from the geopotential model
should be derived without (spherical, etc.) approximations at the appropriate
positions in space, and it is also noted that the concepts introduced in Sect. 2.3,
computing first the potential derivatives with respect to a local spherical system,
followed by a transformation to the desired target system, can be applied as well
for the anomalous gravity field quantities. Now for the case that only normal
heights exist, the telluroid point Q* can be computed with sufficient accuracy
(see above) after only two iterations of (5.103); in practice this means that the
geopotential model has to be evaluated only at the two heights hQ* (0) = hQ = HN

and hQ* (1) = HN +fQ* (0), yielding TQ and TQ* & TQ* (1) in Q and Q*, respec-
tively. With regard to a geopotential model complete to degree and order 360, the
maximum differences between TQ and TQ* reach about 0.25 m2s-2, while TQ* (1) is
accurate to better than 1 9 10-4 m2s-2, corresponding to about 0.025 m and
1 9 10-5 m in terms of height anomalies. The maximum differences between TQ

and TQ* are considered as significant, and hence the geopotential model should be
evaluated at the appropriate positions in space. This was also pointed out by
Tscherning (2004), mentioning that in this way ‘‘it is possible to come close to
making no approximation at all.’’

Fig. 5.6 Telluroid associated
with level ellipsoid and
high-degree reference
geopotential model
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3.3 The Constant Radius Approximation

The geodetic boundary value problems (GBVPs) aim at the determination of the
exterior gravity potential W from boundary data, as a direct computation is
impossible due to insufficient knowledge of the Earth’s density structure. Within
the linearization process, described in the previous section, the task of computing
W is reduced to the determination of the disturbing potential T, which is a har-
monic function outside the masses and regular at infinity, see (5.81).

Now harmonic solutions for T are sought, which satisfy the boundary conditions
(observations), e.g., (5.91)–(5.99). In this context, it is pointed out again that the
linearized boundary conditions refer to the known boundary surface (i.e., the
Earth’s surface for the fixed GBVPs, and the telluroid for the free GBVPs), and
the derivatives of T, appearing in the boundary conditions, are generally not
normal to the boundary surface (oblique derivative GBVPs).

However, even the linearized GBVPs based on spherical approximations, e.g.,
(5.96)–(5.99), do not permit rigorous analytical solutions in closed form as long as
the boundary is not spherically shaped (Heck 1997). Therefore, Rummel (1988)
and Heck (1997) discuss iterative solutions, where terms due to the Earth’s flat-
tening and topography of order o(f) and o(h/a) are involved, respectively. The
omission of all non-spherical terms (i.e., assuming a spherical boundary) leads to
the so-called constant radius approximations, which also contribute the dominating
terms in iterative GBVP solution schemes.

In the following, several well-known formulas are derived on the basis of the
constant radius approximation. In the first instance, as the disturbing potential T is
a harmonic function, it may be expanded in spherical harmonics based on (5.80),
(5.26), and (5.59), resulting in

Tðh; k; rÞ ¼
X1
n¼0

a

r

� �nþ1 Xn

m¼�n

TnmYnmðh; kÞ ¼
X1
n¼0

a

r

� �nþ1
Tnðh; k; aÞ; ð5:110Þ

with

Tnm ¼
GM

a
Cnm

Snm

� �
� GMN

GM

aN

a

� �n C
N
nm

S
N
nm

( ) !
for

m� 0
m\0

� �
; ð5:111Þ

where the different GM and a values in V and VN lead to a rescaling of the
coefficients of the normal potential, noting that (5.110) and (5.111) may also be
expressed with respect to aN and GMN, whatever is more convenient. The sum-
mation in the above equation starts at degree n = 0 to account for possible dif-
ferences in the GM and GMN quantities related to V and VN, respectively. Another
option would be to compute T directly as the difference of V and VN, requiring no
rescaling of any coefficients. Furthermore, Tn (h, k, a) are the Laplace surface
harmonics of degree n, referring to the radius r = a.
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Assuming now that T is given on a sphere with radius r = a, (5.110) can be
inverted easily by applying the orthogonality relations (5.28), yielding

Tnm ¼
1

4p

ZZ
r

Tðh0; k0; aÞ Ynmðh; kÞ dr : ð5:112Þ

Utilizing this result as well as the decomposition formula for the Legendre
polynomials gives directly

Tnðh; k; aÞ ¼
2nþ 1

4p

ZZ
r

Tðh0; k0; aÞPnðcos wÞ dr ; ð5:113Þ

where w is the spherical distance between the two points P (h,k, a) and P0 (h0, k0, a) with

cos w ¼ cos h cos h0 þ sin h sin h0 cosðk� k0Þ : ð5:114Þ

Correspondingly, the gravity disturbance may be expressed in spherical approxi-
mation according to (5.96) as

dgðh; k; rÞ ¼ � oT

or
¼
X1
n¼0

a

r

� �nþ2 nþ 1
a

Tnðh; k; aÞ ¼
X1
n¼0

a

r

� �nþ2
dgnðh; k; aÞ :

ð5:115Þ

The above approach can be applied to other gravity field parameters as well and
leads to the so-called Meissl scheme, which in its extended form, based on tensor
spherical harmonics, is also applicable to the first and second horizontal deriva-
tives of T (Rummel and van Gelderen 1995; Rummel 1997). Thus in spherical
approximation, the following simple spectral relations (eigenvalue expressions)
hold:

dgnðh; k; aÞ ¼
nþ 1

a
Tnðh; k; aÞ; ð5:116Þ

Dgnðh; k; aÞ ¼
� 1

a T0ðh; k; aÞ þ 2
a ðW0 � U0Þ for n ¼ 0

n�1
a Tnðh; k; aÞ for n [ 0

(
; ð5:117Þ

Tnðh; k; rÞ ¼
a

r

� �nþ1
Tnðh; k; aÞ; ð5:118Þ

dgnðh; k; rÞ ¼
a

r

� �nþ2
dgnðh; k; aÞ; ð5:119Þ
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Dgnðh; k; rÞ ¼
a

r

� �nþ2
Dgnðh; k; aÞ: ð5:120Þ

Basically, the spherical harmonic expansion (5.110) together with (5.112)
represents a solution to the Dirichlet BVP for a spherical boundary. Now, the
spherical harmonic series has its advantages mainly in global analyses and the
spectral interpretation, while integral formulas (Green’s function representations)
are better suited for local applications; this is easily recognized by the fact that a
change in one boundary value leads to changes in all spherical harmonic coeffi-
cients, while a change in a remote boundary value affects the local field computed
by integral formulas only marginally, as the integration kernels essentially depend
on the inverse distance or higher powers thereof (Jekeli 2009).

Combining (5.110) and (5.113) and assuming that the disturbing potential T is
given on a sphere with radius r = R (instead of r = a used above) leads to the
well-known Poisson integral (Heiskanen and Moritz 1967; Jekeli 2009)

Tðh; k; rÞ ¼ 1
4p

ZZ
r

Tðh0; k0;RÞUðw; rÞ dr ð5:121Þ

with the Poisson kernel

Uðw; rÞ ¼
X1
n¼0

R

r

	 
nþ1

ð2nþ 1ÞPnðcos wÞ

¼ Rðr2 � R2Þ
l3

ð5:122Þ

and the spatial distance

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 � 2rR cos w

p
: ð5:123Þ

The above equations allow the upward continuation of any harmonic function from
a sphere with radius R to another sphere with radius r [ R, e.g., they can be
directly applied to the (spatial) function r Dg, which is harmonic, while Dg itself is
not a harmonic function (for details see Heiskanen and Moritz 1967).

Furthermore, utilizing (5.113) correspondingly for the derivation of the gravity
disturbance surface harmonics and inserting this result into (5.116) and (5.110)
yields the Hotine integral (Hotine 1969; Heck 1997)

Tðh; k; rÞ ¼ R

4p

ZZ
r

dg ðh0; k0;RÞHðw; rÞ dr ð5:124Þ

with the Hotine kernel
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Hðw; rÞ ¼
X1
n¼0

R

r

	 
nþ1 2nþ 1
nþ 1

Pnðcos wÞ

¼ 2R

l
� ln

lþ R� r cos w
r ð1� cos wÞ :

ð5:125Þ

It should be noted that the summation in (5.122) and (5.125) starts at degree
n = 0, and thus the complete spectrum including the degrees zero and one can be
determined from the boundary data. However, with regard to gravity anomalies,
the situation is different, as (5.117) has to be employed accordingly, where the
factor (n - 1) appears; i.e., the gravity anomalies have no first degree harmonics
and hence the corresponding disturbing potential harmonics cannot be determined
from gravity anomalies. This leads to a non-unique solution of the BVP, and
therefore additional constraints are necessary to achieve a unique solution for T.
The first-degree harmonic coefficients are proportional to the center-of-mass
coordinates and can be enforced to zero with an appropriate definition of the
coordinate system (for further details see Rummel 1995 and Heck 1997). Corre-
sponding to (5.124) and (5.125), the complete solution for the disturbing potential
based on gravity anomalies is given by

Tðh; k; rÞ ¼
X1

n¼0

R

r

	 
nþ1

Tnðh; k;RÞ þ
R

4p

ZZ
r
Dg ðh0; k0;RÞ Sðw; rÞ dr; ð5:126Þ

with the (extended) Stokes kernel

Sðw; rÞ ¼
X1
n¼2

R

r

	 
nþ1 2nþ 1
n� 1

Pnðcos wÞ

¼ 2R

l
þ R

r
� 3

Rl

r2
� R2

r2
cos w 5þ 3 ln

lþ r � R cos w
2r

	 

:

ð5:127Þ

In the above equations, the zero-degree and first-degree terms of T are handled
separately, because the Stokes integral, the right term in (5.126), conventionally
excludes these components (e.g., Heiskanen and Moritz 1967; Jekeli 2009); this is
also evident from the Stokes kernel (5.127), where the summation only starts at
degree n = 2. Furthermore, according to (5.110) and (5.111), the zero-degree term
of T in (5.126) can be expressed as

T0ðh; k;RÞ ¼
GM � GMN

R
; ð5:128Þ

and the corresponding zero-degree term of f follows from Bruns’s formula as

f0ðh; k;RÞ ¼
1
c0

T0ðh; k;RÞ �
1
c0
ðW0 � U0Þ: ð5:129Þ
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In addition, it is noted that (5.124) and (5.125) solve the Neumann BVP, while
(5.126)–(5.128) solve the Robin BVP, provided the boundary is a sphere. Fur-
thermore, all integral kernels (Green’s functions) introduced above, have singu-
larities at w = 0, when the computation point is on the sphere with
radius R. Therefore, the inner zone contributions have to be evaluated separately
by expanding the boundary data in a Taylor series and performing the integration
term by term (Heiskanen and Moritz 1967; Bian 1997; Torge 2001).

For the Stokes integral (with r = R), the inner zone contribution can be com-
puted by approximating S(w) = S(w, R) = 2/w = 2 R/s, with s being the planar
distance (the first term in (5.127) dominates for w ? 0); then integration over a
spherical cap with radius s0 gives the inner zone contribution

Ti ¼ DgP s0 þ . . . ; ð5:130Þ

while an integration over a rectangular area (see also Haagmans et al. 1993) results
in

Ti ¼ DgP
1

2p

ZþDx=2

�Dx=2

ZþDy=2

�Dy=2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p dx dy þ . . .

¼ DgP
1

2p
Dx ln

d þ Dy

d � Dy
þ Dy ln

d þ Dx

d � Dx

	 

with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
;

ð5:131Þ

where Dx, Dy are the side lengths (in meters) of the rectangle in x (north–south)
and y (east–west) direction, respectively. If the area sizes of the spherical cap and
the rectangle are chosen to be identical (ps0

2 = DxDy), (5.131) always gives
slightly larger inner zone contributions than (5.130); the differences are at the few
percent level, depending on the ratio of Dx/Dy (for further details see Haagmans
et al. 1993).

Finally, based on the spherical and constant radius approximations, virtually
any gravity field quantity can be obtained in space from any other quantity on a
spherical boundary (Jekeli 2009). Further examples are the Vening-Meinesz
integral formulas, which allow the computation of deflections of the vertical from
gravity anomalies by applying (5.97) and (5.98) to the Stokes integral, as well as
the inverse Stokes, Hotine, and Vening-Meinesz integral formulas, which are all
presented, e.g., in Jekeli (2009).

3.4 Solutions to Molodensky’s Boundary Value Problem

In the previous section, different GBVP solutions are derived based on the
spherical and constant radius approximation, assuming that the boundary is a
sphere. Now, more complicated boundaries require additional corrections or
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iterative solution schemes. The scalar free GBVP, formulated first by Molodensky
(e.g., Molodenskii et al. 1962), is based on gravity observations at the Earth’s
surface. Within the linearization process, the scalar free GBVP is transformed into
a fixed one by approximating the Earth’s surface by means of the telluroid, serving
then as the (known) boundary surface, to which the boundary conditions as well as
the boundary data (i.e., the gravity anomalies) refer (see Sect. 3.2). Furthermore,
the scalar free GBVP in linear and spherical approximation is often called the
simple Molodensky problem (Moritz 1980; Heck 1997).

Molodensky’s problem can be solved in various ways; detailed derivations can
be found in Moritz (1980). An efficient solution, avoiding integral equations, is
provided by the method of analytical continuation (Moritz 1980; Sideris 1987,
2011a). In this method, the gravity anomalies Dg (at any point on the telluroid) are
reduced to the normal level surface passing through the given computation point
P (point level); the resulting anomalies are denoted as Dg0 and can be obtained by

Dg0 ¼
X1
n¼0

gn ; gn ¼ �
Xn

j¼1

ðHN � HN
P Þ

jLjðgn�jÞ ; starting with g0 ¼ Dg :

ð5:132Þ

Thus the gn terms are evaluated recursively based on the vertical derivative
operator Lj with

Lj ¼
1
j!

o j

oh j
¼ 1

j

1
ðj� 1Þ!

oj�1

ohj�1

o

oh
¼ 1

j
Lj�1L1 ¼

1
j!

L j ¼ 1
j!

LLL. . .L ðj times) :

ð5:133Þ

In the above equation, the abbreviation L = L1 is introduced, and in planar
approximation (R ? ?) L becomes the surface operator

Lðf Þ ¼ L1ðf Þ ¼
R2

2p

ZZ
r

f � fP

l3
0

dr ; l0 ¼ 2R sin
w
2
: ð5:134Þ

Now, the analytically continued gravity anomalies Dg0 refer to the normal level
surface passing through the computation point P, and hence the disturbing
potential T at P can be obtained by applying Stokes’s integral operator S (right
term of (5.126)) to Dg0, yielding

T ¼ SðDg0Þ ¼ SðDgÞ þ
X1
n¼1

SðgnÞ ¼
X1
n¼0

Tn : ð5:135Þ

Thus, the main contribution to the Molodensky solution is provided by the
Stokes term, while the further so-called Molodensky terms consider that the data
are not given on a level surface. Moreover, the zero-degree and first-degree terms
of T are omitted in the above equation, but the notes given for the Stokes integral
apply to the Molodensky solution as well (see previous section). Finally, it should
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be noted that the Molodensky terms Tn and the Laplace surface harmonics of T
have nothing in common.

Regarding the above computation procedure, it is important to realize that the
gn terms depend on the computation point P, which is rather impractical, as a new
set of gn values has to be computed for every new computation point. This diffi-
culty can be overcome, e.g., by performing the analytical continuation in two
steps, where the surface gravity anomalies are first analytically continued to zero
level (giving Dg00), then the Stokes operator is applied to compute the harmoni-
cally continued disturbing potential T00 , and finally T00 is analytically continued
back to the telluroid (Sideris 1987; Forsberg and Tscherning 1997), yielding

T ¼ T00 þ
X1
n¼1

ðHNÞnLnðT00 Þ : ð5:136Þ

The two-step formulas are much better suited for numerical computations and
allow the application of Fast Fourier Transform (FFT) techniques (Sideris 1987).

Furthermore, the first order solution of (5.135) is known as the gradient solution
(Moritz 1980), which can be expressed as

T 	 S Dgþ g1ð Þ ¼ S Dg� oDg

oh
ðHN � HN

P Þ
	 


: ð5:137Þ

Regarding the gradient solution, it is also worth mentioning that

S g1ð Þ 	 S cð Þ ð5:138Þ

holds in linear approximation for gravity anomalies Dg linearly dependent on the
elevations, where c is the classical terrain correction (Moritz 1980). Besides this,
the gravity anomalies DgFaye = Dg ? c are denoted as Faye anomalies, giving

T 	 S Dgþ cð Þ ¼ S DgFaye

� �
: ð5:139Þ

For the two-step procedure based on (5.135) and (5.136), the gradient solution
leads to

T 	 S Dg� oDg

oh
HN

	 

þ oT00

oh
HN : ð5:140Þ

Considering the relations (5.92), (5.91), and (5.95), yielding

oT

oh
¼ �dg ;

of
oh
¼ � 1

c
Dg; ð5:141Þ

the gradient solution results in a very simple scheme for the computation of the
height anomalies (Forsberg and Tscherning 1997):

1. Predict vertical gradient qDg/qh & -Tzz from Dg.
2. Continue Dg downward, giving Dg00 & Dg - (qDg/qh) HN.
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3. Apply Stokes operator, yielding f00 = S(Dg00).
4. Continue the height anomalies upward to obtain f = f00 - (Dg00/c) HN.

The above procedure is preferable over (5.139), as it contains fewer approxima-
tions, avoiding the assumption that the gravity anomalies are linearly dependent on
the elevations.

Finally, it is noted that f00, f, and the geoid undulation N (as well as the
corresponding disturbing potentials T00, T, and T0) are fundamentally different
quantities. Initially, T00 is a disturbing potential obtained by harmonic continuation
(to zero level), which is identical to T outside the Earth’s surface; e.g., this is also
the quantity obtained from a global geopotential model or least-squares collocation
applied spatially. On the other hand, T0 relates to the geoid (see next section),
which is in general located inside the topography on the continents and hence not
an equipotential surface of a harmonic function (because T0 is not harmonic inside
the topography). The differences between f and f00 depend on the free-air gravity
anomaly, see (5.141), while the differences between f and N depend on the
Bouguer gravity anomaly, see (5.56). In typical mountainous areas with, e.g., 1 km
changes in elevation, the differences between f00, f, and N are at the level of 10 cm
(Forsberg and Tscherning 1997).

3.5 Solutions to Stokes’s Boundary Value Problem

Stokes’s classical geodetic boundary value problem (GBVP) aims at the determi-
nation of the geoid from gravimetric data. The calculation of the geoid within the
GBVP framework has two important consequences: first, the gravity values must
refer to the geoid, which initially serves as the boundary surface, and second, there
must be no masses outside the geoid. The latter requirement results from the
boundary value problem approach of potential theory, which always involves
harmonic functions satisfying the Laplace equation. Consequently, since no masses
are allowed outside the geoid, the topography of the Earth must be eliminated
mathematically by appropriate reductions.

Stokes’s as well as Molodensky’s GBVP may both be considered as scalar free
problems (see above), the main difference being that Molodensky’s problem is
based on gravity data at the Earth’s surface, while Stokes’s problem involves
gravity data at the geoid. Accordingly, Stokes problem is in principle easier to
solve than Molodensky’s problem, because the initial boundary surface, i.e., the
geoid, is a level surface with the gravity vectors perpendicular to it; this corre-
sponds to a BVP of the third kind (Robin problem) of potential theory, see
boundary condition (5.95) or (5.99). However, the main drawback of Stokes’s
problem is that complicated topographic reductions are necessary.

For the solution of Stokes’s GBVP, the geoid is approximated by an ellipsoid,
and then after spherical and constant radius approximation the general solution is
given by (5.126) with r = R, the right term being the Stokes integral (for further
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details see above). Now, in order to get the boundary values (gravity anomalies) at
the geoid, the external masses outside the geoid must be either removed com-
pletely or moved inside the geoid. This so-called regularization obviously also
changes the shape of the level surfaces and hence the geoid, leading to the cogeoid.
In this context, it is advantageous to preserve the total mass of the Earth. There-
fore, usually Helmert’s second condensation reduction is applied, where the
masses above the geoid are condensed onto a layer on the geoid (e.g., Sideris 1994,
2011a).

Accordingly, the entire procedure for the computation of the geoid may be
described as follows (Heiskanen and Moritz 1967; Sideris 2011a):

1. The masses above the geoid are removed computationally, i.e., the attraction
effect (AP) is subtracted from the gravity value at the surface point P.

2. The gravity station is lowered from P to P0 on the geoid using the free-air
reduction (F) or harmonic downward continuation.

3. The topographic masses are condensed on the geoid, and the attraction effect at
P0 is restored (Ac

P0
).

4. The indirect effect (for details see Wichiencharoen 1982) on the potential
(dTind) due to the shifting of the topographic masses is computed at P0.

5. The indirect effect on gravity (dgind), which reduces gravity from the geoid to
the cogeoid, is taken into account, finally yielding the gravity anomalies on the
cogeoid as Dgc ¼ gP � AP þ F þ Ac

P0
þ dgind � c0.

6. The disturbing potential for the cogeoid (T0c) is computed by applying Stokes’s
operator to Dgc.

7. The disturbing potential for the geoid (T0) is computed by adding the indirect
effect to the Stokes contribution, yielding

T0 ¼ SðDgcÞ þ dTind : ð5:142Þ

8. Finally, the geoid undulation (omitting the zero-degree term) is obtained from
Bruns’s formula as

N ¼ T0

c0
¼ 1

c0
SðDgcÞ þ 1

c0
dTind : ð5:143Þ

In addition, with the quantity dA ¼ Ac
P0
� AP 	 c and dgind 	 0; the gravity

anomaly at the cogeoid becomes Dgc 	 gP þ F � c0 þ c 	 DgP þ c ¼ DgFaye

(Forsberg and Tscherning 1997). Thus, the Faye anomalies play a role in the first
order solutions of Stokes’s as well as Molodensky’s problem, see (5.139); further
relationships and discussions on this matter can be found in Sideris (1994) and
Forsberg and Tscherning (1997). Practical examples of large-scale geoid compu-
tations are the models derived for the United States (e.g., Smith and Roman 2001;
Wang et al. 2011) and Canada (Véronneau and Huang 2007).

In conclusion, the computation of the geoid is in the details quite complicated
and requires several approximations as well as assumptions about the density of the
topographic masses above the geoid, which is the classical dilemma in determining
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the geoid as well as the orthometric heights. Furthermore, it is not an easy task to
ensure that the orthometric heights and the corresponding geoid undulations are
consistent, such that the equation h = H ? N is satisfied. This is also pointed out
clearly by Forsberg and Tscherning (1997), mentioning that ‘‘if refined expansions
are used for the downward continuation, consistency is lost with the conventional
Helmert orthometric heights’’; therefore, they suggest one works with height
anomalies (or the disturbing potential) related to the Earth’s surface as far as
possible, and only at the end of the computation chain to shift back to the geoid if
necessary, e.g., by using (5.56). In addition, this proposal is in accordance with the
strategy applied for the modeling of the quasigeoid and geoid in Europe, performed
at the IfE, LUH (e.g., Denker and Torge 1998; Denker et al. 2009).

3.6 The Spectral Combination Technique

The spectral combination technique encompasses all procedures to combine het-
erogeneous data by spectral weights (depending on spherical harmonic degree n);
it was initially developed to combine terrestrial gravity data and a global geopo-
tential model in an optimal way for the purpose of calculating the geoid or
quasigeoid. The spectral combination approach is based on the Laplace surface
harmonics derived from different data sets, which are then combined by employing
spectral weights. The method was promoted mainly by Sjöberg (1980, 1981, 2003)
and Wenzel (1981, 1982), with the basic idea of the procedure already being
outlined in Moritz (1976).

The development of the basic formulas is based on the spherical harmonic
expansion of the disturbing potential (5.110) as well as the spectral relations given
in (5.116)–(5.120). The following derivations are consistently based on the
spherical and constant radius approximation (see also previous sections), assuming
that the observations are given on a sphere with radius r = R. The first data set to
be considered is the global geopotential model, giving the disturbing potential
Laplace surface harmonics referring to r = R in the form

TM
n ðh; k;RÞ ¼

a

R

� �nþ1
TM

n ðh; k; aÞ ¼
a

R

� �nþ1 Xþn

m¼�n

T
M
nm Ynmðh; kÞ ; ð5:144Þ

which can be evaluated by means of the given coefficients T
M
nm.

On the other hand, corresponding surface harmonics can also be deduced from
gravity anomalies in the form

TG
n ðh; k;RÞ ¼

R

n� 1
DgG

n ðh; k;RÞ ¼
R

4p
2nþ 1
n� 1

ZZ
r

Dgðh0; k0;RÞPnðcos wÞ dr ;

ð5:145Þ

where DgG
n ðh; k;RÞ is derived analogous to (5.113).
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The combined disturbing potential surface harmonic can now be computed as
the weighted mean in the form

bTnðh; k;RÞ ¼ wM
n TM

n ðh; k;RÞ þ wG
n TG

n ðh; k;RÞ ; ð5:146Þ

where wn
M and wn

G are the spectral weights related to the geopotential model and
the terrestrial gravity data, respectively. The spectral weights can either be
determined empirically, e.g., as filter coefficients (Haagmans et al. 2003), or within
the framework of a least-squares adjustment or a least-squares collocation solution
(see also Kern 2004). The least-squares methods allow the taking into account of
the error estimates of the spectral components Tn

M and Tn
G, which are represented

by the corresponding error degree variances (referring to the radius r = R)

r2
nðeTM ;RÞ ¼ Mfe2

TM ðh; k;RÞg ¼
a

R

� �2ðnþ1ÞXþn

m¼�n

r2
T

M
nm

ð5:147Þ

for the global geopotential model, and

r2
nðeTG ;RÞ ¼ R

n� 1

	 
2

r2
nðeDgG ;RÞ

¼ R

n� 1

	 
2 2nþ 1
2

Zp

0

CovðeDgG ; e0DgG ;w;RÞPnðcos wÞ sin w dw

ð5:148Þ

for the terrestrial gravity data; M{�} is a homogeneous and isotropic averaging
(mean value) operator for the sphere (for details see Moritz 1980), and r2

nðeDgG ;RÞ
are the gravity anomaly error degree variances. For the evaluation of the above two

equations, the standard deviations r
T

M
nm

of the corresponding coefficients T
M
nm, see

(5.144), and an (isotropic) error covariance function of the terrestrial gravity data
are required. In this context, the degree variance approach neglects possibly
existing error correlations between individual geopotential model coefficients, and,
in addition, error correlations between different data sets (here geopotential model
and terrestrial gravity observations) are usually disregarded due to lacking
information.

In principle, the above scheme can also be extended to employ further data sets
(e.g., satellite altimetry; Wenzel 1982) for the derivation of corresponding dis-
turbing potential surface harmonics and error degree variances. The general least-
squares adjustment and collocation solutions with N components can be found,
e.g., in Wenzel (1982) and Denker (1988), respectively. Furthermore, the trun-
cation error due to a limited integration cap size may be considered (e.g., Sjöberg
2003), but is omitted here, as it can be made negligibly small (see Sect. 4.4).
Returning to the case of only two different data sources, the least-squares
adjustment solution gives the following spectral weights for the gravity
components:
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wG
n ¼

r2
nðeTM ;RÞ

r2
nðeTM ;RÞ þ r2

nðeTG ;RÞ : ð5:149Þ

Correspondingly, the weights wn
M can be derived, and the sum of both weights may

be expressed as

sn ¼ wM
n þ wG

n ; ð5:150Þ

yielding sn = 1.0 for the least squares adjustment solution (as well as the case of
empirically determined weights; e.g., Haagmans et al. 2003), and sn B 1.0 for the
collocation solution due to the smoothing property inherent in this method.

Combining (5.146) and (5.150) in the form wM
n ¼ sn � wG

n gives the following
result for the combined disturbing potential surface harmonics:

bTnðh; k;RÞ ¼ snTM
n ðh; k;RÞ þ wG

n TG
n ðh; k;RÞ � TM

n ðh; k;RÞ
� �

¼ bT M
n ðh; k;RÞ þ bT G

n ðh; k;RÞ:
ð5:151Þ

The major advantage of rewriting the surface harmonics terms in the above
equation is, that this basically results in a remove-compute-restore (RCR) procedure,
i.e., the first part of (5.151) is the usual geopotential model component (for sn = 1.0),
and the second part is related to the difference between the terrestrial gravity
anomalies and the corresponding global model values. This yields significant
advantages in the numerical evaluation, because the difference quantities are small
and average out at larger distances (see also below). Now, summing up all combined

surface harmonics bTnðh; k;RÞ from degrees 2 to ?, and considering (5.144) and
(5.145), yields the final computation formulas for the disturbing potential:

bT ðh; k; rÞ ¼ bT Mðh; k; rÞ þ bT Gðh; k; rÞ; ð5:152Þ

with the contribution from the global geopotential model

bT Mðh; k; rÞ ¼
X1
n¼2

sn
a

r

� �nþ1 Xþn

m¼�n

T
M
nmYnmðh; kÞ; ð5:153Þ

and the terrestrial gravity data

bT Gðh; k; rÞ ¼ R

4p

ZZ
r

Dg ðh0; k0;RÞ � DgM ðh0; k0;RÞ
� �

Wðw; rÞ dr; ð5:154Þ

associated with the (modified Stokes) kernel

Wðw; rÞ ¼
X1
n¼2

R

r

	 
nþ1

wG
n

2nþ 1
n� 1

Pnðcos wÞ: ð5:155Þ

In (5.154), DgM are the gravity anomalies related to the global geopotential
model. The global model is used in a RCR fashion, i.e., the residual anomalies are
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used to compute the residual disturbing potential, and finally the disturbing potential
contribution from the global model is added. However, this procedure can be applied
to Stokes’s formula as well. Hence, the only difference between the spectral com-
bination approach and Stokes’s formula relates to the spectral weights wn

G in (5.155);
thus Stokes’s formula results as a special case of the above formulas by setting all
weights wn

G = 1.0 for degrees n equal 2 to ?. Therefore, while the Stokes formula
always extracts all degrees from 2 to ? from the terrestrial gravity data, the spectral
weights allow control of which degrees are taken from the terrestrial gravity data;
e.g., only the short wavelengths should be computed from the gravity data, while the
long wavelength structures should be defined mainly by a global geopotential model
(e.g., from GRACE, GOCE, etc.). Another important feature of the (modified Stokes)
kernel in (5.155) is that the kernel function remains finite if the weights go to zero for
very high degrees or the summation is limited to some maximum degree (e.g.,
because mean gravity anomalies are utilized); hence, in principle, no special con-
sideration of the inner zone contribution is required, but due to the rapid change of the
integration kernel near w = 0� it is recommended to integrate numerically the kernel
function within the innermost zone (see also Sect. 4.4). Lastly, the zero-degree and
first-degree terms of T are omitted again in the above equations (see notes related to
the Stokes integral in Sect. 3.3).

In addition, the spectral combination technique also permits the derivation of
error estimates for the results based on the degree variance approach. Based on

(5.151) and (5.152), the error estimates for the combined disturbing potential bT
can be derived by straightforward error propagation. The error covariance function
(related to points P and P0) is given by

CovðebT ; e0bT ;w; r; r0Þ ¼
X1
n¼2

R2

r r0

	 
nþ1

r2
nðebT ;RÞPnðcos wÞ; ð5:156Þ

with the error degree variances of the combined disturbing potential

r2
nðebT ;RÞ ¼ ðsn � wG

n Þ
2r2

nðeTM ;RÞ þ ðwG
n Þ

2r2
nðeTG ;RÞ for n� nmax

r2
nðeTGÞ for n [ nmax

�
;

ð5:157Þ

where nmax is the maximum degree of the global geopotential model employed.
The spectral combination approach results in integral formulas, which initially

have to be evaluated over the entire unit sphere r. However, as residual anomalies
Dg - DgM are employed in (5.154), a limited integration to some maximum
distance wmax (spherical cap r0) should lead to only a small truncation error. This
truncation error (also denoted as omission error) may be estimated based on
Molodensky’s truncation coefficients (e.g., Sjöberg 2003) or by means of the
frequency transfer function (Wenzel 1982). The latter approach is outlined in the
following. Assuming that a limited integration of (5.154) over a spherical cap r0

results in ~TG (instead of bT G), which may be expressed by corresponding Laplace
surface harmonics ~TG

n (related to r = R), the truncation error can be expressed as
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n ¼ bT G

n � eT G
n ¼ wG

n ðTG
n � TM

n Þ � eT G
n ¼ ðTG

n � TM
n Þ wG

n �
eT G

n

TG
n � TM

n

 !

¼ ðTG
n � TM

n ÞðwG
n � FTFnÞ;

ð5:158Þ

where the relation (5.151) is considered with the independent variables being
dropped for the sake of simplicity. After some mathematical manipulations, the
frequency transfer function, known from signal processing, follows as

FTFn ¼
n� 1

2

Zwmax

w¼0

Wðw;RÞPnðcos wÞ sin w dw; ð5:159Þ

and, corresponding to (5.156), the covariance function of the truncation error is
given by

Covðetr; etr0 ;w; r; r0Þ ¼
X1
n¼2

R2

r r0

	 
nþ1

r2
nðTG � TM;RÞ ðwG

n � FTFnÞ2Pnðcos wÞ;

ð5:160Þ

with

r2
nðTG � TM ;RÞ ¼ r2

nðeTM ;RÞ þ r2
nðeTG ;RÞ for n� nmax

r2
nðT ;RÞ þ r2

nðeTGÞ for n [ nmax

�
; ð5:161Þ

where r2
nðT;RÞ are the disturbing potential (signal) degree variances, which have

to be derived from a given model, e.g., the degree variance model of Tscherning
and Rapp (1974). Finally, the spectral combination approach can be extended to
other input and output gravity field parameters; examples can be found in Wenzel
(1982), Denker (2003), and Wolf (2007). Moreover, an extension of the spectral
combination technique by a heterogeneous error model, with several accuracy
classes for the gravity data, was investigated by Behrend (1999), while the use of a
full error covariance matrix for the geopotential model has not yet been attempted.
In addition, numerical results are provided in Sect. 4.

3.7 Least-Squares Collocation

Within the framework of physical geodesy, least-squares collocation (LSC) is a
method for determining the anomalous gravity field by a combination of geodetic
observations of different kinds (Moritz 1980). LSC allows the calculation of
unknown deterministic parameters (e.g., station coordinates), and besides being
able to propagate the input data noise into the results, it can utilize as input as well
as predict (output) heterogeneous signals related to the anomalous gravity field;
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hence, LSC can be considered as a method, combining least-squares adjustment,
filtering, and prediction (Moritz 1980). The mathematical foundation of LSC is
related to the fields of statistics and functional analysis, in particular the theory of
reproducing kernel Hilbert spaces. The method was introduced in geodesy by
Moritz (1962), while Krarup (1969) succeeded in unifying the functional analytic
and statistical viewpoints. Further information on the mathematical foundation of
LSC can be found, e.g., in the articles from Tscherning (1985, 1986, 1994), Sansò
(1986), and the textbooks from Meschkowski (1962) and Moritz (1980).

The simultaneous determination of station coordinates and gravity field quan-
tities is denoted as ‘‘integrated’’ or ‘‘operational geodesy’’ (e.g., Eeg and Krarup
1973; Grafarend 1978b; Hein 1986); however, this approach has not gained much
acceptance in practice because it is extremely computation-intensive. Therefore,
only the parameter-less case of LSC (least-squares prediction) is discussed briefly
in the following. The basic formula for the prediction of signals in unsurveyed
points is

bs ¼ CstðCtt þ CnnÞ�1l ¼ Cst
�C
�1

l ; �C ¼ Ctt þ Cnn; ð5:162Þ

where Ctt and Cst are the auto and cross covariance matrices related to the signals
t at the observation sites and s at the unsurveyed stations, l is the observation
vector, consisting of a signal and noise component (i.e., l = s ? n), and Cnn is the
noise covariance matrix. The LSC solution is based on a least-squares hybrid
minimum condition on the weighted quadratic sum of the signal and noise parts, or
equivalently, the prediction results satisfy the least error variance condition
(Moritz 1980). The input and output signals may be heterogeneous (e.g., T, Dg, n,
g, etc.), but as all these quantities depend on the (harmonic) disturbing potential T,
corresponding relations must also be considered for the calculation of the signal
covariances in the matrices Ctt and Cst. In this context, the covariance function of
the disturbing potential, K(P,P0), is typically chosen as the basic covariance
function, from which all other required covariances are derived by covariance
propagation, considering the harmonicity of T and the analytical relations between
T and its functionals. Moreover, it is assumed that the signal and noise quantities
have an expected (or mean) value equal to zero; regarding the disturbing potential
T, this condition is fulfilled at the global scale if T does not contain a zero-degree
harmonic.

The (spatial) homogeneous and isotropic covariance function of the disturbing
potential is given by

KðP;P0Þ ¼ CovðT; T 0;w; r; r0Þ ¼ M Tðh; k; rÞ � Tðh0; k0; r0Þf g

¼
X1
n¼2

R2

r r0

	 
nþ1

r2
nðT ;RÞPnðcos wÞ;

ð5:163Þ

with the disturbing potential degree variances

r2
nðT ;RÞ ¼ M T2

n ðh; k;RÞ
� 

; ð5:164Þ
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where M{�} is the homogeneous and isotropic averaging (mean value) operator. In
principle, the covariance function cannot be exactly determined empirically, as this
would require a complete knowledge of the disturbing potential function. Therefore,
an empirical covariance function has to be used, which is typically obtained by fitting
an analytical expression to the given data within the area of interest (local covariance
function; for details see Goad et al. 1984). In this context, the degree variance model
of Tscherning and Rapp (1974), resulting in closed formulas for all covariance
expressions, is widely used, and a corresponding planar model was derived by
Forsberg (1987). Furthermore, for the residual disturbing potential with respect to a
global geopotential model, the degree variances in (5.163) have to be replaced by
corresponding error degree variances of the global model up to the maximum degree
nmax of the global model. Finally, it is noted that the LSC estimates have the mini-
mum variance property if the kernel function is identified with the empirical
covariance function, while this property is lost if arbitrary kernel functions are
employed according to the analytical aspect of collocation (Moritz 1980).

LSC also allows the computation of error estimates, e.g., the error covariance
matrix for the signals estimated by (5.162) is given by

Ess ¼ Css � CstðCtt þ CnnÞ�1Cts : ð5:165Þ

The main advantage of LSC is its flexibility, being able to handle all quantities
related to the disturbing potential as input and output data, including the associated
error estimates. The data may be located at arbitrary (discrete) points in space, and
hence no additional gridding is necessary. Furthermore, the varying heights of the
observation and prediction sites are taken into account if LSC is applied spatially;
the method inherently includes the harmonic continuation, and therefore the non-
level surface corrections (Molodensky terms) are irrelevant in this case (Forsberg
and Tscherning 1997). Usually, the spatial covariance functions, e.g., (5.163), are
based on spherical approximations, but this is not considered as a serious problem
when residuals with respect to a global geopotential model are processed (for
further discussions see Tscherning 2004).

The main drawback of LSC is, however, that a system of equations as large as
the number of observations has to be solved, see (5.162). In addition, numerical
problems may arise from identical points or points at a short distance, when,
depending on the input data noise, the matrix �C may become nearly singular;
therefore, such duplicate points should be excluded from the input data. Today,
with modern computers, several thousands of observations can be handled without
problems. Moreover, the computational effort can be significantly reduced for the
simple case of interpolating a single gravity field quantity (typically gravity
anomalies), as then the input data can be restricted to several points near the
prediction site. Furthermore, the fast collocation method can be applied, requiring
gridded data sets (Sansò and Tscherning 2003).

