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Foreword

The workshop “Copulae in Mathematical and Quantitative Finance” took place in
Cracow (Poland) on 10th and 11th July 2012. This meeting was honoured to be a
satellite event of the 6th European Congress of Mathematics, which was held in the
same city the week before (2.07.2012–7.07.2012).

The event gathered 65 participants from 18 countries, across Europe and other
continents, in the old and prestigious city of Cracow, a pearl of Polish art and
cultural heritage and also a great scientific centre. Inspired by the nice atmosphere
of the venue all the participants were actively involved in interesting and stimulating
discussions about copula theory and its applications.

The workshop was preceded by a short course “Copulae Calibration in Theory
and Practise” consisting of two sections organized by Claudia Czado and Eike
Brechmann (Technische Universität München, Germany) and by Wolfgang K.
Härdle and Ostap Okhrin (C.A.S.E. Humboldt-Universität zu Berlin, Germany).
The course was particularly devoted both to PhD students and young researchers,
who have found challenging ideas about multivariate copula models, and to
practitioners, who have particularly benefited of practical implementation of the
proposed methodologies.

As members of the organizing committee of the workshop, we have the privilege
and the great pleasure to present this volume collecting results and achievements
discussed by the participants. It is another confirmation that the event was fruitful for
further scientific developments. Therefore, we would like to express our gratitude to
all the participants for their delightful combination of scholarly inquiry and cheerful
conviviality which confirm copula theory being such an active area of research.

We also would like to acknowledge the support of the institutional organizers
of the workshop: Polish Mathematical Society, C.A.S.E.—Center for Applied
Statistics and Economics (Humboldt-Universität zu Berlin, Germany) and Stefan
Banach International Mathematical Center (Institute of Mathematics of Polish
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vi Foreword

Academy of Sciences). Moreover, we are honoured to be supported by the Ministry
of Science and Higher Education of the Republic of Poland.

The attendance of specialists from various research groups around the word as
well as the support of the institutional organizers and sponsors made the workshop
a very successful event.

Warszawa, Poland Piotr Jaworski
Bolzano, Italy Fabrizio Durante
Warszawa, Poland Krystyna Jaworska
Berlin, Germany Ostap Okhrin
January 2013



Preface

The notion of copula provides an efficient way to describe the interrelationships of
random variables and offers a great flexibility in building multivariate stochastic
models. Since its discovery in the early 1950s, copulas have contributed to
understand better the various facets of stochastic dependence and have allowed to
break away from the standard assumptions (like multivariate Gaussian distribution),
which generally underestimate the probability of joint extreme risks.

Nowadays, copula-based dependence models are rapidly gaining considerable
popularity in several fields and are becoming indispensable tools not only in finance,
insurance, risk management and econometrics but also in biostatistics, hydrology or
machine learning. For example, they are widely used for the modelling of market,
credit and operational risk, as well as for the aggregation of risks and portfolio
selection. Moreover, such a large interest in the applications of copulas has spurred
researchers and scientists in investigating and developing new theoretical methods
and tools for handling randomness and uncertainty in practical situations.

The workshop “Copulae in Mathematical and Quantitative Finance”, which took
place in Cracow (Poland) on 10th–11th July 2012, has represented a good oppor-
tunity for intensive exchange of ideas about recent developments and achievements
that can contribute to the general development of the field. The talks presented at this
event have focused on several interesting theoretical problems as well as empirical
applications.

In order to make all these contributions available to a larger audience, we have
prepared this volume collecting both surveys giving an up-to-date account of some
aspects of copula models and extended versions of talks presented at the workshop
in Cracow.

Our special thanks go to the authors for their willingness to contribute to this
volume and to our colleagues whose contribution as reviewers was essential in the
preparation of the volume.
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viii Preface

The professional work of the scientific and organizing committees was greatly
appreciated, as well as the support of the co-sponsors of this conference.

Finally, we are indebted to our publisher Springer, in particular to Alice Blanck
for her assistance in the editorial process.

Bolzano, Italy Fabrizio Durante
Berlin, Germany Wolfgang Karl Härdle
Warszawa, Poland Piotr Jaworski
January 2013
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Chapter 1
A Convolution-Based Autoregressive Process

Umberto Cherubini and Fabio Gobbi

Abstract We propose a convolution-based approach to the estimation of nonlinear
autoregressive processes. The model allows for state-dependent autocorrelation, that
is different persistence of the shocks in different phases of the market and dependent
innovations, that is drawn from different distributions in different phases of the
market.

1.1 Introduction

In this paper we review the application of copula functions to Markov processes
used in econometrics, as it was recently described in the book by Cherubini, Gobbi,
Mulinacci, and Romagnoli [6]. Our contribution relies on the application of a
particular family of copulas, which are generated by the convolution operator, to the
design of time series processes. From this point of view, the paper contributes to the
literature modeling time series with copulas [3–5]. While this literature builds on
the pioneering paper by Darsow, Nguyen, and Olsen [8] on the link between copula
functions and Markov processes, our paper introduces the concept of convolution-
based copulas.

Beyond the Markov property, there is a long-standing and extremely vast
literature on the fact that most of the changes of the processes, those that are
called innovations, are not predictable on the basis of past information. In financial
markets, this concept goes back to the work by Bachelier in 1900 [1] and the
developments of what is known as the Efficient Market Hypothesis due to the
contributions by Paul Samuelson and Eugene Fama in the 1960s and 1970s
[11, 17, 18]. The natural representation of this theory is to assess that log-prices

U. Cherubini (�) � F. Gobbi
Department of Statistics, University of Bologna, Bologna, Italy
e-mail: umberto.cherubini@unibo.it; fabio.gobbi@unibo.it

P. Jaworski et al. (eds.), Copulae in Mathematical and Quantitative Finance,
Lecture Notes in Statistics 213, DOI 10.1007/978-3-642-35407-6 1,
© Springer-Verlag Berlin Heidelberg 2013

1

mailto:umberto.cherubini@unibo.it
mailto:fabio.gobbi@unibo.it


2 U. Cherubini and F. Gobbi

of assets follow a random walk. Technically, this process is characterized by
innovations that are permanent and independent of the level of the process. The same
random walk hypothesis spreads into the literature in the field of macroeconomics in
the 1980s, starting with the seminal paper by Nelson and Plosser [16]. Based on the
first unit root tests, due to Dickey–Fuller [9,10], Nelson and Plosser found that most
of the US macroeconomic time series included a random walk component, that is a
shock, independent and persistent, that is bound to remain forever in the history of
the time series itself. In this paper we propose an extension to this approach, which
allows for dependent innovations and for nonlinear dependence between the value
of a process and that of the previous period.

The plan of the contribution is as follows. In Sect. 1.2 we present our non linear
autoregressive model and discuss the possible restrictions that may be implied
for copula function applications. In Sect. 1.3 we present the general probability
framework, based on the concept of C-convolution. In Sect. 1.4 we specialize the
model to provide a generalization of the efficient market hypothesis beyond the
random walk assumption. In Sects. 1.5 and 1.6 we discuss estimation and simulation
of the model. Finally, in Sect. 1.7 we present an application of the analysis to three
stock indexes. Section 1.8 concludes.

1.2 A Nonlinear Autoregressive Model

As a starting point, consider the standard autoregressive process of first order,
AR(1). It has the form

Yt D �Yt�1 C "t

with the constant parameter � satisfying the condition j�j < 1 to ensure stationarity.
Furthermore, Yt�1 is assumed independent of the innovation "t for every t . When
� D 1, the AR(1) process is simply a random walk.

We may explore two ways to generalize the above relationship. The first is to
assume that the strength of the autoregressive relationship varies with the level of
the process. It may, for example, happen that the autoregressive parameter be much
closer to 1 in the tails, rather than in the middle of the distribution. A natural way
to account for this generalization would be to make the autoregressive parameter
dependent on the level of the process, that is

Yt D �.Yt�1/Yt�1 C "t

where �.:/ is a function to be specified.
The second extension of the general AR(1) model has to do with the indepen-

dence of the innovations to the process with respect to the level of the process
itself. In this case, a natural way to address the problem in full generality is to use a
copula function to link the level Yt�1 and the innovation "t . The history of this tool
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dates back to a theorem by Sklar from 1959 [13, 15, 19], which states that any d -
dimensional distribution can be decomposed into d univariate marginal distributions
and a copula function which describes the dependence among the d variables. For
our case, that is limited to Markovian processes, we stick to the bivariate case, and
set d D 2.

It is easy to see that this simple idea of applying a general and, by today, standard
tool to represent the dependence structure of two variables, such as copulas, in this
case gives rise to a methodological innovation. In fact, remember that one of the
most appreciated advantages of copula functions is their full flexibility, and the
possibility to model whatever dependence structure of variables arbitrarily chosen.
More formally, if we have any two variablesX andZ with distributions FX and FZ
by Sklar’s theorem, we may write

H.x; z/ D C.FX.x/; FY .z//;

where H is the joint distribution of .X;Z/ and C is the copula of .X;Z/. We are
completely free to choose whatever distribution for X , and whatever one for Y ,
and we are free to accommodate whatever dependence structure between the two
variables. In our case, some of this flexibility is lost. As a matter of fact, we are still
free to select the dependence structure between Yt�1 and "t in full generality. We are
also free to model the marginal distribution of "t as we like. But we cannot, and this
is the distinguishing feature of this application, freely choose any distribution for
Yt�1. The reason is twofold. First, Yt�1 is a function of past innovations. Second, the
way in which innovations affect the level is given by a linear relationship. Then, Yt�1
is the convolution of past innovations. This directly leads to a class of dependence
functions that we call convolution copulas.

1.3 Convolution-Based Copulas

Our purpose here is to address the distribution of Yt . Technically, this is a convolu-
tion of a sequence of innovations. The problem is that the concept of convolution
is limited to independent variables. In order to allow for dependent innovations,
the convolution concept must be extended to allow for dependent marginals. This
extension, called C-convolution, was introduced in a paper by Cherubini, Mulinacci,
and Romagnoli in 2011 [7] and developed in the quoted book [6]. We report here
the main result for reference.

Proposition 1.1. LetX e Y be two real-valued random variables on the same prob-
ability space .˝;=;P/ with corresponding copula CX;Y and continuous marginals
FX and FY . With D1CX;Y .u; v/ we denote @CX;Y .u;v/

@u . Then

FXCY .z/ D
Z 1

0

D1CX;Y
�
w; FY .z � F�1

X .w//
�

dw (1.1)
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and

CX;XCY .u; v/ D
Z u

0

D1CX;Y
�
w; FY .F

�1
XCY .v/ � F�1

X .w//
�

dw: (1.2)

Notice that the convolution concept, extended to allow for dependence between
the variables, jointly determines the distribution of the sum of the variables and the
copula function linking one of the two variables and the sum of the two variables.

Our proposal here is to apply this framework to study the case of a
nonlinear autoregressive process. More explicitly, we assume an AR(1) process
in which the autoregressive coefficient � is a function of Yt�1. The model is
Yt D �.Yt�1/Yt�1 C "t , for t D 1; 2 : : :., where we may choose �.�/ as a flexible
functional form, such as the following bounded and continuous function

�.y/ D 1

1C �e��y :

This function is characterized by two parameters � and � which will be estimated.
We assume the disturbance ."t /t to be a sequence of identically distributed random
variables with zero means and finite second moments. Moreover, we assume that
the dependence structure between Yt�1 and "t is modeled by a time-invariant copula
function C .

We now show how to derive both the distribution of Yt , that we denoteFt , and the
temporal dependence structure, represented by the joint distribution of .Yt�1; Yt /.
We can write

FYt�1;Yt .x; y/ D P.Yt�1 � x; Yt � y/ D
D P.Yt�1 � x; �.Yt�1/Yt�1 C "t � y/ D

D
Z x

�1
P.Yt�1 � x; �.Yt�1/Yt�1 C "t � yjYt�1 D s/dFt�1.s/ D

D
Z x

�1
P.s � x; "t � y � �.s/sjYt�1 D s/dFt�1.s/ D

Z x

�1
D1C .Ft�1.s/; F"t .y � �.s/s// dFt�1.s/;

whereD1C denotes the derivative w.r.t. the first argument of the copula C . With the
change of variable w D Ft�1.s/ we get

FYt�1;Yt .x; y/ D
Z Ft�1.x/

0

D1C
�
w; F"t .y � �.F�1

t�1.w//F �1
t�1.w//

�
dw:
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The distribution of Yt is then

Ft .y/ D lim
x!C1FYt�1;Yt .x; y/ D

Z 1

0

D1C
�
w; F"t .y � �.F�1

t�1.w//F�1
t�1.w//

�
dw;

(1.3)

whereas its density is

ft .y/ D
Z 1

0

c
�
w; F"t .y � �.F�1

t�1.w//F �1
t�1.w//

�
f".y � �.F�1

t�1.w//F �1
t�1.w//dw;

where c.�; �/ is the copula density of C and f"t is the density function of "t . By
Sklar’s theorem we can recover the copula function between Yt�1 and Yt which is

CYt�1;Yt .u; v/ D FYt�1;Yt .F
�1
t�1.u/; F�1

t .v// D

D
Z u

0

D1C
�
w; F"t .F

�1
t .v/� �.F�1

t�1.w//F�1
t�1.w//

�
dw:

The copula density between Yt�1 and Yt is

cYt�1;Yt .u; v/ D @2

@u@v
CYt�1;Yt .u; v/ D

D c.u; F"t .F
�1
t .v/ � �.F�1

t�1.u//F�1
t�1.u///

f"t .F
�1
t .v/ � �.F�1

t�1.u//F�1
t�1.u//

ft .F
�1
t .v//

;

(1.4)

where c denotes the copula density of C .

1.4 Efficient Market Dynamics

A possible specialization of the dynamics described above is an extension of the
standard statistical assumptions that describe the dynamics of speculative efficient
markets. The requirements that are typically imposed in the standard literature are
�.y/ D 1 and C.u; v/ D uv. This defines the so-called random walk model. In
plain words, innovations are assumed to be independent of the level of the process,
and increments are not a function of the level itself.

It is important to notice that the model allows extensions of the efficient market
paradigm beyond the assumptions above. In particular, we could consider keeping
the assumption �.y/ D 1 and dropping independence between the innovation and
the price. This was done in [7], and it is important to notice that this result paves the
way to more robust tests of the efficient market hypothesis, extending beyond the
random walk assumption. We report here the details of the result.
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We first define the restrictions that must be included in a process with dependent
increments to satisfy the martingale condition:

Theorem 1.1. Let X D .Xt /t�0 be a Markov process and set Y D Xt �Xs . X is a
martingale if and only if for all t; s; s < t:

1. FY has finite mean;
2.
R 1
0 F

�1
Y .v/d.D1CXs;Y .u; v// D 0; 8u 2 Œ0; 1� a:e:.

If we restrict the selection of distributions of increments to the set of symmetric
distributions, we can formally work out the restriction that has to be imposed on the
dependence of increments.

Proposition 1.2. The martingale condition is satisfied for every symmetric distri-
bution of increments FY if and only if the copula between the increments and the
levels has the symmetry property

QC.u; v/ � u � C.u; 1 � v/ D C.u; v/ (1.5)

Proof. For simplicity we set CXs;Y D C and FY D F , being F a symmetric
distribution,

Z 1

0
F�1.v/d.D1C.u; v// D

Z 1
2

0
F�1.v/d.D1C.u; v//C

Z 1

1
2

F�1.v/d.D1C.u; v//

D
Z 1

2

0
F�1.v/d.D1C.u; v//C

Z 0

1
2

F�1.1 � �/d.D1C.u; 1 � �//

D
Z 1

2

0
F�1.v/d.D1C.u; v//C

Z 1
2

0
F�1.�/d.D1C.u; 1 � �//

D
Z 1

2

0
F�1.v/d.D1C.u; v//C d.D1C.u; 1 � v//

D
Z 1

2

0
F�1.v/d.D1C.u; v//CD1C.u; 1 � v//

D
Z 1

2

0
F�1.v/d.D1.C.u; v/C C.u; 1 � v// D 0; 8u 2 .0; 1/:

Last condition is satisfied for every symmetric distribution F if and only if (notice
that, in last integral, F �1.v/ < 0 in a given not empty interval)

d.D1.C.u; v/C C.u; 1� v/// D 0 8u; v 2 .0; 1/:
It maybe easily verified that this condition is satisfied if and only if

C.u; v/C C.u; 1� v/ D u

which is the symmetry condition required for the copula ut
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Notice that there are almost infinite possibilities to build copulas with the
symmetry described above. A simple technique would be to select any copula
A.u; v/ and to define its symmetric counterpart QA.u; v/ � u � A.u; 1 � v/. Then,
construct a mixture copula C.u:v/ � 0:5A C 0:5 QA. It is an easy exercise to prove
that C.u; v/ is endowed with the property required in the proposition above (see
[14], for application of this technique to general concepts of symmetry). So, the
choice is extremely vast but not exhaustive, however, as the counterexample below
demonstrates.

Remark 1.1. Assume you want to construct a martingale process with symmetric
and dependent increments, with dependence modeled by an FGM copula. It is easy
to show that this is unfeasible. SelectA�.u; v/ D uvC�uv.1�u/.1�v/ as required.
Now compute

QA�.u; v/ D u�u.1�v/��uv.1�u/.1�v/ D uv��uv.1�u/.1�v/ D A�� .u; v/:

But now, by the property of the FGM copula discussed above (or by direct
computation) we have

0:5A�.u; v/C 0:5 QA�.u; v/ D 0:5A�.u; v/C 0:5A�� .u; v/ D A0.u; v/ D uv

and the increments mischievously turn out independent.

1.5 Simulating Convolution Based Processes

We now show how to simulate our nonlinear AR(1) process in full generality, that is
taking into account the dependence structure between the innovation and the level
of the process. This is simply obtained by applying the technique of conditional
sampling as described in the quasi-algorithm reported below. The input is given
by a sequence of distributions of innovations that for the sake of simplicity we
assume stationary, F"t D F", and a temporal dependence structure that we consider
stationary as well, CYt�1;"t .u; v/ D C.u; v/. We also assume Y0 D 0. The procedure
to generate a trajectory of n points from the convolution-based process is the
following:

1. t D 1.
2. Generate u from a uniform distribution.
3. Compute Yt D F�1

" .u/.
4. Use conditional sampling to generate v fromD1C.u; v/.
5. Compute "tC1 D F �1

" .v/.
6. Compute YtC1 D Yt C "tC1.
7. Compute the distribution of YtC1, FtC1.y/, by Eq. (1.1).
8. Compute u D FtC1.YtC1/.
9. t D t C 1.

10. If t < nC 1 go to step 4, else End.
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Notice that the algorithm can be very simply extended to the simulation of
martingale process. The key idea is that if we assume a symmetric distribution for
innovation, the martingale requirement implies a corresponding symmetry of the
copula function linking innovations and levels, along the lines described in Sect. 1.4.
Drawing from a copula with such features only requires two lines of code more with
respect to the pseudo-algorithm above. In particular, when conditionally on the level
we draw a new innovation, it is sufficient to generate a binary random variable for
the sign of the innovation itself. For clarity, here below we report the algorithm
modified accordingly:

1. t D 1.
2. Generate u from a uniform distribution.
3. Compute Yt D F�1

" .u/.
4. Generate s from a uniform distribution.
5. Use conditional sampling to generate v fromD1C.u; v/.
6. Compute "tC1 D F �1

" .v/.
7. If s � 0:5, "tC1 D �"tC1.
8. Compute YtC1 D Yt C "tC1.
9. Compute the distribution of YtC1, FtC1.y/, by Eq. (1.1).

10. Compute u D FtC1.YtC1/.
11. t D t C 1.
12. If t < nC 1 go to step 4, else End.

The new lines of code required are those in steps 6 and 7.

1.6 Maximum Likelihood Estimation

We now show how to recover the likelihood function for the estimation of our C -
convolution-based Markov process. Since Yt is Markov, the likelihood function
needs the transition probability of Yt at the points t and t � 1. For a detailed
discussion of these results, the reader can refer to Basawa and Rao [2] for the general
case Markov processes and Hamilton [12] for the particular case of autoregressive
processes. Denote such a probability by Pt .yt jyt�1/ D P.Yt � yt jYt�1 D yt�1/. We
assume that the disturbances are Gaussian with zero mean and standard deviation
�". So, in our model we have four parameters: �, �, �", and the copula parameter
� . Let 	 D .�; �; �"; �/. We write Pt .yt jyt�1I	/ to emphasize the dependence
on parameters. The transition density ft .yt jyt�1I	/ exists for each 	 and for
t D 1; : : : ; n. Denote by .y1; : : : ; yn/ a time series from Yt . Then, it is easy to
construct the log-likelihood function of .y1; : : : yn/; it is given by

`.y1; : : : ; ynI	/ D
nX
tD2

logft .yt jyt�1I	/;

The transition density ft .yt jyt�1I	/ is the joint density between Yt�1 and Yt
divided by the marginal density of Yt�1
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ft .yt jyt�1I	/ D fYt�1;Yt .yt�1; yt I	/
ft�1.yt�1I	/ ; t D 2; : : : ; n:

Moreover, the joint density fYt�1;Yt .yt�1; yt I	/ is

fYt�1;Yt .yt�1; yt I	/ D cYt�1;Yt .Ft�1.yt�1/; Ft .yt /I	/ft�1.yt�1I	/ft .yt I	/;

and then

ft .yt jyt�1I	/ D cYt�1;Yt .Ft�1.yt�1/; Ft .yt /I	/ft .yt I	/; t D 2; : : : ; n;

and from Eq. (1.4)

ft .yt jyt�1I	/ D c.Ft�1.yt�1/; Ft .yt /I	/f"t .yt � �.yt�1/yt�1I	/:

Finally, the log-likelihood of the process is the following

`.y1; : : : ; ynI	/

D
nX
tD2

log .c.Ft�1.yt�1/; Ft .yt /I	//C
nX
tD2

log .f"t .yt � �.yt�1/yt�1I	// :

The maximum likelihood estimate is then

O	 D arg max
	
`.y1; : : : ; ynI	/:

1.7 Application

In this section we provide an empirical application of our convolution-based model
to three stock indexes. We consider three daily time series of the three major
European financial market indexes, i.e., Cac40 (France), Dax30 (Germany), and
FtseMib (Italy). The data set employed runs from 1 January 2007 to 31 December
2011. The total number of observations is n D 1;300. Figure 1.1 displays the
logarithm of the prices.

1.7.1 Estimation

For the estimation, we implement the following strategy. First, we fit a copula
function between the sequence of increments and the corresponding level before
the increment itself. Second, we perform maximum likelihood estimation of the
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Fig. 1.1 Log-prices of indexes. (a) CaC40, (b) Dax30, (c) FtseMib

0
0

0,1

0,2

0,3

0,4

0,5

K
C

(t
)

0,6

0,7

0,8

0,9

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

FTSE
Dax
CaC 40
KC(t) = t - t log(t)
KC(t) = t 

t 

0,9 1

Fig. 1.2 Kendall function analysis of increments: CaC40, Dax30, FtseMib

C-convolution model. As for the first step, in this application we apply the standard
technique typically used for copula fitting, that is the Kendall function approach.
Figure 1.2 reports the empirical Kendall functions estimated for the three indexes.
In order to give a visual representation of the actual degree of dependence between
increments of the indexes and their levels, we also report what the Kendall function
should be in case of perfect dependence and independence. While in case of
perfect dependence the Kendall function should coincide with the straight line,
we see that the empirical Kendall functions are very close to the curved schedule
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Table 1.1 Maximum likelihood estimates of model parameters and relative standard errors

CaC40 DaX30 FtseMib
O� D 0:5942.0:9883/ O� D 0:7947.0:9940/ O� D 0:2318.5:1751/

O� D 4:2938�.0:2725/ O� D 2:7573�.0:4173/ O� D 1:7884.1:8785/

O�" D 0:0177�.3:46 � 10�4/ O�" D 0:0168�.3:29 � 10�4/ O�" D 0:0185�.3:63 � 10�4/

The asterisk denotes that the parameter is significantly different from zero at the 5 % level

−10 −5 0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

λ=−1
λ=0.5
λ=1

Fig. 1.3 The effect of the parameter � on the Kernel density estimate relative to simulated values.
Here � D 1 and t D 25 (1 month)

representing independence. Of course, this does not come as a surprise and testifies
that the association that is typically made between efficient market and independent
increments is borne out by the data, at least in this application. What remains to be
estimated is the shape of the function �.:/. In other words, we find that the copulaC
is the product copula˘.u; v/ D uv, so that three parameters are left to be estimated,
namely �, �, and �".

Table 1.1 reports the maximum likelihood estimates of the three parameters of
the model. We see that the � parameters are not significant in any stock index.

1.7.2 Simulation

After estimating the process, the next step would be simulation and construction
of the density of the process. Unfortunately, since in our case the estimates did not
provide an interesting model to simulate, rather than a plain random walk, here we
take the opportunity to perform the simulation on a sample of parameters that allow
us to understand their impact on the density. We then ask the reader to pretend that
these parameters were the outcome of an estimation procedure.
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Fig. 1.4 The effect of the parameter � on the Kernel density estimate relative to simulated values.
Here � D 1 and t D 25 (1 month)
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Fig. 1.5 The effect of the parameter � on the Kernel density estimate relative to simulated values.
Here � D 1 and t D 75 (3 months)

The simulation design is the following. We assume that the innovations ."t /t are
Gaussian with zero mean and time-independent variance �" D 1. Moreover, the
starting point is at random from a standard Normal distribution, i.e. Y1 � N.0; 1/.
We assume that Yt�1 and "t are independent. We study 12 cases corresponding to the
combinations of three values of � (�1, 0.5, and 1) and four values of � (�1, �0:5,
0.5, and 1). We generate 5,000 trajectories of 250 points for each case described
above. The comparative study aims to capture the effect on the distribution of Yt of
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Table 1.2 Descriptive statistics relative to Monte Carlo simulations of our C -convolution-based
model in the independent case where t D 25 (1 month)

� D �1 � D �0:5 � D 0:5 � D 1

� D �1 m D �5:7230 m D �9:6669 m D 9:6872 m D 5:7518

s D 3:0074 s D 2:9626 s D 2:9725 s D 3:0782


 D 3:5613 
 D 3:3526 
 D 3:6441 
 D 3:4260

� D �0:7322 � D �0:5012 � D 0:5200 � D 0:6933

� D 0:5 m D �2:1679 m D �0:9118 m D 0:9390 m D 2:2648

s D 2:9415 s D 2:0527 s D 2:0446 s D 2:9183


 D 5:1456 
 D 8:3283 
 D 7:3815 
 D 4:4763

� D �1:2820 � D �1:6606 � D 1:5301 � D 1:1458

� D 1 m D �1:7532 m D �0:4469 m D 0:4932 m D 1:6792

s D 2:6831 s D 1:4292 s D 1:4184 s D 2:7001


 D 6:0142 
 D 6:5753 
 D 6:3225 
 D 5:9665

� D �1:5003 � D �0:9971 � D 0:9897 � D 1:5469

Table 1.3 Descriptive statistics relative to Monte Carlo simulations of our C -convolution-based
model in the independent case where t D 75 (3 months)

� D �1 � D �0:5 � D 0:5 � D 1

� D �1 m D �9:0376 m D �13:7802 m D 13:7844 m D 9:0399

s D 5:1798 s D 5:1562 s D 5:1717 s D 5:2144


 D 3:8614 
 D 3:7549 
 D 3:9126 
 D 3:6363

� D �0:8854 � D �0:7901 � D 0:7941 � D 0:8532

� D 0:5 m D �4:2716 m D �1:2801 m D 1:3897 m D 4:3986

s D 4:9981 s D 2:8565 s D 2:9864 s D 5:0711


 D 4:9188 
 D 14:1282 
 D 12:4878 
 D 4:4420

� D �1:3682 � D �2:7083 � D 2:5545 � D 1:2755

� D 1 m D �3:3821 m D �0:4672 m D 0:5256 m D 3:3468

s D 4:7324 s D 1:4817 s D 1:5886 s D 4:5971


 D 6:1422 
 D 11:4774 
 D 24:2268 
 D 5:2446

� D �1:7022 � D �1:4904 � D 2:5171 � D 1:5381

the two parameters. Tables 1.2 and 1.3 summarize the results of our Monte Carlo
simulation in terms of descriptive statistics: the mean (m), the standard deviation (s),
the kurtosis (
), and the skewness (� ). The parameter � clearly affects the kurtosis
of the distribution of Yt : it raises with � and in particular it is higher as � is lower.
Moreover, the sign of � affects the sign of the skewness, i.e., the distribution has a
negative skewness as long as the parameter� is negative and vice versa. Figures 1.3–
1.6 display the estimated density functions for the simulated values when one of
the two parameters is fixed and the other one varies to underline their role in the
properties of the distribution of Yt .
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Fig. 1.6 The effect of the parameter � on the Kernel density estimate relative to simulated values.
Here � D 1 and t D 75 (3 months)

1.8 Conclusion

In this paper we propose a convolution-based approach to the estimation of nonlin-
ear autoregressive processes. The model allows for state-dependent autocorrelation,
that is different persistence of the shocks in different phases of the market and
dependent innovations, that is drawn from different distributions in different phases
of the market. The model is well suited to address problems of persistent and
unpredictable shocks, beyond the standard paradigm of linear models.

For what concerns the theory of copula functions, this provides an example
in which the approach surrenders some of its flexibility. The idea is that once
the distribution of innovations is specified, and the dependence structure between
innovations and levels of the process is chosen, the distribution of the process can
be automatically recovered.

References
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Chapter 2
Selection of Vine Copulas

Claudia Czado, Eike Christian Brechmann, and Lutz Gruber

Abstract Vine copula models have proven themselves as a very flexible class of
multivariate copula models with regard to symmetry and tail dependence for pairs
of variables. The full specification of a vine model requires the choice of a vine
tree structure, the copula families for each pair copula term and their corresponding
parameters. In this survey we discuss the different approaches, both frequentist and
Bayesian, for these model choices so far and point to open problems.

2.1 Introduction

The analysis of high-dimensional data sets requires flexible multivariate stochastic
models that can capture the inherent dependency patterns. The copula approach,
which separates the modeling of the marginal distributions from modeling the
dependence characteristics, is a natural one to follow in this context. This devel-
opment has spawned a tremendous increase in copula-based applications in the last
10 years, especially in the areas of finance, economics, and hydrology.

Considerable efforts have been undertaken to increase the flexibility of multi-
variate copula models beyond the scope of elliptical and Archimedean copulas.
Vine copulas are among the best-received of such efforts. Vine copulas use
(conditional) bivariate copulas as the so-called pair copula building blocks to
describe a multivariate distribution (see [37]). A set of linked trees—the “vine”—
describes a vine copula’s factorization of the multivariate copula density function
into the density functions of its pair copulas (see [8,9]). The article by [1] illustrates
a first application of the vine copula concept using non-Gaussian pair copulas to
financial data. The first comprehensive account of vine copulas is found in [45], a
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recent survey in [20], and the current developments of this active research area in
[46].

Elliptical copulas as well as Archimedean copulas have been shown to be
inadequate models to describe the dependence characteristics of real data appli-
cations (see, for example, [1, 23, 24]). As a pair copula construction, vine copulas
allow different structural behaviors of pairs of variables to be modeled suitably, in
particular so with regard to their symmetry, or lack thereof, strength of dependence,
and tail dependencies. Such flexibility requires well-designed model selection
procedures to realize the full potential of vine copulas as dependence models.
Successful applications of vines can be found, amongst others, in [10, 12, 17, 22,
24, 32, 48, 51, 54, 61].

A parametric vine copula consists of three components: a set of linked trees iden-
tifying the pairs of variables and their conditioning variables, the copula families
for each pair copula term given by the tree structure, and the corresponding copula
parameters. The three-layered definition leads to three fundamental estimation and
selection tasks: (1) Estimation of copula parameters for a chosen vine tree structure
and pair copula families, (2) Selection of the parametric copula family for each pair
copula term and estimation of the corresponding parameters for a chosen vine tree
structure, and (3) Selection and estimation of all three model components. In this
survey we address these tasks and give an overview of the statistical approaches
taken so far. These range from frequentist to Bayesian methods.

The remainder of this paper is structured as follows. In Sect. 2.2 we provide
the necessary methodical background on regular vines and regular vine copulas.
We then discuss estimation of parameters of regular vine copulas in Sect. 2.3 and
the selection of appropriate pair copulas in Sect. 2.4. Section 2.5 treats the joint
selection of the regular vine tree structure, the copula families, and their parameters.
Section 2.6 concludes with a discussion of available software and open problems.

2.2 Regular Vine Copulas

Copulas describe a statistical model’s dependence behavior separately from its
marginal distributions [60]. As such, a copula is a multivariate distribution function
with all marginal distributions being uniform: i.e. the copula associated with an
n-variate cumulative distribution function F1Wn with univariate marginal distribution
functions F1; : : : ; Fn is a distribution function C W Œ0; 1�n ! Œ0; 1� satisfying

F1Wn .x/ D C .F1 .x1/ ; : : : ; Fn .xn// ; x D .x1; : : : ; xn/
0 2 R

n:

If C is absolutely continuous, its density is denoted by c.
The factorization of multivariate copula densities into (conditional) bivariate

copula densities is due to [8, 37], which were developed independently. The details
of these factorizations are represented by the graph theoretical construction called
regular vine to organize different decompositions. Graphs are defined in terms of a
set of nodesN and a set of edges E connecting these nodes, i.e.E � N 	N . Vines
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are based on trees which are particular graphs where there is a unique sequence of
edges between each two nodes.

Definition 2.1 (Regular Vine Tree Sequence). A set of linked trees V D
.T1; T2; : : : ; Tn�1/ is a regular vine (R-vine) on n elements if

1. T1 is a tree with nodes N1 D f1; : : : ; ng and a set of edges denoted by E1.
2. For i D 2; : : : ; n � 1, Ti is a tree with nodesNi D Ei�1 and edge set Ei .
3. For i D 2; : : : ; n � 1, if a D fa1; a2g and b D fb1; b2g are two nodes in Ni

connected by an edge, then exactly one of the ai equals one of the bi (proximity
condition).

In other words, the proximity condition requires that the edges corresponding to
two connected nodes in tree Ti share a common node in tree Ti�1. This ensures that
the decomposition into bivariate copulas which is given below is well defined.

Two sub-classes of regular vines have been studied extensively in the literature:
canonical vines (C-vines) and drawable vines (D-vines) (see [1, 45]). C-vines are
characterized by a root node in each tree Ti ; i 2 f1; : : : ; n � 1g; which has degree
n � i ; that means that the root node is connected to all other nodes of the tree.
D-vines, on the other hand, are uniquely characterized through their first tree which
is, in graph theoretical terms, a path; this means that each node has degree of at most
2. Therefore the order of variables in the first tree defines the complete D-vine tree
sequence.

Some more definitions are needed to introduce regular vine copulas: the complete
union Ae of an edge e D fa; bg 2 Ei in tree Ti of a regular vine V is defined by

Ae D fv 2 N1 W 9em 2 Em; m D 1; : : : ; i � 1; such that v 2 e1 2 � � � 2 ei�1 2 eg :
(2.1)

The conditioning set associated with e D fa; bg is defined as De WD Aa \ Ab
and the conditioned sets associated with e D fa; bg are defined as Ce;a WD
Aa n De and Ce;b WD Ab n De . Bedford and Cooke [8] showed that the con-
ditioned sets are singletons, and we will therefore refer to edges by their labels
fCe;a;Ce;b jDeg OD fi.e/; j.e/jD.e/g. An exemplary regular vine on five elements is
shown in Fig. 2.1.

Given these sets, we can specify a regular vine copula by associating a (condi-
tional) bivariate copula with each edge of the regular vine, a so-called pair copula.

Definition 2.2 (Regular Vine Copula). A regular vine copula C D .V ;B .V / ,
� .B .V /// in n dimensions is a multivariate distribution function such that for a
random vector U D .U1; : : : ; Un/

0 � C with uniform margins

1. V is a regular vine on n elements,
2. B.V / D ˚

Ci.e/;j.e/jD.e/je 2 Em; m D 1; : : : n � 1� is a set of n.n�1/=2 copula
families identifying the conditional distributions of Ui.e/; Uj.e/jUD.e/,

3. �.B.V // D ˚
� i.e/;j.e/jD.e/je 2 Em; m D 1; : : : n � 1

�
is the set of parameter

vectors corresponding to the copulas in B .V /.
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Fig. 2.1 Regular vine on five elements

Therefore the full specification of a regular vine copula consists of three layers:
the regular vine tree structure V , the pair copula families B D B.V /, and the pair
copula parameters � D �.B.V //. Regular vine copulas which differ in the tree
structure or in at least one pair copula family represent in general different statistical
models. Notable exceptions from this are the multivariate Gaussian, Student’s t or
Clayton copulas, which can be decomposed into bivariate Gaussian, Student’s t or
Clayton copulas, respectively, in multiple ways (see [64]). The probability density
function f1Wn at point x D .x1; : : : ; xn/

0 2 R
n of an n-dimensional regular vine-

dependent distribution F1Wn is easily calculated as

f1Wn .xjV ;B;�/ D
0
@ n�1Y
mD1

Y
eDfa;bg2Em

ci.e/;j.e/jD.e/
�
Fi.e/jD.e/; Fj.e/jD.e/j� i.e/;j.e/jD.e/

�
1
A

	 f1 .x1/ � � �fn .xn/ ; (2.2)

where Fi.e/jD.e/ WD Fi.e/jD.e/
�
xi.e/jxD.e/

�
and Fj.e/jD.e/ WD Fj.e/jD.e/

�
xj.e/jxD.e/

�
(see [8]). These conditional distribution functions can be determined recursively
tree-by-tree using the following relationship

F i.e/jD.e/
�
xi.e/jxD.e/

� D FCe;a jDe
�
xCe;a jxDe

�

D
@CCa;a1 ;Ca;a2 jDa

�
FCa;a1 jDa

�
xCa;a1

jxDa
�
; FCa;a2 jDa

�
xCa;a2

jxDa
��

@FCa;a2 jDa
�
xCa;a2

jxDa
� ;

(2.3)

where e D fa; bg with a D fa1; a2g as before (see [23] for details).
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To facilitate inference, it is assumed that the pair copulas Ci.e/;j.e/jD.e/ only
depend on the variables with indices in D.e/ through the arguments Fi.e/jD.e/ and
Fj.e/jD.e/. This so-called simplifying assumption has been investigated by [35, 64].
In particular, [35] show examples where the assumption is not severe and [64] show
that the multivariate Clayton copula is the only Archimedean copula which can be
represented as a simplified vine. A critical look on the subject can be found in [2]
who take a first step in building vine copulas of non-simplified nature.

Following expression (2.2), the likelihood L of a regular vine copula C D
.V ;B;�/ given the observed data x D .x1; : : : ; xN /

0 2 R
N�n can be calculated as

L.V ;B;� jx/ D
NY
kD1

f1Wn .xkjV ;B;�/ : (2.4)

The corresponding log-likelihood is denoted by `.
A regular vine copula is said to be truncated at level M if all pair copulas

conditioning onM or more variables are set to bivariate independence copulas [14].
As a result, the iteration indexm of the first product in (2.2) runs only up tom D M

and the distribution is fully specified by
�
V D .T1; : : : ; TM /;B.V /;�.B.V //

�
.

In the following, we discuss in reverse order how the components of a regular
vine copula can be selected and estimated. That is, we begin with estimation of the
parameters � , then treat the selection of appropriate copula families B, and finally
discuss the selection of vine trees V .

2.3 Parameter Estimation for Given Vine Tree Structure and
Pair Copula Families

Given a vine tree structure V and pair copula families B D B.V /, the challenge
is to estimate the parameters � D �.B.V // of a regular vine copula for observed
data x 2 R

N�n. The crucial point here is to evaluate the conditional distribution
functions Fi.e/jD.e/, which depend on the copulas of previous trees [see (2.3)].

2.3.1 Maximum Likelihood Estimation

Classically, parameters of a statistical model are often estimated using maximum
likelihood techniques. Here, this means that regular vine copula parameters � and
parameters of the marginal distributions are estimated by maximizing the likelihood
(2.4) in terms of these parameters. For copulas, in particular if n > 2, the number
of parameters to be estimated may, however, be too large, so that one typically
either uses empirical distribution functions for the margins as proposed by [25, 26]
or estimates parameters of the marginal distributions in a first step and then fixes
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these marginal parameters to their estimated values in the estimation of the copula
parameters. The latter method is called inference functions for margins (IFM) by
[38, 39].

But even when estimation of marginal and dependence parameters is separated,
joint maximum likelihood estimation of regular vine copula parameters can be
computationally intensive, since the vine decomposition involves n.n � 1/=2

bivariate copulas with corresponding parameters. Aas et al. [1] therefore proposed
a sequential method: starting with the copulas of the first tree, this method proceeds
tree-wise and estimates the parameters of the copulas in a tree by fixing the
parameters of copulas in all previous trees.

Example 2.1 (Sequential Estimation). Let the 5-dimensional regular vine V of
Fig. 2.1 be given with copulas B.V /. In the first step, we estimate the parameters
of the copulas C1;2, C2;3, C3;4, and C3;5 using maximum likelihood based on
the transformed observations Fj .xkj / for xkj ; k D 1; : : : ; N; j D 1; : : : ; 5.
In the second tree, we then have to estimate, for instance, the parameter(s) of
the copula C1;3j2. For this we form pseudo-observations F1j2.xk1jxk2; O�1;2/ and
F3j2.xk3jxk2; O�2;3/; k D 1; : : : ; N; according to expression (2.3) and using the
estimated parameters of copulas C1;2 and C2;3, respectively. Based on these pseudo-
observations estimation of �1;3j2 is again straightforward. All other copulas are
estimated analogously.

Note that this strategy only involves the estimation of bivariate copulas and there-
fore is computationally much simpler than joint maximum likelihood estimation of
all parameters at once. For more details, see [1] as well as [33] who investigates the
asymptotic properties of this sequential approach. A comparison study of estimators
for regular vine copulas can be found in [34].

If joint maximum likelihood estimates are desired, the sequential method can be
used to obtain starting values for the numerical optimization. A detailed discussion
how to compute score functions and the observed information matrix for regular
vine copulas is provided by [65].

2.3.2 Bayesian Posterior Estimation

Bayesian statistics considers parameters � as random variables. As such, inference
focuses on estimating the entire distribution of the parameters instead of only finding
a point estimate. In particular, the so-called posterior distribution p.�/ WD p.� jx/,
the distribution of the parameters � given the observed data x, is the main object
of interest. The unnormalized posterior density factorizes into the product of the
likelihood function L.�jx/ (2.4) and the prior density function �.�/:

p.�/ WD p.�jx/ D L.� jx/ � �.�/
f .x/

/ L.�jx/ � �.�/:
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The prior distribution incorporates a priori beliefs about the distribution of the
parameters. It must not depend on, or be conditional upon, the observed data.

Markov chain Monte Carlo (MCMC) procedures clear the remaining obstacle of
sampling from a distribution which is known only up to a constant. The trick is to
simulate the run of a Markov chain whose equilibrium distribution is the targeted
posterior distribution p.�/ of the parameters � . Upon convergence of the Markov
chain, its states represent draws from the desired distribution.

The Metropolis–Hastings algorithm [31, 49] implements the simulation of such
a Markov chain through an acceptance/rejection mechanism for the updates of the
chain: in the first step, an update of the chain from its current state � to �� �
q.�j�/ is proposed. The proposal distribution q can be chosen almost arbitrarily.
In the second step, the proposal is accepted with probability ˛ WD ˛.� ;��/. The
acceptance probability ˛ is chosen such that convergence of the Markov chain to the
targeted distribution is guaranteed by Markov chain theory [50]. The Metropolis–
Hastings acceptance probability for convergence to the target distribution p.�/ is

˛.� ;��/ D p.��/
p.�/

� q.�j��/
q.��j�/ :

The target distribution goes into the Metropolis–Hastings algorithm only at the
evaluation of the acceptance probability ˛. It can be easily seen that it is sufficient
to know the density function of the target distribution only up to a constant for this
algorithm to work, given that ˛ only depends on the ratio of two densities.

The following Metropolis–Hastings scheme to sample from the posterior distri-
bution of the parameters � of a regular vine copula is proposed in [28, 51, 62]. The
authors suggest normally distributed random walk proposals be used in the update
step.

Algorithm 2.1 (Metropolis–Hastings Sampler for Parameter Estimation).

1: Choose arbitrary starting values �0 D .�01 ; : : : ; �
0
D/

0; where D WD n.n� 1/=2.
2: for each iteration r D 1; : : : ; R do
3: Set �r D �r�1.
4: for i D 1; : : : ;D do
5: Draw �ri from a N.�r�1i ; �2i / distribution with probability density function

�.�r�1i ;�2i /
.�/.

6: Evaluate the Metropolis–Hastings acceptance probability of the proposal

˛ WD ˛.�r�1i ; �ri / D p.��/
p.�/

�
�.�ri ;�

2
i /
.�r�1i /

�.�r�1i ;�2i /
.�ri /

D L.��jx/
L.� jx/ � �.�

�/
�.�/

;

where �� D .�r1 ; : : : ; �
r
i ; �

r�1
iC1 ; : : : ; �r�1D /0

and � D .�r1 ; : : : ; �
r
i�1; �r�1i ; : : : ; �r�1D /0.

7: Accept the proposal �ri with probability ˛; if rejected, set �ri D �r�1i .
8: end for
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9: end for
10: return .�1; : : : ;�R/

2.4 Selection of the Pair Copula Families and their
Parameters for a Known Vine Tree Structure

An n-dimensional regular vine copula with tree structure V is based on a set B.V /
of n.n � 1/=2 bivariate copulas and their corresponding parameters. The copula
families can be chosen arbitrarily, e.g., from the popular classes of Archimedean,
elliptical or extreme-value copulas. Assuming that an appropriate vine structure
V is chosen, the question is how to select adequate (conditional) pair copulas
Ci.e/;j.e/jD.e/ and their parameters for given data x.

2.4.1 Sequential Selection

If a regular vine is truncated at level 1, the copulas in trees T2 to Tn�1 are set to
independence. The corresponding regular vine copula density reduces to the product
of the unconditional bivariate copula densitiesCi.e/;j.e/, which can be selected based
on data Fi.e/.xk;i.e// and Fj.e/.xk;j.e//; k D 1; : : : ; N . Typical criteria for copula
selection from a given set of families are information criteria such as the AIC as
proposed by [11, 47]. The latter compares AIC-based selection to three alternative
selection strategies: selection of family with highest p-value of a copula goodness
of fit test based on the Cramér–von Mises statistic, with smallest distance between
empirical and modeled dependence characteristics (Kendall’s 
 , tail dependence), or
with highest number of wins in pairwise comparisons of families using the test by
[66]. In a large-scale Monte Carlo study the AIC turned out to be the most reliable
selection criterion.

In a general regular vine, the selection of a pair copula Ci.e/;j.e/jD.e/, however,
depends on the choices for copulas in previous trees due to its arguments (2.3). Since
a joint selection seems infeasible because of the many possibilities, one typically
proceeds tree-by-tree as in the sequential estimation method. That is, instead of
estimating the parameters � i.e/;j.e/jD.e/ of Ci.e/;j.e/jD.e/, the copula is selected first
and then estimated, which usually coincides for most selection strategies. Given the
selected and estimated copulas of previous trees, one then selects the copulas of the
next tree.

Example 2.2 (Sequential Selection). Again consider the five-dimensional regular
vine V of Fig. 2.1 but now with unknown copulas B.V /. In the first tree, we
select (and then estimate) the copulas C1;2, C2;3, C3;4, and C3;5 using our method
of choice based on Fj .xkj /; k D 1; : : : ; N; j D 1; : : : ; 5. Given these copulas, we
then have to select conditional copulas in the second tree. In case of the copula
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C1;3j2, we therefore again form the pseudo-observations F1j2.xk1jxk2; O�1;2/ and
F3j2.xk3jxk2; O�2;3/; k D 1; : : : ; N; according to expression (2.3) and then select
(and estimate) C1;3j2 based on them. This can be iterated for all trees.

Clearly this sequential selection strategy accumulates uncertainty in the selection
and therefore the final model has to be carefully checked and compared to alternative
models. For the latter, the tests for non-nested model comparison by [18, 66] may
be used.

2.4.2 Reversible Jump MCMC-Based Bayesian Selection

Bayesian copula family and parameter selection aims at estimating the joint
posterior distribution of the pair copula families B D B.V / and parameters
� D �.B.V //. The posterior density function factorizes into the product of the
likelihood functionL (2.4) and the prior density function�: p.B;�/ / L.B;� jx/ �
�.B;�/.

As in Sect. 2.4.1, family selection is understood in the context of choosing from a
pre-specified set B of parametric pair copula families. Model sparsity can be induced
through the choice of prior distributions which favor regular vine copulas with fewer
parameters over those with more parameters.

Bayesian techniques to select the pair copula families of D-vine copulas are
covered in [51, 52, 61]. The reversible jump MCMC algorithm presented in this
section follows the latest developments of family selection methods for regular vine
copulas laid out in [28].

Reversible jump MCMC is an extension of ordinary MCMC to sample from
discrete-continuous posterior distributions. The sampling algorithm and the math-
ematics underpinning the convergence statements are an immediate generalization
of the Metropolis–Hastings algorithm [27]. A reversible jump MCMC algorithm
functions like an ordinary MCMC algorithm with one extra step built in: before,
or after, updating the parameters, a “jump” to another model is attempted. That is
called the “between-models move,” while the updating of the parameters only is
called the “within-model move” [16].

Algorithm 2.2 implements a reversible jump MCMC sampler which samples
from the joint posterior distribution of the pair copula families B and the parameters
� , given a regular vine tree structure V . In each iteration, it first updates all
parameters as in Algorithm 2.1. Then the pair copula families are updated along
with their parameters one-by-one. The pair copula family proposals are drawn from
a uniform distribution over B, while the parameter proposals are sampled from a
(multivariate) normal distribution centered at the maximum likelihood estimates of
the parameters.
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Algorithm 2.2 (Reversible Jump MCMC Sampler for Family Selection).

1: Choose arbitrary copula family and parameter starting values .B0;�0/ D
..B0

1 ;�
0
1/; : : : ; .B

0
D;�

0
D//, where D WD n.n � 1/=2.

2: for each iteration r D 1; : : : ; R do
3: Set .Br ;�r / D .Br�1;� r�1/.
4: Perform one update step of Algorithm 2.1 for the parameters � r ; denote the

updated parameter entries by �C.
5: for i D 1; : : : ;D do
6: Draw Br

i from a Unif .B/ distribution.

7: Draw �ri from a multivariate N. O�ri ; Ȯ r
i / distribution with probability

density function �
. O�ri ; Ȯ r

i /
.�/. Here O�ri denotes the MLE of the copula param-

eters of the pair copula Br
i and Ȯ r

i denotes the estimated approximative

covariance matrix of the parameter estimates O�ri .
8: Evaluate the generalized Metropolis–Hastings acceptance probability of

the proposal

˛ WD ˛..Br�1
i ;�C

i /; .B
r
i ;�

r
i //

D p.B�;��/
p.B;�/

�
�
. O�r�1i ; Ȯ r�1

i /
.�C

i /

�
. O�ri ; Ȯ r

i /
.�ri /

D �.B�;��/
�.B;�/

� L.B
�;��jx/

L.B;�jx/ �
�
. O�r�1i ; Ȯ r�1

i /
.�C

i /

�
. O�ri ; Ȯ r

i /
.�ri /

;

where B� D .Br
1 ; : : : ;B

r
i ;B

r�1
iC1; : : : ;Br�1

D /,
B D .Br

1 ; : : : ;B
r
i�1;Br�1

i ; : : : ;Br�1
D /, ��D.�r1; : : : ;�ri ;�C

iC1; : : : ;�
C
D/,

and � D .�r1; : : : ;�
r
i�1;�

C
i ; : : : ;�

C
D/.

9: Accept the proposal .Br
i ; �

r
i / with probability ˛; if rejected, set

.Br
i ; �

r
i / D .Br�1

i ; �C
i /.

10: end for
11: end for
12: return ..B1;�1/; : : : ; .BR;�R//

2.5 Selection of Vine Tree Structure, Pair Copula Families,
and Parameters

As pair copula families B D B.V / and parameters � D �.B.V // both depend
on the vine tree structure V , the identification of adequate trees is crucial to the
model selection of vine copulas. As it was already the case for pair copula selection
in Sect. 2.4.1, it is again not feasible to simply try and fit all possible regular vine
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copulas C D .V ;B;�/ and then choose the “best” one. In particular, the number
of possible regular vines on n variables is nŠ

2
	 2.n�2

2 / as shown by [53]. This means
that even if pair copulas and parameters were known, the number of different models
would still be enormous.

This remains true even when the selection is restricted to the sub-classes of
C- and D-vines, since there are still nŠ=2 different C- and D-vines in n dimensions,
respectively (see [1]). It should, however, be noted that C- and D-vine copulas are
most appropriate if their structure is explicitly motivated by the data. In particular,
C-vine copulas may be used if there is a set of pivotal variables such as stock indices
(see [12, 32]) and D-vine copulas are particularly attractive to model variables with
temporal order (see [13, 61]). Nevertheless we describe how C- and D-vines can be
selected for arbitrary data sets.

2.5.1 Top-Down and Bottom-Up Selection

Due to the proximity condition (see Definition 2.2) regular vine trees are closely
linked with each other and have to be constructed carefully. Two construction
strategies have been proposed in the literature: a top-down approach by [23] and
a bottom-up method by [43]. Both strategies proceed sequentially tree-by-tree and
respect the proximity condition in each step. We first describe the top-down, then
the bottom-up method.

2.5.1.1 Top-Down Selection

Selecting regular vine trees top-down means that one starts with the selection of the
first tree T1 and continues tree-by-tree up to the last tree Tn�1. The first tree T1 can
be selected as an arbitrary spanning tree. Given that a tree Tm; m 2 f1; : : : ; n � 2g;
has been selected, the next tree TmC1 is chosen respecting the proximity condition
(see Definition 2.2). In other words, TmC1 can only be formed by (conditional) pairs
fi.e/; j.e/jD.e/g which fulfill the proximity condition.

Example 2.3 (Top-Down Tree Selection). Assume that we have selected the first
tree T1 as shown in Fig. 2.1. Then the question is which pairs fi.e/; j.e/jD.e/g
are eligible for tree construction in the second tree T2. According to the proximity
condition these are f1; 3j2g, f2; 4j3g, f2; 5j3g, and f4; 5j3g. Obviously, the last three
pairs form a cycle and therefore only two of them can be selected for T2. One of the
three possibilities is shown in Fig. 2.1.

To perform this iterative selection strategy a criterion is needed to select a
spanning tree among the set of eligible edges, where a spanning tree simply denotes
a tree on all nodes. Clearly, the log-likelihood `m of the pair copulas in tree Tm of a
regular vine copula [see expression (2.4)] is given by
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`m .Tm;BTm ;�Tm jx/ D
NX
kD1

X
e2Em

log
�
ci.e/;j.e/jD.e/

	 �
Fi.e/jD.e/; Fj.e/jD.e/j� i.e/;j.e/jD.e/

��
; (2.5)

where we write BTm WD B.Tm/ and �Tm WD �.B.Tm//.
A straightforward solution therefore would be to choose the tree such that

(2.5) is maximized after having selected pair copulas with high log-likelihood for
each (conditional) pair fi.e/; j.e/jD.e/g that fulfills the proximity condition. This
solution, however, leads to highly over-parameterized models, since models with
more parameters in which simpler models are nested will always give a higher
likelihood. For instance, the Student’s t copula always has a higher likelihood than
the Gaussian copula which is a special case of the Student’s t as the degrees of
freedom tend to infinity.

Therefore we formulate the following algorithm in terms of a general weight
! assuming that we want to maximize it for each tree. The previously discussed
strategy corresponds to choosing the pair copula log-likelihoods as weights.

Algorithm 2.3 (Sequential Top-Down Selection Based on Weights).
1: Calculate the weight !i;j for all possible variable pairs fi; j g; 1 � i < j � n.
2: Select the maximum spanning tree, i.e.

T1 D argmax
TD.N;E/ spanning tree

X
e2E

!i.e/;j.e/:

3: for each edge e 2 E1 do
4: Select a copula Ci.e/;j.e/.
5: Estimate the corresponding parameter(s) � i.e/;j.e/.
6: For k D 1; : : : ; N transform Fi.e/jj.e/.xk;i.e/jxk;j.e/; O� i.e/;j.e// and

Fj.e/ji.e/.xk;j.e/jxk;i.e/; O� i.e/;j.e// using (2.3).
7: end for
8: form D 2; : : : ; n � 1 do
9: Calculate the weights !i.e/;j.e/jD.e/ for all conditional variable pairs

fi.e/; j.e/jD.e/g that can be part of tree Tm. We denote this set of edges
which fulfill the proximity condition by EP .

10: Among these edges, select the maximum spanning tree, i.e.,

Tm D argmax
TD.N;E/spanning tree with E�EP

X
e2E

!i.e/;j.e/jD.e/:

11: for each edge e 2 Em do
12: Select a conditional copula Ci.e/;j.e/jD.e/.
13: Estimate the corresponding parameter(s) � i.e/;j.e/jD.e/.
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14: For k D 1; : : : ; N transform Fi.e/jj.e/[D.e/.xk;i.e/jxk;j.e/; xk;D.e/;
O� i.e/;j.e/jD.e// and Fj.e/ji.e/[D.e/.xk;j.e/jxk;i.e/; xk;D.e/; O� i.e/;j.e/jD.e// using
(2.3).

15: end for
16: end for
17: return the sequential model estimate . OV ; OB; O�/.

Clearly, this algorithm only makes a locally optimal selection in each step, since
the impact on previous and subsequent trees is ignored. The strategy is, however,
reasonable in light of the definition of regular vines (see Definition 2.2). The
maximum spanning tree in lines 2 and 10 can be found, e.g., using the classical
algorithms by Prim or Kruskal (see [19, Section 23.2]). Possible choices for the
weight ! are, for example:

• The absolute empirical Kendall’s 
 as proposed by [22, 23].
• The AIC of each pair copula corresponding to the discussion in Sect. 2.4.1.
• The (negative) estimated degrees of freedom of Student’s t pair copulas (see

[48]).
• The p-value of a copula goodness of fit test and variants as proposed by [21].

Some remarks: First, taking the empirical Kendall’s 
 as weight does not require
to select and estimate pair copulas prior to the tree selection step. The other three
weights require this, so that lines 4–5 and 12–13 in Algorithm 2.3 may be redundant
in this case. Second, AIC weights also maximize the AIC of the entire tree, since
the individual AICs sum like the log-likelihood. Third, the strategy proposed by [48]
concentrates on tail dependence, since the algorithm will select pairs with estimated
small degrees of freedom corresponding to a stronger deviation from Gaussianity
with no tail dependence.

Copula goodness of fit tests based on the Cramér–von Mises statistic are
considered in [21] to take into account the uncertainty of the pair copula fit.
Corresponding p-values are calculated using fast bootstrap methods based on the
multiplier approach developed and implemented in [40–42].

Finally, we like to note that the empirical Kendall’s 
 as weight also approxima-
tively maximizes (2.5), since the log-likelihoods of bivariate copulas tend to increase
with increasing absolute values of Kendall’s 
 . It, however, does not lead to over-
parameterization, since copula selection and tree selection in a particular tree are
independent. The strategy by [23] has therefore already been used successfully in
applications with up to 52 variables (see [12]).

Recently, [36] proposed the construction of vines with non-parametric pair
copulas based on empirical copula estimators. For vine tree selection [36] also
advocate the use of empirical dependence measures such as Spearman’s �, since it
does not require any parametric assumption on the pair copulas. Other dependence
measures such as Blomqvist’s ˇ could of course be used instead in the approaches
by [23, 36].

Especially the strategy based on Kendall’s 
 leads to regular vine copulas with
decreasing dependence in higher order trees. This is advantageous to the vine
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structure, since numerical errors may add up and estimates become less precise as
the number of conditioning variables increases. This has been exploited by [14] to
identify appropriate truncation levels of regular vine copulas.

Algorithm 2.3 can easily be modified to select C- or D-vines instead of general
regular vines. For C-vines the root node in each tree can simply be identified as
the node with maximal sum of weights to all other nodes (see [22]). In the case of
D-vines only the order of variables in the first tree has to be chosen. Since D-vine
trees are paths on all nodes, so-called Hamiltonian paths, a maximum Hamiltonian
path has to be identified. This problem is equivalent to a traveling salesman problem
as discussed by [11]. As an NP-hard problem, there is no known efficient algorithm
to find a solution.

2.5.1.2 Bottom-Up Selection

Rather than beginning with the first tree T1, [43] proposed a bottom-up selection
strategy which starts with tree Tn�1 and then sequentially selects trees Tm for m D
n� 2; : : : ; 1. Similar to top-down selection using Kendall’s 
 by [23], this approach
is also motivated by choosing a regular vine with weaker dependence in later trees.
Here, dependence is, however, measured in terms of partial correlations. More
precisely, each tree is selected such that the sum of absolute partial correlations as
edge weights is minimized. This is feasible, since partial correlation estimates for
each combination of variables can be obtained from the data without any parametric
assumptions (see, e.g., [67]).

The bottom-up strategy by [43] thus selects tree Tn�1 as the edge corresponding
to the pair of variable with lowest absolute partial correlation given all other vari-
ables. Kurowicka [43] then provides conditions such that the proximity condition is
satisfied when a tree Tm; m 2 f1; : : : ; n�2g; is selected given trees TmC1; : : : ; Tn�1.
As before there may be several choices possible in the set of eligible edges.

Example 2.4 (Bottom-Up Tree Selection). Assume in Fig. 2.1 that we have selected
T4 with edge e D fa; bg D f1; 5j2; 3; 4g as shown. Then Aa D f1; 2; 3; 4g and
Ab D f2; 3; 4; 5g [see (2.1)]. Any choice of edges from Aa and Ab in tree T3 leads
to a valid tree T4. For instance, the edges f1; 2j3; 4g and f4; 5j2; 3g are compatible
with Aa and Ab , respectively, and would lead to another vine than the one shown in
Fig. 2.1. In fact, it could be constructed as a D-vine with order 1; 4; 3; 2; 5.

Since partial correlations are equal to conditional correlations for elliptical
distributions (see [5]), this strategy is particularly appropriate if all pair copula
families are elliptical. In contrast to the top-down approach discussed above which
requires the selection and estimation of pair copulas in each tree, this strategy
chooses the vine tree structure without any assumption on the pair copula families.
Having selected the vine tree structure, the selection of pair copulas can therefore
proceed as discussed in Sect. 2.4.1.
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2.5.2 Sequential Bayesian Tree Selection

Bayesian approaches to estimating the posterior distribution of the tree structure
of a regular vine copula have only recently been developed. The sheer number of
possible regular vine tree structures poses a relevant challenge to computationally
efficient posterior evaluation.

This section presents a reversible jump MCMC-based approach proposed by
[29] to obtain a sequential estimate of the posterior distribution of the regular vine
tree structure V , the pair copula families B, and the copula parameters � . The
term “sequential estimation” is understood analogously to the notion discussed in
Sect. 2.5.1.1 as a tree-by-tree procedure.

As in Sect. 2.4.2, model priors �.V ;B;�/ which favor sparse models can serve
to guard against selecting models with runaway complexity. On the other hand,
the use of non-informative flat priors allows for tree-by-tree maximum likelihood
estimation of the regular vine tree structure V , the pair copula families B, and the
copula parameters � . As a result, the posterior mode estimate of this procedure will
agree with the model estimate of Algorithm 2.3, if flat priors are used. Again, the
pair copula families are chosen from a set B of parametric pair copula families.

For the sake of notational convenience and enhanced readability, the procedure is
presented in two algorithms. Algorithm 2.4 gives the general outline of the sampling
procedure. Algorithm 2.5 details the reversible jump MCMC algorithm to sample
from the posterior distribution of tree Tm of the regular vine tree structure V D
.T1; : : : ; Tn�1/.

Algorithm 2.4 implements the tree-by-tree selection procedure. As such, it calls
Algorithm 2.5 for the actual posterior estimation. However, it condenses the poste-
rior sample into the posterior mode estimate and organizes the move from selecting
tree Tm to selecting tree TmC1. The posterior mode estimate . OTm; OBTm ;

O�Tm/ of tree
Tm is the most frequently sampled combination of tree structure Tm and pair copula
families BTm parameterized at the mode of the posterior sample of the parameters
�Tm of this model.

Algorithm 2.4 (Outline of the Tree-by-Tree Sampling Algorithm).
1: Sample from the posterior distribution of the first tree, .T1;BT1 ;�T1/: see

Algorithm 2.5.
2: Set the tree estimate . OT1; OBT1 ;

O�T1 / to the posterior mode.
3: for m D 2; : : : ; n � 1 do
4: Sample from the posterior distribution of them-th tree, .Tm;BTm;�Tm/, given

the previous trees’ estimates . OT1; OBT1 ;
O�T1 /; : : : ; . OTm�1; OBTm�1 ;

O�Tm�1 /: see
Algorithm 2.5.

5: Set the tree estimate . OTm; OBTm;
O�Tm/ to the posterior mode.

6: end for
7: return the sequential Bayesian model estimate

. OV ; OB; O�/ D .. OT1; : : : ; OTn�1/; . OBT1 ; : : : ;
OBTn�1 /; .

O�T1 ; : : : ; O�Tn�1 //:
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Algorithm 2.5 samples from the posterior distribution of .Tm;BTm;�Tm/ given
the previously selected trees .. OTl ; OBTl ;

O�Tl /; l D 1; : : : ; m � 1/. The within-
model move of this algorithm to update the pair copula parameters � follows
Algorithm 2.1. In the between-models move, the proposal trees are sampled as
spanning trees which satisfy the proximity condition. Practitioners may note that this
functionality is implemented, e.g., in the C++ boost library [59]. Edge weights can
be used to fine-tune the variance of the proposal distribution: in our implementation,
higher values for p 2 .0; 1/ increase the probability that the proposals for the
tree structure, T rm, are similar to the current state T r�1m of the sampling chain. As
in Algorithm 2.2, the pair copula family proposals are sampled from a uniform
distribution over B, and the parameter proposals are drawn from a (multivariate)
normal distribution centered at the maximum likelihood estimates of the parameters.

Algorithm 2.5 (Reversible Jump MCMC Algorithm to Sample .Tm;BTm ;�Tm/).

Denote the pair copula families of tree Tm D .Nm;Em/ by BTm D .Be; e 2 Em/,
and the corresponding pair copula parameters by �Tm D .�e; e 2 Em/.

1: Choose arbitrary, but valid, tree structure, copula family and parameter starting
values .T 0m;B

0
Tm
;�0Tm/. If m 
 2, observe the proximity condition imposed on

T 0m.
2: for each iteration r D 1; : : : ; R do
3: Set .T rm;B

r
Tm
;� rTm/ D .T r�1m ;Br�1

Tm
;�r�1Tm

/.
4: Perform one update step of Algorithm 2.1 for the pair copula parameters of

tree Tm, �rTm ; denote the updated parameter entries by �C
Tm

.
5: Draw a spanning tree T rm that satisfies the proximity condition from the

proposal distribution

q.T r�1m D .Nm;E
r�1
m / ! T rm D .Nm;E

r
m// / pjErm\Er�1m j.1 � p/jErmnEr�1m j:

6: for each edge e 2 Er
m do

7: Draw Br
e from a Unif .B/ distribution.

8: Draw �re from a multivariate N. O�re; Ȯ r
e / distribution with probability

density function �
. O�re ; Ȯ r

e /
.�/. Here O�re denotes the MLE of the copula param-

eters of the pair copula Br
e and Ȯ r

e denotes the estimated approximative

covariance matrix of the parameter estimates O�re .
9: end for

10: Set Br
Tm

D .Br
e ; e 2 Er

m/, �rTm D .�re; e 2 Er
m/.

11: Evaluate the generalized Metropolis–Hastings acceptance probability of the
proposal

˛ WD ˛..T r�1m ;Br�1
Tm
;�C

Tm
/; .T rm;B

r
Tm
;�rTm//

D p.V �;B�;��/
p.V ;B;�/

�
Q
e2Er�1m

�
. O�r�1e ; Ȯ r�1

e /
.�C

e /Q
e2Erm �. O�re ; Ȯ r

e /
.�re/
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D �.V �;B�;��/
�.V ;B;�/

� L.V
�;B�;��jx/

L.V ;B;�jx/ �
Q
e2Er�1m

�
. O�r�1e ; Ȯ r�1

e /
.�C

e /Q
e2Erm �. O�re ; Ȯ r

e /
.�re/

;

where V � D . OT1; : : : ; OTm�1; T rm/, V D . OT1; : : : ; OTm�1; T r�1m /,
B� D . OBT1 ; : : : ;

OBTm�1 ;B
r
Tm
/, B D . OBT1 ; : : : ;

OBTm�1 ;B
r�1
Tm
/,

�� D . O�T1 ; : : : ; O�Tm�1 ;�
r
Tm
/, and � D . O�T1 ; : : : ; O�Tm�1 ;�

C
Tm
/.

