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Foreword

Marine safety is one of the main concerns of shipping and offshore industry in
general and classification societies as well as oil companies in particular. The
importance of including the state-of-the-art knowledge about meteorological
(temperature, pressure, wind) and oceanographic (waves, current) conditions in
ship and offshore standards have been discussed increasingly by industry and
academia in the last decades in several international forums. There are potential
safety, economic, and environmental advantages in utilizing the recent knowledge
about meteorological and oceanographic (met-ocean) conditions and investigating
its implication for design and operation of marine structures.

The ongoing debate around the observed and projected climate change has
confronted the shipping and offshore industry with two important questions: is it
likely that marine structures will experience higher environmental loads; will
Classification Societies’ Rules and Offshore Standards need to be updated?
Although the climate system is very complex and its mechanism is still not fully
understood, observed, and projected climate changes indicate that changes in met-
ocean conditions can be expected which have impact on marine structure design.

Observed and projected changes in wave and wind climate are expected to have
the largest impact on marine structure design in comparison to other environ-
mental phenomena. Changes in sea level combined with storm surge have little
potential to affect ship design directly but may impact offshore and coastal
installations, depending on how significant they are. Secondary effects, such as
changes in sea level range, harbor depths and offloading heights may need to be
taken into account in future design of marine structures. The predicted increase in
marine growth may increase loads on marine structures in some ocean regions,
e.g., the Baltic Sea.

To be able to design for climate change, time-dependent statistical descriptions
need to be adopted. Statistical extreme value analysis, as currently used in the met-
ocean community, has to be upgraded to take into account the nonstationary
character of current climate, in terms of both climate change trends and natural
variability cycles. These changes need to be incorporated in the risk-based
approach used currently in design.

The adaptation process to climate change has already been initiated by the
shipping and offshore industry. It includes studies investigating potential impact of
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climate change on design of marine structures. The Bayesian hierarchical models
in space and time provide very valuable contribution to the adaptation process.
They allow predicting climate changes in met-ocean conditions based on historical
data while avoiding running climate models. The input from the models can be
easily in-cooperated in joint met-ocean description used currently in design.

Jar, March 2012 Elzbieta Maria Bitner-Gregersen
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Foreword

Spatio-temporal processes are ubiquitous in the environment. These processes are
complex, with multiple scales of spatial and temporal variability and internal
excitations that vary considerably depending on the type of forcing applied to the
system. The interaction of these processes (e.g., the wind driven forcing of the
ocean circulation) can lead to interesting behavior that is typically scale depen-
dent. Although we know that there is inherent complex variability and interaction
of the system components, there is substantial uncertainty associated with our
detailed understanding of these processes (particularly the interactions between
processes and across scales) as well as the data that are collected on the system.
Often there is a tradeoff between high resolution, yet incomplete observations over
the spatial domain (such as from satellite observation platforms) and fairly high
resolution in time, yet sparse in space in situ observations (such as from buoys or
ships). In both cases, the actual data collected may just be a proxy for the state
variables of actual interest. In addition, the level of resolution associated with
these observations in time and space may not agree with the level of resolution for
which we want to gain understanding. Thus, it is fair to say that environmental
systems are complex and our understanding of the processes and data that make up
the systems is, to various degrees, uncertain.

Starting in the mid-1990s, statisticians began to consider a coherent paradigm to
partition both variability and uncertainty into a series of models that are formally
linked through fundamental rules of probability. The first stage of this hierarchical
modeling framework allows one to consider the observations conditioned on the
true process of interest and parameters that control the distributional difference
between the observations and process. This so-called data model distribution is
then multiplied by a distribution describing the true process itself, conditioned on
parameters (i.e., the process model). Finally, and in many ways most critically, one
specifies distributions for the parameters that were conditioned upon in the pre-
vious stages (i.e., the parameter models). Such a simple framework leads to a
powerful modeling paradigm because it allows the scientist and statistician to
consider separately the effect of observation uncertainty, process uncertainty, and
parameter uncertainty. Yet, the true complexity of the system comes through when
one integrates over the effects of the parameter and process variability. This
complexity is almost impossible to specify directly in classical likelihood-based

vii



models for complex multivariate spatio-temporal environmental processes with
multiple sources of information.

Although the hierarchical framework is conceptually quite simple, the indi-
vidual component models can themselves be quite complicated, accounting for
spatio-temporal variability and uncertainty at each stage (data, process, and
parameter). The issue then becomes how to do inference and prediction in this
framework. Such analysis would not have been possible on high-dimensional
complex environmental systems before the early 1990s, when it was realized that
Markov Chain Monte Carlo (MCMC) methods, which had been developed much
earlier in statistical physics, could be used in the context of Bayesian inference to
deal with the very high-dimensional integrals that make up the normalizing con-
stant in Bayes rule. Indeed, the key to this was that one needs not have to work out
those integrals analytically, nor even with standard numerical integration, but
rather could use an iterative method that generated dependent samples from the
posterior distribution of interest without having to actually calculate the normal-
izing constant. This methodology revolutionized Bayesian statistics and made the
large-scale application of the hierarchical modeling paradigm practical for very
complex problems. Early applications of this approach to environmental problems
associated with the atmosphere and ocean were very successful.

This monograph provides a wonderful example of how these methods can be
applied to an extremely complicated problem of great practical importance.
Without a doubt, this is the most complete statistical modeling study that has been
done on wave height, and illustrates very clearly how scientific and empirical
knowledge can be used to partition uncertainty and variability across the data,
process, and parameter models that describe the system. The manuscript also
provides fundamental and essential background material related to the statistical
methods as well as the science governing the problem. As such, this monograph
provides a complete and thorough reference to the analysis of wave height data,
but perhaps more critically, a framework for researchers to analyze other complex
environmental processes. In a world where there is increasing interest in the
economic and social costs associated with the climate-induced changes to envi-
ronmental processes, this monograph serves as a shining example of how one can
approach such problems in a unified way while accommodating realistic sources of
uncertainty.

Columbia, Missouri, USA, March 2013 Christopher K. Wikle
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Preface

Within the history of shipping, there are numerous examples of ships that have
been lost at sea as a consequence of bad weather, but also in cases where bad
weather is not the main cause of accident, severe weather impedes rescue oper-
ations and leads to escalation of events. Tragic accidents such as the sinking of the
passenger ship Estonia in 1994 and the breaking up of the oil tanker Erika in 1999
easily comes to mind. Both these maritime disasters occurred in rough weather and
resulted in severe consequences in terms of human fatalities or environmental
damage; 852 lives were lost in the Estonia accident and thousands of tons of oil
were released into the sea in the Erika accident, killing marine life, polluting
nearby shores, and making it one of the greatest environmental disasters to ever hit
France. Furthermore, several thousand containers are lost at sea each and every
year during maritime transportation and rough seas are often to blame.

These are merely examples of how heavy weather may contribute to maritime
accidents but there are numerous others with catastrophic consequences in terms of
lives lost, severe environmental damage and property loss; they serve to illustrate
the influence of the ocean wave climate on maritime safety. Obviously, a rough-
ening of the ocean wave climate also has the potential to severely impact other
areas of society as well, related to maritime, offshore, and coastal activities.
Combined with sea level rise and other possible effects of climate change, coastal
areas throughout the globe may be seriously affected.

Ships and other marine structures are constantly exposed to the wave and wind
forces of its environment, and extreme ocean climate represents a great risk to
marine operations, as illustrated by the examples above. According to maritime
casualty statistics, bad weather is a major cause of ship accidents, and this stresses
the importance of taking extreme sea state conditions adequately into account in
ship design. This is important to ensure that the ships can withstand the envi-
ronmental forces they are expected to encounter throughout their lifetime. Hence,
a correct and thorough understanding of meteorological and oceanographic con-
ditions, most notably the extreme values of relevant wave and wind parameters,
such as the significant wave height (Hs) is of paramount importance to maritime
safety, and there is a need for appropriate statistical models to describe the vari-
ability of these phenomena.
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With the climate change that the globe is currently experiencing the future
ocean wave climate may change and it may no longer be sufficient to base design
codes and safety standards on current knowledge about the past and present ocean
environment. The implicit assumption that the future will be like the past may no
longer be even approximately valid and there is a need to consider how wave
parameters are expected to change in the future, as a consequence of climate
change. Thus, there is a need for time-dependent statistical models that can take
the long-term time-dependency of integrated wave parameters properly into
account. Furthermore, there is a need for methods to take potential impacts of such
long-term trends on the environmental loads of ships and other marine structures
into account.

The models presented in this monograph are stochastic models, probabilistic
counterparts to physical models that are more deterministic, with treatment of
uncertainties as an integral part of the models. In a historic perspective, it is noted
that for a long time following the scientific revolution in the sixteenth century, the
predominant world-view was deterministic. It was believed that if exact knowl-
edge of initial conditions and causal laws governing a system were available, the
exact state of the system could be determined at any later point in time. In such a
mechanistic world, randomness would not exist and failure to precisely predict
future events would be entirely due to incomplete knowledge of initial states and
universal laws. However, in the late nineteenth and early twentieth century, new
scientific discoveries cast serious doubts on a strictly deterministic world-view.
Chaos theory explained how even an infinitesimally small perturbation of initial
conditions of a purely deterministic non-linear system can lead to large changes in
the development of the system (the butterfly effect). Furthermore, the development
of quantum mechanics and the formulation of the Heisenberg uncertainty principle
demonstrated that reality, at least at atomic scales, does not seem to be absolutely
deterministic, suggesting a more probabilistic understanding of the world.

Regardless of whether the world is fundamentally probabilistic or if it is
deterministic but with uncertain knowledge of the underlying physical laws,
physical environmental processes inevitably display some seemingly causal rela-
tionships along with a considerable degree of randomness. Hence, it is argued that
it would make sense to describe such phenomena probabilistically, i.e., using
probability theory and statistics to model physical processes as stochastic pro-
cesses, where there are several possible ways for a system to evolve. Notwith-
standing, the probabilistic modeling approach presented in this monograph is
presented as a complementary alternative to more geophysics-based deterministic
wave and climate models. Physical models remain the primary approach for
investigating the impacts of climate change, but it is believed that the results
obtained from probabilistic models can be used to complement such models and
yield increased insight into these complicated processes.
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One of the more practical advantages of using a stochastic model is that esti-
mates of the uncertainties are given explicitly. These are important when future
projections are to be incorporated in risk analyses or utilized in probabilistic load
calculations as illustrated by an example herein. The case study reveals that the
effect of the predicted trend in the ocean wave climate on environmental loads of
ships are far from being negligible, and that this may need to be taken into account
in design and construction of ships.

This monograph presents recent research on the statistical modeling of ocean
wave climate in space and time, with a particular interest in the modeling of long-
term trends, possibly as a result of climate change. The research was mainly
carried out at the Statistics Department at the Mathematical Institute of University
of Oslo, Norway as a part of my Ph.D. thesis in statistics [2]. The material pre-
sented in this monograph summarizes and is to a large degree based on seven
recent publications in various academic journals. The literature survey presented in
Chap. 2 was first published in [1]. Chapter 3 which outlines the main Bayesian
hierarchical space–time model for Hs is based on the paper published in [5], but
contains some additional results pertaining to monthly maximum data, previously
presented at the Geostat 2012 conference [7]. The work on including a logarithmic
transform of the data was originally published in [6], but again Chap. 4 is extended
with results for monthly maximum data [7]. Chapter 5, which extends the base
model with a CO2-regression component is based on [8] and Chap. 7 concerning
the potential impact on ship’s environmental loads and structural responses is an
extension of [3], where also the trends estimated from the models with CO2-
regression are considered. Finally, the case study in Chap. 8 where the model is
applied to different ocean areas worldwide, is based on [9]. An additional chapter,
Chap. 6 which is based on [4], is included where the modeling framework is
applied to oceanic surface wind speeds over the same area.

Some appendices are included at the end of this book, where some important
concepts and general results that have been utilized in the research are briefly
outlined. Appendix A contains a brief introduction of Markov chain Monte Carlo
(MCMC) methods, which has been used in the implementation of the model. In
particular, the main ideas behind the Gibbs sampler and the Metropolis–Hastings
algorithm are described. Appendix B introduces some of the most common
methods of modeling extreme values, i.e., the block maxima approach and the
peaks over threshold approach, and some basic results pertaining to Markov
Random Fields are briefly introduced in appendix C. In appendix D, the derivation
of the full conditionals of the Bayesian hierarchical space–time model is presented,
which have been used in the MCMC simulations. Finally, appendix E presents a
straightforward method for obtaining samples from an arbitrary multi-normal
distribution based on independent samples of the univariate standard normal dis-
tribution which has been exploited in the simulations of the model.
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It is believed that this research monograph should be of interest to anyone with
an interest in stochastic modeling in general and to those with a special interest in
environmental research and effects of climate change in particular. Furthermore,
the research has practical applications related to ocean and coastal engineering and
should be of interest to various stakeholders within the maritime industries such as
designers, classification societies, ship owners and operators, flag states, and
intergovernmental agencies such as the IMO. The intended audience for this
publication includes, but is not limited to, statisticians, environmental researchers,
climate researchers, ocean and coastal engineers, naval architects, oceanographers,
meteorologists, maritime policy makers, and risk analysts.
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Chapter 1
Introduction and Background

This book is concerned with stochastic models in space and time for describing the
variability and possible long-term trends in the ocean wave climate. Such stochastic
models constitute an alternative to more physics-based climate and wave models
for describing the statistics of the sea surface and for projecting future ocean wave
climate. The ocean wave climate has important implications on maritime, offshore,
and coastal activities. In particular, the wave climate is important to marine safety
and this is the main motivation for this research.

The research presented in this monograph could to some extent be regarded as
interdisciplinary and it can be related to different scientific traditions and commu-
nities. It is a contribution to the important ongoing debate about climate change,
perhaps one of the most crucial research areas of our times and also a major political,
economic, and moral question for our generation. Furthermore, it is intimately related
to current research areas within physical oceanography, meteorology, marine engi-
neering, and risk assessment. Nevertheless, this monograph has its main foundation
in the statistical research tradition and is first and foremost a book in applied statis-
tics and stochastic modeling. Therefore, the presentation in this monograph aims at
communicating the research to a mixed audience with different backgrounds, and it
is believed that readers of different backgrounds might find it comprehensible and
of interest.

In the following, a brief introduction to the sciences of climate change, ocean
waves, and maritime safety as well as statistical modeling of environmental processes
will be given. In this way it is believed that the most important contexts within the
main research traditions the material presented in this book is related to will be made
clear.

The main research question that this monograph tries to address can be formulated
as follows: “To what extent will the ocean wave climate be expected to change in
the future as a result of climate change, what are the uncertainties and how may
this affect the structural safety of ocean-going ships?” More specifically, the task of
establishing long-term, time-dependent statistical models for significant wave height
was identified as a possible approach to address this question.

E. Vanem, Bayesian Hierarchical Space-Time Models with 1
Application to Significant Wave Height, Ocean Engineering & Oceanography 2,
DOI: 10.1007/978-3-642-30253-4_1, © Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction and Background

The high-level problem description was proposed by Det Norske Veritas (DNV),
a classification society genuinely concerned with the safety at sea and responsible
for developing class rules and standards for ships and offshore structures. Hence, the
research presented in this book addresses a real-life problem of genuine interest to the
stakeholders within the maritime and offshore industries and DNV has been involved
as an industrial partner in the research project. Indeed, a recent report on the effect
of climate change on marine structural design identified the need for an improved
methodology for time-dependent statistics and modeling of the long-term variations
in wave parameters due to climate change [3]. Hence, the development of such models
in both space and time is interesting from an academic point of view, but is also a
response to genuine needs within the industry with real and practical applications
[4]. Hence, the research presented in this monograph is essentially applied research
more than fundamental theoretical research.

1.1 Climate Change

This section will give a very brief introduction to the science of climate change. There
are numerous information sources for more details and an excellent introduction to
the science of modern climate change can be found in e.g. the recent textbook by
Dessler [9].

1.1.1 Weather and Climate

Before discussing climate change, it is important to have a clear understanding of
what is meant by climate, as opposed to weather. Whereas weather usually refers to
the actual state of the weather system and the atmosphere, climate is used for a long-
term statistical description of weather over time. Typically, climate can be thought
of as average weather as well as the variability of weather and contains information
of the likely range of conditions at a particular location and time. One way to look at
it is to consider the climate to be the distribution of weather at a particular time and
location and the actual weather as one realization from that distribution. However,
there is natural climate variability at different timescales such as daily, seasonal,
decadal, and centurial variations. Short term variations are obvious: night is different
from day and the winter climate is different from the summer climate, but there is
considerably more uncertainty associated with the natural long-term variability of
the climate and its causes.

It is important to distinguish between natural climate change and anthropogenic—
or man-made—climate change. Over the ages, the climate has experienced dramatic
changes at various time scales, with oscillations between cold periods of planetary
glaciation and warmer interglacial periods. Such changes have occurred throughout
the history of the planet with ice ages typically lasting about 100,000 years and the
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interglacial periods typically lasting 10,000–30,000 years. By anthropogenic climate
change, on the other hand, is meant the currently experienced climate change that
can be ascribed to human activities and in particular to human emissions of green-
house gases and aerosols. One crucial difference between natural and anthropogenic
climate change is that the latter occurs much faster, making it difficult for the species,
including humans, and entire ecosystems to adapt.

1.1.2 A Brief History of Climatic Research

There is a long scientific tradition for studying the climate and climate change;
climate change has been scientifically studied since the early nineteenth century. The
discovery of the natural greenhouse effect is often ascribed to the French scientist
Joseph Fourier who published papers on the terrestrial temperatures in the 1820s.
He basically suggested that a planet’s atmosphere is able to trap heat and increase
the temperature of the surface of the planet. This idea was further strengthened in
the 1830s by the works of Claude Pouillet and later in the 1850s by the works
of John Tyndall. At about the same time, in the 1830s, evidence of a widespread
ice age in northern Europe was first recognized by geologist Louis Agassiz among
others, indicating that the climate could change: the climate had evidently changed
in the past, suggesting that it could certainly change again in the future. Prior to this
discovery it was commonly assumed that the climate was unchanging and was as
it had always been, but this discovery was an important motivation for the further
scientific study of climate over the next decades.

Towards the end of the nineteenth century it was first argued that human emis-
sions of greenhouse gases could change the climate of the planet. In 1896, Swedish
scientist Svante Arrhenius tried to calculate how changes in atmospheric levels of
CO2 could change the surface temperature of the earth in a theory to explain the
ice ages [1]. Although not explicitly referring to burning of fossil fuel, his works
mark the beginning of the theory of man-induced climatic change. During the first
decades of the twentieth century the temperature was rising and by the 1930s it was
apparent that the planet was warming. In 1938, Guy Steward Callendar suggested
that this warming was a result of human emissions of CO2 [5]. From 1957 to 1958 the
International Geophysical Year, an international scientific project for coordinating
observations of the earth from pole to pole in order to make progress in the under-
standing of fundamental geophysical processes governing the environment, greatly
improved the understanding of the earth. This initiative also started measurements
of atmospheric carbon dioxide, and the continuous record of atmospheric CO2 mea-
surements utilized in this book was actually initiated in March 1958 with equipment
for remote observatories acquired with funding from international geophysical year
grants.

Over the twentieth century, scientists became increasingly convinced that green-
house gases were influential in most climate changes and that human emissions
were contributing seriously to global warming. Currently, the authoritative scientific
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view on climate change is the one held by the Intergovernmental Panel on Climate
Change (IPCC),1 which was established in 1988 by the United Nations Environmen-
tal Programme (UNEP) and the World Meteorological Organization (WMO). This
is a scientific body that reviews and assesses the most recent scientific information
about climate change and thousands of scientists from all over the world contribute
on a voluntary basis. Hence, reports from the IPCC can be construed as the most
balanced and accurate scientific knowledge on climate change, see e.g., [15–17].

Regularly, the IPCC prepares assessment reports on the science of climate change.
The first assessment report was released in 1990 and this suggested that the size of
the observed global warming was consistent with predictions from climate models,
but also that the changes were within the range of natural variability [13]. Hence, by
1990 the scientific community could not confidently establish whether the observed
warming was due to natural or anthropogenic causes. However, the second assess-
ment report which was released in 1996 [14] stated that the balance of evidence now
suggested that there was a discernible human influence on the global climate and
that most of the recent studies showed that the observed warming trend was unlikely
to be entirely natural in origin. The third assessment report released in 2001 went
further and concluded that there was now new and stronger evidence that most of
the warming observed over the last 50 years is likely attributable to human activities
[15], where likely refers to a chance of 2 out of 3. So far the fourth assessment report
from 2007 is the most recent, and this concludes that most of the observed increase
in globally averaged temperatures since the mid-twentieth century is very likely due
to observed increase in anthropogenic greenhouse gas emissions [16], where now
very likely should be construed to mean with a probability of 90 % of being true.
Since the last assessment report, there has also been released a special report with
focus on extreme events and climate change adaptation [17].

Hence, although the current climate change must obviously be a combination of
natural and anthropogenic climate change, the current debate on climate change is
mostly concerned with anthropogenic climate change, and often climate change in
the media and the literature should be construed as anthropogenic climate change.
The introduction to modern climate change, found in the book by Dessler [9] is
completely in line with the view of the IPCC.

The physical mechanisms behind climate change are today well understood for the
most part, and there is no longer any notable disagreement in the scientific community
of whether the climate is currently warming; the IPCC states that the current warming
of the climate system is unequivocal. Furthermore, there is little uncertainty to the fact
that human activities are responsible for a significant part of the currently observed
climate change; IPCC concludes that most of the observed increase in global average
temperatures since the mid-twentieth century is very likely2 due to the observed
increase in anthropogenic greenhouse gas concentrations [16]. Hence, some of the
currently most important questions in the climate change debate are to what extent
the climate will continue to change in the future (not if it will change), what can be

1 website: http://www.ipcc.ch/
2 The words very likely are defined to mean with a 90% probability of being true.

http://www.ipcc.ch/
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done to mitigate future climate change, what will be the impacts of climate change,
and how can we adopt to a changing climate. It is basically one aspect of the two
latter of these questions that is addressed in this book. More specifically, the potential
impact of climate change on the ocean wave climate is investigated, and consequently
the impact of changes in the ocean wave climate on the structural safety of ocean
going ships. One way of adapting to this particular aspect of climate change could
then be to take such potential impacts into account in structural ship design.

1.1.3 The Physical Mechanisms of Anthropogenic Global Warming

The physical mechanisms responsible for anthropogenic global warming are often
referred to as the greenhouse effect. As was outlined above, this effect has been
known for a long time and the overall mechanisms are fairly well understood. In
short, it relates the temperature of the surface of the earth, or indeed of any planet, to
the extent and composition of the atmosphere. In this section, a very short qualitative
description of the greenhouse effect will be given.

The ultimate source of energy for our planet is the sun with energy input in the
form of solar radiation. In order to explain the temperature of the planet, one can
set up an energy or heat budget taking energy coming in to and going out from the
planet into account. In a simple model, incoming energy is the solar radiation that
is absorbed and outgoing energy are black-body radiation from the planet back into
space. For the black-body radiation, it is known that both the wave length and the total
emitted power of the radiation depend on the temperature of the object, with warmer
objects emitting at shorter wave lengths (higher frequencies) and more power than
cooler objects. Hence, the difference in the radiation from the sun and the earth is
important for explaining the greenhouse effect. The temperature of the sun is about
6000 K and this means that most of the energy of the emitted radiation is within the
visible range (0.39–0.75 µm), whereas most of the radiation from the earth is above
3 µm, in the infrared part of the spectrum (0.75–300 µm). A simple energy budget
for the earth without any atmosphere shows that energy balance is achieved with
much lower temperatures than what is observed on the planet, and the atmosphere is
needed to explain why the temperature is not much lower.

The atmosphere is transparent to the visible photons emitted by the sun so most
of these reach the surface of the earth. However, the atmosphere is opaque to infra-
red photons emitted by the surface of the earth so that these are absorbed by the
atmosphere, increasing the energy and thereby the temperature of the atmosphere.
The atmosphere also behaves as a black body and will emit energy by way of photons
based on its temperature. About half of this energy is emitted in the upward direction
and this energy escapes the earth into space but the other half is emitted towards
the surface where it will be absorbed and increase the temperature. This is a what is
referred to as the greenhouse effect, which is very important for life to exist on earth.

It turns out, however, that only a few components of the atmosphere actually absorb
infra-red radiation and these are the gases referred to as greenhouse gases (GHG).
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The other constituents do not contribute to warm the planet. The most abundant and
most important greenhouse gas in the atmosphere is water vapour, mainly coming
from evaporation from the oceans. The second most important greenhouse gas is
carbon dioxide (CO2), although just making up about 390 ppm3 (or 0.039 %) of the
atmosphere. Other important greenhouse gases are methane (CH4) at about 1.8 ppm,
nitrous oxide (N2O) at about 0.3 ppm, various halocarbons at concentration of a few
parts per billion (ppb) and ozone (O3) with concentrations varying between 10 ppb
and 10 ppm. Aerosols are small particles in the atmosphere that can interact with both
incoming and outgoing radiation. Hence, the net effect of aerosols is opposite that
of greenhouse gases, with a negative net radiative forcings from aerosols. Radiative
forcing is often referred to as the change in the difference between energy input
and output, �(Ein − Eout) to and from the earth, and positive radiative forcings
correspond to changes that warm the climate.

Increasing the abundance of greenhouse gases in the atmosphere does not change
the energy input from solar radiation since this is not absorbed in the atmosphere,
but will decrease the net energy being carried away as black body radiation and will
consequently represent a positive radiative forcing. There are many aspects of the
changes in atmospheric concentration of greenhouse gases that will be omitted here,
such as the carbon cycle and how carbon is exchanged between the atmosphere and
the land biosphere, oceans and rock, various feedback mechanisms and climate sen-
sibility. Reference is made to e.g., [9] for a comprehensible overview, and it is simply
stated that human activities related to burning of fossil fuels release greenhouse gases
into the atmosphere, which have resulted in unprecedented concentrations and have
consequently contributed to warm the planet due to the mechanisms of the green-
house effect as briefly outlined above. The extent of future climate change is thus
dependent on future emissions of greenhouse gases, and this is explored in different
emission scenarios.

1.1.4 Emission Scenarios

Some of the factors influencing the climate of the planet are the solar radiation from
the sun, the earth’s orbit around the sun and the obliquity of the earth, the planetary
albedo, internal variability, and the level of greenhouse gases in the atmosphere. It
is the latter that is influenced by human emissions, and future projections of climate
change are based on various emission scenarios.

It is generally acknowledged that the emission of greenhouse gas from a society is
proportional to the gross domestic product, GDP. This can again be broken down to
the product of the following four factors: the population of the society, the affluence
of the population (GDP per person), the energy intensity (average energy required
to generate a monetary unit of goods and services) and carbon intensity (amount of
greenhouse gas emitted per unit of energy generated). Hence, future emission sce-

3 parts per million.
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narios can be established based on socio-economic scenarios of how the population,
economics, and technology will develop in the future. An increase in population
will increase emissions, economic growth will increase emissions and technology
developments may reduce the energy intensity of goods and services production and
reduce the carbon intensity of energy production. Developments in agriculture, land
use, and energy supply will also affect the future emission scenarios.

It is difficult to make a single prediction of how the factors that control emissions
will evolve in the future, but alternative emission scenarios have been constructed that
are regarded as equally plausible, each representing an internally consistent vision
of how the world may evolve in the future. These emission scenarios are then fed
into carbon-cycle models that calculate how much of the emitted carbon dioxide
that is absorbed in ocean and land reservoirs, to convert the emission scenarios into
atmospheric concentrations of greenhouse gases.

The IPCC has constructed four main families of socio-economic scenarios over the
twenty-first century, denoted as A1, A2, B1, and B2, as follows, with corresponding
projections of future atmospheric concentrations of greenhouse gases [15, 16, 22]:

A1: This scenario describes a world of rapid economic growth for both rich and poor
societies, leading to a reduction in the wealth gap and a reduction in poverty.
Because of the wealth gain by the poor, population growth diminishes with a
global population peak in the mid-century and a decline thereafter. There is also
a rapid introduction of new and more efficient technologies.

A2: This scenario describes a world of high economic growth, but unevenly distrib-
uted in favour of the rich. Poverty remains high and consequently the global birth
rates remain high resulting in a continuously increasing population throughout
the century. The technological development is slower with introduction of new
technology primarily in the richer parts of the world.

B1: This scenario describes a world where economic growth is evenly distributed,
but slower than in the A1 scenario due to an emphasis on sustainable growth
and environmental protection. This scenario has the same mid-century peak
in population as scenario A1. The global economy shifts toward a less energy
intensive service and information economy, and clean and resource-efficient
technologies are introduced.

B2: This scenario again describes a world of unevenly distributed economic growth.
The population increases continuously, but with a slower rate than the A2 sce-
nario. The technological development is less rapid and more diverse than in the
A1 and B1 scenarios. Sustainability and environmental protection are the focus
at local and regional levels.

The A1 family contains three additional scenarios A1T, A1FI, and A1B, where A1T
assumes a shift towards non-carbon energy sources (T denotes technology), A1FI
assumes a shift toward coal (FI denotes fossil intensive) and A1B assumes a balance
between energy sources (B denotes balance, i.e., not relying too heavily on one
particular energy source).

Future projections of atmospheric concentration of CO2 corresponding to these
emission scenarios and based on two different carbon cycle models are provided
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by the IPCC Data Distribution Centre, and these projections have been assumed in
some of the work in this book, where atmospheric CO2 levels have been introduced
as covariates (Chaps. 5 and 8).

More recently, a set of four representative concentration pathways (RCP) has
been developed to describe possible projections of radiative forcings towards the year
2100 [21, 31]. These pathways represent internally consistent scenarios containing
trajectories of various emissions, concentrations, and land use and are based on
underlying socio-economic scenarios. The pathways have been extended to the year
2300 by a set of extended concentration pathways based on simple extension rules
[19].

1.1.5 Impacts: The Ocean Wave Climate

The impacts of global warming may be many and some of the most debated are sea
level rise, diminishing availability of fresh water, increase in drought, and flooding
events, increased frequency of heat waves, ocean acidification, loss of ecosystems,
melting of the permafrost and ice, increased disease risk and decline in food produc-
tion. In addition, there is the possibility of abrupt climate changes, where the climate
system undergoes a large and rapid shift to an entirely different climate state within
a few decades. The possibility of such abrupt climate changes is deemed low, but if
they were to occur it could be an irreversible catastrophe.

The possible impact of climate change on the ocean wave climate has perhaps
been less studied, but a number of studies have been published in the literature with
future projections of the ocean wave climate. A thorough review of such research
is presented in Chap. 2 and will not be repeated herein, but it is noted that different
studies get different results. Hence, even though most studies indicate that the future
ocean wave climate will tend to be rougher than the current and historic wave cli-
mate, the uncertainty of the future ocean wave climate must be considered large. For
example, in the recent special report from IPCC [17], it is stated that, even though
there are strong linkages between wave height and winds and storminess, due to
insufficient literature there is low confidence4 that there has been an anthropogenic
influence on extreme wave heights and that there is overall low confidence in wave
height projections because of the small number of studies, the lack of consistency
of the different wind projections and limitations in the ability to simulate extreme
winds. It is partly in this scientific discussion this book is meant to contribute, with
an alternative model for long-term time-dependent description of the ocean wave
climate.

4 About 20 % chance of being correct.

http://dx.doi.org/10.1007/978-3-642-30253-4_5
http://dx.doi.org/10.1007/978-3-642-30253-4_8
http://dx.doi.org/10.1007/978-3-642-30253-4_2
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1.1.5.1 Ocean Waves, Sea States, and the Wave Climate

Just as the distinction between weather and climate emphasized above, it is useful
to make a clear distinction between waves, sea states, and wave climate and define
what we understand by the wave climate. Waves are movements of the sea surface or
changes in the sea surface elevation, and just as the weather is constantly changing, the
sea surface elevation at an arbitrary point is constantly changing. An individual wave
is often described by its wave height, wave crest, wave period, wave length, and wave
direction and a physical wave is a superimposition of different wave components.
In order to avoid contributions from small capillary waves and ripples on the sea
surface, a wave height is normally defined as the distance from the maximum and
minimum sea surface elevation where it crosses the zero-level (mean level). The
zero-crossing wave period is defined as the time between two zero-upcrossings (or
zero-downcrossings). The arrival of consecutive crests (crest period) at a stationary
point can also be used. The wave direction is the direction of the wave propagation.
More details on waves can be found in standard textbooks on physical oceanography
such as [28].

The physical mechanisms behind wave generation are complex and not completely
understood, but basically ocean waves are generated by wind forces or wind friction
on the sea surface. However, there are also waves generated by other mechanisms such
as tidal waves and tsunamis. Waves generated by local winds are normally referred
to as wind-sea whereas swell is used to refer to waves that remain after the wind has
died out and that can propagate considerable distances. Waves of many different wave
frequencies and directions are present in the open ocean and wave fields are therefore
often described by wave spectra. These often display two distinctive frequency modes
associated with wind-sea and swell (bimodal wave spectrum). A multi-modal wave
spectrum may have several swell components present.

The sea surface on the open ocean is constantly changing and is characterized by
randomness. It would therefore not be very practical to give a long-term description
of individual waves or the instantaneous states of the sea surface, but for a limited
period of time and in a particular geographical region met-ocean conditions vary in
a stationary way referred to as the sea state. Sea states are characterized by a set of
integrated sea state parameters, which may be averages over certain periods of time.
Examples of such integrated sea state parameters are significant wave height, mean
wave period, and mean wave direction. Of these, the significant wave height, often
referred to as Hs or SWH, is perhaps the most important parameter for describing the
severity of a sea state and this is the parameter that has been studied in the research
presented in this book.

The significant wave height is defined as the average of the 1/3 of the highest
individual waves measured over a specified period of time, and it is a measure of the
sea state. It is implicitly assumed that the sea state is stationary over the measurement
period, which can typically be in the order of 20 min up to a few hours. As was
mentioned above, ocean waves are generated by wind forces, and the significant
wave height is typically a result of wind speed, wind duration (how long time the
wind has blown), and fetch (the length of the area the wind is blowing over). Given
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a certain sea state, there are also statistical models for the distribution of individual
waves, and one common assumption is that the distribution of wave heights in a sea
state approximately follows the Rayleigh distribution [18] (under the assumption that
the sea surface is Gaussian and narrow-banded). This is a one-parameter distribution
where the parameter can be directly related to the significant wave height. Using such
assumptions, short-term statistics of individual waves and long-term statistics of sea
states may be combined to provide long-term distributions of individual waves.

Finally, the ocean wave climate could be construed as the statistics or distribution
of sea states, just as sea states are statistics of individual waves. Typically, the interest
will be in averages or extremes of ocean sea states, and the variability of those, and
trends in the ocean wave climate can be trends in either of such statistics. In this
book, it is the distribution, in space and time, of the significant wave height that is
investigated. Furthermore, long-term trends in the distribution of significant wave
height have been analysed.

1.1.5.2 Long Term Trends and Changes in the Ocean Wave Climate

The oceans are highly dynamic systems, with sea states and wave climate varying
constantly in both space and time. In one sense, however, some of the average and
extreme properties of the sea state can be regarded as stationary if the overall average
boundary conditions do not change. In spite of the continuous variations of sea states
over time, the averages such as seasonal average wave heights and return periods for
extreme waves can be considered as stationary if the average boundary conditions
(e.g., average atmospheric pressure, average wind, average temperatures, etc) remain
stationary.

However, in recent years it has become increasingly apparent that the climate
system overall is not stationary and that the climate will change in the near future. In
fact it has been observed that the climate is already undergoing a change with a global
long-term trend towards higher temperatures and more frequent and intense severe
weather events, although local and regional trends may differ from this global trend.
These climate changes—man-made or not—will thus change the overall boundary
conditions for the sea, and the assumption that the average sea states can be regarded
as stationary ceases to be valid.

One approach for investigating the impacts of climate change on the ocean wave
climate is to use physical wave models in conjunction with wind fields or sea level
pressure fields, since winds are generating the waves and winds are generated by
pressure gradients. A significant amount of research has gone into the development
of sophisticated wave models [11] which can be fed by output from global circulation
models. Future projections of the ocean wave climate can then be obtained based on
projections of wind or pressure fields. Ensemble studies can be carried out in order to
quantify uncertainties, as for example reported in [10], with different climate models
or small perturbations of the initial conditions yielding different results. However, it
has been increasingly acknowledged that there are notable statistical challenges in
projecting future climate from such ensemble studies, see e.g., [6, 26, 29].
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The research presented in this book represents an alternative approach to modeling
the impacts of climate change on the wave climate. It is a stochastic approach rather
than a geophysical approach, and it should rather be seen as a complement to the
efforts made in developing physical wave models than a competitor to such models.
It is believed that by developing a statistical model, trends in observed wave climate
may be identified in order to assess the impacts of climate change. Furthermore, such
trends can be extrapolated, or regression on projections of relevant covariates can be
used in order to make projections of future impacts of future climate change. It is noted
that a number of statistical models for investigating the impact of climate change on
the ocean wave climate have been reported in the literature, and a comprehensive
literature review is presented in Chap. 2 of this book.

1.1.6 Ocean Waves and Maritime Safety

Ships and other marine structures operate at sea and are continuously exposed to
the environmental forces from waves and wind. Failure to withstand such forces
may lead to severe consequences, and ocean waves are obviously important for
maritime safety and for marine safety in general. Possible impacts of climate change
may be a roughening of the wave climate, which could lead to increased risk to
maritime transportation. In fact, changes in the ocean wave climate may have serious
implications on maritime, offshore and coastal activities and combined with sea level
rise, coastal areas throughout the globe may be seriously affected.

Maritime accident databases reveal that bad weather account for a great number
of ship losses and accidents, and there are several failure modes that are related to
the wave forces. Wave-induced forces will impact both global and local loads on
a ship structure. If extreme global loads exceed the structural capacity, breaking in
two may occur in extreme sagging conditions. Such failure modes are mostly related
to the extreme environmental conditions, and possible changes in the ocean wave
climate may increase the extreme loads a ship is expected to experience throughout
its lifetime. Another failure mode directly related to wave motion is fatigue. In this
case, also the average wave conditions are important, and trends in both extreme
as well as low and moderated wave conditions may have an impact on ship safety.
Other failure modes that are directly related to the waves are parametric roll, capsize,
sloshing of tanks and cargo shift, breaking of windows, and loss of containers. In
addition, wave forces may influence ship stability and manoeuvrability, and thereby
increase the risk of grounding and impede handling operations.

When designing and constructing ocean going ships, severe sea states are taken
into account. In order to do this, there is a need for a description of the variability of
various sea state parameters such as the significant wave height, the mean wave period
and other relevant parameters. Typically, a number of design sea states are defined
based on their return periods and exceedance probabilities and ships are designed
to withstand the environmental loads they are likely to encounter throughout their
lifetimes. One way of defining structural requirements is by the so-called inverse first

http://dx.doi.org/10.1007/978-3-642-30253-4_2
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order reliability method (I-FORM), using environmental contour lines as discussed in
[12]. Such environmental contour lines may be established from the joint distributions
of relevant sea-state parameters such as significant wave height and mean wave
period.

If there are long-term trends in the wave climate, be it due to climate change or
not, these would need to be taken into account in the structural dimensioning of ships
in order to ensure that ships are safe in a future environment. One way to do this,
is to estimate the possible changes in the ocean wave climate, e.g., the significant
wave height and mean wave period, and update their joint distribution. In such a way,
modified environmental contours can be obtained that incorporates possible future
changes in the wave climate due to climate change. This will enable ship designers
to assess the impact of climate change on wave induced loads and responses, and
consequently allow for adaptation by adequately strengthening the ship structures.

The Bayesian hierarchical space-time models presented in this book are models
for significant wave height, and results from these models provide estimates of how
the marginal distribution of significant wave height might change in the future due to
climate change. In order to obtain the joint distribution of significant wave height and
mean wave period, one may assume a conditional model, where the distribution of
wave period is conditional on the significant wave height and where the conditional
distribution for wave period remains unaffected by the climate change (although the
marginal distribution of wave period obviously will be affected). Hence, the results
from the models for significant wave height can be used to modify environmental
contour lines used in structural design. This can be used to assess the impact of
climate change on wave-induced loads and responses on ships and consequently to
propose how to update design rules for ships, as illustrated in Chap. 7 of this book.

1.2 Stochastic Modeling of Environmental Processes

As explained in the previous section, the statistics of the present and future ocean
sea states, i.e., the wave climate, is of great interest to the maritime industries, and
this monograph is concerned with developing stochastic models of significant wave
height as a way of exploring this. This is seen as an alternative to more geophysics
based models for describing the statistics of oceanic sea states.

1.2.1 Probabilistics Versus Deterministics

Statistics, with its foundation in probability theory, is a relatively new science, even
though the concept of probability is ancient. Currently, probability theory is often
used to describe the underlying mechanics and regularities of complex systems,
but for a long time following the scientific revolution of the sixteenth century, the
predominant world-view was deterministic. It was believed that if exact knowledge

http://dx.doi.org/10.1007/978-3-642-30253-4_7
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of the initial conditions of a system and of the causal laws governing the system were
available, the exact state of the system could be determined at any later point in time.

A number of new discoveries made many scientists believe in determinism, i.e.,
that causality implies that any state of a system is completely determined by its prior
states just like clockwork. Thomas Hobbes (1588–1679) was one of the earlier expo-
nents of such a world-view and in his political philosophy, he basically regarded
humans as being matter and motion, obeying the same physical laws as other matter
and motion. The great success of Isaac Newton (1642–1727) and his formulation of
Newtonian physics was also important for promoting a mechanistic, deterministic
world-view. Suddenly, the motions of all the physical matter of the universe, be it
celestial bodies or earthly objects, were obeying the same universal laws and could
be explained by a few mechanical principles. Other influential scientists and philoso-
phers of this era that expressed their support for different versions of a deterministic
world were René Descartes (1596–1650), Baruch Spinoza (1632–1677), Gottfried
Leibniz (1646–1716) and David Hume (1711–1776).

The mechanical and deterministic world-view is perhaps best expressed by Pierre-
Simon Laplace (1749–1827) as follows, in the first articulation of causal or scientific
determinism:

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would be present before
its eyes.

In such a world, randomness would not exist and if it would be possible to have
complete knowledge of all physical matter and all of the laws governing that matter
at any one time, then it would be theoretically possible to compute the time and
place of every event that will ever occur. Moreover, any failure to precisely predict
future events would be due to incomplete understanding of the universal laws and
incomplete knowledge of the exact state of the universe.

However, in the late nineteenth and early twentieth century, new scientific dis-
coveries started to cast serious doubts on a strictly deterministic world-view. Chaos
theory and the associated butterfly effect predicted the sensitive dependence upon
the development of a system on the initial conditions; even an infinitesimally small
perturbation of initial conditions of a deterministic nonlinear system can lead to large
changes at a later stage. Hence, even if the world is strictly deterministic, future events
cannot be precisely predicted if there are even small errors in the knowledge of initial
conditions, and a purely deterministic description of the world would be impractical.
The development of quantum mechanics in the beginning of the twentieth century and
the formulation of the Heisenberg uncertainty principle further questioned whether
the fundamental laws of the universe could be considered deterministic. The reality
according to quantum physics does not seem to be absolutely deterministic, at least
at atomic scales, suggesting a more probabilistic understanding of the world. Further



14 1 Introduction and Background

arguments for a probabilistic word-view are presented in [24], based on descriptions
of non-equilibrium thermodynamics and time irreversible processes.

Regardless of whether the world is fundamentally probabilistic or deterministic
but with uncertain knowledge of the underlying physical laws, physical environmen-
tal processes inevitably displays some seemingly causal relationships along with a
considerable degree of randomness. Hence, it is argued that it would make sense to
describe such phenomena probabilistically, i.e., using probability theory and statistics
to model physical processes.

The foundation of probability theory goes back to the sixteenth century and the
elementary probability rules formulated by Girolamo Cardano (1501–1576) and to
the works of Pierre de Fermat (1601–1665) and Blaise Pascal (1623–1662) in the
seventeenth century. In the nineteenth century, Pierre-Simon Laplace established
many of the fundamental results in classical statistics and probability theory (the
very same as referred to above for having expressed a deterministic world-view),
and in the twentieth century, Andrey Kolmogorov (1903–1987) formulated a set of
axioms for probability theory and introduced the notion of probability space that
became the foundations of modern probability theory.

In probability theory, a stochastic process (or a random process) is a set of random
variables defined on a state space that is often used to describe the evolution of a
complex system over time. It is a probabilistic counterpart to a deterministic process,
where there are several possible ways for the system to evolve from an initial state.
Stochastic processes, with their foundations in probability theory and a probabilistic
world-view are often used to describe complex environmental systems, and have
been utilized in this book to describe the statistics of ocean sea states. It represents
an alternative to describing the ocean wave climate as fundamentally deterministic
processes by more physics-based wave models.

1.2.1.1 Bayesian Statistics

Statistics is normally thought of as all aspects of collection, organization, analysis,
interpretation, and presentation of data. Bayesian statistics is a branch of statistics
relying on Bayes’ theorem, named after Thomas Bayes (1701–1761) who first used
it. Pierre-Simon Laplace later stated the theorem in a more general form in 1812.
Basically, it expresses how a subjective degree of belief should rationally change in
light of evidence or data. Hence, it involves a prior belief, evidence or data, and a
posterior belief or posterior probability that has been updated based on the evidence.
Mathematically, Bayes’ theorem can be expressed as

P(A|X) = P(X |A)P(A)
P(X)

= P(X |A)P(A)
∑

A′ P(X |A′)P(A′)
∝ P(X |A)P(A)

where P(A) denotes the prior degree of belief of event A, P(X |A) denotes the prob-
ability of the evidence X conditioned on event A, often referred to as the likelihood
of A, P(X) is the unconditional probability of X and P(A|X) is the updated degree
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of belief of event A in light of the evidence X , often referred to as the posterior
probability of A. In Bayesian statistical modeling, A would typically represent the
model parameters and X would represent the data.

In Bayesian statistical models, the formulation of prior degree of belief, typically
expressed as prior distributions for any unknown parameters, is therefore an extra
requirement. The parameters of such prior distributions are often called hyperparame-
ters. Bayesian inference uses Bayes’ theorem to update the probability distributions
of model parameters as additional evidence or data is gathered, and such Bayesian
updating is particularly important in dynamic analysis of sequences of data, see e.g.,
[32]. The basic concepts and theory of Bayesian statistics are thoroughly covered in
e.g., [2], including foundations, modeling and inference in Bayesian statistics.

1.2.2 Bayesian Hierarchical Space-Time Models

In this monograph, the aim has been to develop sensible stochastic models for the
ocean wave climate. The first steps comprised of a literature survey in order to appre-
ciate the state of the art and what type of models had previously been used to model
the evolution of the ocean wave climate. Subsequently, a review of stochastic mod-
els for describing other relevant processes was performed. These initial literature
surveys are reported in Chap. 2 of this book and will not be repeated in this introduc-
tion, but the outcome of these initial steps was that a type of models referred to as
Bayesian hierarchical space-time models was identified as a promising framework
for modeling the ocean wave climate. Hence, such models have been developed in
this book, as presented in Chaps. 3, 4, 5 and 6 and have also been applied in Chaps.
7 and 8.

The framework of Bayesian hierarchical space-time models have successfully
been applied to model a number of different environmental and other processes in
the past [34]. For example, in [35], a Bayesian hierarchical space-time model was
applied to atmospheric data of monthly maximum temperature and in [36] a similar
model was used to model tropical ocean surface winds. Much inspired by these
models, [23] presents a related model for earthquake data. A similar framework was
used for modeling the population of house finch in [33]. Such stochastic models
include the physics of the studied phenomena through data as well as various terms
reflecting spatial, temporal, and spatial-temporal processes. The success of such
models in describing different sets of environmental data in space and time inspired
the development of similar models for the ocean wave climate.

Some of the main features of such stochastic models are that they are hierarchical
in nature, with an observation model and several underlying state models, sometimes
referred to as process models and parameter models. The state models may be split
into different processes, where one may be a purely spatial process, another a purely
temporal process and one may be a spatio-temporal process. Furthermore, inference
is done in a Bayesian setting, relying on results from Bayesian statistics. In the

http://dx.doi.org/10.1007/978-3-642-30253-4_2
http://dx.doi.org/10.1007/978-3-642-30253-4_3
http://dx.doi.org/10.1007/978-3-642-30253-4_4
http://dx.doi.org/10.1007/978-3-642-30253-4_5
http://dx.doi.org/10.1007/978-3-642-30253-4_6
http://dx.doi.org/10.1007/978-3-642-30253-4_7
http://dx.doi.org/10.1007/978-3-642-30253-4_8
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following, a brief introduction to these main characteristics of the models presented
in this book will be given and reference is made to [8] for more in-depth discussions.

1.2.2.1 Hierarchical Models

The basis of hierarchical models can be expressed in the following relationship
between joint and conditional densities, where x , y and z denotes some random
quantities and f (·) are distribution functions:

f (x, y, z) = f (x |y, z) f (y|z) f (z)

Complex systems can be described as a collection of random variables, and mod-
eling such systems involves establishing the joint distribution of these random vari-
ables. Using the relationship above, a complicated joint distribution that may be
extremely difficult to determine can be decomposed into a series of conditional mod-
els that are much simpler to specify. The product of a series of conditional models
can be quite complex, even with simple conditional models and in this way, a com-
plex modeling problem can be reduced to several sub-problems that are much easier
to handle. Such conditional models may incorporate uncertainties from different
sources, e.g., uncertainty in the data (for example due to measurement inaccuracy),
uncertainty in the models that tries to explain the data and uncertainty in the parame-
ters in the models. If uncertainties of the model parameters are included in the model,
i.e., including prior distributions for the model parameters (or parameter models), the
resulting hierarchical model is often referred to as a Bayesian hierarchical model [8].

A hierarchical model may contain different levels, and the first level will typically
be the observation model or data model. At this level, the observations are often
modelled as some hidden or latent process, often construed as the true process, and
some uncertainty. In other words, a conditional distribution for the observations are
specified conditioned on the latent process and the process model parameters. At
the next level of abstraction, the state model or process model may be specified as a
distribution conditional on a set of model parameters, i.e., a distribution is specified
for the latent process given a set of model parameters. At the final level, uncertainty
may be assigned to the model parameters by assigning distributions to them; the prior
distributions. These three levels constitute the main levels of a Bayesian hierarchical
model, but each of the levels may be further divided into different components and
may comprise various sub-levels. For example, in the models for significant wave
height presented in this book, the state process is split into a purely spatial process,
a purely temporal process, and a process with space-time interactions at short time-
scales.

A simple hierarchical model may be built up in the following way, letting Z
denote the data, H denote the latent process and θ denote the model parameters, and
defining the (1) Observation model: f (Z |H, θ); (2) State model: f (H |θ); (3) Prior
distribution on model parameter f (θ):
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f (Z , H, θ) = f (Z |H, θ) f (H |θ) f (θ)

The conditional distribution of the latent process and the parameters given the data
can now easily be found from Bayes’ theorem,

f (H, θ |Z) = f (Z |H, θ) f (H |θ) f (θ)

f (Z)

and this is normally referred to as the posterior distribution. By construction, this
can be obtained by specifying sensible state models and prior distributions for the
parameters that appears on the right-hand side of this equation. Within the framework
of Bayesian statistics, all inference, and consequently all predictions, on the process
H and the model parameters θ will depend on this posterior, and the main task
becomes estimating the posterior distribution. Often, environmental models in space
and time are quite complex and of high dimensionality and the computation of the
posterior distribution analytically may be far from straightforward. However, Markov
chain Monte Carlo methods have been demonstrated to be a useful computational
tool in many cases that allows simulating from such posterior distributions.

1.2.2.2 Spatial Random Processes

The stochastic models for significant wave height have been specified within the
framework of Bayesian hierarchical models outlined in the previous subsection,
where the state model included a contribution from a separate spatial process. The
spatial field was modelled as a Markov random field (MRF), an example of models
defined by conditional distributions, but an alternative approach to model spatial
variability could be to assume a geostatistical process and estimating the associated
variogram (see e.g., [8]).

The main idea behind Markov random fields is to specify the spatial process,
Z = (Z1, . . . , Zn) through the conditional distributions p(Zi |Z j , j �= i). The
Markovian property is an important basis for Markov random fields and it spec-
ifies conditional independence, which may significantly simplify the conditional
distributions and reduce the number of model parameters. For example, assuming
observations on a two-dimensional lattice, the Markov assumption implies that the
conditional distribution at a certain location only depends on the values of some
nearby locations; locations belonging to its neighbourhood. The size of the neigh-
bourhood can be specified and for a first order Markov random field, the neighbour-
hood is simply all nearest neighbours. Hence, in a first order Markov spatial field, the
conditional distributions are only dependent on the values of the nearest neighbours.
Letting Ni denote the neighbourhood of location i , this means that, for all locations
i , p(Zi |Z j , j �= i) = p(Zi |Z j , j ∈ Ni ), and the spatial process can be defined at
each location conditioned on the process values of all nearest neighbours.

There are some restrictions on possible conditional distributions that gives a well-
defined model, but it can be shown that by assuming for example conditional distri-
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butions on the form [25]

p(Zi |Z j , j �= i) = μi +
∑

j∈Ni

βi j (Z j − μ j )+ εi , εi ∼ N (0, σ 2)

one gets the auto-normal model with the multivariate normal joint distribution
p(Z1, . . . , Zn) = MV N (μ, σ 2 B−1), if the following restrictions are met:

1. j ∈ Ni ⇔ i ∈ N j

2. βi j = β j i

3. B = {
bi j

}
is positive definite, with

4. bi j =
⎧
⎨

⎩

1 if i = j
−βi j if i ∈ N j

0 otherwise

In the model for significant wave height, such a spatial model was assumed with
the neighbourhood defined as the nearest neighbour in all cardinal directions and
with different dependence parameters in longitudinal and lateral directions.

1.2.2.3 Temporal Random Processes

The models for significant wave height also contain some purely temporal compo-
nents independent in space. Those purely temporal components were modelled as
simple Gaussian processes but there are many other ways one could have modelled
temporal processes. Basic time-series can for example be modelled as white noise
processes, random-walk processes or so-called moving-average processes. In the
model for significant wave height, purely temporal processes for long-term trends and
seasonal variability were modelled as simple regression models with time as covari-
ate and Gaussian white noise. In [30], various time-series models were applied to
spatially averaged significant wave height data in order to investigate possible trends.

One type of temporal processes or time-series models is the autoregressive process
(AR), and this type of models is used when observations of the process depend on
one or more observations immediately preceding it. For example, an autoregressive
model of order p is defined as follows

Xt = μ+
p∑

i=1

ϕi (Xt−i − μ)+ εt , εt ∼ N (0, σ 2)

In the first order autoregressive process, AR(1), for example, the process is only
dependent on the previous observation and may be expressed as Xt = μ+ϕ(Xt−1 −
μ)+ εt .
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1.2.2.4 Spatio-Temporal Models

Spatio-temporal processes consider dependencies in both spatial location and time
as well as interdependencies between space and time. Two possible approaches for
modeling such processes could be by way of multivariate time series, where each
spatial location is represented by a temporal process, or by temporal evolution of a
spatial process. In the model for significant wave height presented in this book, a
process describing short-term dynamic behaviour is included in the state model as a
multivariate time-series; a vector autoregressive process.

A vector autoregressive process or model (VAR) can be used to model linear inter-
dependencies among multiple time series and is a generalization of the autoregressive
models introduced above. The evolution of each variable in a vector autoregressive
model is explained by linear functions of its own past evolution and on the past evo-
lution of the other variables in the model. In the model for significant wave height,
short-term dynamic behaviour was modelled as a multivariate time-series at each
spatial location with a first-order, nearest neighbour vector autoregressive model.
Interdependent time-series at each location were modelled as linear combinations of
all neighbouring time-series, including itself, at the previous time-point.

A full Bayesian hierarchical spatio-temporal process can be constructed from a
combination of spatial processes, temporal processes and spatio-temporal processes
in order to model dependencies in both space and time at various scales. In the
model for significant wave height presented in this book, the state or process model
or the latent process is modelled as a combination of a spatial process, temporal
processes for long-term trends, and seasonality and a short-term dynamic spatio-
temporal process.

1.2.3 Waves as Stochastic Processes

Although the dynamics of the sea and the mechanisms underlying the generation
of waves on the sea surface inevitably follow the laws of physics and therefore,
in principle, the sea state could be described deterministically, in reality this is not
possible due to the complexity of the system. Hence, the description of waves and
the sea must be done probabilistically. The state of the oceans and the characteristics
of the waves are influenced by innumerable external factors, and the most influential
boundary conditions are related to the atmosphere and the global and local climate
in general. Atmospheric pressure, wind, temperature, precipitation, solar radiation
and heat, tidal movements, the rotation of the earth, and movements of the seabed
(e.g., from earthquakes or volcanic activities) are examples of external factors that
jointly influence the generation of waves on the sea surface.