Finally, the LSC method may be considered as data-driven, starting from discrete
data and information about their noise and signal covariances, while the GBVP
solutions by integral formulas may be characterized as model-driven (Sideris 2011a).
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For the limiting case of homogeneous and continuous data, least-squares collocation
transforms into integral formulas such as Stokes’s integral, etc. (Moritz 1976).

3.8 Astronomical Leveling

More recently, the method of astronomical leveling has again attracted some
interest within the framework of special projects, including the high-precision
geoid and quasigeoid determination along selected lines as well as the independent
validation of corresponding regional gravimetric models and global geopotential
models (e.g., Hirt and Flury 2008; Hirt et al. 2008; Ihde et al. 2010). The efficiency
of astronomical latitude and longitude observations could be substantially
improved by using transportable zenith cameras together with CCD technology,
precise electronic tilt-meters, and GNSS for timing and positioning, associated
with automated processing of the digital images. At present, two such systems
exist, one at the IfE, LUH, and the other at the ETH (Eidgenössische Technische
Hochschule), Zurich, Switzerland (Bürki et al. 2004; Hirt 2004). Besides the
enhanced observation efficiency, allowing the occupation of 10–20 stations per
night, the accuracy could also be substantially improved; while the new digital
zenith camera systems reach an observation accuracy of 0.0500 (1 h observation
time) to 0.0800 (20 min observation time; see Hirt and Seeber 2008), the standard
classical analog zenith camera, astrolabe, and theodolite systems attained an
accuracy of at most 0.500 (e.g., Wildermann 1988), often accompanied by
systematic errors, in particular in the longitudes (Bäumker 1984).

The astronomical latitude and longitude provide the direction of the gravity
vector and hence the inclination of the corresponding level surface. The deflection
of the vertical describes the angle between the actual plumb line and a reference
direction; the deflection of the vertical is a vectorial quantity and usually expressed
by its components in north–south and east–west direction. Besides the deflection of
the vertical according to Molodensky (see Sect. 3.2), the deflection of the vertical
at the Earth’s surface with respect to the ellipsoidal normal at P (Helmert’s def-
inition) and the corresponding quantity at the geoid (Pizzetti’s definition) are to be
distinguished (e.g., Torge 2001). Thus the components of the deflection of the
vertical according to Helmert are given by

nH
P ¼ UP � uP ; gH

P ¼ ðKP � kPÞ cos uP : ð5:166Þ

Integrating the deflections of the vertical along a path on the geoid or the
Earth’s surface yields the geoid undulation difference

DN12 ¼ N2 � N1 ¼ �
Z2

1

e0 ds ¼ �
Z2

1

eH ds�
Z2

1

deds ¼ �
Z2

1

eH ds� E12 ;

ð5:167Þ
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where e0 and eH are the azimuthal deflection components (in the azimuth a) according
to Pizetti and Helmert at the geoid and Earth’s surface, respectively, e.g.,

eH ¼ nH cos aþ gH sin a ; ð5:168Þ

de is the correction for the curvature of the plumb line, and E12 is the orthometric
height reduction known from geometric leveling (for further details see Torge 2001).

Regarding the height anomalies, the relation

df ¼ df
ds

dsþ df
dh

dh ð5:169Þ

has to be utilized (Molodenskii et al. 1962), which considers that the height
anomalies are not related to a level surface, in contrast to the geoid undulations
treated above (i.e., dN = (dN/ds) ds = e0 ds can be considered as a special case of
(5.169)). Considering that df/ds is the azimuthal deflection component according
to Molodensky, while taking df/dh from (5.141), leads to

Df12 ¼ f2 � f1 ¼ �
Z2

1

eM ds�
Z2

1

Dg

c
dh : ð5:170Þ

Alternatively, utilizing the deflections of the vertical according to Helmert, the
above equation can be expressed as

Df12 ¼ f2 � f1 ¼ �
Z2

1

eH ds� EN
12 ; ð5:171Þ

where EN
12 is the normal height reduction; for a detailed derivation of the equations

for the height anomalies see Campbell (1971) and Torge (2001). The negative sign
of the e components in (5.167), (5.170), and (5.171) follows from the sign con-
ventions for the geoid/quasigeoid heights and the deflections of the vertical.

The accuracy of astronomical leveling mainly depends on the accuracy of the
vertical deflections as well as the quality of the interpolation between the obser-
vation sites. The latter component, i.e., the interpolation error, arises from the
approximation of the line integrals by discrete observations; it can be substantially
reduced by considering topographic information. The purely random observation
errors propagate with the square root of the number of individual set-ups. The
standard deviation of DNi or Dfi from a single set-up is given by
rDNi½mm� ¼ 4:8 re½00� DS½km�, where re[00] is the vertical deflection standard deviation

in arc seconds, and DS is the station distance in kilometers. Hence, for a line of
length S with n segments (n = S/DS), the standard deviation is given by
rDN½mm� ¼ 4:8 re½00� DS½km�

ffiffiffi
n
p

, assuming uncorrelated errors; on the other hand,

errors with a correlation of r = 1.0 and systematic errors propagate linearly with
n or the distance S, resulting in rDN ½mm� ¼ 4:8 re½00� S½km�. Regarding the correlation
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due to anomalous refraction, Hirt and Seeber (2008) mention values of r & 0.05
between single observations.

Regarding the digital zenith camera results, an accuracy of about 0.100 can be
safely assumed for a standard observation period of 20 min (Hirt and Seeber
2008), which leads to a formal accuracy of the DN or Df quantities at the few
millimeters level for shorter lines up to about 100 km, depending on the station
distance. Accordingly, for longer lines of 500–1,000 km, the random errors
accumulate to a level of about 1–3 cm, and systematic errors become more critical,
e.g., a systematic error of only 0.0100 transforms into a corresponding DN or Df
error of 2.4 cm (S = 500 km) and 4.8 cm (S = 1,000 km), respectively. Thus, on
long traverses of several 100 km, the astrogeodetic results are getting into com-
petition with the combined satellite (e.g., GOCE) and gravimetric solutions, as
indicated by the practical results for two 500 km long traverses in Germany (e.g.,
Ihde et al. 2010). On the other hand, an independent verification of the astro-
geodetic results at the millimeter level for spatial scales of a few 100 m to several
10 km is extremely difficult, as practically no other comparable data exists. While
geometric leveling is accurate at the millimeter level, the GNSS techniques usually
give worse results due to station dependent effects, etc.; however, based on 48 h
GPS observations and sophisticated new approaches to reduce station dependent
effects, Hirt et al. (2010) quote an RMS difference between GPS/leveling and
astrogeodetic results of about 2–3 mm (max. 5 mm). In addition, considering the
spectral relation between gravity anomalies and vertical deflection components
with a conversion factor of 6.7 mGal/00 for higher degrees n, it should also be
possible to verify at least the fine structures of the astrogeodetic calculations,
provided that the local and regional gravity anomaly field is reasonably repre-
sented by observations, while the far-zone is modeled by a global geopotential
model; in principle, an accuracy of 0.100 for the astronomical observations corre-
sponds to an accuracy of about 0.7 mGal in terms of gravity, which is easily
achieved by regional gravimetric surveys, being in most instances more accurate
by at least one order of magnitude. To the best knowledge of the author, such an
experiment is still lacking, and therefore would be an interesting topic for the
future.

The main advantage of the astrogeodetic method is its independence from any
data outside the area of calculation, in contrast to the gravimetric method where
basically global data coverage is needed. Therefore, the main applications for the
astrogeodetic method are seen in local geoid and quasigeoid calculations (espe-
cially for the case that gravity field observations in the surrounding areas are
lacking or inaccessible for political reasons) as well as the independent validation
of corresponding gravimetric results and global geopotential models up to dis-
tances of a few 100 km. A regional gravity field survey, particularly for larger
areas, can be performed more effectively by land, sea, and airborne gravimetry
than by astronomical observations, which require more time per station occupation
and have to be done during the night outside normal working hours.
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3.9 The Remove-Compute-Restore Technique
and Topographic Effects

In practice, local and regional gravity field modeling is usually based on discrete
data covering the area of interest and the immediate surroundings. This leads to
two difficulties. First, the very short wavelength gravity field information is not
properly represented by the discrete observations, leading to aliasing effects; this
problem is counteracted by employing digital elevation models to obtain the high-
frequency gravity field signals. Second, as the observation data cover only a
certain region, the long wavelength gravity field information (i.e., longer than the
extent of the region) must be computed in another way; this problem is remedied
by using a state-of-the-art global geopotential model. Hence, the short and long
wavelength gravity field structures are obtained from digital elevation models and
a global geopotential model, respectively, while the medium wavelength field
structures are derived from the regional discrete gravity field observations. This
leads directly to the remove-compute-restore (RCR) technique, in which the short
and long wavelength information is first removed from the observations, then the
residual quantities are used for gravity field modeling (e.g., transformation from
residual gravity to height anomalies), while finally the short and long wavelength
contributions are restored again.

The general scheme of the RCR technique is based on a residual disturbing
potential given by

T res ¼ T � TM � TT ; ð5:172Þ

where TM and TT are the contributions from the global geopotential model and the
topographic information (or more generally the anomalous masses; see below).
Correspondingly, all observations, described as linear functionals L of T, are
consistently reduced by

LobsðT resÞ ¼ LobsðTÞ � LobsðTMÞ � LobsðTTÞ ; ð5:173Þ

where the global geopotential model should be utilized rigorously as a high-degree
reference field (see Sect. 3.2). Then, after applying the gravity field modeling
techniques, the effects of the global geopotential model and the topography are
restored, leading to the final predictions

LpredðbT Þ ¼ LpredðbT resÞ þ LpredðTMÞ þ LpredðTTÞ : ð5:174Þ

The removal of the short and long wavelength gravity field information cor-
responds to a spectral (low-pass and high-pass) filtering; this leads to residual
quantities which are typically much smaller and smoother (as well as statistically
more homogeneous and isotropic) than the original ones, facilitating, e.g., the tasks
of interpolation, gridding, as well as field transformations by integral formulas or
LSC, with the additional side effect that the collection of observational data can be
restricted to the region of interest plus a narrow edge zone around it. The RCR
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technique has become a standard procedure for local and regional gravity field
modeling as documented in textbooks (e.g., Torge 2001) and numerous journal
articles (e.g., Sideris 2011b; Forsberg 2010; Denker et al. 2009; Tscherning 2004;
Smith and Roman 2001).

Until recently, high-degree geopotential models were mainly developed up to
degree and order nmax = 360 from satellite and terrestrial data, corresponding to a
resolution of 0.5� or about 55 km; examples are the EGM1996 (Lemoine et al.
1998) as well as the EIGEN (e.g., Förste et al. 2008a, b) and GGM (e.g., Tapley
et al. 2007) models. However, the situation changed considerably with the advent of
the EGM2008 model (Pavlis et al. 2008), which includes coefficients up to spherical
harmonic degree nmax = 2,190, corresponding to a resolution of 50 or about 9 km.
Hence, regarding areas with high-quality data included in EGM2008, it should only
be necessary to add the very short wavelength gravity field structures (about
2–3 cm RMS for the geoid/quasigeoid) by means of local gravity and terrain data,
but the situation may be quite different in areas where only poor data were available
for EGM2008. At present, there is not very much practical experience on how to
make optimal use of the ultra-high-degree EGM2008 model in regional gravity
field modeling, and certainly more investigations on this topic are needed (e.g.,
according to Forsberg 2010). Further discussions in this direction, e.g., related to
the impact on topographic reductions, follow below and in Sect. 4.4.

In mountainous regions, the gravity field is strongly correlated with the local
topography; the gravitational attraction of the topographic masses causes a strong
signal, which dominates at shorter wavelengths. Therefore, topographic information
can be used to smooth the gravity field prior to any modeling process in order to avoid
aliasing effects. For example, gravity stations are by tendency located in valleys
along roads, and thus the observations are related to a level which is systematically
below the average topography. Such aliasing errors can be very big and devastating
for gravity field modeling (Forsberg and Tscherning 1997). Besides the direct
gravitational effect, the topography implies that the observations are related to a non-
level surface, which can be considered by LSC, but requires additional corrections
(Molodensky terms) for the integral formula approaches (see Sect. 3.4).

In addition to the topography, other information about local density anomalies,
e.g., due to salt domes, etc., may also be taken into account (Denker 1988). This
leads to a so-called mass model, which may be considered as ‘‘source information’’
(the masses are the sources of the gravitational field), in contrast to the ‘‘effect
information’’ from a global geopotential model (Sünkel 1983). The effect of the
anomalous masses can be computed by Newton’s law according to (5.19), giving

LobsðTTÞ ¼ G

ZZZ
V
Dq Lobs

1
l

	 

dv ; ð5:175Þ

where Dq are (appropriately defined) density anomalies (see Forsberg 1984;
Forsberg and Tscherning 1997). In this context, it is important to note that the
topographic (or mass) potential TT has to be a harmonic function, because
otherwise the above RCR scheme is not valid (Forsberg and Tscherning 1997).
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This condition is fulfilled if either a fixed area is taken into account (e.g., specified
by latitude and longitude limits), or if the reductions are—at least in principle—
computed globally. The classical terrain reduction as well as reductions based on
fixed spherical cap sizes do not fit into this scheme, as for every new station
another area of the mass model is evaluated.

Different terrain reduction schemes and the associated advantages and disad-
vantages are discussed in detail in Forsberg and Tscherning (1981, 1997) as well as
Forsberg (1984). The complete topographic (or Bouguer) reduction is not suited
for gravity field modeling because it causes a very large change of the potential
function due to the complete removal of all topographic masses (ideally shifted to
infinity). The topographic-isostatic reduction is useful for gravity field modeling as
it provides a smooth residual field; however, it has the disadvantage of generating
long wavelength signals, and thus also the potential coefficients of a global model
need to be reduced accordingly, which is a costly and time-consuming procedure.
Furthermore, as a global high-degree spherical harmonic reference expansion is
used within the RCR procedure, which obviously also includes the effect of the
global topography, preferably only short wavelength topographic effects should be
considered, leading to the so-called residual terrain model (RTM) reduction,
introduced by Forsberg and Tscherning (1981).

The RTM procedure is based on a smooth reference topography surface, usually
obtained by applying a moving average or other filter (e.g., a Gaussian filter; see
Forsberg 2010) to the existing high-resolution digital elevation model (DEM), and
then only the differences between the actual topography and the reference
topography are taken into account within the reduction process; this leads to
balanced positive and negative density anomalies, representing areas where the
topography is either above or below the reference topography, and hence the RTM
effects will cancel out for zones at larger distances (Forsberg and Tscherning
1997). Thus, the remote contributions become negligibly small, and the RTM
reduction computations can be limited to a distance of about two to three times the
resolution of the reference topography (Forsberg and Tscherning 1997). In sum-
mary, the RTM reduction has the advantage that only short wavelength gravity
field structures are considered (without changing the long wavelengths), and in
addition the reductions can be limited to some distance wmax, while still satisfying
the harmonicity condition for the topography potential function TT. Furthermore,
the RTM reduced gravity anomalies based on a mean elevation surface of about
100 km resolution will typically be quite similar in magnitude to the isostatic
anomalies (Forsberg and Tscherning 1997).

The mass displacements associated with the RTM technique (also denoted as
regularization) lead to the situation that stations above the mean elevation surface
are left in the mass-free domain, whereas the gravity field quantities at stations in
valleys with hP \ href are transformed into corresponding quantities inside the
masses, where the associated potential function is not harmonic. The latter prob-
lem is usually remedied by a simple ‘‘harmonic correction’’, which is based on
downward continuation through a Bouguer plate, being valid only if the reference
topography is sufficiently long-wavelength (Forsberg and Tscherning 1997;
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Forsberg 2010). The non-harmonicity of the reduced potential below the reference
height surface is considered today as a major theoretical problem with the RTM
method (Forsberg and Tscherning 1997), and some attention was given to it
recently by Elhabiby et al. (2009), Omang et al. (2012), and Forsberg (2010). In
principle, the quantities related to a harmonically continued topography potential
function TT are needed, which may be obtained by first removing the effect of the
entire topography, followed by a harmonic continuation of the observations to the
reference elevation surface, plus finally the restoration of the effect of the reference
topography. Another option would be to condense the masses of the reference
topography at a lower level. For further details on this topic, requiring additional
investigations, see the references mentioned above.

The RTM concept is widely applied in practice, employing a mean elevation
surface (reference topography) with a resolution ranging typically from 100 to
50 km, but also smaller values have been applied (e.g., Forsberg and Tscherning
1997; Denker 1988; Forsberg 2010). In this context, Forsberg (2010) describes
quasigeoid computations based on local gravity and terrain data in connection with
the full EGM2008 model (nmax = 2,190) and RTM reductions associated with a 50

and 300 reference topography, as well as a computation based on EGM2008 with
nmax = 360 and RTM 300 reductions. In comparison to GPS/leveling data, the two
solutions based on the RTM 300 reductions and EGM2008 to nmax = 360 and 2,190
showed the best performance (with a slight advantage for the results using EGM2008
to nmax = 2,190), while the solution with the RTM 50 reductions and EGM2008
(nmax = 2,190) fitted less well, which was attributed to the approximation errors in
the harmonic correction (as discussed above). Interestingly enough, the solution
based on EGM2008 to nmax = 2,190 and the RTM 300 reductions showed the best
performance, and Forsberg (2010) mentions that this is ‘‘indicating that the ‘double
accounting’ of the topography does not matter in practice (which it should not, since
the remove–restore principle will account for this).’’

The practical computation of terrain effects requires high-resolution DEMs and
is mostly based on prism integration in the space domain, augmented by the much
faster (but sometimes more approximate) FFT methods (e.g., Forsberg 1984;
Schwarz et al. 1990; Forsberg and Tscherning 1997; Sideris 2011b). Regarding a
rectangular prism of constant density Dq, closed formulas exist for the gravita-
tional potential and its derivatives (MacMillan 1958; Forsberg 1984; Denker
1988), e.g., the potential at a point P, located at the origin of a local Cartesian
coordinate system (x, y, z), is given by

Tprism ¼ GDqjjjxy lnðzþ dÞ þ xz lnðyþ dÞ þ yz lnðxþ dÞ
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:

ð5:176Þ

The computation of terrain effects related to other gravity field parameters is
described in detail in Forsberg (1984), including a computer program (TC) for the
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efficient evaluation of large terrain grids with sophisticated features such as an inner
zone densification, the consideration of the given station elevations, a simple Earth
curvature correction, as well as the use of a detailed and coarse grid for the inner
and outer zones, respectively, associated with an automatic switching between
different computation formulas in order to save computing time and to obtain stable
results. The use of the rectangular prisms is considered as sufficiently accurate in
connection with the RTM method, as the differences between rectangular and
spherical bodies will also cancel out to some extent within the RCR procedure.
However, further studies on this topic are necessary, such as that presented by Heck
and Seitz (2007), using the so-called tesseroids based on spherical coordinates.

Finally, it should be noted that the RCR technique can be applied in combination
with all gravity field modeling procedures described in the previous sections,
ranging from the computation of spherical harmonic models, over the integral
formula approaches, least-squares collocation, astronomical leveling, to the
application of Molodensky’s theory. The whole Molodensky theory may in prin-
ciple be applied to the original surface free-air data as well as to terrain-reduced
data, yielding much smaller correction terms gn associated with a more stable
solution scheme (e.g., Forsberg and Tscherning 1997; Denker and Tziavos 1999).

4 Practical Results

4.1 Data Requirements

Today’s demands for accuracy within the scope of regional gravity field modeling
are at the level of about 0.01–0.001 m for the geoid/quasigeoid, 1 mGal for gravity
anomalies, and 100 for vertical deflection components, e.g., regarding applications
such as height determination by GNSS or dynamic ocean topography (DOT)
modeling, interpolation of gravity data (for leveling stations, etc.), and local geo-
detic networks. In this context, terrestrial surface free-air gravity anomalies form
one of the most important input data sets because they exist in many regions of the
world with good quality and coverage. Regarding the input data requirements with
respect to accuracy and resolution, theoretical as well as numerical investigations,
including spectral analysis can be utilized. An easy way to gain an idea about the
necessary data quality is provided by the degree variance approach, based on the
spectral decomposition of the anomalous gravity field. The root mean square
(RMS) omission error, describing the gravity field signals above a certain harmonic
degree nmax (i.e., the terms neglected in a spherical harmonic expansion complete
up to degree and order nmax), can be computed simply as the square root of the sum
of the corresponding degree variances for degrees nmax ? 1 to infinity. The degree
variance model of Tscherning and Rapp (1974) with nmax = 10,000 (corresponding
to a spatial resolution of 2 km) yields an omission error of about 0.001 m for
geoid/quasigeoid heights, 1.4 mGal for gravity anomalies, and 0.200 for vertical
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deflection components, while the corresponding values for nmax = 5,000 (corre-
sponding to a spatial resolution of 4 km) are about 0.005 m, 4.8 mGal, and 0.700,
respectively. Regarding high-degree geopotential models, the omission errors for
nmax = 360 (standard over the past decades) and nmax = 2,190 (related to
EGM2008; Pavlis et al. 2008) are of interest; for the latter case, the omission error is
0.023 m for geoid/quasigeoid heights, 11.1 mGal for gravity anomalies, and 1.700

for vertical deflection components, while the corresponding values for nmax = 360
are 0.227 m, 25.2 mGal and 3.800, respectively. The latter figures also document
that the combination of a global geopotential model with local terrestrial data is
important for modeling the complete gravity field spectrum; otherwise, for exam-
ple, geoid/quasigeoid signals with a magnitude of about 2–4 cm for nmax = 2,190
(see also Jekeli et al. 2009) or a few decimeters for nmax = 360 are lacking.

The omission error for different gravity field parameters is depicted in Fig. 5.7,
which also gives some insight into the spectral sensitivity of the quantities, the
geoid/quasigeoid (or disturbing potential T) signal being concentrated mainly at the
longer wavelengths, while for the first and second derivatives of T (Dg, n, g, and Tzz,
respectively; 1 Eötvös (E) = 10-9 s-2 = 0.1 mGal/km) the signals are progressively
focused at the shorter wavelengths. Another useful formula for estimating the
omission error for geoid/quasigeoid heights can be deduced from Kaula’s rule of
thumb (a simple degree variance model, based on the assumption that the standard
deviation of a single fully normalized coefficient of the gravitational potential is
rf�Cnm; �Snmg 	 10�5=n2; Kaula 1966), resulting in (see also Forsberg 1993)

rnmax

omissionðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼nmaxþ1

r2
nðfÞ

vuut 	
64½m�
nmax

: ð5:177Þ

The above formula gives an omission error of 0.006 m for nmax = 10,000,
0.013 m for nmax = 5,000, 0.029 m for nmax = 2,190, and 0.18 m for nmax = 360,
which is in reasonable agreement with the results based on the Tscherning and
Rapp (1974) model. Aiming at the computation of the geoid or quasigeoid with an
accuracy of 0.01 m or better, the preceding simple and straightforward consider-
ations suggest that corresponding harmonics up to degree and order 5,000–10,000
have to be modeled, requiring input data with a spatial resolution of roughly
2–4 km, while, e.g., the accuracy demands for gravity data are only at the level of
about 1 mGal and hence not very severe. However, it has to be noted that these
simple thoughts consider only random errors, and, furthermore, the omission and
observation errors superimpose each other in the calculations.

On the other hand, small systematic gravity errors, affecting large regions, may
also integrate up to significant geoid or quasigeoid errors. A rough estimation of
such effects is possible on the basis of the formula for the inner zone geoid/
quasigeoid contribution (5.130). For example, considering a systematic gravity
error of 0.1 mGal over a circular cap with radius 100 km or 0.02 mGal over a
500 km cap, respectively, leads in each case to a systematic geoid/quasigeoid error
of 0.01 m. With regard to the combination of terrestrial data with GOCE and
GRACE geopotential models, the chosen radii approximately correspond to the
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resolutions where terrestrial data come into play. Therefore, it is desirable to
connect at least the gravity base network to modern absolute gravity stations (with
an accuracy of 0.01–0.02 mGal or better), while the requirements for regional
detail surveys can be relaxed (with acceptable random errors up to about 1 mGal).

Another view on the data requirements is possible by looking at the gravita-
tional effects of typical disturbing density anomalies. For example, in the north
German lowlands, many saltdomes exist, which cause quite local gravity field
structures. Figure 5.8 depicts the gravitational effect of a typical salt dome with an
extension of 4 9 4 9 4 km3 and a density contrast of Dq = 300 kg/m3, with the
density of salt usually being lower than that of the surrounding rocks. Therefore,
salt domes are frequently connected with (negative) gravity anomalies of about
20–30 mGal, associated with geoid/quasigeoid and vertical deflection effects of
5–6 cm and 200, respectively. Hence, in order to capture such significant local
gravity field variations, corresponding observations with a sufficient spatial reso-
lution are needed, again leading to data spacings at the few kilometer level.

Besides the gravity observations themselves, the horizontal and vertical coor-
dinates (either gravity field related heights from leveling or ellipsoidal heights
from GNSS techniques) of the gravity sites must be known with sufficient accu-
racy. The station positions are required for the calculation of the normal gravity
field parameters and the corresponding anomalous gravity field quantities
(regarding the level ellipsoid, only the latitudes and heights are needed), as well as
for the determination of the global geopotential model and terrain contributions
within the framework of the RCR procedure. The horizontal and vertical position
requirements should roughly conform with the gravity accuracy; considering, e.g.,
gravity observations with an accuracy of 0.01, 0.1, and 1.0 mGal, an actual gravity
gradient of about 0.3 mGal/m for the vertical and 10 mGal/km (maximum) for the
horizontal direction, respectively, results in position requirements of about 0.03,
0.3, and 3.0 m (vertically), and 1, 10, and 100 m (horizontally).

Fig. 5.7 Omission error for
geoid/quasigeoid heights
(N, f), gravity anomalies
(Dg), single vertical
deflection components (e),
and vertical gravity gradients
(Tzz)
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In addition, within the framework of the remove-compute-restore (RCR)
technique, the digital elevation models (DEMs) must also have a sufficient spatial
resolution and accuracy. In this context, comprehensive numerical investigations
are presented, e.g., in Li et al. (1995) and Grote (1996); in summary, regarding the
targeted modeling accuracies (see above), the DEMs should have a spatial reso-
lution of about 100–1,000 m for alpine to flat areas, while an accuracy of
approximately 10 m is sufficient, provided that, especially for the gravity sites, the
available station heights are employed in the computation of the terrain effects, as
suggested by Forsberg (1984).

Furthermore, a comprehensive study on the effect of systematic gravity
anomaly errors due to gravity, horizontal, and vertical datum inconsistencies is
given in Heck (1990), with a similar investigation (for Europe) being presented by
Denker (2001). The effect of such small but systematic gravity anomaly errors on
the geoid/quasigeoid is predominantly of long wavelength nature, and hence it can
be kept small (below the level of 0.01 m) by using a global high-degree satellite
geopotential model (from the GRACE or GOCE mission) as a reference (e.g., in
connection with the spectral combination approach), while the pure terrestrial
solutions based on Stokes’s integral may lead to errors at the decimeter level (for
further details see Heck 1990 and Denker 2001).

In summary, gravity surveys should preferably be connected to a high-precision
gravity base network (relying on absolute gravity observations) in order to avoid
large-scale systematic errors; the corresponding accuracies should be about

Fig. 5.8 Gravitational effect of a typical salt dome on height anomalies (f,), gravity disturbances
(dg) and vertical deflections (e)
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0.01 mGal for gravity, 0.03 m for the heights, and 1.0 m for the horizontal coordi-
nates, or better, respectively. On the other hand, the accuracy requirements for detail
surveys may be relaxed to the level of about 1 mGal and accordingly for the vertical
and horizontal positions (see above), provided that the errors are purely random.
These figures are also supported by simulation studies based on least-squares
collocation, etc. (examples can be found, e.g., in Denker 1988 and Forsberg 1993).

4.2 The European Gravity and Geoid Project

The historical development of geoid and quasigeoid modeling in Europe has been
described, e.g., in Torge and Denker (1998). Since the beginning of the 1980s, the
Institut für Erdmessung (IFE), Leibniz Universität Hannover (LUH), has been
involved in such computations. The first important result was the ‘‘European
Gravimetric Geoid Number One’’ (EGG1; Torge et al. 1982); it was based on
mean gravity anomalies and had an accuracy at the level of several decimeters.
Then, with the advent of the Global Positioning System (GPS), the accuracy
demands for the geoid/quasigeoid increased to the centimeter level, which can be
achieved only by combining high-resolution point gravity field data with corre-
sponding topographic information and a global geopotential model. In this context,
several investigations were carried out initially for very local areas, and regarding
a small test network near Hannover, Germany, it was proven for the first time that
an agreement between gravimetric and GPS/leveling results at the centimeter level
is in fact possible (Denker and Wenzel 1987). These computations were subse-
quently extended to larger regions and lead to a new quasigeoid model for the
whole of Germany (Denker 1989). Based on these experiences, IfE proposed to
perform corresponding computations for the whole of Europe; finally, this task was
supported by the International Association of Geodesy (IAG), Geoid Sub-Com-
mission for Europe, and IfE served as the computing center in the period
1990–2003. A major result of this IAG enterprise was the high-resolution
European geoid and quasigeoid model EGG1997 (Denker and Torge 1998), based
on the global geopotential model EGM1996 (Lemoine et al. 1998) and high-
resolution gravity and terrain data available at that time. The evaluation of
EGG1997 by GPS and leveling data revealed the existence of long wavelength
errors at the level of 0.1–1 ppm, while the agreement over shorter distances up to
about 100 km was at the level of 0.01–0.02 m in many areas with good quality and
coverage of the input data (Denker and Torge 1998; Denker 1998).

However, after a while, several advancements appeared to be possible,
including strongly improved global satellite gravity fields (from the CHAMP,
GRACE, GOCE missions), new or updated high-resolution data sets (gravity,
terrain, satellite altimetry, GPS/leveling), as well as refined modeling techniques.
Thus, a complete re-computation of the European geoid and quasigeoid was
considered appropriate and promised significant accuracy improvements, espe-
cially at the longer wavelengths. As a result, after the IUGG General Assembly in
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Sapporo, 2003, when the new structure of the IAG was implemented, it was
decided to support the development of an improved European geoid/quasigeoid
model in the form of an IAG Commission 2 Project, named ‘‘CP2.1—European
Gravity and Geoid Project (EGGP),’’ and since 2011 this task has continued as
IAG Sub-Commission 2.4a ‘‘Gravity and Geoid in Europe.’’ The European geoid
and gravity project has strong connections to the IAG International Gravity Field
Service (IGFS) and its centers, as well as to several other IAG bodies, e.g., EUREF
(IAG Reference Frame Sub-Commission for Europe). The project is chaired by H.
Denker, IfE, and has about 50 national delegates (project members) from most of
the countries in Europe. Due to the confidentiality of many data sets, only one data
and computation center exists at IfE, Hannover. Further details on the project can
be found, e.g., in Denker et al. (2009). Interim results and status reports of the
project were presented roughly on an annual basis.

While the initial test computations within the framework of the EGGP were
limited to central Europe, the first complete re-computation was finished in 2007
and is denoted as EGG2007 (European Gravimetric (Quasi)Geoid 2007). After
that, the new global geopotential model EGM2008 (Pavlis et al. 2008) became
available. As the comparisons of EGM2008 with the European gravity data sets
revealed some systematic differences for a few gravity sources, these problem
areas were corrected, and, besides a few other improvements, lead to a new
computation, which was finished at the end of 2008 and is denoted as EGG2008.
At present, investigations about the inclusion of a GOCE geopotential model and
some further refinements are still going on. More details about the EGGP data and
results are provided in the following sections.

4.3 The European Gravity and Terrain Data

Since the start of the European geoid project, significant improvements of the land
gravity data base were made, including new or revised data sets for nearly all
European countries. New gravity data sets became available for Austria, Belgium,
Bulgaria, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece,
Italy, Latvia, Luxemburg, the Netherlands, Norway, Portugal, Serbia, Slovenia,
Spain, Sweden, Switzerland, and Turkey.

Significant progress was also made in the collection and reprocessing of marine
gravity data. All marine gravity data collected until 2003 were edited and cross-
over adjusted (see Denker and Roland 2005), which led to significant data
improvements. The comparisons with independent altimetric gravity anomalies
from, e.g., the KMS2002 model (Andersen et al. 2005), showed an RMS difference
of 18.0 mGal for the original data set, 10.2 mGal for the edited data set, and
7.8 mGal for the edited and crossover adjusted data set, respectively, which proves
the effectiveness of the entire processing scheme (see Denker and Roland 2005).

In addition, after 2003, significant new marine gravity data sets became
available, originating mainly from the authorities of the Scandinavian countries
(coverage: Baltic Sea, North Sea, North Atlantic), France (coverage: western parts

256 H. Denker



of the Mediterranean Sea, Atlantic), as well as the National Geospatial-Intelligence
Agency (NGA), U.S.A. (coverage: central and eastern parts of the Mediterranean
Sea). Moreover, some airborne data sets were also provided by the Scandinavian
authorities, covering the Baltic Sea as well as parts of the North Atlantic and
Greenland coastal waters. The aforementioned new gravity data sets were thus far
not crossover adjusted together with the other marine gravity data sources, mainly
because all of them are of high quality without the need for a crossover adjustment
and also due to a lack of time.

In addition to this, the public domain data from the Arctic Gravity Project
ArcGP (Forsberg and Kenyon 2004) were integrated in the project data base.
Finally, data from the EGG1997 data base were utilized for some areas (e.g.,
Eastern Europe and Africa). Furthermore, in order to fill the remaining data voids
in the marine gravity data, altimetric gravity anomalies were employed. Until 2007
(regarding the EGG2007 computation), the altimetric data set KMS2002
(Andersen et al. 2005) was used.

After that, when the global geopotential model EGM2008 (Pavlis et al. 2008)
became available, some problem areas with systematic differences between the
European gravity data sets and EGM2008 showed up. This led to the following
updates of the gravity sources being carried out until September 2008 (related to
the EGG2008 computation):

• The Greek and Turkish gravity values were corrected in absolute level (the
errors were caused by imperfect gravity reference system information).

• A few minor new sources (nine) were added.
• The KMS2002 altimetric anomalies were replaced by a merger of the 10 9 10

DNSC2008GRA (Andersen et al. 2010) and V18.1 (Sandwell and Smith 2009)
data sets; the merging procedure was done in accordance with the EGM2008
approach (Pavlis et al. 2008), where the DNSC2008GRA data were used near
the coast (out to 200 km distance) and the Sandwell and Smith data were
employed over the open ocean; in addition, the altimetric data were completely
edited out within a distance of 10 km from the shore line, as comparisons with
some high-quality ship data within a 10 km wide coastal zone showed an RMS
difference twice as high as on the open ocean (approximately 8 vs 4 mGal).

• The ship gravity data editing was improved and some sources with very poor
quality were completely excluded (mainly older sources with RMS differences
to the altimetric data exceeding about 10 mGal).

• Fill-in gravity anomalies were derived from the EGM2008 geopotential model
for some 50 9 50 cells in Africa, the Caucasus region, and parts of Asia, where
no gravity observations were available within a distance of 15 km; this approach
was selected to stay close to EGM2008, even in regions with large gravity data
voids outside the main area of interest, being Europe and the surrounding
waters.

The updates described above were taken into account for the EGG2008 com-
putation, but not for EGG2007. Further information on the different data sets is
included in Table 5.1. The final EGG2007 gravity data set consisted of 5,354,653
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observations from 709 sources, plus 195,840 gravity values from the ArcGP
project and 951,251 altimetric anomalies from the KMS2002 data set. On the other
hand, the corresponding EGG2008 data set consists of 5,355,206 gravity obser-
vations from 718 sources, plus 195,840 ArcGP, 13,222,260 (10 9 10) altimetric, as
well as 120,747 EGM2008 fill-in values; thus, in comparison to the previous
EGG1997 computation, the land and marine data from the project data base
approximately doubled, while the total amount of data increased about sixfold.

The progress in the collection of gravity data is also documented for selected
examples in Fig. 5.9. The left part of the figure shows the old status in 1997
(EGG1997; Denker and Torge 1998) and the right part shows the new status as of
September 2008 (EGG2008) for the whole of Europe (top), Scandinavia (middle),
and the Mediterranean Sea (bottom; ship data from Morelli et al. 1975 excluded).
In this context, it should be noted that within the EGGP, the Morelli ship gravity
data for the Mediterranean Sea was completely excluded, as comparisons with
newer data sources revealed significant systematic discrepancies in several areas.

Finally, it is important to mention that all EGGP gravity sources were carefully
checked regarding the underlying horizontal and vertical position as well as the
gravity reference systems, and, if necessary, transformations were done to the
target systems, being ETRS1989 (European Terrestrial Reference System 1989,
coinciding with ITRS at epoch 1989.0, and co-moving with the stable part of the

Table 5.1 Main characteristics of EGG1997/2007/2008

EGG1997 EGG2007 EGG2008

Gravity data
Project data base
2,684,133 (744 sources) 5,354,653 (709 sources) 5,355,206 (718 sources)
Other data sources
– 195,840 (ArcGP) 195,840 (ArcGP)
335,124 (KMS1996) 951,251 (KMS2002) 13,222,260 (10 9 10 altimetry)
– – 120,747 (EGM2008 fillins)
3,019,257 (Total) 6,501,744 (Total) 18,894,053 (Total)

Terrain data
7.500 … 50 grids 100 … 3000 grids 100 … 3000 grids
700 million elev. 8.3 billion elev. 8.3 billion elev.
150 9 200 RTM 300 9 450 RTM 150 9 200 RTM

Global geopotential model
EGM1996 (nmax = 360) EIGEN-GL04C (nmax = 360) EGM2008 (nmax = 360/2190)

Computation procedure
Remove-compute-restore technique, spectral combination (1D FFT)
GRS80 normal potential, zero-tide system

Computation grid
25�–77�N, 35�W–67.4�E 25�–85�N, 50�W–70�E 25�–85�N, 50�W–70�E
1.00 9 1.50 1.00 9 1.00 1.00 9 1.00

3,120 9 4,096 pts. 3,600 9 7,200 pts. 3,600 9 7,200 pts.
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Eurasian tectonic plate; for further details see http://www.euref.eu/), EVRS
(European Vertical Reference System, based on the zero tide system; see Ihde
et al. 2008) and a gravity datum based on absolute gravity observations. In the
merging process of the various data sources, emphasis was placed on a thorough
check with respect to systematic and gross errors, which was one of the most time-
consuming steps.

Apart from the improved gravity data, comparable progress was also made in
the collection of high-resolution digital elevation models (DEMs). For the
EGG1997 computation, digital elevation models (DEMs) with a resolution of
about 200 m were only available for Central and Western Europe, while coarser
grids with a resolution of 0.5–10 km had to be used for the remaining parts of
Europe. As of 1997, only Germany had released a very high-resolution DEM with
a grid size of 100 9 100 (approx. 30 m), but meanwhile Switzerland and Austria also
provided 100 9 100 DEMs for the EGGP. At present, high-resolution national DEMs
do not exist or are confidential for large parts of Eastern Europe. Hence, in all
areas not covered by high-resolution national DEMs, fill-ins from public domain
data sets had to be utilized. However, compared to EGG1997, significantly
improved fill-ins are available now, e.g., from the Shuttle Radar Topography
Mission (SRTM) with a resolution of 300 9 300 (SRTM3; JPL 2007) or the global
public domain model GTOPO30 with a resolution of 3000 9 3000 (USGS 2007).
As the SRTM3 model covers only the latitudes between 60�N and 54�S, the
GTOPO30 model had to be used for the regions in the far North.

