


Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes:
http://www.springer.com/series/8790

http://www.springer.com/series/8790


Aims and Scope

The series ‘‘Springer Theses’’ brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent
field of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series
will provide a valuable resource both for newcomers to the research fields
described, and for other scientists seeking detailed background information on
special questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences

and related interdisciplinary fields such as Materials, Nanoscience, Chemical
Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.



Amit Finkler

Scanning SQUID
Microscope for Studying
Vortex Matter in
Type-II Superconductors

Doctoral Thesis accepted by
the Weizmann Institute of Science,
Rehovot, Israel

123



Author
Dr. Amit Finkler
Weizmann Institute of Science
Rehovot
Israel

Supervisor
Prof. Eli Zeldov
Weizmann Institute of Science
Rehovot
Israel

ISSN 2190-5053 ISSN 2190-5061 (electronic)
ISBN 978-3-642-29392-4 ISBN 978-3-642-29393-1 (eBook)
DOI 10.1007/978-3-642-29393-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012937647

� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



List of Publications

1. Finkler, A., Segev, Y., Myasoedov, Y., Rappaport, M. L., Neeman, L.,
Vasyukov, D., Zeldov, E., Huber, M. E., Martin, J., and Yacoby, A. Self-
aligned nanoscale SQUID on a tip. Nano Letters 10, 1046 (2010).

2. Finkler, A., Vasyukov, D., Segev, Y., Neeman, L., Anahory, Y., Myasoedov, Y.,
Rappaport, M. L., Huber, M. E., Martin, J., Yacoby, A and Zeldov, E.
Nano-sized SQUID-on-tip for scanning probe microscopy Accepted for publi-
cation in Journal of Physics: Conference Series.

v



Supervisor’s Foreword

Study of magnetic behavior on nanoscale is of major scientific interest due to a
wide range of fundamental quantum mechanical phenomena including quantum
computation, spintronics, topological states of matter, and vortex dynamics in
superconductors. There is a variety of techniques that provide macroscopic or
microscopic, but sample-averaged, information on the magnetic state of the sys-
tem, yet our present ability to determine the local magnetic field on the nanoscale
is very limited. One of the major obstacles in study of nanomagnetism is the
absence of readily accessible experimental methods for imaging the local magnetic
fields and investigating their site-dependent dynamics on nanometer scale.
Superconducting quantum interference devices (SQUID) have the highest field
sensitivity, which is due in part to the large effective area of conventional SQUID
probes. In recent years there is a growing interest in nanoSQUIDs and in scanning
SQUID microscopy in which the field sensitivity is compromised for the benefit of
spatial resolution and sensitivity to magnetic dipoles. Since the magnetic field of a
dipole has 1/r3 dependence on the distance r, nanoSQUIDs are anticipated to
become very sensitive detectors of magnetic moments with the ultimate goal of
sensitivity of a single electron spin lB. Since the magnetic field of a nanostructure
decays rapidly with distance, the achievable spatial resolution is determined not
only by the size of the probe, but also to a large extent by the proximity of the
probe to the sample. In order to achieve nanometer scale resolution the probe has
to be able to approach and scan the sample within few nm from the surface. Such
close proximity cannot be achieved with scanning probes based on planar litho-
graphic technology.

The thesis of Amit Finkler presents a new scanning magnetic imaging method
that provides quantitative, high-sensitivity mapping of static and dynamic mag-
netic fields on nanometer scale and is expected to achieve a combined performance
that is significantly beyond the state of the art. The key element is the development
of a unique method for fabrication of the smallest SQUID that resides on the apex
of a very sharp tip. The fabrication process is based on a self-aligned deposition of
a superconducting film onto a quartz tube pulled to a sharp pipette with aperture
diameter as small as 100 nm. The resulting SQUID-on-tip made of aluminum has a
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flux sensitivity of 2 9 10-6 U0/Hz1/2, magnetic field sensitivity of 10-7 T/Hz1/2,
bandwidth of about 1 MHz, and can operate at fields as high as 0.5 T. Moreover,
due to its small size, this SQUID-on-tip has an outstanding spin sensitivity of
65 lB/Hz1/2. By gluing the SQUID-on-tip to a quartz tuning fork and monitoring
its resonance frequency a sensitive feedback mechanism was developed which
allows scanning of the tip at a constant distance of a few nm from the surface of
the sample. Based on these achievements, the thesis describes the design and
construction of a scanning SQUID microscope that provides simultaneous high
resolution imaging of the sample topography and the local magnetic field. The
potential of the microscope, which operates at a temperature of 300 mK over a
wide range of magnetic fields, is demonstrated by the study of magnetic response
of superconductors including imaging of the vortex lattice and the self-induced
magnetic field generated by transport currents.

The novel SQUID-on-tip technique has prospect for significant further
improvement in sensitivity and spatial resolution paving the way to a powerful tool
for magnetic imaging on the nanoscale and single-spin-resolved scanning probe
microscopy.

March 2012 Eli Zeldov
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Chapter 1
Introduction

1.1 Scientific Background

In the following section I present the scientific background relevant to this work.
In Sect. 1.1.1 I review type-II superconductors, concentrating on their dynamical
properties in the mixed state, with an emphasis given to vortices and vortex dynamics.
In Sect. 1.1.2 a short explanation of how a superconducting quantum interference
device (SQUID) works is given and finally in Sect. 1.1.3 I describe the working
principle of a tuning fork. Understanding the SQUID and the tuning fork is vital for
the study of vortex dynamics.

1.1.1 Vortices in Type-II Superconductors

In 1957, A. A. Abrikosov obtained a spatially periodic square lattice solution for
the order parameter in some superconductors [1]. A single flux quantum [2], �0 =
hc/2e = 2.07 × 10−7 Gauss×cm2, was associated with each of the periodic zeroes
of his solution. He named these zeroes ‘vortices’ as he noted that the supercurrent
curls around them and as such their behavior is analogous to that of vortices in liquid
helium. Calling this state the “mixed state”, he labeled them as “superconductors of
the second group”. These are known as type-II superconductors. There are two key
parameters, the coherence length, ξ, and the magnetic penetration length, λ, whose
ratio, κ, determines whether a superconductor is type-I (κ < 1/

√
2) or type-II

(κ > 1/
√

2). Abrikosov showed that it is energetically favorable for magnetic field
to penetrate a type-II superconductor in the form of vortices.

A. Finkler, Scanning SQUID Microscope for Studying Vortex Matter 1
in Type-II Superconductors, Springer Theses, DOI: 10.1007/978-3-642-29393-1_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

1.1.1.1 Static Vortex Phases

For a type-II superconductor in equilibrium, the mean field prediction is indeed that
of an Abrikosov lattice. However, this equilibrium phase diagram is not a simple one,
and four different energies compete for dominance, especially in high-TC supercon-
ductors. These four energies are:

1. Thermal energy (thermal disorder)
2. Vortex–vortex interaction
3. Pinning (quenched disorder)
4. Coupling between superconducting layers

The statics of lattices with disorder has been investigated thoroughly in the last two
decades, especially in type-II superconductors. Initially, it was agreed that disorder
leads to a glass phase called a vortex glass with many metastable states, where barriers
between these states become divergent and the positional order at large length scales is
lost [3]. This low-temperature phase was expected to be topologically disordered with
no positional order. In the scope of this description it was shown that beyond some
length scale, the Abrikosov lattice would be destroyed by disorder. However, some
experimental observations did not fit this theory, the most important of which was
that a first-order transition between the glass phase and the liquid phase was observed
at low magnetic fields while at high magnetic fields it was a continuous transition
[4–7]. This has led to a different description of the statics of a disordered lattice,
predicting a new thermodynamic glassy phase with Bragg diffraction peaks. Hence
it was named the Bragg glass [8, 9]. This glass has the following properties [10, 11]:
(i) Translational order decays algebraically, i.e. there is quasi-long range order; (ii)
it is topologically ordered; (iii) it is still a static glass phase with diverging barriers.
The main difference between the vortex glass and the Bragg glass is the existence
of the algebraically decaying translational order, manifested as Bragg peaks in, for
example, neutron diffraction experiments. A theoretically predicted phase diagram
depicting the Bragg glass is presented in Fig. 1.1.

Neutron diffraction experiments confirm the existence of the Bragg peaks [13, 14].
In these experiments the Bragg peaks lose their intensity and become nearly unob-
servable in the liquid phase as the temperature is increased. Similarly, a loss in their
intensity is observed when the magnetic field is increased at a fixed temperature to
the vortex glass phase. In addition, magnetization measurements clearly show the
first order transition into the liquid phase which becomes a continuous one at higher
magnetic fields [7, 15].

1.1.1.2 Dynamic Vortex Phases

If a vortex is in the presence of a current, it will experience a Lorentz force,

f = J(r) × �0

c
,
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Fig. 1.1 A typical magnetic field–temperature (H-T) phase diagram of a type II superconductor
from Ref. [12]

Fig. 1.2 A typical velocity–
driving force (v–f) curve at
T = 0 (full line) and T > 0
(dashed line), taken from
Ref. [10]. This can also be
termed the “I–V” curve, as the
applied current and induced
voltage are proportional to the
force and average velocity,
respectively

where f is the force per unit length on the vortex, J(r) is the current density at r
and �0 is parallel to the applied magnetic field [3]. If this force is stronger than the
pinning force, the vortex will start moving at some velocity v. As a result of this
flow of vortices, a finite resistance builds up in the superconductor due to the electric
field, E = 1

c B × v.
When applying an external force on a periodic vortex lattice, one considers three

main regimes, shown in Fig. 1.2:

1. Below the depinning force, fc, vortices may occasionally move through thermal
activation. That is to say, flux lines jump from one pinning point to another to
achieve a lower energy configuration. This regime is also known as the flux-
creep regime [16]. The theoretical description of this regime is known as the
Anderson–Kim flux creep theory, according to which flux creep occurs through
jumps of bundles of flux lines. They jump in bundles since the length scale of the
repulsion between them is usually larger than the distance between them, which



4 1 Introduction

Fig. 1.3 Flux change versus
time for different magnetic
fields. The steps in the two
lower curves are due to digiti-
zation in the signal processing
unit. Taken from Ref. [17]

facilitates a so-called cooperative behavior. The jump rate, ν, is given by an
Arrhenius expression ν = ν0e−U/kB T , where ν0 is some characteristic frequency
of flux line motion and U is the activation energy, i.e. the height of the barrier for
thermally activated motion of a flux bundle. Anderson and Kim derive the flux
creep equation for the magnetic field,

∂B

∂t
= ∇ ×

[( ∇B

|∇B|
)

Bwν0e−U (B)/kB T
]

,

In the above equation, w is the average distance by which a vortex bundle moves in
a thermally activated jump. From this equation they calculate its time dependence,
which is logarithmic and shown in Fig. 1.3.

