Springer Theses
 Recognizing Outstanding Ph.D. Research

Xiao-Yu Sun

> Total Synthesis of Plakortide E and Biomimetic Synthesis of Plakortone B
(7) Springer

Springer Theses

Recognizing Outstanding Ph.D. Research

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

Xiao-Yu Sun

Total Synthesis of Plakortide E and Biomimetic Synthesis of Plakortone B

Doctoral Thesis accepted by
The Chinese University of Hong Kong

Springer

Author
Dr. Xiao-Yu Sun
Laboratory of Organic Chemistry
ETH Zürich
Wolfgang-Paulistrasse 10
ETH Hönggerberg HCI E 306
8093 Zürich
Switzerland

Supervisor
Prof. Henry N. C. Wong
Department of Chemistry
Chinese University of Hong Kong
Shatin NT
Hongkong SAR
China

ISSN 2190-5053
e-ISSN 2190-5061
ISBN 978-3-642-27194-6
DOI 10.1007/978-3-642-27195-3
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2011944750
© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Parts of this thesis have been published in the following journal article:
X.-Y. Sun, X.-Y. Tian, Z.-W. Li, X.-S. Peng, H. N. C. Wong, Chem. Eur. J. 2011, 17, 5874-5880. Reproduced with permission.

Supervisor's Foreword

This thesis describes the first total synthesis of all possible stereoisomers of the peroxide natural product plakortide E . This includes the first confirmation of the absolute configuration of natural plakortide E , based on the conversion of plakortide E to plakortone B. This transformation also suggests a biomimetic conversion of plakortide E to plakortone B .

A new synthetic approach involving palladium-catalyzed reaction of vinyl cyclopropanes with hydrogen peroxide to form highly substituted 1,2-dioxolanes was developed. A lipase-catalyzed kinetic resolution was employed to provide optically pure 1,2-dioxolane central cores. The efficient conversion of these optically pure 1,2-dioxolane central cores into four possible 3,5-cis-stereoisomers of the plakortide E structure is very interesting and challenging. The successful application of the Corey-Fuchs homologation on the framework of 1,2-dioxolane, involving a metal-halogen exchange, is particularly impressive. This pathway may be the first reported example of metal-halogen exchange on cyclic peroxides. Two palladium-mediated reactions in the presence of 1,2-dioxolanes were used during the homologation sequence: a palladium-catalyzed hydrostannylation of an alkyne and Negishi olefination. Our results may widen the synthetic scope of hindered peroxide chemistry. Furthermore, these results will be of interest to scientists interested in organic peroxides as well as in the marine natural products containing five-membered cyclic peroxides.

For the following reasons I am convinced that the research presented in this thesis is outstanding and significant.
I. Plakortide E and plakortone B have attractive bioactivities and the synthetic studies toward them and their analogs will be pivotal both for the evaluation of the biological activity of these molecules and their analogs, and for drug discovery.
II. The methodology study for the syntheses of highly substituted cyclic peroxides is novel and useful, which not only extends the field of Pd-catalyzed reactions, but also provides a convenient synthetic approach to prepare 1,2dioxolanes series.
III. It goes without saying that construction and functionalization of 1,2-dioxolanes are particularly difficult because of the low $\mathrm{O}-\mathrm{O}$ bond dissociation energy, so the syntheses in the thesis are full of challenges.
IV. The convergent synthetic strategy was employed in the total synthesis of plakortide E, so the synthesis is step-economical, starting from (+)-cis-137a, the plakortide candidate structure (10S)-(+)-cis-86a was efficiently synthesized in ten simple chemical operations.
V. The thesis is well prepared and the chemistry inside clearly described.

Hong Kong, September 2011
Henry N. C. Wong

Acknowledgments

I would like to express my sincere thanks to my supervisor, Prof. Henry N. C. Wong, for his invaluable advice and guidance in my research work, thesis writing, and looking for a postdoctoral position.

I am grateful to Professor Xiaoshui Peng for his enthusiastic discussion and encouragement in my research work and the preparation of the thesis.

I am also grateful to Dr. Sam Hau for carrying out the X-ray crystallographic analysis and also to Ms. Sarah Ng for carrying out all MS analyses.

In addition, I give my special thanks to all the past and present members of Prof. Wong's research group, especially Dr. Jia-Qiang Dong, Dr. Xin-Gang Xie, Dr. Carole Law, Mr. Chao Cheng, Mr. Yin-Suo Lu and Mr. Xue-Song Xu for helpful discussions and co-operation.

Finally, the financial support from the Research Grants Council of the Hong Kong SAR, China (CUHK 403407) and the Area of Excellence Scheme established under the University Grants Committee of the Hong Kong SAR, China (AoE/9-10/01) are gratefully acknowledged.

April 2011
Xiao-yu Sun
Department of Chemistry
The Chinese University of Hong Kong
Shatin, New Territories Hong Kong

Contents

1 Introduction 1
1.1 Introduction to Organic Peroxides 1
1.2 Cyclic Peroxide Natural Products and Their Potential Biological Activities 1
1.3 Natural Products from Marine Sponges of the Genus Plakortis 6
1.4 Methodologies for Synthesis of Cyclic Peroxides 7
1.5 Total Syntheses of Cyclic Peroxide Natural Products 14
References 16
2 Results and Discussion 21
2.1 Introduction 21
2.2 Retrosynthesis 24
2.3 Synthesis of cis-1,2-Dioxolane 27
2.3.1 Syntheses of 1,2-Dioxolanes by the Feldman Reaction 27
2.3.2 Palladium-Catalyzed Approach Towards 1,2-Dioxolanes 34
2.3.3 Synthesis of cis-1,2-Dioxolane 38
2.4 Studies on the Model Reactions 39
2.4.1 Construction of trans-Double Bond 40
2.4.2 Synthesis of Alkenyl Iodide 41
2.4.3 Synthesis of the Racemic Side Chain 47
2.4.4 Pd-Catalyzed $s p^{2}-s p^{3}$ Coupling 48
2.5 Synthesis of Chiral Side Chains 56
2.6 Syntheses of Enantiomerically Pure Dioxolane Cores 58
2.7 Total Synthesis of Four Possible Structures of Plakortide E Methyl Ester 65
2.8 Biomimetic Synthesis of Plakortone B and Determination of the Absolute Configuration of Plakortide E 70
2.9 Synthesis of Plakortide E 74
References 74
3 Conclusion 77
Reference 78
4 Experimental Section 79
4.1 General Information 79
References 125
Appendix 127

Abbreviations

$[\alpha]$	Specific rotation
\AA	Ångstrom (s)
Ac	Acetyl
AIBN	Azobisisobutyronitrile
Anal.	Analytical
aq.	Aqueous
9-BBN	9-Borabicyclo[3.3.1]nonane
Bn	Benzyl
BDE	Bond dissociation energy
BHT	2,6-di-tert-butyl-4-methyl phenol
cat.	Catalytic
conc.	Concentrated
δ	Chemical shift in parts per million downfield from tetramethylsilane
d	Day (s), doublet (spectral)
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DIPEA	Diisopropylethylamine
DMAP	4-(dimethylamino)pyridine
DMF	Dimethyl formamide
DMP	Dess-Martin periodinane
DMSO	Dimethyl sulfoxide
EA	Ethyl acetate
Et	Ethyl
EI	Electron impact (in mass spectrometry)
ESI	Electrospray ionization
equiv	Equivalent
FAB	Fast atom bombardment
FT	Fourier transform

HPLC	High-performance liquid chromatography
HRMS	High-resolution mass spectrum
HWE	Horner-Wadsworth-Emmons
IR	Infrared
J	Coupling constant (in NMR)
KHMDS	Potassium hexamethyldisilazide
LDA	Lithium diisopropylamide
lit.	Literature
DCC	N,N ${ }^{\prime}$-Dicyclohexylcarbodiimide
m	Multiplet (spectral),milli-
Me	Methyl
m.p	Melting point
MS	Mass spectrometry; molecular sieves
m/z	Mass to charge ratio (in mass spectrometry)
NMR	Nuclear magnetic resonance
NOE	Nuclear overhauser effect
NOESY	Nuclear overhauser effect spectroscopy
PDC	Pyridinium dichromate
Ph	Phenyl
ppm	Parts per million (in NMR)
${ }_{i} \mathrm{Pr}$	Isopropyl
q	Quartet
R f	Retention factor
rt	Room temperature
t	Triplet
TBAF	Tetrabutylammonium fluoride
TBS	t-butyldimethylsilyl
TEA	Triethylamine
$t e r t-$	Tertiary
THF	Tetrahydrofuran
TLC	Thin-layer chromatography
$p-T s O H$	p-toluenesulfonic acid

Chapter 1 Introduction

1.1 Introduction to Organic Peroxides

Organic peroxides are compounds containing an $\mathrm{O}-\mathrm{O}$ bond. The $\mathrm{O}-\mathrm{O}$ group is called the peroxide group. The peroxide bond is one of the weakest bonds in organic molecules, with BDE of approximately $34 \mathrm{kcal} / \mathrm{mol}(\mathrm{C}-\mathrm{C}: 81 \mathrm{kcal} / \mathrm{mol}$, $\mathrm{C}-\mathrm{H}: 98 \mathrm{kcal} / \mathrm{mol}, \mathrm{C}-\mathrm{O}: 79 \mathrm{kcal} / \mathrm{mol}, \mathrm{C}-\mathrm{N}: 66 \mathrm{kcal} / \mathrm{mol}$) [1, 2]. The $\mathrm{O}-\mathrm{O}$ bond is unstable and easily splits into reactive radicals via homolytic cleavage. For this reason, peroxides are found in nature only in small quantities, in water, atmosphere, plants, animals and man. According to the substitution patterns, organic peroxides can be classified into hydroperoxides, acyclic dialkyl peroxide and cyclic peroxides (Fig. 1.1).

1.2 Cyclic Peroxide Natural Products and Their Potential Biological Activities

Ascaridole, used as a remedy for worms, which was isolated from chenopodium oil and named by Hüthig in 1908 [3], was the first studied naturally occurring organic peroxide (Fig. 1.2). Hüthig described its explosive character and determined its chemical formula as $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$. In 1911, these results were confirmed by Nelson in his detailed study of ascaridole [3].

One of the most important medical applications of organic peroxides has been in the treatment of malarial. In the worldwide scale, there are $300-500$ million clinical cases of people that are infected by malaria every year, and between one to three million deaths, mostly of children, are attributable to this disease. Every 40 s a child dies of malaria, resulting in a daily loss of more than 2,000 young lives worldwide. These estimates made malaria one of the top three killers among communicable diseases [4].
Hydroperoxides \quad Acyclic dialkyl peroxide

Fig. 1.1 Categories of peroxides

Fig. 1.2 The first studied naturally occurring organic peroxide

Ascaridole

In the search for antimalarial drugs, yingzhaosu A was isolated by Liang et al. in 1979 from Artabotrys uncinatus (Annonaceae) [5], which was used in China as a traditional remedy for the treatment of malaria (Fig. 1.3). Further work from this lab resulted in the isolation of yingzhaosu C (Fig. 1.3) [6]. Yingzhaosus A and C both contain a 1,2-dioxane core structure. These compounds have been extensively studied for their potential antimalarial activity.

At about the same time, artemisinin, a naturally occurring organic peroxide with a 1,2,4-trioxane core, also known as qinghaosu, was isolated from the plant Artemisia aпnиа, a herb described in Chinese traditional medicine by Wu and coworkers (Figs. 1.3 and 1.4) [7]. Artemisinin and its derivatives are a group of drugs that possess the most rapid action of all current drugs against falciparum malaria. The discovery of strong antimalarial activity from artemisinin and yinghaosu motivated the worldwide exploration of antimalarial cyclic peroxide drugs. Since scientists recognized the pivotal role of cyclic peroxides in various vital biological processes [8], the chemistry of cyclic peroxides has been rejuvenated in the 1970s. More and more naturally occurring cyclic peroxides have been isolated and identified.

Chondrillin, isolated from a Great Barrier Reef sponge of the genus Chondrilla by Wells in 1976, was the first cyclic peroxide to be isolated from marine sources [9]. Later, it was also isolated from another marine sponge Plakortis lita by DeGuzman and Christophersen [10, 11], and its diastereomer plakorin and a number of other alkoxydioxines were isolated from this marine sponge (Fig. 1.5) [12].

These peroxides have shown interesting biological properties. For example, chondrillin was found to have an in vitro IC_{50} of $5 \mu \mathrm{~g} / \mathrm{mL}$ against P388 leukemia cells [10, 11]. Plakorin is a potent activator of sarcoplasmic reticulum calciumATPase, and it also has an in vitro $\mathrm{IC}_{50}=0.85 \mu \mathrm{~g} / \mathrm{mL}$ against murine lymphoma L1210 cells and $\mathrm{IC}_{50}=1.8 \mu \mathrm{~g} / \mathrm{mL}$ against human epidermoid carcinoma KB cells [13].

Fig. 1.3 Antimalarial natural cyclic peroxides

Fig. 1.4 Artemisia annиа

Fig. 1.5 Six-membered cyclic peroxides

Chondrillin

Many natural peroxides with 1,2-dioxine or 1,2-dioxane subunits have been isolated from the marine sponge, Plakortis sp., especially from Plakortis halichondrioides. For example, plakortin (1), 3-epi-plakortin (2), plakortic acid (3) all share a common six-membered cyclic peroxide core (Fig. 1.6). The marine cyclic peroxide plakortic acid (3) is a potent antifungal and antibacterial agent; however, the corresponding methyl ester, plakortin (1), is inactive [14, 15].

Plakinic acid A, a 3,3,5,5-tetrasubstituted 1,2-dioxolane isolated from a Caribbean sponge, was the first isolated five-membered ring peroxide among marine natural products (Fig. 1.7) [16, 17]. In the last decades, many additional plakinates have been isolated and characterized, which usually exhibited remarkable cytotoxicity against fungal and cancer cell lines [17-25]. As shown in Table 1.1, all the plakinic acids contained a 3,3,5,5-tetrasubstituted 1,2-dioxolane core.

The highly unstable prostaglandin $\mathrm{H}_{2}\left(\mathrm{PGH}_{2}\right)$ and prostaglandin $\mathrm{G}_{2}\left(\mathrm{PGG}_{2}\right)$, containing a five-membered ring peroxide, were isolated and identified as key intermediates in prostaglandin's biosynthesis from arachidonic acid (Fig. 1.8) [2628]. PGH_{2} and PGG_{2} were also biosynthetic precursors for many other physiological important compounds, such as prostacyclins and thromboxanes [29, 30]. Afterwards, the total syntheses of PGH_{2} and PGG_{2} were reported by Porter and coworkers [102] and Johnson and coworkers [110]. The early studies on prostaglandin endoperoxides and their analogs were reviewed by Nicolaou and Salomon [31, 32].

Fig. 1.6 Natural products with 1,2-dioxane cores

Plakinic acid A
Fig. 1.7 The first isolated five-membered ring peroxide

Table 1.1 Plakinates from marine sponge

Reference
$[18]$

Fig. 1.8 Prostaglandin G_{2} and H_{2}

$\mathrm{R}=\mathrm{OOH}$, Prostaglandin G_{2} $\mathrm{R}=\mathrm{OH}$, Prostaglandin H_{2}

Fig. 1.9 A polycyclic natural product with 1,2dioxane core

Gracilioether A

Fig. 1.10 A novel linear polyene peroxide

Mycangimycin

Fig. 1.11 Natural products containing medium ring cyclic peroxides

4

Verruculogen (5)

In the course of their continuing search for drug leads from Japanese marine invertebrates, Nakao and Fusetani isolated graciliorther A from the deep-sea sponge Agelas gracilis in 2009, which show considerable antimalarial activity (Fig. 1.9) [33]. The absolute stereochemistry of graciliorther A was confirmed by application of the modified Mosher's method.

Clardy and coworkers in their study of the southern pine beetle system, have discovered another symbiont (Streptomyces sp. SPB74) that produces a polyene peroxide, which was named mycangimycin (Fig. 1.10). It was found that mycangimycin selectively inhibits the beetle's fungal antagonist. The complete structure was fully elucidated including the absolute configuration [34, 35].

Although majority of cyclic peroxide natural products contain dioxanes or dioxolanes, some medium ring cyclic peroxides discovered in nature (Fig. 1.11). The terpenic peroxide 4 was isolated from the spice cardamom, the fruit of Amomum krervanh Pierre, which contained a seven-membered cyclic peroxide core. Compound 4 also exhibited moderate antimalarial activity in vitro against Plasmodium falciparum $\left(\mathrm{IC}_{50}=170 \mathrm{nM}\right)$ [36]. Verruculogen (5), containing a novel eight-membered cyclic peroxide core, was obtained from a strain of Penicillium verruculosum Peyronel isolated from peanuts, which was fully characterized by Clardy and coworkers in 1974 [37, 38].

Plakinidone

Peroxyplakoric acids

Plakinic acids

Fig. 1.12 Natural products from the genus Plakortis

1.3 Natural Products from Marine Sponges of the Genus Plakortis

Marine sponges have been among the most studied of marine organisms. The genus Plakortis has attracted particularly interests as a source of novel metabolites. Many unusual metabolites isolated from the genus Plakortis exhibited anti-fungal, anti-tumor, anti-bacterial and other important pharmacological activities. Based on their work, the structures, stereochemistry, pharmacological activities and selected syntheses of the Plakortis derived metabolites have been reviewed by Kitching and coworkers in 2004 [39-41].

Examples of cyclic peroxides isolated from the genus Plakortis are illustrated in Fig. 1.12. These cyclic peroxide natural products are very fascinating because of their novel structure and activities.

In their continuing search for biologically active natural products to cure cardiac disease, Patil and coworkers employed a high throughput screening to evaluate the ability of natural products to stimulate cardiac SR-Ca ${ }^{2+}$ ATPase [42]. A screening of over 2400 plant and marine extracts found an extract of sponge Plakortis halichondrioides with the ability to stimulate cardiac SR-Ca ${ }^{2+}$ ATPase activity. This led to the discovery of four novel polyketides, plakortones A-D, four novel acids, plakortides E-H and one known compound 3-epi-plakortin (2) were isolated from the sponge Plakortis halichondrioides (Fig. 1.13).

In 2002, Kitching and coworkers reported the first total synthesis of plakortone D, which not only confirmed the absolute stereochemistry of plakortone D , but also enabled the acquisition of other plakortones and analogs [39]. In 2010, they reported the total syntheses and configuration assignments of plakortone C and F [41]. Our group were also interested in the synthetic chemistry of the Plakortis derived metabolites. Our preliminary synthetic efforts towards plakortide E were recorded in 2007 [43]. In 2010, we have reported the total syntheses and configuration assignments of all four isomers of plakortone B [44], whose total synthesis was reported by Semmelhack and coworkers in 2006 [45]. In consideration that plakortone B was isolated from the same animal source together with plakortide E [42], we reasoned

Plakortones $A(R=E t), \quad B(R=M e)$

Plakortide E

Plakortide G

Plakortones C $(R=M e), D(R=H)$

Plakortide F

Plakortide H

Fig. 1.13 Natural products from the sponge Plakortis halichondrioides

Scheme 1.1 Biosynthesis of plakortone B
that diol $\mathbf{6}$ could be converted to plakortone B (Scheme 1.1) [109]. Kitching has also suggested that the 1,3-diol notionally derived from reductive cleavage of 1,2-dioxolane are perhaps the actual precursors of the plakortone series [40, 41].

1.4 Methodologies for Synthesis of Cyclic Peroxides

Construction of cyclic peroxides is a particularly challenging issue because of the low $\mathrm{O}-\mathrm{O}$ bond dissociation energy ($37 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}$) [1]. Numerous approaches have been developed in the past for the synthesis of five- and six-membered

Scheme 1.2 Corey's synthesis of 1,2-dioxolanes

Scheme 1.3 Adam's route to 1,2-dioxolanes

Scheme 1.4 Formations of 1,2-dioxolanes via nucleophilic reactions
ring peroxides [48-90]. Syntheses of cyclic peroxides were well-reviewed by Nojima and coworkers [46], and Bachi and coworker [47]. Many of these methodologies demand low temperature operations and mild conditions. These approaches can be categorized into three types: (1) cyclization of hydroperoxides through intramolecular nucleophilic reactions; (2) cycloaddition of triplet oxygen with radicals; (3) cycloaddition of singlet oxygen with 1,3-dienes.

Cyclization via intramolecular nucleophilic reaction. In 1975, Corey and coworkers reported a method to obtain the 1,2-dioxolane through a intramolecular substitution. Bis (mesylate) 7 was treated with potassium superoxide to give the cis-disubstituted 1,2-dioxolane $\mathbf{8}$ in a moderate yield (Scheme 1.2) [87].

In 1978, Adam treated cyclopropane 9 with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NBS}$ to afford β-bromohydro peroxide 10, which was cyclized to 1,2-dioxolane 11 in the presence of silver(I) oxide in good yield (Scheme 1.3) [88].

Kropf [56] prepared 1,2-dioxolanes by treating hydroperoxides with $\mathrm{Pb}(\mathrm{OAc})_{4}$, which involves 1,5-hydrogen abstraction by an intermediate peroxyl radical. Alternatively, the treatment of 1,3-dibromopropane 14 with tert-butylhydroperoxide in the presence of $\mathrm{AgO}_{2} \mathrm{CCF}_{3}$ also led to 1,2-dioxolane $\mathbf{1 6}$ (Scheme 1.4) [89].

Scheme 1.5 Intramolecular hydroperoxide addition to double bond

Scheme 1.6 Intramolecular hydroperoxide addition to carbonyl group

Bloodworth [66-69] prepared four non-natural plakinic acids via a peroxymercuration reaction as shown below (Scheme 1.5). A similar strategy was used by Gunstone [70] for his preparation of 1,2-dioxolanes from methyl oleate. A cycloperoxyiodination route also gave rise to 1,2-dioxolane frameworks. The difference between Bloodwoworth's and Gunstone's approach is five-exo vs. 5-endo peroxymercuration.

Intramolecular nucleophilic addition of hydroperoxide to a carbonyl group was one of the earliest methods to prepare cyclic peroxides. For example, the α, β-unsaturated aldehyde 19 reacted with hydrogen peroxide at room temperature in the presence of KOH to form the 1,2-dioxolane $\mathbf{2 0}$ in 78% yield [91-93]. An asymmetric version of this reaction was reported by List and coworkers in 2008 (Scheme 1.6) [93].

Acid-catalyzed intramolecular attack of hydroperoxide on an epoxide to form the 1,2-dioxolane was reported in 1976 (Scheme 1.7) [94]. This type of reaction was applicable to more complex substrates, and has been applied to the total syntheses of natural products [101].

Methods to synthesize the cyclic peroxides by the intramolecular opening of oxetanes with hydroperoxides have been developed by Dussault and coworkers

Scheme 1.7 Formation of 1,2-dioxolane via intramolecular opening of epoxide with hydroperoxide

Scheme 1.8 Formations of 1,2-dioxolane via intramolecular opening of oxetanes with hydroperoxides
[78]. The method was used to synthesize the 1,2-dioxolanes, 1,2-dioxanes and 3-alkoxy-1,2-dioxolanes with good stereoselectivity and good yields (Scheme 1.8).

Cycloaddition of triplet oxygen with radicals. As can be seen in Scheme 1.9, pentasubstituted 3-hydroxy-1,2-dioxolanes were realized via oxygen trapping during thermolysis of cyclic α-azohydroperoxides [90].

Scheme 1.9 Cycloaddition of triplet oxygen with diradicals

Scheme 1.10 Formations of 1,2-dioxolanes reported by Feldman and coworkers

Scheme 1.11 Ergosteryl acetate oxidation with oxygen

Feldman developed a convenient approach for the formation of 1,2-dioxolanes from vinylcyclopropanes by a free radical-mediated ring expansion with oxygen as demonstrated in Scheme 1.10. In their experiments, the cis-1,2-dioxolanes 43 were obtained in good yield [83-86].

Cycloaddition of singlet oxygen with 1,3-dienes. Singlet oxygen $\left({ }^{1} \mathrm{O}_{2}\right)$ can be generated by a chemical process on a synthetically useful scale or in a photosensitized process by energy transfer from dye molecules such as rose bengal, methylene blue or porphyrins [95]. The electron occupancy of the shells of the singlet oxygen is different from those of ground state oxygen. The energy difference between ground state and singlet oxygen is $94.3 \mathrm{~kJ} / \mathrm{mol}$ [96]. The damages caused by the sunlight to many organic materials are always attributed to the effects of singlet oxygen. Singlet oxygen reacting with a variety of 1,3-dienes gives the corresponding six-membered cyclic peroxides. This is one of the oldest and the most general methods to generate cyclic peroxides. Windaus and Brunken isolated the cyclic peroxide of ergosteryl acetate in 1928 [97], which was prepared through singlet oxygen cycloaddition to ergosteryl acetate (45) (Scheme 1.11).

Scheme 1.12 Anthracene derivatives peroxydation with singlet oxygen

Brevetoxin A (52)
Scheme 1.13 Application of singlet oxygen [4+2]-cycloaddition to 1,3-dienes in total synthesis of brevetoxin A

Scheme 1.14 Total syntheses of yingzhaosu C and its isomers. Reagents and conditions: (a) L-(+)-DIPT, Ti(Oi-Pr) $4, t$ - $\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Pyr}$; (c) $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{O}_{2}, \mathrm{Co}(\operatorname{modh})_{2}$; (d) $\mathrm{KF} / 18-$ crown-6, THF; (e) Amberlyst-15, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$, then $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} 2 \mathrm{H}_{2} \mathrm{O}$; (g) $\mathrm{NaIO}_{4} /$ $\mathrm{RuC}_{13}, \mathrm{MeCN}: \mathrm{CC}_{14}: \mathrm{H}_{2} \mathrm{O}(2: 2: 3, \mathrm{v} / \mathrm{v})$, rt, then $\mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}$; (h) 2 equiv of MeLi/Et $\mathrm{O},-78{ }^{\circ} \mathrm{C}$, then aqueous $\mathrm{NH}_{4} \mathrm{C} 1$

Scheme 1.15 Total synthesis of plakinic acid A. Reagents and conditions: (a) Me $\mathrm{Me}_{3} \mathrm{SiOTf}$, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 57 \%$; (b) $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, t-\mathrm{BuMe}_{2} \mathrm{SiCl}$; (c) Dess-Martin periodinane, 80%; (d) $\mathrm{HF}, \mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, 2$ days, 88%; (e) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2}=\mathrm{CH}_{2}\left(\mathrm{OSiMe}_{3}\right) \mathrm{SEt},-50$ to $0{ }^{\circ} \mathrm{C}, 88 \%$; (f) $\mathrm{NaOMe}, \mathrm{MeOH} ; \mathrm{g}$. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}, 71 \%$

Scheme 1.16 Semi-syntheses of prostaglandin H_{2} and prostaglandin G_{2}

Scheme 1.17 Total syntheses of chondrillin and ent-plakorin

Anthracene derivatives reacted with singlet oxygen to furnish the corresponding 1,4 -endoperoxides or 9,10 -endoperoxides. For example, singlet oxygen cycloaddition to $1,2,3,4,5,6,7,8$-octamethylanthracene (47) mainly led to 1,4 -endoperoxide 48 (Scheme 1.12) [98].

Singlet oxygen [4+2]-cycloadditions to 1,3-dienes were widely used in the total syntheses of non-peroxide containing natural products. For example, in the total synthesis of brevetoxin A (52), 1,3-diene 49 reacted with singlet oxygen to furnish the cyclic peroxide containing intermediate 50 (Scheme 1.13) [99, 100].

1.5 Total Syntheses of Cyclic Peroxide Natural Products

The discovery of antimalarial and anticancer activity in cyclic peroxide natural products has resulted in increased interest in the total syntheses of cyclic peroxide natural products in the last decades. In this section, the total syntheses of cyclic peroxide natural products will be reviewed.

79

80a

81

80b

82

Scheme 1.18 Total synthesis of 6-epiplakortolide E. Reagents and conditions: (a) $\mathrm{Mg} / \mathrm{ether}$, rt , $2 \mathrm{~h}, 69 \%$; (b) allylmagnesium bromide, ether, $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 60 \%$; (c) $9-\mathrm{BBN}, \mathrm{rt}, 3 \mathrm{~N} \mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$, $2 \mathrm{~h}, 90 \%$; (d) t-BuMe2SiCl, imidazole, DMF, rt, $4 \mathrm{~h}, 98 \%$; (e) $\mathrm{TsOH} / \mathrm{CaCl}_{2}$, benzene, rt, 2 h , 80%; (f) $\mathrm{O}_{2}, 500-\mathrm{W}$ lamp, rose bengal, $0^{\circ} \mathrm{C}, 6 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(19: 1), 45 \%$; (g) $10 \% \mathrm{HCl}$, THF/MeOH, rt, $1 \mathrm{~h}, 87 \%$; (h) Jones' reagent, acetone, rt, $1.5 \mathrm{~h}, 78 \%$; (i) $\mathrm{NaHCO}_{3} / \mathrm{I}_{2}, \mathrm{CHCl}_{3} /$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2$ days, 55%; (j) AIBN/Bu SnH , benzene, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 68 \%$

Xu and coworkers reported the total synthesis of all four stereoisomers of yingzhaosu C in 1995 [101]. The core structure of the 1,2-dioxane was constructed by intramolecular epoxide opening under acidic conditions (Amberlyst-15), with the stereochemistry of the ring-closure controlled by the stereochemistry of the epoxide (Scheme 1.14). Compounds $\mathbf{5 8 a}_{\mathbf{1}}$ and $\mathbf{5 8} \mathbf{a}_{\mathbf{2}}$ were prepared from 53a. Dioxanes $\mathbf{5 8} \mathbf{b}_{\mathbf{1}}$ and $\mathbf{5 8} \mathbf{b}_{\mathbf{2}}$ were synthesized in a similar manner. These four samples are two pairs of enantiomers ($\mathbf{5 8} \mathbf{a}_{\mathbf{1}}$ and $\mathbf{5 8} \mathbf{b}_{\mathbf{1}}, \mathbf{5 8} \mathbf{a}_{\mathbf{2}}$ and $\mathbf{5 8} \mathbf{b}_{\mathbf{2}}$). The NMR spectra of $\mathbf{5 8} \mathbf{a}_{\mathbf{1}}$ and $\mathbf{5 8} \mathbf{b}_{\mathbf{1}}$ were identical with that of the natural yingzhaosu C . On the basis of the observed optical rotation, Xu and coworkers concluded that natural yingzhaosu C may be considered to be a mixture of enantiomeric ($8 S, 12 R$)-58a $\mathbf{a}_{\mathbf{1}}$ and $(8 R, 12 S)$ $\mathbf{5 8} \mathbf{b}_{\mathbf{1}}$ with the former being in excess, because the optical rotation of the natural yingzhaosu C was only +2.89 (MeOH). However, the strategy employed in this study is not suitable for the substrates with unsaturated side chains.

Based on elegant synthetic routes [72-82], Dussault and coworkers achieved for the first time the asymmetric synthesis and configurational assignment of plakinic acid A (65) in 2006 [79]. The synthetic pathway for the ($3 S, 5 S, 7 R, 11 S$)-stereoisomer of plakinic acid is shown in Scheme 1.15. As can be seen, a regio- and stereoselective opening of an enantiomerically enriched oxetane by hydrogen peroxide led to an intermediate, which was further elaborated into the 1,2dioxolane product. After preparing four possible structural candidates of plakinic acid A (65), Dussault concluded that the most likely configuration for plakinic acid A should be $(3 R, 5 R, 7 R, 11 R)$.

Porter and coworkers reported the semi-syntheses of prostaglandin H_{2} and prostaglandin G_{2} (Scheme 1.16). 1,3-Dibromide $\mathbf{6 8}$ was treated with hydrogen peroxide and silver trifluoroacetate to give prostaglandin $\mathrm{H}_{2}(69)$ in 24% yield. In a similar manner, prostaglandin G_{2} was obtained in $15-20 \%$ yield [102-104].

Total syntheses of chondrillin and ent-plakorin were accomplished by Dussault and coworkers. The final key step was based on the cyclization of trans-70 as shown in Scheme 1.17. Compound trans-70 was subjected to photocyclization and transetherification to give a mixture of chondrillin (72) and ent-plakorin (73) in good yield [105, 106].

In 2002, Jung and coworkers reported the first total synthesis of racemic 6epiplakortolide E (Scheme 1.18) [107]. Thus, the intermediate diene 79 underwent singlet oxygen [4+2]-cycloaddition to provide the six-membered cyclic peroxide containing compound 80 , which was a mixture of cis-80a and trans-80b. The ability to perform a [4+2]-cycloaddition on intermediate 79 was related to a substitution pattern. Compound cis-80a was subjected to desilylation giving alcohol $\mathbf{8 1}$ in 87% yield. Oxidation of $\mathbf{8 1}$ with Jones' reagent furnished acid 82, which was subjected to iodolactonization to give 83. A chemoselective free-radical reductive deiodination of $\mathbf{8 3}$ led to the natural product 6-epiplakortolide E (84).

