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To my mother, Ute Kruse



Supervisor’s Foreword

Over the last 20 years significant advances have been made in our ability to
perform ab initio calculations for describing the properties of atomic nuclei. These
advances have come in the form of (1) a better understanding of how to construct
consistent nucleon—nucleon, three-nucleon, and higher-nucleon interactions based
on Quantum Chromodynamics, using Effective Field Theory and Chiral Pertur-
bation Theory; (2) the development of new and/or improved nuclear many-body
techniques such as the Green Function Monte Carlo approach, the No Core Shell
Model (NCSM) formalism, the Coupled Cluster method, etc., for performing the
many-nucleon calculations; and (3) tremendous advances in computer hardware
and software, which allow for much larger and more complicated numerical cal-
culations to be performed.

The principal question facing this area of research is how to extend the suc-
cesses for these new nuclear many-body methods to heavier-mass nuclei beyond
mass number A = 16, e.g., '°0. The problem has to do with the exponential
growth of the model spaces required in the numerical calculations, in order to
obtain converged results, as the number of nucleons in a nucleus is increased.
Present computing technology cannot handle these huge dimensions, which are far
greater than the existing limit of about 10'® configurations. A great deal of time
and effort is presently being devoted to this problem. Some of these new
approaches are (1) the ab initio Shell Model with a Core, (2) the Importance
Truncation method, (3) the NCSM in an EFT Framework, (4) the Monte Carlo-
NCSM, (5) the In-Medium Similarity Renormalization Group, (6) the Symmetry-
adapted NCSM [SP(3, R)], and a number of other techniques. This Ph.D. thesis has
to do with the second of these methods.

One of the most promising approaches for attacking this problem is to develop a
physically motivated way for truncating these giant model spaces to manageable
sizes, which can be handled by present-day computers, while also retaining the
states essential for capturing all the underlying physics of the nucleus being
investigated. Considerable effort is currently being invested in this challenge, with
the Importance Truncation method being one of the leading candidates under
development. The main idea is to truncate the number of configurations kept in the
basis space, based on an importance criterium for first-order-in-perturbation-theory
additions to a reference wave function, such as that for the ground state, as the size
of the basis space is increased in order to achieve a converged result. The details of

vii



viii Supervisor’s Foreword

this procedure are clearly presented and discussed in Dr. Kruse’s Ph.D. thesis. In
his dissertation research, Dr. Kruse not only greatly improved the existing
Importance Truncation formalism, by using a sequential method for adding new
configurations, but also studied in detail how to quantify the size of the theoretical
error in the final extrapolated results. Such an error quantification is essential for
understanding the accuracy and reliability of the results obtained by the Impor-
tance Truncation formalism, as applied to the NCSM and the No Core Shell
Model/Resonating Group Method (NCSM/RGM) approaches for nuclear structure
and reaction calculations, respectively.

Besides the significant work on the IT-NCSM, this thesis also includes new
results on the application of the IT-NCSM to “He within the NCSM/RGM and an
important discussion and analysis of the Ultraviolet (UV) and Infrared (IR) limits
for large model-space calculations. In particular, the work in the thesis found that a
specific choice of an IR regulator leads to a scaling behavior for calculated ground-
state energies, provided one has captured all the UV physics in the underlying
nuclear interaction. Such an insight places extrapolations of large model-space
calculations on a solid footing.

To summarized, the findings in Dr. Kruse’s Ph.D. thesis have made a very
important contribution to our understanding of the Importance Truncated-NCSM
(or IT-NCSM) method and its ability to produce physically motivated truncated
model spaces for performing NCSM and NCSM/RGM calculations for nuclei
beyond mass A = 16 nuclei. This is a highly significant advancement for the
application of microscopic nuclear many-body techniques to heavier-mass nuclei.
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Chapter 1
Introduction to Low-Energy Nuclear Physics

1.1 An Overview for Non-Experts

The No-Core Shell Model (NCSM) is a first-principles nuclear structure technique,
with which one can calculate the observable properties of light nuclei (A < 20). Itis
considered ab-initio as the only input to the calculation is the nuclear Hamiltonian,
which contains realistic two or three-nucleon (NN or NNN) interactions. Provided
the calculation is performed in a large enough basis space, the ground-state energy
will converge. For A < 4, convergence has been demonstrated explicitly. The NCSM
calculations are computationally very expensive for A > 6, since the required basis
size for convergence often approaches on the order of a billion many-body basis
states. In this thesis we present three extensions to the NCSM that allow us to perform
larger calculations, specifically for the p-shell nuclei. The Importance-Truncated
NCSM, IT-NCSM, formulated on arguments of multi-configurational perturbation
theory, selects a small set of basis states from the initially large basis space, in which
the Hamiltonian is now diagonalized. Previous IT-NCSM calculations have proven
reliable, however, there has been no thorough investigation of the inherent error
in the truncated IT-NCSM calculations. We provide a detailed study of IT-NCSM
calculations and compare them to full NCSM calculations in an attempt to judge
the accuracy of IT-NCSM in heavier nuclei. Even when IT-NCSM calculations are
performed, one often needs to extrapolate the ground-state energy from the finite
basis (or model) spaces to the infinite model space. Such a procedure is common-
place but does not necessarily have the ultraviolet (UV) or infrared (IR) physics
under control. We present a potentially promising method that maps the NCSM
parameters into an effective-field theory framework, in which the UV and IR physics
is treated appropriately. The NCSM is well suited to describing bound-state properties
of nuclei, but is not well adapted to describe loosely bound systems, such as the exotic
nuclei near the neutron drip line. With the inclusion of the resonating group method
(RGM), the NCSM/RGM can provide a first-principles description of exotic nuclei.
The NCSM/RGM is also the first extension of the NCSM that can describe dynamic
processes such as nuclear reactions.

M. K. G. Kruse, Extensions to the No-Core Shell Model, 1
Springer Theses, DOI: 10.1007/978-3-319-01393-0_1,
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2 1 Introduction to Low-Energy Nuclear Physics

1.2 From QCD to Nuclear-Structure

It has been a long-standing goal of the nuclear physics community to describe the
properties of all nuclei from their fundamental interactions [1]. Unlike atomic sys-
tems, in which the underlying fundamental interaction is the Coulomb force, which
is rather well-understood, nuclei and their nuclear interactions are far more compli-
cated, displaying a rich set of phenomena. A quick survey of this rich behavior is, for
example, the deuteron (the only two-nucleon bound system), the recently discovered
halo nuclei (e.g., *He), collective modes in heavier nuclei, and dynamic properties,
such as «- and B-decay.

In Quantum Electrodynamics (QED), the fundamental interaction between light
and matter, properties, such as the Lamb-Shift in the Hydrogen atom, can be calcu-
lated from a perturbative expansion of the various possible interactions, each order of
the expansion being smaller than the previous one. This framework is possible, since
the coupling constant of the interactions, o & %, is small, and each order of the per-
turbation is, in effect, proportional to a higher power in « than the previous order. In
hadronic systems, the fundamental interaction is known as Quantum Chromodynam-
ics (QCD). Quarks, the constituents of hadrons, such as protons or neutrons, interact
with each other via gluons, the force carriers of QCD. Once again, there is a coupling
constant present in the theory, most commonly denoted as «;. However, the value of
o, depends on the momentum scale of interest; at large momentum scales, o tends
to be small, but at low momentum scales, it grows rapidly. The reference momen-
tum to be used, here in determining which regime applies to a particular system, is
referred to as Agcp ~ 1000 Mev/c. This dependence of the coupling constant on
the momentum under consideration is known as the running of the coupling constant.
In the case of low-energy nuclear physics, the typical momentum scales are much
smaller than A pcp, which means that «; is actually quite large. This places us in
a difficult situation. If we want to describe nuclei, using QCD as the fundamental
interaction, we need to specify at least how two nucleons interact with each other,
before we proceed any farther. Yet, a perturbative expansion of QCD is not possible
in that regime, due to the running of «;. The consequences of this statement and its
resolution will be discussed later.

The nuclear landscape has roughly 270 stable nuclides, about 2,000 known nuclei,
and perhaps as many as another 3,000 presently unknown nuclei. Describing all of
these nuclei directly from QCD is a daunting challenge and is presently simply not
feasible. As any reasonable physicist will argue, the degrees of freedom that describe
a single nucleon, the deuteron, or those of light nuclei, or even heavier systems that
exhibit collective dynamics are all different, even though they must all originate from
QCD at some level. The question on how to unify all phenomena into one, single
framework, at the heart of which lies QCD, is, and will be for a long time, an open
question. On the other hand, many-body physicists view this hurdle as simply one
of fine detail, which will be overcome, and are generally satisfied to work with an
interaction, usually based on other degrees of freedom (and thus, simpler physics).
Such a stance has often led to the expression that many-body practitioners work with
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‘God given’ potentials. That is not to say that they do not appreciate the work that has
been done to connect low-energy nuclear physics to QCD, they simply view the more
interesting part of the problem to be the many-body aspect. As has been mentioned,
there are many known nuclei, each with its own specific degrees of freedom and
properties. Some very clever techniques have been developed to handle most parts of
the nuclear landscape, from the ab-inito nuclear-structure techniques of light nuclei
(the focus of this dissertation) to traditional shell-model calculations of mid-mass
nuclei and density-functional theory for heavy nuclei.

1.3 Theoretical Nuclear-Structure of Light Nuclei

The main area of interest of this dissertation will be the calculation of the nuclear-
structure of light nuclei. For these nuclei, we can use recently developed ab-initio
techniques. By that, we literally mean calculations that are based on minimal assump-
tions of the underlying physics. In fact, all we assume is that the nuclear interactions
used are in some way directly connected to QCD.

One would assume that, once the interaction between two-,or possibly more,
nucleons is specified, solving the many-body problem is simply a matter of turning
a large mathematical crank. In essence, all one has to do is solve the Schroedinger
equation. Such a statement greatly understates the true nature of any many-body
calculation, even though one really does solve the Schroedinger equation. What is
often a simple procedure for two interacting particles can become a computational
nightmare for A interacting particles. The real question is, how does one deal with
all these interacting particles in a sensible and tractable manner? To begin with, one
needs to specify the nature of the interaction among the nucleons. Typically, inter-
actions involve only two or also three nucleons. However, there could, in principle,
be as many as A-body interactions. The need for A-body interactions is however
somewhat artificial, considering that it is generally believed that four-or higher-body
interactions are incredibly small in size, given the success of calculations that include
only two-and three-body forces. Next, one would like to specify a convenient basis
in which to work. In principle one can choose any basis, but computationally some
choices are better than others (although from a physics point, perhaps is a poorer
choice, such as choosing the harmonic oscillator (HO) basis over the Woods-Saxon
basis). Often, one is faced with a basis in which one or several difficulties can arise:
there are many basis states to handle, or the antisymmetrization is particularly dif-
ficult, or the basis has the incorrect asymptotic features of the physical problem,
just to name a few issues. Each many-body technique must face this difficulty, and
often the rewards of a particular choice come with a price in another aspect of the
calculation. One tries to remedy these issues as best as possible. At this stage, one
needs to turn to powerful computers to perform the calculation, most often the actual
diagonalization of the Hamiltonian, which is yet another interesting aspect of the
problem. The computational facets of the problem have, in fact, themselves become
quite relevant. These details will be discussed in the next chapter.
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1.4 Ab-Initio Techniques of Nuclear-Structure

Several ab-initio techniques have been developed, in order to calculate the properties
of light nuclei. The most common ones, that deal with A > 4, are the No Core Shell
model (NCSM) [2—4], the Green’s-function Monte-Carlo technique (GFMC) [5-8],
and the Coupled Cluster technique with singles and doubles (CCSD) [9, 10]. Each
technique has it’s own features. The No Core shell model is the closest to a traditional
shell-model calculation, except that all nucleons are active in the model-space and
realistic interactions are employed. Unfortunately, the basis is difficult to handle for
A > 16. The Green’s function technique uses a Monte-Carlo approach to sample the
basis states, but unfortunately can only deal with local coordinate space interactions
(and most also deal with the Monte Carlo sign problem). The Coupled-cluster tech-
nique can extend calculations to much heavier systems than the previously stated
two methods, but is only useful in the vicinity of doubly-magic nuclei. There are
other methods too, more suitable for A < 4, such as the Faddeev [11] and Faddeev-
Yakubovsky techniques [12-14], or the hyperspherical harmonic oscillator (HH)
techniques [15, 16], or the NCSM expressed in Jacobi coordinates [17]. All of these
techniques predict binding energies, that are in agreement with the experimental
binding energies of light nuclei, such as the Triton or the alpha-particle, provided
realistic interactions are used [18]. One of the major advancements of our under-
standing of nuclear-structure, lie in the calculations that include a three-body force.
Without the inclusion of the three-body force, nuclei are underbound in the theoret-
ical calculations, when compared to experimental data. In slightly heavier systems,
4 < A < 16, the calculations performed with the No Core Shell Model or Green’s
function Monte-Carlo, provide reasonably good agreement with experiment [8, 19],
but are computationally much more challenging. The current implementations of
these two techniques, given the computational resources available, reach their limit
in this mass range. If one wants to reach fully converged results, or attempt to do
heavier systems, one needs to augment these techniques either through some sen-
sible modification, or through extrapolation to fully converged results. The latter is
currently not feasible when A > 20, so one must rethink the approach.

1.5 Extensions to the NCSM

The No Core shell model has been demonstrated to calculate the properties of mostly
stable, light nuclei, up to A < 20 quite successfully. Beyond that mass range, or for
loosely bound nuclei, the method runs into computational difficulties. In order to
reach any sort of meaningful results, or ideally make some predictive calculations,
one must employ large model-spaces (i.e., a large basis space). Large model-spaces
imply that a large number of basis states must be stored in computer memory (RAM),
which is very limited, considering all the other data that must be stored. One could opt
to use a more suitable basis, but after roughly 15 years of computer code development,
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and hard work, one would prefer to exploit the existing technology and gains. There
are other physics related issues, when employing a different basis, which will be
discussed in the chapter on the No Core Shell model. On the other hand, what if one
can use the No Core shell model, retaining all of its capabilities, with perhaps some
minor modifications, or by extending the model to treat various systems to overcome
some of these hurdles? This is the main question I will address in this thesis.

1.5.1 Importance-Truncated NCSM

As has been mentioned in the previous paragraph, the large number of basis states
thwarts the calculations of heavier nuclei, and also those of halo nuclei. One might
be tempted to ask if one really needs all of these basis states. If one could develop
a method for pre-selecting some basis states considered relevant to the calculation,
and at the same time discard a large number of seemingly irrelevant basis states, then
the calculations could be done rather simply. This is what the Importance-Truncated
No Core Shell model (IT-NCSM) formulation does [20, 21]. Although the method
works very well, allowing for some previously inaccessible calculations to be done,
one might wonder how much information has been discarded, when some basis
states are excluded from the calculation. The formulation of the IT-NCSM, how it is
typically used, the effect on observables as well as the criticisms of the method, will
be discussed in Chap. 3.

1.5.2 The Extrapolations to an Infinite Model-Space

NCSM calculations in which A > 4 converge slowly with the size of the basis and
thus need to be extrapolated to the infinite basis space. There are a couple of different
extrapolation techniques in use today [22, 23], however, they are based purely on
experiences of past calculations. We will present an extrapolation technique based on
the ideas of an effective field theory, in which we remap the parameters of the NCSM
onto well defined ultraviolet (UV) and infrared (IR) regulators. These regulators are
then used to extrapolate to the infinite basis. We now give a brief overview.

When one solves the nuclear Hamiltonian in the NCSM framework (i.e., using the
HO basis), the Hamiltonian assumes a dependence on the chosen HO energy (hS€2).
This unfortunately leads to the results, such as the ground state (gs) energy, being
dependent on AS2 for a given model-space. In practice, this dependence is almost
constant, for a range of chosen oscillator energies. Most many-body physicists will
argue that one must choose a value of A2, that minimizes the gs energy, or, at the
very least, choose a value for which the dependence is roughly constant. From an
effective-theory point of view, this is rather upsetting. Initially, one began with a
Hamiltonian that does not depend on a property of the underlying basis, such as the
unperturbed level spacing; however, the final results do depend on it. Admittedly, in
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the limit of an infinite model-space, this dependence disappears for all values of €2,
but in practical cases (i.e., finite model-spaces), there are still visible remnants of it. In
Chap. 4, we perform a thorough investigation of the effective theory properties of the
NCSM, in which we try to ultimately remove the dependence on A£2. Furthermore,
the analysis is done not through single-particle properties, but instead through UV
and IR regulators, as is usually done in effective field theories. Recently, there has
been some discussion on what the appropriate IR regulator should be. Our analysis
will also discuss this important point.

1.5.3 The NCSM/RGM and Exotic Nuclei

Exotic nuclei, which, for example, could be near the neutron-drip lines, or are perhaps
only resonances, cannot be calculated by the NCSM accurately. The difficulty lies
in the underlying basis of HO wavefunctions, since, these wavefunctions have the
incorrect asymptotic behavior. In order to reach convergence, one has to use a large
number of oscillator basis states, leading once again to the difficulties of handling a
large number of basis states. Even if one could use a procedure like the IT-NCSM,
one would only be able to go so far. The NCSM on its own calculates only bound-state
properties, making the treatment of resonance states impossible (in its present form),
or for that matter, any scattering properties. There are however other techniques,
which deal with the continuum properties of nuclei, one of them being the resonating
group method (RGM) [24, 25]. When the NCSM basis is coupled with the RGM
basis, one can treat loosely bound nuclei, and can also calculate scattering quantities
(such as resonances). This recent development, has brought the realm of nuclear
reactions on a truly ab-inito footing. The formalism of the NCSM/RGM technique,
as well as an application to the He system, will be discussed in Chap. 5.

1.6 The Community of Low-Energy Nuclear Physics

Before concluding the introduction, I would like to draw attention to one more rele-
vant discussion. Low-energy nuclear physics has seen quite a vigorous revival in the
last twenty years. The revival itself has been a conscious effort by the nuclear physics
community, as is mostly laid out in its long-range plans [1]. However, individuals in
the community can only make so much progress on their own. In the United States,
there has been some infrastructure put in place to bring the community together in
order to continue the progress that has been made. The Institute for Nuclear Theory
(INT) [26], hosted at the University of Washington, began roughly twenty years ago,
and hosts a wide variety of programs, that discuss certain areas of nuclear physics on a
regular basis. In fact, it was fit at the INT, under the program Effective Field Theories
and the Many-Body Problem in 2009, that I was presented with my main thesis topic,
Importance-truncation in the No-Core shell model. In the last five years, the creation
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of UNEDF [27], a program designed to create a ‘universal nuclear energy density
functional’, has brought almost the entire theoretical nuclear-structure community
together. The program has also realized that important contributions can be made
from other areas of science, namely computer science and mathematics, which are
already bearing fruit in the form of some of the most advanced computer codes for
investigating nuclear-structure [28, 29]. Funding agencies, such as the Department
of Energy (DOE) and the National Science Foundation (NSF) have created these pro-
grams and supported them, including the required computational resources. Some
particularly notable awards are, for example SciDAC (Scientific discovery through
Advanced Computing) [30] as well as INCITE (Innovative & Novel Computational
Impact on Theory and Experiment) [31]. On the experimental side, facilities around
the world, such as those found at GSI in Germany, and RIKEN in Japan, have sup-
plied the community with new and exciting results. The proposed US facility, the
Facility for Rare Isotope Beams (F-RIB)[32], which Congress has funded at 550
million dollars (as of 2012), will continue the current drive and ambitions of the
nuclear community, towards new discoveries in this exciting field.
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Chapter 2
The No Core Shell Model

2.1 Introduction

As has been discussed in the introduction, the No-Core Shell Model (NCSM), is one
of the recently developed ab-initio many-body techniques, for solving bound state
properties of light nuclei (A < 20) [1-3]. The NCSM is different from past shell
model calculations, since we allow for all A nucleons to be active in the model-space.
The traditional shell model assumes that only the valence nucleons are active in the
model-space. Another key difference to the standard shell model, is the use of realistic
NN and NNN interactions [4]. In the past, effective interactions were derived for the
valence space nucleons, an example of which are the USD effective interactions [5].
In the NCSM, we try to move away from such techniques, in order to stay true to
our goal of calculating nuclear-structure directly from realistic interactions that are
based on QCD.

In Sect.2.2, I will discuss the nuclear Hamiltonian employed. I will also briefly
describe how we solve it in the NCSM. The Hamiltonian requires knowledge of
the nuclear interaction. I discuss some of the common types of nuclear interactions
in use (see Sect. 2.2.1) and how they are modified through various renormalization
procedures (Sect.2.2.2) for the NCSM. The NCSM basis, as well as the various
consequences of using either relative or single-particle coordinates is discussed in
Sect.2.3. In Sect.2.4 I show some sample NCSM calculations and discuss how the
NCSM converges with respect to the size of the basis. I then illustrate what the current
limits of the NCSM are (see Sect.2.5). The extensions of the NCSM beyond these
limits will be the bulk of the thesis, which I will discuss extensively in Chaps. 3, 4
and 5. In Sect.2.5.1 I make a note on current NCSM computer codes in use today,
as well as commenting on various implementations of many-body physics in these
codes.

M. K. G. Kruse, Extensions to the No-Core Shell Model, 9
Springer Theses, DOI: 10.1007/978-3-319-01393-0_2,
© Springer International Publishing Switzerland 2013
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2.2 The Nuclear Hamiltonian

We begin with the translationally invariant nuclear Hamiltonian,

g & (5 — )P AV - 2 Ve 51
A_ZZ.T+Z. NN,z]+‘Z NNN, i jk 2.1)
i<j i<j i<j<k
in which, m is the mass of the nucleon and A is the number of nucleons present (i.e.,
the mass number). The first term represents the relative kinetic energy, the second
term represents the nucleon-nucleon (NN) interaction, and the third term represents
the three nucleon (NNN) interaction. In what follows, we will only work with NN
forces, so we disregard the last term in Eq.(2.1), even though it is known to be
important for agreement with experiment. Since the bulk of this thesis deals with
extending the capabilities of the NCSM, we are not too concerned with missing
NNN contributions, since we are not attempting to agree with experimental data.
Many of the extensions that I will discuss can be extended in a fairly straightforward

manner so as to include the NNN forces.

The NCSM employs the three-dimensional isotropic harmonic oscillator (HO)
functions, which are particularly convenient for the center-of-mass separation, as
I will discuss in Sect.2.3. In the absence of any interactions among the nucleons,
the A nucleons will fill the harmonic oscillator levels in accordance with the Pauli
exclusion principle. We will refer to this situation as the unperturbed ground state
(gs) configuration. The number of oscillator quanta that represent this non-interacting
picture is given by Npjp = ZIA (2n; +1;). For example, in the case of TLi, Npin = 3,
since 3 valence nucleons occupy the / = 1 Op-shell. Recall that the other 4 nucleons
occupy (and fill) the Os-shell. The computational model-space is characterized by a
parameter Np,x, which defines how many oscillator quanta of energy can be shared
among the A nucleons, above the unperturbed ground-state (gs) energy. For example,
an Nmax = 4 "Li calculation would allow at most Nyin + Nmax = 7 quanta of energy
to be available to the 7 nucleons. The two-body Hamiltonian could thus promote a
valence neutron in the N = 1 shell, to the N = 5 shell. Alternatively, two valence
neutrons could be simultaneously promoted from the N = 1 shell to the N = 3 shell.
All possible combinations that respect the symmetries of the nuclear Hamiltonian
define the total number of states present in the basis. Note that for example, in our
Nmax = 4 'Li example, we cannot promote one valence neutron to the N = 2 shell,
and another valence neutron to the N = 3 shell. In that particular example, we are
starting with a negative parity state, and by promotion of the two neutrons, ending
up in a positive parity state. Since parity is conserved in nuclear interactions, we are
forbidden to allow such configurations.
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2.2.1 Nuclear Interactions

A wide variety of high-quality interactions exist, which reproduce scattering data, i.e.,
phase shifts, up to roughly 300 MeV. These interactions, when fitted to the Nijmegen
scattering data [6], reproduce the data in various angular momentum channels (e.g.,
the ' So or 31 channel), with a x2/dof ~ 1.1 will briefly list some of interactions in
use today.

In 1935 Yukawa hypothesized that the nuclear force between nucleons is mediated
by the (then undiscovered) pions [7]. In the decades that followed Yukawa’s initial
idea, generations of meson exchange interactions were constructed, in which not
only 7’s, but also other mesons such as the p and w were included as nuclear-
force mediators. One of the most successful NN meson exchange interactions that
was constructed is the charge- and momentum-dependent Bonn potential (e.g., CD-
Bonn) [8]. Another popular NN interaction is the most recent Argonne potential, Av;g
[9], which has a number of terms such as spin-spin, spin-orbit and tensor contributions
included. The various terms are fitted by experimental data. A NN interaction that
attempts to mimic the missing 3N forces is, for example, the INOY potential (Inside
Non-local, Outside Yukawa) [10, 11], in which a density dependent two-nucleon
force is created. Density-dependent interactions change their relative strength as
the number of nucleons are increased. Unfortunately, none of these potentials has
a direct connection to QCD, nor is there any clear hierarchy of which terms are
the dominant ones. These potentials cannot be used directly in Eq. (2.1), since they
generate strong short-range correlations. This means that a perturbative treatment,
or even a diagonalizaton technique, converges very slowly in the number of terms
calculated or with the size of the basis. These are, thus, often referred to as hard(-core)
potentials, since they invoke the schematic picture of the strong repulsive potential
barrier found in the NN forces at small distances.

2.2.1.1 The Chiral Interaction

The fact that QCD is non-perturbative at energy scales relevant for nuclear-structure,
puts nuclear physicists in a tough spot. Ideally, we would like to perform calculations
of light nuclei, that have a direct connection to QCD. This connection was provided
to the structure community by means of Effective Field Theory (EFT) [12-16],
which was applied to nuclear systems by pioneers such as Ordéfiez, Ray, and van
Kolck [17-19]. In an effective field theory, one uses the relevant degrees of freedom
appropriate for the momentum scale at hand. In the case of nuclear-structure, the
connection to QCD is offered by the chiral EFT Lagrangian, in which the long-
and medium-range interactions in a nucleus are described by nucleons interacting
through pion exchange. The short range physics is integrated out and is expressed as
contact terms, which requires the introduction of low-energy constants.

The development of chiral effective field theory provided the connection to QCD
that structure physicists were desperately lacking. It also provided a clear and consice
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2N 3Nforces . 4N forces
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Fig. 2.1 The various perturbation orders of chiral EFT. Solid lines indicate nucleons interacting
via pions (dashed lines). At order N2LO, a “three-body” force naturally arises. The solid dots
located at the vertices, for instance at N2LO, describe low-energy constants (LEC’s), that need to
be determined from experimental data. The figure is adapted from [21]

picture of the nuclear force, organized in a hierarchy of terms, arranged according to
a power-counting scheme.! This is possible, since chiral EFT is pertubative at these
momentum scales, unlike QCD. A pictorial description of the various terms arising
in EFT, can be seen in Fig.2.1. Each order in the perturbation series is organized
according to a power counting scheme, the details of which are not too important,
except that each higher-order term is smaller than the previous terms. What is however
important, is the determination of the low-energy constants (LEC) that arise in chiral
EFT. An example of an LEC can be seen in Fig. 2.1 for the N2LO order, indicated by
the solid dot on a vertical line. These constants in some sense are a consequence of
our ignorance of the full QCD theory, and cannot be determined theoretically. They
can however be determined from experiments or be constrained by nuclear-structure
calculations [20].

! The Weinberg power counting scheme is known to be inconsistent. As there is no other viable
EFT alternative for the many-body community presently, it is often used in calculations without
regard to the issues of renormalization-group invariance.
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For nuclear-structure calculations, the EFT interaction of choice is the ‘Entem
and Machleidt’ interaction, in which NN terms are kept up to order N3LO [22] and
NNN terms are kept up to order N2LO [23].

2.2.1.2 Softened Interactions

Recently, a new class of interactions has emerged, commonly known as soft-
potentials. As the name suggests, these interactions have the repulsive hard-core of
the interaction softened in some manner. The interactions themselves are not new, in
the sense that they are not constructed from any underlying physical theory. Instead,
the initial interactions, such as the chiral N3LO NN interaction, is transformed by
a series of unitary transformations, such as the vjow—x method (see [24] and refer-
ences therein), or more recently, the similarity renormalization group (SRG) method
[25-28]. These methods decouple the high-momentum components of the bare inter-
action from the low-momentum components. In doing so, the effect of the repulsive
hard-core to generate strong short-range correlations is lessened. Thus, the softened
interactions can be used directly in Eq. (2.1) without any further modifications to the
Hamiltonian itself. The use of SRG in nuclear systems has been demonstrated in
[29-32]. In the case of bare interactions, one usually has to create an effective inter-
action for the NCSM space; a procedure known as the Okubo-Lee-Suzuki method
[33, 34], which I will describe in Sect.2.2.2. The most dramatic difference in using
the softened interactions, when compared to the initial bare interactions, is that they
speed up the rate of convergence of the many-body calculations, as the model-space
size is increased. This is in part due to the decoupling of high- and low-momentum
components in the softened interactions. In this regard, the bare chiral N3LO NN
interaction is ‘softer’ than other bare interactions, allowing for the possibility to use
it’s bare form in Eq.(2.1) directly. However, with the current computer resources
at hand, convergence of the NCSM with the bare chiral interaction has only been
demonstrated for the Triton and “He [32, 35]. For heavier nuclei, the chiral inter-
action must either be renormalized by the Lee-Suzuki procedure, or be softened by
means of the SRG procedure (or by a similar procedure) [36].

2.2.2 Effective Interactions

Before softened interactions became available, it was necessary to derive an effec-
tive NN interaction, specific for a given Npax space, derived from the original NN
interaction. From a practical view this is necessary, in order to have the calculations
converge in a tractable basis space. To speed up the convergence of the calculations,
we modify Eq. (2.1), by adding to it the harmonic oscillator center-of-mass term,

2 =5 . .= - . .
Hey = % + %mAQZRz, inwhichR = % Z,A r;,1s the center-of-mass coordinate.
A similar expression exists for the center of momentum term, P = % ZIA Di.
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Note that after the addition of the center-of-mass term, the Hamiltonian is depen-
dent on A, as well as the chosen HO frequency 2. The chosen value of 2 does
affect the calculated gs energy, although, in a variational way. The optimal choice
of €2, for a given nucleus and specified model-space, is a value that minimizes
the gs energy. In practice, a range of possible 22 values are feasible, since the
dependence near the variational minimum is approximately constant. For most
nucleon-nucleon interactions, one cannot use Eq.(2.3) directly for A > 3, since
one would need an extremely large model-space, i.e, a large value for Npax must be
used.

