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An Introduction to Remote Sensing

Practical work to senior undergraduate courses of lectures: “Remote sensing of the
Environment” and “Radiative transfer in the atmosphere” by Anatoly Kuznetsov,
Irina Melnikova, Olga Seroukhova, Dmitry Pozdnyakov, Alexander Vasilyev

Abstract

The interaction of the solar and heat radiation with the atmosphere and the earth’s
surface is the subject of this book. It is useful not only for students and professors
but for wide circle of scientists involved in environmental studies.

The book contains descriptions of computer studying programs concerning
different topics of courses on the remote sensing and radiative transfer. Thus it is
not a textbook with a methodically presented subject of courses, but it includes only
the basic ground for the comprehension of key topics of courses and provides the
accomplishment of practical works using specially elaborated computer programs.
The certain eclecticism of the book is explained with these circumstances.

We need to point out that practical works have been elaborated by authors
independently that influences the style of different chapters and design of computer
codes. The first chapter is mutual, Chaps. 2-9 is written by Anatoly Kuznetsov and
Olga Seroukhova, part of the Chaps. 9, 11 and 12 —by Irina Melnikova, and Chaps. 10,
13-15 — by Alexander Vasilyev, and Chaps. 16—18 by Dmitry Pozdnyakov.

Themes of practical works reflect main sections of mentioned courses of lec-
tures. The packet of computer programs is added to this book for the calculation of
solar and heat radiation characteristics on the base of initial parameters of the
atmosphere and surface (direct problems) and for retrieval optical parameters of
the atmosphere and surface from radiation data (observed or simulated). Programs
provide the dialog with the user and include graphics of results in some cases. For
accomplishment of the practical work the student has to prepare initial data, to
fulfill calculations with the corresponding program, to plot demanded graphics of
calculated values dependencies on initial parameters and prepare the report with the

xi



xii An Introduction to Remote Sensing

use of the editors WORD and EXCEL. It promotes to deep and reliable compre-
hension of corresponding topics by students. It is important that all described
approaches and computer programs are valuable resources for solving radiative
transfer problems and they could be used by students for courses and diploma
studies concerned calculation of radiative characteristics or solution of direct and
inverse problems of remote sensing and radiative transfer.

Part I

The first chapter contains common information about radiative transfer in the
atmosphere, which is necessary for understanding practical works.

The second chapter is devoted to specific features of black body and real body
spectral brightness. Proposed tasks provide the understanding of conceptions of
brightness temperature and emissivity of real bodies.

The third chapter considers the direct calculation of absorption coefficient of
atmospheric gases with the use of parameters of the line structure of absorption
bands. Results are necessary for the transmission function calculation.

The fourth chapter contains the calculation of transmission functions in different
IR-spectral ranges on the base of different models of the absorption bands of the
atmospheric gases. Results are used in following studies.

The fifth chapter includes the calculation of outgoing heat radiation of the
Earth’s surface and atmosphere for different cases of cloudy and clear atmosphere.
Results allow demonstrating the separate contribution of the atmosphere and
surface to the intensity of outgoing heat radiation.

The sixth chapter is about the construction and operation principles of the
automatic one channel IR-radiometer.

In the seventh chapter it is proposed to accomplish the remote measurement of
the temperature field of the surface with the automatic one channel IR-radiometer.

The eighth chapter is aimed to estimation of errors of the surface temperature
retrieval, called by errors of measurement, a priori information and other factors in
solving the inverse problem. Three different approaches are considered for estimat-
ing resulting uncertainties and their statistical characteristics.

The Chap. 9 contains two based methods of solving the inverse problem of the
thermal remote sensing — retrieval of vertical temperature profiles from the spectral
observations of IR intensity: the method of statistical regularization and the method
of smoothing functional. Choosing different values of elements of temperature
deviations matrix and the regularization parameter together with a priori informa-
tion for removing the incorrectness allows demonstrating the inverse problem
incorrectness and mathematical approaches.

The tenth chapter is dedicated to calculating optical characteristics of atmo-
spheric aerosols. Different spectral dependencies of aerosol scattering and absorp-
tion coefficients are considered together with different shapes of phase functions,
including big water droplets demonstrating rainbow maximums.
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Part 11

Chapters 11-14 consider different methods of the transfer theory for calculating
radiative characteristics for models of cloudy and clear atmosphere: asymptotic
formulas, Eddington formulas, Monte-Carlo approach, and single scattering ap-
proach. Specific features of every method are detailed outlined together with their
exactness for different atmospheric models and geometry of illumination.

Chapter 15 contains peculiarities of anisotropic reflection from surface on the
example of waved water surface. Different types of reflection form are considered.
It is proposed to study the dependency of brightness coefficients on solar elevation
and wind velocity and plot 3-D graphics for presenting brightness maximum and
wideness of sunlight patches as functions of mentioned factors.

Chapter 16 considers the calculation and analysis of spectral distribution of the
coefficient of diffuse reflection of solar radiation of the water column in deep and
shallow basins.

Chapter 17 is devoted to calculation and analysis of variety of radiometric color
characteristics of natural water applying to basins with high space heterogeneity of
hydro-optical properties.

Chapter 18 contains the approach of the retrieval concentrations of optically
active components of natural water from spectral distribution of the coefficient of
diffuse reflection of solar radiation below water surface in problems of environment
remote sensing.

The book contains the set of optical parameters corresponding to simple atmo-
spheric and surface models, which could be useful for first approximation estimat-
ing of interaction of the Environments and electro-magnetic radiation.






Chapter 1
Radiation in the Earth Atmosphere

Abstract The first chapter contains general information about interaction of solar
radiation with the atmosphere, elements of the radiative transfer theory, and base
information about the scattering theory, which is necessary for understanding
practical works. The basic notations of solar radiation characteristics and atmo-
spheric optical parameters together with corresponding equations are presented.

1.1 Characteristics of the Radiation Field in the Atmosphere

In accordance with the contemporary conceptions, light (radiation) is an electro-
magnetic wave showing the quantum properties. Thus, strictly speaking, the pro-
cesses of light propagation in the atmosphere should be described within the ranges
of electrodynamics and quantum mechanics. Nevertheless, it is suitable to abstract
from the electromagnetic nature of light to solve the number of problems (including
the problems described in this book) and to consider radiation as an energy flux.
Light characteristics governed by energy are called the radiative characteristics.
This approach is usual for optics because the frequency of the electromagnetic
waves within the optical ranges is huge and the receiver registers only energy,
received during many wave periods (not a simultaneous value of the electro-
magnetic intensity).

The following main types of radiation (and their energy) are distinguished in solar
radiation transferring throughout the atmosphere: direct radiation (radiation coming
to the point directly from the Sun); diffused solar radiation (solar radiation scattering
in the atmosphere); reflected solar radiation from surface; self-atmospheric radiation
(heat atmospheric radiation) and self-surface radiation (heat radiation). The total
combination of these radiations creates the radiation field in the Earth atmosphere,
which is characterized with energy of radiation coming from different directions
within different spectral ranges. As it is seen from above, it is possible to divide all
radiation to the solar and self (heat) radiation. The maximum of the solar radiation is

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 1
DOI 10.1007/978-3-642-14899-6_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Radiation in the Earth Atmosphere

A\dsz
\
1 '

~dS

Fig. 1.1 The intensity and
the flux of radiation (radiance
and irradiance)

in the spectral ranges 0.3—1.0 pum which may be specified as the short-wave spectral
range. Solar radiation integrated with respect to the wavelength over the considered
spectral region will be called fotal radiation. Meanwhile, it should be noted that
further definitions of the radiation characteristics are not linked within this limitation
and could be used either for heat or for microwave ranges.

The notion of a monochromatic parallel beam (the plane electromagnetic wave
of one concrete wavelength and one strict direction) is widely used in optics for the
theoretical description of different processes. Usually solar radiation is set just in
that form to describe its interactions with different objects. The principle of an
independency of the monochromatic beams under their superposition is postulated,
i.e. the interaction of the radiation beams coming from different directions with the
object is considered as a sum of independent interactions along all directions. The
physical base of the independency principle is an incoherence of the natural
radiation sources.'

This standard operation is naturally used for the radiation field, i.e. the consider-
ation of it as a sum of non-interacted parallel monochromatic beams. Furthermore,
radiation energy can’t be attributed to a single beam, because if energy were finite
in the wavelength and direction intervals, it would be infinitesimal for the single
wavelength and for the single direction. For characterizing radiation, it is necessary
to pass from energy to its distribution over spectrum and directions.

Consider an emitting object (Fig. 1.1) implying not only the radiation source but
also an object reflecting and scattering external radiation. Pick out a surface element
dS, encircle the solid angle dQ around the normal 7 to the surface. Then radiation
energy would be proportional to the area dS, the solid angle dQ, as well as to the
wavelength ranges [4, 4 + d1] and the time interval [z, ¢ + df]. The factor of
the proportionality of radiation energy to the values dS, dQ, d1 and dt would be

't should be noted that monochromatic radiation is impossible in principle. It follows from the
mathematical properties of the Fourier transformation: a spectrum consisting of one frequency is
possible only with the time-infinite signal. Furthermore, the principle of the independency is not
valid for the monochromatic beams because they always interfere. Both these contradictions are
possible to remove if we are considering monochromatic radiation not as a physical but as a
mathematical object, i.e. as a real radiation expansion into a sum (integral Fourier) of the harmonic
terms. The separate item of this expansion is interpreted as monochromatic radiation.



1.1 Characteristics of the Radiation Field in the Atmosphere 3

specified an intensity of the radiation or radiance I,(7,t)at the wavelength 4 to
the direction 7 at the moment ¢, namely:

dE

= dSdQdidt’ (1.1)

I).(Fa t)

In many cases we are interested not in energy emitted by the object but in energy
of the radiation field, which is coming to the object (for example to the instrument
input). Then it would be easy to convert the above specification of radiance.
Consider the emitting object and set the second surface element of the equal area
dS, = dS at an arbitrary distance (Fig. 1.1). Let the system be situated in vacuum,
i.e. radiation is not interacting during the way from dS to dS,. Let the element dS, be
perpendicular to the direction 7, then the solid angle at which the element dS, is
seen from dS at the direction 7 is equal to the solid angle at which the element dS is
seen from dS, at the opposite direction (— 7). The energies incoming to the surface
elements dS and dS; are equal too thus, we are getting the consequence from the above
definition of the intensity. The factor of the proportionality of emitted energy dE to
the values dS, dQ, dA and dt is called an intensity (radiance) I, (7, f) incoming from the
direction 7'to the surface element dS perpendicular to i’ at the wavelength A at the time ¢
i.e. Eq. 1.1. Point out the important demand of the perpendicularity of the element
dS to the direction 7" in the definition of both the emitting and incoming intensity.

The definition of the intensity as a factor of the proportionality tends to have
some formal character. Thus, the “physical” definition is often given: the intensity
(radiance) is energy that incomes per unit time, per unit solid angle, per unit
wavelength, per unit area perpendicular to the direction of incoming radiation,
which has the units of watts per square meter per micron per steradian. This
definition is correct if we specify energy to correspond not to the real unit scale
(sec, sterad, um, sz) but to the differential scale dr, dQ, dA, dS, which is reduced
then to the unit scale. Equation 1.1 is reflecting this obstacle.

Let the surface element dS’, which radiation incomes to, be not perpendicular to
the direction 7’but form the angle ¥ with it (Fig. 1.1). Specify the incident angle (the
angle between the inverse direction — 7 and the normal to the surface) as
9 = /(if, —r). In that case we have to use the projection of the element dS’ on a
plane perpendicular to the direction of the radiation propagation in the capacity
of the surface element dS, when defining the intensity as a factor of the
proportionality. This projection is equal to dS = dS’cosV. Then the expression
dE = I, (¥, t)dtd2dQdS’ cos 0 could be obtained from Eq. 1.1. It is suitable to
attribute the sign to energy defined above. Actually, if we fix one concrete side of
the surface dS’ and assume the normal just to this side as a normal 77 then the angle
Y varies from 0 to 7, and the cosine from +1 to —1. Thus, incoming energy is
positive and emitted energy is negative. It has transparent physical sense of the
positive source and the negative sink of energy for the surface dS’. Now specify
the irradiance (the radiation flux of energy) F,(t) (often it is called the net
spectral energy flux) as a factor of the proportionality of radiation energy dE’
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incoming within a particular infinitesimal interval of wavelength [4, 4 + d/] and
time [, t + df] to the surface dS’ from the all directions to values dt, dA, dS’ i.e.:

dE'
Fi) = Ganas

(1.2)

Adduce the “physical” definition of the irradiance that is often used instead of
the “formal” one expressed by Eq. 1.2. Radiation energy incoming per unit area per
unit time, per unit wavelength is called the radiation flux or irradiance. This
definition corresponds correctly to Eq. 1.3 provided the meaning that energy is
equivalent to the difference of incoming and emitted energy and uses the differen-
tial scale of area, time and wavelength. Proceeding from this interpretation, we will
further use the term energy as a synonym of the flux implying the value of energy
incoming per unit area, time and wavelength.

To characterize the direction of incoming radiation to the element dS’ in addition
to the angle ¥, introduce the azimuth angle , which is counted off as an angle
between the projection of the vector 7to the plane dS and any direction on this plane
(0 < ¢ < 27m). Actually we are using the spherical coordinates system. Energy dE’
incoming to the surface dS’ from all directions is expressed in terms of energy from

a concrete direction dE(9,p) as: dE' = [ dE(V, p)d€Q, where the integration is
Q=4n
accomplished over the whole sphere. Using the well-known expression for an

element of2 the solid angle in the spherical coordinates dQQ = dysinddd we will
get dE' = [ do [ dE(V, p) sin 9d.

0o 0
After the substituting this expression to (1.2) we will get the formula to express
the irradiance:

2n n
F,(1) = Jdgpjl;,(ﬁ,ga,t) cos ¥ sin ¥dv (1.3)
0o 0

In addition to direction (3, @), wavelength A and time ¢ the solar radiance in the
atmosphere depends on placement of the element dS. Owing to the sphericity of the
Earth and its atmosphere, it is convenient to put the position of this element in
the spherical coordinate system with its beginning in the Earth center. Nevertheless,
taking into account that the thickness of the atmosphere is much less than the Earth
radius is, in the number of problems the atmosphere could be considered by
convention as a plane limited with two infinite boundaries: the bottom — a ground
surface and the top — a level, above which the interaction between radiation and
atmosphere could be neglected. Further, we are considering only the plane-parallel
atmosphere approximation. Then the position of the element dS could be
characterized with Cartesian coordinates (x, y, z) choosing the altitude as axe z
(to put z axis perpendicular to the top and bottom planes from the bottom to the
top). Thus, in general case the radiance in the atmosphere could be written as I,(x, y,
z, 9, ¢, £). Under the natural radiation sources (in particular — the solar one) we could
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neglect the behavior of the radiance in the time domain comparing with the time
scales considered in the concrete problems (e.g. comparing with the instrument
registration time). The radiation field under such conditions is called a stationary
one. Further, it is possible to ignore the influence of the horizontal heterogeneity of
the atmosphere on the radiation field comparing with the vertical one, i.e. don’t
consider the dependence of the radiance upon axes x and y. This radiation filed is
called a horizontally homogeneous one. Further, we are considering only stationary
and horizontally homogeneous radiation fields. Besides, following the traditions the
subscript / is omitted at the monochromatic values if the obvious wavelength
dependence is not mentioned.

It is naturally to count off the angle ¥ from the selected direction z in the
atmosphere. This angle is called zenith incident angle (it characterizes the inclina-
tion of incident radiation from zenith). The angle ¥ is equal to zero if radiation
comes from zenith, and it is equal to = if radiation comes from nadir. As before we
are counting off the azimuth angle from an arbitrary direction on the plane, parallel
to the boundaries of the atmosphere. Then the integral (1.3) could be written as a
sum of two integrals: over upper and lower hemisphere:

F(z) = F'(z) + F'(2),

w w2
F'(z) = Jdga J I(z,9, ) cos ¥ sin ¥d,
0 0 (1.4)
m o
Fl(z) = Jdga J I(z,9, ) cos ¥ sin ¥dd.
0 w2

The value F l(z) is called a downward flux (downwelling irradiance), the value
F'(z) — an upward flux (upwelling irradiance), both are also called semispherical
fluxes expressed in watts per square meter (per micron). The physical sense of these
definitions is evident. The downward flux is radiation energy passing through the
level z down to the ground surface and the upward flux is energy passing up from
the ground surface. The downward flux is always positive (cost > 0), upward is
always negative (cos9 < 0). In practice (for example during measurements) it is
advisable to consider both fluxes as positive ones. We will follow this tradition.
Then for the upward flux in Eq. 1.4 the value of cosV is to be taken in magnitude,
and the total flux will be equal to the difference of the semispherical fluxes
Fz)=F l(z) — FT(z). This value is often called a (spectral) net radiant flux
expressed in watts per square meter (per micron).

Consider two levels in the atmosphere, defined by the altitudes z; and z,
(Fig. 1.2). Obtain solar radiation energy R(z, z») (per units area, time and wave-
length) absorbed by the atmosphere between these levels. Manifestly, it is neces-
sary to subtract outcoming energy from the incoming:
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Fig. 1.2 The net radiant flux l FYz,) T Fy)

F%zl)l F*(zl)T

R(z1,22) = FN(z0) + F'(z1) — F (z1) = F'(n) = F(z) — F(z1)  (1.5)

The value B(zy, z,) is called a radiative divergence in the layer between levels z;
and z. It is extremely important value for studying atmospheric energetics because
it determines the warming of the atmosphere, and it is also important for studying
the atmospheric composition because the spectral dependence of R(z, z,) allows to
estimate the type and the content of specific absorbing materials (atmospheric gases
and aerosols) within the layer in question. Hence, the values of the semispherical
fluxes determining the radiative divergence are also of greatest importance for the
mentioned class of problems.

Incident solar radiation incoming to the top of the atmosphere is practically
always considered as one-directional radiation in the problems in question. Actu-
ally, it is possible to neglect the angular spread of the solar beam because of the
infinitesimal radiuses of the Earth and the Sun comparing with the distance between
them. Thus, we are considering the case of the plane parallel horizontally homoge-
neous atmosphere illuminated by a parallel solar beam. Some difficulties are
appearing during the application of the above definitions to this case because we
must attribute certain energy to the one-directional beam.

The radiance definition corresponding to Eq. 1.1 is not applicable in this case
because it does not show the dependence of energy dE upon solid angle dQ
(formally following Eq. 1.1 we would get the zero intensity). As for the irradiance
definition (1.3), it is applicable. Thus, it makes sense to examine the very irradiance
of the strictly one-directional beams. Then the dependence of energy dE’ upon the
area of the surfaces dS’ projection in Eq. 1.3 appears for differently orientated
surfaces dS’, which gives the following:

F(¥) = Focos ¥, (1.6)

where F is the irradiance for the perpendicular incident beam, F(9) is the irradi-
ance for the incident angle V.

The incident flux F, is of fundamental importance for atmospheric optics and
energetics. This flux is radiation energy incoming to the top of the atmosphere per
unit area, per unit intervals of the wavelength and time in case of the average
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distance between the Sun and the Earth, and it is called a spectral solar constant.
Figure 1.3 illustrates the solar constant F as a function of wavelength.

1.2 Interaction of the Radiation and Atmosphere

Consider a symbolic particle (a gas molecule, an aerosol particle) that is illuminated
by the parallel beam F (Fig. 1.4). The process of the interaction of radiation and
this particle is assembled of the radiation scattering on the particle and of the
radiation absorption by the particle. Together these processes constitute the radia-
tion extinction (the irradiance after interaction with the particle is attenuated by the
processes of scattering and absorption along the incident beam direction 7p). Let
absorbed energy be equal to E,, scattered in all directions energy be equal to E, and
total attenuated energy be equal to E, = E, + E,. If the particle interacted with
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radiation according to geometric optics laws and was non-transparent (i.e.
attenuated all incoming radiation), attenuated energy would correspond to energy
incoming to the projection of the particle on the plane perpendicular to the direction
of incoming radiation 7. Otherwise, this projection is called the cross-section of the
particle by plane and its area is simply called a cross-section. Measuring attenuated
energy E, per wavelength and time intervals [4, A + d/], [t, t + dt] according to
the irradiance definition (1.3) we could find the extinction cross-section as
dEg/(Fod;»dl‘).

However, owing to the wave quantum nature of light its interaction with the
substance does not submit to the laws of geometric optics. Nevertheless, it is very
convenient to introduce the relation dE, /(FodAdt) that has the dimension and the
meaning of the area, implying the equivalence of the energy of the real interaction
and the energy of the interaction with a nontransparent particle in accordance with
the laws of geometric optics. Besides, it is also convenient to consider such a cross-
section separately for the different interaction processes. Thus, according to
the definition, the ratio of absorption energy dE,, measured within the intervals
[A, 4 + dA] [t,t + dt], to the incident radiation flux Fy is called an absorption cross-
section C,. The ratio of scattering energy dE, to the incident radiation flux is called
a scattering cross-section C and the ratio of total attenuated energy dE; to the
incident radiation flux is called an extinction cross-section C,:

dEa dES dEe
Co=pto, Co=pi, Co= =
Fodadt FodAdt FodAdt

Co+Cs (1.7)

In addition to the above-mentioned, the cross-sections are defined as monochro-
matic ones at wavelength A (for non-stationary case — at time ¢ as well).

Consider the process of the light scattering along direction 7 (Fig. 1.4). Here the
value dE,(r) is energy of scattered radiation (per intervals [A, 2 + dA] [t, t + dr])
per solid angle dQ encircled around direction 7. Define the directed scattering
cross-section analogously to the scattering cross-section expressed by Eq. 1.6.

dE(7)
C =_— 1.8
) = Fodzdidy (18
Wavelength 4 and time ¢ are corresponding to the cross-section C4(7).
Total scattering energy is equal to the integral from dE,(7)over all directions

dE, = deddQ. The link between the cross-sections of scattering and directed
4

scattering is defined as Cy = f C,dQ.
4n

After passing to a spherical coordinate system and introducing two parameters:
the scattering angle y defined as an angle between directions of the incident

and scattered radiation (y = /(o,7)) and the scattering azimuth ¢ we obtain
2n n

Cs= [ do [Ca(y, ) sinydy.
0 0
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The directed scattering cross-section C,(7, ¢)according to its definition could be
treated as follows: as the value Cy(y, ©)is higher, then light scatters stronger to the
very direction (y, ) comparing to other directions. It is necessary to pass to a
dimensionless value for comparison of the different particles using the directed
scattering cross-section. For that the value C,(y, ) has to be normalized to the
integral C; and the result has to be multiplied by a solid angle. The resulting
characteristic is called a phase function and specified with the following relation:

C A
x(p, ) = 4n d(cW)' (1.9)

The substitution of the value C,(y, ¢) from Eq. 1.8 to Eq. 1.9 gives the phase
function normalization:

2n m

Jdgojx(y,go) sinydy = 1. (1.10)
0o 0

1
4

If the scattering is equal over all directions, i.e. C4(y, ) = const, it is called
isotropic and the relation x(y, ) = 1 follows from the normalization (1.10). Thus,
the multiplier 47 is used in Eq. 1.9 for convenience. In many cases, (for example the
molecular scattering, the scattering on spherical aerosol particles) the phase func-
tion does not depend on the scattering azimuth. Further, we are considering only
such phase functions. The %ntegral from the phase function in limits between zero

and scattering angle vy %fx(y) sinydy could be interpreted as a probability of

scattering to the angle interval [0, y]. It is easy to test this integral for satisfying
all demands of the notion of the “probability”’. Hence the phase function x(y) is the
probability density of radiation scattering to the angle y. Often this assertion is
accepted as a definition of the phase function.

The real atmosphere contains different particles interacting with solar radiation:
gas molecules, aerosols particles of different size, shape and chemical composition,
and cloud droplets. Therefore, we are interested in the interaction not with the
separate particles but with a total combination of them. In the theory of radiative
transfer and in atmospheric optics it is usual to abstract from the interaction with a
separate particle and to consider the atmosphere as a continuous medium for
simplifying the description of the interaction between solar radiation and all
atmospheric components. It is possible to attribute the special characteristics of
the interaction between the atmosphere and radiation to an elementary volume
(formally infinitesimal) of this continuous medium.

Scrutinize the elementary volume of this continuous medium dV = dSd!
(Fig. 1.5), on which parallel flux of solar radiation Fy incomes normally to the
side dS. The interaction of radiation and elementary volume is reduced to the
processes of scattering, absorption and radiation extenuation after radiation
transfers through the elementary volume. Specify the radiation flux as F = Fy — dF
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Fig. 1.5 Interaction between
radiation and elementary
volume of the scattering
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after its penetrating the elementary volume (along the incident direction 7p).

Take the relative change of incident energy as an extinction characteristic
dE, __ (Fo—F)dSdidt __ 4F
Ey — FodSdzdi — Fo°

As it is manifestly proportional to the length dl in the extenuating medium, then
it is possible to take the volume extinction coefficient o, as a characteristic of
radiation, attenuated by the elementary volume. This coefficient is equal to a
relative change of incident energy (measured in intervals [4, 4 + d/], [¢, t + dt])
normalized to the length dl (i.e. reduced to the unit length) according to the
definition o :gfg,:%. The analogous definitions of the volume scattering
o and absorption k coefficients follow from the equality of extinction energy and
the sum of the scattering and absorption energies.” ¢ = gﬁ;] , K= gﬂEjl ,a=0+k.

Let us link the characteristics of the interaction between radiation and a separate
particle with the elementary volume. If every particle interacts with radiation
independently of others, then extinction energy of the elementary volume is equal
to a sum of extinction energies of all particles in the volume. Suppose that all
particles are similar; they have an extinction cross-section C,, their number con-
centration (number of particle in the unit volume) is equal to n, and the particle
number in the elementary volume is ndV. Then for the extinction coefficient we are
obtaining the relation o = % = nC,. Thus, the volume extinction coeffi-
cient is equal to the product of particle number concentration by the extinction
cross-section of one particle.’

If there are extenuating particles of M kinds with concentrations n; and

cross-sections C,; in the elementary volume of the medium then it is valid:

M

dE, = > ndVC, Fod/dt. Analogously considering the energies of scattering,
i=1

absorption and directed scattering, we are obtaining the formulas, which link the

volume coefficients and cross-sections of the interaction:

2 Notice, that introduced volume coefficients have dimension of the inverse length (m ', km™)
and such values usually called “linear” not “volume”. Further, we will substantiate this termino-
logical contradiction.

3 Just by this reason, the term “volume” and not “linear” is used for the coefficient. It is defined by
numerical concentration in the unit volume of the air.
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M M M M
o= Z nCeiy 0= Znics,h K= Z niCaj, 0x(y) = Znics,ixi())) .
=1 =1 =1 =1
(1.11)

Point out that the separate items make sense of the volume coefficients of the
interaction for the separate kinds of particles. Therefore, highly important for the
practical problems the “summation rules” are following from Eq. 1.11. These rules
allow deriving separately coefficients of the interaction and the phase function for
each from M components and then to calculate the total characteristics of the
elementary volume with the formulas:

M M M M M
oc=Zoc,-, a:Zoi, K:Zm, x(y) :Zaixi(y)/Zai. (1.12)
i=1 i=1 i=1 i=1 i=1

These rules also allow calculating characteristics of the molecular and aerosol
scattering and absorption of radiation in the atmosphere separately. Then Eq. 1.12
are transforming to the following:

U=0n+ 04+ Kn+Kg, 0=0p+0,K=FKpy+ Kg,

amxm % + Gd'xﬂ
x(y) = ((7”)+ . o). (1.13)

where 7, K., X,(y) are the volume coefficients of the molecular scattering,
absorption and molecular phase function for the atmospheric gases respectively
and o, K,, X,(7) are the analogous aerosol characteristics.

The volume coefficient and the phase function of the molecular scattering are
expressed as follows:

8 4 (m?—1)" 6+35

o =3 :L(1+5+(1 — d)cos?y), (1.14)

T 675 0 =175

where m is the refractive index of the air, n is the number concentration of the air
molecules, / is the radiation wavelength, ¢ is the depolarization factor (for the air it
is equal 6 = 0.0279).

The calculations of the aerosol scattering and absorption cross-sections so as an
aerosol phase function are based on the simulations. The aerosol particles are
approximated with the certain geometrical solids of the known chemical composi-
tion. Usually there are considered the homogeneous spherical particles. The calcu-
lation of the optical characteristics for such particles is accomplished according to
the formulas of Mie theory, which we are not adducing here referring the reader
to corresponding books.

The phase function of the aerosol scattering is presented in the above-mentioned
calculations as a look-up table with the grid over the scattering angle. It is not
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convenient for some problems where the phase function needs an analytical
approximation. The one of the widely used approximations is a Henyey-Greenstein
phase function:

() i (1.15)
x(y) = , .
(1+ g2 —2gcosy)?
where g is the approximation parameter (0 < g < 1),
2n 1
! ! Jd J (y)yd (1.16)
=—X = — x( .
8 3N T 1, ¥ y)vay,
0 -1

it coincides with the mean cosine of the scattering angle, changes in the ranges
[0,1], and is called often the asymmetry factor because it governs the degree of the
phase function forward extension.

The function describes the main property of the aerosol phase functions —
the forward peak — (the prevalence of the scattering to the forward hemisphere
0 <y < 7/2 over the scattering to the back hemisphere /2 < y < m) and it is very
suitable for the theoretical consideration, as it will be shown further.

1.3 Radiative Transfer in the Atmosphere

Within the elementary volume, the enhancing of energy along the length d/ could
occur in addition to the extinction of the radiation considered above. Heat radiation
of the atmosphere within the infrared range is an evident example of this process,
though as it will be shown further the accounting of energy enhancing is really
important in the short-wave range either. Value dFE — the enhancing of energy — is
proportional to the spectral d4 and time df intervals, to the arc of solid angle
dQ encircled around the incident direction and to the value of emitting volume
dV = dSdl. Specify the volume emission coefficient ¢ as a coefficient of this
proportionality ¢ = %.

Consider now the elementary volume of medium within the radiation field. In
general case both the extinction and the enhancing of energy of radiation passing
through this volume are taking place (Fig. 1.6). Let I be the radiance incoming to
the volume perpendicular to the side dS and I + dI be the radiance after passing the
volume along the same direction. According to energy definition in Eq. 1.1 incom-
ing energy is equal to Ey = 1dSdQd/dt then the change of energy after passing the
volume is equal to dE = dIdSdQd/dt. According to the law of the conservation of
energy, this change is equal to the difference between enhancing dFE, and extincting
dE, energies. Then, taking into account the above definitions of the volume
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emission and extinction coefficients, we are defining the radiative transfer
equation:

di [+ ¢ 1.17
i ol +¢ 1.17)

In spite of the simple form, Eq. 1.17 is the general transfer equation that accepts
the coefficients o and ¢ as variable values. This derivation of the radiative transfer
equation is phenomenological. The rigorous derivation must be done using the
Maxwell equations.

Move to the consideration of particular cases of transfer Eq. 1.17 in conformity
with shortwave solar radiation in the Earth atmosphere. Within the shortwave
spectral range we omit the heat atmospheric radiation against the solar one and
seem to have the relation ¢ = 0. However, we are taking into account that the
enhancing of emitted energy within the elementary volume could occur also owing
to the scattering of external radiation coming to the volume along the direction of
the transfer in Eq. 1.17 (i.e. along the direction normal to the side dS). Specify this
direction 7y and scrutinize radiation scattering from direction 7 with scattering
angle y (Fig. 1.6). Encircling the similar volume around direction 7 (it is denoted
as a dashed line), we are obtaining energy scattered to direction 7. Then employing
precedent value of energy E,, we are obtaining the contribution to the emission
coefficient corresponded to direction 7

Lx(P)I(R)dSdQd dtdQdl
di(r) =* AVdQdidr = 3 ()R

Then it is necessary to integrate value de(r) over all directions and it leads to the
integro-differential transfer equation while taking into account the scattering:

dl (7o)
dl

[

4n

= —al(7i) +

Jx(y)](f)dQ. (1.18)

4n

Fig. 1.6 The derivation of
the radiative transfer equation
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Consider the geometry of solar radiation spreading throughout the atmosphere
for concretisation Eq. 1.18 as Fig. 1.7 illustrates. We are presenting the atmosphere
as a model of the plane-parallel and horizontally homogeneous layer. The direction
of the radiation spreading is characterized with the zenith angle ¥ and with the
azimuth ¢ counted off an arbitrary direction at a horizontal plane. Set all
coefficients in Eq. 1.18 depending on the altitude (it is completely corresponded
to reality).

Length element d/ in the plane-parallel atmosphere is dl = —dz/cos9. The
ground surface at the bottom of the atmosphere is neglected for the present (i.e. it
is accounted that the radiation incoming to the bottom of the atmosphere is not
reflected back to the atmosphere and it is equivalent to the almost absorbing
surface). Within this horizontally homogeneous medium, the radiation field is
also the horizontally homogeneous owing to the shift symmetry (the invariance of
all conditions of the problem relatively to any horizontal displacement). Thus, the
radiance is a function of only three coordinates: altitude z and two angles, defining
direction (9, ). Hence, Eq. 1.18 could be written as:

2n n
/i
TELD) cosi = aleyat,0) - 52 [t [steiieo' ) sinitar
0 0

(1.19)

where scattering angle y is an angle between directions (9, ) and (¥'¢'). It is easy
to express the scattering angle through 9, ¢: to consider the scalar product of the
orts in Cartesian coordinate system and then pass to the spherical coordinates. This
procedure yields the following relation known as Cosine law for the spheroid
triangles cosy = cosV cosd’ + sind sind’cos(p — ).

To begin with, consider the simplest particular case of transfer Eq. 1.18. Let us
neglect the radiation scattering i.e. the term with the integral. For atmospheric

A
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optics, it conforms to the direction of the direct radiation spreading (¥, ©o).
Actually in the cloudless atmosphere, the intensity of solar direct radiation is
essentially greater than the intensity of scattered radiation. In this case, the direction
of solar radiation is only one, the intensity d ends only on the altitude, and the
transfer Eq. 1.19 transforms to the followmg ) cos ¥y = a(z (2)I(z) and it is always
sin¥g > 0 here. Differential equation together w1th boundary condition I = I(z..),
where z, is the altitude of the top of the atmosphere (the level above which it
is possible to neglect the interaction between solar radiation and atmosphere) is
elementary solved that leads to:

Zoo

J a(Z)d |. (1.20)

16) = 1) exp| o

This relation illustrates the exponential decrease of the intensity in the extinct
medium and it is called Beer’s law.
Introduce the dimensionless value:

1(z) = J a(Z)d, (1.21)

that is called the optical depth of the atmosphere at altitude z. Its important

particular case is the optical thickness of the atmosphere in whole 70 = [ «(z')dz'.
Then Beer’s law is written as: 0

I(z) = 1(z) exp(—1(z)/ cos V). (1.22)

As it follows from definitions (1.20) and (1.22) and from ‘“summation rules”

(1.12), the analogous rules are correct for the optical deepness and for the optical
M

M
thickness: 7(z) = Y 1:(2), o= T0,-
i=1

i=1

Therefore, it is possible to specify the optical thickness of the molecular scatter-
ing, the optical thickness of the aerosol absorption etc.

According to the accepted in Sect. 1.1 condition we are considering solar
radiation incoming to the plane atmosphere top as an incident solar parallel flux
Fy from direction (U, ¢o). Then, deducing the intensity through delta-function
(1.10) and substituting it to the formula of the link between the flux and intensity
(1.5) it is possible to obtain Beer’s Law for the solar irradiance incoming to the
horizontal surface at the level t:

F4(z) = Focos g exp(—1(z)/ cos ). (1.23)
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It is to be pointed out that the function P(t, ) = exp(—1¢/ cos ) is called the
transmission function and used in the calculation of the heat radiation.

Return to the general case of the transfer equation and taking into account
scattering (1.19). Accomplish the transformation to the dimensionless parameters
in the transfer equation for convenience of further analysis. In accordance with
optical thickness definition (1.21) the function 7(z) is monotonically decreasing
with altitude that follows from condition «(z') > 0. In this case there is an inverse
function z(7) that is also decreasing monotonically. Using the formal substitution of
function z(t) rewrite the transfer equation and pass from vertical coordinate t to
coordinate z, moreover, the boundary condition is at the top of the atmosphere
7 = 0 and at the bottom t = 7, and the direction of axis t is opposite to axis z.
It follows from the definition (1.21): dt = —o(z)dz. Specify p = cosV and pass
from the zenith angle to its cosine (the formal substitution 3 = arccosu with taking
into account sindd9d = —dy). Finally, divide both parts of the equation to value
o(7), and obtain instead Eq. 1.19 the following equation:

2n 1
o\ T
=—I(t, 1, ) + ol®) st&’ JX(T77)I(T7M/7S0/)dﬂ/, (1.24)
0

dl(z, 1, ¢
p ( )

dt 47

~1
where

wo(t) = % = %, and the scattering angle cosine cos y = pu’ + /1 — p?
V1= w?cos(p — ).

Dimensionless value wy is called the single scattering albedo or otherwise the
probability of the quantum surviving per the single scattering event. If there is no
absorption (x = 0) then the case is called conservative scattering, wo = 1. If the
scattering is absent then the extinction is caused only by absorption, ¢ = 0, wg = 0
and the solution of the transfer equation is reduced to Beer’s law. After consider-
ation of these cases, the sense of value wq is following: it defines the part of
scattered radiation relatively to the total extinction, and corresponds to the proba-
bility of the quantum to survive and accepts the quantum absorption as its “death”.

It is necessary to specify the boundary conditions at the top and bottom of the
atmosphere. As it has been mentioned above, solar radiation characterizing with
values F, 99, o incomes to the top. Usually it is assumed ¢y = 0 i.e. all azimuths
are counted off the solar azimuth and specified pg = costy.

As it has been mentioned above solar radiation in the Earth atmosphere consists
of direct and scattered radiation. It is accepted not to include the direct radiation to
the transfer equation and to write the equation only for the scattered one. The
calculation of the direct radiation is elementary accomplished using Beer’s Law
(1.23). Therefore, present the radiance as a sum of direct and scattered radiance
I(t,u,0) = I'(t,u,0) + I"(1,1,0). From the expression for the direct radiance of the
parallel beam (1.10) the following is correct I'(0,u,0) = Fod(u — uo)d(e — 0), and
it leads to I'(0,u,00) = Fod(it — po)d()exp(—1/pg) for Beer’s Law. Substitute the
above sum to Eq. 1.24, with introducing the dependence upon value i and omitting
primes I” (t,u,10,), We are obtaining the transfer equation for diffuse radiation.
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2n 1
I(, 1, o, ) wo(7)
p——0 =t g, ) + de’ J x(T, ) (7, 1 po, ' )dp
dt 4r
0 —1
(Uo(‘t') —t/1
+ Fox(t,79)e"/H

T
(1.25)

Point out that Eq. 1.25 is written only for the diffuse radiation. The boundary
conditions are taking into account by the third term in the right part of Eq. 1.25.
The sense of this term is the yield of the first order of scattering to the radiance and
the integral term describes the contribution of multiple scattering.