12: Accept the proposal .T rm;B
r
Tm
;�rTm/ with probability ˛; if rejected,

set .T rm;B
r
Tm
;� rTm/ D .T r�1m ;Br�1

Tm
;�C

Tm
/.

13: end for
14: return ..T 1m;B

1
Tm
;�1Tm/; : : : ; .T

R
m ;B

R
Tm
;�RTm//

2.6 Conclusions and Outlook

We have focused on the various model selection and estimation methods for regular
vine copulas. Since a regular vine model is specified by three linked components,
this results in three fundamental tasks with increasing complexity. We discussed
frequentist and Bayesian approaches for each of these tasks. In particular this
involved sequential approaches starting from the top tree until the last tree. The
frequentist approaches are implemented in the R-packages CDVine [15, 57] for
D- and C-vines and VineCopula [58] for regular vines, respectively.

In view of the linked nature of the vine tree structure the sequential approach is a
natural approach. However as in the case of covariate selection in linear models, this
might not yield the best fit to the data. In addition the approaches so far primarily
considered in-sample fit and model comparisons. More empirical work is needed
to validate the models in an out-of-sample performance study. However this is now
feasible and tractable and is the subject of current investigations.

It has been recently recognized by [2] that even the flexible class of simplified
regular vines might be insufficient for some data sets. This might be the result that
the underlying joint density is not well approximated by a simplified regular vine
density, where the conditional copula family terms are chosen to be independent of
the conditioning value. Currently the proposed solution of [2] using non-parametric
two-dimensional smoothing methods is limited to three dimensions and it will
be a major challenge to extend the model and the selection methods to higher
dimensions.

Other non-standard vine models occur when the pair copula terms depend
on the conditioning time point, thus yielding models with time-varying copula
parameters. These can also be seen as non-simplified vines in the special case that
the conditioning variables follow a functional relationship to time. First parameter-
driven time dependence was considered using an AR(1) dynamics in the copula
parameters in the papers by [3, 4], while [62] follow a regime switching approach.
Here only parameter estimation and assessment of the uncertainty of the parameters
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are considered so far. It has to be investigated if the additional flexibility of the
copula families and the different vine tree structures is needed here.

This survey primarily focused on the selection and estimation problem of regular
vines with parametric pair copula families. The approach of [36] can be compared
to ones based on kernel methods as proposed in [7, 56].

Other data structures than multivariate continuous data have also gained by
models based on pair copula constructions. In particular network structures were
considered by [30, 44] in a primarily Gaussian setup and by [7] in a non-Gaussian
setting. Here the network is modeled by a directed acyclic graph (DAG) model.
While learning the network structure from data is a very complex task even in
Gaussian DAG models, non-Gaussian learning algorithms are currently developed
and investigated in [6].

Another very interesting multivariate data structure are discrete and mixed dis-
crete-continuous outcomes which occur most often in the life sciences. Pair copula
constructions using D-vines for discrete outcomes were recently developed in [55]
together with highly efficient parameter estimation techniques. Current research is
conducted to allow for mixed outcomes [63].

While these extensions are still concerned primarily with parameter estimation, it
remains an important open challenge to find non-sequential solutions to the selection
of regular vines when all three components have to be selected.

Acknowledgments The second and third author gratefully acknowledge the support of the TUM
Graduate School’s International School of Applied Mathematics. The second author is also
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2. Acar, E.F., Genest, C., Nešlehová, J.: Beyond simplified pair-copula constructions. J. Multivar.
Anal. 110, 74–90 (2012)

3. Almeida, C., Czado, C.: Efficient Bayesian inference for stochastic time-varying copula
models. Comput. Stat. Data Anal. 56(6), 1511–1527 (2012)

4. Almeida, C., Czado, C., Manner, H.: Modeling high dimensional time-varying dependence
using D-vine SCAR models. http://arxiv.org/abs/1202.2008 (2012, preprint)

5. Baba, K., Shibata, R., Sibuya, M.: Partial correlation and conditional correlation as measures
of conditional independence. Aust. N. Z. J. Stat. 46(4), 657–664 (2004)

6. Bauer, A., Czado, C.: Pair copula Bayesian networks. http://arxiv.org/abs/1211.5620 (2012,
preprint)

7. Bauer, A., Czado, C., Klein, T.: Pair-copula constructions for non-Gaussian DAG models. Can.
J. Stat. 40(1), 86–109 (2012)

8. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent
random variables modeled by vines. Ann. Math. Artif. Intell. 32, 245–268 (2001)

9. Bedford, T., Cooke, R.M.: Vines: a new graphical model for dependent random variables. Ann.
Stat. 30(4), 1031–1068 (2002)

http://arxiv.org/abs/1202.2008
http://arxiv.org/abs/1211.5620


2 Selection of Vine Copulas 35

10. Berg, D., Aas, K.: Models for construction of higher-dimensional dependence: a comparison
study. Eur. J. Financ. 15, 639–659 (2009)

11. Brechmann, E.C.: Truncated and simplified regular vines and their applications. Master’s
thesis, Technische Universität München (2010)

12. Brechmann, E.C., Czado, C.: Risk management with high-dimensional vine copulas: An
analysis of the Euro Stoxx 50. Stat. Risk Model. (2013, in press)

13. Brechmann, E.C., Czado, C.: COPAR - Multivariate time series modeling using the COPula
AutoRegressive model. http://arxiv.org/abs/1203.3328 (2012, preprint)

14. Brechmann, E.C., Czado, C., Aas, K.: Truncated regular vines in high dimensions with
application to financial data. Can. J. Stat. 40(1), 68–85 (2012)

15. Brechmann, E.C., Schepsmeier, U.: Modeling dependence with C- and D-vine copulas: the
R-package CDVine. J. Stat. Softw. 52(3), 1–27 (2012)

16. Brooks, S., Gelman, A., Jones, G.L., Meng, X.L.: Handbook of Markov Chain Monte Carlo.
Chapman & Hall/CRC, Boca Raton (2011)

17. Chollete, L., Heinen, A., Valdesogo, A.: Modeling international financial returns with a
multivariate regime switching copula. J. Financ. Econom. 7, 437–480 (2009)

18. Clarke, K.A.: A simple distribution-free test for nonnested model selection. Polit. Anal. 15(3),
347–363 (2007)

19. Cormen, T., Leiserson, E., Rivest, R., Stein, C.: Introduction to Algorithms. The MIT Press,
Cambridge (2009)

20. Czado, C.: Pair copula constructions of multivariate copulas. In: Jaworki, P., Durante, F.,
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Chapter 3
Copulas in Machine Learning

Gal Elidan

Abstract Despite overlapping goals of multivariate modeling and dependence
identification, until recently the fields of machine learning in general and probabilis-
tic graphical models in particular have been ignorant of the framework of copulas.
At the same time, the complementing strengths of the two fields suggests the great
fruitfulness of a synergy. The purpose of this paper is to survey recent copula-based
constructions in the field of machine learning, so as to provide a stepping stone for
those interested in further exploring this emerging symbiotic research.

3.1 Introduction

Multivariate modeling is of fundamental interest in diverse complex domains rang-
ing from computational biology to computer vision to astronomy. Unfortunately,
high-dimensional modeling in the context of finite data and limited computational
resources can be quite challenging and susceptible to the curse of dimensionality.
Probabilistic graphical models [33], a marriage between probability and graph
theory, is a general purpose framework aimed at coping with this task. These
models are used to represent multivariate densities via a combination of a qualitative
graph structure that encodes independencies and local quantitative parameters. The
joint density has a decomposable form that corresponds to the intuitive graph
structure. This, in turn, allows for relatively efficient methods for marginal and
posterior computations (a task called inference in the field), estimation (parameter
learning), and model selection (structure learning). Probabilistic graphical models
have become a central axis of the field of machine learning, have made substantial
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impact in related fields such as machine vision, natural language processing, and
bioinformatics, and have become prevalent in uncountable applications.

It is somewhat remarkable that, until recently, researchers in the field of
probabilistic graphical models were largely unaware of the multivariate modeling
framework of copulas. This ignorance is even more perplexing when considering the
limitations of graphical models in the context of real-valued measurements: while
probabilistic graphical models are conceptually general, practical considerations
almost always force the local quantitative part of the model to be of a simple form. In
fact, when faced with data that cannot be captured well with multivariate Gaussians
or mixtures thereof, the vast majority of works first discretize the data, and then take
advantage of the impressive progress that has been made in the discrete case.

Much of the copula community has also been ignorant of the potential of
a symbiosis with the field of machine learning. A decade ago, Kurowicka and
Cooke [23] identified a relationship between vine models and Bayesian networks
(a directed graphical model), and this was later generalized [16, 24] to yield
high-dimensional copula constructions. However, no algorithmic innovation was
borrowed from or inspired by machine learning, with the goal of, for example,
automatically inferring the structure of such models from partially observed data.

There are fundamental reasons as to why a symbiosis between the two fields
should be pursued. Graphical models are inherently aimed at high-dimensional
domains, and substantial advances have been made in learning such models from
data. Unfortunately, in real-valued scenarios the field is still largely handicapped. In
contrast, copulas offer a flexible mechanism for modeling real-valued distributions.
Yet, much of the field is still focused on the bivariate case or is limited in practice
to few variables (exceptions are discussed later). The two frameworks thus comple-
ment each other in a way that offers opportunities for fruitful synergic innovations.

The need for a synergy between the copula framework and the field of machine
learning goes further than probabilistic graphical models. Dependence measures,
most notably Shannon’s mutual information, are fundamental to numerous machine
learning algorithms such as clustering, features selection, structure learning, causal-
ity detection, and more. As is well known, copulas are closely tied to such
dependence concepts and the meeting of the two fields can give rise to new
techniques for measuring dependance in high dimension.

It was only recently that the ignorance barrier between the two fields was broken
by Kirshner’s work [21] that generalizes Darsow’s Markovian operator [7] for tree
structured models. Since then, interest in copulas has been steadily growing and the
last years have seen a range of innovative copula-based constructions in machine
learning. The purpose of this paper is to survey these works. Rather than aiming at a
complete coverage, the focus is on multivariate constructions as well as information
estimation. For lack of space, additional works that, generally speaking, use copulas
in a more plug-in manner are not discussed. For the interested reader, these include
copula-based independent component analysis [35], component analysis [2, 27],
mixture models (e.g., [14, 50]), dependency seeking clustering [40]. Also of great
interest but not presented here is the use of copulas as a particular instance within the
cumulative distribution network model [17, 45]. Finally, this survey does not cover
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application papers or works that appeared in the computational statistics community
and that are more likely to be familiar with copula researchers.

3.2 Background

To allow for reasonable accessibility to both copula and machine learning
researchers, in this section we briefly review the necessary background material
from both fields and set a common notation. We use capital letters X; Y to denote
random variables, lowercase letters x; y to denote realizations of these variables,
boldfaced letters to refer to set of variables X and their assignments x.

3.2.1 Copulas

A copula function [47] links univariate marginal distributions to form a joint
multivariate one. Formally,

Definition 3.1. Let U1; : : : ; Un be real random variables marginally uniformly
distributed on Œ0; 1�. A copula function C W Œ0; 1�n ! Œ0; 1� is a joint distribution

C.u1; : : : ; un/ D P.U1 � u1; : : : ; Un � un/:

We will use C�.�/ to denote a parameterized copula function where needed.

Sklar’s seminal theorem [47] states that any joint distribution FX.x/ can be
represented as a copula function C.�/ of its univariate marginal distributions

FX.x1; : : : ; xn/ D C.F1.x1/; : : : ; Fn.xn//:

When the marginals are continuous, C.�/ is uniquely defined. The constructive
converse, which is of interest from a modeling perspective, is also true: any copula
function taking any univariate marginal distributions fFi .xi /g as its arguments,
defines a valid joint distribution with marginals fFi.xi /g. Thus, copulas are “dis-
tribution generating” functions that allow us to separate the choice of the univariate
marginals and that of the dependence structure, encoded in the copula function
C.�/. Importantly, this flexibility often results in a construction that is beneficial
in practice.

AssumingC�.�/ has n’th order partial derivatives, the joint density can be derived
from the copula function using the derivative chain rule

fX.x/ D @nC�.F1.x1/; : : : ; Fn.xn//

@F1.x1/ : : : @Fn.xn/

Y
i

fi .xi / � c� .F1.x1/; : : : ; Fn.xn//
Y
i

fi .xi /;

(3.1)
where c� .�/ is called the copula density.
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Fig. 3.1 Samples from the bivariate Gaussian copula with correlation � D 0:25. (left) with unit
variance Gaussian and Gamma marginals; (right) with a mixture of Gaussian and exponential
marginals

Example 3.1. Perhaps the most commonly used is the Gaussian copula [11]:

C˙.fFi.xi /g/ D ˚˙
�
˚�1.F1.x1//; : : : ; ˚�1.Fn.xn//

�
; (3.2)

where ˚ is the standard normal distribution and ˚˙ is a zero mean normal
distribution with correlation matrix˙ .

Figure 3.1 shows samples from the bivariate Gaussian copula using two different
marginal settings. As can be seen, even in this simple case, markedly different
and multi-modal distributions can be constructed. More generally, and without any
added computational difficulty, we can use different marginals for each variable and
can also mix and match marginals of different forms with any copula function.

3.2.2 Probabilistic Graphical Models

In this section we briefly review probabilistic graphical models [33], a widely pop-
ular framework for representing and reasoning about high-dimensional densities.

A directed graph is a set of nodes connected by directed edges. A directed acyclic
graph (DAG) G is a directed graph with no directed cycle. The parents of a node V
in a directed graph is the set of all nodes U such that there exists a direct edge from
U to V . A node U is an ancestor V in the graph if there is a directed path from U

to V . Children and descendant are similarly defined.
Directed graphical models or Bayesian networks (BNs) use a DAG G whose

nodes correspond to the random variables of interest X1; : : : ; Xn to encode the
independencies I.G / D f.Xi ? NDi j Pai /g, where ? denotes the independence
relationship and NDi are nodes that are not descendants of Xi in G . Independencies
that follow from I.G / are easily identifiable via an efficient algorithm. If the
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Fig. 3.2 A toy Bayesian network of a Mars relocation scenario where f .�/ D
f .H/f .S/f .EjS;H/f .M jS/f .RjE;M/

independencies encoded by G hold in fX, then it is easy to show that the joint
density decomposes into a product of local conditional densities

fX.x/ D
nY
iD1

fXi jPai .xi j pai /;

where Pai are the parents of nodeXi in G . The converse composition theorem states
that a product of any local conditional densities defines a valid joint density and that
the independencies encoded by G hold in this density.

As an example, Fig. 3.2 shows a plausible model that involves relocation of
human population into Mars. Human pollution is unfortunately assumed inde-
pendent of Solar activity. Yet, these two factors are dependent given evidence of
livability conditions on earth. Similar deductions all follow from the independencies
encoded in the graph. Note that inferences can be made in any direction, regardless
of the direction of the edges, hence the name Bayesian networks.

Undirected graphical models, or Markov Networks (MNs), use an undirected
graph H that encodes the independencies I.H /D f.Xi ? X n fXig [ Nei j Nei /g,
where Nei are the neighbors of Xi in H . That is, each node is independent of all
others given its neighbors in H . Let C be the set of cliques in H (a clique is set
of nodes such that each node is connected to all others in the set). As for directed
models, the Hammersley–Clifford theorem [15] states that, for positive densities, if
the independence statements encoded by H hold in fX.x/, then the joint density
decomposes according to the graph structure:

fX.x/ D 1
Z

Q
c2C �c.xc/; (3.3)

where Xc are the set of nodes in the clique c, and �c W Rjcj ! R
C is any positive

function over the values of these nodes. Z is a normalizing constant called the
partition function. The converse composition theorem also holds.

There are various generalization of the Bayesian and Markov network repre-
sentations (which overlap only for tree structured models) including temporal,
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relational, and mixed directionality models (chain graphs). The common theme
is that of decomposition into local terms which, in additional to facilitating a
compact representation, gives rises to relatively efficient marginal and conditional
computations (a task called inference in the ML community), estimation (parameter
learning), and high-dimensional model selection (structure learning). See [22, 33]
for a comprehensive presentation of probabilistic graphical models.

3.3 Multivariate Copula-Based Construction

In this section we present several high-dimensional copula-based models recently
developed in the machine learning community. As is common in the copula
community [20], these works generally start with univariate estimation, and then
plug in the “given” marginals into the copula function. Thus, except where essential,
our exposition below does not cover the relatively straightforward and standard
univariate estimation step. Instead, we focus on the multivariate construction. We
end with a comparative summary in Sect. 3.3.5, which can also be read first.

3.3.1 Tree Structured Models

The first work in the machine learning community to combine ideas from the
graphical models framework and copulas is that of Kirshner [21] (the earlier work of
[24] independently developed in the copula community is discussed in Sect. 3.3.3).
We start by describing the basic tree-structured copula construction and then present
the tree-averaged density model. We conclude this section with a flexible Bayesian
approach to a mixture of copula trees suggested by Silva and Gramacy [46].

3.3.1.1 Tree-Structured Copulas

Let T be an undirected tree structured graph (i.e., a graph with no cycles) and let
E denote the set of edges in T that connect two vertices. From the Hammersley–
Clifford decomposition of (3.3), it easily follows that, if the independencies I.T /
hold in fX.x/, then it can be written as

fX.x/ D
"Y

i

fi .xi /

# Y
.i;j /2E

fij.xi ; xj /

fi .xi /fj .xj /
:

Using (3.1), a decomposition of the joint copula also follows:
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cT .�/ D fX.x/Q
i fi .xi /

D
Y

.i;j /2E

fij .xi ; xj /

fi .xi /fj .xj /
D

Y
.i;j /2E

cij .Fi .xi /; Fj .xj //; (3.4)

where cT .�/ is used to denote a copula density that corresponds to the structure T
and cij.�/ is used to denote the bivariate copula corresponding to the edge .i; j /. The
converse composition also holds: a product of local bivariate copula densities, each
associated with an edge of T , defines a valid copula density. This result generalizes
Darsow’s operator [7] to the case of Markov trees. Indeed, it can be proved directly
or by an inductive application of Darsow’s product operator starting from the leaves
of the trees and progressing inwards.

The main appeal of the above decomposition, as is the case for graphical
models in general, is that estimation or learning also benefits from the compact
representation. Given univariate marginals, (3.4) leads to a decomposition of the
log-likelihood into independent terms, and estimation can be carried out by only
considering bivariate statistics. This is in contrast to vine copula models [3] that
also involve bivariate copulas but where (conditional) statistics over large sets of
variables are required (see Sect. 3.3.5 for further discussion).

3.3.1.2 Tree-Averaged Copulas

As noted, the main appeal of the tree-structured copula is that it relies solely
on bivariate estimation. However, this comes at the cost of firm independence
assumptions. To relax these, Kirshner suggests the construction of a mixture of all
copula trees model. On the surface, such a model may appear to be computationally
prohibitive as the number of possible trees with n variables is nn�2.

This difficulty is overcome by defining an appropriate decomposable prior over
all spanning trees, as suggested by Meila and Jaakkola [28]. Let ˇ be a symmetric
n	 n matrix with nonnegative entries and zero on the diagonal. Let T be the set of
all spanning trees overX1; : : : ; Xn. The probability of a spanning tree T is defined as

P.T 2 T j ˇ/ D 1
Z

Q
.u;v/2ET

ˇuv;

whereZ is a normalization constant. Using a generalization of the Laplacian matrix:

Luv.ˇ/ D
� �ˇuv u ¤ vP

w ˇuw u D v;

it can be shown that the normalization constant Z is equal to the determinant
jL�.ˇ/j, where L�.ˇ/ represents the first .n � 1/ rows and columns of L.ˇ/. This
result can then be used to efficiently compute the density of the average of all copula
spanning trees, which itself is also a copula density:
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X
T2T

P.T j ˇ/cT .�/ D 1

Z

X
T2T

2
4 Y
.u;v/2ET

ˇuvcuv.Fu.xu/; Fv.xv//

3
5 D jL�.ˇ ı cT .�//j

jL�.ˇ/j ;

where ı denotes an element-wise product. The reader is referred to Kirshner [21] for
additional details on the efficient EM method used for parameter estimation of the
model and for appealing results when modeling multi-site precipitation data using
an HMM-based construction.

3.3.1.3 Bayesian Mixtures of Copula Trees

The all tree mixture model described in the previous section overcomes some of
the limitations imposed by a single tree model. However, to facilitate computational
efficiency, the prior used involves heavy parameter sharing. Specifically, the set of
all nn�2 trees is parameterized by only n.n � 1/ parameters. Further, the approach
relies on the assumption that there are no missing observations.

To offer more flexibility, Silva and Gramacy [46] suggest a Bayesian approach
that allows for a mixture of some trees with flexible priors on all components
of the model. The construction is based on the Bayesian nonparametric Dirichlet
process infinite mixture model. This model, first formalized by Ferguson [12], is
a distribution over discrete mixtures such that for every finite set of mixtures, its
parameters have a Dirichlet prior. Following Silva and Gramacy, we present the
model here as the limit asK ! 1 of a finite mixture model with K components.

Let X be a set of random variables, z be an index of the set of all trees T over
these variables, and	 be the set of copula parameters, one for each pair of variables.
The following model is a standard Bayesian mixture model, with the novelty that
the parameters of the univariate marginals� are shared by all mixture components:

� � f� Tz � T0.z/
� � Dirichlet.˛=K; : : : ; ˛=K/ 	z � f	

z j � � Discrete.�1; : : : ; �K/ Xjz;T ; 	;� � f .X j Tz; 	z; �/:

The first two lines on the left correspond to any general generating mechanisms for
the univariate marginal parameters � and the mixture prior parameters � . Given
these, a specific tree is selected by sampling z from any discrete distribution of
the appropriate dimension parameterized by � . The parameters corresponding to
the tree edges 	z are then sampled from a prior on the copula parameters. Finally,
given a specific tree and previously sampled parameters, the density for a sample
f .X j Tz; 	z; �/ is constructed using a copula tree, as described in previous section.

Obviously, the above model offers great flexibility and using a Dirichlet process
formulation where K ! 1 allows for a variable number of components. The
flexibility comes with a computational burden which is the central challenge
addressed by Silva and Gramacy using a Markov chain Monte Carlo approach.
The central difficulty is in the sampling of trees since, given a specific tree,
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most parameters are redundant and sampling these naively will lead to useless
computations in later iterations. The solution is a novel proposal distribution from
which trees and parameters are sampled in a sensible way. The reader is referred
to Silva and Gramacy [46] for the precise details. Experiments are carried out on
several datasets from the UCI repository [31], as well as missing data scenarios
using financial data.

3.3.2 Undirected Structure Learning

The lasso method of Tibshirani [51] extends linear regression to the high-dimen-
sional case by including in the objective function an L1 norm sparsity constraint
on the feature coefficients and proposing an efficient method for optimizing this
objective. A nonparametric extension, called sparse additive models, was recently
developed by Ravikumar et al. [38]. Orthogonally, the graphical lasso (glasso) [13]
employs similar sparsity constraints to facilitate high-dimensional estimation of
undirected Gaussian graphical models. In this section we present the work of Liu et
al. [26] that fills the void of high-dimensional nonparametric structure estimation.
Specifically, a theoretically founded structure estimator is developed based on the
combination of the Gaussian copula and a specific form of nonparametric univariate
marginals.

3.3.2.1 Parametric Undirected Graph Estimation

Let H be an undirected graph whose nodes correspond to real-valued random
variables X1; : : : ; Xn. For multivariate Gaussian distributions, the independencies
between the random variables as encoded by the graph’s structure are characterized
by the inverse covariance matrix ˝ D ˙�1. Specifically, Xi is independent of Xj
given all other variables, denoted by Xi ? Xj j Xnfi;j g if and only if ˙�1

ij D 0.
Given m samples of the random vector X, estimation of ˙ when n > m cannot

be carried out using a maximum likelihood estimator since the empirical covariance
matrix is not full rank. Inspired by the success of L1 sparsity regularization for linear
models, several authors suggested that˙ be estimated by finding the solution to the
following regularized likelihood objective:

Ő D min
˝

�1
2

�
log j˝j � tr.˝ OS/

�
C �

X
j¤k

j˝jkj; (3.5)

where OS is the sample covariance matrix. The estimator Ő can be computed
efficiently by the glasso algorithm, which is simply a block coordinate descent that
applies the standard lasso to a single row and column of ˝ at each iteration. The
resulting estimator has been shown to have appealing theoretical properties [39,41].
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3.3.2.2 Nonparanormal Estimation

A real-valued random vector X is said to have a nonparanormal distribution, X �
NPN.�;˙; g/, if there exist functions fgi gniD1 such that .g1.X1/; : : : ; gn.Xn// �
N.�;˙/. When gi are monotone and differentiable, this is simply the Gaussian
copula. Now, define

hi .x/ D ˚�1.Fi .xi //;

and let � be the covariance matrix of h.X/. The independence properties discussed
above for the multivariate Gaussian hold so that Xi ? Xj j Xnfi;j g if and only if
��1

ij D 0. Thus, to estimate the graph’s structure, it is sufficient to identify��1.
Consider the obvious rank-based estimator for � that relies on the empirical

marginal distribution function OFi .t/ � 1
m

Pm
lD1 1fxi Œl�	tg, where xi Œl� is used to

denote the assignment to Xi in the l’th sample. Unfortunately, using this estimator
as a plug-in to covariance estimation does not work well in high dimension since the
variance of OFi can be large. Instead, the following Winsorized estimator is suggested

QFi .x/ D
8<
:
ım if OFi .x/ < ım
OFi .x/ if ım � OFi .x/ � 1 � ım

.1 � ım/ if OFi .x/ > 1 � ım;

where ım is a truncation parameter. Using ım � 1

4m1=4
p
� logm

strikes the right bias-

variance trade-off that leads to the desirable theoretical properties discussed below.
Given this estimate for the distribution of Xi , and using Qhi .x/ D ˚�1 � QFi .x/

�
,

define the transformation functions by

Qgi .x/ � O�i C O�i Qhi .x/; (3.6)

where O�i and O�i are sample mean and standard deviation of Xi , respectively. The
sample covariance matrix Sm. Qg/ can now be plugged in (3.5) in place of OS , defining
a two-step estimation procedure for the estimator Ő

m:

1. Replace the observations with Winsorized normalized scores as defined in (3.6).
2. Use the graphical lasso to estimate the undirected graph.

Appealingly, the procedure is both easy to compute and makes little assumptions
regarding the distribution of X. The only tuning parameter is the regularization
parameter � that defines the objective minimized by the glasso algorithm. Next,
we summarize the theoretical and empirical merits of this estimator.

3.3.2.3 Properties of the Estimator

Building on the analysis of Rothman et al. [41] and Ravikumar et al. [39], Liu et al.
are able to show that their estimator has favorable persistency, norm consistency,
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and model selection consistency properties. The main technical result is an analysis
of the covariance of the Winsorized estimator. Specifically, under appropriate
conditions,

max
i;j

ˇ̌
Sm. Qg/ij � Sm.g/ij

ˇ̌ D OP
�
m�1=4� :

Using this result, norm consistency of Ő with respect to the Frobenius and L2 norm
follows, with a similar dependence on m. Using additional technical assumptions,
a model selection consistency result (so that the true structure is recovered) is also
provided. Further, Liu et al. also show that their estimator is consistent in risk, that
is when the true distribution is not assumed to be nonparanormal.

Liu et al. demonstrate the ability of their method to accurately recover known
structure in simulation experiments under different transformations that are applied
to the univariate marginals, and various training sample sizes. The also apply their
method to biological and financial data, leading to structures that are different than
those learned with a purely Gaussian model, potentially revealing novel insights.
The interested reader is referred to Liu et al. [26] for details.

3.3.3 Copula Bayesian Networks

Elidan [8] tackles the task of flexibly representing a multivariate real-valued
distribution based on a directed graph representation.

3.3.3.1 The CBN Model

As discussed in Sect. 3.2, a joint distribution that relies on a DAG to encode indepen-
dencies is quantified by local conditional densities. Accordingly, the construction
starts with the following building block:

Lemma 3.1. Let f .x j y/, with y D fy1; : : : ; ykg, be a conditional density function.
There exists a copula density function c.F.x/; F1.y1/; : : : ; FK.yK// such that

f .x j y/ D Rc.F.x/; F1.y1/; : : : ; FK.yK//fX.x/;

where Rc is the copula ratio

Rc.F.x/; F1.y1/; : : : ; FK.yK// � c.F.x/; F1.y1/; : : : ; FK.yK//

@KC.1;F1.y1/;:::;FK.yK//

@F1.y1/:::@FK.yK/

;

and Rc is defined to be 1 when Y D ;. The converse is also true: for any copula,
Rc.F.x/; F1.y1/; : : : ; FK.yK//fX.x/ defines a valid conditional density.
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Note that the denominator of Rc is only seeming complex and is in fact a derivative
of a lower order than the numerator copula density. Thus, whenever the copula
density has a convenient form, so does Rc , and the conditional normalization does
not involve any costly integration. With this building block in hand, the multivariate
density model can be defined:

Definition 3.2. A Copula Bayesian Network (CBN) is a triplet C D .G ; 	C ;	f /
that defines fX.x/. G encodes the independencies f.Xi ? NDi j Pai /g, assumed
to hold in fX.x/. 	C is a set of local copula functions fCi.F.xi /; F.pai1/; : : : ;
F.paiki //g that are associated with the nodes of G that have at least one parent. In
addition,	f is the set of parameters representing the marginal densities fi .xi / (and
distributions Fi .xi /). The joint density fX.x/ then takes the form

fX.x/ D
nY
iD1
Rci

�
F.xi /; F.pai1/; : : : ; F.paiki /

�
fi .xi /:

Elidan showed that if the independencies encoded in G hold in fX.x/, then the joint
copula decomposes into a product of local copula ratio terms Rci . However, the
converse is only partially true. The above product

Q
i Rci .�/fi .xi / always defines

a valid joint density. However, the product
Q
i Rci , when each copula ratio is

constructed independently, does not always define a valid copula. In this case, the
marginals of the valid joint distribution do not necessarily equal to Fi .xi /.

While this may seem unacceptable from a copula perspective, the model offers
greater flexibility at the cost of marginal skewness, which in practice is not
substantial. Moreover, when the structure of the graph G is a tree, the model
collapses to the tree model described in Sect. 3.3.1, and the univariate marginals
are preserved. Further, when using the Gaussian copula, the correct marginals can
be maintained using an appropriate specification scheme, in which case the model is
equivalent to a nonparametric BN model [24]. See Sect. 3.3.5 for further discussion.

Importantly, the above flexibility allows for the use of efficient algorithmic
tools. Straightforwardly, assuming the marginals are estimated first, estimation of
the entire CBN model decomposes into independent estimation of local copulas.
Building on the same decomposability, standard greedy methods for structure
learning can also be employed. More interestingly, the representation gives rise
to approximate inference and structure learning innovations that are specifically
tailored to the model. The latter is briefly described next while the interested reader
is referred to Elidan [9] for details of the former.

3.3.3.2 Lightning-Speed Structure Learning

Elidan [10] tackles the challenge of automated structure learning of CBNs in a high-
dimensional settings. When the graph G is constrained to be a tree, the optimal
structure can be learned using a maximum spanning tree procedure [6]. More
generally, as the number of possible graphs is super-exponential in the number
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of variables, the common approach for structure learning is a greedy procedure
that involves local structure modifications (e.g., single edge addition, delete, and
reversal) and is guided by a model selection score. Typical scores, such as the
Bayesian Information Criterion (BIC) [43], balance the likelihood of the model and
its complexity. See, for example, Koller and Friedman [22] for details and variants.

The building block of essentially all score-based structure learning methods for
graphical models is the evaluation of the merit of an edge in the network. This
involves computing the likelihood gain that would result from adding an edge to
the network, which in turn involves estimation of the bivariate maximum likelihood
parameters. In the case of the CBN model, this involves computation of

Pm
lD1 log c O� .FX.xŒl�/; FY .yŒl�//;

where O� are the estimated parameters, xŒl� is the value of X in the l’th instance,
and the sum is over samples. Unfortunately, estimating O� , as well as the actual
computation of the log-likelihood function can be difficult. In fact, for non-Gaussian
real-valued models, even the learning of a tree structure can be prohibitive. Elidan
[10] proposes an alternative that builds on the fact that as m grows, the above
expression approaches the negative (differential) entropy:

�H.C�.U; V // D
Z
c� .u; v/ log c� .u; v/dudv; (3.7)

with U � FX; V � FY . However, computation of the copula entropy can also be
difficult since for most copula families the above integral does not have a closed
form. Instead, an efficient to compute proxy is proposed.

The relationship between Spearman’s rho rank correlation measure of association
�s.X; Y / � cov.U;V /

�.U /�.V /
and the copula function is well known: it can be easily shown

(e.g., [30]) that for a distribution fX;Y .x; y/ and its corresponding copula

�s.X; Y / D �s.C� / � 12

ZZ
C�.U; V /dudv � 3: (3.8)

Further, the vast majority of copula families define a concordance ordering where
�2 > �1 implies C�2.u; v/ > C�1.u; v/ for all u; v. Thus, for most copula families,
Spearman’s rho is monotonic in the dependence parameter � .

Elidan [10] identifies a further intriguing relationship: it is conjectured that
Spearman’s rho is monotonic in the copula entropy, possibly given some weak
necessary conditions. The result is proved for elliptical copulas and for the
Farlie-Gumbel-Morgenstern family. In addition, the conjecture is demonstrated via
simulation for varied families whose only known commonality is concordance
ordering.

Thus, in many cases, the easy to compute Spearman’s rho can be used as a proxy
to the expected log-likelihood, and asymptotically consistent model selection can
be carried out for tree models. For several real-life datasets, where the underlying
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distribution in unknown, a near monotonic relationship is demonstrated in practice
between the log-likelihood function and the empirical Spearman’s rho. For more
complex structures, Spearman’s rho can be used to heuristically guide the learning
procedure. The result is a lightning-speed procedure that learns structures that are as
effective in terms of generalization to unseen test data as those learned by a costly
exact procedure, with orders of magnitude improvement in running time. Appeal-
ingly, the running time improvement grows with the domain’s complexity. A 100
variable structure, for example, is learned in essentially the same time that it takes
to learn the structure of a naive Gaussian BN (less than a minute on a single CPU).

3.3.4 Copula Processes

Consider the problem of measuring the dependencies between real-valued measure-
ments of a continuous process. For example, the dependence between a rocket’s
velocity at different times as it leaves earth and how it relates to the dependence
between the rocket’s distances. As Wilson and Ghahramani [52] observe, these
quantities are naturally on different scales and have different marginal distributions.
Thus, it is desirable to separate the univariate effect from the dependence structure.
Toward this goal, they define a copula process which can describe the dependence
between arbitrarily many random variables.

Definition 3.3. Let fXtg be a collection of random variables indexed by t with
marginal distributions Ut � Ft .Xt/. Let Gt be the marginal distributions of a base
process, and letH be the base joint distribution.Xt is a copula process with Gt ;H ,
denotedXt � CP.Gt ;H/, if for every finite set of indices I D ft1; : : : ; tng

P
�\n

iD1fG�1
ti
.Uti / � ai g

� D Ht1;:::;tn .a1; : : : ; an/;

where G�1
t is the quasi-inverse of Gt . That is, for all ti 2 I , H defines the joint

distribution over fG�1
ti

gti2I .

As an example, consider the case where the base measure is a Gaussian process
(GP). Xt is a GP if for every finite subset of indices I , the set fXti gti2I has
a multivariate Gaussian distribution. To allow for a variable size set I , a GP
is parameterized by a mean function m.t/ that determines the expectation of the
random variable Xt , and a kernel function k.t; t 0/ that determines the covariance of
Xt and Xt 0 . GPs are widely used in machine learning to define distributions over an
arbitrary number of random variables or functions (see Rasmussen [37]). When the
base measure is chosen to be a GP, we say that Xt has a Gaussian copula process
(GCP) distribution. This is equivalent to the existence of a mapping � such that
�.Xt/ is a GP. We denote this by Xt � GCP.�;m.t/; k.t; t 0//.

In principle, given complete samples and a known mapping, one can estimate
a GCP by simply transforming the data and using black box procedures for GP
estimation, such as that of Snelson et al. [48]. Wilson and Ghahramani, however,
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consider a more challenging application setting that requires further algorithmic
innovation. Concretely, they introduce a volatility model where the unobserved
standard deviations of the data follow a GCP distribution

�t � GCP.g�1; 0; k.t; t 0//:

The observations Xt � N.0; �2t / are assumed to follow a normal distribution,
though this assumption can easily be relaxed. The difficulty is rooted in the fact that
the �t ’s are never observed and that the so-called warping function g is unknown.

Let � be the parameters that define both the GP covariance function and the
warping function. Further, using a different notation from Wilson and Ghahramani
to maintain consistency, let zt D g�1.�t / be the latent function values that have a
GP distribution. The central components involved in estimating � from samples xt
and making prediction at some unrealized time t? are:

• A Laplace approximation for the posterior f .fZ.zt? / j y; �/.
• A Markov Chain Monte Carlo technique to sample from this posterior, specifi-

cally the elliptical slice sampling method [29].
• A flexible parametric as well as nonparametric warping functions to transform

the samples into standard deviation space.

We refer the interested reader to Wilson and Ghahramani [52] for the details, as well
as favorable results relative to a GARCH model when applied to financial data.

3.3.5 Comparative Summary

In this section we summarize the relative merits of the different multivariate
approaches presented in the previous sections. Also discussed is the relationship
to vine models and a related BN-based construction. Table 3.1 summarizes the
properties of each of the models discussed.

Vine models [3, 19] have become the dominant tool in the copula community
for the construction of flexible multivariate copulas. The widely studied formalism
builds on successive conditioning and the use of bivariate copulas to construct
multivariate distributions. While the framework is quite general, the seemingly
bivariate estimation relies on conditional terms of greater dimension that can be hard
to estimate. In practice, most applications are computationally limited to less than
10 variables, with recent innovations (e.g., [5]) somewhat pushing this boundary.

The tree-average distribution model of Kirshner [21] described in Sect. 3.3.1
generalizes Darsow’s Markovian operator and allows for the construction of
high-dimensional copulas via a composition of (unconditional) bivariate copulas.
Appealingly this requires only bivariate estimation but is hampered by the indepen-
dence assumptions implied by the tree structure. These assumptions are relaxed by
allowing for a mixture of all trees construction which is efficiently learned using a
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Table 3.1 Summary of the different copula-based multivariate models

Model References Variables Structure Copula Comments

Vines [1, 3, 25] < 10 in practice Conditional
dependence

Any bivariate Well understood
general purpose
framework

Nonparametric
BBN

[16, 24] 100s BN C vines Gaussian in
practice

Mature
application

Tree-averaged [21, 46]
Section 3.3.1

10s Mixture
of trees

Any bivariate Requires only
bivariate
estimation

Nonparanormal [26]
Section 3.3.2

100–1000s MN Gaussian High-dimensional
estimation with
theoretical
guarantees

Copula networks [8, 10]
Section 3.3.3

100s BN Any Flexible at the
cost of partial
control over
marginals

Copula
processes

[18, 52]
Section 3.3.4

1 (replications) � Multivariate Nonparametric
generalization of
Gaussian
processes

compactly represented prior. A Bayesian refinement of the work was later suggested
by Silva and Gramacy [46]. The construction is practical for 10s of variables.

Distribution-free or nonparametric belief Bayesian networks (NPBBNs) [16, 24]
are aimed at overcoming the limitations of simple vines by using a BN structure
to encode a decomposition of the joint distribution and employing local vines to
encode fXi jPai . In principle, the construction can be used with any copula for which
the specified conditional rank correlations can be realized. In practice, this can be
carried out easily only when using an elliptical copula. That said, NPBBNs have led
to the most mature and large-scale copula constructions to date.

CBNs [8], developed in the machine learning community, also use a BN structure
to encode independencies that are assumed to hold in the distribution. The local
conditional density, however, is parameterized differently via a proper normalization
of a joint local copula over a variable and its parents in the graph. For tree
structured models, a CBN reduces to the tree construction suggested by Kirshner
[21]. When using a Gaussian copula, as discussed, it is also possible to estimate the
parameters of the entire model so to ensure preservation of the univariate marginals.
Thus specified, the model is equivalent to NPBBNs using local Gaussian copulas.
However, CBNs also allow for greater flexibility at the cost of “skewed” marginals.
Intuitively, this results from overlapping influences of multiple parents of a variable.
Practically, since each local density is parameterized via an estimated joint copula
with the same marginals, the overall univariate marginals are quite accurate. From
a given marginals viewpoint this may be unacceptable. However, from a broader
modeling perspective, in the face of finite data and an unknown joint distribution,
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the goals of maximum likelihood and full control over the univariate marginals are
competing ones. In this light, a balance between flexible modeling and univariate
control may be beneficial. Importantly, if one is willing to strike this balance, then
the CBN construction opens the door for algorithmic advances from the field of
probabilistic graphical models. Indeed, the experiments presented in Elidan [8]
are the largest where the structure of the model was automatically learned. The
construction also subsequently led to specifically tailored efficient inference [9] and
structure learning methods [10].

The nonparanormal method of Liu et al. [26] tackles the problem of structure
learning in the complementing representation of undirected graphs. While it is
specifically focused on an Gaussian copula, it provides appealing theoretical guaran-
tees of consistency when the data is generated from the model, as well as risk con-
sistency guarantees when samples arise from a different distribution. Importantly,
the method applies to the previously unstudied regime of nonparametric estimation
in high-dimensions when the number of parameters exceeds that of the samples.

Finally, the copula process model of Wilson and Ghahramani [52] defines a
distribution over an infinite number of random variables while allowing for the
explicit control over the marginals, thus generalizing Gaussian processes. We note
that “infinite” here may be misleading since a “variable” is a replication, and
Gaussian processes can also suffer from computational limitations. An obvious
but challenging future prospect is the combination of this construction with local
decomposability.

3.4 Information Estimation

Estimation of the mutual information of a set of variables is a fundamental
challenge in machine learning that underlies numerous tasks ranging from learning
the structure of graphical models to independent component analysis to image
registration. However, for real-valued non-Gaussian random variables, estimation of
different information measures can be difficult. In particular, the plug-in approach of
computing the information based on an estimated density is often ineffective due to
the difficulty of constructing complex joint distributions. Fortunately, just as copulas
are opening new frontiers for modeling high-dimensional complex densities, so do
they offer new opportunities for estimation of information measures. In this section
we describe a series of recent works that build on such opportunities.

For all works discussed below, let XŒ1 W m� D XŒ1�; : : : ;XŒm� be m i.i.d.
samples of X. The first (obvious in the context of copulas) step of all works is
a rank-based transform Zi Œl� D 1

m

Pm
kD1 1Xi Œl�	Xi Œk�. Asymptotically, Zi will be

uniformly distributed on Œ0; 1�. However, the random samples ZŒ1�; : : : ;ZŒm� are
no longer independent. The works below take advantage of the former property and
overcome the limitations of the latter consequence to produce appealing information
estimators.
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3.4.1 Information Estimation Based on Graph Optimization

The goal of both Póczos et al. [36] and Pal et al. [32] is to effectively estimate the
Rényi information defined as

I˛.X/ D 1
˛

log
R
f ˛

X .x/
�Q

i fi .xi /
�1�˛

dx:

Note that when ˛ ! 1, Rényi information converges to the well-known Shannon’s
mutual information measure. Rather than attempting to estimate fX.x/ which is a
nuisance parameter, both works perform direct nonparametric estimation of I˛.X/
by combining copula-based tools and graph-based estimators for the Rényi entropy

H˛.X/ D 1
˛

log
R
f ˛

X .x/dx:

Although both works contain interesting contributions, for clarity of exposition we
focus on the former and encourage the interested reader to explore the latter.

Let G be a graph with m nodes. Note that this is not a probabilistic graphical
model over X but rather a graph whose nodes will index the training samples. Let
E.G/ be the set of edges in G and let G be a family of such graphs. For example,
GST will correspond to the family of all spanning trees overm nodes. Now define

Lm.XŒ1 W m�/ D min
G2G

X
l;k2E.G/

kXŒl � � XŒk�kp:

In words, Lm.�/ is the minimum p-power weighted edge length of graphs in G . For
example, for GST and p D 1, Lm.�/ is simply the length of the minimal spanning
tree, a quantity readily found using efficient graph optimization. Remarkably,Lm.�/
is also useful for entropy estimation:

Theorem 3.1 (Steele [49]). Let n 
 2; 0 < ˛ < 1, and let XŒ1 W m� be i.i.d. random
vectors supported on Œ0; 1�n with density fX. Define the estimator

Hm.XŒ1 W m�/ D 1

1 � ˛
log

Lm.XŒ1 W m�/
�n;˛m˛

;

where �n;˛ is a constant that does not depend on fX. Then,Hm.XŒ1 W m�/ ! H˛.X/
almost surely as m ! 1 (similar theorems exist for other graph families G , see
Póczos et al. [36] for details and references).

The first obstacle in using the above theorem is that it applies to variables that
are supported on Œ0; 1�n. This is easily overcome by the rank-based transform that
results in ZŒ1�; : : : ;ZŒm�. Now, since Zi is defined via a measurable invertible
mapping, I˛.Z/ D I˛.X/. Further, since the marginals of Z are uniform, we have
I˛.Z/ D �H˛.Z/ so that an entropy estimator can used to estimate information
(this generalizes the known fact that Shannon’s information is equal to the negative



3 Copulas in Machine Learning 57

copula entropy). The transform, however, introduces a new difficulty since the
samples ZŒm� are now dependent. Poczos et al. [36] shows that despite this the
estimator has favorable strong consistency and robustness properties. They also
demonstrate the advantage of their rank-based approach in practice, for an image
registration task.

3.4.2 Kernel-Based Dependency Measures

Like the above works, Póczos et al. [34] also start with an empirical rank trans-
formation of the data followed by the application of an existing distance measure
between distributions. The combination, however, is quite different than the graph
optimization-based approaches described above. Omitting most of the technical
details, we briefly present the high level idea and the merits of the resulting estima-
tor. We start with the definition of the maximum mean discrepancy (MMD) measure
of distributions similarity, which can be efficiently estimated from i.i.d. samples:

Definition 3.4. Let F be a class of functions, P and Q be probability distributions.
The MMD between P and Q on the function class F is defined as follows:

M ŒF ; P;Q� � supf 2F

�
EX
P Œf .x/� � EY
QŒf .y/�

�
:

We will focus on functional spaces that are a reproducing kernel Hilbert Space
(RKHS), a fundamental tool in machine learning [42]. Without going into the techni-
cal definition, the notion of RKHS is important since, assuming that F is a unit ball
of RKHS H , measures such as M .F ; P;Q/ and related quantities can be estimated
efficiently [4]. Building on this fact, consider the following dependence measure

Ik.X1; : : : ; Xn/ � M .F ; FX; FU/;

where we use FU to denote the n-dimensional uniform distribution. Póczos et al.
[34] show that if one chooses F properly (a RKHS with an additional denseness
requirement), then Ik is a proper dependence measure that follows Schweizer and
Wolffs’s intuitive axioms [44]. They suggest an empirical estimator for Ik that is
based on an empirical MMD estimation of the rank transformed samples ZŒm�, and
prove that their easy to compute estimator is almost surely consistent. Further, they
provide upper bound convergence rates. Finally, they demonstrate the merit of the
estimator in practice in the context of a feature selection task.

3.5 Summary

In the introduction it was argued that, in the context of multivariate modeling and
information estimation, the complementing strengths and weaknesses of the fields of
machine learning and that of copulas offer opportunities for symbiotic constructions.
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This paper surveyed the main such synergic works that recently emerged in the
machine learning community.

While discrete high-dimensional modeling has been studied extensively, real-
valued modeling for more than a few dimensions is still in its infancy. There exists
no framework that is as general and as flexible as copulas for multivariate modeling.
Thus, it is inevitable that machine learning researchers who aim to stop discretizing
data will have to pay serious attention to the power of copulas. Conversely, if
researchers in the copula community aim to cope with truly high-dimensional
challenges, algorithmic prowess, a focus of the machine learning community, will
have to be used. True, impressive large-scale models have been built using NPBBNs.
However, the multi-year endeavor supported by human expertise cannot be scaled
up or easily applied to a broad range of problems. Consequently, automated learning
of models that takes into account the difficulties presented by the high-dimensional
and partially observed setting is clearly needed. The goal of this survey is to provide
an entry point for those aiming to tackle this far from realized challenge.

Acknowledgments G. Elidan was partially supported by a Google research grant and by an Israeli
Science Foundation Center of Research grant.
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Chapter 4
An Overview of the Goodness-of-Fit Test
Problem for Copulas

Jean-David Fermanian

Abstract We review the main “omnibus procedures” for goodness-of-fit (GOF)
testing for copulas: tests based on the empirical copula process, on probability
integral transformations (PITs), on Kendall’s dependence function, etc., and some
corresponding reductions of dimension techniques. The problems of finding asymp-
totic distribution-free test statistics and the calculation of reliable p-values are
discussed. Some particular cases, like convenient tests for time-dependent copulas,
for Archimedean or extreme-value copulas, etc., are dealt with. Finally, the practical
performances of the proposed approaches are briefly summarized.

4.1 Introduction

Once a model has been stated and estimated, a key question is to check whether
the initial model assumptions are realistic. In other words, and even it is sometimes
eluted, every modeler is faced with the so-called goodness-of-fit (GOF) problem.
This is an old-dated statistical problem that can be rewritten as: denoting by F the
cumulative distribution function (cdf hereafter) of every observation, we would like
to test

H0 W F D F0; against Ha W F ¤ F0;

for a given cdf F0, or, more commonly,

H0 W F 2 F ; against Ha W F 62 F ;
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for a given family of distributions F WD fF�; � 2 	g. This distinction between
simple and composite assumptions is traditional and we keep it. Nonetheless, except
in some particular cases (test of independence, e.g.), the latter framework is a lot
more useful than the former in practice.

Some testing procedures are “universal” (or “omnibus”), in the sense they can
be applied for any underlying distribution. In other terms, they do not depend on
some particular properties of F0 or of the assumed family F . Such tests are of
primary interest for us. Note that we will not consider Bayesian testing procedures,
as proposed in [54], for instance.

To fix the ideas, consider an i.i.d. sample .X1; : : : ;Xn/ of a d -dimensional
random vector X. Its joint cdf is denoted by F , and the associated marginal cdfs’
by Fj , j D 1; : : : ; d . Traditional key quantities are provided by the empirical
distribution functions of the previous sample: for every x 2 R

d , set d marginal cdfs’

Fn;k.xk/ WD n�1
nX
iD1

1.Xi;k � xk/; k D 1; : : : ; d;

and the joint empirical cdf Fn.x/ WD n�1Pn
iD1 1.Xi � x/: The latter inequality

has to be understood componentwise. Most of the “omnibus” tests are based on
transformations of the underlying empirical distribution function or of the empirical
process Fn WD p

n.Fn � F0/ itself: Tn D  n.Fn/ or Tn D  n.Fn/. It is the case
of the famous Kolmogorov–Smirnov (KS), Anderson–Darling (AD), Cramer–von
Mises (CvM), and chi-squared tests, for example.

Naively, it could be thought the picture is the same for copulas and that
straightforward modifications of standard GOF tests should do the job. Indeed, the
problem for copulas can be simply written as testing

H0 W C D C0; against Ha W C ¤ C0; or

H0 W C 2 C ; against Ha W C 62 C ;

for some copula family C WD fC�; � 2 	g. Moreover, empirical copulas, introduced
by Deheuvels in the 1980s (see [23–25]), play the same role for copulas as standard
empirical cdfs’ for general distributions. For any u 2 Œ0; 1�d , they can be defined by

Cn.u/ WD Fn.F
.�1/
n;1 .u1/; : : : ; F

.�1/
n;d .ud //;

with the help of generalized inverse functions, or by

NCn.u/ WD 1

n

nX
iD1

1.Fn;1.Xi;1/ � u1; : : : ; Fn;d .Xi;d / � ud /:

It can be proved easily that kCn� NCnk1 � dn�1 (see [36]). Then, for the purpose of
GOF testing, working with Cn or NCn does not make any difference asymptotically.
In every case, empirical copulas are explicit functionals of the underlying empirical
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cdf: Cn D �.Fn/. Thus, any previous GOF test statistics for copulas could be
defined as Tn D  n.Cn/ D  n ı �.Fn/. But this functional � is sufficient to induce
significant technical difficulties, when applied to standard statistical procedures.

Actually, the latter parallel applies formally, but strong differences appear in
terms of the limiting laws of the “copula-related” GOF test statistics. Indeed, some
of them are distribution-free in the standard case, i.e., their limiting laws under the
null do not depend on the true underlying law F , and then, they can be tabulated: KS
(in the univariate case), chi-squared tests, for example. Unfortunately, it is almost
impossible to get such nice results for copulas, due to their multivariate nature and
due to the complexity of the previous mapping betweenFn and Cn. Only a few GOF
test techniques for copulas induce distribution-free limiting laws. Therefore, most
of the time, some simulation-based procedures have been proposed for this task.

In Sect. 4.2, we discuss the “brute-force” approaches based on some distances
between the empirical copula Cn and the assumed copula (under the null), and
we review the associated bootstrap-like techniques. We detail how to get asymp-
totically distribution-free test statistics in Sect. 4.3, and we explain some testing
procedures that exploit the particular features of copulas. We discuss some ways of
testing the belonging to some “large” infinite-dimensional families of copulas like
Archimedean, extreme-value, vine, or HAC copulas in Sect. 4.4. Tests adapted to
time-dependent copulas are introduced in Sect. 4.5. Finally, empirical performances
of these GOF tests are discussed in Sect. 4.6.

4.2 The “Brute-Force” Approach: The Empirical Copula
Process and the Bootstrap

4.2.1 Some Tests Based on Empirical Copula Processes

Such copula GOF tests are the parallels of the most standard GOF tests in the
literature, replacing Fn (resp. F0) by Cn (resp. C0). These statistics are based
on distances between the empirical copula Cn and the true copula C0 (simple
zero assumption), or between Cn and C O�n (composite zero assumption), for some

convergent and convenient estimator O�n of the “true” copula parameter �0. It is
often reduced simply to the evaluation of norms of the empirical copula process
Cn WD p

n.Cn � C0/, or one of its approximations OCn WD p
n.Cn � C O�n/.

In this family, let us cite the KS type statistics

T KS
n WD kCnk1 D sup

u2Œ0;1�d
jpn.Cn � C0/.u/j;

and the AD type statistics

T AD
n WD kCnkL2 D n

Z
.Cn � C0/2.u/wn.u/ du;
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for some positive (possibly random) weight function wn, and their composite
versions. By smoothing conveniently the empirical copula process, [70] defined
alternative versions of the latter tests.

In practice, the statistics T KS
n seem to be less powerful than a lot of competitors,

particularly of the type T AD
n (see [46]). Therefore, a “total variation” version of

T KS
n has been proposed in [37] that appears significantly more powerful than the

classical T KS
n :

T ATV
n WD sup

B1;:::;BLn

LnX
kD1

jCn.Bk/j; or OT ATV
n WD sup

B1;:::;BLn

LnX
kD1

j OCn.Bk/j;

for simple or composite assumptions, respectively. Above, the supremum is taken
over all disjoint rectangles B1; : : : ; BLn � Œ0; 1�d , and Ln � lnn.

Another example of distance is proposed in [71]: let two functions f1 and f2
in R

d . Typically, they represent copula densities. Set a positive definite bilinear
form as

< f1; f2 >WD
Z

d .x1; x2/ f1.x1/f2.x2/ dx1 dx2;

where 
d .x1; x2/ WD exp.�kx1 � x2k2=.2dh2//, for some Euclidian norm k � k
in R

d and a bandwidth h > 0. A squared distance between f1 and f2 is given
simply by �.f1; f2/ WD< f1 � f2; f1 � f2 >D< f1; f1 > �2 < f1; f2 > C
< f2; f2 >. When f1 and f2 are the copula densities of C1 and C2, respectively,
the three latter terms can be rewritten in terms of copula directly. For instance,
< f1; f2 >D R


d .x1; x2/ C1.dx1/ C2.dx2/: Since such expressions have simple
empirical counterparts, a GOF test for copulas can be built easily: typically, replace
C1 by the empirical copula Cn and C2 by the true copula C0 (or C O�n ).

Closely connected to this family of tests are statistics Tn that are zero when the
associated copula processes are zero, but not the opposite. Strictly speaking, this is
the case of the CvM statistics

T CvM
n WD n

Z
.Cn � C0/

2.u/ Cn.du/;

and of chi-squared type test statistics, like

T Chi
n WD n

pX
kD1

wk.Cn � C0/2.Bk/;

where B1; : : : ; Bp denote disjoint boxes in Œ0; 1�d and wk , k D 1; : : : ; p are
convenient weights (possibly random). More generally, we can consider

T �n WD
pX
kD1

�.Cn.Ek/; C0.Ek//; or T �n WD
pX
kD1

�.Cn.Ek/; C O�n.Ek//;
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for any metric � on the real line, and arbitrary subsets E1; : : : ; Ep in Œ0; 1�d .
This is the idea of the chi-square test detailed in [30]: set the vectors of pseudo-
observations OUi WD .Fn;1.Xi;1/; : : : ; Fn;d .Xi;d //, and a partition of Œ0; 1�d into p
disjoint rectangles Bj . The natural chi-square-style test statistics is

T �n WD
pX
kD1

� ONk � pk. O�n/
�2

npk. O�n/

where ONk denotes the number of vectors OUi , i D 1; : : : ; n that belong to Bk , and
pk.�/ denotes the probability of the event fU 2 Bkg under the copula C� . This idea
of applying an arbitrary categorization of the data into contingency tables Œ0; 1�d has
been applied more or less fruitfully in a lot of papers: [4, 33, 41, 58, 59], etc.

Finally, note that a likelihood ratio test has been proposed in [30], based on
a Kullback–Leibler pseudo distance between a “discrete” version of Cn and the
corresponding estimated copula under the null:

T LR
n WD

pX
kD1

Nk lnpk. O�n/:

To compare the fit of two potential parametric copulas, the same information
criterion has been used in [28] to build a similar test statistics but based on copula
densities directly.

The convergence of all these tests relies crucially on the fact that the empirical
copula processes Cn and OCn are weakly convergent under the null, and for
convenient sequences of estimates O�n: see [36, 38, 82]. Particularly, it has been
proved that Cn tends weakly in `1.Œ0; 1�d / (equipped with the metric induced by
the sup-norm) to a Gaussian process GC0 , where

GC0.u/ WD BC0.u/�
dX
jD1

@j C0.u/BC0.uj ; 1�j /; 8u 2 Œ0; 1�d ;

with obvious notations and for some d -dimensional Brownian bridge BC0 in Œ0; 1�d ,
whose covariance is

E ŒBC0.u/BC0.v/� D C0.u ^ v/� C0.u/C0.v/; 8.u; v/ 2 Œ0; 1�2d :

To get this weak convergence result, it is not necessary to assume that C0
is continuously differentiable on the whole hypercube Œ0; 1�d , a condition that
is often not fulfilled in practice. Recently, [87] has shown that such a result is
true when, for every j D 1; : : : ; d , @jC0 exists and is continuous on the set
fu 2 Œ0; 1�d ; 0 < uj < 1g.



66 J.-D. Fermanian

Clearly, the law of G involves the particular underlying copula C0 strongly
contrary to usual Brownian bridges. Therefore, the tabulation of the limiting laws of
Tn GOF statistics appears difficult. A natural idea is to rely on computer intensive
methods to approximate these law numerically. The bootstrap appeared as a natural
tool for doing this task

4.2.2 Bootstrap Techniques

The standard nonparametric bootstrap is based on resampling with replacement
inside an original i.i.d. X-sample SX. We get new samples S�

X D .X�
1 ; : : : ;X

�
n/.

Associate to every new sample S�
X its “bootstrapped” empirical copula C �

n and its
bootstrapped empirical processC�

n WD p
n.C �

n �Cn/. In [36], it is proved that, under
mild conditions, this bootstrapped process C�

n is weakly convergent in `1.Œ0; 1�d /
towards the previous Gaussian process GC0 . Therefore, in the case of simple null
assumptions, we can get easily some critical values or p-values of the previous GOF
tests: resample M times, M >> 1, and calculate the empirical quantiles of the
obtained bootstrapped test statistics. Nonetheless, this task has to be done for every
zero assumption. This can become a tedious and rather long task, especially when
d is “large” (> 3 in practice) and/or with large datasets (> 1; 000, typically).

When dealing with composite assumptions, some versions of the parametric
bootstrap are advocated, depending on the limiting behavior of O�n � �0: see the
theory in [40], and the appendices in [46] for detailed examples. To summarize
these ideas in typical cases, it is now necessary to draw random samples from C O�n .
For every bootstrapped sample, calculate the associated empirical copula C �

n and a
new estimated value O��

n of the parameter. Since the weak limit of
p
n.C �

n �C O��

n
/ is

the same as the limit of OCn D p
n.Cn �C O�n/, the law of every functional of OCn can

be approximated. When the cdf C O�n cannot be evaluated explicitly (in closed-form),
a two-level parametric bootstrap has been proposed in [40], by bootstrapping first
an approximated version of C O�n .

Instead of resampling with replacement, a multiplier bootstrap procedure can
approximate the limiting process GC0 (or one of its functionals), as in [80]: consider
Z1; : : : ; Zn i.i.d. real centered random variables with variance one, independent of
the data X1; : : : ;Xn. A new bootstrapped empirical copula is defined by

C �
n .u/ WD 1

n

nX
iD1

Zi :1.Fn;1.Xi;1/ � u1; : : : ; Fn;d .Xi;d / � ud /;

for every u 2 Œ0; 1�d . Setting NZn WD n�1Pn
iD1 Zi , the process ˇn WD p

n.C �
n �

NZnCn/ tends weakly to the Brownian bridge BC0 . By approximating (by finite
differences) the derivatives of the true copula function, it is shown in [80] how
to modify ˇn to get an approximation of GC0 . To avoid this last stage, another
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bootstrap procedure has been proposed in [14]. It applies the multiplier idea to the
underlying joint and marginal cdfs’ and invoke classical delta method arguments.
Nonetheless, despite more attractive theoretical properties, the latter technique does
not seem to improve the initial multiplier bootstrap of [80]. In [61], the multiplier
approach is extended to deal with parametric copula families of any dimension, and
the finite-sample performance of the associated CvM test statistics has been studied.
A variant of the multiplier approach has been proposed in [60]. It is shown that the
use of multiplier approaches instead of the parametric bootstrap leads to a strong
reduction in the computing time. Note that both methods have been implemented in
the copula R package.

Recently, in [37], a modified nonparametric bootstrap technique has been
introduced to evaluate the limiting law of the previous KS-type test statistics T ATV

n

in the case of composite zero assumptions. In this case, the key process is still

OCn WD p
n.Cn � C O�n/ D Cn � p

n.C O�n � C�0/:

Generate a usual nonparametric bootstrap sample, obtained after resampling with
replacement from the original sample. This allows the calculation of the boot-
strapped empirical copula C �

n and a new parameter estimate O��
n . Instead of

considering the “intuitive” bootstrapped empirical copula process
p
n.C �

n � C O��

n
/,

a new bootstrapped process is introduced:

Y
�
n WD p

n.C �
n � Cn/� p

n.C O��

n
� C O�n/:

Indeed, the process
p
n.C �

n �C O��

/, while perhaps a natural candidate, does not yield

a consistent estimate of the distribution of OCn, contrary to Y
�
n . For the moment, the

performances of this new bootstrapped process have to be studied more in depth.

4.3 Copula GOF Test Statistics: Alternative Approaches

4.3.1 Working with Copula Densities

Even if the limiting laws of the empirical copula processes Cn and OCn involve
the underlying (true) copula in a rather complex way, it is still possible to get
asymptotically distribution-free test statistics. Unfortunately, the price to be paid
is an additional level of complexity.

To the best of our knowledge, there exists a single strategy. The idea is to rely on
copula densities themselves, rather than copulas (cdfs’). Indeed, testing the identity
C D C0 is equivalent to studying the closeness between the true copula density

0 (w.r.t. the Lebesgue measure on Œ0; 1�d , that is assumed to exist) and one of its
estimates 
n. In [33], a L2-distance between 
n and 
0 allows to build convenient
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test statistics. To be specific, a kernel estimator of a copula density 
 at point u is
defined by


n.u/ D 1

hd

Z
K
�u � v

h

�
Cn.dv/ D 1

nhd

nX
iD1

K

 
u � OUi

h

!
;

where OUi WD .Fn;1.Xi;1/; : : : ; Fn;d .Xi;d // for all i D 1; : : : ; n. Moreover, K is a
d -dimensional kernel and h D h.n/ is a bandwidth sequence, chosen conveniently.
Under some regularity assumptions, for every m and every vectors u1; : : : ;um in
�0; 1Œd , such that 
0.uk/ > 0 for every k, the vector .nhd /1=2..
n � 
0/.u1/; : : : ;
.
n � 
0/.um// tends weakly to a Gaussian random vector, whose components are
independent. Therefore, under the null, the test statistics

T 
;0n D nhdR
K2

mX
kD1

.
n.uk/� 
0.uk//2


0.uk/2
�

tends in law towards a m-dimensional chi-squared distribution. This can be adapted
easily for composite assumptions. The previous test statistics depend on a finite and
arbitrary set of points uk , k D 1; : : : ; m. To avoid this drawback, [33] has introduced

Jn D
Z
.
n �Kh � O
/2.u/!.u/ du;

for some nonnegative weight function !. Here, O
 denotes 
0 (simple assumption)
or 
.�; O�n/ (composite assumption), for sufficiently regular estimates O�n of �0. It is
proved that

T 
;1n WD
n2hd

�
Jn � .nhd /�1

R
K2.t/:. O
!/.u � ht/ d t du C .nh/�1

R O
2!:Pd
rD1

R
K2
r

�2

2
R O
2! � R ˚R K.u/K.u C v/ du

�2
dv

tends to a �2.1/ under the null.
Even if the previous test statistics are pivotal, they are rather complex and require

the choice of smoothing parameters and kernels. Nonetheless, such ideas have been
extended in [86] to deal with the fixed design case. Moreover, the properties of these
tests under fixed alternatives are studied in [13]. The impact of several choices of
parameter estimates O�n on the asymptotic behavior of Jn is detailed too. Apparently,
for small sample sizes, the normal approximation does not provide sufficiently exact
critical values (in line with [51] or [32]), but it is still possible to use a parametric
bootstrap procedure to evaluate the limiting law of T 
n in this case. Apparently, in
the latter case, the results are as good as the main competitors (see [13], Sect. 5).

Since copula densities have a compact support, kernel smoothing can gener-
ate some undesirable boundary effects. One solution is to use improved kernel
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estimators that take care of the typical corner bias problem, as in [70]. Another
solution is to estimate copula densities through wavelets, for which the border
effects are handled automatically, due to the good localization properties of the
wavelet basis: see [45]. This idea has been developed in [39], in a minimax theory
framework, to determine the largest alternative for which the decision remains
feasible. Here, the copula densities under consideration are supposed to belong to
a range of Besov balls. According to the minimax approach, the testing problem is
then solved in an adaptive framework.

4.3.2 The Probability Integral Transformation

A rather simple result of probability theory, proposed initially in [81], has attracted
the attention of authors for copula GOF testing purpose. Indeed, this transformation
maps a general d -dimensional random vector X into a vector of d independent
uniform random variables on Œ0; 1� in a one-to-one way. It is known as Rosenblatt’s
or probability integral transformation (PIT). Once the joint law of X is known
and analytically tractable, this is a universal way of generating independent and
uniform random vectors without losing statistical information. Note that other
transformations of the same type exist (see [22]).

To be specific, the copula C is the joint cdf of U WD .F1.X1/; : : : ; Fd .Xd//. We
define the d -dimensional random vector V by

V1 WD U1 D F1.Z1/; V2 WD C.U2jU1/; � � � ; Vd WD C.Ud jU1; : : : ; Ud�1/; (4.1)

where C.�ju1; : : : ; uk�1/ is the law of Uk given U1 D u1; : : : ; Uk�1 D uk�1, k D
2; : : : ; d . Then, the variables Vk , k D 1; : : : ; d are uniformly and independently
distributed on Œ0; 1�. In other words, U � C iff V D R.U/ follows the d -variate
independence copula C?.u/ D u1: � � � :ud .

The main advantage of this transformation is the simplicity of the transformed
vector V. This implies that the zero assumptions of a GOF test based on V
are always the same: test the i.i.d. feature of V, that is satisfied when C is
the true underlying copula. A drawback is the arbitrariness in the choice of the
successive margins. Indeed, there are at most dŠ different PITs that induce generally
different test statistics. Another disadvantage is the necessity of potentially tedious
calculations. Indeed, typically, the conditional joint distributions are calculated
through the formulas

C.ukju1; : : : ; uk�1/

D @k�1
1;2;:::;k�1C.u1; : : : ; uk; 1; : : : ; 1/=@k�1

1;2;:::;k�1C.u1; : : : ; uk�1; 1; : : : ; 1/;

for every k D 2; : : : ; d and every u 2 Œ0; 1�d . Therefore, with some copula families
and/or with large dimensions d , the explicit calculation (and coding!) of the PIT can
become unfeasible.
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The application of such transformations for copula GOF testing appeared
first in [12]. This idea has been reworked and extended in several papers after-
wards: see [8, 10, 31, 43], etc. Several applications of such techniques to financial
series modeling and risk management has emerged, notably [19, 27, 63, 65, 92],
among others.