I will now describe the method we prefer to use to create an effective interac-
tion from the starting A-body Hamiltonian, given in Eq.(2.3). The full details of
this approach as well as the relation to the Okubo-Lee-Suzuki transformation are
given in [37]. Although we cannot solve Eq.(2.3) for a general A-body system, we
can solve it for the A = 2, and also for A = 3. We will use this ability as our
starting point for creating an effective interaction. We begin by solving the Hamil-
tonian in the two-body case, A = 2, by employing a few hundred oscillator (HO)
shells, in which typically Npax =350—450. For clarity, Eq. (2.3) assumes the simple
form,

HE,_y=h+h+ V5 (2.4)

Equation (2.4) represents an a = 2 cluster approximation of the full A-body
Hamiltonian. Note, however, that the two-body cluster approximation still retains
information of the A-body system, through the third term on the right. By diago-
nalizing Eq. (2.4), we are able to solve for the eigenenergies of the a = 2 cluster.
One can also think of the diagonalization as performing a unitary transformation
on the Hamiltonian., in which U, are the matrices that contain the eigenvectors of
Eq. (2.4).

Ef o=n = V2H5U; (25)

The unitary matrices can be split into four blocks, each representing a different

vector Space.
Uy p Uz po
Uy = ’ ’ 2.6
2 (Uz,QP U2,0 (20

The block-square dp x dp U, p matrix represents the P-space, or the basis space
(Nmax), in which the effective interaction is to be employed, whereas the Q space
refers to all the eigenstates we are excluding in the effective interaction. Typically,
the P-space is characterized by an Npaxa value, which is much smaller than the
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Nmax2 ~ 400 value that was used to solve the A = 2 case. Here, we have made a
distinction between the two parameters Npmax 4 and Npmax2. The former refers explic-
itly to the space in which the A-body calculation will be performed, whereas the
latter refers to the space in which the A = 2 system is solved. However, in many
references, one will simply find a value stated for Ny,x, without explicit distinction
between the general A- or two-body case. It is usually clear from the context of the
situation, which particular Nyy,x definition is implied.

The U, matrices diagonalize the two-body Hamiltonian, and, thus, bring the
Hamiltonian into diagonal form.

@ _ (Eaxp O
EA,z—( 0 Eanzg 2.7

We are now in a position to calculate the effective Hamiltonian, in which Npax
now refers to the model-space of the A-body calculation.

.
Upp Q Uz, p

HNmax,Q —

A 2.8)

B A2.P -
U2,PU2’P U2,PU2,P

The approach is similar to the methods used previously in the NCSM, as shown in
Sect.2.3.1 in [1]. Equation (2.8) is also particularly convenient, as it avoids storing
a large number of the w-operator matrix elements that are required in [1].

2.3 Basis Functions in the NCSM

I will now extensively discuss the basis of the NCSM. We choose to work with
a HO basis, since it is possible to separate the spurious center-of-mass states
from the intrinsic states exactly, provided we work in the Np,x truncation. Fur-
thermore, the HO basis has well-known analytical properties that are particularly
convenient for our purpose. For example, HO basis states expressed in relative
coordinates are easily transformed into single-particle coordinates by means of
the Talmi-Brody-Moshinksy orthogonal transformation [38]. A single-nucleon HO
wavefunction, in which we temporarily neglect the spin of the nucleon, can be
written as,

¢nlm(?; b) = Ry (r; b)Y (7), (2.9)

in which R,;(r; b) and Yy, (7) correspond to the radial wavefuntion and the cor-
responding spherical harmonic, respectively. The radial wavefunctions depend on
b and the HO parameter, which is related to the HO frequency 2 by b = ,/ %,

in which m is the average nucleon mass. The oscillator parameter is seen to
be a length-scale, set by the harmonic oscillator energy spacing (h€2); for small
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Jacobi Slater determinants

Fig. 2.2 The figure shows the difference between relative (Jacobi) and single-particle (Slater)
coordinates. Note that Jacobi coordinates are defined relative to the center-of-mass of a sub-cluster,
whereas the single-particle coordinates are defined from a common point

values of €2, the oscillator well is very broad, whereas for large values of €2,
the oscillator well is very narrow. The optimal choice of A2 will be discussed in
Sect.2.4.

In order to form the basis for the A-nucleon system, one of two approaches can
be pursued. The first choice is to express the many-body basis in terms of relative
coordinates, as is done in the Jacobi basis [39]. This form is the natural starting
point, as nuclear interactions are expressed in terms of relative momenta (or posi-
tion). However, the antisymmetrization of Jacobi coordinates is very cumbersome for
A > 4. Thus, for heavier systems, single-particle coordinates are preferred, leading
to a basis consisting of Slater determinants. A schematic view of the two types of
basis sets is shown in Fig.2.2.

2.3.1 Jacobi Basis

The Jacobi basis is based on relative coord{nates, 5, , in which i labels the i-th coor-
dinate in the basis. The first coordinate, &, isﬁtaken to be the center-of-mass of
the A-nucleon system. The second coorclinate, &1, 1s taken to be the center-of-mass
between nucleon 1 and nucleon 2. Each ¢; thereafter is defined as the position of the
i 4+ 1-th nucleon with respect to the center-of-mass of the first i nucleons (refer to
the left diagram in Fig.2.2).

- 1 .. N N
So=ylA+R+ 47 (2.10)
I

£ = 5 [ = 72] 2.11)
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The various numerical prefactors, as show in Eq. (2.10), are required to have
an orthonormal transformation between single-particle and relative coordinates. By
inverting the above expressions, it is possible to express single-particle coordinates
(77) in terms of the Jacobi coordinates (&;).

At this stage we have only specified the relative coordinates. We must still con-
struct the antisymmetric basis, as [ will now outline. The antisymmetrization is most
easily demonstrated in the case of three nucleons (A = 3). Detailed discussions can
be found in [2, 39, 40].One begins with the following basis state,

[(nlsjt; NLT)JT) (2.14)

In Eq. (2.14), n and [ correspond to the HO quantum numbers corresponding to
the Jacobi coordinate £;. Note that two nucleons are involved in the definition of £,
thus the additional quantum numbers s, j, ¢ correspond to the relative two-nucleon
channel quantum numbers, spin, angular momentum and isospin, respectively. For
example, the spin of the two-nucleon channel is defined as s = 51 + 52, whereas
j =1+ sandt = t; + t». The relative two-nucleon channel is, by construction,
antisymmetric with respect to particle exchange, and is mathematically expressed by
the requirement that (—1)***" = —1. The quantum numbers N'L7 correspond to
the quantum numbers of the third nucleon, associated with the relative coordinate &;.
The total angular momentum and total isospin of the three-nucleon system is given by
J = j+Jand T = r+7.Note that although the state |(nlsjt; N LT)JT) is explic-
itly antisymmetric with respect to nucleon 1 and nucleon 2, it is not antisymmetric
with respect to nucleons 1 and 3 or nucleons 2 and 3 being exchanged.

In order to construct an antisymmetric basis, we need to make use of an antisym-
metrizer,

1
X = §(1+T<—)+T(+)). (2.15)

The operators 7™ and 7™ are anti-cyclic and cyclic permutation operators,
respectively. In order to create the antisymmetric basis, one needs to diagonalize
the operator X in the |(nlsjt; N'LJ)J T) basis. The resulting eigenvalues will span
two subspaces; an eigenvalue of 1 corresponds to a physically antisymmetric state,
whereas an eigenvalue of O corresponds to a spurious (non-antisymmetric) state [41].
In order to diagonalize X', one needs to determine the matrix elements of the operator.
Since the |(nlsjt; N'LJ)JT) basisis already antisymmetric with respect to nucleons
1 and 2, we can determine the matrix elements of X’ from the action of the permutation
operator P»3, which interchanges nucleon 2 and nucleon 3.
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Fig. 2.3 The figure shows the action of the permutation operator P,3 on the basis state
|(nls ]t(fl) NLT (Eg)J T), in which nucleon 2 and 3 are exchanged The or1g1nal state,

|(nls1t(£1) ./\/'Ej(&z)JT (left) is connected to the new state |(nls1t(£’) ./\/'Ej(fz)JT (right)
by means of an orthogonal transformation

1
(&) = 5((1 —2P3)) (2.16)

The action of P»3 on the basis state |(nlsj t(g D) NLT (52)J T) interchanges
nucleonsq2 and 3. Thjs leads to a new basis state, expressed in primed coordinates as
|(nlsjt(&)); NLT (&) JT). Note that in the primed coordinates, Ei corresponds to
the relative two-nucleon channel consisting now of nucleons 1 and 3. The action of
Py on |(nlsjt(&1); NLT (&)JT) can be seen in Fig. 2.3.

The primed Jacobi coordinates can be expressed in terms of the unprimed coor-
dinates, since the two are relflted by an_ orthogonal transformation. Thus, one
can express the state |(nlsjr(&)); NLJT(,)JT) in terms of the unprimed state,
|(nls jt(gl); NLT (52)] T). The expansion coefficients that enter in the orthogo-
nal transformation are just the generalized harmonic-oscillator brackets with the
mass ratio d [42], in which d is determined from the orthogonal transformation (see
Eq.2.20). Using the preceding information, it is relatively straightforward to calcu-
late the matrix elements of the P»3 operator, expressed in the unprimed coordinates
as follows,

((milis1j1ts N LTI T | Paz|(nalasy jotr; Na L2 Jo) I T)

11y
=N, Nt 17 2

AAAAAA lhsyji] [2s2 )2
x O LS JiphDsiH-Dr L s Bt s h
LS LS J LS J
11
x [% g“:l] (mihN1 L1 LinalaNa Lo L)s. (2.17)
7985

InEq. (2.17), N; = 2n; +1; +2N; + L; labels the total energy of the statei = 1, 2.
The éy,,n, ensures that the total energy energy is conserved in the transformation.
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The notation J is a short-hand for writing ~/2j + 1 and (n1l1N7 L1 L|nalaN>LoL)3
are the generalized harmonic-oscillator brackets with mass ratio d = 3.

Recall that we have to diagonalize X'. Once we have identified the antisymmetric
states, we are able to express a fully antisymmetric state, | NiJT'), in which the state
is antisymmetric under any nucleon exchanges as follows,

INiJT) = (nlsjt; NLI|IN: I T)|(nlsjt; NLT)JIT). (2.18)

The additional label i is required to distinguish states that correspond to the
same NJT quantum numbers. Furthermore, N = 2n + [ + 2N + L. Finally,
the expansion coefficients are given in terms of coefficients of fractional parentage
(nlsjt; NLJI|IN;JT). For A = 4, similar expressions can be derived [40].

2.3.2 Slater Determinant Basis

We now turn our attention to constructing a basis based on single-particle coordinates,
7i,in which i = 1,2, .., A, label the single-particle coordinates of the A nucleons.
The single-particle basis with which we choose to work, is once again based on HO
single-particle states, dpjm; (7, 73 b)xtm, (7). The position is specified by 7, whereas
the intrinsic spin and isospin are denoted by the labels o and 7, respectively. Recall
that guijm; (7, 73 b) = (Puim, (75 b) Xsm, (5))8'1)), in which we denote the coupling of
orbital angular momentum with the intrinsic spin as j = [ + s. The state ¢y, (r; b)
is given by the solution to the three-dimensional isotropic oscillator, ¢, (r; b) =
R (r; b)Yy, (7).

In practice, it is easiest to work with the single-particle state ¢y, jm; (r,; b) and
to explicitly distinguish between protons and neutrons, making the label for isospin
superfluous. Recall that for each j, there are 2j + 1 single-particle states. Each of
the single-particle states has a magnetic quantum number m ; associated with it, in
which the possible values are —j < m; < j. Allowing the A nucleons to occupy any
of the many single-particle states leads to a total projection number M = Zle mj;.
Typically, we restrict the possible values of M to either M = 0 for even A nuclei
or M = % for odd A nuclei. The construction is most easily understood in terms
of Fig.2.4, in which we have shown one possible M = 0 basis state for °Li in the
Nmax = 0 space. Note that we don’t show the other four nucleons occupying the Os 1
shell, since at Npax = O those four nucleons are frozen energetically.

The number of basis states that are constructed are determined by the value of
M. In the case of Li at Npax = 0 (as shown in Fig.2.4), there are 10 possible basis
states. This particular scheme is known as the Glasgow m-scheme [43], in which
basis states are solely constructed on the total M. The m-scheme is particularly
efficient as it requires no tedious angular momentum coupling,which would typically
involve coefficients of fractional parentage. All the antisymmetrization is taken care
by the single-particle nature of the occupation scheme, which also makes the use of
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Fig. 2.4 The figure shows one of 10 possible basis states (for which M = 0) that can be formed
for OLi at Niax = 0. The cross indicates the particular single-particle state that is occupied. Note
that in order to form an M = 0 state, we need to place the proton and neutron into single-particle
states such that the individual 72 ; sum up to zero

second-quantization methods particularly appealing. In this regard, single-particle
state occupations are represented in a bit fashion (i.e., ‘1’ represents an occupied
state, whereas a ‘0’ represents an occupied state). The computational price we pay is
that our Hamiltonian matrix, expressed in terms of the m-scheme basis is very large,
and that J is no longer a good quantum number. Nuclear states are characterized by
J™T,in which J7 corresponds to the total angular momentum and parity of the state
and where T labels the total isospin of the state. Good J and T quantum numbers are
recovered in the m-scheme by projecting the final wavefunction onto good J and T'.

2.3.3 The Center-of-Mass Issue

The use of single-particle coordinates breaks the translational invariance of the
nuclear Hamiltonian (for extensive discussion see [44] and the references therein). In
the definition of the coordinates, 7;, we have implicitly defined a point in space, from
which all position (or momenta) originate. The consequence of this choice is that our
calculated wavefunctions, ¥ (X), contain spurious center-of-mass states. These states
describe the motion of the center-of-mass of the nucleus, and have nothing to do with
the interesting intrinsic states that we are attempting to calculate. In other words, we
would like to decompose the total wavefunction as a product of inErinsic (Pint. (X))
and center-of-mass states (CM) as follows, W (X) = i, (¥) @ dcm(X). The question
is, how does one separate spurious center-of-mass states from the intrinsic states? In
the case of the NCSM, one can separate the two types of states exactly, provided two
things are taken into consideration.

The first consideration is that the HO basis be truncated on an energy-quanta
level, i.e., the Nyux truncation is used. If a single-particle truncation is used, as is
done in Hartree-Fock, then one mixes the center-of-mass state with the intrinsic
states. Note that we explicitly stated that HO basis functions be used; any other basis
set, such as the Woods-Saxon basis, cannot decompose the center-of-mass states
from the intrinsic states. This feature of the HO basis is really a consequence of the
transformation properties of the basis, as I will now describe. The transformation of
HO wavefunctions expressed in single-particle coordinates 7; to relative and center-
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of-mass HO wavefunctions expressed in coordinates (7, I_é), is given by the following
expression,

- NS > S\ W
(Gnit Gtz () () = Dl NL X my, mala, Na (om P (B)
nl,NL v
(2.19)
provided the single-particle coordinates 7; are related to the relative () and center-

of-mass coordinate (R) by

) d \?. 1 \"z
r=\——) rn—|\—— n
1+d 14+d
R AR d ) 2.20
—(m) ”+(1+_d) > (220

In Eq.(2.19), we have written the product of two single-particle HO wavefunc-
tions, when coupled to angular momentum A (projection p), as an expansion over rel-
ative and center-of-mass HO wavefunctions, in which the expansion coefficients are
the generalized HO brackets with mass ratio d. Note that the transformation conserves
the total energy, by enforcing that 2n| + 11 +2n2 +1, = 2n+1+2N + L, conserves
the angular momentum (), and also conserves parity (=Dh+2 = (=D)L Tt is
this transformation, as shown in Eq. (2.19), that guarantees the separation of center-
of-mass from the intrinsic states is exact, but only if the Npax truncation is used (due
to the conservation of energy requirement).

I will now resume the discussion concerning the decomposition into physical and
center-of-mass states. The A-nucleon physical state of interest,

Bl—

Oint.(X) = (71 .. . FA01...0AT1 ... TA|AcJMT M7)sp,

is one in which the center-of-mass is in the lowest energy state, i.e., it is in the 072
configuration. The label « is an additional quantum label used to distinguish between
states that have the same J T assignment.

(Fl ... FAC]...OAT] ... TA|ANIMTM7)sp

— (€. EA1OL . OAT . TAIANTMTM7) X do00(E0: b)  (2.21)

In order to guarantee that the center-of-mass state is in the 02€2 configuration,
as shown in Eq.(2.21), we need to make use of the Gloeckner-Lawson projection
method [45]. This is the second requirement that the center-of-mass states do not
contaminate the intrinsic spectrum. The Lawson projection method is implemented
by adding to the intrinsic Hamiltonian a HO center-of-mass term, Hc¢ s, multiplied
by a Lagrange multiplier, 3.
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Table 2.1 11 J = 17 states calculated for °Li in (Nmayx, AQ2) = (4,20MeV), in which the
Lagrange multiplier is set to 5 = 0.5

Deg. E [MeV] Comment
1 —26.658 -

1 —24.491 -

1 —17.576 -

1 —13.560 -

3 —11.784 CM state
1 —11.299 -

3 —9.452 CM state

We use the effective CD-Bonn 2000 interaction. The first column indicates the degeneracy of the
calculated state, whereas the third column indicates if a state is a spurious center-of-mass state.
Note that the spurious states are easy to identify as they are usually degenerate. At 5 = 10, the
spurious states no longer appear in the calculated spectrum

H=Hs+ 0 (HCM — %FLQ) (2.22)

Note the center-of-mass state in the 042 configuration will have no effect on
the intrinsic energy spectrum, since the term (Hcpy — %hQ)qﬁooo(&); b) = 0. The
center-of-mass states not in the 072 configuration will be shifted upwards in energy,
relative to the gs, on the order of A2 MeV. Typically, we take 3 = 10. A good rule of
thumb is to take a value of SR<2 that is a few times larger than the excitation energy of
the highest lying state one is interested in calculating. As an example of a spectrum,
in which spurious center-of-mass states are present, we refer to Table 2.1, in which
we have calculated 11 J = 17 states for °Li, using the effective CD-Bonn 2000
interaction, in which we have included the Coloumb interaction. The calculation is
done for (Nmax, i) = (4, 20 MeV), except that we have only set 3 = 0.5. Thus,
we expect at about 10 MeV in excitation energy, spurious center-of-mass states to
appear.

It is worth pointing out that this issue with the center-of-mass state is an incon-
venience for nuclear-structure calculations. In the case of atomic-structure calcula-
tions, one does not need to take this issue into account, since in that case the atomic
nucleus itself defines the center-of-mass of the atomic system. Furthermore, a typical
atomic structure Hamiltonian (consider the Born-Oppenheimer approximation), has
no translational invariance to begin with, since the electronic coordinates are defined
with respect to the location of the atomic nucleus.

2.4 Convergence Properties

I will now discuss some of the general features of the NCSM, in particular, how a
realistic calculation is performed in practice. As an example case, we will calculate
the gs of the ®Li nucleus. This nucleus captures many of the features of the NCSM,
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Fig. 2.5 The gs energy of °Li calculated as a function of Npyax. We have used the fixed HO energy
of 2 = 16 MeV. The calculations are variational in Ny, if we use the bare (or SRG evolved)
interaction, as done here. The calculation has not yet converged at Nyax = 14, so we perform
an extrapolation to Npax = 00, which is shown by the dashed line. The extrapolated result is
E~ = —32.304 MeV

as well as exposing us to the challenges of large-scale many-body calculations.
Furthermore, it is the heaviest nucleus for which we are able to obtain near-converged
results, using the SRG transformed chiral NN N3LO interaction.

Before we show the results of the NCSM calculation, it is important to define
exactly what we mean by convergence. By convergence of a NCSM calculation,
we are making a statement that the ground-state energy of a particular nucleus has
been calculated (or estimated) without any dependence on the NCSM parameters.
As was stated in Sect.2.2, the NCSM depends on two parameters, Nyax and AS2.
Nmax determines the size of the basis by specifying how many single-particle states
are included in the calculation, whereas the 42 dependence is a result of using HO
wavefunctions for the single-particle states. In other words, when we say a calculation
is converged, we mean to say that the calculation is free of any dependencies on
these two quantities. In practice, one tries to make Ny as large as possible, and then
extrapolates the gs energy as a function of Np,x, at a fixed value of ~€2. This procedure
removes the dependence on Ny,x. However, what particular value to choose for /2
is usually not known before hand. Thus, in practice, a series of calculations are
performed, employing a variety of A2 values. The optimal choice is usually taken
as the value of /22 that minimizes the gs energy in the largest possible Npax space.

In Fig.2.5 we show the result of a NCSM calculation, in which we have calcu-
lated the gs energy of °Li at A2 = 16 MeV. Note that as we increase the size of the
basis (i.e., Nmax), the energy decreases monotonically, as is expected from a varia-
tional calculation. The variational nature of such a calculation allows us to perform
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Fig. 2.6 The dependence of the gs energy on the harmonic oscillator energy AS2, shown as a
function of Npax. Note that the curves are variational in A2 and Npax. The gs energy starts to
be independent of A2 as Ny increases for a range of A2 values, signaling that the calculations
are independent of AS2. The interaction is the chiral NN N3LO interaction, softened by the SRG
procedure to A = 2.02 fm~!

a suitable extrapolation to Npax = 00 by using an exponential decay, given as
Eo(Nmax) = a x exp(—b * Nmax) + Eco. (2.23)

At Nmax = 00, we determine the gs energy to be E; for the calculation shown
in Fig.2.5, Eoc = —32.304 MeV.

However, the extrapolation shown in Fig. 2.5 might still contain some dependence
on the harmonic oscillator energy /€. In Fig.2.6, we show the gs energy of ®Li as
a function of Npy,x and h<2. Plotting the gs energies in this fashion allows us to
determine what the optimal value of A2 should be. In particular, note that as Npax
increases, the gs energy is approximately the same for a range of 4£2 values. This is
easily seen in the plateau that is developing at 16 < AQ < 20 MeV at Nyx = 14.
It is often argued that once the plateau has developed, any of the possible values
of 72 found in that range are acceptable values to use. Frequently, the value of
h<2 that is chosen is the one that corresponds to the variational minimum in the
largest Nmax space. In the case of Fig.2.6, it can be seen that this corresponds to
hQ ~ 20 MeV.

Once an 72 value has been chosen, usually close to the variational minimum,
one can proceed to extrapolate the gs energy, as was shown in Fig. 2.5. This is one
particular strategy that is used to claim independence of the NCSM parameters in the
final calculation [46, 47]. A slightly more rigorous method to absolve the calculations
of NCSM parameters is the Full No Core Shell Model calculations of James Vary and
Pieter Maris [48]. In that case, several extrapolations to Nmax = 0o are performed
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over a range of <2 values, which allows them to determine a theoretical error of the
extrapolations, which indicates the uncertainty in the extrapolation due to residual
dependencies on Ny,x and AS2.

2.5 Current Limits of the NCSM

The NCSM is a very powerful tool for nuclear-structure calculations. By far the
greatest advantage over traditional shell model approaches is the ability to use realistic
interactions, while performing calculations in which all A nucleons are active in the
model-space. However, calculations such as those done in the NCSM come at a steep
computational price. I will now discuss the current technological limits of the NCSM
and set the stage for the main parts of this thesis: extending the capabilities of the
NCSM in various ways.

The Os shell nuclei, such as the Triton (3H) and the a-particle can be calcu-
lated with extremely high precision, even when using the bare chiral (NN + NNN)
interaction [39]. These nuclei pose no problem on the computational side of NCSM
calculations, provided the Jacobi basis is used. However, the p-shell nuclei, for which
4 < A < 16, are quite a bit more computationally intensive. There are a couple of
reasons for this, which I will describe in turn.

As mentioned in the previous paragraph, for Os-shell nuclei, we can make use of the
efficient Jacobi-coordinate basis. However, once A > 4, the antisymmetrization of
the Jacobi basis becomes extremely difficult to perform. Furthermore, even for A = 4,
in which the anti-symmetrization is still feasible, problems arise, as Np,x increases
beyond Npax = 18. Each basis state must be orthonormal to all others already calcu-
lated; at large Npmax values small numerical inaccuracies are introduced making the
orthonormalization only approximate. Returning to the p-shell nuclei, we emphasize
that the Jacobi basis is inefficient and practically impossible to use. Instead, a basis
of Slater determinants are employed, which are very easily constructed from single-
particle states, once the appropriate antisymmetrization has been performed. The
use of Slater determinants also allows for powerful second-quantization techniques
to be easily employed in computer codes, since all the operations are performed on
the single-particle level (i.e., is this state occupied or not?). However, it is exactly
the afore mentioned convenience of operations on single-particle states that makes
the computational cost of Slater determinant based codes prohibitive. As the size
of the basis increases, the number of Slater determinants that are created in the
Nmax basis grows factorially. Since all computational resources are finite, we can
store only so many basis states before we run out of resources. This is one of the
reasons why the extrapolation to Nmax = oo has to be performed. In Fig.2.7, I
show the growth of Slater determinants as a function of Ny, for several p-shell
nuclei.

A further consideration is the storage of the Hamiltonian matrix elements. Most
codes prefer to diagonalize the Hamiltonian matrix by means of the Lanczos algo-
rithm. This algorithm is well-suited to nuclear-structure calculations, because we
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Fig. 2.7 The number of Slater determinants present in the m-scheme, as a function of Npx for
various p-shell nuclei. The horizontal line shows the computational limit of two popular NCSM
codes, which, in the case of using only two-body forces, corresponds to about one billion states

are usually interested in only the ground or a few low-lying states. However,
we still need to store the matrix elements in memory. In the case of calcula-
tions that only involve two-body matrix elements, the Hamiltonian matrix (when
expressed in Slater determinants) is sparse. For a p-shell nucleus at Ny = 14
we need to store 5,481,920 non-zero two-body matrix elements (in the m-scheme).
We will discuss how these matrix elements are stored in the next section. How-
ever, for three-body interactions, the number of non-zero matrix elements is much
larger. The consequence is that we can only go up to about Np,x = 8 for
p-shell nuclei when we include three-body forces. In the next section, I will
address a recent development that somewhat overcomes this limit for three-body
calculations.

2.5.1 Various NCSM Computer Codes in Use

The aim of this section is to give a brief overview of several computer codes used
today, so that new researchers in the field can easily identify which resources are
available and what some of the key differences are. All the codes listed below, except
for the Many Fermion dynamics code have been used to produce the results in this
thesis.
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2.5.1.1 The No-Core Slater Determinant Code

The No-Core Slater Determinant code (NCSD) [49] is a code that has its roots in
earlier versions of the Many Fermion dynamics (MFD) code [50, 51]. However,
many changes have occurred since the early 1990s, making NCSD quite different to
the current version of MFD. The version of NCSD that I describe corresponds to the
July 2010 version. The code is multi-processor based, written in Fortran 90/95 and
uses MPI for the parallelization routines. The code implements the m-scheme basis,
as discussed earlier. Several distinct features are described below.

The code uses the Lanczos algorithm to determine the eigenenergies (as well
as the wavefunctions) of the nuclear system. The Lanczos algorithm is particu-
larly well-suited for many-body applications, especially if one is only interested in
the lowest eigenvalues of the system (i.e., the gs). A brief summary of the Lanc-
zos algorithm is that repeated applications of the Hamiltonian matrix produces
a set of orthogonal Lanczos vectors, which transforms the original Hamiltonian
matrix into a tri-diagonal form. After ~50-150 Lanczos operations, the tridiag-
onal matrix is diagonalized by standard routines, leading to the low-lying states
of the nucleus, in which we are interested. By far the most expensive part of the
NCSM calculations are due to the repeated application of the Hamiltonian on the
Lanczos vectors. The action of the two-body part of the Hamiltonian is shown
below.

> alalaacij|HIkl) (2.24)
ijkl

In Eq. (2.24) a summation over four indices needs to be performed. In computer
codes, such a procedure can become very expensive, since the loop effectively scales
as n*, where n is the size of the basis. In NCSD this loop over four indices is
reduced to a loop over only two indices, improving the scalability of the code. The
two new indices do not correspond to the indices ijkl; instead we determine all
combinations of annihilation operators, and determine all possible combinations of
creation operators, in which the matrix element between the final ({ij|) and initial
state (|kl)) has the property that AM = 0. In other words, we conserve the total
angular momentum projection. Furthermore, we also check that the parity and isospin
projections are conserved, further reducing the possible matrix elements that need to
be looked up. This brings us to another point: determining which pairs of annihilation
and creation operators lead to non-zero matrix elements is a good start, but we also
need to look up the actual matrix element (ij|H|kl). In the case of NCSD, the
final basis state (ij| is looked up using a hash-table implementation. Hash-tables
are particularly well-suited for such an application. The actual number of Slater
determinants in a large NCSM calculation can be on the order of a few hundred
million states. We do not want to search through a list containing millions of states, in
order to determine which final states are required. An ideal hash-table would require
exactly one lookup to determine which final state is required. In practical cases one
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deals with hash-table collisions, which require searching through a sub-list of about
10-40 final states to determine, which final state is needed.

2.5.1.2 Manyeff

Before any of the NCSM calculations are performed, one needs to generate the two-
or three-body matrix elements of a specified interaction. In the case of the Machleidt
and Entem EFT interaction, the momentum-space diagrammatic terms have to be
expressed in the HO basis. The procedure is achieved by means of performing a
Fourier transform from momentum to position space. Similar procedures are per-
formed for other common interactions. The point we need to consider is that these
interactions need to be expressed appropriately for the NCSM basis. In this regard,
Petr Navratil developed a code, commonly referred to as manyeff [39, 52], in order
to produce the required two- and three-body Hamiltonian matrix elements for the
NCSM.