The ground surface at the bottom of the atmosphere is usually called the
underlying surface or the surface. Solar radiation interacts with the surface
reflecting from it. Hence, the laws of the reflection as a boundary condition at
the bottom of the atmosphere should be taken into account. However, it is done
otherwise in the radiative transfer theory. As it will be shown in the following
section, there are comparatively simple methods of calculating the reflection by the
surface if it is obtained the solution of the transfer equation for the atmosphere
without the interaction between radiation and surface. Thus, neither direct nor
reflected radiation is included to Eq. 1.25. As there is no diffused radiation at the
atmospheric top and bottom, the boundary conditions are as follows:

](Oa:uMan(p):O ,Ll>0, I(T07#7#0780):0 ,Lt<0

Transfer Eq. 1.25 together with boundary conditions defines the problem of the
solar diffused radiance in the plane parallel atmosphere. Nowadays different
methods both analytical and numerical are elaborated. Some of them will be
considered in the following sections.

1.4 Transformation of the Radiation Transfer Equation

Return to the transfer Eq. 1.25 and transform it. Introduce the following noting in
the form:the average intensity multiplied to 4m:

2n

1
I(T7 :U'O) = J dQD J I(T,ﬂ, Hos Qﬁ)dﬂ (126)
0 —-1

the diffuse irradiance:

2n

1
H(t,po) = sto J 1(t, 1, o, ) udp (1.27)
0 —1
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the K-integral:

2n

1
K(t, o) = J quuo, )wdu (1.28)

The value [I(t,19) — K(7,1o)] defines the diffuse radiative flux to the horizontal
direction. After integrating the Eq. 1.25 over the viewing angle cosine p and with
taking into account above introduced definitions and Eq. 1.10 — the phase function
normalizing, and the definition of the mean cosine of the scattering angle (1.16) it is
possible to obtain the system of differential equations:

W = —[1 = o(7)|I(t, ty) + (t)Fo exp(*i)

aK(z, o) o . (1.29)
37’“0 = —[3 — w(t)x1 (0)]H(z, 1) + o(t)Foexp(——)
' Ho

This system will be used below for the derivation of asymptotic and Eddington
approaches.



Chapter 2
Special Features of Self-surface (Heat)
Radiation Forming

Abstract Radiation of the hypothetical black body is considered. General
notations and basic equations are presented for calculation spectral radiation of
black and real bodies.

2.1 The Black Body Radiation

It is known from experiments that all matters emit constantly electromagnetic
waves. The electromagnetic radiation embraces practically all ranges of wave-
length. By its nature this radiation is called self heat radiation, because it arises
while molecules transmit at exciting level with kinetic interaction (collisions) with
consequently returning to unexciting level with quantum emitting. Thus it is
understandable that the intensity of the self heat radiation is to be linked with
inner energy of matter that is directly proportional to the temperature and is to
depend on physical structure of matter.

Dependencies of forming the self heat radiation field allow obtaining an analyti-
cal link between quantities of energy emitted by an object at different wavelength in
different directions and object’s parameters. But these dependencies are simple
only for ideal absorber and emitter of electromagnetic waves, which is blackbody
(BB) or perfect radiator.

The blackbody is an hypothetical body that emits the maximal radiation for the
temperature, does not reflect or transport the incident energy and absorbs all
incident energy falling at all wavelengths and from all directions. The notation of
blackbody is the key one for description of heat radiation transfer. The perfect
radiator blackbody is used as an etalon for calibration of spectral instruments within
spectral IR-ranges.

Max Planck (1858—1947) has assumed two presumptions concerning properties
of atom oscillators in 1901 aiming theoretically explain spectral distribution of
radiation emitted by heated cavity. Firstly Planck had postulated that the energy of
the harmonic oscillator is expressed as E = nhf, where f is the oscillator frequency;

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 19
DOI 10.1007/978-3-642-14899-6_2, © Springer-Verlag Berlin Heidelberg 2012
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h is the Planck’s constant, and n is quantum number, that can be only integer. Later
it was shown that in reality the number n + 1/2 is right but it does not change
Planck’s result.

Secondly Planck had supposed that oscillators emit energy not continuously but
by portions — quants. These quants are emitted while the oscillator transmits from
one quantum condition to another.

These two assumptions allowed Planck to theoretically derive a function that
expresses blackbody spectral brightness; it’s called now Planck’s function and is
very important for description of self atmosphere and surface radiation. The
blackbody spectral brightness in the ranges of wave numbers v and v + dv is
defined by the radiant energy dE, emitted by an blackbody surface element dS
during the time interval df in the solid angle dw. The blackbody radiation obeys
Lambert’s law and blackbody surface is ideal diffuse thus the direction of radiation
is not important.

2.2 Basic Equations

Then following to Planck’s law the blackbody spectral brightness depends only on
two variables the absolute temperature T and the wave number v (or equivalent
characteristics 4, f)

3

av
By(T) = ——F~—> (2.1)
exp (”7) -1
where v = %, cm™ ' is the wave number (A is the wavelength, pm);
T is the blackbody absolute temperature, °K;
a = 119105 W;
b = 1.43874 10> °K/m ™.
In terms of wavelength A the Planck’s function look as follows (Fig. 2.1):
ay)”?
B,(T) = (‘,,7) 2.2)
exp(ly) — 1
where a; = 3.74 - 107, W m?, b, = 1.43874 - 102, °K - m.
In terms of the frequency f the Planck’s function is written as
a c’4f3
By(T) = —= (2.3)

- exp(’z—g) -1’
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Fig. 2.1 Planck’s function for two temperatures 800 and 500 °K

Where f = ¢/ is the frequency, Hz; (¢ = 2.9996 - 10" um/s is the light
velocity).

Throughout most of the shortwave range 4 < 2 pm for Earth self heat radiation

the exponential term is larger than one, thus Wien approximation is obeyed by the
blackbody spectral brightness:

B,(T) = av* exp (— ?) (2.4)

For long waves (4 >100 pm) Rayleigh-Jeans approximation is true for the
blackbody spectral brightness:

B,(T) = (a/b)v*T. (2.5)

After integrating the Planck’s function over all wave numbers (wavelengths,
frequencies) the blackbody irradiance F(T) is obtained.

F(T) = oT* (2.6)

The Eq. 2.6 is called Stefan-Boltzmann law, where ¢ =5.6693 - 10_8, W/(m2 . °K4)
is the Stefan-Boltzmann constant.
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The wavelength of the Plancks function maximum for fixed temperature 7 is
defined by the Wien displacement law:

" (;
Jmax = 71 m, 2.7)

where ¢; = 2897.8, um °K.
And finally, it is possible to obtain the expression for the temperature T from the
Eq. 2.1:

L (2.8)

In (1 + B?E?))

Characteristics of surface self heat radiation.

The spectral intensity. From the definition the blackbody radiation is the upper
limit to the radiation emitted by a real substance at a given temperature. The value
of the emissivity ¢, is introduced for description the upward radiation intensity
J‘T,emitted by a real surface at any wave number v as ¢, EJJ, /By. Tt is clear
that ¢, < 1 for real substances and ¢, = 1 for the blackbody. The equation ¢ =
J! /F(T) = JT/JT4 expresses gray body emissivity.

Then the spectral intensity of the self heat radiation of the surface with the
temperature T is defined by the following expression:

J\Ty - SVBV(TS)y (29)

where T, is the surface temperature; B, is Planck’s function; ¢, is the surface
emissivity.

2.3 The Brightness Temperature

The Planck’s function allows the numerical describing and conventionally
illustrating the spectral distribution of the electromagnetic radiation intensity that
is formed by surface or complicated system atmosphere-surface. It is reached by
assuming that the radiation at any given wave number is formed by the black body
at a certain temperature and not by a real substance with a real temperature. Such
assumption provides the possibility for every value of intensity J, to uniquely relate
to a certain value of the temperature. This temperature is not a thermodynamic
value but only a convenient characteristic for one-to-one describing the spectral
distribution of the radiation emitted by the system atmosphere-surface, and it is
called brightness temperature. This characteristic is called radio-brightness tem-
perature at the radio wavelength ranges and Rayleigh-Jeans approximation (the
Eq. 2.5) is used for calculation. The transition from spectral intensity (or brightness)
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of real substances to their brightness temperature allows the clear plotting of the
spectrum in wide ranges and easy correlation of intensity values at different spectral
diapasons. The reason is the weak spectral variability of the brightness temperature
comparing with intensity. This variability disappeared in the blackbody limit case.
For example the blackbody at the temperature of 7,000 K, then brightness temper-
ature T, = 7,000 K coincides with the thermodynamic and it is constant at all
wavelength; the spectral brightness varies over nine orders of magnitude.

The brightness temperature of the heat radiation intensity (including the surface
heat radiation) is derived from the relation below

B,(T,) =J] - (2.10)

The following formula for calculating the brightness temperature T, of the self
heat radiation intensity of the surface is derived by taking into account Eqgs. 2.8, 2.9
and 2.10 :

b
T, = — 2 @2.11)

In[1+2:]

J!
By substituting the Eq. 2.9 it is obtained for T',:

bv

T=
In[1+ 25|

2.12)

It is clear that for &, = 1 the equality T, = T is valid, hence the blackbody
brightness temperature does not depend on wave number and equal to thermody-
namic temperature of the blackbody surface.

From Egs. 2.9 and 2.1 the expression for calculating the surface temperature T
(real thermodynamic value) from measured heat intensity J| is obtained. The
assumption of atmosphere absence is taking (for example the temperature of the
Moon surface):

- v 2.13)

ln{l + & “J‘f}

The Eq. 2.13 provides the result of remote retrieval of the surface temperature T
from measuring the surface self heat radiation intensity J!. It is necessary a priori
knowing the surface emissivity ¢, and absence of gaseous substance between the
surface and instrument. Comparison of Egs. 2.12 and 2.13 allows understanding the
difference between brightness and thermodynamic temperatures.

The sensitivity function. Let us introduce the function S, for numerical estima-
tion of the sensitivity of the Planck’s function to the temperature variability:
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0B, [T]

Sy =
or

(2.14)
The differentiating of the Eq. 2.1 over the temperature gives the expression for
the sensitivity function:

abv* bv\ |1
Sy=——— | =. 2.15
fexp(®) — 17 {e’“’('fﬂ T @19

2.4 Practice 1

2.4.1 Objectives

. Studying the blackbody spectral distribution at different temperatures.

. Studying the spectral distribution of the Planck’s function derivative at different

blackbody temperatures.

3. Studying the spectral distribution of the safe heat radiation intensity of real body
at different temperatures with numerical simulating spectral variations of its
emissivity.

4. Studying the spectral distribution of the brightness temperature of the surface

with Planck’s function derivative at different blackbody temperatures numerical

simulating spectral variations of the surface emissivity.

[\

2.4.2 Software and Set of Input Parameters

1. Computer programs “F_PLANCK”, “I_RADT”, setup at the directory \dz-
2006\Lab]1.
2. The set of input parameters for programs (Table 2.1).

Table 2.1 Variants of parameter values

Number of the variant Amins LM Amaxs, M T, °K T,, °K T3, °K
1 1 20 550 770 840
2 1 30 440 560 610
3 15 40 260 270 320
4 10 60 200 300 350
5 20 50 150 250 350
6 2 80 100 200 300
7 15 50 270 290 310
8 10 50 300 350 600
9 20 100 230 260 340
10 20 80 300 400 500
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2.4.3 Test Questions

B LN =

9,1

. What is definition of the blackbody?

. What is spectral distribution of the blackbody brightness?

. What defines the place of spectral brightness maximum?

. What is the formula for defining the blackbody spectral brightness dependence

on wave number and temperature?

. Does the value of blackbody brightness temperature change on wavelength?
. Do maximums of spectral brightness and Planck’s function derivative over

temperature coincide?

. What parameters does the intensity of the surface heat radiation depend on?
. Might the surface brightness temperature be equal to its thermodynamic

temperature?

. Derive the formula for the Planck’s function derivative over temperature.
. Demonstrate the validity of the Eq. 2.6 using differentiation of the Eq. 2.3 over

wavelength.

2.4.4 Sequential Steps of the Exercise Implementation

DN =

. To study the theory with using additional books, pointed in reference list.
. To take the three variants of input parameters from the Table 2.1 for computer

programs “F_PLANCK.exe”, “I_RADT.exe”. You can use another set of input
parameters. Take in mind that the program can operate with wavelength
A > 1.0 um.

. To analyze

— the Planck’s function and its derivative over the temperature with using
computer program “F_PLANCK.exe” in chosen spectral ranges;
— the variation of spectral dependence of mentioned functions on temperature;

Results are demonstrated on the screen and output in file “fplanck”.

. To create plots of Planck’s functions and its derivative of the temperature (with

using Excel)

. To plot the modeling presentation of the emissivity versus wavelength &(\)

in Excel in chosen wavelength ranges. The emissivity varies within ranges
0.50—0.97. It is necessary to create the table containing not less 25 values, to
plot the emissivity, to approximate the curve with using the polynomial 3rd order
trend line, output the corresponded equation at the plot and to fix values of
polynomial coefficients for using them in the computer program “I_RADT.exe”.
(Call attention to the inverse order of the polynomial and input in program
“I_RADT.exe” coefficients.).
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6. To examine the spectral dependence of surface self heat radiation with using
values of the emissivity approximation coefficients obtained in item five. Call
special attention to spectral dependence of the surface brightness temperature

7. To plot calculated spectral values, for putting into the final report.

2.4.5 Requirements to the Report

Compile the final concise report with elements of theory, resulting pictures, and
conclusions that reflects main stages of the work.



Chapter 3

The Direct Calculation of the Absorption
Coefficient of Atmosphere Gases with Using
Parameters of Absorption Bands Fine Structure

Abstract The selective gaseous absorption is considered. Spectral line broaden-
ing is explained. The practice for calculation of the absorption coefficient is
described.

Registering the radiation spectral transmission demonstrates a strong selectivity of
the absorption in the atmosphere: there are spectral ranges where the radiation is
completely absorbed and other ranges where the radiation is nearly not varied.
Ranges with strongly absorbed radiation are called absorption bands. They are
constantly arranged in an appropriate pattern that points to gaseous absorption. The
absorption mechanism is different in different spectral ranges and is provoked by
quantum nature of the matter. Thus the radiation is considered as a flux of photons
with energy hv.

3.1 The Analysis of Physical Processes of the Interaction

Molecules and atoms of the matter (here atmospheric gases) absorb incoming
electro-magnetic radiation and become excited with transition to a higher energetic
level. The emission of photons (quanta) leads to the molecule or atom transition to a
lower energetic level. It produces a change of energetic level of an electron and
rotation and oscillation (vibration) of a molecule. Molecules, atoms and electrons
are of energy only corresponding to permitted levels. Hence the process of absorp-
tion (emission) is quantum and only lines appropriate to permitted energetic
transitions are observed. The amount of energy associated with a photon of radia-
tion is given by

E=hv="h/A

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 27
DOI 10.1007/978-3-642-14899-6_3, © Springer-Verlag Berlin Heidelberg 2012
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where v is the wave number and / is Planck’s constant, which is equal to
6.626 x 107>*Js. It is clear that the decreasing of wavelength / increases energy
of an electro-magnetic wave.

The inner energy of a molecule adds up as follows:

E = Etmnsl + Eelectron + Evibmt + Erotat + Eelfvibr + Eelfmt + Evibrﬂ'al

Continue spectrum is provided only by translational motion (heat) of molecules.
Other interaction types are characterized discrete spectrum. Hence, change of
molecule energy happens with quantum jump /Av. The solution of Schrodinger
equation for the wave function (eigenvectors and eigenfunctions) presents the set
of discrete values of molecule energy.

The Pauli-Fermi principle determines permitted levels of molecule energy E;,
and the portion 4E;; = E; -E;, of energy changes while molecule transits from the
initial level E; to the level E;. The Planck’s formula AE;; = hv;; determines the
molecule absorption (emission) spectrum. Hence, only permitted energy values
correspond to only certain wave numbers (wavelengths), forming spectral lines.

Some information concerning the energy of interaction between radiation and
mater in different spectral intervals is presented in the Table 3.1. The most energetic
quanta are gamma rays which provoke variations of nuclear configuration.
Roentgen and UV radiation provides electron transitions from one to other levels.
Visible and IR radiation changes vibrational and rotational energy of molecules.

The absorption called by vibrational and rotational and vibrational-rotational
transitions is most significant in spectral ranges of the Earth outgoing radiation
(maximum at 12 pm).

Ozone bands in UV ranges, the oxygen band 0.76 pm and water vapor bands in
visible interval are caused by electron transitions.

The scheme of molecule energetic levels and corresponding transitions is shown
in the Fig. 3.1.

Every transition forms an absorption line (emission). Between different levels
might be a lot of transition but not all of them are permitted with the Pauli-Fermi
principle. The totality of absorption lines provoked by transition between two
specific electron levels and different vibrational and rotational levels form an

Table 3.1 Energy types and energy of interaction in different spectral intervals

Radiation Matter changes A, pm v, cm ! f.Hz E,Jmol ™!

Gamma rays Change of nuclei 1074 108 310" 10°
configuration

Roentgen rays Electron transition 1072 108 310" 107

UV and visible between shells 1 10* 310 10°

Infrared Molecule vibrations 107 10 310" 10°

Microwave Molecule rotations 10* (1 cm) 1 310'° 10

Centimeter interval Changes of electrons 10 (100 cm) 1072 3108 107!

Meter interval and nuclear spins  10% (10 m) 107 310° 1073
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Fig. 3.1 Energy levels of the molecule

electronic absorption band. There are vibrational or rotational absorption bands
when the electronic energy is not changed. Spectra are called also electronic,
vibrational or rotational. The complicated character of molecule total energy
variations is responsible for complicated structure of molecule spectrum.

The spectral line broadening is observed as it will be considered below. The
contour of spectral line ) ( v, v(()l ') describes this broadening.

3.2 Infrared Spectral Range

Only carbon dioxide is considered here as atmospheric gaseous component because
of invariable content. The expression for calculating the monochromatic absorption
coefficient k, might be written as the sum over all lines within the spectral
ranges Av:

k=2 kY, (3.1)

i=1
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where

i SiT i i
o, = i>ﬂ(mv9) 3.2)

and N is the total amount of spectral absorption lines considered for calculating the

absorption coefficient at the wave number v (in the spectral range [vo—Av, vo+ Av ],

where Av is the a priori fixed parameter); k‘( is the value of i-th item of the

absorption coefficient contributed by i-th spectral absorption line vo), S:(T) is the

intensity of i-th spectral line for the gaseous temperature T; f; (v,v,’) is the spectral

line contour depending on the temperature and pressure of the gaseous medium.
The intensity S;(T) in the Eq. 8.2 is defined by the expression:

S{(T) = J kD (T)dv, (3.3)
0
And the following relation is true from normalization of the function f; (v, vg)):
J FOv))dv =1 (3.4)
0

The dependence of the intensity S; on temperature might be expressed with the
following relation:

(To) (To\’ 1439E", (T — T,
Si(T) = Si(To) QQI;((T‘))) (TO) exp {T;O") . (3.5)

where S,(T) is the i-th spectral line intensity for the temperature Ty; E” is the energy
([cm ™)) of the lowest level, from which the transition happens; Qy(T) is so called
the vibrational statistical sum; j is the parameter depending on molecule type.
Values of parameters j u Qy(T) including in the Eq. 3.5 are presented in the Table 3.2
for defining the line contour f,-(v,vg >) as a function of parameters determined by gaseous

Table 3.2 Values of coefficients j and Qy for the set of molecules

Molecule J 0y(T)

200 K 250 K 266 K 325 K
H,O 1.5 1.000 1.000 1.000 1.001
CO, 1.0 1.0192 1.0502 1.0931 1.1269
(OB 1.5 1.007 1.022 1.046 1.066
N,O 1.0 1.030 1.072 1.127 1.170
CcO 1.0 1.000 1.000 1.000 1.000

CH, 1.5 1.000 1.002 1.007 1.011
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media physical state while applying Egs. 8.1, 8.2 and 8.5 for calculating the absorption
coefficient k..

The absorption (emission) line is not a just line. Certain mechanisms govern the
spectral line broadening. The most significant are broadening by collisions (pres-
sure) and by Doppler’s effect.

Line broadening by pressure. Lorenz’'s contour is used for quantitative
description of the shape of i-the absorption line to account for this broadening:

£ (v ) = oL , (3.6)

(=) ()
()

where o’ is the halfwidth of absorption line at the wave number vO' (the width of
the contour at the half maximum level). The i-th spectral line halfwidth oc(L) is the
function of the atmospheric pressure and temperature: (x(L) = oc<L>( ,T). Often the
expression for this function is assumed:

T
OCL (p T) - aL (.p()?TO)pO <7?> ) (37)

where oci” (po,To) is the i-th spectral line halfwidth at standard values of the
pressure po and temperature 7.

Doppler’s broadening. The broadening by pressure is possible to neglect when
the pressure is low (the rarefaction gas). But molecules are of high velocity and if
the molecule emits at the wave number v, and the component of the velocity in the
viewing direction is ¥. Then from the observer point of view the molecule emits at
the wave number v that defines as:

v:v0<1 :tg) 3.8)

Velocities of molecules ¥ obey to Maxwell-Boltzmann’s distribution, what
provokes various shifts of the wave numbers v, i.e. spectral line broadening. The
corresponding absorption coefficient is calculated with the following formula:

i 2
o = ST o _ﬂ = ST 15 (v, v8"). (3.9)

TV p)

The parameter oc,()i), included to the Eq. 3.9 is called Doppler’s width of the

spectral line:

. D o ET\?
o (1) =20 (L) , (3.10)

m
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Fig. 3.2 Comparison of Sv-v)
Lorenz’s and Doppler’s
contours / — Lorenz’s contour, Doppler
2 — Doppler’s contour

Lorenz

where m is the molecule mass; k is Boltzmann’s constant; T is the absolute
temperature. Doppler’s halfwidth of the absorption line is ocg) VIn2.
The comparison of Lorenz and Doppler’s contours is shown in the Fig. 3.2.
Voigt’s contour. The mutual accounting for both Lorenz and Doppler’s broad-
ening in calculati ion f; ® - ’ i
g in calculating the function f;(v, v,’) leads to Lorenz-Doppler’s contour that is
called the Voigt’s contour. The absorption coefficient in the Eq. 8.1 is assumed as

0= K0 (54, an

where

; In2 Si(T
KD = |22 () (3.12)
I op

The expression for the contour of i-th spectral line is following:

T -
(,-)) _a J e
v, v =— ——dx, (3.13)
f< 0 n a®+ (w—x)’
—00
where
o)
a=VIn2-L (3.14)

W= \/hl_ZQ (3.15)
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3.3 The Microwave Spectral Interval

Significant absorption (lines) bands in microwave interval are possessed by water
vapor H,O and oxygen molecule O,. The single slight water vapor broadening line
22.235 GHz dominates at the frequency lower than 40 GHz. The atmosphere is
rather transparent at the frequency near 31.4 GHz. This interval is the window
between resonance line of water vapor and strongly absorbing oxygen band cen-
tered at 60 GHz. The single absorption line of the oxygen molecule is at the
frequency 118.75 GHz that determines absorption of microwave radiation in this
spectral range. The strong line near 183 GHz provides prevailing H,O absorption at
frequencies more than 120 GHz. The Fig. 3.3 illustrates the transmission depen-
dency on frequency in the microwave interval.

The absorption of electro-magnetic radiation is defined in the frequency interval
110-120 GHz by the following components:

— Oxygen molecules band formed by resonance and non-resonance lines in the
wavelength range near 5 mm;

— Water vapor absorption band;

— Water droplets absorption (by cloud, rain).

The absorption coefficient of clear atmosphere without water droplet absorption
might be calculated by the following expression:

G(vi,h) = Go, (vi, hj) + Guyo (vi, hy), (3.16)
where /; is the altitude (j = 1.2,..., N), v; is the frequency (i = 1.2,..., M).

Note that it is the frequency (GHz) that is noted here v and not the wave number
(cm™") as above!

Transmission, relative units
LOpe=ss __ L iieesesessuasudseneseanetT

08 F
0.6 |
0.4+

021

Fig. 3.3 Dependence of
transmission of the
atmosphere at the frequency
in microwave interval

220 260  GHz
Frequency
¢ e 02
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The formula accounting for resonance absorption in the oxygen spectral line at the
wavelength 4 = 2.53 mm and the contribution of oxygen molecule absorption lines
near A = 5 mm for calculating the first component G,,of absorption coefficient:

25(h:
Go, (vir ) = 1.2305L(1)3 exp <_ 4-14)

[T(h)] T (k)
4\),'2AV (/’l,)
(vos? — vi2) + dvo,2 [Avo, () | *

(3.17)

The central frequency of the line is vo = 118.750343 GHz; p(h;) is the atmo-
spheric pressure (mmHg) at the altitude hj;; T(h)) is the temperature (K) at the
altitude &;; The dimensions of the value Gg,is [1/km].

The halfwidth value of oxygen absorption line at the wavelength 4 = 2.53 mm
and at the altitude #; is defined as:

Ao, () = { [Avy (1)]2 + [Avo ()]7)2 (3.18)

Where Av,, and Avj, are broadening by pressure and Doppler broadening:

Avp (hj) =7.52107°/ T (hy); (3.19)

C
Av, () = op (h})[0.21 + 0.78 ] [ﬂ] : (3.20)

T (h)

The value o« = 2.131%¥10>(GHz/mmHg) in the last equation is the coefficient of
broadening line by pressure, and the value f = 0.75 is the coefficient of collisions
effectiveness for molecules N, and O, comparing with collisions between O, and
O,; The parameter C = 0.9 is the temperature coefficient.

The water vapor absorption Gy,o (v,-, hj) might be calculated with the empirical
approximation that looks as:

GHZO (V,’,hj) = GR (Vhl’lj) +GN (V,’J’lj). (321)

The resonance term Gg (v,~7 h,) and non-resonance term Gy (v,~7 h]) are defined by
the following expressions:

2 Av (h A
Galot) = 343 S (Womolh) <_ 644)

[7(m) ]} (k)

1 1
X + )
(V,‘ — VH20)2 —+ [AVHZO (/’lj)]2 (Vi —|— VHzo)z + [AVHZO (hj)]Z]
(3.22)
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Vi AVH,0 (1) P, ()

Gy(vi,hj) =2.55-107° -
[T(ny)]?

(3.23)

Where vy,0 = 22.235 GHz; py,0 (hj) [g/m’] is the water vapor density at the
altitude A;; the dimensions of the value G and Gy is [1/km)].

Calculating the halfwidth of absorption H,O line at the frequency v = 22.235
GHz is done according to the following:

Avp,o (h) =0.126 [T (1y)] 02

140011 M} . (3.24)
p(hy)

If there is no observational information then simulating the vertical profile of
absolute humidity looks as:

h.
PH20<hj) =7.5 exp (—ﬁ . (3.25)

If the specific humidity profile ¢ (g/g) is known the value pHZO(g/m3) is calcu-
lated according to:

288.87p (h;)q(hy)

pio i) =7 () [0.62197 +0.37803¢ ()] (3:20)

3.4 Practice 2

3.4.1 Objectives

1. To study the approach for direct calculation of the absorption coefficient of
atmospheric gaseous components on the base of using data of the fine structure
parameters and getting skills of forming data and accomplishing computer
calculations.

2. To study the fine structure parameters dependence on the atmospheric pressure
and temperature within the spectral IR interval.

3. To study the approach for calculating characteristics of the atmosphere absorp-
tion in case studies of values of the absorption coefficient within oxygen
absorption at the wavelength 4 = 2.53 mm.

4. To study the following characteristics in IR and Microwave intervals basing on
the analysis of the results of calculating the atmosphere absorption coefficient:

— the absorption coefficient dependence on the wavelength;
— the absorption coefficient dependence on meteorological parameters.
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3.4.2 Software and Set of Input Parameters

1. The table of the fine structure parameters of atmospheric gases in fixed interval
of wave numbers. The ready file might be used in spite of the table.

2. Data of the aerological temperature-wind sounding preparing with the computer
program “V_AERDAT.exe”.

3. Computer programs “V_CONTUR.exe”, “CONTUR_l.exe”, “CONTUR_2.
exe” and “CONTUR_3.exe” “SVCRAD.exe” written in the computer language
Basic, are situated in the directory labl . Results are provided in a file “contour.
dat”.

4. Plotting results with EXCEL editor.

3.4.3 Test Questions

1. What characteristics of the physical state of atmosphere govern the value of
absorption coefficient in spectral ranges near 2.5 mm?

2. What altitude ranges does the maximum of the absorption coefficient in the
considered spectral interval situated?

3.4.4 Sequential Steps of the Exercise Implementation

1. To study theoretical base of forming absorption lines of atmospheric gaseous
components.

2. Get the necessary data on the characteristics of the fine structure of absorption
line in the Infrared wavelength range from the teacher. If the data is contained in
the hard drive, then the student is given the file name and its location. If the data
is contained in the summary table of the fine structure of the various gaseous
components of the atmosphere, the its necessary to decode the data from this
table and enter them into the PC (written in the data file). The summary table
contains 12 columns, which is explained by the structure of the Table 3.3.

The parameter a; containing in coded form the information about absorption line
halfwidth ocg), molecular weight u and gaseous component code N are in
columns 4, 8 and 12 of the Table 3.4:

a,:aﬁ” x 107 4+ u x 10 + N.

Decoding of gaseous component information is presented in the Table 3.4.

Table 3.3 The structure of presenting the fine structure parameters of absorption lines in a
summary table

v(()i ) Si(Ty) E"; a; vf)i) Si(Ty) E"; a; v(()i) Si(To) E"; a;
1 2 3 4 5 6 7 8 9 10 11 12




3.4 Practice 2 37

Table 3.4 Codes of gaseous - des

Gaseous component
components

H,0
CO,
O;
N,O
Co
CH,
0,

~N O AW -

3. To prepare tables of the fine structure parameters for every component (if there is
not in file). To prepare data files with computer program “V_contur” (separate
file for every component), containing values of frequencies v,’, intensities S @,
halfwidths Y and energy of lowest energy E'. Every file has to contain the
information of one 'jgaseous component. Data input strictly in ascending order of
wave numbers v(()' . File names are to be composed in accordance with
instructions below.

4. To plot the absorption line intensity for every component as a straight vertical
line. On the abscissa OX values of wave number and on the ordinate OY
intensities of absorption lines in logarithmic scale are plotted (the scale of the
axes OX is to be similar). Plotting might be done in EXCEL editor.

5. To study the character of the pressure and temperature impact to:

— the intensity and halfwidth of absorption line;
— the spectral variations of the absorption coefficient.

The study is accomplished with the computer program “CONTUR_1.exe”, that
realizes the calculation of the absorption coefficient of the single absorption line.
Only Lorenz’s contour is considered.

6. To calculate the spectral dependence of every gaseous component absorption
coefficient with the program “CONTUR_2.exe”, the file of aerological sounding
data and sequentially pointing file names of every component.

Calculation is accomplished separately for 3—4 temperature values and pressure
in atmospheric layers

1,000 = 700 GPa,
— 700 + 300 GPa,
— 300 + pmin GPa.

Positions of corresponding levels input with pointing numbers in tables of
aerological sounding. The table is output to the screen after every running of
the program “CONTUR_2.exe”. In every case, the resulting plot of the spectral
absorption coefficient is written to a file “contour2.dat”. All obtained results are
to be plotted and included to the final report.

7. To calculate the vertical profile of the absorption coefficient of every component
with the program “Contur_3” and file of aerological sounding data for 3 wave
numbers (for strong, moderate and weak absorption).
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8. To calculate profiles of total absorption coefficient and its constituents for one
fixed frequency in ranges 110-120 GHz with the program “Svcrad” and file of
aerological sounding data.

9. To calculate the spectral dependence of the clear absorption coefficient in
frequency ranges 110-120 GHz with step 0.5 GHz with the program “Svcrad”
for fixed altitude level.

3.4.5 Requirements to the Report

To prepare the brief report including elements of the theory, all results, and
conclusions.

3.4.6 Additional Formulas and Relations

1. G[ 1/km ] = [In (10)/10 ] x G [dB/km] = 0.230259 x G [dB/km].
2. The absorption coefficient within microwave interval might be calculated with
the Van-Fleck-Veiskon formula

2 .
Go, (vi, hy)[1/km] = 1.2305L(h")3 exp (—4.14 L)

T ()] T (k)
" [ Av (1) N Av () ]

(v —vo,) " + [Av ()] (vi+v0,)” + [Av ()]

3. The following formula for calculation non resonance absorption by water vapor
in the spectral interval A = 2.2-3.0 mm:

_ 103 : ) %p(h_/) ! -
GuoldB [km] = 1.73 - 107 .0, (1) {300} 760 <)) ’

where py. o is the absolute humidity [g/m?];
/ is the wavelength [cm];
p (hy) is the pressure at the altitude P, (1) = - [ e™** dv, [mmHg]
Av



Chapter 4

Calculating Transmission Functions
with Modeling Absorption Bands

of Atmospheric Gases

Abstract Molecular absorption bands are modeled. Elsasser’s regular and statistic
(Goody’s) models are considered. The algorithm for calculation transmission
function is presented. The Practice for the transmission function is described.

4.1 The Individual Spectral Line

The ideal case of the atmosphere containing only one gas characterized by
only one spectral absorption line is considered. The contour of the line, which
generally might depend on many factors, is assumed here to be possessing Lorenz’s
shape. Then the absorption coefficient k, at the wave number v is possible to
express as:

ky =

S
- x = SF(v — vo), (4.1)

(v =) + o2

where § is the intensity of the absorption line (depends on temperature);
vq is the frequency defining the spectral line position in spectrum; o is the halfwidth
depending on pressure and temperature; The function f(v — vy) is the spectral
absorption line contour. With reasoning the homogeneous (over altitude) atmo-
sphere and the constant absorption coefficient k, = const, the expression for the
transmission function in the spectral interval Av could be written as follows:

1
P,(u) = ~ J e bigy 4.2)
Av

where u is the integral content of absorbing gas over the radiation path.

Thus, the presentation of the exponent is needed for integrating in the Eq. 4.2.

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 39
DOI 10.1007/978-3-642-14899-6_4, © Springer-Verlag Berlin Heidelberg 2012
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Let the viewing zenith angle be 6, and the radiation passes between altitude
levels z; and z. Then the value u = u(0,z; z,) is defined for the heterogeneous
atmosphere with the altitudinal profile of absorbing component density p(z) as:

¥4l

u(0, z1,22) = JP (x)

dx
cos (0)

4.3)

It is possible obtaining the following formula for the absorption coefficient with
substitution of the Eq. 4.1 to the Eq. 4.2:

dv. (4.4)

1 S o
P(uy=— | exp|——————u
) AVAJ p[ T (v —vo)® + o2

Two important limiting cases concerned weak and strong absorption follow from
the Eqgs. 4.2 and 4.4. It is true (S u/a) — O for the weak absorption and the
absorption function is defined in the fashion:

A, =1—-P, = (S/Av)u. 4.5)

The absorption function A, is proportional to the value u, and the ranges of low
values (S u/a) is called the linear absorption region.

The strong absorption corresponds to the strong line (S u/o)— o0, thus the value
o < 1 and the absorption function A, is derived in the form:

A =1-—P, ~ (2 Sa/Av)\/ﬁ (4.6)
Here the absorption is proportional to the square root of the value u and ranges of

high values (S u/a) is called region of the square root law. The absorption depen-
dence on the absorbing gas content u is shown in the Fig. 4.1.

Ay
0

0.5

Fig. 4.1 The absorption

function A, in gaseous

medium in spectral line with 1
different values u
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4.2 Elsasser’s Model of the Regular Molecular Band

Elsasser W.M. has in 1938 observed lines evenly distributed in spectral range of
CO, absorption band 15 pum and proposed this model that consists of periodical
lines. The band is sometimes called Elsasser’s band.

Let separate absorption line repeat periodically (or regular) as the Fig. 4.2
demonstrates and the corresponded absorption coefficient be defined with the
Eq. 4.1. Then the absorption coefficient could be calculated with the following
formula, when displacing from any line centre to the value v by the wave number
scales.

= So/m
k, = —_— 4.7)
e
where § is the distance between centers of lines.
It can be shown basing on Mittag-Leffler’s theorem that an infinite sum might be
expressed with trigonometric and hyperbolic functions in the following manner:

S sinh f

Ve 4.
d cosh ff—cos vy “-8)

where
f =2no/dandy = 2nv /0. 4.9)

The transmission function might be expressed after certain transformations as:

oo

P, = J exp(—z)cthfiJo(iz/sinh fdz), (4.10)

where y = Su /(6 sinh f§), z = y sinhf}, and J, is redacted Bessel’s function of the
first kind and zeroth order. The Eq. 4.10 defines the Elsasser’s transmission
function.

Certain approximations and simplicities could be done in the considered model,
namely, the transmission function is transformed when o < 6 u § — 0 in the
manner:

2 \/nSocu>’ @.11)

A, = NG ]exp(—xz)dx =erf(x) = erf( 5
0

Fig. 4.2 Elsasser’s regular
model of the absorption band

-28 -0 0 +0 +26
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where
x=zf/2. (4.12)

And the absorption function A, becomes rather simple for small values x
A, = 2)(/\/5 = 2+/Sow /9. (4.13)

The Eq. 4.13 determines the region of the square root low introduced with the
Eq. 4.6.

4.3 The Statistic Molecule Band Model (Goody’s Model)

Goody R.M. studied in 1952 the water vapor rotational band and has found that the
random position of spectral lines is the only feature of the absorption lines spectral
distribution in spectral intervals Av wider than 25 cm™'. It allows the possibility of
analytically calculating the absorption coefficient basing on the random distribution of
absorption lines, characterized by known statistical properties (distribution functions).