All available DEMs were merged into a new European DEM with a common
grid size of 300 9 300, covering the area 25�N–85�N and 50�W–70�E. Furthermore,
for the area of Germany, Austria, and Switzerland, a corresponding 100 9 100 DEM
was created. The 300 9 300 and 100 9 100 DEMs comprise about 6.6 and 1.7 billion
elevations, respectively. In the merging process, the highest priority was given to
the national DEMs, followed by the SRTM3 and GTOPO30 data. For testing
purposes, a second 300 9 300 European DEM was created using only the public
domain data sets SRTM3 and GTOPO30. Depth models were not considered so
far, i.e., elevations for ocean cells were set equal to zero.

Within the merging process, the SRTM3 and GTOPO30 DEMs were also evaluated
by comparisons with the high-resolution national DEMs. In Germany, the differences
between the national and the SRTM3 DEMs showed a standard deviation of 7.9 m with
maximum differences up to about 300 m. The largest differences were located in
opencast mining areas and resulted from the different epochs of the data. Histograms of
the differences showed a clear deviation from the normal distribution with a long tail
towards too high SRTM3 elevations, which is expected due to the fact that SRTM is a
‘‘first return system,’’ providing elevations of whatever the radar has bounced offfrom,
and in many instances this is above the actual ground level (Denker 2005).

The evaluation of the GTOPO30 model by national and SRTM3 DEMs dem-
onstrated that in large parts of Europe the longitudes of GTOPO30 should be
increased by 3000 (one block). In Central Europe, the longitude shift reduced the
standard deviation of the differences to the national and SRTM3 models by
roughly 75 % to about 10 m. Altogether, the national DEMs augmented by the
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SRTM3 and GTOPO30 data provide a significantly improved European DEM, as
compared to EGG1997. The DEMs were not updated between 2007 and 2008, and
hence both the EGG2007 and EGG2008 computations rely on the same DEM for
Europe, which is depicted in Fig. 5.10.

Fig. 5.9 Locations of terrestrial gravity data for entire Europe (top), Scandinavia (middle) and
the Mediterranean Sea (bottom), excluding the Morelli data; the left part shows the status in 1997
(EGG1997) and the right part shows the status of September 2008 (EGG2008) with the ArcGP
and altimetric data shown in grey and blue, respectively
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4.4 Development of the European Quasigeoid Model EGG2008

The general computation strategy is based on the spatial gravity field modeling
approach, aiming at the determination of the disturbing potential at the Earth’s
surface and the associated height anomalies or quasigeoid undulations (e.g.,
Denker et al. 2005). This concept has the advantage that only gravity field
observations at the Earth’s surface and in its exterior enter into the calculations,
avoiding assumptions about the Earth’s interior gravity field (as needed in con-
nection with the orthometric heights and the geoid). A conversion of the height
anomalies to geoid undulations can then be performed afterwards by introducing a
density hypothesis, which should be consistent with that used for deriving the
corresponding orthometric heights (e.g., the so-called Helmert heights based on
(5.52); for further discussions see Sects. 2.4 and 3.5).

The remove-compute-restore (RCR) technique is utilized for combining the
high-resolution terrestrial gravity and terrain data with a state-of-the-art global
geopotential model. Terrain reductions are performed according to the residual
terrain model (RTM) technique to smooth the data and to avoid aliasing effects
(see Sect. 3.9). The transformation of the gravity anomalies into corresponding
disturbing potential and height anomaly values is done by the spectral combination
technique with integral formulas (see Sect. 3.6). In principle, the following steps
are carried out:

Fig. 5.10 Final digital elevation model (DEM) for Europe with a resolution of 300 9 300
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1. Computation of surface free-air gravity anomalies based on (5.86), including
the atmospheric correction (5.77), yielding

DgP ¼ gP þ dgA � cQ : ð5:178Þ

2. Computation of residual gravity anomalies (remove step) for all stations
according to equation (5.173), giving

Dgres
P ¼ DgP � DgM

Q
 � DgT
P ; ð5:179Þ

where DgM
Q
 and DgT

P are the contributions from the global geopotential model
and the topography, respectively (see Sects. 3.2 and 3.9).

3. Gridding of the irregularly distributed residual gravity anomalies, which are
still referring to the actual observation positions, by least-squares collocation,
taking into account the given standard deviations of the observations.

4. Transformation of the residual gravity anomaly grid into a corresponding dis-
turbing potential grid (compute step) based on the spectral combination
approach (5.154), resulting in

bT res
P ðh; k; rÞ ¼

R

4p

ZZ
r

Dgres
P0 Wðw; rÞ dr : ð5:180Þ

5. Computation of the final disturbing potential by restoring the contributions
from the geopotential model and the topography (restore step), yielding

bTP ¼ bT res
P þ TM

P þ TT
P : ð5:181Þ

6. Conversion of the disturbing potential to height anomalies by means of (5.90).
7. Derivation of geoid undulations by introducing a density hypothesis, e.g., based

on (5.56) and (5.52).

Regarding the details of the practical implementation of the above steps, the
following more general notes are given:

• It is assumed that all station coordinates are based on the ETRS1989 reference
system, the physical heights are normal heights based on the EVRS (zero tide
system), and the gravity values are referring to an absolute gravity datum;
regarding the accuracy requirements for the station coordinates, gravity values,
etc.; see Sect. 4.1.

• The geodetic reference system GRS80 (e.g., Moritz 2000) is used as the normal
gravity field in all computations, being the latest system recommended by IUGG
and IAG; in addition, the GRS80 ellipsoid is recommended by IERS (2010) for
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use with the ITRF solutions, and it is also mostly utilized for GNSS ellipsoidal
coordinates.

• Atmospheric corrections for the observed gravity values are computed accord-
ing to (5.77); the restore part dVA (see (5.75), Sect. 2.6) is neglected due to its
insignificant magnitude (of a few millimeters).

• The degree two zonal coefficient of the global geopotential model is always
converted to the zero tide system, and hence the resulting height anomalies and
geoid undulations also refer to the zero tide system.

• The different values of the constants GM (geocentric gravitational constant) and
a (semimajor axis) in the global geopotential models and the GRS80 normal
gravity field are handled rigorously throughout all computation steps; the
resulting degree zero terms in the spherical harmonic expansions are taken into
account in all calculations, see (5.110) and (5.111).

• The geopotential model parameters are so far not computed rigorously based on
coordinate transformations of the relevant vectors and matrices (see Sects. 2.3
and 2.5), but instead ellipsoidal approximations based on Wenzel (1985) are
employed, which also provide sufficiently accurate results. Furthermore, the
geopotential model values were until now only computed utilizing the normal
heights HN, and not HN ? fQ*, as required within a rigorous linearization pro-
cess with respect to a high-degree geopotential model (see Sect. 3.2). However,
for future calculations the rigorous approach will be implemented, and it
remains to be seen whether this also leads to improved results.

• Topographic reductions are computed based on the RTM technique (see Sect. 3.9),
which results in a significant smoothing of the relevant gravity field quantities and
reduces aliasing effects. The required reference topography was always computed
by a moving average filter from the available DEMs; this ensures the consistency
between the high-resolution DEMs and the reference topography, without creating
undesirable long wavelength signals. The reference topography had a resolution
(size of the moving average filter) of 300 9 450 for EGG2007, and 150 9 200 for
EGG2008 (see also Table 5.1). The resolution of the reference topography was
reduced for EGG2008, because even the RTM technique creates some small long
wavelength signals, which lead to an inconsistency within the RCR procedure, as
these signals are suppressed in the compute step (by the spectral combination
approach), but are fully considered in the restore step on the other hand. All
computations were done with the program TC based on prism integration;
regarding the gravity stations, the DEM was forced to reproduce the given station
elevations (see Sect. 3.9; Forsberg 1984). Figure 5.11 shows an example for the
surface free-air gravity anomalies and the corresponding RTM reduced values; the
figure clearly documents that the RTM reductions lead to a significant smoothing
of the anomaly field, while preserving the long wavelength features.

• The spectral combination technique was employed so far for the compute step,
because it allows an optimal combination of the terrestrial data with a global
geopotential model based on the error characteristics of both data sets, and
furthermore the resulting integral formulas can be evaluated rigorously and very
effectively by 1D FFT techniques (Haagmans et al. 1993). In this context, the
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regional terrestrial data, with possibly existing (small) long wavelength sys-
tematic errors, and a global geopotential model, being highly accurate at the
very long wavelengths, complement each other in an optimal way; hence, within
the combination process, the very accurate long wavelength gravity field
structures of the present global geopotential models (based on the GRACE and
GOCE missions) should be retained, while the terrestrial data should mainly
contribute the shorter wavelength components. In addition, previous investiga-
tions clearly showed that the application of the original Stokes formula,
implying that the complete disturbing potential spectrum (from degree 2 to ?)
is computed from the terrestrial gravity data plus the geopotential model in the
outer zone, leads to unreasonable long wavelength distortions of the results, and
therefore it is not well suited in this context. Further specific details on the
implementation of the spectral combination procedure are given below.

• The computation area for the EGG2007 and EGG2008 models is 25�N–85�N
and 50�W–70�E. The grid spacing is 10 9 10, yielding
3,600 9 7,200 = 25,920,000 grid points (see also Table 5.1).

The key ingredients within the spectral combination approach are the spectral
weights according to (5.149), which depend on the error degree variances asso-
ciated with the terrestrial gravity data and the geopotential model. Regarding the
terrestrial gravity data, the starting point was the following error covariance
function:

CovðeDgG ; e0DgG ;w;RÞ ¼ 1 ½mGal2� e�4w½� � : ð5:182Þ

This covariance model considers correlated noise and was originally suggested and
applied by Weber (1984). Then, based on (5.148), corresponding error degree
variances can be computed, and, together with the error degree variances for the

Fig. 5.11 Surface free-air gravity anomalies (left) and corresponding RTM 150 9 200 reduced
values (right) for the area of the Harz mountains, Germany
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geopotential model according to (5.147), the spectral weights can be estimated
from (5.149).

For the computation of EGG2007, the geopotential model EIGEN-GL04C
(Förste et al. 2008a) was employed, because at that time it was the latest available
high-degree model based on GRACE and terrestrial data. The spectral weights,
computed as described above, are shown in Fig. 5.12 together with corresponding
values related to a recent CHAMP model and the EGM1996 model (used for the
EGG1997 computation). In addition, Fig. 5.12 also depicts the modified integral
kernels associated with the corresponding spectral weights as well as the original
Stokes kernel. With respect to EGG2007, it was decided to do the combination
only up to degree 120, while between degrees 120 and 10,000 (corresponding to
the used grid size) full weight (wn

G = 1.0) was given to the terrestrial gravity data
in order to exploit fully the collected European gravity sources. However, this does
not imply that the global model is completely disregarded above degree and order
120, as, e.g., in areas with larger data gaps the high-degree gravity information of
the model is considered in the gridding process and thus practically taken over in
the final combined solution. In this context, it is also worth mentioning that pre-
vious studies revealed that it is advantageous to use a high-degree model up to
degree nmax = 360, as this leads to smaller residual quantities accompanied with
reduced effects of (e.g., linear) approximation errors in the mathematical model-
ing. In addition, a cosine tapering window was applied between degrees 10,000
and 30,000 in order to prevent oscillations of the integral kernel. As already
mentioned in Sect. 3.6, the resulting modified integral kernels W(w) remain finite
if the weights go to zero for very high degrees or the summation is limited to some
maximum degree; therefore, in principle, no special consideration of the inner
zone contribution is required, but due to the rapid change of the integration kernel

Fig. 5.12 Spectral weights and corresponding integral kernels related to a GRACE based
geopotential model (red; used for EGG2007 and EGG2008), a recent CHAMP model (green),
and EGM1996 (black; used for EGG1997), along with the classical Stokes kernel (blue)
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near w = 0� (see Fig. 5.12) it is recommended to integrate numerically the kernel
function within the innermost zone (see also Sect. 3.6). Consequently, a numerical
kernel integration was implemented using 21 9 21 points for the innermost
(central) grid cell and 11 9 11 points out to a distance of w = 0.5�; outside this
distance, the kernel value is simply calculated based on the distance to the cell
center. Moreover, to speed up the computations, internally a coarse grid is com-
puted and employed for the remote zones, and in addition, kernel tabulation and
interpolation are implemented.

In spring 2008, the new global geopotential model EGM2008 became available,
given as spherical harmonic coefficients complete to degree and order 2,159, with
additional coefficients going up to degree 2,190 and order 2,159 (Pavlis et al.
2008). The EGM2008 model is based on a corresponding GRACE-only model
(ITG-GRACE03, nmax = 180, including GRACE data from September 2002 to
April 2007, computation method described in Mayer-Gürr 2006), along with its
complete covariance matrix, and a new and comprehensive worldwide 50 9 50

terrestrial gravity anomaly data set, combined by a least-squares adjustment, using
internally ellipsoidal harmonic coefficients (Pavlis et al. 2008). At first the
EGM2008 model was compared with corresponding GRACE static gravity field
solutions. Figure 5.13 depicts the signal and error spectra related to EGM2008,
along with the error spectra of the recent GRACE based models EIGEN-GL04C
(Förste et al. 2008a; utilized for the EGG2007 calculation), EIGEN-5S (Förste
et al. 2008b), and ITG-GRACE2010 (Mayer-Gürr et al. 2010; formal standard
deviations scaled by factor 8), as well as the corresponding spectra of the differ-
ences to EGM2008, respectively. Now, regarding roughly the degree range 20–90,
the EGM2008 error estimates are about five to six times higher than those from the

Fig. 5.13 Signal and error spectra for EGM2008 (red thick and dashed lines, respectively), along
with the error spectra (dashed lines) for EIGEN-GL04C (green), EIGEN-5S (black), and
ITG-GRACE2010 (blue; formal standard deviations scaled by factor 8), as well as the
corresponding difference spectra with respect to EGM2008 (thick lines)
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more recent EIGEN-5S and ITG-GRACE2010 models, and about three times
higher than those from the EIGEN-GL04C model. On the other hand, the depicted
difference spectra are all very similar and show a reasonable agreement with the
error spectra of the EIGEN-5S, ITG-GRACE2010 and EIGEN-GL04C models
until about degrees 60–70, but the difference spectra significantly exceed the latter
error curves in the degree range 60–100, while still being compatible with the
EGM2008 error estimates; it is also worth mentioning that the same features show
up with reference to the GGM03S/C models (Tapley et al. 2007), not shown in
Fig. 5.13. Based on these findings, it appears that the EGM2008 error estimates are
perhaps too pessimistic for the low degrees (degrees less than 60–70), while the
bump in the difference signals (degrees 60–100) is probably related to the
EGM2008 weighting procedure.

As a result, the spectral weights computed from (5.149) on the basis of the
(perhaps too pessimistic) EGM2008 error estimates and the error covariance
function for the terrestrial gravity data (1 mGal correlated noise; see (5.182))
turned out to be somewhat unrealistic, with too much weight given to the terrestrial
data, dominating the combination solution (i.e., wn

G [ 0.5) already below degree
70. In principle, this could be counteracted by increasing the error estimates for the
terrestrial data or decreasing the EGM2008 error estimates, as only the relative
weighting matters. However, this was not attempted, but instead the spectral
weights from the EGG2007 calculation were also adopted for EGG2008 in con-
nection with the EGM2008 model, as these weights appear to be quite reasonable
(with wn

G [ 0.5 at about degree 85; see Fig. 5.12); in addition, this weighting
scheme is in very good agreement with the studies from Forsberg (2010), who
found empirically from GPS/leveling comparisons that linearly increasing weights
between degrees 80 (wn

G = 0.0) and 90 (wn
G = 1.0) are optimal. Furthermore, it is

also noted that the combination solutions based on the original EGM2008 spectral
weights, in contrast to those shown in Fig. 5.12, performed slightly worse in some
of the GPS/leveling comparisons.

Another issue relates to the maximum degree of the employed geopotential
model in conjunction with the reference topography used for the RTM reductions.
This item, mainly concerning the ultra-high-degree model EGM2008, has been
discussed already in Sect. 3.9 with reference to the studies in Forsberg (2010),
showing ‘‘some inherent problems in implementing the RTM method for a highly
varying reference topography’’ with ‘‘best results obtained for a relatively
low-resolution (300) reference height, irrespective of whether EGM2008 is used at
a corresponding resolution (nmax = 360) or to full resolution (nmax = 2,190).’’
With respect to the European calculations, RTM reductions based on a 30’ 9 45’
(EGG2007) and 150 9 200 (EGG2008) reference topography were tested and used
in combination with the full resolution EGM2008 model (nmax = 2,190); however,
the GPS/leveling comparisons indicated a slight deterioration in a few but not all
cases as compared to the solutions based on EGM2008 with nmax = 360, and
further studies are needed to understand fully this matter. Possible reasons may be
related to the ‘‘double consideration’’ of the short wavelength topographic signals
in the RTM reductions and the EGM2008 model, the non-rigorous linearization
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with respect to the geopotential model (i.e., the use of heights HN instead of
HN + fQ*; see above and Sect. 3.2), as well as due to the RTM reductions them-
selves. Therefore, it was ultimately decided to employ the EGM2008 model only
with nmax = 360 in the EGG2008 calculation, accompanied by some fill-ins over
large data voids (see above) to ensure that the full resolution EGM2008 model and
the EGG2008 quasigeoid stay reasonably close together even there.

In principle, the Molodensky corrections terms, considering data on a non-level
surface, also have to be taken into account in connection with the spectral com-
bination approach (because the employed residual gravity anomalies are still
referring to the actual observation positions). In this context, Molodensky’s theory
(see Sect. 3.4) and terrain reductions (see Sect. 3.9) are complementary, because
the application of terrain reductions results in a significant smoothing of the
gravity field observations, associated with a corresponding reduction of the Mol-
odensky correction terms and a more stable computing scheme (Forsberg and
Tscherning 1997). The magnitude of the Molodensky terms was studied in Denker
and Tziavos (1999) in conjunction with different terrain reduction techniques,
indicating that the maximum values associated with the RTM technique may reach
about 5–10 cm in extremely rugged areas of the European Alps (&1 cm RMS)
and about 1 cm in low mountain ranges (&1 mm RMS). However, utilizing the
so-called gradient solution (see Sect. 3.4) for Switzerland and Austria did not lead
to any improvements in the GPS/leveling comparisons, with similar findings
reported by Forsberg (2010). Therefore, the Molodensky terms have been
neglected so far in the EGG2007 and EGG2008 calculations.

One final item concerns the European Vertical Reference System (EVRS),
where the vertical datum (zero level surface) is defined as the (zero tide) equi-
potential surface of the Earth’s gravity field, which passes through the ‘‘Normaal
Amsterdams Peil’’ (NAP; fundamental tide gauge in Amsterdam, the Netherlands)
and which has the (constant) gravity potential WEVRS

0 (see Ihde et al. 2008). The
latest EVRS realization is the EVRF2007 (European Vertical Reference Frame
2007), consisting of a set of points with precisely determined geopotential num-
bers and normal heights relative to the aforementioned zero level surface through
the NAP at epoch 2000.0 (Ihde et al. 2008); EVRF2007 is the recommended
reference frame for all pan-European applications. However, to remain general,
the notation Wi

0 is used for the potential of the zero level surface of a local vertical
datum (i). Now Wi

0, being initially unknown, will in general differ from U0, which
has to be considered accordingly in (5.89) as well as (5.95) or (5.99) for the height
and gravity anomalies, respectively. While the (small) constant term in the gravity
anomaly equations has practically no effect on the computed disturbing potential
T (because it is of long wavelength nature, and such signals are almost entirely
defined by the global geopotential model; see above), and the zero-degree term of
T (i.e., T0 due to the different GM values; see (5.128)) is already taken into account
within the calculation process (see above), Bruns’s formula (5.89) together with
(5.87) results in
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fi
P ¼ hP � HNðiÞ ¼ TP

cQ
�Wi

0 � U0

cQ
¼ TP

cQ
þ fi

0 ; ð5:183Þ

where TP is the disturbing potential (including the zero-degree term, as obtained
directly from the above described computations) relative to the (GRS80) normal
potential (UP, U0, respectively), HN(i) is the normal height based on the vertical
datum (i), and fi

0 is a virtually constant term to account for the potential difference
Wi

0 � U0. Regarding the EVRF2007, the latter constant was determined by com-
parisons with GPS and leveling data (i.e., hP - HN (EVRF2007)) from the European
EUVN_DA data set (Kenyeres et al. 2010; see Sect. 4.5) as +0.302 m. As a result,
a slightly rounded value for fi

0 (based also on an earlier EUVN_DA release) was
employed for the computation of the final EGG2008 height anomalies (quasigeoid
heights), yielding

fEGG2008
P ¼ TP

cQ
þ fEVRF2007

0 ; with fEVRF2007
0 ¼ þ0:300 m : ð5:184Þ

The above correction ensures the compatibility between the European GPS
(ETRS1989) and leveling data (EVRS, normal heights, zero tide system, etc.) on
the one hand, and the EGG2008 height anomalies on the other hand.

Table 5.2 shows the statistics of the 18,154,254 irregularly distributed gravity
anomalies without an error flag, which were used as input for the computation of
the EGG2008 residual gravity anomaly grid; the number of points is smaller than
that given in Table 5.1, because Table 5.2 excludes the stations which received an
error flag (mainly edited altimetry data near the coast as well as some very bad and
duplicate marine gravity sources; see Sect. 4.3). The standard deviation (std. dev.)
of the original gravity anomalies is 34.11 mGal, which reduces to 14.95 mGal
after subtracting EGM2008 (nmax = 360) and 13.90 mGal after also subtracting
the RTM contributions. The minimum and maximum values also reduce accord-
ingly, and the mean value of the final residual anomalies is –0.57 mGal and thus
reasonably close to zero (as it should be).

The statistics of the corresponding quasigeoid height or height anomaly terms
for EGG2008 are given in Table 5.3. The major contribution to the final quasi-
geoid comes from the global geopotential model EGM2008 (nmax = 360) with
values ranging from –48.655 to +67.551 m and a standard deviation of 24.257 m.
The standard deviations of the contributions from the topography and the terres-
trial gravity data are 0.036 and 0.161 m, respectively. However, the maximum
RTM effects are about 0.9 m, while the maximum effects of terrestrial gravity data
are about 2.4 m (all large values are located in Asia or Africa). In addition, the
final EGG2008 quasigeoid is depicted in Fig. 5.14.

The spectral combination technique also permits the derivation of error esti-
mates for the computed quasigeoid heights on the basis of corresponding error
degree variances. According to (5.156) and (5.157) the error degree variances
related to the terrestrial gravity data and the global geopotential model are
required. Table 5.4 shows the results based on 1 mGal correlated noise for the
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terrestrial gravity data, see (5.182), and the error degree variances from different
geopotential models; as the EGM2008 error estimates may be a little too pessi-
mistic (see the discussion above), corresponding estimates from the EIGEN-
GL04S1/GL04C and EIGEN-5S/5C models were also taken into consideration. In
this context, the results based on the error estimates of the ‘‘S’’ (satellite-only) and
‘‘C’’ (combined) models do not differ significantly, because due to the selected
weighting scheme (see Fig. 5.12), the error degree variances of the global model
come into play only up to degree nmax = 120, see (5.157), where the ‘‘S’’ and ‘‘C’’
values do not differ significantly. Table 5.4 gives a standard deviation for the
quasigeoid heights of 3.1 cm related to the EGM2008 model and about 2.5 cm
related to the EIGEN models, which can be viewed as the pessimistic and opti-
mistic case, respectively. Table 5.4 also shows that the major error contributions
are coming from the spectral band with n = 50–360, while today the very long
wavelengths (n \ 50) are accurately known from the GRACE mission and the
short wavelengths (n [ 360) can be obtained from high-quality terrestrial data.
However, once GOCE can deliver the quasigeoid up to a resolution of 100 km
(n & 200) with an accuracy of about 1 cm, the total error (complete spectrum)
will reduce to 1.7 cm (for a corresponding study related to EGG1997, see Denker
1998). In addition to this, an error covariance function was derived for the
quasigeoid heights based on (5.156), utilizing the more optimistic EIGEN-5S/5C
error estimates; the result is depicted in Fig. 5.15, showing significant error cor-
relations up to distances of about 300 km. Finally, it should be noted that the
aforementioned error estimates apply only to those regions in Europe, where high-
quality terrestrial gravity data exists, while in other areas (mainly Eastern Europe)
less accurate results have to be expected. In the end, the future perspectives for

Table 5.2 Statistics of 18,154,254 irregularly distributed gravity anomalies (without error flag)
that were used as input for EGG2008; units are mGal

Parameter Mean Std. dev. Minimum Maximum

Dg +6.59 34.11 -333.36 +498.88
DgM (EGM2008, nmax = 360) +7.49 31.27 -226.32 +236.25
DgT (RTM 150 9 200) -0.34 4.98 -215.21 +182.72
Dg - DgM -0.90 14.95 -268.74 +290.52
Dg - DgM - DgT = Dgres -0.57 13.90 -163.43 +263.23

Std. dev.: standard deviation

Table 5.3 Statistics of 3,600 9 7,200 = 25,920,000 quasigeoid heights of the EGG2008 grid;
units are m

Parameter Mean Std. dev. Minimum Maximum

fres = S(Dgres) 0.000 0.161 -1.657 +2.361
fT (RTM 150 9 200) 0.000 0.036 -0.493 +0.934
fM (EGM2008, nmax = 360) +26.498 24.257 -48.665 +67.551

f0
EVRF2007 +0.300 0.000 +0.300 +0.300

f (EGG2008) +26.798 24.258 -48.858 +68.104

Std. dev.: standard deviation
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calculating gravimetric geoid/quasigeoid models with an accuracy of 1 cm are
quite good with respect to well-surveyed regions, where such models can then
replace geometric leveling and serve as a vertical datum, e.g., as planned in
Canada and the U.S.A. (see Sect. 2.4).

Besides the commission error, the truncation error, resulting from the truncation
of the kernel function (or integration) at some distance wmax, is also of interest. The
truncation error can be derived from (5.160) and (5.161) by means of the frequency
transfer function, FTFn, see (5.159). For wmax = 10, 7.5, and 5.0�, the truncation
error is estimated as 0.7, 1.6, and 3.5 mm, respectively. Moreover, the truncation
error remains below 1 cm for wmax larger than about 3�, while truncation errors of
about 18 mm and 25 mm are obtained for wmax = 2 and 1� (all figures given in terms
of standard deviation). In addition, the frequency transfer function (FTFn) and the
spectral weights differ by no more than about 1.5 % for wmax = 10�. Finally, it is
noted that in the practical computations, kernel truncation is not used at all, i.e., for
every computation point the complete input grid is employed; this was done because
kernel truncation offers no computational advantages and previous studies showed
that kernel truncation may lead to unfavorable results, as for every computation point
another input data field is utilized (which does not conform with the harmonicity
condition, see the corresponding discussion on the computation of terrain reductions
in Sect. 3.9 as well as Wolf 2008).

Fig. 5.14 Final EGG2008
quasigeoid referring to
GRS80 (see text; units are m)
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4.5 Evaluation of the European Quasigeoid Model EGG2008

The EGG2008 quasigeoid model and all other interim solutions as well as the
previous EGG1997 release were evaluated by independent national and European
GPS and leveling data sets. The ellipsoidal GPS heights as well as the leveled
heights (all given as normal heights) were converted to the zero tide system based
on the transformation formulas published by Ihde et al. (2008). Regarding the GPS
heights, it was generally assumed that they refer to the (conventional) tide-free
system, as this is common practice and standard for the ITRF products (see
Sect. 2.1); the transformation to the zero-tide system decreases the ellipsoidal
heights by approximately 4.5 cm on average over the European continent. The
leveling heights were usually treated as mean tide quantities, as this is a reasonable
approximation for the typical case of not applying any tidal reductions to the
leveling; the conversion from the mean tide system to the zero tide system was
carried out relative to the central latitude of the GPS/leveling data set, which does
not change the average height level of all stations, but in principle the corrections
should be calculated relative to the fundamental datum point.

Table 5.5 shows the statistics of the differences between a German GPS/leveling
data set, consisting of 907 stations (data from Bundesamt für Kartographie und

Table 5.4 Standard deviations for quasigeoid heights based on 1 mGal correlated noise for the
terrestrial gravity data and error degree variances from different geopotential models; units are m

Degree range EGM2008 EIGEN-GL04S1/C EIGEN-5S/5C

2–50 0.0028 0.0012 0.0007
51–100 0.0213 0.0114 0.0097
101–200 0.0184 0.0184 0.0184
201–360 0.0115 0.0115 0.0115
361–2,000 0.0071 0.0071 0.0071
2,001–? 0.0006 0.0006 0.0006
2–? 0.0314 0.0256 0.0248

Fig. 5.15 Error covariance
function for quasigeoid
heights based on 1 mGal
correlated noise for the
terrestrial gravity data and
error degree variances from
the EIGEN-5S/5C models
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Geodäsie, BKG, Frankfurt; e.g., Liebsch et al. 2006), and various quasigeoid cal-
culations based on different terrestrial data sets (1997, 2007, 2008) and geopotential
models; the differences were always computed in the sense GPS/leveling minus
gravimetric quasigeoid. All quasigeoid models were computed by the spectral
combination technique based on 1 mGal correlated noise for the gravity data, see
(5.182), and the error estimates for the geopotential model, where the spectral
weights related to the EGM2008 geopotential model are a special case, as described
in Sect. 4.4. As a result, the long wavelength components of the regional quasigeoid
models and the underlying global geopotential model match to a great extent, and
hence the comparisons of such regional quasigeoids with GPS/leveling data can also
be considered as a validation tool for the respective global geopotential model.
Table 5.5 provides the mean values of the raw differences without applying the
constant fi

0, while the other statistical parameters (RMS, Minimum, Maximum) are
related to the centered differences (i.e., after subtracting the corresponding mean
value). The results in Table 5.5 clearly demonstrate the enormous progress resulting
from improved gravity and terrain data on the one hand and the global geopotential
models based on the satellite missions CHAMP and GRACE on the other, with the
RMS differences reducing by about a factor of 3.5 from 9.6 cm for EGG1997 to
2.7 cm for EGG2008. In detail, the combination of the older EGM1996 model with
the terrestrial data sets from 1997 and 2008 leads to RMS differences of 9.6 and
7.4 cm, respectively, corresponding to an improvement of about 23 % (related to the
updated terrestrial data), but, on the other hand, the combination of the 1997 ter-
restrial data with the EGM2008 model results in an RMS difference of only 2.9 cm
(improvement 70 %); thus, most of the total improvement is due to the better

Table 5.5 Comparison of 907 GPS and leveling stations in Germany with quasigeoid models
based on different terrestrial data sets and geopotential models; the GPS/leveling data were
converted to the zero tide system; the differences are defined in the sense GPS/leveling minus
gravimetric quasigeoid; the mean values refer to the raw differences without applying the con-
stant f0

EVRF2007; the other statistical parameters are calculated after subtracting the mean value;
units are m

Terrestrial data Geopotential model Mean RMS Minimum Maximum

1997 (EGG1997) EGM1996 +0.431 0.096 -0.188 +0.331
1997 EGM2008 +0.302 0.029 -0.095 +0.089
2007 (EGG2007) EIGEN-GL04C +0.298 0.036 -0.159 +0.075
2008 EGM1996 +0.416 0.074 -0.132 +0.300
2008 EIGEN-CHAMP03S +0.288 0.050 -0.116 +0.262
2008 EIGEN-GRACE01S +0.290 0.038 -0.111 +0.152
2008 EIGEN-GRACE02S +0.295 0.037 -0.080 +0.123
2008 EIGEN-GL04S1 +0.299 0.029 -0.097 +0.086
2008 EIGEN-GL04C +0.300 0.028 -0.093 +0.082
2008 EIGEN-5S +0.300 0.027 -0.097 +0.073
2008 EIGEN-5C +0.298 0.028 -0.098 +0.073
2008 (EGG2008) EGM2008 +0.297 0.027 -0.091 +0.078
– EGM2008 (nmax = 2,190) +0.302 0.031 -0.110 +0.148
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satellite data in this case. Furthermore, considering the different EIGEN models
from GFZ, the RMS differences improve in the course of time, where the newer
models, associated with longer observation series, yield the best results; for exam-
ple, the combination of the 2008 terrestrial data with EGM1996 gives an RMS
difference of 7.4 cm, which reduces to 5.0 cm related to the CHAMP model
(EIGEN-CHAMP03S), about 3.8 cm for the early GRACE models (EIGEN-
GRACE01S/02S), and finally 2.7 cm for the recent GRACE based models (EIGEN-
5S/C, EGM2008). Consequently, the new satellite mission data (CHAMP, GRACE)
have a significant impact on the accuracy of regional quasigeoid models, and further
improvements down to the level of about 1 cm are anticipated from the GOCE
mission. In addition, the mean values associated with the CHAMP and GRACE
based geopotential models are remarkably stable, differing by no more than about
1 cm. Besides the results given in Table 5.5, the differences between the German
GPS/leveling data and EGG1997 as well as EGG2008 are illustrated in Fig. 5.16,
showing again the progress from the 1997 to the 2008 quasigeoid models, especially
with regard to the long wavelengths.

The statistics from further comparisons of national GPS and leveling data sets
as well as the European EUVN_DA enterprise (Kenyeres et al. 2010) with selected
quasigeoid solutions are presented in Tables 5.6 and 5.7. The comparisons were
carried out in conformity with the German GPS/leveling data set (i.e., zero tide
system, normal heights, no fi

0 constant considered, etc.), with the normal heights
referring to the respective national vertical datums. Again, several combinations of
the terrestrial data and geopotential models were utilized to assess the progress
associated with the improved input data sets; besides the quasigeoid model
EGG1997 (1997 terrestrial data, geopotential model EGM1996, denoted as
EGG1997/EGM1996), the solutions EGG1997/EGM2008 (1997 gravity and ter-
rain data, EGM2008 geopotential model), EGG2008 (2008 terrestrial data,
EGM2008 geopotential model, denoted as EGG2008/EGM2008), as well as the
pure EGM2008 model with nmax = 2,190 are addressed in Tables 5.6 and 5.7.
Besides a summary of the comparisons with the German GPS/leveling data,
Table 5.6 includes corresponding results for the Netherlands, Belgium, a French
traverse from Marseille to Dunkerque (1,100 km long) with new leveling data
(NIREF; Duquenne et al., 2007), a French national data set (based on the older
leveling network IGN69), Switzerland, Austria, and Russia (Demianov and
Majorov 2004), while the results relating to the EUVN_DA project (Kenyeres
et al. 2010) are listed in Table 5.7. The EUVN_DA project aimed at a densification
of the previous EUVN campaign (Ihde et al. 2000) by collecting high-quality GPS
and leveling data from participating European countries. At present, about 1,400
points are available with interstation distances ranging from about 50–100 km.
The EUVN_DA data set is based on the reference systems ETRS1989 (GPS) and
EVRS (leveling data, present realization EVRF2007; see Ihde et al. 2008), with the
zero tide system implemented for both GPS and leveling data; the normal heights
were derived in part directly from geopotential numbers as well as by simple
transformations with up to three parameters (Kenyeres et al. 2010).
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In addition to the numerical results given in Tables 5.6 and 5.7, the differences
of the EUVN_DA as well as the Russian GPS/leveling campaign with respect to
EGG1997 and EGG2008 are illustrated in Fig. 5.17. On the whole, the EGG2008
model performs significantly better than EGG1997. The improvements result from
the updated gravity and terrain data as well as from the utilization of better
geopotential models (based on the GRACE mission). Tables 5.6 and 5.7 show that
solely through the introduction of the (GRACE based) EGM2008 geopotential
model (i.e., EGG1997/EGM1996 vs EGG1997/EGM2008), the RMS differences
reduce by between 28 % (Switzerland) and 70 % (Germany). However, the update
and re-processing of the gravity and terrain data also leads to substantial
improvements in the GPS and leveling comparisons in all cases. The additional
improvements from the upgraded terrestrial data (EGG1997/EGM2008 vs
EGG2008/EGM2008) range from 2 % (Germany), 18 % (Russia; see Fig. 5.17,
bottom), 20 % (EUVN_DA, excluding Great Britain and Italy, see below), 25 %
(Austria), to about 33 % (the Netherlands); the improvements are particularly high
in those areas where the data basis was significantly extended, e.g., in the Neth-
erlands, Austria, Russia, as well as other regions of Europe. The overall
improvement of EGG2008 over EGG1997 ranges from about 35–72 %, and also
the long wavelength discrepancies are significantly reduced from 0.1 to 1.0 ppm
for the EGG1997 model to typically below 0.1 ppm for all GRACE based solu-
tions (see also Denker et al. 2009). Therefore, the consideration of additional
tilt parameters in north–south and west–east directions between the respective
quasigeoid heights from GPS/leveling and EGG2008 (see Sect. 2.1, formula (5.5))

Fig. 5.16 Comparison of 907 GPS and leveling stations in Germany with the quasigeoid
solutions EGG1997 (left part) and EGG2008 (right part); a constant bias is subtracted; stations
(dots) and differences (positive: up in red; negative: down in blue) are depicted
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Table 5.6 Comparison of different GPS and leveling campaigns with quasigeoid models based
on different terrestrial data sets and geopotential models; the GPS/leveling data were converted to
the zero tide system; the differences are defined in the sense GPS/leveling minus gravimetric
quasigeoid; the mean values refer to the raw differences without applying the constant f0

EVRF2007;
the other statistical parameters are calculated after subtracting the mean value; units are m

Quasigeoid (Dg /
geopotential model)

# Mean RMS Minimum Maximum Improvement vs
EGG1997

Germany
EGG1997/EGM1996 907 +0.431 0.096 -0.188 +0.331 –
EGG1997/EGM2008 907 +0.302 0.029 -0.095 +0.089 70 %
EGG2008/EGM2008 907 +0.297 0.027 -0.091 +0.078 72 %
EGM2008 (nmax =2,190) 907 +0.302 0.031 -0.110 +0.148 –

The Netherlands
EGG1997/EGM1996 84 +0.244 0.034 -0.061 +0.118 –
EGG1997/EGM2008 84 +0.234 0.021 -0.047 +0.050 38 %
EGG2008/EGM2008 84 +0.255 0.010 -0.040 +0.027 71 %
EGM2008 (nmax = 2,190) 84 +0.263 0.030 -0.135 +0.036 –

Belgium
EGG1997/EGM1996 31 -2.005 0.061 -0.103 +0.102 –
EGG1997/EGM2008 31 -2.054 0.031 -0.055 +0.046 49 %
EGG2008/EGM2008 31 -2.065 0.028 -0.053 +0.048 54 %
EGM2008 (nmax = 2,190) 31 -2.060 0.019 -0.047 +0.037 –

France(North-South traverse with new leveling)
EGG1997/EGM1996 16 -0.027 0.086 -0.188 +0.124 –
EGG1997/EGM2008 16 -0.088 0.032 -0.051 +0.068 63 %
EGG2008/EGM2008 16 -0.097 0.026 -0.024 +0.059 70 %
EGM2008 (nmax = 2,190) 16 -0.100 0.038 -0.066 +0.082 –

France (Nationwide campaign)
EGG1997/EGM1996 965 -0.132 0.125 -0.295 +0.351 –
EGG1997/EGM2008 965 -0.180 0.080 -0.227 +0.258 36 %
EGG2008/EGM2008 965 -0.188 0.076 -0.221 +0.191 39 %
EGM2008 (nmax = 2,190) 965 -0.181 0.084 -0.271 +0.346 –

Switzerland
EGG1997/EGM1996 188 +0.535 0.080 -0.129 +0.258 –
EGG1997/EGM2008 188 +0.117 0.058 -0.201 +0.282 28 %
EGG2008/EGM2008 188 +0.174 0.052 -0.157 +0.230 35 %
EGM2008 (nmax = 2,190) 188 +0.141 0.056 -0.170 +0.170

Austria
EGG1997/EGM1996 170 +0.660 0.108 -0.202 +0.248 –
EGG1997/EGM2008 170 +0.356 0.064 -0.129 +0.197 41 %
EGG2008/EGM2008 170 +0.361 0.037 -0.098 +0.100 66 %
EGM2008 (nmax = 2,190) 170 +0.338 0.071 -0.212 +0.171

Russia
EGG1997/EGM1996 48 +0.574 0.256 -0.776 +0.707 –
EGG1997/EGM2008 48 +0.560 0.124 -0.261 +0.300 52 %
EGG2008/EGM2008 48 +0.555 0.076 -0.134 +0.163 70 %
EGM2008 (nmax = 2,190) 48 +0.555 0.072 -0.120 +0.141 –
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leads to only marginal improvements of the RMS differences in most cases, the
only two exceptions being the French nationwide data set of 965 stations (as well
as the corresponding French data set within EUVN_DA) and the British data set
within EUVN_DA (see discussion below). Regarding the French nationwide data
set, the RMS difference reduces from 7.6 cm (see Table 5.6) to 4.1 cm when
considering additional tilt parameters; the tilt acts mainly in the north–south
direction (about 0.25 m per 1000 km distance) and is related to the older leveling
network (IGN69), as almost no tilt exists in the comparisons with the new leveling
data (NIREF) available for the French traverse. For the latter data set, the RMS is
2.6 cm for the centered differences and 2.5 cm after considering additional tilt
parameters, while the corresponding RMS value based on the older IGN69 heights
is 8.0 cm for the centered differences, which clearly proves that the new French
leveling is better than the old one (see also Sect. 2.4; Rebischung et al. 2008).