The manyeff code eventually grew into a stand-alone NCSM code, capable of gen-
erating the matrix elements of a variety of interactions. Perhaps more interestingly,
it is a code that is based on the use of relative (Jacobi) coordinates. Thus, many-
eff became the tool that was used to perform extremely large Np,x calculations of
the Triton and “He. In the case of the Triton, it is now possible to calculate up to
Nmax = 40 using manyeff, whereas for the Slater determinant based NCSD code, one
can only go up to Npax = 16. Naturally, when the generation of SRG interactions
came along, the SRG procedures were built into manyeff, and were subsequently
tested using the same code.

The code is written in Fortran 90/95 and is typically compiled with Intel compilers.
manyeff has become a very powerful multiprocessor code, using both MPI and Open-
MP multiprocessor routines in a hybrid setting. Many of the new capabilities, such
as the SRG procedure as well as the multiprocessor capabilities were introduced by
Eric Jurgenson [31].

2.5.1.3 ANTOINE

ANTOINE [53] is one of the older shell-model codes presently in use. Initially the
code started as a traditional shell model code, meant for calculating heavier isotopes
than what are typically calculated in the NCSM (i.e. A > 16). However, recent
developments by Caurier and Nowacki, the creators of ANTOINE, have made NCSM
calculations possible with the code. The two-body matrix elements are supplied by
Petr Navritil’s manyeff code. ANTOINE is written in FORTRAN 77 and typically
runs on a single processor. ANTOINE is based on the ideas of the Glasgow m-scheme
method, but has some interesting improvements.

One such development is how Slater determinants are created in the code [54]. Typ-
ically, an entire Slater determinant consisting of proton and neutron single-particle
states is created and stored in memory. In ANTOINE, separate proton and neutron
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Slater determinants are created (this is also true for the 2012 version of NCSD).
This procedure leads to a faster basis generation and requires less computer memory
to store all the basis states. However, there is a slight complication: one needs to
construct all proton and neutron Slater determinants that are possible in the single-
particle basis, with all possible 12 ,/, values (p/n corresponds to proton or neutron
subspaces, respectively). Let us label the subspace Slater determinants for the pro-
tons as |i,, m; ), where i, enumerates the proton subspace state, and the neutron
subspace Slater determinant as | ji,, m j ), where j, enumerates the neutron subspace
state. The product of the two subspace Slater determinants are combined to form a
single Slater determinant |i, J M), in which M = m  ;, + m ,. The product of the
proton and neutron Slater determinants can be written as

li, M) = |i[75 mj,p)'jn’ mj,n)

For example in the construction of a M = 0 Slater determinant, am; , = —1/2
and m , = +1/2 Slater determinant can form an M = 0 state; thus one must create
all the Slater determinants with various m ;, ,/, in the proton and neutron subspaces
in order to construct the complete list of |i, M) Slater determinants for a given M.

2.5.1.4 Many Fermion Dynamics

The Many Fermion Dynamics code (MFDn), is the current state of the art NCSM
code and is written in Fortran 90/95 [55, 56]. The main developers of the code are
James Vary and Pieter Maris, both at Iowa State University. MFDn is developed
differently from all the other codes. Under the UNEDF collaboration, a team of
computer scientists and applied mathematicians have added their input to the team,
making it an extremely efficient piece of software. One particular development of
note is the fact that the nuclear Hamiltonian is split up over many nodes on a large
supercomputer, such as the Cray XT-4 at ORNL. This makes it possible to use
terabytes of memory efficiently, allowing for the treatment of NCSM basis spaces on
the order of 10 billion Slater determinants. Such an implementation would be useless,
unless the code is load-balanced (which means that no single node is assigned more
computations than any other node). The load-balancing has been implemented by
the computer scientists working on the code. Two significant calculations have been
performed with MFDn; there are predictions of the '*F spectrum [57] as well as a
study on the anomalous half-life of '*C [58]. The theoretical predictions of the '*F
spectrum were confirmed 6 months later by an experiment performed at the Texas
A&M Cyclotron [59]. There is, however, one comment that is in order regarding the
current version of MFDn; there has been no implementation of three-body forces as
of yet. In other words, MFDn is currently a two-body code only.
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Chapter 3
Importance Truncated No Core Shell Model

3.1 Computational Issues with the NCSM

The NCSM has been very successful at describing light nuclei (A < 6), and in some
cases, has also been able to describe nuclei in the middle of the p-shell (see [1]
for an extensive list of results). However, NCSM calculations in the middle or in
the upper part of the p-shell (A > 10) become very difficult to perform. Currently,
interesting nuclei such as the Carbon or Oxygen isotopes are beyond the capabilities
of the NCSM. To extend our calculations to the start of the sd-shell, is an even more
challenging task. It is possible to do some exploratory calculations for the start of
the sd-shell,! in which Nyax < 4, but fully converged results will be out of reach
for many years. We remind the reader that by fully converged results, we mean
calculations which are free of the two NCSM parameters (Nmax and hS2).

In the case of the NCSM, the main difficulty encountered in extending the cal-
culations to heavier nuclei comes from the relatively quick rise in the number of
many-body basis states present in the Ny« spaces. Recall that for heavier nuclei, the
Slater determinant basis is preferred over the Jacobi basis, since the antisymmetriza-
tion is much easier to implement. The Slater determinant basis however leads to a
basis containing many more basis states than the Jacobi basis. Since all our calcula-
tions are performed on large supercomputers, the problem becomes one of memory
capacity. We need to store the data structures that contain the basis states, as well
as store the non-zero matrix elements of the Hamiltonian. As Npax increases, not
only does the number of basis states increase rapidly, but so do the matrix elements
that need to be stored; all this information consumes memory very quickly. Most
supercomputers are configured with multiple CPU cores present on a single node
(e.g., 8 cores per node), and have a memory allocation of 16 Gb. On average, each
core can access typically 2 Gb of memory. Alternatively, if a single core is used per
node, then 16 Gb of memory can be accessed by the CPU core, but, such resource
allocations are regarded as wasteful. One might also argue that NCSM calculations

! These were done by Alexander Lisetskiy in 2007 but were never published.
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may require a large amount of storage memory (e.g., hard drives) or a huge amount
of CPU time. The former is never a problem; the largest calculation performed in
this thesis required about 100 Gb of storage memory, whereas hundreds of terabytes
are available. On the other hand, CPU time is generally readily available; at worst
the calculations will take a bit longer than anticipated to complete. Even when larger
computers are built, our desire to push the forefront of these calculations will ulti-
mately be limited by the underlying memory computer architectures.

The question now is, is there a way to do NCSM calculations for heavier nuclei?
One might argue that the use of softened interactions such as those generated by
the SRG, might make an extrapolation to Np,x = oo possible, even if using only
ground-state (gs) energies generated from the spaces Nmax < 6-8. In practice, such
extrapolations are unreliable and typically significantly overbind the nuclear systems.
In order to produce reliable and meaningful Ny,x = oo extrapolations, the NCSM
calculations require the gs energies from larger Ny,x spaces, typically in the range of
10 < Npax < 14.2 Thus, the use of softened interactions does aid us in accelerating
the convergence of the NCSM, but does not provide us with a complete solution to
the basis dimension problem. A complement to softened interactions is required.

Continuing the line of thought presented in the previous paragraph, one could
propose the following calculational scheme. We expect that the gs wavefunction
of a typical nucleus has components that are mainly found in the lower-lying HO
shells. In other words, the basis states found in the Ny« < 4 spaces are the dominant
components of the gs wavefunction. As Npax increases, we expect that a small subset
of the relatively many basis states present are contributing to the gs wavefunction.
In fact, from a naive picture, one might even argue that including the one-particle
one-hole (1p1h) configurations in the higher lying Npyax spaces, on top of an Np,x =
4 gs wavefunction, could lead to a reasonable description of the gs properties a
nucleus. But how would one choose certain configurations (i.e., basis states) over
other configurations? Furthermore, if one now starts to truncate the basis spaces, what
kind of physics information is lost, or worse, are any uncontrollable errors introduced
into a truncated NCSM calculation? These questions, the proposed methods, and
finally the consequences of such a method are the discussion of this chapter.

By now the strategy we plan to implement should be clear: we are proposing
to perform NCSM calculations in which we truncate the larger Nmax basis space,
selecting relevant basis states according to a method motivated by physics. One such
method that has been proposed, is the Importance-truncated No-Core Shell Model
(IT-NCSM) [2, 3]. In the IT-NCSM, a small set of basis states is chosen from the full
Nmax space, using a procedure based on first-order multi-configurational perturbation
theory. As we have mentioned previously, the larger Nmax spaces can consist of close
to a billion (or more) Slater determinants.’> However, in the IT-NCSM, typically only
10-15 million states are kept in the larger Npmax spaces. At these basis dimensions,

2 This point was expressed both by Pieter Maris and Robert Roth at the workshop on Perspectives
on the NCSM 2012.

3 Only the MFDn code can efficiently handle basis dimensions over one billion states.
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the calculations are fairly routine to perform and progress (computationally) fairly
quickly. The details of the IT-NCSM will be described in Sect. 3.2, in which we lay
out the formalism of the method and the various improvements that can be made to
the method.

The use of IT-NCSM in nuclear-structure calculations is a fairly new technique.
It was first used by Robert Roth and Petr Navratil in 2007 [2], and later refined
by Roth in 2009 [3]. Currently, only the Roth group in Germany (TU Darmstadt)
make use of IT-NCSM in their calculations. Thus, we find it appropriate to include
a small subsection on the history of IT-NCSM calculations (see Sect.3.3), as well as
highlighting the differences to our approach.

The IT-NCSM calculations that have been published up to now, have clearly
demonstrated the feasibility of the method [4, 5]. In all cases tested so far, [T-NCSM
calculations and full NCSM calculations (when they are possible to perform) have
agreed reasonably well. However, skeptics in the nuclear-structure community have
challenged the use of IT-NCSM as a reliable method to determine gs energies of
nuclei, especially when IT-NCSM is used for heavier systems such as '°0 or *8Ca
[6, 7]. In part, these criticisms stem from two concerns: (1) exactly how large is
the ‘error’ in IT-NCSM calculations when compared to full NCSM calculations and
(2) do IT-NCSM calculations violate sacred principles of many-body theory i.e.,
size-extensivity ?*

Unfortunately, a serious discussion on the errors introduced by the IT-NCSM
calculations, such as those introduced in the (required) extrapolations that recover the
gs energy of the full Npax space, have not been presented. Similarly, a discussion on
the errors introduced solely by working in a truncated Nmax space, leading to possible
violations of the Goldstone linked-diagram expansion [8], which is intimately linked
with the concept of size-extensivity, have so far only been eluded to. We plan to
address the extrapolation errors in great detail in Sect.3.4, in which we present a
calculation of °Li IT-NCSM gs (and excited state) energies, in which we perform
calculations up to the Nypax = 14 basis space. These calculations are compared to full
NCSM calculations, from which we attempt to deduce the reliability of IT-NCSM
calculations. Once we have discussed our method of determining the errors in IT-
NCSM extrapolations, we turn our attention in Sect.3.5 to the observations of the
IT-NCSM as NCSM parameters are changed (e.g., changes in /£2). Furthermore, we
include a brief discussion on the effects of other operators, such as the RMS matter
radius, in Sect.3.6. The issues regarding the Goldstone linked-diagram expansion,
will be discussed in Sect. 3.7.

3.2 The Formalism of IT-NCSM

The main ideas of importance-truncation, as used in the NCSM, will now be pre-
sented. As we have already stated, the procedure is based on multi-configurational
perturbation theory, as originally conceived in the area of quantum chemistry

4 The review article of [9] has a good discussion on the issues of size-extensivity.
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[10-12]. However, there are differences to what is done in nuclear-structure versus
what is done in quantum chemistry. These differences will be discussed in Sect. 3.3.

Let us begin with a brief introduction. At the heart of the IT-NCSM procedure, lies
a parameter r, that is directly related to the number of many-body basis states kept in
a certain Npax model space. We conveniently name the parameter « the importance
measure of a basis state. Naturally, one would desire that x is based on a physical
argument, related to which basis states should be kept in a truncated Npax Space.
Furthermore, one would also desire that variations in ~ lead to predictable results
in say the gs energy of the nucleus. It is the purpose of the next few sections to
illustrate the particular choice of « that we use, and why it is a reasonable choice
to use.

3.2.1 The Selection of Many-Body Basis States via the Importance
Measure

Before we delve into the technical matters related to the formalism of IT-NCSM,
we should ask ourselves the question: when should one start to truncate the Npax
basis spaces? In other words, should one attempt to do full NCSM calculations using
as many complete Np,x basis spaces as are reasonably possible, and then truncate
only the last one or two remaining Npax spaces? Or could one start the Ny,x basis
truncation at a lower Npax already?

To be more precise, consider the case of OLi. We can easily do the full NCSM
calculations up to Nypax = 10, in which there are approximately 10 million basis
states. The next two basis spaces, Nmax = 12, 14, have on the order of 50 and 211
million states, respectively. These basis states are still computationally feasible, but
they consume a fair amount of computer resources. However, in order to perform
a meaningful extrapolation to an infinite basis result (i.e., Nmax = 00), we require
the gs energies of the Npmax = 12, 14 basis spaces. Returning to our argument,
we might consider truncating only the Nymax = 12, 14 basis spaces. However, in
practice, we prefer to start the basis truncation at a smaller N, value; typically
Nmax = 6, although this can be adjusted at will. The reason for truncating the basis
atlower Npax spaces is two fold: (1) The dominant components of a gs wavefunction
are situated in lower lying HO shells. Typically those basis states are found in the
Nmax < 4 spaces. (2) The IT-NCSM procedure is supposed to choose exactly those
states that are dominant in the gs (or excited state) wavefunction, otherwise the
method is not performing as it should. As a final comment, we would like the IT-
NCSM to have a mechanism in place that would ‘correct’ a poor choice for the initial
Nmax basis space that is truncated (e.g., if it turns out that most basis states in the
truncated Npax = 6 really are ‘important’, then the procedure should include many
of the Nmax = 6 basis states, even though we initially attempted to truncate the
basis space).
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The details of IT-NCSM will now be presented. Suppose that one wants to perform
a series of large Nnmax calculations (Npax > 8) for a given nucleus, but due to limita-
tions set by current computer architectures (or resources), the full-space calculation,
in which all the basis states in those Npyax spaces are kept, is not possible. However,
let us assume that an Nyp,x = 4 calculation is easily performed, in which one is
able to calculate the ground state wavefunction, which we will denote as |Wy.r). As
a first-order approximation to the Npax = 6 wavefunction, we could estimate the
amplitudes of the Npax = 6 basis states if we could perform the diagonalization in
Nmax = 6. Such an estimation is offered by first-order perturbation theory.

v W W -
|¢I<\}n)m:6ﬂ> _ Z (D0 W Wref, Npax 4)|¢V> 3.0

€, — €
Ve Nmax=12 v Cref.sp

In Eq.(3.1) we have explicitly denoted |w,(\}|2m:6’ ;70> as the approximate wave-
function of the full space Npmax = 6 wavefunction. The |¢,) are the Npa,x = 6
many-body basis states. |Wref, v,.=4) 15 our previously calculated reference state,
which in our example we assume is the ground-state wavefunction of the Nyax = 4
space. The two terms in the denominator, refer to the single-particle energy level
of the corresponding label. In our implementation, we always take et 5p to be the
lowest unperturbed energy configuration of the nucleus. In ®Li, this corresponds
to taking e€rer,sp = 2 * hS2, since two valence nucleons occupy the N = 1 shell.
We neglect the zero-point motion of the HO, since we only require the difference
in energy of the single-particle states. Furthermore, €, = (6 4+ 2)hS2 for the basis
states in Npax = 4. This is a particular choice that we make and is known as the
Mgller-Plesset type of partitioning. There are other choices that one can make for
the energy-denominator however, these do not necessarily have superior convergence
properties over the simple Mgller-Plesset partitioning [11].

Note that Eq. (3.1) requires the matrix elements of the perturbation operator, W.
A convenient definition of the W operator is to split the initial Hamiltonian H into
two pieces, namely H = Hy + W. We define Hy to be that part of the Hamiltonian
operator, which only connects many-body basis states that lie in the space Npyax =
0—4. In other words, Hy does not connect basis states from our reference space to
the Nmax = 6 space and satisfies the eigenvalue equation Ho|Wier) = €ref|Wref)-
The full Hamiltonian, H, does, however, connect basis states from Ny,x = 6 to the
reference space. Thus, we can rewrite Eq.(3.1), by replacing the W operator with
the full Hamiltonian, H, as follows.

VH\IJre max =
W;\},LX:G,IT)Z Z (P H et 4>|¢z/) 3.2)

€y — € S
VEN =12 v ref,sp

Such a form is extremely convenient, since we do not need to calculate any
other matrix elements, than those we already have to calculate for the Hamiltonian
operator. Equation (3.2) indicates that the largest correction to the wavefunction is
essentially determined by the amplitude of the corresponding Np,x = 6 basis state.
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The amplitude of the basis state is in turn determined by the Hamiltonian matrix
element between the Np.x = 6 basis state and the reference state. This leads us to
define the importance measure of a basis state, x,, to be

H|Y, =
K, = [{ou| H | ref,Nmax—4>|_ (3.3)

€y — €ref,sp

We can now use the importance measure as a way to set a threshold limit, as to
which basis states are included in the truncated Npx = 6 space. A typical value for
# is on the order of a few 1073, If we now set the threshold value of the importance
measure to some value, say 3 1073, we only keep those basis states (¢,,) in Npax = 6
for which k,, > 3% 1072, Since some states have an importance measure lower than
this threshold, we will discard those states, and, thus, start to truncate the Nyx = 6
space. In reality, the number of states discarded depends not only on the threshold
value, but also on which Np,x basis space is currently being evaluated. Typically,
the largest Nmax spaces are most heavily truncated, whereas in the first few Npax
spaces, most basis states are kept. This observation agrees with our intuitive guess,
that the components of the ground state are dominated by basis states found in the
lower oscillator shells.

As an initial test of the IT-NCSM method, we can investigate the correlation
between , and the actual size of the components of Wy, . —¢ ). For convenience,
we separate the contributions of Npax < 4 and Npax = 6 basis states as follows,

WNp=b.x) = D ciléid+ D cldy)

[€Nmax <4 VE Npax=6

in which basis states |¢;) correspond to basis states found in Npx < 4 and basis
states |¢,) correspond to basis states that exist in Nyyx = 6. If there is a large
correlation between x,, and |c, |, then we can argue that the importance measure is
selecting exactly those basis states that are dominant in the Np,.x = 6 basis space. In
Fig. 3.1, we show the correlation plot of x,, and |c, | for the gs wavefunction of 160
in the Nmax = 2 space, when the reference state is taken as the Npax = 0 (single)
Slater determinant.

3.2.2 Properties of Importance Truncation and a Posteriori
Corrections

The selection procedure of the many-body basis states that are kept in the impor-
tance truncation calculation is based on a first-order perturbation theory result (for the
wavefunction in Ny, = 6). Using a particular value for «, leads to a specific number
of many-body basis states being kept, spanning the now incomplete Ny,x = 6 space,
in which we diagonalize the full Hamiltonian, H. The diagonalization results in a
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Fig. 3.1 The plot shows the correlation between r,, and |c, | for the gs wavefunction of 190 in the
Nmax = 2 space, when the reference state is taken as the Npax = 0 (single) Slater determinant. The
Nmax = 2 expansion coefficients ¢, of the wavefunction are compared to the value of x,,

ground state energy, E (1 ) , associated with the truncated wavefunction, Wy, .. =6 ).
Note that this wavefunctlon which results from the diagonalization of the Hamil-
tonian in the truncated Np,x = 6 space, is not the same wavefunction |¢ Ny =6. )
which is what we assume is a good approximation to the actual wavefunction, as
shown in Eq.(3.2). Choosing a smaller value for «, will result in more basis states
being kept, a different truncated wavefunction, and thus will also result in a dif-
ferent ground state energy. By invoking the variational principle, we know that the
calculated ground-state energy will decrease as we decrease the threshold value for .
It is also possible to estimate the energy contribution of the discarded states, by
using second-order perturbation theory to determine the energy correction. The first-
order energy correction vanishes, since we have defined the perturbation operator as

W = H — Hy.
EW = (Wret | W [Wief) = erer — €ref = 0 3.4

In order to determine a non-zero quantity for the correction to the energy, we
need to evaluate the second-order correction to the energy, by summing over all the
discarded basis states, as shown below.

H|¥ —4)?
E(()’ZZ _ Z |(¢u| | ref,Nmax_4>| (3'5)

€, — €
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Using this result, we can improve on the ground state energy calculated in the
truncated space, E (1) .. by adding E to it. The resulting energy,

(1 +2) (D (2)
ESH) — Q) 4 ED). (3.6)
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has a smaller dependence on & than E (1) .. does, as will be illustrated later. However,

EéH ) is no longer variational, as it is constructed from a quantity, E @ ) , which is

not a result obtained from the diagonalization of the Hamiltonian.

3.2.3 The Extension to Excited States

So far we have only discussed targeting basis states in the larger Npyax space from
a reference state, which we took as the ground state in a smaller Npax space. We
can easily extend the basis selection procedure for excited states, by replacing the
reference state with the desired excited state. In definite terms, this means that we
define a ~ threshold value, for each state in which we are interested, and evaluate
all basis states in the larger Npax space for each reference state. The x threshold
value is taken as the same numerical quantity in each case. Returning to our previous
example, in which we were selecting the basis states for Ny,x = 6 from an Ny = 4
reference state, we now define £, as the corresponding « for each of the m (ground
and excited) states present. Note that the energy denominator remains the same for
all the reference states used.

o GUHIWE )
KV =

€y — €ref,sp

(3.7)

The number of basis states kept per fixed value of  is larger for multiple reference
states, when compared to the number kept when only one reference state is used.
This is expected, since the structure of higher-lying states might be quite different
to the ground state. The overlap between different reference states with the next-
larger Npax basis states, (¢, |H |\Ilref Nyu=4)» Will be very different, depending on
the structure of the relevant reference state.

3.2.4 Implementation of Importance Truncation

The Importance-Truncation procedure has been built into the No-Core Shell Model
Slater Determinant Code, (NCSD) [13]. The relative simplicity of NCSD allowed
for an easy modification of the code, so that the importance-truncation selection
procedure could be done. We will now describe how itis done in our code, specifically
for the reference state being the ground state (the extension to excited states is much
the same).

The reader might have formed the impression that one needs to specify only
one value of k, in order to do ‘the calculation’. Although it is certainly possible
to calculate a good approximation to the next larger Npax Space wavefunction by
using just one value for x, it is not sufficient to determine the actual energy that
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the complete Nmax space would give. One needs to perform several calculations, for
various x threshold values, each resulting in a specific ground state energy, Eo ., SO
that an extrapolation to x = 0 can be performed on the Ey ,, values. The extrapolation
to Eop, =0, which will be discussed in great detail in Sect. 3.4, yields what we assume
is the true ground-state energy of the next-larger Nyax space. Whether or not this
is the case will also be addressed in Sect.3.4, in which we compare extrapolated
IT energies to the full-space NCSM energies, obtained from the ANTOINE code
[14].

In order to calculate the series of Eg , values that we need, an efficient algo-
rithm was developed as follows. At the start of every calculation, we determine
the smallest value of x we would like to use. Most often, we choose the mini-
mum value to be kmin = 1.0 x 107>, Next, we construct all the basis states of
the next-larger Nmax space, and save those to a master file on disk. The master file
is split up according to how many processors are used for the IT-NCSM calcula-
tion, typically ranging from 768 to 1536 processors. Each processor reads in the
list of unique basis states (]¢,)) assigned to it, and determines through one Lanc-
7os iteration, which basis states satisfy the requirement that x, > Kmin. Those
basis states that do satisfy this requirement are saved to a new file, along with
the calculated value of k,. This new file holds only a small fraction of the ini-
tial Npax many-body basis states; for the larger Npax > 12 spaces, the num-
ber of basis states kept are two to three-orders smaller than the full NCSM basis
space.

Since we now have a list of all basis states that satisfy x,, > Kmin, as well as
their corresponding value for x,, we are in a position to perform a series of cal-
culations, in which we now vary x. We define a series of x values, for example,
k =1{3.0,2.0, 1.0} % 1073, and begin the calculation at the largest « value. All states
that now satisfy x,, > 3.0 % 1073 are read in from the saved file, and are added to the
many-body basis states already present. The resulting Eg .—3.0 energy is saved. The
process repeats, in which we now add all the basis states that satisfy ,, > 2.0% 107>,
that were not previously added. This procedure is repeated until we have calculated
all the Eo . for all the values of s given. The resulting series of Ey , values are
then used to extrapolate to Eg_.—o. Although we demonstrated the general procedure
with only three ~ threshold values, in general, we typically use 10-15 different
threshold values.

The above procedure has been specific for one Npax space. In our calculations,
we employ a bootstrapping idea, in which we apply importance truncation to several
Nmax spaces in a sequential order. This is very similar to the IT-NCSM(seq) technique
of Roth [3]. We choose to begin with a complete Npax = 4 space, from which we
construct the truncated basis in Npax = 6, using the appropriate reference state.
Recall that this choice is arbitrary and can be changed by us if we desire. We then
perform a series of calculations, as described above, in order to determine enough
Ey, . values, for the Nmax = 6 space, so that a reasonable extrapolation can be done to
Ey, .=0. Once we have calculated the energy for the smallest chosen « value, we use
that resulting wavefunction, |Wref, N, =6.xmi)» @5 the reference state, for evaluating
the Nmax = 8 basis states. Besides checking all the basis states in Npax = 8, we



42 3 Importance Truncated No Core Shell Model

also re-open the master list of all previously discarded basis states for Npax = 6,
and check if any of those states are now kept. This point will be discussed, along
with other observations on the importance-truncation procedure, in Sect.3.5. When
we calculate the energy-contribution from the discarded basis states, we re-evaluate
the contribution from all the states that were discarded up to the current point. For
example, once we evaluate our Npax = 8 basis states, we calculate the energy
contribution of the discarded states from Np,x = 8 states as well as those that are
still discarded in Npy,x = 6.

2
E(z) _ [{Du | H [ Wret, Nypax=6) |
0,k — Z ) — et
v=discarded, Nmax=38 v ret,sp
2
B 3 (@0 | H [Wref, Npax=6) | (3.8)
€y — €ref,sp

v=discarded, Nmax=6

This series of truncated Npyax calculations continues until the desired Npax space
is reached. To summarize, note that at the end of each series of calculations in a
given Npax space, the wavefunction corresponding to the smallest s value is used as
the reference state for evaluating the basis states in the next larger Npyax Space, since
that wavefunction is the best approximation (for the specified x) to the complete
Nmax space. For each Npax space, we re-evaluate all the basis states that have been
discarded in the lower Ny« spaces, to check if any of them now satisfy the minimum
« threshold.

Before we turn our attention to extracting the ground state energies in IT-NCSM,
we would like to demonstrate the effect on the size of the basis as x varies. Recall
that one of our principal goals was to reduce the size of the many-body basis to a
computationally manageable size. In Fig.3.2, we show the size of the basis in the
IT-NCSM Npax = 14 space (for 6Li) as a function of x. We show both the size of the
basis when only a single reference state is used (the J = 17 gs) and the case when
multiple reference states are used (J = {1, 37, 07}). We note that the basis in either
case is on the order of a few million basis states; a significant improvement over the
approximately 211 million basis states present in a complete Npax = 14 space. Note
that in the case of multiple reference states, the smallest « threshold corresponds to
= 2.0 % 107>, whereas in the single reference state the smallest value of kappa is
x = 1.0 % 107>, This is why fewer basis states were kept in the former case than in
the latter, even though one might have expected the multiple reference state case to
keep more basis states (this is the case when the smallest value of « is actually the
same). As a final comment on Fig.3.2, we note that the sudden rise in the number
of basis states kept at £ &~ 1 % 107> is a sign that we are working in the appropriate
range for k. Once k < 1.0 % 1075, we start to include many of the basis states that
have a smaller amplitude in the total gs wavefunction. Figure 3.2 seems to suggest
that at large values of «, that the number of basis states kept is constant, or saturates.
This reflects the case that we keep all basis states that were already included from
Nmax < 12, regardless of what their importance measure might be in the current
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Fig. 3.2 The size of the (truncated) basis at Npnax = 14 in the case of SLi. Two curves are shown:
the size of the basis for using a single reference state (4) or using multiple reference states (x).
The full NCSM space at Nmax = 14 contains approximately 211 million states. The calculation was
performed with the SRG chiral NN N3LO interaction, for which A = 2.02fm~'. The HO energy
is A2 = 16 MeV

Nmax space. In other words, once a basis state is kept, it is never discarded at a later
stage.

At this stage, we have not presented any evidence that the basis states discarded by
having x < 1.0 % 1073 are not significant in determining the gs energy. We will return
to this point in subsequent sections in which we will show that their contribution to
the gs energy is minimal in comparison to including them in the truncated basis.

3.3 The History of IT-NCSM Calculations

The use of importance-truncation is reasonably new to nuclear-structure calculations,
considering the first paper was first published in 2007. However, in the realm of
quantum chemistry, the idea has been around since the late 1970s. We thus find
it appropriate to discuss the historical developments of importance-truncation in
nuclear-structure, specifically to address some of the changes that have occurred
since the initial papers were published. The discussions of the development of the
technique as a whole, particularly in the area of quantum chemistry, interesting as it
is, is outside the scope of this thesis.
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3.3.1 Particle-Hole Truncation

The first publication to appear on IT-NCSM calculations appeared in Physical Review
Letters in August 2007 [2]. These calculations were presented by Robert Roth and
Petr Navratil and showed the gs energies for three nuclei, “He, '°0 and 4°Ca (all
doubly-magic nuclei). These calculations were quite ambitious, even though they
only included softened NN interactions (UCOM [15] and vjoy—k ), since the NCSM
is typically not used to calculate the gs energies of nuclei as heavy as '°0 or *°Ca. In
this regard, the truncated Npyax spaces made it possible to reach large enough Npax
spaces to extract meaningful gs energies.

However, a different type of importance truncation scheme was employed than
the one we outlined in Sect.3.2. The particular importance truncation scheme was
based on a particle-hole truncation method. Recall that the three nuclei we listed
are considered to be doubly-magic, meaning that both the protons and neutrons
completely fill the single-particle states up to a given major HO shell. From a many-
body viewpoint, exactly one Slater determinant is required to describe the Nyax = 0
configuration. This single Slater determinant is taken as the initial reference state,
[Wret).