References

1. Baldwin AC (1983) In: Patai S (ed) The chemistry of peroxides, vol 1. Wiley, Chichester, pp 97-104
2. Bach RD, Ayala PY, Schlegel HB (1996) J Am Chem Soc 118:12758-12765
3. Nelson EK (1911) J Am Chem Soc 33:1404-1412
4. Sachs J, Malaney P (2002) Nature 415:680-685
5. Liang XT, Yu DQ, Wu WL, Deng HC (1979) Acta Chim Sin 37:215-230
6. Zhang L, Zhou WS, Xu XX (1988) J Chem Soc, Chem Commun 523-524
7. Liu JM, Ni MY, Fan YF, Tu YY, Wu YL, Chou WS (1979) Acta Chim Sin 37:129-141
8. Wu YK (2002) Acc Chem Res 35:255-259
9. Well RJ (1976) Tet Lett 17:2637-2678
10. Sakemi S, Higa T, Anthoni U, Christophersen C (1987) Tetrahedron 43:263-268
11. de Guzman FS, Schmitz FJ (1990) J Nat Prod 53:926-931
12. Murayama T, Ohizumi Y, Nakamura H, Sasaki T, Kobayashi J (1989) Experientia 45:898-905
13. Kobayashi J, Murayama T, Oizumi Y. Jpn, Kokai Tokkyo Koho JP 02, 229, 185 [90. 229. 185], 1990 (Chem Abstr 1991, 114, 49563x)
14. Rudi A, Kashman Y (1993) J Nat Prod 56:1827-1830
15. Casteel DA (1992) Nat Prod Rep 9:289-312
16. Faulkner DJ (1984) Nat Prod Rep 1:251-255
17. Davidson BD (1991) J Org Chem 56:6722-6724
18. Patil AD (1988) Chem Abstr 109:17027f. US Pat 4879307, 1989
19. Phillipson DW, Rinehart KL Jr (1983) J Am Chem Soc 105:7735-7736
20. Horton PA, Longley RE, Kelly-Borges M, McConnell OJ, Ballas LM (1994) J Nat Prod 57:1374-1381
21. Chen Y, Killday KB, McCarthy PJ, Schimoler R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AE (2001) J Nat Prod 64:262-264
22. Sandler JS, Colin PL, Hooper JNA, Faulkner DJ (2002) J Nat Prod 65:1258-1261
23. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature 409:258268
24. Rudi A, Afanil R, Gravalos LG, Aknin M, Gaydou E, Vacelet J, Kashman Y (2003) J Nat Prod 66:682-685
25. For reviews of peroxide natural products, see: Casteel DA (1999) Nat Prod Rep 16:55-73
26. Hamberg M, Samuelsson B (1973) Proc Natl Acad Sci U S A 70:899-903
27. Nugteren DH, Hazelhof E (1973) Biochim Biophys Acta 326:448-461
28. Hamberg M, Svensson J, Wakabayashi T, Samuelsson B (1974) Proc Natl Acad Sci U S A 71:345-349
29. Samuelsson B (1965) J Am Chem Soc 87:3011-3013
30. Hamberg M, Samuelsson B (1967) J Biol Chem 242:5336-5343
31. Nicolaou KC, Gasic GP, Barnette WE (1978) Angew Chem Int Ed Engl 17:293-312
32. Salomon RG (1985) Acc Chem Res 18:294-301
33. Ueoka R, Nakao Y, Kawatsu S, Yaegashi J, Matsumoto Y, Matsunaga S, Furihata K, van Soest RWM, Fusetani N (2009) J Org Chem 74:4203-4207
34. Scott JJ, Oh D-C, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Science 322:63-63
35. Oh D-C, Scott JJ, Currie CR, Clardy J (2009) Org Lett 11:633-636
36. Kamchonwongpaisan S, Nilanonta C, Tarnchompoo B, Thebtaranonth C, Thebtaranonth Y, Yuthavong Y, Kongsaeree P, Clardy J (1995) Tet Lett 36:1821-1824
37. Cole RJ, Kirksey JW, Moore JH, Blankenship BR, Diener UL, Davis NB (1972) Appl Microbiol 24:248-256
38. Fayos J, Lokensgard D, Clardy J, Cole RJ, Kirksey JW (1974) J Am Chem Soc 96:67856787
39. Hayes PY, Kitching W (2002) J Am Chem Soc 124:9718-9719
40. Rahm F, Hayes PY, Kitching W (2004) Heterocycles 64:523-575
41. Hayes PY, Chow S, Rahm F, Bernhardt PV, De Voss JJ, Kitching W (2010) J Org Chem 75:6489-6501
42. Patil AD, Freyer AJ, Bean MF, Carte BK, Westley JW, Johnson RK, Lahouratate P (1996) Tetrahedron 52:377-394
43. Zhao Q, Wong HNC (2007) Tetrahedron 63:6296-6305
44. Xie X-G, Wu X-W, Lee H-K, Peng X-S, Wong HNC (2010) Chem Eur J 16:6933-6941
45. Semmelhack MF, Hooley RJ, Kraml CK (2006) Org Lett 8:5203-5206
46. McCullough KJ, Nojima M (2001) Curr Org Chem 5:601-636
47. Korshin EE, Bachi MD (2006) In: Rappoport Z (ed) The chemistry of peroxides, vol 2. Wiley, Chichester, pp 189-305
48. Criegee R, Pauling G (1955) Chem Ber $88: 712-715$
49. Rieche A, Bischoff C (1962) Chem Ber 95:77-82
50. Milas NA, Mageli OL, Golubovic A, Arndt RW, Ho JC (1963) J Am Chem Soc 85:222-226
51. Porter NA, Funk MO, Gilmore D, Nixon J (1976) J Am Chem Soc 98:6000-6005
52. Beckwith ALJ, Wagner RD (1980) J Chem Soc Chem Commun 485-486
53. Frankel EN, Weisleder D, Neff WE (1981) J Chem Soc Chem Commun 766-767
54. Courtneidge JL (1992) J Chem Soc Chem Commun 1270-1272
55. Cointeaux L, Berrien J-F, Mayrargue J (2002) Tet Lett 43:6275-6277
56. Kropf H, von Wallis H (1981) Synthesis 237-240
57. Miura M, Yoshida M, Kusabayashi S (1982) J Chem Soc Chem Commun 397-398
58. Yoshida M, Miura M, Nojima M, Kusabayashi S (1983) J Am Chem Soc 105:6279-6285
59. Ito T, Tokuyasu T, Masuyama A, Nojima M, McCullough KJ (2003) Tetrahedron 59:525536
60. Tokuyasu T, Kunikawa S, McCullough KJ, Masuyama A, Nojima M (2005) J Org Chem 70:251-260
61. Iesce MR, Cermola F, Guitto A, Scarpati R, Graziano ML (1995) J Org Chem 60:53245327
62. Gbara-Haj-Yahia I, Zvilichovsky G, Seri N (2004) J Org Chem 69:4135-4139
63. Baumstark AL, Vasquez PC (1992) J Org Chem 57:393-395
64. Shimizu H, Miyazaki S, Kataoka T, Hori M (1992) J Chem Soc Chem Commun 1586-1587
65. Shimizu H, Miyazaki S, Kataoka T (1996) J Chem Soc Perkin Trans 1 2227-2235
66. Bloodworth AJ, Courtneidge JL (1982) J Chem Soc Perkin Trans 1 1807-1809
67. Bloodworth AJ, Chan KH, Cooksey CJ (1986) J Org Chem 51:2110-2115
68. Bloodworth AJ, Curtis RJ, Mistry N (1989) J Chem Soc Chem Commun 954-955
69. Bloodworth AJ, Bothwell BD, Collins AN, Maidwell NL (1996) Tet Lett 37:1885-1888
70. Bascetta E, Gunstone FD (1984) J Chem Soc Perkin Trans 1 2207-2216
71. Ramirez A, Woerpel KA (2005) Org Lett 7:4617-4620
72. Dussault PH, Liu X-J (1999) Org Lett 1:1391-1393
73. Dussault PH, Liu X-J (1999) Tet Lett 40:6553-6556
74. Dussault PH, Lee H-J, Liu X-J (2000) J Chem Soc Perkin Trans 1:3006-3013
75. Dussault PH, Trullinger TK, Cho-Shultz S (2000) Tetrahedron 56:9213-9220
76. Dussault PH, Lee IQ, Lee H-J, Lee RJ, Niu QJ, Schultz JA, Zope UR (2000) J Org Chem 65:8407-8414
77. Dussault PH, Xu C-P (2004) Tet Lett 45:7455-7457
78. Dai P, Dussault PH (2005) Org Lett 7:4333-4335
79. Dai P, Trullinger TK, Liu X-J, Dussault PH (2006) J Org Chem 71:2283-2292
80. Dussault PH, Zope UR (1995) J Org Chem 60:8218-8222
81. Ghorai P, Dussault PH, Hu C (2008) Org Lett 10:2401-2404
82. Dussault PH, Davies DR (1996) Tet Lett 37:463-466
83. Feldman KS, Pravez M (1986) J Am Chem Soc 108:1328-1330
84. Feldman KS, Simpson RE (1989) J Am Chem Soc 111:4878-4886
85. Feldman KS, Kraebel CM (1992) J Org Chem 57:4574-4576
86. Weinreb CK, Hartsough D, Feldman KS (1995) Tet Lett 36:6859-6862
87. Corey EJ, Nicolaou KC, Shibasaki M, Machida Y, Shiner CS (1975) Tet Lett 37:3183-3186
88. Adam W, Birke A, Cádiz BC, Diaz S, Rodriquez A (1978) J Org Chem 43:1154-1158
89. Porter NA, Mitchell JC (1983) Tet Lett 24:543-546
90. Baumstark AL, Vasquez PC (1992) J Org Chem 57:393-395
91. Payne GB (1958) J Org Chem 23:310-311
92. Cativiela C, Figueras F, Fraile JM, Garcia JI, Mayoral JA (1995) Tet Lett 36:4125-4128
93. Reisinger CM, Wang X, List B (2008) Angew Chem Int Ed 47:8112-8115
94. Porter NA, Funk MO, Gilmore D, Isaac R, Nixon J (1976) J Am Chem Soc 98:6000-6005
95. Schweitzer C, Schmidt R (2003) Chem Rev 103:1685-1757
96. Wilkinson F, Helman WP, Ross AB (1995) J Phys Chem Ref Data 24:663-677
97. Windaus A, Brunken J (1928) Annalen 460:225-235
98. Zhou X, Kitamura M, Shen B, Nakajima K, Takahashi T (2004) Chem Lett 33:410-411
99. Nicolaou KC, Gunzner JL, Shi GQ, Agrios KA, Gartner P, Yang Z (1999) Chem Eur J 5:646-658
100. Nicolaou KC, Wallace PA, Shi SH, Ouellette MA, Bunnage ME, Gunzner JL, Agrios KA, Shi GQ, Gartner P, Yang Z (1999) Chem Eur J 5:618-627
101. Xu XX, Dong HQ (1995) J Org Chem 60:3039-3044
102. Porter NA, Byers JD, Mebane RC, Gilmore DW, Nixon JR (1978) J Org Chem 43:20882090
103. Porter NA, Byers JD, Holden KM, Menzel DB (1979) J Am Chem Soc 101:4319-4322
104. Porter NA, Byers JD, Ali AE, Eling TE (1980) J Am Chem Soc 102:1183-1184
105. Dussault PH, Woller KR (1997) J Am Chem Soc 119:3824-3825
106. Dussault PH, Eary CT, Woller KR (1999) J Org Chem 64:1789-1797
107. Jung M, Ham J, Song J (2002) Org Lett 4:2763-2765
108. Chen Y, McCarthy PJ, Harmody DK, Schimoler-O’Rourke R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AE (2002) J Nat Prod 65:1509-1512
109. Zhao Q (2006) Shanghai institute of organic chemistry. Thesis, The Chinese Academy of Science
110. Johnson RA, Nidy EG, Baczynskyj L, Gorman RR (1977) J Am Chem Soc 99:7738-7740

Chapter 2 Results and Discussion

2.1 Introduction

Plakortide E (85) and plakortone B (87) were first isolated from the Jamaican marine sponge Plakortis halichondrioides along with plakortones A, C, D in 1996 by Patil and coworkers (Figs. 2.1, 2.2) [1]. In 1999, plakortone B (87) was also isolated from the Caribbean sponge Plakortis simplex along with plakortones $\mathrm{C}-\mathrm{F}$ by Fattorusso and coworkers [2]. In their continuing program to identify compounds with antifungal properties, Wright and coworkers also isolated a molecule identified as plakortide E (85) from the sponge Plakortis halichondrioides in 2002 [3].

Plakortide $\mathrm{E}(\mathbf{8 5}),[\alpha]_{\mathrm{D}}^{20}=63.9\left(c=2.0, \mathrm{CHCl}_{3}\right)$, isolated as a low melting solid, was first characterized in 1996 by Patil and coworkers [1]. The molecular formula of plakortide $\mathrm{E}(\mathbf{8 5})$ was determined as $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4}$ from the LRESIMS $351(\mathrm{M}+\mathrm{H})^{+}$. The basic skeleton was determined by interpretation of the IR, ${ }^{1} \mathrm{H}$ NMR (Table 2.1), ${ }^{13} \mathrm{C}$ NMR (Table 2.1), COSY, and HMBC spectra. In the IR spectrum, a sharp and intense absorption at $1,690 \mathrm{~cm}^{-1}$ indicated that the carbonyl was an α, β-unsaturated acid. Treatment of $\mathbf{8 5}$ with diazomethane furnished methyl ester 86, confirming the presence of an acid group in $\mathbf{8 5}$. The data of methyl ester 86 is summarized in Table 2.2. The NMR spectra indicated that plakortide E (85) contained five methyl groups and two double bonds. The methyl group was at C-8 in the side chain. The coupling constants of the double bond (15.8 Hz) suggested trans stereochemistry. Additionally, the NMR data indicated that the remaining oxygen in $\mathbf{8 5}$ must be attached via a peroxide functionality in the form of a 1,2dioxolane. A combination of COSY, and HMBC spectra confirmed that plakortide E (85) contained a tetra-substituted cis-1,2-dioxolane, whose oxygen atoms were linked to two tertiary C 4 and C 6 centers. However, only the relative configuration was established. The absolute configuration at C4, C6 and C10 were not revealed in the initial structure elucidation.

Fig. 2.1 The Jamaican marine sponge Plakortis halichondrioides

In 2002, Wright and coworkers [3] also characterized plakortide E (85), however, the absolute configurations of C4, C6 and C10 were still unknown. The NMR and specific rotation data, depicted in Table 2.3, were nearly identical to those reported by Patil and coworkers. However, a chemical shift difference at C3 was observed in both the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, although both samples were measured in CDCl_{3} (Tables 2.1, 2.3). The proton and carbon signals were observed at $\delta 6.69(\mathrm{~d}, J=15.8 \mathrm{~Hz})$ and 146.9 respectively by Patil and coworkers. While the proton and carbon were observed at $\delta 6.93(\mathrm{~d}, J=15 \mathrm{~Hz})$ and 152.07 respectively by Wright and coworkers. The isolation procedures used in both isolations were similar. Wright and coworkers have not given any explanations on the differences of the chemical shift at C3 in the NMR spectra. They thought that some form of tautomerism was occurring, and it was possible that their isolation was of the sodium or other salt [3].

So far, the absolute configuration of plakortide E has not been determined. Based on the stereochemical data of the isolation papers, we can conclude that plakortide E had four possible configurations (Fig. 2.3).

Plakortone $\mathrm{B}(87),[\alpha]_{\mathrm{D}}^{20}=-9.2\left(c=0.72, \mathrm{CHCl}_{3}\right)$, isolated as a colorless oil, was first characterized in 1996 by Patil and coworkers. The molecular formula of plakortone $\mathrm{B}(\mathbf{8 7})$ was determined as $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}$ by $335.2586(\mathrm{M}+\mathrm{H})^{+}$. The basic skeleton was established by NMR methods (Table 2.4). NOE difference data provided the relative configuration. Many similarities were observed between the ${ }^{1} \mathrm{H}$ NMR spectra of plakortone $\mathrm{B}(\mathbf{8 7})$ and plakortide E (85). However, the absolute configurations of their stereocenters were not revealed in the initial structure elucidation [1].

According to the stereochemical data, there are four possible structures for plakortone B (Fig. 2.4). In 2006, the absolute configuration of plakortone B was established as $\mathbf{8 7 a}$ by total synthesis [4]. Recently, our group has reported the total syntheses and stereochemical assignments of all four isomers of plakortone B [5].

The novel structural features of plakortide $\mathrm{E}(\mathbf{8 5}$) as well as its potential bioactivities have stimulated our considerable interest in the quest for its total synthesis. Our first plan was to synthesize all four possible isomers of plakortide E (Fig. 2.3) and to realize the determination of the absolute configuration of plakortide E. We were also intrigued by the biosynthesis of plakortone B (87). So our second plan was to convert plakortide E to plakortone B, which would support the hypothesis that plakortide E was the precursor of plakortone B in nature.

Fig. 2.2 Plakortide E (85) and plakortone B (87)

Table 2.1 The data of plakortide E (85) reported by Patil and coworkers

Source
Reference
Assigned structure
Natural product [1]
[1]

H-1
H-2

H-6
H-7
H-8
H-9

H-10
H-11
H-12
H-13
H-14
H-15

H-16
H-17
H-18
H-19
H-20

H-21

$m / z[\mathrm{M}+\mathrm{H}]^{+}: 351$
$[\alpha]_{\mathrm{D}}^{20}=63.9\left(c=2.0, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ (ppm)
Bruker AMX-400 spectrometer
5.98 ($1 \mathrm{H}, \mathrm{d}, 15.8$)
$6.69(1 \mathrm{H}, \mathrm{d}, 15.8)$
$2.53 \beta(1 \mathrm{H}, \mathrm{d}, 12.0)$
$2.42 \alpha(1 \mathrm{H}, \mathrm{d}, 12.0)$

$5.12(1 \mathrm{H}, \mathrm{m})$
C-6
89.1

C-7 126.9
C-8
136.5

C-9
46.6
$1.85(1 \mathrm{H}, \mathrm{m})$
$2.00(1 \mathrm{H}, \mathrm{m})$
C-1042.6
$5.05(1 \mathrm{H}$, ddt, 15.2, 8.3, 1.4) C-11 132.8
$5.34(1 \mathrm{H}, \mathrm{dt}, 6.3,15.2)$
C-12
131.9
$1.98(2 \mathrm{H}, \mathrm{m}) \quad \mathrm{C}-13 \quad 25.6$
0.93 (3 H, t, 7.4)

C-14
14.0
$1.85(1 \mathrm{H}, \mathrm{m})$
C-15
32.1
$1.63(1 \mathrm{H}, \mathrm{m})$
0.87 ($3 \mathrm{H}, \mathrm{t}, 7.4$)

C-16
8.8
$1.77(2 \mathrm{H}, \mathrm{m})$
C-17
31.0
0.87 ($3 \mathrm{H}, \mathrm{t}, 7.4$)

C-18
8.9
1.61 (3 H, d, 1.0)

C-19
17.7
$1.35(1 \mathrm{H}, \mathrm{m})$
$1.11(1 \mathrm{H}, \mathrm{m})$
$0.80(3 \mathrm{H}, \mathrm{t}, 7.4)$
C-21
11.6

Table 2.2 The data of plakortide E methyl ester (86) reported by Patil and coworkers

Source	Natural product [1]		
Reference	[1]		
Assigned structure			
EIHRMS	$m / z[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{4}: 365.2692$, found: 365.2681		
$[\alpha]_{\mathrm{D}}^{\mathrm{T}}$	$[\alpha]_{\mathrm{D}}^{20}=75.1\left(c=2.23, \mathrm{CHCl}_{3}\right)$		
$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$	${ }^{1} \mathrm{H}$ (ppm)	${ }^{13} \mathrm{C}$	
Equipment	Bruker AMX-400 spectrometer		
H-1		C-1	166.9
H-2	6.07 (1 H, d, 15.8)	C-2	119.9
H-3	6.85 (1 H, d, 15.8)	C-3	149.6
H-4		C-4	87.1
H-5	2.54β (1 H, d, 12.0)	C-5	55.9
	$2.44 \alpha(1 \mathrm{H}, \mathrm{d}, 12.0)$		
H-6		C-6	89.1
H-7	5.11 (1 H, q, 1.3)	C-7	126.7
H-8		C-8	136.4
H-9	$2.00(1 \mathrm{H}, \mathrm{m}) ; 1.85(1 \mathrm{H}, \mathrm{m})$	C-9	46.5
H-10	2.00 (1 H, m)	C-10	42.5
H-11	5.05 (1 H, ddt, 1.5, 8.4, 15.3)	C-11	132.7
H-12	5.34 (1 H, dt, 6.43, 15.3)	C-12	131.9
H-13	1.97 (2 H, m)	C-13	25.5
H-14	0.93 (3 H, t, 7.4)	C-14	14.0
H-15	1.86 (1 H, m); 1.64 (1 H, m)	C-15	32.1
H-16	0.88 (3 H, t, 7.4)	C-16	8.8
H-17	1.78 ($2 \mathrm{H}, \mathrm{m}$)	C-17	30.8
H-18	0.90 (3 H, t, 7.4)	C-18	8.8
H-19	1.61 (3 H, d, 1.3)	C-19	17.7
H-20	$1.35(1 \mathrm{H}, \mathrm{m}) ; 1.10$ ($1 \mathrm{H}, \mathrm{m}$)	C-20	27.6
H-21	0.80 ($3 \mathrm{H}, \mathrm{t}, 7.4$)	C-21	11.5
	3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$)		51.1

2.2 Retrosynthesis

Our studies of the total synthesis of plakortide E (85) began as early as 2002. Initially, in consideration of the instability of the cyclic peroxide, we planned to construct the cyclic peroxide ring in the final step. We designed the model substrate $\mathbf{8 8}$ to investigate the Feldman reaction (Scheme 2.1). However, to our disappointment, the starting material decomposed, but no desired product 89 was obtained [6]. Assuming that the failure resulted from the steric hindrance in 88, we designed an alternative convergent strategy.

Table 2.3 The data of plakortide E (85) reported by Wright and coworkers

Source	Natural product [3]		
Reference	[3]		
Assigned structure			
EIHRMS			
$[\alpha]_{\mathrm{D}}^{\mathrm{T}}$	$[\alpha]_{\mathrm{D}}^{20}=63\left(c=0.001, \mathrm{CHCl}_{3}\right)$		
NMR (CDCl_{3})	${ }^{1} \mathrm{H}$ (ppm)	${ }^{13} \mathrm{C}(\mathrm{ppm})$	
Equipment	Bruker AMX-500 spectrometer		
H-1		C-1	172.0
H-2	6.09 (1 H, d, 15)	C-2	120.5
H-3	6.93 (1 H, d, 15)	C-3	152.1
H-4		C-4	87.2
H-5	2.53β (1 H, d, 12.0)	C-5	56.0
	$2.42 \alpha(1 \mathrm{H}, \mathrm{d}, 12.0)$		
H-6		C-6	89.3
H-7	$5.10(1 \mathrm{H}, \mathrm{s})$	C-7	126.6
H-8		C-8	136.7
H-9	2.00 (1 H, m)	C-9	46.6
	1.85 (1 H, m)		
H-10	2.00 (1 H, m)	C-10	42.6
H-11	5.04 (1 H, dd, 15, 8)	C-11	132.8
H-12	5.33 (1 H, dt, 6.5, 15)	C-12	132.0
H-13	1.95 ($2 \mathrm{H}, \mathrm{m}$)	C-13	25.6
H-14	0.92 (3 H, t, 7.5)	C-14	14.1
H-15	1.86 (1 H, m)	C-15	32.2
	1.64 (1 H, m)		
H-16	0.86 (3 H, t, 7.5)	C-16	8.9
H-17	1.78 (2 H, m)	C-17	30.8
H-18	0.88 ($3 \mathrm{H}, \mathrm{t}, 7.5$)	C-18	8.9
H-19	$1.60(3 \mathrm{H}, \mathrm{s})$	C-19	17.8
H-20	1.37 (1 H, m)	C-20	27.7
	$1.24(1 \mathrm{H}, \mathrm{m}) \quad 1$		
H-21	0.80 ($3 \mathrm{H}, \mathrm{t}, 7.5$)	C-21	11.6

Retrosynthetic analysis. According to the convergent synthetic strategy as shown in Scheme 2.2, we envisioned that the assembly of the target molecule $\mathbf{8 6}$ can be achieved by coupling the corresponding central core 90 with the side chain 91. Formation of the C8-C9 single bond is realized by a metal-catalyzed $s p^{2}-s p^{3}$ coupling reaction [7-10]. Realization of the trans double bond, in turn, can be accomplished by a Horner-Wadsworth-Emmons olefination reaction [11-13]. Variations in the structure of central core $\mathbf{9 0}$ and the side chain $\mathbf{9 1}$ would provide the four possible absolute configurations of plakortide E. In our synthetic strategy,

$(4 S, 6 R, 10 R)-85 a$

(4R,6S,10R)-85b

(4R,6S,10S)-ent-85a

(4S,6R,10S)-ent-85b

Fig. 2.3 Four possible isomers of plakortide E

Table 2.4 The data of plakortone B (87) reported by Patil and coworkers

Source	Natural product [1]		
Reference	[1]		
Assigned structure			
EIHRMS	$\begin{aligned} & m / z[\mathrm{M}+\mathrm{H}]^{+}: \text {calcd for } \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}: 335.2586 \text {, } \\ & \text { found: } 335.2541 \end{aligned}$		
$[\alpha]_{\mathrm{D}}^{\mathrm{T}}$	$[\alpha]_{\mathrm{D}}^{20}=-9.2\left(c=0.72, \mathrm{CHCl}_{3}\right)$		
NMR (CDCl_{3})	${ }^{1} \mathrm{H}$ (ppm)	${ }^{13} \mathrm{C}$	
Equipment	Bruker AMX-400 spectrometer		
H-1		C-1	175.6
H-2	2.71β (dd, 5.1, 18.4, 1 H)	C-2	36.7
	$2.64 \alpha(\mathrm{dd}, 1.3,18.4,1 \mathrm{H})$		
H-3	4.21 (dd, 1.3, 5.1, 1 H)	C-3	79.5
H-4		C-4	97.2
H-5	$2.24 \alpha(\mathrm{~d}, 13.7,1 \mathrm{H})$	C-5	49.0
	$2.13 \beta(\mathrm{~d}, 13.7,1 \mathrm{H})$		
H-6		C-6	86.9
H-7	5.03 (q, 1.3, 1 H)	C-7	129.5
H-8		C-8	137.1
H-9	2.00 (m, 1 H); 1.85 (m, 1 H)	C-9	46.9
H-10	1.98 (m, 1 H)	C-10	42.6
H-11	5.06 (ddt, 1.5, 8.4, 15.3, 1 H)	C-11	132.7
H-12	5.36 (dt, 6.3, 15.3, 1 H)	C-12	131.9
H-13	1.96 (m, 2 H)	C-13	25.5
H-14	0.95 (t, 7.4, 3 H)	C-14	14.0
H-15	1.73 (m, 2 H)	C-15	33.7
H-16	0.86 (t, 7.4, 3 H)	C-16	8.7
H-17	1.73 (m, 2 H)	C-17	30.3
H-18	0.96 (t, 7.4, 3 H)	C-18	8.3
H-19	1.69 (d, 1.3, 3 H$)$	C-19	16.7
H-20	1.35 (m, 1 H); 1.15 (m, 1 H)	C-20	27.8
H-21	0.83 (t, 7.4, 3 H)	C-21	11.5

Fig. 2.4 Four possible isomers of plakortone B

Scheme 2.1 Feldman reaction of the model substrate
lipase-catalyzed kinetic resolution of racemic 1,2-dioxolane 90 would be employed to generate the two enantiomerically pure central cores [14, 15]. The racemic 1,2-dioxolane 90 would be prepared from vinylcyclopropane 92 . When the four possible isomers of plakortide E are obtained, we plan to convert them into the four possible isomers of plakortone $\mathrm{B}(\mathbf{8 7})$, whose total synthesis has been reported by us recently [5]. This conversion will not only provide a biomimetic synthesis towards plakortone B , but will also help to confirm the absolute configuration of plakortide E (Scheme 2.2).

2.3 Synthesis of cis-1,2-Dioxolane

2.3.1 Syntheses of 1,2-Dioxolanes by the Feldman Reaction

In 1986, Feldman developed a convenient method for the synthesis of 1,2-dioxolanes. In this reaction, vinylcyclopropanes react with molecular oxygen via a radical-mediated $[3+2]$ addition to form 1,2-dioxolanes (Scheme 2.3). The experimental results support the notion that cis-1,2-dioxolanes should predominate [16-19].

The mechanism of the Feldman reaction is depicted in Scheme 2.4. The free radical PhSe - is produced by using AIBN as an initiator, which reacts with the

$\begin{aligned} & \text { Biomimetic synthesis of } \\ & \text { Plakortone B }\end{aligned} \| \begin{aligned} & \text { (Determination of the absolute } \\ & \text { configuration of plakortide E) }\end{aligned}$

Scheme 2.2 Retrosynthetic analysis of plakortide E and plakortone B

Scheme 2.3 Formations of 1,2-dioxolanes via Feldman reactions
double bond of vinylcyclopropane 95 , leading to cyclopropylcarbinyl radical 96. Then cyclopropylcarbinyl radical 96 opens to the homoallylic radical 97, which is trapped by oxygen to generate 5-hexenylperoxy 98 . Cyclization of the intermediate 98 leads to 99 . Finally, expulsion of PhSe - radical from peroxyl radical 99

Scheme 2.4 The mechanism of the Feldman reaction
results in the formation of 1,2-dioxolane $\mathbf{1 0 0}$. The rate-determining step is the irreversible cyclization of 5-hexenylperoxy 98 to peroxyl radical 99 [16-19].

Our previous research. Our preliminary synthetic efforts towards plakortide E were recorded in 2007 [20], in which Zhao studied the application of the Feldman reaction to synthesize highly substituted 1,2-dioxolanes. Initially, substrate 101d was prepared and used to investigate the Feldman reaction. Irradiation with a 300 W sunlamp at $0^{\circ} \mathrm{C}$ under an atmosphere of oxygen and in the presence of catalytic amounts of $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ and AIBN furnished 1,2-dioxolane in 88% yield and as a $1 / 7$ mixture of diastereomers, as determined by ${ }^{1} \mathrm{H}$ NMR and HPLC. The major product was determined to have trans configuration based upon nOe studies. A subsequent study applied the same peroxidation to a series of vinyl cyclopropanes. The results are depicted in Table 2.5.

In studies on less substituted vinylcyclopropane substrates, Feldman found that cis-1,2-dioxolanes predominated [16-19]. Weinreb and Feldman [19] utilized ab initio computation methods at the MP2/6-31G*//UHF/6-31G* level to probe the predicted energies between these species (5-hexenylperoxy 98 and peroxyl radical 99 in Scheme 2.4) in order to explain the cisttrans ratio in the product. Their results indicate that a chair-like transition state is always favorable, and an elec-tron-withdrawing group would prefer an axial disposition that leads to a transproduct. On the other hand, an electron-donating group will occupy an equatorial position to give a cis-product (Scheme 2.5).

In the less substituted substrates, both experimental and computational results support the notion that cis-1,2-dioxolanes should predominate [16-19]. However, to our disappointment, during our construction of 3,5-tetrasubstituted-1,2dioxolanes, we observed that the Feldman reaction predominantly furnished the

Table 2.5 Investigations of Feldman reaction

Entry	Substrate	Yield (\%)	cis/trans $^{\text {a }}$
1	101a	Quant	trans
2	101b	75	$1 / 22$
3	101c	Quant	$1 / 13$
4	101d	88	$1 / 7$
5	92a	82	$1 / 2.8$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis

Scheme 2.5 Chair-like transition states in Feldman reaction
trans-stereoisomer when both oxygen atoms were on tertiary carbons (Table 2.5) [20]. Even substrate 92a, which had an electron-rich styrenyl substituent, under Feldman reaction conditions as described above furnished the trans-product (cis/trans $=1: 2.8$) as the major product. These results were different from the traditional results as reported by Feldman and coworkers.

To explain our experimental results, we reinvestigate the transition states for cyclization of the hexenyl peroxyl radical which were developed by Feldman and coworkers to interpret the stereochemistry of 1,2-dioxolane formation [17]. After the equilibration studies with 1,2-dioxolanes and a trapping experiment with 1,2-dioxolane, Feldman and coworkers had predicted that the cyclization was irreversible and that the stereoselectivity reflected kinetic control. In the cyclization of 5-hexenylperoxy radical 108, there were four transition states, the chair-like

Scheme 2.6 Stereochemistry of 1,2-dioxolane formation
transition state 108a featuring a pseudoequatorial substituent R^{3}, a boat-like transition state 108b with pseudoaxial R^{3}, the chair-like transition state $\mathbf{1 0 8 c}$ featuring a pseudoaxial substituent R^{3} and a boat-like transition state $\mathbf{1 0 8 d}$ with pseudoequatorial R^{3} (Scheme 2.6). Reaction is believed to proceed through the more stable chair-like transition states 108a or 108c to generate the cis-product or trans-product respectively. When $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$, the reaction mainly proceeded through conformer 108a to furnish the cis-1,2-dioxolane as the major product. However, when $R^{1}=R^{2}=E t$, the two Et groups would suffer from a 1,3-diaxial interaction in 108a. As a result, cyclizations of substrates with $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=$ alkyl proceed mainly via conformer 108 c , leading to the trans1,2 -dioxolane as the major product.

We also have studied this issue by employing DFT computional methods (courtesy of Dr. Yu-Xue Li, Shanghai Institute of Organic Chemistry, The Chinese Academy of Science). As expected, UB3LYP/6-31G* level computations indicated that the chair-like transition state going towards tertiary trans-peroxide was about $0.2 \mathrm{kcal} / \mathrm{mol}$ more stable in energy than those leading to cis-products.

Comparing the cis/trans ratio of the peroxides in Table 2.5, we found that the substrate 92a gave the best value (cis/trans $=1: 2.8$). We envisioned that cis/trans ratio can be improved with a benzyl group. This result might suggest that the aryl group plays an important role in the stereocontrol process. We presumed that a $\pi-\pi$ stacking interaction might be a crucial factor to control cis-selectivity (Fig. 2.5). To address this issue, we planned to reinvestigate the Feldman reaction with a series of divinylcyclopropanes containing a range of arene substituents on the alkenes. It was anticipated that the realization of cis-1,2-dioxolane could be accomplished by this strategy.

Syntheses of trans-divinyl cyclopropanes. The key intermediate $\mathbf{1 1 3}$ was prepared according to McCoy's procedure [21-23]. As depicted in Scheme 2.7,

Fig. $2.5 \pi-\pi$ stacking interaction in the formation of 1,2-dioxolane

Scheme 2.7 Preparation of diethyl 1,2-diethyl-1,2-cyclopropanedicarboxylate. Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{DMF}, 88 \%$

Scheme 2.8 Preparation of ethyl α-chlorobutyrate.

Reagents and conditions:

(a) DMF, $\mathrm{SO}_{2} \mathrm{Cl}_{2}, 90-95{ }^{\circ} \mathrm{C}$, 29%; (b) $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$,
benzene, 70\%

Scheme 2.9 Preparation of ethyl α-ethylacrylate.
Reagents and conditions:
(a) $\mathrm{KOH}, \mathrm{EtOH}$;
(b) Piperidine, $(\mathrm{HCHO})_{2}$,

Pyridine, 70% (2 steps)
ethyl α-chlorobutyrate (111) and ethyl α-ethylacrylate (112) underwent tandem Michael/alkylation for the generation of diethyl 1,2-diethyl-1,2-cyclopropanedicarboxylate (113). Ethyl α-chlorobutyrate (111) [24-26] was prepared from butyric acid (114) (Scheme 2.8) and ethyl α-ethylacrylate (112) [27] was formed from diethy 1,2-ethylmalonate (116) (Scheme 2.9).

Our previous studies towards plakortide E showed that the cis-divinyl cyclopropane might undergo Cope rearrangement to furnish cycloheptadiene [20]. Therefore, we resorted to the use of the trans-divinyl cyclopropane as a precursor for our investigation of the Feldman reaction (Scheme 2.10). Reduction of diester $\mathbf{1 1 3}$ gave diol $\mathbf{1 1 8}$ in 93% yield by employing LiAlH_{4} [6, 20].

After reduction with LiAlH_{4}, mono-protection of alcohol group was necessary. Diol 118 was treated with $\mathrm{Et}_{3} \mathrm{~N}$ and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}$ to afford the desired monoprotected product 119 as a colorless oil in 80% yield (Scheme 2.10) [6, 20].

Scheme 2.10 Synthesis of trans-divinyl cyclopropane. Reagents and conditions: (a) LiAlH_{4}, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 84 \%$; (b) t - $\mathrm{BuMe}_{2} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; (c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 81 \%$; (d) n-BuLi, $\mathrm{PPh}_{3} \mathrm{CH}_{3} \mathrm{I}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to rt, 74%; (e) p-TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{CH}_{3} \mathrm{OH}, 90 \%$; (f) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (g) n - $\mathrm{BuLi}, \mathrm{PPh}_{3} \mathrm{BnBr}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to rt, 70% (2 steps)

Scheme 2.11 Syntheses of trans-divinyl cyclopropanes

The mono-protected alcohol $\mathbf{1 1 9}$ was then subjected to Swern oxidation to generate aldehyde $\mathbf{1 2 0}$ as a colorless oil. Subsequently, aldehyde $\mathbf{1 2 0}$ was used directly for the Wittig reaction affording vinylcyclopropane $\mathbf{1 2 1}$ as a colorless oil in 65\% yield (Scheme 2.10) [6, 20].

Then p-TsOH mediated desilylation of $\mathbf{1 2 1}$ furnished the free hydroxyl intermediate $\mathbf{1 2 2}$ as a colorless oil in 98% yield. Then the alcohol was subjected to Swern oxidation as above to furnish aldehyde $\mathbf{1 2 3}$ a colorless oil. Subsequently, Wittig reaction was performed, and the desired product divinylcyclopropane 92a was prepared in 70% yield (two steps) (Scheme 2.10) [6, 20].

Table 2.6 Syntheses of 1,2-dioxolanes by Feldman reaction
O_{2}

Entry	Substrate	92b	92c
1	92a	Yield $(\%)$	$1: 3.1$
2	92b	72	$1: 4$
3	92c	75	$1: 2.6$
4	$\mathbf{9 2 d}$	84	$1: 2.5$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis

Starting from the 1,2-diethyl-2-vinyl- cyclopropanecarbaldehyde (123), three other aryl-substituted divinylcyclopropanes were prepared by Wittig reactions in a similar manner (Scheme 2.11) [6, 20].

Syntheses of 1,2-dioxolanes by the Feldman reaction. With the desired substrates in hand, we began our studies on the effect of aryl $\pi-\pi$ stacking interaction in the Feldman reaction. The reactions were performed under standard Feldman reaction conditions. All the experimental results are summarized in Table 2.6. However, to our disappointment, we found that there was no significant improvement to the cis/trans ratio when various substrates were used. The best value in the table was cis/trans $=1: 2.6$, when the substrate 92c was used. However, the major product was still the trans-1,2-dioxolane. The natural product plakortide E [1] was a cis-tetrasubstituted peroxide, so we sought to develop a complementary approach to synthesize the cis-tetrasubstituted 1,2-dioxolanes.