2. Assuming our system indeed behaves like an elastic one, it does not necessarily
move under the action of a driving force. The existence of disorder creates a
threshold force, fc, also known as the depinning force. This is a general critical
dynamics behavior of such driven interfaces in random media. In the case of
vortices it is the result of competition between pinning forces and the vortex
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(a) (b)

(c) (d)

Fig. 1.4 Molecular dynamics simulations of vortex flow in a sample with strong disorder. Taken
from Ref. [20]. a Traces of vortices throughout the simulation time along with a snapshot of posi-
tions. There is a single flow channel, while the rest of the vortices remain pinned. b A double
channel dynamical state, decoupled. Vortices in each channel flow with different average veloci-
ties. c A double channel dynamical state, but the two channels interact, resulting in averaging of
the velocities in the two channels. d Flow in the plastic regime. Note regions with large activity
resembling the channels shown in (a–c) and regions with small finite activity elsewhere. A vortex
in this flow will participate alternately in channel-like flow or be pinned in a pinning site which is
outside of the channel

lattice’s elastic properties. Near the depinning transition, f ≈ fc, and in strong
disorder depinning is observed to proceed via the flowing of vortices through
plastic channels [18, 19]. Molecular dynamic simulations [20] take into account
both the vortex interaction energy Uvv(ri j ) and the pinning potential Uvp(r) =
−Ape−(r/ap)2

, where ap is the interaction range of impurity and Ap is the pinning
strength. The corresponding equation of motion (normalized) is

dri

dt
= −

∑
j �=i

∇iUvv(ri j ) −
∑

k

∇iUvp(rik) + f + ηi (t).
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Fig. 1.5 A schematic phase
diagram from Ref. [10] for
d = 3 at zero temperature.
Here � is the level of disorder
and F is the driving force. The
behavior in the square gray
region is unclear

Here f is the force on the vortices and η is thermal noise. An illustrative result of
these simulations is shown in Fig. 1.4.
In addition, using Lorentz microscopy, Matsuda et al. managed to record on video
this plastic flow [21]. In this video, they show how vortices move in channels,
or “rivers”, and at some point this channel-like motion turns into motion of the
entire vortex lattice (elastic flow).

3. Well above the depinning force, moving vortices seem to be more translationally
ordered than at lower velocities. As was shown in Ref. [10], some modes of the
disorder are not affected by the motion even at large velocities and as a result the
vortices exist in a phase called a moving Bragg glass (MBG). In this phase, vortex
flow is in the form of channels, which are aligned almost parallel to each other and
these channels are coupled along the axis perpendicular to their motion. They are
sometimes called “coupled channels” or “elastic channels”. Once these channels
are established, it is energetically unfavorable for them to reorient. Therefore,
there exists some critical transverse force below which the transverse motion of
the vortices is pinned. The level of disorder affects the MBG so that with strong
enough disorder, the system goes from the MBG to a moving transverse glass
[22, 23] (MTG). This phase is also called a smectic flow [24] since the channels
themselves become the elementary particles and is associated with the decoupling
of the channels, while periodicity in the transverse direction is maintained. A
schematic diagram taken from Ref. [10] is given in Fig. 1.5.

An important feature of the MBG is the existence of a sharp frequency associated
with the periodicity of the lattice, also known as the washboard frequency. This
frequency exists for a lattice moving at an average velocity v with a lattice constant
a, ν = v/a.
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1.1.2 Superconducting Quantum Interference Device (SQUID)

A short derivation of the Josephson equations [25] is given below. It was first sug-
gested by Feynman [26] and is repeated here due to its clear and simple explanation of
the effect, focusing on magnetic field dependence properties. For notations, a super-
conducting electrode can be written as a macroscopic wave function of the form
ψ = √

ρeiϕ, where ρ = |ψ|2. As usual, the electric current density in the presence
of a vector potential can be written as

J = e∗

m∗

[
i�

2

(
ψ∇ψ∗ − ψ∗∇ψ) − e∗

c
A|ψ|2

]
,

where e∗ = 2e and m∗ = 2m. With the expression above for ψ, J becomes

J = ρ
e

m

(
�∇ϕ− 2e

c
A

)
. (1.1)

Next we consider two coupled superconducting electrodes, in which each electrode’s
wave function has its tail entering the other (decaying). We denote the left electrode’s
wave function asψL and the right as ψR , so that with a coupling potential K between
them, the Schrödinger equations for the junction are

i�ψ̇R = HRψR + KψL = ERψR + KψL

i�ψ̇L = HLψL + KψR = ELψL + KψR .

For each electrode, EL ,R = 2μL ,R (twice the electrochemical potential), as it is the
minimum energy required to add a Cooper pair to the system. If there is a potential
difference, V, across the junction, then we can choose the zero of the energy such
that

i�ψ̇R = −eVψR + KψL

i�ψ̇L = eVψL + KψR .

Now we substitute the expressions for the wave functions and separate real and
imaginary terms to get four equations:

∂ρL

∂t
= 2

�
K

√
ρLρR sinϕ (1.2)

∂ρR

∂t
= −2

�
K

√
ρLρR sinϕ (1.3)

∂ϕL

∂t
= K

�
K

√
ρL/ρR cosϕ+ eV/� (1.4)
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∂ϕR

∂t
= K

�
K

√
ρL/ρR cosϕ− eV/�, (1.5)

with ϕ = ϕL − ϕR .
From the first two equations, the pair current density is

J = ∂ρL/∂t = 2K

�

√
ρLρR sinϕ ≡ J1 sinϕ.

This is known as the DC Josephson equation. From the last two equations,

∂ϕ

∂t
= 2eV

�
,

which is known as the AC Josephson equation. To understand the junction’s behavior
under magnetic field, we recall Eq. 1.1 and rewrite it as

∇ϕ = 2e

�c

(
mc

2e2ρ
J + A

)
.

We follow the derivation of Ref. [27] and write the phase’s dependence on magnetic
field

ϕ = 2e

�c
d Hy x + ϕ0,

so that

J = J1 sin

(
2e

�c
d Hy x + ϕ0

)
.

In this derivation, d is the effective magnetic penetration length of the two junctions
combined and the magnetic field is in the y-direction and the junction lies along
the x-direction, so that the integration is performed along it in order to find the
contribution of the entire cross section of the junction. This result shows that the
critical current density is spatially modulated by the magnetic field in a periodic
way. One can then integrate along the junction’s cross-section and find the known
dependence on magnetic field.

A more interesting case is that of a superconducting ring interrupted by two
Josephson junctions, also known as a Superconducting QUantum Interference Device
(SQUID). Relating to Fig. 1.6, we draw a contour along the ring, and to simplify the
derivation, we assume that the contour is deep enough inside the superconductors
such that J = 0 or ∇ϕ = 2e

�c A along the contour. Next, we integrate this relation
along the contour. Note that the two junctions need to be taken into consideration:

[ϕR(1) − ϕL(1)] − [ϕR(2) − ϕL(2)] = 2e

�c

∮
A × dl,

or, written more elegantly using γ1 ≡ ϕR(1) − ϕL(1) and γ2 ≡ ϕR(2) − ϕL(2):
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Fig. 1.6 A schematic of a SQUID with microbridges (constrictions) serving as the Josephson
junctions. The two bulky superconducting electrodes are marked as SCleft and SCright and the
junctions as J1 and J2. The integration contour is labeled with the letter C

γ1 − γ2 = 2e

�c

∮
A · dl = 2π

�

�0
. (1.6)

Here � is the total flux through the loop. With this result we can now write the total
current as a sum of the currents through each junction:

I = I0 sin γ1 + I0 sin γ2 = 2I0 cos

(
π

�

�0

)
sin

(
γ2 + π

�

�0

)
(1.7)

with a maximum current of

I = 2I0

∣∣∣∣cos

(
π

�

�0

)∣∣∣∣ .
This result can be used to calculate the magnetic flux through a loop by measuring
the critical current. My master’s thesis was dedicated to the initial development
of a submicron SQUID on a tip [28]. This prototype SQUID-on-tip (SOT) had a
loop diameter of several hundred nanometers and a noise sensitivity of 50 mG/

√
Hz.

A typical I–H curve of this kind of SQUID is given in Fig. 1.7. A detailed analysis
of the equations of motion governing our SQUID is given in Appendix B.

1.1.3 Tuning Fork Microscopy

When a scanning probe, coupled to a tuning fork, approaches the surface of a sample,
elastic and dissipative forces shift its (the tuning fork plus the tip) resonant frequency.
Mainly due to availability, accuracy and size, most groups use a tuning fork similar
to the component of many quartz-based watches, i.e. one whose resonant frequency
is 32 kHz [29, 30]. At distances smaller than 10 nm, the frequency shift due to sur-
face forces is rather large (about 100 mHz per nm) and is possible to detect with a
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Fig. 1.7 A typical I–H curve of a SQUID on a tip with a diameter of 300 nm

phase-locked loop (PLL). With this detection scheme, it is possible to use the tuning
fork as a topography sensor for scanning probe microscopy.

1.1.3.1 The Harmonic Oscillator Approximation

We employ quartz tuning forks (TFs), widely used in wrist watches as their time base.
In Fig. 1.8(left) we show an image of a tip lying against a tuning fork just before gluing
the two together. The most popular TFs are those with a resonant frequency of 215

or 32,768 Hz and each prong’s dimensions are l × w × t = 4 × 0.34 × 0.6 mm3.
We performed a finite element analysis (FEA) for a single crystal quartz tuning-fork
of the same dimensions with a small tip glued to its end. The input to this program
is a three-dimensional drawing of the tuning-fork having the same dimensions as
mentioned above and the Young’s modulus for quartz. The output are the eigenmodes
of the tuning fork, where we pick only the eigenfrequency of 32,553 Hz (lower modes
are canceled by the electrical contacts). This mode is displayed in Fig. 1.8 (right).
The displacement is exaggerated for clarity. From its dimensions (length, width,
thickness), density, ρ, and Young’s modulus, E , one can calculate [31] the spring
constant k = (E/4)w(t/ l)3 = 25,320 N/m. In order to get the proper eigenmodes
and eigenfrequencies of the tuning fork, one should write the equations of motion
for the two prongs and the base and solve. Phenomenologically, however, it can be
described [31] with just one harmonic oscillator equation of motion for the position,
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X

Z

Fig. 1.8 Left An optical microscope image of a tip lying against a tuning-fork. Right a finite
element analysis of the tuning-fork with a tip glued to it. The simulation yields an eigenfrequency
of 32,553 Hz. The displacement shown is exaggerated in order the clarify the mode of oscillation

x(t), of one of the prongs and then bear in mind that there are in fact two of them,

mẍ + mγ ẋ + kx = F(t)

Here m is the mass of the prong, γ represents the losses (dissipation) and F(t) is
the driving force, in this case represented as a mechanical, dither-type, excitation.
The amplitude has, of course, the form of a Lorentzian with a resonant frequency
f0 = (1/2π)

√
k/m and FWHM = � f ≡ √

3γ/2π. We also define the quality factor
as Q ≡ f0/� f .