Of special interest are the results from the comparisons with the European
EUVN_DA GPS/leveling data set, because it is based on common reference
systems for GPS and leveling (see above). Table 5.7 and Fig. 5.17 (top) show
that the EGG2008 model performs quite well over most parts of Europe, the
main exception being Great Britain, but also over Italy and France (see previous
paragraph) some systematic differences appear. Regarding Great Britain, the
so-called second and third geodetic leveling differ by about 0.2 m in the north–
south direction over 1,000 km distance (e.g., Kelsey 1972), and therefore the
results from the third leveling were never used alone in practice; instead the
results from the second leveling were held fixed and the third leveling was
adjusted to it, leading to the ‘‘official ODN heights’’ from Ordnance Survey
(Christie 1994). In addition, more recent studies suggest that the systematic error

Table 5.7 Comparison of the EUVN_DA GPS and leveling data set with quasigeoid models
based on different terrestrial data sets and geopotential models; the GPS/leveling data were
converted to the zero tide system; the differences are defined in the sense GPS/leveling minus
gravimetric quasigeoid; the mean values refer to the raw differences without applying the con-
stant f0

EVRF2007; the other statistical parameters are calculated after subtracting the mean value;
units are m

Quasigeoid
(Dg / geopotential model)

# Mean RMS Minimum Maximum Improvement vs
EGG1997

EUVN_DA (all)
EGG1997/EGM1996 1395 +0.287 0.243 -0.899 +0.708 –
EGG1997/EGM2008 1395 +0.253 0.188 -0.693 +0.527 23 %
EGG2008/EGM2008 1395 +0.250 0.173 -0.688 +0.443 29 %
EGM2008 (nmax = 2,190) 1395 +0.254 0.171 -0.643 +0.481 –

EUVN_DA (excluding Great Britain and Italy)
EGG1997/EGM1996 1139 +0.359 0.161 -0.599 +0.636 –
EGG1997/EGM2008 1139 +0.300 0.108 -0.607 +0.428 33 %
EGG2008/EGM2008 1139 +0.302 0.076 -0.302 +0.391 53 %
EGM2008 (nmax = 2,190) 1139 +0.305 0.077 -0.250 +0.430 –
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is mainly related to the third leveling (Hipkin et al. 2004; Ziebart et al. 2008),
and as the EUVN_DA data set is most probably based exclusively on the third
leveling, significant systematic differences show up (see Fig. 5.17); thus for
Great Britain, the RMS of the centered differences with respect to EGG2008 is
11.9 cm, which reduces to 3.8 cm after considering additional tilt parameters.
The situation over Italy has improved with respect to earlier results (e.g., Denker
et al. 2009) due to a recently performed update (replacement) of the entire Italian
data set (Kenyeres et al. 2010), but some systematic differences remain (see
Fig. 5.17), requiring further investigations. For the entire EUVN_DA data set

Fig. 5.17 Comparison of the EUVN_DA (top) and Russian (bottom) GPS and leveling data with
the quasigeoid solutions EGG1997 (left part) and EGG2008 (right part); a constant bias is
subtracted; stations (dots) and differences (positive: up in red; negative: down in blue) are
depicted
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(excluding Great Britain and Italy), the RMS difference reduces from 16.1 cm
for EGG1997 to 7.6 cm for EGG2008; this means an improvement of about
53 % (Table 5.7). Furthermore, the comparisons on a country by country basis of
the EUVN_DA data with EGG2008 give RMS values for the centered differ-
ences of less than 3 cm for Belgium, Denmark, Finland, Germany, Hungary, the
Netherlands, Poland, Slovakia and Sweden, 3–6 cm for Austria, Croatia, the
Czech Republic, Estonia, Lithuania, Norway and Switzerland, while the largest
value is found for Romania (12.1 cm), which is certainly due to the low quality
of the terrestrial data available for the EGG2008 development. Overall, the
EUVN_DA comparison results are considered as quite satisfactory, in particular
with regard to the very large area size (from the Iberian Peninsula to Northern
Scandinavia, the Baltic States, Poland and Bulgaria) and the fairly small
remaining systematic differences at the level of only about 1 dm (see also
below).

Of significant importance is also the mean value between the EUVN_DA data
(excluding Great Britain and Italy) and EGG2008 of +0.302 m, as it can be used to derive
the potential value for the EVRF2007 zero level surface; formula (5.183) leads to

WEVRF2007
0 ¼ U0 � c0 fEVRF2007

0 ; ð5:185Þ

where U0 is the normal potential of the GRS80 level ellipsoid. Another option is to
work with potential quantities only (a more strict approach), resulting in

WEVRF2007
0 ¼ WP þ C ¼ UP þ TP þ C ; ð5:186Þ

followed by an averaging over all stations. Both procedures lead to the same result
(within the specified significant digits) of

WEVRF2007
0 ¼ 62; 636; 857:89� 0:02 m2 s�2 ; ð5:187Þ

where the latter figure is the empirical standard deviation of the mean value. The
above potential value differs from that published by Denker et al. (2005) based on the
earlier EUVN GPS/leveling data set (Ihde et al. 2000), and upon closer examination it
turned out that the tide correction for the GPS heights had a sign error in the 2005
computations; after correcting this error, the data sets used in Denker et al. (2005),
i.e., EUVN GPS/leveling data, EGG2004 quasigeoid, lead to a zero potential of
62,636,857.94 ± 0.16 m2 s-2, while the EUVN data together with EGG2008 yield a
value of 62,636,858.03 ± 0.12 m2 s-2, both being in good agreement with the result
given in (5.187). Furthermore, a good agreement exists with the values given in Bursa
et al. (2001) for Germany (62,636,857.51 ± 0.54 m2 s-2) and the Netherlands
(62,636,857.35 ± 0.70 m2 s-2), both based on the NAP (however, no information
exists about the tidal systems for GPS and leveling). Hence, the NAP zero level
surface is about 2 dm below the level surface defined by the global W0 value of IERS
(2010); see (5.48). Accordingly, the potential of the zero level surfaces can be
derived for all other (national) vertical datums involved in Table 5.6.
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Furthermore, the mean values of the differences between the EUVN_DA and
EGG2008 data are quite consistent on a country by country basis, ranging from
+0.241 to +0.377 m (excluding Great Britain and Italy). This suggests that sys-
tematic leveling errors over Europe are not very pronounced, besides the known
problems in Great Britain, France and perhaps Italy (see above). This is also
supported by Fig. 5.17 (right), showing only small long wavelength structures. In
addition to this, the mean values listed in Tables 5.6 and 5.7 can also be employed
to transform heights from one national or European height system to another one.
For example, the largest mean value is found for Belgium (–2.065 m for
EGG2008), which is due to the fact that the Belgian heights are referred to mean
low water, while most other countries use MSL. Hence, in combination with the
mean value for EVRF2007 of +0.302 m (EGG2008) it follows that the zero level
surface of the Belgian heights is 2.363 m below the EVRF2007 zero level surface.
This figure is in reasonable agreement with the results based exclusively on
leveling, where the national heights are compared with the EVRF2007 (adjusted)
leveling network, yielding a difference of 2.317 m (see http://www.crs-geo.eu);
however, regarding the (small) difference between both figures, it should also be
noticed that this is related to error contributions and time-variable effects from
different epochs of all data sets involved, i.e., GPS, leveling, and gravimetric
quasigeoid. The good agreement of the mean values related to EGG2008 for
Germany (+0.297 m) and EUVN_DA (+0.302 m) is also remarkable, but both data
sets rely on the Amsterdam tide gauge (NAP). On the other hand, the mean value
for the Dutch data set is somewhat lower (+0.255 m), which is perhaps partly
related to a subsidence of the area as well as different epochs of the involved data
sets (see Ihde et al. 2008).

Finally, Tables 5.6 and 5.7 also include the comparison results with the complete
EGM2008 model (nmax = 2,190). The results show that EGM2008 is performing
very well in all the comparisons, in the case of Belgium and Russia even better than
EGG2008. On the other hand, EGG2008 is performing a little better than EGM2008
in the other cases, with the largest improvements seen for the Netherlands and
Austria, the latter being probably related to the higher resolution of EGG2008.

4.6 Summary and Outlook

Significant progress was made within the framework of the European gravity and
geoid project regarding the collection and homogenization of high-resolution
gravity and terrain data, which was then utilized in combination with the global
geopotential model EGM2008 to develop the completely updated European
Gravimetric (Quasi)Geoid EGG2008, covering the whole of Europe and the
surrounding marine areas. The evaluation of this model by independent GPS and
leveling data showed that the new GRACE based geopotential models as well as
the upgraded terrestrial gravity and terrain data both lead to substantial
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improvements compared to the previous model EGG1997 (in total by 35–72 %),
and long wavelength errors, being the basic weakness of EGG1997, are virtually
non-existent in the EGG2008 model. The RMS of the centered differences between
national GPS/leveling data sets and EGG2008 range from about 1 cm to 5 cm for
areas with a good data quality and coverage; the higher values are associated with
Switzerland and Austria (high mountain regions), which is likely a consequence of
both an insufficient gravity coverage and leveling quality in some local areas as
well as theoretical shortcomings. On the other hand, the corresponding RMS
differences exceed 10 cm for countries with a less favorable data quality (e.g.,
South-Eastern Europe). However, in this context it is also important to note that
the differences from the GPS/leveling evaluation include error contributions and
time-variable effects from different epochs of all data sets involved, i.e., GPS,
leveling, and gravimetric quasigeoid. Taking this into account, the evaluation
results indicate an accuracy potential of the gravimetric quasigeoid model
EGG2008 in the order of 1–3 cm on a national basis, and 2–5 cm on continental
scales, provided that high quality and resolution input data are available within the
area of interest. These figures also conform to the internal error estimates of about
2–3 cm for the GRACE based calculations. In the end, the results obtained for
large parts of Europe are about the optimum one can expect at present with up-to-
date gravity, terrain, and GRACE data; further improvements are mainly antici-
pated from the GOCE and other future gravity field missions, as the terrestrial data
can hardly be improved for the greater part of Europe, apart from a few exceptions
(e.g., Eastern Europe).

Furthermore, a potential value for the EVRF2007 zero level surface was derived
from the EGG2008 model as 62,636,857.89 ± 0.02 m2s-2, and the connection
between national vertical datums was investigated by using GPS/leveling data and
the EGG2008 model. In the future, the control and replacement of the costly geo-
metric leveling, a differential technique susceptible to systematic errors, as well as
the so-called ‘‘geoid based vertical datum’’ (implemented soon in Canada and the
U.S.A.) will be interesting study topics. Finally, regional gravity field modeling on
the basis of terrestrial and satellite data will certainly retain its importance in the
future, as short wavelength gravity field structures (e.g., of the geoid and quasigeoid)
with a resolution of a few kilometers can never be recovered from satellite data
alone due to the necessary orbit heights of a few hundred kilometers.
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Chapter 6
Regularization and Adjustment

Yunzhong Shen and Guochang Xu

Part I: Regularized Solution to Ill-Posed Problems

1 Introduction

The linear observation equation is usually expressed as

l ¼ Axþ e ð6:1Þ

where the non-random design matrix A 2 Rm�n; the vector of unknown parameters
x 2 Rn�1; the vector of measurements l 2 Rm�1and the random error vector
e 2 Rm�1 with zero mean and variance–covariance matrix r2

0P�1; where P is the
weight matrix and r2

0 is the variance of unit weight. If the design matrix A pos-
sesses very big condition number, the observation equation (6.1) is called
ill-conditioned, which is defined as ill-posed problems by Hadamard (1932). In
geodesy ill-posed problems are frequently encountered in satellite gravimetry due
to downward continuation, or in geodetic date procession due to the colinearity
among parameters that are to be estimated. The so-called ill-posed problem
violates at least one of the following conditions:
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• Solution is existent
• Solution is unique
• Solution is stable.

Geodetic ill-posed problems have unstable solutions, i.e., the least squares
adjustment cannot be used to solve such problems. In order to stabilize the solu-
tion, the method called regularization initially proposed by Tikhonov (1963a, b)
must be applied, which is based on the criterion of minimizing the following
Tikhonov smoothing function:

UaðxÞ ¼ Ax� lk k2
Pþ a xk k2

K ¼ min ð6:2Þ

where �k k2
P and �k k2

K denote the second norm with respect to kernel P and K,
respectively, a is the regularization parameter, and the other symbols are as in
(6.1). This smoothing function (6.2) has been successfully applied for solving
ill-posed problems and a lot of papers have been published on this topic. For
details on ill-posed problems one can refer to the books Tikhonov and Arsenin
(1977); Tikhonov et al. (1995); and Morozov (1984). It is worth mentioning that
Hoerl and Kennard (1970) first presented the formula for computing the biases and
proposed the mean squared error (MSE) for estimating the accuracy for regular-
ized estimates. In geodesy, especially in satellite gravimetry, there also exist many
inverse ill-posed problems (see e.g., Schaffrin 1980, 2008; Xu 1992, 1998; Xu and
Rummel 1994; Reigber et al. 2005; Xu et al. 2006). Since the ambiguity and
coordinates parameters are highly correlated in fast GNSS positioning, regulari-
zation is also applied for deriving stable real ambiguity solutions (Shen and Li
2007; Li et al. 2010).

In the following sections we first analyze the unstable characteristics of least
squares solution, when the observation equations are ill-posed. Then the regular-
ized solution is introduced and the algorithms of regularized parameter are out-
lined together with the formula for efficiently calculating the regularized parameter
based on minimizing the MSE. Then the biasness of residuals for regularized
solution is also analyzed and the unbiased estimate of the variance of unit weight
based on the bias-removed residuals is discussed. Finally the numerical examples
for demonstrating the performance of regularized are presented.

2 Unstable Analysis of Least Squares Solution to Ill-Posed
Observation Equation

The least squares solution to (6.1) can be expressed as

xL ¼ ðATPAÞ�1ATPl ð6:3Þ
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where xL indicates the least squares solution. The covariance matrix DxL of xL is

DxL ¼ r2
0ðATPAÞ�1 ð6:4Þ

and r2
0 is variance of unit weight and can be estimated from residuals as:

r̂2
0 ¼

êT
LPêL

m� n
ð6:5aÞ

and

êL ¼ AxL � l ¼ A ATPA
� ��1

ATP� Im

� �
l: ð6:5bÞ

Here, Im is an m 9 m identity matrix. If (6.1) is ill-posed, the singular values of the
design matrix A will monotonously decrease to zero, and, as a result, small errors
in the observational vector cause a big disturbance in the estimated parameters.
Therefore, the least squares solution cannot produce a satisfactory result. In order
to analyze the cause, the solution (6.3) is rewritten as

xL ¼ ~A
T ~A

� ��1
~A

T~l ð6:6Þ

where ~A ¼ P1=2A; ~l ¼ P1=2l: Then the design matrix ~A is decomposed by using
singular value decomposition (SVD) as follows:

~A ¼ UWVT ð6:7Þ

where U 2 Rm�n and UTU ¼ In; V 2 Rn�n and VTV ¼ VVT ¼ In, and W 2
Rn�n is a diagonal matrix with elements diag ðWÞ ¼ ð k1 k2 � � � kn Þ; ki is the
singular value of matrix ~A and satisfies the condition k1� k2� � � � � kn: If (6.1) is
rank-deficient, there exists a number k\n; when i [ k; such that ki ¼ 0: If (6.1) is
ill-posed, then the smallest eigenvalue kn tends toward 0. If the matrices U; V are
expressed with column vector ui 2 Rm�1 and vi 2 Rn�1 as U ¼
ð u1 u2 � � � un Þ and V ¼ v1 v2 � � � vnð Þ; then (6.7) can be represented
as:

~A ¼
Xn

i¼1

uikiv
T
i ð6:8Þ

and ui; vi are called left- and right- singular vectors. If the measurement vector ~l is
decomposed into two parts,

~l ¼ �lþ ~e ð6:9Þ

where �l is the exact value of~l and ~e ¼ P1=2e: Inserting (6.9) and (6.8) into (6.6), we
obtain the spectral representation of least squares solution as follows:
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xL ¼
Xn

i¼1

uT
i
~l

ki
vi ¼

Xn

i¼1

uT
i
�l

ki
vi þ

Xn

i¼1

uT
i ~e

ki
vi: ð6:10Þ

The covariance matrix of estimated parameters can also be expressed as
spectral:

DxL ¼ r2
0 ATPA
� ��1¼ r2

0
~A

T ~A
� ��1

¼ r2
0

Xn

i¼1

viv
T
i

k2
i

ð6:11Þ

and the estimate of the variance of unit weight is

r̂2
0 ¼

êT
LPêL

m� n
¼ ~̂e

T

L~̂eL

m� n
ð6:12Þ

where

~̂eL ¼ P1=2êL ¼ ~A ~A
T ~A

� ��1
~A

T � Im

� �
~l: ð6:13Þ

By substituting (6.8) into (6.13), we have

~̂eL ¼
Xn

i¼1

uiu
T
i �Im

 !
~l: ð6:14Þ

In (6.10), the signal spectra uT
i
�l decays faster than singular value ki; but the

noise spectra uT
i ~e has the same amplitude in all spectral domains due to its being

white noise. Therefore, the solution is mainly contaminated by high frequency
noise because the singular value in high frequency domain is very small. However,
the residual vector as shown (6.14) is not dominated by high frequency noises.

The so-called regularized solution is to find a filter factor si; which approaches
1 in low frequency domain but decays faster than a singular value in order to filter
out the high frequency noises. After introducing such a filter factor into (6.10), we
obtain the so-called regularized solution in spectral representation as follows:

xs ¼
Xn

i¼1

si
uT

i
~l

ki
vi ð6:15Þ

where, xs denotes the regularized solution using filter factor si: Considering the
covariance D~l ¼ P1=2DlP

1=2 ¼ r2
0P1=2P�1P1=2 ¼ r2

0In; we can derive the covari-
ance matrix of xs according to the law of error propagation:

Dxs ¼ r2
0

Xn

i¼1

s2
i

viv
T
i

k2
i

ð6:16Þ
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and the residual vector is

~̂es ¼
Xn

i¼1

siu
T
i
~lui �~l: ð6:17Þ

3 Regularized Solution to Ill-Posed Observation Equations

The regularized solution xs is biased and its bias vector bs can be estimated from
(6.15) as

bs ¼ E xsð Þ � �x ¼
Xn

i¼1

si � 1ð Þ u
T
i
�l

ki
vi ¼

Xn

i¼1

si � 1ð ÞvT
i �xvi ð6:18Þ

where �x and �l are the true values of parameter vector x and measurement vector ~l;

respectively. The equation uT
i
�l

ki
¼ vT

i �x used in deriving (6.18) can be derived by left-

applying the orthogonal vector vT
i to �x ¼

Pn
i¼1

uT
i
�l

ki
vi; which can be derived from

(6.10). Because the estimated vector xs is biased, the bias term should be con-
sidered in estimating the accuracy of xs: The mean square error (MSE), which
consists of covariance matrix and the bias part, is used to estimate the accuracy of
biased estimates. Considering (6.16) and (6.18), the spectral representation of the
MSE is expressed as follows:

Mxs ¼ Dxs þ bsb
T
s ¼ r2

0

Xn

i¼1

s2
i viv

T
i

k2
i

þ
Xn

i¼1

si � 1ð Þ2 vT
i �x

� �2
viv

T
i ð6:19Þ

Equations (6.15)–(6.19) are the general formulae of regularized solution by
using the filter factor. The filter factor must have different forms with different
criteria of regularization.

3.1 Solution to Rank-Deficient Observation Equations

If the observational equation is rank-deficient with rank k\n; the filter factor si

can be defined as

si ¼
1; 1� i� k
0; k\i� n

�
ð6:20Þ
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Substituting (6.20) into (6.15)–(6.19), we obtain the spectral representation of the
solution of rank-deficient observational equation as

xk ¼
Xk

i¼1

uT
i
~l

ki
vi ð6:21aÞ

Dk ¼ r2
0

Xk

i¼1

viv
T
i

k2
i

ð6:21bÞ

~̂es ¼
Xk

i¼1

uT
i
~lui �~l ð6:21cÞ

bk ¼
Xn

i¼kþ1

uT
i
�l

ki
vi ¼

Xn

i¼kþ1

vT
i �xvi ð6:21dÞ

Mk ¼ r2
0

Xk

i¼1

viv
T
i

k2
i

þ
Xn

i¼kþ1

vT
i �x

� �2
viv

T
i ð6:21eÞ

Here, the subscript k denotes the rank-deficient solution.

3.2 Regularized Solution to Ill-Posed Observation Equations

If the observational equation is ill-posed, regularization approach must be applied
to stabilize the solution. The criterion of Tikhonov regularization is based on the
smoothing function (6.2); its solution can be easily derived from the smoothing
function (6.2) as

xa ¼ ATPAþ aK
� ��1

ATPl ð6:22aÞ

where a is a small positive real number called the regularization parameter, and the
subscript a denotes the regularized solution. Once the regularization parameter is
determined, one can compute the estimate vector xa with (6.22a), and its covari-
ance matrix Da; bias vector ba; MSE matrix Ma and the residual vector êa; with the
following expressions:

Da ¼ r2
0 ATPAþ aK
� ��1

ATPA ATPAþ aK
� ��1 ð6:22bÞ

ba ¼ �a ATPAþ aK
� ��1

Kx ð6:22cÞ

Ma ¼ Da þ babT
a ¼ r2

0 ATPAþ aK
� ��1

ATPA ATPAþ aK
� ��1

þa2 ATPAþ aK
� ��1

Kx �xTK ATPAþ aK
� ��1 ð6:22dÞ
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êa ¼ A ATPAþ aK
� ��1

ATP� Im

� �
l ð6:22eÞ

If matrix K is an identity matrix, (6.22a)–(6.22e) can be simplified as

xa ¼ ATPAþ aIn

� ��1
ATPl ¼ ~A

T ~Aþ aIn

� ��1
~A

T~l ð6:23aÞ

Da ¼ r2
0 ATPAþ aIn

� ��1
ATPA ATPAþ aIn

� ��1

¼ r2
0

~A
T ~Aþ aIn

� ��1
~A

T ~A ~A
T ~Aþ aIn

� ��1 ð6:23bÞ

ba ¼ �a ATPAþ aIn

� ��1
�x ¼ �a ~A

T ~Aþ aIn

� ��1
�x ð6:23cÞ

Ma ¼ r2
0

~A
T ~Aþ aIn

� ��1
~A

T ~A ~A
T ~Aþ aIn

� ��1

þa2 ~A
T ~Aþ aIn

� ��1
�x �xT ~A

T ~Aþ aIn

� ��1 ð6:23dÞ

~̂ea ¼ ~A ~A
T ~Aþ aIn

� ��1
~A

T � Im

� �
~l: ð6:23eÞ

Inserting the SVD decomposition formula (6.8) into (6.23a), we obtain the
spectral representation of Tikhonov regularization solution as

xs ¼
Xn

i¼1

kiu
T
i
~l

k2
i þ a

vi: ð6:24Þ

Comparing (6.24) with (6.15), we get the filter factor for Tikhonov regularization
as

si ¼
k2

i

k2
i þ a

ð6:25Þ

It is obvious that the filter factor of Tikhonov regularization in (6.25) decays faster
than singular value ki due to a [ 0: According to the characteristic of the filter
factor which approaches 1 in a low frequency domain and 0 in a high frequency
domain, it can be derived from (6.25) that the regularization parameter a should fit
the condition

0\a
	
k2

1\\1 0\k2
n

	
a\\1: ð6:26Þ

The value of the regularization parameter depends on the convergence rate of
singular value ki and the sample value of white noise. Substituting (6.25) into
(6.16)–(6.19), we get the corresponding spectral forms as follows:

Da ¼ r2
0

Xn

i¼1

k2
i viv

T
i

k2
i þ a

� �2 ð6:27Þ
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~̂ea ¼
Xn

i¼1

k2
i

k2
i þ a

uT
i
~lui �~l ð6:28Þ

ba ¼ �a
Xn

i¼1

vT
i �x

k2
i þ a

vi ð6:29Þ

Ma ¼ r2
0

Xn

i¼1

k2
i viv

T
i

k2
i þ a

� �2 þ a2
Xn

i¼1

vT
i �x

� �2
viv

T
i

k2
i þ a

� �2 ð6:30Þ

Inserting the SVD decomposition formula (6.8) into (6.23a), we can get the
same formulae as (6.24) and those from (6.27) to (6.30). Because of ba\0; the

regularization solution has less power than the ‘true’ one. Substituting ~l ¼ �lþ ~e
into (6.23a), we get the error vector of the Tikhonov regularized solution as

xa � �x ¼ �a ~A
T ~Aþ aIn

� ��1
�xþ ~A

T ~Aþ aIn

� ��1
~A

T
~e ð6:31Þ

where the expression �l ¼ ~A�x is used. The spectral representation of (6.31) can be
expressed as

xa � �x ¼ �a
Xn

i¼1

vT
i �x

k2
i þ a

vi þ
Xn

i¼1

kiu
T
i ~e

k2
i þ a

vi: ð6:32Þ

The first term at the right-hand side of (6.32) denotes the error caused by
regularization and the second term denotes the error caused by measurement error.
The scale value of the error vector is measured by its norm and because the spaces
of the two kinds of errors are orthogonal, this norm can be expressed as

xa � �xk k2¼ a2
Xn

i¼1

vT
i �x

� �2

k2
i þ a

� �2 þ
Xn

i¼1

k2
i uT

i ~e
� �2

k2
i þ a

� �2 ð6:33Þ

Taking the expectation to (6.33), we can obtain the following expression:

E xa � �xk k2
� �

¼ a2
Xn

i¼1

vT
i �x

� �2

k2
i þ a

� �2 þ r2
0

Xn

i¼1

k2
i

k2
i þ a

� �2 ð6:34Þ

From (6.34), it can be seen that the error caused by regularization, the first term
on the right, is a monotonously increasing function with respect to regularization
parameter a; when a! 0; this error approaches minimal value 0 and when a!
1; it approaches maximal value �xT�x: In contrast, observational error is a
monotonously decreasing function with respect to a; when a!1; this error
approaches minimal value 0 and when a! 0; it approaches maximal value
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r2
0

Pn
i¼1

1
k2

i
: The regularization parameter a is used to balance the two kinds of errors

and makes the total error E xa � �xk k2
� �

approach a minimum.

It is worth mentioning here that we can derive the same formula as (6.34) by
taking the trace of MSE in (6.30). This indicates that minimizing the trace of MSE
is equivalent to minimizing the total error of the regularized solution.

In many real applications, the matrix K is not an identity matrix, but a sym-
metric matrix. For example, in recovering the gravitational potential model from
satellite to satellite tracking data, a regularization approach must be applied for
stabilizing the solution due to the downward continuation. In this case, the matrix
K is a diagonal matrix; its diagonal elements ki are determined by Kaula’s rule as

ki ¼ 2� 1010l2; l2 � 3� i� l2 þ 2l� 3
� �

ð6:35Þ

where l is the degree of gravitational potential model. In order to derive the
spectral expression for the diagonal matrix K, we first decompose K as

K ¼ PT
KPK: ð6:36Þ

It is obvious that PK is also a diagonal matrix; its diagonal elements are the square
roots of the correspondent elements ofK: Inserting (6.36) into (6.22d), we obtain

Ma ¼ r2
0P�1

K A0TPA0 þ aIn

� ��1
A0TPA0 A0TPA0 þ aIn

� ��1
P�1

K

� �T

þa2P�1
K A0TPA0 þ aIn

� ��1
PK�x �xTPT

K A0TPA0 þ aIn

� ��1
P�1

K

� �T
ð6:37Þ

where A0 ¼ AP�1
K . A0TPA0is a symmetric and positive definite matrix which can be

decomposed as

A0
T
PA0 ¼ GTWG ð6:38Þ

where G 2 Rn�n; GTG ¼ GGT ¼ In; and W is a diagonal matrix, its diagonal

elements k2
i being the eigenvalues of the matrix A0TPA0: Substituting (6.38) into

(6.37) and introducing symbols GK ¼ P�1
K G; y ¼ GTPK�x; we obtain the fol-

lowing expression:

Ma ¼ r2
0GK W þ aInð Þ�1GT

K � ar2
0GK W þ aInð Þ�2GT

K

þa2GK W þ aInð Þ�1yyT W þ aInð Þ�1GT
K

: ð6:39Þ

Taking the trace toMa; we can derive the following expression:

Tr Mað Þ ¼
Xn

i¼1

k2
i r

2
0 þ a2y2

i

k2
i þ a

� �2
ki

ð6:40Þ

where Tr denotes the trace operator, and yi is the ith element of vector y:
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4 Determination of the Regularization Parameter

Hoerl and Kennard (1970) proposed a criterion to estimate the regularization
parameter by minimizing the MSE of a regularized solution. If the regularization
parameter a is known, the regularized solution can be obtained with (6.22a) or
(6.23a). Therefore, the key problem now is how to determine the regularization
parameter.

The regularization parameter depends not only on the ill-conditioned obser-
vational equation, but also on the measurement error. Therefore, ill-conditioned
observational equation and the variance of the unit weight measurement error r0

are the necessary and sufficient quantities in determining the regularization
parameter. In most cases r0 needs to be estimated from the measurements, and r2

0

should be substituted with the estimated value r̂2
0 (6.14) shows that the residual

vector ~̂eL is not amplified by the small singular value; therefore even least squares
adjustment can provide a satisfactory estimation of the standard deviation. This
estimate r̂2

0 can be used to calculate the regularization parameter.
There are many criteria for the determination of the regularization parameter,

such as the L-curve method, generalized discrepancy principle, iterative ridge
method, and generalized cross validation (GCV) method. Different methods can
produce a different regularization parameter, and the best regularization parameter
a� should satisfy the following condition:

E xa� � �xk k2
� �

�E xa � �xk k2
� �

; 8a 2 Rþ ð6:41Þ

where Rþ denotes the positive real set. In other words, the best regularization
parameter can be expressed as the solution of the following criterion:

E xa � �xk k2
� �

= min a 2 Rþ ð6:42Þ

The iterative ridge method originally proposed by Hoerl and Kennard (1970) in
estimation of regression parameters and successfully used by Xu (1992), Xu and
Rummel (1994), Xu (1998) in the simulation study of recovery of gravity anomaly
from gradiometer measurements is based on the this criterion. Unfortunately, this
criterion needs the exact parameters, i.e., the vector �x: However it is actually
impossible; otherwise the parameters need not be estimated. If the exact param-
eters in this criterion are substituted with their prior-values or with those from the
least squares solution, if this solution exists, the estimated regularization parameter
based on this criterion is not an optimal one. In fact, each criterion has its
advantage and disadvantage and has a special occasion to be used. No criterion is
superior to others all the time. For this reason, we introduce here four criteria to
compute the regularization. The first is called the generalized discrepancy prin-
ciple, which needs r0 to be known, the second is the L-curve method, which does
not need information about r0; the third is the formal discussed iterative ridge
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method, which needs not only r0 but also the exact parameter vector �x; and the
fourth is the GCV method, which also needs neither r0; nor �x:

Generalized Discrepancy Principle

The criterion of generalized discrete discrepancy principle is represented by the
following formula (Hansen 1996):

q að Þ ¼ Axa � lk k2
P�mr2

0 ¼ 0 ð6:43Þ

where xa can be substituted by (6.22a) and m is the number of measurements. The
only unknown in (6.43) is the regularization parameter a: Because the function
qðaÞ is a monotonous increase function with qð0Þ\0; and 9a1; q a1ð Þ[ 0; the
symbol 9 denotes existence, so that (6.43) exists as a unique solution. In practice,
the regularization parameter a derived from (6.43) is somewhat bigger, because

mr2
0 is not the unbiased estimator of Axa � lk k2

P: Therefore, (6.43) can be modified
as follows:

q að Þ ¼ Axa � lk k2
P�r2

0T að Þ ¼ 0 ð6:44Þ

with

T að Þ ¼ Tr Im � A ATPAþ aIn

� ��1
ATP

� �

¼ Tr Im � ~A ~A
T ~Aþ aIn

� ��1
~A

T
� �

¼ m�
Pn
i¼1

k2
i

k2
iþa

ð6:45Þ

The modified formula, which is called the compensated discrepancy principle, can
get better results due to its being almost unbiased. In other words, the variance of
unit weight of the regularized solution should be estimated by the following
formula:

r̂2
0 ¼

Axa � lk k2
P

T að Þ ð6:46Þ

It can be verified that TðaÞ reduces to m� n on condition that a ¼ 0: Considering

the expression Axa � lk k2
P¼ êT

a Pêa ¼ ~̂e
T

a ~̂ea; and inserting (6.45) into (6.44), we
obtain the spectral representation of (6.44) as follows:

q að Þ ¼ ~̂e
T

a ~̂ea � r2
0 m�

Xn

i¼1

k2
i

k2
i þ a

 !
¼ 0 ð6:47Þ

Because (6.47) is a nonlinear equation, it is difficult to derive its explicit solution,
the numerical method such as Newton iteration or bisection method should be
used. Therefore, the computation of regularization parameter with the spectral
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form (6.47) is much faster than that in matrix form due to the iteration. The
procedure of bisection method is summarized as the following steps:

1. The basic ridge parameter or regularization parameter a0 ¼ nr2
0

	
xT

LxL is taken
as the initial value in order to speed up the iteration. If the least squares
solutions xL does not exist, any value a0 2 Rþcan be used as initial value.

2. If q a0ð Þ[ 0; taking a2 ¼ a0; a1 ¼ ca0; 0\c\1ð Þ; where, c is selected to
make q a1ð Þ\0: Otherwise, if q a0ð Þ\0; taking a1 ¼ a0; a2 ¼ ca0; c [ 1ð Þ
and c is selected to make q a2ð Þ[ 0: Because q að Þ is a monotonous increasing
function, a unique solution must exist within interval a1; a2½ 	:

3. Taking a ¼ a1 þ a2ð Þ=2:
4. If q að Þ[ 0; taking a2 ¼ a; otherwise taking a1 ¼ a:
5. Repeating steps 3 and 4 until the length of interval a1; a2½ 	 is less than a given

value of limitation.

L-Curve Method

In the L-curve method log xak k is taken as the vertical axis g and log Axa � lk kP

is taken as horizontal axis n: The curve drawn with respect to a is shown in
Fig. 6.1 and the optimal a lies on the place of the biggest curve. As shown in
Fig. 6.1, the form of the curve is just like L, so it is called the L-curve method. The
L-curve method can be expressed as the solution of the following criterion:

j að Þ ¼
_n€g� €_gn

_n2 þ _g2
� �3=2

¼ max ð6:48Þ

where the dot is a differential operator. After n ¼ log Axa � lk kP and g ¼ log xak k
are inserted into (6.48), the only unknown in (6.48) is the regularization parameter
a; which can be solved numerically from

_j að Þ ¼ 0: ð6:49Þ

Unfortunately, this solution is not unique. The optimal ones should be searched for
in the area around the basic ridge parameter a0 ¼ nr2

0

	
xT

L xL: Miller (1970) first

ξ

optimal α

ηFig. 6.1 L-curve method
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used this method to solve ill-posed equations. For the details about this method,
one can refer to Hansen (1996).

Iterative Ridge Method

The iterative ridge method is based on the criterion of minimizing the traced
mean square error, which is expressed as

Tr Mað Þ ¼ r2
0

Xn

i¼1

k2
i

k2
i þ a

� �2þa2
Xn

i¼1

vT
i �x

� �2

k2
i þ a

� �2 ¼ min ð6:50Þ

As mentioned above, Tr Mað Þ exactly equals E xa � �xk k2
� �

; which is expressed

with (6.34). Its first and second order derivatives are derived as follows:

dTr Mað Þ
da

¼
Xn

i¼1

k2
i vT

i �x
� �2

a� r2
0

� �

k2
i þ a

� �3 ð6:51Þ

d2Tr Mað Þ
da2

¼
Xn

i¼1

k2
i k2

i vT
i �x

� �2
aþ 3r2

0

� �

k2
i þ a

� �4 ð6:52Þ

It is obvious that 8a[ 0; d2Tr Mað Þ
da2 [ 0: This indicates that the function Tr Mað Þ is

strongly convex. Therefore the criterion (6.50) has a unique minimum and the
corresponding regularization parameter is numerically solved with the following
equation:

f ðaÞ ¼ dTr Mað Þ
da

¼
Xn

i¼1

k2
i vT

i �x
� �2

a� r2
0

� �

k2
i þ a

� �3 ¼ 0: ð6:53Þ

Equation (6.53) can also be solved with the bisection method. As already men-
tioned, it needs the exact parameters �x and variance of unit weight r2

0: r2
0 can be

substituted with the estimated value r̂2
0; which can be computed by least squares

adjustment even when the equation is ill-posed, because it is not amplified by
small eigenvalues.