2.3.2 Palladium-Catalyzed Approach Towards 1,2-Dioxolanes

Ru-catalyzed oxidation of amides with tert-butyl hydroperoxide to give the corresponding tert-butyldioxy amides has been reported [28]. A Co-mediated peroxidation of alkenes in the presence of oxygen and triethylsilane was also known [29-34]. To the best of our knowledge, only two examples of Pd-catalyzed reaction resulting in peroxide-containing products have been reported [35, 36].

6 examples (yield: 40\%-72\%)
Scheme 2.12 Formation of allylic tert-butylperoxy ethers catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$

Scheme 2.13 Formations of 1,2-dioxanes reported by Woerpel and coworkers
Table 2.7 Catalyst screening
92a
${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis, ${ }^{\mathrm{b}} N R$ No reaction
Corey's method only furnished allylic tert-butylperoxy ethers as the major products (Scheme 2.12) [35].

Woerpel reported a palladium-catalyzed intramolecular cyclization of unsaturated hydroperoxides for the formation six-membered cyclic peroxides [36]. However, yields of this method were reportedly low (30-35\%). Furthermore, this method has not been known to afford 1,2-dioxolanes (Scheme 2.13).

Our initial studies involved the use of 92a [20] as a substrate. Thus, under O_{2} (oxygen balloon), we examined a number of catalysts to identify the optimal catalytic system. Our results are summarized in Table 2.7. As can be seen, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was found to give the best result. In the absence of the catalyst, the reaction did not take place. In the presence of the CuSO_{4}, or $\mathrm{Pd}^{2+}\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right.$,

Table 2.8 Solvent screening

	O_{2} (balloon) ${ }_{5} \mathrm{Ph} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~m}$		Ph^{+} trans-124a	
	Solvent, rt			
	Solvent	Time (h)	Yield (\%)	cis/trans ${ }^{\text {a }}$
1	THF	48	19	1:1
2	DMF	48	13	1:1
3	Toluene	48	15	1:1
4	DMSO	48	NR ${ }^{\text {b }}$	-
5	MeNO2	48	NR ${ }^{\text {b }}$	-
6	MeCN	24	25	1:1

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis, ${ }^{\mathrm{b}} N R$ No reaction

Table 2.9 Catalyst screening

Entry	Catalyst (mol\%)	Time (h)	Yield (\%)	cis/trans ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10)$	24	15	1:1.5
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (20)	24	26	1:1.5
3	$\mathrm{CuCl}_{2}(20)$	24	NDP ${ }^{\text {b }}$	-
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (10)	24	Trace	-
	$\mathrm{CuCl}_{2}(20)$			
5	$\mathrm{PdCl}_{2}(10)$	24	NDP ${ }^{\text {b }}$	-
6	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (10)	24	9	1:1.5

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis, ${ }^{\mathrm{b}}$ NDP No desired product
$\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Cl}_{2}$ and PdCl_{2}], no 1,2-dioxolane was resulted. In the presence of the $\operatorname{Pd}(0)$ catalyst, the desired product was obtained, and the ratio of the cis/trans is 1:1. When $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was used as the catalyst, the yield of the reaction was found to be higher than that of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$.

For further optimization, we examined the reaction in a variety of solvents. All results are summarized in Table 2.8. In DMSO or MeNO_{2}, there was no reaction. When MeCN was used as the solvent, the reaction gave a higher yield than in other solvents.

In the syntheses of peroxides, $\mathrm{H}_{2} \mathrm{O}_{2}$ is a widely used reagent. For further screening of reaction conditions for the oxidation of 92a, aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (30\%) was used instead of oxygen balloon. The reaction was performed at room temperature in the presence of various catalysts with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution in MeCN . The results are shown in Table 2.9. To our delight, in the presence of Pd (0) catalyst, substrate 92a reacted with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution, leading to the desired 1,2dioxolane. However, the yields were not good. In the presence of $20 \mathrm{~mol} \%$

Table 2.10 Optimizations for the Pd-catalyzed approach towards 1,2-dioxolane

		$\mathrm{d}\left(\mathrm{PPh}_{3}\right)_{4}$ (cat.) $\mathrm{O}\left(\mathrm{NH}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$ Solvent, rt			 trans-124	
Entry	Catalyst (mol\%)	$\mathrm{H}_{2} \mathrm{O}_{2}$ (equiv)	Solvent	Time (h)	Yield (\%)	cis/trans ${ }^{\text {a }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10)$	2.0	MeCN	12	33	1:1.5
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (20)	2.0	MeCN	12	53	1:1.5
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (20)	2.0	Benzene	36	46	1:1.9
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20)$	2.0	THF	12	17	1:1.2
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20)$	3.0	MeCN	12	57	1:1.5

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis

Table 2.11 Palladium-catalyzed approach towards 1,2-dioxolanes

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis, ${ }^{\mathrm{b}} N R$ No product formed
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, the mixture of 1,2-dioxolanes (cis/trans $=1: 1.5$) was obtained in 26% yield (Table 2.9)

Consideration of the effect of water in the reaction, urea hydrogen peroxide (UHP), a white crystalline solid, was used instead of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$. The reaction was performed at room temperature in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ with urea hydrogen peroxide in dry organic solvents. The experimental results are summarized in Table 2.10. In these studies, we observed that the reaction with urea peroxide led to a better result (yield $=33 \%$, cis/trans $=1: 1.5$) than that with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (yield $=15 \%$, cis/trans $=1: 1.5$). By increasing the $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyst loading from $10 \mathrm{~mol} \%$ to $20 \mathrm{~mol} \%$, an isolated yield of 57% was realized. We also screened other solvents (THF and benzene), but it was found that MeCN was the best solvent for this reaction.

Scheme 2.14a Proposed mechanism for a palladium-catalyzed approach towards 1,2-dioxolane
The application of this palladium-catalyzed approach towards various 1,2-dioxolanes under the optimized condition is shown in Table 2.11. We have still not been able to obtain exclusively cis-1,2-dioxolanes by this method although the cis/trans ratio of this palladium approach (cis/trans $=1: 1.4$) is much better than that of the Feldman reaction (cis/trans $=1: 2.8$) [20]. Further optimization and search for asymmetric versions of this palladium-catalyzed process towards 1,2-dioxolanes are in progress.

An attempt to gain insight into the mechanism of this reaction was carried out. A radical scavenger, 2,6-di-tert-butyl-4-methylphenol (BHT), was used in the reaction between 92a and urea peroxide. Despite the presence of a radical scavenger, the desired product was still obtained in 42% yield. This result implies that the reaction is not expected to proceed through a free radical process. As illustrated in Scheme 2.14a, a mechanism is proposed in light of other palladium-catalyzed reactions involving vinylcyclopropanes [37]. Divinylcyclopropane 92a may react with $\operatorname{Pd}(0)$ to generate a π-allylpalladium complex 131b, which can attack the monopalladium(II) dioxide $\left[\mathrm{O}_{2} \mathrm{Pd}^{\mathrm{II}}\right]$ [38] to form 132. Ring closure by an intramolecular attack therefore yields $\mathbf{1 3 3}$, which undergoes reductive elimination to yield the 1,2-dioxolane 124a and regenerate the $\operatorname{Pd}(0)$ catalyst.

2.3.3 Synthesis of cis-1,2-Dioxolane

The mixture of cis/trans 1,2-dioxolanes 124a was subjected to ozonolysis, which on reductive workup with NaBH_{4} gave two chromatographically separable diols trans-134 and cis-135. (Scheme 2.14b) [20]. Peroxide cis-135 was isolated as a

Scheme 2.14b Synthesis of cis-1,2-dioxolane 137. Reagents and conditions: (a) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{MeOH}(7: 1), 78{ }^{\circ} \mathrm{C}$; (b) NaBH_{4} (1.5 equiv), -78 to $0{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 90 \%$ (2 steps); (c) t - $\mathrm{BuMe}{ }_{2} \mathrm{SiCl}$ (1.0 equiv), imidazole (1.0 equiv), DMAP ($5 \mathrm{~mol} \%$), DMF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 74 \%$ (reacted yield)

Fig. 2.6 X-ray
crystallographic analysis of cis-135

colorless solid, whose stereochemistry was confirmed by an X-ray crystallographic analysis (Fig. 2.6). Peroxides trans- $\mathbf{1 3 4}$ and cis- $\mathbf{1 3 5}$ were monoprotected with t - $\mathrm{BuMe}_{2} \mathrm{SiCl}$ to give trans- $\mathbf{1 3 6}$ and cis-137, respectively.

2.4 Studies on the Model Reactions

cis-1,2-Dioxolane 137 is the key synthetic precursor towards the total synthesis of plakortide E, while the trans-product $\mathbf{1 3 6}$ is useful for model studies. Due to the weak $\mathrm{O}-\mathrm{O}$ bond dissociation energy ($37 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}$) [39], the functionalization of the 1,2-dioxolanes are expectedly difficult. Generally, it is widely believed that peroxides are unstable compounds. Metals and metal ions such as Co and $\mathrm{Pd}, \mathrm{Sn}(\mathrm{II}), \mathrm{Fe}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ are able to function as single- or two electron donors or Lewis acids to decompose peroxides. Strong bases, strong acids and high

Scheme 2.15 Horner-Wadsworth-Emmons reaction

Scheme 2.16 Construction of trans-double bond. Reagents and conditions: (a) Dess-Martin periodinane (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ (3.0 equiv), NaH (2.8 equiv), THF, $0^{\circ} \mathrm{C}, 79 \%$ (2 steps)
temperature are all detrimental to peroxides [39, 40]. According to these facts, it goes without saying that the studies on the model reactions for the total synthesis are by no means trivial.

2.4.1 Construction of trans-Double Bond

In 1958, Horner developed a modified Wittig reaction between aldehydes or ketones 138 and stabilized phosphonate 139 (Scheme 2.15) [11-13, 41]. Compared to phosphonium ylides, phosphonate-stabilized carbanions are more nucleophilic and more basic. Wadsworth and Emmons did further studies on this reaction [12]. The stereoselectivity of Horner-Wadsworth-Emmons reaction is usually pretty high, which favors the formation of E-alkenes. Another advantage is that the phosphate by-product can be washed away by aqueous solution of $p \mathrm{H}>2$.

Starting from the mono-protected trans-1,2-dioxolane containing alcohol 136, we began to construct the trans double bond, which is a substituent of the tertiary peroxide center. In light of the good stereoselectivity and mild reaction conditions of Horner-Wadsworth-Emmons olefination reaction, we envisioned that this reaction would meet our requirements. The synthetic route is depicted in Scheme 2.16. Oxidation of $\mathbf{1 3 6}$ with Dess-Martin periodinane (DMP) generated the 1,2 -dioxolane-containing aldehyde 141. Aldehyde 141 as an unstable species that had to be freshly prepared for each olefination. To our delight, the Horner-Wadsworth-Emmons olefination of aldehyde 141 with triethyl phosphonoacetate resulted exclusively in the desired product 142 in 79% yield (two steps) [11-13, 41]. The stereochemistry was determined by the ${ }^{1} \mathrm{H}$ NMR, with the $15.8 \mathrm{~Hz}^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}$ coupling confirming the trans stereochemistry.

Encouraged by the success of the Horner-Wadsworth-Emmons olefination, we next investigated the application of a Wittig olefination for introduction of tri-substituted alkene adjacent to the 1,2-dioxolane. The model reaction is shown in Scheme 2.17. Although two kinds of Wittig reactions have been tried, we failed to obtain the desired product (Table 2.12). In both cases, no obvious product spot

Scheme 2.17 Construction of trisubstituted double bond

Table 2.12 Reaction conditions for Wittig reaction

Entry	Reaction conditions	Results
1	$n-\mathrm{BuLi}\left(1.2\right.$ equiv), $\mathbf{1 4 4}$ [6] (1.3 equiv), THF, $-78^{\circ} \mathrm{C}$ to rt	Decomposed
2	$n-\mathrm{BuLi}\left(1.2\right.$ equiv), $\mathbf{1 4 5}$ [6] (1.3 equiv), THF, $-78^{\circ} \mathrm{C}$ to rt	Decomposed

Scheme 2.18 Retrosynthesis of alkenyl iodide 146
was observed on TLC, although all starting material was consumed. We presumed that the steric hindrance between the 1,2-dioxolane-containing aldehyde $\mathbf{1 4 1}$ and the side chain $\mathbf{1 4 4}$ [6] or $\mathbf{1 4 5}$ [6] led to the failure of these coupling reactions. When the desired Wittig reaction did not take place, the unstable 1,2-dioxolanecontaining aldehyde decomposed under these conditions. For this reason, we abandoned this Wittig reaction approach. Next, we place our focus on the Pdcatalyzed cross-coupling reaction, which has been widely used in carbon-carbon bond-forming reactions.

2.4.2 Synthesis of Alkenyl Iodide

In our retrosynthesis of plakortide E, 1,2-dioxolane-containing-alkenyl iodide 90 was an important key precursor. To prepare for the synthesis of the cis-1,2-dioxolane-containing alkenyl iodide $\mathbf{9 0}$, we intended to initially model the

Scheme 2.19 SeyferthGilbert homologation

Scheme 2.20 Modification of Seyferth-Gilbert homologation (OhiraBestmann reagent)
aldehyde or ketone
149

151

$$
0
$$

152
154
synthetic steps on the trans isomer, 146. As shown in Scheme 2.18, starting from the trans-1,2-dioxolane-containing-aldehyde $\mathbf{1 4 1}$ to prepare the trans-1,2-dioxolane-containing-alkenyl iodide 146, we need as the first step to prepare the intermediate terminal alkyne 148 . With terminal alkyne 148 in hand, subsequent methylation afforded the alkyne 147. The conversion of an alkyne to an alkenyl iodide has been reported in the literature [4, 5, 42].

Preparation of terminal alkyne 148. The one-pot conversion of ketones or aldehydes to the corresponding internal or terminal alkynes by using diazophosphonates under basic conditions is called Seyferth-Gilbert homologation (Scheme 2.19). In 1973, Colvin and coworkers reported that aryl ketone 149 (or aldehyde) reacted with dimethyl (diazomethyl)phosphonate $\mathbf{1 5 0}$ in the presence of a base to give substituted alkynes 151 [43, 44]. Dimethyl (diazomethyl)phosphonate 150 was often called the Seyferth-Gilbert reagent [45], which was first synthesized by Seyferth. In 1979 Gilbert and coworkers improved the procedure of the reaction, and extended its scope [46, 47]. Ohira and Bestmann made a further modification of this reaction based upon generation of the dimethyl(diazomethyl)phosphonate in situ from dimethyl(1-diazo-2-oxopropyl)phosphonate (153), which was called Ohira-Bestmann reagent (Scheme 2.20) [48, 49]. The OhiraBestmann procedure is now widely used in organic syntheses. The mild reaction conditions are tolerant most functional groups and various aldehydes can be homologated in excellent yields.

In the light of the advantages of the Ohira-Bestmann procedure and its wide synthetic applications, we planned to use this reaction to introduce the terminal alkyne to our 1,2-dioxolane-containing substrate. As shown in Scheme 2.21, freshly prepared aldehyde 141 was subjected to the standard Ohira-Bestmann procedure [48, 49]. To our disappointment, none of the desired terminal alkyne 148 was obtained, although the TLC showed that all starting material was

Scheme 2.21 Synthesis of terminal alkyne via Ohira-Bestmann procedure

Scheme 2.22 Synthesis of terminal alkyne

Scheme 2.23 Corey-Fuchs reaction

Table 2.13 Reaction conditions for the preparation of 1,1-dibromoalkene 155

Entry	Reaction conditions	Results
1	$\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Corey-Fuchs reaction)	Decomposed
2	$\mathrm{CBr}_{2} \mathrm{HPPh}_{3} \mathrm{Br}, t$ - BuOK	79\% (2 steps)

consumed. We presumed that the 1,2-dioxolane-containing aldehyde $\mathbf{1 4 1}$ decomposed under the basic conditions due to its instability.

Due to the fact that a one-pot conversion of the 1,2-dioxolane-containing aldehyde 141 to terminal alkyne 148 failed, we planned to convert the 1,2-dioxolane-containing aldehyde 141 to the 1,1-dibromoalkene $\mathbf{1 5 5}$, which can be treated with n-BuLi to generate the desired terminal alkyne 148 (Scheme 2.22).

The Corey-Fuchs reaction [50] included two sequential reactions, the formation of the 1,1-dibromoolefin and the formation of the terminal alkyne. Starting from aldehyde 156, and through these two sequential transformations, a terminal alkyne 158 was obtained (Scheme 2.23). The formation of 1,1-dibromoolefins via phosphine-dibromomethane was originally developed by Desai and McKelvie [51].

In consideration of the good functional group tolerance of the Corey-Fuchs reaction, we intended to employ it in our preparation of the terminal alkyne 148. Freshly prepared aldehyde 141 was used to investigate the Corey-Fuchs reaction. The reaction was performed under standard Corey-Fuchs reaction conditions [50].

Scheme 2.24 Preparation of trans-1,2-dioxolane-containing alkyne. Reagents and conditions: (a) $n-\operatorname{BuLi}$ (2.2 equiv), THF, $-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 95 \%$; (b) $n-\mathrm{BuLi}$ (1.2 equiv), MeOTf (1.5 equiv), THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$

Fig. 2.7 Schwartz reagent

159

However, to our disappointment, we failed to obtain the desired 1,1-dibromoalkene 155 (Table 2.13). Under these reaction conditions, no obvious spot was observed on TLC although all starting material was consumed. We thought that the 1,2-dioxolane-containing aldehyde $\mathbf{1 4 1}$ decomposed during the reaction.

Then we adopted the Rassat's procedure which has also been widely used in total synthesis [52]. Thus to a slurry of freshly prepared $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{CHBr}_{3}$ [53] (2.5 equiv) in THF at $0{ }^{\circ} \mathrm{C}$ was added t-BuOK (2.4 equiv). The bright yellow slurry was stirred for 15 min and the temperature was allowed to warm to room temperature. Then the solution of the aldehyde 141 (1.0 equiv) in THF was added to the mixture and stirred for 30 min , the reaction was complete as monitored by TLC. To our delight, the desired 1,1-dibromoalkene 155 was prepared in 79% yield starting from the 1,2-dioxolane-containing alcohol 136 (two steps). It was necessary to warm the reaction system after the addition of t - BuOK . If the reaction were kept at $0^{\circ} \mathrm{C}$, an inseparable side product was formed along with the 1,1 -dibromoalkene 155. The reaction time for the Wittig salt $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{CHBr}_{3}$ and t-BuOK and the amount of t - BuOK were also important. It is essential to allow a complete consumption of the base t - BuOK ; otherwise, the base would decompose 1,2-dioxolane-containing aldehyde 141.

Preparation of the alkyne 147. With dibromoalkene 155 in hand, we treated it with $n-\operatorname{BuLi}$ (2.2 equiv) at $-78{ }^{\circ} \mathrm{C}$ to provide the terminal alkyne 148 in 95% yield. Then the terminal alkyne 148 was deprotonated with $n-\operatorname{BuLi}$ (1.2 equiv) at $-78{ }^{\circ} \mathrm{C}$, followed by methylation to afford trans-1,2-dioxolane-containing alkyne 147 in 70% yield (Scheme 2.24) [4, 5].

Preparation of the alkenyl iodide 146. In 1970, Wailes and Weigold first prepared zirconocene hydrochloride $\left(\mathrm{Cp}_{2} \mathrm{ZrHCl}\right)$ by the reduction of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ [54], and then Schwartz examined the reactions of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ with a wide range of substrates and developed it to become a useful reagent for organic synthesis (Fig. 2.7) [42, 55]. Zirconocene hydrochloride reacts with alkenes or alkynes to form alkenylzirconium or alkylzirconium compounds and this reaction is called

Scheme 2.25 Preparation of trans-1,2-dioxolane-containing alkenyl iodide 23 by Schwartz hydrozirconation

Table 2.14 Reaction conditions for Schwartz hydrozirconation

Entry	$\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$, benzene, THF, $0^{\circ} \mathrm{C}$ to rt $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$, benzene, $\mathrm{THF}, 50^{\circ} \mathrm{C}$	No reaction trans-147
1	Complicated	
2		

Schwartz hydrozirconation. Zirconocene hydrochloride $\left(\mathrm{Cp}_{2} \mathrm{ZrHCl}\right)$ is called the Schwartz reagent. Generally, the addition of the $\mathrm{Zr}-\mathrm{H}$ proceeds with syn-addition [56].

To prepare the alkenyl iodide 146, we attempted to employ the Schwartz reagent in our transformation. Hydrozirconation of the alkyne 147 should lead to the formation of the alkenylzirconium 160, iodination of which affords the desired alkenyl iodide 146 (Scheme 2.25).

The Schwartz hydrozirconation reaction of the alkyne 147 was performed under standard reaction conditions reported in the literature [42, 55, 57]. To a suspension of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$ in THF at $0^{\circ} \mathrm{C}$ was added a solution of the alkyne 147 in benzene under nitrogen. The temperature was allowed to warm to room temperature. The reaction was examined by ${ }^{1} \mathrm{H}$ NMR. Although the reaction mixture was stirred for 24 h , no reaction took place (Table 2.14). Then the reaction was performed at $50{ }^{\circ} \mathrm{C}$, and was monitored by ${ }^{1} \mathrm{H}$ NMR. To our disappointment, no desired product 160 resulted. However, the starting material was consumed. Decomposition of the starting material made the reaction very messy.

After the failure of the Schwartz hydrozirconation reaction, we sought to employ a milder reaction to prepare the 1,2-dioxolane-containing alkenyl iodide 146. This time, we resorted to the palladium-catalyzed hydrostannylation of alkynes. Compared to other methods, the palladium-catalyzed hydrostannylation offers these advantages: (1) mild reaction conditions; (2) good functional group tolerance; (3) good stereoselectivity (cis-addition) [58, 59]; (4) wide application in total synthesis. It was recently reported that hexane minimized the competitive stannane dimerization in palladium-catalyzed hydrostannylations [60]. In light of these findings, our synthetic route was designed in Scheme 2.26. The palladiumcatalyzed hydrostannylation of the alkyne 147 regiospecifically furnished 161. Then subsequent iodination of $\mathbf{1 6 1}$ cleanly led to the 1,2-dioxolane-containing alkenyl iodide 146.

Scheme 2.26 Preparation of trans-1,2-dioxolane-containing alkenyl iodide 146 by palladiumcatalyzed hydrostannylation of the alkyne 147. Reagents and conditions: (a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (3.0 equiv), Hexane, $1 \mathrm{~h}, 84 \%$; (f) I_{2} (1.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 86 \%$

Table 2.15 Optimization of the palladium-catalyzed hydrostannylation
trans-147

Employing alkyne $\mathbf{1 4 7}$ as the substrate, we studied the palladium-catalyzed hydrostannylation of 1,2-dioxolane-containing alkyne. To a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and alkyne 147 in THF, tributyltin hydride was added dropwise at room temperature. The dark brown reaction mixture was stirred for 1 h , and the reaction was monitored by TLC. The starting material alkyne 147 was completely consumed. After flash column chromatography, both 161 and 162 were obtained in 66% yield, and the $\mathbf{1 6 1 / 1 6 2}$ ratio is $1: 1$. Although we obtained our desired product 161, the regioselectivity was not acceptable. We optimized the reactions by screening several palladium catalysts, ligands and solvents. All the results are summarized in Table 2.15. Gratifyingly, we found the best reaction conditions. In the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$, alkyne 147 reacted with tributyltin hydride in hexane, and regioselectively resulted in the desired product in 84% yield. With the intermediate $\mathbf{1 6 1}$ in hand, its iodination led to 1,2-dioxolanecontaining alkenyl iodide 146 in 86% yield.

Scheme 2.27 Preparation of the Julia reagent. Reagents and conditions: (a) NaH , Hspt, THF, $0{ }^{\circ} \mathrm{C}$ to rt, overnight, 96%; (b) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$, EtOH , overnight, 92%

Scheme 2.28 Synthesis of the racemic side chain. Reagents and conditions: (a) LiAlH_{4}, THF, reflux, $24 \mathrm{~h}, 60 \%$; (b) n - BuLi, t - $\mathrm{BuMe}_{2} \mathrm{SiCl}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to rt, 99%; (c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; (d) KHMDS (solid), Julia reagent, THF, $-78{ }^{\circ} \mathrm{C}$ to rt, 89% (2 steps); (e) p - $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 86 \%$; f. PPh_{3}, imidazole, $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 86%

2.4.3 Synthesis of the Racemic Side Chain

To continue our basic model study, the racemic side chain needed to be prepared. The route is shown in Scheme 2.28. The synthetic paradigm was step-economical and starting material was commercially available and cheap.

As shown in Scheme 2.28, Julia olefination was used to construct the transdouble bond of the side chain. We first prepared the Julia reagent 165 by literature reported methods (Scheme 2.27) [6]. Commercially available n-propyl bromide 163 was allowed to react with 1-phenyl-1H-tetrazole-5-thiol (Hspt) in THF in the presence of NaH furnishing the intermediate thioether 164 in 96% yield, which was in turn oxidized to the sulfone $\mathbf{1 6 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of a catalytic amounts of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in 92% yield.

We next prepared the aldehyde substrate for the Julia olefination. Commercially available ethyl diethyl malonate (116) was reduced to diol $\mathbf{1 6 6}$ in 60% yield by using LiAlH_{4}. Diol 166 was then treated with n - BuLi and t - BuMe 2 SiCl at $-78{ }^{\circ} \mathrm{C}$ to afford the desired mono-protected product 167 as a colorless oil in excellent

Table 2.16 Optimization of the Julia olefination

168
169

Entry	Reaction conditions	trans $/$ cis $^{\mathrm{a}}$	Yield (2 steps) (\%)
1	LDA, THF, $-78{ }^{\circ} \mathrm{C}$ to rt	$10: 1.2$	56
2	KHMDS (Toluene), THF, $-78{ }^{\circ} \mathrm{C}$ to rt	$11: 1$	30
3	KHMDS (solid), THF, $-78{ }^{\circ} \mathrm{C}$ to rt	$25: 1$	89

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis
yield [61]. The mono-protected alcohol 167 was then subjected to Swern oxidation. After oxidation, a colorless oil of aldehyde $\mathbf{1 6 8}$ was obtained and was directly used for the Julia olefination (Scheme 2.28).

When we used Julia olefination to construct the trans-double bond, we found that the stereoselectivity of the reaction was problematic. We found that the trans/ cis ratio was affected by the base. Initially, LDA was used, the trans/cis ratio is 10:1.2 as determined by ${ }^{1} \mathrm{H}$ NMR spectrometry. Then we optimized the reaction by screening bases and solvents. The results are summarized in Table 2.16. When KHMDS was used as a base, the desired 1,2-disubstituted olefin 169 was obtained in 89% yield (two steps). The trans/cis ratio of the 1,2-disubstituted olefin 169 obtained under these reaction conditions was also acceptable (trans/cis $=25: 1$).

The 1,2-disubstituted alkene $\mathbf{1 6 9}$ underwent $p-\mathrm{TsOH}$ mediated desilylation to furnish the free hydroxy intermediate $\mathbf{1 7 0}$ as a colorless oil in 86% yield. Alcohol $\mathbf{1 7 0}$ was converted to $(\pm)-91$ in 86% yield with $\mathrm{PPh}_{3} / \mathrm{I}_{2} /$ imidazole (Scheme 2.28) [4, 5].

2.4.4 Pd-Catalyzed $\mathbf{s p}^{2}-$ sp 3 Coupling

> In studying the evolution of organic chemistry and grasping its essence, one comes quickly to the conclusion that no other type of reaction plays as large a role in shaping this domain of science than carbon-carbon bond-forming reactions.-K. C. Nicolaou [62]

In the last quarter of the 20th century, transition metal-catalyzed cross coupling reactions have been greatly developed. Nowadays, these types of cross coupling reactions have become the most powerful and useful $\mathrm{C}-\mathrm{C}$ formation reactions in synthetic organic chemistry. Amongst them, the palladium-catalyzed cross coupling reactions are the most visible. It is only natural that Pd-catalyzed coupling has been used as a pivotal reaction in many total syntheses [63, 64].

Palladium-catalyzed cross-coupling reactions in total synthesis have been comprehensively reviewed by Nicolaou and coworkers [65]. Below, I have provided some examples relevant to our total synthesis of plakortide E .

Scheme 2.29 Application of Suzuki reaction in total synthesis of plakortone B

These beautiful applications of palladium-catalyzed cross-coupling reactions in total synthesis have shed light on our own program in the quest for plakortide E .

In 2006, Semmelhack and coworkers reported the synthesis of plakortone B (87) and analogs [4]. The connection of the side chain (S)-91 to the core structure 172 was achieved by a palladium-catalyzed Suzuki reaction (Scheme 2.29).

Recently, starting from D-mannitol (174), our group accomplished the total syntheses of all four possible isomers of plakortone B [5]. And one of these molecules, 87 , was found to be identical with the natural plakortone B on the basis of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and specific rotation, demonstrating that absolute configuration of the natural plakortone B is $(3 S, 4 S, 6 R, 10 R)$. In our synthesis, a Suzuki reaction was also used to connect the central core $\mathbf{1 7 5}$ and side chain $(S)-\mathbf{9 1}$ (Scheme 2.30).

In 1977, Negishi and coworkers developed a new carbon-carbon bond formation reaction, which was used to couple organozinc reagents and organic halides [65]. The synthesis of β-carotene demonstrates the utility of this reaction both as a $s p-s p^{2}$ and $s p^{2}-s p^{2}$ coupling method [66]. Generally, diorganozinc species $\left(\mathrm{R}_{2} \mathrm{Zn}\right)$ and organozinc halides (RZnX) can be employed in the Negishi reaction. Organozinc halides (RZnX), typically prepared either by the direct insertion of zinc (zinc dust) into organic halides or by transmetalation from other

(S)-91
171

Scheme 2.30 Application of Suzuki reaction in total synthesis of plakortone B. Reagents and conditions: (a) t - $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (b) $9-\mathrm{BBN}-\mathrm{OMe}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then warm to $23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) $3 \mathrm{~N} \mathrm{~K}_{3} \mathrm{PO}_{4}$ (aq.), 3 min ; then $\mathbf{1 7 5}$, $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF, $23{ }^{\circ} \mathrm{C}$, 20 h ; (d) $\mathrm{Na} / \mathrm{NH}_{3}$ (liq.), THF, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; (e) PDC, DMF, $23^{\circ} \mathrm{C}, 20 \mathrm{~h}, 60 \%$ over 3 steps
organometallic species, are widely used in organic synthesis [67, 68]. Alkylzinc reagents were used in the cross coupling process, which have greatly expanded the scope of the Negishi reaction beyond standard $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ couplings. Smith and coworkers reported a gram-scale synthesis of discodermolide (180), which was a clinically relevant microtubule-stabilizing agent. In their total synthesis, the Negishi coupling reaction was beautifully utilized to achieve the coupling of two fragments (Scheme 2.31). This application was a good example of the use of alkylzinc reagents in the process of $s p^{2}-s p^{3}$ carbon-carbon bond-formation [8, 9].

In this approach, the two fragments 176 and $\mathbf{1 7 8}$ were coupled to form the $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond of the target product. Significantly, it was found that 3 equivalents of t-BuLi were needed in the initial lithium-halogen exchange process after the optimization. If the customary 2 equivalents were used, the product was a $1: 1$ mixture of the iodide starting material 176 and the expected product 179. To explain such modified Negishi protocol, they speculated that the mixed tert-butyl-alkyl zinc intermediate (177) was in fact the reactive alkyl donor in the coupling process (Scheme 2.31) [8, 9].

Recently, Aggarwal and coworkers reported the total synthesis of (+)-faranal. Remarkably, this synthesis was completed in only six steps from propyne, which was quite step-economical. The key reaction in the total synthesis was the coupling of the two fragments $\mathbf{1 8 2}$ and $\mathbf{1 8 1}$ from Negishi coupling. Zinc bromide was used to generate the alkyl-zinc intermediate from the corresponding organolithium (Scheme 2.32). This application was also an example of $s p^{2}-s p^{3}$ carbon-carbon bond-formation achieved by Negishi cross-coupling [10].

Scheme 2.31 Application of the Negishi reaction in the total synthesis of discodermolide

Scheme 2.32 Application of Negishi reaction in the total synthesis of (+)-faranal

In 1998, Dussault and coworker reported their studies on the application of palladium-mediated carbon-carbon bond forming reactions to functionalized peroxides [69]. They found that the peroxides are compatible with a series of Pd-catalyzed cross coupling reactions. In that paper, they used acyclic peroxides in Stille (Scheme 2.33), Heck (Scheme 2.34), and Pd-catalyzed carbonylation reactions of vinyl iodides (Scheme 2.35). These examples demonstrated that peroxides

Scheme 2.33 Stille reaction

Scheme 2.34 Heck reaction

Scheme 2.35 Pd-catalyzed carbonylations of vinyl iodide reactions
are stable to the conditions for a series of palladium-catalyzed carbon-carbon bond formation reactions.

Dussault and coworkers observed that acyclic peroxides were reduced under the conditions of the Sonogashira reaction. However, in the syntheses of polyunsaturated peroxides peroxyacarnoate $\mathrm{A}(\mathbf{2 0 3})$ and peroxyacarnoate D (204) [70], the Sonogashira reaction was successfully employed for the key coupling reactions (Scheme 2.36). Taken together, these results encouraged us in our planned use of Pd-catalyzed cross coupling reactions in our total synthesis of plakortide E.

Scheme 2.36 Syntheses of polyunsaturated peroxides

Scheme 2.37 The coupling of the side chain 91 and the central core 90

In our retrosynthetic analysis of the total synthesis of plakortide E, the coupling of the side chain 91 with the cyclic peroxide containing central core 90 is one of the challenging issues (Scheme 2.37). Side chain 91 is an alkyl iodide, and the centre core is an 1,2-dioxolane-containing alkenyl iodide. So the C7-C8 bond formation is in fact an issue concerning $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ coupling.

The organozinc reagents mentioned before show only moderate reactivity towards many organic electrophiles, However, they are among the most reactive of nucleophilic species in palladium-catalyzed cross-coupling reactions. This is due to the fact that in contrast to other organometallic reagents, organozinc reagents undergo rapid transmetalation with transition-metal salts, most notably those of palladium [62]. Based on these facts, we thought the Negishi cross-coupling reaction was suitable for application to the peroxide-containing substrate, because the moderate nucleophilicity of organozinc reagents would decrease their reactivity towards organic peroxides.

Scheme 2.38 Negishi coupling (condition I)

We proceeded to test this reaction with a model study. With the side chain (\pm)-91 and trans-1,2-dioxolane-containing alkenyl iodide 146 in hand, we attempted to couple the two components together. The modified Negishi coupling protocol developed by Smith's group was demonstrated as an efficient method for $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ bond formation in their gram-scale synthesis of discodermolide [8, 9]. Inspired by their success, we directly employed the modified Negishi coupling protocol to our model reaction (Scheme 2.38). To a solution of iodide (\pm)-91 (1.2 equiv) and ZnCl_{2} (1.2 equiv) in $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$, $t-\mathrm{BuLi}$ (3.6 equiv) was added, and was followed by warming the reaction mixture to room temperature. Then alkenyl iodide 146 (1.0 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ in THF were added to the reaction mixture. The reaction mixture was stirred at room temperature for 16 h . After work-up and flash column chromatography, a colorless oil was obtained. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated that a $4: 1$ mixture of our expected coupling product 206 and an unknown side product was furnished. Unfortunately the side product cannot be removed by column chromatography.