Hence, the oceans are dynamic systems that are influenced by innumerable factors
and an infinite number of interrelated parameters would be needed in order to provide
an exact description of the sea in any given point in time. It is simply not possible
to know all and every one of these parameters. The unknown parameters introduce
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uncertainties to any description of the system and an exact description of the sea is
therefore not feasible. Thus, the problem of describing the sea turns into a statistical
problem, and probabilistic models are needed in order to represent waves on the
sea surface and to provide a better understanding of the maritime environment in
which ships operate. In this regard stochastic models would seem to be the most
appropriate approach to describe extreme waves. Also, the fact that the sea state is
normally described through different average and extreme properties, as discussed
briefly above, indicates that statistical tools are appropriate to model waves and sea
states. A comprehensive overview of statistical techniques, methodologies, theories
and tools used in climatic analyses is presented in [27].

Stochastic modeling of ocean waves can be performed on two very different time
scales. In the short-term models, the parameters of most concern may be those for
individual waves such as individual wave height, wave length, and period, etc. The
times involved in such models are normally in the order from a few seconds to a
couple of hours. The long-term models mainly refer to the description of spectral
parameters, and the times that are involved normally span over many years. It is the
latter time scales that are of main interest in the present work, considering modeling
of possible long-term trends due to climate change. However, there are tools, to
be discussed later, for combining the long-term statistics of significant wave height
with short-term statistics of individual wave heights in order to estimate for example
extreme crest heights.

1.3 Data

As with any statistical modeling, the availability of environmental data is crucial for
statistical modeling of environmental processes. For the purpose of modeling the
ocean wave climate in space and time, space-time data of wave climate parameters
such as the significant wave height are needed. Furthermore, when covariates are to
be included in the model, data for such explanatory variables are needed. Basically,
two sets of data have been needed in the modeling of ocean wave climate presented
in this monograph: ocean wave data with sufficient resolution in both space and time,
and data on levels of atmospheric greenhouse gases.

Ocean wave data have been collected for a long time, and sources of data include
visual observations from ships, in-situ measurements such as wave-rider buoy data,
satellite data, and numerical model data. However, most of these data fail to meet
the requirements for spatio-temporal modeling. Buoy data for example, may contain
long records of data but are restricted to a single location, whereas satellite data
which typically have good spatial coverage, are associated with poor sampling char-
acteristics and do not yet cover long time-histories needed for identifying long-term
trends. Visual observations suffer from other shortcomings; even though they typi-
cally contain a long time-history and data at various spatial locations throughout the
globe, the fact that ships tend to avoid the worst weather indicate that extreme events
may be seriously under-represented in such data. Another alternative is numerical
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data from hindcast studies, which are model-generated data and therefore not actual
observations, but that may contain the best combination of spatial and temporal res-
olution. This alternative was chosen for the modeling presented in this book and
reanalysis data from the ERA-40 reanalysis project have been exploited. These data
contain data with global coverage at 1.5◦ × 1.5◦ spatial resolution and more than
44-year coverage of 6-hourly temporal resolution. A more lengthy discussion of the
various sources of wave data is provided in subsequent chapters and provides some
more details of the ERA-40 data that have been used. Recently, an interesting mixed
statistical model for including both reanalysis data and observational records of wave
heights was proposed in [20].

The chosen data-set is global, and there is a need to select a restricted area to
investigate. On the one hand, the selected area should be large enough for the spatial
features of the model to contribute, but it should also be small enough for the temporal
features related to long-term trends and seasonal variation to be considered homo-
geneous. Another issue is that the computational time increases with the amount of
data, so both the spatial and the temporal coverage needed to be limited. Hence, it
was decided that an area corresponding to a grid of 17 × 9 = 153 locations would
be a reasonable compromise. Furthermore, North Atlantic conditions are normally
used as a basis for ship design and therefore, an area in the North Atlantic Ocean was
selected. However, in Chap. 8 , the model is also applied to data from other ocean
areas.

With regards to the explanatory variables, data on atmospheric levels of green-
house gas are needed, and it was decided that data on the atmospheric concentrations
of CO2 would serve as a reasonable proxy. Furthermore, it is acknowledged that
CO2 mixes well in the atmosphere, so that these data do not need to include spatial
variability. Such data are available from the Mauna Loa observatory and have been
obtained in this study. In order to make future projections of the ocean wave climate,
projections of CO2 proposed by the IPCC based on various emission scenarios are
assumed.

Hence, having formulated a clear problem statement, established the structure
of the stochastic model and obtained relevant data to feed the model, the model
would be ready for implementation. In order to implement this rather complicated
model, however, and make inference and predictions, the powerful computational
tool of MCMC is utilized. In appendix A, a brief introduction to MCMC methods
will be given, with an emphasis on the algorithms that have been used in the actual
implementation of the model.

1.4 Some Identified Areas for Further Research

Having spent 4 years of research on the future wave climate, a relevant question to
ask is whether we now can be more certain about the future climate of the oceans.
Unfortunately, the answer would have to be no. As the famous saying goes, “It is

http://dx.doi.org/10.1007/978-3-642-30253-4_8
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difficult to make predictions, especially about the future,” 5 predictions of the future
wave climate remain difficult and there are still considerable uncertainties to what the
actual wave climate will be and indeed uncertainties to how large the uncertainties
are. However, the aim of this book was never to give a definitive answer to such a
question. It is hoped, however, that the work presented in this book can contribute
to highlight an important research area and that it can motivate further research on
this important topic, with serious implications for maritime, offshore and coastal
societies. In particular, it promotes statistics and stochastic modeling as an important
tool in oceanography and climatic sciences and it is hoped that it may motivate
oceanographers to employ statistical methods as well as inspire an interest for the
ocean wave climate among statisticians.

Hence, this book marks by no means the end of the road of statistical modeling of
the ocean climate, and there are several unresolved research areas. In the following,
some thoughts on unresolved issues that are open for further research are given.
These are issues that have been identified in our research, but the issues mentioned
are in no way meant to be exclusive nor exhaustive; they are merely some possible
areas, out of many, which may be of interest for further research.

The models presented in this thesis have been restricted to the univariate case,
modeling significant wave height in space and time. In practical engineering appli-
cations, however, the joint distribution of several environmental parameters are often
needed, and it would be interesting to extend the models to include bivariate or multi-
variate descriptions of the wave climate. Relevant parameters that could be included
in such models are wave period, wave direction, storm surge, tide and wind speed.
Furthermore, in extreme value analyses it is still an open question how to define
multivariate return periods, and this could be an interesting area for further research,
see e.g., [7].

It is also acknowledged that the statistical models presented in this book could
have been extended with other explanatory variables. It is well known that waves
are basically driven by winds which are results of pressure gradients. Hence, it
would be interesting to investigate how wind fields and pressure fields could have
been included as covariates. One complicating issue in this regards is that if such
covariates are non-stationary, it could be difficult to isolate the long term trends from
the local and short term effects. It would also be of interest to include some more
physical or geophysical components into a stochastic model, making better use of
the huge knowledge base available in the meteorologic and oceanographic research
communities.

A wave field typically has two main types of contributions, i.e., from locally
generated wind waves and from swell. It would be interesting to develop models that
distinguish between these effects and that are able to model the multimodality in the
wave climate. Possibly, trends in the wind speed could be investigated separately and
compared to the trends in the wave climate in order to gain insight. Correlated trends
in wind speed and wave height over an area could indicate that the increasing waves
are due to locally generated winds whereas increases in wave heights that are not

5 Often attributed to the physicist Niels Boer, but the actual origin of this quote is unknown.
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accompanied by increased wind would possibly be due to increasing swells, most
likely due to changes in wind tracks and increasing winds in other areas.

This book has explored various alternative models, but it proved difficult to select
the best one. Hence, robust and reliable model selection in complex hierarchical
models has been identified as an interesting area for further research. Moreover, the
sensitivity of the different assumptions adopted in the proposed models could be
investigated further and various different model choices and alternative parametriza-
tions of the models could be explored.

In summary, even though the research presented in this thesis does not provide
any definitive conclusions about the future wave climate, and there are still a number
of unresolved issues, it is believed that it constitutes a small but timely contribution
to the current debate of climate change and its impacts on the ocean wave climate.
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Chapter 2
Literature Survey on Stochastic Wave Models

This chapter aims at providing a comprehensive, up-to-date review of statistical
models proposed for modeling long-term variability in extreme waves and sea states
as well as a review of alternative approaches from other areas of application. A
review of wave climate projections is also included. Efforts have been made to
include all relevant and important work to make this literature survey as complete as
possible, which has resulted in a rather voluminous list of references at the end of
the chapter. Notwithstanding, due to the enormous amount of literature in this field
some important works might inevitably have been omitted. This is unintended and
it should be noted that important contributions to the discussion herein might exist
of which I have not been aware. Nevertheless, it is believed that this literature study
contains a fair review of relevant literature and as such that it gives a good indication
of state-of-the art within the field and may serve as a basis for further research on
stochastic modeling of extreme waves and sea states. A brief review of available
wave data sources is also presented in this chapter. The literature survey presented
in this chapter is based on [196].

2.1 Wave Data and Data Sources

As in all statistical modeling, a crucial prerequisite for any sensible modeling and
reliable analysis is the availability of statistical data. For example, if models describ-
ing the spatio-temporal variability of extreme waves are to be developed, wave data
with sufficient spatio-temporal resolution is needed. Furthermore, the lack of ade-
quate coverage in the data will restrict the scope of the statistical models that can be
used.

Wave data can be obtained from buoys, laser measurements, satellite images,
shipborne wave recorders, or be generated by numerical wave models. Of these,
buoy measurements are most reliable, but the spatial coverage is limited. For regions
where buoy data are not available, satellite data may be an alternative for estimation
of wave heights [117, 152], and there are different satellites that collect such data.
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Examples of satellite missions are the European Remote Sensing Satellites (ERS-1
and ERS-2), the Topex/Poseidon mission and Jason-1 and -2 missions. Some of the
data from these satellite missions are available from various online sources on the
Internet.

Wave parameters derived from satellite altimeter data were demonstrated to be
in reasonable agreement with buoy measurements by the end of last century [102].
More recently, further validation of wave heights measured from altimeters have been
performed, and the agreement with buoy data is generally good [63, 156]. However,
corrections due to biases may be required, and both negative and positive biases for
the significant wave height have been reported, indicating that corrections are region-
dependent [136]. Sea state parameters such as significant wave height derived from
synthetic aperture radar images taken from satellites were addressed in [123].

Ship observations are another source of wave data which covers areas where buoy
wave measurements are not available. The Voluntary Observing Ship (VOS) scheme
has been in operation for almost 150 years and has a large set of voluntary collected
data. However, due to the fact that ships tend to avoid extreme weather whenever
possible, extreme wave events are likely to be under-represented in ship observations
and hence such data are not ideally suited to model extreme wave events [57, 150].

Recently, a novel wave acquisition stereo system (WASS) based on a variational
image sensor and video observational technology in order to reconstruct the 4D
dynamics of ocean waves was developed [68]. The spatial and temporal data provided
by this system would be rich in statistical content compared to buoy data, but the
availability of such data are presumably still limited. Data quality and validation may
also be an open issue.

In general, measurements of wave parameters are more scarce than meteorological
data such as wind and pressure fields which are collected more systematically and
covering a wider area. An alternative is therefore to use output from wave models
that uses meteorological data as input rather than to use wave data that are measured
directly.

Wave models are normally used for forecast or hindcast of sea states [90]. Fore-
casts typically predict sea states up to 3–5 days ahead. Hindcast modeling can be
used to calibrate the models after precise meteorological measurements have been
collected. It can also be used as a basis for design but it is stressed that quality con-
trol is necessary and possible errors and biases should be identified and corrected
[24]. In general, it is acknowledged that wave buoys are regarded as highly accurate
instruments, and it is stated in, e.g., [22] that both the systematic and random error of
significant wave height measurements by buoys are negligible. However, when cali-
brating hindcast data against observations, the data will still be subject to epistemic
uncertainty due to the way the calibration is carried out and high values of significant
wave height will normally be more affected by uncertainties, as discussed in [24].

Currently, data are available from various reanalysis projects [38]. For example,
40 year of meteorological data are available from the NCEP/NCAR reanalysis project
[111] that could be used to run wave models [52, 187]. A more recent reanalysis
project, ERA-40 [193], was carried out by the European Center for Medium-Range
Weather Forecasts (ECMWF) and covers a 45-year period from 1957 to 2002. The
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data contain six-hourly fields of global wave parameters such as significant wave
height, mean wave direction and mean wave period as well as mean sea level pressure
and wind fields and other meteorological parameters. A large part of this reanalysis
data are freely available for download from their website for research purposes.1

It has been reported that the ERA-40 dataset contains some inhomogeneities in
time and that it underestimates high wave heights [185], but corrected datasets for
the significant wave height have been produced [36]. Hence, a new 45-year global
six-hourly dataset of significant wave height has been created, and the corrected data
show clear improvements compared to the original data. In [39] it is stated that this
dataset can be obtained freely from the authors for scientific purposes.

2.2 Review of Statistical Models for Extreme Waves

In order to model long-term trends in the intensity and frequency of occurrence of
extreme wave events or extreme sea states due to climate change, appropriate models
must be used. There are numerous stochastic wave models proposed in the literature,
but most of these are developed for other purposes than predicting such long-term
trends. Models used for wave forecasting, for example in operational simulation of
safety of ships and offshore structures typically have a short-term perspective, and
cannot be used to investigate long-term trends. Also, many wave models assume
stationary or cyclic time series, which would not be the case if climate change is a
reality.

There are different approaches to estimating the extreme wave heights at a certain
location based on available wave data, and some of the most widely used are the initial
distribution method, the annual maxima method, the peak-over-threshold method,
and the MEan Number of Up-crossings (MENU) method. The initial distribution
method uses data (measured or calculated) of all wave heights and the extreme
wave height of a certain return period is estimated as the quantile h p of the wave
height distribution F(h) with probability p. The annual maxima approach uses only
the annual (or block) maxima and the extreme wave height will have one of the
three limit distributions referred to as the family of the Generalized Extreme Value
distribution. The peak-over-threshold approach uses data with wave heights greater
than a certain threshold, and thus allows for increased number of samples compared to
the annual maxima approach. Waves exceeding this threshold would then be modeled
according to the Generalized Pareto distribution. However, the peaks-over-threshold
method has demonstrated a clear dependence on the threshold and is therefore not
very reliable. The MENU method determines the return period of an extreme wave of
a certain wave height by requiring that the expected or mean number of up-crossings
of this wave height will be one for that time interval.

Another approach useful in extreme event modeling is the use of quantile func-
tions, an alternative way of defining a probability distribution [78]. The quantile func-

1 Data available from url: http://data-portal.ecmwf.int/data/d/era40_daily/

http://data-portal.ecmwf.int/data/d/era40_daily/
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tion, Q, is a function of the cumulative probability of a distribution and is simply the
inverse of the cumulative density function: Q(p) = F−1(p) and F(x) = Q−1(x).
This function can then be used in frequency analysis to find useful estimates of
the quantiles of relevant return periods T of extreme events in the upper tail of the
frequency distribution, QT = Q(1 − 1/T ).

Yet another approach for estimating the maxima of a stationary process is to
model the number of extreme events, defined as the number of times the process
crosses a fixed level u in the upward direction, as a Poisson process (a counting
process {N (t), t ≥ 0} with N (0) = 0, independent increments and with number of
events in a time interval of length t Poisson distributed with mean λt is said to be a
Poisson process with rate λ) and apply the Rice formula to compute the intensity of
the extreme events (see e.g., [164]).

In the following, a brief review of some wave models proposed in the literature
will be given. This includes a brief description of some short-term and stationary
wave models as well as a more comprehensive review of proposed approaches to
modeling long-term trends due to global climatic changes. An introduction to sto-
chastic analysis of ocean waves can be found in [149] and [191], albeit the latter with
a particular emphasis on freak or rogue waves.

2.2.1 Short-Term Stochastic Wave Models

Waves are generated from wind actions and wave predictions are often based on
knowledge of the generating wind and wind-wave relationships. Most wave models
for operational wave forecasting are based on the energy balance equation; there is a
general consensus that this describes the fundamental principle for wave predictions,
and significant progress has been made in recent decades [106]. Currently, the third-
generation wave model WAM is one of the most widely used models for wave
forecasting [82, 115] computing the wave spectrum from physical first principles.
Other widely used wave models are Wave Watch and SWAN, and there exist a number
of other models as well [84]. However, wave generation is basically an uncertain and
random process which makes it difficult to model deterministically, and in [19, 58]
approaches using neural networks were proposed as an alternative to deterministic
wave forecasting models.

There are a number of short-term, statistical wave models for modeling of individ-
ual waves and for predicting and forecasting sea states in the not too distant future.
Most of the models for individual waves are based on Gaussian approaches, but other
types of stochastic wave models have also been proposed to account for observed
asymmetries (e.g., adding random correction terms to a Gaussian model [129] or
based on Lagrangian models [2, 125]). Asymptotic models for the distribution of
maxima for Gaussian processes for a certain period of time exist, and under certain
assumptions, the maximum values are asymptotically distributed according to the
Gumbel distribution. However, as noted in [165], care should be taken when using
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this approximation for the modeling of maxima of wave crests. A similar concern
was expressed in [48], albeit not related to waves.

A comparison between significant wave height data predicted by a numerical wave
prediction model and corresponding satellite measurements was recently published
in [73]. A novel approach utilizing information geometry was used to quantify bias,
and one important finding was that the wave prediction model seemed to overestimate
the significant wave height slightly but consistently. They also reported significant
spatial variation in the distribution of the significant wave height data.

Given the short-term perspective of these types of models, they cannot be used
to describe long-term trends due to climate change, nor to formulate design criteria
for ships and offshore structures, even though they are important for maritime safety
during operation. Improved weather and wave forecasts will of course improve safety
at sea, but the main interest in the present study is on long-term trends in ocean wave
climate, and the effect this will have on maritime safety and on the design of marine
structures. Therefore, short-term wave models will not be considered in great detail
herein.

2.2.1.1 Significant Wave Height as a Function of Wind Speed

The significant wave height for a fully developed sea, sometimes referred to as
the equilibrium sea approximation, given a fixed wind speed has been modeled as a
function of the wind speed in different ways, for example as HS ∝ U 5/2 or HS ∝ U 2

[112]. This makes it possible to make short-term predictions of the significant wave
height under the assumptions of a constant wind speed and assuming unlimited
fetch and duration. For developing sea conditions, with limited fetch or limited wind
duration, the significant wave height as a function of wind speed, U (m/s), and
respectively fetch X (km) and duration D (h) has been modeled in different ways,
for example as HS ∼ X1/2U and HS ∝ D5/7U 9/7 [151].

However, it is observed that the equilibrium wind sea approximation is seldom
valid, and an alternative model for predicting the significant wave height for wind
waves, HS from the wind speed U10 at a reference height of 10 m was proposed in [7],
using a different, yet simple parametrization. 18 years of hourly data of significant
wave height and winds speed for 12 different buoys were used in order to estimate
the model which can be written on the following form:

HS = C(D)I (U10 ≤ 4 m/s)+
[
a(D)U 2

10 + b(D)
]

I (U10 > 4 m/s) (2.1)

D denotes the water depth and C , a and b are depth-dependent parameters. Based
on comparison with measurements it was concluded that this model is reliable for
wind speeds up to at least U10 = 25 m/s.

It is out of scope of the present literature survey to review all models for predicting
wave heights from wind speed or other meteorological data. Such models are an
integral part of the various wave models available for wave forecasting, but cannot be
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used directly to model long-term variations in wave height. However, given adequate
long-term wind forecasts, such relationships between wind speed and wave height
may be exploited in simulating long-term wave data for long-term predictions of
wave climate.

2.2.2 Stationary Models

A thorough survey of stochastic models for wind and sea state time series is presented
in [142]. Only time series at the scale of the sea state have been considered without
modeling events at the scale of individual waves, and only at given geographical
points. One section of [142] is discussing how to model non-stationarity such as
trends in time series and seasonal components, but for the main part of the paper it is
assumed that the studied processes are stationary. The models have been classified
in three groups: Models based on Gaussian approximations, other non-parametric
models and other parametric models. In the following, the main characteristics for
these different types of wave models are highlighted.

Although ocean wave time series cannot normally be assumed to be Gaussian, it
may be possible to transform these time series into time series with Gaussian mar-
ginal distributions when they have a continuous state space [142]. The transformed
time series can then be simulated by using existing techniques to simulate Gaussian
processes. If {Yt } is a stationary process in Rd , assume that there exists a transforma-
tion f : Rd → Rd and a stationary Gaussian process {Xt } so that Yt = f (Xt ). Such a
procedure consists of determining the transformation function f , generation of real-
izations of the process {Xt } and then transforming the generated samples of {Xt } into
samples of {Yt } using f . A number of such models for the significant wave height
have been proposed in the literature (e.g., [54, 198] for the univariate time series
for significant wave height, Hs , [85, 144] for the bivariate time series for significant
wave height and mean wave period, (Hs, T ) and [57] for the trivariate time series for
significant wave height, mean wave period and mean wave direction, (Hs, T,�m)).
However, it is noted that the duration statistics of transformed Gaussian processes
have been demonstrated not to fit too well with data, even though the occurrence
probability is correctly modeled [107].

Multimodal wave models for combined seas (e.g., with wind-sea and swell com-
ponents) have also been discussed in the literature (see e.g., [66, 189, 190]), but these
are generally not required to describe severe sea states where extremes occur [23].

A few non-parametric methods for simulating wave parameters have been pro-
posed, as reported in [142]. One may for example assume that the observed time
series are Markov chains and use non-parametric methods such as nearest-neighbor
resampling to estimate transition kernels. In [36], a non-parametric regression method
was proposed to correct outputs of meteorological models. A continuous space, dis-
crete time Markov model for the trivariate time-series of wind speed, significant
wave height and spectral peak period was presented in [143]. However, one major
drawback of non-parametric methods is the lack of descriptive and predictive power.
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An approach based on copulas for multivariate modeling of oceanographic vari-
ables, accounting for dependencies between the variables, was proposed in [197] and
applied to the joint bivariate description of extreme wave heights and wave periods.

Parametric models for wave time series include various linear autoregressive mod-
els, nonlinear retrogressive models, finite state space Markov chain models and circu-
lar time series models. A modified Weibull model was proposed in [145] for modeling
of significant and maximum wave height. For short-term modeling of wave parame-
ters, different approaches of artificial neural networks (see e.g., [11, 58, 133, 134])
and data mining techniques [130, 131] have successfully been applied. A nonlinear
threshold autoregressive model for the significant wave height was proposed in [174].

2.2.3 Non-Stationary Models

Many statistical models for extreme waves assume the stationarity of extreme values,
but there are some non-stationary models proposed in the literature. In the following,
some non-stationary models for extreme waves that are known and previously pre-
sented in the literature will be reviewed. A review of classical methods for asymptotic
extreme value analysis used in extreme wave predictions is presented in [178].

2.2.3.1 Microscopic Models

A number of statistical models have been presented in the literature where the focus
has been to use sophisticated statistical methods to estimate extreme values at certain
specific geographical points (e.g., based on data measurements at that location). This
approach is natural, given the limited spatial resolution of available wave data, and
aims at exploiting available data measurements at certain locations to the maximum,
i.e., to obtain as good predictions as possible for locations where wave data are
available. In the following, some of these will be briefly reviewed, even though it is
noted that the aim of this study is to extend the scope and broaden the perspective of
the statistical models to also include the spatial dimension.

A method for calculating return periods of various levels from long-term non-
stationary time series data of significant wave height based on a new definition of
the return period is presented in [182, 183]. This definition is based on the mean
number of upcrossings of a particular level and was first introduced in the context
of prediction of sea-level extremes in [140]. In [179] and [89], new de-clustering
methods and filtering techniques are proposed in order to apply the r-largest-order
statistics for long-term predictions of significant wave height. A new de-clustering
method was also suggested in [177] for applying the peaks-over-threshold method
for Hs time series. An approach using stochastic differential equations for clarify-
ing the relationship between long-term time-series data and its probability density
functions in order to extrapolate long-term predictions from shorter historical data
is proposed in [141]. Two approaches for estimating long-term extreme waves are
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discussed in [94] (i.e., an initial distribution approach and a Peak Over Threshold
(POT) approach for storm events) and issues related to sampling variability, model
fitting and threshold selection (for the POT analysis) are addressed.

Duration statistics of long time series of significant wave height Hs (i.e., the
duration of sea states with different intensities) where analyzed in [181] using a
bottom–up segmentation algorithm. This analysis makes use of the increasing or
decreasing intensity of successive sea state conditions, and subdivide long-term Hs

time series into subsequent series of monotonically increasing or decreasing intensi-
ties. This would correspond to developing and decaying sea states, and the segmen-
tation algorithm should ensure that a meaningful subdivision of the long-term time
series is obtained. A sensitivity analysis of this approach, investigating the effect of
the maximum allowed error on the segmentation of the Hs time series is reported
in [180].

Return periods of storms with an extreme wave above a certain threshold are found
based on an equivalent triangular storm model in [9]. This approach is extended to
find return periods analytically for storms with two or more waves exceeding the
threshold in [8, 10]. The basic idea behind the equivalent triangular storm model is
that it, for a fixed location, associates a triangle to each actual storm and represents
a significant wave height time series by means of a sequence of triangular storms.
The triangle height is the maximum significant wave height during the actual storm
and the triangle base is such that the maximum expected wave height in the actual
storm equals the maximum expected wave height in the triangular storm model [25].
The equivalent power storm model was presented in [67] as a generalization of the
equivalent triangular storm model to predict return periods for waves above a certain
threshold. It is noted that the equivalent triangular storm is firmly based on what has
become known as the Borgman Integral [27], which gives the distribution function
for the largest wave, Fm(h) = P(Hm ≤ h) as follows, with Hm denoting the largest
wave height, a2(t) time varying Rayleigh parameter and T (t) typical wave period at
time t :

Fm(h) = e
∫

log[1−e−h2/a2(t)] dt
T (t) (2.2)

A non-stationary stochastic model for long-term time series of significant wave
height is presented in [12], where the time series is modeled by decomposing
de-trended time series to a periodic mean value and a residual time series multi-
plied with a periodic standard deviation: X (τ ) = X trend(τ ) + μ(τ) + σ(τ)W (τ ).
It was then showed that W (τ ) could be considered stationary. Short-term and long-
term wave characteristics of ocean waves were combined in order to develop nested,
stochastic models for the distribution of maximum wave heights in [155]. Different
time scales were introduced, i.e., fast time and slow time, and a stochastic process
was modeled in the fast time where the state variables were modeled as a stochastic
process in the slow time.

The seasonal effects on return values of significant wave height were investigated
in [139], where a time-dependent generalized extreme value model was used for
monthly maxima of significant wave height. Non-stationarity representing annual
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and semiannual cycles is introduced in the model via the location, scale, and shape
parameters and the inclusion of seasonal variabilities is found to reduce the residuals
of the fitted model substantially. Hence, the model provides a way of quantitatively
examining the long-term seasonal distribution of significant wave height.

Various other models for the long-term distribution of significant wave height
have been suggested (e.g., using the Beta and Gamma models [69], using the Annual
Maxima and Peak Over Threshold methods [88] using nonlinear threshold models
[174], using time-dependent Peak Over Threshold models for the intensity combined
with a Poisson model for frequency [137, 138], employing different autoregressive
models [86, 87], and using a transformation of the data and a Gaussian model for
the transformed data [70]). Short- and long-term statistics were combined in [116] in
order to establish distributions of maximum wave heights and corresponding periods.
Some considerations of bias and uncertainty in methods of extreme value analysis
were discussed in [77], leading to some recommended approaches for such analyses
and applied on a set of wave data.

More recently, an interesting approach to long-term predictions of significant
wave height, combining Bayesian inference methodology, extreme value techniques
and Markov chain Monte Carlo (MCMC) procedures is presented in [175]. The
benefits of using a Bayesian approach compared to a traditional likelihood-based
approach is that prior knowledge about parameter values θ can be used together
with observed data x to update a posterior distribution π(θ |x). Simulations of this
posterior distribution can be obtained by constructing a Markov chain whose invariant
distribution, or target distribution, is proportional to the posterior distribution by
employing the Metropolis-Hastings algorithm (see [161]). This Bayesian approach
was used to analyze a dataset of significant wave height collected in the northern
North Sea.

Another Bayesian approach to estimating posterior distributions of return periods
for extreme waves is proposed in [65]. Here, the occurrence of extreme events is
modeled as a Poisson-process with extreme wave heights distributed according to a
generalized Pareto distribution.

2.2.3.2 Combining Long- and Short-Term Wave Height Statistics

The Borgman Integral (Eq. 2.2) is a fundamental tool for combining the long-term
distribution of significant wave height with short-term distributions for the individual
wave heights [27]. This is often desired for estimating the maximum wave or crest
height occurring in a long return interval. A similar method was proposed by [15]. It
is noted that the particular expression of the Borgman Integral as presented in Eq. 2.2
is based on the assumption of a Rayleigh distribution for the individual wave height.
A more general form would be, letting P(h|Hs) denote the short-term distribution
of the individual wave height conditioned on the sea state,

Fm(h) = e
∫

log[P(h|Hs)] dt
T (t) (2.3)
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Long time series of individual wave heights are typically not available and cal-
culations must therefore be based on time series of sea state parameters such as the
significant wave height. Hence, the problem of modeling the maximum wave height
in a long time interval comprises three aspects: modeling of long-term sea state
parameters (e.g., significant wave height), short-term modeling of individual wave
heights conditioned on the sea state and combining the two distributions. This can
be done by first fitting a short-term distribution and then apply the Borgman Integral
to this distribution. Integration of short-term second order models over time series of
measured sea states was performed by [118]. A recent study concerned with finding
the most accurate method for combining long- and short-term wave statistics was
reported in [71].

2.2.3.3 Spatio-Temporal Models for Extreme Waves

The spatial and temporal variability of ocean wave fields is complex, and the fields
will generally be inhomogeneous in space and non-stationary in time, with strong
temporal and spatial variation [108]. Different models have been proposed in the
literature for modeling these variabilities and for analysing and synthesizing spatio-
temporal wave data.

There has been significantly more focus on the temporal variability compared
to the spatial variability of wave fields, but the spatial behavior (i.e., the spatial
interdependence and radius of influence of a set of spatially distributed stations)
of significant wave height is investigated in [5]. The methodology is based on the
concept of trigonometric point cumulative semivariograms, consisting of cumulative
broken lines where the angle between two successive lines connecting two station
records is a measure of the regional dependence, ranging from 0 (complete indepen-
dence) to 1 (complete dependence). Another approach for predicting the maximum
wave height over a spatial area was proposed in [68], based on 4D video data of sea
states acquired through a wave acquisition stereo system (WASS) and using Euler
Characteristics’ theory. A regional frequency analysis of extreme wave heights, ana-
lyzing peaks-over-threshold wave data from 9 locations along the Dutch North Sea
coast was reported in [195]. The different locations could be considered as a homoge-
neous region and it was shown that the Generalized Pareto Distribution is an optimal
regional probability distribution for the extreme wave heights for the region. Notable
differences were found for the regional quantile estimates compared to the at-site
quantile estimates, indicating that it would be better to rely on the regional estimates
in decision making.

Models for stochastic simulation of the annual [28] and synoptic [29] variability
of inhomogeneous met-ocean fields were proposed as expansions of the field ζ(r, t)
in terms of periodical empirical orthogonal functions in [28, 29]:

ζ(r, t) = m(r, t)+
∑

k

ak(t)φkt (r, t)+ ε(r, t) (2.4)
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where m(r, t) are the mathematical expectations, φkt (r, t) are the spatio-temporal
basis functions, ε(k, t) is inhomogeneous white noise and ak(t) are the coefficients.
r denotes the geographical coordinates and t time. The results of simulating these
models are a set of simulated met-ocean fields ζ(r, t) in a discrete set of grid points
and at discrete times. They could then be used to investigate the field extremes and
rare events in terms of both spatial and temporal extremes, and wave data from the
Barents Sea region have been used to test the models with reasonable agreement. The
stochastic models for annual variability can be regarded as field generalizations of
periodically correlated stochastic processes. The model for synoptic variability uses
a Lagrangian approach and the temporal sequence of storm centers is modeled as a
finite-state Markov chain with the storm extensions and field properties as spatio-
temporal impulses.

Recently, spatio-temporal statistical models for the significant wave height have
been reported that describes the variability of significant wave height over large areas
by stochastic fields [17, 18]. This is based on constructing a homogeneous model
valid for a small region and then extending this to a non-homogeneous model valid
for large areas. Global wave measurements from satellites have been used for model
fitting, providing wave data of spatial variability, but limited physical knowledge
about the wave phenomena have been incorporated into the models. The resulting
models can then be used to estimate the probability of a maximum significant wave
height to exceed a certain level or to estimate the distribution of the (spatial) length
of a storm [16]. However, the temporal validity of this model is limited to the order
of hours [17], and therefore it does not seem suited for studying long-term trends
and the effects of climate change.

The study reported in [40] used two approaches to model the extremes of
non-stationary time series, i.e., the non-homogeneous Poisson process and a non-
stationary generalized extreme value model. The non-homogeneous Poisson process
was used to model extreme values of the significant wave height, obtained from the
40-year ECMWF reanalysis (ERA-40) [193] and compared to estimates obtained
using a non-stationary generalized extreme value model (NS-GEV). The parameter
of the Poisson distribution in this model was on the form λ = ∫ ∫

λ(t, x)dtdx , where
:

λ(t, x) = 1

σ(t)

[

1 + ξ(t)
x − μ(t)

σ (t)

]−( 1
ξ(t) )−1

+
(2.5)

From projections of the sea level pressure under three different forcing scenarios
([26, 146]), projections of the parameters in the non-homogeneous Poisson process
are made up to the end of the twenty-first century. Trends in these parameters are
then determined, projections of return value estimates of HS are projected and their
uncertainties are assessed.
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2.3 Relevant Statistical Models from Other
Areas of Application

Extreme value analysis has a wide area of applications aside from ocean waves, in
particular in various environmental sciences where events are also associated with
spatio-temporal variations, and it is believed that some lessons can be learned by
examining different statistical models for other types of extreme events.

An interesting discussion on the use of asymptotic models for the description of
the variation of extremes is available in [48], within the context of extreme rainfall
modeling. It is concerned with the lack of ability of such models to predict extreme,
catastrophic events leading to inadequate designs and lack of preparedness for such
rare events. One of the reasons for this, according to [48] is models that do not take the
uncertainties in both model and predictions adequately into account. For example,
it is argued that even in cases where data support the reduction of the generalized
extreme value model to a Gumbel model, this should not be done without an appraisal
of the uncertainty this decision introduces and as a general advice it is suggested to use
the generalized extreme value model rather than Gumbel reduction. Furthermore, the
preference for Bayesian analysis over the classical likelihood analysis is emphasized,
even if using diffuse priors.

In this section, a review of relevant time- and space-dependent statistical models
from other areas of application is presented. Further work will then focus on how
these approaches can be used for statistical modeling of extreme waves and sea states.

2.3.1 Bayesian Hierarchical Space-Time Models

Modeling of wave data in space and time is an alternative to the common approach
of extreme value analysis based on a point process representation, provided that ade-
quate space-time wave data can be obtained. [209] proposes a hierarchical Bayesian
space-time model as an alternative to traditional space-time statistical models and
applies it on an atmospheric data set of monthly maximum temperatures. Such mod-
els generally consist of three stages often referred to as the data stage, the process
stage, and the parameter stage.

Similar models have also been used for modeling tropical ocean surface winds
[210], North Atlantic sea surface temperatures [124], concentrations of PM10 pol-
lution2 [46], ozone levels [167], and earthquake data [147]. A brief overview of
hierarchical approaches applied to environmental processes is presented in [208].
More recently, various hierarchical Bayesian space-time models for extreme precip-
itation events were proposed in [168]. Bayesian hierarchical space-time models are
treated in the recent book by Cressie and Wikle [53].

2 PM10 is the fraction of aerosol particles with aerodynamic diameter less than 10 µm
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The modeling of earthquake data for earthquake prediction, using a Bayesian
hierarchical space-time approach in [147] considered a spatial resolution of 0.5 ×
0.5◦ (about 50 × 50 km) and a temporal resolution of 4 months. The observations
are, for each time period, the magnitude of the largest earthquakes (by the Richter
scale) observed within each grid. The model is implemented within a Markov chain
Monte Carlo framework using Gibbs sampling and additional Metropolis-Hastings
steps. Four different model alternatives were suggested in a hierarchical structure,
one main model and three levels of simplified models, nested within the model at
the higher level. The model contains a large number of parameters, and all prior
parameter distributions are considered independent. A Markov chain Monte Carlo
approach using the Gibbs sampler and also an additional Metropolis-Hastings step
for some of the parameters, was adopted for generating independent samples from
the posterior distributions in order to arrive at posterior estimates and predictions.
A brief introduction to Markov chain Monte Carlo methods, including the Gibbs
sampler and the Metropolis-Hastings algorithm, are given in appendix A. For a more
detailed treatment, reference is made to [161] or similar textbooks.

2.3.2 Continuous Space Models

Although wave data are generally only available at certain specific locations, extreme
waves should in principle be considered as a continuous process in space and time
rather than a spatially discrete process. Considering the continuous space modeling
of a process’ extremes, this would require the specification of a continuous space
model for the marginal behavior of the extremes of the process and a continuous space
specification of the dependence structure of the extremes. Hence, a generalization
of the dependence structure of multivariate extremes to the infinite dimensional
case is needed, and one such generalization is provided by the theory of max-stable
processes [93]. By definition, a stochastic process {Yt } is called a max-stable process
if the following property holds:

If {Y (i)t }t∈T , i = 1, . . . , r , are independent copies of the process then the process
{maxi≤r Y (i)t }t∈T has the same distribution as {rY (1)t }t∈T .

In the following, a procedure for using the theory of max-stable processes for
modeling data which are collected on a grid of points in space are reviewed. This
approach is considered as an infinite dimensional extension of multivariate extreme
value theory and has the advantage that it can be used to aggregate the process over
the whole region and for interpolation to anywhere within the whole region. Models
based on the resulting family of multivariate extreme value distributions are suitable
for a large number of grid points.

In [50, 51] a class of max-stable process models for regional modeling of extreme
storms was specified which can be estimated using all relevant extreme data and
which is consistent with the multivariate extreme structure of the data. The essence
of this approach is to describe the process of storms by the following components:
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i. A phase space S of storm types so that the storm type is independent of their
size

ii. An index space T for the region, conveniently referred to as the region itself
iii. A measure ν(ds) on S describing the relative frequency of storm types
iv. A function f (s, t) interpreted as the proportion of a storm of type s observed

at t .

With x j interpreted as the size of the j th storm, s j the type of the j th storm, if
{(xi , si ); i = 1, . . .} are taken to be the points of a Poisson process on (0,∞) × S
with intensity μ(dx, ds) = x−2dxν(ds) and letting f (x, s) be a positive function on
S × T , then the process

Zt = max
i

{Xi f (Si, t)} (2.6)

is a max-stable process for t ∈ T .
For statistical modeling of extreme storms as such a max-stable process, it was

assumed that the spatial variability of storms could be described adequately by vari-
ability within a subset of data sites T1 [50]. Then, a multivariate extreme value
model is fitted to the data for this subset and the model is extended smoothly as
a max-stable process through suitable functions f (·, ·) on the basis of information
from the remaining data sites. Such a model was fitted for rainfall data collected from
11 sites, and in spite of some interesting qualitatively observations, the quality of fit
of the model was rather poor.

In [33] a somewhat different approach of using max-stable processes for the
modeling of spatial extreme rainfall is proposed based on random fields. Whereas
[50, 51] indicate how to analytically calculate quantiles of areal rainfall, in [33], the
100-year quantile of the total rainfall over an area in Holland is found by simulating
synthetic daily rainfall fields using their estimated model. An extended Gaussian
max-stable model for spatial extreme rainfall was also presented in [176], where
Bayesian techniques are used in order to incorporate information other than data into
the model, i.e., by using informative priors for the marginal site parameters and non-
informative priors for parameters relating to the dependence structure of the process.
The extended model is estimated using a pairwise likelihood within the Bayesian
analysis and Markov chain Monte Carlo techniques were used to simulate from the
posterior distributions, using a Gibbs sampler with a Metropolis step. Max-stable
processes have also been applied to, e.g., modeling of extreme wind speeds [49].

2.3.3 Process Convolution Models

Several models for spatio-temporal processes based on process convolution have
been proposed in the literature (e.g., [41, 42, 99, 169]). The main idea is to con-
volve independent processes to construct a dependent process by some convolution
kernel. This kernel may evolve over space and time thus specifying models with
non-stationary dependence structures.

The model proposed in [99] is motivated by estimation of the mean temperature
field in the North Atlantic Ocean based on 80 year of temperature data for a region.
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First, the temperature field y(s, t) is modeled as a process over space s and time t as
the sum of two processes

y(s, t) = z(s, t)+ ε(s, t) (2.7)

where z(s, t) is a smooth Gaussian process and ε(s, t) is an independent error process.
The smooth process z(s, t) is constructed to model the data by taking the convolution
of a three-dimensional lattice process. Given a grid process x = (x1, . . . , xm) with
space-time coordinates (ω1, τ1), . . . , (ωm, τm), the smooth field is expressed as

z(s, t) =
m∑

j=1

Ks(s − ω j , t − τ j ) · x j (2.8)

where the properties of the convolution kernel determine the smoothness of z. A
separable kernel were used (i.e., a product of a kernel that smooths over space and
one that smooths over time): Ks(�s,�t) = Cs(�s) · R(�t). Inference on the
resulting model was made using a Bayesian approach and simulating the posterior
distribution of the mean temperature field over space and time using Markov chain
Monte Carlo methods.

Following a similar approach, but using non-separable, discrete convolution ker-
nels, regional temperature measurements were modeled in space and time in [169].
Two alternative sets of models were suggested. The first was to convolute spatial
Gaussian processes with a kernel providing temporal dependencies and the second
was to convolute autoregressive models with a kernel providing spatial interactions.
In other words, the data could either be considered as a number of time series at
each location (temporal convolution model) or as a number of realizations of spatial
processes observed at some locations (spatial convolution model).

A dynamic process convolution model extends the discrete process convolution
approach by defining the underlying process x to be a time-dependent process that
is spatially smoothed by a smoothing kernel at each time-step [41, 42]. Such models
have been used in air quality assessment (e.g., in bivariate modeling of levels of
particulate matter P M2.5 and P M10 in [42] and for multivariate modeling of the
concentration of five pollutants in [41]). A continuous version in space and time
is considered in [31], where a model is formulated in discrete time and continuous
space and a limit argument is applied to obtain continuous time as well. A general
approach using cross-convolution of covariance functions for modeling of multi-
variate geostatistical data were proposed in [132]. All of the convolution models
discussed above used Bayesian approaches and Markov chain Monte Carlo methods
for model specification.

Finally, it is noted that some limitations to the convolution model approach are
reported in [99] and [42]. One is the impact of prior assumptions on the posterior
distributions. Furthermore, it is stated that it would be preferable to allow the data to
determine the kernels, which could depend on space and time, rather than specifying
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it apriori. In addition, the model for particulate matter is not able to handle extreme
observations very well and permits non-sensible predictions.

2.3.4 Non-Stationary Covariance Models

Many spatio-temporal models assume separability in space and time so that that the
space-time covariance function can be represented as the product of two models: one
as a function of space and the other as a function of time. However, the rationale for
using a separable model is often convenience rather than the ability of such models
to describe the data well, and the assumption is often unrealistic. Other simplifying
assumptions often employed are stationarity (e.g., second order stationarity which
means that the mean function is assumed constant and the space-time covariance
function is assumed to depend only on the directional distance between measurement
sites) and isotropy (i.e., that the covariance function is dependent only on the length of
the separation and not on its direction). An example of a spatio-temporal covariance
model where the assumptions of stationarity and separability is relaxed is presented
in [32], applied to tropospheric ozone data.

Due to the increased availability of satellite measurements of many geophysi-
cal processes, global data are increasingly available. Such data often show strong
non-stationarity in the covariance structure. For example, processes may be approx-
imately stationary with respect to longitude but with highly dependent covariance
structures with respect to latitude. In order to capture the non-stationarity in such
global data, with a spherical spatial domain, a class of parametric covariance models
is proposed in [110]. These assume that processes are axially symmetric, i.e., that
they are invariant to rotations about the earth’s axis and hence stationary with respect
to longitude.

Assuming a homogeneous, zero-mean process Z0, a zero-mean non-stationary
process Z may be defined by applying differential operators with respect to latitude
and longitude, letting L and l denote latitude and longitude, respectively [109],

Z(L , l) =
{

A(L)
∂

∂L
+ B(L)

∂

∂l

}

Z0(L , l)+ C Z0(L , l) (2.9)

Now, A and B denote non-random functions depending on latitude (and may also
in principle depend on longitude, but this would break the axial symmetry). A non-
negative constant C corresponds to including homogeneous models for the case
A(L) = B(L) = 0. In order to apply this model to real applications, the A and
B functions need to be estimated, and it is suggested to use linear combinations of
Legendre polynomials [110].

The covariance model is applied to global column ozone level data and it is shown
that the strong non-stationarity with respect to latitudes as well as the local variation
of the process can be well captured with only a modest number of parameters.
Thus, it may be a promising candidate for modeling spatially dependent data on a
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sphere. Furthermore, an extension to spatio-temporal processes would be obtained
by introducing a similar differential operator with respect to time in addition to
the ones with respect to latitude and longitude. Then, such models should be able
to capture spatial-temporal non-stationary behavior and to create flexible space-
time interactions such as space-time asymmetry. Reviews of various methods and
recent developments for the construction of spatio-temporal covariance models are
presented in [113] and [127].

2.3.5 Coregionalization Models

A multivariate spatial process is a natural modeling choice for multivariate, spatially
collected data. When the interest is in modeling and predicting such joint processes it
will be important to account for the spatial correlation as well as the correlation among
the different variables. If this is modeled using a Gaussian process, the main challenge
is the specification of an adequate cross-covariance function [173], which can be
developed through linear models of coregionalization (LMC). The linear model of
coregionalization is reviewed in [76] where the notion of spatially varying LMC
is proposed in order to enhance the usefulness by providing a class of multivariate
non-stationary processes.

Traditionally, linear models of coregionalization have been used to reduce dimen-
sions, approximating a multivariate process through a lower dimensional representa-
tion. However, it may also be used in multivariate process construction, i.e., obtaining
dependent multivariate processes by linear transformation of independent processes.
A general multivariate spatial model could be on the form

Y(s) = μ(s)+ v(s)+ ε(s) (2.10)

where ε(s) is a white noise vector (i.e., ε(s) ∼ N (0,D) where D is a diagonal
matrix with (D j j ) = τ 2

j ), v(s) arises from a linear model of coregionalization from
independent spatial processes w(s) = (w1(s), . . . wp(s)): v(s) = A w(s) and where
μ(s)may be assumed to arise linearly in the covariates, i.e., μ j (s) = XT

j (s)β j where
each component may have its own set of covariates X j and its own coefficient vector
β j . If ignoring the term μ(s) and the w j (s) processes are assumed to have mean 0,
variance 1 and a stationary correlation function ρ j (h), then E(Y(s)) = 0 and the
cross-covariance matrix associated with Y(s) becomes

�Y(s),Y(s′) ≡ C(s − s′) =
p∑

j=1

ρ j (s − s′)T j , T j = a j aT
j (2.11)

with a j the j th column of A. Priors on the model parameters θ consisting of
{
β j

}
,{

τ 2
j

}
, T and ρ j , j = 1, . . . , p would then complete the model specification in a

Bayesian setting, obtaining the posterior distribution of the model parameters
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π(θ |Y) ∝ f (Y| {β j
}
,D,

{
ρ j

}
,T)π(θ) (2.12)

The extension to a spatially varying linear model of coregionalization is obtained
by letting A be spatially dependent, i.e., replacing A with A(s) in v(s) = A(s)w(s)
[76]. v(s) will then no longer be a stationary process. Further extensions to spatio-
temporal versions of the model, modeling v(s, t) = A(s, t)w(s, t), where the com-
ponents of w(s, t) are independent spatio-temporal processes may also be feasible,
but this was not further investigated.

A stationary Bayesian linear coregionalization model for multivariate air pollutant
data was presented in [173] and [76] presents a commercial real estate example of a
spatially varying model. Rather than taking the Bayesian approach, an Expectation-
Maximization (EM) algorithm for the maximum-likelihood estimation of the para-
meters in a linear coregionalization model is developed in [215], and applied on a
spatial model of soil properties.

2.3.6 Generalized Extreme Value Models

The Generalized Extreme Value distribution is a cornerstone of extreme value mod-
eling, and in [101] non-stationary, location-dependent processes are studied using
the GEV distribution where the parameters are allowed to vary in space and time.
The modeling is based on a hierarchical structure assuming an underlying spatial
model. Parameter changes over time (i.e., for the location, scale, and shape parame-
ters) are modeled by use of Dynamic Linear Models (DLM) [207] which is a very
general class of time series models. Now, the trends are not constrained to have a
specific parametric form and the significance of short-term changes can be assessed
together with the long-term changes. It is also possible to estimate how the effects
of covariates change over time. An extension of this model to include changes in
space as well as in time is made using a process convolution approach in defining a
Dynamic Linear Model on the parameters.

Several approaches for estimation of parameters and quantiles of the GEV dis-
tribution have been applied, such as maximum likelihood estimation, L-moments
estimation, Probability Weighted Moments estimation and the method of moments.
Recently, an alternative to these, employing a full Bayesian GEV estimation method
which contains a semi-Bayesian framework of generalized maximum likelihood esti-
mators and considers the shape, location, and scale parameters as random variables
was developed [214]. However, these approaches do not consider non-stationarity.

A generalized Probability Weighted Moments (PWM) method was suggested in
[159] to model temporal covariates and provide accurate estimation of return levels
from maxima of non-stationary random sequences modeled by a GEV distribution.
This is a generalization of the PWM method that has proved to be efficient in esti-
mating the parameters of the GEV distribution for iid processes and is an alternative
to Maximum Likelihood Estimation (MLE) for cases when the iid assumption is
violated (e.g., in non-stationary cases). The approach is illustrated by applying it
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on time series of annual maxima of CO2 concentrations and seasonal maxima of
accumulated daily precipitations.

An alternative to GEV models could be to use threshold models [20]. For example,
various statistical methods for exploring the properties of extreme events in large grid
point datasets were presented in [47], and a flexible generalized Pareto model that is
able to account for spatial and temporal variation in the distribution of excesses was
outlined. The generalized Pareto distribution parameters may incorporate the depen-
dence of the extreme values and different explanatory variables related to spatial and
temporal changes such as climate change. The methods were illustrated using mean
surface temperatures of the Northern Hemisphere.

A generalized PWM method was introduced in [59] in order to estimate the para-
meters of the generalized Pareto distribution (GPD) from finite length time series. A
Bayesian framework for analysis of extremes in a non-stationary context was pro-
posed in [158] with a case study on peak-over-threshold data. Several probabilistic
models, including stationary, step-wise changing and linear trend models, and dif-
ferent extreme value distributions were considered allowing modeling uncertainty to
be taken into account.

An alternative to the standard approach of modeling non-stationarity in threshold
models (i.e., retaining a constant threshold and letting the parameters of the GPD
be functions of some covariates) is proposed in [64]. This involves preprocessing;
attempting to model the non-stationarity in the entire data set and then removing
this non-stationarity from the data. If this preprocessing is successful, the extremes
of the preprocessed data will have most, if not all, of its non-stationarity removed
and a simple extreme value analysis of the preprocessed data can be employed. It is
argued that this approach provides improved description of the non-stationarity of
the extremes, clearer interpretation, easier threshold selection and reduced threshold
sensitivity. The approach was also found to be superior to approaches with continuous
varying thresholds.

A brief introduction to traditional approaches to extreme value modeling is given
in appendix B.

2.3.7 Optimality Models

One type of statistical models that has recently been applied in evolutionary sciences
is optimality models. These assume the evolution of some biological trait toward an
optimal state dictated by the environmental conditions. Due to a randomly changing
environment, the optimal state is assumed to change over time, and the species are
assumed to be adapting to this changing optimality with a certain phylogenetic inertia.
One choice of process models for analysing such an adaptation-inertia problem is
the Ornstein-Uhlenbeck process, as suggested in, e.g., [95, 157], represented by the
stochastic differential equation

dy = −α(y − θ)dt + σydWy (2.13)
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Here, dy is the change in some random variable y over a time step dt , α is a
parameter measuring the rate of adaptation toward the optimum θ , dWy is a random
noise process and σy is the standard deviation of the random changes. Thus, evolution
according to this model has two components: One is a deterministic pull toward the
primary optimum and the other is a stochastic change without direction.

A layered process is introduced for modeling adaptation to a randomly chang-
ing optimum, assuming that the optimum at any point on the phylogeny (that is,
the history of organismal lineages as they change through time) is a function of a
randomly changing predictor variable x . Thus, the model is extended to the coupled
stochastic differential equations below where the predictor indirectly influences the
trait through its influence of the optimum.

dy = −α(y − θ(x))dt + σydWy (2.14)

dx = σx dWx (2.15)

Additional layers of hidden processes may also be modeled in this way, where each
layer is responding to changes in the layer beneath. The model may also be extended
in that the predictor variable itself may be modeled as an Ornstein-Uhlenbeck process,
tracing some optimum. The Ornstein-Uhlenbeck process has also been proposed for
modeling of drought and flood risks [192] and survival data [1] and has been widely
used in financial modeling [14, 21, 184].

It could be worthwhile to investigate whether an analogy to this approach would
be appropriate for the development of extreme waves, i.e., whether the distribution
of extreme sea states are trying to adapt to a changing mean state due to the changing
environment. For example, will there be a certain average wave climate given the
changing environmental conditions such as the level of CO2 concentration in the
atmosphere, global temperatures, greenhouse gas emissions etc? In other words, it
could be investigated whether the distribution of extreme waves in a changing envi-
ronment could be adequately modeled using layered Ornstein-Uhlenbeck processes
in some way.

2.3.8 Bayesian Maximum Entropy Models

Bayesian maximum entropy (BME) models have been used to model spatio-temporal
random fields. For example, in [45], this approach was used for developing a system-
atic epidemic forecasting methodology used to study the space-time risk patterns of
influenza mortality in California during wintertime. Influenza mortality rates were
represented as spatio-temporal random fields and the Bayesian maximum entropy
method was used to map the rates in space and time and thus generate predictions.
Bayesian maximum entropy models have also been used for space-time mapping
of soil salinity [61], urban climate [122] and the contamination pattern from the
Chernobyl fallout [172] and for modeling geographic distributions of species [154].
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In short, the principle of maximum entropy states that the probability distribution
best representing the current state of knowledge, which may be incomplete, is the one
with the largest entropy. If some testable information about a probability distribution
function is given, then, considering all trial probability distributions that encode
this information, the probability distribution that maximizes the information entropy
is the true probability distribution with respect to the testable information. This
principle is applicable to problems of inference with a well-defined hypothesis space
and incomplete data without noise and the Bayesian maximum entropy method can
be used to predict the value of a spatio-temporal random field at an unsampled point
in space-time based on precise (hard) and imprecise (soft) data.

The BME method applied to influenza mortality risk [45] consists of three stages
with different knowledge bases at each stage: the general knowledge base (core
knowledge), the specificatory knowledge base (case-specific knowledge) and the
integration knowledge base (union of the general and specificatory knowledge bases).
The influenza risk is represented as a spatio-temporal random field X (p) defined at
each space-time point p = (s, t). The influenza modeling approach then follows the
three BME stages:

a. A probability density function, fg(xmap) is constructed on basis of the general
knowledge base, where the vector xmap denotes a possible realization of the
random field associated with the point vector pmap. The xmap generally includes
hard data xhard = (x1, . . . , xh) at points phard = (p1, . . . ,pmh

), soft data xsoft =
(xmh+1, . . . , xm) at points psoft = (pmh+1, . . . ,pm) and the unknown estimates
xk at points pk .

b. At the specificatory stage, the specificatory knowledge base considers hard data
and soft data.

c. At the integration stage, the general and specificatory knowledge bases are com-
bined in a total knowledge base to give the integration pdf fκ (xκ) at each mapping
point pk using the operational Bayesian formula,

fκ(xκ) = A−1
∫

D

fg(xmap)d�S(xsoft) (2.16)

where A is a normalizing constant and�S and D denote an integration operator
and the range determined by the specificatory knowledge base respectively.