If the matrix K is a diagonal matrix, the trace of MSE is shown in (6.40). To
minimize Tr Mað Þ in (6.40), it can be converted to the following algebraic equation:

dTr Mað Þ
da

¼ 2
Xn

i¼1

k2
i ay2

i � r2
0

� �
k2

i þ a
� �3

ki

¼ 0: ð6:54Þ

Equation (6.54) can also be solved by the bisection method.
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GCV Method

The GCV method minimizes the following GCV function to solve the regu-
larized parameter a :

GCVðaÞ ¼
1
n Im �HðaÞð Þlk k2

P

1
n Tr Im �HðaÞð Þ
� �2 ¼ min ð6:55Þ

where HðaÞ ¼ A ATPAþ kIn

� ��1
ATP:

Unbiased Variance of Unit Weight

Now the only open problem in the regularization solution is how to estimate
the variance r̂2

0 of the unit weight. Although this value can be substituted by
that estimated by the least squares adjustment, it is still worth getting the
unbiased estimation in the regularized solution. As already mentioned in dis-
cussing the generalized discrepancy principle, the variance estimated from (6.56)
is biased:

r̂2
0 ¼

Axa � lk k2
P

m� n
¼ êT

a Pêa

m� n
¼ ~̂e

T

a ~̂ea

m� n
: ð6:56Þ

Since the residual vector, êa or ~̂ea; is biased. The simple way to get the unbi-
ased estimate of the variance of unit weight is to remove the biases from the
residuals, which is proposed by Xu et al. (2006). From (6.22e), we derive the bias
of the residual vector as follows:

dêa ¼ E êað Þ ¼ A ATPAþ aIn

� ��1
ATP� Im

� �
EðlÞ

¼ A ATPAþ aIn

� ��1
ATPA�x� A�x ¼ �aA ATPAþ aIn

� ��1
�x

ð6:57Þ

After the bias vector dêa in (6.57) is removed from êa; one can use the bias-
removed residual vector to compute the variance of unit weight with (6.56).
Unfortunately, computing the bias vector dêa; one needs the exact parameter
vector �x; which is impossible in practice. What we can do is only substitute the
exact parameter vector with its estimate. In this case, there still exist higher order
biases.

5 Numerical Cases

In order to demonstrate the performance of regularized solution in fast GNSS
positioning, we use ten epochs of GPS L1 carrier phase measurements to compute
the float ambiguities. The design matrix A and measurement vector l are as below:

306 Y. Shen and G. Xu



A ¼

�0:0953 0:4594 0:6947 �0:1903 0 0 0 0
�0:5089 0:2043 1:2862 0 �0:1903 0 0 0
�0:6157 0:1098 0:4187 0 0 �0:1903 0 0
0:5549 �0:1547 0:0865 0 0 0 �0:1903 0
�0:6869 �0:6729 0:1710 0 0 0 0 �0:1903
�0:0952 0:4594 0:6949 �0:1903 0 0 0 0
�0:5088 0:2042 1:2863 0 �0:1903 0 0 0
�0:6156 0:1097 0:4185 0 0 �0:1903 0 0
0:5549 �0:1547 0:0864 0 0 0 �0:1903 0
�0:6868 �0:6730 0:1710 0 0 0 0 �0:1903
�0:0951 0:4594 0:6950 �0:1903 0 0 0 0
�0:5087 0:2041 1:2864 0 �0:1903 0 0 0
�0:6154 0:1095 0:4184 0 0 �0:1903 0 0
0:5549 �0:1546 0:0863 0 0 0 �0:1903 0
�0:6867 �0:6731 0:1711 0 0 0 0 �0:1903
�0:0950 0:4594 0:6951 �0:1903 0 0 0 0
�0:5085 0:2040 1:2865 0 �0:1903 0 0 0
�0:6153 0:1094 0:4182 0 0 �0:1903 0 0
0:5550 �0:1546 0:0863 0 0 0 �0:1903 0
�0:6867 �0:6732 0:1711 0 0 0 0 �0:1903
�0:0949 0:4594 0:6953 �0:1903 0 0 0 0
�0:5084 0:2040 1:2866 0 �0:1903 0 0 0
�0:6152 0:1093 0:4181 0 0 �0:1903 0 0
0:5550 �0:1546 0:0862 0 0 0 �0:1903 0
�0:6866 �0:6733 0:1712 0 0 0 0 �0:1903
�0:0948 0:4594 0:6954 �0:1903 0 0 0 0
�0:5082 0:2039 1:2867 0 �0:1903 0 0 0
�0:6150 0:1092 0:4179 0 0 �0:1903 0 0
0:5550 �0:1546 0:0861 0 0 0 �0:1903 0
�0:6865 �0:6734 0:1712 0 0 0 0 �0:1903
�0:0947 0:4594 0:6955 �0:1903 0 0 0 0
�0:5081 0:2038 1:2868 0 �0:1903 0 0 0
�0:6149 0:1091 0:4178 0 0 �0:1903 0 0
0:5550 �0:1546 0:0860 0 0 0 �0:1903 0
�0:6864 �0:6735 0:1713 0 0 0 0 �0:1903
�0:0946 0:4594 0:6956 �0:1903 0 0 0 0
�0:5079 0:2037 1:2869 0 �0:1903 0 0 0
�0:6148 0:1090 0:4176 0 0 �0:1903 0 0
0:5551 �0:1546 0:0859 0 0 0 �0:1903 0
�0:6863 �0:6736 0:1713 0 0 0 0 �0:1903
�0:0945 0:4594 0:6958 �0:1903 0 0 0 0
�0:5078 0:2036 1:2870 0 �0:1903 0 0 0
�0:6146 0:1089 0:4175 0 0 �0:1903 0 0
0:5551 �0:1546 0:0859 0 0 0 �0:1903 0
�0:6863 �0:6737 0:1714 0 0 0 0 �0:1903
�0:0944 0:4594 0:6959 �0:1903 0 0 0 0
�0:5077 0:2036 1:2871 0 �0:1903 0 0 0
�0:6145 0:1088 0:4174 0 0 �0:1903 0 0
0:5551 �0:1546 0:0858 0 0 0 �0:1903 0
�0:6862 �0:6738 0:1714 0 0 0 0 �0:1903

2
666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

; I ¼

�0:1797
0:2722
�0:5077
�0:4296
�0:5321
�0:1818
0:2678
�0:5088
�0:4364
�0:5305
�0:1783
0:2690
�0:5081
�0:4344
�0:5265
�0:1820
0:2718
�0:5068
�0:4356
�0:5249
�0:1835
0:2702
�0:5121
�0:4396
�0:5304
�0:1819
0:2686
�0:5101
�0:4372
�0:5390
�0:1814
0:2705
�0:5111
�0:4390
�0:5378
�0:1780
0:2709
�0:5087
�0:4355
�0:5282
�0:1827
0:2715
�0:5115
�0:4410
�0:5380
�0:1837
0:2749
�0:5085
�0:4369
�0:5337

2
666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

In the design matrix, the first three columns are coefficients of position
parameters, and the rest columns are the coefficients of five ambiguities. The
formal normal matrix and the constant vector are as follows:
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N ¼ ATA ¼

22:4288 2:9916 �8:9799 �0:4953 1:0784 1:4848 �2:9684 1:7567
2:9916 14:8283 10:4683 �1:7836 �0:8112 �0:4511 0:5534 2:5276
�8:9799 10:4683 23:4697 �0:9607 �3:2112 0:0946 1:3577 1:0340
�0:4953 �1:7836 �0:9607 0:6035 �0:1207 �0:1207 �0:1207 �0:1207
1:0784 �0:8112 �3:2112 �0:1207 0:6035 �0:1207 �0:1207 �0:1207
1:4848 �0:4511 0:0946 �0:1207 �0:1207 0:6035 �0:1207 �0:1207
�2:9684 0:5534 1:3577 �0:1207 �0:1207 �0:1207 0:6035 �0:1207
1:7567 2:5276 1:0340 �0:1207 �0:1207 �0:1207 �0:1207 0:6035

2
66666666664

3
77777777775

C ¼ ATl ¼ 1:7961 6:1980 8:7025 �0:2409 �1:7418 1:2268 0:5175 1:1400½ 	T

The normal matrix is seriously ill-posed with conditional numbers as big as
2 9 109, and their eigenvalues are plotted in Fig. 6.2. The ambiguities solved by
least squares adjustment are [8.369, -5.506, -8.188, 12.576, -23.400]T and their
accuracies are [10.40, 16.55, 14.32, 10.31, 32.33]T, while the true values of these
ambiguities are [1, -1, 3, 2, 3]T. Therefore, the least squares solution cannot
produce satisfactory results in this case.

After eliminating three position parameters, we can derive the normal equation
only for ambiguities:

0:3831 �0:1664 �0:1919 �0:0601 0:1936
�0:1664 0:1026 �0:0017 �0:0302 �0:0758
�0:1919 �0:0017 0:3349 0:1881 �0:1203
�0:0601 �0:0302 0:1881 0:1139 �0:0458
0:1936 �0:0758 �0:1203 �0:0458 0:1001

2
66664

3
77775

n1

n2

n3

n4

n5

2
66664

3
77775 ¼

0:4068
�0:5488
0:8407
0:6270
0:1038

2
66664

3
77775

where ni (i = 1, 2,…, 5) denotes the ambiguity parameters. The condition number
of the above normal equation is 4 9 107 and five eigenvalues are shown in
Fig. 6.3.
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Fig. 6.2 Eigenvalues of normal matrix for position and ambiguity parameters
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In order to improve the accuracy of solved ambiguities, we use Tikhonov
regularization to reduce the condition number and stabilize the solution. The
regularization parameter is 1.91 9 10-5, the ambiguities of regularized solution
are [1.588, -1.762, 2.419, 2.075, 0.485], and their accuracies are [0.68, 0.97, 0.66,
0.95, 1.05], respectively. Therefore, the quality of regularized solution is greatly
improved.

6 Summary

In the first part of this chapter, we discuss the regularized solution and its spectral
decomposition formulae to the ill-posed linear observation equations. We first
briefly introduce the ill-posed problems and its applications in solving ill-condi-
tioned geodetic observation model, and present the related literature.

The unstable characteristics of least squares solution are analyzed using sin-
gular value decomposition, when the observation equations are ill-posed. It shows
that the least squares solution is mainly contaminated by high frequency noises,
since the singular value in high frequency domain is very small. Then a filter
factor, which is close to 0 and 1 for low and high frequency terms, respectively, is
introduced to preserve the low frequency signals and filter out the high frequency
noises. As a special case, we present the filter factor for a rank deficient model.

Then we discuss the regularized solution to ill-posed observation equations and
the spectral decomposition representations, and establish the relationship between
the filter factor and the regularization parameter. Since the regularized solution is
biased, the MSE is proposed to evaluate the quality of the solution.
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Fig. 6.3 Eigenvalues of normal matrix for ambiguity parameters
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The determination of the regularization parameter is the important issue of the
regularization algorithm. Several algorithms of regularized parameters are given,
including generalized discrete discrepancy principle, L-curve method, minimizing
MSE, and the GCV method. The formula for efficiently calculating the regularized
parameter is derived based on minimizing traced MSE. Since the traced MSE is

equal to the total error E xa � �xk k2
� �

; the regularization parameter derived from

minimizing traced MSE can probably give better results. Then we analyze the
biasness of the residuals of regularized solution and present the unbiased estimate
of the variance of unit weight after the biases are removed from the residuals.

Finally we present a numerical example of fast GPS positioning with ten epochs
of L1 carrier phase observations, in which the ambiguity parameters are highly
collinear with the position parameters. The results show that the performance of
regularized solution is excellent.

Part II: Adjustment

7 Introduction

Most useful and necessary adjustment algorithms for data processing are outlined
in the second part of this chapter. The adjustment algorithms discussed here
include least squares adjustment, sequential application of least squares adjustment
via accumulation, sequential least squares adjustment, conditional least squares
adjustment, a sequential application of conditional least squares adjustment, block-
wise least squares adjustment, a sequential application of block-wise least squares
adjustment, an equivalent algorithm to form the eliminated observation equation
system and the algorithm to diagonalize the normal equation and equivalent
observation equation.

A priori constrained adjustments are discussed for solving the rank deficient
problems. After a general discussion on the a priori parameter constraints, a special
case of the so-called a priori datum method is given. A quasi-stable datum method
is also discussed.

A summary is given at the end of this part of this chapter.

8 Least Squares Adjustment

The principle of least squares adjustment can be summarized as below (Gotthardt
1978; Cui et al. 1982).

1. The linearized observation equation system can be represented by

V ¼ L� AX; P ð6:1Þ
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where
L is the observation vector of dimension m,
A is the coefficient matrix of dimension m 9 n,
X is an unknown parameter vector of dimension n,
V is the residual vector of dimension m,
n is the number of unknowns,
m is the number of observations, and
P is the symmetric and definite weight matrix of dimension m 9 m

2. The least squares criterion for solving the observation equations is well-known
as

VTPV ¼ min; ð6:2Þ

where VT is the transpose of the related vector V.

3. To solve X and compute V, a function F is set as

F ¼ VTPV: ð6:3Þ

The function F reaches minimum value if the partial differentiation of F with
respect to X equals zero, i.e.,

oF

oX
¼ 2VTPð�AÞ ¼ 0

or

ATPV ¼ 0; ð6:4Þ

where AT is the transpose matrix of A.

4. Multiplying ATP with (6.1), one has

ATPAX � ATPL ¼ �ATPV ð6:5Þ

Setting (6.4) into (6.5), one has

ATPAX � ATPL ¼ 0: ð6:6Þ

5. For simplification, let M = ATPA, Q = M-1, where superscript -1 is an inverse
operator, and M is usually called a normal matrix. The least squares solution of
(6.1) is then

X ¼ QðATPLÞ: ð6:7Þ
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6. The precision of the ith element of the estimated parameter is

p½i	 ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i	½i	

p
; ð6:8Þ

where i is the element index of a vector or a matrix, m0 is the so-called standard
deviation (or sigma), p[i] is the ith element of the precision vector, Q[i][i] is the i-
th diagonal element of the cofactor matrix Q, and

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV

m� n

r
; if ðm [ nÞ: ð6:9Þ

7. For convenience of sequential computation, VTPV can be calculated by using

VTPV ¼ LTPL� ðATPLÞTX: ð6:10Þ

This can be obtained by substituting (6.1) into VTPV and considering (6.4).
The complete formulas of least squares adjustment have now been derived.

8.1 Least Squares Adjustment with Sequential Observation
Groups

Suppose one has two sequential observation equation systems:

V1 ¼ L1 � A1X and ð6:11Þ

V2 ¼ L2 � A2X; ð6:12Þ

with weight matrices P1 and P2. These two equation systems are uncorrelated or
independent and have the common unknown vector X. The combined problem can
be represented as

V1

V2

� �
¼ L1

L2

� �
� A1

A2

� �
X and P ¼ P1 0

0 P2

� �
: ð6:13Þ

The least squares normal equation can be formed then as

AT
1 AT

2

� � P1 0
0 P2

� �
A1

A2

� �
X ¼ AT

1 AT
2

� � P1 0
0 P2

� �
L1

L2

� �

or

ðAT
1 P1A1 þ AT

2 P2A2ÞX ¼ ðAT
1 P1L1 þ AT

2 P2L2Þ: ð6:14Þ

This is indeed the accumulation of the two least squares normal equations formed
from (6.11) and (6.12), respectively:
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ðAT
1 P1A1ÞX ¼ AT

1 P1L1 ð6:15Þ

and

ðAT
2 P2A2ÞX ¼ AT

2 P2L2: ð6:16Þ

The solution is then

X ¼ ðAT
1 P1A1 þ AT

2 P2A2Þ�1ðAT
1 P1L1 þ AT

2 P2L2Þ: ð6:17Þ

The precision of the ith element of the estimated parameter is

p½i	 ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i	½i	

p
; ð6:18Þ

where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV

m� n

r
; if ðm [ nÞ; ð6:19Þ

and

Q ¼ ðAT
1 P1A1 þ AT

2 P2A2Þ�1; ð6:20Þ

where m is the number of total observations and n is the number of unknowns.
VTPV can be calculated by using

VTPV ¼ VT
1 P1V1 þ VT

2 P2V2

¼ LT
1 P1L1 þ LT

2 P2L2 � ðAT
1 P1L1ÞTX � ðAT

2 P2L2ÞTX
¼ ðLT

1 P1L1 þ LT
2 P2L2Þ � ðAT

1 P1L1 þ AT
2 P2L2ÞTX:

ð6:21Þ

Equation (6.17) indicates that the sequential least squares problem can be
solved by simply accumulating the normal equations of the observation equations.
The weighted squares residuals can also be computed by accumulating the indi-
vidual quadratic forms of the residuals using (6.21).

For further sequential and independent observation equation systems,

V1 ¼ L1 � A1X; P1; ð6:22Þ

V2 ¼ L2 � A2X; P2;
. . .

ð6:23Þ

Vi ¼ Li � AiX; Pi; ð6:24Þ

the solution can be similarly derived as

X ¼ ðAT
1 P1A1 þ AT

2 P2A2 þ � � � þ AT
i PiAiÞ�1ðAT

1 P1L1 þ AT
2 P2L2 þ � � � þ AT

i PiLiÞ
ð6:25Þ

and
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VTPV ¼ ðLT
1 P1L1 þ LT

2 P2L2 þ � � � þ LT
i PiLiÞ � ðAT

1 P1L1 þ AT
2 P2L2 þ � � �

þ AT
i PiLiÞTX: ð6:26Þ

It is obvious that if the solution is needed for every epoch, then the accumulated
equation system has to be solved at each epoch. The accumulations always have to
be made with the sequential normal equations. Of course, the solutions can be
computed after a defined epoch or at the last epoch. This could be very useful if the
solution of the problem is unstable at the beginning.

9 Sequential Least Squares Adjustment

Recalling the discussions in Sect. 8, one has sequential observation equation
systems

V1 ¼ L1 � A1X; P1 ð6:27Þ

and

V2 ¼ L2 � A2X; P2: ð6:28Þ

These two equation systems are uncorrelated. The sequential problem can be then
solved by accumulating the individual normal equations as discussed in Sect. 8:

AT
1 P1A1 þ AT

2 P2A2
� �

X ¼ AT
1 P1L1 þ AT

2 P2L2
� �

ð6:29Þ

or

X ¼ AT
1 P1A1 þ AT

2 P2A2
� ��1

AT
1 P1L1 þ AT

2 P2L2
� �

: ð6:30Þ

VTPV can be calculated by using

VTPV ¼ LT
1 P1L1 þ LT

2 P2L2
� �

� AT
1 P1L1 þ AT

2 P2L2
� �T

X: ð6:31Þ

If (6.27) is solvable, then the least squares solution can be represented as

X ¼ AT
1 P1A1

� ��1
AT

1 P1L1
� �

: ð6:32Þ

and

VTPV ¼ LT
1 P1L1 � AT

1 P1L1
� �T

X: ð6:33Þ

For convenience, the estimated vector of X by using the first group of observations
is denoted by X1 and the quadratic form of the residuals by (VTPV)1 as well as

Q1 ¼ AT
1 P1A1

� ��1
:

Using the formula (Cui et al. 1982; Gotthardt 1978)
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ðDþ ACBÞ�1 ¼ D�1 � D�1AKB D�1; ð6:34Þ

where A and B are any matrices, C and D are matrices that can be inversed, and

K ¼ ðC�1 þ B D�1AÞ�1; ð6:35Þ

the inversion of the accumulated normal matrix can be represented as Q:

Q ¼ AT
1 P1A1 þ AT

2 P2A2
� ��1

¼ AT
1 P1A1

� ��1� AT
1 P1A1

� ��1
AT

2 KA2 AT
1 P1A1

� ��1

¼ Q1 � Q1AT
2 KA2Q1

¼ E � Q1AT
2 KA2

� �
Q1:

ð6:36Þ

and

K ¼ P�1
2 þ A2Q1AT

2

� ��1
; ð6:37Þ

where E is an identity matrix. The total term in the parenthesis on the right-hand
side of (6.36) can be interpreted as a modifying factor for the Q1 matrix; in other
words, due to the sequential (6.28), the Q matrix can be computed by multiplying a
factor to the Q1 matrix. So sequential least squares solution of (6.27) and (6.28)
can be obtained:

X ¼ Q1 � Q1AT
2 KA2Q1

� �
AT

1 P1L1 þ AT
2 P2L2

� �
¼ E � Q1AT

2 KA2
� �

X1 þ Q AT
2 P2L2

� �
:

ð6:38Þ

Mathematically, the solutions of the sequential problem of (6.27) and (6.28)
that are solved by using accumulation of the least squares method as discussed in
Sect. 8.1 or using sequential adjustment as discussed above shall be the same.
However, in practice, accuracy of the computation is always limited by the
effective digits of the computer being used. Such a limit on the effective digits
causes an inaccuracy of numerical computation. This inaccuracy will be accu-
mulated and propagated in further computing processes. By comparing the results
obtained with the above-mentioned methods, it is noticed that the sequential
method will give a drift in the results. The drift increases with time and is
generally not negligible after a long time interval.

10 Conditional Least Squares Adjustment

The principle of least squares adjustment with condition equations can be sum-
marized as below (Gotthardt 1978; Cui et al. 1982):
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1. The linearized observation equation system can be represented by (6.1)
(see Sect. 8).

2. The corresponding condition equation system can be written as

CX �W ¼ 0; ð6:39Þ

where
C is the coefficient matrix of dimension r 9 n,
W is the constant vector of dimension r, and
R is thenumber of conditions

3. The least squares criterion for solving the observation equations with condition
equations is well-known as

VTPV ¼ min; ð6:40Þ

where VT is the transpose of the related vector V.

4. To solve X and compute V, a function F can be formed as

F ¼ VTPV þ 2KTðCX �WÞ; ð6:41Þ

where K is a gain vector (of dimension r) to be determined. The function F reaches
minimum value if the partial differentiation of F with respect to X equals zero, i.e.,

oF

oX
¼ 2VTPð�AÞ þ 2KTC ¼ 0;

then one has

�ATPV þ CTK ¼ 0 ð6:42Þ

or

ATPAX þ CTK � ATPL ¼ 0; ð6:43Þ

where AT, CT are transpose matrices of A and C, respectively.

5. Combining (6.43) and (6.39) together, one has

ATPAX þ CTK � ATPL ¼ 0 ð6:44Þ

and

CX �W ¼ 0: ð6:45Þ

6. For simplification, let M = ATPA, W1 = ATPL, Q = M-1, where superscript
-1 is an inverse operator. The solutions of (6.44) and (6.45) are then
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K ¼ CQCT
� ��1ðCQW1 �WÞ; ð6:46Þ

X ¼ �QðCT K �W1Þ

or

X ¼ ATPAð Þ�1
ATPLð Þ � ATPAð Þ�1

CTK

¼ ATPAð Þ�1
ATPL� CTKð Þ

: ð6:47Þ

7. The precisions of the solutions are then

p½i	 ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qc½i	½i	

p
; ð6:48Þ

where i is the element index of a vector or a matrix, ffip is the square root operator,

m0 is the so-called standard deviation (or sigma), p[i] is the ith element of the
precision vector, Qc[i][i] is the ith diagonal element of the quadratic matrix Qc, and

Qc ¼ Q� QCTQ2CQ; ð6:49Þ

and

Q2 ¼ CQCT
� ��1 ð6:50Þ

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VTPV

m� nþ r

r
; if ðm [ n� rÞ: ð6:51Þ

8. For convenience of sequential computation, VTPV can be calculated by using

VTPV ¼ LTPL� ATPL
� �T

X �WTK: ð6:52Þ

This can be obtained by substituting (6.1) into VTPV and using the relations of
(6.39) and (6.42).

The complete formulas of conditional least squares adjustment have now been
derived.

10.1 Sequential Application of Conditional Least Squares
Adjustment

Recalling the least squares adjustment discussed in Sect. 8, the linearized obser-
vation equation system

V ¼ L� AX; P ð6:53Þ

has the solution
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X ¼ ATPA
� ��1

ATPL
� �

: ð6:54Þ

The precisions of the solutions can be obtained by

p½i	 ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i	½i	

p
; ð6:55Þ

where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV

m� n

r
; if ðm [ nÞ; ð6:56Þ

and VTPV can be calculated by using

VTPV ¼ LTPL� AT PL
� �T

X: ð6:57Þ

For convenience, the least squares solution vector is denoted by X0 and weighted
residuals square by (VTPV)0.

Similarly, in the conditional least squares adjustment discussed in Sect. 10, the
linearized observation equation system and conditional equations read

V ¼ L� AX ð6:58Þ

and

CX �W ¼ 0; ð6:59Þ

the solution follows

X ¼ ATPA
� ��1

ATPL� CTK
� �

; ð6:60Þ

where K is the gain, and

K ¼ CQCT
� ��1

CQW1 �Wð Þ: ð6:61Þ

The precision vector of the solution vector can be obtained by using (6.48)–(6.52).
Using the notations obtained in least squares solution, one has

X ¼ X0 � QCTK ð6:62Þ

and

VTPV ¼ ðVTPVÞ0 þ ðATPLÞTQCTK �WTK: ð6:63Þ

Equation (6.62) indicates that the conditional least squares problem can be solved
first without the conditions, and then through the gain K to compute a modification
term. The change of the solution is caused by the conditions. For computing the
weighted squares of the residuals, (6.63) can be used (by adding two modification
terms to the weighted squares of residuals of the least squares solution). This
property is very important for many practical applications such as ambiguity fixing
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or coordinates fixing. For example, after the least squares solution and fixing the
ambiguity values, one needs to compute the ambiguity fixed solution. Of course,
one can put the fixed ambiguities as known parameters and go back to solve the
problem once again. However, by using the above formulas, one can use the fixed
ambiguities as conditions to compute the gain and the modification terms to get the
ambiguity fixed solution directly. Similarly, this property can also be used for
solutions with some fixed station coordinates.

11 Block-Wise Least Squares Adjustment

The principle of block-wise least squares adjustment can be summarized as below
(Gotthardt 1978; Cui et al. 1982):

1. The linearized observation equation system can be represented by (6.1) (see
Sect. 8).

2. The unknown vector X and observable vector L is rewritten as two sub-vectors:

V1

V2

� �
¼ L1

L2

� �
� A11 A12

A21 A22

� �
X1

X2

� �
and P ¼ P1 0

0 P2

� �
: ð6:64Þ

The least squares normal equation can then be formed as

A11 A12

A21 A22

� �T
P1 0
0 P2

� �
A11 A12

A21 A22

� �
X1

X2

� �

¼ A11 A12

A21 A22

� �T
P1 0
0 P2

� �
L1

L2

� �
: ð6:65Þ

The normal equation can be denoted by

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
ð6:66Þ

or

M11X1 þM12X2 ¼ B1 ð6:67Þ

and

M21X1 þM22X2 ¼ B2; ð6:68Þ

where

M11 ¼ AT
11P1A11 þ AT

21P2A21; ð6:69Þ

M12 ¼ MT
21 ¼ AT

11P1A12 þ AT
21P2A22; ð6:70Þ
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M22 ¼ AT
12P1A12 þ AT

22P2A22 ð6:71Þ

B1 ¼ AT
11P1L1 þ AT

21P2L2 ð6:72Þ

and

B2 ¼ AT
12P1L1 þ AT

22P2L2: ð6:73Þ

3. Normal equations (6.67) and (6.68) can be solved as follows: from (6.67), one
has

X1 ¼ M�1
11 B1 �M12X2ð Þ: ð6:74Þ

Substituting X1 into (6.68), one gets a normal equation related to the second block
of unknowns:

M2X2 ¼ R2; ð6:75Þ

where

M2 ¼ M22 �M21M�1
11 M12 ð6:76Þ

and

R2 ¼ B2 �M21M�1
11 B1: ð6:77Þ

The solution of (6.75) is then

X2 ¼ M�1
2 R2: ð6:78Þ

From (6.78) and (6.74), the block-wise least squares solution of (6.1) and (6.64)
can be computed. For estimating the precision of the solved vector, one has (see
discussion in Sect. 8):

p½i	 ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i	½i	

p
ð6:79Þ

where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VT PV

m� n

r
; if ðm [ nÞ: ð6:80Þ

Q is the inversion of the total normal matrix M, m is the number of total obser-
vations, and n is the number of unknowns.

Furthermore,

Q ¼ M11 M12

M21 M22

� ��1

¼ Q11 Q12

Q21 Q22

� �
is denoted, ð6:81Þ

where (Gotthardt 1978; Cui et al. 1982)
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Q11 ¼ ðM11 �M12M�1
22 M21Þ

�1
; ð6:82Þ

Q22 ¼ ðM22 �M21M�1
11 M12Þ

�1
; ð6:83Þ

Q12 ¼ M�1
11 ð�M12Q22Þ; ð6:84Þ

and

Q21 ¼ M�1
22 ð�M21Q11Þ: ð6:85Þ

In addition, VTPV can be calculated by using

VT PV ¼ LT PL� ðATPLÞT X: ð6:86Þ

One finds very important applications in GPS data processing by separating the
unknowns into two groups, which will be discussed in the next section.

11.1 Sequential Solution of Block-Wise Least Squares
Adjustment

Suppose one has two sequential observation equation systems

Vt1 ¼ Lt1 � At1Yt1 ð6:87Þ

and

Vt2 ¼ Lt2 � At2Yt2; ð6:88Þ

with weight matrices Pt1 and Pt2. The unknown vector Y can be separated into two
sub-vectors; one is sequential dependent and the other is time independent. Let us
assume

Yt1 ¼
Xt1

X2

� �
and Yt2 ¼

Xt2

X2

� �
; ð6:89Þ

where X2 is the common unknown vector, and Xt1 and Xt2 are sequential (time)
independent unknowns (i.e., they are different from each other).

Equations (6.87) and (6.88) can be solved separately by using the block-wise
least squares method as follows (see Sect. 11):

Xt1 ¼ ðM11Þ�1
t1 ðB1 �M12X2Þt1; ð6:90Þ

ðM2Þt1X2 ¼ ðR2Þt1 and ð6:91Þ
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X2 ¼ ðM2Þ�1
t1 ðR2Þt1; ð6:92Þ

and

Xt2 ¼ ðM11Þ�1
t2 ðB1 �M12X2Þt2; ð6:93Þ

ðM2Þt2X2 ¼ ðR2Þt2 and ð6:94Þ

X2 ¼ ðM2Þ�1
t2 ðR2Þt2; ð6:95Þ

where indices t1 and t2 outside of the parenthesis indicate that the matrices and
vectors are related to (6.87) and (6.88), respectively.

The combined solution of (6.87) and (6.88) can then be derived as

Xt1 ¼ ðM11Þ�1
t1 ððB1Þt1 � ðM12Þt1ðX2ÞtaÞ; ð6:96Þ

Xt2 ¼ ðM11Þ�1
t2 ððB1Þt2 � ðM12Þt2ðX2ÞtaÞ; ð6:97Þ

ððM2Þt1 þ ðM2Þt2ÞðX2Þta ¼ ðR2Þt1 þ ðR2Þt2 and ð6:98Þ

ðX2Þta ¼ ððM2Þt1 þ ðM2Þt2Þ
�1ððR2Þt1 þ ðR2Þt2Þ; ð6:99Þ

where index ta means that the solution is related to all equations. The normal
equations related to the common unknowns are accumulated and solved for. The
solved common unknowns are used for computing sequentially different unknowns.

In the case of many sequential observations, a combined solution could be
difficult or even impossible because of the large number of unknowns and the
requirement of the computing capacities. Therefore, a sequential solution could be
a good alternative. For the sequential observation equations

Vt1 ¼ Lt1 � At1Yt1; Pt1;
. . .

ð6:100Þ

Vti ¼ Lti � AtiYti; Pti; ð6:101Þ

the sequential solutions are

Xt1 ¼ M11ð Þ�1
t1 ðB1 �M12X2Þt1; ð6:102Þ

ðM2Þt1X2 ¼ ðR2Þt1; ð6:103Þ

X2 ¼ M2ð Þ�1
t1 ðR2Þt1;

. . .
ð6:104Þ

Xti ¼ M11ð Þ�1
ti ððB1Þti � ðM12ÞtiX2Þ; ð6:105Þ
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ððM2Þt1 þ � � � þ ðM2ÞtiÞX2 ¼ ðR2Þt1 þ � � � þ ðR2Þti; ð6:106Þ

and

X2 ¼ ððM2Þt1 þ � � � þ ðM2ÞtiÞ
�1ððR2Þt1 þ � � � þ ðR2ÞtiÞ: ð6:107Þ

It is notable that the sequential solution of the second unknown sub-vector X2 is
exactly the same as the combined solution at the last step. The only difference
between the combined solution and the sequential solution is that the X2 used are
different. In the sequential solution, only the up-to-date X2 is used. Therefore at the
end of the sequential solution (6.107), the last X2 obtained has to be substituted
into all Xtj computing formulas, where j \ i. This can be done in two ways. The
first way is to remember all formulas for computing Xtj, after X2 is obtained from
(6.107), using X2 to compute Xtj. The second way is to go back to the beginning
after the X2 is obtained, and use X2 as the known vector to solve Xtj once again. In
these ways, the combined sequential observation equations can be solved exactly
in a sequential way.

12 Equivalently Eliminated Observation Equation System

In least squares adjustment, the unknowns can be divided into two groups and then
solved in a block-wise manner as discussed in Sect. 11. In practice, sometimes
only one group of unknowns is of interest, and it is better to eliminate the other
group of unknowns (called nuisance parameters) because of its size, for example.
In this case, using the so-called equivalently eliminated observation equation
system could be very beneficial (Wang et al. 1988; Xu and Qian 1986; Zhou 1985).
The nuisance parameters can be eliminated directly from the observation equations
instead of from the normal equations.

The linearized observation equation system can be represented by

V ¼ L� A Bð Þ X1

X2

� �
; P: ð6:108Þ

where
L is the observational vector of dimension m,
A, B are the coefficient matrices of dimension m 9 (n–r) and m 9 r,
X1, X2 are unknown vectors of dimension n–r and r,
V is the residual vector of dimension m,
n is the number of total unknowns,
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m is the number of observations, and
P is the symmetric and definite weight matrix, of dimension m 9 m

The least squares normal equation can then be formed by

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
; ð6:109Þ

where

M11 M12

M21 M22

� �
¼ ATPA ATPB

BTPA BTPB

� �
; ð6:110Þ

B1 ¼ ATPL; B2 ¼ BTPL:

The elimination matrix is formed,

E 0
�Z E

� �
ð6:111Þ

where E is the identity matrix, 0 is a zero matrix, and Z = M21M–
1
1

1. M–
1
1

1 is the
inversion of M11. Multiplying the elimination matrix (6.111) to the normal
equation (6.109) one has

E 0
�Z E

� �
M11 M12

M21 M22

� �
X1

X2

� �
¼ E 0
�Z E

� �
B1

B2

� �
;

or

M11 M12

0 M2

� �
X1

X2

� �
¼ B1

R2

� �
ð6:112Þ

where

M2 ¼ �M21M�1
11 M12 þM22

¼ BTPB� BTPAM�1
11 ATPB ¼ BTPðE � AM�1

11 ATPÞB: ð6:113Þ

R2 ¼ B2 �M21M�1
11 B1 ¼ BTPðE � AM�1

11 ATPÞL: ð6:114Þ

If one is only interested in the unknown vector X2, one just needs to solve the
second equation of (6.112). The solution is identical to that of solving the whole
(6.112). The above eliminating process is similar with the Gauss-Jordan algorithm,
which has often been used for the inversion of the normal matrix (or for solving
linear equation system). Indeed, the second equation of (6.112) is identical to
(6.75) derived in the block-wise least squares adjustment (see Sect. 11). Letting
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J ¼ AM�1
11 AT P; ð6:115Þ

one has properties of

J2 ¼ ðAM�1
11 AT PÞðAM�1

11 AT PÞ ¼ AM�1
11 AT P AM�1

11 AT P ¼ AM�1
11 AT P ¼ J;

ðE � JÞðE � JÞ ¼ E2 � 2EJ þ J2 ¼ E � 2J þ J ¼ E � J

and

PðE � JÞ½ 	T¼ ðE � JTÞP ¼ P� ðAM�1
11 ATPÞTP ¼ P� PAM�1

11 ATP ¼ PðE � JÞ;

i.e., matrices J and (E – J) are idempotent and (E – J)TP is symmetric, or

J2 ¼ J; ðE � JÞ2 ¼ E � J and ðE � JÞTP ¼ PðE � JÞ: ð6:116Þ

Using the above derived properties, M2 in (6.113) and R2 in (6.114) can be
rewritten as

M2 ¼ BTPðE � JÞB ¼ BTPðE � JÞðE � JÞB ¼ BTðE � JÞTPðE � JÞB ð6:117Þ

and

R2 ¼ BTPðE � JÞL ¼ BTðE � JÞTPL: ð6:118Þ

Denoting

D2 ¼ ðE � JÞB; ð6:119Þ

then the eliminated normal equation (the second equation of (6.112)) can be
rewritten as

BTðE � JÞTPðE � JÞBX2 ¼ BTðE � JÞTPL ð6:120Þ

or

DT
2 PD2X2 ¼ DT

2 PL: ð6:121Þ

This is the least squares normal equation of the following linear observation
equation:

U2 ¼ L� D2X2; P ð6:122Þ

or

U2 ¼ L� ðE � JÞBX2; P; ð6:123Þ
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where L and P are the original observational vector and weight matrix, and U2 is
the residual vector, which has the same property as V in (6.108).

The advantage of using (6.123) is that the unknown vector X1 has been elim-
inated; however, L vector and P matrix remain the same as the originals.

12.1 Diagonalized Normal Equation and the Equivalent
Observation Equation

In least squares adjustment, the unknowns can be divided into two groups. One
group of unknowns can be eliminated by matrix partitioning to obtain an equiv-
alently eliminated normal equation system of the other group of unknowns. Using
the elimination process twice for the two groups of unknowns respectively, the
normal equation can be diagonalized. The algorithm can be outlined as follows.

A linearized observation equation and the normal equations can be represented
by (6.108) and (6.109). From the first equation of (6.109), one has

X1 ¼ M�1
11 ðB1 �M12X2Þ: ð6:124Þ

Setting X1 into the second equation of (6.109), one gets an equivalently eliminated
normal equation of X2:

M2X2 ¼ R2; ð6:125Þ

where

M2 ¼ M22 �M21M�1
11 M12

R2 ¼ B2 �M21M�1
11 B1:

ð6:126Þ

Similarly, from the second equation of (6.109), one has

X2 ¼ M�1
22 ðB2 �M21X1Þ: ð6:127Þ

Setting X2 into the first equation of (6.109), one gets an equivalently eliminated
normal equation of X1:

M1X1 ¼ R1; ð6:128Þ

where

M1 ¼ M11 �M12M�1
22 M21

R1 ¼ B1 �M12M�1
22 B2:

ð6:129Þ

Combining (6.128) and (6.125) together, one has
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M1 0
0 M2

� �
X1

X2

� �
¼ R1

R2

� �
; ð6:130Þ

where (see, e.g., Cui et al. 1982; Gotthardt 1978)

Q11 ¼ M�1
1 Q22 ¼ M�1

2
Q12 ¼ �M�1

11 ðM12Q22Þ; Q21 ¼ �M�1
22 ðM21Q11Þ:

ð6:131Þ

It is obvious that (6.109) and (6.130) are two equivalent normal equations. The
solutions of the both equations are identical. Equation (6.130) is a diagonalized
normal equation related to X1 and X2. The process of forming (6.130) from (6.109)
is called the diagonalization process of a normal equation.

