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Preface

Quantization of physical systems includes a correct definition of physical
observables (such as the Hamiltonian and the momentum) as self-adjoint operators
in an appropriate Hilbert space and their proper spectral analysis. A solution of
this problem is not a straightforward and unambiguous procedure for nontrivial
quantum systems (systems on nontrivial manifolds, in particular on manifolds
with boundaries or with singular interactions). Quantum-mechanical models with
singular potentials, both relativistic and nonrelativistic, and/or with boundaries,
play an important role in physics. A consistent treatment of nontrivial quantum
systems is beyond the scope of the mathematical apparatus in standard textbooks
on quantum mechanics (QM). But a “naive” treatment based on finite-dimensional
linear algebra or even on the theory of bounded operators can result in paradoxes
and incorrect results. Some paradoxes due to a “naive” treatment demonstrate that
even simple physical models can be nontrivial from the mathematical standpoint.
It is well known that a rigorous pure-mathematical approach to constructing
physical observables in nontrivial quantum systems leads to a result that is not
unique. Additional physical arguments must eventually be used to choose a proper
quantization for a given physical system. An application of the technique of
self-adjoint extensions of symmetric operators makes the inherent nonuniqueness
obvious and facilitates a physically proper choice.

In this book, we focus on the problem of a correct definition of quantum-
mechanical observables, which is an important part of operator quantization. We
show how this problem can be solved for comparatively simple but nontrivial
quantum-mechanical systems. The solution of the above problem requires invoking
some nontrivial notions of functional analysis concerning the theory of linear
operators in Hilbert spaces, in particular, the notions of unbounded self-adjoint
operators and their spectral analysis and of self-adjoint extensions of symmetric
operators. The general theory is then illustrated on a number of physical examples.
In particular, it is shown how the problem of a correct definition of observables is
solved for a free one-dimensional particle on the whole axis, on a semiaxis, and
on a finite interval. In addition, various nontrivial quantum systems are treated
in accordance with the general mathematical theory of self-adjoint extensions
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and a rigorous spectral theory. These are the one-dimensional particles in the
Calogero potential and in the potentials localized at the origin, in particular, deltalike
potentials. Additionally, a rigorous treatment of the Schrodinger operators with
all the so-called exactly solvable potentials is given, and the relativistic problem
for an electron in the Coulomb field of arbitrary (including supercritical) charge
is considered in detail. A similar analysis is carried out for nonrelativistic and
relativistic electrons in the Aharonov—Bohm field and in the so-called magnetic-
solenoid field.

The book is addressed to readers who are interested in deepening their under-
standing of mathematical problems in QM beyond the scope of standard textbooks.

Sédo Paulo, Brasil Dmitry Gitman
Moscow, Russia Igor Tyutin and Boris Voronov
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Chapter 1
Introduction

1.1 General Remarks

Among different approaches to constructing a quantum description of physical
systems and its proper interpretation, operator quantization is the oldest and most-
used one. The main first-stage problem of operator quantization is the problem of
a correct definition of observables as self-adjoint operators (s.a. operators in what
follows) in an appropriate Hilbert space. The self-adjointness of observables is of
crucial importance for quantum theory (QT). An s.a. operator possesses a real-
valued spectrum and a complete orthogonal set of (generalized) eigenvectors in the
corresponding Hilbert space. These properties of any observable provide a basis
for the probabilistic interpretation of QT (in particular, quantum mechanics (QM),
which is the principal object of our consideration). The problem of a correct defini-
tion of quantum observables is generally nontrivial in the case of physical systems
with boundaries and/or with singular interactions (including QFT models). In what
follows, for the sake of brevity, we call such systems nontrivial physical systems
(or simply nontrivial systems). The interest in this problem revives periodically
in connection with studies of specific nontrivial systems such as a particle on a
finite interval or on a semiaxis, a particle in singular potential fields, in particular
in the Aharonov—Bohm or in §-like potential fields, and so on. The reason is that
the solution of the problem, and therefore a consistent QM treatment of nontrivial
systems, requires a considerable amount of preliminary information from different
advanced chapters of functional analysis. However, the content of such chapters
usually goes beyond the scope of the mathematical apparatus presented in standard
textbooks on QM for physicists,1 e.g., [32,39,44,48,64,104,109,112,136,138] and
even in recently published textbooks [23,37,63,98].

IThe exceptions such as [27,57, 83,84, 128, 144,147, 153] are mainly intended for mathematically
minded physicists and mathematicians.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 1
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_1,
© Springer Science+Business Media New York 2012



2 1 Introduction

One of the aims of this book is of a pedagogical nature, namely, to convince the
reader—physicist that he or she must be very careful when reading standard textbooks
on QM for physicists, and particularly careful when applying the notions and
prescriptions from such textbooks to nontrivial systems as regards the mathematical
apparatus of QM.

