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Preface

The world we live in is filled with molecules. Starting with oxygen and nitrogen
in the atmosphere, water, carbon dioxide, and ammonia are all molecules. Further-
more, plants and animals are all composed of molecules. In the field of chemistry,
which is regarded as science for molecules, it has been one of the most important
and long-lasting fundamental issues to know the geometrical structure of a variety
of molecular species around us.

Roughly speaking, there are two major methods to investigate the geometrical
structure of molecules in the gas phase. One is molecular spectroscopy and the other
is gas electron diffraction. In molecular spectroscopy, molecules are irradiated with
light or electric waves, and a diagram called a spectrum is measured. In the dia-
gram, rich information regarding the dynamics of electrons within a molecule, the
vibrational motion of nuclei within a molecule, and the overall rotational motion of
a molecule are encoded. Specifically, from the spectrum related with the rotational
motion of molecules, we can derive information which is directly connected to the
geometrical structure of molecules.

Therefore, it can be described that the most central issue in the field of molecular
spectroscopy is to know how we can extract information concerning molecular mo-
tion from an observed spectrum. If we regard a spectrum as a secret code, the issue
is nothing but decoding the code and developing the methodology on the decoding
procedure. In order to decode the spectrum and to derive information of molecules
properly, we need to realize that molecules are described by quantum mechanics.

In the present textbook, we learn that the motion of electrons in a molecule,
molecular vibration, and molecular rotation are all “quantized” and that the conse-
quence of the quantization appears vividly in the spectrum. Furthermore, we under-
stand how we can determine the geometrical structure of molecules, and simultane-
ously we appreciate the fundamentals of quantum mechanics of molecules.

On the other hand, in the gas electron diffraction experiment, we irradiate
molecules with an electron beam which is accelerated to a very high speed. Though
the electron beam is a beam of electrons, each of which is a particle, it has the char-
acter of waves. Consequently, the beam is scattered by more than one nuclei within
a molecule, and the scattering waves interfere with each other. This means that the
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vi Preface

information about the distances among the nuclei is recorded in an observed inter-
ference pattern. In the present textbook, we understand the fundamental mechanism
of the scattering of electrons by a molecule on the basis of quantum mechanics, and
in addition, we learn how the geometrical structure of molecules is determined from
such an electron diffraction image.

By reading this textbook, readers can understand that the two most direct pro-
cedures to determine the geometrical structure of molecules are an analysis of a
rotational spectrum and that of a gas electron diffraction image, and that the infor-
mation obtained from a vibrational spectrum is a prerequisite for their analyses. And
the readers can find an answer to the fundamental question, “What does the deter-
mination of the geometrical structure of molecules really mean?” through the un-
derstanding of the difference in the physical meaning of the molecular structure de-
termined by molecular spectroscopy and that of the molecular structure determined
by gas electron diffraction. When the readers study quantum mechanics, a variety
of examples related with molecules introduced in the present textbook should be
certainly helpful to appreciate the value of quantum mechanics.

I would like to note here that the kind cooperation I received from many people
enabled me to write this textbook. First of all, I would like to thank Prof. Tadamasa
Shida (Kanagawa Institute of Technology) and Prof. Koji Kaya (Institute for Molec-
ular Science, Emeritus Professor of Keio University) for giving me the opportunity
to write this textbook and for the helpful advice they offered regarding its contents.

Prof. Toshihiro Ogawa (Japan Aerospace Exploration Agency, Emeritus Profes-
sor of the University of Tokyo) and Prof. Yutaka Kondo (The University of Tokyo)
kindly pointed me to some important references and documents on an infrared emis-
sion spectrum of the Earth that had been recorded by a satellite, which is referred to
in Chap. 1. Prof. Ogawa’s guidance was invaluable as I wrote on the absorption of
infrared light by molecules in the atmosphere, and he gave me his kind permission
to print the unpublished spectra, shown as Figs. 1.5 and 1.7 in Chap. 1.

Valuable comments and kind guidance were also given to me by Prof. Yasuki
Endo (The University of Tokyo) and Prof. Satoshi Yamamoto (The University of
Tokyo) on the references on the spectra of interstellar molecules, by Prof. Kazuo
Tachibana (The University of Tokyo) on the photoabsorption of organic molecules,
by Prof. Haruki Niwa (University of Electro-Communications) on bioluminescence,
and by Dr. Tadaaki Tani (Fujifilm Co.) on photosencitizing dyes used in color pho-
tograph films. My thanks also go to Prof. Noriaki Kaifu (National Astronomical
Observatory of Japan), who gave me kind permission to include his spectra of inter-
stellar molecules. Prof. Kozo Kuchitsu (Josai University, Emeritus Professor of the
University of Tokyo) also gave me his kind permission to use his electron diffrac-
tion photographs, and offered some valuable comments on the contents of Chap. 1.
I would like to mention here that some of the materials dealt with in this textbook
are based on my research results obtained when I was a graduate student in Prof.
Kuchitsu’s research group, and those obtained when I was a staff member of the
research group of Prof. Soji Tsuchiya (now Waseda University, Emeritus Professor
of the University of Tokyo).

I am indebted to the members of my research group, Ms. Kyoko Doi, Mr. Mo-
toyuki Watanabe, Mr. Taiki Asano, Mr. Tomoya Okino, Ms. Aya Kaijiri, and Ms.
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Misato Yarumura, who have kindly read through my drafts a number of times to
help ensure the readability of the text while keeping its scientific rigorousness. Dr.
Akiyoshi Hishikawa, Dr. Kennosuke Hoshina, and Dr. Ryuji Itakura have given me
their valuable comments on the scientific content throughout the book. Mr. Takashi
Amano also gave me some valuable comments on the discussions in Chaps. 2 and 3,
and Ms. Keiko Kato on the topic of Chap. 4. I am also indebted to Dr. Kennosuke
Hoshina for carefully checking over the numerical calculations in the text and for
helping me with the illustrations of gas electron diffraction, and to Mr. Tokuei Sako
and Mr. Takashi Amano for their help on the figures explaining vibrational wave
functions in Chap. 2.

As my thanks go out to all of these people whose cooperation and support have
been invaluable to me as I wrote this book, I would like to also express my sincere
gratitude to the members of the editorial department of Iwanami Publishing Co. for
their heartfelt efforts and valuable support in editing this book.

Last but not least, I would like to thank my mother, Kiyoko Yamanouchi, who
passed away at the end of last year, for her presence and the comments she gave me
after reading through a part of the text.

I am dedicating this volume to my wife Yuko, whose constant moral support
and understanding have been indispensable as I kept on writing on weekends and
holidays, and to my two daughters, Aki and Nao, who I hope may grow up to read
this textbook in the future and give me their impressions and comments.

Kaoru YamanouchiTokyo, Japan
August 2001



Preface to the English Edition

It surprises me to note that it has now been ten years since I first published this text-
book. To my gratitude, it was welcomed by university professors and researchers in
Japan not only in the field of physical chemistry but also in physics, as a concise text-
book that teaches students fundamental ideas of quantum mechanics through discus-
sions of how geometrical structures of molecules are determined. I have since been
using this textbook in my lecture course entitled Quantum Chemistry I at the Uni-
versity of Tokyo, for undergraduate science course students in the second semester
of their second year.

Readers can learn about “a particle in a box” in Chap. 1, “harmonic oscilla-
tors” in Chap. 2, “angular momenta” in Chap. 3, and “the scattering theory and
Schrödinger’s equation for radial motion” in Chap. 4. Topics such as electronic
transitions in dye molecules, molecular vibration, molecular rotation, and electron
scattering by molecule will make it easy to grasp how useful it is to learn quantum
mechanics. Reading this textbook, students may realize that quantum mechanics is
indispensable in explaining a variety of phenomena occurring around us in our daily
life.

Because of this feature, I have decided to call the English edition of this text-
book “Quantum Mechanics of Molecular Structures,” instead of “Determination of
Molecular Structure,” which would be a direct translation of the original title in
Japanese.

I started my career as a scientist by studying microwave molecular spectroscopy
and gas electron diffraction. Even now, I can very clearly remember how much
it excited me to know how precisely I could determine the internuclear distances
and bond angles of molecules by applying these two methods. Later, I started ex-
ploring more dynamical aspects of molecules, such as chemical bond breaking and
rearrangement processes induced by light. In recent years, my major concerns have
been responses of atoms and molecules to intense laser fields,1 and my discussions

1See, for example, “K. Yamanouchi et al. eds., Progress in Ultrafast Intense Laser Science I–VIII,
(2006)–(2011)” and “K. Yamanouchi ed., Lectures in Ultrafast Intense Laser Science I (2011),” in
Springer’s Series in Chemical Physics.
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with colleagues involve how to investigate ultrafast atomic and molecular processes
in the femtosecond and attosecond2 time domains.

These topics may be seen as more advanced than those previously investigated in
the field of structural chemistry, where microwave molecular spectroscopy and gas
electron diffraction were used. Nevertheless, I am reminded of how important it is
to have concrete knowledge and understanding of how molecules rotate and vibrate
in the frontier research field.

Through the interactions between matter and ultrashort intense laser light, we can
generate light in the wide wavelength range spanning from terahertz (THz) radiation
to soft-X ray. Interestingly, we have learned that the THz radiation can be used as
an ideal light source for high-resolution rotational spectroscopy through which tran-
sitions between high-J rotational levels of molecules in the gas phase can be mea-
sured with a high-resolution, as an extension of microwave molecular spectroscopy
to a higher frequency domain. We have also recently investigated electron scattering
processes in the presence of an ultrashort light field, which is called laser-assisted
electron scattering, and found that it can be used as an ultrashort camera shutter for
probing dynamical motions of molecules by gas electron diffraction. Thus, we can
see that the classical and established research fields of molecular spectroscopy and
gas electron diffraction are now being revisited and are pushing forward the frontiers
of research.

I hope that this English edition of my textbook will be used worldwide in teaching
undergraduate courses in universities, so that science course students can compre-
hend the quantum mechanical images of molecules around us. I also hope it will
prove helpful in research scenes as a concise guidebook for molecular spectroscopy
and gas electron diffraction.

I would like to thank Dr. Norio Takemoto, a former graduate student in my re-
search group, for his help in revising some parts of the text in Chap. 2 in the Japanese
edition, and Ms. Chie Sakuta for helping me edit this English edition. My thanks
also go to Dr. Claus Ascheron, Physics Editor of Springer-Verlag at Heidelberg, for
his kind support.

Kaoru YamanouchiTokyo, Japan
March 2012

21 femtosecond is 10−15 s and 1 attosecond is 10−18 second.
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Chapter 1
The Energy and Geometrical Structure
of Molecules

When a molecule absorbs light, it gains energy and reaches a state called an excited
state. With visible or ultraviolet (UV) light, the electrons in the molecule are excited,
and with infrared (IR) light, the molecular vibration is excited. When a molecule
absorbs microwave, its molecular rotation is excited. This chapter seeks to explain
that a molecule has discrete energy levels, by looking at three familiar examples;
the color of dye molecules, the IR emission from the Earth detected by observation
satellites, and microwaves arriving from space. We will also learn that we can calcu-
late the distances among atoms within a molecule based on the scattering patterns of
high energy electron beams, and that the precise geometrical structures of molecules
can be determined by molecular spectroscopy and gas electron diffraction.

Summaries
1.1 Absorption and Emission of Light by Dye Molecules

Here we learn that various organic compounds absorb and emit light with spe-
cific wavelengths, and that all molecules have discrete energy levels. We will
reach the understanding that we can use quantum theory to estimate the size of
a molecule by looking at the wavelengths of the light that it absorbs.

1.2 Infrared Radiation from the Earth
We will see that a spectrum of the IR emitted from the Earth, as recorded by
an observation satellite, gives us information on the vibrational motion of the
molecules in the air. We will thus learn that a molecule has discrete energy
levels associated with its vibrational motion.

1.3 Microwaves Arriving from Outer Space
We learn that the spectrum of electric waves arriving from space contains sig-
nals reflecting the variety of molecules in outer space, and that a molecule has
discrete energy levels associated with its rotational motion.

1.4 The Hierarchical Structure of Molecular Energy Levels
We learn that exciting the vibrational motion of a molecule requires a photon
with 100 to 1000 times the energy as that required for exciting its rotational mo-
tion, and that exciting the motion of the electrons within a molecule requires a
photon with 10 to 100 times the energy as that required for exciting the vibra-
tional motion of this molecule.

K. Yamanouchi, Quantum Mechanics of Molecular Structures,
DOI 10.1007/978-3-642-32381-2_1, © Springer-Verlag Berlin Heidelberg 2012
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2 1 The Energy and Geometrical Structure of Molecules

1.5 The Diffraction of Electron Beams and Molecular Structures
When molecules are irradiated with an electron beam accelerated to a high
speed, interference fringes appear in the scattering pattern of the electron beam.
By examining this phenomenon, we will reach an understanding of the wave na-
ture of electrons. Then, we will learn that the geometrical structure of a molecule
can be determined from its interference fringes.

1.6 Methods of Molecular Structure Determination
We will learn how we can obtain information about molecular structures from
the electronic spectra, vibrational spectra, rotational spectra, and gas-phase elec-
tron diffraction, in this final section.

1.1 Absorption and Emission of Light by Dye Molecules

Objects surrounding us in our everyday lives have various colors. The reason we
can see these different colors is because, of the light shining on each object, be it
sunlight or the light from a lamp, certain wavelengths are efficiently absorbed by it
while the others are reflected.

For example, there are a multitude of colors characterizing flowers of different
plants. These are all due to a kind of organic compound called dyes. Examples of
dyes include such groups of chemical compounds as the carotenoid dye and the
flavonoid dye. An example of a carotenoid is the β-carotene, which is responsi-
ble for the red color found in carrots. The β-carotene is shown in the structural
formula (1.1) in the form of a bond-line formula, where the vertices represent the
locations of carbon atoms and all hydrogen atoms are omitted. An example of a
flavonoid dye, the flavonol, is given by the structural formula (1.2). This dye gives
a yellow color.

, (1.1)

. (1.2)

Another group of dye is the one called the cyanine dye, which is used as a sensitizing
dye for color photographs. For example, this is one type of cyanine dye called the
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thiacarbocyanine:

. (1.3)

This compound absorbs yellow-green light in methanol solutions. By adding an-
other adjacent pair of a double bond and a single bond to the middle section of
the molecule, lengthening the chain-like structure by one unit, we can make the
compound absorb red light instead. When we shorten the chain by one unit, on the
other hand, the compound starts to absorb blue light. Thus, this material allows us
to design dyes with different absorption wavelengths.

These compounds absorb light of each their own specific wavelengths, from
which they take the energy to be excited to a state where the electrons in each
molecule are excited, that is, an electronically excited state. Most molecules then
lose their energy by a radiationless process, in which no light emission occurs.

Aside from these cases where objects reflect light, we can also sense colors when
objects themselves emit light, whose respective wavelengths, when they are within
the visible region, are perceived by our eyes as different colors. A familiar example
of this is the light emission of fireflies. In the body of a firefly is a kind of compound
called the luciferin, which is described as

. (1.4)

When this compound is oxidized inside the body, the oxyluciferin, described as

, (1.5)

is produced in its electronically excited state. This type of electronically excited
state is what is known as a “singlet state,” and emits light, thereby reverting to a
singlet electronic ground state. The wavelength of this light lies in the region of
yellowish green, which causes our perception of this color in the light of a firefly.

As shown in the above examples, molecules can be excited from a low energy
level to a high energy level by photoabsorption, or brought down from a high energy
level to a low energy level through the process of photoemission.

In the retina of our eyes, there is a visual substance called rhodopsin. When light
is perceived, one of its constituents called the 11-cis-retinal, represented as

, (1.6)
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Fig. 1.1 Schematic illustration of a π -conjugated chain

absorbs the light. This 11-cis-retinal is known to be photoisomerized into the all-
trans-retinal,

, (1.7)

through this photoabsorption process. Incidentally, vitamin A, shown as

, (1.8)

is an alcohol form of the retinal, and the β-carotene, as previously depicted, can be
regarded as a compound consisting of two vitamin A molecules or of two retinals.
In fact, inside our bodies, β-carotene is broken down by our metabolisms to produce
vitamin A.

The dye molecules and biological molecules discussed here all have a common
structure, namely a chain of double bonds alternating with single bonds, which usu-
ally consist of carbon atoms. In the moiety of a carbon chain or a benzene ring,
the carbon atoms form a type of electron orbital called the sp2 hybridized orbital,
which aligns the σ bonds onto the x-y plane. The pz orbital, which does not partic-
ipate in the hybridization, stands perpendicular to the plane, and forms alternating
π bonds, as illustrated by the dashed lines in Fig. 1.1a. It seems also likely, how-
ever, that these π bonds between carbon atoms may be shifted onto their neighbors,
so that the representation can be regarded as Fig. 1.1b. These dual possibilities are
schematically expressed as line-bond figures in Fig. 1.2.
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Fig. 1.2 A π -conjugated
chain in a bond-line formula

It is a known fact that a π bond accommodates two electrons, which must be
localized in the region between those specific carbon atoms. However, when the π

bond shifts to the adjacent pair of carbon atoms, as shown in Fig. 1.2, the electrons
initially localized in the first π bond transfer to the region of the second pair of atoms
and are localized as their π electrons. From the point of view of each π electron,
then, what this means is that the chain of π bonds allows it to be delocalized over
the whole region of this chain. Such a molecular chain made up of π bonds is called
a conjugated system of π bonds, or a π -conjugated chain. The word “conjugate”
comes from the two Latin words, “con” (two or together) and “jugate” (join).

We have just looked at an example of a π -conjugated system that comes in the
form of a chain, to understand its structure. However, benzene, of course, also forms
a π -conjugated system. In this case, we can visualize the π -electrons as delocalizing
throughout the benzene ring, as they shift between two Kekulé structural formulae,

. (1.9)

The example of the cyanine dye tells us that, by extending the region through
which the electrons can move around, we can lengthen the photoabsorption wave-
length of the molecule. This also means that, conversely, by measuring the photoab-
sorption wavelength of a molecule, we can gain information about its length and
size, or more generally about its molecular structure.

Let us now overview the relationship between the optical wavelength and energy
of light. Using the Planck constant h (= 6.62606876 × 10−34 J s) and the optical
frequency ν, the energy of the light, ε, is given by

ε = hν. (1.10)

This can be interpreted as the energy of a photon whose frequency is ν. Using the
velocity of the light, c (= 2.99792458 × 108 m s−1), the optical wavelength λ is
related to ν by

c = λν, (1.11)

so that we can write

ε = hν = hc · 1

λ
. (1.12)
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Fig. 1.3 The relationship between the length of a π -conjugated chain and its absorption wave-
length

This signifies that the energy of light is proportional to the ν, or to 1
λ

the reciprocal
of the wavelength.

Therefore, we can understand from the fact that a cyanine dye with a short
π -conjugated chain absorbs light with short wavelengths that the energy hc

λ
of the

photon that it absorbs is larger than that absorbed by a cyanine dye with a longer
π -conjugated chain, and that this causes the shorter-chain molecule to be excited to
an electronically excited state of higher energy, as illustrated in Fig. 1.3.

For an accurate understanding of the relationship between the eigenenergy and
size of a molecule, we need to describe the electron motion within the π -conjugated
chain in terms of quantum theory. Let us for example determine the length of the
π -conjugated chain of β-carotene, using the wavelength of the light that it absorbs.

According to quantum theory, the energy levels for a particle of mass m which
moves within a box-type potential of length L are given by

En = h2

8mL2
n2, (1.13)

where n is an integer whose magnitude is not less than 1. With β-carotene, we can
regard the π -conjugated chain as a one-dimensional box into which all electrons are
confined. In such a case, as the particle in question is an electron, we can substitute
the mass of an electron, me = 9.10938188 × 10−31 kg, for m in Eq. (1.13). As the
π -conjugated chain is composed of 11 π bonds, each of which is composed of two
electrons, a total of 22 π electrons exist in the π -conjugated chain. Designating
the levels by n = 1,2, . . . and their respective energies by E1,E2, . . . , and mapping
them in sequence from the bottom as shown in Fig. 1.4, we can use the knowledge
that each level holds two electrons, one with an upward electron spin and the other
with a downward spin, to infer that eleven levels, denoted as n = 1,2, . . . ,11, are
required to contain all of the π electrons. The level denoted by n = 11 here is called
the Highest Occupied Molecular Orbital, or HOMO. The numbers designating such
discrete energy levels are called quantum numbers.

When light is absorbed, one of the electrons occupying the n = 11 level of
β-carotene is excited to the n = 12 level, which is called the Lowest Unoccupied
Molecular Orbital, or LUMO. Thus the energy hν of the absorbed photon is equal
to the difference between E11 and E12. The wavelength at which light absorption by
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Fig. 1.4 Excitation from
HOMO to LUMO induced by
the photoabsorption of
β-carotene

β-carotene reaches its maximum is known to be λ = 450 nm. Using this wavelength,
we can obtain L, the length of the π -conjugated chain for β-carotene.

First, the energy of the absorbed photon can be described as

hν = hc

λ
. (1.14)

The energy difference between the two levels is derived from Eq. (1.13) as

E12 − E11 = h2

8meL2

(
122 − 112) = 23h2

8meL2
. (1.15)

As these two energies become equal at λ = 450 nm, we can write

23h2

8meL2
= hc

λ
, (1.16)

which allows us to derive the length of the π -conjugated chain, L, as

L =
√

23hλ

8mec
. (1.17)

By substituting the values for h, me, and c, as well as λ = 450×10−9 m, into this
equation, we obtain L = 1.77 × 10−9 m = 17.7 Å. When we use the standard bond
lengths for a C–C bond and a C=C bond instead, the length of the π -conjugated
chain of β-carotene is estimated to be approximately 25 Å. Comparing these two
values, we can see that the estimation of 17.7 Å, obtained from the box-type poten-
tial model, is reasonably good.

1.2 Infrared Radiation from the Earth

Infrared light is electromagnetic radiation whose wavelength ranges from 1 to
100 µm. Of the range of electromagnetic waves that is categorized as light, what
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Fig. 1.5 Infrared radiation
spectrum of the Earth
observed by the IMG
(Interferometric Monitor for
Greenhouse gases) mounted
on ADEOS (the Advanced
Earth Observing Satellite)

we call infrared light, or the infrared beam, belongs to the region of the longest
wavelengths. Electromagnetic waves with longer wavelengths than infrared light
are categorized as microwave (whose wavelength range is from 1 mm to 1 m), and
are commonly classified as electric waves rather than light. Electromagnetic waves
in the wavelength rage of 100 µm to 1 mm are called far-infrared light, or terahertz
(THz) waves.

When an electric heater glows red, it emits electromagnetic radiation covering
a wide range of wavelengths from visible light centering around the red color to
infrared light. Our very perception of its warmth is caused by the skin tissue on
the surface of our bodies absorbing such electromagnetic radiation and thus being
excited, their energy then to be converted into heat and cause a rise in temperature
on our body surface.

Emission and absorption of infrared light are ubiquitous events. It is also some-
thing that happens on the global scale, as the Earth’s surface constantly emits in-
frared light and the air both absorbs it and emits it. In this sense, we can say that the
emission and absorption of infrared light is an important factor governing the global
environment.

Today, satellites equipped with infrared detectors have been sent into orbit around
the Earth to investigate the global atmospheric environment, and they monitor light
in the infrared wavelength region emitted from the surface of the Earth. The spec-
trum shown in Fig. 1.5 gives an example of measurements performed by a satellite
sent into orbit at the altitude of 800 km. The term “spectrum” is applied to a diagram
which plots the transmittance or emission intensity of light, along the ordinate, as
a function of its wavelength or wave number, a reciprocal of the wavelength, along
the abscissa. In the case of this figure, the ordinate represents the radiation intensity
of the infrared light.

Before we discuss this figure in depth, let us explain the idea of wave numbers,
which here are plotted on the abscissa. A wave number is defined as the reciprocal
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Fig. 1.6 Absorption and
emission of infrared light by a
CO2 molecule

of a wavelength of light, as

ν̃ = 1

λ
, (1.18)

and is usually expressed in the unit of cm−1. In other words, a wave number de-
scribes how many periods of waves there are in 1 cm of light waves. Thus from Eqs.
(1.12) and (1.18), we can write the energy of light as

ε = hcν̃. (1.19)

The unit cm−1 used for wave numbers is called the reciprocal centimeter, or simply
the centimeter-minus-one. In the past, the symbol K has been used, pronounced as
“kayser,” but this unit is no longer in use today.

When the wavelength of light is 5 µm, for example, the corresponding wave
number is derived as

ν̃ = 1

5 × 10−6 m
= 1

5 × 10−4 cm
= 2000 cm−1.

This value can be easily converted into the energy of the light, by multiplying it
by hc. For green light with the wavelength of 500 nm, the wave number is calculated
as

ν̃ = 1

500 × 10−9 m
= 1

5 × 10−5 cm
= 20000 cm−1.

Thus we see that a photon of visible light whose wavelength is 500 nm = 0.5 µm
has ten times the energy of a photon of infrared light with the wavelength of 5 µm.

One thing that we notice in Fig. 1.5 is that the radiation intensity of the observed
light gradually decreases as the wave number increases, or the infrared light emit-
ted from the Earth becomes weaker the shorter its wavelength. This pattern of the
radiation intensity corresponds to the intensity distribution of black body radiation
at 295 K, indicating that the surface temperature of the Earth is 295 K. Now, what
merits our attention is that there are three dips in this spectrum, appearing at around
700, 1040, and 1600 cm−1. These dips in intensity are known to be caused by the
carbon dioxide (CO2), ozone (O3), and water (H2O) molecules in the atmosphere,
as they each absorb infrared light of specific wavelengths.

In the case of CO2, for example, we know that a molecule absorbs infrared light
of around 667 cm−1 and vibrates in what is called a bending vibration mode (the ν2
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Fig. 1.7 (a) Magnified view of Fig. 1.5 around the area of the ν2-mode absorption band for CO2;
(b) Relationship between the observed transitions and energy levels; The three digit numbers such
as 010 given in the figure signify the vibrational quantum numbers for the symmetric stretching
vibration, the bending vibration, and the anti-symmetric stretching vibration, respectively, from
left to right

mode), where its skeletal structure bends back and forth. This means that, by absorb-
ing this infrared light, CO2 is excited to its vibrationally excited state, as schemati-
cally shown in Fig. 1.6. The energy gained by the infrared photoabsorption may be
lost from the vibrationally exited molecule through a photo emission process, or it
may be converted into kinetic energy when the CO2 molecule collides with another
molecule in the atmosphere. It is also possible for a vibrationally excited molecule
to receive energy through a collision with another molecule and be excited to a state
with even higher vibrational energy. Of the infrared light emitted by vibrationally
excited CO2 molecules, most is absorbed again by other CO2 molecules in the at-
mosphere.

As has been described, molecules in the atmosphere such as CO2 continuously
repeat the cycle of absorption and emission of infrared light, as well as collide with
each other randomly, which induce excitation and de-excitation. As a consequence,
radiation equilibrium and thermal equilibrium are both achieved at any given time.
Another significance of the atmosphere containing infrared-absorbing molecules is
that the infrared light emitted from the surface of the Earth becomes trapped by
these molecules and thus less likely to escape into outer space. It follows, therefore,
that if the concentration of molecules in the atmosphere that absorb infrared light at
a higher efficiency increases, then more infrared light is trapped in the atmosphere,
causing the atmospheric temperature to rise. This is what we commonly call the
greenhouse effect.

Taking into consideration the above discussion, we cannot regard the observed
emission spectrum of infrared light shown in Fig. 1.5 as a simple result of the
molecules in the atmosphere absorbing the infrared light emitted by the Earth. This
point becomes clearer when we look at Fig. 1.7(a), which gives us a magnified view
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of the spectral region surrounding 667 cm−1 in Fig. 1.5. In the center of Fig. 1.7(a)
around 667 cm−1, we see a thick, intense peak protruding upward. This peak in-
dicates that we have observed infrared light being emitted from CO2 molecules as
they change their state from the state in which bending vibration is excited to the
state in which it is not. The two thick downward peaks seen on both sides of this
upward peak, on the other hand, at around 618 cm−1 and 721 cm−1, correspond to
the infrared absorption that occurs when molecules in the bending excited state are
further excited to the two levels with higher vibrational energies. As illustrated in
Fig. 1.7(b), these two states are formed as a mixture of the state in which the bending
vibration is doubly excited and the state in which the two C=O bonds stretch and
shrink in phase, through a mechanism called Fermi resonance. These two adjacent
levels produced by Fermi resonance are referred to as the Fermi doublet.

Let us see why, then, the peak at 667 cm−1 is observed as an emission peak, and
the two peaks on the sides of it as absorption peaks. With CO2, its photoabsorption
efficiency for infrared light around 667 cm−1 is extremely large, so that this range
of infrared light emitted from the surface of the Earth is almost entirely trapped by
the atmosphere as it propagates through the troposphere (0 to 20 km) and the strato-
sphere (15 to 50 km). This results in the infrared light emitted from CO2 molecules
around the top of the stratosphere (at altitudes exceeding 30 km) emerging in the
observation as an emission peak. On both sides of this, on the other hand, there are
areas where the absorption efficiencies of CO2 are not so large, which is where the
two peaks originating from the Fermi doublet are observed. Thus the spectral pro-
file of the infrared light absorbed by the atmosphere near the surface of the Earth is
maintained until it reaches the satellite, and this causes the two peaks to appear as
absorption peaks.

In Fig. 1.7(a), we can also observe sharp, spike-like peaks on both sides of the
peak at 667 cm−1, as well as on both sides of the two Fermi-doublet peaks. These
peaks can be attributed to the rotational structure of CO2 molecules, which appears
in the spectrum thanks to the wavelength resolution of this spectral measurement
being as high as 0.05 cm−1.

As we will learn in Sect. 3.6, such a type of spectrum is called a vibration-rotation
spectrum. The thick central peak is referred to as the Q-branch (	J = 0), the suc-
cession of sharp peaks on the side of it with higher wave numbers as the R-branch
(	J = 1), and the succession of sharp peaks on the other side, where the wave
numbers are low, as the P-branch (	J = −1). The J used in the parentheses ( ) here
is called a rotational quantum number, which will be further discussed in Chap. 3,
Rotating Molecules.

An important lesson that we can draw from the spectrum in Fig. 1.5 is that each
molecular species, such as CO2, O3, or H2O, has a specific set of vibrationally
excited levels with its own designated energies. The dip appearing in this spec-
trum around 1040 cm−1 is ascribed to a vibrational motion of O3 called the anti-
symmetric vibrational motion (the ν3 mode), and the broad dip around 1600 cm−1

to the bending vibration (the ν2 mode) of H2O. These facts show that the energy of
molecular vibration takes only discrete values, and that these values are intrinsic to
the respective molecular species. In Chap. 2, Vibrating Molecules, we will discover
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Fig. 1.8 The spectrum of the Taurus Dark Cloud observed at the Nobeyama Astronomical Obser-
vatory. The vertical axis represents the emission intensity, as converted into temperature. J stands
for the rotational quantum number. For instance, J = 3 signifies the microwave radiation that ac-
companies a transition from the level of J = 4 to the level of J = 3

why the energy of molecular vibration takes discrete values by looking at the issue
from the perspective of quantum theory.

1.3 Microwaves Arriving from Outer Space

In the field of radio astronomy, scientists study celestial bodies and interstellar sub-
stances by detecting electric waves in the region spanning microwaves and radio
waves, or those with wavelengths from 1 mm to 30 m, which reach the Earth from
outer space. Figure 1.8 shows the overall spectrum obtained by pointing a radio
telescope toward the dark nebula in the constellation Taurus called TMC-1 (the
Taurus Molecular Cloud 1). As annotated in the figure, the sharp peaks record mi-
crowaves radiated from mainly linear molecules, such as HC3N (H–C≡C–C≡N),
HC5N (H–C≡C–C≡C–C≡N), and HC7N (H–C≡C–C≡C–C≡C–C≡N). Observa-
tions of such spectra have made it clear that many kinds of molecular species exist
in interstellar spaces.

An important thing to note here is that each molecular species radiates mi-
crowaves of specific frequencies. We should also pay attention to the fact that peaks



1.4 The Hierarchical Structure of Molecular Energy Levels 13

Fig. 1.9 Absorption and
emission of microwave by
HC3N

belonging to the same molecular species are spaced at regular intervals in terms of
frequency. For instance, the strongest peak observed in Fig. 1.8 is the transition of
HC3N, assigned as J = 3, and its frequency is roughly

ν = 36.4 GHz = 36.4 × 109 s−1,

its wavelength

λ = c

ν
= 0.824 cm.

Expressed in terms of wave numbers, this becomes

ν̃ = 1

λ
= 1.21 cm−1.

The energy of this microwave is about 1000 times smaller than the vibrational level
energies discussed in Sect. 1.2.

In fact, what causes this microwave radiation is the change of the state of the
molecules from their rotationally excited state (J = 4) to a rotationally less excited
state (J = 3), as illustrated in Fig. 1.9 (where J is the rotational quantum number).
This shows us that the energy produced by the rotational motion of a molecule
always takes a discrete value, as was the case with the vibrational motion.

We can also see from Fig. 1.8 that the intervals between adjacent peaks are nar-
rower the longer the molecules, which hints to us that observing the energy gaps be-
tween rotational levels can lead to the determination of molecular structures. These
intervals between adjacent peaks are in fact nearly equal to twice the values of what
is called the rotational constants of the molecules. A rotational constant, in turn, is
known to be inversely proportional to the moment of inertia of each molecule.

Therefore, by observing a rotational spectrum, we can calculate the moment of
inertia of the molecule, and determine the structure of the molecule. In Chap. 3, Ro-
tating Molecules, we examine this rotational motion of molecules from the stand-
point of quantum theory, and discuss discrete energy levels and molecular structures.

1.4 The Hierarchical Structure of Molecular Energy Levels

As we have seen, we can irradiate molecules with light of specific wavelengths to
excite them to a higher energy level. Such levels are classified into three types:
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Fig. 1.10 The hierarchical structure of the energy levels of molecules

the level of the electronically excited state, that of the vibrationally excited state,
and that of the rotationally excited state.

To excite a molecule to its electronically excited state, what is used is light in
the visible or ultraviolet region, and the energy of its photons is 5 × 104 to 1 ×
104 cm−1 in most cases. To excite a molecule to its vibrationally excited state, light
in the infrared region is used, and the energy of its photons is usually 4 × 103 to
1 × 102 cm−1. For the rotationally excited state, microwave is used, and the energy
of its photon tends to be 2 to 0.5 cm−1. This relationship found in the energy levels
of molecules is illustrated in Fig. 1.10. What this shows is the hierarchical nature
of energy levels, which is a characteristic feature of molecules, as they have three
different types of excited states, electronic, vibrational, and rotational.

We will examine molecular vibration and molecular rotation in depth, from the
point of quantum theory, in Chaps. 2 and 3, respectively. As will be discussed in
Chap. 3, molecular vibration and rotation can occur simultaneously. This molecular
state corresponds to the state in which both vibration and rotation are excited, as
shown in Fig. 1.10. As we will learn in Chap. 3, we can determine the geometrical
structure of a molecule from the energy of its rotational level. We can also determine
molecular structures from rotational structures observed in vibrational spectra.

Another powerful method for determining the structures of molecules is the elec-
tron diffraction method. Chapter 4, Scattering Electrons, is concerned with grasping
the principles of this method through a discussion based on the quantum theory of
electron scattering. Let us briefly take a look at this electron diffraction method in
the next section.
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Fig. 1.11 An electron
diffraction photograph (a)
and the molecular structure of
carbon tetrachloride
(CCl4) (b)

1.5 The Diffraction of Electron Beams and Molecular Structures

An experiment performed by Davidsson, Germer, Kikuchi, and Thompson in the
late 1920s revealed that a diffraction image can be observed when we irradiate an
accelerated electron beam onto a solid target such as metallic foil. This is a well-
known case of the electron being shown to have the property of a wave. The wave-
length of this electron is expressed as

λ = h

mev
, (1.20)

where me stands for the mass of the electron and v for the speed of the electron.
When we view particles as waves, such as in this case, these waves are called matter
waves or de Broglie waves. With electron beams, increasing the accelerating voltage
causes the speed v to increase and the wavelength λ to decrease.

Due to such wave-like properties of electrons, we can observe highly interesting
phenomena when we irradiate molecules in the gas phase with an electron beam. In
an electron diffraction experiment, we accelerate electrons to around 10 to 60 keV
and irradiate the gas target with them to record the scattered electrons on a pho-
tographic plate. Figure 1.11(a) shows one such electron diffraction photograph of
carbon tetrachloride (CCl4).

A point worth noting in this photograph is that we can observe in it a clear repe-
tition of concentric rings formed by the dark and light shades of gray, which spread
from the central area to the circumference. These characteristic patterns are called
halos, taking its name from a term that originally refers to the ring of light often
observed around the Sun or the Moon. When we observe such patterns of electron
scattering, the density of electrons around the center becomes very high, with the
number of scattered electrons rapidly decreasing as the distance from the center
increases. Therefore, in order to obtain clearer halos we use a method called the
rotating sector method, which reduces the number of electrons to reach the photo-
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graphic plate the closer they are to the center. The electron diffraction photograph
shown in Fig. 1.11(a) is taken using such a rotating sector.

When we irradiate an electron beam onto a group of atoms, on the other hand,
we do not observe any halos. What we see in the case of atoms is a monotonic
decline in the intensity of the scattered electron beam from the center outward. Halos
are observed only with molecules because they are the result of the two scattered
electron waves caused by each pair of atoms within each molecule interfering with
each other. This situation can be compared to the way in which two sets of ripples
interfere with one another on a water surface when we simultaneously throw in
two stones at adjacent spots. Obviously, molecules in the gas phase point in various
directions in space, with no spatially fixed alignment. However, as we will discuss
in detail in Chap. 4, Scattering Electrons, when all of the interference patterns of
the electrons scattered by the randomly oriented molecules add up together, what
emerges is a pattern of halos such as the one shown in Fig. 1.11(a).

Let us then first consider a case where electrons are scattered by a triatomic
molecule ABC, which can be, for example, a SO2 or OCS molecule. The electrons
form an interference pattern as they are scattered by atoms A and B, while at the
same time they form another interference pattern as they are scattered by atoms B
and C, and yet another as they are scattered by atoms A and C, even though this
last pair of atoms are not directly linked by a chemical bond. Halos created by
triatomic molecules are thus observed as a sum of these three types of interference
patterns. In the case of carbon tetrachloride, too, we can look at the creation of the
halos in a similar vein. A carbon tetrachloride molecule is known to have a regular
tetrahedral structure as schematized in Fig. 1.11(b). There are four sets of atom
pairs between the C atom and the Cl atoms to be found in this molecule, and these
are all equivalent. Thus when electrons reach a carbon tetrachloride molecule as a
wave, they are scattered by these four atom pairs to produce the same interference
pattern. At the same time, there are six combinations of two Cl atoms to be found,
none of them chemically bound, and all of these can be considered to give the same
interference pattern, too. Therefore, the halos to be observed are created as a sum of
these two types of interference patterns.

To explain this in more detail, we will now turn to some simulations of the molec-
ular scattering curve which take the scattering degree of the electron as the vertical
axis, and a variable s, called the scattering parameter, as the horizontal axis. We
can assume that the scattering parameter is proportional to the distance of the point
on the photographic plate where electrons hit as measured from the center of the
circle shown in Fig. 1.11(a) in the direction of the radius. Now, the effect of the
interference caused by the four sets of combinations between a C atom and a Cl
atom can be represented by the molecular scattering curve shown in Fig. 1.12(b).
This expresses a sine function with a specific period, whose amplitude decreases as
s increases. When we Fourier transform this function, we can see that it consists of
one component, as shown in Fig. 1.12(e).

This type of figure is called a radial distribution curve, and its horizontal axis
represents the internuclear distance between the two atoms within the molecule.
Thus, we can calculate the internuclear distance between the C atom and each of
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Fig. 1.12 A simulated
molecular scattering curve
(sM(s)) (a) and radial
distribution curve (D(r)) (d)
for CCl4. The contribution of
each type of atom pair in
sM(s) is given in (b) and (c)
and that in D(r) is given in
(e) and (f)

the Cl atoms from the molecular scattering curve. Turning next to the interference
effect caused by the six non-bonded atom pairs between two Cl atoms, we obtain a
molecular scattering curve as shown in Fig. 1.12(c). When we Fourier transform this
function, we can obtain the radial distribution curve shown in Fig. 1.12(f). When we
compare Figs. 1.12(b) and 1.12(c), we see that the interval between adjacent dark
shades in halos is smaller for the atom pair with the longer internuclear distance.

What we have discussed so far are the results of simulation. In reality, the inter-
ference pattern created by the four pairs of the C and Cl atoms and the one created by
the six pairs between Cl atoms are observed at once, superimposed upon each other.
Therefore the overall interference pattern observed as a molecular scattering curve
will be as shown in Fig. 1.12(a), which is the sum of Figs. 1.12(b) and 1.12(c). We
can in fact explain the dark and light shades constituting the halos in Fig. 1.11(a) by
the interference pattern of Fig. 1.12(a). When we Fourier transform this molecular
scattering curve, we obtain a radial distribution curve that has two peaks, as shown
in Fig. 1.12(d). Needless to say, the positions of these two peaks reflect the inter-
nuclear distances of the C–Cl bond and of the non-bonded atom pair Cl · · ·Cl. By
synthesizing the interference patterns using these internuclear distances as variables
so that they reproduce the observed interference patterns in the actual photograph,
we obtain r(Cl–Cl) = 1.767 Å and r(Cl · · ·Cl) = 2.888 Å.

So far we have used the word “internuclear distance” to express the distance be-
tween two atoms, but sometimes this distance is called the “interatomic distance.” In
many cases these two terms are used interchangeably, but when we discuss molec-
ular geometry in this textbook, we are not taking into account the positions of the
electron in each atom, so it would be more appropriate to use the term “internu-
clear distance.” It is for this reason that we adopt this terminology throughout this
book, whether we are talking about molecular structures determined by molecular
spectroscopy or those calculated by the electron diffraction method.
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Fig. 1.13 Methods of determination of the geometrical structure of molecules using molecular
spectroscopy and gas electron diffraction

As we have briefly shown in this section, it is possible to determine the geo-
metrical structure of molecules by using the phenomenon where electron beams
are scattered by molecules. In Chap. 4, Scattering Electrons, we will examine the
scattering process from the point of view of quantum mechanics, to better under-
stand the meaning of the molecular structures determined from electron diffraction
images that are obtained through scattering. One issue that will be discussed, for
instance, is the fact that the peaks shown in Fig. 1.12(d) have a width, which points
to a certain distribution range that must be present in internuclear distances. Does
this then mean that the structure of molecules is fluctuating? Such questions will
be answered when we learn the quantum mechanics of the vibrational motion of
molecules in Chap. 2, Vibrating Molecules.

Finally, when we fully recognize the different meanings of the molecular struc-
tures determined by the electron diffraction method and those determined by the
method discussed in Chap. 3, Rotating Molecules, we will have reached a funda-
mental understanding concerning the nature of the motion and geometrical struc-
ture of molecules as they exist in the microscopic universe governed by the law of
quantum mechanics.

1.6 Methods of Molecular Structure Determination

The way in which the methods discussed so far contribute to the determination of
molecular structures is shown schematically in Fig. 1.13, and as a flow chart in
Fig. 1.14. In molecular spectroscopy, we obtain the energies of discrete levels of a
molecule by taking advantage of the absorption and emission of light observed in
molecules. To determine the geometrical structure of a molecule, we mainly look
for the energy level associated with its rotational motion, so that we can calculate
the moment of inertia for the molecule. Once we have the moment of inertia, we
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can determine the distances between the atoms that compose the molecule, or the
internuclear distances. We can also determine the molecular structure of a molecule
at its electronic ground state or its electronically excited state by observing the ro-
tational structure of its absorption and emission spectra of the electronic transition
in the visible and ultraviolet regions. An alternative to these spectroscopic meth-
ods is the electron diffraction method discussed in Sect. 1.5. When molecules are
in the gas phase, their geometrical structures have been determined though rota-
tional structures observed in the molecular spectroscopic method as well as through
electron diffraction images obtained by the electron diffraction method.



Chapter 2
Vibrating Molecules

When we visualize the geometrical structure of molecules, we think of it as a static
image consisting of bond lengths and angles. In reality, however, chemically bound
atoms are constantly changing their positions with each other. This dynamical mo-
tion is called molecular vibration. A point of note is that this vibration is qualita-
tively different from what has been described as vibration in classical mechanics.
As introduced in Chap. 1, the energy of molecular vibration can only take discrete
values. Explaining this experimental observation requires the introduction of quan-
tum mechanics. In this chapter, we will learn how to treat molecular vibration us-
ing quantum mechanics. We also seek to understand the meaning of eigenenergy
and eigenfunction in quantum mechanics by looking at the case of molecules. Fi-
nally, we will discover that the number of normal modes based on which the vi-
brational form of polyatomic molecules can be described is equal to the number of
vibrational degrees of freedom, by taking triatomic molecules as a concrete exam-
ple.

Summaries
2.1 How to Describe Vibrating Molecules

The vibration of diatomic molecules are treated within the theory of classical
mechanics. We will learn that in classical mechanics, energy is transferred be-
tween kinetic energy and potential energy.

2.2 Molecular Vibration in Quantum Theory
The harmonic oscillator, a model for diatomic molecules, will be discussed
within quantum theory. We will learn that, by solving the Schrödinger equa-
tion, we can obtain the discrete energy level as the eigenvalue and the vibrational
wave function as the eigenfunction. We will demonstrate that the form of the po-
tential can be determined by observing the infrared absorption, and investigate
the characteristics of the eigenfunction of the harmonic oscillator.

2.3 The Harmonic Oscillator and Its Applications
Using the eigenfunction of the harmonic oscillator, we will learn how to calcu-
late the expectation value and evaluate the matrix elements. We will also learn
how to use creation and annihilation operators in the evaluation of perturbation

K. Yamanouchi, Quantum Mechanics of Molecular Structures,
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energy. We will then introduce the Morse potential, which is a model for the po-
tential of real molecules, and will develop a better understanding of molecular
vibration by reference to experimental data.

2.4 The Inversion Motion of Ammonia Molecules
We seek to further our understanding of the inversion motion of ammonia
molecules from the standpoint of quantum mechanics. We will note that the
existence of a double-minimum potential can be identified in the observed spec-
trum of infrared absorption. Then we will learn that the wave packet, which is a
superposition of wave functions, evolves with time and causes inversion motion.

2.5 How to Treat the Vibration of Polyatomic Molecules
After reviewing the degrees of freedom of vibration, we discuss the vibration
of polyatomic molecules, which consist of three or more atoms. In particular,
we learn that, in classical mechanics, there are modes of vibration in which a
molecule vibrates as a whole along the normal coordinates. These modes are
called normal modes. Then we discuss quantum theory, in which a harmonic
oscillator is assigned to each normal mode, and the wave function of the whole
molecule is described as the product of the wave functions of these harmonic
oscillators. To derive a normal mode vibration, we introduce the internal coor-
dinates, and learn the GF matrix method with concrete examples. Furthermore,
we will discuss real molecules with anharmonicity, and learn that their multi-
dimensional potential energy surfaces and wave functions are obtained from the
experimental spectral data.

2.1 How to Describe Vibrating Molecules

Let us take a diatomic molecule AB, and identify the masses of the constituent atoms
A and B as mA and mB. In classical mechanics, the kinetic energy T is given by

T = 1

2
mAv2

A + 1

2
mBv2

B

= 1

2
(mA + mB)

∣∣∣∣
mAvA + mBvB

mA + mB

∣∣∣∣

2

+ 1

2

(
mAmB

mA + mB

)
|vA − vB|2 (2.1)

where vA and vB are the time derivatives of the three-dimensional position vectors
of the corresponding atoms: vA = drA

dt
, vB = drB

dt
. When the molecule is thought of

as two atoms bound with a spring, the potential energy V can be approximated by

V = 1

2
k(rAB − re)

2 (2.2)

using the distance between A and B, rAB = |rB −rA|. Here, re represents the atomic
distance where the potential energy is 0. This distance is called the equilibrium
internuclear distance, and the subscript “e” stands for “equilibrium.” As for k(> 0),
this is the spring constant. From here on, the spring constant will be called the force
constant. When the form of the potential represented as a function of a displacement
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is given by a second-order function as in Eq. (2.2), it is called a harmonic potential.
Therefore, in this approximation, the diatomic molecule is treated as a harmonic
oscillator.

The first term of Eq. (2.1), a representation of kinetic energy, describes the kinetic
energy of the center of mass of the entire molecule. What we are interested in is
the relative motion of atoms in the molecule, so we set aside the overall center-of-
mass motion, and focus solely on the second term, which represents the vibrational
energy. Thus, the reduced mass μ is defined as

μ = mAmB

mA + mB
, (2.3)

and therefore, the total energy H of the molecular vibration is given by

H = [the second term in Eq. (2.1)] + V

= 1

2
μ|vA − vB|2 + 1

2
k(rAB − re)

2. (2.4)

The H here is called the Hamiltonian of the molecular vibration.
Molecular vibration is described as a motion on the straight line that connects

the atoms A and B, so it is convenient if we align this line with the x axis. When
we consider a system where the value of B’s x coordinate xB is larger than the
value of A’s x coordinate xA (xB > xA), the internuclear distance xAB is xAB =
xB − xA, and the x coordinate is represented as the deviation from the equilibrium
internuclear distance, which is given by x = xAB − re. That is, the origin on the
x axis is the point where xAB is equal to the equilibrium internuclear distance re.
So the Hamiltonian of the molecular vibration can be reduced to one dimension and
simply given by

H = 1

2
μv2

x + 1

2
kx2

= 1

2μ
p2

x + 1

2
kx2 (2.5)

where vx = dx
dt

= dxAB
dt

is the time derivative of x and px = μvx is the momentum.
Equation (2.5) shows that molecular vibration can be described as the motion of a
particle whose mass is μ.

The equation of the motion of a particle in classical mechanics is known to be

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (2.6)

where L is

L = T − V (2.7)

and the time derivative of x is ẋ = dx
dt

. This equation is called Lagrange’s equation,
and L is called the Lagrangian. In this system, T and V are

T = 1

2
μẋ2, V = 1

2
kx2,
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Fig. 2.1 Potential energy
curve of diatomic molecule
AB and the definition of the
internuclear distance

so Lagrange’s equation becomes

μẍ = −kx, (2.8)

where ẍ represents the second-order time derivative ẍ = d
dt

ẋ = d2x

dt2 , that is, acceler-
ation. Equation (2.8) is Newton’s equation of motion where the restoring force f is
f = −kx.

This equation can be solved easily. For example, defining A as a positive con-
stant, x is written as

x = A sinωt (ω > 0). (2.9)

The time dependence of this value is illustrated in Fig. 2.2(i). Since the left-hand
side of this equation becomes −μω2A sinωt , and the right-hand side becomes
−kA sinωt , we obtain the following equation by comparing these two coefficients:

k = μω2. (2.10)

Therefore, x = A sinωt is the solution of the differential equation (2.8) when

ω =
√

k

μ
. (2.11)

Naturally, either the formula illustrated in Fig. 2.2(ii)

x = A sin(ωt + δ) (δ is a constant which satisfies 0 � δ < 2π) (2.12)

or the formula illustrated in (iii)

x = A cosωt (2.13)

can be the solution of Eq. (2.8) when ω =
√

k
μ

. This type of motion is called simple

harmonic oscillation. In classical mechanics, harmonic oscillators can be said to
perform simple harmonic oscillations.

Of the three solutions (2.9), (2.12), and (2.13), Eq. (2.12) can be thought of as the
general solution, since it matches Eq. (2.9) when δ = 0, and it matches Eq. (2.13)
when δ = π

2 . The value of δ is determined by the initial conditions.
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Fig. 2.2 Motion of a mass
point in a harmonic potential

If Eq. (2.12) is given the initial condition of displacement x = 0 when t = 0, then
from 0 = A sin δ we obtain δ = 0, π , that is x = A sinωt or x = −A sinωt . In both
cases, the kinetic energy T and the potential energy V of this vibrational motion are
calculated as:

T = 1

2
μẋ2 = 1

2
μ(ωA cosωt)2

= 1

2
μω2A2 cos2 ωt, (2.14)

V = 1

2
kx2 = 1

2
kA2 sin2 ωt

= 1

2
μω2A2 sin2 ωt. (2.15)

These equations are plotted in Fig. 2.3. T and V alternately repeat an increase and
a decrease as time lapses. At time t = 0, π

ω
, 2π

ω
, . . ., V = 0 and all of the energy

exists as kinetic energy T = 1
2μω2A2. As V = 0, the displacement x is x = 0, and

as shown in Fig. 2.1, the internuclear distance is xAB = re. That is, the velocity is
the maximum when passing through this point x = 0. On the other hand, at time
t = π

2ω
, 3π

2ω
, 5π

2ω
, . . . , T = 0 and V = 1

2μω2A2 sin2(ω · π
2ω

) = 1
2μω2A2, showing that

all of the energy that existed as kinetic energy at t = 0 becomes potential energy.
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Fig. 2.3 Time evolution of
the kinetic energy T and the
potential energy V of a
harmonic oscillator (a) and
that of the sum of T and
V (b)

Next, the total energy H is calculated by

H = T + V = 1

2
μω2A2. (2.16)

This shows that H has no time dependence and is a constant which is proportional to
the squared amplitude A2. Therefore, by changing the amplitude A, we can change
the energy of the vibrational motion continuously.

In Chap. 1, the energy of the vibration of a molecule is introduced as a discrete
value which is unique to each molecular species. However, as we have discussed in
this subsection, the energy cannot be discrete as long as the vibration of diatomic
molecules is treated in classical mechanics. This does not allow us to explain the
experimental observation that molecules absorb light with specific wavelengths, in-
ducing the excitation of vibrational motions. In order to introduce the notion of
discreteness of energy, molecular vibration needs to be treated in quantum mechan-
ics.

2.2 Molecular Vibration in Quantum Theory

In the previous section, we have treated the vibration of diatomic molecules in clas-
sical mechanics. When a diatomic molecule is thought of as a harmonic oscillator,
its vibration is described as a simple harmonic oscillator and the kinetic energy and
the potential energy have time dependence as illustrated in Fig. 2.3. However, in
classical mechanics, there is the problem of the energy not being discrete. There-
fore, we now turn to quantum mechanics, the mechanics for describing the motion
of microscopic particles, to treat the motion of harmonic oscillators. Here, we use
the word “quantum theory” to refer to discussions and treatments based on quantum
mechanics.
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2.2.1 Quantizing the Harmonic Oscillator

Following the procedure of quantum theory,

x → x̂, (2.17)

px → −i�
∂

∂x
, (2.18)

where the Hamiltonian in classical mechanics is changed into the operator, and we
obtain the one-dimensional Schrödinger equation

Ĥψ = Eψ. (2.19)

The operator x̂ in Eq. (2.17) means multiplication of x. As it is cumbersome to add
a caret( ˆ ) to each operator, however, from here on operators are written without the
carets.

In quantum theory, solving the Schrödinger equation (2.19) under the boundary
condition which satisfies the wave function ψ(x), E is obtained as an eigenvalue and
ψ(x) is calculated as its corresponding eigenfunction. Usually, the wave function
ψ(x) is required to be finite, continuous, and single-valued.

In the case of one-dimensional harmonic oscillators, the concrete form of the
Schrödinger equation is given by

− �
2

2μ

d2

dx2
ψ(x) + 1

2
kx2ψ(x) = Eψ(x). (2.20)

The potential term of this equation consists solely of terms proportional to x2. As
previously discussed, potentials such as this are called harmonic potentials. At x →
±∞, the potential term 1

2kx2 reaches infinity. For E to remain a finite value, ψ(x)

must become ψ(x) → 0 at x → ±∞. This is the boundary condition which ψ(x)

has to satisfy.

2.2.2 The Energy Level of the Harmonic Oscillator

Before solving the Schrödinger equation (2.20), let us go over some basic consid-
erations. Firstly, in Eq. (2.20), when the potential energy is equal to the eigenvalue,
that is, when

1

2
ka2 = E (2.21)

holds at x = a, the eigenfunction ψ(x) satisfies
[

d2

dx2
ψ(x)

]

x=a

= 0. (2.22)

Equation (2.22) signifies that there is an inflection point on the wave function ψ(x)

at x = a.
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In the range x � a, the term 1
2kx2ψ(x) is much larger than the term Eψ(x).

Thus, in such an asymptotic region where the absolute value of x is large, ψ(x) sat-
isfies the following relation:

�
2

2μ

d2

dx2
ψ(x) = 1

2
kx2ψ(x). (2.23)

The solution of this equation is easily obtained, as shown below.
To simplify matters, we describe the force constant k as

k = μω2 (2.24)

where ω is the angular frequency of the harmonic oscillator in the corresponding
system of classical mechanics. Equation (2.23) can then be expressed as

d

dξ2
ψ(ξ) = ξ2ψ(ξ), (2.25)

where ξ is

ξ =
√

μω

�
x (2.26)

and, using β , which is
μω

�
= β, (2.27)

ξ is

ξ = √
βx. (2.28)

Here, the function of ξ which is obtained by exchanging the x in ψ(x) for x =√
�

μω
ξ should strictly be represented by a symbol other than ψ . However, as there

is little possibility of confusion, in Eq. (2.25) and in the following discussion, ψ(ξ)

is treated as the function where the x in ψ(x) is substituted by x =
√

�

μω
ξ .

Problem 2.1
Using the ξ given by Eq. (2.26), show that Eq. (2.23) can be described as Eq. (2.25).

Solution
From Eq. (2.26), x =

√
�

μω
ξ , so that

d2

dx2
= μω

�

d2

dξ2
,

1

2
kx2 = 1

2
μω2 �

μω
ξ2 = 1

2
�ωξ2.

Thus, Eq. (2.23) becomes

�
2

2μ

μω

�

d2

dξ2
ψ(ξ) = 1

2
�ωξ2ψ(ξ),

then

d2

dξ2
ψ(ξ) = ξ2ψ(ξ). �
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The asymptotic solution of Eq. (2.25) when ξ → ±∞ is

ψ(ξ) = Ce± 1
2 ξ2

(2.29)

where C is a coefficient. If we take the + sign in the exponent, ψ(x) → ∞ at
ξ → ±∞ (i.e., at x → ±∞). This cannot be the case because it fails to satisfy the
boundary condition, ψ(x) → 0. Therefore, in the asymptotic region of ξ → ±∞,
the solution of Eq. (2.25) is

ψ(ξ) = Ce− 1
2 ξ2

, (2.30)

which satisfies the boundary condition.
Thus, we can write the solution of the Schrödinger equation (2.20) as

ψ(ξ) = u(ξ)e− 1
2 ξ2

(2.31)

using the series expansion of ξ ,

u(ξ) = a0 + a1ξ + a2ξ
2 + · · · . (2.32)

The reason why we use this expansion is that, as long as u(ξ) only has finite order
terms, the asymptotic behavior at ξ → ±∞ is dominated by the exponential part
and satisfies ψ(ξ) → 0. Using ξ , the Schrödinger equation (2.20) is written as

d2ψ

dξ2
+

(
α

β
− ξ2

)
ψ = 0 (2.33)

where α is
2μE

�2
= α. (2.34)

With Eq. (2.31), the first term on the left-hand side of Eq. (2.33) is given as

d2ψ

dξ2
= d2

dξ2

(
u(ξ)e− 1

2 ξ2) =
{

d2u

dξ2
− 2ξ

du

dξ
+ (

ξ2 − 1
)
u

}
e− 1

2 ξ2
,

so that Eq. (2.33) becomes

d2u

dξ2
− 2ξ

du

dξ
+

(
α

β
− 1

)
u = 0. (2.35)

Problem 2.2
Prove that the Schrödinger equation (2.20) can be written with ξ = √

βx as
Eq. (2.33).

Solution
From x = 1√

β
ξ , we can derive d2

dx2 = β d2

dξ2 . Using this, Eq. (2.20) is written as

− �
2

2μ
β

d2ψ

dξ2
+ 1

2
μω2 ξ2

β
ψ = Eψ,

that is,

d2ψ

dξ2
+ 2μE

�2β
ψ −

(
μ2ω2

�2β2
ξ2

)
ψ = 0.
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Then, with β = μω
�

, α = 2μE

�2 , we obtain

d2ψ

dξ2
+

(
α

β
− ξ2

)
ψ = 0. �

Next, the series expansion of u(ξ), Eq. (2.32), is substituted into Eq. (2.35). Then,
comparing the same-order terms, Eq. (2.35) is written as

∑

n=0

{
(n + 2)(n + 1)an+2 − 2nan +

(
α

β
− 1

)
an

}
ξn = 0. (2.36)

For this equation to hold regardless of the value of ξ , the inside of { } has to be 0. In
other words, an+2 is given by an as

an+2 = 2n + 1 − α
β

(n + 2)(n + 1)
an. (2.37)

This is a recurrence formula, which signifies that if a0 is determined, its coefficients
a2, a4, a6, . . . can be calculated, and if a1 is determined, a3, a5, a7, . . . can be calcu-
lated.