For copula GOF testing, we are only interested in the copula itself, and the
marginal distributionsFk , k D 1; : : : ; d are seen as nuisance parameters. Therefore,
they are usually replaced by the marginal empirical cdfs’ Fn;k . Equivalently, the
observations Xi , i D 1; : : : ; n are often replaced by their pseudo-observations
OUi WD .Fn;1.Xi;1/; : : : ; Fn;d .Xi;d //. Moreover, for composite zero assumptions, the
chosen estimator O�n disturbs the limiting law of the test statistics most of the time.
This difficulty is typical of the statistics of copulas, and it is a common source
of mistakes, as pointed out in [34]. For instance, in [12], these problems were
not tackled conveniently and the reported p-values are incorrect. Breymann et al.
[12] noticed that the r.v.

Pd
kD1Œ˚�1.Vk/�2 follows a �2.d/. But it is no more the

case of
Pd

kD1Œ˚�1. OVn;k/�2, where OV D R. OU/. This point has been pointed out
in [40]. A corrected test statistics with reliable p-values has been introduced in [31].
An extension of these tests has been introduced in [10]. It implies data-driven
weight functions to emphasize some regions of the underlying copula possibly. Its
comparative performances are studied in [8, 9].

Thus, to the best of our knowledge, all the previous proposed tests procedures
have to rely on bootstrap procedures to evaluate the corresponding limiting laws
under the null. This is clearly a shame, keeping in mind the simplicity of the law
of V, after a PIT of the original dataset (but with known margins). In practice,
we have to work with (transformed) pseudo-observations OVi , i D 1; : : : ; n. As
we said, they are calculated from formulas (4.1), replacing unobservable uniformly
distributed vectors Ui by pseudo-observations OUi , i D 1; : : : ; n. The vectors OVi are
no longer independent and only approximately uniform on Œ0; 1�d . Nonetheless, test
statistics T  ;PIT

n D  . OV1; : : : ; OVn/may be relevant, for convenient real functions .
In general and for composite zero assumptions, we are not insured that the law of
OV, denoted by C1;V, tends to the independence copula. If we were able to evaluate
C1;V, a “brute-force” approach would still be possible, as in Sect. 4.2. For instance
and naively, we could introduce the Kolmogorov-type statistics

T KM;PIT
n WD sup

u2.0;1/d
j1
n

nX
iD1

1. OVi � u/ � C1;V.u/j:

Nonetheless, due to the difficulty to evaluate precisely C1;V (by Monte-Carlo, in
practice), most authors have preferred to reduce the dimensionality of the problem.
By this way, they are able to tackle more easily the case d 
 3.
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4.3.3 Reductions of Dimension

Generally speaking, in a GOF test, it is tempting to reduce the dimensionality
of the underlying distributions, for instance from d to one. Indeed, especially
when d >> 1, the “brute-force” procedures based on empirical processes involve
significant analytical or numerical difficulties in practice. For instance, a CvM
necessitates the calculation of a d -dimensional integral.

Formally, a reduction of dimension means replacing the initial GOF problem
“H0 W the copula of X is C0” by “H �

0 W the law of  .X/ is G ;0”, for some
transformation W Rd ! R

p , with p << d , and for some p-dimensional cdfG ;0.
As H0 implies H �

0 , we decide to reject H0 when H �
0 is not satisfied. Obviously,

this reduction of the available information induces a loss of power, but the practical
advantages of this trick often dominate its drawbacks.

For instance, when p D 1 and if we are able to identify G ;0 , it becomes
possible to invoke standard univariate GOF test statistics, or even to use ad-hoc
visual procedures like QQ-plots. Thus, by reducing a multivariate GOF problem to
a univariate problem, we rely on numerically efficient procedures, even for high
dimensional underlying distributions. However, we still depend on Monte-Carlo
methods to evaluate the corresponding p-values. Inspired by [83], we get one of
the most naive methods of dimension reduction: replace T KS

n above by

QT KS
n WD

X
˛2.0;1/

jCn.A˛/ � C0.A˛/j; or QT KS
n WD

X
˛2.0;1/

jCn. OA˛/ � C O�n. OA˛/j;

where .A˛/˛2.0;1/ is an increasing sequence of subsets in Œ0; 1�d s.t. A˛ D fu 2
Œ0; 1�d jC0.u/ � ˛g and OA˛ D fu 2 Œ0; 1�d jC O�n.u/ � ˛g.

To revisit a previous example and with the same notations, [31] considered
particular test statistics T  ;PIT

n based on the variables OZi WD Pd
kD1 ˚. OVi;k/�1,

i D 1; : : : ; n. If the margins Fk , k D 1; : : : ; d , and the true copula C0 were known,
then we were able to calculate Zi WD Pd

kD1 ˚.Vi;k/�1 that follows a chi-square law
of dimension d under the null. Since it is not the case in practice, the limiting law of
OZi is unknown, and it has to be evaluated numerically by simulations. It is denoted

by F OZ . Therefore, [31] propose to test

H �
0 W the asymptotic law of T  ;PIT

n is a given cdf F (to be estimated);

where T  ;PIT
n is defined by usual (univariate) KS, AD or CvM test statistics. For

instance,

T AD;PIT
n WD n

Z
.Fn; OZ � F0; OZ/2

F0; OZ.1 � F0; OZ/
;
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where Fn; OZ is the empirical cdf of the pseudo sample OZ1; : : : ; OZn. Note that Fn; OZ
and F0; OZ depend strongly on the underlying cdf of X, its true copula C0, the
way marginal cdfs have been estimated to get pseudo-observations (empirical or
parametric estimates) and possibly the particular estimate O�n.

Beside the PIT idea, there exist a lot of possibilities of dimension reductions
potentially. They will provide more or less relevant test statistics, depending on the
particular underlying parametric family and on the empirical features of the data. For
instance, in the bivariate case, Kendall’s tau 
K or Spearman’s rho �S may appear
as nice “average” measures of dependence. They are just single numbers, instead of
a true two-dimensional function like Cn. Therefore, such a GOF test may be simply

H �
0 W O
K D 
K;C0 ;

where 
K;C0 D 4EC0ŒC0.U/� � 1 is the Kendall’s tau of the true copula C0, and O
K
is an estimate of this measure of dependence, for instance its empirical counterpart

O
K;n WD 2Œnumber of concordant pairs of observations � number of discordant pairs�

n.n� 1/
:

Here, we can set T KTau
n WD n. O
K;n � 
C0/

2, or T KTau
n WD n. O
K;n � 
C

O�n
/2 in

the case of composite assumption. Clearly, the performances of all these tests in
terms of power will be very different and there is no hope to get a clear hierarchy
between all of them. Sometimes, it will be relevant to discriminate between several
distributions depending on the behaviors in the tails. Thus, some adapted summaries
of the information provided by the underlying copula C are required, like tail-
indices for instance (see e.g., [68]). But in every case, their main weakness is a
lack of convergence against a large family of alternatives. For instance, the previous
test T KTau

n will not be able to discriminate between all copulas that have the same
Kendall’s tau 
K;C0 . In other words, this dimension reduction is probably too strong
most of the time: we reduce a d -dimensional problem to a real number. It is
more fruitful to keep the idea of generating a univariate process, i.e., going from
a dimension d to a dimension one. This is the idea of Kendall’s process (see below).

Another closely related family of tests is based on the comparison between
several parameter estimates. They have been called “moment-based” GOF test
statistics (see [11, 44, 88]). In their simplest form, assume a univariate unknown
copula parameter � , and two estimation equations (“moments”) such that m1 D
r1.�/ and m2 D r2.�/ (one-to-one mappings). Given empirical counterparts Omk of
mk, k D 1; 2, [88] has proposed the copula GOF test

T moment
n WD p

n
˚
r�1
1 . Om1/ � r�1

2 . Om2/
�
:

Typically, some estimating equations are provided by Kendall’s tau and Spearman’s
rho that have well-known empirical counterparts. Nonetheless, other estimates
have been proposed, as the pseudo-maximum likelihood (also called “canonical
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maximum likelihood”). To deal with multi-dimensional parameters � , estimating
equations can be obtained by the equality between the hessian matrix and minus the
expected outer product of the score function. This is the idea of White’s specification
test (see [93]), adapted to copulas in [76].

4.3.4 Kendall’s Process

This is another and well-known example of dimension reduction related to copula
problems. Let C be the copula of an arbitrary random vector X 2 R

d . Define the
univariate cdf

K.t/ WD P.C.U/ � t/; 8t 2 R;

where, as usual, we set U D .F1.X1/; : : : ; Fd .Xd //. The function K depends
on C only. Therefore, this univariate function is a “summary” of the underlying
dependence structure given by C . It is called the Kendall’s dependence function of
C . An empirical counterpart of K is the empirical Kendall’s function

Kn.t/ WD 1

n

nX
iD1

1.Cn. OUi / � t/;

with pseudo-observations OU1; : : : ; OUn. The associated Kendall’s process is simply
given by Kn D p

n.Kn � K/, or OKn D p
n.Kn � K. O�n; �// when the true copula

is unknown but belongs to a given parametric family. The properties of Kendall’s
processes have been studied in depth in [5, 43, 48] particularly. In the later papers,
the weak convergence of Kn towards a continuous centered Gaussian process in the
Skorohod space of cadlag functions is proved, for convenient consistent sequences
of estimates O�n. Its variance-covariance function is complex and copula dependent.
It depends on the derivatives of K w.r.t. the parameter � and the limiting law
of

p
n. O�n � �0/.

Then, there are a lot of possibilities of GOF tests based on the univariate function
Kn or the associated process Kn. For instance, [90] introduced a test statistics
based on the L2 norm of Kn. To be specific, they restrict themselves to bivariate
Archimedean copulas, but allow censoring. That is why their GOF test statistics
T L2;Kendall
n D R 1

�
jKnj2 involves an arbitrary cutoff point � > 0. Nonetheless, the

idea of such a statistics is still valid for arbitrary dimensions and copulas. It has
been extended in [43] that considers

T L2;Kendall
n WD

Z 1

0

jKn.t/j2k. O�n; t/ dt; and T KS;Kendall
n WD sup

t2Œ0;1�
jKn.t/j;
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where k.�; �/ denotes the density of C.U/ w.r.t. to the Lebesgue measure (i.e., the
derivative of K) and O�n is a consistent estimate of the true parameter under the null.

Nonetheless, working with Kn or OKn instead of Cn or OCn, respectively, is not the
panacea. As we said, the dimension reduction is not free of charge, and testing H �

0

instead of H0 reduces the ability to discriminate between copula alternatives. For
instance, consider two extreme-value copulas C1 and C2, i.e., in the bivariate case,

Cj .u; v/ D exp

�
ln.uv/Aj .

ln u

ln uv
/

	
; j D 1; 2;

for some Pickands functions A1 and A2 (convex functions on Œ0; 1�, such that
max.t; .1 � t// � Aj .t/ � 1 for all t 2 Œ0; 1�). As noticed in [48], the associated
Kendall’s functions are

Kj .t/ D t � .1 � 
K;j /t ln t; t 2 .0; 1/;

where 
K;j denotes the Kendall’s tau of Cj . Then, if the two Kendall’s tau are the
same, the corresponding Kendall’s functionsK1 andK2 are identical. Thus, a test of
H �
0 W K D K0 will appear worthless if the underlying copulas are of the extreme-

value type.
In practice, the evaluation of the true Kendall function K0 under the null may

become tedious, or even unfeasible for a lot of copula families. Therefore, [9]
proposed to apply the previous Kendall process methodology to random vectors
obtained through a PIT in a preliminary stage, to “stabilize” the limiting law under
the null. In this case, K0 is always the same: the Kendall function associated with
the independence copula C?. This idea has been implemented in [46], under the
form of CvM GOF test statistics of the type

T CvM;PIT
n WD n

Z
.Dn.u/� C?.u//2 dDn.u/ D

nX
iD1

�
Dn. OUi / � C?. OUi /

�2
;

where Dn.u/ D n�1Pn
iD1 1. OUi � u/ is the empirical cdf associated with the

pseudo-observations of the sample. Nonetheless, the limiting behavior of all these
test statistics are not distribution-free for composite zero assumptions, and limiting
laws have to be evaluated numerically by Monte-Carlo methods (as usual).

Note that [78] have proposed a similar idea, but based on Spearman’s dependence
function L instead of Kendall’s dependence function. Formally, L is defined by

L.u/ WD P .C?.U/ � u/ D P

 
dY
kD1

Fk.Xk/ � u

!
; 8u 2 Œ0; 1�:

When working with a random sample, the empirical counterpart of L is then
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OLn.u/ WD 1

n

nX
iD1

1
�
C?. OUi / � u

�
;

and all the previous GOF test statistics may be applied. For instance, [8] proposed
to use the CvM statistic

T L;CvM
n WD

Z 1

0

� OLn � L O�n
�2 OLn.du/;

where L.�/ is the Spearman’s dependence function of an assumed copula C� and
O�n is an estimate of the true parameter under the zero assumption.

4.4 GOF Tests for Some Particular Classes of Copulas

Beside omnibus GOF tests, there exist other test statistics that are related to
particular families of copulas only. We will not study such GOF tests when they are
related to particular finite-dimensional parametric families (to decide whether C0 is
a Gaussian copula, for instance). Nonetheless, in this section, we will be interested
in a rather unusual GOF problem: to say whether C0 belongs to a particular infinite-
dimensional parametric family of copulas. Among such large families, some of them
are important in practice: the Archimedean family, the elliptical one, extreme-value
copulas, vines, hierarchical Archimedean copulas, etc.

4.4.1 Testing the Archimedeanity

All the previously proposed test statistics can be applied when C is an assumed
particular Archimedean family, as in [85, 90]. Other test statistics, that are based
on some analytical properties of Archimedean copulas, have been proposed too
(e.g., [52]). Interestingly, [41] proposed a graphical procedure for selecting a
Archimedean copula (among several competitors), through a visual comparison
between the empirical Kendall’s function Kn and an estimated Kendall function
obtained under a composite null hypothesis H0.

Now, we would like to test “H0 W C is Archimedean” against the opposite, i.e.,
without any assumption concerning a particular parametric family. This problem has
not received a lot of attention in the literature, despite its practical importance.

Consider first the (unknown) generator � of the underlying bivariate copula C ,
i.e. C.u/ D ��1.�.u1/ C �.u2// for every u D .u1; u2/ 2 Œ0; 1�2. Genest and
Rivest [41] proved that V1 WD �.F1.X1//=f�.F1.X1// C �.F2.X2//g is uniformly
distributed on .0; 1/ and that V2 WD C.F1.X1/; F2.X2// is distributed as the
Kendall’s dependence function K.t/ D t � �.t/=�0.t/. Moreover, V1 and V2 are
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independent. Since K can be estimated empirically, these properties provide a way
of estimating � itself (by �n). Therefore, as noticed in the conclusion of [41], if the
underlying copula is Archimedean, then the r.v.

OV1 WD �n.F1;n.X1//=f�.F1;n.X1//C �.F2;n.X2//g

should be distributed uniformly on .0; 1/ asymptotically. This observation can lead
to some obvious GOF test procedures.

Another testing strategy starts from the following property, proved in [68]: a
bivariate copula C is Archimedean iff it is associative (i.e., C.u1; C.u2; u3// D
C.C.u1; u2/; u3/ for every triplet .u1; u2; u3/ in Œ0; 1�3) and satisfies the inequality
C.u; u/ < u for all u 2 .0; 1/. This property, known as Ling’s Theorem (see [64]),
has been extended in an arbitrary dimension d > 2 by [89]. Then, [56] proposed to
test the associativity ofC to check the validity of the Archimedean zero assumption.
For every couple .u1; u2/ in .0; 1/2, he defined the test statistics

T J
n .u1; u2/ WD p

n fCn.u1; Cn.u2; u2// � Cn.Cn.u1; u2/; u2/g :

Despite its simplicity, the latter pointwise approach is not consistent against a large
class of alternatives. For instance, there exist copulas that are associative but not
Archimedean. Therefore, [15] revisited this idea, by invoking fully the previous
characterization of Archimedean copulas. To deal with associativity, they introduced
the trivariate process

Tn.u1; u2; u3/ WD p
n fCn.u1; Cn.u2; u3// � Cn.Cn.u1; u2/; u3/g ;

and proved its weak convergence in `1.Œ0; 1�3/. CvM T CvM
n and KS T KS

n test
statistics can be built on Tn. To reject associative copulas that are not Archimedean,
these statistics are slightly modified to get

QT CvM
n WD T CvM

n C n˛ 

�
max

�
i

n
.1 � i

n
/ W Cn. i

n
;
i

n
/ D i

n


	
;

for some chosen constant ˛ 2 .0; 1=2/ and some increasing function  ,  .0/ D 0.
Therefore, such final tests are consistent against all departures from Archimedeanity.

Unfortunately, the two previous procedures are limited to bivariate copulas, and
their generalization to higher dimensions d seems to be problematic.

4.4.2 Extreme-Value Dependence

As we have seen previously, bivariate extreme-value copulas are written as

C.u; v/ D exp

�
ln.uv/A.

ln.v/

ln.uv/
/



; (4.2)
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for every u; v in .0; 1/, where A W Œ0; 1� ! Œ1=2; 1� is convex and satisfies
max.t; 1 � t/ � A.t/ � 1 for every t 2 Œ0; 1�. Therefore, such copulas are fully
parameterized by the so-called Pickands dependence function A, that is univariate.
Extreme-value copulas are important in a lot of fields because they characterize
the large-sample limits of copulas of componentwise maxima of strongly mixing
stationary sequences ([26, 53], and the recent survey [50]). Then, it should be of
interest to test whether the underlying copula can be represented by (4.2), for some
unspecified dependence function A.

Studying the Kendall’s process associated with an extreme-value copula C , [49]
have noticed that, by setting W WD C.U1; U2/, we have K.t/ D P.W � t/ D
t � .1 � 
/t ln.t/; for every t 2 .0; 1/, where 
 is the underlying Kendall’s tau.
Moreover, they show that the moments of W are EŒW i � D .i
 C 1/=.i C 1/2, for
all i 
 1. Therefore, under H0, �1C 8EŒW �� 9EŒW 2� D 0. Then they proposed a
test (that the underlying copula is extreme-value) based on an empirical counterpart
of the latter relation: set

Tn WD �1C 8

n.n � 1/

X
i¤j

Iij � 9

n.n � 1/.n� 2/

X
i¤j¤k

IijIkj;

where Iij WD 1.Xi;1 � Xj;1; Xi;2 � Xj;2/, for all i; j 2 f1; : : : ; ng. Under H0,
the latter test statistic is asymptotically normal. Its asymptotic variance has been
evaluated in [7]. Quessy [77] has provided extensions of this idea towards more
higher order moments of W .

These approaches rely on the so-called reduction of dimension techniques (see
Sect. 4.3.3). To improve the power of GOF tests, it would be necessary to work
in functional spaces, i.e. concentrate on empirical counterparts of extreme-value
copulas, or, equivalently, of the functionsA themselves. For instance, [77] proposed
a CvM GOF test, based on the Kendall’s function K above. More generally,
several estimates of the Pickands dependence function are available, but most of
them rely on the estimation of marginal distributions: see Sect. 9.3 in [6] or [2].
Nonetheless, [47] have built “pure” copula GOF test statistics, i.e. independent from
margins, by invoking empirical counterparts of the Pickands function introduced
in [42]: given our previous notations,

1. Define the pseudo-observations

QUi WD nFn;1.Xi;1/=.nC 1/; QVi WD nFn;1.Xi;2/=.nC 1/:

2. Define the r.v. OSi WD � ln QUi and OTi WD � ln QVi .
3. For every i D 1; : : : ; n, set O�1.0/ WD OSi , and O�1.1/ WD OTi . Moreover, for every
t 2 .0; 1/, set

O�i .t/ WD min

 OSi
1 � t ;

OTi
t

!
:
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4. Two estimates of A are given by

APn .t/ WD
"
n�1

nX
iD1

O�i .t/
#�1

and ACFG
n .t/ WD exp

 
�� � n�1

nX
i

ln O�i .t/
!
;

where � denotes the Euler constant.

The two latter estimates are the “rank-based” version of those proposed in [16, 75],
respectively.

There is an explicit one-to-one mapping between APn (resp. ACFG
n ) and the

empirical copula Cn. Therefore, after endpoint corrections, [42] have exhibited the
weak limit of the corresponding processes A

P
n WD p

n.APn � A/ and A
CFG
n WDp

n.ACFG
n � A/. Working with the two latter processes instead of Cn, a lot of GOF

tests can be built. For instance , [47] have detailed an AD type test based on the L2

norm of APn and A
CFG
n , even under composite null assumptions.

In the same vein, another strategy has been proposed in [62]: there is an
equivalence between extreme-value copula C and max-stable copulas, i.e. copulas
for which C.u/r D C.ur /, for every u 2 Œ0; 1�d and r 2 R

C. By setting
Dn;r .u/ WD p

n.fCn.u1=r /gr �Cn.u//, for all u 2 Œ0; 1�d and every r > 0, [62] have
built some tests based on the limiting law of the joint process .Dn;r1 ; : : : ;Dn;rp / for
an arbitrary integer p.

4.4.3 Pair-Copula Constructions

In the recent years, a lot of effort has been devoted to the construction of
d -dimensional copulas, d > 2, as combinations of several two-dimensional
copulas. Some authors have enriched the Archimedean copula class: Hierarchical,
nested or multiplicative Archimedean copulas. Among others, see [57,67,69,84,94].
Other authors have studied the large class of vines: D-vines, C-vines, regular vines
more generally (see e.g., [1,20]). Inference, simulation, and specification techniques
have made significant progress to deal with these families of models F . These
advances provide large classes of very flexible copulas.

We will not discuss in depth the way of choosing the best Hierarchical Archime-
dean copula or the best D-vine, for a given data. Apparently, every proposition in
this stream of the literature follows the same steps:

1. Assume an underlying class of models F (D-vine, for instance);
2. Choose the potential bivariate families of copulas that may appear in the

construction;
3. Evaluate the best structure (a network, or a tree) and estimate the associated

bivariate copulas (simultaneously, in general).
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Mathematically, we can nest this methodology inside the previous general GOF
copula framework detailed above. Indeed, the copula candidates belong to a finite
dimensional parametric family, even if the dimension of the unknown parameter �
can be very large. Obviously, authors have developed ad-hoc procedures to avoid
such a violent approach of GOF testing: see [21] or [29] for vine selection, for
instance.

At the opposite, there is no test of the slightly different and more difficult GOF
problem

H0 W C belongs to a given class F :

For instance, a natural question would be to test whether an underlying copula
belongs to the large (and infinite dimensional!) class of Hierarchical Archimedean
copulas. To the best of our knowledge, this way of testing is still a fully open
problem.

4.5 GOF Copula Tests for Multivariate Time Series

One limiting feature of copulas is the difficulty to use them in the presence of
multivariate-dependent vectors .Xn/n2Z, with Xn 2 R

d . In general, the “modeler
problem” is to specify the full law of this process, i.e., the joint laws .Xn1; : : : ;Xnp /

for every p and every indices n1; : : : ; np and in a consistent way. Applying the
copula ideas to such a problem seems to be rather natural (see [74] for a survey).
Nonetheless, even if we restrict ourselves to stationary processes, the latter task is
far from easy.

The first idea is to describe the law of the vectors .Xm;XmC1; : : : ;Xn/ with
copulas directly, for every couple .m; n/, m < n. This can be done by modeling
separately (but consistently) d.n�mC1/ unconditional margins plus a d.n�mC1/-
dimensional copula. This approach seems particularly useful when the underlying
process is stationary and Markov (see [17] for the general procedure). But the
conditions of Markov coherence are complex (see [55]), and there is no general
GOF strategy in this framework, to the best of our knowledge.

A more usual procedure in econometrics is to specify a multivariate time-
series model, typically a linear regression, and to estimate residuals, assumed
serially independent: see [18] that deals with a GARCH-like model with diagonal
innovation matrix. They showed that estimating the copula parameters using rank-
based pseudo-likelihood methods with the ranks of the residuals instead of the
(non-observable) ranks of innovations leads to the same asymptotic distribution. In
particular, the limiting law of the estimated copula parameters does not depend on
the unknown parameters used to estimate the conditional means and the conditional
variances. This is very useful to develop GOF tests for the copula family of
the innovations. Rémillard [79] extended these results: under similar technical
assumptions, the empirical copula process has the same limiting distribution as
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if one would have started with the innovations instead of the residuals. As a
consequence, a lot of tools developed for the serially independent case remain valid
for the residuals. However, that is not true if the stochastic volatility is genuinely
non-diagonal.

A third approach would be to use information on the marginal processes
themselves. This requires to specify conditional marginal distributions, instead of
unconditional margins as above in the first idea. This would induce a richer appli-
cation of the two-step basic copula idea, i.e., use “standard” univariate processes as
inputs of more complicated multivariate models:

1. For every j D 1; : : : ; d , specify the law of Xn;j knowing the past valuesXn�1;j ,
Xn�2;j ; : : :;

2. Specify (and/or estimate) relevant dependence structures, “knowing” these uni-
variate underlying processes, to recover the entire process .Xn/n2Z.

Using similar motivations, Patton [72, 73] introduced the so-called conditional
copulas, which are associated with conditional laws in a particular way. Specifically,
let X D .X1; : : : ; Xd / be a random vector from .˝;A 0;P/ to R

d . Consider some
arbitrary sub-�-algebra A � A 0. A conditional copula associated with .X;A / is a
B.Œ0; 1�d /˝ A measurable function C such that, for any x1; : : : ; xd 2 R,

P .X � xjA / D C fP.X1 � x1jA /; : : : ;P.Xd � xd jA /jA g :

The random function C.�jA / is uniquely defined on the product of the values taken
by xj 7! P.Xj � xj j A /.!/, j D 1; : : : ; d , for every realization ! 2 A . As
in the proof of Sklar’s theorem, C.�jA/ can be extended on Œ0; 1�d as a copula, for
every conditioning subset of events A � A .

In Patton’s approach, it is necessary to know/model each margin, knowing all
the past information, and not only the past observations of each particular margin.
Nonetheless, practitioners often have good estimates of the conditional distribution
of each margin, conditionally given its own past, i.e., P.Xn;j � xj jA n;j /, j D
1; : : : ; d , by setting A n;j D �.Xn�1;j ; Xn�2;j ; : : :/. To link these quantities with
the (joint) law of Xn knowing its own past, it is tempting to write

P .Xn � xjA n/ D C � fP.X1;n � x1jA n;1/; : : : ;P.Xd;n � xd jA n;d /g ;

for some random function C � W Œ0; 1�d �! Œ0; 1� whose measurability would
depend on A n and on the A n;j , j D 1; : : : ; d . Actually, the latter function is a
copula only if the process .Xk;n; k ¤ j /n2Z does not “Granger-cause” the process
.Xj;n/n2Z, for every j D 1; : : : ; d . This assumption that each variable depends on
its own lags, but not on the lags of any other variable, is clearly strong, even though
it can be accepted empirically; see the discussion in [74], pp. 772–773. Thus, [35]
has extended Patton’s conditional copula concept, by defining the so-called pseudo-
copulas that are simply cdf on Œ0; 1�d with arbitrary margins. They prove:
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Theorem 4.1. For any sub-algebras B;A 1; : : : ;A d such that A j � B, j D
1; : : : ; d , there exists a random function C W Œ0; 1�d 	˝ �! Œ0; 1� such that

P.X � x j B/.!/ D C fP.X1 � x1 j A 1/.!/; : : : ;P.Xd � xd j A d /.!/ ; !g
� C fP.X1 � x1 j A 1/; : : : ;P.Xd � xd j A d /g .!/;

for every x D .x1; : : : ; xd / 2 R
d and almost every ! 2 ˝ . This function C is

B.Œ0; 1�d /˝ B measurable. For almost every ! 2 ˝ , C.�; !/ is a pseudo-copula
and is uniquely defined on the product of the values taken by xj 7! P.Xj �
xj j A j /.!/, j D 1; : : : ; d .

If C is unique, it is called the conditional .A ;B/-pseudo-copula associated with
X and denoted by C.�jA ;B/. Actually, C.�j A ;B/ is a copula iff

P.Xj � xj j B/ D P.Xj � xj j A j / a:e: (4.3)

for all j D 1; : : : ; d and x 2 R
d . This means that B cannot provide more

information aboutXj than A j , for every j . Patton’s conditional copula corresponds
to the particular case B D A 1 D � � � D A d , for which (4.3) is clearly satisfied.

One key issue is to state if pseudo-copulas depend really on the past values
of the underlying process, i.e., to test their constancy, an assumption often made
in practice. In [35], they estimate nonparametrically conditional pseudo-copulas,
including Patton’s conditional copulas as a special case and test their constancy
with respect to their conditioning subsets. Here, we specify their technique.

For a stationary and strongly mixing process .Xn/n2Z, we restrict ourselves to
conditional sub-algebras A n and Bn that are defined by a finite number of past
values of the process, typically .Xn�1;Xn�2; : : : ;Xn�p/ for some p 
 1. The
dependence of A and B with respect to past values y will be implicit hereafter.
Formally, [35] consider the test of several null hypothesis:

(a)
H

.1/
0 W For every y; C.� j A ;B/ D C0.�/;

against

Ha W For some y; C.� jA ;B/ ¤ C0.�/;

where C0 denotes a fixed pseudo-copula function. In this case, H
.1/
0 means

that the underlying conditional .A ;B/-pseudo-copula is in fact a true copula,
independent of the past values of the process.

(b)

H
.2/
0 W There exists a parameter �0 such that

C.�jA ;B/ D C�0 2 C ; for every y;

where C D fC�; � 2 	g denotes some parametric family of pseudo-copulas.
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(c)

H
.3/
0 W For some function �.y/ D �.A ;B/; we have

C.�jA ;B/ D C�.y/ 2 C ; for every y:

The latter assumption says that the conditional pseudo-copulas stay inside the
same pre-specified parametric family of pseudo-copulas (possibly copulas), for
different observed values in the past. Fermanian and Wegkamp [35] proposed a
fully nonparametric estimator of the conditional pseudo-copulas, and derived its
limiting distribution. This provides a framework for “brute-force” GOF tests of
multivariate dynamic dependence structures (conditional copulas, or even pseudo-
copulas), similar to what has been done in Sect. 4.2.

Fermanian and Wegkamp [35] stated the equivalent of the empirical processes
Cn or OCn. Use the short-hand notation Xn

m for the vector .Xm;XmC1; : : : ; Xn/.
Similarly, write Xn

m;j D .Xm;j ; : : : ; Xn;j /. Assume that every conditioning set A n;j

(resp. Bn) is related to the vector Xn�1
n�p;j (resp. Xn�1

n�p). Specifically, consider the
events .Xn�1

n�p D y�/ 2 Bn, with y� D .y1; : : : ; yp/, and .Xn�1
n�p;j D y�

j / 2
A n;j , with y�

j D .y1j ; : : : ; ypj/. Their nonparametric estimator of the pseudo-
copula is based on a standard plug-in technique that requires estimates of the joint
conditional distribution

m.x j y�/ D P

�
Xp � x j Xp�1

0 D y�� ;
and of conditional marginal cdfs

mj .xj j y�
j / D P

�
Xpj � xj j Xp�1

0;j D y�
j

�
; j D 1; : : : ; d:

Let Fnj be the (marginal) empirical distribution function of Xj , based on the
.X1;j ; : : : ; Xn;j /. For convenient kernelsK and NK, set

Kh.x/ D h�pdK
�x1
h
; � � � ; xpd

h

�
; and NK Nh.x/ D Nh�p NK

�
x1
Nh ; � � � ;

xp
Nh
	
:

For every x 2 R
d and y� 2 R

pd, estimate the conditional distribution m.x j y�/ D
P

�
Xp � x j Xp�1

0 D y�
�

by

mn.x j y�/ D 1

n � p

n�pX
`D0

Kn.X
`Cp�1
` /1.X`Cp � x/;

where
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Kn.X
`Cp�1
` / D KhfFn1.X`1/� Fn1.y11/; : : : ; Fnd.X`d /� Fnd.y1d /; : : : ;

: : : ; Fn1.X.`Cp�1/;1/ � Fn1.yp1/; : : : ; Fnd.X.`Cp�1/;d /� Fnd.ypd/g:

Similarly, for all xj 2 R and y�
j 2 R

p , the conditional marginal cdf’s mj .xj j y�
j /

is estimated in a nonparametric way by

mn;j .xj j y�
j / D 1

n � p

n�pX
`D1

NK NhfFnj.X`;j /� Fnj.y1j /; : : : ;

Fnj.X`Cp�1;j /� Fnj.ypj/g1.X`Cp;j � xj /;

for every j D 1; : : : ; d . Fermanian and Wegkamp [35] proposed to estimate the
underlying conditional pseudo-copula by

OC.u j Xn�p
n�1 D y�/ D mnfm.�1/

n;1 .u1 j y�
1 /; : : : ; m

.�1/
n;d .ud j y�

d / j y�g;

with the use of pseudo-inverse functions. Then, under H .1/
0 , for all u 2 Œ0; 1�d and

y� D .y1; : : : ; yp/ 2 R
dp ,

q
nhpd

n f OC.u j Xn�p
n�1 D y�/� C0.u/g d�! N Œ0; �.u/�

as n ! 1, where �.u/ D C0.u/f1�C0.u/g
R
K2.v/ dv:This result can be extended

to deal with different vectors y� simultaneously and with the null hypotheses H
.2/
0

and H
.3/
0 : for all u 2 R

d ,

q
nhpd

n f OC.u j y�
1 /�C O�1.u/; : : : ; OC.u j y�

q /�C O�q .u/g
d�! N Œ0;˙.u; y�

1 ; : : : ; y
�
q /�;

as n ! 1, where

˙.u; y�
1 ; : : : ; y

�
q / D diag

�
C�.y�

k /
.u/f1� C�.y�

k /
.u/g

Z
K2.v/ dv; 1 � k � q

	
;

for some consistent estimators O�k such that O�k D �.y�
k/COP .n�1=2/; k D 1; : : : ; q.

Each kth term on the diagonal of ˙ can be consistently estimated by

O�2k .u/ D C O�k .u/f1� C O�k .u/g
Z
K2.v/ dv:

Note that, in the corollary above, the limiting correlation matrix is diagonal because
we are considering different conditioning values y�

1 ; : : : ; y
�
q but the same argument

u. At the opposite, an identical conditioning event but different arguments u1;u2; : : :
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would lead to a complex (nondiagonal) correlation matrix, as explained in [33]. The
latter weak convergence result of random vectors allows the building of GOF tests
as in Sect. 4.2. For instance, as in [33], a simple test procedure may be

T .u; y�
1 ; : : : ; y

�
q / D .nhpd

n /

qX
kD1

f OC.u j Xn�p
n�1 D y�

k/ � C O�k .u/g2
O�2y�

k

.u/
;

for different choices of u and conditioning values y�
k . Under H .1/

0 , the term on the
right-hand side tends to a �2.q/ distribution under the null hypothesis. Note that this
test is “local” since it depends strongly on the choice of a single u. An interesting
extension would be to build a “global” test, based on the behavior of the full process

q
nh

pd
n f OC.� j Xn�p

n�1 D y�
k /� C O�k .�/g:

But the task of getting pivotal limiting laws is far from easy, as illustrated in [33].
In practice, authors often restrict themselves to the case of time-dependent

copula parameters instead of managing time-dependent multivariate cdfs nonpara-
metrically. For instance, every conditional copula or pseudo-copula is assumed to
belong to the Clayton family, and their random parameters � depend on the past
observations. Abegaz et al. [3] has proposed a non-parametric estimate O�.�/ of the
function � , in the case of a univariate conditioning variable. It seems possible to
build some GOF tests based on this estimate and its limiting behavior, at least for
simple null hypothesis, but the theory requires more developments.

4.6 Practical Performances of GOF Copula Tests

Once a paper introduces one or several new copula GOF tests, it is rather usual
to include an illustrative section. Typically, two characteristics are of interest for
some tests in competition: their ability to maintain the theoretical levels powers and
their power performances under several alternatives. Nonetheless, these empirical
elements, even useful, are often partial and insufficient to found a clear judgment.
Actually, only a few papers have studied and compared the performances of the
main previous tests in depth. Indeed, the calculation power required for such a large
analysis is significant. That is why a lot of simulation studies restrict themselves to
bivariate copulas and small or moderate sample sizes (from n D 50 to n D 500,
typically). The most extensive studies of finite sample performances are probably
those of [8, 46]. In both papers, the set of tests under scrutiny contains the three
main approaches:

1. “Brute-force” proposals like T KS
n and/or T CvM

n , as in Sect. 4.2;
2. Kendall’s process-based tests;
3. Test statistics invoking the PIT (see Sect. 4.3).
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These works found that a lot of tests perform rather well, even for small samples
(from n D 50, e.g.). Moreover, it is difficult to exhibit clear hierarchy among all of
these tests in terms of power performances. As pointed out by [46],

No single test is preferable to all others, irrespective of the circumstances.

In their experiments, [46] restricted themselves to bivariate copulas and small
sample sizes n 2 f50; 150g. The statistics based on Kendall’s dependence function
are promoted, particularly when the underlying copula is assumed to be Archime-
dean. It appeared that CvM style test statistics are preferable to KS ones, all other
things being equal, and whatever the possible transformations of the data and/or the
reductions of information. Among the tests based on a CvM statistic, it is difficult
to discriminate between the three main approaches.

The latter fact is confirmed in [8] that led some simulated experiments with
higher dimensions d 2 f2; 4; 8g and larger sample sizes n 2 f100; 500g. Berg [8]
observed the particularly good performances of a new test statistic, calculated as the
average of the three approaches. Moreover, he studied the impact of the variables
ordering in the PIT. Even if estimated p-values may be different, depending
on which permutation order is chosen, this does not seem to create worrying
discrepancies.

Notably [11] led an extensive simulated experiment of the same type, but their
main focus was related to detecting small departures from the null hypothesis. Thus,
they studied the asymptotic behavior of some GOF test statistics under sequences
of alternatives of the type

Ha;n W C D .1 � ın/C0 C ınD;

where ın D n�1=2ı, ı > 0, and D is another copula. They computed local
power curves and compared them for different test statistics. They showed that the
estimation strategy can have a significant impact on the power of CvM statistics
and that some “moment-based” statistics provide very powerful tests under many
distributional scenarios.

Despite the number of available tests in the literature, the usefulness of all
these procedures in practice has to be proved more convincingly. Apparently, some
authors have raised doubts about the latter point. For instance, [91] has evaluated
the performances of value-at-risk or VaR (quantiles of loss) and expected shortfall
or ES (average losses above a VaR level) forecasts, for a large set of portfolios of
two financial assets and different copula models. They estimate static copula models
on couples of asset return residuals, once GARCH(1,1) dynamics have been fitted
for every asset independently. They applied three families of GOF tests (empirical
copula process, PIT, Kendall’s function) and five copula models. They found that

Although copula models with GARCH margins yield considerably better estimates than
correlation-based models, the identification of the optimal parametric copula form is a
serious unsolved problem.
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Indeed, none of the GOF tests is able to select the copula family that yields the best
VaR- or ES-forecasts. This points out the difficulty of finding relevant and stable
multivariate dynamics models, especially related to joint extreme moves. But, such
results highlight the fact that it remains a significant gap between good performances
with simulated experiments and trustworthy multivariate models, even validated
formally by statistical tests.

Indeed, contrary to studies based on simulated samples drawn from an assumed
copula family (the standard case, as in [46] or [8]), real data can suffer from outliers
or measurement errors. This is magnified by the fact that most realistic copulas are
actually time dependent [91] and/or are mixtures or copulas [63]. Therefore, [92]
showed that even minor contamination of a dataset can lead to significant power
decreases of copula GOF tests. He applied several outlier detection methods from
the theory of robust statistics, as in [66], before leading the formal GOF test of any
parametric copula family. Weiss [92] concluded that the exclusion of outliers can
have a beneficial effect on the power of copula GOF tests.
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47. Genest, C., Kojadinovic, I., Nešlehová, J., Yan, J.: Bernoulli 17, 253–275 (2011)
48. Ghoudi, K., Rémillard, B.: Empirical processes based on pseudo-observations. In: Szyskowitz,

B. (ed.) Asymptotic Methods in Probability and Statistics: A Volume in Honor of Miklos
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82. Rüschendorf, L.: Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4,

912–923 (1976)
83. Saunders, R., Laud, P.: The multidimensional Kolmogorov-Smirnov test. Biometrika 67, 237

(1980)
84. Savu, C., Trede, M.: Hierarchical Archimedean copulas. In: International Conference on High

Frequency Finance, Konstanz, Germany, May 2006
85. Savu, C., Trede, M.: Goodness-of-fit tests for parametric families of Archimedean copulas.

Quant. Financ. 8, 109–116 (2008)
86. Scaillet, O.: Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters. J.

Multivar. Anal. 98, 533–543 (2007)
87. Segers, J.: Asymptotics of empirical copula processes under nonrestrictive smoothness assump-

tions. Bernoulli 26, 288–305 (2012)
88. Shih, J.H.: A goodness-of-fit test for association in a bivariate survival model. Biometrika 85,

189–200 (1998)
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Chapter 5
Assessing and Modeling Asymmetry in Bivariate
Continuous Data

Christian Genest and Johanna G. Nešlehová

Abstract A bivariate copula is the cumulative distribution function of a pair .U; V /
of uniform random variables. This copula is said to be symmetric if and only if
.V; U / and .U; V / have the same distribution. Many standard bivariate parametric
families of copulas have this property; Archimedean and meta-elliptical copulas
are prime examples. In practice, however, dependence is often asymmetric. This
paper revisits key aspects of this issue from a modeling perspective. Measures of
asymmetry and rank-based estimators thereof are discussed, along with recently
proposed tests of symmetry. Several techniques for the construction of asymmetric
dependence structures are critically reviewed. A hydrological data set is used for
illustration purposes.

5.1 Introduction

Let .X; Y / be a pair of continuous random variables and let its marginal and
joint cumulative distribution functions be denoted, at each x; y 2 R, by F.x/ D
Pr.X � x/, G.y/ D Pr.Y � y/, and H.x; y/ D Pr.X � x; Y � y/, respectively.
Sklar’s Representation Theorem states that there exists a unique copulaC such that,
for all x; y 2 R,

H.x; y/ D C fF.x/;G.y/g: (5.1)

In fact, C is the cumulative distribution function of the pair .U; V /D .F.X/;G.Y //

having uniform margins on the interval .0; 1/.
In applications, H is typically unknown. A convenient way to model it consists

of expressingH in the form (5.1) and assuming that F , G, and C belong to specific
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Fig. 5.1 Stylized map showing the location of the Schärding and Nagymaros measurement
stations on the Inn and Danube rivers, respectively

parametric classes of distributions. For instance, one might take F Gaussian, G
Pareto, and C from the Farlie–Gumbel–Morgenstern family of copulas .

Many parametric classes of bivariate copulas have been proposed; see, e.g.,
[26, 36] for extensive lists. Most classical copulas are symmetric, however. This
property, also referred to as exchangeability, means that for all u; v 2 Œ0; 1�,

C.u; v/ D C.v; u/: (5.2)

When this condition fails for some u; v 2 Œ0; 1�, C is said to be asymmetric,
or non-exchangeable. Note that in the copula literature, the term “asymmetric”
sometimes refers to the lack of radial symmetry, and particularly the presence of
right-tail but no left-tail dependence; see, e.g., [39, 47] for applications in asset
allocation and equity markets. These types of asymmetry are not further considered
here.

Asymmetric dependence, i.e., failure of (5.2) for some u; v 2 Œ0; 1�, typically
occurs when there is a causality relationship between the variables. Consider, for
instance, the monthly average flow rate (in m3=s) of the Inn and Danube rivers
[48], measured at the Schärding and Nagymaros stations, respectively. The stylized
map in Fig. 5.1 suggests that high discharge X of the Inn (upstream) is likely to
imply high discharge Y of the Danube (downstream), but not necessarily vice versa.
Asymmetry in the dependence between X and Y is apparent from Fig. 5.2, which
shows approximate scatter plots of the copulas of the raw (left) and de-trended
data (right).

The purpose of this paper is to provide a critical review of the literature on
asymmetric copulas and to contribute to it in modest ways. Its structure reflects the
progression of a statistical analysis of asymmetric dependence; the river discharge
data are used throughout for illustration. Measures of asymmetry and their estimates
are discussed in Sect. 5.2. Tests of asymmetry based on these measures are presented
in Sect. 5.3. Techniques for constructing asymmetric copulas are reviewed in
Sect. 5.4. Concluding comments are given in Sect. 5.5.
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Fig. 5.2 Rank plots of pairs of raw data (left panel) and de-trended (right panel) monthly average
flow rate at the Schärding and Nagymaros stations in the period 1936–1991

5.2 Measures of Asymmetry

Given p 
 1, a natural measure of asymmetry in a copula C is given by

�p.C / D
�Z 1

0

Z 1

0

jC.u; v/ � C.v; u/jpdvdu


 1=p
;

i.e., the Lp distance between C and its “transpose” C> defined, for all u; v 2 Œ0; 1�,
by C>.u; v/ D C.v; u/. One could also consider letting p ! 1, which leads to

�1.C / D sup
.u;v/2Œ0;1�2

jC.u; v/� C.v; u/j:

These measures were first discussed in a copula context by Klement and Mesiar
[28] and Nelsen [37]. Durante et al. [13] show that the measures �p , with p 2
Œ1;1�, satisfy a series of natural axioms for measures of non-exchangeability. To
be specific, let C be the class of bivariate copulas and, for any C 2 C and u; v 2
Œ0; 1�, set

NC.u; v/ D u C v � 1C C.1� u; 1 � v/:
Durante et al. [13] then show that:

(B1) There exists K > 0 such that 0 � �p.C / � K for all C 2 C .
(B2) �p.C / D 0 if and only if C D C>.
(B3) �p.C / D �p.C

>/ for all C 2 C .
(B4) �p.C / D �p. NC/ for all C 2 C .
(B5) If Cn 2 C and if Cn ! C 2 C uniformly as n ! 1, then �p.Cn/ !

�p.C /.
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Siburg and Stoimenov [43] consider alternative measures of the form

ı.C / D kCsk2 � kCak2
kCk2 ;

which take into account both the symmetric part Cs D .C C C>/=2 and the
asymmetric part Ca D .C � C>/=2 of C . The norm k � k can be arbitrary, but the
authors focus on a modified Sobolev norm. Given that their measure is equivalent to
�1 for the uniform norm and that the Sobolev norm seems to be of limited statistical
use, their idea is not considered further here.

5.2.1 Maximal Asymmetry

It is clear that whatever p 2 Œ1;1�, �p.C / D 0 if and only if C is symmetric.
Because jC.u; v/j � 1 for any u; v 2 Œ0; 1�, it is immediate that �p.C / � 2 for
any choice of C and p 2 Œ1;1�. This bound is, however, never attained and as
such unsuitable for standardization purposes. To obtain sharper bounds, Klement
and Mesiar [28] and Nelsen [37] prove that for any C and u; v 2 Œ0; 1�, jC.u; v/ �
C.v; u/j � �.u; v/ where

�.u; v/ D min.u; v; 1 � u; 1 � v; jv � uj/:

This implies that for any C ,

�1.C / � 
1 D sup
u;v2Œ0;1�

j�.u; v/j D 1

3
;

while for any p 2 Œ1;1/,

�p.C / � 
p D
�Z 1

0

Z 1

0

�.u; v/pdvdu


 1=p
D
�

2 	 3�p

.p C 1/.p C 2/


 1=p

as computed by Durante et al. [13]. Although Proposition 3.1 in [28] states that no
copula exists such that jC.u; v/�C.v; u/j D �.u; v/ for all u; v 2 Œ0; 1�, the bound

1 turns out to be sharp. The following result is excerpted from [37].

Proposition 5.1. If C is an arbitrary copula, then �1.C / D 1=3 if and only if
either (i) C.1

3
; 2
3
/ D 1

3
and C.2

3
; 1
3
/ D 0, or (ii) C.1

3
; 2
3
/ D 0 and C.2

3
; 1
3
/ D 1

3
.

By Proposition 5.1, �1.C / D 1=3 whenever C or C> places one third of its
probability mass in each of the rectangles Œ0; 1=3�	 Œ1=3; 2=3�, Œ1=3; 2=3�	 Œ2=3; 1�
and Œ2=3; 1� 	 Œ0; 1=3�. There are infinitely many such copulas, one prime example
being



5 Assessing and Modeling Asymmetry in Bivariate Continuous Data 95

C1.u; v/ D maxfmax.u C v � 1; 0/;min.u; v � 1=3/g;
which is a singular copula whose support consists of two line segments, one from
.0; 1=3/ to .2=3; 1/ and the other from .2=3; 1=3/ to .1; 0/.

When p 2 Œ1;1/, the matter is less clear, however. Although Proposition 4
of Durante et al. [13] guarantees that there exists a copula Cp for which �p is
maximized, it is not known what Cp looks like and whether �p.Cp/ D 
p .

Finally, there are several interesting relationships between symmetry and associ-
ation. As explained by Nelsen [37], Proposition 5.1 leads to bounds on the Spearman
and Kendall measures of association given, respectively, by

�.C / D �3C 12

Z 1

0

Z 1

0

C.u; v/dvdu; 
.C / D �1C 4

Z 1

0

Z 1

0

C.u; v/dC.u; v/:

Nelsen concludes that whenever �1.C / D 1=3, �.C / 2 Œ�5=9;�1=3� while

.C / 2 Œ�5=9; 1=9�. This supports the statement of De Baets et al. [6] who write
that “positive dependence plays in favor of symmetry.” These authors find that when
C is positive quadrant dependent, i.e., if for all u; v 2 Œ0; 1�, C.u; v/ 
 uv, the
measure of asymmetry �1.C / is at most 3 � 2

p
2 � 0:172. They also identify

the copula for which the bound is achieved. When C has the stronger positive
dependence property called stochastic increasingness in both arguments, Durante
and Papini [10] show that the upper bound for�1 is given by .5

p
5�11/=2 � 0:09.

When C is negative quadrant dependent, i.e., if for all u; v 2 Œ0; 1�,C.u; v/ � uv,
Durante and Papini [11] show that �1.C / � p

5 � 2 � 0:236. They also find that
whenC is stochastically decreasing in both arguments,�1.C / � 3�2p2 � 0:172

and conclude that symmetric concepts of strong negative association decrease the
level of possible asymmetry.

5.2.2 Estimates

Given a random sample .X1; Y1/; : : : ; .Xn; Yn/ from an unknown distribution H
with unique underlying copula C , the question arises as to how to estimate �p.C /.
To this end, let the (rescaled) empirical distribution of H be defined, for all x; y 2
R, by

Hn.x; y/ D 1

nC 1

nX
iD1

1.Xi � x; Yi � y/;

and let Fn and Gn denote its margins. The more traditional definition of Hn

involving division by n rather than n C 1 leads to slightly different expressions
in finite samples, but this has no effect asymptotically.

For each i 2 f1; : : : ; ng, the pair . OUi; OVi / D .Fn.Xi /; Gn.Yi // may be viewed as
a pseudo-observation fromC . A natural estimate ofC is then given by the empirical
copula OCn defined, at every u; v 2 Œ0; 1�, by
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OCn.u; v/ D 1

n

nX
iD1

1. OUi � u; OVi � v/:

Note that OCn is rank-based because for all i 2 f1; : : : ; ng, .n C 1/ OUi is the rank of
Xi among X1; : : : ; Xn and similarly, .nC 1/ OVi is the rank of Yi among Y1; : : : ; Yn.

Plug-in estimates of �1.C / and �p.C / for p 2 Œ1;1/ are then given by

�1. OCn/ D sup
.u;v/2Œ0;1�2

ˇ̌
ˇ OCn.u; v/ � OCn.v; u/

ˇ̌
ˇ ;

�p. OCn/ D
�Z 1

0

Z 1

0

ˇ̌
ˇ OCn.u; v/� OCn.v; u/

ˇ̌
ˇp dv du


 1=p
:

Their consistency stems from the fact that the empirical copula OCn is itself a
consistent estimator of C , provided that C is regular in the following sense [41].

Definition 5.1. A bivariate copula C is said to be regular if

(i) the partial derivatives PC1.u; v/ D @C.u; v/=@u and PC2.u; v/ D @C.u; v/=@v
exist everywhere on Œ0; 1�2, where by convention, one-sided derivatives are used
at the boundary points;

(ii) PC1 is continuous on .0; 1/	 Œ0; 1� and PC2 is continuous on Œ0; 1� 	 .0; 1/.
As illustrated by Segers [41], all copulas commonly used in practice satisfy this
condition. Assuming henceforth that C is regular and observing that �p is a
continuous functional of C for each p 2 Œ1;1�, the Continuous Mapping Theorem
readily implies the following result.

Proposition 5.2. If C is a regular copula, then for all p 2 Œ1;1�, �p. OCn/
converges in probability to �p.C / as n ! 1.

The estimator �1. OCn/ is easier to compute than it appears because

�1. OCn/ D max
i;j2f1;:::;ng

ˇ̌
ˇ̌ OCn

�
i

nC 1
;

j

nC 1

	
� OCn

�
j

nC 1
;

i

nC 1

	ˇ̌
ˇ̌ :

As shown by Genest et al. [23], one has also

�22.
OCn/ D 2

n2

nX
iD1

nX
jD1

.1 � OUi _ OUj /.1 � OVi _ OVj /� .1 � OUi _ OVj /.1 � OVi _ OUj /;

where for arbitrary a; b 2 R, a _ b D max.a; b/. For other values of p, �p. OCn/
may be tedious to compute. To circumvent this problem, one might consider an
alternative empirical measure of asymmetry given by
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�p. OCn/ D
�Z 1

0

Z 1

0

ˇ̌
ˇ OCn.u; v/� OCn.v; u/

ˇ̌
ˇp d OCn.u; v/


 1=p
:

Because OCn is the joint distribution function of a counting probability measure,

�pp .
OCn/ D 1

n

nX
iD1

ˇ̌
ˇ OCn. OUi; OVi /� OCn. OVi ; OUi/

ˇ̌
ˇp :

Furthermore, the following result is showed in the Appendix.

Proposition 5.3. For p 2 Œ1;1/, �p. OCn/ converges in probability, as n ! 1, to

�p.C / D
�Z 1

0

Z 1

0

jC.u; v/� C.v; u/jp dC.u; v/


 1=p
: (5.3)

Equation (5.3) defines a new population measure of asymmetry in the sense of
Durante et al. [13]. This result, proved in the Appendix, is formally recorded below.

Proposition 5.4. For any p 2 Œ1;1/, �p satisfies the axioms (B1)–(B5).

While �p is easier to estimate than �p , a realistic (let alone sharp) upper bound for
its value is unknown at present. Such a bound would be useful to compare values of
�p across copulas and with other standardized measures of asymmetry.

5.2.3 Illustration

Consider the monthly average flow rate (in m3=s) of the Inn and Danube rivers,
as observed at the Schärding and Nagymaros measurement stations in the 55-year
period extending from 1936 to 1991. The 660 pairs of normalized ranks . OUi ; OVi / for
the raw data are displayed in Fig. 5.2 (left). Though the plot suggests asymmetry,
the estimates of �1, �2 and �2 are not particularly large:

3�1. OCn/ � 0:127;
p
54�2. OCn/ � 0:083; �2. OCn/ � 0:014:

For comparison purposes,�1 and�2 were divided by 
1 D 1=3 and 
2 D 1=
p
54,

respectively. This means that 3�1 takes values in the entire interval Œ0; 1�, while it
is only known that

p
54�2 � 1. Although 
2 may not be sharp, it seems to give

a reasonable standardization in practice. As an upper bound for �2 is unknown, no
standardization was made. Given that the values of �2 and �2 are often close, 
2 can
be used as a rule of thumb adjustment; this yields

p
54 �2. OCn/ � 0:0997.

Hydrological data typically exhibit time trends. Such is the case here and
hence the relationship between the two variables may be confounded with serial
dependence. To eliminate this effect, Bacigál et al. [2] suggest de-trending the
series by AR.1/ models. The resulting residuals exhibit no further significant
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autocorrelation and can thus be used to study the time-invariant dependence between
the variables (assuming there is one). The rank plot of the 659 pairs of residuals
is given in Fig. 5.2 (right) and the standardized sample values of the asymmetry
measures are

3�1. OCn/ � 0:091;
p
54�2. OCn/ � 0:063;

p
54 �2. OCn/ � 0:065:

Note that the small values of the asymmetry measures observed above do not come
as a surprise given that the variables exhibit substantial positive correlation. For
example, the sample value of Kendall’s tau is approximatively 0:525 for the raw
data and 0:548 for the de-trended data. Whether the above sample measures of
asymmetry are significantly greater than zero can only be determined using formal
statistical tests, which are described next.

5.3 Testing for Symmetry

Tests of the hypothesis

H0 W C D C>

of symmetry have been developed recently by Genest et al. [23]. Their procedures
are based on the rank-based statistics Rn D �22.

OCn/, Sn D �22.
OCn/ and Tn D

�1. OCn/, whose values tend to zero in probability as n ! 1 under H0. Note that
the empirical copula in [23] is based on the pairs f.n C 1/=ng. OUi; OVi/. However,
this slightly different definition is inconsequential asymptotically and is not adopted
here.

To carry out these tests, the asymptotic null distribution of their corresponding
statistic is needed. If C is regular in the sense of Definition 5.1, the so-called
empirical copula process given, for all u; v 2 Œ0; 1�, by

OCn.u; v/ D p
n f OCn.u; v/� C.u; v/g

converges weakly in the space `Œ0; 1�2 of bounded functions on Œ0; 1�2 equipped with
the uniform norm [41]. In other words, one has OCn  OC as n ! 1, where OC is a
centered Gaussian process defined, for all u; v 2 Œ0; 1�, by

OC.u; v/ D C.u; v/ � PC1.u; v/C.u; 1/� PC2.u; v/C.1; v/:

Here, C is a tucked C -Brownian sheet, i.e., a centered Gaussian random field with
covariance function given, for all u; v; s; t 2 Œ0; 1�, by

�C.u; v; s; t/ D C.u ^ s; v ^ t/ � C.u; v/ C.s; t/;

where for arbitrary a; b 2 R, a ^ b D min.a; b/. For variants, see [16, 18, 40, 44].
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Using the continuous mapping theorem, Genest et al. [23] showed that if ODn is
the empirical process defined, for all u; v 2 Œ0; 1�, by

ODn.u; v/ D p
n f OCn.u; v/� OCn.v; u/g;

then as n ! 1, ODn OD in `Œ0; 1�2, where OD admits the representation

OD.u; v/ D D.u; v/ � PC1.u; v/D.u; 1/� PC2.u; v/D.1; v/;

in terms of a centered Gaussian random field D with covariance function given, at
each u; v; s; t 2 Œ0; 1�, by �D.u; v; s; t/ D 2 f�C.u; v; s; t/ � �C.u; v; t; s/g. This
observation leads to the following result, excerpted from [23].

Proposition 5.5. If C is a regular symmetric copula, then as n ! 1,

nRn D
Z 1

0

Z 1

0

f ODn.u; v/g2dvdu  DR D
Z 1

0

Z 1

0

f OD.u; v/g2dvdu;

nSn D
Z 1

0

Z 1

0

f ODn.u; v/g2d OCn.u; v/  DS D
Z 1

0

Z 1

0

f OD.u; v/g2dC.u; v/;

n1=2 Tn D sup
.u;v/2Œ0;1�2

j ODn.u; v/j  DT D sup
.u;v/2Œ0;1�2

j OD.u; v/j:

Unfortunately, the limiting distribution of all three statistics depends on the under-
lying copula C , which is unknown.

5.3.1 p-Value Computation

As shown in [23], valid p-values for the tests based on Rn, Sn, and Tn can be
computed using a bootstrap approximation based on the Multiplier Central Limit
Theorem of van der Vaart and Wellner [46]; see also [4, 41] for further details. The
step-by-step description of this procedure is provided below; an implementation
using the R Project for Statistical Computing is available from the authors.

Step 0. Compute the statistic Rn, Sn or Tn.
Step 1. Define Pn at any u; v 2 Œ0; 1� as the n 	 1 vector with i th component

Pin.u; v/ D 1. OUi � u; OVi � v/ � 1. OUi � v; OVi � u/:

Step 2. Fix a bandwidth `n 2 .0; 1=2/, typically `n � 1=
p
n, and a large integer

M . For each h 2 f1; : : : ;M g, do the following.
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Step 2a. For arbitrary v 2 Œ0; 1�, set

PC1n.u; v/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

OCn.2`n; v/
2`n

if u 2 Œ0; `n/;
OCn.u C `n; v/� OCn.u � `n; v/

2`n
if u 2 Œ`n; 1 � `n�;

OCn.1; v/ � OCn.1 � 2`n; v/

2`n
if u 2 .1 � `n; 1�:

Similarly, for arbitrary u 2 Œ0; 1�, set

PC2n.u; v/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

OCn.u; 2`n/
2`n

if v 2 Œ0; `n/;
OCn.u; v C `n/ � OCn.u; v � `n/

2`n
if v 2 Œ`n; 1 � `n�;

OCn.u; 1/� OCn.u; 1� 2`n/

2`n
if v 2 .1 � `n; 1�:

Step 2b. Draw a vector �.h/ D .�
.h/
1 ; : : : ; �

.h/
n / of independent nonnegative

random variables with unit mean and unit variance; the standard exponential
distribution is typically used to this end. Set

N�.h/n D 1

n
.�
.h/
1 C � � � C �.h/n / and �.h/

n D
 
�
.h/
1

N�.h/n
� 1; : : : ;

�
.h/
n

N�.h/n
� 1

!
:

Step 2c. Define the bootstrap replicate OD.h/n of OD at any u; v 2 Œ0; 1� by

OD.h/n .u; v/ D 1p
n
�.h/
n fPn.u; v/� PC1n.u; v/Pn.u; 1/� PC2n.u; v/Pn.1; v/g:

Step 2d. Compute the bootstrap replicate of the appropriate test statistic, viz.

R.h/n D 1

n

Z 1

0

Z 1

0

f OD.h/n .u; v/g2dvdu;

S.h/n D 1

n

Z 1

0

Z 1

0

f OD.h/n .u; v/g2d OCn.u; v/;

T .h/n D 1p
n

sup
.u;v/2Œ0;1�2

j OD.h/n .u; v/j:
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Step 3. Compute the approximate p-value, viz.

1

M

MX
hD1

1.R.h/n > Rn/;
1

M

MX
hD1

1.S.h/n > Sn/;
1

M

MX
hD1

1.T .h/n > Tn/:

It is easy to compute S.h/n because OCn is a discrete distribution function. For the other
two statistics, the computational burden can be reduced by resorting to a numerical
approximation involving an N 	N grid, viz.

R.h/n � 1

nN2

NX
kD1

NX
`D1

�
OD.h/n

�
k

N
;
`

N

	
 2
; (5.4a)

T .h/n � 1p
n

max
k;`2f1;:::;N g

ˇ̌
ˇ̌ OD.h/n

�
k

N
;
`

N

	ˇ̌
ˇ̌ : (5.4b)

The results of an extensive Monte Carlo simulation study comparing the power of
these three tests were reported in [23]. The test based on the Cramér—von Mises
statistic Sn was found to be generally more powerful than its competitors. It is also
the quickest to perform and hence can be recommended on that account too.

5.3.2 Illustration

Consider once again the monthly average flow rate of the Inn and Danube rivers. The
tests based onRn, Sn, and Tn were applied to both the raw and de-trended data using
M D 1; 000multiplier replicates, a bandwidth `n D 0:04 � 1=

p
660 andN D 100

grid points in the approximation (5.4). The hypothesis H0 of symmetry was rejected
in all cases. The p-values were essentially zero except when the statistic Tn was used
on the de-trended data, where it was found that p � 1:5%.

5.4 Asymmetric Copula Families

When the null hypothesis of symmetry is rejected, dependence models based on
Archimedean and meta-elliptical copula families are ruled out straightaway, because
they cannot account for asymmetry; popular alternatives are reviewed below.

5.4.1 Extreme-Value Copulas

A copula C is said to be of the extreme-value type if and only if there exists a
function A W Œ0; 1� ! Œ1=2; 1� such that, for all u; v 2 Œ0; 1�,
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C.u; v/ D exp

�
ln.uv/A

�
ln.v/

ln.uv/


�
: (5.5)

For C to be a copula, the so-called Pickands dependence functionAmust be convex
and such that, for all t 2 Œ0; 1�, max.t; 1 � t/ � A.t/ � 1. The bounds A.t/ � 1

and A.t/ D max.t; 1 � t/ correspond to the independence copula and the Fréchet–
Hoeffding upper bound, respectively.

An extreme-value copula is asymmetric if and only if its Pickands dependence
function A is asymmetric with respect to 1=2, i.e., if there exists t 2 Œ0; 1� such that
A.t/ ¤ A.1 � t/. Klement and Mesiar [28] state that if C is of the form (5.5), then

�1.C / � 44=55 � 0:082:

A detailed proof of this result is given by Durante and Mesiar [9], who show that
the upper bound is reached for two members of the Marshall–Olkin extreme-value
copula family whose Pickands dependence functions are given, for all t 2 Œ0; 1�, by

A1.t/ D max

�
1 � t; t C 1

2

	
; A2.t/ D max

�
t;
2 � t

2

	
: (5.6)

Typical examples of symmetric extreme-value copulas include the Galambos,
Gumbel, Hüsler–Reiß, Tawn, and t-EV families; see [19] for their definitions and
further details. Each of these families can be made asymmetric using Khoudraji’s
device [21, 27]. The latter is based on the observation that if C is an extreme-value
copula with Pickands dependence function A and �; 
 2 .0; 1/, then the copula
given, for all u; v 2 Œ0; 1�, by

C�;
.u; v/ D u1��v1�
C.u�; v
/ (5.7)

is again extreme-value with Pickands dependence function of the form

A�;
.t/ D .1 � 
/t C .1 � �/.1 � t/C f
t C �.1 � t/gA
�


t


t C �.1 � t/


:

A random pair .U; V / from C�;
 can be obtained as follows.

Step 1. Draw independent random variablesW and Z, uniform on Œ0; 1�.
Step 2. Draw a pair .X; Y / from the copula C and set

U D max.W 1=.1��/; X1=�/; V D max.Z1=.1�
/; Y 1=
/:

Clearly, C�;
 is asymmetric when � ¤ 
. Figure 5.4 shows the effect of Khoudraji’s
device when C is a Gumbel copula with 
 2 f0:5; 0:75; 0:9g and � D 0:5; 
 D 0:7;
samples from the symmetric Gumbel copula and from C�;
 are displayed in the top
and middle row, respectively. The plots confirm that asymmetry restricts the range
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of attainable positive association, as observed in Sect. 5.2.1. It is shown in [22] that
Kendall’s tau of C�;
 satisfies


.C�;
/ � 
�


 C � � 
�
D 
max.�; 
/: (5.8)

Khoudraji’s device can be generalized by choosing an integerm 
 1, extreme-value
copulas C1; : : : ; Cm, and vectors � D .�1; : : : ; �m/;� D .
1; : : : ; 
m/ 2 Œ0; 1�m

whose components sum up to 1. The copula defined, for all u; v 2 Œ0; 1�, by

C�;�.u; v/ D
mY
jD1

Cj .u
�j ; v
j / (5.9)

is then an extreme-value copula with Pickands dependence function

A�;�.t/ D
mX
jD1

f
j t C �j .1 � t/gAj
�


j t


j t C �j .1 � t/



:

This result is proved, e.g., by Bacigál et al. [2], who mention other constructions.
The availability of statistical tools for model fitting and validation makes

extreme-value copulas particularly convenient. However, these dependence struc-
tures may not always be appropriate. In particular, copulas of the form (5.5) are
stochastically increasing [17] and exhibit upper-tail but no lower-tail dependence.

5.4.2 Asymmetric Generalizations of Archimedean Copulas

A copula C is called Archimedean if it can be written, for all u; v 2 Œ0; 1�, in the
form

C.u; v/ D '�1f'.u/C '.v/g
in terms of a strictly decreasing, convex map ' W .0; 1� ! Œ0;1/ such that
'.1/ D 0. By convention, '.0/ D limu#0 '.u/ and '�1.s/ D 0 when s 
 '.0/.
The function ' is referred to as an Archimedean generator; see Chap. 4 in [36] for
examples.

Clearly, any Archimedean copula is symmetric. However, Khoudraji’s device can
again be used to generate an asymmetric copula from an Archimedean copula C
with generator ' through (5.7). The resulting copulaC�;
 is no longer Archimedean;
see [34] for further details and illustrations.