The mathematical apparatus of QM is functional analysis, more specifically, the
theory of linear operators in Hilbert spaces. It is a quite extensive and ‘“‘subtle”
science, so it takes considerable time to master it. For this reason, standard textbooks
on QM for physicists present a rather simplified version of the relevant parts
of functional analysis in the form of brief “rules” such that many mathematical
subtleties are necessarily left aside. The simplified rules are usually based on
systematic references to our experience in finite-dimensional linear algebra, which
often proves to be misleading. We recall these rules below. They can be sufficient as
long as we examine comparatively simple QM systems. But if we follow these rules
literally in our treatment of even the simplest nontrivial systems (in what follows, we
call this approach the naive treatment), we encounter some paradoxes that may lead
us to incorrect conclusions. In this chapter, we present a number of such paradoxes,
and a resolution of them is given in subsequent chapters.

As stated above, QM generally and a consistent QM treatment of nontrivial
systems particularly require the language of the theory of linear operators in Hilbert
spaces and realizing subtleties associated with unbounded operators, in particular,
with such basic notions as a closed operator, an adjoint operator, a symmetric
operator, and an s.a. operator,” the spectrum of an s.a. operator and its spectral
decomposition, the so-called inversion formulas for s.a. differential operators, and
so on. Another aim of this book is to remind the reader—physicist of (or provide an
introduction to) these notions and some related subjects.

A crucial subtlety is that an unbounded s.a. operator cannot be defined in the
whole Hilbert space, i.e., on an arbitrary QM state, which is usually assumed in a
preliminary “idealized” scheme of operator quantization. But there is no operator
without its domain of definition: an operator is not only a rule of acting, but also a
domain in a Hilbert space to which this rule is applicable. In the case of unbounded
operators, the same rule for different domains generates different operators with
sometimes completely different properties. Provided a rule of acting is given, it is
an appropriate choice of a domain for a QM observable that makes it an s.a. operator.
The main problems are related to this point. The formal rules of operator canonical
quantization (see below) are of a preliminary nature and generally provide only
“candidates” for unbounded QM observables, so to speak, for example in the form of
the so-called s.a. differential operations,® because their domains are not prescribed
by the canonical quantization rules. Appropriate domains even are not clear at the
first stage of quantization, especially in the case of nontrivial physical systems,

2For unbounded operators, there is a crucial difference between the notions of symmetric
(Hermitian) and s.a. operators; for bounded operators, these notions actually coincide.

3S.a. according to Lagrange in mathematical terminology; see Chap. 4.
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although it is prescribed that observables must be s.a. operators. It should be noted
that the choice of domains providing the self-adjointness of all observables involved,
especially the primarily important observables such as the position, momentum,
Hamiltonian, and symmetry generators, is a necessary part of quantization resulting
in a specification of a QM description of a physical system in question. This is
actually a physical problem. Mathematics can only help a physicist in making a
choice by indicating various possibilities.

It is expected that for physical systems whose classical description includes
infinite (but finite-dimensional) flat phase spaces such as R?" and nonsingular
interactions, a quantization is practically unique: the most important physical
observables are defined as s.a. operators on some “natural” domains; in particular,
classical symmetries can survive under quantization. The majority of textbooks
for physicists begin their exposition of QM with a treatment of such physical
systems. Of course, nontrivial physical systems are also examined thereafter.
Nevertheless, the common belief is that no actual singularities exist in nature.
They are the products of our idealization of reality, i.e., are of a model nature,
which is related, for example, to our ignorance of the details of interaction at
small distances. We formally extend an interaction law known for finite distances
between finite objects to infinitely small distances between pointlike objects. We
treat boundaries as a result of infinite potential walls that are actually always
finite.* The consequence is that singular problems in QM are commonly solved
via some regularization considered to be natural and then via a subsequent limiting
process of removing the regularization. In some cases, this procedure requires the
so-called infinite renormalization (of coupling constants, for example). But in some
cases, no reasonable limit is known. (It should be pointed out that here, we mean
conventional QM rather than quantum field theory.) It may also happen that different
regularizations yield different physical results. It is precisely the case in which
mathematics can help a physicist with the theory of s.a. extensions of symmetric
operators. This was first recognized by Berezin and Faddeev [26] in connection
with the three-dimensional §-potential problem.