Then the question is how far the polynomial u(ξ) extends. If we suppose that
the number of its terms is infinite, the value of u(ξ) around ξ → ∞ will be the
same as eξ2

. We can see this by comparing the coefficients of the series expansion
corresponding to ξ . The expanded form of eξ2

will be

eξ2 = 1 + ξ2 + ξ4

2! + · · · + ξ2n

n! + ξ2n+2

(n + 1)! + · · · , (2.38)

which can be written as

eξ2 = b0 + b2ξ
2 + b4ξ

4 + · · · + b2nξ
2n + b2n+2ξ

2n+2. (2.39)

By taking the ratio of the coefficient of the ξ2n term and that of the ξ2n+2 term,

b2n+2

b2n

= n!
(n + 1)! = 1

n + 1
. (2.40)

Then, the substitution 2n = m yields

bm+2

bm

= 1
m
2 + 1

, (2.41)

which shows that, when m is sufficiently large, the ratio of the coefficients can be
written as

bm+2

bm

∼ 2

m
. (2.42)

Meanwhile, Eq. (2.37) shows that, when n is sufficiently large, the ratio of the
coefficients of the series expansion of u(ξ) is

an+2

an

∼ 2n

n · n = 2

n
. (2.43)
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This ratio is the same as the ratio of the expansion coefficients of eξ2
, as can be

shown from Eq. (2.42) with m replaced by n. Thus we can see that, if the series
expansion shown in Eq. (2.32) continues infinitely, then the value of u(ξ) will be
dominated by the high-order terms when ξ is sufficiently large, causing it to coincide
with eξ2

. The wave function ψ(ξ) is given by Eq. (2.31), so at ξ → ±∞ we obtain

ψ(ξ) → eξ2 · e− ξ2

2 = e
ξ2

2 , which diverges infinitely. As wave functions have to be
finite, we see that there must be a problem with u(ξ) being treated as an infinite
polynominal series. Thus u(ξ) is required to end at a finite number of terms, which
in turn demands that the numerator of the ratio obtained from Eq. (2.37), that is,

an+2

an

= 2n + 1 − α
β

(n + 2)(n + 1)
, (2.44)

be 0 at some n. This gives us

(2n + 1) − α

β
= 0. (2.45)

By recovering the original variables in α and β using Eqs. (2.34) and (2.27), this
can be written as

En = �ω

(
n + 1

2

)
= hν

(
n + 1

2

)
(n = 0,1,2, . . .) (2.46)

where the eigenenergy of an assigned n is represented by En, because each n gives
a different eigenenergy.

Equation (2.46) is what shows that the vibrational motion of a diatomic molecule
can only have specific discrete energies. When a system is in a state where its en-
ergy is discrete, it is described as being quantized. Each of the states which have
their specific energies is called a quantum level, or simply a level, and the number
which assigns that level is called the quantum number. Using these terms, we can
summarize what we have studied so far as follows.

When the potential energy of the vibrational motion of a diatomic molecule is
given by V (x) = 1

2μω2x2, that is, when the diatomic molecule is treated as a one-
dimensional harmonic oscillator, its vibrational energy is quantized and the energy
of each of its vibrational levels is described by its quantum number n as

En = �ω

(
n + 1

2

)
.

This signifies that the vibrational energy obtains �ω each time the vibrational num-
ber n increases by 1, and cannot have any intermediate value. This is illustrated in
Fig. 2.4.

As Fig. 2.4 clearly shows,

E0 = 1

2
�ω, E1 = 3

2
�ω, E2 = 5

2
�ω, . . . ,

and the difference of energy between each pair of neighboring levels is equally �ω.
The equality of the energy separations between quantum levels is a characteristic
feature of quantized harmonic oscillators. This also means that the lowest energy



32 2 Vibrating Molecules

Fig. 2.4 A harmonic
potential and the energy
levels of a quantized
harmonic oscillator

level has a finite energy value E0 = 1
2�ω > 0. In other words, the energy never

becomes 0. This energy of the lowest energy level is called the zero-point energy.
The level where n = 0 is called the vibrational ground level, and its state is called
the vibrational ground state. By contrast, a level (state) where n � 1 is called a
vibrationally excited level (state).

2.2.3 Determination of Potentials by Infrared Absorption

Using what we have learned about the quantization of harmonic oscillators, we will
now see that the shape of the potential for molecular vibration can be determined by
the infrared absorption of molecules. As introduced in Sect. 1.2, a molecule is ex-
cited into a higher energy level by absorbing infrared light of a specific wavelength.
In the case of heteronuclear diatomic molecules such as HCl or CO, a molecule
in the vibrational ground state (n = 0) is excited into the first vibrationally excited
state (n = 1) by absorbing infrared light.

When we view a diatomic molecule as a harmonic oscillator, the energy differ-
ence between the n = 1 state and the n = 0 state is written as

	E = E1 − E0 = �ω,

as can be seen from Eq. (2.46) or from Fig. 2.4. When the frequency of the infrared
light is denoted as νIR, the energy of this light is written as hνIR. It is only when
this energy is equivalent to the energy difference between the vibrational states, that
is, when hνIR = �ω, that this infrared light is absorbed by the molecules and the
molecules are excited.

In the case of H35Cl, the infrared absorption from n = 0 to n = 1 is observed
at ν̃IR = 2886.0 cm−1. Converting the wave number into energy by Eq. (1.19), this
observation shows that

hcν̃IR = �ω (2.47)
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holds. Therefore, the force constant k, which has been given in Eq. (2.24), can be
written with ν̃IR as

k = μω2 = μ(2πcν̃IR)2. (2.48)

This becomes k = 4.808 × 102 N/m when we substitute the numerical values.
The force constant k determines the shape of the harmonic potential V (x) =

1
2kx2. Similarly, in the case of polyatomic molecules such as CO2, O3 and H2O,
which are introduced in Sect. 1.2, the shape of the potential for the molecular vibra-
tion can be determined through the measurement of the wave number of the infrared
absorption.

Problem 2.3
Confirm that the force constant k of H35Cl is k = 4.808 × 102 N/m, using m(H) =
1.0079 amu and m(35Cl) = 34.9689 amu as the masses of H and Cl.

Solution
The reduced mass is μ = m(H)m(35Cl)

m(H)+m(35Cl)
= 0.97966 amu.

We can obtain k by substituting this μ value and the observed ν̃IR value into
Eq. (2.48). �

Problem 2.4
Find the equation that gives the wave number ν̃IR [cm−1] for the infrared absorption
from n = 0 to n = 1, using the force constant k [N/m] and the reduced mass μ

[amu].

Solution
Equation (2.48) can be written as

ν̃IR = 1

2πc

√
k

μ
. (2.49)

Therefore,

ν̃IR [cm−1] = 1.3028 × 102

√
k [N/m]
μ [amu] . (2.50)

�

Problem 2.5
Determine the wave number of the infrared absorption of D35Cl from n = 0 to
n = 1. Use m(D) = 2.0141 amu as the mass of D (deuteron).

Solution
The vibrational potential remains the same when H is replaced by D. Thus, substi-

tuting k = 4.808 × 102 N/m and μ = m(D)m(35Cl)
m(D)+m(35Cl)

= 1.904 amu into Eq. (2.50), we

obtain ν̃IR(DCl) = 2070 cm−1. This is a good estimation, as the observed absorp-
tion frequency is ν̃obs

IR = 2083.9 cm−1. The difference between the estimated and
observed values indicates that the potential is not perfectly harmonic. �
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2.2.4 Eigenfunctions of Harmonic Oscillators

We have learned that the quantization of a harmonic oscillator results in the expres-
sion of eigenenergy En as Eq. (2.46). Then, our next goal is to find the wave function
ψn(ξ) which has the eigenenergy En. To this end, we must obtain the concrete form
of the finite polynomial series u(ξ) which has been introduced as Eq. (2.31).

Substituting the quantization condition (2.45) into the differential equation (2.35)
of u(ξ), we can write

d2u

dξ2
− 2ξ

du

dξ
+ 2nu = 0. (2.51)

This equation is known as the Hermite differential equation.
The u(ξ) which satisfies this differential equation is known as the Hermite poly-

nomial Hn(ξ), and can be defined as

Hn(ξ) ≡ (−1)neξ2 dn

dξn
e−ξ2

. (2.52)

Equation (2.51) can be written with Hn(ξ) as

d2Hn(ξ)

dξ2
− 2ξ

dHn(ξ)

dξ
+ 2nHn(ξ) = 0. (2.53)

When we calculate Eq. (2.52), we obtain the polynomials as follows:

H0(ξ) = eξ2
e−ξ2 = 1,

H1(ξ) = (−1)eξ2 d

dξ
e−ξ2

= (−1)eξ2
(−2ξ)e−ξ2

= 2ξ,

H2(ξ) = 4ξ2 − 2.

Problem 2.6
Obtain H3(ξ) by calculating Eq. (2.52) for n = 3.

Solution

d3

dξ3

(
e−ξ2) = d2

dξ2

{
(−2ξ)e−ξ2} = d

dξ

{
(−2)e−ξ2 + (−2ξ)2e−ξ2}

= 12ξe−ξ2 − 8ξ3e−ξ2
.

Therefore,

H3(ξ) = (−1)3eξ2(
12ξe−ξ2 − 8ξ3e−ξ2) = 8ξ3 − 12ξ. �

Table 2.1 shows Hn(ξ) (n = 0, . . . ,4). Plotting these Hermite polynomials as
functions of ξ , we can see that the number of points where the value of the polyno-
mial becomes 0 (these points are called zeros) increases by one each time n increases
by one.
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Table 2.1 Hermite
polynomials H0(ξ) = 1

H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

H4(ξ) = 16ξ4 − 48ξ2 + 12

Fig. 2.5 Eigenfunctions
ψn(ξ) (n = 0,1,2) of a
harmonic oscillator

The number of zeros in Hn(ξ) is n. For example, in the case of H3(ξ) = 8ξ3 −
12ξ , which is a third-order function of ξ , the curve intersects the ξ axis (i.e., the

horizontal axis) at three points, ξ = −
√

3
2 ,0,

√
3
2 , which become the zeros.

Substituting the Hermite polynomial given above into Eq. (2.31), we can write
the wave function of a harmonic oscillator as

ψn(ξ) = NnHn(ξ)e− 1
2 ξ2

, (2.54)

where Nn is the normalizing constant, and will be obtained in Sect. 2.2.6. For n =
0,1,2,

⎧
⎪⎪⎨

⎪⎪⎩

ψ0(ξ) = N0e− 1
2 ξ2

,

ψ1(ξ) = N1(2ξ)e− 1
2 ξ2

,

ψ2(ξ) = N2(4ξ2 − 2)e− 1
2 ξ2

.

(2.55)

These eigenfunctions are plotted as shown in Fig. 2.5. In the case of n = 0, the wave
function is a Gauss-type function, which can also be called a Gaussian. In the case of
n = 1, the wave function as a whole is an odd function, and consists of the product
of an odd function 2ξ and an even function, the Gaussian. This wave function has its
only node at ξ = 0 and approaches asymptotically to 0 at ξ → ±∞ due to the factor

of e− 1
2 ξ2

. In the case of n = 2, the wave function is the product of the Gaussian and
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Fig. 2.6 Eigenenergies and
eigenfunctions of a harmonic
oscillator

a quadratic function which is convex downward and crosses the ξ axis at two points.
Therefore this wave function has two nodes and approaches 0 when ξ → ±∞. We
note here that the parity of a wave function alternates even → odd → even . . . as n

increases from n = 0.
Furthermore, the number of zeros in a wave function increases from 0, 1, 2, . . . as

the quantum number n increases from n = 0,1,2, . . . , in correspondence with the
number of zeros in the Hermite polynomial. These zeros, that is, the points at which
ψ(x) crosses the x axis, are called the nodes of a wave function.

The eigenenergies (eigenvalues) and the corresponding eigenfunctions of a har-
monic oscillator are shown in Fig. 2.6 as a three-dimensional image. It illustrates
that an increase of n by one leads to the increase of energy by �ω and the addition
of another node to the wave function.

2.2.5 The Hermite Recurrence Formula

The Hermite polynomial Hn(ξ) found in the wave function of a harmonic oscillator
is known to satisfy the Hermite recurrence formula as follows:

Hn+1(ξ) = 2ξHn(ξ) − 2nHn−1(ξ). (2.56)

This equation is useful because it allows us to obtain Hn+1(ξ) from Hn(ξ) and
Hn−1(ξ). Using H0(ξ) = 1 and H1(ξ) = 2ξ , as have previously been obtained from
Eq. (2.52), we can easily calculate H2(ξ) with the recurrence formula above:

H2(ξ) = 2ξ(2ξ) − 2 · 1 · 1 = 4ξ2 − 2.

Problem 2.7
Obtain the Hermite polynomial H3(ξ) using the recurrence formula (2.56).

Solution
Substituting H1(ξ) = 2ξ and H2(ξ) = 4ξ2 − 2 into Eq. (2.56) gives us

H3(ξ) = 2ξH2(ξ) − 2 · 2 · H1(ξ) = 2ξ(4ξ2 − 2) − 2 · 2 · 2ξ

= 8ξ3 − 12ξ. �
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The recurrence formula (2.56) is proved as follows. Firstly, we take the fact that

dn+1

dξn+1
e−ξ2 = −2ξ

dn

dξn
e−ξ2 − 2n

dn−1

dξn−1
e−ξ2

(2.57)

and multiply both sides of this equation from the left by (−1)n+1eξ2
. Using (2.52),

we can immediately obtain the Hermite recurrence formula:

Hn+1(ξ) = 2ξHn(ξ) − 2nHn−1(ξ).

Problem 2.8
Prove Eq. (2.57).

Solution
Performing the differentiation on the left-hand side of Eq. (2.57),

dn+1

dξn+1
e−ξ2 = dn

dξn

(−2ξe−ξ2)

dn

dξn

(−2ξe−ξ2) = dn−1

dξn−1

{
(−2)e−ξ2 + (−2ξ)

d

dξ
e−ξ2

}

= (−2)
dn−1

dξn−1
e−ξ2 + dn−1

dξn−1

{
(−2ξ)

d

dξ
e−ξ2

}
.

Similarly,

dn−1

dξn−1

{
(−2ξ)

d

dξ
e−ξ2

}
= (−2)

dn−1

dξn−1
e−ξ2 + dn−2

dξn−2

{
(−2ξ)

d2

dξ2
e−ξ2

}

dn−2

dξn−2

{
(−2ξ)

d2

dξ2
e−ξ2

}
= (−2)

dn−1

dξn−1
e−ξ2 + dn−3

dξn−3

{
(−2ξ)

d3

dξ3
e−ξ2

}

...

dn−(n−1)

dξn−(n−1)

{
(−2ξ)

dn−1

dξn−1
e−ξ2

}
= (−2)

dn−1

dξn−1
e−ξ2 + dn−n

dξn−n

{
(−2ξ)

dn

dξn
e−ξ2

}
.

Summing up both sides of these equations leads to

dn+1

dξn+1
e−ξ2 = −2ξ

dn

dξn
e−ξ2 − 2n

dn−1

dξn−1
e−ξ2

. �

It can also be proved that Hn(ξ) satisfies the Hermite differential equation (2.53)
by making use of the recurrence formula (2.56). From Eq. (2.52) we immediately
derive

dHn(ξ)

dξ
= −Hn+1(ξ) + 2ξHn(ξ). (2.58)

Problem 2.9
Confirm Eq. (2.58).
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Solution

By definition, Hn(ξ) = (−1)neξ2 dne−ξ2

dξn . Therefore,

dHn(ξ)

dξ
= (−1)neξ2 dn+1e−ξ2

dξn+1
+ (−1)n(2ξ)eξ2 dne−ξ2

dξn

= −Hn+1(ξ) + 2ξHn(ξ). �

Comparing Eqs. (2.56) and (2.58) gives

dHn(ξ)

dξ
= 2nHn−1(ξ). (2.59)

Thus, calculating the second-order differential part of Hn(ξ) using Eqs. (2.58) and
(2.59) leads to the following:

d2Hn(ξ)

dξ2
= d

dξ

(−Hn+1(ξ) + 2ξHn(ξ)
)

= −dHn+1(ξ)

dξ
+ 2ξ

dHn(ξ)

dξ
+ 2Hn(ξ)

= −2(n + 1)Hn(ξ) + 2ξ
dHn(ξ)

dξ
+ 2Hn(ξ)

= −2nHn(ξ) + 2ξ
dHn(ξ)

dξ
.

This is no other than the Hermite differential equation

d2Hn(ξ)

dξ2
− 2ξ

dHn(ξ)

dξ
+ 2nHn(ξ) = 0.

2.2.6 The Eigenfunction System of a Harmonic Oscillator

The eigenfunction of a harmonic oscillator (2.54)

ψn(ξ) = NnHn(ξ)e− 1
2 ξ2

is called a Hermite-Gaussian function because it is expressed as the product of the

n-th order Hermite polynomial Hn(ξ) and the Gaussian e− 1
2 ξ2

. Now we are going
to calculate the integral

I =
∫ ∞

−∞
ψ∗

n (ξ)ψn(ξ)dx (2.60)

to obtain the normalization constant Nn. Here, ψ∗
n (ξ) stands for the complex conju-

gate of ψn(ξ). The integral I is called the scalar product (inner product) of the wave
function (cf. Sect. 2.3). The asterisk on the upper right of a wave function stands
for its complex conjugate. Here, ψn(ξ) is a real function and ξ = √

βx. Therefore,
Eq. (2.60) is calculated as follows by converting the integral variable x to ξ :
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I = (Nn)
2

∫ ∞

−∞
H 2

n (ξ)e−ξ2
dξ/

√
β

= (Nn)
2

∫ ∞

−∞
dnHn(ξ)

dξn
e−ξ2

dξ/
√

β. (2.61)

Problem 2.10
Derive Eq. (2.61).

Solution

J =
∫ ∞

−∞
H 2

n (ξ)e−ξ2
dξ =

∫ ∞

−∞
(−1)nHn(ξ)e−ξ2 dne−ξ2

dξn
e−ξ2

dξ

=
∫ ∞

−∞
(−1)nHn(ξ)

dne−ξ2

dξn
dξ

= (−1)n
[
Hn(ξ)

dn−1e−ξ2

dξn−1

]∞

−∞

− (−1)n
∫ ∞

−∞
dHn(ξ)

dξ
· dn−1e−ξ2

dξn−1
dξ.

The value of the inside of [ ] in the first term becomes 0 at ξ → ±∞, and thus only
the second term remains. Repeating this partial integration n times gives

J =
∫ ∞

−∞
dnHn(ξ)

dξn
e−ξ2

dξ.

This verifies that Eq. (2.61) holds. �

As Hn(ξ) is an n-th order polynomial of ξ , dnHn(ξ)
dξn is a constant. To be more

specific, from Eq. (2.59) it is calculated to be

dnHn(ξ)

dξn
= 2nn!.

Therefore,

I = (Nn)
22nn!

∫ ∞

−∞
e−ξ2

dξ/
√

β

= (Nn)
22nn!

√
π

β
, (2.62)

using
∫ ∞

−∞
e−ξ2

dξ = √
π.

The normalization condition demands I = 1 (cf. Sect. 2.3), so

(Nn)
2 = 1

2nn!
√

β

π
.
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Therefore, the normalization constant is obtained as

Nn =
(

1

2nn!
√

β

π

) 1
2 =

(
1

2nn!
√

μω

π�

) 1
2

. (2.63)

Any two eigenfunctions in the eigenfunction system {ψn(x)} = {ψ0(x),ψ1(x),

ψ2(x), . . .} are orthogonal to each other. That the two wave functions ψm(x) and
ψn(x) (m 	= n) are orthogonal to each other means that their scalar product, defined
as

∫ ∞
−∞ ψ∗

m(x)ψn(x)dx, is 0. This can be confirmed by calculation. First, the scalar
product becomes

∫ ∞

−∞
ψ∗

m(x)ψn(x)dx =
∫ ∞

−∞
NmNnHm(ξ)Hn(ξ)e−ξ2

dξ/
√

β

= (−1)n
∫ ∞

−∞
NmNnHm(ξ)

dne−ξ2

dξn
dξ/

√
β. (2.64)

Then, the differential of e−ξ2
can be converted to that of Hm(ξ) by partial inte-

gration, as has been done in deriving Eq. (2.61). If m is chosen so that m < n, the
right hand side of integral (2.64) will be

(−1)n+m+1
∫ ∞

−∞
NmNn

dm+1Hm(ξ)

dξm+1

dn−m−1

dξn−m−1
e−ξ2

dξ/
√

β.

Since Hm(ξ) is an m-th order polynomial of ξ , dm+1Hm(ξ)

dξm+1 = 0. Thus,
∫ ∞

−∞
ψ∗

m(x)ψn(x)dx = 0. (2.65)

In the case of m > n, too, the same calculation with m exchanged for n proves
that ψm(x) and ψn(x) are orthogonal to each other. Therefore, Eq. (2.65) is valid
whenever m 	= n.

This orthogonality of eigenfunctions in the case of m 	= n stems from the fact
that the Hamiltonian H of a harmonic oscillator is an operator called the Hermitian
operator (explained in Sect. 2.3). Eigenfunctions belonging to different eigenvalues
of a Hermitian operator are orthogonal to each other. We call {ψn(x)} an orthog-
onal function system, because it is an ensemble of functions orthogonal to each
other. When its members are normalized, it is called an orthonormal function sys-
tem. Thus, the eigenfunctions of a harmonic oscillator form an orthonormal function
system.

2.3 The Harmonic Oscillator and Its Applications

In the preceding section, we have taken harmonic oscillators as the model of di-
atomic molecules, and learned that quantum theory only allows their energies to
take discrete values. Our next question is what kind of values kinetic and potential
energies can take. As has been illustrated with HCl, in the case of heteronuclear
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diatomic molecules, molecules in the n = 0 state are excited into the n = 1 state
by absorbing an amount of energy equal to the energy difference between the two
states. Then, is it possible for molecules in the n = 0 state to be excited into the
n = 2 state? To answer these questions, in this section we will learn about the ex-
pectation values of operators and the matrix elements of operators.

Taking diatomic molecules as an example, to calculate the expectation values
of coordinate operators is to determine the average internuclear distance of the
molecules. In addition, when an operator ĥ represents a transition dipole moment,
the probability of the atomic or molecular system being excited from the eigen-
state ψn into ψm is proportional to the quantity | ∫

ψ∗
mĥψn dτ |2 = |〈m|ĥ|n〉|2. As

this shows, describing atoms and molecules governed by the law of quantum the-
ory generally involves the calculation of hmn = 〈m|h|n〉 = ∫

ψ∗
mhψn dτ , where the

operator ĥ stands for a physical quantity. In these equations, m and n are numbers
specifying states, and correspond to the vibrational quantum numbers in the case of
harmonic oscillators. When the system is in the n-th state, the diagonal element hnn

of the matrix is the expectation value of the operator ĥ.
In this section, we will calculate matrix elements using eigenfunctions of har-

monic oscillators, and apply it to determining expectation values of energy and se-
lection rules in vibrational spectra.

2.3.1 Hermitian Operators and the Bracket Notation

All operators representing physical quantities such as positions, momenta, and en-
ergies are classified as Hermitian operators. A Hermitian operator is defined as an
operator Ĥ for which the equation

∫
ψ∗

mĤψn dτ =
(∫

ψ∗
n Ĥψm dτ

)∗
(2.66)

holds with arbitrary wave functions ψm and ψn. In this equation, dτ , representing
an infinitesimal volume, is given by

dτ = dx dy dz

when integrations are performed in the three-dimensional space. It follows that
∫

ψ∗
mĤψn dτ =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗

mĤψn dx dy dz. (2.67)

Furthermore, in the case of one-dimensional integrations on the x axis for the one-
dimensional harmonic oscillators, which we have dealt with in the previous section,
dτ is equal to dx. Then it follows that

∫
ψ∗

mĤψn dτ =
∫ ∞

−∞
ψ∗

mĤψn dx. (2.68)

Equation (2.66) reflects the fact that a diagonal element of the matrix,
∫

ψ∗
n Ĥψn dτ ,

is always a real number. This is a requirement because diagonal elements of matrices
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are expectation values of physical quantities. From here on, the caret symbol in Ĥ

will be omitted.
By using the definition in Eq. (2.66), it can readily be illustrated that the eigen-

values of Hermitian operators are real numbers. Here, we express a wave function
of Hermitian operator H as ψn and its eigenvalue as εn. Then,

Hψn = εnψn. (2.69)

By multiplying this from the left by ψ∗
n and integrating it, we find

∫
ψ∗

nHψn dτ = εn

∫
ψ∗

nψn dτ. (2.70)

On the other hand, it follows from Eq. (2.69) and the definition in Eq. (2.66) that
∫

ψ∗
nHψn dτ =

(∫
ψ∗

nHψn dτ
)∗

= ε∗
n

∫
ψ∗

nψn dτ. (2.71)

Equations (2.70) and (2.71) lead to

εn

∫
ψ∗

nψn dτ = ε∗
n

∫
ψ∗

nψn dτ,

or
(
εn − ε∗

n

) ∫
ψ∗

nψn dτ = 0. (2.72)

Moreover, ψ∗
nψn dτ , which is equal to |ψn|2 dτ , is proportional to the probability

with which the system in the state ψn is detected in dτ = dx dy dz if it is three-
dimensional (or in the infinitestimal region dx if it is one-dimensional). This is
called Born’s probability interpretation of wave functions. Hence,

∫
ψ∗

nψn dτ = c (where c is a positive constant). (2.73)

From Eqs. (2.72) and (2.73),

εn = ε∗
n.

This indicates that εn is a real number. By the way, the probability with which the
system is detected at some point in the whole space should be 1. When ψn is given
so that

∫
ψ∗

nψn dτ = 1 (2.74)

is valid, ψn is referred to as being “normalized.”
Scalar products of two eigenfunctions ψm and ψn are given by

∫
ψ∗

mψn dτ,
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which corresponds to taking the complex conjugate of ψm, multiplying it with ψn,
and performing the integration. Putting this in a short form, we describe them as

〈ψm|ψn〉,
or

〈m|n〉
when it is sufficient to specify only the m and n. Namely,

〈m|n〉 = 〈ψm|ψn〉 =
∫

ψ∗
mψn dτ. (2.75)

Additionally, when the operation of an operator H on ψn results in ψ ′
n, that is, when

ψ ′
n = Hψn, the scalar product of ψm and ψ ′

n is given by

〈ψm|ψ ′
n〉 = 〈ψm|Hψn〉,

which is rewritten as

〈ψm|H |ψn〉.
This can be regarded as H bracketed by 〈ψm| and |ψn〉, which is why we call 〈ψm|
the bra state and |ψn〉 the ket state from the word “bracket.” In summary, we can
write

〈m|H |n〉 = 〈ψm|H |ψn〉 =
∫

ψ∗
mHψn dτ. (2.76)

The representation of wave functions with bra and ket as in Eqs. (2.75) and (2.76)
is called the bracket notation.

With the bracket notation, Eq. (2.66), the definition of Hermitian operators, is
written as

〈m|H |n〉 = 〈n|H |m〉∗. (2.77)

This is to say that, in calculating matrix elements 〈m|H |n〉, the result obtained when
we first operate H on |n〉 and then take its scalar product with 〈m| is equivalent
to that obtained when we operate H on |m〉, take its scalar product with 〈n|, and
then take the complex conjugate of the entire matrix element. The normalization
condition (2.74) is given by

〈n|n〉 = 〈ψn|ψn〉 = 1. (2.78)

Problem 2.11
Show that the eigenvalues of Hermitian operators are real numbers using the bracket
notation.

Solution
When the eigenvalue of a Hermitian operator is εn and the corresponding eigen-
function is |n〉,

H |n〉 = εn|n〉.
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Therefore,

〈n|H |n〉 = εn〈n|n〉.
Taking the complex conjugate of both sides of this equation, we have

〈n|H |n〉∗ = ε∗
n〈n|n〉.

From the definition of Hermitian operators,

〈n|H |n〉∗ = 〈n|H |n〉.
Thus,

(εn − ε∗
n)〈n|n〉 = 0.

Since 〈n|n〉 > 0, εn = ε∗
n, which shows that εn is a real number. �

Problem 2.12
Show that eigenfunctions of Hermitian operators which give different eigenvalues
are orthogonal to each other.

Solution
Let

H |n〉 = εn|n〉, H |m〉 = εm|m〉, εm 	= εn,

where both εn and εm are real numbers. Then,

〈m|H |n〉 = 〈m|εn|n〉 = εn〈m|n〉,
〈n|H |m〉∗ = 〈n|εm|m〉∗ = εm〈n|m〉∗.

From 〈n|m〉∗ = 〈m|n〉 and the definition of Hermitian operators in Eq. (2.77),

εn〈m|n〉 = εm〈m|n〉.
Therefore,

(εn − εm)〈m|n〉 = 0.

Since εn 	= εm, 〈m|n〉 = 0.
In the previous section, this has been illustrated concretely in Eq. (2.65) by the

example of the eigenfunctions of harmonic oscillators. It is because the Hamiltonian
operator of harmonic oscillators

H = − �
2

2μ

d2

dx2
+ 1

2
μω2x2

is a Hermitian operator that Eq. (2.65) holds for the eigenfunctions of harmonic
oscillators. �

When 〈m|H |n〉 is written as Hmn and arranged as
⎛

⎜
⎝

H11 H12 H13 · · ·
H21 H22 H23 · · ·

...
. . .

⎞

⎟
⎠ ,
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it forms a matrix. Thus, Hmn is called a matrix element. Representing Eq. (2.77) in
the matrix form results in

⎛

⎜
⎝

H11 H12 · · ·
H21 H22 · · ·

...
. . .

⎞

⎟
⎠ =

⎛

⎜
⎝

H ∗
11 H ∗

21 · · ·
H ∗

12 H ∗
22 · · ·
...

. . .

⎞

⎟
⎠ . (2.79)

Hence, the matrices of Hermitian operators, if we take their transposes and then
their complex conjugates, become equal to the original matrices.

2.3.2 Calculations of Expectation Values Using Eigenfunctions

Generally speaking, when a Hermitian operator ĥ representing a physical quantity
is given, the matrix element described by eigenstates ψn of the Hamiltonian,

〈ĥ〉n ≡ 〈n|ĥ|n〉 =
∫

ψ∗
n ĥψn dτ, (2.80)

is called the expectation value of the operator ĥ for ψn.
Let us then calculate the expectation value by using the normalized eigenfunc-

tions of harmonic oscillators. When the vibrational quantum number of a harmonic
oscillator equals n, the expectation value of coordinate operator x is given by

〈x〉n ≡ 〈n|x|n〉 =
∫ ∞

−∞
ψ∗

nxψn dx. (2.81)

As derived in the previous section,

ψ(ξ) =
(

1

2nn!
√

β

π

) 1
2

Hn(ξ)e− 1
2 ξ2

.

Hence,

〈x〉n = 1

2nn!
√

β

π

∫ ∞

−∞
Hn(ξ)xHn(ξ)e−ξ2

dx

= 1

2nn!
1√
π

∫ ∞

−∞
Hn(ξ)ξHn(ξ)e−ξ2

dξ/
√

β. (2.82)

Since the recurrence formula for Hermite polynomials (2.56) can be expressed as

ξHn(ξ) = nHn−1(ξ) + 1

2
Hn+1(ξ), (2.83)

〈x〉n = 1

2nn!
1√
βπ

(
n

∫ ∞

−∞
Hn(ξ)Hn−1(ξ)e−ξ2

dξ

+ 1

2

∫ ∞

−∞
Hn(ξ)Hn+1(ξ)e−ξ2

dξ

)

= 0. (2.84)
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This is because both of the two integrals in the bracket in Eq. (2.84) become zero as a
result of the orthogonality of the Hermite-Gaussian functions shown in Eqs. (2.64)
and (2.65). Equation (2.84) shows that the average position of x is 0, no matter
which eigenstate the system is in.

This means that, if the distance between two atoms A and B in a diatomic
molecule AB, whose potential is harmonic in the exact sense, is denoted as xAB
and the value of xAB at the equilibrium position is re, the expectation value of x

defined as x = xAB − re becomes 0, that is, the expectation value of xAB is equal to
re at all of its vibrational levels.

Problem 2.13
Treating a diatomic molecule as a harmonic oscillator, determine 〈xAB〉n, the expec-
tation value of xAB, in the eigenstate ψn.

Solution

〈x〉n = 〈n|x|n〉
= 〈n|xAB − re|n〉
= 〈n|xAB|n〉 − 〈n|re|n〉.

Since re is a constant,

〈n|re|n〉 = re〈n|n〉 = re.

Therefore,

〈x〉n = 〈xAB〉n − re.

As Eq. (2.84) indicates that 〈x〉n = 0, 〈xAB〉n = re. �

Next, we will determine the expectation value of the Hamiltonian of a harmonic
oscillator for the eigenstate ψn, namely |n〉. When H stands for the Hamiltonian,
the Schrödinger equation is given by

H |n〉 = εn|n〉. (2.85)

Therefore,

〈H 〉n = 〈n|H |n〉
= 〈n|εn|n〉
= εn〈n|n〉
= εn. (2.86)

As the Hamiltonian under consideration is that of a harmonic oscillator,

〈H 〉n = �ω

(
n + 1

2

)
.
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If a Hamiltonian fulfills Eq. (2.85), Eq. (2.86) always holds. Thus, Eq. (2.86) shows
that the expectation value of the Hamiltonian for the eigenstate |n〉 is generally
equivalent to its energy eigenvalue.

2.3.3 Matrix Elements of x and Selection Rules
for Infrared Absorptions

When heteronuclear diatomic molecules absorb infrared radiations, their vibrational
quantum number shifts from n = 0 to n = 1, or from n = 1 to n = 2. That is, the
molecules change their state to a state in which the vibrational quantum number is
larger by one than that of the original state.

When molecules absorb light and change their state like this from a low-energy
eigenstate, |n〉, to a high-energy eigenstate, |m〉, this is referred to as the molecules
being excited from |n〉 to |m〉. Contrarily, when they lose their energy by emitting
light with a corresponding amount of energy, this is also described as the molecules
being excited from |m〉 to |n〉. These phenomena are referred to as optical transition.

It is known that the probability P of an optical transition is proportional to the
square modulus of the matrix element μmn = 〈m|μ|n〉 of the transition dipole mo-
ment μ. Namely,

P ∝ ∣∣〈m|μ|n〉∣∣2
, (2.87)

where μ is a three-dimensional vector operator representing the magnitude and di-
rection of the polarization of a molecule. In the case of diatomic molecules, the
polarization is induced along the molecular axis, which makes it a one-dimensional
direction (here, the direction of the x axis), so that we can treat it as a scalar operator
and treat it as μ = μx .

When |m〉 and |n〉 are the eigenstates of vibrations of heteronuclear diatomic
molecules and if μx is a constant,

〈m|μx |n〉 = μx〈m|n〉 = 0,

because |m〉 and |n〉 are mutually orthogonal. This means that no absorption of
infrared radiation occurs. However, when their internuclear distance stretches or
shrinks, this causes μx to change its value along with x. When we expand μx with
respect to x around x = 0, we write it as

μx = μ0
x +

(
dμx

dx

)

e
x, (2.88)

representing the extent of the change as proportional to the magnitude of
( dμx

dx

)
e. In

this equation, μ0
x is a constant, and the subscript e in

( dμx

dx

)
e indicates that it is the

value of
( dμx

dx

)
at the equilibrium internuclear distance. From Eq. (2.88),

〈m|μx |n〉 = 〈m|μ0
x |n〉 + 〈m|

(
dμx

dx

)

e
x|n〉 =

(
dμx

dx

)

e
〈m|x|n〉 (2.89)
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is obtained. Consequently, the probability of a transition accompanying the absorp-
tion of infrared radiation is proportional to

(
dμx

dx

)2

e

∣∣〈m|x|n〉∣∣2
. (2.90)

In the case of homonuclear diatomic molecules such as O2 and N2, no absorption of
infrared radiation can occur, for dμx

dx
= 0 because of the symmetry of the molecules.

On the other hand, for heteronuclear diatomic molecules, since dμx

dx
	= 0, transition

may or may not occur depending on whether |〈m|x|n〉|2 takes a value other than
zero.

In infrared absorption, the transitions that are most commonly observed are those
from |n〉 to |n + 1〉. In this case, the rule of the transitions can be described as
	n = m − n = 1. Such rules of transitions in the case of absorptions and emissions
of light are generally referred to as “selection rules for transitions.”

Then, we can deduce the selection rule for the transition by calculating the matrix
element

〈x〉m,n ≡ 〈ψm|x|ψn〉
=

∫ ∞

−∞
ψ∗

mxψn dx, (2.91)

where |ψn〉 and |ψm〉 are eigenfunctions of a harmonic oscillator. Since

xψn = 1√
β

ξNnHn(ξ)e− 1
2 ξ2

,

using the recurrence formula of Hermite polynomials,

xψn = Nn√
β

(
nHn−1 + 1

2
Hn+1

)
e− 1

2 ξ2

=
(

n√
β

Nn

Nn−1

)
ψn−1 +

(
1

2
√

β

Nn

Nn+1

)
ψn+1 (2.92)

is obtained. When we multiply this equation from the left by ψ∗
m and integrate it,

then apply the orthonormal relation

〈ψm|ψn〉 = δmn, (2.93)

we realize that only the following two instances of 〈x〉m,n have non-zero values:

〈x〉n−1,n = n√
β

Nn

Nn−1
=

√
n

2β
, (2.94)

〈x〉n+1,n = 1

2
√

β

Nn

Nn+1
=

√
n + 1

2β
. (2.95)

Incidentally, δmn in Eq. (2.93) is called Kronecker’s delta, and satisfies the following
relation:

δmn =
{

1 (m = n),

0 (m 	= n).
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Fig. 2.7 Fundamental and
overtones of molecular
vibration

Thus, all 〈x〉m,n except Eqs. (2.94) and (2.95) are equal to zero. That is,

〈x〉m,n = 0 (m 	= n + 1,m 	= n − 1). (2.96)

These results summarized in matrix form, within the range of 0 � n � 3, 0 � m� 3
is as follows:

X =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
√

1
2β

0 0
√

1
2β

0
√

2
2β

0

0
√

2
2β

0
√

3
2β

0 0
√

3
2β

0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (2.97)

This matrix signifies that molecules are excited from |n〉 to |n+1〉 when they absorb
infrared radiation. This is the selection rule for infrared absorption, which is written
as 	n = 1.

2.3.4 Overtone Absorption

As explained above, in the infrared absorption, the selection rule in the vi-
brational spectrum is 	n = 1. However, as represented in Fig. 2.7, sometimes
in an absorption spectrum, a transition from n = 0 to n = 2, or to a level
with a larger n value, is observed albeit at a low intensity. This type of ab-
sorption is called an overtone absorption. The transition from n = 0 to n = 2
is called the first overtone, and that from n = 0 to n = 3 is called the sec-
ond overtone. In the case of HCl molecules, overtone absorptions were ob-
served, as listed in Table 2.2. In contrast with the overtones, the transition
from n = 0 to n = 1 is called the fundamental tone, or simply fundamen-
tal.

Let us consider why these overtone transitions with 	n = m − n � 2 are ob-
served. This is because real molecules are not, strictly-speaking, harmonic oscilla-
tors. It is true that the bottom part of the potential V (x) of a real molecule AB is
very close to the harmonic potential

V HO(x) = 1

2
μω2x2, (2.98)
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Table 2.2 Fundamental and
overtones of H35Cl Transition m ← n Wave number/cm−1

Fundamental 1 ← 0 2885.90

First overtone 2 ← 0 5668.05

Second overtone 3 ← 0 8346.98

Third overtone 4 ← 0 10923.11

Fourth overtone 5 ← 0 13396.55

Fig. 2.8 A harmonic
potential and an anharmonic
potential

where the superscript HO on V stands for “harmonic oscillator,” and signifies that
the potential is that of a harmonic oscillator.

However, as schematically shown in Fig. 2.8, V (x) tends to become lower than
the harmonic oscillator as x = xAB −re increases, that is, as the internuclear distance
is elongated. When x becomes much larger, the potential starts to stop increasing
and its slope approaches zero. This corresponds to the fact that, when the distance
between A and B increases to a certain extent, the diatomic molecule is decomposed
into atoms A and B, and this causes the induction force, − dV (x)

dx
, acting between A

and B to become sufficiently small. If the diatomic molecule AB were to have a
harmonic potential, this would mean that the potential energy would not stop in-
creasing no matter how large x became, and that, consequently, the molecule would
never be broken into two atoms. Such a model could not describe the potentials of
real molecules.

We will then account for the deviation from the harmonic oscillator in the follow-
ing manner. In the low vibrational energy range, that is, in the region for relatively
small vibrational quantum numbers, V (x) is close to a harmonic potential. There-
fore, near x = 0, V (x) can be expanded in terms of x in the form of a polynomial
using constants f and g as

V (x) = 1

2
μω2x2 + f x3 + gx4 + · · · . (2.99)

Along with this expansion, eigenenergies and eigenfunctions for the Hamiltonian

H = − �
2

2μ

d2

dx2
+ V (x) (2.100)

also deviate from those of a harmonic oscillator. The third- and higher-order terms
for x such as the f x3 and gx4 in Eq. (2.99) are called anharmonic terms. Poten-
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tials such as the one given by Eq. (2.99), in which anharmonic terms are added to
the harmonic potential, and potentials in general that are different from harmonic
potentials, are called anharmonic potentials.

The n-th eigenenergy of the harmonic oscillator is denoted as εHO
n , and the cor-

responding eigenfunction is denoted as ψHO
n (x). As we learned in Sect. 2.2, a set

of eigenfunctions, {ψHO
n } = {ψHO

0 ,ψHO
1 ,ψHO

2 , . . .}, forms a system of orthonormal
functions. Each of the eigenfunctions in an orthonormal set behaves like a unit vec-
tor spanning an n-dimensional space. For example, let us assume that ex , ey and ez

are unit vectors in a three-dimensional space whose directions are the x, y, and z

axes of the orthogonal x-y-z axis system, respectively. Then, their scalar products
are

ex · ey = ey · ez = ez · ex = 0.

At the same time, since they are unit vectors, the scalar products of themselves are

ex · ex = ey · ey = ez · ez = 1.

These relations correspond respectively to the orthogonal relation
∫ ∞

−∞
ψHO

m (x)ψHO
n (x)dx = 0 (m 	= n)

and the normalization relation∫ ∞

−∞
ψHO

n (x)ψHO
n (x)dx = 1

of {ψHO
n }. Here, because ψHO

n is a real function, the asterisk to mark the complex
conjugate in the definition of the scalar product has been omitted.

An arbitrary point a = (ax, ay, az) in the three-dimensional space can be ex-
pressed using ex , ey and ez as

a = axex + ayey + azez.

In correspondence with this equation, an arbitrary wave function ψn can be ex-
pressed using {ψHO

i } as

ψn =
∑

i

cniψ
HO
i . (2.101)

Therefore, if the eigenfunction of the Hamiltonian (2.100) with an anharmonic
potential of Eq. (2.99) is denoted as ψn(x), ψn(x) should be expressed as in
Eq. (2.101). Of course, if the magnitude of the anharmonic term is small, εn is
shifted only slightly from εHO

n , and the ψn is defined as only slightly deformed from
ψHO

n . Therefore, the largest coefficient in {cni} should be cnn. However, generally,
as long as there is an anharmonic term as there is in Eq. (2.99), cni (i 	= n) does not
equal zero. If we can approximate that

ψ0 = ψHO
0 (2.102)

when n = 0, and the wave function of n = 2, which is orthogonal with ψHO
0 , can be

approximated as

ψ2 = c21ψ
HO
1 + c22ψ

HO
2 + c23ψ

HO
3 , (2.103)
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then according to Eq. (2.90) we can say that the transition probability from n = 0 to
n = 2 is proportional to

I =
(

dμ

dx

)2

e

∣∣〈ψ2|x|ψ0〉
∣∣2

. (2.104)

Then, by substituting Eqs. (2.102) and (2.103) into Eq. (2.104), and using the
fact that, from Eq. (2.96), 〈ψHO

m |x|ψHO
n 〉 = 0 (when |m − n| 	= 1) holds for

wave functions of harmonic oscillators, as well as the fact that, from Eq. (2.97),

〈ψHO
1 |x|ψHO

0 〉 =
√

1
2β

holds, we can obtain

I =
(

dμx

dx

)2

e

∣∣〈
3∑

i=1

c2iψ
HO
i

∣∣x
∣∣ψHO

0

〉∣∣2

=
(

dμx

dx

)2

e

∣∣
3∑

i=1

c2i

〈
ψHO

i

∣∣x
∣∣ψHO

0

〉∣∣2

= c2
21

(
dμx

dx

)2

e

1

2β
	= 0. (2.105)

Even though the c2
21 is not a large value, we can see that it is possible for overtone

transitions to be observed as long as c2
21 	= 0. Simply put, the first overtone transition

occurs because the wave function of the n = 2 state includes a component of the
wave function of the n = 1 state of the harmonic oscillator.

2.3.5 Matrix Elements of x2 and the Expectation Value
of the Potential Energy

The expectation value 〈H 〉n of the Hamiltonian H of a harmonic oscillator at the
eigenstate represented as ψn is equal to the energy eigenvalue, as explained in
Sect. 2.3.2, and is expressed as

〈H 〉n = �ω

(
n + 1

2

)
. (2.106)

Then, let us examine what values the expectation value 〈T 〉n = 〈n|T |n〉 of the ki-
netic energy operator,

T = − �
2

2μ

d2

dx2
, (2.107)

and the expectation value 〈V 〉n = 〈n|V |n〉 of the potential energy,

V = 1

2
μω2x2, (2.108)
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take at this eigenstate. Here, we will first derive the expectation value 〈V 〉n of the
potential energy V . Since

〈V 〉n = 〈n|V |n〉 = 1

2
μω2〈n|x2|n〉, (2.109)

the matrix elements of x2, 〈x2〉n = 〈n|x2|n〉, need to be evaluated. We can do so by
evaluating 〈n|ξ2|n〉, because x2 = 1

β
ξ2.

By applying the recurrence formula (2.83) twice, we obtain

ξ2Hn = ξ

(
nHn−1 + 1

2
Hn+1

)

= n(ξHn−1) + 1

2
(ξHn+1)

= n(n − 1)Hn−2 + 2n + 1

2
Hn + 1

4
Hn+2. (2.110)

This equation can be written with the normalization constant Nn in Eq. (2.63) as

ξ2|n〉 = n(n − 1)

(
Nn

Nn−2

)
|n − 2〉 +

(
2n + 1

2

)
|n〉 + 1

4

(
N

Nn+2

)
|n + 2〉. (2.111)

Therefore, multiplying Eq. (2.111) from the left by 〈n| and using the equations
for orthonormality, Eqs. (2.65) and (2.74), that is, 〈n|n − 2〉 = 〈n|n + 2〉 = 0 and
〈n|n〉 = 1, we obtain

〈n|ξ2|n〉 =
(

n + 1

2

)
. (2.112)

That is,

〈n|x2|n〉 = 1

β

(
n + 1

2

)
. (2.113)

Therefore, from Eqs. (2.109),

〈V 〉n = 1

2
μω2〈n|x2|n〉 = μω2

2β

(
n + 1

2

)
(2.114)

is obtained. By substituting β = μω
�

into this equation, we obtain

〈V 〉n = 1

2
μω2 · �

μω

(
n + 1

2

)
= 1

2
�ω

(
n + 1

2

)
, (2.115)

which is half the expectation value of the eigenenergy

〈H 〉n = �ω

(
n + 1

2

)
.

Since

〈H 〉n = 〈T 〉n + 〈V 〉n (2.116)

holds,

〈V 〉n = 〈T 〉n = 1

2
�ω

(
n + 1

2

)
(2.117)
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is derived for a harmonic oscillator. This relationship, 〈V 〉n = 〈T 〉n, is called the
virial theorem for harmonic oscillators.

Problem 2.14
Calculate the expectation value 〈T 〉n of the kinetic energy of a harmonic oscillator,

T = − �
2

2μ
d2

dx2 .

Solution
In the derivation above in the text, 〈T 〉n was obtained indirectly using the relation

〈T 〉n = 〈H 〉n − 〈V 〉n. Here, we will directly evaluate 〈n| d2

dx2 |n〉.
From Eq. (2.59),

d2

dx2
|n〉 = β

d2

dξ2

(
NnHne− 1

2 ξ2)

= βNn

{
4n(n − 1)Hn−2e− 1

2 ξ2 − 4nξHn−1e− 1
2 ξ2 − Hne− 1

2 ξ2

+ ξ2Hne− 1
2 ξ2}

. (2.118)

By multiplying this equation from the left by 〈n|, we obtain

〈n| d2

dx2
|n〉

= 〈n|β
{

4n(n − 1)

(
Nn

Nn−2

)
|n − 2〉 − 4nξ

(
Nn

Nn−1

)
|n − 1〉 − |n〉 + ξ2|n〉

}

= β

{
(−4n)

(
Nn

Nn−1

)
〈n|ξ |n − 1〉 − 1 + 〈n|ξ2|n〉

}

= β

{
(−4n)

√
1

2n

√
β

√
n

2β
− 1 +

(
n + 1

2

)}

= −β

(
n + 1

2

)
. (2.119)

Therefore,

〈T 〉n = − �
2

2μ
〈n| d2

dx2
|n〉 = − �

2

2μ
(−β)

(
n + 1

2

)
,

and using β = μω
�

,

〈T 〉n = 1

2
�ω

(
n + 1

2

)

is derived. �

In the derivation of 〈V 〉n above, 〈n|x2|n〉, diagonal matrix elements of x2, was
evaluated. As is clear from Eq. (2.111), the matrix element of 〈m|x2|n〉 takes a non-
zero value for off-diagonal matrix elements when m = n − 2, n + 2 in addition to
the diagonal (m = n) elements. Thus, the non-zero elements are summarized as
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〈n − 2|x2|n〉 =
√

(n − 1)n

2β
, (2.120a)

〈n|x2|n〉 = 2n + 1

2β
, (2.120b)

〈n + 2|x2|n〉 =
√

(n + 1)(n + 2)

2β
. (2.120c)

For all other m values

〈m|x2|n〉 = 0 (m 	= n − 2, n,n + 2). (2.120d)

Problem 2.15
Express the matrix elements of x2 in a matrix form as in Eq. (2.97).

Solution
Equations (2.120a) through (2.120d) can be expressed in a matrix form for the range
0 � n � 4 and 0 � m � 4 as

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1
2β

0
√

2
2β

0 0

0 3
2β

0
√

6
2β

0√
2

2β
0 5

2β
0

√
12

2β

0
√

6
2β

0 7
2β

0

0 0
√

12
2β

0 9
2β

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.121)

�

Problem 2.16
Show that the matrix Y in Eq. (2.121), consisting of the matrix elements of x2, can
be obtained by multiplying the matrix X in Eq. (2.97) by itself.

Solution

X · X =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
√

1
2β

0
√

1
2β

0
√

2
2β

. . .

0
√

2
2β

0
...

. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
√

1
2β

0
√

1
2β

0
√

2
2β

. . .

0
√

2
2β

0
...

. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

1
2β

0
√

2
2β

0 3
2β

0 . . .
√

2
2β

0 5
2β

...
. . .

⎞

⎟⎟⎟⎟⎟
⎠

= Y .

�
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Generally, 〈m|AB|n〉, a matrix element of AB (the product of two Hermitian
operators A and B) evaluated using a set of eigenfunctions {ψi}, can be expressed
as a sum of the products of the matrix elements of A, 〈m|A|k〉, and those of B ,
〈k|B|n〉, as

〈m|AB|n〉 =
∑

k

〈m|A|k〉〈k|B|n〉. (2.122)

This equation can be derived in the following manner.
First, operating A on |m〉 gives us

A|m〉 =
∑

k

amk|k〉. (2.123)

Then, by multiplying this from the left side by 〈k|, we obtain

〈k|A|m〉 = amk.

Since A is a Hermitian operator,

〈m|A|k〉∗ = amk.

This means that

〈m|A|k〉 = a∗
mk, (2.124)

which corresponds to the expression of 〈m| as

〈m|A =
∑

k

a∗
mk〈k|. (2.125)

Similarly, by operating B on |n〉,
B|n〉 =

∑

j

bnj |j 〉 (2.126)

is obtained. When we multiply this equation from the left by 〈j |, we obtain

〈j |B|n〉 = bnj . (2.127)

From Eqs. (2.125) and (2.126),

〈m|AB|n〉 =
∑

j

∑

k

a∗
mkbnj 〈k|j 〉

=
∑

j

a∗
mjbnj

=
∑

j

〈m|A|j 〉〈j |B|n〉

is proved. In deriving this, the orthonormal condition 〈k|j 〉 = δkj and Eqs. (2.124)
and (2.127) have been used.

Equation (2.122) can be used to evaluate the matrix elements of x2. Since the
operator x is a Hermitian operator,
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〈m|x2|n〉 = 〈m|x · x|n〉
=

∑

j

〈m|x|j 〉〈j |x|n〉. (2.128)

This is the same result as is obtained when the matrix (xmn) is squared, as we have
confirmed in Problem 2.16 by multiplying X by itself.

Problem 2.17
Derive the matrix elements of x2 using Eq. (2.128).

Solution
As we have already obtained the matrix elements of x, 〈m|x|j 〉, as shown in
Eqs. (2.94) through (2.96), we can use Eq. (2.128) to derive the matrix elements
of x2 as the sum of the non-zero matrix elements of x, as follows:

〈n − 2|x2|n〉 = 〈n − 2|x|n − 1〉〈n − 1|x|n〉

=
√

n − 1

2β

√
n

2β
=

√
(n − 1)n

2β
,

〈n|x2|n〉 = 〈n|x|n − 1〉〈n − 1|x|n〉
+ 〈n|x|n + 1〉〈n + 1|x|n〉

=
√

n

2β

√
n

2β
+

√
n + 1

2β

√
n + 1

2β
= 2n + 1

2β
,

〈n + 2|x2|n〉 = 〈n + 2|x|n + 1〉〈n + 1|x|n〉

=
√

n + 2

2β

√
n + 1

2β
=

√
(n + 1)(n + 2)

2β
.

These are the same results as those found in Eqs. (2.120a) through (2.120d). �

2.3.6 Creation and Annihilation Operators

Up to Sect. 2.3.5, we have been discussing the procedure of calculating matrix ele-
ments using eigenfunctions of harmonic oscillators. However, this procedure is not
always easy, as it relies on operations such as using the Hermite recurrence for-
mula. Let us now take a look at a more straightforward method that serves the same
purpose.

As already shown in Eqs. (2.92), (2.94), and (2.95),

x|n〉 =
√

n

2β
|n − 1〉 +

√
n + 1

2β
|n + 1〉. (2.129)

This shows that the coordinate operator x has the function of increasing or decreas-
ing the vibrational quantum number in |n〉 by one.



58 2 Vibrating Molecules

From Eq. (2.59), when we operate a differential operator d
dx

on |n〉, it becomes

d

dx
|n〉 = √

β
d

dξ

(
NnHne− 1

2 ξ2)

= √
βNn

(
2nHn−1e− 1

2 ξ2 − ξHne− 1
2 ξ2)

= √
β2n

(
Nn

Nn−1

)
|n − 1〉 − √

βξ

(
Nn

Nn

)
|n〉

= √
β2n

√
1

2n
|n − 1〉 − √

β
√

βx|n〉
= √

2nβ|n − 1〉 − βx|n〉. (2.130)

Using Eq. (2.129), d
dx

|n〉 can be expressed as

d

dx
|n〉 = √

β

(√
n

2
|n − 1〉 −

√
n + 1

2
|n + 1〉

)
, (2.131)

which shows that the differential operator d
dx

also has the function of increasing or
decreasing the vibrational quantum number in |n〉 by one.

Then, if we define two operators a and a† (a dagger) as

a = 1√
2

(
ξ + d

dξ

)
, (2.132a)

a† = 1√
2

(
ξ − d

dξ

)
, (2.132b)

we find that a useful and neat relationship,
{

aψn = √
nψn−1,

a†ψn = √
n + 1ψn+1,

(2.133)

that is,
{

a|n〉 = √
n|n − 1〉,

a†|n〉 = √
n + 1|n + 1〉, (2.134)

exists. Because the operator a functions to annihilate (decrease) the quantum num-
ber n by one, it is called an annihilation operator or a lowering operator. Similarity,
as the operator a† functions to create (increase) the quantum number n by one, it is
called a creation operator or a raising operator.

Problem 2.18
Prove Eq. (2.134) by rewriting Eqs. (2.129) and (2.131) with the coordinate vari-
able ξ .

Solution
Since ξ = √

βx, Eq. (2.129) becomes

ξ |n〉 =
√

n

2
|n − 1〉 +

√
n + 1

2
|n + 1〉. (2.135)



2.3 The Harmonic Oscillator and Its Applications 59

Also, as d
dξ

= 1√
β

d
dx

, Eq. (2.131) becomes

d

dξ
|n〉 =

√
n

2
|n − 1〉 −

√
n + 1

2
|n + 1〉. (2.136)

Therefore, using the definitions in Eqs. (2.132a) and (2.132b), we can obtain

a|n〉 = 1√
2

(
ξ + d

dξ

)
|n〉 = 1√

2
2

√
n

2
|n − 1〉 = √

n|n − 1〉, (2.137)

a†|n〉 = 1√
2

(
ξ − d

dξ

)
|n〉 = 1√

2
2

√
n + 1

2
|n + 1〉

= √
n + 1|n + 1〉, (2.138)

which are identical to Eq. (2.134). �

These creation and annihilation operators are useful tools allowing us to eas-
ily evaluate matrix elements. For example, from the definitions of a and a† in
Eqs. (2.132a) and (2.132b),

ξ = a + a†

√
2

(2.139)

is obtained. Therefore,

〈n|x|n − 1〉 = 1√
β

〈n|a + a†

√
2

|n − 1〉

=
√

1

2β

{〈n|a|n − 1〉 + 〈n|a†|n − 1〉}

=
√

1

2β
(0 + √

n) =
√

n

2β
(2.140)

is readily derived. In a similar manner, 〈n|x2|n〉 is expressed as

〈n|x2|n〉 = 1

β
〈n|

(
a + a†

√
2

)2

|n〉,

and therefore

〈n|x2|n〉 = 1

2β
〈n|aa + aa† + a†a + a†a†|n〉

= 1

2β
〈n|aa† + a†a|n〉

= 2n + 1

2β
(2.141)

is readily obtained.
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Since the Hamiltonian of a harmonic oscillator is expressed using ξ and d
dξ

as

H = − �
2

2μ

d2

dx2
+ 1

2
μω2x2

= 1

2
�ω

(
− d2

dξ2
+ ξ2

)
, (2.142)

it can be expressed with a and a† as

H = �ω

(
a†a + 1

2

)
. (2.143)

Thus, the expectation value of energy becomes

〈n|H |n〉 = �ω

(
〈n|a†a|n〉 + 1

2

)

= �ω

(
n + 1

2

)
. (2.144)

Problem 2.19
Prove that H , the Hamiltonian of a harmonic oscillator, can be expressed in the form
of Eq. (2.143).

Solution

a†a = 1√
2

(
ξ − d

dξ

)
· 1√

2

(
ξ + d

dξ

)
= 1

2

(
ξ2 + ξ

d

dξ
− d

dξ
ξ − d2

dξ2

)
.

On the other hand, for a general function ϕ(ξ),
(

ξ
d

dξ
− d

dξ
ξ

)
ϕ = ξ

dϕ

dξ
− dξ

dξ
ϕ − ξ

dϕ

dξ
= −ϕ,

indicating that

ξ
d

dξ
− d

dξ
ξ = −1. (2.145)

Therefore,

a†a = 1

2

(
ξ2 − d2

dξ2

)
− 1

2

is obtained. From this equation and Eq. (2.142), Eq. (2.143) is derived. �

Problem 2.20
Express 〈V 〉n and 〈T 〉n of a harmonic oscillator using creation and annihilation
operators.

Solution
From Eq. (2.141),
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〈V 〉n = 1

2
μω2〈n|x2|n〉

= μω2

4β
(2n + 1) = 1

2
�ω

(
n + 1

2

)

is obtained. From Eqs. (2.132a) and (2.132b),

d

dξ
= a − a†

√
2

. (2.146)

Therefore,

〈T 〉n = − �
2

2μ
〈n| d2

dx2
|n〉

= − �
2

2μ

(
−β

2

)
〈n|aa† + a†a|n〉

= 1

2
�ω

(
n + 1

2

)

is obtained. �

2.3.7 Evaluation of Perturbation Energy

As already described in Sect. 2.3.4, the interatomic potential, V (x), of real diatomic
molecules in general, deviates from that of a harmonic oscillator, and has an anhar-
monicity represented using an additional contribution from anharmonic terms, that
is,

V (x) = 1

2
μω2x2 + f x3 + gx4. (2.147)

In the present subsection, we will learn how the eigenenergy of a vibrational level
with the vibrational quantum number n deviates from the energy of the harmonic
oscillator,

εHO
n = �ω

(
n + 1

2

)
,

by the presence of the anharmonic terms f x3 and gx4.
The first-order perturbation energy ε

(1)
n is equal to the expectation value of the

perturbing term H ′, that is

ε(1)
n = 〈n|H ′|n〉. (2.148)

In the present case, H ′ = f x3 + gx4, and therefore,

ε(1)
n = 〈n|f x3|n〉 + 〈n|gx4|n〉. (2.149)

This shows that once we evaluate 〈n|x3|n〉 and 〈n|x4|n〉, the first-order perturbation
energy can be readily derived. Using a and a†, we can write
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〈n|x3|n〉 = 0, (2.150)

〈n|x4|n〉 = 1

4β2

{〈n|(a + a†)4|n〉}

= 1

4β2

{〈n|aaa†a† + aa†aa† + a†aaa†

+ a†a†aa + a†aa†a + aa†a†a|n〉}

= 3

4β2

(
2n2 + 2n + 1

)
, (2.151)

and thus

ε(1)
n = 3g

4β2

(
2n2 + 2n + 1

)
(2.152)

is obtained. This means that the level energy increases (when g > 0) or decreases
(when g < 0) by |ε(1)

n |, and that its third-order anharmonic term, f x3, does not
generate an energy shift within the range of first-order perturbation. However, if we
consider second-order perturbation, it can be shown that the third-order anharmonic
term can generate an energy shift.