Although Khoudraji’s device induces asymmetry, it does not provide much
freedom in modeling association between the variables. To see this, observe that
for given �; 
, the Fréchet–Hoeffding inequality implies that, for all u; v 2 Œ0; 1�,

max.0; uv1�
 C u1��v � u1��v1��/ � C�;
.u; v/ � min.uv1�
; u1��v/:
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Fig. 5.3 Plot of the
difference 
max.�; 
/�

min.�; 
/ as a function of �
and 


The attainable range of values of 
.C�;
/ is thus Œ
min.�; 
/; 
max.�; 
/� with

max.C�;
/ given in (5.8) and


min.�; 
/ D 
�


 C � � 
�
B

�
�

2
� 1;




2
� 1

	
� 2
�

�C 
 � �
 ;

where B.x; y/, x; y > 0, denotes the Beta function. The length of this interval,

max.�; 
/�
min.�; 
/, is shown in Fig. 5.3. For example, it can be seen that 
.C�;
/
is small when j��
j is large. Although the precise interplay between the parameters
�; 
 and the asymmetry measures presented in Sect. 5.2 is not known at present,
asymmetry appears to increase with j� � 
j.

An alternative asymmetric generalization of Archimedean copulas has recently
been proposed by McNeil and Nešlehová [33]. Using the fact that Archimedean
copulas are survival copulas of simplex distributions [32], one can consider survival
copulas of the more general class of Liouville distributions. A random pair .X; Y /
is said to follow a Liouville distribution if .X; Y /

dD R 	 .D1;D2/, where
dD

denotes equality in distribution,R is a strictly positive random variable independent
of the random pair .D1;D2/ having Dirichlet.˛; ˇ/ distribution with ˛; ˇ > 0.
When ˛ D ˇ D 1, .X; Y / follows a simplex distribution and its survival copula
is Archimedean. The interesting case arises when ˛ ¤ ˇ, as the survival copula is
then asymmetric.

Although Liouville copulas do not have a closed form in general, the expression
for their density as well as random number generation is comparatively tractable
when ˛; ˇ are integer-valued and the distribution of R is suitably chosen.
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When the inverse generator  D '�1 is completely monotone, one option is
to set R

dD '.W1/ C � � � C '.W˛Cˇ/, where the distribution of .W1; : : : ;W˛Cˇ/
is an .˛ C ˇ/-dimensional Archimedean copula C' with generator '. A random
pair .U; V / from the corresponding Liouville copula with parameters ˛; ˇ is then
obtained as follows.

Step 1. Draw .W1; : : : ;W˛Cˇ/ from the multivariate Archimedean copula C' .
Step 2. Set X D '.W1/C � � � C '.W˛/ and Y D '.W˛C1/C � � � C '.W˛Cˇ/.
Step 3. For j D 1; : : : ; ˛ _ ˇ � 1, compute the j th derivative  .j / of  and set

U D
˛�1X
jD0

.�1/j X
j

j Š
 .j /.X/; V D

ˇ�1X
jD0

.�1/j Y
j

j Š
 .j /.Y /:

The bottom row of Fig. 5.4 shows samples of size 2; 000 from Liouville copulasC˛;ˇ
with ˛ D 1 and ˇ D 20 when C' is Gumbel’s copula with 
 2 f0:5; 0:75; 0:9g. The
high-order derivatives of the Gumbel generator were computed using Theorem 2
in [25]. For lack of a theoretical expression, ˛ and ˇ were rigged so that the sample
values of �2.C˛;ˇ/ and �2.C�;
/ are close when 
 D 0:5. It transpires from the plots
that in contrast to Khoudraji’s device, the Liouville construction does not restrict the
range of attainable association. This was demonstrated more formally in [33], where
an explicit but cumbersome formula for Kendall’s tau may be found.

5.4.3 Archimax Copulas

Archimax copulas provide yet another class of asymmetric bivariate copulas.
Following Capéraà et al. [5], a copula C belongs to this class if, for all u; v 2 .0; 1/,

C.u; v/ D '�1
�
f'.u/C '.v/g 	 A

�
'.v/

'.u/C '.v/


�
; (5.10)

where A is a Pickands dependence function and ' is a bivariate Archimedean
generator. The class is called Archimax because:

(a) If A � 1, then (5.10) reduces to an (exchangeable) Archimedean copula.
(b) If '.t/ D � ln.t/ for all t 2 .0; 1�, then (5.10) is an extreme-value copula.

An Archimax copula C with generator ' and Pickands dependence function A is
symmetric when A.t/ D A.1 � t/ for all t 2 Œ0; 1�. To construct an asymmetric
Archimax copula, one can thus resort to any of the techniques described in
Sect. 5.4.1. Following [5, 24], a random pair .U; V / from C can be obtained as
follows.

Step 1. Draw a pair .U1; V1/ from an extreme-value copula with Pickands depen-
dence function A and set Z D ln.U1/= ln.U1V1/.
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Fig. 5.4 Top row: samples of size 2; 000 from the Gumbel copula with 
 D 0:5 (left), 
 D 0:75

(middle) and 
 D 0:9 (right). The middle and bottom row show the effect of asymmetrization
of these copulas using Khoudraji’s device with � D 0:5 and 
 D 0:7 and the Liouville copula
construction with ˛ D 1 and ˇ D 20, respectively

Step 2. Compute the first and second order derivatives A0 and A00 of A and set

p.Z/ D Z.1 �Z/A00.Z/
A.Z/C .1 � 2Z/A0.Z/CZ.1 �Z/ŒA00.Z/� fA0.Z/g2=A.Z/� :

Step 3. Generate a pair .U2; V2/ from an Archimedean copula C' with generator
' and a random variable U3 uniformly distributed on .0; 1/.

Step 4. Set W D U2 if U3 � p.Z/ and W D C'.U2; V2/ otherwise and compute

U D '�1
�
Z'.W /

A.Z/



; V D '�1

�
.1 �Z/'.W /

A.Z/



:
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Fig. 5.5 Samples of size 2; 000 from the Archimax copula with Gumbel’s asymmetric Pickands
dependence function with � D 0:5, 
 D 0:7 and � D 2 (left), � D 4 (middle) and � D 10 (right).
The Archimedean generator ' is the Clayton (top row), Frank (middle row), and Joe (bottom row);
its parameter is chosen so that 
.C'/ D 0:5

Typical samples from Archimax copulas are shown in Fig. 5.5. As can be seen, the
degree of asymmetry is modest. This is consistent with the finding of Durante and
Mesiar [9] who show that

�1.C / � sup
t2.0;1/

j'�1.t/ � '�1.5t=4/j: (5.11)

Once again, the upper bound is reached if either A D A1 or A D A2, as defined in
(5.6). For the Clayton, Frank and Joe copulas used in Fig. 5.5, the function '�1.t/�
'�1.5t=4/ is displayed in Fig. 5.6. The upper bound on �1 in (5.11) is shown in the
right panel of the same figure. One can see that the level of attainable asymmetry
decreases rather quickly with increasing 
 .
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Fig. 5.6 Left panel: The function '�1.t /� '�1.5t=4/ for the Clayton (full), Frank (dashed), and
Joe (dotted) copulas with 
 D 0:5. Right panel: The upper bound on �

1

from (5.11) as a function
of 
 for the Clayton (full), Frank (dashed) and Joe (dotted) copulas

5.4.4 Algebraic Constructions

In recent years, various other ways of constructing asymmetric copulas have been
proposed. They are merely outlined below as in most cases, comparatively little is
known about them, particularly from a practical perspective.

As was already apparent from [21], different extensions of Khoudraji’s device
are possible. Two of them have been investigated in detail. Given m 
 2 copulas
C1; : : : ; Cm, Liebscher [30, 31] considers copulas defined, for all u; v 2 Œ0; 1�, by

C.u; v/ D
mY
jD1

Cj ffj .u/; gj .v/g;

where f1; : : : ; fm; g1; : : : ; gm are strictly increasing mappings from Œ0; 1� to Œ0; 1�
such that, for all t 2 Œ0; 1�, f1.t/ 	 � � � 	 fm.t/ D g1.t/ 	 � � � 	 gm.t/ D t .
A simple procedure for generating observations from such copulas is given in
[30,31]. However, no practical guidance for the choice of the functions is provided.

Note that (5.9) corresponds to the case where fj .t/ D t�j and gj .t/ D t
j for
all j 2 f1; : : : ; mg. When m D 2, taking f2.t/ D t=f1.t/ and g2.t/ D t=g1.t/ for
all t 2 .0; 1� leads to a construction proposed independently by Durante [7]. In his
paper, this author also considers mappings defined, for all u; v 2 Œ0; 1�, by

C.u; v/ D C3ŒC1ff1.u/; g1.v/g; C2ff2.u/; g2.v/g� (5.12)

in terms of fixed copulas C1, C2, and C3. Further suppose that C3 is convex in
each variable, so that if .U; V / has distribution C3, U is stochastically decreasing
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Fig. 5.7 Samples of size 2; 000 from the Durante–Jaworski–Mesiar asymmetrization of the
Gumbel copula with 
 D 0:1 (left), 
 D 0:5 (middle) and 
 D 0:9 (right)

in V and vice versa. Then the function C in (5.12) is a copula provided that for all
u 2 Œ0; 1�,

C3ff1.u/; f2.u/g D C3fg1.u/; g2.u/g D u:

Even greater generality is envisaged in [7] by relaxing the conditions on Ci ,
i D 1; 2; 3, but until rich examples, probabilistic interpretations, and simulation
algorithms have been found, this approach remains somewhat of an empty vessel.

The work of Durante et al. [12] is of much more practical interest. Given a
bivariate Archimedean generator ', they define a copula C , for all u; v 2 .0; 1/, by

C.u; v/ D u


1 � '�1 f'.1 � v/=ug� :

They prove that C is positive quadrant dependent and that it is symmetric if and
only if it is the Fréchet–Hoeffding upper bound or a Clayton copula with parameter
� > 0. To obtain the latter, Durante and Jaworski [8] show that one must take
'.t/ D f.1 � t/�� � 1g�1=� for all t 2 .0; 1/. It is also easy to simulate from C as
follows.

Step 1. Draw a pair .Z; V / from an Archimedean copula with generator '.
Step 2. Return .U; 1� V /, where U D '.V /=f'.Z/C '.V /g.

An illustration of this asymmetrization technique is provided in Fig. 5.7 for
three Gumbel copula generators corresponding to different degrees of dependence.
The plots suggest that the degree of asymmetry decreases as 
 increases. In [12],
constructions leading to negative quadrant dependence are also discussed; they are
obtained upon considering the copula given by u � C.u; 1� v/ D u'�1f'.v/=ug.

Yet another approach is taken by Alfonsi and Brigo [1]. They consider absolutely
continuous copulas whose density is expressed, at every u; v 2 Œ0; 1�, by c.u; v/ D
`.u � v/ in terms of some function ` W Œ�1; 1� ! Œ0;1/. For this construction to be
valid, the authors must assume that ` is twice finitely integrable, that

R 1
0
`.t/dt D 1,
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and that `.t/ D `.t � 1/ for all t 2 Œ0; 1�. Letting L.t/ D R t
0

R s
�1 `.w/dwds, it can

then be shown that C is indeed a copula and that, for all u; v 2 Œ0; 1�,

C`.u; v/ D L.u/C L.�v/ � L.u � v/:

This construction is of little interest, however, because if .U; V / has copula C`, the
pair .U; 1� V / then has a symmetric copula. Indeed, the conditions on ` imply that
for all t 2 Œ0; 1�, L.t/ D L.1/C L.t � 1/� .1 � t/ and hence, for all u; v 2 Œ0; 1�,
u �C`.u; 1� v/ D v �C`.v; 1� u/. Thus for C` to be a realistic copula of .X; Y /,
the dependence structure of .X;�Y / must be symmetric. Given the wealth of such
models, a statistician would be much better off analyzing the latter pair.

Finally, asymmetric copulas could also be constructed by gluing copulas or using
ordinal sums; see, e.g., [35,42]. For asymmetric copulas with given diagonal section,
see [6, 14, 15, 38].

5.5 Discussion

Returning to the hydrological data, it has already been seen that both the raw and de-
trended data exhibit asymmetry. As it makes more sense to model pure dependence,
this discussion concentrates on the analysis of the de-trended data.

While Bacigál et al. [2] consider Archimax models for these data, the hypothesis
that the copula is of the simpler extreme-value form (5.5) cannot be rejected. For
example, the rank-based tests developed in [3] and [29] yield approximate p-values
of 96.8 % and 7.34 %, respectively.

In order to choose a suitable parametric copula family, asymmetric Galambos,
Gumbel, Hüsler–Reiß and Tawn extreme-value copulas of the form (5.7) were fitted
to the data by the maximum pseudo likelihood method of Genest et al. [20]. The
four models returned very similar results; the highest likelihood was obtained for
the Hüsler–Reiß with parameters O� D 2:16, O� D 0:938 and O
 D 1. At 283:23, the
corresponding log-likelihood is also the highest compared to the models in [2].

The parametric estimate of the Pickands dependence function of the asymmetric
Hüsler–Reiß copula is shown in the left panel of Fig. 5.8. Rank-based versions of
the nonparametric estimates of A due to Pickands (P) and Capéraà, Fougères, and
Genest (CFG) are also displayed for comparison purposes. The right panel displays
a random sample of size 659 from the fitted asymmetric Hüsler–Reiß model. Visual
comparison with the rank plot of the original data suggests an adequate fit. This
could be checked formally using the goodness-of-fit procedures introduced in [22].

In contrast, the hypothesis of extremeness is clearly rejected for the raw data. If
one were to model the latter (i.e., deliberately ignoring the influence of time), one
would need to resort to more elaborate dependence models, such as the Archimax,
Liouville or Durante–Jaworski–Mesiar copulas. While these constructions clearly
have potential, practical tools for their implementation remain to be developed.
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Fig. 5.8 Left panel: parametric Pickands dependence function estimated from the de-trended data
using the asymmetric Hüsler–Reiß model (solid line), together with the rank-based nonparametric
P (dotted line) and CFG (dashed line) estimators. Right panel: a sample of size 659 from the fitted
asymmetric Hüsler–Reiß copula

Appendix

Proof of Proposition 5.3. To determine the limit of �p. OCn/, proceed as in the proof
of Proposition 4 in Genest et al. [23]. Write

j�pp . OCn/ � �pp .C /j � j˛nj C jˇnj;

where

˛n D
Z 1

0

Z 1

0

f OCn.u; v/� OCn.v; u/gpd OCn.u; v/�
Z 1

0

Z 1

0

fC.u; v/� C.v; u/gp d OCn.u; v/

and

ˇn D
Z 1

0

Z 1

0

fC.u; v/� C.v; u/gp d OCn.u; v/�
Z 1

0

Z 1

0

fC.u; v/� C.v; u/gp dC.u; v/:

By the Mean Value Theorem, jap�bpj � p 2p�1ja�bj for all a; b 2 Œ0; 2�. Because
jC.u; v/�C.v; u/j and j OCn.u; v/� OCn.v; u/j take values in Œ0; 2� for all u; v 2 Œ0; 1�,

ˇ̌
ˇj OCn.u; v/ � OCn.v; u/jp � jC.u; v/� C.v; u/jp

ˇ̌
ˇ

� p 2p�1
ˇ̌
ˇj OCn.u; v/ � OCn.v; u/j � jC.u; v/� C.v; u/j

ˇ̌
ˇ

� p 2p sup
u;v2Œ0;1�

j OCn.u; v/� C.u; v/j;
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where the last step follows from a twofold application of the triangular inequality.
In particular, therefore,

j˛nj � p 2p sup
u;v2Œ0;1�

j OCn.u; v/ � C.u; v/j

and hence tends to 0 in probability, as n ! 1. Turning to ˇn, set  D .C � C>/p
and apply Proposition A.1(i) in [20], taking ı D 1 therein. It then follows that

Z 1

0

Z 1

0
fC.u; v/� C.v;u/gp d OCn.u; v/ D 1

n

nX
iD1

 

�
Ri

n
;
Si

n

	
!
Z 1

0

Z 1

0
 .u; v/dC.u; v/

almost surely, whence jˇnj converges to 0 in probability, as n ! 1. ut
Proof of Proposition 5.4. The fact that �p satisfies axioms (B1), (B3), and (B4) is
easily seen. It is also immediate that �p.C / D 0 if C is symmetric. To establish
the converse, assume for simplicity that C has a density c. If �p.C / D 0, then the
supports of C and C> are contained in A D f.u; v/ W C.u; v/ D C.v; u/g. Given
that c.u; v/ D c.v; u/ on A, it follows that

C.u; v/ D
Z u

0

Z v

0

1f.s; t/ 2 Agc.s; t/dtds D
Z u

0

Z v

0

1f.s; t/ 2 Agc.t; s/dtds D C.v; u/:

Regarding axiom (B5), write, in analogy with the proof of Proposition 5.3,

j�pp .Cn/ � �pp .C /j � j˛nj C jˇnj;

where

˛n D
Z 1

0

Z 1

0
jCn.u; v/� Cn.v; u/jp dCn.u; v/�

Z 1

0

Z 1

0
jC.u; v/ � C.v; u/jp dCn.u; v/

and

ˇn D
Z 1

0

Z 1

0

jC.u; v/ � C.v; u/jp dCn.u; v/ �
Z 1

0

Z 1

0

jC.u; v/ � C.v; u/jp dC.u; v/:

By the same argument as in the proof of Proposition 5.3,

j˛nj � p2p sup
u;v2Œ0;1�

jCn.u; v/ � C.u; v/j

and hence ˛n ! 0 as n ! 1. The fact that ˇn ! 0 follows directly from the weak
convergence of Cn to C ; see, e.g., Lemma 2.2 in [45]. ut
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Chapter 6
Modeling Time-Varying Dependencies Between
Positive-Valued High-Frequency Time Series

Nikolaus Hautsch, Ostap Okhrin, and Alexander Ristig

Abstract Multiplicative error models (MEM) became a standard tool for modeling
conditional durations of intraday transactions, realized volatilities, and trading
volumes. The parametric estimation of the corresponding multivariate model, the
so-called vector MEM (VMEM), requires a specification of the joint error term
distribution, which is due to the lack of multivariate distribution functions on R

dC
defined via a copula. Maximum likelihood estimation is based on the assumption
of constant copula parameters and therefore leads to invalid inference if the
dependence exhibits time variations or structural breaks. Hence, we suggest to test
for time-varying dependence by calibrating a time-varying copula model and to
re-estimate the VMEM based on identified intervals of homogenous dependence.
This paper summarizes the important aspects of (V)MEM, its estimation, and a
sequential test for changes in the dependence structure. The techniques are applied
in an empirical example.

6.1 Multiplicative Error Models

Multiplicative Error Models (MEMs) are frequently applied to describe autocor-
related positive-valued processes. The multiplicative structure became popular in
the context of (G)ARCH models, see [2, 8]. Engle and Russell [9] adopted this
multiplicative approach to analyze the conditional duration of irregularly spaced
financial transaction data under the assumption that the error term follows an
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Exponential or Weibull distribution. This extends directly to MEMs, when other
positive-valued random variables such as trading volumes, are considered. As
stressed by [9], a joint model including volumes, transaction prices, and time
variations in liquidity gives a better understanding of the fundamental mechanisms
of stock markets than individual univariate analyses.

6.1.1 Univariate MEM

Let xi be a nonnegative univariate time series, with time index i D 1; : : : ; n. The
univariate MEM is defined as

xi D �i "i (6.1)

�i
defD E .xi jFi�1I �/ ;

where � denotes an m-dimensional vector of parameters. Furthermore, assume that
"i follows an iid process with E ."i / D 1 and density f .�/. The conditional mean
can be specified in several ways, e.g.,

�i D ! C
PX
jD1

˛j xi�j C
QX
jD1

ˇj�i�j ; (6.2)

with ! 
 0, ˛j 
 0 and ˇj 
 0; 8 j , � D �
!; ˛1; : : : ; ˛P ; ˇ1; : : : ; ˇQ

�>
. Based

on the filters � .L/ D PR
jD1 �jLj D PR

jD1
�
˛j C ˇj

�
Lj , ˇ .L/ D PQ

jD1 ˇjLj
and the martingale difference series �i D xi � �i , (6.2) can be transformed to an
ARMA(R;Q) model

xi D ! C � .L/ xi C f1 � ˇ .L/g �i ; (6.3)

where R D max .P;Q/ and L denotes the lag operator with Ljxi D xi�j .
According to standard time series arguments, (6.3) is guaranteed to be weakly
stationary, if

PP
jD1 ˛j C PQ

jD1 ˇj < 1. Given the above set of assumptions, we
implicitly assume an exponential decay of the autocorrelation function �.�/, i.e.,
liml!1

Pl
jD�l j� .j /j < 1. However, in case of financial high-frequency data

this assumption is often not fulfilled.
As such data typically reveal long memory, we provide a short review of the

fractionally integrated MEM (FIMEM), which allows the autocorrelation function
of the underlying random variable to decay hyperbolically. Formally, xi exhibits
long memory if liml!1

Pl
jD�l j� .j /j D 1. Following [1], Jasiak [14] specifies

the FIMEM in the context of conditional durations by introducing the fractional
difference operator .1 � L/ı to (6.3), i.e.,
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f1 � � .L/g .1 �L/ı xi D ! C f1 � ˇ .L/g �i ; (6.4)

with ı 2 Œ0; 1� the fractional integration parameter. Hosking [13] defines the
fractional difference operator by a binomial series:

.1 �L/ı D
1X
jD0

 
ı

j

!
.�1/j Lj D

1X
jD0

�jL
j : (6.5)

The FIMEM generalizes the integrated MEM, since it permits the degree of
differencing to be a fractional value of the integrated case, for which ı D 1.

Substituting the martingale difference series defined above in (6.4) leads to

f1 � ˇ .L/g�i D ! C
h
1 � ˇ .L/ � f1 � � .L/g .1 � L/ı

i
xi (6.6)

�i D ! f1 � ˇ .1/g�1 C � .L/ xi ;

where the linear filter � .L/ D 1 � f1 � � .L/g f1 � ˇ .L/g�1 .1 �L/ı DP1
jD1 �jLj implies an infinite number of parameter restrictions to its coefficients to

guarantee the nonnegativity of �i , i.e., �j 
 0 for j D 1; 2; : : :. As a consequence,
in practice the filter � .L/ is truncated to a finite number of lags and one needs
to apply Theorem 3 of [6] to verify that the combination of parameters of the
FIMEM(P I ıIQ) is within the feasible parameter space. To emphasize this point,
consider the following two extreme examples for which we assume that ı lies within
the unit interval, such that �j < 0, for j > 0. Then, (1) �i can become negative
although all parameters are greater than zero and (2) �i can be positive almost
surely for all i , even though all parameters except ı are negative. Note that these
restrictions play a fundamental role for the validity of forecasts.

The first unconditional moment of xi is not defined since the fractional difference
operator evaluated at L D 1 equals zero. As a result, the FIMEM is not covariance
stationary. If the parameters are nonnegative and

PP
jD1 ˛j CPQ

jD1 ˇj < 1, then the
strict stationarity and ergodicity of the FIMEM can be deduced from the stationarity
and ergodicity of the integrated MEM, since the infinite-order representation of (6.6)
is dominated in an absolute value sense by the coefficients of the corresponding
integrated MEM, cf. [1, 3]. Alternative covariance stationary long memory MEMs
are discussed in [12].

In general, parametric ML estimation of univariate MEMs leads to asymptot-
ically efficient and unbiased estimates if the distribution of the innovations "i is
specified correctly. Typical candidates to describe "i are the standard Exponential
or Weibull distribution, but flexible distributions as the generalized Gamma or F
distribution can also be considered. In a standard ML framework for time series
models, where `i .�/, i D 1; : : : ; n, denotes the i th contribution to the log likelihood
`.�/ D Pn

iD1 `i .�/, Hn.�/ D Pn
iD1f @2

@�@�>

`i .�/g denotes the Hessian matrix
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and Sn.�/ D Pn
iD1f @

@�
`i .�/

@

@�>

`i .�/g the outer product of scores, the limiting

distribution of the estimator O� is given by

˚
Hn.�/

�1Sn.�/Hn.�/
�1��1=2 p

n. O� � �/ L! N .0m; Img ; (6.7)

with identity matrix Im. Statistical inference is based on the finite sample approxi-
mation of (6.7), i.e., the Hessian matrix and the outer score product are replaced by
the consistent estimates Hn. O�/ and Sn. O�/.

Furthermore, [9] adopts the asymptotic theory of [16] and proposes a quasi-ML
setup which leads to consistent estimates for the linear and integrated MEM even
if the true error term distribution does not correspond to the assumed standard
Exponential distribution. In this case, O� converges under weak regularity conditions
to the asymptotic distribution of (6.7).

6.1.2 Vector MEM

Cipollini and Gallo [5] formalizes the VMEM as

xi D �i ˇ "i ; (6.8)

where ˇ denotes the Hadamard product and xi D .xi1; : : : ; xid/
>, i D 1; : : : ; n,

is the vector of positive-valued processes. The multivariate scale factor �i
defD

E .xi jFi�1I �/ and the vector of error terms "i are .d 	 1/ vectors. The natural
multivariate extension of (6.6) is given by

ŒId � B .L/� �i D ! C ŒId � B .L/ � fId � ˚ .L/gD�xi ; (6.9)

with ˚ .L/ D A .L/ C B .L/ and A;B being .d 	 d/ matrices. Short-run effects
enter equation (6.9) through the linear filters A.L/ and B.L/ and ! denotes the
vector of constants. The univariate fractional difference operator from (6.6) extends
to the diagonal matrix diag .D/ D f.1 � L/ı1 ; : : : ; .1 � L/ıd g, which contains
the individual fractional difference operators, with ıj 2 Œ0; 1�, j D 1; : : : ; d .
By this restriction, we exclude deterministic low frequency patterns between the
marginal time series. Note that the individual mean equations of (6.9) collapse to the
univariate FIMEM (6.6), if A and B are diagonal and to the linearly parameterized
MEM (6.2), if additionally ıj D 0, j D 1; : : : ; d . Based on the diagonality
assumption for A and B the model can be estimated equation by equation and is
stationary.

For the full parametric specification of the VMEM we need to define an
innovation process "i , i D 1; : : : ; n, which must follow a distribution with only
positive probabilities on R

dC D Œ0;1/d and E
�
"ij
� D 1, j D 1; : : : ; d . However,
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the distribution function of a univariate error term process does not have a natural
multivariate equivalent. Therefore, the d marginal distributions are coupled together
with a copula splitting a multivariate distribution function into its margins and a
pure dependence component—the copula. Copulae are introduced in [23] stating
that if F is an arbitrary d -dimensional continuous distribution function of the
random variablesX1; : : : ; Xd , then the associated copula is unique and defined as a
continuous function C W Œ0; 1�d ! Œ0; 1� which satisfies the equality

C.u1; : : : ; ud / D F fF�1
1 .u1/; : : : ; F

�1
d .ud /g; u1; : : : ; ud 2 Œ0; 1�; (6.10)

where F �1
1 .�/; : : : ; F�1

d .�/ are the quantile functions of the continuous marginal dis-
tribution functions F1.x1/; : : : ; Fd .xd /. Based on the copula density c .�; : : : ; �I �/
and the marginal densities fj

��; ˛j � of "ij , j D 1; : : : ; d , the log likelihood of the
VMEM can be written as

` .�; �; ˛jFi�1/ D
nX
iD1

dX
jD1



log



"ij .�/ fj

˚
"ij .�/ I˛j

�� � logxij
�

(6.11)

C
nX
iD1

log c ŒF1 f"i1 .�/ ; ˛1g ; : : : ; F1 f"id .�/ ; ˛d g I �� ;

with xi=�i .�/ jFi�1 D "i .�/ jFi�1 � C ŒF1 f"i1 .�/ ; ˛1g ; : : : ; F1 f"id .�/ ; ˛d g I ��
having expectation one, where � denotes the copula-, ˛ the marginal- and � the
mean-parameters, cf. [5]. Conversely to the Hadamard product, xi=�i denotes
element-wise division. The efficient approach to obtain parameter estimates is given
by full ML estimation, as the multivariate density function is assumed to be known,
i.e., the product of the marginal densities multiplied with the copula density. On
the other hand, full ML estimation is difficult to implement even if the induced
dependence is non-elliptical. For example, if we assume a Vine- or hierarchical
Archimedean copula (HAC), (see Sect. 6.2), the copula density varies with the
structure of the underlying copula. Thus, the log likelihood must be optimized
for each possible structure and the parameter vector generating the largest log
likelihood value is selected as ML estimate. To avoid this computationally intensive
method, a two-step procedure similar to [4] can be straightforwardly applied, since
(6.11) can be decomposed into a marginal and a copula part as follows: First, the
parameters of the mean equation are estimated to filter the residuals, for which
only the information about the marginal distributions is used. Then, the copula is
calibrated to the fitted values of the residuals’ empirical distribution functions.

Similar to classical risk management applications, where several time-varying
models for correlations and copulae are proposed, e.g., [7,22], time-varying depen-
dence cannot be excluded in our context and consequently, the copula estimated at
the second step may contain time variations. Yet, the final target of VMEMs is not
to predict, e.g., tail dependencies or risk measures, but to produce forecasts of �i ,
which crucially depend on precise parameter estimates and thus on the complete log
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likelihood and the most recent data for which the dependence between the variables
is constant. Thus, we suggest to reestimate the parameters of �i by maximizing
(6.11) with fixed � for time intervals at which the copula model calibrated at the
second step supports constant dependence.

6.2 Hierarchical Archimedean Copulae

Among other important families, there exists the class of Archimedean copulae
(AC), which (1) permits modeling non-elliptical dependencies, (2) can describe
different types of tail dependencies and (3) has a closed form expression. Formally,
AC are defined through the generator function �� 2 L D f�� W Œ0I 1/ !
Œ0; 1� j��.0/ D 1; �� .1/ D 0I .�1/i�.i/� 
 0I i 2 Ng and .�1/i�.i/� .x/ being
non-decreasing and convex on Œ0;1/, for x > 0, which commonly depends on a
single parameter � , i.e.,

C.u1; : : : ; ud I �/ D ��
˚
��1
� .u1/C � � � C ��1

� .ud /
�
; u1; : : : ; ud 2 Œ0; 1�: (6.12)

Properties of Archimedean copulae are reviewed and investigated in [15,18]. Nelsen
[19] discusses generator families depending on two parameters. The restricted
dependence structure induced by Archimedean generators is the major disadvantage
of d -dimensional ACs since this assumption is mostly violated in practice.

To permit more flexibility, arguments of an AC can be replaced by further ACs
leading to the concept of HAC, which can adopt arbitrary complicated structures
denoted by s in the following. The generators of a single HAC, �j , can come from
different generator families. However, if the ��j ’s come from the same family, the
required complete monotonicity of ��1

�jC1
ı��j imposes constraints on the parameters

�1; : : : ; �d�1. The flexibility induced by the structure is accompanied by larger
amounts of parameters, as each generator composition corresponds to one additional
parameter. Sufficient conditions on the generator functions guaranteeing that C is a
copula are stated in [17]. It holds that if ��j 2 L, for j D 1; : : : ; d�1, and ��1

�jC1
ı��j

have completely monotone derivatives, then C is a copula for d 
 2. The major
advantage of HACs compared to ACs is the non-exchangeability of the arguments
beyond a single node, which is imposed by the structure of a HAC. Similar to the
dependence parameters, s is generally unknown and can be regarded as an additional
parameter to estimate.

A sequential estimation procedure for HACs is discussed by [20] providing statis-
tical inference for parametric and nonparametric estimated margins. The procedure
uses Proposition 1 of [21] stating that HACs can be uniquely reconstructed from
marginal distributions and bivariate copula functions. The estimation procedure
can be summarized in the following way: at the first step, estimate all binary
copula parameters of a specified Archimedean family under the assumption of
known marginal distribution functions. Select the largest parameter and fix the
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binary copula as pseudo-variable. At next steps, assume the estimated margins and
sub-copulae from lower levels are known and estimate all binary copula parameters
by considering pairs of margins, pairs of pseudo variables, and pairs of margins
and pseudo variables. Then, choose the largest parameter and fix the corresponding
copula as a pseudo-variable. This procedure leads a binary approximation of an
arbitrary HAC. Let "i D f"i1; : : : ; "idg> be the sample, i D 1; : : : ; n, and � D
.�1; : : : ; �d�1/> be the copula parameters ordered from the lowest to the highest
hierarchical level. The multi-stage ML-estimator, O� , provides a solution for the
following system of equations

�
@`1

@�1
; : : : ;

@`d�1
@�d�1

	>
D 0; (6.13)

where `j D
nX
iD1

lj ."i /; for j D 1; : : : ; d � 1;

lj ."i / D log

8<
:c

f OFm."im/gm2sj I sj ; �j

� Y
m2sj

Ofm."im/

9=
;

for i D 1; : : : ; n;

where sj contains the indices, which are structured according to the fixed subcopu-
lae (and margins) at lower hierarchical levels.

6.3 Change Point Detection

The time intervals for which the parameters of �i should be reestimated are
identified by calibrating a time-varying copula. In this context, [11] proposes a
framework, which incorporates time-varying HAC parameters �i and si and is
closely related to the local change point (LCP) procedure applied in [24]. As a
detailed discussion of this sophisticated method is beyond the scope of this paper,
this section describes only the main ideas of the data driven LCP.

Let �i ; si be the unknown time-varying parameters and structure of the HAC
C . Let I D Œi0 � m; i0� denote an interval with reference point i0, m > 0

and let �I .�; s/ D P
i2I K fc .�; �i ; si / ; c .�I �; s/g be a random quantity, which

measures the quality of the approximation of the true copula with time-varying
parameters c .�; �i ; si / by the (local) parametric copula c .�I �; s/, where K .�; �/
denotes the Kullback-Leibler divergence. Furthermore, let �I .�; s/ � � be the
small modeling bias (SMB) condition with � 
 0 and constant parameters �; s. As
K .�; �/ measures the discrepancy between two densities, from the SMB condition
follows that the data generating process can be well approximated by the local
constant copula C .�I �; s/ on I . In this sense [11] proposes testing whether a HAC
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with time-varying parameters and structure can be locally described by a HAC with
constant parameters and structure.

Under the null hypothesis assume that the SMB condition holds for interval I
and parameters f�; sg and define the set of possible change points TI for interval I ,
which is tested for a single but unknown change point 
 2 TI . The test hypotheses
are formalized as

H0 W 8 
 2 TI ; �i D �; si D s;8 i 2 I D J [ JC D Œ
; i0� [ Œi0 �m; 
/

(6.14)

H1 W 9 
 2 TI ; �i D �1; si D s1;8 i 2 J D Œ
; i0� ;

and �i D �2 ¤ �1 or si D s2 ¤ s1;8 i 2 JC D Œi0 �m; 
/:

The null hypothesis is rejected, if the likelihood ratio (LR) test statistic

TI D max

2TI

�
max
�1;s1

f`J .�1; s1/g C max
�2;s2

f`JC .�2; s2/g � max
�;s

f`I .�; s/g
�
; (6.15)

exceeds the critical value zI . In practice, the length of the homogenous interval and
the parameters of interest f�; sg are estimated simultaneously due to their relation
through the test statistic. For a well performing choice of the critical value, which is
found via a Monte-Carlo simulation from the local parametric model and implicitly
defines the significance level of the test, we refer to [24].

6.4 Empirical Analysis

The considered time span of NASDAQ trade data for Apple (AAPL) starts on
January 2nd and ends on December 31st, 2009. Similar to the cleaning of TAQ data
sets as, e.g., applied in [12], all non-executed trades, trades with a price smaller or
equal to zero and outliers are removed from the tick-by-tick high-frequency data set.
To overcome the phenomenon of simultaneous observations, trades with the same
time stamp are merged and the corresponding values are aggregated by their median.
A cleaned tick-by-tick data set provides information about (1) the price series pj , (2)
the trading volume vj and (3) the time stamp of the trades tj , j D 1; : : : ; n�, where
n� is the number of daily observations. To investigate the relationships between
these series, we construct the series of high-low ranges (HL), average volumes (Vol),
and the number of trades (NT) on a sampling frequency of 10 min, i.e.,

HLi D max
˚
pj jtj 2 .ti�1; ti �

� � min
˚
pj jtj 2 .ti�1; ti �

�
; (6.16)

NTi D #
˚
tj jtj 2 .ti�1; ti �

�
;

Voli D NT�1
i

X
tj2.ti�1;ti �

vj ;
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Fig. 6.1 The upper diagonal elements show the pairwise dependence between the filtered
residuals. The lower diagonal elements present the values of the standard normal quantile applied
to the values of the empirical distribution functions. Scales of the axes are not presented as they
differ slightly. The origins of the coordinate planes of the upper diagonal elements correspond
to zero

for i D 1; : : : ; n, where # counts the elements of the set f�g. Note that other proxies
for price variations, e.g., the 10 min realized volatility or the squared returns, can
replace the high-low range.

To remove the U-shaped daily seasonal pattern provided by the variables defined
above, the individual seasonal components are approximated by fitting cubic splines
and each series is divided by the respective estimated seasonal factor. Then, model
(6.8) with mean (6.9) is calibrated to the process, where A.L/ and B.L/ are
restricted to be diagonal and to the first lag. The infinite sums of the mean equations
of the FIMEMs are truncated to 400 lagged coefficients, i.e.,

P400
ljD0 �lj Llj , since

the parameters �j are almost unaffected by including additional�lj ’s, j D 1; : : : ; d .
Despite these restrictions, the estimated models produce uncorrelated residuals.
Figure 6.1 presents scatterplots of the filtered residuals. The lower diagonal elements
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of Fig. 6.1 do not reveal elliptical dependencies, thus the Gaussian copula is
inappropriate in this case. In the following, we prefer an approximation of the
dependence structure by the hierarchical or simple Archimedean Gumbel copula,
since the bivariate contour plots indicate almost the same dependencies as the
underlying scatterplots.

The approach proposed in Sect. 6.3 considers only one single interval I , whose
subintervals, defined through the set of possible change points TI , are tested for
homogeneity. This method turns out to be time-varying, when it is applied as a
sequential testing procedure. For this purpose, define the set I , which contains the
geometrically growing sequence of nested interval-candidates I0 � I1 � : : : �
Ik � : : : � IK , with Ik D Œi0 � mk; i0�, reference point i0, geometric grid mk D
Œ1:25km0�, and the sets of possible change points TIk D Œi0 �mk�1; i0 �mk�2� for
all Ik 2 I . Œx� means the integer part of x and m0 D 40. If the null hypothesis of
constant dependence is not rejected for interval Ik , the interval length is extended
and interval IkC1 is tested for homogeneity. This procedure is continued until
a change point is identified or the largest interval IK is accepted as interval of
homogeneity. If a change point is detected at k C 1, the local adaptive estimates
are given by O� D Q�k , Os D Qsk , where Q�k; Qsk denote the ML-estimates from Sect. 6.2.
In practice, the HAC is tested for homogeneity at all points of the sample except
the points of a “burn in” period, such that i0 D mKC1; : : : ; n. While other time-
varying methods permit only the parameter(s) to vary over time, the structure of this
time-varying HAC may change as well.

Based on the Gumbel family, we apply the LCP procedure to the filtered
residuals, because an application of the LCP procedure to the full VMEM is
cumbersome due to the large number of parameters. The first panel of Fig. 6.2 shows
the changing HAC-structure estimated for an accepted interval of homogeneity,
whose length is shown in the fourth panel. The two thick solid lines (gray and
black) in the second panel present the time-varying parameters in terms of Kendall’s
O
 . For the relationship between bivariate Archimedean generators and Kendall’s

 , see [10]. Based on these results, we propose to reestimate the parameters of
the VMEM’s scale function �i for at least three intervals separated by the dashed
vertical lines, using full ML with fixed copula parameters. The first interval ending
in the middle of March can be clearly identified, as the structure is constant and
the estimates of Kendall’s 
 exhibit a certain distance. Furthermore, the steadily
increasing interval lengths support our choice of an homogenous HAC for this
interval, which is given by s1HAC D ..NT Vol/1:92HL/1:50, where the subscript

is related to O� . The second interval is characterized by an alternating structure,
while the values of Kendall’s O
 can almost be distinguished. This makes it, from
our perspective, difficult, to decide, whether a HAC or a simple AC should be
used for reestimating the VMEM. In general, the corresponding HAC, s2HAC D
..NT Vol/1:67HL/1:42, indicate a weaker dependence than the fitted HAC of the first
interval. The simple AC is given by s2AC D .NT Vol HL/1:48. In the third selected
interval beginning in June, the underlying copula corresponds with high probability
to a simple AC, since the structure changes frequently and both parameters are very
close to each other, such that the HAC can be aggregated to a simple AC at most
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Fig. 6.2 Results of the LCP-procedure of AAPL. The first panel shows changes in the structure,
the second the estimates of Kendall’s 
 and the third variations of the ML process for the intervals
of homogeneity, whose varying length is presented in the lower panel

points of the interval. The HAC of this interval, s3HAC D ..NT HL/1:52Vol/1:40, shows
a different structure and the AC, s3AC D .NT Vol HL/1:42, a weaker dependence than
the calibrated copulas of the first and second interval. We admit, at this point, that
shorter interval specifications are possible, as the method provides a sensitive picture
of the time-varying dependence. Note that shorter time intervals are accompanied
with less data and therefore imply a loss in efficiency. The estimated HAC based on
the entire sample is given by sHAC D ..Vol NT/1:56HL/1:41 and the respective simple
AC by sAC D .NT HL Vol/1:45. We investigated the time-varying dependence for a
few of other stocks and found similar results.
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The third and fourth panels illustrate the performance of the LCP procedure.
As proposed in Sect. 6.3, the LR test statistic measures the stability of the fitted
model. Therefore, the length of the accepted intervals increase continuously in
periods of a stable fit, whereas the interval length is typically short if the ML process
is volatile. The dynamic of the ML process is presented in the third picture and
allows to reproduce this relationship. The ML process exhibits a higher volatility
in the last two months of the observed sample. This implies shorter intervals, for
which the hypotheses of homogeneity are accepted, since the LR test statistics
are smaller. Härdle et al. [11] illustrates in a simulation study that the procedure
detects dependence changes with a short delay and [24] investigates the quality of
the local adaptive estimators. A simple alternative approach is the rolling window
method, which also allows for time-varying parameters but detects changes in the
dependence with a larger delay.
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Chapter 7
The Limiting Properties of Copulas Under
Univariate Conditioning

Piotr Jaworski

Abstract The dynamics of univariate conditioning of copulas with respect to the
first variable is studied. Special attention is paid to the limiting properties when the
first variable is attaining extreme values. We describe the copulas which are invariant
with respect to the conditioning and study their sets of attraction. Furthermore we
provide examples of the limit sets consisting of more than one element and discuss
the chaotic nature of univariate conditioning.

7.1 Introduction

The interest in the construction of multivariate stochastic models describing the
dependence among several variables has grown in the last years. In particu-
lar, the recent financial crisis emphasized the necessity of considering models that
can serve to estimate better the occurrence of extremal events (see, for example,
[3, 6, 45] or [19]).

In financial and actuarial risk management, the construction of appropriate
models for dependence between risks is of obvious importance, due to the well
recognized fact that neglecting dependence gives rise to a dramatic risk underesti-
mation.

In risk management one often deals with a situation when there is one leading
line of insurance or one leading asset in an investment portfolio. The crucial point is
to determine what might happen with other assets/lines when a large loss caused by
this leading one occurs, i.e. to what extent diversification could hedge the aggregated
outcome.
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Following the distributional approach proposed in [39, 40], the concept of
conditional copula1 has proved to be useful for the description of dependence
among random variables, when we condition observations to lie above or below
some thresholds. See also [1, 9, 10, 14, 26, 48, 52].

We recall that, given a vector .X1;X2; : : : ; Xn/ of continuous real-valued
random variables, a conditional copula is the copula associated with the conditional
distribution function of .X1;X2; : : : ; Xn/ knowing thatXi , i D 1; : : : ; n, are subject
to some restrictions.

The goal of this paper is to study the behaviour of conditional copulas for
extremal values of the first variable. Our main objectives are the limiting properties
of families of copulas CŒ˛� satisfying the following property:

CŒ1� is the copula of a random vector .X1;X2; : : : ; Xn/.
CŒ˛�, ˛ 2 .0; 1/, is the copula of .X1;X2; : : : ; Xn/ supposing that X1 < qX1.˛/.

The motivation for dealing with such families is closely connected with the
ongoing research in the area of modelling in finance and reliability.

Market Contagion. Let X and Y model the returns from the indices of two stock
markets. It is a well acknowledged stylized fact that the dependence of Y and X
subject to the condition X � qX.˛/ is greater than the dependence in the middle
part of the distribution of Y and X . This phenomenon was studied, for example, in
[8, 9, 16, 34].

Contagion in a Financial Network. We fix a time instance, say t D 1. Let C be a
copula of joint distribution of welfares W i

1 of n C 1 banks/institutions at this time.
We study the case when the first one is in trouble.

Reliability. Let us consider a complex system consisting of k components. Let Ti
denote the lifetime of the i th component, T the lifetime of the system, and Tmin D
min.T1; : : : ; Tk/ the time of the first failure. Often we have to model the dependence
between T and Tmin subject to the condition Tmin 
 t�.

Credit Risk. Let us consider a pool of n homogeneous loans. Let Ti be the time of
the default of i th debtor,

Ti D infft > 0 W Xi;t � 0g;

whereXi D .Xi;t /t�0 is the wealth process of the i th debtor. If the wealth processes
depend rather on systematic or systemic factors than on idiosyncratic (specific) ones,
then one may expect that the dependence between Tk1Wn and Tk2Wn, k1 < k2 < n,
subject to the condition Tk1Wn 
 t� is increasing when t� is increasing. Of course
the most interesting case is when k1=n and k2=n are the attachment and detachment
points of a CDO (collateralized debt obligation) tranche.

1Sometimes in some special cases the conditional copula is called tail-dependence or threshold
copula.
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The paper is organized as follows. Section 7.2 presents some facts that are
necessary in order to fix the notation and make the paper self-contained. In the next
two Sects. 7.3 and 7.4, the basic facts about univariate conditioning are provided.
In Sect. 7.5 we discuss the existence of the limit for extremal conditionings. A
characterization of all copulas that are invariant under univariate conditioning and
some basic examples are presented in Sect. 7.6. Section 7.7 deals with the rates of
convergence to the limit copula for selected families of copulas. Sections 7.8–7.10
illustrate the “strange” and “chaotic” behaviour of univariate conditioning. We start
from the existence of periodic, toroidal and dense trajectories and finish with the
butterfly effect. With a few exceptions, the proofs are collected in Sect. 7.11.

7.2 Preliminaries About Copulas

A copula is the restriction to the unit n-cube Œ0; 1�n of a distribution function
whose univariate margins are uniformly distributed on Œ0; 1�. Specifically, a function
C W Œ0; 1�n ! Œ0; 1� is a copula if it has the following properties: for every
u D .u1; : : : ; un/ and v D .v1; : : : ; vn/ such that 0 � ui � vi � 1 for i D 1; : : : ; n,

(C1) .9i ui D 0/ ) C.u/ D 0,
(C2) 8j 2 f1; : : : ; ng .8i ¤ j ui D 1/ ) C.u/ D uj ,
(C3) C is n-non-decreasing, that is, the C -volume VC .u; v/ of any n-rectangle

with lower vertex u and upper vertex v is non-negative.

We recall that the C -volume is a signed sum of the values of C at the vertices of
the n-rectangle,

VC .u; v/ D C.w/jv1w1Du1
: : : jvnwnDun

D
2X

j1D1
� � �

2X
jnD1

.�1/j1C���CjnC.w1;j1 ; : : : ;wn;jn/;

where wi;1 D ui and wi;2 D vi .
We equip the set C n of all n-variate copulas with the natural metric of uniform

convergence,

d.C1; C2/ D supfjC1.x/� C2.x/j W x 2 Œ0; 1�ng;

and obtain a complete, compact, separable, convex, metric space.
By the celebrated Sklar’s Theorem, the joint distribution function F of any

n-tuple X D .X1; : : : ; Xn/ of random variables defined on the probability space
.˝;F ;P/ can be written as a composition of a copula C and the univariate
marginals Fi , i.e. for all x D .x1; : : : ; xn/ 2 R

n,

F.x/ D C.F1.x1/; : : : ; Fn.xn//:
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Moreover, if Xi are continuous random variables, then the copula C is uniquely
determined. For more details about copula theory and (some of) its applications, we
refer to [4, 11, 17, 22, 32, 36, 37, 45, 49].

7.3 Univariate Conditioning of Copulas

We recall the basic facts concerning univariate conditioning (truncation, thresh-
olding) of random variables and copulas. Without loss of generality we restrict
ourselves to lower conditioning of the first variable. Indeed, formulas for con-
ditioning of other variables may be obtained by a permutation of variables,
while formulas for upper conditioning by changing the sign of the conditioned
variable (compare [24]).

Special attention will be paid to conditioning of Archimedean copulas and
ordinal sums of copulas. Furthermore we show that certain operations on copulas
commute with conditioning.

7.3.1 Basics

To keep the notation consistent we introduce the following definition of the
conditional copula CŒ˛�.

Definition 7.1. Let an n-variate copula C be the joint distribution function of
random variables U1; : : : ; Un which are uniformly distributed on the unit interval.
For every ˛ 2 .0; 1� we denote by CŒ˛� the copula of the conditional distribution of
U1; : : : ; Un with respect to the condition U1 � ˛.

By the Sklar’s Theorem, CŒ˛� admits the following characterization (compare
[31]):

Proposition 7.1. LetC be an n-variate copula. For every ˛ 2 .0; 1� the conditional
copula CŒ˛� is a unique solution of the equation

CŒ˛�

�
x1;

C1;2.˛; x2/

˛
; : : : ;

C1;n.˛; xn/

˛

	
D C.˛x1; x2; : : : ; xn/

˛
; x 2 Œ0; 1�n;

(7.1)

where C1;i , i D 2; : : : ; n, are bivariate marginal copulas obtained by substituting
xj D 1 for j ¤ 1; i;

C1;i .x1; xi / D C.x1; 1; : : : ; 1; xi ; 1; : : : ; 1/:

In Definition 7.1 one can replace the uniformly distributed random variables U by
any n-tuple of random variables having continuous distribution functions. Indeed:
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Proposition 7.2 ([31]). If the copula C describes the interdependencies between n
random variablesX1; : : : ; Xn, then CŒ˛� is the copula of the conditional distribution
of X1; : : : ; Xn with respect to the conditionX1 � q, where P.X1 � q/ D ˛.

Note that even if the distribution function of one random variable Xi is
discontinuous, the choice of the copula C is not unique. The same may occur for
conditional copulas.

7.3.2 Conditional Archimedean Copulas

We recall that the n-variate copula C is called Archimedean if there exist generators
 and ' such that

C.x1; : : : ; xn/ D  .'.x1/C � � � C '.xn//:

The generators are convex non-increasing functions

 W Œ0;1� �! Œ0; 1�; ' W Œ0; 1� �! Œ0;1�;

such that

 .0/ D 1; '.1/ D 0 and 8t 2 Œ0; 1�  .'.t// D t:

Note that for any constant c > 0 the pair of generators  .ct/ and c�1'.t/ is
equivalent to the pair  .t/; '.t/. For more details, the reader is referred to [44, 49].

Univariate conditioning preserves the Archimedeanity (compare [48] Remark
2(iii)).

Theorem 7.1. If C is an Archimedean copula with generators  and ', then CŒ˛�
is an Archimedean copula with generators  Œ˛� and 'Œ˛�, where

'Œ˛�.t/ D '.˛t/ � '.˛/; (7.2)

 Œ˛�.t/ D 1

˛
 .t C '.˛//: (7.3)

7.3.3 Conditional Ordinal Sums of Copulas

In the subsequent sections we denote by m the Lebesgue measure on the real line,
and by FU the cumulative distribution function of the random variable U uniformly
distributed on the unit interval,
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FU .t/ D min.1;max.0; t// D
8<
:
0 for t < 0;

t for 0 � t � 1;

1 for 1 < t:

The ordinal sum of bivariate copulas is a classical concept (compare [49], 3.2.2)
and was recently extended to n-variate copulas with n 
 2 [7, 29, 35, 47].

Definition 7.2. The ordinal sum of n-variate copulas fCkgNkD1 (N 2 N [ fC1g)
with respect to non-overlapping intervals f.ak; bk/gNkD1 (0 � ak < bk � 1) is the
functionG W Œ0; 1�n ! Œ0; 1� given by

G.x1; : : : ; xn/ D
NX
kD1

.bk � ak/Ck

�
FU

�
x1 � ak

bk � ak
	
; : : : ; FU

�
xn � ak

bk � ak
		

C m

 
Œ0;min.x1; : : : ; xn/� n

N[
kD1
Œak; bk�

!
: (7.4)

Note that for any copulas Ck and disjoint intervals the function G given by (7.4)
is a copula.

We state two properties of ordinal sums which are crucial for the study of the
dynamics of univariate conditioning; the proofs are in Sect. 7.11.

Theorem 7.2. Let G be the ordinal sum of n-variate copulas fCkgNkD1 with respect
to non-overlapping intervals f.ak; bk/gNkD1. If b1 D 1 and a1 > 0, then:

1. d.G;C1/ � .nC 1/a1.
2. GŒa1� is the ordinal sum of the copulas fCkC1gN�1

kD1 with respect to the intervals
f.akC1=a1; bkC1=a1/gN�1

kD1 .

7.3.4 Operations on Copulas Which Commute with Univariate
Conditioning

There are several operations on copulas which commute with conditioning of the
first variable. For example the permutation or flipping of other variables, vertical
gluing or generalized product of copulas.

Proposition 7.3. Let C and D be two n-variate copulas such that

D.x1; : : : ; xn/ D C.x1; x�.2/; : : : x�.n//;

where � W f2; : : : ; ng ! f2; : : : ; ng is a permutation. Then for every ˛ 2 .0; 1�,

DŒ˛�.x1; : : : ; xn/ D CŒ˛�.x1; x�.2/; : : : x�.n//:
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The change of signs of random variables, so-called flipping, induces a transfor-
mation of their copulas.

Definition 7.3. Let v D .v1; : : : ; vn/, vi D 0; 1, be a vertex of the unit cube.
The associated dual copula

cCv W Œ0; 1�n �! Œ0; 1�

is defined by

cCv.x/ D VC .u;w/;

where the coordinates of u and w depend on the coordinates of v and x in the
following way:

.ui ;wi / D
�

.0; xi / if vi D 0;

.1 � xi ; 1/ if vi D 1:

Note that if C describes the joint distribution of random variables X1; : : : ; Xn,
then cCv does the same for .�1/v1X1; : : : ; .�1/vnXn.

Proposition 7.4. Let C and D be two n-variate copulas such that

D D cCv;

where v D .0; v2; : : : ; vn/ is a vertex of the unit cube Œ0; 1�n such that v1 D 0. Then
for every ˛ 2 .0; 1�,

DŒ˛� D 1.CŒ˛�/v: (7.5)

Remark 7.1. If v1 D 1, then in formula (7.5) one has to replace the conditional
copula CŒ˛� by the conditional copula C up

Œ˛� obtained by upper conditioning of the

first variable.2

The ordinal sums have been generalized in order to take into account possible
asymmetries; for bivariate copulas the following construction method was presented
in [48].

Definition 7.4. The vertical gluing ordinal sum of bivariate copulas fCkgNkD1
(N 2N[ fC1g) with respect to non-overlapping intervals f.ak; bk/gNkD1
(0�ak <bk � 1) is the function G W Œ0; 1�2 ! Œ0; 1� given by

2For basic facts concerning the univariate upper conditioning of random variables and copulas, see
Section 3 of [24].
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G.x1; x2/ D
NX
kD1

.bk �ak/Ck
�
x1; FU

�
x2 � ak

bk � ak

		
Cm

 
Œ0; x2� n

N[
kD1
Œak; bk�

!
x1:

(7.6)

Note that the function G given by (7.6) is always a copula. Geometrically
speaking, G is obtained by piecing together different copulas on slices of the unit
multi-cube obtained by a partition of the vertical axis.

Proposition 7.5. If G is the vertical gluing ordinal sum of copulas .Ck/k2I with
respect to intervals ..ak; bk//k2I , then for every ˛ 2 .0; 1� the conditional copula
GŒ˛� is the i -gluing ordinal sum of the conditional copulas

�
.Ck/Œ˛�

�
k2I

with respect
to the same collection ..ak; bk//k2I .

This follows from [48, Th. 2].

Definition 7.5. Let Ci , i D 1; : : : ; n; be bivariate copulas and C0 an n-variate one.
The functionD W Œ0; 1�nC1 ! Œ0; 1� given by the formula

D.x; y1; : : : ; yn/ D
Z x

0

C0

�
@

@�
C1.�; y1/; : : : ;

@

@�
Cn.�; yn/

	
d� (7.7)

is called the generalized product of the copulas C1; : : : ; Cn induced by the
copula C0.

Note that copulas are Lipschitz functions (see [49] Theorem 2.10.7). Therefore,
when we fix all but one variable we get functions which are absolutely continuous
and differentiable almost everywhere on the unit interval. Furthermore the deriva-
tives are measurable, positive and bounded by 1. Hence the integral in (7.7) is well
defined.

Proposition 7.6. For any n-variate copula C0 and bivariate copulas Ci ,
i D 1; : : : ; n; the function D given by (7.7) is an .nC 1/-variate copula. Moreover
the .1; i C 1/-marginal copula of D is equal to Ci

D.x; 1; : : : ; 1; yi ; 1; : : : ; 1/ D Ci.x; yi /:

For n D 2 formula (7.7) was widely used to construct copulas with given
2-margins (see, for example, [12, 13, 53]). Furthermore, if copulas C0, C1 and C2
are absolutely continuous, then D is a vine 3-copula (compare [5]). For n > 2 we
have the following link with vine copulas:

Proposition 7.7. If C0 is an n-variate vine copula and C1; : : : ; Cn are absolutely
continuous bivariate copulas, then the copula D given by (7.7) is a vine copula.
MoreoverD is represented by a sequence .Ti /

n
iD1 of n trees with T1 having the first

node of degree n and n nodes of degree 1 and the other Ti ’s being the same as in
the representation of C0.
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Proposition 7.8. If D is a generalized product of copulas C1; : : : ; Cn induced
by a copula C0, then for every ˛ 2 .0; 1� the conditional copula DŒ˛� is the
generalized product of the conditional copulas .C1/Œ˛� ; : : : ; .Cn/Œ˛� induced by the
same copula C0.

The proofs of Propositions 7.6 and 7.8 can be obtained as a slight generalization
of the proof of Theorem 4.1 in [31].

7.4 Univariate Conditioning as a Dynamical System

The substitution

˛ D exp.�t/; t 2 Œ1;1/;

allows us to consider the conditioning as a topological dynamical system. Indeed:

Theorem 7.3. The mapping

Cond W C n 	 .0; 1� �! C n; Cond.C; ˛/ D CŒ˛�;

is continuous. Moreover, for any ˛; ˇ 2 .0; 1� and C 2 C ,

Cond.C; 1/ D C and Cond.Cond.C; ˛/; ˇ/ D Cond.C; ˛ˇ/: (7.8)

The proof is postponed to Sect. 7.11.
Hence the conditioning is a semi-flow, i.e. a continuous action of the multiplica-

tive semigroup .0; 1� on the space of copulas (compare [20, Definitions 1.1.1 and
1.1.2]). In Sect. 7.10 we show that it is Devaney chaotic (compare [20, Definition
1.7.5]).

We adapt the definition of an invariant element, a periodic trajectory and a limit
point from dynamical systems to conditioning of copulas (compare [20]).

Definition 7.6. An n-variate copula C is called invariant under the lower condi-
tioning (truncation, thresholding) of the first variable if for every ˛ 2 .0; 1�,

CŒ˛� D C:

Definition 7.7. An n-variate copula C is called log-periodic under the lower
conditioning (truncation, thresholding) of the first variable if there exists a constant
0 < k < 1, called a period, such that for every ˛ 2 .0; 1�,

CŒk˛� D CŒ˛�:
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As a consequence of the iteration formula (7.8) we get:

Proposition 7.9 ([26, Theorem 1]). If

lim
˛!0C

CŒ˛� D CŒ0�;

then the limit copula CŒ0� is invariant.

Proposition 7.10. If for a copula C and some constant k, 0 < k < 1,

CŒk� D C;

then C is log-periodic with period k.

Proof. For any ˛ 2 .0; 1� we get

CŒk˛� D .CŒk�/Œ˛� D CŒ˛�:

ut
Definition 7.8. Let C and D be n-variate copulas. D is called a limit point of C
under the lower conditioning of the first variable if there exists a sequence .˛k/

1
kD1,

˛k 2 .0; 1�, such that

lim
k!1˛k D 0 and lim

k!1CŒ˛k� D D:

The set of all limit points of a copula C is called the limit set and denoted by
LimSet.C /.

Due to the Ascoli Theorem limit sets are non-empty. Furthermore, since con-
ditioning is continuous, the limit set of a copula is closed and connected. In the
following sections we will discuss the simplest examples of limit sets:

• Consisting of one invariant copula,
• Consisting of the orbit of a log-periodic copula,
• Being the closure of a toroidal orbit,
• Coinciding with the whole space C n.

7.5 Existence of the Limit

As we will show in Sect. 7.10, the set of copulas for which the limit of the
conditioning exists is a union of countably many nowhere dense subsets of C . Below
we show that it is also dense and discuss two important families of not necessarily
invariant copulas for which the limit does exist.
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7.5.1 Density

We start with the following observation:

Lemma 7.1. The set of attraction of every n-variate invariant copula C is dense in
C n, i.e.

8" > 0 8B 2 C n 9D 2 C n d.B;D/ < "; lim
˛!0C

DŒ˛� D C:

Indeed, by Theorem 7.2, we can take as D the ordinal sum of the copulas B
and C with respect to the intervals .0; "

nC2/ and . "
nC2 ; 1/. Moreover, since sets of

attraction of different invariant copulas are disjoint, we get:

Corollary 7.1. The complement of the set of attraction of any n-variate invariant
copula C is dense in C n.

Thus every such set of attraction has an empty interior and should not be called
a domain.

7.5.2 Conditionally Monotonic Copulas

Definition 7.9. A copula C is called non-decreasing (resp. non-increasing) under
the lower conditioning of the first variable if for every ˛1; ˛2 2 .0; 1�, ˛1 
 ˛2
(resp. ˛1 � ˛2)

CŒ˛1�.x/ � CŒ˛2�.x/:

Lemma 7.2. If C is conditionally non-decreasing (resp. non-increasing) when
˛ ! 0, then there exists a copula CŒ0� such that

lim
˛!0C

CŒ˛�.x/ D CŒ0�.x/:

7.5.3 Copulas with Non-trivial Tail Expansions of Degree 1

We recall the definition of tail expansions (compare [27, 28, 30, 38, 50]).

Definition 7.10. We say that a copula C has a tail expansion of degree 1 at the
vertex v of the unit cube if the limit

lim
t!0C

cCv.tx1; : : : ; txn/

t

exists for all non-negative x1; : : : ; xn.
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The function

Lv W Œ0;1�n �! Œ0;1/; Lv.x/ D lim
t!0

cCv.tx/
t

;

is called the dependence function or the leading term of the expansion. Note that the
expansion of a copula C at a vertex v is equal to the expansion of the dual copulacCv at the origin. For bivariate .1; j /-margins of a copula C we apply the following
notation. When the expansions exist we put

Lj;0.x1; xj / D lim
t!0C

C1;j .tx1; txj /

t
;

Lj;1.x1; xj / D lim
t!0C

3.C1;j /.0;1/.tx1; txj /

t
D lim

t!0C

tx1 � C1;j .tx1; 1 � txj /

t
:

We start with the case when the whole “tail” probability mass is concentrated
close to one vertex v, v D .0; v2; : : : ; vn/.

Theorem 7.4. Let Lv and Lj;vj be the leading terms of the expansion of a copula
C at a vertex v and its bivariate .1; j /-marginals at .0; vj /. If

lim
y!1Lv.1; y; : : : y/ D 1;

then the limit of CŒ˛� when ˛ ! 0C exists and the limit copula CŒ0� is given by

1.CŒ0�/v.x1; L2;v2 .1; x2/; : : : ; Ln;vn .1; xn// D Lv.x1; x2; : : : ; xn/:

The case when the whole “tail” probability mass is concentrated close to several
vertices v with first coordinate 0 is a bit more complicated.

Theorem 7.5. Let Lv and Lj;ej be the leading terms of the expansions of a copula
C at a vertex v and of its bivariate .1; j /-marginals at .0; ej /, ej D 0; 1. If for
j D 2; : : : ; n;

lim
y!1Lj;0.1; y/C lim

y!1Lj;1.1; y/ D 1;

then the limit of CŒ˛� when ˛ ! 0C exists and the limit copula CŒ0� is determined by

1.CŒ0�/v.x1; L2;v2 .1; x2/; : : : ; Ln;vn .1; xn// D Lv.x1; x2; : : : ; xn/;

where v ranges over the set of all vertices with v1 D 0.

The proofs of both theorems are in Sect. 7.11.
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7.6 Invariant Copulas

A characterization of invariant copulas was given in [10] (the bivariate case) and
[31] (the higher dimensions). We recall the constructions.

7.6.1 Bivariate Case

Let f W Œ0;C1� ! Œ0; 1� be a surjective, monotonic function and g its right inverse
(f .g.y// D y). We denote by Cf the function

Cf W Œ0; 1�2 �! Œ0; 1�; Cf .x; y/ D
(

0 for x D 0;

xf
�
g.y/

x

�
for x > 0:

(7.9)

Proposition 7.11 ([10]). A bivariate copula C is invariant if and only if either

• C.x; y/ D ˘.x; y/ D xy, or
• C D Cf , where f is surjective, non-decreasing and concave, or
• C D Cf , where f is surjective, non-increasing and convex, or
• C is a vertical gluing ordinal sum of copulas of the above types.

Note that the third case is a flipping of the second one.3 Moreover these cases
can be distinguished in terms of the concordance ordering of copulas.

Lemma 7.3 ([10]).

1. If f is non-decreasing and concave, then the function Cf is a PQD copula, and
moreover

8.x; y/ 2 .0; 1/2 Cf .x; y/ > ˘.x; y/ D xy:

2. If f is non-increasing and convex, then the function Cf is a NQD copula, and
moreover

8.x; y/ 2 .0; 1/2 Cf .x; y/ < ˘.x; y/ D xy:

7.6.1.1 Examples of Invariant Bivariate Copulas

Example 7.1. Copula of independent random variables: ˘.x; y/ D xy.

Example 7.2. Copula of comonotonic random variables:

M.x; y/ D min.x; y/; f .t/ D min.1; t/:

3Copulas Cf are known as Durante–Jaworski–Mesiar copulas[18, Section 5.4.4].
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Example 7.3. Copula of anticomonotonic random variables:

W.x; y/ D max.0; x C y � 1/; f .t/ D max.0; 1� t/:

Example 7.4. Clayton copula with positive parameter � :

Cl� .x; y/ D .x�� C y�� � 1/�1=� ; f .t/ D .1C t�� /�1=� :

Example 7.5. Clayton copula with negative parameter � , � 2 .�1; 0/:

Cl� .x; y/ D .max.0; x�� C y�� � 1//�1=� ; f .t/ D .max.0; 1 � t�� //�1=� :

Example 7.6. Marshall–Olkin copula with parameters .�; 1/, � 2 .0; 1/:

MO.x; y/ D min.1 � x; yx1�� /; f .t/ D min.1; t� /:

Example 7.7. Let C be a copula associated with the distribution function

F.x; y/ D
8<
:

0 for x < 0 _ y < 0;

L.x; y/ for 0 � x � 1 ^ y 
 0;

L.1; y/ for x > 1 ^ y 
 0;

where L is homogeneous:

8˛ 2 Œ0; 1� L.˛x; ˛y/ D ˛L.x; y/:

Then C D Cf with f .t/ D L.1; t/.

7.6.1.2 Similarities Between Invariant and Archimedean
Bivariate Copulas

Let Af .u; v/ D f .g.u/ C g.v// be an Archimedean copula and Cf .x; y/ D
xf .g.y/=x/ an invariant copula with the same convex generator f . As was shown
in [15], they are closely related to each other.

Theorem 7.6 ([15]).

(a) Let .U; V / be a pair of continuous random variables distributed according to
Af . Then Cf is the distribution function of the random pair .X; Y /, where
almost surely

X D g.V /

g.U /C g.V /
; Y D V: (7.10)
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(b) Let .X; Y / be a pair of continuous random variables distributed according to
Cf . Then Af is the distribution function of the random pair .U; V /, where
almost surely

U D f

�
g.Y /

X
� g.Y /

	
; V D Y: (7.11)

Transformation (7.10) composed with the flipping, Y ! 1 � Y , is known
as Durante–Jaworski–Mesiar asymmetrization of Archimedean copulas (see [18]
Figure 5.7).