We will now proceed to describe what we now call the iterative IT-NCSM formal-
ism. The presentation will be brief, so as to illustrate the main concept of this partic-
ular importance truncation scheme. As we mentioned before, the iterative scheme is
based on a particle-hole truncation procedure, as we will now show. One begins with
a general reference state,|Wr), in this case taken to the single Slater determinant
that describes the Ny,x = 0 configuration of a doubly-magic nucleus. One would
like to calculate the gs energy of the nucleus in a given Nny,x space; for simplicity
let us assume the final basis space is Nmax = 4, although in reality, it would be
Nmax = 12-16. Note that we specify only one Npax space in which to perform
the calculation. The selection of the basis states in the chosen Npyax space proceeds
through the usual definition of the importance measure,

[{by | H [ Wrer)|

€y — Eref,sp

v =

Recall that basis states (¢,) that satisfy the criteria k, > kpip are kept in the
truncated Npyax space. In the case of a two-body Hamiltonian, the operation of the
Hamiltonian H can promote two particles from the reference state (creating two holes
in the process) to two unoccupied states in the Npyax = 4 basis space (see the left side
of Fig.3.3). All possible two-particle two-hole (2p-2h) excitations are created, for
which each possible configuration is evaluated according to the importance truncation
threshold criteria. The basis states that do satisfy the threshold criteria are kept in the
final truncated Ny,x = 4 basis space. The truncated 2p-2h Npax = 4 basis is then
used to diagonalize the Hamiltonian, leading to a gs wavefunction |\Ifrze’;_2h).

However, there is a minor complication that must be discussed. We have in fact
only evaluated some of the basis states in the full Nyax = 4 basis space. Recall that
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Fig. 3.3 On the left, we show one possible two-particle two-hole (2p-2h) excitation for “He, using
the Nmax = 0 single Slater determinant as a reference state. For convenience, protons are indicated
by the color red, whereas neutrons are colored blue. The gray circles correspond to the initial
Nmax = 0 Slater determinant. On the right, we notice that the configuration shown is not evaluated
in the 2p-2h importance truncation sampling, even though it is a basis state corresponding to
Nmax = 4

an Npax = 4 basis space implies that one has 4 quanta of HO energy available to
share amongst the A nucleons. In our 4He case, one possible Njax = 4 confi guration
is shown on the right side of Fig.3.3. This particular basis state was not evaluated
in the 2p-2h truncation scheme. Thus, using |\Dr2e’;_2h) as a new reference state, one
evaluates all the basis states again according to the threshold criteria. In effect, we
have evaluated all 4p-4h configurations above the initial Np,x = O reference state
(in the Nmax = 4 basis space). This gives us a new set of basis states, leading once
again to a truncated Npx = 4 basis space, except that this space now includes all
possible configurations that could have been included from the Npax = 4 space.
The wavefunction that is determined from diagonalizing the Hamiltonian in this new
4p-4h basis is the final wavefunction that we desire.

The preceding few paragraphs illustrate several difficulties with the iterative
approach to importance truncation. The main difficulty is that after one evaluation
of a general Nn,x basis, one has really only evaluated the 2p-2h basis states. The
procedure needs to be applied again in order to generate the 4p-4h basis states. Typ-
ically, the 4p-4h states that are now added to the 2p-2h basis states have a smaller
effect on the gs energy, indicating that the 4p-4h states are ‘less important’. Even
then, depending on the size of A and Np,x, one might still not have evaluated all the
basis states present in the general Ny,x basis space.

Furthermore, the truncation of basis states on a particle-hole level leads to size-
extensivity issues. These will be discussed in Sect.3.7.

3.3.2 Sequential Nyax Calculations

The iterative (or particle-hole) importance truncation procedure was quickly aban-
doned. Although there are no serious errors in the method, the procedure was replaced
by a much better implementation of importance truncation. In 2009, Roth published



46 3 Importance Truncated No Core Shell Model

[3] what can be considered as the most complete description of [IT-NCSM and its
various implementations.

The ‘new’” method of importance truncation involves a sequential scheme of eval-
uating basis states. In fact, the formalism presented in Sect. 3.2 follows this approach
very closely. Instead of attempting to evaluate all the basis states of a general Nyax
space from the outset, one prefers to ‘bootstrap’ the evaluation of basis states sequen-
tially in Np,x. Let us assume we once again begin with a reference state in the
Nmax = 0 space. Considering that the Hamiltonian operator is a two-body operator,
when it acts on the reference state, it will naturally generate Np,x = 2 basis states.
Once again, the importance measure k, is used to evaluate all the Npx = 2 basis
states. Note that we now generate all the Nmax = 2 basis states from the action of
the Hamiltonian on the reference state automatically. Once the truncated Npyax = 2
basis is formed, we once again diagonalize the Hamiltonian in the truncated basis.
This gives us a new gs wavefunction, |\I!r(é¥m“:2) ), which we now use as a reference
state to evaluate all the basis states in Nypax = 4, using the same method as before.

The clear advantage of the sequential method, is that we now automatically gen-
erate all basis states in the evaluated Npax space. Thus, we only need to do it once per
basis space. Furthermore, we can generate a sequence of gs energies for each trun-
cated basis space, from which we can easily extrapolate the gs energy to Nyax = 00.
Furthermore, there is no particle-hole truncation procedure in place. The question
remains open whether or not the sequential IT-NCSM still violates size-extensivity
(see Sect.3.7).

3.3.3 Kruse and Roth IT-NCSM Implementations

In this section, we would like to discuss the differences between the implementa-
tions of IT-NCSM as is done in this thesis, and those as done by Roth. Since these
differences are not well documented anywhere else, we find it appropriate to include
them here.

Both Kruse and Roth use the sequential [T-NCSM formalism. Furthermore, the
selection of the basis states always proceeds through the evaluation of the importance
measure, ;. There are essentially two subtle differences between the implementation
of Kruse and that of Roth.

Sequence of Steps

The first difference arises in the steps that are followed to calculated the gs energies
as a function of Npax. In the case of Kruse, one begins with the largest importance
measure (k) in a given Npax space, and then proceeds to calculate the gs energy for
that particular set of basis states. The next gs energy that is calculated is for the next
largest importance measure in the same Npyax (truncated) basis space. The series
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Fig. 3.4 The difference between how Kruse and Roth implement the series of steps in IT-NCSM
calculations. In the case of Kruse (left), the approach is ‘horizontal’, in which all gs energies (x)
are calculated in the same Np,x space before the next basis space (Nmax + 2) is evaluated. In the
case of Roth (right) the approach is ‘vertical’. A gs energy is calculated at a fixed value of x for
each Npax space. The process repeats anew with a smaller value of x

of gs calculations continue until the smallest importance measure is reached. The
resulting gs wavefunction that is determined from the Ny,x basis for K = Ky 1S
used as the reference state for evaluating all the basis states in the next larger basis
space (Nmax + 2).

In the case of Roth, x is fixed initially. One then calculated the gs energies as a
function of Npax, while keeping « fixed. Obviously, the wavefunction that is deter-
mined in each truncated Npyax space is used to determine which basis states are kept
in the next larger basis space. Once the calculation has completed up to the desired
Nmax space, the calculation begins anew, this time with a slighter smaller value for .
The difference between Kruse and Roth is depicted graphically in Fig.3.4.

This subtle difference has implications for the extrapolation of the gs energy (as a
function of k) in a given Nn,x space. Recall that we are interested in determining the
gs energy at £ = 0. In Fig. 3.4, we have depicted gs energies as crosses (x); these
series of gs energies are extrapolated in various ways, the details of which will be
presented in Sect. 3.4. We should point out though that the subtle difference between
the two methods does affect the extrapolations. In the case of Kruse, the gs energies
tend to vary more slowly as x decreases in a given Npax space; in the case of Roth
the gs energies tend to have a stronger dependence on « (i.e., the slope of the curve
is greater) for the same Ny« space.

Truncation on the Reference State

There is one other difference between the IT-NCSM calculations of Kruse (this thesis)
and those of Roth. In the sequential IT-NCSM scheme, a reference wavefunction for

a given Npax space, I‘-IJ(N““‘X)

ef ), 18 used to evaluate the basis states in the next-larger
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Nmax + 2 basis space. The reference wavefunctions used between Kruse and Roth
are, however, slightly different.

The initial gs wavefunction obtained from diagonalizing the Hamiltonian in the
truncated Np,x basis is expanded in the Slater determinant basis as follows,

(W Ny =" i), (3.9)

in which the |¢;) are the basis states. In the case of Roth, the reference wavefunction
is obtained from |W¥mav)) by imposing an additional truncation on the size of the
expansion coefficients (c;). The typical truncation threshold is set that only the basis
components in |‘~II(N'“€‘X)) that satisfy |c;| > cmin are kept. The value of ¢y, is taken
to be cmin &~ 10 % . Recall that in Roth’s calculations, & is fixed in each Ny space,
so there is no ‘minimum’ value of « used (i.e., « is not necessarily the same as Kmin,
as is the case in Kruse’s calculations).
The actual reference wavefunction used by Roth is, thus,

(W) = > elow). (3.10)

V,Cy=Cmin

The purpose of this procedure is to reduce the number of possible basis states
that can be included from the Npax + 2 basis space. In effect, one limits the possi-
ble number of non-zero matrix elements of (¢, |H |\Ilr(é¥ma")) by reducing the num-
ber of basis states already present in the reference space. However, the argument
is made that one only needs to keep the dominant terms in |[W®ma)) " in other
words, those components that satisfy ¢, > cmin, since it is those components that
will have the most effect on the ‘importance’ of a newly added basis state from
Nmax + 2. The particular choice of having cpin = 10 * & is justified, by noting
that there seems to be no noticeable difference in gs energies if the threshold is
lowered.

The calculations done by Kruse do not use the ¢y truncation on the wavefunction.
In other words, | ¥ (Vmax)) = |\l’r(é\f/ma") ). This choice is historical, but was later kept on
philosophical grounds; do as little ‘harm’ to the reference wavefunction as possible.

3.4 Extrapolation Errors Introduced in the IT-NCSM

The errors that arise from working in a truncated basis have not been explored in
depth. In order to form a clear picture in our minds about how various facets of the
IT-NCSM function, we propose to do a series of extensive calculations, using °Li as
our candidate nucleus. We choose this nucleus, as it one more complicated than the
Triton or *He, but is not as challenging computationally as the mid p-shell nuclei.
As a further consideration, we can perform full NCSM calculations for OLi all the
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way up to Nmax = 14. This allows us to test the I[T-NCSM in each of the Npax
spaces that are truncated all the way up to rather large values of Npax. In most cases
when the IT-NCSM is employed (e.g., heavier nuclei), one infers from the lower
Nmax spaces for which full NCSM calculations are still possible, that the method
is performing very well. However, as Np,x increases, the basis dimensions grow
large, but the number of basis states kept in IT-NCSM only increases marginally.
Thus, one may expect that the error in IT-NCSM calculations perhaps grows as Npax
increases.

We begin with the bare NN N3LO interaction [16], which we transform to a phase-
shift equivalent form, that has been evolved to momentum scales of A = 2.02 fm~1,
The choice of A is fairly standard in terms of soft interactions. In later sections, we
will vary A to gain insights into the behavior of IT-NCSM as the character of the
interaction changes.

As pointed out earlier, 10-15 different values of x are used per Np,x space, each
resulting in a gs energy, Eo_ .. These are then used to extrapolate to Eg ,—o.If x = Oin
an IT-NCSM calculation, then all basis states are kept, thus, by extrapolating to x = 0,
we hope to recover the result of the complete Npax calculation. In this section, we
will carefully analyze the extrapolation procedure and make a reasonable estimate
of the error produced, simply by using various extrapolation techniques. Such an
analysis is new and needs to be done. We will show that different conclusions can
be drawn from the extrapolations, depending on how they were performed. It is not
surprising to expect an error to be present in [T-NCSM calculations; however, we
must point out that such results should be interpreted with care. One instance, where
some care should be exercised, is in the extrapolation of a few Ny« calculations to
the infinite space (Npax = 00). We will demonstrate that each calculated IT-NCSM
Nmax gs energy is associated with a small but finite error. These errors tend to grow
as Nmax increases. If an extrapolation to Nmax = 00 is now performed on these
Nmax points, one should expect an error to be associated with the predicted infinite
result. The error on the infinite result is influenced by the finite Npy,x [T-NCSM
calculations, and their respective errors. This naturally leads to the question, how
large is the associated error in the infinite result?

In Fig.3.5, we present a series of importance-truncated-calculated gs energies,
for OLi in a truncated Nyax = 14 space, using a range of « values.

We have chosen 12 values of x, given by the set k = {7.0, 6.0.5.0,4.5, 3.8, 3.4,
2.75,2.25,1.8,1.5,1.2,1.0} % 10~5. We will often refer to this set as the k- grid
points. This choice is arbitrary, although we did space the smallest « values closer
together, since we intuitively know that the smallest x values have a larger effect on
the extrapolation, than the larger ~ values do. Our chosen range of x, spanning from
k = 7.0-1.0 % 107>, is also to some extent arbitrary. Choosing a too narrow range
could potentially affect the extrapolations in an undesired way, but choosing a too
large a range, could bias the fitted functions too heavily towards Ey . values that are
associated with large values of x. This brings us to our first point: The extrapolated
values will depend on the chosen range of x and will also be influenced by the
spacing of the values of k. We will address these issues in Sect.3.4.1.
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Fig. 3.5 IT-NCSM calculated gs energies of ®Li in an Nyax = 14 space, using the SRG-N3LO
potential with a momentum-cutoff A = 2.02fm~!. The oscillator energy is 72 = 16 MeV. The
fit shows three different polynomial extrapolations to Ey ,—o. Note that the extrapolated values are
different and are spread across a range of about 150keV. For comparison, we have included the gs
energy of a complete Npax = 14 space (solid point)

Another look at Fig. 3.5 suggests that the extrapolated values will also depend on
the chosen function that is to be extrapolated. In Fig.3.5, we present three possible
choices; a third-, fourth- and fifth-order polynomial. The predicted gs energy in
the Nmax = 14 space has a range of about 150keV, between the third- and fifth-
order polynomial. A priori, there is no class of functions that should be used in
the extrapolations to the full-space result. Furthermore, we cannot make use of the
Hellman-Feynman theorem, since the Hamiltonian does not explicitly depend on &.
In other words, there is no strict requirement that the extrapolated function should
have a zero-derivative at x = 0. This brings us to our second point: The extrapolated
values also depend on which rype of function was used to perform the extrapolation.
An analysis of various functions, will be presented in Sect.3.4.2.

The results presented in Fig. 3.5 are variational. They are calculated from a certain
number of basis states, which are determined from the importance-truncation selec-
tion procedure for a given value of x, in which the full Hamiltonian is diagonalized.
An alternative way to fit the importance-truncated energies is to make use of the
second-order corrections to the energy, E(() ; as shown in Eq. (3.5). Formally, we

know that as x — 0, both E, ) ,; (as shown in Fig.3.5) and E ( +2) should meet at the
same extrapolated point. It is, thus also possible to do a constralned extrapolation of
these two curves, one involving only the first-order energies E0 Y the other including
the second-order corrections, E (()1:2) ,in such a way that both curves meet at the same
point when x = 0. Such an extrapolation is shown in Fig. 3.6, using the same NCSM

parameters as in Fig.3.5. Although we have only shown the fit for the fifth-order



3.4 Extrapolation Errors Introduced in the IT-NCSM 51

-31.5 T T T T T T T
Nmax 14 IT-NCSM EO,K X
Complete Nmax 14 E, @
-31.6 - SRG A=2.02 fm .

Ep « [MeV]

K[107]

Fig. 3.6 A constrained fit on both the ﬁrst—,E(()’l,){ (upper curve), and second-order energies,Eé},:rz)

(lower curve), using a fifth-order polynomial. The NCSM parameters are the same as in Fig. 3.5 as
well as the x-grid

polynomial, it should be noted that using another polynomial will lead to a differ-
ent extrapolated result. As will be shown later, when the constrained fit is used, the
spread in extrapolated gs energies is lower than that suggested in Fig. 3.5. However,
a spread in the extrapolated values does remain, and we would like to characterize
how large that spread is.

3.4.1 Minimizing the Effect on the Chosen Set of  Values

In Sect.3.4, we had pointed out that the extrapolations to E¢ .—o depend on the
chosen set of x values. In particular, the extrapolation depends on the range of
the set, the number of k- grid points, as well as their spacing. In this section, we
analyze the dependence on the extrapolated gs energy on these quantities. Such an
analysis is quite interesting for the following reason: A different choice of x-grid
points leads to a different extrapolated value of the gs energy. Typically the range
of £ is similar, spanning from a minimal value of a few 107> to at maximal value
of about 20 % 1075. In the larger Nmax calculations, especially for the p-shell, it is
computationally expensive to have x < 1.0% 107, since the number of states grows
exponentially when the value of & is decreased.

The standard practice is to fit the 12 points shown in Fig.3.5 by using some
specified low-order polynomial. This, however, leads to one value of Ey .—o, without
the ability to determine any error that is due solely to the extrapolation itself. As a
first estimate of the error produced by varying ranges and spacings of the grid-points,
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Fig. 3.7 The normalized distribution of extrapolated gs energies of °Li in the Nax = 14 space,
using hQ = 16 MeV. We use the chiral NN N3LO interaction, softened by SRG to A = 2.02fm~!.
The extrapolations are done using a cubic polynomial, fitted only to the first-order energies, as was
done in Fig.3.5. The extrapolated values are binned by 20keV. We determine the median to be
Eo =0 = —31.902MeV and the standard deviation to be o) = 36keV

as well as the number of grid points, we use the following procedure. We begin by
choosing all possible combinations of 7 out of our 12 available points, and for each
of these (172) = 792 sets, we fit a polynomial to and determine the extrapolated
gs energy, Eo x—o0. An example of the distribution of extrapolated energies, using a
cubic polynomial fitted to the first-order energies, E(()I,)i is shown in Fig.3.7. After
calculating all the extrapolated gs energies that result from the 792 combinations of
grid-points, we bin the results in 20keV bins. From the distribution, we calculate
the median as well as the standard deviation. We chose the median, instead of the

average, as it is a statistical quantity that is not sensitive to outliers in the distribution.
12

In the case of Fig. 3.7, we determine the median to be Eé;zo = —31.902 MeV, which
we also take as the value of the extrapolated gs energy. The standard deviation of the
distribution shown in Fig.3.7 is o2y = 36keV.

The preceding paragraph lays the foundations of our error analysis. We repeat
the above procedure for another 3 sets of data, created from choosing (182), (192)
and finally (}(2)) combinations of x grid points. For each data set, we determine the
median of the distribution, as shown in Fig. 3.7, as well as the standard deviation. The
median for each data set varies by at most a few keV, whereas the standard deviation
decreases as the number of combinations of « grid points decreases. We determine
our extrapolated gs energy, as well as the associated error generated from the grid
points by averaging over the calculated medians and standard deviations of the 4 data
sets.
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We should point out that our determination of the error, generated from various
combinations of x grid-points, with which we associate o, is only a first attempt at
determining the potential error of the extrapolations. The calculated standard devi-
ation will, in general, differ if fewer (or more) data sets are used in Eq.(3.12). The
important point we do want to make is that although the error might change depend-
ing on the number of data sets used, the order of magnitude of the error, whether it
be a few or tens of keV’s will not change. Such an estimate does have implications
when extrapolations to Npax = oo are performed. We also note that the standard
deviation is generally smaller, when one uses the constrained extrapolations, as is
shown in Fig.3.6.

3.4.2 Variations in the Chosen Function Used in the Extrapolation

In Sect.3.4.1, we focused our attention on determining the error that is generated from
various combinations of x grid-points. The objective of that section was to average
over many different possible choices of grid point configurations. In this section, we
turn our attention to the choice of extrapolation function. As we had mentioned in the
introduction to Sect. 3.4, there is no a priori justification to using one function over
another. One simply goes by whether the chosen function, once fitted to the calculated
Ey ., lies on top of the data or not. As can be seen from Fig. 3.5, various gs energies
are predicted, depending on which function was chosen for the extrapolation. We
will, thus, investigate various options that one might consider in fitting IT-NCSM
calculated energies. We will use three different polynomials, a cubic, quartic, as well
as a fifth-order polynomial.

For each selected function, we repeat the procedure outlined in Sect. 3.4.1. Besides

for fitting the first-order results, E(gl;, as in Fig. 3.5, we also repeat the fits, using the
same function for both the first- and second-order results, E(()IL and E((f:z) respec-

tively, as shown in Fig. 3.6. Note that the constrained fits lead to a smaller standard
deviation in the extrapolated gs energy.

3.4.3 Estimates of Extrapolation Errors

We will now present our calculated error estimates on the extrapolated gs energy in
6L, for the model spaces Nmax = 6—14, and the oscillator value of 72 = 16 MeV.
The extrapolated gs energies are calculated, as well as the standard deviation,
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Table 3.1 The extrapolated gs energies in various Np,x spaces for 6Li (NN N3LO SRG at A\ =
2.02fm™1) at A2 = 16 MeV, using only the first-order IT-NCSM calculated points, E(()] ,i

Nmax NCSM IT-NCSM 3 (MeV) o (keV) x* (MeV) o (keV) x° (MeV) o (keV) Exact (MeV)

6 0.198 0.162 —28.601 ~0 —28.601 ~0 —28.601 ~0 —28.602
8 1.579 1.077 -30.216 2 —30.211 2 -30.211 2 -30.213
10 9.693 3.291 —-31.207 2 —-31.204 3 -31.197 4 —31.176
12 48.888 6.487 —-31.714 10 —31.744 6 —-31.741 21 —31.713
14 211.286 9.544 -31.899 25 —31.964 20 —32.046 29 —=31.977

The table displays the various mean extrapolated values of the gs energy, for the polynomial used,
as well as the calculated standard deviations of the fits, which are indicated to the right of the
corresponding extrapolated energy. The exact result, in which all basis states are kept, is shown
in the right-most column. The dimension (in millions) of basis states are shown in the complete
Nmax space as well as in the importance truncated space (columns 2 and 3). Note that the basis in
IT-NCSM is drastically reduced in the larger Npx values

Table 3.2 The extrapolated gs energies in various Npyax spaces for °Li (NN N3LO SRG \ =
2.02fm~") at AQ = 16 MeV, using the second-order IT-NCSM calculated points, E(()I:Z)

Nmax 3 MeV) o keV) x*MeV) okeV) x5MeV) o (keV) Ex. (MeV)

6 —28.601 ~0 —28.602 1 —28.602 2 —28.602
8 —30.217 2 —30.211 2 —30.208 1 -30.213
10 —31.194 1 —31.196 1 —31.195 2 —31.176
12 —31.685 6 —31.702 5 —-31.712 2 —-31.713
14 —31.902 9 —31.925 12 —31.952 13 —-31.977

The table displays the various mean extrapolated values of the gs energy, as well as the calculated
standard deviations of the fits, which are indicated to the right of the corresponding extrapolated
energy. The exact result, in which all basis states are kept, is shown in the right-most column

which we associate with the error generated from the extrapolation, as explained
in Sect.3.4.1. We also present the results from using various extrapolating functions.
The extrapolated results are compared to the exact gs energies, as shown in Tables 3.1
and 3.2.

We observe the following trends presented by Tables3.1, 3.2 and Fig.3.8. The
extrapolations to the exact gs energy for Npax = 6-8 are very good, being within
one keV of the exact result and being independent of the function or method used.
The agreement with the exact result is not surprising, as most of the many-body basis
states are kept in those Npax spaces. Next, we observe that the error, o, increases as
Nmax increases, but that it is smaller in the larger Nyax spaces for the constrained
second-order fits (E(()? : 2)), than the error for the corresponding first-order fits. Note
that the error stated here is from variations in the combinations of « grid points. This
result is also expected, as now many basis states are discarded for the Nyp,x = 12-14
spaces. However, note that for a given Ny« space, the errors associated with each
extrapolating function is roughly the same. This indicates that at least at some level,
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Fig. 3.8 The plot shows the extrapolated gs energy, relative to the exact gs energy (solid points), as
well as the error, o, that we determine from variations in the x grid points. The points to the left are

the extrapolations that are generated from fitting just the first-order set of data, E((JIZ Those to the

right are the extrapolations when fitting the second-order corrections, E(()lr

is A2 = 16 MeV

D The oscillator value

choosing one function over another does not necessarily decrease the error from
variations in the « grid points.

We also note that the mean extrapolated gs energy, for a given Nmax space, can be
quite different between various functions, varying as much as 50keV for the N, =
14 space, when either the first- (E(()T,i,) or constrained second-order (Eé?:z)) results
are fitted. The spread of extrapolated gs energies among the various chosen functions
is usually quite a bit larger than the error associated with the variations in the x grid
points. Realistically, one does not have the exact calculations on hand, otherwise
there would be no need for IT-NCSM, thus, characterizing the spread of the mean
extrapolated gs energy is conceptually challenging. To illustrate this point, consider
the results for Npmax = 12 in Table3.1. The cubic polynomial extrapolates to the
exact result to within a keV, yet the quartic and fifth-order polynomial overestimate
the result by about 30keV, which is twice as large as the error from the variations in
the x grid points. If one does not know the exact result, one cannot make a reasonable
guess, as to which functional extrapolation is the correct one to use. Furthermore, it
should be clear from the tables that the error from variations in the « grid points are
lower than those associated with the use of different extrapolating functions. This
leads us to state that the error from IT-NCSM extrapolations is at least as large as
the stated value of o, but could be as much as two- or three times larger. The latter
is much harder to determine quantitatively.

Typically, the final procedure in any NCSM calculation is to extrapolate the gs
energies as a function of Npax t0 Nmax = 00. The purpose of this procedure is to
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Fig. 3.9 The Npnax = oo extrapolation is shown, taking into account the o error bars, in which we
have used the first-order extrapolated results for E(()l 2;:0, determined from fitting a cubic polynomial
to the x grid points. The function that we use is the commonly-used exponential decay, a xexp(—b *
Nmax) + ¢, in which c is the gs energy at Nyax = o0o. We determine the infinite result to be
E0, Ny =00 = —32.188 + 0.031 MeV, with a x? per degree of freedom of 5.4. The NCSM model
parameters are the same as before

remove the model parameters (Npqx, 752) from the calculations. The extrapolation to
Nmax = ooremoves the Np,x dependence. The /£2 dependence is removed, provided
one chooses a HO energy near the variational minimum of the gs (as we have done).
This procedure was first used in [17], in which the bare N3LO interaction was used
to determine the gs energy of °Li.

In Fig. 3.9, we plot the extrapolation to Npax = 00, using the extrapolated values

E(gl})izo that are determined from fitting a cubic polynomial to the first-order energies,

E(()l,l The extrapolation is done by using an exponential decay, a * exp(—b * Npax)+
¢, in which we take into account the errors o on the extrapolated points. We determine
the infinite result to be Eo y,, = oo = —32.188+£0.031MeV, with a x? per degree of
freedom of 5.4. We will compare this result to the result determined from the NCSM
gs energies in the next paragraph. For now, let us point out that the Npax = oo result
has an error, 0 associated with it. We determine o, = 31keV. This value is not
large, if we consider that the binding energy is on the order of 30 MeV.

We believe that the errors on the points shown in Fig. 3.9, arising solely from the
distribution of the extrapolated values of Ey ..—0, are due to variations in the ~ grid
points and are definitely present, but that the errors from other sources, which are
much harder to determine, could make the overall error in IT-NCSM calculations
larger than what we have calculated. Most importantly, we would like to emphasize
the point that when considering IT-NCSM extrapolated results to Npax = 00, these
extrapolations do come with some error, and hence, should at least be estimated.
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Table 3.3 The Np.x = oo extrapolations of the gs energy are shown
Method  x3 (MeV) 0o (keV)  x*(MeV) 0o (keV) 17 (MeV) 0 (keV)

Eg\ —32188 3l 3233 26 32419 60

ESY —3214 13 ~32207 15 _30269 14

The extrapolations are performed as shown in Fig.3.9, except now we have done it for both the
(142)

first-order, E(()li and second-order E, " points as well. The extrapolated Nmax = 00 gs energy,
found from using the NCSM gs energies is —32.304 MeV

-32.15

NCSM Eq'—.
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Fig. 3.10 The Np.x = oo extrapolations of the gs energy are shown, as given in Table 3.3. Each
polynomial order has two lines associated with it: to the left we show the extrapolation using the
first-order results, and to the right the second-order results. The horizontal line indicates the result
of extrapolating the full-space results to Nypax = oo. This value is —32.304 MeV

In Table3.3 we show the resulting values of o, for other extrapolating functions,
as well as using either the first- or second-order results. A graphical depiction of
Table 3.3 is shown in Fig. 3.10, in which we also show the result of extrapolating full
NCSM calculations to Nyax = 14.

The results in Table3.3 are encouraging, since they indicate that the error on
Nmax = 00 extrapolations do not increase significantly. We also note that the dif-
ference from the exact Nmax = o0 extrapolation is on the order of tens of keV. We
reiterate that, although this difference to the exact result is small in comparison to
the gs energy, it is still present and could be relevant when conclusions are made
from IT-NCSM Npax = 00 extrapolated results.
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3.5 Observations on the Importance Truncation Procedure

In the previous section, we addressed the fundamentals of IT-NCSM calculations. In
particular, we addressed the choice of extrapolating function as well as the variation in
k-grid points. In this section we address further questions, namely, the dependence on
the HO energy (A£2), the SRG momentum-cutoft scale (), as well as the dependence
of IT-NCSM gs energies on the number of reference states used (i.e., targeting excited
states). These are discussed in Sects.3.5.1, 3.5.2 and 3.5.4, respectively.

3.5.1 The Dependence on h2

AIl NCSM calculations have a dependence on the chosen HO energy, /7£2, even when
bare interactions are used. However, the dependence on /£2 can be minimized for a
range of values. In practice, one typically chooses an A£2 range resulting in the lowest
gs energy of the largest Npax space employed. For our test case, we have included
both optimal A£2 choices (A2 = 16, 20 MeV), as well as two non-typical HO energies
(h2 = 12,24 MeV). As we will show later, there is a noticeable dependence on the
quality of IT-NCSM calculations as h<2 is increased.