Perturbation theory shows that the second-order perturbation energy ε
(2)
n can be

expressed as

ε(2)
n =

∑

m 	=n

〈n|H ′|m〉〈m|H ′|n〉
εHO
n − εHO

m

. (2.153)

Supposing that the contribution from the fourth-order anharmonic term is negligible,
H ′ can be written with just the third-order anharmonic term f x3, as

H ′ = f x3 = f

(
a + a†

√
2β

)3

. (2.154)

Since (a + a†)3|n〉 is calculated as

(a + a†)3|n〉 = √
n
√

n − 1
√

n − 2|n − 3〉 + 3n
√

n|n − 1〉
+ 3(n + 1)

√
n + 1|n + 1〉

+ √
n + 1

√
n + 2

√
n + 3|n + 3〉, (2.155)

the summation over m in Eq. (2.153) need only be taken for m = n−3, n−1, n+1,
n + 3. Therefore, we can evaluate that

ε(2)
n = −f 2

(
1

2β

)3 1

�ω

(
30n2 + 30n + 11

)
. (2.156)

This shows that ε
(2)
n < 0, indicating that the third-order anharmonicity always

lowers the eigenenergy. From these arguments, we can evaluate the n-th vibra-
tional level energy of the anharmonic oscillator whose potential energy is given
by Eq. (2.147) as
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εn = εHO
n + ε(1)

n + ε(2)
n

= �ω

(
n + 1

2

)
+ 3g

4β2

(
2n2 + 2n + 1

)

− f 2

8β3�ω

(
30n2 + 30n + 11

)
. (2.157)

When we measure the vibrational level energies of diatomic molecules and ex-
amine their dependence on the vibrational quantum number, we see that in most
cases, the energy can be expresses as a form expanded in terms of (n + 1

2 ) as

εn = �ω

(
n + 1

2

)
− �ωχ

(
n + 1

2

)2

+ · · · , (2.158)

where χ is called an anharmonic constant. As will be explained in Sect. 2.3.8, the
eigenenergy of the Morse oscillator, whose interatomic potential (called the Morse
potential) is known to be a good approximation of the potential function of diatomic
molecules, can be expressed by the expansion up to the second term. That is, the
eigenenergy of the Morse potential can be written with only the (n+ 1

2 ) and (n+ 1
2 )2

terms.
As our next step, let us compare Eqs. (2.157) and (2.158), and express the anhar-

monic constant χ using the coefficients for the anharmonic terms, f and g. Firstly, if
we rewrite the second and third terms in Eq. (2.157) using (n+ 1

2 )2 = (n2 +n+ 1
4 ),

ε(1)
n + ε(2)

n = 3

2β

(
g

β
− 5f 2

2β2�ω

)(
n + 1

2

)2

+ 	. (2.159)

As 	 does not have an n-dependence and its contribution is considered to be small,
we will hereafter assume that 	 ∼ 0 and treat it as negligible. If we equate the
second term in Eq. (2.158) and the first term in Eq. (2.159),

χ = 3�ω

2k

{
−g

k
+ 5

2

(
f

k

)2}
(2.160)

is obtained, where k = μω2 represents a quadratic force constant.

2.3.8 Morse Potential

A Morse potential is a model potential known to well describe the shape of an in-
teratomic potential of a diatomic molecule in the wide internuclear distance region.
The Morse potential VM(x) is expressed in the form of a function of the displace-
ment x as

VM(x) = De
(
e−αx − 1

)2
. (2.161)

As illustrated in Fig. 2.9, the slope of the potential becomes gradually smaller as x

increases. When x → ∞, the slope,

dVM(x)

dx
= −2αDe

(
e−αx − 1

)
e−αx, (2.162)
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Fig. 2.9 A Morse potential
and its dissociation energy

becomes dVM(x)
dx

→ 0, and the diatomic molecule dissociates into two atoms.

From Eq. (2.162), it can be seen that
( dVM(x)

dx

) = 0 when x = 0. This means that
x = 0 represents an equilibrium position where the slope of the potential becomes
zero. Furthermore, it can be understood from Eq. (2.161) that VM(x) = 0 at x =
0 and VM(x) → De at x → ∞. This De is called the dissociation energy, “D”
standing for “dissociation,” and it can be regarded as the energy required to separate
the two atoms in a diatomic molecule to an infinite distance, starting from their
equilibrium internuclear distance of the molecule. As was explained in Sect. 2.1, x is
defined as the difference between the internuclear distance xAB and the equilibrium
internuclear distance re,

x = xAB − re.

Therefore, xAB = re holds at the equilibrium position of x = 0.
In Fig. 2.9, D0 represents the energy required for dissociation as measured from

the n = 0 level, which is called the spectroscopic dissociation energy in contrast
with De, the dissociation energy measured from the equilibrium position.

The Morse potential has another characteristic feature besides describing the po-
tential energies of diatomic molecules. Namely, the Schrödinger equation

− �
2

2μ

d2

dx2
ψ + VM(x)ψ = Eψ (2.163)

of an oscillator which oscillates under the Morse potential has an exact solution, and
its eigenenergies are expressed as

En = �ω

(
n + 1

2

)
− �ωχ

(
n + 1

2

)2

(2.164)

using the first-order and the second-order expression terms of (n + 1
2 ). It is also

known that the parameters ω and χ appearing in the expansion coefficients in
Eq. (2.164) can be written with the Morse potential parameter α and De as
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ω = α

√
2De

μ
(2.165)

χ = �ω

4De
. (2.166)

Sometimes, the Morse function is expressed as

VM(x) = De
{(

e−αx − 1
)2 − 1

} = Dee−2αx − 2Dee−αx (2.167)

so that the potential energy becomes zero when the two atoms are separated at an
infinite distance.

Problem 2.21
Prove Eqs. (2.165) and (2.166) by expanding a Morse potential around x = 0 by a
polynomial of x. To derive Eq. (2.166), use Eq. (2.160).

Solution
In a similar manner as in Sect. 2.3.7, we can expand VM(x) in terms of x as

VM(x) = 1

2
μω2x2 + f x3 + gx4 + · · · . (2.168)

From the definition of the Morse potential given by Eq. (2.161),
(

d2VM(x)

dx2

)

x=0
= 2α2De,

(
d3VM(x)

dx3

)

x=0
= −6α3De,

(
d4VM(x)

dx4

)

x=0
= 14α4De

(2.169)

are obtained. From Eq. (2.168), we can show that
(

d2VM(x)

dx2

)

x=0
= μω2,

(
d3VM(x)

dx3

)

x=0
= 6f,

(
d4VM(x)

dx4

)

x=0
= 24g.

(2.170)

Therefore, from Eqs. (2.169) and (2.170),

μω2 = 2α2De, (2.171a)

f = −α3De, (2.171b)

g = 7

12
α4De (2.171c)

are obtained. From Eq. (2.171a), we can immediately derive

ω = α

√
2De

μ
.

On the other hand, by substituting Eqs. (2.171b) and (2.171c) into Eq. (2.160),

χ = 3�ω

2k

{
− 7

24
α2 + 5

2

(
−α

2

)2}
= �ωα2

2μω2
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is obtained using k = μω2. Then, by using Eq. (2.171a),

χ = �ω

4De

is obtained. �

From Eqs. (2.165) and (2.166), we learn that, if we derive vibrational level ener-
gies from experiments and they are expanded as shown in Eq. (2.164), then both the
shape of the Morse potential and the dissociation energy of the diatomic molecule
can be determined by assuming that the shape of the interatomic potential is repre-
sented by a Morse function.

Indeed, from Eq. (2.166),

De = (�ω)2

4�ωχ
(2.172)

is obtained, and α can be determined from Eq. (2.165).

Problem 2.22
Prove that, when the vibrational level energies of a diatomic molecule is expressed
as Eq. (2.164), the relation

De = D0 + �ω

2
− �ωχ

4
(2.173)

holds between the two dissociation energies De and D0.

Solution
As is clear from Fig. 2.9, De − D0 is the energy of the n = 0 level (vibrational
ground level) as measured from the bottom of the interatomic potential. Thus it is
equal to the zero-point energy E0 = De − D0. From Eq. (2.164),

E0 = �ω

2
− �ωχ

4
.

Therefore, Eq. (2.173) can be derived. �

Let us examine how the vibrational level energies are affected by the anharmonic-
ity of the potential, for the level energy data of H35Cl from n = 1 to n = 5 listed in
Table 2.2.

As summarized in Table 2.3, we can see that the energy difference 	G
n+ 1

2
=

En+1 −En gradually decreases as the vibrational quantum number n increases. The
extent of the decrease is approximately the same for each increase of n by one, and
the average of the four values is −103.12 cm−1.

This situation is graphically represented in Fig. 2.10. Such a plot is called the
Birge-Sponer plot. This type of linear decrease in 	G

n+ 1
2

is known to be observed
for many diatomic molecules, and it can be explained with equations as follows.
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Table 2.3 Anharmonicity
appearing in vibrational level
energies of H35Cl

Fig. 2.10 Binge-Sponer’s
plot of the vibrational levels
of H35Cl

Assuming that the vibrational energy of a diatomic molecule is expressed by
Eq. (2.164), and following the convention in vibrational spectroscopy of expressing
the equation in terms of wave numbers (cm−1), Eq. (2.164) becomes

En = ωe

(
n + 1

2

)
− ωexe

(
n + 1

2

)2

, (2.174)

where both ωe and ωexe have the unit of cm−1, and are related with the parameters
in Eq. (2.164) as

hcωe = �ω, (2.175a)

hcωexe = �ωχ. (2.175b)

In molecular spectroscopy, ωexe is often treated as a parameter representing the
anharmonicity of the potential without separating ωe and xe. From Eq. (2.174),

En+1 = ωe

(
n + 3

2

)
− ωexe

(
n + 3

2

)2

,



68 2 Vibrating Molecules

and therefore

	G
n+ 1

2
= En+1 − En = ωe − 2ωexe(n + 1) (2.176)

is readily derived. The value −2ωexe is the slope of the linear decrease. Since
−2ωexe = −103.12 cm−1,

ωexe = 51.56 cm−1

can be obtained, and when n = 0,

2885.9 = ωe − 2ωexe

holds. Therefore,

ωe = 2989.0 cm−1.

Consequently, assuming that the potential is expressed by a Morse potential, the
dissociation energy De can be obtained from Eqs. (2.172), (2.175a), and (2.175b) as

De = (hcωe)
2

4hcωexe
= hcω2

e

4ωexe
.

When De is expressed in terms of wave numbers,

De = ω2
e

4ωexe
. (2.177)

By substituting the numerical values,

De = 43327.5 cm−1 = 5.37192 eV

is derived. This value is overestimated by 16 % with respect to the value calculated
from Eq. (2.173) using the literature value of D0, which is De = 4.618 eV. This
indicates that the interatomic potential of HCl begins to deviate from the Morse
function as its energy becomes closer to the dissociation limit, that is, the gradient
of the potential energy curve in the large internuclear distance region becomes lower
than that of the Morse potential curve.

2.4 The Inversion Motion of Ammonia Molecules

So far, we have viewed molecular vibration as the stretching and shrinking of the
internuclear distance of a diatomic molecule, taking harmonic potentials with ad-
ditional anharmonic terms, or Morse functions, as examples of the potential func-
tion for molecular vibration. The potential of the vibrational motion for polyatomic
molecules can also generally be approximated, in the vicinity of the equilibrium ge-
ometrical structure, by the sum of the potentials of harmonic oscillators. However,
when we expand our view to include molecular vibration in regions that are distant
from the equilibrium position, we see that the potential can have varying forms,
some of which are largely different from that of a harmonic oscillator. The potential
of the inversion motion of an ammonia molecule is one such example.
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Fig. 2.11 A part of the infrared absorption spectrum of ammonia

As an aside, in Sects. 2.2 and 2.3 we represented the vibrational quantum num-
ber as n, but in molecular spectroscopy it is conventionally represented with v for
‘vibration’. We will henceforth follow this convention and use v to represent the
vibrational quantum number.

2.4.1 The Infrared Absorption Spectrum

A part of the infrared absorption spectrum of ammonia molecules is shown in
Fig. 2.11. In the spectrum, we can see two strong absorption bands, closely spaced,
at 968.32 cm−1 and 931.71 cm−1. The individual sharp peaks in each absorption
band correspond to transitions from the rotational level of the vibrational ground
state to the rotational levels of the vibrationally excited state. As we discuss in
Sect. 3.6, these line structures in the vibrational band are called rotational struc-
tures. For the moment, we will focus our attention on the two parts where sharp
peaks are concentrated to form strong absorption peaks. Both of these two absorp-
tion peaks originate from the vibrational motion in which the three H–N–H angles
of the ammonia molecule increase and decrease in unison, or, in other words, the
three H atoms move up and down as shown in Fig. 2.12. This collective motion cor-
responds to the type of normal mode vibration that will be explained in Sect. 2.5,
and as long as we consider only the small amplitude vibration in the vicinity of a
pyramidal equilibrium structure such as the one in Fig. 2.12, we can approximate
the vibration by a harmonic oscillator. Then the infrared absorption process in which
the vibrational quantum number v changes from v = 0 to v = 1 would have to be
observed as one peak. The fact that we observe two adjacent absorption peaks in
the spectrum is a direct consequence of the inversion motion of ammonia molecules
(Fig. 2.13(a)), which cannot be treated as a simple harmonic oscillator.

Intuitively speaking, the ammonia molecule on the right side (r) as shown in
Fig. 2.13(a) can be thought of as going over the central potential barrier with the
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Fig. 2.12 Equilibrium
structure of ammonia. The
length of the perpendicular
line drawn from the N atom
to the plane formed by the
three H atoms is 0.374 Å

Fig. 2.13 Inversion motion
of ammonia (a) and its double
minimum potential (b)

increase of the vibrational energy, and turning inside out to form the ammonia
molecule shown on the left side (l). The geometrical structures of ammonia at the
two equilibrium positions on the r side and the l side are identical, constituting
mirror images of each other. In order to describe this inversion motion, we define
the straight line drawn perpendicular to the plane formed by the three H atoms and
passing through the N atom, as well as the center of mass of the three H atoms,
as the x axis. The origin of the x axis (x = 0) is set on the N atom. The potential
function along the x axis can be drawn as Fig. 2.13(b). As shown in this figure, the
potential takes the minimum value at the two equilibrium positions xr = 0.374 Å
and xl = −0.374 Å. When the molecule becomes planar at x = 0, it comes to the
top of the central barrier, which means that the potential takes a local maximum
value. When the value of x increases beyond xr , the potential energy increases
monotonously, and likewise the potential energy increases monotonously when the
value of x decreases beyond xl .

A potential with two local minima such as the one shown in Fig. 2.13(b) is called
a double minimum potential. The potential of ammonia along the x axis is a well-
known example of a double minimum potential. To treat the vibrational motion
of ammonia under the double minimum potential in quantum mechanics, and to
calculate the vibrational level energy (the eigenenergy) and the vibrational wave
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Fig. 2.14 Vibrational wave
functions of the inversion
motion of ammonia. The
zeros (nodes) are marked by
“"”

function (the eigenfunction), we need to represent the potential V (x) as the sum of
the harmonic potential and the Gaussian function, that is,

V (x) = 1

2
μω2x2 + Ae−Bx2

(where A and B are positive constants), (2.178)

and numerically solve the one-dimensional Schrödinger’s equation

− �
2

2μ

d2

dx2
ψ + V (x)ψ = εψ. (2.179)

Sometimes, instead of using Eq. (2.178), the double minimum potential is repre-
sented as the sum of a quadratic function with negative curvature and a quartic
function with positive curvature, as

V (x) = −Ax2 + Bx4 (where A and B are positive constants). (2.180)

As schematically shown in Fig. 2.13(b), we can regard each individual vibra-
tional state as being split into two levels due to the existence of the central barrier
with a finite height. Accordingly, we assign the vibrational quantum number v of
0+, 0−, 1+, 1−, . . . , to each vibrational level, in increasing order of energy from
the ground vibrational state, v = 0+. In fact, the two main peaks observed in the
infrared absorption spectrum (Fig. 2.11) correspond to the transitions from v = 0+
to v = 1− and from v = 0− to v = 1+.

2.4.2 Parity of Wave Functions

The classification with + and − signs can be understood from the shape of the
vibrational wave functions. The wave functions of the four low-lying levels v = 0+,
0−, 1+, 1− are described in Fig. 2.14.

We will examine the parity of the vibrational wave function ψv(x) with the
vibrational quantum number v by changing the sign of the coordinate from x
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to −x. When ψv(−x) = +ψv(x) holds, ψv(x) is an even function, and we at-
tach a plus sign on the right shoulder of the vibrational quantum number v. When
ψv(−x) = −ψv(x) holds, ψv(x) is an odd function, and we attach a minus sign on
the right shoulder of v.

From Fig. 2.14, we can see that

ψ0+(−x) = ψ0+(x), ψ1+(−x) = ψ1+(x)

holds for v = 0+, 1+, which tells us that these are even functions. On the other hand,

ψ0−(−x) = −ψ0−(x), ψ1−(−x) = −ψ1−(x)

holds for v = 0−, 1−, characterizing them as odd functions.
As has been discussed in Sect. 2.3.3, in order for infrared light absorption to

occur from the level with quantum number v′′ to that with v′, it is required that
∫ ∞

−∞
ψ∗

v′xψv′′ dx

has a non-zero value. Since x is an odd function, the parity of integrand ψ∗
v′ × x ×

ψv′′ in the integral above becomes odd when ψv′ and ψv′′ have the same parity, that
is,

even × odd × even = odd,

odd × odd × odd = odd.

If we integrate an odd function from −∞ to ∞ we end up with 0, so that infrared
absorption does not occur. On the other hand, when either ψv′ or ψv′′ is an even
function and the other is an odd function, the parity of the integrand becomes even,
i.e.,

even × odd × odd = even,

odd × odd × even = even.

In this case, the integral can take a non-zero value, and infrared light absorption can
occur. Thus, we can see that infrared absorption occurs with transitions from 0+
(even) to 1− (odd) and from 0− (odd) to 1+ (even), and that the different energy
separations in these two transitions are what causes there to be two peeks in the
absorption spectrum.

2.4.3 Energy Level Splitting and Potential Barriers

The number of nodes N in the wave functions, marked by black dots in Fig. 2.14,
increases as N = 0,1,2,3 when v changes as v = 0+, 0−, 1+, 1−. Drawing upon
the case of harmonic oscillators discussed in Sect. 2.2, we can assign quantum num-
bers v = 0, 1, 2, 3 to these wave functions. Meanwhile, if we focus our attention
on either of the two neighboring potential wells (for instance, just the left potential
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Fig. 2.15 Energy levels splitting with changes in the height of the barrier: (a) Infinitely large
barrier; (b) Intermediate barrier; (c) No barrier

well) and ignore the other, we find that the wave function has zero nodes in the case
of v = 0+ and v = 0−, and one in the case of v = 1+ and v = 1−.

Such characteristics of the number of nodes in the wave function can be under-
stood systematically by looking at how the energies of the vibrational levels change
when the height of the barrier of the double minimum potential shown in Eq. (2.178)
is varied, as schematized in Fig. 2.15. As shown in Fig. 2.15(a), if we increase the
barrier separating the two wells, the energies of the 0+ and 0− levels become closer,
and the shapes of the two wave functions become hardly distinguishable as long as
we only look at either the left or the right well. The same can be said of 1+ and
1−, or 2+ and 2−. When the height of the barrier is infinitely large, the energies of
such pairs of levels coincide with each other, which we describe as the two levels
being degenerated. As the barrier becomes lower, on the other hand, the two-fold
degeneracy is removed, and 0+ and 0− become recognizable as individual levels
with different parities. Lowering the barrier further results in a further widening of
the energy spacing between the pair of levels, as shown in Fig. 2.15(c), and the po-
tential ultimately approaches that of a harmonic oscillator. Then the levels v = 0+,
0−, 1+, 1− start to better suit being labeled as v = 0,1,2,3.

The wave functions in Fig. 2.14 extend over the two wells separated by the cen-
tral barrier. According to Born’s probability interpretation, when a system is in an
eigenstate represented by an eigenfunction ψ(x), the probability of finding the sys-
tem in the region between x and x + dx is given by

ψ∗(x)ψ(x)dx = ∣∣ψ(x)
∣∣2 dx.

This shows that ammonia can be found with some probability in both the right- and
left-side bound wells. This is the phenomenon called quantum mechanical tunnel-
ing.
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Fig. 2.16 Superpositions of
the wave functions of
ammonia, v = 0+ and v = 0−

2.4.4 The Geometrical Structure of Ammonia
and the Period of the Inversion Motion

Ammonia molecules are known to have a trigonal pyramidal structure. Here, the
word structure is used to refer to the geometrical structure of the molecule at the
equilibrium position of the potential, or in other words, the position at which dV

dx

becomes 0 and the potential takes a local minimum value. Therefore, as shown in
Fig. 2.13, ammonia takes the equilibrium structure at x = xr and x = xl .

On the other hand, as shown in Fig. 2.14, the wave functions for v = 0+ and v =
0− both correspond to stationary states, and neither can describe the time-dependent
image of an ammonia molecule repeating the inversion motion between right and
left.

As shown in Sect. 2.4.2, the wave functions for v = 0+ and v = 0− in Fig. 2.14
have different parities, but they are very similar in terms of the probability distri-
butions of |ψ0+(x)|2 and |ψ0−(x)|2. We will now consider the sum of ψ0+(x) and
ψ0−(x). As shown in Fig. 2.16(a), the sum

ψr(x) = ψ0+(x) + ψ0−(x) (2.181a)

gives us a wave function localized in the right well. Similarly, as shown in
Fig. 2.16(b), the difference

ψl(x) = ψ0+(x) − ψ0−(x), (2.181b)

becomes a wave function localized in the left well. Thus, if the manner of super-
position of the two wave functions varies with time, this can describe the inversion
motion that occurs between the left and the right.

Generally speaking, the stationary-state wave function ψ(x) can be related with
Ψ (x, t), the solution of the time-dependent Schrödinger equation

H(x)Ψ (x, t) = i�
∂Ψ (x, t)

∂t
, (2.182a)
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by

Ψ (x, t) = ψ(x) exp

(
−i

E

�
t

)
= ψ(x) exp(−iωt), (2.182b)

where the angular frequency ω is defined as ω = E
�

. Consequently, the two
stationary-state wave functions ψ0+(x) and ψ0−(x) can be rewritten with a time-
dependent factor as the following time-dependent expressions:

Ψ0+(x, t) = ψ0+(x) exp(−iω1t), (2.183a)

Ψ0−(x, t) = ψ0−(x) exp(−iω2t), (2.183b)

where ω1 = E1
�

, ω2 = E2
�

, and E1 and E2 represent the eigenenergies of the two
eigenstates v = 0+ and v = 0−, respectively. From Eq. (2.183a),

∣∣Ψ0+(x, t)
∣∣2 = Ψ ∗

0+(x, t)Ψ0+(x, t)

= ψ∗
0+(x)eiω1t · ψ0+(x)e−iω1t

= ∣∣ψ0+(x)
∣∣2

(2.184a)

where |Ψ0+(x, t)|2 dx represents the probability with which the system is found in
the domain between x and x + dx at time t . Similarly, from Eq. (2.183b),

∣∣Ψ0−(x, t)
∣∣2 = ∣∣ψ0−(x)

∣∣2
. (2.184b)

In both cases, the time-dependent factor cancels itself out.
As the next step, we will write the sum of Eqs. (2.183a) and (2.183b) as

Ψ0(x, t) ≡ Ψ0+(x, t) + Ψ0−(x, t)

= ψ0+(x)e−iω1t + ψ0−(x)e−iω2t . (2.185)

The probability of finding this system in the domain between x and dx is
∣∣Ψ0(x, t)

∣∣2 dx = ∣∣ψ0+(x)e−iω1t + ψ0−(x)e−iω2t
∣∣2 dx. (2.186)

The squared modulus can be calculated as
(
ψ∗

0+eiω1t + ψ∗
0−eiω2t

)(
ψ0+e−iω1t + ψ0−e−iω2t

)

= |ψ0+|2 + |ψ0−|2 + ψ∗
0+ψ0−ei(ω1−ω2)t + ψ∗

0−ψ0+ei(ω2−ω1)t

= |ψ0+|2 + |ψ0−|2 + 2(ψ0+ψ0−) cosωt, (2.187)

where

ω = ω2 − ω1 = E2 − E1

�
. (2.188)

Since ψ0+ and ψ0− are real functions with no imaginary parts, |Ψ0(x, t)|2 in
Eq. (2.186) can be rewritten using the identity equation

(x + y)2 cos2 θ + (x − y)2 sin2 θ = x2 + y2 + 2xy cos 2θ
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Fig. 2.17 Variation of
coefficients representing the
inversion motion of ammonia

Fig. 2.18 Plots for
|Ψ0(x, t)|2 at t = 0, π

2ω
, π

ω

and Eq. (2.187) as
∣∣Ψ0(x, t)

∣∣2 = (ψ0+ + ψ0−)2 cos2 ωt

2
+ (ψ0+ − ψ0−)2 sin2 ωt

2
. (2.189)

This can also be written with the ψr(x) and ψl(x) in Eqs. (2.181a) and (2.181b) as
∣∣Ψ0(x, t)

∣∣2 = ψ2
r (x) cos2 ωt

2
+ ψ2

l (x) sin2 ωt

2
. (2.190)

Let us then examine the temporal variation of |Ψ0(x, t)|2 as a function of
time t . The time-dependent coefficients cos2 ωt

2 and sin2 ωt
2 , for ψ2

r (x) and ψ2
l (x)

in Eq. (2.190), respectively, alternate between an increase and a decrease as the time
increases, as shown in Fig. 2.17. At t = 0, the probability distribution becomes

∣∣Ψ0(x,0)
∣∣2 = ψ2

r (x),

which describes the system being localized in the right well. When t increases, the
contribution of ψ2

r (x) decreases, and in turn, that of ψ2
l (x) increases. At t = π

ω
, it

becomes
∣∣∣∣Ψ0

(
x,

π

ω

)∣∣∣∣

2

= ψ2
l (x),

which describes a localization in the left well. Similarly, at t = 2π
ω

, ammonia re-
turns to the right well. This characteristic time evolution of |Ψ0(x, t)|2 is shown in
Fig. 2.18.
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The important lesson here is that, when two eigenfunctions representing station-
ary states are superposed, the probability of a system being found in the coordinate
space varies with time. The superposition of eigenstates ψi(r, t),

ψwp(r, t) =
∑

i

aiψi(r, t), (2.191)

is generally referred to as a wave packet, and we can say that wave packets evolve
with time. The inversion motion of ammonia can be described as the wave packet
constructed by the superposition of ψ0+ and ψ0− evolving with time to alternate
between the two wells, the left and the right.

The period of the inversion motion, T = 2π
ω

, can be represented as

T = 2π

ω
= 2π�

E2 − E1
= h

	E
, (2.192)

where 	E is the energy gap between the v = 0+ and v = 0− levels, and its value is
known to be 0.79 cm−1 from experiments. Therefore, we can derive

T ∼= 42 ps.

The time required for tunneling from the left well to the right, then, is 21 ps, a half
of the period T .

Problem 2.23
Confirm that the period of the inversion motion of ammonia is T = 42 ps when
	E = 0.79 cm−1. Also consider what value T would take if 	E were 0.079 cm−1.

Solution
From Eq. (2.192), we obtain

T = h

	E
= h

chν̃
= 1

cν̃
= 1

3 × 1010 cm s−1 · 0.79 cm−1
∼= 42 ps.

Consequently, when 	E = 0.079 cm−1, T = 420 ps. �

The energy gap 	E between v = 0+ and v = 0− decreases when the height of
the barrier increases, as shown in Fig. 2.15. With the decrease of 	E, as we have
just seen in the question above, the inversion period T stretches in inverse proportion
to 	E. That is to say, the higher the central barrier of the double minimum potential
becomes, the longer the period of the “left → right → left” oscillation of the wave
packet becomes. This signifies that a higher barrier causes the system to take longer
in tunneling through to the other side of the well.

2.5 How to Treat the Vibration of Polyatomic Molecules

So far, we have examined vibrations that occur in the form of one-dimensional mo-
tions, such as the vibration of diatomic molecules and the inversion motion of am-
monia molecules. For polyatomic molecules in general, that is, molecules consisting
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of three or more atoms, the vibrational motion can no longer be described as a sim-
ple one-dimensional vibration. It is easy to understand that, for example, in the case
of triatomic molecules such as CO2, there must be two types of vibration: one in
which the internuclear distances of the two C=O bonds become longer and shorter
in phase, and one in which the internuclear distance of one C=O bond becomes
longer as the other becomes shorter.

There are thus generally a variety of vibrational motions occurring in a poly-
atomic molecule, and these different types of vibration are called vibrational modes.
The number of vibrational modes for a molecule is determined by the number of
atoms it has and its symmetry. We will first seek to understand how many vibrational
modes are found in different types of molecules by examining the degrees of free-
dom for vibration, and learn the definition of normal modes, which are the modes
by which whole molecules vibrate. We will then further discuss the procedure for
obtaining the different normal modes and their associated vibrational frequencies.

2.5.1 Degrees of Freedom of Molecular Motions

When we regard an atom as a mass point in a three-dimensional space, there are
three possibilities for its degree of freedom: one, if it can only move along a
straight line (e.g., the x-Cartesian coordinate), two if the motion is restricted on
a flat plane (e.g., the x-y plane), and three if the mass point can move around three-
dimensionally (described by the x-y-z Cartesian coordinate system).

Atoms constituting a molecule are connected to each other with a chemical bond,
and cannot make any independent movements. In addition to the translational and
rotational motion of the molecule in the 3D space, there are vibrational motions
taking place within the molecule, by which the atoms are displaced around the equi-
librium position.

Let us first consider the case of a heteronuclear diatomic molecule, such as HCl
or CO. Since each of the two atoms (we will call them atom A and atom B) has
three degrees of freedom, the total degrees of freedom for molecule AB becomes 6
(= 3+3). If we regard the molecule as one body, it has three degrees of translational
freedom as a matter of course, so the remaining three degrees are the sum of the
degrees of freedom for the rotation of the molecule as a whole and for the vibration
within the molecule. Placing nuclei A and B on the z axis of a molecule-fixed x-y-z
Cartesian coordinate system so that their center of mass coincides with the origin of
the coordinate system, as shown in Fig. 2.19(a), the molecular vibration of AB can
be conceptualized as a motion that changes R = |zA − zB|. Since no other vibration
exists, there is just one degree of freedom in the vibrational motion of a diatomic
molecule. Consequently, the remaining degrees of freedom (two) can be attributed
to the rotation. This is consistent with the fact that there are two types of rotation,
one around the x axis and the other around the y axis. In summary, the degrees of
freedom for diatomic molecules can be broken down as: 6 (total) = 3 (translation)
+ 2 (rotation) + 1 (vibration). There is no rotation around the z axis since the atoms
are regarded here as mass points.



2.5 How to Treat the Vibration of Polyatomic Molecules 79

Fig. 2.19 The degrees of freedom of motion for diatomic and triatomic molecules: (a) a diatomic
molecule, (b) a bent symmetric triatomic molecule (c) a linear symmetric triatomic molecule

We will turn our attention next to the symmetric triatomic molecule, or AB2.
First, let us consider a bent triatomic molecule such as H2O or SO2 (Fig. 2.19(b)).
The total degrees of freedom can be derived as 3×3 = 9. Supposing the three atoms
are located on the y-z plane, there can be a rotation around each of the three axes, x,
y, and z, so that there are three degrees of rotational freedom. Since there are three
degrees of translational freedom, the rest of the degrees of freedom, 9 − 3 − 3 =
3, are those for vibration. The specific patterns of vibration represented by these
degrees of freedom will later be dealt with in Sects. 2.5.8–2.5.9.

In the case of a linear triatomic molecule such as CO2 or CS2, we can locate
the molecular axis on the z axis in the same manner as we did with the diatomic
molecule, as shown in Fig. 2.19(c). Since there can be no rotation around the z axis,
there are two degrees of freedom for the overall rotation, namely the rotation around
the x axis and that around the y axis. Then, by subtracting the two degrees of rota-
tional freedom and the three degrees of translational freedom from the nine degrees
of freedom, we obtain four as the degrees of vibrational freedom. The reason that a
linear molecule has one more degree of vibrational freedom than a bent molecule is
that a bent molecule has only one form of bending vibration while a linear molecule
has two, one on the x-y plane and the other on the y-z plane. Although the triatomic
molecule we have discussed here is of the symmetric type (ABA), the numbers of
the degrees of freedom for the translation, rotation and vibration of an asymmet-
ric triatomic molecule, ABC, will be the same as the corresponding numbers for a
symmetric triatomic molecule.

Similar rules hold for a polyatomic molecule consisting of n atoms. If it is a linear
polyatomic molecule, it has three degrees of translational freedom and two degrees
of rotational freedom, so by subtracting these numbers from the total degrees of
freedom, 3n, we can derive 3n − 5 as its degrees of vibrational freedom. If the
polyatomic molecule is bent (non-linear), it has three degrees of vibrational freedom
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Table 2.4 The degrees of freedom for the translation, rotation and vibration of molecules

Degrees
of freedom
of translation

Degrees
of freedom
of rotation

Degrees
of freedom
of vibration

Total degrees
of freedom

Diatomic molecule 3 2 1 6

Triatomic
molecule

Linear type 3 2 4 9

Bent type
(Non-linear type)

3 3 3 9

n-atomic
molecule
(n� 3)

Linear type 3 2 3n − 5 3n

Bent type
(Non-linear type)

3 3 3n − 6 3n

Fig. 2.20 The three patterns of typical normal mode vibration for a bent symmetric triatomic
molecule AB2

and three degrees of rotational freedom, making the degree of vibrational freedom
3n − 6. A summary of the degrees of freedom for the molecular motion of different
types of molecules is given in Table 2.4.

2.5.2 What Are Normal Modes?

Like diatomic molecules, a polyatomic molecule vibrates around its equilibrium
geometrical structure while it translates and rotates. In the case of a bent polyatomic
molecule consisting of n atoms (n � 3), the degrees of freedom for vibration is
3n − 6. As we have already examined, a bent triatomic molecule such as H2O or
SO2 has 3 × 3 − 6 = 3 degrees of freedom of vibration. This means that there are
three different types in the molecular vibration. How does a molecule vibrate in
three different ways? These three vibrational patterns are called normal modes, and
their typical patterns are shown in Fig. 2.20. The main goal of this subsection is to
learn how to find the normal modes intrinsic to each molecular species.

In order to familiarize ourselves with the concept of normal modes, let us first
look at the normal modes of a linear triatomic molecule, whose motion is restricted
on the one-dimensional axis, as this is the simplest model of coupled molecular



2.5 How to Treat the Vibration of Polyatomic Molecules 81

Fig. 2.21 The movements along the x axis for the three atoms in a linear triatomic molecule

vibration. We will consider the three atoms to be moving along the x axis, as shown
in Fig. 2.21. The kinetic energy T is then written as

T = 1

2
m1	ẋ2

1 + 1

2
m2	ẋ2

2 + 1

2
m3	ẋ2

3 , (2.193)

where 	x1, 	x2, and 	x3 represent the displacement of the respective atoms from
their equilibrium positions. When we neglect the third- and higher-order terms of
the displacement, the potential energy V is expressed as,

V = 1

2
k12(	x1 − 	x2)

2 + 1

2
k23(	x2 − 	x3)

2, (2.194)

where k12 is the force constant between atom 1 and atom 2, and k23 that between
atom 2 and atom 3. This is a well-known problem of a coupled oscillator. In order
to derive a formula of the classical equation of motion, we need to construct the
Lagrangian L = T − V for each i-th (i = 1,2,3) atom, and construct the following
equation:

d

dt

(
∂L

∂(	ẋi)

)
− ∂L

∂(	xi)
= 0 (i = 1,2,3). (2.195)

By introducing a set of mass-weighted Cartesian displacement coordinates,

ηi = √
mi	xi, (2.196)

we can write Eq. (2.193) more simply as

T = 1

2
η̇2

1 + 1

2
η̇2

2 + 1

2
η̇2

3, (2.197)

and Eq. (2.194) as

V = 1

2
k12

(
η1√
m1

− η2√
m2

)2

+ 1

2
k23

(
η2√
m2

− η3√
m3

)2

. (2.198)

Since T in Eq. (2.197) explicitly depends only on the derivate of the coordinate,
{ dηi

dt
} = {η̇i}, and V in Eq. (2.198) explicitly depends only on the coordinate {ηi},

the equation of motion, Eq. (2.195), is rewritten using η1, η2, and η3 as

d

dt

(
∂T

∂η̇i

)
+ ∂V

∂ηi

= 0 (i = 1,2,3). (2.199)
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Next, we substitute Eqs. (2.197) and (2.198) into Eq. (2.199) and obtain the si-
multaneous differential equations,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

η̈1 + k12

m1
η1 − k12√

m1m2
η2 = 0,

η̈2 − k12√
m1m2

η1 + k12 + k23

m2
η2 − k23√

m2m3
η3 = 0,

η̈3 − k23√
m2m3

η2 + k23

m3
η3 = 0,

(2.200)

where {η̈i} = { d2ηi

dt2 }.
What we are trying to derive here are the frequencies and corresponding forms of

molecular vibration for a molecule that vibrates repeatedly at a specific frequency. In
order to fulfill the requirement that the displacements of the three coordinates should
oscillate in phase at a common frequency ν, or at a common angular frequency
ω(= 2πν), we will express the mass-weighted Cartesian displacement coordinates
as

⎧
⎪⎨

⎪⎩

η1 = η◦
1 exp(iωt),

η2 = η◦
2 exp(iωt),

η3 = η◦
3 exp(iωt),

(2.201)

where η◦
1, η◦

2, and η◦
3 (�0) are constants representing the maximum values of the

respective displacements. By substituting Eq. (2.201) into Eq. (2.200), the simulta-
neous linear equations,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k12

m1
η◦

1 − k12√
m1m2

η◦
2 = ω2η◦

1,

− k12√
m1m2

η◦
1 + k12 + k23

m2
η◦

2 − k23√
m2m3

η◦
3 = ω2η◦

2,

− k23√
m2m3

η◦
2 + k23

m3
η◦

3 = ω2η◦
3,

(2.202)

are obtained.

Problem 2.24
Confirm that Eq. (2.202) is derived from Eqs. (2.200) and (2.201). Also prove that
the same set of equations, Eq. (2.202), is obtained whether we adopt ηi = η◦

i cosωt

or ηi = η◦
i cos(ωt + δ), where δ is a constant phase.

Solution
In both cases, d2ηi/dt2 = −ω2ηi is obtained, so that we can derive Eq. (2.202) by
adopting the above ηi functions or from ηi = η◦

i exp(iωt). The same result is given,
of course, when we adopt ηi = η◦

i sinωt or ηi = η◦
i sin(ωt + δ). �

To give the present discussion a clearer correspondence with the general case
of three-dimensional molecular vibration to be introduced later, we will represent
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Eq. (2.202) in matrix form. When a 3 × 3 matrix C = {cij } (1 � i, j � 3) is defined
as

C =

⎛

⎜
⎜⎜⎜
⎝

k12
m1

− k12√
m1m2

0

− k12√
m1m2

k12+k23
m2

− k23√
m2m3

0 − k23√
m2m3

k23
m3

⎞

⎟
⎟⎟⎟
⎠

, (2.203)

and a three-dimensional row vector η◦ is expressed as

η◦ =
⎛

⎜
⎝

η◦
1

η◦
2

η◦
3

⎞

⎟
⎠ . (2.204)

Equation (2.202) is represented as

Cη◦ = ω2η◦. (2.205)

It is obvious from Eq. (2.205) that this problem is equivalent to an eigenvalue
problem in which we derive the eigenvalue ω2 and the corresponding eigenvector
η◦ for a given matrix C. By using a 3 × 3 unit matrix

E =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , (2.206)

Eq. (2.205) can be rewritten as
(
C − ω2E

)
η◦ = 0. (2.207)

The condition for the simultaneous linear equations with respect to {η◦
i } to have a

non-trivial solution, that is, a solution other than the meaningless solution

η◦
1 = η◦

2 = η◦
3 = 0, (2.208)

is expressed as

det
∣∣C − ω2E

∣∣ = 0, (2.209)

where det |A| represents the determinant of a matrix A.
Equation (2.209) can be written explicitly using the matrix elements as

∣
∣∣∣∣∣∣∣∣∣

k12
m1

− ω2 − k12√
m1m2

0

− k12√
m1m2

k12+k23
m2

− ω2 − k23√
m2m3

0 − k23√
m2m3

k23
m3

− ω2

∣
∣∣∣∣∣∣∣∣∣

= 0. (2.210)

This is a cubic equation with respect to ω2, and has three solutions. For each of the
ω2 values, there is a corresponding eigenvector representing the specific form of the
molecular vibration.
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Now we will consider a linear symmetric triatomic molecule such as CO2 or
CS2, and solve Eq. (2.209), or, equivalently, Eq. (2.210), under the condition that

⎧
⎨

⎩
k12 = k23 = k, (2.211)

m1 = m3 = M. (2.212)

Here, we will represent the mass of the central atom m2 as

m2 = m. (2.213)

Substituting Eqs. (2.211) through (2.213) into Eq. (2.210), we obtain
∣∣∣∣
∣∣∣∣∣

k
M

− ω2 − k√
mM

0

− k√
mM

2k
m

− ω2 − k√
mM

0 − k√
mM

k
M

− ω2

∣∣∣∣
∣∣∣∣∣

= 0. (2.214)

By calculating and factorizing this determinant, we derive
(

ω2 − k

M

){
ω2 − k(2M + m)

Mm

}
ω2 = 0, (2.215)

which gives us three solutions, or three eigenvalues,

ω2 = k

M
,

k(2M + m)

Mm
, 0. (2.216)

Therefore, the vibrational angular frequencies ω are expressed as

ω =
√

k

M
,

√
k(2M + m)

Mm
, 0 (2.217)

and the vibrational frequencies can be derived as

ν = 1

2π

√
k

M
,

1

2π

√
k(2M + m)

Mm
, 0. (2.218)

What is worth noting here is that a motion with the frequency of ν = 0 is found as
one of the solutions. As is to be explained below, this corresponds to the translational
motion of an entire molecule along the x axis. To understand the forms of such
molecular motions, we simply need to derive the eigenvectors corresponding to the
three eigenvalues in Eq. (2.216).

(i) Molecular motion for ω2 = k
M

(ν = 1
2π

√
k
M

)

By substituting ω2 = k
M

into Eq. (2.202) and using Eqs. (2.211) through (2.213),
we obtain

{
η◦

2 = 0,

η◦
3 = −η◦

1.
(2.219)
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Fig. 2.22 The
one-dimensional motions of
an AB2-type symmetric
triatomic molecule: (a) the
symmetric stretch, (b) the
anti-symmetric stretch, (c) the
translation along the x axis

That is, the eigenvector is represented as

η◦ =
⎛

⎝
η◦

1

0
−η◦

1

⎞

⎠ . (2.220)

If η◦ fulfills the normalization condition,

∣∣η◦∣∣ =
√(

η◦
1

)2 + (
η◦

2

)2 + (
η◦

3

)2 = 1, (2.221)

the normalized eigenvector becomes

η◦
(1) =

⎛

⎜⎜
⎝

1√
2

0

− 1√
2

⎞

⎟⎟
⎠ , (2.222)

where the subscript “(1)” shows that this eigenvector is associated with the first
eigenvalue, k

M
, in Eq. (2.216). Using Eq. (2.196), the displacements of the atoms

are obtained from the corresponding components in the normalized eigenvector as

	x1 = 1√
2M

, 	x2 = 0, 	x3 = − 1√
2M

. (2.223)

Clearly, this corresponds to the symmetric stretch mode, in which the central atom
remains stationary and the side atoms stretch in phase in two opposite directions.
The vibration is illustrated in Fig. 2.22(a) using displacement vectors.

(ii) Molecular motion for ω2 = k(2M+m)
Mm

(ν = 1
2π

√
k(2M+m)

Mm
)

By substituting ω2 = k(2M+m)
Mm

into Eq. (2.202) and using Eqs. (2.211) through
(2.213), we obtain

⎧
⎨

⎩

η◦
3 = η◦

1,

η◦
2 = −2

√
M

m
η◦

1.
(2.224)
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From the normalization condition in Eq. (2.221), we derive

η◦
(2) =

⎛

⎜⎜⎜⎜⎜
⎝

√
m

2(2M+m)

−
√

2M
2M+m

√
m

2(2M+m)

⎞

⎟⎟⎟⎟⎟
⎠

. (2.225)

Therefore, the displacements of atoms are expressed as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

	x1 = 	x3 =
√

m

2M(2M + m)
,

	x2 = −
√

2M

m(2M + m)
,

(2.226)

indicating that the side atoms move in the same direction to the same extent while
the central atom moves in phase in the opposite direction. This motion is the anti-
symmetric stretch mode, and its form is depicted in Fig. 2.22(b).

(iii) Molecular motion for ω2 = 0 (ν = 0)

As in (i) and (ii), a set of solutions,
⎧
⎪⎨

⎪⎩

η◦
3 = η◦

1,

η◦
2 =

√
m

M
η◦

1,
(2.227)

can be obtained, and it is normalized as

η◦
(3) =

⎛

⎜⎜⎜⎜⎜
⎝

√
M

2M+m

√
m

2M+m

√
M

2M+m

⎞

⎟⎟⎟⎟⎟
⎠

. (2.228)

This allows us to derive the displacements of the atoms as

	x1 = 	x2 = 	x3 = 1√
2M + m

, (2.229)

which represents the motion of the three atoms moving in phase in the same direc-
tion to the same extent. This is exactly what we call the translational motion of the
entire molecule. The motion is illustrated in Fig. 2.22(c).

From (i), (ii), and (iii), we understand that two of the three eigenvalues represent
molecular vibrations, and the remaining one represents the translation of the entire
molecule. The two kinds of molecular vibration obtained here as eigenvectors are
what we call normal modes.
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2.5.3 Normal Modes and Matrix Diagonalization

We will now summarize the discussion above as a diagonalization problem of the
matrix C in Eq. (2.203). First, let us confirm the orthogonality of each pair among
the normalized eigenvectors, Eqs. (2.222), (2.225), and (2.228). This is readily
shown, as

⎧
⎪⎨

⎪⎩

η◦
(1) · η◦

(2) = 0,

η◦
(2)

· η◦
(3)

= 0,

η◦
(3) · η◦

(1) = 0.

(2.230)

Since these three vectors are all normalized, we can describe Eq. (2.230) as

η◦
(i) · η◦

(j) = δij . (2.231)

If we represent an orthogonal matrix Lη which has these orthonormal vectors as its
column vectors as

Lη =

⎛

⎜⎜⎜⎜
⎝

1√
2

√
m

2(2M+m)

√
M

2M+m

0 −
√

2M
2M+m

√
m

2M+m

− 1√
2

√
m

2(2M+m)

√
M

2M+m

⎞

⎟⎟⎟⎟
⎠

, (2.232)

and introduce a diagonal matrix whose diagonal matrix elements are the three eigen-
values ω2

1, ω2
2, and ω2

3,

Λ =
⎛

⎜
⎝

ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

⎞

⎟
⎠ , (2.233)

we can derive the set of equations in matrix form as

CLη = LηΛ. (2.234)

Problem 2.25
Confirm the orthogonal relations in Eq. (2.230).

Solution
For example, we can derive

η◦
(2) · η◦

(3) =
√

m

2(2M + m)

√
M

2M + m
−

√
2M

2M + m

√
m

2M + m

+
√

m

2(2M + m)

√
M

2M + m

=
√

Mm

2M + m

(
1√
2

− √
2 + 1√

2

)
= 0.

We can also derive η◦
(1) · η◦

(2) = 0 and η◦
(3) · η◦

(1) = 0 in a similar manner. �
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Problem 2.26
Prove Eq. (2.234).

Solution
From Eq. (2.205), we obtain

Cη◦
(1) = ω2

1η
◦
(1)

Cη◦
(2)

= ω2
2η

◦
(2)

Cη◦
(3) = ω2

3η
◦
(3).

Therefore, by setting the three column vectors {η◦
(i)} in a row, we can derive

C

⎛

⎜
⎝ η◦

(1) η◦
(2) η◦

(3)

⎞

⎟
⎠ =

⎛

⎜
⎝ η◦

(1) η◦
(2) η◦

(3)

⎞

⎟
⎠

⎛

⎝
ω2

1 0 0
0 ω2

2 0
0 0 ω2

3

⎞

⎠ .

This equation is identical to Eq. (2.234). �

As the next step, we will introduce tLη, a transpose of the matrix Lη, as

tLη =

⎛

⎜⎜⎜⎜
⎝

1√
2

0 − 1√
2

√
m

2(2M+m)
−

√
2M

2M+m

√
m

2(2M+m)
√

M
2M+m

√
m

2M+m

√
M

2M+m

⎞

⎟⎟⎟⎟
⎠

, (2.235)

and calculate tLηLη . It can be readily shown that

tLηLη =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ = E. (2.236)

This signifies that tLη is L−1
η , the inverse matrix of Lη. That is,

tLη = L−1
η . (2.237)

Problem 2.27
Derive Eq. (2.236).

Solution

When η◦
(i) =

( ai

bi

ci

)
, the row vector t(η◦

(i)), which is the transpose of this column

vector, can be written as

t
(
η◦

(i)

) = (ai bi ci ).
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Using these row vectors, tLη is expressed as

tLη =

⎛

⎜⎜⎜⎜
⎝

t(η◦
(1))

t(η◦
(2))

t(η◦
(3))

⎞

⎟⎟⎟⎟
⎠

.

Consequently, Lη is expressed as

Lη =
⎛

⎜
⎝ η◦

(1) η◦
(2) η◦

(3)

⎞

⎟
⎠ .

Therefore, the (i, j) element of tLηLη , (tLηLη)ij , can be calculated as

(
tLηLη

)
ij

= t
(
η◦

(i)

)(
η◦

(j)

) = (ai bi ci )

⎛

⎝
aj

bj

cj

⎞

⎠ = aiaj + bibj + cicj = η◦
(i) · η◦

(j).

From the orthonormal condition given in Eq. (2.231), we obtain
(
tLηLη

)
ij

= δij .

This is what Eq. (2.236) represents. �

By operating tLη = L−1
η from the left on both sides of Eq. (2.234) as

L−1
η CLη = L−1

η LηΛ (2.238)

and using Eq. (2.236), we derive

L−1
η CLη = Λ. (2.239)

This indicates that, once we find a Lη that diagonalizes matrix C, eigenvalues
line up as those diagonal elements. The procedure that we have followed so far to
derive the frequencies and patterns of the normal modes can be summarized as the
diagonalization of the matrix C represented in Eq. (2.203).

2.5.4 The Vibrational Hamiltonian Represented
by Normal Coordinates

The potential was given at the beginning of this section in the form of Eq. (2.198).
When the dependence of the third-order and higher-order terms of the coordinates
are ignored, the dependence of the potential on the coordinates is represented as

V =
3∑

i=1

3∑

j=1

1

2
cij ηiηj . (2.240)
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Here, the coefficient cij is the (i, j) element of the matrix C given in Eq. (2.203).
Indeed, from Eq. (2.199), the coefficient of the term ηj in the sum of the terms
obtained by ∂V

∂ηi
is cij , so that

cij = ∂2V

∂ηi∂ηj

= 1√
mimj

(
∂2V

∂(	xi)∂(	xj )

)
. (2.241)

This is what Eq. (2.240) means. When Eq. (2.240) is represented with matrix C, it
becomes

V = 1

2
tηCη, (2.242)

and the kinetic energy is represented as

T = 1

2
tη̇η̇, (2.243)

where η̇ is defined as

η̇ =
⎛

⎜
⎝

η̇1

η̇2

η̇3

⎞

⎟
⎠ . (2.244)

By operating tLη on Eq. (2.234) from the right, we derive

CLη
tLη = LηΛ

tLη,

and, consequently, using tLη = L−1
η , we can obtain

C = LηΛ
tLη. (2.245)

Substituting Eq. (2.245) into Eq. (2.242), we derive

V = 1

2
tηLηΛ

tLηη. (2.246)

As the next step, we introduce a column vector Q =
( Q1

Q2
Q3

)
that is defined as

Q = tLηη. (2.247)

Since the transpose of this vector is

tQ = t
(
tLηη

) = tηLη. (2.248)

Equation (2.246) can be expressed with Q as

V = 1

2
tQΛQ. (2.249)

From Eq. (2.247), we obtain

η = LηQ, (2.250)
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and therefore the kinetic energy is expressed as

T = 1

2
tη̇η̇ = 1

2

(
tQ̇ tLη

)
(LηQ̇) = 1

2
tQ̇Q̇. (2.251)

We can represent Eq. (2.249) explicitly using the components of the matrix Λ and
those of vector Q as

V = 1

2
(Q1 Q2 Q3)

⎛

⎜
⎝

ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

⎞

⎟
⎠

⎛

⎝
Q1
Q2
Q3

⎞

⎠

= 1

2
ω2

1Q
2
1 + 1

2
ω2

2Q
2
2 + 1

2
ω2

3Q
2
3. (2.252)

This shows that we can eliminate the cross terms between different coordinates,
such as ηiηj (i 	= j), from the potential, by the coordinate transformation given by
Eq. (2.247). Similarly, the kinetic energy can be given simply as

T = 1

2
(Q̇1 Q̇2 Q̇3)

⎛

⎜
⎝

Q̇1

Q̇2

Q̇3

⎞

⎟
⎠

= 1

2
Q̇2

1 + 1

2
Q̇2

2 + 1

2
Q̇2

3. (2.253)

These three coordinates, Q1, Q2, and Q3, are called normal coordinates. Using the
normal coordinates, the Hamiltonian H = T + V representing the total energy can
be expressed as

H =
(

1

2
Q̇2

1 + 1

2
ω2

1Q
2
1

)
+

(
1

2
Q̇2

2 + 1

2
ω2

2Q
2
2

)
+

(
1

2
Q̇2

3 + 1

2
ω2

3Q
2
3

)
. (2.254)

The third parenthesis of this equation, in which ω2
3 = 0, simply represents the

translational energy. Therefore, when deriving the Hamiltonian of the normal mode
vibration, we ignore this part and express the Hamiltonian as

H = H1 + H2 (2.255)

where H1 and H2 are each the Hamiltonian of a one-dimensional harmonic oscilla-
tor,

⎧
⎪⎪⎨

⎪⎪⎩

H1 = 1

2
Q̇2

1 + 1

2
ω2

1Q
2
1, (2.256a)

H2 = 1

2
Q̇2

2 + 1

2
ω2

2Q
2
2. (2.256b)

These Hamiltonians have a form identical to

H = 1

2
μẋ2 + 1

2
kx2. (2.257)
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Indeed, from Eqs. (2.247) and (2.196), we can derive,

Q1 = 1√
2
(η1 − η3) = √

MX1, (2.258)

where

X1 = 1√
2
(	x1 − 	x3). (2.259)

Similarly, for Q2, we can derive

Q2 =
√

m

2(2M + m)
η1 −

√
2M

2M + m
η2 +

√
m

2(2M + m)
η3

=
√

2Mm

2M + m
X2, (2.260)

where

X2 = 1√
2

(
	x1 − 	x2√

2

)
+ 1√

2

(
	x3 − 	x2√

2

)
. (2.261)

Therefore,

H1 = 1

2
MẊ2

1 + 1

2
Mω2

1X
2
1 (2.262)

H2 = 1

2

(
2Mm

2M + m

)
Ẋ2

2 + 1

2

(
2Mm

2M + m

)
ω2

2X
2
2 (2.263)

are obtained. As it becomes apparent when we substitute k = Mω2
1 into Eq. (2.262)

and k = ( 2Mm
2M+m

)ω2
2 into Eq. (2.263), both of these equations have the same form as

Eq. (2.257).
The general procedure for deriving all of the normal modes of a polyatomic

molecule with n atoms and N degrees of freedom of vibration will be introduced
in Sect. 2.5.6, but there, too, the framework of the discussion in the present section
will be applicable. That is, using the normal coordinates {Qi}, the Hamiltonian will
be given as the sum of the Hamiltonians of N harmonic oscillators as

H =
N∑

i=1

Hi, (2.264)

where

Hi = 1

2
Q̇2

i + 1

2
ω2

i Q
2
i (i = 1, . . . ,N). (2.265)

Problem 2.28
Explain why neither a constant term nor a first-order term with respect to ηi exists
in the potential V in Eq. (2.240).
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Solution
Generally, when the potential V is expanded as a Taylor series around the equilib-
rium position, V is expressed as

V = V0 +
3∑

i=1

(
∂V

∂ηi

)

e
ηi + 1

2

3∑

i=1

3∑

j=1

(
∂2V

∂ηi∂ηj

)

e
ηiηj

+ (third- and higher-order terms). (2.266)

Among the expansion terms, the potential V0 only shifts the energy by a constant
value, so that we can regard it as V0 = 0. At the same time, each of the first deriva-
tives of the potential with respect to the displacement coordinates around the equi-
librium position, that is,

(
∂V
∂ηi

)
e, is zero. Therefore, within the harmonic approxima-

tion, in which the third- and higher-order expansion terms are neglected, V can be
given by Eq. (2.240). �

2.5.5 The Quantum Theory of Normal Mode Vibrations

The discussion in Sect. 2.5.4 allows us to readily quantize the vibrational motion
of a polyatomic molecule consisting of n atoms. First of all, let us consider how
the Hamiltonian of the i-th normal mode given by Eq. (2.265) can be quantized.
The quantization of a coordinate x which has the dimension of the length and its
conjugate momentum p is achieved by the transformation of the observables x and
p into corresponding operators in quantum mechanics as

x → x, p → −i�
∂

∂x
.

Then, by quantizing x and p, respectively, the Hamiltonian of a harmonic oscil-
lator in classical mechanics

H = p2

2μ
+ 1

2
μω2x2 (2.267)

is transformed into a Hamiltonian in quantum mechanics as

Ĥ = − �
2

2μ

∂2

∂x2
+ 1

2
μω2x2. (2.268)

As shown in Eqs. (2.258) through (2.263), the normal coordinate Qi is related to
x by use of the reduced mass μi as

Qi = √
μix. (2.269)

Therefore, the quantum mechanical Hamiltonian of Eq. (2.268) can be expressed
with the normal coordinate Qi in Eq. (2.269), as

Ĥi = −�
2

2

∂2

∂Q2
i

+ 1

2
ω2

i Q
2
i . (2.270)
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By comparing this result with Eq. (2.265), we learn that a Hamiltonian in classi-
cal mechanics composed of the normal coordinates Qi and their derivatives Q̇i can
be quantized by replacing Qi and the momenta conjugated with Qi , given as

Pi = ∂T

∂Q̇i

= ∂

∂Q̇i

(
1

2
Q̇2

i

)
= Q̇i, (2.271)

with corresponding operators, respectively, through the following transformations:

Qi → Qi, Pi = Q̇i → −i�
∂

∂Qi

. (2.272)

By use of this quantum mechanical Hamiltonian, Schrödinger’s equation of the
i-th harmonic oscillator can be represented with the eigenvalues E

(i)
vi

and the eigen-

functions φ
(i)
vi

(Qi) as,

Hiφ
(i)
vi

(Qi) = E(i)
vi

φ(i)
vi

(Qi), (2.273)

where vi represents the vibrational quantum number of the i-th harmonic oscillator,
and the eigenfunction φ

(i)
n (Qi) is given by

φ(i)
n (Qi) =

(
1

2nn!
√

ω

π�

) 1
2

Hn

(√
ω

�
Qi

)
e− 1

2 (
√

ω
�

Qi)
2
. (2.274)

This representation can be readily derived by expressing the wave functions of a
harmonic oscillator, which we learned in Sect. 2.2, using the relation

ξ =
√

μω

�
x =

√
ω

�
Qi. (2.275)

The eigenfunctions {φ(i)
n (Qi)} fulfill the orthonormal relation

∫ ∞

−∞
φ(i)

m (Qi)φ
(i)
n (Qi)dQi = δmn, (2.276)

and the eigenenergy E
(i)
n is expressed as

E(i)
n = �ωi

(
n + 1

2

)
. (2.277)

When we express the Schrödinger equation as

HΨ = EΨ, (2.278)

using the eigenfunction Ψ , the eigenvalue E, and the quantum mechanical Hamilto-
nian H obtained by the quantization of the total Hamiltonian of Eq. (2.264) in clas-
sical mechanics, Ψ can be represented as the product of the eigenfunctions φ

(i)
vi

(Qi)

of each respective harmonic oscillator, as

Ψv

({Qi}
) = φ(1)

v1
(Q1)φ

(2)
v2

(Q2) · · ·φ(N)
vN

(QN)

=
N∏

i=1

φ(i)
vi

(Qi), (2.279)
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and the eigenvalue E is given by,

E(v) = E(1)
v1

+ E(2)
v2

+ · · · =
N∑

i=1

E(i)
vi

(2.280)

where v represents the set of quantum numbers v = (v1, v2, . . . , vN). Therefore,
once we have derived the frequency νi = ωi

2π
and the quantum number vi for each

of the harmonic oscillators, we can calculate the total vibrational energy according
to Eq. (2.280), as the sum of the eigenvalues of these harmonic oscillators.