7.6.2 Multivariate Case

The procedure of obtaining a characterization of the multivariate copulas that
are invariant under univariate truncation is based on the generalized product (see
Definition 7.5) and resembles Sklar’s Theorem.

Theorem 7.7 ([31]). If C is the generalized product of invariant copulas
C1; : : : ; Cn induced by a copula C0, then it is invariant. Moreover the .1; i C 1/-
marginal copula of C is equal to Ci , i D 1; : : : ; n.

Theorem 7.8 ([31]). For every invariant .nC 1/-variate copula C , there exists an
n-variate copula C0 such that C is the generalized product of its bivariate marginal
copulas C1;2; : : : ; C1;nC1 induced by C0.

7.6.2.1 Examples of Invariant Multivariate Copulas

Example 7.8. The comonotonic copula.
If an invariant copula C has a non-trivial singular component, then the copula C0
need not be unique. Indeed, let C0 be any n-variate copula. Then

Z x

0

C0
�
I�	y1 ; : : : ; I�	yn

�
d� D MnC1.x; y1; : : : ; yn/;

where MnC1.x; y1; : : : ; yn/ D min.x; y1; : : : ; yn/ is the copula of comonotonic
random variables.

Example 7.9. Dual of the comonotonic copula.
Let C0 be any n-variate copula. Then

Z x

0

C0
�
I�Cy1�1; : : : ; I�Cyn�1

�
d� D Mn.y/�MnC1.1 � x; y1; : : : ; yn/

D 1MnC1.1;0;:::;0/.x; y1; : : : ; yn/:
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Example 7.10. The independence copula.
For the independence copula˘nC1 the copula C0 is also the independence copula:

Z x

0

˘n.y1; : : : ; yn/d� D
Z x

0

y1 � � � � � ynd� D xy1 � � � � � yn D ˘nC1.x; y1; : : : ; yn/:

A similar result holds for Clayton copulas.

Example 7.11. The family of Clayton copulas with positive parameter.
Let Cn;� denote the n-variate Clayton copula with parameter � > 0:

Cn;� .u/ D �
u��
1 C � � � C u��

n � nC 1
�� 1

� :

Then

CnC1;� .x; y1; : : : ; yn/ D
Z x

0

Cn; �
1C�

�
@C2;�

@�
.�; y1/; : : : ;

@C2;�

@�
.�; yn/

	
d�:

Example 7.10 can be generalized.

Example 7.12. If the first random variable is independent of the others, then

C.x; y1; : : : ; yn/ D xC0.y1; : : : ; yn/ D
Z x

0

C0.y1; : : : ; yn/d�:

The above example implies the following equivalence:

Lemma 7.4. The first random variable X is independent of Y D .Y1; : : : ; Yn/ if
and only if the copulaC is invariant and for every i , i D 1; : : : ; n, X is independent
of Yi .

Example 7.13. The Gaussian copula.
If C0 is a Gaussian copula and Ci are independence copulas, then C is also a
Gaussian copula. Indeed, let G˙ be the n-variate Gaussian copula with correlation
matrix˙ . Then

Z x

0

G˙.y1; : : : ; yn/d� D xG˙.y1; : : : ; yn/ D G˙1.x; y1; : : : ; yn/;

where˙1 is the .nC 1/ 	 .nC 1/ correlation matrix

˙1 D
�
1 0

0 ˙

	
:

Note that the copulaG˙1 is in a sense unique in the family of elliptical copulas—
see Corollary 7.3.

Even taking simple examples of C0 one may get interesting examples of
multivariate copulas. For example when C0 D M we obtain copulas describing
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the dependence of the random variables X; Y1; : : : ; Yn, such that Yi ’s conditioned
with respect to X are comonotonic. Note that for n D 2 such copulas are maximal
elements of Fréchet classes of 3-copulas with given two 2-margins [53].

Example 7.14. Invariant conditionally comonotonic copulas.
Let C.x; y/ be any invariant bivariate copula. Then

Z x

0

min

�
@C

@�
.�; y1/; : : : ;

@C

@�
.�; yn/

	
d� D C.x;min.y1; : : : ; yn//:

Example 7.15. Hierarchical copulas.
Let C be a hierarchical nCmC 1-variate copula given by

C.x; y1; : : : ; yn; z1; : : : ; zm/ D C2.C1.x; y1; : : : ; yn/; z1; : : : ; zm/;

where C2 and C1 are .nC1/- andm-variate copulas. If C2 and C1 are invariant, then
so is C . Indeed, for any ˛ 2 .0; 1� we get

C2

�
C1

�
x;
C1;1.˛; y1/

˛
; : : : ;

C1;n.˛; yn/

˛

	
;
C2;1.˛; z1/

˛
; : : : ;

C2;n.˛; zm/

˛

	

D C2

�
C1.˛x; y1; : : : ; yn/

˛
;
C2;1.˛; z1/

˛
; : : : ;

C2;n.˛; zm/

˛

	

D C2.C1.˛x; y1; : : : ; yn/; z1; : : : ; zm/:

Note that the so-called hierarchical (or nested) Archimedean copulas (HAC for
short), constructed by iterated compositions of Archimedean copulas, are widely
studied in the literature—see, for example, [25, 43, 51]. Combining Examples 7.11
and 7.15 we see that hierarchical Clayton copulas are invariant.

Example 7.16. Outer product.
Basing on Examples 7.12 and 7.15 we deduce that the outer product of an invariant
nC 1-variate copula C.x; y/ and any m-variate copula C1.z/,

C�.x; y; z/ D C.x; y/C1.z/;

is invariant.

Example 7.17. Vine copulas.
For the definition and basic properties, the reader is referred to [5].

A vine copula C.x1; : : : ; xn/ such that

(i) The bivariate marginal copulas C1;i , i D 2; : : : ; n, are invariant.
(ii) C is represented by a sequence .Ti /

n�1
iD1 of n � 1 trees with T1 having the

first node of degree n � 1 and n � 1 nodes of degree 1 is invariant (compare
Proposition 7.7). Indeed, C admits the representation
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C.x1; : : : ; xn/ D
Z x1

0

C0

�
@

@�
C1;2.�; x2/; : : : ;

@

@�
C1;n.�; xn/

	
d�;

where C0 is the vine copula represented by the sequence .TiC1/n�2
iD1.

Example 7.18. Homogeneous distributions.
Copulas C associated with the distribution functions,

F.x; y1; : : : ; yn/ D
8<
:

0 for x < 0 _ min.y1; : : : ; yn/ < 0;
L.x; y1; : : : ; yn/ for 0 � x � 1 ^ min.y1; : : : ; yn/ 
 0;

L.1; y1; : : : ; yn/ for x > 1 ^ min.y1; : : : ; yn/ 
 0;

where L is homogeneous,

8˛;2 Œ0; 1� L.˛x; ˛y1; : : : ; ˛yn/ D ˛L.x; y1; : : : ; yn/;

are invariant (compare Theorem 7.4). The marginal copulas are as in Example 7.7:

C1;iC1.x; yi / D Cfi .x; yi /; fi .yi / D L.1;C1; � � � C 1; yi ;C1; � � � C 1/

and C is given by

C.x; y1; : : : ; yn/ D L.x; g1.y1/; : : : ; gn.yn//;

where gi are the right inverses of fi , fi .gi .t// D t . Moreover

C0.f1.z1/� f 0
1 .z1/z1; : : : ; fn.zn/� f 0

n.zn/zn/ D @L

@x
.1; z1; : : : zn/ a:e:

7.7 Rates of Convergence to Invariant Copulas

In more subtle modelling of extreme events not only the existence of the limit copula
is important but also the rate of convergence of the conditional copulas to the limit.
In the following we discuss three cases of asymptotic behaviour of conditioning. We
shall deal with the following families:

• Copulas obtained by distortion of the first variable (for n D 2 see [46] and [33]
Section 4.4),

• Archimedean copulas,
• Copulas of elliptical random vectors with radius belonging to the Gumbel max-

domain of attraction.

The proofs of new results are given in Sect. 7.11.
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7.7.1 Distortions

Proposition 7.12. Let D.x1; x2; : : : ; xn/ be an invariant copula and h W Œ0; 1� �!
Œ0; 1� be a surjective function such that for t > 0 h.t/ is positive, both h.t/ and
t=h.t/ are non-decreasing and for r > 0,

lim
t!0

h.t r/

h.t/
D r:

Then

C.x1; x2; : : : ; xn/ D
(

x1
h.x1/

D.h.x1/; x2; : : : ; xn/ for x1 2 .0; 1�;
0 for x1 D 0

is a copula. Furthermore

CŒ˛�.x1; x2; : : : ; xn/ D x1h.˛/

h.˛x1/
D

�
h.˛x1/

h.˛/
; x2; : : : ; xn

	
and lim

˛!0C

CŒ˛� D D:

The speed of convergence is determined by the function

� W .0; 1� 	 Œ0; 1� �! Œ0; 1�; �.˛; x/ D h.˛x/

h.˛/
� x:

Note that �.˛; x/ converges uniformly to 0 when ˛ tends to 0.

Proposition 7.13. Under the same assumptions as in Proposition 7.12,

CŒ˛�.x1; x2; : : : ; xn/ D D.x1; x2; : : : ; xn/

C �.˛; x1/

�
@1D.x

C
1 ; : : : xn/ � 1

x1
D.x1; : : : xn/C o.˛/

	
:

Note that since D is invariant, the right-side derivatives exist for all x1 2 Œ0; 1/.
For x1 D 1 we put @1D.x

C
1 ; : : : xn/ D 0.

7.7.2 Archimedean Copulas

The set of n-variate Archimedean copulas is invariant with respect to lower
conditioning. When we enlarge it by one point, the comonotonic copula M , we
get a closed invariant set. Hence the limit set of any Archimedean copula may only
consist of Archimedean copulas and the copulaM .
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The limiting behaviour of an Archimedean copula depends on the exponent � of
regular variation of its generator ' at 0. For regularly varying strict generators this
exponent is given by

lim
s!0C

'.st/

'.s/
D t�; � 2 Œ�1; 0/; t > 0;

where t�1 D 1; 1; 0 when, respectively, t < 1, t D 1 and t > 1. For non-strict
generators we have

lim
s!0C

'.0/� '.st/

'.0/� '.s/
D t�; � 2 Œ0; 1�; t > 0:

Extending the description of extremal behaviour of strict Archimedean copulas
given in [2] we get:

Theorem 7.9. Let C be an n-variate Archimedean copula with generator '
regularly varying at 0. If the exponent � is non-zero or the right-side derivative
' 0 is regularly varying at 0, then

lim
˛!0C

CŒ˛� D
8<
:

Cln;�� for � 2 .�1; 0/[ .0; 1�
˘n for � D 0;

Mn for � D �1:

Corollary 7.2. If C is a non-strict n-variate Archimedean copula with generator
regularly varying at 0, then

� � .n � 1/�1:

The speed of convergence is determined by the quotient of the generators of the
given copula and of the limit copula. For a strict generator ' regularly varying at 0
with exponent � 2 .�1; 0/ we put

'.t/ D �1
�
.t� � 1/l'.t/:

l' ir regularly varying at 0 with exponent 0 (i.e., it is slowly varying). If furthermore
its right-side derivative l 0' is regularly varying at 0 with exponent � , then � is equal
or greater than -1 and the following estimate is valid (compare [21]):

l'.˛t/

l'.˛/
D 1C �.˛/.K�.t/C o.˛//; (7.12)

where �.t/ denotes the elasticity of l'.t/,

�.t/ D t l 0'.t/
l'.t/

;
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and

K�.t/ D t1C� � 1
� C 1

for � > �1; K�1.t/ D ln.t/:

Theorem 7.10. Let C be an n-variate strict Archimedean copula with generator '
regularly varying at 0. If the exponent � of ' is finite and non-zero and the right-side
derivative l 0' is regularly varying at 0 with exponent � , then for all x 2 Œ0; 1�n

CŒ˛�.x/ D Cln;��.x/

	
 
1C 1

�
�.˛/

 
�K�.Cln;��.x//C Cln;��.x/��

nX
iD1

x
�
i K�.xi /C o.˛/

!!
:

7.7.3 Elliptical Copulas

Let X D .X1; : : : ; XnC1/T be an elliptical random vector with stochastic represen-
tation

X
dD RATU;

where A D .ai;j /
n
i;jD1 is a non-singular .nC 1/ 	 .nC 1/ upper triangular matrix,

A D
�
1 a

0 A�

	
;

U is a random vector uniformly distributed on the unit sphere of RnC1, and R is a
positive random variable independent of U with distribution functionH belonging
to the Gumbel max-domain of attraction, i.e. for every x 2 R,

lim
t!!�

1 �H.t C x=w.t//

1 �H.t/ D exp.�x/; (7.13)

where ! D ess supp.R/.
Since elliptical random vectors are radially symmetric, the results concerning the

upper conditioning of the first variable from [23, 24] can be restated for the lower
conditioning case (see Remark 7.1).

Theorem 7.11 ([23, 24]). Let CŒ˛� be the copula of the conditional distribution of
X . Then

lim
˛!0

CŒ˛� D G
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where G is a Gaussian copula with covariance matrix

Q̇ D
�
1 0

0 A>�A�

	
:

Corollary 7.3. The only invariant Gaussian copulas are copulas of random vectors
.X1; : : : ; XnC1/ such that X1 and .X2; : : : ; XnC1/ are independent.

In order to be able to describe the speed of convergence in a uniform way we add
the following:

Additional Assumption. The random vector X is absolutely continuous and its pdf
is given by

1

j˙ j1=2 g.x
T˙�1x=2/:

For some constants � 2 R, ˇ1 2 .�1; 0� and ˇ2 2 Œ0;1/ and some scaling
function w.t/,

g

�
1

2
t2 C tz

w.t/

	
D g

�
1

2
t2
	
e�z.1C �.z; t/�.t//;

where for all t in a left neighbourhood of !2 .0;1� and z > 0,

j�.t; z/j � � max
�
zˇ1 ; zˇ2

�
;

and �.t/ is some positive function such that limt!! �.t/ D 0.

Theorem 7.12 ([24]). Let CŒ˛� be the copula of the conditional df of X . If the
additional assumption is valid, then for P fX1 � �tg D ˛ ! 0 we have a uniform
expansion in .p;q/ 2 .0; 1� 	 Œ0; 1�n,

CŒ˛�.p;q/D G .p;q/� p lnpp
tw.t/

ra˚
�
˚�1
1 .q1/; : : : ; ˚

�1
n .qn/

�CO
�
��.t/

�
;

where G is the Gaussian copula from Theorem 7.11,˚ is a Gaussian df of a centered
Gaussian random vector with covariance matrix A>�A�, ˚i are its marginals and

��.t/ D max..tw.t//�1; �.t//; t 2 .0; !/:

Remark 7.2. For the Gaussian copula C the above formula simplifies. We have
w.t/ D t , �.t/ D 0 and ��.t/ D 1

t2
.
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7.8 Conditionally Log-Periodic Copulas

In this section we show how to construct log-periodic copulas.

Proposition 7.14. Let C be any n-variate copula and c a fixed constant, c 2 .0; 1/.
Then the ordinal sum of the infinite set of copies of C with respect to the intervals
f.ck; ck�1/g1

kD1,

G.x/ D
1X
kD1

.ck�1 � ck/C

�
F

�
x1 � ck

ck�1 � ck

	
; : : : ; F

�
xn � ck

ck�1 � ck
		

;

is conditionally log-periodic with period c.

Proof. From the second point of Theorem 7.2 we know that GŒc� D G. Hence from
Proposition 7.10 we conclude that the copula G is conditionally log-periodic with
period c. ut

In the recent literature one can find examples of Archimedean copulas which turn
out to be log-periodic. In [41], Example 3, the Archimedean copulas with generator

 a.x/ D 1C a sin.ln.1C x//

1C x
; x 
 0; a 2

 
0;

p
10

5

#
;

are studied.

Proposition 7.15. The Archimedean copula with generator a is log-periodic with
prime period exp.�2�/.

7.9 Toroidal Limit Sets

Other interesting examples of limit sets are homeomorphic images of finite or
infinite (but countably) dimensional tori, i.e. Cartesian products of circles,

T N D N

X
kD1 S

1:

The easiest way to construct them is to consider the gluing ordinal sum of bivariate
log-periodic copulas with logarithms of periods linearly independent over the field
Q of rational numbers. Namely:

Theorem 7.13. Let fCkgNkD1 (N 2 N [ fC1g) be a sequence of log-periodic
bivariate copulas with periods exp.��k/, where f�kgNkD1 are positive real numbers
which are linearly independent over Q , and let G be a vertical-gluing ordinal sum
with respect to non-empty and non-overlapping intervals f.ak; bk/gNkD1. Then the set
of conditional copulas
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Cond.G/ D fGŒ˛� W ˛ 2 .0; 1�g

is a dense subset of a set T (homeomorphic to the N -dimensional torus T N )
consisting of all vertical-gluing sums of the conditional copulas f.Ck/Œ˛k �gNkD1 with
respect to the same intervals f.ak; bk/gNkD1, where .˛k/NkD1 ranges over the set
XN
kD1.exp.��k/; 1�.
Toroidal orbits also occur in C n for n > 2.

Remark 7.3. Let G be a bivariate copula such that Cond.G/ is a dense subset of a
set homeomorphic to a torus. The same is valid for the n-variate copula

G1.x1; : : : ; xn/ D G.x1; x2/x3 : : : xn:

7.10 Chaotic Nature of Conditioning

In this section we provide examples which illustrate the chaotic behaviour of
conditioning.

Lemma 7.5. For any n-variate copula C and any non-empty open subset U of C n

there exists ˛� 2 .0; 1� such that for every c 2 .0; ˛�� there exists a copula G
belonging to U such that GŒc� D C .

Proof. Since U is non-empty and open, it contains an open ball B , say B D
B.C1; r/. For G take the ordinal sum of C1 and C with respect to the intervals
.c; 1/ and .0; c/ for any 0 < c � r=.nC 2/. Indeed, by Theorem 7.2, d.G;C1/ �
.nC 1/c < r and GŒc� D C . ut

Lemma 7.5 implies the topological mixing,

8U; V open� C n; U ¤ ; ¤ V 9˛� 2 .0; 1� 8c 2 .0; ˛�� Cond.U; c/\ V ¤ ;;

and the topological transitivity,

9C 2 C n LimSet.C / D C n;

of univariate conditioning. Furthermore (see, for example, [20] Proposition 1.2.5),
the set of copulas for which the limit set is smaller than the whole space C n is a
countable union of nowhere dense subsets of C n.

Example 7.19. A conditionally transitive copula.
Let fCkg1

kD1 be a countable family of n-variate copulas which is dense in C n and let

 W N ! N be a function obtained by “gluing” arithmetic sequences of increasing
length. More precisely, for m 
 0 and k1 2 Œ0; 2m/ we put


.2m C k1/ D 1C k1:
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Then the copula G which is the ordinal sum of the copulas fC
.k/g1
kD1 with respect

to the intervals f.exp.�2k � 1/; exp.�2k�1 � 1/g1
kD1 is conditionally transitive, i.e.

the limit set of G is equal to the whole space C n. Indeed, by Theorem 7.2, for fixed
k1 we get

lim
m!1GŒ.2mCk1/�1� D C1Ck1 :

Since the limit set is closed it must be equal to the whole space.

Lemma 7.6. The set of all conditionally log-periodic copulas is a dense subset of
the space C n.

Proof. It is enough to show that every open ball B contains a log-periodic copula.
If B has radius r and is centred at C , then just take the ordinal sum G of infinitely
many copies of C constructed in Proposition 7.14 for c D r=.nC 2/. ut

Since there exist invariant copulas, conditioning is a non-minimal dynamical
system (not all orbits are dense). Therefore conditioning belongs to the vast family
of Devaney chaotic dynamical systems (see Definition 1.7.5 in [20]). Such systems
exhibit sensitive dependence on initial conditions: a small alteration ofC may imply
a major change of the orbit Cond.C /. This phenomenon is often referred to as the
butterfly effect.

Example 7.20. The butterfly effect.
Let C , D1 and D2 be n-variate copulas. Let Gi , i D 1; 2, be the ordinal sum of C
andDi with respect to intervals .c; 1/ and .0; c/. Then by Theorem 7.2, d.Gi ; C / �
.nC 1/c and .Gi /Œc� D Di .

7.11 Proofs

Proof (Theorem 7.2).
To prove point 1 we consider two cases: when the smallest coordinate of x is not
greater than a1 and when all coordinates of x are greater than a1.
If min.x1; : : : ; xn/ � a1, then

jG.x/� C1.x/j � G.x/C C1.x/ � 2min.x1; : : : ; xn/ � 2a1:

If min.x1; : : : ; xn/ > a1, then

G.x/ D a1 C .1 � a1/C1
�
x1 � a1
1 � a1

; : : : ;
xn � a1
1 � a1

	
:

Hence, since copulas are Lipschitz functions, we get
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jG.x/� C1.x/j D
ˇ̌
ˇ̌a1 C .1 � a1/C1

�
x1 � a1
1 � a1

; : : : ;
xn � a1
1 � a1

	
� C1.x/

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌a1

�
1�C1

�
x1 � a1
1� a1 ; : : : ;

xn � a1
1 � a1

		ˇ̌
ˇ̌C

ˇ̌
ˇ̌C1

�
x1 � a1

1 � a1 ; : : : ;
xn � a1
1 � a1

	
�C1.x/

ˇ̌
ˇ̌

� a1C
nX
iD1

ˇ̌
ˇ̌xi � a1
1 � a1

� xi
ˇ̌
ˇ̌� a1C

nX
iD1

ˇ̌
ˇ̌a1.x1 � 1/

1� a1

ˇ̌
ˇ̌� a1Ca1

nX
iD1

1 � x1

1 � a1 � .nC1/a1

Therefore

d.G;C1/ D supfG.x/� C1.x/ W x 2 Œ0; 1�ng � .nC 1/a1:

We start the proof of point 2 with the observation that the bivariate marginal copulas
G1;i with first variable a1 are equal to the smaller variable. Indeed, since the intervals
.ak; bk/, k > 1, do not overlap .a1; 1/, we get

FU

�
a1 � ak

bk � ak

	
D
�
0 for k D 1;

1 for k > 1:

Hence

G1;i .a1; yi / D G.a1; 1; : : : ; 1; yi ; 1; : : : ; 1/ D
NX
kD2

.bk � ak/

	C
�
1; : : : ; 1; FU

�
yi � ak

bk � ak
	
; 1; : : : ; 1

	
Cm

 
Œ0;min.a1; yi /� n

N[
kD1
Œak; bk�

!

D
NX
kD2
.bk � ak/FU

�
yi � ak
bk � ak

	
Cm

 
Œ0;min.a1; yi /� n

N[
kD1
Œak; bk�

!

D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

PN
kD2.bk � ak/Cm

�
Œ0; a1� nSN

kD1Œak; bk�
�

for yi 
 a1P
kWyi�bk .bk � ak/C .yi � ak�/

Cm
�
Œ0; yi � nSN

kD1Œak; bk�
�

for yi 2 .ak� ; bk�/P
kWyi�bk .bk�ak/Cm

�
Œ0; yi �nSN

kD1Œak; bk�
�

for yi 2 Œ0; ai /nSN
kD1.ak; bk/

D
8<
:
a1 for yi 
 a1
yi for yi 2 .ak� ; bk�/

yi for yi 2 Œ0; ai / nSN
kD1.ak; bk/

D min.a1; yi /:
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We check whether

G�.x/ D
NX
kD1

bkC1 � akC1
a1

	 CkC1
�
FU

�
x1 � akC1=a1

bkC1=a1 � akC1=a1

	
; : : : ; FU

�
xn � akC1=a1

bkC1=a1 � akC1=a1

		

C m.Œ0;min.x1; : : : ; xn/� n
N[
kD1
ŒakC1=a1; bkC1=a1�/

fulfills (7.1) for ˛ D a1. We have

G�
�
x;
G1.a1; y1/

a1
; : : : ;

Gn.a1; yn/

a1

	
DG�

�
a1x

a1
;

min.a1; x2/

a1
; : : : ;

min.a1; xn/

a1

	

D
NX
kD2

bk � ak

a1
Ck

�
FU

�
a1x1 � ak

bk � ak

	
; FU

�
min.a1; x2/� ak

bk � ak
	
; : : : ;

FU

�
min.a1; xn/� ak

bk � ak
		

Cm.Œ0;min.x1a1; x2 : : : ; xn/=a1� n
N[
kD2
Œak=a1; bk=a1�/;

D 1

a1

NX
kD2
.bk � ak/Ck

�
FU

�
a1x1 � ak

bk � ak

	
; FU

�
x2 � ak
bk � ak

	
: : : ; FU

�
xn � ak
bk � ak

		

C 1

a1
m.Œ0;min.x1a1; x2 : : : ; xn/� n

N[
kD2
Œak; bk�/ D �:

Since FU ..a1x1 � a1/=.b1 � a1// D 0, we get

� D 1

a1

NX
kD1
.bk � ak/Ck

�
FU

�
a1x1 � ak
bk � ak

	
; FU

�
x2 � ak

bk � ak
	
: : : ; FU

�
xn � ak

bk � ak
		

C 1

a1
m.Œ0;min.x1a1; x2 : : : ; xn/� n

N[
kD2
Œak; bk�/ D 1

a1
G.a1x1; x2; : : : ; xn/:

ut
Proof (Theorem 7.3).
To show the continuity of Cond we consider two convergent sequences .˛k/ and
.Ck/ from .0; 1� and C nC1, respectively. Let

lim
n!1˛k D ˛1 > 0; lim

n!1Ck D C1:
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We fix z 2 Œ0; 1�n. Let yk 2 Œ0; 1�n be any solution of the equation

Ck.˛k; yk/ D ˛kz:

We denote by y�1 and yC1 the following vectors of limits

y�1 D lim inf
k!1 yk; yC1 D lim sup

k!1
yk:

Obviously
C1.˛1; y�1/ D ˛1z D C1.˛1; yC1/:

Therefore, since copulas are non-decreasing in the second variable, we get

lim inf
k!1 .Ck/Œ˛k �.x; z/ D lim inf

k!1
1

˛k
Ck.˛kx; yk/ 
 1

˛1
C1.˛1x; y�1/ D .C1/Œ˛

1

�.x; z/

D 1

˛1
C1.˛1x; yC1/ 
 lim sup

k!1
1

˛k
Ck.˛kx; yk/ D lim sup

k!1
.Ck/Œ˛k �.x; z/:

Hence the pointwise limit exists and equals .C1/Œ˛
1

�.x; z/.

By the Ascoli Theorem (see, for example, Theorem 3.2.5 of [42]), we conclude
that .Ck/Œ˛k � converges to .C1/Œ˛

1

� as k ! 1.
The proof of the second assertion follows along the same lines as the proof of the

bivariate case (see [33] Proposition 2.2). ut
Proof (Theorem 7.4).
Let y be greater than 1. For small t we get the inequality

t 
 cCv.t; 1; : : : ; 1; ty; 1; : : : 1/ 
 cCv.t; ty; : : : ; ty/:

Dividing by t and passing to the limit we get

1 
 Lj;vj .1; y/ 
 Lv.1; y; : : : ; y/:

Hence each Lj;vj .1; �/ is a continuous increasing function taking all values from
Œ0; 1/. We substitute xj by ˛xj in the equality given by Proposition 7.1 to obtain

.cCv/Œ˛�

 
x1;

.cCv/1;2.˛; ˛x2/

˛
; : : : ;

.cCv/1;n.˛; ˛xn/

˛

!
D 1

˛
cCv.˛x1; ˛x2; : : : ; ˛xn/:

Let C� be any limit point of .cCv/Œ˛�. Passing to the limit we get

C�.x1; L2;v2 .1; x2/; : : : ; Ln;vn.1; xn// D Lv.x1; : : : xn/:
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Thus C� is uniquely determined by L’s. Hence there can be only one limit point,
i.e. the limit CŒ0� exists. ut
Proof (Theorem 7.5).
Let C� be any limit point of CŒ˛�. In the same way as in the proof of Theorem 7.4
we find that for every vertex v,

1.C�/v.x1; L2;v2 .1; x2/; : : : ; Ln;vn.1; xn// D Lv.x1; x2; : : : ; xn/:

Since for every j 2 f2; : : : ; ng,

lim
y!1Lj;0.1; y/C lim

y!1Lj;1.1; y/ D 1;

C� is unique. ut
Proof (Proposition 7.12).
First we show that a distorted copula is a “true” copula. The boundary conditions
(C1) and (C2) are obvious. We put

h1.t/ D
(

t
h.t/

for t 2 .0; 1�;
0 for t D 0:

Condition (C3) follows from the assumption that both h.t/ and h1.t/ are non-
decreasing. Indeed

VC .u;w/ D VC

�
Œu1;w1� 	

n

X
iD2Œui ;wi �

	

D VC

�
Œ0;w1� 	

n

X
iD2Œui ;wi �

	
� VC

�
Œ0; u1� 	

n

X
iD2Œui ;wi �

	

D h1.w1/VD

�
Œ0; h.w1/� 	

n

X
iD2Œui ;wi �

	

�h1.u1/VD
�
Œ0; h.u1/� 	

n

X
iD2Œui ;wi �

	

D .h1.w1/� h1.u1// VD

�
Œ0; h.w1/� 	

n

X
iD2Œui ;wi �

	

Ch1.u1/VD
�
Œh.u1/; h.w1/� 	

n

X
iD2Œui ;wi �

	

 0:

Since the volumes VD are non-negative, we get that the volume VC is non-negative
as well.
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The fact that the conditional copula CŒ˛� is a distorted copula is implied by the
invariance of the basic copula D. We apply Proposition 7.1.

x1h.˛/

h.˛x1/
D

�
h.˛x1/

h.˛/
;
C1;2.˛; x2/

˛
; : : :

	

D x1h.˛/

h.˛x1/
DŒh.˛/�

�
h.˛x1/

h.˛/
;
D1;2.h.˛/; x2/

h.˛/
; : : :

	

D x1

h.˛x1/
D .h.˛x1/; x2; : : : / D C.˛x1; x2; : : : /:

The convergence of CŒ˛� follows from the assumption that h is regularly varying
with index 1. ut
Proof (Proposition 7.13).
Since t=h.t/ is non-decreasing, h.˛x/ 
 xh.˛/ and we may apply the following
estimate:

CŒ˛�.x1; x2; : : : ; xn/ D x1h.˛/

h.˛x1/
D

�
h.˛x1/

h.˛/
; x2; : : : ; xn

	

D x1

x1 C �.˛; x1/

�
D.x1; : : : ; xn/C �.˛; x1/.@1D.x

C
1 ; : : : xn/C o.˛//

�

D D.x1; : : : ; xn/C �.˛; x1/

�
� 1

x1
D.x1; : : : xn/C @1D.x

C
1 ; : : : xn/C o.˛/

	
:

ut
Proof (Theorem 7.9).
We will base on the formula

'.˛z˛/ D min

 
'.0/;

nX
iD1

'.˛xi / � .n � 1/'.˛/

!
; (7.14)

where z˛ D CŒ˛�.x1; : : : ; xn/. For non-strict generators we get

'.0/� '.˛z˛/

'.0/� '.˛/
D max

 
0;

nX
iD1

'.0/� '.˛xi /

'.0/� '.˛/ � .n � 1/

!
: (7.15)

Passing to the limit we obtain

lim
˛!0

z�˛ D max.0;
nX
iD1

x
�
i � .n � 1//;

which finishes the proof for � 2 .0; 1�.
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For strict generators we drop “min” (because '.0/ D 1) and divide both sides of
(7.14) by '.˛/ to get

'.˛z˛/

'.˛/
D

nX
iD1

'.˛xi /

'.˛/
� .n � 1/: (7.16)

Passing to the limit we obtain

lim
˛!0

z�˛ D
nX
iD1

x
�
i � .n� 1/;

which finishes the proof for � 2 .�1; 0/.
To prove the case � D �1 we divide both sides of (7.14) by '.˛z˛/ to get

1 D
nX
iD1

'.˛xi /

'.˛z˛/
� .n � 1/

'.˛/

'.˛z˛/
: (7.17)

From Fréchet–Hoeffding bounds we have

z˛ � min.x1; : : : xn/:

We will show that after passing to the limit the inequality “�” can be replaced by
an equality. Indeed, if for any sequence ˛k ! 0,

lim
k!1 z˛k < min.x1; : : : xn/;

then the limit of the right side of (7.17) (for ˛ D ˛k) would be 0, a contradiction.
If � D 0 and ' 0 is regularly varying, then by de l’Hospital rule we get that

' 0 is regularly varying with exponent �1. We base on the approximations for,
respectively, non-strict and strict generators

'.0/� '.˛x/

'.0/� '.˛/ D 1C �1.˛/.ln x C o.˛//;

'.˛x/

'.˛/
D 1C �2.˛/.ln x C o.˛//;

where � is, respectively, equal to the elasticity of '.0/� ' and ',

�1.˛/ D � ' 0.˛/˛
'.0/� '.˛/

; �2.˛/ D ' 0.˛/˛
'.˛/

:

Inserting the above into (7.15) and (7.16) and passing to the limit we finish the
proof. ut
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Proof (Theorem 7.10).
We will base on the formula

˛�z�˛ � 1

�� l'.˛z/ D
nX
iD1

˛�x
�
i � 1

�� l'.˛xi / � .n � 1/
˛� � 1

�� l'.˛/;

where z˛ D CŒ˛�.x1; : : : ; xn/. We divide both sides by ˛�l'.˛/ and apply the
estimate (7.12) to obtain

.z�˛ � ˛��/.1C �.˛/.K�.z˛/C o.˛///

D Pn
iD1.x

�
i � ˛��/.1C �.˛/.K�.xi /C o.˛///� .n � 1/.1� ˛��/:

Since
z˛ D Cln;��.x/C o.˛/;

we get the second order approximation,

z�˛ D Cln;��.x/�
 
1C �.˛/

 
K�.Cln;��.x//C Cln;��.x/��

nX
iD1

x
�
i K� .xi /C o.˛/

!!
:

ut
Proof (Proposition 7.15).
We will show that the generator of the conditional copula with ˛ D exp.�2�/ is
equivalent to  a. Note that

 a.exp.2�/ � 1/ D 1C a sin.ln.exp.2�///

exp.2�/
D exp.�2�/:

So '.exp.�2�// D exp.2�/� 1 and (see Theorem 7.1)

 Œexp.�2�/�.t/ D exp.2�/ a.t C exp.2�//

D exp.2�/
1C a sin.ln.e2�.e�2� t C 1//

t C e2�
D  a.t exp.�2�//:

ut
Proof (Theorem 7.13).
We start with the following observation: since the copulas Ck are log-periodic, their
orbits are homeomorphic to circles, and the gluing ordinal sum T of their orbits is
homeomorphic to a torus.

As was shown in Proposition 7.5 gluing of bivariate copulas commutes with
conditioning. Hence each GŒ˛� belongs to T . The density follows from the fact
that any vector of real numbers ˇ D .ˇk/

N
kD1 can be approximated by a vector

Ǒ D .ln˛ � nk�k/
N
kD1, where ˛ 2 .0; 1� and nk are integers. ut
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46. Mesiar, R., Pekárová, M.: DUCS copulas. Kybernetika 46, 1069–1077 (2010)
47. Mesiar, R., Sempi, C.: Ordinal sums and idempotents of copulas. Aequationaes Math. 79, 39–

52 (2010)
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Chapter 8
Singular Mixture Copulas

Dominic Lauterbach and Dietmar Pfeifer

Abstract We present a new family of copulas—the Singular Mixture Copulas. We
begin with the construction of singular copulas whose supports lie on the graphs
of two given quantile functions. These copulas are then mixed with respect to a
continuous distribution resulting in a nonsingular parametric copula.

The Singular Mixture Copulas we construct have a Lebesgue density and in
special cases even a closed form representation. Moreover, they have positive lower
and upper tail dependence. Because Singular Mixture Copulas are mixtures of
“simple” singular copulas, they can be simulated easily.

8.1 Introduction

Copulas provide an effective and versatile tool for modeling multivariate stochastic
dependence. Since their introduction by Sklar in 1959 (see [11]) there have been
intense developments in both the copula theory and their applications, see, e.g.,
[1, 5–7, 9, 10, 12].

In [10] several geometric methods of constructing copulas are presented. One
approach deals with the construction of singular copulas whose supports lie in a
given set. Another approach mixes an infinite family of copulas with respect to
a mixing distribution. We present a new family of copulas—the Singular Mixture
Copulas. These copulas result from a combination of the above-mentioned methods.
In Sect. 8.2 we construct singular copulas whose supports lie on the graphs of two
given quantile functions. These copulas are then mixed with respect to a continuous
distribution resulting in an absolutely continuous parametric copula (Sect. 8.3).
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As mixing distribution we particularly use a generalized beta distribution, i.e., a
linear transformation of a beta distribution. Section 8.4 summarizes the results and
gives an outlook on some extensions of this approach.

8.2 Singular Copulas

Let F be a continuous distribution function on Œ0; 1� and let ˛ be some constant in
�0; 1Œ. Then there exists a continuous functionG such that

˛F.x/C .1 � ˛/G.x/ D x (8.1)

for all x 2 Œ0; 1�. The functionG is given by

G.x/ D x � ˛F.x/
1 � ˛ : (8.2)

In general, G is not necessarily a distribution function. However, we are interested
in exactly this case.

Let us assume for a moment that G is also a distribution function. Let X be
a random variable with a continuous uniform distribution on Œ0; 1�, and let I be a
random variable, independent ofX , with a binomialB.1; ˛/-distribution. Define the
random variable Y via

Y WD I � F�1.X/C .1 � I / �G�1.X/: (8.3)

Easy calculations show that Y follows a continuous uniform distribution on Œ0; 1�.
As a consequence the distribution function of .X; Y / is a certain singular copula. So
with two distribution functions F and G satisfying (8.1) we can construct singular
copulas. Those copulas are given by

CXY.x; y/ D P.X � x; Y � y/ D P.X � x; I �F�1.X/C .1 � I /�G�1.X/ � y/

D P.I D 1/P.X � x;X � F.y//C P.I D 0/P.X � x;X � G.y//

D ˛min.x; F.y//C .1 � ˛/min.x;G.y//:

As mentioned above, G is not necessarily a distribution function, so we have to
make assumptions on F to guarantee that G is also a distribution function.

Lemma 8.1. Let F be a differentiable distribution function on Œ0; 1�. Then the
function G given by (8.2) is a differentiable distribution function on Œ0; 1� if and
only if F 0.x/ � 1

˛
for all x 2 Œ0; 1�.

Proof. From F.0/ D 0 and F.1/ D 1 it follows immediately that G.0/ D 0 and
G.1/ D 1. From (8.2) we have
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G0.x/ D 1 � ˛F 0.x/
1 � ˛ ; (8.4)

so that G0.x/ 
 0 , F 0.x/ � 1
˛

, which completes the proof. ut
In a more general approach we can formulate the following theorem which

follows from Lemma 8.1 and the construction discussed above.

Theorem 8.1. Let F be a differentiable function on Œ0; 1� and let X be a random
variable with a continuous uniform distribution on Œ0; 1�. Then the distribution
function of .X; Y / with Y given by (8.3) and G given by (8.2) is a copula if and
only if

(i) F.0/ D 0 and F.1/ D 1,
(ii) 0 � F 0.x/ � 1

˛
for all x 2 Œ0; 1�.

We denote the class of functions that fulfill the properties (i) and (ii) in
Theorem 8.1 by F˛ , i.e.,

F˛ WD fF W Œ0; 1� ! Œ0; 1� j F.0/ D 0; F.1/ D 1; 0 � F 0.x/ � 1
˛
g:

Lemma 8.2.

1. Let F and G be two functions in F˛ , then F �G is in F ˛
2
.

2. Let F andG be two functions in F˛ and � 2 Œ0; 1�, then �F C.1��/G is in F˛ .
3. Let F1; F2; : : : be functions in F˛ with limn!1 Fn D F , where the convergence

is uniform, then F is in F˛ .
4. Let ˛ and ˇ be some constants in Œ0; 1� with ˛ � ˇ, then Fˇ 
 F˛ .
5. Let F be a function in F˛ , then G given by (8.2) is an element of F1�˛ .

Proof. The proof is straightforward. ut
Example 8.1. Let F be a rational function given by F.x/ D .axCb/=.cxCd/. For

which coefficients is F an element of F˛? From F.0/
ŠD 0 it follows that b D 0 and

from F.1/
ŠD 1 it follows that a D c C d . Consequently, without loss of generality

F can be written as F.x/ D ..c C 1/x/=.cx C 1/. From the conditions on F 0 it
follows that F is in F˛ if and only if c 2 Œ˛ � 1; 1

˛
� 1�.

Example 8.2. Let F be a quadratic function given by F.x/ D a2x
2 C a1x C a0.

For which coefficients is F an element of F˛? From F.0/
ŠD 0 it follows that

a0 D 0 and from F.1/
ŠD 1 it follows that a2 C a1 D 1. As a consequence we

have F 0.x/ D 2a2x C 1 � a2. In order to satisfy F 0.x/ 
 0 the coefficient a2
has to be in Œ�1; 1�. To fulfill the condition F 0.x/ � 1

˛
easy calculations show that

a2 has to be an element of Œ1 � 1
˛
; 1
˛

� 1�. Altogether we can conclude that the
quadratic function F given by F.x/ D ax2 C .1 � a/x is in F˛ if and only if
a 2 Œmax.�1; 1 � 1

˛
/;min.1; 1

˛
� 1/�. Figure 8.1 shows the functions F given by

F.x/ D x2 and G given by (8.2) for different values of ˛.
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0.50.5

b

Fig. 8.1 F (solid), given by F.x/ D x2 andG, given by (8.2) for different values of ˛. (a) ˛ D 1
2
.

(b) ˛ D 1
3

Remark 8.1. The copula CXY is a special case of the construction presented in [2]
for the choice of f1 D f2 D idŒ0;1�, g1 D F , g2 D G, A.u; v/ D B.u; v/ D
min.u; v/ andH.x; y/ D ˛x C .1� ˛/y. In this setting (8.1) can be obtained from
Theorems 1 and 2 of [2].

In [3, 4] a copulaKı;� is presented that is given as follows

Kı;�.x; y/ D minfx; y; �ı.x/C .1 � �/ı.y/g; (8.5)

where ı is the diagonal section of a copula and � is a constant that lies in an interval
that is dependent on ı. They also show that Kı;� has a diagonal section equal to ı.
Although the definitions of the copula Kı;� and CXY might seem similar, they are
not identical.

Remark 8.2. The copulaKı;� and the copula CXY are essentially different.

Proof. Without loss of generality let F.y/ � y for all y 2 Œ0; 1�, then G.y/ 
 y

for all y 2 Œ0; 1�. Choose x; y in a way that y < x < G.y/ holds. If Kı;� were
equal to CXY , then the diagonal ı of Kı;� would be given by ı.x/ D CXY.x; x/ D
˛F.x/C .1 � ˛/x. Consequently, the following equations would hold

CXY.x; y/ D ˛F.y/C .1 � ˛/x;
Kı;�.x; y/ D minfy; ˛�F.x/C �.1 � ˛/x C .1 � �/˛F.y/C .1 � ˛/.1 � �/yg:

Obviously, the equation y D ˛F.y/C.1�˛/x does not hold for arbitrary x; y with
y < x < G.y/, so it must hold

˛F.x/C .1 � ˛/x D ˛�F.x/C �.1 � ˛/x C .1 � �/˛F.y/C .1 � ˛/.1 � �/y

(8.6)

in order to satisfy Kı;� D CXY . Equation 8.6 is equivalent to



8 Singular Mixture Copulas 169

a b

α

α

1

11

1

1 – α

1 – α

Fig. 8.2 (a) Borders for F and G. (b) Borders for the copula

˛�.F.y/ � F.x//C .1� �/.1 � ˛/.x � y/ D 0; (8.7)

which can be written as

�

�
1C .1 � ˛/.x � y/

˛.F.x/ � F.y//

	
D .1 � ˛/.x � y/

˛.F.x/ � F.y// ; (8.8)

since F.x/ ¤ F.y/ due to (8.7) and y < x. From (8.8) we can conclude1 that

� D 1

1C ˛.F.x/�F.y//
.1�˛/.x�y/

: (8.9)

Since the right-hand side of the last equation is not constant for any nonlinear
function F the statement follows. ut

The support of the constructed copula CXY always lies on the graphs of the
functions F�1 and G�1. Given a fixed ˛ due to the restrictions on F (and G) there
are points in Œ0; 1�2 which cannot be part of the support of the copula, regardless of
which function F 2 F˛ is chosen. Part (a) of Fig. 8.2 shows the borders in which
the graphs of F (dashed line) and G (dotted line) have to lie. Having the borders of
F and G it is easy to calculate the borders in which the support of the copula has to
lie (see part (b) of Fig. 8.2). The function F has to fulfill the condition F 0.x/ � 1

˛

for all x 2 Œ0; 1�, as a consequence points in the triangle .1� ˛; 0/.1; 1/.1; 0/ or the
triangle .0; 0/.0; 1/.˛; 1/ cannot lie on the graph of F . Analogously, the borders for
G can be obtained.

1The term in brackets on the left-hand side of (8.8) is unequal to zero because otherwise it would
follow that 0 D �1.
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8.3 Singular Mixture Copulas

In this section we construct the convex sums (see [10]) of the singular copulas
presented in Sect. 8.2. We start with a description of the general construction and
subsequently consider specific mixing distributions.

8.3.1 General Construction

Consider a family fF!g � F˛ of distribution functions, then for a fixed ! we can
construct a singular copula LC! using F! and G! given by

G!.y/ D y � ˛F!.y/

1 � ˛ :

The copula LC! is the distribution function of the random vector .X; Y / where X is
uniformly distributed on Œ0; 1� and Y is given by

Y WD I � F �1
! .X/C .1 � I / �G�1

! .X/;

with I � B.1; ˛/. If ˝ is a real-valued random variable and F! 2 F˛ for all
observations ! of ˝ , then the convex sum of f LC!g is given by

PC.x; y/ D
Z

LC!.x; y/P˝.d!/

D ˛

Z
min.x;F!.y//P

˝.d!/C .1 � ˛/

Z
min.x;G!.y//P

˝.d!/:

Especially, consider the family of distribution functions F! given by F!.y/ D
!y2 C .1 � !/y with ! 2 Œ�1; 1�. Let 0 < ˛ � 1

2
, then F! is an element of F˛

for all ! 2 Œ�1; 1� (see Example 8.2). Let ˝ be a random variable with values in
Œ�1; 1�, then the Singular Mixture Copula resulting from the family fF!g!2Œ�1;1� is
given by

C˛.x; y/ D P.X � x; Y � y/

D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

x ; .x; y/ 2 A1;
x C ˛

�
.x � y/ .F˝.ˇ/� 1/C .y2 � y/ R 1

ˇ
!P˝.d!/

�
; .x; y/ 2 A2;

˛
�
.x � y/F˝.ˇ/C y C .y2 � y/

R 1
ˇ !P

˝.d!/
�

C.1 � ˛/ .x C .y � x/F˝.b//C ˛.y � y2/
R b

�1 !P
˝.d!/ ; .x; y/ 2 A3;

˛.x � y/F˝.ˇ/C y C ˛.y � y2/
R ˇ

�1 !P
˝.d!/ ; .x; y/ 2 A4;

y ; .x; y/ 2 A5;



8 Singular Mixture Copulas 171

where ˇ D x�y
y2�y , b D ˇ ˛�1

˛
and

A1 D ˚
.x; y/ 2 Œ0; 1�2 jx < y2� ;

A2 D
n
.x; y/ 2 Œ0; 1�2 jy2 � x <

�˛
1 � ˛ .y � y2/C y

o
;

A3 D
n
.x; y/ 2 Œ0; 1�2 j �˛

1 � ˛
.y � y2/C y � x <

˛

1 � ˛
.y � y2/C y

o
;

A4 D
n
.x; y/ 2 Œ0; 1�2 j ˛

1 � ˛
.y � y2/C y � x < 2y � y2

o
;

A5 D ˚
.x; y/ 2 Œ0; 1�2 j2y � y2 � x

�
:

The density of the copula is given by

c˛.x; y/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

0 ; .x; y/ 2 A1;
f̨˝.ˇ/

y2�2xyCx
.y2�y/2 ; .x; y/ 2 A2;

y2�2xyCx
.y2�y/2

�
f̨˝.ˇ/C .1�˛/2

˛
f˝.b/

�
; .x; y/ 2 A3;

f̨˝.ˇ/
y2�2xyCx
.y2�y/2 ; .x; y/ 2 A4;

0 ; .x; y/ 2 A5:

Remark 8.3. For ˛ > 1
2

it is possible to change the distribution of ˝ in such a way
that one receives the same copulas as for ˛ < 1

2
, so we restrict our investigation to

the case ˛ � 1
2
.

Theorem 8.2. The copula C˛ has upper and lower tail dependence given by

�U D 1 � ˛
�Z 1

0

!P˝.d!/ �
Z 0

�1
!P˝.d!/

	
D �L:

Proof. The proof is straightforward. ut
Since Singular Mixture Copulas are convex sums of the singular copulas

mentioned in Sect. 8.2 the borders described in part (b) of Fig. 8.2 are also valid
for Singular Mixture Copulas. Moreover, because Singular Mixture Copulas are
absolutely continuous we are able to compare the area of the copula’s support with
the area of the unit square. From the discussion in Sect. 8.2 we know that the support
cannot lie in the triangles .0; 0/.0; 1/.˛; 1/ and .1� ˛; 0/.1; 0/.1; 1/. Consequently,
the parallelogram in which the support of the Singular Mixture Copula can lie has
an area of max.˛; 1 � ˛/.

In the special case where F! is a quadratic function for every ! the support of
the Singular Mixture Copula is bounded by the inverses of the functions F�1.x/ D
2x � x2 and F1.x/ D x2, respectively. Here the support has an area of 1

3
.
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8.3.2 Special Cases

In the above-mentioned construction the mixing distribution has to be concentrated
on a finite interval. Therefore a generalized beta distribution, viz. a linear transfor-
mation of a beta distribution, provides a reasonable choice as a mixing distribution.
Moreover, the beta distribution is very flexible so the resulting Singular Mixture
Copulas should also show this flexibility.

Figures 8.3 and 8.4 show scatter plots of simulated Singular Mixture Copulas
with a generalized beta distribution as mixing distribution.

Theorem 8.3. LetC˛;p;q denote a Singular Mixture Copula with a Beta.�1; 1; p; q/
mixing distribution. Then the survival copula of C˛;p;q is given by OC˛;p;q D C˛;q;p .

Proof. The proof is straightforward. ut
Another possible mixing distribution is a uniform distribution on the interval

Œ��; �� with � � 1. The choice � D 1 would be a special case of the above-
mentioned generalized beta distribution. Here, the copula, which we will denote
with C˛;� , and its density have a closed form representation and the upper and
lower tail dependence coefficients can be determined. See [8] for the proofs of this
subsection. The copula C˛;� is given by

C˛;� .x; y/ D P.X � x; Y � y/

D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

x ; .x; y/ 2 A1;
˛
4�

�
.x�y/2
y2�y C 2�.x C y/C �2.y2 � y/

�
C .1 � ˛/x ; .x; y/ 2 A2;

1
2

�
.x�y/2
2�.y2�y/

�
.1�˛/2
˛

C ˛
�

C x C .1 � ˛�/y C ˛�y2
�

; .x; y/ 2 A3;
˛
4�

�
.x�y/2
y2�y C 2�.x C y/C �2.y2 � y/

�
C .1 � ˛/y ; .x; y/ 2 A4;

y ; .x; y/ 2 A5;

where

A1 D ˚
.x; y/ 2 Œ0; 1�2 jx � ��.y � y2/C y

�
;

A2 D
n
.x; y/ 2 Œ0; 1�2 j � �.y � y2/C y < x < �� ˛

1 � ˛
.y � y2/C y

o
;

A3 D
n
.x; y/ 2 Œ0; 1�2 j � �

˛

1 � ˛ .y � y2/C y < x < �
˛

1 � ˛
.y � y2/C y

o
;

A4 D
n
.x; y/ 2 Œ0; 1�2 j� ˛

1 � ˛ .y � y2/C y < x < �.y � y2/C y
o
;

A5 D ˚
.x; y/ 2 Œ0; 1�2 jx 
 �.y � y2/C y

�
:
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Fig. 8.3 Scatter plots of simulated points from a Singular Mixture Copula with generalized beta
mixing distribution for ˛ D 0:5 and different shape parameters
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Fig. 8.4 Scatter plots of simulated points from a Singular Mixture Copula with generalized beta
mixing distribution for ˛ D 0:3 and different shape parameters
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The density of this copula is given by

c˛;� .x; y/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

˛
2�

y2�2yxCx
.y2�y/2 ; .x; y/ 2 A2;

1
2�

�
.1�˛/2
˛

C ˛
�
y2�2yxCx
.y2�y/2 ; .x; y/ 2 A3;

˛
2�

y2�2yxCx
.y2�y/2 ; .x; y/ 2 A4;

0 ; otherwise:

Theorem 8.4. The copula C˛;� has upper and lower tail dependence given by

�U D 1 � ˛�

2
D �L:

Theorem 8.5. The copula C˛;� is radially symmetric, i.e., C˛;� D OC˛;� .

Theorem 8.6. The concordance measures Kendall’s tau and Spearman’s rho for
the copula C˛;� are given by


˛;� D 1 � ˛� 1C 4.˛ � 1/2

9.1� ˛/
and �˛;� D 1 � ˛�2

15.1� ˛/
;

respectively.

Corollary 8.1. Kendall’s tau for the copula C˛;� lies in the interval Œ 7
9
; 1�, Spear-

man’s rho for the copula C˛;� lies in the interval Œ 14
15
; 1�.

8.4 Concluding Remarks

In this paper we presented a method for the construction of nonsingular copulas by
mixing a family of singular copulas. We also showed how the constructed singular
copulas differ from similar constructions in the literature. These copulas can be used
to model strongly dependent random variables (see [8]).

In the future we want to investigate generalizations of the presented method, e.g.,
one could replace the quadratic functions in the definition of the singular copulas
with other functions or use other mixing distributions.
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Chapter 9
Toward a Copula Theory for Multivariate
Regular Variation

Haijun Li

Abstract Multivariate regular variation describes the relative decay rates of joint
tail probabilities of a random vector with respect to tail probabilities of a norm of
this random vector, and it is often used in studying heavy-tail phenomena observed
in data analysis in various fields, such as finance and insurance. Multivariate regular
variation can be analyzed in terms of the intensity measure or spectral measure but
can also be studied by using the copula approach. In this paper, the basic ingredients
of a measure-theoretic copula theory for multivariate regular variation are presented,
and the method is based on extraction of scale-invariant extremal dependence from
the intensity measure by standardizing its margins. Various examples as well as the
advantages and disadvantages of the copula approach are also discussed.

9.1 Introduction

Multivariate regular variation has been widely used in analysis of multivariate
extremes (see, e.g., [12, 59, 61]) and has also been used in analyzing tail risk
[1,3,17,18,34,38,64,66,67] where risk (or failure) regions are usually non-orthant
sets. In this paper we present the basic ingredients of a copula approach for
multivariate regular variation. Our method is based on the upper tail-orthant limit
representation of the Pickands dependence function ([15], also see Section 7.5.3 of
[53] and [24]) that leads to vague convergence of measures induced by copulas. The
copula approach yields rich distribution families for multivariate regular variation
and also provides a tool for analyzing hidden and higher order regular variation
[27, 28, 32].
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We begin with the standard setup of heavy-tail analysis on multivariate extremes.
Let Xn D .X1;n; � � � ; Xd;n/, n D 1; 2; � � � , be independent and identically
distributed (iid) random vectors with common distribution function (df) F . Define
component-wise maxima Mi;n WD _n

jD1Xi;j , 1 � i � d . Here and hereafter
_ (^) denotes the maximum (minimum). This paper focuses on the limiting
distributions, if any, of properly normalized vectors of component-wise maxima
Mn WD .M1;n; : : : ;Md;n/, as n ! 1, as well as on how structural properties of
the limiting distributions can be described in terms of the asymptotic properties
emerged from upper tails of F of the underlying sample .Xn; n 
 1/.

For any two vectors a; b 2 R
d , the sum a C b, product ab, quotient a=b and

vector power and vector inequalities such as a � b are all operated component-wise.
Let G be a df defined on R

d with non-degenerate margins. A df F is said to be in
the domain of attraction of G for the maxima, denoted as F 2 DA_.G/, if there
exist Rd -valued sequences an D .a1;n; � � � ; ad;n/ with ai;n > 0, 1 � i � d , and
bn D .b1;n; � � � ; bd;n/, n D 1; 2; � � � , such that for any x D .x1; � � � ; xd /, as n ! 1,

P

�
M1;n � b1;n

a1;n
� x1; � � � ; Md;n � bd;n

ad;n
� xd

	
D F n.anx C bn/ ! G.x/;

(9.1)

and in this case, G is called a max multivariate extreme value (MEV) distribution.
Similar definitions for min MEV distributions and their domain of attraction can
be made. One needs only to study the case of maxima as the theory for minima
is similar. A key property of an MEV distribution G is that all positive powers of
G are also distributions, and max MEV distributions coincide with the max-stable
distributions, which form a sub-class of max infinitely divisible distributions.

Let X D .X1; : : : ; Xd/ denote a generic random vector with distribution F and
continuous, univariate margins F1; : : : ; Fd . If F 2 DA_.G/, then G is closely
related to the upper tail distribution ofX . Without loss of generality, we may assume
that X is nonnegative component-wise. Consider the standard case in which the
survival functions F i.x/ WD 1 � Fi .x/, 1 � i � d of the margins are right tail
equivalent; that is,

F i .x/

F 1.x/
D 1 � Fi .x/
1 � F1.x/ ! 1; as x ! 1; 1 � i � d: (9.2)

The distribution F or random vector X is said to be multivariate regularly varying
(MRV) at 1 with intensity measure � if there exists a scaling function b.t/ ! 1
and a non-zero Radon measure �.�/ such that as t ! 1,

t P

�
X

b.t/
2 B

	
! �.B/; 8 relatively compact setsB � R

d

C

nf0g; with �.@B/ D 0;

(9.3)
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where R
d

C WD Œ0;1�d is a compact set. By means of the one-point uncompactifi-

cation (see pages 170–172 of [61]), the punctured version R
d

Cnf0g provides a space
in which any relatively compact neighborhood (e.g., any open neighborhood) of
1 that is bounded away from the origin is bounded. The extremal dependence
information of X is encoded in the intensity measure � that satisfies the scaling
property of order �˛; that is, �.tB/ D t�˛�.B/, for all relatively compact subsetsB
that are bounded away from the origin, where ˛ > 0 is known as the tail index. The
examples of MRV dfs include (truncated) multivariate t distribution, multivariate
Pareto distributions, and various members of the elliptical distribution family.

The law (9.3) of rare events can be rephrased in terms of relative decay rates of
joint tail probabilities of X with respect to tail probabilities of its margin under
the assumption (9.2). Since the set B1 D fx 2 R

dC W x1 > 1g is relatively

compact within the cone R
d

Cnf0g and �.B1/ > 0 under (9.2) for the nonzero
measure �.�/ with scaling property, it follows from (9.3) that the scaling function
b.t/ can be chosen to satisfy that F 1.b.t// D t�1, t > 0, after appropriately
normalizing the intensity measure by �.B1/. That is, b.t/ can be chosen as b.t/ D
F

�1
.t�1/ D F�1

1 .1�t�1/ under the condition (9.2), and thus (9.3) can be expressed
equivalently as

lim
t!1

P.X 2 tB/
P.X1 > t/

D �.B/; 8 relatively compact sets B � R
d

Cnf0g; (9.4)

satisfying that �.@B/ D 0. It follows from (9.4) and (9.2) that for 1 � i � d ,

lim
t!1

P.Xi > ts/

P.Xi > t/
D �..s;1� 	 R

d�1
C / D s�˛�..1;1� 	 R

d�1
C /; 8 s > 0:

That is, univariate margins have regularly varying right tails. In general, a
Borel-measurable function g W RC ! RC is regularly varying with exponent
� 2 R, denoted as g 2 RV�, if and only if

g.t/ D t�`.t/; with `.�/ 
 0 satisfying that lim
t!1

`.ts/

`.t/
D 1; for s > 0: (9.5)

The function `.�/ is known as a slowly varying function and denoted as ` 2 RV0.
Since F 1 2 RV�˛ , 1=F 1 2 RV˛, and thus, by Proposition 2.6(v) of [61], the scaling
function b 2 RV˛�1 .

Since all the margins are tail equivalent as assumed in (9.2), one has

F i .t/ D t�˛`i .t/; where `i 2 RV0; and `i .t/=`j .t/ ! 1 as t ! 1; for any i ¤ j;

(9.6)
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which, together with F 1.b.t// D t�1, imply that

lim
t!1 t P.Xi > b.t/s/ D lim

t!1
P.Xi > b.t/s/

F i .b.t//

F i .b.t//

F 1.b.t//
D s�˛; s > 0; 1 � i � d:

(9.7)

The multivariate regular variation and MEV distributions with Fréchet margins
are related as described as follows.

Theorem 9.1 (Marshall and Olkin [51]). Assume that (9.2) holds. Then there
exist normalization vectors an > 0 and bn such that

P

�Mn � bn

an
� x

�
! G.x/; as n ! 1; 8x 2 R

dC;

whereG is a d -dimensional distribution with Fréchet marginsGi.s/ D expf�s�˛g,
1 � i � d , if and only if F is MRV with intensity measure �.Œ0; x�c/ WD � logG.x/.

In other words, F 2 DA_.G/ where G has Fréchet margins with tail index ˛ if
and only if F is MRV with intensity measure �.Œ0; x�c/ D � logG.x/.

Remark 9.1.

1. The normalization vectors an > 0 and bn in Theorem 9.1 can be made precise

so that bn D 0 and an D .F
�1
1 .1=n/; : : : ; F

�1
d .1=n// that depend only on

the margins of F . Note that the Fréchet margins are not crucial but simplify
the normalizing vectors. If .X1; : : : ; Xd / has a df F 2 DA_.G/, then there exist
monotone transformations b.i/.t/, 1 � i � d , such that .b.1/.X1/; : : : ; b.d/.Xd //
is MRV in the sense of (9.4).

2. If (9.2) does not hold, Theorem 9.1 can still be established but the non-standard
global regular variation with different scaling functions among various margins
needs to be used in place of (9.4), which uses the same scaling function among
different margins.

3. The one-dimensional version of Theorem 9.1 is due to Gnedenko [23]. The
univariate scaling property of �.�/ on RC leads to the explicit parametric
expression for univariate MEV dfs, but the parametric feature enjoyed by
univariate extremes is lost in the multivariate context.

4. The multivariate scaling property �.�/ on R
dC does allow a semi-parametric

representation for G. Let Sd�1C D fa W a D .a1; : : : ; ad / 2 R
dC; jjajj D 1g,

where jj � jj is a norm defined on R
d . Using the polar coordinates, G can be

expressed as follows:

G.x/ D exp
n

� c

Z
S
d�1
C

max
1	i	d

f.ai=xi /˛gQ.da/
o
; (9.8)

where c > 0 and Q is a probability measure defined on S
d�1C such that
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c

Z
S
d�1
C

a˛i Q.da/ D 1; 1 � i � d:

This is known as the Pickands representation [13,58], and cQ.�/ is known as the
spectral or angular measure.

5. Note that the spectral measure in (9.8) is a finite measure that can be
approximated by a sequence of discrete measures. Using this idea, Marshall
and Olkin [51] showed that the MEV distribution G is positively associated.
This implies that as n is sufficiently large, one has asymptotically,

E

�
f
�
Mn

�
g
�
Mn

�� 
 E

�
f
�
Mn

��
E

�
g
�
Mn

��

for all non-decreasing functions f; g W Rd 7! R. Observe that the sample vector
Xn could have any dependence structure, but the strong positive dependence
emerges among multivariate extremes.

6. Since G is max-infinitely divisible, all bivariate margins of G are TP2, a
positive dependence property that is even stronger than the positive association
of bivariate margins (see Theorem 2.6 in [33]).

The detailed discussions on univariate and MEV theories can be found in
[12, 21, 41, 59]. In contrast to the multivariate method, a geometric approach for
extreme value analysis in high-dimensional spaces is discussed in [2]. Statistical
methods for extreme value analysis are described in detail in [7]. The extreme value
theory has found applications in various fields and, in particular, the applications of
the univariate extreme value theory to modeling extremal events in insurance and
finance can be found in [16].

Two basic ingredients of extreme value analysis are the regular variation and
vague convergence of measures. The standard references for the theory of regularly
varying functions include [8, 59, 63, 65]. The extensions of regular variation to
linear operators and Borel measures can be found in [54]. A detailed account of
the interplay between regular variation and vague convergence of Radon measures
in heavy-tail analysis can be found in [61].

The discussions (9.2)–(9.7) for multivariate regular variation have been focused
on R

dC. The extension of MRV beyond the nonnegative orthant can be done by
using the tail probability of jjX jj, where jj � jj denotes a norm on R

d , in place of the
marginal tail probability in (9.4) (see [61], Section 6.5.5). The case that the limit in
(9.2) is any nonzero constant can be easily converted into the standard tail equivalent
case by properly rescaling margins. If the limit in (9.2) is zero or infinity, then some
margins have heavier tails than others. One way to overcome this problem and to
reveal the scaling property is to standardize the margins via marginal monotone
transforms (see Theorem 6.5 in [61]), or to use the copula method [45], which is
precisely the goal of this paper.

The rest of this paper is organized as follows. Section 9.2 introduces the basic
elements of a copula theory for multivariate regular variation. The method is
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based on rescaling the intensity measure in the copula setup that extracts the
scale-invariant extremal dependence from the intensity measure by standardizing
its margins. In contrast to the standardization used in [37], the standardization via
the copula approach yields the limit measure with scaling property of order 1 that
facilitates two representations:

1. The polar coordinate representation of Pickands type and
2. The Euler homogeneous representation.

Similar to any Pickands-type representation, the polar coordinate representation of
the limit measure allows discretization of the angular measure, leading to various
tractable, fully parametrized copula models that provide good approximations to
a general MEV distribution [see Remark 9.1(5)]. The Euler representation, on the
other hand, explores the extremal dependence decomposition of joint multivariate
extremes that are driven by various univariate extremes and provides a natural
limiting version of the total probability law for joint extremes. The power of the
Euler representation is illustrated in Sect. 9.2 by explicitly deriving the intensity
measure of random samples with multivariate t copulas. Section 9.3 discusses
the tail densities of copulas that describe local extremal dependence. The local
characterization of extremal dependence is especially useful for the distributions
that are specified only by densities and provides a geometric approach for extremal
dependence analysis [2]. Finally some remarks in Sect. 9.4 conclude the paper.

9.2 Copula Method for Multivariate Regular Variation

A copula C is a multivariate distribution with standard uniformly distributed
margins on Œ0; 1�. Sklar’s theorem (see Section 2.3 in [55], or Section 1.6 in [33])
states that every multivariate distribution F with margins F1; : : : ; Fd can be written
as F.x1; : : : ; xd / D C.F1.x1/; : : : ; Fd .xd // for some d -dimensional copula C .
In fact, in the case of continuous margins, C is unique and

C.u1; : : : ; ud / D F.F�1
1 .u1/; : : : ; F

�1
d .ud //

where F�1
i .ui / is the quantile functions of the i th margin, 1 � i � d . Let

.U1; : : : ; Ud / denote a random vector with df C and Ui; 1 � i � d , being uniformly
distributed on Œ0; 1�. The survival copula OC is defined as follows:

OC.u1; : : : ; un/ D P.1 � U1 � u1; : : : ; 1 � Un � un/ D C.1 � u1; : : : ; 1 � un/

(9.9)

where C is the joint survival function of C . The survival copula OC can be used
to transform lower tail properties of .U1; : : : ; Ud / into the corresponding upper tail
properties of .1�U1; : : : ; 1�Ud/ and thus only upper tail behaviors are studied and
presented in this paper.
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Consider the MEV dfG described in Theorem 9.1 with Fréchet marginsGi.s/ D
expf�s�˛g, 1 � i � d , and clearly,

G�1
i .u/ D .� ln u/�1=˛; 1 � i � d:

Using the Pickands representation (9.8), the copula of G, known as the extreme
value copula (Section 7.5.1 of [53] and [24]), is given by

CEV.u1; : : : ; ud / D exp
n

� c

Z
S
d
C

max
1�i�d

f.� ln ui /a
˛
i gQ.da/

o
; .u1; : : : ; ud / 2 Œ0; 1�d :

(9.10)

Note, however, that the spectral measure Q.�/ depends on margins of underlying
samples (e.g., tail index ˛), and it would be desirable to express the extreme value
copula in terms of scale-invariant information only.

Let C denote the copula of iid random vectors Xn, and .U1; : : : ; Ud / have the
df C . Define the upper exponent function:

a.wIC/ WD lim
u!0C

P

�Sd
iD1fUi > 1 � uwig

�

u
; 8w D .w1; : : : ;wd / 2 R

dCnf0g
(9.11)

provided that the limit exists. This function is called the stable tail dependence
function in [7, 15] and also known as the Pickands dependence function (see
Section 6.1.5 of [12]). See [35, 56] for additional properties of this function.