Having determined the NCSM results, we can now determine if the IT-NCSM
extrapolated results show any dependence on A£2. In other words, regardless of the
h$2 value used, do we extrapolate to the corresponding NCSM result, or is there a
systematic difference as a function of 22? In Fig.3.11 we plot the difference of the
extrapolated IT-NCSM gs energies, relative to the NCSM gs energy. Various extrap-
olating functions (cubic-, quartic- or fifth-order polynomials) are employed, using
either the first- or second-order IT-NCSM extrapolated results, E(()};:O or E(()l:jz),
respectively. From Fig.3.11, we can see that there is a systematic drift away from
the NCSM result as A2 increases. The discrepancy also increases as N,y increases,
averaging about 200keV from the exact result for the Np,x = 0o extrapolations. In
Sect.3.5.3 we give some possible explanations for this type of behavior.

3.5.2 The Dependence on the SRG Momentum-Decoupling
Scale (\)

We now investigate the dependence on the SRG momentum-decoupling scale, A. The
NN chiral EFT N3LO potential, evolved to a momentum-decoupling scale of A\ =
1.5fm™!, has recently been used in the NCSM/RGM calculation of d — o scattering
[18]. At this value of A, the off-shell characteristics of the two-body potential have
been changed in such a way, as to have the effect of producing a binding energy
for 6Li, similar to that obtained with the chiral EFT N2LO potential, in which the
three-body terms are explicitly included. This behavior is due to the non-unitarity
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Fig. 3.11 The figure shows the relative difference of the IT-NCSM extrapolated energies, E(()IZ:O

(left) and EéI:jg) (right), to the NCSM gs energy (horizontal curve), as a function of the HO energy,
h$2. We also show the dependence on the various extrapolating functions, indicating the uncertainty
in the extrapolation technique. Note that there is a systematic drift away from the NCSM result, as
h$2 increases. The discrepancy increases as Npax increases

of the SRG procedure, when only two-body terms are kept in the RG evolution.
The effect for °Li is demonstrated in [19] (see Fig.3.11). It is, thus, of interest to
compare two different SRG evolved potentials, and to see if the importance truncation
selection procedure behaves differently in the two cases. Lower \’s correspond to
softer interactions, which translates into a faster convergence of the gs energy as
Nmax increases. It is interesting to check if IT-NCSM performs ‘better’ for softer
interactions, or if there is no significant difference.

In Fig.3.12 we plot the extrapolated IT-NCSM results, as a function of the HO
energy, hQ2. This figure should be compared to Fig.3.11 (A = 2.02fm~!). Note that
the trends are similar, but the relative error to the NCSM results is a bit smaller for
A\ = 1.5fm™!. The lower-\ interactions are much softer, therefore, the convergence
in Npmax is much quicker. In this case, the IT-'NCSM procedure selects fewer basis
states for A = 1.5fm~! than it does for A = 2.02 fm~!, since for the softer potentials,
fewer high-lying Ny« basis states are required to reach convergence. This point is
clearly illustrated in Fig.3.13, in which we plot the number of basis states kept, as a
function of Ny« for both types of SRG evolved potentials.
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Fig. 3.12 The figure shows the relative difference of the IT"NCSM extrapolated energies, E(()},)‘,:O

(left) and Eélsz) (right), to the NCSM gs energy (horizontal curve), as a function of the HO energy,
h$2. We also show the dependence on the various extrapolating functions, indicating the uncertainty
in the extrapolation technique. Note that there is a systematic drift away from the NCSM result as
h$2 increases. A similar observation was made in Fig.3.11

3.5.3 Further Comments on the hS2 Dependence

Figure3.13 shows another interesting trend; fewer basis states are kept as A2
increases. In particular, note that the basis is only about % of the size for hQ2 = 24 MeV
that it is for A2 = 12MeV.

In Figs.3.11 and 3.12, we noted that the IT-NCSM extrapolated results shift away
from the NCSM results as €2 increases. We are now in a position to offer several
explanations. The explanation lies in the definition of the importance measure &.
Recall that « is inversely proportional to AS2. Thus, for hQ2 = 24 MeV, the matrix
elements | (¢, | H | W) | would have to be twice as large as they are for A2 = 12 MeV,
in order for | ¢, ) to kept as a basis state. The matrix element itself also depends on A£2,
but this dependence must be weaker than the linear dependence in the denominator
of k (since fewer states are kept as Ny« increases). Further evidence to the argument
presented is shown in Fig. 3.14, in which we show the relative composition of various
basis states, originating from various Nmpax spaces. The composition is determined by
determining what percentage of basis states belonging to a certain Npyax space (e.g.,
Nmax = 12), make up the total basis in the final Ny,x = 14 basis space. Note that in
Fig.3.14, we clearly see that the number of basis states belonging to Np,x = 14 in the
total IT-NCSM basis are much smaller in comparison to those belonging to smaller
Nmax spaces. Recall that the last two or three Npax Spaces are crucial in determining
the extrapolation to Npax = 00. Using the general argument we have presented, it
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Fig. 3.13 The number of basis states kept, as a function of Np,x, for the A = 2.02 fm~! (top)
and A\ = 1.5fm™" (bottom) SRG evolved N3LO interaction. Note that for the softer interaction,
A = L.5fm™!, ITNCSM keeps fewer basis states from the larger Npax spaces. We also note that
as hS2 increases, fewer basis states are kept for the larger Npax spaces

is not too surprising that the IT-'NCSM results would have a dependence on the HO
energy and that, in general, the IT-NCSM results would be less reliable for larger
values of A2 (if the same minimum value of « is used), than for smaller values. We
should also point out that, since the IT-NCSM basis is an incomplete Npyax space
(i.e., truncated), we no longer have a complete decomposition of center-of-mass from
intrinsic states. Thus, a small amount of center of mass contamination is expected,
which would increase as h€2 increases. This issue has been addressed in [20].

3.5.4 Using Multiple Reference States

One final feature we would like to investigate is the behavior of the excited-state
spectrum in IT-NCSM calculations. In order to reliably calculate the excited states
of an IT-NCSM calculation, one needs to employ a reference state for each state that
is to be calculated. In our case, we desire to calculate the gs (J™ = 1) and the first
two excited states, corresponding to J™ = 3T, 0%. We, thus, use as initial reference
states from N, = 4, each of those states, to generate the basis states that are kept in
Nmax = 6. Since we are now using several reference states, the basis tends to be larger
than if only one reference state is used. Thus, we have used a different set of kappa grid
points, £ = {7.00, 6.00, 5.00, 4.00, 3.75, 3.50, 3.25, 3.00, 2.75, 2.50, 2.25, 2.00} *
107>, This range is a bit smaller than for a single reference state and only extends
to x = 2.0 % 1073, instead of x = 1.0 % 107, as before. In doing so, we attempt
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Fig. 3.14 The relative Npx composition of the basis as a function of /£2, as determined in an
IT-NCSM Npax = 14 space. To be clear, the Npax = 14 histogram refers to basis states that are
found only in Npmax = 14 configurations, and so on. Note that the relative size of the Nyax = 14
basis size decreases as hS2 increases. A similar trend is expected for A = 1.5fm™!

to include roughly the same number of states in both cases, so that we can form an
opinion of which option really does select the better set of basis states. It might be
that the inclusion of a different reference state (other than the gs) leads to basis states
being kept in the truncated Npax space that were previously discarded.

In Fig.3.15 we plot the relative difference to the NCSM result (horizontal line),
for various extrapolating techniques, E (1 )_0 (left) or E (1 +20 (right), as a function of
increasing Nmax (22 = 16 MeV). ThlS is to be compared with Fig.3.8. The overall
trend is the same between the two plots, indicating that the difference between IT-
NCSM and NCSM calculations does not increase for the excited states, and that the
difference is, in general, the same size as before (about 100keV for Npax = 14).
In other words, the excitation spectrum can be calculated with the same degree of
accuracy as for the gs.

An interesting comparison to make between using one or several reference states
is to determine the behavior of the gs energy as a function of the number of basis
states kept. This analysis is shown in Fig.3.16, for hQ2 = 12MeV. We chose that
particular value of /£2, since then the most number of basis states are kept. From
the figure one can deduce two interesting points. The first point is that the additional
reference states are selecting basis states that were previously not selected, as can
be seen at the start of each Npax space. These additional basis states tend to make
the functional dependence of the gs energy as a function of the size of the basis
approximately constant. It can also be seen that when multiple reference states are
used, fewer states are needed than before, in order to achieve the same gs energy as
with a single reference state. The second point has to do with the lowering of the gs



3.5 Observations on the Importance Truncation Procedure 63

T T T=

T T
3
X SV SRG L =2.02fm™ .

B e % T TTTX ’%E””””’E ””””” % ”””

J=0" (2nd ex)

== PN

SUIot  IOUIOUI
lSlelslallelslelsle]

| | | | |
300 —— T T T T
Joo b J=3" (Istex) | + _

n
o
o
-
1

Ep,x=0 - Eoncsm [keV]

8 10 12 14 )
Nmax

Fig. 3.15 The figure shows the relative difference to the NCSM result (horizontal line), for various
extrapolating techniques, Eé?i:o (left) or E(()]:;Z()) (right), as a function of increasing Npyax. In this
case, three reference states were used (J7 = 17,37, 0%). We calculate the gs and the first two
excited states. Note that the overall trend is the same for all three states, indicating that IT-NCSM
performs equally well for excited states as for the gs. We have also performed the extrapolation to
Nmax = 00. (h2 = 16 MeV)

energy as a function of N« . Note that higher Nyy,x contributions significantly lower
the gs energy, when compared to simply adding more states in a single Npax Space.
In other words, note that the drop in energy between Npyax = 12 — 14 is larger
than the drop in energy in just the Npax = 12 space, resulting from adding all the
basis states that are kept. Such a feature could hold promise for doing configuration-
interaction calculations, in which one- and two particle-hole excitations are created
on top of a Hartree-Fock state, generated in a small Npax space. Most of the binding
energy is gained from adding the most notable configurations found in larger Npax
spaces. However, we did notice in our [IT-NCSM calculations that as Npax increases
previously discarded basis states in the lower Npax spaces do become relevant at
some stage and are added back into the basis by our basis evaluation procedure. This
also explains why we typically use all states up to and including Npax = 4; those
basis states will be added to the basis in any case by IT-NCSM. In fact, by the time
we have completed our Npax = 14 calculation, almost all of the Nnyyx = 6 states
have been added to the basis, even though initially a fair number of those states were
discarded at the start of the calculation. Such behavior makes sense, since we believe
that states such as the gs, have components mostly found in the low-lying oscillator
shells.

We expect much of the same results to hold for multiple reference states, as shown
for the single reference state calculations. In particular, we have determined that the
h<2 dependence, as shown in Fig.3.11, still persists when multiple reference states
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Fig. 3.16 The figure shows the gs energy at AQ = 12MeV as a function of the Logarithm (base
10) of the number of basis states kept. The curve with (+) signs corresponds to when only the gs is
used as a reference state, wheres the curve marked (x) shows the behavior when the lowest three
states are used as reference states. Note that these energies correspond to the first-order results,
Eéli and that the two sets of kappa grid points are not identical. The figure shows that higher Npax
contributions significantly lower the gs energy. Furthermore, using several reference states leads to
an approximately constant dependence for the gs energy on the number of basis states kept

are used. This once again leads us to the conclusion that the dependence stems from
k being inversely proportional to AS2.

3.6 General Operator Behavior in IT-NCSM

3.6.1 Introduction to General Operators

The study of operators, such as transition matrix elements or radii, in the [T-NCSM
has so far not been explored. All published results up to now, have explicitly dealt with
determining the gs or more generally, the energy spectrum. Needless to say, there are
reasons for the omission of a detailed study of other operators besides for the Hamil-
tonian. To begin with, even in the NCSM, the energy spectrum is usually the most
often calculated quantity, whereas operators like radii are usually casually mentioned
or not presented at all. There are of course some notable exceptions [21-25].

General operators are a great deal more ‘complicated’ than the Hamiltonian,
since they often converge more-slowly in Np.x. We explain why this is so. In order
to understand the difficulties associated with general operators in the NCSM, we will
use as an example the matter-radius operator, \/(W¥o|r2| W), in which W represents
the gs wavefunction. We define r2 as follows,
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in which we explicitly remove any contributions from the center of mass REM coor-
dinate. In the (IT-)NCSM, the gs wavefunction (|W)) has a Gaussian tail, i.e., the

wavefunction falls off as e_(%)z. However, bound-state wavefunctions actually have
an exponential tail, meaning the true wavefunction falls off as e~“". If one is now
interested in calculating an operator like the matter radius r,%, one very quickly
notices that these types of operators converge slowly in Npyax. This is, of course, due
to the incorrect asymptotic form of the wavefunction; increasing Npax, increases
the spatial extend of the gs wavefunction, but is, unfortunately, ‘damped’ by the
Gaussian envelope. Operators that depend on r are typically referred to as long-
range operators; the quadropole moment is another notorious example of a long-range
operator.

There is another issue present, which one does not need to consider for the Hamil-
tonian. In the types of calculations that we are performing, in which we use a (soft-
ened) bare interaction for the nuclear interaction, we are guided by the variational
principle. We know for a fact that increasing Ny, Will always lead to a lower (or
constant) gs energy than before. Thus, the gs energy is a monotonically decreasing
function of Ny, regardless of the HO energy (/7£2) chosen. This justifies our extrap-
olation techniques for the gs energy. Recall that in the case of the gs energy, we use
an exponential decay to extrapolate the gs energy to Nmax = 00. General operators
do not obey the variational principle [26]. It often is the case that for a range of HO
energy values, the expectation value of an operator decreases as a function of Ny,
whereas for other HO energy ranges, the expectation value may slowly increase. In
the case of effective interactions, both cases may be witnessed as Np,ax increases for
the same HO energy. Each situation must be dealt with on a case-by-case basis.

Ultimately, the difficulties that were described in the preceding paragraphs, ham-
per our attempts to form a coherent and consistent approach to extrapolating general
operators to Nyax = 00.

Nevertheless, we now explore the behavior of r,%, in the IT-NCSM. It is the sim-
plest long-range operator that we can study and is obviously closely connected to
experimental results (although obtaining agreement with experimental data in this
work is not our main goal). From a physics view-point, looking at other operators
calculated from IT-NCSM is rather interesting. Recall that the truncated basis is
ultimately selected by the matrix element (¢p|H |Wrer). In other words, the Hamil-
tonian is responsible for the selection of which particular basis states are included in
the truncated basis. The question is now, does the Hamiltonian also select the basis
appropriately for general operators? In contrast, one might argue that the current
IT-NCSM does a good job for gs energies (as well as excited states), but for the case
of a general operator 0, perhaps the selection of basis states specific for an opti-
mization of O in the truncated basis should be based on an analogous expression,
(0| 0 |Wrer). We will only explore the former consideration and leave the latter as an
open question for now.
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3.6.2 The Matter-Radius in IT-NCSM ®Li Calculations

As before, we will use °Li as our test nucleus. We will consider the behavior of
the matter-radius as a function of Np.x as well as for varying A2 values. Since
we are now dealing with an operator other than H, we will need to develop a new
extrapolation technique for both extrapolating to x = 0 as well as for extrapolating
to Nmax = 00. The employed interaction will be the SRG NN N3LO interaction, in
which A = 2.02fm~".

Extrapolating to a Complete NVyx Space

Just like we did with the IT-NCSM gs energies, we will first fix the HO energy to
h2 = 16MeV. By fixing 22 we can show how we extrapolate to « = 0 in various
Nmax spaces as well as present the final extrapolation to Npax = oo. This also gives
us the opportunity to discuss how we determine the errors from the extrapolation
procedures. As a reminder, we begin with a complete Np.x = 4 basis spaces. The
basis spaces Npmax = 6—14 are all truncated according to our IT-NCSM procedure,
as we described in Sect.3.2.4.

In Fig.3.17, we show the results for the matter radius, r,%l, as a function of x,
in the two largest (truncated) Npmax spaces. We note that the points can be fitted by
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Fig. 3.17 The figure shows the extrapolations to x = 0 for the matter radius, \/% . We display the
IT-NCSM results for \/% , in which the reference state was either the gs (4) or multiple reference
states (x). The extrapolation is given by the function f(k) = ae™"? + c. Note that the value we
are interested in is f(0) = a + c¢. The HO energy is 22 = 16 MeV



3.6 General Operator Behavior in IT-NCSM 67

Table 3.4 The table shows the extrapolated matter radius, 7y, for each truncated Npyax space

Ref state Frms (fm) Frms (fm) Frms (fm) Frms (fm) Frms (fm)
gs 2.088 2.117 2.142 2.164 2.188
mul 2.088 2.119 2.146 2.186 2.324
Exact 2.088 2.115 2.142 2.168 -

The uncertainty due to the extrapolation procedure is about 103 fm. In the last row we show the
NCSM results for when the Ny« basis is complete

an exponential function, given as f(x) = ae"* + c¢. The extrapolation to £ = 0
corresponds to determining f(0) = a + c.

Since we are extrapolating to x = 0, we need to determine what the error from the
extrapolating procedure is. As a first attempt to provide some measure of the uncer-
tainty of the proposed extrapolating procedure, we will perform the same extrapola-
tions as shown in Fig.3.17, in which we will vary the number of data-points used in
the extrapolations. The same extrapolating function will be used throughout. Three
extrapolations will be performed: (1) use all 12 points as is done in Fig.3.17, (2) do
not include the smallest value of «, (3) do not include the two smallest values of x.
In other words, we are testing the sensitivity of the extrapolation when we include
more points as x decreases. The central value is determined from the average of the
three fits (¥rms) and the uncertainty (o) is determined by determining the spread
between the minimum and maximum value of f(0), and dividing it by two.

V2 (5 =0)12) + V(2 (k = 0)11) + /(r2 (5 = 0)10)
3

Frms =

_ f(o)max — f(o)min
B 2

(3.14)

Orms

We apply our error analysis for each truncated Npax space, and determine the
average extrapolated value for the matter radius, as well as the uncertainty from
the extrapolations. These results are presented in Table 3.4, along with the NCSM
results for a complete Npax basis. Note that the uncertainties are quoted on the
level of attometers (a thousandth of a fermimeter), indicating that the extrapolation
uncertainties are quite small, in comparison to the actual size of the nucleus. The
IT-NCSM calculations done with multiple reference states always predicts a larger
RMS radius and overestimate the size of the nucleus as can be seen in Table 3.4.

We can see from Table 3.4 that as Ny« increases, so does the size of the nucleus.
As we have mentioned before, at Nyyox = 14 the calculation has not converged yet;
we need to extrapolate to Nyyx = 00.

In Fig.3.18 we show the extrapolation of the RMS matter radius to Npyax = o0.
The extrapolation is performed (once again) with the function g (Nmax) = a exp(—b *
Nmax) + s, 00, in Which a now assumes negative values and ryms, 00 1S the RMS
matter radius at Npax = 00. The fit is performed taking into account the radii at
Nmax = 2—14. Recall that at Npyax = 2, 4, we have a complete Npax basis space. For
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Fig.3.18 The figure shows the RMS radius for Nyyax = 2-14, which are extrapolated to N, = 00,
by taking into account the numerical and extrapolation uncertainties. The extrapolation is performed
using the function g(Nmax) = a exp(—b * Nmax) + 'tms, 00, In Which rms, oo is the RMS matter radius
at Nmax = 00. For the gs reference state, we find that rymg oo = 2.294 £ 0.015 fm, whereas for the
multiple reference states we find ryms 0o = 2.383 £ 0.044 fm

the complete basis spaces, we take the uncertainty to be 1 am, which is the order of
numerical uncertainty. We also take into account the uncertainty in the extrapolations
to k = 0 for the truncated Nyax = 6—14 spaces. Note that in the case of the reference
state being the gs, we find that the g(Npax) matches the IT-NCSM results rather well,
but in the case of the multiple reference states, we see that extrapolation essentially
ignores the points at Nyax = 12—14. The reason for this is that the uncertainty in
the last two points is much larger than the preceding points. Furthermore, another
look at Fig.3.17 suggests that the extrapolation to x = 0 in the Nypax = 14 case
(for multiple reference states) is probably largely overestimated. A linear fit to those
points might have sufficed, but in order to be consistent with the lower Nyax spaces,
we retained the exponential extrapolation to x = 0. For the gs reference state, we
find that 7y 00 = 2.294 £ 0.015fm, whereas for the multiple reference states we
find rems,0co = 2.383 £ 0.044 fm.

The HO Dependence for r2

The results presented in the previous section had fixed 22 = 16 MeV. We now study
how the RMS matter-radius changes as we vary A<2. Our aim is to determine if IT-
NCSM calculations (now for operators) deteriorate in quality as h$2 increases, as we
noticed in the case of the gs energy. In order to judge the quality of the truncated
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Fig. 3.19 The behavior of iy in the complete Nyax = 2—12 spaces as a function of 7$2 (the HO
energy). Note that at A2 = 12 MeV, the radius is roughly constant for all values of Npax

calculations, we will compare IT-NCSM results with those obtained from a complete
Nmax basis, which we will refer to as ‘exact’ calculations.

We would like to remind the reader that there is no variational principle in place
for operators other than the Hamiltonian. Thus, the behavior of the matter radius as
both a function of Ny, and 22 might be quite different to that of the gs energy.
To illustrate this point, we have plotted the matter radius (ryys) for the complete
Nmax = 2-12 spaces as a function of A2 in Fig.3.19. Note that at Q2 = 12MeV,
the radius is roughly constant for all values of Npyax; this behavior suggests that
for calculating the radius, the appropriate /<2 energy is 12 MeV. Recall that for the
gs energy, we preferred to use A2 = 16-20MeV, since the analogous figure to
Fig.3.19 for the gs energy showed a clear minima developing for those ranges of
hQ. At Q2 = 12MeV, the calculations are converging very rapidly, although, in
a non-variational way, since the value of ryyg oscillates between a range of values
as Nmax increases. This oscillatory behavior makes extrapolating to Npax = 00
practically impossible.

3.7 Criticisms of the IT-NCSM

The IT-NCSM is still a rather new technique for calculating nuclear-structure observ-
ables. Not surprisingly, it has been criticized in various ways [6, 7]. We present the
issues of concern here, and try to provide at least some response to the criticism.
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Before we begin with any discussion on IT-NCSM calculations, we need to
introduce some terminology regarding many-body physics, perturbation theory, and
‘exact’ techniques. We purposely place the word ‘exact’ in quotes, as we mean that
the calculation is, in principle, exact, up to the ‘exactness’ of the nuclear Hamiltonian.
In other words, provided that one accepts that we have only included NN forces in
the Hamiltonian, we can guarantee that the method is exact up to two-body forces.
Of course, the omission of the higher-body terms, such as three- or four-body forces,
might not reflect the properties of the nucleus in nature.

To introduce these terms, let us remember that we are solving a many-body sys-
tem, using the NCSM framework (an exact technique). Nuclear matter-calculations,
which deal with an infinite system, have traditionally been calculated with the use
of perturbation theory; naturally there is at least some approximation in place (e.g.,
second-order perturbation theory). In the case of IT-NCSM, we are using an argument
based on perturbation theory, to select a basis by means of the importance measure
k. The truncated basis is the one, in which we ‘exactly’ diagonalize the Hamiltonian.
The combination of perturbation theory and diagonalization in the IT-NCSM has led
to some confusion in the field—we aim to clarify the situation somewhat.

3.7.1 Configuration Interaction and NCSM

There are several techniques in use for nuclear-structure calculations that can be
considered exact. Most of these exact methods start by expanding the gs wavefunction
of the system (W) in a suitable basis. The expansion coefficients of the chosen basis are
then determined by variational means, for example, by diagonalizing the Hamiltonian
in the chosen basis. But, in what basis should one choose to work? There are two
issues to consider: (1) what functional form of the basis should be chosen (e.g., HO
basis), and (2) how do the A nucleons fill the single-particle states (i.e., how is the
basis truncated)? In the case of this thesis, we only use the HO basis. The second
question posed, however, needs to be discussed.

We will now discuss one particular method known as configuration interaction
(CI). Configuration-interaction is quite simple to formulate and is also closely related
to NCSM ideas; thus, we will explain carefully the key concepts of the method.

To illustrate the concepts of CI calculations, let us assume that we are working
with the doubly-magic nucleus 4He. Recall that this is a closed-shell nucleus, and,
hence, is described by exactly one Slater determinant (®¢), provided we restrict the
basis space to only the single-particle HO states corresponding to the N = 0 major
shell. The desired wavefunction (V) is expanded in terms of particle-hole operators
(éi) as follows,

U= ZC}CDO
i

= Co®o+ C1 Py + Crdo+ -+, (3.15)
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Fig. 3.20 The figure shows the action of the operators €} and G, on the initial Slater determinant
®y. Note that C; promotes one of the nucleons into a new single-particle state. The operator C»
corresponds to a 2p-2h excitation of ®g

in which the omitted terms represent higher-order particle-hole excitations. The
action of C; is to generate an i-particle-hole (ip-h) excitation in the reference Slater
determinant (®g), in which a particle is removed (creating a hole) from a single-
particle state in ®( and is recreated in a new single-particle state, outside the original
single-particle configuration of ®q. In the case of “*He, the action of the various
operators can be seen in Fig.3.20. Note that we show only one of the many 1p-1h
and 2p-2h excitations that are possible.

Equation (3.15) is a short-hand way of expressing the fact that we include up to
all 1p-1h and 2p-2h excitations (basis states) in the final diagonalization. In a strict
mathematical formulation, the trial wavefunction we displayed in Eq.(3.15) can be

written as,
A,A—1

v = <1>0+Zc Y 4 Z P oth 4 (3.16)

i>j,a>b

The subscripts i, j label the single-particle states present in ®¢, whereas the
subscripts a, b label the single-particle states outside the basis space of @ (i.e., all
the single-particle states in the N = 1 and N = 2 shell). The ¢{ and cl‘.‘jb represent
the unknown expansion coefficients of the trial wavefunction; these are determined
by the diagonalization procedure. Furthermore, note that the index i can assume the
values i = 1...A and that there are D single-particle states present in the final
calculation.

We now turn our attention to the inherent truncations that must be made in CI
calculations. We will discuss two truncations: (1) the truncation of the basis in terms
of how many HO shells are included in the calculation, and (2) restrictions on how the
A nucleons fill the single-particle states. In our example, we have already implicitly
truncated our single-particle basis. In Fig. 3.20, we truncated the basis at the N = 2
HO shell. However, we have not specified how the A nucleons fill the single-particle
states. This consideration is important for the remainder of this section.

If we consider Eq.(3.15) for “He, we note that we can have terms up to 4p-4h
excitations (C4). If one includes all Ap-Ah excitations in a CI calculation, one speaks
of full CI. Needless to say, as A increases, the computational cost of including all
Ap-Ah excitations becomes unmanageable. Thus, one can start to truncate the
particle-hole expansion of the trial wavefunction up to a given order. For exam-
ple, if we were to truncate Eq.(3.15) at the 2p-2h level, we would speak of a CI



72 3 Importance Truncated No Core Shell Model

@) (b) ©

N=0 KR

) e

A
N =2
N,=2 §
N,,=0 & > N,,=0 .
N,=2 N,=2

Fig. 3.21 a The A nucleons can fill the single-particle basis up to N = 2 in full CI. b The
highest occupied state in CI-SD. ¢ The highest occupied state in NCSM for Npax = 2. d, e The
basis truncation is conveniently expressed in terms of a rectangle for CI and a triangle for NCSM
calculations. The shaded area represents all the possible configurations that are included in the
basis. Nj and N; label the HO shell of the first and second nucleons, respectively. Note that in CI
calculations, we can place all A nucleons in the highest HO shell, whereas in the NCSM, we can
place at most one nucleon in the highest HO shell

calculation that includes (S)ingle and (D)ouble excitations, or CI-SD for short. As
an example of how the highest possible single-particle states fill in these two cases,
we refer to Fig.3.21 (see parts a and b) for more detail.

But what does CI have to do with the NCSM? In this regard, the NCSM is a full
CI calculation. However, there is a subtle difference in how the basis is constructed.
In CI calculations, the basis is truncated on a single-particle level, whereas in the
NCSM it is truncated on an energy-quanta level (i.e., N vs. Nmax). Thus, if we speak
of a *“He CI calculation, in which the single-particle basis was truncated at N = 2,
we do not recover the Npax = 2 NCSM basis. To illustrate this point, see parts a and
cin Fig.3.21, in which we have illustrated how the highest single-particle states are
occupied in the NCSM at Np,x = 2. To remind the reader, we state that the NCSM
basis is the only basis, in which we can exactly separate spurious center-of-mass
motion from the intrinsic states. As a final comment, it is often convenient to express
the truncation of CI and NCSM basis spaces in terms of a ‘rectangle’ and ‘triangle’
truncation (see diagrams d and e in Fig. 3.21).

3.7.2 Size-Extensivity

Full configuration interaction methods, like the one we described, are usually
the best methods for calculating a finite many-body system, because these are
variational. However, as we pointed out, including all particle-hole excitations is
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computationally demanding. We have already described CI-SD, in which we approx-
imate the full CI calculation by truncating the number of particle-hole excitations
we include. Another technique which approximates full CI is that of the coupled
cluster method [9, 27]. Coupled cluster methods also have the advantage that the
calculated energies scale properly with system size, (i.e., linearly in particle num-
ber). This property is known as size-extensivity. In most many body calculations, the
idea of size-extensivity, as well as the closely related property of size-consistency is
often overlooked. These two ideas are related, and so, to avoid confusion, we will
briefly describe them.

Size-consistency is most easily understood from the viewpoint of a chemical
reaction. The dissociation of a single system, “AB”, into two parts, system A and
B, which eventually are infinitely separated from each other, should give the same
total energy as the original system “AB”. In other words, Eap = E4 + Ep. To
mathematically define size-consistency is very difficult, and arguments as to whether
quantum systems are ever truly separated arise [28].