For example, in the case of a bent triatomic molecule SO2, which has three de-
grees of freedom of vibration, there are three normal modes, the symmetric stretch
(ν1), the bending (ν2), and the anti-symmetric stretch (ν3). These normal modes are
also called the ν1 mode, the ν2 mode, and the ν3 mode. The frequencies of these
normal modes are known to be

ν̃1 = 1151 cm−1,

ν̃2 = 517 cm−1,

ν̃3 = 1362 cm−1.

From Eqs. (2.277) and (2.280), the vibrational energy of the entire molecule is ex-
pressed as,

E(v) =
3∑

i=1

�ωi

(
vi + 1

2

)

= �ω1

(
v1 + 1

2

)
+ �ω2

(
v2 + 1

2

)
+ �ω3

(
v3 + 1

2

)
. (2.281)

This equation can be rewritten in terms of wave numbers as

Ẽ(v) = E(v)

hc
= ν̃1

(
v1 + 1

2

)
+ ν̃2

(
v2 + 1

2

)
+ ν̃3

(
v3 + 1

2

)
. (2.282)

Once the set of quantum numbers v = (v1, v2, v3) is given, we can calculate the
vibrational energy from Eq. (2.282).

For example, Ẽ (1,2,0), the vibrational energy of SO2 for the vibrational levels
v = (1,2,0), is calculated as

Ẽ(1,2,0) = ν̃1

(
1 + 1

2

)
+ ν̃2

(
2 + 1

2

)
+ ν̃3

(
0 + 1

2

)

= 3

2
ν̃1 + 5

2
ν̃2 + 1

2
ν̃3 = 3700 cm−1.

Problem 2.29
Derive the energy of the vibrational levels v = (1,2,0) of SO2 in terms of wave
numbers, as measured from the zero-point vibrational level.
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Solution
The zero-point energy Ẽ(0,0,0) is given by

Ẽ(0,0,0) = 1

2
ν̃1 + 1

2
ν̃2 + 1

2
ν̃3,

and therefore the vibrational energy becomes

Ẽ(1,2,0) − Ẽ(0,0,0) = ν̃1 + 2ν̃2 = 2185 cm−1.

The vibrational energy measured from the zero-point vibrational level is called the
term value of the vibration. �

As seen from solving Problem 2.29, the term value for v = (1,2,0) of SO2 is
calculated to be 2185 cm−1. However, the corresponding value obtained from spec-
troscopic measurements is 2180 cm−1, which is lower than the estimate by 5 cm−1.
This is because (i) each of the normal modes ν1, ν2, and ν3 has some anharmonicity
and cannot be represented as a pure harmonic oscillator and (ii) the normal modes
are not independent of one another due to the anharmonic couplings through which
the oscillators interact with one another. The effect of this type of anharmonicity
becomes the more pronounced the larger the vibrational quantum numbers are.

In order to represent the effect of the anharmonicities in vibrational modes, we
often expand the observed energy levels phenomenologically as

Ẽ(v) =
∑

i

ν̃i

(
vi + 1

2

)
+

∑ ∑

i�j

xij

(
vi + 1

2

)(
vj + 1

2

)

+
∑ ∑ ∑

i�j�k

yijk

(
vi + 1

2

)(
vj + 1

2

)(
vk + 1

2

)
+ · · · . (2.283)

Such a description is called the Dunham-type expansion.

2.5.6 Normal Modes of a Polyatomic Molecule
Composed of n Atoms

Let us now extend the procedure we learned with the model of a linear triatomic
molecule in Sects. 2.5.2 through 2.5.4 to the general case of a polyatomic molecule
composed of n atoms. We will first consider the bent triatomic molecule shown in
Fig. 2.23, and represent the displacements of the three atoms 1, 2, and 3 from their
equilibrium positions as (	x1,	y1,	z1), (	x2,	y2,	z2), and (	x3,	y3,	z3),
respectively. Then, the kinetic energy of the entire molecule becomes

T = 1

2

3∑

i=1

Mi

(
	ẋ2

i + 	ẏ2
i + 	ż2

i

)
, (2.284)
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Fig. 2.23 The displacement of atoms from their equilibrium positions in a bent triatomic molecule

where Mi is the mass of the i-th atom. In order to make the representation of this
formula simpler, we will henceforth write

	x1, 	y1, 	z1, 	x2, 	y2, 	z2, 	x3, 	y3, 	z3,

in this order, as
ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9.

The relative values of these displacements need to satisfy the requirement that the
vibration does not cause the molecule as a whole to translate nor rotate. This re-
quirement is called Eckart’s condition.

If we assume that m1 = m2 = m3 = M1, m4 = m5 = m6 = M2, and m7 = m8 =
m9 = M3, Eq. (2.284) becomes

T = 1

2

9∑

i=1

miξ̇
2
i . (2.285)

By using ξi , the potential V around the equilibrium geometry can be represented as

V = 1

2

9∑

i=1

9∑

j=1

(
∂2V

∂ξi∂ξj

)

e
ξiξj , (2.286)

where third-order terms such as ξiξj ξk and higher-order terms are neglected. The
kinetic energy and the potential energy represented respectively in Eqs. (2.285) and
(2.286) are those for a triatomic molecule, but by replacing the sum as 9 → 3n,
we can turn them into representations of the kinetic and potential energies for an
n-atomic molecule.

As the next step, we will derive the normal modes of a polyatomic molecule
consisting of n atoms. The procedure is exactly the same as the one described in
Sects. 2.5.2 through 2.5.4. First, we express the Lagrangian L = T − V using the
T and V for an n-atomic molecule corresponding to Eqs. (2.285) and (2.286), and
transform the classical equation of motion

d

dt

(
∂L

∂ξ̇i

)
− ∂L

∂ξi

= 0 (2.287)
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into

d

dt
(mi ξ̇i) +

3n∑

j

(
∂2V

∂ξi∂ξj

)

e
ξj = 0. (2.288)

By introducing mass-weighted coordinates

ηi = √
miξi (i = 1,2 . . . ,3n), (2.289)

we can express Eq. (2.288) as

d

dt
η̇i +

3n∑

j

cij ηj = 0, (2.290)

where the coefficients cij are given by

cij = 1√
mimj

(
∂2V

∂ξi∂ξj

)

e
. (2.291)

Since the vibrations treated here are those where the atoms in a molecule vibrate
collectively with a common frequency starting from their equilibrium positions, we
will consider these atoms to be vibrating at a common angular frequency ω, given
as

ηi = η◦
i exp(iωt). (2.292)

By substituting this into Eq. (2.290), we can readily obtain

−ω2η◦
i +

3n∑

j

cij η
◦
j = 0. (2.293)

This is a simultaneous linear equation with regards to the displacement ampli-
tudes η◦

j , and can be represented in matrix form as

⎛

⎜⎜⎜
⎝

c11 c12 c13
c21 c22 c23 . . .

c31 c32 c33
...

. . .

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

η◦
1

η◦
2

η◦
3
...

⎞

⎟⎟⎟⎟
⎠

= ω2

⎛

⎜⎜⎜⎜
⎝

η◦
1

η◦
2

η◦
3
...

⎞

⎟⎟⎟⎟
⎠

, (2.294)

or, equivalently, as

⎛

⎜⎜⎜
⎝

c11 − ω2 c12 c13

c21 c22 − ω2 c23 . . .

c31 c32 c33 − ω2

...
. . .

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

η◦
1

η◦
2

η◦
3
...

⎞

⎟⎟⎟⎟
⎠

= 0. (2.295)
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The condition for this simultaneous linear equation to have a non-trivial solution,
that is, a solution aside from η◦

1 = η◦
2 = · · · = η◦

3n = 0, is
∣∣∣∣∣∣∣∣∣

c11 − ω2 c12 c13

c21 c22 − ω2 c23 . . .

c31 c32 c33 − ω2

...
. . .

∣∣∣∣∣∣∣∣∣

= 0, (2.296)

that is,
∣∣C − ω2E

∣∣ = 0. (2.297)

There can potentially be 3n solutions for the eigenvalues ω2, but out of them, 6
(5 in the case of a linear molecule) are solutions that give ω2 = 0. These are the 3
solutions corresponding to the translation of the entire molecule, and the 3 (or 2 in
the case of a linear molecule) corresponding to the rotation of the entire molecule.
When we denote the k-th eigenvalue as ω2

k and the associated eigenvector as

η◦
k =

⎛

⎜
⎝

η◦
1k

η◦
2k
...

⎞

⎟
⎠ , (2.298)

Eq. (2.294) is written as

Cη◦
k = ω2

kη
◦
k, (2.299)

where η◦
k is normalized so that

∑

i

(
η◦

ik

)2 = 1. (2.300)

Using an Lη matrix

Lη =

⎛

⎜⎜⎜⎜
⎝

η◦
11 η◦

12 η◦
13

η◦
21 η◦

22 η◦
23 . . .

η◦
31 η◦

32 η◦
33

...
. . .

⎞

⎟⎟⎟⎟
⎠

, (2.301)

we obtain

CLη = LηΛ, (2.302)

where Λ is a diagonal matrix expressed as

Λ =

⎛

⎜⎜⎜⎜⎜
⎝

ω2
1

ω2
2 O

. . .

O
ω2

3n

⎞

⎟⎟⎟⎟⎟
⎠

. (2.303)
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By operating L−1
η from the left on both sides of Eq. (2.302), we derive

L−1
η CLη = Λ. (2.304)

What Eq. (2.304) signifies is that, by the diagonalization of the matrix

C =

⎛

⎜
⎜⎜
⎝

c11 c12 c13
c21 c22 c23 . . .

c31 c32 c33
...

. . .

⎞

⎟
⎟⎟
⎠

, (2.305)

the 3n values of ω2 are obtained as eigenvalues, and the displacement of each of the
atoms is obtained as an eigenvector associated with the corresponding eigenvalue.
In other words, the normal mode frequencies {ωk} as well as the corresponding
normal coordinates {η◦

k} have been derived, both of which are characteristic to each
molecular species.

By use of a column vector of the original displacement coordinates,

η =

⎛

⎜⎜
⎜
⎝

η1
η2
...

η3n

⎞

⎟⎟
⎟
⎠

, (2.306)

the potential energy V can be represented as

V = 1

2
tηCη. (2.307)

We introduce here a vector Q that is defined with the orthogonal matrix Lη

derived through the diagonalization process as

Q = L−1
η η. (2.308)

Equation (2.308) can also be written as

η = LηQ, (2.309)

which can be substituted into Eq. (2.307) to give us

V = 1

2
t(LηQ)C(LηQ) = 1

2
tQ(tLηCLη)Q. (2.310)

Using Eq. (2.304), we can express V as

V = 1

2
tQΛQ = 1

2

(
ω2

1Q
2
1 + ω2

2Q
2
2 + · · ·). (2.311)

Meanwhile, the kinetic energy T can be written as

T = 1

2
tη̇η̇, (2.312)

so that we can derive
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T = 1

2
t(LηQ̇)(LηQ̇)

= 1

2
tQ̇

(
tLηLη

)
Q̇

= 1

2
tQ̇Q̇

= 1

2

(
Q̇2

1 + Q̇2
2 + · · ·). (2.313)

As Eq. (2.311) illustrates, by use of the coordinates Q transformed as Eq. (2.308)
by the eigenvectors derived after diagonalization, the second-order cross terms in the
potential disappear, and the kinetic and potential energies are represented, respec-
tively, as

T = 1

2
tQ̇Q̇, (2.314)

V = 1

2
tQΛQ. (2.315)

Of the coordinates represented by Q, 3n−6 (3n−5 in the case of a linear molecule)
represent the normal coordinates, and the vibrations along these coordinates are the
normal modes.

2.5.7 Representation of Normal Modes
in Terms of Internal Coordinates

We have already looked at the general procedure for deriving normal modes in
Sect. 2.5.6, but it is difficult to get a clear picture of molecular vibration if we start
with the ηi coordinate system. A more straightforward approach to normal modes
in line with the physical picture of vibration would be to construct them by first
examining vibrations along chemical bonds and along bond angles.

For example, let us consider the bent triatomic molecule shown in Fig. 2.24. The
changes in the two internuclear distances from the equilibrium structure are denoted
as 	rA and 	rB, and the change in the bond angle from the equilibrium structure is
denoted as 	θ , so that

	rA = rA − rA,e,

	rB = rB − rB,e,

	θ = θ − θe,

where rA,e, rB,e, and θe represent the corresponding values at the equilibrium struc-
ture. A coordinate system such as this is called an internal coordinate system. When
the internal coordinates shown in Fig. 2.24 are described as vector s = (s1, s2, s3),
its components are s1 = 	rA, s2 = 	rB, and s3 = 	θ . Our goal now is to describe
molecular vibration in terms of internal coordinates and derive the normal modes.
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Fig. 2.24 The internal
coordinates of a bent
triatomic molecule

The number of internal coordinates that we have just chosen, three, corresponds to
the number of the degrees of freedom for the vibration of a triatomic molecule.

In the case of a bent polyatomic molecule consisting of n atoms, the internal
coordinate vector s has 3n − 6 components, so that

s =

⎛

⎜⎜⎜
⎝

s1
s2
...

s3n−6

⎞

⎟⎟⎟
⎠

, (2.316)

and it is related to a displacement vector η represented in the orthogonal coordinate
system by the relation,

s = Bη, (2.317)

where matrix B is a rectangular matrix with 3n − 6 rows and 3n columns. In the
case of the bent triatomic molecule mentioned above, Eq. (2.317) can be written
explicitly as

⎛

⎝
	rA
	rB
	θ

⎞

⎠ =
⎛

⎝
b11 b12 . . . b19
b21 b22 . . . b29
b31 b32 . . . b39

⎞

⎠

⎛

⎜
⎜⎜⎜⎜
⎝

η1
η2
η3
...

η9

⎞

⎟
⎟⎟⎟⎟
⎠

, (2.318)

where B is a rectangular 3 × 9 matrix. Now, the displacement vector η can express
not only motions expressed by s but also motions corresponding to the three de-
grees of freedom for the rotation and the three for the translation of the molecule.
Therefore, we can add the six coordinates associated with the translation and rota-
tion of the whole molecule (s3n−5, . . . , s3n) to the internal coordinate system s to
define the vector s′, expressing the internal coordinate system extended to the 3n-th
dimension, as

s′ =

⎛

⎜⎜⎜
⎝

s

s3n−5
...

s3n

⎞

⎟⎟⎟
⎠

. (2.319)
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When we use η to rewrite the transformation of s′ using a 3n by 3n matrix B ′ as

s′ = B ′η, (2.320)

we can express η as s′ inversely transformed by B ′−1, as

η = B ′−1s′. (2.321)

Thus, the kinetic energy of the whole molecule can be written as

T = 1

2
tη̇η̇ = 1

2
t
(
B ′−1ṡ′)(

B ′−1ṡ′)

= 1

2
tṡ′(B ′ tB ′)−1

ṡ′. (2.322)

When we define a 3n × 3n square matrix G as

G = B ′ tB ′, (2.323)

Eq. (2.322) becomes T = 1
2
tṡ′G−1ṡ′.

In the meantime, we will assume that the potential energy V can be represented
with the internal coordinate s′ as

V = 1

2
ts′
Fs′, (2.324)

where F is a matrix whose diagonal elements are the coefficients of the restoring
force along the respective internal coordinates. The matrix F is also a 3n×3n square
matrix.

As we have already established, the equation to be solved in the coordinate sys-
tem represented by η is Eq. (2.294). The potential energy expressed by η, or

V = 1

2
tηCη, (2.325)

can be rewritten using Eq. (2.321) as

V = 1

2
t
(
B ′−1s′)C

(
B ′−1s′) = 1

2
ts′t(B ′−1)

CB ′−1s′. (2.326)

Comparing this with Eq. (2.324), we can see that the relationship
t
(
B ′−1)

CB ′−1 = F (2.327)

holds.
Using vector s′ ◦, which is transformed from eigenvector η◦ as

s′ ◦ = B ′η◦, (2.328)

we can rewrite Eq. (2.294) as

CB ′−1s′ ◦ = ω2B ′−1s′ ◦. (2.329)

Multiplying both sides of this equation from the left by B ′ and using Eq. (2.327),
we obtain

B ′tB ′
Fs′ ◦ = ω2s′ ◦. (2.330)
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Fig. 2.25 Transformations among the three coordinate systems: η, s′, and Q

When we substitute the definition of the G matrix given in Eq. (2.323) into this
equation, we can see that the equation to be solved is

GFs′ ◦ = ω2s′ ◦, (2.331)

and thus that the eigen equation is

∣
∣GF− ω2E

∣
∣ = 0. (2.332)

When we set internal coordinates s1, . . . , s3n−6 to describe vibration, independent
of the coordinates s3n−5, . . . , s3n relating to the translation and rotation of the entire
molecule, F becomes the left-top (3n − 6) × (3n − 6) corner of matrix F and all of
the elements of F except F becomes zero. Thus, we can separate from Eq. (2.332)
what corresponds to ω 	= 0 and write it as

∣∣GF − ω2E
∣∣ = 0, (2.333)

where G is the left-top (3n − 6) × (3n − 6) corner of G and

G = B tB (2.334)

holds, from Eq. (2.323) and the relationship between B ′ and B .
This signifies that, once the internal coordinate representations of matrices G and

F are given, we can derive the normal mode vibrations as well as their frequencies
by diagonalizing the product of these two matrices, GF . This procedure for treating
molecular vibration is called the GF matrix method. Figure 2.25 gives a summary
of how the three types of coordinate systems that we have looked at so far, the
mass-weighted orthogonal coordinate system η = {ηi} (i = 1, . . . ,3n), the normal
coordinate system Q = {Qi} (i = 1, . . . ,3n), and the internal coordinate system
s′ = {si} (i = 1, . . . ,3n) can be transformed from one system to another.
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Fig. 2.26 The internal
coordinates of a bent
symmetric triatomic molecule

Problem 2.30
Transform the kinetic and potential energies represented by internal coordinate s′
into a representation in terms of Q, by using the coordinate transformation s′ =
B ′LηQ.

Solution
From Eqs. (2.322) and (2.324),

T = 1

2
tQ̇ tLη

tB ′(tB ′)−1
B ′−1B ′LηQ̇

= 1

2
tQ̇ tLηLηQ̇ = 1

2
tQ̇Q̇,

V = 1

2
tQ tLη

tB ′ t(B ′−1)
CB ′−1B ′LηQ

= 1

2
tQ tLηCLηQ = 1

2
tQΛQ.

In Fig. 2.25, B ′Lη is represented as B ′Lη = Ls . �

2.5.8 Analysis of Normal Modes by the GF Matrix Method

Taking SO2 as a typical example of a triatomic molecule, we will now derive the
normal modes and the associated frequencies using the GF matrix method intro-
duced in Sect. 2.5.7.

We will begin by assigning the number 1 to the S atom and the numbers 2 and 3
to the two O atoms, as shown in Fig. 2.26. Here we assume that these three atoms are
all on the x-y plane, and that the line connecting the two O atoms is set parallel to
the x axis of the space-fixed coordinate system. The internuclear distances between
the S atom and the two O atoms are denoted as r12 and r13, respectively, and the
bond angle between them as θ . The internal coordinate s is represented as

s =
⎛

⎝
	r12
	r13
	θ

⎞

⎠ (2.335)



106 2 Vibrating Molecules

by using the displacements 	r12, 	r13, and 	θ of the respective internal coordi-
nates, r12, r13, and θ , from their equilibrium values. The distance r12 is written as

r12 = {
(x1 − x2)

2 + (y1 − y2)
2} 1

2 , (2.336)

so that, by differentiating both sides of this equation at the equilibrium position, we
can derive

dr12 =
(

∂r12

∂x1

)

e
dx1 +

(
∂r12

∂x2

)

e
dx2 +

(
∂r12

∂y1

)

e
dy1 +

(
∂r12

∂y2

)

e
dy2, (2.337)

where the subscript “e” means that the derivatives are taken at the equilibrium posi-
tion. The derivatives are obtained using Eq. (2.336) as

⎧
⎪⎪⎨

⎪⎪⎩

(
∂r12

∂x1

)

e
=

(
x1 − x2

r12

)

e
,

(
∂r12

∂x2

)

e
= −

(
x1 − x2

r12

)

e
,

(
∂r12

∂y1

)

e
=

(
y1 − y2

r12

)

e
,

(
∂r12

∂y2

)

e
= −

(
y1 − y2

r12

)

e
,

(2.338)

and Fig. 2.26 clearly shows that

sin

(
θe

2

)
=

(
x1 − x2

r12

)

e
, cos

(
θe

2

)
=

(
y1 − y2

r12

)

e
. (2.339)

Since we are describing small displacements within a molecule, we will change the
differential symbol “d” into “	”, replacing dr12 by 	r12, and dx1, dx2, dy1, and
dy2 by 	x1, 	x2, 	y1, and 	y2, respectively. This turns Eq. (2.337) into

	r12 = s	x1 + c	y1 − s	x2 − c	y2, (2.340)

and similarly gives us

	r13 = −s	x1 + c	y1 + s	x3 − c	y3 (2.341)

for r13, where

s = sin

(
θe

2

)
=

(
x1 − x2

r12

)

e
= −

(
x1 − x3

r13

)

e
, (2.342)

c = cos

(
θe

2

)
=

(
y1 − y2

r12

)

e
=

(
y1 − y3

r13

)

e
. (2.343)

The square of r23, which is the distance between atom 2 and atom 3, is

r2
23 = (x2 − x3)

2 + (y2 − y3)
2 = (x2 − x3)

2, (2.344)

and relates to r12 and r13 by the equation

r2
23 = r2

12 + r2
13 − 2r12r13 cos θ. (2.345)

By differentiating both sides of Eq. (2.344), we can derive

r23 dr23 = −2res dx2 + 2res dx3, (2.346)
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where re is the equilibrium internuclear distance re = r12,e = r13,e. Similarly, by
differentiating both sides of Eq. (2.345), we obtain

r23 dr23 = 2res
2(dr12 + dr13) + 2r2

e sc dθ. (2.347)

Having replaced “d” by “	”, we can equate Eqs. (2.346) and (2.347), solve it in
terms of 	θ , then substitute Eqs. (2.340) and (2.341) into it, to derive

	θ = 1

re
(−2s	y1 − c	x2 + s	y2 + c	x3 + s	y3). (2.348)

Applying Eqs. (2.340), (2.341), and (2.348) into the matrix representation of
Eq. (2.317), s = Bη, we derive

B =

⎛

⎜⎜⎜
⎝

s√
m1

c√
m1

0 −s√
m2

−c√
m2

0 0 0 0
−s√
m1

c√
m1

0 0 0 0 s√
m3

−c√
m3

0

0
−2s
re√
m1

0
−c
re√
m2

s
re√
m2

0
c
re√
m3

s
re√
m3

0

⎞

⎟⎟⎟
⎠

. (2.349)

Therefore, the G matrix is represented as

G = B tB =

⎛

⎜⎜⎜⎜
⎝

μ1 + μ2 μ1 cos θe −μ1
sin θe

re

μ1 cos θe μ1 + μ3 −μ1
sin θe

re

−μ1
sin θe

re
−μ1

sin θe
re

1
r2
e
(μ2 + μ3) + 2

r2
e
μ1(1 − cos θe)

⎞

⎟⎟⎟⎟
⎠

,

(2.350)

where

μ1 = 1

m1
, μ2 = 1

m2
, μ3 = 1

m3
. (2.351)

Since we are dealing with a symmetric triatomic molecule SO2, μ2 = μ3. Also,
from the symmetry of the molecule, the F matrix becomes

F =
⎛

⎝
f11 f12 f13
f12 f11 f13
f13 f13 f33

⎞

⎠ , (2.352)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f11 = f (	r12,	r12) = f (	r13,	r13),

f12 = f (	r12,	r13) = f (	r13,	r12),

f13 = f (	r12,	θ) = f (	θ,	r12)

= f (	r13,	θ) = f (	θ,	r13),

f33 = f (	θ,	θ).

(2.353)

Adopting the force constants f11 = 10.01 × 102 N/m, f12 = 2.40 × 100 N/m, f13
re

=
1.89 × 101 N/m, and f33

r2
e

= 7.93 × 101 N/m, and the geometrical parameters θe =
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119.3° and re = 1.431 Å, we can calculate the G matrix in Eq. (2.350) and, in turn,
the matrix product of GF . By solving Eq. (2.333) using the GF matrix, we obtain
the following three eigenvalues:

ω2
1 = 4.707 × 1028 s−2,

ω2
2 = 9.482 × 1027 s−2,

ω2
3 = 6.551 × 1028 s−2.

Consequently, the eigen frequencies are derived as

ν̃1 = ω1

2πc
= 1152 cm−1 (symmetric stretch),

ν̃2 = ω2

2πc
= 517 cm−1 (bending),

ν̃3 = ω3

2πc
= 1359 cm−1 (anti-symmetric stretch).

These values closely reproduce the observed vibrational frequencies of the normal
modes, which has been introduced in Sect. 2.5.5. Here, we have derived the normal
mode frequencies assuming that the elements of matrix F are given, but in the prac-
tical application of the GF matrix method to other molecules, we need to derive
matrix F so as to reproduce the observed frequencies.

The eigenvectors associated with the derived eigen frequencies ν̃1, ν̃2, and ν̃3 are
determined respectively, as

⎛

⎝
0.6632
0.6632

−0.3468

⎞

⎠ ,

⎛

⎝
0.0156
0.0156
0.9998

⎞

⎠ ,

⎛

⎝
0.7071

−0.7071
0.0000

⎞

⎠ .

This set of eigenvectors demonstrates that the normal coordinates {Qi} which give
{ν̃i} are represented by the internal coordinate system as

⎧
⎪⎨

⎪⎩

Q1 = (0.7478)	r12 + (0.7478)	r13 + (−0.0233)	θ,

Q2 = (0.2594)	r12 + (0.2594)	r13 + (0.9922)	θ,

Q3 = (0.7071)	r12 + (−0.7071)	r13.

(2.354)

These eigenvectors show us that the normal mode vibration for ν̃1 is the symmetric
stretch (the ν1 mode), the one for ν̃2 is the bending (the ν2 mode), and the one for
ν̃3 is the anti-symmetric stretch (the ν3 mode).

These normal coordinates can be related to the mass-weighted orthogonal coor-
dinates by using the equation

s = Bη. (2.355)
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Fig. 2.27 The normal vibrational modes of SO2

Specifically, by substituting 	r12, 	r13, and 	θ given respectively in Eqs. (2.340),
(2.341), and (2.348) into Eq. (2.354), we can represent the displacements of the
respective atoms along the x and y directions. We can follow the calculation as

⎧
⎪⎨

⎪⎩

Q1 = (0.78)	y1 + (−0.64)	x2 + (−0.39)	y2 + (0.64)	x3 + (−0.39)	y3,

Q2 = (0.93)	y1 + (0.57)	x2 + (−0.47)	y2 + (−0.57)	x3 + (−0.47)	y3,

Q3 = (1.22)	x1 + (−0.61)	x2 + (−0.36)	y2 + (−0.61)	x3 + (0.36)	y3.

(2.356)

How each atom is displaced in each vibration mode can be deduced by applying
one of the Eckart conditions (cf. Sect. 2.5.6), that is,

m1	x1 + m2	x2 + m3	x3 = 0,

m1	y1 + m2	y2 + m3	y3 = 0,

−m1y1,e	x1 + m1x1,e	y1 − m2y2,e	x2 + m2x2,e	y2 − m3y3,e	x3

+ m3x3,e	y3 = 0,

to Eq. (2.356) and obtaining its inverse transformation, where the orthogonal coor-
dinates {ξi} is described using {Qj }. The result can be illustrated as in Fig. 2.27.

Now, we can see from the normal coordinates given by Eq. (2.354) that 	r12 and
	r13 appear symmetrically. Taking this molecular symmetry into consideration, we
can express the internal coordinates as

	rs = 1√
2
(	r12 + 	r13), (2.357a)

	ra = 1√
2
(	r12 − 	r13), (2.357b)

where the subscripts “s” and “a” stand for “symmetric” and “anti-symmetric”, re-
spectively.

Let us then describe the normal modes using the three displacement coordinates,
	rs , 	ra , and 	θ . Equations (2.357a) and (2.357b) correspond to the internal co-
ordinates being transformed as

⎛

⎝
	rs
	θ

	ra

⎞

⎠ =
⎛

⎜
⎝

1√
2

1√
2

0

0 0 1
1√
2

− 1√
2

0

⎞

⎟
⎠

⎛

⎝
	r12
	r13
	θ

⎞

⎠ . (2.358)
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Thus, letting

r =
⎛

⎝
	rs
	θ

	ra

⎞

⎠ (2.359)

and

U =
⎛

⎜
⎝

1√
2

1√
2

0

0 0 1
1√
2

− 1√
2

0

⎞

⎟
⎠ , (2.360)

the transformation can be written as

r = Us. (2.361)

Also,

s = U−1r. (2.362)

When we transform the eigenvector s◦ derived from Eq. (2.333), or equivalently
derived from

GFs◦ = ω2s◦,

as

s◦ = U−1r◦, (2.363)

we obtain

GFU−1r◦ = ω2U−1r◦,

and, consequently,

UGFU−1r◦ = ω2r◦. (2.364)

Since U−1U = E, we can derive

UGU−1UFU−1r◦ = ω2r◦. (2.365)

This means that the normal modes can be obtained by transforming G and F , re-
spectively, into

G′ = UGU−1, (2.366)

F ′ = UFU−1, (2.367)

and by solving

G′F ′r◦ = ω2r◦, (2.368)

or in other words by diagonalizing the matrix product of G′F ′.
Equations (2.366) and (2.367) allow us to derive G′ and F ′ from the G in

Eq. (2.350) and the F in Eq. (2.352), respectively, as
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G′ = UGU−1

=

⎛

⎜
⎜
⎝

μ1(1 + cos θe) + μ2 −
√

2
re

μ1 sin θe 0

−
√

2
re

μ1 sin θe
2
r2
e
μ2 + 2

r2
e
μ1(1 − cos θe) 0

0 0 μ1(1 − cos θe) + μ2

⎞

⎟
⎟
⎠ ,

(2.369)

F ′ = UFU−1 =
⎛

⎜
⎝

f11 + f12
√

2f13 0√
2f13 f33 0

0 0 f11 − f12

⎞

⎟
⎠ . (2.370)

Looking at these matrices we notice that both G′ and F ′ can be block-diagonalized
into a 2 × 2 submatrix and a 1 × 1 submatrix. This means that G′F ′ can also be
block-diagonalized. The 1 × 1 submatrix can be seen as being diagonalized from
the beginning, which allows us to immediately calculate ν̃3 = 1359 cm−1 as an
eigenfrequency.

The corresponding eigenvector is
⎛

⎝
0
0

1.000

⎞

⎠ ,

indicating that Eq. (2.357b) represents one of the normal modes. From the 2 × 2
submatrix, we obtain ν̃1 = 1152 cm−1 and ν̃2 = 517 cm−1, and the corresponding
eigenvectors are represented respectively, as

⎛

⎝
0.9379

−0.3468
0.0000

⎞

⎠ ,

⎛

⎝
0.0220
0.9998
0.0000

⎞

⎠ .

This shows that these two normal modes can be approximated by 	rs and 	θ .

Problem 2.31
Derive the normal modes and normal coordinates of a water molecule (H2O), using
the structural parameters re = re(O–H) = 0.9575 Å and θe = ∠H–O–H = 104.51°,
and the force constants

f11 = 7.68 × 102 N/m, f12 = −8.2 × 100 N/m,

f13

re
= 1.69 × 101 N/m,

f33

r2
e

= 7.07 × 101 N/m.

Solution
As H2O is a bent symmetric triatomic molecule like SO2, we can apply the discus-
sions above without modification. By calculating the GF matrix and diagonalizing
it, we can derive the three eigenvalues as

ω2
1 = 4.738 × 1029 s−2, ω2

2 = 9.014 × 1028 s−2, ω2
3 = 5.002 × 1029 s−2.
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Fig. 2.28 The normal vibrational modes of H2O

Then the eigenfrequencies can be obtained as

ν̃1 = 3655 cm−1, ν̃2 = 1594 cm−1, ν̃3 = 3755 cm−1.

These values agree well with the observed frequencies, ν̃1 = 3652 cm−1, ν̃2 =
1592 cm−1 and ν̃3 = 3756 cm−1. The eigenvectors corresponding to these frequen-
cies are

⎛

⎝
0.7069
0.7069

−0.0227

⎞

⎠ ,

⎛

⎝
−0.0199
−0.0199
0.9996

⎞

⎠ ,

⎛

⎝
0.7071

−0.7071
0.0000

⎞

⎠ ,

respectively.
From Eq. (2.355), the normal coordinates Q1, Q2, and Q3 can be represented

using the displacement coordinates of atoms as
⎧
⎪⎨

⎪⎩

Q1 = (−0.82)	y1 + (0.58)	x2 + (0.41)	y2 + (−0.58)	x3 + (0.41)	y3,

Q2 = (−1.63)	y1 + (−0.65)	x2 + (0.82)	y2 + (0.65)	x3 + (0.82)	y3,

Q3 = (1.12)	x1 + (−0.56)	x2 + (−0.43)	y2 + (−0.56)	x3 + (0.43)	y3.

(2.371)

We can then apply the Eckart condition as in the case of SO2 to derive the equations
that describe these orthogonal coordinates using the normal coordinates, so that we
see the displacements of each atom in the three different vibration modes as shown
in Fig. 2.28. As the mass of a hydrogen atom is small, the displacements of the two
hydrogen atoms become larger than that of the oxygen atom in the center. This is in
marked contrast to the vibration of the SO2 molecule illustrated in Fig. 2.27. �

2.5.9 Anharmonic Expansion of Potentials
by Dimensionless Coordinates

In treating the vibration of a bent (non-linear) polyatomic molecule composed of
n atoms in quantum mechanics, we can see from Eqs. (2.264) and (2.270) that its
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vibrational Hamiltonian can be represented as the sum of the Hamiltonians of 3n−6
harmonic oscillators that are independent from each other, as

H =
3n−6∑

i=1

Hi =
3n−6∑

i=1

(
−�

2

2

∂2

∂Q2
i

+ 1

2
ω2

i Q
2
i

)
. (2.372)

However, as we have already learned in Sect. 2.5.5 through the example of SO2,
the vibrational potential along the Qi coordinate is not harmonic in an exact
sense, and neither are the 3n − 6 oscillators completely independent from each
other.

These deviations from the harmonic potentials can be expressed by adding third-
order terms such as αijkQiQjQk and higher-order terms. When introducing such
high-order terms in the expansion of a vibrational potential, it is useful to make the
coordinates dimensionless and let the expansion coefficients carry the dimension
of energy. Since the vibrational energy is most often measured in terms of wave
numbers (cm−1) in experiments, we will represent the expansion coefficients in
terms of wave numbers.

By dividing both sides of Hi in Eq. (2.372) by hc as

Hi

hc
= − �

2

2hc

∂2

∂Q2
i

+ 1

2

ω2
i

hc
Q2

i , (2.373)

which is represented in terms of wave numbers, and by introducing a dimensionless
coordinate qi , given as

qi =
√

hcν̃i

�2
Qi, (2.374)

Eq. (2.373) becomes

Hi

hc
= 1

2
ν̃i

(
− ∂2

∂q2
i

+ q2
i

)
, (2.375)

where

ωi = 2πcν̃i . (2.376)

Therefore, the Hamiltonian given by Eq. (2.372) is expressed in terms of wave num-
bers as

H

hc
= −1

2

3n−6∑

i=1

ν̃i

∂2

∂q2
i

+ 1

2

3n−6∑

i=1

ν̃iq
2
i , (2.377)

in which the second summation represents the harmonic potential terms. When we
expand the potential V (q) by adding the anharmonic part to the harmonic part, as

V (q)

hc
= 1

2

3n−6∑

i=1

ν̃iq
2
i +

∑ ∑ ∑

i�j�k

kijkqiqj qk +
∑ ∑ ∑ ∑

i�j�k�l

kijklqiqj qkql + · · · ,

(2.378)
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the Hamiltonian including the potential anharmonicities becomes

H

hc
= 1

2

3n−6∑

i=1

ν̃i

(
− ∂2

∂q2
i

+ q2
i

)
+

∑ ∑ ∑

i�j�k

kijkqiqj qk

+
∑ ∑ ∑ ∑

i�j�k�l

kijklqiqj qkql + · · · . (2.379)

The coefficients kijk and kijkl in Eq. (2.378) are called, respectively, the third-order
and fourth-order anharmonic constants of the potential.

When the energies of vibrational levels are obtained from an observed spectrum,
we can derive potential parameters in the Hamiltonian such as ν̃i , kijk , and kijkl .
We will not go into details regarding the practical procedure to derive these param-
eters, as they are beyond the scope of this book, but a rough summary of it can be
given as follows: First, the matrix elements for H/hc are evaluated using the wave
functions represented as a product of harmonic oscillators, and the matrix is diago-
nalized. By comparing the eigenvalues thus derived from the calculations with the
corresponding energies obtained in observations, the values of ν̃i , kijk , and kijkl are
adjusted iteratively to improve the agreement between the observed and calculated
energies. This procedure for parameter optimization is called the least-squares fit.
We can draw a multi-dimensional potential energy surface using the resultant pa-
rameters. We can also draw multidimensional vibrational wave functions using the
eigenvectors obtained simultaneously with the eigenenergies.

The vibrational wave functions for SO2 derived by this procedure are shown in
Fig. 2.29 as two-dimensional maps. This figure shows us how increases in the vi-
brational quantum numbers affect the wave function. The vertical and horizontal
axes in each map represent the two S–O interatomic distances as dimensionless co-
ordinates, which means that the diagonal line of 45° represents a normal coordinate
for the symmetric stretch (ν1) mode, and the line perpendicular to it represents a
normal coordinate for the anti-symmetric stretch (ν3) mode. We can see that, as a
quantum number increases, the number of nodal lines perpendicularly crossing the
corresponding normal coordinate increases. In order to derive the wave functions
like those shown here, we need to know the shape of the multi-dimensional poten-
tial surface. That is to say that we need to determine potential parameters such as
ν̃i , kijk , and kijkl .

When vibrational transitions are measured as infrared absorption, only a limited
number of transitions can be observed because of the existence of the selection
rules. In the case of SO2, for example, only three transitions are allowed from the
vibrational ground state (v1, v2, v3) = (0,0,0), namely the transitions to the three
vibrational levels (1,0,0), (0,1,0), and (0, 0, 1). The transition energies to these
three levels can only allow us to determine three potential parameters at most, ν̃1, ν̃2,
and ν̃3. In order to determine the third-order and fourth-order anharmonic constants,
we need to know the energies of other vibrational levels distributed over a wide
energy range. As one of the experimental methods to determine the third-order and
the higher-order anharmonic constants, we need to know the energies of the other
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Fig. 2.29 Two-dimensional
displays of the vibrational
wave functions of SO2. The
vibrational levels are denoted
using the quantum number of
the symmetric stretch mode
ν1 and that of the
anti-symmetric stretch mode
ν3 as (ν1, ν3). The abscissa
represents the internuclear
distance of one of the two
S–O bonds, and the ordinate
that of the other S–O bond, as
dimensionless coordinates

vibrational levels distributed in a wide energy range. Here, we will take a look at
one of the experimental methods for determining the third-order and higher-order
anharmonic constants, which is called dispersed fluorescence spectroscopy.

In this method, molecules are irradiated with laser light (wave number ν̃ex) in the
visible or ultraviolet wavelength range, and excite them from the vibrational ground
state in the electronic ground state to a particular vibrational level in the electron-
ically excited state. After the excitation, molecules emit fluorescence and deexcite
themselves to populate the vibrational ground and excited states in the electronic
ground state. By measuring the wavelength distribution of the emitted fluorescence,
we can determine the vibrational levels to which the molecules are populated. When
molecules emit fluorescence with wavelength λfl (wave number ν̃fl = 1/λfl) and de-
excite themselves to the level (v1, v2, v3) whose vibrational energy represented in
terms of wave numbers is ε̃(v1, v2, v3), the relation

ν̃ex = ν̃fl + ε̃(v1, v2, v3) (2.380)

is seen to exist, as schematically shown in Fig. 2.30. Therefore, by dispersing the
emitted fluorescence using a monochromator equipped with a grating, we can obtain
a spectrum whose abscissa corresponds to wavelengths or wave numbers. Spectra
thus obtained are called dispersed fluorescence spectra. This method allows us, in
principle, to measure a large number of vibrational transitions without being re-
stricted by the selection rules in the absorption of infrared light.
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Fig. 2.30 A schematic diagram of the observation of vibrationally excited levels in dispersed
fluorescence spectroscopy

Fig. 2.31 An example of the dispersed fluorescence spectrum for SO2 obtained by dispersing the
fluorescence emitted from the vibrational ground state in the electronically excited state (the C̃

state). The wavelength measured by the abscissa represents the wavelength of the emitted fluores-
cence, and the wave number measured by the abscissa represents the vibrational term values, that
is, the vibrational energy measured from the vibrational ground state in the electronic ground state

As a typical example, a dispersed fluorescence spectrum for SO2 is shown in
Fig. 2.31. This spectrum was observed when SO2 was excited to the vibrational
ground state (42573 cm−1) in an electronically excited state called the C̃ state. The
electronic ground state of polyatomic molecules is called the X̃ state, and the elec-
tronic states optically allowed from the X̃ state are usually referred to as the Ã state,
the B̃ state, the C̃ state, and so on, starting from the one with the lowest energy.
The ordinate of Fig. 2.31 represents the intensity of the emitted fluorescence. Each
of the individual fine peaks in this figure illustrates the fluorescence emitted with
each transition to a vibrational level in the electronic ground state. By substituting
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the observed wavelengths of the fluorescence peaks into Eq. (2.380), the energies of
the vibrational levels can be obtained.

The anharmonic constants of a potential can be determined from this type of
experimental data, and then, the wave functions of each of the vibrational levels can
be obtained. The vibrational wave functions for SO2 shown in Fig. 2.29 are those
derived from the observed dispersed fluorescence spectra.



Chapter 3
Rotating Molecules

In Chap. 2, we have learned that molecules vibrate around their equilibrium geo-
metrical structures. In the three-dimensional space, molecules not only vibrate but
also rotate. This rotational motion is, in fact, also quantized. That is, the rotational
energy of a freely rotating molecule in the gas phase takes only discrete values. This
is greatly different from the rotational motion of a solid body in classical mechan-
ics. An important aspect of the rotational motion is that it allows us to determine the
geometrical structure of molecules. Knowing the energy difference between the dis-
crete energy levels directly leads to the determination of the geometrical structure
of a molecule. In this chapter, we will express the rotational energy of a molecule
in classical mechanics and learn a procedure for treating it in quantum mechanics.
In the course of learning this procedure, we will deepen our understanding of the
quantum theory of angular momentum. We will further discuss the method for de-
termining the geometrical structures of molecules based on data obtained from a
rotational spectrum through a number of examples.

Summaries
3.1 Molecular Rotation and Molecular Structure

First, we will learn that we can describe quantized rotational energies using a
constant, called a “rotational constant,” in the case of diatomic molecules. Sec-
ond, we will learn that a rotational constant gives us information about molecular
structure, namely the internuclear distance. Finally, we will look at the example
of linear triatomic molecules to learn how to determine molecular structures by
the isotope substitution method.

3.2 The Angular Momentum of Molecular Rotation
We will study the quantum theory of angular momentum. We will seek to un-
derstand the commutation relation of angular momentum operators, as well as
raising and lowering operators, and obtain the eigenvalues and eigenfunctions
of angular momentum operators.

3.3 Molecular Rotation from the Point of View of Classical Mechanics
By treating a molecule as a rigid rotor and describing its rotational energy on the
basis of classical mechanics, we will learn that they can be described by angular
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velocity vectors and moment of inertia tensors. We will also discuss a classi-
fication of molecules based on the relative magnitudes of the three principal
moments of inertia.

3.4 Molecular Rotation from the Point of View of Quantum Mechanics
We will quantize the molecular rotational energy described by classical mechan-
ics. Then, we will learn the difference between angular momentum operators in
the molecule-fixed coordinate system and those in the space-fixed coordinate
system. Furthermore, we will deepen our understanding of the energy levels of
symmetric top molecules and asymmetric top molecules.

3.5 Determination of Molecular Structures Based on Rotational Spectra
We will analyze the rotational spectra for symmetric top molecules and asym-
metric top molecules to derive their rotational constants, and through these ex-
amples we will learn that molecular structure can be determined from rotational
constants. In addition, a method of determining equilibrium structures will be
introduced.

3.6 Rotating and Vibrating Molecules
Since there are rotational levels for each vibrational level, rotational structures
are observed in the vibrational and electronic spectra. We will learn that we can
determine rotational constants for vibrationally excited states and electronically
excited states by analyzing the rotational structure.

3.1 Molecular Rotation and Molecular Structure

3.1.1 Microwave Spectroscopy

As we have seen in the previous chapter, molecular vibrational energy is quantized
and takes discrete values. In many cases, vibrational motions are excited by irradi-
ation of infrared (IR) light, and transition occurs from a low vibrational level to a
high vibrational level. Therefore, from observing an absorption spectrum in the IR
region we can not only tell which vibrational modes are excited but also identify
the molecular species, as each molecular vibrational mode has its own vibrational
frequency.

Another type of molecular motion besides vibration is “rotation.” A molecule
in the gas phase both vibrates and rotates, and the rotational energy is also discrete.
Therefore, we can understand that the absorption of light causes a transition between
rotational levels with different energies.

As has been introduced in Chap. 1, the spectra of electric waves reaching the
Earth from outer space are characterized by sharp peaks appearing at constant in-
tervals. The electric waves observed are emitted from “interstellar molecules” when
transitions occur from their rotationally excited levels to their lower rotational en-
ergy levels. Such spectra are observed in a broad range of frequency spanning from
10 GHz to 50 GHz.
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Fig. 3.1 Vibrational and rotational levels of a molecule and their transitions in IR and microwave
regions

Choosing a typical frequency of light,

ν = c

λ
= 30 GHz = 3 × 1010 Hz,

we can express the energy of the light in terms of wave numbers (cm−1) as

ν̃ = 1

λ
= ν

c
∼= 1.0 cm−1,

which gives us the wavelength λ as 1.0 cm. Electromagnetic waves whose wave-
lengths are around 1 cm are in the domain of electric waves and are called “mi-
crowaves.” We can see that interstellar molecules emit electromagnetic waves in the
microwave region as they are deexcited in the rotational motion.

In many cases, when molecular rotational transition occurs, the wavelength of
the light that is absorbed or emitted falls in the microwave region. The research
field concerned with observations of the absorption and emission of microwaves
and the study of molecular rotation based on their spectra is called “microwave
spectroscopy” or “rotational spectroscopy.”

Since energy intervals between molecular vibrational levels is roughly about
1000 cm−1, we can see that the intervals of rotational levels are only 10−3 to 10−2

times as large as those of vibrational levels. This is illustrated in Fig. 3.1.

3.1.2 The Quantum Theory of Molecular Rotation
(Diatomic Molecules)

We will now learn that we can determine the structure of a diatomic molecule based
on microwave spectroscopy. As shown by Eq. (2.1) in Chap. 2, the motion of a
diatomic molecule AB in the three-dimensional space can be separated into the
motion of the center of mass and the relative motion. The relative motion, as the
equation shows, can be reconceptualized as the motion of a mass point whose po-
sition is specified by the position vector r = rB − rA and whose reduced mass is
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μ = mAmB

mA+mB
, as illustrated in Fig. 3.2. This motion is described by the following

Schrödinger equation:

− �
2

2μ

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ψ + V ψ = Eψ. (3.1)

In the case of a diatomic molecule which rotates freely in space, V (x, y, z) = 0. If
we use the Laplacian,

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (3.2)

the Schrödinger equation for the freely rotating diatomic molecule can be given by

− �
2

2μ
∇2ψ(x, y, z) = Eψ(x,y, z). (3.3)

As shown in Fig. 3.2, it is more natural to use the polar coordinate system (r, θ,φ)

than the x-y-z coordinate system, as the mass point moves on a sphere. Here, r is
called a radius, θ a polar angle, and φ an azimuthal angle or azimuth angle. The polar
angle, θ , may also be called the zenith angle, the meridian angle or the colatitude.
From Fig. 3.2, we can write

⎧
⎪⎨

⎪⎩

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

(3.4)

Let us now see the diatomic molecule as a rigid rotor, assuming that molecules do
not vibrate, which means that the length of the vector r , or the internuclear distance
r = |r|, is constant. Then, the mass point depicted in Fig. 3.2 will move on a sphere
with the radius of r . Let us then consider how we can express ∇2 in the polar coor-
dinate system. By taking into account the fact that r is fixed and is not a variable,
∂
∂x

, ∂
∂y

, and ∂
∂z

can be written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
=

(
∂θ

∂x

)
∂

∂θ
+

(
∂φ

∂x

)
∂

∂φ
,

∂

∂y
=

(
∂θ

∂y

)
∂

∂θ
+

(
∂φ

∂y

)
∂

∂φ
,

∂

∂z
=

(
∂θ

∂z

)
∂

∂θ
+

(
∂φ

∂z

)
∂

∂φ
.

(3.5)

As we can derive

tan2 θ = x2 + y2

z2
(3.6)

and

tanφ = y

x
(3.7)
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Fig. 3.2 Motion of a particle
described in the
three-dimensional polar
coordinate system

from Eq. (3.4), we can obtain ∂θ
∂x

, ∂θ
∂y

, and ∂θ
∂z

by differentiating both sides of Eq.

(3.6) with respect to x, y, and z, respectively, and similarly obtain ∂φ
∂x

, ∂φ
∂y

, and ∂φ
∂z

by differentiating both sides of Eq. (3.7) with respect to x, y, and z, respectively.

Substituting these values into Eq. (3.5) and adding up the calculated results for ∂2

∂x2 ,
∂2

∂y2 , and ∂2

∂z2 , we obtain

∇2 = Λ

r2
, (3.8)

where

Λ = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2
. (3.9)

Thus, the Schrödinger equation (3.3) can be written in polar coordinates as

− �
2

2μ

1

r2
Λψ = Eψ. (3.10)

As shown later, it turns out that the Schrödinger equation

−�
2Λψ = εψ (3.11)

has the eigenvalue

ε = J (J + 1)�2 (J = 0,1,2 . . .), (3.12)

where J is the rotational quantum number. From Eqs. (3.10) and (3.11), we can
derive

2μr2E = J (J + 1)�2, (3.13)

which tells us that eigenenergy E depends on the rotational quantum number J . We
will therefore express it as EJ . Furthermore, by using the moment of inertia I of
the diatomic molecule, which is given as I = μr2, we can write

EJ = �
2

2I
J (J + 1). (3.14)
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Fig. 3.3 Rotational energy
levels of a diatomic molecule

When we represent this eigenenergy of rotation as

EJ = hBJ(J + 1), B = h

8π2I
(Hz), (3.15a)

B is called the rotational constant. In this instance, B is expressed in terms of s−1

or, in other words, Hz. We can also express B in terms of cm−1, in which case,

EJ = hcBJ (J + 1), B = h

8π2cI
(cm−1). (3.15b)

The Hz unit is used in microwave spectroscopy, but in infrared, visible, or ul-
traviolet spectroscopy, rotational constants are in most cases represented in units of
cm−1.

The rotational energy levels of the diatomic molecule, treated here as a rigid
rotor, are plotted in Fig. 3.3. If transitions between rotational levels of the diatomic
molecule are observed in the microwave region, we can determine the rotational
constant of the molecule. For instance, if we observe a transition from the J = 0
level to the J = 1 level at νobs Hz, this signifies that

E1 − E0 = hνobs.

Therefore, from Fig. 3.3, we can derive

2hB = hνobs,

which gives us B = νobs/2. When B is determined, the moment of inertia can be
obtained from Eq. (3.15a), so as long as the reduced mass μ is known, the inter-
nuclear distance r can be calculated. Thus, the internuclear distance of a diatomic
molecule can be determined by observing its microwave absorption (or emission).
This shows the advantage of the observation of rotational transitions in determining
the geometrical structures of molecules.

To look at a concrete example, let us determine the geometrical structure of the
carbon monoxide molecule 12C16O. In the rotational spectrum of 12C16O, the transi-
tion J = 1 ← J = 0 is observed at 115271.204 MHz. Hence, the rotational constant
B is readily determined as B = νobs/2 = 57635.602 MHz, and by using the values
m(12C) = 12.0 amu and m(16O) = 15.9949 amu for the masses of 12C and 16O,
respectively, the internuclear distance r is determined as r = 1.13089 × 10−10 m =
1.13089 Å.
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Furthermore, when B , the reduced mass μ, and the internuclear distance r are
expressed in MHz (1 MHz = 106 Hz), atomic mass unit (amu), and Å, respectively,
the following relationship holds, in correspondence with Eq. (3.15a):

μr2B = h

8π2
= 505379 amu Å MHz. (3.16)

Problem 3.1
Of the rotational transitions for 12C16O, the transition J = 7 ← J = 6 is observed
at 806651.719 MHz. Obtain the rotational constant and the internuclear distance r .

Solution
The energy difference between the two levels, J = 7 and J = 6, is written with the
rotational constant as

E7 − E6 = 56hB − 42hB = 14hB.

Therefore,

B = 806651.719

14
= 57617.980 MHz.

By using Eq. (3.16), we can derive r = 1.1311 Å. �

The rotational constant derived in the problem above is smaller than the one
derived from the J = 1 ← J = 0 transition, if only slightly. This also causes the
internuclear distance to be calculated as larger than in the case of J = 1 ← J = 0.
Discussing the reason for this in detail is beyond the scope of this book, but in
brief, it can be attributed to the phenomenon of centrifugal distortion, where the
internuclear distance elongates with an increase in the rotational quantum number.
It is known that the rotational energy EJ can be expanded as

EJ = hBJ(J + 1) − hDJ 2(J + 1)2 + · · · , (3.17)

wherein the terms −hDJ 2(J + 1)2 and D are called the centrifugal distortion term
and the centrifugal distortion constant, respectively.

It is known that, in expressing the rotational energy of the vibrational ground
state of CO with the centrifugal distortion term incorporated, the following values
allow us to reproduce the observed spectra:

B = 57635.970 MHz, D = 0.18358 MHz.

When we use these constants to calculate the transition frequencies for J = 1 ←
J = 0 and J = 7 ← J = 6, we obtain 115271.206 MHz and 806651.708 MHz,
respectively, which are in good agreement with the observed values.

3.1.3 Rotational Energy Levels of Linear Molecules and Structure
Determination by Means of Isotope Substitution

As long as linear molecules are treated as rigid rotors, we can apply to them the
method of treatment for the rotation of diatomic molecules described in Sect. 3.1.2.
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Fig. 3.4 Linear triatomic
molecule

Let us then determine the rotational constant of interstellar molecules by examining
the spectrum of microwave emission from the Taurus Dark Cloud, which has been
introduced in Chap. 1, Fig. 1.8. As will be discussed in Sect. 3.4, the rotational en-
ergy of linear molecules can be written with rotational constant B , as in the case
of diatomic molecules, as EJ = hBJ(J + 1). The series of strongest transition ob-
served at nearly equal intervals is the rotational transition of HC3N(H–C≡C–C≡N)

from the J + 1 level to the J level. The transition frequency from J = 4 to J = 3
is 36392.3 MHz, and from J = 5 to J = 4, 45490.3 MHz. Then, from 8B =
36392.3 MHz and 10B = 45490.3 MHz, we can easily calculate B = 4549.04 MHz
and B = 4549.03 MHz, respectively. We can also derive B without determining
the assigned quantum number J , by regarding the observed, nearly equal inter-
vals of the series as 2B , and calculating 2B = 45490.3 − 36392.3 MHz to obtain
B = 4549.0 MHz. As the value of B is known to be 4549.058 MHz, we can see that
the simple analyses above are appropriate.

However, obtaining the value of the rotational constant B alone does not allow us
to determine the internuclear distance for each pair of atoms in a HC3N molecule.
This is also true of linear triatomic molecules, which are the linear molecules
containing the smallest number of atoms. For example, OCS, a linear triatomic
molecule, exhibits the transition J = 2 ← J = 1 at 24325.9 MHz. Here, the interval
between J = 2 and J = 1 is 4hB (= hB × 2 × 3 − hB × 1 × 2), and the moment of
inertia I can be obtained as I = 83.101 amu Å

2
. However, the molecular structure

of a linear triatomic molecule cannot be said to have been determined unless both
of the two internuclear distances have been obtained, which means that additional
information is needed.

Let us take a triatomic molecule that consists of atoms 1, 2, and 3, with masses
m1, m2, and m3, respectively, aligned on the x axis, as shown in Fig. 3.4. Denoting
the x coordinates of the three atoms as x1, x2, and x3, respectively, and that of the
mass center as xg , the moment of inertia of this linear triatomic molecule is written
as

I = m1α
2 + m2β

2 + m3γ
2, (3.18)

where ⎧
⎪⎨

⎪⎩

α = x1 − xg,

β = x2 − xg,

γ = x3 − xg.

(3.19)

From the condition that the first-order moment around the center of mass disappears,
we can write

m1α + m2β + m3γ = 0. (3.20)
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Let us then consider the case of the third atom being substituted with another iso-
tope. If the third atomic mass in this isotope species changes to m3 + 	m3, the
moment of inertia I iso

3 becomes

I iso
3 = m1(α − δxg)

2 + m2(β − δxg)
2 + (m3 + 	m3)(γ − δxg)

2, (3.21)

where δxg = xiso
g − xg , signifying that the position of the center of mass has shifted

by δxg from xg to xiso
g . In addition, from the condition that the first-order moment

disappears, we can write

m1(α − δxg) + m2(β − δxg) + (m3 + 	m3)(γ − δxg) = 0. (3.22)

Modifying Eq. (3.22) by using Eq. (3.20), we obtain the expression

	m3γ = (M + 	m3)δxg, (3.23)

where M ,

M = m1 + m2 + m3, (3.24)

is the total mass of the molecule before the isotope substitution. Calculating I iso
3 − I

with Eq. (3.23), we can derive

I iso
3 − I = 	m3γ

2 − 2	m3γ δxg + (M + 	m3)δx
2
g

= 	m3γ
2 − 	m2

3

(M + 	m3)
γ 2

= μ3γ
2 (3.25)

where

μ3 = M	m3

M + 	m3
. (3.26)

Therefore, γ = x3 − xg can be derived from I iso
3 − I . Once γ is obtained, α and

β can be calculated from Eqs. (3.18) and (3.20), and internuclear distances x2 − x1
and x3 − x2 can be determined from Eq. (3.19).

Let us apply the same procedure as above to OCS. Here, we will treat O,
C, and S as atoms 1, 2, and 3, respectively. The previously shown transition,
J = 2 ← J = 1, is that of the normal species 16O12C32S. When measuring the
spectrum of 16O12C34S, the transition J = 2 ← J = 1 is observed at 23731.3 MHz.
As this frequency corresponds to 4B iso, we can obtain I iso

3 = 85.184 amu Å. Using
m(32S) = 31.9721 amu and m(34S) = 33.9679 amu for the masses of 32S and 34S,
respectively, we can determine γ from Eq. (3.25) as |γ | = 1.0383 Å. Following the
above-stated procedure, we can obtain rCO = 1.163 Å and rCS = 1.560 Å.

When we examine the process through which Eq. (3.25) is derived, we realize
that the same equation as the one for the third atom can be derived for the first and
second atoms. In the case of OCS, α can be directly obtained by determining the
value of I iso

1 for the isotope species with 18O substituted for 16O. Similarly, β can
be derived directly from the value of I iso

2 determined for the isotope species with
13C substituted for 12C. Furthermore, from the three values α, β and γ , we can
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determine the two internuclear distances in OCS, rCO and rCS. Molecular structure
determined through this isotope substitution method are called “rs structure,” where
the subscript s stands for “substitution.” The isotope substitution method is also used
to determine the geometrical structure of polyatomic molecules other than linear
molecules.

In this section, we have limited our discussion to the rotational energy of diatomic
and linear triatomic molecules as seen as a rigid rotor. What, then, will be the forms
of eigenfunctions corresponding to their eigenvalues? In the next section, we will
treat the angular momentum in quantum mechanics in order to obtain the rotational
wave function.

Problem 3.2
The transition J = 2 ← J = 1 of 16O13C32S and 18O12C32S are observed at
24247.5 MHz and 22819.3 MHz, respectively. Find the absolute values of α and
β as defined in Eq. (3.19), and determine the molecular structure of OCS. Let the
masses of 13C and 18O be m(13C) = 13.0034 amu and m(18O) = 17.9992 amu,
respectively.

Solution
Using I iso

2 = 83.3701 amu Å
2

and Eq. (3.25), we can derive

|β| =
√

I iso
2 − I

μ2
=

√
0.2691

0.9868
= 0.5222 Å.

Similarly, with I iso
1 = 88.5880 amu Å

2
, we obtain

|α| =
√

I iso
1 − I

μ1
=

√
0.4870

1.9395
= 1.6820 Å.

As |γ | = 1.0383 Å has been given in the text, we can derive the following values,
paying special attention to the position of the center of mass:

rCO = |α| − |β| = 1.160 Å,

rCS = |β| + |γ | = 1.560 Å.