From the integration probability density function above, mortality estimates can be
derived across space and time and an estimate of the mode is obtained by maximizing
fκ(xκ).
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2.3.9 Stochastic Diffusion Models

A continuous time parameter stochastic process is referred to as a diffusion process
if it possesses the Markov property and its sample paths X (t) are continuous func-
tions of time t . Many physical and other phenomena can be reasonably modeled by
diffusion processes. Diffusion processes may be characterized by two infinitesimal
parameters describing the mean and the variance of the infinitesimal displacements,
defined as the following limits: Let the increment of the process accrued over a time
interval h be �h X (t) = X (t + h) − X (t), then the infinitesimal parameters of the
process are:

μ(x, t) = lim
h→ 0

E [�h X (t)|X (t) = x] (2.17)

σ 2(x, t) = lim
h→ 0

E
[
{�h(X (t)}2 |X (t) = x

]
(2.18)

μ(x, t) is sometimes referred to as the drift parameter, infinitesimal mean or the
expected infinitesimal displacement and σ 2(x, t) is called the diffusion parameter
or the infinitesimal variance and these are generally continuous functions in x and
t . Alternative characterizations of diffusion processes exist, e.g., based on stochastic
differential equations.

A methodology for analyzing secular trends in the time evolution of certain vari-
ables, modeling the variables by non-homogenous stochastic diffusion processes with
time-continuous trend functions is proposed in [92]. The methodology was applied
to the evolution of CO2 emissions in Spain with the Spanish GDP as an exogenous
factor affecting the trend component and hence introducing non-homogeneity. The
trend can be analyzed by means of statistical fit of the trend functions of the stochastic
diffusion model to the observed data, and the models were also found appropriate
for medium-term forecasts.

Stochastic diffusion models have been applied to other temporal or spatial prob-
lems as well, such as modeling of tumor growth [4], ion channel gating [194], financial
volatility [188] and scaling behavior of precipitation statistics [119].

2.3.10 Regional Frequency Analysis

A method commonly used in hydrology, referred to as Regional Frequency analysis,
utilizes data from several similar sites in order to estimate event frequencies, typically
extreme events, at a particular site. The main idea is that data from neighboring or
other sites where the frequency of the event to be investigated is similar provide
additional information and hence yield more accurate predictions than data from the
particular site alone. This approach can also be used to interpolate to ungauged sites
where there are no data, based on data from similar sites.
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The main idea is that, given data from N similar sites so that one may assume
the sites to form a homogeneous region, i.e., that the frequency distributions of
the different sites are identical apart from a site-specific scaling factor, the quantile
function of the frequency distribution at a site i can be modeled by this scaling factor
and a regional quantile function common to every site, referred to as the regional
growth curve:

Qi (F) = μi q(F), i = 1, . . . , N (2.19)

In the equation above, Qi (F) denotes the site-specific quantile function at site i ,
μi denotes the site-specific scaling factor, often referred to as the index flood, and
q(F) is the regional growth curve. F is the cumulative distribution function of the
frequency distribution of the quantity of interest (e.g., significant wave height).

A typical regional frequency analysis will consist of the following four steps:

i Screening of the data: Eliminating gross errors and inconsistencies and checking
whether the data are homogeneous over time

ii Identification of homogeneous regions: Assign the sites to regions whose fre-
quency distributions are similar

iii Choice of regional frequency distribution
iv Estimating the frequency distribution: Estimating the distribution at each site to

give a regional average.

A thorough description of the regional frequency analysis approach is given in
[100], together with an outline of regional model estimators based on L-moments, a
widely used approach for estimation in regional frequency analysis. Estimation based
on Bayesian Markov chain Monte Carlo methods in regional frequency analysis was
proposed in [75]. Regional frequency analysis is widely used in hydrology and there
is abundant literature on applications to extreme rainfall [72, 148, 213] and flooding
[121, 166]. Regional frequency analysis has also been applied in ocean engineering
problems such as modeling of significant wave heights [128, 195] and the height of
wave crests [105].

2.4 Selecting a Modeling Approach

In the preceding sections of this chapter, a number of different modeling approaches
have been reviewed, which may all be appropriate for modeling long-term trends
in extreme wave climate. However, the approach based on Bayesian hierarchical
space-time models are believed to be superior and offer several benefits compared to
the other approaches that has been reviewed. The hierarchical Bayesian approach to
modeling data and processes with different scales of spatial and temporal variability
consists of different stages (e.g., the data stage, the process stage, and the parameter
stage) and such models are generally very flexible and intuitive to work with, as
outlined in [209].
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Some of the advantages of a hierarchical approach are the flexibility such mod-
els allow. One may build up the models in a modular, hierarchical manner where
different aspects of the model can be treated separately. Extensions to the model
may easily be incorporated, if necessary, and the different modules may be updated
individually as knowledge and insight increase. Knowledge about physical aspects
may be incorporated in the models, as illustrated by the earthquake model in [147]
and such models are very flexible with regard to how they are built up. Furthermore,
hierarchical models, incorporating knowledge about the physical phenomena they
represent, perform better with regard to interpretation of results.

One crucial assumption applied in the model of earthquakes [147] is the Markovian
assumption (i.e., that the spatial process or field in one location is only dependent
on its nearest neighbours). Although this assumption needs to be challenged on a
case by case basis, it is presumably a reasonable assumption also for ocean waves.
Hence, it may be reasonable to model ocean waves as a random Markov field along
the lines of [147].

There are also benefits from utilizing a Bayesian approach, related to the fact that
knowledge about the physical process and its characteristics may be exploited by
way of the prior distributions. This is clearly an advantage in modeling of physical
phenomena where such knowledge are available, as is the case of ocean waves.
Furthermore, by adopting a Bayesian approach the uncertainty in model parameters is
taken into account. Hence, of all the modeling approaches reviewed herein, Bayesian
hierarchical space-time models are believed to be the most promising candidate for
further developments in long-term time-dependent stochastic modeling of extreme
waves and it is suggested that further research and model development are focused
in this direction. Indeed, in the following chapters of this book, various Bayesian
hierarchical space-time models for significant wave height will be presented, and it
is argued that they generally perform well also for modeling of oceanic sea states.

2.5 Wave Climate Projections

2.5.1 Climate Change

The IPCC’s fourth assessment report states that "Warming of the climate system is
unequivocal, as is now evident from observations of increases in global average
air and ocean temperatures, widespread melting of snow and ice and rising global
average sea level” [103]. It predicts further global warming and that many changes
in the global climate are very likely to be larger during the twenty-first century than
what has been observed during the twentieth century. Furthermore, the frequency and
intensity of extreme events are expected to change as the global climate changes,
some of which have already been observed. A more recent up-to-date overview on
climate change research [160] has as one of its key messages that recent observations
indicate that the climate change may be more severe and occur earlier than the fourth
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assessment report predicts. Even though a more recent IPCC report is somewhat
more moderate [104], there are reasons to believe that the future climate may be
more severe than past and present climates.

However, in spite of climate change being a global phenomenon, regional vari-
ability is large, and it has been observed that for example the Arctic has warmed at
double rate compared to the rest of the world in recent decades [3]. Regional dif-
ferences are also presumed to be predominant in future changes of the climate, but
overall, the globe is expected to warm and the intensity and frequency of extreme
climatic events are likely to increase.

Hence, one important question for the stakeholders involved in maritime transport
is to what extent the observed and projected global warming will influence the wave
climate on short and long term and what impact this will have on the safety of maritime
transportation. In the following, a review of some projections of wave climate within
the context of this global warming will be presented as well as analyses of previous
and current trends.

2.5.2 Current Trends in the Wave Climate

Evidence for a statistical significant increasing trend in mean wave height in the
North Atlantic was observed more than 30 years ago [13, 44]. Since then, there are a
number of studies reported in the literature which try to identify and assess previous
and current trends in extreme wave climate, most with a focus on the North Atlantic,
by different hindcast and reanalysis techniques combined with statistical analyses
(see e.g., [12, 111, 193]). Some of these will be briefly outlined in the following.

Seasonal trends in extremes of significant wave height were assessed in [200,
201] for the North Atlantic and the North Pacific by simulating a 40-year global
wave hindcast. For both oceans, no statistically significant changes were observed
for the past century, but significant changes were found in some regions and for
some seasons for the past four decades. Most notably an increase was found for the
winter season in the North Atlantic, matched by a decrease in the subtropical North
Atlantic and a significant increase in the North Pacific for the winter and spring
seasons. Extensive validation of a 40 year global wave hindcast against available
wave observations (from buoys, platforms, ships and satellites) has shown generally
good agreement over the entire frequency distribution for such reanalyzed data [52].

A previous study, somewhat limited in scope with regards to the period and area
covered compared to the assessments in [200, 201], reported a similar increasing
trend in significant wave height at several north-east Atlantic locations since 1960, as
well as a decrease south of 40◦N [120]. Similar patterns were also suggested in [186].
An increase in frequency of extreme events in the last four decades were reported for
the North Sea in [206], although no significant changes were found with regard to
intensity and duration. Also, an analysis of wave hindcast for 1955–1994 reported in
[83] suggests an increasing trend in both the North Sea and the Norwegian Sea, but
with decreasing trends in other regions. A global wave climate trend analysis was
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reported in [39] where an ERA-40 dataset, corrected for inhomogeneities, was used
and significant increasing trends for mean, 90- and 99-percentiles were found for a
large part of the global oceans. An intercomparison of significant wave height data
derived from different reanalyses was presented in [38], and in spite of differences in
the data quality and scope, it was reported that most of the long-term characteristics
such as trends and variability, were equally present in all datasets.

Hence, most studies from the turn of the century generally agree that the wave
climate of the North Atlantic became rougher in the past decades of the twentieth
century. These general conclusions have been supported by analysis of microseis-
mological data [81], by significant wave height data from ship observations [91]
and by satellite altimetry data [43, 212]. Buoy measurements have also suggested
an increase in wave height for the western Atlantic Ocean, but only for the summer
hurricane season [114]. More recent studies observe the continuation of this increas-
ing trend into the twenty-first century [34, 60], although there are still uncertainties
as to whether, or to what extent, the trend can be ascribed to global warming [205,
211]. Increasing trends have also been found in other oceans than the Atlantic [39,
79, 163, 171].

However, it is noted that opposite trends have been reported for different regions,
some studies reporting decreasing trends for particular regions [62, 135] and for
different seasons (e.g., decreasing trends for the months February was reported in
contrast to increasing trends in January for the Baltic Sea in [162]) so care should
always be exercised when extrapolating conclusions arrived at from one location
to another or from one season to another. Notwithstanding, there are evidence for
a general overall trend of rougher wave climate in the North Atlantic as well as in
various other ocean areas.

2.5.3 Projections of Future Trends in the Wave Climate

In light of the observed increasing trends in recent extreme wave climate in many
areas of the world, a much relevant question is whether, or to what extent, this trend
will prevail in the coming decades and how the future wave climate is expected to
develop. In the following, a review of some attempts to make projections of future
trends in the wave climate will be presented, with an emphasis on the trends for
extreme waves.

The modeling approach outlined in [40], modeling extreme waves as non-
homogeneous Poisson processes (NPP), utilizing the statistical relationship between
wave height and sea level pressure, and compared to a non-stationary generalized
extreme value model (NS-GEV), is already discussed briefly in previous sections.
Previous works focusing on the relationship between wave height and sea level pres-
sure include [199, 202, 203]. One interesting finding is that the regression model best
describing the 20-year significant wave height time series toward 2099 is quadratic
in time, in contrast to the the present climate where the trends are linear [37].
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The changes of the projected extreme wave climate toward 2099 arrived at from
the NPP model were found to be dependent on season and location and the spatial
patterns were very similar for the different scenarios that were investigated. However,
the magnitude of the estimated changes as well as the time evolution of the projec-
tions (i.e.,how fast the changes will occur) were scenario dependent. Comparing the
projected times series of significant wave height return values obtained from the
NPP and the NS-GEV models, it was found that they are highly correlated and hence
compatible in some sense, but significant differences in means and variances were
found, mainly in tropical areas. The seasonal projections of the 20-year significant
wave height toward 2099, under different forcing scenarios and using a NPP model
with parameters estimated from present climate data [40], predict significant changes
in SWH20 in different regions of the world. The rate of future changes depends on the
scenario, but under all scenarios considered, significant positive trends are predicted
in the North Pacific. This is in agreement with the projections made in [170], which
predict increases in significant wave height by up to 0.4 m over a wide area of the
western North Pacific.

Projections of future wind, wave, and storm surge climate in the North Atlantic
based on regional wave models are reported in [55, 56], where a future climate for
the period 2030–2050 is compared to a control climate for the period 1980–2000.
The initial study did not identify statistically significant changes in wave height [55],
but when the study was revisited with more recent IPCC scenarios, the following
statistically significant changes in extreme significant wave height were found: Sig-
nificant increases west of the British Isles and in the eastern North Sea and in the
Skagerrak and significant decreases west of 30◦W [56].

Projections of extreme wave heights for the Northwest Pacific Ocean toward
the year 2032 were presented in [163], based on various approaches, i.e., time-
dependent Generalized Pareto-Poisson model with time-dependent event rate, Gen-
eralized Extreme Value-model with time-dependent trends in the location and scale
parameters of the GEV distribution, and based on non-stationary r-largest extreme
value analysis. The projected 100-year return level from the different modeling
approaches showed a robust trend but with significant spread for the year 2032.
Projections further into the future would yield still greater spread in the model pro-
jections. It is therefore cautioned against using projected extreme values in actual
engineering problems and such projections should be considered as uncertain until
the underlying causes of the long-term trends are better understood

In order to extend the confidence and coverage of future wave climate projections
a proposal for a coordinated effort toward global wave climate projections was made
in [96], suggesting a shift in focus from regional projections. Such a global study was
recently published in [97], where projected changes in the global wave climate based
on projections from an ensemble of previous studies, obtained by different models,
were presented. The study reports an agreed projected decrease in annual mean
significant wave height over 25.8 % of the global oceans and a projected increase over
7.1 %, predominantly in the Southern Ocean. However, a general caveat when using
multimodel mean projections is that there might be a tendency of underestimating
projected trends from individual models. Significant trends from different models



52 2 Literature Survey on Stochastic Wave Models

might cancel each other out and become insignificant in a multimodel average and it
might also be difficult to interpret the multimodel results. It is also noted in [97] that
the study methodology is the dominating source of uncertainty. Notwithstanding,
it is noted that results presented in [97] indicate a projected decrease in the annual
mean significant wave height for a notable part of the global oceans.

Other wave climate projections based on dynamical downscaling of projections
from global atmosphere-ocean climate models are reported for different regions of
the world in [6, 35, 98, 126, 153], the details of which will not be covered herein.

Various downscaling methods for estimation of statistics for significant wave
height were investigated in [204], evaluated against the ERA-40 wave data. Statisti-
cal downscaling approaches, typically based on the observed statistical relationship
between atmospheric variables and wave height were deemed better than dynam-
ical methods, which typically involves using atmospheric variables to drive ocean
wave models. Furthermore, different atmospheric covariates were analysed in nested
regression models (i.e., sea level pressure anomalies, sea level pressure gradients and
anomalies of seasonal mean squared surface wind speeds) and analysis of the various
models suggests that it is sufficient to use the wind-based predictor alone since this
model performs very similar to the full model. Projections made from the different
approaches show similar patterns for both seasonal means and extremes. In winter-
time, increases in the eastern and western subtropical North Atlantic and decreases
most other places were the predominant pattern whereas autumn projections were
characterized by increases in the mid-latitudes and eastern subtropical North Atlantic
and decreases in some other areas.

Dynamic and statistical downscaling techniques were also investigated in [74], and
a combination of dynamical and statistical approaches was proposed as a faster, less
computational-intensive alternative to purely dynamical methods for downscaling of
medium-scale wave data, a conclusion supported by [30]. The method demonstrated
reasonable agreement with observed wave conditions for simulations of an near-shore
area around Helgoland.

The uncertainty of the impact of climate change on future extreme wave condi-
tions in the North Sea was investigated in [80] by running the WAM wave model
[82] over an ensemble of four different climate change realizations for the 30-year
period 2071–2100. Wind field data sets were obtained by simulation outputs from
two global circulation models for two emission scenarios, and compared to two con-
trol scenarios. The study revealed that there are large uncertainties in the magnitude
and the spatial patterns of the climate change signals, and results indicate that the
uncertainties due to different climate models are larger, by a factor exceeding five
in some regions, than the uncertainties related to the different scenarios. Notwith-
standing these uncertainties, it was general agreement between the simulations in
that extreme wave heights will increase in large parts of the North Sea and that the
future frequency of severe sea states will increase due to global warming.
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2.6 Summary and Conclusions

This chapter has presented a comprehensive review of the literature concerning prob-
abilistic modeling of ocean waves and sea states. It has addressed the importance of
available wave data in order to develop sensible probabilistic models, and although
buoy measurements are generally regarded as most reliable, the spatial coverage of
such data may be inadequate for spatial models. Alternatives exist in satellite data
and in reanalysis data obtained from wave models forced by various meteorological
parameters. In particular, data from the ERA-40 reanalysis project that are freely
available for scientific purposes have been identified.

Numerous statistical models for extreme waves have been reported in the liter-
ature, and some of these have been presented herein. Many of these either have
short-term scope or are microscopic in the sense that they focus on a particular
location where wave data have been available. That is, the spatial variability is not
covered by many of these models. The long-term trends and time-dependencies due
to observed and projected climate change are also poorly incorporated in some of
these models. There have been some attempts to develop spatio-temporal models for
extreme waves, and these have been discussed herein. However, due to the modest
number of attempts to establish spatio-temporal models for extreme waves, a glance
at models proposed in other areas of application has also been reported. Hence, a
review of some models used in earthquake modeling, storm modeling, temperature
modeling, and air pollution modeling has been presented. It is suggested that similar
approaches might be appropriate for spatio-temporal modeling of extreme waves and
further work should focus on developing such models.

In particular, the framework of Bayesian hierarchical space-time models has been
identified as a promising candidate for further development of long-term stochastic
models of extreme wave climate. It is believed that such a framework offers significant
improvements in the statistical understanding and modeling of extreme waves and
may be used in modeling and projecting long-term trends due to climate change.

Following the review of different stochastic models, a review of projections of
future wave climate has been presented. Most of these predict changes in the global
wave climate toward the end of the century, but the changes are very region-dependent
and also highly dependent on the methodologies and models that have been applied.
However, the overall message is that, at least for some parts of the Northern Atlantic,
the wave climate will tend to become rougher during the present century. This means
that historic wave data may no longer be adequate as basis for design of ships and
offshore structures or for use in risk assessment and that new knowledge about
the time-dependence and long-term trends of extreme wave climate is of crucial
importance. However, different studies of wave climate projections disagree and
this just serves to illustrate the complexity and the high degree of uncertainty that
persist related to future projections of regional and global wave climates. On the
other hand, this should motivate further research into the statistical relationships and
development of improved spatio-temporal models for extreme waves.
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Chapter 3
A Bayesian Hierarchical Space-Time Model
for Significant Wave Height

In the previous chapter, a literature survey on statistical models for ocean waves was
reported, and based on this review, the Bayesian hierarchical space-time modeling
approach was selected for modeling of significant wave height. In this chapter, such
a model will be outlined and the results obtained from fitting the model to significant
wave height data for an area in the North Atlantic Ocean will be discussed. Parts of
this chapter have been previously presented in [30, 31].

3.1 Data and Area to be Considered

3.1.1 Data Description

There are various sources of data for significant wave height, as discussed in [28] and
in the previous chapter. For the purpose of building a space-time model, data with
both spatial and temporal coverage are needed, and data sources are less numerous.
In this study, the modeling has been based on the ERA-40 data of significant wave
height.

The reanalysis project ERA-40 [27] was carried out by the European Centre for
Medium-Range Weather Forecasts (ECMWF) and covers the 45-year period from
September 1957 to August 2002. Data obtained from this reanalysis include i.a. six-
hourly fields of global wave parameters such as significant wave height, mean wave
direction and mean wave period, as well as meteorological parameters such as mean
sea level pressure and wind fields. A large part of this dataset is freely available for
research purposes and may be downloaded from their website.1 Global, continuous
data are available on a 1.5◦ ×1.5◦ grid, making this perhaps the most complete wave
dataset available to date.

1 Data available from URL: http://data-portal.ecmwf.int/data/d/era40_daily/
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It has been reported that the ERA-40 dataset contains some inhomogeneities in
time and that it underestimates high wave heights [24]. Both these limitations indicate
problems in using these data for modeling long-term trends in extreme waves, but
corrected datasets for the significant wave height have been produced in order to
cope with these deficiencies in the original data [6]. Hence, a new 45-year global
six-hourly dataset of significant wave height has been created, and when compared
to buoy measurement and global altimeter data, this corrected dataset, referred to as
the C-ERA-40 data, shows clear improvements compared to the original data [7].
Hence, this corrected dataset, which was kindly provided by the Royal Netherlands
Meteorological Institute (KNMI)2 has been used in this study. It includes fields of
significant wave height sampled every 6th hour with a spatial resolution of 1.5◦×1.5◦
covering the period from January 1958 to February 2002 (i.e., a total of 44 years and
2 months which corresponds to a sequence of 64 520 points in time).

For the purpose of this study, it is emphasized that all modeling and all results
are conditional on the input data. Hence, data validation and assessment of data
uncertainty are considered out of scope of this study. It is also noted that physical
phenomena such as wave breaking and the physical limits to steepness of ocean waves
need not be modeled explicitly in this case [3, 25]. The significant wave height data
inarguably incorporate any such effects and hence it is argued that, by way of the data,
these and related effects are already implicitly accounted for. However, it may affect
future projections if there are strong increasing trends so that future wave climate
will contain larger waves than what is recorded in the data, possibly influencing the
physical processes involved.

3.1.2 Area Description

For the purpose of this study, an area in the North Atlantic Ocean between 51◦–63◦
north and 12◦–36◦ west (324◦–348◦ east) will be considered. For this area, the
dataset is complete and there are no missing data. Even though this particular study
is restricted to this area in the North Atlantic, it is assumed that the structure of the
model will be general enough to be fitted and used in other ocean areas as well (see
also the results in Chap. 8 where the model has been applied to 11 other ocean areas
around the globe).

The spatial resolution of the data is 1.5◦ × 1.5◦, hence a grid of 9 × 17 = 153
data points covers the area. It is noted that due to the curvature of the surface of the
earth, the distance between grid points will not be constant throughout the area. In
particular, the distance between data points will vary with latitude; the distance in the
north–south direction is fairly constant but the distance in the longitudinal direction
(east–west) differs significantly for different latitudes [29]. Notwithstanding, in the
following analysis of spatial variability the fact that the area is curved will be ignored.
The area under consideration is illustrated on a map in Fig. 3.1.

2 Private communication with Dr. Andreas Sterl, KNMI.

http://dx.doi.org/10.1007/978-3-642-30253-4_8
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Fig. 3.1 The area of the North Atlantic Ocean under consideration

3.1.3 Initial Data Analysis

Before developing the spatio-temporal models for the significant wave height data,
an initial data analysis and data inspection will be performed to get a feel of the data
at hand, and also to ensure that the data look reasonable. Identification of missing
data is also a part of the initial data analysis, but the area described above is selected
so that it does not contain missing data.

The original data were tested for normality, and such tests failed, as illustrated
by the normal probability plot of all the data in Fig. 3.2. Similar tests were also
performed for all data at the same locations and for all data at the same times, but
neither subsets of the data were Gaussian. A few parametric distributions were also
tried fitted directly to the data, i.e., the log-normal, Weibull, gamma, skew-normal,
and GEV distributions, but neither seemed to fit very well and all were rejected. The
empirical mean and standard deviation in the data are 3.48 and 1.80 m respectively.

The densities of the monthly data together with the monthly maximum data are
shown in Fig. 3.3. For the monthly maximum data, two distinct modes can be identi-
fied, one around 5 m and another at about 8 m. It is believed that these correspond to
different characteristics during calm and rough seasons. For the whole dataset, the
mean monthly maximum is 7.5 m, but the average monthly maxima for each month
varies from 4.42 (July) to 9.87 (January) (see Table 3.1). The density plots for individ-
ual months (Fig. 3.4) reveal that the months January–March and October–December
have peaks around 8 m and the months May–August around 5 m. The remaining
months seem to be rather flat with most probability mass between 5 and 8 m. Hence,
the two modes in the density may be explained by typical monthly maximum at 5 or
8 m for calm and rough seasons respectively.

The data were also investigated for trends, both with respect to the temporal and
spatial mean and the maxima of individual months over the period. Indications of
positive trends could be seen for some months, but not for others. These observations
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Fig. 3.2 Normal Probability plot of the data

Fig. 3.3 The density of the monthly data and the monthly maximum data

Table 3.1 Average monthly maxima for each month

January February March April May June July August September October November December

9.87 9.63 8.91 7.18 5.89 5.03 4.42 5.04 6.96 8.21 8.69 9.79

are supported by various time series trend analyses presented in [33]. Since the
available data are space-time data, it may be sensible to do an initial data analysis
independently in space and time, and highlights from temporal and spatial analyses
are presented below (also reported in [29]).



3.1 Data and Area to be Considered 69

January

May

September November DecemberOctober

June July August

Density

Density

Density

Density

Density

Density

Density

Density

Density

4

4

4

4 42 2 2 2 4 6 8 10 12

12

6

6

6

6 6

8

8

8

8 8

10

10

10

10

14

12

12 4 6 8 10 4 6 68 810 1012 14 14 14 16

18

Density Density Density

4 6 8 10 14 18 4 46 68 810 1014 141612 12

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

0.
00

0.
00

0.
00

0.
00

0.
10

0.
10 0.
10

0.
20

0.
10

0.
15

0.
20

0.
00

0.
10

0.
20

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

0.
00

0.
10

0.
20

0.
00

0.
10

0.
20

0.
30

0.
00

0.
00

0.
15

0.
30

0.
20

0.
20

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

M
on

th
ly

 m
ax

im
a

0.
0

0.
2

0.
4

0.
0

0.
0

0.
2 0.

2

0.
4 0.

4

February March April

Fig. 3.4 The density of the monthly maximum data for each month

3.1.3.1 Temporal Analysis

In order to carry out an initial temporal analysis of the data, a particular location
within the area was selected, i.e., the time series of significant wave height at 57◦N
36◦W has been subject to an initial temporal analysis. This choice of location is
arbitrary, but similar analyses for other locations have also been made and the same
features were displayed at all locations, yielding similar results. Hence, the analysis
below is presumed to be representative for the whole area.

The first test was to inspect the time-series for normality or lognormality. Such
tests were rejected by formal statistical tests, and it is also straightforward to reject
normality and log-normality based on simple visual checks; it is clearly seen that
the data neither follow a normal nor a lognormal probability law. It was then tried
to fit various other parametric models to the data: the Weibull, gamma, skew-normal
and GEV distributions. These performed quite similarly, although the skew-normal
seemed to yield the best fit (it also has the highest log-likelihood).

It is noted that the significant wave height is always positive, and it was also
discovered that the distribution of significant wave height is quite skewed. There-
fore, the seasonal mean was removed and the variation around this mean value was
investigated. Then a few different parametric models were fitted to the data where
the seasonal mean had been removed and it was observed that, among them, the
skew-normal distribution was still the best fit, albeit not a very good fit.

In order to check if there are any visible detectable trends in the data after the
seasonal mean has been removed, the time-series for the mean and maximum of each
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Fig. 3.5 Time series for monthly maxima at one location

month were investigated (time series for maximum significant wave height for each
month is plotted in Fig. 3.5). From these investigations, it is observed that upward
trends can be detected for some months, but not for others.

In order to have a look at the temporal dependence, plots of the autocorrelation
function were produced for the original data, without removing the seasonal mean. It
appears from these plots that there is strong cyclic temporal correlation which does
not decline notably for increasing lags. It is observed that the period of this cyclic
dependence is about 1 year and clearly there is a strong seasonal effect. Trying to
fit an autoregressive time-series model to these data results in a model of order 48,
indicating a quite complex temporal dependence structure.

The autocorrelation function for the data with the seasonal mean removed would
give a better idea of the temporal dependence in the data and plots of this autocorre-
lation function are shown in Fig. 3.6. The upper plot includes all data (4 per day) and
the lower plot shows the autocorrelation function for daily data. Now the temporal
dependence quickly decays and is low for temporal distances of more than 5–6 days.
Fitting an autoregressive model on the form of Eq. 3.1 to these data, with zero-mean
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Fig. 3.6 Autocorrelation function with seasonal mean subtracted; all data (top) and daily data
(bottom)

Table 3.2 Autoregressive
model parameters

Parameters All data (order 3) Daily data (order 1)

a1 1.4939 0.4641
a2 −0.7657 –
a3 0.1671 –
σ 2 0.2258 1.616

normal error terms, εt ∼ N (0, σ 2), it is found that when considering all data, an
autoregressive model of order 3 would be appropriate (m = 3), whereas for daily
data a first-order model would suffice (m = 1). The model parameters obtained for
the two alternative models (six-hourly or daily data) are shown in Table 3.2.

Hs(t) = a1 Hs(t − 1)+ a2 Hs(t − 2)+ · · · + am Hs(t − m)+ εt (3.1)

These results seem to indicate a somewhat shorter memory of the significant
wave height time series compared to the autoregressive models presented in [11],
but it should be kept in mind that the latter used three-hourly data and considered
another location so direct comparison is not possible. The difficulty of using linear
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Fig. 3.7 Contour plots of the spatial fields at arbitrary selected times

autoregressive models for time series of significant wave height is also discussed
in [21].

3.1.3.2 Spatial Analysis

Having performed a crude temporal analysis at some locations, an initial spatial
analysis is performed as well. Fields of significant wave height covering the whole
area were considered at arbitrary selected time points and contour-plots of the spa-
tial fields at these times were produced. An example of nine contour plots of such
spatial fields is shown in Fig. 3.7, showing the fields at the seventh day of January
through September of 1972. In order to check whether the spatial data are Gaussian
or lognormally distributed, histograms and QQ-plots were produced, and visual tests
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clearly demonstrate that the spatial data follow neither a normal nor a log-normal
probability law (not shown herein).

In order to see whether a simple linear regression model with the N- and E-
coordinates as covariates could describe the spatial variation in the data, a linear
regression model on the form of Eq. 3.2 was fitted to the data for spatial fields at
selected time points.

Hs = β0 + β1 N + β2 E + ε (3.2)

Here, N denotes the lateral coordinate (north) while E denotes the longitudinal
coordinate (east). Theβs are model parameters and ε denotes error terms, assumed iid
normal. Inspecting various residual plots resulting from such a model shows that the
error terms will not be normal, and the model is rejected. One may also try including
an interaction term between the N- and E-coordinates in the model, Eq. 3.3, but this
did not improve the model much.

Hs = β0 + β1 N + β2 E + β3(N · E)+ ε (3.3)

It is realized that comparing data from different months may not be wise, con-
sidering the strong seasonal component in the data, so one may want to consider
only data from 1 month at a time. However, upon inspection of the data, it is real-
ized that the data are still not normally or log-normally distributed. Furthermore,
linear regression models, with or without interaction terms, are again easily rejected
based on graphical plots of the residuals. Finally, a linear regression model including
interaction terms was also fitted for the logarithm of the data but also this model
was rejected based on visual checks of the residuals. Hence, such linear regression
models cannot explain the spatial variation of the Hs-values in the data and such
simple models for the spatial variation are rejected. It is concluded from this crude
initial data inspection that a more complex dependence structure is present in the
data, and a more sophisticated spatio-temporal stochastic model will be developed
to capture these.

3.1.3.3 Initial Spatio-Temporal Analysis

In order to see if there are any detectable temporal trends in the spatial fields,
the time series of the spatial mean of each field is plotted. One may also check for
trends in the spatial maxima in the same way. However, the time series are quite
noisy, and it is difficult to detect long-term trends. This may be partly due to the fact
that different months are plotted together, and plots of the spatial maxima for each
individual month are plotted in Fig. 3.8. Analysing these time-series, some upward
trends can be detected for both the mean and the maxima for some months, albeit
not all. Various time-series trend analyses on spatially reduced time series are also
presented in [33].
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Fig. 3.8 Time series of spatial maxima for individual months

3.2 Model Description

From the initial data-inspection, it is clear that the data cannot be well described by a
simple Gaussian model or as a linear regression model with the spatial coordinates as
covariates; a somewhat more sophisticated model must be constructed. Hierarchical
models are known to model spatio-temporal processes with complex dependence
structures at different scales [37]. Therefore, a Bayesian hierarchical space-time
model, along the lines drawn out by e.g. [38] will be attempted to model the significant
wave height data in space and time, modeling the spatial and temporal variation by
conditional probabilities.

The spatio-temporal data will be indexed by two indices; an index x to denote
spatial location with x = 1, 2, . . . , X = 153 and an index t to denote a point in time
with t = 1, 2, . . . , T = 64,520. Hence, each data-point in the rather huge set of data
(nearly 10 million data points) is unambiguously identified by these two indices.
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The spatial dependencies will be modeled as a Markov random field (MRF) with
dependence on nearest neighbours in all cardinal directions (some basic theory per-
taining to Markov random fields are given in Appendix C; further details may be
found in for example [22]). The temporal dependence is modeled by three terms.
Two, assumed independent in space, are included to model the strong seasonal depen-
dence in the data and possible long term temporal trends. The last one, a short-term
temporal contribution with a spatial description, is modeled as a vector autoregres-
sive model of order one, conditionally dependent on the nearest neighbors. The
model resembles the model for earthquake data presented in [17], but differs in some
aspects due to fundamentally different characteristics of the underlying dynamics of
earthquakes and ocean waves. Most notable, the model presented herein contains a
seasonal component, which has been seen to dominate the temporal variation in the
data, whereas there are no strain term similar to the strain term in the earthquake
model. Furthermore, the significant wave height data is not zero-inflated; in fact, zero
significant wave height is not meaningful so the significant wave height will always
be strictly positive. In a sense, this simplifies the modeling, but care should be taken
so that negative significant wave heights are not predicted by the model. Finally, a
long-term temporal trend component is included, which is a novel feature for such
models.

The structure of the model will be outlined below; first the basic or main model
will be outlined, and then various model alternatives are suggested for comparison.
Then possible extensions to this model are discussed, where for example different
meteorological data can be used as covariates for regression, as explored further in
Chap. 5.

3.2.1 Main Model

At the first level, the observations, Z at location x and time t , are modeled in the
observation model as the latent (or hidden) variable, H , corresponding to the under-
lying significant wave height process, and some random noise, εz , which may be
construed to include statistical measurement error:

Z(x, t) = H(x, t)+ εz(x, t) ∀ x ≥ 1, t ≥ 1 (3.4)

All the noise terms, in this and in subsequent components, are assumed indepen-
dent in space and time, having a zero-mean Gaussian distribution with some random,

but identical variance; with generic notation, εN (x, t)
i.i.d∼ N (0, σ 2

N ). It is noted that
all noise terms to be included in the model are assumed to be independent of all other
noise terms in the model.

The underlying process for the significant wave height at location x and time t
is modeled by the following state model (or system model), which is assumed split
into a time-independent component, μ(x), a temporally and spatially dependent

http://dx.doi.org/10.1007/978-3-642-30253-4_5
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component θ(x, t) and a spatially independent seasonal component, M(t), as shown
in Eq. 3.5. A separate term is included to model long-term temporal trends, T(t),
which is assumed to be spatially invariant and which is, in fact, the component of
most interest in this particular study. In line with the model presented in [17], no
additional noise terms are introduced in the model at this level.

H(x, t) = μ(x)+ θ(x, t)+ M(t)+ T(t) ∀ x, t (3.5)

The time-independent part is modeled as a first-order Markov random field, con-
ditional on its nearest neighbors in all cardinal directions, and with different depen-
dence parameters in lateral and longitudinal direction, as shown in Eq. 3.6. For the
remainder of this book, the following notation is used for neighboring locations of
x in space: x D = the location of the nearest grid point in direction D from x , where
D ∈ {N , S,W, E} and N = North, S = South, W = West and E = East. If x is at the
border of the area, the value at the corresponding neighboring grid point outside the
data area is taken to be zero. Hence, no particular adjustments are made to account
for edge effects.

μ(x) =μ0(x)+ aφ
{
μ(x N )− μ0(x

N )+ μ(x S)− μ0(x
S)

}

+ aλ
{
μ(x E )− μ0(x

E )+ μ(xW )− μ0(x
W )

}
+ εμ(x) ∀ x (3.6)

In the equation above, μ0(x) is the Markov random field mean at grid point x and
aφ and aλ are spatial dependence parameters in lateral (i.e., north–south) and lon-
gitudinal (i.e., east–west) direction, respectively. σ 2

μ is the homogeneous Markov
random field noise variance. The spatially specific mean, μ0(x), is modeled as hav-
ing a quadratic form with an interaction term in latitude and longitude. Letting m(x)
and n(x) denote the longitude and latitude of location x respectively, it is assumed
that

μ0(x) = μ0,1+μ0,2m(x)+μ0,3n(x)+μ0,4m(x)2+μ0,5n(x)2+μ0,6m(x)n(x) ∀ x
(3.7)

The spatio-temporal dynamic term θ(x, t), with interactions in space and time,
is modeled as a vector autoregressive model of order one, conditionally specified on
its nearest neighbors in all cardinal directions, as shown in Eq. 3.8.

θ(x, t) = b0θ(x, t − 1)+ bN θ(x
N , t − 1)+ bEθ(x

E , t − 1)

+ bSθ(x
S, t − 1)+ bW θ(x

W , t − 1)+ εθ (x, t) ∀ x, t (3.8)

There were no obvious rationale for allowing the grid-point specific autoregressive
parameter b0 to vary spatially, as in [17]. Hence, b0 as well as the parameters cor-
responding to the nearest neighbors, bN , bE , bS, bW are assumed invariant in space.
These parameters are assumed to have interpretations connected with the underlying
ocean dynamics and how sea states behaves and changes over an area; the component
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may be construed to model, inter alia, the propagation of storms over the investigated
area. Since the various components are specified conditionally, the different noise
contributions εz(x, t), εμ(x) and εθ (x, t) can be identified, as pointed out by [17].

The seasonal component is modeled as an annual cyclic contribution (as opposed
to the model in [26] which used a combination of an annual and a semi-annual
seasonal contribution) where the seasonal contribution is assumed independent of
space, see Eq. 3.9. It is believed that there are no pressing reasons to allow these
parameters to vary in space, and the seasonal effects are assumed invariant over the
area under consideration, but a noise term is included in this part of the model, as
opposed to the model in [38]. Another difference from the model in [38] is that
this model used monthly data only, whereas the significant wave height data have
a temporal resolution of 6 h, and the model will be tried out for different temporal
resolutions of the data. The period of the seasonal cycle is 1 year, so ω = 2π

12 for
monthly data, ω = 2π

365.25 for daily data and ω = 2π
1461 for six-hourly data, taking

the average number of observations over normal and leap-years. Apriori, it is known
that the worst weather normally occurs around the beginning of the year (January),
so d, which represents a temporal shift from a pure cosine cyclic component, is
presumably small.

M(t) = c cos (ωt)+ d sin (ωt)+ εm(t) ∀ t ≥ 1 (3.9)

The long-term trend is modeled as a simple Gaussian process with a quadratic
trend, as shown in Eq. 3.10. Noise terms, assumed independent and identically dis-
tributed with zero mean and variance σ 2

t , are included in this component as well even
though it is acknowledged that, in reality, these cannot be separated from the other
temporal noise terms, εm(t). Presumably, the parameters γ and η will be very small
since they correspond to the increase over 1 month/1 day/6 h due to the long-term
trend. However, the trend may not be negligible as it accumulates over time, even
for very small γ and η.

T(t) = γ t + ηt2 + εT(t) ∀ t ≥ 1 (3.10)

3.2.2 Model Alternatives

Different model alternatives were tried out and simulations were run for five different
model alternatives. Alternatives with a quadratic trend, linear trend and no temporal
trend respectively were explored, as summarized below.

In addition, model alternatives with one or two temporal noise terms were inves-
tigated in order to check if this has any significant influence on the results. As noted
above, it would, strictly speaking, be more correct to include only one temporal
noise term due to identifiability issues, but on the other hand, it is convenient to
single out the long-term trend component in a separate component if this is found to
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have no major effect on the overall results. In any case, the temporal noise terms by
themselves should be interpreted with caution. For the models with only one tempo-
ral noise term, the long-term trend and the seasonal components are combined in a
temporal part M(t). All other model components remain unchanged.

1: M(t) = c cos (ωt)+ d sin (ωt)+ εm(t)
T(t) = γ t + ηt2 + εT(t)

2: M(t) = c cos (ωt)+ d sin (ωt)+ εm(t)
T(t) = γ t + εT(t)

3: M(t) = c cos (ωt)+ d sin (ωt)+ εm(t)
T(t) = 0

4: M(t) = c cos(ωt)+ d sin(ωt)+ γ t + ηt2 + εm(t)
T(t) = 0

5: M(t) = c cos(ωt)+ d sin(ωt)+ γ t + εm(t)
T(t) = 0

3.2.3 Prior Distributions on the Model Parameters

The model outlined in the preceding section will be specified in a Bayesian setting,
and the model is completed by specifying prior distributions on the various model
parameters. In line with the assumptions made in [17], all prior distributions are
assumed independent, and the following model parameters requires specification of
a prior distribution: The noise variances σ 2

Z , σ
2
μ, σ 2

θ , σ
2
m and σ 2

T, the MRF parameters
aφ and aλ, the spatial mean parametersμ0,i for i = 1, . . . , 6, the vector autoregressive
parameters b0, bN , bE , bS and bW , the variables of the autoregressive process θ(x, 0)
for x = 1, . . . , X = 153, the seasonal parameters c and d and the temporal trend
parameters γ and η. Specification of prior distributions for these 175 parameters
together with initial values for θ(x, 0) would thus complete the specification of the
model, and for sensible prior distributions the full posterior conditional distributions
can be derived. This will be ensured by specifying conditionally conjugate priors for
all these parameters.

Analogue to the priors suggested in [17], all parameters except the priors for the
variance of the noise terms are assigned Gaussian priors, i.e., κ ∼ N (ξκ , σ 2

κ ) for κ =
aφ, aλ, μ0,i for i=1,...6, b0, bN , bE , bS, bW , θ(x, 0), c, d, γ and η. The variance of the
noise terms are all assigned inverse gamma3conjugate priors, i.e., σ 2

ι ∼ I G(αι, βι)
for ι = Z , μ, θ , m and T. It is acknowledged that [9] recommended uniform rather
than inverse gamma priors for the variances to avoid constraints on the posteriors,
but inverse gamma priors were still regarded as reasonable in this study. This has

3 The following parametrization of the inverse gamma distribution will be used:

X ∼ I G(α, β) ⇒ f (x) = βα

�(α)

(
1

x

)α+1

e−β/x for x > 0
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been substantiated by running some control simulations were noninformative priors
were adopted for the noise variances, i.e., using π(σ 2· ) ∝ 1

σ 2·
.

To determine the 350 hyperparameters, some physical insight is employed for
the parameters where relevant information is available. However, it is noted that the
amount of data is large, so the posteriors are not believed to be overly sensitive to
the exact values of the hyperparameters. Notwithstanding, some efforts have been
made to suggest sensible prior distributions.

It is assumed that the MRF parameters and the vector autoregressive parame-
ters will be small but positive since there will presumably be a positive correlation
between significant wave heights at neighbouring points and/or previous time-points.
Hence, priors for all these will take hyperparameters (ξκ , σ 2

κ ) = (0.2, 0.25), as was
also used in [17]. For the spatial mean parameters, μ0,i , it is assumed that the last
five will be close to zero, and zero-mean priors with variance = 2 will be adopted
for i = 2, . . . , 6 (still, in agreement with [17]). For μ0,1 it is acknowledged that
previous knowledge are available that suggests that mean significant wave height
in the area should lie around 2–4 m (this is also in agreement with the initial data
analysis) and prior distribution with mean = 3.5 and variance = 2 will be employed
(see for example, [14], or some other previous works referred to in [28]). It is noted
that a negative spatial mean would be unphysical, and one may consider imposing
restrictions on this parameter. However, zero lies at the 0.67-percentile of the prior
distribution so no restrictions are deemed necessary.

With respect to the seasonal parameters, prior knowledge suggests that the ampli-
tude should be around 2 (see e.g., [13]. This also agrees well with the initial data
analysis). Furthermore, it is known that the worst weather normally occurs in January
(the beginning of the year), so a pure cosine-term would probably be close to the real
seasonal component, and d is presumably small. Therefore, a prior distribution for
the parameter c with mean = 2 and variance = 0.5 and a prior distribution for the shift
parameter d with mean = 0 and variance = 0.2 will be adopted. The temporal trend
parameters are assumed small, but positive, and prior distributions with zero mean
and variance = 0.1 will be assumed.

There is also a need to specify prior distributions for the starting values of θ(x, 0)
at all spatial locations. Assuming these are independent and Gaussian corresponds
to a total of 306 hyperparameters that needs to be specified. In [17], informative
priors based on data prior to some specified data were used to establish similar
hyperparameters, but it was noted that the final results were insensitive to the values
of these hyperparameters. It is assumed that this is also the case for the significant
wave height model, especially since the amount of data is much larger. Therefore,
less informative priors that are rather flat will be specified for these 153 parameters.
Furthermore, the same prior distributions will be assumed for all locations, with zero
mean and variance = 15.

Hyperparameters for all five noise terms are assumed equal, with values αι = 3
and βι = 2, corresponding to mean = 1 and variance = 1 for the variance parameters.
All hyperparameters for the prior distributions are summarized in Table 3.3 and the
model is then fully specified. It is noted that the same priors were used for monthly,
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Table 3.3 Specification of
prior distributions

Parameters Prior distribution

σ 2
Z , σ

2
μ, σ

2
θ , σ

2
m and σ 2

T I G(3, 2)
aφ , aλ, b0, bN , bE , bS and bW N (0.2, 0.25)
μ0,i for i = 2, . . . , 6 N (0, 2)
μ0,1 N (3.5, 2)
θ(x, 0) for all x N (0, 15)
c N (2, 0.5)
d N (0, 0.2)
γ and η N (0, 0.1)

daily and monthly maximum data and it can be questioned whether this is appropriate.
However, a few simulations were run with different priors for some of the parameters,
and the results were not very sensitive to this. This might not be unexpected, however,
as it is generally known that the priors become asymptotically irrelevant and the
amount of data is big in this case.

3.3 Model Comparison and Selection

Model comparison in such a complex model is challenging. Statistical models are
often compared by way of the AIC or BIC criteria [2, 20], but neither are straight-
forward to use for complex hierarchical models. Alternative criteria for complex
hierarchical models are the deviance information criterion (DIC) [23] and the pos-
terior predictive checks as described in [4]. Neither of these methods have been
employed in the current study, which rather employs two loss functions based on
predictive power. However, these are based on short-term predictive power and may
not be ideal for a model aiming at identifying long-term trends. Furthermore, only
the observational level is used for model comparison and the outcomes are condi-
tional on the underlying system levels. Hence, robust model selection remains an
open issue.

3.3.1 Sum of Squares of the Residuals

Different model alternatives can be briefly compared by comparing the resulting
posterior estimates of the model parameters. In order to assess the different model
alternatives and get a measure of the model fit to the data, the sum of squares of the
residuals, SSres, can be considered, calculated according to Eq. 3.11, where n is the
number of samples (n = 1, 000 in this case) and m is the number of observations
(m = X × (T − 1)). These are relative measures and cannot be used to determine
how good a model is, but merely to compare different model alternatives applied to
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the same dataset.

SSres =
m∑

i=1

⎛

⎝Zi − 1

n

n∑

j=1

Ĥi, j

⎞

⎠

2

(3.11)

3.3.2 Loss Functions Based on Predictive Power

Two loss functions based on predictive power were constructed as alternative ways
of comparing model alternatives. Only one-step predictions were considered. Hence,
the models were fitted with all data except the last time-point and predictions of the
spatial field at this time-point for the various models were then compared to the data.
Analogue to the standard loss function used in [17], the standard loss function in
Eq. 3.12 is defined where Z(x) denotes the data at location x and Z(x)∗j denotes the
predicted value of Z at location x in iteration j , both at time T . It is noted that the
time dependence in Eq. 3.12 is suppressed since only the time t = T is considered.

Ls =
⎡

⎣ 1

Xn

X∑

x=1

n∑

j=1

(
Z(x)− Z(x)∗j

)2

⎤

⎦

1
2

(3.12)

More specially designed loss functions may also be used, for example where a
greater penalty is introduced for failing to predict an extreme sea state compared
to prediction errors for less severe sea states or where the spatial predicted fields
are smoothed by averaging over neighboring grid points (as in [17]). In this study,
one alternative loss function has been designed, where the squared prediction errors
have been weighted according to the actual observed significant wave height. More
precisely, a weight of Z(x) is included in order to give greater emphasis on prediction
errors at locations where large significant wave heights have been observed. Hence,
an alternative loss function as given in Eq. 3.13 is calculated.

Lw =
⎡

⎣ 1

n
∑

x Z(x)

X∑

x=1

n∑

j=1

Z(x)
(

Z(x)− Z(x)∗j
)2

⎤

⎦

1
2

(3.13)

The predictions Z(x)∗j are taken as the estimated value of Z(x) given the samples
for all model parameters and variables in iteration j . The model specification gives

Z(x)∗j = μ(x) j + θ(x, T ) j + M(T ) j + T(T ) j + εZ (x, T )

= μ(x) j + B j θ(T − 1) j + c j cos(ωT )+ d j sin(ωT )+ γ j T + η j T 2 + εζ (x) j
(3.14)
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where the subscript j denotes the sampled parameters in iteration j and the noise
terms εζ (x) are sampled independently from a zero-mean normal distribution with
variance

σ 2
ζ, j = σ 2

Z , j + σ 2
θ, j + σ 2

m, j + σ 2
T, j (3.15)

Note that since μ(x) is independent of time, the sampled values of μ(x) j can be
used and these have already incorporated the noise term εμ. Hence, this noise term
is not a part of εζ (x)when making the predictions. B is an X × X matrix as outlined
in Appendix D.

3.4 Implementation and Simulations

In order to simulate posterior samples from the model, Markov chain Monte Carlo
techniques (Gibbs sampling with Metropolis-Hastings steps, see e.g., [18]) have
been employed. This requires the full conditional distributions for all the parameters
involved, as presented in Appendix D. Gaussian distributions and conjugate priors
have been used, so the derivation of the full conditional distributions has been rather
straightforward in most cases, although the full conditional distribution for aφ and aλ
was difficult to sample from directly. In order to overcome this difficulty, Metropolis-
Hastings steps were incorporated in the Gibbs sampler for these parameters, where
the joint pseudo conditional distribution was used as proposal. A mixing rate of about
25 % was achieved, and the Metropolis-Hastings steps were repeated four times in
each iteration to achieve an overall acceptance rate of about 65–68 % for the various
simulations. An implementation has been made in Java. 45,000 iterations were run
for the monthly and monthly maximum data, with an initial burn-in period of 20,000
and then keeping every 25th sample (batch size = 25). For the daily and six-hourly
data, when simulations became increasingly time consuming, the batch size was
reduced to 5, retaining the burn-in period of 20,000. Thus, a total of 1,000 samples
of the multi-dimensional parameter vector were obtained from each simulation.

In order to determine the batch size, initial simulations keeping all samples were
carried out and the autocorrelation functions were investigated. A set of simulations
were also run for the monthly data with a batch size of 5, and this produced nearly
identical results, but with slightly wider credibility bands. This can be explained
by the greater Monte Carlo variance for samples that are more correlated, and is
as expected. In addition, goodness-of-fit and short-term predictions are minimally
affected. Notwithstanding, for daily and six-hourly simulations, which are much
more time consuming, a batch size of 5 was used.

No formal tests on convergence have been carried out, but visual inspection indi-
cates that convergence occurs relatively quickly. A few simulations have been per-
formed with different starting values for the parameter set and the results indicate
that the Gibbs sampler has indeed converged. In addition, two control simulations
with considerably longer burn-in periods were run for the monthly data, and these
showed nearly identical results, indicating that convergence did indeed occur within
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the burn-in period. However, it cannot be taken for granted that convergence occur
equally fast for daily and six-hourly data.

It is noted that applying the Kalman filter [1, 12, 16] could have been an alternative
to running MCMC simulations. The state model is basically a linear combination of
Gaussian components and hence the model can be regarded as a type of Gaussian
dynamic linear models as outlined in [36], for which the Kalman filter should work.
Even though this could possibly have a computational advantage in terms of reduced
computational time, the technique has not been employed in this study, and it is
therefore not known how such an approach would have performed. The integrated
nested Laplace approximations (INLA) approach could also be a possible alternative
[19], but this was neither tried out in this study.

3.5 Results and Predictions

3.5.1 Results for Monthly Data

The following results were obtained when running the model with monthly data, i.e.,
the first observation from each month. It is agreed that the selection of a particular
observation within each month may be regarded as arbitrary, but it is believed that no
notable biases are introduced by this over the time history of 44+ years. Furthermore,
this arbitrariness disappears when focusing on monthly maximum data in subsequent
analyses.

In order to check the Gaussian model assumption in Eq. 3.4, a visual check of
the residuals was carried out, and this indicates that the model assumptions are
reasonable, as shown in the normal probability plot in Fig. 3.9 (top) (this plot is for
the quadratic model but plots pertaining to the other model alternatives are nearly
identical). It is observed that some deviation from a straight line occurs, and by closer
inspection, there seems to be some dependence in the residuals, which may indicate
that some of the model assumptions are violated. More specifically, there seems to
be a spatial dependence in the residuals. This could be due to edge-effects and it is
observed that the residuals are consistently lower at the border, i.e., where there are
no neighbour in one direction. This pattern is present for all model alternatives, and
it is seen that the effect is not affected by different temporal parts. Since this is a
spatial feature, this is reasonable. For comparison, a normal probability plot of the
monthly data is shown at the bottom in Fig. 3.9, and it is clearly seen that the data
itself are not normal.

Most of the marginal posterior distributions appear symmetric, and the mean and
standard deviation of the posterior distributions for different parameters of the dif-
ferent model alternatives are given in Tables 3.4 and 3.5. It is observed that apart
from the temporal trend part, most of the model parameters do not vary significantly
between model alternatives. The posterior distributions for aφ and aλ are not sym-
metric, however, and the posterior distributions for these are presented in Table 3.4
in terms of the triplets (mean; median; standard deviation).
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Fig. 3.9 Normal probability
plot of the residuals (top) and
the monthly data (bottom)

Two control runs, for model 1 and 2 respectively, with considerably longer burn-in
period (500, 000) and batch size (200) were performed and the resulting posteriors
were almost identical. This indicates two important findings: (a) The initial burn-in
periods were sufficient to arrive at the stationary distributions and (b) the initial batch
size of 25 is sufficient to arrive at approximately uncorrelated samples (otherwise,
one would expect higher variance due to correlated samples). Hence, the control runs
suggest that convergence of the Markov chain is not an issue, at least for the monthly
data.

The six parameters μ0,· determine the spatially varying mean μ0(x) over the
area, which is displayed in Fig. 3.10. As for the time-independent part μ(x), both
the mean ofμ(x) (top) and the mean deviation from the meanμ(x)−μ0(x) (bottom)
are illustrated in Fig. 3.11. The contribution from the time-independent part μ(x)
is in the order of 2.7–3.3 m, which seems reasonable. The mean deviation from the
spatially varying mean is small, with range of deviations from −0.22 to 0.11 m.
The figures below are all from simulations over the main model (model 1), but the
alternative models give very similar results.

It is somewhat more difficult to visualize the space-time dynamic part, θ(x, t).
Figure 3.12 shows the mean and variance of the θ(x) field for an arbitrary time. For
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Table 3.4 Posterior marginal distributions, mean and standard deviation (mean; sd); monthly data

Model 1 Model 2 Model 3 Model 4 Model 5

σ 2
Z 0.79; 0.0048 0.79; 0.0049 0.79; 0.0047 0.79; 0.0048 0.79; 0.0049
σ 2
μ 0.030; 0.0035 0.031; 0.0036 0.031; 0.0037 0.031; 0.0035 0.031; 0.0036
σ 2
θ 0.074; 0.0026 0.074; 0.0027 0.074; 0.0025 0.074; 0.0027 0.074; 0.0026
σ 2

m 0.69; 0.12 0.67; 0.12 1.1; 0.072 1.1; 0.070 1.1; 0.070
b0 0.22; 0.0088 0.22; 0.0088 0.22; 0.0087 0.22; 0.0088 0.22; 0.0087
bN 0.21; 0.012 0.21; 0.013 0.21; 0.013 0.21; 0.012 0.21; 0.012
bE 0.24; 0.011 0.24; 0.011 0.24; 0.011 0.24; 0.011 0.24; 0.010
bS 0.13; 0.012 0.13; 0.012 0.13; 0.012 0.13; 0.012 0.13; 0.012
bW 0.18; 0.010 0.18; 0.010 0.18; 0.0097 0.18; 0.010 0.18; 0.0099
c 1.13; 0.064 1.14; 0.069 1.13; 0.064 1.13; 0.064 1.13; 0.067
d 0.80; 0.065 0.79; 0.065 0.79; 0.067 0.80; 0.068 0.79; 0.065
μ0,1 3.4; 1.4 3.4; 1.4 3.5; 1.4 3.4; 1.4 3.4; 1.5
μ0,2 −0.22; 0.047 −0.21; 0.044 −0.21; 0.049 −0.22; 0.046 −0.22; 0.048
μ0,3 1.3; 0.27 1.3; 0.26 1.3; 0.28 1.3; 0.26 1.3; 0.28
μ0,4 0.00041; 0.00012 0.00041; 0.00011 0.00041; 0.00012 0.00042; 0.00012 0.00043; 0.00012
μ0,5 −0.0075; 0.0015 −0.0073; 0.0015 −0.0075; 0.0015 −0.0074; 0.0015 −0.0075; 0.0016
μ0,6 −0.0011; 0.00068−0.0012; 0.00064−0.0012; 0.00068−0.0012; 0.00067−0.0012; 0.00068
aφ 0.12; 0.11; 0.062 0.12; 0.11; 0.066 0.11; 0.11; 0.064 0.11; 0.11; 0.063 0.11; 0.11; 0.064
aλ 0.13; 0.13; 0.067 0.13; 0.13; 0.067 0.13; 0.13; 0.066 0.13; 0.13; 0.068 0.13; 0.13; 0.067

Table 3.5 Posteriors for the trend components, mean and standard deviation; monthly data

Model 1 Model 2 Model 3 Model 4 Model 5

σ 2
T 0.45; 0.12 0.48; 0.11 – – –
γ 0.00098; 0.0011 0.00054; 0.00026 – 0.0012; 0.0012 0.00070; 0.00029
η −6.1 × 10−7; 2.0 × 10−6 – – −9.9 × 10−7; 2.2 × 10−6 –

all times (except t = 0) and locations, the mean ranges from ±1.5 m with variances
ranging from 0.06 to 0.48 m2. Hence, a notable part of the modeled significant wave
height can be ascribed to this space-time dynamic part. One interesting observation is
that, of the b-parameters except b0, bE is the largest. This should mean that the model
captures that more storms arrive from east than from the other directions. However,
it is noted that such interpretation of this component is not very meaningful when
using monthly data, and a better interpretation will presumably be obtained when
running the model on daily and six-hourly data. In that case, it is expected that the
model should correctly capture the direction most storm tracks follow in the area.