Size-extensivity on the other hand, states that the energy of a system, such as an
electron gas, should scale linearly with the number of particles present. Such an idea
is much easier to formulate mathematically. In terms of approximation methods used
in many-body techniques, size-extensivity is discussed much more frequently, and is
often the most desired property, whereas size consistency is usually an afterthought.
Full CI calculations are size extensive, since all possible excitations are included.
However, truncated CI calculations, like CI-SD, lack size-extensivity. We will illus-
trate with a simple example. Consider a Helium atom, whose electronic structure
is of interest to us. Since the Helium atom has two electrons, we can do a ‘full’
Cl-calculation by calculating the gs energy according to CI-SD. Now consider two
non-interacting Helium atoms (4 electrons in total). If we now use CI-SD in calcu-
lating the gs energy of the composite system, we lose size-extensivity. The energy
of the composite system is now no longer the sum of the individual sub-systems. In
order to recover size-extensivity, we would have to include 4p-4h excitations in the
composite system (which is the full CI case).

The loss of size-extensivity in infinite systems was first noticed by Brueckner [29].
In the Brueckner calculations, Raleigh-Schroedinger perturbation theory was used to
calculate the binding energy per nucleon for the case of nuclear matter. The energy
should be linear in N, but terms arising from the Raleigh-Schroedinger perturba-
tion theory (RSPT) expansion contained terms that were proportional to N2 and
N3. Brueckner showed that these unphysical terms are cancelled up to fourth-order.
Goldstone demonstrated that these unphysical terms cancel to all orders [8], since the
perturbation terms can be grouped into linked and unlinked diagrams. The unlinked
diagrams are the terms that destroy size-extensivity, but, provided one does RSPT
to infinite-order, are always cancelled out. The cancellation of unlinked diagrams is
known as the Goldstone linked diagram theorem.

CI calculations are related to RSPT expansions, in order to extract the CI eigen-
values. In the case of CI-SD, the calculation retains these unlinked diagrams that are
proportional to N 2 etc., and are, thus, not cancelled out. The cancellation occurs
if one were to add more excitations to the CI calculation, such as CI with singles,
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doubles,triples and quadruples included. Unfortunately, unlinked diagrams will still
remain, since they are cancelled by an ever higher-order of excitation. The complete
cancellation of unlinked diagrams only occurs once all excitations are included, but
this brings us back to the computational problems of full CI.

Size-extensivity can be restored in the RSPT expansion. The size-extensivity is
restored, if one considers all configurations to a given order. This leads to many-
body perturbation theory (MBPT), which is a fully-linked diagrammatic expansion,
order-by-order, and is size-extensive, up to that given order [9, 30]. Unfortunately,
each subsequent order is more difficult to calculate than the previous one, rendering
the method useful, but not efficient.

Coupled cluster (CC) offers a slightly different approach to the problem, by pro-
viding an infinite-order resummation of MBPT in selected clusters, such as sin-
gle and double excitations. CC is, by construction, size-extensive. CI and CC both
have the same inherent ideas, i.e., generate single and double excitations on top
of a reference state, in a basis truncated on the single-particle level (the rectangle
truncation of Fig.3.21). The difference to CI comes from the exponential ansatz
made in CC. The coupled-cluster wavefunction is generated by Wcc = exp(f")\lfo,
where T = f‘l + f’g + -+ fn, where fp is a connected cluster operator that
generates the p-fold excitation (similar to the operator ép that we used in the
CI discussion). It is this exponential form that ensures the size-extensivity of the
method.

In the case of single and double excitations, one speaks of CCSD calculations.
The CCSD trial wavefunction assumes the following form,

Weesp = exp(1 4 11 + 1) @
A A ) A A a2
=&0+ (T1 + )P+ (T1 +2T1TH + Tr )Po. (3.17)

Note that the CCSD trial wavefunction contains the extra non-linear terms such

as T1 , which the CI-SD trial wavefunctlon does not contain. It can be shown that
the C operators are related to the T operators as follows,

Ci=T
A~ A 1.2
Co=T, + §T1 (3.18)

We, thus, see that the non-linear terms, such as fl 2, restore the size-extensivity
property in CCSD calculations, which are lacking in the CI-SD calculations.

Although CC has some advantages over truncated CI, such as being size extensive
and more efficient, it is not as versatile as truncated CI. In the case of nuclear-
structure, CC is often used to calculate the gs energies of doubly-magic nuclei, such
as 40Ca [31]. Recently, CC in nuclear-structure has been extended to A &+ 2 nuclei,
in which A represents a doubly magic nucleus [32].
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3.7.3 IT-NCSM and Size-Extensivity

Now that we have presented a detailed discussion of the size-extensivity issue, in
many-body calculations, we are able to address the issue of size-extensivity in I'T-
NCSM. This issue was first raised by Dean et al. in a comment that appeared in [6];
aresponse was given by Roth and Navritil in [7]. The criticism raised centers around
the idea of particle-hole truncations and size-extensivity. A summarize is now pre-
sented.

In Sect. 3.3.1 we presented the history of IT-NCSM calculations, concentrating on
some of the recent developments. In the original 2007 PRL by Roth and Navritil [2],
the iterative IT-NCSM formulation was used. Recall that the iterative IT-NCSM
is based on the idea of a particle-hole truncation scheme. In the case of the *He
calculations, all particle-hole excitations up to 4p-4h were evaluated in the IT-NCSM,;
thus, it can be considered a full CI calculation, once the extrapolation to k = 0 is
made. However, Dean et al. argued that in the case of '°0 and *°Ca, the restriction to
4p-4h excitations leads to lack of size-extensivity, if Npmax > 4. In order to return to a
full CI picture, one would have to accommodate up to Npax particle-hole excitations.
Thus, even though the “*He calculation looks very good, one cannot claim that the
analogous calculation in *°Ca would be of a similar quality.

The issues raised by Dean et al. are worthwhile to consider, especially in the
context of size-extensivity in the iterative IT-NCSM scheme. But what about the
sequential IT-NCSM scheme?

Sequential IT-NCSM and Size-Extensivity

The sequential IT-NCSM differs from the iterative IT-NCSM, since we now auto-
matically generate all basis states in the evaluated Npy.x space. Each basis state is
evaluated and is kept (or discarded) according to the importance threshold «,,. Fur-
thermore, we can generate a sequence of gs energies for each truncated Npyax basis
space, from which we can easily extrapolate the gs energy to Nmax = oo (thus
demonstrating convergence as the basis approaches infinity). Finally, there are no
particle-hole truncations; all possible particle-hole excitations are considered. But
what about size-extensivity?

To answer the question regarding size-extensivity, let us restate how the property
of size-extensivity is phrased. A size-extensive calculation scales linearly in particle
number. In our example, we used the case of two non-interacting Helium atoms. But,
what do we make of this statement in the case of an interacting system? Consider
the following: If we calculate the binding energy of '°0 in the sequential IT-NCSM
(recall all particle-hole excitations are included), should we expect the binding energy
of 190 to be four times that of *He? No, we should not. The '°O nucleus is not the
sum of four non-interacting *He nuclei!

Now, it is true that we have truncated something. Indeed, we have excluded many
of the basis states present in a given Npyax space. But, as calculations by Roth have
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shown [3, 4], as well as those that have been presented in this chapter, once the
extrapolation to k = 0 has been performed, we generally recover the result of the
NCSM Npax calculation, within a few to a hundred keV (approximately), depending
on the Npax space. Unfortunately, no clear numerical evidence has been presented up
to now that would ultimately rule out the possibility that IT-NCSM does suffer from
size-extensive problems. In part, this is so, because no one has posed an unambiguous
situation, in which IT-NCSM could be tested for size-extensivity issues. We hope to
address this issue in a concrete manner in the future.
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Chapter 4
UV and IR Properties of the NCSM

4.1 Traditional Ny Extrapolations

In this chapter we discuss some of the formal aspects of NCSM calculations and the
subsequent extrapolations to Nyax — 00. The NCSM calculations, even when the
bare Hamiltonian is used, depend on two parameters: Npyax (the size of the basis) and
h$2 (the HO ‘frequency’ chosen for the basis). To illustrate this dependence, we show
the Triton gs energy as a function of Nyax = 8 — 16 and A2 in Fig. 4.1, in which we
used the chiral NN N3LO interaction, which has been regulated at 500 MeV/c [1].
A plot, such as Fig.4.1, is referred to as an (Npax, 7€2) mesh-plot.

Figure 4.1 shows the variational nature of the NCSM, when the bare Hamiltonian
is used. There are some interesting features to note. For one, note that the gs energy
decreases as Npax increases, and also seems to display the onset of some converged
behavior for some values of hQ2. Furthermore, as Ny, increases, we notice that
the dependence on /£2 seems to weaken around a range of AS2 values, located near
the minimum of each fixed Npyax curve. It is not too hard to imagine that as Npyax
approaches infinity, that the 22 dependence will disappear completely.

For Nimax — 00 extrapolation purposes, the general procedure is as follows. First,
one locates the variational minimum in the largest Npyax space that was performed,
in our case Nmax = 16. For Fig.4.1, the variational minimum is located at hQ2 =
30MeV. Next, a series of Npax gs calculations are performed, in which /€2 is now
fixed at A2 = 30 MeV. These gs energies are extrapolated to Np,x = 00 as a function
of Nmax, using the functional form Egs(Nmax) = a * €xXp(—b * Nmax) + Eg5(00).
The aim is to determine Egs(00).

The extrapolation procedure we have described is the one we have commonly
used in this thesis and is commonly used by others [2, 3]. We should point out that
there are refinements that can be made to the procedure, in which one can determine
an error from the extrapolation technique [4]. Providing error estimates in NCSM
calculations has been a recent inclusion, in part to provide reasonable uncertainty
quantification of the NCSM methods. However, we will not discuss the general error
estimates here.

M. K. G. Kruse, Extensions to the No-Core Shell Model, 79
Springer Theses, DOI: 10.1007/978-3-319-01393-0_4,
© Springer International Publishing Switzerland 2013
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Fig. 4.1 The gs energy of the Triton as a function of N, and AS2. The NN interaction employed
is the bare chiral N3LO interaction, which has been regulated at 500 MeV

We will instead focus our attention on what physical meaning the extrapolation
may contain. In this regard, our main aim is to address the extrapolation of the gs
energy, into a regime, where we believe the energy is free of the NCSM parameters.
Historically, it has been argued that extrapolating to Npax = 00 ‘frees’ the gs energy
from any residual dependence on Npyax and 2€2. However, this argument is based on
evidence that ‘it has worked in the past’. Indeed, we can see from the mesh-plot that
as Nmax increases, that (a) the relative change in the gs energy decreases, (b) the /<2
dependence weakens and (c) the variational minimum slowly shifts to a lower A2
value. A purist might argue, ‘but how do you know that this trend continues as Npax
increases?’. Furthermore, since the variational limit tends to shift to lower values
as Nmax increases, does the trend perhaps imply that 22 — O in the infinite basis
space?

Taking a step back, most certainly everyone will agree that Ny,x — 00 is one
of the correct limits to consider when extrapolating to the infinite basis space. How-
ever, the other parameter, A£2 is often ignored. The No-Core Full-Configuration
(NCFC) [4], a variant on the extrapolation of the NCSM, has tried to improve on the
situation. In the NCFC, multiple extrapolations to Npyax = 0o are done at various
values of h€2; furthermore, a reliable error estimate is supplied with each extrapola-
tion, which is a great improvement over the standard NCSM extrapolation technique.
However, one still treats the Ny, parameter separate from /€2, in effect, by stating
that Nmax — 00 is the only limit one needs to consider.

Are we justified to treat these two parameters on an unequal footing? That is the
overall theme of this chapter.
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4.2 Reformulating NCSM Parameters into an EFT Language

We made the suggestion at the end of the introduction (Sect.4.1) that the NCSM
parameters Np,x and 72 should be treated on an equal footing. In order to do
that, we need to rely on some concepts of Effective Field theory (EFT). In an EFT
setting, one has control of the errors in the calculation, and can provide a systematic
improvement on the calculation as one increases the model-space size. In this case,
we mean ‘model-space’ to be a general space, which is defined to be useful in the
EFT setting. Furthermore, we define error in this context to mean that the calculated
gs energy in a finite model-space is in ‘error’, compared to the infinite model-space
(i.e., one has to extrapolate the finite model-space calculations to the infinite model-
space). Thus, the first thing we would like to do is to reformulate NCSM parameters
into an EFT-style model-space, as done in the initial work of [5-8].

The mapping between NCSM model-spaces and EFT model-space is actually
simple to do. We do so by introducing two momentum regulators in the EFT model-
space, namely, the ultra-violet (UV) and infra-red (IR) regulator. By doing so, we
have done two things: (1) we have placed the two scales! on an equal footing relative
to each other (thus being consistent) and (2) we gain control of the error in the
calculation. We can gain control of the error in the calculation, since we implicitly
assume that the error tends to zero as the UV (IR) regulator is taken to infinity (zero).
In other words, as the two regulators approach the limit of the infinite model-space,
the error made in the finite model-space calculations will tend to zero.

4.2.1 The UV and IR Momentum Regulators

The UV momentum regulator is defined to be,

A = /my(Nmax + 3/2)1hQ, (4.1)

inwhichmy = 938.92 MeV represents the average nucleon mass. This definitionis a
simple application of the continuum definition to the discrete HO basis. To ‘derive’ A,
one applies the virial theorem to the highest HO level to establish that the kinetic
energy is one half of the total energy. One then solves for the momentum (note that
factors of 1/2 will cancel). Recall that in the Npax truncation, the highest occupied
single-particle state lies at Npmax HO quanta above the unperturbed (Nmax = 0)
configuration. In the case of Os-shell nuclei, this implies that the highest occupied
single-particle state is found in the major HO shell N = Nyy,«. Thus, our definition of
the UV momentum regulator is a statement that the highest occupied single-particle
state defines the maximum momentum of our finite model-space.

1A scale is a physical property of the system, in this case, set by the nuclear interaction, whereas
a regulator reflects a variable mathematical quantity.
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In defining the IR momentum regulator, there are two possibilities. This, in itself,
is interesting to the community, since there has been much debate about which
definition of the IR regulator is the correct one. We address this issue in the later
sections.

The two proposed IR momentum regulators are given by,

\ = /myh 4.2)
he
Moo = | VT2 4.3)

(Nmax +3/2)

The A definition [5] is argued from the viewpoint, that since we are using the
HO basis, the single-particle states corresponding to different major HO shells are
separated in energy by AS2. This is, of course, so, because the energy levels in any
quantum system are quantized, when there is a finite confining volume. Note, how-
ever, that there is no external confining HO potential in place. The /<2 dependence
is due to the underlying HO basis. The limit A — 0 makes physical sense, since we
are then removing the artificial IR momentum dependence on the system.

The A, definition can be derived from considerations of the spatial extent of
the single-particle one-dimensional HO functions [9]. One can show that the spatial
extent, on which the HO wavefunctions can accurately describe an object, is given

by 2 = mjyv };;Q As N increases, the coordinate wavefunctions spread out over a
larger spatial extent, allowing us to resolve larger objects (or equivalently smaller
momenta). The opposite is true as 7S2 increases; we are unable to describe large
objects. Inrelating Eq. (4.2) to As., we have used the Heisenberg relationship between
momentum and position, and have also included in the zero-point motion of the HO

(the additional 3/2 term).

4.2.2 Which IR Momentum Regulator is the Correct One?

All our calculations of gs energies are performed in a finite model-space, be it in the
Nmax and A2 Npax model-spaces or the UV and IR EFT model-spaces. This is, of
course, so, because we never include an infinite basis in our calculations, although we
do try to include as many basis states as possible. In an EFT framework, the proper
way to extrapolate to the infinite model-space limit is to let the UV and IR regulators
approach the limits of infinity and zero, respectively. This particular line of thought
can be understood in Fig. 4.2, in which we show the two momentum regulators (UV
and IR) fixed in a schematic finite model-space.

Figure4.2 displays a particularly convenient feature of the EFT model-space. If
we truly believe that this is the correct model-space, then according to the concepts of
EFT model-spaces, if we fix the IR and let the UV regulator increase, the relative error
of our calculations should become smaller. Conversely, if we fix the UV regulator
and lower the IR regulator, we also expect the relative error to decrease. This idea
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Fig. 4.2 The figure shows a schematic view of a finite model-space, in which the UV and IR
momentum regulators are arbitrary. To reach the infinite model-space, one needs to let the UV— oo
and the IR — 0

is one of the key tests we will use in order to determine, which one of the two IR
regulators is the ‘better’ choice in an EFT model-space. To be specific, we define the
relative error to be,

28 = B 2 (44
in which A;g denotes either IR momentum regulator (depending on which IR regu-
lator we are investigating) and E is considered to be an exact theoretical result.

To test these ideas, we will use the Chiral NN N3L O interaction, which has the UV
divergences regulated at 500 MeV/c [1]. It is important to note that the interaction
does not have a sharp cutoff at exactly Ayy = 500MeV/c, since the terms in the
interaction are actually regulated by an exponentially suppressed term of the form

2n / 2n
p p
exp | — ( —£— _ . 4.5)
P (ANN) (ANN)

In Eq.(4.5), n > 2 for NLO and higher-order terms and p and p’ denote the
initial and final momenta in the center-of-mass frame, respectively. Thus, even if we
were to raise the UV regulator above 500 MeV/c, we have still not exhausted all the
UV physics that is present in the interaction. This interaction is used in the NCSM
calculations for a variety of nuclei, such as the Deuteron, Triton and 4He nucleus.
These three nuclei are all quite different. The deuteron, for example, is very weakly
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bound, and, thus, is expected to be sensitive to the IR regulator. “He, on the other
hand, is a closed-shell nucleus and, thus, rather tightly bound, making it less sensitive
to IR physics. The Triton is somewhere between these two extreme cases. For that
reason, we will mainly present Triton results in this chapter.

In order to determine what our relative error is in the subsequent calculations,
we will use what is considered the accepted value of the Triton binding energy
for the specified NN interaction. This accepted number is E = —7.855MeV from
a 34 channel Faddeev calculation [1], E = —7.854MeV from a hyperspherical
harmonics expansion [10], and £ = —7.85(1) from a NCSM calculation [2]. In the
NCSM calculation, the error from the extrapolation to Npax = 00 is denoted as (1)’
and in this case corresponds to an uncertainty of 10keV.

4.3 Setting A\ as the IR Regulator

In this section we assume that the correct IR regulator is given by A. We now proceed
to perform calculations in the NCSM, in which we first fix the IR regulator (\) and
vary the UV (A) regulator. In Fig.4.3 we show the results of this calculation. It
can be seen from Fig. 4.3 that as we increase the UV regulator (A), that indeed the
relative error | % | decreases, regardless of the value of the IR regulator. Note that the
relative error decreases as we lower the IR regulator; it increases as the IR regulator
increases. This agrees with our notion that as both momentum regulators approach
their respective infinite limits that the relative error tends to zero.

0.1k - oy 1

S 0.01¢ x RO A i
= X 28 162
’ . 35 181
. 45206
: 65247
0.001 s %0 274
. 100306 o
: 150375 .

=
500 1000 1500 2000 2500 3000
A MeV/c]

0.0001
0

Fig. 4.3 The figure shows the Triton gs energy, as compared to the exact result of £ = —7.85MeV.
Note that the relative error | %l decreases as we increase the UV (A) regulator. Note that we have
fixed the IR regulator (\). The legend shows the respective A2 and A values
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Fig. 4.4 The figure shows the Triton gs energy, as compared to the exact result of £ = —7.85MeV.
Note that the relative error |%| decreases as we decrease the IR (\) regulator. However, if A <
800MeV/c, then the relative errors starts to increase again. In that case, the excluded UV physics
dominates the size of the relative error

We now reverse the situation and keep A fixed and allow the IR regulator to
approach zero (A — 0). In this case, we expect that the relative error should also
decrease as the IR regulator is lowered, regardless of the initial UV regulator.

We can see from Fig.4.4, that the relative error does decrease as we let A — 0.
However, it does so only if the UV regulator is above a certain threshold, A >
800 MeV/c. What does this mean physically? It means that one lowers the IR regulator
up to a point, but if the UV regulator is not ‘large’ enough, then the contribution to the
relative error starts to be dominated by the UV physics that has been excluded in the
calculation. Earlier, we had stated that we should not expect the UV scale to be around
500MeV/c, as the name of the NN interaction suggests. The nuclear interaction is
calculated in relative coordinates, which implies that its effective UV scale is set by
the expression AN = /1i(Nmax + 3/2)h<2, in which 4 is the reduced mass of the
two-nucleon system. In order to identify this scale with our HO UV definition, we
note that the reduced mass introduces a factor of v/2 as compared to the original
expression. Thus, one expects the NN interaction to contain UV physics up to about
V2ANN — 780 MeV, if one emulates the interaction in the HO basis. This numerical
estimate agrees fairly well with what Fig.4.4 shows; the UV regulator needs to be
above 800 MeV/c in order to have the dominant contributions to the relative error be
from the excluded IR physics (and not from the excluded UV physics).
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Fig. 4.5 The gs energy of the Triton. The figure shows the relative error as a function of the UV
(A) regulator at fixed IR values (Ay.). Note that the relative error is smaller if the IR regulator is
decreased. The growth in the relative error as the UV regulator increases is not well understood

4.4 Setting )\, as the IR Regulator

In this section we use the proposed IR regulator of Ay.. To remind the reader, note
that A and Ay, are related by,

A S
SNow £372 A

This definition states that one actually lowers the IR regulator as the basis
approaches completeness (Nmax — 00).

We now test our EFT ideas using this particular IR regulator. Once again, we
begin by fixing the IR regulator (\;.) and increase the UV regulator arbitrarily (see
Fig.4.5).

We see in Fig. 4.5 a number of interesting features. First, note that all curves tend
to lie on top of each other for low UV values. Secondly, note that in the region
500 < A < 1000MeV/c, that the relative error decreases up to a point, at which,
depending on the value of IR regulator (\y.), the relative error slowly increases
again. In the range of A ~ 800 MeV/c we are including all the UV physics of the NN
interaction,which explains the decrease in the size of the relative error. Conversely, the
rise in the relative error for A > 1,000 MeV/c could be a sign that we have exhausted
all the UV physics information contained in the NN interaction, and that this growth
might be due to missing IR physics that we have excluded. The curve however tends
to increase as the UV regulator increases, instead of remaining constant—this is not
well understood at the moment.

It has been suggested by Prof. Furnstahl that this behavior seems to be due to
the way that the HO phase space has been truncated. By arbitrarily fixing the IR

)\sc = (46)
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Fig. 4.6 The Triton gs energy. The figure shows the relative error in the gs calculation for fixed
UV values (A) as a function of the IR regulator, Ag.. Note that above A > 800 MeV/c, that all the
curves lie on a universal curve

regulator, and letting the UV vary, we have in effect truncated the phase space in an
unintended way.”

Figure 4.6 shows the analogue case of Fig.4.4, in which we fix the UV regulator
and let the IR regulator vary. The figure shows the relative error in the gs calculation
for fixed UV values (A) as a function of the IR regulator, \;.. Note that above
A > 800MeV/c all the curves lie on a universal curve. This is the reason why A
is often called ‘lambda scaling’. Furthermore, this scale of 800 MeV/c once again
seems to suggest that this is the UV scale of the underlying NN interaction. The rise
in the relative error is due to missing UV physics that has not been included in the
EFT model-space.

4.4.1 Properties of A

The scaling behavior we displayed in Fig.4.6 is quite interesting. We note that it
is not unique to the Triton case, but is also seen in other light nuclei (see Fig.4.7).
Once again, we note that the UV regulator needs to be larger than 800 MeV/c for the
scaling behavior to set in. Figure4.7 also shows quite elegantly that the deuteron is
the most sensitive to IR physics (since it is so loosely bound) whereas “He is the least
sensitive (since it is so tightly bound). This can be seen by what values A, takes on
for these nuclei.

The scaling behavior also seems to suggest a practical application, namely, that
we could use it as a means to extrapolate to the infinite EFT model-space. Recall that

2 Private communication at the DNP conference in 2011.
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Fig. 4.7 The figure shows the gs energy of three light nuclei: the deuteron, Triton and “He. Note
that once A > 800MeV, the scaling behavior sets in. One can also see that our intuition of the
deuteron being the most sensitive to IR physics, and “He the least sensitive, is correct

we need to capture both the UV and IR physics present in the many-body system.
As we have argued several times, the UV scale seems to be set around 800 MeV/c,
so provided we obtain gs energies with A > 800MeV/c, we have captured all the
UV physics. The IR limit is recovered by taking A;c — 0. In order to perform
the extrapolation, we propose that the scaling curves can be fit by an exponential
function, in this case given by E(\;.) = a * exp(—)\im) + E(Ase = 0). We are, of
course, interested in determining E (s, = 0).

In Fig. 4.8, we show the result of extrapolating the gs energy of the Triton to the
IR limit A\¢c — 0. This is done for several values of A, since in principle, if we have
captured all the UV physics, any value of the UV regulator should lead to the same
gs energy. Indeed, the result of the extrapolations are that E(A\;, = 0) = 7.85 %+
0.001 MeV. In other words, we agree with the other theoretical calculations that have
been done for the Triton gs energy using the Chiral NN interaction. Furthermore,
our error estimate of 1keV is 10 times smaller than the error estimate in the NCSM
extrapolation! This is quite satisfactory.

In Fig. 4.5 we noted that the rise in the relative error increases as the UV regulator
is increased. In Fig.4.9 we demonstrate that this trend is also seen for the other two
nuclei, namely the deuteron and “He. This time we have displayed only one fixed
value of the IR regulator, A\;c = 55MeV/c. One can also see from the figure that the
relative error is larger for the deuteron than it is for the Triton, and is the smallest
for “*He. This goes back to the fact that the relative error is larger for systems that are
weakly bound.
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Fig. 4.8 The result of extrapolating the gs energy of the Triton to the IR limit A\, — O for
various fixed UV regulators. Taking into account the five extrapolations shown, we determine

E(Ase = 0) = 7.85£0.001 MeV, in agreement with other theoretical calculations
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Fig. 4.9 The figure shows the relative error as a function of the UV (A) regulator at fixed IR
(Ase = 55MeV/c). Note that the rise in the relative error is seen for all three nuclei and is larger for
systems that are weakly bound, such as the deuteron

4.5 Conclusions

In this chapter we have reformulated the traditional NCSM model-space of
(Nmax, h2) into an EFT-style model-space, characterized by UV and IR regula-
tors, (A, Ajr). In the EFT model-space, we treat the UV and IR regulators on an
equal footing. This is in contrast to the case of the traditional NCSM extrapolations,
in which Np,x is generally taken to be ‘more important’ than A£2. Furthermore,
in the EFT model-space, one has complete control over the UV and IR physics in
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the many-body problem. To this extent, a deficiency in a many-body calculation, as
characterized by the size of the relative error |%|, if E is known, can be attributed
to excluded UV or IR physics. By raising the UV or lowering the IR regulator, we
should decrease the size of the relative error automatically.

The UV regulator has generally been accepted to be one of the form A ~ v/ Nhg2,
in which N represents either the highest lying major HO shell or Npyax. On the other
hand, there has been some debate on what the IR regulator should be. Two possible
choices have been proposed: (1) A ~ V12, which is based on an argument that the

. TR "O
IR regulator is set by the quantization in energy of the HO shells and (2) A ~ /57,

which is based on the spatial extent of a single-particle HO (1-D) wavefunction.

In our first study, we tested either IR regulator as being a candidate for the appro-
priate choice. Our test is based on fixing either momentum regulator in the problem,
and taking the other (non-fixed) regulator to the appropriate infinite model-space
limit. For example, by fixing the IR regulator, we let the UV regulator extend to
infinity. In this procedure, we analyze the behavior of the relative error of the gs
energy of the Triton as we vary either momentum regulator. A decrease in the rela-
tive error as either regulator is taken to the appropriate limit (A — oo or A\jg — 0)
is taken as a sign that the candidate IR regulator (\ or Ay.) is ‘behaving’ like an IR
regulator should.

Our calculations provide several insights. When we use the Chiral NN N3LO
interaction, which has its UV divergences regulated at 500 MeV/c, we note that we
require A > 800 MeV/c in order to capture all the UV physics present in the many-
body problem. The reader should not be alarmed that the UV scale is higher than the
500MeV/c we quoted. Recall that the interaction is defined in relative coordinates,
which contains an extra factor of v/2 (due to the presence of the reduced mass) as
compared to the HO basis UV definition A. Since the interaction is emulated in an
HO basis, we should expect that the UV cutoff is approximately at /2 % 500 ~
800MeV/c.

The choice for the IR regulator leads to some interesting discussion. In the case
of \, we find that the relative error decreases when \ is fixed and A is raised; as we
expect. However, in the reverse situation, in which we fix A and lower A, we find
that the relative error actually increases for A < 700 MeV/c. However, we also note
that if A > 800MeV/c, we find that the relative error tends to decrease as we lower
the IR regulator. The fact that the relative error increases for A < 700 MeV/c can be
understood from the viewpoint that the errors, arising from excluding UV physics,
dominate the size of the relative error over those errors that arise from having the IR
regulator too large.

In the case of \;. we too find some interesting behavior in the relative error.
When we let A — oo at fixed \;., we note that the relative error increases once
A > 800MeV/c, and that it is larger for larger values of Ag.. In this case, it seems that
the error made in excluding IR physics is dominating the contribution to the relative
error. Recovering the IR limit, in which we fix A and let A\;, — 0 we find a very
interesting set of curves. If the UV regulator is set high enough (A > 800 MeV/c), we
find that regardless of the value of A, all curves lie on the same universal curve and
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furthermore extrapolate to the same gs energy. In the case of the Triton gs energy, we
determine E(\gc = 0) = —7.85 & 0.001 MeV, in agreement with other theoretical
calculations that have employed the same NN interaction.

It is the universal behavior of A, that leads us in the direction of considering it
to be the appropriate definition of the IR regulator. Provided one captures all the UV
physics present in the many-body problem, the extrapolation to A\;g — 0 will lead
us to the correct gs energy. The previous statement implicitly states that one does not
have to take A — oo necessarily; one just needs to have it large enough to capture
all the UV physics. Now, in the case of some NN interactions, particularly ones such
as Avig, the required scale could be quite a bit higher than the 800 MeV/c that we
have been quoting in this chapter. Thus, for other interactions, one will first have to
determine the extent of the UV physics in the interaction, before any extrapolations
using A, are attempted.