Note that a.�IC/ depends only on copula C . If the exponent function a.�IC/
exists for a d -dimensional copula C , then the exponent function of any multivariate
margin CI .ui ; i 2 I / of C , ; ¤ I � f1; : : : ; d g,

a.wI ICI / D a..wI ; 0I c /IC/; wI D .wi ; i 2 I /; (9.12)

also exists, where 0Ic is the jI cj-dimensional sub-vector of zeros. As noted in [15]
(also see Section 7.5.3 of [53] and [24]), the existence of a.�IC/, as defined by
(9.11), is equivalent to the existence of the EV copula CEV of C , which in this case
can be expressed as

CEV.u1; : : : ; ud / WD lim
n!1

Cn.u1=n1 ; : : : ; u1=nd / D expf�a.� log u1; : : : ;� log ud IC/g:
(9.13)

Compared to the condition (9.13) of copula domain of attraction, the limit (9.11)
is more tractable. Furthermore, the limiting expression (9.11) can be rephrased in

terms of vague convergence of Radon measures on R
d

Cnf0g or on R
d

Cnf1g. Define

the exponent measure �.�/ on R
d

Cnf0g generated by



184 H. Li

�.Œ0;w�c/ WD a..w�1
1 ; : : : ;w

�1
d /IC/; w D .w1; : : : ;wd / 2 R

dCnf0g: (9.14)

See, e.g., Section 6.1.3 of [12]. Since any relatively compact subset K � R
d

Cnf0g
that is bounded away from 0 is contained in Œ0;w�c for some w 2 R

dCnf0g, �.�/ is a

Radon measure on R
d

Cnf0g and clearly homogeneous of order �1. Define the finite
measures �n.�/, n 
 1, generated by

�n.Œ0;w�
c/ WD nP

 
d[
iD1

n n�1

1 � Ui > wi
o!

D nP

 
.1 � U1; : : : ; 1 � Ud/ 2 n�1

� dY
iD1
Œw�1
i ;1�

�c!

and then (9.11) can be rephrased via (9.14) as follows, as n ! 1,

�n.Œ0;w�
c/ ! �.Œ0;w�c/; 8w D .w1; : : : ;wd / 2 R

dCnf0g:

It follows from Lemma 6.1 of [61] that (9.11) is equivalent to the vague convergence

�n.K/ ! �.K/; as n ! 1; (9.15)

for all relatively compacts K � R
d

Cnf0g that is bounded away from 0. The vague
convergence (9.15), called the standard form of MRV, is the central object in
multivariate regular variation [12, 61]. It can be easily shown that the standard
multivariate regular variation with properly normalizing marginal transforms is
equivalent to the multivariate domain of attraction (9.1) [see, e.g., [37] and
Remark 9.1(1)]. Note that the standard MRV uses the standard Pareto margins,
and such a standardization is necessary to reveal the underlying scaling property
(of order �1).

In contrast to the standard MRV (9.14) and (9.15), the upper exponent function
(9.11) induces directly a vague convergence of measures generated by copula C .

Define a measure U.�/ on R
d

Cnf1g as follows

U

�� dY
iD1
Œwi ;1�

�c� WD a..w1; : : : ;wd /IC/; .w1; : : : ;wd / 2 R
dC: (9.16)

Since any relatively compact subset K � R
d

Cnf1g that is bounded away from

1 is contained in
�Qd

iD1Œwi ;1�
�c

for some w 2 R
dCnf0g, the measure U.�/ is a

Radon measure on R
d

Cnf1g and clearly homogeneous of order 1. Hence (9.11) is
equivalent to
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nP
�
.1 � U1; : : : ; 1 � Ud/ 2 n�1K

� ! U.K/; as n ! 1; (9.17)

for all relatively compacts K � R
d

Cnf1g that is bounded away from 1. The law
(9.17) of rare events resembles (9.3) and can be used to estimate upper joint tail
probabilities of .U1; : : : ; Ud /with copulaC . Note that the measureU.�/ is a rescaled
exponent measure but is better suited to the copula framework.

For example, by taking K D Qd
iD1Œ0;wi �, (9.17) reduces to the limiting

expression that leads to the upper tail dependence function,

b.wIC/ WD U

� dY
iD1
Œ0;wi �

�

D lim
u!0C

C.1 � uwi ; 1 � i � d/

u
; 8w D .w1; : : : ;wd / 2 R

dC:

(9.18)

The tail dependence function (9.18) was introduced and studied in [30, 31, 36] and
studied further in [35, 56]. Various tail dependence parameters used in the copula
literature (see, e.g., [44]) can actually be written in terms of the tail dependence
and exponent functions. Note that exponent and tail dependence functions are
related through inclusion–exclusion relations. But it is worth mentioning that
instead of upper orthants used in (9.18), it is often more convenient to work with the
complements of lower orthants used in the exponent function (9.11). For example,
as indicated in (9.12)–(9.17), the existence of the exponent function a.�IC/ implies
that the exponent function a.�ICI /, and thus the upper tail dependence function
b.�ICI/ of any multivariate margin CI .ui ; i 2 I / of C exist.

After copula transformation, the limit measure U.�/ has scaling property of
order 1 in Cartesian coordinates. Such a scaling in Cartesian coordinates allows
transformation to polar coordinates to yield a product measure, leading to the
Pickands representation for the upper exponent function a.�IC/.
Theorem 9.2. Let Sd�1C D fa W a D .a1; : : : ; ad / 2 R

dC; jjajj D 1g, where jj � jj
denotes any norm on R

dC. For any copula C for which a.�IC/, as defined by (9.11),
exists, one has

a.wIC/ D c

Z
S
d�1
C

max
1	i	dfa

�1
i wi gQ.da/; 8 w D .w1; : : : ;wd / 2 R

dCnf0g; (9.19)

where c D U.fx W jjxjj < 1g/ and Q is a probability measure defined on S
d�1C

such that c
R
S
d�1
C

aiQ.da/ D 1, 1 � i � d . The measure cQ.�/, called the spectral

measure, depends only on copula C .
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Remark 9.2.

1. The Pickands representation for the exponent function is not unique. If, instead
of U.�/, the measure�.�/ is used in the polar coordinate transformation, then one
can obtain the following representation:

a.wIC/ D �
�� dY

iD1
Œ0;w�1

i �
�c�
; 8 w D .w1; : : : ;wd / 2 R

dCnf0g;

D �.fw W jjwjj > 1g/
Z
S
d�1
C

max
1	i	d

faiwi gQ0.da/:

The Q
0-measure in this representation is related to the Q-measure in (9.19) via

the inverse transform.
2. The Pickands representation for the tail dependence function b.�IC/ can be also

obtained similarly or through inclusion–exclusion relations. For example,

b.wIC/ D c

Z
S
d�1
C

min
1	i	dfa

�1
i wi gQ.da/; 8 w D .w1; : : : ;wd / 2 R

dCnf0g;

where c D U.fx W jjxjj < 1g/.
3. Combining (9.13) and Theorem 9.2, the EV copula CEV can be rewritten as

CEV.u1; : : : ; ud / D exp

( Z
S
d�1
C

ln
� ^d

iD1 uc=aii

�
Q.da/

)
; (9.20)

where c D U.fx W jjxjj < 1g/. Note that the spectral measure Q.�/ can
be approximated by a sequence of discrete measures, and by discretizing
the finite measure Q.�/, various extreme value copulas can be obtained from
(9.20). For example, the Marshall–Olkin copula [43, 47, 50] can arise from a
discretization of the Q-measure in (9.20).

4. The key to establishing the representation of Pickands type is Fubini’s theorem
and homogeneous (scaling) properties of the Radon measure U.�/ and norm jj � jj
(both with order 1). The idea can be applied to any Radon measure and function
that are homogeneous of certain, possibly different orders. The norm function is
used here for an obvious geometric interpretation.

The exponent function (tail dependence function) and intensity measure are
related via marginal homeomorphisms.

Theorem 9.3 (Li and Sun [45]). Let X D .X1; : : : ; Xd / be a random vector with
distribution F and copula C , satisfying (9.2).

1. If F is MRV as defined in (9.3) with intensity measure �, then for all w D
.w1; : : : ;wd / 2 R

dCnf0g,
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b.wIC/ D �
� dY
iD1
.w�1=˛

i ;1�
�
; and a.wIC/ D �

�� dY
iD1
Œ0;w�1=˛

i �
�c�
:

2. If the limit (9.11) exists and marginal distributions F1; : : : ; Fd are regularly
varying with tail index ˛, then F.x1; : : : ; xd / D C.F1.x1/; : : : ; Fd .xd // is MRV
with intensity measure generated by �.Œ0;w�c/ D a..w�˛

1 ; : : : ;w�˛
d /IC/, for all

w D .w1; : : : ;wd / 2 R
dCnf0g.

Remark 9.3.

1. Note that the measure �.�/ defined by (9.14) satisfies that

�
�� dY

iD1
Œ0;wi �

�c� D �
�� dY

iD1
Œ0;w1=˛i �

�c�
; 8 w D .w1; : : : ;wd / 2 R

dCnf0g;

which implies that

�.K/ D �.K1=˛/; whereK1=˛ WD fx1=˛ W x 2 Kg;

for all relatively compacts K � R
d

Cnf0g that is bounded away from 0. Both
measures �.�/ and U.�/ are the standardization of the intensity measure �.�/
induced by marginal monotone transforms. An advantage of standardization, as
discussed in [37], is its ability to handle the situations where marginal tails are not
necessarily tail equivalent, in order to recover homogeneous scaling properties
among different margins at multiple scales. Scaling properties are crucial in
establishing semi-parametric representations (e.g., the Pickands representation)
for MEV dfs and their copulas.

2. If the limit (9.11) exists and the marginal distribution Fi is regularly varying
with tail index ˛i , 1 � i � d , then F.x1; : : : ; xd / D C.F1.x1/; : : : ; Fd .xd //

is a nonstandard MRV (see page 204 of [61]) with intensity measure �.�/
generated by

�.Œ0;w�c/ D a..w�˛1
1 ; : : : ;w�˛d

d /IC/; for all w D .w1; : : : ;wd / 2 R
dCnf0g:

That is, the intensity measure is obtained from the standardized measure U.�/ via
marginal homeomorphisms that are monotone in the same direction.

3. Note that (9.12) also follows from Theorem 9.3 immediately, but in general, for
a multivariate margin CI .ui ; i 2 I / of C , ; ¤ I � f1; : : : ; d g,

b.wI ICI / 
 lim
wj!1;j…I

b.wIC/; for wI D .wi ; i 2 I /:

It was shown in [35] that if copula C has continuous second-order partial
derivatives with nonzero tail dependence function b.�IC/, then
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b.wI ICI / D lim
wj!1;j…I

b.wIC/; for wI D .wi ; i 2 I / (9.21)

if and only if the conditional tail dependence functions are proper distribution
functions. In contrast, it is easier to work with the exponent function a.�IC/
when multivariate margins are involved.

4. Various tail dependence parameters used in the literature can be rephrased in
terms of exponent and tail dependence functions, which, in turn, can be written
in terms of the intensity or spectral measure. For example, the upper orthant
tail dependence parameter is defined as follows [42–44, 62]: for some subset
; ¤ J � f1; � � � ; d g,


J WD lim
u"1

P.Fj .Xj / > u;8j … J j Fi .Xi/ > u;8i 2 J /;

provided that the limit exists. Clearly,


J D b..1; : : : ; 1/IC/
b..1; : : : ; 1/ICJ / D

�
�Qd

iD1.1;1�
�

�
�Q

i2J .1;1� 	 R
d�jJ j
C

� ;; ¤ J � f1; � � � ; d g:

The expressions of exponent and tail dependence functions of Archimedean
copulas were explicitly derived in [1, 3, 10, 22] (also see Propositions 2.5 and 3.3
in [35]).

Proposition 9.1. Let C.uI�/ D �.
Pd

iD1 ��1.ui // be an Archimedean copula
where the generator ��1 satisfies that ��1.1 � 1=t/ is regularly varying at 1
with tail index ˇ > 1. The upper exponent function of C are given by a.wIC/ D�Pd

jD1 wˇj
�1=ˇ

:

Proposition 9.2. Let C.uI�/ D �.
Pd

iD1 ��1.ui // be an Archimedean copula with
strict generator ��1, where � is regularly varying at 1 with tail index � > 0. The
upper tail dependence function of the survival copula OC are given by b.wI OC/ D�Pd

jD1 w�1=�
j

���
, which obeys (9.21).

If � is completely monotone, then the Archimedean copulas are the survival
copulas of scale mixtures of iid standard exponentially distributed random variables
with strictly positive scale mixing. In general, consider a random vector X D
.RT1; : : : ; RTd /with df F and continuous marginsF1; : : : ; Fd , in which the mixing
variable R > 0 is independent of .T1; : : : ; Td /. The exponent and tail dependence
functions of X can be obtained via Theorem 9.3 and Proposition A.1 of [4].

Proposition 9.3. Let TiC D maxfTi ; 0g, 1 � i � d . Assume that the survival
function of R is regular varying with tail index ˛ > 0, and 0 < E.T ˛C�

iC / < 1,
1 � i � d , for some � > 0, then the upper tail dependence and exponent functions
are given by
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b.wIC/ D E

 
d̂

iD1

wi T ˛iC
E.T ˛iC/

!
and a.wIC/ D E

 
d_
iD1

wi T ˛iC
E.T ˛iC/

!
:

The upper exponent and tail dependence functions of the elliptical distributions
with regularly varying mixing variable can be obtained via Proposition 9.3.
In particular, the tail dependence function of the t distribution with degrees of
freedom � can be written as the �th moment of the minimum of a weighted,
truncated, marginally standardized version of the underlying normal random vector
[9]. The t tail dependence function can be derived more explicitly using the Euler
representation.

Consider the d -dimensional copula C of a random vector .U1; : : : ; Ud / with
standard uniform margins and continuous second-order partial derivatives. Since
both a.�IC/ and b.�IC/ are homogeneous of order 1, the well-known Euler’s
homogeneous theorem implies that

a.wIC/ D
dX
jD1

@a

@wj
wj ; b.wIC/ D

dX
jD1

@b

@wj
wj ; 8w D .w1; : : : ;wd / 2 R

dC;

(9.22)

where the partial derivatives can be interpreted as conditional limiting distributions
of the underlying copula C [35, 56]. For example,

@b

@wj
D lim

u#0
P.Ui > 1� uwi ;8i ¤ j j Uj D 1� uwj / D lim

u#0
C j .1� uwi ; i ¤ j j 1� uwj /;

where the notation Cj refers to the conditional survival function of .Ui W i ¤ j /

given Uj . The Euler representations of a.�IC/ and b.�IC/ are especially useful for
the distributions whose conditional distributions are tractable.

Let X D .X1; : : : ; Xd / have the t distribution Td;�;˙ with � degrees of freedom
and dispersion matrix ˙ . Since the increasing location-scale marginal transforms
convert X to the t distribution with identical margins, assume, without loss of
generality, that the margins Fi D T� for all 1 � i � d , where T� is the t distribution
function with � degrees of freedom, and that ˙ D .�ij/ satisfies �ii D 1 for all
1 � i � d . For each fixed j , define the .d � 1/	 .d � 1/ partial correlation matrix:

Rj D

0
BBBBBBBBB@

1 : : : �1;j�1Ij �1;jC1Ij : : : �1;d Ij
:::

: : :
:::

:::
:::

:::

�1;j�1Ij : : : 1 �j�1;jC1Ij : : : �j�1;d Ij
�1;jC1Ij : : : �j�1;jC1Ij 1 : : : �jC1;d Ij

:::
:::

:::
:::

: : :
:::

�1;d Ij : : : �j�1;d Ij �jC1;d Ij : : : 1

1
CCCCCCCCCA

with �i;kIj D �ik��ij�kjq
1��2ij

q
1��2kj

, i ¤ j; k ¤ j , being the partial correlations.
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Theorem 9.4 (Nikoloulopoulos et al. [56]). Let C be the copula of a multivariate
t distribution with � d.f. and dispersion matrix ˙ D .�ij/ with �ii D 1 for
1 � i � d .

1. The tail dependence function of C is given by

b.wIC/ D
dX
jD1

wj Td�1;�C1;Rj

0
B@

p
� C 1q
1 � �2ij

"
�
�

wi
wj

	�1=�
C �ij

#
; i ¤ j

1
CA ;

for all w D .w1; : : : ;wd / 2 R
dC.

2. The t-EV copula, obtained by the EV limit of the t copula, is given by

CEV.u1; : : : ; ud I �/ D expf�a.w1; : : : ;wd IC/g; wj D � log uj ; j D 1; : : : ; d;

with exponent

a.wIC/ D
dX
jD1

wj Td�1;�C1;Rj

0
B@

p
� C 1q
1 � �2ij

"�
wi
wj

	�1=�
� �ij

#
; i ¤ j

1
CA :
(9.23)

Remark 9.4.

1. Since T� has a regularly right tail with tail index �, it follows from (9.23) and
Theorem 9.3 that the truncated multivariate t distribution on R

dC is regularly
varying with intensity measure

�
�� dY

iD1
Œ0;wi �

�c� WD
dX
jD1

w�˛
j Td�1;�C1;Rj

0
B@

p
� C 1q
1 � �2ij

��
wi
wj

	
� �ij

�
; i ¤ j

1
CA :

That is, the limiting measure �.�/ is driven by .d �1/-dimensional t distributions
along all the axes. Such a recursive scheme holds precisely due to scaling
properties of the limiting measures and the fact that the conditional distributions
of a t distribution are also t distributions that belong to the same distribution
family.

2. The explicit expressions obtained in Theorem 9.4 can be used to derive two
well-known distributions as special cases [56].

(a) Under some scaling conditions, CEV.�I �/ converges weakly to the
Hüsler-Reiss copula (see [29]) as � ! 1.

(b) As � ! 0, CEV.�I �/ converges weakly to a Marshall–Olkin distribution
(see [50]) that satisfies some linear constraints.
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The limit to the Hüsler-Reiss copula as � ! 1 is expected because the
Hüsler-Reiss copula is the extreme value copula of normal random samples.
On the other hand, the limit to a Marshall–Olkin distribution as � ! 0 is
somewhat surprising and shows that regularity inherited from the t distribution
breaks down as � ! 0 and some common cause dependence pattern emerges.

3. The unique feature of the copula method for multivariate regular variation is the
rescaled exponent measure U.�/ with scaling property of order 1. Such a scaling
property leads to the Euler representation for the intensity measure that serves as
a total limiting probability law for multivariate extremes.

Using the Euler representation, the explicit expression of the exponent and tail
dependence functions for skew-t distributions have been obtained in [57].

9.3 Tail Density of Multivariate Regular Variation

The tail dependence (or exponent) function and intensity measure are equivalent
in extremal dependence analysis in the sense that the Radon measure generated
by the tail dependence function is a marginally rescaled version of the intensity
measure. Note, however, that the tail dependence function and intensity measure
are cumulative in nature. A notion that describes extremal dependence locally is
the tail density of multivariate regular variation studied in [14]. Consider again a
distribution F with tail equivalent margins (9.2) and a norm jj � jj on R

d .

Theorem 9.5 (de Haan and Resnick [14]). Assume the density f of F exists
and the margins Fi , 1 � i � d , are regularly varying with tail index ˛ > 0.

If f .tx/

t�d F 1.t/
! �.x/ > 0, as t ! 1, on R

d

Cnf0g and uniformly on S
d�1C D fx 


0 W jjxjj D 1g where �.�/ is bounded, then, for any x 2 R
dCnf0g,

lim
t!1

1 � F.tx/

F 1.t/
D �.Œ0; x�c/ D

Z
Œ0;x�c

�.y/dy;

with homogeneous property that �.tx/ D t�˛�d �.x/ for t > 0.

The tail density �.�/ in Theorem 9.5 is especially tractable for the distributions that
are specified by densities. Correspondingly, the tail densities for copulas, introduced
in [46], can be applied to analyzing extremal dependence of the copulas that are
specified only explicitly by densities, such as the t copula, and vine copulas that are
built from bivariate linking copulas using local dependence properties [5, 6, 39, 40].
For the copulaC of F , the upper tail density function, denoted by �.�IC/, is defined
as follows:

�.wIC/ WD lim
u!0

DwC.1 � uwi I 1 � i � d/

u
; w D .w1; : : : ;wd / 2 R

dCnf0g;
(9.24)
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provided that the limit exists, where Dw D @d

@w1���@wd
denotes the d -order partial

differentiation operator with respect to w1; : : : ;wd . It follows from (9.24) that
the tail density function is homogeneous of order 1 � d ; that is, �.twIC/ D
t1�d�.wIC/ for any t > 0 and w D .w1; : : : ;wd / 2 R

dC.
Assume throughout this section that the density c.�/ of copula C exists. Assume

furthermore that as u ! 0,

ud�1c.1 � uwi ; 1 � i � d/ converges for any w D .w1; : : : ;wd / 2 R
dCnf0g

and converges uniformly on S
d�1C D fw 2 R

dC W jjwjj D 1g: (9.25)

Let .U1; : : : ; Ud / be distributed with df C . Clearly (9.25) is equivalent to the partial
derivative of order d for the ratio

P.[d
iD1fUi > 1 � uwi g/

u
converges for any w D .w1; : : : ;wd / 2 R

dCnf0g

and converges uniformly on S
d�1C D fw 2 R

dC W jjwjj D 1g; (9.26)

as u ! 0. Most copulas that are specified by densities satisfy this technical
condition on uniform convergence. The uniform convergence condition (9.25) or
(9.26) clearly ensures the exchange of limits on S

d�1C that leads to that

�.wIC/D lim
u!0

ud�1c.1� uwi ;1 � i � d/D @d b.wIC/
@w1 � � � @wd

D .�1/d�1 @d a.wIC/
@w1 � � � @wd

;

(9.27)

for all w 2 S
d�1C . The set on which (9.27) remains equal can be extended to R

dCnf0g
from S

d�1C by using the homogeneous property. Since b.�IC/ is homogeneous of

order 1, @
d b.wIC/
@w1���@wd

must be homogeneous of order 1 � d . On the other hand, the tail
density function �.�IC/ is also homogeneous of order 1� d . Thus, (9.27) holds for
any w 2 R

dCnf0g because of the polar coordinate representation w D r� , where
r D jjwjj > 0 and � D w=jjwjj 2 S

d�1C .

Remark 9.5. It can be shown (see [14]) that under the condition specified in
Theorem 9.5, f .tx/

t�d F 1.t/
! �.x/, as t ! 1, uniformly on fx 
 0 W jjxjj D 1g

if and only if for any ı > 0,

f .tx/

t�dF 1.t/
! �.x/; uniformly on fx 
 0 W jjxjj > ıg:

Similarly, due to the homogeneous property, the uniform convergence in (9.25) is
equivalent to that ud�1c.1 � uwi ; 1 � i � d/ converges uniformly on fw 2 R

dC W
jjwjj > ıg, for any ı > 0.
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Theorem 9.6. Let F denote a distribution with tail equivalent, continuous margins
Fi , 1 � i � d . Suppose that F admits the density f .�/ and its copula C admits the
density c.�/.
1. If the marginal density fi of Fi , 1 � i � d , is regularly varying with tail Index
˛ C 1, ˛ > 0, and the copula C of F satisfies the condition (9.26), then F is
MRV with tail density �.�/ that is related to the upper tail density �.�IC/ of C as
follows:

�.w1; : : : ;wd / D ˛d .w1 � � � wd /
�˛�1�.w�˛

1 ; : : : ;w�˛
d IC/

D �U .w�˛
1 ; : : : ;w�˛

d IC/jJ.w�˛
1 ; : : : ;w�˛

d /j; (9.28)

where J.w�˛
1 ; : : : ;w�˛

d / is the Jacobian determinant of the homeomorphic
transform yi D w�˛

i , 1 � i � d .
2. If F is MRV with tail density �.�/ as specified in Theorem 9.5, then the copula C

of F admits the tail density as defined in (9.24).

Proof. Consider

f .tx/ D c.F1.tx1/; : : : ; Fd .txd //

dY
iD1

fi .txi /; t > 0; x D .x1; : : : ; xd / 2 R
dC:

(9.29)

Because of the regularly varying property of the tail equivalent margins, for
sufficiently large t > 0, we have

fi .txi / D t�˛�1.x�˛�1
i Li .txi // � t�˛�1L1.t/x�˛�1

i ; xi > 0; 1 � i � d;

where Li , 1 � i � d , are all slowly varying and Li.t/=L1.t/ ! 1 as t ! 1.
Due to Karamata’s theorem (see Theorem 2.1 in [61]), the margin Fi , 1 � i � d , is
regularly varying with tail index ˛ and

Fi .txi / � 1 � ˛�1.txi /fi .txi / � 1 � ˛�1t�˛L1.t/x�˛
i ; xi > 0; 1 � i � d:

Plug these tail estimates into (9.29) with u WD ˛�1t�˛L1.t/ ! 0 as t ! 1, and
one has

f .tx/

t�dF 1.t/
D ˛d t�dud .

Qd
iD1 x�˛�1

i /c.1 � ux�˛
1 ; : : : ; 1 � ux�˛

d /

t�du

D ˛d
� dY
iD1

x�˛�1
i

�
ud�1c.1 � ux�˛

1 ; : : : ; 1 � ux�˛
d /: (9.30)
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(1) If (9.26) holds, then it follows from Remark 9.5 that

f .tw�1=˛/
t�dF 1.t/

D ˛d
� dY
iD1

w1C1=˛i

�
ud�1c.1 � uw1; : : : ; 1 � uwd /

converges uniformly on fw 2 R
dC W jjwjj > ıg as t ! 1 or equivalently u ! 0.

By selecting 0 < ı < 1, this shows that f .tx/

t�d F 1.t/
converges uniformly on fx 


0 W jjxjj D 1g. By Theorem 9.5, F is regularly varying with intensity measure

� and tail density �, and for any x 2 R
d

Cnf0g,

lim
t!1

1 � F.tx/

F 1.t/
D �.Œ0; x�c/ D

Z
Œ0;x�c

�.y/dy:

Since � is a Radon measure, one has that �..x;1�/ D R
.x;1�

�.y/dy. It follows

from Theorem 9.3 that for any w D .w1; : : : ;wd / 2 R
dC,

b.w�˛
1 ; : : : ;w�˛

d IC/ D
Z
.w;1�

�.y/dy:

By taking the derivatives on both sides with respect to w1; : : : ;wd , (9.28)
follows.

(2) It follows from (9.30) that

ud�1c.1 � ux�˛
1 ; : : : ; 1 � ux�˛

d / D ˛�d
� dY
iD1

x˛C1
i

� f .tx/

t�dF 1.t/

converges uniformly on fx 2 R
dC W jjxjj > ıg as t ! 1 or equivalently u ! 0.

Again, by selecting 0 < ı < 1, this shows that ud�1c.1 � uw1; : : : ; 1 � uwd /
converges uniformly on fw 
 0 W jjwjj D 1g. Thus the tail density �.�IC/ exists
and is given by (9.24) or (9.27). ut

Remark 9.6.

1. Theorem 9.6(1) was obtained in [46] under a slightly stronger condition on
uniform convergence. The current Theorem 9.6 shows the tail density of copula
C is a rescaled version of the tail density of the multivariate regular varying
distribution F with copula C and two tail densities are equivalent in analyzing
local extremal dependence properties.

2. Since the tail dependence function is equal to zero if some variables take zero.
then b.wIC/ D R w1

0 � � � R wd
0 �.xIC/dx, for any w D .w1; : : : ;wd / 2 R

dCnf0g.
Note that the tail density of multivariate regular variation is the Radon-Nikodym
derivative of the intensity measure with respect to the Lebesgue measure,
whereas the tail density of a copula is the Radon-Nikodym derivative of the
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rescaled exponent measure U.�/ defined in (9.16) with respect to the Lebesgue
measure. That is, the intensity measure and rescaled exponent measure on any
Borel measurable set B � R

dCnf0g can be written as integrals of respective
tail densities over B . In risk analysis, remote critical sets (failure, overflow, or
out-of-compliance regions) are usually the setsB that are neither upper nor lower
orthant sets [1, 3, 17, 18, 34, 38, 48, 49, 64, 66, 67].

Example 9.1.

1. Let C.uI�/ D �.
Pd

iD1 ��1.ui // be an Archimedean copula where the generator
��1 satisfies that ��1.1 � 1=t/ is regularly varying at 1 with tail index ˇ > 1.
It follows from Proposition 9.1 that the upper tail density is given by

�.wIC/ D
dY
iD2
..i � 1/ˇ � 1/

� dY
iD1

wi
�ˇ�1� dX

iD1
wˇi

��dC1=ˇ
:

2. LetC.uI�/ D �.
Pd

iD1 ��1.ui // be an Archimedean copula with strict generator
��1, where � is regularly varying at 1 with tail index � > 0. It follows from
Proposition 9.2 that the upper tail density of the survival copula OC is given by

�.wI OC/ D
dY
iD2

�
1C i � 1

�

�� dY
iD1

wi
��1�1=�� dX

iD1
w�1=�
i

����d
:

Examples 9.1 (1) and (2) are known at least since [11].
3. Consider a d -dimensional symmetric t distribution Td;�;˙ with mean 0 and its

density function:

ft .xI �;˙/ D � .�Cd
2
/

� . �
2
/.��/d=2

j˙ j� 1
2

h
1C 1

�
.x>˙�1x/

i� �Cd
2

where x D .x1; � � � ; xd / 2 R
d , � > 0 is the degrees of freedom, and

˙ D .�ij/ is a d 	 d symmetric dispersion matrix. If a random vector X has

the t distribution Td;�;˙ , then X
dD p

R.Z1; : : : ; Zd /, where .Z1; : : : ; Zd / has a
multivariate normal distribution N.0;˙/, and the scale variable R, independent
of .Z1; : : : ; Zd /, has an inverse Gamma distribution, which is known to be
regularly varying with tail index �=2 [53]. The upper tail density function of
a multivariate t copula is given below [46]:

�.wIC/ D j˙ j� 1
2 �1�d

� . �Cd
2
/

� . �C1
2
/�.d�1/=2

Œ.w� 1
� />˙�1w� 1

� �� �Cd
2

Qd
iD1 w

�C1
�

i

:

In contrast to the Euler representations presented in Theorem 9.4, the tail
density of t copula is more explicit and shows geometrically the elliptical feature
inherited from the t density function.
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Let Xk D .X1;k; : : : ; Xd;k/, 1 � k � n, be iid samples that form a sample
cloud in R

d with df F and its copula C . The tail density of df F (or copula C )
is a limiting conditional density of Xn given that one component (e.g., X1;n)
exceeds large thresholds. In general, one can introduce the tail density of F (or its
copula C ) given that a homogeneous function (e.g., linear function) of components
X1;n; : : : ; Xd;n exceeds large thresholds [2]. Geometrically, such a tail density of the
sample cloud .Xk; 1 � k � n/ describes distributional stability patterns of F (or its
copula C ) when a hypersurface of .X1;n; : : : ; Xd;n/ moves away from the center of
the sample cloud. That is, the tail density describes distributional patterns of extreme
data points near the boundary of the sample cloud under the stability condition
of regular variation near the boundary. Tail risk, as measured by a functional of
boundary measures of sample clouds, can then be estimated using the tail density
approach.

9.4 Concluding Remarks

Multivariate regular variation on cone R
d

Cnf0g yields laws of rare events that
provide equivalent, tractable limit representations for the multivariate maximum
domain of attraction (9.1). In this paper, we discussed a copula approach for
multivariate regular variation that is based on the upper exponent function (9.11)
and related vague convergences. As illustrated in this paper, standardizing univariate
margins is necessary to reveal scaling properties that facilitate to establishing semi-
parametric representations for multivariate extremes. The advantages of our copula
method include the Euler homogeneous representation. We have not discussed
the estimation and inference issues. References on estimation of rare events in
MRV models and other models featuring EV copulas include, among many others,
[19, 20, 25].

We have also not discussed multivariate regular variations on subcones of

R
d

Cnf0g, which usually lead to hidden regular variation and conditioned limit laws
[26, 52, 60, 61]. Whether or not the copula approach can be effectively applied to
studying extremal dependence among multivariate margins (such as hidden regular
variation) is still an open issue and currently under active investigation [27, 28, 32].
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37. Klüppelberg, C., Resnick, S.: The Pareto copula, aggregation of risks, and the emperor’s socks.

J. Appl. Probab. 45(1), 67–84 (2008)
38. Kortschak, D., Albrecher, H.: Asymptotic results for the sum of dependent non-identically

distributed random variables. Meth. Comput. Appl. Probab. 11, 279–306 (2009)
39. Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence

Modelling. Wiley, New York (2006)
40. Kurowicka, D., Joe, H.: Dependence Modeling: Vine Copula Handbook. World Scientific,

Singapore (2011)
41. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random

Sequences and Processes. Springer, New York (1983)
42. Li, H.: Duality of the multivariate distributions of Marshall-Olkin type and tail dependence.

Commun. Stat. Theory Meth. 37(11), 1721–1733 (2008)
43. Li, H.: Tail dependence comparison of survival Marshall-Olkin copulas. Meth. Comput. Appl.

Probab. 10, 39–54 (2008)
44. Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate

Anal. 100, 243–256 (2009)
45. Li, H., Sun, Y.: Tail dependence for heavy-tailed scale mixtures of multivariate distributions.

J. Appl. Prob. 46(4), 925–937 (2009)
46. Li, H., Wu, P.: Extremal dependence of copulas: a tail density approach. J. Multivariate Anal.

114, 99–111 (2012)
47. Mai, J.-F., Scherer, M.: Reparameterizing Marshall-Olkin copulas with applications to

sampling. J. Stat. Comput. Simul. 81, 1–23 (2009)
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Chapter 10
CIID Frailty Models and Implied Copulas

Jan-Frederik Mai, Matthias Scherer, and Rudi Zagst

Abstract A unified stochastic framework for all portfolio default models with
conditionally independent and identically distributed (CIID) default times is
presented. Desirable statistical properties of dependent default times are introduced
in an axiomatic manner and related to the unified framework. It is shown how
commonly used models, stemming from quite different mathematical and economic
motivations, can be translated into a multivariate frailty model. After a discussion
of popular specifications, two new models are introduced. The vector of default
times in the first approach has an Archimax survival copula. The second innovation
is capable of producing default pattern with interesting statistical properties. The
motivation for the latter approach is to add an additional source of jump frailty
to a classical intensity-based approach. An approximation of the portfolio-loss
distribution is available in all cases.

10.1 Introduction

Following the seminal work of [57], various related portfolio default models
have recently been proposed, see, e.g., [4, 8, 26, 29, 32, 35, 38, 44, 53] to provide
some examples. Even though these papers use diverse economic motivations, rely
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on alternative mathematical techniques,1 and focus on different applications,2 all
models share as common ground a large homogeneous portfolio approximation,
providing a convenient tool for applications that require the loss distribution of some
large portfolio.3 In this paper, a unified stochastic framework for all models in this
spirit is constructed. Such a unified treatment provides several advantages:

• The mathematical structure behind this class of models becomes transparent.
Instead of relying on specific distributional assumptions and related mathemat-
ical concepts, we provide as a generic framework a multivariate frailty model
that uses the classical theorems of de Finetti and Glivenko–Cantelli as tools to
obtain the portfolio-loss distribution. In contrast to several of the aforementioned
examples, the present construction is consistent with respect to time and does not
rely on some fix maturity (or a discrete number of maturities).

• Various statistical properties have been investigated with respect to the implied
dependence structure as well as with respect to the implied portfolio-loss
distribution. Having a unified framework at hand, an objective comparison of
alternative model specifications is facilitated. We axiomatically define a list of
(desirable) statistical properties and investigate the unified framework in this
regard.

• Based on a generic framework, it is often easier to understand the mathematical
concept behind a generalization of some model, e.g. to hierarchical dependence
structures. Hence, there is a fair chance that one can transfer the idea of a
generalization from one class of models to some other. Moreover, for two
concrete cases, we show how given models can be combined to a framework
that inherits all desirable statistical features of the building blocks. We show
that it is even possible to combine alternative models over time, using them as
some sort of local correlation model. Finally, we obtain a deeper understanding
of how far we can stretch the limits of conditionally independent and identically
distributed (CIID)-models and, related, what model generalizations come at the
price of losing the mathematical viability.

Throughout we consider a portfolio of d defaultable assets and let .
1; : : : ; 
d /
denote the vector of their default times. Both applications, the pricing of portfolio
credit derivatives as well as risk management of credit portfolios, require the distri-
bution of the accumulated loss within the reference portfolio up to time t . Currently,
one of the most prominent applications in the context of portfolio credit derivatives
is the pricing of collateralized debt obligations (CDOs). A CDO can be seen as an
insurance contract for certain loss pieces of a credit portfolio. A convenient, and
for sufficiently large portfolios widely used, assumption is a homogeneous portfolio

1The starting point might be a multivariate structural-default model, a certain dependence
structure/copula for the vector of default times, a frailty model, or some latent-factor construction.
2The most important ones being risk-management and the pricing of portfolio derivatives.
3We focus on the pricing of insurance premia for tranches of a credit portfolio. Note, however, that
applications to other insurance portfolios can be treated similarly.
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structure with respect to recovery rates and portfolio weights. This allows to express
the premium and default leg of the CDO’s tranches as options on the (relative)
portfolio-loss process fLt gt�0, defined as Lt WD 1

d

Pd
iD1 �f
i	tg, for t 
 0. From a

mathematical perspective, it is required to compute expectations of the form:

EŒf .Lt /� D
Z
Œ0;1�

f .x/P.Lt 2 dx/; f non-linear (collar type);

where f depends on the considered tranche and the recovery rate. Hence, it is
important to construct the vector of default times in such a way that the distribution
of Lt can be identified or, at least, efficiently approximated. Due to the large
dimensionality of the problem,4 one has to accept simplifying assumptions to
circumvent time-consuming Monte-Carlo techniques. In this regard, a popular
class of models is based on the following ansatz: there is a market factor M ,
conditioned on which all default times are iid with distribution function t 7!
Ft WD function.M; t/. The core motivation for these models is to approximate
the distribution of Lt by the (more tractable) distribution of the market factor M .
The seminal model in this spirit is [38, 57], specifying M as a normal random
variable, which results in a Gaussian dependence structure. Since this copula has
several drawbacks, e.g., zero tail dependence, symmetric dependence pattern, and
an insufficient fit to quoted CDO spreads, several authors extended the approach to
other market factors.5 More dynamic models are obtained when the market factor
M D fMtgt�0 is a nontrivial stochastic process and Ft WD function.Mt/. Such a
model is proposed by [44] with fMtgt�0 being a Lévy subordinator.6

From a practical perspective, a calibration of the model typically relies on market
quotes of (a) portfolio CDS and single-name CDS and (b) CDO tranche spreads.
Considering (a), these are not affected by the dependence structure between the
default times but do depend on the respective univariate default probabilities. Hence,
the required term-structures of univariate default probabilities can be extracted.
Considering (b), after having fixed the marginal default probabilities, spreads of

4A typical convention for credit derivatives is d D 125, insurance portfolios are often larger.
5For instance, [32] use a Student t -distribution, [29, 35] a Normal Inverse Gaussian (NIG)
distribution, and [4] a general infinitely divisible distribution. In a related fashion, [53] assumes
a positive random variable as market factor and constructs the model in such a way that the
default times have an Archimedean survival copula. However, M is a single random variable in all
aforementioned models, which equals the random parameter of a parametric family of distribution
functions.
6The resulting survival copula of .
1; : : : ; 
d / is of Marshall–Olkin kind, see [43]. The Marshall–
Olkin distribution is well studied and has several desirable properties for dependent defaults:
an interpretation as a frailty model, asymmetric tail dependencies, and a singular component,
i.e. positive joint default probabilities. Hence, Marshall–Olkin distributions have already been
proposed for credit- and insurance-risk applications by [28,40]. However, it is well known that the
Marshall–Olkin distribution is characterized by the lack-of-memory property, see, e.g., [7, 27, 47].
This implies a somewhat unrealistic assumption for dependent defaults, since it excludes direct
contagion effects.
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the different tranches of a CDO can be used to calibrate the dependence parameters
of the model. For this, it is very convenient if the model’s dependence parameters do
not affect the (already fixed) marginal default probabilities, i.e. the model allows for
a separation of dependence structure from default probabilities. Such a separation
naturally invokes a copula model. When the model is to be estimated to observed
losses, it is crucial to explicitly know the model’s dependence structure. Thus, we
are especially interested in models whose copula can be identified explicitly.

Besides the generic frailty model and the investigation of its statistical properties,
we present two new multivariate default models with interesting statistical proper-
ties. Both models allow for a convenient approximation of Lt by the distribution
of the market factor and can thus be implemented without Monte-Carlo simulation.
The first ansatz is based on a scale mixture of Lévy processes. The resulting survival
copula of .
1; : : : ; 
d / is a scale mixture of Marshall–Olkin copulas, constituting a
proper subclass of Archimax copulas, see, e.g., [39, p. 253]. The second extension is
based on processes of CGMY-type, see [15]. This model incorporates stylized facts
such as default clusters and excess clustering. It can be considered as an extension
of a classical intensity-based ansatz in the spirit of [23], when an additional source
of frailty—a latent Lévy subordinator—is present.

The remaining paper is organized as follows: a general probabilistic framework
for latent one-factor models and a review of commonly used examples (reformulated
as frailty models) is given in Sect. 10.2. Two new models are introduced and
discussed in Sects. 10.3 and 10.4. Possible generalizations of the models are
presented in Sect. 10.5. Besides technical proofs, the Appendix recalls, for the
readers’ convenience, the required notion of Lévy subordinators.

10.2 A General CIID-Framework

We consider a vector of default times .
1; : : : ; 
d / 2 Œ0;1/d , defined on a
probability space .˝;F ;P/. The first aim of this article is to present a generic rep-
resentation that contains all aforementioned models and, in fact, all possible models
relying on the assumption of CIID default times. Assume that .
1; : : : ; 
d / is con-
structed on a probability space .˝;F ;P/ by the following generic two-step method.

Definition 10.1 (The canonical CIID-frailty model).

1. Let fFtgt�0 be a non-decreasing, right-continuous stochastic process with left
limits, such that F0 D 0 and limt!1 Ft D 1 hold almost surely. For fixed ! 2˝ ,
we consider t 7! Ft .!/ as the path of a distribution function of some random
variable on .0;1/.

2. Conditioned on fFtgt�0, let .
1; : : : ; 
d / be iid with distribution function t 7! Ft .

A canonical construction of such a model on .˝;F ;P/ is given by


k WD inf
˚
t 
 0 W Uk � Ft

�
; k D 1; : : : ; d; (10.1)
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where U1; : : : ; Ud are iid with Uk � UniŒ0; 1� and fFt gt�0 is independent of the
vector .U1; : : : ; Ud/. Such a multivariate default model is called CIID-model in the
following; CIID being the acronym of conditionally independent and identically
distributed. On the one hand, this CIID-construction is a restrictive assumption. For
instance, it implies that the law of the default times is invariant under permutations
of the components of .
1; : : : ; 
d /. In particular, each 
k is distributed according
to the distribution function p.t/ WD EŒFt �, t 
 0. Furthermore, it implicitly
inherits a large homogeneous portfolio assumption, since the construction above is
independent of the dimension d in the sense that one can consider [as an immediate
extension of (10.1)] an infinite sequence f
kgk2N of default times. On the other hand,
a seminal theorem of De Finetti, see [19], guarantees that all infinite exchangeable
sequences of random variables can be constructed as above. This implies that the
approach is more general than it might have appeared at first. It is shown below
how several popular models are embedded into the general CIID-framework of
Definition 10.1 by identifying the respective specification of fFtgt�0.

10.2.1 The Portfolio Loss Distribution

The key advantage of CIID-models is that the distribution of the portfolio-loss
process Lt WD �

�f
1	tg C : : :C �f
d	tg
�
=d , t 
 0, is available. More precisely:

P

�
Lt D k

d

�
D
 
d

k

!
E


F k
t .1 � Ft /d�k�; k D 0; 1; : : : ; d:

For d � 2 the complexity of the above expectation value as well as the size of
the binomial coefficient prevent this formula from being of practical value. Since
CIID-models are typically applied in large dimensions, the numerical difficulties are
avoided by working with an infinite portfolio size (letting d ! 1) which allows to
approximate P.Lt 2 dx/ by P.Ft 2 dx/. For instance, it is not difficult to verify the
following lemma, a proof of which is provided in the Appendix.

Lemma 10.1 (Approximation of the portfolio loss). Consider the canonical
probability space .˝;F ;P/ of a CIID-model as above. Then

P

�
lim
d!1 sup

t�0
ˇ̌
Ft � Lt

ˇ̌ D 0
�

D 1:

Alternatively, for each T > 0 it holds true that

fLtgt2Œ0;T � ! fFtgt2Œ0;T �; d ! 1;

in the space L2.˝ 	 Œ0; T �/ of square-integrable stochastic processes on Œ0; T �.
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As an application, the above result is used to justify approximations (for sufficiently
large d ) such as

E


f .Lt /

� D
Z
Œ0;1�

f .x/P.Lt 2 dx/ �
Z
Œ0;1�

f .x/P.Ft 2 dx/:

Approximation results such as Lemma 10.1 are called large homogeneous portfolio
approximation. In our framework, it is possible to obtain this result as an application
of the Theorem of Glivenko–Cantelli. Unlike most of the aforementioned refer-
ences, we do not have to fix a certain time t > 0. This is due to the new formulation
as a frailty model, which reveals the underlying structure of (time consistent) CIID-
models.

10.2.2 Properties of CIID-Models

CIID-models are appreciated for their mathematical viability. However, for the
selection of an appropriate model it is crucial to understand the different dependence
structures that are implied by the possible specifications. In an axiomatic way, a list
of properties of the resulting vector of default times is specified below.

(Sep): The separation of dependence structure from marginals is extremely
convenient for practical applications (e.g., the calibration or estimation of the
model in two steps) and is also required for the derivation of the model’s implied
copula. Given the term structure of default probabilities, i.e. t 7! p.t/, as model
input, the separation condition (Sep) is valid if the parametric model for fFtgt�0
is specified in such a way that EŒFt � D p.t/ for all t > 0. This means that the
parameters of fFtgt�0 only affect the dependence structure but not the marginal
default probabilities.

(Cop): The joint distribution function of .
1; : : : ; 
d / in a CIID-model is a priori
implicit. More clearly, it is given by

P.
1 � t1; : : : ; 
d � td / D E


E

 dY
kD1

�f
k	tkg
ˇ̌fFt gt�0�� D E


 dY
kD1

E


�f
k	tkg

ˇ̌fFt gt�0��

D E


Ft1 � � � Ftd

�
; t1; : : : ; td 
 0:

In some specifications, the latter expectation value can be computed explicitly.
In such a case, one can conveniently rely on known statistical properties of the model
to judge on its realism. Some distributions even allow for an intuitive economic
interpretation. If, in addition, the model satisfies the separation property (Sep), then
the marginal distributions of the default times are given a priori. In this case, the
dependence structure can be studied from the implied copula or, if more convenient,
from the implied survival copula. If the prespecified term structure of default
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probabilities t 7! p.t/ is continuous, then the implied copula C and the survival
copula OC of the default times are given by

C.u1; : : : ; ud / D E


Fp�1.u1/ � � � Fp�1.ud /

�
; (10.2)

OC.u1; : : : ; ud / D E


.1 � Fp�1.1�u1// � � � .1 � Fp�1.1�ud //

�
; (10.3)

where p�1.�/ denotes the generalized inverse of p.�/ and u1; : : : ; ud 2 Œ0; 1�.
(Exc): Time series of realized corporate defaults or insurance claims often exhibit

points in time with accumulations of defaults. This property is termed excess
clustering. It might even be reasonable to support multiple defaults at the same
time. In the general CIID-framework, this corresponds to possible jumps in the
paths of fFt gt�0. In terms of multivariate distribution functions, this corresponds
to a singular component of the implied copula of .
1; : : : ; 
d /.

(Fs): The qualitative structure of the underlying frailty distribution fFt gt�0 is
important to understand the dynamics of the model. Three cases are distinguished:

(Fs�): The source of frailty is static, i.e. for each t > 0, Ft is measurable with
respect to the �-algebra

T
u>0 �.Fs W 0 � s � u/. This situation is typical for models

that define fFt gt�0 as a member of a parametric family of distribution functions with
randomly drawn parameter. In most cases, fFt gt�0 is monotonically affected by this
parameter. This prevents the model from supporting changing market conditions,
since the market frailty process fFt gt�0 cannot change randomly.

(Fsˇ): The source of frailty is dynamic, but the innovations of the process fFtgt�0
are driven by a time-homogeneous stochastic process. Interpreted from an economic
perspective, this implies that the market uncertainty is affected by random changes,
but these changes occur in a time-homogeneous pattern.

(Fs˚): The source of frailty is dynamic and the innovations of the process fFtgt�0
are driven by a time-inhomogeneous stochastic process. From an economic point of
view, this allows for realizations with randomly varying default environments. In
particular, a typical realization of fFt gt�0 inherits time periods with different local
default probabilities and dependence structures.

(Tdc): A measure of dependence for the likelihood of joint early defaults is
tail dependence. In the context of default risk, a positive lower tail dependence
coefficient of the default times corresponds to a positive limit (as time goes to
zero) of pairwise default correlations, see [54, Chap. 10]. Hence, this property is of
specific interest for models with small default probabilities or small time horizon.
Additionally, empirical studies suggest that models supporting positive lower tail
dependence of the default times are more successful in explaining CDO quotes. In
mathematical terms, the lower tail dependence coefficient �l of a pair .
i ; 
j / of
default times in a CIID-setup is given by7

7Thus, this important measure of dependence is related to the specification of Ft in a rather simple
way. The derivation of (10.4) is straightforward and therefore omitted.
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�l WD lim
t#0

P.
i � t j 
j � t/ D lim
t#0

E


F 2
t

�
EŒFt �

: (10.4)

(Den): When implementing the model, it is convenient if the distribution of Ft
is tractable for all t > 0. Most convenient is the case when the density of Ft is
available. Some specifications allow for a closed-form expression without special
functions. In some models, the density is available through Laplace-inversion
techniques.

It is shown below how various popular models are comprised in the CIID-
framework. These models are discussed with regard to the aforementioned
properties.

10.2.3 The Gaussian Copula Model and Extensions

Li and Vasicek [38, 57] generalize the univariate structural default model of [50]
to d identical firms. Dependence is introduced through a single-factor structure:
the idiosyncratic factors �1; : : : ; �d and the market factor M are iid standard
normally distributed random variables. Given the prespecified term structure of
default probabilities t 7! p.t/ as model input, the default time of firm k is defined as


k W D inf
˚
t 
 0 W p

�M Cp
1 � � �k � ˚�1�p.t/�� (10.5)

D inf
n
t 
 0 W Uk � ˚

�˚�1�p.t/� � p
�Mp

1� �

�o
; k D 1; : : : ; d;

where � 2 .0; 1/ adjusts the dependence, ˚ denotes the distribution function of
the standard normal law, and U1; : : : ; Ud are iid and obtained by Uk WD ˚.�k/ �
UniŒ0; 1�. By construction, the vector .
1; : : : ; 
d / has a Gaussian copula with
identical pairwise correlation � as dependence structure and marginal distributions
P.
k � t/ D p.t/. Reformulating the model in the general CIID-setting, one
obtains Ft WD ˚

��
˚�1�p.t/� � p

�M
�
=
p
1 � ��, for t 
 0. Summing up, the

distribution of Lt can be approximated via the standard normal distribution of M .
Generalizing this approach to distributions other than the normal, [32] propose
to replace it by the (heavier tailed) Student t-distribution. In a similar spirit, [4]
consider a Lévy process X D fXtgt2Œ0;1�, satisfying EŒX1� D 0 and VarŒX1� D 1.
LettingX.0/; : : : ; X.d/ be dC1 independent copies ofX and � 2 .0; 1/, they define
the individual factors �k WD X

.k/
1��, k D 1; : : : ; d , and the market factorM WD X

.0/
� .

Then, construction (10.5) is replaced by


k W D inf
˚
t 
 0 W M C �k � H�1

Œ1�

�
p.t/

��

D inf
˚
t 
 0 W Uk � HŒ1���

�
H�1
Œ1�

�
p.t/

� �M
��
; k D 1; : : : ; d;
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where HŒt� denotes the distribution function of Xt and U1; : : : ; Ud are iid and
obtained by Uk WD HŒ1���.�k/ � UniŒ0; 1�. This obviously corresponds to the
choice Ft WD HŒ1���

�
H�1
Œ1�

�
p.t/

� � M
�
, for t 
 0, in the general CIID-setup.

When X is a Brownian motion, this approach is equivalent to (10.5). Considering
other specifications, [51] uses a Variance-Gamma process, [29, 35] a NIG process,
and [8] the sum of a Brownian motion and a Variance-Gamma process. Again, the
distribution of Lt can be approximated via the distribution of the single random
variableM , which is easy to handle.

Properties of the Model

(Sep): In this specification, one can take t 7! p.t/ as model input for the
univariate marginal laws and obtains EŒFt � D p.t/, t 
 0.

(Cop): The copula behind the model is identified in the Gaussian specification
and for Student t-factors as the respective distribution’s copula. For the general Lévy
framework, the implicitly defined copula in (10.2) and (10.3) is not well studied.

(Exc): In all specifications with continuous t 7! HŒ��.t/, the resulting copula
(explicitly or implicitly given) does not have a singular component, so multiple
defaults at the same time are impossible. Equivalently, t 7! Ft is almost surely
continuous (for continuous t 7! p.t/).

(Fs�): The randomness in this class of models is induced by the randomness of
the parameter of an otherwise deterministic distribution function. This makes these
models static and also difficult to interpret.

(Tdc): One major disadvantage of a Gaussian dependence structure is zero
tail dependence, see [49, p. 211]. This means that joint early defaults are very
unlikely. For other model specifications with a heavier tailed common factor,
positive tail dependence is possible. For instance, it is shown in [4] that for the
Lévy construction, the lower tail dependence coefficient of any pair of default
times is

�l D lim
x!�1

Z
R

HŒ1���.x � y/2

HŒ1�.x/
dHŒ��.y/:

(Den): The density of Ft , t > 0, is known for various choices of the common
factor, making this class of models quite viable.

When calibrating the Gaussian model to the CDO market it is often the case that
for matching spreads of senior tranches, extremely high correlation parameters are
required. When distributions with heavier tails are used, e.g. the NIG model, the
model seems to be better suited for a calibration to the CDO market.
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10.2.4 A Model Based on Mixtures of Exponential
Distributions

Marshall–Olkin [48] show that the dependence structure behind iid exponential
random variables with randomly drawn parameter is Archimedean. Denoting the
Laplace transform of the positive random variable M by '.x/ WDEŒexp.�xM/�,
x
 0, it follows that P

�
�1=M > t1; : : : ; �d =M > td

�DC'
�
'.t1/; : : : ; '.td /

�
,

t1; : : : ; td 
 0, where �1; : : : ; �d are iid unit exponentially distributed and indepen-
dent of M . The function C'.u1; : : : ; ud / WD '

�
'�1.u1/C : : :C '�1.ud /

�
is called

Archimedean copula with generator '. Transforming the components to standard
uniform marginals, it follows that

.V1; : : : ; Vd / WD
�
'
� �1
M

�
; : : : ; '

� �d
M

��
� C':

Schönbucher [53] uses this probabilistic model for portfolio credit risk and derives
a large homogeneous portfolio approximation. Formulated as a frailty model and
using the notations from above, given the prespecified term structure of default
probabilities t 7! p.t/, one defines8


k W D inf
˚
t 
 0 W 1 � p.t/ � Vk

�
;

D inf
˚
t 
 0 W Uk � 1 � exp

� �M'�1.1 � p.t//��; k D 1; : : : ; d;

where U1; : : : ; Ud are iid obtained by Uk WD 1 � exp.��k/ � UniŒ0; 1�. Translating
this construction into the present CIID-setup yields Ft WD 1 � exp

� �M '�1�1 �
p.t/

��
, for t 
 0. Summarizing, this implies that the distribution of Lt can be

approximated using the distribution of M and default times defined in this way
have an Archimedean survival copula C' .9

8The first line indicates the idea of [53]: starting from the canonical construction of a default time
with distribution function t 7! p.t/, see [54, p. 122], dependent trigger variables .V1; : : : ; Vd / are
used as the source of dependence.
9If one wishes to define default times in such a way that they have C' as copula instead of survival
copula, one must use Ft WD exp

� � M '�1
�
p.t/

��
, t � 0. This can be deduced by replacing

.V1; : : : ; Vd / in the above derivation by .1� V1; : : : ; 1� Vd /. This alternative ansatz can be used
to switch tail dependencies: the lower tail dependence of C' equals the upper tail dependence of
its survival copula, and vice versa. Since lower tail dependence between default times is desirable,
one should use the latter approach when C' exhibits lower tail dependence and the first approach
when C' exhibits upper tail dependence.
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Properties of the Model

(Sep): The separation property holds, i.e. the term structure of default probabili-
ties t 7! p.t/ can be prespecified and EŒFt � D 1 � '

�
'�1.1 � p.t//

� D p.t/, for
t 
 0.

(Cop): By construction, the copula behind the model is of Archimedean kind.
Such copulas, being parameterized by a function ', are quite flexible. On the other
side, they do not provide a firm economic interpretation.

(Exc): Multiple defaults at the same time are not possible, since Archimedean
copulas do not assign positive mass to the diagonal of the unit cube. Stated
differently, the process fFt gt�0 is almost surely continuous (for continuous t 7!
p.t/).

(Fs�): As outlined above, the model is based on an exponential distribution with
randomly chosen parameter. Hence, the model is static and difficult to interpret from
an economic perspective.

(Tdc): The upper and lower tail dependence parameters of the Archimedean
copula C' are given by

�u D
8<
:
0; '

0

.0/ < 1
2 � 2 lim

t&0

'
0

.2 t/

'
0

.t/
; else

9=
; ; �l D 2 lim

t%1
'

0

.2 t/

'
0

.t/
;

see [34, p. 103ff]. For several classes, these parameters are positive and might even
be unequal.

(Den): The density of Ft , t > 0, is known for various choices of the common
factor, rendering this class of models quite viable. A list of popular generator
functions ' and their associated random variablesM is provided in, e.g., [16].

10.2.5 An Intensity-Based Approach

On a univariate level, intensity-based models are introduced and developed further
in, e.g., [21, 33, 37, 42]. On a multivariate level, the so-called doubly-stochastic
approaches and extensions thereof are considered in, e.g., [18,23,24,58]. A single-
factor specification, which fits into the setup of general CIID-models, can be
constructed as a special case of the model in [23]. On a probability space .˝;F ;P/,
consider a positive stochastic process f�t gt�0, which is P-almost surely integrable
on Œ0; t � for all t > 0 and satisfies

R
.0;1/

�s ds D 1. Independently of this market
intensity process, let �1; : : : ; �d be iid unit exponential random variables. The vector
.
1; : : : ; 
d / of default times is defined by setting


k WD inf
˚
t > 0 W Mt 
 �k

�
; Mt WD

Z t

0

�s ds; k D 1; : : : ; d:
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Translated into the setup of CIID-models, this is equivalent to modeling fFt gt�0 as
Ft WD 1 � exp.�Mt/, for t 
 0. A prominent choice for f�tgt�0 is a basic affine
process. This means that f�t gt�0 has parameters .
; �; �; �; l/ and is defined as the
(unique) solution of the stochastic differential equation (SDE)

d�t D 
 .� � �t / dt C �
p
�t dBt C dZt ; �0 > 0; (10.6)

where fBt gt�0 is a standard Brownian motion and fZt gt�0 is an independent
compound Poisson process with intensity l and exponential jump sizes with
mean 1=�. Besides the immediate interpretation of the SDE for �, one important
advantage of using basic affine processes is that the Laplace transform of Mt is
available from general results in [22]. More clearly, it is known that

E


e�x Mt

� D e˛.x;t/Cˇ.x;t/ �0 ; x 
 0; (10.7)

where the functions ˛ and ˇ are given by

ˇ.x; t/ D 1 � eb.x/ t
c.x/C d.x/ eb.x/ t

; (10.8)

˛.x; t/ D 2
�
�

� ��2 log
�c.x/C d.x/eb.x/t

c.x/C d.x/

�C t

2c.x/

�

C l
�2� log

�
1 � eb.x/t � �.c.x/C d.x/eb.x/t /

�
2�
 C 2x � �2�2

�

C l
� �t
1 � �c.x/ � 2� log

� � �.c.x/C d.x//
�

2�
 C 2x � �2�2
�
; (10.9)

with b.x/, c.x/, and d.x/ defined by

b.x/ D �
p

2 C 2 �2 x; c.x/ D 
 C p


2 C 2 �2 x

�2 x ; d.x/ D �
 C p

2 C 2 �2 x

�2 x :

This allows to compute p.t/ D EŒFt � in closed form, as p.t/ D 1 �
E



exp.�Mt/
� D 1 � exp

�
˛.1; t/C ˇ.1; t/ �0

�
.

Properties of the Model

(Sep): All parameters .
; �; �; �; l/ of a basic affine process enter the formulas
for the marginal and the joint default probabilities. There is no parameter that solely
affects the dependence structure; a separation is not possible. This complicates the
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calibration of the model and the interpretation of the parameters. However, the five
parameters .
; �; �; �; l/ provide a good fit of the function t 7! p.t/ D EŒFt � to
market quotes of single-name CDS or portfolio CDS.

(Cop): The copula behind the model is not well studied. This makes it difficult to
study the underlying dependence structure of default times.

(Exc): [18] find evidence that intensity-based approaches fail to explain excess
clustering as observed in the markets, e.g. during the recent credit crisis. This is
due to the fact that the integrated intensity process is continuous, and, hence, the
random distribution function fFtgt�0 is continuous, too. In Sect. 10.4 we propose an
extension of this intensity-based approach to incorporate excess clustering. This is
achieved by incorporating jumps into fFtgt�0.

(Fs˚): The intensity process f�t gt�0 is interpreted as an instantaneous default
rate, making the model quite intuitive. The larger the intensity �t , the larger is the
default probability over Œt; t C dt�. Consequently, a typical realization of fFtgt�0
inherits time periods with different local default probabilities, resulting from periods
with high or low �t .

(Tdc): For a specification of the model using a basic affine process f�t gt�0, the
resulting bivariate lower tail dependence coefficient (10.4) is zero. The required
computation is very tedious and postponed to the Appendix.

(Den): For the approximation P.Lt 2 dx/ � P.Ft 2 dx/ the density of Mt is
required, which in the basic affine case can be obtained from the known Laplace
transform via Laplace inversion. Even though this makes the implementation of
the model more involved, it is still more efficient compared to a Monte-Carlo
simulation. References for Laplace inversion algorithms, based on different theo-
retical inversion formulas, include [1–3, 56] and especially for the integrated CIR
process [36]. We performed several numerical experiments and identified Talbot-
type algorithms to be best suited for the present problem.

10.2.6 A Model Based on Lévy Subordinators

The model of [44] is related to the intensity-based approach, the key difference being
that the (continuous) integrated intensity process is replaced by a (discontinuous)
jump process. To set up the model, let �1; : : : ; �d be iid random variables with
unit exponential distribution and let � D f�t gt�0 be an independent (killed) Lévy
subordinator with Laplace exponent � . We further assume � to be nondegenerate,
i.e. 0 ¤ �. A brief introduction to Lévy subordinators is provided in the Appendix.
Given the prespecified continuous and strictly increasing term structure of default
probabilities t 7! p.t/, one defines the cumulative hazard function t 7! h.t/ WD
� log

�
1� p.t/� and sets the market frailty process as Mt WD �h.t/=�.1/, t 
 0. The

default times are defined as


k WD inf
˚
t 
 0 W Mt 
 �k

� D inf
˚
t 
 0 W Uk � 1 � e�Mt

�
; k D 1; : : : ; d;
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whereU1; : : : ; Ud are iid obtained byUk WD 1�exp.��k/ � UniŒ0; 1�. Translating it
into the framework of a general CIID-model, this approach corresponds to defining
Ft WD 1 � exp.�Mt/, where Mt WD �h.t/=�.1/ for t 
 0.

Properties of the Model

(Sep): A separation of marginals from dependence structure is valid: inde-
pendently of the choice of subordinator � and with prespecified term structure
t 7! p.t/, it holds that EŒFt � D 1 � exp

� � h.t/� D p.t/, t 
 0.
(Cop): The survival copula of the default times is known to be of Marshall–Olkin

kind, see [43]. The Marshall–Olkin distribution has already been proposed for
credit-risk modeling by [28, 40], since it provides an intuitive interpretation as an
exogenous shock model.

(Exc): Multiple defaults at the same time are possible, since the subordinator
� can jump across more than one trigger variable at a time. Hence, the survival
copula behind the multivariate default model (which is an exchangeable Marshall–
Olkin copula) has a singular component on the diagonal and the model supports
joint defaults. This property distinguishes the model from all aforementioned model
specifications.

(Fsˇ): Since the common factor is a stochastic process instead of a single random
variable, one obtains a dynamic structure of fFt gt�0. Unfortunately, the dependence
structure behind the default times exhibits the so-called multivariate lack-of memory
property, see, e.g., [27, 47]. Heuristically, the Lévy properties of �, corresponding
to the lack-of memory property of the Marshall–Olkin distribution, force jumps of
the market frailty to occur in time-homogeneous pattern.

(Tdc): The lower tail dependence coefficient of any pair of default times equals
�l D 2 � �.2/=�.1/, see [44], which is always positive unless �t D t , t 
 0.

(Den): Several classes of Lévy subordinators have known densities. Examples
include the Inverse Gaussian and the Gamma subordinator. Other examples have
semi-explicit densities, e.g., the stable subordinator and several compound Poisson
subordinators.10 Efficiently obtaining the density via Laplace-inversion is treated
in [10].

In the following sections, two extensions are presented. These aim at combining
the desirable properties of the aforementioned models while preserving their
viability. The first generalization combines the models of [44, 53]. The implied
dependence structure is of Archimax kind. The second generalization combines the
intensity-based approach with the model of [44]. The result is the so-called triply-
stochastic model which supports default clustering.

10This construction contains the simple Marshall–Olkin model with one armageddon shock of [13]
as a special case. Rewriting this example in this framework, the subordinator � must be linearly
increasing until a single jump to infinity simultaneously destroys all components.
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10.3 A Model Based on Scale Mixtures of Marshall–Olkin
Copulas

It is possible to unify the approaches of [44, 53]. In the language of copula theory,
this corresponds to combining Archimedean with Marshall–Olkin copulas, which
represents a family of copulas termed scale mixtures of Marshall–Olkin copulas,
see [39]. It constitutes a proper subclass of the so-called Archimax copulas, as
introduced for the bivariate case in [14]. Let NM > 0 be a random variable with
Laplace transform '.x/ WD EŒexp.�x NM/�, x 
 0, and let � ¤ 0 be an
independent (killed) Lévy subordinator with Laplace exponent � . Independently
of . NM;�/, let �1; : : : ; �d be iid unit exponentially distributed. Given the continuous
and strictly increasing prespecified term structure of default probabilities t 7! p.t/,
one defines the market frailty process Mt WD � NM'�1.1�p.t//=�.1/. The default times
are defined by


k WD inf
˚
t 
 0 W Mt 
 �k

� D inf
˚
t 
 0 W Uk � 1 � e�Mt

�
; k D 1; : : : ; d;

whereU1; : : : ; Ud are iid obtained byUk WD 1�exp.��k/ � UniŒ0; 1�. In particular,
choosing the calendar time �t D t , t 
 0, the model is equivalent to that of [53].
Similarly, the choice NM � 1 implies the model of [44]. Rewriting the model in the
general CIID-setup, this means that

Ft WD 1 � e�Mt ; Mt WD � NM'�1.1�p.t//=�.1/; t 
 0:

Suitable choices of . NM;�/ render the distribution of Ft tractable enough to
be useful for efficient pricing. It is shown below that this class admits several
desirable properties for the modeling of joint defaults. More precisely, it contains
the full flexibility of the Archimedean class, inherits the singular component of
the Marshall–Olkin class, combines the positive dependence coefficients of both
classes of copulas, and improves the dynamic aspects of the original Lévy model.
An important property of this model is that the resulting dependence structure can
be identified. The specific form of the survival copula is provided in Theorem 10.1
below, a proof is given in the Appendix.

Theorem 10.1 (The survival copula of the vector of default times). The survival
copula of the vector .
1; : : : ; 
d / is

OC.u1; : : : ; ud / D '
� 1

�.1/

dX
iD1

'�1.u.i//
�
�.i/ � �.i � 1/

��
; (10.10)

where u.1/ � : : : � u.d/ denotes the ordered list of u1; : : : ; ud 2 Œ0; 1�.