To obtain the pure coupling product 206, we optimized the Negishi crosscoupling reaction. The side chain was easily prepared by reported methods [5, 61]. However, the 1,2 -dioxolane-containing alkenyl iodide was not readily available. Due to the above facts, we considered to use an excess of the side chain in order to improve the yield and the purity of the expected coupling product. In accordance with the literature, ZnBr_{2} was used instead of ZnCl_{2} [10]. The reaction was then performed under the improved conditions (Scheme 1.3). To a solution of iodide (\pm)-91 (1.0 equiv) and ZnBr_{2} (1.3 equiv) in $\mathrm{Et}_{2} \mathrm{O}, t-\mathrm{BuLi}$ (2.0 equiv) was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Then the temperature was allowed to warm to room temperature and the reaction mixture was stirred for 1 h . Subsequently, alkenyl iodide 146 (0.4 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($4 \mathrm{~mol} \%$) in THF were added to the above reaction mixture. The reaction mixture was stirred at

Scheme 2.39 Negishi coupling (condition II)

Scheme 2.40 Synthesis of model product 210. Reagents and conditions: (a) p - TsOH ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (1:2), 89%; (b) Dess-Martin periodinane (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\left(2.0\right.$ equiv), NaH (1.9 equiv), THF, $0^{\circ} \mathrm{C}, 80 \%$ (2 steps)
room temperature for 16 h (Scheme 2.39). After flash column chromatography, the desired coupling product was obtained in good yield ($>80 \%$) as the only product. No side product was found by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

After we successfully obtained the crossing coupling product 206, we continued to study the total synthesis of plakortide E. To our delight, the successive conversions were achieved smoothly (Scheme 2.40). The crossing coupling product 206 was subjected to a $p-\mathrm{TsOH}$ mediated desilylation to give the free hydroxy intermediate 208 in 89% yield [20]. Dess-Martin oxidation of 208 afforded an aldehyde 209, whose Horner-Wadsworth-Emmons olefination with triethyl phosphonoacetate gave 210 in a good yield [11-13]. The coupling constant between H-2 and H-3 of 210 was found to be 15.8 Hz , indicating trans stereochemistry of the $\mathrm{C} 2-\mathrm{C} 3$ disubstituted double bond (Scheme 1.6). Until now, all fundamental reactions related to the total synthesis of plakortide E were well
studied. The successful completion of this model sequence was very helpful to our total synthesis of plakortide E.

2.5 Synthesis of Chiral Side Chains

In our project, the four possible structures of plakortide E will be synthesized. For this reason, both chiral side chains (R)-91 and (S)-91 were needed (Fig. 2.8). The syntheses of these two compounds have been reported in the literature (Scheme 2.41) [4, 5, 71-75].

Commercially available L-phenylalanine (211) was reduced by LiAlH_{4} to give amino alcohol 212 in good yield, which was converted to (S)-4-benzyl-2-oxazolidinone (213) with potassium dicarbonate/diethyl carbonate [75]. Then the Evans reagent 213 was treated with n-BuLi/butyryl chloride to furnish imide 214 [74]. The subsequent reaction of 214 with (benzyloxy)methyl chloride (BOMCl) in the presence of TiCl_{4} and $\mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$ produced imide 215 as a single stereoisomer in 77\% yield. Hydrogenolysis of 215, followed by protection of the resulting alcohol 216 with t - $\mathrm{BuMe}_{2} \mathrm{Si}$ group, quantitatively provided 217 (Scheme 2.41) [73]. Reduction of $\mathbf{2 1 7}$ with LiBH_{4} furnished (S)-167 in 85% yield [73].

As shown in Scheme 2.41, 7 steps were needed in the synthesis of the chiral intermediate $(S) \mathbf{- 1 6 7}$, starting from the commercial available l-phenylalanine (211). The synthesis of its enantiomer of $(R) \mathbf{- 1 6 7}$ also should involve similar steps. In consideration of a step-economic synthetic strategy, we sought to develop an alternative synthetic route to realize the chiral side chain $(R)-91$ and $(S)-91$ (Scheme 2.42). In our model studies for the synthesis of the racemic side chain, the racemic-167 as the intermediate was easily prepared in only two steps from commercially available ethyl diethyl malonate (116). The lipase catalyzed kinetic resolution of racemic- $\mathbf{1 6 7}$ was employed in the total synthesis of rutamycin B and oligomycin C, and showed excellent enantiomeric excess [61]. We envisioned to use this method to prepare the optically pure $(S) \mathbf{- 1 6 7}$ and $(R)-\mathbf{1 6 7}$ in only one step. If we employed the synthetic route described in Scheme 2.41, there were totally 14 steps required to prepare $(S)-\mathbf{1 6 7}$ and $(R)-\mathbf{1 6 7}$. According to the literature, the kinetic resolution of racemic 167 was performed. To a solution of racemic 167 in pentane, the lipase extract and vinyl acetate were added. The reaction mixture was stirred vigorously for 24 h . Then the reaction mixture was filtered to remove the lipase catalyst. Purification by column chromatography furnished acetate $(R) \mathbf{- 2 1 8}$ in 47% yield and alcohol (S)-167 in 46% yield. On the other hand, hydrolysis of acetate $(R)-218$ gave the enantiomeric alcohol (R)-167 (Scheme 2.42). A comparison of the specific rotation with literature values is shown in Table 2.17 [76, 77].

We also assessed the enantiomeric purity of (S) - and (R) - $\mathbf{1 6 7}$ by analyses of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of the diastereomeric derivative 220. Our synthetic chiral compound $(R)-167$ reacted with optically pure N-Boc protected L-phenylalanine (219) to afford the diastereomeric derivative 220 [78], which was

Fig. 2.8 Enantiomerically pure side chains

(R)-91

(S)-91

Scheme 2.41 Synthesis of side enantiomerically pure side chain
analyzed by the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Scheme 2.43). The NMR spectra indicated that compound $\mathbf{2 2 0}$ was very pure, with virtually no trace of the diastereoisomer ($\mathrm{dr}>95 \%$).

After the enantiomerically pure $(R)-\mathbf{1 6 7}$ and $(S)-\mathbf{1 6 7}$ were obtained, we proceeded to continue the syntheses of enantiomerically pure side chains of plakortide E. Since all related reactions have been well studied in model studies, we found it straightforward to convert the desired enantiomerically pure side chains $(R)-91$ and $(S)-\mathbf{9 1}$. The synthetic route is shown in Scheme 2.44. The enantiomerically pure alcohol (R) - $\mathbf{1 6 7}$ was first subjected to Swern oxidation. After oxidation, a colorless oil of aldehyde 221a was generated and was used immediately in the Julia olefination. When KHMDS was used as the base, the desired 1,2-disubstituted olefin 222a was obtained in 89% yield (two steps) [4, 5]. From 1,2-disubstituted olefin 222a, p - TsOH mediated desilylation helped to remove the $t-\mathrm{BuMe}_{2} \mathrm{Si}$ group to

(R)-91

(R)-167

(S)-91

Scheme 2.42 An alternative synthetic route for enantiomerically pure side chains. Reagents and conditions : (a) Lipase PS30, vinyl acetate, pentane, rt, 24 h ; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 99 \%$

Table 2.17 Comparison of specific rotations

Entry	Compound	Literature	
1		$[\alpha]_{\mathrm{D}}^{20}$ $\left(c, 0.99, \mathrm{CHCl}_{3}\right)$ $($ nearly $100 \% e e)$	$[76]$
2			

4
(S)-167

(R)-167
give the free hydroxy intermediate 223a as a colorless oil in 86% yield. Alcohol 223a was converted with $\mathrm{PPh}_{3} / \mathrm{I}_{2} /$ imidazole to iodide $(R)-91$ in 86% yield. In a similar manner, enantiomerically pure side chain (S)-91 was also synthesized [4, 5].

2.6 Syntheses of Enantiomerically Pure Dioxolane Cores

Syntheses of enantiomerically pure central cores via chemical resolution.
Chemical resolution is an established method for producing optically pure compound as single enantiomers. A racemic compound is reacted with an optically

Scheme 2.43 Formation of the diastereomeric derivative $\mathbf{2 2 0}$

(R)-91

165

(S)-167

(S)-91

Scheme 2.44 Syntheses of enantiomerically pure side chains. Reagents and conditions: (a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; (b) KHMDS (solid), Julia reagent, THF, $-78{ }^{\circ} \mathrm{C}$ to rt, 89% (2 steps); (c) $p-\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 86 \%$; (d) PPh_{3}, imidazole, $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 86\%
pure reagent to form a pair of diastereomers, which can be separated by conventional techniques, such as column chromatography. This method was first introduced by Louis Pasteur in 1853, who successfully resolved racemic tartaric acid with optically active (+)-cinchotoxine.

Scheme 2.45 illustrates the planned resolution. To prepare the optically pure cyclic peroxide, we planned to start from cis-137. Thus, oxidation of the aldehyde 224 leads to the acid 225, which is allowed to react with the chiral amine 226 to furnish a pair of diastereomers 227 and 228. Then the diastereomers are separated by column chromatography.

To our disappointment, oxidation of aldehyde $\mathbf{2 2 4}$ with NaClO_{2} did not successfully furnish the corresponding acid $\mathbf{2 2 5}$; instead, the aldehyde decomposed. TLC indicated that the reaction was very complicated. On the other hand, attempts

Scheme 2.45 Chemical resolution of racemic cis-1,2-dioxolane alcohol

Table 2.18 Oxidations of racemic cis-1,2-dioxolane alcohol

to oxidize aldehyde $\mathbf{2 2 4}$ with PDC in DMF also did not lead to the desired acid $\mathbf{2 2 5}$ [79]. The results are summarized in Table 2.18.

One reason for these failures was presumably due to the sensitivity of the t - $\mathrm{BuMe}_{2} \mathrm{Si}$ group. We therefore designed an alternate route replacing the $t-\mathrm{BuMe}_{2} \mathrm{Si}$ protecting group with a Bn group. Another route of chemical resolution was therefore designed (Scheme 2.46). Thus, racemic cis-1,2-dioxolane alcohol 137 is protected with Bn group to give $\mathbf{2 2 9}$, whose $t-\mathrm{BuMe}_{2} \mathrm{Si}$ group is removed to afford the free alcohol 230. Oxidation of the racemic cis-1,2-dioxolane alcohol 230 leads to the acid 231, which reacts with enantiomerically pure amine 226 to furnish the diastereomers 231 and 232. Then the diastereomers are separated by column chromatography.

However, the protection of the racemic cis-1,2-dioxolane alcohol 137 with benzyl bromide is problematic. The reaction conditions are depicted in Table 2.19 [80-82]. In all cases, TLC indicated that no expected product was produced. However, the starting material was consumed. The racemic cis-1,2-dioxolane alcohol 137 was found to decompose easily under these reaction conditions. For this reason, we had to abandon this chemical resolution route.

Due to the aforementioned failure, we had to seek other milder reactions to accomplish the resolution of racemic cis-1,2-dioxolane alcohol 137. Finally,

Scheme 2.46 An alternative chemical resolution route of racemic cis-1,2-dioxolane alcohol 137

Table 2.19 Reaction conditions for protection of the racemic cis-1,2-dioxolane alcohol 137 with benzyl bromide

$\operatorname{cis}-137$		
Entry	Reaction conditions	Results
1	$\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}$	Complicated
2	$\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{O}, \mathrm{DMF}$	Complicated
3	$\mathrm{BnBr}, \mathrm{NaH}, \mathrm{TBAI}, \mathrm{THF}$	Complicated

we found the racemic cis-1,2-dioxolane alcohol 137 reacted with N-Boc protected L-phenylalanine (219) smoothly in the presence of DMAP/DCC to furnish the diastereomers 234 and 235 (Scheme 2.47) [78]. However, their diastereomers could not be separated by column chromatography. In principle, diastereomers 234 and 235 could be converted to other derivatives that might be separable. However, this approach is not step-economical for our total synthesis of plakortide E. We therefore moved onto enzymatic resolution of the 1,2-dioxolane core.

Syntheses of enantiomerically pure central cores by lipase-catalyzed kinetic resolution. Enzymes are proteins that catalyze a vast number of chemical reactions [14, 15, 83, 84]. The history of enzyme is very long, which can go back to thousands of years to ancient Egypt [14, 15]. Over the last few years, more and more organic chemists have recognized the potential of biocatalysis as a viable and popular technique in organic synthesis. Compared to other catalysts, the

Scheme 2.47 Formation of diastereomeric derivatives of racemic cis-1,2-dioxolane alcohol

Fig. 2.9 A computergenerated image of a type of pancreatic lipase (PLRP2) from the guinea pig

advantages of enzymes are quite obvious. It is known that reactions catalyzed by enzymes are more selective and efficiently performed.

There has been a dramatic increase in the number of publications in the field of lipase-catalyzed reactions. Lipases are ubiquitous water-soluble enzymes that catalyze the hydrolysis of ester chemical bonds and can be found in animals, plants, fungi and bacteria $[14,15,85-88]$. A computer-generated image of a type of pancreatic lipase from the guinea pig is showed in Fig. 2.9. Traditionally, biocatalysis are performed in aqueous medium. However, water is a poor solvent for organic chemistry, since most organic compounds are very sparingly soluble and are sometimes unstable in aqueous solutions. Side reactions such as hydrolysis, racemization, polymerization and decomposition often take place easily in water medium. As a result, chemists have developed procedures for the use of enzymes in organic solvents. Now, enzymatic catalysis in non-aqueous media has significantly benefited the chemistry of lipase catalysis [89, 90].

1. Hydrolysis

2. Esterification

3. Transesterification

4. Interesterification

Scheme 2.48 Reactions catalyzed by lipase

Lipases as organocatalysts are widely used in three main types of asymmetric transformations [91]. They are (a) kinetic resolution of racemic carboxylic acids or alcohols, (b) transformations of meso dicarboxylic acids or meso diols and (c) transformations of prochiral dicarboxylic acid and diol derivatives. In kinetic resolutions, theoretical yields are limited to 50%. Through enantiotopic group differentiation of meso dicarboxylic acids or meso diols, yields of up to 100% are possible [92]. Some typical reactions catalyzed by lipases are depicted in Scheme 2.48.

According to IUPAC recommendation, kinetic resolution (KR) is defined as the achievement of partial or complete resolution by virtue of unequal rates of reaction of the enantiomers in a racemate with a chiral agent (reagent, catalyst, solvent, etc.) [92].

The enzyme catalyzed reactions and the lipase-catalyzed kinetic resolutions have been reviewed [14, 15]. The following section describes some selected examples of lipase-catalyzed resolutions.

In 1997, an efficient method [93, 94] to prepare enantiomerically pure $(S)-(+)-\mathbf{2 3 6}$ and $(R)-(+)-\mathbf{2 3 7}$ by a lipase-catalyzed kinetic resolution was reported by Sakai. Their reactions were carried out preferentially at $-40^{\circ} \mathrm{C}$ (Scheme 2.49). Recently, in their continuing program, porous ceramic (Toyonite)-immobilized lipase (PSCII) was used in the resolution of (\pm)-238 at low temperature, giving the

Scheme 2.49 An efficient method to prepare enantiomerically pure alcohols by lipase-catalyzed kinetic resolution

Scheme 2.50 The lipase-catalyzed kinetic resolution of boron-containing alcohols
synthetically useful ($2 R, 3 S$)-238 and its acetate ($2 S, 3 R$)-239 with ($2 S$)-selectivity ($E=55$ at $-40{ }^{\circ} \mathrm{C}$), while a similar reaction of (\pm) - $\mathbf{2 4 0}$ gave $(2 S, 3 S)-\mathbf{2 4 0}$ and its acetate $(2 R, 3 R)$ - 241 with ($2 R$)-selectivity ($E=73$ at $-20^{\circ} \mathrm{C}$) (Scheme 2.49). Two special points in this example are intriguing and are worthy of mentioning. First, substrates $(\pm)-\mathbf{2 3 8}$ and $(\pm)-\mathbf{2 4 0}$ belong to an interesting class of primary aziridine alcohols, which feature two stereogenic centers at the β - and γ-carbons. Before this report, there were few examples of the lipase-catalyzed reaction for such 2-aziridinemethanols. Second, the substrates without N-protection were directly used in the reactions. These outcomes inspired us to use the lipasecatalyzed resolution to realize the enantiomerically pure cis-1,2-dioxolane containing alcohols, which also feature two stereogenic centers [93, 94].

Boron compounds are useful as potential enzyme inhibitors. Recently, a highly enantioselective lipase-catalyzed kinetic resolution of boron-containing alcohols was reported. It was found that aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group (viz. 242) were resolved by lipase from Candida antartica (CALB). Excellent E values $(E>200)$ and high enantiomeric excesses ($>99 \%$) of $\mathbf{2 4 3}$ and $\mathbf{2 4 4}$ were obtained (Scheme 2.50) [95]. This example extends the scope of the lipase-catalyzed kinetic resolutions.

Table 2.20 Optimization for the kinetic resolution of (\pm)-cis-137

 (\pm)-cis-137				$\xrightarrow[\substack{\text { vinyl acetate } \\ \text { Hexane }}]{\text { Lipase }}$	 cis-137 cis-245		
Lipase source	Time	Alcohol			Ester		
		Yield (\%)	$e e(\%)$	Specific rotation	Yield (\%)	$e e(\%)$	Specific rotation
Lipase CR	40	68	34	-6.6	31	49	10.0
Lipase BC	3	53	78	23.5	45	94	-21.5
	5	49	89	26.3	46		-21.5
	29	43	>99	28.5	55		
	3	56			41	$>99^{\text {a }}$	-21.5

Lipase CR Candida rugosa lipase, Lipase BC Lipase PS from Burkholderia cepaci
${ }^{\text {a }}$ Resolution two times, the ee was determined by chiral HPLC

With the desired mono-protected alcohol (\pm)-cis- $\mathbf{1 3 7}$ in hand, the lipasecatalyzed kinetic resolution of cis-1,2-dioxolane-containing alcohol was investigated [14, 15, 61]. Results of these studies are summarized in Table 2.20. Lipase PS from Burkholderia cepaci was found to give the best kinetic resolution outcome. We observed that prolongation of the reaction time to 29 h provided the optically pure alcohol, which showed excellent enantiomeric excess ($>99 \% e e$). When the reaction was quenched after 3 h , the optically pure ester was obtained ($94 \% \mathrm{ee}$). We were able to secure the optically pure ester in excellent enantiomeric excess ($>99 \% e e$) by repeating the resolution on partially resolved material.

2.7 Total Synthesis of Four Possible Structures of Plakortide E Methyl Ester

With the enantiomerically pure 1,2-dioxolane-containing alcohol cis-137 and ester cis-245, enantiomerically pure side chain $(R)-91$ and (S)-91 in hand, we assembled the four possible plakortide E methyl esters structures using the chemistry worked out in our model sequences. The routes are illustrated in Scheme 2.51.

Preparation of enantiomerically pure cis-1,2-dioxolane-containing alkenyl iodide 246a and 246b. As shown in Scheme 2.52, oxidation of 137a with Dess-Martin periodinane (DMP) produced a 1,2-dioxolane-containing aldehyde. Thus, the 1,2-dioxolane-containing aldehyde was treated with freshly prepared $\mathrm{CHBr}_{2} \mathrm{PPh}_{3} \mathrm{Brand} t$-BuOK, giving dibromoalkene 247a in good yield with

(\pm)-cis-137

(+)-cis-137a

(-)-cis-137b

(+)-cis-246a

$(\pm)-167$

(R)-167

(S)-167

(R)-91

(S)-91

(-)-cis-246b

(10S)-(+)-cis-86a

(10R)-(+)-Cis-86b

(10S)-(-)-cis-86c

(10R)-(-)-cis-86d

Scheme 2.51 Total synthesis of four possible structures of Plakortide E methyl ester

Scheme 2.52 Syntheses of enantiomerically pure 246a and 246b. Reagents and conditions:
(a) Dess-Martin periodinane (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{CHBr}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}$(2.5 equiv), t - BuOK (2.4 equiv), THF, rt, 79% (2 steps); (c) $n-\operatorname{BuLi}$ (2.2 equiv), THF, $-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 95 \%$; (d) $n-\mathrm{BuLi}$ (1.2 equiv), MeOTf (1.5 equiv), THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$; (e) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mol} \%$), $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (3.0 equiv), Hexane, $1 \mathrm{~h}, 84 \%$; (f) I_{2} (1.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 86 \%$; (g) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv), $\mathrm{MeOH}, 94 \%$
excellent reproducibility [52]. Preparation of terminal alkyne 248a was subsequently achieved by treatment of $\mathbf{2 4 7 a}$ with $n-\mathrm{BuLi}$, followed by methylation to provide 249a [5]. In the presence of a catalytic amount of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathbf{2 4 9 a}$ underwent regiospecific hydrostannylation to furnish 250a in 84% yield. Subsequent iodination of 250a led to the formation of the key alkenyl iodide 246a. On the other hand, hydrolysis of $\mathbf{2 4 5}$ gave the enantiomeric 137b in a good yield. In a similar manner, optically pure 246b was also synthesized (Scheme 2.52). Because all the related reactions had been well executed in the model studies, the syntheses of 246a and 246b were achieved smoothly.

Total synthesis of four possible isomers of plakortide \mathbf{E} methyl ester. With the central core (+)-246a and side chain $(R)-\mathbf{9 1}$ in hand, the Negishi cross coupling reaction was carried out to join the two partners together [10], from which the desired molecule 251a was generated as the only product. Subsequent $p-\mathrm{TsOH}$ mediated desilylation of the $t-\mathrm{BuMe}_{2} \mathrm{Si}$ group furnished the free hydroxy intermediate 252a in 89% yield [20]. Dess-Martin oxidation of 252a afforded an

Scheme 2.53 Synthesis of 86a. Reagents and conditions: (a) ZnBr_{2} (1.3 equiv), $t-\mathrm{BuLi}$ (2.0 equiv), $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to rt ; (b) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, THF, $16 \mathrm{~h}, 93 \%$; (c) $p-\mathrm{TsOH}$ ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (1:2), 89%; (d) Dess-Martin Periodinane (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ (10.0 equiv), NaH (10.0 equiv), THF, $0^{\circ} \mathrm{C}, 80 \%$ (2 steps)

Scheme 2.54 Syntheses of three other possible isomers of plakortide E methyl ester
aldehyde, whose Horner-Wadsworth-Emmons olefination with trimethyl phosphonoacetate gave 86a in a good yield [11-13]. The coupling constant between $\mathrm{H}-2$ and $\mathrm{H}-3$ of $\mathbf{8 6 a}$ was found to be 15.8 Hz , indicating the trans stereochemistry of the C2-C3 disubstituted double bond (Scheme 2.53).

With the two enantiomerically pure central cores (246a and 246b) and two side chains $(R)-91$ and $(S)-91$ available, the other three possible isomers of plakortide E methyl ester were synthesized through similar sequences. All reactions proceeded smoothly to give the other three isomers in good yields (Scheme 2.54).

All four possible isomers of plakortide E methyl ester were synthesized so that a comparison of their NMR spectral data with those of the natural plakortide E

Table 2.21 Comparison of selected ${ }^{1} \mathrm{H}$ NMR chemical shifts (J values) and specific rotations

	H5	H7	H19	$[\alpha]_{\mathrm{D}}^{20}$
$\mathbf{8 6 a}$	$2.54(11.9)$	5.11	1.61	-86.0
$\mathbf{8 6 b}$	$2.44(11.9)$			
	$2.58(11.8)$	5.15	1.59	-74.8
$\mathbf{8 6 c}$	$2.44(11.8)$			
	$2.58(11.9)$	5.15	1.59	+75.0
$\mathbf{8 6 d}$	$2.44(11.9)$			
	$2.54(11.9)$	$5.11(1.3)^{\mathrm{a}}$	$1.61(1.3)^{\mathrm{a}}$	+87.0
Plakortide E methyl ester [1]	$2.44(11.9)$			
	$2.54(12.0)$	$5.11(1.3)$	$1.61(1.3)$	+75.1
	$2.44(12.0)$			

${ }^{\text {a }}$ Coupling constants were measured by 2D J-resolved NMR experiment on an advance Bruker 600M spectrometer
$\underline{\text { Table 2.22 Comparison of selected }{ }^{13} \mathrm{C} \text { chemical shifts }}$

	$\mathrm{C}-1$	$\mathrm{C}-2$	$\mathrm{C}-3$	$\mathrm{C}-5$	$\mathrm{C}-7$	$\mathrm{C}-8$	$\mathrm{C}-11$	$\mathrm{C}-12$
$\mathbf{8 6 d}$	167.1	119.9	149.8	56.0	126.7	136.6	132.8	132.0
Plakortide E methyl ester	166.9	119.9	149.6	55.9	126.7	136.4	132.7	131.9

methyl ester could be made [1]. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and specific rotation data are included in the experimental section, with the most crucial data being summarized in Tables 2.21 and 2.22. As can be seen, the four synthetic samples can be divided into two pairs of enantiomers ($\mathbf{8 6 a}$ and $\mathbf{8 6 d} \mathbf{~ 8 6 b}$ and 86c). Although the differences in their ${ }^{1} \mathrm{H}$ NMR spectra are generally very small, there are considerable differences in the chemical shifts of H-5, H-7 and H-19. While the ${ }^{1} \mathrm{H}$ NMR spectra of the synthetic molecules $86 \mathbf{a}$ and $\mathbf{8 6 d}$ show good agreement with those of the natural compound, the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{8 6 b}$ and $\mathbf{8 6 c}$ exhibit significant differences. It is therefore clear that $\mathbf{8 6 b}$ and 86c are not related to the natural product. Because the specific rotation $[\alpha]_{\mathrm{D}}^{20}$ of the natural plakortide E methyl ester $\left([\alpha]_{\mathrm{D}}^{20}=+75.1, c=2.23\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ [1] was found to be in positive value, the value of 86a is negative $\left([\alpha]_{\mathrm{D}}^{20}=-86, c=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, indicating that this enantiomer can also be ruled out. It was found therefore that only the ${ }^{1} \mathrm{H}$ NMR spectrum and specific rotation $\left([\alpha]_{\mathrm{D}}^{20}=+87.1, c=0.39\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ of $\mathbf{8 6 \mathbf { d }}$ fit closely with those of the natural plakortide E methyl ester. These results confirm that 86d possesses an identical structure to the natural plakortide E methyl ester.

Scheme 2.55 Application of intramolecular Michael addition reaction in the total synthesis of (+)-goniofufurone

Scheme 2.56 Application of intramolecular Michael addition in the total syntheses of sphydrofuran and secosyrins

2.8 Biomimetic Synthesis of Plakortone B and Determination of the Absolute Configuration of Plakortide E

Over the past few years, the intramolecular Michael addition has become one of the most efficient and simple approaches to the synthesis of furanofuran bicyclic lactone skeleton, which has been widely applied to the total synthesis of natural products containing furanofuran bicyclic lactone skeleton. For example, Shing and coworkers [96] reported the total synthesis of (+)-goniofufurone through an intramolecular Michael addition reaction (Scheme 2.55). Thus, treatment of the butenolide 253 with a catalytic amount of DBU in THF provided the desired lactone $\mathbf{2 5 4}$ in 74% yield.

Our group has used intramolecular Michael addition to prepare the dioxaspiro framework in the syntheses of natural products, including the total synthesis of sphydrofuran and secosyrin (Scheme 2.56) [97].

Scheme 2.57 Application of intramolecular Michael addition in the total syntheses of pallavicinin and neopallavicinin

Scheme 2.58 Application of intramolecular Michael addition in the total synthesis of plakortone B

\longrightarrow

(3S,4S,6R,10R)-Plakortone B (87)

Peng also applied the same protocol to realize the total syntheses of natural products pallavicinin (264) and neopallavicinin (265) (Scheme 2.57). Treatment of the butenolide mixture 261 with DBU in toluene provided a $4: 1$ mixture of $\mathbf{2 6 2}$ and 263 [98, 99].

Recently, our group has reported the total syntheses and configuration assignments of all four isomers of plakortone B. The synthesis of the furanofuran bicyclic lactone skeleton was achieved through a stereoselective intramolecular

Scheme 2.59 Biomimetic synthesis of plakortone B. Reagents and conditions: (a) Zn (50 equiv), $\mathrm{AcOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2), 0{ }^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 99 \%$; (b) DBU (0.2 equiv), toluene, reflux, overnight, 90%

Scheme 2.60 Syntheses of the other three isomers of plakortone B
conjugate addition of an alcohol to an unsaturated lactone; the transformation is chemoselective for one alcohol in the triol substrate (Scheme 2.58) [5].

In consideration that plakortone $\mathrm{B}(\mathbf{8 7 a})$ was isolated from the same marine sponge together with plakortide $\mathrm{E}(\mathbf{8 5})$ [1], we reasoned that plakortide E methyl ester $\mathbf{8 6 d}$ could be converted to plakortone $B(\mathbf{8 7 a})$. In this way, the determination of the absolute configuration of plakortide E methyl ester ($\mathbf{8 6 d}$) would be achieved, and this conversion would also provide a concise biomimetic synthesis pathway to plakortone $\mathrm{B}(\mathbf{8 7 a})$. To begin with, cleavage of the $\mathrm{O}-\mathrm{O}$ bond of plakortide E methyl ester (86d) with zinc in acetic acid provided 1,3-diol 268 in an excellent yield [100]. With the 1,3-diol 268 in hand, our next objective was to

$(4 R, 6 S, 10 S)-86 a$

(4S,6R,10S)-86c

$(4 R, 6 S, 10 R)-86 b$

(4S,6R,10R)-86d
Plakortide E Methyl Ester

Fig. 2.10 Absolute configurations of four isomers of plakortide E methyl ester

Scheme 2.61 Synthesis of plakortide E. Reagents and conditions: (a) LiOH (5.0 equiv), THF/ $\mathrm{H}_{2} \mathrm{O}(4: 1), 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}, 90 \%$

Table 2.23 Comparison of selected NMR shifts (J values) and specific rotations

	$\mathrm{H}-2$	$\mathrm{H}-3$	$\mathrm{H}-5$	$\mathrm{C}-1$	$\mathrm{C}-2$	$\mathrm{C}-3$	$\mathrm{C}-5$	$[\alpha]_{\mathrm{D}}^{20}$
$\mathbf{8 5 a}$	$6.09(15.7)$	$6.93(15.7)$	$2.43(12.0)$	171.1	119.6	152.1	56.0	66.6
			$2.53(12.0)$					
Wright [3]	$6.09(15)$	$6.93(15)$	$2.43(12)$		172.0	120.5	152.1	56.0
Patil et al. [1]	$5.98(15.8)$	$6.69(15.8)$	$2.43(12)$					
			$2.53(12)$	173.0	123.9	146.9	55.8	63.9

convert it to the corresponding isomer of plakortone B. Encouraged by our recent success in the preparation of various tetrahydrofurofuranone frameworks towards the syntheses of naturally occurring molecules, an intramolecular Michael addition was employed to achieve this conversion. Thus, the 1,3-diol 268 was subjected to an intramolecular oxa-Michael addition/lactonization cascade reaction. To our delight, our target 87a was afforded exclusively in 90% yield (Scheme 2.59) [98, 99, 101].

The other three possible isomers of plakortone B were prepared in a similar manner from the three corresponding isomers of plakortide E methyl ester, as can be seen in Scheme 2.60. A comparison of the NMR spectra and the specific rotations of the four synthetic isomers and the reported data of plakortone B ($\mathbf{8 7 a}$) and its isomers [5] confirms the absolute configurations of 86a, 86b, 86c and 86d
to be $(4 R, 6 S, 10 S),(4 R, 6 S, 10 R),(4 S, 6 R, 10 S)$ and $(4 S, 6 R, 10 R)$. All absolute configurations of plakortide E methyl ester and its isomers are depicted in Fig. 2.10.

2.9 Synthesis of Plakortide E

As depicted in Scheme 2.61, compound $\mathbf{8 6 d}$ was then saponified to provide the plakortide E (85a). Comparisons of the chemical shifts and coupling constants for the synthetic compound and the literature values for plakortide E are summarized in Table 2.23. Our values are identical to those reported by Wright [3]. However, our results and those of Patil [1] show some differences for the ${ }^{13} \mathrm{C}$ NMR chemical shifts of C-1, C-2 and C-3.