1.1.3.2 Tip-Sample Interaction

As mentioned by Giessibl [32], the interaction of a macroscopic tip with a sample
is a highly complex many-body problem, so that writing a simple expression for the
force between them, Fts , is not simple. Typically, two dominant contributions to Fts

are the long-range and short-range interactions, which can be approximated by van
der Waals and Morse-type potentials, respectively, so that one can write,

Fts(z) = C

z + σ
+ 2κEbond

[
−e−κ(z−σ) + e−2κ(z−σ)

]

C depends on the tip angle. Ebond, σ and κ are the bonding energy, equilibrium
distance and decay length of the Morse potential, respectively. A detailed calculation
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can be found in Ref. [32] and references therein. What is important is that this force
is a function of the potential energy between the tip and the sample, resulting in
an effective spring constant between the two, kts = −∂Fts/∂z. When the tip is far
away from the sample, the resonant frequency is 2π f0 = √

k0/m. Assuming kts is
constant during the oscillation cycle and that the change is small, i.e. kts � k0, the
resonant frequency close to the sample changes to f = f0 + � f = √

k/m with
k = k0 + kts . Using a Taylor expansion we get that the frequency shift is

� f = f0
kts

2k

Since in a tuning fork we actually treat only one prong in our calculation whereas
one should take both into consideration, we need to insert a factor of two to the
expression,

� ftuning fork = f0
kts

4k
(1.8)

More generally, if kts is not constant during an oscillation cycle, the calculation is
more complicated and can be calculated using perturbation theory [33] or with a
straight-forward calculation using the equation of motion [34], so that

� f (	x) = f0

4k
〈kts〉 (	x) (1.9)

with an average spring constant

〈kts〉 (	x) = 2

π

1∫
−1

kts (	x + 	eθζA)
√

1 − ζ2 dζ. (1.10)

Here the unit vector eθ = (0, cos θ, sin θ) points in the direction of the oscillation
and A is the amplitude of oscillation. In our case, the tuning-fork is excited so that
it vibrates almost parallel to the sample [35]. Figure 1.9(left) shows the geometry of
such a setup, also known as shear-force microscopy. In Fig. 1.9(right) a representative
� f versus z plot from our own system is given. In agreement with others [36–38],
the tuning fork “feels” the sample only a few tens of nanometers away and is mostly
insensitive to it when it is farther than that. We also note that the typical frequency
shift is approximately 500 mHz.

1.2 Open Questions

Current experimental evidence in the high velocity regimes of vortex matter, i.e. the
MBG and MTG, is not very extensive. There were attempts to search for MBG using
muon spin rotation and small angle neutron diffraction [39]. Channel flow (both
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Fig. 1.9 Left Geometry of the tip (t) atom and the sample atoms (s1, s2). The tip oscillates along an
axis that is tilted by an angle θ with respect to the y axis. Taken from Ref. [35]. Right Measurement
of the decrease in amplitude and shift in resonant frequency of a quartz tuning fork glued to a tip
as a function of the distance of the tip’s edge from the surface of a sample

smectic and elastic) has been studied in decoration experiments [40, 41]. These
results, however, are not conclusive and further experiments are needed to confirm
the observations.

The washboard frequency has been observed directly in the creep and plastic
regimes using an STM [42]. This STM experiment, however local it is, is limited in
both its scanning area and its “shutter speed”. Togawa et al. [43] were able to observe
it macroscopically in the creep regime in a transport experiment. They attributed the
observed broad-band noise (BBN) at low magnetic fields to the plastic flow while
a narrow-band noise (NBN) associated with the washboard frequency appeared at
high fields and the BBN decreased in amplitude. As they increased the magnetic
field even further, the NBN’s amplitude decreased and it lost its sharpness, i.e. its
narrow-band characteristic. This has not yet been fully explained.

Our scanning nanoSQUID-on-tip microscope features a magnetic field sensitiv-
ity on par with existing techniques and yet has a smaller sensor size. In terms of
bandwidth it is only limited by the electronics used to read our cryogenic current-
voltage converter, currently rated at 1 MHz. Most importantly, it is the only true
SQUID, which can be brought safely to within a few nanometers of the sample,
thus compensating for signal attenuation due to sensor-sample separation. Using the
scanning nanoSQUID microscope presented below in Sect. 2.3, we can now explore
the MBG/MTG phase space of the dynamic phase diagram by locally measuring the
characteristics of the washboard frequency in the different phases. This should man-
ifest itself in the spectral density of the noise in the magnetic signal of our sensor. We
can then compare to existing data to see whether there is agreement with previous

http://dx.doi.org/10.1007/978-3-642-29393-1_2
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experiments (low frequencies) and to better understand the mechanism behind the
different dynamical phases by analyzing our data for the entire measurable spectrum.

1.3 Goal

• Characterization of the SQUID-on-tip. First invented in 2006 [28], the SQUID-
on-tip (SOT) has not been studied extensively until now. Specifically, we wish to
understand its peculiar current-voltage characteristics and quantify its properties,
e.g. magnetic penetration length, inherent noise figure.

• Construction of a scanning SQUID microscope. In order to locally study vortices
in superconductors, we are currently constructing a scanning probe microscope
(SPM) with the “SQUID on a tip” as the magnetic field sensor attached to a
tuning fork, which acts as the feedback mechanism. This SQUID is considerably
smaller than typical SQUIDs used in scanning probe microscopes and it also has
the advantage of being on the edge of a pointy probe, which makes it a true local
sensor. In addition, its relatively low resistance (hundreds of Ohms) makes high-
frequency (more than 100 kHz) measurements plausible. Once the microscope is
assembled, we plan to first test it on a known crystal and observe the statics of a
vortex lattice, e.g. 2H-NbSe2 or BSCCO.

• Imaging vortices in type-II superconductors in the static and dynamic regimes.
After the initial assembly of the microscope is complete, we wish to study the
behavior of vortices in type-II superconductors in both the static regime as a
gauge of the microscope quality and in the dynamic regime over a wide range of
velocities in order to study vortex dynamics in the plastic flow regime.
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Chapter 2
Methods

The experimental setup used in this work consists of three major subsystems. The
first and foremost in importance is the SQUID-on-tip. In Sect. 2.1 we describe the
procedure used to fabricate it. The second subsystem is the tuning-fork assembly,
which is described in detail in Sect. 2.2. These two subsystems comprise the sensor
assembly of the scanning SQUID microscope. Their integration into one assembly
is described in Sect. 2.3. The third and last subsystem is the fabrication of samples.
I will give a brief yet thorough description of this procedure in Sect. 2.4.

2.1 SQUID-on-Tip Fabrication

We pull a quartz tube with an outer diameter of 1 mm and inner diameter of 0.5 mm
to form a pair of sharp pipettes with a tip diameter that can be controllably var-
ied between 100 and 400 nm using a commercial pipette puller.1 Then, we either
apply a thin layer of indium or deposit a thin (200 nm) film of gold on two sides of
the cylindrical base of the pipette. Afterwards, the pipette is mounted on a rotator
(see Fig. 2.1) and put into a vacuum chamber for three steps of thermal evaporation
of aluminum. The rotator has an electrical feedthrough for two operations. First,
a 2 mW red laser diode is connected, which allows for the alignment of the tip main
axis with respect to the source. This defines our zero angle. The second electrical
connection is for an in-situ measurement of the tip’s resistance during deposition.
A finite resistance typically appears after depositing approximately 70 Å in the third
stage (see below). In the first step (see Fig. 2.2), 25 nm of aluminum are deposited on
the tip tilted at an angle of −100◦ with respect to the line to the source. Then the tip
is rotated to an angle of 100◦, for a second deposition of 25 nm. As a result, two leads
on opposite sides of the quartz tube, reaching all the way to the apex, are formed. In
the last step 20–22 nm of aluminum are deposited at an angle of 0◦, coating the apex
ring of the tip. The resulting structure has two leads connected to a ring. “Strong”
superconducting regions are formed in the areas where the leads make contact with

1 Sutter Instruments P-2000.
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Fig. 2.1 a A CAD image of the rotator used to rotate tips in the vacuum chamber. The original
design of this rotator was based on a similar device from Yoo et al. [1]. b A close-up view of the
gear-box holding the rotating stage with the tip holder. c The tip holder, co-linear with the laser
diode on the rotator. The tuning-fork assembly is not present during deposition for practical reasons

the ring, while the two parts of the ring in the region of the gap between the leads
constitute two weak links, thus forming the SQUID. Its typical room-temperature
resistance is 1.5 k�. Since the device is highly sensitive to electrostatic discharge, it
is shorted when being transferred from the evaporator to the microscope.

2.2 Tuning Fork Assembly

The idea to use a quartz tuning-fork as a topography sensor was suggested to us by
Dr. Michael Rappaport. He had previously built a tuning-fork based NSOM [2], and
the basic principles of operation were taken from his fiber-optic design and adapted
to our much larger SQUID-on-tip.
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Fig. 2.2 A schematic of the three-stage thermal deposition of a SOT

2.2.1 Preparation

We use commercial2 quartz tuning forks, laser-trimmed to have a resonance at
215 Hz, which are normally used as time bases in digital watches. Preparing one
for microscopy entails the removal of the vacuum can and the two electrodes sol-
dered to it (see Fig. 2.3). We then glue it to a 5 × 5 × 0.5 mm3 quartz piece which
was pre-coated with two gold electrodes (70 Å Cr/2000 Å Au). The two tuning-fork
electrodes are bonded to those quartz electrodes, which are in turn connected to
external wires via two additional bonds. This allows for the electrical readout of
the voltage, which develops on the tuning-fork due to the piezoelectric effect. In
principle this would have been enough, since it is possible to electrically excite the
tuning-fork with a voltage source and read the current through it using a current-to-
voltage converter [3]. However, it is more advantageous to decouple the excitation
from the readout by driving voltage to a dither piezo, which mechanically excites the
tuning-fork (Fig. 2.3d). We used two types of dither piezos for this purpose, one of
which3 had the same dimensions as the quartz plate and was therefore used both as the
plate to which we glued the tuning-fork and as its mechanical excitation medium. The
second4 was slightly bulkier and was therefore placed on the side of the tuning-fork
holder.

2 Polaros Electronics, TB38-20-12.5-32.768 KHz.
3 EBL#4.
4 PI PICMA PL033.30.
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(a) (d)

(b)

(c)

Fig. 2.3 a A commercial tuning fork encased in a vacuum can. b The same tuning fork after the
vacuum can had been removed. c A SEM micrograph of a tip glued to a prong of a tuning fork.
d The tip/tuning fork assembly. The tuning fork itself is glued onto the dither piezo with E32 and
then glued to the tip with Araldite 2020

2.2.2 Gluing a Tip and Its Effect on Resonance

In our microscope setup, we glue the SOT to one of the prongs of the TF (see
Fig. 2.3c). This can change the resonant frequency [4] dramatically. Therefore, we
try to use as small amount of glue as possible. This is made possible by using a
two-part epoxy with a rather low (150 cP) viscosity, which enables us to place a
very small drop of glue on the part joining the two. The longer the SOT protrudes
above the edge of the prong, the softer its effective spring constant [5] becomes (for
a cylindrical tip)

keff = 3πEr4

4l3

Here r , l and E are the radius, length and Young modulus of the tip, respectively.
Thus, if it protrudes too much, the vdW forces of interaction with the sample will
dampen its motion before the tuning fork’s prong actually “feels” anything. Conse-
quently, we always try to position the tip with respect to the tuning fork so that
the SOT itself protrudes only slightly above the edge of the prong (typically a
few tens of microns). We then excite the tuning fork and measure its resonance,
specifically noting the location of the peak, its amplitude and its width. This mea-
surement is performed at room temperature and atmospheric pressure and repeated at
low temperature (300 mK) in vacuum for comparison. More often than not, the low-
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Fig. 2.4 The resonance of our quartz tuning fork. Left comparison between the
Q-factor at room temperature and at low temperature. For ease of comparison, the latter was shifted
by 80 Hz so that its peak overlaps with that of the former; Right the “bare” and “glued” curves are
at room temperature, with “bare” meaning that the tuning-fork is not glued to the tip. The 300 mK
curve is that of the “glued” tip cooled down to 300 mK

temperature, vacuum resonance is much sharper than the room-temperature, ambient
pressure one (see Fig. 2.4).