Let the spectral interval Av contain 7 lines spaced at average distance J, and it be
true Av = nd. Assume the discrete uniform distribution of the line location within
the spectral interval Av. Introduce the function P(S;) determining the probability of
i-th line possessing the intensity S;, and it is normalized in according with:

JP(S)dS =1. (4.14)
0

Then the mean function value over the interval Av is found with averaging the
absorption coefficient over all intensities and all line locations:

1 T - u T - u
P, =P, ) Jdvl... Jdv,, X JP(S,)e kiugs, . JP(SH) e knugs,,

Av Av
(4.15)

where k, is the absorption coefficient of n-th line. All integrals are similar that
leads to:

r n

= 1—invJP(S) (1 —e*)ds| . (4.16)
0
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Because of assuming Av = né and known relation (1 — x/n)" — exp(—x) the
Eq. 4.16 can be shown to approach the exponential function for large value n. Thus,
it yields:

1 o0
P, = exp % JP(S) J(l —e_k”) dv| dsS 3. 4.17)
0 Av

It is possible to use different function for describing spectral lines distribution.
Consider here the simple function that is the Poisson’s distribution:

P(S) =S 'exp(S/S), (4.18)

where S is the mean line intensity. After introducing Lorenz’s contour for the
absorption coefficient k, to the Eq. 4.17 and integrating over line intensities and
wave numbers v from —oo till 400 the final result is obtained.

P, = exp [—%” (1 +%> ] (4.19)

Note, that the transmission function obtained for random model can be
expressed as a function of only two parameters, S/ and no./d, for given value u.
These two parameters could be found by forcing the experimental or theoretical
quantum-mechanical data by the random model for specified line. Take note that
calculating simplicity and relatively high accuracy provides considerable current
using the random model in problems of remote sensing and the estimation of
atmosphere radiation cooling.

Consider the random model for cases of strong and weak absorption. The
equivalent width of n lines is to be defined by:

[o.¢]

2

W_iz":wi—jp@) U(l—ek”) dv} dS—Su(H—iZ) . @20
i=1 0

For the weak absorption Su/mo <<1, it gives the relation:

Su 1
== ZS’”’ 4.21)

where Av = nd, and S; is the intensity of the separate i-th line.
For the case of strong absorption Su/mo >>1, and the result is obtained

< < 2
% 28 amS <722 VS"“") , 4.22)

Av s Av
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Parameters of the statistical model at the temperature 7 = 260 K are presented
in the Table 4.1 for the following transmission function versus wave number v and
atmospheric parameters u and p:

P ( ) 7/311/[
vi (Vi U, p) = €Xp | ————
A P P V1+ou/p

Parameters of the statistical model were obtained basing on the statistical
processing experimental data for the 6.3 pm vibrational-rotational water vapor

(4.23)

Table 4.1 Parameters of the statistical model for T = 260 K P, (v;,u,p) = exp (¢>

Spectral interval number v,cm ! Av, cm™! Gas o, 1073 cm? GPa/g Bi, cmz/g
1 70 140 H,O  30405.1 4180.5
2 210 140 H,O 69 058.0 6278.2
3 380 200 H,O 12 565.7 672.1
3 380 200 N,O 52.8 28.5
4 530 100 H,O 203.5 11.9
4 530 100 N,O 153.3 206.5
5 610 60 H,0 129.5 7.7
5 610 60 CO, 79.7 46.7
6 670 60 H,O 35.5 1.9
6 670 60 CcO, 2 644.0 1975.7
7 730 60 H,O 14.1 0.72
7 730 60 CcO, 60.5 27.2
8 870 220 H,0 2.6 0.11
9 1,020 80 H,O 0.17 0.01
9 1,020 80 O3 252.0 1938.7
10 1,120 120 H,0 2.5 0.15
10 1,120 120 (O} 20.8 45.6
10 1,120 120 N,O 68.8 27.3
11 1,210 60 H,0 4.9 0.52
11 1,210 60 CH,4 537.1 90.4
11 1,210 60 N,O 65.1 324
12 1,270 60 H,0 19.1 3.1
12 1,270 60 CH,4 53785 13259
12 1,270 60 N,O 1799.2 1616.7
13 1,330 60 H,0O 136.1 22.8
13 1,330 60 CH,4 9794.8 2 800.1
13 1,330 60 N,O 12272 557.6
14 1,390 60 H,O 895.8 230.5
14 1,390 60 CH,4 685.3 109.4
15 1,550 260 H,0O 7 001.4 15825
15 1,550 260 CH,4 71.4 10.9
16 1,940 520 H,O 4 .486.7 238.4
17 2,230 60 N,O 14 140.8 10937.5
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band and quantum-mechanical data for the rotational H,O band, and 15 pm CO,
band are shown in the Table 4.2. Parameters of the statistical model for the 9.6 pm
ozone band are calculated for the spectral interval 1,000—1,060 cm ! at the temper-
ature 233K and Av = 6.5 cm™ ' and data are also presented in the Table 4.2. The
following expression is used for the transmission function calculation:

P, =exp l— %t (1 + %) ] . 4.24)

Table 4.2 Parameters of the

statistical model in the -
spectral IR interval H;O rotational band

Spectral interval, cm ™! 3/5, cmz/g noe/d

p_ Su (14 5y 40-160 7210.30 0.182

v TP [_7 (1+3) ] 160-280 6024.80 0.094
280-380 1614.10 0.081
380-500 139.03 0.080
500-600 21.64 0.068
600720 2.919 0.060
720-800 0.386 0.059
800-900 0.0715 0.067
CO; 15-pm band
585-752 718.7 0.448
03 9.6-pm band
1000.0-1006.5 6.99-10° 5.0
1006.5-1013.0 1.40-10° 5.0
1013.0-1019.5 2.79-10° 5.0
1019.5-1026.0 4.66-10° 55
1026.0-1032.5 5.11-10% 5.8
1032.5-1039.0 3.72:10% 8.0
1039.0-1045.5 2.57-10° 6.1
1045.5-1052.0 6.05-10% 8.4
1052.0-1058.5 7.69-10° 8.3
1058.5-1065.0 2.79-10° 6.7
H,0 6.3-pum band
1,200-1,350 25.65 0.089
1,350—1,450 1344 0.230
1,450-1,550 632.9 0.320
1,550-1,650 331.2 0.296
1,650—1,750 434.1 0.452
1,750-1,850 136.0 0.359
1,850-1,950 35.65 0.165
1,950-2,050 9.015 0.104

2,050-2,200 1.529 0.116
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4.4 Practice 3

4.4.1 Objectives

1. To study the methodology of calculation transmission functions basing on using
different models of absorption bands.

2. To calculate with the computer and to study the spectral dependence of the
transmission function in IR spectral interval.

4.4.2 Software and Set of Input Parameters

1. Tables containing parameters of the statistical model.
2. Data of gaseous absorbing components content in the atmosphere.

4.4.3 Test Questions

1. What are the assumptions concerning location and intensity of spectral absorp-
tion lines used in the considered models of absorption bands?
2. What is the square root law?

4.4.4 Sequential Steps of the Exercise Implementation

1. To study theoretical bases of gaseous absorption lines forming in the
atmosphere.

2. To specify initial data for calculating transmission functions in IR interval.

3. To compile the program for PC that implements the calculation of transmission
functions in the IR wavelength range on the basis of the teaching model of the
absorption band.

4. Build with the help of packages EXCEL, SURFER or TABLECURVE, needed
graphs to the report showing the dependence of the transmission as a function of
the parameters of the model, and integral content of the absorbing gas.

4.4.5 Requirements to the Report

Compile a concise report reflecting the principal stages, the obtained results in the
form of tables and graphs, as well as the basic conclusions. Present the text drawn
up by the program to calculate the transmission function in the IR wavelength range
based on the absorption band model given by the teacher.



Chapter 5
Calculation of the Intensity of Self Heat
Radiation of the System “Surface-Atmosphere”

Abstract The radiative transfer equation for direct heat radiation is solved, that is
valid for clear atmosphere in IR spectral region. The cloud cover is taking into
account phenomenologically in calculation self heat radiation of the surface.

5.1 Concise Theory

The solution of the radiation transfer Eq. 1.17 by ignoring the scattering process
(that is valid in clear atmosphere for heat radiation in the long-wave spectral ranges
(4 > 3 pum)) and taking into account the definition of the transmission function
P(v,x,y) according to the Eq. 1.22 that characterized the direct radiation looks as
follows:

4

T, i) = e(V)BY, TP (v, ps, pi) +/B[v,T(x)]de
o
+[1 —s(v)]P(v,ps,pf)/B[V,T(x)]wdxv

Dt

Here J(v,p,) is the intensity of the outgoing radiation at the wave number v, at the
level with the atmospheric pressure p, for nadir scheme of observation (viewing
angle 0 = 0); &(v) is the emissivity of the surface; B[v,T] is the Planck’s function for
the blackbody radiation at the wave number v and temperature T; P(v,x,y) is the
transmission function of the monochromatic radiation from the level with pressure
y till the level with pressure x, which is the integration variable. It is fixed for
outgoing radiation y = p, at the level of the atmosphere top with satellite scheme of
observations, for downward radiation y = pgs_where pyg, is the atmospheric pressure
at the surface level. T is the temperature of the surface. It is to point out that the

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 47
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surface emissivity is below one, and there is a leap of the temperature at the surface:
Ts # T(p,). As it follows from the analysis of the Eq. 5.1, the intensity of the
outgoing radiation is defined by three items:

— the radiation formed by the surface;

— the radiation formed by the atmosphere;

— the downward radiation formed by the atmosphere and reflected by the surface at
the level with the pressure p, .

We will assume that the surface albedo equals to zero then the 3rd item in the
Eq. 5.1 is zero also. Hence, the Eq. 5.1 looks as below:

J(v.pe) = e(WBI, TsP(v.ps.ps) — / Blv. T(x)]

Di

aP(v7-x7pt)

5o (52)

5.2 Transmission Function

The monochromatic transmission function might be written with the assumption
that the radiation absorption at the wave number v is attributable to only one
gaseous component of the atmosphere:

_ N .
1
P(v,p1,p2) = exp —g / k(v,x)g(x)dx|p1 < pa (5.3)
P1 i
_ 1 N .
P(v,p2,p1) = exp —§ / k(v,x)g(x)dx|p2 < p1
P2 i

where: g is the acceleration due to gravity at the surface of the earth; k(v, x) is the
absorption coefficient at the level with pressure x; g(x) is the specific content of
absorbing gaseous component at the level with pressure x.

Values of the emissivity &(v) for certain surfaces are in the Table 5.1.

The intensity of outgoing in space radiation in cloudy atmosphere J.(v,p,) is
characterized by Eq. 5.2, with following changes:

— the atmospheric pressure at the surface level pyg, is replaced by pressure at the
cloud top p;

— the surface emissivity &(v) is replaced by the emissivity at the cloud top &.(v);

— the surface temperature T is replaced by the cloud top temperature 7. .



5.2 Transmission Function

Table 5.1 The emissivity
of the surface different types
within IR ranges (8§—12 pm)

49

Type of the surface

The emissivity &

Dry sand with small grains 0.949
Wet sand with small grains 0.962
Dry sand with large grains 0914
Wet sand with large grains 0.936
Ice 0.980
Clean water 0.993
Quartz 0.712
Granite 0.815
Basalt 0.904
Dry peat 0.970
Wet peat 0.983
Dry sandy loam soil 0.954
Wet sandy loam soil 0.968
Conifer needles 0.971
Dry snow (t =—2.5°C) 0.996
Wet snow 0.997
Dirty snow 0.969
Fresh snow 0.986

In case of a partial cloud cover of the instrument’s field of view (cloud partis N,.)

the outgoing radiation
following:

Ja(v’

intensity J,(v,p,) at the wave number v is defined by the

pt) =N, 'JL‘(vapC) + (1 _NC) u](V,]?S) 5.4

The calculation of the integrals in expressions (5.1) and (5.2) uses numerical

approaches:

— the method spline-interpolation of the temperature profile at the same levels,
where the transmission function is fixed;

— the method of rectan

gles for the calculation of the definite integrals:

©(b) "
/ FWdp(x) = f(xi12)Ap;, (5.5)
ola) =
where
b —
d@(x):agix)dx; h= na, xi=ih, 1<i<n;
o :951;12—1-)61'7 2<i<n Ay = [cp(xF%l) — @(xl7%>}, 2<i<n,
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5.3 Practice 4

5.3.1 Objectives

To study

specific features of the formation of the heat radiation in cases of clear and
cloudy atmosphere and with partly cloud cover of the instrument viewing field;
the redistribution of the surface yield forming the outgoing radiation within
spectral channels with different values of radiation absorption;

the outgoing radiation dependence on the cloud and surface emissivity, cloud top
altitude, degrees of the surface radiative heating (cooling) within different
spectral channels.

5.3.2 Software and Set of Input Parameters

. Computer programs “V_AERDAT.exe”, “V_TRANSM.exe” and “RAD_IR.

exe” (or “RADNIMB.exe™).

. Tables of results of the complex temperature-wind aerological sounding whose

data are used with the program “V_AERDAT.exe” at the first step for creating
the input file for further calculation. It is possible to use the ready input files at
the address “\dz-2006\student\”. The ready file containing values of the trans-
mission function for the radiometer at the platform « Nimbus » might be used
also with the computer program “RADNIMB.exe” and file “aer.dat”.

5.3.3 Test Questions

. What factors influence the difference in the outgoing intensity values at different

wave numbers v?

. What does the extent to which the outgoing intensity is affected by the surface

emissivity depends on?

. At which wave number v used in the calculations is the cloud impact on the

outgoing intensity maximum?

. At which wave numbers v used in the calculations is the cloud impact on

the outgoing intensity maximum?

. Why is the brightness temperature of the outgoing radiation formed by the

system atmosphere-surface not equal to the sum of surface and atmosphere
brightness temperatures?

. In a case, where the isothermal atmosphere temperature is equal to the surface

temperature T(x) = const = T(ps) and the surface emissivity &(v) is equal to a
unit. What is the brightness temperature of the outgoing radiation equal to?
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5.3.4 Sequential Steps of the Exercise Implementation

DN =

. To study the theory using additional books, pointed in references list.
. To use the prepared file “aer.dat” containing temperature and pressure profile as

initial It is possible to create files containing data of aerological sounding with
the program “V_AERDAT.exe”. The file is automatically kept in the directory
« \dz-2006\student\ » with name “aer.dat”.

. To create the file containing values of the transmission function with computer

program “V_TRANSM.exe” with name “Vtransm.dat” in the same directory as
the computer program is. The transmission functions in five spectral channels at
100 levels in the atmosphere (z = 0 + 50 km) are simulated basing on the
following equation (an analogue of formulas (5.3)):

P(vi,z=50km, z) =exp [—k(v) u(z)], (5.6)

where z; = (n — j)/2, j=1,...,101, n=101; k(v) = 0.005 + (i + 0.05)"*,
i=1,...,5;

4.

uz) = (j/2—1)(08=0.001 *m)
To try calculations with the computer program “RAD_IR” for visualizing all
variants for analyzing special features of forming self heat radiation of the
system surface-atmosphere in clear and cloudy cases, and different altitudes of
cloud top.

. To prepare the plan of accomplishing numerical experiments with program

“RAD_IR.exe”.

. To fulfill whole set of calculations with the program “RAD_IR.exe”.
. To analyze basing on data obtained:

— the redistribution of the surface and atmosphere contribution at different
spectral channels with different radiation absorption in case of clear
atmosphere;

— the dependence of outgoing radiation at different spectral channels with
different radiation absorption on the surface emissivity and surface radiation
heating (cooling);

— the cloud impact (altitude and emissivity of cloud top, part of cloud cover of
the instrument viewing field) on the outgoing radiation within spectral
channels with different radiation absorption.

5.3.5 Requirements to the Report

Prepare the final brief report with elements of theory, resulting pictures, and
conclusions that reflect main stages of the work.



Chapter 6
Construction and Operation of the Automated
One-Channel IR-Radiometer

Abstract Main features of IR-radiometers, testing and calibration of instrument
are considered. Detailed description of all procedures for employment of the
IR-radiometer is presented.

6.1 Concise Theory

Mastering space that began in 1957 opens a new era for many research fields.
Firstly, the view to the Earth from outside has been possible. A lot of objects were
of interest for researches: oceans, continents, glaciers, rivers, and cloudiness. The
development of the space technique is aimed to obtaining the maximum of infor-
mation about geophysical covers and phenomena.

Most of satellites at the orbit are destined for researches (some have several
purposes), accomplish investigation of Earth’s spheres (hydrosphere, atmosphere,
lithosphere, biosphere), and their interaction in global scales. The information
source for instruments at satellite platforms is the radiation reflected (shortwave
solar) or emitted (heat self radiation) by these spheres. The radiation transformation
provoked by different objects at the Earth surface or atmosphere might be treated
for these objects properties retrieval.

At first stage observations were similar to photographing and comparing view of
objects in different time moments. Natural resources, the dynamics of their variations,
anthropogenic impacts and so are were of scientific interest. However, the necessity
of obtaining the information concerning physical characteristics arises. These
characteristics are as follows:

— the temperature and humidity of the atmospheric air;

— the temperature of the ground and ocean surface;

— determination specific chemical elements in the Earth core;

— the salinity and waving of water surface;

— the altitude of cloud top, ice and water amount of cloud, direction and velocity of
cloud shift;
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— the origin of dangerous atmospheric phenomena (typhoons, squall, tornados,
heavy rains, hail and thunderstorm clouds).

Contemporary instruments for remote sensing of the atmosphere and surface are
very rich (multi channel radiometers and spectrometers) and registry of the electro-
magnetic radiation in different spectral intervals. Classification of instruments can
be done on the basis of:

— measurements type (instruments for active and passive remote sensing);

— geometry of observations (nadir and limb);

— spectral intervals where electro-magnetic radiation registered (UV, visual, IR,
microwave);

— specific features of observations (with space scanning or not, multi angle, etc.);

In ranges of the above classification of the various set of radiometers is
elaborated and successfully used at different platforms (aircraft, balloon, rocket,
satellite) for registration of outgoing radiation. IR-radiometers, in particular, serve
for remote obtaining of the temperature of the surface and cloud top from boards of
aircraft, helicopter and meteorological satellites. Most of the satellite radiometers
are scanner type instruments because this type provides the main advances of
satellite observation: operative looking through wide territories and mapping with
high space resolution.

The first IR-scanner has been launched as a part of satellite complex “Nimbus-2”
in 1964. The accuracy was not high — errors of the surface temperature retrieval
were about several degrees. But the global scales of obtaining the information
demonstrated rich potential possibilities of such instruments and gave the important
and practical information.

After testing and tuning instruments at “Nimbus” satellites the improved IR-
radiometer has been set operational on meteorological satellites (MS) series ITOC/
NOAA at the polar orbit. Efficiency of MS and providing regular and simultaneous
IR-radiometer data directly to users (data are transmitted in continues regime)
making for wide satellite data assimilation in geophysics.

Launching the geostationary satellite “Meteosat-1" was the next step in devel-
opment of satellite IR-radiometry. Nowadays several geostationary MS with IR-
radiometers at the board simultaneously function at the orbit. Geostationary MS
provide the improved data recurrence comparing with MS at polar orbits and
characterized with the longer life expectancy. But the space resolution and accuracy
of registration IR radiation are lower than for polar orbit satellites.

The MS of the fourth generation “TYROS-N” began to operate in 1978. Its
improved version was the basic element of USA space system till the end of 80th.
The radiometer AVHRR has been put at this MS and the same instrument was used
at the board of NOAA NROSS satellite for oceanic researches.

With creating improved receivers of the IR-radiation the IR-radiometry IR-
spectroscopy techniques are brought closer, that leads elaborating new improved
approaches of satellite data processing. Thermocouples and bolometers (which are
of high sensitivity and offer freedom of cooling) were used in first generation
radiometers. However, they possess relatively high (for the satellite observations
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specificity) time constant of order tens and hundreds of milliseconds that prevents
high space resolution. It is mentioned for comparison that the registration time of
one resolution element by the radiometer AVHRR is 0.25 ms. Contemporary
IR-radiometry derives success in improvements from creating photoelectric
receivers with high spectral sensitivity (in spectral ranges 8—14 pm) Photoresistors
and photodiodes on the base of HgColTe are in considerably use. The maximum of
their spectral sensitivity is at 10 um and the time constant ranges within 50-500 ns
with receiver cooling till 77 K. The significant advance of photoelectric receivers is
the possibility organizing photocells to lines and matrixes that allows avoiding
complicated optics-mechanics scanning systems in radiometers. New receivers call
putting new technologic problems for creators of satellite instruments: special
microcryogenic systems for receivers cooling with small mass and low energy
consumption; the necessity of fabricating receivers similar over their parameters
(that is important for multi-element receivers).

Improving the methodology of multichannel observations (elucidating the opti-
mal spectral intervals and their number) increase the remote observations as well.
Nowadays there are not principal difficulties in creating multichannel radiometers.
A different situation arises with perspective constructions (heterodyne radiometers,
IR-spectrometers) that can provide the qualitative leap in accuracy improvement of
radiometers. The stable and highly coherent radiation sources are needed for
creating and using heterodyne radiometers that call cryogen system for satellite
IR-spectrometers.

Graduation of satellite radiometers is of most important stage in the instrument
preparation because it defines the results accuracy of meteorological parameters
measurements. It is clear that graduation of satellite instruments is to be accom-
plished in similar to operational conditions at satellite board.

However, the extended and careful graduating preliminary program of the
instrument is not enough for necessary accuracy of radiometric observation. In
particular 1-2 months are needed after instrument launching at the MS board for
stable running radiometer in operating regime ratings. For example, the radiometer
HCMR regime ratings characterized by the receiver temperature 150 K, but first
70 days after launching the temperature exceeds 200 K and decreases to 0.14 K per
day during 30-50 days.

The orbital calibration is accomplished during all period of instrument’s opera-
tion that regulates by following factors:

— ‘“‘ageing” electronics that leads variations of the instrument sensitivity;

— changing conditions of solar heating the satellite and instrument;

— Possibility of ice deposition at cooled instrument elements because of degassing
and condensing processes.

Thus satellite radiometers demand continuous orbital calibrating during opera-
tional cycle at MS board for expeditious correction of graduating characteristics.
From the experience the orbital calibration is accomplished with both the reference
radiation of the space and boarding imitating of the blackbody. The absolute
calibration only with the blackbody is not sufficient.
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6.2 The Function and Observing Conditions of the Automated
One-Channel IR-Radiometer

This practice concerns studying, graduating and calibrating the IR-radiometer.
Certain details of construction are special cases. However, considered principles
of operation and construction are inherent features in general for IR-radiometers.
Thus let’s consider the interaction between separate units of the instrument without
concrete specification of elements.

The automated one-channel IR-radiometer used in this teaching practice is
fabricated for remote measurement of the temperature of water surface (or other
surface with known emissivity) from the aircraft or helicopter board. The instru-
ment is aimed to nadir observation in atmospheric window 8-13 pum. Space
scanning is done by observational platform moving.

The instrument is compiled from two parts: the optical unit and the unit for
processing signal. The optical unit can be put in both hermetic sealed and non-
hermetic compartment of aircraft or helicopter. The optical axis is vertical for nadir
observation.

Operating the instrument allows following variants:

(a) registering observational results in digital form with indicators consisting from light-emitting
diodes;

(b) outputting the signal in digital form to computer (this option is used in laboratory module);

(c) outputting the signal in analog form (1, ..., 5 V) for registering with the analog recorder.

Normal conditions for the processing unit are follows:

(a) the air temperature is in ranges 288-298 K (15-25°C);

(b) the air relative humidity is in ranges 15-65% for pointed temperatures;

(c) the atmospheric pressure is in ranges 96-104 kPa (720-780 mmHg);

(d) the supply voltage is 215.6-224.4 V and the frequency is 50 Hz;

Working conditions for the processing unit are follows:

(a) the air temperature is in ranges 278-313 K (5-40°C);

(b) the atmospheric pressure is in ranges 96—-104 kPa (720-780 mmHg);

(c) the supply is possible from both the alternating current with the frequency 49.5-50.5 Hz and
voltage in ranges 198-244 V or the direct current with the voltage in ranges 24-30 V.

Working conditions for optical unit (with turned on thermostats) are follows:

(a) the air temperature is in ranges 253-303 K (—20 to +30)°C;
(b) the air relative humidity is in ranges 98% for temperature 303 K (30°C);
(c) the atmospheric pressure is in ranges 33-104 kPa (250-780 mmHg).

Limiting conditions for transportation the instrument are:

(a) the air temperature is in ranges 253-333 K (—20 to +60)°C;
(b) the air relative humidity is in ranges 99% for temperature 303 K (30°C);
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6.3 Technical Parameters of the Automated One-Channel
IR-Radiometer

The range of measured temperatures of the water surface: 0-40°C

The instrument error is not more than: 0.3 K

The resolution at the digital output 0.1 K

The viewing indicator is not more than 1:20

The temperature of thermostats 35°C

The time constant of the integrator 2s

The spectral interval, 8-13 pm

The signal output is analog 1-5V

The instrument size are, mm:
optical unit not more than 80 x 180 x 260 mm
processing unit not more than 260 x 150 x 260

The instrument mass is not more than 8 kg

The length of cable between optical and processing units is not more than 20 m

6.4 General Instructions on Exploring the IR-Radiometer

Firstly, it should carefully familiarize with the technical description and instruction
on exploring of the instrument before the operation begins.

Governing elements of the IR-radiometer are at the front signal processing
panel.

The first assembly connector (farthest to the left) is destined for connecting the
cable from the optical unit (marked “optical unit”). The second assembly connector
(without marks) is for output analog and digit signals. The third connector is for
supply cable and marked “power”.

Caution should be exercised in handling the instrument. One should be
careful while operating, calibrating or repairing the instrument and keep off
from touching energized elements because the alternate voltage 220 V is in the
processing unit.

6.5 Preparing the IR-Radiometer to Operation

1. Study the function of every governing element.

2. Connect with the cable the optical and processing units and switch the power
cable.

3. Switch the power cable to the power source.
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4. Switch the toggle switch "power" to the lower position.
5. Open the protective cover from the front panel of optical unit.

6.5.1 The Order of Measurement

After switching the toggle switch “power” three digits and two commas are
lightning The instrument is to heated during 5-15 m for stabilizing regime of
thermostat (disappearing of the second comma at lightning digit panel is the signal
of the operative regime).

The optical unit is to be positioned at operational place (move the platform with
the optical unit to the place, which is above the surface point with the desired
temperature). After 2 s the light indicators demonstrate the water surface tempera-
ture (°C).

6.5.2 Testing the IR-Radiometer

During testing the laboratory glass mercury thermometer with the least graduation
0.1°C and scale limits 0-50°C is to be used as a reference thermometer.
Environmental conditions during testing:

- the air temperature 10-25°C

- the air relative humidity 50-70%

- the atmospheric pressure 96-104 kPa
- the power voltage 200240 V
- the power frequency 50 Hz

or direct voltage 24-36 V

It is necessary heating the radiometer during 15 m after switching. The reference
surface is the special dish with fresh water. It is possible to use the outer blackbody
radiator for testing the signal dispersion.

6.5.3 The Calibration Procedure

1. To measure and memorize the temperature of the upper 2 cm layer of water with
continuous stirring in the dish. Take in mind that the time constant of the
laboratory thermometer is about 3 m.

2. To direct the optical unit to the interested surface and to continue stirring water.

3. To record the radiometer result.
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4. To repeat the procedure above the desired point of the water surface ten times
with recording results of radiometer and reference thermometer.

5. To repeat the procedure at other 10—15 points of the surface for other surface
temperatures in ranges 0-30°C.

6. To correct the tuning IR-radiometer if temperature recording by radiometer and
reference thermometer distinguish more than 0.3 K.

Remark. Recording by radiometer might exceed thermometer recording by
0.5-0.8°C in the temperature range 0-9°C, because of the warm skin film on
the surface that is in contact with the warm laboratory air. By contrast in the
temperature range 16-30°C radiometer recording might be lower by 0.5-1 K than
thermometer recording owing to surface skin film heat losses through the
evaporation.

The Fig. 6.1 demonstrates the plot of testing results. On the abscissa recordings
by IR-radiometer (7r) are plotted and on the ordinate the difference (dT) between
remote by radiometer (77) and contact by thermometer (7's) recordings are plotted.
The Table 6.1. presents the similar data in tabulated view. The special file “kalibl.
dat” with calibrating values can be used for quantitative analysis during
observation.
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Fig. 6.1 Example of the IR-radiometer calibration
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Table 6.1 Results of IR-radiometer calibration

T,.[°C] I, - T,[°C] T, [°C] I, - T,[°C] T, [°C] I, —T,[°C]
36.3 0.4 35.8 0.4 353 0.5
35.1 0.5 35.0 0.4 34.4 0.3
34.5 0.1 34.0 0.3 339 0.0
335 0.1 33.0 0.2 322 0.1
31.6 —0.1 31.3 0.1 31.2 0.0
30.9 —0.2 30.6 -0.2 30.3 -0.2
29.9 —0.2 29.6 -0.2 294 -0.2
29.1 —0.3 28.7 —-0.4 28.4 —0.6
28.0 —0.6 27.6 —0.5 27.5 -0.7
27.2 —0.6 26.8 -0.7 26.6 -0.8
26.4 —-0.8 25.8 -0.9 25.6 -0.9
24.9 —-0.9 24.8 -0.9 24.6 -1.0
244 —-1.2 239 —1.4 22.9 —1.4
223 —1.6 21.7 -1.6 20.9 -1.7
19.9 —2.2 19.5 -2.0 19.1 -2.0
18.8 —2.2 18.3 -2.2 17.4 -2.3
17.0 —-23 16.8 2.4 16.7 2.4
16.3 —2.3 16.1 -2.5 15.8 -2.5
154 —2.6 15.0 —2.6 14.5 —2.7
14.3 2.8 14.2 -3.0 13.6 -2.9
13.4 —2.8

T, is the IR-radiometer reading, T is the contact measurement
6.5.4 Test Questions

1. What units are in IR-radiometer?

2. What surface temperature intervals can remote observations be accomplished
with the IR-radiometer?

3. What is the instrument error of the remote temperature T, measurement with the
IR-radiometer?

6.6 Practice 5

6.6.1 Objectives

1. Study the device, principle of operation, and methodology of the remote
measurement of the surface temperature with the automatic, one-channel
IR-radiometer.

2. Master the remote measurements by IR-radiometer included to the laboratory
complex “IR-radiometer—Computer”.

3. Carry out testing the IR-radiometer.
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6.6.2 Software and Set of Input Parameters

1. The automated one-channel IR-radiometer, mated with the computer.

2. Thermometers for contact temperature measurements.

3. Computer programs for the surface temperature processing. Files names and
paths of needed programs are pointed (given) by the professor.

6.6.3 Sequential Steps of the Exercise Implementation

1. Read attentively the section devoted to the physical/theoretical background of
this exercise. If necessary, consult the referenced literature.

2. Explain the optical scheme of the operation IR-radiometer using the Fig. 6.1.

3. Master computer programs for resulting data processing with computer.

4. Accomplish the IR-radiometer testing and using dishes with water at different
temperatures. Estimate average and maximal observational errors within given
temperature ranges.

5. Prepare the report containing concise description of the radiometer and
principles of operation and results of testing radiometer with estimating obser-
vational errors.



Chapter 7

Remote Measurement of the Surface
Temperature Field with the Automated
One-Channel IR-Radiometer

Abstract Basic formulas are considered for the surface emissivity and temperature
retrieval from the radiation observation. The sequential steps for the Practice
implementation are presented.

7.1 Concise Theory

The intensity of self heat radiation of the system ‘““surface-atmosphere” is described
by the Eq. 8.6. Let’s repeat it here:

J! = ¢, B[v,T,] PV +B[V,T;‘]{1 fPE,J‘)}, (7.1)

v

where

JJ, is the intensity of self heat radiation at the wave number v;
&, is the surface emissivity at the wave number v;
Blv, T,] is Planck’s function at the wave number v and temperature T';

P‘(,S> is the transmission function of whole atmosphere at the wave number v;
T¢ is the “effective temperature” of the atmosphere at the wave number v.

It is possible to assume Psvs) ~ 1 considering that observations are in atmosphere
window and the distance between radiometer and surface is about 1 m. Then

J! ~ e, Bv,T). (7.2)
The relation (7.2) might be used for the surface temperature T retrieval after

substituting the expression of Planck’s function (2.1) if the radiometer records the

intensity J| as such. Let’s remember the expression for the Planck’s function:
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av’

exp (%) 1

where a = 1.1909 - 1075, b = 1.438786, dimensions of the wave number and
temperature are: [v] = cm ', and [T] = K.
Actually, by taking into account for the expression

BIv,T,| = (7.3)

CZV3

exp (';—‘) —1 ’

The expression for obtaining surface temperature is obtained after elementary
transformations

J! =g

v

(7.4)

b
Ty= (1.5)
In[e, 27 +1]
The Eq. 7.4 together with direct measurements of the surface temperature T
might be evidently used for retrieving the surface emissivity &,:

J! % . (7.6)

b= av?

However, the above relations do not take into account for special features of the
radiometer calibration, they can’t be directly used. The instrument calibration has
been fulfilled for the water surface (with the emissivity ¢, = 0.993) only, the
calibration curve memorized by computer is not suitable for another surface, and
the temperature recorded by radiometer does not correspond to real one. Thus,
radiometer’s reading is necessary to correct, if the other surfaces are under consid-
eration for temperature and emissivity retrieval.

Let the methodology for recounting the radiometer reading consider when
accomplishing observation.

7.2 Determination of the Surface Emissivity

Input data for determining the emissivity ¢, are:

— The surface temperature Ty measured with contact method;
— Radiometer recordings T,.

IR-radiometer records the self heat radiation intensity above water surface

JI = e"WB[v, T,], (7.7)



7.3 Remote Measurement of the Surface Temperature 65

and the following value lights at the radiometer panel:

b
T, =— Y (7.8)

In [asm “j—vf + 1}
which is not equal to the real temperature value because of inequality emissivity of
water surface to emissivity of other studied surface ¢, ™) £ g,
Actually we have
Jl =BV, Ty, (7.9)

where ¢, and T are the emissivity and temperature of studied surface. It is evident
that:

e BV, T,] = &,B[v, Ty, (7.10)

where T, is the radiometer reading and T is the surface temperature. Then the
following relation is obtained with assuming known values st), T, and T:

(7.11)

With substituting Planck’s function expression to the Eq. 7.10 the formula for
calculating the real emissivity value is derived:

( )exp(};—:)-i-l

& =& , (7.12)
exp (?) +1

where v =1,000 cm ! (the centre of radiometer filter transmission); 8&“’1):0.993;
b = 1.438786 K/cm ™. The Eq. 7.12 is used in the computer program « RAD.exe »
for the determination of emissivity ¢,

7.3 Remote Measurement of the Surface Temperature

The direct radiometer reading is used for remote measurement of water surface
temperature.

Radiometer reading is not sufficient for observation above other surfaces (sand,
soil, et al.) for surface temperature T retrieval. Value of emissivity &, of
corresponding surface (that are measured independently following the previous
section) is necessary. The recalculation radiometer reading T, to real value Ty is
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done with Eqgs. 7.7 and 7.9. After equating right parts of the equations and sub-
stituting Planck’s formula the following is obtained:

Gl = #"av : (7.13)
exp (’%) +1 exp (%) +1
Solution of the Eq. 7.13 relatively T yields:
T, bv (7.14)

ln{rf;i) [exp (’;—‘) + 1} — 1} .

The Eq. 7.14 is used for obtaining value T with recalculating radiometer reading
T, and values v =1,000 cmfl, b = 1.438786°K/cm7], gsw) =0.993 in the computer
program « RAD.exe ».

7.4 Polynomial Approximation of the Temperature Field
Measured with One-Channel Automated IR-Radiometer

The typical situation, when solving meteorological problems, is the obtaining
meteorological parameter at nodes of regular network from observational value
of the meteorological parameter at arbitrarily posed sites at horizontal plane. The
bi-dimension polynomial approximation is one of approaches to the problem
solution. In particular the first attempts of meteorological fields analysis has been
based on the polynomial approximation. Experience showed that the approach
provides acceptable exactness of the analysis with observational sites thickly
strewn. However the approach might provoke a significant error for vast space
with rare observational sites. Nowadays the spline approximation inspires the
interest to the polynomial approximation.

Here the polynomial approximation is used for interpretation of remote data
of temperature measurement. The algorithm for calculating coefficients of
approximating polynomial is considered.

Let observational results be known for a certain meteorological value H at N
points of horizontal plane with coordinates (x;, y;), where i = 1, 2, ..., N. These
values are noted H;. The totality of values x;, y;, and H; are called table data.

The bi-dimension field of the meteorological value H is defined by the following
expression with using polynomial approximation:

H(x,y) =Y fiFi(x,), (7.15)
=1
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where Fj(x,y) are known power monomial in coordinates x and y, and f; are
unknown desired coefficients (found on the base of all observational data totality)

Depending on the power of used polynomial sp power monomials F; and
parameter m in the Eq. 7.15 are as follows:

— for linear approximation (sp = 1) m = 3; Fy = 1; F, = x; F3 = y;

— for square approximation (sp = 2) m = 6; F4 = x y; Fs = x* F¢ = y* (power
monomials F, F; and F, are identical to case of the linear approximation);

— for cubic approximation (sp = 3) m = 10; F; = x> y; Fg = x y*; Fg = x°:

Fio= y3 (power monomials Fy—Fg¢ are identical to case of the square
approximation).

Number of coefficients of approximation polynomial m is linked with its power
sp with the relation:

sp

m=> (i+1). (7.16)

i=0

Different methods are possible for determination of coefficients f; in the
Eq. 7.15, which differ by mathematical approaches and totality of used data both
real (measured) and a priori (known before an experiment). Here the calculation of
coefficients f; is done in the range of linear theory of the less-square technique for
independent and equally accurate observational data. Coefficients f; are calculated
from the demand of minimum by the following value:

N
E(fiy oo ) = Y [Hxy) — HI (7.17)

i=1

where H(x;,y;) are values of approximating polynomial defined with the Eq. 7.15 at
points with coordinates (x;y;), H; are measured values of the meteorological
parameter at the same points. The value E is the function of m variables fi—f,,.
Every partial derivative with respect to fi—f,, is equal to zero at point of the
corresponding minimum. Presenting derivatives in an explicit form provides the
system of m linear algebraic equations for determination m unknown coefficients

Sim:

ofs . (7.18)
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The system (7.18) might be presented in matrix form after substituting the
Eq. 7.15 to the formula (7.17), differentiating and elementary algebraic
transformations:

Df =u, (7.19)

where the (m x 1)-dimensional vector f contains desired coefficients of the
approximating polynomial, the m-by-m matrix D contains only coordinates of
observational points, the (m X 1)- dimensional vector u contains coordinates of
observational points with measured data. Then the problem solution might be
presented as follows:

f=D"u, (7.20)

where D! is the matrix inverse of matrix D.