References

1. Patil AD, Freyer AJ, Bean MF, Carte BK, Westley JW, Johnson RK, Lahouratate P (1996) Tetrahedron 52:377-394
2. Caffierei F, Fattorusso E, Taglialatela-Scafati O, Di Rosa M, Ianaro A (1999) Tetrahedron 55:13831-13840
3. Chen Y, McCarthy PJ, Harmody DK, Schimoler-O'Rourke R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AE (2002) J Nat Prod 65:1509-1512
4. Semmelhack MF, Hooley RJ, Kraml CK (2006) Org Lett 8:5203-5206
5. Xie X-G, Wu X-W, Lee H-K, Peng X-S, Wong HNC (2010) Chem Eur J 16:6933-6941
6. Zhao Q (2006) PhD thesis, Shanghai institute of organic chemistry, the Chinese Academy of Science
7. Negishi E, Valente LF, Kobayashi MJ (1980) Am Chem Soc 102:3298-3299
8. Smith AB III, Beauchamp TJ, LaMarche MJ, Kaufman MD, Qiu Y, Arimoto H, Jones DR, Kobayashi K (2000) J Am Chem Soc 122:8654-8664
9. Smith AB III, Kaufman MD, Beauchamp TJ, LaMarche MJ, Arimoto H (1999) Org Lett 1:1823-1826
10. Dutheuil G, Webster MP, Worthington PA, Aggarwal VK (2009) Angew Chem Int Ed 48:1-4
11. Leopold H, Hoffmann HMR, Wippel HG (1958) Chem Ber 91:61-63
12. Wadsworth WS Jr, Emmons WD (1961) J Am Chem Soc 83:1733-1738
13. Maryanoff BE, Reitz AB (1989) Chem Rev 89:863-927
14. Gotor-Fernández V, Brieva R, Gotor V (2006) J Mol Catal B Enzym 40:111-120
15. Ghanem A (2007) Tetrahedron 63:1721-1754
16. Feldman KS, Pravez M (1986) J Am Chem Soc 108:1328-1330
17. Feldman KS, Simpson RE (1989) J Am Chem Soc 111:4878-4886
18. Feldman KS, Kraebel CM (1992) J Org Chem 57:4574-4576
19. Weinreb CK, Hartsough D, Feldman KS (1995) Tetrahed Lett 36:6859-6862
20. Zhao Q, Wong HNC (2007) Tetrahedron 63:6296-6305
21. McCoy LL (1958) J Am Chem Soc 80:6568-6572
22. McCoy LL (1960) J Org Chem 25:2078-2082
23. McCoy LL (1962) J Am Chem Soc 84:2246-2249
24. Bottini AT (1963) J Org Chem 28:157-160
25. Chenault HK, Kim M-J, Akiyama A, Miyazawa T, Simon ES, Whitesides GM (1987) J Org Chem 52:2608-2611
26. Barton P, Law AP, Page MI (1994) J Chem Soc Perkin Trans 2:2021-2029
27. Borszeky K, Mallat T, Baiker A (1997) Tetrahed Asymm 8:3745-3753
28. Murahashi S-I, Naota T, Kuwabara T, Saito T, Kumobayashi H, Akutagawalb S (1990) J Am Chem Soc 112:7820-7822
29. Yoshida M, Miura M, Nojima M, Kusabayashi S (1983) J Am Chem Soc 105:6279-6285
30. Ito T, Tokuyasu T, Masuyama A, Nojima M, McCullough KJ (2003) Tetrahedron 59:525-536
31. Tokuyasu T, Kunikawa S, McCullough KJ, Masuyama A, Nojima M (2005) J Org Chem 70:251-260
32. Isayama S (1990) Bull Chem Soc Jpn 63:1305-1310
33. Isayama S, Mukaiyama T (1989) Chem Lett 18:573-576
34. O’Neill PM, Pugh M, Davies J, Ward SA, Park BK (2001) Tetrahed Lett 42:4569-4571
35. Yu J-Q, Corey EJ (2002) Org Lett 4:2727-2730
36. Harris JR, Waetzig SR, Woerpel KA (2009) Org Lett 11:3290-3293
37. Parsons AT, Campbell MJ, Johnson JS (2008) Org Lett 10:2541-2544
38. Stahl SS (2004) Angew Chem Int Ed 43:3400-3420
39. Baldwin AC (1983) In: Patai S (ed) The chemistry of peroxides, vol 1. Wiley, Chichester, pp 97-104
40. Korshin EE, Bachi MD (2006) In: Rappoport Z (ed) The chemistry of peroxides, vol 2. Wiley, Chichester, pp 189-305
41. Horner L, Hoffmann HMR, Wippel HG, Klahre G (1959) Chem Ber 92:2499-2505
42. Schwartz J, Labinger JA (1976) Angew Chem Int Ed Engl 15:333-340
43. Colvin EW, Hamill BJ (1973) J Chem Soc Chem Commun:151-152
44. Colvin EW, Hamill BJ (1977) J Chem Soc Chem Perkin Trans 1:869-874
45. Seyferth D, Hilbert P, Marmor RS (1970) Tetrahed Lett 11:2493-2496
46. Gilbert JC, Weerasooriya U (1982) J Org Chem 47:1837-1845
47. Gilbert JC, Weerasooriya U (1979) J Org Chem 44:4997-4998
48. Ohira S (1989) Synth Commun 19:561-564
49. Müller S, Liepold B, Roth GJ, Bestmann HJ (1996) Synlett:521-522
50. Corey EJ, Fuchs PL (1972) Tetrahed Lett 13:3769-3772
51. Desai NB, McKelvie N (1962) J Am Chem Soc 84:1745-1747
52. Marjanovic J, Kozmin SA (2007) Angew Chem Int Ed 46:8854-8857
53. Lerm M, Gais H-J, Cheng K, Vermeeren C (2003) J Am Chem Soc 125:9653-9667
54. Wailes PC, Weigold HJ (1970) Organomet Chem 24:405-411
55. Hart DW, Schwartz J (1974) J Am Chem Soc 96:8115-8116
56. Sun RC, Okabe M, Coffen DL, Schwartz J (1998) Org Synth 9:640
57. Nicolaou KC, Li Y, Fylaktakidou KC, Mitchell HJ, Sugita K (2001) Angew Chem Int Ed 40:3854-3857
58. Zhang H, Guibe F, Balavoine G (1990) J Org Chem 55:1857-1867
59. Betzer JF, Le Menez P, Prunet J, Brion J-D, Ardisson J, Pancrazi A (2002) Synlett:1-15
60. Semmelhack MF, Hooley RJ (2003) Tetrahed Lett 44:5737-5739
61. Panek JS, Jain NF (2001) J Org Chem 66:2747-2756
62. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4442-4489
63. Diederich F, Stang PJ (1998) Metal-catalyzed cross-coupling reactions, 1st edn. WileyVCH, Weinheim
64. de Meijere A, Diederich F (2004) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley-VCH, Weinheim
65. King AO, Okukado N, Negishi E (1977) J Chem Soc Chem Commun 19:683-684
66. Zeng F, Negishi E (2001) Org Lett 3:719-722
67. Knochel P, Singer RD (1993) Chem Rev 93:2117-2188
68. Boudier A, Bromm LO, Lotz M, Knochel P (2000) Angew Chem Int Ed 39:4414-4435
69. Dussault PH, Eary CT (1998) J Am Chem Soc 120:7133-7134
70. Xu C, Raible JM, Dussault PH (2005) Org Lett 7:2509-2511
71. Evans DA, Chapman KT, Huang DT, Kawaguchi AT (1987) Angew Chem Int Ed Engl 26:1184-1186
72. Evans DA, Urpi F, Somers TC, Clark JS, Bilodeau MT (1990) J Am Chem Soc 112:8215-8216
73. Ihara M, Katsumata A, Setsu F, Tokunaga Y, Fukumoto K (1996) J Org Chem 61:677-684
74. Neumann CS, Walsh CT (2008) J Am Chem Soc 130:14022-14023
75. af Gennäs GB, Talman V, Aitio O, Ekokoski E, Finel M, Tuominen RK, Yli-Kauhaluoma J (2009) J Med Chem 52:3969-3981
76. Ihara M, Setsu F, Shohda M, Taniguchi N, Tokunaga Y, Fukumoto K (1994) J Org Chem 59:5317-5323
77. Ihara M, Takahashi M, Taniguchi M, Fukumoto K, Kametani T (1987) J Chem Soc Chem Commun:619-620
78. Neises B, Steglich W (1978) Angew Chem Int Ed Engl 90:556-557
79. Kogen H, Tomioka K, Hashimoto S, Koga K (1981) Tetrahedron 37:3951-3956
80. Czernecki S, Georgoulis C, Provelenghiou C (1976) Tetrahed Lett 17:3535-3536
81. Kuhn R, Löw L, Trishmann H (1957) Chem. Ber. 90:203
82. Fukuzawa A, Sato H, Masamune T (1987) Tetrahed Lett 28:4303-4306
83. Roberston DE, Bornscheuer UT (2005) Curr Opin Chem Biol 9:164-165
84. Beisson F, Tiss A, Riviere C, Verger R (2000) Eur J Lipid Sci Technol 102:133-153
85. Schoffers E, Golebioeski A, Johnson CR (1996) Tetrahedron 52:3769-3826
86. Klibanov AM (1997) Trends Biotechnol 15:87-101
87. Faber K (1997) Biotransformation in organic chemistry, 3rd edn. Springer, Heidelberg
88. Schmid RD, Verger R (1998) Angew Chem Int Ed 37:1608-1633
89. Haraldsson G (1992) The application of lipases in organic synthesis. In: Patai S (ed) The chemistry of acid derivatives, vol 2. Wiley, Chichester, pp 1395-1473
90. Wong C-H, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, Oxford
91. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature 409:258-268
92. Moss GP (1996) Pure Appl Chem 68:2193-2222
93. Sakai T, Kawabata I, Kishimoto T, Ema T, Utaka M (1997) J Org Chem 62:4906-4907
94. Sakai T, Liu Y, Ohta H, Korenaga T, Ema T (2005) J Org Chem 70:1369-1375
95. Andrade LH, Barcellos T (2009) Org Lett 11:3052-3055
96. Shing TKM, Tsui H-C, Zhou Z-H (1995) J Org Chem 60:3121-3130
97. Yu P, Yang Y, Zhang Z-Y, Mak TCW, Wong HNC (1997) J Org Chem 62:6359-6366
98. Peng XS, Wong HNC (2006) Chem Asian J 1:111-120
99. Peng XS (2006) PhD thesis, the Chinese University of Hong Kong, Hong Kong
100. Lee JS, Fuchs PL (2005) J Am Chem Soc 127:13122-13123
101. Grondal C, Jeanty M, Jeanty M (2010) Nat Chem 2:167-178

Chapter 3 Conclusion

The key steps included the synthesis of enantiomerically pure dioxolane cores through lipase resolution of a racemic precursor, the introduction of an alkynyl sidechain on a 1,2-dioxolane via a Corey-Fuchs homologation, and the introduction of the sidechain of the natural product through Pd-catalyzed $s p^{2} / s p^{3}$ crosscoupling.

Synthesis of plakortide E methyl ester 86a (one of the plakortide E candidate structures) was completed in ten steps from (+)-cis-137a (Scheme 1). The other three possible isomers of plakortide E methyl ester ($\mathbf{8 6 b}, \mathbf{8 6 c}$ and $\mathbf{8 6 d}$) were synthesized in a similar manner. One of these molecules 86d was identical to the natural plakortide E methyl ester on the basis of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and specific rotation comparisons.

With the plakortide E methyl ester 86d and its other three isomers in hand, we successfully converted them into plakortone B ($3 S, 4 S, 6 R, 10 R)-(87 a)$, and its isomers ent-87a, 87b and ent-87b via an intramolecular oxa-Michael addition/ lactonization cascade reaction. A comparison of the NMR spectra and the specific rotations of the four synthetic isomers (87 a, ent-87a, 87b and ent-87b) and the reported data of plakortone B and its isomers [1] confirmed the absolute configurations of 86a, 86b, 86c and 86d to be $(4 R, 6 S, 10 S),(4 R, 6 S, 10 R),(4 S, 6 R, 10 S)$ and $(4 S, 6 R, 10 R)$. The conversion not only provided a concise biomimetic synthesis pathway to plakortone $\mathrm{B}(\mathbf{8 7 a})$, but also proved the hypothesis that plakortide E was the precursor of the plakortone B in nature.

Saponification converted 1,2-dioxolane 86d into plakortide E (85a) whose absolute configuration ($4 S, 6 R, 10 R$) was confirmed by comparison of spectral and physical data with those of reported.

Scheme 1 Synthesis of 86a. Reagents and conditions: (a) Dess-Martin periodinane (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{CHBr}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}$(2.5 equiv), t - BuOK (2.4 equiv), THF, rt, 79% (2 steps); (c) $n-\mathrm{BuLi}$ (2.2 equiv), THF, $-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 95 \%$; (d) $n-\mathrm{BuLi}$ (1.2 equiv), MeOTf (1.5 equiv), THF, $-78{ }^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 70 \%$; (e) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), n-\mathrm{Bu}_{3} \mathrm{SnH}$ (3.0 equiv), Hexane, $1 \mathrm{~h}, 84 \%$; (f) I_{2} (1.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 86 \%$; (g) ZnBr_{2} (1.3 equiv), t - $\mathrm{BuLi}\left(2.0\right.$ equiv), $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to rt, then $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), THF, $16 \mathrm{~h}, 93 \%$; (h) $p-\mathrm{TsOH}(10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 2), 89 \%$; (i) Dess-Martin periodinane (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (j) (MeO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ (10.0 equiv), NaH (10.0 equiv), THF, $0^{\circ} \mathrm{C}, 80 \%$ (2 steps)

Reference

1. Xie X-G, Wu X-W, Lee H-K, Peng X-S, Wong HNC (2010) Chem Eur J 16:6933-6941

Chapter 4 Experimental Section

4.1 General Information

All non-aqueous reactions were carried out using oven-dried glassware under a positive pressure of dry nitrogen unless otherwise noted. All reagents and solvents were reagent grade. Further purifications and drying by standard methods were used when necessary. Except as indicated otherwise, reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, compounds on TLC plate were visualized with a spray of $5 \% \mathrm{w} / \mathrm{v}$ dodecamolybdophosphoric acid in ethanol and with subsequent heating. Chromatographic purification of products (flash chromatography) was performed on E. Merck silica gel 60 (230-400 mesh). All evaporation of organic solvents was carried out with a rotary evaporator. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated.

NMR spectra were recorded on Bruker DRX300 spectrometer, Brucker Advanced III 400 spectrometer and Advanced Brucker 600 M spectrometer. Chemical shifts (δ) are reported in ppm with the solvent resonance as the internal standard relative to chloroform ($\delta 7.26$) or tetramethylsilane ($\delta 0.00$) for ${ }^{1} \mathrm{H}$ and chloroform ($\delta 77.1$) for ${ }^{13} \mathrm{C}$. Data are reported as follows: brs $=$ broad singlet, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet; coupling constants in Hz. ${ }^{1} \mathrm{H}$ NMR measurements were carried out at room temperature in deuterated chloroform solution unless otherwise stated. Mass spectra (EIMS and HRMS (ESI)) were obtained with a HP 5989B spectrometer and determined at an ionizing voltage of 70 eV unless otherwise stated; relevant data were tabulated as m / z. HPLC analysis was performed on a Hewlett Packard Series 1050 HPLC, or Hewlett Packard Series 1100 HPLC, or Agilent 1100 HPLC with a diode array UV detector ($\lambda=214-258 \mathrm{~nm}$), using Chiralpak AD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). Optical rotations were measured on a Perkin-Elmer model 241 polarimeter operating at the
sodium D line with a 100 mm path length cell and at $20^{\circ} \mathrm{C}$, and were reported as follows: $[\alpha]_{\mathrm{D}}^{\mathrm{T}}$, concentration ($\mathrm{g} / 100 \mathrm{~mL}$), and solvent.

2-Chlorobutyric acid (115) [1, 2]

115

Sulfuryl chloride ($366 \mathrm{~mL}, 4.5 \mathrm{~mol}$) was added dropwise to a solution of butyric acid $114(265 \mathrm{~g}, 3 \mathrm{~mol})$ in dimethylformamide (5 mL) in a three-necked round flask fitted with a condenser, drying tube and HCl gas convertor. The reaction mixture was heated to $80-85^{\circ} \mathrm{C}$ and then the yellow solution was heated to $90-95^{\circ} \mathrm{C}$ for 2 h . Colour change from yellow to colorless was observed. The resulting mixture was distilled carefully to yield 2-chlorobutyric acid (115) (106 g) in 29% yield. b.p.: $112{ }^{\circ} \mathrm{C} / 25$ torr (Lit: [2] $123{ }^{\circ} \mathrm{C} / 34$ torr); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-2.17(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $10.77(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$; MS (ESI): $m / z(\mathrm{M})^{+} 122$.

Ethyl 2-chlorobutyrate (111) [1, 3]

111

Concentrated sulfuric acid (9 mL) was added to a solution of 2-chlorobutyric acid (115) ($76.1 \mathrm{~g}, 0.62 \mathrm{~mol}$) in ethanol $(95 \%, 110 \mathrm{~mL})$ and benzene $(40 \mathrm{~mL})$ in a three-necked round flask fitted with condenser, thermometer. The reaction mixture was heated to reflux for 14 h (monitored by TLC) and the solvent was removed in vacuo. The residue was washed with water $(70 \mathrm{~mL} \times 2)$ and the $p \mathrm{H}$ of solution was adjusted to $p \mathrm{H} 5-6$ using saturated sodium hydrogen carbonate. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL} \times 2)$ and the combined layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to yield $\mathbf{1 1 1}(65.0 \mathrm{~g})$ as a colorless oil in 70% yield. b.p.: $85{ }^{\circ} \mathrm{C} / 35$ torr (Lit: [3] $64{ }^{\circ} \mathrm{C} / 20$ torr); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.92-2.10$ (m, 2H), 4.16-4.26 (m, 3H) ppm; MS (ESI): $m / z(\mathrm{M}+\mathrm{H})^{+} 151$.

Ethyl 2-ethylacrylate (112) [1, 4]

Diethyl 2-ethylmalonate ($35 \mathrm{~g}, 186 \mathrm{mmol}, 1$ equiv) in anhydrous ethanol $(50 \mathrm{~mL})$ was added to potassium hydroxide $(10.5 \mathrm{~g}, 186 \mathrm{mmol}, 1$ equiv) in anhydrous ethanol (100 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 h . White precipitate was formed and solvent was removed. Water $(10 \mathrm{~mL})$ was added to dissolve the white solid and the solution was acidified to $p \mathrm{H} 3-4$ using hydrochloric acid (10\%). The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was concentrated in vacuo to yield a colorless oil.

Pyridine (40 mL) was added to the crude, $(\mathrm{HCHO})_{\mathrm{n}}(5.58 \mathrm{~g}, 186 \mathrm{mmol}, 1$ equiv) and piperidine (1.8 mL) were added to the solution. The reaction mixture was heated to reflux for 1 h and then cooled to room temperature. The mixture was poured into water (100 mL), and washed with n-pentane ($70 \mathrm{~mL} \times 3$). The combined layers were washed with hydrochloric acid $(10 \%, 100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, sodium hydrogen carbonate ($5 \%, 100 \mathrm{~mL}$), then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. It was purified by using distillation at $68{ }^{\circ} \mathrm{C}$ in vacuo to yield a colorless oil $(16.7 \mathrm{~g}$, $70 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=12.7,14.2,24.8,60.5,123.2$, $142.5,167.3 \mathrm{ppm}$; MS (ESI): $m / z(\mathrm{M}+\mathrm{Na})^{+} 151$.

Diethyl cis-1,2-diethylcyclopropane-1,2-dicarboxylate (cis-113) and Diethyl trans-1,2-diethylcyclopropane-1,2-dicarboxylate (trans-113) [1, 5]

trans-113

cis-113
$\mathrm{NaH}(60 \%, 5.6 \mathrm{~g}, 140.4 \mathrm{mmol}, 1.5$ equiv $)$ in DMF $(25 \mathrm{~mL})$ was cooled in an icebath. A solution of α-ethylacrylate $112(12.0 \mathrm{~g}, 93.6 \mathrm{mmol})$ and α-chlorobutyrate $111(11.1 \mathrm{~g}, 93.6 \mathrm{mmol})$ in $\operatorname{DMF}(50 \mathrm{~mL})$ were added dropwise to the solution with temperature below $30^{\circ} \mathrm{C}$ (gas released). The reaction mixture was stirred at room temperature for 17 h (monitored by TLC). $\mathrm{MeOH}(15 \mathrm{~mL})$ was added to quench the excess NaH , then washed with water (100 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($70 \mathrm{~mL} \times 3$) and the combined layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was subjected to purification using column chromatography on silica gel (800 g) eluting with hexanes/EtOAc (20:1) to yield trans-113 (14.3 g, 63\%), and cis-113 (5.7 g, 25\%). trans-113 $R_{\mathrm{f}}=0.6$ (hexanes/ EtOAc, 20:1); cis-113 $R_{\mathrm{f}}=0.4$ (hexanes/EtOAc, 20:1); cis-113: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.65(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.24$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.8,14.2,23.0$, 23.9, 38.1, 60.8, 172.1 ppm ; MS (ESI): $m / z(\mathrm{M}+\mathrm{Na})^{+} 265$.
trans-113: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$, $1.10-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 2 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 2 \mathrm{H})$,
4.08-4.20 (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.6,14.3,20.1,23.6$, 38.0, 60.9, 171.6 ppm ; IR (Film): 2974, 2939, 2880, 1729, 1458, 1382, 1309, 1234, 1182, 1139, $1031 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+} 265$.
trans-1,2-Diethyl-1,2-bis (hydroxymethyl) cyclopropane (118) [1, 6]

118

Compound trans-113 ($10 \mathrm{~g}, 41.3 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added dropwise to a solution of $\mathrm{LiAlH}_{4}\left(3.4 \mathrm{~g}, 90.8 \mathrm{mmol}, 2.2\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was heated to reflux for 17 h (monitored by TLC). NaOH $(5 \%, 20 \mathrm{~mL})$ was added to the reaction mixture to quench the excess LiAlH_{4}, then filtered and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was subjected to purification using column chromatography on silica gel (250 g) eluting with hexanes/EtOAc (1:2) to yield a colorless oil ($6.1 \mathrm{~g}, 93 \%$). $R_{\mathrm{f}}=0.3$ (hexanes/EtOAc, 1:2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.19$ (s, 2H), 0.93 $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.91(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, 2H), 3.69 (s, 2H), 3.79 (d, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.2,19.2,21.9,32.9,63.4 \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}): m / z(\mathrm{M}+\mathrm{Na})^{+} 181$.

trans-1,2-Diethyl-2-(hydroxymethyl)-[(tert-butyl-dimethylsiloxy)methyl]cyclopropane (119) [1, 6]

$\mathrm{Et}_{3} \mathrm{~N}(11.0 \mathrm{~g}, 15.1 \mathrm{~mL}, 108.4 \mathrm{mmol}, 2.2$ equiv) was added to a solution of $\mathbf{1 1 8}$ $(7.8 \mathrm{~g}, 49.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for $10 \mathrm{~min} . t-\mathrm{BuMe}_{2} \mathrm{SiCl}$ ($8.2 \mathrm{~g}, 54.2 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was then added dropwise to the solution at $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h (monitored by TLC). White precipitate was formed. The reaction mixture was washed with water (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was subjected to purification using column chromatography on silica gel (400 g) eluting with hexanes:ethyl acetate (5:1) to yield a colorless oil $\mathbf{1 1 9}(10.73 \mathrm{~g})$ in 80% yield. $R_{\mathrm{f}}=0.3$ (hexanes/ EtOAc, 5:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.02$ (s, 3H), 0.03 (s, 3H), 0.28 $(\mathrm{q}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 1 \mathrm{H}), 1.41-1.70(\mathrm{~m}, 4 \mathrm{H}), 3.40(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.4,-5.4,11.3,11.4,18.3,20.3,22.9,23.1,26.0,32.7$, 32.9, 64.1, 64.9 ppm ; MS (ESI): $m / z(\mathrm{M}+\mathrm{Na})^{+} 295$.

trans-1,2-Diethyl-1-(tert-butyldimethylsiloxymethyl)-2-vinylcyclopropane (121) [1]

121

DMSO ($7.2 \mathrm{~g}, 6.6 \mathrm{~mL}$, $91.7 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added carefully to a solution of $(\mathrm{COCl})_{2}\left(5.6 \mathrm{~g}, 3.8 \mathrm{~mL}, 44.0 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for $15 \mathrm{~min} .119(10 \mathrm{~g}, 36.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the mixture and followed by $\mathrm{Et}_{3} \mathrm{~N}(19.3 \mathrm{~g}, 26.6 \mathrm{~mL}, 190.8 \mathrm{mmol}, 5.2$ equiv). The reaction mixture was allowed to stir at room temperature for 20 min . Water (50 mL) was added to the mixture and stirred for a further 30 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL} \times 3)$ and the combined layers were washed with hydrochloric acid $(10 \%, 70 \mathrm{~mL})$ sodium hydrogen carbonate solution $(10 \%, 70 \mathrm{~mL})$ and saturated brine solution (70 mL), then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude material was used directly for the next step.
$n-\operatorname{BuLi}(1.6 \mathrm{M}, 35 \mathrm{~mL}, 30.3 \mathrm{mmol}, 1.3$ equiv) was added to a solution of $\mathrm{PPh}_{3} \mathrm{CH}_{3} \mathrm{I}$ ($19.3 \mathrm{~g}, 47.7 \mathrm{mmol}, 1.3$ equiv) in THF $(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature until no solid left and then re-cooled to $-78{ }^{\circ} \mathrm{C}$. The crude material in THF (10 mL) was added dropwise to the solution and left stirring at room temperature for overnight. saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(70 \mathrm{~mL})$ was added to the reaction mixture and extracted with $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL} \times 3)$. The combined layers were washed with water (100 mL), saturated brine solution (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to yield a yellow solid. The crude material was subjected to purification using column chromatography on silica gel (250 g) eluting with hexane to yield a colorless oil $121(5.9 \mathrm{~g})$ in 60% yield (two steps); $R_{\mathrm{f}}=0.3$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, $0.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.57(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ (s, 9H), $0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.62(\mathrm{~m}, 1 \mathrm{H}), 3.56$ $(\mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ $(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-5.3,-5.4,11.2,11.7,18.4,20.6,23.8,25.7,26.0,33.3,34.4,64.2$, 114.6, 140.8 ppm ; MS (EI): $\mathrm{m} / \mathrm{z}(\mathrm{M})^{+} 268$.
trans-1,2-Diethyl-2-vinylcyclopropyl)methanol (122) [1]

122
p-TsOH ($242.5 \mathrm{mg}, 1.42 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to a solution of $\mathbf{1 2 1}(3.8 \mathrm{~g}$, $14.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 2,80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ with stirring. The reaction mixture was stirred at room temperature for 4 h (monitored by TLC). The mixture
was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 3)$. The combined layers were washed with NaHCO_{3} solution ($5 \%, 40 \mathrm{~mL}$), saturated brine solution (40 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to the crude. The crude material was subjected to purification using column chromatography on silica gel (100 g) eluting with hexane/EtOAc (5:1) to yield a colorless oil ($2.0 \mathrm{~g}, 90 \%$); $R_{\mathrm{f}}=0.3$ (hexanes/ EtOAc, 5:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.63$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.52$ $(\mathrm{m}, 4 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=10.5,17.2 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.2,11.7,20.7,23.4,25.7,33.7,34.7$, 64.4, 115.3, 139.9 ppm ; MS (ESI): $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+} 177$.

1-(2-(trans-1,2-Diethyl-2-vinylcyclopropyl)vinyl)benzene (92a) [1, 7]

A solution of DMSO ($0.13 \mathrm{~mL}, 1.85 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a solution of $(\mathrm{COCl})_{2}(0.07 \mathrm{~mL}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ over 30 min , followed by a solution of trans $-\mathbf{1 2 2}(114 \mathrm{mg}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The resulting mixture was stirred at the same temperature for 30 min , and then $\mathrm{Et}_{3} \mathrm{~N}$ $(0.5 \mathrm{~mL}, 3.7 \mathrm{mmol})$ was added. After another 20 min , water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ were added, and the whole was partitioned. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic layers were successively washed with $1 \% \mathrm{HCl}(30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the crude product was used without purification in the next step. $\mathrm{BnPPh}_{3} \operatorname{Br}(415.6 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.3$ equiv) was suspended in anhydrous THF (5 mL) under nitrogen. $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexane, $0.63 \mathrm{~mL}, 1.00 \mathrm{mmol}$) was added into the reaction flask dropwise at $-78^{\circ} \mathrm{C}$. After warming to room temperature, the resulting ylide mixture was allowed to stir for 30 min and then cooled to $0^{\circ} \mathrm{C}$ again. A solution of the crude aldehyde in THF (2 mL) was added dropwise into the cooled reaction mixture, and was then allowed to warm slowly to room temperature. After 20 h , saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to the mixture followed by $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 2)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel (8 g) eluting with hexane to afford 92a as a colorless oil ($117.1 \mathrm{mg}, 70 \%$ in 2 steps): $R_{\mathrm{f}}=0.85$ (Hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.41$ (d, $\left.J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-5.22$ $(\mathrm{d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.23-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.75-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.22-6.75(\mathrm{~m}, 1 \mathrm{H})$, 7.09-7.50 (m, 5H) ppm; IR (Film): 3082, 3026, 2961, 2854, 1640, 1601, 1495, 1463, 1378, 1164, 959, $694 \mathrm{~cm}^{-1}$; MS (EI): m/z $226\left[\mathrm{M}^{+}\right]$;

1-(2-(trans-1,2-Diethyl-2-vinylcyclopropyl)vinyl)-4-methylbenzene (92b) [1]

92b

Compound 92b was prepared by a similar procedure as 92a : yield $=70 \%(2$ steps); $(E / Z=7 / 3) ; R_{\mathrm{f}}=0.85$ (Hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.44$ (d, $J=4.7 \mathrm{HZ}, 0.3 \mathrm{H}), 0.79-0.96(\mathrm{~m}, 7.7 \mathrm{H}), 1.25-1.65(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 2.1 \mathrm{H})$, $2.35(\mathrm{~s}, 0.9 \mathrm{H}), 4.99(\mathrm{dd}, 1 \mathrm{H}, J=1.1,11.9 \mathrm{~Hz}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.86-5.96(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.45(\mathrm{~m}, 1.7 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1.4 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.6,11.7,11.8,12.4,21.2,21.2,24.8,26.4,26.5,26.7$, $27.2,32.9,35.6,36.6,36.6,115.3,115.4,125.9,128.7,129.1,129.3,130.5,131.3$, $131.5,132.5,134.3,135.1,136.5,136.7,139.7,139.9 \mathrm{ppm}$; MS (EI): m/z 240 [M^{+}]; HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24}: 240.1873$, found: 240.1884 .

1-(2-(trans-1,2-Diethyl-2-vinylcyclopropyl)vinyl)-4-methoxybenzene (92c)

92c

Compound 92c was prepared by a similar procedure as 92a: yield $=64 \%$ (2 steps); $R_{\mathrm{f}}=0.60(\mathrm{Hexanes} / \mathrm{EtOAc}, 20: 1) ;{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.43(\mathrm{~d}, J=4.8$ $\mathrm{HZ}, 1 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=4.7 \mathrm{HZ}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.48-1.68(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{dd}, 1 \mathrm{H}, J=1.8,17.2 \mathrm{~Hz}), 5.16(\mathrm{dd}, 1 \mathrm{H}$, $J=1.7,10.5 \mathrm{~Hz}), 5.67(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.6,12.3,24.8,26.5,27.2,32.8,36.6,55.3,113.4$, 115.3, 130.0, 130.4, 131.0, 131.3, 139.7, $158.5 \mathrm{ppm} ; \mathrm{MS}(\mathrm{FAB}): m / z 256\left[\mathrm{M}^{+}\right] ;$HRMS (FAB) $m / z[M]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}: 256.1822$, found: 256.1811.

1-(2-(trans-1,2-Diethyl-2-vinylcyclopropyl)vinyl)naphthalene (92d)

Compound 92d was prepared by a similar procedure as 92a (the E / Z ratio is about $5 / 2$): yield $=59 \%$ (2 steps); $R_{\mathrm{f}}=0.85$ (Hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta=0.11(\mathrm{~d}, J=5.1 \mathrm{HZ}, 0.4 \mathrm{H}), 0.60(\mathrm{~d}, J=5.0 \mathrm{HZ}, 0.4 \mathrm{H}), 0.79-0.96$ $(\mathrm{m}, 7.7 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1.2 \mathrm{H}), 0.86-0.96(\mathrm{~m}, 8 \mathrm{H}), 1.4-1.67(\mathrm{~m}, 5.6 \mathrm{H}), 4.90$ (dd, $J=1.8,17 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.04-5.10(\mathrm{~m}, 1.4 \mathrm{H}), 5.17(\mathrm{dd}, J=1.6,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{dd}, J=10.4,17.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.96(\mathrm{dd}, J=10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.33(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 0.4 \mathrm{H})$, $7.10(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.56(\mathrm{~m}, 5.6 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.4 \mathrm{H}), 7.84$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1.4 \mathrm{H}), 8.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.6,11.7,11.8,12.2,21.6,23.9,26.5,26.6$, $26.8,28.0,31.9,33.1,35.9,36.1,36.6,115.2,115.4,123.4,124.0,124.7,125.1$, 125.6, 125.6, 125.7, 125.8, 126.5, 127.1, 127.3, 127.9, 128.4, 128.5, 129.3, 131.1, 131.5, 133.4, 133.6, 134.7, 134.8, 135.8, 139.5, 139.7 ppm ; MS (ESI): $m / z 277$ $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25}: 277.1951$, found: 277.1957.
(E)-cis-3,5-Diethyl-3-styryl-5-vinyl-1,2-dioxolane (cis-124a) and (E)-trans-3,5-Diethyl-3-styryl-5-vinyl-1,2-dioxolane (trans-124a) [1]

cis-124a

trans-124a

Feldman procedure. To a stirring solution of the vinylcyclopropane 92a (226 mg , $1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at room temperature was added diphenyl diselenide ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) and AIBN ($13 \mathrm{mg}, 0.08 \mathrm{mmol}$). The reaction was placed under a balloon of oxygen and irradiated with a 300 W sunlamp. When starting material was consumed as shown by TLC, the reaction mixture was concentrated in vacuo, and the residue was purified by flash chromatography on silica gel (8 g , hexane/ EtOAc, 10/1) to afford $\mathbf{1 2 4}$ (cis/trans $=1: 3.1$) as a colorless oil ($185.8 \mathrm{mg}, 72 \%$); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1);

Pd-catalyzed procedure. To a $25-\mathrm{mL}$, two-necked, round-bottomed flask equipped with a magnetic stirring bar was added 92a ($57 \mathrm{mg}, 0.25 \mathrm{mmol}$), urea peroxide ($35 \%, 73 \mathrm{mg}, 0.75 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57 \mathrm{mg}, 20 \mathrm{~mol} \%)$. The flask was placed under an argon atmosphere, and MeCN (2 mL) was added via syringe. The resulting mixture was stirred at room temperature for 24 h . The reaction mixture concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (8 g , hexanes/EtOAc, 20:1) to give the pure product in which the cis/trans ratio is about $1 / 1.5$ as a colorless oil ($37 \mathrm{mg}, 57 \%$); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.86-0.98(\mathrm{~m}, 15 \mathrm{H}), 1.67-1.83(\mathrm{~m}, 10 \mathrm{H}), 2.38(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (s, 3H), $2.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (dd, $J=1.0,10.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 5.25(\mathrm{dd}, J=1.0,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=1.0$, $17.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 5.82-5.94(\mathrm{~m}, 2.5 \mathrm{H}), 6.21(\mathrm{t}, J=16.5 \mathrm{~Hz}, 2.5 \mathrm{H}), 6.62$ $(\mathrm{t}, J=16.3 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 2.5 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.7,8.9,30.5,30.9,31.0,31.5,53.3,53.9,88.4,88.5$, $88.5,88.6,114.1,114.8,126.4,127.5,128.5,128.9,129.6,130.8,131.8,136.7$, 139.4, $140.2 \mathrm{ppm} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z} 258[\mathrm{M}]^{+}$; HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}: 258.1614$, found: 258.1613 .
(E)-3-(4-Methystyryl)-cis-3,5-diethyl-5-vinyl-1,2-dioxolane (cis-124b) and (E)-3-(4-Methystyryl)-trans-3,5-diethyl-5-vinyl-1,2-dioxolane (trans-124b) [1]

Compound 124b was prepared by a similar procedure as 124a; Feldman procedure: yield $=75 \%$, (cis/trans $=1: 4)$; Pd-catalyzed procedure: yield $=70 \%$ (cis/trans $=1: 1.4$); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=0.86-0.97(\mathrm{~m}, 14.4 \mathrm{H}), 1.69-1.84(\mathrm{~m}, 9.6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.34$ (s, $4.2 \mathrm{H}), 2.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 2.8 \mathrm{H}), 2.65(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=1.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=1.1,10.9 \mathrm{~Hz}, 1.4 \mathrm{H}), 5.26(\mathrm{dd}, J=1.1$, $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ (dd, $J=1.1,17.5 \mathrm{~Hz}, 1.4 \mathrm{H}), 5.86-5.93$ (m, 2.4H), 6.16 (t, $J=16.4 \mathrm{~Hz}, 2.4 \mathrm{H}), 6.57(\mathrm{t}, ~ J=17.0 \mathrm{~Hz}, 2.4 \mathrm{H}), 7.11-7.14(\mathrm{~m}, ~ 4.8 \mathrm{H})$, 7.28-7.31 (m, 4.8H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.9,9.0,9.0,21.2$, 30.7, 31.1, 31.2, 31.6, 53.4, 54.0, 88.6, 88.7, 88.7, 88.7, 114.2, 114.9, 126.4, 126.4, $128.9,129.3,129.3,129.7,129.9,130.9,134.1,137.5,139.7,140.4 \mathrm{ppm} ;$ MS(ESI): $m / z 290\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}: 290.2115$, found: 290.2113 .
(E)-3-(4-Methoxystyryl)-cis-3,5-diethyl-5-vinyl-1,2-dioxolane (cis-124c) and (E)-3-(4-Methoxystyryl)-trans-3,5-diethyl-5-vinyl-1,2-dioxolane (trans-124c)

Compound 124c was prepared by a similar procedure as $\mathbf{1 2 4 a}$; Feldman procedure: \quad yield $=84 \%, \quad($ cis/trans $=1: 2.6) ; \quad$ Pd-catalyzed \quad procedure: yield $=40 \%$ (cis/trans $=1: 1.6$); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.86-0.97(\mathrm{~m}, 16.2 \mathrm{H}), 1.67-1.84(\mathrm{~m}, 10.8 \mathrm{H}), 2.37$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3.4 \mathrm{H}), 2.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (s, 5.1H), $5.16(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1.7 \mathrm{H}), 5.28$ $(\mathrm{dt}, J=1.0,17.6 \mathrm{~Hz}, 2.7 \mathrm{H}), 5.82-5.93(\mathrm{~m}, 2.7 \mathrm{H}), 6.07(\mathrm{t}, J=16.8 \mathrm{~Hz}, 2.7 \mathrm{H})$, $6.54(\mathrm{t}, J=16.6 \mathrm{~Hz}, 2.7 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 5.4 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 5.4 \mathrm{H}) \mathrm{ppm} ;{ }^{13}$

C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=8.9,9.0,30.7,31.0,31.2,31.6,53.4,53.9,55.4$, 88.6, 88.6, 88.7, 88.7, 114.0, 114.0, 114.2, 114.9, 127.7.128.5, 128.6, 129.3, 129.6, 139.7, 140.3, 159.3 ppm; IR (Neat): 2964, 2934, 1607, 1511, 1251, 1175, 1036, $839 \mathrm{~cm}^{-1}$; MS (FAB): $\mathrm{m} / \mathrm{z} 288[\mathrm{M}]^{+}$; HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$: 288.1720 , found: 288.1716 .
(E)-cis-3,5-Diethyl-3-(2-(naphthalen-1-yl)vinyl)-5-vinyl-1,2-dioxolane (cis-124d) and (E)-trans-3,5-Diethyl-3-(2-(naphthalen-1-yl)vinyl)-5-vinyl-1, 2-dioxolane (trans-124d)

Compound 124d was prepared by a similar procedure as 124a; Feldman procedure: \quad yield $=62 \%, \quad($ cis/trans $=1: 2.5) ; \quad$ Pd-catalyzed \quad procedure: yield $=67 \%$ (cis/trans $=1: 1.8$); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.91-1.06(\mathrm{~m}, 16.8 \mathrm{H}), 1.73-1.91(\mathrm{~m}, 11.2 \mathrm{H}), 2.44(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3.6 \mathrm{H}), 2.75(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=1.1$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=1.1,10.9 \mathrm{~Hz}, 1.8 \mathrm{H}), 5.31(\mathrm{dd}, J=1.0,18 \mathrm{~Hz}, 1 \mathrm{H})$, $5.36(\mathrm{dd}, J=1.0,17.4 \mathrm{~Hz}, 1.8 \mathrm{H}), 5.89-5.98(\mathrm{~m}, 2.8 \mathrm{~Hz}), 5.18(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}), 6.22(\mathrm{~d}, J=16 \mathrm{~Hz}, 1.8 \mathrm{H}), 7.36-7.60(\mathrm{~m}, 14 \mathrm{H}), 7.79(\mathrm{dd}, J=3.8,8.2 \mathrm{~Hz}$, 2.8 H), 7.85 (dd, $J=2.6,7.4 \mathrm{~Hz}, 2.8 \mathrm{H}$), 8.09 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1.8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.9,9.1,30.7,31.2$, $31.7,53.5,54.2,88.6,88.7,88.8,88.8,114.2,115.0,123.7,124.0,124.0,125.6$, $125.8,126.1,126.1,126.5,127.3,127.9,128.5,131.4,133.6 .134 .3,135.0,135.1$, 139.6, $140.5 \mathrm{ppm} ; ~ M S ~(E S I): ~ m / z ~ 326\left[M+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) m / z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}$: 326.2115 , found: 326.2120 .
(trans-3,5-Diethyl-1,2-dioxolane-3,5-diyl)dimethanol (trans-134) and (cis-3, 5-Diethyl-1,2-dioxolane-3,5-diyl)dimethanol (cis-135) [1]

trans-134

cis-135

To a $-78{ }^{\circ} \mathrm{C}$ solution of $\mathbf{9 2 a}(440 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL}) / \mathrm{MeOH}$ $(2 \mathrm{~mL})$ was bubbled O_{3}. After the mixture turned light blue and TLC analysis displayed little or no starting material, ozonolysis was stopped and the ozone was removed by passage of O_{2} or N_{2} through the solution. $\mathrm{NaBH}_{4}(91 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added to the reaction mixture at the same temperature and the reaction was slowly (5 h) warm to room temperature. The reaction was diluted with water
$(2 \mathrm{~mL})$ and the mixture extracted with EtOAc ($15 \mathrm{~mL} \times 2$). The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10 g , hexanes/EtOAc, 2:1-1:1) to afford firstly trans- $\mathbf{1 3 4}$ ($178 \mathrm{mg}, 55 \%$), followed by cis- $\mathbf{1 3 5}$ ($113 \mathrm{mg}, 35 \%$); trans-134: $R_{\mathrm{f}}=0.25$ (hexanes/EtOAc, $1: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H})$, 2.25 (brs, 2H), $3.43(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.2,25.0,44.7,64.5,89.5 \mathrm{ppm}$; MS (ESI): $\mathrm{m} / \mathrm{z} 208$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{NO}_{4}:$ 208.1543, found: 208.1540.
cis-135: $R_{\mathrm{f}}=0.22$ (hexanes/EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.14$ (d, $\quad J=12.4 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 2.46(\mathrm{~d}, \quad J=12.4 \mathrm{~Hz}, \quad 1 \mathrm{H}), 2.60 \quad(\mathrm{~s}, \quad 2 \mathrm{H}), 3.63$ (q, $J=12.2 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.7,27.4,44.2$, 63.9, 89.5 ppm ; MS (ESI): $m / z 213[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}: 213.1097$, found: 213.1093.