2.2.3 Mechanical Versus Electrical Excitation and Readout

In the equivalent electrical model for a resonating tuning-fork [6, 7], there are four
parameters which should be considered: the stray capacitance, C0 ∼ pF and the
RLC-equivalent parameters, which in our case are R = 30 k�, C = 1 fF, L =
23.6 kH. The stray capacitance is in fact that of the contacts. This means that the
tuning-fork is in effect a reactive impedance, with an effective impedance of ≈1 M�.
Any additional stray capacitance, mostly wires, will attenuate the signal considerably.

There are two methods of exciting and measuring the resonance of the tuning-fork:

1. Apply a voltage between the two prongs of the tuning-fork and measure the
current through it. This is a compact method since it requires as little as two
wires. The disadvantage with such a method is that there is coupling between the
electrical excitation (piezoelectric effect) and the current readout, giving rise to
a large background signal. In order to overcome this, one can insert a variable
capacitor and a center-tapped transformer [3], which can be varied so as to exactly
cancel the stray capacitance.

2. Mechanically excite the tuning-fork using an external dither piezo and read-
ing the voltage between the two prongs. This way, the excitation is electrically
decoupled from the signal readout. There still remains, however, the problem of
signal attenuation due to cables. Once again one may employ the variable capac-
itor method. Another, more complicated but by far superior solution, is to use a
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trans-impedance converter right next to the tuning-fork before the signal is atten-
uated by the experimental setup’s cables, so that the effective impedance is con-
verted from a few M� to a few k�.

We used both techniques in our setup. The trans-impedance converter we used
was made by attocube, and comprised of a commercial GaAs MESFET, which can
work at cryogenic temperatures (charge carriers in GaAs do not freeze as those in
silicon do).

2.3 Scanning SQUID Microscopy

The microscope’s design is based on commercial coarse positioners and piezoelectric
scanners from attocube. It consists of two parts: the bottom flange, which holds
the coarse-z positioner, the xyz scanner and the sample; and the top flange, which
holds the coarse-x and y positioners and the tip holder assembly (see Fig. 2.5). Our
microscope’s feedback mechanism relies on the behavior of a quartz tuning fork’s
(TF) resonance as it is moves closer and closer to the surface of a sample. Both the
quartz TF’s modes and the above-mentioned behavior have been studied extensively
and are widely used today in near-field scanning optical microscopes (NSOM) and
atomic force microscopes (AFM) [8, 9]. Our tuning-forks are laser-trimmed so that
they peak at 215 = 32,768 Hz.

2.3.1 Control Electronics

We divide the electronics section into three parts: (a) the SQUID on tip; (b) the tuning
fork; and (c) coarse and fine motion.

2.3.1.1 SQUID on Tip Electronics

A SQUID is by definition a low impedance device. Typically, room-temperature
electronics are optimized for high impedances. Consequently, this impedance mis-
match results in a decrease in the signal-to-noise ratio. There are many schemes
which tackle this problem successfully, e.g. non-dispersive read-out [10] and trans-
former impedance matching [11]. We chose to use a SQUID series array amplifier
[12], which is in essence an array of 100 SQUIDs connected in series. The current
through the SOT passes through a line which is inductively coupled to this array. This
current induces a change in the flux through them, and as they are phase-coherent (if
properly cooled down) this change in flux changes their critical current and accord-
ingly the voltage on them. The SSAA has an additional FLL to keep the working
point of the SQUIDs at their most sensitive (and most linear) region. Effectively, the
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Fig. 2.5 Schematics of the microscope assembly. Left the microscope with the outer shell (made
transparent for clarity); Right the microscope without outer shell. The lower part includes the coarse
x and y positioners and the tip holder while the upper part includes the z positioner, the xyz scanners
and the sample holder

SSAA functions as a flux-to-voltage converter, and with the SOT’s current induc-
tively coupled to a croygenic, low-impedance current-to-voltage converter. A scheme
of the measurement circuit is given in Fig. 2.6. We voltage bias the SOT using the
small parallel resistor (Rb) and measure the current through the SOT using the SSAA.
Currently, the room-temperature feedback box is bandwidth limited to 1 MHz, which
means that we cannot measure signals at frequencies higher than 500 kHz. Moreover,
the SSAA current noise density is ≈2.5 pA/Hz1/2, which sets our system noise limit
(see Sect. 3.1.1)

2.3.1.2 The Tuning Fork and Its Feedback Loop

One can monitor the height of the resonance peak and set the feedback threshold to,
for example, 50% of the maximum. This method, also known as slope detection [13],
is not fast enough, since quartz tuning-forks have relatively high Q-factors, especially
at low temperatures (typically 100,000) [13, 14]. As explained in Refs. [13, 15],
a phase-locked loop (PLL) increases the bandwidth and makes scanning probe
microscopy with tuning-forks possible at reasonable scan speeds. A scheme of the
entire measurement system with emphasis on the PLL block-diagram is shown in
Fig. 2.7. As already mentioned in Sect. 1.1.3.2, interaction forces between the tip
and the sample result in a frequency shift of the tuning-fork’s resonance. The basic
idea behind the PLL is to track this resonance in a closed loop circuit and compare

http://dx.doi.org/10.1007/978-3-642-29393-1_3
http://dx.doi.org/10.1007/978-3-642-29393-1_1
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Fig. 2.6 The SOT circuit. Here “A” represents the SQUID series array amplifier (SSAA). The 5 k�

series resistor, Rb and the SSAA are thermally coupled to the fridge’s 1 K tube coil. The preamp
(×100) and the feedback circuit are battery-operated room-temperature electronics. Rs is a parasitic
series resistance to the SOT

its current location with the fundamental one to give the frequency shift, � f . This
frequency shift serves as the error function of the height, or z, feedback loop.

2.3.1.3 Coarse and Fine Motion of the Microscope

The coarse motion is performed by three attocube positioners (1×ANPz101RES, 2×
ANPx50), one for each axis, based on the slip-stick [16] mechanism. The positioners
themselves are driven by a saw-tooth pulse from a high-voltage driver (attocube
ANC-150). The z-axis positioner incorporates a resistive encoder, which allows for
a resistive readout of the current displacement of the positioner. This resistor is
calibrated so we can translate the value in Ohms to displacement in µm. Scanning is
performed by an attocube integrated xyz scanner (ANSxyz100), with an X − Y scan
range of 30 × 30 µm2 and a Z-scan range of 15µm (all at low temperatures). We
drive these piezoelectric scanners with high voltage from an SPM controller (either
RHK SPM-100 or attocube ASC500).

The output of the PLL (in the form of a frequency shift, � f ) serves as the input of
the z-height feedback loop (point no. 6 in Fig. 2.7). This second feedback loop (the
first being the phased-locked one) controls the height of the tip above the sample by
changing the voltage going to the z-scanner piezo.
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Fig. 2.7 A scheme of the height control loops. (1) The PLL sends an excitation voltage at the
base resonant frequency, cos ( f0t), to the VCO; (2) the VCO adds the base excitation phase
together with any error corrections from the PLL feedback loop, and sends it, i.e, cos ( f0t + ϕ0),
to the tuning-fork; (3) the current from the tuning-fork may experience a phase shift, ϕ, due
to change in height and is then converted at room-temperature by a transimpedance converter;
(4) the voltage from the converter is phase shifted by ϕ0 and mixed with the base resonance fre-
quency; (5) the mixed signal cos(2 f0t +ϕ0 +ϕ) + cos(ϕ0 +ϕ) is passed through a low-pass filter
to produce the error signal, ϕ; (6) this error signal is fed back to the VCO and; (7) knowing the
original resonance curve, e.g. Fig. 2.4, one can convert the phase shift into frequency shift, � f ,
which serves as the feedback parameter for the height control loop

2.3.2 Approach Procedure

The microscope assembly’s heart revolves, then, around the SOT and the TF, designed
as a rigid structure holding the two, one against the other, each resting on either
coarse motors or piezoelectric scanners. At room temperature the distance between
the SOT/TF assembly and the sample is a few hundred of microns, and once they
are cooled to low temperature, we initiate what is known as the approach procedure.
This involves fully extending the z-piezo while simultaneously trying to close a
feedback loop with the frequency shift as the set-point parameter (typically 100 mHz
in our case). If the set-point is not reached, the z-piezo is fully retracted and the
z-coarse motor moves by a few steps forward, repeating the entire procedure all
over again. As with every feedback loop, there is the subtle interplay between the
three (or two) parameters of the PID (PI) loop, known as “proportional”, “integral”
(and “derivative”). Usually, if one wants the loop to close in a reasonable time, an
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overshoot above the desired value is obligatory. In the case of our SOT, however, an
overshoot is highly dangerous, as the device itself, the SQUID, is located at the very
edge of the tip, making it the first to be in potentially hazardous contact with the
sample. This is also in practice what we had encountered in the first few approach
sequences, all resulting in the tip crashing into the sample. In order to overcome
this obstacle, we patterned our samples in a meander, or serpentine-like, shape. The
original idea was to run current through the meander, so that the magnetic field
resulting from this current (according to Biot-Savart law) would be observable tens
of microns away from the sample. I will discuss this in more detail in Sect. 3.2. With
the feedback loop closed we could then maintain a constant height above the sample
and acquire images.

2.3.3 Vibration Isolation

If one wants to approach the surface of a sample within a few nanometers and
maintain a constant height of a few nanometers above it, one needs to properly isolate
the system from its surroundings, namely from vibrational, acoustical and electric
noises. For structural vibration isolation, we placed the dewar on a massive marble
block, weighing 920 kg. This block, in turn, was placed on four commercial isolators
(Newport S-2000). These isolators attenuate vibrations from the environment at low
frequencies, having already a 20 dB attenuation at 10 Hz. The disadvantage of these
isolators is that they typically have a resonance, i.e, amplification, at around 1 Hz. To
reduce acoustical noise, we first coated the entire dewar with an acoustipipe, thereby
damping its self-resonating mode. In addition, we enclosed the entire upper part of
the system (from the marble block and upwards) with a 45 dB attenuation factor of
an acoustic enclosure. The combination of the isolators and the enclosure created a
sufficiently quiet environment in which we were able to safely scan samples with a
tip-sample separation of a few nanometers (Fig. 2.8).

http://dx.doi.org/10.1007/978-3-642-29393-1_3
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Fig. 2.9 Left an optical image of the Al serpentine deposited on a Si/SiO2 substrate. The arrows
indicate the direction of current running through it, in a serpentine trajectory; Right a SEM image
of a Nb serpentine. It is very similar in shape and pattern, except for a constriction (shown) which
repeats every 100µm

2.4 Fabrication of Samples

The samples in this work were all prepared by our group in the clean-room facilities
offered by our department. The mask itself is rather simple, having a serpentine struc-
ture going from one end to another. The main challenge, however, is to successfully
fabricate such a structure with a minimum amount of defects so that current can flow
unhindered from one side to the other. With a sample size of approximately 5×5 mm
and a pitch of 15 µm (the width of the film is 5 µm and each two neighboring films
are 10µm apart), this amounts to a continuous line of the order of one meter!