As discussed in Sect. 12, the equivalently eliminated observation equation of
the second equation of (6.130) is (6.123). Similarly, if one denotes

I ¼ BM�1
22 BTP

and

D1 ¼ ðE � IÞA;

then the equivalently eliminated observation equation of the first normal equation
of (6.130) has a form of

U1 ¼ L� ðE � IÞAX1;P: ð6:132Þ

where U1 is a residual vector which has the same property as V in (6.108). L and
P are the original observational vector and weight matrix.

The above equation and (6.123) can be written together as

U1

U2

� �
¼ L

L

� �
� D1 0

0 D2

� �
X1

X2

� �
;

P 0
0 P

� �
: ð6:133Þ

Equation (6.133) is derived from the normal equation (6.130); therefore, it is true
inversely, i.e., (6.130) is the least squares normal equation of the observation
equation (6.133). Equations (6.109) and (6.130) are normal equations of the
observation equations (6.108) and (6.133). So (6.133) is an equivalent observation
equation of (6.108). Equations (6.130) and (6.133) are called diagonalized equa-
tions of (6.109) and (6.108), respectively.

13 A Priori Constrained Least Squares Adjustment

Up to now in this chapter, several adjustment methods have been discussed. All of
them are methods suitable for full rank linear equation problems. A full rank
quadratic matrix means such a matrix can be inversed to obtain its inversion.
A rank deficient linear equation system is sometimes called an over-parameterized
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problem. Except for the conditional least squares adjustment method, all other
methods discussed above cannot be directly used for solving a rank deficient
problem. The conditional least squares adjustment method with extra conditions
can make the problem solvable. The conditions, of course, should be well-for-
mulated mathematically and well-reasoned physically. In other words, the con-
ditions are considered as exactly known. In practice, quite often, the conditions are
known with certain a priori precision. Adjustment, which uses such a priori
information as constraints, is called a priori constrained adjustment, which will be
discussed in this section.

13.1 A Priori Parameter Constraints

1. A linearized observation equation system can be represented by

V ¼ L� AX; PL; ð6:134Þ

where PL is the symmetric and definite weight matrix of dimension m 9 m.

2. The corresponding a priori condition equation system can be written as

U ¼ W � BX; PW ; ð6:135Þ

where
B is the coefficient matrix of dimension r 9 n,
W is the constant vector of dimension r,
U is the residual vector of dimension r,
PW is the a priori (symmetric and definite) weight matrix of dimension r 9 r,

and
r is the number of condition equations; r \ n

3. One may interpret the constraints of (6.135) as additional pseudo-observations
or as fictitious observations. This leads to the total observation equations:

V
U

� �
¼ L

W

� �
� A

B

� �
X; P ¼ PL 0

0 PW

� �
: ð6:136Þ

Then the least squares normal equations are well-known as (see, e.g., Sect. 8.1):

AT BT
� � PL 0

0 PW

� �
A
B

� �
X ¼ AT BT

� � PL 0
0 PW

� �
L
W

� �

or
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ðATPLAþ BTPW BÞX ¼ ðATPLLþ BTPW WÞ: ð6:137Þ

For convenience, a factor k (here k = 1) is introduced in (6.137):

ðATPLAþ kBTPW BÞX ¼ ðATPLLþ kBTPW WÞ: ð6:138Þ

Equation (6.138) shows that the a priori information constraints can be added to
the original least squares normal equations. In other words, the a priori information
can be used for solving the rank deficient problem and making it possible for the
normal matrix to be inversed. Of course, these a priori information constraints
should be reasonable and realistic ones; otherwise the solutions could be disturbed
by worse a priori constraints. In case of k = 0, the normal equation (6.138) turns
out to be the original one and will give the free solution (without any a priori
constraints).

The solution of the a priori constrained least squares solution is then

X ¼ ðATPLAþ kBTPW BÞ�1ðATPLLþ kBTPWWÞ; ð6:139Þ

where k = 1. Generally, the a priori weight matrix is given by covariance
matrix QW and

PW ¼ Q�1
W : ð6:140Þ

The a priori constraints only cause two additional terms in both sides of the
normal equations; therefore, all the above discussed adjustment methods can be
directly used for solving the a priori constrained problem.

13.2 A Priori Datum

Suppose the B matrix in the a priori constraints of (6.135) is an identity matrix,
and the parameter vector W is just a coordinate sub-vector of the total parameter
vector. Then it turns out to be a special case called a priori datum. The observation
equations and a priori constraints may be rewritten as

V ¼ L� A1 A2ð Þ X1

X2

� �
; PL and ð6:141Þ

U ¼ �X2 � X2; P2; ð6:142Þ

where �X2 is the ‘‘observed’’ parameter sub-vector, P2 is the weight matrix with
respect to the parameter sub-vector X2 and is generally a diagonal matrix, and U is
a residual vector that has the same property as V. Usually, �X2 is ‘‘observed’’
independently, so P2 is a diagonal matrix. If X2 is a sub-vector of station
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coordinates, then the constraint of (6.142) is called the datum constraint. (This is
also the reason why the name a priori datum is used).

The least squares normal equation of problems (6.141) and (6.142) can then be
formed (similar to what was discussed in Sect. 13.1) as

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
ð6:143Þ

or

M11X1 þM12X2 ¼ B1 ð6:144Þ

and

M21X1 þM22X2 ¼ B2; ð6:145Þ

where

M11 ¼ AT
1 PLA1; ð6:146Þ

M12 ¼ MT
21 ¼ AT

1 PLA2; ð6:147Þ

M22 ¼ AT
2 PLA2 þ P2; ð6:148Þ

B1 ¼ AT
1 PLL ð6:149Þ

and

B2 ¼ AT
2 PLLþ P2 �X2: ð6:150Þ

The least squares principle used here is

VTPLV þ UTP2U ¼ min : ð6:151Þ

The normal equation (6.143) can also be derived by differentiating (6.151) with
respect to X, and then letting it equal zero and taking (6.142) into account. In
practice, the sub-vector �X2 is usually a zero vector; this can be achieved through
careful initialization by forming the observation equation (6.141). Comparing the
normal equation system of the a priori datum problem of (6.141) and (6.142) with
the normal equation of (6.141), the only difference is that the a priori weight
matrix P2 has been added to M22. This indicates that the a priori datum problem
can be dealt with simply by adding P2 to the normal equation of the observation
equation (6.141).

If some diagonal components of the weight matrix P2 are set to zero, then the
related parameters (X2) are free parameters (or free datum) of the adjustment
problem (without a priori constraints). Otherwise, parameters with a priori con-
straints are called a priori datum. Large weight indicates strong constraint and
small weight indicates soft constraint. The strongest constraint is to keep the datum
fixed.

330 Y. Shen and G. Xu



13.3 Quasi-Stable Datum

The quasi-stable datum method was proposed by Zhou et al. (1997). The basic
idea is that the network is a dynamic one, i.e., most parameters are changing all the
time. However, a few points are relatively stable, or their geometric center is
relatively stable. All the assumptions and observation equations are the same as in
Sect. 13.2:

V ¼ L� A1 A2ð Þ X1

X2

� �
; PL ð6:152Þ

and

U ¼ �X2 � X2; P2: ð6:153Þ

The least squares principles for the quasi-stable datum are

VTPLV ¼ min ð6:154Þ

and

UTP2U ¼ min : ð6:155Þ

Equation (6.154) is the same as the original least squares principle. From (6.154),
one has the normal equation

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
; ð6:156Þ

where

M11 ¼ AT
1 PLA1;

M12 ¼ MT
21 ¼ AT

1 PLA2;

M22 ¼ AT
2 PLA2;

B1 ¼ AT
1 PLL

and

B2 ¼ AT
2 PLL: ð6:157Þ

Even if (6.156) is a rank deficient equation, one may first solve (6.156) to get an
explicit expression for X2. Recalling the discussion in Sect. 11, one gets a normal
equation related to X2:

M2X2 ¼ R2; ð6:158Þ
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where

M2 ¼ M22 �M21M�1
11 M12

and

R2 ¼ B2 �M21M�1
11 BT

1 : ð6:159Þ

The new condition can be considered by forming

F ¼ UTP2U þ 2KTðM2X2 � R2Þ

and

oF

oX
¼ 2UTP2 þ 2KTM2 ¼ 0:

Considering the symmetry of M2, we have

U ¼ �P�1
2 M2K: ð6:160Þ

Substituting (6.160) into (6.153), one gets

X2 ¼ �X2 þ P�1
2 M2K ð6:161Þ

or

M2X2 ¼ M2 �X2 þM2P�1
2 M2K: ð6:162Þ

Substituting (6.158) into (6.162), one has

K ¼ ðM2P�1
2 M2Þ�1ðM2 �X2 � R2Þ: ð6:163Þ

Thus,

X2 ¼ �X2 þ P�1
2 M2K; ð6:164Þ

and

X1 ¼ M�1
11 ðAT

1 PLL�M12X2Þ ð6:165Þ

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VTPLV

n� r

r
; ð6:166Þ

where m0 is the standard deviation, n is the number of observations, and r is the
summation of the both ranks of the matrices A1 and A2.
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14 Summary

In the second part of this chapter, the most applicable and necessary algorithms for
data processing are outlined.

Least squares adjustment is the most basic adjustment method. It starts by
establishing observation equations and forming normal equations; then it solves
the unknowns. The sequential application of least squares adjustment by accu-
mulating the sequential normal equations makes applications of least squares
adjustment more effective. Normal equations can be formed epoch-wise and then
accumulated. This method can be used not only for solving the problem at the end,
but also for obtaining epoch-wise solutions. The equivalent sequential least
squares adjustment, which can be read from different publications, is also derived.
Xu (author) and Morujao (Coimbra, Portugal) have independently pointed out that,
by applying such an algorithm, the results obtained compared with those obtained
by the accumulating method will have differences. The differences increase with
time and are generally not negligible. Therefore by using this method, the
numerical process has to be carefully examined to avoid the accumulation of
numerical errors.

Conditional least squares adjustment is needed if there are some constraints that
have to be taken into account. The sequential application of conditional least
squares adjustment is discussed because of practical needs. The problem may be
solved first without conditions, and then the conditions may be applied afterward.

Block-wise least squares adjustment is discussed for separating the unknowns
into two groups. The sequential application of block-wise least squares adjustment
makes it possible to give up some unknowns (say, out of date unknowns, such as
past coordinates) and keep the information related to the common unknowns
during the processing process. This method avoids the problem that may be caused
by a rapid increase of the number of unknowns. There are two ways to keep the
solution equivalent with a solution that is not sequential. One is to use the time
independent unknowns at the end of data processing as known, and then go back to
process the data once again. The other is to remember all sequential normal
equations until the best solution of the time independent unknowns are obtained,
and then the coordinates can be recomputed.

The equivalently eliminated observation equation system is discussed for
eliminating some nuisance parameters. This method is nearly the same as block-
wise least squares adjustment if one carefully compares the normal equations of
the second group of unknowns (see Sect. 11) and the eliminated normal equations
(see Sect. 12). However, the most important point is that the equivalently elimi-
nated observation equations have been derived here. Instead of solving the original
problem, one may directly solve the equivalently eliminated observation equa-
tions, where the unknowns are greatly reduced, whereas the observation vector and
weight matrix remain the originals (i.e., the problem remains uncorrelated). The
precision estimation can also be made more easily by using the formulas derived in
least squares adjustment. The derivation of such an equivalent observation
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equation was first made by Zhou (1985) and applied in GPS theory by Xu (2002a).
The unified GPS data processing method is derived by using this principle (see Xu
2007). Based on the derivation of the equivalent equation, a diagonalization
algorithm of the normal equation and the observation equation are discussed. The
diagonalization algorithm can be used for separating one adjustment problem into
two sub-problems.

A priori constrained least squares adjustment is discussed in Sect. 13 for
solving the rank deficient problems. A general discussion on the a priori parameter
constraints is given. This method makes it possible to form the observation
equations in a general way, and then a priori information can be added to keep
some references fixed, such as the clock error of the reference satellite and the
coordinates of the reference station. As a special case of a priori parameter con-
straints, a so-called a priori datum method is discussed. The advantage of this
method is that the a priori constraints just change the normal equation by adding a
term (the a priori weight matrix) so that all discussed least squares adjustment
methods can be directly used for solving the rank deficient problems. Linear
conditions related to the coordinate parameters can be introduced by using this
method. A quasi-stable datum method is also discussed. From the point of view of
the dynamic Earth, all stations are not fixed stations. The quasi-stable datum
method takes such dynamic behavior of the stations into account.
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Chapter 7
Very Long Baseline Interferometry
for Geodesy and Astrometry

Harald Schuh and Johannes Böhm

Very Long Baseline Interferometry (VLBI) is a microwave-based space geodetic
technique that measures the difference in arrival times of signals from a radio source
by cross correlation. Most commonly the observed radio sources are extragalactic
objects but beacons from satellites have also been used. VLBI plays a unique role in
the practical realization and maintenance of the International Celestial Reference
Frame (ICRF) and contributes significantly to the International Terrestrial Refer-
ence Frame (ITRF), in particular for its scale. It is the only technique that provides
the full set of Earth orientation parameters, which are indispensable for positioning
and navigation on Earth and in space. In addition, VLBI allows access to valuable
information concerning interactions within the Earth system. In particular, direct
measurements of nutation parameters and of the Earth rotation angle (UT1–UTC)
are uniquely provided by VLBI. Furthermore, several other geodynamic, atmo-
spheric, and astronomical parameters can be derived from the long history of VLBI
measurements starting in the late 1970s. In 1999, the International Association of
Geodesy (IAG) accepted the International VLBI Service for Geodesy and
Astrometry (IVS) as an official IAG service and the IVS was also approved as a
service of the International Astronomical Union (IAU). Since then, the coordination
of world-wide VLBI observation and analysis has improved significantly, leading to
valuable results for the wider scientific community. Since 2005, the IVS has been
working on a new VLBI system in terms of hardware, software, and operational
procedures, known as VLBI2010. The IVS recommended a review of all current
VLBI systems and processes from antennas to analysis and outlined the path to the
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next-generation system with unprecedented new capabilities envisaged: 1 mm
position and 0.1 mm/year velocity accuracy on global scales, continuous mea-
surements to obtain uninterrupted time series of station positions and Earth orien-
tation parameters, and a turnaround time from the observations to initial geodetic
results of less than 24 h. This new system will be realized in the coming years.

1 Introduction

1.1 Geometric Principle

The geometric principle of VLBI is simple and straightforward. The radiation from
extragalactic radio sources arrives on Earth as plane wavefronts. This is different
from nearby Earth satellites such as those of the Global Navigation Satellite Systems
(GNSS) where the finite distance to the emitter produces parallactic angles. The
basic triangle for the determination of the baseline vector reduces to a rectangular
one providing a direct relation between the baseline vector b and the direction to the
radio source s0 (Campbell 2000). The scalar product s represents the observed delay
between the reception times t1 and t2 at stations 1 and 2 (see Fig. 7.1; (7.1)) with the
sign convention s = t2 – t1 and the velocity of light c.
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1 A change of the frequency setup, e.g., observing on a frequency band between 2 and 14 GHz,
is envisaged for the next VLBI generation, VLBI2010 (Petrachenko et al. 2009).

s ¼ � b � s0

c
¼ t2 � t1: ð7:1Þ

The delay s is time-dependent, and the largest contribution to its variation is
due to the fact that the interferometer is fixed to the Earth’s surface and thus
follows its diurnal rotation with respect to the celestial reference system that is
realized by positions of radio sources. The geodetic VLBI concept uses two or
more radio telescopes to observe numerous extragalactic radio sources distributed
across the skies, mostly quasars or radio galaxies. In geodetic VLBI since the end
of the 1970s the observations are done within S-band (2.3 GHz) and X-band
(8.4 GHz),11 and the data are recorded and time-tagged using very stable and
precise time signals obtained from hydrogen masers. These data are then sent to
particular correlation centers for cross-correlation to generate so-called fringes and
to obtain the group delay observable s which is relevant for geodetic and astro-
metric applications. From these delays, the baseline lengths b and other geodetic
parameters can be derived nowadays with sub-centimeter accuracy. The VLBI
technique measures very accurately the angle between the Earth-fixed baseline
vector b and the space-fixed radio sources s0 which have to be transformed into a
common system for the evaluation of (7.1) by parameter estimation techniques.
Thus, even the most subtle changes in the baseline lengths and in the angles
between the reference systems can be detected, and the main geodynamic phe-
nomena such as Earth orientation parameters (EOP) can be monitored with
unprecedented accuracy (Schuh 2000). However, ‘… if we leave the Euclidean
geometry in empty space and return to the real world with curved space, flickering
quasars, billowing atmospheres, wobbling axes, and drifting continents, we have to
delve into layers of complexity, fortunately not only as a chore but also as an
opportunity to gain a wealth of new knowledge about our system Earth’ (Campbell
2000). More details about the complexity of VLBI are provided in the next
sections.

1.2 History and Technological Developments

In this section we summarize the early history of geodetic VLBI and of the VLBI
technique. The interested reader may find further details on the history in Sovers
et al. (1998), Campbell (2000), and Kellermann and Moran (2001), and references
therein. For details on technology, we refer to the textbooks by Thompson et al.
(1986) and Takahashi et al. (2000), and references therein.

VLBI is an outgrowth of radio interferometry with cable-connected elements
designed to overcome the limited resolution of single dish radio telescopes (Cohen
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et al. 1968). However, to reveal the structure of extremely compact radio sources,
the resolving power of Connected Element Radio Interferometers (CERI) was
insufficient, even at higher frequencies (Campbell 2000). The advent in the late
1960s of high-speed tape recorders and high-stability atomic frequency/time
standards made possible the construction of phase-coherent, Michelson-type
interferometers whose elements required no physical connection between them
and hence could be spaced arbitrarily far apart. In 1967, several groups working
independently in Canada and the United States developed and successfully oper-
ated two-station interferometers (Bare et al. 1967; Broten et al. 1967; Moran et al.
1967; Brown et al. 1968). Signals received at each station were down-converted in
frequency, time-tagged, and recorded on tape for subsequent playback at a cor-
relator center, where the common signal received from a radio source at two (or
more) antennas was detected by cross-correlation and integration although the
signal itself is very much weaker than the background noise. This technique
eliminated the need for a real-time phase-stable connection between radio
telescopes.

Potential geophysical applications of geodetic VLBI were recognized early
(Gold 1967; Shapiro and Knight 1970). The first experiments that were explicitly
aimed at achieving geodetic accuracy on long baselines were conducted by the
Haystack/MIT group on the 845 km baseline between the Haystack Observatory in
Northern Massachusetts and the National Radio Astronomy Observatory of Green
Bank, West Virginia, U.S.A. (Hinteregger et al. 1972). Since that time the station
position precision improved dramatically from a few meters to the current level of
better than 1 cm. A major factor in the improved precision was made possible by
equipment improvements such as wider spanned and recorded bandwidths, dual-
frequency observations, lower system temperatures, and phase calibration. As an
example the first geodetic observations used the MkI system (Whitney et al. 1976)
which could record only 0.72 Mbits/s, whereas modern systems allow one to
record at 1024 Mbits/s or even faster. Other factors included improvements in
observing strategies, analysis methods, and modeling of physical processes.

The key to the high group delay precision of 1 ns (30 cm) attained in these
experiments was the invention of the so-called bandwidth synthesis technique
(Rogers 1970), which helped to overcome the limitations of tape recording equip-
ment in terms of recordable bandwidth (Campbell 2000). A milestone was reached
when the first significant estimates of the length change on the transatlantic baseline
Haystack–Onsala (Sweden) were announced. A baseline rate of 17 mm/year with a
statistical standard deviation of ±2 mm/year derived from 31 experiments between
September 1980 and August 1984 was published by Herring et al. (1986). However,
they reported that the systematic error could be as large as 10 mm/year. In com-
parison, Fig. 7.2 indicates session-wise baseline length estimates from 1984 to 2011
between the stations Wettzell (Germany) and Westford (Massachusetts, U.S.A.)
determined by the VLBI group at TU Wien, Vienna, Austria. Clearly visible is the
continuously improving accuracy, in particular during the first decade of the time
series, and the seasonal variation of the length estimates, which is due to modeling
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deficiencies (e.g., of troposphere delays), to unmodeled loading effects
(e.g., atmosphere or hydrology loading), or a combination of both.

1.3 Data Acquisition

Geodetic VLBI is an active observing technique which needs to control the radio
telescopes and steer them to various positions on the sky in a predefined observing
schedule; thus, scheduling is a very important part of VLBI. The package SKED
(Vandenberg 1999) developed at NASA Goddard Space Flight Center is widely used
within the geodetic community to generate the observing plans for radio telescopes.
At any instant, different subsets of antennas will be observing different sources.
(All observations to one source at a time form a so-called ‘scan’.) The integration
time varies from antenna to antenna to reach the required signal-to-noise-ratio
(SNR) (Petrov et al. 2009). The elevation mask is usually set to 5� but any obstacles

Fig. 7.2 Session-wise baseline length estimates between Wettzell (Germany) and Westford
(U.S.A.) from 1984 to 2011 as determined by the VLBI group at TU Wien with the Vienna VLBI
Software VieVS (Böhm et al. 2011). The estimated slope is 16.91 ± 0.03 mm/year (plot by
courtesy of Hana Spicakova)
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or mountains have to be considered if they prevent observations at low elevation
angles. There are various optimization criteria in SKED, but ‘sky-coverage’ is
mostly selected. This strategy aims at filling large holes in the sky over the stations,
which is important for the estimation of troposphere delays. More information about
scheduling strategies can be found in Vandenberg (1999) or Petrov et al. (2009).

The incoming signal first arrives at the primary paraboloidal dish of the radio
telescope, then at the hyperboloidal sub reflector, and finally it enters the feed horn
(see Fig. 7.3 for an example of a Cassegrain antenna). The signal goes directly to
the feed from the paraboloidal reflector in the case of prime focus antennas. Then
the signals are amplified before they are heterodyned from radio frequency to
intermediate frequencies of several hundred megahertz, and finally down-converted
to baseband frequencies (simultaneously in multiple frequency sub-bands or
channels), where the signal is band-limited to a width of a few megahertz, sampled
and digitized (Sovers et al. 1998). The system temperatures typically range from
20 to 100 K for S- and X-band.

Finally, the signals are formatted and recorded on magnetic disks (or on tapes in
the early years). Nowadays, data from shorter sessions can also be transferred to
the correlators via high-speed broadband communication links. However, the
majority of electronic transfer of the raw VLBI data is still asynchronous, i.e., the
transfer is started during or after the observation but then needs more time than
the actual observation (termed e-transfer). Only in a few experimental sessions,
such as those described by Sekido et al. (2008), was the transmission carried out in
real-time (termed e-VLBI).

VLBI radio telescopes need to have large collecting areas as well as high
sampling and recording rates because the signal flux density is in the order of
1 Jansky (1 Jy = 10-26 Wm-2 Hz-1) or even lower. On the other hand, the

Fig. 7.3 New skyline at site Wettzell with the ‘old’ VLBI radio telescope (20 m) at the right side
and the new twin radio telescopes (13.2 m) in the background (by courtesy of Alexander
Neidhardt; picture taken in 2011)
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structure of the antennas has to be sufficiently stable to allow slewing between
widely separated sources within a few minutes or faster (Sovers et al. 1998).
(See Sect. 2.5 for more information on antenna deformation.)

Phase shifts caused by the instrumentation have to be calibrated to take full
advantage of the precision of current frequency standards (e.g., hydrogen masers
stable to 10-14 at 50 min or better). Otherwise, those phase shifts can corrupt the
estimated phase and group delay of the incoming signal. The technique of phase
calibration (Rogers 1975) compensates for the instrumental phase errors by gen-
erating a signal of known phase, injecting this signal into the front end of the VLBI
signal path, and examining the phase after the signal has traversed the instru-
mentation. This calibration signal is embedded in the broadband VLBI data stream
as a set of low-level monochromatic tones along with the signal of the radio source
(Sovers et al. 1998). These tones are used at a later stage by the post-correlation
software. Furthermore, the length variations in the cables from the clocks to the
antennas (called cable delays) have to be corrected properly.

In the next step the signals recorded at the antennas are combined pair-wise,
producing an interference pattern. These installations are called correlators, and
they are presently run world-wide, e.g., in the U.S.A. (Haystack Observatory,
Westford; U.S. Naval Observatory, Washington D.C.), in Germany (Max Planck
Institute for Radio Astronomy, Bonn), and in Japan (National Institute of Infor-
mation and Communications Technology, Kashima). They are made up of special
hardware that is used to determine the difference in arrival times at the two stations
by comparing the recorded bit streams. If V1(t) and V2(t) are the antenna voltages
as functions of time t, T is the averaging interval, and the asterisk denotes the
complex conjugate, the group delay s can be determined by maximizing the cross-
correlation function R (Sovers et al. 1998):

R sð Þ ¼ 1
T

ZT

0

V1 tð Þ � V�2 t � sð Þ � dt: ð7:2Þ

Due to Doppler shifts caused by the Earth’s rotation, VLBI observations at X-
band (8.4 GHz) would be oscillating at several kilohertz if not ‘counter-rotated’
first (Sovers et al. 1998).

In recent years, software correlators have also been developed (e.g., Kondo et al.
2004; Tingay et al. 2009) because correlation algorithms for geodetic VLBI can be
effectively implemented on parallel computers or on distributed systems. Software
correlation is already well beyond the development stage. For example, the Bonn
correlator has processed all IVS (International VLBI Service for Geodesy and
Astrometry) sessions with the DiFX software correlator from November 2010 onwards.

During the correlation process, amplitudes and phases are determined every
1–2 s in parallel for typically 14 frequency channels xi. The post-correlation
software applies corrections for the phase calibration and fits the phase /0, the
group delay sgd, and the phase rate s’pd. to the phase samples /(xi, tj) from
the various frequency channels xi and times tj. The phase-derived observables are
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determined (for phase / and circular frequency x) from a bilinear least-squares fit
to the measured phases /(x, t) with (Sovers et al. 1998)

/ x; tð Þ ¼ /0 x0; t0ð Þ þ d/
dx

x� x0ð Þ þ d/
dt

t � t0ð Þ; ð7:3Þ

where the phase delay spd, group delay sgd, and phase delay rate s’pd are defined,
respectively, as

spd ¼
/0

x0
; sgd ¼

d/
dx

; s0pd ¼
1
x0

d/
dt
: ð7:4Þ

The group delay rate s’gd is not accurate enough to be useful for geodetic or
astrometric purposes; however, it is needed to resolve group delay ambiguities in a
first solution step. The amplitudes are usually not used in geodetic/astrometric
VLBI.

The natural ultra-wide band continuum radiation provides the means to use the
essentially unambiguous wide band group delay as the prime geodetic VLBI
observable. The group delay resolution is proportional to the inverse of the signal-
to-noise-ratio (SNR) and the root mean square (rms) of the frequency about the
mean (sometime called rms spanned bandwidth) Beff (Rogers 1970):

rs ¼
1

2p
� 1
SNR � Beff

: ð7:5Þ

If we increase the rms spanned bandwidth Beff at a given SNR by a factor of ten,
the group delay uncertainty will be reduced by the same factor, a relation with
tremendous consequences (Campbell 2000). On the other hand, the SNR is
dependent on the recorded bandwidth B with

SNR ¼ g � q0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � B � T
p

; ð7:6Þ

where T is the so-called coherent integration time, g is the digital loss factor, and
q0 is the correlation amplitude which depends on the system noise temperatures
and on the equivalent noise temperature of the source signal (Takahashi et al.
2000). There are virtually no limitations to improving the statistical precision of
the geodetic group delay further, except technological constraints and costs. For
the upcoming VLBI2010 system, a four-band system is recommended that uses a
broadband feed to span the entire frequency range from 2 to 14 GHz (see Sect. 6).
This will also allow the use of phase delays, which are still an issue of research
with the current system where they provide very high accuracy, but only on very
short baselines (Herring 1992a; Petrov 1999), as on longer baselines the phase
ambiguities are still an unsolved problem.
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1.4 Data Analysis

The VLBI data analysis model is developed using the best presently available
knowledge to recreate mathematically, as closely as possible, the situation at the
time of observation (see Sect. 2). Then, a least-squares parameter estimation
algorithm or other estimation methods can be used to determine the best values of
the quantities to be solved (Sect. 3). Before this process starts, the raw observa-
tions have to be cleaned from several systematic effects, which in fact limit the
final accuracy of the results (Schuh 2000).

The flow diagram of a geodetic VLBI data analysis (according to Schuh 1987)
is shown in Fig. 7.4. The system can be seen to have two main streams, one
containing the actual observations which undergo instrumental and environmental
corrections to obtain the reduced delay observables, and the other to produce the
theoretical delays, starting with the a priori parameter values, a set of initial values
for the parameters of the VLBI model. Both streams converge at the entrance to
the parameter estimation algorithm, e.g., the least-squares fit, where the ‘observed
minus computed’ values are formed. The instrumental effects include systematic
clock instabilities, electronic delays in cables and circuitry, and the group delay
ambiguities. The latter are due to observation by the multichannel frequency setup
described in Sect. 1.2 covering the total spanned bandwidth around each of the two
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observing frequencies (fS = 2.3 GHz (S-band) and fX = 8.4 GHz (X-band)). As
the group delay ambiguity spacing is comparably large and well-known, the
analyst can select––from a first solution using the observed group delay rates s’gd

only—one level on which all residuals and thus the corresponding group delay
observables are shifted. Care has to be taken that the group delay closure within
each triangle of a multi-station VLBI network is zero (Schuh 2000).

The ionosphere, which is a dispersive medium in the radio frequency band, can
be dealt with to first order by using two different observing frequencies, i.e., the
ionosphere group delay corrections for the X-band observations are computed
from the differences of group delay measurements at X- and S-band:

Dsion
X ¼ sX � sSð Þ � f 2

S

�
f 2
X � f 2

S

� �
: ð7:7Þ

In contrast to the Global Positioning System (GPS), where a very close fre-
quency pair has been chosen, the factor in VLBI to convert the difference into a
correction for the higher band is very small, 0.081, so that the error contribution
from the S-band observations is marginal (Schuh 2000). Unlike GPS, ionospheric
second order effects can be neglected in VLBI analysis as was demonstrated by
Hawarey et al. (2005).

2 Theoretical Delays

In order to calculate observed minus computed values for the least-squares
adjustment (see Sect. 3), several models need to be applied. At first, the station
coordinates at the observation epoch have to be determined (Sect. 2.1). Then the
station coordinates are rotated from the terrestrial to the celestial system
(Sect. 2.2) where the computed delays between two stations forming a baseline
and a radio source are built (Sect. 2.3), taking into account relativistic corrections
and applying troposphere delay (Sect. 2.4), and other corrections. For all the
modeling details the reader is referred to the Conventions of the International
Earth Rotation and Reference Systems Service (Petit and Luzum 2010) and its
online updates at http://tai.bipm.org/iers/convupdt/convupdt.html, as well as to
special IVS Conventions such as those for the treatment of the thermal expansion
of radio telescopes (Nothnagel 2009).

2.1 Station Coordinates at the Time of Observation

At first, coordinates (valid at a reference epoch; e.g., J2000.0 = 1 January 2000 at
12 h Terrestrial Time TT) and velocities of a specific realization of the Interna-
tional Terrestrial Reference System (ITRS) are taken to determine the mean
coordinates at the time of observation. It should be mentioned here that, typically,
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these realizations are TT frames and that the coordinates are provided in a con-
ventional tide-free system. Examples are the International Terrestrial Reference
Frame ITRF2008 (ITRF2008; Altamimi et al. 2011) or specific VLBI realizations
like the VTRF2008 (Böckmann et al. 2010), the VLBI contribution to ITRF2008.

Then several corrections are added to get closer to the true station coordinates at
the observation epoch. These corrections include periodic and aperiodic defor-
mations of the Earth’s crust. The largest periodic corrections are for the solid Earth
tides, ocean tide loading, and pole tide loading. Solid Earth tides show mainly
diurnal and semidiurnal oscillations which cause vertical deformations within a
range of ±20 cm and horizontal displacements of about 30% of the vertical effect
(e.g., Mathews et al. 1997). More difficult to model is the loading by the water
masses of ocean tides and currents (ocean loading), which amounts to as much as
1 dm on some coastal or island sites (e.g., Scherneck 1991; Schuh 2000) Addi-
tionally, there is also a periodic deformation at the S1 (24 h) and S2 (12 h) periods
caused by pressure tides due to thermal heating of the atmosphere. All these
effects, which should be corrected at the observation level, are described in detail
in the IERS Conventions 2010 (Petit and Luzum 2010) and its electronic updates.

The analysis strategy is not so clear with aperiodic deformations, e.g., with non-
tidal atmosphere (but also non-tidal ocean and hydrological) loading, although
their significance in VLBI analysis has been shown repeatedly (e.g., Rabbel and
Schuh 1986; vanDam and Herring 1994). So far there has been no general
agreement within the international space geodesy community as to whether these
corrections should be applied at the observation level: Arguments against the
application of non-tidal atmosphere loading at the observation level are that there
is no consensus model available, that the accuracy of existing models (e.g., Petrov
and Boy 2004) is still not sufficient, and that geophysicists are interested in station
coordinate time series which would show the loading signals. On the other hand––
and this holds in particular for VLBI with a small number of stations (6–8) taking
part in typical 24 h sessions––neglected a priori atmosphere loading is partly
absorbed by no-net-rotation (NNR) and no-net-translation (NNT) conditions and
does not show up in the estimated station coordinate time series (Böhm et al.
2009a). Furthermore, there is significant variation in non-tidal atmospheric loading
corrections within 24 h which would be neglected if the correction was applied at
a later stage of data analysis.

2.2 Earth Orientation

In the next step, we need to transform the station coordinates from the ITRS into the
Geocentric Celestial Reference System (GCRS) at the epoch of the observation t.
The transformation matrix can be written as

GCRS½ � ¼ Q tð Þ � R tð Þ �W tð Þ � ITRS½ �; ð7:8Þ
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where Q(t), R(t), and W(t) are the transformation matrices arising from the motion
of the celestial pole in the celestial reference system, from the rotation of the Earth
around the axis associated with the pole, and from polar motion respectively (Petit
and Luzum 2010). Matrix W (‘wobble’) includes as parameters the coordinates xp

and yp (polar motion) of the Celestial Intermediate Pole (CIP) in the Earth-fixed
frame and the correction angle s0 which locates the position of the Terrestrial
Intermediate Origin (TIO) on the equator of the CIP. Terrestrial (TIO) and
Celestial Intermediate Origin (CIO) realize reference meridians in the respective
systems. These terms are part of the ‘CIO-based’ transformation concept following
the Non-Rotating Origin (NRO), which replaces the former ‘equinox-based’
transformation. Matrix R(t) is the Earth rotation matrix with the angle h between
TIO and CIO. The conventional relationship defining UT1 from the Earth’s
rotation angle h is given by Capitaine (2000) as

h Tuð Þ ¼ 2p � 0:7790572732640þ 1:00273781191135448 � Tuð Þ; ð7:9Þ

where Tu = (Julian UT1 date––2451545.0), and UT1 = UTC ? (UT1–UTC). The
difference between Universal Time (UT1) and Universal Time Coordinated (UTC),
which differs by a known integer number of SI-seconds from TAI, the International
Atomic Time (realized as a weighted mean of signals provided by atomic clocks
located all over the world) can be uniquely observed by VLBI. All satellite tech-
niques like the GNSS or Satellite Laser Ranging (SLR)— due to the direct depen-
dence between UT1 and the right ascension of the ascending node of the satellite
orbit—can only observe length-of-day, which is the negative time derivative of
(UT1–UTC), but need external information about UT1–UTC every few days.

The precession/nutation matrix, denoted Q(t), includes the rotations around the
angles X and Y (which are the coordinates of the CIP in the celestial frame) and the
correction angle s which positions the CIO on the equator of the CIP. The CIP is
the reference pole for space geodetic measurements, i.e., it defines the observed
axis. This is a pure convention realized by an appropriate theory of precession and
nutation as will be described below. The orientation of the CIP does not coincide
with that of a physical axis like the rotation axis, the figure axis, or the angular
momentum axis, but it can be related to all of them. By definition the CIP is an
intermediate pole which divides the motion of the pole of the ITRS w.r.t. the
GCRS into a celestial and a terrestrial part. The celestial part (precession and
nutation, [X, Y]) includes all motions with periods [2 days observed in the
celestial frame, and this corresponds to all frequencies between -0.5 (retrograde)
and +0.5 (prograde) cycles per sidereal day in the GCRS. The terrestrial part (polar
motion, [xp, yp]) includes all motions outside of the retrograde daily band in the
ITRS, i.e., it includes frequencies below -1.5 and above -0.5 cycles per sidereal
day in the ITRS.

The largest part of the celestial motion of the CIP can be calculated with a
conventional precession/nutation model. Presently the model IAU 2006/2000A is
recommended by the IERS Conventions 2010. However, remaining unmodeled parts
of the celestial motion can be observed with VLBI and are provided by the IERS as
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so-called celestial pole offsets [dX, dY]. These offsets stem from residual errors of the
a priori precession/nutation model and the phenomenon of the Free Core Nutation
(FCN) which is a resonance mode due to the deviation of the rotation axis of the
mantle from the rotation axis of the core (Dehant and Mathews 2009). This retro-
grade motion with a period of about 430 days in the GCRS and a varying amplitude
of up to 0.3 mas (*10 mm on the Earth’s surface) (e.g., Herring et al. 2002) is not
predictable and cannot be neglected if someone wants to achieve the highest
positioning accuracies. Thus, neither precession/nutation nor polar motion and
UT1–UTC can be predicted accurately enough with models but have to be observed
by space geodetic techniques. A combination of these estimates is provided by the
IERS, e.g., in the IERS 05 C04 series (Bizouard and Gambis 2009), which can be
used by space geodetic techniques as a priori information. If not estimated from the
observations, the standard pole coordinates to be used are those published by the
IERS (x, y)IERS with additional terms to account for the diurnal and semi-diurnal
variations caused by ocean tides (Dx, Dy)ocean_tides (Englich et al. 2008; see also
Fig. 7.8) and for libration (Dx, Dy)libration:

xp; yp

� �
¼ x; yð ÞIERSþ Dx;Dyð Þocean tidesþ Dx;Dyð Þlibration: ð7:10Þ

Here (Dx, Dy)libration are the forced variations in pole coordinates corresponding
to motions with periods less than 2 days in space that is not part of the IAU 2000A
nutation model. The IERS EOP Product Center provides a subroutine to interpo-
late (‘Lagrange’ interpolation) in the (x, y)IERS pole coordinates which are typi-
cally released at midnight. However, this kind of interpolation (unlike linear
interpolation) does not allow the rigorous estimation of estimated polar motion
rates to be used for Earth rotation excitation studies.

The situation is similar for the Earth rotation angle h with models for the effects
of ocean tides and libration that have to be added to the IERS 05 C04 values of
UT1–UTC. In the case of the Earth rotation angle, tidal terms (with periods from 5
to 35 days) are usually removed before the Lagrange interpolation of the IERS
values, and are restored afterwards.

2.3 General Relativistic Model for the VLBI Time Delay

The general relativistic model for the time delay is developed within the frame of
the IAU Resolutions, i.e., general relativity using the Barycentric Celestial Ref-
erence System (BCRS) and the GCRS. The procedure to compute the VLBI time
delay according to the so-called consensus model is taken from Eubanks (1991),
and it is summarized in the IERS Conventions 2010 (Chap. 11; Petit and Luzum
2010). The model has been developed for VLBI observations of extragalactic radio
sources taken from the Earth’s surface, but not for observations of objects in our
solar system like Earth- or Moon-orbiting satellites. In the model, which is
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accurate to the picosecond-level, it is assumed that the ionospheric delays have
already been removed (see (7.7) in Sect. 1).