One may also want to investigate the seasonal and trend components as obtained
from the model. The sampled seasonal term for the first 10 years is shown in Fig. 3.13,
and a clear cyclic behavior is observed. The mean seasonal contribution without the
error term, c cos(ωt)+ d sin(ωt) calculated with the posterior mean values of c and
d, is also shown in the figure and agrees well with the sampled seasonal contribution.

The estimated amplitude of the seasonal component is
√

ĉ2 + d̂2 ≈ 1.4 m.
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Fig. 3.10 The spatially varying mean, μ0(x), monthly data, ranging between 2.7 and 3.3 m

The temporal trend part of the quadratic model is illustrated in Fig. 3.14. The
figure shows the sampled mean annual trend together with the mean, 5- and 95-
percentiles of the trend contribution obtained by calculating γ t + ηt2 from the joint
posterior distribution of (γ, η). As can be seen from this plot, a mean yearly trend
corresponding to a noticeable increase in significant wave height, about 35 cm over
the period, can be extracted from the data with a 90 % credible interval ranging from
6.7 to 62 cm. It is observed that the expected increase over the period due to this
trend is comparable to the mean trend estimated with slightly different priors for the
variance terms [29].4

One may also investigate the temporal trend part of the model with a linear trend
(obtained by setting η = 0 in the main model) and this is also shown in Fig. 3.14. The
sampled mean annual trend is plotted together with the mean, 5- and 95-percentiles
of the trend contribution obtained from γ t , and also now a significant increasing
trend can be detected. Indeed, the whole 90 % credible interval for the long-term
temporal trend is positive. The mean estimate of the long-term trend from the linear
model corresponds to an increase in significant wave height of about 28 cm over
the whole period. Alternatively, one may observe that this model gives, with 95 %
credibility, an increase in significant wave height of at least 5 cm between 1958 and
2002. The expected trend contribution is slightly less than for the alternative priors
used in [29], but the difference is not very significant.

For the models with one temporal noise term, the seasonal and trend components
were not sampled individually, but the mean and 90 % credible interval for the trend

4 Note that the credible bands in [29] were wrongly calculated, but not the mean.
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Fig. 3.11 Mean time-independent part (top) and deviation from the spatial mean (bottom), monthly
data

estimated from the posterior γ and η estimates are illustrated in Fig. 3.15. The long-
term trends estimated from these models are very similar to the ones estimated with
two noise terms. The quadratic trend model (Model 4) estimates a mean increase
over the period of 38 cm, with the 90 % credible interval ranging from 12 to 65 cm.
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Fig. 3.12 Mean and variance of the dynamic part, monthly data
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Fig. 3.13 The seasonal component for 10 years, monthly data; M(t) (grey lines) and c cos(ωt)+
d sin(ωt) (blue lines)

The linear trend model (Model 5) estimates a mean increase of 37 cm during the
period, with a 90 % credible interval ranging from 13 to 61 cm.

3.5.2 Results for Daily Data

The same models were run for daily data. Running these simulations was much more
computational intensive than for monthly data, but less so than for the full dataset; one
set of simulations completed in about 200 h. The results from these simulations are
summarized below. A visual check of the residuals was carried out, suggesting that
model assumptions are reasonable, as shown in Fig. 3.16 (for the full model). Some
deviation from a straight line is observed again, which may be be due to edge-effects
of the Markov Random Field.

Again, most of the marginal posterior distributions are symmetric and resemble
Gaussian distributions, and the mean and standard deviation of the marginal posterior
distributions for the different model alternatives are given in Tables 3.6 and 3.7.
Apart from the temporal trend part, again most of the model parameters do not vary
significantly between model alternatives.

The figures illustrating these results are very similar to the ones obtained for the
monthly data and are not presented herein, but the main results are summarized briefly
in the following. The contribution from the time-independent part is now within the
range of 2.9–3.6 m with deviations from the spatially varying mean ranging from
−0.24 to 0.10 m. This is slightly higher, but comparable to the results obtained for
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Fig. 3.14 Annual trend over
the period, model 1 (top) and
model 2 (bottom), monthly
data; mean T(t) (black lines)
and mean and 90 % credible
interval of γ t +ηt2 (red lines).
Green lines correspond to no
trend

monthly data. The mean contribution from the dynamic part ranges from −2.79 to
3.44 m, with variances ranging from 0.11 to 0.43 m2. Now, of the b-parameters except
b0, bW is the largest, which indicates that the model captures that more storms arrive
from west than from the other directions. This is different from the results obtained for
monthly data, but it is believed that the interpretation of this component now becomes
more meaningful, and that the dynamic part now seems to capture the development
and transition of storms in the area, which are believed to follow a predominantly
eastward direction, i.e., coming from the west. The seasonal contribution for the first
5 years is shown in Fig. 3.17.

The temporal trend part of the quadratic model is illustrated in Fig. 3.18, as for
the monthly data. Again, an increasing trend can be extracted from the data with the
mean yearly trend corresponding to a noticeable increase in significant wave height,
about 23 cm over the period. The 90 % credible interval ranges from 19 to 28 cm. This
is somewhat less than the trend estimated from the monthly data, with a narrower
credible band.



3.5 Results and Predictions 91

Fig. 3.15 Mean and 90-
% credible interval for the
estimated trend contribution
for models 4 (top) and model
5 (bottom), monthly data (red
lines). Green lines correspond
to no trend

The trend component of the linear model (model 2) is also shown in Fig. 3.18
and again a significant increasing trend can be detected. Indeed, all sampled trend
contributions for this model are positive, corresponding to a near-100 % credible
interval for the long-term temporal trend to be positive. The mean estimate of the
long-term trend from the linear model corresponds to an increase in significant wave
height of about 22 cm over the whole period of 44 years and 2 months. Alternatively,
this model gives a 90 % credible interval ranging from 17 to 31 cm. Again, the credible
interval is notable narrower for daily data compared to monthly data.

The estimated trend components for models 4 and 5 including the 90 % credible
bands are illustrated in Fig. 3.19. The long-term trends estimated from these models
are very similar to the ones estimated with two temporal noise terms. The quadratic
trend model (Model 4) estimates a mean increase over the period of 23 cm, with
the 90 % credible interval ranging from 19 to 27 cm. The linear trend model (Model
5) also estimates a mean increase of 23 cm during the period, with a 90 % credible
interval ranging from 20 to 27 cm. Compared to the results using monthly data, the
estimated trends are somewhat less with much narrower credible intervals.
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Fig. 3.16 Normal probability
plot of the residuals, daily data

Table 3.6 Posterior marginal distributions, mean; standard deviation for daily data

Model 1 Model 2 Model 3 Model 4 Model 5

σ 2
Z 0.56; 0.00075 0.56; 0.00074 0.56; 0.00080 0.56; 0.00075 0.56; 0.00076
σ 2
μ 0.029; 0.0033 0.029; 0.0035 0.030; 0.0034 0.030; 0.0035 0.030; 0.0034
σ 2
θ 0.17; 0.00058 0.17; 0.00052 0.17; 0.00059 0.17; 0.00056 0.17; 0.00057
σ 2

m 0.85; 0.012 0.93; 0.015 1.1; 0.012 1.05; 0.012 1.05; 0.012
b0 0.24; 0.0012 0.24; 0.0012 0.24; 0.0012 0.24; 0.0011 0.24; 0.0012
bN 0.12; 0.0012 0.12; 0.0011 0.12; 0.0011 0.12; 0.0011 0.12; 0.0011
bE 0.15; 0.0012 0.15; 0.0012 0.15; 0.0012 0.15; 0.0011 0.15; 0.0012
bS 0.18; 0.0012 0.18; 0.0012 0.18; 0.0013 0.18; 0.0012 0.18; 0.0012
bW 0.28; 0.0012 0.28; 0.0012 0.28; 0.0012 0.28; 0.0012 0.28; 0.0012
c 1.4; 0.012 1.4; 0.012 1.4; 0.012 1.4; 0.012 1.4; 0.012
d 0.31; 0.012 0.31; 0.012 0.31; 0.012 0.31; 0.012 0.31; 0.012
μ0,1 3.4; 1.5 3.3; 1.4 3.4; 1.4 3.4; 1.4 3.4; 1.4
μ0,2 −0.22; 0.044 −0.22; 0.044 −0.22; 0.044 −0.22; 0.044 −0.22; 0.044
μ0,3 1.3; 0.26 1.3; 0.26 1.3; 0.26 1.3; 0.26 1.3; 0.26
μ0,4 0.00042; 0.00011 0.00042; 0.00011 0.00042; 0.00011 0.00042; 0.00011 0.00043; 0.00011
μ0,5 −0.0078; 0.0014 −0.0078; 0.0014 −0.0078; 0.0014 −0.0077; 0.0014 −0.0078; 0.0014
μ0,6 −0.0012; 0.00064−0.0012; 0.00064−0.0012; 0.00062−0.0012; 0.00064−0.0012; 0.00061
aφ 0.13; 0.13; 0.067 0.13; 0.13; 0.065 0.13; 0.13; 0.066 0.13; 0.12; 0.065 0.13; 0.13; 0.066
aλ 0.15; 0.15; 0.066 0.15; 0.15; 0.066 0.14; 0.14; 0.066 0.15; 0.15; 0.072 0.15; 0.15; 0.067

Table 3.7 Posteriors related to the trend component, daily data

Model 1 Model 2 Model 3 Model 4 Model 5

σ 2
T 0.20; 0.0058 0.12; 0.0096 – – –
γ −1.1 × 10−5;

4.5 × 10−6
1.4 × 10−5;

2.4 × 10−6
– −1.0 × 10−5;

5.2 × 10−6
1.4 × 10−5;

1.3 × 10−6

η 1.6 × 10−9;
2.7 × 10−10

– – 1.5 × 10−9;
3.5 × 10−10

–
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Fig. 3.17 The seasonal com-
ponent for 5 years, daily
data; M(t) (grey lines) and
c cos(ωt) + d sin(ωt) (blue
lines)

3.5.3 Results for Monthly Maximum Data

Finally, the models were run on monthly maximum data, i.e., the maximum signif-
icant wave height at each spatial location for each month. The results from these
simulations are presented in the following. A visual check of the residuals indicates
that the Gaussian model assumptions in Eq. 3.4 might be reasonable, although model
fit seems to be somewhat poorer than for nonmaximum data.

Most of the marginal posterior distributions are symmetric and resemble Gaussian
distributions, and the mean and standard deviation of the posterior distributions for
some of the parameters of the different model alternatives are given in Table 3.8.
Apart from the temporal trend part, most of the model parameters do not vary signif-
icantly between model alternatives. It is observed that bN is smaller than the other
b· parameters, but no particular explanations for this have been sought.

The posterior time-independent partμ(x) looks reasonable with values in the order
of 6.1–7.3 m. The posteriors of the space-time dynamic part take values between -
1.1 and 1.8 m and a notable part of the variation in the data is explained by this
component. The seasonal contribution corresponds to an annual cyclic variation of
about ±2.5 m.

The long-term trend part is illustrated in Fig. 3.20. For the quadratic model (model
1) the mean yearly trend corresponds to nearly 70 cm over the period. The 90 %
credible interval embraces overall trends between 44 and 93 cm. The corresponding
trend from the linear model (Model 2) corresponds to an increase of about 69 cm
over the period with a 90 % credible interval ranging from 45 to 94 cm. For the
models with one temporal noise term, the seasonal and trend components were not
sampled individually, but the joint temporal components are shown along with the
mean seasonal part and the mean, 5- and 95-percentiles of the trend contribution.
The quadratic trend model (Model 4) estimates a mean increase over the period of
68 cm, with the 90 % credible interval ranging from 39 to 96 cm. The linear trend
model (Model 5) estimates a mean increase of 69 cm during the period, with a 90 %
credible interval ranging from 40 to 96 cm.
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Fig. 3.18 Annual trend over
the period, model 1 (top)
and model 2 (bottom), daily
data; mean T(t) (black lines)
and mean and 90 % credible
interval of γ t +ηt2 (red lines).
Green lines correspond to no
trend

3.5.4 Model Comparison and Selection

The different model alternatives can be briefly compared by comparing the resulting
posterior estimates of the model parameters, as presented in for example Table 3.4.
From these tables, it is observed that the parameters related to the spatial features
of the model seem to be little affected by the model reductions. Keeping in mind
that the model reductions were only related to the temporal trend, it is reassuring to
observe that all model alternatives give similar estimates for the spatial parts of the
model. Also, the seasonal part of the model seems to behave rather similarly for the
various model alternatives. Hence, the main differences are, as would be expected,
related to the long-term temporal trend.

The losses corresponding to the two loss functions were estimated for the various
datasets and model alternatives and are given in Table 3.9. No reward is given here
for parsimony, and only predictive power is included in the loss functions. Note
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Fig. 3.19 Mean and 90-
% credible interval of the
estimated trend components
for models 4 (top) and 5
(bottom), daily data (red
lines). Green lines correspond
to no trend

however, that comparison between results pertaining to different datasets might not
be applicable.

According to these criteria, preference is given to the linear trend models for the
monthly and monthly maximum data, but the models with quadratic trends seem to
be favoured for the daily data. Hence, at least for short-term prediction, these model
alternatives seem to perform best for the various subsets of data. This inconsistency
might be bothersome, but it is observed that the differences in the values in Table 3.9
are relatively small and it is difficult to distinguish between the model performances
based on these. Hence, it cannot be determined which model performs best with any
strong confidence, and they all seem to describe the data equally well. Furthermore,
it is difficult to assess the models in terms of long-term prediction and it is still an
open question which model alternative that should be regarded as superior in this
respect.
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Table 3.8 Posterior marginal distributions, mean; standard deviation for monthly maximum data

Model 1 Model 2 Model 3 Model 4 Model 5

σ 2
Z 1.2; 0.0085 1.2; 0.0081 1.2; 0.0080 1.2; 0.0079 1.2; 0.0081
σ 2
μ 0.035; 0.0042 0.035; 0.0042 0.035; 0.0040 0.035; 0.0042 0.035; 0.0044
σ 2
θ 0.074; 0.0059 0.074; 0.0056 0.076; 0.0054 0.074; 0.0052 0.074; 0.0051
σ 2

m 0.63; 0.16 0.56; 0.13 1.1; 0.073 1.1; 0.068 1.1; 0.069
b0 0.23; 0.0094 0.23; 0.0095 0.23; 0.0094 0.23; 0.0095 0.23; 0.0096
bN 0.0068; 0.011 0.0064; 0.012 0.0090; 0.011 0.0055; 0.011 0.0059; 0.011
bE 0.22; 0.010 0.22; 0.0097 0.22; 0.0098 0.22; 0.0098 0.22; 0.0098
bS 0.35; 0.026 0.35; 0.023 0.34; 0.023 0.35; 0.023 0.35; 0.022
bW 0.23; 0.011 0.23; 0.010 0.23; 0.0099 0.23; 0.010 0.23; 0.010
c 2.4; 0.062 2.4; 0.065 2.4; 0.067 2.4; 0.064 2.4; 0.067
d 1.0; 0.067 1.0; 0.063 1.0; 0.067 1.0; 0.066 1.0; 0.065
μ0,1 3.4; 1.5 3.4; 1.3 3.4; 1.4 3.4; 1.4 3.3; 1.3
μ0,2 −0.28; 0.068 −0.28; 0.068 −0.28; 0.067 −0.29; 0.066 −0.29; 0.064
μ0,3 1.9; 0.39 1.8; 0.40 1.9; 0.39 1.9; 0.39 1.9; 0.38
μ0,4 0.00049;

0.00017
0.00048;

0.00017
0.00049;

0.00017
0.00050;

0.00017
0.00050;

0.00016
μ0,5 −0.013;

0.0024
−0.13;

0.0023
−0.013;

0.0022
−0.013;

0.0023
−0.013;

0.0023
μ0,6 −0.0010;

0.00095
−0.0010;

0.00097
−0.0011;

0.00098
−0.0011;

0.00097
−0.0011;

0.00096
σ 2

t 0.50; 0.16 0.56; 0.13 – – –
γ 0.0022;

0.0011
0.0013;

0.00028
– 0.0018;

0.0014
0.0013;

0.00033
η −1.7 × 10−6;

2.1×10−6
– – −9.1 × 10−7;

2.5×10−6
–

Table 3.9 Model selection: estimated losses

Model alternative Monthly data Daily data Monthly max
Ls Lw Ls Lw Ls Lw

Model 1 2.861 3.150 2.223 2.319 2.630 2.748
Model 2 2.857 3.144 2.266 2.372 2.576 2.691
Model 3 2.917 3.233 2.312 2.430 2.775 2.902
Model 4 2.868 3.160 2.223 2.321 2.609 2.726
Model 5 2.851 3.136 2.263 2.369 2.580 2.695

3.5.5 Future Projections

Even though extrapolation beyond the time interval for which the models are fitted
might not be valid, it is tempting to extend the estimated trends into the future. It is
acknowledged that this might be somewhat speculative. Notwithstanding, assuming
that such trends as the ones predicted from the linear models will continue into the
future, the corresponding expected increases over 100 years are summarized below.
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Fig. 3.20 Estimated temporal trends of the 45-year period; Model 1 (top left), Model 2 (top right),
Model 4 (bottom left) and Model 5 (bottom right)

Extrapolations of the quadratic trend functions are deemed even more speculative,
as the quadratic term in t would dominate completely, and will not be performed
herein.

3.5.5.1 Monthly Data

Assuming that a trend such as the one predicted from the linear trend models with
monthly data will continue into the future, it is interesting to note that this would
correspond to an expected increase in significant wave height of 64 cm with a 95 %
credibility of an increase of at least 11 cm over 100 years (for the model with two
temporal noise terms) or 84 cm with a 95 % credibility of an increase of at least 29 cm
over 100 years (for the model with one temporal noise term).

3.5.5.2 Daily Data

Assuming that a trend such as the one predicted from the linear trend model with daily
data will continue into the future, it is interesting to note that this would correspond
to an expected increase in significant wave height of 51 cm with a 95 % credibility
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of an increase of at least 40 cm over 100 years. A very similar trend was obtained for
the linear model with one temporal noise term.

3.5.5.3 Monthly Maxima Data

Assuming that estimated linear trends from the monthly maxima data will continue,
the results correspond to an expected increase in monthly maximum significant wave
height of 1.6 m over 100 years, with a 95 % credibility of an increase of at least around
1.0 m. The two linear trend estimates, with credibility bands, are nearly identical. It
is noted that this trend is significantly stronger than for the monthly and daily data,
but this might not be surprising. Indeed, it is reported elsewhere that trends might be
stronger for extremes compared to average conditions [39], so this is believed to be
a genuine feature that is reflected in the data and picked up by the models.

3.5.6 General Comments

Different model alternatives have been tried, e.g., with respect to number of noise
terms included. Initially, two temporal noise terms were included in the model as this
would presumably yield the most flexible model. However, it is realized that including
two temporal noise terms in the model might lead to identifiability problems. This is
illustrated in Fig. 3.21, where it is seen that for different iterations (index), different
parts of the temporal noise are ascribed to the seasonal noise term and the trend
noise term respectively even though the sum of the two is fairly stationary. Since
there is no way for the models to be able to distinguish between temporal noise from
the seasonal contribution and the long-term trend contribution, this is as expected. It
was attempted to improve the models by removing one of the temporal noise terms.
However, simulations do not indicate that the models with only one temporal noise
term perform consistently different. It is also argued that identifiability problems
between the two temporal noise terms are not crucial, as long as the other components
and the overall results are not heavily influenced by this, and that the models with
two terms can be kept as alternatives. The difference in performance does not seem
to be substantial and it is not assumed to influence the results much. Furthermore,
trace-plots of the other model parameters show no sign of being affected by the
instability of the individual temporal noise terms, and it is assumed that since the
total temporal noise seem to have converged to stationary conditions, this does not
create any serious problems for the other model parameters and the overall model
as such. Furthermore, informal tests indicate that the models do converge within the
burn-in period in spite of this issue.

It is observed that the iid-assumptions of the residuals are mildly violated. Upon
closer examination, there seems to be a spatial dependence of the residuals and this
is construed as an effect of the borders of the area with unobserved neighbours.
In Fig. 3.22 residuals for a fixed time and iteration are plotted for all locations; a
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Fig. 3.21 Example of sampled temporal noise terms: Even though σ 2
T + σ 2

m seem to be fairly
stationary, there seem to be identifiability problems regarding the distribution of the temporal noise

dependence structure caused by the borders of the area is clearly seen. Recalling that
the area consists of a grid of 17 × 9 locations, 17 subsequent residuals in the plot
corresponds to locations at a fixed latitude and it is clearly seen that there are nine
peaks corresponding to the nine points in lateral direction. Hence, at each border-
point to the east or west, the iid-assumption seems to break down. However, it is
argued that this does not disqualify the model, but rather that care should be taken
in applying it to locations close to the borders of the area. The spatial part of the
model might not perform well at the borders but in the more central parts of the area
the model assumptions seem to hold. This is a rather well-known characteristic of
spatial models without adjustments for edge effects and is not particular to this model
(see e.g., [15]). One physical explanation for the observed border effects could be
that swell wave information coming from neighbouring areas are lost at the borders,
especially since the area under consideration is known to be in a swell dominated
region. Apart from this, the spatial part of the model seems to be robust to changes
in temporal resolution of the data and to changes in the temporal parts of the model,
and the purely spatial part of the model overall is believed to perform well.

It was noted previously that there are arguments against using inverse gamma
priors on the noise variances, and noninformative priors could have been used instead.
Two examples of vague priors are uniform priors, σ 2· ∼ U [·] and inverse priors,
π(σ 2· ) ∝ 1

σ 2·
. The rationale for using inverse gamma priors on the noise variances

is, obviously, to restrain the error terms from becoming too large. However, in order
to investigate how sensitive the results are to this choice of priors on the noise
variances, simulations were also run with the inverse noninformative priors. As could
be expected, using noninformative priors leads to the temporal noise being unevenly
distributed between εt and εm . In fact, εm becomes quite large and εt becomes almost
zero, but this is easily explained by the fact that εm is sampled first. Since the prior
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Fig. 3.22 Residuals for all spatial locations at a fixed time/iteration

does not impose any restrictions on how large this should be, all of the temporal noise
will be ascribed to this term, and there will be little noise left for εt . Other effects
are that the acceptance rate of the Metropolis-Hastings steps seemed to decrease.
The results pertaining to the posterior spatial, short-term space-time and seasonal
parts are more or less the same regardless of the noise variance priors. For the
long-term trends, there might be a tendency towards somewhat smaller trends when
using noninformative priors on the noise variances. According to the loss functions,
the models generally seem to perform worse with noninformative priors, and it is
concluded that replacing the inverse gamma priors with noninformative priors does
not represent an improvement. Thus, the inverse gamma priors will be kept. Details
of results from some simulations with noninformative priors are reported in [32].

3.5.6.1 Simulations of Six-Hourly Data

The models were also run for all the data, trying to exploit the full temporal resolution
of 6 h. Running these simulations was very computational intensive with each set of
simulations requiring about 6,000 CPU-hours. The burn-in-period was still 20,000
and with a batch size of 5. The initial check of model assumptions seems satisfactory,
but there are indications of nonconvergence of the Gibbs-sampler. Hence, the quan-
titative estimates from these simulations are regarded as unreliable. Nevertheless, it
is believed that the results provide some useful insight and a qualitative description
of these simulations will be given below.

The contribution from the time-independent part is almost identical to the results
obtained using monthly and daily data, which is reassuring. However, the contribution
from the short-term space-time dynamic part, θ(x, t), is significantly larger than what
was obtained from the daily (and monthly) data. It is expected that a higher temporal
resolution would make this dynamic part more meaningful, so this might not be
problematic. Again, bW is the largest of the b-parameters except b0 and it is observed
that bE and bS have negative posterior expectations. This further substantiates that
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Fig. 3.23 Traceplots for the b-parameters (six-hourly data) indicate lack of convergence

sea states travels predominantly from the west or from the north in this particular
area. However, trace plots indicate that the parameters determining the contribution
from this component may not have converged, so reservations should be made in the
interpretation of this component. Trace plots for the five b-parameters are given in
Fig. 3.23 and it can be seen that all the bD’s, D = N , E, S,W , are increasing at the
expense of b0.

The temporal trend contributions of the models with two temporal noise terms
are very small, but increasing. However, trace plots suggest that the trend did not yet
converge; e.g., an overall positive drift can be seen for the sampled trends at t = T .
Even though the drift is small, it is not possible to know at what level stationarity
would occur if the drift continues. The trend contributions for the models with one
temporal noise term (models 4 and 5) are considerably larger than the ones estimated
with two noise terms, and it is observed that there are no longer any visible drift
in the trend-parameters. Possibly, the removal of one temporal noise term speeds
up convergence so that the results for these model alternatives might be from, or
closer to, the stationary distributions. The quadratic trend model (Model 4) estimates
a mean increase over the period which is smaller but still comparable to the trend
obtained using monthly and daily data.

It is uncertain whether the model, when applied to six-hourly data, converges
within the burn-in period, and less confidence is put on the results from these sim-
ulations. These simulations were extremely time consuming, requiring more than
30,000 CPU-hours for the simulations reported herein, so it is impractical to perform
new simulations with increased burn-in. Hence, lack of convergence might be the
reason for the lower trends estimated from the six-hourly data. Another possible
explanation may be that the space-time dynamic part, θ(x, t), incorporates, partly,
a long-term trend. The long-term effect of this component should ideally be zero,
but no constraints are imposed to ensure this. Therefore, it might be that this com-
ponent absorbs and camouflages trends in the data. This is supported by the fact
that θ(x, t) becomes increasingly important for increasing temporal resolution. A
possible solution could be to introduce restrictions on the autoregressive parameters
to make them stationary over long-time periods and prevent them from absorbing
long-term trend, but this has not been pursued in this study. Nevertheless, the long
term effect of this component is found to be negligible upon inspection of the results
also for the six-hourly data. Possibly, nonlinear dynamic effects start to dominate for
higher temporal resolutions, which are not properly accounted for by the model.
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3.6 Discussion

Regarding the different long-term trend components, it is acknowledged that the sim-
ple selection criteria employed are not really able to confidently distinguish between
them; they all seem to describe the data similarly well. However, if the estimated
trends should be used for future projections, it is assumed that the quadratic trend
cannot be extrapolated into the future, and estimates of future trends could only be
based on the linear trend. Even this might not be valid, but assuming that one might
make such projections, the models project an expected increase of significant wave
height around 50–80 cm, with a 95 % credible increase of at least between 11 and
40 cm over 100 years. For monthly maximum significant wave height, the increasing
trends are bigger, with an expected increase of 1.6 m over the next 100 years. This
seem to be in reasonable agreement to other projections made for significant wave
height in the North Atlantic [8, 10, 34, 35]. The estimated trends are also found to
agree reasonably well with trends identified in the data by more conventional time
series trend analyses on spatially reduced data, as reported in [33].

However, it is noted that even though the models seem to detect trends in the
data, it does not necessarily mean that there is a trend related to climate change. The
trend might be a result of decadal natural variability, as discussed in for example [5].
Great care should therefore be taken when interpreting the meaning and the origin
of this trend. Notwithstanding, if the model should be used for projections and long-
term predictions, it is believed that the model could be extended with appropriate
covariates, as briefly discussed above and explored in Chap. 5.

It is observed that the goodness-of-fit seems to decrease for the model when
applied to monthly maximum data, as seen by the relatively larger observational
variance compared to the other stochastic terms. Furthermore, when going from
monthly or daily to monthly maximum data, it is observed that, e.g., the bN -parameter
becomes notably smaller than for the other b·-parameters. There could be different
explanations for this, but these have not been further pursued.

Different attempts at model comparison and selection have been considered, but
neither are optimal for such a complex model. In particular, if the aim is to estimate
long-term temporal trends and to extrapolate those into the future, neither goodness-
of-fit nor short-term predictive power seem to be suitable as selection criteria. In fact,
according to the model selection approaches employed, simulations on monthly and
monthly maximum data seem to favour linear trends, daily data quadratic trends and
six-hourly data no trends. This inconsistency is troublesome, but it might just be
that this indicates that estimation of such a comparably small trend, distinguishing a
genuine trend, which is relatively insignificant compared to the other contributions,
from the noise, is difficult. It may also illustrate the sensitivity of such models on the
temporal resolution of the data. At any rate, it is merely noted that model selection
for the model presented herein remains an open issue.

http://dx.doi.org/10.1007/978-3-642-30253-4_5
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3.7 Summary and Conclusions

This chapter has outlined a Bayesian hierarchical space-time model for significant
wave height data, and applied it on a set of data extracted from ERA-40 for an area in
the North Atlantic Ocean, covering the period from 1958 to February 2002. Different
temporal resolutions have been tried, illustrating the sensitivity of the model results to
such changes. Five model alternatives have been considered, where the differences
have been in how a long-term temporal trend is modeled and in the number of
temporal noise terms (one or two). All model alternatives give similar results with
respect to the spatial features of the model but the different models and different data
resolutions yield slightly different estimates for the temporal features. The space-
time dynamic term is seen to become increasingly important for increasing temporal
resolution, and different trend components obviously affect the estimated long-term
trends. However, model selection remains inconclusive.

The trends estimated from the various simulations are fairly consistent, disre-
garding the simulations for six-hourly data, with expected trends of 22–23 cm for the
daily data and 28–38 cm for the monthly data over the period from 1958 to 2002. For
monthly maxima, the mean estimated trends were about 70 cm, indicating that there
is a stronger trend in extreme conditions than in average conditions. Extrapolating
the linear trends over 100 years corresponds to expected increases within the range of
50–80 cm for normal conditions and about 1.6 m for monthly maxima, which overall
are in reasonable agreement with previous studies.
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Chapter 4
Including a Log-Transform of the Data

In this chapter, the Bayesian hierarchical space-time model developed in Chap. 3
has been fitted to log-transformed data of significant wave height. There are two
main motivations for this; performing a log-transform of the data yields a model
with greater estimated trends for rougher sea states compared to more moderate
conditions and the log-transform could account for observed heteroscedasticity in
the data. This chapter is based on material previously presented in [13, 14].

4.1 Introduction and Motivation

There are several reasons for wanting to perform a log-transform of the data. It can
account for different contributions from the various model components for different
parts of the significant wave height distribution. In particular, the model with a log-
transform is able to account for a stronger trend in extremes than in non-extremes.
Hence, including the log-transform yields a fundamentally different interpretation of
the various components and the results, perhaps most importantly those pertaining
to the long-term temporal trend part, and this makes it particularly interesting to
explore.

There were observed some heteroscedastic features in the original time-series
with variances varying seasonally. Higher significant wave heights seem to be asso-
ciated with greater variance, and it is questionable whether the model without a
log-transform is able to capture this satisfactorily. However, after the log-transform,
the data appear to be homoscedastic and hence it is believed that the model will
perform better on the log-transformed data. This is illustrated by comparing the time
series in Fig. 4.1 with the time series in Fig. 4.2. The latter shows a time series of
the log-transformed data with and without the seasonal mean removed. Figure 4.1
(middle) also shows the seasonal mean that was subtracted from the original data;
an annual cyclic component.
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Fig. 4.1 Time series with and without seasonal mean

Another advantage of performing a log-transform is the impossibility of estimat-
ing negative significant wave heights. This would, of course, be unphysical and any
sensible model for significant wave heights should be restricted from predicting neg-
ative significant wave heights. However, as it turns out, even with the original data
this is not a serious problem, and the model simulates a negligible number of signif-
icant wave heights less than or equal to zero. At any rate, by taking the logarithmic
transform this is no longer an issue. It is also interesting to note that good results
have been reported for a log-normal transformation when modeling time series of
significant wave height [3].

For inference made on log-transformed data, biases may be introduced when
re-transforming back to the original scale and care should be taken to include appro-
priate bias correction factors when presenting and interpreting the results on the
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Fig. 4.2 Log-transformed time series with and without seasonal mean

non-transformed scale. Additionally, this chapter explores the effect of including a
semiannual contribution in the seasonal component.

4.2 Re-Transformation Bias Correction

It has been known for quite some time that logarithmic transformation, as indeed any
nonlinear transformation, of the data might lead to biased estimators on the original,
i.e., re-transformed scale [2, 5, 8]. Hence, one should be aware of this fact when
working with transformed data and bias corrections should be employed whenever
necessary. A number of different correction factors for logarithmic transformation
induced biases are reviewed in [10]. Basically, the bias is introduced when the re-
transformation is performed on the mean, or other moments, of the transformed data
in order to obtain estimators for the corresponding moments of the original data
since, for the mean,

E[eX ] �= eE[X ] (4.1)

Hence, simply exponentiating the mean of X will give a biased estimator for the mean
of Y = eX , i.e., Ŷ = eX̄ will be biased. One way to account for this is to introduce
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one of many alternative bias corrections that will give exact or approximate unbiased
estimators of expected values.

However, the bias can also be avoided if the entire distribution, not just the
moments, are exponentiated. A Bayesian approach to re-transformation back to the
natural metric by exponentiating the entire posterior distribution is outlined in [11],
thus resolving the bias problem in a straightforward manner. For the work presented
herein, the bias is avoided in a similar but even simpler way; within the framework
of Monte-Carlo simulations each individual sample is exponentiated which effec-
tively re-transforms the entire distribution. Hence, re-transformed distributions on
the original scale is obtained, and the mean and various quantiles can be estimated
from those simulated distributions. In those cases, there is no reason to introduce
any bias correction as long as all individual samples are re-transformed correctly.
The exceptions are the estimates related to θ(x, t) where only the mean and the
variance were kept during the simulations, due to data storage limitations, and a bias
correction factor is needed. However, it turns out that the bias and thus also the bias
correction is practically negligible for this component.

When the estimated seasonal and trend components c cos(ωt) + d sin(ωt) and
γ t + ηt2 are to be re-transformed, respective correction factors of e0.5σ̄ 2

m and e0.5σ̄ 2
T

are introduced, corresponding to the quasi maximum likelihood estimator (QMLE)
[4]. For the model alternatives with one temporal noise term, a slight dilemma occurs
related to how to incorporate the bias correction for the seasonal and trend contri-
butions individually. However, it is observed that for the models with two temporal
noise terms, the two variances are almost equal and the sum nearly identical to
the variance for the single noise term in the models with one temporal noise term.
Therefore, for the purpose of this study, a correction factor corresponding to half the
variance will be adopted, i.e., e0.25σ 2

m for each part related to seasonal variation and
long-term trend, for model alternatives 4 and 5. Due to the identifiability issues of
the temporal noise contribution, the exact value to use in the bias correction factor
of each temporal noise component is somewhat arbitrary. However, combined with
the actual trend, this bias correction of the noise contribution corresponds to adding
a constant and it would therefore not influence the estimated trends as such.

It is noted that failure to re-transform the entire posterior distributions of quantities
of interest or to include appropriate correction factors would lead to biased results
although the bias would presumably be small for large samples.

4.3 Revised Model Description

Denoting Z(x, t) the significant wave height at location x and time t , the log-
transforms are first carried out for each location and time-point,

Y (x, t) = ln Z(x, t) (4.2)
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Then, at the observation level, the log-transformed data, Y , are modeled as the
latent (or hidden) variables, H(x, t), corresponding to some underlying significant
wave height process, and some random noise, εY :

Y (x, t) = H(x, t)+ εY (x, t) ∀ x ≥ 1, t ≥ 1 (4.3)

An equivalent representation of the observation model would be

Z(x, t) = eH(x,t)eεY (x,t) ∀ x, t (4.4)

where now the noise term has become a multiplicative factor rather than an additive
term and, conditioned on H(x, t), the significant wave height Z(x, t) will be log-
normally distributed.

The underlying process for the significant wave height at location x and time t is
modeled by the state model which is identical to the state model in Chap. 3. It will
therefore not be repeated here, but it corresponds to the alternative representation
in Eq. (4.5) on the original scale; the significant wave height can be modeled as the
product of five multiplicative factors and therefore, the contribution from each of the
model components will have a fundamentally different interpretation compared to
the model for the original data.

Z(x, t) = eμ(x)eθ(x,t)eM(t)eT(t)eεY (x,t) ∀ x, t (4.5)

The same five model alternatives outlined in Chap. 3 were also adopted for the
log-transformed data.

4.3.1 Prior Distributions

The same priors as used in the model for the original data [12] are adopted for all
model parameters. It can be questioned whether it is appropriate to use the same
priors, in particular for some of the parameters (most notably perhaps, the different
μ0,· parameters). However, a few simulations have been run with different priors for
selected parameters, and overall, results seem not to be very sensitive to the choice of
prior. For example, different priors for the μ0,· parameters give different posteriors
as well, but the resulting μ0(x)-field, and consequently also the μ(x)-field, remains
largely unaffected. Hence, it is argued that the results are not overly sensitive to the
exact values adopted for the hyperparameters. This may not be unexpected, as it is
well known in Bayesian analysis that the priors become asymptotically irrelevant as
the amount of data increases, and the amount of data is quite large in this case.

4.3.2 Loss Functions for Model Comparison

The same loss functions as in Chap. 3 are used also in the log-transformed case, but
they are based on prediction errors on the original scale. Thus, the loss functions are

http://dx.doi.org/10.1007/978-3-642-30253-4_3
http://dx.doi.org/10.1007/978-3-642-30253-4_3
http://dx.doi.org/10.1007/978-3-642-30253-4_3
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based on Z(x) and not Y (x) and should therefore, in principle, be suited for compar-
ison with the results for the original data. Likelihood approaches and criteria based
on sum of squares are not ideally suited for model selection in complex hierarchical
models, but it is merely noted that the goodness-of-fit seemed to improve with the
log-transformation compared to the results for the original data.

The predictions Z(x)∗j are taken as the estimated values of Z(x) given the samples
for all model parameters and variables in iteration j . The model specification gives

Z(x)∗j = eY(x)∗j = eμ(x) j +θ(x,t) j +M(t) j +T(t) j +εY (x,t) j (4.6)

= eμ(x) j +B j θ(t−1) j +c j cos(ωt)+d j sin(ωt)+γ j t+η j t2+εζ (x) j

where the subscript j denotes the sampled parameters in iteration j and the noise
terms εζ (x) are sampled independently from a zero-mean normal distribution with
variance σ 2

ζ, j = σ 2
Y, j + σ 2

θ, j + σ 2
m, j + σ 2

T, j .

4.4 Simulations and Results

The same settings were used for the MCMC simulation on the log-transformed data
as for the original data, i.e., a burn-in period of 20,000 and a batch size of 25 (with
the batch size reduced to 5 for daily and six-hourly data). Visual inspection of trace
plots indicates that convergence occurs relatively quickly and a few simulations have
been performed with different starting values for the parameter set, indicating that
the Gibbs sampler has converged. Again, some control simulations with considerably
longer burn-in periods were run for the monthly data, and these showed nearly
identical results, providing further evidence that convergence did indeed occur within
the burn-in period. However, it cannot be taken for granted that convergence occurs
equally fast for daily and six-hourly data.

4.4.1 Results for Monthly Data

In order to check the Gaussian model assumption in Eq. (4.3) for the log-transformed
data, a visual check of the residuals was carried out. It is observed that the normal
probability plot in Fig. 4.3 (for the quadratic model) looks much better than the
corresponding plot for non-transformed data (see Chap. 3 [12]). This indicates that
the log-transform may represent an improvement. There still seem to be some spatial
dependences in the residuals, but this is presumably due to edge-effects, i.e., where
there are no neighbour in at least one direction. This is the same features that were
observed for the non-transformed data.

Most of the marginal posterior distributions are almost symmetric, and the pos-
terior mean and standard deviation for different parameters of the different model

http://dx.doi.org/10.1007/978-3-642-30253-4_3
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Fig. 4.3 Normal probability plot of the residuals, monthly data

alternatives are given in Table 4.1. With the exception of the temporal trend part,
most of the model parameters do not vary significantly between model alternatives.
It is emphasized that these parameters pertain to the log-transformed data, and the
values are therefore not comparable to the values obtained for the non-transformed
data. The posterior distributions for aφ and aλ are not symmetric, so the posterior dis-
tributions for these are presented in Table 4.1 in terms of the triplets (mean, median,
standard deviation).

The six parameters μ0,· determine the spatially varying mean μ0(x), and gives a
similar picture as for the non-transformed data, but with different values. Also the
time independent part μ(x) looks reasonable; Fig. 4.4 displays the mean of μ(x).
The contribution from the time-independent part μ(x) is seen to be in the order of
0.83–1.1 but the interpretation is now different. eμ(x) is a multiplicative factor for
the significant wave height at location x varying between 2.3 and 2.9. The mean
deviation from the spatially varying mean, μ0(x), is small. In the following, all
figures unless stated otherwise are from simulations over the main model (model
1), but the alternative models yield very similar results. It is emphasized that in
estimating the mean contribution from this component at each location, as with
all other components in the following, it is not sufficient to exponentiate the mean
of μ(x) as this would bias the results (see also the discussion in Sect. 4.2). All
samples of μ(x) have been exponentiated and then the mean has been estimated
from the re-transformed distribution. However, it is observed that the bias that would
be introduced in re-transforming the mean would have been negligible.

For the space-time dynamic part, θ(x, t), the mean ranges from −0.26 to 0.40
for all times (except t=0) and locations. For the log-transformed data, θ(x, t) corre-
sponds to a multiplicative factor, eθ(x,t), of the significant wave height at time-point
(x, t) and the estimated mean values, E[eθ(x,t)], correspond to factors between 0.77
and 1.5. The average corresponds to a factor of 1 as it should. Hence, a notice-
able part of the modeled significant wave height can be ascribed to this space-time
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Fig. 4.4 Mean time-independent part varying between 2.3 and 2.9, monthly data

dynamic part. It is noted that for this particular component, a bias correction factor
was needed, since only the mean and the variance were kept for each time-point
of θ(x, t). Therefore the entire distribution could not be re-transformed and a bias
correction is needed. The QMLE-estimator was used, i.e., multiplying eθ̄ (x,t) with
a factor e0.5s2

, where s2 corresponds to the estimated variance of θ(x, t) at each
time-point [4]. However, the bias corrections are negligible, ranging from 1.003084
to 1.027433 for the various time-points, and the range of values for E[eθ(x,t)] was
not changed by this bias correction.

The mean seasonal term, E[eM(t)], for the first ten years is shown in Fig. 4.5, and
a clear cyclic behavior is observed. The expected seasonal contribution without the
error term, E[ec cos(ωt)+d sin(ωt)], multiplied with a bias correction factor correspond-
ing to e0.5σ̄ 2

m , is also shown in the figure and agrees well with the sampled seasonal
contribution. The bias correction factor is needed for re-transforming to the mean
relative to the stochastic term εm(t) whereas no correction factor is needed for the
uncertainty in c cos(ωt)+ d sin(ωt) since all samples of this distribution are effec-
tively re-transformed. A horizontal line through 1.0 is also shown. Again, for the
log-transformed data, this component corresponds to a multiplicative constant. The
expected seasonal component varies cyclically between ±0.43, and the correspond-
ing expected seasonal factor varies between 0.67 for quiet seasons and 1.6 in rough
seasons. For example, for a mean of 3 m, this corresponds to variations between 2.0
and 4.8 m due to seasonal effects. This seems reasonable and is comparable to the
seasonal component derived for the non-transformed data. One interesting observa-
tion from Fig. 4.5 is the asymmetry between the positive and negative peaks which
is different from the seasonal component obtained with non-transformed data.

The temporal trend parts of model alternatives 1 and 2 are illustrated in Fig. 4.6.
The figure shows the re-transformed sampled mean annual trend together with the
mean, 5- and 95-percentiles of the expected trend. In estimating the mean on the re-
transformed scale, a bias correction factor of e0.5σ̄ 2

T was used (effectively only shifting
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Fig. 4.5 The re-transformed seasonal component for 10 years, monthly data; E[eM(t)] (gray line)
and E[ec cos(ωt)+d sin(ωt)]e0.5σ̄ 2

m (green line)

Fig. 4.6 Re-transformed annual trend over the period, model 1 (left) and model 2 (right), monthly
data; E[eT(t)] (black lines) and the mean and 90 % credible interval of eγ t+ηt2

with bias correction
(red lines)

the whole trend by a constant and not influencing the relative trend contribution). It
is stressed that the credible intervals obtained in this way reflect the uncertainty in
the estimation of (γ, η) but does not incorporate the uncertainty in T(t) due to the
stochastic term εT(t). A horizontal line corresponding to no trend is also included
in the figures. The mean yearly trend according to the quadratic model (model 1)
corresponds to a noticeable increase in significant wave height, about 13 % over the
period. The 90 % credible interval ranges from a factor of 1.0 to 1.2. It is observed
that for a mean significant wave height of 3 m, this expected increase corresponds to
an increase of 40 cm. However, for extremes, say above 10 m, such a multiplicative
trend would correspond to an increase of over 1.3 m over the period.
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Fig. 4.7 Estimated re-transformed trend contribution from model 4 (left) and model 5 (right),
monthly data; mean and 90 % credible interval of eγ t+ηt2

with bias correction

The linear model (model alternative 2) estimates a mean long-term trend corre-
sponding to an expected increase in significant wave height of about 14 % over the
whole period. The 90 % credible interval corresponds to an increasing trend between
4.9 and 24 %. For an average sea state with significant wave height 3 m, such an
increase corresponds to an expected increase of about 42 cm. For extremes, say above
10 m, this increase would correspond to an expected increase of just over 1.4 m. For
the mean sea states, these estimates correspond reasonably well with the estimates
of the trend obtained from the non-transformed data. However, with a multiplicative
trend rather than an additive one, the increase in the extremes will be greater than
the increase in average and less extreme sea states.

The estimated trend components for models 4 and 5 are illustrated in Fig. 4.7. The
long-term trends estimated from these models are comparable to the ones estimated
with two noise terms. The quadratic trend model (Model 4) estimates a mean increase
over the period of about 9.1 %, but with the 90 % credible interval ranging from 0.5
to 18 % increase. For sea states of 3 and 10 m significant wave height, such increases
correspond to expected increases of 27 and 91 cm respectively, somewhat less than
what was estimated by the model with two temporal noise terms. 90 % credible
intervals would range from 1 to 54 cm and 5 to 180 cm respectively. The linear
trend model (Model 5) estimates a mean increase of 12 % during the period, with
a 90 % credible interval ranging from 4 to 20 %. Corresponding expected increase
for moderate (Hs =3 m) and rough (Hs =10 m) sea states are 35 and 120 cm
respectively, with 90 % credible intervals ranging from 12 to 60 cm and 40 to 200 cm
respectively.

4.4.2 Results for Daily Data

The normal probability plots of the residuals look better than the corresponding plot
for non-transformed data, suggesting that the model assumptions are reasonable and
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Fig. 4.8 Re-transformed annual trend over the period, model 1 (left) and model 2 (right), daily
data; E[eT(t)] (black lines) and the mean and 90 % credible interval of eγ t+ηt2

with bias correction
(red lines)

that the log-transform might represent an improvement. Again, most of the marginal
posterior distributions are symmetric, and the mean and standard deviation of the
posterior distributions are given in Table 4.2 (mean, median, and standard deviation
for aφ and aλ). Apart from the temporal trend part, most of the model parameters do
not vary significantly between model alternatives.

The contribution from the time-independent component,μ(x), is a factor between
0.89 and 1.2, corresponding to a multiplicative factor varying between 2.5 and 3.2 for
different locations, x . This is slightly higher than the factors obtained with monthly
data, but within the same order of magnitude. The deviations from the spatially
varying means are again small.

The contribution from the space-time dynamic component, θ(x, t), has become
more important with the mean ranging from −0.91 to 0.75, with corresponding
multiplicative factors between 0.40 and 2.1 on the original scale. This corresponds
to a ratio of 5.25 between significant wave heights during storms and quiet periods.
The corresponding ratio obtained with monthly data was less than 2. Now, bW is
the largest of the b-parameters, except b0, and this is reassuring. It indicates that the
model is able to capture the main storm tracks, which are known to be predominantly
from west to east in this particular area. It is not surprising, however, that this was
not well captured when using monthly data, since no storms endure for that long.
At any rate, it is reassuring to observe that this component behaves as it should for
temporal resolutions comparable to duration of storms, and this component now has
a more meaningful interpretation. The QMLE-estimator was used for bias correction
but correction factors were negligible, varying between 1.004481 and 1.019004 for
the different time-points.

The expected seasonal component varies cyclically between ±0.46, correspond-
ing to a seasonal factor of 0.64 for quiet seasons and 1.6 in rough seasons. For
example, for a mean of 3 m, this corresponds to variations between 1.9 and 4.8 m due
to seasonal effects.

The temporal trend part of the quadratic and linear models (models 1 and 2) are
illustrated in Fig. 4.8. The quadratic model (model 1) estimates a mean factor of



4.4 Simulations and Results 119

Ta
bl

e
4.

2
Po

st
er

io
r

m
ar

gi
na

ld
is

tr
ib

ut
io

ns
,m

ea
n;

sd
;d

ai
ly

lo
g-

tr
an

sf
or

m
ed

da
ta

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

σ
2 Z

0.
03

5;
5.

5×
10

−5
0.

03
5;

5.
3×

10
−5

0.
03

5;
5.

8×
10

−5
0.

03
5;

5.
5×

10
−5

0.
03

5;
5.

6×
10

−5
σ

2 μ
0.

02
7;

0.
00

31
0.

02
7;

0.
00

30
0.

02
7,

0.
00

30
0.

02
7;

0.
00

32
0.

02
7;

0.
00

30
σ

2 θ
0.

01
6;

4.
8×

10
−5

0.
01

6;
4.

6×
10

−5
0.

01
6;

4.
9×

10
−5

0.
01

6;
4.

7×
10

−5
0.

01
6;

4.
7×

10
−5

σ
2 m

0.
04

0;
0.

00
09

0
0.

04
0;

0.
00

13
0.

08
2;

0.
00

09
5

0.
08

1;
0.

00
09

2
0.

08
2;

0.
00

09
3

b 0
0.

24
;0

.0
01

1
0.

24
;0

.0
01

2
0.

24
;0

.0
01

1
0.

24
;0

.0
01

2
0.

24
;0

.0
01

1
b

N
0.

12
;0

.0
01

1
0.

12
;0

.0
01

0
0.

12
;0

.0
01

1
0.

12
;0

.0
01

1
0.

12
;0

.0
01

0
b

E
0.

13
;0

.0
01

1
0.

13
;0

.0
01

1
0.

13
;0

.0
01

1
0.

13
;0

.0
01

2
0.

13
;0

.0
01

1
b S

0.
16

;0
.0

01
1

0.
16

;0
.0

01
1

0.
16

;0
.0

01
1

0.
16

;0
.0

01
1

0.
16

;0
.0

01
1

b W
0.

28
;0

.0
01

2
0.

28
;0

.0
01

1
0.

28
;0

.0
01

2
0.

28
;0

.0
01

2
0.

28
;0

.0
01

1
c

0.
45

;0
.0

03
4

0.
45

;0
.0

03
5

0.
45

;0
.0

03
2

0.
45

;0
.0

03
2

0.
45

;0
.0

03
3

d
0.

09
7;

0.
00

35
0.

09
6;

0.
00

34
0.

09
6;

0.
00

33
0.

09
7;

0.
00

32
0.

09
7;

0.
00

33
μ

0,
1

3.
4;

1.
4

3.
5;

1.
4

3.
5;

1.
4

3.
4;

1.
4

3.
4;

1.
4

μ
0,

2
−0
.0

91
;0

.0
37

−0
.0

86
;0

.0
38

−0
.0

88
;0

.0
36

−0
.0

89
;0

.0
38

−0
.0

89
;0

.0
38

μ
0,

3
0.

45
;0

.2
1

0.
42

;0
.2

2
0.

44
;0

.2
0

0.
44

;0
.2

2
0.

44
;0

.2
2

μ
0,

4
0.

00
01

7;
9.

1×
10

−5
0.

00
01

6;
9.

6×
10

−5
0.

00
01

7;
9.

1×
10

−5
0.

00
01

7;
9.

6×
10

−5
0.

00
01

7;
9.

6×
10

−5
μ

0,
5

−0
.0

02
6;

0.
00

12
−0
.0

02
4;

0.
00

12
−0
.0

02
5;

0.
00

11
−0
.0

02
5;

0.
00

12
−0
.0

02
5;

0.
00

12
μ

0,
6

−0
.0

00
45

;0
.0

00
49

−0
.0

00
42

;0
.0

00
53

−0
.0

00
43

;0
.0

00
51

−0
.0

00
43

;0
.0

00
53

−0
.0

04
4;

0.
00

05
3

a φ
0.

08
5;

0.
07

8;
0.

05
5

0.
08

5;
0.

07
6;

0.
05

7
0.

08
6;

0.
08

0;
0.

05
5

0.
08

7;
0.

07
9;

0.
05

6
0.

08
5;

0.
07

7;
0.

05
7

a λ
0.

08
6;

0.
07

7;
0.

05
6

0.
08

4;
0.

07
6;

0.
05

6
0.

08
9;

0.
08

1;
0.

06
0

0.
08

8;
0.

08
0;

0.
05

7
0.

08
6;

0.
07

8;
0.

05
8

σ
2 T

0.
04

3;
0.

00
11

0.
04

2;
0.

00
13

–
–

–
γ

−5
.6

×1
0−

7
;1

.3
×1

0−
6

4.
3×

10
−6

;3
.1

×1
0−

7
–

−7
.0

×1
0−

6
;1

.3
×1

0−
6

3.
9×

10
−6

;4
.3

×1
0−

7

η
3.

0×
10

−1
0
;8

.7
×1

0−
11

–
–

6.
4×

10
−1

0
;9

.0
×1

0−
11

–



120 4 Including a Log-Transform of the Data

Fig. 4.9 Estimated re-transformed long-term trend contribution for model 4 (left) and model 5
(right), daily data; mean and 90 % credible interval of eγ t+ηt2

with bias correction

about 1.095 over the period. The 90 % credible interval ranges from a factor 1.085 to
a factor about 1.10. For a mean significant wave height of 3 m, this expected increase
corresponds to an increase of 28 cm. However, for extremes above 10 m, such a
multiplicative trend would correspond to an increase of over 95 cm over the period.

The mean estimate of the long-term trend from the linear model corresponds to
an increase of about 9.5 % over the whole period. The 90 % credible interval ranges
from 8.6 to 10 %. For an average sea state with significant wave height 3 m, such an
increase would correspond to an expected increase of 28 cm, but with an increase of
at least 26 cm with 95 % credibility. For extremes above 10 m, this corresponds to
an expected increase in significant wave height of 95 cm and with 95 % credibility,
at least 86 cm. These trend estimates are somewhat lower than what was extracted
from the monthly data, with much narrower credibility bands.