These values are in good agreement with the previous results derived using only
16O12C32S and 16O12C34S. �

3.2 The Angular Momentum of Molecular Rotation

In the preceding section, we took Eqs. (3.11) and (3.12) as a given premise, in solv-
ing the Schrödinger equation for the rotation of a diatomic molecule (Eq. (3.10)).
In fact, the operator represented as −�Λ in Eq. (3.11) is equal to the square of
the angular momentum operator in quantum mechanics. Thus, in this section, we
will learn the quantum mechanics of angular momentum, to understand molecular
rotation.
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Fig. 3.5 The angular
momentum vector J (J is
perpendicular to the plane
formed by r and p)

3.2.1 Angular Momentum Operators

When a mass point m is moving around the origin with momentum p = mv in the
space-fixed x-y-z coordinate system as seen in Fig. 3.5, the angular momentum J

of the movement of the mass point is expressed as

J = r × p, (3.27)

where r is the position vector of the mass point. When r = (x, y, z) and p =
(px,py,pz), the x, y and z components of the angular momentum can be derived
from

J =
∣∣∣∣∣∣

i j k

x y z

px py pz

∣∣∣∣∣∣
(3.28)

as
⎧
⎪⎨

⎪⎩

Jx = ypz − zpy,

Jy = zpx − xpz,

Jz = xpy − ypx.

(3.29)

Shifting the discussion to quantum mechanics by applying the substitutions

px = −i�
∂

∂x
, py = −i�

∂

∂y
, pz = −i�

∂

∂z
, (3.30)

the angular momentum operator in Eq. (3.29) can be expressed in quantum mechan-
ics as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jx = −i�

(
y

∂

∂z
− z

∂

∂y

)
,

Jy = −i�

(
z

∂

∂x
− x

∂

∂z

)
,

Jz = −i�

(
x

∂

∂y
− y

∂

∂x

)
.

(3.31)
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Let us now describe this in the polar coordinate system. Firstly, treating r as another
variable number, we can obtain an equation corresponding to Eq. (3.5), thereby
calculating ∂

∂x
, ∂

∂y
, and ∂

∂z
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
= sin θ cosφ

∂

∂r
+ 1

r
cos θ cosφ

∂

∂θ
− 1

r

(
sinφ

sin θ

)
∂

∂φ
,

∂

∂y
= sin θ sinφ

∂

∂r
+ 1

r
cos θ sinφ

∂

∂θ
+ 1

r

(
cosφ

sin θ

)
∂

∂φ
,

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,

(3.32)

and deriving Jx , Jy , and Jz as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Jx = −i�

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
,

Jy = −i�

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
,

Jz = −i�
∂

∂φ
.

(3.33)

Secondly, the square of the total angular momentum J 2, which is expressed as

J 2 = J 2
x + J 2

y + J 2
z , (3.34)

can be rewritten in terms of polar coordinates by using Eq. (3.33), as

J 2 = −�
2
{

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

}
. (3.35)

This formula can be expressed with the operator Λ, which has been introduced in
Eq. (3.9) for the rigid rotor of a diatomic molecule, as

J 2 = −�
2Λ. (3.36)

Therefore, the Hamiltonian expressing the rotational motion of the rigid diatomic
molecule is given as

Hrot = − �
2

2μr2
Λ = J 2

2μr2
= J 2

2I
. (3.37)

3.2.2 Commutation Relations of Angular Momentum Operators

When Â and B̂ are operators,

[Â, B̂] = ÂB̂ − B̂Â (3.38)

is called the commutator, and characterizes the operators. For example, when

[Â, B̂] = 0, (3.39)
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this shows that Â and B̂ are commutative. In this case, operators Â and B̂ share the
same system of eigenfunctions.

Let us then examine the commutation relation of the angular momentum opera-
tor, which has been obtained in Sect. 3.2.2. Here, we will use the x-y-z coordinate
system rather than the polar coordinate system. Using Eq. (3.31) and the definition
of the commutator in Eq. (3.38), we can write

[Jx, Jy] = (−i�)2
{(

y
∂

∂z
− z

∂

∂y

)(
z

∂

∂x
− x

∂

∂z

)

−
(

z
∂

∂x
− x

∂

∂z

)(
y

∂

∂z
− z

∂

∂y

)}

= (−i�)2
(

y
∂

∂x
− x

∂

∂y

)

= i�Jz. (3.40a)

Similarly, we can write

[Jy, Jz] = i�Jx, (3.40b)

and

[Jz, Jx] = i�Jy. (3.40c)

This commutation relation applies only to angular momenta in the space-fixed
coordinate system. When a momentum is in the molecule-fixed coordinate system,
as in the case discussed in Sect. 3.4.2, the sign of the right-hand side of its commu-
tation relation becomes negative.

As shown in Eqs. (3.40a) through (3.40c), Jx , Jy , and Jz are not commutative
with one another. However, the total angular momentum operator J 2 commutates
with Jx , as shown below. First,

[
Jx,J

2] = [
Jx, J

2
x + J 2

y + J 2
z

]

= [
Jx, J

2
x

] + [
Jx, J

2
y

] + [
Jx, J

2
z

]
. (3.41)

Then, by using the property of the commutation operator,
[
Â, B̂2] = [Â, B̂]B̂ + B̂[Â, B̂], (3.42)

and the commutation relation Eqs. (3.40a) through (3.40c) we can write
⎧
⎪⎨

⎪⎩

[
Jx, J

2
x

] = 0,
[
Jx, J

2
y

] = [Jx, Jy]Jy + Jy[Jx, Jy] = i�JzJy + i�JyJz,[
Jx, J

2
z

] = [Jx, Jz]Jz + Jz[Jx, Jz] = −i�JyJz − i�JzJy.

(3.43)

Substituting these values into Eq. (3.41), we obtain
[
Jx,J

2] = 0. (3.44a)

We can similarly show that
[
Jy,J

2] = 0,
[
Jz,J

2] = 0. (3.44b)
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This signifies that, when Jα is Jx , Jy , or Jz, J 2 and Jα share the same set of
eigenfunctions.

3.2.3 Raising and Lowering Operators

Let us then consider the properties of the system of eigenfunctions shared by J 2

and Jα , as well as the corresponding eigenvalues of J 2 and Jα . In order to examine
these issues, we will select Jz for Jα , and express the eigenfunction shared by J 2

and Jz as ψ(λ,m) = |λ,m〉, whose eigenvalues are λ�
2 and m�, respectively, as

shown below:

J 2|λ,m〉 = λ�
2|λ,m〉 (3.45)

Jz|λ,m〉 = m�|λ,m〉. (3.46)

Here, the values of λ and m are both unknown. We will therefore obtain the possible
values of λ and m as follows.

First, instead of Jx and Jy , we will introduce operators J+ and J−, defining them
as

J+ ≡ Jx + iJy (3.47a)

J− ≡ Jx − iJy. (3.47b)

We will now demonstrate that these J± operated on |λ,m〉, namely J±|λ,m〉, is the
eigenfunction of J 2 and Jz. Operating J 2 on J±|λ,m〉, we can write

J 2(
J±|λ,m〉) = J±

(
J 2|λ,m〉)

= J±
(
λ�

2|λ,m〉)

= λ�
2(

J±|λ,m〉), (3.48)

where the first line of equation is derived by the fact that Eqs. (3.44a) and (3.44b)
give us [J 2, J±] = 0. Next, from the commutation relation of Jz and J± being

[Jz, J±] = ±�J±, (3.49)

we can write

JzJ± = J±Jz ± �J±. (3.50)

Therefore, by operating Jz on J±|λ,m〉, we can obtain

Jz

(
J±|λ,m〉) = J±Jz|λ,m〉 ± �J±|λ,m〉

= J±m�|λ,m〉 ± �J±|λ,m〉
= (m ± 1)�

(
J±|λ,m〉). (3.51)

We can see from Eqs. (3.48) and (3.51) that J±|λ,m〉 are also eigenfunctions shared
by J 2 and Jz. Also, Eq. (3.51) signifies that by operating J± on |λ,m〉, the eigen-
value of Jz changes by ±�. For this, J+ and J− are referred to as the raising operator
and the lowering operator, respectively.
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Problem 3.3
Demonstrate Eq. (3.49).

Solution
In the case of J+, by using Eqs. (3.40a) through (3.40c) and the definition given in
Eqs. (3.47a) and (3.47b), we can write

[Jz, J+] = [Jz, Jx + iJy]
= [Jz, Jx] + i[Jz, Jy]
= i�Jy + i(−i�Jx)

= �(Jx + iJy)

= �J+.

In the case of J−, we can similarly derive

[Jz, J−] = −�J−. �

Problem 3.4

(1) Show that [J+, J−] = 2�Jz.
(2) Write J+J− + J−J+ using J 2 and Jz.
(3) Based on the results of (1) and (2), write J+J− and J−J+ using J 2 and Jz.

Solution

(1) Using the definition of the raising and lowering operators in Eqs. (3.47a) and
(3.47b), we can write

[J+, J−] = J+J− − J−J+
= −2i(JxJy − JyJx)

= 2�Jz. (3.52)

(2) Similarly, J+J− + J−J+ can be calculated as

J+J− + J−J+ = 2
(
J 2

x + J 2
y

)
.

Therefore, by using J 2 = J 2
x + J 2

y + J 2
z , we can obtain

J+J− + J−J+ = 2
(
J 2 − J 2

z

)
. (3.53)

(3) By adding Eq. (3.52) to Eq. (3.53), and by subtracting Eq. (3.53) from Eq.
(3.52), we obtain

J+J− = J 2 − Jz(Jz − �), (3.54a)

and

J−J+ = J 2 − Jz(Jz + �), (3.54b)

respectively. �
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3.2.4 Eigenvalues of Angular Momentum Operators

We will now calculate the square modulus of J±|λ,m〉 that appeared in Sect. 3.2.3,
that is, |J±|λ,m〉|2, which is the norm of J±|λ,m〉.

Here, J± is not a Hermitian operator, but Jx and Jy are. We can use this to write
∫

(J±ψλm)∗ψλ′m′ dτ =
∫

ψ∗
λm(J∓ψλ′m′)dτ. (3.55)

And thus, by setting ψλ′m′ = J±ψλm we obtain
∣∣J±|λ,m〉∣∣2 = 〈λ,m|J∓J±|λ,m〉. (3.56)

Then, as J∓J± can be calculated as

J∓J± = (Jx ∓ iJy)(Jx ± iJy)

= J 2 − J 2
z ± i{JxJy − JyJx}

= J 2 − Jz(Jz ± �), (3.57)

we derive
∣∣J±|λ,m〉∣∣2 = 〈λ,m|J 2 − Jz(Jz ± �)|λ,m〉

= {
λ − m(m ± 1)

}
�

2〈λ,m|λ,m〉. (3.58)

As the norm of a wave function always has a positive or zero value, we can show
from Eq. (3.58) that

λ − m(m ± 1)� 0

holds, and that, therefore,

λ� m(m ± 1) = m2 ± m (3.59)

also holds.
As Eq. (3.51) demonstrates, each time the raising operator J+ acts on |λ,m〉, m

increases by 1. This can be illustrated as

|λ,m〉 J+→ |λ,m + 1〉 J+→ |λ,m + 2〉 J+→ · · · . (3.60)

Similarly, with each instance of the lowering operator J− acting on |λ,m〉, m de-
creases by 1. That is,

|λ,m〉 J−→ |λ,m − 1〉 J−→ |λ,m − 2〉 J−→ · · · . (3.61)

However, Eq. (3.59) shows that the value of m cannot increase or decrease infinitely;
it has upper and lower limits.

We will therefore write the maximum value of m as mmax, and the minimum
value of m as mmin. Operating J+ on |λ,mmax〉, then, we can write

J+|λ,mmax〉 = 0. (3.62)
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Operating J− on |λ,mmin〉, on the other hand, necessarily gives us

J−|λ,mmin〉 = 0. (3.63)

Therefore, from Eq. (3.62), we obtain

J−J+|λ,mmax〉 = 0, (3.64)

into which Eq. (3.57) can be substituted to give us
{
J 2 − Jz(Jz + �)

}|λ,mmax〉 = 0. (3.65)

Therefore, the fact that Eqs. (3.45) and (3.46) allow us to write
{
λ − mmax(mmax + 1)

}
�

2|λ,mmax〉 = 0 (3.66)

signifies that

λ − mmax(mmax + 1) = 0 (3.67)

holds. Similarly, from Eq. (3.63) we can calculate J+J− as

J+J−|λ,mmin〉 = 0, (3.68)

which leads us to

λ − mmin(mmin − 1) = 0. (3.69)

Subtracting Eq. (3.67) from Eq. (3.69), we obtain

mmax(mmax + 1) − mmin(mmin − 1) = 0,

and by factorizing this we can write

(mmax + mmin)(mmax − mmin + 1) = 0. (3.70)

As mmax � mmin, the content in the second set of parentheses in this formula is
necessarily positive. Therefore,

mmax + mmin = 0 (3.71)

needs to hold. Thus, when

j = mmax = −mmin, (3.72)

it is shown from Eq. (3.67) that

λ = j (j + 1). (3.73)

From Eq. (3.72), we can write

mmax − mmin = j + j = 2j. (3.74)

As m increases by increments of 1 from mmin to mmax, we know that (mmax −mmin)

is a positive integer or zero. From Eq. (3.74), then, 2j is required to be a positive
integer or zero. Therefore, the possible values for j are

j = 0,
1

2
,1,

3

2
, . . . , (3.75)
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making j one of three possibilities: zero, a positive integer, or a positive half-odd
integer.

We can summarize what we have seen above using j instead of λ as follows.
The angular momentum operator J 2 and Jz share the same set of eigenfunctions
{ψjm = |j,m〉}, and satisfy the relations

J 2|j,m〉 = j (j + 1)�2|j,m〉 (3.76)

and

Jz|j,m〉 = m�|j,m〉
(
m = −j,−(j − 1), . . . , j − 1, j

)
, (3.77)

where j can take the values j = 0, 1
2 ,1, 3

2 , . . . , and the number of different values
that m can take in the set of eigenfunctions denoted as {|j,m〉} is 2j +1. This means
that, when the quantum number j is rewritten as J , and by using Eqs. (3.36) and
(3.37), the Schrödinger equation of the rigid rotor, Eq. (3.10), gives the eigenvalue of
Eq. (3.14) and the eigenfunction of |J,m〉. Here, the rotational quantum number J is
either zero or a positive integer. An example of the quantum number of the angular
momentum becoming a half odd integer can be found in the case of the electron spin
angular momentum (J = 1

2 ). Half-odd angular numbers appear when we treat the
electron spin angular momentum or the nuclear spin angular momentum.

3.2.5 Eigenfunctions of Angular Momentum Operators

Here, we will deepen our understanding of the concrete shape of the eigenfunction
|j,m〉 introduced in Sect. 3.2.4. For the purpose of this discussion, j and m are
treated as integers.

In the polar coordinate system, as Jz is expressed as

Jz = −i�
∂

∂φ
, (3.78)

Eq. (3.77) can be written as

−i�
∂

∂φ
ψjm = m�ψjm. (3.79)

This equation shows that ψjm can be expressed as a function depending on θ

multiplied by eimφ , or as

ψjm(θ,φ) = Pjm(cos θ)eimφ, (3.80)

where the function depending on θ is expressed as Pjm(cos θ), a function of cos θ ,
in order to simplify later discussions. Incidentally, the functions ψjm here are what
are called spherical harmonics, and are often denoted as Yjm.

To derive the shape of ψjm, we will express the raising and lowering operators

J+ = Jx + iJy
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and

J− = Jx − iJy

in polar coordinates. As Eq. (3.33) gives us

Jx = −i�

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)

and

Jy = −i�

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
,

we can write

J+ = �eiφ
(

∂

∂θ
+ i cot θ

∂

∂φ

)
, (3.81)

and

J− = �e−iφ
(

− ∂

∂θ
+ i cot θ

∂

∂φ

)
. (3.82)

As previously shown, operating J+ on ψjj results in

J+ψjj = 0, (3.83)

because m cannot be larger than j . Therefore,

�eiφ
(

∂

∂θ
+ i cot θ

∂

∂φ

)
eijφPjj (cos θ) = 0, (3.84)

which is a differential equation easily solved to yield

Pjj (cos θ) = Cj sinj θ. (3.85)

Problem 3.5
Solve the differential equation (3.84) given above, and demonstrate that it yields
Eq. (3.85).

Solution
Performing the differentiation of Eq. (3.84) with respect to φ, we obtain

∂Pjj

∂θ
− j cot θPjj = 0.

By substituting sin θ = x, this can be written as

dPjj = j
Pjj

x
dx,

from which we derive

Pjj = Cjx
j = Cj sinj θ. �

Therefore, from Eq. (3.80), we can write

ψjj = Cj sinj θeijφ. (3.86)
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By using the normalization condition
∫ π

0

∫ 2π

0
ψ∗

jjψjj sin θ dθ dφ = 1,

we can obtain Cj as

|Cj | = 1

2j j !
{

(2j + 1)!
4π

} 1
2

. (3.87)

As ψjj has now been obtained, we operate the lowering operator J− on it to
obtain ψjm−1 as

J−ψjm = √
j (j + 1) − m(m − 1)�ψjm−1. (3.88a)

By operating J− succesively we can derive ψjm′ with smaller m′ values. Here, Eq.
(3.88a) can be derived from Eqs. (3.58) and (3.73). Correspondingly, a similar pro-
cedure gives us

J+ψjm = √
j (j + 1) − m(m + 1)�ψjm+1. (3.88b)

As what has been given in Eq. (3.58) is |J±ψjm|2, the right-hand sides of Eqs.
(3.88a) and (3.88b) will be multiplied by a phase factor which takes the form of eiδ .
Here, we have adopted the Condon-Shortley phase convention, wherein δ = 0.

We will next obtain the concrete shape of ψjm for j = 0 and j = 1. When j = 0,
m is necessarily also 0, and therefore, assuming that Cj takes a positive value, we
can use Eqs. (3.86) and (3.87) to write

ψ00 = C0 sin0 θei·0·φ = 1√
4π

. (3.89)

This signifies that, when j = 0, the shape of the eigenfunction is spherically sym-
metric, and is independent of both θ and φ.

When j = 1, on the other hand, there are three possible eigenfunctions depending
on the value of m, namely ψ11, ψ10, and ψ1−1. From Eqs. (3.86) and (3.87), we can
write

ψ11 = −1

2

√
3 · 2

4π
sin θeiφ = −

√
3

8π
sin θeiφ. (3.90)

From Eq. (3.88a), the relation

J−ψ11 = √
1 · 2 − 1 · 0�ψ10 = √

2�ψ10 (3.91)

can be obtained, while operating Eq. (3.82) on ψ11 gives us

J−ψ11 = �e−iφ
(

− ∂

∂θ
+ i cot θ

∂

∂φ

)
ψ11

= � · 2

√
3

8π
cos θ. (3.92)
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Fig. 3.6 The squared
modulus of the eigenfunction
of an angular momentum
operator as a function of the
polar angle θ

From Eqs. (3.91) and (3.92), we can derive

ψ10 =
√

3

4π
cos θ. (3.93)

By operating J− on this eigenfunction again, we can obtain

ψ1−1 =
√

3

8π
sin θe−iφ. (3.94)

Here, we can verify that the positive and negative signs on ψ11 and ψ1−1 indeed
satisfy the relation of spherical harmonics,

ψ∗
jm = (−1)mψj−m.

In order to visualize the shape of the wave functions, we will now plot |ψ10|2 as
a function of θ . As Eq. (3.93) allows us to write

|ψ10|2 = 3

4π
cos2 θ,

the shape of |ψ10|2 as θ varies from 0 to π is as shown in Fig. 3.6. Thus, we can see
that this is a function which has a node at θ = 90◦ = π

2 .
In determining the angular momentum of a diatomic molecule rotating freely

in space, or that of an electron in a hydrogenic atom in a space with no external
field, the z axis chosen as the quantization axis can be oriented in any direction.
Furthermore, in the case of j = 1, the three eigenfunctions ψ11, ψ10, and ψ1−1 of
the square of the total angular momentum operator J 2 give us the same eigenvalue
�

2j (j + 1) = 2�
2, showing that they are triply degenerated (2j + 1 = 3).

When we calculate linear combinations of ψ11 and ψ1−1 as

ψx = 1

−√
2
(ψ11 − ψ1−1) =

√
3

4π
sin θ cosφ (3.95)

and

ψy = 1

−√
2i

(ψ11 + ψ1−1) =
√

3

4π
sin θ sinφ, (3.96)

their distributions extend in the directions of the x and y axes, and are shaped as the
distribution of ψ10 rotated into the directions of the x and y axes, respectively.



140 3 Rotating Molecules

For a larger value of j , too, we can determine ψjm in a similar manner. We can
see that the number of nodes in the wave functions increases as j becomes larger.
For cases of ψj0 (m = 0) we obtain

ψ20 =
√

5

16π

(
3 cos2 θ − 1

)
(3.97)

and

ψ30 =
√

7

16π

(
5 cos3 θ − 3 cos θ

)
. (3.98)

When we plot the square moduli of these eigenfunctions as functions of θ , we see
that, as shown in Fig. 3.6, these functions have two and three nodes, respectively, in
the range of 0 � θ � π .

In discussing the angular momentum of an electron in a hydrogenic atom, the
orbitals of the electron for j = 0,1,2,3 are called the s, p, d , and f orbitals, re-
spectively. For instance, when the orbital angular momentum of the electron is 0 the
electron is in the s orbital, and when the orbital angular momentum is 1 the electron
is in the p orbital.

Among the spherical harmonics ψjm, the ones for m = 0 can be written with the
Legendre polynomial Pj (cos θ) as

ψj0(θ,φ) =
√

2j + 1

4π
Pj (cos θ). (3.99)

The Legendre polynomial can be defined by the Rodrigues formula,

Pj (x) = 1

2j j !
dj

dxj

(
x2 − 1

)j
, (3.100)

and is known to be the solution to the Legendre equation,
{(

1 − x2) d2

dx2
− 2x

d

dx
+ j (j + 1)

}
Pj (x) = 0. (3.101)

Problem 3.6
ψjm = |j,m〉 is the eigenfunction of J 2. Using the fact that J 2 is given in Eq. (3.35)
as

J 2 = −�
2
{

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

}
,

find the equation that Θjm(θ) satisfies when the variables are separated as

ψjm = Θjm(θ)Φm(φ).

Solution
From Eq. (3.80) and the normalization condition for Φm(φ), it is obvious that
Φm(φ) = 1√

2π
eimφ . Using the relation J 2|j,m〉 = j (j + 1)�2|j,m〉, we can obtain

−
{

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− m2

sin2 θ

}
Θjm(θ) = j (j + 1)Θjm(θ). (3.102)

�
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Problem 3.7
For m = 0, show that the equation satisfied by Θjm(θ), as calculated in Problem 3.6,
is identical to the Legendre equation (3.101). Here, let cos θ = x.

Solution
By setting m = 0 in Eq. (3.102) and by using − sin θdθ = dx, the equation satisfied
by Θjm(θ) becomes Eq. (3.101). �

3.3 Molecular Rotation from the Point of View
of Classical Mechanics

In this section, we will first define a molecule-fixed coordinate system by Euler
angles. Next, we will derive the rotational energy of a polyatomic molecule in clas-
sical mechanics, in order to understand that rotational kinetic energy is represented
by moments of inertia with respect to the three principal axes of inertia. Then, we
will calculate the angular momentum in the molecule-fixed coordinate system.

3.3.1 Molecular Rotation and Euler Angles

In Sects. 3.1 and 3.2, we have learned that, when diatomic and linear molecules
can be treated as rigid rotors, we can represent their rotational level energies as
Eq. (3.15a), EJ = hBJ(J + 1), based on the quantum theory of angular momen-
tum. We have also seen that eigenfunctions ψJm = |J,m〉 are functions called the
spherical harmonics. These results, however, are only applicable in cases where a
molecule rotates around an axis that includes the center of mass and is perpendicular
to the molecular axis on which the atoms are located. For example, in the case of
a methylchloride molecule, CH3Cl, as illustrated in Fig. 3.7(a), not only a rotation
around the axis that is perpendicular to the C–Cl bond axis but also another rota-
tional motion around the C–Cl bond axis is possible. Thus, we can conceptualize a
CH3Cl molecule rotating in a free space as simultaneously undergoing the two kinds
of rotational motion around these two axes. In another case, with a H2O molecule,
we can think of rotations around three axes, x, y, and z, as shown in Fig. 3.7(b), as
comprising the rotational motion of the molecule. We can then visualize the overall
rotation, as a complex rotational motion resulting from the superposition of these
three rotations. Thus, we can see that our discussion in the previous section falls
short of allowing us to handle the rotations of non-linear polyatomic molecules in
general.

Additionally, in describing a rotational motion around a molecular axis, using a
molecule-fixed coordinate system instead of a space-fixed coordinate system will
help us simplify matters and draw a clearer picture. For this, we need to transform
the Hamiltonian of the molecular rotation from one in the space-fixed coordinate
system to one in the molecule-fixed coordinate system.
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Fig. 3.7 Rotational motions
of (a) CH3Cl and (b) H2O

Let us now think about a molecule which consists of n atoms, whose masses are
mi and coordinates Ri (i = 1, . . . , n). Here, the coordinate system is a space-fixed
coordinate system whose origin coincides with the center of mass of the molecule.
In this case, the kinetic energy of the rotational motion can be written as

T =
n∑

i=1

1

2
miṘ

2
i . (3.103)

Next, we will describe Ri in a molecule-fixed coordinate system that rotates to-
gether with the molecule, and whose origin, again, coincides with the molecule’s
center of mass. In this molecule-fixed coordinate system, when the coordinate of
the i-th atom is given by r i , r i and Ri are related as

r i = SRi , (3.104)

where the 3 × 3 matrix S expresses a rotation. Therefore, the kinetic energy T

becomes

T =
n∑

i=1

1

2
mi

(
Ṡ

−1
r i

) · (
Ṡ

−1
r i

)
, (3.105)

in which S−1 is the inverse of S. Also, r i does not depend on time, as it is
the coordinate of an atom in the molecule expressed as a molecule-fixed coor-
dinate. Thus the time dependence of the molecular rotation is expressed by ma-
trix S.

Let us then describe the rotational matrix S using three Euler angles, α, β , and γ .
Starting from the coordinate system S described by the space-fixed axes x, y, and
z, first we define the x′ and y′ axes by rotating S around the z axis by an angle
of α (0 � α < 2π), as shown in Fig. 3.8(a). We thus obtain coordinate system S′,
which is described by the new axes x′, y′, and z′. Here, the z′ axis is identical to the
z axis.

Next, as shown in Fig. 3.8(b), we define the z′′ and x′′ axes by rotating S′ around
the y′ axis by an angle of β (0 � β < π), to obtain coordinate system S′′, described
by the new axes x′′, y′′, and z′′, where the y′′ axis is identical to the y′ axis.

Finally, as shown in Fig. 3.8(c), we define the x′′′ and y′′′ axes by rotating S′′
around the z′′ axis by an angle of γ (0 � γ < 2π). Thus, we obtain coordinate
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Fig. 3.8 The transformation
of a coordinate system by the
Euler angles α, β and γ

system S′′′, described by the new axes x′′′, y′′′, and z′′′. Here, the z′′′ axis is identical
to the z′′ axis.

We will now consider the x′′′, y′′′, and z′′′ axes as the coordinate axes of a
molecule-fixed coordinate system, and refer to them as the a, b, and c axes, re-
spectively. To summarize, the space-fixed coordinate system S is transformed into
a molecule-fixed coordinate system S′′′ by being rotated by the Euler angles α, β

and γ . This also means that we can express the overall motion of the molecule as
changes in the angles α, β and γ per a unit of time, and thereby obtain the kinetic
energy of the rotation.
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Fig. 3.9 The rotation of a
two-dimensional coordinate
system

3.3.2 Matrix Representation of the Coordinate Rotation

Here, we will express the coordinate transformation by Euler angles introduced
above by a matrix representation. Before we begin, let us consider the case of a
point (x, y) in an x-y coordinate system being transformed into a point (x′, y′) in
an x′-y′ coordinate system by the rotation of the x and y axes on a two-dimensional
plane. When we define r as the distance between the origin of a coordinate system
and point (x, y), as shown in Fig. 3.9, the coordinates of this point, A, are given by

{
x = r cosα,

y = r sinα.
(3.106)

When the new coordinate system x′-y′ is the x-y coordinate system rotated around
its origin by an angle of θ , the x′-y′ coordinates of point A are written as

{
x′ = r cos(α − θ),

y′ = r sin(α − θ).
(3.107)

The rotation by the angle of θ is described using the addition theorem as
(

x′
y′

)
=

(
cos θ sin θ

− sin θ cos θ

) (
x

y

)
. (3.108)

We will now turn our attention to the rotation by Euler angles α, β and γ dis-
cussed above. In each of these steps the two coordinate axes, which are orthogonal
to each other, are rotated on their plane. The first rotation is represented by a 3 × 3
matrix as

A =
⎛

⎝
cosα sinα 0

− sinα cosα 0
0 0 1

⎞

⎠ , (3.109)

the second rotation as

B =
⎛

⎝
cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

⎞

⎠ , (3.110)
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and the third rotation as

C =
⎛

⎝
cosγ sinγ 0

− sinγ cosγ 0
0 0 1

⎞

⎠ . (3.111)

Therefore, the rotational matrix S in Eq. (3.104) can be expressed as a product of
these three rotations as

S = CBA. (3.112)

The actual expression of S, then, is

S =

⎛

⎜⎜⎜⎜⎜
⎝

cosβ cosα cosγ

− sinα sinγ

cosβ sinα cosγ

+ cosα sinγ
− sinβ cosγ

− cosβ cosα sinγ

− sinα cosγ

− cosβ sinα sinγ

+ cosα cosγ
sinβ sinγ

sinβ cosα sinβ sinα cosβ

⎞

⎟⎟⎟⎟⎟
⎠

. (3.113)

Matrices representing rotations, such as A, B , or C, are characterized by their
transposed matrices being identical to the inverse of the original matrices, that is,
tA = A−1, tB = B−1, and tC = C−1. The transposed matrix of A, for example, can
be written as

tA =
⎛

⎝
cosα − sinα 0
sinα cosα 0

0 0 1

⎞

⎠ , (3.114)

which coincides with the matrix A inverted as α → −α. This signifies that tA cor-
responds to the operation of rotating a coordinate system by the angle of α in the
inverse direction of A. Thus, tAA expresses an operation where the coordinate sys-
tem is rotated clockwise by angle α and then counterclockwise by angle α, which
returns it to its original position. This can be confirmed through calculation as

tAA =
⎛

⎝
cosα − sinα 0
sinα cosα 0

0 0 1

⎞

⎠

⎛

⎝
cosα sinα 0

− sinα cosα 0
0 0 1

⎞

⎠

=
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ = E. (3.115)

We have thus shown that the transpose of S is identical to the inverse of S, that
is,

tS = S−1. (3.116)

Indeed, we can see that

tSS = t(CBA)(CBA)

= tA tB tCCBA

= A−1B−1C−1CBA

= E. (3.117)
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Fig. 3.10 Euler angles and
their time derivatives

Therefore, by operating tS from the left on Eq. (3.104), the position vector Ri =
(xi, yi, zi) for the i-th atom in the molecule in the space-fixed coordinate system can
be derived from its position vector r i = (ai, bi, ci) in the molecule-fixed coordinate
system as

Ri = tSr i , (3.118)

namely,
⎛

⎝
xi

yi

zi

⎞

⎠ = tS

⎛

⎝
ai

bi

ci

⎞

⎠ . (3.119)

From Eq. (3.105), we can obtain the kinetic energy of the rotation of the molecule
as

T =
n∑

i=1

1

2
mi

(
tṠr i

) · (
tṠr i

)

=
n∑

i=1

1

2
mi

(
tr i Ṡ

tṠr i

)
. (3.120)

3.3.3 The Kinetic Energy and Angular Momentum
of the Rotation of a Molecule

Let us now consider a space-fixed coordinate system in which a molecule-fixed
coordinate system is rotating around its a axis with an angular velocity of ωa . Here,
ωa can be written using the time derivatives of Euler angles α̇, β̇ , γ̇ , as shown in
Fig. 3.10, as a sum of their projections to the a axis as
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ωa = (α̇)a + (β̇)a + (γ̇ )a

= −α̇ sinβ cosγ + β̇ sinγ, (3.121)

where α̇, whose magnitude is |α̇| ≡ α̇ = ∂α
∂t

, represents the vector in the direction of
the axis of the rotation α, that is, the vector in the direction of the z axis, β̇ , whose
magnitude is |β̇| ≡ β̇ = ∂β

∂t
, represents the vector in the direction of the y′ axis, and

γ̇ , whose magnitude is |γ̇ | ≡ γ̇ = ∂γ
∂t

, represents the vector in the direction of the
z′′ (or c) axis. Similarly,

ωb = α̇ sinβ sinγ + β̇ cosγ (3.122)

ωc = α̇ cosβ + γ̇ . (3.123)

From these angular velocities, ωa , ωb , and ωc, we can obtain

SṠ
−1 =

⎛

⎝
0 −ωc ωb

ωc 0 −ωa

−ωb ωa 0

⎞

⎠ . (3.124)

Problem 3.8
Derive Eq. (3.124).

Solution
From

tṠ = tȦ tB tC + tA tḂ tC + tA tB tĊ, (3.125)

we can express StṠ as

StṠ = CBA tȦ tB tC + CBA tA tḂ tC + CBA tA tB tĊ

= CBA tȦ tB tC + CB tḂ tC + C tĊ, (3.126)

wherein the first, second, and third terms can be written using Eqs. (3.109), (3.110),
and (3.111), as

CBA tȦ tB tC =
⎛

⎝
0 − cosβ sinγ sinβ

cosβ 0 cosγ sinβ

− sinβ sinγ − sinβ cosγ 0

⎞

⎠ α̇, (3.127)

CB tḂ tC =
⎛

⎝
0 0 cosγ

0 0 − sinγ

− cosγ sinγ 0

⎞

⎠ β̇, (3.128)

C tĊ =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ γ̇ , (3.129)

respectively. Substituting these matrices into Eq. (3.126) and using Eqs. (3.121),
(3.122), and (3.123), we can obtain Eq. (3.124) as
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SṠ
−1 = S tṠ =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 −α̇ cosβ − γ̇
α̇ sinβ sinγ

+β̇ cosγ

α̇ cosβ + γ̇ 0
α̇ sinβ cosγ

−β̇ sinγ

−α̇ sinβ sinγ

−β̇ cosγ

−α̇ sinβ cosγ

+β̇ sinγ
0

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛

⎝
0 −ωc ωb

ωc 0 −ωa

−ωb ωa 0

⎞

⎠ . �

We will now use Eq. (3.124) to derive the kinetic energy T given in Eq. (3.120).
First, from Eq. (3.117), we can write

Ṡ tṠ = Ṡ
(
tSS

)
tṠ

= (
Ṡ tS

)(
S tṠ

)

= t
(
S tṠ

)(
S tṠ

)
. (3.130)

Next, from Eq. (3.124), we obtain

S tṠr i =
⎛

⎝
−ωcbi + ωbci

ωcai − ωaci

−ωbai + ωabi

⎞

⎠ . (3.131)

Thus, from Eqs. (3.130) and (3.131), we can derive the kinetic energy of the rotation
motion, T (in Eq. (3.120)), as

T =
n∑

i=1

mi

{
1

2

(
b2
i + c2

i

)
ω2

a + 1

2

(
c2
i + a2

i

)
ω2

b + 1

2

(
a2
i + b2

i

)
ω2

c

− aibiωaωb − biciωbωc − ciaiωcωa

}

= 1

2
Iaaω

2
a + 1

2
Ibbω

2
b + 1

2
Iccω

2
c + Iabωaωb

+ Ibcωbωc + Icaωcωa, (3.132)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iaa = ∑
mi

(
b2
i + c2

i

)
,

Ibb = ∑
mi

(
c2
i + a2

i

)
,

Icc = ∑
mi

(
a2
i + b2

i

)
,

Iab = −∑
miaibi,

Ibc = −∑
mibici,

Ica = −∑
miciai .

(3.133)
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When a 3 × 3 matrix I , called the inertia tensor, or the moment of inertia tensor, is
given by

I =
⎛

⎝
Iaa Iab Ica

Iab Ibb Ibc

Ica Ibc Icc

⎞

⎠ , (3.134)

and vector ω is written as

ω =
⎛

⎝
ωa

ωb

ωc

⎞

⎠ , (3.135)

the kinetic energy of rotation represented by Eq. (3.132) can be expressed as

T = 1

2
tωIω. (3.136)

Generally speaking, the inertia tensor I has off-diagonal matrix elements, but we
can choose the a, b, and c axes of the molecule-fixed coordinate system in such a
way as to render the inertia tensor diagonal. When chosen in this manner, the a, b,
and c axes of the molecule-fixed coordinate system are called the principal axes of
inertia, and the three diagonal elements in this case are called the principal moments
of inertia. Representing the principal moments of inertia around the principal axes
of inertia a, b, and c as IA, IB , and IC , and choosing the a, b, and c axes so that

IA � IB � IC, (3.137)

the kinetic energy of the rotational motion can be written as

T = 1

2

(
IAω2

a + IBω2
b + ICω2

c

)
. (3.138)

As the angular momenta in this molecule-fixed coordinate system are defined as

Ja = ∂T

∂ωa

, Jb = ∂T

∂ωb

, Jc = ∂T

∂ωc

, (3.139)

we obtain

Ja = IAωa, Jb = IBωb, Jc = ICωc. (3.140)

Thus, the kinetic energy can be expressed using the angular momenta as

T = J 2
a

2IA

+ J 2
b

2IB

+ J 2
c

2IC

. (3.141)

3.3.4 Classification of Molecules by Values
of the Moments of Inertia

The various shapes taken by polyatomic molecules can be categorized by the values
of the three principal moments of inertia introduced in Sect. 3.3.3 into four types:
symmetric top molecules, spherical top molecules, linear molecules, and asymmet-
ric top molecules. Each will be explained below.
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Fig. 3.11 Examples of symmetric tops

Symmetric Top Molecules

A symmetric top is a molecule whose rotational symmetry is equal to or higher
than a 3-fold axis, which makes two of its three moments of inertia, IA, IB ,
and IC , equal to each other. A 3-fold axis is a rotational axis around which
the molecule is rotated by an angle of 2π

3 radian = 120° to coincide completely
with its original shape. This axis is represented as C3. Both (a) CH3Cl and
(b) NH3 in Fig. 3.11 are an example of a symmetric top, which has a 3-fold
axis C3.

An n-fold axis, represented as Cn, is an axis around which the molecule is ro-
tated by an angle of 2π

n
radian to coincide completely with its original shape. Fig-

ure 3.11(c) illustrates C6H6, a symmetric top with a C6 axis, or a 6-fold axis. As
we can clearly see in Fig. 3.11, there are two more principal axes of inertia that
are orthogonal with the C3 or C6 axis. In the case of CH3Cl, the moment of inertia
around the C3 axis is smaller than that around either of the other two principal axes
of inertia which are orthogonal with the C3 axis. From this and Eq. (3.137), we can
determine that

IA < IB = IC, (3.142a)

and that the C3 axis coincides with the a axis. Such a symmetric top molecule is
called a prolate symmetric top.

When the rotational constants are defined by following the definition in Eq.
(3.15a) as

A = h

8π2IA

, B = h

8π2IB

, C = h

8π2IC

, (3.143)

A > B = C (3.142b)

holds for prolate symmetric tops. In this case, A and B are used as the rotational
constants, as C, being equal to B , does not need to be expressed.
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Fig. 3.12 Examples of
spherical tops

In the case of NH3 and C6H6, on the other hand, the moment of inertia around
the C3 or C6 axis is larger than that around either of the other two principal axes of
inertia which are orthogonal with the C3 or C6 axis. That is,

IA = IB < IC. (3.144a)

Therefore, the C3 axis and the C6 axis each coincides with the c axis of the
molecule. Such symmetric tops are called oblate symmetric tops. With the rotational
constants of an oblate symmetric top, the relationship

A = B > C (3.144b)

holds, and therefore the two rotational consonants, B and C, are used to represent
the rotational constants.

Spherical Top Molecules

A molecule with even higher symmetry, wherein all three principal moments of
inertia are equal, is called a spherical top. Thus, in a spherical top,

IA = IB = IC, (3.145a)

and the rotation constants satisfy

A = B = C. (3.145b)

The rotational constant of this molecule is represented by B . Examples of spher-
ical tops include CH4, SF16, and C60, illustrated in Fig. 3.12.

Linear Molecules

Described in terms of principal moments of inertia, a linear molecule is a molecule
for which IA = 0 and IB = IC both hold. This is true of diatomic molecules as well.
In this case, rotational constant A is not defined, and the two other rotational con-
stants are equal, or B = C. Here, too, B is used to represent the rotational constant.
Examples of linear molecules include CO2, OCS, N2O, HCN, C3O2, and HC3N.
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Fig. 3.13 Examples of
asymmetric tops: H2O, an
asymmetric top with a
C2 axis (a), and CH3CH2Cl,
an asymmetric top that has no
C2 axis (b)

Asymmetric Top Molecules

A molecule that does not fall into any of the above categories is called an asymmetric
top, and the values of all three of its principal moments of inertia will be different.
That is,

IA < IB < IC, (3.146a)

or, to write this in terms of rotational constants,

A > B > C. (3.146b)

As illustrated in Fig. 3.13, examples of molecules classified as asymmetric tops
include those which only have C2-rotational axes and those which do not even
have the C2-rotational axes. For instance, H2O, SO2, C6H5Cl, C6H5NH2, and
CH3CH2Cl are all asymmetric top molecules. Among these, H2O, SO2, and C6H5Cl
have a C2 axis, but for each of these three molecular species the values of principal
moments of inertia around the a, b, and c axes are all different.

Table 3.1 shows the rotational constants of a few molecular species that are rep-
resentative of asymmetric top, symmetric top, and spherical top molecules.

3.4 Molecular Rotation from the Point of View
of Quantum Mechanics

3.4.1 Quantum Mechanical Hamiltonians of Molecular Rotations

In the previous section, we have learned that the energy of the rotational motion of
a rigid rotor is given by Eq. (3.141),

T = J 2
a

2IA

+ J 2
b

2IB

+ J 2
c

2IC

,

in classical mechanics. Let us now turn to the issue of the quantization of kinetic
energy, and derive the eigenenergy and eigenfunction of the molecular rotation.
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Table 3.1 Examples of asymmetric tops, symmetric tops, and spherical tops, and their rotational
constantsa

A/cm−1 B/cm−1 C/cm−1

Asymmetric top molecules

H2O 27.878 14.512 9.285

SO2 2.02736 0.34417 0.293535

CH3CHO 1.8877 0.33901 0.30354

C4H4O 0.315117 0.308434 0.155804

Symmetric top molecules (Prolate top)

CH3
35Cl 5.097 0.443401 –

C2H6 2.681 0.6621 –

Symmetric top molecules (Oblate top)

NH3 – 9.94406 6.2521

NF3 – 0.356283 0.19477

C6H6 – 0.1896 0.0948

Spherical top molecule

CH4 – 5.2412 –

aTo convert the rotational constants from the cm−1 unit into the MHz unit, multiply them by
29979.2458

First, from Eq. (3.143), we can rewrite Eq. (3.141) using the rotational constants
as

T = 2π

�
AJ 2

a + 2π

�
BJ 2

b + 2π

�
CJ 2

c . (3.147)

We can treat this molecular rotation in quantum mechanics by expressing Ja , Jb ,
and Jc as angular momentum operators and solving the Schrödinger equation,

Hψ = Eψ.

As what we have in mind is a rigid rotor that rotates freely in the three-
dimensional space, the potential term V in the Hamiltonian

H = T + V

is zero. That is, by solving the equation

T ψ = Eψ (3.148)

we can derive the eigenenergy E and the eigenfunction ψ .
The question that remains, then, is which coordinate system to use to represent

Ja , Jb, and Jc. In the previous section, we have derived the molecule-fixed a-b-
c coordinate system, which rotates with the molecules, by rotating the space-fixed
x-y-z system by Euler angles α, β , and γ . Therefore, it is natural to describe the
molecular angular momentum using Euler angles α, β , and γ .

As shown in Fig. 3.10, the vector α̇, which represents the time derivative of α,
is parallel to the rotational axis around which the rotation by α occurs, that is, the
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Fig. 3.14 Euler angles and
the a-b-c coordinate system

z axis. Let us now define the unit vector pointing in this direction as eα̇ . We will
similarly define the unit vectors pointing in the directions of β̇ and γ̇ , which repre-
sent the time derivatives of β and γ , respectively, and are on the y′ axis and the z′′
axis, respectively, as eβ̇ and eγ̇ , respectively.

Now, we can use the Schmidt orthogonalization to produce a unit vector er in
the a-b plane so that it is orthogonal to eβ̇ . Then we can describe r , the projection
vector of eα̇ in the a-b plane, as

r = eα̇ − (eα̇ · eγ̇ )eγ̇ , (3.149)

as illustrated in Fig. 3.14. Since

eα̇ · eγ̇ = |eα̇||eγ̇ | cosβ = cosβ, (3.150)

vector r satisfies the relationship

r · r = 1 − (eα̇ · eγ̇ )2 = sin2 β, (3.151)

and therefore the unit vector er , which points in the direction of the vector r , be-
comes

er = r

|r| = r

sinβ

=
(

1

sinβ

)
eα̇ −

(
cosβ

sinβ

)
eγ̇ . (3.152)

Defining the unit vectors in the directions of the a axis and the b axis as a and b,
respectively, we can describe a and b from Fig. 3.14 as

a = −(cosγ )er + (sinγ )eβ̇

=
(

−cosγ

sinβ

)
eα̇ +

(
cosβ cosγ

sinβ

)
eγ̇ + (sinγ )eβ̇ , (3.153a)

b =
(

sinγ

sinβ

)
eα̇ −

(
cosβ sinγ

sinβ

)
eγ̇ + (cosγ )eβ̇ . (3.153b)

At the same time, c, the unit vector pointing in the direction of the c axis, can be
written as

c = eγ̇ . (3.153c)
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If we define Ja , Jb, and Jc as the projection of the total angular momentum J

onto the a, b, and c axes, respectively, they can be described as

Ja = a · J , Jb = b · J , Jc = c · J . (3.154)

J , in turn, can be described with the Euler angle as

Jα = eα̇ · J , Jβ = eβ̇ · J , Jγ = eγ̇ · J . (3.155)

Thus by substituting Eqs. (3.153a) through (3.153c) into Eq. (3.154) and by using
Eq. (3.155) we can represent Ja , Jb, and Jc by Jα , Jβ , and Jγ . Now, in order to shift
the discussion into quantum mechanics, we will describe Jα , Jβ , and Jγ as the
quantum mechanical angular momentum operators

Jα = −i�
∂

∂α
, Jβ = −i�

∂

∂β
, Jγ = −i�

∂

∂γ
, (3.156)

and obtain the representations of Ja , Jb, and Jc in quantum mechanics,

Ja = −i�

{(
−cosγ

sinβ

)
∂

∂α
+

(
cosβ cosγ

sinβ

)
∂

∂γ
+ sinγ

∂

∂β

}
, (3.157a)

Jb = −i�

{(
sinγ

sinβ

)
∂

∂α
−

(
cosβ sinγ

sinβ

)
∂

∂γ
+ cosγ

∂

∂β

}
, (3.157b)

Jc = −i�
∂

∂γ
. (3.157c)

It must be noted here that the a, b, and c axes at this point only represent the
molecule-fixed right-hand coordinate system, and not necessary the principal axes
of inertia.

It is when we substitute Ja , Jb, and Jc in Eqs. (3.157a) through (3.157c) into the
rotational kinetic energy represented by the principal inertia axis system given as
Eq. (3.141) and Eq. (3.147), that is,

T = J 2
a

2IA

+ J 2
b

2IB

+ J 2
c

2IC

= 2π

�
AJ 2

a + 2π

�
BJ 2

b + 2π

�
CJ 2

c ,

that the a, b, and c axes come to coincide with the principal inertia axis system. Still,
the a-b-c coordinate system made to coincide with the principal inertia axis system
may not necessary fulfill the conventional relationship A � B � C. Therefore, the
discussion here is valid for all possible size relationships between A, B , and C.

Having derived the quantum-mechanical representation of the kinetic energy of
the rotation of a rigid body, we are now ready to solve the Schrödinger equation
(3.148). However, it is difficult to solve the Schrödinger equation for asymmetric
top molecules, whose rotational constants A, B , and C are all different from each
other. Therefore, we will first derive the concrete representation of the Schrödinger
equation for a symmetric top molecule, a molecule with two equal rotational con-
stants, in order to facilitate our understanding of the quantum mechanics of a rigid
body rotation.
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Supposing that the two rotational constants A and B among A, B , and C, take
the same value, that is, A = B , the kinetic energy can be described as

T = 2π

�
BJ 2 + 2π

�
(C − B)J 2

c , (3.158)

whereas if we suppose B and C take the same value, that is, B = C, it will be written
as

T = 2π

�
BJ 2 + 2π

�
(A − B)J 2

a . (3.159)

As Eqs. (3.157a) through (3.157c) show us that the representation of Jc is simpler
than that of Ja or Jb , we will choose to use Eq. (3.158) to describe T . Incidentally,
when the relationship A� B � C is satisfied, Eq. (3.158) is suited for describing an
oblate top molecule, and Eq. (3.159) for describing a prolate top molecule.

First, we evaluate J 2 by using Eqs. (3.157a) through (3.157c), and obtain

J 2 = J 2
a + J 2

b + J 2
c

= (−i�)2
{

∂2

∂β2
+ cotβ

∂

∂β
+ 1

sin2 β

(
∂2

∂α2
+ ∂2

∂γ 2

)
− 2 cosβ

sin2 β

∂2

∂α∂γ

}
.

(3.160)

The first two terms in the { } bracket can be described as

∂2

∂β2
+ cotβ

∂

∂β
= 1

sinβ

∂

∂β

(
sinβ

∂

∂β

)
. (3.161)

Thus by adopting Eq. (3.158) and using Eqs. (3.157c) and (3.160), we can derive
the Schrödinger equation for a symmetric top molecule as

(−i�)2
[

2π

�
B

{
1

sinβ

∂

∂β

(
sinβ

∂

∂β

)
+ 1

sin2 β

(
∂2

∂α2
+ ∂2

∂γ 2

)

− 2 cosβ

sin2 β

∂2

∂α∂γ

}
+ 2π

�
(C − B)

∂2

∂γ 2

]
ψ = Eψ. (3.162)

In Eq. (3.162), α and γ appear only in the form of ∂
∂α

and ∂
∂γ

. Therefore, we can
easily separate the variables and derive

ψjkm(α,β, γ ) = NjkmΘjkm(β)eimαeikγ , (3.163)

where Njkm is the normalization constant.
Substituting Eq. (3.163) into Eq. (3.162) and dividing both sides of this formula

by Njkmeimαeikγ , we can derive the differential equation for Θjkm(β),

−hB

{
1

sinβ

∂

∂β

(
sinβ

∂

∂β

)
− (m − k cosβ)2

sin2 β

}
Θjkm(β)

= (
E − hCk2)

Θjkm(β). (3.164)

The wave function of Eq. (3.163) with Θjkm(β) derived by solving Eq. (3.164) is
the rotational wave function of the symmetric top molecule.
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If k = 0, Eq. (3.164) becomes

−hB

{
1

sinβ

∂

∂β

(
sinβ

∂

∂β

)
− m2

sin2 β

}
Θj0m(β) = EΘj0m(β). (3.165)

This formula corresponds to Eq. (3.102) as derived from the Schrödinger equation
for the rotation of diatomic molecules or linear molecules, and is thought to give

the eigenvalue E = �
2

2IB
j (j + 1). Also, comparing it with Eq. (3.102), we see that

Θj0m(β) in Eq. (3.165) corresponds to Θjm(θ) in Eq. (3.102). This signifies that the
physical meaning of the polar angle θ in the polar coordinate and that of the Euler
angle β are the same. Indeed, as is apparent from the definitions of the polar angle
θ and the azimuthal angle φ in Fig. 3.2 and from the definitions of the Euler angles
in Fig. 3.8, α can be substituted by φ, and β by θ .

We have now reached an understanding of Θj0m(β). Turning our attention then to
the question of deriving Θjkm(β) when k 	= 0, we learn that, as will be discussed in
Sect. 3.4.3, we can derive representations of rotational wave functions of symmetric
top molecules by using both the angular momentum operators in the molecule-fixed
system and those in the space-fixed coordinate system without evaluating Θjkm(β)

directly. Let us then study the angular momentum operators, Ja , Jb , and Jc, in the
molecule-fixed coordinate system described as Eqs. (3.157a) through (3.157c).

3.4.2 Angular Momenta of Overall Rotations
in Molecule-Fixed Coordinate Systems

The angular momentum operators Ja , Jb , and Jc in a molecule-fixed coordinate
system derived in Sect. 3.4.1 can be characterized by their commutation relations
with each other. The commutation relations among Ja , Jb, and Jc can be derived
through their representations using Euler angles α, β , and γ in Eqs. (3.157a) through
(3.157c). By carefully calculating JaJb and JbJa , we can derive the commutator of
Ja and Jb as

[Ja, Jb] ≡ JaJb − JbJa

= (−i�)2 ∂

∂γ

= −i�Jc. (3.166a)

Similarly, we can derive

[Jb, Jc] = −i�Ja, (3.166b)

[Jc, Ja] = −i�Jb. (3.166c)
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These commutation relations look similar to, but are different from those among
the angular momentum operators Jx , Jy , and Jz in a space-fixed coordinate de-
scribed in Eqs. (3.40a) through (3.40c) in Sect. 3.2.2,

⎧
⎪⎨

⎪⎩

[Jx, Jy] = i�Jz,

[Jy, Jz] = i�Jx,

[Jz, Jx] = i�Jy.

Problem 3.9
Write the angular momentum operators in the space-fixed coordinate system, Jx ,
Jy , and Jz, using Euler angles α, β , and γ .

Solution
As in the case of the molecule-fixed coordinate system, we first derive the projection
of the unit vector eγ̇ to the x-y surface, and define a unit vector which points in this
direction as er , which is written as

er = eγ̇ − (cosβ)eα̇

sinβ
. (3.167)

We can represent x and y by er and eβ̇ as

x = (er · x)er + (eβ̇ · x)eβ̇ = (cosα)er − (sinα)eβ̇ , (3.168a)

y = (sinα)er + (cosα)eβ̇ . (3.168b)

Using these equations, we can derive

Jx = x · J = {
(cosα)er − (sinα)eβ̇

} · (Jαeα̇ + Jβeβ̇ + Jγ eγ̇ )

= −i�

{(
cosα

sinβ

)
∂

∂γ
−

(
cosα cosβ

sinβ

)
∂

∂α
− sinα

∂

∂β

}
, (3.169a)

Jy = y · J = −i�

{(
sinα

sinβ

)
∂

∂γ
−

(
sinα cosβ

sinβ

)
∂

∂α
+ cosα

∂

∂β

}
, (3.169b)

Jz = z · J = −i�
∂

∂α
. (3.169c)

�

Problem 3.10
Using the solution to Problem 3.9, confirm the commutation relations among Jx ,
Jy , and Jz.

Solution
By calculating [Jx, Jy] = JxJy − JyJx with close attention to the order of the dif-
ferentiations, we can indeed obtain the relation [Jx, Jy] = i�Jz. Similarly, we can
show that [Jy, Jz] = i�Jx , [Jz, Jx] = i�Jy . �

We will now obtain the eigenfunction and eigenvalue of the angular momentum
in the molecule-fixed coordinate system by using the commutation relations among
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its angular momentum operators, as we have done for the angular momentum in the
space-fixed coordinate system in Sect. 3.2. In this instance, the role played by Jc

corresponds to that of Jz in Sect. 3.2.
Defining operators J+ and J−, respectively, as in the case of the space-fixed

coordinate system, as

J+ ≡ Ja + iJb, (3.170a)

J− ≡ Ja − iJb, (3.170b)

we can show that, for {|j, k〉}, the set of eigenfunctions shared by J 2 and Jc,

J 2|j, k〉 = j (j + 1)�2|j, k〉 (3.171)

Jc|j, k〉 = k�|j, k〉 (
k = −j,−(j − 1), . . . , j − 1, j

)
(3.172)

J±|j, k〉 = √
j (j + 1) − k(k ∓ 1)�|j, k ∓ 1〉. (3.173)

Problem 3.11
Following the same procedures as has been used in Sect. 3.2, derive Eqs. (3.171)
through (3.173). Pay close attention to the difference of the ± signs.

Solution
Ja , Jb , and Jc are not commutative with each other, but J 2 = J 2

a + J 2
b + J 2

c is
commutative with Ja . In other words, we can show from the commutation relations
(3.166a) through (3.166c) that

[
Ja,J

2] = [
Jb,J

2] = [
Jc,J

2] = 0. (3.174)

This means that if we choose the c axis as the quantizing axis there will be
{|λ, k〉}, a set of eigenfunctions shared by J 2 and Jc, and that this can be described
as

J 2|λ, k〉 = λ�
2|λ, k〉,

Jc|λ, k〉 = k�|λ, k〉.
We can also show

J 2(
J±|λ, k〉) = J±(

J 2|λ, k〉)

= J±(
λ�

2|λ, k〉)

= λ�
2(

J±|λ, k〉) (3.175)

and

Jc

(
J±|λ, k〉) = J±Jc|λ, k〉 ∓ �J±|λ, k〉

= J±k�|λ, k〉 ∓ �J±|λ, k〉
= (k ∓ 1)�

(
J±|λ, k〉), (3.176)

in which we use [Jc, J
±] = ∓�J±, that is, JcJ

± − J±Jc = ∓�J±.
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This shows that, while J±|λ, k〉 is indeed the common eigenfunction for J 2

and Jc, the eigenvalue for Jc increases and decreases by � when J− and J+, re-
spectively, are operated on |λ, k〉. That is, J+ acts as a lowering operator and J− as
a raising operator, as shown below:

|λ, k〉 J+→ |λ, k − 1〉 J+→ |λ, k − 2〉 J+→ · · · , (3.177a)

|λ, k〉 J−→ |λ, k + 1〉 J−→ |λ, k + 2〉 J−→ · · · . (3.177b)

Thus, we can see that the signs appearing in the raising and lowering operators
in the molecule-fixed coordinate system are reversed from those of the raising and
lowering operators in the space-fixed coordinate system.

Let us now evaluate the norm of J±|λ, k〉, as we have done in the case of the
space-fixed coordinate system. From

∣∣J±|λ, k〉∣∣2 = 〈λ, k|J∓J±|λ, k〉
= 〈λ, k|J 2 − J 2

c ± �Jc|λ, k〉
= 〈λ, k|J 2 − Jc(Jc ∓ �)|λ, k〉
= {

λ − k(k ∓ 1)
}
�

2〈λ, k|λ, k〉, (3.178)

we can derive

λ − k(k ∓ 1)� 0,

which can be rewritten as

λ� k(k ∓ 1) = k2 ∓ k.

This shows that there are upper and lower limits for k, which we will define
as kmax and kmin, respectively. Then, for both the raising and lowering opera-
tors, J−|λ, kmax〉 = 0 and J+|λ, kmin〉 = 0 hold. First, from J+J−|λ, kmax〉 =
{J 2 − Jc(Jc + �)}|λ, kmax〉 = 0, we can derive

λ − kmax(kmax + 1) = 0. (3.179)

Similarly, from J−J+|λ, kmin〉 = {J 2 − Jc(Jc − �)}|λ, kmin〉 = 0, we can derive

λ − kmin(kmin − 1) = 0. (3.180)

Eliminating λ from Eqs. (3.179) and (3.180), we obtain

(kmax + kmin)(kmax − kmin + 1) = 0.

Since kmax � kmin, the value of the content of the second pair of parentheses neces-
sarily becomes larger than 0, and therefore

kmax + kmin = 0

must hold. If we define j as

j = kmax = −kmin,
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then

λ = j (j + 1),

and we know from kmax − kmin = j − (−j) = 2j � 0 that 2j is either 0 or a positive
integer. Thus, we have shown that

J 2|j, k〉 = j (j + 1)�2|j, k〉
Jc|j, k〉 = k�|j, k〉 (

k = −j,−(j − 1), . . . , j − 1, j
)
,

and, from Eq. (3.178), that

J±|j, k〉 = √
j (j + 1) − k(k ∓ 1)�|j, k ∓ 1〉.