As a final comment, the definitions of the UV (A) regulator and IR momentum
regulator, be it either A or Ay, should be considered to be the leading-order terms in
amore general definition. Presently, there has been no attempt to derive higher-order
terms. Furthermore, some of the peculiar features we have seen, such as the rise in
the relative error as one of the momentum regulators approaches the appropriate limit
(see Fig.4.5), could be explained by these higher-order terms.
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Chapter 5
Extending the NCSM with the RGM

5.1 Introduction

In this chapter we discuss the physics of exotic nuclei. These nuclei are located ‘far
away’ from the valley of stability. The valley of stability is so named, since the stable
nuclei are energetically stable against —decay. Before we turn our attention to these
exotic nuclei, we have to paint a general picture, in which each tiny mosaic tile (each
individual nuclide), when put together as a whole, displays the rich behavior seen
across the nuclear landscape.

5.1.1 Nuclei Away from Stability

In Fig.5.1 we show three isotopic chains of nuclei (He, Li and Be), as they are
typically presented in the nuclear chart. We indicate the stability of the nuclei (in
gray) or if they are unstable (in white) their half-lives. Let us consider the Lithium
chain, as a representative example. We note that there are two stable isotopes, ®Li
and "Li. To the left of the stable isotopes, we find two proton-rich isotopes (both
unstable), 4Liand Li. The A =5 system, of which SLi is one of the two isobars that
are known, is interesting to study, especially as a test for theoretical nuclear forces.
This system can be thought of as an a—core with either a neutron (*He) or proton
(5Li) orbiting the core. Yet, both nuclei are not stable, and, in fact, have very short
half-lives. They do, however, give a stringent test of the spin-orbit force. For the
unfamiliar reader, the spin-orbit force is responsible for the splitting of the p-shell
into a p3;2 and pi,2 level. Thus, if one analyzes the phase-shift obtained from a
neutron scattering off “He, one is directly probing the p3 2 and py/2 level splitting.
Recently, two theoretical calculations were done, in which the phase-shift of the
neutron (scattering off 4He) as a function of kinetic energy was determined [1, 2].
When only NN forces were used, the spin-orbit splitting between the 2 P 2 and 2p, 2
channels was found to be too small. However, with the inclusion of a NNN force,
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Fig. 5.1 The isotopic chains of He, Li and Be. Gray squares indicate stable nuclei, whereas white
squares indicate unstable nuclei. For unstable nuclei, their respective half-lives are indicated. The
colored squares indicate nuclei that have a lifetime on the order of days ("Be) or millions of years
(1°Be). The green dashed line indicates the neutron-drip line

the agreement between experiment and theory drastically improved, to the point that
in one calculation the theoretical and experimental results agreed almost uniformly
[1]. From a theoretical aspect, it is calculations such as these, that allow us to gain
valuable insight into the nuclear force, such as the role of NNN forces in many-body
systems.

Let us now consider the neutron-rich Li isotopes in Fig.5.1. To the right of the
stable isotopes, we find four nuclei. As we add more neutrons, we find that the
half-life drastically reduces, to the point that in '°Li the nuclear system is unbound.
However, ''Li does bind again, and has a comparatively long half-life of 8.6 ms.
This is an intriguing situation; why does the addition of rwo neutrons to the °Li
system bind (briefly) into ' Li, but not the addition of only a single neutron? '!Li is
now considered to be part of a class of nuclei, of which there are a number of such
examples, that are known as ‘halo’ nuclei. These systems typically have very large
radii compared to their neighboring isotopes. In the case of !'Li, the dimension of the
system is about the same size as that of 2°Pb [3]. In Fig. 5.2 we display another halo
nucleus, °He (furthermore, compare the half-lives of He and "He in Fig.5.1). But
what is the underlying physics for such systems? We now believe that these systems
exhibit such behavior due to the NNN force, by seeing that the two halo neutrons
interact very weakly with a third nucleon in the °Li ‘core’. Note that two neutrons
on their own, do not form a stable system, but the addition of the third nucleon,
stabilizes the system (a signature of the three nucleon force).

The ''Li system raises another interesting question: How many neutrons could
one add to the Lithium system and still have some resemblance of a bound system?
Such studies attempt to determine where the neutron drip line is located. The neutron
drip line is the location on the nuclear chart at which the addition of any more neutrons
to the system can no longer lead to additional binding energy. Thus, we loosely say
that the neutrons drip out of the nucleus at that stage. Experimentally, the location
of the neutron drip line, is, in general, not known precisely.
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Fig. 5.2 To the left, we show a schematic picture of the ®He halo nucleus. Note how the two
neutrons ‘orbit’ the *He core at a large distance. To the right we show the gs parity assignment
of three Be nuclei. !'Be is expected to have a negative-parity gs, but instead has a positive-parity
assignment. This is called an ‘unnatural’ parity assignment

Although the determination of the neutron drip line is important, many ‘interest-
ing’ observations are already made in neutron-rich systems. One particular observa-
tion that we want to highlight is that of unnatural gs parity assignments. Consider
Fig. 5.2, in which we show three Be isotopes, '~1?Be. Since Be is a p-shell nucleus,
we expect that gs parity assignment will be positive for even-A isotopes and negative
for odd-A isotopes. However, in the case of ' Be, the gs parity assignment is positive
(instead of negative). Theoretically, this is understood as the shell structure changing
as the neutron to proton ratio increases. This particular observation of ‘unnatural’
gs parity assignments will be a major theme of this chapter, thus, we will leave the
detailed discussions for Sect.5.2.

5.1.2 The NCSM and Exotic Nuclei

We now turn our attention to the theoretical challenges in calculating the properties
of neutron-rich nuclei, or generally exotic nuclei. From an overarching perspective,
nuclei exhibit bound states, resonance states and also scattering states. Furthermore,
they can undergo dynamic changes such as S—decay, or break apart into smaller
fragments (fission). If we truly want to develop an ab-initio theory of nuclear physics,
we need to be able to reliably describe all of these properties as well as supply an
estimate to the uncertainty in our methods. Needless to say, this is a tough challenge,
but nevertheless, worthy of further investigation.

The NCSM is very well suited for calculating the bound state properties of nuclei.
This is especially true for states such as the ground state, as well as the low-lying
excited states. However, the theoretical uncertainty increases rapidly once we try to
describe loosely-bound nuclei, such as those found away from the valley of stability.
Why is this so?

The NCSM wavefunctions are expanded as a sum of anti-symmetric HO basis
states. However, the asymptotic form of the HO basis falls off as a Gaussian

(exp(—lr)—i)), whereas the true asymptotic form of a bound-state actually has an
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exponential tail exp(—cr). In order to correct for this deficiency in the NCSM, one
needs to extend the NCSM calculations to very large Ny,x spaces. Practically, we
find ‘a very large” Npmax space to be computationally impossible. Thus, by using a
limited Npyax space, we are forced to make extrapolations to Npax = 00, leading to
large theoretical uncertainties.

Yet, even if we were able to obtain suitably large Npmax spaces from the outset,
we still would not be able to describe resonance or scattering states properly (or
realistically). That is because, these states lie in the continuum and, thus, must be
treated so as to account for this fact. Furthermore, describing observables, such as
phase-shifts, in order to determine where a resonance is located, is impossible, since
we have no easy control of the dynamics. A new approach is needed.

5.1.3 Do We Really Need an Ab-Initio Theory of Reactions?

There has been a concentrated effort in the experimental community to build ‘bigger
and better’ experimental facilities with the purpose of measuring the properties of
neutron-rich nuclei (FRIB [4] and ARIEL [5] are two examples). Naturally, the ability
to study reactions is also inherent in the experimental facilities.

In the previous section, we presented some of the issues, with which one is faced,
when attempting a theoretical description of exotic nuclei or even more generally,
dynamic changes in nuclei such as those encountered in reactions. Given the great
advancements that have been made in experimental facilities, does one really need
an ab-initio description of nuclear reactions? After all, why not simply measure the
reaction pathways and be done with it. Admittedly, this is a very pessimistic view of
theoretical nuclear reactions. However, it turns out that some of these experiments
are plagued with all sorts of difficulties; we will highlight one of them to illustrate
that theoretical calculations, besides improving our understanding of reactions, can
actually complement the picture that experimental data have supplied.

A recent success of an ab-initio description of a nuclear reaction, i.e., d + 3He —
p+ 4He, illustrates the importance of theory [6]. One of the quantities of interest is
the astrophysical S—factor, which is contained in the definition of the cross section,
o(E) ~ S(E)E~!. The S—factor contains all the essential nuclear physics of the
reaction, whereas the remaining terms in the cross section are dependencies on the
energy.

Usually, one is interested in the astrophysical S—factor at very low energies.
Determining the S—factor experimentally at low energies (on the order of tens of
keV) is very difficult to do, since electron-screening effects occurring between the
beam and the target artificially increase the size of the S—factor at those energies.
Theoretical calculations on the other hand are free from electron-screening effects,
and, thus, give the proper form of S(E) atlow energies. The difference between theory
and experiment is quite noticeable at low energies (see Fig.2 of [6]). In this way,
experimental and theoretical efforts work side-by-side to build a better understanding
of nuclear reactions.
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5.1.4 The NCSM/RGM

The NCSM is well-suited to describing the bound-state properties of a nuclear
system. Since we are using realistic interactions and performing the calculations
from first-principles, no uncontrolled approximations are present. We would like to
somehow extend the capabilities of the NCSM to the point where we can also calcu-
late the properties of loosely bound nuclei, as well as being able to describe dynamic
processes, such as reactions. The required physics is contained in the continuum, to
which the NCSM has no access.

We will now present a way to merge the two techniques, the NCSM and the
resonating group method (RGM); the result of combining the two bases is the
NCSM/RGM [2, 7]. The RGM is particularly well-suited for describing the interac-
tion amongst clusters of nuclei, in a setting such as scattering processes [8]. Naturally,
we aim to combine the two techniques in a suitable manner for our purposes. Thus,
to recap, the realistic nuclear interactions as well as the bound-state properties enter
through the NCSM, whereas the continuum physics is contained in the RGM.

We will now briefly present the key ideas of the RGM aspect. We will present the
binary cluster formulation of the RGM, although there is significant effort underway
to extend the NCSM/RGM to ternary clusters. Before we present the mathemati-
cal formulation, we would like to present a physical picture. In the binary cluster
formulation, one considers a heavy target nucleus, such as 8He, as well as a lighter
projectile nucleon (or nucleus), such as the neutron. To access the gs properties of the
He system, we calculate within the framework of the NCSM/RGM the scattering
of the projectile off the target nucleus. In other words, we access the gs properties of
9He through the scattering process n + $He.

We begin with a basis consisting of binary clusters of total angular momentum J,
parity 7 and isospin 7.

o4 = [(Ja=ai17' ) acar,? 1)) "
™) 6(r — ra—a,a)

rrA—a,a

x Y (’,;Afa,a):l (5.1)

In the above expression, |A—a a1 1" Ty) and |a o 1," T) correspond to the two
anti-symmetric cluster states. The former cluster represents the (heavier) target
nucleus, composed of A — a nucleons, whereas the (lighter) projectile consists of
a nucleons. In the case of a single-nucleon projectile, @ = 1. Each cluster state is
specified by an intrinsic angular momentum /;, parity m; and isospin 7;, as well as
additional quantum numbers «;, where i indicates the cluster. The clusters are cou-
pled to intermediate angular momentum s = /1 + I and total isospin T = T1 + T>.
The spherical harmonic Y, (f A,u,a) represents the relative orbital angular momentum
of the center of mass motion of the cluster.



98 5 Extending the NCSM with the RGM

IA—G. (23] II:HIT[)

la agl;T)

Origin

Fig. 5.3 A physical picture of Eq.(5.4) in which we indicate the separation of the two clusters by
r and the relative motion of the center of mass is given by 74—, . Note that the coordinates are
defined from a point in space, which we labeled as the ‘origin’ of the coordinate system. The cluster
eigenstates are |A—a o I, Ty} and |a ap 1, 1)

(I P
;A—a,a = rA—a,afA—a,a = Fi—— Z 7']' s (5.2)
A—a “ a .
i=1 j=A—a+l1
where {r;,i = 1,2,.--, A} are the A single-particle coordinates. To simplify

the notation, we group the cumulative quantum numbers into a single index v =
{A—a a1 T; a ol To; st}

The many-body wavefunction can now be expanded in terms of the binary-cluster
basis states,

1w/ Ty Z/dr 29y ()Ay|cb Ty, (5.3)

Since we are dealing with nucleons, we require that the many-body wavefunction
has to be antisymmetric under an exchange of any two nucleons. The cluster states
themselves are antisymmetric, but the combination of the two as written in the basis
|CI>,{,/T Ty is not anti-symmetric when two nucleons belonging to different clusters
are exchanged. The anti-symmetry requirement is taken care of by introducing an

intercluster anti-symmetrizer A,, =,/ (A_Ta!)!“! > p(—)P P, where the sum runs over
all possible permutations P that can be carried out among nucleons pertaining to
different clusters, and p is the number of interchanges characterizing them. The
expansion coefficients in Eq.(5.3) are the relative-motion wavefunctions g; ! (),
which represent the only unknowns of the problem. To determine them one has to
solve the non-local integro-differential coupled-channel equations

JTT
Z/drr HOT G ) — ENIT (), )]gy—(r)=o. (5.4)
r

In order to have a physical picture in mind, we refer the reader to Fig. 5.3, in which
we show some of the quantities given in Eq. (5.4).
The Hamiltonian kernel,
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Fig. 5.4 The Norm kernel as shown in Eq. (5.6). The term on the /eft shows the direct term whereas
the term on the right shows the exchange term. The red line indicates the light projectile whereas
the black lines indicate nucleons inside the heavy target
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Fig. 5.5 The Hamiltonian kernel as shown in Eq. (5.5). Terms a and b represent the direct terms
whereas term ¢ represents the exchange term. The interaction between the clusters is given by the
dashed blue line

Hl// AV’ HAU vr

™ ™
JVT(},/’ r) = (CI)Z,WT

o/ ”T> , (5.5)
and the norm kernel,

m T A A~
NI ) = <<I>£/r,T Ay A,

o)), (5.6)

contain the antisymmetrization as well as the nuclear-structure of the problem. We
have used the notation E and H to denote the total energy in the center of mass frame,
and the intrinsic A nucleon Hamiltonian, respectively. The kernels themselves have
a physical interpretation, in terms of direct and exchange terms. In particular, the
kernels can be expressed diagrammatically as shown in Fig. 5.4 for the norm kernel
and Fig. 5.5 for the Hamiltonian kernel. The diagrams represent the required matrix
elements arising from evaluating the antisymmetrizer; these terms must be derived
individually. The evaluation of the kernels themselves is extensively discussed in [7].
The Hamiltonian contained in Egs. (5.4) and (5.5) can be written as

H = Tre1(r) + Vrel + Ve (r) + Ha—a) + Hey » (5.7)



100 5 Extending the NCSM with the RGM

where the last two terms are the intrinsic Hamiltonians for the target and projectile
cluster. The cluster Hamiltonians are diagonalized in the NCSM, using the same
Nmax, 7€2 space, and give us the cluster states |A—a oy Il7r1 Tl) and |a [e%) 127T2 Tz). Note
that softened realistic interactions are used, which require no further renormalization.
Tie1(r) and Ve describe the relative kinetic energy of the clusters and the sum of the
intercluster interactions between the various nucleons. V| is explicitly given by,

Vrel =

“Mg

A
2] — Ve ()
=A—
A—a A
:Z Z I:VN(?i_;:j,Ui,ijTi,Tj)

i=1 j=A—a+1
1+ 7)1+ 75) 1
475 -7 (A—aa

Vc(r)], (5.8)

in which Vy represents the nuclear interactions. Note that V] contains both the
point-Coulomb interaction as well as an average Coulomb contribution (\_/c(r)).
The term Ve (r) = Z1,Zaye?/r, where Z1,, and Z,, are the charge numbers of the
clusters in channel v. One subtracts the average Coulomb contribution in Vi in
order to have the term be local even in the presence of Coulomb interactions; the
Coulomb contributions now fall off as r~2 instead of 7 ~!. Note that the subtraction
is mathematically cancelled out in the total Hamiltonian (Eq.5.7) by the addition of
Ve, and thus, this averaging procedure has no overall effect on the total Hamiltonian.

The § functions that appear in the localized parts of the kernels are replaced by
their representation in the HO model-space, using the same (Nmax, 1€2) values as we
do for the cluster eigenstates. This replacement is only done for the localized parts,
whereas for the diagonal parts of the identity operator in the antisymmetrizers, the
kinetic term and average Coulomb term are treated exactly.

The norm and Hamiltonian kernels are translationally invariant quantities and can,
thus, be naturally derived in the NCSM Jacobi-coordinate basis. For larger nuclei,
such as those in the p-shell, the Jacobi coordinate approach becomes unfeasible, since
the antisymmetrization of the target-cluster many-body states is unmanageable. Thus,
we resort to using single-particle coordinates (i.e., Slater Determinants) for the target
cluster. Our basis in the RGM is now composed of the heavier cluster state being
expressed in terms of Slater determinants, whereas the light projectile is expressed
in Jacobi-coordinates,

4 T
|®7,")sp = [(|A—aa1[1Tl>SD |aa212T2))(S :

N JTT)
x Yz(Réf%_)] Rue(RE)). (5.9)

In order to recover the translationally invariant matrix elements in the Slater
determinant basis, we make use of the following expression,
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Here (’)t i. represents any scalar and parity-conserving translational-invariant oper-
ator (O, = A, AHA, etc.) and (n,€, N L |00n€€) are generalized HO brackets
for two particles with the mass ratio a/(A — a). The use of the SD basis is computa-
tionally advantageous and allows us to explore reactions involving p-shell nuclei, as
done in the present work. Finally, in order to evaluate the integration kernels, we need
both the one- and two-body densities of the target eigenstates. These expressions are
shown in Egs. (51-52) in [7].

5.1.5 Orthogonality and General Observables

The presence of the norm kernel in Eq. (5.4) represents the fact that the many-body
basis is expanded in terms of non-orthogonal basis functions. Thus, Eq. (5.4) does not
represent a system of multi-channel Schroedinger equations and the relative motion
functions glfﬂT(r) are not Schroedinger wavefunctions. The non-orthogonality is
short-ranged and originates from the non-identical permutations of the intercluster
antisymmetrizers (these are present in the norm-kernel). Asymptotically, the norm-
kernel retains orthogonality,

o’ —r)

r'r

NI ) = Gy (5.11)

At large distances the relative wavefunctions gyj T (r) do satisfy the same asymp-
totic boundary conditions as the relative wavefunctions of a multi-channel collision
theory. Thus, one can correctly calculate physically meaningful quantities, such as
the energy eigenvalues. However, the internal structure of the relative wavefunctions
are still affected by the short-range non-orthogonality; this can lead to problems,
when one wants to calculate general observables, such as transition matrix elements.

In order to remedy the situation, one can introduce an orthogonal version of
Eq.(5.4),

’_ J*T
Z/drr H’ T(r )—ané(r, ”]X” " _y. (5.12)

rr r
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where HZ{Z/T(r’ ,r) is the Hermitian energy-independent non-local Hamiltonian
defined by

. 1 . 1
" TG r) = dy'y'? dy yzNy/f,(r/, YIYRLT G, y) NYw? (o, 7).
Y e
Y gl

(5.13)
The Schroedinger wavefunctions XI{WT (r) are now the wavefunctions we have to
solve for and are related to the old gl{ "T (r) by the equation,

J°T T
Xy () _ Z/dy y2N,,%ﬂy(r, y) o O (5.14)
r - Y

The orthogonalized version of Eq. (5.4) is, thus, given by,

. - Jars 2 1T ()
[Trd(r) +Ve(r) —(E—EJ, ' — Eg 2)} —
J™T (.1
s "’ r
+ Z/dr’r’z W,y 2 2 r,( ) o, (5.15)

v

where Ei’l i is the energy eigenvalue of the i-th cluster (i = 1, 2). The WV]:,T (r, 1)
is the overall non-local potential between the two clusters and depends on the relative
channel numbers (v, ") but not on the energy. These are the equations that are solved
for both bound and scattering states, depending on the boundary conditions that are

imposed.

5.2 A NCSM/RGM Study of *He

One of the interesting questions that we can immediately address within the
NCSM/RGM formalism, is the occurrence of unnatural parity states in the N = 7
isotones, shown in Fig.5.1. As a reminder, an isotonic chain such as HBe, 101 and
9He, is one, in which the number of neutrons remain the same in each nucleus, while
the number of protons varies.

The heavier Helium isotopes, °~?He, are currently one of the few chain of isotopes
accessible to both detailed theoretical and experimental studies. In the case of 9He,
the neutron to proton ratio is N/Z = 3.5, making it one of the most neutron extreme
systems studied so far. He is particularly interesting theoretically, since it is part
of a series of N = 7 isotones, in which it is believed that intruder states from
the 1s0d HO shell are pushed down in energy into the Op shell, allowing for the
possibility of a positive-parity ground state. In this regard, ' Be is the most famous
example of having an un-natural parity assignment for the ground state, which has
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Fig. 5.6 The HO energy (hS2) dependence of ®He for the SRG N3LO NN interaction at A =
2.02fm~!. We expect for larger Npmax values than shown, that the variational minimum will be
located close to A2 ~ 16 MeV

been calculated theoretically [2, 9] as well as being observed experimentally [10].
Similarly, the same effect is seen in 1004 [11].

Naturally, one might propose that the trend continues for ?He. Shell model calcu-
lations have been attempted in the past [12], but no calculation of scattering lengths

have been presented. Experimentally the situation is also debated. Early experiments

found that the unbound ground state is a %_ state [13—15]. These claims were chal-

lenged in [12], in which it was suggested that the ground state should be a %+ virtual
state; a claim further strengthened by their shell model calculations. Recently, the
debate has been re-opened, in which two experiments were performed [16, 17], both

claiming that the %+ ground-state assignment is questionable. The authors of [17]

suggest that the ground state should be reverted back to the previous %_ assignment.

We present a study of the ?He ground state in the framework of the IT-NCSM/RGM
formalism [2, 7], by analyzing the n — 8He scattering process. The NCSM provides us
with high-quality wavefunctions, obtained from a large-scale diagonalization of the
Hamiltonian. We used the realistic chiral NN interaction [ 18], in which we have used
all two-body terms up to next-to-next-to-next-to-leading order (N3LO). The inter-
action is then softened by using the SRG procedure with a momentum-decoupling
scale of A = 2.02fm~!. The HO energy has been fixed at iQ2 = 16 MeV, as this is
close to the variational minimum for $He. In our calculations, we can calculate the
8He system up to Npax = 10(11) in the full NCSM for positive (negative) parity
states. However, we have also used the IT-NCSM to generate the 8He wavefunctions
for Nmax = 6(7) — 12(13) for positive (negative) parity states. This will serve as a
good test of the IT-NCSM in an RGM setting.
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As we have discussed, the NCSM has poor asymptotic behavior of the wavefunc-
tion for extended nuclei, due to the underlying HO basis. Thus, if one were to calculate
He directly in the NCSM, the calculation would lead to a rather poor description of
the true ground state, especially if the system is loosely-bound. We will demonstrate
that this is the case. The consequences of using the NCSM for loosely bound nuclei
have already been demonstrated in [19], in which these problems are discussed. In
order to improve the description of the asymptotic behavior, the NCSM calculation
is coupled with the RGM. The RGM is particularly suitable for describing scattering
processes, which includes the extra physics from the continuum that is lacking in
the NCSM. As a final comment, note that we access the gs properties of “He by
analyzing the phase shifts the neutron experiences, when we study the scattering of
n — 3He.

5.2.1 IT-NCSM 8He wavefunctions

In order to perform the NCSM/RGM calculations for n — 3He, we need to calculate
the ®He wavefunctions in a sufficiently large Npax basis space. The full NCSM
calculations can be performed up to Npa,x = 10(11) for positive (negative) parity
states, but are very time consuming. Instead, we made use of IT-NCSM calculations
of the 8He wavefunctions, in which we calculated the wavefunctions in the truncated
Nmax spaces up to Nmax = 12(13). All IT-NCSM calculations have a complete
Nmax = 0 — 4 basis space, and start the truncation of the basis at Npax = 6. The
harmonic oscillator energy of 16 MeV was chosen in the IT-NCSM calculations (See
Fig.5.6 for details). We outline the technical details of the IT-NCSM in the next two
paragraphs.

The Positive-Parity States J™ = {01, 21)

We obtain the required wavefunctions from three sets of calculations. In order to
obtain the required one- and two-body density matrix elements, we calculated the
positive-parity states J™ = {0", 2%} for both M = 0 and M = 1. The basis for
these two states is selected by the importance measure «, in which we have used
the extension to multiple reference states. In other words, if the importance measure
for any one of the reference states (a previously calculated 0T or 27 state) satisfies
the minimum threshold measure, then that basis state is kept in the overall basis for
the positive-parity states. In the calculations for the positive-parity states, we used a
minimum threshold of Kmin = 1.2 x 1072, The set of importance measures that we
used to perform the extrapolations to k = 0 for the M = 0 positive-parity states is
given by k = {5.5,5.0,4.5,4.0,3.5,3.0,2.5,2.2,2.0, 1.8, 1.4, 1.2} x 107>. Note
that there are 12 grid points. The calculated energies were extrapolated to x = 0 by
using either a cubic or quartic polynomial, and by using either the first- or second-
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Fig. 5.7 The 3He energy spectrum as calculated with the IT-NCSM procedure. We show rhree
states that we are interested in; the 0T gs, and the excited states 2% and 1~. We also show the
exponential extrapolation to Np,x = oo for each state, as well as indicating the uncertainty from
the extrapolations in the IT-NCSM procedure

order results (Ep D or E, (1+2) ). As a reminder, we refer to Sect.3.2 and 3.4 for the
details.

The result of using the first-order energies (E (l )) extrapolated to k = 0 with a
cubic polynomial, is shown in Fig. 5.7. We also show the extrapolation to Npax = 00,
in which we have used the standard exponential form, f(Nmax) = a * exp(—b *
Nmax) + E~. Note that extrapolation takes into account the uncertainty from the
extrapolations to x = 0 for each Npax space.

In the case of the M = 1 positive-parity states, we only required the actual
wavefunctions for the one- and two-body densities; thus, we only calculated the
wavefunctions for the 07 and 27 state at k = {3.0, 2.0, 1.2} x 1073, We use a set of
three different importance measures, as we would like to test the convergence in x
of NCSM/RGM calculations, when importance-truncated wavefunctions are used.

The Negative-Parity State J™ = 1~

An older calculation, which was performed in the same manner as described above,
also included the calculation of the J = 17T state. In the (IT-)NCSM calculations,
the 17T state appears as the second excited state in the energy spectrum. However,
experimentally, it is suggested that the second excited state in ¥He could be a negative-
parity state, the J = 1~ state (see Fig.5.8).

The NCSM/RGM has the ability to take several excited states in the heavier
target nucleus into account. These states are often physically relevant in obtaining an
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Fig.5.8 The experimentally measured low-lying spectrum of the ®He nucleus. States that are higher
in energy are known, but not shown here. The figure has been adapted from [20]

accurate description of the system under investigation, in our case n — $He. Thus, we
have decided to also include the negative-parity state in the n — 8He calculation. As a
reminder of the NCSM/RGM formalism, we refer the reader to Eq.(5.4), in which
the inclusion of several target states, coupled to the angular momentum of the single
nucleon, is denoted by the channel index v = {A—a a1, T1; a a1y > T»; st).

The 17 state is calculated in the IT-NCSM formalism, using only one reference
state, in much the same way as the positive-parity states were calculated; the same
set of k-grid points were used. The Ny« Spaces are, however, not the same. In order
to be consistent, we have to increase the Ny,x spaces for the negative-parity state
by one unit from the corresponding positive-parity Nmax space; otherwise, we are
artificially limiting the Np,x quanta for the negative-parity basis. For example, an
Nmax = 6 positive-parity space will require an Npx = 7 negative-parity space.
This requirement can be understood from the alternating parity of the HO shells:
Even-numbered major HO shells, suchas N = 0, 2, 4, . . ., are positive-parity shells,
whereas the odd-numbered shells are all negative-parity shells.

Comparison of Various He Isotopes

Before we present our results on the NCSM/RGM calculation of n — 3He, we
would like to illustrate the reliability of the SRG chiral NN N3LO interaction at
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Fig. 5.9 The spectrum of IT-NCSM spectrum of 8He, calculated using the SRG chiral N3LO
interaction at A = 2.02fm~! as compared to the experimentally known spectrum of 8He. The
energies shown for the IT-NCSM 8He calculations are determined from the extrapolations to Npax =
oo and are averaged over the various extrapolations that were performed to obtain the energies at
% = 0. We also show the °He and *He gs energies for comparison. A2 = 16 MeV in all cases

A =2.02fm~!, when it is used to calculate the energy spectrum of various Helium
isotopes. In the experimental spectrum of 8He, the neutron emission threshold of
n + "He is indicated, as well as the two-neutron emission of 2n + ®He. The
two-neutron emission threshold is the first decay channel (besides J—decay) that
the $He nucleus can undergo.

Recently, the question was asked by S. Bacca whether or not our theoretically
calculated 8He nucleus is stable against two-neutron emission decay.! In order to be
energetically stable against this emission process, we require that our gs energy for
8He be lower than that of °He. We, thus, did a calculation of 6He, using the same HO
energy (72 = 16 MeV) and the same interaction as before, and determined the gs
energy. The result of these calculations are compared to the experimental spectrum
of 8He in Fig.5.9.

The point of Fig.5.9 is to show that we have calculated ®He to be stable against
two-neutron emission. Furthermore, we have shown that we agree reasonably well
with the $He experimental spectrum when we use this particular interaction (chiral
N3LO NN at A = 2.02fm™'), and use the HO energy of A2 = 16MeV. The
energies shown in the figure for the IT-NCSM 3He calculations are determined from
the extrapolations to Nmax = 00 and are averaged over the various extrapolations
that were performed to obtain the energies at x = 0. This leads to the ‘bands’ in the
figure, indicating the uncertainty in our extrapolations. We also show the ®He and

! Invited talk at TRIUMF January 2012.
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“He gs energies for comparison, as an indicator that our calculation is a reasonable
assessment of the Helium isotopes.