The aluminum samples were deposited on a Si/SiO2 substrate by e-gun evap-
oration in a background pressure of 1 × 10−6 Torr, and the photo resist (Shipley
Microposit 1805) was removed using the lift-off technique. An optical image of the
aluminum serpentine is given in Fig. 2.9. The niobium samples were deposited on
a Si/SiO2 substrate in the same vacuum chamber, with a substrate temperature of
300◦C during deposition [17] and a rate of 0.3 nm/s. Then the Nb was capped with
3 nm of gold and the photolithography was performed using the previously men-
tioned 1805 photoresist. The gold layer was removed using argon ion-milling and
finally the Nb was removed using reactive ion etching with SF6 plasma. The com-
plete recipe was taken from Ref. [18]. The mask used was slightly different, having
a constriction (shown in Fig. 2.9) repeating itself approximately every 100µm.

http://dx.doi.org/10.1007/978-3-642-29393-1_2
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Chapter 3
Results

This work summarizes the efforts put into developing the first scanning SQUID
microscope based on the SOT. As such, most of the results reported in this chapter
are either of a preliminary characterization nature or involve extensive calibrations
and testing of the system. In Sect. 3.1 I describe in detail the characterization of the
aluminum SOT and to some minor extent that of SOTs made of other metals. Then, in
Sect. 3.2 I present the data gathered while testing the system at its development stage.

3.1 SQUID-on-Tip Characterization

3.1.1 Aluminum SQUIDs

We invented a simple self-aligned fabrication method of a nanoSQUID on the apex
of a sharp tip. This nanoSQUID is the smallest reported in literature to this day,
with a loop diameter as small as ≈100 nm, as can be seen in Fig. 3.1. After its
preliminary invention [1], we proceeded and characterized such an aluminum-based
SOT at magnetic fields as high as 0.6 T (our aluminum becomes normal beyond
this field) and up to currents which are two times as large as the critical current, Ic.
Furthermore, the SOT was assembled in a prototype scanning SQUID microscope
and was scanned above a meander-shaped aluminum thin film while running current
through this meander, giving rise to a magnetic field profile due to this current and
measured by the SOT several microns above it. These results were published in
Ref. [2], attached below.

A. Finkler, Scanning SQUID Microscope for Studying Vortex Matter 29
in Type-II Superconductors, Springer Theses, DOI: 10.1007/978-3-642-29393-1_3,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 3.1 Measurements of the world’s smallest SQUID to date. a Mapping of the SOT current as a
function of voltage bias and magnetic field. The period corresponds to a loop of diameter of 112 nm;
b Several rows from (a), showing the I–V curves at different fields

Negative Differential Resistance The current–voltage characteristics in Fig. 2 of
Ref. [2] exhibit a negative differential resistance over a wide range of voltage biases.
The origin of this apparent decrease in resistance is the fast Josephson oscillations
(in the GHz range), whose average we measure. As the current through the junction
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Fig. 3.2 A measurement of the current through the SOT as a function of voltage bias and field

reaches the critical current, a voltage develops on it, and the phase starts oscillating.
The current we measure with the SSAA, therefore, is composed of two components,
which are the maximal supercurrent, Is = Ic sin θ , and the normal current, In =
1
R

�

2e
∂θ
∂t . The time-development of the phase has been derived by Aslamazov and

Larkin [3]. With the structure of the measurement circuit taken into account (see
Appendix A) we see that the time-averaged current does in fact show a decrease at
the critical current and only then an increase.
Wide Field Range Another illustrative example of the magnetic fields at which the
SOT can work is given is Fig. 3.2. Quantum interference patterns are observed at
fields as high as 0.7 T. We attribute this to both the granular nature of the aluminum
film and its thickness.
Asymmetry As one can easily note from Fig. 3 in Ref. [2], there is a large asymmetry
in both voltage bias and magnetic field. There are typically two major contributors
to asymmetry—the difference between the critical current of the two Josephson
junctions, I1, I2, and the difference in the inductance of the two arms comprising the
SQUID loop, L1, L2. We define, accordingly, the asymmetry parameters, I2/I1 =
(1+αI )/(1−αI ) and L2/L1 = (1+αL)/(1−αL). Since the sum of the two currents
is the critical current of the device, I1 + I2 = IC , then, for example, an asymmetry
of αI = 0.2 would imply a 50% difference between the two critical currents. A
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Fig. 3.4 a The critical current of the SOT as a function of magnetic field for positive voltage bias,
taken from Ref. [2] and normalized both axes. The main feature of the asymmetry visible here
is the shift from �a = 0 of the maximal critical current. Note also the different slopes of each
period, depending on whether they are the first half or the second half; b This asymmetry can be
modeled by taking into account asymmetries in the critical currents of the two junctions and the
inductances of the two arms of the SQUID loop. The fitting parameters, using Ref. [4] notation, are
α = 0.5, β = 0.85 and η = 0

graph comparing two Ic(�) curves with different asymmetry parameters is plotted
in Fig. 3.3. We try to fit our results with the theory. These results is plotted in Fig. 3.4a.
The most prominent features are: (a) the shift from �a = 0 of the maximal critical
current and; (b) the difference in slopes in one period depending on whether it is the
first half of the period, e.g. from �a/�0 = −0.8 to �a/�0 = −0.25, or the second
half, �a/�0 = −0.25 to �a/�0 = 0.2. The fit, using Ref. [4], is superimposed on
the plot and is shown in Fig. 3.4b.

We tried taking this simulation one step further and take into account other com-
ponents in the circuit, namely inductances and mutual inductances. The complete
circuit analysis is described in Appendix B.
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Table 3.1 Comparison of the
different sources of noise
(calculated)

Source Noise (A2/Hz)

Johnson 1.6 × 10−25

Shot 3.2 × 10−25

Quantum 1.3 × 10−25

Sources of Noise Typically, four sources of noise are associated with fluctuations
in dc-SQUIDs [4, 5]. We write them in the form of the spectral density of current
noise, having the units of A2/Hz:

1. Johnson noise 4kB T/R in the normal state for hν � kB T

SI (ν) = (2hν/R) coth(hν/2kB T ) � 4kB T/R

This noise is the result of thermal fluctuations in the normal part of the Josephson
junction. R is the normal resistance of the junction and kB is the Boltzmann
constant.

2. Shot noise SI (ν) = 2eI0. Becomes dominant above some voltage V > kB T/e.
According to Likharev [5], in weak links the condition to move from thermal
noise to shot noise is L � (vFlTε)

1/2, where vF is the Fermi velocity, l is the
mean free path and Tε is the energetic relaxation time in the normal state.

3. Quantum noise when hν > kB T , with ν = 2eV/h. Then in that limit SI (ν) =
2hν/R, i.e, independent of temperature and in fact representing the zero-point
fluctuations of an ensemble of harmonic oscillators with random phases [6].

4. 1/ f or flicker noise. It is typically associated with magnetic flux fluctuations and
critical current fluctuations. The origin of this noise in low-Tc superconductors is
still unresolved (see Ref. [7] for more details).

For R = 100 
, I0 = 1 µA, T = 300 mK and ν = 10 GHz (only then the condition
of hν > kB T is satisfied) we can compare between the different sources of noises in
Table 3.1.

Our system’s noise floor was one order of magnitude larger (6.25×10−24 A2/Hz),
so there is definitely room for improvement. As one can see, quantum noise becomes
relevant only at very low temperatures and very high frequencies.
Relaxation-Oscillation SQUID One feature of the SOT that had not been addressed
in Ref. [2] is some high-frequency oscillations observed in the MHz range around
the critical current. An example of such measurements in Pb-based SOTs is shown
in Fig. 3.5. The tip shown in the figure was 241 nm in diameter, which corresponds
to the period of 435 Oe. Together with Martin E. Huber from the University of
Colorado, we hypothesized that this is in fact the manifestation of a relaxation-
oscillation SQUID [8, 9]. It is a direct result of having the SQUID connected in
series with the input coil of the SSAA. In short, a relaxation oscillation SQUID is a
hysteretic SQUID connected to its voltage bias through an inductor and a resistor. If
the bias current, Ib, is larger than the critical current Ic, relaxation oscillations occur,
provided that Ib R < Vg , the gap voltage. The oscillations are the periodic increase
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Fig. 3.5 Demonstration of relaxation-oscillations in a Pb-based SOT. A 10µH inductor was inten-
tionally connected in series with the SOT in order to create controlled conditions for the relaxation
oscillations to appear in. The color code is a spectral density of voltage noise in units of µV/H z1/2.
The left-most periodic pattern is the base oscillation ( f = 125 kHz) and the ones to its right are its
harmonics, which result from the voltage state switching nature of the oscillations. The period in
magnetic field corresponds to the tip diameter, d = 241 nm

and decrease of the current through the SQUID due to switches in its voltage state
(superconducting, normal) with a time constant ≈L/R × f

(
R, Ib, Vg, Ic(�)

)
. Due

to this voltage state switching nature, we observe not only the base frequency but
also all of its harmonics. Normally this time constant is very small and should not
matter, as SQUIDs’ inductance is typically small, on the order of pH. In our case,
however, the SSAA’s input coil’s inductance is significant, approximately 0.25 µH,
shifting the relevant frequencies to the MHz range. Using the circuit analysis of Ref.
[8], the oscillation frequency is given by:

f = Rs

L

{
log

(
I

I − Ic

)
+ log

(
1 + Ic

Vg/Rs − I

)}−1

.