Here, too, as in Eqs. (3.88a) and (3.88b), we have adopted the Condon-Shortley
phase convention. �

3.4.3 Energy Level Diagrams of Prolate and Oblate Top Molecules

From the discussion in Sect. 3.4.1, we can conclude that the wave function of a
symmetric top molecule can be represented as

|j, k,m〉 = NjkmΘjkm(θ)eikγ eimφ, (3.181)

and that this constitutes the system of eigenfunctions shared by J 2 and by Jz and Jc,
which are commutative with J 2. To summarize,

J 2|j, k,m〉 = j (j + 1)�2|j, k,m〉, (3.182)

Jc|j, k,m〉 = k�|j, k,m〉, (3.183)

Jz|j, k,m〉 = m�|j, k,m〉, (3.184)

(Ja ± iJb)|j, k,m〉 = √
j (j + 1) − k(k ∓ 1)�|j, k ∓ 1,m〉, (3.185)

(Jx ± iJy)|j, k,m〉 = √
j (j + 1) − m(m ± 1)�|j, k,m ± 1〉. (3.186)

From Eqs. (3.185) and (3.186), we can see that as long as we are provided with a
state in which k = m = 0, or in other words |j,0,0〉, we can obtain the eigenfunction
|j, k,m〉 by applying the raising and lowering operators. That is to say, if k > 0 and
m > 0,

|j, k,m〉 = N
(+,+)
jkm (Ja − iJb)

k(Jx + iJy)
m|j,0,0〉, (3.187a)

|j,−k,m〉 = N
(−,+)
jkm (Ja + iJb)

k(Jx + iJy)
m|j,0,0〉, (3.187b)

|j, k,−m〉 = N
(+,−)
jkm (Ja − iJb)

k(Jx − iJy)
m|j,0,0〉, (3.187c)

|j,−k,−m〉 = N
(−,−)
jkm (Ja + iJb)

k(Jx − iJy)
m|j,0,0〉, (3.187d)

where N
(+,+)
jkm and the other corresponding coefficients are normalization constants.
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Let us then calculate the wave function |j,0,0〉. As we have learned in
Sect. 3.4.1, Θj0m(θ) = Θjm(θ), and therefore, from Eq. (3.181), we can derive

|j,0,0〉 = Nj00Θj0(θ). (3.188)

As shown in Sect. 3.2.5, the spherical harmonics ψjm can be written as

ψjm = Θjm(θ)Φm(φ) = 1√
2π

Θjm(θ)eimφ, (3.189)

which allows us to use Eq. (3.99) to derive the normalized wave function

|j,0,0〉 = Θj0(θ) =
√

j + 1

2
Pj (cos θ). (3.190)

When we operate Eq. (3.158), the rotational Hamiltonian for symmetric top
molecules, that is,

H = T = 2π

�
BJ 2 + 2π

�
(C − B)J 2

c , (3.191)

on |j, k,m〉, we can obtain from Eqs. (3.182) and (3.183)

H |j, k,m〉 = {
hBj (j + 1) + h(C − B)k2}|j, k,m〉. (3.192)

Therefore, the eigenenergy can be expressed as

Ejk = hBj (j + 1) + h(C − B)k2. (3.193)

This shows that |j, k,m〉 is indeed the eigenfunction of the Hamiltonian for sym-
metric top molecules.

The quantization axis c can be set to the principal axis of inertia a by making the
cyclic permutation

a −→ b,

b −→ c,

c −→ a.

Then, the substitution (j, k) → (J,Ka) under the condition A > B = C yields the
eigenenergy of the prolate symmetric top molecule as

EJKa = hBJ(J + 1) + h(A − B)K2
a . (3.194)

In order to set the quantization axis c to the principal axis of inertia c, on the
other hand, the substitution (j, k) → (J,Kc) is made to Eq. (3.193) to yield the
eigenenergy

EJKc = hBJ(J + 1) + h(C − B)K2
c . (3.195)

If the condition A = B > C is satisfied, Eq. (3.195) represents the eigenenergy
of an oblate top molecule. The eigenenergies of symmetric top molecules described
as Eqs. (3.194) and (3.195) can be schematically shown as Fig. 3.15. Commonly,
both Ka and Kc are simply written as K .
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Fig. 3.15 The eigenenergy diagrams of a symmetric top molecule

3.4.4 Energy Levels of Diatomic and Linear Molecules

We have already learned that the rotational level energies of diatomic molecules
and linear molecules are expressed using the quantum number J of a total angular
momentum by Eq. (3.15a), that is,

EJ = hBJ(J + 1).

Then, as we did in the previous subsection, let us treat diatomic molecules and linear
molecules using a molecule-fixed coordinate system. If we define the inertia axis
connecting the atoms as the a axis, as long as we regard these atoms as mass points
we cannot define the rotation around the a axis. Therefore, we will only treat the
rotational motion around the b axis and that around the c axis. For these rotations,
it is obvious that

IB = IC (3.196)

holds. Therefore, the Hamiltonian of the rotational motion can be written as

H = T = J 2
b

2IB

+ J 2
c

2IC

= 2π

�
B

(
J 2

b + J 2
c

)
. (3.197)

Because the total angular momentum J of the rotation of a rigid body is written as

J 2 = J 2
b + J 2

c , (3.198)

Eq. (3.197) is expressed as

H = 2π

�
BJ 2. (3.199)
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When we compare this Eq. (3.199) with the Hamiltonian of a symmetric top
molecule expressed as Eqs. (3.158) and (3.159), we see that Eq. (3.199) is obtained
by setting Ja = 0 or Jc = 0 in the Hamiltonian of a symmetric top molecule. This
is clearly shown in Eq. (3.165), that is, the wave function |J,0,M〉, obtained by
the replacements j → J , k = 0, and m → M in Eq. (3.181) representing the wave
function of a symmetric top molecule, can be regarded as the wave function of a
diatomic molecule or a linear molecule. From Eq. (3.182), we obtain

J 2|J,0,M〉 = J (J + 1)�2|J,0,M〉. (3.200)

Therefore, the eigenenergy can be written as

EJ = hBJ(J + 1). (3.201)

As we have already learned, if we specify one value for J , there will be (2J +
1) rotational wave functions |J,0,M〉 with different M values (M = −J,−J +
1, . . . , J + 1, J ). The level energies of these (2J + 1) functions can be expressed
as in Eq. (3.201), regardless of the value of M . We describe this situation as the
energy level specified by J being (2J + 1)-fold degenerate, or as the degeneracy of
the energy level being 2J + 1.

3.4.5 Energy Levels of Spherical Top Molecules

The moment of inertia of a spherical top molecule fulfill the relationship IA = IB =
IC , and the Hamiltonian of the rotational motion can be written as

H = T = 1

2IB

(
J 2

a + J 2
b + J 2

c

) = 2π

�
BJ 2. (3.202)

Therefore, we can obtain its eigenfunction as |J,K,M〉 by making the replacements

j → J, k → K, m → M

in Eq. (3.181), which gives us

H |J,K,M〉 = hBJ(J + 1)|J,K,M〉. (3.203)

Each state specified by one J value has a (2J + 1)-fold degeneracy with respect
to M , as well as a (2J + 1)-fold degeneracy with respect to K . Consequently, the
total degeneracy becomes (2J + 1)2.

3.4.6 Energy Levels of Asymmetric Top Molecules

We are now ready to derive the rotational energy levels of an asymmetric molecule
whose three rotational constants have different values. Let A > B > C. What is
immediately clear is that the eigenfunction of a symmetric top molecule, |J,K,M〉,
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cannot simply be regarded as the eigenfunction of an asymmetric top molecule as it
is. We will then describe the state which has the total angular momentum J as one
of the linear combinations of |J,K,M〉 as

ψJ =
∑

K

∑

M

|J,K,M〉, (3.204)

and look for wave functions that can diagonalize the matrix of the rotational Hamil-
tonian

H = 2π

�
AJ 2

a + 2π

�
BJ 2

b + 2π

�
CJ 2

c . (3.205)

To this end, we first describe H in terms of J 2, J 2
c , J+, and J−. As the definitions

of J+ and J− given in Eqs. (3.170a) and (3.170b) allow us to represent J+J+ and
J−J− as

J+J+ = (Ja + iJb)(Ja + iJb)

= J 2
a + iJaJb + iJbJa − J 2

b ,

J−J− = (Ja − iJb)(Ja − iJb)

= J 2
a − iJaJb − iJbJa − J 2

b ,

we can derive

J+J+ + J−J− = (
J+)2 + (

J−)2

= 2
(
J 2

a − J 2
b

)
. (3.206)

Then, let p, q , and r be such coefficients that the Hamiltonian can be written as

H = 2π

�
pJ 2 + 2π

�
qJ 2

c + 2π

�
r
{(

J+)2 + (
J−)2}

. (3.207)

Using Eq. (3.206) and the equation J 2 = J 2
a + J 2

b + J 2
c , the Hamiltonian of

Eq. (3.207) can be described using J 2
a , J 2

b , and J 2
c as

H = 2π

�
(p + 2r)J 2

a + 2π

�
(p − 2r)J 2

b + 2π

�
(p + q)J 2

c . (3.208)

When we compare Eq. (3.208) with Eq. (3.205), we can see that A, B , and C can
be written using p, q , and r as

A = p + 2r, B = p − 2r, C = p + q, (3.209)

which means that p, q , and r can be written in terms of A, B , and C as

p = 1

2
(A + B), q = C − 1

2
(A + B), r = 1

4
(A − B). (3.210)

By substituting these equations into Eq. (3.207), we obtain the rotational Hamilto-
nian

H = 2π

�

(
A + B

2

)
J 2 + 2π

�

(
C − A + B

2

)
J 2

c + 2π

�

(
A − B

4

){(
J+)2 + (

J−)2}
.

(3.211)
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Once we describe the rotational Hamiltonian in this form, its Hamiltonian matrix
can readily be evaluated using the |J,K,M〉 basis set.

As the Hamiltonian is three-dimensionally isotropic, and its |J,K,M〉 conse-
quently has a (2J + 1)-fold degeneracy with respect to M , we need not specify the
M in the evaluation of the Hamiltonian matrix. Thus, we can simply write |J,K,M〉
as |J,K〉. Also, as K is given as an eigenvalue of Jc, we can write K as Kc , and
|J,K〉 as |J,Kc〉. Then, from Eqs. (3.182), (3.183), and (3.185), we can evaluate
the necessary matrix elements as

〈J,Kc|J 2|J,Kc〉 = J (J + 1)�2, (3.212)

〈J,Kc|J 2
c |J,Kc〉 = K2

c �
2, (3.213)

〈J,Kc + 2|J−J−|J,Kc〉
= 〈J,Kc|J+J+|J,Kc + 2〉
= √

J (J + 1) − Kc(Kc + 1) · √
J (J + 1) − (Kc + 1)(Kc + 2)�2, (3.214)

〈J,Kc − 2|J+J+|J,Kc〉
= 〈J,Kc|J−J−|J,Kc − 2〉
= √

J (J + 1) − Kc(Kc − 1) · √
J (J + 1) − (Kc − 1)(Kc − 2)�2. (3.215)

What this signifies is that, given the three rotational constants A, B , and C, we can
evaluate the matrix element 〈J ′,K ′

c|H |J,Kc〉, and by diagonalizing the Hamilto-
nian matrix, in turn, obtain the eigenvalues and eigenfunctions of any given asym-
metric top molecule.

3.4.7 Calculating the Rotational Energy Levels
of an Asymmetric Top Molecule for J = 0 and J = 1

Now we will evaluate the actual matrix elements as obtained above in Sect. 3.4.6,
and derive the rotational energy levels of an asymmetric top molecule for cases
where J = 0 and J = 1.
(i) J = 0

When J = 0, Kc = 0 is required, and therefore the eigenfunction becomes

|J,Kc〉 = |0,0〉. (3.216)

The Hamiltonian matrix is a one-by-one matrix consisting of the sole matrix element
〈0,0|H |0,0〉. Naturally, its eigenenergy is

E = 〈0,0|H |0,0〉 = 0. (3.217)

(ii) J = 1
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When J = 1, Kc can take one of three values, Kc = −1, 0, 1, so that we can
evaluate the Hamiltonian matrix elements using the following three basis functions:

|J,Kc〉 = |1,1〉, |1,0〉, |1,−1〉.
The diagonal elements are generated from the operators J 2 and J 2

c , so that

〈1,1|H |1,1〉 = 2π

�

(
A + B

2

)
〈1,1|J 2|1,1〉 + 2π

�

(
C − A + B

2

)
〈1,1|J 2

c |1,1〉

= 2π

�

(
A + B

2

)
2�

2 + 2π

�

(
C − A + B

2

)
�

2

= h

(
C + A + B

2

)
(3.218)

is obtained from Eq. (3.211).
Similarly,

〈1,−1|H |1,−1〉 = h

(
C + A + B

2

)
, (3.219)

〈1,0|H |1,0〉 = h(A + B) (3.220)

can be obtained.
The off-diagonal elements can only exist between the basis functions whose Kc

values differ by 2, that is, for 	Kc = ±2, so that

〈1,1|H |1,−1〉 = 2π

�

(
A − B

4

)
〈1,1|J−J−|1,−1〉

= h

(
A − B

2

)
(3.221)

is derived.
Also, similarly,

〈1,−1|H |1,1〉 = h

(
A − B

2

)
(3.222)

is derived.
Based on the matrix evaluations above, we can describe the Hamiltonian matrix

H 1 for J = 1 as

H 1 = h

⎛

⎜⎜
⎝

C + A+B
2 0 A−B

2

0 A + B 0
A−B

2 0 C + A+B
2

⎞

⎟⎟
⎠ (3.223)

If we reorder the basis functions, |1,1〉, |1,0〉, |1,−1〉, so that they stand in the
order of |1,0〉, |1,1〉, |1,−1〉, the Hamiltonian matrix is represented as

H ′
1 = h

⎛

⎜⎜
⎝

A + B 0 0

0 C + A+B
2

A−B
2

0 A−B
2 C + A+B

2

⎞

⎟⎟
⎠ , (3.224)
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and we can see that this is block-diagonalized. Therefore, |J,Kc〉 = |1,0〉 is already
an eigenfunction, and its eigenenergy E10 is

E10 = h(A + B). (3.225)

Next, by diagonalizing the remaining two-by-two matrix,

H ′ = h

(
C + A+B

2
A−B

2
A−B

2 C + A+B
2

)

, (3.226)

we can derive

E′ = h

(
B + C 0

0 A + C

)
, (3.227)

where the two diagonal elements express the eigenvalues. The eigenfunction asso-
ciated with the eigenvalue h(B + C) is

1√
2

(−|1,1〉 + |1,−1〉), (3.228)

whereas that associated with the eigenvelue h(A + C) is

1√
2

(|1,1〉 + |1,−1〉). (3.229)

The diagonalization process given above can be interpreted as the unitary transfor-
mation of a column vector whose elements are the two basis functions,

( |1,1〉
|1,−1〉

)
,

by a unitary transformation matrix

U = 1√
2

(−1 1
1 1

)
, (3.230)

which causes the H ′ to be transformed into a diagonal matrix E′. This process can
be represented using these matrices as

tUH ′U = E′. (3.231)

The three eigenenergies obtained by the processes above can be sorted in decreasing
order of energy as

h(A + B) > h(A + C) > h(B + C), (3.232)

because A > B > C.
Our next task is to determine what to call those levels corresponding to the en-

ergy expressions derived above. Let us first consider gradually modifying the struc-
ture of the asymmetric top molecule so that it approaches an oblate symmetric top
molecule, as illustrated in the right half of Fig. 3.16.

As A = B holds in an oblate symmetric top molecule, we can conceptualize
this as a case where the A and B in an asymmetric top molecule approach each
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Fig. 3.16 The correlation diagram of level energies in asymmetric top molecules and symmetric
top molecules (for J = 1)

other to the limit, so that they have the same value. This allows us to see the two
rotational levels of an asymmetric top molecule whose eigenenergies are h(B + C)

and h(A + C) and whose eigenfunctions are given by Eqs. (3.228) and (3.229),
respectively, as having the same rotational energy, h(B + C), at the one extreme
where the molecule becomes an oblate symmetric top molecule. In other words,
these two levels of the asymmetric top molecule correlate with the rotational level of
an oblate top molecule, |J,Kc〉 = |1,1〉. Also, the rotational level of an asymmetric
top molecule whose energy is h(A+B) correlates with the rotational level |J,Kc〉 =
|1,0〉 of an oblate top molecule. Indeed, if we assume that A = B , the eigenenergy
of this level becomes 2hB , which corresponds to J = 1, Kc = 0 being substituted
into Eq. (3.195).

Let us now consider modifying the structure of an asymmetric top molecule so
that it approximates a prolate symmetric top molecule. A prolate symmetric top
molecule is one where B = C holds, so it represents the case of the B and C in an
asymmetric top molecule approaching each other to the point where they have the
same value. This tells us that the two rotational levels of an asymmetric top molecule
whose eigenenergies are h(A + B) and h(A + C) have the same rotational energy,
h(A + B), at the other extreme where the molecule becomes a prolate symmetric
top molecule.

In the discussion above, the c axis is defined as the quantization axis along which
K is defined as the projection of the total rotational angular momentum, in rewriting
Eq. (3.205) as Eq. (3.211). The procedures above also stand exactly as they are when
the cyclic permutation is performed on a, b, and c, that is, when a → b, b → c, and
c → a, and so the Hamiltonian of Eq. (3.205) can also be written as

H = 2π

�

(
B + C

2

)
J 2 + 2π

�

(
A − B + C

2

)
J 2

a + 2π

�

(
B − C

4

)
{(

J+)2 + (
J−)2}

.

(3.233)

Let us then diagonalize the matrix elements of this Hamiltonian by representing
them with the |J,K〉 basis set. For this, we simply need to repeat the above dis-
cussion using the cyclic permutation a → b, b → c, and c → a, and thus we can
readily see that the energy level for the eigenenergy h(B + C) is represented as
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|J,Ka〉 = |1,0〉, and that this directly correlates with the |J,Ka〉 = |1,0〉 of a pro-
late symmetric top molecule. Indeed, if we assume that B = C, then the eigenenergy
becomes 2hB , which corresponds to the result obtained when substituting J = 1
and Ka = 0 into Eq. (3.194). In addition, we can see that the rotational levels whose
eigenenergies are h(A + C) and h(A + B) can be written, respectively, as

1√
2

(−|1,1〉 + |1,−1〉), (3.234)

1√
2

(|1,1〉 + |1,−1〉). (3.235)

This shows that the rotational energies of these two rotational levels for an asym-
metric top molecule approach the same value, h(A + B), as the B and C approach
each other, ultimately constituting a prolate symmetric top molecule. In other words,
these two levels of an asymmetric top molecule correlate with the rotational level
|J,Ka〉 = |1,1〉 of a prolate top molecule. This is what is illustrated in the left half
of Fig. 3.16.

To summarize, when J = 1,

• the level whose eigenenergy is given by h(A + B) correlates with Ka = 1 and
Kc = 0,

• the level whose eigenenergy is given by h(A + C) correlates with Ka = 1 and
Kc = 1, and

• the level whose eigenenergy is given by h(B + C) correlates with Ka = 0 and
Kc = 1.

Therefore, it is reasonable to call these three energy levels 110, 111, and 101, so that
the Ka and Kc values are expressed in the subscripts of the quantum number for the
total rotational angular momentum, as JKaKc . That is, the rotational level energies
for an asymmetric top molecule with J = 1 can be given as

E(110) = h(A + B),

E(111) = h(A + C), (3.236)

E(101) = h(B + C).

When τ is defined as

τ ≡ Ka − Kc, (3.237)

its values are τ = 1, 0, −1 for the three levels JKaKc = 110,111,101, respectively.
Therefore, we sometimes specify these rotational levels using τ , as Jτ = 11,10,1−1.

3.4.8 Wang’s Transformation

As shown in the preceding subsection using the specific case of J = 1, the Hamil-
tonian matrix evaluated by the |J,K〉 basis functions has off-diagonal elements be-
tween |J,K〉 and |J,K ± 2〉. This turns the Hamiltonian matrix into a tridiagonal
matrix. Therefore, in order to transform |J,K〉 and |J,−K〉 into
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1√
2

(−|J,K〉 + |J,−K〉), (3.238)

1√
2

(|J,K〉 + |J,−K〉), (3.239)

let us now introduce a matrix represented as

UJ = 1√
2

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

. . .
...

−1 0 0 0 1
0 −1 0 1 0
0 0

√
2 0 0

0 1 0 1 0
1 0 0 0 1

...
. . .

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.240)

This matrix is called Wang’s matrix, and the transformation of a set of basis func-
tions by this matrix is called Wang’s transformation. This transformation is a uni-
tary transformation of the |J,K〉 basis functions specified by a given value J and
(2J + 1) different values for K (= −J,−J + 1, . . . , J ).

When J = 1, the transformation matrix U1 is

U1 = 1√
2

⎛

⎝
−1 0 1
0

√
2 0

1 0 1

⎞

⎠ . (3.241)

The Hamiltonian matrix H 1 in Eq. (3.223) is diagonalized by this transformation as

tU1H 1U1 = U1H 1U1 =
⎛

⎝
B + C 0 0

0 A + B 0
0 0 C + A

⎞

⎠ . (3.242)

Note here that tUJ = UJ holds, as UJ is a symmetric matrix.
When J � 2, Wang’s transformation does not lead directly to diagonalization, but

block diagonalization can be achieved, which facilitates the eigenvalue problem. Let
us look at this by solving the next problem.

Problem 3.12
Letting J = 2, and using the representation in which the quantization axis is set as
the c axis, derive the Hamiltonian matrix for the rotational motion of a molecule.
Then, block-diagonalize the Hamiltonian matrix by carrying out Wang’s basis trans-
formation.

Solution
As shown in Eq. (3.210), we can represent p, q , and r using A, B , and C as

p = 1

2
(A + B), q = C − 1

2
(A + B), r = 1

4
(A − B),
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and therefore the Hamiltonian matrix can be written as

H = h

⎛

⎜⎜⎜⎜⎜
⎝

6p + 4q 0 2
√

6r 0 0

0 6p + q 0 6r 0

2
√

6r 0 6p 0 2
√

6r

0 6r 0 6p + q 0

0 0 2
√

6r 0 6p + 4q

⎞

⎟⎟⎟⎟⎟
⎠

, (3.243)

which shows it to be a tridiagonal matrix.
When we use Wang’s basis transformation matrix for J = 2,

U2 = 1√
2

⎛

⎜⎜⎜⎜
⎝

−1 0 0 0 1
0 −1 0 1 0
0 0

√
2 0 0

0 1 0 1 0
1 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

, (3.244)

in calculating H ′ = U2HU2, we obtain

H ′ = h

⎛

⎜⎜⎜⎜⎜
⎝

6p + 4q 0 0 0 0

0 6p + q − 6r 0 0 0

0 0 6p 0 4
√

3r

0 0 0 6p + q + 6r 0

0 0 4
√

3r 0 6p + 4q

⎞

⎟⎟⎟⎟⎟
⎠

. (3.245)

By changing the order of the basis functions that are not diagonalized, the block-
diagonalized Hamiltonian matrix can be simplified as

H ′= h

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A + B + 4C 0 0 0 0

0 A + 4B + C 0 0 0

0 0 4A + B + C 0 0
0 0 0 A + B + 4C

√
3(A − B)√

3(A − B) 3(A + B)
0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(3.246)

This clearly shows that three out of five eigenenergies can be determined by Wang’s
transformation alone, namely as A + B + 4C, A + 4B + C, and 4A + B + C. �

The results obtained in Problem 3.12 show us that we have to diagonalize the
2 × 2 sub-matrix in Eq. (3.246) in order to derive the two remaining eigenenergies
for J = 2. This diagonalization can be easily performed, and the two eigenvalues
are obtained as

h
{

2(A + B + C) ± 2
√

(B − C)2 + (A − C)(A − B)
}
.

When we examine the relative level energies of these five rotational eigenstates
under the condition A > B > C, and derive the Ka and Kc values assigned to the
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Fig. 3.17 The correlation diagram of level energies in asymmetric top molecules and symmetric
top molecules (for J = 2)

respective levels in the same way as we did for J = 1, we obtain the rotational
eigenenergies for J = 2 in decreasing order of the energy as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E(220) = h
{

2(A + B + C) + 2
√

(B − C)2 + (A − C)(A − B)
}
,

E(221) = h(4A + B + C),

E(211) = h(A + 4B + C),

E(212) = h(A + B + 4C),

E(202) = h
{

2(A + B + C) − 2
√

(B − C)2 + (A − C)(A − B)
}
.

(3.247)

The correlation diagram for J = 2 is thus as shown in Fig. 3.17.
Table 3.2 summarizes the level energies for an asymmetric top molecule as rep-

resented using rotational constants. The rotational level energies for J = 3 are also
included in the table.

3.4.9 Symmetry in the Rotational Levels
of an Asymmetric Top Molecule

Wang’s transformation turns the Hamiltonian matrix of an asymmetric top molecule
into four sub-matrices, and each is characterized by the different parity for its KaKc ,
as ee, eo, oo, or oe, where “e” stands for “even” and “o” for “odd”. This classifi-
cation of rotational levels can be seen in the block-diagonalized Hamiltonian given
in Eq. (3.246) as well as in the labeling with KaKc shown in Eq. (3.247). Let us
then examine how this classification into four groups by the parity combinations
of KaKc is reflected in the symmetry of the wave functions for an asymmetric top
molecule.

We will first consider a C2 rotation, or a rotation by 180 degrees, of an asym-
metric top molecule around the a axis, which is one of the three principal axes of
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Table 3.2 Rotational level
energies for an asymmetric
top molecule

JKaKc E(JKaKc )/h

000 0

110 A + B

111 A + C

101 B + C

220 2A + 2B + 2C + 2
√

(B − C)2 + (A − C)(A − B)

221 4A + B + C

211 A + 4B + C

212 A + B + 4C

202 2A + 2B + 2C − 2
√

(B − C)2 + (A − C)(A − B)

330 5A + 5B + 2C + 2
√

4(A − B)2 + (A − C)(B − C)

331 5A + 2B + 5C + 2
√

4(A − C)2 − (A − B)(B − C)

321 2A + 5B + 5C + 2
√

4(B − C)2 + (A − B)(A − C)

322 4A + 4B + 4C

312 5A + 5B + 2C − 2
√

4(A − B)2 + (A − C)(B − C)

313 5A + 2B + 5C − 2
√

4(A − C)2 − (A − B)(B − C)

303 2A + 5B + 5C − 2
√

4(B − C)2 + (A − B)(A − C)

the molecule. When this rotation occurs, the molecule-fixed rotational angular mo-
menta are transformed as Ja → Ja , Jb → −Jb , and Jc → −Jc. Note here that the
signs of two of the rotational angular momenta have been reversed. The rotational
Hamiltonian, on the other hand, as expressed by Eq. (3.147), stays constant dur-
ing this symmetry operation. The same applies when the C2 rotation is performed
around the b axis or the c axis. Therefore, we will now write the three types of sym-
metry operations where a molecule is rotated by 180° = 2π

2 radians around the a, b,
and c axes as Ca

2 , Cb
2 , and Cc

2, and examine how the rotational wave functions are
transformed by these three operations.

First, let us consider the operation Cc
n, whereby the rotational wave functions of a

symmetric top molecule is affected by a rotation of 2π
n

around the c axis. As shown
in Eq. (3.181), the wave functions of a symmetric top molecule are given as

|J,K,M〉 = NJKMΘJKM(θ)eiKγ eiMφ (3.248)

and therefore the Cc
n rotation is represented as γ → γ + 2π

n
, which gives us

Cc
n|J,K,M〉 = NJKMΘJKM(θ)eiK(γ+ 2π

n
)eiMφ

= (
ei 2π

n
)K |J,K,M〉

= εK
n |J,K,M〉, (3.249)

where εn is defined as εn = ei 2π
n . This can then be re-written as

Cc
n|J,KC,M〉 = εKC

n |J,KC,M〉. (3.250)
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Table 3.3 A character table
for the D2 point group
(symmetry group V )

E Ca
2 Cb

2 Cc
2 KaKc

A 1 1 1 1 ee

Ba 1 1 −1 −1 eo

Bb 1 −1 1 −1 oo

Bc 1 −1 −1 1 oe

We can also see that, by replacing the c axis with the a axis,

Ca
n |J,KA,M〉 = εKA

n |J,KA,M〉 (3.251)

will be readily obtained.
For the case where n = 2, which is the case of a C2 rotation, we obtain

ε2 = eiπ = cosπ + i sinπ = −1.

Therefore, we can derive

Cc
2|J,KC,M〉 = (−1)KC |J,KC,M〉, (3.252)

Ca
2 |J,KA,M〉 = (−1)KA |J,KA,M〉. (3.253)

We can see that the rotational wave function JKaKc of an asymmetric top
molecule, too, can be transformed by the Cc

2 and Ca
2 operations as, respectively,

Cc
2|J,Ka,Kc〉 = (−1)Kc |J,Ka,Kc〉, (3.254)

Ca
2 |J,Ka,Kc〉 = (−1)Ka |J,Ka,Kc〉. (3.255)

In operating Ca
2 , for example, the wave function does not change its sign if Ka is

even, and it does if Ka is odd. Furthermore, as

Cb
2 = Cc

2C
a
2 (3.256)

stands, the rotational wave function |J,Ka,Kc〉 can be transformed by Cb
2 as

Cb
2 |J,Ka,Kc〉 = (−1)Ka+Kc |J,Ka,Kc〉. (3.257)

The results of these rotational operations are summarized in Table 3.3 in the form
of a character table, which indicates whether the signs of the wave functions with
the parities of ee, eo, oo, and oe are changed or not upon the operations Ca

2 , Cb
2 ,

and Cc
2. In this table, “1” stands for the sign remaining the same, and “−1” for

the sign being changed. The operation E represents the identity operation, whereby
nothing is changed.

Generally speaking, the symmetry of a molecule is classified using a type of
groups called point groups. Table 3.3 is a character table for the D2 point group,
which characterizes the symmetry of the rotational Hamiltonian of an asymmetric
top molecule. This group has four symmetry species, A, Ba , Bb , and Bc , and as
shown in this character table, ee levels are classified into the A symmetry species,
eo levels into the Ba symmetry species, oo levels into the Bb symmetry species,
and oe levels into the Bc symmetry species. This signifies that even for molecules
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with low symmetry, such as those belonging to the C2 point group or to the C1 point
group, we can classify the symmetry of their rotational wave functions into one of
these four symmetry species shown for the D2 point group. This point group is also
called the symmetry group V . In the case of J = 2, which we looked at earlier, the
five rotational levels that have been derived, 220, 221, 211, 212, and 201, are classified
into the A, Ba , Bb , Bc , and A symmetry species, respectively.

3.5 Determination of Molecular Structures
Based on Rotational Spectra

In Sect. 3.4, we have learned that the energy levels of symmetric top molecules and
asymmetric top molecules can be written using rotational constants. This means
that, if we can find out the energy spacing between two energy levels, we can obtain
the rotational constant, which in turn gives us the moment of inertia. As explained in
Sect. 3.1 during our discussion of diatomic and linear molecules, we can determine
the molecular structure when the moment of inertia is given. In this section we will
determine the molecular structures of symmetric top molecules and asymmetric top
molecules from the analysis of the rotational spectra.

3.5.1 Molecular Structures of Symmetric Top Molecules

Let us take the example of a tetra-atomic molecule of the XY3 type. Molecules
such as NH3, PH3, NF3 fall under this category. Arranging the atoms as shown in
Fig. 3.18, we represent the distance between X and Y as ‘r’ and the bond angle
∠Y –X–Y as ‘θ ’. If we assume this molecule to be an oblate symmetric top and
take the C3 axis as the c axis, the moment of inertia around the two axes of inertia
perpendicular to the c axis (the a axis and the b axis), IB (=IA), can be described
by r and θ as

IB = 2mY r2 sin2 θ

2
+ mXmY

M
r2

(
3 − 4 sin2 θ

2

)
, (3.258)

where mX and mY are the masses of atoms X and Y , respectively, and M represents
the mass of the whole molecule,

M = mX + 3mY . (3.259)

Similarly, the moment of inertia around the c axis, IC , can be written as

IC = 4mY r2 sin2 θ

2
. (3.260)

By converting the moments of inertia IB and IC into rotational constants B and C

using the definitions given in Eq. (3.143), we can derive the rotational energy EJK

from Eq. (3.195).
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Fig. 3.18 Molecular
structure of an XY3-type
oblate symmetric top
molecule

Table 3.4 Frequencies of
rotational transitions for
14NF3 and 15NF3

Transition Transition
frequency/MHz

B/MHz

14NF3

J = 1 ← 0

⎧
⎪⎨

⎪⎩

F = 1 ← 1

2 ← 1

0 ← 1

21360.34

10681.0921362.60

21365.60

15NF3

J = 1 ← 0 21258.92 10629.46

In the case of 14NF3 molecules, the transition in the microwave region from
the J = 0, K = 0 level to the J = 1, K = 0 level is observed as shown in the
upper column of Table 3.4. With 14NF3 molecules, the rotational energy level of
J = 1 splits slightly into three different levels because of an interaction called the
nuclear quadrupole interaction, which causes the transition from J = 0 to J = 1 to
be observed as three adjacent transitions, as shown in the table.

A detailed explanation of the nuclear quadrupole interaction is beyond the scope
of this textbook, but to put it briefly, this is the interaction between the nuclear
quadrupole moment of the nitrogen atom nucleus and the electric field gradient at
the nuclear position. This interaction only appears when the nuclear spin I satisfies
I � 1. In such cases, the energy level is labeled by the quantum number F for the
total angular momentum F , which is a sum of the angular momentum J of the
molecular rotation and the angular momentum I of the nuclear spin of the nitrogen
nucleus. As each level has a degeneracy of 2F + 1, if we take there to be no nuclear
quadrupole interaction then the transition frequency for J = 1 ← J = 0 is given
by the weighted average of the transition frequency for F = 2 ← 1, F = 1 ← 1
and F = 0 ← 1, where the weighting factor is 5 : 3 : 1. This can be calculated as
ν̄ = 21362.18 MHz.
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It is known that the selection rule for the rotational transition of a symmetric top
molecule is written as

	J = 0,±1, 	K = 0. (3.261)

Here, 	J and 	K can be written as 	J = J ′ −J ′′, 	K = K ′ −K ′′, and they stand
for the changes in J and K accompanying the transition from a lower energy level
with the rotational quantum numbers J ′′ and K ′′ to a higher energy level with the
rotational quantum numbers J ′ and K ′. As seen here, it is conventional in molecular
spectroscopy to express a pair of levels related by a transition with a double prime
(′′) marking the quantum number for the lower energy level and a prime (′) marking
the quantum number for the higher energy level.

Of the two rules in Eq. (3.261), we can easily understand the selection rule
	K = 0. The dipole moment vector μ of a symmetric top molecule points in the
direction of the a axis if it is a prolate symmetric top molecule, or in the direction
of the c axis if it is an oblate symmetric top molecule. Thus it is not affected by the
rotation around its axis by the Euler angle γ . On the other hand, K is the projection
of the angular momentum on this molecular axis, and appears as a part of eiKγ in the
wave function. Therefore, of the matrix element representing the dipole transition
in Eq. (2.87), Chap. 2, the part that is dependent on γ will be

∫ 2π

0 e−iK ′γ eiK ′′γ dγ .
This integral has a non-zero value only when 	K = K ′ − K ′′ = 0. It is thus shown
that the selection rule 	K = 0 stands.

Using Eq. (3.195) to calculate ν, the frequency of the microwave absorbed by the
transition, we obtain

hν = EJ ′K ′ − EJ ′′K ′′

= hBJ ′(J ′ + 1
) − hBJ ′′(J ′′ + 1

)
(3.262)

from K ′ = K ′′. This demonstrates that the selection rule 	K = 0 allows us to
determine the rotational constant B from observation results, but not the rota-
tional constant C. As J ′′ = 0, J ′ = 1 in this example, Eq. (3.262) can be rewrit-
ten here as hν = E10 − E00 = 2hB , which gives us the rotational constant as
B(14NF3) = 10681.09 MHz when we apply the ν̄ obtained as the weighted aver-
age.

However, as shown in Eq. (3.258), being given the rotational constant B , and
thus IB , is not sufficient for us to determine both r and θ independently. Therefore,
let us now consider using the isotope substitution method adopted to determine the
molecular structure of OCS in Sect. 3.1.3.

As shown in the lower column of Table 3.4, in the case of 15NF3 the transition
of J = 1 ← J = 0 is observed. Despite also having a nitrogen nucleus, here the
molecule does not exhibit the type of split observed in 14NF3, because with 15N
the nuclear spin is I = 1

2 and this precludes the nuclear quadrupole interaction.
Therefore, the rotational constant B is straightforwardly obtained as B(15NF3) =
10629.46 MHz.

By using these two rotational constants, we can derive two independent formu-
las corresponding to Eq. (3.258). If we define a and b as a = r2 and b = r2 sin2 θ

2 ,
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Table 3.5 Frequencies of
rotational transitions for SO2
in the ν2 = 1 state

J ′
K ′

aK ′
c
–J ′′

K ′′
a K ′′

c
Transition frequencies/MHz

111–000 70735.92

111–202 13457.92

211–202 54739.49

404–313 28138.55

413–404 60498.77

the two formulas can be seen as a set of simultaneous linear equations about a

and b. We can solve this equation by the use of m(F) = 18.998405 amu, m(14N) =
14.003074 amu, and m(15N) = 15.000108 amu, to obtain the parameters repre-
senting the molecular structure, or the structural parameters, as r = 1.3711 Å and
θ = 102.16°.

Problem 3.13
The rotational constant of an ammonia molecule at its vibrational ground state is
given as

298115.37 MHz for 14NH3,

297388.12 MHz for 15NH3.

Determine the internuclear distance between the N atom and an H atom of an
ammonia molecule, r(N–H), and the bond angle θ = ∠H–N–H, using m(H) =
1.007825 amu.

Solution
As in the case of NF3, we can solve the simultaneous linear equations and obtain
the structural parameters r = 1.0156 Å and θ = 107.28°. �

3.5.2 Determining the Rotational Constants
of Asymmetric Top Molecules

Taking SO2 as an example of an asymmetric top molecule, we will determine its
rotational constant from the rotational spectrum. When we measure the rotational
spectrum of the vibrationally excited state (v2 = 1) of the bending mode (ν2), the
transition frequencies are obtained as shown in Table 3.5. Three of these transitions
are shown in Fig. 3.19 with their rotational energy levels.

From the transition frequencies observed here and the rotational level energies
expressed with rotational constants A, B , and C (listed in Table 3.2), we can obtain
the three relations

A + C = 70735.92 MHz, (3.263)
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Fig. 3.19 Rotational levels
and rotational transitions of
SO2

A + C − {
2(A + B + C) − 2

√
Q

} = 13457.92 MHz, (3.264)

A + 4B + C − {
2(A + B + C) − 2

√
Q

} = 54739.49 MHz, (3.265)

where

Q = (B − C)2 + (A − C)(A − B). (3.266)

With three unknown values, A, B , and C, appearing in these three independent
formulas, we are able to determine A, B , and C. Solving these linear equations we
immediately obtain B = 10320.39 MHz and

√
Q = 52417.31 MHz. When A > C,

A = A + C

2
+

√
1

3

{
Q −

(
B − A + C

2

)2}
(3.267)

always holds, so by substituting B and Q into this equation we can derive

A = 61952.38 MHz,

C = 8783.54 MHz.

In actuality, we utilize not only the rotational transitions as has been used here
but also transition frequencies between levels with larger J values, and calculate the
rotational constants A, B , and C by the method of least-squares. However, when
using transitions between high-energy levels for analysis, we must account for the
effect of centrifugal force operating on the molecule and causing it to deviate from
the rigid rotor, by including the centrifugal distortion terms in the rotational Hamil-
tonian in addition to the part describing a rigid rotor.

The rotational constants of the v2 = 1 state of SO2, calculated with this method
of least squares, are reported to be A = 61954.69 MHz, B = 10320.28 MHz, and
C = 8783.96 MHz. We can confirm that the rotational constants calculated earlier
using only three transitions are in good agreement with these literature values.

Problem 3.14
Methylhydrazine, CH3NHNH2, is known to have two rotational isomers called
the inner form and the outer form. Their geometrical structures are shown in
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Fig. 3.20 Two rotational isomers of methylhydrazine

Table 3.6 Rotational
transitions of the inner-form
rotational isomer of
methylhydrazine

aThe rotational transitions
exhibit a hyperfine structure
associated with the small
energy splitting of the
rotational levels induced by
the nuclear quadrupole
couplings originating from
two nitrogen nuclei, but only
the central frequencies of the
rotational transitions are
listed in the table

Transitions Transition
frequencies/MHza

a-type

101–000 18221.65

202–101 36406.72

211–110 37600.94

212–111 35285.61

b-type

111–000 45235.93

303–212 28625.69

c-type

111–101 27014.22

212–202 25893.04

313–303 24279.69

Figs. 3.20(b) and 3.20(c) as the Newman projections along the N–N bond axis
whose direction is represented by the arrow in Fig. 3.20(a). Rotational transition
frequencies of the inner rotational isomer at its vibrational ground state have been
obtained as shown in Table 3.6. Calculate the rotational constants A, B , and C.

Solution
Rotational isomers are isomers that can interchange each other with internal rotation
around the N–N single bond. From Table 3.6, we can use the transitions 101–000,
211–110, and 111–000 to write

B + C = 18221.65 MHz,

3B + C = 37600.94 MHz,

A + C = 45235.93 MHz.
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These equations allow us to calculate the rotational constants as A = 36703.9
MHz, B = 9689.6 MHz, and C = 8532.0 MHz. Rotational constants can also be
derived from transitions other than these three. �

Let us now turn to an explanation of the a-type, b-type, and c-type transitions
shown in Table 3.6. Paying attention to the parity of KaKc at the rotational level
JKaKc , we realize that the a-type transitions are transitions that occur between ee

and eo or between oo and oe. Similarly, the b-type transitions occur between oo and
ee or between oe and eo, and the c-type transitions between ee and oe or between
eo and oo.

As Eq. (2.87) shows in Chap. 2, the probability of an optical transition is pro-
portional to the squared modulus of the matrix element wherein the dipole moment
vector is sandwiched between the wave functions of the upper-state and the lower-
state of the transitions. Therefore, the requirement for a transition to occur is that the
matrix element 〈J ′′

K ′′
a K ′′

c
|μ|J ′

K ′
aK ′

c
〉 not be 0 in the molecule-fixed coordinate system.

This means that

Γ (J ′′
K ′′

a K ′′
c
) ⊗ Γ (μ) ⊗ Γ (J ′

K ′
aK ′

c
) = A (totally symmetric species) (3.268)

is required, where Γ stands for a symmetry species listed in the character table for
the D2 point group given in Table 3.3.

Here, a product of symmetry species signifies the values on the character tables
of the two symmetry species being multiplied with each other. For example, the
symmetry species Ba has the character (1 1 −1 −1), whereas Bb has (1 −1 1 −1),
as shown in Table 3.3. To obtain the symmetry species Ba ⊗ Bb , we multiply the
corresponding four sets of characters, which gives us (1 −1 −1 1). According to
Table 3.3, this character is that of the symmetry species Bc . This relationship is
represented as Ba ⊗ Bb = Bc .

The wave function takes the form of one of the symmetry species, A, Ba , Bb ,
or Bc , in accordance with the parity of KaKc . We also note that, when we represent
μ by its components in the directions of the a, b, and c axes as (μa,μb,μc), we
can write Γ (μa) = Ba , Γ (μb) = Bb , and Γ (μc) = Bc . This is because, as μa for
instance is the component in the direction of the a axis, it does not change its sign
with the Ca

2 rotation (a 180° rotation around the a axis) but does change its sign with
the Cb

2 and Cc
2 rotations. Therefore, by searching out the combinations of symmetry

species satisfying the requirement of Eq. (3.268), we find the pairs of levels between
which transitions occur to be as shown in Table 3.7.

For example, with ee ↔ eo, we can write

Γ (ee) ⊗ Γ (μa) ⊗ Γ (eo) = A ⊗ Ba ⊗ Ba

= Ba ⊗ Ba

= A, (3.269)

which exhibits total symmetry and therefore shows us that an a-type transition is
allowed between these two levels, but we also obtain
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Table 3.7 Allowed
transitions for asymmetric top
molecules

a-type transition
μa 	= 0 ee ↔ eo oe ↔ oo

(Ba) (A) (Ba) (Bc) (Bb)

b-type transition
μb 	= 0 ee ↔ oo oe ↔ eo

(Bb) (A) (Bb) (Bc) (Ba)

c-type transition
μc 	= 0 ee ↔ oe eo ↔ oo

(Bc) (A) (Bc) (Ba) (Bb)

Fig. 3.21 Selection rules of
KaKc for the rotational
transition of an asymmetric
top molecule

Γ (ee) ⊗ Γ (μb) ⊗ Γ (eo) = A ⊗ Bb ⊗ Ba

= Bc, (3.270)

which demonstrates that a b-type transition does not occur.
The six possibilities for transitions listed in Table 3.7 can be schematized as

Fig. 3.21. In the case of methylhydrazine introduced in Problem 3.14, it is because
the symmetry is low and μa , μb , and μc all take a non-zero value that the a-, b-, and
c-type rotational transitions have all been observed. As in the case of symmetric top
molecules, the selection rule for 	J shown in Eq. (3.261), 	J = 0,±1, is satisfied.

In the case of the rotational transition of SO2 (illustrated in Table 3.5), on the
other hand, only the b-type transitions are observed. The reason for this is that the
symmetry of the SO2 molecule causes its dipole moment to point in the direction
of the b axis, as shown in Fig. 3.22, which only allows μb a non-zero value (i.e.,
μb 	= 0, μa = μb = 0). Incidentally, in the case of a nonpolar molecule, whose
dipole moment is 0, no transition occurs between different rotational levels of the
same vibrational state, because μa = μb = μc = 0.

3.5.3 Molecular Structures of Asymmetric Top Molecules

Still using SO2 as our example, we will now determine the molecular structure of
an asymmetric top molecule from the three rotational constants A, B , and C.
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Fig. 3.22 Molecular
structure of SO2

Table 3.8 Rotational constants of SO2 in the vibrational ground state and the vibrational excited
states

Vibrational ground state v1 = 1 v2 = 1 v3 = 1

A/MHz 60778.79 60809.84 61954.69 60158.77

B/MHz 10318.10 10267.96 10320.28 10283.25

C/MHz 8799.96 8757.13 8783.96 8767.08

Table 3.9 Rotational constants and moments of inertia for SO2

(a) Vibrational
ground state

A0 B0 C0

60778.79 10318.10 8799.96

IA IB IC 	I

8.3151 48.9799 57.4297 0.1347

(b) Equilibrium
structure

Ae Be Ce

60485.33 10359.51 8845.82

I e
A I e

B I e
C 	I

8.3554 48.7841 57.1320 −0.0075

From the observed rotational spectra of SO2 in its vibrational ground state and
its vibrationally excited states, the rotational constants are obtained as shown in
Table 3.8, following the same procedure as discussed in Sect. 3.5.2. As shown in
this table, the rotational constants vary slightly with different vibrational levels. This
is mainly due to the vibrational effects originating from harmonic vibration such as
those of the anharmonicity of vibration. As we are about to see, these variations can
be exploited to obtain the structure of the molecule at its equilibrium position, or
the equilibrium structure. According to Eq. (3.143), the rotational constants for the
vibrational ground state of SO2 can be converted into the moments of inertia IA, IB ,
and IC , as shown in Table 3.9(a).

When we express the molecular structure of SO2 by the principal inertial axis
system as shown in Fig. 3.22, the moments of inertia around the a axis and the b

axis, IA and IB , are represented as

IA = 2mOmS

M
r2 cos2 θ

2
, (3.271)
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Table 3.10 Molecular structure of SO2

(a) Vibrational
ground state

r/Å θ/deg (b) Equilibrium
structure

r/Å θ/deg

(IA, IB) 1.4322 119.53 (I e
A, I e

B) 1.4309 119.31

(IB, IC) 1.4351 119.13 (I e
B, I e

C) 1.4307 119.34

(IC, IA) 1.4336 119.60 (I e
C, I e

A) 1.4308 119.31

Average 1.4336 119.42 Average 1.4308 119.32

IB = 2mOr2 sin2 θ

2
, (3.272)

respectively. Here, r is the internuclear distance between the S atom and an O atom,
θ is the bond angle ∠O–S–O, mO and mS are the masses of an O atom and the S
atom, respectively, and M is the total mass of the molecule, 2mO +mS. We can also
easily show that

IC = 2mOmS

M
r2 cos2 θ

2
+ 2mOr2 sin2 θ

2
. (3.273)

From Eqs. (3.271) through (3.273), we can see that

Ic = IA + IB. (3.274)

Since IA, IB , and IC are given as above, we have sufficient information to de-
termine the necessary structural parameters. That is, as soon as two of these three
values are given, we can obtain r and θ from the relations (3.271) through (3.273).

Let us then first examine whether the three moments of inertia satisfy the relation
(3.274). When we define the inertial defect 	I as

	I = IC − IA − IB, (3.275)

Eq. (3.274) demands that 	I = 0. However, when we calculate from the observed
moments of inertia shown in Table 3.9(a), the 	I value for the vibrational ground

state becomes 	I = 0.1347 amu Å
2
, and not 0. It is known that in most cases with

planar molecules, that is, molecules whose component atoms all reside on the same
plane at the equilibrium position, the inertial defect does not become exactly 0 but
rather takes a very small positive value.

That the inertial defect does not become 0 signifies that different structural pa-
rameters are drawn from different pairs of IA, IB , and IC . Calculating the structural
parameters, then, for all three combinations, (IA, IB ), (IB , IC ), and (IC , IA), us-
ing Eqs. (3.271) through (3.273), we obtain the figures shown in Table 3.10. The
internuclear distance takes a value between r = 1.432 Å and r = 1.435 Å, with dif-
ference recognized at the third decimal place. The bond angle, on the other hand,
takes a value between θ = 119.1° and θ = 119.6°, and shows difference at the first
decimal place.

We can obtain the average of these parameters as r = 1.434 Å and θ = 119.4°,
but considering the high precision of the rotational constants derived from measured
spectra, we must be able to arrive at structural parameters of much higher precision.
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The reason why there is a slight variation in the structural parameters derived
from different pairs of moments of inertia is that there is a vibrational effect in the
rotational constant for the vibrational ground state, too, because of zero-point vi-
bration. Let us then remove the vibrational effect and calculate the three rotational
constants for the equilibrium position, on the basis of the vibrational level depen-
dence of rotational constants.

First, we will define the vibrational quantum number dependence of the rotational
constants as

Av = Ae −
3∑

i=1

αA
i

(
vi + 1

2

)
, (3.276)

Bv = Be −
3∑

i=1

αB
i

(
vi + 1

2

)
, (3.277)

Cv = Ce −
3∑

i=1

αC
i

(
vi + 1

2

)
, (3.278)

and use the quantum numbers v1, v2, and v3 of the ν1, ν2, and ν3 modes to ex-
pand the equations. Here, Av , Bv , and Cv are the rotational constants for the
v = (v1, v2, v3) level, whereas Ae, Be, and Ce are the rotational constants free from
vibrational effect in the equilibrium position; αA

i , αB
i , and αC

i are referred to as
vibration-rotation constants.

Problem 3.15
Calculate the rotational constants Ae, Be, and Ce for the equilibrium position, as
well as the vibration-rotation constants αA

i , αB
i , and αC

i (i = 1,2,3), by substitut-
ing the measured rotational constants shown in Table 3.8 into Eqs. (3.276) through
(3.278).

Solution
We will first consider Ae, αA

1 , αA
2 , and αA

3 . From Eq. (3.276), we can write

A(0, 0, 0) = Ae −
(

1

2
αA

1 + 1

2
αA

2 + 1

2
αA

3

)
, (3.279a)

A(1, 0, 0) = Ae −
(

3

2
αA

1 + 1

2
αA

2 + 1

2
αA

3

)
, (3.279b)

A(0, 1, 0) = Ae −
(

1

2
αA

1 + 3

2
αA

2 + 1

2
αA

3

)
, (3.279c)

A(0, 0, 1) = Ae −
(

1

2
αA

1 + 1

2
αA

2 + 3

2
αA

3

)
, (3.279d)

which allows us to derive

A(0, 0, 0) − A(1, 0, 0) = αA
1 (3.280a)
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Table 3.11
Vibration-rotation constants
for SO2

i αA
i /MHz αB

i /MHz αC
i /MHz

1 −31.05 50.14 42.83

2 −1175.90 −2.18 16.00

3 620.02 34.85 32.88

by subtracting Eq. (3.279b) from Eq. (3.279a), and similarly

A(0, 0, 0) − A(0, 1, 0) = αA
2 , (3.280b)

A(0, 0, 0) − A(0, 0, 1) = αA
3 . (3.280c)

Therefore, substituting the rotational constants in Table 3.8 into these equations, we
obtain

αA
1 = −31.05 MHz, αA

2 = −1175.90 MHz, αA
3 = 620.02 MHz,

which in turn can be substituted into Eq. (3.279a) to give us

Ae = 60485.325 MHz.

By similar procedures, we can calculate αB
i , Be, αC

i , and Ce. The rotational con-
stants and the vibration-rotation constants are shown in Tables 3.9(b) and 3.11, re-
spectively. �

Translating the obtained values for Ae, Be, and Ce into moments of inertia, we
can calculate I e

A, I e
B , and I e

C as shown in Table 3.9(b). When we use these figures

to calculate the inertial defect, we arrive at 	I e = −0.0075 amu Å
2
, whose abso-

lute value is less than 6 % of the inertial defect for the vibrational ground state as
calculated before. The structural parameter obtained for each of the combinations
(I e

A, I e
B), (I e

B, I e
C), and (I e

C, I e
A), becomes close enough to the average,

r = 1.4308 Å, θ = 119.32°,

that the difference is only recognized at the fourth and second decimal places, re-
spectively. Thus, these average values can be taken as the molecular structure at the
equilibrium position. Equilibrium structures obtained thus by offsetting the effect
of the interaction between molecular vibration and rotation are called re structures.
For instance, the re structure of SO2 at the electronic ground state is written as
re = 1.4308 Å and θe = 119.32°. In contrast, a structure obtained from rotational
constants for the vibrational ground state is called a r0 structure.

As shown above, the value of inertial defect 	I does not become exactly 0 even
when we offset the effect of molecular vibration by applying Eqs. (3.276) through
(3.278). This is because the inertial defect 	I consists of three components origi-
nating from different interactions, and can be represented as

	I = 	Ivib + 	Icent + 	Ielec. (3.281)

Of these three components, 	Ivib has the largest value; it is the contribution of the
vibration-rotation interaction (the Coriolis interaction), and can be estimated as long
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as the harmonic part of the vibrational potential is known. 	Icent is the contribution
of centrifugal distortion, and 	Ielec is the contribution of the interaction between
intramolecular electrons and the rotation of the molecule. In the analysis above, the
term 	Ivib is corrected to become 0 during the procedure for obtaining Ae, Be,
and Ce. Consequently, we can think of 	I as representing the slight contribution of
the two components which remain uncorrected, that is, 	Icent + 	Ielec.

In the case of methylhydrazine, which we focused on in Problem 3.14, there are
many structural parameters that need to be specified in order to determine the full
geometrical structure of the molecule. This is because the positions of the six hydro-
gen atoms must be specified, in addition to the internuclear distances for N–N and
C–N, as well as the bond angle ∠N–N–C. This makes it impossible to determine
the full molecular structure from the three rotational constants alone. Thus, in such
cases, various types of approaches are taken to obtain the molecular structure with
as high a precision as possible, such as employing the isotope substitution method or
using the information on internuclear distances obtained by the gas electron diffrac-
tion method (to be discussed in the next chapter). Another approach is to reduce
the number of structural parameters by assuming the bond lengths of all three C–H
bonds in the methyl group to be equal. In yet another approach, we can obtain the
theoretical equilibrium structure by using an ab initio molecular orbital calculation
with a high reliability, and use its structural parameters as supplementary data in
determining the other structural parameters from experimental data.

3.6 Rotating and Vibrating Molecules

In the previous section, we have determined rotational constants for each vibrational
state by observing transitions between different rotational levels within the same
vibrational state. However, information about rotational level energies can also be
obtained from transitions between different vibrational levels, which are observed
mainly in the IR region, as well as from transitions between different electronic
states, which are observed mainly in the visible and UV regions. For example, the IR
emission spectrum introduced in Fig. 1.7(a), Chap. 1, is composed of the observed
transitions between rotational levels which belong to different vibrational states of
CO2.

In this section, we will examine molecular rotations in vibrationally excited states
and electronically excited states by analyzing rotational structures observed in tran-
sitions between vibrational states in the same electronic state and those observed in
transitions between vibrational states in two different electronic states.

3.6.1 Rotational Structures of Vibrational Transitions

An observation of the absorption spectrum of CO in the IR region from the vibra-
tional ground state (v = 0) to the second excited state (v = 2) revealed a fine comb-
like structure as shown in Fig. 3.23. This v = 2 ← 0 transition, called “overtone
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Fig. 3.23 An overtone (v = 2 ← 0) absorption spectrum of CO

Fig. 3.24 Vibrational and
rotational transitions of CO

absorption,” is induced by the anharmonicity of molecular vibrations, as shown in
Sect. 2.3.4. Worthy of note here is the comb-like structure that has appeared owing
to the high resolution of the spectrum. Each of these transitions can be attributed as
the transition from one rotational level in the v = 0 state to one in the v = 2 state.

The situation can be schematized as in Fig. 3.24; the spectrum is constructed of
the R-branch, which spreads in the higher energy region according to the selection
rule 	J = J ′ − J ′′ = 1, and the P-branch, which spreads in the lower energy region
according to the selection rule 	J = −1. A number in parentheses, such as the 0
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and 1 in R(0) and P(1), represents the rotational quantum number J ′′ of the lower
level of the transition.

Such transitions between rotational levels found in a vibrational spectrum are
called its rotational structure. In this case, the selection rule is described as 	J =
±1. The transitions that are not observed, such as 	J = 0 (Q-branch), 	J = +2 (S-
branch), and 	J = −2 (O-branch), are called the forbidden transitions. The energy
interval between J ′′ = 0 and J ′ = 0 is called the band center, or the energy of the
band origin, and it is represented as ν̃0.

Taking a close look at Fig. 3.23 we realize that, in the case of the R-branch, as
J ′′ becomes larger, the spacing in the comb-like peaks becomes gradually narrower
toward the high-energy side, whereas in the case of the P-branch, as J ′′ becomes
larger the spacing in the comb-like peaks becomes gradually wider toward the low-
energy side. This phenomenon can be explained as follows.

The R(J ) transition is the transition from J ′′ = J to J ′ = J + 1, and its wave
number is calculated as

ν̃
[
R(J )

] = ν̃0 + B ′(J + 1)(J + 2) − B ′′J (J + 1)

= ν̃0 + (
B ′ − B ′′)J (J + 1) + 2B ′(J + 1), (3.282)

where the rotational constant is expressed in terms of cm−1. Similarly, the wave
number of the P(J ) transition is written as

ν̃
[
P(J )

] = ν̃0 + (
B ′ − B ′′)J (J + 1) − 2B ′J. (3.283)

The rotational constant B ′ in a vibrationally excited state is slightly smaller than
B ′′ because of the anharmonicity of vibration. Therefore, B ′ − B ′′ is a negative
value, if only a small one, and the amount of increases in ν̃[R(J )] steadily grows
smaller as J increases. As for ν̃[P(J )], on the other hand, its amount of decreases
steadily grows larger as J increases. In other words, the relationship B ′ < B ′′ makes
the P-branch and the R-branch asymmetrical.

From this vibration-rotation spectrum, we can readily obtain the rotational con-
stants B ′ and B ′′. For instance, since R(0) and P(2) have the common upper level
J ′ = 1, it is clear from Fig. 3.24 that

ν̃
[
R(0)

] − ν̃
[
P(2)

] = 6B ′′. (3.284)

Similarly, as R(1) and P(1) have the common lower level J ′′ = 1, we can write

ν̃
[
R(1)

] − ν̃
[
P(1)

] = 6B ′. (3.285)

Thus, we can calculate B ′′ and B ′ from the observed transition wave numbers using
Eqs. (3.284) and (3.285). Such a method of obtaining the energy difference between
two levels by use of two transition energies sharing the same level is called the
combination difference method.

Of the overtone vibration-rotation transitions shown in Fig. 3.24, the wave num-
bers of the six transitions closest to the band origin are listed in Table 3.12, with the
wave numbers of the vibration-rotation transition for the fundamental (v = 1 ← 0)

provided as well.
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Table 3.12
Vibration-rotation transitions
of CO

Note: ν̃0 represents a wave
number of the rotational band
origin

Assignment Transition wave numbers/cm−1

v = 1 ← 0 v = 2 ← 0

R(2) 2154.5960 4271.1770

R(1) 2150.8564 4267.5425

R(0) 2147.0816 4263.8376

P (1) 2139.4265 4256.2176

P (2) 2135.5466 4252.3026

P (3) 2131.6320 4248.3180

ν̃0 2143.2715 4260.0626

In the case of linear molecules, when vibration excitation by IR absorption is
induced by a transition moment perpendicular to the molecular axis, we can observe
the Q-branch (	J = 0) in addition to the P-branch (	J = −1) and the R-branch
(	J = 1). For example, the broad emission-type peak observed at 667 cm−1 and
the absorption-type peaks observed at 618 cm−1 and 721 cm−1 in the IR spectrum
of CO2 shown in Fig. 1.7(a), Chap. 1, correspond to the portions where Q-branch
transitions are densely located.

Problem 3.16
Using the transition wave number listed in Table 3.12, calculate the rotational con-
stants B0, B1, and B2, of the three vibrational levels of CO, v = 0, 1, 2, respectively.
Also calculate the wave numbers of the band origins for the two vibration-rotation
transitions, v = 1 ← 0 and v = 2 ← 0.