Thus, the calculating coefficients of approximating polynomial is reduced to
forming the matrix D and vector u on the basis of available data, Calculating the
inverse matrix D', and multiplying to the vector .

It is convenient to introduce the auxiliary m-by-N matrix A for forming elements
of the matrix D and vector p of the system (7.20), which for polynomials in first and
third powers looks as

— for the first power polynomial:

A(i, 1) =1;
A(i,2) = x(i); (7.21)
A(l,3) :y(i);

— for the third power polynomial:

A1) = 1;
A(i,2) = x(i);
A(i,3) = y(i);
A(i,4) = x(i) - y(i);
A(i,5) = x(i) - x(i); (7.22)
A(i,6) = y(i) - y(i);
A(i,7) = x(i) - x(i) - y(i);
A(1,9) = x(i) - x(i) - x(i);
) =y(i) - (i) -

>
-~
\;_.
(=)

The parameter m for the power sp polynomial is defined by the Eq. 7.17 and N is
the number of table value of the field. In the similar manner the expressions might
be obtained for other powers polynomials.
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In addition the (N x 1)-dimension vector T
T(i) = H; (7.23)

that contains all measured values of the desired field. Then the matrix D and vector
u from the Eq. 7.19 might be obtained with the following relations:

D=AxA:u=AxT, (7.24)

where the letter “#” denotes transposed matrix.

It is useful normalizing table data (x, y and H) over the interval [—1, +1] for
decreasing uncertainty, when calculating polynomial coefficients, according to the
following formula:

Do = g P 7 Pmin__ 1, (7.25)

Pmax — Pmin

where p is the initial value, p, is the normalized value, p,;, and p,..
corresponding minimal and maximal values of the desired parameter over all
table data totality.

7.5 Control Questions

—_—

. What surface type does the radiometer panel reading indicate?

2. What values are needed for remote measurements of the surface temperature
with IR-radiometer?

3. What values are needed for remote measurements of the surface emissivity with
IR-radiometer?

4. Do approximate polynomial values equal to temperature values measured with

IR-radiometer at sites of remote observation?

7.6 Practice 6

7.6.1 Objectives

1. Study the methodology of accomplishing remote measurement of the surface
temperature with automated IR-radiometer.

2. Master the methodology of using IR-radiometer included in the laboratory
complex radiometer-computer for accomplishing remote measurements of the
surface temperature and emissivity.

3. Accomplish measurements of the emissivity of proposed type of surface and
estimate the result’s accuracy.
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4. Accomplish the remote measurements of the surface temperature field and create
the corresponding data file using obtained surface emissivity.

5. Complete the complex processing data of remote measurement of the surface
temperature:

— calculate coefficients of 2-power approximating polynomial from remote
measurement of the surface temperature field;

— Perform the approximation of observational data to regular network;

— Present the final result in both digital and pseudo color forms;

— Plot isometric lines of the surface temperature.

6. Coincide direct and remote measurements of the surface temperature.

7. Analyze the water surface pollution impact on remote measurement of the
surface temperature and estimate the possibility of the remote indicating pol-
luted areas.

7.6.2 Software and Set of Input Parameters

The automated one-channel IR-radiometer, mated with the computer.

1. Thermometers for contact temperature measurements.

2. Dish with water or other type of surface (sand, soil).

3. Computer programs for the surface temperature processing (“POLETS.exe”
and “TXT2ISO.exe”), as well as graphical packages SURFER or EXCEL
editors.

7.6.3 Sequential Steps of the Exercise Implementation

1. The sand emissivity ¢, is defined on the basis of remote and contact measurement
of the surface temperature with the computer program “RAD.exe” in option
« Definition of sand epsilon ».
It needs the following operations:

— To choose the item « Definition of sand epsilon » with buttons “{” and “|”
after running the program “RAD.exe”;

— To input the surface temperature value (measured with contact thermometer
during 3 min);

— To remember the obtained emissivity value ¢ ;4.

2. To accomplish remote measurement of the surface temperature field T (x, y) and
to process obtained data complexly:

— To turn on the electric heater (at one corner of the dish) during 3—5 min for
creating the temperature heterogeneity of the surface in dish;
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In running program “RAD.exe” (to press the button “ENTER” for continua-
tion the program after the emissivity definition) to open “Menu” by pressing
the button “F6” and to choose the item “measurement of surface temperature
field” with help of buttons “1” and “|”;

To put the IR-radiometer above new point of the surface with coordinates X,Y
(cm)

After 30 s to register the radiometer reading to data file by pressing the button
“Y”. Continuation of registering is done by repeating the “Y”’ button press;
To repeat measurement for all points;

After last measurement (pressing the button “Y”) to terminate the process by
pressing the button “N”;

Then the program process data. After the program’s finish the sand tempera-
ture field appears at the computer screen. The map might be moved by buttons
“7, ¢, =7, “—=”, and changed in sizes by buttons “+7, “—";

To analyze results obtained;

For terminating the program to press the button “Esc”, choose the option
“Quit”, and then press buttons: “Esc”, “TERMINATE”, “Y”.

3. To accomplish the polynomial approximation of remote measurement data of
the surface temperature field. To execute the recalculation of temperature at the
regular network basing on obtained values of approximating polynomial
coefficients and plotting results:

Use the file “Results.dat” and remember it in your own directory.

To calculate approximating polynomial coefficients with helping programs
“POLETS.exe”, and “TXT2ISO.exe”, and inputting name of the file
containing T (and “file path”), calculate coefficients of polynomial powers
1-4, that sequentially output at the screen and to the result file .. ..”;

To analyze the accuracy of the approximation with comparing approximated
and contact measured temperatures T at points x and y. The mean square,
minimal, and maximal deviations are also output at the screen and to the file
“Results.dat”;

To execute recording two result files at the regular network. The notations:
“rrr.txt” and “ppp.txt” are added respectively to the name of resulting file for
non-normalized and normalized values T in the grid correspondingly, when
the file recorded on a network drive;

To map “EXCEL” editor and to analyze mapping of surface temperature
fields in color gradation;

To plot temperature isolines with program “TXT2ISO” and EXCEL editor.
Files “.txt”, created with program “POLETS.exe” are used;

To plot results using EXCEL editor and compile a report using the Word text
editor.

4. To accomplish remote measurement of the temperature of water surface in two
dishes: with pure water and water polluted with oil. To measure the temperature
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with contact thermometer in dish #1 (pure water) after stirring water and
compare with radiometer reading.

5. To measure the temperature with contact thermometer in dish #2 (water with oil
film) and define the temperature difference between pure and polluted water
surfaces. Estimate the possibility of indicating the oil pollution of the water
surface from temperature difference.

6. To prepare the report in Word text editor.

7.6.4 Requirements to the Report

Report must contain the following:

1. Concise description of the methodology of obtaining sand surface emissivity
with IR-radiometer.

2. Results of the complex processing data of the surface temperature remote
measurements.

3. Results of possibility of remote indication of oil spots on the water surface.



Chapter 8

Study of Depending the Uncertainty

of the Remote Surface Temperature Retrieval
on the Initial Parameters Exactness

Abstract The inverse problem of the surface temperature retrieval is formulated.
The influence of the initial parameters uncertainties to the resulting temperature is
considered.

8.1 Remote Retrieval of the Surface Temperature

Remember the expression (2.9) for the outgoing intensity formed by the surface
with ignoring the atmosphere:

JI = e,B,(Ty), 8.1)

where Ty is the surface temperature; B, is the Planck’s function; ¢, is the surface
emissivity.

Taking into account only the atmospheric absorption and neglecting scattering
(that is valid in IR spectral region 4 > 3 pum without cloud) the relation (8.1)
transformed to:

P
J! = &,Bv, T,JP\(p,) + JB[v, T(x)]dPy(x). (8.2)
Ps

Here P,(x) is the transmission function at the wave number v between levels
in the atmosphere with pressure p, (the atmosphere top) and x (the integrating
variable); pg is the pressure at the surface level.

The following expression is valid for the 2nd item in the Eq. 8.2: according to
mean value theorem:

J By, T(x)]dP,(x) = B[v,T,][1 — P,(py)], (8.3)

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 73
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where T, is certain, generally speaking unknown, temperature value (“mean”
temperature of the atmosphere at the wave number v).

The trivial relation P,(p,) = 1 is used for deriving the Eq. 8.3. The value T, is
found from the Eq. 8.2 solution:

R (8.4)

In [1 + %2}
where

| P
D, = =Py JB[V, T(x)]dPy(x). (8.5)

Ds

The Eq. 8.2 might be transformed using the Eq. 8.3 to:
JI = &,Bv, T,P,(ps) + B[v,T,][1 — Py(py)]- (8.6)

After substituting the Planck’s function presentation (Eq. 2.1) to the Eq. 8.6 and
solution relative the variable T, the formula for the surface temperature retrieval
from observed outgoing intensity might be obtained. This formula is valid within
the spectral ranges where the absorption is weak (quasi-transparent) that called
window:

T, = by : 8.7)

In [1 + &Py (ps)a [‘(i}

where
K, =J, —B[v,T,](1 - P,(py)). (8.8)

Thus Egs. 8.7 and 8.8 provide obtaining the temperature T from observational
data J, if parameters &(v), P,(p,) and T, are known.

8.2 Analytical Approaches to the Estimation of Uncertainty
of the Surface Temperature T, Retrieval

The Eq. 8.7 is considered as a function of four variables for estimating the
uncertainty of the temperature retrieval:

Ty = T(x1, oo xs), (8.9)
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where x; = ¢,, x2=J,, x3=P,(ps), xa=T,.

Then using the function Ts(x1,. . .,x4) to the Tailor expansion and ignoring items
containing dx; is larger in power then unit the expression is derived for estimating
the absolute error of the temperature T:

4

AT, =

i=1

T,
ox, i

Jsls (8.10)

where Ax; is the uncertainty of the parameter x; measurements; x; is the exact value
of the i-th parameter.
Calculation of corresponded derivatives leads to the relation:

L,
|ATy| = L,P,(ps)Ts|Aey| + —=&,P,(ps)Ts|AJ,|

K,
B[v,f‘.]
+Lv8v 1 *PV(I?S)T T|APV([7V)|
a1 — Pu(py)]ex (bv>B[VT]ZT3‘AN‘ s.11)
& y(\Ps)|L — y(\ps)| € = s Ly ~ .
b POIEPAT, D, K272

Following notations (symbols) are introduced in the Eq. 8.11:

3

D, = (1 —|—8‘,Pv(ps)a[; ) (8.12)

av?

Ly=——.
" K,D,In(D,)

(8.13)

Different approaches might be used for estimating the value |AT]|.

The first approach. It is necessary to specify for estimating the influence of a
certain parameter o on the value |AT;| the exact value of the parameter o = o and
the measured value containing an uncertainty (error)

o = og — Aaig (8.14)

After calculation T(c) and T,(e;) the desired uncertainty |AT| might be found
from the relation:

|AT| |s0.00 = |Ts(01) = Ti(at0)]- (8.15)
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Here the value T depends on four parameters, thus corresponded estimations
might be obtained with varying one parameter and fixing another three or consider-
ing variations of any of its combinations.

The second approach. The estimation of |AT;| is possible to obtain with
Egs. 8.11, 8.12 and 8.13. Calculating every item gives the contribution of every
parameter to the uncertainty |AT|.

The third approach is based on using the Monte-Carlo method. Consider this
approach more detailed.

8.3 The Monte-Carlo Method for Estimating the Uncertainty
of the Surface Temperature Remote Retrieval

The Monte-Carlo method or the method of statistical modeling is a numerical
solution of mathematical tasks with modeling random values. The wide practical
application of the approach became possible with the use of contemporary fast
computers.

The Monte-Carlo approach allows modeling practically any process that is
influenced by random factors. However, these tasks do not restrict the field of its
application. There are many other mathematical problems that seem not to be
connected with rundom values and might be solved with inventing certain
probabilitic models, with which their realization gives a needed solution. In some
cases applying the artificial probabilitic simulations appears more effective (from
the point of view of the algorithm simplicity and computer time expenditure) than a
direct way of the problem solution. In the Chap. 13 the application of the Monte-
Carlo approach will be considered for simulation for the process of radiation-
atmosphere interaction and for calculation radiative characteristics in the
atmosphere.

The Monte-Carlo approach is based on generating random numbers with pre-
scribed statistical characteristics. It is possible to obtain a set of numbers imitating
values of the random value 1 with a certain relation called a set of pseudorandom
numbers. If the set of not repeated pseudorundom numbers is long enough it is
possible to assume these numbers as random.

8.3.1 Generating Pseudorandom Numbers

As mentioned above in order to solve mathematical problems using the Monte-
Carlo method with the use of a computer, the algorithm for generating pseudoran-
dom numbers offering prescribed statistical characteristics is used. The probability
density p(x) is the characteristic of a continuos random value 7. The distribution
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function F(x), the mean of the random value M(n), and the dispersion D(n) are
derived from the probability density.

The probability density defines the probability of appearing the random value 7
within the interval (c, d):

d
Plc<n<d) = Jp(x)dx. (8.16)

The probability density is to be positive within the definity ranges a < n < b,

i.e. p(x) > 0, and it is valid for the whole interval:

p(x)dx = 1. (8.17)

R —

The mean of the random value is defined by the following expression:

b
n=Mn= pr(x)dx, (8.18)

And the dispersion of the random value 7 is in accordance with the relation

b b
Dn=M(n—Mn)* = J (x — 1)’ p(x) dx = szp(x)dx — 7 (8.19)

a

The distribution function of the random value 7 is the function:
F(x) =P(n<x) = Jp(X’) dx'. (8.20)

The random number defined at the interval (0, 1) and with the density dis-
tribution p(x) = 1 is especially important for the practical realization of the
Monte-Carlo method. This random value is evenly distributed at the interval
(0, 1) and will be denoted by the symbol y. In this case M(y) = 1/2,and D(y) = 1/12.

There are a lot of algorithms in form of computer programs for generating
pseudorandom numbers with even distribution at the interval (0, 1).
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8.3.2 The Mathematical Simulation of the Influence of Initial
Parameters Random Uncertainties on the Exactness of the
Surface Temperature Retrieval T

Calculating characteristics of the mathematical model reaction to randomly
specified uncertainties of values regulating the model is demanded for studying the
uncertainties’ impact on the exactness of remote retrieving of the surface temperature.

The approach based on Egs. 8.14 and 8.15 is used for estimating the uncertainty
|AT;|, namely on the multiple modeling values Aog including in the Eq. 8.14 and
obeing to normal distribution with the zeroth mean value and fixed dispersion (the
mean square deviation is used in the computer program «Tsrnd» inspite the disper-
sion). Equations 8.7 and 8.8 are applied for calculating values 7.

Statistical characterisitics of uncertainties AT, might be obtained in the program
with modeling uncertainty for every parameter separately or any combination of
parameters «Tsrnd». After specifying the needed set of parameters and their statis-
tical characteristics 1,000 values of every parameter uncertainty are simulated with
the standard subprogram RND (random number digitizer), and the uncertainty |AT|
is calculated, then statistical characteristics of the |AT| are found. The following
values are the output on the screen:

— hystogram of the uncertainties |AT|;

— statistical characteristics of the |ATj|.

and in file:

— numbers of every uncertainty values for plotting the histogram;
— statistical characteristics of the |ATj|.

8.4 Practice 7

8.4.1 Objectives

1. To study theoretical basis of the remore retrieving of the surface temperature.

2. To study basis of mathematical simulation of physical processes described with
the approach of statistical modeling and probability characteristics.

3. To obtain practical knowledge of applying the Monte-Carlo method for simula-
tion of physical processes (case studies of initial data uncertainties’ impact on
the exactness of the remote surface temperature retrieval).

4. To compare application of two approaches (“‘deterministical” and “statistical”
with the Monte-Carlo method) for estimation of the initial data uncertainty
impact on the exactness of the remote surface temperature retrieval

5. To obtain numerical characteristics determining initial data uncertainties impact
on the exactness of the remote surface temperature retrieval as a result of
operating with computer numerical experiments.
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Table 8.1 Versions of initial parameters
Version number A, pm & P, (ps) Ty, °C T,,°C
1 3.65 0.951 0.811 30 10
8.1 0.951 0.811 30 10
2 3.66 0.822 0912 28 9
8.2 0.822 0912 28 9
3 3.67 0.953 0.813 26 8
8.3 0.953 0.813 26 8
4 3.68 0.824 0914 24 7
8.4 0.824 0914 24 7
5 3.69 0.955 0.815 22 6
8.5 0.955 0.815 22 6
6 3.7 0.826 0.916 20 4
8.6 0.826 0.916 20 4
7 3.71 0.957 0.817 18 2
8.7 0.957 0.817 18 2
8 3.72 0.828 0918 16 4
10.2 0.828 0918 16 4
9 3.73 0.959 0.819 19 5
10.3 0.959 0.819 19 5
10 3.74 0.961 0.92 12 1
104 0.961 0.92 12 1
11 3.74 0.828 0.822 14 5
104 0.828 0.822 14 5
12 3.74 0.961 0.822 16 8
10.4 0.961 0.822 16 8
13 3.74 0.828 0.92 18 6
104 0.828 0.92 18 6
14 3.74 0.961 0.822 19 7
104 0.961 0.822 19 7
15 3.74 0.828 0.815 20 9
10.4 0.828 0.815 20 9
16 375 0.822 0.822 21 9
9.2 0.822 0.822 21 9
17 3.75 0.829 0.829 22 9
9.2 0.829 0.829 22 9
18 3.75 0.827 0.825 23 9
9.2 0.827 0.825 23 9
19 3.75 0.825 0.827 24 9
9.2 0.825 0.827 24 9
20 3.75 0.826 0.825 25 9
9.2 0.826 0.825 25 9
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8.4.2 Software and Set of Input Parameters

1.

2.

Computer programs “V_VARTS.exe” and “VARTS.exe” for the first part of the
practice, “V_TSRND.exe” and “TSRND.exe” for the second part.
The set of variants of initial parameters (the Table 8.1).

8.4.3 Test Questions

. What initial parameters exactness does regulate the exactness of remote retriev-

ing of the surface temperature?

. What assumptions have been made for deriving the relation used for the calcu-

lation of the value T,?

. What initial parameter exactness does affect most dramatically on the exactness

of remote retrieving the surface temperature?

. Do uncertainties AT with the same value of the initial parameters uncertainties

differ for different approaches? Why do they differ?

. What defines the exactness of estimating statistical characteristics of the surface

temperature T with the Monte-Carlo method?

8.4.4 Sequential Steps of the Exercise Implementation

—_

W

. To study the theory with using additional books, pointed in references list.
. To choose a variant with a set of the initial parameters from the Table 8.1.
. To create input data files with the program “V_VARTS.exe”. Attention! The

procedure is to be executed twice for two wave numbers. After completing the
first data file “vvarts.dat” the calculation with the program “VARTS.exe” might be
done. Then to repeat operation with program “V_VARTS.exe” and “VARTS.exe”
for second wave number. The resulting output file “varts.dat” is written with the
same name (in the second completing the output file is rewritten).

. To prepare the plan of accomplishing numerical experiments with program

“VARTS.exe” for

— estimating the value |AT,| with the use of two deterministic approaches;

— analyzing the obtained results;

— explaining the reason for the difference in values of |AT;| arising with the use
of the two approaches.

. To accomplish the set of calculations with the program “VARTS.exe”.
. To plot and analyse the dependence of uncertainty of the surface temperature T

remote retrieval on initial parameters uncertainties.

. To study statistical characterisitics of uncertainty of the surface temperature T

remote retrieval with the program “TSRND.exe” (it is to preliminary create the
initial data file “vtsrnd.dat” with the program “V_TSRND”) f.exeor different
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values of mean square deviations of initial parameters assuming normal distri-
bution of uncertainties of initial parameters and zeroth mean values, the result
file is named “tsrnd.dat”. Values of mean square deviations are specified within
ranges 1-10% of parameters values. For specifying uncertainty of the average
temperature T,at the wave number v the value is taken in °K.

8.4.5 Requirements to the Report

Prepare the concise report with elements of theory, resulting pictures, and
conclusions that reflect the main stages of the work. It is necessary to include in
the report the following:

1. Presenting assumptions for the derivation of the Eq. 8.6.

2. Presenting the detailed derivation of the Eq. 8.11.

3. Explaining why the measuring of the intensity of outgoing radiation is to be
accomplished at the transparency window.

4. Finding the initial parameters exactness providing the remote retrieving surface
temperature uncertainty IAT | not larger than 0.5°K.



Chapter 9
The Thermal Remote Sounding of the
Atmosphere

Abstract The inverse problem of the thermal sounding of the atmosphere is
formulated. The matrix form of the problem is considered. Features of ill-posed
inverse problem are analyzed. Two approaches for solution are proposed.

9.1 The Problem Statement

The thermal remote sounding of the atmosphere and surface is based on data of
measurements of the heat radiance from boards of space platforms. And the
problem arises: to retrieve the temperature vertical profile from observed data at
the atmosphere top.

Thus the direct problem is solved at the first stage:

The solution of the direct problem is defined by the solution of the transfer
Eq. 1.25 with ignoring scattering processes in heat spectral region (4 > 3 pm):

top
J, ! (top,0) = &,B[v, T,|P,(top,0, 0) + J B[v,T(x)|dP,(top, x, 0) 9.1)
0

where

J,!(top, 0) is the outgoing heat radiance at the atmosphere top (the level of
satellite observation);

&,B[v, Ts|P,(top,0,0) is the heat radiation emitted by the surface with the
temperature Ts and decayed by the atmosphere (the surface yield to the heat
outgoing radiation);

top

| B[v,T(x)]dPy(top,x,0) is the heat radiance of all layers of the atmosphere
with the temperature 7(x), decayed by above layers (the atmosphere yield to the

heat outgoing radiation);

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 83
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It is necessary to specify following parameters: ¢,, T, P,, dP, for the calculation
the outgoing radiance J' at the wavelength A[pm] = 10,000/v[cm_1] where:

¢, is the surface emissivity, its values are in range [0,1],

T is the surface temperature,

P, (a,b,0) is the transmission function of the atmospheric layer [a,b],
dP, is the differential of the transmission function,

The differential of the transmission function demonstrates the velocity of its
variation at the level x, namely P, (x, top, 0) — P,(x + dx, top, 0),

0 is the viewing angle.

Let the surface temperature T and the surface emissivity &, are known, the
transmission function P,(a,b,0) and its differential dP, depend on the absorption
coefficient of the atmosphere and might be calculated using the models of gaseous
absorption bands and known content of the corresponded gas: pgus/pqir is the gas
specific content. It is possible to assume that carbon dioxide (CO,) content is
constant over altitude and the transmission function P ,(a,b,0) is close to 1 (unit)
within transparency window.

9.2 The Analysis of the Direct Problem

Different over altitude layers in the atmosphere give dissimilar contribution to
forming the outgoing radiation in various spectral channels. Consider physical
precondition of temperature profile retrieval taking in mind the absorption bands
of carbon dioxide CO,.

Let the channel v, correspond to the strong gaseous absorption and the radiance
J, is formed,

the channel v, correspond to intermediate absorption with the radiance J'»,
the channel v5 correspond to the weak absorption with the radiance J'5

In case of the strong absorption the transmission function differential is not equal
to zero only in the top layer z; — z,,, and in other layers P, and dP, are equal to zero.

In spectral channels v, with the medium absorption the transmission function
differential is not equal to zero only in the middle layer, and at channels with the
weak absorption v the differential is not equal to zero dP, close to the surface.

Thus it is possible to solve the inverse problem from measuring the outgoing
heat radiance using the Eq. 9.1. The inverse problem solution might give the
temperature profile 7(x) in the atmosphere.

9.3 Possibilities for the Inverse Problem Solution

Above the inverse problem for the surface temperature retrieval was solved and one
value T was obtained. Now the desired solution is a function, generally speaking
infinite set of temperature values over the altitude. The temperature vertical
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dependence T(x) is not an analytical function, however it is possible to specify with a
finite set of values (about 40-50 values) at certain altitudinal levels. At some
geographical sites there are data of aerologic soundings. It is clear that it is impossi-
ble to obtain 40 values of the function from one value (observational data). Thus it is
necessary to accomplish 40 observations at different spectral channels. Assume for
the solution the following:

1. Let’s consider that the surface temperature T is obtained from observations at
the quasi-transparent spectral regions that lie between the major line clusters and
called windows;

2. There is a geographical bridging of satellite observational site and the surface
emissivity ¢, is known for the specific surface;

3. It is necessary to know the transmission function P(x), it is possible if the
radiation is measured at CO, bands because its concentration does not vary
and CO, profile is known. CO, bands correspond to spectral intervals 2, 3.7, 4.3,
6.3, 8, 12 and 15 pm. It is to choose wave numbers in such a way as to embrace
three spectral diapasons with strong, medium, and weak absorption for obtaining
the temperature T(x) at different altitudes.

The unknown function T(x) is included in the Planck’s function under the
integral, thus it is demanded to factor the Planck’s function outside the integral
sign. It is more effective to find the deviation of the temperature from the average
value at every altitudinal level x.

AT(x) =T(x) — T(x), (9.2)

where T(x) is the average temperature profile obtained from long-standing aerologic
observations.

After writing the Eq. 9.1 for the average temperature profile T(x) and considering
the difference AT(x) functions might be expanded into a Taylor series over small
values AT(x). Then the equation might be derived after keeping only the first item in
the expansion and neglecting items with higher power.

n

-1 [9OB OPy(x, top,0
AL =g T JﬁHT:ﬂX}AT(x) OP(x, top,0)

o dx, 9.3)

Let’s analyze the Eq. 9.3:

The left part of the Eq. 9.3 contains the values J !, that is the result of observation
and J', is the result of calculation for the average temperature profile.

The right part of the equation contains functions depending on altitude x (vertical
profiles):

AT(x) is the function of real temperature profile deviation from the calculated
one.
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g—§||T:T(x)is the value of the Planck’s function differential over the temperature
at the point7(x) that is possible to calculate at all levels x, with knowing the
average temperature values (average profile);

"}P"%%’O) is the known function because the CO, content and absorption coeffi-
cient at different spectral intervals are noted;

The Eq. 9.3 is the integral Fredholm equation of the first kind:

b
flx) = JK (x,y)(y)dy (9.4)

where f(x) is the known function, K(x) is the kernel of integral equation, ¢(x) is the
desired function. In our case noting corresponds to the following functions:

0B

FO)=ATL ¢0) = AT(), K(xy) =-2

oP,

T(x)=T(x) Ox

The function g—’;HT:T(X)is easy to prescribe analytically, however the function
DP"(’B%'@ does not allow an analytical presentation. Thus the additional
transformations are needed.

Exchange the integral item by its finite-dimensional analogue — the sum. The
integrating interval (the atmosphere over altitude) is split into N levels, the temper-

ature T and transmission function P are specified at chosen levels.

b N
Jl(x)dx ~ Z l,‘AXl'Wl',

i=0

where w; is the weight function, which depends on the numerical integrating

99 <

approach (methods of “rectangulars”, “trapeziums” or “polynomials”).
It is necessary to specify transmission function values P, ; at every level x; and
calculate corresponding differences

APV(X,') = PV<X,') — Pv(x,-) AT(X,) = T(Xl') — T(x,-)

Then the Eq. 9.3 is presented as follows:

N
OB
T = fnst
A = EO AT,aT .

AP, 9.5)
=T(x)

The equation might be written for 50 levels in the atmosphere:
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N
A=) ATK(v,x;), N =50 (9.6)
0

It is apparent that many observations are required at different wave numbers: J l;’
i =1,23,... and in different spectral intervals for creating the system of linear
algebraic equations. Wave numbers v; are to be chosen at transparency windows
and at intervals of weak, medium, and strong absorption for retrieving the surface
temperature and the temperature at different altitudes.

9.4 The Matrix Form of the Inverse Problem

Lets introduce the following notes:

f = AJL is the vector of deviations observed radiance from the radiance
calculated for average temperature profile at corresponding wave numbers, m ~ 15

<$ = {AT;} is the vector of temperature deviations from average values at
corresponding altitudinal levels in the atmosphere, n ~ 50

Introduce the matrix A, which elements presents values of the Planck’s function
differential over temperature at corresponding altitudes and values of the transmis-
sion function at corresponding spectral intervals (defining the absorption coefficient

values k,;) and at altitudinal levels (defining CO, content):
Alm X xn]; ‘au’ =K(vj,z)

Then the equation system (9.6) for the array of m observations is written in the
matrix form:

f=Ag, 9.7)

where:

—

¢ is the desired vector at level i with dimension n, (temperature deviations at n
altitude levels)

f is the vector of deviations between observed and the radiance calculated for
averaged temperature profile of order m (in m spectral intervals),

A is the matrix of order [m X n], with elements K(v;,z,).

Reminder basing on the definition, rules, and relations from the linear algebra

A matrix is called rectangular if m (number of rows) is not equal to n (number of
columns).

A matrix is called square if m = n
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In the transposed form of a matrix B is denoted by B*, the element (B);; in the
j’throw and i’th column of B is equal to the element (B*),; in the i’th row and j’th
column of B*. Formally (B*),; = (B);;

B — B*
[m x n [n x m]

The inverse matrix B~" for the matrix B (it is unique only for square matrix) if
the equality (B)i,—(B),j,-fl = 1 is valid for elements of the inverse matrix.
The unit matrix is the result of multiplying square matrix to the inverse matrix:

BxB!=E [m x m][m x m]

S O =
S~ O
—_ o O

Two matrices C and D can be multiplied if the number of columns in C equals the
number of rows in D. Let C be of order [m x [] (have m rows and / columns) and D
of order [/ x m]. Then the product of two matrices K = CD, is a matrix of order
[m x m]

C X D = K
[m x 1] [l x m] [m x m]

Multiplication of a matrix to a vector:

foo= A x ¢

[m x 1] [m X n] [nx 1]

Let’s consider the auxiliary equation for further transformations:

a = C d
[m x 1] [mxm] [mx1]

Multiplication of the equation by the inverse matrix C~' leads to the result:

Cla=cCc'c d=d
1

0
because from definiton C!xC=E= 1 it is  valid:
1 0] d; d; 0 1
1 -+ = -.-with taking into account rules of multiplying matrix to
0 1]d, d,
vector.

The result of solution of the equation for square matrix is d=Ca.
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Thus it is required to find an inverse matrix for the matrix A for solving the
equation. Point out that the diagonal matrix is easy transforming to the inverse one
according to the rule:

ai
ar a
as —

Let’s multiply the Eq. 9.7 by the transposed matrix A" for obtaining the square
matrix in spite of matrix A

A*xf:A*xAx&;

dimensions: [n X m] [m x 1] [n x m] [m X n] [n x 1]
Then multiply the equation to the square matrix (A"A)!

(AxA) 'Axf=(AxA) " (AxA)d (9.8)

The combination (A % A) (A% A) =E is equal to the unit matrix, and the
solution of the Eq. 9.8 looks as follows:

= (AxA)'Axf 9.9)
dimensions

nx1] [mxm] [nxm] [mx1]

[mxn]

Let’s test the dimensions of the left and right equation parts. The following cases
might be:

Dm=n2)ym>n;3)m < n.

In the simplest case m = n the system of linear equations is defined by square
matrix and there exists a unique solution (9.9). Nevertheless this solution appears
inappropriate because the Eq. 9.7 characterizes an ill-posed problem.

The ill-posed problem has appeared when the arbitrary infinitesimal variation of
initial data provokes arbitrary high variation (uncertainties) of the solution.

Earlier they supposed that it is just not correctly formulated problem; however in
the middle of the last century it was determined that there is a special big enough
class of ill-posed problems. For example problems of interpretation seismic data
and problems of the remote sensing (thermal tomography, aerosol retrieval from
optical and lidar data) are ill-posed problems. Andrey Tikhonov known Soviet
mathematician published the article in 1943 where the theory of ill-posed inverse
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Fig. 9.1 The solution of the system of two linear equations in Cartesian plane: (a) the
small deviations of the curves intersecting at a big angle does not lead to significant deviation
Af and Ax; (b) small deviations of curves intersecting at small angle calls big deviations
Af and Ax

problems solution has been formulated. Figure 9.1 demonstrates the solution of
system of two linear equations in Cartesian plane. In the Fig 9.1a the small
deviations of the curves intersecting at a big angle does not lead to significant
deviation Af and Ax. In the Fig. 9.1b small deviations of curves intersecting at small
angle calls big deviations Af and Ax.

In our case the function ¢ (the vector ¢ is a set of values for the set of altitudes)
is a solution of the Eq. 9.9. The direct use of this solution gives the picture presented
in the Fig. 9.2. The solid line demonstrates the direct solution (9.9) of the Eq. 9.7.

Variations of desired values might be arbitrary big. The dashed line is the real

values of the temperature at corresponding altitude levels. Both vectors (?3 and <$

give the same vector f: when substituted in the Eq. 9.7 because of averaging called

by relation of matrix and vector dimensions that provokes an ambiguity of solution.
Let us consider two approaches for the inverse ill-posed problem solution:

The method of maximum smoothness
The method of statistical regularization

9.5 Solution of the Ill-Posed Inverse Problem of the Remote
Temperature Sensing of the Atmosphere

The remote temperature sensing is the obtaining the temperature profile in the
atmosphere. The corresponding inverse problem arises f = A¢. The formal solu-
tion (9.9) appears invalid thus the additional information is needed. Let us analyze
the vector (}5 It defines the temperature profile and we have to use known a priori
statistical properties of the desired vector for improving the solution.

Over many years averaged values are possible to calculate for every season and
the temperature correlation matrices could be constructed.
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Fig. 9.2 The solution of the ill-posed inverse problem of remote sensing. Strict formal solution —
solid line and solution corrected with the temperature correlation matrix — dotted line

Let the temperature profile be obtained at North-West of Russia. Then the data
base of aerologic sounding at the Main Geophysical Observatory in Voeykovo, St.
Petersburg suburb that regularly widened for many years, provides calculating
values of the temperature at different altitudes averaged over many years in
corresponding season and constructing the temperature correlation matrix Krr.
The Fig. 9.2 demonstrates vertical profiles of the desired vector ¢ (solid line)
and values $KTT corrected with taking into account for the temperature correlation
matrix (dashed line). The mean temperature profile is obtained with averaging over
e.g. 50 observed values at every altitude in corresponding season and interpolating
at needed levels. The correlating matrix of temperature deviations from the mean
value at every level is constructed as follows:

2
st ki kiz ki,
k21 S2
Krr = i 2 5
31 53
2
knl Sy

Averaged real temperature deviations from mean temperature values at every
altitude are at the principal diagonal of the square matrix. They express a natural
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variability of the temperature at different levels. Coefficients of correlation between
temperature deviation values at different levels are at other diagonals of the matrix.
They express possible links between temperature deviations at different altitudes.

The ill-posed inverse problem is characterized by extremely strong observa-
tional errors influence on the desired solution. Thus let us introduce the error’s
matrix that describes observational errors and is defined by satellite instrument
quality.

2
01 012 013 01y
2

021 03 O02n
Onl 03111

Mean square deviations of intensity measurements at corresponded spectral
channels are at the principal diagonal of the error matrix. Coefficients of correlation
between errors at different channels are at other diagonals.

The following is necessary for obtaining the correct solution of the problem
of remote temperature sounding:

1. the desired vector (E is to the best of its ability obey the Eq. 9.1;
2. the vector ¢ corresponds natural temperature variability — statistical ensemble
Krr.

The method of statistical regularization is used to satisfy these two conditions.
Then the regularized solution takes the form:

-

¢::(ATZ’1AAFK;;YJATZ’V? (9.10)

This solution (9.10) is the result of an entire mathematical course: methods of
solving ill-posed problems. -

It is necessary to point out that the vector ¢ is not rigorous and exact solution
of the Eq. 9.1 and when substituting to the equation, it provides only approximate
equality. But it is clear that the equality basically could not be rigorous because of
observational errors.

F~Ad ©.11)

However, values of the vector (E are physically justified though do not provide
the rigorous equality (9.1). The abundance of a priori temperature profiles (rich
statistics) is required for the physical justification.

It’s not always possible to have rich statistics, e.g. over oceans, in atmospheres
of other planets. Then the method of maximum smoothness is applied.

It is a priori known that temperature (and any other physical value) profile in the
atmosphere have to be smooth and escapes leaps because atmospheric properties
vary smoothly. The property of smoothness may be formulated as temperature
values at two neighbor levels weakly differ. The mathematical formulation of
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smoothness equals to small derivatives of the temperature with respect to altitude.
Thus the method of maximum smoothness or Tikhonov method is applied.

The matrix H which is analogues to numerical differentiation when it’s
multiplied by the vector. It is assumed as follows:

L -1 0 0 1 )
H(?S 1 -1 0 o b,

1 -1 ’
-1 1 ¢n (bn*l _¢n

The resulting vector characterizes the profile smoothness at neighboring altitu-
dinal levels. Differences ¢;—¢- are to be minimal for the best result. The solution
could be presented as:

=

¢ = (AT'A+oH) AT 9.12)

where the value o is the regularization parameter according to Tikhonov. By
changing the parameter o the weight of the average profile and observational data
is balanced. The parameter o is not known a priori and requires to be found. The
approach of numerical closed successive experiment is used for o defining.

9.6 Numerical Closed Successive Experiment

Let the temperature deviation profile (vector qg) be known. It is easy to calculate
the temperature profile f(x) and then to obtain the outgoing intensity with the
Eq. 5.1: T(x) — J1, i.e. the direct problem is solved. With the averaging tempera-
ture profiles over the data base the mean temperature profile is obtained and the
corresponding intensity is calculated: 7 — J', and then the difference AJ = JT — JT,
that is equal to the vector f The set of calculated values f (“simulated
observations”) and then retrieved vectors ¢ (o) and $(uk) are accomplished for
the set of parameters o. The optimal value of the regularization parameter o is
derived with scanning a lot of values o (e.g. 500), then different temperature
profiles (1,000) are scanned and 1,000 optimal parameters o are obtained and at
last the mean optimal value « is calculated with averaging over all realization for
the needed season and region, which is used for solving the remote sensing
problem.

In practice aerologic sounding data (e.g. 500—600 profiles) are used for deriving
optimal « from every profile, then calculating the average value.
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9.7 Practice 8

9.7.1 Objectives

To study specific features of methods applied for regularizing the solution of the
inverse ill-posed problem of remote temperature sounding.
To obtain the optimal solution by choosing input parameters.