216 J.-F. Mai et al.

Properties of the Model

(Sep): A separation of marginals from dependence structure is model inherent,
since

EŒFt � D 1 � E

h
E

h
exp

�
�� NM '�1

�
1�p.t/

�
=�.1/

�ˇ̌
ˇ NM

ii

D 1 � E

h
exp

�
� NM '�1�1 � p.t/

��i D p.t/; t 
 0:

(Cop): The default times have a scale mixture of Marshall–Olkin copulas as
survival copula. Statistical properties of this class are investigated, e.g., in [9, 39].
The specific form is computed in Theorem 10.1.

(Exc): Multiple defaults are possible, since fFtgt�0 might have jumps. In the
language of copula theory, the survival copula (10.10) has a singular component
on the diagonal. More precisely, the events f
1 D : : : D 
kg, k D 2; : : : ; d , are
independent of the realization of NM . Hence, their probabilities solely depend on the
Lévy subordinator and can be extracted from a computation in [45]:

P.
1 D : : : D 
k/ D
Pk

iD0
�
k
i

�
.�1/iC1�.i/
�.k/

; k D 2; : : : ; d:

(Fsˇ): The process fFtgt�0 is driven by a mixture of Lévy subordinators. Since
NM is independent of the time t , no time-inhomogeneity is introduced to fFt gt�0.

(Tdc): It is not difficult to compute the tail dependence of a pair .
i ; 
j / of default
times. Using L’Hospital’s rule, it is given by11 (whenever this limit exists)

�l D lim
t#0

E


F 2
t

�
EŒFt �

D 2 � �.2/

�.1/
lim
t#0

'
0

�
t �.2/=�.1/

�
'

0

.t/
:

(Den): Assume that �t admits a density f .�/
t for t > 0. It follows from Fubini’s

Theorem that the random variable� NM t , t > 0, has the density ft , given by

ft .x/ D E

h
f
.�/

NM t
.x/
i

D
Z 1

0

f
.�/
y t .x/P. NM 2 dy/; x > 0:

The latter integral can efficiently be computed when NM admits a density.
We close this section by giving two specifications of . NM;�/, which imply viable

formulas for all required quantities.

11This result can be validated for the subclasses of Archimedean and Marshall–Olkin survival
copulas: the case NM � 1 gives �l D 2��.2/=�.1/, which agrees with the result obtained in the
model of [44]. Similarly, the case �t D t , t � 0, leads to �l D 2� 2 limt#0 '

0

.2 t/='
0

.t /, which
agrees with the tail dependence parameter in the model of [53]. Higher-dimensional dependence
measures can be retrieved from results in [39].
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Example 10.1 (An Archimedean model with Armageddon-scenario). A new
parametric family is obtained when an Archimedean model is combined with a
Lévy subordinator that increases linearly with drift ˛ 2 Œ0; 1/ and might jump to
infinity, i.e. its Lévy measure is determined by �.f1g/ D .1 � ˛/, �..0;1// D 0.
Put differently,

�t WD ˛ t C 1 � �ft>Eg; t 
 0;

where E is an exponential random variable with mean 1=.1 � ˛/. Interpreted from
an economic point of view, this corresponds to an Archimedean-type dependence
structure combined with the positive probability of an Armageddon-scenario killing
all remaining components. The resulting survival copula of default times interpo-
lates between the co-monotonicity copula and the chosen Archimedean copula and
is given by

OC.u1; : : : ; ud / D '
��
1 � ˛/ '�1.u.1//C ˛

dX
iD1

'�1.u.i//
�
; u1; : : : ; ud 2 Œ0; 1�:

The required distributions of � NM t , t > 0, are found to be:

P.� NM t D 1/ D P. NM t > E/ D 1 � '�t .1 � ˛/�;
P.� NM t � x/ D E

h
e�.1�˛/ NM t

�f NM	 x
˛ t g
i
; x 2 Œ0;1/:

Example 10.2 (Gamma scale mixture of Cuadras–Augé copulas). A model speci-
fication with explicit distribution of Ft is obtained as follows: let � be a Poisson
process with intensity ˇ > 0 and NM be a � .1; 1=�/-distributed random variable.
In the language of Archimedean copulas, this correponds to C' being a Clayton-
copula. It follows that

P.� NM t D k/ D .t ˇ/k

kŠ
E

h NMk e�ˇ t NM i D .t ˇ/k

� .1=�/ kŠ

Z 1

0

yk e�ˇ t y y 1
� �1e�y dy

D .t ˇ/k

� .1=�/ kŠ

� 1

1C ˇ t

�kC 1
�
�
�
k C 1

�

�
; k 2 N0:

This choice corresponds to a Gamma scale mixture of exchangeable Cuadras–Augé
copulas, see [17] for an introduction to the Cuadras–Augé family. Interpreted
differently, it corresponds to a generalization of Clayton copulas. The specific
form of the copula is obtained from Theorem 10.1 with '.t/ D .1 C t/1=�

and �.x/ D ˇ
�
1 � e�x�.
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10.4 A Model Based on CGMY-Type Processes

In this section, we propose a CIID-model which combines the intensity-based
approach with the approach of [44]. Recall that one shortfall of the former class is
the fact that fFtgt�0 is continuous. Consequently, it does not support joint defaults.
On the other side, the model of [44], although supporting jumps of fFtgt�0, is based
on the somewhat unrealistic lack-of-memory properties (inhereted from � being a
Lévy process). The idea of this generalization is to combine both approaches to
create a model that overcomes both shortcomings and produces realistic default
pattern over time. Still, it remains tractable enough to allow for efficient pricing
routines without Monte-Carlo techniques. When empirical corporate defaults are
monitored over time, two stylized facts are observed: (a) There are time periods with
few and time periods with many defaults. In between those periods, there is typically
a gradual change from one regime to the other. (b) Occasionally, there are times
with a sudden peak in the number of corporate defaults. This model is designed to
mimic these properties. To formally define the model, consider a probability space
.˝;F ;P/ supporting the following (independent) objects:

• A basic affine process f�tgt�0 as given by the SDE (10.6).
• A Lévy subordinator 0 ¤ � D f�tgt�0 with Laplace exponent � .
• A list of iid unit exponential random variables �1; : : : ; �d .

With Mt WD �R t
0 �sds=�.1/

, t 
 0, the individual default times are defined as


k WD inf
˚
t 
 0 W Mt 
 �k

�
; k D 1; : : : ; d:

Due to the definition of 
 via three stochastic objects, we term this class of models
triply stochastic. The according CIID-model stems from

Ft WD 1 � e�Mt ; Mt WD �R t
0 �s ds=�.1/

; t 
 0:

The process fMtgt�0 is a time-changed Lévy process in the spirit of [15]. The
Lévy subordinator f�tgt�0 incorporates jumps into fFt gt�0, which corresponds
to positive probabilities of joint defaults and excess clustering. This accounts for
the occurrence of peaks in the number of defaults. The intensity process f�tgt�0
incorporates time-inhomogeneity: the larger �t , the larger the probability of defaults
over the next instance of time. The stochastic nature of f�tgt�0 overcomes the
lack-of-memory property of the model presented in [44]. An important argument
for the use of CGMY-type processes is that their Laplace transform is known in
closed form. Thus, numerical pricing routines are available using Laplace-inversion
techniques, see [1–3, 56], which are much more efficient than Monte-Carlo pricing
routines. More clearly, one computes
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EŒFt � D 1 � E

h
E

h
exp

�
��R t

0 �s ds=�.1/

�ˇ̌
ˇ
Z t

0

�s ds
ii

D 1 � E

h
e� R t

0 �s ds
i

D 1 � e˛.1;t/Cˇ.1;t/ �0 ; t 
 0; (10.11)

with functions ˇ and ˛ as given in (10.8) and (10.9).
This implies that the marginal default probabilities are equal to the ones in the

intensity-based approach. Stated differently, the Lévy subordinator only affects the
dependence structure. In this regard, f�t gt�0 is an additional source of frailty, which
accounts for excess clustering.

Properties of the Model

(Sep): The parameters of f�tgt�0 enter the formula for p.t/ D EŒFt �. However,
the parameters of the jump process f�t gt�0 do not affect p.t/, see (10.11).
Consequently, the parameters of the intensity can be calibrated to correlation-
insensitive market quotes in a first step, and the remaining parameters of the Lévy
subordinator provide additional freedom to calibrate the dependence structure in a
second step. Hence, even though (Sep) is not fully valid, one can still apply a two-
step calibration routine.

(Cop): The multivariate distribution of .
1; : : : ; 
d / is not well studied. This
complicates the investigation of the underlying dependence structure of the default
times.

(Exc): Regarding joint default probabilities, the model inherits all desired
properties from the approach of [44], since the events f
1 D : : : D 
kg, for
k D 2; : : : ; d , are independent of the process f�t gt�0. In particular, it holds that

P.
1 D : : : D 
k/ D
Pk

iD0
�
k

i

�
.�1/iC1�.i/
�.k/

; k D 2; : : : ; d:

(Fs˚): The process fFtgt�0 is a transformation of a time-changed Lévy subordinator
in the spirit of [15]. Intuitively, the Lévy subordinator f�tgt�0 accounts for jumps
of fFt gt�0. Since it is affected by a random time-change, these jumps can occur in
a time-inhomogeneous pattern: the larger the intensity �t , the more likely a jump of
Ft is to occur. This property can be observed in Fig. 10.1, where one realization of
the model is illustrated.

(Tdc): Starting from (10.4), a lengthy computation (related to the one in the
Appendix for the model without subordinator�) involving the specific form of the
Laplace transform identifies the lower tail-dependence coefficient of any two default
times as 2 � �.2/=�.1/. This result is intuitive: it agrees with the coefficient in the
model of [44]. Compared with this model, the deterministic function t 7! h.t/

is replaced in this framework by a function of the integrated (random) intensity.
However, the presented intensity-model alone does not generate tail dependence.
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Fig. 10.1 One realization of the CGMY-based model with portfolio size d D 125 over 20 years.
Specification: f�tgt�0 is a Cox–Ingersoll–Ross process (a basic affine process without jumps)
with �0 D 0:04 and parameters .
; �; �/ D .1; 0:04; 0:25/. The Lévy subordinator is specified by
�.x/ D x0:8, x � 0, i.e. it is a 0:8-stable subordinator. The upper plot illustrates the simulated
paths of f�tgt�0 and fh.t/gt�0 , where h.t/ WD R t

0 �s ds. The lower plot illustrates the path of
fMtgt�0 as well as the observed defaults

(Den): The density of Mt , t > 0, is not known in closed form. However, it can
be recovered from its known Laplace transform via numerical Laplace inversion.
Using independence of f�tgt�0 and f�t gt�0, the Laplace transform is given by

E

h
exp

�
� x �R t

0 �s ds =�.1/

�i
D E

h
exp

�
� �.x/

�.1/

Z t

0

�s ds
�i

D e˛
�
�.x/=�.1/;t

�
Cˇ
�
�.x/=�.1/;t

�
�0 ; x 
 0;

where ˛ and ˇ are given as in (10.9) and (10.8). Since the Lévy subordinator
is typically specified in such a way that � has a simple form, the model is as
convenient to work with as the classical intensity-based approach.

10.5 Extensions of the CIID Model

This section illustrates classical and new model extensions, formulated in the
spirit of the unified stochastic framework of Sect. 10.2. This allows to easily adopt
extensions from one model class to another. Note, however, that in most cases the
convenient large homogeneous portfolio approximation, which is the major selling
point of CIID models, is lost.
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10.5.1 Hierarchical Dependence Structures

CIID implies exchangeability, an assumption that one might question from an
economic point of view. For instance, it is reasonable to assume that companies
in the same geographic region (or in the same industry sector) are affected by
similar risk factors. Mathematically speaking, to construct a hierarchical model one
partitions all firms in J groups—given some economic criterion. Then, all firms
are affected by a global factor. In addition to that, specific factors affecting certain
subgroups are introduced. Such a model can be translated into our framework,
however, the CIID structure is given up in exchange for a hierarchical model
structure. Formally, denote by d1; : : : ; dJ the number of firms in subgroup 1; : : : ; J .
The default time of company i from subgroup j is denoted 
ij and defined by


ij WD inf
˚
t 
 0 W Uij � F

.j /
t

�
; j D 1; : : : ; J; i D 1; : : : ; dj ; (10.12)

where F .1/; : : : ; F .J / are group specific frailty distributions and U11; : : : ; UdJ J is a
list of iid UniŒ0; 1�-distributed random variables. It is reasonable to assume

F .j / D functionj
�fMtgt�0; fM.j /

t gt�0
�
;

where fMtgt�0 is a global factor and fM.j /
t gt�0 is specific for group j . Within each

group, the resulting dependence structure is again CIID. However, the group specific
dependencies might differ from one group to another, since the group specific factors
need not be iid. Firms from different groups inherit their dependence structure
from the global factor. However, a large homogeneous portfolio approximation is
not available anymore. To work with the model, one must instead rely on Monte-
Carlo simulations based on construction (10.12). For a structural discussion of such
hierarchical structures and several examples, see [46].

Example 10.3 (Nested Archimedean copulas). Nested Archimedean copulas are
succesfully applied in the context of CDO pricing in [31]. Formulating models
based on nested Archimedean copulas in the present language requires a positive
random variable M with Laplace transform ' as global factor and group-specific
independent Lévy subordinators �.j / D f�.j /

t gt�0, j D 1; : : : ; J , with Laplace
exponent �j . Then, the frailty distribution for group j is defined as

F
.j /
t WD 1 � e��.j /M ��1

j

�
'�1.1�p.t//

�
; t 
 0:

Consequently, two default times in group j are coupled by an Archimedean survival
copula with generator �j .'.x//, two firms from different groups are coupled by an
Archimedean survival copula with generator '.x/, see [30]. One can show that the
dependence within each group is at least as large as the dependence between default
times of different groups.
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Example 10.4 (Hierarchical scale mixture of Marshall–Olkin copulas). A new
example for a hierarchical extension is to start with a Lévy subordinator � D
f�tgt�0 as global factor. For each group j , an independent positive random variable
Mj with Laplace transform 'j is considered as additional group-specific factor.
Finally, F .j / is defined as

F
.j /
t WD 1 � e

��
Mj '

�1
j

�
1�p.t/

�
=�.1/

; t 
 0:

10.5.2 Inhomogeneous Marginal Distributions

Starting from a CIID model, one possible generalization is to assume conditionally
independent (but not identically distributed) default times; in short, inhomogeneous
marginal distributions. Assuming that the marginal default probabilities are model
input, i.e., the market frailty is a function of the term structure of default probabili-
ties t 7! pk.t/ and some market factor M D fMtgt�0, this is achieved by defining


k WD inf
˚
t 
 0 W Uk � F

.k/
t WD function

�
pk.t/;M

��
; t 
 0;

where the marginal distribution function E


F
.k/
t

� D pk.t/ is now specific to
obligor k. In this case, it is still possible to exploit the fact that the resulting default
times are conditionally independent. For instance,

P.
1 � t1; : : : ; 
d � td /DE


E

 dY
kD1

�f
k	tkg
ˇ̌
M
�� D E


 dY
kD1

F
.k/
tk

�
; t1; : : : ; td 
 0:

One way to obtain the loss distribution in this case is to use the classical recursion
formula, see, e.g., [5, 20], adapted to this framework:

˘
M;nC1
k .t/ WD �

1 � F
.nC1/
t

�
˘
M;n
k .t/C F

.nC1/
t ˘

M;n
k�1 ; t 
 0; 0 � n � d � 1;

where at the end of the iteration,˘M;d
k .t/ denotes the conditional probability (given

M ) of having precisely k defaults until time t , where 0 � k � d . The iteration
must be initialized with ˘M;0

0 D 1 and ˘M;d
�1 D 0. The unconditional probability

is obtained by integrating out the market factor. In order to obtain a viable model,
this distribution must again be tractable. Moreover, this iterative approach becomes
slow and prone to rounding errors for large portfolio sizes.

An alternative way to compute the loss distribution is available when the
copula behind the default times is known. In this case, it is even possible to
compute the probability of having 0� k� d distinct defaults up to time t , see,
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e.g. [54, Theorem 10.6]. Then, we have to sum over all d choose k subsets to obtain
the probability of having k (not further specified) defaults from d names—which of
course, is computationally only possible for small portfolios.

10.5.3 Model Fitting Across a Term Structure of Maturities

Standardized CDO contracts are traded with maturities 3, 5, 7, and 10 years,
respectively, the most liquid ones being 5 and 10 years. To price contracts with
non-standard maturities consistent to market data, one has to match model and
market prices across all CDO tranches and traded maturities. Since the latter is
especially demanding, most investors fix some maturity and fit their model to the
tranches for this maturity. However, proceeding like this for each maturity leads
to different model specifications—one for each maturity—and it is not clear how to
obtain arbitrage-free prices for other maturities. The present setup is well suited to
allow for a bootstrapping-like routine to fit the model across all maturities, starting
with the shortest maturity, and ending with the longest. To describe it, assume a
given tenor structure 0 < T1 < T2 < : : : < TK of maturities for which CDO quotes
are available. The fundamental idea is to partition the frailty distribution into distinct
pieces on the intervals Œ0; T1�; .T1; T2�; : : : ; .TK�1; TK� and to iteratively extend the
fit of the CIID-model to the next maturity. Each piece might be interpreted as a local
frailty distribution. Therefore, the model consists ofK (stochastically independent)
market frailties. Combining them to an overall stochastic process fFtgt�0, such that
the resulting model is maturity-consistent, is done in Lemma 10.2 below, the proof
is given in the Appendix.

Lemma 10.2 (Bootstrapping CIID structures across maturities). Given K sto-
chastically independent market frailties

˚
F
Œ0;T1�
t

�
t�0;

˚
F
.T1;T2�
t

�
t�0; : : : ;

˚
F
.TK�1;TK �
t

�
t�0;

we iteratively define the stochastic process fFt gt�0 as follows: on t 2 Œ0; T1�, we let
F
.1/
t WD F

Œ0;T1�
t . For k D 2; : : : ; K , we then let

F
.k/
t W D �ft2Œ0;Tk�1 �g F

.k�1/
t C

�ft2.Tk�1;Tk �g F
.k�1/
Tk�1

�
1C 1 � F

.k�1/
Tk�1

F
.k�1/
Tk�1

F
.Tk�1;Tk �
t�Tk�1

�
; t 2 Œ0; Tk�:

Finally, Ft WD F
.K/
t for t 
 0 is an admissible market frailty, i.e. a proper

distribution function for each ! 2 ˝ .

Lemma 10.2 guarantees the validity of an iterative calibration of a CIID-model
to CDO quotes referring to different maturities T1 < : : : < TK . Recall that the
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CIID-model implied pricing formulas corresponding to quotes for maturity Tk
involve expectation values of the formEŒf .Ft /� for time points t � Tk . With fFtgt�0
being specified such as in Lemma 10.2, it follows that these expectation values only
depend on the stochastic factors

˚
F
Œ0;T1�
t

�
t�0,

˚
F
.T1;T2�
t

�
t�0; : : : ;

˚
F
.Tk�1;Tk �
t

�
t�0. By

iteration, the parameters of the first k � 1 factors

˚
F
Œ0;T1�
t

�
t�0;

˚
F
.T1;T2�
t

�
t�0; : : : ;

˚
F
.Tk�2;Tk�1 �
t

�
t�0

are already determined. Therefore, it is straightforward to calibrate the parameters
of the kth factor

˚
F
.Tk�1;Tk �
t

�
t�0 to market quotes of maturity Tk . Depending on

the specific forms of the stochastic factors, the expectation values EŒf .Ft /� can
either be computed analytically or must be solved via Monte-Carlo simulations.
As an example, consider three different maturities, say 5, 7, and 10 years, and
specify each of the three factors

˚
F
Œ0;5�
t

�
t�0,

˚
F
.5;7�
t

�
t�0, and

˚
F
.7;10�
t

�
t�0 like in

the Archimedean model of Sect. 10.2.4. This means that we have three independent,
absolutely continuous and positive random variablesMŒ0;5�,M.5;7�, andM.7;10�, with
corresponding Laplace transforms 'Œ0;5�, '.5;7�, and '.7;10�. To calibrate the model to
CDO quotes corresponding to contracts maturing in 5 years, all involved expectation
values are integrals w.r.t. the density of MŒ0;5�. Proceeding with the next maturity
of 7 years, all involved expectation values are double integrals w.r.t. the product
of (independent) densities of MŒ0;5� and M.5;7�. For the third maturity, we then
need to evaluate triple integrals, which is of course much more computationally
burdensome. Nevertheless, conceptually the routine is straightforward and the
number of different maturities considered in real-life is typically amongst 2; 3,
rendering this effort acceptable, in particular because a simultaneous fit of only one
market frailty across different maturities is typically not satisfying.

10.6 Conclusion

A unified approach for CIID portfolio default models was presented. Desirable
stochastic properties of these models were introduced in an axiomatic manner and
discussed from an economic perspective. State-of-the-art models that fit into this
context were discussed and compared with respect to these properties. Two new
models were introduced. The first one was shown to unify the approaches of [44,53].
The resulting implied copula is of Archimax type. The second ansatz combines
a classical intensity approach with a Lévy-based approach to allow for excess
clustering and time-inhomogeneity. In both cases, one could derive the Laplace
transform of the required underlying frailty distribution in closed form. Finally,
several model generalizations are discussed.



10 CIID Frailty Models and Implied Copulas 225

Appendix

Lévy Subordinators

A Lévy subordinator � D f�tgt�0 is a non-decreasing stochastic process. It starts
at zero, is stochastically continuous, and has stationary and independent increments.
Standard textbooks on this theory comprise [6, 11, 12, 52, 55]. A Lévy subordinator
is uniquely characterized by its Laplace transforms, which admit the form

E


e�x �t � D e�t �.x/; 8 x 
 0; t 
 0;

for a function � W Œ0;1/ ! Œ0;1/ which has a completely monotone derivative
and satisfies �.0/ D 0, see [25, p. 450]. The function � is called Laplace exponent
of � and is strictly increasing unless�t � 0.

Proof of Lemma 10.1

The first statement follows immediately from the Theorem of Glivenko–Cantelli,
see [41, p. 20]: conditioned on fFtgt�0, fLt gt�0 is precisely the empirical
distribution function of the law fFtgt�0 based on d samples. Hence,

P

�
lim
d!1 sup

t�0
ˇ̌
Ft � Lt

ˇ̌ D 0
�

D E

h
P

�
lim
d!1 sup

t�0
ˇ̌
Ft �Lt

ˇ̌ D 0
ˇ̌
ˇ fFt gt�0

�i

D EŒ1� D 1:

For the second statement, immediate computations show that

E


L2t
� D 1

d
EŒFt �C d � 1

d
EŒF 2

t �; EŒLt Ft � D EŒF 2
t �;

which implies that
Z
Œ0;T �

E


.Lt � Ft /2

�
dt D 1

d

Z
Œ0;T �

�
EŒFt � � EŒF 2

t �
�
dt

d!1�! 0:

The claim is established. �

Proof of Zero Tail Dependence in the Model of Sect. 10.2.5

The first step is to compute for ˇ and ˛, given in (10.8) and (10.9), that

˛
0

.x; 0/ WD lim
t#0

d

dt
˛.x; t/

.�/D 0; ˇ
0

.x; 0/ WD lim
t#0

d

dt
ˇ.x; t/

.��/D �x; x > 0:
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Both .�/ and .��/ are tedious computations that become simpler with the identities

c.x/C d.x/ D �
p

2 C 2�2x

x
; c.x/ � d.x/ D �


x
;

c.x/ � d.x/ D �2

2x
;

b.x/

c.x/C d.x/
D x:

Then, using formula (10.7), one computes with L’Hospital’s rule that12

�l D lim
t#0

E


F 2
t

�
EŒFt �

D lim
t#0

(
1C e˛.2;t/Cˇ.2;t/ �0 � e˛.1;t/Cˇ.1;t/ �0

1 � e˛.1;t/Cˇ.1;t/ �0

)

D 2 � ˛
0

.2; 0/C ˇ
0

.2; 0/ �0

˛
0

.1; 0/C ˇ
0

.1; 0/ �0
D 0:

Proof of Theorem 10.1

For t1; : : : ; td 2 Œ0;1/ with ordered list t.1/ � : : : � t.d/ and t.0/ WD 0 one has

dX
iD1
.d C 1� i/ ��t.i/ ��t.i�1/

�D
dX

i D 1

.d C 1� i/�t.i/ �
d�1X
iD0
.d � i/�t.i/ D

dX
iD1

�ti :

Since� is a Lévy process, the vector of increments
�
�t.d/ ��t.d�1/

; : : : ; �t.1/��t.0/

�
has independent components and�t.i/ ��t.i�1/ is equal in distribution to�t.i/�t.i�1/ .
Consequently

E

h
e�Pd

iD1 �ti

i
D

dY
iD1

E

h
e

�.dC1�i /�.t.i/�t.i�1//
i

D
dY
iD1

e�.t.i/�t.i�1// �.dC1�i /:

Secondly, compute the joint survival function (using the above identity)

12The above argument makes use of the explicit form of the Laplace transform of an integrated
basic affine intensity. If the intensity f�tgt�0 is specified differently, one might end up with positive
tail dependence. Giving one example, assume that �t WD NM for a positive random variable NM with
Laplace transform ', i.e.Mt D NM t , t � 0. The resulting dependence structure is of Archimedean
kind, and there are choices for NM that imply positive tail dependence. A related observation is that
for �t WD NM @

@t

�
'�1.1� p.t//

�
, the model of [53] is a special case of the intensity approach.
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G.t1; : : : ; td / WD P
�

1 > t1; : : : ; 
d > td

�
D P

�
�1 > � NM '�1.1�p.t1//=�.1/; : : : ; �d > � NM '�1.1�p.td //=�.1/

�

D E

"
exp

�
�

dX
iD1

� NM '�1.1�p.ti //=�.1/
�#

D E

"
E

"
exp

�
�

dX
iD1

� NM '�1.1�p.ti //=�.1/
�ˇ̌
ˇ NM

##

D E

"
exp

�
�

NM
�.1/

dX
iD1

�.d C 1� i/�'�1.1�p.t.i/// � '�1.1�p.t.i � 1//
��#

D '
� 1

�.1/

dX
iD1

�.d C 1 � i/�'�1.1� p.t.i///� '�1.1 � p.t.i�1//
��

D '
� 1

�.1/

dX
iD1

'�1.1 � p.t.dC1�i ///
�
�.i/ � �.i � 1/

��
:

The last step involves expanding the sum of differences to two sums and shifting
the summation index in the second sum by one. The resulting sums can then be
recombined using �.0/ D 0.

Thirdly, for the margins one obtains using similar arguments

P
�

i > t

� D P
�
�i > � NM '�1.1�p.t//=�.1/

� D 1 � p.t/; i D 1; : : : ; d; t 
 0:

Thus, 
i is distributed according to p.t/. Finally, using the survival analogue of
Sklar’s Theorem, see [49, p. 195], there exists a unique copula OC , called the survival
copula of .
1; : : : ; 
d /, which satisfies

G.t1; : : : ; td / D OC �1 � p.t1/; : : : ; 1 � p.td /
�
:

Testing the copula claimed in (10.10), one finds

OC �1 � p.t1/; : : : ; 1 � p.td /
� D '

� 1

�.1/

dX
iD1

'�1.1 � p.t.dC1�i ///
�
�.i/ � �.i � 1/��:

Thus, the claim is established by the uniqueness of the survival copula. �
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Proof of Lemma 10.2

The claimed composition of different distribution functions to a new one is based
on an elementary decomposition of a distribution function. Considering only two
intervals Œ0; T1� and .T1; T2�, it is easy to verify for t 2 Œ0; T2� that

P.
 � t/ D �ft2Œ0;T1�g P.
 � t/C

�ft2.T1;T2�g P.
 � T1/
�
1C P.
 > T1/

P.
 � T1/
P.
 � t j 
 > T1/

�
:

The crucial observation from this elementary computation is that having determined
the distribution p1.t/ WD P.
 � t/ on Œ0; T1� already, to determine the distribution
on Œ0; T2� it suffices to determine p2.u/ WD P.
 � u C T1 j 
 > T1/ for
u 2 .0; T2 � T1�. However, the function p2 is a proper distribution function on
Œ0;1/. Hence, starting with two given distribution functions p1; p2, the claimed
composition of those yields a proper distribution function with the interpretation
that p2 is the conditional distribution in case of survival until time T1. The general
case K > 2 is now easily obtained by iterating the above argument.
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de Saint-Flour XXVII-1997. Lect. Notes Math. 1717, 1–91 (1999)

http://www.nomura.com/resources/europe/pdfs/dynamiccdomodelling2.pdf
http://www.nomura.com/resources/europe/pdfs/dynamiccdomodelling2.pdf


10 CIID Frailty Models and Implied Copulas 229

13. Burtschell, X., Gregory, J., Laurent, J-P.: A comparative analysis of CDO pricing models.
In: Meissner, G. (ed.) The Definitive Guide to CDOs, Chapter 15, pp. 389–427, Risk Books,
Incisive Media, London (2009)
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Chapter 11
Copula-Based Models for Multivariate Discrete
Response Data

Aristidis K. Nikoloulopoulos

Abstract In this survey we review copula-based models and methods for multivari-
ate discrete data modeling. Advantages and disadvantages of recent contributions
are summarized and a general modeling procedure is suggested in this context.

11.1 Introduction

One goal in the theory of dependence modeling and multivariate copulas is to
develop copula-based models and inferential procedures for multivariate discrete
responses with covariates. Discrete response types include binary, ordinal cate-
gorical, and count data. Examples of data include, among others, familial data
(measurements for each member of an extended multi-generation family) in medical
genetics applications, repeated measurements in health studies, item response data
in psychometrics applications, etc. These multivariate discrete data have different
dependence structures including features such as negative dependence. To this end,
the desiderata properties of multivariate copula families for modeling multivariate
discrete data are given below (see also [19, 45, 48]):

P1: Wide range of dependence, allowing both positive and negative dependence.
P2: Flexible dependence, meaning that the number of bivariate marginals is

(approximately) equal to the number of dependence parameters.
P3: Computationally feasible cumulative distribution function (cdf) for likelihood

estimation.
P4: Closure property under marginalization, meaning that lower-order marginals

belong to the same parametric family.
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P5: No joint constraints for the dependence parameters, meaning that the use of
covariate functions for the dependence parameters is straightforward.

In the existing literature, none of the existing parametric families of multivariate
copulas satisfy all these conditions; hence there are many challenges for copula-
based models for discrete response data.

Multivariate copulas for discrete response data have been around a long time,
e.g., in [19], and earlier for some simple copula models. There are also papers with
simple bivariate (multivariate) discrete distributions where actually the construction
is more or less a copula, but the authors do not refer to copulas, e.g., [6, 27, 34].
Simple parametric families of copulas satisfy P3; hence the joint likelihood is
straightforward to derive from the probability mass function (pmf) as a finite dif-
ference of the cdf, but they provide limited dependence; see, e.g., the contributions
in [8, 29, 32, 44–46, 62].

The multivariate normal (MVN) copula generated by the MVN distribution
inherits the useful properties of the latter, thus allowing a wide range for dependence
(P1–P2) and overcomes the drawback of limited dependence inherent in simple
parametric families of copulas [41]. The MVN copula with discrete margins has
been in use for a considerable length of time, e.g. [19], and much earlier in the
biostatistics [2], psychometrics [35], econometrics [14], and literature. It is usually
known as a multivariate, or multinomial, probit model. The multivariate probit
model is a simple example of the MVN copula with univariate probit regressions
as the marginals. Implementation of the MVN copula for discrete data (discretized
MVN) is possible, but not easy, because the MVN distribution as a latent model
for discrete response requires rectangle probabilities based on high-dimensional
integrations or their approximations [45].

Similarly, this is the case for other elliptical copulas which have also been applied
to discrete data [10] and lead to a model with more probabilities in the joint upper
and joint lower tails than expected with discretized MVN. Another interesting
contribution and flexible modeling approach are the pair-copula constructions as
developed in [48] which can also allow asymmetries, i.e., more probability in joint
upper or lower tails.

The remainder of the survey proceeds as follows. Section 11.2 sets the notation
and provides background material on copulas for multivariate discrete response
data. In Sect. 11.3 the parametric families of copulas used so far in the literature for
modeling-dependent discrete data are presented. Their properties, which inherit to
the copula-based models advantages and disadvantages, are described. Section 11.4
discusses estimation methods and classifies them depending on the properties of the
parametric family of copulas. In Sect. 11.5 the Kendall’s tau for discrete response
data is presented. We conclude this survey with some discussion.
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11.2 Multivariate Discrete Distributions via Copulas

By definition, a d -variate copula C.u1; : : : ; ud / is a multivariate cdf with uniform
marginals on the unit interval; see, e.g., [19, 37]. From Sklar [51], in order to
express a multivariate discrete distribution for the discrete (binary, count, etc.)
vector Y D .Y1; : : : ; Yd / given a vector of covariates x D .x1; : : : ; xd / with
xj 2 R

pj ; j D 1; : : : ; d; one needs to combine discrete (Bernoulli, Poisson, etc.)
marginal distribution functionsFY1.y1I x1/; : : : ; FYd .yd I xd /with a d -variate copula
such for all y D .y1; : : : ; yd /,

HY.yI x/ D Pr.Y1 � y1; : : : ; Yd � yd I x/ D C
�
FY1.y1I x1/; : : : ; FYd .yd I xd /

�
:

(11.1)

Because the margins are discrete, as emphasized in [9], there are many possible
copulas, but all of these coincide on the closure of Ran.F1/	 � � � 	 Ran.Fd /, where
Ran.Fj / denotes the range of Fj .

For discrete random vectors, multivariate probabilities of the form hY.yI x/ D
Pr.Y1 D y1; : : : ; Yd D yd I x/ involve 2d finite differences of HY.yI x/. Let s D
.s1; : : : ; sd / be vertices where each sj is equal to either yj or yj � 1, j D 1; : : : ; d .
Then the joint pmf hY.�/ is given by,

hY.yI x/ D
X

sgn.s/C
�
FY1.s1I x1/; : : : ; FYd .sd I xd /

�
; (11.2)

where the sum is taken over all vertices s, and sgn.s/ is given by,

sgn.s/ D
�

1; if sj D yj � 1 for an even number of j ’s.
�1; if sj D yj � 1 for an odd number of j ’s.

Therefore likelihood inference for discrete data is simpler for copulas with
computationally feasible form of the cdf (P3). Essentially, the specification of the
multivariate discrete distribution in (11.1), exploiting the use of copula functions,
provides complete inference, i.e., maximum likelihood estimation, calculation of
joint and conditional probabilities, and standard goodness of fit procedures.

11.3 Copula-Based Models for Discrete Response Data

In this section, we review several existed copula-based models for discrete data
[8, 10, 29, 32, 44, 46, 48, 56, 57, 62]. The authors assumed that the copula C comes
from a specific parametric family or class of copulas; hence, its properties are
inherited to the model. Although C is not uniquely defined outside the Cartesian
product of the ranges of the marginal distribution functions, there is no harm in
assuming that it arises from a parametric class of copulas [10, 48].
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If the same copula applies for all clusters and have covariates on board, in
particular continuous covariates, the number of potential values is so high and the
copula becomes unique in the limit (infinite clusters). However, generally speaking
the copula is not unique (identifiable) in the discrete case except on the range of
the marginals [9]. The non-identifiability is a separate theoretical issue and does not
have any bearing on copula dependence modeling for discrete data [19, 55], which
is the main focus of this survey.

11.3.1 Archimedean

Meester and Mackay [32] proposed a parametric model for cluster correlated
categorical (binary and ordinal) data, based on the d -variate Frank copula. The
Frank copula belongs to the large class of Archimedean copulas. Multivariate
Archimedean copulas, see, e.g., [19], have the form,

C.u1; : : : ; ud I �/ D �

0
@ dX
jD1

��1.uj I �/ I �
1
A ; (11.3)

where the generator �.u I �/ is the Laplace transform (LT) of a univariate family
of distributions of positive random variables indexed by the parameter � , such
that �.�/ and its inverse have closed forms. One may refer to [31] for a general
definition of an Archimedean copula where the generator is more general than an
LT but still needs to satisfy certain regularity conditions. Hence, one can relax the
completely monotone condition to d times alternating in sign, then Archimedean
copulas based on extensions of LTs are obtained, and some of these might have
negative dependence.

The Frank copula in the Archimedean family [19, page 141] has Laplace
transform �F .t/ D ���1 log



1 � .1 � e�� /e�t � ; � > 0: This d -variate copula is

permutation-symmetric in the d arguments, thus it is a distribution for exchangeable
uniform random variables on the unit interval. The Frank copula interpolates from
the independence (� ! 0) to the Fréchet upper (perfect positive dependence)
bound (� ! 1). For extension of �F .t/ for � < 0, the Frank family extends
to countercomonotonicity (� ! �1) for d D 2 and only a little into negative
dependence for dimensions d 
 3 [19, 31]. Joe [19, pages 158–159] shows
how narrow is the range of negative dependence for trivariate Frank and beyond.
Hence, for bivariate discrete data a model based on Frank copula is quite popular
[3, 28, 30, 32]. For another application of d -variate Frank copula for familial binary
data, see [57], and for applications of various Archimedean copula-based models
for multivariate count data, see [46].

To sum up, d -variate (d > 2) Archimedean copulas satisfy properties P3, P4,
and P5, but not P1 and P2, because they allow only for exchangeable dependence,
and its range becomes narrower as the dimension increases.
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11.3.2 Partially Symmetric

Zimmer and Trivedi [62] and Nikoloulopoulos and Karlis [46] modeled depen-
dent discrete response data using partially symmetric copulas. Joe [17] extended
multivariate Archimedean copulas to a more flexible class of copulas using nested
LTs, the so-called partially-symmetric d -variate copulas with d � 1 dependence
parameters. Note in passing that these copulas are also called Hierarchical or nested
Archimedean copulas; see, e.g., [4, 15, 16]. The multivariate form has a complex
notation, so we present the trivariate extension of (11.3) to help the exposition. The
trivariate form is given by,

C.u1; u2; u3/ D �1
�
��1
1 ı �2

�
��1
2 .u1/C ��1

2 .u2/
�C ��1

1 .u3/
�
; (11.4)

where �1; �2 are LTs and ��1
1 ı �2 2 Ł?1 D f! W Œ0;1/ �! Œ0;1/j!.0/ D 0;

!.1/ D 1; .�1/j�1!j 
 0; j D 1; : : : ;1g: From the above formula it is clear
that (11.4) has (1,2) bivariate margin of the form (11.3) with LT �2.�I �2/, and
(1,3), (2,3) bivariate margins of the form (11.3) with LT �1.�I �1/. As the dimension
increases there are many possible LT nestings. Bivariate margins associated with
LTs that are more nested are larger in concordance than those that are less nested.
For example, for (11.4) the (1,2) bivariate margins is more dependent (concordant)
than the remaining bivariate margins.

Although partially symmetric copulas have a closed form cdf, they do not provide
flexible dependence due to moderate number of dependence parameters (d � 1

distinct parameters) and do not allow for negative dependence by construction.
To sum up, partially symmetric copulas satisfy properties P3, P4, and P5, but not
P1 and P2.

11.3.3 Farlie–Gumbel–Morgenstern

Gauvreau and Pagano [8] considered a d -variate Farlie–Gumbel–Morgenstern
(FGM) copula . The multivariate FGM copula is,

C.u1; : : : ; ud I �/ D
�
1C

dX
1	j<k	d

�jk.1 � uj /.1 � uk/

C
dX

1	j<k<l	d
�jkl .1 � uj /.1 � uk/.1 � ul /C � � �

C �12���d .1 � u1/.1 � u2/ � � � .1 � ud /
� dY
jD1

uj ; (11.5)

where � D f�jk; �jkl ; � � � ; �12���d g: For more details, see [25, 26].
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However, the conditions on the parameters � so that FGM is indeed a copula are
not investigated in [8]. The conditions on the parameters so that FGM is indeed a
copula can be obtained by considering the 2d cases for uj D 0 or 1; j D 1 : : : ; d;

and verifying that the copula density is positive, i.e. c.u1; : : : ; ud / 
 0:

To simplify the notation a simpler version of a d -variate FGM copula that does
not include higher order terms is given below,

C.u1; : : : ; ud I �jk W 1 � j < k � d/ D
�
1C

dX
1	j<k	d

�jk.1� uj /.1� uk/
� dY
jD1

uj :

(11.6)
It has density function,

c.u1; : : : ; ud I �jk W 1 � j < k � d/ D 1C
dX
j<k

�jk.1 � 2uj /.1� 2uk/:

The necessary and sufficient conditions on the parameters �jk so that (11.6)
is a copula are straightforward. For d D 3, the conditions can be conveniently
summarized as follows: 1 C �12 C �13 C �23 
 0; 1C �12 
 �13 C �23; 1 C �13 

�12 C �23; 1 C �23 
 �12 C �13; or more succinctly �1 C j�12 C �23j � �13 � 1 �
j�12 � �23j;�1 � �12; �13; �23 � 1: Similar conditions for higher dimension d > 3
can also be obtained by considering the 2d cases for uj D 0 or 1; j D 1 : : : ; d; and
verifying that c.u1; : : : ; ud / 
 0: For further details see [60].

In addition to the joint constraints limitation, the FGM copula has a limited range
of dependence and is inappropriate for general modeling unless the responses are
weakly dependent. Even for the bivariate case with no joint constraints between
the parameters, it is easy to see that the range of dependence is limited. Gauvreau
and Pagano [8] studied the range of the dependence parameter, say �12, in terms of
Pearson’s correlation parameter for binary data, say �12, through the relation

�12 D �12
p
�1�2.1 � �1/.1 � �2/;

where �j D Pr.Yj D 1/; j D 1; 2. However, since �1 � �12 � 1 the bounds of the
Pearson’s correlation are,

˙p�1�2.1 � �1/.1 � �2/:

Li and Wong [29] used a similar parametric family of copulas with the FGM
copula in [8],

C.u1; : : : ; ud I �jk W 1 � j < k � d/ D
dY
jD1

uj

dY
1	j<k	d

�
1C �jk.1 � uj /.1 � uk/

�
:

(11.7)
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However, the conditions on the parameters �jk so that (11.7) is a copula are not
investigated by the authors. For d D 3, the necessary conditions can be conveniently
summarized as follows: �1 � �12; �13; �23 � 1 and �.1 C �j`/ � �jk C �k` �
min.1; 1 C �j` C �jk�k`/ for all different permutations of .j; k; `/ in .1; 2; 3/;
see [39].

The sufficient conditions (nonnegativity of the entire density function in Œ0:1�d )
are hard to prove for d > 2 because the density of (11.7) is a higher order
polynomial function (quadratic for d D 3, cubic for d D 4, etc.) of each uj taken
separately. However, considering the 2d cases for uj D 0 or 1; j D 1; : : : ; d;

and verifying that the copula density of (11.7) is positive provides the necessary
conditions on the parameters for the copula in (11.7); these are also sufficient for
d D 2 since the bivariate density is a linear function of each uj taken separately,
see [25, Sect. 4, page 419]. In addition to the joint constraints limitation, the copula
in (11.7) has a limited range of dependence as the FGM copula in (11.5) or (11.6)
and it resembles FGM for the bivariate case.

To sum up, the FGM copulas satisfy properties P3 and P4, but not P1, P2, and P5.
Because of the dependence range limitation, the FGM copulas are not very useful
for general modeling unless the responses are weakly dependent.

11.3.4 Finite Normal Mixture

Nikoloulopoulos and Karlis [45] modeled multivariate count data proposing a
copula generated by a mixture of two independent MVN distributions. The finite
normal mixture copula cdf takes the form,

C.u1; : : : ; ud I�; �1 D 1; : : : ; �d / D F1:::d

h
F�1
1 .u1I�; 1/; : : : ;F�1

d .ud I�; �d /I�;�
i
;

where

F1:::d .�I�;�/ D �˚d .�I �; Id /C .1 � �/˚d .�I ��; Id / (11.8)

is the d -variate cdf of a mixture of two d -variate normal cdfs with mixing probabil-
ity � , ˚d.�I �; Id / denotes the cdf of the d -variate normal distribution function with
mean � D .1; �2; : : : ; �d / and covariance matrix the d -variate diagonal identity
matrix Id , and Fj .�I�;�j / D �˚.�I�j ; 1/C .1 � �/˚.�I ��j ; 1/; j D 1; : : : ; d

is the univariate cdf of a mixture of two univariate normal cdfs. Essentially, since
the variables are uncorrelated upon conditioning by the component, the d -variate
normal cdfs in (11.8) can be easily calculated as the product of univariate normal
cdfs.

In this construction the mixing operation introduces the dependence structure.
The covariance matrix of the 2-finite normal mixture distribution is of the form,
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� D Id C ��> (11.9)

� D

2
666664

2 �2 : : : �d�1 �d
�2 1C �22 : : : �2�d�1 �2�d
:::

:::
:::

:::
:::

�m�1 �2�d�1 : : : 1C �2d�1 �d�1�d
�d �2�d : : : �d�1�d 1C �2d

3
777775
:

Clearly, the covariance matrix in (11.9) is identifiable and has d � 1 dependence
parameters. This dependence construction is similar to the partially symmetric
copula of [17]; in the present case, however, the .j; k/ marginal for j ¤ k ¤ 1

has two copula parameters, and thus more flexible association.
Mathematically, this family has nice features, a moderate number of parameters

to model dependence (including negative dependence), and a rather simple compu-
tational form but does not provide such flexible or wide range of dependence. For
example, it cannot model multivariate discrete data with strong or with negative
dependence among many random variables or at least it cannot capture all the
possible structures. To sum up, finite normal mixture copulas satisfy properties P3,
P4, and P5, but not P1 and P2.

11.3.5 Mixtures of max-id

Joe [19] and Nikoloulopoulos and Karlis [44, 46] applied mixtures of max-id
copulas to model multivariate discrete data. Joe and Hu [22] extended multivariate
Archimedean copulas to a more flexible class of copulas using mixture of max-id
copulas C .m/

jk of the form,

C.u1; : : : ; ud I �; �jk W 1 � j < k � d/ D (11.10)

�

0
@�

X
1	j<k	d

logC .m/
jk

�
e�pj ��1.uj I�/; e�pk��1.ukI�/I �jk

�C
dX
jD1

�j pj �
�1.uj I �/ I �

1
A ;

where pj D .�j C d � 1/�1; j D 1; : : : ; d: Since the mixing operation introduces
dependence, this copula has a dependence structure that comes from the form of
C
.m/

jk .� I �jk/ and the form of the Laplace transform �.� I �/. Another interesting
interpretation is that the Laplace transform � introduces the smallest dependence
between random variables (exchangeable dependence), while the copulas C .m/

jk

add some pairwise dependence. The parameters �j are included in order that
the parametric family of multivariate copulas (11.10) is closed under margins.
Regarding �j zero or fixed, the copula of the form (11.10) is a family with 1 C
d.d � 1/=2 parameters that allows only positive but flexible dependence structure.
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One may simplify the form of the copula by assumingC .m/

jk .uj ; uk/ D uj uk (known
as independence or product copula) together with �j D �k D �1, for some pairs.
This implies that for those pairs of variables, the minimum level of dependence is
introduced by �.

This construction, on the one hand, does not impose any constraints between
the dependence parameters �jk; but, on the other hand, does not allow for negative
dependence [22]. The latter is the only drawback of this class of parametric families
of copulas.

To sum up, d -variate mixtures of max-infinitely divisible copulas satisfy all
properties except P1, since they don’t allow for negative associations. Note in
passing that using mixtures of max-id copulas the use of covariate functions for
the copula dependence parameters is straightforward since they fulfill P5.

11.3.6 Elliptical

Two well-known members of elliptical copulas [1, 7], the MVN and Student
t copulas, have been used in the literature for prediction and modeling of dependent
discrete data.

Joe [19] and Song [55] modeled dependent discrete data using the MVN copula,

C.u1; : : : ; ud I R/ D ˚d
�
˚�1.u1/; : : : ; ˚�1.ud /I R

�
; (11.11)

where ˚d.�I R/ denotes the standard MVN distribution function with correlation
matrix R D .�jk W 1 � j < k � d/ and ˚ is the cdf of the univariate
standard normal. The MVN copula inherits the dependence structure of MVN
distribution, and thus admits a wide range of flexible dependence allowing both
positive and negative dependence (P1–P2). The drawback of the MVN copula is
with relation to the computation of the rectangle probabilities. This computation
involves repeated multidimensional integration since MVN lacks a closed form
cdf. Consequently, likelihood inference might be difficult; see [45]. Note that for
the special case of positive exchangeable correlation structures, the d -dimensional
integrals conveniently reduce to 1-dimensional integrals [24, p. 48].

The pmf can be obtained by computing the following rectangle probability
[40, 48],

hY.yI x/ D Pr.Y1 D y1; : : : ; Yd D yd I x/ (11.12)

D Pr.y1 � 1 < Y1 � y1; : : : ; yd � 1 < Yd � yd I x/

D
Z ˚�1ŒFY1 .y1Ix1/�

˚�1ŒFY1 .y1�1Ix1/�
� � �
Z ˚�1ŒFYd .yd Ixd /�

˚�1ŒFYd .yd�1Ixd /�
�d .z1; : : : ; zd I R/d z1 : : : d zd ;

where �d denotes the standard MVN density with correlation matrix R.
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There are several papers in the literature that focus on the computation of the
MVN rectangle probabilities for general correlation structures, and, conveniently,
the implementation of the proposed algorithms is available in contributed R
packages.1 Schervish [50] proposed a locally adaptive numerical integration method
but this method, while more accurate, is time consuming and restricted to a
low dimension. Therefore, Genz and Bretz [11] proposed a randomized quasi
Monte Carlo method with the use of antithetic variates and Joe [18] proposed two
approximations to MVN probabilities. These advances in computation of MVN
probabilities can be used to implement MVN copula models with discrete response
data.

Genest et al. [10] modeled dependent binary data using the Student t copula,

C.u1; : : : ; ud I R; �/ D Td
�
T �1.u1I �/; : : : ; T �1.ud I �/I R; �

�
; (11.13)

where T .�I �/ is the univariate Student t cdf with (non-integer) � degrees of freedom,
and Td .�I R; �/ is the cdf of a multivariate Student t distribution with � degrees of
freedom and correlation matrix R. Student t copula share with the MVN copula
the ability to accommodate any feasible pattern of association in a set of random
variables. However, Student t copula can also account for tail dependence in
multivariate continuous data [42], whereas MVN copula cannot. In the context of
multivariate discrete data that means that more probabilities can be assigned in the
joint upper and joint lower tails than with the MVN copula. Student t copula cannot
also be expressed in closed form; however, the rectangle probabilities can also be
computed using the methods in [11].

To sum up, elliptical copulas satisfy properties P1, P2, and P4, but not P3, and
P5, since they lack a closed form cdf and a positive-definite matrix is required
respectively.

11.3.7 Vine

In the literature, vine copulas are suitable for modeling multivariate continuous
data with various features such as tail dependence [23]. Since the densities of
multivariate vine copulas can be factorized in terms of bivariate linking copulas and
lower-dimensional margins, they are computationally tractable for high-dimensional
continuous variables. The cdf of d -dimensional vine copula lacks a closed form and
requires .d � 1/-dimensional integration [19]. Hence, in order to derive the pmf as
finite difference of the cdf poses nonnegligible numerical challenges.

1Both approximations to MVN rectangle in [18], the 1-dimensional integral in the positive
exchangeable case, and the method in [50], can be computed with the functions mvnapp,
exchmvn, and pmnorm, respectively, in the R package mprobit [21]. The methods in [11]
can be computed with the function pmvnorm in the R package mvtnorm [12].
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Recently, Panagiotelis et al. [48] decomposed the pmf as follows,

Pr.Y1 D y1; : : : ; Yd D yd / D Pr.Y1 D y1jY2 D y2; : : : ; Yd D yd /	 (11.14)

Pr.Y2 D y2jY3 D y3; : : : ; Yd D yd / 	 � � � 	 Pr.Yd D yd /:

Letting Vh be any scalar element of V and Vnh its complement, with Yj not an
element of V, each term on the right-hand side of (11.14) has the form Pr.Yj D
yj jV D v/ where yj is a scalar element of y and v is a subset of y,

Pr.Yj D yj jV D v/ D Pr.Yj D yj ;Vh D vhjV
nh D v

nh/

Pr.Vh D vh;V
nh D v

nh/

D
P

ijD0;1

P
ihD0;1.�1/ijCih Pr.Yj � yj � ij ;Vh � vh � ihjV

nh D v
nh/

Pr.Vh D vh; V
nh D v

nh/

D
P

ijD0;1

P
ihD0;1.�1/ijCihCYj ;VhjV

nh

�
FYj jV

nh
.yj � ij jv

nh/; FVhjV
nh
.vh � ihjv

nh/
�

Pr.Vh D vh;V
nh D v

nh/
:

The above can be applied recursively to (11.14) to decompose a multivariate pmf
into bivariate copula families. More details and a three-dimensional illustration can
be found in [48].

The computation of the pmf for a discrete vine only requires 2d.d � 1/ bivariate
copula function evaluations, compared to 2d multivariate copula evaluations for the
finite difference approach (11.2), and Panagiotelis et al. [48] have developed a fast
algorithm for computing the pmf of a vine copula with discrete margins.

A wide variety of dependence structures can be modeled by selecting different
copula families as building blocks. Selecting different bivariate copula families in a
discrete vine has a substantial impact on the joint probabilities of the multivariate
distribution and can provide better fits when we have some discrete multivariate data
where asymmetries can easily be seen.

To sum up, discrete vine copulas or pair-copula constructions satisfy all prop-
erties except P4. Note that although their cdf is not of closed form the pmf
is successively decomposed and likelihood estimation is feasible even for high
dimensions.

11.4 Methods of Estimation

For a sample of size n with data y1; : : : ; yn the joint log-likelihood of the copula-
based model is,

` D
nX
iD1

loghY.yi1; : : : ; yid I xi1; : : : ; xid /: (11.15)
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Estimation of the model parameters can be approached by the standard maximum
likelihood method, by maximizing the joint log-likelihood in (11.15) over the
univariate and copula parameters [19] or by a two-step approach called Inference
Function of Margins (IFM) method in [19, 20]. In the first step, the univariate
parameters are estimated assuming independence, and in the second step the joint
log-likelihood in (11.15) is maximized over the copula parameters with the uni-
variate parameters fixed at the estimated values from the first step. When the
dependence is not too strong which is a realistic scenario for discrete response
data, the IFM method can efficiently (in sense of computing time and asymptotic
variance) estimate the model parameters. For parametric families of copulas with
a closed form cdf and vine copulas, maximum likelihood or IFM estimation is
straightforward.

For the elliptical copulas likelihood inference involves the computation of
multidimensional rectangle probabilities of the form (11.12). The advances in
computation of rectangle probabilities can be used to implement elliptical copula-
based models with discrete response data. Using the the first-order (makes use
of all of the univariate and bivariate marginal probabilities) or the second-order
approximation (also makes use of trivariate and four-variate marginal probabilities)
in [18] to compute the rectangle MVN probabilities in (11.15), the likelihood is
successively approximated for weak to moderate correlation parameters. Computing
the rectangle MVN/Student t probabilities in (11.15) via simulation based on
the methods in [11], a simulated likelihood is implemented; see [40]. Since the
estimation of the parameters of the copula-based models is obtained using a quasi-
Newton routine [36] applied to the joint log-likelihood in (11.15), the use of quasi
Monte Carlo simulation to four decimal place accuracy for evaluations of the
rectangles works poorly, because numerical derivatives of the joint log-likelihood
with respect to the parameters are not smooth. In order to achieve smoothness, the
same set of uniform random variables should be used for every rectangle probability
that comes up in the optimization of the simulated likelihood [40]. Asymptotic
and small-sample efficiency calculations in [40] show that the simulated likelihood
method, which is based on evaluating the multidimensional integrals of the joint
likelihood with randomized quasi Monte Carlo methods developed in [11], is as
good as maximum likelihood as shown for dimension 10 or lower. These findings are
expected to hold in higher dimensions. Although there is an issue of computational
burden as the dimension and the sample size increase, this will become marginal, as
computing technology is advancing rapidly.

Zhao and Joe [61] proposed composite likelihood estimation methods to over-
come the computational issues at the maximization routines for the MVN copula in
a high-dimensional context. Composite likelihood is a surrogate likelihood which
leads to unbiased estimating equations obtained by the derivatives of the composite
log-likelihoods. Estimation of the model parameters can be approached by solving
the estimating equations in [61] or equivalently by maximizing the sum of composite
likelihoods. First consider the sum of univariate log-likelihoods,



11 Copula-Based Models for Multivariate Discrete Response Data 243

`1 D
nX
iD1

dX
jD1

logfYj .yijI xij/;

where fYj .y1I x1/; : : : ; fYd .yd I xd / are the univariate marginal pmfs, and then the
sum of bivariate log-likelihoods,

`2 D
nX
iD1

X
j<k

loghY2 .yij; yikI xij; xik/;

where Y2 D .Yj ; Yk/: Composite likelihood estimates can be obtained using a two-
stage method (CL1):

1. At the first step the `1 is maximized over the univariate marginal parameters.
2. At the second step the `2 is maximized over the copula parameters with univariate

marginal parameters fixed as estimated at the first step of the method.

Alternatively, one can use the one stage composite likelihood estimation procedure
(CL2), that is maximizing the `2 over the univariate and copula parameters at one
step. The efficiency of composite likelihood estimates has been studied and shown
in a series of a papers; see, e.g., [58, 59, 61]. If the interest is both to the univariate
and dependence parameters, CL2 method should be performed since CL1 ignores
the dependence at the estimation of the univariate marginal parameters.

Bayesian methods have also been used on the estimation of an elliptical-copula-
based model. Pit et al. [49] proposed a general Bayesian approach for estimating a
MVN copula-based model. Smith, Gan and Kohn [53] extend the work in [49] to
other elliptical copula-based models. Very recently, Smith and Khaled [54] suggest
efficient Bayesian data augmentation methodology for the estimation of copula-
based models for multivariate discrete data. For a detailed exposition of Bayesian
approaches on estimation of copula-based models for discrete response data we refer
the interested reader to the excellent survey by Smith [52].

11.5 Dependence as Measured by Kendall’s Tau

The copula parameters for different parametric families have different range; hence,
they are not comparable. To compare strengths of dependence among different
copula-based models and ease interpretation, it is useful to convert the estimated
parameters to concordance measures such as Kendall’s 
’s.

For continuous random variables dependence as measured by Kendall’s tau

 D Pc � Pd , the difference between the probabilities of concordance .Pc/
and discordance .Pd /, is associated only with the copula parameters. However
for discrete data the marginal distributions also play a role on dependence, and
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Fig. 11.1 Kendall’s tau bounds when Yj 
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 does not attain the boundary values of ˙1, because the probability of ties
Pt D 1 � .Pc C Pd / is positive; see [5, 33, 38].

The Kendall’s tau for each pair Y2 is given as below [47],


.Yj ; Yk/ D
1X
yjD0

1X
ykD0

hY2.yj ; yk I xj ; xk/
n
4C.FYj .yj � 1I xj /; FYk .yk � 1I xk//

� hY2.yj ; yk I xj ; xk/
o

C
1X
yjD0

f 2
Yj
.yj I xj /C

1X
ykD0

f 2
Yk
.yk I xk/ � 1:

(11.16)

This formula helps to see clearly that in the discrete case the marginals do affect
Kendall’s tau.

To visualize the effect of the marginal distributions/parameters, we computed
the optimum Kendall’s tau values using various discrete marginal distributions,
i.e., Bernoulli, binomial and Poisson and the Fréchet bound copulas. In Figs. 11.1
and 11.2 optimum Kendall’s tau values have been plotted for Bernoulli, i.e., Yj �
Bin.1; �Yj / and Yk � Bin.1; �Yk / and binomial margins, i.e., Yj � Bin.5; �Yj / and
Yk � Bin.5; �Yk / for a grid of (�Yj ; �Yk ) values in PYj 	 PYk where PYj D Œ0; 1�

and PYk D f0; 0:1; : : : ; 0:5g, respectively. In Fig. 11.3 optimum Kendall’s tau
values have been plotted for Poisson marginal distributions with the same parameter
� up to 50.
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Fig. 11.3 Kendall’s tau bounds when both random variables are Poisson with parameter �

From the figures, one can see that Kendall’s tau does not reach the bounds ˙1
for countermonotonic and comonotonic marginals. There is also a clear association
between the optimum value of Kendall’s tau and the marginal probabilities for
binary and binomial data, while this association is negligible for count data with
marginal parameters greater than 10. For normalized versions of Kendall’s tau one
can refer to [13, 38].
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11.6 Discussion

This survey summarized copula-based models for discrete response data. We list
several desirable properties such a model should have and introduce the models
that have been used in copula dependence modeling for discrete data so far. For
copula modeling with multivariate discrete data, we suggest models that admit a
wide range of dependence, such as the MVN copula. Given the wide range of
dependence, MVN copula provides often the best fit or nearly the best fit for discrete
data [41]. However MVN copula is inadequate to model multivariate data with
refection asymmetry or tail dependence [43]. Although tail dependence degenerate
in the discrete case, reflection asymmetry is a realistic scenario. Vine copula
constructions are suitable for modeling this kind of data since by using as bivariate
blocks asymmetric bivariate copulas tail asymmetry can be accommodated, i.e.,
more probability in one or both joint tails can be obtained. Essentially, discrete
vine copulas are highly flexible since any multivariate discrete distribution can be
decomposed as a vine copula, under a set of conditions outlined in [48].

If the discrete responses are positively associated, then parametric families of
copulas with a closed form cdf could be also used. Archimedean copulas could
be used to model clustered data with exchangeable dependence, while mixtures
of max-infinitely divisible copulas could be used for data with a more general
positive dependence. Note in passing that, from copulas with positive dependence
by construction, one could always get some negative dependence by applying
decreasing transformations on some subset of the random variables, but this is
restrictive in general, because this construction cannot model negative dependence
among many random variables [46].

If the interest is to study the effect of explanatory variables on the dependence
structure, Archimedean, partially symmetric, mixtures of max-id, and vine copulas
are suitable since allow the use of covariate functions for the copula dependence
parameters (see, e.g., [44, 47]); this is not the case for the FGM and elliptical
copulas in (11.5)–(11.7), (11.11) and (11.13), because of the joint constraints for
the dependence parameters.

Acknowledgments I would like to thank Professor Harry Joe, University of British Columbia, for
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Chapter 12
Vector Generalized Linear Models: A Gaussian
Copula Approach

Peter X.-K. Song, Mingyao Li, and Peng Zhang

Abstract In this chapter we introduce a class of multi-dimensional regression
models for vector outcomes, termed as the vector generalized linear models
(VGLMs), which is a multivariate analogue of the univariate generalized linear
models (GLMs). A unified framework of such regression models is established
with the utility of Gaussian copula, accommodating discrete, continuous and mixed
vector outcomes. Both full likelihood and composite likelihood estimations and
inferences are discussed. A Gauss–Newton type algorithm is suggested to carry
out the simultaneous estimation for all model parameters. Numerical illustrations
are focused on VGLMs for correlated binary outcomes, correlated count outcomes,
and mixed normal and binary outcomes. In the simulation studies, we compare
the VGLM to the popular generalized estimating equations (GEEs) approach. The
simulation results indicate that the VGLMs provide more efficient inference for the
regression coefficients than the GEEs. The VGLM is also illustrated via real-data
examples.
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12.1 Introduction

Generalized linear models (GLMs) [20] have been playing an important role in the
regression analysis of non-normal data. A GLM assumes that a univariate response
y follows an exponential dispersion (ED) family distribution [14], denoted by
ED.�; '/, with mean � and dispersion parameter ', and the density function is
given by

g.yI�; '/ D c .yI'/ exp Œf�y � 
.�/g='� ; y 2 R; � 2 	; (12.1)

where 
.�/ is the cumulant generating function, 	 is an open interval and ' varies
in a subset of .0;1/. It is known that the mean and variance are, respectively,
� D E.y/ D 
.�/ and var.y/ D 'v.�/, where v.�/ is the unit variance function,
and 
.�/ D P
.�/ and v.�/ D P
f
�1.�/g are the respective first order derivatives of

.�/ and 
.�/.

A GLM postulates that the mean � is related to p covariates x D .x1; : : : ; xp/
T

by an equation

h.�/ D �.x/ D xT ˇ D ˇ0 C ˇ1x1 C � � � C ˇpxp; (12.2)

where h is a known link function, and ˇ D .ˇ0; ˇ1; : : : ; ˇp/
T is a vector of

regression coefficients. Statistical inference for ˇ is one of the main tasks in the
theory of the GLMs.

A key ingredient required for the extension of the above univariate GLM
to a general multivariate framework for vector outcomes is a multivariate ana-
logue of the ED family distributions in (12.1). Suppose that for each subject an
m-element response vector y D .y1; : : : ; ym/

T and a p-element associated covariate
vector x are observed. For example, the vector y is comprised of measurements
from different response variables, such as blood pressure, heart rate, weight and
temperature for a subject. Other examples of such data include clustered data of an
equal cluster size, longitudinal data with a fixed number of repeated measurements,
and spatial data collected from a fixed number of spatial locations. It is worth noting
that such restriction of equal dimension for outcome vectors can be relaxed by
the means of composite likelihood [28], in which only low dimensional likelihood
objectives will be used to carry out statistical estimation and inference. For the ease
of exposition, let us first focus on the scenario of fixed dimension at m.

To analyze such data by the GLM approach, vector GLMs (VGLMs) can be
formulated as a model for which the conditional distribution of y given x takes the
form

f .yjxIˇ; '; � / D ı.y; �1; : : : ; �mI'; � /; (12.3)

where in general the regression coefficients ˇ D .ˇT1 ; : : : ; ˇ
T
K/

T and the linear
predictors �j D �j .x/ D xT ˇj , j D 1; : : : ; m, under a certain joint density
function ı.�I'; � / that is parametrized by a vector of dispersion parameters
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' D .'1; : : : ; 'm/
T and a dependence matrix � . Here � D .�ij/ characterizes

dependencies among the components of y. Note that K may not equal to m, the
dimension of y.

To complete the specification of a VGLM in (12.3), it is necessary to specify
the ı.�/ function and the parameter set � . In our views, a desired density function
ı.�I� / should satisfy the following basic properties:

a. The regression parameters ˇj ’s and the correlation parameters in � are ideally
made ‘orthogonal’ by the chosen ı.�/, in a spirit similar to that in the multivariate
normal. This property of orthogonality, if available, would give rise to much ease
in the development of efficient statistical inference for the large number of model
parameters in the VGLMs.

b. The VGLM resulted from a chosen ı.�/ should be reproducible or marginally
closed, namely the low dimensional regression models retain the same error
distribution type as the joint model. This is because in most practical problems
the data types for the individual components of y are relatively easy to recognize,
so that the corresponding marginal error distributions can be readily assumed,
as is the practice for GLMs. In addition, in the setting of composite likelihood
approach [28], low dimensional likelihood objectives should be ideally defined
with the same distributional type as that of the full dimensional likelihood.

c. The correlation parameters in matrix � enable to characterize both positive and
negative associations for the vector y. Although positive association is often seen
in practice, a model that allows negative association certainly provides flexibility
to depict a broader range of data types.

d. The VGLM (12.3) based on differently chosen ı.�/ can easily accommodate
discrete, continuous and mixed outcomes of various types within one unified
theoretical framework.

Examples of the VGLM (12.3) with the common regression parameter include
the log-linear representation [5] or the Bahadur representation [3] for correlated
binary responses (see [10, 29]) and generalized linear mixed models (GLMMs)
(see [6, 8, 19]). Examples of models with different ˇj ’s include the bivariate logit
model (see [18], Sect. 6.5.6) and the bivariate probit model [2] for correlated binary
responses, among others.

In this chapter, we consider a new class of ı.�/ functions based on the multivariate
distributions generated by parametric copulas (see [13], Chap. 5). In particular, the
class of multivariate exponential dispersion (MED) distributions generated by the
Gaussian copula [25] will be applied and examined in detail, due to the fact that
such a class of MED distributions satisfies the four desirable properties above. This
then results in a variety of VGLMs under a unified modeling framework, which is
useful to conduct regression analysis of continuous vector outcomes, discrete vector
outcomes and mixed vector outcomes. Refer to Sect. 12.2 for details concerning
the different forms of the ı.�/ density for different types of outcomes. The class of
VGLMs possesses several advantageous features compared to some of the existing
models.
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First, unlike the Bahadur’s [3] representation of the joint distribution for binary
vector outcomes, the VGLMs do not suffer the drawback that the correlations
are constrained by the marginal probabilities. This constraint usually causes a
substantial shrinkage on the range of correlation [7]. In addition, unlike the log-
linear representation [10] for binary vector outcomes, the VGLMs are reproducible.
This reproducibility leads to a better interpretation for the VGLMs than the log-
linear representation model, as well as the valid basis of developing composite
likelihood approach.

Second, the VGLMs share a great deal of similarity in spirit with Liang and
Zeger’s [16] marginal models. However, the difference between the two approaches
is crucial: the VGLMs that are built upon joint probability distributions allow to
perform a likelihood inference for all model parameters, but the marginal models
based on GEEs are relied on a quasi-likelihood inference developed only for the
regression coefficients ˇ.