Solution
From the transition v = 1 ← 0, we can determine B0 and B1 in the following man-
ner:

ν̃
[
R(0)

] − ν̃
[
P(2)

] = 2147.0816 − 2135.5466

= 11.5350 cm−1,

which is equal to 6B0 so that B0 = 1.92250 cm−1, and

ν̃
[
R(1)

] − ν̃
[
P(1)

] = 2150.8564 − 2139.4265

= 11.4299 cm−1,

which is equal to 6B1 so that B1 = 1.90498 cm−1.
Similarly, from the transition v = 2 ← 0, we can determine B0 and B2 as

B0 = 1

6

{
ν̃

[
R(0)

] − ν̃
[
P(2)

]} = 1.92250 cm−1,

B2 = 1

6

{
ν̃

[
R(1)

] − ν̃
[
P(1)

]} = 1.88748 cm−1.
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Thus the three rotational constants are determined as B0 = 1.9225 cm−1, B1 =
1.9050 cm−1, and B2 = 1.8875 cm−1.

Next, the wave number of the band origin of the transition v = 1 ← 0, ν̃0(1 ← 0),
is calculated as

ν̃0(1 ← 0) = ν̃
[
P(1)

] + 2B0

= 2143.2715 cm−1.

Similarly, the wave number of the band origin of the transition v = 2 ← 0, ν̃0(2 ←
0), is calculated as

ν̃0(2 ← 0) = ν̃
[
P(1)

] + 2B0

= 4260.0626 cm−1.

The wave numbers of these band origins can be immediately equated with the energy
values of levels v = 1 and v = 2 as measured from J ′′ = 0 in the vibrational ground
state. In other words, these wave numbers can be regarded as term values. �

Problem 3.17
Using the solution to Problem 3.16, answer the following questions.

(1) Using the obtained rotational constants B0, B1, and B2, determine the equilib-
rium internuclear distance re of CO.

(2) Using the wave numbers of band origins, determine the Morse potential param-
eters, ωe and ωexe, of CO.

(3) Using ωe and ωexe, predict the dissociation energy D0 and compare the result
with the observed value, D0 = 11.09 eV.

Solution

(1) For a diatomic molecule, too, the vibrational dependence of the rotational con-
stant Bv can be described by the vibration-rotation constant αe as has been
shown in Eq. (3.277). That is, using the equilibrium rotational constant Be, Bv

can be expressed as

Bv = Be − αe

(
v + 1

2

)
. (3.286)

Therefore, αe = 0.01752 cm−1 can be derived from B0 and B1, and αe =
0.01750 cm−1 from B1 and B2. As these two numerical values are mostly in
agreement, we can conclude that Eq. (3.286) is valid. Adopting the mean value
αe = 0.01751 cm−1 for αe, Be is calculated as Be = 1.9313 cm−1. We can
convert this figure into a moment of inertia to determine the equilibrium inter-
nuclear distance as re = 1.1283 Å, by applying the formula I = μr2

e .
(2) Using Eq. (2.174), which has been introduced in Sect. 2.3.8, we can derive

ν̃0(1 ← 0) = E1 − E0 = ωe − 2ωexe,

ν̃0(2 ← 0) = E2 − E0 = 2ωe − 6ωexe.
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By substituting the values of the band origins into these equations, the Morse
parameters can be determined as

ωe = 2169.752 cm−1,

ωexe = 13.240 cm−1.

(3) From Eq. (2.177), De = 88893.95 cm−1. From Eq. (2.173), D0 = De − ωe
2 +

ωexe
4 = 87812.384 cm−1, which can be converted into the eV unit as D0 =

10.89 eV. This is in good agreement with the observed value. Therefore, we
can conclude that the Morse potential is a good approximation of the inter-
atomic potential of CO.

Incidentally, as B0 is the expectation value of B = h

8π2μr2 at v = 0, B0 can
be written as

B0 = h

8π2μ
〈ψ0| 1

r2
|ψ0〉. (3.287)

�

3.6.2 Rotational Structures of Electronic Transitions

As has been introduced in the first chapter, the electronically excited state of a
molecule also contains different vibrational levels, each of which, in turn, contains
different rotational levels. When a molecule absorbs visible or ultraviolet light and
is excited to their electronically excited state, a transition occurs in most cases to
both the vibrationally and rotationally excited states. To take an example, Fig. 3.25
shows the rotational structure observed when SO2 is excited from the vibrational
ground state in the electronic ground state (which is called the X̃ state) to the vibra-
tional level (v1, v2, v3) = (1,3,0) in the electronically excited state (which is called
the C̃ state).

Converting the wave number of this spectral region into a wavelength, it cor-
responds to approximately 224 nm, which is in the UV wavelength region. From
the assignment of the rotational transitions shown in the figure in the form of
J ′

K ′
aK ′

c
− J ′′

K ′′
a K ′′

c
, we can confirm that the selection rule 	J = 0,±1 is satisfied.

Furthermore, when we focus on the parity of KaKc , we realize that only the a-type
transitions, which have the form eo ↔ ee or oe ↔ oo, are observed. This means
that the dipole moment of the electronic transition is pointing in the direction of the
a axis. Of the observed transitions between different rotational levels, the ones with
low J values are listed in Table 3.13.

As shown in Table 3.9(a), the rotational constants A′′, B ′′, and C′′ for the vibra-
tional ground state in the electronic ground state X̃, that is, (v1, v2, v3) = (0,0,0),
have already been determined from the rotational spectra in the microwave region.
Therefore, using the transition wave numbers given in Table 3.13, we can determine
the rotational constants A′, B ′, and C′ for C̃(1,3,0) and the wave number of the
band origin ν̃0.
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Fig. 3.25 The rotational structure of the C̃(1,3,0) − X̃(0,0,0) transitions for SO2

Table 3.13 The rotational
structure of the
C̃(1,3,0)–X̃(0,0,0)

transition for SO2

Assignment Transition wave numbers/cm−1

J ′
K ′

aK ′
c
–J ′′

K ′′
a K ′′

c

303–202 44659.542

312–211 44658.871

101–000 44658.388

212–111 44658.097

110–111 44656.998

212–211 44656.721

101–202 44656.470

110–211 44655.624

212–313 44655.062

221–220 44654.468

Problem 3.18
Using the transition wave numbers listed in Table 3.13, determine the rotational
constants A′, B ′, and C′ for C̃(1,3,0) and the wave number of the band origin ν̃0.

Solution
Using the expressions given in Table 3.2, we will describe the transition wave num-
ber using the rotational constants and ν̃0. Averaging the value of C′ obtained from



3.6 Rotating and Vibrating Molecules 195

212 − 111 and 110 − 111 and that obtained from 212 − 211 and 110 − 211, we can take
C′ = 0.2745 cm−1. Similarly, we can obtain A′ = 1.207 cm−1 from 221 − 220 and
101 − 000, and B ′ = 0.3419 cm−1 from 312 − 211 and 212 − 211. The values of B ′
and C′ determined here, along with the transition wave number of 101 − 000, allow
us to calculate the wave number of the band origin as ν̃0 = 44657.77 cm−1. �

The vertical lines shown below the observed peaks in Fig. 3.25 are the calculated
spectra based on the rotational constants A′, B ′, and C′ obtained in Problem 3.18.
We can see that the calculated spectra successfully reproduce not only the transition
wave numbers but even the peak intensities.

By applying an analysis similar to that of Problem 3.18 to the rotational structure
of the C̃(0,0,0)−X̃(0,0,0) transition of SO2, the rotational constants for the vibra-
tional ground state v = (0,0,0) of the electronically excited state C̃ are calculated
as

A0 = 1.15053 cm−1, B0 = 0.34744 cm−1, C0 = 0.26543 cm−1.

Taking A0 and B0 from these rotational constants and calculating the internuclear
distance r between the S atom and the O atom, as well as the bond angle θ =
∠O–S–O in the same manner as in Sect. 3.5.3, the r0 structure is determined as
r = 1.560 Å and θ = 104.3°. When we compare these structural parameters with the
r0 structure of the electronic ground state X̃, which has previously been determined,
it becomes clear that the internuclear distance increases by 0.126 Å, and the bond
angle decreases by 15.1°, with the electronic excitation.

As shown here, we can determine the term values of different vibrational levels
and the rotational constants for the electronically excited state through the analysis
of rotational structures. Therefore, by measuring molecular spectra in visible and
UV regions with a sufficiently high energy resolution required to resolve rotational
structures, we can determine molecular structures and derive information on the
shapes of the potential energy surfaces in the electronically excited state.



Chapter 4
Scattering Electrons

One of the ways to determine the geometrical structure of gaseous molecules is
the gas electron diffraction method. In this method, highly accelerated electron
beams are shot into molecules. After colliding with the target molecules, the elec-
trons are scattered. Information on the distances between atoms in the molecules
is clearly imprinted in the spatial interference patterns of this scattered wave. This
phenomenon of electron scattering can also be described by quantum mechanics.
Therefore in this section, we will first learn the framework of quantum mechanics
for dealing with the scattering phenomenon. Then, after learning the mechanism
of electron scattering caused by atoms, we will discuss the case of electrons being
scattered by molecules and learn how molecular structures are reflected in the in-
terference patterns of scattered electrons, thereby reaching an understanding of the
method for determining molecular structures by the analysis of interference patterns.
In addition, we will learn the effect of molecular vibration on interference patterns,
and understand the difference between the molecular structure obtained from the
analysis of rotational structure in spectra introduced in the previous chapter and that
obtained from the gas electron diffraction method.

Summaries

4.1 Scattering Electron Waves
We will learn here that accelerated electron beams have the characteristics of a
wave, and that, when atoms or molecules are irradiated with an electron beam,
its scattering state can be described as the sum of the incident plane wave and
the scattering spherical wave. We will also discuss how to define scattering am-
plitudes, scattering differential cross sections, and scattering total cross sections,
using probability current densities.

4.2 Electron Scattering by Atoms
The Schrödinger equation for scattering electrons will be used to write the wave
function representing a scattering state. In addition, we will describe the scat-
tering amplitude of an electron being scattered by atoms according to the Born
approximation.

K. Yamanouchi, Quantum Mechanics of Molecular Structures,
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Fig. 4.1 Electron scattering
by an atom or a molecule

4.3 Electron Scattering by Molecules
We will look at electron scattering caused by diatomic molecules aligned in a
specific spatial direction and that caused by diatomic molecules taking random
orientations, so as to reach the understanding that the geometrical structures of
molecules and the degree of molecular alignment can be determined from the
interference patterns of scattered electrons.

4.4 Phase Shift of the Scattering Electron Wave
By solving the Schrödinger equation for scattering using the partial wave expan-
sion method, we will understand that when electrons are scattered by atoms the
scattered wave is drawn in by the atoms to cause a phase shift. From the behav-
ior of partial waves near the interaction region, we will derive the partial wave
expansion of the scattering amplitude, and see that the scattering amplitude of
electron scattered by atoms is written as a complex function.

4.5 The Effect of Molecular Vibration
As molecules vibrate, the distribution of internuclear distances has a width
called the mean amplitude, and the intensity of the interference pattern of an
electron beam scattered by the molecules decreases as the scattering angle in-
creases. We will also derive the mean amplitude of diatomic molecules and see
that this value increases as temperature rises.

4.6 Electron Beam Scattering by Polyatomic Molecules We will learn that the in-
terference terms of electron scattered by molecules are given as the molecular
scattering curve, and that the radial distribution curve is obtained by a Fourier
transform of the molecular scattering curve. Also by looking at the example of
the molecular scattering curve we will learn how internuclear distances are de-
termined from the molecular scattering curve, and understand the effects that
molecular vibration and phase shift have on molecular scattering curves. In ad-
dition, we will see that even in the case of relatively complex molecules with
rotational isomers, not only their geometrical structures but also the abundance
ratios of the isomers can be determined by using the gas electron diffraction
method.

4.1 Scattering Electron Waves

Let us consider a situation in which, as in Fig. 4.1, accelerated electrons travel along
the z axis and collide with atoms or molecules located at the origin, thereby being
scattered along the polar angle θ and azimuthal angle φ. Considering the interpreta-
tion of wave functions in terms of probability, when the wave function of an electron
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is represented as ψ(r, t), the scattering problem needs to be regarded as the question
of how the probability ρ(r, t), written as

ρ(r, t) ≡ ∣∣ψ(r, t)
∣∣2

, (4.1)

changes according to time.
As seen in Sect. 2.4, the time-dependent Schrödinger equation is represented as

i�
∂ψ

∂t
= − �

2

2me
∇2ψ + V ψ, (4.2)

where me is the mass of the electron. When we differentiate ρ(r, t) by t , we obtain

∂

∂t
ρ(r, t) = ∂

∂t

{
ψ∗(r, t)ψ(r, t)

}

= ∂ψ∗

∂t
ψ + ψ∗ ∂ψ

∂t
. (4.3)

Substituting Eq. (4.2) and its complex conjugate into Eq. (4.3), we can write

∂ρ

∂t
= 1

i�

(
�

2

2me
∇2ψ∗ − V ψ∗

)
ψ + 1

i�
ψ∗

(
− �

2

2me
∇2ψ + V ψ

)

= �

2mei

{(∇2ψ∗)
ψ − ψ∗(∇2ψ

)}

= �

2mei
∇ · {(∇ψ∗)

ψ − ψ∗(∇ψ
)}

, (4.4)

where ∇ψ is a vector quantity which can also be represented as gradψ , and is given
as

∇ψ =
(

∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z

)
. (4.5)

In general, for a vector a = (ax, ay, az), ∇ · a, which can also be represented as
diva, is given as

∇ · a = ∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z
.

Therefore, ∇ · (∇ψ) is written as

∇ · (∇ψ) = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
, (4.6)

and is equal to ∇2ψ . When we define a vector j , called the probability current
density, as

j = �

2mei

(
ψ∗∇ψ − ψ∇ψ∗)

, (4.7)
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Eq. (4.4) becomes

∂ρ

∂t
+ divj = 0. (4.8)

The probability current density is also simply called the current density or the
flux density. This is known as the equation of continuity and expresses the con-
servation of the probability, that is, this equation signifies that the probability with
which the number of electrons increases (or decreases) in a given region is equal
to the probability with which they enter (or exit) the region through the bound-
ary.

Next, when we consider an electron making free one-dimensional movements,
the wavelength λ describing the characteristics of the wave is related to p, the mo-
mentum of the electron as defined when seeing it as a particle, by the formula of
de Broglie, that is,

λ = h

p
= h

mev
. (4.9)

In experiments of gas electron diffraction, electrons are accelerated at the accel-
eration voltage of tens of kV. In this case, the kinetic energy acquired by an electron
when it is accelerated by the electric field generated at the voltage potential differ-
ence of V can be written as

1

2
mev

2 = eV, (4.10)

where e is the charge (the elementary charge) and v the velocity of the electron.
From the formula of de Broglie, the wavelength of the electron can be represented
as

λ = h

p
= h

mev
= h√

2meeV
. (4.11)

For example, when the acceleration voltage is 40 kV, we can use the values e =
1.602176462 × 10−19 C, me = 9.10938188 × 10−31 kg, and h = 6.62606876 ×
10−34 J s to arrive at λ = 0.06132 Å. Although, as will be discussed in Problem 4.1,
we will need to apply relativistic corrections if we are to obtain a more precise value
for the wavelength.

When we define a 3-dimensional wave vector k using the momentum vector p

as

k = p

�
, (4.12)

k can be written as

k = (kx, ky, kz) =
(

2π

λx

,
2π

λy

,
2π

λz

)
. (4.13)
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A plane wave with the constant wavelength λ which propagates along the k direction
is represented as

ψk = exp
{
i(k · r − ωt)

}

= eikxxeikyyeikzze−iωt . (4.14)

When the wave fronts lined up at the interval of the wavelength λ travel in the
direction of k, a given pair of adjacent wave fronts will cross the x axis, y axis, and
z axis each at two points separated by the distance of λx , λy and λz, respectively, as
shown in Fig. 4.2. When the direction of the vector k coincides with the z axis, we
can regard the three wavelengths as λx → ∞, λy → ∞, and λz → λ, and therefore
we can represent a plane wave propagating along the z axis as

ψz = exp
{
i(kz − ωt)

} = eikze−iωt . (4.15)

After being scattered by a target atom or molecule, on the other hand, the plane
wave of an electron is considered to expand spherically. Thus for an electron wave
propagating through a region whose distance from the target position, r , is suffi-
ciently large, where its movement is in the direction of polar angle θ and azimuthal
angle φ, the wavelength has to be the same as before, while the shape of the wave is
written as exp{i(kr −ωt)}. At the same time, however, the probability with which an
electron is found in the volume element r2 sin θ dr dθ dφ in polar coordinates needs
to be constant. This necessitates the square modulus of ψs, which is the wave func-
tion of the scattering wave, to decrease inversely proportional to r2 as r increases.
That is, the wave function of an electron scattered along the direction of θ , φ is
represented as that of a spherical wave which has the following shape:

ψs ∝ 1

r
exp

{
i(kr − ωt)

}
. (4.16)

Generally speaking, the intensity distribution of the scattering wave can be
thought to depend on the directions θ and φ, so the scattering amplitude depen-
dent on the directions θ and φ is expressed as f (θ,φ). When r is sufficiently large,
or r → ∞, the asymptotic form of this function can be written as

ψs ∼ f (θ,φ)

r
eikre−iωt . (4.17)

The function f (θ,φ) is called scattering amplitude, and has a dimension of length
as seen from Eq. (4.17).

From the above discussion, we see that the state in which an electron beam prop-
agating along the z axis is scattered and expanding as an outgoing spherical wave is
written as the sum of Eqs. (4.15) and (4.17), that is,

ψ ∼ eikz + f (θ,φ)

r
eikr . (4.18)
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Fig. 4.2 A plane wave with
the wave vector k

Fig. 4.3 The waves of an
electron beam in a scattering
state

In Eq. (4.18), however, the factor e−iωt is omitted. As is clear from the explana-
tions so far, the first term of this equation represents the component of the incident
plane wave advancing straight along one direction, and the second term represents
the component of the scattered spherical wave propagating outwards along the di-
rections appointed by θ and φ. An illustration is given in Fig. 4.3.

Let us now calculate the probability current densities of the two respective com-
ponents by following Eq. (4.7). First, by substituting eikz for ψ in Eq. (4.7), we
obtain the probability current density propagating along the z axis as

j z = �

2mei

{
e−ikz

(
0,0,

∂eikz

∂z

)
− eikz

(
0,0,

∂e−ikz

∂z

)}

= �

2mei
(2ik)ez

= �k

me
ez, (4.19)

where ez is the unit vector for the direction of the z axis, and can be expressed as
ez = (0,0,1). Next, by substituting the second term in Eq. (4.18) for ψ in Eq. (4.7),
we can calculate the probability current density propagating in the direction of r ,
which in turn is defined by θ and φ, as

j r = �

2mei

{
f ∗(θ,φ)

r
e−ikrer

∂

∂r

(
f (θ,φ)

r
eikr

)
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− f (θ,φ)

r
eikrer

∂

∂r

(
f ∗(θ,φ)

r
e−ikr

)}

= �k

me

|f (θ,φ)|2
r2

er , (4.20)

where er is the unit vector for the direction of r .
The ratio of the probability current density scattered into the differential solid

angle of the direction (θ,φ) plotted against the probability current density of the
incident wave, which propagates along the z axis, can be written as

dσ = |j r |
|j z|

r2 dΩ = |f (θ,φ)|2
r2

r2 dΩ

= ∣∣f (θ,φ)
∣∣2 dΩ. (4.21)

Thus,

dσ

dΩ
= ∣∣f (θ,φ)

∣∣2
, (4.22)

where f (θ,φ) has the dimension of the length and dσ
dΩ

has the dimension of the
cross-section. This is why dσ

dΩ
is known as a differential cross-section. The value

obtained by integrating the differential cross-section for the entire ranges of θ and φ,

σ =
∫

dσ

dΩ
dΩ =

∫ π

0

∫ 2π

0

∣∣f (θ,φ)
∣∣2 sin θ dθ dφ, (4.23)

expresses the ratio of the wave being scattered, and this is called the total cross-
section. One of the main themes for this chapter is to derive the scattering amplitude
f (θ,φ) for the process in which an electron beam is scattered after colliding with
either an atom or a molecule.

Problem 4.1
According to the theory of relativity, when me represents the stationary mass of
an electron, the mass of this electron moving at the velocity of v is expressed as

me√
1−β2

, where β = v
c

and c is the speed of light.

(1) Taking into account the theory of relativity, find the wavelength of an electron
accelerated by the accelerating voltage of V .

(2) Calculate the wavelength of the electrons accelerating at voltage 40 kV, com-
paring your result to the one obtained from the formula which does not account
for the relativistic corrections.

Solution

(1) The relativistic energy of the electrons before being accelerated is mec
2, and

that of the electron after being accelerated is mec
2√

1−β2
. As the amount of energy
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Fig. 4.4 Electron beam
scattering by an atom

given to the electron by the electric field is eV , we can write

mec
2

√
1 − β2

− mec
2 = eV . (4.24)

The wavelength of the accelerated electron is given as

λ = h

mev

√
1 − β2 = h

mec

√
1

β2
− 1. (4.25)

Once we eliminate β2 from Eqs. (4.24) and (4.25), we obtain

λ = h
√

2meeV ·
√

1 + eV

2mec2

. (4.26)

This is the wavelength of the electrons after applying relativistic corrections.

(2) When V = 40 kV, we can calculate the component
(
1 + eV

2mec2

)− 1
2 in Eq. (4.26)

as 0.98099. Thus, the wavelength is obtained as λ = 0.06016 Å. This tells us
that the relativistic effect shortens the wavelength λ by about 1.9 %. �

4.2 Electron Scattering by Atoms

4.2.1 The Schrödinger Equation for Scattering

Let us first think about the case where an accelerated electron is scattered by an
atom, as shown in Fig. 4.4. As the electron approaches the atom, the electron be-
comes increasingly influenced by the potential represented as V (r) at the position
vector r , because of their Coulomb interaction with the atomic nuclei and with the
electrons in the atom. The potential V (r) can be described as follows:

V (r) = − Ze2

4πε0r
+ e2

4πε0

∫
ρ(r ′)

|r − r ′| dr ′. (4.27)
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The first term in Eq. (4.27) represents the attractive potential between the incident
electron and a nucleus in the target atom whose charge number is Z, whereas the
second term expresses the repulsive potential between the incident electron and the
electrons in the target atom. Here, r = |r|, and ρ(r ′) represents the density of elec-
trons at the position vector r ′; ε0 is the vacuum permittivity. This whole scatter-
ing process is described by a wave function ψ(r), which is the solution for the
Schrödinger equation of electron motion given as

− �
2

2me
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (4.28)

The wave number k in the solution for Eq. (4.28) fulfills

k2 = 2meE

�2
> 0. (4.29)

Thus we can rewrite Eq. (4.28) using

U(r) = 2me

�2
V (r) (4.30)

as
(∇2 + k2)

ψk(r) = U(r)ψk(r), (4.31)

where ψ is represented as ψk because it will be characterized by k.
Let G(k, r) be a function of k and r which satisfies

(∇2 + k2)
G(k, r) = δ(r), (4.32)

where δ(r) is a delta function and satisfies either

∫
f (r)δ(r)dr = f (0) (4.33a)

or
∫

f (r)δ
(
r − r ′) dr = f

(
r ′) (4.33b)

for any given function f (r).
By using the function G(k, r), the solution for Eq. (4.31), ψk(r), is represented

as

ψk(r) = eik·r +
∫

G
(
k, r − r ′)U

(
r ′)ψk

(
r ′) dr ′. (4.34)

Problem 4.2
Show that ψk(r) in Eq. (4.34) is the solution for the Schrödinger equation (4.31).



206 4 Scattering Electrons

Solution
The first term eik·r in Eq. (4.34) is the plane wave propagating toward wave vector k.
As the scattering state is represented as the superposition of the incident wave and
the scattering wave, we can assume that the integral of the second term represents
the scattering wave. Substituting the first term of Eq. (4.34) into the left side of
Eq. (4.31), we obtain

(∇2 + k2)
eik·r = (∇2 + k2)

eikxx+ikyy+ikzz

= {−(
k2
x + k2

y + k2
z

) + k2}
eik·r

= 0. (4.35)

Next, by substituting the second term of Eq. (4.34) into the left side of Eq. (4.31)
and by using

δ
(
r − r ′) = δ

(
r ′ − r

)
, (4.36)

a feature of a delta function, we can arrive at

(∇2 + k2) ∫
G

(
k, r − r ′)U

(
r ′)ψk

(
r ′) dr ′

=
∫ (∇2 + k2)

G(k, r − r ′)U
(
r ′)ψk

(
r ′) dr ′

=
∫

δ
(
r − r ′)U

(
r ′)ψk

(
r ′) dr ′

= U(r)ψk(r). (4.37)

Therefore, the ψk(r) in Eq. (4.34) fulfills Eq. (4.31). �

When we think of the plane wave propagating along the z axis as the inci-
dent wave, as we did in the previous section, its wave vector can be written as
k = (0,0, k), so the first term in Eq. (4.34) becomes

eik·r = eikz. (4.38)

It is also known that, when expressing the outgoing scattered spherical wave, the
function G(k, r), introduced in Eq. (4.32), is given as

G(k, r) = − 1

4π

eikr

r
. (4.39)

Under this condition, ψk(r) can be written as

ψk(r) = eikz +
∫

G
(
k, r − r ′)U

(
r ′)ψk

(
r ′) dr ′

= eikz −
∫

1

4π

eik|r−r ′|

|r − r ′|U
(
r ′)ψk

(
r ′) dr ′. (4.40)
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Fig. 4.5 Explanation for
|r − r ′| ∼ r − n · r ′

Here, the magnitude of r ′ can be thought of as being only about the size of the
atomic radius, which is considerably shorter than the distance between the origin
and the observation point (about 0.1 to 1 m). Thus, as shown in Fig. 4.5, we can
regard |r − r ′| as

∣∣r − r ′∣∣ ∼ r − n · r ′, (4.41)

where n is the unit vector for the direction of r . Similarly, its reciprocal can be
approximated as

1

|r − r ′| ∼ 1

r
. (4.42)

Thus the ψk(r) in Eq. (4.40) is represented as

ψk(r) = eikz − 1

4πr
eikr

∫
e−ikn·r ′

U
(
r ′)ψk

(
r ′) dr ′. (4.43)

When we compare the ψk(r) in Eq. (4.43) with the ψ(r) given by Eq. (4.18)
in the previous section, we notice that the first term of ψk(r) is the incident plane
wave, whose wave number is k = 2π

λ
(at wavelength λ), and that the second term

is the scattering wave. This scattering wave represents the spherical wave expand-
ing from the scattering center, and its wavelength does not differ from that of the
incident plane wave.

This type of scattering is called elastic scattering. On the other hand, the type
of scattering where the scattered electron beam changes its wavelength is called
inelastic scattering. The contribution of the inelastic scattering is small, however, so
in this chapter we will only discuss the elastic scattering.

From the correspondence between Eq. (4.18) and Eq. (4.43), we can see that the
scattering amplitude f (θ,φ) can be represented as

f (θ,φ) = f (θ) = − 1

4π

∫
e−ikn·r ′

U
(
r ′)ψk

(
r ′) dr ′, (4.44)

where U(r), having spherical symmetry, depends on the magnitude of r , r = |r|.
Thus, we will henceforth represent U(r) as U(r). Also, as the scattering process
has axial symmetry around the z axis, the scattering amplitude does not depend on
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Fig. 4.6 The wave vector of
the incident wave (k0) and
the wave vector of the
scattering wave (k)

the azimuthal angle φ, which allows us to write the scattering amplitude as f (θ).
While the solution to the process where an electron beam is scattered by an atom
seems to have already been given in Eq. (4.43), the solution ψk(r

′) is a part of the
integral of the scattering amplitude f (θ). This means that we cannot calculate the
scattering amplitude unless the ψk(r

′) is given in advance. In order to overcome this
problem, let us now adopt an approximation called Born approximation.

4.2.2 Representation of the Scattering Amplitude
by Use of the Born Approximation

When the scattering wave is weak and not largely changed from the incident wave
by the potential, we can use an approximation where the ψk(r

′) in the integral of
the scattering wave is substituted by the incident wave. In this approximation, by
substituting eikz′

for ψk(r
′), the scattering amplitude in Eq. (4.44) is written as

f (θ) = − 1

4π

∫
e−ikn·r ′

U
(
r ′)eikz′

dr ′. (4.45)

When we represent the unit vector along the direction of the z axis as n0 and let
z′ = n0 · r ′, the scattering amplitude f (θ) becomes

f (θ) = − 1

4π

∫
eik(n0−n)·r ′

U
(
r ′) dr ′. (4.46)

Then, a vector s which can be expressed as

s = k(n0 − n) (4.47)

is one whose direction coincides with that of n0 − n and whose magnitude is
2k sin θ

2 = 4π
λ

sin θ
2 , as shown in Fig. 4.6. That is to say, we can write

s = |s| = 4π

λ
sin

θ

2
. (4.48)

The integral expressed in terms of r ′ which appears in Eq. (4.45) can be cal-
culated either in the polar coordinate based on the original z axis or in the polar
coordinate represented with the polar angle α and the azimuthal angle β by regard-
ing the new direction of the axis, n0 − n, as the z′ axis, as shown in Fig. 4.7. In this
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Fig. 4.7 A polar coordinate
system whose z′ axis is along
the direction of n0–n

new polar coordinate system, the f (θ) in Eq. (4.46) is written as

f (θ) = − 1

4π

∫ ∞

0

∫ π

0

∫ 2π

0
eisr ′ cosαU

(
r ′)r ′2 dr ′ sinα dα dβ

= −1

2

∫ ∞

0

(∫ π

0
eisr ′ cosα sinα dα

)
U

(
r ′)r ′2 dr ′. (4.49)

By calculating the integral given inside the round bracket ( ), we can obtain f (θ) as

f (θ) = −
∫ ∞

0

sin sr ′

sr ′ U
(
r ′)r ′2 dr ′

= −2me

�2

∫ ∞

0

sin sr ′

sr ′ V
(
r ′)r ′2 dr ′. (4.50)

This is how to represent the scattering amplitude based on the Born approximation.

Problem 4.3
Derive Eq. (4.50) by performing the integration of given inside the round brackets
( ) in Eq. (4.49).

Solution
Letting the integral in ( ) be

I =
∫ π

0
eisr ′ cosα sinα dα, (4.51)

and changing the variables from α to ζ using cosα = ζ , which leads to − sinα dα = dζ ,
we can write

I =
∫ 1

−1
eisr ′ζ dζ = 1

isr ′
(
eisr ′ − e−isr ′) = 2 sin sr ′

sr ′ . (4.52)

By substituting this into Eq. (4.49) we can derive Eq. (4.50). �
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4.2.3 Electron Scattering by Atoms

The scattering potential V (r), as shown in Eq. (4.27), consists of two terms, the first
of which corresponds to the attractive potential between the incident electron and
the atomic nucleus, and the second to the repulsive potential between the incident
electron and the electrons in the atom. By replacing these terms by V1(r) and V2(r),
respectively, we can represent V (r) as

V (r) = V1(r) + V2(r), (4.53)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V1(r) = − Ze2

4πε0
· 1

r
, (4.54)

V2(r) = e2

4πε0

∫
ρ(r ′)

|r − r ′| dr ′. (4.55)

Let us now calculate the scattering amplitude by using specific forms for V1(r)

and V2(r). First, we can substitute Eq. (4.53) into Eq. (4.46) by using the relation-
ship given in Eq. (4.30), and write

f (θ) = f1(θ) + f2(θ), (4.56)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(θ) = − 1

4π

∫
eik(n0−n)·r ′ · 2me

�2
V1

(
r ′) dr ′, (4.57)

f2(θ) = − 1

4π

∫
eik(n0−n)·r ′ · 2me

�2
V2

(
r ′) dr ′. (4.58)

In evaluating these integrals, we can use the integral formula

∫
ein·r ′

|r − r ′| dr ′ = 4π

|n|2 ein·r . (4.59)

When we substitute r = 0 and n = s into Eq. (4.59), we obtain

∫
eis·r ′

r ′ dr ′ = 4π

|s|2 e0 = 4π

s2
, (4.60)

and thus f1(θ) can be immediately derived as

f1(θ) = Ze2

4πε0
· 2me

�2
· 1

4π

∫
eis·r ′

r ′ dr ′



4.2 Electron Scattering by Atoms 211

= 2mee
2Z

4πε0�2
· 1

s2
. (4.61)

We can calculate f2(θ) using Eq. (4.55) as

f2(θ) = − e2

4πε0
· 2me

�2
· 1

4π

∫
eik(n0−n)·r ′

(∫
ρ(r ′′)

|r ′ − r ′′| dr ′′
)

dr ′, (4.62)

but, by executing the integral in terms of r ′ first, we can also represent f2(θ) as

f2(θ) = − e2

4πε0
· 2me

�2
· 1

4π

∫
ρ

(
r ′′)

(∫
eik(n0−n)·r ′

|r ′′ − r ′| dr ′
)

dr ′′. (4.63)

By using Eq. (4.59) for the integral inside the round brackets ( ), we obtain

f2(θ) = − 2mee
2

4πε0�2

∫
ρ

(
r ′′) eik(n0−n)·r ′′

|k(n0 − n)|2 dr ′′

= − 2mee
2

4πε0�2

∫
ρ

(
r ′′)eisr ′′ cosα

s2
dr ′′. (4.64)

Here, we can use the spherical symmetry of ρ(r) to express it as ρ(r) and calculate
the integral in the same way as we did in Problem 4.3, which gives us

f2(θ) = − 2mee
2

4πε0�2
· 1

s2

∫ ∞

0

∫ π

0

∫ 2π

0
ρ

(
r ′′)eisr ′′ cosαr ′′2 dr ′′ sinα dα dβ,

= − 2mee
2

4πε0�2
· 4π

s2

∫ ∞

0
ρ

(
r ′′) sin sr ′′

sr ′′ r ′′2 dr ′′

= − 2mee
2

4πε0�2
· A(θ)

s2
(4.65)

where A(θ) is represented as

A(θ) = 4π

∫ ∞

0
ρ(r)

sin sr

sr
r2 dr (4.66)

and is called the atomic scattering factor or the atomic structure factor. From Eqs.
(4.61) and (4.65) above, we can derive the scattering amplitude given in Eq. (4.56)
as

f (θ) = 2mee
2

4πε0�2

(
Z − A(θ)

s2

)
. (4.67)

As can be seen from the way in which it has been derived, A(θ) here represents the
contribution of the scattering by the electrons distributed in the atom, and Z − A(θ)

represents the fact that the nuclear charge Z is shielded by the amount of A(θ) in
the direction θ .
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Problem 4.4
Show that the atomic scattering factor A(θ) satisfies A(0) = Z when the scattering
angle is θ = 0. Also, discuss how A(θ) and the scattering amplitude f (θ) behave as
the value of θ increases.

Solution
Taking the limit of θ → 0 in Eq. (4.66) corresponds to s = 2k sin θ

2 → 0. As
sin sr
sr

→ 1 in this case, we can write

A(0) = 4π

∫ ∞

0
ρ(r)r2 dr.

As this represents ρ(r) being integrated over all space, it is equal to the total charge
of all electrons, Z. On the other hand, when θ increases, s increases and so does the
denominator of sin sr

sr
, so that A(θ) approaches 0. Thus, from Eq. (4.67), we can see

that f (θ) becomes proportional to Z. �

Problem 4.5
Derive the differential cross-section of the elastic scattering.

Solution
As the differential cross-section dσ

dΩ
given by |f (θ)|2 as shown in Eq. (4.22), we can

use Eq. (4.67) to derive it as

dσ

dΩ
=

(
2mee

2

4πε0�2

)2(
Z − A(θ)

s2

)2

.

Thus the differential cross-section is proportional to s−4, which accounts for the
rapid decrease of the diffraction intensity of an electron beam when s increases. �

4.3 Electron Scattering by Molecules

4.3.1 The Scattering Amplitude of Electron Scattering
by a Molecule

Although atoms in molecules are connected by chemical bonds, the electron distri-
bution around each nucleus can be regarded as almost the same as that around an
isolated atom. Therefore, Vmol(r), the potential of electron scattering by a molecule,
can be expressed as a sum of the spherically symmetric potentials for the electron
scattering by atoms, which we have dealt with in Sect. 4.2. That is,

Vmol(r) =
∑

i

Vi(r), (4.68)

where the origin of r is arbitrary and the value r − r i , with r i being the position
vector of the i-th atom, corresponds to the r in Sect. 4.2. As is shown in Fig. 4.8, the
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Fig. 4.8 Scattering of an
electron beam by a triatomic
molecule ABC

incident plane wave of an electron is scattered by each of the atoms in a molecule.
Then, the scattered waves interfere with each other.

The scattering amplitude of an electron scattered by a molecule, fmol(θ), can
be expressed as a sum of the scattering amplitudes of the electron scattered by the
atoms, which have been given by Eq. (4.46). That is to say,

fmol(θ) = − 1

4π
· 2me

�2

∫
eis·r ′

Vmol
(
r ′) dr ′

= − 1

4π
· 2me

�2

∫
eis·r ′ ∑

i

Vi

(
r ′) dr ′

=
∑

i

fi(θ)eis·r i . (4.69)

The function fi(θ) is the scattering amplitude attributed to the i-th atom, and it can
be expressed as

fi(θ) =
(

2mee
2

4πε0�2

)(
Zi − Ai(θ)

s2

)
, (4.70)

because Vmol(r
′) in Eq. (4.69) can be written as

Vmol
(
r ′) =

∑

i

(
− Zie

2

4πε0
· 1

|r ′ − r i | + e2

4πε0

∫
ρi(r

′′ − r i )

|r ′′ − r ′| dr ′′
)

, (4.71)

and the integral in Eq. (4.69) can be carried out as

∫
eis·r ′

|r ′ − r i |dr ′ = eis·r i

∫
eis·(r ′−r i )

|r ′ − r i | dr ′

= eis·r i

∫
eis·r ′

|r ′| dr ′ (4.72)

and
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∫
eis·r ′

(∫
ρi(r

′′ − r i )

|r ′′ − r ′| dr ′′
)

dr ′ =
∫

ρi

(
r ′′ − r i

){∫
eis·r ′

|r ′′ − r ′| dr ′
}

dr ′′

=
∫

ρi

(
r ′′ − r i

)4πeis·r ′′

s2
dr ′′

= eis·r i

∫
ρi

(
r ′′ − r i

)4πeis·(r ′′−r i )

s2
dr ′′ (4.73)

in the same way as in the derivation of Eqs. (4.61) and (4.65).

4.3.2 The Scattering and Interference of an Electron Beam
by a Diatomic Molecule

Let us first consider the simplest scenario, where an electron is scattered by a di-
atomic molecule. The scattering amplitude fmol(θ) can be expressed as

fmol(θ) = eis·r1f1(θ) + eis·r2f2(θ) (4.74)

by the formula (4.69). The scattering intensity I (θ) of the electron wave is given by
the differential cross section |fmol(θ)|2, that is,

I (θ) = ∣∣fmol(θ)
∣∣2 = f1(θ)2 + f2(θ)2 + 2f1(θ)f2(θ) cos(s · r12), (4.75)

where r12 = r2 − r1, r12 = |r12|, and f1(θ) and f2(θ) are treated here as real func-
tions given by Eq. (4.70). What should be noted in Eq. (4.75) is the existence of the
third term. Whereas the first and second terms stand for the scattering by the respec-
tive atoms, and these terms are smooth functions which decay with the increase of
θ , as shown in Problem 4.5, the third term oscillates when

s · r12 = 4π

λ
sin

θ

2
· r12 · cosα (4.76)

in the argument of the cosine function varies with θ . This third term represents the
interference of the waves scattered by the two different atoms in the molecule. Here
α stands for the angle between s and r12.

Problem 4.6
Prove that the scattering intensity I (θ) of an electron wave scattered by a diatomic
molecule is given in the form of Eq. (4.75).

Solution
From Eq. (4.74), we can write

I (θ) = ∣∣fmol(θ)
∣∣2 = f ∗

mol(θ)fmol(θ)

= (
e−is·r1f ∗

1 (θ) + e−is·r2f ∗
2 (θ)

) · (
eis·r1f1(θ) + eis·r2f2(θ)

)
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Fig. 4.9 An electron beam
being propagated towards a
diatomic molecule at an
incident angle perpendicular
to its molecular axis

= ∣∣f1(θ)
∣∣2 + ∣∣f2(θ)

∣∣2 + f ∗
1 (θ)f2(θ)eis·(r2−r1) + f1(θ)f ∗

2 (θ)e−is·(r2−r1).

As in Eq. (4.70), the scattering amplitudes f1(θ) and f2(θ) are real functions. There-
fore,

I (θ) = f1(θ)2 + f2(θ)2 + 2f1(θ)f2(θ) cos(s · r12).
�

Let us now think about a specific condition where the molecular axis of a di-
atomic molecule is aligned along a direction perpendicular to the propagation direc-
tion of the electron beam. As seen in Fig. 4.9, α = θ

2 , and

s · r12 = 4π

λ
sin

θ

2
· r12 · cos

θ

2
= 2πr12

λ
sin θ (4.77)

can be obtained. This shows that the interference term oscillates with θ according
to cos( 2πr12

λ
sin θ).

When r12 = 1 Å and λ = 0.05 Å, we obtain s · r12 = 40π sin θ . In this case, the
interference term in the scattering intensity reaches its maxima when

40π sin θ = 0,2π,4π,6π, . . . ,

that is, when

θ = 0◦,2.87◦,5.74◦,8.63◦, . . . .

As a result of this interference, electrons arrive on a screen located 20 cm away from
the scattering center with concentrated density at 1.00,2.01,3.03, . . . cm above
and below the center symmetrically. Therefore, when the molecules are spatially
aligned, the interference pattern appears as horizontal stripes.

What is significant here is that the distance between these stripes depends on
the internuclear distance r12. This indicates that the internuclear distance can be
determined by observing the distance between the interference stripes. Although the
explanation here has been limited to a special condition in which diatomic molecules
are aligned spatially along a specific direction, it demonstrates the basic principle
underlying the determination of geometrical structures of all types of molecules by
the electron diffraction method.
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In a gaseous phase, diatomic molecules are randomly oriented under normal con-
ditions. Therefore, the scattering intensity must be averaged by the integration over
the entire spatial directions of the orientation of the molecular axis. When the third
term of Eq. (4.75), that is, the interference term, is integrated over all space and then
divided by 4π to calculate its average, defined as Imol(θ), we can write

Imol(θ) = 2f1(θ)f2(θ)
1

4π

∫ π

0

∫ 2π

0
cos(s · r12) sinα dα dβ

= 2f1(θ)f2(θ)
1

4π

∫ 2π

0
dβ

∫ π

0
cos(sr12 cosα) sinα dα. (4.78)

Letting γ = cosα, as in the case of Eq. (4.51), we can write dγ = − sinα dα, and
thus carry out the integral in terms of α as

∫ π

0
cos(sr12 cosα) sinα dα = −

∫ −1

1
cos(sr12γ )dγ

=
[

sin(sr12γ )

sr12

]1

−1

= 2
sin sr12

sr12
. (4.79)

Therefore, the total scattering intensity I (θ) for a diatomic molecule in a gaseous
phase can be expressed as

I (θ) = ∣∣f1(θ)
∣∣2 + ∣∣f2(θ)

∣∣2 + Imol(θ), (4.80)

Imol(θ) = 2f1(θ)f2(θ)
sin sr12

sr12
. (4.81)

Imol(θ) is called the molecular scattering intensity.
As can be seen above, even if molecules are oriented randomly in all spatial

directions, the interference term survives, causing a sinusoidal pattern in the scat-
tering intensity, and becomes zero where sin sr12 = 0. In this case, the interference
pattern does not vary with the azimuthal angle φ, because the electron beam re-
tains axial symmetry around the propagation direction. The same applies to cases of
polyatomic molecules. Thus a pattern of concentric circles is observed in the case
of a polyatomic molecule as well, as in Fig. 1.11(a) from Chap. 1, where we see an
electron diffraction picture of carbon tetrachloride.

We will now define the distribution function of the orientation direction of the
molecular axis of diatomic molecules in space as P(φ). The angle φ (0 � φ � π)

stands for the polar angle where the z′′ axis is fixed perpendicularly to the propaga-
tion direction of the electron beam. At the same time, the distribution around a given
azimuthal angle is assumed to be random. Under this condition, the angular distribu-
tion function of molecules oriented in the direction of the z′′ axis can be expressed
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Fig. 4.10 Diffraction patterns of electron beams caused by aligned diatomic molecules and those
caused by diatomic molecules with random orientations

using the delta function as P(φ) = δ(φ), whereas that of molecules facing random
directions can be written as an isotropic distribution, that is, P(φ) = constant.

Figure 4.10 shows the scattering patterns of electron beams accelerated to 40 kV
for three different distribution functions of the direction of the axis of diatomic
molecules. In this figure, only the interference term is depicted in the form of in-
terference fringes to appear on a screen placed 20 cm away from the scattering
center. The upper row of figures show the cases where the internuclear distance is
r12 = 1.0 Å, and the lower row, those where r12 = 2.0 Å. The patterns shown in
the middle column are those obtained when the distribution functions are given as
P(φ) = cos2 φ.

As is clear from these figures, the interference patterns appear as horizontal
stripes in the case of perfectly aligned (or oriented) molecules, and gradually ap-
proach the form of concentric circles as the degree of anisotropy in the alignment
(or orientation) direction diminishes. This signifies that, if we can produce an en-
semble of molecules with the tendency of being aligned (or oriented) along a spe-
cific direction by some experimental method, the degree of alignment (or orienta-
tion) of these molecules can be determined through the observation of their elec-
tron diffraction image. Indeed, it is known that such an ensemble of molecules
whose molecular axes are aligned (or oriented) in space along a specific direc-
tion can be realized by irradiating molecules with linearly polarized intense laser
light.

When we compare the images in the upper and lower rows of Fig. 4.10, we see
that the intervals of the interference fringes in the lower row of figures is narrower
by about half. This means that the intervals of the fringes decrease as the nuclear
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Fig. 4.11 The phase shifts of
a scattered electron beam
caused by the attractive
potential

distance between an atomic pair increases. Therefore, the observation of the inter-
ference pattern directly leads us to the determination of the molecular structure. In
other words, the structure of a molecule can be determined by its halo, which is what
we call the interference pattern consisting of concentric circles recorded in electron
diffraction experiments on gaseous molecules.

We must also note that, when we take into account scattered waves whose wave
vectors have some components perpendicular to the page of Fig. 4.9, the interference
patterns on the screen will not become perfectly horizontal stripes, but rather take
the forms of hyperbolas that are convex downward when y > 0 and convex upward
when y < 0. Nevertheless, as long as we are looking at 4 cm × 4 cm square regions
on a screen 20 cm from the scattering center, the interference patterns can be seen
as almost horizontal stripes.

4.4 Phase Shift of the Scattering Electron Wave

4.4.1 Partial-Wave Expansions of Scattered Waves

When an electron beam is scattered by a molecule, the waves resulting from simul-
taneous scatterings by different atoms in the molecule interfere with one another,
creating ripples in the diffraction intensity. Although the electron diffraction pattern
for a diatomic molecule, as shown in the previous section, are well represented by
Eq. (4.81), a closer observation shows that the amplitude of the interference mod-
ulation becomes more suppressed than in Eq. (4.81) as the scattering angle θ or s

increases. There are mainly two causes for this phenomenon. The first is the effect
of molecular vibration, which is caused by the fact that the distance between atoms
is not fixed but rather has a distribution with a range. This effect is explained in the
next section. The second cause is that the phase shift of the scattered waves pro-
duced by the scattering by an atom varies by the atomic species. Simply put, the
electron wave being scattered by a nucleus is pulled in by its attractive potential at
the same time, causing a delay in the phase of the wave front. The heavier the atom,
the larger the nuclear charge becomes, and consequentially so does the attractive
potential. Thus the phase shifts grows larger as the atoms become heavier, as illus-
trated in Fig. 4.11. The phase shift effect appearing in the interference modulation



4.4 Phase Shift of the Scattering Electron Wave 219

becomes larger when the difference between the charges of the two different nuclear
species within a molecule becomes larger.

Let us now return to the Schrödinger equation (4.28), in order to understand the
origin of the phase shift. From Eqs. (3.5) through (3.7), Eq. (3.8) can derived as

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ Λ

r2
, (4.82)

where r is also treated as a variable. Therefore, we can write Eq. (4.28) using the
polar coordinate (r, θ,φ) as

− �
2

2me

{
1

r2

∂

∂r

(
r2 ∂

∂r

)
ψ + Λ

r2
ψ

}
+ V (r)ψ = Eψ, (4.83)

where Λ is given by Eq. (3.9) in Sect. 3.1. The solution of this equation, ψ(r, θ,φ),
is first rewritten as a product of R(r), a function of the distance r , and Y(θ,φ),
a function of the angles θ and φ, so as to separate the variables. That is,

ψ(r, θ,φ) = R(r)Y (θ,φ). (4.84)

Substituting Eq. (4.84) into Eq. (4.83) and dividing both sides of this equation by
R(r)Y (θ,φ), we obtain

− 1

r2

∂

∂r

(
r2 ∂R(r)

∂r

)
r2

R(r)
+ 2mer

2

�2

(
V (r) − E

) = ΛY(θ,φ)

Y (θ,φ)
. (4.85)

The left-hand side of this equation is a function of r only, and the right-hand side a
function of θ and φ only. For this equation to always be satisfied, both of its sides
need to be a constant. Letting this constant be α, the following two equations can be
obtained from Eq. (4.85).

ΛY(θ,φ) = αY(θ,φ), (4.86)

− �
2

2me

{
1

r2

d

dr

(
r2 dR(r)

dr

)
+ α

r2
R(r)

}
+ V (r)R(r) = ER(r). (4.87)

Here, as Eq. (4.87) is a differential equation in which the only variable is r , the
partial differential has been changed into the ordinary differential. By comparing
Eq. (3.11) in Sect. 3.1 with Eq. (4.86), we can write α as

α = −l(l + 1), (4.88)

where l is either 0 or a positive integer. Therefore, the equation of the radial part to
be solved is given by

− �
2

2me

{
1

r2

d

dr

(
r2 dR(r)

dr

)
− l(l + 1)

r2
R(r)

}
+ V (r)R(r) = ER(r). (4.89)

This equation shows that a radial eigenfunction R(r) is determined for each value
of l. Thus we will hereafter write R(r) as Rl(r).
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In the case of E < 0, Eq. (4.89) would represent a bound state where electrons are
bound in the potential V (r). If V (r) is the Coulomb attractive potential, the equation
represents the radial equation of an electron in a hydrogen-like atom. However, as
long as we are dealing with the scattering of an electron, E > 0 holds, as shown
from Eq. (4.29).

Next, we will simplify Eq. (4.89) by turning it into an equation of fl(r) by the
substitution of Rl(r) = fl(r)

r
, which gives us

− �
2

2me

{
d2fl(r)

dr2
− l(l + 1)

r2
fl(r)

}
+ V (r)fl(r) = Efl(r). (4.90a)

The same equation can be written using Eqs. (4.29) and (4.30) as
{

d2

dr2
− l(l + 1)

r2
− U(r) + k2

}
fl(r) = 0. (4.90b)

In order to explore the function form of fl(r), let us first look at its behavior at
r → 0. U(r) is the potential determined by the Coulomb attractive force between
the electron and the nucleus, and therefore never diverges at a rate faster than 1

r
.

Therefore, around the origin, that is, when r → 0, the term of 1
r2 plays a dominant

role and Eq. (4.90b) becomes

d2fl(r)

dr2
− l(l + 1)

r2
fl(r) ∼ 0. (4.91)

For fl to behave like rα around the origin, the equation

α(α − 1) − l(l + 1) = 0 (4.92)

needs to be satisfied. This can be factorized, and α = l + 1,−l are obtained. As the
wave function Rl(r) is finite, fl(r) = rRl(r) has to be fl(r) → 0 at r → 0, which
means that the function behaves near the origin as

fl(r) ∝ rl+1. (4.93)

At r → ∞, on the other hand, the charge of the nucleus is shielded by the elec-
trons and thus U(r) can be considered to become U(r) → 0 more rapidly than the
term l(l+1)

r2 . In this case, Eq. (4.90b) satisfies

d2fl(r)

dr2
+

{
k2 − l(l + 1)

r2

}
fl(r) ∼ 0. (4.94)

It has already been shown in Sect. 3.2 that the solution of the Schrödinger equa-
tion of the angular part, Eq. (4.86), is given by the spherical harmonics Ylm(θ,φ).
When we treat the scattering of an electron beam by atoms, the axial symmetry
around the electron beam axis is preserved, and therefore the wave function of the
angular part does not depend on the azimuthal angle φ but instead becomes a func-
tion of the polar angle θ only. This means that the wave function of the angular part
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can be represented by Yl0, which is obtained by substituting m = 0 into Ylm. Here,
Yl0 and the Legendre polynomial are converted into each other by the relation

Pl(cos θ) =
√

4π

2l + 1
Yl0(θ,φ). (4.95)

Generally, the solution of the Schrödinger equation (4.28) can also be represented
as

ψ(r, θ) = 1

r

∞∑

l=0

fl(r)Pl(cos θ), (4.96)

using the expansion by the Legendre polynomial. This type of expansion involves
the superposition of wave functions of different orbital angular momenta, and is
called the partial wave expansion.

Problem 4.7
Derive Eq. (4.90b), the radial equation in terms of fl(r), by substituting the equation
of the partial wave expansion, Eq. (4.96), into the Schrödinger equation (4.31).

Solution
Following Eq. (4.82), we can express the ∇2 in Eq. (4.31) by a polar coordinate as

{
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ Λ

r2
+ k2

}
ψ(r, θ) = U(r)ψ(r, θ), (4.97)

wherein the U(r) from Eq. (4.31) is represented as U(r) because it is a spherically
symmetric potential. Substituting Eq. (4.96) into the ψ(r, θ) in Eq. (4.97) we obtain

∞∑

l=0

1

r
Pl(cos θ)

{
d2

dr2
− l(l + 1)

r2
− U(r) + k2

}
fl(r) = 0, (4.98)

where

−ΛPl(cos θ) = l(l + 1)Pl(cos θ), (4.99)

derived from Eqs. (3.36), (3.76), and (3.99), has been used. When Eq. (4.98) is
multiplied by Pl(cos θ) and integrated, using the orthogonal relation of the Legendre
polynomial Pl(cos θ), that is,

∫ 1

−1
Pm(x)Pn(x)dx = 2

2n + 1
δmn, (4.100)

Eq. (4.90b),
{

d2

dr2
− l(l + 1)

r2
− U(r) + k2

}
fl(r) = 0,

is readily obtained. �
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4.4.2 The Behavior of Partial Waves in the Asymptotic Region

Equation (4.94), which partial waves need to satisfy in the asymptotic region, is
known to have two linearly independent solutions, sl(kr) and cl(kr). Using the
spherical Bessel function jl(kr) and the spherical Neumann function nl(kr), these
solutions can be represented as

sl(kr) = krjl(kr), (4.101a)

cl(kr) = −krnl(kr). (4.101b)

The actual forms of these functions for l = 0,1,2,3 are written by substituting
kr = x as follows:
When l = 0,

s0(x) = sinx, (4.102a)

c0(x) = cosx. (4.102b)

When l = 1,

s1(x) = sinx

x
− cosx, (4.103a)

c1(x) = cosx

x
+ sinx. (4.103b)

When l = 2,

s2(x) =
(

3

x2
− 1

)
sinx − 3 cosx

x
, (4.104a)

c2(x) =
(

3

x2
− 1

)
cosx + 3 sinx

x
. (4.104b)

When l = 3,

s3(x) =
(

15

x2
− 6

)
sinx

x
−

(
15

x2
− 1

)
cosx, (4.105a)

c3(x) =
(

15

x2
− 6

)
cosx

x
+

(
15

x2
− 1

)
sinx. (4.105b)

The behavior of these functions is illustrated in Fig. 4.12. As this figure shows, sl(x)

always starts from the origin, or in other words sl(0) = 0, and as x becomes larger
the form of the function approaches that of a sin function. We also note that the
sinusoidal part of the waves shifts to the right as l becomes larger, but the spacing
between the waves for an adjacent pair of values of l seems to reach a constant
where x is large.

On the other hand, cl(x) diverges to positive infinity (+∞) around the origin ex-
cept when l = 0. Where x is large, however, the behavior of this function is similar to
that of sl(x), although the phases of the waves of sl(x) and cl(x) seem to differ by π

2 .
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Fig. 4.12 The shapes of
sl(x) and cl(x) for
l = 0,1,2,3

In the same way as the eigenfunctions of hydrogen-like atoms whose orbital
angular momenta become l = 0,1,2, . . . are called the s orbital, the p orbital, the d

orbital, . . . , respectively, the partial waves representing the scattering states whose
orbital angular momenta are l = 0,1,2, . . . are called the s wave, the p wave, the d

wave, . . . , respectively.
The asymptotic forms of the spherical Bessel function jl(x) and the spherical

Neumann function nl(x) at x → ∞ are known to be

jl(x) ∼ 1

x
sin

(
x − π

2
l

)
, (4.106a)

nl(x) ∼ − 1

x
cos

(
x − π

2
l

)
, (4.106b)

which tells us that the asymptotic forms of sl(x) and cl(x), as defined by
Eqs. (4.101a) and (4.101b) are

sl(x) ∼ sin

(
x − π

2
l

)
, (4.107a)

cl(x) ∼ cos

(
x − π

2
l

)
, (4.107b)

at x → ∞. This corresponds with the behaviors of sl(x) and cl(x) in the region of
large x values in Fig. 4.12.



224 4 Scattering Electrons

Problem 4.8
For l = 0 and l = 1, prove that sl(kr) and cl(kr) are solutions of the second-order
differential equation of fl(x), Eq. (4.94).

Solution
In the case of l = 0, Eq. (4.94) is written as

d2

dr2
f0(r) + k2f0(r) = 0, (4.108)

whose solutions are obviously s0(kr) = sin kr and c0(kr) = coskr .
In the case of l = 1, Eq. (4.94) becomes

d2

dr2
f1(r) − 2

r2
f1(r) + k2f1(r) = 0. (4.109)

Substituting

f1(r) = s1(kr) = sin kr

kr
− coskr

into Eq. (4.109), we obtain

d2

dr2
f1(r) = d

dr

(
coskr

r
− sin kr

kr2
+ k sinkr

)

= 2

r2
f1(r) − k2f1(r),

which shows us that s1(kr) is one of the solutions.
With f1(r) = c1(kr), too, we can similarly prove that Eq. (4.109) will be satis-

fied. �

4.4.3 The Partial Wave Expansion of Plane Waves

Equation (4.94) is one which fl(r), the partial wave expansion of the scattering
state expression ψ(r, θ), has to satisfy when U(r) is sufficiently small, or in other
words where the effect of the potential no longer reaches. It is also an equation with
U(r) = 0, that is, an equation that needs to be satisfied by a wave being propagated
which is not affected by any potentials, which is to say, a plane wave, eikz.

Let us then consider the expansion of eikz = eikr cos θ with partial waves sl(kr)

and cl(kr). First, as in Eq. (4.96), we expand eikz using the Legendre polynomial
Pl(cos θ) as

eikz = 1

r

∞∑

l=0

gl(r)Pl(cos θ). (4.110)
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In order to obtain gl(r), we multiply both sides of Eq. (4.110) by Pl(cos θ) and
integrate the equation, then use the orthogonal relation of Eq. (4.100) to derive

I =
∫ 1

−1
eikr cos θPl(cos θ)d(cos θ) = 2

2l + 1
· gl(r)

r
. (4.111)

Letting t = cos θ , the integral I is written as

I =
∫ 1

−1
eikrtPl(t)dt. (4.112)

By repeating the partial integration, the power series expansion of 1
kr

is obtained as

I = 1

ikr

[
eikrtPl(t)

]1
−1 − 1

ikr

∫ 1

−1
eikrt dPl(t)

dt
dt

= 1

ikr

[
eikrtPl(t)

]1
−1 − 1

(ikr)2

[
eikrt dPl(t)

dt

]1

−1
+ 1

(ikr)2

∫ 1

−1
eikrt d2Pl(t)

dt2
dt

= . . . . (4.113)

The behavior of this equation at r → ∞ is dominated by its first term, in which the
order of 1

kr
is the lowest. Thus, at r → ∞ we can write

I ∼ 1

ikr

[
eikrtPl(t)

]1
−1

= 1

ikr

{
eikr − (−1)le−ikr

}
, (4.114)

using the fact that the Legendre polynomial becomes

Pl(1) = 1, Pl(−1) = (−1)l (4.115)

for x = 1,−1. As eix = cosx + i sinx, we can also write

eiπl = (−1)l, ei π
2 l = il , (4.116)

which can be used to change Eq. (4.114) into

I ∼ 1

ikr

(
eikr − eiπle−ikr

)

= 1

ikr
ei π

2 l
{
ei(kr− π

2 l) − e−i(kr− π
2 l)

}

= 2

kr
il sin

(
kr − π

2
l

)
. (4.117)
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That is to say,

gl(r) ∼ 2l + 1

k
il sin

(
kr − π

2
l

)
, (4.118)

which tells us that the asymptotic form of gl(r) is proportional to the asymptotic
form of sl(kr). We also know from the expansion in Eq. (4.110) that gl(r) at r = 0
is required to be gl(0) = 0. Thus, gl(r) is shown to be a function proportional not to
cl(kr) but to sl(kr), as

gl(r) = 2l + 1

k
ilsl(kr). (4.119)

Substituting this equation back into the original expansion equation (4.110), we
can represent the plane wave eikz as

eikz = 1

kr

∞∑

l=0

(2l + 1)ilsl(kr)Pl(cos θ). (4.120)

This can also be expressed with the spherical Bessel function jl(kr) as

eikz =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ). (4.121)

Equations (4.120) and (4.121) are known as the partial wave expansion of the plane
wave.