9.7.2 Software and Set of Input Parameters

1. The method of statistical regularization supposes analyzing matrices X u Kt
influence on the desired result. There are two computer programs in the directory
Lab4:

The program “RADNIMBG6.exe” solves the direct problem, and calculates the
outgoing intensity from input temperature profile “aer.dat” that contains trans-
mission function and average temperature profile 7(z).

The program “DZ_T_SRS5.exe”, solves the inverse problem for choused
matrices 2 and Kpr elements. All elements at principal diagonal are taken
equal each other (only one value is taken) and correlation coefficients are zeroth.
Variants of input data

There are two temperature profiles: mean and aerologic (true) 7, The
transmission function P is calculated at corresponding spectral channels. For
example:

vij, sm! P

669.8 0.001 strong absorption
676.7 0.8 weak absorption
746.7 0.22

Four variants of input parameters are to be considered:

(a) variant: All diagonal elements of the temperature correlation matrix Kpp
are equal to 0.1
Values of diagonal elements of the errors matrix X are equal to 1.0

The program calculates the vector <}§ (retrieved temperature deviations
profile), then calculates temperature values T, and at last the difference
T — T,.r. Result is saved in the file “dz.dar” In the first variant the solution
coincides with the mean profile. The mean deviation from true values
appears around 8°C because there is no new information.

(b) variant: diagonal elements of the temperature correlation matrix Krr are
equal to 10 (i.e. average deviations from the mean profile are +3°)
Values of diagonal elements of the errors matrix X are equal to 0.1.
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The result is closer to the true profile: average deviation is about 3°C.

(c) variant: Diagonal elements of the temperature correlation matrix Ky are
equal to 10, i.e. result could considerably differ from the mean profile.
Values of diagonal elements of the errors matrix X are equal to 10 that points
big observational errors. The result coincides with the mean profile because
observational data are suspicious.

(d) variant: Allowing that desired result strongly differ from mean profile (Kt
= 20) and assuming that the high exactness of observations (X = 0.0000001)
we obtain the result close to the formal, rigorous solution (9.6) and unreliable
physically impossible variations of the temperature (43,000 K) at different
altitudes demonstrates main feature of the ill-posed problem.

One should inquire into the exactness of the instrument, which is put on a
satellite board for adequate specifying the matrix X. The instrument on a satellite
board degrades and the exactness deteriorates. Thus the matrix X is to be
corrected while satellite is on the orbit.

Obtained here results demonstrate a strong deviation from the real tempera-
ture profile at the tropopause in all cases of initial parameters, where the
temperature varies dramatically. In our case only one value is assumed for all
altitudes in spite of the set of values defining the matrices Kt or Z. For better
temperature retrieval at the tropopause more spectral channels are provided. The
real exactness of the temperature remote retrieval is reached at about 0.5-0.7°C.
It is important to choose a successful alternative between variants: smoothness
of profile and closeness to the mean profile and very strong intrusion of the mean
profile and loss of the real information. It is clear that a rich volume of the a
priori information is necessary (a lot of correlation matrix for any season and any
geographical site) for a reliable temperature retrieval.

2. The method of maximum smoothness.

The program “RADNIMBUS.exe” (in directory Lab4) accomplishes the auxil-
iary calculation for the taken temperature profile. Then the program
“DZ_T_FUl.exe” solves the inverse problem using the method of maximum
smoothness. Result is saved in the file “fu.dat”. The ranges of the regularization
coefficient « variation is proposed as 0.00001-0.1. Values of all elements of the
matrix X are ¢;; = 1 corresponds to rough observation with significant errors;
g;; = 0.1, corresponds to more exact observation.

The result of the program operation leads to the optimal value of the regulariza-
tion coefficient dopimar = 0.005, and mean square deviation 5.1°. The next result
presents three profiles: true, mean and retrieved. The error appears 8° and it is too
big.

The following iteration is close to the regularization coefficient value « = 0.005
with the range of variation 0.001-0.01. Values of matrix X elements ¢;; = 0.1 give
the optimal value of the regularization coefficient: & opima = 0.001; and the mean
square deviation 3.1°. Thus this retrieved profile is better compatible with the true
one.
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The following iteration uses ranges of the regularization coefficient
0.0005-0.0015, and values of matrix X elements ¢;; = 0.1, that gives topimal =
0.0006, the mean square deviation 2.95°, that improve the result by 0.15°C.

The results on the display show that retrieved temperature profiles significantly
differ from the true one because we use only one value 0.1 instead of the correlation
matrix.

The method of maximum smoothness is recommended in case of a lack of the a
priori detailed information about temperature profiles (e.g. in the atmospheres of
other planets). The method of statistical regularization is more effective in the
Earth’s atmosphere where the rich a priori statistics is available.

The result after considering both method for the same profile and equal initial
parameters is the following:

The method of maximum smoothness gives Oyptima = 0.005, and the mean
square deviation 5.8°;

The method of statistical regularization provides the mean square deviation
547°.

It is seen that the method of statistical regularization provides somewhat better
exactness of temperature profile retrieval. Both methods give physically proved
solutions.

9.7.3 Sequential Steps of the Exercise Implementation

. Prepare the table with the atmosphere aerologic sounding data.

. Use file in the database with name “aer.dat”. To plot the initial temperature
profile in EXCEL.

3. To calculate the outgoing intensity with the program “RADNIMB.exe” in

six spectral channels corresponding to spectral intervals of the radiometer

«Nimbus». The following files in the directory Lab4 are needed for operating

program “RADNIMB.exe”:

N =

— “nimbus. dat”;
— the file with aerological data: “aer.dat”.

The “RADNIMB” program operating create the file “nim.dat” in the directory
Lab4, which is necessary for operating programs “DZ_T_SR.exe” and “DZ_T_FU.
exe”. It is possible to use ready files “nim.dat”.

To plot profiles of the transmission function differential dP and the product dP *
B in EXCEL-editor.

To create the table of outgoing intensity for mean and true (aerological) temper-
ature profiles, calculated with “RADNIMB.exe” program.

1. To prepare the auxiliary report with obtained results.
2. To retrieve the temperature profile with the program “DZ_T_SR.exe” using the
method of statistical regularization from “observations” (calculation with
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program “RADNIMB.exe”) of outgoing heat radiation for a set of matrices X u
Krr elements. To plot obtained profiles.

3. To obtain the temperature profile with the program “DZ_T_FU1.exe” using the
method of maximum smoothness. To study the influence of the regularization
coefficient o and diagonal element of the matrix X on the exactness of the
temperature retrieval. To plot retrieved profile and compare it with the true
and mean ones.

4. To compare results of considered methods.

5. To prepare the final report.



Chapter 10
Calculating Optical Characteristics
of Atmospheric Aerosol

Abstract Calculations of optical characteristics: scattering and absorption
coefficients and phase function of modelled ensembles of aerosol particles are
considered. The description of the practice is given.

10.1 Atmospheric Aerosol

An equilibrium mixture of gas and solid or liquid particles in the atmosphere is
called atmospheric aerosol (sometimes they use plural aerosols for particle
variability). Atmospheric science implies particles itself in the air. Sources of
atmospheric aerosol are extremely varied: dust lifted into the atmosphere by wind
(mineral, silicates), sea-salt crystals remaining after sea water droplets evaporates,
products of chemical reactions in the atmosphere (including photochemical
reactions producing smog), volcanic eruptions, product of fires (soot aerosols)
and anthropogenic (industrial) pollution. According to the definition clouds and
fogs are aerosols too, but usually they are separated to a special class of atmospheric
objects.

Atmospheric aerosol plays an important role in radiative processes in the
atmosphere. It interacts (absorbs and scatters) solar and heat radiation and
determines atmospheric optical properties. This interaction is especially essential
in the shortwave spectral ranges (from UV till near infrared), right where the maxi-
mum of the solar flux is situated. There is an important feature of the aerosol — its
strong space and temporal variability: the aerosol content in the air of big cities is two-
three orders higher than in the clean air, heavy volcanic eruptions exhaust a lot of
matter to the middle atmosphere and change optical properties of the stratosphere
for months and even years. Thus the stipulated importance of studying and numeri-
cal simulating of aerosol optical properties is undoubted.

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 99
DOI 10.1007/978-3-642-14899-6_10, © Springer-Verlag Berlin Heidelberg 2012
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10.2 Interaction Between Radiation and Aerosol Particle

Separate aerosol particle is to be modeled as an object of definite shape for
mathematical description. The simplest shape is a sphere.

The problem of calculating electromagnetic waves interaction with homoge-
neous sphere was solved in 1908 by German physicist Gustav Mie, and derived a
theory called the Mie theory. According to the Mie theory all necessary optical
characteristics of the spherical particle are obtained by assuming that the relation
y = 2mr/A, where r is the radius of the sphere and / is the wavelength of incident
radiation, as well as the complex refractive index (CRI) of the sphere matter
y = 2nr/A. The meaning of m is considered in details in the book. Here we’ll
only clarify that the real part of CRI is the refractive index (the ratio of light
velocity in a vacuum and in the matter), and imaginary part characterizes the
radiation absorption by the particle matter.

Resulting formulas of the Mie theory are cumbersome and are not presented
here, details are in books. For 100 years a significant additional work has been done
for transforming Mie formulas to convenient forms for calculations. Finally we use
the algorithm for computer codes.

Hence, input data are: the parameter y = 27r/A, and CRI of the particle matter m
(4) depends also on wavelength 4. Output data are assumed the cross-section of
interaction particle and radiation: the extinction cross-section C,(y,m); the scattering
cross-section C(y,m); absorption cross-section C,(y,m) and the scattering phase
function x(y,y,m), where 7 is the scattering angle. It is to be mention that the aerosol
absorption is not selective as distinct from gas absorption. The rigorous definition of
interaction cross-sections is in references (Joseph et al. 1976). Here we’ll only
clarify the physical meaning of the notion.

10.3 Ensemble of Aerosol Particles

While applying the Mie theory to problems of atmospheric optics it is to be
accounted for that real aerosol particles range in size from about 10™* pum to tens
of micrometers. This property is called the particle dispersivity. The collection of
particles of all possible dimensions is called the ensemble of particles.

The characteristic of aerosol particles number in the air is the concentration: the
number of particles in the volume unites. Depending on the particle size and the
geographical location particle concentration ranges from about 10 to 107¢ cm .
The aerosol dispersivity leads to particle concentration being inadequate for the
ensemble describing. It is evident that particles of different sizes have different
concentrations. Hence it is yet one characteristic to be introduced for linking the
particle concentrations and radius.

Let the number of all particles (in the volume unite) with radius less or equal
r be N(r). Then particle number with radiuses in range from r to r + Ar is
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N(r + Ar) — N(r). Let’s turn to mean concentration i.e. to the value [N(r + Ar) —
N(r)])/Ar for ability to compare particle concentration in different intervals Ar. Let
Ar decrease towards zero and obtain, according to the derivative definition, the
function of particle size distribution n(r) = dN(r)/dr. The distribution function n(r)
completely describes the aerosol particle ensemble considering its dispersivity and
allows finding the concentration of any radius range (in particular the total aerosols
concentration)

N = Jn(r)dr (10.1)
0

The function f(r) = n(r)/N is the normalizing function of aerosol particles
distribution, which is convenient because allows considering particle dispersivity
independently of specific concentration N. Often it is called just the distribution
function without the refinement normalizing. We will use this terminology in
further consideration. The normalizing condition for the function f(r) with the
Eq. 10.1 is the following

Jf(r)dr =1 (10.2)
0

The function f{(r) offers also a sense of probability: it is the probability density of
aerosol particle has the radius r.

The experimental data of aerosol concentration versus particle radius N(r) are
used for describing size distribution function of real atmospheric particles
ensembles. For convenience the experimentally obtained distribution function f(r)
is approximated with analytical formulas. The normal logarithmic (lognormal)
distribution is the mostly used approximation:

flr) = 1 exp (-ihﬁ(r/ro)) (10.3)

2nrs

Lognormal distribution (10.3) is the distribution of the value that logarithm
changes according to normal (Gaussian) law. It is fully characterized with two
parameters: the mean radius ry (as a logarithm value) and the dispersion s. The
mean radius describes particle sizes in total (the larger the radius r) the greater are
in average particles of the ensemble. The dispersion s represents the scatter of
radiuses (the larger the parameter s, the greater the difference between
concentrations of particles with various radiuses). We use the lognormal distribu-
tion (10.3) in the consideration.
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10.4 Calculation of Optical Characteristics of Aerosol
Particles Ensembles

For monodispersal distribution (all particles are the same size) the simple relation is
used to transit from one particle characteristic (e.g. the extinction cross-section C,,)
to the ensemble characteristic (the volume extinction coefficient o)

% = NC,, (10.4)

where N is the particle concentration (the number in the volume unite). The relation
(10.4) expresses physically the summation principle, i.e. cross-section of individual
particles are summed (as shadow squares) to the total characteristic of extinction of
the volume unite (summed shadow of all particles). The summation principle
provides the extension of the Eq. 10.4 to the ensemble of particles with various
sizes. Particles with radiuses in range r, r + dr do yield to the volume extinction
coefficient (N(r+dr) — N(r))C.(r) = n(r)Ce(r)dr. The summation of these
contributions including Eqgs. 10.1 and 10.2 gives the integral

a=N Jf(r)Ce(r, m)dr (10.5)
0

where C,.(r,m) is the cross-section of the particle with the radius r and particle
matter CRI m. It is to point out that there is in Eq. 10.4 and in other similar
expressions the dependence of wavelength A via the parameter y = 277/ including
in Mie formulas.

The analogues relation is derived for the volume scattering coefficient o:

6=N Jf(r)CS(r7 m)dr (10.6)
0

where C(r,m) is the cross-section of the single particle. And the similar for the
volume absorption coefficient x

K=a—0=N Jf(r)Ce(r, m)dr — N Jf(r)Cs(r,m)dr (10.7)
0 0

The summation principle for the phase function is formulated as the product of
the directed scattering cross-section and the function distribution. The expression
for calculating the phase function of the aerosol ensemble is the following
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x(y) =

Q-

Jf(r)Cs(r, m)x(y, ry m)dr (10.8)
0

where the ensemble phase function is on the left and the phase function of single
particle is under the integral.

Thus, relations (10.5)—(10.8) provide calculating optical characteristics of atmo-
spheric aerosols with function of size distribution f(r).

10.5 Practice 9

10.5.1 Objectives

The purpose of the practice is the study of the dependence of the atmospheric
aerosols optical characteristics on parameters of the set of distribution functions.
Let the aerosol concentration N = 1 cm ™ because of the trivial dependence
(direct proportionality) of the considered characteristics on concentration N, that is
all the calculations shall be carried out for a unit concentration of particles.
Two dependencies of characteristics are considered as the most interesting for
educational points:

1. The dependence of volume coefficients of aerosol extinction (10.5), scattering
(10.6) and absorption (10.7) on wavelength.

2. The aerosol phase functions against scattering angle y (10.8) at fixed wavelength
(0.55 pm).

The following typical atmospheric aerosols are taken for consideration: soot (the
major component of anthropogenic aerosols), dust (the major component of conti-
nental aerosols), water (clouds, fogs, mist, precipitations). Tables of complex
refractive indexes are in the attached file “cri3.dr”.

10.5.2 Sequential Steps of the Exercise Implementation

The computer program “AEROPTIC.exe” realizes the above algorithm for calcula-
tion. After execution the program runs in the dialogue regime. It is necessary for the
file “cri3.dt” to be in the same directory for the program to operate.

After execution and giving out information, the first question of the program is:

Input filename for results:

A name of the resulting file is input (entered). The initial parameters and output
results are in the file at every moment the program is running. The file is open for
writing till program operation ends.

Then the program fulfills two stages of running.
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1. The first is studying the dependences of aerosol volume coefficients of extinc-
tion, scattering, and absorption on wavelength.
Sequentially the following questions are output at the screen:
Input size distribution function parameters (rfO0 mkm and s) for soot aerosol:
It is recommended to input the typical values ry = 0.05_s = 1.1 (values are
separated by space between them), then press “Enter”.
It is possible to input several couples of values. They divided with spaces and at
the end press “Enter” . For example, to input two variants 0.05, 1.1 and 0.1, 2.5,
enter the four values separate by spaces 0.05_1.1_0.1_2.5 and then “Enter”.
Input size distribution function parameters (rfO0 mkm and s) for dust aerosol:
The two-tree couples of typical values ry = 0.1_s = 0.6 (Aitken nuclei),
ro = 0.5_s =0.8 (Large aerosol), ry = 2.0, s =1.0 (Giant aerosol). Rules for
inputting values are similar to the precedent item.
Input size distribution function parameters (rO0 mkm and s) for water aerosol:
Typical values are ry = 0.5, s = 0.4 (drizzles in clouds); ry = 3.0, s = 0.6 (small
droplets in stratus cloud), ryp = 10.0, s = 0.8 (large droplets in cumulus cloud).
The program calculates volume coefficients of extinction, scattering, and absorp-
tion as a function of the wavelength. Results are output in the resulting file.

2. The second stage is the studying of aerosol phase function as a function
scattering angle.
The following questions are output at the screen sequentially:

Input size distribution function parameters (rfO0 mkm and s) for soot aerosol:
Input size distribution function parameters (r0 mkm and s) for dust aerosol:
Input size distribution function parameters (r0 mkm and s) for water aerosol:

Responses are similar to those discussed above. Giant water droplets and rain
droplets are recommended to add with parameters 7o = 200.0_s = 0.5.

The program calculates the phase function as a function of the scattering angle at
the wavelength 0.55 pm and output results in the file.

Then the following is needed:

— Plotting the dependencies of volume coefficients of extinction, scattering and
absorption against the wavelength. It is better to take the logarithmic scale of the
ordinate axe. The dependences at shortwave and longwave ranges are to be
plotted separately.

— Describing (and physically interpreting if possible) obtained dependences.

— From the results at the second stage the following is needed:

— Plotting phase function as a function of the scattering angle. The logarithmic
scale of ordinate axe is needed.

— Describing and physically interpreting the variations of phase function shapes
while increasing mean radius.

Elucidate the following questions in the concise report: Is there the Rayleigh
phase function (for which particles and why)? Are there local maximums at angles
larger than 90° (that are responsible for rainbow)?



Chapter 11

Calculating Solar Radiative Characteristics
in Clouds with Asymptotic Formulas

of the Radiative Transfer Theory

Abstract Asymptotic formulas of the radiative transfer theory are presented for
thick atmosphere with weak absorption. The applicability region over the optical
thickness, single scattering albedo, and phase function asymmetry parameter is
discussed together with the approach exactness. The simplest model of cloud layer
is proposed for calculation of radiative characteristics.

11.1 The Basic Formulas

Let us consider the model of an extended and horizontally homogeneous cloud of a
big optical thickness t > 1 as Fig. 11.1 illustrates. Here, the cloud layer is assumed
vertically homogeneous as well and the influence of the clear atmosphere layers
above and below the cloud layer is not taken into account. The volume coefficients
of scattering o and absorption «, linked with the cloud characteristics as k + o« =
TolAz, o = woto/Az, K = T19(1 — W)/Az, are used for the cloud description.
The optical properties of the cloud are described by the following parameters:
single scattering albedo (or the probability of photon surviving in a single interac-
tion act) wy; optical thickness 7, and mean cosine of the scattering angle (asymme-
try factor) g, which characterizes the Henyey-Greenstein phase function (Eq. 1.16,
Chap. 1). From the bottom the cloud layer adjoins the ground surface and its
reflectance is described by ground albedo A. The underlying atmosphere could be
taken into account if albedo A is implying as an albedo of the system “surface +
atmosphere under the cloud”. Parallel solar flux F, is falling on the cloud top at
incident angle arccosyy. The reflected and transmitted radiance is observed at
viewing angle arccosu. The reflected radiance (in the units of incident extraterres-
trial flux Fouy) is expressed with reflection function p(t,u,uo) and the transmitted
radiance (in the same units) is expressed with transmission function a(t,u, ).

At the sufficiently big optical depth within cloud layer far enough from the top
and bottom boundaries the asymptotic or diffusion regime is installed owing to the
multiple scattering. This regime permits a rather simple mathematical description.
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DOI 10.1007/978-3-642-14899-6_11, © Springer-Verlag Berlin Heidelberg 2012



106 11 Calculating Solar Radiative Characteristics in Clouds with Asymptotic

Fig. 11.1 The model of the A Z 7S
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The region within cloud layer is called a diffusion domain. The physical meaning
yields the following specific features of the diffusion domain:

1. the role of the direct radiation (transferred without scattering) is negligibly small
comparing to the role of the diffused radiation;

2. the radiance within the diffusion domain does not depend on the azimuth;

3. the relative angle distribution of the radiance does not depend on the optical
depth.

The name “diffusion” is appearing because the equation of radiative transfer is
transformed to the diffusion equation in that case.

Remember the equation system (1.29) derived in the Chap. 1 and assume the
approximation:

1 1
J I(z, w)u’dp = D J I(z, w)dp,
-1 -1

This relation is the strict in an inner domain remote from boarders of the
optically thick cloud K(t,u) = D I(t,ut). The value D is called the diffuse constant.
It was shown that in the scattering layer of a big optical thickness the analytical
solution is expressed through the asymptotic formulas of the radiative transfer
theory, moreover the existence and uniqueness of the solution have been proved.
It is expressed through reflection p(t,u, 1) and transmission o(t,, L) functions of
multiple scattered radiation, in the following:

miK (1)K (pto) exp(—2k)
1 — llexp(—2kr)

_ mK (WK (o) exp(—kt)

0% 1o bo) === ll_exop(—Zkr)

p(‘E,/J, Ho (P) = Poo(.“aﬂm LP) -
(11.1)
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In these equations p..(i,io,») is the reflection function for a semi-infinite
atmosphere; K(u) is the escape function, which describes an angular dependence
of the reflected and transmitted radiance; m, [, k are the constants, depending on the
cloud optical properties, the formulas for its computing are presented below; K(u)
and [ depends on surface albedo A as well. The following expressions are taking
into account the ground reflection:

i=n/(1—Aa) (11.2)
!

where the plane albedo a(u) and the spherical albedo a® of the infinite atmosphere,
and the value n are defined by integrals:

1

a(p) =2 [ p(u, o) Hod o

a® =2 |a(p)udu (11.3)

It is seen that Eq. 11.1 are asymmetric relatively to variables y and p, which are
input with escape functions K(u) and K(u). It links with different boundary
conditions at the top and bottom of the layer. The top is free and it could be
assumed as an absolutely absorbing one for the upward radiation and the bottom
boundary reflects partly (1-A) the downward radiation. Thus each of them generates
its own light regime described by different asymptotic functions K(u) and K(u) and
constants / and 1.

Consider the semispherical fluxes of diffused solar radiation (solar irradiances)
in relative units of incident solar flux F,. Reflected irradiance F T(O,yo) and trans-
mitted irradiance F l(‘c,,uo) are described by the formulas similar to Eq. 11.1, where
reflection function p.(u,up) and escape function K(u) are substituted with their
integrals a(ug) and n, according to Egs. 11.2 and 11.3. As a result, the following
formulas are inferred:

mnlK (1) exp(—2kt)
1 — llexp(—2kt)

K (1) exp(—k1)
1 — llexp(—2kt)

FT(()?MO) = a(uy) —
(11.4)

Fl(Ta :uO) =
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The radiation absorption within the cloud layer is determined by the radiative
divergence Eq. (1.5). It is computed with the obvious equation:

R=1-F"0,1) — (1 = A)F' (0, 1ty)

K (g)me " {, _1-A ]

=1- =
alo) + 1 — lle=2%w 1 — Adu

(11.5)

Mention that the term “asymptotic” specifies the light regime installed within the
cloud and it does not point out any approximation. Equations 11.1, 11.4 and 11.5
are strict within the diffusion domain. Their accuracy will be studied below
depending on the optical thickness.

11.2 Weak True Absorption of Solar Radiation

In clouds, the absorption is extremely weak compared to scattering (1 wy < <1)
within the short-wavelength range. As it has been shown in books in this case both
functions p.(,1p) and K(u) and constants m, [, k are expressed with the expansions
over powers of small parameter (1 — wg). We consider here that parameter s, where
s =1 — wy)/[3(1 — 2)], is more convenient for the problem in question than
parameter (1 — mg). Value g is a mean cosine of the scattering angle or, here, the
parameter of Henyey-Greenstein function (1.15). Then, these expansions over
the powers of s (in case of keeping the terms with the power equal to two) for the
constants in Egs. 11.1-11.5 are looking as follows:

m:SS{l + (6—7.55;—1— 3.6 >s2]
I1+¢g

I=1-6¢'s+18¢"s> (11.6)

1.608
a® =1—4s+12¢'s* — (36q' —6g——)s3
1+g

2
n13's+(9’231 —>s2.
q q (1-g) e

For the functions in Egs. 11.1-11.5 the followings expansions are correct:

K (1) = Ko()(1 = 3¢'s) + K (u)s?
a(p) = 1—4Ko(p)s + ax()s” + as(p)s’ (11.7)
Poo (i 19) = Po (i, o) — 4Ko (1)Ko (to)s + o (i, 9)s” + P31, 110)s”,
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1
where the nomination is introduced: ¢'=2 [ Ko(( )Cde ~0.714

In these expansions functions po(u,uy) 3nd Ko(u) are functions p..(u,4o) and
K(p) for the conservative scattering (wo = 1) correspondingly, functions a,(u) and
K>(u) are the coefficients by the item s°. They are presented either in analytical or
in table form. Asymptotic expansions (11.6) and (11.7) have been mathematically
rigorously derived, their errors are defined by items ~ s> or ~ s* omitted in the
series.

The coefficients of items s* and s° in the expansion for reflection function
Poo(l, o) are looking as:

a()ar (o) as(u)as (ko)

Pa(ls o) = ——"——,  p3(pllg) = —————, (11.8)
as as

where a,, as, a>(1) and as(u) are the coefficients of s*> and s> in the series for
spherical @™ albedo as per Eq. 11.6 and in series for plane a(u) albedo as per
Eq. 11.7 respectively. Values of the conservative escape function Ky(uy) are
presented in the following table (Table 11.1):

The approximation for function Ky(x) with the error 3% for pt > 0.4 has been
proposed as: Ko(u) = 0.5 + 0.75 u. The analysis of numerical results yields the
following approximation for coefficients Ko(u) and K,(u) with taking into account
the phase function dependence:

Ko(i) = (0.7678 + 0.0875¢) 1 + 0.5020 — 0.0840g. (11.9)

Ko () = nyKo(u)w(p) = 1.667ny (1 +0.1)

The correlation coefficient of the formulas (11.9) and numerical calculations is
about 0.99 — 0.93 depending on parameter g.
Expressions for functions a,(u), and as(u) are follows:

3
ax(u) = 3Ko(u) (1—+g (1.2714 — 0.9) + 4q/>
(11.10)

|

The values of function a,(i) are presented in Table 11.2 for four values of
parameter g.

Table 11.1 The escape function K(uo) for clouds (0.65 < g < 0.9)
Lo 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Ko(up) 1271 1.193  1.114 1.034 0952 0869 0.782 0.690 0.591 0.476
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Table 11.2 Values of the second coefficient a,(u) of the plane albedo expansion

u
g 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.75 1.310 2.220 3.118 4.078 5.126 6.256 7.475 8.786 10.19 11.70 13.29
0.80 1.267 2.236 3.151 4.117 5.163 6.289 7.494 8.796 10.18 11.66 13.23
0.85 1.201 2.242 3.181 4.148 5.198 6.320 7.512 8.798 10.17 11.63 13.18
0.90 1.092 2.244 3208 4.193 5237 6350 7.529 8.808 10.16 11.60 13.12

Surface albedo A is assumed by formulas:

Ko(u) = Ko(u) +A/(1 = A),

_ A 3.8u—2.7 (11.11)
Kz(M)ZKz(N)‘Fm 3K0(#)W nl,

11.3 The Analytical Presentation of the Reflection Function

The following group of the formulas is the approximations obtained from the
analysis of the numerical values of the reflection function. As it is usually done,
let us describe the reflection function over the azimuth angle cosine to separate the
item independent of the azimuth angle:

p(ps 1 11g) = p°(1t, 1) + 2 p™ (1, 1) cos mip, (11.12)

m=1

where functions p"(u,uo) are the harmonics of the reflection function of order m.
Superscripts specify here the number of the azimuthal harmonics. As it has been
mentioned above, we are using here the phase function described by Henyey-
Greenstein formula (1.15).

The analysis of numerical calculations shows that for the accurate description of
function p(¢,u, ) it is enough to know the zeroth and first six harmonics if either of
cosines p and g are greater than 0.15 even for value g = 0.9 unfavorable for the
computing accuracy. This limitation does not restrict our consideration because it is
also necessary to use a complicated model of the spherical atmosphere and to take
into account the refraction of solar rays for the small cosines of zenith solar and
viewing angles. These cases are not studied here.

The values of p”'(u,uo) for m = 0,...,6 have been analyzed and the following
expression, is used for the description of high harmonics p™(,1) :

P (ks o) = [a" patg + ™ (1 + po) + "]/ (1 + o) (11.13)

This presentation provides the reciprocity of the reflection function relatively to
the both zenith viewing and zenith solar angles.
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Table 11.3 Linear approximation for coefficients a™, b™ u ¢™ in formula (7.11) for zero, first and
second azimuthal harmonics of the reflection function

m a” b" " I Yimit
0 2.051 g + 0.508 —1.420 g +0.831 0.930 g + 0.023 -

1 1.821 g—0.558 —1.413 g +0.387 1.150 g—0.239 0.80
2 2.227 g—0.669 —1.564 g +0.481 1.042 g—0.293 0.55

Table 11.4 Power approximation for the coefficients a™, b™ u ¢™ in Eq. (2.14) for 3rd, 4th, 5th
and 6th azimuthal harmonics of the reflection function

m 0.3 < g <0.9
a” b c” 77 limit

3 62.00 g°-90.28 g + 4242 ¢ —15.24 & +19.70 g* 275 g* - 0.50
—6.26 873 g + 125 2.03 g +0.39

4 105.26 g* - 155.06 g> + 72.93 ¢ —30.30 g* + 43.04 g* 3.70 g* - 0.45
—-10.76 -19.83 g + 2.89 3.20 g + 0.65

5 120.63 g®—177.60 g* + 83.48 ¢ —25.84 g> +35.15 g% 323 g°— 0.35
—12.32 -15.61 g + 2.22 275 g + 0.55

6 14492 ¢*—202.16 g% + 9048 g —32.60 g> + 43.88 g 3.90 g°— 0.35
—12.85 -19.15 g + 2.67 341 g +0.70

The approximation of coefficients @™, ™ and ¢™ in the range of parameter g
0.3 < g <€ 0.9 is presented in Tables 11.3 and 11.4.

The well-known relation of the rigorous theory is assumed for the isotropic and
conservative scattering (g = 0, @y = 1), namely:

o)

, 11.14
4(p+ o) ( )

p° (1, o) =

where ¢(u) is Ambartsumyan’s function. In this case the following approximation
is correct: ¢(u) = 1.874 1 + 1.058 and it has been obtained that a° = 0.88,
b° = 0.47, and ¢® = 0.28. It is known that the reflection function for the isotropic
scattering does not differ very much from the anisotropic values of p°(u, o) if
i, to > 0.25, so it is possible to improve this approach for the enlarged angle
ranges. The simple formula for the isotropic scattering could be corrected approxi-
mately with the linear dependence of the phase function parameter as follows:

o()e(uy) + g[4-8ugp —3.0(ug + p) + 1.9
4o + 1)

p° (1, o) = . (11.15)

In the case of Henyey-Greenstein phase function the high harmonics are close to
zero (p"'(i,up) =~ 0, m > 0) if either of zenith angle cosines u and p, are greater
than p i The values of pu i, are different for different harmonics and they are
shown in Tables 2.3 and 2.4. The approximation by Eq. 11.13 with coefficients a™,
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b™ and ¢™ in Tables 11.3 and 11.4 gives an acceptable presentation for all the
harmonics of the reflection function considered here. The errors of this approxima-
tion have been shown to depend on the values of the zenith solar and viewing angles
cosines, on number of the harmonic m, and on phase function parameter g. Some
details of the error analysis will be presented in Sect. 11.4.

The presented asymptotic formulas (11.1), (11.4) and (11.5), expansions (11.6),
(11.7) and approximations (11.8)—(11.11), (11.13) and (11.15) allow computing the
reflected and transmitted radiance and irradiance together with the radiative diver-
gence for cloud layer if the layer properties and the geometry of the problem are
known. The considered model has to satisfy the applicability ranges of the
presented formulas: big optical thickness and weak true absorption. These ranges
will be analyzed in Sect. 11.4 in detail. However, it is necessary to point out that for
the application of Eqs. 11.1-11.5 the big optical thickness with known asymptotic
functions and constants is enough. The use of the expansions (11.6) and (11.7)
needs the weak absorption.

11.4 Diffused Radiation Field Within the Cloud Layer

Radiation within the cloud layer (in the diffusion domain: 79 — tn_; > 1 and
71 > 1) is described with formulas different from those presented above. Here
we are offering the results useful for the further consideration.

The diffused radiance in energetic units in the diffusion domain at optical depth
7 satisfied conditions > > 1, tp — 7> > 1 is expressed with the equation:

Fy 3 i(,u)ek““*f) — i(—p)le K@)
17, 1, 1o, T0) = — K (1o )ptge ™ T |

(11.16)

where F is the solar incident flux, function i(u) characterizes the angle dependence
of the radiance in deep levels of the semi-infinite atmosphere. The behavior of
function i(u) relatively the phase function shape and absorption in the medium has
been studied. The expansion for function i(x) has been derived in case of the weak
true absorption, which is presented here in terms of parameter s:

) 1—g>+2P(p) ,
l =1 +3S +3—S
(1) 1 e
10.8P5 () 3.6u] ;5
S

+19(1 = 1.5¢)u +
( &) (14+g)(1+g+g%) 1+g

(11.17)

Functions P;(u) for i = 1,2, ... are Legendre polynomials of power i.
The diffused irradiance in relative units of Fy within the optically thick cloud
layer is described with the following:
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-k
Fl(,uo,‘l?,l'()) _ K(,uoge T0 [ilekﬁoff) . ine*k<T0*f>},
1 — Ile—2k%0 (11.18)
K(0)e™ 11 kizomr) _ il 7u k(o .
1 o 0 1.k(to—1) _ ;| k(to—1)
F'(uy,t,70) = = {l el itle=x" },
1 1
where it =2 [i(p)udp, ' =2 [i(—p)udp.
0
Expansions for values i' and 13 are derived after integrating Eq. 11.17:
. ,1.5—-¢g% 3 0.8
M =1+254+3>—°> 4382 -394+ —— (11.19)
1+g I+¢g

It is also convenient to describe the internal radiation field with the values of
internal albedo b(t;) = F'(z;)/F*(t;) and net flux F(t;) = F(t;) — F'(1)):

4sK (uy)e ™ - ozt
F(Ta:uo):Fl(faﬂo)_FT(Ta/JO):#2)72]{10[14-16 2(z0=1)
_ 11.20
F1(z, 1) b(c) — b — [e= {00 ( )

Fl(t ) S s )

Value ™ and function b(t) are called the internal albedo of the infinite atmo-
sphere and the internal albedo of the atmosphere of the big optical thickness
respectively, moreover b = 1—4s + 8s> and the values of function b(t) could
be obtained from the observations or from the calculations of the semispherical
irradiances at level .

11.5 Case of the Conservative Scattering

In the true absorption absence, according the definition, we have @y = 1 and the
expressions for the radiation characteristics are particularly simple.
For the reflection and transmission functions:

4Ko(1o)Ko (1)

31— g)ro + 24 + 525
4K o (po)Ko(1)

3 [(1 —g)to +2¢ +ﬁ} 7

p(0, 1, iy, ) = po(i, o> ) —

(11.21)

G(T(b U, #0) =

for the semispherical fluxes in relative units of F,
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4Ko (1
FI0, 1) = 1 - )
3 [(1 —8)t0+ 29 + —3<17A)}
$AKo (1) (11.22)
U
Fl(TOnuO) = s

3(1—4)[(1 - g)ro +2¢' + 545

and, finally, the simple expression for the net flux that summarizes both Eq. 11.22 is
feasible at any level in the conservative medium because the net flux is constant
without absorption

4Ko (1) (1 — A)
31—A)[(1 —g)to+ ) +4A°

F(t, o) = (11.23)

It should be emphasized that the equality F'(t,u0) = F l(r,,uo) = Ko(up) is correct
in the semi-infinite conservatively scattered atmosphere at the big optical depth,
where the sense of the escape function Ky(u), frequently met in our consideration,
is clear from. The case of the conservative scattering comes true in a certain cloud
layer at the some wavelengths within the visual spectral range. Equations 11.21-11.22
are correct in the wider interval of the optical depth (7o > 3) than Eqs. 11.1 and 11.4
derived with taking into account the absorption. Corresponding relations of the
characteristics of the inner radiation field are written as:

for the radiance:

_ FopoKo(uo){(1 = A)B(1 — g)(r0 — ) + 3¢" + 3] +4A}

I(z, , 11.24
(v, 1) (1= A)B(1 = g)70 + 6] + 44] (11.24)
for the upward and downward semispherical solar fluxes:
1—A)3(1—g)(to—1)+3¢ —2]+4A
(11.25)

(1-A)3(1—g)(to—1)+3¢ +2]+4A
(1=A)[3(1 = g)ro + 64'] +4A

F'(t,19) = Ko(uo)

The formulas of the radiation characteristics in case of conservative scattering
are possible to apply for the rough estimation even for the very weak absorption but
the computational errors increase fast when the absorption grows and it is necessary
to use the equations for the absorption medium to reach certain accuracy.

11.6 Error Analysis

Asymptotic formulas of the radiation transfer theory presented in this chapter are
obtained strictly. It is necessary to take into consideration that they are describing
the radiation field within the cloud layer and at the cloud top and base boundaries
the more exact, the bigger the optical thickness and the weaker true absorption.
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Fig. 11.2 The applicability ranges of the asymptotic formulas of the radiative transfer theory in
case of calculation reflected irradiance (a) and radiative divergence (b) for cloudy layer. Curves
corresponded to the relative uncertainty equal to 5%. Solid curve is a phase function parameter
g = 0.5; dashed line — g = 0.75 and dashed dotted line — g = 0.9, curves with circles correspond
to u = 1, with crosses —to it = 0.5

In addition, there is a strong dependence of the accuracy upon the degree of the
scattering anisotropy (the extension forward of the phase function defined by
the parameter ¢ magnitude). The uncertainties of formulas for reflected and trans-
mitted radiation are about 2% beginning from optical thickness 7y > 4/(1—k). The
numerical analysis of formulas for the spherical albedo and radiation transmittance
for the wide set of parameters shows uncertainty not exceed 5% by values 7 > 2.0
and wg > 0.7.