Third, the formulation of the VGLMs allows to develop a unified likelihood
inference theory and model selection procedures for a broad range of data types
such as those considered in the classical GLM theory. Compared to the existing ad
hoc vector models, each suitable for one specific data type, this unification offers a
useful multivariate analogue of the theory of the univariate GLMs, and particularly
gives rise to great ease in developing a flexible statistical software package for the
class of vector regression models, which is of practical importance.

Fourth, this unified framework sheds light on the analysis of outcomes of
mixed types. Within this framework, one general statistical inference theory can
be developed for a number of models useful to analyze mixed binomial, Poisson,
normal and gamma outcomes. The VGLMs for mixed outcomes sustain the marginal
distributions as desired, simply because the copula models are known to be
marginally closed. This differs from Fitzmaurice and Laird’s [9] conditional model
approach and Sammel et al.’s [23] latent variable model approach in which the
marginal distribution is specified by a mixture distribution.

Last, as pointed by Song [25], the dependence matrix � in the Gaussian
copula is inherited from and hence behaves similarly to that of the multivariate
normal. For example, the components of response y are independent if and only
if � is the identity matrix. Therefore, as in the normal multivariate analysis, it is
convenient to impose some structure on matrix � , such as exchangeable, AR(1) and
m-dependence, to yield a parsimonious specification of the dependence structure
and hence gain power in inference. In addition, the inverse matrix � �1 provides
the interpretation of conditional independence, which is essential to describe
relationships in graphic models.

Although the copula approach is getting increasingly popular in the past two
decades or so, using such models to analyze discrete correlated data has not yet
fully discussed in the literature. Thus, this chapter will focus on the VGLMs for
correlated binary, correlated count and correlated mixed outcomes. Despite the
cautious remarks given by researchers (e.g., [11]), our simulation studies and data
analyses have shown good performances of vector logistic/probit, vector log-linear
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models and vector GLMs for mixed outcomes. In all cases, comparisons to the GEEs
are undertaken.

The organization of the chapter is as follows. We begin with a brief review of
Gaussian copula multivariate ED distributions in Sect. 12.2, followed by the dis-
cussion of full likelihood estimation and inference as well as composite likelihood
estimation and inference in Sect. 12.3, where some details are supplied for VGLMs
for bivariate discrete data. Sections 12.4 and 12.5 concern vector logistic/probit
models and vector log-linear models, where comparisons between estimators from
the VGLMs and estimators from the GEEs are shown. Moreover, Sect. 12.6 presents
the VGLMs for mixed outcomes. Several simulation and data analysis examples are
scattered in Sects. 12.4, 12.5, and 12.6 to illustrate the VGLMs. Section 12.7 gives
concluding remarks. Some technical details are listed in the appendices.

12.2 Multivariate ED Family Distributions

We now give a brief review of the multivariate ED (MED) distributions proposed
by Song [25], which are useful in the specification of the random component of
the VGLMs as in the theory of univariate GLMs, where the univariate ED family
distributions [15] are assumed.

12.2.1 Definition

For component j , j D 1; : : : ; m, denote the marginal CDF of ED.�j ; 'j / by
Gj .yj I�j ; 'j / or simply Gj .yj /. Following Sklar [24], we may construct a joint
CDF with m ED margins by the Gaussian copula in the form

F.yI�; '; � / D C fG1.y1I�1; '1/; : : : ; Gm.ymI�m; 'm/j� g ; (12.4)

where � D .�1; : : : ; �m/
T is the vector of m means, ' D .'1; : : : ; 'm/

T is the
vector of m dispersion parameters, and C.�/ is the m-variate Gaussian copula with
the CDF given by

C.uj� / D ˚m
˚
˚�1.u1/; : : : ; ˚�1.um/j�

�
; u D .u1; : : : ; um/

T 2 .0; 1/m:
(12.5)

Here ˚m (or �m) and ˚ (or �) are the respective CDFs (or densities) of m-variate
normal Nm.0; � / with a correlation matrix � and the standard univariate normal
N.0; 1/ marginal. Note that all marginal parameters are contained in the F , and
the parameters for correlation are inherited from the correlation matrix � of the
multivariate normal. It is known that the Gaussian copula in (12.5) is a joint CDF
of m uniform random variables on .0; 1/ with dependence matrix � D .�jj0/m�m
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Fig. 12.1 Contours of the bivariate Gaussian copula distribution

with the diagonals �jj D 1 and off-diagonals j�jj0 j < 1. Like the multivariate
Gaussian distribution, an MED distribution is fully parametrized by the three sets of
parameters, �; ' and � .

Figure 12.1 displays contours of the bivariate Gaussian copula with different
values of dependence parameter � . Clearly, this copula accommodates both positive
and negative dependence, indicated by the opposite directions of concentration
in the contours. The degree of concentration representing the variation of the
distribution increases as parameter � tends to ˙1.

Clearly, the multivariate normal distribution is a special case of the MED when all
margins are univariate Gaussian. In this case � is the vector of mean parameters, '
is the vector of variance parameters, and � is the Pearson correlation matrix. With
non-Gaussian margins, the .i; j /-the element of � becomes a pairwise nonlinear
dependence defined by

�ij D corr


˚�1fGi.yi /g; ˚�1fGj .yj /g

�
: (12.6)

When both marginal CDFs Gt.�/; t D i; j are continuous, �ij represents the linear
correlation of two normal scores ˚�1.Gt .yt //; t D i; j . When yi and yj are
discrete, the equation (12.6) still holds, but the interpretation would be different with
different data types. For example, when yt ; t D i; j are both binary, the resulting
bivariate binary model will have the same joint probability mass function as that
induced from the threshold latent variable model via dichotomization. This implies
that the dependence parameter �ij can be interpreted as the polychoric correlation
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given by Anderson and Pemberton [1]. See Song [25] for more details in other
distribution cases such as Poisson distribution.

12.2.2 Density Functions

When allmmargins are continuous, the joint density of an MED in (12.5) is given by

f .yI�; '; � / D c fG1.y1/; : : : ; Gm.ym/j� g
mY
iD1

gi .yi I�i ; 'i /; (12.7)

where c.�/ is the density of the copula C.�/ in (4) given by

c.uj� / D j� j�1=2 exp

�
1

2
qT .Im � � �1/q



;

with q D .q1; : : : ; qm/
T being a vector of normal scores qi D ˚�1.ui /; i D

1; : : : ; m, and Im being the m-dimensional identity matrix. Obviously, � D Im
implies the independence of the m components, similar to the multivariate normal.

Consequently, when the function ı required in the VGLM (12.3) is chosen to be
the density f specified by (12.7), the VGLM yields a large class of vector regression
models for various continuous vector outcomes, including the vector normal linear
model, the vector gamma GLM model, the vector inverse Gaussian GLM model,
and the vector compound Poisson GLM model.

When allmmargins are discrete, the joint probability function of a discrete MED
distribution takes the form

f .y/ D P.Y1 D y1; : : : ; Ym D ym/ D
2X

j1D1

� � �
2X

jmD1

.�1/j1C���CjmC.u1;j1 ; : : : ; um;jm j� /

(12.8)

where uj;1 D Gj .yj�/ and uj;2 D Gj .yj /. Here Gj .yj�/ is the left-hand limit of
Gj at yj . For the VLGMs presented in this chapter, the ı function has been specified
by the Gaussian copula, so the point mass probabilities defined in (12.8) are unique
and identical to those generated by discretizing latentm-variate normal vectors [25].

Likewise, a large class of vector regression models for vector discrete outcomes
is specified under a unified framework, by taking this probability mass function f in
(12.8) as the ı for the VGLM in (12.3). In this paper, two special vector GLMs from
this class, the vector logistic/probit model for correlated dichotomous data and the
vector Poisson/negative binomial log-linear models for correlated count data, will
be studied in Sects. 12.4 and 12.5, respectively.

When the m margins appear to be mixed outcomes, say, the first m1 margins
being continuous and the rest m2 D m � m1 margins being discrete, according to
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Song et al. [27], the joint density function is given as follows. Let u D .uT1 ;u
T
2 /
T ,

with u1 D .u1; : : : ; um1/
T and u2 D .um1C1; : : : ; um/T . The same partition and

notation are applied for vectors x and q. Let

C
m1
1 .u1;u2j� / D @m1

@u1 � � � @um1
C.u1; : : : ; umj� /

D .2�/�
m2
2 j� j� 1

2

	
Z ˚�1.um1C1/

�1
� � �
Z ˚�1.um/

�1
exp

�
1

2
.qT1 ; x

T
2 /�

�1.qT1 ; xT2 /T � 1

2
qT1 q1



dx2:

Then, the joint density is given by

f .y/ D
m1Y
jD1

gj .yj /

2X
jm1C1D1

� � �
2X

jmD1
.�1/jm1C1C���Cjm

	 C
m1
1 .G1.y1/; : : : ; Gm1.ym1/; um1C1;jm1C1

; : : : ; um;jm j� /; (12.9)

where ut;jt ’s are defined in (12.8).
Section 12.6 will present one example of the VGLM with mixed binomial and

normal outcomes. Other types of mixed outcomes, such as mixed gamma and
Poisson outcomes as well as mixed binomial and Poisson outcomes, can be analyzed
in a similar way. Note that the two latter data types cannot be modeled by the
threshold latent model approach via discretization.

12.2.3 Conditional Density

An important feature of fitting a multivariate regression model is to predict an
expected value of one outcome conditional on the other outcomes and covariates.
This task essentially requires a conditional distribution derived from the joint
MED distribution (12.4). For example, in the case of all continuous margins, the
conditional density of ym given y1; : : : ; ym�1 is

f .ymjy1; : : : ; ym�1/ D 1

!
gm.ymI�m; 'm/ exp

"
�1
2

(
.qm � �T � �1

11 q�m/2
!2

� q2m

)#
;

where q�m D .q1; : : : ; qm�1/T , ! D 1� �T � �1
11 � , and both �11 and � are elements

given in the following partition:

� D
�
�11 �

�T 1

	
:
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12.3 Simultaneous Maximum Likelihood Estimation
and Inference

12.3.1 General Theory: Full Likelihood

Suppose data .y1; X1/; : : : ; .yn; Xn/ follow an m-variate MED distribution,

yi jXi D .xi1; : : : ; xim/ � MEDm.�i ; 'i ; � /; i D 1; : : : ; n

where response vector yi D .yi1; : : : ; yim/
T has mean�i D .�i1.xi1/ : : : ; �im.xim//

T

and dispersion 'i D .'i1; : : : ; 'im/
T , in which the j -th component 'ij D 'j =wij

with a known positive weight wij and dispersion 'j , j D 1; : : : ; m; i D 1; : : : ; n.
Here xij is a p-element vector of covariates associated with subject i for compo-
nent j , and Xi D .xi1; : : : ; xim/ is a p 	 m matrix of covariates. Moreover, the
mean �ij follows a marginal GLM, hj .�ij/ D �j .xij/ with �ij D �j .xij/ D xTij ˇj
and link function hj , j D 1; : : : ; m. The primary objective of this section is to
establish simultaneous maximum likelihood inference for all model parameters
� D .ˇ; '; � /.

In many cases, the general model above may become more specific. For example,
a VGLM (12.3) takes a common regression parameter vector ˇ, which appears
typically in longitudinal or clustered data analysis with a common link function.
In addition, the dependence matrix � may be further parametrized by a parameter
vector ˛, denoted by � .˛/, such as exchangeable, AR(1) or 1-dependence. In this
case, we have � D .ˇ; '; ˛/. Moreover, for the convenience, we set all weights
wij D 1 in the rest of the chapter.

Let the log-likelihood function of parameters in a given model be

`.� IY;X/ D
nX
iD1

`i .� I yi ; Xi/: (12.10)

Then, the MLE of � is

O� D argmax� `.� IY;X/:

To find the MLE O� numerically, we implement a Gauss–Newton-type algorithm
that allows us to search for the global maximizer with no need of second order
derivatives of the log-likelihood function [22]. The second order derivatives of the
log-likelihood usually appear to be very complicated, so that the explicit expressions
of their analytic forms are difficult to derive and to be implemented in computation.
This issue appears more challenging in the case of discrete data.

Under some mild regularity conditions, the MLE O� is consistent and asymp-
totically normal. When the second order derivatives of the log-likelihood are
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not available, we estimate the observed Fisher Information using the following
sandwich form:

Oi D A�1
n .

O�/Bn. O�/A�1
n .

O�/; (12.11)

where An.�/ is the numerical Hessian approximating the observed Fisher informa-
tion and an observed variability matrix Bn.�/ D 1

n

Pn
iD1 P̀

i .� I yi ; Xi / P̀
i .� I yi ; Xi /T :

This estimation is robust since it would consistently estimate the standard errors
even if the model is misspecified.

The optimization procedure we adopt to obtain the MLE is a Gauss–Newton-type
algorithm. The key step of this algorithm is to take step-halving that guarantees a
steady increase in the likelihood from the previous iteration. Precisely, the .kC 1/th

iteration proceeds as

�kC1 D �k C �fBn.�k/g�1 P̀.�k/;

where Bn is the observed variability matrix given above and � is the step-halving
term that is chosen as follows: starting at 1, it halves each time until `.�kC1/ >
`.�k/ holds in one iteration. Finally, the algorithm stops when the increase in the
likelihood is no longer possible or the difference between two consecutive updates
is smaller than a pre-specified precision level.

12.3.2 General Theory: Composite Likelihood

Computational difficulty in parameter estimation with the full likelihood approach
may be alleviated by the means of composite likelihood (CL). The CL method has
drawn much attention in recent years due to its computational convenience as it
uses only low dimensional likelihood objectives (e.g., two-dimensional likelihoods).
Readers may refer to Varin et al. [28] for a comprehensive overview of the CL
methodology and more references therein. Now let us focus on the pairwise CL that
takes low dimensional margins or submodels based on all possible pairs to form
a pseudo-likelihood. This strategy of dimension reduction results in an inference
function derived from the following pairwise CL:

Lc.� I y/ D
Y
a<b

f .ya; yb I �/wab ;

where f .ya; ybI �/ is a bivariate margin of .ya; yb/ from the joint MED distribu-
tion (12.4) and wab is a weight defined on Œ0;1/. Theoretically the full likelihood
is a special case of the CL when the composite set is chosen as the full set of m
elements. Importantly the CL approach represents a trade-off between estimation
efficiency and computational efficiency.

The fundamental argument for the validity of CL method lies on the theory
of estimating functions [11, Chap. 3]. In short, as long as the bivariate marginal
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distributions f .ya; ybI �/ (or the bivariate copula) are properly specified, the pair-
wise CL estimator of � , obtained by maximizing the CL functionLc with respect to
the � can achieve desired performances. Let the log-CL function be given by

`c.� IY / D
nX
iD1

logLi;c.� IY / D
nX
iD1

X
a<b

wab logf .yi;a; yi;bI �/:

Thus, the CL estimator is obtained by

O�c D argmax� `c.� IY /:
Clearly, the strategy of using only bivariate marginals in the above estimation and
inference can naturally accommodate unbalanced longitudinal data. Searching the
maximizer of `c may be similarly done using the Gauss–Newton type algorithm
described above. Being a pseudo-likelihood approach, under mild regularity
conditions, the root-n consistent CL estimator is asymptotically normal with the

asymptotic covariance matrix given by
n
E.� R̀

c.�//
o�1

var. P̀
c.�//

n
E.� R̀

c.�//
o�T

.

12.3.3 VGLMs For Bivariate Discrete Data

In this section, the VGLMs for bivariate discrete data are discussed. The focus of
two-dimensional data allows us to study performances of both full likelihood and
pairwise CL under one common setting. Readers may find general results regarding
the log-likelihood functions and their scores in the VGLMs for continuous, discrete,
and mixed data types from Sect. 6.6 of Song [26].

For convenience, we always use notation ` to denote the likelihood for the
case of m D 2, although it is indeed also `c . The log-likelihood is `.� IY;X/ DPn

iD1 ln f .� I yi /, where the bivariate probability mass function f is obtained
immediately from (12.8) as

f .yi I �/ D C˛.ui1; ui2/� C˛.ui1; vi2/ � C˛.vi1; ui2/C C˛.vi1; vi2/;

with uij D Gi.yij/ and vij D Gi.yij�/, j D 1; 2. Clearly the parameter vector is
� D .ˇ; ˛/.

The scores P̀
�k .�/ for the k-th component of � is

Pn
iD1 Pfk.yi I �/=f .yi I �/, where

Pfk.�/ denotes the first order derivative with respect to �k . By the chain rule, the
scores with respect to ˇj are given by

@f .yi I �/
@̌ j

D @C˛.ui1; ui2/

@̌ j

� @C˛.ui1; vi2/

@̌ j

� @C˛.vi1; ui2/

@̌ j

C @C˛.vi1; vi2/

@̌ j

D
�
@C˛.ui1; ui2/

@ui1
� @C˛.ui1; vi2/

@ui1

�
xi1j

Ph1.�i1/
@ui1
@�i1
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C
�
@C˛.ui1; ui2/

@ui2
� @C˛.vi1; ui2/

@ui2

�
xi2j

Ph2.�i2/
@ui2
@�i2

�
�
@C˛.ui1; vi2/

@vi2
� @C˛.vi1; vi2/

@vi2

�
xi2j

Ph2.�i2/
@vi2

@�i2

�
�
@C˛.vi1; ui2/

@vi1
� @C˛.vi1; vi2/

@vi1

�
xi1j

Ph1.�i1/
@vi1

@�i1
; (12.12)

where, suppressing subscripts,

@C˛.u; v/

@u
D ˚

�
˚�1.v/ � ˛˚�1.u/p

1 � ˛2

	
;

@C˛.u; v/

@v
D ˚

�
˚�1.u/� ˛˚�1.v/p

1 � ˛2

	
:

Note that derivatives @uij=@�ij and @vij=@�ij in (12.12) can have closed form
expressions when certain marginal distributions are assumed. For example, the
Bernoulli margin for binary data gives

@uij

@�ij
D �1Œyij D 0�;

@vij

@�ij
D �1Œyij D 1�;

where 1ŒA� denotes the indicator function on set A, while the Poisson margin for
count data gives

@uij

@�ij
D Gij.yij � 1/�Gij.yij/;

@vij

@�ij
D Gij.yij � 2/�Gij.yij � 1/;

where Gij.�/ is the Poisson CDF with mean �ij.
Similarly, the score with respect to the parameter ˛ is

@f .yi I �/
@˛

D @C˛.ui1; ui2/

@˛
� @C˛.ui1; vi2/

@˛
� @C˛.vi1; ui2/

@˛
C @C˛.vi1; vi2/

@˛
;

where, suppressing the subscripts,

@C˛.u; v/

@˛
D
Z ˚�1.u/

�1

Z ˚�1.v/

�1
@

@˛
fln�2.x1; x2I˛/g �2.x1; x2I˛/dx1dx2; (12.13)

with

@ ln�2.x1; x2I˛/
@˛

D ˚
˛ C .1 � ˛2/�1.˛x1 � x2/.˛x2 � x1/

�
.1 � ˛2/�1:

To evaluate the double integral in (12.13), we adopt the Gaussian–Hermite quadra-
ture method with details given in Appendix A.



12 Vector Generalized Linear Models: A Gaussian Copula Approach 263

12.4 Vector GLMs for Binary Data

In this section, we present a detailed investigation on the VGLMs for bivariate
binary data, the simplest discrete data type from which some useful insights can
be drawn to guide the use of such models to analyze higher dimensional vector
data. For the ease of exposition, we present our results under the assumption of a
common ˇ D ˇj ; j D 1; : : : ; m. The related procedures can be extended to the
general case with different ˇj with little effort.

12.4.1 Models

It is easy to derive the bivariate probability mass function,

P.Yi1 D yi1; Yi2 D yi2/ D

8̂
ˆ̂<
ˆ̂̂:

C˛.1 � �i1; 1 � �i2/; if yi1 D 0; yi2 D 0

1 � �i1 � C˛.1 � �i1; 1 � �i2/; if yi1 D 0; yi2 D 1

1 � �i2 � C˛.1 � �i1; 1 � �i2/; if yi1 D 1; yi2 D 0

�i1 C �i2 C C˛.1 � �i1; 1 � �i2/ � 1; if yi1 D 1; yi2 D 1,

(12.14)

where C˛.�; �/ is given by (12.5) with m D 2.
Therefore, a bivariate logistic model is obtained by specifying the marginal

probabilities �ij D P.Yij D 1/ in (12.14) as logit.�ij/ D �.xij/, j D 1; 2. This
gives . Ph.�ij//

�1 D �ij.1 � �ij/.
Similarly, a bivariate probit model specifies the marginal probabilities in (12.14)

as the form of ˚�1.�ij/ D �.xij/ for j D 1; 2, which implies that f Ph.�ij/g�1 D
�f˚.�j /g. According to Song [25], this vector probit model is effectively identical
to the threshold latent model induced from dichotomization. Therefore, in the case
of the probit link the dependence parameter ˛ has the same interpretation as the
correlation parameter in the latent bivariate normal distribution. However, such a
correspondence is not true under the logit link.

In the context of multivariate categorical data, odds ratios are usually used to
measure pairwise association, which are equal to, suppressing index i ,

OR D P.Y1 D 1; Y2 D 1/P.Y1 D 0; Y2 D 0/

P.Y1 D 1; Y2 D 0/P.Y1 D 0; Y2 D 1/

D f�1 C �2 C C˛.1 � �1; 1 � �2/� 1gfC˛.1 � �1; 1 � �2/g
f1� �1 � C˛.1 � �1; 1 � �2/gf1� �2 � C˛.1 � �1; 1 � �2/g ;

�1; �2 2 .0; 1/: (12.15)

Clearly, the odds ratio equals 1 if and only if ˛ D 0, the case of independence.
Figure 12.2 illustrates the relationship of the log-10 base odds ratio to the

dependence parameter ˛ with equal mean parameters �1 D �2. It can be seen that
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Fig. 12.2 log10 (OR) with equal mean parameters

the log-10 odds ratio is predominantly related to the dependence parameter ˛, but
only slightly related to the mean parameters near boundaries. Also, both positive
and negative associations are modeled in the VGLMs.

12.4.2 Comparison of Asymptotic Efficiencies

We now address the issue of the asymptotic efficiency of estimators from the
VGLMs and GEE estimators of the marginal parameters in models for binary
responses. In particular, we compare the asymptotic efficiency of maximum like-
lihood estimators, under the fully parametric VGLMs, to the GEE estimators that
are obtained under a specified correlation structure. Our comparison will focus only
on the regression parameters ˇ, since the correlation parameter ˛ is treated as a
nuisance parameter in the GEE.

Let Vvglm be the asymptotic covariance of the ML estimator of ˇ from the VGLM.
We will compare it to the asymptotic covariance of the GEE estimator of ˇ, Vgee DPn

iD1
@�i
@ˇ

T
cov.yi /�1 @�i@ˇ , obtained under the working correlation being specified as

the true correlation. The asymptotic relative efficiency (ARE) is defined as follows:

ARE.ˇ/ D diagfVvglmgŒdiagfVgeeg��1: (12.16)

Consider a hypothetical cross-over trial in which two repeated measurements are
observed from one subject with xi1 D 0 for placebo and xi2 D 1 for active drug.
The marginal probabilities of the bivariate binary response are specified as

h.�ij/ D ˇ0 C ˇ1xij; j D 1; 2; (12.17)
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under the respective bivariate
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where ˇ0 D ˇ1 D 0:5. For such a simple model, we can effectively obtain the closed
form expressions for both asymptotic covariance matrices Vgee and Vvglm, and related
details are given in Appendix B. Therefore, in this case the ARE can be evaluated
exactly with no need of simulated data.

Figure 12.3 displays the ARE values for the estimator of the slope parameter ˇ1
as a function of the within cluster association parameter ˛ 2 Œ0; 1/ with both logit
and probit link functions. Evidently, Fig. 12.3 suggests that the estimator from the
VGLM is more efficient than the GEE estimator with either logit link or probit link,
especially when the within cluster correlation is high (˛ close to 1). Note that, under
the probit link, the VGLM is identical to the threshold latent model. This means that
the estimator of the slope parameter from the threshold latent model appears to be
more efficient than the GEE estimator. Also note that, under the logit link, the result-
ing GEEs are indeed coincident with the score equations derived from the log-linear
model representation [8, Sect. 8.2]. Figure 12.3 implies that the VGLM is more
appealing than the log-linear model representation to fit the correlated binary data.

12.5 Vector GLMs for Count Data

In this section, we focus on the VGLMs for correlated count data. Especially, we
use the bivariate Poisson VGLM for simulation studies and for data analysis.

12.5.1 Models

The m-variate Poisson VGLM has the joint probability mass function given
by (12.8), where the left-hand limit of Poisson CDF Gij.�/ at yij is Gij.yij�/ D
Gij.yij � 1/ with marginal mean �ij follows a log-linear model log.�ij/ D xTij ˇj ,
j D 1; 2; : : : ; m. As usual, we set Gij.yij/ D 0 if yij is negative or if its mean
�ij D 0. Clearly, f Ph.�ij/g�1 D �ij if we take the log link function.
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In the presence of overdispersion, negative binomial margins appear to be more
appealing than Poisson margins in the specification of the VGLM for overdispersed
count data. For a negative binomial distribution with mean � and variance �.1 C
�2�/, the probability mass function is given by P.Y D y/ D � .aCy/

yŠ� .a/

aa�y

.�Ca/aCy ,

where a D 1=�2. Clearly, if �2 is zero, it reduces to the Poisson variance, and a
nonzero �2 leads to a model of overdispersion. To specify the VGLM, similar to
the Poisson VGLM, we assume the marginal means �ij take the form of log-linear
models, log.�ij/ D xTij ˇj , j D 1; : : : ; m. Let uij D Gij.yij/ and vij D Gij.yij � 1/.
Then the derivatives needed in the calculation of the scores are immediately yielded
as follows:

@uij

@�ij
D

yijX
kD0

� .aj C k/

kŠ� .aj /

a
aj
j �

k
ij

.�ij C aj /
ajCk

�
k

�ij
� aj C k

aj C �ij

�

@vij

@�ij
D

yij�1X
kD0

� .aj C k/

kŠ� .aj /

a
aj
j �

k
ij

.�ij C aj /
ajCk

�
k

�ij
� aj C k

aj C �ij

�
:

It is worth noting that according to Song [25], the dependence parameter ˛ in
the bivariate Poisson VGLM is approximately equal to the Pearson correlation in
the bivariate Poisson distribution generated by the stochastic representation [13,
Sect. 7.2]. The stochastic representation method constructs the bivariate Poisson
distribution as follows,

.Y1; Y2/
dD .Z1 CZ12;Z2 CZ12/; with Zj

iid� Po.�j /; j D 1; 2; 12; (12.18)

where both components share a common Poisson variable Z12. Obviously the
correlation given in this bivariate Poisson distribution is always non-negative with 0
corresponding to independence.

12.5.2 Comparison of Asymptotic Efficiencies

This section addresses the issue of the relative asymptotic efficiency between the
estimators from the VGLMs and the estimators from the GEEs, when both methods
are used to fit a common data. The comparison of asymptotic efficiencies will be
focused only on the regression coefficients.

Here we consider a bivariate Poisson VGLM with a common ˇ D ˇj ; j D 1; 2.
Unlike the case of the bivariate binary VGLM, the closed form expression for Vvglm

is difficult to derive analytically. So, a numerical evaluation on Vvglm is inevitable.
In fact, we compare the estimated observed Fisher Information given in (12.11) to

Vgee D Pn
iD1

@�i
@ˇ

T
cov.yi /�1 @�i@ˇ with the working correlation being specified as

the true correlation in the simulation study. In order to achieve high precision for
formula (12.11), we chose a large sample size n D 1000.



12 Vector Generalized Linear Models: A Gaussian Copula Approach 267

Dependence Parameter

A
sy

m
pt

ot
ic

 R
el

at
iv

e 
E

ffi
ci

en
cy

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.90.5

Fig. 12.4 Average
asymptotic efficiency of the
VGLM estimator relative to
the estimator from the GEE
under the bivariate Poisson
model over 2,000
replications, in which each
cluster contains 1,000 pairs

Data are generated from the following marginal log-linear models:

log.�ij/ D ˇ0 C ˇ1xij; j D 1; 2; i D 1; : : : ; n (12.19)

where ˇ0 D ˇ1 D 0:5, covariate xi1 is generated randomly according to uniform
U.0; 1/, and for simplicity, covariate xi2 D xi1 is assigned with the underlying
assumption that two subjects in each cluster have the same exposure level. n D 1000

clusters were simulated from the stochastic representation model (12.18), each
containing a pair of counts .yi1; yi2/, with means determined by (12.19). This
can be done through an explicit one-to-one correspondence between two sets of
parameters, .�i1; �i2; ˛/ and .�i1; �i2; �i12/. Note that the assignment of the same
exposure level, i.e. xi2 D xi1, in each cluster is just one way to ensure that the
generated outcomes satisfy the positivity constraint for the marginal expectations of
the Poisson model.

This simulation was carried out only for ˛ 2 Œ0; 1/. Obviously, under the
independence correlation, the GEEs appear to be the same as the score equations
given by the VGLMs. The average ARE of the form (12.16) for the slope parameter
ˇ1 is plotted in Fig. 12.4 over 2,000 replications at each of 20 grid points with 0.05
apart in Œ0; 1/.

Figure 12.4 indicates that high dependence leads to low ARE, which implies that
the estimator from the proposed VGLM is more efficient than the estimator from the
GEEs. Note that the above calculations were based on the data generated from
the stochastic representation (12.18), a model that is different from the proposed
VGLM, and the GEEs method is not dependent on a fully specified probability
model but only on the correctly specified first two moments. We learned from this
simulation that when both VGLM and GEE are used to analyze data from a third
model, the VGLM outperforms the GEE method in terms of estimation efficiency.
It is interesting to notice from Fig. 12.4 that the ARE stops dropping when two
outcomes become highly dependent. This may be because when the correlation is
high, the GEE becomes more sensitive to appreciate the correlation of the data.
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Table 12.1 Estimated regression coefficients (standard errors) and Z-statistics
from the VGLM and GEE

VGLM GEE

Variable Ǒ (s:e:) Z Ǒ(s:e:) Z

Intercept 1:91 .0:07/ 26:99 1:90.0:11/ 17:36

Treatment (x1) 0:29 .0:07/ 4:16 0:28.0:09/ 3:26

Period (x2) �0:12 .0:07/ �1:77 �0:12.0:08/ �1:44

12.5.3 Data Examples

We illustrate the bivariate Poisson model by fitting data arising from a two-period
cross-over trial for the treatment of enuresis, reported by Hills and Armitage [12].
Twenty nine children were treated with a new drug (A) or placebo (B) for 14 days.
The number of dry nights for each child was recorded [21, Table 16.2] and was
assumed to follow a Poisson distribution. Piantadosi [21] studied the period effect
and treatment effect by assuming a normal distribution. Here we used Poisson
distribution to model the counts of dry nights, and its marginal means are assumed
to follow the log-linear model:

log.�ij/ D ˇ0 C ˇ1x1ij C ˇ2x2ij; j D 1; 2; i D 1; : : : ; 29;

where x1ij D 1 for new drug and 0 otherwise, and x2ij D 1 for period 2 and 0
otherwise. Two methods, the Poisson VGLM and the GEEs were applied to analyze
the data. Table 12.1 lists the results of the two methods. Both VGLM and GEE
methods found statistical significance of the new drug to increase the mean number
of dry nights for child, where the VGLM gives a smaller standard error and larger
Z-statistic than the GEE, indicating a higher statistical power in the hypothesis test
for the effect of treatment. It is in agreement with the findings from the simulation
study; that is, the VGLM is more efficient than the GEE. In addition, both methods
did not find the importance of covariate period.

12.6 Vector GLMs for Mixed Outcomes

As pointed out in Sect. 12.2, the copula approach allows us to jointly model response
variables of mixed types. In this section we illustrate the use of such a model to
handle a bivariate response vector of mixed normal and binary outcomes.

12.6.1 Models

Consider a bivariate vector y D .y1; y2/ in that y1 � N.�1; '1/ and y2 �
Bernoulli.�2/. The VGLM for the data is specified by (12.5) with the marginal
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means given by �1 D xT1 ˇ1 and h.�2/ D xT2 ˇ2. Here ˇ1 and ˇ2 are usually
different, but covariates xj ; j D 1; 2 may be the same in some cases. It follows
from (12.9) that the joint density of y is

f .y1; y2/ D
�
�.y1I�1; '1/f1 � C �

1 .�2; z1/g; if y2 D 0,
�.y1I�1; '1/C �

1 .�2; z1/; if y2 D 1,
(12.20)

where �.�I�1; '1/ is the density ofN.�1; '1/, z1 D .y1��1/=p'1, andC �
1 .a; b/ D

˚
�
˚�1.a/C˛bp

1�˛2
�

.

We use the following conditional mass function of y2jy1 to generate correlated
mixed outcomes in the simulation study,

f .y2jy1/ D
�
1 � C �

1 .�2; z1/; if y2 D 0,
C �
1 .�2; z1/; if y2 D 1.

With a given data fyi ; .xi1; xi2/g; i D 1; : : : ; n, the log-likelihood for parameter
� D .ˇ1; ˇ2; '1; ˛/ is expressed as follows:

`.�/ D
X
i2I0

lnŒ�.yi1I�i1; '1/f1 � C�

1 .�i2; zi1/g�C
X
i2 NI0

lnŒ�.yi1I�i1; '1/C�

1 .�i2; zi1/�

D
nX

iD1

ln�.yi1I�i1; '1/C
X
i2I0

lnf1 � C�

1 .�i2; zi1/g C
X
i2 NI0

lnC�

1 .�i2; zi1/;

where set I0 D fi W yi2 D 0g and NI0 D fi W yi2 D 1g.

12.6.2 An Simulation Experiment

The marginal models used in the simulation study are specified as follows:

�i1 D ˇ01 C ˇ11xi1

˚�1.�i2/ D ˇ02 C ˇ12xi2

where xi1 and xi2 are generated randomly according to N(0, 1), and ˇ01 D ˇ11 D
ˇ02 D ˇ12 D 0:5.

The correlated mixed outcomes are simulated as follows: First, simulate yi1 �
N.�i1; '1/ with '1 D 1, and then simulate yi2 � BernoullifC �

1 .�i2; zi1/g with
˛ D 0:5. We generated 500 samples, each containing 300 pairs of observations.
We analyzed the simulated data sets using both VGLM and the naive method
that regards Y1 and Y2 as independent. In the naive method, Y1 is analyzed using



270 P.X.-K. Song et al.

Table 12.2 Average estimates, average standard errors (s.e.), and empirical standard deviations
(e.s.d.) from the joint copula model and separate models for normal and binary mixed outcomes,
respectively

VGLM Univariate models

Model ˇ Ǒ s:e: e:s:d: Ǒ s:e: e:s:d:

Linear ˇ01 D 0:5 0.4976 0.0586 0.0560 0.4977 0.0576 0.0559
ˇ11 D 0:5 0.5032 0.0552 0.0567 0.5038 0.0577 0.0605

Probit ˇ02 D 0:5 0.5005 0.0799 0.0751 0.5011 0.0801 0.0755
ˇ12 D 0:5 0.5012 0.0812 0.0835 0.5019 0.0865 0.0895

Five hundred simulations were run in the study

the standard linear regression method, and Y2 is analyzed using the probit model.
Average estimates, standard errors, and empirical standard deviations over the 500
replications are listed in Table 12.2.

The estimation method in the VGLM appears to be numerically stable and is
clearly more efficient than the naive method that uses univariate models to separately
analyze the data, where correlated mixed outcomes were treated as if they were
independent. The efficiency gain by the VGLM is expected to be more substantial
when correlation between the mixed outcomes is high.

12.7 Concluding Remarks

This chapter presents a class of vector generalized linear models that can accom-
modate a variety of discrete, continuous and mixed vector outcomes. We developed
a simultaneous maximum likelihood estimation and inference as well as composite
likelihood estimation and inference, which were implemented by a Gauss–Newton
type algorithm. Our focus of this paper is on the analysis of discrete and mixed
outcomes through a joint model, since both have not been investigated thoroughly in
the literature. An advantage of the presented theory is that all different types of data
can be treated under one unified framework of modeling, estimation and inference.

Since few fully probability model-based methods are available for practitioners
to analyze vector discrete and mixed data, the proposed models provide a powerful
arsenal to conduct maximum likelihood or composite likelihood statistical inference
in the line of the classical generalized linear models, which has been proved to
be an appealing way in the statistical literature to study the relationship between
the response and covariates of interest. With available full likelihood or composite
likelihood, it is straightforward to define likelihood ratio type statistics in the context
of hypothesis testing. Testing hypothesis based on likelihood ratio statistics for
discrete outcomes presents a challenge to the GEEs approach because of the lack
of likelihood function. An alternative to the composite likelihood approach is the
simulated likelihood approach [17] that utilizes importance sampling algorithm
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to overcome the numerical difficulty of evaluating Gaussian copula. This is a
promising domain of research that is worth further exploration.

In the simulation studies and data analyses, we compared the VGLMs to GEEs.
Our comparisons have clearly shown that estimators from the VGLMs appeared to
be more efficient than estimators from GEEs for the regression coefficients. While
the VGLMs enjoy better efficiency than the currently popular GEEs, the approach
based on the full likelihood may be limited due to the computational burden involved
in the evaluation of multivariate normal CDFs. However this limitation may be
greatly reduced when the pairwise composite likelihood approach is used, in which
only two-dimensional integrals need to be evaluated. Of course this computational
gain may be paid by a certain potential loss of estimation efficiency and it is worth a
further investigation about the amount of efficient loss in the context of VGLMs. In
addition, as always when parametric models are applied for data analysis, model
assumption diagnostics are necessary before the results are used to make final
conclusions. Checking assumptions on the marginal model specifications can be
done similarly as in the classical GLM theory. However, checking the dependence
structure induced by Gaussian copula or even Gaussian copula itself is a challenging
task, which has not been thoroughly investigated yet in the literature.

The VGLMs may be extended to handle multi-level data that often arise
from many practical settings such as spatially clustered data. Bai [4] proposed
a GeoCopula model to study the prevalence of malaria among village resident
children in Gambia. Two thousand and thirty five children were randomly sampled
from 65 villages along the Gambia river. Two levels of correlations, inter-village
spatial correlation and intra-village correlation, arise in the data and need to be
accounted for in the data analysis. To deal with such multi-level correlation, the
dependence matrix may be written as of the form:

� D �village.˛v/˝ �resident.˛r /

where �village.˛f / and �resident.˛t /, respectively, characterize the spatial dependence
among villages and the intra-village dependence among residents in a common
village and ˝ denotes the Kronecker product. Moreover, an explicit appearance
of matrix � in the joint distribution enables us to specify desired variance
structures to efficiently identify environmental risk factors associated with disease
prevalence as well as to perform kriging. More details may be found in Bai’s PhD
thesis [4].

Appendix A: Gaussian–Hermite Quadrature

Let �2.x1; x2/ be the bivariate normal density function with mean 0 and covariance

matrix˙ D
�
1 �

� 1

	
. We want to evaluate the following integral
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Z a

�1

Z b

�1
�2.x1; x2/dx1dx2

D
Z 1

�1

Z 1

�1
1fx1<a;x2<bg

1

2�
p
1 � �2 expf�1

2
xT˙�1xgdx1dx2

where xT D .x1; x2/. Let

zT D .
1

2
˙� 1

2 x/T D 1p
2
.x1; x2/

0
@

1p
1��2 0

� �p
1��2 1

1
A D .

x1 � �x2p
2.1� �2/

;
x2p
2
/;

then

Z a

�1

Z b

�1
�2.x1; x2/dx1dx2

D 1

�

Z 1

�1

Z 1

�1
1f

p
2.1��2/z1C

p
2�z2<a;

p
2z2<bg expf�.z21 C z22/gd z1d z2:

Let .zi1; zi2/ and .wi1;wi2/, i D 1; : : : ;Q, be the abscissas and weights of
Gaussian–Hermite quadrature, where Q is the number of quadrature points, then

Z a

�1

Z b

�1
�2.x1; x2/dx1dx2

� 1

�

QX
i1D1

QX
i2D1

wi1wi21Œ
p
2.1� �2/zi1 C p

2�zi2 < a;
p
2zi2 < b�:

Similarly,

Z a

�1

Z b

�1
h.x1; x2/�2.x1; x2/dx1dx2 � 1

�

QX
i1D1

QX
i2D1

wi1wi2

	h.
p
2.1 � �2/zi1C

p
2�zi2;

p
2zi2/1Œ

p
2.1� �2/zi1C

p
2�zi2 < a;

p
2zi2 < b�:

Appendix B: AREs of GEE and VGLM for Binary Data

Closed form expressions are available and used in the calculation of the asymptotic
relative efficiency (ARE) for the bivariate binary data in Sect. 12.4.2. The following
formulas in Appendices B.1 and B.2 are used to produce Fig. 12.3.
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B.1: Efficiency of GEE Estimation

We consider the special case where the working correlation is equal to the true
correlation, so the optimal asymptotic covariance matrix is

Vgee. Ǒ/ D
� nX
iD1

@�i

@̌

T

cov.Yi /
�1 @�i
@̌

��1
:

Clearly, the covariance matrix of yi can be written in the form

cov.Yi / D
�

var.Yi1/; cov.Yi1; Yi2/
cov.Yi1; Yi2/; var.Yi2/

�
D
�
�i1.1 � �i1/; cov.yi1; yi2/
cov.yi1; yi2/; �i2.1 � �i2/

�

with

cov.Yi1; Yi2/ D �i1 C �i2 C ˚2.˚
�1.1 � �i1/; ˚

�1.1 � �i2/j˛/ � 1 � �i1�i2:

For the marginal logit model (12.17), it is easy to obtain

@�i

@̌

T

D
�
�i1.1 � �i1/; �i2.1 � �i2/

�i1.1 � �i1/xi1; �i2.1 � �i2/xi2

�
:

Thus,

Vgee D
 

nX
iD1

@�i

@̌

T

�
�i2.1 � �i2/; �cov.Yi1; Yi2/

�cov.Yi1; Yi2/; �i1.1 � �i1/

�

�i1.1 � �i1/�i2.1 � �i2/� cov.Yi1; Yi2/2
@�i

@̌

!�1

def :D
�Pn

iD1 vi;00;
Pn

iD1 vi;01Pn
iD1 vi;10;

Pn
iD1 vi;11

��1

Moreover, when xi1 D xj1, and xi2 D xj2, i ¤ j , then vi;lk D vj;lk D vlk,
l; k D 0; 1, and

Vgee D 1

n.v00v11 � v201/

�
v11; �v01

�v10; v00
�

So,

cvargee. Ǒ
0/ D v11

n.v00v11 � v012/
;

cvargee. Ǒ
1/ D v00

n.v00v11 � v012/
:
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For the probit model (12.17),

@�i

@̌

T

D
�
�.˚�1.�i1//; �.˚�1.�i2//
�.˚�1.�i1//xi1; �.˚�1.�i2//xi2

�
;

and the Vgee and cvargee. Ǒ
j /; j D 0; 1 can be similarly calculated.

B.2: Efficiency of VGLM Estimation

Let flk D P.Y1 D l; Y2 D kj˛/; l; k D 1; 2. It follows from Eq. (12.12) in
Sect. 12.3.3 that for the logit model (12.17),

Pf11;ˇ0 D �1.1� �1/C �2.1 � �2/� ˚

 
˚�1.1 � �2/ � ˛˚�1.1� �1/p

1 � ˛2

!
�1.1 � �1/

�˚
 
˚�1.1 � �1/ � ˛˚�1.1 � �2/p

1 � ˛2

!
�2.1 � �2/;

Pf10;ˇ0 D ��2.1 � �2/ �˚
 
˚�1.1 � �1/ � ˛˚�1.1 � �2/p

1 � ˛2

!
�1.1 � �1/

�˚
 
˚�1.1 � �2/ � ˛˚�1.1 � �1/p

1 � ˛2

!
�2.1 � �2/;

Pf01;ˇ0 D ��1.1 � �1/ �˚
 
˚�1.1 � �1/ � ˛˚�1.1 � �2/p

1 � ˛2

!
�1.1 � �1/

�˚
 
˚�1.1 � �2/ � ˛˚�1.1 � �1/p

1 � ˛2

!
�2.1 � �2/;

Pf00;ˇ0 D �˚
 
˚�1.1 � �1/ � ˛˚�1.1 � �2/p

1 � ˛2

!
�1.1 � �1/

�˚
 
˚�1.1 � �2/ � ˛˚�1.1 � �1/p

1 � ˛2

!
�2.1 � �2/:

The Fisher Information matrix for the VGLM estimators is

Ivglm D var. Plˇ/ D
�

var. Plˇ0/; cov. Plˇ0 ; Plˇ1/
cov. Plˇ0 ; Plˇ1/; var. Plˇ1/

�
D
�
I00; I01
I10; I11

�
;

where
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I00 D var. Plˇ0/ D
Pf 2
11;ˇ0

f11
C

Pf 2
10;ˇ0

f10
C

Pf 2
01;ˇ0

f01
C

Pf 2
00;ˇ0

f00

I01 D I10 D cov. Plˇ0 ; Plˇ1/

D
Pf11;ˇ0 Pf11;ˇ1
f11

C
Pf10;ˇ0 Pf10;ˇ1
f10

C
Pf01;ˇ0 Pf01;ˇ1
f01

C
Pf00;ˇ0 Pf00;ˇ1
f00

I11 D var. Plˇ0/ D
Pf 2
11;ˇ1

f11
C

Pf 2
10;ˇ1

f10
C

Pf 2
01;ˇ1

f01
C

Pf 2
00;ˇ1

f00
:

The asymptotic covariance matrix of Ǒ is

Vvglm. Ǒ/ D 1

n.I00I11 � I01
2/

�
I11; �I01

�I10; I00
�
:

Therefore,

cvarvglm. Ǒ
0/ D I11

n.I00I11 � I01
2/
;

cvarvglm. Ǒ
1/ D I00

n.I00I11 � I01
2/
:

For the probit model (12.17), the first derivatives Pflk D P.Y1 D l; Y2 D kj˛/;
l; k D 1; 2 can be similarly derived, and the only difference from the above logit
model case is on the derivatives of @�j

@ˇk
; k D 0; 1.
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Chapter 13
Application of Bernstein Copulas to the Pricing
of Multi-Asset Derivatives

Bertrand Tavin

Abstract This paper deals with the application of Bernstein copulas to the pricing
of derivatives written on several underlying assets. We review the main characteris-
tics of this particular family of copulas. We then analyze their properties in a context
of multi-asset derivatives pricing, with a focus on the approximation property. We
finally give details about implementation steps and provide numerical evidences to
illustrate the reviewed properties.

13.1 Introduction

When facing a multivariate modeling problem, one needs a proper tool to model
dependence. Copula functions are such a tool as they allow for the dependence
to be modeled separately from the marginals, whenever these marginals are
continuous. This paper focuses on a particular family of copulas, Bernstein copulas,
and considers their application in finance. For further definitions, properties and
references about copula functions, see [6] and the monograph [15].

Erdely and Dı́az-Viera [8] and Hernández-Maldonado et al. [9] use Bernstein
copulas in geology, for the modeling of dependence between petrophysical prop-
erties of oil reservoirs. In insurance, [5] uses Bernstein copulas to model the
dependence between non-life insurance risks. In finance, [17] and [10] apply
Bernstein copulas to the pricing of two-asset derivatives written on foreign exchange
rates. Their approach focuses on the flexibility of the Bernstein copula that can be
fitted to available market data, namely vanilla options on the cross exchange rate.
In this paper we also work with Bernstein copulas for the pricing of multi-asset
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derivatives but our focus is different. It is on the approximation property of Bernstein
copulas when a dependence model has already been chosen or fitted.

13.2 The Financial Framework

We consider a financial market with one period and n C 1 primary assets, t D 0 is
the initial time and t D T < C1 is the final time. The final prices of the primary
assets are modeled as positive random variables on .˝;F ;P/ and are denoted by�
BT ; S

1
T ; : : : ; S

n
T

�
. The 0th asset, B , is a maturity T and risk-free zero-coupon bond.

A European multi-asset derivativeZ is a derivative that is written on up to n risky
assets and that pays ZT at maturity. ZT is a positive random variable on .˝;F ;P/

written ZT D z.S1T ; : : : ; S
n
T / for a positive payoff function z on Œ0;C1Œn. In

accordance with the First Fundamental Theorem of Asset Pricing, the time 0 price
of Z can be obtained as the discounted expectation of its payoff under a risk-
neutral probability measure Q. The time 0 price of Z is denoted by Z0 and writes
Z0 D B0E

Q ŒZT �.
A probability measure is said risk-neutral when it is equivalent to P and the

discounted asset prices are Q-martingales. There are many ways to build such a
measure for pricing purposes. An approach that is particularly suitable to our context
is to construct the joint distribution of log-returns of the primary asset prices in two
steps. In the first step their marginal distributions are computed from, or fitted to,
the available vanilla option prices. And in the second step a dependence structure
is applied to the marginals by means of a copula function. This two-step approach
allows for a separated modeling of risk factors and for flexibility in the choice of
the risk-neutral marginals. Background and details on this approach can be found,
among others, in [2, 16, 20] and in the monograph [3].

Gaussian and Student copulas are derived from the associated multivariate
distributions and both are popular choices. The former is parametrized with a
correlation matrix R. The latter is parametrized with a correlation matrix R and
a degree of freedom �, it is symmetric and have tail dependence. See [4] for details.
The skew t copula is the copula derived from the multivariate skew t distribution
built in [1]. It works with a correlation matrix R, a degree of freedom � and a skew
vector ˛. This copula is able to describe asymmetric dependence. See [1] and [12]
for details.

Let
�
Y 10 ; : : : ; Y

n
0

�
be the T -forward prices of the n risky assets and define the

associated log-returns, for k D 1; : : : ; n, as Xk
T D ln

�
SkT =Y

k
0

�
. F denotes the joint

distribution of
�
X1
T ; : : : ; X

n
T

�
under Q, with F1; : : : ; Fn its marginals. ZT rewrites

ZT D g.X1
T ; : : : ; X

n
T / with g a positive function on � � 1;C1Œn. We denote by

C .n/ the set of n-dimensional copulas. Let C 2 C .n/ be the chosen risk-neutral
copula to model the dependence structure of the asset price log-returns. We have
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n
T

�� D
Z
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g.x/dC.F1.x1/; : : : ; Fn.xn//

D
Z

u2Œ0;1�n
g.F �1

1 .u1/; : : : ; F
�1
n .un//dC.u/:

When C is absolutely continuous, and c D @nC
@u1:::@un

is its density, the integral
becomes

E
Q ŒZT � D

Z
u2Œ0;1�n

g.F�1
1 .u1/; : : : ; F

�1
n .un//c.u/du (13.1)

13.3 Bernstein Copulas and Their Properties

The family of Bernstein copulas was introduced in [13] and [14]. This family of
copulas is built with Bernstein polynomials as building blocks. Bivariate Bernstein
copulas are studied in [7] and their multivariate extension is considered in [19]
and [18]. Janssen et al. [11] studies the asymptotic properties of the Bernstein copula
estimator.

Definition 13.1 (Bernstein Polynomial).
.Bi;m/

m
iD0 are the m C 1 Bernstein polynomials of degree m 2 N, defined for

x 2 Œ0; 1� as

Bi;m.x/ D
�
m

i

	
xi .1 � x/m�i

Let L n;m be a discretization of the n-dimensional unit hypercube Œ0; 1�n, with
m 2 N discretization steps in all dimensions, and written as

L n;m D
n�˛1
m
; : : : ;

˛n

m

�ˇ̌
ˇ˛j 2 N and 0 � ˛j � m for j D 1; : : : ; n

o

For ease of readability u D .u1; : : : ; un/ will denote an element of Œ0; 1�n and
v D .v1; : : : ; vn/ will denote an element of L n;m, with vj D ˛j

m
for some ˛j 2 N

and 0 � ˛j � m (j D 1; : : : ; n) and so that v can also be written
�
˛1
m
; : : : ; ˛n

m

�
.

Definition 13.2 (Bernstein Copula).
For � a given real-valued function on L n;m, define Cm

B W Œ0; 1�n �! Œ0; 1� as

CmB .u/ D
X

v2L n;m

�.v/

nY
iD1

B˛i ;m.ui / D
mX

˛1D0
: : :

mX
˛nD0

 
�
�˛1
m
; : : : ;

˛n

m

� nY
iD1

B˛i ;m.ui /

!

(13.2)
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If � fulfills the two conditions stated below, then Cm
B is a proper copula, named

Bernstein Copula with parameter function �.

1. For 0 � ˛j � m � 1 .j D 1; : : : ; n/ and with ın D 0 or 1 whether n is even or
odd, respectively.

1X
l1D0

: : :

1X
lnD0

.�1/.ınCPn
jD1 lj /�

�
˛1 C l1

m
; : : : ;

˛n C ln

m

	

 0

2. For v 2 L n;m

max

0
@ nX
jD1

vj � nC 1; 0

1
A � � .v1; : : : ; vn/ � min

jD1;:::;n .vj /

In the sequel and unless stated differently, we consider Cm
B an orderm Bernstein

copula with parameter function �. Let �n� be the n-dimensional volume operator
applied to the function � and defined, for 0 � ˛j � m � 1 .j D 1; : : : ; n/, as

�n�
�˛1
m
; : : : ;
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m

�
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: : :
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.�1/.ınCPn
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Definition 13.3 (Bernstein Copula Density).
The Bernstein copula Cm

B is absolutely continuous and has density cmB defined as

cmB .u/ D @nCm
B

@u1 : : : @un
.u/ D
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(13.3)

As it is proven in [19], a Bernstein copula can always be decomposed as a sum
of the product copula and a perturbation term. This decomposition is written

Cm
B .u/ D

nY
iD1

ui C
X
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�.v/

nY
iD1

B˛i ;m.ui /
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vi

If C 2 C .n/, then Cm
B .C / defined, for u 2 Œ0; 1�n, as
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B .C/.u/ D X
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(13.4)
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is a proper copula named Bernstein copula approximation of C with order m. The
associated parameter function is written �.C /.v/ D C .v1; : : : ; vn/, for v 2 L n;m.
Cm
B .C / uniformly converges to C as the order m grows, so that a given copula can

be approximated to any precision level by a Bernstein copula.
The decomposition result is useful to understand how the Bernstein copula

approximation behaves. If the copula to be approximated is the product copula,
then the perturbation term is zero as well as the approximation error. If a given
copula to be approximated is different from the product copula, then the perturbation
term departs from zero. In probabilistic terms, the product copula represents
independence. We could expect that, for a fixed orderm, the approximation quality
worsens as the given copula represents a dependence structure that departs from
independence.

In order to investigate this behavior, we restrict ourselves to the bivariate case
and we consider a measure of the approximation error that is defined, for C 2 C .n/

andm 2 N, as

supu2Œ0;1�2 jCm
B .C /.u/� C.u/j (13.5)

This kind of sup-norm distance-based measure of the approximation error is used
in [7] in the same context. It takes only positive values and goes to zero as the
orderm grows.

In the bivariate case, there are, at least, three ways for a copula to depart
from independence, namely association, tail dependence, and asymmetry. We
now consider the approximation of different families of parametric copulas and
we compute the approximation error (13.5) for different sets of parameters. In
Figs. 13.1, 13.2, and 13.3 below, we plot the approximation error as a function of
the Bernstein copula orderm. Plotted values are obtained with Matlab minimization
routine fmincon.

In Fig. 13.1 the approximated copulas are Gaussian copulas with different
correlation parameters, corresponding to different levels of association. The three
curves of approximation error are ordered according to the levels of association. As
expected, the lower the association level is, the lower the approximation error is.

In Fig. 13.2 the approximated copulas are Student copulas with a fixed correla-
tion parameter and different degrees of freedom, corresponding to different levels
of tail dependence. Even though the three curves of approximation error are close to
each other, they are ordered according to the levels of tail dependence. As expected,
the approximation error worsens with the level of tail dependence.

In Fig. 13.3 the approximated copulas are skew t copulas with fixed correlation
and degree of freedom and different skew parameter vectors, corresponding to
different cases of asymmetry. The three curves of approximation error are ordered
according to the corresponding levels of asymmetry. As expected, the approximation
error worsens with the level of asymmetry. Curves corresponding to asymmetric
cases decrease at a slower rate than the curve corresponding to the symmetric case.
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Fig. 13.1 Error measure associated with Bernstein copula approximations of Gaussian copulas,
as a function of the order m and for different correlation parameter values
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Fig. 13.2 Error measure associated with Bernstein copula approximations of Student copulas, as
a function of the order m and for different degrees of freedom
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Fig. 13.3 Error measure associated with Bernstein copula approximations of skew t copulas, as a
function of the order m and for different skew vectors

The behavior of the Bernstein copula approximation hence depends on the
characteristics of the approximated copula. The initial intuition that this behavior
usually depends on how the approximated copula departs from independence is
thereby confirmed by these numerical investigations.

13.4 The Pricing of Multi-Asset Derivatives

Within the framework of Sect. 13.2 we consider the pricing of multi-asset derivatives
by means of Bernstein copulas, the definition and properties of which were detailed
in Sect. 13.3. Let C 2 C .n/ be the chosen risk-neutral copula and Cm

B .C / be its
order m Bernstein copula approximation. An approximation of Z0, the multi-asset
derivative price, is obtained by replacing the chosen copula by its approximation.
Bernstein copulas are absolutely continuous. The multiple integral to be computed
then writes

E
Q ŒZT � �

Z
u2Œ0;1�n

g.F �1
1 .u1/; : : : ; F

�1
n .un//c

m
B .C /.u/du (13.6)

This representation is particularly suitable for the use of numerical quadrature
methods or quasi Monte Carlo integration methods. The choice between the two
methods to solve this multiple integral usually depends on its dimensionality.
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In the sequel of this section we restrict ourselves to the two-asset case. We
perform a numerical investigation for common multi-asset payoffs, namely calls
on the equally weighted basket of S1 and S2 and puts on the maximum of the same
pair of assets. We work with realistic market data conditions that could correspond
to derivatives written on equity market indices such as the French and German
euro-denominated market indices, CAC40 and DAX30. To compute the prices of
basket options we use the Matlab quadrature routine quad2d. To compute the
prices of puts on the maximum we use the one-dimensional Matlab quadrature
routine quadgk because the multiple integrals (13.1) and (13.6) simplify to one
dimensional integrals, see [3] for details about this simplification.

We consider different parametric copulas. G1 and G2 are Gaussian copulas
with parameters � D 0:55 and � D 0:75, respectively. ST1 is a Student copula
with parameters � D 0:55 and � D 6. SKT1 and SKT2 are skew t copulas with
respective parameters .� D 0:55; � D 6; ˛1 D �0:02; ˛2 D �0:04/ and .� D
0:55; � D 6; ˛1 D �0:05; ˛2 D �0:08/.

We consider the risk-neutral marginal distributions of X1
T and X2

T to be normal
inverse gaussian (NIG) and Gaussian distributions. The NIG distributions for the
three months log-returns have parameters .a1 D 22:8; b1 D �16:0;m1 D 0:10;

d1 D 0:11/ and .a2 D 26:9; b2 D �18:3;m2 D 0:10; d2 D 0:11/ and the Gaussian
distributions for the same log-returns are parametrized with the corresponding ATM
volatilities, respectively �1 D 0:208 and �2 D 0:188. The NIG distributions for the
six months log-returns have parameters .a1 D 16:4; b1 D �12:5;m1 D 0:15; d1 D
0:14/ and .a2 D 17:8; b2 D �13:4;m2 D 0:15; d2 D 0:15/. The other market
parameters are as follows. Three and six months forward prices of S1 and S2 are
both set equal to 100. The three and six months zero-coupon bond prices are 0:9975
and 0:9950, respectively.

In Tables 13.1, 13.2, and 13.3 below we have gathered the exact and approx-
imated prices, as well as the differences between both, for basket options struck
below, above and at the underlying forward value. Their strikes are denoted by K .
In Table 13.4 we have gathered the exact and approximated prices, as well as the
differences between both, for puts on the maximum struck below, above and close
to the underlying forward value. Their strikes are also denoted by K .

For basket options, the considered Bernstein copula order is m D 50 and for
puts on the maximum, this order is m D 120. These values are chosen for an
illustrative purpose and correspond, at the same time, to an acceptable precision
for the approximated price and to a reasonable computational load to handle. The
considered order is larger for puts on the maximum than for basket options because
the price of the former is more sensitive to the dependence structure.

All computations are done with Matlab routines on a personal laptop and the
required computation times are indicated in the last column of the tables.

Tables 13.1 and 13.4 show that the use of Bernstein copulas can lead to
acceptable levels of approximation while keeping computation time reasonable.
It is particularly true for basket options, for which the pricing error magnitude is
around two cents of the underlying forward value. Tables 13.2 and 13.3 confirm this
feature as the magnitude of pricing errors is little affected by a change in marginal
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Table 13.1 Prices and approximation errors for call options on the equally weighted basket of
S1 and S2

Copula K D 95 K D 98 K D 100 K D 102 K D 105 Comp. time

Gaussian G1 6:747 4:658 3:462 2:451 1:309 5:7 s
Gaussian G2 6:943 4:865 3:667 2:643 1:465 4:0 s
Student ST1 6:728 4:627 3:428 2:420 1:290 6:9 s
Skew t SKT1 6:762 4:675 3:486 2:488 1:373 197 s
Skew t SKT2 6:797 4:724 3:547 2:561 1:464 196 s

Bernstein �.G1/ 6:725 4:637 3:442 2:433 1:292 9:1 s
Bernstein �.G2/ 6:915 4:839 3:642 2:620 1:444 5:0 s
Bernstein �.ST1/ 6:708 4:608 3:410 2:403 1:275 11:2 s
Bernstein �.SKT1/ 6:747 4:661 3:474 2:477 1:365 10:2 s
Bernstein �.SKT2/ 6:788 4:718 3:542 2:559 1:466 10:2 s

Price diff. .G1/ 0:022 0:021 0:02 0:019 0:017

Price diff. .G2/ 0:028 0:026 0:025 0:023 0:020

Price diff. .ST1/ 0:020 0:019 0:018 0:017 0:015

Price diff. .SKT1/ 0:016 0:013 0:012 0:010 0:008

Price diff. .SKT2/ 0:01 0:006 0:004 0:002 0:002

Maturity is T D 3 months, marginals are NIG and the Bernstein copulas order ism D 50

Table 13.2 Prices and approximation errors for call options on the equally weighted basket of
S1 and S2

Copula K D 95 K D 98 K D 100 K D 102 K D 105 Comp. time

Gaussian G1 6:444 4:523 3:469 2:596 1:604 0:1 s
Gaussian G2 6:623 4:732 3:685 2:809 1:795 0:1 s
Student ST1 6:423 4:490 3:433 2:563 1:583 0:2 s
Skew t SKT1 6:450 4:531 3:485 2:626 1:660 173:1 s
Skew t SKT2 6:478 4:575 3:540 2:694 1:746 173:8 s

Bernstein �.G1/ 6:425 4:503 3:448 2:575 1:583 7:7 s
Bernstein �.G2/ 6:599 4:706 3:659 2:783 1:769 5:6 s
Bernstein �.ST1/ 6:406 4:472 3:414 2:544 1:564 7:6 s
Bernstein �.SKT1/ 6:437 4:517 3:471 2:612 1:647 7:6 s
Bernstein �.SKT2/ 6:469 4:567 3:533 2:687 1:740 7:6 s

Price diff. .G1/ 0:019 0:021 0:021 0:021 0:021

Price diff. .G2/ 0:024 0:025 0:026 0:026 0:026

Price diff. .ST1/ 0:017 0:018 0:019 0:019 0:019

Price diff. .SKT1/ 0:014 0:014 0:014 0:014 0:014

Price diff. .SKT2/ 0:009 0:008 0:008 0:007 0:006

Maturity is T D 3 months, marginals are Gaussian and the Bernstein copulas order is m D 50

distributions or in time to maturity. Across our numerical results, the main driving
factors of the approximation behavior are the choice of the approximated copula,
particularly its correlation parameter and the derivative payoff. This is in accordance
with the remarks made in Sect. 13.2.



286 B. Tavin

Table 13.3 Prices and approximation errors for call options on the equally weighted basket of
S1 and S2

Copula K D 95 K D 98 K D 100 K D 102 K D 105 Comp. time

Gaussian G1 8:339 6:382 5:214 4:166 2:836 7:1 s
Gaussian G2 8:652 6:698 5:525 4:464 3:104 4:7 s
Student ST1 8:300 6:334 5:163 4:117 2:796 8:9 s
Skew t SKT1 8:362 6:410 5:249 4:213 2:908 253:3 s
Skew t SKT2 8:426 6:490 5:341 4:317 3:030 244:4 s

Bernstein �.G1/ 8:306 6:351 5:183 4:137 2:810 12:5 s
Bernstein �.G2/ 8:611 6:659 5:487 4:428 3:071 6:9 s
Bernstein �.ST1/ 8:270 6:306 5:137 4:091 2:772 12:6 s
Bernstein �.SKT1/ 8:341 6:391 5:233 4:198 2:896 12:8 s
Bernstein �.SKT2/ 8:415 6:483 5:337 4:315 3:032 12:4 s

Price diff. .G1/ 0:033 0:031 0:03 0:029 0:027

Price diff. .G2/ 0:041 0:039 0:038 0:036 0:033

Price diff. .ST1/ 0:030 0:028 0:027 0:026 0:024

Price diff. .SKT1/ 0:021 0:018 0:016 0:015 0:012

Price diff. .SKT2/ 0:010 0:006 0:003 0:001 0:003

Maturity is T D 6 months, marginals are NIG and the Bernstein copulas order ism D 50

Table 13.4 Prices and approximation errors for put options written on the maximum of S1 and S2

Copula K D 105 K D 108 K D 110 K D 112 K D 115 Comp. time

Gaussian G1 3:799 5:599 7:062 8:702 11:402 0:7 s
Gaussian G2 4:516 6:416 7:927 9:600 12:327 0:6 s
Student ST1 3:888 5:695 7:164 8:812 11:522 0:6 s
Skew t SKT1 3:960 5:782 7:261 8:915 11:631 12:6 s
Skew t SKT2 4:037 5:877 7:366 9:028 11:752 12:6 s

Bernstein �.G1/ 3:763 5:560 7:020 8:658 11:356 2:2 s
Bernstein �.G2/ 4:445 6:339 7:846 9:516 12:239 2:2 s
Bernstein �.ST1/ 3:836 5:639 7:106 8:751 11:458 2:3 s
Bernstein �.SKT1/ 3:906 5:724 7:199 8:851 11:563 2:3 s
Bernstein �.SKT2/ 3:981 5:816 7:301 8:961 11:680 2:4 s

Price diff. .G1/ 0:036 0:040 0:042 0:044 0:046

Price diff. .G2/ 0:071 0:077 0:081 0:084 0:089

Price diff. .ST1/ 0:052 0:056 0:059 0:061 0:064

Price diff. .SKT1/ 0:054 0:059 0:062 0:065 0:068

Price diff. .SKT2/ 0:055 0:061 0:064 0:067 0:072

Maturity is T D 3 months and marginals are NIG distributions. The Bernstein copulas order is
m D 120

From Tables 13.1, 13.2, and 13.3, pricing with Bernstein copulas appears
particularly suitable when the chosen copula is slow to compute because it has
a complex expression, like the skew t copula. In such a case, the approach with
Bernstein copulas offers a clear reduction of the computation time required to value
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a portfolio of derivatives. The reduction of computational time, however smaller,
is confirmed for rainbow options by Table 13.4. This smaller edge is explained by
the possibility to compute the exact prices faster with one dimensional integrals and
by the higher order of a Bernstein copula required to have an acceptable level of
precision.

Acknowledgments I thank two anonymous referees and an editor for their comments on an earlier
version.
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Index

Affine. See Process, affine
AIC. See Information criterion, AIC
Anderson. See Test statistic,

Anderson-Darling; Test,
Anderson-Darling

Anticomonotonic. See Copula,
anticomonotonic
(countermonotonic)

Archimax. See Copula, Archimax
Archimedean. See Copula, Archimedean;

Copula, hierarchical (nested)
Archimedean

ARMA. See Model, ARMA
Association. See Measure, of association
Asymmetric. See Copula, asymmetric;

Dependence, asymmetric
Asymmetry. See Measure, of asymmetry
Augé. See Copula, family of, Cuadras-Augé

Bayesian
criterion (see information criterion,

Bayesian (BIC))
network, 40, 42, 43, 49, 54

Bernstein
copula (see Copula, Bernstein)
polynomial, 279

Blomqvist’s ˇ, 29
Bootstrap, 29, 63, 66–68, 70, 99, 100, 223
Brownian bridge, 65, 66
Butterfly effect, 153

C-convolution method. See Copula,
construction of, C-convolution
method

Chi-square. See Distribution, Chi-square;
Test statistic, Chi-square; Test,
Chi-square

Clayton. See Copula, family of, Clayton
Coefficient. See Tail, dependence coefficient
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