Here, L is the inductance of our cryogenic Series SQUID Array Amplifier [10], Rs is
a shunt resistance typically a few 
, Ic is the critical current of the SQUID and Vg is
the superconducting gap voltage, in our case approximately 250 µV. Using the num-
bers for our SQUIDs we indeed get a frequency of a few MHz, increasing with the
biasing current, I . This, however, was only a qualitative test, and more experiments
are needed to confirm this phenomenon. The advantage of these oscillations is that
the signal itself is rather big, typically a few tens of mV [11], and changes in magnetic
flux are converted by the relaxation-oscillator into changes in the frequency of oscil-
lations, which should be easily detected by any frequency-demodulation technique
or a commercial counter.
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Fig. 3.6 Left Quantum interference patterns in a Pb-SOT. The SOT is current biased and the voltage
drop on it is measured for different magnetic field values; Right A SEM image of a lead SOT

3.1.2 Pb, Nb and Sn SQUIDs

Apart from the aluminum SOTs, we have also tried to develop SQUID-on-tip sensors
made from other superconductors, namely lead (Tc = 7.2 K), tin (Tc = 3.7 K) and
niobium (Tc = 9.2 K). With thin (d = 20 nm) films of soft metals, such as lead
and tin, one needs to cool the substrate before depositing lead or tin. Otherwise,
the percolation threshold is too high (roughly 50 nm) to get a continuous film [12].
On the other hand, refractory metals such as niobium are highly sensitive to resid-
ual oxygen in the vacuum chamber during deposition, so that in order to deposit
a superconducting niobium film in high vacuum one needs to heat the substrate to
temperatures as high as 650–900◦C [13, 14]. Alternatively, one can use an ultra high
vacuum chamber and then there is less of a necessity for the heating of the substrate.
Of the three metals, lead proved to be the simplest to develop. In the exclusive scope
of this thesis we managed to successfully fabricate the first lead-based SQUID-on-
tips. A typical measurement is given in Fig. 3.6. The continuation of this work has
since been carried out by Drs. Denis Vasyukov and Yonathan Anahory, achieving
nowadays a process of making Pb-based SOTs as small as 100 nm in diameter and a
spin sensitivity lower than 20 µB/

√
Hz.

3.2 Imaging

Having a reliable magnetic sensor, the next natural step was to test it with sam-
ples exhibiting relatively well-known physical properties, e.g. the Meissner effect
in type-I superconductors. The first choice was a thin film of aluminum, patterned
into a serpentine, followed by single crystals of NbSe2 and thin films of niobium.
Aluminum thin films, deposited on Si/SiO2 substrates, are rather simple to fabri-
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Fig. 3.7 An image of the NbSe2 crystal milled with a focused ion beam (FIB) to a pattern of a
serpentine. The milled line width is approximately 5 µm

cate (see Sect. 2.4), and can be fabricated using a thermal evaporation technique in a
background pressure of a few 10−6 Torr.

3.2.1 Magnetic Signals from Serpentines: Calibration Samples

As already described in Sect. 2.3.2, our first calibration sample was an aluminum
serpentine, 200 nm thick, with a line width of 5 µm and a period of 15 µm (see
Fig. 2.9). We ran a current of 2 mA through the serpentine and scanned the SOT over
it. Already at a distance of 10 µm we were able to sense the magnetic field resulting
from the current. In Appendix C we provide an algorithm for the calculation of the
magnetic profile of a superconducting serpentine structure, which we compared to
the profiles measured in Fig. 5 of Ref. [2].

Aluminum, however, is a type-I superconductor and therefore one cannot observe
vortices in thick films of such materials. To that end, our next choice of a sample
was a cleaved NbSe2 crystal, milled with a focused ion beam (FIB) to a meander
shape (see Fig. 3.7). The process of milling the meander pattern on such a crystal is
lengthy (scale of several hours or even tens of hours). At some point one of the tips
crashed, rendered the sample unusable and forced us to consider a simpler type-II
superconducting material for the patterning of serpentines.

Finally, we fabricated high-quality Nb serpentines. With the installation of the
vibration/isolation components, we succeeded in repeatedly acquiring images of the
niobium sample. The tip-sample approach procedure was based on both the tuning-
fork frequency shift for the last few nanometers but also on the magnetic signal from
the niobium sample due to the Meissner effect: as one applies magnetic field on a

http://dx.doi.org/10.1007/978-3-642-29393-1_2
http://dx.doi.org/10.1007/978-3-642-29393-1_2
http://dx.doi.org/10.1007/978-3-642-29393-1_2
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Fig. 3.8 “Live approach”. The z-piezo element, on which the sample is mounted, slowly extends
from zero to 15 µm, which is represented in this figure by the slow increase in magnetic signal (the
sensitivity is 1 mV/Gauss). If there is no feedback signal from the tuning-fork, the z-piezo element
is quickly retracted. This is the sharp drop in magnetic signal. Then the entire stage moves by a
few coarse steps and the entire procedure repeats until a feedback signal is obtained. The size of a
coarse step between two consecutive approaches is uncalibrated and lies between 100 nm and 1 µm

superconductor, Meissner currents are induced in it so as to negate the effect of the
magnetic field on the superconductor and prevent flux lines from entering it. This
results in a zero effective magnetic field just above the superconductor and higher
than the applied external field outside of the edge of the strip. This way, as the tip
approaches the sample, the effective magnetic field it feels increases if it is near the
edge of a superconducting strip (see Fig. 2.9) and decreases to zero if it is directly
above the center of it.

As described in Sect. 2.3.2, we set our approach sequence threshold to some
value, above which the sequence stops and waits for the user’s input. A “real-time”
example of such an approach procedure is given in Fig. 3.8. It shows the amplitude
of the signal measured by the SOT as a function of time. The amplitude increases
in each iteration as the coarse motor makes a few more steps each time. Usually at
this point, assuming the threshold values are set correctly, the tip is already only a
few µm away from the sample. This is when we start acquiring images to see the
magnetic signal from a large 30 × 30 µm2 area. Although there is no contact or
closed feedback loop yet, images can still be acquired. Since one SOT may differ
from another in its magnetic field sensitivity map, we usually perform a large field
sweep each time we cool down a new SOT. This involves ramping the magnet to
fields as high as ±0.1 T. Consequently, magnetic flux in the form of vortices enters
the sample and remains trapped there even after we lower the field back to zero.
Therefore, images taken after such a field sweep will exhibit the trapped flux while

http://dx.doi.org/10.1007/978-3-642-29393-1_2
http://dx.doi.org/10.1007/978-3-642-29393-1_2
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Fig. 3.9 Comparison between images with and without flux penetration. Both measurements were
taken at T = 0.3 K and an applied field H = −40 Oe. The tip-sample separation was a few µm.
Left The magnetic signal from a niobium serpentine with flux penetration. Maximum applied field
before measurement: 1000 Oe. Bright regions are ones in which flux had fully penetrated. Right
after cooling the sample in a magnetic field of −60 Oe

Fig. 3.10 a A topographic measurement of the Nb serpentine showing a double-edged funnel in
the central part of the strip; b A self-field measurement of the same serpentine with a current of
3 mA at 13.44 kHz run through it

images taken after cooling at a specific magnetic field should have a vortex density
proportional to the magnetic field, with a vortex–vortex separation of ≈√

�0/B. This
dramatic difference is shown in Fig. 3.9. In this figure, we first show the magnetic
profile of the serpentine after sweeping the field between −1000 and 1000 Oe (left)
immediately after the sequence from Fig. 3.8 terminated. As mentioned above, this
usually means that the tip is a few µm above the sample. Then we heated the sample
above its superconducting critical temperature (9.2 K), field-cooled it at an applied
field of −60 Oe and measured the magnetic profile at an applied field of −40 Oe. At
this tip-sample separation, one cannot resolve single vortices in niobium.
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Fig. 3.11 a Magnetic image measured by the SOT a few nm above the funnel-shaped area in the
serpentine taken after a field cooling in a magnetic field of −34 Gauss. The dark spots are vortices;
b a measurement of the area marked by the dashed red line in the left image; c a topographic
measurement of the Nb film, 3×3 µm2, in the same setup; d grain size analysis for (c). Most grains
are between 120 and 300 nm in diameter and 30–40 nm in height

3.2.2 Vortices in a Niobium Serpentine

As a test sample we used a 200 nm thick niobium film, deposited using an e-gun
while keeping the substrate at a temperature of 300◦C in a background pressure of
10−6 Torr and patterned as a meandering serpentine. With such a geometry one can
drive a known current through the entire sample and measure its corresponding self-
field while also be able to obtain the magnetic signal resulting from the Meissner
effect and, of course, when close enough to the sample, observe vortices. We applied
an AC current of 3 mA at a frequency of 13.44 kHz and measured the resulting
self-field using the SOT concurrently with the topography measured from the tuning-
fork’s frequency shift. These two measurements are shown in Fig. 3.10. The self-field
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Fig. 3.12 Cross-sections of vortices in comparison to calculation. The best fit is for a magnetic
penetration length, λ, of 400 nm and a coherence length, ξ , of 70 nm. This calculation takes into
account the finite size of the tip, with a radius of 104 nm. The profile itself is calculated in an external
field of 34 Oe and for a tip-sample separation of 20 nm. EHB are the initials of the late Prof. Dr.
Ernst Helmut Brandt, who wrote the computer code for the calculation of these profiles at any field
[16]. See Appendix D for a short explanation of how this profile is calculated, with emphasis on
the incorporation of the finite tip size to the calculation

image agrees with the theoretical (Biot-Savart law) calculation of the magnetic field
emanating from a current through a superconducting thin strip and closely follows
the topography.

Figure 3.11a, b shows the DC magnetic signal a few nm above the double-edged
funnel-shaped region in the serpentine shown in Fig. 3.10. The sample was field-
cooled in an applied magnetic field of −34±7 Oe. The vortex lattice is highly disor-
dered, due to the strong pinning in Nb film at such a low temperature (see Ref. [15]
and references therein). We can count approximately 34 individual vortices, which,
for an image area of 4.6 × 4.6 µm2 gives a total field of 33 Gauss. The magnetic
field modulation can be fit [16] to find the corresponding magnetic penetration length
of the niobium film, which in this case turns out to be 400 nm. Figure 3.11c shows a
topographic measurement of the same region, taken in our setup, showing the granu-
lar structure of the Nb film. The grain structure analysis is shown in Fig. 3.11d. Most
grains are between 120 and 300 nm in diameter and 30–40 nm in height.

We took a few cross-sections of vortices from Fig. 3.11b and compared them to
a simulated vortex profile calculated with λ = 400 nm, ξ = 70 nm, an applied field
of 34 Oe and at a tip-sample separation of 10 nm. Figure 3.12 shows these cross-
sections on the image from Fig. 3.11b and also superimposed for comparison with
the calculated vortex profile.
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Chapter 4
Discussion

In this work, I described the detailed characterization of our group’s unique SQUID-
on-tip. This all-aluminum device will hopefully be the precursor of more exciting
variations of the sensor. It certainly has some very promising features for the field of
magnetic scanning probe microscopy in terms of magnetic field sensitivity, sensor
size and ease of manufacturing. While the projected spin sensitivity is currently
“only” 65µB/

√
Hz, its followers, namely the all-lead SOT and others, show at least

a ten-fold increase in sensitivity due to a much higher critical current. With those
numbers in mind, one can easily think of studying molecular magnets [1, 2], Wigner
crystals in carbon nanotubes [3, 4], and many other magnetic-rich phenomena on
the microscopic scale.

The uncustomary geometry of the SOT together with coupling to a quartz tuning-
fork allows for its assembly as a dual magnetic/topographic scanning probe micro-
scope, making it the first SQUID acting as magnetic sensor in a scanning probe
microscope with the sensor itself being only a few nanometers away from the surface
of the sample. Since in many systems the magnetic signal decays strongly (distance
cubed for magnetic dipoles, exponentially for a vortex lattice in superconductors,
etc.), the sensor-sample separation is of great importance.