4.4.4 The Partial Wave Expansion of Scattering Amplitudes

We are now ready to calculate the asymptotic form of ψ(r, θ) for scattering states
where U(r) 	= 0, thus deriving the partial wave expansion of the scattering ampli-
tude f (θ). In the asymptotic region of r → ∞, the solution of Eq. (4.94), fl(r), is
represented as the superposition of sl(kr) and cl(kr), that is,

fl(r) ∼ Alsl(kr) + Blcl(kr). (4.122)

When Cl is a constant and δl is within the range −π
2 � δl � π

2 , letting

Al = Cl cos δl, (4.123a)

Bl = Cl sin δl, (4.123b)

we can rewrite fl(r) as

fl(r) ∼ Cl

(
cos δlsl(kr) + sin δlcl(kr)

)
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∼ Cl

{
cos δl sin

(
kr − π

2
l

)
+ sin δl cos

(
kr − π

2
l

)}

= Cl sin

(
kr − π

2
l + δl

)
, (4.124)

wherein the second line is derived from the first by using the asymptotic forms of
sl(kr) and cl(kr) given in Eqs. (4.107a) and (4.107b), respectively. The δl appearing
in this equation is the phase shift of the scattering state with the orbital angular mo-
mentum l. Using this asymptotic form of fl(r), the asymptotic form of the Legendre
expansion equation (4.96) at r → ∞ can be obtained as

ψ(r, θ) ∼ 1

r

∞∑

l=0

Cl sin

(
kr − π

2
l + δl

)
Pl(cos θ). (4.125)

Our next task is to obtain the constant Cl . To this end, let us think about repre-
senting the asymptotic form in Eq. (4.125) by the sum of a term that depends on eikr

and another that depends on e−ikr as

1

r
Cl sin

(
kr − π

2
l + δl

)
= Cl

1

2ir

{
eikre−i π

2 leiδl − e−ikrei π
2 le−iδl

}

=
(

Cl

2ir
e−i π

2 leiδl

)
eikr −

(
Cl

2ir
ei π

2 le−iδl

)
e−ikr , (4.126)

so ψ(r, θ) is represented as

ψ(r, θ) ∼
∞∑

l=0

{(
Cl

2ir
e−i π

2 leiδl

)
eikr −

(
Cl

2ir
ei π

2 le−iδl

)
e−ikr

}
Pl(cos θ). (4.127)

In the meantime, the asymptotic form of the scattering state is derived as

ψ(r, θ) ∼ eikz + f (θ)

r
eikr , (4.128)

in accordance with Eq. (4.18). As the first term of this equation is expanded as
Eq. (4.120), the asymptotic form of the coefficient of the term of Pl(cos θ) is repre-
sented by the sum of eikr and e−ikr as

1

kr
(2l + 1)il sin

(
kr − π

2
l

)

=
{

(2l + 1)il

2ikr
e−i π

2 l

}
eikr −

{
(2l + 1)il

2ikr
ei π

2 l

}
e−ikr , (4.129)
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and Eq. (4.128) is rewritten as

ψ(r, θ) ∼
∞∑

l=0

{{
(2l + 1)il

2ikr
e−i π

2 l

}
eikr −

{
(2l + 1)il

2ikr
ei π

2 l

}
e−ikr

}
Pl(cos θ)

+ f (θ)

r
eikr . (4.130)

For Eqs. (4.127) and (4.130) to be consistent with each other, the terms in these
two equations that depend on e−ikr need to be equal. Thus by equalizing the coeffi-
cients of the two e−ikr terms for all values of l, we can write

Cl

2ir
ei π

2 le−iδl = (2l + 1)il

2ikr
ei π

2 l

and thus derive

Cl = (2l + 1)il

k
eiδl . (4.131)

Substituting this back into the Legendre expansion in Eq. (4.125), we obtain

ψ(r, θ) ∼ 1

kr

∞∑

l=0

(2l + 1)ileiδl sin

(
kr − π

2
l + δl

)
Pl(cos θ). (4.132)

This is the partial wave expansion of the asymptotic form of the scattering state.
We can also use the fact that the coefficients of eikr in Eq. (4.127) and those of

eikr in Eq. (4.130) are equal to write

∞∑

l=0

{
Cl

2ir
e−i π

2 leiδl

}
Pl(cos θ) =

∞∑

l=0

{
(2l + 1)il

2ikr
e−i π

2 l

}
Pl(cos θ) + f (θ)

r
, (4.133)

which can be rearranged using

Cl

2ir
e−i π

2 leiδl − (2l + 1)il

2ikr
e−i π

2 l = (2l + 1)

2ikr

(
e2iδl − 1

)

= (2l + 1)

kr
eiδl sin δl

to derive f (θ) as a sum in terms of l, as

f (θ) = 1

k

∞∑

l=0

(2l + 1)eiδl sin δlPl(cos θ). (4.134)

This equation is the partial wave expansion of the scattering amplitude expressed
using the phase shift.
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Let us now derive the total cross section σ using the scattering amplitude that has
just been obtained. From the definition given in Eq. (4.23),

σ =
∫ ∣∣f (θ)

∣∣2 dΩ

=
∫ π

0

∫ 2π

0

∣∣f (θ)
∣∣2

sin θ dθ dφ,

so we can substitute Eq. (4.134) into this and derive

σ = 1

k2

∞∑

l=0

(2l + 1)2 sin2 δl

2

2l + 1
2π

= 4π

k2

∞∑

l=0

(2l + 1) sin2 δl. (4.135)

Representing the partial cross section as

σl = 4π

k2
(2l + 1) sin2 δl, (4.136)

the total cross section is written as

σ =
∞∑

l=0

σl. (4.137)

When we substitute θ = 0 into the scattering amplitude in Eq. (4.134), we obtain

f (0) = 1

k

∞∑

l=0

(2l + 1)eiδl sin δl, (4.138)

of which the imaginary part is expressed as

Imf (0) = 1

k

∞∑

l=0

(2l + 1) sin2 δl, (4.139)

where Im z stands for the imaginary part of z. By comparing this to Eq. (4.135), we
can derive

σ = 4π

k
Imf (0). (4.140)

Equation (4.140) shows that the imaginary part of the forward scattering amplitude,
that is, the scattering amplitude at θ = 0, can be multiplied by 4π

k
to become equal

to the total cross section, and this equation is known as the equation representing
the optical theorem.
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4.4.5 Phase Shift in Electron Diffraction

As is evident from the discussion above, when we describe an electron wave scat-
tered by atoms by the sum of partial waves with different values of the orbital an-
gular momentum, each partial wave has a different phase shift δl , depending on the
value of l. The total scattering amplitude, then, is represented as the sum of the
complex scattering amplitudes each characterized by δl . This means that the total
scattering amplitude can also be expressed as a complex function, as

f (θ) = ∣∣f (θ)
∣∣eiη(θ). (4.141)

When A = Ref (θ) and B = Imf (θ), where Re z stands for the real part of a com-
plex number z, we can write |f (θ)|2 and tanη(θ) as

∣∣f (θ)
∣∣2 = A2 + B2, (4.142)

tanη(θ) = B

A
. (4.143)

Problem 4.9
Prove the following two equations:

Ref (θ) = 1

2k

∞∑

l=0

(2l + 1) sin 2δlPl(cos θ), (4.144a)

Imf (θ) = 1

2k

∞∑

l=0

(2l + 1)(1 − cos 2δl)Pl(cos θ). (4.144b)

Solution
Extracting the real part and the imaginary part of Eq. (4.134), we can write

Ref (θ) = 1

k

∞∑

l=0

(2l + 1) cos δl sin δlPl(cos θ),

Imf (θ) = 1

k

∞∑

l=0

(2l + 1) sin2 δlPl(cos θ).

As sin 2δl = 2 cos δl sin δl and 1 − cos 2δl = 2 sin2 δl , we can see that Eqs. (4.144a)
and (4.144b) hold. �

As is shown from the explanation so far, in order to obtain the complex scattering
amplitude f (θ), which is expressed as Eq. (4.141), we need to solve the Schrödinger
equation given by Eqs. (4.90a) and (4.90b) for each value of l, and calculate the
corresponding phase shift δl . Then, using all of these δl values, we add up the partial
waves until the values of A and B cease to be affected, that is, where they can be
considered to reach convergence. Using these A and B , we can calculate f (θ). In
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Fig. 4.13 The absolute
values of the scattering
amplitudes (|f (θ)|) and the
phase shifts (η(θ))

the case of an electron beam accelerated by 40 keV, it is known that adding up the
partial waves for up to l = 250 gives us the convergence at a precision level of six
figures.

As the potential U(r) obviously differs for different atomic species, so do the
phase shift δl and, thus, the value of η(θ). Figure 4.13 plots the values |f (θ)| and
η(θ) of some atomic species as a function of the scattering parameter s. As is evident
from the s dependence of f (θ) shown in Eq. (4.67), |f (θ)| rapidly decreases when
s increases. We can also see from this figure that η(θ) increases monotonically when
s increases, and that heavier atoms have larger η(θ) values, which reflects the extent
of the pull on the waves being larger in heavier atoms.

Since the scattering amplitude is given as Eq. (4.141) in a complex representa-
tion, the scattering amplitude of the electron beam in the case of a scattering by a
diatomic molecule, where the scattering amplitudes of atoms 1 and 2 are given by

{
f1(θ) = ∣∣f1(θ)

∣∣eiη1(θ),

f2(θ) = ∣∣f2(θ)
∣∣eiη2(θ),

(4.145)

is calculated as

I (θ) = ∣
∣fmol(θ)

∣
∣2

= ∣∣f1(θ)
∣∣2 + ∣∣f2(θ)

∣∣2 + ∣∣f1(θ)
∣∣ · ∣∣f2(θ)

∣∣ei(η1−η2)eis·(r1−r2)
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+ ∣∣f1(θ)
∣∣ · ∣∣f2(θ)

∣∣e−i(η1−η2)e−is·(r1−r2)

= ∣∣f1(θ)
∣∣2 + ∣∣f2(θ)

∣∣2 + 2
∣∣f1(θ)

∣∣ · ∣∣f2(θ)
∣∣ cos

{
(η1 − η2) − s · r12

}
, (4.146)

using Eq. (4.74). By taking the third term of Eq. (4.146), which is an interference
term, and integrating it over all space then taking the average, as we did to derive
Eq. (4.81), we can obtain the molecular scattering intensity Imol as

Imol(θ) = 2
∣∣f1(θ)

∣∣ · ∣∣f2(θ)
∣∣ cos(η1 − η2)

sin sr12

sr12
. (4.147)

Problem 4.10
Calculate the Imol(θ) in Eq. (4.147) using Eq. (4.146).

Solution
Letting η1 − η2 = 	η, we can write

cos
{
(η1 − η2) − s · r12

} = cos	η cos(s · r12) + sin	η sin(s · r12).

When the second term of this equation integrated over all space and averaged is
named I2, we can derive

I2 = 1

4π

∫ 2π

0
dβ

∫ π

0
sin	η sin(sr12 cosα) sinα dα

= −1

2
sin	η

∫ −1

1
sin(sr12γ )dγ

= 0.

Therefore, we see that Imol(θ) is Eq. (4.78) multiplied by cos	η, which gives us
Eq. (4.147). �

4.5 The Effect of Molecular Vibration

4.5.1 Mean Square Amplitudes

As described at the beginning of the previous section, the effect of molecular vibra-
tion appears in the diffraction pattern of an electron beam scattered by molecules.
In this section, we will examine how the molecular scattering intensity described by
Eq. (4.147) changes under the influence of molecular vibration.

As we have learned in Chap. 2, a molecule vibrates around its equilibrium in-
ternuclear distance. When we regard a diatomic molecule, as an approximation, as
a harmonic oscillator in its vibrational ground state (v = 0, where v is the vibra-
tional quantum number), Eq. (2.54) from Sect. 2.2 allows us to write its molecular
vibrational wave function as

ψ0(ξ) = N0H0(ξ) exp

(
−ξ2

2

)
. (4.148)
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As shown from Eq. (2.113) in Sect. 2.2, the expectation value of x2 in this ground
state is

〈
x2〉

v=0 =
∫

ψ∗
0 x2ψ0 dx = 〈0|x2|0〉 = 1

2β
, (4.149)

where x represents the displacement from the equilibrium internuclear distance re.
We call 〈x2〉v=0 the mean square amplitude for the vibrational ground state, and
represent it as l2

0 . That is to say,

l2
0 = 1

2β
= �

2μω

(
β = 1

2l2
0

)
. (4.150)

Using this mean square amplitude for the zero-point vibration, the eigenfunction for
v = 0 can be described as

ψ0(x) =
(

β

π

) 1
4

exp

(
− x2

4l2
0

)
. (4.151)

Therefore, the distribution function for x can be written as

P0(x) = ∣
∣ψ0(x)

∣
∣2 =

(
β

π

) 1
2

exp

(
− x2

2l2
0

)
= 1

√
2πl2

0

exp

(
− x2

2l2
0

)
. (4.152)

In the thermal equilibrium at temperature T , the ratio of the number of molecules
which have the quantum number v with respect to the total number of molecules can
be given by the Boltzmann distribution as

wv = exp
(− v�ω

kT

)

∞∑
n=0

exp
(−n�ω

kT

) , (4.153)

so that, at temperature T , we can write the distribution function P(x,T ) as

P(x,T ) =
∞∑

v=0

wv

∣∣ψv(x)
∣∣2

. (4.154)

It is known that P(x,T ) is given by the same type of equation as the one for v = 0,
Eq. (4.151), as

P(x,T ) = 1
√

2πl2
h

exp

(
− x2

2l2
h

)
, (4.155)

where l2
h is described as

l2
h = l2

0 coth

(
�ω

2kT

)
, (4.156)

and stands for the mean square amplitude at temperature T .
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We can prove that the mean square amplitude l2
h at temperature T is given by

Eq. (4.156) as follows. First, by following the Boltzmann distribution, we can de-
scribe l2

h as the weighted sum of 〈v|x2|v〉, which are the expectation values of x2 at
the eigenstate whose vibrational quantum number is v, so that

l2
h = 〈

x2〉
T

=
∞∑

v=0

wv〈v|x2|v〉. (4.157)

As Eq. (2.113) gives us

〈v|x2|v〉 = 2v + 1

2β
, (4.158)

we can obtain

l2
h =

∑

v

( 2v+1
2β

· e−vγ
)

∑

v

e−vγ
, (4.159)

where γ = �ω
kT

. As we can write

∑

v

e−vγ = 1

1 − e−γ
, (4.160)

we can differentiate both sides of this equation and derive

∑

v

ve−vγ = e−γ

(1 − e−γ )2
. (4.161)

By substituting Eqs. (4.160) and (4.161) into Eq. (4.159), we can arrive at

l2
h = 1

2β

(
2e−γ

1 − e−γ
+ 1

)

= 1

2β

(
e

γ
2 + e− γ

2

e
γ
2 − e− γ

2

)

= l2
0 coth

(
�ω

2kT

)
, (4.162)

which shows that Eq. (4.156) stands. Note here that the square root of the mean
square amplitude lh is called the mean amplitude. In the case of diatomic molecules,
lh is in the range between 0.03 Å and 0.08 Å at room temperature (see Table 4.1).

Problem 4.11
Using the values given in Table 4.1 for the frequency ν̃, calculate the mean am-
plitude at the vibrational ground state, l0, and the mean amplitude at temperature
T = 300 K, lh, for diatomic molecules H2, HCl, N2, NO, O2, Cl2, and Br2.
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Table 4.1 Mean amplitudes
of diatomic molecules ν̃/cm−1 l0/Å lh/Å (300 K)

H2 4401 0.0872 0.0872

HCl 2991 0.0758 0.0758

N2 2359 0.0319 0.0319

NO 1904 0.0344 0.0344

O2 1580 0.0365 0.0365

Cl2 559.7 0.0415 0.0441

Br2 323.2 0.0361 0.0448

Solution
Using μ amu, the reduced mass, and ν̃ cm−1, the vibrational frequency, of the di-
atomic molecule, we can write

l2
0 = 1

2β
= h

8π2μcν̃
= 16.8576

μν̃
Å

2
,

l2
h = l2

0 coth

(
hcν̃

2kT

)
= l2

0 coth

(
0.71938ν̃

T

)
Å

2
.

Thus, by adopting the values of ν̃ given in Table 4.1, we can obtain l0 and lh at
T = 300 K as shown in the table. We can see from the results that lh is nearly equal
to l0 at room temperature in the case of diatomic molecules with relatively high
vibrational frequencies, whereas lh becomes larger than l0 in diatomic molecules
with lower vibrational frequencies. �

When the internuclear distance r12 has the probability distribution P(x,T )

shown by Eq. (4.155) around the equilibrium internuclear distance re, the molec-
ular scattering intensity Imol(θ, r12) is averaged by this distribution function. That
is, the averaged molecular scattering intensity 〈Imol(θ)〉 can be written as

〈
Imol(θ)

〉 =
∫ ∞

−∞
P(x,T )Imol(θ, re + x)dx, (4.163)

where r12 = re +x. Let us then derive the representation of 〈Imol(θ)〉 by substituting
the molecular scattering intensity Imol(θ) given by Eq. (4.147) into Eq. (4.163).

In this case, 〈Imol(θ)〉 can be described as

〈
Imol(θ)

〉 = 2
∣∣f1(θ)

∣∣ · ∣∣f2(θ)
∣∣ cos(η1 − η2)

· 1
√

2πl2
h

∫ ∞

−∞
exp

(
− x2

2l2
h

)
sin s(re + x)

s(re + x)
dx. (4.164)



236 4 Scattering Electrons

Representing the integral part of this equation as I and letting βh = 1
2l2h

, we can

write

I =
∫ ∞

−∞
e−βhx

2 sin s(re + x)

s(re + x)
dx. (4.165)

Of course, x cannot be −∞, but the spread of the Gaussian in the integrand, that is,
the mean amplitude lh (< 0.1 Å), is sufficiently small in comparison to re (which
ranges between 1 and 2 Å), so that the integrand becomes 0 quickly enough before
re + x becomes negative. Therefore, the integral range from −∞ to +∞ can be
rationalized. Because x

re
is sufficiently small, we can approximate the denominator

in the integrand as

1

s(re + x)
= 1

sre
· 1

(
1 + x

re

) ∼ 1

sre

(
1 − x

re

)
. (4.166)

This allows us to describe the integral I using

I1 = 1

sre

∫ ∞

−∞
e−βhx

2
sin s(re + x)dx (4.167)

and

I2 = 1

sr2
e

∫ ∞

−∞
e−βhx

2
x sin s(re + x)dx (4.168)

as

I = I1 − I2. (4.169)

By performing the integration of I1 and I2, we obtain

I1 =
√

2πl2
he− l2h

2 s2 · sin sre

sre
(4.170)

and

I2 =
√

2πl2
he− l2h

2 s2 · l2
h

r2
e

cos sre. (4.171)

From Eqs. (4.169) through (4.171), we can derive

I =
√

2πl2
he− l2h

2 s2 · 1

sre

(
sin sre − sl2

h

re
cos sre

)

=
√

2πl2
he− l2h

2 s2 · 1

sre
sin

(
sre − sl2

h

re

)
, (4.172)

where the relationship

sin

(
sre − sl2

h

re

)
= sin sre cos

sl2
h

re
− cos sre sin

sl2
h

re
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∼ sin sre − sl2
h

re
cos sre (4.173)

is used because, as s is at most 40 Å
−1

and lh ∼ 0.04 Å, we can regard
sl2h
re

as being
sufficiently small.

By substituting Eq. (4.172) back into Eq. (4.165), Eq. (4.164) can be described
as

〈
Imol(θ)

〉 = 2
∣∣f1(θ)

∣∣ · ∣∣f2(θ)
∣∣e− l2h

2 s2 · cos(η1 − η2) · sin s
(
re − l2h

re

)

sre
. (4.174)

What this shows is that, due to the vibration of the molecule, there appears a damp-

ing factor e− l2h
2 s2

, whose value decreases as the parameter s increases, that is, as the
scattering angle increases. The degree of damping increases as lh increases.

Problem 4.12
By performing the integrals in Eqs. (4.167) and (4.168), derive Eqs. (4.170) and
(4.171), using

∫ ∞

−∞
e
− x2

2l2h cos sx dx =
√

2πl2
he− l2h

2 s2
. (4.175)

Solution
By taking into account whether the integrands are even or odd with respect to x, we
can derive

I1 = 1

sre

∫ ∞

−∞
e−βhx

2
(sin sre cos sx + cos sre sin sx)dx

= sin sre

sre

∫ ∞

−∞
e−βhx

2
cos sx dx.

Similarly, we obtain

I2 = cos sre

sr2
e

∫ ∞

−∞
e−βhx

2
x sin sx dx

= cos sre

sr2
e

([
e−βhx

2

−2βh
sin sx

]∞

−∞
+

∫ ∞

−∞
e−βhx

2

2βh
s cos sx dx

)

= l2
h

r2
e

cos sre

∫ ∞

−∞
e−βhx

2
cos sx dx.

When we apply Eq. (4.175) to I1 and I2, we can obtain Eqs. (4.170) and (4.171) by
using βh = 1

2l2h
. �
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It is known that, due to the anharmonicity of vibrations, 〈Imol(θ)〉 can be de-
scribed using ra, which will be introduced in Sect. 4.5.2, as

〈
Imol(θ)

〉 = 2
∣∣f1(θ)

∣∣ · ∣∣f2(θ)
∣∣e− l2h

2 s2
cos(η1 − η2)

sin s(ra − κs2)

sra
, (4.176)

where κ is called the anharmonicity parameter and can be described using the pa-
rameter α in the Morse potential of Eq. (2.161) and the mean amplitude lh as

κ = α

6
l4
h . (4.177)

The value of α differs by the species of diatomic molecules, but usually ranges

between 1.0 and 2.6 Å
−1

, which renders the value of κ around 1 × 10−6 Å
3
. As can

be seen from Eq. (4.176), the effect of the anharmonicity remains small as long as s

is not large.

4.5.2 The ra Structure and the rg Structure

We will now turn our attention to the physical meaning of the internuclear distance
of a diatomic molecule obtained by the gas phase electron difraction method. When
r represents the internuclear distance r12, the internuclear distance ra that is obtained
from the observed molecular scattering intensity using Eq. (4.176) can be given as
the inverse of

〈
1

r

〉

T

=
∫ ∞

0

P(r,T )

r
dr, (4.178)

i.e., as

ra ≡
〈

1

r

〉−1

T

=
(∫ ∞

0

P(r,T )

r
dr

)−1

. (4.179)

The molecular structure described by the structural parameter given by Eq. (4.179)
is called the ra structure. When 	r represents the small displacement from the equi-
librium internuclear distance re, that is, when

r = re + 	r, (4.180)

the Taylor expansion of 1
r

around re is

1

r
= 1

re
(
1 + 	r

re

) ∼ 1

re

{
1 − 	r

re
+

(
	r

re

)2}
, (4.181)
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and therefore we can derive

ra ∼ re

{
1 − 〈	r〉T

re
+ 〈(	r)2〉T

r2
e

}−1

∼ re + 〈	r〉T − 〈(	r)2〉T
re

(4.182)

from the definition of ra given in Eq. (4.179). Substituting 	r for x in the definition
of the mean square amplitude given in Eq. (4.157), we obtain

ra ∼ re + 〈	r〉T − l2
h

re
. (4.183)

From the above discussion, we can see how the effect of molecular vibration is
included in the ra structure obtained directly from observed data. However, what has
a clearer physical meaning as the average of the internuclear distance is the average
of r , defined as

rg ≡ 〈r〉T =
∫ ∞

0
P(r,T )r dr. (4.184)

The molecular structure described by the structural parameter given by Eq. (4.184)
is called the rg structure.

As is immediately apparent, we can derive

rg = 〈re + 	r〉T = re + 〈	r〉T , (4.185)

and thus we can use Eqs. (4.183) and (4.185) to obtain

rg = ra + l2
h

re
∼ ra + l2

h

ra
. (4.186)

This equation allows us to transform a ra structure obtained by an experiment into a
rg structure.

In the case of O2 molecules, for example, we know that ra = 1.2118 Å and
lh = 0.0365 Å at room temperature. We can apply these values to Eq. (4.186) and
calculate the value of rg as rg = 1.2129 Å. As it is known that re = 1.2074 Å for O2,
we can also confirm that rg = 1.2129 Å is obtained when this value of re is adopted
in the calculation of the term l2

h/re.

Problem 4.13
We notice that the centrifugal distortion effect, which increases the internuclear dis-
tance, is not taken into account in Eq. (4.185) for rg or in Eq. (4.183) for ra. For
a diatomic molecule, describe this increase in the internuclear distance induced by
the rotational effect, δr , using the absolute temperature T .

Solution
Letting the reduced mass of the diatomic molecule be μ, the internuclear dis-
tance stretched by the centrifugal distortion effect be re + δr , and the angular fre-
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quency of the rotation be ωrot, the kinetic energy of the rotation is represented as
1
2μ(re + δr)2ω2

rot, and the rotational energy of the diatomic molecule at the thermal
equilibrium is represented as kBT , where kB is the Boltzmann constant. Therefore,
we can write

kBT = 1

2
μ(re + δr)2ω2

rot. (4.187)

In the meantime, if we define k as the force constant for the vibrational motion
of the diatomic molecule, the restoring force is −kδr , where δr is the displacement
of the internuclear distance. As the restoring force and the centrifugal force μ(re +
δr)ω2

rot are balanced with each other, the sum of these two forces becomes zero.
That is to say,

kδr = μ(re + δr)ω2
rot. (4.188)

From Eqs. (4.187) and (4.188), we can approximate

kBT = 1

2
k
{
δr · re + (δr)2}

∼ 1

2
kδr · re, (4.189)

ignoring the term of (δr)2 due to its smallness. Therefore, we can estimate δr as

δr = 2kBT

kre
. (4.190)

At room temperature, δr takes a value between 0.001 and 0.002 Å. We can derive
the rg in Eq. (4.185) in a form that includes δr as

rg = re + δr + 〈	r〉T . (4.191)

�

If molecular vibration had no anharmonicity, the relation 〈	r〉T = 0 would hold
for Eq. (4.191). Thus, we would only have to use rg and the correction term δr to
obtain re. In reality, however, 〈	r〉T becomes larger than δr due to the anharmonic-
ity. As have learned in Chap. 2, the vibrational potential V of the diatomic molecule
can be described as an expansion of the Morse potential given in Eq. (2.161), which
gives us

V = 1

2
μω2(	r)2 − 1

2
αμω2(	r)3 + · · · . (4.192)

In a stationary state,
〈

∂V
∂(	r)

〉
T

, the expectation value of the force acting on the sys-

tem, ∂V
∂(	r)

, becomes zero, as stated in Ehrenfest’s theorem. By using the relation
derived from this theorem, we can write

〈	r〉T = 3

2
α

〈
(	r)2〉

T
. (4.193)
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As 〈(	r)2〉T = l2
h , we can rewrite Eq. (4.191) as

rg = re + δr + 3

2
αl2

h . (4.194)

What this equation shows is that, when ra and l2
h are obtained by a gas phase electron

diffraction experiment, we can evaluate rg by applying Eq. (4.186), and then obtain
the equilibrium internuclear distance re by estimating δr using the force constant.
In doing so, of course, as the force constant k is given by k = μω2, all we need is
the frequency of the molecular vibration.

Problem 4.14
Calculate the re of an O2 molecule using Eq. (4.194), letting the Morse parameter

be α = 2.476 Å
−1

, the force constant k = 1.18 × 103 N m−1, and the Boltzmann
constant kB = 1.3806503 × 10−23 J K−1.

Solution
When we use ra = 1.2118 Å as a good estimate of re in Eq. (4.190) and assume
that T = 300 K, we obtain δr = 0.00058 Å. By using lh = 0.0365 Å, we can derive
〈	r〉T = 0.00495 Å. As rg = 1.2129 Å, we obtain re = 1.2074 Å. �

4.6 Electron Beam Scattering by Polyatomic Molecules

4.6.1 Molecular Scattering Curves and Radial Distribution Curves

From the discussions so far, it has been made clear that we can calculate the intensity
of a diffracted wave caused by a molecule consisting of n atoms as

I ∝
n∑

i

∣∣fi(θ)
∣∣2 +

n∑ n∑

i 	=j

{∣∣fi(θ)
∣∣∣∣fj (θ)

∣∣ cos(ηi − ηj )

∫ ∞

0
Pij (rij )

sin srij

srij
drij

}
,

(4.195)
where

fi(θ) ∝ Zi − Ai(θ)

s2
. (4.196)

Describing I as a sum of two parts, the molecular scattering intensity Imol and the
rest which gives the background, so that

I = Imol + IB, (4.197)

we can express IB as the sum of the square of the absolute value of the scattering
amplitude fi(θ) caused by the atoms within a molecule, that is,

IB =
n∑

i

∣∣fi(θ)
∣∣2

. (4.198)
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When we define the ratio of Imol to IB as

M(s) = Imol

IB

=

n∑ n∑

i 	=j

|fi(θ)||fj (θ)| cos(ηi − ηj )
∫ ∞

0 Pij (rij )
sin srij
srij

drij

n∑

k

|fk(θ)|2
, (4.199)

M(s) is represented as

M(s) =
n∑ n∑

i 	=j

(Zi − Ai(θ))(Zj − Aj(θ))
n∑

k

(Zk − Ak(θ))2
cos(ηi − ηj )

∫ ∞

0
Pij (rij )

sin srij

srij
drij .

(4.200)
As Ai(θ) and Aj(θ) are small enough in comparison with Zi and Zj , and as we can
regard the term of cos(ηi − ηj ) as being close to 1, we can approximate M(s), if rij

is represented as rij = r ′, as

M(s) = K

n∑ n∑

i 	=j

ZiZj

∫ ∞

0
Pij

(
r ′) sin sr ′

sr ′ dr ′, (4.201)

where K is a proportionality constant which does not depend on s and Pij (r
′) stands

for the distribution of the distance r ′ originating from the vibrational motion of the
molecule. When we multiply this M(s) by s, and Fourier transform it with sin sr ,
the function D(r) of r is calculated as

D(r) =
∫ ∞

0
sM(s) sin sr ds

= K

n∑ n∑

i 	=j

ZiZj

∫ ∞

0

∫ ∞

0

Pij (r
′)

r ′ sin sr ′ sin sr dr ′ ds. (4.202)

The Fourier sine transform of a given function f (r) is generally describable as

g(s) =
∫ ∞

0
f

(
r ′) sin sr ′ dr ′, (4.203)

and the Fourier inverse transformation of this function as

f (r) = 2

π

∫ ∞

0
g(s) sin sr ds, (4.204)

so that we can substitute Eq. (4.203) into Eq. (4.204) to obtain

f (r) = 2

π

∫ ∞

0

∫ ∞

0
f

(
r ′) sin sr ′ sin sr dr ′ ds. (4.205)

When we define f (r ′) as

f
(
r ′) = Pij (r

′)
r ′ (4.206)
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and apply Eq. (4.205) to Eq. (4.202), we can derive

D(r) = π

2
K

n∑ n∑

i 	=j

Pij (r)
ZiZj

r
. (4.207)

This D(r) is called the radial distribution curve or the radial distribution function.
Equations (4.207) and (4.202) tell us that we can calculate the radial distribution
curve D(r) by the Fourier transform of sM(s), which expresses the contribution of
the molecular scattering. We can obtain sM(s), in turn, from Eq. (4.202) by using
the relationship between Eqs. (4.203) and (4.204), as

sM(s) = 2

π

∫ ∞

0
D

(
r ′) sin sr ′ dr ′. (4.208)

This function, sM(s), is called the molecular scattering curve. Equation (4.208)
signifies that we can obtain sM(s) as the Fourier inverse transformation of D(r ′).

The radial distribution curve given by Eq. (4.207) is useful for us to gain an in-
tuitive understanding of the contribution of an atom pair to diffraction intensity that
is caused by molecular scattering: a peak appearing at the distance of r in the radial
distribution curve show us that there are two atoms located at a specific internuclear
distance r , and the height of this peak is proportional to the product of the nuclear
charges of the two atoms in question, while being inversely proportional to the in-
ternuclear distance. Also, the width of the peak represents the mean amplitude.

In an actual analysis, we represent the molecular scattering intensity observed in
the form of a molecular scattering curve sM(s). We then calculate M(s), expressed
as Eq. (4.200), by using structural parameters such as the internuclear distance and
the bond angle, and multiply it by s to yield sM(s), which in turn is fitted to the
observed sM(s) by the least-squares method by using the structural parameters as
variables.

In calculating sM(s), the effect of molecular vibration also needs to be taken
into consideration. In the case of a polyatomic molecule, as will be discussed in
Sect. 4.6.3, molecular vibration is described as the superposition of all vibrations
along the normal coordinate. Therefore, to know how large the probability distribu-
tion is for the internuclear distance of bonded and non-bonded atomic pairs, that is,
to find out the degree of the mean amplitude, we have to calculate the normal mode
vibration through a vibrational analysis such as the GF matrix method discussed in
Sect. 2.5, and then add up the contributions of all vibrational modes affecting the
probability distribution of the internuclear distance.

As an example, the molecular scattering curve sM(s) for CO2 and the radial dis-
tribution curve D(r) obtained through a Fourier transform of this sM(s) are shown
in Fig. 4.14. In the radial distribution curve, we can see two peaks at around 1.2 Å
and 2.3 Å, which respectively represent r(C=O), the internuclear distance for C=O,
and r(O · · ·O), the internuclear distance for O · · ·O. The dotted line “· · · ” is used
here to represent a non-bonded atom pair.

As Eq. (4.207) shows, we can think of the peak intensities in a radial distribu-
tion curve as being roughly proportional to

ZiZj

r
. As 2r(C=O) ∼ r(O · · ·O), the
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Fig. 4.14 The molecular scattering curve sM(s) and the radial distribution curve D(r) for CO2

ratio of I (C=O), the peak intensity at r(C=O), to I (O · · ·O), the peak intensity at
r(O · · ·O), becomes

I (C=O) : I (O · · ·O) ∼ 2 · 6 · 8

r(C=O)
: 8 · 8

2r(C=O)

= 3 : 1,

taking into account that there are two C=O bonds in the molecule. Indeed, this result
is nearly equal to the ratio of the two peak intensities found in the radial distribution
function in Fig. 4.14. What this radial distribution curve teaches us, then, is that
there are two overlapping interference patterns constituting the molecular scattering
curve, which are caused by atom pairs with different internuclear distances, and that
the contribution of the interference pattern with the shorter internuclear distance is
about three times as large as the contribution of that with the longer internuclear
distance.

4.6.2 From a Molecular Scattering Curve
to the Molecular Structure

Figure 4.15 shows the molecular scattering curve of CO2 obtained from the electron
diffraction image observed at room temperature. Let us now determine the molecu-
lar geometrical structure of CO2 through a simple analysis.

First, we can determine s0, the value of s for the zeros, where the molecular
scattering curve intersects the horizontal axis in the figure, as listed in Table 4.2.
This table shows us that all intervals between neighboring zeros are roughly equal,

falling somewhere around 2.8 Å
−1

. When we assume that the same cycle holds for

smaller s values, the zero where s = 8.03 Å
−1

can be counted as the third zero from
the inside. Note here that regions of small-angle scattering, where s is even smaller,
is blocked in order to prevent the electron beam traveling straight from hitting a
detection instrument such as the photographic plate directly. This is why there is no
data of the molecular scattering curve obtained for the small s region.
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Fig. 4.15 The experimental
molecular scattering curve of
CO2

Table 4.2 The position of the zeros s0 in the molecular scattering curve and the internuclear
distance r of CO2

n s0/Å
−1

r/Å

3 8.03 1.1737

4 10.83 1.1603

5 13.50 1.1636

6 16.20 1.1636

7 18.85 1.1666

8 21.62 1.1625

n s0/Å
−1

r/Å

9 24.20 1.1684

10 27.04 1.1618

11 29.72 1.1628

12 32.45 1.1618

13 35.17 1.1612

The zeros appearing at a regular interval of 2.8 Å
−1

suggests that these zeros
are ascribable to an interference pattern caused by a pair of atoms with a specific
internuclear distance. Thus we will consider such an s value in the formula of the
molecular scattering curve, Eq. (4.208), as to yield sin sr = 0 as a zero. Then, s0r =
nπ (n = 1,2,3, . . .), and therefore, from the value of the n-th zero, we can obtain

r = n

s0
π.

The r values calculated by this equation are also listed in Table 4.2. The r value is
distributed around the region of 1.16 to 1.17 Å, and its average can be obtained as
r = 1.164 Å. This figure corresponds well to the distance of the C=O bond in an
CO2 molecule at T = 300 K already calculated as ra(C=O) = 1.1640 Å.

In the case of CO2, interference caused by the non-bonded atom pair O · · ·O has
to be observed as well, as we learned in Fig. 4.14, which begs the question: Why do
we not see the contribution from this atom pair in the molecular scattering curve?
This puzzle can be solved when we look at Fig. 4.16, which charts the contributions
of the two C=O pairs and of the one O · · ·O pair in the molecular scattering curve
of CO2 calculated separately. As this figure shows, the positions of the zeros arising
from C=O pairs correspond to the positions of the zeros arising from O · · ·O. This
is because, as 2r(C=O) ∼ r(O · · ·O) holds, the period of the sinusoidal molecular
scattering curve caused by O · · ·O is almost an exact half of the period of that caused
by C=O.
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Fig. 4.16 Contributions of
the C=O and O · · ·O atom
pairs constituting the
molecular scattering curve of
CO2

Next, let us take CS2 as an example to examine how the phase shift (see Sect. 4.4)
and the effect of molecular vibration (see Sect. 4.5) are reflected in the molecular
scattering curve.

Figure 4.17(a) shows the molecular scattering curve sM(s) as calculated without
taking either the phase shift or the molecular vibration into consideration. Next,
when we include the phase shift cos(ηi − ηj ), the shape of sM(s) changes into
Fig. 4.17(b). We can see here that, as discussed in Sect. 4.4, the phase shift decreases
the amplitude of sM(s) as the value of s increases. Figure 4.17(c), on the other hand,
shows the case where phase shift is ignored, but the effect of molecular vibration

is not, so that the terms of e− l2h
2 s2

corresponding to the atom pairs C=S and S · · ·S
are included. This figure shows that the effect of molecular vibration decreases the
amplitude of sM(s) more rapidly than does the phase shift. Lastly, Fig. 4.17(d)
shows the curve of sM(s) which takes into account both the phase shift and the
molecular vibration.

This last model of sM(s) reproduces the observed curve of sM(s). In the gas
electron diffraction method, we determine molecular structures by taking account
of both the effect of the phase shift and that of molecular vibration, then calculat-
ing sM(s) with the internuclear distance and the bond angle regarded as structural
parameters, and finally fitting the result to the observed sM(s) by the least-squares
method.

4.6.3 The Shrinkage Effect

In electron diffraction experiments, we can obtain the average values for the in-
ternuclear distance, as discussed in Sect. 4.5.2. The internuclear distances between
bonded and non-bonded atom pairs obtained for linear triatomic molecules CO2
and CS2 at room temperature are represented as rg structures in Table 4.3. This ta-
ble shows that rg(O · · ·O) is less than twice the distance of rg(C=O), and that, simi-
larly, rg(S · · ·S) is less than twice the distance of rg(C=S). The degree of shrinkage,
that is,

δg(CO2) ≡ 2rg(C=O) − rg(O · · ·O) (4.209)
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Fig. 4.17 The molecular
scattering curve of CS2

and

δg(CS2) ≡ 2rg(C=S) − rg(S · · ·S), (4.210)

are both significantly larger than 0, considering that the precision of the structural
parameters is somewhere around ±0.001 Å. This shrinkage effect has first been
explained by Morino and by Bastiansen’s group, which is why it is also called the
Morino-Bastiansen shrinkage effect. To understand this effect, we need to consider
the fact that atom pairs within a molecule vibrate not only along the direction of its
connection but also in a direction perpendicular to this stretching vibration, which
gives the bending vibration.
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Table 4.3 Shrinkage effects
for CO2 and CS2 (unit: Å) CO2 CS2

rg(C=O) 1.1642 rg(C=S) 1.5592

rg(O · · ·O) 2.3244 rg(S · · ·S) 3.1126

δg(CO2) 0.0040 δg(CS2) 0.0058

Fig. 4.18 The relative
displacement of atom 2 with
respect to atom 1 in a
polyatomic molecule

Let us then derive the representation of the rg structure in the case of a polyatomic
molecule. The relative displacement of two atoms in a polyatomic molecule caused
by molecular vibration is illustrated as Fig. 4.18. Letting the z axis run through the
equilibrium position of atoms 1 and 2, and assuming that these two atoms are not
necessarily connected by a direct chemical bond, we can represent the average of
the internuclear distance r , rg, by considering just the relative displacement of atom
2, whereby it moves to the position of 2′, as

rg =
∫ ∞

0
P(r,T )r dr

= 〈{
(	x)2 + (	y)2 + (re + 	z)2} 1

2
〉
T
. (4.211)

As (	x)2 + (	y)2 � (re + 	z)2, we can transform the above equation into

{
(	x)2 + (	y)2 + (re + 	z)2} 1

2 = (re + 	z)

{
1 + (	x)2 + (	y)2

(re + 	z)2

} 1
2

∼ (re + 	z)

{
1 + (	x)2 + (	y)2

2(re + 	z)2

}

∼ re + 	z + (	x)2 + (	y)2

2re
, (4.212)

and thus we can obtain

rg = re + 〈	z〉T + 〈(	x)2〉T + 〈(	y)2〉T
2re

. (4.213)



4.6 Electron Beam Scattering by Polyatomic Molecules 249

To add more precision, we can add δr , the stretch in the internuclear distance caused
by the centrifugal force accompanying molecular rotation, into this equation, and
express rg as

rg = re + δr + 〈	z〉T + 〈(	x)2〉T + 〈(	y)2〉T
2re

. (4.214)

Letting the part of this equation representing the vertical displacement be substituted
by

K = 〈(	x)2〉T + 〈(	y)2〉T
2re

, (4.215)

we can write the δg(CO2) in Eq. (4.209) as

δg(CO2) = 2K(C=O) − K(O · · ·O) (4.216)

by using the fact that the terms of re, δr , and 〈	z〉T on the right-hand side cancel
each other out due to their additivity. This shows us that the shrinkage effect is
only an apparent effect, which arises because the distance between C=O becomes
seemingly longer due to the vertical displacement.

In the case of polyatomic molecules, we can obtain {Qi}, a set of the normal
coordinates represented by a linear combination of internal coordinates of displace-
ment, by analyzing the normal mode of vibration as described in Sect. 2.5. This,
then, also means that we can express an internal coordinate of displacement us-
ing {Qi}. Thus we can express not only the coordinate of displacement along the
z axis, which connects the intramolecular atom pair, but also that along a direction
perpendicular to the z axis, by linear combinations of {Qi}. Expanding 	z by {Qi},
we can write

	z =
∑

i

Lz
i Qi. (4.217)

When we represent the vibrational quantum number of the i-th normal mode of
vibration, Qi , as vi ,

〈QiQj 〉T =
∑

vi

∑

vj

wvivj
〈vivj |QiQj |vivj 〉

=
∑

vi

∑

vj

wvivj
〈vi |Qi |vi〉〈vj |Qj |vj 〉

= 0, (4.218)
〈
Q2

i

〉
T

=
∑

vi

wvi
〈vi |Q2

i |vi〉 	= 0, (4.219)

where i 	= j and the weight factors wvivj
and wvi

follow the Boltzmann distribu-
tion. We can use Eq. (4.217) to calculate the 〈(	z)2〉T corresponding to the average
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square amplitude l2
h of the atom pair as

〈
(	z)2〉

T
=

〈(∑

i

Lz
i Qi

)(∑

j

Lz
jQj

)〉

T

=
∑

i

∑

j

Lz
i L

z
j 〈QiQj 〉T

=
∑

i

(
Lz

i

)2〈
Q2

i

〉
T
. (4.220)

Taking Eq. (2.269) from Sect. 2.5.5 into account, 〈Q2
i 〉T can be expressed in a sim-

ilar manner as the average square amplitude of one-dimensional vibration given by
Eq. (4.162) as

〈
Q2

i

〉
T

= h

8π2cν̃i

coth

(
�ωi

2kT

)
, (4.221)

and therefore, when the form of Eq. (4.217) is given we can immediately calculate
〈(	z)2〉T by use of Eq. (4.220).

We can also expand 	x and 	y with the normal coordinate by using formu-
las corresponding to Eq. (4.217), and similarly calculate 〈(	x)2〉T and 〈(	y)2〉T .
Therefore, the contribution of the vertical displacement, K , can be evaluated by use
of Eq. (4.215).

4.6.4 The r0
α Structure

As we learned in Chap. 4, we can determine the rotational constant of molecules
by analyzing the rotational structure in the rotational spectrum or in the vibrational
spectrum, and use this rotational constant to determine the molecular structure. The
molecular structures obtained in this way are structures of molecules at their vibra-
tional ground state (r0 structures) or at their vibrationally excited state; these are
different from the average structure (rg structure) of an atom pair whose internu-
clear distance is at its thermal equilibrium, which can be obtained through the gas
electron diffraction method.

We can imagine that by using both the high-precision rotational constant obtained
through spectroscopy and the internuclear distance obtained directly by the electron
diffraction method at the same time, we can determine the structure of a polyatomic
molecule in more detail. To this end, we must first make the physical meanings of
the molecular structures obtained by these two different methods the same. Only
then can we consider the rotational constant and the molecular scattering curve as
belonging in the same ballpark, and analyze them in conjunction with each other.

First of all, let us introduce the rα structure defined as the distance between the
average nuclear positions of two atoms in a polyatomic molecule at their thermal
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equilibrium states. Again, by referring to Fig. 4.18 we can write

rα = {〈	x〉2
T + 〈	y〉2

T + (
re + 〈	z〉T

)2} 1
2 (4.222)

by definition, and this gives us

rα ∼ re + 〈	z〉T + 〈	x〉2
T + 〈	y〉2

T

2re
(4.223)

when treated in a similar manner as in Eq. (4.212). Here, we notice that 〈	x〉2
T

and 〈	y〉2
T are both extremely small, in the order of 10−4 Å

2
. Therefore, we can

approximate this as

rα ∼ re + 〈	z〉T . (4.224)

What this signifies is that the difference between an equilibrium internuclear dis-
tance and the distance between the average positions of the two nuclei is determined
by the anharmonicity of the vibration in the direction of the line connecting the two
atoms in question, and that we can neglect the contribution of the vibration in a di-
rection perpendicular to this line. Thus, in the rα structure, the shrinkage effect does
not appear, and the additivity of internuclear distances holds. The average of the 	z

in Eq. (4.224) is that at the thermal equilibrium state, but when we use the average
of 	z at the vibrational ground state 〈	z〉0, we can obtain

r0
α ∼ re + 〈	z〉0, (4.225)

which is called the r0
α structure. Also, when we describe the average of 	z at the

vibrationally excited state as 〈	z〉v , we can obtain

rv ∼ re + 〈	z〉v. (4.226)

The parameters r0
α and rv introduced here correspond to the structural parameters

obtained by molecular spectroscopy. Let us then first show how rα and rg correspond
to each other. From Eqs. (4.214) and (4.224), we can write

rα = rg − 〈(	x)2〉T + 〈(	y)2〉T
2re

− δr, (4.227)

which allows us to obtain the rα structure from the rg structure by using Eq. (4.227).
The parameter r0

α in Eq. (4.225) is defined as the limit value of rα at T → 0 K,
that is,

r0
α = lim

T →0 K
rα,

and is also expressed as

r0
α = rα − (〈	z〉T − 〈	z〉0

)
, (4.228)
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from Eqs. (4.224) and (4.225). Therefore, to transform rα to r0
α , we have only to cal-

culate 〈	z〉T and 〈	z〉0 on the basis of the mean amplitude and the anharmonicity
obtained by analyzing the normal modes of vibration and then substitute them into
Eq. (4.228). When the two atoms are bonded, its anharmonicity can be described by
the Morse parameter α as

r0
α = rα − 3

2
α

(〈
(	z)2〉

T
− 〈

(	z)2〉
0

)
, (4.229)

from Eq. (4.193). As does the rα structure, the r0
α structure has the additivity of the

internuclear distance.
As the r0

α structure obtained here has the same physical meaning as the rz struc-
ture obtained by spectroscopy, when we transform the structural parameter obtained
by the electron diffraction method into an r0

α structure, the rotational constants cal-
culated by using these structural parameters are equal to the rotational constants of
the rz structure, Az, Bz, and Cz.

Let us then take the example of a diatomic molecule and represent the rotational
constant Bz for its rz structure using the rotational constant for its vibrational ground
state, B0. As shown in Eq. (3.287) from Sect. 3.6, the rotational constant B0 can be
represented as

B0 = h

8π2μ

〈
0

∣∣∣∣
1

r2

∣∣∣∣0
〉

= h

8π2μ

〈
1

r2

〉

0
. (4.230)

When we let r = re + 	r and expand 1
r2 by a Taylor expansion in terms of 	r

re
, it

becomes

1

r2
= 1

r2
e

{
1 − 2

	r

re
+ 3

(
	r

re

)2

− · · ·
}
, (4.231)

so by using the rotational constant for the equilibrium structure

Be = h

8π2μr2
e
, (4.232)

we can write Eq. (4.230) as

B0 = Be

{
1 − 2〈	r〉0

re
+ 3〈(	r)2〉0

r2
e

− · · ·
}
. (4.233)

What we obtain when we stop this expansion at the second term is the rotational
constant Bz, which corresponds to the rz structure. That is, Bz can be represented as

Bz = h

8π2μr2
z

= Be

(
1 − 2〈	r〉0

re

)
. (4.234)
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Problem 4.15
Using Eqs. (4.233) and (4.234), express the rotational constant Bz with B0, Be,
and the vibrational frequency ν for the diatomic molecule treated as a harmonic
oscillator.

Solution
From Eqs. (4.233) and (4.234), B0 is represented as

B0 ∼ Bz + 3Be
〈(	r)2〉0

r2
e

. (4.235)

From Eq. (4.149), we can write

〈
(	r)2〉

0 = 1

2β
= �

2μω
. (4.236)

Substituting Eq. (4.236) into Eq. (4.235) and using ω = 2πν, we can write

Bz = B0 − 3B2
e

ν
. (4.237)

Approximating Be ∼ 1 cm−1 and ν ∼ 1000 cm−1, we can estimate the rough value
of 3B2

e /ν as 0.003 cm−1. �

As can be seen from the above problem, the anharmonicity of the potential does
not affect the correction of B0 to Bz in the case of diatomic molecules. The same
can be said of polyatomic molecules. As we have learned with the example of SO2
in Sect. 3.5, the rotational constant of a polyatomic molecule at the vibrational level
v = (v1, v2, . . .) is represented as

Bv = Be −
∑

i

αB
i

(
vi + gi

2

)
, (4.238)

using the vibration-rotation constant αB
i . The same type of formula holds for rota-

tional constants Av and Cv . In Eq. (4.238), gi stands for the degree of degeneracy
for the i-th normal mode of vibration. Although we do not have enough space to go
into detail in this book, let us note here that αB

i is represented as the sum of the term
that does not relate to the third-order anharmonic term, αB

i (harmonic), and the term
that does, αB

i (anh). Therefore,

Bv = Be −
∑

i

αB
i (harmonic)

(
vi + gi

2

)
−

∑

i

αB
i (anh)

(
vi + gi

2

)
(4.239)

holds. For the vibrational ground state, where v = (0,0, . . .), the rotational constant
Bz corresponding to the r0

α structure is obtained by using just the harmonic part of
the vibration-rotation constant and correcting it, as

Bz = B0 + 1

2

∑

i

giα
B
i (harmonic). (4.240)
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Table 4.4 Different structural parameters and their definitions

re Equilibrium internuclear distance

r0
α, rz Distance between the averaged nuclear positions in a vibrational ground state

rα Distance between the averaged nuclear positions at the thermal equilibrium

rg Averaged internuclear distance at the thermal equilibrium

ra Averaged internuclear distance defined by Eq. (4.179) at the thermal equilibrium

r0 Effective distance between the nuclear positions obtained from rotational constants in the
vibrational ground state

rs Effective distance between the nuclear positions obtained from the differences in the
rotational constants of different isotopomers

From Eqs. (4.239) and (4.240), we can see that Bz is represented with Be as

Bz = Be − 1

2

∑

i

giα
B
i (anh). (4.241)

When we use the rotational constant to determine the molecular structure by
the electron diffraction method, we treat the Az, Bz, and Cz obtained as above
as experimental values, along with the molecular scattering curve sM(s) ob-
tained by the electron diffraction method, and determine by the least-squares
method the structural parameters, expressed as an r0

α structure, that reproduces both
of them.

In Chap. 3, we have introduced the re structure, the r0 structure (Sect. 3.5.3), and
the rs structure (Sect. 3.1.3). Now in Sects. 4.5 and 4.6, we have dealt with structural
parameters that have different physical meanings, which are structures obtained by
the electron diffraction method, expressed as ra, rg, rα , and r0

α (∼rz). The physical
meanings of these structural parameters are summarized in Table 4.4.

Needless to say, the clearest expression of a molecular structure is the structure
at the equilibrium position, that is, the re structure. However, the re structure has
only been obtained for molecules with particularly simple geometrical structures,
such as diatomic molecules and triatomic molecules. When we obtain a molecu-
lar structure by the electron diffraction method, the rg structure has a clear phys-
ical meaning with regards to the bonded atom pair, but it does not represent the
bond angle at the thermal equilibrium state because there is a contribution of the
vibration in the perpendicular direction. Therefore, a method usually adopted to
express the structure at the thermal equilibrium state is to use the rg structure to
express the internuclear distance and the rα structure to express the bond angle.
As expressed by Eq. (4.225), the internuclear distance in the r0

α structure has the
meaning of a projection of the average internuclear distance at the zero-point vi-
brational state to the direction connecting the equilibrium nuclear positions, and
the bond angle in the r0

α structure also has the meaning of the average of the bond
angle at the zero-point vibrational state. Another point of advantage of the r0

α struc-
ture is that this corresponds clearly to the rotational constant obtained by spec-
troscopy.
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Fig. 4.19 The 1-chloropropane molecule and its two rotational isomers

The discussions above allow us to realize that molecular vibration plays an im-
portant role in describing the geometrical structure of molecules. While data ob-
tained by molecular spectroscopy and those obtained by the electron diffraction
method both give us information on molecular structures, the effect of molecular
vibration is incorporated in different ways in these two methods. Therefore, after
fully grasping the physical meaning of the respective structural parameters, we can
better understand the meaning of molecular structures.

4.6.5 An Example of Structure Determination

Let us conclude by looking at an actual example of structure determination for the 1-
chloropropane (CH3CH2CH2Cl) molecule, shown in Fig. 4.19. In 1-chloropropane,
an internal rotation around the C1–C2 bond axis is possible, and therefore two rota-
tional isomers exist, called the gauche form and the anti form (Figs. 4.19(b) and (c)).
These two isomers are known to coexist in the gas phase at room temperature.

As can be seen from Eq. (4.201), the contribution of an atom pair to the molecular
scattering curve becomes larger the larger the product of the nuclear charges of
the two atoms, ZiZj , becomes, and the smaller the distance between these atoms
becomes. In the case of 1-chloropropane, we can expect the contributions of the
bonded atom pairs, C–Cl, C–C, and C–H, those of the atom pairs separated by one
atom, C · · ·Cl and C · · ·C, and that of the two atoms at the ends of the molecule,
C · · ·Cl, to be the ones to mainly show up in the molecular scattering curve.

Figure 4.20 shows the molecular scattering curve sM(s) obtained by an exper-
iment using an electron beam whose accelerating voltage is 40 kV. When this is
transformed through the Fourier transform, we obtain the radial distribution curve
D(r), shown in Fig. 4.21.

As can be clearly seen in Fig. 4.21, each atom pair emerges as a peak in the radial
distribution function. There are two peaks attributed to C3 · · ·Cl. This is because the
molecular structures of the gauche form and the anti form are largely different, that
is, the distance between C3 · · ·Cl is about 3.15 Å in the gauche form while being
about 4.1 Å in the anti form.

By taking the structural parameters describing the molecular structure as vari-
ables and analyzing sM(s) through the least-squares method, not only can we deter-
mine the geometrical structure of the molecule, as has already been noted, but in the
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Fig. 4.20 The sM(s) of
1-chloropropane. The values
of the residual (observed
value – calculated value)
obtained as a result of the
least-squares fit are given
under the sM(s). The
residuals are constantly small,
indicating that the observed
curve is reproduced well

Fig. 4.21 The radial
distribution function of
1-chloropropane. The
residuals obtained as a result
of the least-squares fit are
given under the D(r).
G marks the gauche form and
A the anti form

Table 4.5 Structural parameters of 1-chloropropane determined from the molecular scattering
curve and the rotational constants

(1) Structural parameters common to the gauche and anti isomers (in Å unit)

rz structure rg structure

rz(C–H) 1.094 rg(C–H) 1.113

rz(C–C) 1.522 rg(C–C) 1.525

rz(C–Cl) 1.794 rg(C–Cl) 1.796

(2) Structural parameters of the gauche isomer (rz structure)

∠ C–C–C 113.9◦ ∠ C–C–Cl 112.2◦

θ 63.9◦a

(3) Structural parameters of the anti isomer (rz structure)

∠ C–C–C 111.3◦ ∠ C–C–Cl 111.3◦

aθ represents the dihedral angle ∠ C–C–C–Cl shown in Fig. 4.19(b)

case of this particular molecular species we can also determine the abundance ratio
of the two rotational isomers. Indeed, the peak intensities around 3.15 Å and 4.1 Å
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directly reflect the abundance ratio, showing us that 62 % of the 1-chloropropane
molecules in the gas phase at room temperature are the gauche form and 38 % are
the anti form.

For this molecular species, the rotational constants A0, B0, and C0 of each rota-
tional isomer were obtained from the measurement of the rotational spectra. There-
fore, in the same manner as has been described in Sect. 4.6.4, we have been able
to determine the molecular structure with high precision by carrying out the least-
squares analysis to simultaneously reproduce the two types of experimental data,
that is, sM(s) obtained by the electron diffraction method and the rotational con-
stants obtained by the analysis of the rotational spectra. The structural parame-
ters determined as a result are shown as the rz structure in Table 4.5. The above-
mentioned abundance ratio of the two isomers are also determined as one of the
parameters in the course of this structure determination.



For Further Reading

Readers wishing to delve deeper into topics dealt with in this book are advised to
look into the following literature.

To further your understanding on molecular spectroscopy, especially rotational
spectroscopy, the following publications are recommended:

• H.W. Kroto, Molecular Rotation Spectra, Dover, New York, 1992.
• W. Gordy and R.L. Cook, Microwave Molecular Spectra 3rd ed. John Wiley &

Sons, 1984.

For further reading on both vibrational and rotational spectra, you can turn to:

• W.S. Struve, Fundamentals of Molecular Spectroscopy, John Wiley & Sons,
1989.

• J.D. Graybeal, Molecular Spectroscopy, McGraw-Hill, 1988.

On electron diffraction you can refer to:

• Stereochemical Applications of Gas-Phase Electron Diffraction, Part A, in The
Electron Diffraction Technique, Edited by I. Hargittai and M. Hargittai, VCH,
1988.

These publications will assist you in learning more about issues that this textbook
has not been able to cover satisfactorily, such as molecular symmetry based on point
groups, the interaction between molecular vibration and rotation, and the quantum
theory of optical transitions.

For topics that have been treated in detail in this volume, such as the quantum
mechanics of the harmonic oscillator (see Chap. 2), the quantum mechanics of the
angular momentum (see Chap. 3), and the quantum mechanics of the scattering (see
Chap. 4), a regular textbook on quantum mechanics should prove helpful for your
understanding.
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Figure Sources

Figures 1.5 and 1.7(a) in Chap. 1 have been reproduced with the kind permission of
Dr. Toshihiro Ogawa. See

• H. Kobayashi, A. Shimota, K. Kondo, E. Okumura, Y. Kameda, H. Shimoda and
T. Ogawa, Applied Optics, 38, 6801 (1999).

for related discussions. Figure 1.8 has been based on Fig. 1 in

• M. Ohishi and M. Kaifu, Faraday Discuss., 109, 205 (1998),

with modifications added by assigning rotational transitions to the individual transi-
tion peaks.

Figure 2.11 in Chap. 2 and Fig. 3.23 in Chap. 3 have been created using spectra
from

• “Tables of Wavenumbers for the Calibration of Infrared Spectrometers,” 2nd ed.,
Compiled by A.R.H. Cole, International Union of Pure and Applied Chemistry,
Pergamon (1977)

on pages 54 and 10, respectively.

Figure 2.31 in Chap. 2 is a modified reproduction of Fig. 1(a) from

• K. Yamanouchi, S. Takeuchi and S. Tsuchiya, J. Chem. Phys., 92, 4044 (1990),

and Fig. 3.25 in Chap. 3 is one of Fig. 2 from

• K. Yamanouchi, M. Okunishi, Y. Endo and S. Tsuchiya, J. Mol. Struct., 352/353;
541 (1995).

Figures 4.20 and 4.21 in Chap. 4 are made using Figs. 3 and 4, respectively, from

• K. Yamanouchi, M. Sugie, H. Takeo, C. Matsumura and K. Kuchitsu, J. Phys.
Chem., 88, 2315 (1984).
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