The estimated trend components for the models with a single temporal noise term
are shown in Fig. 4.9. The quadratic trend model (Model 4) estimates a mean increase
over the period of about 7.6 %, but with the 90 % credible interval ranging from 6.4
to 8.9 %. This corresponds to expected increases of 23 and 76 cm for moderate and
rough sea states respectively. Corresponding 90 % credible intervals range from 19 to
27 cm and 64 to 89 cm. The linear trend model (Model 5) estimates a mean increase
of 8.7 % during the period, with a 90 % credible interval ranging from 7.4 to 9.8 %.
Corresponding expected increases for moderate and rough sea states are 26 and
87 cm respectively, with 90 % credible intervals ranging from 22 to 29 cm and 74 to
98 cm. It is noted that these trends are slightly less than the trends estimated with two
temporal noise terms, but they are within the same order of magnitude and there is
general agreement among the models that there is an increasing trend in significant
wave height.
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4.4.3 Results for Monthly Maximum Data

Finally, the models were run on log-transformed monthly maximum data, i.e., the
maximum significant wave height at each spatial location for each month. The results
from these simulations are presented in the following. A visual check of the residuals
indicates that the Gaussian model assumptions seem reasonable, although model fit
seems to be poorer than for non-maximum data. The mean and standard deviation of
some marginal posterior distributions for different parameters are given in Table 4.3.

The contribution from μ(x) is in the order of 1.76–1.95; eμ(x) is a multiplicative
factor varying between 5.8 and 7.0. The mean contributions from the space-time
dynamic part, θ(x, t) correspond to factors between 0.70 and 1.4 for different loca-
tions and times. Hence, this space-time dynamic part contributes with a factor from
−30 to +40 %. The seasonal component corresponds to a factor between 0.68 for
calm seasons and 1.5 in rough seasons.

Model 1 estimates a mean yearly trend corresponding to a factor of about 1.09
over the period, with 90 % credible interval ranging from 1.03 to 1.14. For monthly
maximum significant wave heights of 5 and 8 m this corresponds to a mean increase
of 43 and 68 cm, respectively. The mean estimate of the long-term trend from model
2 corresponds to an increase of about 1.07 over the period. The 90 % credible interval
ranges from 1.03 to 1.12. For monthly maximum significant wave heights of 5 and
8 m, this corresponds to an expected increase of about 36 and 57 cm respectively. The
trends estimated from the models with one temporal noise term are very similar to
the ones estimated with two noise terms. Model 4 estimates a mean increase over the
period of about 1.05, but with the 90 % credible interval ranging from 1.00 to 1.10
whereas Model 5 estimates a mean increase of 1.05 during the period, with a 90 %
credible interval ranging from 1.00 to 1.09. Assuming average monthly maximum
significant wave heights of 5 and 8 m, these factors correspond to expected trends of
about 26–27 cm and 41–43 cm respectively.

4.4.4 Simulations on 6-Hourly Data

The models were also run for the full data-set with a log-transform, but the same
problems as reported for the original data were encountered (see Chap. 3 [12]). Hence,
the model does not perform well on the six-hourly log-transformed data.

4.4.5 Model Comparison and Selection

The different model alternatives can generally be compared by comparing the result-
ing posterior estimates of the model parameters, as presented in for example Table 4.1.
The parameters related to the spatial features of the model seem to be little affected

http://dx.doi.org/10.1007/978-3-642-30253-4_3
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Table 4.4 Model selection: estimated losses

Model alternative Monthly data Daily data Monthly max
Ls Lw Ls Lw Ls Lw

Model 1 3.412 3.560 2.562 2.665 3.383 3.456
Model 2 3.425 3.546 2.573 2.684 3.346 3.412
Model 3 3.267 3.468 2.600 2.728 3.035 3.127
Model 4 3.317 3.468 2.557 2.655 2.970 3.045
Model 5 3.298 3.455 2.569 2.682 2.987 3.070

by the model reductions, which is reassuring. Also, the seasonal part of the model
seems to behave rather similarly for the different model alternatives. Hence, the
main differences are, as would be expected, related to the long-term temporal trend
parameters γ and η.

The losses corresponding to the two loss functions were estimated for the various
data sets and model alternatives and are given in Table 4.4.

For the monthly data, the standard loss function prefers the model with no trend and
the weighted loss function prefers the model with linear trend and one temporal noise
term. For the daily data, both loss functions favour the quadratic models, whereas
for the monthly maximum data, both loss functions favour the linear model with one
temporal noise term, although preferring the linear model over the quadratic model
if two noise terms are included. It is also interesting to note that, in spite the fact
that the models yield better goodness-of-fit for log-transformed data compared to the
original data, the models for the original data seem to perform consistently better with
regard to short-term prediction according to the estimated losses. Notwithstanding,
it is difficult to assess the models in terms of long-term prediction and it is still an
open question in which model alternative would be better in this regard.

4.4.6 Future Projections

Although extrapolation beyond the time interval for which the models are fitted
might not be valid, it is tempting to extend the estimated trends into the future. In
the following, future projections based on extrapolation of the estimated trends from
the linear models over 100 years will be presented.

4.4.6.1 Projections Based on Monthly Data

Assuming that a trend such as the one predicted from the linear model with two
temporal noise terms for monthly data will continue, this corresponds to an expected
increase in significant wave height of nearly 30 % over 100 years, with a 95 % credi-
bility of an increasing trend larger than 7.0 %. The corresponding expected increase
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of 25 % with 95 % credibility of an increase of at least 5.9 % is obtained from the
linear trend model with one temporal noise term for monthly data. Assuming such
trends to be valid for all sea states, the expected increase of a sea state of 3 m would
then be about 0.90 m (model 2) or 0.74 m (model 5) and for an extreme sea state of
10 m the expected increase would be 3.0 m (model 2) or 2.5 m (model 5) over 100
years. The trends for moderate sea states are comparable to the ones obtained from
the original data (Chap. 3 [12]), but a much larger trend is estimated for extremes.

4.4.6.2 Projections Based on Daily Data

If trends predicted from the linear trend models with daily data continue, this cor-
responds to an expected increase in significant wave height of 20 %, with a 95 %
credibility of an increase of at least 17 % over 100 years for the model with two
temporal noise terms (model 2) and 18 % with 95 % credibility of an increase of at
least 15 % for the model with one temporal noise term (model 5). Assuming such
trends to be valid for any sea states, the expected increase of a sea state of 3 m would
be about 0.59 or 0.53 m for the two model alternatives and for extreme sea states
of 10 m the expected increase would be 2.0 and 1.8 m over 100 years respectively.
Again, the expected trends for moderate sea states coincide with the ones estimated
with the original data reported in Chap. 3 [12], whereas extremes are assigned a much
larger trend.

4.4.6.3 Projections Based on Monthly Maximum Data

The estimates from the log-transformed monthly maxima correspond to an expected
increasing factor of 15 % over 100 years, with a 95 % credibility of a trend-factor
larger than 4.3 %. (An expected increase of 10 % with 94 % credibility of a positive
trend is obtained from the linear model with one temporal noise term). Assuming
such trends valid for average monthly maximum sea states of 5 and 8 m in calm and
rough seasons, respectively, the expected increases would be about 75 cm and 1.2 m
respectively (51 and 82 cm for one noias term) over 100 years.

4.5 Discussion

The results presented in this chapter are from the Bayesian hierarchical space-time
model fitted to log-transformed significant wave height data. Even though results
cannot easily be compared between the original and the log-transformed data, the
loss functions have used the same scale and these suggest that the models for the
original data perform best with regard to short-term prediction. However, goodness-
of-fit seems to improve with the log-transform. Another observation is that the models
with the log-transformed data seem to be able to estimate the extremes better. Both

http://dx.doi.org/10.1007/978-3-642-30253-4_3
http://dx.doi.org/10.1007/978-3-642-30253-4_3
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models seem to underestimate the frequency of extreme sea states, but much less
with the log-transformed data.

One interesting observation is that the trend-factor obtained when using the log-
transformed monthly maxima is only about 50 % of the trend-factor obtained using
monthly data. This is opposite to the results from the original data, where the maxima
displayed a stronger trend than overall. One possible explanation for this can be that
even though a transformation of the data seems to improve the results, the logarithmic
transform might not be the optimal one. The results pertaining to the original data do
indeed demonstrate that more severe sea states are expected to have a larger long-term
trend, whereas the results from the log-transformed data suggest that a log-transform
overcompensates for this effect. Possibly, other data transformations would perform
better, but this has so far not been investigated.

Regarding the different long-term trend estimates, the models project an expected
increase of significant wave height around 53–90 cm for moderate sea states and
1.8–3.0 m for extreme sea states over a period of 100 years. The trends for moderate
sea states are comparable to the estimated trends obtained without the logarithmic
transform of the data, but the estimated trends in the extremes are now much larger
than the trends in the mean condition. This feature was also reported by e.g., [16].

4.5.1 Semi-Annual Seasonal Component

Climate data often display semiannual characteristics (see e.g., [9]). It is therefore
natural to investigate how adding such a component in the seasonal part, M(t), would
influence the results. In the following, the effect of introducing such a contribution
into three of the model alternatives presented in this study, namely models 1–3, will
be reported for monthly data. The long-term temporal parts, T(t), of those model
alternatives, henceforth denoted models 6, 7, and 8, are identical to models 1, 2, and
3, respectively, but the seasonal part is now extended with the second harmonic to
account for possible semiannual features, as shown in Eq. (4.7).

M(t) = c cos(ωt)+ d sin(ωt)+ f cos(2ωt)+ g sin(2ωt)+ εm(t) (4.7)

Two new parameters, f and g, are introduced. These are presumed small and as
priors for both parameters, N (0, 0.5)will be used. Simulations on the three additional
model alternatives were run for monthly data, with similar settings as the previous
simulations with respect to burn-in period, batch size, priors for the other parameters,
starting point of the Gibbs sampler, etc. Trace plots suggest that the Gibbs sampler
has converged. The results are briefly summarized below.

The residuals display similar features as for the previous model alternatives and
also the spatial and short-term dynamic features seem minimally affected by the
inclusion of a semiannual component. The mean and standard deviation of the pos-
terior marginal distributions related to the temporal parts of the model are presented
in Table 4.5 for model alternatives 6, 7, and 8.
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Table 4.5 Posterior marginal distributions, mean, and standard deviation, for extended seasonal
models; monthly data

Model 6 Model 7 Model 8

σ 2
m (0.061, 0.0068) (0.061, 0.0064) (0.0099, 0.0061)
σ 2

T (0.060, 0.0070) (0.059, 0.0066) -
c (0.35, 0.022) (0.35, 0.021) (0.35, 0.019)
d (0.26, 0.020) (0.26, 0.021) (0.26, 0.019)
f (−0.010, 0.021) (−0.011, 0.022) (−0.0091, 0.020)
g (−0.064, 0.021) (−0.061, 0.020) (−0.063, 0.020)
γ (3.6×10−5, 0.00032) (0.00012, 9.0×10−5) -
η (1.6×10−7, 6.5×10−7) - -

Fig. 4.10 The re-transformed seasonal component for 10 years, with annual and annual compo-
nents; monthly data

The seasonal component, M(t), is surprisingly unaffected by the inclusion of the
semi-annual component. The parameters c and d are essentially unchanged and the
new parameters f and g are very small and negative. The extended seasonal com-
ponent as a whole, as illustrated in Fig. 4.10 (for model 6), shows that the seasonal
contribution is somewhat diminished. The re-transformed seasonal component now
varies between a factor 0.63 for quiet seasons and 1.5 for rough seasons. Notwith-
standing, the effect is small and the inclusion of a semi-annual component into the
models does not influence the seasonal component to a very large degree.

It is also interesting to see how the semi-annual component influences the long-
term trend estimates, and these are illustrated in Fig. 4.11 for models 6 and 7 (to
be compared with Fig. 4.6 without the semi-annual component). The mean long-
term trend component over the period for model 6 is estimated to correspond to
a factor of 1.1 and this compares well with the estimated trend without the semi-
annual component (model 1). Also the extended linear model, model 7, estimates an
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Fig. 4.11 Re-transformed annual trend over the period when a semi-annual contribution has been
accounted for, model 6 (left) and model 7 (right), monthly data

Table 4.6 Values of the loss functions, monthly data with a semi-annual component

Model alternative Ls Lw

Model 6 3.379 3.565
Model 7 3.371 3.560
Model 8 3.263 3.518

expected trend corresponding to a factor of 1.1 and this is in reasonable agreement
with what was estimated by model 2. Hence, it can be argued that the inclusion of
a semi-annual component into the model does not influence the estimated long-term
trends much.

Finally, the values of the loss functions for the model alternatives with a semi-
annual component is presented in Table 4.6. These should be compared to the loss
functions for the models without semi-annual components in Table 4.4 in order to
check whether the inclusion of a semi-annual component yields improved (short-
term) predictions. It is observed that the values of the standard loss functions tend
to be decreased and the values for the weighted loss functions tend to be somewhat
increased by the inclusion of the semi-annual component. However, the differences
are small and all values are within the same range. Therefore, it is concluded that the
inclusion of the semi-annual component does not improve predictions much.

Hence, it turns out that the results for neither the seasonal nor the long-term trend
parts of the model are much affected by the extension of the model to include a semi-
annual component. Furthermore, the loss functions reflecting short-term predictions
are only minimally affected. Thus, including a semi-annual component does not
influence the results much when analyzing the data for this particular area in the
North Atlantic Ocean. Possibly, semi-annual oscillations are not dominating the
climate in this particular area, and for example the North Atlantic Oscillation (NAO),
with no particular periodicity [6] or other higher frequency components [1] may be
more important. According to [7], the semi-annual effects are dominating on the
Southern Hemisphere whereas the overwhelming effect on the Northern Hemisphere
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is annual. It is reported that there are appreciable semi-annual components locally on
the Northern Hemisphere, for example in the North Pacific Ocean. At any rate, the
results presented herein suggests that the semi-annual contributions are negligible
compared to the annual component which seems to capture the main seasonal effects
over the area that has been analyzed. That being said, it is noted that the additional
computational cost of including a semi-annual component is negligible.

4.6 Summary and Conclusions

This chapter has presented results obtained from applying the Bayesian hierarchical
space-time model to log-transformed significant wave height data, and the models
seem to perform quite well overall. The trends estimated from the various simulations
are fairly consistent, with estimated expected trends of 27–42 cm for moderate con-
ditions and 91–140 cm for extreme conditions for the monthly data and 23–28 cm for
moderate conditions and 76–95 cm for extreme conditions for the daily data over the
period from 1958 to 2002. The linear trends were also extrapolated over 100 years, to
yield expected future increases within the range of 53–90 cm for moderate conditions
and 1.8–3.0 m for extreme conditions. This is found to be in reasonable agreement
with previous studies and also compares well with trends extracted by more standard
time series techniques [15]. The estimated trends for moderate sea states compare
well with trends estimated from the untransformed data. However, a fundamental
difference is that the log-transform yields a different interpretation and for example
the long-term trends become larger for extremes than for moderate sea states. This
is a crucial difference, with practical implications in relation to design and operation
of ships and other marine structures. However, whether the log-transform actually
represents an improvement remains inconclusive, and it is suggested that other data
transformations might be better.
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Chapter 5
CO2 Regression Component for Future
Projections

In this chapter, the stochastic model developed in previous chapters will be extended
with a regression term, where long-term trends of significant wave height are
regressed on the atmospheric level of CO2. Hence, future projections of the ocean
wave climate are made based on projected levels of CO2 in the atmosphere. Those
projections are again based on various emission scenarios suggested by the IPCC,
and projections based on two reference scenarios, referred to as A2 and B1, will
be used. The model has been fitted by monthly maximum significant wave height
data for the same area in the North Atlantic Ocean, and the results obtained from
the extended model will be presented and discussed. The material in this chapter is
based on [18], part of which is also presented in [14].

5.1 Introduction and Background

Even though the previous models described in Chaps. 3 and 4 were able to detect long-
term trends in the significant wave height data, it might not be valid to extrapolate
those trends into the future, and projections made in this way remain somewhat
speculative. In this chapter, the model outlined in Chap. 3 [15] has been extended
with a CO2 regression component, and fitted to monthly maximum data [18]. In this
way, the stochastic relationship between significant wave height and atmospheric
levels of CO2 is exploited in order to improve predictions and future projections of
the ocean wave climate.

It is noted that only the stochastic relationship between atmospheric levels of CO2
and the wave climate has been exploited, and the physics governing the climatic
processes has not been modelled explicitly. The physical interactions are obviously
highly complex, but it is argued that the overall mechanisms make it reasonable to
believe that there is a strong correlation between the levels of greenhouse gases in the
atmosphere and the severity of the wave climate. It is well-known that increased lev-
els of greenhouse gases, of which CO2 is the most important one, in the atmosphere
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lead to increased radiative forcing of the globe due to the greenhouse effect. Conse-
quently, more energy is inserted into the climate system. This may result in higher
temperatures in the atmosphere and also more energetic weather systems, which may
eventually result in more energy being transferred to kinetic energy in the ocean in
the form of waves. Hence, a high level description indicates that increased level of
CO2 in the atmosphere will increase the energy input to the Earth overall, and parts of
this excess energy may materialise as a rougher wave climate of the world’s oceans.

Future projections of the ocean wave climate are made based on two future emis-
sion scenarios, referred to as A2 and B1. These are suggested as reference scenarios
by IPCC and it is believed that they represent the best available knowledge of future
concentrations of CO2 in the atmosphere. The scenarios were also chosen so that
one, the A2 scenario, represents an extreme scenario whereas the other, B1, is more
conservative. The extended model for monthly maximum significant wave height
will be outlined in this chapter, and the resulting estimated long-term trends and
future projections will be reported.

5.2 Data Description

Data for significant wave height have been used to fit the stochastic model, and data
on levels of CO2 concentrations in the atmosphere have been used as covariates.
The data for significant wave height have been discussed in previous chapters of this
book, and in the following, a brief description of the CO2 data will be given.

Concentrations of atmospheric CO2 have been used as covariates for explaining
possible long-term trends in the significant wave height, and basically two sets of
data have been exploited; historic data for model fitting and projections of future
concentration levels for future predictions of the wave climate.

5.2.1 Historic Data

There are several sources of historic data for CO2 levels in the atmosphere that are
freely available for scientific purposes. Observations are available up until present,
and since the model is fitted to significant wave height data for the period 1958–2002,
CO2 data for this period are needed.

For the purpose of this study, where the aim of introducing a regression component
with CO2 levels as covariates into the model is to identify long-term trends, it is
deemed sufficient to use monthly data. Hence, monthly average CO2 data from the
Mauna Loa Observatory, Hawaii, which has the longest continuous record of direct
atmospheric CO2 measurements, have been used [13]. This dataset is available from
the ESRL website.1 The data are on the format of the number of molecules of carbon

1 URL: http://www.esrl.noaa.gov/gmd/ccgg/trends/

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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Fig. 5.1 CO2 data from the Mauna Loa Observatory, monthly interpolated data (black line) and
trend data with seasonal effects removed (red lines)

dioxide divided by the number of molecules of dry air multiplied by one million
(parts per million = ppm), and data are available from March 1958 to present. The
dataset contains the monthly averages determined from daily averages, as well as
interpolated monthly averages where missing data have been replaced by interpolated
values. Finally, monthly trend values are given where the seasonal cycle has been
removed and where linear interpolation has been used for missing months. For the
purpose of this study, the monthly trend time series will be used as covariates for
the long-term trend. The seasonal cycle in the monthly maximum significant wave
height is accounted for in a separate seasonal component in the model, and seasonal
effects should therefore not be included in the long-term trend regression component.

The monthly interpolated and trend data are illustrated in the graphs in Fig. 5.1
and the vertical lines represent the part of the time series that overlap the C-ERA-40
data for significant wave height. It is noted that the CO2 data start at March 1958,
whereas the significant wave height data start at January 1958. Therefore, the model
will be run with data starting at January 1959.

It is acknowledged that CO2 is just one greenhouse gas (GHG) and that it does
not alone determine the radiative forcing of the globe; other important GHGs are for
example methane (CH4) and nitrous oxide (N2O). There is also great variability in
the radiation coming from the sun. Nevertheless, it is well-known that CO2 is the
most important GHG and for the purpose of this study, it can be seen as a proxy of the
concentration of GHG in the atmosphere and hence a proxy of the radiative forcing
of the globe. More sophisticated models could include other GHGs and aerosols as
covariates as well. It is also noted that the data stem from observations outside of the
area in the North Atlantic which is the focus of this study. However, it is assumed that
CO2 is well mixed in the atmosphere, and that this does not introduce any notable
bias in the results.
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Fig. 5.2 Estimated trend in SWH vs. CO2 concentrations

In order to get a feel of the relationship between the CO2 concentrations in the
atmosphere and the estimated trends in the significant wave height data (from [15]),
the estimated trends versus the CO2 level for the quadratic and linear model respec-
tively have been plotted in Fig. 5.2. Obviously, the dependence is different according
to what model alternative is assumed for the trend, and various alternative regression
terms will also be tried out.

5.2.2 Future Projections

In order to make projections of future wave climate, future projections of the covari-
ates are needed and projections of the atmospheric concentration of CO2 will be
exploited. Future predictions are of course uncertain, and different projections of
CO2 levels have been made based on different emission scenarios [12]. Four sce-
narios are commonly referred to as marker scenarios, supplemented with several
illustrative scenarios. For the purpose of this study, projected emissions and concen-
trations presented by IPCC for the four marker scenarios (A1B, A2, B1 and B2) have
been considered.2 For each scenario, two carbon cycle models (BERN and ISAM)
have been used to project CO2 levels [8] and Fig. 5.3 shows the reference projections
for the two models for the four marker scenarios. The differences between the two
carbon cycle models are not significant, and for the purpose of this study it is deemed
sufficient to use the results for one of them; the ISAM model has been chosen [9, 10].
Furthermore, it is observed that the scenarios A2 and B1 correspond to the highest
and lowest projected CO2 levels respectively, and it is therefore assumed sufficient
to employ these two in the modelling, as the other scenarios will fall between these.

2 The IPCC Data Distribution Centre, URL: http://www.ipcc-data.org/ddc_co2.html

http://www.ipcc-data.org/ddc_co2.html


5.2 Data Description 135

Fig. 5.3 CO2 projections for the four marker scenarios from the carbon cycle models BERN (left)
and ISAM (right)

Scenario A2 might be an extreme scenario, but from a precautionary perspective it
is important to include this in the analysis as this could be construed as a worst case
scenario. The CO2 projections data can also be found in appendix II of [8].

The projected levels of atmospheric CO2 concentrations are given for every 10
years towards 2100. For the purpose of this study, monthly averages are needed, and
simple linear interpolation within each decade has been used in order to estimate
monthly projections. The decadal projections are then assumed as the value for Jan-
uary of that year. In this way, monthly projections of CO2 levels in the atmosphere
from year 2010 until 2100 are obtained for use as covariates in the regression com-
ponent of the stochastic model for significant wave height. For the years 2002 to
2010, where actual observations are available, recorded monthly averages from the
Mauna Loa Observatory will be used. The interpolated monthly projections are plot-
ted together with the original decadal projections in Fig. 5.4 (the vertical bars in the
plots correspond to the decadal reference projections from the ISAM model).

It is stressed that the uncertainty of the data is not accounted for in the model,
and any results are also conditional on the data used for the covariates. Uncertainties
are of course large for future projections, but it is assumed that the projections
suggested by the IPCC correspond to the best current knowledge available. The
uncertainties of future projections of CO2 concentrations were discussed in e.g.,
[11] and it was suggested to assign probabilities for the various scenarios. However,
such probabilities has not been assigned in this study. It is also noted that the radiative
forcings described by the representative concentration pathways [19] constitute an
alternative set of covariates to the CO2 levels derived from the emission scenarios.
The historic data and the projections corresponding to the four marker scenarios are
illustrated together in Fig. 5.5.
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Fig. 5.4 Interpolated monthly CO2 level projections for scenarios A2 and B1

Fig. 5.5 Atmospheric CO2 levels: Historic data and future projections

5.3 Model Extension

The extended model is similar to the previous models presented in previous chapters
[15, 16], except for the modelling of the long-term trend, T(t). This part will now be
a regression component, where the long-term trend in the significant wave height is
regressed on the atmospheric levels of CO2, as outlined below. Seasonal components
with and without the second harmonic were tried, i.e. with and without a semi-annual
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contribution. However, it was observed that the inclusion of a semi-annual component
did not influence the results much [18].

In order to include possible effects of climate change in the model, the following
component with CO2 concentrations in the atmosphere has been included, assuming
first a combination of a linear and logarithmic trend with respect to the level of
CO2. With G(t) denoting the average level of CO2 in the atmosphere at time t, the
regression component takes the form

T(t) = γG(t)+ η ln G(t)+ εt (t) (5.1)

Initially, model alternatives with a quadratic term were also considered, i.e., with
the extra term δG(t)2, but it was discovered that the quadratic term causes problems
[18]. Hence, only the linear and logarithmic terms will be considered further. Even
though it might not be surprising that a quadratic term for the trends performs poorly,
there was no apriori evidence suggesting to leave it out but it was effectively ruled
out by the data.

For identifying and predicting long-term trends, it is deemed sufficient to use
monthly means of the covariates. Hence, the temporal resolution will be in the order
of months. It is noted that CO2 is known to mix well in the atmosphere, so there is
no spatial part of this regression term.

5.3.1 Model Alternatives

Again, the main interest is in the long-term trend component, now modelled as a
regression term with CO2 concentrations as covariates, and the following model
alternatives are considered:

Model 1: T(t) = γG(t)+ η ln G(t)+ εt (t)
Model 2: T(t) = γG(t)+ εt (t)
Model 3: T(t) = η ln G(t)+ εt (t)
Model 4: T(t) = 0

5.3.2 Critical Model Assumptions

The model uses a regression component towards CO2 to describe long-term variation
in the ocean wave climate. Hence, a very critical model assumption is the stochastic
dependence between levels of CO2 in the atmosphere and the ocean wave climate.
It is assumed that there is such a stochastic dependence and this might be a realistic
assumption, since increased levels of CO2 in the atmosphere will lead to more energy
in the weather system which may partly be transferred to kinetic wave energy in the
oceans. However, it is further assumed that this stochastic dependence structure will



138 5 CO2 Regression Component for Future Projections

remain essentially unchanged over time, from the past into the future. This is of
course a critical assumption inherent in the model and any results are conditional on
this assumption being realistic.

Furthermore, it is assumed that the CO2 projections are reliable and results are
conditional on the CO2 data that have been utilized. In particular, no particular
attention has been drawn towards possible climate tipping points or other effects that
may skew the correlation between CO2 levels in the atmosphere and the statistics of
ocean waves. This introduces considerable uncertainty that has not been accounted
for. Notwithstanding, the models presented herein are still believed to be interesting
to explore and they model and predict future ocean wave climate based on the best
available knowledge of the future levels of CO2 as a result of various emission
scenarios.

Finally, only CO2 levels in the atmosphere have been considered, as a proxy of
the level of greenhouse gases. It is normally considered that this is the dominant
greenhouse gas, but omitting all other contributions is obviously a simplification.
Furthermore, aerosols and other mitigating factors have not been considered as well
as the variability in solar radiation and external forcing.

5.3.3 Prior Distributions

Most of the priors for these simulations were the same as outlined in previous chap-
ters, except for the prior for μ0,1 which was modified with an increased location
parameter, i.e. to N (7.5, 2) (to reflect that monthly maximum data are used). Further-
more, as an alternative to the inverse gamma priors for the noise terms, simulations
with non-informative priors on the noise terms were also tried out, i.e. π(σ 2

ι ) ∝ 1
σ 2
ι

,

as suggested by [6], but it was discovered that this was not an obvious improvement
and the inverse gamma priors were kept [18].

The parameters associated with the second harmonic coefficients f and g are
still assigned priors with zero mean and variance = 0.5. The correlation between
significant wave height and atmospheric CO2 is believed to be positive, but apart from
that, no specific prior knowledge is assumed. Therefore, a flat, non-informative prior
for γ , η and δ will be employed i.e., a uniform prior. Note that due to proportionality,
there is no need to specify a proper distribution and the uniform distribution endpoints
a and b need not be specified.

5.4 Results and Predictions

The model, as outlined above, has been run on the significant wave height monthly
maxima at each location for the same area in the North Atlantic previously studied.
In the following, the main results from each set of simulations will be highlighted.
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5.4.1 MCMC Simulations

The model was simulated using the Gibbs sampler with Metropolis-Hastings steps,
similarly as for the model without regression terms [15]. However, the burn in period
was extended to 50,000 samples and the batch size was five. I.e. a total of 1,000
samples of the posterior parameter vector were obtained. In order to enhance the
acceptance rate, six Metropolis-Hastings steps were performed at each iteration,
giving an overall acceptance rate of about 35 %.

Trace plots of the posterior marginal distributions suggest that convergence occurs
satisfactorily. Furthermore, some control runs with considerable longer burn-in peri-
ods were performed; one control run for each of the main model alternatives with
a burn-in period of 225,000 iterations and one control run for the linear-log model
with a semi-annual component with 10 times longer burn-in period and batch size,
i.e. a burn-in of 500,000 and a batch size of 50. This produced very similar posterior
estimates, except perhaps for the log model. Hence, it is argued that the Markov
chain was run sufficiently long to ensure convergence.

Normal probability plots of the residuals again suggest that the Gaussian model
assumption is not unreasonable. Plots of residuals for both the inverse gamma pri-
ors and the non-informative priors on the noise variances show that the difference
between the plots are small.

5.4.2 Simulation Results

The first sets of simulations were run without the semi-annual component, i.e. setting
f = g = 0. Inverse gamma priors were used for the noise variances as before.

Most of the marginal posterior distributions are symmetric and resemble Gaussian
densities, and the mean and standard deviation of the posterior distributions for
different parameters of the different model alternatives are given in Table 5.1. The
posterior distributions for aφ and aλ were not symmetrical, and the mean, median,
and standard deviation of the estimated posterior distribution for these parameters
are given in Table 5.1. These estimates pertain to the models run with inverse gamma
priors for the noise variances. For the model alternative without any trend, the results
should be expected to be identical to the models without trend for previous models
without CO2 regression components, and reference is made to [17] where such results
are presented.

The six parametersμ0,· determine the spatially varying meanμ0(x) over the area,
which together with aφ and aλ determine the time independent part, μ(x). This is
illustrated in Fig. 5.6 for the linear-log model alternative. The expected contribution
from the time-independent part μ(x) is seen to be between 5.2 and 6.4 m with a
mean of 6.1 m over the area for the linear-log model, which seems reasonable. These
results may be compared to the results presented in [17], which were obtained for
the same data but using a quadratic trend function rather than a CO2 regression term.
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Table 5.1 Posterior marginal distributions, (mean, standard deviation); inverse gamma priors for
the noise variances

linear-log model linear model log model
(Model 1) (Model 2) (Model 3)

σ 2
Z (1.2, 0.0086) (1.2, 0.0075) (1.2, 0.0079)
σ 2
μ (0.035, 0.0042) (0.035, 0.0043) (0.035, 0.0044)
σ 2
θ (0.067, 0.0059) (0.066, 0.0044) (0.066, 0.0047)
σ 2

m (0.44, 0.077) (0.67, 0.082) (0.65, 0.12) )
σ 2

t (0.68, 0.093) (0.47, 0.068) (0.51, 0.12))
b0 (0.22, 0.0098) (0.23, 0.010) (0.23, 0.010)
bN (-0.0061, 0.010) (-0.0088, 0.0086) (-0.0081, 0.0090)
bE (0.22, 0.010) (0.22, 0.0099) (0.22, 0.010)
bS (0.38, 0.025) (0.38, 0.021) (0.38, 0.019)
bW (0.22, 0.010) (0.22, 0.011) (0.22, 0.0096)
c (2.4, 0.062) (2.4, 0.064) (2.4, 0.070)
d (1.0, 0.062) (1.0, 0.067) (1.0, 0.068)
μ0,1 (7.4, 1.4) (7.5, 1.4) (7.4, 1.5)
μ0,2 (-0.31, 0.069) (-0.32, 0.066) (-0.30, 0.069)
μ0,3 (1.8, 0.41) (1.8, 0.39) (1.8, 0.41)
μ0,4 (0.00053, 0.00018) (0.00054, 0.00017) (0.00051, 0.00017)
μ0,5 (-0.013, 0.0024) (-0.013, 0.0024) (-0.013, 0.0023)
μ0,6 (-0.0011, 0.0010) (-0.00093, 0.00095) (-0.0010, 0.00098)
γ (0.012, 0.0034) (0.0088, 0.00062) -
η (-0.45, 0.20) - (-0.085, 0.027)
aφ (0.18, 0.18, 0.053 ) (0.18, 0.18, 0.052) (0.18, 0.18, 0.053)
aλ (0.28, 0.28, 0.051) (0.28, 0.28, 0.053) (0.28, 0.28, 0.056)

Upon comparison, it is found that the CO2 regression model estimates a smaller, by
about 1 m, contribution from the time-independent partμ(x), but this is compensated
for by a long-term trend starting away from zero. For the linear model, the expected
time-independent part varies between 3.6 and 4.8 m, with a mean of 4.5 m, and for
the log model between 7.1 and 8.3 m with a mean of 7.9 m. Even though the range of
values is quite different for the different model alternatives, the patterns described
by plots similar to Fig. 5.6 are very similar and seem to agree well.

For all times (except t=0) and locations, the estimated mean of the θ(x) field
ranges from -1.1 to 1.9 m for the linear-log model, from -1.1 to 1.8 m for the linear
model and -1.2 to 1.9 for the log model, respectively. The average is about zero and
variances range from 0.059 to 0.83 m2 for the linear-log model (0.057 to 0.91 for
the linear model and 0.057 to 0.83 for the log model). This agrees well and also well
with the estimated dynamic part for the models with a linear or a quadratic trend
function for the long-term trends. Hence, all model alternatives estimate similar
contributions from the space-time dynamic component, and a notable part of the
modelled significant wave height can be ascribed to this part. It is noted that this
part is expected to contribute more for data with higher temporal resolution, e.g.
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Fig. 5.6 Mean time-independent part, μ(x); linear-log model

daily maxima rather than monthly maxima, as seen in e.g. [15, 16]. One interesting
observation from these results is that, of the b-parameters, bS is the largest. However,
it is noted that this component cannot be interpreted as related to individual storms
and the dynamics of predominant stormtracks when run on monthly data.

The contribution from the seasonal component, M(t), is shown in Fig. 5.7, and a
clear cyclic behaviour is observed. The estimated values for M(t) vary between -3.3
and 3.6 m for the linear-log model, between -3.6 and 4.1 m for the linear model and
-3.4 to 4.0 m for the log-model. The seasonal contribution without the error term,
c cos(ωt)+ d sin(ωt), calculated with the mean values of c and d, is also shown in
the figure, corresponding to oscillations between ± 2.66 m for the linear-log model,
± 2.65 m for the linear model and ± 2.64 m for the log model. This agrees fairly well
with the sampled seasonal contribution, although missing some of the extremes. It
is observed that also with respect to the seasonal contributions, the different model
alternatives agree well.

The contribution from the long-term trend component is illustrated in Fig. 5.8
which shows the sampled trend contribution together with the estimated mean and
90 % credible interval of the mean derived from the distribution of (γ, η). It is
observed that this trend does not start at zero; the trend has a value of 1.1 m already
at the beginning of the period for the linear-log model. For the linear model, the trend
starts at 2.8 m and for the log model at -0.49 m. Recalling that the time-independent
part was about 1 m lower for the linear-log model compared to the simulations for the
models with a quadratic function (in time) for the trend, i.e. where the trend is 0 m for
t=0, this makes sense, and the difference in the μ(x)-fields for the different models
can be explained by this. For example, the μ(x)-field was about 1.7 m higher for the
linear-log model compared to the linear model, and this corresponds well with the
difference in starting points of the different trends. In fact, for all model alternatives,
E[μ(x)] + E[T(t = 0)] is in the same order of magnitude, between 7.2 and 7.4 m
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Fig. 5.7 The seasonal contri-
bution for 10 years; linear-log
model

and this is reasonable. The estimated expected trend now increases from 1.1 to 1.7 m
over the period, corresponding to an increase of 59 cm for the linear-log model and
from 2.8 to 3.3 m corresponding to an increase of 49 cm for the linear model. This is
comparable, although slightly lower, to previously estimated trends in the monthly
maxima reported in [17]. However, the log model picks up an almost vanishing but
negative long-term trend that is very different from the other model alternatives; an
expected decrease from -49 to -50 cm corresponding to a negative trend of 1.4 cm
over the period.

One of the main motivations for including the CO2 regression component into
the model was to facilitate future projections, and projections of future significant
wave heights are made from two future scenarios for CO2 levels, referred to as the
A2 and B1 scenario, respectively. The corresponding projected trends of significant
wave height are illustrated in Fig. 5.9, and it can be seen that scenario A2 gives future
projections corresponding to an increase of 5.4 m and the B1 scenario corresponds
to an increase of 1.9 m towards the year 2100 compared to the year 2001 when using
the linear-log model. The large difference between the two projections are due to
the different CO2 levels projected by the two scenarios. However, both the projected
trends are considerably larger than the one obtained from extrapolating an estimated
linear trend towards 2100 (1.6 m over 100 years, as reported in [17]). For the linear
model, the estimated increases between 2001 and 2100 were 4.3 m for the A2 scenario
and 1.6 m for the B1 scenario. For the log model, negligible decreasing trends of 7.2
and 3.3 cm, were estimated between 2001 and 2100 for the scenarios A2 and B1,
respectively. However, it is deemed very unlikely with a negative correlation between
levels of CO2 and significant wave height, so the results from this model are not to
be trusted.

The expected future projections including 90 % credible intervals are presented in
Figs. 5.10 and 5.11. The credible intervals are calculated from the credible intervals
of the distribution of (γ, η) and do not include the uncertainty due to εt . For scenario
A2, the 90 % credible interval at year 2100 corresponds to increases in monthly
maximum significant wave height over the twenty-first century ranging from 2.7 to
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Fig. 5.8 The estimated trend
over the period; linear-log
model (top), linear model
(middle) and log model (bot-
tom)
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Fig. 5.9 The estimated and projected trends towards 2100; linear-log model (top), linear model
(bottom)

8.1 m. For scenario B1, the corresponding credible interval covers a range between
1.2 and 2.6 m increase from 2001 to 2100 (linear-log model). For the linear model,
the credible bands are asymmetric and somewhat narrower, ranging from 3.2 to 5.0 m
for scenario A2 and 1.3 to 1.7 m for scenario B1.
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Fig. 5.10 The projected trend towards 2100 with credible bands, scenarios A2 (top) and B1 (bot-
tom); linear-log model

5.4.3 Results with a Semi-Annual Component

In order to investigate the effect of including a semi-annual component in the sea-
sonal model, simulations were run where the second harmonic was included, i.e., by
removing the constraint f = g = 0. It is observed that the inclusion of a semi-annual
component does not influence the overall results much. The space-time dynamic part,
θ(x, t) is not notably affected, and also the seasonal part is similar, even though it
is no longer symmetric around zero; the absolute value of the minima is greater
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Fig. 5.11 The projected trend towards 2100 with credible bands, scenarios A2 (top) and B1 (bot-
tom); linear model

than for the maxima, with seasonal contribution oscillating between -2.9 and 2.4 m.
The time-independent field μ(x) displays the same pattern as for the models with-
out a semi-annual part, but it lies at different levels. However, when considered
together with the starting point of the trend, these results also agree with the results
obtained without the semi-annual component. For the log model, the η-parameter
is still negative (although small) which corresponds to a negative but almost non-
existing estimated trend similar to the trend for the log model with only annual
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seasonal component. Hence, also in this case little confidence is put on this model
alternative.

The estimated expected trend now increases from -2.5 to -2.0 m over the period
(linear-log model), corresponding to an expected increase of 53 cm, which agrees well
with the estimated trends for the same model without the semi-annual component.
For the linear model, the expected increase is between 1.8 and 2.1 m corresponding
to an expected increase of about 32 cm over the period.

The projected trends of significant wave height for scenario A2 is an expected
increase of 5.3 m and for scenario B1 an expected increase of 1.8 m between 2001
and 2100 for the linear-log model. For the linear model, scenario A2 gives a projected
expected increase of 2.7 m and scenario B1 an expected increase of almost 1 m for the
same period. For the linear-log model, this is in good agreement with the projections
made without the semi-annual component, even though the credible intervals have
become slightly narrower. For the linear model, the inclusion of the semi-annual trend
yields somewhat smaller trends. Notwithstanding, it is argued that the inclusion of
the semi-annual component has only minor influence on the results overall.

5.4.4 Results for Control Runs

In order to check if the Markov chains truly converge, some control runs with
increased burn-in periods and a control run with increased burn-in period and batch
size were performed. First, a set of simulations with 225,000 iterations as burn-in,
keeping the batch size of 5, were performed for the three main model alternatives, i.e.
the linear log, linear and log models without any semi-annual components. One fur-
ther control run on the linear-log model with a semi-annual component was carried
out, with 500,000 burn-in iterations and a batch size of 50.

For the linear log and linear models, the posterior estimates are mostly unchanged,
and the posterior distributions of the few parameters that are somewhat different are
largely overlapping. Hence, the results are essentially unchanged by the extended
burn-in, suggesting that the initial burn-in period was sufficient. Even though the
spatial field, μ(x), was estimated at a different level, this was again compensated by
the starting values of the trend component, T(0), and the overall results are in good
agreement for the combined spatial field and the trend, for the short-time dynamic
part and for the seasonal part. For the linear-log model also the estimated trends and
the future projections are comparable to the simulations with the initial burn-in period
and it is argued that these results suggest that convergence of the Gibbs sampler is
obtained. For the linear model, the estimated trends and future projections became
smaller with the extended burn-in, so these results are perhaps less reliable.

For the log-model, which was not able to detect any notable trends with the initial
burn-in, it is seen that the posterior estimate of the η-parameter is larger and strictly
positive with the longer burn-in. For the other parts of the model, the performance is
not much affected by the extended burn-in period, but the long-term trend is indeed
affected. The estimated expected trend is now an increase of 12 cm over the period.
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This is still small, but different from the previously estimated negative trend. The
corresponding future projections from 2001 towards 2100 for scenarios A2 and B1
now becomes 62 cm and 29 cm, respectively. This is again very different from the
previously estimated negative trend, but much smaller than the trends estimated by
the linear log and the linear models. Notwithstanding, it is concluded that the log-
model possibly did not converge within the initial burn-in period of 50,000 iterations
and those results should therefore not be trusted. Furthermore, it is observed (see
Table 5.2 below) that the loss functions indicate that the log-model performs better
with the longer burn-in period.

For the linear-log model with a semi-annual component, the distribution for most
parameters are essentially the same. For the parameters with some deviation, the
difference is small and the densities are largely overlapping. Hence, it is argued that
convergence is indeed achieved with the original burn-in period of 50,000 iterations.
Also, the variances were of the same order of magnitude, so a batch size of five seems
sufficient.

5.5 Model Comparison and Selection

A crude comparison of the different model alternatives can be carried out by compar-
ing the resulting posterior estimates of the model parameters. It is observed that the
spatial features of the model seem to be unaffected by the model alterations. Since
the model reductions were only related to the temporal trend, this is reassuring. The
seasonal part of the model also seems to behave similarly over the model alterna-
tives. Hence, the main differences are, as would be expected, related to the long-term
temporal trend and the future projections.

Somewhat more formally, the models may be compared by way of the loss func-
tions for short-term prediction and the values for the two loss functions for each of
the model alternatives are presented in Table 5.2.

It is seen that the linear-log model performs better than the linear model, which
again performs better than the log-model, and that this is quite consistent over the
various simulations. The log model seems to perform slightly worse than the model
without any trend, and it is also observed that for this particular model alternative,
the control run has slightly increased performance. Hence, this particular model
alternative might not have converged properly and does not seem to perform well;
the estimates from this model are not to be trusted.

Furthermore, the inclusion of the semi-annual component in the seasonal part of
the model does not represent an obvious improvement, except perhaps for the log
model, and this agrees with the results for the log-transformed data [16]. The control
runs with considerably longer burn-in periods do not seem to improve the predictions
either, and it is concluded that the initial burn-in period was sufficient, again with
the exception of the log model.

Comparing the loss functions with the loss functions for the models with quadratic
and linear trend functions reported in [17], it is seen that the replacement of this trend
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Table 5.2 Model selection: Standard and weighted loss functions

Model alternative Ls Lw

linear-log model 2.5616360 2.6743827
Linear model 2.5958652 2.7115865
log model 2.7835824 2.9113850
no trend model 2.7810660 2.9085743
linear log with semi-annual trend 2.5658667 2.6801950
linear with semi-annual trend 2.6265630 2.7461653
log with semi-annual trend 2.7414825 2.8671277
control run (linear-log model) 2.5716014 2.6860570
control run (linear model) 2.6447196 2.7643920
control run (log model) 2.7183518 2.8420370
control run (linear-log model with semi-annual trend) 2.5391257 2.6515834

function with a CO2 regression component yields a slight improvement; the values of
the loss functions in Table 5.2 are consistently slightly lower than the values reported
in [17].

5.6 Discussion

A Bayesian hierarchical space-time model for significant wave height with a CO2
regression component has been developed and different model alternatives have been
simulated for an area in the North Atlantic Ocean. The various model alternatives
that have been explored differ in how the regression block with CO2 data has been
modelled and whether the seasonal component includes a semi-annual as well as an
annual part. However, the inclusion of a semi-annual component did not seem to
influence the results much and a purely annual component is deemed sufficient for
the seasonal model.

Four different alternatives were investigated with respect to the regression block,
T(t), i.e. models with a linear and logarithmic regression term, only linear and only
logarithmic regression terms as well as a model without any long-term trend. The
various model alternatives obtained different estimates of the long-term trends and
future projections of significant wave height, but it was found that the linear-log model
seemed to be superior. Indeed, the model with a purely logarithmic regression term
performed poorly and should be rejected. However, the linear-log model performed
reasonably well, and it was also found that the results were robust against changes
in burn-in period of the Markov chain. Hence, this model is selected as the most
reliable one.

In order to compare model alternatives, two loss functions have been utilized.
These are based on short-term predictive power, and might therefore not be ideally
suited for comparing models aiming at long-term predictions. Notwithstanding, it is
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reassuring to observe that the model selection criteria seem to be quite consistent in
identifying the linear-log model as the preferred one.

Future projections were based on two future emission scenarios, denoted as the
A2 and the B1 scenarios respectively. There are obviously large uncertainties with
respect to future levels of atmospheric CO2, and corresponding projected trends in
the ocean wave climate are reported for both scenarios. However, both scenarios yield
larger projected trends compared to the models where a linear trend was extrapolated
over 100 years [15–17]. It is also noted that an implicit assumption in the models
is that the correlation between atmospheric levels of CO2 and the wave climate is
unchanged, and this is obviously a critical and uncertain assumption.

The future projections estimated from the models seem to be somewhat larger than
other projections made for significant wave height in the North Atlantic, reported
by e.g. [2–4, 7, 20–22], but the uncertainties are large and there are some overlaps.
The estimated 90% credible intervals correspond to about ± 50 % of the expected
projections. It should also be kept in mind that the trends predicted herein pertain
to the monthly maxima and the maxima might experience a greater change than
moderate sea states, as also suggested in e.g. [23]. Furthermore, the A2 scenario
is believed to correspond to an extreme emission scenario and the corresponding
projections of wave climate would therefore also expectedly be on the extreme side
of projections. This can be construed as a worst case scenario and is important to
consider from a precautionary perspective. In contrast, the B1 scenario is much more
conservative and also yields much smaller projected future trends in the wave climate.

It should be stressed that even though the models detect trends in the data, it does
not necessarily mean that the trend is a direct consequence of anthropogenic climate
change. It might be a result of decadal natural variability, as discussed in e.g. [1], and
wave climate variability has been reported to be considerable on different temporal
scales [5]. Great care should therefore be taken when interpreting the meaning and
the origin of this trend, even though the correlation between anthropogenic CO2
emissions and the wave climate is found to be strong in this study.

5.7 Summary and Conclusion

This chapter has outlined a Bayesian hierarchical space-time model that has been
extended with a regression block with atmospheric CO2 levels as covariates. This has
been used to estimate trends and make future projections of the ocean wave climate
over an area in the North Atlantic Ocean, i.e. trends and projections of the monthly
maximum significant wave height. The models have different components in space
and time and are found to generally perform well. Different model alternatives have
been tried and the model with both a linear and a logarithmic relationship between
the wave climate and the level of CO2 in the atmosphere is generally found to be
superior.

According to the linear-log model, a trend has been detected in the data corre-
sponding to an expected increase in monthly maximum significant wave height of
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59 cm between 1958 and 2001. Future projections have been based on two emission
scenarios towards 2100, i.e. the A2 and the B1 scenarios corresponding to the most
pessimistic and most optimistic of several IPCC scenarios. Assuming the A2 emis-
sion scenario, an expected future trend in monthly maximum significant wave height
of 5.4 m was estimated between 2001 and 2100. For the B1 scenario, the estimated
expected increase was 1.9 m towards 2100. The uncertainties in both cases are con-
siderable, with 90 % credible intervals ranging from increases of 2.7 to 8.1 m for
scenario A2 and 1.2 to 2.6 m for scenario B1. Recalling that the mean monthly maxi-
mum significant wave height was 7.5 m, the estimated expected increases correspond
to centurial increases of 72 % and 25 % respectively. It is believed that especially
the projections corresponding to the A2 scenario are quite high, but it should be
kept in mind that the A2 emission scenario is an extreme or worst case scenario and
consequently the projected increase in ocean wave climate becomes extreme.

It is acknowledged that making regression directly on the atmospheric CO2 level
is a simplification and further extensions of the model could include different layers
of dependencies, i.e. including regression towards sea level pressure fields or wind
fields in the area. However, this is left for further work, and it is still interesting to
see that the model with a CO2 regression block overall seems to perform reasonably
well.
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Chapter 6
Bayesian Hierarchical Modeling of the Ocean
Windiness

It is generally accepted that the main physical mechanism for wave generation is
transfer of energy from the atmosphere to the ocean due to wind friction on the sea
surface (see. e.g., [9]). Waves that are generated by local wind fields are referred to
as wind sea, whereas swell is used to refer to waves that remain after the wind has
died out and that can travel considerable distances. Hence, the origin of swell may be
very remote from where the waves are measured. In the open ocean, waves of many
different directions and frequencies are present and wave spectra often display two
distinctive frequency modes associated with wind sea and swell (bimodal waves).

In the significant wave height data used in the Bayesian hierarchical space-time
models, it is not distinguished between the wind sea and the swell contributions
and the models are not able to distinguish the origin of the waves contributing to the
significant wave height. Therefore, the model cannot determine whether the estimated
increase in significant wave height is due to increased wind sea or increased swell,
or perhaps a combination of both. In order to investigate this, this chapter applies a
similar stochastic model on the wind speed over the same area in the North Atlantic
Ocean. It will then be argued that if a similar increasing trend is estimated for wind
speed as for significant wave height, the increase in significant wave height can be
attributed, at least in part, to an increase in wind sea. Conversely, if there are no
detectable trends or even decreasing trends in the windiness over the same area, the
estimated increase should be ascribed to increasing swell. Furthermore, it is believed
that investigating the spatial and temporal variability of North Atlantic windiness
is of interest in itself and that it will be interesting to explore how the Bayesian
hierarchical modeling framework performs for wind speed. The results presented in
this chapter are extracted from [12].
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6.1 Data Description and Area of Investigation

6.1.1 Wind Data

This study exploits the ERA-40 reanalysis data for wind speed [11], which cover most
of the entire globe and a period of 45 years at 6-hourly resolution (from September
1957 until august 2002). It is important to note that the ERA-40 wind data are from
the same reanalysis study as the ERA-40 significant wave height data that was used
in the previous chapters for modeling of significant wave height, selected due to
their spatial and temporal resolutions. Hence, the data sets should be consistent and
allow for comparison of results for waves and winds. The data are freely available
for research purposes and may be downloaded from the ECMWF website.1

The ERA-40 data contain the two parameters U and V for the 10-m wind speed,
i.e., the wind speed at height 10 m above the sea surface. U refers to the wind
velocity component in the east–west direction, whereas V refers to the north–south
component of the wind velocity, both in terms of meters per second (m/s). Jointly, U
and V therefore describe both the magnitude of the wind speed and the wind direction.
This study, however, is restricted to analysis of the wind speed, and the wind direction
will not be considered. Hence, the parameter of interest in this study, for which the
Bayesian hierarchical space-time model has been applied, is the absolute value of
the wind speed, W :

W =
√

U 2 + V 2. (6.1)

The temporal resolution of the data is 6 h. However, for the purpose of this study,
the monthly maximum wind speed in each spatial location is analyzed, in line with
the analyses reported in [15, 16]. This corresponds to time series of 540-monthly
maxima, corresponding to the 45 years of data, at each spatial location.

The ERA-40 10-m wind speed data have been compared to satellite and buoy mea-
surements in [17]. Comparison of monthly means indicates good agreement between
the ERA-40 wind speeds and the satellite measurements, with high correlations and
low-root mean square values for wind speed difference, although ERA-40 tend to
underestimate the monthly mean wind speed. Comparison on shorter time scales, i.e.,
comparing with daily satellite winds, reveals larger differences, but it is assumed that
the ERA-40 wind speed data for monthly maximum values are reasonable. Also the
KNMI/ERA-40 wave atlas2 states that the 10-m wind speeds compare quite well
with observations. It is noted that the results from the modeling presented in this
paper are conditional on the data and no attempt has been made to correct possible
biases. Therefore, it is reassuring that the monthly mean 10-m wind speeds from
ERA-40 agree well with satellite data.

Before applying the Bayesian hierarchical space-time model on the data, a crude
data inspection will be carried out and some main features of the raw data pertaining to

1 URL: http://data-portal.ecmwf.int/.
2 URL: http://www.knmi.nl/waveatlas.

http://data-portal.ecmwf.int/
http://www.knmi.nl/waveatlas
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Fig. 6.1 Fitting a straight line
to the raw data indicates a
negative trend

Fig. 6.2 The seasonality of
the raw data

the selected area will be presented. The highest wind speed recorded in the monthly
maximum data overall is just above 32 m/s and the minimum value in the dataset
is about 8.6 m/s. The estimation of possible long-term trends is one of the main
motivations for applying the stochastic model, and a very crude approach to see if
there are any likely trends is to fit a straight line to the raw data. In Fig. 6.1 the
spatially averaged data are shown with a straight line fitted to it by least squares. It
is observed that this line has a negative slope of −0.0008171 m/s per month with
an intercept of 18.64 m/s, corresponding to slightly decreasing monthly maximum
wind speeds of about 0.44 m/s overall throughout the period. It is also interesting
to observe the seasonality in the raw wind data as illustrated by Fig. 6.2 where the
spatially averaged data for the first 10 years are shown.

6.1.2 Area Description

Ideally, the area selected for analysis of wind speeds should be identical to the area
used in the analysis of significant wave height. However, for the significant wave
height, a corrected dataset with resolution 1.5◦ × 1.5◦ was used whereas the dataset



156 6 Bayesian Hierarchical Modeling of the Ocean Windiness

Fig. 6.3 The areas in the North Atlantic Ocean for analyzing windiness (dark green) and significant
wave height (light grey)

for wind speed that is downloadable from the European Centre for Medium-Range
Weather Forecasts (ECMWF) website has a spatial resolution of 2.5◦ ×2.5◦ degrees.
Thus, the areas are not entirely identical, but they are largely overlapping and this is
assumed to be satisfactory. The area included in this study ranges from 50◦ to 62.5◦
north and 322.5◦ to 347.5◦ east corresponding to a grid of 6 × 11 = 66 data points.
Due to the reduced spatial resolution, the distance between the grid points is larger
than for the dataset used in the significant wave height modeling even though the areas
are essentially overlapping. It is assumed that the different spatial resolution of the
wind data compared to the wave data does not influence the overall results from the
models, and particularly that any long-term trends would not be very sensitive to the
difference in spatial resolution. The selected area is illustrated in Fig. 6.3 where also
the area for the significant wave height analysis is indicated. Additionally, another
area further to the north is investigated (not indicated in Fig. 6.3).

6.2 The Stochastic Model

The Bayesian hierarchical space-time model resembles the model for significant
wave height [13] and the spatiotemporal data are indexed in a similar way by two
indices; x = 1, 2, . . ., X = 66 and t = 1, 2, . . ., T = 540 (t = 1 corresponds to
September 1957 and t = T = 540 corresponds to August 2002). The maximum
windiness at location x in month t is expressed by W (x, t). The structure of the main
model, and the few alternative models that are also explored, is very similar to the
significant wave height model and will only be briefly explained in this chapter. For
a full model specification, reference is made to [12].



6.2 The Stochastic Model 157

It is emphasized that this model is a stochastic model rather than a physics-based
model and the physical mechanisms in the atmosphere responsible for generating
wind are not explicitly included in the model. It is rather the complex stochastic
dependence structures, in space and time at various scales, in the wind data itself that
have been modeled. However, it is argued that all relevant physics are undeniably
inherent in the data, so the relevant physical mechanisms are implicitly taken into
account by the model, by way of the data. Hence, this probabilistic model is proposed
as a complement and an alternative to more deterministic, geophysics-based models.

6.2.1 Main Model Specification

The observation or data equation (Eq. 6.2) models the maximum windiness at location
x and month t as a latent (or hidden) process H , corresponding to an underlying wind
speed process that may normally be construed as the true process, and some random
noise, εW , which may be construed as measurement error or data uncertainty in much
the same way as the significant wave height process was modeled.