(5-((tert-Butyldimethylsilyloxy)methyl)-cis-3,5-diethyl-1,2-dioxolan-3-yl) methanol (cis-137) and 3,5-bis((tert-Butyldimethylsilyloxy)methyl)-cis-3, 5-diethyl-1,2-dioxolane (cis-270)

To a stirring solution of cis-135 (741 mg, 3.89 mmol$)$ in DMF (10 mL) cooled at $0{ }^{\circ} \mathrm{C}$ were added imidazole ($265 \mathrm{mg}, 3.89 \mathrm{mmol}$), DMAP ($24 \mathrm{mg}, 0.19 \mathrm{mmol}$), and tert-butyldimethylsilyl chloride ($587 \mathrm{mg}, 3.89 \mathrm{mmol}$). The reaction was stirred overnight, and it was allowed to warm to room temperature slowly. Then quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the resulting solution was stirred at room temperature for 30 min . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on the rotary evaporator. The residue was purified by flash chromatography on silica gel (8 g , hexane/EtOAc, 20:1-10:1) to afford cis-270 (83 mg, 5\%), cis-137 (532 mg, 45\%) and cis-135 (259 mg, 35\%) as colorless oil. cis-137: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, $8: 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.57-1.66 (m, 2H), 1.75-1.83 (m, 2H), 2.07-2.12 (m, 1H), $2.06(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=7.6 \mathrm{~Hz}$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=4.6 \mathrm{~Hz}, 11.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,8.5,8.9,18.4,25.9,26.4,28.0,44.8,63.9$, 64.1, 89.1, 89.2 ppm ; IR (Neat): 2956, 2931, 2883, 2858, 1463, 1254, 1113, 1060, 838, $778 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 305[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}: 305.2143$, found: 305.2141 .
cis-270: $R_{\mathrm{f}}=0.9$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 12 \mathrm{H})$, $0.89(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.55-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.98(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.65(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3$, 8.6, 18.3, 25.9, 27.2, 45.3, 64.0, 88.8, ppm; MS (ESI): $m / z 419[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}_{2}: 419.3007$, found: 419.3018 .
(5-((tert-Butyldimethylsilyloxy)methyl)-trans-3,5-diethyl-1,2-dioxolan-3yl)methanol (trans-136) and 3,5-bis((tert-Butyldimethylsilyloxy)methyl)-trans-3,5-diethyl-1,2-dioxolane (trans-271)

trans-136

trans-271
trans-136 and trans-271 were prepared by a similar procedure as cis-137 and cis-270; trans-137: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.49-1.59 (m, 2H), 1.70-1.80 (m, 2H), $1.96(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 11.6 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.8,9.0,18.3,25.4,25.9$, $25.9,44.6,64.4,65.0,88.9,89.1 \mathrm{ppm}$; IR (Neat): 2955, 2933, 2884, 2862, 1464, 1254, 1112, 1059, 842, $779 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 305[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$: 305.2143, found: 305.2141.
trans-271: $R_{\mathrm{f}}=0.9$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 12 \mathrm{H})$, $0.89(\mathrm{~s}, 18 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 2 \mathrm{H})$, $2.10(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.5,-5.3,8.6,18.3,25.9,26.3,44.4,64.9,88.5 \mathrm{ppm}$; MS (ESI): $m / z 441[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}: 441.2827$, found: 441.2831 .

(E)-Ethyl 3-(5-((butyldimethylsilyloxy)methyl)-trans-3,5-diethyl-1,2-dioxolan-3-yl)acrylate trans-142

trans-142

To a solution of trans-136 (38 mg, 0.125 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added DMP ($80 \mathrm{mg}, 0.188 \mathrm{mmol}$). The reaction mixture was stirred until the starting material had disappeared, $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added. Then added saturated aq. $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$
($3 \times 10 \mathrm{~mL}$). The combined extracts were washed with brine (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on the rotary evaporator. The residue was purified by flash chromatography on silica gel (8 g , hexanes/EtOAc, 10:1) to afford the desired aldehyde trans-141, which was used in the next step. To a $0^{\circ} \mathrm{C}$ spension of NaH ($14 \mathrm{mg}, 60 \%$ in mineral oil, 2.8 equiv) in THF (1 mL) was added a solution of triethyl phosphonoacetate ($84 \mathrm{mg}, 0.375 \mathrm{mmol}, 3.0$ equiv) in THF (0.5 mL). After stirring for 0.5 h , the aldehyde $\mathbf{1 4 1}$ in THF (1 mL) was added slowly. The reaction mixture was warmed to room temperature, stirred until no starting material remained (TLC). Quenched the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times and combined the organic layers and washed with brine and water, and dried over MgSO_{4} and filtered. Removed the solvent with rotary evaporation. Flash chromatography on silica gel (8 g) of the residue gave the product ($37 \mathrm{mg}, 79 \%$ in 2 steps) as a colorless oil. $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.07$ ($\mathrm{s}, 6 \mathrm{H}$), $0.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{q}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.87 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.5,-5.3$, $8.7,8.8,14.3,18.3,25.9,26.2,30.4,49.0,60.6,65.0,87.7,89.0,120.5,149.8$, 166.7 ppm ; IR (Neat): 2956, 2930, 2857, 1722, 1658, 1463, 1304, 1259, 1178, 1113, 1039, $838,778 \mathrm{~cm}^{-1}$; MS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 373$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si}$: 373.2405, found: 373.2402.
tert-Butyl((5-(2,2-dibromovinyl)-trans-3,5-diethyl-1,2-dioxolan-3yl)methoxy)dimethylsilane (trans-155)

trans-155

To a slurry of $\mathrm{Ph}_{3} \mathrm{P}^{2} \mathrm{CHBr}_{3}$ [8] ($322 \mathrm{mg}, 0.625 \mathrm{mmol}$) in THF (2.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added t-BuOK ($67 \mathrm{mg}, 0.6 \mathrm{mmol}$). The bright yellow slurry was stirred for 15 min and the temperature was allowed to warm to room temperature. Then added the aldehyde 141 in THF (1.0 mL) to the mixture and stirred for 30 min , TLC, the reaction completed. Quenched the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times and combined the organic layers and washed with brine and water, and dried over MgSO_{4} and filtered. Removed the solvent with rotary evaporation. Flash chromatography on silica gel (8 g) of the residue gave the product ($90 \mathrm{mg}, 79 \%, 2$ steps) as a colorless oil : $R_{\mathrm{f}}=0.75$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.07$ (s, 6H), 0.89 (s, 9H), 0.91 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H})$, $2.15-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.4,-5.3,8.5,8.9,18.3,25.9,26.2,28.0,49.1,65.5$,
87.1, 88.8, $90.3,144.9 \mathrm{ppm}$; IR (Neat): 2954, 2930, 2858, 1461, 1256, 1115, $838 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 481[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{SiNa}: 481.0203$, found: 481.0190 .
tert-Butyl((trans-3,5-diethyl-5-ethynyl-1,2-dioxolan-3-yl)methoxy)dimethylsilane (trans-148)

To a two necked round-bottomed flask equipped with a magnetic stirring bar was added trans $\mathbf{- 1 5 5}(114 \mathrm{mg}, 0.25 \mathrm{mmol})$ under an argon atmosphere, and THF (2 mL) was added via syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and n-butyllithium ($0.55 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in hexanes, 0.344 mL) was added dropwise via syringe. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ water solution was added. The mixture was warmed to $25^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, transferred to a separatory flask, and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts washed with saturated brine and water, dried by MgSO_{4}, filtered and the solvent removed by rotary evaporation. The residue was purified by column chromatography on silica gel (8 g) to yield $\mathbf{1 4 8}$ ($71 \mathrm{mg}, 95 \%$) as a colorless oil, $R_{\mathrm{f}}=0.55$ (hexanes/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ $(\mathrm{d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.5,-5.3,8.5,9.6$, $18.3,25.9,26.2,31.2,51.6,65.3,73.0,82.7,84.8,89.0$, ppm; IR (Neat): 3311, 2955, 2930, 2858, 1471, 1463, 1258, 1111, 1007, $839 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z} 321$ $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}: 321.1856$, found: 321.1854.

tert-Butyl((trans-3,5-diethyl-5-(prop-1-ynyl)-1,2-dioxolan-3-yl)methoxy) dimethylsilane (trans-147)

To a $25-\mathrm{mL}$, two-necked, round-bottomed flask equipped with a magnetic stirring bar was added 148 ($89 \mathrm{mg}, 0.3 \mathrm{mmol}$). The flask was placed under an argon atmosphere, and THF (2.5 mL) was added via syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and n-butyllithium $(0.36 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in hexanes, 0.225 mL) was added dropwise via syringe. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for

5 min and methyl trifluoromethanesulfonate $(0.45 \mathrm{mmol}, 74 \mathrm{mg}, 0.052 \mathrm{~mL})$ was added dropwise via syringe. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then saturated aq. NaHCO_{3} was added. The mixture was warmed to $25^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, transferred to a separatory flask, and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts washed with saturated brine and water, dried by MgSO_{4}, filtered and the solvent removed by rotary evaporation. The residue was purified by column chromatography on silica gel $(8 \mathrm{~g})$ to yield $147(66 \mathrm{mg}, 70 \%)$ as a colorless oil, $R_{\mathrm{f}}=0.55$ (hexanes $/ \mathrm{Et}_{2} \mathrm{O} 20: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.05(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.96$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.73$ (m, 2H), 1.73-1.83 $(\mathrm{m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-5.5,-5.3,3.7,8.5,9.8,18.3,25.9,26.4,31.7,51.9,65.3,80.2,81.1$, 83.1, 88.9 ppm ; MS (ESI): $m / z 335[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}$: 335.2013, found: 335.2017.

(E)-tert-Butyl((trans-3,5-diethyl-5-(2-iodoprop-1-enyl)-1,2-dioxolan-3yl)methoxy)dimethylsilane (trans-146)
 (E)-tert-Butyl(trans-3,5-diethyl-5-(1-iodoprop-1-enyl)-1,2-dioxolan-3yl)methoxy)dimethylsilane (trans-162b)

Procedure I: To a $10-\mathrm{mL}$, argon-filled, two-necked round-bottomed flask equipped with a magnetic stirring bar was added trans $-147(64 \mathrm{mg}, 0.206 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$. The flask was evacuated and filled with argon three times, and then freshly distilled THF (2 mL) was added via a syringe. Tributyltin hydride (4.0 equiv) was added slowly (about over 10 min) via a syringe. The reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , then immediately transferred to a silica gel column (8 g) and rapidly eluted with hexanes until the excess $\mathrm{Bu}_{3} \mathrm{SnH} /\left(\mathrm{Bu} u_{3} \mathrm{Sn}\right)_{2}$ is removed, followed by elution with a mixture of hexanes and EtOAc (10:1) to afford trans-161 (41 mg, 33\%), trans-162 ($41 \mathrm{mg}, 33 \%$) as colorless oil; trans162: $R_{\mathrm{f}}=0.70$ (hexanes/EtOAc, 20:1); trans-161: $R_{\mathrm{f}}=0.60$ (hexanes/EtOAc, 20:1); The obtained stannane compound trans-162 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{I}_{2}(17 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for $5-8$ min then worked up by a saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (3 mL) and extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (8 g , hexanes/EtOAc, 20:1) to give 162b ($26 \mathrm{mg}, 86 \%$) as an oil: $R_{\mathrm{f}}=0.60$ (hexanes/EtOAc, 20:1);

In a similar manner of iodination, trans- $\mathbf{1 4 6}$ was prepared as a colorless oil: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1);
trans-146: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.92$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.76$ $(\mathrm{m}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.5,9.1,18.3,25.9,26.4,29.8,30.9,50.8$, 65.4, 88.4, 90.8, $96.4,144.1 \mathrm{ppm}$; MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 463$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{IO}_{3} \mathrm{SiNa}$: 463.1136, found: 463.1137.
trans-162b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.06$ (s, 6H), 0.90 (s, 9H), 0.92 $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $2.11-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.2,8.6,18.0,18.4,26.0,26.0,30.9,51.7$, 65.8, 88.6, 93.2, 107.1, 138.8 ppm ; MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 463$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{IO}_{3} \mathrm{SiNa}$: 463.1136, found: 463.1138 .

Procedure II (trans-146): To a $10-\mathrm{mL}$, argon-filled, two-necked roundbottomed flask equipped with a magnetic stirring bar was added trans-147 (64 mg , $0.206 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$. The flask was evacuated and filled with argon three times, and then freshly distilled n-hexane (2 mL) was added via a syringe. Tributyltin hydride (4.0 equiv) was added slowly (about over 10 min) via a syringe. The reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , then immediately transferred to a silica gel column (8 g) and rapidly eluted with hexanes until the excess $\mathrm{Bu}_{3} \mathrm{SnH} /\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}$ is removed, followed by elution with a mixture of hexanes and ethyl acetate (10:1) to give the stannane compound trans-161 ($105 \mathrm{mg}, 84 \%$) as a colorless oil: $R_{\mathrm{f}}=0.60$ (hexanes/EtOAc, 20:1). The obtained stannane compound was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{I}_{2}(43 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $5-8 \mathrm{~min}$ then worked up by a saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (3 mL) and extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (8 g , /EtOAc, 20:1) to give trans $\mathbf{- 1 4 6}(64 \mathrm{mg}, 86 \%)$ as an oil: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1);

1-Phenyl-5-(propylthiol)-1H-tetrazole (164) [1, 9]

164

To a solution of n-propyl bromide $163(1.3 \mathrm{~g}, 10.6 \mathrm{mmol})$ in THF (40 mL) was added NaH ($424 \mathrm{mg}, 60 \%$ in mineral oil, 12 mmol) and 1-phenyl-1h-tetrazole-5-thiol
(HSPT) $(2.16 \mathrm{~g}, 12 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer were dried over MgSO 4 , filtered and concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (100 g, hexanes/EtOAc, 20:1) to give the desired $164(2.25 \mathrm{~g})$ in 96% yield. $R_{\mathrm{f}}=0.70$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 2 \mathrm{H}), 3.35$ $(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.52-7.56(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.2$, $22.6,35.2,123.9,129.8,130.1,133.7,154.5 \mathrm{ppm} ; \mathrm{MS}$ (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 221$;

1-Phenyl-5-(propylsulfonyl)-1H-tetrazole (165) [1, 9]

165

To a solution of $164(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~mL}$, $10 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 14 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL} \times 3)$. The organic layer were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (8 g , hexanes/EtOAc, 6:1) to give the desired $165(0.23 \mathrm{~g})$ in 92% yield; $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 5:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.94-2.01 (m, 2H), 3.68-3.72 (m, 2H), 7.56-7.68 (m, 5H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=12.8,16.0,57.6,125.1,129.7,131.5,133.0,153.5 \mathrm{ppm}$; MS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 253$;

2-Ethylpropane-1,3-diol (166) [10]

To a solution of ethyl diethyl malonate ($10 \mathrm{~g}, 0.053 \mathrm{~mol}$) in THF (90 mL) was slowly added $\mathrm{LiAlH}_{4}(3.9 \mathrm{~g}, 0.103 \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 1 h and refluxed for 15 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $20 \% \mathrm{NaOH}$ solution. The mixture was further diluted with $\mathrm{Et}_{2} \mathrm{O}$ (300 mL), filtered and the precipitated aluminum salts were washed with additional 200 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrates were concentrated under reduced pressure to give a yellow oil which was distilled under reduced pressure at $110{ }^{\circ} \mathrm{C}$, to provide diol as a colorless oil in a 60% yield (3.3 g). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.61(\mathrm{~m}, 1 \mathrm{H})$,
3.52-3.58 (m, 2H), 3.67-3.71(m, 2H), $3.81(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=11.6,20.6,43.7,64.8,64.9 \mathrm{ppm} ; \mathrm{MS}$ (ESI): m / z $[\mathrm{M}+\mathrm{H}]^{+} 105$;

2-((tert-Butyldimethylsilyloxy)methyl)butan-1-ol (167) [10]

167

To a solution of diol $166(3.3 \mathrm{~g}, 0.032 \mathrm{~mol})$ in THF (90 mL) was slowly added $n-\operatorname{BuLi}\left(1.6 \mathrm{M}, 19.8 \mathrm{~mL}, 1.0\right.$ equiv) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was warmed to $-30^{\circ} \mathrm{C}$, and t - $\mathrm{BuMe} \mathrm{C}_{2} \mathrm{SiCl}$ was added (1.0 equiv). After stirring for 1 at $-30^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to room temperature, quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer were dried over MgSO 4 , filtered and concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (hexanes/EtOAc, 20:1) to give the desired mono protected alcohol $167(7.0 \mathrm{~g})$ as an oil in quantitative yield.
$R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06$ (s, $6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 1 \mathrm{H})$, $2.95(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (dd, $J=3.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.6,-5.5$, $11.8,18.2,20.6,25.9,43.7,66.4,67.2 \mathrm{ppm}$; MS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 219$;
(E)-tert-Butyl(2-ethylhex-3-enyloxy)dimethylsilane (169) [11]

169

To a stirring solution of $(\mathrm{COCl})_{2}(0.75 \mathrm{~mL}, 8.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DMSO ($1 \mathrm{~mL}, 14.0 \mathrm{mmol}$) dropwise via a syringe at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min and then a solution of $\mathbf{1 6 7}(1.08 \mathrm{~g}, 4.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise to the reaction mixture via a syringe. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{~mL}, 18.0 \mathrm{mmol})$ was added and the reaction was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 0.5 h . Then it was successively washed with an aq. HCl solution ($10 \mathrm{~mL}, 1 \mathrm{~N}$), a saturated aq. NaHCO_{3} solution (10 mL) and brine $(10 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to provide the crude aldehyde 168 as a pale yellow oil which was used directly in the next step without further purification.

To a solution of compound $165(1.26 \mathrm{~g}, 5 \mathrm{mmol})$ of THF (20 mL) was added dropwise KHMDS ($4.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 4.5 mmol) at $-78^{\circ} \mathrm{C}$. After stirring at
$-78{ }^{\circ} \mathrm{C}$ for 2 h , a solution of the above freshly prepared aldehyde $\mathbf{1 6 8}$ in THF $(5 \mathrm{~mL})$ was added dropwise. The resulting mixture was stirred from -78 to $23^{\circ} \mathrm{C}$ overnight, and quenched with a saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL). The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to provide a residue which was purified by flash column chromatography on silica gel (40 g , hexanes/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$) to give $169(1.07 \mathrm{~g}, 89 \%$ in 2 steps $)$ as a $25: 1 \mathrm{E} / \mathrm{Z}$ mixture: $R_{\mathrm{f}}=0.35$ (hexanes/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.03(\mathrm{~s}, 6 \mathrm{H})$, 0.85 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.26(\mathrm{~m}$, $1 \mathrm{H}), 1.49-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.05(\mathrm{~m}, 3 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{ddt}, J=1.4$, $7.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=6.5,15.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.2,-5.2,11.7,14.0,18.5,24.1,25.9,26.0,47.2,67.0,130.4,133.4 \mathrm{ppm} ;$ MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$265; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NaOSi}: 265.1958$, found: 265.1955 .
(E)-2-Ethylhex-3-en-1-ol (170) [11, 12]

170

To a solution of $\mathbf{1 6 9}(35 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(0.7 / 1.4 \mathrm{~mL})$ was added $p-\mathrm{TsOH}(10 \mathrm{~mol} \%)$. The reaction was stirred at room temperature until no starting material remained (TLC). After removal of the solvents, the crude product was purified by column chromatography on silica gel (8 g , hexanes/EtOAc, 5:1) to yield $170(18 \mathrm{mg}, 86 \%) ; R_{\mathrm{f}}=0.35$ (hexanes/Et $\mathrm{O}_{2} \mathrm{O} 9: 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.09(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{t}, ~ J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51-3.57(\mathrm{~m}, 1 \mathrm{H}), 5.13$ (ddt, $J=1.4,7.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=6.3$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.7,14.1,24.1,25.8,47.7,65.8$, 130.0, 135.9 ppm ; MS (EI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 151$;
(\boldsymbol{E})-5-(Iodomethyl)hept-3-ene (recemic-91) [11, 12]

racemic-91
$170(179 \mathrm{mg}, 1.40 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred at $0{ }^{\circ} \mathrm{C}$. $\mathrm{PPh}_{3}(628 \mathrm{mg}, 2.4 \mathrm{mmol})$ and imidazole $(204 \mathrm{mg}, 3 \mathrm{mmol})$ was added to the solution followed by $\mathrm{I}_{2}(558 \mathrm{mg}, 2.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred from $0^{\circ} \mathrm{C}$ to $23{ }^{\circ} \mathrm{C}$ for 4 h and then worked up by adding a saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (5 mL). The organic layer was separated and the aqueous layer
was extracted with pentane ($3 \times 15 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at $25^{\circ} \mathrm{C}$ under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (10 g , pentane) to give recemic-91 ($286 \mathrm{mg}, 86 \%$): $R_{\mathrm{f}}=0.80$ (hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.13(\mathrm{dd}, J=8.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=6.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.6,13.9,14.8,25.7,27.9,45.9,130.9,134.5 \mathrm{ppm}$; MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 238$.
tert-Butyl((trans-3,5-diethyl-5-((1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-
dioxolan-3-yl)methoxy)dimethylsilane (206) dioxolan-3-yl)methoxy)dimethylsilane (206)

206

Negishi Coupling: To a $25-\mathrm{mL}$, two-necked, round-bottomed flash equipped with a magnetic stirring bar was added $\mathrm{ZnBr}_{2}(70 \mathrm{mg}, 0.312 \mathrm{mmol})$. The flask was placed under an argon atmosphere, and the side chain racemic-91 (57 mg , $0.24 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added via syringe. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and t-butyllithium ($0.48 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in hexanes, 0.32 mL) was added dropwise via syringe. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and THF (0.75 mL) was stirred forl h and the temperature was allowed to warm to room temperature. The core $146(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was added via syringe. The mixture was stirred overnight in the absence of light. Quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the layers was separated. The water layer was separated with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine and water, dried over MgSO_{4}, filtered and solvent was removed by rotary evaporation. Chromatography on silica gel (8 g) gave the product $206(36 \mathrm{mg}, 93 \%)$ as a colorless oil: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06$ ($\mathrm{s}, 3 \mathrm{H}$), 0.07 $(\mathrm{s}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.52-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1.5 \mathrm{H}), 1.64(\mathrm{~s}, 1.5 \mathrm{H}), 1.66-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.90-2.04$ $(\mathrm{m}, 5 \mathrm{H}), 2.21-2.45(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{dd}, J=8.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 0.5 \mathrm{H}), 5.30(\mathrm{~s}, 0.5 \mathrm{H}), 5.33-5.40$ (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.6, ~ 9.1, ~ 9.2,11.7$, $11.7,14.1,14.1,17.5,17.6,18.4,25.7,26.0,27.0,27.8,27.9,31.3,42.6,42.8$, $46.6,46.7,51.5,51.7,64.9,65.0,88.3,88.4,88.8,130.0,130.5,131.9,133.0$, 135.1, 135.5 ppm ; IR (Neat): 2962, 2930, 2880, 2857, 1462, 1438, 1263, 1118, $838 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 447[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}$: 447.3265 , found: 447.3269 .

(trans-3,5-Diethyl-5-((1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxolan-3yl)methanol (208)

To a solution of $206(35 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(0.7 / 1.4 \mathrm{~mL})$ was added $p-\mathrm{TsOH}(10 \mathrm{~mol} \%)$. The reaction was stirred at room temperature until no starting material remained (TLC). After removal of the solvents, the crude product was purified by column chromatography on silica gel (8 g , hexanes/EtOAc, 5:1) to yield 208 ($22 \mathrm{mg}, 89 \%$): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \quad \delta=0.84 \quad(\mathrm{t}, \quad J=7.4 \mathrm{~Hz}, \quad 3 \mathrm{H}), \quad 0.88 \quad(\mathrm{t}, \quad J=7.4 \mathrm{~Hz}, \quad 3 \mathrm{H}), \quad 0.90$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.44(\mathrm{~m}$, $1 \mathrm{H}), 1.56-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1.5 \mathrm{H})$, $1.72-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.19-2.07(\mathrm{~m}, 6 \mathrm{H}), 2.24(\mathrm{dd}, J=3.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ $(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=5.8,11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09$ (dd, $J=8.1,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 0.5 \mathrm{H}), 5.30(\mathrm{~s}, 0.5 \mathrm{H}), 5.33-5.40$ (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.0,9.2,9.3,11.7,11.7,14.0$, $14.1,17.3,17.5,25.7,26.1,27.9,27.9,31.1,42.6,42.8,46.7,46.8,51.1,51.2$, $65.3,88.6,88.7,89.3,130.0,130.4,132.0,132.0,132.9,133.0,135.6,136.0 \mathrm{ppm}$; MS (ESI): m/z 333 [M + Na] ${ }^{+}$; HRMS (ESI) $m / z \quad[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}: 333.2400$, found: 333.2403 .
(E)-Ethyl 3-(trans-3,5-diethyl-5-((1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxolan-3-yl)acrylate (E)-ethyl acrylate (210)

To a solution of $\mathbf{2 0 8}(22 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DMP ($45 \mathrm{mg}, 0.105 \mathrm{mmol}$). The reaction mixture was stirred until the starting material had disappeared, $\mathrm{NaHCO}_{3}(25 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added. Then added saturated aq. NaHCO_{3} solution (5 mL), and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with brine (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on the rotary evaporator. The residue was purified by flash chromatography (hexanes/ethyl acetate) to afford the desired aldehyde, which was used in the next step. To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{NaH}(5.3 \mathrm{mg}$, 60% in mineral oil, 0.13 mmol) in THF (0.8 mL) was added a solution of triethyl phosphonoacetate ($31.4 \mathrm{mg}, 0.14 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$. After stirring for 0.5 h , the aldehyde in THF (0.7 mL) was added slowly. The reaction mixture was warmed to room temperature, stirred until no starting material remained (TLC).

Quenched the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times and combined the organic layers and washed with brine and water, and dried over MgSO_{4} and filtered. Removed the solvent with rotary evaporation. Flash chromatography on silica gel (8 g) of the residue gave the product $210(21 \mathrm{mg}, 80 \%$ in 2 steps) as a colorless oil : $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \quad \delta=0.81 \quad(\mathrm{t}, \quad J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), \quad 0.85 \quad(\mathrm{t}, \quad J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), \quad 0.89$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, ~ J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.30$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.64$ (d, $J=1.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.94-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{dd}, J=8.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.40(\mathrm{~m}$, $1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.8,9.0,9.1,11.7,11.7,14.1,14.1,14.3,17.6,17.7,25.7$, $27.9,28.0,30.9,31.0,31.5,31.5,42.7$, 42.8, 46.6, 46.6, 55.9, 56.0, 60.6, 87.3, 87.4, 89.3, 120.1, 129.0, 129.3, 132.0, 132.1, 132.8, 132.9, 135.9, 136.2, 149.2, 149.2, 166.7 ppm ; MS (ESI): $m / z 382[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$: 401.2662, found: 401.2661 .
(R)-2-((tert-Butyldimethylsilyloxy)methyl)butyl acetate ($(\boldsymbol{R})-218)$ and (S)-2-((tert-butyldimethylsilyloxy)methyl)butan-1-ol ((S)-167) [10, 13, 14]

(R)-218

(S)-167

To a solution of racemic primary alcohol $167(5.16 \mathrm{~g}$,) in pentane was added the lipase extract PS3O (250 mg) and freshly distilled vinyl acetate. The heterogeneous mixture is stirred vigorously at room temperature for 24 h . Then filtered through a sintered glass funnel to recover the enzymatic extract. The extracted was washed with $\mathrm{Et}_{2} \mathrm{O}$, and combined the solutions and removed the solvents under vacuum. Purification by column chromatography on silica gel (200 g , hexanes/ EtOAc, 10:1) to afford (R)-218 (2.91 g, 47\%) and (S)-167 (2.40 g, 46\%);
$(R)-\mathbf{2 1 8}: R_{\mathrm{f}}=0.60$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=1.2\left(c, 1.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.02(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) ; 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.60(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.5,11.5,18.3,20.8$, 21.0, 25.9, 41.9, 62.4, 64.5, 171.3 ppm ; MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$283; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}: 283.1700$, found: 283.1704 .
(S)-167: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=-10.7(c, 1.37, \mathrm{CHCl} 3)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.72(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=3.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.6,-5.5,11.8,18.2,20.6,25.9,43.7,66.4,67.2 \mathrm{ppm}$; MS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 219$;
(R)-2-((tert-Butyldimethylsilyloxy)methyl)butan-1-ol ((R)-167) [10, 11]

(R)-167

To a solution of (R)-218 ($426.4 \mathrm{mg}, 1.64 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($226 \mathrm{mg}, 1.64 \mathrm{mmol}$). The reaction mixture was stirred until the starting material had disappeared. Removed the solvent under reduced pressure. Water $(20 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on the rotary evaporator. The residue was purified by flash chromatography on silica gel (20 g , hexanes/EtOAc, 8:1) to afford $(R) \mathbf{- 1 6 7}$ ($354 \mathrm{mg}, 99 \%$) as colorless oil; $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); (R)-167 : $[\alpha]_{\mathrm{D}}^{20}=10.6\left(c, 1.67, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.88$ (s, 9H); 0.91 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 1 \mathrm{H}), 2.95$ (s, 1H), $3.60(\mathrm{q}, ~ J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=3.8$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.6,-5.5,11.8,18.2,20.6$, 25.9, 43.7, 66.4, 67.2 ppm ; MS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+} 219$;

(S)-((R)-2-((tert-Butyldimethylsilyloxy)methyl)butyl) 2-(tert-butoxycarbonyl)-3-phenylpropanoate (220)

220

To a solution of $(R)-167(34.9 \mathrm{mg}, 0.16 \mathrm{mmol})$ and optically pure N-Boc protected L-phenylalanine 219 ($46 \mathrm{mg}, 1.05$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) was added DMAP ($10 \mathrm{~mol} \%$) and DCC ($41 \mathrm{mg}, 1.2$ equiv) at $0{ }^{\circ} \mathrm{C}$. The temperature was allowed to warm to room temperature. The reaction mixture was stirred overnight. Quenched the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times and combined the organic layers and washed with 10% aqueous HCl , brine and water, and dried over MgSO_{4} and filtered. Removed the solvent with rotary evaporation. Flash chromatography on silica gel (8 g) of the residue gave the product ($74.0 \mathrm{mg}, 99 \%$) as a colorless oil; $R_{\mathrm{f}}=0.40$ (hexanes/EtOAc, $5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.23-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=5.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=6.2,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.2-7.3 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.4,11.4,18.3$, 20.6, 25.9, 28.4, 38.6, 42.0, 54.5, 62.2, 65.4, 79.9, 127.0, 128.6, 129.4, 136.2,
155.1, 172.0 ppm ; MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 488$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NNaO}_{5} \mathrm{Si}: 488.2803$, found: 488.2811.

($\boldsymbol{R}, \boldsymbol{E}$)-tert-Butyl(2-ethylhex-3-enyloxy)dimethylsilane (222a) [11]

222a

The procedure was similar to that for the preparation of 169 (vide supra): yield $=89 \%$ (two steps); $R_{\mathrm{f}}=0.35$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=-16.6(c, 1.49$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ $(\mathrm{s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.05$ $(\mathrm{m}, 3 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{ddt}, J=1.4,7.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=6.5$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.2,-5.2,11.7,14.0,18.5$, 24.1,25.9, 26.0, 47.2, 67.0, 130.4, 133.4 ppm ; MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 265 ;$ HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NaOSi}$ 265.1958, found: 265.1952.