Theoretically, the VLBI time delays are measured in proper times of the station
clocks, whereas the VLBI model (7.19) is expressed in terms of coordinate time in
a given reference system. We consider the VLBI time delay from the correlator to
be equal to the Terrestrial Time (TT, agrees with SI second on the geoid and is
equal to TAI, apart from a constant offset: TT = TAI ? 32.184 s) coordinate time
interval dTT between the arrival of a radio signal at the reference point of the first
station and the arrival of the same signal at the reference point of the second
station. From a TT coordinate interval, dTT, the Geocentric Coordinate Time (TCG)
coordinate interval, dTCG, can be determined by scaling: dTCG = dTT/(1 - LG)
with LG = 6.969290134 9 10-10 (Petit and Luzum 2010).

The Terrestrial Reference System (TRS) space coordinates from the analysis of
VLBI observations, xVLBI, are termed ‘consistent with TT’ if derived from dTT

intervals, and the TRS coordinates recommended by the IAU and IUGG resolu-
tions, xTCG, can be derived with xTCG = xVLBI/(1 - LG) (see Petit 2000).
Presently, all VLBI analysis centers provide their coordinate solutions as consis-
tent with TT. Since SLR analysis centers also submit their solutions consistent
with TT, it was decided that the coordinates should not be re-scaled to xTCG for the
computation of ITRF2008 so that the scale of ITRF2008 (and earlier realizations)
in this respect does not fully comply with IAU and IUGG resolutions (Petit and
Luzum 2010).

In the remaining part of this section, we provide the equations for the general
relativistic VLBI time delay model and follow the IERS Conventions 2010 (Petit
and Luzum 2010). Although the delay to be calculated is by convention the time of
arrival at station 2 minus the time of arrival at station 1, it is the time of arrival at
station 1, t1, which serves as the time reference for the measurement. Thus, all
quantities are assumed to be calculated at t1, including the effects of the tropo-
sphere. Assuming that the reference time is the UTC time of arrival of the VLBI
signal at receiver 1, and that it is transformed to the appropriate time scale (e.g.,
UT1 or TT) to be used to compute each element of the geometric model, the
following steps are carried out to calculate the VLBI time delay. First, the bary-
centric station vectors Xi(t1) for the receivers are determined with

Xi t1ð Þ ¼ X�ðt1Þ þ xi t1ð Þ; ð7:11Þ

where t1 is the TCG time of arrival of the radio signal at the first receiver, X�(t1) is
the barycentric radius vector of the geocenter, and xi(t1) the GCRS radius vector of
the i-th receiver. Then we calculate the vectors RiJ from the Sun, the Moon, and
each planet (with the barycentric coordinates XJ) except the Earth to receivers 1
and 2. The time t1J of the closest approach of the signal to the gravitating body
J can be determined with

t1J ¼ min t1; t1 �
K � XJ t1ð Þ � X1 t1ð Þð Þ

c

� �
ð7:12Þ
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so that

R1J t1ð Þ ¼ X1ðt1Þ � XJ t1Jð Þ ð7:13Þ

and

R2J t1ð Þ ¼ X2ðt1Þ �
V�
c

K � bð Þ � XJ t1Jð Þ ð7:14Þ

with V� the barycentric velocity of the geocenter, b = x2(t1) - x1(t1) the GCRS
baseline vector at the TCG time of arrival t1, K the unit vector from the barycenter
to the source in the absence of gravitational or aberrational effects, and c the
velocity of light. The differential TCB gravitational delay for each of those bodies
J can then be calculated by

DTgrav;J ¼ 1þ cð ÞGMJ

c3
ln

R1Jj j þ K � R1J

R2Jj j þ K � R2J
; ð7:15Þ

where MJ is the rest mass of the Jth gravitating body and G is the gravitational
constant (Petit and Luzum 2010).

According to the General Theory of Relativity (GRT), the so-called light
deflection parameter c is usually set to unity, but c can also be estimated as a solve-
for parameter in a VLBI global solution comprising many or all VLBI sessions that
have ever been carried out. See Lambert and Le Poncin-Lafitte (2009), Heinkel-
mann and Schuh (2010), or Lambert and Le Poncin-Lafitte (2011) for further
details.

Analogously, we determine the TCB gravitational delay due to the Earth with

DTgrav� ¼ 1þ cð ÞGM�
c3

ln
x1j j þ K � x1

x2j j þ K � x2
; ð7:16Þ

where M� is the rest mass of the Earth, and we sum up the effects of all gravitating
bodies to find the total differential TCB gravitational delay with

DTgrav ¼
X

J

DTgrav;J : ð7:17Þ

We need to consider the Sun, Earth, Jupiter, the Earth’s moon, and the other
planets. If observations pass close to them, the major satellites of Jupiter, Saturn,
and Neptune should also be added. If the ray path passes very close to some
massive bodies, extra terms need to be included for accuracies better than 1 ps (see
Klioner 1991). For observations made very close to the Sun, higher order relativ-
istic time delay effects become increasingly important. The largest correction is due
to the change in delay caused by the bending of the ray path by the gravitating body
J described in Richter and Matzner (1983) and Hellings (1986). The correction is

dTgrav;J ¼
4G2M2

J

c5

b � N1J þ Kð Þ
Rj j1JþR1J � K
� �2 ð7:18Þ
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which should be added to DTgrav in (7.17). N1J is the unit vector from the J-th
gravitating body to the first receiver, and MJ is the rest mass of the J-th gravitating
body. Next, we compute the vacuum delay between tvi, which are the ‘vacuum’ TCG
times of arrival of a radio signal at the i-th VLBI receiver including the gravitational
delay but neglecting the troposphere propagation delay and the change in the
geometric delay caused by the existence of the troposphere propagation delay:

tv2 � tv1 ¼
DTgrav � K�b

c 1� 1þcð Þ�U
c2 � V�j j2

2c2 �
V�x2

c2

� �
� V�b

c2 1þ K � V�
�

2c
� �

1þ K� V�þx2ð Þ
c

:

ð7:19Þ

In (7.19), xi is the geocentric velocity of the i-th receiver. The aberrated radio
source vectors ki (the unit vector from the i-th station to the radio source after
aberration) for use in the determination of the troposphere propagation delays are
calculated with

ki ¼ K þ V� þ xi

c
� K

K � V� þ xi

� �
c

: ð7:20Þ

Thus, we can add the geometric part of the troposphere propagation delay to the
vacuum delay with

tg2 � tg1 ¼ tv2 � tv1 þ DL1 �
K � x2 � x1ð Þ

c
; ð7:21Þ

where DLi is the troposphere propagation TCG delay for the i-th receiver (=ti -

tgi). The total delay can be found by adding the best estimate of the troposphere
propagation delay:

t2 � t1 ¼ tg2 � tg1 þ DL2 � DL1ð Þ: ð7:22Þ

Fig. 7.5 Symbolic
representation of the
derivation of the time delay s
in the TT frame starting with
station coordinates in the
ITRS and source coordinates
in the ICRS (by courtesy of
Lucia Plank)
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The troposphere propagation delays in (7.21) and (7.22) need not be from the
same model. The estimate in (7.22) should be as accurate as possible (see
Sect. 2.4), while the DL1 model in (7.21) need only be accurate to about 10 ns
(Petit and Luzum 2010). Sections 2.2 (Earth orientation) and 2.3 (Relativistic
delay model) are symbolically summarized in Fig. 7.5.

2.4 Troposphere Delay Modeling

The troposphere path delay DL(e) at the elevation angle e is usually represented as
the product of the zenith delay DLz and an elevation-dependent mapping function
mf(e):

DL eð Þ ¼ DLz � mf eð Þ: ð7:23Þ

This concept is not only used to determine a priori slant delays for the obser-
vations, but the mapping function is also the partial derivative to estimate residual
zenith delays, typically every 20–60 min. In the analysis of space geodetic
observations, not only zenith delays are estimated, but also other parameters like
stations heights and clocks. Whereas the partials for the clocks (=1) and the station
heights (=sin(e)) are exactly known, the partial derivative for the zenith delays
(i.e., the mapping function) is only known with limited accuracy. Via the corre-
lations between zenith delays, station heights, and clocks, any imperfection of the
mapping function is also manifested as station height error (and clock error)
(Nothnagel et al. 2002). To reduce these correlations, observations at low eleva-
tions need to be included in the analysis; however, care has to be taken because
mapping function errors increase rapidly at very low elevations, i.e., at 5� or
below. Presently, the best trade-off between reduced correlations and increasing
mapping function errors is found for cutoff elevation angles of about 7�
(MacMillan and Ma 1994; Teke et al. 2008) or by appropriate down-weighting
(Gipson 2009). Simulations of VLBI2010 observing scenarios indicate that in the
future, with faster antennas and significantly more observations, the cutoff
elevation angle can be increased so that the mapping function is less critical for the
accuracy of VLBI analysis (Petrachenko et al. 2009).

Considering (7.23) we find the following relationship: if the erroneous mapping
function was too large, the estimated zenith delay DLz becomes too small, because
the observed troposphere delay DL(e) stays the same. Consequently, the estimated
station height moves up to account for the reduced zenith delay. MacMillan and
Ma (1994) set up a rule of thumb specifying that the error in the station height is
approximately 0.22 of the delay error at the lowest elevation angle included in the
analysis. Böhm (2004) confirmed this rule of thumb for VLBI analysis (and a
cutoff elevation angle of 5�) specifying that the station height error is about one-
fifth of the delay error at 5� elevation angle. The corresponding decrease of the
zenith delay becomes about one half of the station height increase.
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Assuming azimuthal symmetry of the neutral atmosphere around the station
(i.e., at a constant elevation angle the delay is not dependent on the azimuth of
the observation), the approach as described in (7.24) (e.g., Davis et al. 1985) is
generally applied:

DL eð Þ ¼ DLz
h � mfh eð Þ þ DLz

w � mfw eð Þ; ð7:24Þ

where DL(e) is the total path delay of the microwaves in the neutral atmosphere
and e is the elevation angle of the observation to the quasar (vacuum or geometric
elevation angle). DLh

z and DLw
z are the a priori zenith hydrostatic and the estimated

zenith wet delays, and mfh(e) and mfw(e) are the mapping functions which provide
the ratio of the slant delay to the delay in the zenith direction. The input to both
mapping functions is the vacuum elevation angle e, because the bending effect is
accounted for by the hydrostatic mapping function. The underlying continued
fraction form to all mapping functions is that proposed by Herring (1992b):

mf eð Þ ¼
1þ a

1þ b
1þc

sin eð Þ þ a
sin eð Þþ b

sin eð Þþc

: ð7:25Þ

At present the most accurate mapping functions globally available are the
Vienna Mapping Functions 1 (VMF1; Böhm et al. 2006). Whereas the b and
c coefficients of (7.25) are provided as analytical functions depending on day of
the year and station latitude, the a coefficients (hydrostatic and wet) are provided
as a time series with a 6 h time resolution on global (2.0� in latitude times 2.5� in
longitude) grids as well as for all VLBI sites for the complete history of VLBI
observations. The coefficients are available from the website http://
ggosatm.hg.tuwien.ac.at/ of the Vienna University of Technology as derived
from operational analysis data as well as from forecast data of the European Centre
for Medium-range Weather Forecasts (ECMWF). VMF1 coefficients from forecast
data can be used for VLBI real-time applications without significant loss of
accuracy as shown by Böhm et al. (2009b). Böhm et al. (2006) tested the concept
of a ‘total’ VMF1, i.e., using the same function for mapping the a priori zenith
delay to the elevation of the observation and for the estimation of the residual
zenith delays. This concept was not as successful (in terms of baseline length
repeatability, which is the standard deviation after removing a linear trend from a
time series of baseline lengths) as the separation into a hydrostatic and a wet part,
because the variation of the zenith wet delay is faster than can be described by
coefficients with a 6 h time resolution. A total mapping function (which is close to
the hydrostatic mapping function) cannot account for this variation whereas the
wet mapping function is able to account for it by estimating zenith wet delays
every hour or even faster.

The a priori zenith hydrostatic delays in (7.24) can be determined very accu-
rately from the atmosphere pressure at the site (see Saastamoinen 1972; Davis
et al. 1985). If locally recorded pressure values are not available, it is recom-
mended to take values retrieved from numerical weather models such as, e.g.,
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those provided by the Vienna University of Technology at http://
ggosatm.hg.tuwien.ac.at/ together with the coefficients of the VMF1. If those are
also not accessible, it is recommended to use an analytical expression like the
Global Pressure and Temperature Model (GPT; Böhm et al. 2007). Zenith wet
delays are usually fully estimated in the VLBI analysis, although Gipson (2009)
found a slight improvement if zenith wet delays were already added to the a priori
delays and only residual zenith delays were estimated. Approximate values of
zenith wet delays are provided with the VMF1 files.

Errors in the zenith hydrostatic delays or the mapping functions have an
influence on station heights as can be described with the rule of thumb by Böhm
(2004) mentioned above. Exemplarily, the zenith hydrostatic and wet delays shall
be 2000 and 200 mm, respectively, the minimum elevation angle is 5�, and the
corresponding values for the hydrostatic and wet mapping functions are 10.15
(mfh(5�)) and 10.75 (mfw(5�)).

1. We consider an error in the wet mapping function of 0.1 (mfw(5�) = 10.85
instead of 10.75) or in the hydrostatic mapping function of 0.01 (mfh(5�) = 10.16
instead of 10.15). The error at 5� elevation in both cases is +20 mm, i.e., the error
in the station height is approximately +4 mm.

2. We assume an error in the total pressure measured at the station of -10 hPa.
Let us assume that we take the ‘mean’ pressure from GPT (Böhm et al. 2007)
although the real pressure at the site is larger by 10 hPa. -10 hPa correspond to
about -20 mm zenith hydrostatic delay (Saastamoinen 1972), which is then
mapped with the wrong mapping function (factor 0.6 = 10.75 - 10.15). At 5�
elevation the mapping function error causes +12 mm delay error, and one-fifth of
it, i.e., +2.4 mm, is the resulting station height error (Böhm et al. 2006).

On the other hand––due to atmosphere loading––the station height is decreased
by about 4 mm (assuming a regression coefficient of -0.4 mm/hPa) if the actual
pressure is larger than the mean pressure (from GPT) by 10 hPa. This implies that
the application of GPT (or any other mean pressure model) for the determination
of the a priori zenith hydrostatic delays of VLBI observables (or any other tech-
nique using microwave signals) partly corrects for atmosphere loading (see also
Steigenberger et al. 2009). In our example 2.4 mm out of 4.0 mm are compen-
sated, because the application of GPT causes an error that goes into the same
direction as the atmosphere loading corrections.

In addition to the azimuthal symmetry of the troposphere delays according to
(7.24), we need to take azimuthal asymmetry into account, which in a North–South
direction is caused by the larger extension of the troposphere above the equator
compared to the poles and which can also be due to local weather phenomena,
e.g., if a VLBI site is located close to the coast. Typically, North and East gra-
dients are estimated in VLBI analysis with a resolution of 2–24 h. MacMillan
(1995) proposed to use the equation

DL a; eð Þ ¼ DL0 eð Þ þ mfh eð Þ � cot eð Þ � Gn cos að Þ þ Ge sin að Þ½ � ð7:26Þ
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which goes back to Davis et al. (1993) with a denoting the azimuth and DL0 the
symmetric delay (see (7.24)). Chen and Herring (1997) published the formula

DL a; eð Þ ¼ DL0 eð Þ þ 1
sin eð Þ tan eð Þ þ C

� Gn cos að Þ þ �Ge sin að Þ½ � ð7:27Þ

and recommended the use of C = 0.0032 if the total (hydrostatic plus wet)
gradients are estimated. Böhm and Schuh (2007) tested the application of a priori
gradients derived from data of the ECMWF and found that estimating gradients
from VLBI observations provides better baseline length repeatabilities than
keeping those values fixed to non-zero a priori values derived from numerical
weather models.

At present many investigations are carried out on ‘direct ray-tracing’, i.e.,
deriving the slant delay for every single observation from numerical weather
models (Hobiger et al. 2008). Gipson and MacMillan (2009) found better baseline
length repeatabilities for CONT08 (a 14-day VLBI campaign in August 2008) with
slant delays derived from data of the Goddard Modelling and Assimilation Office
(GMAO) compared to using VMF1. Böhm et al. (2010) obtained improvement for
UT1 estimates from intensive sessions on the baseline Wettzell–Tsukuba if using
ray-traced delays at station Tsukuba.

2.5 Antenna Deformation

It has already been mentioned that, in addition to the troposphere delays, there are
other effects which depend on azimuth and elevation of the observations and need
to be taken into account. For instance, deformations of the radio telescope struc-
ture which occur during the 24 h of an observing session or between the observing
sessions have to be considered if we want to achieve the highest accuracies pos-
sible. They can be caused by snow and ice loading of the antenna (Haas et al.
1999) or thermal expansion of the radio telescopes (Nothnagel 2009). Wresnik
et al. (2007) compared thermal deformation measurements with invar rods at
Wettzell (Germany) and Onsala (Sweden) to thermal deformation models applying
local air temperatures as well as structure temperatures measured at those sites.
They found an improvement if the air temperatures are first converted to structure
temperatures before using them for modeling the thermal deformation of the radio
telescopes (see Fig. 7.6). Recent investigations also deal with gravitational
deformations (Abbondanza and Sarti 2010) which can significantly influence the
estimated station heights if neglected in VLBI analysis (Sarti et al. 2011).
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2.6 Axis Offsets

At the radio telescope the distance between the feed horn and the axis intersection,
which constitutes the baseline reference point, is assumed to be constant at the
millimeter-level. In this case the corresponding time offset becomes part of the
clock offset parameter. However, an axis offset model is applied to each antenna
where the pointing axes do not intersect (Sovers et al. 1998). The axis offsets are
provided by the IVS Analysis Coordinator together with the coefficients of the
thermal expansion models (Nothnagel 2009). Large radio telescopes such as the
Effelsberg 100-m antenna exhibit elevation-dependent changes in the focal dis-
tance which can however be modeled to a level of a few millimeters (Rius et al.
1987). In the case of radio telescopes of the type alt-azimuth, the correction Ds due
to an axis offset AO can be calculated with

Ds ¼ �AO � sin zd0ð Þ ð7:28Þ

if zd0 is the zenith distance corrected for refraction.

Fig. 7.6 Measured vertical deformation (invar rod, upper curve), calculated antenna deformation
using the air temperature to model the structure temperature (central curve), and the thermal
deformation using the measured air temperature directly at Wettzell (lower curve). The curves are
offset by 2 mm for clarity (Wresnik et al. 2007)
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2.7 Source Structure

A major problem is that most of the observed radio sources tend to show structure
at the level of a few milliarcseconds which often varies with time. These effects, in
particular the changes in the source structure, pose a limit on the accuracy of the
radio reference frame. For the highest accuracies, a regular monitoring of the
structure, which is also accomplished by analyzing VLBI data, can be done in
parallel to the geodetic analysis, thus providing a means to correct for the source
structure effects (see Collioud and Charlot 2009 and references therein; Schuh
2000).

2.8 A Few Examples of Constituents of the Delay

The various effects that have been described in the previous sections on the cal-
culated time delay s for simulated observations with stations Westford (U.S.A) and
Wettzell (Germany) to source 0642+449 are evident in Fig. 7.7. These effects are
ordered by magnitude from top to bottom. The upper plot displays the total delay
which is mainly caused by the Earth’s rotation (Sect. 2.2) and can be as large as
one Earth radius. The next plot depicts the contribution of the hydrostatic delays at
both sites to the total delay, i.e., the delay at Wettzell minus the delay at Westford.
At each site, the hydrostatic delay at low elevation angles can be larger than 20 m,

Fig. 7.7 Influence on the calculated time delay s for simulated observations with stations
Westford (U.S.A) and Wettzell (Germany) to radio source 0642+449. From top to bottom: total
delay (mainly caused by Earth rotation), troposphere, axis offsets, gravitational effect of the Sun,
solid Earth tides, high-frequency model for the Earth rotation caused by ocean tides, and ocean
loading (by courtesy of Lucia Plank)
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and it increases rapidly as the elevation angle decreases (Sect. 2.4). The third sub-
plot illustrates the influence of the axis offsets at Wettzell and Westford
(Sect. 2.6), of the gravitational effect of the Sun (Sect. 2.3), and of the solid Earth
tides (Sect. 2.1). The bottom plot contains the influence of the high-frequency
Earth rotation model accounting for the ocean tides (Sect. 2.2), as well as the effect
of ocean loading (Sect. 2.1) at the sites on the calculated delay s.

3 Least-Squares Adjustment in VLBI

As can be seen in the flowchart of Fig. 7.4 the theoretical delays are then com-
pared with the reduced observed delays by a parameter estimation process, e.g.,
a classical Gauß–Markov model as will be described below, or Kalman filtering
(Herring et al. 1990), or collocation (Titov and Schuh 2000)––all three following
the least-squares concept––or a square-root information filter (Bierman 1977).

The least-squares adjustment theory allows estimating unknown parameters in
an over-determined system of equations. Since there are more equations than
unknown parameters, the solution will not be exactly correct for each equation, but
the adjustment provides a unique solution dx and minimizes the squared sum of the
weighted residuals v. Functional and stochastic models are based on linearized
observation equations:

A � dx ¼ lþ v or
Aro

Apo

� �
� dx ¼ lro

lpo

� �
þ vro

vpo

� �
; ð7:29Þ

P ¼ Pro 0
0 Ppo

� �
: ð7:30Þ

The design matrix Aro contains the first derivatives of the function of the real
observations with respect to the estimated parameters. Short estimation intervals
(e.g., 20 min for zenith wet delays) could lead to singularity problems if there was
no observation within a time segment. Therefore, the Aro matrix is extended by a
pseudo-observation matrix Apo, which constrains the value of variability of the
parameters, either by constraining the absolute values to zero (typically used for
troposphere gradients in early VLBI sessions) or by constraining the relative
variation of the continuous piecewise linear functions. The reduced observations,
i.e., the observed minus calculated time delays, are listed in the lro vector (real
observations) whereas the lpo vector (pseudo-observations) is typically filled with
zeros. The weighting of the observations is done by the weight matrix P.

There are different groups of parameters. Auxiliary parameters, e.g., clock
parameters and sometimes also the troposphere parameters like zenith wet delays
or gradients, have to be computed but are usually not of interest for geodesists. As
clock parameters, linear or quadratic polynomials (over the 24 h session
accounting for clock offset, clock frequency offset, and clock frequency drift) are
estimated. Additionally, continuous piecewise linear functions with, e.g., hourly
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segments, are estimated with respect to a reference clock that is set to zero in order
to account for rapid clock instabilities. A typical constraint for the relative vari-
ation of the piecewise linear clock function is 0.5 ps2/s; for time segments, e.g., of
60 min, this would correspond to a variance of 1800 ps2 over that time span of 1 h,
meaning that the difference between two adjacent clock offsets is 0 ± 13 mm.
Special care has to be paid to the detection of clock breaks that can occur at some
station clocks (hydrogen masers, described in Sect. 1.1) during a VLBI session.
The epochs of those clock breaks have to be introduced in the analysis of VLBI
sessions, because separate, quadratic polynomials are used to describe the behavior
of the clock before and after the break.

3.1 The Concept of Piecewise Linear Offsets

In the Vienna VLBI Software (VieVS; Böhm et al. 2011) zenith wet delays are
typically estimated every 20–60 min, and rather loose constraints are put on the
variation of the zenith wet delays (0.7 ps2/s). So-called ‘piecewise linear offsets’ are
used in VieVS, i.e., the functional model is based on offsets only (no rates) (see
(7.31)). These piecewise linear offsets are estimated at integer hours (e.g., at 18 UTC,
19 UTC,…), at integer fractions of integer hours (e.g., 18:20 UTC, 18:40 UTC,…),
or at integer multiples of integer hours (e.g., 18:00 UTC, 0:00 UTC, 6:00 UTC,…).
In VieVS, this representation is not only possible for troposphere zenith delays and

Fig. 7.8 Hourly x-pole values in mas estimated with VieVS for CONT08 in red. For comparison
high-frequency (UT1–UTC) values as derived from the IERS conventions model (ocean tides and
libration; Petit and Luzum 2010) are shown in gray (by courtesy of Sigrid Böhm)
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gradients, station clocks, and Earth orientation parameters, but also for coordinates of
selected stations and radio sources. Equation (7.31) denotes the functional model of
the wet delay DLw at one station represented by piecewise linear offsets x1 and x2 of
the zenith wet delays at the integer hours t1 and t2. The wet mapping function at epoch
t of an observation which is in between the integer hours is expressed by mfw(t). The
partial derivatives which have to be entered in the design matrix are given in (7.32)
and (7.33). This concept is similar for all parameters, and with this kind of param-
eterization all combinations (at the normal equation level) with other space geodetic
techniques will be easy and straightforward.

DLw tð Þ ¼ mfw tð Þ � x1 þ mfw tð Þ � t � t1
t2 � t1

� x2 � x1ð Þ ð7:31Þ

dDLw

dx1
¼ mfw tð Þ � mfw tð Þ � t � t1

t2 � t1
ð7:32Þ

dDLw

dx2
¼ mfw tð Þ � t � t1

t2 � t1
ð7:33Þ

In addition to the clock and troposphere parameters (zenith wet delays and
gradients) mentioned above, there are many other geodetic/astrometric parameters
which can by estimated from VLBI sessions (see Sect. 4). EOP—although typi-
cally estimated once per session––can also be retrieved with a higher temporal
resolution, applying the concept of the piecewise linear offsets. Figure 7.8 shows
hourly estimates of (UT1–UTC) during CONT08.

3.2 Global VLBI Solutions

Other ‘global’ parameters such as station or source coordinates can in principle
also be estimated from single VLBI sessions, but they are preferably determined in
a global solution, i.e., from a large number of VLBI sessions connected to a
common least-squares parameter estimation. Due to limited computer memory
capacity it is essential to keep the equation system small. In VLBI analysis there
are auxiliary parameters in the observation equations which cannot be fixed to a
priori values, even if we are not interested in them, e.g., clock parameters.
Therefore, a reduction algorithm is used which is based on a separation of the
normal equation system into two parts. The first part contains parameters which we
want to estimate and the second part contains parameters which will be reduced.
Even if we ‘reduce’ parameters, they still belong to the functional model of
unknown parameters and will be estimated implicitly.

N11 N12

N21 N22

� �
� dx1

dx2

� �
¼ b1

b2

� �
: ð7:34Þ
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In (7.34) N = ATPA and b = ATPl, and the reduction of dx2 is done by exe-
cuting the matrix operation

N11 � N12N�1
22 N21

� �
� dx1 ¼ b1 � N12N�1

22 b2 or Nreduc � dx1 ¼ breduc: ð7:35Þ

Stacking is used for combining normal equation systems if a parameter is
contained in at least two normal equation systems and only one common value in
the resulting combined system should be estimated. For a combined solution of the
identical parameters (dx1), the normal matrices (Nreduc) and the right hand side
vectors (breduc) from n single sessions have to be summed up:

NREDUC ¼ Nreduc 1 þ Nreduc 2 þ . . .þ Nreduc n; ð7:36Þ

bREDUC ¼ breduc 1 þ breduc 2 þ . . .þ breduc n: ð7:37Þ

Conditions on the NREDUC matrix are applied in order to prevent the matrix
from being singular. From the analysis of VLBI sessions we get free station
networks, which are the result of adjusting observations in a model where coor-
dinates are unknowns without fixing the coordinate system (Sillard and Boucher
2001). With three-dimensional VLBI station networks the rank deficiency is six
(the scale is determined from the observations), which means that at least six
conditions have to be applied to remove the rank deficiency. In case of station
coordinates three NNT and three NNR conditions are applied on selected datum
stations, and in the case of source coordinates an NNR condition is usually applied
on a selected set of datum sources. In the case of longer time spans NNR-rate and
NNT-rate conditions are also applied on station coordinate velocities. It is very
important to use stable stations and sources for the datum, because otherwise the
quality of the terrestrial and celestial reference would be deteriorated. Moreover, it
is absolutely necessary to take into account any episodic changes in the station
coordinates, e.g., due to instrumental changes or earthquakes.

Unlike positions and velocities, no scale or scale rate parameters are estimated in
VLBI, as the scale directly depends on the speed of light, c, one of the defining
natural constants. The final solution is obtained by an inversion of the normal matrix:

dx1 ¼ N�1
REDUC � bREDUC: ð7:38Þ

Since the least-squares adjustment minimizes the squared sum of weighted
residuals, this value is used to scale the standard deviations of the estimates. It is
determined with

vT Pv ¼ lT Pl
� �

REDUC
�xT

1 bREDUC; ð7:39Þ

where the first part (lTPl)REDUC depends only on observations; it has to be cor-
rected for the influence of the reduced parameters which is known from the single
normal equation systems:
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lT Pl
� �

REDUC
¼
Xn

i¼1

lT Pl� bT
2 N�1

22 b2
� �

: ð7:40Þ

The second part in (7.39), x1
TbREDUC, depends on the combined solution. The a

posteriori variance of unit weight r0
2 is a scaling factor for the inverse normal

equation matrix, i.e., for the covariance matrix Q of the estimated parameters:

Q ¼ r2
0 � N�1: ð7:41Þ

It is determined with

r2
0 ¼

vT Pv

k � uþ d
; ð7:42Þ

where k is the number of observations, u the number of estimated and reduced
parameters, and d the number of additional condition equations.

4 Results from Geodetic VLBI and the IVS

The VLBI technique has been employed for more than 30 years in geodesy,
geophysics, and astronomy, and results of geodetic VLBI have been presented and
interpreted in a multitude of publications by hundreds of authors. During the first
two decades, most of the scientific and operational activities were organized
through national or bi-lateral agreements only, which was not a basis sufficiently
strong for carrying out VLBI sessions in global networks.

In 1999 the IVS was established to coordinate the global VLBI components and
resources on an international basis. All international collaboration, in accordance
with the IVS terms of reference, is based on a standing call for participation that was
first issued in 1998. Any institution that is prepared to participate in IVS activities
may join at any time after getting accepted by the IVS Directing Board (Schlüter and
Behrend 2007). The inauguration of the IVS took place in March 1999, and the first
meeting of the Directing Board was held at the Fundamental Station Wettzell,
Germany. The IVS was approved as a service of the IAU, of the IAG, and of the
Federation of Astronomical and Geophysical data analysis Services (FAGS); the
latter was dissolved in 2010 and replaced in 2011 by the World Data System (WDS).

According to its terms of reference, the IVS is an international collaboration of
organizations that operate or support VLBI components for geodetic and astrometric
applications. Specific goals are to provide a service to support geodetic, geophysical,
and astrometric research and operational activities, to promote research and
development activities in all aspects of the geodetic and astrometric VLBI
technique, and to interact with the community of users of VLBI products and to
integrate VLBI into a global Earth observing system. Since 2003 the GGOS (GGOS;
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Plag and Pearlman 2009) has been developed as a main component of the IAG, and
the IVS provides an essential contribution to it (Schlüter and Behrend 2007).

‘Official IVS products’ are the realization of the Celestial Reference Frame
(CRF) through the positions of extragalactic radio sources, the maintenance of the
Terrestrial Reference Frame (TRF), such as station positions and their changes with
time, and the generation of series describing the Earth orientation (see Table 7.1).

Geodetic VLBI is the only space geodetic technique that allows the observation
of the full set of EOP, and it is unique in providing UT1 (see Fig. 7.8) as well as
celestial pole offsets over longer time spans. Figure 7.9 depicts polar motion
estimates as determined from VLBI observations since 1984 with the Vienna
VLBI software VieVS (Böhm et al. 2011). As mentioned above, the IVS plays a
key role within GGOS and thus all IVS products are also considered GGOS
products, today.

Moreover, VLBI is the only technique for the determination of the ICRF. The
ICRF (ICRF1; Ma et al. 1998), defined by positions of 212 compact radio sources
(out of a total of 608 radio sources), was the first realization at radio frequencies.
Since its approval in 1997 by the IAU, the IVS has been in charge of the VLBI
realization. At the XXVII General Assembly in 2009 the IAU adopted the ICRF2
including the positions of 3,414 compact radio astronomical sources. This is more
than five times the number of sources in the ICRF1 (or its later extension, the
ICRF1-Ext.2). The noise floor of the ICRF2 is at the level of 40 las and the axis
stability at the level of 10 las (Fey et al. 2009). The ICRF2 has 295 defining

Table 7.1 Summary of IVS main products (modified from Schlüter and Behrend 2007)

Products Specification Status 2010

Polar motion xp, yp Accuracy 50–80 las
Product delivery 8–10 days
Resolution 1 day
Frequency of solution *3 days/week

UT1–UTC Accuracy 3–5 ls
Product delivery 8–10 day
Resolution 1 day
Frequency of solution *3 days/week

UT1–UTC (Intensives) Accuracy 15–20 las
Product delivery 1 day
Resolution 1 day
Frequency of solution 7 days/week

Celestial pole dX, dY Accuracy 50 las
Product delivery 8–10 days
Resolution 1 day
Frequency of solution *3 days/week

TRF (x, y, z)
CRF (a, d)

Accuracy 5 mm
Accuracy 40–250 las
Frequency of solution 1 year
Product delivery 3 months
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sources with an equal distribution, in particular in the Southern celestial hemi-
sphere, and smaller source structure effects, both weaknesses in the ICRF1
(Fey et al. 2009). (Fig. 7.10)

Geodetic VLBI also contributes to the realization of the ITRF by measuring
long intercontinental baselines within global networks. Compared to those space
geodetic techniques using satellites, VLBI has the principal advantage that its
realization of the ITRF scale only depends on the speed of light c, which is used to
transform the delay observables into metric units. There exists no evidence at all
that during the last three decades a bias or rate of this conversion has occurred due
to technical reasons. Figure 7.11 illustrates the horizontal velocities of the VLBI
stations included in the VTRF2008 (Böckmann et al. 2010), the VLBI contribution
to the ITRF2008 (Altamimi et al. 2011).

Table 7.1 provides a summary of current IVS main products (Schlüter and
Behrend 2007). Observations of geodetic VLBI have been carried out for more
than three decades providing a basis for the precise determination of geodynamic
and astronomical parameters including their long-term variations. For example,
VLBI can determine Love numbers h and l of the solid Earth tides model
(Spicakova et al. 2010), ionosphere models (Hobiger 2006), or troposphere
parameters. The long-term VLBI zenith wet delays are of interest for climatolo-
gists because they contain information about the precipitable water above the
stations for their complete history (Heinkelmann 2008); they can also be used to

Fig. 7.9 Polar motion
estimates in milliarcseconds
as determined from VLBI
observations since 1984.
Clearly visible is the
modulation between the
Chandler wobble period of
about 1.18 years and the
annual variation (by courtesy
of Sigrid Böhm)
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validate troposphere parameters from other space geodetic techniques (Snajdrova
et al. 2005; Teke et al. 2011).

Another interesting phenomenon, which can be observed by VLBI, is the
gravitational deflection of radio waves by the solar gravity field according to
general relativity. As described in Sect. 2.3, radio waves are subject to space–time
curvature caused by any massive body (in our solar system mainly that by the Sun
has to be considered but also that by Jupiter for close approaches). At the elongation
angle of 2.5� to the Sun, which was the minimal angle of VLBI observations till
2002, the differential deflection reaches 150 mas (Robertson et al. 1991) causing a
significant effect on the observed group delays. With respect to the noise floor of

Fig. 7.10 Defining ICRF2 sources

Fig. 7.11 VTRF2008 station distribution with horizontal velocities
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source coordinates, which is about 40 las for the ICRF2 (Fey et al. 2009), analysis
of source observations in the vicinity of the Sun allows the determination of the
post-Newtonian parameter c (‘light deflection parameter’) characterizing the space
curvature due to gravity (see (7.15)). Although since 2002 the VLBI observations
have been scheduled for a minimal angle of 15� to the Sun, the gravitational
deflection still influences the measurements significantly and the most recent VLBI
global solutions provided c with a precision of 1 9 10-4 (Lambert and Le Poncin-
Lafitte 2009, 2011). The series of VLBI data is also sensitive to a possible accel-
eration of the solar system barycenter which might cause a secular drift of
aberration with a magnitude of 4 las/year (Sovers et al. 1998; Titov 2010). Fur-
thermore, the solar system motion relative to the cosmic microwave background
might produce a dipole pattern that decreases with red shift (Titov 2010).

5 The Next Generation VLBI System, VLBI2010

In September 2005 the IVS Directing Board accepted the final report of its
Working Group 3 (WG3) entitled ‘‘VLBI2010: Current and Future Requirements
for Geodetic VLBI Systems’’ (Niell et al. 2006) which recommended a review of
all current VLBI systems and processes from antennas to analysis and outlined a
path to a next-generation system with unprecedented new capabilities: 1 mm
position and 0.1 mm/year velocity accuracy on global scales, continuous
measurements for time series of station positions and Earth orientation parameters,
and a turnaround time to initial geodetic results of less than 24 h.

As a consequence, the IVS established the VLBI2010 Committee (V2C) to
carry out a series of studies and to encourage the realization of the new vision for
geodetic VLBI. Making rational design decisions for VLBI2010 requires an
understanding of the impact of new strategies on the quality of VLBI products. For
this purpose, Monte Carlo simulators were developed which have been used to
study the effects of the dominant VLBI random error processes (related to the
atmosphere, the reference clocks, and the delay measurement noise; Pany et al.
2010) and new approaches to reduce them, such as decreasing the source-
switching interval and improving analysis and scheduling strategies. Shortening
the source-switching interval results in a higher number of observables leading to a
significant improvement in station position accuracy (Petrachenko et al. 2009).
In any case, the simulators confirm that the dominant error source is the tropo-
sphere. It is recommended that research on analysis strategies for the atmosphere
continues to be a priority for the IVS. Based on the findings from the Monte Carlo
studies, the source-switching interval should be reduced. This includes decreasing
both the on-source time needed to make a precise delay measurement and the time
required to slew between sources. From these two somewhat competing goals,
recommendations for the VLBI2010 antennas are emerging, e.g., either a single
*12 m diameter antenna or larger with very high slew rates, e.g., 12�/s in
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azimuth, or a pair of *12 m diameter antennas (or larger), each with more
moderate slew rates, e.g., 5�/s in azimuth (Petrachenko et al. 2009).

In order to reduce the on-source observing time, it is important to find a means
for measuring the delay with the requisite precision even at a modest signal-to-
noise ratio. To do this a new approach is being developed in which several widely
spaced frequency bands are used to resolve unambiguously the interferometric
phase. The new observable is being referred to as the broadband delay. A four-
band system is recommended that uses a broadband feed to span the entire fre-
quency range from 2 to 14 GHz (Petrachenko et al. 2009). A total instantaneous
data rate as high as 32 Gbps and a sustained data storage or transmission rate as
high as 8 Gbps are necessary to detect an adequate number of high-quality radio
sources (Petrachenko et al. 2009). NASA is funding a proof-of-concept effort till
2012 to test the broadband delay technique, and first fringes have already been
detected in all bands. In addition to random errors, systematic errors need to be
reduced too. For example, updated calibration systems are being developed to
account for electronic biases. Conventional surveying techniques have to be
refined to observe antenna deformations, and the application of small reference
antennas is considered for generating deformation models and establishing site
ties. Furthermore, corrections based on images derived directly from the
VLBI2010 observations are under study to mitigate errors due to source structure
(Petrachenko et al. 2009).