W (x, t) = H(x, t) + εW (x, t) ∀x, t (6.2)

The underlying process for monthly maximum windiness is modeled by the state
or system model which is split into a time-independent part μ(x), a short-term tempo-
rally and spatially dependent part θ(x, t) and two spatially independent parts M(t)
and T (t) for seasonality and long-term trends, respectively (Eq. 6.3). The various
parts of the model are similar to the corresponding components of the significant
wave height model, with the same parametrization, and the details are omitted in this
chapter. Reference is again made to [12] for details.

H(x, t) = μ(x) + θ(x, t) + M(t) + T (t) (6.3)

In the seasonal component, a combination of annual and semiannual contributions
is included. The long-term trend of the initial model is a simple Gaussian process
with a linear trend, as shown in Eq. 6.4.

T (t) = γt + εT(t) (6.4)

6.2.2 Alternative Models

Two model alternatives have also been explored in this study, in line with the studies of
significant wave height. First, a model where the trend component has been removed
is applied, and this model is simply identical to the model in Eqs. 6.2 and 6.3 with
T(t) = 0 and all other components unchanged, as presented in Eq. 6.5
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W (x, t) = H(x, t) + εW (x, t) = μ(x) + θ(x, t) + M(t) + εW (x, t) (6.5)

This model would then explain the data under the assumption of no trend.
The other model alternative is obtained by taking the logarithmic transformation

of the data. By taking this log-transform, the model effectively changes into the
model in Eq. 6.6, where H(x, t) is still modeled as in Eqs. 6.3 and 6.4, see also [14].

Y (x, t) = ln W (x, t) = H(x, t) + εY (x, t) (6.6)

An equivalent representation of this model alternative on the original scale is

W (x, t) = eμ(x)eθ(x,t)eM(t)eT(t)eεY (x,t) (6.7)

where now the contributions from the individual components to the wind speed have
become multiplicative factors rather than additive contributions. This gives a different
interpretation of the model components.

Similar prior distributions as for the significant wave height model were employed
and reference is made to [12] for details and exact values of the hyperparameters of
the prior distributions.

6.2.3 MCMC Simulations

The MCMC simulations performed to sample from the wind speed model used a
burn-in period of 100 000 samples and a batch size of 20, corresponding to a total of
120 000 simulations to obtain a collection of 1000 samples of the multi-dimensional
parameter vector. The Metropolis-Hastings steps were repeated six times to obtain
an overall acceptance rate of about 70 %. The burn-in period is much longer than
what was used for the significant wave height model, and it ensures that the Markov
chain converges. The assumption that the chain converges within the burn-in period
is confirmed by trace plots and a few control runs. A simulation according to these
specifications completes in about 5 h on a computer with an Intel Core i5-2500 CPU
@ 3.30 GHz processor.

A normal probability plot of the residuals is investigated in order to check the
main model assumption of normality at the observation level, and this indicates that
the assumption is reasonable.

6.3 Results

In this section, the results for the different model alternatives and pertaining to the
different model components will be reported. The estimated marginal posterior dis-
tributions (mean and standard deviation) are presented in Table 6.1. It is noted that
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Table 6.1 Posterior marginal distributions (mean; standard deviation)

Main model No trend Log-transform Alternative area

γ −0.00034; 0.084 − −4.9 · 10−5; 4.8·10−5 0.0014; 0.00042
μ0,1 20; 3.0 20; 3.0 3.1; 2.0 20; 5.2
μ0,2 −0.41; 0.13 −0.42; 0.13 −0.026; 0.076 −0.56; 0.37
μ0,3 2.6; 0.77 2.7; 0.79 0.16; 0.45 2.9; 2.3
μ0,4 0.00093; 0.00033 0.00094; 0.00034 5.1·10−5; 0.00019 0.0012; 0.0010
μ0,5 −0.010; 0.0047 −0.011; 0.0047 −0.00089; 0.0024 −0.012; 0.0076
μ0,6 −0.0043; 0.0019 −0.0044; 0.0020 −0.00018; 0.0010 −0.0038; 0.0062
aφ 0.17; 0.080 0.17; 0.082 0.12; 0.079 0.14;0.093
aλ 0.29; 0.084 0.28; 0.089 0.13; 0.081 0.19; 0.11
c −2.7; 0.078 −2.7; 0.077 −0.15; 0.011 −3.0; 0.094
d 2.2; 0.078 2.2; 0.076 0.12; 0.012 2.1; 0.095
f −0.0037; 0.078 −0.0078; 0.073 −0.0023; 0.011 −0.13; 0.093
g 0.48; 0.078 0.48; 0.073 0.035; 0.010 0.80; 0.093
b0 0.30; 0.016 0.30; 0.016 0.018; 0.0048 0.20; 0.018
bN 0.056; 0.020 0.051; 0.021 0.010; 0.0055 0.84; 0.040
bE 0.24; 0.018 0.24; 0.017 0.012; 0.0048 0.20; 0.019
bS −0.14; 0.027 −0.15; 0.030 −0.0011; 0.0052 −0.041; 0.010
bW 0.26; 0.019 0.26; 0.017 0.018; 0.0048 0.16; 0.016
σ2

W 3.2; 0.030 3.2; 0.031 0.0057; 0.00015 2.7; 0.032
σ2

μ 0.11; 0.022 0.11; 0.022 0.062; 0.011 0.25; 0.063
σ2

θ 0.25; 0.018 0.26; 0.017 0.0057: 0.00015 0.055; 0.0073
σ2

m 0.77; 0.25 1.5; 0.090 0.017; 0.0013 1.2; 0.47
σ2

T 0.72; 0.24 − 0.017; 0.0013 1.0; 0.46

the parameter estimates for the log-transformed data are not directly comparable to
the estimates pertaining to the original model.

6.3.1 Results From the Main Model

First, the results for the various components for the main model, including a linear
long-term trend component will be presented. Overall, this model seems to perform
well and the results appear stable; running a few control simulations provides very
similar results.

The parameters μ0,· together with aφ and aλ determine the contribution from the
time-independent spatial field μ(x). Over the area, the mean of this contribution
varies between 17.0 and 19.2 m/s and this component thus explains some of the
spatial variation in the wind speed data. The mean estimated posterior field μ(x) is
illustrated in Fig. 6.4 and it is observed that there is variability in both north–south
and in east–west directions, with generally higher wind speeds to the east and the
north of the area.
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Fig. 6.4 The spatial field
μ(x)

The space-time dynamic component θ(x, t) is described by the b· parameters, and
the mean of this component is found to vary between −1.63 and 1.88 m/s over all
times (except t = 0) and locations. Hence, a notable part of the variability of wind
speeds is captured by this component. The mean contribution of this component,
averaged over all times, are zero, meaning that this component is stationary over
long time scales as it should, not contributing to the long-term trend part of the
model.

The estimated seasonal contribution according to the model is illustrated in
Fig. 6.5, and it is seen that this captures the seasonal characteristics of the raw data
quite well. It is noted that the figure only shows the seasonal contribution for the
first 10 years, but the contribution is valid for the complete time span of the data,
and all data have been used in estimating the seasonal contribution. The seasonal
component was modeled as a combination of an annual and a semiannual part and
is described by the parameters c, d, f and g. The estimated parameters correspond
to a first harmonic with mean amplitude A1 = √

c2 + d2 ≈ 3.5 m/s and a second

Fig. 6.5 The posterior mean
seasonal contribution
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Fig. 6.6 The posterior mean
long-term trend component
with 90 % credible interval of
γt ; green line corresponds to
no trend

harmonic with mean amplitude A2 = √
f 2 + g2 ≈ 0.48 m/s corresponding to a

seasonal contribution varying between 3.0 m/s in February and about −3.9 m/s in
August. It is observed that the annual contribution is dominating, but the contribu-
tion from the semiannual component is not negligible. The mean sampled seasonal
contribution M(t) has an overall minimum of −4.66 and a maximum of 4.75 m/s.

The long-term trend contribution is perhaps the one of most interest, and a linear
trend was assumed in the main model. The linear trend in the model is determined by
the parameter γ and the mean posterior γ is estimated to −0.000345 m/s per month.
This corresponds to an overall decrease of about 0.19 m/s over the whole period
which is slightly less than the straight line fitted to the raw data in Fig. 6.1. The
estimated mean long-term trend together with a 90 % credible interval of the mean
are illustrated in Fig. 6.6. The estimated trend corresponds to a mean decrease of
about 19 cm/s with a 90 % credible interval ranging from negative to positive trends
in the monthly maximum wind speed over the whole period. Hence, even though
the data indicate that there might be a slight decreasing trend in the wind data no
statistically significant trend in the wind speed is estimated by the model.

6.3.2 Results From the Model with No Trend

The model was also tried without any long-term trends (i.e. by letting T (t) = 0), and
apart from the absence of any trends, the results were very similar to the results from
the main model. The values of the estimated spatial field are comparable, although
perhaps slightly lower, without any trend, with values ranging from 17.0 to 19.0 m/s,
which seems reasonable. The contributions from the short-term dynamic (mean ≈
0.00 m/s and ranging from −1.67 to 1.92 m/s) and seasonal (ranging from −3.9
to 3.0 m/s)) components are very similar, as can also be seen from comparing the
estimates in Table 6.1. The estimated mean spatial field and seasonal contribution are
illustrated in Fig. 6.7. The fact that the models with a linear trend and without any
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Fig. 6.7 Results from the model without trend; the mean spatial field and seasonal contribution

trend are similar is not surprising, especially since the model with a trend component
failed to identify a statistically significant trend. Hence, for all practical purposes the
models can be regarded as identical.

6.3.3 Results From the Log-Transformed Model

When the model was run with a logarithmic transformation of the data, the results
are not directly comparable but similar main features are identified. The estimated
mean spatial field now varies between 16.9 and 19.1 m/s, with the contributions from
the short-term dynamic, seasonal and long-term trend parts now being multiplicative
factors. The estimated spatial field and the seasonal contribution are illustrated in
Fig. 6.8. The estimated seasonal contribution varies between factors of 0.80 for calm
seasons and 1.2 for windy seasons. The mean factor reflecting the contribution from
the short-term dynamic component, E

[
eθ(x,t)

]
varies between 0.79 and 1.2 for all

locations and times except t = 0. It is noted that the figures display the results
on the re-transformed original scale, and bias corrections have been applied when
necessary, see e.g. [2, 5, 8, 14] for more details.

The estimated long-term trend factor is illustrated in Fig. 6.9. The mean long-term
trend is found to be decreasing but the 90 % credible interval ranges from decreasing
to increasing trends. The mean estimated trend for the whole period corresponds
to a factor of 0.98. The 90 % credible interval for the expected trend factor ranges
from 0.94 to 1.02, hence the decreasing trend is not significant at the 90 % level.
For a typical monthly maximum wind speed of about 18 m/s the estimated mean
trend corresponds to a decrease of about 36 cm/s over the whole period, but for
more extreme wind speeds, say 30 m/s, the trend factor corresponds to a decrease
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Fig. 6.8 Results from the model with log-transform of the data: spatial field and seasonal factor

Fig. 6.9 The estimated trend
factor for the log-transformed
data, with 90 % credible
interval

of 60 cm/s. Hence, the model on the log-transformed data yields larger trends for
extremes compared to averages.

Comparing the results from the model for log-transformed data to the results
pertaining to the original data, it is observed that a slightly more decreasing mean
trend is estimated, but both models fail to identify any significant trends. Hence, the
results generally agree. It is questionable whether the log-transform represents an
improvement, and the results indicate that the original model might perform better.
For example, short-term prediction losses are smaller for the original model.

6.3.4 Results Pertaining to Another Ocean Area

It seems obvious that the identified increase in significant wave height cannot be
explained by the absence of any increase or even a slight decrease (although not
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statistically significant) in wind speed over the area. Hence, the increasing significant
wave height might be a result of increased swell from increased windiness in other
areas. In order to investigate this, another area to the north of the initially investigated
area will be analyzed. The spatial resolution and temporal span is the same as for the
initial area. The coordinates of this other area are from 67.5◦ to 77.5◦ north and from
345◦ to 357.5◦ west, corresponding to a grid with 5 × 6 = 30 grid points north of
Iceland. The lowest and highest values for monthly maximum wind speed in this area
are 6.8 and 30.5 m/s, respectively, somewhat less than for the area initially studied.

The results for the new area look reasonable for the spatial field, the short-term spa-
tiotemporal part and the seasonal component. The mean spatial field varies between
13.9 and 16.6 m/s over the area with a mean contribution of 15.7 m/s; the short-
term dynamic part θ(x, t) varies between −3.69 and 3.53 m/s with a mean of about
zero m/s over the area and entire period; the seasonal contribution varies between
−4.47 and 2.93 m/s. The results for the spatial field and the seasonal contribution
are illustrated in Fig. 6.10. It is interesting to observe that the model picks up a sig-
nificantly positive long-term trend when applied to this area north of Iceland. The
estimated trend is illustrated in Fig. 6.11, and the mean estimated trend corresponds
to an increase in monthly maximum wind speed of about 0.75 m/s over the period.
The 90 % credible interval of the expected trend ranges from 0.37 to 1.1 m/s and is
hence entirely positive. Hence, even though there seems to have been an insignificant
decrease in wind speeds in the area first investigated, this area further north seems to
have experienced an overall increase in wind speeds. It is noted, however, that even
though the increase was found to be statistically significant, an increase of 0.75 m/s is
not necessarily practically significant with respect to wave generation and the effects
on the significant wave height.

Fig. 6.10 Results from the model applied to an alternative area: spatial field and seasonal factor
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Fig. 6.11 The estimated
mean trend for the area north
of Island with 90 % credible
intervals

6.4 Discussion

The Bayesian hierarchical space-time model applied to monthly maximum wind
speeds over an area in the mid-latitude North Atlantic has identified a possible slightly
negative trend for the initial area in the North Atlantic, albeit not statistically signif-
icant. When significant wave height data were modeled with a similar model for the
same area, an increase in monthly maximum significant wave height was discovered,
and the results from the analysis of the wind data indicate that this increase is not due
to increased wind sea. If the increases in significant wave height are to be explained
by increased wind sea, it would necessarily need to be accompanied by an increase
in local wind speeds.

The increase in significant wave height could then be explained by increased swell,
i.e., remains of wind sea generated by wind forces outside the area and propagated
into the area that has been analyzed. This assumption is substantiated by the results
obtained when the wind speed model was applied to an area further north. For this
area, a significant increase of monthly maximum wind speeds was detected which
would possibly lead to increased wind sea in this alternative area. This increased wind
sea could then possibly propagate as increased swell to the initial area and explain,
at least partly, the observed increase in significant wave height here. It should be
noted, however, that only wind speeds have been analyzed and the direction of swell
propagation would obviously be highly dependent on wind direction.

The absence of a long-term trend (or possibly a slight decreasing trend) in windi-
ness in one area together with an increase in windiness in an area further north
indicate that there might have been a change in the main storm tracks, with storm
tracks generally moving more to the north. This would be in agreement with other
studies that have described such an effect, i.e., that the storm tracks have experi-
enced a poleward shift as a result of climate change, see e.g., [3, 6, 18]. Such a
poleward shift of storm tracks is associated with a poleward shift in surface winds,
which would be in agreement with the results presented herein. [1] presents a review
of recent studies and states that an observed poleward shift of mid-latitude storms
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is the most agreed on result. Hence, it is reassuring that the Bayesian hierarchical
space-time model arrives at similar results and is able to pick up this signal in the
data.

It is noted that this model only analyses the trend in the monthly maximum
wind speed, and this alone might not be a sufficient measure of the wave generating
forces. If, for example, the duration of extreme wind speeds increases this would
lead to larger waves even without an increase in the wind speed itself. Such effects
would not be picked up by the model when applied to monthly maximum wind
speeds. Another effect could be the frequencies of strong winds. If there are not
sufficiently long calm periods between storms for the sea to quiet down, waves could
aggregate to larger heights even without higher wind velocities. Possibly, increasing
frequencies and prolonged duration of storms would not necessarily be reflected
in the monthly maximum wind speed data and further analyses would be needed
to look into this. This is left for further study. Furthermore, the wind direction is
important for wave generation, and wind directions have not been analyzed in the
present study. A possible extension of the model could be to include wind direction
as well as magnitude. It is also assumed that possible effects of changes in fetch due
to Arctic ice reduction are negligible.

It has already been emphasized that even though the governing physics is not
explicitly included in the model presented in this study, it is undeniably incorporated
in the model by way of the data. The Bayesian hierarchical model is a purely proba-
bilistic model and as such it is different from many meteorological and geophysical
models based on deterministic relationships such as the Navier-Stokes equations for
describing the climate and the atmospheric circulation and for projecting climate
change. Physical models remain the primary approach for investigating the impacts
of climate change and ensemble studies are carried out in order to quantify uncertain-
ties, where different climate models and small perturbations of the initial conditions
give different results. However, it has been acknowledged that there are notable sta-
tistical challenges related to climate change projections based on such ensemble
studies, see e.g., [4, 7, 10]. The models presented in this paper offer an alternative
approach to modeling the impacts of climate change on the wind climate with a more
direct approach to modeling of uncertainties, and it should rather be regarded as a
complement to the efforts made developing physical models than a competitor.

6.5 Summary and Conclusions

This chapter has presented a Bayesian hierarchical spatiotemporal model for 10-m
wind speeds. Overall, the model seems to perform well in capturing the dominating
spatial and temporal dependence structures in the wind speed data. Hence, this chapter
suggests this modeling framework as an alternative to physical models for analyzing
environmental processes such as wind speed in space and time.

A similar model has previously been applied to extreme wave climate over the
same area and identified i.a. increasing trends in the monthly maximum significant
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wave height. Previous studies have also demonstrated that such increasing trends may
have an impact on ship structural loads (see Chap. 7) and that it hence represents an
additional hazard to ship operations. The results from the wind speed models do not
suggest any corresponding increases in the monthly maximum wind speeds. On the
contrary, a slight decreasing trend was estimated although this was not statistically
significant. Hence, the results indicate that the roughening of the wave climate could
not be explained by increases in locally generated wind sea. Possibly, the increased
significant wave height can be explained by increased swell in the area. The monthly
maximum wind speed was also analyzed for another ocean area further north and in
this area a significant positive trend in the 10-m wind speed was identified. These
results agree with various previous studies that suggest that the North Atlantic storm
tracks shift polewards due to a warming climate and could also explain, at least
partly, an increase in swell in the original area. Thus, the results presented in this
paper suggest that the observed increased significant wave height might be mostly
due to increased swell.
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Chapter 7
Application: Impacts on Ship Structural Loads

In this chapter, it is explored how the estimated long-term trends can be related to
the structural loads and response calculations of ships and how load calculations can
be updated to take future projections of the ocean wave climate into account. The
potential impact of the estimated long-term trends of significant wave height on the
wave-induced structural loads of an oil tanker will be discussed and illustrated by an
example. For the purpose of this illustration, the estimated linear long-term trends
extrapolated from the monthly maximum data and the trends obtained with regression
on the B1 scenario will be used, but any estimated trend could be incorporated in
the load calculations in a similar way. In short, a joint model for significant wave
height and wave period is used, and this is modified to take into account the possible
effects of climate change. This leads to a modification of environmental contours
specifying the extreme environmental conditions, which again is used to modify the
load calculations. An example for a particular oil tanker is presented for illustration.
Some parts of this chapter are previously presented in [30, 33].

7.1 Introduction and Background

Extreme environmental conditions impose extreme loads and stresses on marine
structures and correspond to failure modes related to, e.g., extreme sagging and hog-
ging conditions. In order to ensure the reliability of marine structures, it is important
to make load and response calculations corresponding to the operating conditions
that may be encountered throughout its lifetime. In particular, the extreme responses
corresponding to the most critical environmental conditions the structure is expected
to withstand should be assessed.

Typically, several met-ocean parameters influence the response of a structure
and when carrying out load and response calculations of marine structures, a joint
environmental model can be utilized. It has been shown that the environmental forces
on marine structures may be significantly reduced by accounting for the lack of

E. Vanem, Bayesian Hierarchical Space-Time Models with 169
Application to Significant Wave Height, Ocean Engineering & Oceanography 2,
DOI: 10.1007/978-3-642-30253-4_7, © Springer-Verlag Berlin Heidelberg 2013



170 7 Application: Impacts on Ship Structural Loads

full correlation of met-ocean parameters, i.e., the extremes of different met-ocean
parameters do not normally occur simultaneously. Early joint models were limited
to various pairs of environmental parameters such as significant wave height and
spectral peak period or significant wave height and current speed, see e.g., [15, 21],
but later models extended this approach to include wind, waves, current, and sea
water level [5, 6]. Currently, different approaches for joint environmental modeling
can be found in the literature, e.g., the Maximum Likelihood Model (MLM) [26], the
Conditional Modeling Approach (CMA) [5, 6] and the Nataf model [12, 24]. The
modeling of bivariate probability distributions of significant wave height and mean
wave period is also discussed in [14], and [27] contains an overview of different
methods for bivariate modeling of wave height and period, including the CMA.
Multivariate modeling of met-ocean parameters by means of kernel density models
are discussed in [1].

Generally, for all approaches both global and event models can be applied. The
global approach utilizes all data from a long series of regular observations while the
event approach is based on the observations over some threshold level. The global
approach includes correlation among observations which in the event approach may
be negligible. In this study, the CMA proposed in [5, 6] is adopted. Extensions of
this model are discussed in for example [3, 4].

In this chapter, the estimated long-term trends and future projections of the ocean
wave climate, as outlined in previous chapters, will be included in load calculations
for ships. Hence, the potential impact of changes in future sea states on ship structural
loads will be considered, using the CMA and taking due note of inherent uncertainties.
As for the long-term trends assumed in this exercise, these refer to the trends in
the monthly maxima data, as outlined in previous chapters. However, first a brief
introduction of central concepts in probabilistic structural design will be presented.

7.2 Probabilistic Structural Design

In probabilistic structural design, one often defines a performance function g(X)
which is dependent on a number of stochastic input variables X = (X1, X2, . . . ,

Xn)
T . Typically, such a function can be expressed as g = capacity (strength)

− demand (stress) so that it identifies the safe and unsafe regions for when the
structure fails or not: If g(X) > 0 then the strength is greater than the stress and
the structure survives whereas g(X) < 0 means that the stress is greater than the
strength and the structure will fail. Hence, the region defined by g(X) < 0 is the
failure region of the X-space. g(X) = 0 defines the so-called limit state function
and is the boundary between the safe and unsafe regions. Within this framework, the
reliability R of a structure is defined as the probability of a performance function
g(X) being greater than zero, i.e., (with Pf denoting the probability of failure)

R = 1 − Pf = P [g(X) > 0] (7.1)
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Since, g is a function of X this is equivalent to the probabilities of the random
variables X being in the safe or unsafe regions of the X-space, respectively. Hence,
given a joint probability density function (pdf) fx (x) of the random variables X, the
reliability and probability of failure can be evaluated by the integrals

R = 1 − Pf = P [g(X) > 0] =
∫

g(X)>0

fx (x)dx (7.2)

These integrals are normally difficult to solve exactly, and both the joint pdf fx (x)
and the performance function g(X) may be complicated functions. Two commonly
used methods to approximate these integrals are the First Order Reliability Method
(FORM) and the Second Order Reliability Method (SORM). These methods are
closely related to the concept of environmental contours, and the FORM approach
will be briefly described in the following. Reference is also give to [16] for a brief
description.

7.2.1 First Order Reliability Method (FORM)

The main idea of the FORM is to approximate the failure boundary at the design
point (i.e., the point on the failure boundary closest to the origin) by a first order
Taylor expansion. In order to alleviate the estimation of the integral, the random
input variables X are often transformed from their original space into the standard
normal space, where the transformed random variables U = (U1,U2, . . . ,Un)

T are
independent and standard normally distributed.

The transformation from X to U is performed according to the Rosenblatt trans-
formation [28] in Eq. 7.3, where Φ(·) is the cumulative distribution function of the
standard normal distribution, and F· is the cumulative distribution function of the
original random variables, respectively.

U1 = Φ−1
(
FX1(X1)

)

U2 = Φ−1
(
FX2|X1(X2)

)

...

Un = Φ−1
(
FXn |X1,...,Xn−1(Xn)

)

(7.3)

Failure regions in the original space correspond to failure regions in the trans-
formed normal space, defined by the transformed performance function g̃(U). Hence,
the probability integral in 7.2 becomes

Pf = P
[
g̃(U) < 0

] =
∫

g̃(U)<0

φu(u)du (7.4)
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where φu(·) denotes the standard multivariate normal density function.
Now, in order to calculate this integral in the transformed space, first the point

of the minimum distance between the transformed failure boundary, g̃(U) = 0,
and the origin in U-space are identified. This point is identified as the design point
and the distance from this design point to origin is denoted the reliability index βr .
Second, the transformed true failure boundary in this point is approximated by a
tangent hyperplane; for two-dimensional U this hyperplane becomes a tangent line
of a circle with radius βr around origin in U-space. This corresponds to a first-
order Taylor expansion at the design point (for differentiable g̃(U)). The probability
integrals are now reduced to integrating the probability mass on either side of this
hyperplane in U-space, and due to symmetry in the transformed space, this is simply

R = 1 − Pf ≈ Φ(βr ) (7.5)

Hence, identifying the design point in U-space and thereby estimating the reliability
index βr , the reliability and consequently the probability of failure can easily be
approximated, using the FORM approach. This method in two dimensions is illus-
trated in Fig. 7.1. It can easily be seen that due to rotational symmetry, the tangent can
be moved along the circle without loss of probability, and hence the two-dimensional
problem

Pf =
∫∫

Failure region

φu1,u2(u1, u2)du1du2 (7.6)

Fig. 7.1 Illustration of the FORM approximation in U-space
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of finding the probability of being in the FORM failure region in Fig. 7.1 reduces to
the one-dimensional problem of finding the probability of U being in the equivalent
failure region as solved by Eq. 7.5. It is emphasized that the reliability corresponds
to the probability of being in the safe region and this is different from the probability
of being within the circle with radius βr . In fact, the reliability will always be greater
than the probability of being within the circle defined by βr .

Note that the approximation in Eq. 7.5 due to the FORM approximation gives an
upper boundary for the true failure probability, Pf , if the true transformed failure
region is a convex set; in this case, the true failure probability will be overestimated.
On the other hand, if the complement of the true failure region is convex, then the
FORM approximation gives a lower boundary for the true failure probability.

The inverted procedure, referred to as the Inverse First Order Reliability Method
(IFORM), can be used for estimating exceedance regions corresponding to a given
failure probability, e.g., the regions corresponding to annual probability of failure of
10−2 or 10−4.

The SORM is simply an extension of FORM, where the failure boundary is
approximated with the second-order Taylor expansion in the design point to yield a
better approximation of the true failure boundary in the transformed space.

7.2.2 Long-Term Response Analysis

In principle, a long-term response analysis requires the full long-term statistics of
the relevant random environmental variables, i.e. a continuous long-term description
of the environmental loads. In such a full long-term analysis of structural stress, the
only approximation is the FORM linearization of the failure boundary. However, nor-
mally the long-term behavior of environmental parameters is modeled as a series of
piecewise stationary short-term condition processes [22, 29]. Probabilistic response
calculations can then be performed for each short-term condition and weighted by the
probability distribution of the different conditions in order to establish the long-term
response distribution. A further simplification is also often applied, where instead
of performing response analysis for all short-term conditions, short-term response
analyses are performed for only selected extreme environmental conditions, where
the selection has been based on the relevant probability distributions. The highest
response level among these extreme environmental conditions can then be applied
in the design. In this way, design contours can be used to describe the extreme joint
behavior of environmental and structural response variables [19].

7.3 Potential Impact of Climate Change on Ship Structural
Loads and Responses

Having identified a trend in the significant wave height data, it would be of great
interest to see how such results could be related to the calculation of future environ-
mental loads and responses on ships and other floating structures. For the purpose
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of this study, the linear trend estimated from the monthly maximum data without
any transformation will be assumed to continue for the next century, and it will be
investigated how to relate such a trend to the calculations of ship structural loads
and responses. In addition, the trend obtained from the extended model with regres-
sion on the B1 emission scenario will be used. This choice of trends to assume is
somewhat arbitrary, but the same approach could easily be used on any of the other
projected trends as well. The impact of the assumed trend will be illustrated by an
example, where various wave induced loads and responses will be calculated for a
particular ship taking into account the projected trend in significant wave height over
100 years. The calculated loads will then be compared to results without any trend.
It is emphasized that potential influence of such trends on structural design, as was
discussed in [9] is out of scope of this present study. The purpose is to demonstrate
a case indicating how large the effect of climate change might be and not to give
actual design values.

The trend estimated in Chap. 3 corresponds to an addition, 100 years ahead in
time, with mean 1.6 m and standard deviation 0.33 or 0.39 m for model alternatives
2 and 5 respectively [31]. It is observed that the estimated trend contribution is
symmetric, and the mean and standard deviation of the climatic trend contribution
will be denoted as μct and σct , respectively. For the purpose of illustrating how this
would influence ship load calculations, the results with the highest uncertainty will
be used, i.e., an additive trend, T ∼ (μct , σ

2
ct ) will be assumed, with

μct = 1.6 m σct = 0.39 m (7.7)

Other future projections were obtained when including a CO2-regression term in
the model, as described in Chap. 5 [32]. Hence, the effect on ship structural response
will also be investigated assuming the B1 emission scenario for the extended model.
Toward the year 2100, this trend was estimated to have a mean value of 1.9 m with a
standard deviation of 0.65 m. Updated response calculations will also be presented
for such a trend, i.e., taking into account a climatic trend contribution corresponding
to T ∼ (μB1, σ

2
B1) with

μB1 = 1.9 m σB1 = 0.65 m (7.8)

These trends were extracted from the corrected ERA-40 data (C-ERA-40) over
an area in the North Atlantic. Due to lack of information about wave period in the
C-ERA-40 data, the joint distribution of significant wave height and wave period
used for load calculations are based on the ERAInterim data set [11]1 for a particular
location. However, that location is contained within the area considered by the C-
ERA-40 data and is assumed representative for the whole area. Furthermore, main
features of the C-ERA-40 and ERAInterim data sets are similar, and it is assumed
that any bias would be similar in the two data sets. The long-term trends obtained in

1 Website: http://www.ecmwf.int/research/era/do/get/era-interim

http://dx.doi.org/10.1007/978-3-642-30253-4_3
http://dx.doi.org/10.1007/978-3-642-30253-4_5
http://www.ecmwf.int/research/era/do/get/era-interim
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the present study are incorporated in the established joint distribution of significant
wave height and wave period based on the ERAInterim data.

It is noted that the climate trend is estimated from monthly maxima although it
is applied to the whole body of the Hs distribution. Thus, the revised Hs distribu-
tion is more representative for high values of Hs . When the impact of the trend is
explored, extreme loads are considered and this makes these assumptions less trou-
blesome; this simplification is considered acceptable for extremes but neither for
fatigue calculations nor specification of operational criteria when lower sea states
are of importance.

7.3.1 Joint Model for Significant Wave Height and Wave Period

Information of the distribution of significant wave height alone is normally not suf-
ficient for load and response calculations of floating structures [20]. As a minimum,
the joint distribution of significant wave height and wave period is needed. It has pre-
viously been proposed to model the marginal distribution of significant wave height,
Hs , according to a 3-parameter Weibull distribution and the conditional distribution
of the wave period, T , conditional on the significant wave height, as a log-normal
distribution [7, 23]. Hence, the joint distribution of significant wave height and
wave period will be the product of a Weibull and a log-normal distribution (Eq. 7.9)
according to the CMA (for several met-ocean parameters see [5, 6]). Note that the
3-parameter Weibull distribution was first applied to describe significant wave height
by [25].

fHs ,T (h, t) = fHs (h) fT |Hs (t |h) (7.9)

Furthermore, it is assumed that including the trend in the significant wave height
corresponds to a modified marginal distribution for the significant wave height, but
that the distribution of wave period, conditional on the significant wave height,
remains unchanged. It is noted that even though the conditional distribution is
assumed unchanged, the marginal distribution of the wave period will obviously
change, so this assumption does not seem too unreasonable.

The 3-parameter Weibull distribution is parametrized by the parameters γ (loca-
tion), α (scale) and β (shape), as shown in Eq. 7.10. The expressions for the mean
and variance of the 3-parameter Weibull distribution is given in Eqs. 7.11 and 7.12
respectively (see e.g., [10]).

f (x) = β

α

(
x − γ

α

)β−1

e
−

(
x−γ
α

)β
, x≥y

(7.10)

E[x] = γ + α�(1 + 1/β) (7.11)

V ar [x] = α2 (�(1 + 2/β)− �(1 + 1/β)) (7.12)
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It is assumed that the distribution of the significant wave height after the trend has
been added can be approximated by a 3-parameter Weibull distribution with the same
shape parameter. That is, the trend can be modeled as a modification of the location
and scale parameters of the 3-parameter Weibull distribution. A quick simulation
study confirms that this is a reasonable approximation and the modified Weibull
distribution turns out to be a remarkable good approximation for the distribution of
the sum of the fitted distribution and the accumulated trend distribution. Figure 7.2
shows the fitted Weibull distribution together with the correct distribution of the sum
of the fitted distribution and the long-term trend as well as the modified Weibull
distribution, assuming the accumulated trend from the basic model. As can be seen
from the figure, the modified Weibull distribution is a reasonable approximation,
and the effect of adding the trend can be seen. With these assumptions, and requiring
that the modified distribution should have the correct expectation and variance, the
modified parameters due to the long-term trend become

γ → γ ′ = γ + μct + �

(
1

β
+ 1

)
⎡

⎢
⎢
⎣α −

√
√
√
√
√α2 + σ 2

ct

�
(

2
β

+ 1
)

− �
(

1
β

+ 1
)2

⎤

⎥
⎥
⎦

(7.13)

α → α′ =
√
√
√
√
√α2 + σ 2

ct

�
(

2
β

+ 1
)

− �
(

1
β

+ 1
)2 (7.14)

The 3-parameter Weibull distribution was fitted to significant wave height data for
one location from the ERA-40Interim data and the estimated parameters together with
the modified parameters as a result of adding the accumulated projected long-term
trend (over 100 years) are given in Table 7.1. The corresponding mean and standard
deviation of the distributions are also given.

Fig. 7.2 Fitted and modified
Weibull density distributions
for significant wave height
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Table 7.1 Fitted and modified parameters for the 3-parameter Weibull distribution for significant
wave height

α β γ E[h] sd[h]

Fitted distribution 2.776 1.471 0.8888 3.401 1.737
Modified distribution (Basic model trend) 2.846 1.471 2.393 4.969 1.781
Modified distribution (Regression model / scenario B1) 2.965 1.471 2.613 5.296 1.855

It is observed that the mean of the modified distribution is changed quite drasti-
cally, whereas there is only a slight increase in the standard deviation as a result of
adding the climatic trend with uncertainties.

The conditional distribution of wave period is modeled as a log-normal distribu-
tion, with density function given by Eq. 7.15 and where the parameters are modeled
as functions of significant wave height, as shown in Eqs. 7.16–7.17. By assumption,
this conditional distribution is not expected to change due to climatic trends, and
the parameters ai and bi for i = 1, 2, 3 are estimated from the data, as shown in
Table 7.2. The resulting joint densities of the original and the modified distributions
for significant wave height, Hs , and zero-up-crossing period, Tz are illustrated in the
contour plots in Fig. 7.3 (on the same scale). Since the conditional distribution of
wave period is assumed to remain unaffected by the climatic trend, the estimated
parameters will not be modified due to the climatic trend.

fT |Hs (t |h) = 1

tσt (h)
√

2π
e
− (ln t−μt (h))

2

2σt (h)2 (7.15)

μt (h) = E[ln Tz |Hs = h] = a1 + a2ha3 (7.16)

σt (h) = sd[ln Tz |Hs = h] = b1 + b2eb3h (7.17)

7.3.2 Environmental Contours

When specifying design criteria as well as carrying out load and response assessment
for marine structures, a full long-term load and response analysis can be applied, or
alternatively, the environmental contour concept outlined in [16, 34] can be used in
conjunction with the Inverse First Order Reliability Method (IFORM). One advantage
of establishing environmental contours independent of any structural performance
function is that these can then be established without reference to any specific design.

Table 7.2 Fitted parameters
pertaining to the conditional
log-normal distribution for
wave period

i = 1 i = 2 i = 3

ai 0.1000 1.489 0.1901
bi 0.0400 0.1748 −0.2243
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Fig. 7.3 Contour plots of the
joint distribution of significant
wave height and zero-up-
crossing period; Fitted distrib-
utions without trend (top) and
modified distributions with
the effect of a climatic trend
over 100 years estimated from
the basic model (middle) and
the regression model with the
B1 scenario (bottom)

The contour lines correspond to a set of design sea states; they apply to all designs
and may be used to explore different design alternatives within the resulting design
space. Hence, time-consuming response analyses are only required for a limited
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set of design sea states for each design proposal, as also pointed out in [2, 22]. An
alternative approach combining IFORM with Monte Carlo importance sampling was
recently proposed in [29].

The use of environmental contours in conjunction with IFORM is a valid, sim-
plified, and rational method of estimating extreme conditions and is recommended
by DNV [13]. The idea is to define contours in the environmental parameter space
(usually Hs , Tz) within which extreme responses with a given return period should
lie. It requires determination of the joint environmental model of sea state variables
of interest. It should be noticed that the contours are found by relating sea state vari-
ables to the standard normal variables, an assumption that may affect their accuracy
(the transformation by itself is an exact transformation that conserves probability,
but tangent lines in the transformed space do not necessarily correspond to straight
lines in the original space for such nonlinear transformations). Furthermore, adding
the trend introduces a dependency between the sea states at subsequent times, but
the effect this might have on the return values have been ignored in this study. Pre-
sumably, since the variability of the estimated trend is small in comparison to the
variability of sea states, this effect is not very great, and it can be shown, using
Jensen’s inequality [18], that the resulting design criteria will be conservative.

In short, the environmental contour for an extreme event with return period r , i.e.,
an event with a probability of pr of occurrence and corresponding reliability index
βr defined as in Eq. 7.18, is established by varying the standard normal variables U1
and U2 along the circle defined by Eq. 7.19. Φ(·) is the standard normal distribution
function.

βr = Φ−1(1 − pr ) (7.18)

√
u2

1 + u2
2 = βr (7.19)

The environmental contours are then found by relating significant wave height (Hs)
and the mean wave period (Tz) to the standard normal variables U1 and U2 according
to the Rosenblatt transformation scheme [28] given in Eq. 7.20, where the F·s refer
to the distribution functions of the estimated Weibull and log-normal distributions
for significant wave height and mean wave period conditioned on significant wave
height. The estimation of design contours for ocean engineering applications is also
discussed in for example [19].

hs = F−1
Hs
(Φ(u1)) tz = F−1

Tz |Hs
(Φ(u2)) (7.20)

Figure 7.4 shows the environmental contour lines of Hs and Tz for the North
Atlantic location considered in the present study. The 1, 10, and 25-year return
period levels calculated by IFORM are shown in the figures for the fit to the original
ERAInterim data and for the corrected fits where the two different long-term trends
are included. The 3-parameter Weibull distribution for Hs given in Table 7.1 and the
conditional log-normal distribution for the Tz have been used in the analysis. As
expected, the modification of the distribution for significant wave height moves the
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Fig. 7.4 Environmental contour lines for the ERAInterim data derived from the original data (top)
and modified with the climatic trend over 100 years according to the basic model (middle) and the
extended model with the B1 scenario (bottom)

environmental contours to the right. Furthermore, the long-term trend correction has
narrowed the contours and increased the maximum 1, 10 and 25-year return Hs and
related Tz , see Table 7.3.
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Table 7.3 The 1, 10, and 25-year maximum Hs and Tz calculated from the environmental contour
(with and without the effects of long-term trends over 100 years)

ERAInterim data With trend; basic model With trend; B1 scenario

Wave parameter 1-year 10-year 25-year 1-year 10-year 25-year 1-year 10-year 25-year
Hs (m) 11.60 13.80 14.62 13.37 15.63 16.47 14.05 16.40 17.28
Tz |Hs (s) 11.86 12.84 13.20 12.66 13.62 13.97 12.95 13.94 14.29

In principle, responses should be calculated for all points along the environmental
contours in order to identify the maximum response. However, for the purpose of this
study, the (Hs, Tz)-pairs corresponding to the maximum Hs are tacitly assumed to
correspond to the extreme response, and the corresponding extreme environmental
conditions are the ones shown in Table 7.3. These correspond to the highest values
along the vertical axis along the contours.

An alternative approach to establishing environmental contours is proposed in
[17], that is somewhat more flexible in how long-term climatic trends can be
accounted for in the joint environmental model. However, the resulting environmen-
tal contours are very similar to the ones arrived at by the traditional, IFORM-inspired
approach adopted in this study.

7.3.3 Illustrative Example: Load Assessment for an Oil Tanker

As an illustrative example, load characteristics will be calculated for an oil tanker of
250 m length and 40 m width with the same characteristics as the one reported in [8].
In this way, the potential impact of the climatic trend on ship structural loads will be
investigated.

The 25-year stress amplitudes and response periods for the considered oil tanker
have been calculated in the 25-year sea states (Hs , Tz) given in Table 7.3. In order to
calculate the responses, a linear transfer function, the same transfer function that was
used in the calculations reported in [8], has been assumed. Furthermore, piecewise
stationary sea states with 3-h durations have been assumed, and conditioned on the
stationary sea states, that is (Hs , Tz), the short-term distributions of sea elevation
have been modeled by the Rayleigh distributions. Consequently, a Rayleigh distrib-
uted stress process in a short-term sea state has been assumed in the calculations (see
[8, 16]). The IFORM method has been used to find the response levels corresponding
to the response exceedance probabilities, as outlined in [16]. The Rayleigh distrib-
ution is a one-parameter distribution and this is completely specified by calculating
the standard deviation of the responses. Hence, the expected extreme responses are
the expectations of the corresponding Rayleigh distributions. The response periods,
Tr are calculated from the transfer function and the zero-upcrossing periods, Tz .

Table 7.4 includes the results of the analysis for the original joint (Hs , Tz) fit and
the modified ones, taking the two alternative 100-year long-term trend estimates into
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Table 7.4 25-year extreme load characteristics

Stress amplitude (MPa) Response period (s)

Base case 1.0 1.0
Modified fit—Basic model 1.07 1.02
Modified fit—B1 scenario 1.10 1.02

account. The response characteristics obtained using the original (Hs , Tz) fit to the
ERAInterim data are referred to herein as a Base Case and only relative increases in
comparison to the Base Case is given in Table 7.4.

As seen in Table 7.4 incorporation of the long-term trend in the Hs distribution
has increased the 25-year stress amplitude and the zero-crossing response period.
The 25-year stress amplitude has increased by 7 % if the accumulated trend from the
basic model is assumed and by 10 % if the projected trend corresponding to scenario
B1 is assumed, both of which is significant. The zero-crossing response periods
have increased by 2 %, which might be less serious, due to the estimated long-term
trend over 100 years. It is noted that similar calculations have not been done for the
A2 scenario, but the effect would presumably be even larger for such a worst-case
trend. Furthermore, the potential effect of the modified environmental contours on
the structural loads is highly ship-dependent and even though the loads were found
to increase significantly for this particular ship, it does not necessarily generalize to
all types and sizes of ships. In particular, the effect of the response period is highly
structure-dependent.

7.4 Summary and Conclusions

This chapter has described how the estimated long-term trends for significant wave
height from the Bayesian hierarchical space-time model outlined in previous chapters
can be related to load and response calculations of marine structures. Furthermore, the
effect of the estimated trend, extrapolated over 100 years, on the extreme responses
for a selected oil tanker was assessed. The results from this crude exercise indicate
that the extreme stresses increase quite notably due to climatic trends in the wave
climate. The estimated increase of the 25-year extreme stress amplitudes was about 7
and 10 % for two alternative future projections, respectively, and with a 2 % increase
in the 25-year extreme response period. Notwithstanding the uncertainties and the
assumptions made in this exercise, the results suggest that the effect of climatic trends
in the wave climate are not negligible and might have a significant impact on load and
response calculations of floating structures. Thus, even though further investigations
are needed before firm conclusions can be arrived at, and there are still potential for
improvements of the presented model, it is recommended that the effect of climatic
change on ship structural responses should be carefully considered in design and
reliability calculations of marine structures in the future.
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Chapter 8
Case Study: Modeling the Effect
of Climate Change on the World’s Oceans

This chapter analyses the trends and the future projections of significant wave height
in several ocean areas at different parts of the world. It uses the same stochastic
Bayesian hierarchical space-time model with regression on atmospheric levels of
CO2 in order to estimate the expected long-term trends and make future projections
toward the year 2100. The model was initially developed for an area in the North
Atlantic Ocean, and has been found to perform reasonably well there, and it will
now be investigated how the model performs for other ocean areas and what the
effects of climate change may be in these areas according to the model. Eleven
new ocean areas have been analyzed with the model, and this chapter presents the
results pertaining to the estimated long-term trends and future projections of monthly
maximum significant wave height for each of the 12 ocean areas. This chapter is based
on results presented in [17].

8.1 Introduction

All the results presented in the previous chapters of this book pertain to a specific
area in the North Atlantic Ocean, but in this chapter, it will be investigated how the
model performs on 11 alternative areas of the world’s oceans. Hence, estimated long-
term trends and future projections toward the year 2100, obtained from the Bayesian
hierarchical space-time model, will be presented for the following ocean areas:

1. North Atlantic Ocean
2. North East Pacific
3. Gulf of Mexico
4. South Atlantic Ocean
5. North West Pacific
6. Indian Ocean
7. South Pacific Ocean
8. Mid Atlantic Ocean

E. Vanem, Bayesian Hierarchical Space-Time Models with 185
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Table 8.1 The different ocean areas selected for study

# Area description Longitudes Latitudes Grid size

1 North Atlantic Ocean 324–348◦ E 51–63◦ N 17 × 9
2 North East Pacific 204–219◦ E 36–51◦ N 11 × 11

(West coast of USA/Canada)
3 Gulf of Mexico 265.5–274.5◦ E 22.5–27◦ N 7 × 4
4 South Atlantic Ocean 336–351◦ E 27–12◦ S 11 × 11

(West Africa)
5 North West Pacific 147–162◦ E 27–42◦ N 11 × 11

(Japan)
6 Indian Ocean 60–75◦ E 0–15◦ N 11 × 11
7 South Pacific Ocean 264–278◦ E 45–30◦ S 11 × 11

(Chile)
8 Mid Atlantic Ocean 315–330◦ E 0–15◦ N 11 × 11
9 Tasmanian Sea 157.5–172.4◦ E 42–27◦ S 11 × 11

(Eastern Australia)
10 Mediterranean Sea 16.5–21◦E 33–36◦ N 4 × 3
11 Equatorial Pacific 225–240◦ E 7.5◦ S–7.5◦ N 11 × 11
12 Western Australia 93–108◦ E 39–24◦ S 11 × 11

9. Tasmanian Sea
10. Mediterranean Sea
11. Equatorial Pacific
12. Western Australia

It is believed that this will give an indication of how the climate change will
influence the wave climate of the world’s oceans, even though all future projections
are inevitably uncertain.

The same global dataset for significant wave height and atmospheric levels of
CO2 as in previous chapters has been used, and also the same priors, loss functions,
model assumptions, and emission scenarios have been employed. It is acknowledged
that it might be questionable whether the same priors, for instance, should be used
for all ocean areas but it is argued that the amount of data is large enough for this
to be of minor importance. The spatial resolution of the data is still 1.5◦ × 1.5◦ and
monthly maxima have been used for each spatial location. The various ocean areas
with corresponding coordinates are summarized in Table 8.1. For most of the areas,
a grid of 11 × 11 = 121 points have been selected, but for the Gulf of Mexico and
the Mediterranean Sea, such large areas were simply not available and a smaller grid
has been used for these areas. It should be observed that ocean area # 1 is identical
to the one investigated in previous chapters of this book. The selected ocean areas
are indicated on a map in Fig. 8.1.
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Fig. 8.1 The 12 ocean areas selected for this case study

8.2 Simulation Results for the Various Ocean Areas

The model was simulated using the Gibbs sampler with Metropolis-Hastings steps,
as previously [14–16], but the burn-in period was extended to 100,000 samples and
the batch size to 20, obtaining 1,000 samples of the posterior parameter vector.
Six Metropolis-Hastings steps were performed at each iteration, giving sufficient
acceptance rates for all ocean areas. For most areas, the acceptance rate was well
above 80 % and the lowest acceptance rate was 35 % for the North Atlantic area.

Trace plots of the posterior marginal distributions suggest that convergence
occurred satisfactorily. The main results pertaining to the long-term trends and future
projections obtained for the various ocean areas are presented in separate sections
below. The posterior mean and standard deviation of the various model parameters
are presented in [17] and are not reproduced herein, but it is noted that for the North
Atlantic, it is reassuring to observe that the posteriors agree well with the posteriors
obtained in [16].

8.2.1 North Atlantic Ocean

The first ocean area that is investigated is the area in the North Atlantic. This is
exactly the same area that has been investigated previously, with various models
[14–16]. However, a new set of simulations have been run, with slightly different
MCMC settings. Nevertheless, the results from these new simulations are directly
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Fig. 8.2 Spatial field and seasonal contribution for the North Atlantic

Table 8.2 Estimated trends and future projections—North Atlantic

Expectation 90 % Credible interval

Trend (1958–2001) 59 cm 29–87 cm
A2 projections (2001–2100) 5.5 m 2.9–8.2 m
B1 projections (2001–2100) 1.9 m 0.87–3.0 m

comparable to the ones presented in Chap. 5 [16] with a semiannual component, as the
same model has been used for the same data, and is included herein for comparison.

The spatial field,μ(x), varying between 5.8 and 7.0 m and the seasonal component,
with contributions oscillating between −2.9 and 2.4 m, are illustrated in Fig. 8.2. The
long-term trend does not necessarily start at 0, and for this particular area, the long-
term trend starts at 0.53 m. Hence, this contribution could be included in the mean
spatial field, so that the adjusted μ(x) varies between 6.3 and 7.5 m. However, the
long-term trend is assumed invariant in space, so the pattern of the adjusted field
will be exactly as in Fig. 8.2, only shifted along the z-axis. The short-term dynamic
component θ(x, t) varies between −1.1 and 1.8 m. Overall, these model components
seem to perform reasonably well for the North Atlantic Ocean area, and the results are
in good agreement to the results presented in [16]. This is of course a requirement, but
it also indicates that the Markov chain did converge. The new simulations presented
herein have twice as long burn-in period, and it is reassuring to see that this does not
influence the results, i.e., it indicates that the samples are from the same posterior
distributions; the stationary distributions.

The estimated long-term trends and future projections pertaining to the area in
the North Atlantic are illustrated in Fig. 8.3, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.2. The trends are adjusted so that they start at 0 m and the future projections
are adjusted so that they have a trend of 0 m in 2001. Hence, the future projections
are relative to the 2001 situation. This will also be done for all subsequent areas.

It is seen that for this ocean area, the model estimates a significant increasing trend
and future increase of significant wave height. Furthermore, the expected trends and

http://dx.doi.org/10.1007/978-3-642-30253-4_5
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Fig. 8.3 Estimated trend and future projections for the North Atlantic

future projections agree well with the corresponding estimates presented in [16], as
indeed it should.

8.2.2 North East Pacific: Western USA/Canada

The spatial field, μ(x), varying between 1.5 and 3.6 m and the seasonal component,
with contributions oscillating between −2.9 and 2.3 m, are illustrated in Fig. 8.4.
Adjusted to include the starting value of the trend, the mean adjusted spatial field
varies between 4.6 and 6.7 m. The short-term dynamic component θ(x, t) varies
between ±1.6 m. Overall, these model components seem to perform reasonably well
for the North East Pacific Ocean area.

The estimated long-term trends and future projections pertaining to the area in
the North East Pacific are illustrated in Fig. 8.5, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.3.

It is seen that for this ocean area as well, the model estimates a significant increas-
ing trend and future increase of significant wave height.
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Fig. 8.4 Spatial field and seasonal contribution for the North East Pacific

Fig. 8.5 Estimated trend and future projections for the North East Pacific

8.2.3 Gulf of Mexico

The spatial field, μ(x), varying between 3.2 and 3.6 m and the seasonal component,
with contributions oscillating between −1.8 and 0.86 m, are illustrated in Fig. 8.6.
The adjusted spatial field ranges between 2.5 and 2.9 m. The short-term dynamic
component θ(x, t) varies between ±0.6 m. Overall, these model components seem
to perform reasonably well also for the Gulf of Mexico, even though for example
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Table 8.3 Estimated trends and future projections—North East Pacific

Expectation 90 % Credible interval

Trend (1958–2001) 53 cm 3.3–97 cm
A2 projections (2001–2100) 4.7 m 2.2–7.0 m
B1 projections (2001–2100) 1.7 m 0.58–2.6 m
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Fig. 8.6 Spatial field and seasonal contribution for the Gulf of Mexico

Table 8.4 Estimated trends and future projections—Gulf of Mexico

Expectation 90 % Credible interval

Trend (1958–2001) 5.6 cm −33 to 53 cm
A2 projections (2001–2100) 62 cm −1.0 to 2.2 m
B1 projections (2001–2100) 20 cm −54 to 95 cm

the dynamic part θ(x, t) has become less important than for the North East Pacific
Ocean.

The estimated long-term trends and future projections pertaining to the area in
the Gulf of Mexico are illustrated in Fig. 8.7, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.4.

It is seen that the expected trend is slightly increasing, but the 90 % credible
interval of the expected trend and future projections is rather wide and embraces
both positive and negative trends. Hence, no significant trend is identified for this
ocean area.

8.2.4 South Atlantic Ocean: West Africa

The spatial field, μ(x), varying between 2.0 and 3.2 m and the seasonal component,
with contributions oscillating between −0.47 and 0.49 m, are illustrated in Fig. 8.8.
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Fig. 8.7 Estimated trend and future projections for the Gulf of Mexico
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Fig. 8.8 Spatial field and seasonal contribution for the South Atlantic Ocean west of Africa

Adjusted for the starting value of the trend, the spatial field would range between
2.5 and 3.7 m. The short-term dynamic component θ(x, t) varies between −0.63 and
0.75 m. Overall, these model components seem to perform reasonably well also for
the area off West Africa. In particular, it is interesting to see that the model picks
up that now the boreal summer season is the roughest season, which makes sense
since this area lies on the Southern Hemisphere. For the three previous areas, all
of which lie on the Northern Hemisphere, the seasonal contributions were highest
during boreal winter.
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Fig. 8.9 Estimated trend and future projections for the area off West Africa

Table 8.5 Estimated trends and future projections—West Africa

Expectation 90 % Credible interval

Trend (1958–2001) 24 cm −1.2 to 43 cm
A2 projections (2001–2100) 2.2 m 1.1 to 3.4 m
B1 projections (2001–2100) 78 cm 29 to 130 cm

The estimated long-term trends and future projections pertaining to the area in
the South Atlantic are illustrated in Fig. 8.9, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.5.

It is seen that the expected trend is increasing, and most of the 90 % credible
interval of the trend is also positive. The expected future projections as well as the
complete 90 % credible interval are positive. Hence, a significant increasing trend in
monthly maximum significant wave height is predicted for this ocean area toward
2100.

8.2.5 North West Pacific Ocean: Japan

The spatial field, μ(x), varying between 4.0 and 7.0 m and the seasonal component,
with contributions oscillating between −2.2 and 2.0 m, are illustrated in Fig. 8.10.
The adjusted spatial field varies spatially between 3.8 and 6.8 m. The short-term
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Fig. 8.10 Spatial field and seasonal contribution for the North West Pacific Ocean East of Japan

Fig. 8.11 Estimated trend and future projections for the area off Japan

dynamic component θ(x, t) varies between −1.3 and 1.6 m. Overall, these model
components seem to perform reasonably well also for the area off the Japanese coast.

The estimated long-term trends and future projections pertaining to the area in
the North West Pacific are illustrated in Fig. 8.11, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.6.
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Table 8.6 Estimated trends and future projections—North West Pacific

Expectation 90 % Credible interval

Trend (1958–2001) 62 cm −27 to 150 cm
A2 projections (2001–2100) 5.9 m 3.6 to 8.2 m
B1 projections (2001–2100) 2.0 m 0.83 to 3.2 m
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Fig. 8.12 Spatial field and seasonal contribution for the Indian Ocean

Table 8.7 Estimated trends and future projections—Indian Ocean

Expectation 90 % Credible interval

Trend (1958–2001) 19 cm 6.2–31 cm
A2 projections (2001–2100) 1.8 m 0.91–2.7 m
B1 projections (2001–2100) 62 cm 27–99 cm

The expected trend is increasing, and the whole 90 % credible interval of the future
projections is positive. Hence, a significant increasing trend in monthly maximum
significant wave height is identified for this ocean area.