The accuracy of formulas for irradiances was tested with closed numerical
experiments to provide relative errors less than 5% in the region plotted in
coordinates “t — @” in Fig. 11.2. Curves in Fig. 11.2a, b correspond to the level
of 5% error of the reflected irradiance (a) and radiative divergence (b) calculated for
parameters g = 0.5; 0.75 and 0.9 and for two values of cosine uy =1 and 0.5.

The numerical analysis of the accuracy of the radiance calculation within the
optically thick layer gives the applicability region of the radiance (r > 15;
wo > 0.99) is restricted stronger than of the irradiance (t > 7; @y > 0.9), which
in turn is narrower than for spherical albedo and transmittance (t > 2; wy > 0.8).

Errors of asymptotic expansions (11.6) and (11.7) are defined by omitted items
proportional to s> or s*. The accuracy of the approximations was tested by compari-
son with the function values computed by the numerical methods. The relative
uncertainties of the escape function computed with approximations (11.8) are
presented in Table 11.5. It has been found that uncertainties are rather small as
far as wg =0.98 for magnitudes ¢ = 0.5 and u > 0.2. Table 11.5 are illustrating that
the errors of the escape function calculation are not exceeding 6% for value
s < 0.12.
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Table 11.5 Uncertainty of the escape function K(u) calculation,%
wo 0.999 0.995 0.990 0.980
g 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.75 0.9

S
u\0.0258 0.05774 0.05774 0.1291 0.08165 0.18257 0.1155 0.1633 0.2582

0.1 0.1 0.2 0.4 1.0 0.5 2.0 10 33 127
0.5 0.1 0.4 0.1 2.0 0.1 4.0 6.0 29 79
0.7 03 0.5 0.3 0.8 0.4 3.0 5.0 25 64
1.0 0.2 0.6 0.6 2.0 1.0 4.0 2.5 12 45

Table 11.6 Uncertainty of calculating the reflection function p.,(u,uo) of the semi-infinite layer

wo 0.999 0.995 0.990

g 0.5 0.9 0.5 0.9 0.5 0.9
AN

u 0.0258 0.05774 0.05774 0.1291 0.08165 0.18257
0.1 0.2 0.6 0.2 1.0 0.3 2.6

0.5 0.2 0.3 0.4 1.0 1.0 3.0

1.0 0.2 0.3 0.5 1.0 0.7 3.0

Comparison of reflection function p..(u,1o) calculation results accounting
coefficients p,(u,po) and p3(u,po) with numerical computing results yields the
errors shown in Table 11.6. Equation 11.8 for functions p,(u,io) and ps(u,io)
allow computing the corresponded values with rather small error as far as
wo = 0.9. Therefore, the solar radiance reflected from the cloud layer in the
shortwave spectral range is possible to calculate with the analytical formulas, and
this fact is useful for the interpretation of the satellite radiation data.

11.6.1 Optical Model of the Cloud Layer

The input of optical parameters is necessary for calculating radiative characteristics
Ranges of cloud optical parameters are presented below:

1. The optical thickness 100 > 7o > 5;

2. The optical depth within the layer 7 is automatically assumed with dividing the
layer to five parts;

. The single scattering albedo 1 > wy > 0.992;

. The asymmetry parameter of the phase function g = 0.5-0.85;

. The surface albedo A = 0-0.95

. Solar and viewing zenith angles (degrees) 0—80

. The azimuth angle relative to the Sun ¢ (degrees) for radiance calculating 0—180

NN R W
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11.7 Practice 10

11.7.1 Objectives

Calculating radiative characteristics (diffuse irradiance outgoing from cloud layer,
diffuse irradiance within layer at four levels, diffuse radiance at boarders and within
cloud layer and radiative divergence) for the input optical model and geometry of
illuminating. It is to study variations of irradiances and radiative divergence versus
the optical model (optical thickness, single scattering albedo, phase function
parameter, surface albedo) and solar zenith angle, to plot obtained dependencies
and to prepare the report.

11.7.2 Sequential Steps of the Exercise Implementation

Calculation is accomplished with compute program compiled in Borland 4 C++-.
The file “ASYMP.exe” propose the following dialog when questions are output at
the screen sequentially.

1. Input number of wavelength
It is recommended to input the number of calculation variants;
If the dependency on one parameter is studied (e.g. optical thickness) the set of
several (e.g. 10) parameter values is input and other parameters are repeated.

2. Input number of viewing zenith angles
It is recommended to input the number of viewing angles if the intensity is
calculated;

3. Input optical thickness
It is recommended to input the optical thickness, if there are several variants
input all needed values pressing the button “Enter”

4. Input single scattering albedo
It is recommended to input the single scattering albedo (SSA), if there are
several variants input all needed values pressing the button “Enter”. If only
optical thickness is varied, input the same value of SSA several times;

5. Input asymmetry parameter
It is recommended to input the phase function parameter, if there are several
variants input all needed values pressing the button “Enter”.

6. Input ground albedo
It is recommended to input the ground (surface) albedo, if there are several
variants input all needed values pressing the button “Enter”

7. Input solar zenith angles (degrees)
It is recommended to input the zenith solar incident angle (degrees), if you’d
like to study the dependence on solar angle it is necessary to repeat the program
several times with the same optical parameters and varying solar angle.

8. Input viewing zenith angles (degrees)
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It is recommended to input the viewing zenith angle (degrees) if intensity is
calculated.

9. Input viewing azimuth angle (degrees)
It is recommended to input the viewing azimuth angle relative to the Sun
(degrees) if intensity is calculated.

10. If Fluxes put 1 if Intensity put 0

Input “1” if calculating fluxes and “0” if calculating intensity.

The result is output in the file “asymp.dat” that is in the same directory as the
program “ASYMP.exe”. The input values of the model and calculated radiative
characteristics are in the resulting file.

11.7.3 Requirements to the Report

Compile a concise report reflecting the principal stages and the obtained results of
the performed exercise in form of tables and plots (graphs).



Chapter 12

Calculating Solar Irradiance with Eddington
Method

Abstract The formulas of Eddington approximation as a kind of two-stream
methods are presented for calculating solar irradiance in the atmosphere. The
optical model of clear atmosphere is proposed for the practice implementation.

12.1 Eddington Approximation

Return to the equations system (1.29), obtained in the Chap. 1.

w = _[1 — (U(‘L')]I(‘E,,uo) + (U(‘L')FO exp(;_:)
(12.1)
3 dK (t, 1) _ —[3 — w(t)x1(7)|H (7, py) + w(7)Fo exp(__T)

dr Ho

The vertically heterogeneous atmosphere is assumed, i.e. the single scattering
albedo wy(t) and phase function parameter g(t) = x;(t)/3 are functions of the
optical thickness. Till now all transformations with the transfer equation are strict.
The following approximation is done further:

1 1
1
I, p)Pdp = 3 J I(t, wdp. (12.2)
~1 Z1

That is the average value x” is factor out from the integral sign. This relation is
strict if the intensity obeys to the following dependencies on the viewing angle:

1. I # I(z,u); — the constant;
2. I(t,u) = a + bu —is the linear dependence;
3. I(t,w) = I(t,1) + ZI(t,p)u 2+ _ the polynomial dependence.

Assuming the boarder conditions as: 2H(0,ug) = —I(0,u0); 2H(to,u0) = —I
(t0,1o) provide also the equality: 3 K(t,ug) = I(t,uo)-

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 119
DOI 10.1007/978-3-642-14899-6_12, © Springer-Verlag Berlin Heidelberg 2012
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The Eddington method is the kind of two-stream approximations. These
approximations of the transfer theory are based on different analytical formulas
approximately representing angle distribution of upward and downward intensity in
the plane media. The substituting these formulas to the integro-differential transfer
equation provides the system of differential equations for upward and downward
irradiances:

dF'(t, T
721 o) = VIFT(Ta o) — VzFl(T,No) — Fowysexp( ——)
o) Ho (12.3)
T, U T
TO = 9,F1 (1, 1) — 71 FH(1, o) + Fowysexp( — ,u_)
0

1
where  F'(t, o) =2 [I(z, g, £p)udp are solar upward and downward
0

irradiances in the atmosphere.

In the case of absorption absence or conservative scattering it is true: wgy =1.0,
and the illumination of the surface with the albedo A (the transmitted irradiance at
the atmosphere base) is expressed as:

B 4 1 3 1 3 T

l ) 13 13 )

F* (o, o) = 4+ (G -x)(l—A) [(2‘*‘4#0) + (2 4'“0) exP( #o)}
(12.4)

In case of vertically homogeneous absorptive atmosphere the expressions for
reflected and transmitted irradiances are:

F'(0,19) = Cy + C, + D;

70 (12.5)

Fl(ro, Ho) = Cyexp(—kto) + Crexp(ktg) + D exp(%) + exp(#—);
0 0

Expressions for constants in Eq. 12.5 are:

(&9 1 1

= i A

{[2+3uo+ (I—w)xy (1+2up)]exp(kt)(1+b) +[2—3ug — (1 —w)x (1 —Zuo)}exp(;—z)(l —b)};

{[2+3M0+(1 —wo)x1 (1+2p0)]exp(—kt)(1—=b) +[2 = 3ug — (1 —)x; (1 *2M0)}CXP(*;—2)(1 +b)};

_3+(1 —wo)x1 wo

p=-—"+ 97, =
1_/(2#02 :u027
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A = exp(kt)(1 + b)* — exp(—kt)(1 — b)*;

2k

b=———
3—6003617

K = (1 —wo)(3 — woxy);

Eddington formulas are approximate solution of the transfer equation; they
do not take into account strictly the angular dependence of the radiation field.
Thus these formulas do not provide the high accuracy for intensity calculation. But
the considered approach is a convenient for irradiance and radiative divergence
calculations. The detailed analysis demonstrates that this approach is the most exact
and optimal within wide ranges of atmospheric optical parameters. The method of
the delta-Eddington better includes the scattering anisotropy with the phase func-
tion parameter. For solar zenith angles <75° the uncertainty of the approach is
about 1-3% depending on the optical model.

Another form of delta-Eddington formulas:

Expressions for the plane albedo (reflected irradiance in relative units of F, at the
atmosphere top) F T(O,MO) and transmission (the transmitted irradiance in relative
units of F at the atmosphere base or the illumination of the surface) F’ l(ro,uo) are
the solution of the equation system (12.1) with boundary conditions F T(7:0,/,10) =
FY0,10) = 0 (i.e. surface albedo is zero), where o is the cosine of zenith solar
incident angle. The result is might be written as:

F'(0,10) =
_ T
me | (1 —rxpg)(az+xys)e o — (14xug) (a2 —ky3)e™ "0 — 2k (3 — azptg)exp( *ﬂ—)
)

Fmed:U—mAMrﬂm—mﬁkmﬂ—id

0
(12.6)
where the following notions are used:
my = (14 xl)(ar +xp,)e",  my = (1 —x{)(ar — rpy)e™,
ms = 2K(y, + al‘p)e*gv my = (K +7)e" + (k —7)e ", (12.7)
/
ms=1-12C, mg=——o,
nmaymys

ar = V1Y4 + 7203, A2 = 7173+ V2Vas

K=1/7— 7} (12.8)

1 1
n=1 -0 @+3¢)], n=—gll - o4 —3¢)]
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13=-02-340, py=1-79;, 3g=x (12.9)

B

The above set of formulas is the realization of the Eddington method. The phase
function considering leads to delta-Eddington method, where optical parameters o’
and 7/, transform in according to expressions:

17
w’:a)oig t0=1=1(1-wo/g), g’:i, (12.10)
8

12.2 Considering the Surface Reflection

The taking into account the surface albedo A > 0 is done according to known
relations

F'(0,0) = F1(0, o) + AV ()F (0, 1)
- F (7o, o) (12.11)

1
F (T()HMO) = 1 —A~A(’C0)

where A(t = 0) and V(z) are spherical albedo and the transmittance and defined by
expressions:

1

A(r=0) = ZJFT(O7,UO)MOd:u0

0 (12.12)

1
V(tg) =2 JFl(TO, o) Hod o
0

It seems easy to calculate the result that after integrating. But integrals of
Eq. 12.7 do not lead analytical expressions directly. For diffuse radiation the result
was obtained for reflected radiation A(0) and for transmittance V(ty) without
considering the direct radiation:

. 72(1 — e7200)
K+ (k=) )e
2Ke” K

T (e p)e T

A(0)
(12.13)

V(7o)
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The direct radiation for transmittance might be taken into account by addition
the item in the expression for V(1) :

—T
JMCXP (70> dp = —exp(—7o) + t0E1(70)

where E(1() is exponential integral, expansions are true for it:
for small argument (optical thickness 7y < 1):

%, T
E\(t) =—-0.5772 —Intg+ 10 — —= + +

st gt (12.14)

and for big argument (optical thickness 7o > 1):

E (‘[):M 1—l+£—£+
1 ” ” "[(2) '58 [P

Thus the direct radiation in the expression (12.14) is accomplished differently
depends on the optical thickness. Point out that E;(t9)<0.01 for the optical
thickness 79 > 4 and the direct radiation might be omitted.

12.3 Calculation of Radiation Characteristics

The estimating the diffuse radiation rate in the transmitted irradiance might be

important for certain problems. The expression for it is follows:
ol

F!(to, o) — exp(2)

F* (70, o)

In some problems the ratio of the irradiance, reflected by the atmosphere at the
top, to the transmitted one at the base (should not be confused with surface albedo,
where the irradiance reflected by the surface at the atmosphere base is in the
definition) might be useful.

= (12.15)

,T _
= F(E=00ttg) (12.16)

!
F (To,/,t())

It is not difficult to calculate the direct and diffuse irradiance at the vertical
surface (e.g. the UV irradiance at standing person):

l
_ F(to, 1 ex To/ I
Five,.,(ro, Uo ) diffused = (0, o) p( of O)

2 (12.17)
Fhren(z0, po)direct = /1 — 2 exp(—7o/ 1)
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The overall irradiance (diffused + direct) at the vertical surface, oriented to the
Sun is the summation of Eq. 12.17:

F (0, tto)Sum = /1 — to® exp(—to/py) + 0.5

X [ l(To,,uo exp(—ro/uo)} (12.18)

The radiative divergence is the important characteristic for the atmospheric
radiation regime:

R(po) = 1~ F*(zo, o) — F (0, 1) (12.19)

It is to remind that all above radiative characteristics are in relative units. For
obtaining them in energetic units it is necessary to multiply to Fop.

12.4 The Atmosphere Optical Model

It is necessary to input the optical model of the atmosphere (the set of optical
parameters describing the media) for calculating radiative characteristics — the
direct problem solution. Here we consider the simplest variant of the vertically
homogeneous atmosphere. It has been shown that this approximation provides the
irradiance uncertainty less than 10% for irradiance calculation. Assume the molec-
ular atmosphere together with scattering and absorbing aerosols. The shortwave
spectral range is considered. The following values are input:

» The optical thickness of the clear atmosphere 19 = 45 + Tag + Tis + Tiias
where 1, and 7,,,; are optical thicknesses of the aerosol and molecular (Rayleigh)
scattering, 1,, and t,, are optical thicknesses of the aerosol and molecular
absorption;

» The optical thickness of cloud 1., = 7. + 7., is the sum of optical thicknesses
of the cloud scattering and absorption;

» The single scattering albedo (probability of the photon surviving while single
interaction)
for clear atmosphere wy = (Tas + Tims)/70;
for cloudy atmosphere wg = (Tes + Tas + Tis) /(Ter + T0);

* The phase function asymmetry parameter g = 0-0.3 for the clear atmosphere
and g = 0.8 for cloud;

¢ The surface albedo Aj.

Examples of numerical values are in the Tables 12.1 and 12.2. The molecular
absorption is neglected in the shortwave region. It is possible to add to the total
optical thickness the cloudy optical thickness t.; =10, 20 for the cloudy atmosphere
and to recalculate the single scattering albedo in agreement with the above
definition.
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12.5 Practice 11

12.5.1 Objectives

 to calculate solar radiative characteristics for models of the clear and (or) cloudy
atmosphere;

¢ to study dependences of irradiances and radiative divergence on optical
parameters and solar zenith angle;

* to compare with values obtained for cloudy atmosphere with asymptotic method,
or clear atmosphere — by single scattering approximation and by Monte-Carlo
approach.

12.5.2 Sequential Steps of the Exercise Implementation

The following radiative characteristics are proposed to calculate for the set of
values of solar zenith angle, optical thickness, single scattering albedo, phase
function parameter, and surface albedo:

1. the reflected and transmitted irradiances. It is noted in the resulting file as “refl”
and “trans”

. the radiative divergence (div),

. the rate of diffuse radiation in the transmitted irradiance (dif/transm)

. the ratio of reflected to transmitted irradiance (refl/transm)

. the direct irradiance to vertical surface (vertDirect)

. The overall irradiance (diffused + direct) to vertical surface (vertSum)

AN AW

Calculation is accomplished with the compute program “edding.exe” that is
compiled in Borland 4 C++-. After the program running the writing is output to
the screen: “Program calculates radiative characteristics and diffusive part with
D-Eddington”

The program “EDDING.exe” proposes the following dialog when questions are
output at the screen sequentially.

1. Input number of wavelength (group tau-lam-g-A)

— It is recommended to input the number of calculation variants;
2. Input number of solar incident angles

— It is recommended to input the number of solar angles;
3. Input wavelengths

— TItis possible just numerating: 1,2,3. .. or input values of the wavelength. This
parameter does not participate in calculation;
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. Input optical thickness

— It is recommended to input one or several values of the optical thickness
(depending on the answer to question 1) pressing the button “Enter” every
time. The range of values is 0.1-2.0 for the clear atmosphere or 2-20 for
cloudy atmosphere. Values from the Table 12.1 might be use;

If the dependency on one parameter is studied (e.g. optical thickness) the set of
several (e.g.10) parameter values is input and other parameters are repeated the
same.

. Input single scattering albedo (SSA)

— It is recommended to input one or several values of the SSA (depending on
the answer to question (1). The range of values is 0.7 in case of strong
absorption in the clear atmosphere, till 0.999 weak absorption in the cloudy
atmosphere, the value 1.0 for pure (conservative) scattering is better to
change for 0.99999999, otherwise the overflow might be happen. If only
optical thickness is varied, input the same value of SSA several times;

. Input phase function asymmetry parameter — It is recommended to input the

phase function parameter, if there are several variants input all needed values
pressing the button “Enter”. The range of values is O (isotropic scattering —
possible to use for the clear and pure atmosphere) till 0.85 (extended phase
function in clouds)

. Input ground albedo

— It is recommended to input one or several values of the ground albedo
(depending on the answer to question (1). The range of values is 0, 0.02
(the absence of the surface reflection above sea surface) till 0.95 (strong
reflection by fresh snow);

. Input solar incident angles (degrees)

— It is recommended to input one or several values of the solar incident angle
(depending on the answer to question 2 in ranges: 0° (the Sun is in zenith) till
80° (the Sun is near the horizon).

Then the program accomplishes the calculation and output the result to the

screen and to the resulting file “eddaer.dat”, where are also input values of the
optical model

Table 12.1 The optical model of the clear atmosphere

A, um  0.36 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 0.9

Tas
Tua
TWIS
To
(20
g

0.379 0316 0.285 0.264 0250 0237 0224 0213 0201 0.190
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.564 0364 0223 0.145 0.098 0.072 0.052 0.039 0.023 0.014
0983 0.720 0.552 0449 0388 0349 0316 0292 0.264 0.244
0959 0944 0927 0911 0.897 0.885 0.873 0.863 0.849 0.836
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
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Table 12.2 Ground albedo for three types of surfaces: (I) mowed grass, (II) sea surface and (III)
fresh snow

Ay 0.03 0.035 0.045 0.056 0.070 0.087 0.110 0.136 0.193  0.225
Ay 005 0.06 0.07 0.07 0.05 0.04 0.03 0.03 0.03 0.03
Agr 083 0.85 0.87 0.90 0.90 0.90 0.90 0.89 0.87 0.86
Solar zenith angles are arcos o = from 0° till 75°

12.5.3 Requirements to the Report

Compile a concise report reflecting the principal stages and the obtained results of
the performed exercise in form of tables and plots.

It is to plot dependences of irradiances and radiative divergence versus the
optical model (optical thickness, single scattering albedo, phase function parameter,
surface albedo) and solar zenith angle, and prepare the report.



Chapter 13
Monte-Carlo Method for the Solar Irradiance
Calculation

Abstract The base of the Monte-Carlo method is considered for atmospheric
optics application. The algorithm of calculating hemispherical fluxes and radiative
divergence is discussed. The description of the practice is presented.

13.1 The Basic Idea of Monte-Carlo Method

The Monte-Carlo method (more strict name is the method of statistical modelling) is a
most powerful method of the radiative transfer theory. It allows to solve the problems
concerned the radiance calculation with taking into account spherical geometry,
polarization, heterogeneity of the atmosphere and surface, etc. Here we are applying
this method for solving rather simple (comparing with above-mentioned) problem of
the solar irradiance calculation in the horizontally homogeneous and plane parallel
atmosphere. The approach allows simulations of the physical processes of radiative
transfer in the atmosphere, when it is not needed to attract a body of the transfer theory.
The Monte-Carlo method main idea is the interpretation of photon—atmosphere
interaction as the random process: the motion of light conditional particle called
“photon”, the computer simulation of the process, and the calculation of desired
characteristics as a mathematical expectation of random numbers appearing during
the simulation. It is to be mentioned that here the photon is a mathematical object (not
physical particle) and it might be divided to parts in further consideration. Desired
radiative characteristics (radiance and irradiance) are obtained as average values over
a multiplicity of photon trajectories sequent simulated.

The simplest example is considered for clarity, namely the plane atmosphere
with the optical thickness 7 is illuminated by incident solar flux Fy and cosine
of the incident angle is yo. The transmission function defining the solar energy
extinction in the atmosphere according to Beer’s law is P = exp(—71o/uo). The P is
possible to treat as the probability of single photon passes throughout the atmo-
sphere (actually, 0 < P < 1). Consider N photons and simulate their motion
throughout the atmosphere as follows: take the random number o from the totality

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 129
DOI 10.1007/978-3-642-14899-6_13, © Springer-Verlag Berlin Heidelberg 2012
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of the random numbers uniformly distributed over the interval [0, 1], the individual
for every photon, and if the inequality & < P is true, consider that the photon passes
throughout the atmosphere, otherwise — it does not pass. Calculate number of all
passed photons: N(7¢,Lo). The incident flux at the atmosphere top Fu recalculating
to one photon leads to the photon energy Fouo/N. The flux (irradiance) at the
atmosphere base is derived after multiplying this energy to the number of photons
passing throughout the atmosphere F!(t, 1)) = %N (0, Ho)-

Unlike other methods in the Monte-Carlo method, it is appropriate not to divide
radiation to the direct, diffused and reflected from the surface.

Certainly the simple solution might be written without this consideration
(explain why %N(To,ﬂo) — Fouyexp(—1o/1) while N — oo as an exercise).
However, it is convenient to obtain irradiance with real multiple scattering and
absorptions (i.e. to solve the general radiative transfer problem) if three processes
are successfully modelled: photon-atmosphere interaction (scattering and absorp-
tion), photon-surface interaction (reflection and absorption) and the photon free path.

13.2 Simulating Random Events and Values

Consider some mathematical definitions before considering the Monte-Carlo
method.

For the statistical simulation on computer, it is necessary to reproduce a process
that will play the role of random event. Special algorithms are elaborated for
random number choice that is called a random number digitizer (RND) or random-
izer and there are special computer programs for generating different sequences of
random numbers including to programming languages. However, testing of such
ready algorithms shows no convenient distribution parameters of sequences (the
mean and dispersion) for scientific purposes. Hence improved algorithms of RND
have been elaborated for the Monte-Carlo method. This choice plays the role of
“blind chance” similar to roulette wheel or shuffling the cards. Just this analogue
causes the name of the method.

The totality of the random numbers uniformly distributed over the interval [0, 1]
is the base of the Monte-Carlo method. We are implying only these numbers using
the term “the random number”, specifying them by sign f5, and at every its
appearance in the text we mean a new random number.

Let the probability of a certain discrete random event be equal to P. Choose the
random number and if f < P, then assume that the event has happened, in the
opposite case assume that it has not happened. The grounds of this approach
are evident: if the quantity of the simulating acts tends to the infinity then the
ratio of the quantity of the simulating acts, when the event has happened, to
the quantity of all acts is equal to the probability of the event i.e. to P due to the
uniformity of the random numbers distribution. Simulating random values is

needed aside from random events. Note that according the definition the probability
u

value u within the interval [a,u] is equal to P(u) = [ p(u')du’ for simulating the
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continuous random value characterized with the probability density p(u) within
the interval [a,b]. The application of the above-mentioned approach for discrete

random values to simulating continuous values u leads to the following equation:
Jp(u’)du’ = B. (13.1)

The Eq. 13.1 is the equation relative to the integral upper limit for obtaining the
value u from the random number f.

13.2.1 Simulating the Photon Free Path

As it has been mentioned above, the process of radiative transfer in the Monte-Carlo
method is simulated as a photon motion. Coming to the atmosphere the photon is
moving along a certain trajectory, which finishes either with its outgoing from the
atmosphere or with its absorption in the atmosphere or at the surface. Let the photon
is at the optical depth 7, with the cosine of angle of its motion direction u. A free
photon path is analogous to the transfer of solar direct radiation throughout the
atmosphere. The probability to reach a certain optical depth 7, is defined by Beer’s
Law: P(1,) = exp(—(t1—72)/to). The opposite event is the interaction with the
atmosphere before the level 1, is interested for the consideration and the probability
is 1-P(t,). The probability density of the value 7, distribution is % (1 —P(12))
according to the definition.

ple2) = expl(~(r2 — 7)) (132)

The simulating of the photon free path is obtained after substituting (13.2) to the
Eq. 13.1

=1 —pln(l — p) (13.3)

Note that the Eq. 13.3 is true for both photon motion downward (for p > 0 it is
7, > 11) and upward (for u < Oitis 7, < 1¢)

13.2.2 Simulating Photon-Atmosphere Interaction

The single scattering albedo w(7) is treated as the probability of scattering photon
interacting with the atmosphere at the optical deptht. This value is called also the
probability of the photon surviving that is more illuminating for the Monte-Carlo
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method. Here the photon absorption is treated as the photon death (it is swallowed
by molecules or aerosols). The probability of the photon scattering in the atmosphere
is wo(7). Thus if f < w(7), then the photon scattering is occurring in the opposite
case the absorption is happening i.e. the end of the trajectory. Cosine of the scattering
angle y and azimuth of the scattering ¥ are to be obtained for a new photon direction
after scattering. The phase function x(z,y) describes the probability also — it is the
probability density of scattering to the angle y. Then the Eq. 13.1 is solved for
simulating the scattering angle. The phase function is input as look-up table with
the linear interpolation that leads to the Eq. 13.1 transforming to the square equation.

But assuming the Henyey-Greenstein function (1.15) with the one parameter g
meaning the scattering angle mean cosine is more transparent. After a certain
transformation it is obtained

2 x(y,g(0))dy =B (13.4)

The integral in the Eq. 13.4 is explicitly calculated, and the formula for the
model of scattering angle cosine is derived as (it is recommended to do
corresponding transformations yourselves)

,_ 20+ £@)e@p+1-g(0) ~ (1~ g(x))’ (135)

(2g()p+1—g(x))

There is a second coordinate — the scattering azimuth angle V. But it is simply
simulated as uniformly distributed value in the interval [0,27] because of consid-
ered phase functions are not function of azimuth:

¥ = 2np (13.6)

Thus the geometry of the scattering is defined. It is necessary to describe the
photon direction after interaction. Let the photon moves before the scattering with
the zenith angle cosine y; and azimuth angle ¢, then it change the direction to the
angle cosine y and azimuth V. It is necessary to find new coordinates (,,5). The
problem is solved with spherical trigonometry formulas:

X — Hily
(1 —up)(1 = p3)
(13.7)

ty =y — /(1= ) (1 = y>)cos ¥, cos(p, — ;) =

13.2.3 Simulating Photon-Surface Interaction

It is possible to attribute an evident meaning of the reflection probability to the
albedo in the description of the interaction with the surface: the reflection occurs if
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f < A and the opposite case corresponds to the photon absorption by the surface
and to the end of the photon trajectory. Due to the reflection of the orthotropic
surface all possible directions of the photon are uniformly distributed and
simulating of the new direction (u,,p,) after reflection yields

m, = —cos(nf/2), , =2np (13.8)

13.3 Monte-Carlo Method General Algorithm

When assembled together above described acts of interaction the totality deals the
general scheme of the algorithm:

1. The trajectory of the photon begins at the atmosphere top and his optical depth is
7 = 0, the initial angle cosine is yt = g, and the azimuth ¢ = 0.

2. There are variants of the photon’s fate after simulating the free path according to
Eq. 13.3: if the photon reaches the surface after the path t, > 7, the interaction
with the surface is simulated; if the photon is still in the atmosphere 7, < 7, the
interaction with the atmosphere is simulated.

3. Then the new direction of the photon is simulated according to Eqs. 13.8 or
13.6-13.7, if it does not be taken up, and the free path with taking into account
the new direction is simulated with the Eq. 13.3 further. At this stage it is
analyzed if the photon at the surface or still in the atmosphere.

4. If the new direction gives p < 0 (upward motion) the third possibility arises
7, < 0: the photon leaves the atmosphere escaping to the space.

Thus the whole trajectory of the photon is simulated. The trajectory finish
corresponds to the photon absorption at the surface or in the atmosphere and it
escaping to the space. After the trajectory finish the following photon trajectory
from the atmosphere top is simulated.

The above considered example approach for obtaining desired irradiance values
is applied for counting photons. Let the downward Fi(‘l,') and upward FT(r)
irradiances being found at the optical depth 7. Computer variables N'(r) and
N'(7) called “counters” are assumed. In the beginning of simulation (before the
first photon trajectory) they are zeroth. Further modelling of the photon free path
Eq. 13.3 the cases of photon crossing the level t is analyzed: Mathematically it
means 71 < T < 1, (itis possible for g > 0) or unu t; > 1 > 7, (for u < 0). In the
first case the photon crosses the level t while downward moving, and the unity is
added to the counter N'(1); in the second case the photon moves upward and the
unity is added to the counter N'(1). These operations are named ‘“‘writing to
counters” (here writing the unity).

After simulating N trajectories desired irradiances are found following to
formulas
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Fi(f)z%zvl(r) and FT(‘E):%NT(‘E). (13.9)

The number of trajectories are theoretically to stream to infinity, usually it taken
as tens or hundreds of thousands.

13.4 Modifications of Monte-Carlo Method

The basic limitation of the Monte-Carlo method is random uncertainty in results. It
is possible to estimate simultaneously with irradiances calculation. The reason of
this uncertainty is dispersion of values writing to counters at separate trajectories.
For example one photon might cross the level 7, another photon might not because
absorbed in the atmosphere. It is to consider as many as possible simulated acts at
every trajectory for minimizing the dispersion. Another words it is to keep every
photon avoiding its premature death. The first measure is refusing from breaking
the trajectory while the photon absorption. Because here the photon is a mathemat-
ical object it is possible to divide it to parts. For example the photon part equal to the
albedo A is reflected while interacting with the surface and the part 1-A is taken up
by the surface. It is similar in the atmosphere with the single scattering albedo (7).
The special variable the photon weight w is introduced for taken into account the
photon surviving part. In the trajectory beginning it is w = 1. After every interac-
tion in the atmosphere it is multiplied to w(t) and after interaction with the surface —
to the surface albedo A. Thus the weight decreases after every interaction. The type
of the interaction (scattering or absorption) is not simulated because it is taken into
account by recalculating the weight and trajectory continues with simulating the
photon new direction. The current value of the photon weight w (not the unity) is
written to counters.

The photon escaping from the atmosphere to the space finishes also the trajectory,
while upward moving. Let the photon be at the optical depth ;. The probability of it
escaping through the atmosphere top is P = exp(t;/u) for 4 < 0 according with the
Beers Law. But it is possible to consider that the part equal to P escapes, and the part
equal to 1-P remains in the atmosphere and continue the trajectory. Hence, if u < 01t
is to write the escaping part wP to all counters of the upwelling irradiance with
7 < 14, then before the simulating the free path to multiply the photon weight w to the
value 1 — exp(t;/p). It is also to modify the free path simulating algorithm for the
photon necessarily remains in the atmosphere. The normalizing of the probability
density with the Eq. 13.2 is used for the probability (the integral from the density) is
equal to the unity, when 7, = 0. Another words the photon with the unity probability
(necessarily) remains in the atmosphere. This demand leads to the relation:

0
pl(2) = i exp(— (12 — 11)/1) / ji exp(—(¢ —1)/wd?  (13.10)
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That yields the following:

_ lexp(=(—u)/w)
Pl) = T exp(ar/n) (1310

Substituting the probability density (13.11) to the Eq. 13.1 results simulating the
photon free path while upward moving (n < 0) without leaving the atmosphere.
(Derive formula yourselves as an exercise)

=11 — puln(l —a(l —exp(t1/1))) (13.12)

With such approach the photon trajectory neither might nor finish at all and it is
cut with taking into account the value of the weight. The trajectory simulating is
terminated when the photon weight w is less than certain value fixed a priori.

Another useful modification of the Monte-Carlo method is the application of
simulating without “escaping” to the procedure of writing to counters. Let
the photon with a zenith angle cosine u be at the optical depth t,. The probability
to cross the optical depth 7 (>t for u>0, 1<t for u<O0) is
P = exp(—(z — 11)/u)

And this value might be treated as the photon part reaching the depth t and
written to the corresponding counter. Thus values wexp(—(t — 7;)/u) are written
to counters and this writing is done before recurrent simulating (not after) including
the photon start from the top. There is no writing the photon free path according to
Egs. 13.3 and 13.12 to counters while the free path simulating.

Considered modification of the Monte-Carlo method significantly improves the
algorithm and decrease the random uncertainty of calculated values.

13.4.1 Azimuthal Isotropy of Irradiances

It is clear from physical consideration that the irradiance does not depend on solar
azimuth if the surface reflects orthotropic because the problem is axially symmetric
and the photon coordinate “azimuth” ¢ is redundant. Let us consider its impact on
calculated irradiances. Actually values written in counters do not depend on
azimuth. Test the potential indirect dependence via the zenith angle cosine u.
Simulating the reflection from the surface according to Eq. 13.8 shows a random
choice of the azimuth angle and the reflection angle cosine does not depend on
azimuth. Similarly the zenith angle cosine i, does not depend on initial azimuth ¢,
in agreement with Eqgs. 13.6-13.8. Thus the coordinate ‘“azimuth” appears
unneeded, what simplified calculation.
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13.5 Additional Possibilities of the Monte-Carlo Method

The algorithm has been considered for irradiance calculation. However other
important radiative characteristics are possible to obtain without significant trans-
formation. It is possible to count the photon parts taken up in the atmosphere and
to write the value w(1 — w(t)) to the absorption counter. It is the way for the
calculating the energy absorbed in the atmosphere that is very important for many
problems in particular in climatic models. As it was mentioned in the Chap. 1
this energy named the radiative divergence in the atmosphere. The Monte-Carlo
method is the only method providing the direct calculation of the radiative
divergence.

It is possible to obtain certain fine characteristics of the process of radiative
transfer that impossible with other approaches. In particular the ratio of the photon
interacting with the atmosphere (or with the surface) is calculated and the distribu-
tion of desired values over this ratio. The arrays with index corresponding to the
interaction ratio is to be used in spite of scalar counters. (Write the modification of
the algorithm as an exercise). This distribution is important for a set of research
problems e.g. it allows to estimate the exactness of single scattering approximation.

13.6 Practice 12

13.6.1 Odbjectives

The purpose of the practice is studying the dependence of irradiances transmitted by
the atmosphere (illuminating the surface) and reflected from the atmosphere top and
radiative divergence on atmosphere parameters and solar zenith angle. These values
determine solar energy reaching the surface, escaping to the space and absorbing in
the atmosphere.

For simplicity the homogeneous atmosphere model is used (i.e. optical
parameters do not depend on the optical deepnesst). Then only four parameters
describe the atmosphere: the optical thickness 7, the single scattering albedo w, the
mean cosine of the scattering angle (phase function asymmetry parameter) g and
the surface albedo A.

Take three the most interesting for study dependences:

. The distribution desired values over interact ratio.

. The dependence on solar zenith angle that point the variation of solar energy
during the day time.

3. The dependence on the atmosphere optical thickness that demonstrates variation

of desired values depending on atmospheric aerosols content.

N =

Typical optical parameters of the atmosphere and surface are presented in the
Chap. 10 (Eddington approximation).
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However the input atmospheric model is not strictly linked with real values
atmospheric parameters and they will be varied for better elucidating dependences
of interest. The incident solar flux is assumed Fy = 1.

13.6.2 Sequential Steps of the Exercise Implementation

Calculation is accomplished with the compute program “MMKFLUXS.exe” that
realizes the algorithm considered above and is compiled in Borland 4 C++-.

The file “MMKFLUXS.exe” proposes the following dialog when questions are
output at the screen sequentially.

1. Input filename for results:
It is recommended to input the file name where the result is output. The file is
created for writing and while the program repeats the file is rewritten. It is open
till the program running.

Then the program accomplishes three stages:

The first is the study of the distribution of considered characteristics: transmitted
and reflected irradiance (or downward and upward flux) and radiative divergence
(or flux divergences) over ratio of interaction (scattering and reflection). The
sequential questions are output to the screen:

Input sun zenith angles (grad):
It is recommend inputting one or two values of the solar zenith angle (degrees)
Values of 45.0° and 80.0° are recommended.
Attention! Several values divided by space in one line. For proposed example:
10.0 _45.0 “Enter”

Input optical depths:
It is to input two or three values of the atmosphere optical thickness t:
corresponding to weak concentrations of atmospheric aerosols 0.1, average
value 0.3 and heavy 0.7.

Input single scattering albedo values:
Two or three values of the single scattering albedo are to be input. w. For
example: non absorbing aerosols 0.9999, weakly absorbing 0.9 and strongly
absorbing 0.6.