The progress report of the IVS V2C (Petrachenko et al. 2009) recommends that
a globally distributed network of at least 16 VLBI2010 antennas observes every
day to determine the Earth orientation parameters, and that other antennas be
added as needed for the maintenance of the celestial and terrestrial reference
frames. Antennas with access to high-speed fiber networks are also required to
enable daily delivery of initial IVS products in less than 24 h. A high priority is
placed on increasing the number of stations in the Southern hemisphere. Since IVS
products must be delivered without interruption, a transition period to VLBI2010
operations is required in which there will be a mix of antennas with current and
next-generation receiving systems. For this period a compatibility mode of oper-
ation has been identified and tested to a limited extent with the NASA proof-of-
concept system. In order to increase reliability and to reduce the cost of operations,
enhanced automation will be introduced both at the stations and in the analysis
process. Stations will be monitored centrally to ensure compatible operating
modes, to update schedules as required, and to notify station staff when problems
occur. Automation of the analysis process will benefit from the work of the current
IVS Working Group 4, which is updating data structures and modernizing data
delivery (Petrachenko et al. 2009).

For more details the authors refer to various reports, memos, and other docu-
ments describing the concept and realizations of VLBI2010. Many of those are
accessible via the webpage of the IVS at http://ivscc.gsfc.nasa.gov/.
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6 Concluding Remarks

VLBI plays a unique and fundamental role in the maintenance of the global
(terrestrial and celestial) reference frames and in monitoring the Earth orientation
parameters, which are required for precise positioning and navigation on Earth and
in space. Furthermore, very valuable information on various time scales can be
obtained about several other parameters needed for the investigation of phenomena
such as meteorological and climatologic changes, and geodynamical or astro-
nomical effects. Thus, geodetic VLBI is essential for the Global Geodetic
Observing System (GGOS), the flagship component of the IAG. The IVS has
served this task very successfully in the past, and with the upcoming VLBI2010
concept, it is advancing to a bright and challenging future.
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spherical harmonic expansion, 230
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Stokes kernel, 231
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de Sitter precession, 67

ascending node precession, 68
precession vector, 66, 67
radial acceleration, 68, 69

Deutsches Geodätisches Forschungsinstitut
(DGFI), 106

Deutsches Zentrum für Luft und Raumfahrt
(DLR), 141
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analogue aerial cameras, 140–141
medium format digital cameras, 141
UltraCamD from Vexcel, 141

Digital elevation model (DEM), 172, 173, 246,
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DTM, 173, 174, 177
generation by TIN, 174, 175
GRID model, 175, 176
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Digital elevation models, 171, 173, 174f, 262f
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types of, 173

Digital Mapping Camera (DMC), 144, 145
Digital surface model (DSM), 173, 175
Digital terrain model (DTM), 173, 175
Direct georeferencing, 167–169. See also

Indirect georeferencing; Semi-direct
georeferencing

configuration of calibration flight, 168
GNSS techniques, 167
inertial measuring unit, 167

Directory of MERIT sites (DOMES), 107
DMC II versions, 148

comparisons, 148–149
technical data from, 148t

Doppler effect
coordinate time, 79, 81
Greek indices, 79
Latin indices, 79
time dilation effect, 79, 80
time dilation magnitude, 80

Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS),
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Dynamic ocean topography (DOT), 185,
201, 203f, 251

E
Earth Centred Earth Fixed frame (ECEF), 76
Earth models, 21, 23, 25
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Thomson–Haskell method, 25
Earth orientation parameters (EOPs), 111,

188, 341
Earth orientation, 349

celestial part, 350
GCRS, 349–350
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terrestrial part, 350

Earth’s general shape, 189
Earth’s gravity field, 103. See also Normal

gravity field; Temporal gravity field
variations

centrifugal acceleration, 198
centrifugal potential, 198
Earth-fixed system, 199-201, 218
ellipsoidal geographic coordinates, 189
force of gravity, 198
generalized Poisson equation, 199
gravity potential, 198, 200
gravity vector, 199, 200
reference systems, 188
spherical coordinates, 189

Earth-fixed geocentric system
global, 191, 191f
local, 190, 191f

Earth-fixed reference system. See Terrestrial
reference system (TRS)

Earth-fixed system, 199-201, 209, 218
ellipsoidal coordinates, 219, 221

Earthquakes
effects, 127, 128
station displacements, 128

EGG2007 model, 187, 258, 259t
computation, 265
and DEM, 260

EGG2008 model, 259t See also European
quasigeoid model EGG2008,
development; European quasigeoid
model EGG2008, evaluation

EGM2008 model, 248, 265, 266
final EGG2008 quasigeoid, 271
signal and error spectra for, 267
ultra-high-degree model, 267–268

Einstein’s EP (EEP), 73
Ellipsoidal geographic coordinates, 189
Ellipsoidal harmonics, 197
Ellipsoidal transformation formula, 190
Equivalence principle (EP), 73
Equivalently eliminated observation equation

system, 323–324
elimination matrix, 324
Gauss-Jordan algorithm, 324–325
least squares normal equation, 325–326

Estimated angular accuracy, 70
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Eulerian description, 3

and Lagrangian descriptions, 17
European Geoid and Guasigeoid (EGG)

model, EGG1997, 187, 255, 259t
European Gravimetric (Quasi) Geoid model.

See European quasigeoid model
EGG2008, development; European
quasigeoid model EGG2008,
evaluation

European Gravity and Geoid Project (EGGP),
187, 255, 256

advancements, 255–256
EGG2007 and EGG2008, 256

European gravity and terrain data, 256
DEMs, 259, 261
EGG1997/2007/2008 characteristics, 259,

260
GTOPO30 model evaluation, 259, 260
marine gravity data, 257
public domain data, 257
SRTM, 259, 260
terrestrial gravity data locations, 258, 260
updates of gravity sources, 257–258

European quasigeoid model EGG2008,
development. See also Gravity field
modeling

Bruns’s formula, 269
EGG2007 computation, 265
EGM2008 model, 265, 266
error covariance function, 264–265
EVRF2007, 268
final EGG2008 quasigeoid, 271
gravity anomalies

implementation of, 262-264
statistics, 269, 270
transformation, 261, 262

Molodensky corrections terms, 268
quasigeoid height

error covariance function for, 271, 272
standard deviation for, 270, 272
statistics, 269, 270

RCR technique, 261
signal and error spectra for EGM2008, 267
spectral combination technique use, 270
spectral weights, 265, 266
surface free-air gravity anomalies, 264
ultra-high-degree model EGM2008, 267–

268
European quasigeoid model EGG2008, evalu-

ation, 272. See also Gravity field
modeling

EIGEN models, 274
EUVN_DA project, 274, 275, 277–279

GPS/leveling data set
comparison, 275
statistics, 272–273, 276–277

systematic leveling errors, 280
European Vertical Reference System (EVRS),

258, 268
Exterior orientation of image, 179

in direct georeferencing, 167
parameters of, 168, 169

in indirect georeferencing, 158
elements of, 159f
parameters of, 162-164

F
Fairchild K-17 camera, 140
Federation of Astronomical and Geophysical

data analysis Services (FAGS), 365
Fiducial centre (FC), 156, 162
Film magazine, 138-140
Fixed GBVPs, 218, 219, 222, 224, 228
Fixed gravimetric GBVP, 218
Floating mark, 134, 172
Fluid core, 12

Adams–Williamson condition, 13
Brunt–Väisälä frequency, 13
homogeneous fluid, 13
Laplace-transform, 14
Longman paradox, 13
reduce differential equations, 14
semi-perturbed gravity parameter, 15
vanishing shear stress, 14

Frame dragging effect. See Lense–Thirring
effect

Free Core Nutation (FCN), 16, 351
Free GBVPs, 218, 219, 221–224
Frequency transfer function (FTF), 240,

241, 271

G
Gauss–Lobbato distribution, 31
Gauss–Radau distribution, 31
GBVP. See Geodetic boundary value problem

(GBVP)
GCRS. See Geocentric celestial reference

system (GCRS)
General relativity theory (GRT), 53, 60, 69

acceleration, 60–61
de Sitter precession, 66–69
Earth’s angular momentum, 61
Einstein’s field equations, 54
EP, 73
Gaussian perturbations, 61, 62
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interplanetary laser ranging, 75
Lense–Thirring effect, 70–71
Lense–Thirring precession, 65–66
lunar laser ranging, 73-75
perigee shift estimation, 71
period of satellite motion, 62
PPN parameter estimation, 72–73
Schwarzschild field contribution, 63–65
space geodesy techniques, implications for,

56–58
total perturbing force, 60

General Theory of Relativity (GRT), 353
Generalised Maxwell body, 35
Generalized cross validation (GCV), 302

for regularized parameter, 306
Generalized discrepancy principle, 303

regularization parameter, 303
compensated discrepancy principle, 303
bisection method, 303–304

Geocentric Celestial Reference System
(GCRS), 56, 349

Geocentric Coordinate Time (TCG), 352. See
also Temps-Coordonnée Géocentri-
que (TCG)

Geocentric origin, 102
Geocentric Terrestrial Reference System

(GTRS), 101
Geodesy, goal of, 185
Geodetic boundary value problem (GBVP),

217. See also Constant radius
approximation

formulations, 218
linearized, 228
potential theory, 217
types of, 217–218

Geodetic coordinates. See Ellipsoidal
geographic coordinates

Geodetic datum, 101, 190
Geodetic ill-posed problems, 294
Geodetic Observatory Wettzell, 108
Geodetic Reference System 1980 (GRS80),

189, 208
Geodetic very long baseline interferometry

(Geodetic VLBI), 365
gravitational deflection of radio waves,

368–369
ICRF determination, 366, 367
ICRF2 sources, 368
IVS

establishment, 365
products, 366

polar motion estimation, 367
VTRF2008 station distribution, 368

Geographic Information Systems (GIS), 171

‘‘Geoid based vertical datum’’, 206, 281
Geoid heights, 202, 203

dynamic height, 206
ellipsoidal height systems, 206–207
geometric leveling, 204, 206
geopotential number, 204
normal height, 205–206
orthometric heights, 205, 207–208
Poincaré–Prey reduction, 205
systems, 204
transformation, 207
VRS and VRF, 203

Geoid, 201
DOT, 201-203
geoid potential, numerical value for, 202
GNSS observations, 202
MSL, 201-203

Geoinformation acquisition, 136
Georeferencing of linear array images,

169–170. See also Linear array
sensor cameras

GGOS. See Global geodetic observing system
(GGOS)

Glacial Iostatic Adjustment (GIA), 32
Global Earth Observing System of Systems

(GEOSS), 98
Global ellipsoidal system, 192
Global Geodetic Observing System (GGOS),

55, 98, 203
Global Navigation Satellite Systems (GNSS),

54, 140, 185, 340
Global positioning system (GPS), 76–89, 106,

165, 186, 348
clock and frequency effects, 76–77

gravitational redshift, 77–79
Sagnac effect, 83–84
special relativity, second order Doppler

effect, 79–82
general relativistic accelerations, 84
reference frame issues, 76
spatial curvature effect, 85

Global Pressure and Temperature Model
(GPT), 357

Global sea level rise, 98–99
Goddard geophysical astronomical

observatory (GGAO), 75
Goddard Modelling and Assimilation Office

(GMAO), 358
Goddard Space Flight Center (GSFC), 113
Gravitational delay, 85–86
Gravitational redshift, 77–79
Gravity field and steady-state Ocean

Circulation Explorer (GOCE),
185, 186
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G (cont.)
Gravity field modeling. See also Earth’s

gravity field
accuracy demands, 185
astronomical leveling, 244–246
constant radius approximation, 228–232
data requirements

DEMs, 254
gravity accuracy, 254, 255
gravity surveys, 255
RMS omission error, 251-253
salt dome gravitational effect, 253, 254
small systematic gravity errors,

252, 253
systematic gravity anomaly error

effects, 254
terrestrial surface free-air gravity

anomalies, 251
European Gravity and Geoid Project,

255–256
European Gravity and Terrain Data, 256

DEMs, 259, 261
EGG1997/2007/2008 characteristics,

259t
gravity sources, updates of, 257–258
GTOPO30 model

evaluation, 259, 260
marine gravity data, 257
public domain data, 257
SRTM, 259, 260
terrestrial gravity data locations,

258, 260
GBVP, 217–218
gravity field missions, 185–186
least-squares collocation, 241–244
Molodensky’s GBVP, solutions to,

233–235
Stokes’s GBVP, solutions to, 235–237

Gravity Green’s function, 50
Gravity Recovery And Climate Experiment

(GRACE), 185, 186
Green’s functions, 2, 35

analytical expression, 38
arc distance formula, 40
astronomical deflection, 39
azimuth formula, 40
computation for tilt, 36
disk loads, 36, 37
geoid height, 39
gravity on deforming surface, 38–39
horizontal displacement, 38
strain, 39–40
tide raising potential, 39
vertical displacement, 38

Ground control points (GCP), 158
construction rules, 160
GCPS, shapes for, 160
location, 160
management, 161
natural points, 158–159
targeted control points, 159
targeting operation, 161

Ground sample distances (GSD), 146
Group delay, 346

determination, 345, 348
resolution of, 346

Group on Earth Observation (GEO), 98
GRT. See General relativity theory (GRT)

H
Hartebeesthoek Radio Astronomy Observatory

(HartRAO), 75, 77, 90, 371
Helmert heights, 261
Helmholtz’s theorem, 7
Hölder conditions, 195
Homogeneous Earth, analytical solution for,

42
core–mantle interface, 46–47
perturbed potential, 44
radial displacements, 44
recurrence relation, 42
Rothwell algorithm, 42
spherical Bessel functions, 42
spherical Neumann functions, 44
tangential displacements, 44

Homogeneous fluid inner sphere, analytical
solution for, 47

core–mantle boundary, 48
fluid inner sphere solution, 48–49
gravity variable, 48

Hooke’s law, 5
Hotine kernel, 230–231
Hydrogen maser clock, 54
Hydrostatic pressure, 6

I
IERS Conventions 2010, 54, 68

displacements, kinds of, 104
global pressure and temperature (GPT)

model, 105
VLBI antenna thermal deformation, model

for, 105
IERS GRT model, 55

ITRF2008 and their past realizations,
transformation parameters between,
122–124
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IERS network, 106, 125. See also International
Terrestrial Reference Frame (ITRF)

co-location sites, 108, 125
Geodetic Observatory Wettzell, 108
global distribution of ITRF2008, 109
reference frame establishment,

109–110
DOMES numbering system, 107
spatial distribution of technique-specific

station networks, 107
3D differences, 125

IERS reference pole, 188
IERS. See International Earth Rotation and

Reference Systems Service (IERS)
Ill-posed observation equation. See also

Adjustment algorithms
rank-deficient observation equation

solution, 297–298
regularized solution, 297

regularization parameter, 298-300
SVD decomposition formula, 299, 300
Tikhonov regularization, 298–301

unstable analysis
covariance matrix of parameters, 296
design matrix, 295
least squares solution, 294–295
measurement vector, 295
regularized solution, 296
residual vector, 297
unit weight variance, 295, 296

Ill-posed problem, 293–294
Image coordinate system. See Photo coordi-

nate system
Image georeferencing, 155

coordinate systems in photogrammetry,
155–158

direct georeferencing, 167–169
indirect georeferencing, 158

ground control points, 158–161
spatial resection, 161–163
triangulation, 163–165

semi-direct georeferencing, 165–167
Image mosaicing, 166
Image processing, 171

line maps, 171
orthorectification, 178

orthoimage generation, 179, 180
true orthos, 180-182

photogrammetric, 171
stereoplotting, 172
three-dimensional modelling, 172

DTM and DSM, 172–176
3D city models, 176–178

Indirect georeferencing, 158. See also Direct
georeferencing; Semi-direct
georeferencing

ground control points, 158-161
spatial resection, 161-163
triangulation, 163-165

Inertial Measuring Unit (IMU), 142, 167
Institut für Erdmessung (IfE), 186, 255
Institute Géographique National (IGN), 106,

110
Integrated sensor orientation, 169
Intensity, Hue, Saturation (IHS), 146
Intergovernmental Panel on Climate Change

(IPCC), 99
Interior orientation of image, 147, 179

in direct georeferencing, 168
in indirect georeferencing, 158
parameters of, 162, 163

elements of, 159f
International Association of Geodesy (IAG),

186, 339
International Astronomical Union (IAU), 78,

188, 339
International Celestial Reference Frame

(ICRF), 339
International DORIS Service (IDS), 105
International Earth Rotation and Reference

Systems Service (IERS), 54, 100,
188, 348

coordinates, 104
and International Terrestrial Reference

System (ITRS), 101, 106
network, 106-109, 125

International GNSS Service (IGS) receiver, 77,
105

International Gravity Field Service (IGFS),
256

International Laser Ranging Service (ILRS),
90, 105

International Society for Photogrammetry and
Remote Sensing (ISPRS), 135

International System of Units (SI), 188
International Terrestrial and Celestial Refer-

ence System (ITRS), 188
International Terrestrial Reference Frame

(ITRF), 100–101, 106
co-location sites, 125
combination methodology, 128, 129
datum definition, 128, 129
discussion and challenges, 124
earthquake effects, 127–128
IERS network, 106, 110
ITRS realizations, 110–112
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I (cont.)
local tie vectors, 125
nonlinear station motions, 126–127
3D differences, 125

International Terrestrial Reference Frame
(ITRF), 188, 339

International Terrestrial Reference System
(ITRS), 100, 101

displacements, 103–106
orientation, 102
origin, 102
positions, 103-106
scale, 102–103

International Union for Geodesy and Geo
physics (IUGG), 100, 188

International VLBI Service (IVS), 85–86, 105,
339, 366

axis offsets, 359
Bonn correlator processing, 345–346
establishment, 365
products, 366
V2C, 369, 370

Interplanetary laser ranging (ILR), 74, 75
Inter-technique combination, 111, 113, 117

co-location site distribution, 118–119
EOP estimates, 118
3D differences, 117, 118
weighting, 118–119

Ionosphere, 348
Iterative ridge method, 305
ITRF. See International Terrestrial Reference

Frame (ITRF)
ITRF2008 data analysis, 114

comparison with DTRF2008, 120
inter-technique combination, 117–119
RMS differences, 122t
station height velocities, 119–120
time series per technique, 115–117
transformation parameters, 122

ITRF2008 input data, 112
achievements, 113
characteristics, 114
co-location sites, 109
combination procedure, 115
data flow, 115
IGN and DGFI comparison, 115
parameter, 114

ITRF2008 realization, 112. See also Interna-
tional Terrestrial Reference Frame
(ITRF)

data analysis, 114-119
input data, 112-114
results, 119–120
transformation parameters, 122-124

ITRS realizations, 110. See also International
Terrestrial Reference Frame (ITRF)

input data for, 125–126
inter-technique combination, 111
ITRF2005 computations, 111, 112
ITRF2008 computations, 111, 112
ITRS Centre supplementation, 110, 111
stations and solutions, 110, 111

J
Jansky, 344–345
Jupiter, 75, 88, 353

K
Kummer transform, 50

L
Lagrangian displacement, 3

and Eulerian descriptions, 17
Lamé parameters, 5, 23t
Laplace’s equation, 195, 196
Laplace-transform, 14
L-curve method, 304–305, 304f
Least squares adjustment

a priori constrained, 327-333
block-wise, 319-323
conditional, 315-319
diagonalized normal equation, 326, 327
equivalent observation equation, 326, 327
global VLBI solutions, 363

covariance matrix, 365
free station networks, 364
stacking, 364

piecewise linear offsets, 362, 363
principles, 310-312
sequential, 314–315
with sequential observation groups, 312–

314
in VLBI, 361

Least-squares collocation (LSC), 241,
243–244

advantage and drawback, 243
disturbing potential

degree variances, 242–243
empirical covariance function, 243
homogeneous and isotropic covariance

function, 242
error estimation, 243
formula for signal prediction, 242
mathematical foundation, 242

Legendre functions, 196
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Leibniz Universität Hannover (LUH), 186, 255
Lens cone, 138, 139
Lense–Thirring effect, 65, 68

frame dragging test, 70–71
Lense–Thirring precession, 65, 67

angular momentum vector, 65
central rotating mass, 65
semi-major axis, 66

Level ellipsoid, 208–209
ellipsoidal systems, 209–210
mean normal gravity value, 211
normal gravity, 210–211
normal gravity field, 219
spherical harmonic expansion, 209
Taylor series, 210

Levels of detail (LOD), 178, 179
Line maps, 171, 172

stereoplotted information for, 173f
Linear array sensor cameras, 141

Leica Airborne digital scanner, 141–142
MOMS camera, 141
RGB composite image, 144
tetrachroid filter use, 143f

Linear observation equation, 162, 293, 309,
326

Local astronomical systems, 190, 191, 204
Local ellipsoidal system, 191, 192, 204
Local spherical system, 191, 192f, 199, 200,

209, 227
Longman paradox, 13
Love numbers, 2, 16, 21–25

into Green’s functions, 41
load numbers, 17, 28, 35-37

and body tide number, 23
for model a, 25t
normal numbers, 16, 25

LSC. See Least-squares collocation (LSC)
Lunar laser ranging (LLR), 54, 73, 74, 106

APOLLO, 73
ILR, 74
Kepler’s third law, 74
WEp, 73

Lunar reconnaissance orbiter (LRO), 73
Lyapunov-transformed matrices, 41

M
Mapping application, 136. See also

Photogrammetrical application
Mars, 75
Mars global surveyor spacecraft (MGS

spacecraft), 75

Mars orbiter laser altimeter (MOLA), 75
Matrix sensor cameras, 144

CCD matrix sensor, 144
covered by panchromatic mosaic, 145
digital mapping camera, 144
mass memory units, 144
panchromatic cameras, 145
pan-sharpening technique, 145–146
sensor module, 144
UltraCam, 144, 146
virtual images, 145, 147

Maxwell body, 32
Maxwell time, 33
McDonald laser ranging station (MLRS), 74
Mean sea level (MSL), 201, 204
Mean squared error (MSE), 294

ill-posed observation equation, 297
Mean tide system, 214, 215, 272
Meissl scheme, 229
Mercury laser altimeter (MLA), 75
Model space, 155, 157
Modified Allan deviation (MDEV), 77
Molodensky’s geodetic boundary value

problem
analytical continuation method, 233
scalar free GBVP, 233
telluroid, 234, 235

Molodensky’s theory, 251
Momentum equation, 6
Monolithic stitching, 147
Monte Carlo simulators, 369
Motion equations, 3

buoyancy force, 5
Eulerian description, 3
Lagrangian displacement, 3
perturbed gravity force, 4
Poisson’s equation, 4
potential of a particle, 4

Multiple-image plotting, 171
Multispectral (MS) cameras, 144
Multi-spectral (MS) channels, 142

N
National Geospatial-Intelligence Agency

(NGA), 188, 257
Near infrared (NIR) images, 145
Nearly-Diurnal Free Wobble. See Free Core

Nutation
Neptune, 353
Neutral buoyancy condition. See

Adams–Williamson condition
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N (cont.)
Newton’s law

gravitational force, 192–193
conservative vector field, 193–194
gravitational acceleration vector, 193,

194
gravitational constant, 193

gravitational potential, 194–195
ellipsoidal harmonics, 197
harmonic functions, 195
Laplace’s equation, 195, 196
Legendre functions, 196
Newtonian potential, 195
Poisson’s equation, 195
spherical harmonic expansion, 197
spherical harmonic series expansion,

197
Stokes’s constants, 196

Newtonian potential, 195
No-net-rotation (NNR), 102, 188, 349
No-net-translation (NNT), 349
Non-geocentric system, 189–190
Nonlinear Schwarzschild field contribution

accelerations, 64
alongtrack, 64
crosstrack, 64

Einstein’s field equations, 63
Schwarzschild geometry, 63
topological space, 63

Nonlinear station motions, 126
ITRF2008, 127
seasonal height variation, 126, 127

Non-rotating origin (NRO), 350
Non-tidal system. See Tide-free system
Normal gravity field, 208. See also Earth’s

gravity field; Temporal gravity field
variations

level ellipsoid, 208–211
normal gravity

potential, 208, 209
vector, 208, 209

Normal point (NP), 59
Normal point range (NPR), 59
Normal point time-of-flight (NPtof), 59
Normalized digital surface model (nDSM),

173, 174
Numerical methods, 28

Bessel functions, 29
Gauss–Lobbato distribution, 31
Gauss–Radau distribution, 31
radial displacement function, 31
spectral method, 31

O
Observatoire de la Côte d’Azur (OCA), 75
Ocean tide loading (OTL), 2

boundary conditions, 17–21
degree-1 response, 26, 27
Earth models , 21–23, 25
equations of motions, 3–5
fluid core, 12-16
Green’s functions, 35-40
Love numbers, 23
numerical methods, 28-32
resonance effects, 16–17
rheology

anelasticity, 32
creep strength of body, 34–35
Fourier-transformation, 33
viscosity, 32–33
Zener body, 33, 34

spheroidal and toroidal motions, 6-12
translational invariance, 27, 28

Open Geospatial Consortium (OGC), 178
Orthoimages, 171
Orthorectification, 178

orthoimage generation, 180
terrain point, 179
true orthos, 180-182

OTL. See Ocean tide loading (OTL)
Over-parameterized problem. See Rank

deficient linear equation system

P
Panchromatic cameras, 145
Pan-sharpening technique, 145–147

colour image, obtaining of, 146f
Parameterised post-Newtonian (PPN), 59

angular separation, 87
gravitational delay, 88
parameter estimation, 72–73
standard errors, 89

Perigee advance, 56, 63
Perigee shift estimation

in Schwarzschild gravitoelectric field, 71
in Schwarzschild gravitomagnetic field,

71–72
Periodic deformations, 349
Perturbed gravity force, 4, 20
Phase delay, 346
Phase delay rate s, 346
Photo coordinate system, 156
Photo flight planning, 149

aircraft at stage, 154
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disposition of aerial photos, 154
flight mission

planning output, 155
projection, 157

flying course, 150
flying map showing strips, 156
footprint projection, 155
ground principal point, 153
overlap in photogrammetric coverages, 150
photo flight parameters, 151, 152
photogrammetric flight missions, 150
processing, 149
radial distorted high buildings, 153
radial distortion dependency, 152
theoretical effective area, 154

Photogrammetrical application, 136
Photogrammetry, 133, 134

advantage of, 136, 137
applications for, 136–137
Cartesian coordinate system, 158
coordinate systems in, 155–158
digital photogrammetric process, 135
fiducial marks, 156
image coordinate system, 155–156
image processing, 171
integer coordinates of pixel, 156
inventions, 134–135
limitations, 137
local coordinate systems, 158
model space, 157
national coordinate system, 158
objective, 134, 155
phases, 134
pixel coordinate systems, 157
products of, 171
scheme, 158
serial-photo aerial camera, 135

Photographic image, 137
Physical geodesy

Earth’s gravity field. See Earth’s gravity
field

geoid. See Geoid
goal, 201
Newton’s law. See also Newton’s law

gravitational force, 192-194
gravitational potential, 194-197

normal gravity field. See Normal gravity
field

reference systems
Cartesian coordinate systems, 192
definition and realization, 187–188
Earth-fixed global geocentric system,

191
for Earth’s gravity field, 188

global ellipsoidal system, 192
ITRS origin, 188
local astronomical systems, 190, 191
local ellipsoidal system, 191, 192
local spherical system, 192
reference ellipsoid, 189–190
transformation matrix, 191
transformation to global system, 191,

192
TRS, 188, 189

temporal gravity field variations. See
Temporal gravity field variations

Piecewise linear offsets, 362
Poincaré-Prey reduction, 205
Poisson integral, 230
Poisson’s equation, 4, 195
Post-correlation software, 345–346
PPN. See Parameterised post-Newtonian
Precise orbit determination (POD), 61
Preliminary reference earth model (PREM), 2
PREM. See Preliminary reference Earth model

(PREM)
Principal distance, 156
Principal point of auto collimation (PPA), 156
Principal point of best symmetry (PPS)
Pseudo-random noise (PRN) numbers, 77

Q
Quasigeoid heights, EGG2008 model

error covariance function for, 271, 272
standard deviation for, 270, 272
statistics, 269, 270

Quasi-stable datum method, 331-333

R
Radial, tangential and normal (RTN)

components, 60
Rank deficient linear equation system,

327–328
RCR technique. See Remove–compute–restore

(RCR) technique
Reference ellipsoid, 189

non-geocentric system, 189–190
prime vertical radius of curvature, 189
transformation formula, 190

Reference frames, 101
Reference points positions, 103

conventional displacements, 104–105
Earth’s crust, 104
instrument displacements, 105
non-conventional displacements, 105
station position, 104
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R (cont.)
variety of motions, 103–104

Reference systems, 98–99, 101
Regularization parameter, 298–300

dependency, 302
GCV method, 306
generalized discrepancy principle, 303–304
iterative ridge method, 302, 305
L-curve method, 304–305
unit weight variance, 306

Regularized solution, 297
regularization parameter, 298-300
SVD decomposition formula, 299, 300
Tikhonov regularization, 298-301

Regularized solution performance, 306. See
also Ill-posed observation equation

constant vector, 308
design matrix, 307
eigenvalues, 308, 309
measurement vector, 307
normal matrix, 308
using Tikhonov regularization, 309

Relativistic accelerations, general, 84
Relativistic model, VLBI, 351

barycentric station vectors, 352–353
TCB gravitational delay, 353
time delay, 345
troposphere propagation delay, 345-355

Relativistic tests, using VLBI, 86–87
Relaxation time, 33–35
Remove–compute–restore technique (RCR

technique), 188, 227, 247. See also
Gravity field modeling

EGM2008 model, 248
for European quasigeoid model EGG2008,

261
harmonic correction, 249–250
high-degree geopotential models, 248
linear functional, 247
mass model, 248–249
RTM procedure, 249–251
terrain effect computation, 250–251
topographic information, 248
topographic reduction, 249

Residual terrain model (RTM), 249–251
Resonance effects, 16

Free Core Nutation, 16
ocean models, 17

Rheology, 3, 5
anelasticity, 32
creep strength of body, 34–35
Fourier-transformation, 33
momentum equation, 6
viscosity, 32–33

Zener body, 33–34
Robertson parameter, 59
Root mean square (RMS), 224, 251
rms spanned bandwidth, 346

S
Sagnac effect

in ECEF, 83
GPS, range from, 83–84
receiver position, 83
Sagnac correction, 83–84

Satellite laser ranging (SLR), 54, 56, 102,
106, 350

general relativity theory tests, 69–70
ILR, 75
Lense–Thirring effect, 70–71
LLR, 73–75
perigee shift estimation, 71
PPN parameter estimation, 72–73

GRT accelerations, 60-63
de Sitter precession, 66-69
Lense–Thirring precession, 65–66
Schwarzschild field contribution,

63-65
Shapiro delay, 59–60

Saturn, 75, 353
Scalar free GBVP, 218
Scan, 343
Sea surface height (SSH), 202
Second order Doppler effect, special relativity,

79-82
Semi-direct georeferencing. See also Indirect

georeferencing; Direct
georeferencing

crossing strips, 166
ground control configuration for blocks,

166
signal interruptions, 166

Semi-latus rectum. See Semiparameter
Semiparameter, 62
Semi-perturbed gravity parameter, 11, 15
Sensor module, 144
Sequential least squares adjustment, 314–315
Serial-photo aerial camera, 135
Shapiro delay, 59

fixed-point iteration, 59
legs range, 60
light–time equations, 59
NPR, 59
total time delay, 59

Shida number, 23
Shuttle Radar Topography Mission (SRTM),

259, 260
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Signal-to-noise-ratio (SNR), 55, 343, 346
Singular value decomposition (SVD), 295

decomposition in regularized solution, 299,
300

SLR. See Satellite laser ranging (SLR)
Smoothing function, 294
Software correlators, 345
Solution in a homogeneous sphere, 15
Somigliana-Pizetti normal field, 208
Space geodetic techniques

DORIS, 54
GNSS, 54
LLR, 54
SLR, 54
VLBI, 54

Spatial resection, 163
collinearity conditions, 162
collinearity equations, 161–162
derivatives, 163

Spectral combination technique, 237. See also
Gravity field modeling

error estimation for disturbing potential,
240

frequency transfer function, 241
global geopotential model, 237, 238
kernel features, 240
least-squares methods, 238
RCR procedure, 239
residual disturbing potential computation,

239–240
spectral weights for gravity components,

238–239
surface harmonics, 237-239
truncation error, 240–241

Spherical coordinates, 6, 189, 196
and boundary conditions, 10
Cauchy stress tensor in, 6
tesseroids, 251

Spherical harmonic coefficients. See also
Stokes’s constant

Cartesian coordinate systems, 192
definition and realization, 187–188
Earth-fixed global geocentric system, 191
for Earth’s gravity field, 188
global ellipsoidal system, 192
ITRS origin, 188
local astronomical systems, 190, 191
local ellipsoidal system, 191, 192
local spherical system, 192
reference ellipsoid, 189

non-geocentric system, 189–190
prime vertical radius of curvature, 189
transformation formula, 190

transformation matrix, 191

transformation to global system, 191, 192
TRS, 188, 189

Spherical harmonic series expansion, 197
Spherical Neumann functions, 44
Spheroidal motions

divergence-free displacements, 7
equation of motion, 7
first order equations, 10–11
numerical integration method, 11–12
poloidal part, 7
spheroidal deformations, 7–9
to tensor equations, 6
toroidal part, 7

Spirit leveling, 204
Stereocomparator, 134–135
Stereoplotting, 172

intergraph digital photogrammetric
workstation, 172, 173

stereoplotted information for line map,
172, 173

terrain breaklines, acquisition of, 175, 177
Stokes kernel, 231, 265
Stokes’s constants, 196
Stokes’s geodetic boundary value problem

consequences, 265
Faye anomalies role, 266
geoid computation, 265-267

Strong equivalence principle (SEP), 73
Symmetric, nonrotating and elastic isotropic

(SNREI), 3

T
TCB gravitational delay, 353
Telluroid, 219, 221, 234. See also Lineariza-

tion of boundary conditions
anomaly quantities, 225–226
anomaly vectors, 227
Bruns’s formula, 222–223
disturbing potential, 220
ellipsoidal height, 220
geoid undulation, 235
gradient solution, 234–235
gravity disturbance, 227
gravity disturbance vector, 221
height anomaly, 226
with level ellipsoid, 227
linear approximation, 226, 227
RCR technique, 227
with reference geopotential model, 227

Temporal gravity field variations, 212
GRACE satellite mission results, 212
gravity, atmosphere effect on, 215–216
linear geoid trends, 213
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T (cont.)
mean tide system, 214
tidal effects, 212–214
tidal potential, 214–215
tide-free system, 214
transformation formulas, 215
zero tide system, 214

Temps-Coordonnée Géocentrique (TCG), 56,
76

Terrestrial Intermediate Origin (TIO), 350
Terrestrial photogrammetry, 133–134
Terrestrial reference frame (TRF), 188, 366
Terrestrial reference system (TRS), 99, 100,

188, 352
Terrestrial time (TT), 76, 348
Theoretical delays, 348

antenna deformation, 358–359
axis offsets, 359–360
constituents of, 360–361
Earth orientation, 349–351
general relativistic model, 351-355
source structure, 360
station coordinates, at time of observation,

348–349
troposphere delay modeling, 355–358

Thomson–Haskell method, 25, 28
Three dimensional city models (3D city

models), 171
field applications, 176–178
LOD, 178

Tide-free system, 214
Tikhonov regularization, 298–299. See also

Regularization parameter
definite matrix, 301
error vector, 300–301
symmetric matrix, 301

Time delay and integration (TDI), 146
Time series per technique, 115

epoch normal equations, 116
mean station positions, standard deviations

of, 116–117
residual position time series, 116
stations and discontinuities, 116

Time-of-flight (ToF), 56
Tiny fluid sphere, 49
Transformation parameters

ITRF2008 and previous realizations,
122–123

long-term stability, 123–124
time series, 123

Triangulated Irregular Network model
(TIN model), 174, 175

Triangulation
with automatic determined tie points, 165

automatic triangulation routines, 164
block triangulation points, distribution of,

164
photogrammetric triangulation, 163
spatial similarity transformation, 163

Troposphere delay modeling, 355
direct ray-tracing, 358
GPT, application of, 357
mapping function, 355
path delay, 355
rule of thumb, 357
troposphere delay, 355
Vienna mapping functions, 356

True orthos, 180
DSM use, 180
DTM with draped orthoimage, 181
generation, 181
image processing algorithms, 181, 182

TT. See Terrestrial time (TT)

U
UltraCam large format camera, 147–148

syntopic image acquisition with, 147f
UltraCam, 144, 146, 147

high resolution virtual image parameters,
148t

RGB and CIR composite image
parameters, 148t

UltraCamD from Vexcel, 141
Universal time (UT1), 350
Unmanned aerial vehicles (UAV), 134
Unstable analysis, ill-posed problem

covariance matrix of parameters, 296
design matrix, 295
least squares solution, 294–295
measurement vector, 295
regularized solution, 296
residual vector, 297
unit weight variance, 295, 296

US–German GRACE satellite mission, 212

V
Vectorial free GBVP, 218
Vertical reference frame (VRF), 203
Vertical reference system (VRS), 203
Very long baseline interferometry (VLBI), 54,

85, 97, 339, 342, 365
antenna deformation, 358–359
axis offsets, 359–360
data acquisition, 343

Cassegrain antenna, 344
group delay, 346
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phase delay, 346
phase delay rate, 346
technique of phase calibration, 345

data analysis, 347–348
Earth orientation, 349

celestial part, 350
GCRS, 349–350
standard pole coordinates, 351
terrestrial part, 350

general relativistic tests, 86–87
geometric principle, 340

delay observable, 340–341
fringes, 341
geophysical applications, 342

gravitational delay, 85–86
least-squares adjustment, 361
PPN parameter, evaluation of, 87–89
relativistic model, 351

barycentric station vectors, 352, 353
TCB gravitational delay, 353
time delay, 345
troposphere propagation delay,

345–355
station coordinates, 348–349
technological developments, 341

bandwidth synthesis technique, 342
session-wise baseline length, 342–346

troposphere delay modeling, 355
direct ray-tracing, 358
GPT, application of, 357
mapping function, 355
path delay, 355
rule of thumb, 357
troposphere delay, 355
Vienna mapping functions, 356

Very Long Baseline Interferometry 2010
(VLBI2010), 369

broadband delay, 370
Monte Carlo simulators, 369
network distribution, 370
recommendations, 369–370
reduction of errors, 369–370

Vienna Mapping Functions 1 (VMF1), 356
Virtual image

generation, 146
panchromatic image, 147

Viscosity and anelasticity, 32
absorption-band model, 35
elementary rheological models, 32
parallel connection, 33
rheological models, 34

VLBI. See Very long baseline interferometry
(VLBI)

VLBI2010 Committee (V2C), 369
VLBI2010, 86

W
Weak equivalence principle (WEP), 73
Working Group 3 (WG3), of IVS Directing

Board, 369
Working Group 4 of IVS, 370
World Data System (WDS), 365
World Geodetic System 1984 (WGS84), 188

Z
Zener body, 32f, 33–35
Zero tide system, 214
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