Indeed, this work culminated in successfully imaging magnetic phenomena in
type-I and type-II superconductors, starting from verifying Biot-Savart’s law in alu-
minum thin films, then confirming the Meissner effect in aluminum, NbSe2 and
niobium and finally imaging quantized flux, or vortices, in thin films of niobium.
All of these measurements fill us with belief and confidence in the microscope’s
capabilities and future prospects.

I did not, however, manage to reach all of the goals defined in Sect. 1.3. Specifi-
cally, I did not succeed in observing vortex dynamics. The last sample I measured was
a thin film of Nb, in which the pinning force at such a low temperature (T/TC = 0.03)
is very large, rendering vortex depinning virtually impossible within the limitation of
maximal current that can be applied in our system due to heat dissipation vs. cooling
power. There are several possibilities for materials in which the observation of vortex
dynamics at 0.3 K is feasible, namely NbSe2, FeSe, very thin films of aluminum, etc.

A. Finkler, Scanning SQUID Microscope for Studying Vortex Matter 45
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As our dear collaborator, Prof. Martin E. Huber from the University of Colorado,
Denver, has said on numerous occasions in the past, this is just the first milestone in
an exciting new project, which will surely lead to many important discoveries and
hence, publications, in the future.
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Appendix A
Explanation of the Negative Differential
Resistance

In this appendix we present a simplified analytical solution of the electric circuit
used to measure the SOT. A more rigorous numerical solution of the SOT response
is presented in Appendix B. We thank Grigorii Mikitik in realizing this analysis.

The model treats the SOT as a simplified Josephson junction, which is
described by the critical current, Ic; phase difference, h; between the two
superconducting sides of the junction and a shunt resistor, R, which is the normal
state resistance of the junction. As shown in Fig. A.1, the external circuit includes
an input resistor, Rin; a parasitic resistance in series with the SOT, Rs; and the
external voltage bias shunt resistor, Rb: The current through the SOT is denoted as
ISOT: The input resistor, Rin; is assumed to be much larger than all other resistors in
the circuit. L is the inductance of the SSAA’s input coil. Finally, Iin is the input
current, which under the Rin � R; Rb; Rs approximation, is just Vin=Rin:

First, we write the Kirchoff equations for the two cases, using the Josephson
relation between the phase and voltage for the second case:

1. ISOT� Ic

Vb ¼
Rb � Rs

Rb þ Rs
� Iin ðA:1Þ

ISOT ¼
Rb

Rb þ Rs
� Iin ’

Rb

Rb þ Rs

Vin

Rin

ðA:2Þ

2. ISOT [ Ic

Vb ¼ Iin � ISOTð ÞRb ðA:3Þ

Vb ¼ ISOTRs þ ISOT � Ic � sin hð Þ � Rþ _ISOT � L ðA:4Þ

ðISOT � Ic � sin hÞR ¼ �h

2e

oh
ot

ðA:5Þ
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In the limit of L! 0; we use Eqs. A.1 and A.2, so that

Iin � ISOTð ÞRb ¼ ISOT � Rs þ R ISOT � Ic sin hð Þ ) ISOT ¼
Iin � Rb þ IcR sin h

Rb þ Rs þ R
:

ðA:6Þ

Using Eq. (A.6) in (A.5) gives us a differential equation for the phase as a
function of the circuit parameters, Iin; Rb; Rs;R and Ic:

�h

2e
_h ¼ R

Rb þ Rs þ R
� Iin � Rb � Ic sin hðRb þ RsÞ½ � ðA:7Þ

This equation can be written in a simpler form if we introduce the following
notations:

�h

2er
_hþ Ic sin h ¼ ~ISOT ðA:8Þ

with r ¼ R � RbþRs
RbþRsþR and ~ISOT ¼ Iin � Rb

RbþRs
: This is in fact a differential equation of

the form a _yþ b sinðyÞ � c ¼ 0 with a known analytical solution

yðtÞ ¼ 2 tan�1
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � b2
p

tan
ffiffiffiffiffiffiffiffiffi

c2�b2
p

2a t
h i

c

8

<

:

9

=

;

;

so that we can write an exact expression for the phase and calculate its derivative:

hðtÞ ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� I2
c

~I2
SOT

s

� tan e � r � t
~I2

SOT � I2
c

� �1=2

�h

" #

þ Ic

~ISOT

( )

ðA:9Þ

_h
�h

2er
¼

~ISOT
~I2

SOT � I2
c

� �

~I2
SOT þ I2

c cos xt þ Ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~I2
SOT � I2

c

q

sin xt
ðA:10Þ

with x ¼ 2er
�h

~I2
SOT � I2

c

� �1=2
:

Fig. A.1 A scheme of the
external circuit used to mea-
sure the SOT. The two
inductors and the SQUID
with an ‘‘A’’ inside comprise
the SSAA. The boxes labeled
‘‘x100’’ and ‘‘feedback’’ are
two custom-made electronic
boxes, a preamp and a feed-
back box, respectively
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Using Eq. (A.10) in (A.8) we get

Ic sin h ¼ � _h
�h

2er
þ ~ISOT ¼ ~ISOT �

I2
c ð1þ cos xtÞ þ Ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~I2
SOT � I2

c

q

sin xt

~I2
SOT þ I2

c cos xt þ Ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~I2
SOT � I2

c

q

sin xt
; ðA:11Þ

so that finally inserting back into Eq. (A.6)

ISOTðtÞ¼Iin �
Rb

RbþRsþR
þ R

RbþRsþR
~ISOT 1�

~I2
SOT�I2

c

~I2
SOTþI2

c cosxtþIc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~I2
SOT�I2

c

q

sinxt

2

6

4

3

7

5

ðA:12Þ

Over one period, the average current through the SOT is

�ISOT ¼
1

2p

Z

2p

0

dðxtÞISOTðtÞ ¼ ~ISOT �
R

Rb þ Rs þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~I2
SOT � I2

c

q

ðA:13Þ

To see that the current through the SOT decreases immediately after it reaches Ic;

we can write ~ISOT ¼ Ic þ � for a small �� Ic:

�ISOT ¼ Ic þ ��
R

Rb þ Rs þ R

ffiffiffiffiffiffiffiffi

2�Ic

p

� Ic 1� R
ffiffiffi

2
p

Rb þ Rs þ R

ffiffiffiffi

�

Ic

r� �

) �ISOT decreases with �:
In our experimental setup, we measure ISOT as a function of Vin: Therefore, if

we want to summarize:
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Fig. A.2 ISOT Vinð Þ charac-
teristics of a SOT and a fit
using R ¼ 90 X;Rb ¼
2:6 X;Rs ¼ 1:25 X; Ic ¼
11:5 lA
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�ISOT Vinð Þ¼
Vin

Rin

Rb

RbþRs
� R

RbþRsþR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vin

Rin

Rb

RbþRs

� �2

�I2
c

s

Vin

Rin

Rb

RbþRs
[ Ic

Vin

Rin

Rb

RbþRs

Vin

Rin

Rb

RbþRs
\Ic

8

>

>

>

<

>

>

>

:

ðA:14Þ

In Fig. A.2 we plot ISOT Vinð Þ of a tip and a fit according the derivation above, with
R ¼ 90 X;Rb ¼ 2:6 X;Rs ¼ 1:25 X; Ic ¼ 11:5 lA: The fit shows a reasonable
match to the experiment. In this specific measurement the ISOT Vinð Þ
characteristics were not measured up to input voltages high enough in order to
observe the eventual rise in current. This, of course, indeed occurs.

50 Appendix A: Explanation of the Negative Differential Resistance



Appendix B
Full SOT Circuit Analysis

In this appendix we consider the SOT circuit in more detail, as presented in
Fig. B.1. The model relies on each Josephson junction behaving according to the
resistively- and capacitively-shunted junction (RCSJ) model [1, 2]. In this model,
each junction has a critical current I0; in parallel with its self-capacitance C and
resistance R, so that the current through the entering these elements is
I ¼ C _V þ V=Rþ I0 sin d:

We define the following currents using the Josephson relation between the
current and the phase:

We also define ‘‘flux quantum bar’’ (FQB), �U0 	 U0=2p; so that from the
Josephson relation between the voltage and the phase we get

_dL ¼
VCL

�U0
ðB:1Þ

_dR ¼
VCR

�U0
ðB:2Þ

The current through the inductor and the voltage on it are, respectively,

Current through... Notation

CL ICL ¼ CL _VCL

CR ICR ¼ CR _VCR

Left junction IJL ¼ I0L sin dL

Right junction IJR ¼ I0R sin dR

LL ILL

LR ILR

Left weak link ITL

Right weak link ITR
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ILL ¼ ICL þ IJL ¼ CL _VCL þ I0L sin dL ðB:3Þ

VLL ¼ LL _ILL ¼ LLCL €VCL þ _dLLLI0L cos dL: ðB:4Þ

Next, we want to write down an expression for the voltage on the junction (or
capacitor) as a function of the current through the inductor and the phase. In order
to do that we need to consider the following:

V0 ¼
Vin � Rin ITL þ ITRð Þ

1þ Rin=Rb
ðB:5Þ

and

VSOT ¼ V0 � Rs ITL þ ITRð Þ ¼ Vin � Rin ITL þ ITRð Þ
1þ Rin=Rb

� Rs ITL þ ITRð Þ ðB:6Þ

On one hand

ILL ¼ ITL �
VSOT

RL
ðB:7Þ

and on the other hand

ILL ¼ CL _VCL þ I0L sin dL

so that
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Fig. B.1 The SOT circuit in
more detail, specifically the
two Josephson junctions



_VCL ¼
1

CL
ILL �

I0L

CL
sin dL ðB:8Þ

_VCR ¼
1

CR
ILR �

I0R

CR
sin dR ðB:9Þ

Finally, we want to write the equations for the time-derivative of the current
through the inductor as a function of the voltage on the capacitor and the phase
using VSOT ¼ VC þ VL and Eq. (B.6). In order to write that in a simple form we
need first to write VSOT as a function of ILL and ILR by inserting Eq. (B.7) into
(B.6):

VSOT ¼
Vin

1þ Rin=Rb
� Rs þ

Rin

1þ Rin=Rb

� �

ILL þ ILR þ
1

RL
þ 1

RR

� �

VSOT

� �

) VSOT 1þ Rs þ
Rin

1þ Rin=Rb

� �

1
RL
þ 1

RR

� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p0

¼ Vin

1þ Rin=Rb
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

q0

� Rs þ
Rin

1þ Rin=Rb

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R0si

ILL þ ILRð Þ

) VSOT ¼
q0

p0
Vin

|ffl{zffl}

1=p

� R0si

p0
|{z}

Rsi

ILL þ ILRð Þ ¼ Vin

p
� Rsi ILL þ ILRð Þ ðB:10Þ

As we wrote earlier,

VSOT ¼ VCL þ VLL ¼ VCL þ LL _ILL; ðB:11Þ

so that

_ILL ¼
VSOT

LL
� VCL

LL
: ðB:12Þ

Inserting the simplified expression for VSOT from Eq. (B.10) we get that

_ILL ¼
1

pLL
Vin �

Rsi

LL
ILL þ ILRð Þ � 1

LL
VCL ðB:13Þ

_ILR ¼
1

pLR
Vin �

Rsi

LR
ILL þ ILRð Þ � 1

LR
VCR ðB:14Þ

These six boxed Eqs. (B.1), (B.2), (B.8), (B.9), (B.13) and (B.14) comprise a set
of six differential equations with six variables, dL dR VCL VCR ILL and ILR: As is
standard in numerical analysis, and in exactly the same way as in Ref. [3], we switch
to the following dimensionless units: voltage in units of I0R; flux in units of U0;
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current in units of I0; capacitance in units of C0; inductance in units of L0; resistance
in units of R and time, h; in units of U0=2pI0R; so that

d

dt
¼ 2pI0R

U0

d

dh
:

The convention used is that the normalized form of a variable x will appear as ~x:
We start with Eq. (B.1):

_dL ¼
ddL

dt
¼ 2pI0R

U0

d~dL

dh
¼ I0R

U0=2p
~VCL;

so that

_~dL ¼ ~VCL ðB:15Þ

_~dR ¼ ~VCR ðB:16Þ

Next we look at Eq. (B.8):

dVCL

dt
¼ 1

CL
ILL �

I0L

CL
sin dL ¼

I0

C0 ~CL

~ILL � ~I0L sin dL

� �

;

so that

_~VCL ¼
d ~VCL

dh
¼ U0

2pI0R2C0

1
~CL

~ILL � ~I0L sin dL

� �

ðB:17Þ

_~VCR ¼
d~VCR

dh
¼ U0

2pI0R2C0

1
~CR

~ILR � ~I0R sin dR

� �

ðB:18Þ

Last, we look at Eq. (B.13):

_ILL ¼
I0

U0=2pI0R
_~ILL ¼

1
p

I0R

L0

~Vin

~LL
� I0R

L0

~Rsi

~LL

~ILL þ ~ILR

� �

� I0R

L0

~VCL

~LL
:

Introducing b0 ¼ 2L0I0=U0; we get

_~ILL ¼
1

pb0
~LL

1
p

~Vin � ~Rsi ~ILL þ ~ILR

� �

� ~VCL

� �

ðB:19Þ

_~ILR ¼
1

pb0
~LR

1
p

~Vin � ~Rsi ~ILL þ ~ILR

� �

� ~VCR

� �

ðB:20Þ

The relation between applied flux and the parameters is

Ua

U0
¼ 1

2p
dL � dRð Þ þ 1

U0
LLILL � LRILRð Þ: ðB:21Þ
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The initial conditions at DC are the following: The current in each junction does
not pass through R or C, so that

ILL ¼ IJL ¼ I0L sin dL ¼ ITL: ðB:22Þ

Therefore, Eq. (B.21) becomes

Ua

U0
¼ 1

2p
dL � dRð Þ þ 1

U0
LLI0L sin dL � LRI0R sin dRð Þ: ðB:23Þ
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Fig. B.2 Current through left (ILL in solid) and right (ILR in dashed) inductors of each weak link
for different parameters in the simulation. All calculations were performed for U=U0 = 0.4. Top
no asymmetry in any of the components (inductors, resistors, capacitors, critical currents); Bottom
An asymmetry in the critical current (I0L ¼ I0ð1þ aIÞ I0R ¼ I0ð1� aIÞ); Each subfigure shows
one typical period, corresponding to a U0 flux slip through the SOT, as a function of time. The
rectangles mark the beginning and the end of the period, identified by zero crossing. Circles mark
the middle of the period



In our dimensionless units, Eq. (B.23) becomes

2pU ¼ dL � dR þ pb0 LLI0L sin dL � LRI0R sin dRð Þ: ðB:24Þ

where U is the dimensionless applied flux. From Eq. (B.24) we see that for a given
applied flux and critical currents of both junctions, one can solve it, i.e. find for
which values of dL and dR the equation is obeyed, and calculate the maximal
critical current of the device.

For each value of flux, we then solve the six differential equations using an
advanced Runge-Kutta method [4, 5] to get a matrix of solutions as a function of
time. In principle this should be enough, since the solutions include the currents
through each arm of the SOT, and we are interested in their sum. However, the
currents are highly oscillatory in nature, and a simple averaging cannot give
the correct average (DC) value which corresponds to the values measured in the
experiment. A few examples of how these currents look like as a function of time
for different asymmetry parameters is shown in Fig. B.2. Indeed the first
observation is that the time dependence, i.e. before averaging, is non-trivial and
changes dramatically when changing the asymmetry parameters. The second
observation is that a simple averaging of this signal would not work. This calls for
a more sophisticated way of averaging. It entails the identification of a ‘‘period’’ in
the signal by looking at zero-crossings and then averaging over one period. Once
we get the average (DC) values, we perform a linear interpolation of the arrays.
The reason for that is due to the non-linear part of the array (above the critical
current), the spacing between adjacent pixels is not even. For the DC values then,
we compare results of this simulation with aI ¼ 0:5; aC ¼ aR ¼ aL ¼ 0 to data
from Ref. [6]. This comparison is displayed in Fig. B.3.
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Fig. B.3 Comparison of normalized flux, U=U0; voltage bias, Vin and current through SOT, ISOT;
characteristics; a Experimental data for one period in magnetic flux. With a period of 608 Gauss,
this corresponds to a field span of 
304 Gauss around zero; b Simulation based on Tesche and
Clarke [7] according to the derivation given above. The asymmetry parameters used here were
aI ¼ 0:5; aR ¼ aC ¼ aL ¼ 0; with C ¼ 0:1pF;L ¼ 550 pH and R ¼ 95 X:



Appendix C
Magnetic Field Profile of a Serpentine

In this appendix we show the steps of the calculation for the magnetic profile of a
superconducting serpentine structure when current I is passed through it. The width
of a strip in this calculation is a and distance between two near strip edges is b so
that the period is aþ b: A schematic drawing of the structure is shown in Fig. C.1.

The calculation is performed as follows:

1. Take a single strip and divide it into N segments. This defines the width of the
discrete current element contributing to the magnetic field profile.

2. Create an array of x-coordinates, [x], for the above single strip, having the same
size, N.

3. Create the current density array, [J(x)]. Take into account the superconducting
nature of the structure, i.e. current flows mostly on the edges of the
superconductor [8]. Quantitatively, this amounts to multiplying the current

elements’ magnitude with a factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða=2Þ2 � x2ðkÞ
q

; where xðkÞ goes from

�a=2 to a=2: We see that indeed the biggest contribution comes from the
edges, where this factor is largest.

4. Duplicate both [x] and [J(x)] to the left and to the right of the single strip, with
the current density arrays multiplied by a minus sign to accommodate for the
change of direction in the flow of current. Repeat this process several times
(may be important for a narrow strip and short period, but is less important for a
wide strip and large period). This duplication is actually an approximation,
which assumes that there is no interaction between the strips.

5. Calculate the magnetic field contribution of each current element for a point
Pðxk; zÞ; located a distance z from the surface of the serpentine and at location
xk along the x-axis. This calculation is performed using the Biot-Savart law, i.e.

B ¼
Z

l0

4p
Idl� r̂

r2j j ;
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where dl is a vector of length dl pointing along the current flow direction, r is
the distance between the current element and the point P and l0 is the magnetic
permeability of vacuum. For each point, Pðxk; zÞ; we need to add the
contributions of all current-carrying elements along the x-axis and along the
current flow direction, y. The latter is the usual Biot-Savart calculation for
the magnetic field of a current-carrying wire, which gives B ¼ l0=ð2prÞ: For
the former, we write the distance between each current-carrying element j and
Pðxk; zÞ:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ xj � xk

� �2
q

:

Finally, it is important to remember that the SOT measures only flux
perpendicular to it, or in our case, in the z-direction. Therefore, each contribution

needs to be multiplied by its z-axis projection, or
xj�xkð Þ

r : Thus, the magnetic field
contribution to the signal measured by the SOT at a point Pðxk; zÞ from a current
carrying element at a point xj is

dBðxk; xj; zÞ ¼
l0

2p
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ xj � xk

� �2
q

xj � xk

� �

r
: ðC:1Þ

The field at Pðxk; zÞ is therefore
R

dBðxk; xj; zÞdxj where the limit is taken from one
strip to the left of xk

0s strip to one strip to its right.
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Fig. C.1 A schematic draw-
ing of the serpentine struc-
ture. The superconducting
strip has a width a and the
structure itself a period of aþ
b: On the right we show the
distances entering the cur-
rent-element contribution to
the magnetic field at a point
Pðxk; zÞ:



Appendix D
Magnetic Field Profile of a Vortex
as Seen by the SOT

We calculate the magnetic field of a Ginzburg-Landau vortex lattice in a
superconductor having a coherence length, n; and magnetic penetration length, k;
for an applied external field Hext: For this purpose we use a computer program
written by Prof. Ernst Helmut Brandt [9]. In this program he uses Fourier series as

trial functions for the Ginzburg-Landau function jwðx; yÞj2 and magnetic field
Bðx; yÞ and minimizes the Ginzburg-Landau free energy with respect to a finite
number of Fourier coefficients. The input parameters of this program are n; k; Hext

and the film thickness, d, and the outputs are wðx; y; zÞ and Bðx; y; zÞ:
Our purpose is to accommodate for the finite radius of the SOT, R, into the

actual magnetic field image we expect to measure. In image-processing jargon this
means a convolution of the computed Bðx; y; zÞ with a kernel the size of the SOT’s
diameter. We denote the computed magnetic field for a specific height z above the
sample as Bkl; which is an Nx � Ny matrix, with k ¼ 1. . .Nx; k 2 Z and l ¼
1. . .Ny; l 2 Z: For each element in this matrix we then compute the following
double sum:

Bkl ¼
X

kþmx

i¼k�mx

X

mþmy

j¼l�my

Bij;

where xi � xkð Þ2þ yj � yk

� �2 \ R2 and mx and my are the (rounded) radii of the tip
in pixels corresponding to the computed matrix, e.g. a 256 � 256 matrix of size
4� 4 lm2 and a radius of 100 nm give mx ¼ my ¼ 7 pixels.
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A
Aluminum, 29
Asymmetry, 34

B
Bragg glass, 2
Broad-band noise, 13

D
Depinning force, 3
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E
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F
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I
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J
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L
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M
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Mechanism, 24

N
Negative Differential

Resistance, 47
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Noise, 36

P
Phase-locked loop, 23
Piezoelectric scanners, 24
Pipette puller, 17

R
Relaxation oscillation, 36
Resistively- and capacitively-shunted

junction, 51

S
Serpentine, 26, 27, 39, 42, 57
Shear-force microscopy, 12
Slip-stick, 24
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S (cont.)
SQUID, 8
SQUID series array amplifier, 22

T
Tin, 38
Topography sensor, 18
Trans-impedance converter, 22
Tuning fork, 9

V
van der Waals, 11
Viscosity, 20
Vortex lattice, 59
Vortices, 1, 41, 42

W
Washboard frequency, 13
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