($\boldsymbol{R}, \boldsymbol{E}$)-2-Ethylhex-3-en-1-ol (223a) [11]

223a

The procedure was similar to that for the preparation of 170 (vide supra): yield $=86 \% ; R_{\mathrm{f}}=0.35$ (hexanes/EtOAc, 9:1); $[\alpha]_{\mathrm{D}}^{20}=-3.0\left(c, 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.16-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.09(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{t}, J=10.6 \mathrm{~Hz}$, 1 H), $3.51-3.57(\mathrm{~m}, 1 \mathrm{H}), 5.13$ (ddt, $J=1.4,7.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.60(\mathrm{dt}, J=6.3$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.7,14.1,24.1,25.8,47.7$, 65.8, 130.0, 135.9 ppm ; MS (EI): $m / z[\mathrm{M}]^{+} 128$; HRMS (EI) $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}: 128.1196$, found: 128.1197.
($\boldsymbol{R}, \boldsymbol{E})$-5-(Iodomethyl)hept-3-ene $((\boldsymbol{R})-91)$ [11, 15]

(R)-91

The procedure was similar to that for the preparation of recemic-91 (vide supra); yield $=86 \% ; R_{\mathrm{f}}=0.80$ (hexanes); $R_{\mathrm{f}}=0.80$ (hexanes); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 1 \mathrm{H})$, $1.52-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=8.4$,
$15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=6.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.6,13.9,14.8,25.7,27.9,45.9,130.9,134.5 \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 238$.
(S,E)-tert-Butyl(2-ethylhex-3-enyloxy)dimethylsilane (222b) [11]

222b

The procedure was similar to that for the preparation of $\mathbf{1 6 9}$ (vide supra): yield $=89 \%$ (two steps); $R_{\mathrm{f}}=0.35$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=16.2(c, 0.95$, CHCl_{3}); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ $(\mathrm{s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.05$ $(\mathrm{m}, 3 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{ddt}, J=1.4,7.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=6.5$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.2,-5.2,11.7,14.0,18.5$, 24.1,25.9, 26.0, 47.2, 67.0, 130.4, 133.4 ppm; MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 265 ;$ HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NaOSi}$ 265.1958, found: 265.1948.
(S,E)-2-Ethylhex-3-en-1-ol (223b) [11, 12]

223b

The procedure was similar to that for the preparation of $\mathbf{1 7 0}$ (vide supra): yield $=86 \% ; R_{\mathrm{f}}=0.35$ (hexanes/EtOAc, 9:1); $[\alpha]_{\mathrm{D}}^{20}=2.9\left(c, 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.16-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.09(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{t}, J=10.6 \mathrm{~Hz}$, 1 H), $3.51-3.57(\mathrm{~m}, 1 \mathrm{H}), 5.13$ (ddt, $J=1.4,7.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.60(\mathrm{dt}, J=6.3$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.7,14.1,24.1,25.8,47.7$, 65.8, 130.0, 135.9 ppm ; MS (EI): $m / z[\mathrm{M}]^{+} 128$; HRMS (EI) $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}: 128.1196$, found: 128.1196 .
(S,E)-5-(Iodomethyl)hept-3-ene ((S)-91) [11, 12]

(S)-91

The procedure was similar to that for the preparation of recemic-91 (vide supra); yield $=86 \% ; R_{\mathrm{f}}=0.80$ (hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $=0.86$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=8.4,15.2 \mathrm{~Hz}$,

1H), $5.52(\mathrm{dt}, J=6.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.6$, 13.9, 14.8, 25.7, 27.9, 45.9, 130.9, 134.5 ppm ; MS (ESI): $m / z[\mathrm{M}]^{+} 238$.
(S)-((3R,5S)-5-((tert-Butyldimethylsilyloxy)methyl)-3,5-diethyl-1,2-dioxolan-3yl)methyl 2-(tert-butoxycarbonyl)-3-phenylpropanoate (234) and (S)-((3S,5R)-5-((tert-Butyldimethylsilyloxy)methyl)-3,5-diethyl-1,2-dioxolan-3-yl)methyl 2-(tert-butoxycarbonyl)-3-phenylpropanoate (235)

234

235

To a solution of cis-137 ($53.7 \mathrm{mg}, 0.18 \mathrm{mmol}$) and optically pure N-Boc protected l-phenylalanine 219 ($70.2 \mathrm{mg}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DMAP ($10 \mathrm{~mol} \%$) and DCC ($54.7 \mathrm{mg}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. The temperature was allowed to warm to room temperature. The reaction mixture was stirred overnight. Quenched the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times and combined the organic layers and washed with 10% aqueous HCl , brine and water, and dried over MgSO_{4} and filtered. Removed the solvent with rotary evaporation. Flash chromatography on silica gel (10 g) of the residue gave the product ($90.9 \mathrm{mg}, 93 \%$) as a colorless oil; $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, $5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.08(\mathrm{~s}, 6 \mathrm{H}), 0.87-0.93$ (m, 6H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 1.41$ (s, 9H), 1.54-1.64 (m, 2H), 1.70-1.82 (m, 2H), 2.05 (dd, $J=4.5 \mathrm{~Hz}, 12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.03$ $(\mathrm{m}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.16$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.5,-5.4$, $-5.4,8.5,8.7,8.7,18.4,18.4,25.9,26.4,26.7,27.8,28.2,28.4,38.4,45.6,45.6$, $54.4,54.5,63.4,63.6,65.2,65.2,79.9,86.8,86.9,89.1,127.0,127.1,128.6,129.3$, 129.5, 136.0, 136.0, 155.1, 171.7, 171.7 ppm; IR (Neat): 3381, 2957, 2931, 2883, $2858,1745,1718,1497,1472,1462,1366,1253,1169,1115,1007,838,779,738$, $701 \mathrm{~cm}^{-1}$; MS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+} 574$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NNaO}_{7} \mathrm{Si}: 574.3171$, found: 574.3190 .
(-)-(5-((tert-Butyldimethylsilyloxy)methyl)-cis-3,5-diethyl-1,2-dioxolan-3-
yl)methyl acetate ((-)-cis-245) and (+)-(5-((tert-Butyldimethylsilyl-oxy)methyl)-cis-3,5-diethyl-1,2-dioxolan-3-yl)methanol ((+)-cis-137a)

(-)-cis-245

(+)-cis-137a

To a solution of racemic alcohol (\pm)-cis- $137(1.11 \mathrm{~g}, 3.65 \mathrm{mmol})$ in hexane $(40 \mathrm{~mL})$ was added the Lipase PS from Burkholderia cepaci (555 mg) and vinyl
acetate ($1.68 \mathrm{~mL}, 18.3 \mathrm{mmol}$). The heterogeneous mixture was stirred vigorously at rt for 29 h before being filtered through a sintered glass funnel to recover the lipase catalyst. The catalyst was washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and the combined filtrates were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (25 g , hexanes/EtOAc, 10:1) to afford (-)-cis245 ($695 \mathrm{mg}, 55 \%$) and (+)-cis-137a ($477 \mathrm{mg}, 43 \%$) as colorless oil;
(-)-cis-245: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.56-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $2.33(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-5.5,-5.4,8.4,8.6,18.3,20.9,25.9,27.0,27.7,45.5,63.6,64.4$, 86.9, 89.0, 170.8 ppm ; MS (ESI): $m / z 347[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}: 347.2248$, found: 347.2248 .
$(+)-c i s-137 \mathrm{a}: R_{\mathrm{f}}=0.35$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=28.5\left(c \quad 1.13, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H})$, $2.06(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=7.6 \mathrm{~Hz}$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=4.6 \mathrm{~Hz}, 11.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,8.5,8.9,18.4,25.9,26.3,28.0,44.8,63.8$, 64.00, 89.1, 89.2 ppm ; MS (ESI): $m / z 305[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}: 305.2143$, found: 305.2141 .
(+)-(5-((tert-Butyldimethylsilyloxy)methyl)-cis-3,5-diethyl-1,2-dioxolan-3yl)methyl 4-methylbenzenesulfonate ((+)-cis-272a)

(+)-cis-272a

To a solution of acetate (+)-cis- $\mathbf{1 3 7 a}\left(46 \mathrm{mg}, 0.15 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $p-\mathrm{TsCl}(34 \mathrm{mg}, 1.8 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{eq})$ and DMAP ($10 \mathrm{~mol} \%$). The reaction mixture was stirred until the starting material had disappeared. Removed the solvent, the residue was purified by flash chromatography on silica gel (10 g , hexanes/EtOAc, 10:1) to afford 272a ($61 \mathrm{mg}, 89 \%$): $R_{\mathrm{f}}=0.40$ (hexanes/EtOAc, 10: 1); $e e>99 \%$; The $e e$ values were determined by chiral HPLC; CHIRALPAK AD-H column; hexane/2-propanol $95 / 5$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; temp $25^{\circ} \mathrm{C}$; wavelength $=254 \mathrm{~nm}$; retention time: $4.9 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.52-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.71-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-5.5,-5.4,8.4,18.3,21.7,25.9,26.4,28.1,45.3,63.2,69.4,86.7$,
89.2, 128.0, 129.9, 132.9, 144.9 ppm; MS (ESI): $m / z 459[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{SSi}$: 459.2231, found: 459.2225 .
(-)-(5-((tert-Butyldimethylsilyloxy)methyl)-cis-3,5-diethyl-1,2-dioxolan-3yl)methanol ((-)-cis-137b)

(-)-cis-137b

To a solution of racemic alcohol (\pm)-cis- $\mathbf{1 3 7}(1.11 \mathrm{~g}, 3.65 \mathrm{mmol})$ in hexane (40 mL) was added the Lipase PS from Burkholderia cepaci (555 mg) and vinyl acetate ($1.68 \mathrm{~mL}, 18.3 \mathrm{mmol}$). The heterogeneous mixture is stirred vigorously at rt for 3 h before being filtered through a sintered glass funnel to recover the lipase catalyst. The catalyst was washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and the combined filtrates were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (30 g , hexanes/EtOAc, 10:1) to afford (-)-cis- $\mathbf{2 4 5}$ ($568 \mathrm{mg}, 45 \%$) and (+)-cis-137a ($588 \mathrm{mg}, 53 \%$). (-)-cis-245: $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=-21.5\left(c, 0.89, \mathrm{CHCl}_{3}\right)$;

To a solution of acetate (-)-cis-245 ($568 \mathrm{mg}, 1.64 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(226 \mathrm{mg}, 1.64 \mathrm{mmol})$. The reaction mixture was stirred until the starting material had disappeared, the reaction mixture was acidified to $p \mathrm{H} 6$ with 10% aqueous HCl . Removed the solvent under reduced pressure. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine (25 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on the rotary evaporator. The residue was purified by flash chromatography on silica gel (30 g , hexanes/ EtOAc, 10:1) to afford (-)-cis-137b ($469 \mathrm{mg}, 94 \%$) as colorless oil : $R_{\mathrm{f}}=0.35$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=-27.5\left(c 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{bs}, 1 \mathrm{H}), 2.06$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.58(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=4.6 \mathrm{~Hz}, 11.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,8.5,8.9,18.4,25.9,26.3,28.0,44.8,63.9,64.00$, 89.1, 89.2 ppm ; MS (ESI): $m / z 327[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}$: 327.1962, found: 327.1968.
(-)-(5-((tert-Butyldimethylsilyloxy)methyl)-cis-3,5-diethyl-1,2-dioxolan-3yl)methyl 4-methylbenzenesulfonate ((-)-cis-272b)

To increase the $e e,(-)$-cis-137b was resolved again. Then it was converted into $(-)$-cis-272b to determine the $e e$ value. The procedure was similar to that for the preparation of (+)-cis-272a (vide supra): $R_{\mathrm{f}}=0.40$ (hexanes/EtOAc, 10:1); $e e>99 \%$; The $e e$ values were determined by chiral HPLC; CHIRALPAK AD-H column; hexane $/ 2$-propanol $95 / 5$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; temp $25^{\circ} \mathrm{C}$; wavelength $=254 \mathrm{~nm}$; retention time: $5.4 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.00$ $(\mathrm{s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.52-1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ $(\mathrm{s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.5,-5.4,8.4,18.3,21.7,25.9,26.4,28.1,45.3,63.2,69.4,86.7,89.2$, 128.0, 129.9, 132.9, 144.9 ppm ; MS (ESI): $m / z 459[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{6}$ SSi: 459.2231, found: 459.2225.
(+)-tert-Butyl((5-(2,2-dibromovinyl)-cis-3,5-diethyl-1,2-dioxolan-3yl)methoxy)dimethylsilane ((+)-cis-247a)

(+)-cis-247a

The procedure was similar to that for the preparation of trans- $\mathbf{1 5 5}$ (vide supra); yield $=79 \%$ (two steps); $R_{\mathrm{f}}=0.75$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=-11.0$ $\left(c, 0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.07$ (s, 3H), $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.90$ (s, 9H), $0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (s, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.5,8.9,18.4,25.9$, 27.4, 29.1, 50.0, 64.1, 87.4, 88.9, 90.1, 142.5 ppm ; IR (Neat): 2955, 2929, 2883, 2858, 1462, 1256, 1115, 838, $777 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 459[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{Si}$: 459.0383, found: 459.0391.
(+)-tert-Butyl((cis-3,5-diethyl-5-ethynyl-1,2-dioxolan-3-yl)methoxy)dimethylsilane ((+)-cis-248a)

(+)-cis-248a

The procedure was similar to that for the preparation of trans- $\mathbf{1 4 8}$ (vide supra); yield $=95 \% ; R_{\mathrm{f}}=0.55\left(\right.$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O} 20: 1\right) ;[\alpha]_{\mathrm{D}}^{20}=17.0\left(c, 1.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.92$
$(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.4,9.4,18.3,25.9,27.1,32.1,52.5,64.2,73.7,82.3,83.4,89.2$, ppm; IR (Neat): 3311, 2956, 2931, 2883, 2858, 1472, 1463, 1259, 1111, 1007, 838, $670 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 299[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$: 299.2037, found: 299.2037.
(+)-tert-Butyl((cis-3,5-diethyl-5-(prop-1-ynyl)-1,2-dioxolan-3-yl)methoxy) dimethylsilane ((+)-cis-249a)

(+)-cis-249a

The procedure was similar to that for the preparation of trans- $\mathbf{1 4 7}$ (vide supra); yield $=70 \% ; R_{\mathrm{f}}=0.55$ (hexanes/Et ${ }_{2} \mathrm{O} 20: 1$); $[\alpha]_{\mathrm{D}}^{20}=9.5\left(c, 1.70, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.07$ (s, 3H), 0.08 (s, 3 H), 0.88 (s, 9 H), 0.90 $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.77$ $(\mathrm{m}, 1 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{q}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-5.5,-5.3,3.7,8.4,9.5,18.3,25.9,26.9,32.5,52.3,64.4,78.6,82.0$, 82.7, 89.1, ppm; MS (ESI): m/z $335[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}$: 335.2013, found: 335.2008.
(+)-(E)-tert-Butyl((cis-3,5-diethyl-5-(2-iodoprop-1-enyl)-1,2-dioxolan-3yl)methoxy)dimethylsilane ((+)-cis-246a)

(+)-cis-246a

To a $10-\mathrm{mL}$, argon-filled, two-necked round-bottomed flask equipped with a magnetic stirring bar was added (+)-cis-249a ($64 \mathrm{mg}, 0.206 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$. The flask was evacuated and filled with argon three times, and then freshly distilled n-hexane (2 mL) was added via a syringe. Tributyltin hydride (4.0 equiv) was added slowly (about over 10 min) via a syringe. The reaction was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , then immediately transferred to a silica gel column and rapidly eluted with hexanes until the excess $\mathrm{Bu}_{3} \mathrm{SnH} /$ $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}$ is removed, followed by elution with a mixture of hexanes and ethyl acetate (10:1) to obtain the stannane compound $\mathbf{2 5 0 a}(104 \mathrm{mg}, 84 \%)$ as a colorless oil: $R_{\mathrm{f}}=0.60$ (hexanes/EtOAc, 20:1). The obtained stannane compound was
dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{I}_{2}(43 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ was added and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $5-8 \mathrm{~min}$ then worked up by a saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (3 mL) and extracted by $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (hexanes/EtOAc, 20:1) to give 246a ($65 \mathrm{mg}, 86 \%$) as an oil: $R_{\mathrm{f}}=0.50$ (hexanes/ EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=1.2\left(c, 2.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.5,9.0,18.3,25.9,27.0,30.3,31.8,51.3$, 64.4, 88.4, 90.6, $96.6,142.2 \mathrm{ppm}$; MS (ESI): $m / z 441[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{IO}_{3} \mathrm{Si}$: 441.1316, found: 441.1320.

(-)-tert-Butyl((5-(2,2-dibromovinyl)-cis-3,5-diethyl-1,2-dioxolan-3yl)methoxy)dimethylsilane ((-)-cis-247b)

The procedure was similar to that for the preparation of trans- $\mathbf{1 5 5}$ (vide supra); yield $=79 \%$ (two steps); $R_{\mathrm{f}}=0.75$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=10.0(c, 2.55$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 0.92 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 2.07-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.5,8.9,18.4,25.9,27.4,29.1,50.0,64.1$, 87.4, 88.9, 90.1, 142.5 ppm ; MS (ESI): $m / z 459[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{Si}$: 459.0383, found: 459.0385.
(-)-tert-Butyl((cis-3,5-diethyl-5-ethynyl-1,2-dioxolan-3-yl)methoxy)dimethylsilane ((-)-cis-248b)

(-) -cis-248b

The procedure was similar to that for the preparation of trans-148 (vide supra); yield $=95 \% ; R_{\mathrm{f}}=0.55$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=-17.5\left(c 0.64, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.92$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.07 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $1.56-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.80$ (m, 2H), 1.85-1.94 (m, 1H), 2.25 (d, J = $12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (s, 1H), 2.70 $(\mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-5.4,-5.3,8.4,9.4,18.3,25.9,27.1,32.1,52.5,64.2,73.7,82.3$, 83.4, 89.2 ppm ; MS (ESI): $m / z 299[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}: 299.2037$, found: 299.2032.
(-)-tert-Butyl((cis-3,5-diethyl-5-(prop-1-ynyl)-1,2-dioxolan-3-yl)methoxy) dimethylsilane ((-)-cis-249b)

The procedure was similar to that for the preparation of trans- 147 (vide supra); yield $=70 \% ; R_{\mathrm{f}}=0.75$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=-9.0\left(c, 2.05, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.07$ (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 0.90 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{q}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=-5.5,-5.3,3.7,8.4,9.5,18.3,25.9,26.9,32.5,52.3,64.4,78.6,82.0,82.7$, 89.1 ppm ; MS (ESI): $m / z 335[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}$: 335.2013 , found: 335.2016 .
(-)-(E)-tert-Butyl((cis-3,5-diethyl-5-(2-iodoprop-1-enyl)-1,2-dioxolan-3-yl) methoxy)dimethylsilane ((-)-cis-246b)

(-) -cis-246b

The procedure was similar to that for the preparation of (+)-cis-246a (vide supra): yield $=72 \%$ (two steps); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=-1.5$ (c, 1.60, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.07$ (s, 3H), 0.08 (s, 3H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.76-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.4,-5.3,8.5$, 9.0, 18.3, 25.9, 27.0, 30.3, 31.8, 51.3, 64.4, 88.4, 90.6, 96.6, 142.2 ppm; MS (ESI): $m / z 441[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{IO}_{3} \mathrm{Si}$: 441.1316, found: 441.1322.

tert-Butyl(((+)-cis-3,5-diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxolan-3-yl)methoxy)dimethylsilane ((8S)-(+)-cis-251a)

The synthesis of (8S)-(+)-cis-251a was similar to that for the preparation of 206 (vide supra): yield $=93 \% ; R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=60.5$ (c, $0.47, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-0.04$ (s, 3H), 0.05 ($\mathrm{s}, 3 \mathrm{H}$), 0.83 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.65$ (m, 2H), $1.63(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.94$ $2.04(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=8.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.36$ (dt, $J=6.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-5.5,-5.2,8.8$, 9.0, 11.7, 14.1, 17.9, 18.3, 25.7, 25.9, 26.3, 27.6, 32.2, 42.6, 46.6, 51.9, 64.5, 88.3, 88.7, 127.3, 131.9, 132.9, 135.9 ppm ; MS (ESI): $m / z 447[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}: 447.3265$, found: 447.3279 .
((+)-cis-3,5-Diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxo-lan-3-yl)methanol ((8S)-(+)-cis-252a)

(8S)-(+)-cis-252a

The procedure was similar to that for the preparation of $\mathbf{2 0 8}$ (vide supra): yield $=89 \% ; \quad R_{\mathrm{f}}=0.30 \quad$ (hexanes/EtOAc, $\quad 10: 1$); $\quad[\alpha]_{\mathrm{D}}^{20}=-81.2 \quad(c, \quad 0.29$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.20(\mathrm{~m}$, $1 \mathrm{H}), 1.31-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.83$ (m, 1H), 1.85-1.92 (m, 2H), 1.94-2.06 (m, 5H), 2.28 (q, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40$ (dd, $J=7.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=4.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.4$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.0,9.0,11.7,14.1,17.9,25.7,26.0,27.9,32.2,42.7$, 46.6, 51.2, 64.5, 88.8, 89.5, 126.7, 132.1, 132.7, 136.7 ppm; MS (ESI): m/z 333 $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}: 333.2400$, found: 333.2400 .

(E)-Methyl 3-((+)-cis-3,5-diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-die-nyl)-1,2-dioxolan-3-yl)acrylate (S-(+)-cis-86a)

The procedure was similar to that for the preparation of $\mathbf{2 1 0}$ (vide supra): yield $=80 \%$ (two steps); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=-86.0(c$, $\left.0.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.14(\mathrm{~m}$, $1 \mathrm{H}), 1.31-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.82$ (m, 2H), 1.83-1.93 (m, 2H), 1.94-2.02 (m, 4H), $2.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $(\mathrm{d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{dd}, J=8.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H})$, $5.34(\mathrm{dt}, J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.9,8.9,11.6,14.1,17.8,25.6,27.6$, $30.9,32.2,42.6,46.6,51.6,56.0,87.2,89.3,119.9126 .7,132.0,132.8,136.6$, 149.80, 167.1 ppm ; IR (Neat): 2963, 2919, 2849, 1720, 1656, 1461, 1262, $798 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 382\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}: 382.2952$, found: 382.2943.
tert-Butyl(((-)-cis-3,5-diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-
1,2-dioxolan-3-yl)methoxy)dimethylsilane ((8R)-(-)-cis-251d)

(8R)-(-)-cis-251d

The synthesis of 251d was similar to that for the preparation of 206 (vide supra): yield $=93 \% ; R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=62.0(c, 1.12$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.83$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 0.96 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09-1.17 (m, 1H), 1.34-1.41 (m, 1H), 1.58-1.65 (m, $2 \mathrm{H}), 1.63(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.04$ $(\mathrm{m}, 4 \mathrm{H}), 2.03(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $(\mathrm{d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=8.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.36$ (dt, $J=6.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-5.5,-5.2,8.8,9.0$, 11.7, 14.1, 17.9, 18.3, 25.7, 25.9, 26.3, 27.6, 32.2, 42.6, 46.6, 51.9, 64.5, 88.3, 88.7, 127.3, 131.9, 132.9, 135.9 ppm ; IR (Neat): 2961, 2930, 2857, 1463, 1263, 1119, $741 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 447[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}$: 447.3265 , found: 447.3259 .
((-)-cis-3,5-Diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxo-lan-3-yl)methanol ((8R)-(-)-cis-252d)

(8R)-(-)-cis-252d

The procedure was similar to that for the preparation of 208 (vide supra): yield $=86 \% ; R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=80.0\left(c, 0.80, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.20(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.06(\mathrm{~m}, 5 \mathrm{H}), 2.28(\mathrm{q}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{dd}$, $J=7.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=5.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.4$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dt}, J=6.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.0,9.0,11.7,14.1,17.9,25.7,26.0,27.9,32.2,42.7$, $46.6,51.2,64.5,88.8,89.5,126.7,132.1,132.7,136.7 \mathrm{ppm}$; MS (ESI): $\mathrm{m} / \mathrm{z} 333$ $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}: 333.2400$, found: 333.2404.

(E)-Methyl 3-((-)-cis-3,5-diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-die-nyl)-1,2-dioxolan-3-yl)acrylate (R-(-)-cis-86d) [16]

The procedure was similar to that for the preparation of 210 (vide supra): yield $=80 \%$ (two steps); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=87.0(c, 0.85$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.14$ $(\mathrm{m}, 1 \mathrm{H}), 1.31-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{dd}, J=8.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (s, 1H), $5.34(\mathrm{dt}, J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.9,8.9,11.6,14.1$, 17.8, 25.6, 27.6, 30.9, 32.2, 42.6, 46.6, 51.6, 56.0, 87.2, 89.3, 119.9 126.7, 132.0, $132.8,136.6,149.80,167.1 \mathrm{ppm}$; IR (Neat): 2963, 2920, 2875, 2850, 1720, 1657, 1462, 1303, 1262, 1038, $798 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z} 387$ [M + Na] ${ }^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}: 387.2506$, found: 387.2505.

tert-Butyl(((+)-cis-3,5-diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxolan-3-yl)methoxy)dimethylsilane (($8 R$)-(+)-cis-251b)

(8R)-(+)-cis-251b

The synthesis of 251b was similar to that for the preparation of 206 (vide supra): yield $=93 \% ; R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=-47.1(c, 0.93$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04$ (s, 3H), 0.05 ($\mathrm{s}, 3 \mathrm{H}$), 0.81 $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.74-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{dd}, J=8.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.3,15.2 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.5,-5.2,8.7,8.9,11.7,14.1,17.8$, 18.3, 25.7, 25.9, 26.4, 27.9, 32.2, 42.7, 46.6, 51.8, 64.7, 88.3, 88.7, 127.6, 132.0, 132.9, 135.5 ppm ; MS (ESI): $m / z 447[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}$: 447.3265, found: 447.3265.
((+)-cis-3,5-Diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxo-lan-3-yl)methanol (($8 R$)-(+)-cis-252b)

(8R)-(+)-cis-252b

The procedure was similar to that for the preparation of $\mathbf{2 0 8}$ (vide supra): yield $=86 \% ; R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=-43.5\left(c, 0.85, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.13-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.91(\mathrm{~m}, 2 \mathrm{H})$, $1.94-2.07(\mathrm{~m}, 5 \mathrm{H}), 2.31(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=6.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=4.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (ddt, $J=1.4,8.5,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, $5.36(\mathrm{dt}, J=6.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.9,9.0$, $11.7,14.1,17.8,25.7,26.2,28.0,32.1,42.7,46.6,51.2,64.5,88.8,89.5,126.9$, 132.3, 132.7, 136.5 ppm ; MS (ESI): $\mathrm{m} / \mathrm{z} 333$ [M + Na] ${ }^{+}$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}: 333.2400$, found: 333.2391.

(E)-Methyl 3-((+)-cis-3,5-diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-die-nyl)-1,2-dioxolan-3-yl)acrylate (R-(+)-cis-86b)

The procedure was similar to that for the preparation of $\mathbf{2 1 0}$ (vide supra): yield $=80 \%$ (two steps); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, $10: 1$); $[\alpha]_{\mathrm{D}}^{20}=-74.8$ $\left(c, 0.39, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.13$ $(\mathrm{m}, 1 \mathrm{H}), 1.30-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.89-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{dd}, J=8.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, $5.34(\mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.9,8.9,11.7,14.1,17.8,25.7,27.8$, $30.9,32.2,42.7,46.5,51.7,55.8,87.4,89.2,120.0,127.1,132.0,132.8,136.1$, 149.8, 167.1 ppm ; MS (ESI): $m / z 387[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}: 387.2506$, found: 387.2507 .
tert-Butyl(((-)-cis-3,5-diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxolan-3-yl)methoxy)dimethylsilane ((8S)-(-)-cis-251c)

(8S)-(-)-cis-251c

The synthesis of 251c was similar to that for the preparation of 206 (vide supra): yield $=93 \% ; R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 20:1); $[\alpha]_{\mathrm{D}}^{20}=46.5(c, 0.55$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04$ ($\mathrm{s}, 3 \mathrm{H}$), 0.05 (s, 3H), 0.81 $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.81(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.92 (m, 2H), 1.94-2.04 (m, 4H), $2.23(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ $(\mathrm{dd}, J=8.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=-5.5,-5.2,8.7,8.9,11.7,14.1,17.8,18.3,25.7$, $25.9,26.4,27.9,32.2,42.7,46.6,51.8,64.7,88.3,88.7,127.6,132.0,132.9$, 135.5 ppm ; MS (ESI): $m / z 447[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}$: 447.3265 , found: 447.3254 .
((-)-cis-3,5-Diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxo-lan-3-yl)methanol ((8S)-(-)-cis-252c)

(8S)-(-)-cis-252c

The procedure was similar to that for the preparation of $\mathbf{2 0 8}$ (vide supra): yield $=86 \% ; R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=44.0\left(c, 0.27, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94$ (t, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.13-1.18 (m, 1H), 1.31-1.41 (m, 1H), 1.56-1.68 $(\mathrm{m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, ~ J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.91(\mathrm{~m}, 2 \mathrm{H})$, 1.94-2.07 (m, 5H), $2.31(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=6.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=4.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (ddt, $J=1.4,8.5,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, $5.36(\mathrm{dt}, J=6.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.9,9.0$, 11.7, 14.1, 17.8, 25.7, 26.2, 28.0, 32.1, 42.7, 46.6, 51.2, 64.5, 88.8, 89.5, 126.9, 132.3, 132.7, 136.5 ppm ; MS (ESI): $m / z 333[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}$: 333.2400, found: 333.2395 .
(E)-Methyl 3-((-)-cis-3,5-diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-die-nyl)-1,2-dioxolan-3-yl)acrylate (S-(-)-cis-86c)

The procedure was similar to that for the preparation of $\mathbf{2 1 0}$ (vide supra): yield $=80 \%$ (two steps); $R_{\mathrm{f}}=0.50$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=75.0(c, 0.15$, CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.13$ $(\mathrm{m}, 1 \mathrm{H}), 1.30-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H})$, 1.82-1.89 (m, 2H), 1.89-2.02 (m, 4H), 2.44 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{dd}, J=8.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, $5.34(\mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.9,8.9,11.7,14.1,17.8,25.7,27.8$, $30.9,32.2,42.7,46.5,51.7,55.8,87.4,89.2,120.0,127.1,132.0,132.8,136.1$, 149.8, $167.1 \mathrm{ppm} ; ~ M S ~(E S I): ~ m / z ~ 382\left[M+\mathrm{NH}_{4}\right]^{+} ;$HRMS (ESI) m / z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}$: 382.2952, found: 382.2961.
(-)-(2E,7E,10R,11E)-Methyl 4,6,10-triethyl-4,6-dihydroxy-8-methyltetra-deca-2,7,11-trienoate (\boldsymbol{R}-(-)-cis-268d)

R-(-)-cis-268d

To a $25-\mathrm{mL}$ round-bottomed flask equipped with a magnetic stirring bar was added $86 \mathbf{d}$ ($18 \mathrm{mg}, 0.05 \mathrm{mmol}$) and Zn power ($160 \mathrm{mg}, 2.5 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ was added via syringe, and then 0.5 mL AcOH was added dropwiseat $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature, TLC monitor the reaction until the starting material disappeared. Two hours later, the reaction completed. Chromatography gave the product ($18 \mathrm{mg}, 99 \%$): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, $4: 1) ;[\alpha]_{\mathrm{D}}^{20}=-34.4\left(c, 0.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09-1.19 (m, 1H), 1.28-1.35 (m, 2H), 1.45-1.60 (m, 5H), $1.63(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.06(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.87$ $(\mathrm{s}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=8.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta=7.4,7.5,11.8,14.1,17.1,25.9,28.3,35.6,37.1,42.7,47.7,50.4$, $51.4,76.0,78.6,117.6,130.5,132.0,133.0,135.7,155.0,167.4 \mathrm{ppm}$; MS (ESI): $\mathrm{m} / \mathrm{z} 389[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$: 389.2662, found: 389.2668 (Table 4.1).
(3aS,5R,6aS)-5,6a-Diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl) -tetrahydrofuro[3,2-b]furan-2(5H)-one ((3S,4S,6R,10R)-Plakortone B (87a)) [11, 12, 16]

(3S,4S,6R,10R)-Plakortone B (87a)

To a solution of $\mathbf{2 6 8 d}(16 \mathrm{mg}, 0.044 \mathrm{mmol})$ in toluene (5 mL) was added DBU $(20 \mathrm{~mol} \%)$ at $25^{\circ} \mathrm{C}$. The reaction mixture was allowed to reflux for 24 h and then concentrated under reduced pressure to give a residue which was purified by flash column chromatography on silica gel (hexanes/EtOAc, 10:1) to afford $\mathbf{8 7 a}(13 \mathrm{mg}$, 90%). $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=-15.4\left(c, 0.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.39$ (m, 1H), 1.63-1.67 (m, 2H), 1.69 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.81$ (m, 2H), $1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$
Table 4.1 The data reported for natural plakortide E methyl ester and the data for our synthetic compound 86d (for comparison)

${ }^{\text {a }}$ Coupling constants were measured by 2D J-Resolved NMR experiment on an Advance Bruker 600 M spectrometer
$(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=1.2,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=5.1,18.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=1.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{ddt}, J=1.0,8.4,15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.4$, $8.8,11.7,14.1,16.8,25.7,27.9,30.4,33.9,36.8,42.8,47.0,49.1,79.6,87.1,97.4$, 129.6, 132.1, 132.8, 137.3, 175.8 ppm ; MS (ESI): $m / z 335[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}: 335.2581$, found: 335.2574 .