Input phase function parameters:
One or two values of the phase function parameter g are needed: for slightly
extending phase function (fine fraction of aerosols) 0.2 and strongly extended
(big aerosol particles) 0.75.

Input surface albedo:
Two values of the surface albedo corresponding to snow 0.9, and water surface
0.05 are recommended.

Then the program calculates three radiative characteristics for all combinations
of parameters including the contribution of every ratio of interaction (from zeroth
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till fifth and higher — six gradations). The contribution is calculated in percents from
the total value. Results are output to the resulting file.

The second stage is studying the dependences of three calculated value on solar
zenith angle. There are consequent questions:

Input optical depths:

Input single scattering albedo values:
Input phase function parameters:
Input surface albedo:

The answers the similar to above considered.

The program calculates desired characteristics ad output them to the resulting
file as functions of the solar zenith angle for all input combinations.

The third stage is studying dependences of desired values on the optical thickness.
There are sequent questions:

Input sun zenith angles (grad):

Input single scattering albedo values:
Input phase function parameters:
Input surface albedo:

Answers are similar to above considered. The program calculates desired
characteristics as functions of all combinations of input parameters and output
result to resulting file.

13.6.3 Requirements to the Report

Compile a concise report reflecting the principal stages and the obtained results of
the performed exercise in form of tables and plots (graphs).
It is needed:

— Plotting obtained dependences (diagrams present the result in case of distribu-
tion over interaction ratio).
— Describing (and physically interpreting if possible) obtained dependences.



Chapter 14
Calculating Radiative Characteristics
with the Single Scattering Approximation

Abstract The approximation of the single scattering is considered for case of
homogeneous plane atmosphere. The surface reflection is taken into account. The
description of the practice is presented.

14.1 Expressing the Radiative Intensity (Radiance) in Terms
of the Source Function

Let us return to the transfer equation Eq. 1.25

2n 1
(T, u, 1y, wo(T
#M = —I(t, 1, o, ) + o(®) de’ J x(t,)I(t, 1wy, ' )dp!
dt 47
0 —1

(14.1)

The diffuse radiation is treated as additional sources in the atmosphere, that
gives the second and third items in the right side. Introduce the source function:

2n

1
w(T w(T
B(t, 1, 1o, ) = 4(n) J dy/ Jl(f, K 1o, @ )x(y, T)d + %E)Fox(“/m 7) exp(—1/ k)
0 0
(14.2)
Then the transfer equation develops to
dl (T, p; o, )
MTO = —I(T,,U,MO,QD) +B(‘E,,Lt,,u0,(p) (143)
I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 139
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The boarder conditions for the Egs. 14.1 and 14.3 are

I(T:(),,u,/,to,@):o, fOI',Lt>0 (144)
I(T:‘Eov:unu'Ov(P):O’forlu<0 '

It corresponds to the absence of the incoming diffuse radiation at the
atmosphere’s top.

The Eq. 14.3 is an ordinary differential equation of the first order. (of type

dy _

o =a(x)y + b(x)). It has a known general solution

(y(x) = y(xo) exp ja(x’)dx’ + Ib(x’) exp Ia(x”)dx” dx’).

X0 X0

Applying it to the Eq. 143 (x =1,y =1, a(x) = —1/u, b(x) = B/p) by taking
into account for the boarder conditions (14.4) (xo = 0 for & > 0, xg = 1o for u < 0,
for both cases y(xp) = 0) yields:

1 T—1
I(t, 1, ko, ) = i JB(LM, Ho, P) eXP (— T)df’, for >0
(14.5)

To

1 =1
1(1'7#7#()730) = _; JB(T>N>ﬂ(]7<p) exp(— T)df/’ for < 0

Let’s point out that expressions (14.5) are not the solution of the transfer equation
(14.1) because the function B(t, uy, i, ¢)depends on desired intensity according to
Eq. 14.2. Nevertheless they are convenient for consideration in certain cases.

14.2 The Approximation of the Single Scattering —
The General Case

Consider the Eq. 14.2 for the source function. Two items have transparent physical
sense. The first one expresses sources of the multiple scattered light in the atmo-
sphere, i.e. scattered more than one time. The second item characterises sources of
the single scattered light that arises by substituting the direct radiation to the
transfer equation. The contribution of single scattered light to the total intensity
significantly (several times) exceeds the contribution of multiple scattering in the
clear Earth atmosphere. Thus it is possible to restrict the single scattering approxi-
mation and the first item in the expression for the source function to assume zeroth
in many problems, where the high exactness is not needed. Then Eq. 14.5 give a real
solution for the intensity calculation;
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1(t, 1t o, ) = Fo Jw(r’)x(y r’)exp( i1 T_T,)dr’ for u >0
s My M0 47'[/,{ 0> Lo )
0
o
Fo 7 -1
I(t, u, to, :——Jw(r’)xy T exp(——— >d7:’, foru <0
o) = = [0t ¢y erp( - -

T

(14.6)

Equation 14.6 have a transparent physical sense and might be derived empiri-
cally. Let the solar radiation with initial flux F scatter at the optical depth 7’. Then
it decays from the atmosphere top to the level 7/ according to Beer’s law that
corresponds to multiplying the flux to the value exp(—1'/yg). Then the diffused
intensity is expressed as Fom(t)'x(yy,7")/4n exp(—1'/uy). The radiation has a
direction u and passes the way 7—7’ till the level t after the scattering event.
Hence the radiation decays with multiplying to exp(—(t —7')/p) in accordance
with the Beer’s law and the result. And we consider that the scattering might occur
at any levelt’ that needs integrating over the optical thickness. Finally the resulting
expression coincides with Eq. 14.6.

14.3 The Single Scattering Approximation at Top and Base
of the Homogeneous Atmosphere

In most cases the radiance at the atmosphere boarders (top and base) are interesting.
Actually the solar radiation at the atmosphere base is important because it affects
the biosphere. The reflected solar radiation at the atmosphere top is observed with
many satellite instruments and it is important for remote sounding problems.

Thus the radiance at the base I(t = 7o, &, ty, ¢) for ¢ > 0, and the radiance at
the top I(t =0, u, 1y, d) for u < 0 (Compare these values with the boarder
conditions (14.4)). They are expressed with formulas (14.6), and integrating limits
are from O to 7.

Introduce following notations for brevity:

](T = To, U > On“Oa(p) Elé(ﬂy.“o"ﬂ)’ I(T = O,/.L < 07/10730) EI;(,[L,,LLO,()D),

[Tt}

where index “a” points that it is the radiance of the radiation interacting only with
the atmosphere.

The optically homogeneous atmosphere is assumed for simplifying i.e. optical
properties and parameters do not depend on the optical depth t: single scattering
albedo @ and the phase function x(y) are not functions of 7. Then integrals in
Eq. 14.6 easily derived and simple algebraic transformations (It is recommended as
the exercise) yield:
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1 (s g, ) = FOH () R0/ ) = exP(=To/ o)

4r 0 =l 147)
Fou 1 —exp(—to(1/py — 1/p .
I (1 oy d) = 4 0 reox(y,) (=to(1/po = 1/1))
Ho — H

14.4 The Surface Reflection

Equation 14.7 corresponds to single interaction between radiation and atmosphere.
But the reflection from the surface contributes a significant part to the radiance.
This reflected part at the atmosphere top might be much more than diffuse
radiance (it is the reason why the surface is visible from the space). Hence taking
into account that the surface reflection is necessary especially for interpretation of
satellite images.

The total (diffused and reflected) radiance is written as:

1M1, g, 0) = I (1, g, ) + 11 (1, g, ) (14.8)

7%l

where the value without index is the total one, and the index ‘“s” points to the
contribution of the surface reflection.

It is natural to consider only single interaction radiation-surface in range of the
single scattering approximation. In addition it is assumed that after the reflection
the radiation does not interact with the atmosphere because the opposite would be
the second interaction. Then it is true according to the Beer’s law:

I (1, o, 0) = Is(z = 0, i, pg, ) exp(—7o/ 1) (14.9)

where I5(z = 0, u, iy, ) is the intensity of the reflected radiation at the surface level
(z =0).

The simplest model of the surface with the isotropic reflection is assumed. It
means that reflected radiance does not depend on both the initial and reflected
directions. Reflection is characterized by the surface albedo A. From the definition
the albedo is the rate of reflected radiation:

F!
A= 7l (14.10)
where F' is the downward to the surface irradiance, F' is the upward from the
surface (reflected) irradiance. These irradiances are expressed via radiance as the

integral over the corresponding hemisphere as follows:
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2n 1
F' = de’ Jl(u’, ¢ 'dy
2: (? (14.11)
Fl=— de’ J 1, ) dy!
0 —1

It is enough calculating the irradiance F ! for the albedo calculation and radiance
I (1, 1o, ). However we must remember that I} (i, uy, ¢) is the diffuse radiance
only and for the albedo calculation the direct radiance is to be added. The incident
flux to the horizontal atmosphere top is Fiy. Transmitted through the atmosphere it
decays according to Beer’s law, hence at the base it is equal to Fougexp(—7o/ o)
and the transmitted irradiance is:

2n 1
Fl (o) = J dy’ Jli(u’, fo» " )W di + Foptg exp(—7o/ o) (14.12)
0 0

The integral in the Eq. 14.12 is calculated numerically.

(Explain why the radiance I} (, 1y, ) depends on azimuth ¢).

The radiance reflected by the surface I;(z = 0, u, 4y, ) does not depend on
viewing angles u and ¢ because the surface is orthotropic. Then F "= 71 from
the Eq. 14.11 and finally

A
Is(z = 0, j1g) = —F" (1) (14.13)

14.5 The Single Scattering Approximation Algorithm

Thus the totality of Eqs. 14.8, 14.7, 14.9, 14.13, 14.12 provide the creation the
algorithm for calculating the radiance at top and base of the homogeneous atmo-
sphere with the orthotropic reflection at the base with assuming the single scattering
approximation. Input data are:

1. atmospheric parameters: the optical thickness 7, single scattering albedo w,
phase function x(y), and surface albedo A;

2. geometric parameters: the cosine of the initial solar angle u, cosine of viewing
angle y and the viewing azimuth ¢;

3. the solar flux at the atmosphere top F.

All input parameters are scalars besides the phase function x(y). Generally it is a
table, but here it is approximated by the Henyey-Greenstein function Eq. 1.16, that
is defined with one parameter g and is possible to treat it as scalar.
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1 —g2
() = (14.14)
) (1—|-{g72—2gcosy)3/2

Remember that the parameter g in Eq. 14.14 determines the function, varies in
the range 0 < g < 1, and coincides with the mean cosine of the scattering angle.
The greater the value g the more extended the phase function is.

The important characteristic is obtained also: the transmitted irradiance at the
base (14.12) shows the illumination of the surface.

14.6 Practice 13

14.6.1 Objectives

The purpose of the practice is studying dependences of the transmitted solar
irradiance at the atmospheric base (14.12) and diffused solar radiances escaping
from atmospheric boarders (14.8) on atmospheric parameters and geometry of the
problem (viewing and solar directions). The following parameters are chosen:

1. The dependence of the transmitted solar irradiance at the atmospheric base on
the solar zenith angle. This value characterizes variations of incoming to the
surface solar energy during the day time.

2. The dependence of the transmitted solar irradiance at the atmospheric base on
the optical thickness, because it demonstrates the impact of atmospheric aerosols
on incoming solar energy to the surface. (The optical thickness increase called
by aerosols concentration).

3. The dependence of diffused solar radiances escaping from atmospheric boarders
on the optical thickness that characterizes the impact of atmospheric aerosols on
the values, observed by satellite instruments.

14.6.2 Applicability Ranges and the Input Optical Model

The single scattering approximation is applicable, when the single scattered radi-
ance is much more than the radiance multiple scattered. It is true while the small
optical thickness 7 or the strong absorption (single scattering albedo w is not close
to the unity). The atmosphere optical thickness is the sum of molecular and aerosol
components. The single scattering approximation is valid in spectral ranges, where
the molecular contribution is neglected and only aerosols are taken into account,
because the molecular optical thickness decreases dramatically with the wavelength
(Rayleigh scattering). It is the visible and near infra-red ranges (different problems
has their own restrictions).
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Typical optical parameters are presented in Chap. 12.
But for studying dependences of interest optical parameters might be varied
regardless of the real atmosphere values. The incident solar flux is assumed Fy = 1.

14.6.3 Sequential Steps of the Exercise Implementation

The computer program “ODNOKRAT.exe” calculates desired characteristics.
After running, the dialog is opened. The first question is

Input filename for results:

It is recommended to input name of the resulting file. Calculation results are
output to this file, while program rerunning the file content is rewritten. It is open till
the program is terminated.

The three stages are accomplished:

The first stage is studying the dependency of the transmitted irradiance (down-
ward flux) on the solar incident angle (Sun zenith angle). There are sequent
questions:

Input optical depths:

It is recommended to input two-three values of the optical thickness 7o, €.g.
corresponding to the low aerosol content 0.1, mean 0.3 and high 0.7.

Attention! Several values divided by space in one line. For proposed example:
0.1 _0.3_0.7 “Enter”. Here the symbol “_" means space.

Input single scattering albedo values:

It is recommended to input two-three values of the single scattering albedo m, e.g.
nearly conservative aerosols 0.9999, weak absorption 0.9, and strong absorption 0.6.

Input phase function parameters:

It is recommended to input two-three values of the phase function asymmetry
parameter g, e.g. values corresponded to near isotropic phase function 0.2 for fine
aerosol particles, extended phase function 0.6 for 1-2 micron-sized particle, and
strongly extended 0.75 for big aerosol particles.

The program calculates the transmitted irradiance as function of solar zenith
angle for the set of all input parameters and output the result to fixed file.

The second stage is studying the transmitted irradiance dependence on the
atmosphere optical thickness. There are questions:

Input solar zenith angles (grad):

Input two-three values of solar zenith angle (degrees). It is recommended values
correspond to high solar position 45.0, mean value 65.0, and low Sun 80.0.

Input single scattering albedo values:

Input phase function parameters:

Answers are considered above.

The program calculates the transmitted irradiance as a function of the optical
thickness for set of all input parameters and output to the fixed file.
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The third stage is studying the diffused radiances (outgoing radiation intensity)
dependences on the optical thickness. There are questions:

Input viewing directions - zenith angles and azimuths (grad):

The viewing zenith angle (m is the cosine), and azimuth j determine one viewing
direction. Thus the couple of values are input, i.e. for two viewing directions input
two couple (four values). Two directions are recommended: e.g. nadir direction:
180.0_0.0 are in most common use in remote sensing; and decline direction:
135.0_90.0. Take attention that for viewing of upward radiance the zenith angle
exceeds 90°. Then there are questions:

Input sun zenith angles (grad):

Input single scattering albedo values:

Input phase function parameters:

Answers are considered above. It is recommended to restrict one-two input
values for result amount will be reasonable.

Input surface albedo:

Input one-two surface albedo values, e.g. for snow 0.9, for vegetation and soils
0.25, for water surface 0.03.

Then the program calculates the outgoing radiances as function of the optical
thickness for the set of all input parameters and output the result in fixed file.

The program is terminated.

14.6.4 Requirements to the Report

Compile a concise report reflecting the principal stages and the obtained results of
the performed exercise in form of tables and plots (graphs). It is necessary:

— Plotting obtained dependences (diagrams present the result in case of distribu-
tion over interaction ratio).
— Describing (and physically interpreting if possible) obtained dependences.



Chapter 15

Analysis of the Reflection Anisotropy. Case
Study: The Numerical Simulation of Waving
Water Surface

Abstract The anisotropic reflection form waved water surface is considered. The
characteristics of the reflected radiation: brightness coefficients and albedo are
calculated. The description of the practice implementation is presented.

15.1 Types of Reflection from Natural Surfaces

Consideration of the optical properties of natural surfaces is the important part of
many problems of the atmospheric optics and radiation transfer theory. It is
especially essential for remote sensing of the atmosphere and surface.

Laws of interaction between radiation and surface is well known (the reflection
angle is equal to the incident angle). However these laws have been formulated for
ideal plane reflected surface. Real surfaces are irregular and (or) rough (grains of sand,
soil clots, vegetation details). Thus the light reflects from every element in accordance
with mentioned laws but the totality of elements (the surface) provides the multitudes
of directions of reflected light (not the single direction as in the ideal case). This
phenomenon is called the diffuse reflection. The reflection in according to the law “the
reflection angle is equal to the incident one” is called here the ideal mirror reflection.

The diffuse reflection might be divided to the set of kinds. The simplest model is
the isotropic reflection, when the reflected radiance is the same for all possible
directions. It is this model that is used in many radiative transfer theory problems
because of its simplicity. Corresponding surface is called isotropic. Only one
parameter — the surface albedo is enough for characterizing the radiation-surface
interaction. The albedo is the ratio of the reflected irradiance to the incident one. It
is evident that the isotropy is the idealization. Fresh snow is the most near to the
isotropic surface. If the reflected radiance is not the same to different directions it is
called the anisotropic reflection and corresponding surface is called the anisotropic
surface. The quasi-isotropic (i.e. the closest to ideal isotropic one, e.g. the fresh
snow), the quasi-mirror (the closest to ideal mirror surface, e.g. the water surface)
and the inversely reflected are possible to set off.

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 147
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The water surface is the mostly anisotropic of the reflections. It is very close to
the plane i.e. ideally mirror, however waves disturb the idealization and transform
the reflection from water surface to anisotropic diffuse (quasi-mirror). A correct
consideration of the water surface is extremely important in many problems
because it takes about 75% of the global Earth surface.

15.2 Statistical Simulation of the Waving Water Surface

The following approach is used for mathematical modelling optical properties of
anisotropic surfaces. The surface is presented as the totality of elementary ideal
planes. Reflection from every plane is simulated in accordance with the laws of
ideal mirror reflection. The final reflected radiance is a sum over all planes.

Two types of models of water surfaces are possible for inclusion waves:
dynamical and statistical. Dynamical models input the planes position as the time
function. It corresponds to the real dynamics of reflection — in different time
moments differently oriented planes reflect the light (the glares effect leads to
twinkling when looking to the water). But the averaging picture is the most
interesting in many cases. There is the photographing of the water surface from
satellite or airplane board, the reflected radiance observation for example. The
mentioned dynamics are averaged because reflected light from many planes are
thrown to an instrument and separate glares are not distinguished. The most
important case of the surface statistical model is used, where the position of
separate planes is characterized by the function of probability density.

For waving water model it is the Cox-Munk function. In standard optical
model of the atmosphere (e.g. Fig. 1.7) the orientation of the elementary plane
characterises by unite vector normal to the plane (9,,y,), where U, is the nadir
angle, ¢, is the azimuth. It is more convenient to use nadir angles (not zenith) for
normals for they vary in the interval [0,7/2]. The nadir angle is zero for vector
direction from nadir to zenith (upward perpendicularly to surface). The Cox-Munk
function specifies the probability density for the normal to water surface and looks
as follows:

1 1
——cn(® = 1y ——co3(y’ — 3y)

Pt ) = SR 407/2) (1 : .

2no,0y,

4+ 0.017(x* — 6x* +3) +0.03(x* — 1)(y* — 1) + 0.01Y>

7 = sin(p, — p,)tgd,, o, = \/0.003 +1.92-107%, x=1z/a,,

zy = cos(p, — )80y, 0y =V3.16-107%v, y=1z/0,, (15.1)
c1 = 0.01 —0.0086v, o3 = 0.04 —0.033v, Y = (y* —6y* +3)
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Parameters: wind velocity v [m/s] near surface and wind direction azimuth ¢,,
are included in the Eq. 15.1. The Cox-Munk function (15.1) has been obtained with
approximating measured declinations of sea waves. It seems a somewhat unwieldy,
however it is simple because it is the two-dimensional normal distribution
(the exponential) with certain corrections for taking into account real observations
(items multiplied to the exponent). It is clear that in computer realization of the
algorithm the unwieldiness of the Eq. 15.1 is not a problem.

Let the incident radiation with the initial zenith angle ¥, and azimuth ¢, fall to
the surface. Then desired reflected radiance has the direction with the nadir angle
U, and azimuth ¢, is found after three operations:

1. determining the elementary plane orientation (9,,p,) which reflects the light
from the initial direction (¥ ,(;) to the direction (U¥,,);

2. calculating the reflection coefficient for this initial angle;

3. multiplying it to the probability density (15.1), incident radiance, and
normalizing multipliers.

15.3 Laws of the Ideal Mirror Reflection

Consider the physical problem — calculating the reflection coefficient. Let the
radiation fall to the ideal plane boarder of two media. Then the interaction between
the radiation and surface is described by the following laws:

1. Incident radiation divided to two parts: reflected with direction from the surface
to the first medium and the refracted with direction from the surface to the
second medium.

2. Frequencies of the incident, reflected, and refracted radiation is equal.

3. Vectors of the incident, reflected, and refracted radiation and the normal to the
surface are in one plane.

4. The reflected angle is equal to the incident angle.

5. The law determining the refraction angle (remember it as an exercise).

Note that these laws have been firstly obtained experimentally but they might
be proved strictly theoretically. The same theory ascertains qualified relations
between incident, reflected, and refracted radiances, and provides the expression
for reflection coefficient as a direct consequence of general Fresnel’s formulas
looks as:

r(ﬂ)zi

2 2
1 [ [n*cos B —+/n*—1+cos’f N cos B — /n? — 1 + cos?p
n?cos B+ /n? — 1+ cos?p cos i+ /n% — 1+ cos?p

(15.2)
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where f is the incident radiation angle, n is the refraction coefficient of the surface
matter. Here the radiation falls from the air, which refraction coefficient is equal to
one unit. Then multiply the incident radiance to the expression (15.2) to obtain the
reflected radiance.

15.4 Determining the Orientation of Elementary Plane

Directions of falling, (01,) and reflecting (6,,,) are prescribed. There’s needed
to find the normal to the elementary reflecting plane (6,,,¢,). It is more convenient
to change to Cartesian coordinates x; = sin¥; sinp;, y; = sinv;cosp;, z; =
cos 1 that correspond to direction (6;,¢1).

The angle between two directions (01,p;) and (0,,,) is the scalar product of
vectors (it is recommended to do all transformation for exercise)

cos i = cos ¥ cos ¥, + sin ¥ sind, cos(¢p; — @) (15.3)
The angle /3 is the same as in Eq. 15.2.
The law of the incident and reflected angles equality yields the first equation for

obtaining the desired direction:

cos, cost, + sind, sindd, cos(, — ¢, ) = cosd; cos I, + sindd; sintd, cos(¢; — )

(15.4)

The second equation is derived from the alignment of vectors and normal in one
Xn Yn Zp

plane. It deals to the equality of the coordinate’s determinant {x; y; z;|=0to
zero that provides: X2 Y2 I»

sin 4, sin p, (sin ¥ cos ¢, cos ¥, — cos ¥, sin ¥, cos ¢,)
+ sin ¥, cos @, (cos ¥ sin ¥, sin , — sin¥¥; sin ¢, cos ¥,) (15.5)
+ cos ¥, sin ¥ sin ¥, sin(p; — p,) =0

It is easy to express the tgf, from the first Eq. 15.4, namely:

B cos ¥y — cos
~sind) cos(p; — p,) — sinva cos(p, — @)

120, (15.6)

In similar manner it is possible to go to tangent by dividing the second form
Eq. 15.5 by cosf,,, and the result after substituting the Eq. 15.6 to the Eq. 15.5 is the
expression for the azimuth ¢,
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u
18pn = —,
u = (cos ¥} — cos ) (cos P sind, sin p, — sind; cos ¥, sin ;)
— sind; sin 9, sin(p; — ¢,)(sinv; cos ¢, — sin Y, cos ¢,) (15.7)
w = (cos ¥, — cos ¥y )(sinv; cos ¥, cos p; — cos Yy sin Y, cos ,)
+ sin 9y sint, sin(p; — ,)(sin?; sinp; — sind, sin p,),

Thus, formulas (15.7) and (15.6) solve the problem and found the direction of the
normal vector to the elementary plane.

15.5 The Spectral Brightness Coefficient and the Albedo
of the Waving Surface

Obtained above relations provide reflected radiance from the water surface if there
is the incident radiance. It is more convenient to turn to reflecting properties of
surface with considering the ratio of incident and reflected radiation (Kolmogorov
and Fomin 1989). The spectral brightness coefficient is the characteristic of
reflecting surface, p(9,, 5,91, ; ), which is defined by the relation:

1
1(V2, ) :Ep(ﬁz,%’ﬁl,%)lo cos (15.8)

where [y the incident, /(1,, ,)is the reflected radiance. The sense of the spectral
brightness coefficient is the ratio of the reflected intensity to the incident flux
(irradiance) Iy cos ;. The multiplier 1/7 arises from the law of conservation of
energy because the reflected energy (the integral of the function (1%, ,) cos ¥,
over the hemisphere) for isotropic surface (the reflected radiance does not depend
on the direction) and absolutely white (reflects all incident radiation) has to be equal
to the incident energy.

It is evident from the Eq. 15.8 that the spectral brightness coefficient of elemen-
tary plane is 7r(f3) / cos 5. The same value is possible to attribute to the total surface
with specifying the density of probability of the needed plane appearance. Hence:

0(191,9017192,@2) = P(’l?m@n)r(ﬁ)v (159)

b

os
where the spectral brightness coefficient dependence on the initial and reflected
directions is governed by Egs. 15.7, 15.6, 15.1, 15.3, and the reflection coefficient
r(p) is calculated with Eq. 15.2. There is an important property of the spectral
brightness coefficient symmetry:
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p(ﬂ17(pla1925<)02) :[)(192,@271917801), (1510)

that corresponds physically to the reversibility of optical phenomena (reflective
properties of the medium do not vary when the source and detector exchanged by
places).

There are not necessary so detailed characteristic as the spectral brightness
coefficient in many problems and only the ratio of reflected to incident energy.
This characteristic, i.e. the rate of reflected radiation is called the surface albedo.
It should be stressed that the albedo is characteristic of any surface not only
isotropic. Just it is enough for isotropic surface and enough for anisotropic. The
albedo is calculated as an integral of radiances over hemisphere. The following
relation is the result

A(01a¢1> =

q =

21 7{/2
Jdapz J (1,01, %2, 0,) cos ¥, sin dd, (15.11)
0 0

or, with taking into account for Eq. 15.9

2n
A, @) = Jdgaz J %P(ﬁmapn)cosﬁz sin ,dv, (15.12)
0

The anisotropic surface albedo depends in general on incident direction.

15.6 Practice 14

15.6.1 Odbjectives

The purpose of this practice is studying the dependence of spectral brightness
coefficients and albedo of waving water surface on the incident direction, and
near-surface wind velocity and azimuth.

The spectral range is visible interval (the value n = 1.333 is assumed for the
water refraction index). Thus the considered model describes viewing effects of the
solar illumination of the sea, which is studied in the practice. Note that our model
does not correspond to reality because of the sky diffuse radiation and sea froth. But
general effects of the radiation reflection from water surface are adequately
described.

Two dependences are chosen for study as the most interesting:

1. The dependences of spectral brightness coefficient and albedo on solar elevation.
2. The dependence of Spectral Brightness Coefficient (SBC) and albedo on the
wind velocity.
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15.6.2 Sequential Steps of the Exercise Implementation

The computer program “SEEREFL.exe” realizes the above algorithm and
calculates desired values. The dialogue on the screen is allowed.

The first question is:

Input filename for results:

It is necessary to input the file name for results output. The file is rewritten when
the program is rerun and is open till the program terminates. Then two stages are
accomplished.

The first stage is studying dependences of the spectral brightness coefficient and
albedo on solar zenith angle. The consequent questions are output on the screen

Input wind speed (m/s):

It is recommended to input two-three values: the weak wind 2.0, moderate wind
7.5, and strong wind 15.0. Values are real numbers and are input with decimal
point.

Attention! Several values divided by space in one line. For proposed example:
2.0 _7.5_15.0 “Enter”

Input wind azimuth (grad):

It is recommended to input one-two values of the azimuth: 0.0 u 90.0. The
azimuth is reckoned from the Sun direction.

The program calculates desired values as functions of solar zenith angle for all
set of input parameters at the definite network of viewing directions. The viewing
direction is characterized with nadir angle and azimuth from the Sun direction.
Result is formatted as a two-dimensional table (zenith angle and SBC) sequent
output for all viewing directions and as three-dimensional tables (zenith angle,
azimuth, and SBC) for all solar zenith angles. The latter provides two-dimensional
plots as isometric lines.

The second stage is the study of the SBC and albedo dependence on the wind
velocity.

The consequent questions are output on the screen

Input sun zenith angles (grad):

It is recommended two-three values of the solar zenith angle (in degrees)
corresponding to high solar position 45.0, mean value 65.0, and low Sun 80.0.

Input wind azimuth (grad):

Answer is considered above.

The program calculates desired values as function of the wind velocity for all
sets of input parameters and output to result file.

The program is terminated.

Finally you need to:

— Plot obtained dependences (diagrams present the result in case of distribution
over interaction ratio).
— Describe (and physically interpret if possible) obtained dependences.
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The SBC is to be presented as three-dimensional plots and find two effects: The
first is the displacement of the brightness maximum at the solar path (for the zeroth
azimuth) with variations of solar zenith angle.

15.6.3 Requirements to the Report

Compile a concise report reflecting the principal stages and the obtained results of
the performed exercise in form of tables and plots (graphs). In the report answer to
the question: why and how the maximum place is changed with the Sun moving
from zenith to horizon? The second effect is the variation of the width of the solar
path with the wind velocity changes. Is it possible to use this dependence for remote
estimation the wind velocity?



Chapter 16

Quantification and Analysis of the Spectral
Composition of Subsurface Solar Radiation
Diffuse Reflectance in Cases of Deep

and Shallow Water Bodies

Abstract Practice 15 in Chapter 16 is preceded by a concise theoretical description
of light transfer in natural media, as well as inherent and apparent optical properties
permitting to quantify the optical impact on the sunlight downward and upward
propagation through the water column containing coexisting absorbing, scattering
and fluorescing agents. A number of tables are provided to be used for numerically
assess the above inherent and apparent optical properties as well as the water
constituents optical properties that affect prevailingly the water colour variations
in optically complex either inland marine coastal waters (so called case II waters as
opposed to optically “simple” offshore oceanic waters coined case I waters). Also,
the bottom optical properties are exemplified in form of tables permitting to take
into account the optical bottom impact of the light emerging from below the water
surface.

Based on these supplementary materials, the spectral values of subsurface
diffuse reflectance, R(-0, 1) can be simulated for the options of input parameters
suggested in the tables. Qualitative analyses of simulated sets of the spectral
envelope of R(-0, 1) suggested to be conducted at the finalizing stage of Practice
15 performance is intended to give an insight into the composition and radiometric
intensity of the light emerging from the surveyed water body and eventually
captured by a remote sensor. This step is a predecessor to attaining the main goal
of water remote sensing, viz, determination of water quality parameters.

16.1 Concise Theory

It is well-known that the World’s Oceans play the key role in controlling both
global cycles of a wide number of chemicals and their compounds and the bio-
productional balance in the land-atmosphere system. In terms of biogeochemical
cycles, the ocean presents a gigantic reservoir of nutrients. The salient chains of this
reservoir functioning are the exchange of matter between lower and upper ocean
layers as well as between the ocean and the atmosphere. Due to their gigantic
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thermal inertia, and at the same time active participation in heat transport, genera-
tion of cloud cover and a significant contribution to global carbon cycling, the
World’s oceans play the key role in the formation and dynamics of global climate.

Fully acknowledging the importance of the ecological state of open/pelagic
regions of the oceans and associated seas, the importance of the ecological state
of coastal marine and lacustrine zones should not be overlooked with regard to the
overall status of the biosphere on the planet as well as in light of the fact that of a
variety of sectors of economy in many countries are dependant totally upon the
ecological state of such “marginal” aquatic environments. Such peripheral water
zones are pivotal being the richest sources of food (marine food, in the first place),
industrial raw materials/feedstock, as well as sources/resources of water for the
benefits of economy and population.

However, due to significant spatial extension of aquatic bodies and, as a rule,
remarkable dynamics of inherent biological processes, the traditional shipborne
water sampling measurements are incapable to provide the space and time resolu-
tion required for adequate monitoring of the ecological state of such dynamic
hydrological and biogeochemical environments. In this sense, remote sensing
means/approaches provide most appropriate facilities, especially if they are
mounted on aircraft or satellite platforms.

This naturally explains that a number of international and national organizations
and agencies have launched/deployed wide-scale scientific research programs
aimed at studying in depth the physical, chemical and biological processes
(first and foremost, driven by anthropogenic forces) in the “Earth-Atmosphere”
system. Importantly, such programs imply a wide use of remote sensing means of
observation (predominantly constituting the payloads of environmental satellite
platforms) to provide on a routine basis of quantitative assessments of key
parameters characterizing the dynamics of on going changes.

By definition, remote sensing means provide data through indirect measure-
ments. Most often, they operate with electromagnetic waves as information
carriers. The signal adopted by the remote sensor is then analyzed by means of
dedicated algorithms with a result of yielding the sought-for parameter.

The development of such algorithms is based on the knowledge and formal
description (by various methodologies) of the processes of electromagnetic radia-
tion transfer through both the object of investigation as well as the media
intervening between the study object and the remote sensor.

When sounding aquatic media, it is reasonable to employ the range of the
electromagnetic spectrum, which is less absorbed/attenuated by the target water
column (i.e. the spectral range in which the water is most transparent). Such a range
is confined between ~400 and ~ 700 nm, i.e. encapsulated in the visible part of the
electromagnetic spectrum.

The Practices Nos. 15-17 are dedicated to studying optical properties of the
water column in the visible with the application of such an apparent hydro-optical
characteristic as the coefficient of light diffuse reflection.
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This characteristic is a convolution of (a) absorbing and scattering properties of
the water medium, and (b) geometry of propagation of the light flux beneath the
water surface.

In the three Practices below, the specific features of sun light transfer in natural
waters is investigated by means of numerical simulations followed by subsequent
analysis of emerged changes in the spectral composition of the coefficient of diffuse
reflection of sunlight immediately beneath the water surface, R(—0,4).

In Practice 15 the spectral variability in R(—0,4) is investigated as a function of
concentration of color producing agents (CPAs) inherent in natural waters. By
CPAs we assume the substances whose participation in the processes of sunlight
absorption, scattering and Raman inelastic scattering emission effects control the
intensity and spectral composition of light leaving the water-atmosphere interface.
Such group of water constituents incorporates, inter alia, phytoplankton (whose
cells encapsulate chlorophyll), mineral suspended matter and colored dissolved
organics. As it will be stressed below, the water leaving radiative signal is also
controlled by the bottom depth and its albedo.

Within the framework of the present Practices collection, the students are invited
to familiarize themselves with the specific processes controlling the formation of
water color characteristics (Practice 16) as well as with one of the methods of
retrieval of CPA concentrations to the effect of remote sensing of natural water
bodies (Practice 17).

A hydro-optical model developed for Lake Ladoga will be offered for effecting
of the aforementioned exercises. The model is a set of tabulated spectral values of
specific coefficients (cross-sections) of absorption and backscattering of the three
CPAs, viz. phytoplankton chlorophyll, suspended mineral particulates and
dissolved organic matter. This choice of CPAs is dictated by the typical/predominant
hydro-optical constituents in Lake Ladoga. Through numerous investigations, it
was shown that the suggested hydro-optical model of Lake Ladoga proves to be
adequate for a wide range of hydro-optical conditions, and thus could be considered
as confidently representative of waters at mid latitudes. The present set of exercises
leaves beyond scope the pelagic marine waters as most hydro-optically simple, and
thus not presenting some particular interest in light of studying the formation of
water leaving radiative signal in the visible.

In addition to such mechanisms of interaction of solar light with the aquatic
medium as absorption and elastic scattering, which participate in forming the
radiance signal coming up from beneath the water surface in the case of all
types of natural waters, in inland water bodies as well as marine coastal shallow
zones, a significant impact on the spectral composition of water leaving radiance
signal can be generated by such internal sources of radiation as phytoplankton
fluorescence and dissolved organic matter (due to their typically high content).
The other subsurface source of optical/radiative influence on the emerging
light in such environments is constituted by the optical influence of the bottom.
This in turn, can appreciably affect the accuracy of retrieval of water quality
parameters.
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When conducting remote sensing, it is mandatory to also consider the opti-
cal properties of the wind-roughened water surface as these characteristics/
parameters determine the proportion of the desired signal in the total radiant
signal captured by the remote sensor. However, within the framework of these
teaching labs, for simplicity reasons we’ll confine ourselves to the case of calm
water surface.

The standard bio-optical water quality retrieval algorithms developed so far
prove to be untenable unless they are employed strictly to off-coastal/ open ocean
waters (so called case I waters). This is due to hydro-optically complexity of
composition of inland and marine coastal waters (so called case 2 waters), which
is further accentuated by the multitude of mechanisms of light interactions with the
aquatic medium and pathways of formation of the water leaving radiant signal.
Collectively, these factors render simplistic/case I water algorithms inadequate as
they are traditionally based on band-ratio parameterizations operating with light
signals in the blue and green spectral regions.