8.2.6 Indian Ocean

The spatial field, μ(x), varying between 2.0 and 3.8 m and the seasonal compo-
nent, with contributions oscillating from −0.74 to 0.89 m, are illustrated in Fig. 8.12.
The adjusted μ(x) field is shifted to vary between 1.9 and 3.7 m. The short-term
dynamic component θ(x, t) varies between −0.58 and 0.71 m. Overall, these model
components seem to perform reasonably well also for this area.

The estimated long-term trends and future projections pertaining to the area in
the Indian Ocean are illustrated in Fig. 8.13, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.7.
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Fig. 8.13 Estimated trend and future projections for the area in the Indian Ocean

The expected trend is increasing, and also the whole 90 % credible interval of the
expected trend and future projections toward 2100 is positive. Hence, a significant
increasing trend in monthly maximum significant wave height is identified for this
ocean area.

8.2.7 South Pacific Ocean: Chile

The spatial field, μ(x), varying between 4.5 and 7.3 m and the seasonal component,
with contributions oscillating from −1.0 to 1.1 m, are illustrated in Fig. 8.14. The
adjusted mean spatial field varies between 4.0 and 6.8 m. The short-term dynamic
component θ(x, t) varies between −0.92 and 1.7 m. Overall, these model compo-
nents seem to perform reasonably well also for this area.

The estimated long-term trends and future projections pertaining to the area in the
South Pacific Ocean are illustrated in Fig. 8.15, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.8.

The expected trend is increasing, and the whole 90 % credible interval of the
expected trend and future projections toward 2100 is positive. Hence, a significant
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Fig. 8.14 Spatial field and seasonal contribution for the South Pacific Ocean

Fig. 8.15 Estimated trend and future projections for the area in the South Pacific Ocean

increasing trend in monthly maximum significant wave height is predicted also for
this ocean area.
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Table 8.8 Estimated trends and future projections—South Pacific Ocean

Expectation 90 % Credible interval

Trend (1958–2001) 25 cm 2.5–48 cm
A2 projections (2001–2100) 2.4 m 0.80–4.3 m
B1 projections (2001–2100) 84 cm 19–150 cm

2.3

2.35

2.4

2.5
2.45

2.55

2.7

2.65

2.75

2.8

2.85

2.6

2.25

Fig. 8.16 Spatial field and seasonal contribution for the mid Atlantic Ocean

Table 8.9 Estimated trends and future projections—mid Atlantic Ocean

Expectation 90 % Credible interval

Trend (1958–2001) 24 cm 16–33 cm
A2 projections (2001–2100) 2.3 m 1.6–3.0 m
B1 projections (2001–2100) 80 cm 52–110 cm

8.2.8 Mid Atlantic Ocean

The spatial field,μ(x), varying between 2.2 and 2.9 m (adjusted field varying between
2.1 and 2.8 m) and the seasonal component, with contributions oscillating between
−0.49 and 0.58 m, are illustrated in Fig. 8.16. The short-term dynamic component
θ(x, t) varies between −0.54 and 1.1 m. Overall, these model components seem to
perform reasonably well also for this area.

The estimated long-term trends and future projections pertaining to the area in the
mid Atlantic Ocean are illustrated in Fig. 8.17, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.9.

The expected trend is increasing, and the whole 90 % credible interval of the
expected trend and future projections toward 2100 is positive. Hence, a significant
increasing trend in monthly maximum significant wave height is predicted also for
this ocean area.
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Fig. 8.17 Estimated trend and future projections for the area in the mid Atlantic Ocean
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Fig. 8.18 Spatial field and seasonal contribution for the Tasmanian Sea

8.2.9 Tasmanian Sea: Eastern Australia

The spatial field, μ(x), varying between 4.2 and 6.7 m (adjusted to vary between
3.5 and 6.0 m) and the seasonal component, with contributions oscillating between
−0.84 and 0.71 m, are illustrated in Fig. 8.18. The short-term dynamic component
θ(x, t) varies between −0.79 and 1.1 m. Overall, these model components seem to
perform reasonably well also for this area.
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Fig. 8.19 Estimated trend and future projections for the area in the Tasmanian Sea

Table 8.10 Estimated trends and future projections—Tasmanian Sea

Expectation 90 % Credible interval

Trend (1958–2001) 38 cm 12–69 cm
A2 projections (2001–2100) 3.7 m 2.0–5.5 m
B1 projections (2001–2100) 1.3 m 0.58–2.0 m

The estimated long-term trends and future projections pertaining to the area in
the Tasmanian Sea are illustrated in Fig. 8.19, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.10.

The expected trend is increasing, and the whole 90 % credible interval of the
expected trend and future projections toward 2100 is positive. Hence, a significant
increasing trend in monthly maximum significant wave height is predicted also for
this ocean area.
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Fig. 8.20 Spatial field and seasonal contribution for the Mediterranean Sea

Fig. 8.21 Estimated trend and future projections for the area in the Mediterranean Sea

8.2.10 Mediterranean Sea

The spatial field, μ(x), varying between 1.4 and 1.7 m and the seasonal component,
with contributions oscillating between −0.83 and 0.58 m, are illustrated in Fig. 8.20.
The adjusted spatial field varies between 3.0 and 3.3 m. The short-term dynamic
component θ(x, t) varies between −1.4 and 1.5 m. Overall, these model components
seem to perform reasonably well also for this area.
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Table 8.11 Trends and future projections—Mediterranean Sea

Expectation 90 % Credible interval

Trend (1958–2001) 1.3 cm −78 to 51 cm
A2 projections (2001–2100) −7.7 cm −2.0 to 1.7 m
B1 projections (2001–2100) 0 −97 to 87 cm
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Fig. 8.22 Spatial field and seasonal contribution for the Equatorial Pacific

The estimated long-term trends and future projections pertaining to the area in
the Mediterranean Sea are illustrated in Fig. 8.21, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.11.

For this particular area, the model has difficulty in detecting a significant trend.
The expected future projections are slightly negative but are not significant for either
scenario. Hence, for this particular ocean area no trends are identified.

8.2.11 Equatorial Pacific

The spatial field, μ(x), varying between 2.5 and 3.0 m (adjusted to 2.4 and 2.9 m)
and the seasonal component, with expected contributions oscillating between −7.9
and 7.8 cm, are illustrated in Fig. 8.22. The short-term dynamic component θ(x, t)
varies between -0.59 and 0.93 m. Overall, these model components seem to perform
reasonably well also for this area. In particular, it is interesting to note that the
seasonal variation is almost vanishing for this area; the contribution from the seasonal
component is negligible. As this area spans over Equator, this might be as expected,
and it is reassuring that the model is able to pick this up.

The estimated long-term trends and future projections pertaining to the area in
the Equatorial Pacific are illustrated in Fig. 8.23, and the expected trends and future
projections along with 90 % credible intervals around the mean are presented in
Table 8.12.
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Fig. 8.23 Estimated trend for the area in the Equatorial Pacific

Table 8.12 Estimated trends and future projections—Equatorial Pacific

Expectation 90 % Credible interval

Trend (1958–2001) 20 cm 14–26 cm
A2 projections (2001–2100) 1.9 m 1.1–2.6 m
B1 projections (2001–2100) 65 cm 37–93 cm

For this area as well, the model estimates a significant increasing trend and future
projections, with both expectations and 90 % credible intervals of the mean being
strictly positive.

8.2.12 Western Australia

The spatial field, μ(x), varying between 4.4 and 6.9 m and the seasonal component,
with expected contributions oscillating between −1.1 and 1.3 m, are illustrated in
Fig. 8.24. The adjusted spatial field varies between 4.0 and 6.5 m. The short-term
dynamic component θ(x, t) varies between −0.78 and 0.98 m. Overall, these model
components seem to perform reasonably well also for this area.
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Fig. 8.24 Spatial field and seasonal contribution for Western Australia

Fig. 8.25 Estimated trend and future projections for the area West of Australia

The estimated long-term trends and future projections pertaining to the area West
of Australia are illustrated in Fig. 8.25, and the expected trends and future projections
along with 90 % credible intervals around the mean are presented in Table 8.13.

For this area as well, the model estimates a significant increasing trend and future
projections, with both expectations and 90 % credible intervals of the mean being
strictly positive.



8.3 Prediction Losses 205

Table 8.13 Estimated trends and future projections—Western Australia

Expectation 90 % Credible interval

Trend (1958–2001) 53 cm 20–76 cm
A2 projections (2001–2100) 5.1 m 3.3–7.0 m
B1 projections (2001–2100) 1.8 m 1.0–2.5 m

Table 8.14 Standard and weighted prediction losses

Area NA NEP GoM WAfr NWP IO SP MA TS MS EP WAust

Ls 2.544 1.845 0.803 0.630 2.149 0.630 1.029 0.394 1.313 1.383 0.537 1.174
Lw 2.656 1.867 0.815 0.639 2.042 0.655 1.022 0.395 1.297 1.367 0.538 1.178

8.3 Prediction Losses

Even though it is not entirely meaningful to compare the results for different ocean
areas, the prediction losses according to the standard and weighted loss functions
are calculated in order to get an indication of how well the model performs for the
various datasets. Hence, the calculated losses are presented for each ocean area in
Table 8.14. The prediction losses correspond to the mean squared prediction error
for last time-point, T, with and without a weight introduced to penalize prediction
errors for large significant wave heights. Regarding the losses estimated for the North
Atlantic Ocean, it is reassuring to observe that the losses in Table 8.14 agree quite
well with the losses presented in Chap. 5 [16].

It is emphasized that these losses pertain to different datasets, so they cannot
be compared directly; it is merely noted that the losses vary considerably between
areas. The losses for the North Atlantic and the North West Pacific are the highest.
However, these are also the areas with the most severe wave climate as well as the
strongest estimated trends. Therefore, it might not be surprising that these are also
associated with the highest prediction losses; it does not necessarily mean that the
models perform worst in these areas.

8.4 Discussion

The Bayesian hierarchical space-time model for significant wave height has been
applied to several ocean areas throughout the globe, and overall the model seems to
perform well. The results seem reasonable and the contributions from the various
model components seem to be able to distinguish between the different features
pertaining to the various areas.

The time-independent part, μ(x) gives different patterns of spatial variability for
the various ocean areas. For most of the areas, the main variability seems to be in
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the north-south direction, which is reasonable, but for some areas, the variability in
the east-west direction is found to dominate, most notably in the Gulf of Mexico.
The areas with the highest values for this mean spatial field, taking into account the
starting value of the long-term trend, are the North Atlantic, South Pacific, North East
and North West Pacific and the area West of Australia. These are the areas furthest
away from Equator, so this seems reasonable.

The short-term dynamic part with dependencies in both space and time, θ(x, t),
also seems to perform well, and the strongest contributions from this component are
found in the North Atlantic, the North East Pacific, the North West Pacific, and in
the South Pacific oceans. This may indicate that the model identifies these areas as
the stormiest.

It is reassuring to observe that the seasonal model seems to perform well, and
it captures the shift of seasonality when going from the Northern to the Southern
Hemisphere. For all areas lying to the north of Equator, the boreal winter season
corresponds to the highest contribution from this component, whereas the areas
south of Equator have a higher contribution during the boreal summer months. The
model has difficulty in detecting any seasonal contribution for the Equatorial Pacific
area, which is centred around Equator. Hence, the seasonal contribution for this area
is mostly noise, and this makes sense. It is the three northernmost areas, the North
Atlantic, North East Pacific and North West Pacific Ocean areas that have the highest
seasonal variations and this again is reasonable. It is also interesting to note that the
annual dominates over the semiannual seasonal contribution for all areas subjected
to investigation. The areas where the semiannual contributions are highest are in
the North Atlantic, the North East and North West Pacific, and the Gulf of Mexico.
However, even in these areas, the annual contributions are much stronger.

With regard to the long-term trends and future projections, significant increasing
expected trends were estimated for almost all the areas. The most striking exceptions
are the Gulf of Mexico and the Mediterranean Sea. These results might indicate
that the trends are very different for these ocean areas, but it might also reflect the
limited spatial coverage. As it were, these particular areas have a limited spatial range
compared to the other areas, and it might also be that this limitation influences the
simulation results. It has been reported previously [14] that there might be some edge
effects that has not been taken into account, and hence that a large area is needed
for the model to perform well. However, due to the geography, it is not possible to
extend these particular ocean areas to contain more grid points.

For all other areas, a significantly increasing trend in monthly maximum signi-
ficant wave height is estimated, with expected increases toward 2100 varying from
1.8–5.9 m according to the A2 emission scenario and between 62 cm and 2.0 m for the
B1 scenario. The largest future increases in the ocean wave climate are projected for
the North West Pacific (off the coast of Japan), the North Atlantic, West of Australia,
and the North East Pacific.

It is noted that all future projections are associated with high uncertainties, and
reservations are made concerning the accuracy of the above results. One critical
assumption inherent in the results is that there is a stochastic dependence between
the atmospheric level of CO2 (as a proxy for the level of greenhouse gases and
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thereby also for the radiative forcing of the globe) and that this will remain largely
unchanged in the future. Furthermore, there might be bias and uncertainty in the
input data for significant wave height and CO2 and all results are conditioned on the
input data. Nevertheless, it is believed that the results obtained from the model are
interesting, and according to this stochastic model, there will be an increase in the
monthly maximum sea states for almost all of the investigated areas.

It would be interesting to compare the projections made from the Bayesian hier-
archical space-time model with other projections reported in the literature. However,
future projections are highly scenario-dependent and will also be dependent on sea-
son and location. Hence, direct comparison might be difficult. Notwithstanding, a
brief review of some relevant previous studies is deemed appropriate.

Future projections of the ocean wave climate are investigated in [3], where sea
level pressure fields were used as regressors. Results were found to be very dependent
on scenario and on season and location, but significant positive trends are predicted
in the North Pacific. The relationship between significant wave height and sea level
pressure was also utilized in [18], which projected increases in the North East Atlantic
for both winter and fall seasons accompanied by decreases in the mid-latitudes of the
North Atlantic and increases in the south-west North Atlantic. Projections toward
2080 were also reported in [19] and significant increases were found in areas of
the North Pacific and the North Atlantic, by up to 50 cm for the seasonal extremes.
Increases were also projected near the Antarctic coast and in the subtropical South
Pacific. However, significant decreases were projected for some regions between 40
and 60◦ south. Projections made in [12] also predict increases in significant wave
height by up to 0.4 m over a wide area of the western North Pacific. In [10], projections
of the wave climate for the Pacific Ocean are made and it is found that future wave
climate changes to lower mean and higher extremes in the middle latitudes and
higher mean and maximum wave heights in the high latitudes. Hence, according to
this study, the future wave climate will experience both negative and positive changes
depending on the region.

Possible changes in future wave climate were also studied in [4], and increases
in the extremes were predicted for the eastern North Sea, by 6–8 % and west of the
British Isles. South of Iceland, a decrease of 4–6 % was predicted. Buoy data have
been analysed in [11] in order to make projections of the wave climate offshore from
the U.S. Pacific Northwest. An increase of annual maximum wave height of 0.095 m
per year is reported, along with an increase of 0.071 per year for the average of the
five highest waves. This would correspond to an increase between 7.1 and 9.5 m for
extreme waves over 100 years. This is higher than the projections made in the study
presented herein, but since this study is concerned with monthly maxima rather than
annual maxima, the results might still be consistent. A recent multimodel ensemble
study presented global wave climate projections, and reported that a decreasing trend
in annual mean significant wave heights was found for large parts of the globe [7].
This appears to contradict the results presented in this chapter, but it is stressed
that projections of extreme sea states were not reported in [7], and decreasing annual
means might not necessarily contradict increases in the extremes such as the monthly
maxima, see also [10].
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A study on the Mediterranean Sea reports that future ocean wave climate will
be milder than the present wave climate [9] and that the changes would be larger
for the A2 than for the B2 scenario. This actually agrees with the results presented
herein, which predicted a slight decrease for the Mediterranean Sea. Wave climate
projections are also reported for the Portuguese coast in [1]. The uncertainty of the
impact of climate change on future extreme wave conditions in the North Sea is
investigated in [5] by running a wave model over an ensemble of different climate
change realizations for the 30-year period 2071–2100. The study revealed that there
are large uncertainties in the magnitude and the spatial patterns of the climate change
signals and indicates that the uncertainties due to different climate models are larger
than the uncertainties related to the different scenarios.

Long-term trends in the ocean wave climate off Western Australia were investi-
gated in [2] and they report an increasing trend of 32 cm over a 40-year period from
1970 to 2009. This is slightly less than the long-term trend estimated in the study
presented herein, but it is well within the 90 % credible interval. It should also be
noted that the areas are not exactly the same but overall the agreement is reasonably
good between the two studies.

The model presented in this paper uses the stochastic relationship between levels
of CO2 in the atmosphere and significant wave height. It is acknowledged that this is
a simplification, and that there are several mechanisms in between that has not been
modeled directly. For example, ocean waves are generated by winds [8], which are
again results of air pressure gradients. A more refined model could include several
levels of explanatory variables, including wind fields and fields of sea level pressures
as well as other relevant meteorological variables. For example, the North Atlantic
Oscillation (NAO) index could be a relevant covariate for explaining changes in the
wave climate in the North Atlantic Ocean [6, 13, 20]. This has not been tried out to
date and remains possible alternatives for further model extensions.

There is a number of factors influencing future projections of ocean wave climate,
and future changes are expected to be highly dependent on region, season, percentile
of the distribution and adopted forcing scenarios as well as modeling approach,
model assumptions, input data etc. Hence, direct comparison may not be feasible
in most cases. Nevertheless, most studies seem to agree that there is an expected
increasing trend in the ocean wave climate for many areas of the globe even though
the uncertainty of any long-term projection remains large.

8.5 Conclusion

This chapter has presented the results obtained from applying the Bayesian hierar-
chical space-time model to estimate long-term trends and future projections on the
ocean wave climate on various ocean areas throughout the globe. Such trends might
be a result of global climate change, and a stochastic dependence between significant
wave height and levels of CO2 in the atmosphere has been assumed and exploited.

According to the results obtained from the model, most of the investigated areas,
except perhaps two, are expected to experience a trend toward rougher ocean wave
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climate toward 2100, with the strongest trends being associated with ocean areas
in the North West Pacific (off the coast of Japan), the North Atlantic, West of
Australia, and North East Pacific. Qualitatively, the fact that the ocean wave
climate is expected to be rougher is in agreement with many previous studies on future
wave climate changes, but there is great uncertainty as to how large future changes
will be. Nevertheless, it is believed that the results presented herein, estimating
future trends in the wave climate pertaining to several ocean areas around the globe,
based on a stochastic model with regression on CO2 levels in the atmosphere, is an
important contribution to the scientific discussion and that it might stimulate and
motivate further research in this important area, with important implications for
maritime and coastal safety.
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Chapter 9
Summary and Conclusions

How to adapt to climate change is one of the most important questions in society
today. It is a political question and perhaps a moral question as much as it is a scientific
question. Nevertheless, an important prerequisite for making well-founded decisions
is a reliable prediction of the future effect of climate change. The stochastic model
presented in this monograph aims at contributing to this discussion by providing a
model for predicting the effect of climate change on the ocean wave climate. Such an
effect could again have practical implications in many areas of society, most notably
related to marine and coastal management.

This monograph has presented recent research on the development of stochastic
models for significant wave height, an important parameter in the description of
the ocean wave climate, and also an important parameter in design of ships and
offshore structures. The first chapter gives an introduction to the problem area and
discusses why stochastic models for significant wave height are of great interest
to the maritime industries. Then, Chap. 2 presents a thorough literature review on
stochastic wave models and also includes a review of stochastic models from other
areas of applications. A number of different modeling approaches were covered,
and the framework of Bayesian hierarchical space-time models was identified as a
promising approach for modeling significant wave height in space and time.

Hence, such a model was developed, as outlined in Chap. 3, consisting of different
components in space and time; a purely spatial component, a dynamic space-time
component, an annual seasonal component, and a long-term trend component. The
latter was included in order to identify long-term trends in the data, which may
possibly be a result of climate change. Various model alternatives were also tried,
where the difference was in how the long-term trend component was modeled. These
models were then fitted to spatio-temporal data of significant wave height for an area
in the North Atlantic ocean, stemming from the ERA-40 hindcast study, and over-
all the models seem to perform well. Long-term trends were extracted from the
data, which were in reasonable agreement with several previous studies, albeit not
all. Finally, estimated linear trends in the data were extrapolated 100 years into the
future to provide future projections of significant wave height for the area under
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consideration. The models were implemented using Markov chain Monte Carlo
methods and a Bayesian approach, utilizing prior knowledge by the way of mostly
informative prior distributions.

It was observed that the significant wave height data displayed some heteroscedas-
tic features, even after subtracting the seasonal mean. Furthermore, it was observed
that there was a stronger trend in the extremes, i.e., monthly maxima, compared to
the average conditions. This motivated the introduction of a logarithmic transfor-
mation of the data. Hence, a revised model for log-transformed data and the results
obtained from fitting the model to log-transformed data were presented in Chap. 4.
This model also identifies long-term trends in the data, but the interpretation of the
model and its various components are essentially different from the original model.
Each model component is now a multiplicative factor rather than an additive term.
Hence, the long-term trend is described by a factor which effectively yields a greater
trend for extremes compared to non-extremes. Also these models were found to per-
form reasonably well, even though direct comparison with the results pertaining to
the original model was not straightforward.

The effect of including a semiannual seasonal component was also investigated in
Chap. 4, but this was found to be insignificant, at least for this particular ocean area,
and overall the results were largely unaffected by such an extension. Furthermore,
the need to account for re-transformation biases when working with transformed
data was discussed, and a bias correction factor was included when needed.

It is acknowledged that merely identifying a linear trend in the data and then
extrapolating this trend into the future is somewhat speculative, and it was argued
that more reliable projections could be made if the model was extended with sensible
covariates. Thus, in Chap. 5, the model was extended with a regression component
with atmospheric levels of CO2 as covariates. Data of historic levels of CO2 in the
atmosphere were obtained, and future projections based on two emissions scenarios
were used for model fitting and prediction. The two scenarios represent an extreme
scenario, A2, which may be construed as a worst-case scenario, and a more conser-
vative scenario, B1. Consequently, based on these scenarios, future projections of
trends in the ocean wave climate were obtained from the extended model.

According to the simulations of the model with the A2 scenario for future CO2-
levels, an expected increase of monthly maximum significant wave height of 5.4 m
were estimated for the area in the North Atlantic ocean toward the year 2100. This
is quite extreme, but it should be kept in mind that this corresponds to a worst-case
scenario. The average monthly maximum significant wave height is about 7.5 m, so
this expected increase corresponds to an increase of 72 %. However, the uncertainties
are large, with a 90 % credible interval for the expected increase ranging from 2.7
to 8.1 m. For the more conservative scenario, B1, the expected increase in monthly
maximum significant wave height is 1.9 m, with a 90 % credible interval ranging
from 1.2 to 2.6 m. This corresponds to an increase of about 25 %.

The same modeling framework was applied to monthly maximum wind speeds
in the North Atlantic in Chap. 6. It was demonstrated that the estimated increases in
the wave climate were not accompanied by a similar trend in the wind climate. On
the contrary, the results indicate a possible decreasing trend for the North Atlantic
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windiness although very weak and not statistically significant. Accordingly, it is
suggested that the observed increase in significant wave height may not be because
of increased wind sea, but can possibly be explained by an increase in swell.

In Chap. 7, it is demonstrated how the estimated long-term trends and future
projections of significant wave height can be applied to load and response calculations
of ships. Hence, the potential impact of changes in future sea states on ship structural
loads is considered, using the conditional modeling approach and taking due note of
inherent uncertainties. For illustrations, loads characteristics for an example oil tanker
were calculated. Based on these calculations, it was found that the estimated linear
trends in monthly maximum significant wave height over 100 years corresponds to
an increase of the 25-year stress amplitude by 7 % and an increase of 2 % in the zero-
crossing response period. Alternatively, using the trends obtained by the extended
model and assuming the B1 emission scenario, an increase of 10 % for the 25-year
stress amplitude was calculated.

Finally, a case study on how the model estimates long-term trends and makes
future projections for various other ocean areas throughout the world is reported.
According to the results obtained from the model, increasing trends are expected for
the wave climate for 10 of 12 investigated ocean areas and hence, according to the
model there will be a rougher wave climate of many of the oceans around the globe.
However, as in all future projections, uncertainties are large and reservations should
be made regarding the accuracy of the results. Notwithstanding, it is believed that
the results obtained by the stochastic model presented in this book are an important
contribution to the scientific discussion on the effects of climate change and it is
hoped that it might stimulate further research on this important area, with important
implications for the safety of life at sea and in coastal areas.

9.1 Open Issues and Suggestions for Further Work

Even though the models presented in this monograph have been found to perform
reasonably well overall, and to produce results that agree fairly well with previous
studies, some open issues have been identified that may be the focus on further work.

The model has been fitted to data of different temporal resolutions, i.e., using
monthly, daily, and six-hourly data, as well as monthly maximum data. However,
as it turned out, the model performed poorly on the six-hourly dataset. It did not
mix well and, possibly, the Markov chain failed to converge. The reason for this is
uncertain. Simulations on the six-hourly dataset were too time consuming for it to be
practical to investigate whether a longer burn-in period for the MCMC-simulations
would solve the problem, but presumably not. One possible explanation for why the
model performs poorly on six-hourly data is that the linear form of the short-term
dynamic part θ(x, t) might not be able to describe possible nonlinear effects at high
temporal resolutions. It could be interesting to try to extend the model with nonlinear
dynamic components, but this idea has so far not been pursued.
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No attempts have been made to control the long-term behavior of the short-term
dynamic component θ(x, t), for example, by imposing restrictions on the vector-
autoregressive parameters. This could be introduced in order to make this stationary
over long-time periods and hence prevent it from absorbing possible long-term trends
in the data. Upon inspection, the long-term effect of θ(x, t) is found to be negligible,
so this is presumably not a serious issue, but it could still be sensible to impose some
constraints on the parameters pertaining to this component. Possibly, this could lead
to better performance of the model when applied to the full dataset, with temporal
resolution of 6 h. It would also be interesting to explore the possible effects of the
spatial resolution in the data on future projections and the overall results.

The model was extended with atmospheric CO2-levels as covariates, but it is
acknowledged that making regression directly on the atmospheric CO2 level is a
simplification. The model could be further extended with other meteorological para-
meters as explanatory variables and include different layers of dependencies. Wave
evolution in time and space is mainly a result of wind forcing, and in order to provide
long-term predictions related to climate change, evidence of which may yet not be
present in the historical data, it may be necessary to include covariates that are closer
related to the physics governing the generation of waves. Hence, the inclusion of
fields of mean sea level pressure or wind fields in the area as additional covariates
is one alternative for further model extensions. In order to make future projections,
reasonable projections of such fields would then be needed and there are presently
large uncertainties associated with any such projections.

Another alternative could be to include different temporal trends for different
seasons. For example, four different temporal trends could be included to allow for
different trends in spring, summer, autumn, and winter seasons. It is believed that
these trends could be significantly different, and that such a refinement could lead to
better model performance. Furthermore, the model could incorporate a temporal trend
in the variance (spread) of the data. It is acknowledged that changes in the extreme
wave climate can result from a change in the variance even without a significant
change in the mean (or indeed, even with an opposite change of the mean). The
combined effect of a change in the spread and the mean could be significant and an
extended model incorporating a temporal long-term trend in the variance could yield
interesting insight. Other possible extension could be to allow the parameter b0 to
vary spatially or to try some other reasonable transformation of the data. Such, and
other, model extensions have not been made till date and is left for future work.

Different attempts of model comparison and selection have been tried out, but
reliable model selection remains an open issue. Model selection for such complex,
hierarchical models are indeed challenging, and there are no standard solutions. For
the purpose of this study, two loss functions based on short-term predictive power
have been constructed but it is acknowledged that these might not be ideally suited for
distinguishing between models with different long-term components. Furthermore,
the results are not consistent over all simulations and the loss functions cannot really
identify the best models with great confidence. For example, whether the inclusion
of a logarithmic transformation of the data represents an improvement or not is
inconclusive. On the one hand, the transformation seemed to yield better goodness-
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of-fit, whereas it also gave larger losses according to the loss functions. However,
for the extended models with CO2-regression components, model ranking seemed
to be rather consistent. Notwithstanding, model selection remains an open issue, and
future work could be focused on developing more reliable model selection methods
for such complex models.

A logarithmic transformation of the significant wave height data was tried, as
reported in Chap. 4. This mended the heteroscedastic features in the data to a large
degree, and also estimated higher trends for more severe sea states, but results indi-
cated that the logarithmic transformation might not be the optimal transformation.
Hence, one suggestion for further work is to investigate how other nonlinear data
transformations perform. Possibly, this would give both better goodness-of-fit and
less prediction losses. However, it is not trivial exactly what kind of data transfor-
mation would be optimal.

Another issue, even though perhaps not a very serious one, is that the results
indicated that there were some edge effects in the spatial field. No particular effort
has been placed on how to treat the edge effects in the Markov random field, and
possibly, a more explicit modeling of the edges, i.e., grid-points without neighbors
in any direction, could improve the results. This is also left for future work and
refinement of the model.

Notwithstanding these open issues, the models presented in this monograph are
believed to perform reasonably well overall and they seem to be able to capture the
variability in space and time of the significant wave height of an area in the North
Atlantic Ocean and elsewhere. In particular, long-term trends have been estimated,
and realistic future projections of the ocean wave climate toward the year 2100 have
been obtained. Even though different model alternatives have been applied, each
estimating different long-term trends, all model alternatives are able to detect an
increasing trend in the ocean wave climate, and it can be concluded that there are
likely to be an effect of climate change on the significant wave height in the North
Atlantic Ocean. It is also deemed likely that this effect is not negligible and that
the effect on long-term will be large enough to influence the structural loads and
responses of ocean-going ships. Thus, even though uncertainties are substantial, it
is recommended that the possible effects of climate change are considered in loads
calculations of new designs and that potential impact of climate change are taken
into account in ship design specifications. Obviously, such effects would also need
to be taken into account for other marine structures related to offshore and coastal
activities.

It is acknowledged that the models presented herein represent a simplification of
reality, as inevitably all models do, and that there is potential for improvements to
the models. Nonetheless, it is believed that the presented research is an important
contribution to the scientific debate on the effects of climate change, and it is a hope
that it can spur further debate and motivate further research into the effects of climate
change on the future ocean wave climate.
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Appendix A
Markov Chain Monte Carlo Methods

In this appendix, the basics of Markov chain Monte Carlo methods for simulat-
ing from statistical distributions will be briefly outlined and the Gibbs sampler and
Metropolis-Hastings algorithm will be explained. For further details, reference is
made to [1] or similar textbooks.

A.1 Standard Monte Carlo Integration

Classical Monte Carlo integration is a method for solving analytically challenging
integrals using Monte Carlo simulation. The basic idea is as follows: Consider an
integral on the form

I =
∫

χ

h(x)dx =
∫

χ

h(x) f (x)dx = E f [h(x)]

where f (x) is a density. This is then recognized as the expectancy of h(x) with
respect to the density f (x), as shown above. If it is possible to simulate or generate
a number of iid xi ∼ f (x), i = 1, . . . ,m, then the standard Monte Carlo estimator
for the integral I is the empirical average, which converges towards the integral for
m sufficiently high:

δMC = hm = 1

m

m∑

j=1

h(x j ) −→ I, m → ∞

This technique of estimating the integral I using generation of iid random variables
xi ∼ f (x) is referred to as classical Monte Carlo integration. However, the challenge
to generate the random variables from f (x) remains, and for some densities direct
simulation from f will be difficult. Some alternative methods to direct sampling for
simulating from the distribution f (x) are the inversion method, accept–reject sam-
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pling and importance sampling, to be briefly outlined in the following, and Markov
chain Monte Carlo. The latter approach will be briefly outlined in the subsequent
sections.

A.1.1 Inversion Sampling

For densities where the cumulative distribution function F(x) is strictly increas-
ing, one may simulate X ∼ f (x) by the inversion method. The algorithm for this
simulation is quite simple:

1. Generate random uniform variables on the unit interval Ui ∼ U[0,1]
2. Then X = F−1(U ) ∼ f (x) will be a random variable from f (x)

The following proof demonstrates that X is indeed a random variable from the
distribution f (x), i.e., that X = F−1(U ) has cumulative distribution function F(X):

P (X < x) = P
(

F−1(U ) < x
)

= P (U < F(x)) = FU (F(x)) = F(x)

since the uniform distribution has cumulative distribution function FU (x) = x .
However, this method has the weakness that F needs to be invertable, i.e., F−1(u)
is required, and it is difficult to generalize to large dimensions.

A.1.2 Accept–Reject Simulation

The accept–reject method simulates candidates yi for xi from a proposal distribution
g(x) rather than from the target density f (x), and accepts these with a probability
that ensures that the accepted samples correspond to the target distribution f (x).
The basic idea is that sampling from the proposal distribution may be easier than
simulating directly from the target distribution. The requirements on the proposal
distribution are simply that f (x) ≤ Mg(x) for the whole support of f (x) and some
constant M . Generally, the acceptance rate of proposed candidates increases, and
thus the efficiency of this method improves, for low values of M . The algorithm for
accept–reject sampling is as follows:

1. Generate a candidate from the proposal distribution, i.e., generate Yi ∼ g(x).
2. Accept this candidate with probability Paccept = f (x)

Mg(x) ≤ 1, i.e., put Xi = yi

with this probability
3. Otherwise, reject the candidate yi and repeat step 1.

The acceptance step may be implemented by generating a uniform random variable U
on the unit interval, and accepting the candidate xi = yi if u < Paccept. It is noted that
the overall rate of accepted candidates is the inverse of the constant M , Paccept = 1/M
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so it is realized that this method performs best when g(x) is close to f (x). The
optimal proposal distribution in terms of efficiency is of course g(x) = f (x) but this
is equivalent to direct simulation.

It can be proved that the accepted candidates are indeed distributed as f (x), using
Bayes theorem:

P(x = y) = P(y|y accepted) = P(y accepted|y)P(y)
∫
χ

P(z accepted|z)P(z)dz

but now, by construction: P(y accepted|y) = Paccept = f (y)
Mg(y) and P(y) = g(y),

and therefore

P(x = y) =
f (y)

Mg(y)g(y)
∫
χ

f (z)
Mg(z)g(z)dz

= f (y)
∫
χ

f (z)dz
= f (y)

since the integral over a distribution is 1 by definition. With this in mind, it is also
straightforward to demonstrate that the ratio of accepted yi s is indeed 1/M from the
law of total probability:

P(accepting y) =
∫

χ

P(accepting z|z)P(z)dz =
∫

χ

f (z)

Mg(z)
g(z)dz = 1

M

It can also be shown that the accept–reject method is independent of possible
normalizing constants of the target distribution, so that samples of a density f (x) on
the form f (x) = g(x)

I , where I = ∫
g(x)dx can be obtained from sampling from

a proposal distribution h(x) so that g(x) ≤ K h(x) for some constant K , and then
accepting this proposal with probability g(x)

K h(x) .

A.1.3 Importance Sampling

Another method that allows sampling from an alternative distribution function g(x)
other than the target distribution f (x) when estimating Monte Carlo integrals is the
method of importance sampling. It is noted that this method may also give higher
precision than standard Monte Carlo, i.e., than sampling directly from the target
distribution in estimating a Monte Carlo integral, for sensible choices of proposal
distributions. Recalling the integral subject to Monte Carlo integration, and rewriting
this as:

I =
∫

χ

h(x) f (x)dx =
∫

χ

f (x)h(x)

g(x)
g(x)dx = Eg

[
f (x)h(x)

g(x)

]
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An estimator for this integral can now be based on a simulated sample drawn from
g(x), Xi ∼ g(x), i = 1, . . . ,m and a weighted average of h(xi ) where the weights
corresponds to a correction that is needed since the simulated xi s now are from g(x)
instead of f (x):

δI S = 1

m

m∑

j=1

f (x j )h(x j )

g(x j )
= 1

m

m∑

j=1

w j h(x j ), w j = f (x j )

g(x j )

Finally, it is noted that for the importance sampling method to work, appropriate
proposal distributions g(x)must be chosen. For example, the weights should be finite
and one condition for this is that f (x) ≤ Mg(x) for all x within the support of f (x)
and some constant M . Furthermore, the variance of the estimator should be finite
and an additional condition is that Var f [h(x)] < ∞. These conditions are rather
restrictive, and as a rule of thumb, if g(x) is chosen so that it has heavier tails than
f (x), importance sampling works well.

Sequential importance sampling is a generalization of the importance sampling
algorithm described above where the proposal distribution is sequentially updated.
This may be useful when the parameter of interest changes over time, e.g., when we
want to make inference about the variable of an autoregressive model. In this case,
within the context of importance sampling, both the target distribution f (x) and the
proposal distribution g(x) changes sequentially, and sequential importance sampling
is a method to simulate such data, where samples are drawn from a conditional
proposal distribution, sequentially updated conditionally on the previous time-step
with weights that are sequentially updated as well.

A.2 Monte Carlo Variance

The Monte Carlo estimate converges asymptotically to the true value of the integral
of interest as the number of simulations increases. In order to evaluate the precision
of the Monte Carlo estimate, the variance of the Monte Carlo estimate compared to
the variance of the integral function, h(x) may be investigated. The variance of the
Monte Carlo estimate is

V ar [h̄m] = V ar

⎡

⎣ 1

m

m∑

j=1

h(x j )

⎤

⎦ = 1

m2 V ar

⎡

⎣
m∑

j=1

h(x j )

⎤

⎦ = 1

m
V ar f [h(x)]

where V ar f [h(x)] now is the variance of the function h(x) with respect to f (x),
since x1, . . . , hm are iid samples from f (x). Therefore, as m → ∞, V ar [h̄m] → 0.

In general, the Monte Carlo variance will increase for dependent samples with a
positive correlation structure. If now h̄m is an estimator based on dependent samples
of f (x) the corresponding variance becomes
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Var[h̄m ] = 1

m2 Var

⎡

⎣
m∑

j=1

h(x j )

⎤

⎦ = 1

m2

⎡

⎣mVar f [h(x)] +
m∑

i=1

∑

i �= j

Cov(h(xi ), h(x j ))

⎤

⎦

= 1

m
Var f [h(x)]

⎡

⎣1 + 1

m

m∑

i=1

∑

i �= j

Corr(h(xi ), h(x j ))

⎤

⎦

Hence, it can be seen that using dependent samples with a positive correlation struc-
ture will result in increased variance of the Monte Carlo estimate.

A.3 Markov Chain Monte Carlo

An alternative, useful technique for simulating random variables from a target dis-
tribution f (x) is the Markov chain Monte Carlo method. The aim of this method is
to construct a Markov chain, {Xt } = X1 → X2 → . . . → X N which has f (x) as
its invariant distribution. If the chain in addition is ergodic, this distribution will also
be the limiting distribution of the chain independent on the starting point, i.e., the
distribution of Xt converges to f (x) for t large enough. Then, by allowing the chain
to run long enough, the {Xt } will represent samples from f (x). Note however, that
this will not be independent samples from f (x). Mathematically, the convergence
requirement can be written as:

lim
k→∞ P(Xk ∈ A) =

∫

A
f (x)dx

It is also required that the estimator based on {Xt } converges towards the Monte
Carlo integral:

SN = 1

N

N∑

i=1

h(xi ) →
∫

χ

h(x) f (x)dx = I, N → ∞

A.3.1 Essential Markov Chain Theory

A Markov chain is a sequence of random variables {Xt } where the conditional distri-
bution of Xt given all previous states xt−1, xt−2, . . . , x0 is the same as the conditional
distribution of Xt given the last previous state xt−1, i.e.,:

P(xk+1 ∈ A|x0, x1, x2, . . . , xk) = P(xk+1 ∈ A|xk)

The chain is stationary or time-homogeneous if the transition kernel does not change
over time, i.e., is independent of t so that, for all k:
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P(xk+1 ∈ A|xk = x) = P(x1 ∈ A|x0 = x)

Furthermore, an invariant distribution π satisfies the following:

π(y) =
∫

χ

K (x, y)π(x)dx

where K (x, y) is the transition kernel associated with the chain, i.e., in the continuous
case P(Xk+1 ∈ A|Xk = x) = ∫

A K (x, y)dy. χ is the complete state space of the
chain. This means that if we are in a state with distribution π , Xk ∼ π(x), then also
the subsequent states will have distribution π , Xk+1 ∼ π(x), as shown below:

P(Xk+1 ∈ A) =
∫

χ

P(Xk+1 ∈ A|Xk = x)π(x)dx =
∫

χ

∫

A
K (x, y)dyπ(x)dx

=
∫

A

∫

χ

K (x, y)π(x)dxdy =
∫

A
π(y)dy

⇒ Xk+1 ∼ π(x)

If this is satisfied, the chain will stay within the invariant distribution provided that
it enters it at some point. However, in order to ensure that the chain surely converges
towards this distribution regardless of the starting point of the chain, also referred to
as an ergodic chain,

P(Xk ∈ A|x0) −→
∫

A
π(x)dx, k → ∞

some particular conditions must apply. According to Markov chain theory, the fol-
lowing requirements on the random chain need to be satisfied in order for the chain
to be ergodic, hence having an invariant or stationary distribution π as its limiting
distribution regardless of starting point:

1. Irreducibility: A chain is irreducible if all states communicate so that the complete
sample space may be visited by the chain, i.e.,

∃ n : P(xn ∈ A|x0 = x) > 0 ∀ A, x

2. Recurrency: If the average number of visits to an arbitrary set A is infinite, the
chain is said to be recurrent. Otherwise, if the average number of visits to A is
finite, the chain is transient. A chain is said to be Harris recurrent if the probability
of an infinite number of returns to A is 1, and Harris recurrence ensures that the
chain has the same limiting distribution for every starting point.

3. Aperiodicity: A chain that contains no cycles is said to be aperiodic. An aperiodic
chain has period 1.
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Under these conditions, the following convergence results hold:

P(Xk ∈ A) ≈
∫

A
f (x)dx, for k large

1

N

N∑

k=1

h(xk) −→ I, for N large

and samples from the distribution f (x) can be obtained by running a Markov chain
with f (x) as its limiting, invariant distribution.

It is worth noting that even though the invariant distribution π is unique given
a transition kernel K , this is not true the other way around. There might be several
different transition kernels having the same invariant distribution, and there will hence
be different choices of transition kernels to choose from corresponding to varying
quality and efficiency of the implementation of the method. In the next sections, two
different simulation methods based on Markov chain Monte Carlo will be briefly
highlighted: the Metropolis-Hastings algorithm and the Gibbs sampler which have
both been utilized in the simulation of the Bayesian hierarchical space-time model
for significant wave height.

A.4 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm simulates random variables from a target distri-
bution f (x) via a conditional proposal distribution q(y|x) by constructing a Markov
chain in the following way:

• Given xt

1. Generate Yt ∼ q(y|xt )

2. Take:

Xt+1 =
{

yt with probability ρ(x, y) = min
{

1, f (yt )q(xt |yt )
f (xt )q(yt |xt )

}

xt otherwise

It can be shown that f (x) is the stationary distribution for the resulting Markov
chain for almost any conditional proposal distribution q(y|x). Furthermore, it can
be shown that the detailed balance criterion is a sufficient criterion for this to be
satisfied, i.e., that

π(x)K (x, y) = π(y)K (y, x)

and it can easily be shown that the Metropolis-Hastings transition kernel satisfies
this criterion. For y = x , the detailed balance criterion is obviously satisfied, and for
y �= x , the Metropolis-Hastings transition kernel will be K (x, y) = q(y|x)ρ(x, y).
Now,
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f (x)K (x, y) = f (x)q(y|x)ρ(x, y) = f (x)q(y|x)min

{

1,
f (y)q(x |y)
f (x)q(y|x)

}

= f (y)q(x |y)min

{
f (x)q(y|x)
f (y)q(x |y) , 1

}

= f (y)q(x |y)ρ(y, x)

= f (y)K (y, x)

Thus, there are hardly any restrictions on the proposal distribution q(y|x). Two
commonly used alternatives are the independent Metropolis-Hastings algorithm,
which is a global approach in that the proposal distribution explores the whole sup-
port of the target distribution, and the random walk Metropolis-Hastings algorithm,
which is a local approach in that the proposal distribution only explores states close
to the current state of the chain.

A.4.1 Independent Metropolis-Hastings Algorithms

This special case of the general Metropolis-Hastings algorithm uses a proposal dis-
tribution independent of Xt , and the Markov chain is constructed by the following
algorithm:

• Given xt

1. Generate Yt ∼ q(y)
2. Take:

Xt+1 =
{

yt with probability min
{

1, f (yt )q(xt )
f (xt )q(yt )

}

xt otherwise

It is observed that the acceptance probability in this case can be written as ρ(x, y) =
min

{
1, f (y)/q(y)

f (x)/q(x)

}
and thus as a ratio between the target and the proposal distribution

(actually, a ratio of a ratio). This is similar to the acceptance–rejection sampling
method, but the algorithm is different in that the current value is kept, i.e., Xt+1 = Xt ,
if the candidate is rejected. Ergodicity is ensured if the proposal distribution satisfies
f (x) ≤ Mq(x) for all x ∈ supp f .

A.4.2 Random Walk Metropolis-Hastings Algorithms

A random walk sequence is typically constructed by letting Yt , and thereby also
Xt+1, be a perturbation around the previous Xt in the following way:

Yt = Xt + εt , εt ∼ g(·)

where normally E[εt ] = 0. Now, for random walk Metropolis-Hastings q(yt |xt ) =
g(|yt − xt |) and typical choices for εt are uniform, normal or t-distributions:
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Choice A: εt ∼ U[−σ,σ ]
Choice B: εt ∼ N (0, σ 2)

Choice C: εt ∼ σε0
t , ε0

t ∼ t (ν)

For these choices, and other choices of symmetric functions g, such that g(−t) =
g(t), the random walk Metropolis-Hastings algorithm becomes:

• Given xt

1. Generate Yt ∼ g(|y − xt |)
2. Take:

Xt+1 =
{

yt with probability min
{

1, f (yt )
f (xt )

}

xt otherwise

The mixing properties of the Markov chain, i.e., how well the chain explores the
complete sample space, is determined by the acceptance probability of the candidates.
If the acceptance probability is low, the resulting Markov chain will contain frequent
sequences of identical states: Xt = Xt+1 = Xt+2 = . . . etc. since rejecting a
candidate means that the chain is not allowed to jump to another state and instead
takes the current state as the next state.

For the independent Metropolis-Hastings algorithm, where the proposal distribu-
tion is global in that its support includes the whole support of the target distribution,
the optimal proposal distribution corresponds to maximal acceptance rates. This cor-
responds to proposal distributions similar to the target distribution, q ≈ f , and also
leads to small correlation between subsequent Xt s.

However, for local proposal distributions such as the random walk Metropolis-
Hastings, the optimal acceptance probability should neither be too high nor too low.
Low acceptance rates correspond to many subsequent states being identical, but on
the other hand, a high acceptance rate corresponds to proposing only small jumps,
meaning that it will take a long time to explore the whole state space. The optimal
proposal distribution will therefore be a trade-off between creating proposals Yt

that are different from xt and acceptance of the proposed yt . As a rule of thumb,
the optimum mixing properties of a random walk Metropolis-Hastings algorithm
corresponds to acceptance rates around 0.3 (should at least be contained in ρ ∈
[0.2, 0.7]).

A.5 The Slice Sampler

The Slice sampler is another example of a Markov chain Monte Carlo method, but
without the use of an accept–reject step. It is based on the fundamental theorem of
simulation, i.e., that generation from a distribution with density f (x) is equivalent
to uniform generation on the subgraph of f . Realizing that
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f (x) =
∫ f (x)

0
du

it is obvious that f appears as the marginal distribution of X of the joint distribution

(X,U ) ∼ U {(x, u) : x ∈ χ, 0 ≤ u ≤ f (x)}

or
f (x, u) = I (0 ≤ u ≤ f (x)) for x ∈ χ

Now, the fundamental theorem of simulation states that simulating X ∼ f (x) is
equivalent to simulating (X,U ) ∼ U {(x, u) : x ∈ χ, 0 ≤ u ≤ f (x)}. The Slice
sampler utilizes this by using a random walk Markov chain with this uniform distri-
bution as its stationary distribution.

A.5.1 2D Slice Sampler

Considering a random variable X , with distribution function f (x) with support χ ,
and assume we want to simulate samples of X . This can be achieved through the
2D Slice sampler which explores the sample space by, given an initial starting point,
iteratively going one step in one direction at a time, i.e., moving from initial point
(x, u) to (x ′, u′) by the following two steps, using the conditional distributions of U
and X :

U |X = x ∼ U {u : 0 ≤ u ≤ f (x)}
X |U = u′ ∼ U {x : u′ ≤ f (x)}

It is easily seen that using the above conditional distributions in a Markov chain indeed
yields the correct stationary distribution of the chain. The transition kernel for the
move (x, u) → (x ′, u′)will be the product of kernels for each move (x, u) → (x, u′)
and (x, u′) → (x ′, u′):

K
(
(x, u), (x ′, u′)

) = K1
(
(x, u), (x, u′)

)
K2

(
(x, u′), (x ′, u′)

) = f (u′|x) f (x ′|u′)

= I (0 ≤ u′ ≤ f (x))

f (x)

I (u′ ≤ f (x ′))
A(u′)

where

A(u) =
∫

(x : u≤ f (x))
dx =

∫

x∈χ
I (u ≤ f (x))dx

Now, the distribution function f (x, u) is the invariant or stationary distribution
of the chain if
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f (x ′, u′) =
∫

(x,u)
f (x, u)K

(
(x, u), (x ′, u′)

)
dudx

which is quite straightforward to demonstrate:

∫

(x,u)
f (x, u)K

(
(x, u), (x ′, u′)

)
dudx

=
∫

((x,u): x∈χ,0≤u≤ f (x))

I (0 ≤ u′ ≤ f (x))

f (x)

I (u′ ≤ f (x ′))
A(u′)

dxdu

=
∫

x∈χ
I (0 ≤ u′ ≤ f (x))I (u′ ≤ f (x ′))

A(u′) f (x)

∫ f (x)

0
du dx

= I (0 ≤ u′ ≤ f (x ′))
A(u′)

∫

x∈χ
I (u′ ≤ f (x))dx = I (0 ≤ u′ ≤ f (x ′))

= f (x ′, u′)

Hence, the 2D Slice sampler is defined by the following algorithm, at iteration t :

1. Simulate ut+1 ∼ U[0, f (xt )]
2. Simulate xt+1 ∼ U(x : ut+1≤ f (xt ))

The variable U is not really of interest apart from helping to elicit samples of X ,
and is often referred to as an auxiliary variable. It is also noted that the Slice sampler
is valid also if f is an un-normalized density, i.e., the algorithm remains valid if
f (x) = C f1(x) and f1(x) is used instead of f (x).

A.5.2 The General Slice Sampler

The general Slice sampler is a generalization of this, where the density f (x) can
be decomposed into k positive functions (not necessarily densities) in the following
way:

f (x) ∝
k∏

i=1

fi (x)

Now, to sample from f (x), it is realized that each function fi (x) may be written as
an integral, associated with an auxiliary variable wi :

fi (x) =
∫

I (0 ≤ wi ≤ fi (x))dwi

and that f (x)will be the marginal density of the joint distribution (x, w1, . . . , wk) ∼
p(x, w1, . . . , wk) ∝ ∏k

i=1 I (0 ≤ wi ≤ fi (x)). The corresponding generalization
of the Slice sampler algorithm then becomes, at iteration t :
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1. Simulate w(t+1)
1 ∼ U[0, f1(x (t)]

...

k. Simulate w(t+1)
k ∼ U[0, fk (x (t)]

k + 1. Simulate x (t+1) ∼ UA(t+1) with A(t+1) =
{

y : w(t+1)
i ≤ fi (y), i = 1, . . . , k

}

A.6 Gibbs Sampling

The Gibbs sampler works according to the same principles as the Slice sampler is
based on, i.e., generating samples from the conditional distributions of the target dis-
tribution in order to construct a Markov chain with the target density as the invariant
distribution. However, instead of utilizing auxiliary variables as in the Slice sampler,
the true conditionals are used. In the following section, first the special case of the
two-stage Gibbs sampler is presented followed by a generalization to the multi-stage
Gibbs sampler in the subsequent section.

A.6.1 The Two-Stage Gibbs Sampler

Consider generation of random variables X and Y from a target density which is the
joint density f (x, y) defined on an arbitrary product space X × Y . The two-stage
Gibbs sampler then generates a Markov Chain (Xt ,Yt ) with the following steps,
starting from an initial value x0 of the variable X , generating for t = 1, 2, . . .:

1. Yt ∼ fY |X (·|xt−1)

2. Xt ∼ fX |Y (·|yt )

where the marginal ( fX , fY ) and conditional ( fX |Y , fY |X ) distributions associated
with the joint distribution are:

fX =
∫

f (x, y)dy and fY |X = f (x, y)

fX (x)

fY =
∫

f (x, y)dx and fX |Y = f (x, y)

fY (y)

Now, the sequence (Xt ,Yt ) is a Markov chain, but also each subsequence (Xt )

and (Yt ) is a Markov chain. The transition kernels of the different chains are:

(Xt ,Yt ) : K ((x, y), (x ′, y′)) = fY |X (y′|x) fX |Y (x ′|y′)
(Xt ) : K (x, x ′) = ∫

fY |X (y|x) fX |Y (x ′|y)dy
(Yt ) : K (y, y′) = ∫

fX |Y (x |y) fY |X (y′|x)dx
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It can easily be demonstrated that the target density f (x, y) is the stationary dis-
tribution for the chain (Xt ,Yt ), and also that the marginal densities are the stationary
distributions for the subchains:

∫

x

∫

y
f (x, y)K ((x, y), (x ′, y′))dydx

=
∫

x

∫

y
f (x, y) fY |X (y′|x) fX |Y (x ′|y′)dxdy

= fX |Y (x ′|y′)
∫

x
fY |X (y′|x)

∫

y
f (x, y)dydx

= fX |Y (x ′|y′)
∫

x
fY |X (y′|x) fX (x)dx = fX |Y (x ′|y′)

∫

x
f (x, y′)dx

= fX |Y (x ′|y′) fY (y
′) = f (x ′, y′)

and considering the subchain (Xt ):

∫

x
fX (x)K (x, x ′)dx =

∫

x
fX (x)

∫

y
fY |X (y|x) fX |Y (x ′|y)dydx

=
∫

y
fX |Y (x ′|y)

∫

x
fX (x) fY |X (y|x)dxdy

=
∫

y
fX |Y (x ′|y)

∫

x
f (x, y)dxdy

=
∫

y
fX |Y (x ′|y) fY (y)dy =

∫

y
f (x ′, y)dy = f (x ′)

The Gibbs sampler thus provides a Markov chain with the target distribution as
the invariant distribution and thereby a method for sampling from this distribution.
However, note that the chain needs to be investigated for irreducibility, recurrency
and aperiodicity on a case by case basis.

A.6.2 Multi-Stage Gibbs Sampler

The multi-stage Gibbs sampler is a generalization of the two-stage Gibbs sampler
that allows univariate sampling also for multivariate distributions and problems in
high dimensions. Assume that a random variable X ∈ χ can be written as a vector
X = (X1, . . . , X p) for some p > 1, where now the Xi ’s may be either uni- or
multidimensional. Furthermore, assume that it is possible to simulate from the cor-
responding conditional densities f1, . . . , f p. In other words, it is possible to simulate

Xi |x1, x2, . . . , xi−1, xi+1, . . . , x p ∼ fi (xi |x1, . . . , xi−1, xi+1, . . . , x p) ∀ i ∈ [1, p]
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Then, the Gibbs sampler for the transition between X(t) and X(t+1) is defined by
the following algorithm, given x(t) = (x (t)1 , . . . , x (t)p ):

1. Simulate X (t+1)
1 ∼ f1(x1|x (t)2 , . . . , x (t)p )

2. Simulate X (t+1)
2 ∼ f2(x2|x (t+1)

1 , x (t)3 , . . . , x (t)p )

...

p. Simulate X (t+1)
p ∼ f p(x

(t+1)
1 , . . . , x (t+1)

p−1 )

The densities f1, . . . , f p are often referred to as the full conditionals, and these
are the only ones used for simulations. Thus, even for high-dimensional problems,
the multi-stage Gibbs sampler provides a way to simulate only univariate variables,
which may be an advantage in some cases. It is noted that in order for the Gibbs
sampler to work, the conditional distributions need to be known and possible to
simulate from, and this is not always the case. However, for the Bayesian hierarchical
space-time models developed in this book, the various components are specified
conditionally and it is quite straightforward to derive the full conditionals, except for
a pair of parameters related to the Markov random field. Hence, the Gibbs sampler
is an obvious choice for simulating from the model, with additional Metropolis-
Hastings steps for simulating from the full conditional of the more problematic
parameters.

Reference

1. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)



Appendix B
Extreme Value Modeling

In this appendix, some of the distributions used for modeling extremes will be briefly
outlined. Reference is made to textbooks such as [1] for further details, explanations
and proofs.