5.2.2 The NCSM/RGM Calculation of n — 3He

The NCSM/RGM formalism requires the cluster state of the heavier target nucleus
(|A—a arl" Tl)), in our case the 8He wavefunctions. We also have to specify the
energy of each state that is included in the NCSM/RGM calculation. In the results
that we will present for the NCSM/RGM calculations, we will simply use the energy
that corresponds to the wavefunction, at a specified value of «. In other words, we do
not use the extrapolated x = 0 energies in the NCSM/RGM input. Typically, we will
use the wavefunction and the associated eigenenergy corresponding to the smallest
k-threshold that we used, fmin = 1.2 x 107°.

Phase-Shift Calculations

In order to determine if there is a bound state in the “He system, we analyze the
phase-shift of the n — 8He scattering calculation as a function of the kinetic energy
of the neutron. An appearance of a resonance in the phase-shift at a specific energy
usually indicates a physical state of some kind, for example, one that is found in
the continuum. A structure-less phase-shift on the other hand would indicate that no
physical states are present.

In Fig.5.10 we show the NCSM/RGM calculated phase-shifts for the s- and

p-wave channel. There is a resonance in the p-wave channel at about 1.7 MeV, which

corresponds to a %_ state. The s-wave channel shows no structure at all, except for a

tiny ‘bump’ near the origin. This tiny feature might become relevant as the number
of states included from the target nucleus increases; thus, we need to investigate the
dependence of the phase-shift on the number of target states included. In Fig.5.10a
we show the phase-shifts for the target states of $He being the 0 and 27 states,
whereas, in Fig.5.10b, we show the phase-shifts, when the 17 state is included, as
well. It can be seen from the two figures that there is no significant difference in the
phase-shifts if one includes the 1™ state; thus, since it is computationally demanding
to include many of the possible target states, we will only include the positive-parity
0T and 27 states from now on.

In order to determine the nature of the s-wave phase-shift bump, we can determine
the s-wave scattering length that corresponds to the calculated phase-shift. When the
results, as shown in Fig.5.10, are used, we determine that the s-wave scattering
length? is a(0T, 2%) = —1fm. The scattering length, in this case, is so small that
we conclude that there is no bound state in the *He system. On the other hand, if the

2 Nuclear physicists attribute a negative scattering length to an attractive potential, in contrast to
the convention that particle physicists use.
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Fig. 5.10 The figures shows the calculated phase-shifts for the s- and p-wave channel at Npox =
12(13), obtained from IT-NCSM/RGM calculations. The phase-shift depends on the number of
states included from the target nucleus. In b we show that the phase-shift is minimally affected by
the inclusion of the 17 state, when compared to a in which only the 0" and 27 state were used

scattering length were significantly more negative, like on the order of ~—10fm, we
could be dealing with a bound state.

We have also calculated the 17 state in ®He. This state is close in energy to the
1" state in the theoretical (IT-)NCSM calculations, and thus, could play a significant
role in the NCSM/RGM phase-shift calculations. Furthermore, it is experimentally
suggested that the second-excited state of ®He is a 1~ state. In Fig.5.11 we show
the NCSM/RGM calculated s- and p-wave phase-shifts, in which we have included
the target states {0F, 2%, 17}. Notice that the ‘bump’ in the s-wave phase-shift has
increased significantly to a maximum of approximately 30 degrees. The phase-shifts
are shown as a function of Np,x, in order to demonstrate that the NCSM/RGM
calculations are converging in Npy,x and that the increase in the s-wave phaseshift
near the origin is not an artifact of a specific N,x truncation. This structure in the

s-wave phase shift signifies the presence of a physical state and, given that it would

correspond to a %Jr gs, is very interesting for further study. On the other hand, the

p-wave resonance remains largely unaltered with the inclusion of the 1™ state.

For the results shown in Fig. 5.11 we have determined the s-wave scattering length
to be ap(0", 2%, 17) = —12.59fm. This value is significantly more negative than
our previously calculated scattering length (in which only positive-parity states were
included in the target) of ag(0™, 27) = —1 fm. The large negative scattering length
indicates that the true gs of the *He system is indeed a positive-parity %—i— state.

Convergence of Phase-Shift Calculations

The difference seen in the s-wave phase-shifts between the positive-parity states
and the inclusion of the 17 state is quite striking. In order to gain confidence in
the results that we have shown in Figs.5.10 and 5.11, we need to demonstrate that
the calculated phase-shifts are converged in some sense. We have already demon-
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Fig. 5.11 The figure shows the (IT-)NCSM/RGM calculated s- and p-wave phase-shifts, in which
the included target states are {0, 2, 17}, as a function of Nyax. The Npax = 12(13) calculations
were obtained from an IT-NCSM calculation. Notice that the ‘bump’ in the s-wave phase-shift has
increased significantly to a maximum of approximately 30 degrees in the largest Npax spaces. This
structure in the s-wave phase shift signifies the presence of a physical state. The p-wave resonance
remains largely unaltered with the inclusion of the 1~ state

strated the NCSM/RGM calculations have converged in Npax in Fig. 5.11. However,
we still need to demonstrate that the NCSM/RGM calculations are reliable when
the IT-NCSM ®He wavefunctions are used. As an aside, this is a very interesting
test of IT-NCSM calculated wavefunctions, compared to the usual tests, which are
solely performed on the agreement between NCSM gs and I'T-NCSM extrapolated
gs energies. In other words, we are now truly testing the quality of the IT-NCSM
wavefunctions.

We are specifically interested in the behavior of the s-wave phase-shift at low
energies, since the structure in the phase-shift could be the signal of the true gs
of the °He nucleus. Thus, all tests of convergence of the IT-NCSM wavefunctions
will specifically focus on the converge of the s-wave phase-shift at low energies. In
Fig.5.12 we show the convergence in the importance measure ~ of the s-wave phase-
shift, in which we compare two different importance measures, x = 1.2 X 10~% and
Kk = 2.0x 107, to the full NCSM calculations, which were performed at Ny, = 10.
We can see from the figure that the s-wave phase-shift decreases as the importance
measure is lowered, and, furthermore, as s decreases, the calculated phase-shift tends
towards the full NCSM result.

In Fig.5.13, we show the x-dependence on the s-wave phase-shift in the Np,x =
12(13) space for three different importance measures, « = {3.0, 2.0, 1.2} x 1075, In
this basis space, we are unable to perform full NCSM/RGM calculations, as it is too
computationally demanding. We can see from the figure that the difference between
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Fig. 5.12 The importance measure « of the s-wave phase-shift, in which we compare two different
importance measures, k£ = 2.20 x 1075 and k = 1.2 x 1073, to the full NCSM calculation. The
phase-shifts shown correspond to the case when the Npax = 10(11) wavefunctions are used

the various s-wave phase-shifts decreases as the importance measure is decreased,
indicating that we are converging in «. Taking into account the difference between
IT-NCSM and full NCSM results of the phase-shift, as shown in Fig.5.12, as well
as the convergence in x, as shown in Fig.5.13, we can conclude that the maximum
value of the s-wave phase-shift at Nax = 12(13) is perhaps a little less than the
30 degrees. However, the ‘bump’ will still be present and, thus, does not alter our

. +
conclusions about the % gs of “He.

Comparison to Experiment

In this subsection we return to the discussion on the experimental probing of “He. As
we had mentioned earlier, there are essentially two classes of experimental results;

a number of experiments claim that the gs should be a %7 state, whereas the MSU

experiment claims that the gs should be the %_ state. The debate has not been settled
yet, in part, due to the difficulty of the experiments themselves.

The experimental papers have [12, 16] also presented their calculated s-wave
scattering lengths. These scattering lengths are determined from the experimental
data. In the experiments of Al Falou, et al. the s-wave scattering length is estimated
to be between ag = —3 — 0fm. In the MSU experiment, the s-wave scattering length
was deemed to be ap < —10fm (i.e., more negative than —10fm).

The results that have been presented in this section are, at the time of writing,
only in a preliminary stage. Given the results that we have presented, we are in
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Fig. 5.13 The figures shows the x-dependence on the s-wave phase-shift in the Nyax = 12(13)
space for three different importance measures, ~ = {3.0, 2.0, 1.2} x 1075, The difference between
the various s-wave phase-shifts decreases as the importance measure is decreased, indicating that
we are converging in K

the unfortunate position of agreeing with neither one of the two main experimental
results, namely, our calculated s-wave scattering length is neither ag < —10fm nor
ap = —3 — 0fm, depending, on which sets of states are used from the 8He target in
the NCSM/RGM. However, it is always best to include as many of the states present
in the target as possible. In this regard, we have more confidence in the calculations,
which include the 8He 0+, 2%, 1~ states (see Fig.5.11) than the calculations that
included only the positive-parity states from the target (see Fig.5.10). Furthermore,
we have shown that the phase-shifts are converging with both the size of the basis,
Nmax, and with the decrease in the size of the importance measure, «.

The experiments themselves are also very difficult to perform. To give the reader
an idea of the nature of the experiments, we will briefly describe the MSU experiment
that was performed in 2001 [21, 12]. Naturally, one might assume that all one needs
to do is to have a beam of neutrons impinge on a 8He target and then consider the
outgoing nuclei that are formed. However, the half-life of the 38He nucleus is 119 ms
(see Fig.5.1), which is too small to consider using 8He targets directly; there is, of
course, the difficulty of steering a neutron beam towards the target. Thus, the “He
nucleus must be accessed by other means. This is an important consideration, which
we now explain.

The MSU experiment considers the reaction 9Be(”Be,8 He +n)X, in which a
beam of !'Be nuclei at 28 MeV/u is incident on a *Be target. The direct-reaction
leads to the production of ¥He + n and some other products (X). The neutron and
the 8He fragment are detected in coincidence, and are determined to be traveling
at approximately the same velocity (within 1 cm/ns). Note that He is not directly
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detected,; it is the coincidence measurement of the neutron with the ®He fragment
that suggests that at some time prior to detection, the neutron and the fragment
have interacted. The resulting distribution of the velocity difference between the
fragment and the neutron is determined and is found to be approximately Gaussian
in shape. The fact that the distribution is peaked and narrow suggests that the final-
state interactions (n — $He) are strong and are dominated by s-wave interactions. The
experimental distribution of the velocity differences are then fitted to a theoretical
potential model, based on some reasonable assumptions regarding the initial and
final states of the reaction. The potential-model fit to the experimental data is quite
involved, the details of which are not important here. However, it should be noted that
the fit has a direct connection to the predicted s-wave phase-shift, ap. By performing
anumber of fits to the experimental data, it is found that the experimental data favors
a scattering length that is consistent with agp < —10 fm (i.e., more negative than
—10fm). A scattering length of ap ~ Ofm is clearly ruled out based on the value of
the x?/dof of the obtained fits. It is important to note that the initial neutron state
of 'Be is dominated by a 1s; /2 single-particle orbital (recall the gs of Be is, in

fact, %Jr). In other words, the initial neutron state originates in an s-state. This forms
the basis of a selection rule argument in this particular experiment: since the neutron
originates in an / = 0 state and is also detected with a velocity very near that of the
fragment, it can be argued that the reaction product n — 3He is also in an / = 0 state.

Current Status of the Calculation

One intriguing possibility that remains is the presence of the 2™ state. In the NCSM
calculations of ®He, this state is located about 1 MeV higher in energy than the 1~
state, and, could play a role in the peak height of the low-energy s-wave phase-shift.
Initial calculations in small Niax < 6 spaces, seem to suggest that the 27 state lowers
the height of the peak slightly. However, a thorough investigation at Npyax > 10 is
currently underway and will ultimately give a concrete answer as to the relevance of
the 27 state in the NCSM/RGM calculations.

5.2.3 An IT-NCSM Calculation of *He

To demonstrate that the NCSM leads to a poor description of loosely bound nuclei,
we will now present some IT-NCSM calculations of *He. The IT'NCSM procedure
is performed, as we have described numerous times before, so, we will only mention
the key points. The *He %7 and %+ states are calculated using the chiral N3LO NN
interaction, which has been softened by the SRG to A\ = 2.02 fm~!. The HO energy
is the same as for the $He case; iQ2 = 16 MeV.

InFig.5.14 we show the result of the IT-NCSM calculations, in which we show the
extrapolated k = 0 energies for each Ny« space. The extrapolations are the result of
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Fig.5.14 The figure shows the IT-NCSM energies for the lowest %7 and %+ state of “He. Note that
the gs is predicted to be the negative-parity state, instead of the positive-parity state, as predicted by

the NCSM/RGM in n — 8He. The lines show the extrapolation to Np,x = 00; these are E (%_) =
—29.568 £ 0.044MeV and E(%+) = —27.698 + 0.063 MeV

Table 5.1 A comparison of IT-NCSM and NCSM/RGM calculated energies of the %Jr and %7
state in “He at Npmgx = 12(13)

IT-NCSM NCSM/RGM
state 3 i z i
E [MeV] —28.040 —25.694 ~—28.317 ~—29.717

The approximate value of the NCSM/RGM is due to the uncertainty in the extrapolations of the
8He gs at Npax = 12

a cubic polynomial fitted to the first-order energies, E( ) The uncertainty from the
extrapolations are indicated, but are too small to be v151ble on the figure. Furthermore,
we also show the extrapolation to Nyp,x = 00, using the standard exponential form,
taking into account the uncertainties that arise from the IT-NCSM extrapolations.
The exponential fit to determine the energies at Nmax = oo only takes into account
the energies at Nypax = 6 — 12.

We find that in the (IT-)NCSM calculations that the gs is predicted to be the %_
state. This is in contrast to the prediction of the NCSM/RGM n — 8He calculation,
in which the gs was predicted to be the positive-parity state %+. The extrapolation to
Nmax = oo finds that the energies corresponding to the negative and positive-parity
state are E(%_) = —29.568 £ 0.044 MeV and E(%Jr) = —27.698 £ 0.063 MeV,
respectively.

We would like to make one final comparison between the IT-NCSM and IT -
NCSM/RGM calculations of ?He. In order to do this, we need to consider the calcu-
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lations at Npmax = 12(13), since the extrapolations to Npax = 00 were not performed
for the NCSM/RGM calculations. In Table 5.1 we compare the absolute energies of
the positive- and negative-parity states, as calculated in the IT-NCSM and with the
NCSM/RGM. The IT-NCSM results come from an extrapolation to x = 0 in the
Nmax = 12(13) space, in which a cubic polynomial was fitted to the first-order
energies, E(()l,l The NCSM/RGM values were calculated by first determining the gs
energy of ®He in Npax = 12(13), as calculated by the same extrapolation procedure
for the IT-NCSM (cubic polynomial fitted to E, (()1,1) We find that the gs energy of SHe
is, according to the extrapolation, Eo(®He) = —29.817MeV. To this energy we add

100keV and 1.5 MeV to obtain the energy of the %Jr and %_ state, respectively. These
energies correspond to the structure seen in the phase-shift calculation of Fig.5.11.
Note that the splitting between the two states is much smaller in the NCSM/RGM

case and that the NCSM/RGM predicts the %+ state to be the gs of “He. Both sets of
calculations, however, indicate that no bound state is present in 9He: the calculated
absolute energies are higher than the gs energy of *He.
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Chapter 6
Conclusion

The work in this thesis has presented several possible extensions to the No-Core Shell
Model (NCSM). To recap, the NCSM is a first-principles technique, particularly
relevant for lighter nuclei with A < 20, which allows us to calculate the observable
properties of nuclei. We consider this approach an ab-initio method, as the only input
to the problem is the nuclear Hamiltonian, which nowadays has a reasonably good
connection to the underlying theory of QCD in terms of the chiral interaction. Such
a connection is quite important considering that we want to place theoretical low-
energy nuclear physics on solid ground. Even though the current chiral interaction,
as given by Entem and Machleidt (as well as others), has problems regarding the
power counting scheme used, as well as being non-renormalizable, it is still a step in
the right direction. Work is under way to correct the deficiencies of the current chiral
interaction, by using a power-counting scheme that is consistent and by making the
interaction renormalizable. Unfortunately, much work remains to be done; hence,
these improved chiral interactions will probably not be availabe for use in NCSM
calculations for several years.

Solving the nuclear Hamiltonian requires specifying a many-body basis; for heav-
ier nuclei (A > 4), we prefer to use a basis of Slater determinants consisting of
single-particle harmonic oscillator (HO) wavefunctions. Consequently, the NCSM
depends on two parameters, Npax and AS2, in which the former indirectly speci-
fies the size of the many-body basis and the latter is a result of working in the HO
basis. Note that the 72 dependence remains, even if the bare nuclear Hamiltonian is
used. The combination of using the HO basis and truncating the basis according to
energy-quanta levels Ny« leads to the exact separation of center-of-mass states from
the intrinsic states. However, the HO basis has a Gaussian tail, which, unfortunately,
leads to slow convergence in the NCSM calculations. Furthermore, expressing the
nuclear interactions in the HO basis also leads to slow convergence. Convergence
in the NCSM is usually considered to mean that we have reached a ‘large enough’
basis (Nmax ~ 10 — 16), so that any additional increase in the Npyax basis would
numerically lead to the same calculated properties (energy etc.) of the ground-state
(gs). For A < 4, convergence can be attained directly. In the case of incomplete

M. K. G. Kruse, Extensions to the No-Core Shell Model, 117
Springer Theses, DOI: 10.1007/978-3-319-01393-0_6,
© Springer International Publishing Switzerland 2013



118 6 Conclusion

convergence (A > 4), a series of calculated gs energies are extrapolated, as a func-
tion of Nmax, to obtain the gs energy at Npmax = 00. In this regard, the Similarity
renormalization group (SRG) interactions have improved the situation remarkably;
the use of a phase-shift equivalent soft interaction retains the variational nature of
bare NCSM calculations as well as reducing the required Np,x in order to obtain the
onset of convergence. However, the SRG procedure comes at the price of inducing
higher-body terms (such as induced three-body forces) that must be considered if the
procedure is to remain unitary. Furthermore, the size of induced four-body forces is
currently under investigation [1].

In Chaps.1 and 2 we described how the NCSM basis grows rapidly as Npax
increases. This is particularly significant for nuclei that lie in the middle of the
p-shell, where the combinatorial factors that arise from filling the single-particle
states in the NCSM basis are maximal. Even when SRG interactions are used,
the number of Np,x spaces required is still to large to approach convergence
satisfactorily.

6.1 IT-NCSM

The importance-truncated NCSM (IT-NCSM) uses an argument based on first-order,
multiconfigurational theory to select a small number of basis states present in the
large NCSM basis. The selection of a basis state (|¢,)) that is to be included from
the next-larger Npax space is determined by means of the importance measure,
[Py | H | Wret)|

€y —€ref
vious (possibly truncated) Npax space. The two energy terms in the denominator

represent the HO quanta of the basis state and the reference state, respectively. By
controlling the size of x, we are able to include more or fewer basis states in the trun-
cated NCSM calculations. To recover the result of a full NCSM calculation, in which
all the basis states are kept in a specific Nmax Space, we are required to extrapolate
a series of gs energies, as a function of , to the case when x = 0. Extrapolations
inherently possess dependencies on the choice of the function or the number of data
points used; in the case of the IT-NCSM, these uncertainties as well as the difference
to full NCSM calculations have only been eluded to in the past. It was the purpose
of Chap. 3 to provide a detailed study of IT-NCSM, in general.

In Chap. 3 we presented a detailed study of IT-NCSM calculations for °Li, in which
we have studied the dependence of IT-NCSM on various parameters. These include
the behavior of IT-NCSM as a function of the model-space Npyax, the HO energy h£2,
the extrapolating functions used for the two types of data sets (E(()L)i or E(()] : 2)), the
SRG momentum-decoupling scale A, as well as the influence on the basis selection
procedure, when multiple reference states are used. The IT-NCSM calculations were
then compared to NCSM calculations, in the same Np,x basis space, as a way to
estimate the accuracy of the procedure. We find that the extrapolations used in I'T-

NCSM, using either the first- or second-order results (E(()lf){:0 or E(()l:zz())) give similar

Kk = , in which |Ws) represents a physical state calculated in a pre-
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results, even when different extrapolating functions are used. At Npax = 14 we
find that the IT-NCSM extrapolated gs energies differ from the NCSM gs energies
by about 100-150 keV, whereas in extrapolations to Np,x = 00, the difference is
about250 keV. The IT-NCSM calculations show no quantitative difference for the
two SRG momentum-decoupling scales we used (A = 2.02 fm~! and A\ = 1.50
fm™!), in terms of the extrapolation errors or in regard to the difference to the full
NCSM calculations. Two new features were seen in these calculations that have not
been reported before: (1) IT-NCSM calculations seem to deteriorate in quality as 72
increases, when the same «-grid is used (see Figs. 3.8 and 3.12); (2) using several
reference states leads to a better basis selection for the gs energy than using just a
single reference state (see Fig. 3.16). We propose that future IT-NCSM calculations
should use multiple reference states to select the basis states, use smaller  threshold
limits as AS2 increases and provide a reasonable error estimate of the Np,x = 00
extrapolated energies.

In terms of matter radius results, we caution the reader that the extrapolation
techniques used to extract general observables, other than the gs energy, are far less
developed. In fact, it is worth reiterating that the convergence, as Npax increases
for general operators does not necessarily follow a variational pattern and must be
treated on a case by case basis. In our matter radius extrapolations to Npax = 00,
we were fortunate to see a regular pattern as Np,x increases which allowed us to
extrapolate to Npmax = ©00. It is very encouraging to see that we could reliably
calculate the matter radius operator in the IT-NCSM to at least within the accuracy of
experimental techniques. This is particularly good news, considering that the operator
is of a long-range nature. It would be very interesting to see how electromagnetic
operators, particularly how the quadropole moment and BE(2) operators behave in
an IT-NCSM setting.

We share the opinion that the criticism of importance truncated calculations is
worth addressing. In this regard, we presented an extensive discussion on size-
extensivity issues in many-body physics, in general, as well as how the issue arises in
iterative IT-NCSM calculations, in particular. Nowadays, we prefer to use the sequen-
tial IT-NCSM formalism, which in addressing the original criticism that IT-NCSM
lack size-extensivity, does include all particle-hole excitations up to the required
Nmax level. On the one hand, every test, to which IT-NCSM has been subjected,
has come within a few hundred keV of the exact NCSM result. On the other hand,
no conclusive evidence exists that sequential IT-NCSM is indeed size-extensive. In
order to truly answer this question, one would need to demonstrate that [T-NCSM
recovers the result of the NCSM over a wide range of mass numbers. Given the dif-
ficulty of performing full NCSM calculations, we might only be able to address the
issue of size-extensivity for heavier nuclei, calculated with IT-NCSM, in a limited
capacity.
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6.2 NCSM Extrapolations

For heavier nuclei (A > 4) we typically find that the gs energy has not yet con-
verged in the Npmax ~ 10 space. However, with the use of soft interactions, such as
those generated by the SRG procedure, it is possible to perform an extrapolation to
Nmax = 00. Several extrapolation schemes have been proposed in past calculations
[2-4]. All extrapolations that are used assume a decaying exponential form, in which
the argument of the exponential assumes a dependence on either the size of the basis
Nmax or the UV/IR regulators, as we did in Chap. 4. The use of an exponential form
has never been questioned. This is not surprising, since mathematical theorems, as
well as explicit calculations in the case of Hyperspherical harmonics, have shown
that smooth interactions, such as the (softened) chiral N3LO, generally converge
exponentially as the basis increases [5, 6]. Thus, the use of an exponential form to
extrapolate gs energies is warranted mathematically as well as practically.

Since we are extrapolating our calculated gs energies in a prescribed manner
(either via Npyax or by using UV/IR regulators) we are sensitive to uncertainties that
arise in the extrapolations. Determining these uncertainties in a reliable manner has
recently garnered some attention in the nuclear physics community.! This process
goes by the name uncertainty quantification. It is important to note that uncertainty
quantification is highly desirable if we want to place stringent error bars on our
theoretical calculations. In this regard, we are starting to move away from quoting
single, (presumably) exact gs energies of nuclei, obtained by diagonalization in a
fixed Nmax space, but instead are quoting numbers that are free from the NCSM
parameters (Npax and h2) and that come with some uncertainties due to the residual
effects of the NCSM parameters.

In this thesis we were not too concerned with determining rigid uncertainties
in extrapolation procedures (except for those used in IT-NCSM, as in Chap. 3).
Instead, we concerned ourselves with presenting a new extrapolation method based
on the principles of effective field theory (EFT). We reformulated the traditional
NCSM model-space of (Nmax, n€2) into an EFT-style model-space, characterized
by a UV and IR scale, (A, A\;g). In the EFT model-space, we treat the UV and IR
regulators on an equal footing. This is, in contrast, to the case of the traditional NCSM
extrapolations, in which Ny is generally taken to be ‘more important’ than AS2.
Furthermore, in the EFT model-space, one has complete control over the UV and
IR physics in the many-body problem. To this extent, a deficiency in a many-body
calculation, as characterized by the size of the relative error |% |, can be attributed
to excluded UV or IR physics—simply by raising the UV or lowering the IR scale,
we should decrease the size of the relative error.

Since the discussions on the form of the IR regulator are still under debate, we refer
the interested reader to the Conclusions section of Chap. 4 for a complete discussion
on the issues regarding extrapolating with EFT regulators.

I James Vary’s presentation at the Workshop on ‘Perspectives on the NCSM’, Vancouver 2011.
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6.3 NCSM/RGM and Exotic Nuclei

The extension of the NSCM to larger Npax spaces by using a combination of
IT-NCSM and extrapolation procedures is not always sufficient to accurately describe
the physics of certain nuclei. The NCSM (and, thus, also IT-NCSM) is well-suited
to describe the bound-state properties of nuclei, in which the first breakup channel is
fairly high in excitation energy. This is true for nuclei, such as *He, where the breakup
channel is located some 20 MeV above the gs energy, but not true for loosely bound
nuclei or resonance states (e.g., the A = 5 systems). Loosely bound nuclei are usu-
ally located near the physically interesting region of the neutron dripline; a region
where even the notion of conventional shell structure might seize to exist. As we
have described before, one of the problems that the NCSM encounters in describing
these exotic nuclei is due to the incorrect asymptotic behavior of the HO basis; bound
states in nature fall of exponentially, whereas the HO basis has a Gaussian tail. The
asymptotic nature of the basis is not the only issue to consider—the NCSM also has
no way to describe scattering processes.

On the other hand, the resonating group method (RGM) is well-adapted to describe
scattering phenomena between two clusters of nuclei. All that is required is to have
a good description of the bound state properties of the clusters themselves, which
is provided to us by the use of realistic interactions and the NCSM, if each cluster
has a high breakup channel. By combining the NCSM with the RGM, we are able to
extend the applicability of the NCSM to the edges of the nuclear chart.

In Chap.5 we considered the interesting nucleus °He. This nucleus is part of a
series of N = 7 isotones, which also includes ! Be and °Li. It is believed that these
ground-state have an unnatural-parity assignment. For !'Be and '°Li the unnatural-
parity assignment has been confirmed. In the case of the odd-A “He nucleus, the
natural gs parity assignment should be a negative-parity state. It has been suggested
in different experiments that the gs state could be either a positive- or a negative-
parity state. The binary-cluster formulation of the NCSM/RGM is well-adapted to
calculating the gs properties of “He by considering the scattering process n—3He.
In our calculations we determine the gs to be a %Jr state. In order to gain more
insight into the nature of the gs, we also calculated the scattering length, ag, of the
%+ state. The scattering length that we determine is dependent on the number of
states we include in the heavier target nucleus (*He). In the case of including only
the positive-parity 8He states J = {07, 2T, 17}, we determine the scattering length
to be agp = —1fm, in agreement with the experiments of [7, 8]. However, when we
include the negative-parity state J™ = 1, we determine the scattering length to be
ap = —12.59fm, in agreement with the MSU experiment [9]. We are fairly certain
that the 8He J™ = 1~ state must be included in the NCSM/RGM calculations, in
part due to the large effect the state has on the phase-shift as well as scattering length
calculations. In the ¥He IT-NCSM calculations one finds that a 2~ state is located
within 1 MeV of the 1™ state. The relevance of this 27 state in the phase-shift and
scattering length calculations is currently under investigation.
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In Chap. 5 we also demonstrated that a direct IT-NCSM calculation of He leads

to a prediction that the gs is a %_ state. In this calculation, the positive-parity state

%+ is located about 2.5MeV above the %7 state. Such behavior is due to the slow

asymptotic convergence of the NCSM with respect to loosely bound or resonance
states and demonstrates the need for the NCSM/RGM formalism.

6.4 A Final Word

It was my aim to convey to the reader a good understanding of extensions to the
NCSM. These extensions allow for the possibility to study heavier as well as exotic
nuclei in the p-shell and could be used in describing sd-shell nuclei. However, it
is important to realize the limitations of these methods. The NCSM and any of its
various extensions will never supply a complete description of the nuclear chart;
traditional shell model and configuration-interaction approaches are more suitable
for heavier nuclei. It can, however, be used to gain valuable insight into the nature of
nuclear forces, especially in terms of the role of three-body forces. Recently, there
has been some curiosity into whether or not the current nuclear interactions (chiral
or Av18+UIX) adequately describe nuclear systems with a high degree of isospin
asymmetry (i.e., neutron-rich systems) [10]. Calculations such as those require a
great deal of effort and should be performed. The NCSM is certainly well-adapted
to answer such questions.

I find it worthwhile to hint at future research projects before I conclude this
thesis. A potential area of study is the chain of Oxygen isotopes, in which we plan
to determine where the neutron-drip line is located. Such calculations have been
attempted before [11, 12], but they typically lack the inclusion of the three-nucleon
force directly.” Furthermore, since we are using the chiral EFT potential, which has
a direct connection to QCD, we can, in principle, determine which features of the
interaction are enhancing (or reducing) the stability of the nucleus, as excess neutrons
are added. For instance, is extra stability gained from three-nucleon forces or not? If
so, which terms in the interaction are responsible for the stability, or the lack thereof?

Perhaps most importantly, can we determine theoretically, where the drip-line is
located for other nuclei, before experimental data becomes available? These data
are expected to come from the Facility for Rare Isotope Beams (FRIB), which is
currently under construction at Michigan State University. Having the ability to
theoretically predict properties of nuclei (within some quoted uncertainties) before
the experiments are performed would be a significant step forward for the theoretical
nuclear-structure community.

2 Instead, density-dependent two-body forces are used to mimic the nature of NNN forces.
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