That is why when sounding case 2 waters, more accurate retrieval results can
be attained employing more sophisticated mathematical approaches, among which
is the Levenberg-Marquardt method of multivariate optimization. This procedure
is based on minimization of squared sums of residuals between the measured
and simulated/theoretical water volume diffuse reflectance. Practice No.10 is dedi-
cated to this method and its application

Because all three Practice 15-17 are thematically closely interrelated, it is
recommended to study the basic theoretical part of Chap. 16 before preparing to
Practice 15-17. Besides, there are tables (Tables 16.1-16.4), which are intended as
illustrations since the data incorporated in these tables can be automatically drawn

Table 16.1 Spectral water absorption and scattering coefficients and cross sections of absorption
and backscattering of the main CPAs in the spectral region 410—-690 nm

* 2 * 2 * 2 1 * 2 * 2 —1
/1, nm a cp, m /mgr a sm, M /g a doc, M /gc Ay, M b behly T /mg b bsmy /g bwv m

410 0.0380 0.2650 0.2800 0.0162 0.001250 0.0365 0.0052
430 0.0400 0.2300 0.2500 0.0144 0.001230 0.0250 0.0042
450  0.0410 0.2000 0.2300 0.0145 0.001210 0.0270 0.0035
470 0.0400 0.1800 0.1800 0.0156 0.001200 0.0290 0.0029
490  0.0340 0.1600 0.1600 0.0196 0.001210 0.0305 0.0024
510  0.0280 0.1450 0.1400 0.0357 0.001240 0.0320 0.0020
530 0.0220 0.1300 0.1250 0.0507 0.001270 0.0330 0.0017
550  0.0180 0.1200 0.1100 0.0638 0.001290 0.0335 0.0015
570 0.0150 0.1100 0.1000 0.0799 0.001280 0.0330 0.0013
590  0.0130 0.1050 0.0900 0.157  0.001270 0.0325 0.0011
610  0.0120 0.1000 0.0800 0.289  0.001270 0.0320 0.001

630  0.0120 0.1000 0.0700 0.319  0.001260 0.0310 0.0009
650  0.0200 0.1050 0.0600 0.349  0.001220 0.0290 0.0007
670  0.0250 0.1150 0.0500 0.43 0.001160 0.0270 0.0007

690  0.0160 0.1250 0.0500 0.5 0.001080 0.0250 0.0006
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Table 16.2 The CIE color mixtures (for red, green and blue) for equal energy spectra

A, nm x” y” 7z’

410 0.0840 0.0023 0.4005
430 0.5667 0.0232 2.7663
450 0.6730 0.0761 3.5470
470 0.3935 0.1824 2.5895
490 0.0642 0.4162 0.9313
510 0.0187 1.0077 0.3160
530 0.3304 1.7243 0.0841
550 0.8670 1.9906 0.0174
570 1.5243 1.9041 0.0042
590 2.0535 1.5144 0.0023
610 2.0064 1.0066 0.0007
630 1.2876 0.5311 0.0000
650 0.5681 0.2143 0.0000
670 0.1755 0.0643 0.0000
690 0.0457 0.0165 0.0000

CIE commission Internationale de 1’Eclairage

Table 16.3 Subsurface incident radiation E; (—0,4) for sun zenith angles 0°, 30°, 45°, 60°

A, nm E, (—0,4), W/m? nm
0p = 0° 0o = 30° 0y = 45° 0y = 60°

410 1.33 1.27 1.19 1.03
430 1.27 1.21 1.15 1.00
450 1.64 1.56 1.48 1.30
470 1.65 1.57 1.50 1.32
490 1.59 1.52 1.46 1.29
510 1.64 1.56 1.50 1.33
530 1.62 1.55 1.49 1.33
550 1.63 1.56 1.51 1.34
570 1.59 1.52 1.47 1.32
590 1.54 1.47 1.43 1.28
610 1.49 1.43 1.39 1.25
630 1.44 1.38 1.34 1.20
650 1.35 1.30 1.26 1.13
670 1.32 1.27 1.24 1.11
690 1.24 1.19 1.16 1.04

from the files embedded into the respective codes of each lab. The description of
Practice 15 contains also some examples of results, which are expected to be
reached through the fulfillment of this numerical exercise (Figs. 16.1 and 16.2 as
well Tables 16.5 and 16.6).
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Table 16.4 Spectral values of F for sun zenith angles 0°, 30°, 45°, 60°

A, nm F, relative units
90 - 00 00 - 300 00 - 450 90 - 600
410 0.32 0.38 0.42 0.55
430 0.30 0.35 0.38 0.50
450 0.27 0.33 0.35 0.46
470 0.25 0.31 0.32 0.42
490 0.23 0.29 0.30 0.39
510 0.21 0.28 0.28 0.37
530 0.20 0.26 0.26 0.35
550 0.19 0.25 0.25 0.33
570 0.18 0.23 0.24 0.32
590 0.17 0.22 0.23 0.31
610 0.17 0.21 0.22 0.29
630 0.16 0.20 0.21 0.28
650 0.15 0.20 0.20 0.27
670 0.14 0.19 0.19 0.26
690 0.14 0.18 0.18 0.25
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coefficient of water column 0 . .
diffuse reflection, Ry, (—0,1) 410 510 610
for the input data given in
Table 16.5 Wavelength, nm

16.2 Mechanisms of Interactions of Solar Light with Absorbing
and Scattering Aquatic Media

Of all components constituting the radiant signal recorded by the remote sensor
overflying aquatic environments, it is only the radiance emerging from beneath the
water surface, L,,(+0, 1) carries the information on both the water quality and the
nature of sun photon interactions with the aquatic medium. However, being simul-
taneously the function of optical properties of water per se and the intensity and



16.2 Mechanisms of Interactions of Solar Light

161

Fig. 16.2 Simulated total 0.045 -
coefficient of water column
diffuse reflection, Ry (—0,1) 0.040 PR
for the input data given in 0035 = 2 C
Table 16.6 ~ 0030 s \\\
- N
T 0020 -
® 0015 \\\
0010 \\
0.005 ——
0.000 . .
410 510 610
Wavelength, nm

Table 16.5 Input data for simulating the resulting coefficient of water column diffuse reflectance,
Rior (=0,4)

Cen g/l Cypomg/l  Cype, mgC/l  Op, degree  h,m 1, rel. Bottom Curve in
units, %  cover type  Fig. 16.1

0.1 0.1 0.1 30 100 3.0 Sand 1

3.0 0.1 0.1 30 100 3.0 Sand 2

Table 16.6 Input data for simulating the water column total coefficient of diffuse reflection,
Rio(=0,4)

Cent, 0g1 Cypy mg/l Cype, mgC/l - 0y, degree  h, m 1.y, rel. units, % Bottom Curve in
cover type Fig. 16.2

0.1 0.1 0.1 30 100 3.0 Sand 1

0.1 0.1 0.1 60 100 3.0 Sand 2

spectral composition of the incident solar flux, the upwelling radiance L,,(40, 4)
proves to be inconvenient for further analysis of the influence exerted by the suit of
various inherent light transfer processes on the water leaving signal. It is more
convenient to use for this purpose the coefficient of light diffuse reflection in water
just beneath the atmosphere-water interface, R(—0,7), which is intimately/
functionally related to the upwelling radiance, L,,(+0, 4).

By definition, R(—0, 4) is the upwelling irradiance, E,(—0, 4) just beneath the
water surface normalized to the downwelling irradiance, E;(—0, 1) at the same
level/vertical distance from the interface (see Table 16.7):

_E(=0,7)

R(=0.4) Eq(=0,2)

(16.1)
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Table 16.7 Options of combinations of CPA concentrations, sun zenith angles, bottom depths and
chlorophyll fluorescence yields

Option C('hla Hg/l C:mi mg/l Cdu('v mgC/l 0()1a degree 902, degree h[,n'l hZ’m 77c‘hl, r.u.

1 0.5;5 0.5 0.5 0 30 1 5 0.3; 3.0
2 0.5 0.5;3 0.5 0 45 1 10 0.1; 1.0
3 0.5 0.5 0.5;5 30 45 5 10 0.2; 2.0
4 5 0.5 0.5;5 0 60 1 20 1.0; 1.5
5 5 0.5;3 0.5 30 60 5 20 0.5; 2.5
6 5 0.5;3 5 45 60 10 20 2.0; 3.0
7 0.5;5 5 5 0 30 1 20 1.0; 3.0
8 5 0.5;5 5 30 45 1 10 1.0; 2.0
9 10 0.5;5 5 30 60 1 5 0.3; 4.0
10 1 0.5;5 10 45 60 1 5 1.0; 15.0

R(—0, 1) is first and foremost a function of inherent hydro-optical properties
(IOPs) incorporating generally speaking coefficients of absorption, a, scattering,
b (including backscattering, b,), direct light attenuation, ¢ as well as the phase
functions of elastic scattering. Due to the property of additivity, inherent optical
properties, reflect in turn the composition of the aquatic medium, and hence, the
individual contribution of each CPA to the formation of the upwelling/emerging light.

In the single scattering approximation, assuming that the light fields originating
from sources of different nature can be considered as independent, the apparent
hydro-optical characteristics (R(—0,4) is one of them) are additive functions of
apparent hydro-optical characteristics arising from each type of light interaction
with the aquatic medium that is absorption/elastic scattering in a semi-infinite water
layer R, , water Raman scattering R,, and fluorescence (R’:.h, " RZOC), as well as of
the light interaction with the interfaces. Consequently

R(=0,2) = Rus(—0,2) + R.(=0,2) + R/, (=0, ) + R}, .(=0, ) + Rpoi(—0, 2).
(16.2)

The natural water fluorophores are first of all chlorophyll and dissolved organic
matter. Of all interface interactions, the light interaction with the bottom (R,,,)
deserves particular attention in the context of the present teaching lab. The reader
interested in deeper familiarization with the light interactions at the water-air
interface is recommended to address dedicated monographs.

Earlier, a number of mathematical expressions had been suggested to relate
R..(—0, 4) with the IOPs. One of them was developed for a wide range of hydro-
optical conditions (i.e. values of IOPs) which practically encompasses the variety of
situations occurring in temperate surface and marine coastal waters and is valid for
solar zenith angles not exceeding ~50°:

R.s(—0) = (1/149)0.319b,/a for 0 < by/a < 0.25,

16.3
Res(—0) = (1/10)[0.013 + 0.267b,/a] for 0.25 < b,/a < 0.50, (163)
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with uy = cos(@é))7 92] being the in-water refracted angle, backscattering coefficient
b, = Bb, B being the backscattering probability, p, = 0.858 for overcast condi-
tions, (—0) indicating just beneath the water surface, a and b are respectively
coefficients of absorption and scattering within the water column.

It is known that the IOPs of an aquatic medium (in our case the coefficients of
adsorption and backscattering) are additive in nature and can be expressed as a sum
of products of absorption (a*) and backscattering (b,*) cross-sections and the
concentrations of respective CPAs — C;:

a=a,+Y Caiby=(by),+ Y Ciby)], (16.4)
i J

where subscripts w, i and j stand, respectively, for water and co-existing absorbing
and scattering water medium components, the overall number of which does not
necessarily need to be equal. Thus, given tabulated spectral values of absorption
and backscattering cross-sections for each CPA, its individual contribution to the
hydro-optical bulk properties of the target water column can be related to its
concentration (Table 16.8). According to what was pointed out in the Introduction,
we’ll be using the hydro-optical model (tabulated spectral values of the coefficients
of absorption and backscattering of phytoplankton chlorophyll, mineral suspended
particulates, and dissolved organic matter) typical of Lake Ladoga.

Within the framework of Practice 15 we omit the influence of water Raman
scattering on R(—0,7). It’s noteworthy that Raman scattering affects noticeably the
upwelling light only in clear, open ocean waters, this influence being pronounced in
the long-wave part of the visible spectrum: R, accounts for about 20% of the total
value of R(—0, 1). However, in coastal marine waters and inland waters, generally

Table 16.8 Spectral values 2, nm Sand Silt Algae

of the bottom albedo, A (in

relative units) for different 410 0.27 0.0511 0.0271

types of bottom cover 430 0.32 0.0641 0.0299
450 0.34 0.0800 0.0300
470 0.35 0.0886 0.0377
490 0.37 0.0947 0.0461
510 0.39 0.1079 0.0543
530 0.41 0.1229 0.0613
550 0.44 0.1300 0.0700
570 0.47 0.1377 0.0940
590 0.49 0.1468 0.1108
610 0.51 0.1510 0.1025
630 0.53 0.1495 0.0884
650 0.56 0.1500 0.0800
670 0.58 0.1579 0.0502

690 0.60 0.1630 0.1013
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rich in various CPAs, the actual influence of R, on R(—0,1) proves to be
insignificant.

Inclusion of fluorescence into the equation of light transfer, and the ensuing
solution of this modified equation in the single scattering approximation for a
vertically homogeneous aquatic media containing fluorescent agents (whose fluo-
rescent yield is independent of A and the emission line is Gaussian- shaped) gives
the following expression for the volume reflectance R’ due to chlorophyll at the
maximum wavelength of emission (4y,ax)

: ch )Lem - /1 em 2 "
Rlzh[ :\/% exp ( %) /2 Kdeem) .“OEd(iem; 70) Aem

X J}vm af(;bex) Ed()vex; _O) f(iexa ;vem) Ay
Lex

(16.5)

where 7 is the fluorescence yield, /., and /., are the excitation and emission
wavelengths respectively, 1, ., is the wavelength of fluorescence band center,
ag(A) is the fluorophore absorption coefficient, ¢ is the half-width of the fluores-
cence band with a Gaussian shape,

o Kd(/lem) Kd(iem) Kd(iex)
f()tex’)LM) a Kd(ieX) [1 - Kd(ieX) ln<l —’_Kd(iem)>}7

K,4(2) is the downwelling irradiance attenuation coefficient, E;(4, —0) is the inci-
dent irradiance just beneath the water surface.
It is known that the chlorophyll fluorescence band is centered at 685 nm, and its
width at half-maximum is about 25 nm.
The volume reflectance coefficient Rg[w
be numerically assessed from (16.6):

Rf (/1 )_ 1 ex _(/lemffl()pm)2 >
e L) ame? 207

Ed(_oa j'ex)
X oc )ugx Adoc )tex b
J Mo (Zex) Auoc (ex) to  (Ka(Aex) + 21 Ki(Zem) )

arising from the DOC fluorescence can

d;L’EX )

(16.6)

where 44, is the dissolved organic matter (DOM) fluorescence yield, ag . is the
fluorophore (DOM) absorption coefficient.

The maximum of the dissolved organic matter fluorescence band is located
at ~ 490-520 nm, and its width at half-maximum is about 100 nm.

When deriving the relationship between R(—0, 1) and the IOP’s it was assumed
that the aquatic medium is a semi-infinite absorbing/scattering layer. However, in
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the case of sufficiently transparent and shallow waters this assumption becomes
invalid. Indeed, in such waters a certain amount of photons traveling downwards is
reflected at the bottom back to the water-air interface instead of being absorbed by
water molecules at depth. It is conducive to the probability that a certain fraction of
reflected photons eventually reach the water surface. Thus, the resulting diffuse
reflectance just beneath the water surface R,,,(—0, A) can be decomposed:

Ri(—0,4) = Ry(—0, ) + Rpor(—0, 1), (16.7)

where R,,(—0, /) is the upwelling spectral reflectance due to water (by definition it
equals the ratio E,(—0,1)/E,(—0, 1), E,, E4, being upwelling and downwelling
irradiances at z = —0) and Rp,,(—0, 1) is the upwelling spectral reflectance due to
the bottom optical influence, which can be defined as:

Rpor(—0,2) = (A — R.5.(—0, 1)) exp(—2K,(2)h), (16.8)

A being the bottom spectral albedo.
Under cloudless conditions, the coefficient of downwelling irradiance attenua-
tion can be parameterized as follows:

Kun(—0, 4, 00) = (1/19)[@2(2) + (0473119 — 0.218)a()b(1)]*,  (16.9)

where p, as above, is equal to cos(@é)), 0;) being the in-water refracted sun zenith
angle.
For overcast conditions:

Kuy(—0,7) = 1.168[a*(2) + 0.168a(2)b(2)] . (16.10)

Hence, the attenuation coefficient of downwelling global radiation, K;(—0, 4, 0y),
can be expressed as

Kqi(—0,4,00) = F\,Kgy(2) + (1 — F)Kqun (4, 00), (16.11)

where F,, =F(1— pvky)/|:F(1 - psky? + (1 7F)(1 - psun(e())):|7 Psky = 0.066
and p,,,(6p) are the Frésnel reflectivities of sky and solar irradiance (directly
propagating from the zenith angle 0y) respectively; F = Eg,/ (Esky + Es,m) is the
fraction of the incident irradiance that is diffuse. It is valid py, = 0.066, and the
value p,,(0p) can be numerically assessed from the Fresnel formulas:

=200 2(0. —
1 <sm (0; —0,)  1g*(0; 0,.)) (16.12)

Psun = 5 sin2(9f 4 0’)
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where 6; = incidence angle, 6, = angle of refraction at the water-air interface. The
angles 0, and 0, are interrelated through Snell’s law:

sin 0,‘

= 16.13
sin 0, " ( )

where n is the relative index of refraction of water, equal to 1.333. The values of F/
are tabulated in Table 16.4.

16.3 Practice 15

16.3.1 Objectives

1. Investigate the spectral composition of surface solar radiation diffuse reflectance

just beneath the water surface, R(—0, 4) as a function of solar zenith angle.

2. Investigate the spectral variations of R(—0, 1) with the concentration of water
colour producing agents (CPAs), such as phytoplankton chlorophyll, suspended
mineral and dissolved organic matter.

. Investigate the spectral variations of R(—0, 1) with bottom depth and albedo.

4. Gain practical experience in the use and modernization of the already available

software packages for conducting simulations at PCs.

5. Get acquainted with drawing up of the performed lab practice making use of the

“Word” text editor with the emphasis of attaining experience in inclusion of
tables, graphical and text files.

W

16.3.2 Software and Set of Input Parameters

1. “F_TASK” code in “Paskal v.7.0” (TP7), and files with the input data stored in
the folder “c:\Dis_liq”

2. Text editor WORD, packages EXCEL, SURFER and TABLECURVE.

3. Set of input parameters provided by the teacher.

16.3.3 Sequential Steps of the Exercise Implementation

1. Read attentively the section devoted to the physical/theoretical background of
this exercise. If necessary, consult the referenced literature.

2. Using the code “F_ TASK.exe” and the options suggested in Table 16.7, obtain
and further analyze the spectral dependence of R;,,(—0, 1) upon:
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— sun zenith angles (within the given range of angles) (see Table 16.7)
concentrations of chlorophyll, suspended matter, and dissolved organic car-
bon Table 16.7

— bottom depth

— a bottom albedo (i.e. bottom type) (see Table 16.8, which illustrates the
spectral albedo of the bottom covered with three types of substances: sand,
silt and grass); these data are automatically entered into the code from the
data file as soon as the bottom type is selected.

— At each run of the program “F_TASK exe”, the results of calculations are
entered into to files “reflect.dat” and “wv i.dat”’. The first of the files
accommodates the values of the resulting coefficient of water column reflec-
tion, R, (—0, 4), whereas the second file stores the respective wavelengths.
Since at each program running, the data are reentered under one and the same
name ‘“reflect.dat”, it should be given another name (e.g. “reflect.dat”,
“reflect2.dat” etc.), and write down in your pad of notes the parameters,
with which these files were generated.

3. Prepare a concise report reflecting the principle stages of the numerical experi-
ment, as well as the obtained results followed by the main conclusions. Based on
the files containing the results of simulations and exploring the MS Excel
facility, plot the function R,,,(—0, 1), employing any suitable program package
such as EXCEL, SURFER or else TABLECURVE.

4. Qualitatively explain the obtained dependencies based on the theory of light
transfer in turbid and absorbing media (see the present manual and the
recommended literature). In doing this, consider closely the spectral
distributions of the absorption and backscattering cross-sections for the major
CPAs.

16.3.4 Requirements to the Report

Compile a concise report reflecting the principal stages and the obtained results of
the performed exercise in form of tables and plots (graphs). Importantly, the report
should be concluded with the main corollaries. Several examples of tables and plots
(graphs) that should be generated as a result of the exercise performance are given
in Tables 16.5 and 16.6 as well as Figs. 16.1 and 16.2.



Chapter 17

Simulations and Analyses of Variations

in Colorimetric Properties of Natural Waters
with Specific Reference to Waters with
Significant Spatial Heterogeneity of Optical
Properties

Abstract Chapter 17 opens with a brief description of the way of quantification of
water colour properties via such parameters as dominant wavelength and colour
purity. This is done to introduce the reader to an approach of a more detailed
perception of water colour formation under conditions of independently and in
appreciably wide limits varying concentrations of the major colour producing
agents, CPAs, such as phytoplankton, suspended minerals and dissolved organic
matter. The exercises performed by the readers will permit them to realize that one
and the same water colour might result from absolutely different combinations of
the CPA concentration vector. It is hoped that this exercise will help the reader
avoid very frequently occurring erroneous attributions of water colour as it is
perceived from space over case II waters to some definite CPA, e.g. if the water
colour is green, the water must be rich in phytoplankton, and if it is brown it should
be abundant in terrigenous suspended matter with a predominant mineral compo-
nent, etc. This exercise will also bring the reader to a clear vision why widely
employed bio optical “band-ratio” algorithms can hold exclusively in case I waters
and prove untenable in case of their application to retrieve CPAs in turbid marine
coastal and inland waters.

17.1 Formation of Water Color: A Concise Description
of the Physical/Theoretical Background

The human eye senses the water color through capturing and analyzing the radiance
signal coming up from the water surface. Generally, this signal consists of two
components L, (+0,4) and L,(4-0,4), originating respectively from the light both
reflected by the water surface and scattered by the water column back into the
atmosphere.This is the second component which carries information about colori-
metric properties of the water column, and consequently about the OAC
concentrations.

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 169
DOI 10.1007/978-3-642-14899-6_17, © Springer-Verlag Berlin Heidelberg 2012
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The relation between the radiance coming up from beneath the water surface
L,(+0, 2) and the IOP’s (coefficients of absorption a and backscattering by, could
be parameterized via employing the volume reflectance quantity, R:

Lu(+oa A) =

R(=0,4) (1= p(0)) Ea(=0,)(1 = py,)
% (17.1)

nn?(1 — 0.48 R(—0,7))

where R(—0,1) = E,(—0, 1)/ E4(—0, 1) is the volume reflectance just beneath the
water surface, E,(—0, 1), E,(—0, 1) are the subsurface upwelling and downward
subsurface irradiances respectively; p(0) is the Fresnel reflectivity within the field-
of-view of the remote sensing instrument at the nadir angle of viewing 6; n is the
relative refraction index of water (n = 1.333); p;,, = surface reflectivity for down-
ward irradiance in air.

For reasons of simplification, the angle 6 will be fixed at 0°, which corresponds to
a strictly vertical viewing of the water surface. In the exercise calculations, the term
(1-p;yp) is also omitted as it accounts for a less than 1% difference in the value of Lu.

As it was stated above (see Chap. 16), the tabulated spectral values of absorption
and backscattering cross sections (also called hydrooptical model) for Lake Ladoga
will be used throughout the numerical simulations.

Within the framework of the chromaticity analysis, the upwelling radiance
spectrum can be related to the color sensed by a human being through integrating
the human eye’s sensitivity and the upwelling light spectrum. The resulting tristim-
ulus values are then given by:

X' = [¥"(A)L.(+0, 2)d 2
Y = | Y"(A)L,(+0,)dA (17.2)

7 = | ' (A)Lu(+0, 1)d..

where x, y", Z/" are the CIE (Commission Internationale de I'Eclairage) color

mixtures (for red, green and blue respectively) for equal energy spectra and may
be obtained from the CIE tables (see Table 16.2).

The chromaticity coordinates could then be obtained from the following
equations:

X/

r= X/ + Y/ +Z/
Y/

YTxav+z {173
z

Xty +z
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So far as x + y + z = 1, two chromaticity coordinates adequately represent
color in a chromaticity diagram and the chromaticities can be displayed as 2-D
plots of either y (green) — z (blue) or x (red) — y (green).

Using the CIE color values, x’(4), y’(4), z’(4) and assuming monochromatic light
of a given wavelength as the spectrum E(4), the CIE chromaticity coordinates may
be obtained for that particular wavelength. By repeating this procedure, the CIE
chromaticity coordinates may be obtained for each wavelength throughout the
visible spectrum. All the (x, y) pairs thus obtained are plotted in Fig. 17.1,
delineating the so called color triangle. For a white spectrum when

L(A) = const,
and the color coordinates are mutually equal
x=y=1z=0.333.

This defines the achromatic color or white point S illustrated in Fig. 17.1.

A numerical value of color is then obtained by drawing a line from this
white point S through the plotted chromaticity values of the measured spectrum
(as indicated by point Q). The intersection of the line S-Q with the curve envelope
of Fig. 17.1 (indicated by point A) specifies the dominant wavelength A,,,, that will
herein be considered as the colorimetric definition of the natural water body.
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The distinctiveness of this dominant wavelength is termed “color purity” and
is defined in Fig. 17.1 as the ratio of the line Q-S to the line A-S. Thus, spectral purity
is a measure of the magnitude of the contribution of the dominant monochromatic
spectrum at the dominant wavelength A,,,,, while a spectral purity p of 0 indicates a
“white” spectrum. Together, the dominant wavelength 4,,,,, and its associated spec-
tral purity p are considered herein as defining aquatic color.

Since the upwelling radiance L,(+0,4) is controlled by the CPA optical influence
(transduced through R(—O0,4), see Practice 15), any changes in chlorophyll,
suspended minerals and dissolved organic carbon are bound to result in changes
of the water column color. In the case of significant horizontal heterogeneity of the
hydro-optical field structure of the target water body, the color must also display a
distinct patchy pattern. Such a phenomenon is characteristic of many lakes and
water storage reservoirs, as well as marine coastal zones. It can be easily detected
on space imageries in the visible spectrum.

Focused on studying the formation of radiometric characteristics of natural
water, this teaching lab is confined to a simplified numerical modeling experiment
when chlorophyll and dissolved organic carbon fluorescence impacts are neglected.
A complete solution of this problem can be found elsewhere.

17.2 Practice 16

17.2.1 Objective

To investigate the dependence of the dominant wavelength and color purity on the
CPA (chlorophyll, suspended minerals and dissolved organic carbon) concentration
vector given the incident radiation spectral distribution.

17.2.2 Software and Set of Input Parameters

1. Code “color” in “Paskalv.7.0” (TP7) and files with the input data stored in the
folder « c:\Dis_liq ».

2. Text editor « Word», packages Exel», «Surfer » and « TableCurve ».

3. A set of input parameters provided by the Practice chief/supervisor. (Table 17.1)

17.2.3 Sequential Steps of the Exercise Implementation

1. Read attentively the section devoted to the physical/theoretical background of
this exercise. If necessary, consult the referenced literature.
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Table 17.1 Recommended combinations of CPA concentrations®

Option Cens ng/ Cyn mg/l C goe» mgC/1
1 0.1; 1; 5; 10 0 1

2 0.1; 1; 5; 10 0 5

3 0.1; 1; 5; 10 0 10

4 0 0.1; 1; 5; 10 1

5 0 0.1; 1; 5; 10 5

6 0 0.1; 1; 5; 10 10

7 1 1 0.1; 1; 5; 10
8 5 1 0.1; 1; 5; 10
9 1 5 0.1; 1; 5; 10
10 5 5 0.1; 1; 5; 10

#As E4—0, A), any spectral distribution of incident radiation can be taken from Table 16.3 in
dependence of the sun zenith angle

Table 17.2 Input data and results of simulations of color coordinates x, y as well as dominant
wavelength, 44,,,, and color purity, p of the water column

Cous pg/l Cyn, mg/l C yoe» mgC/1 0o, deg. x y Adom, M P

0.1 0.1 0.1 30 0.208 0.261 484 0.4939
0.1 0.0 5.0 30 0.278 0.315 487 0.2033
0.1 0.1 5.0 30 0.334 0.370 556 0.1168

2. Using the code “color” and combinations of the CPA concentrations recom-
mended in Table 17.1, perform the simulations of water color characteristics and
analyze:

— the dominant wavelength dependence on a number of the CPA combinations;
— the color purity dependence on the same as above CPA combinations.

Note: The code “color” permits to display the simulation results on the PC screen:
you only need to push simultaneously two buttons “Ctri+0”.

17.2.4 Requirements to the Report

— Using the text editor “World”, make (draw) a concise report reflecting the major
steps of the implemented Exercise. Based upon the basic theoretical
considerations, the results obtained should be presented as a table and further
discussed in terms of the established regularities in the water color formation
under different conditions of CPA concentrations. The report should be closed
with the main corollaries/conclusions.

— Table 17.2 is an example of the table you need to generate as a result of the
teaching lab performance. The report should be stored on the network drive.



Chapter 18

Retrieval of CPA Concentrations

from the Spectral Composition of Subsurface
Water Column Diffuse Reflectance: Application
to Environmental Remote Sensing Tasks

Abstract Chapter 18 opens with a concise review of physical and methodolog-
ical approaches addressing the retrieval of CPAs in waters of different optical
complexity. It is explained why the determination of phytoplankton chlorophyll
concentration in clear waters can be affected via using relatively simple two or
three band-ratio algorithms based on statistically ample in situ data and frequently
involving a semi-analytical expressions. However, much more sophisticated
methods (illustrated in Chapter 18 by the Levenberg-Marquardt technique as an
example) are required to remotely sense phytoplankton chlorophyll in turbid/
strongly absorbing waters: in such cases, it is mandatory to simultaneously deter-
mine the concentrations of all coexisting CPAs. Only then the concentration of
chlorophyll can be accurately determined. Besides, the simultaneously retrieved
concentrations of other main CPAs are important for interpreting the ecological
state of the waters under investigation.

The reader is offered a set of combinations of CPAs (i.e. hydro-optical
situations, all of which are subsumed under the category of case II waters) for
which the exercises should be performed. The Practice no. 17 is designed in such a
way that the reader have to creatively apply the respective computer program in
order to attain the CPA retrievals at the highest possible accuracy.

18.1 Methods of Retrieval of Water Quality from Remotely
Sensed Data in the Visible

When remotely studying natural water bodies, it is the above water upwelling
radiance, L,(+0,2) that is exploited for this purpose: the desired information
about the content of water constituents is contained in the spectral composition
of, L,(+0,4). However, for the reasons given in Chap. 16, the subsurface volume
reflectance R(—0,4) is a more convenient quantity for attaining this goal. The water
surface radiance can be related to the optical characteristics of the water column
through the volume reflectance R(—0,4) which in turn is a function of such IOP’s as

I. Melnikova et al., Remote Sensing of the Environment and Radiation Transfer, 175
DOI 10.1007/978-3-642-14899-6_18, © Springer-Verlag Berlin Heidelberg 2012
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the absorption and backscattering coefficients, a, b, (see (16.3)). Due to their
additive nature, the absorption and backscattering coefficients are sums of products
of cross sections a* and b,,* (see (16.4)) and the respective CPA concentrations. As
it was indicated in Chap. 16, the tabulated values of spectral cross-sections (or
otherwise the hydro-optical model) determined for Lake Ladoga will be used herein
for the simulations.

When processing remote sensing data collected over open ocean/sea waters,
most frequently used are the methods based on regression expressions relating the
chlorophyll concentration to the water-leaving radiance ratio at two wavelengths in
the blue and green spectral regions.

As well known, the chlorophyll absorption spectrum exhibits two major absorption
bands at 430450 and 660—680 nm. When a water body containing phytoplankton
(referred to as chlorophyll) is illuminated by the natural light, water-leaving
radiance proves to be subdued (as compared to the radiance signal leaving clear
water, i.e. water devoid of chlorophyll) in the region 400-500 nm (4,) and enhanced
at A > 580-600 nm. These changes result from, respectively, chlorophyll absorp-
tion and an increase in the number of scattering centers due to phytoplankton cells.
At the same time, in the upwelling radiance spectrum there is a region ~ 500-520
nm (4,) where the signal remains nearly intact with increasing chlorophyll concen-
tration. In this specific situation, there is a possibility to relate the normalized depth
of the “chlorophyll dip” (i.e. L,(+0) at 430 nm) to the chlorophyll concentration:

LA = 430nm)>ﬂ 4s.1)

Cehl = o (Lu(,a2 — 520 nm)

where o and f§ are regression coefficients obtained from statistically ample data
incorporating concurrent in situ measurements of C., and remotely sensed
L,(420 nm) and L,(520 nm).

A small but infinitesimal concentrations of dissolved organic carbon and
suspended minerals, the increase in chlorophyll content results in a displacement
of A1 and A, to longer wavelengths [to 450-480 nm and 520, respectively]. In
these conditions, the above “band-ratio” approach remains applicable: various
A/2; pairs (443/520), (443/550), (520/550), (520/670) could be tried for a given
combination of Cj;, Cy,,, Cy,. to fit best Eq. 18.1. Indeed, such attempts proved to
be reasonably successful when dealing with clear off-shore ocean and marine
waters. However, as soon as suspended minerals and dissolved organics
concentrations sensibly increase (which is a characteristic of inland and marine
coastal waters), it becomes impossible to identify A; and A, in the spectral
distribution of the upwelling radiance, and the regression retrieval algorithm
becomes completely inefficient.

One of the modern algorithms for water quality retrieval is the method of
neural networks. It is based on approximation of the dependency of R(—0,4) on
combinations of CPA concentrations. In the first stage, a training array of data
containing the CPA concentration vector and the respective values of R(—0,4) at
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a number of wavelengths is developed. In the second stage, the neural network
training is performed: the weighting coefficients are established in a way that the
sum of squared residuals gets minimized. Due to its fast operation, this method
provides for processing space imageries of vast water areas. In more details the
theory and application of this method are given in the referenced publications.

Within the framework of this Exercise, consider more closely another method of
water quality retrieval from remote sensing data in the visible, viz, method of
multivariate optimization (the Levenberg-Marquardt method). As it was indicated
above, the tabulated spectral values of CPA cross-sections for Lake Ladoga will be
used herein for simulations.

IfR(4, C, a, by) is the water volume diffuse reflectance calculated using a known
parameterization (e.g. (16.3)), and {S;} is the value of water volume diffuse
reflectance obtained from in situ measurements, then the weighted residuals can
be taken as a measure of concordance between the measured and simulated volume
reflectance:

g =1[Si —R(%, C, a, by)]/S;, (18.2)

where j is the number of wavelengths at which the measurements have been run.

Within the framework of the least squares method, the value of the concentration
vector C (C.pl, Cgpy Caoe) can be found through minimizing the function of
residuals over C, f(C):

F(O) =) 4(), (18.3)

Iterative calculations of the f{C) minimum can be conducted using Levenber-
Marquardt method, which, being a variant of the Newton-Gauss method, is more
easily converging. To find an optimal concentration vector, the following iteration
formula is used:

- R(Cy
Cir1 = Cr + Ak (FiFi + D) 'Ft (1 - %) (18.4)
k
where D; = diag (F WF k) is a diagonal matrix, the main diagonal of which is
composed of the elements Fi.Fy, F(C) = Hg%” is a matrix of the n x m order (n is
J

the number of wavelengths, m is the dimension of the concentration vector C),
F'(C) is a transposed matrix F(C), p is the direction of minimization (¢, = _0), 4
is the step of minimization, which is chosen based on the condition:

f(Cr + 2Pr) — f(Cr)< — tA(qiPr), (18.5)

—1
e Py = (P -+ )L (1= 62). g = 263 (1 - 562),

The method of reduction is the simplest and most efficient method of choosing
the step. This method consists of the following: choose two constants 0 < 7 < 1 and
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0<y<1, and set /=1 and test inequality (18.5). If inequality (18.5) holds,
assume that A, = A, and a;1 = ax + 4+P. In the opposite case, reduce the pace
by y times, assuming A = y4, and test again inequality (18.5). This iteration
procedure is repeated till inequality (18.5) is fulfilled.

The search for the desired minimum is only successful when the starting value of
the concentration vector is close to the quaesitum. If the starting value of C, proves
to be far from the quaesitum, the minimum found for {C) might correspond to some
unrealistic values of C.

To avoid such difficulty, a number of starting values of Cy can be chosen, and
making use of the method of multivariate optimization, a search for the most deep
minimum is conducted. Yet, there is no guarantee that any particular starting point
Cp will result in the iterative procedure convergence or else the concentration
vector will prove to be physically sound (e.g. negative concentrations of one or
several CPAs). To obviate such difficulties, the following constrain is imposed on
Cy such that

Cimin S Ci S Cimch (186)

18.2 Practice 17

18.2.1 Objectives

1. Explore one of the algorithms developed for retrieval of concentrations of
such water quality constituents/CPAs as chlorophyll, suspended minerals and
dissolved organic carbon from the spectral values of subsurface volume reflec-
tance R(—0,1)

2. Investigate the accuracy of retrieval of chlorophyll, suspended minerals and
dissolved organic carbon depending upon both the concrete combinations of
concentrations of these components and the initial concentration vectors in the
iteration cycle

18.2.2 Software and Set of Input Parameters

1. Code “LM.exe” in Paskal v. 7.0" (TP7) and files with the input data stored in
directory \Dis lig”.

2. Text editor WORD, software packages EXCEL, SURFER or TABLECURVE.

3. Set of input parameters taken from the Table 18.1.
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Table 18.1 Options of CPA concentration combinations

Option Cens g/ Cym, mg/l C goe, mgC/1
1 0.5;1;5; 18 0.5 1

2 0.5;1;5; 18 0.5 5

3 0.5;1;5; 18 0.5 18

4 0.5 0.5;1;5; 18 1

5 0.5 0.5;1;5; 18 5

6 0.5 0.5;1;5; 18 18

7 1 1 0.5;1;5; 18
8 5 1 0.5;1;5; 18
9 1 5 0.5;1;5; 18
18 5 5 0.5; 1;5; 18

Table 18.2 Input data and results of retrieval from R(—0,4) of the concentration of chlorophyll,
suspended matter and dissolved organics

Input concentration Initial concentration Retrieval results Mean root-
vector vector square error
Cotr Com Caoes  Conty Comr Caoes  Ceny Comy Cuoes
pgl  mg/l  mgC/l  pgll  mg/l  mgC/l  pg/l  mgl mgC/l
3.0 3.0 3.0 1 1 1 337 334 378 0.0273

2 2 2 329 344 3.6l 0.0881

18.2.3 Sequential Steps of the Exercise Implementation

1.

Having chosen several starting CPA concentration vectors for different values of
the mean-square error, carry out the retrieval of the OAC concentration vector
making use of the code “Im”; choose the most accurate retrieval results. As it
ensues from above, the mean-square error according to the Eq. 18.4 is a criterion
for exiting the iterative procedure of the concentration vector calculation with
the Eq. 18.3. The closer its value to zero, the more accurate is the concentration
vector retrieval. However, for different starting concentration vectors (which are
necessary for initiating the iterative procedure) the mean-square error value
close to zero can either be unattainable or hardly achievable because of unrea-
sonably long computational time required for that. It is difficult, if ever possible,
to specify/set up in advance the actual closeness of the mean-square error to zero
for any initial (starting) concentration vector. That’s why the students are
recommended to first set up a tentative mean-square error value for each initial
concentration vector and then consecutively decrease it after termination of each
run of the code “IM.pas.” Each step of this trail procedure should then be
followed by assessment of the accurateness of the concentration vector retrieval.

. Analyze the retrieval accuracy variations for each of the CPA depending on the

concentrations of the rest CPAs given that the mean root-square error is fixed.
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3. Prepare a brief report reflecting both the main stages of the numerical simulation
experiment and the obtained results in the form of tables and figures followed by
conclusions.

18.2.4 Requirements to the Report

Compile a concise report reflecting the main stages of the performed exercise, as
well as the obtained results in form of tables and plots. The report should be closed
with the main conclusions. An example of the table that should be generated as a
result of the exercise implementation in given in Table 18.2.
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