B.1 Generalized Extreme Value Distribution

The generalized extreme value distribution (GEV) is the limit distribution of properly
normalized maxima of a sequence of independent and identically distributed random
variables. Hence, the GEV distribution is used as an approximation to model maxima
of long sequences of random variables. Sometimes, the generalized extreme value
distribution is referred to as the Fisher-Tippett distribution.

The generalized extreme value distribution is a family of continuous probability
distributions developed to combine the three so-called extreme value distributions:
the Gumbel, Fréchet and Weibull families, also referred to as type I, II, and III extreme
value distributions. These will be outlined below.

If X1, X2, . . . , Xn is a sequence of independent random variables with a common
distribution function, it can be shown that the maximum

Mn = max{X1, X2, . . . , Xn}

has a generalized extreme value distribution as a limit when n → ∞. This follows
from the extremal types theorem (see e.g., [1]), which says that if there exist sequences
of constants {an > 0} and {bn} so that

Pr {(Mn − bn)/an ≤ x} → G(x) as n → ∞

for a non-degenerate distribution function G, then G is a member of the generalized
extreme value family (if the distribution of the normalized M∗

n = (Mn − bn)/an

converges, its limit distribution function will be a member of the GEV family).

E. Vanem, Bayesian Hierarchical Space-Time Models with 231
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Then, it can also be shown that the distribution for Mn as n → ∞ is another member
of the same GEV family:

Pr {(Mn − bn)/an ≤ x} ≈ G(x)

⇓
Pr {Mn ≤ x} ≈ G{(x − bn)/an} = G∗(x)

The cumulative distribution function of the generalized extreme value distribution
is:

G(x;μ, σ, ξ) = e
−
[
1+ξ

(
x−μ
σ

)]−1/ξ

for 1 + ξ(x − μ)/σ > 0

Here, μ ∈ R is the location parameter, σ > 0 is the scale parameter and ξ ∈ R is
the shape parameter.

The corresponding density function is then:

g(x;μ, σ, ξ) = 1

σ

[

1 + ξ

(
x − μ

σ

)]− 1
ξ
−1

e
−
[
1+ξ

(
x−μ
σ

)]−1/ξ

for 1 + ξ(x − μ)/σ > 0

Hence, one can model the extremes of a series of independent observations X1, X2,

. . . , Xn in the following way: First, block the data into sequences of observations
of length n, for some large value of n in order to obtain a series of block maxima,
Mn,1,Mn,2, . . . ,Mn,m . The Mn’s should be GEV distributed, so a GEV distribution
can be fitted to these data. The blocks may for example be chosen to represent
one year, where n is the number of observations in a year and the block maxima
corresponds to annual maxima. Then, estimates of extreme quantiles of the annual
maximum distribution can be obtained from setting G(z p) = 1 − p:

z p =
{
μ− σ

ξ

[
1 − (− ln (1 − p))−ξ

]
, for ξ �= 0

μ− σ ln (− ln (1 − p)) for ξ = 0

In other words, the probability of an annual maximum exceeding z p in any partic-
ular year is p, and therefore, this value is expected to be exceeded on average every
1/p years. Thus, z p is referred to as the return level associated with the return period
1/p in common terminology.

B.2 Three Families of Extreme Value Distributions

The three special cases of the GEV distribution, for ξ → 0, ξ > 0, and ξ < 0,
correspond to the Gumbel, Fréchet and Weibull families respectively, also referred
to as type I, type II, and type III extreme value distributions. These have the following
cumulative distribution functions, where σ > 0 and α > 0:
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Gumbel distribution or type I extreme value distribution:

F(x;μ, σ) = e−e−(x−μ)/σ
for x ∈ R

Fréchet distribution or type II extreme value distribution:

F(x;μ, σ, α) =
{

0 x ≤ μ

e−((x−μ)/σ)−α x > μ

Reversed Weibull distribution or type III extreme value distribution:

F(x;μ, σ, α) =
{

e−(−(x−μ)/σ)α x < μ

1 x ≥ μ

The type I extreme value distribution can be linked to types II and III in the
following way: If the cumulative distribution function of a random variable X is
of type II with μ = 0, i.e., F(x; 0, σ, α), then the cumulative distribution function
of Y = ln X is of type I, F(y; ln σ, 1

α
). Similarly, if the cumulative distribution

function of a random variable X is of type III with μ = 0, i.e., F(x; 0, σ, α), then
the cumulative distribution function of Y = ln X is of type I, F(y;− ln σ, 1

α
).

B.3 The Generalized Pareto Distribution

The generalized extreme value distribution can be used to model block maxima,
but it may be argued that this approach does not utilize all available data. If other
data than the block maxima are available, most of the information at hand is actually
disregarded in the extreme value analysis. An alternative approach to model extremes
is to use threshold models that include all values above a defined threshold, not
only the block maxima. The distribution of the excesses above the threshold would
consequently have as distribution function a member of the generalized Pareto family
of distributions. Let X1, X2, . . . , Xn be a series of independent random variables with
common distribution function F and

Mn = max {X1, . . . , Xn} .

Assume F satisfies the extremal types theorem, i.e., if for large n,

Pr{Mn ≤ x} ≈ G(x) = e
−
[
1+ξ

(
x−μ
σ

)]−1/ξ

for some μ, σ > 0, and ξ . Then, for large enough u, the distribution function of
Y = (X − u), conditional on X > u, will be approximately

H(y) = 1 −
(

1 + ξ y

σ̃

)−1/ξ

for y > 0 and (1 + ξ y/σ̃ ) > 0
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where
σ̃ = σ + ξ(u − μ)

This family of distributions is called the generalized Pareto family of distributions.
In other words, for processes where block maxima have an approximately general-
ized extreme value distribution G, then the threshold excesses have a corresponding
approximate distribution within the generalized Pareto family. The parameters of
the generalized Pareto distribution of the threshold excesses are determined by the
parameters of the associated generalized extreme value distribution of the block max-
ima. In particular, the parameter ξ is the same for the two distributions, and σ̃ are
determined from the parameters of the GEV distribution.

The special case for ξ = 0, which could be interpreted as the limit ξ → 0,
corresponds to an exponential distribution with parameter 1/σ̃ :

H(y) = 1 − e−y/σ̃ for y > 0

B.3.1 The Poisson-GPD Model

Threshold models are often used in conjunction with the Poisson process, where
the occurrence of an extreme event, i.e., above a certain threshold, is modeled as a
Poisson process, and given an extreme event, the threshold exceedance is modeled
according to the generalized Pareto distribution. The Poisson-GPD model combines
the information of the excess values and the number of exceedances of a fixed thresh-
old u in the following way:

1. Number of exceedences N ∼ Poisson(λ)
2. Conditional on N the excess values Y1, . . . Yn are iid from the Generalized Pareto

distribution

There is a close relationship between the GEV and the Poisson-GPD models and
this is illustrated by finding the distribution of the maxima of the process described
by the Poisson-GPD model (assuming x > u):

Pr(Mn ≤ x) = Pr(Y1, . . . , Yn ≤ x − u)

= Pr(N = 0)+
∞∑

n=1

Pr(N = n) [Pr(Yi ≤ x − u)]n

= e−λ +
∞∑

n=1

λn

n! e−λ
[

1 − (1 + ξ
x − u

σ
)−1/ξ

]n

=
∞∑

n=0

[
λ
(
1 − (1 + ξ x−u

σ
)−1/ξ

)]n

n! e−λ

= e−λ

e−λ(1−(1+ξ x−u
σ
)−1/ξ )

∞∑

n=0

[
λ
(
1 − (1 + ξ x−u

σ
)−1/ξ

)]n

n! e−λ(1−(1+ξ x−u
σ
)−1/ξ

)

= e−λ(1+ξ x−u
σ
)−1/ξ
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This is exactly the GEV distribution and the two approaches give the same
distribution for the (block) maxima. The relationship between the parameters of
the Poisson-GPD model and the GEV model are

σ = ψ + ξ(u − μ)

λ =
(

1 + ξ
u − μ

ψ

)−1/ξ

where ψ is the scale parameter of the GEV-distribution.
This theory is based on an assumption of iid exceedances, and there are gen-

erally two types of violations to these assumptions, i.e., different F’s (e.g., due to
seasonality), and dependence between exceedances.

B.4 Extreme Values of Dependent Sequences

One common assumption for the Poisson process and for extremes to be distributed
according to the generalized extreme value distribution, and hence for threshold
excesses to be distributed according to the generalized Pareto distribution, is that the
underlying process consists of a sequence of independent random events. However,
in reality this assumption may not hold true. Considering waves for example, it
cannot be assumed that the occurrence of different waves are independent. Surely,
during a storm there will be more frequent waves and more extreme waves than in
calm weather, so some temporal dependence seems inevitable. Spatial dependencies
would also presumably exist. This suggests that modeling extreme waves as Poisson
processes or using the generalized extreme value distribution are not ideal approaches
and alternative approaches may represent potential for model improvement. In the
following, some basics for modeling the maxima of dependent sequences will be
outlined.

B.4.1 Maxima of Stationary Dependent Sequences

Even though it may not be assumed that a sequence of events are independent in
many cases, it is more likely that long-range independence of extreme events is a
valid assumption. That is, two events Xi > u and X j > u will be approximately
independent if the threshold u is high enough and the times ti and t j , at which Xi

and X j occur, are far enough apart. If this is the case, only short-range dependencies
may be considered. For extreme waves, this could for example be interpreted as
dependency between extreme waves during one and the same storm but independence
between the occurrence of extreme waves in different storms that are distant in time
and space, which may be a reasonable assumption.
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If this condition is fulfilled, i.e., that long-range dependencies of extremes are
weak, the maxima of the stationary series will approximately follow a distribution
within the generalized extreme value family. Moreover, the limiting distribution of
maxima of a stationary series where this condition is fulfilled can be related to the
limiting distribution of the maxima of a series of independent random variables with
the same marginal distribution by an extremal index θ , as n → ∞. Therefore, the
generalized extreme value distribution can still be used to model block maxima for
stationary series, as long as long-term dependencies are weak.

For modeling of threshold exceedances, however, where short-range dependencies
could mean that threshold excesses tend to occur in groups, it is not as straightforward.
One approach to handle such dependencies of threshold exceedances is to use the
method of de-clustering in conjunction with the generalized Pareto distribution:

1. Find an empirical rule to define clusters of exceedances
2. Identify the maximum excess within each cluster
3. Now, assuming cluster maxima to be independent, with conditional excess dis-

tribution given by the generalized Pareto distribution
4. Fit the generalized Pareto distribution to the cluster maxima.

For ocean waves, the interpretation of a cluster of exceedances could be extreme
waves in one and the same storm, and only the highest wave in a storm is used.
Different clusters would be construed as separate storms as long as the temporal
and spatial separation is sufficiently large. Hence, if two distinctive storms can be
assumed independent, then the different cluster-maxima will be independent and
the GPD would be reasonable for adequate clustering of maxima. However, in real-
ity, seasonal effects introduce dependencies between individual storms, and hence
between cluster maxima, and such effects might have to be adjusted in order to defend
the approximation of the Poisson-GPD model.

B.5 Non-Stationary Generalized Extreme Value Model

In non-stationary processes, where characteristics change systematically over time,
the simple assumptions that were made in the derivation of the extreme value char-
acteristics are violated. Non-stationarity may for example be in the form of cyclic
variations (e.g., seasonal variation in environmental processes) or as long-term trends
(e.g., trends in environmental processes due to climatic changes). The critical assump-
tion is that individual observations are independent and identically distributed, i.e.,
a constant distribution over time is assumed. However, individual observations of
a non-stationary process have distributions that changes in time and therefore, the
distributions will not be identical for the different observations. It is therefore ques-
tionable whether the use of the GEV distribution is appropriate in modeling the
maxima of non-stationary processes.

Notwithstanding, a pragmatic approach is normally adopted, where the standard
extreme value models are used as templates that may be enhanced by statistical mod-
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eling. Extremes of non-stationary processes will then be modeled using the classi-
cal extreme value models as templates, but where the non-stationarity is modeled
as non-stationarity in the appropriate distribution parameters. For the GEV family
of distributions, the non-stationarity may be modeled in the location, scale, and/or
shape parameters. Hence, by substituting μ = μ(t), σ = σ(t) and ξ = ξ(t), the
non-stationary generalized extreme value distribution, which can be used for mod-
eling the maximum at time t or the block (annual) maximum in block interval (year)
t , will take the following form, with Xt representing the block maximum in block
interval t :

Xt ∼ GEV (μ(t), σ (t), ξ(t))

or

G(xt ) = e
−
[
1+ξ(t)

(
xt −μ(t)
σ (t)

)]−1/ξ(t)

for 1 + ξ(t)
xt − μ(t)

σ (t)
> 0

If the extremal behaviour of a series is related to another variable, i.e., a covariate,
the extreme value parameters can be written as a function of these covariates and
corresponding parameters. A common way to write the non-stationary extreme value
parameters is:

θ(t) = h
(

X Tβ
)

where θ denotes either of the distribution parameters μ, σ or ξ , h is a specified func-
tion, β is a vector of parameters and X is a model vector containing the covariates1.

Reference

1. Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, London
(2001)

1 For example: the following model for the location parameter μ(t) = β0 +β1t +β2t2 would have

h as the identity function, X =
⎡

⎣
1
t
t2

⎤

⎦ and β =
⎡

⎣
β0
β1
β2

⎤

⎦ so that

μ(t) = h
(

X T β
)

=
[
1, t, t2

]
⎡

⎣
β0
β1
β2

⎤

⎦

.
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Markov Random Fields are alternatives to geostatistical approaches to modeling
spatial stochastic processes and is an example of models defined by conditional
probabilities (see e.g. [1]). The main idea is to specify the simultaneous distribution
of a vector Z = (Z1, . . . , Zn), which is normally of high dimension, through the
conditional distributions p(Zi |Z j , j �= i),∀i which are of lower dimensions. Nor-
mally, the dependence structure is simplified considerably by assuming dependence
only on some neighbours. Defining Ni as the neighborhood of i , a Markov Random
Field is defined as

P(Zi |Z j , j �= i) = P(Zi |Z j , j ∈ Ni )

In order to get a mathematically valid model, there need to be some restrictions on
the conditional distributions pi (Zi |Z j , j �= i) so that there exist a p(Z1, . . . , Zn)

such that

pi (Zi |Z j , j �= i) = p(Z1, . . . , Zn)∫
Zi

p(Z1, . . . , Zn)d Zi
= p(Z1, . . . , Zn)

p(Z1, . . . , Zi−1, Zi+1, . . . , Zn)

For example, assuming an auto-normal model

pi (Zi |Z j , j �= i) = N (μi +
∑

j∈Ni

βi j (Z j − μ j ), σ
2)

the joint density becomes

p(Z1, . . . , Zn) = 1

(2πσ 2)n/2
|B|1/2e− 1

2σ2
∑

j,k(Z j −μ j )b jk(Zk−μk )

and the following restrictions gives a legal model:

1. j ∈ Ni ⇔ i ∈ N j

2. βi j = β j i (symmetric)
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3. bi j =
⎧
⎨

⎩

1 if i = j
−βi j if i ∈ N j

0 otherwise
4. B = {

bi j
}

is positive definite

This means that the joint distribution is normal: p(Z1, . . . , Zn) = MV N (μ, σ 2 B−1).
The process is homogeneous if the μi ’s and the βi j ’s are constant:

μi = μ ∀i and

βi j = β ∀i, j

In general, consistency of a given model, p(Zi |Z j , j �= i) can be found by
assuming some fixed outcome Z∗ = (Z∗

1 , . . . , Z∗
n) and checking that

P(Z1, . . . , Zn)

P(Z∗
1 , . . . , Z∗

n)
= P(Z1, . . . , Zn)

P(Z∗
1 , . . . , Z∗

n)

P(Z1, . . . , Zn−1, Z∗
n)

P(Z1, . . . , Zn−1, Z∗
n)

= . . . . . .

= . . . . . .

=
n−1∏

i=0

P(Z∗
1 , . . . , Z∗

i , Zi+1, . . . , Zn)

P(Z∗
1 , . . . , Z∗

i−1, Z∗
i , Z∗

i+1, . . . , Zn)

=
n−1∏

i=0

P(Zi+1|Z∗
1 , . . . , Z∗

i , Zi+2, . . . , Zn)

P(Z∗
i+1|Z∗

1 , . . . , Z∗
i , Zi+2, . . . , Zn)

⇒ P(Z1, . . . , Zn) = P(Z∗
1 , . . . , Z∗

n)

n−1∏

i=0

P(Zi+1|Z∗
1 , . . . , Z∗

i , Zi+2, . . . , Zn)

P(Z∗
i+1|Z∗

1 , . . . , Z∗
i , Zi+2, . . . , Zn)

.

Restrictions to the possible functions that give legal models are invariance with
respect to permutations of variables and invariance with respect to reference state
Z∗. There is still a need for the constant P(Z∗

1 , . . . , Z∗
n), which can be obtained by

simulation.

C.1 The Hammersley-Clifford Theorem

Assume a Markov random field, X = (X1, . . . , Xn), i.e., a random field with the
property P(xi |x j , j �= i) = P(xi |x j , j ∈ Ni ), with finite state-space and where
all configurations are possible (i.e., P(X1, . . . , Xn) > 0 ∀ x1, . . . xn). Also assume
some reference point P(0, . . . , 0) > 0. Some terminology is needed and a clique is
defined as a subset of sites such that all members are neighbors. Now, define

q(x) = log
P(x)
P(0)

⇒ P(x) = P(0)eq(x)
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and claim that there exist functions gi (xi ), gi j (xi , x j ), gi jk(xi , x j , xk), etc. so that

q(x) =
∑

i

xi gi (xi )+
∑

i< j

xi x j gi j (xi , x j )+
∑

i< j<k

xi x j xk gi jk(xi , x j , xk)+ . . .

+ x1x2 . . . xng1,2,...,n(x1, x2, . . . , xn)

Hence, the Hammersley-Clifford theorem for a Markov Random Field becomes:

gi j ...s(x1, x2, . . . , xs) is non-zero if and only if {i, j, . . . , s} forms a clique.

The importance of this theorem is that it enables us to write down the joint probability
distribution for any Markov Random Fields, e.g.,:

P(x) = Ceq(x) = Ce
∑

i xi gi (xi )+∑
i∼ j xi x j gi j (xi ,x j )

which corresponds to P(xi |x j , j �= i) = P(xi |x j , j ∈ Ni ).

C.2 Auto-Models

One particular class of models are so-called auto-models. These have constant gi j -
functions and are on the form

q(x) =
∑

i

xi gi (xi )+
∑

i< j

βi j xi x j

where βi j = 0 if i and j are not neighbours. Some examples of such models are the
auto-normal model, the auto-logistic model and the auto-Poisson model as defined
below.

– Auto-normal model:

pi (Zi |Z j , j �= i) = N (μi +
∑

j∈Ni

βi j (Z j − μ j ), σ
2)

– Auto-logistic model: For binary data, Zi ∈ {0, 1},

P(Zi = 1|Z j , j �= i) = eαi +∑
j∈Ni

βi j Z j

1 + eαi +∑
j∈Ni

βi j Z j

– Auto-Poisson model:

Zi |Z j , j �= i ∼ Poisson(μi )

μi = eαi +∑
j∈Ni

βi j Z j
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It turns out that the auto-Poisson model is not very useful due to some restrictions
on the β’s (we need βi j < 0), and a more reasonable model for a counting variable
Z could be, with Zi the count in region i and Xi the intensity in region i :

{Xi } an Auto-normal process and

Zi ∼ Poisson(eXi )

Another example of a particular model is the Potts model, defined by

P(x) ∝ e
∑

i αxi + 1
2β

∑
i
∑

j∈Ni
I (xi =x j )

C.3 Inference in Markov Random Fields

Inference in Markov Random Fields is related to the problem of estimating the model
parameters θ given observations x , where we have a model for X:

X ∼ P(x; θ) = C(θ)F(x; θ)

Typically, the joint distribution of X is possible to calculate up to a proportionality
constant, but the proportionality constant, which is a function of θ may be difficult to
calculate. This makes maximum likelihood difficult; if we are not able to calculate
C(θ), the maximum likelihood estimator is not easily obtained:

θ̂M L = arg max
θ

C(θ)F(x; θ)

Monte Carlo estimation of C(θ) is possible, but some alternative approaches have
been proposed, to be briefly outlined in the following. The following approaches to
parameter estimation of Markov Random Fields are briefly outlined below:

1. Coding methods
2. Pseudo-likelihood
3. Maximum likelihood for Gaussian processes
4. Maximum likelihood in general (Monte Carlo ML)
5. Bayesian methods.

C.3.1 Coding Methods

We consider observations x on a grid and assume a first-order dependence structure.
We can then divide the observations in two parts, one containing the odd points and
one with the even points with the two subsets referred to as x1 and x2 respectively.
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Hence, the joint distribution of x can be written as

P(x; θ) = p(x1|x2, θ)p(x2; θ)

It is then suggested to neglect the last term and use p(x1|x2, θ) as the likelihood
function of the odd points (and similarly for the even points). We also have that given
x2, all the x1 are independent (and vice verse), and it is possible to write down the
joint density for the even (or odd) points. Assuming a first-order Markov Random
Field and letting xi ∈ x1 (so that x j ∈ Ni ⇒ x j ∈ x2) we have the conditional
distribution for each individual odd point, conditioned on the even points:

p(xi |x j , j �= i) = p(xi |x2)

Now, since all x1 are independent conditional on x2, we have an exact expression for
the likelihood function of the odd (or even) points

L̃(θ) = p(x1|x2, θ) =
∏

i∈I 1

p(xi |x2; θ)

The value of θ that maximizes this expression is an estimator for θ :

θ̂coding = arg max
θ

L̃(θ)

This is normally easy to calculate, and we may obtain similar estimators based on the
odd and even points respectively. However, it is noted that the uncertainty measures
obtained from coding methods are unreliable.

C.3.2 Pseudo-Likelihood

In the coding method described above we used

P(x; θ) = p(x1|x2, θ)p(x2; θ)

and ignored the information in p(x2; θ). This gave two estimators for θ based on
either the odd or the even points, conditioned on the others.

θ̂coding = arg max
θ

p(x1|x2; θ)
θ̂2

coding = arg max
θ

p(x2|x1; θ)

The pseudo-likelihood approach extends this method and tries to combine these two
estimators to get better estimates by simply multiplying them together:
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θ̂pseudoL = arg max
θ

p(x1|x2; θ)p(x2|x1; θ)
= arg max

θ

∏

i

p(xi |x j , j �= i; θ)

where
∏

i p(xi |x j , j �= i; θ), the product of all one-dimensional conditional distribu-
tions, is referred to as the pseudo-likelihood. Maximum pseudo-likelihood estimates
are then the values that maximizes this pseudo-likelihood. This is normally easy
to compute and is easily generalized to other spatial fields. However, the sampling
properties are normally not known and standard approximations for standard errors
and likelihood ratio tests for model comparison are not valid for pseudo-likelihoods.

C.3.3 Maximum Likelihood in Gaussian Markov Random Fields

We now assume an auto-normal process:

xi |x j , j �= i ∼ N

(

μ̃i +
∑

j∈Ni

βi j (x j − μ̃ j ), σ
2
i

)

Now, also the full distribution of X is Gaussian with an explicitly defined normalizing
constant. We have

X ∼ MV N (μ, �) = 1

(2π)n/2|�|1/2 e− 1
2 (X−μ)T�−1(X−μ)

The parameters of this model are θ = (μ1, . . . , μn, {βi j }, {σ 2
i }) where we have

μ = μ(θ) and � = �(θ). Now, we may write the exact likelihood function
L(θ) = p(x; θ) where nothing is unknown and this may in principle be optimized
with numerical optimization. However, for large datasets (n large) this becomes com-
putationally expensive due to the computation of �−1(x − μ) and the determinant
|�|.

In order to facilitate the computation of the exact likelihood function, one may
introduce the precision matrix as the inverse of the covariance matrix, and this turns
out to be sparse. Hence, computing the likelihood becomes easier if modeling through
the precision matrix rather than using covariance functions. The fact that the precision
matrix is sparse can be demonstrated as follows: First, divide x into x1 and everything
else, denoted x−1:

x =
(

x1
x−1

)

∼ MV N

((
μ1
μ2

)

,

(
�11 �12
�21 �22

))

Then, use the general results for the conditional mean and variance for Gaussian
processes and compare with the conditional mean and variance from the auto-normal
model. First, the mean is:
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E
[
x1|x−1

] = μ1 +�12�
−1
22 (x−1 − μ̃2)

= μ̃1 +
∑

j∈N1

β1 j (x j − μ̃ j )

which gives that �12�
−1
22 equals βi j if j ∈ Ni or else is 0. Hence, we have that

�12�
−1
22 = βi j I ( j ∈ Ni )

Furthermore, looking at the variance, we see that

Var
[
x1|x−1

] = �11 −�12�
−1
22 �21 = σ 2

1

Now, for a general matrix, we take the inverse and see that this can be written on the
following form

(
�11 �12
�21 �22

)−1

=
[
(�11 −�12�

−1
22 �21)

−1 −Q11�12�
−1
22

−Q22�21�
−1
11 (�22 −�21�

−1
11 �12)

−1

]

We now see that the off-diagonal elements are only non-zero for i, j pairs that are
neighbors, and the diagonal terms are the inverse of the conditional variances. The
non-zero off-diagonal elements are identified to be −βi j . Hence, if we define the
precision matrix as the inverse of the covariance matrix, Q = �−1, then Q will
be sparse (containing many zero-elements). How sparse it will be depends on the
dependence structure, and the precision matrix will be on the form

Q = �−1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
σ 2

1
−β12

σ 2
1

I (1 ∼ 2) . . . . . . −β1n

σ 2
1

I (1 ∼ n)

−β21

σ 2
2

I (2 ∼ 1) 1
σ 2

2
−β23

σ 2
2

I (2 ∼ 3)
...

...
. . .

...

−βi j

σ 2
i

I (i ∼ j) 1
σ 2

i
−βik

σ 2
i

I (i ∼ k)

. . .

. . . . . . . . . 1
σ 2

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now, the computational expensive expressions in the likelihood function can be
rewritten in terms of the precision matrix, which is sparse:

(x − μ)TΣ−1(x − μ) = (x − μ)T Q(x − μ) =
∑

i∼ j

(xi − μi )Qi j (x j − μ j )
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and 1
|Σ | = |Q|. The determinant is now of a sparse matrix, which is less computational

intensive to compute.
One procedure for calculating the determinant of a matrix Q is to use the Cholesky

decomposition L. The Cholesky decomposition L is the lower triangular matrix so
that

Q = LLT

The determinant of Q may be found by |Q| = |L|2 = (
∏

i Lii )
2, where the determi-

nant of L is equal to the square of the product of the diagonal elements of the matrix
L since this is a triangular matrix. Hence, it might be possible to optimize the likeli-
hood function expressed in terms of the precision matrix, and given L, simulations
from p(x; θ) are possible.

C.3.4 General Maximum Likelihood (simulated ML)

Now, assuming a general model, the likelihood function can typically be determined
up to a normalizing constant, i.e.,

L(θ) = p(x; θ) = C(θ)F(x; θ)

where F(x, θ) is computable, but where C(θ) = 1∫
F(x;θ)dx is a function of θ and

normally not computable. However, one may assume some specific value θ0 of θ ,
and rather consider the ratio C(θ0)

C(θ) :

C(θ0)

C(θ)
= C(θ0)

∫

F(x; θ)dx = C(θ0)

∫
F(x; θ)
F(x; θ0)

F(x; θ0)dx

=
∫

F(x; θ)
F(x; θ0)

p(x; θ0)dx = E p(x;θ0)

[
F(x; θ)
F(x; θ0)

]

≈ 1

M

M∑

m=1

F(Xm; θ)
F(Xm; θ0)

where X1, . . . ,XM are simulated from p(x; θ0). This can then be used to estimate
the likelihood-ratio of θ0 to θ , where X denote the actual data that are observed

L(θ0)

L(θ)
= C(θ0)F(X; θ0)

C(θ)F(X; θ) ≈ 1

M

M∑

m=1

F(Xm; θ)
F(Xm; θ0)

F(X; θ0)

F(X; θ)

Since F(x; θ) is computable for any θ , this likelihood ratio is possible to compute for
all θ and a maximum likelihood estimator may be obtained by numerical optimization
(actually, by maximizing L(θ)

L(θ0)
).
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C.3.5 Bayesian Methods

The general idea of Bayesian methods is to introduce a prior distribution on the para-
meters π(θ) and to make inference from the posterior distribution given observations
X

π(θ |X) ∝ π(θ)p(X; θ)

If now p(X; θ) is computable, Bayesian analysis can be performed by simulating
from π(θ |X), e.g., by MCMC methods (Gibbs sampler, Metropolis-Hastings, etc.).
If, on the other hand, simulation from p(X; θ) is only possible through MCMC, it is
still an open question how to best deal with this.

Reference

1. Smith, R.L.: Environmental statistics. University of North Carolina (2001). http://
www.stat.unc.edu/postscript/rs/envnotes.pdf. Accessed 25 Aug 2013
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Appendix D
Derivation of the Full Conditionals of the
Bayesian Hierarchical Space-Time Model
for Significant Wave Height

In this appendix, the derivation of the full conditional distributions, needed for the
Gibbs sampler, will be outlined. The full conditionals derived in the following pertain
to the model alternatives with one temporal noise term, but the full conditionals for
the other model alternatives are derived in a similar way. Vectors will be written in
bold, and the notation P(V |·) will be used to represent the conditional distribution
of V conditioned on all other random quantities, i.e., the full conditionals. How to
sample from a multi-normal distribution is outlined in appendix E.

Spatial data will be treated as a vector of size X = 153 × 1, so that for example
Zt , θt ,μ are all column vectors of size X . For the temporal components without
spatial description, e.g., Mt and Tt , a vector of corresponding size may be obtained
by multiplication by a vector of ones, 1, of size X . In the following, e.g., Mt is
assumed to be interpreted as 1Mt in the instances where the 1 is not explicitly
written. The transpose of a matrix or vector Vs will be denoted V′.

D.1 Conditional Distribution for H(t)

Since there are no random noise term in Eq. 3.5, the full conditional distribution of
Ht reduces to just a single, fixed value, at each location, x and time, t :

P(Ht |·) = μ + θt + Mt (D.1)

Hence, determining μ, θt and Mt is equivalent to determining Ht = H(x, t) and
there is no need to consider these parameters further herein.

E. Vanem, Bayesian Hierarchical Space-Time Models with 249
Application to Significant Wave Height, Ocean Engineering & Oceanography 2,
DOI: 10.1007/978-3-642-30253-4, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-30253-4_3
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D.2 Conditional Distribution for μ

From the model specification, the following conditional distributions are obtained
directly for all the parameters with dependence with μ

μ|μ0, aφ, aλ, σ 2
μ ∼ MV N

(
μ0, σ

2
μA−1

μ

)

Zt |μ, θt , Mt , σ
2
Z ∼ MV N

(
μ + θt + 1Mt , Iσ 2

Z

) (D.2)

where the X × X precision matrix Aμ has elements (see e.g., [2])

ai j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j
−aφ for i, j lateral neighbours
−aλ for i, j longitudinal neighbours,
0 otherwise

(D.3)

I is the identity matrix and 1 is a X × 1 vector of ones. Aμ must be positive definite,
and sufficient conditions are that both aφ and aλ are positive and that aφ + aλ ≤ 1

2 .
(see e.g., [1]).

The interest is in the full conditional P(μ|·) and by applying Bayes formula and
separating out the Zt ’s from the remaining parameters, henceforth denoted by (·)−Z

the following is obtained

P(μ|·) = P(μ|Z1, . . . , ZT , (·)−Z) ∝ P(
T⋂

t=1

ZT |μ, (·)−Z)P(μ|(·)−Z)

Now, conditioned on the underlying processes, the observations are independent,
and the full conditional distribution for μ is proportional to a product of the known
conditional distributions in Eq. D.2

P(μ|·) ∝ P(μ|μ0, aφ, aλ, σ 2
μ)

T∏

t=1

P(Zt |μ, θ t , Mt , σ
2
Z )

∝ e
− 1

2σ2
μ
((μ−μ0)

′ Aμ(μ−μ0))

× e
− 1

2σ2
Z
(
∑

t (Zt −μ−θ t −1Mt )
′(Zt −μ−θ t −1Mt ))

∝ e
− 1

2

[

μ′
(

1
σ2
μ

Aμ+ T
σ2

Z
I
)

μ−2μ′
(

1
σ2
μ

Aμμ0+ 1
σ2

Z

∑
t (Zt −θ t −1Mt )

)]

which is identified as another multi-normal distribution with the precision matrix
between μ′ and μ and the product of the precision matrix and the expectancy-vector
as the factor after 2μ′. Thus,
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μ|· ∼ MV N

⎡

⎣

(
1

σ 2
μ

Aμ + T

σ 2
Z

I

)−1 (
1

σ 2
μ

Aμμ0 + 1

σ 2
Z

∑

t

(Zt − θ t − 1Mt )

)

,

(
1

σ 2
μ

Aμ + T

σ 2
Z

I

)−1
⎤

⎦

(D.4)

D.3 Conditional Distribution for θ(t)

D.3.1 P(θt |·)for t = 1, . . . , T − 1

The hierarchical model gives

θ t |b0, θ t−1, bN , bE , bS, bW , σ
2
θ ∼ MV N

(
Bθ t−1, Iσ 2

θ

)

θ t+1|b0, θ t , bN , bE , bS, bW , σ
2
θ ∼ MV N

(
Bθ t , Iσ 2

θ

)

Zt |μ, θ t , Mt , σ
2
Z ∼ MV N

(
μ + θ t + 1Mt , Iσ 2

Z

) (D.5)

where the matrix B is a X × X matrix with elements

bi j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b0 if i = j
bN for j = neighbours to the North of i
bE for j = neighbours to the East of i
bS for j = neighbours to the South of i
bW for j = neighbours to the West of i
0 otherwise

(D.6)

Acknowledging that, conditioned on the process θ t , the processes Zt and θ t+1
are independent, the full conditional becomes

P(θ t |·) ∝ P(θ t |b0, θ t−1, bN , bE , bS, bW , σ
2
θ )P(θ t+1|b0, θ t , bN , bE , bS, bW , σ

2
θ )

× P(Zt |μ, θ t , Mt , σ
2
Z )

∝ e
− 1

2

[

θ ′
t

(
1
σ2
θ

(I+B′ B)+ 1
σ2

Z
I
)

θ t −2θ ′
t

(
1
σ2
θ

(Bθ t−1+B′θ t+1)+ 1
σ2

Z
(Zt −μ−1Mt )

)]

Hence, by the same argument as above, the full conditional distribution of θ t , for
t = 1, . . . , T − 1 is the following multivariate normal distribution:

θ t |· ∼ MV N

⎡

⎣

(
1

σ 2
θ

(I + B′ B)+ 1

σ 2
Z

I

)−1 (
1

σ 2
θ

(Bθ t−1 + B′θ t+1)+ 1

σ 2
Z

(Zt − μ − 1Mt )

)

,

(
1

σ 2
θ

(I + B′ B)+ 1

σ 2
Z

I

)−1
⎤

⎦ (D.7)
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D.3.2 P(θT |·)

From the model specification:

θT |b0, θT −1, bN , bE , bS, bW , σ
2
θ ∼ MV N

(
BθT −1, Iσ 2

θ

)

ZT |μ, θT , Mt , σ
2
Z ∼ MV N

(
μ + θT + 1Mt , Iσ 2

Z

) (D.8)

and parallel to the above,

P(θT |·) ∝ P(θT |b0, θT −1, bN , bE , bS, bW , σ
2
θ )P(ZT |μ, θT , Mt , σ

2
Z )

∝ e
− 1

2

[

θ ′
t

(
1
σ2
θ

I+ 1
σ2

Z
I
)

θ t −2θ ′
t

(
1
σ2
θ

BθT −1+ 1
σ2

Z
(Zt −μ−1Mt )

)]

Thus, the full conditional for θT becomes

θT |· ∼ MV N

⎡

⎣

(
1

σ 2
θ

I + 1

σ 2
Z

I

)−1 (
1

σ 2
θ

BθT −1 + 1

σ 2
Z

(ZT − μ − 1MT )

)

,

(
1

σ 2
θ

I + 1

σ 2
Z

I

)−1
⎤

⎦

(D.9)

D.3.3 P(θ0|·)

The model and prior specifications give

θ0|ξθ0 , σ
2
θ0

∼ MV N
(

1ξθ0 , Iσ 2
θ0

)

θ1|b0, θ0, bN , bE , bS, bW , σ
2
θ ∼ MV N

(
Bθ0, Iσ 2

θ

) (D.10)

and in a similar manner to the above, the following is obtained for the full conditional

P(θ0|·) ∝ P(θ0|ξθ0 , σ
2
θ0
)P(θ1|b0, θ0, bN , bE , bS, bW , σ

2
θ )

∝ e
− 1

2

[

θ ′
0

(

1
σ2
θ

B′ B+ 1
σ2
θ0

I

)

θ0−2θ ′
0

(

1
σ2
θ

B′θ1+ 1
σ2
θ0

1ξθ0

)]

Hence, the full conditional for θ0 becomes

θ0|· ∼ MV N

⎡

⎣

(
1

σ 2
θ

B′ B + 1

σ 2
θ0

I

)−1 (
1

σ 2
θ

B′θ1 + 1

σ 2
θ0

1ξθ0

)

,

(
1

σ 2
θ

B′ B + 1

σ 2
θ0

I

)−1
⎤

⎦

(D.11)
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D.4 Conditional Distribution for μ0

In order to derive the conditional distribution for μ0, first define the vector μ0L =(
μ0,1,μ0,2,μ0,3,μ0,4,μ0,5,μ0,6

)′. The deterministic relation μ0 = Pμ0L , with P
the X × 6 trend design matrix with rows

(
1,m(x), n(x),m(x)2, n(x)2,m(x)n(x)

)

for x = 1, . . . , X = 153, holds and the model and prior specifications give the
conditional distributions in Eq. D.12.

μ|μ0L, aφ, aλ, σ 2
μ ∼ MV N

(
Pμ0L, σ

2
μA−1

μ

)

μ0L |ξμ0 , σ
2
μ0

∼ MV N
(
ξμ0 , Iσ 2

μ0

) (D.12)

Bayes formula again gives the full conditionals in a similar manner as above:

P(μ0L |·) ∝ P(μ|μ0L , aφ, aλ, σ
2
μ)P(μ0L |ξμ0 , σ

2
μ0
)

∝ e
− 1

2

[

μ0L
′
(

1
σ2
μ

P ′ Aμ P+ 1
σ2
μ0

I

)

μ0L−2μ0L
′
(

1
σ2
μ

P ′ Aμμ+ 1
σ2
μ0
ξμ0

)]

Hence, the full conditional for μ0 becomes

μ0L |· ∼ MV N

⎡

⎣

(
1

σ 2
μ

P ′ Aμ P + 1

σ 2
μ0

I

)−1 (
1

σ 2
μ

P ′ Aμμ + 1

σ 2
μ0

ξμ0

)

,

(
1

σ 2
μ

P ′ Aμ P + 1

σ 2
μ0

I

)−1
⎤

⎦

(D.13)

D.5 Conditional Distribution for b0, bN, bE, bS, and bW

The specification of the model and prior distributions give directly, by defining the
vector b = (b0, bN , bE , bS, bW )

′,

θ t |b0, θ t−1, bN , bE , bS, bW , σ
2
θ ∼ MV N

(
Bθ t−1, Iσ 2

θ

)

b|ξb, σ
2
b ∼ MV N

(
ξb, Iσ 2

b

) (D.14)

Conditioned on b, θ t is only dependent on θ t−1 and the full conditional of b becomes

P(b|·) ∝ P(b|ξb, σ
2
b )

T∏

t=1

P(θ t |b0, θ t−1, bN , bE , bS, bW , σ
2
θ )

∝ e
− 1

2σ2
b
((b−ξb)

′(b−ξb))
e
− 1

2σ2
θ

(
∑

t (θ t −Bθ t−1)
′(θ t −Bθ t−1))

In order to rewrite this, we need to find an X × 5-matrix Jθ ,t−1 so that

Bθ t−1 = Jθ t−1b
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Since, Bθ t−1 = b0θ t−1 + bN θ N
t−1 + bEθ E

t−1 + bSθ S
t−1 + bW θW

t−i , it is easily seen
that, if Jθ t−1 is the matrix with rows θ t−1, θ

N
t−1, θ

E
t−1, θ

S
t−1, and θW

t−1 respectively, the
equation above holds, and by defining the J D-matrices, for D = N , E, S,W , to be
the X x X matrices with ones along the diagonal corresponding to the bD coefficients
in B and zeros elsewhere, then θ D

t−1 = J Dθ t−1 and this can be

Jθ t−1 = (θ t−1, J N θ t−1, J Eθ t−1, J Sθ t−1, J W θ t−1)

where now each of the elements in the vector above is actually an X -dimensional
standing vector, defining the rows in the X × 5 dimensional matrix. The full condi-
tional for b can now be written as

P(b|·) ∝ e
− 1

2σ2
b
((b−ξb)

′(b−ξb))
e
− 1

2σ2
θ

(
∑

t

(
θ t −Jθ t−1 b

)′(
θ t −Jθ t−1 b

))

∝ e
− 1

2

[

b′
(

1
σ2

b
I+ 1

σ2
θ

∑
t J′

θ t−1
Jθ t−1

)

b−2b′
(

1
σ2

b
ξb+ 1

σ2
θ

∑
t J′

θ t−1
θ t

)]

Hence, the full joint conditional for b becomes

b|· ∼ MV N

⎡

⎢
⎣

⎛

⎝ 1

σ2
b

I + 1

σ2
θ

∑

t
J′
θ t−1

Jθ t−1

⎞

⎠

−1 ⎛

⎝ 1

σ2
b

ξb + 1

σ2
θ

∑

t
J′
θ t−1

θ t

⎞

⎠ ,

⎛

⎝ 1

σ2
b

I + 1

σ2
θ

∑

t
J′
θ t−1

Jθ t−1

⎞

⎠

−1
⎤

⎥
⎦

(D.15)

D.6 Conditional Distribution for aφ and aλ

The following is given by the model specification

μ|μ0, aφ, aλ, σ 2
μ ∼ MV N

(
μ0, σ

2
μA−1

μ

)

(aφ, aλ)|ξa, σ
2
a ∼ BV N

(
1ξa, Iσ 2

a

) (D.16)

which gives the full conditional joint distribution of aφ and aλ

P(aφ, aλ|·) ∝ P(aφ, aλ|ξa, σ
2
a )P(μ|μ0, aφ, aλ, σ

2
μ)

∝ e
− 1

2σ2
a

[
(aφ−ξa)

2+(aλ−ξa)
2
]

1

|Aμ|−1/2 e
− 1

2σ2
μ
(μ−μ0)

′ Aμ(μ−μ0)

However, due to the appearance of the determinant |Aμ|, which contains aφ and
aλ, this distribution is difficult to sample from and a Metropolis-Hastings step is
introduced. As proposal distribution, the pseudo conditional distribution for μ is
introduced and replaced with the conditional distribution above:
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P pseudo(μ|μ0, aφ, aλ, σ
2
μ) ∝

X∏

i=1

p(μ(xi )|μ(x j ), j �= i;μ0, aφ, aλ, σ
2
μ)

where the μ(xi )’s, conditional on all other μ(x j ) are, as specified by the model,
univariate normally distributed with expectation

μ0(xi )+ aφ
(
μ(x N

i )− μ0(x
N
i )+ μ(x S

i )− μ0(x
S
i )
)

+ aλ
(
μ(x E

i )− μ0(x
E
i )+ μ(xW

i )− μ0(x
W
i )

)

and variance σ 2
μ. Now, the following proposal distribution Q(aφ, aλ|·) can be used

within the Metropolis Hastings step:

Q(aφ, aλ|·)

∝ e
− 1

2

(
1
σ2

a
+ 1
σ2
μ

∑
x

(
μ(x N )−μ0(x

N )+μ(x S)−μ0(x
S)
)2
)

a2
φ

× e
aφ

(
1
σ2

a
ξa+ 1

σ2
μ

∑
x

(
μ(x N )−μ0(x

N )+μ(x S)−μ0(x
S)
)(

μ(x)−μ0(x)−aλ
(
μ(x E )−μ0(x

E )+μ(xW )−μ0(x
W )

))
)

× e
− 1

2

(
1
σ2

a
+ 1
σ2
μ

∑
x

(
μ(x E )−μ0(x

E )+μ(xW )−μ0(x
W )

)2
)

a2
λ

× e
aλ

(
1
σ2

a
ξa+ 1

σ2
μ

∑
x

(
μ(x E )−μ0(x

E )+μ(xW )−μ0(x
W )

)(
μ(x)−μ0(x)−aφ

(
μ(x N )−μ0(x

N )+μ(x S)−μ0(x
S)
))
)

A bivariate normal distribution can be written on the form,

f (x, y) ∝ e− 1
2

[
x2qx +y2qy+2xyqxy−2x(μx qx +μyqxy)−2y(μyqy+μx qxy)

]

where symmetry requires that qxy = qyx . Now, comparing this expression with the
expression for the pseudo-distribution above, it is seen that the bivariate pseudo-
distribution for aφ and aλ have the following elements in its precision matrix Qφ,λ,

q̃φ =
(

1

σ2
a

+ 1

σ2
μ

∑

x

(
μ(x N )− μ0(x

N )+ μ(x S )− μ0(x
S )
)2

)

q̃λ =
(

1

σ2
a

+ 1

σ2
μ

∑

x

(
μ(x E )− μ0(x

E )+ μ(xW )− μ0(x
W )

)2
)

q̃φλ = 1

σ2
μ

∑

x

(
μ(x N )− μ0(x

N )+ μ(x S )− μ0(x
S )
) (

μ(x E )− μ0(x
E )+ μ(xW )− μ0(x

W )
)

and expectations,

μ̃φ = q̃λ
q̃φ q̃λ−q̃2

φλ

(
1
σ 2

a
ξa + 1

σ 2
μ

∑
x

(
μ(x N )− μ0(x

N )+ μ(x S)− μ0(x
S)
)
(μ(x)− μ0(x))

)

− q̃φλ
q̃φ q̃λ−q̃2

φλ

(
1
σ 2

a
ξa + 1

σ 2
μ

∑
x

(
μ(x E )− μ0(x

E )+ μ(xW )− μ0(x
W )

)
(μ(x)− μ0(x))

)
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μ̃λ = q̃φ
q̃φ q̃λ−q̃2

φλ

(
1
σ 2

a
ξa + 1

σ 2
μ

∑
x

(
μ(x E )− μ0(x

E )+ μ(xW )− μ0(x
W )

)
(μ(x)− μ0(x))

)

− q̃φλ
q̃φ q̃λ−q̃2

φλ

(
1
σ 2

a
ξa + 1

σ 2
μ

∑
x

(
μ(x N )− μ0(x

N )+ μ(x S)− μ0(x
S)
)
(μ(x)− μ0(x))

)

.

This bivariate normal distribution can now be used as proposal in the Metropolis-
Hastings step. When sampling aφ and aλ, the positive definiteness constraints of Aμ
should be kept in mind. Hence, if samples fulfill the conditions (both are positive and
the sum not greater than 0.5) they are used in a Metropolis-Hastings step. Otherwise,
they will be rejected and new proposals are drawn until a valid pair is obtained. If
the proposal has expectations outside the required area, it will be adjusted so that the
expectations fulfill the criteria before sampling.

D.7 Conditional Distribution for M t

From the model specification, the following is given for each t = 1, . . . , T

Zt |μ, θ t , M t , σ
2
Z ∼ MV N

(
μ + θ t + 1M t , Iσ 2

Z

)

M t |c, d, γ, η, σ 2
m ∼ N

(
c cos(ωt)+ d sin(ωt)+ γ t + ηt2, σ 2

m

) (D.17)

and the full conditional becomes, for each t

P(M t |·) ∝ P(M t |c, d, γ, η, σ 2
m)P(Zt |μ, θ t , M t , σ

2
Z )

∝ e
− 1

2

[(
1
σ2

m
+ X
σ2

Z

)

M t
2−2M t

(
1
σ2

m

(
c cos(ωt)+d sin(ωt)+γ t+ηt2

)+ 1
σ2

Z
1′(Zt −μ−θ t )

)]

Hence, the full conditional for M t for all t is the following univariate normal distri-
bution

M t ∼ N

⎡

⎣

(
1

σ 2
m

+ X

σ 2
Z

)−1 (
1

σ 2
m

(
c cos(ωt)+ d sin(ωt)+ γ t + ηt2

)

+ 1

σ 2
Z

1′ (Zt − μ − θ t )

)

,

(
1

σ 2
m

+ X

σ 2
Z

)−1
⎤

⎦ (D.18)

D.8 Conditional Distribution for c, d, γ , and η

It is assumed that all prior distributions are independent, so the joint prior distribu-
tion for c, d, γ , and η can be expressed in terms of a simple 4-dimensional expec-
tation vector and a 4 × 4 diagonal covariance matrix. By defining the four matrices,



Appendix D: Derivation of the Full Conditionals of the Bayesian Hierarchical 257

ξm =

⎡

⎢
⎢
⎣

ξc
ξd
ξγ
ξη

⎤

⎥
⎥
⎦, Σm =

⎡

⎢
⎢
⎣

σ 2
c 0 0 0
0 σ 2

d 0 0
0 0 σ 2

γ 0
0 0 0 σ 2

η

⎤

⎥
⎥
⎦, βm =

⎡

⎢
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c
d
γ
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⎥
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⎦ and τ t =
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⎢
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⎣
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t
t2

⎤

⎥
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⎦, the model

specification gives, for t = 1, . . . , T

M t |c, d, γ, η, σ 2
m ∼ N

(
c cos(ωt)+ d sin(ωt)+ γ t + ηt2, σ 2

m

) = N (τ ′
tβm, σ

2
m)

βm|ξc, ξd , ξγ , ξη, σ
2
c , σ

2
d , σ

2
γ , σ

2
η ∼ MV N (ξm,�m)

(D.19)

From this, the full conditional for (c, d, γ, η) can easily be derived as follows

P(c, d, γ, η|·) ∝ P(c, d, γ, η|ξc, ξd , ξγ , ξη, σ 2
c , σ

2
d , σ

2
γ , σ

2
η )

T∏

t=1

P(M t |c, d, γ, η, σ 2
m)

∝ e
− 1

2

[
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βm−2βm
′
(

�m
−1ξm+ 1

σ2
m
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t τ t M t

)]

.

Now, since �m is diagonal, its inverse is simply �m
−1 =

⎡

⎢
⎢
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⎢
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1
σ 2
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0 1
σ 2

d
0 0

0 0 1
σ 2
γ

0

0 0 0 1
σ 2
η

⎤

⎥
⎥
⎥
⎥
⎦

and the
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:
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D.9 Conditional Distribution for σ 2
Z

From the model and prior specification, the following is given

Zt |μ, θ t , M t , σ
2
Z ∼ MV N

(
μ + θ t + 1M t , Iσ 2

Z

)

σ 2
Z |αZ, βZ ∼ IG(αZ, βZ)

(D.21)

and parallel to the above, the full conditional distribution becomes

P(σ 2
Z |·) ∝ P(σ 2

Z |αZ, βZ)

T∏

t=1

P(Zt |μ, θ t , M t , σ
2
Z )

∝
(

1

σ 2
Z

) X T
2 +αZ+1

e
− 1
σ2

Z

(
βZ+ 1

2

∑
t (Zt −μ−θ t −1M t )

′(Zt −μ−θ t −1M t )
)

In other words, the full conditional distribution for σ 2
Z becomes another inverse

gamma distribution with updated parameters, i.e.,

σ 2
Z |· ∼ IG

(

αZ + X T

2
, βZ + 1

2

∑

t

(Zt − μ − θ t − 1M t )
′ (Zt − μ − θ t − 1M t )

)

(D.22)

D.10 Conditional Distribution for σ 2
μ

Similarly, the model and prior specification gives

μ|μ0, aφ, aλ, σ 2
μ ∼ MV N

(
μ0, σ

2
μA−1

μ

)

σ 2
μ|αμ, βμ ∼ IG

(
αμ, βμ

) (D.23)

which gives the following full conditional distribution for σ 2
μ

P(σ 2
μ|·) ∝ P(σ 2

μ|αμ, βμ)P(μ|μ0, aφ, aλ, σ
2
μ)

∝
(

1

σ 2
μ

)αμ+ X
2 +1

e
− 1
σ2
μ

(
βμ+ 1

2 (μ−μ0)
′ Aμ(μ−μ0)

)

Hence, the full conditional distribution of σ 2
μ is inverse gamma as follows

σ 2
μ|· ∼ IG

(

αμ + X

2
, βμ + 1

2
(μ − μ0)

′ Aμ(μ − μ0)

)

(D.24)
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D.11 Conditional Distribution for σ 2
θ

From the model and prior specification, the following is given for t = 1, . . . , T

θ t |b0, θ t−1, bN , bE , bS, bW , σ
2
θ ∼ MV N

(
Bθ t−1, Iσ 2

θ

)

σ 2
θ |αθ , βθ ∼ IG(αθ , βθ )

(D.25)

Now,

P(σ 2
θ |·) = P(σ 2

θ |θT , . . . , θ1, (·)−θ ) ∝ P(θT , . . . , θ1|σ 2
θ , (·)−θ )P(σ

2
θ |(·)−θ )

∝ P(σ 2
θ |(·)−θ )

T∏

t=1

P(θ t |θ t−1, σ
2
θ , (·)−θ )

since, conditionally on θ t−1, θ t is independent of all previous θ s . Consequently

P(σ 2
θ |·) ∝

(
1

σ 2
θ

)αθ+ X T
2 +1

e
− 1
σ2
θ

(
βθ+ 1

2

∑
t (θ t −Bθ t−1)

′(θ t −Bθ t−1)
)

and,

σ 2
θ |· ∼ IG
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αθ + X T

2
, βθ + 1

2

∑

t

(θ t − Bθ t−1)
′ (θ t − Bθ t−1)

)

(D.26)

D.12 Conditional Distribution for σ 2
m

The following is specified by the model, for all t = 1, . . . , T ,

M t |c, d, γ, η, σ 2
m ∼ N

(
c cos(ωt)+ d sin(ωt)+ γ t + ηt2, σ 2

m

)

σ 2
m |αm, βm ∼ IG(αm, βm)

(D.27)

The full conditional then becomes

P(σ 2
m |·) ∝ P(σ 2

m |αm, βm)

T∏

t=1

P(M t |c, d, γ, η, σ 2
m)

∝
(

1

σ 2
m

)αm+ T
2 +1

e
− 1
σ2

m

(
βm+ 1

2

∑
t

(
M t −c cos(ωt)−d sin(ωt)−γ t−ηt2

)2
)
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Thus,

σ 2
m |· ∼ IG

(

αm + T

2
, βm + 1

2

∑

t

(
M t − c cos(ωt)− d sin(ωt)− γ t − ηt2

)2
)

(D.28)
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Appendix E
Sampling from a Multi-normal Distribution

Many of the full conditional distributions used in this study are multi-normal, and
there is a need to draw samples from such distributions. In the following, a brief
outline of how to obtain samples from a multi-normal distribution based on a number
of independent samples from a standard normal distribution is presented.

Assume the interest is in sampling from a n-dimensional multi-normal distribution
with mean vector μ and covariance matrix � = Q−1. Q is then the n × n precision
matrix.

X ∼ MV N (μ, Q−1)

Cholesky-decomposition of the precision matrix yields

Q = LL′

where L is a lower triangular matrix with strictly positive diagonal elements and L′
denotes the transpose of L.

By expressing the mean vector by some vector a multiplied with the covariance
matrix in the following way

Q−1a = μ ⇔ a = Qμ = LL′μ

and then setting
L′μ = b ⇔ μ = (

L′)−1 b

with
Lb = LL′μ = a ⇔ b = L−1a

and letting
Y ∼ MV N (0, I),

it can easily be verified that
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X = (
L′)−1

(b + Y)

are indeed samples from the distribution X ∼ MV N (μ, Q−1). Hence, sampling
from X is achieved by determining L and and b as outlined above.

To verify that the samples stem from the correct distribution, observe that, keeping
in mind that the multi-normal distribution is completely specified by its mean vector
and covariance matrix,

E X = (
L′)−1 b = μ

CovX = (
L′)−1 L−1 = (

LL′)−1 = Q−1

As a special case for n = 1, a sample from an arbitrary normal distribution, say
x ∼ N (μ, σ 2) can be obtained from a sample from the standard normal distribution
y ∼ N (0, 1) by

x = μ+ σ y

This technique will be used extensively when sampling the various full condition-
als derived in appendix D.

E.1 Sampling from a Bivariate Normal Distribution

In order to sample from a bivariate normal distribution with means μ1 and μ2,
standard deviations σ1 and σ2, and correlation ρ, the following technique has been
employed.

1. Generate two uncorrelated standard normal variables z1 and z2.
2. Generate a correlated pair y1 and y2 from the desired bi-normal distribution by

setting

y1 = μ1 + σ1z1

y2 = μ2 + σ2

[
z1ρ + z2

√
1 − ρ2

]
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