(-)-(2E,7E, $10 S, 11 E)$-Methyl 4,6,10-triethyl-4,6-dihydroxy-8-methyltetradeca-2,7,11-trienoate (S-(-)-cis-268c)

$S-(-)-c i s-268 \mathbf{c}$

The procedure was similar to that for the preparation of $R-(-)$-cis- $\mathbf{2 6 8 d}$ (vide supra): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 4:1); $[\alpha]_{\mathrm{D}}^{20}=-48.5\left(c, 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.94$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.65(\mathrm{~m}, 5 \mathrm{H})$, $1.63(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.01(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.93$ (s, 1H), 5.04 (dd, $J=8.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=15.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.4,7.5,11.6,14.1,17.3,25.7,27.8,35.6,36.8,42.6,47.5,50.3$, 51.4, 76.0, 78.3, 117.7, $131.1132 .0,133.1,135.5,155.2,167.4 \mathrm{ppm}$; MS (ESI): $\mathrm{m} /$ $z 389[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}: 389.2662$, found: 389.2663 .
(3aS,5R,6aS)-5,6a-Diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-tet-rahydrofuro[3,2-b]furan-2(5H)-one ((3S,4S,6R,10S)-87b) [11]

(3S,4S,6R,10S)-87b

The procedure was similar to that for the preparation of $\mathbf{8 7 a}$ (vide supra): $R_{\mathrm{f}}=0.3$ (hexanes/EtOAc, 10:1); [$\left.\alpha\right]_{\mathrm{D}}^{20}=-31.0\left(c, 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.94-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ $(\mathrm{dd}, J=1.2,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=5.1,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=1.1$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.8,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.3$,
$15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.5,8.9,11.7,14.2,16.8$, $25.8,28.1,30.4,33.8,36.8,42.7,47.0,48.9,79.7,87.0,97.4,129.7,132.1,132.9$, 137.3, 175.7 ppm ; MS (ESI): $\mathrm{m} / \mathrm{z} 357[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}$: 357.2400, found: 357.2403.
(+)-(2E,7E, 10R, $11 E$)-Methyl 4,6,10-triethyl-4,6-dihydroxy-8-methyltetradeca-2,7,11-trienoate (R-(+)-cis-268b)

R-(-)-cis-268b

The procedure was similar to that for the preparation of $\mathbf{2 6 8 d}$ (vide supra): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 4:1); $[\alpha]_{\mathrm{D}}^{20}=45.5\left(c, 0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.94$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.07-1.14 (m, 1H), 1.28-1.38 (m, 2H), 1.45-1.65 (m, 5H), $1.63(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.01(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.93$ $(\mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=8.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=15.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.3,7.4,11.6,14.0,17.1,25.6,27.7,35.5,36.7,42.5,47.4,50.1$, $51.3,76.0,78.3,117.6,131.0,132.0,133.0,135.4,155.2,167.4 \mathrm{ppm}$; MS (ESI): $\mathrm{m} / \mathrm{z} 389[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$: 389.2662, found: 389.2677.
(3aR,5S,6aR)-5,6a-Diethyl-5-((R,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-tet-rahydrofuro[3,2-b]furan-2(5H)-one ((3R,4R,6S,10R)-ent-87b) [11]

(3R,4R,6S,10R)-ent-87b

The procedure was similar to that for the preparation of 87 (vide supra): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=33.0\left(c, 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.94-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dd, $J=1.2,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (dd, $J=5.1,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=1.1$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.8,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.3$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.5,8.9,11.7,14.2,16.8$, $25.8,28.1,30.4,33.8,36.8,42.7,47.0,48.9,79.7,87.0,97.4,129.7,132.1,132.9$,
137.3, 175.8 ppm ; MS (ESI): $m / z 335[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}: 335.2581$, found: 335.2580 .
(+)-(2E,7E, $10 S, 11 E)$-Methyl 4,6,10-triethyl-4,6-dihydroxy-8-methyltetradeca-2,7,11-trienoate (S-(+)-cis-268a)

S-(+)-cis-268a

The procedure was similar to that for the preparation of $\mathbf{2 6 8 d}$ (vide supra): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 4:1); $[\alpha]_{\mathrm{D}}^{20}=33.9 \quad\left(c, 0.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.45-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.63(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.81(\mathrm{~m}, 1 \mathrm{H})$, $1.87-2.06(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=8.6,15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32(\mathrm{dt}, J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.4,7.5,11.8,14.1,17.1,25.9,28.3$, $35.6,37.1,42.7,47.7,50.4,51.4,76.0,78.6,117.6,130.5,132.0,133.0,135.7$, 155.0, 167.4 ppm ; MS (ESI): $m / z 389[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$: 389.2662, found: 389.2657.
(3aR,5S,6aR)-5,6a-Diethyl-5-((S,1E,5E)-4-ethyl-2-methylocta-1,5-dienyl)-tet-rahydrofuro[3,2-b]furan-2(5H)-one ((3R,4R,6S,10S)-ent-87a) [11]

(3R,4R,6S,10S)-ent-87a

The procedure was similar to that for the preparation of $\mathbf{8 7 a}$ (vide supra): $R_{\mathrm{f}}=0.30$ (hexanes/EtOAc, 10:1); $[\alpha]_{\mathrm{D}}^{20}=15.0\left(c, 0.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.39$ $(\mathrm{m}, 1 \mathrm{H}), 1.63-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=1.2,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=5.1,18.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=1.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{ddt}, J=1.0,8.4,15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{dt}, J=6.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.4$, 8.8, 11.7, 14.1, 16.8, 25.7, 27.9, 30.4, 33.9, 36.8, 42.8, 47.0, 49.1, 79.6, 87.1, 97.4, 129.6, 132.1, 132.8, 137.3, 175.8 ppm ; MS (ESI): $m / z 335[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}: 335.2581$, found: 335.2590
Table 4.2 The data reported for natural plakortide E and the data for our synthetic compound $\mathbf{8 5 a}$ (for comparison)

Source	Natural Product [16]			Our synthetic compound 85a			
Reference	[16]						
Assigned Structure							
EIHRMS				$m / z[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{4}: 351.2530$, found: 365.2522			
${ }^{[\alpha]_{\mathrm{D}}}{ }^{\mathrm{T}}$	$\begin{aligned} & {[\alpha]_{\mathrm{D}}^{20}=63.9\left(c=2.0, \mathrm{CHCl}_{3}\right)} \\ & { }_{\mathrm{H}}^{\mathrm{H}}(\mathrm{ppm}) \end{aligned}$	${ }^{13} \mathrm{C}(\mathrm{ppm})$		$[\alpha]_{\mathrm{D}}^{20}=66.6\left(c=0.24, \mathrm{CHCl}_{3}\right)$		${ }^{13} \mathrm{C}(\mathrm{ppm})$	
$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ equipment	Bruker AMX-400 spectrometer			Bruker advance III 400 spectrometerH-1		${ }^{13} \mathrm{C}$	
H-1		C-1	173.0			C-1	171.1
H-2	5.98 (1H, d, 15.8)	C-2	123.9	H-2	6.09 (1H, d, 15.7)	C-2	119.6
H-3	6.69 (1H, d, 15.8)	C-3	146.9	H-3	6.93 (1H, d, 15.7)	C-3	152.1
H-4		C-4	87.2	H-4		C-4	87.2
H-5	$2.53 \beta(1 \mathrm{H}, \mathrm{d}, 12.0) 2.42 \alpha(1 \mathrm{H}, \mathrm{d}, 12.0)$	C-5	55.8	H-5	$\begin{aligned} & 2.53 \beta(1 \mathrm{H}, \mathrm{~d}, 12.0) 2.43 \alpha \\ & (1 \mathrm{H}, \mathrm{~d}, 12.0) \end{aligned}$	C-5	56.0
H-6		C-6	89.1	H-6		C-6	89.3
H-7	5.12 (1H, m)	C-7	126.9	H-7	5.11 (1H, s)	C-7	126.6
H-8		C-8	136.5	H-8		C-8	136.7
H-9	2.00 (1H, m) $1.85(1 \mathrm{H}, \mathrm{m})$	C-9	46.6	H-9	2.00 (1H, m) $1.85(1 \mathrm{H}, \mathrm{m})$	C-9	46.6
H-10	2.00 (1 H, m)	C-10	42.6	H-10	2.00 (1H, m)	C-10	42.6
H-11	5.05 (1H, ddt, 15.2, 8.3, 1.4)	C-11	132.8	H-11	5.05 (1H, dd, 15.2, 8.3) ${ }^{\text {a }}$	C-11	132.8
H-12	5.34 (1H, dt, 6.3, 15.2)	C-12	131.9	H-12	5.34 (1H, dt, 6.4, 15.2)	C-12	132.0
H-13	1.98 (2H, m)	C-13	25.6	H-13	1.97 (2H, m)	C-13	25.6
H-14	0.93 (3H, t, 7.4)	C-14	14.0	H-14	0.92 (3H, t, 7.4)	C-14	14.1
H-15	$1.85(1 \mathrm{H}, \mathrm{m}) 1.63(1 \mathrm{H}, \mathrm{m})$	C-15	32.1	H-15	1.86 (1H, m) 1.64 ($1 \mathrm{H}, \mathrm{m}$)	C-15	32.3
H-16	0.87 (3 H, t, 7.4)	C-16	8.8	H-16	0.86 (3 H, t, 7.4)	C-16	8.9
H-17	1.77 (2H, m)	C-17	31.0	H-17	1.78 (2H, m)	C-17	30.8
H-18	0.87 (3H, t, 7.4)	C-18	8.9	H-18	0.88 (3H, t, 7.4)	C-18	8.9
H-19	1.61 (3H, d, 1.0)	C-19	17.7	H-19	1.61 (3H, d, 0.9)	C-19	17.8
H-20	1.35 (1H, m) $1.11(1 \mathrm{H}, \mathrm{m})$	C-20	27.6	H-20	1.36 (1H, m) $1.11(1 \mathrm{H}, \mathrm{m})$	C-20	27.7
H-21	0.80 (3H, t, 7.4)	C-21	11.6	H-21	0.80 (t, 7.4, 3H)	C-21	11.6

Table 4.3 The data reported for natural plakortide E and the data for our synthetic compound 85a (for comparison)

Source	Natural product [16]			Our synthetic compound 85a					
Reference	[17]								
Assigned structure									
EIHRMS				$\begin{array}{r} m / z \\ 35 \\ \text { fin } \\ \text { fol } \end{array}$	$]^{+}$: calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{4}$: 65.2522				
$[\alpha]_{\mathrm{D}}^{\mathrm{T}}$				$[\alpha]_{\mathrm{D}}^{20}=66.6\left(c=0.24, \mathrm{CHCl}_{3}\right)$		${ }^{13} \mathrm{C}(\mathrm{ppm})$			
NMR (CDCl_{3})	${ }^{1} \mathrm{H}$ (ppm)	${ }^{13} \mathrm{C}(\mathrm{p}$							
Equipment	Bruker AMX-500 spectrometer			Bruker advance III 400 spectrometerH-1					
H-1		C-1	172.0						
H-2	6.09 (1H, d, 15)	C-2	120.5	H-2	6.09 (1H, d, 15.7)	C-2	119.6		
H-3	6.93 (1H, d, 15)	C-3	152.1	H-3	6.93 (1H, d, 15.7)	C-3	152.1		
H-4		C-4	87.2	H-4		C-4	87.2		
H-5	$\begin{aligned} & 2.53 \beta(1 \mathrm{H}, \mathrm{~d}, 12.0) 2.42 \alpha \\ & (1 \mathrm{H}, \mathrm{~d}, 12.0) \end{aligned}$	C-5	56.0	H-5	$\begin{aligned} & 2.53 \beta(1 \mathrm{H}, \mathrm{~d}, 12.0) 2.43 \alpha \\ & (1 \mathrm{H}, \mathrm{~d}, 12.0) \end{aligned}$	C-5	56.0		
H-6		C-6	89.3	H-6		C-6	89.3		
H-7	$5.10(1 \mathrm{H}, \mathrm{s})$	C-7	126.6	H-7	$5.11(1 \mathrm{H}, \mathrm{s})$	C-7	126.6		
H-8		C-8	136.7	H-8		C-8	136.7		
H-9	$2.00(1 \mathrm{H}, \mathrm{m}) 1.85(1 \mathrm{H}, \mathrm{m})$	C-9	46.6	H-9	2.00 (1H, m) 1.85 (1H, m)	C-9	46.6		
H-10	2.00 (1H, m)	C-10	42.6	H-10	2.00 (1H, m)	C-10	42.6		
H-11	5.04 (1H, dd, 15, 8)	C-11	132.8	H-11	5.05 (1H, dd, 15.2, 8.3) ${ }^{\text {a }}$	C-11	132.8		
H-12	5.33 (1H, dt, 6.5, 15)	C-12	132.0	H-12	5.34 (1H, dt, 6.4, 15.2)	C-12	132.0		
H-13	1.95 (2H, m)	C-13	25.6	H-13	1.97 (2H, m)	C-13	25.6		
H-14	0.92 (3H, t, 7.5)	C-14	14.1	H-14	0.92 (3H, t, 7.4)	C-14	14.1		
H-15	1.86 (1H, m) $1.64(1 \mathrm{H}, \mathrm{m})$	C-15	32.2	H-15	1.86 (1H, m) $1.64(1 \mathrm{H}, \mathrm{m})$	C-15	32.3		
H-16	0.86 (3H, t, 7.5)	C-16	8.9	H-16	0.86 (3H, t, 7.4)	C-16	8.9		
H-17	1.78 (2H, m)	C-17	30.8	H-17	1.78 (2H, m)	C-17	30.8		
H-18	0.88 (3H, t, 7.5)	C-18	8.9	H-18	0.88 (3H, t, 7.4)	C-18	8.9		
H-19	1.60 (3H, s)	C-19	17.8	H-19	1.61 (3H, d, 0.9)	C-19	17.8		
H-20	1.37 (1H, m) $1.24(1 \mathrm{H}, \mathrm{m})$	C-20	27.7	H-20	1.36 (1H, m) $1.11(1 \mathrm{H}, \mathrm{m})$	C-20	27.7		
H-21	0.80 (3H, t, 7.5)	C-21	11.6	H-21	0.80 (3H, t, 7.4)	C-21	11.6		

Table 4.4 The data reported for natural plakortone B and the data for our synthetic compound 87a (for comparison)

Source	Natural Product [16]			Our synthetic compound 87a			
Reference	[16]						
Assigned structure	 plakortone B (relative configuration) The biclyclic furanolactone core is cis confused						
EIHRMS	$\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}:$calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}: 335.2586$, found: 335.2541			$[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}: 335.2581$, found: 335.2574			
$[\alpha]_{\text {D }}^{\text {T }}$	${ }_{\mathrm{D}}^{20}=-9.2\left(c=0.72, \mathrm{CHCl}_{3}\right)$			$[\alpha]_{\mathrm{D}}^{20}=-15.5\left(c=0.17, \mathrm{CHCl}_{3}\right)$		${ }^{13} \mathrm{C}(\mathrm{ppm})$	
NMR (CDCl_{3})	${ }^{1} \mathrm{H}(\mathrm{ppm}) \quad{ }^{13} \mathrm{C}(\mathrm{ppm})$			${ }^{1} \mathrm{H}$ (ppm)			
Equipment	Bruker AMX-400 spectrometer			Bruker advance III 400 spectrometer			
H-1		C-1	175.6	H-1		C-1	175.8
H-2	2.71β (dd, 5.1, 18.4, 1H) 2.64α (dd, 1.3, 18.4, 1H)	C-2	36.7	H-2	$2.71 \beta(\mathrm{dd}, 5.1,18.6,1 \mathrm{H}) 2.64 \alpha(\mathrm{dd}, 1.1,18.6,1 \mathrm{H})$	C-2	36.8
H-3	4.21 (dd, 1.3, 5.1, 1H)	C-3	79.5	H-3	4.21 (dd, 1.1, 5.0, 1H)	C-3	79.6
H-4		C-4	97.2	H-4		C-4	97.4
H-5	$2.24 \alpha(\mathrm{~d}, 13.7,1 \mathrm{H}) 2.13 \beta(\mathrm{~d}, 13.7,1 \mathrm{H})$	C-5	49.0	H-5	$2.24 \alpha(\mathrm{~d}, 13.7,1 \mathrm{H}) 2.14 \beta(\mathrm{~d}, 13.7,1 \mathrm{H})$	C-5	49.1
H-6		C-6	86.9	H-6		C-6	87.1
H-7	5.03 (q, 1.3, 1H)	C-7	129.5	H-7	5.03 (s, 1H)	C-7	129.6
H-8		C-8	137.1	H-8		C-8	137.3
H-9	2.00 (m, 1H) $1.85(\mathrm{~m}, 1 \mathrm{H})$	C-9	46.9	H-9	1.99-2.04 (m, 1H) 1.82-1.87 (m, 1H)	C-9	47.0
H-10	1.98 (m, 1H)	C-10	42.6	H-10	$1.99-2.04(\mathrm{~m}, 1 \mathrm{H})$	C-10	42.8
H-11	5.06 (ddt, 1.5, 8.4, 15.3, 1H)	C-11	132.7	H-11	5.06 (dd, 8.4, 15.3, 1H)	C-11	132.8
H-12	5.36 (dt, 6.3, 15.3, 1H)	C-12	131.9	H-12	5.36 (dt, 6.3, 15.3, 1H)	C-12	132.1
H-13	1.96 (m, 2H)	C-13	25.5	H-13	1.99-2.04 (m, 2H)	C-13	25.7
H-14	0.95 (t, 7.4, 3H)	C-14	14.0	H-14	0.95 (t, 7.4, 3H)	C-14	14.1
H-15	1.73 (m, 2H)	C-15	33.7	H-15	1.66-1.77 (m, 2H)	C-15	33.9
H-16	0.86 (t, 7.4, 3H)	C-16	8.7	H-16	0.86 (t, 7.4, 3H)	C-16	8.8
H-17	1.73 (m, 2H)	C-17	30.3	H-17	1.66-1.77 (m, 2H)	C-17	30.4
H-18	0.96 (t, 7.4, 3H)	C-18	8.3	H-18	0.96 (t, 7.2, 3H)	C-18	8.4
H-19	1.69 (d, 1.3, 3H)	C-19	16.7	H-19	1.69 (d, 1.4, 3H) ${ }^{\text {a }}$	C-19	16.8
H-20	1.35 (m, 1H) 1.15 (m, 1H)	C-20	27.8	H-20	$1.32-1.38(\mathrm{~m}, 1 \mathrm{H}) 1.10-1.17$ (m, 1H)	C-20	27.9
H-21	0.83 (t, 7.4, 3H)	C-21	11.5	H-21	0.83 (t, 7.4, 3H)	C-21	11.7

(E)-3-((3S,5R)-3,5-Diethyl-5-($(R, 1 E, 5 E)$-4-ethyl-2-methylocta-1,5-dienyl)-1,2-dioxolan-3-yl)acrylic acid ($(4 S, 6 R, 10 R)$-Plakortide E (85a)) [16, 17] (Tables 4.2, 4.3)

To a $0{ }^{\circ} \mathrm{C}$ solution of $\mathbf{8 6 d}(13 \mathrm{mg}, 0.037 \mathrm{mmol})$ in THF/ $\mathrm{H}_{2} \mathrm{O}(4: 1,2 \mathrm{~mL})$ was added $\mathrm{LiOH}(4.5 \mathrm{mg}, 0.19 \mathrm{mmol})$. The reaction mixture was allowed to warm to room temperature and stirred overnight. TLC monitor the reaction until the starting material disappeared. The reaction mixture was acidified to pH 2 with 10% aqueous HCl . The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on the rotary evaporator. The residue was purified by flash chromatography (hexanes//EtOAc/AcOH 100/10/1) to afford 85a (11.6 mg , 90%) as a colorless oil: $R_{\mathrm{f}}=0.25$ (hexanes/EtOAc/AcOH, 100:10:1); $[\alpha]_{\mathrm{D}}^{20}=66.6 \quad\left(c, \quad 0.24, \quad \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=0.80$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.02$ (m, 4H), $2.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.3$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=6.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.9,8.9$, $11.6,14.1,17.8,25.6,27.7,30.8,32.3,42.6,46.6,56.0,87.2,89.3,119.6,126.6$, 132.0, 132.8, 136.7, 152.1, 171.1 ppm ; MS (ESI): m/z $351[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{4}: 351.2530$, found: 351.2533 (Table 4.4).

References

1. Zhao Q (2006) Ph.D. Thesis, Shanghai institute of organic chemistry. The Chinese Academy of Science
2. Bottini ATJ (1963) Org Chem 28:157-160
3. Barton P, Law AP, Page MI (1994) J Chem Soc, Perkin Trans 2:2021-2029
4. Borszeky K, Mallat T, Baiker A (1997) Tetrahedron Asymmetr 8:3745-3753
5. Murakami N, Kawanishi M, Itagaki S, Horii T, Kobayashi M (2001) Tetrahedron Lett 42:7281-7285
6. Gajewski JJ, Hawkins CM, Jimenez JLJ (1990) Org. Chem 55:674-679
7. Zhao Q, Wong HNC (2007) Tetrahedron 63:6296-6305
8. Lerm M, Gais H-J, Cheng K, Vermeeren CJ (2003) Am. Chem. Soc. 125:9653-9667
9. Blakemore P, Cole WJ, Kocienski PJ, Morley A (1998) Synlett 26-28
10. Panek JS, Jain NFJ (2001) Org Chem 66:2747-2756
11. Xie X-G, Wu X-W, Lee H-K, Peng X-S, Wong HNC (2010) Chem Eur J 16:6933-6941
12. Semmelhack MF, Hooley RJ, Kraml CK (2006) Org Lett 8:5203-5206
13. Ihara M, Setsu F, Shohda M, Taniguchi N, Tokunaga Y, Fukumoto KJ (1994) Org Chem 59:5317-5323
14. Ihara M, Takahashi M, Taniguchi M, Fukumoto K, Kametani T (1987) J Chem Soc, Chem Commun 619-620
15. Hayes PY, Chow S, Rahm F, Bernhardt PV, De Voss JJ, Kitching W (2010) J. Org Chem 75:6489-6501
16. Patil AD, Freyer AJ, Bean MF, Carte BK, Westley JW, Johnson RK, Lahouratate P (1996) Tetrahedron 52:377-394
17. Chen Y, McCarthy PJ, Harmody DK, Schimoler-O'Rourke R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AEJ (2002) Nat Prod 65:1509-1512

Appendix

Table A. 1 Crystal data and structure refinement for xysun-1

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected/unique
Completeness to $\theta=25.25$
Absorption correction
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
xysun-1
C9 H18 O4
190.23

296(2) K
0.71073 A

Triclinic, P-1
$\mathrm{a}=5.6535(3) \AA, \alpha=77.5980(10)^{\circ}$
$\mathrm{b}=8.1968(5) \AA, \beta=86.4690(10)^{\circ}$
$\mathrm{c}=11.5406(7) \AA, \gamma=77.1180(10)^{\circ}$
509.12(5) A ${ }^{3}$
$2,1.241 \mathrm{Mg} / \mathrm{m}^{3}$
$0.096 \mathrm{~mm}^{-1}$
208
$0.4 \times 0.3 \times 0.3 \mathrm{~mm}$
$1.81-25.25^{\circ}$
$-6<=\mathrm{h}<=6,-9<=\mathrm{k}<=9,-13<=1<=13$
$9128 / 1842[\mathrm{R}($ int $)=0.0585]$
100.0\%

None
Full-matrix least-squares on F^{2}
1842/0/118
1.036
$\mathrm{R} 1=0.0517, \mathrm{wR} 2=0.1433$
$\mathrm{R} 1=0.0569, w R 2=0.1504$
0.539 and $-0.501 \mathrm{e} \mathrm{A}^{-3}$

Table A. 2 Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for $\mathrm{A} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$-4154(2)$	$8764(2)$	$6738(1)$	$43(1)$
$\mathrm{O}(2)$	$-5883(2)$	$10086(2)$	$7204(1)$	$46(1)$
$\mathrm{O}(3)$	$-77(3)$	$6246(2)$	$6413(1)$	$46(1)$
$\mathrm{O}(4)$	$-7398(3)$	$13420(2)$	$5588(1)$	$58(1)$
$\mathrm{C}(1)$	$247(5)$	$7491(3)$	$9301(2)$	$65(1)$
$\mathrm{C}(2)$	$-1905(4)$	$7587(3)$	$8560(2)$	$46(1)$
$\mathrm{C}(3)$	$-1906(3)$	$8680(2)$	$7313(2)$	$31(1)$
$\mathrm{C}(4)$	$-1943(3)$	$10564(2)$	$7284(2)$	$34(1)$
$\mathrm{C}(5)$	$-4623(3)$	$11467(2)$	$7088(2)$	$32(1)$
$\mathrm{C}(6)$	$-5750(4)$	$12407(3)$	$8058(2)$	$47(1)$
$\mathrm{C}(7)$	$-4723(5)$	$13945(3)$	$8099(2)$	$66(1)$
$\mathrm{C}(8)$	$62(3)$	$7922(2)$	$6510(2)$	$39(1)$
$\mathrm{C}(9)$	$-4946(4)$	$12574(3)$	$5847(2)$	$43(1)$

Table A. 3 Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for A

$\mathrm{O}(1)-\mathrm{C}(3)$	$1.451(2)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$1.4596(18)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.446(2)$
$\mathrm{O}(3)-\mathrm{C}(8)$	$1.422(2)$
$\mathrm{O}(3)-\mathrm{H}(3)$	0.8200
$\mathrm{O}(4)-\mathrm{C}(9)$	$1.424(2)$
$\mathrm{O}(4)-\mathrm{H}(4)$	0.8200
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.508(3)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9600
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9600
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9600
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.523(3)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9700
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9700
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.515(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.533(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.538(2)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9700
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	0.9700
$\mathrm{C}(5)-\mathrm{C}(9)$	$1.519(3)$

Table A. 3 (continued)

$\mathrm{C}(5)-\mathrm{C}(6)$	$1.522(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.512(3)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9700
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9700
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9700
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9700
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9700
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9700
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{O}(2)$	$103.37(11)$
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{O}(1)$	$104.13(11)$
$\mathrm{C}(8)-\mathrm{O}(3)-\mathrm{H}(3)$	109.5
$\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{H}(4)$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$115.21(18)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.9
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	107.5
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$104.45(13)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	$109.22(14)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$113.30(15)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$102.98(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$111.98(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.90(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	$1104.29(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	10.9
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	10.9
$\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	1

(continued)

Table A. 3 (continued)

$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(9)$	$109.98(15)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$104.07(14)$
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.55(15)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$104.27(13)$
$\mathrm{C}(9)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.01(15)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$114.32(15)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$113.66(18)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.8
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.8
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.8
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.8
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.7
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(3)$	$112.50(15)$
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.1
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.1
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.1
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.1
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.8
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(5)$	$113.31(16)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	108.9
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	108.9
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.9
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.9
$\mathrm{H}(9 \mathrm{C})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	107.7

Symmetry transformations used to generate equivalent atoms

Table A. 4 Anisotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for A . The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}\right.$ * $\left.\mathrm{b}^{*} \mathrm{U} 12\right]$

	U11	U22	U33	U23	U13	U12
O(1)	$33(1)$	$36(1)$	$63(1)$	$-23(1)$	$-10(1)$	$-2(1)$
O(2)	$27(1)$	$39(1)$	$75(1)$	$-22(1)$	$0(1)$	$-6(1)$
O(3)	$46(1)$	$37(1)$	$56(1)$	$-23(1)$	$-8(1)$	$7(1)$
O(4)	$55(1)$	$54(1)$	$60(1)$	$-27(1)$	$-28(1)$	$21(1)$
$\mathrm{C}(1)$	$75(2)$	$66(2)$	$45(1)$	$-4(1)$	$-16(1)$	$1(1)$
$\mathrm{C}(2)$	$56(1)$	$40(1)$	$41(1)$	$-7(1)$	$2(1)$	$-10(1)$
$\mathrm{C}(3)$	$29(1)$	$28(1)$	$36(1)$	$-10(1)$	$-4(1)$	$-4(1)$
$\mathrm{C}(4)$	$28(1)$	$29(1)$	$46(1)$	$-10(1)$	$-5(1)$	$-3(1)$
$\mathrm{C}(5)$	$27(1)$	$30(1)$	$40(1)$	$-12(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(6)$	$43(1)$	$52(1)$	$44(1)$	$-20(1)$	$1(1)$	$1(1)$
$\mathrm{C}(7)$	$69(2)$	$55(1)$	$80(2)$	$-42(1)$	$-21(1)$	$6(1)$
$\mathrm{C}(8)$	$39(1)$	$36(1)$	$42(1)$	$-12(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(9)$	$41(1)$	$43(1)$	$40(1)$	$-12(1)$	$-7(1)$	$6(1)$

Bruker Advance III 400

$\begin{array}{lllllllllllllllllllllll} & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Bruker Advance III 400

Bruker Advance III 400

$]^{55.376}$

$\left.\right\|_{1}$	

Bruker Advance III 400

212

215

216

217

Bruker Advance III 400

208

Bruker Advance III 400

(+)-cis-246a

Bruker	Advance III 400
NAME	sunxy-4-29-52
Expno	,
PROCNO	1
Date_	20100616
Time ${ }^{-}$	18.12
INSTRUM	spect
PROBHD	5 mm PABBI 1 H / L
PULPROG	zg30
TD	65536
SOLVENT	CDCl3
NS	${ }^{8}$
DS	0
SWH	10000.000 Hz
FIDRES	0.152588 Hz
AQ	3.2768500 sec
RG	40.3
DW	50.000 usec
DE	6.50 usec
TE	297.2 K
D1	1.00000000 sec
TDO	1
$===$ NUC1	CHANNEL $\mathrm{f1} \underset{1 \mathrm{H}}{=====}$
P1	7.10 usec
PL1	$-2.00 \mathrm{~dB}$
PL1W	13.17734718 W
SFO1	400.1316005 MHz
SI	65536
SF	400.1300051 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

Bruker Advance III 400

(8S)-(+)-cis-251a

Bruker Advance III 400 NAME
EXPNO $\begin{array}{ll}\text { EXPNO } & \\ \text { PROCNO } & \\ \text { Date- } \\ \text { Time- } \\ \text { INTRUM } & \\ \text { INRTRHD } & 5 \\ \text { PROLPROG } & \end{array}$ PULPROG
TD
SOLVENT
NS SOL
NS
DS
SWH DS
SWH
SIDRES
AQ
RG
DW
DE
TE
D1
TDO unxy-4-22-40-21
1
20100618
17.21
mm PABBI 1 spec

0.000 Hz | 0 Hz |
| :--- |
| 8 Hz |

$$
\begin{aligned}
& \begin{array}{r}
152588 \mathrm{~Hz} \\
.2768500 \mathrm{sec} \\
144 \mathrm{usec} \\
50.000 \mathrm{use} \\
6.50 \mathrm{usec} \\
294.4 \mathrm{~K}
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
6.50 \mathrm{usec} \\
29.4 \mathrm{~K} \\
1.0000000 \mathrm{sec}
\end{array}
$$

$=$ CHANNEL f 1 7.10 usec
-2.00 dB
13.1734718 W
400.1316005 MHz 400.1300053 MHz EM
0
0.30 Hz
0
1.00
Bruker Advance III 400

Bruker Advance III 400

Bruker Advance III 400

Bruker Advance III 400

\[

\]

$$
\begin{aligned}
& \text { 1NSTRUM } \\
& \text { PROBHD } \\
& \text { PULPROG } \\
& \text { TD }
\end{aligned}
$$

$$
\begin{array}{r}
\text { sunxy-4-36-69 } \\
1 \\
1 \\
20100709 \\
15.44 \\
\text { spect } \\
\text { mm PADUL } 13 \mathrm{C}
\end{array}
$$

$$
\begin{aligned}
& \text { TD } \\
& \text { SOLVENT } \\
& \text { NS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SOLVENT } \\
& \text { NS } \\
& \text { DS } \\
& \text { SWH } \\
& \text { FIDRES } \\
& \text { AQ }
\end{aligned}
$$

\qquad
\qquad
vy

 $\square$$\left.\right|^{\stackrel{\sim}{0}}$

Bruker Advance III 400

Bruker Advance III 400
 sunxy-4-32-56 sunxy-4-32-56
1
1
20100619
15.33

275

R-(+)-cis-268b

Bruker Advance III 400 NAME
EXPNO
PROCNO
Date-
Time
TNSTRUM
PROBHD
PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
D1
TDO sunxy-4-24-43
 1
20100601
20.32
spect
mm PABI $1 \mathrm{H} /$ mm PABBI $1 \mathrm{H} / 0$
z930
6536 18
0
0 10000.000 Hz
0.152588 Hz 0.152588 Hz
3.2768500 sec
1611 161
50.000 usec
6.50 usec 6.50 usec
294.5 K
00000000 sec 1.00000000

$=======$	CHANNEL $\mathrm{fl} 1=======$
NUC1	1 H
P1	7.10 usec
PL1	-2.00 dB
PL1W	13.17734718 W
SFO1	400.1316005 MHz
SI	65536
SF	400.1300052 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

cionemana

$R-(-)$-cis-268d

(4S, $6 R, 10 R$)-Plakortide E (85a)

Data File I: \HPLC\DATA\HEHAO\051-0101.D

```
MP: 95% Hexane : 5% IPA Flow: 1.0ml/min
Column: CHIPment-AD-H
```

CHIRALPAK

Acq. Method : I: \HPLC\METHODS\SAM-POT2.M
Last changed : 7/31/2009 1:36:35 PM by 1 gh
(modified after loading)
Analysis Method : I: \HPLC\METHODS $\backslash S A M-P O T S . M$
Last changed : 7/31/2009 2:17:30 PM by SAM
(modified after loading)
For AD-mix DIOL Reaction Product
Channel A : IPA
Channel B: Hexane
DAD1 B, Sig=230,8 Ref=550,100(HEHAOL051-0101.D)

$\begin{array}{lll}\text { Sorted By } & : & \text { Signa } \\ \text { Multiplier } & : & 1.000\end{array}$
Multiplier : 1.0000
Dilution : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: DAD1 B, Sig=230,8 Ref=550,100

Peak	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { of } \end{gathered}$
1	5.087	VV	0.1248	2249.16724	271.19827	49.9087
2	5.618	VB	0.1368	2257.39478	251.29340	50.0913
Tota	s :			4506.56201	522.49167	

Results obtained with enhanced integrator
mmm=m=m=ment.
*** End of Report ***

CHIRALPAK.

Injection Date : 8/25/2009 1:48:47 PM Seq. Line : 1
Sample Name : XYSun_132
Acq. Operator : SAM
Acq. Instrument : Instrument 1
Acq. Method : I: \HPLC\METHODS\SAM-POT2.M
Last changed : 8/10/2009 12:50:39 PM by SAM
Analysis Method : I: \HPLC\METHODS \backslash SAM-POT2.M
Last changed : 8/25/2009 2:06:25 PM by SAM (modified after loading)
For XYSun Peroxide-OTs Product
Channel A: IPA

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Do not use Multiplier $\&$	Dilution Factor with ISTDs	

Signal 1: DAD1 B, Sig=230, 8 Ref $=550,100$

$\underset{\vdots}{\text { Peak }}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$	Height [mAU]	Area $\frac{9}{8}$
1	5.075	VV	0.1166	6080.63818	800.48834	89.1612
2	5.583	VV	0.1228	739.18622	90.93532	10.8388
Totals	s :			6819.82440	891.42366	

Results obtained with enhanced integrator!
*** End of Report ***
ata Eile I: \HPLC\DATA\HEHAO\022-0201.D

For XYSun Peroxide (modirled arter loading)
Channel A: IPA
Channel B: Hexane
DAD1 B, Sig=230.8 Ref=550,100 (HEHAOV22-0201.D)

Sorted By	$:$	Signal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Do not use Multiplier	Dilution Factor with ISTDs	

Signal 1: DAD1 B, Sig $=230,8$ Ref $=550,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area
1	5.116	VP	0.1233	404.39487	49.52249	2.9286
2	5.614	VB	0.1366	1. 34042 e 4	1495.09082	97.0714
Total	s :			1.38086 e 4	1544.61331	

Results obtained with enhanced integrator!

*** End of Report ***
Sample Name: XYSun 136
MP: 95% Hexane : 5\% IPA Flow: $1.0 \mathrm{ml} / \mathrm{min}$
Column: CHIRALPAK AD-H
Injection Date : 8/25/2009 2:22:44 PM
Sample Name : XYSun_136
SAM
Acq. Operator
Acq. Instrument
Acq. Method
: I:\HPLC\METHODS\SAM-POT2.M
Last changed: 8/10/2009 12:50:39 PM by SAM
Analysis Method : I: \HPLC\METHODS $\backslash S A M-P O T 2 . M$
Last changed : 8/25/2009 2:38:31 PM by SAM
(modified after loading)
For XYSun Peroxide-OTs Product
Channel A: IPA
Channel B: Hexane
Channel B: Hexane
$\begin{aligned} & \text { DAD1 B, Sig }=230,8 \text { Ref }=550,100 \text { (HEHAOLO23-0301.D) }\end{aligned}$
DAD1 B, Sig=230,8 Ref=550,100 (HEHAO1023-0301,D)

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Do not use Multiplier $\&$	Dilution Factor with ISTDs	

Signal 1: DAD1 B, Sig=230, 8 Ref $=550,100$

Peak \ddagger	$\begin{aligned} & \text { Ret Time } \\ & {[m i n]} \end{aligned}$	Type	Width (min)	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area 8
1	5.081	VV	0.1580	2.30140 e 4	2315.59375	94.6720
2	5.605	VV	0.1305	1295.19531	150.39812	5.3280
Total	s :			2.43092 e 4	2465.99187	

Results obtained with enhanced integrator!

** End of Report ***

XYS-rac-1
IPA: 5\%, Hexanes: 95\%
Column: CHIRALPAK AD-H

$===$	
	Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height	Area
				mAU	*S	[mAU	
1	4.878	VV	0.1183	1362	6201	172.57300	45.0561
2	5.278	VV	0.1376	1660	97363	178.62419	54.9439
Total	¢ :			3023	3564	351.19719	

Results obtained with enhanced integrator!
*** End of Report ***

XYS-4-40-79
IPA: 5\%, Hexanes: 95\%
Column: CHIRALPAK AD-H

$===1 ~$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: VWD1 A, Wavelength=230 nm

Results obtained with enhanced integrator!
$\begin{aligned} &=== \\ & * * * \text { 菏 }\end{aligned}$

XYS-4-40-80
IPA: 5\%, Hexanes: 95\%
Column: CHIRALPAK AD-H

$==$	
	Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: VWD1 A, Wavelength=254 nm

Results obtained with enhanced integrator!
*** End of Report ***