The practice of quantizing nontrivial systems shows that preliminary candidates
for observables can be quite easily assigned symmetric operators defined on such
domains that “avoid” problems: they do not “touch” boundaries and “escape” any
singularities of interaction; this is a peculiar kind of “mathematical regularization.”
But such symmetric operators are commonly non-s.a. The main question then is
whether these preliminary observables can be assigned s.a. operators by some
extensions of the initial symmetric operators that convert the candidates to real
observables. The answer is simple, positive, and unique if a symmetric operator
under consideration is bounded. However, if it is unbounded, the problem is
generally nontrivial.

40Of course, a flat infinite space is also an idealization, as is any infinity.



4 1 Introduction

The theory of s.a. extensions of unbounded symmetric operators provides the
main tool for solving this problem. It turns out that these extensions are generally
nonunique, if they are possible at all. From the physical standpoint, this implies
that when quantizing a nontrivial physical system, we are generally presented with
different possibilities for its quantum description. The general theory describes all
the possibilities that mathematics can offer to a physicist. Of course, a physical in-
terpretation of available s.a. extensions is a purely physical problem. Any extension
is a certain prescription for the behavior of a physical system under consideration
near its boundaries and singularities. We also believe that each extension can be
understood through an appropriate regularization and a subsequent limiting process,
although this is generally a complicated problem in itself. But in any case, the right
of a final choice belongs to the physicist.

The book is organized as follows. In the introduction, we demonstrate that an
idealized scheme of operator canonical quantization applied to nontrivial systems
can lead to a number of paradoxes. Chapters 2 and 5 (purely mathematical chapters
in a sense) contain all the information about Hilbert spaces, linear operators in
such spaces, and a strict formulation of the spectral problem for s.a. operators that
physicists need and that is used in the book. This standard material is followed by the
general theory of s.a. extensions of symmetric operators presented in Chap. 3. The
traditional exposition (due to von Neumann) is accompanied by a nontraditional
approach that is based on the notion of asymmetry forms generated by adjoint
operators, see our works [156, 157]. The basic statements concerning the possibility
and specification of s.a. extensions both in terms of isometries between the deficient
subspaces and in terms of the sesquilinear asymmetry form are collected in the
main theorem. It is followed by a comment on a direct application of the main
theorem to physical problems of quantization. We outline a possible general scheme
of constructing QM observables as s.a. operators starting from initial formal
expressions supplied by canonical quantization rules. The subsequent Chap.4 is
devoted to the exposition of specific features and appropriate modifications of the
general theory as applied to ordinary (one-dimensional) differential operators in
Hilbert spaces L*(a,b) [158]. For symmetric differential operators, the isometries
between deficient subspaces specifying s.a. extensions can be converted to s.a.
boundary conditions, explicit or implicit, based on the fact that asymmetry forms
are expressed in terms of the (asymptotic) boundary values of functions and their
derivatives. We describe various ways of specifying s.a. operators by s.a. boundary
conditions depending on the regularity or singularity of the ends of the interval
under consideration. In particular, we propose a new method for specifying s.a.
ordinary differential operators by s.a. boundary conditions based on evaluation
of the quadratic asymmetry form in terms of asymptotic boundary coefficients.
A comparative advantage of the method is that it makes it possible to avoid
the evaluation of deficient subspaces and deficiency indices. Its effectiveness is
illustrated in Chaps.6—10 with examples of constructing QM observables for a
number of nontrivial systems. In Chaps. 6—8, we consider various one-dimensional
systems: a free particle on a semiaxis and on a segment of the real axis (Chap. 6),
a particle in different potential fields including the Calogero potential, deltalike
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potentials, and so-called exactly solvable potentials (Chaps.7 and 8). In Chaps. 9
and 10, we study certain one-particle three-dimensional problems. In Chap. 9, we
consider a Dirac particle moving in the Coulomb field of a point charge Ze. We
interpret the Dirac equation with the Coulomb field as the Schrodinger equation;
the corresponding quantum Hamiltonian is called the Dirac Hamiltonian. We define
the Dirac Hamiltonian with the Coulomb field as an s.a. operator for any real Z and
solve the corresponding spectral problem. In Chap. 10, we similarly examine the
Dirac Hamiltonian with the Aharonov—Bohm field and with the so-called magnetic-
solenoid field.

1.2 Idealized Scheme of Operator Canonical Quantization

For a physicist, quantization means constructing a QT for a given physical system
on the basis of an initial classical theory and in accordance with the correspondence
principle. The correspondence principle requires that the QT must reproduce the
predictions of the initial classical theory in the classical limit (large masses,
macroscopic scales, smooth potentials, and so on), which is formally the limit
h — 0, where # is the Planck constant.’ The quantization problem usually does not
have a unique solution. The only criterion for whether a constructed QT is proper
remains the coincidence of its predictions with experiment. The development of
QT began with the quantization of the simplest systems such as a free particle,
a harmonic oscillator, and a nonrelativistic particle in some potential fields. In
fact, the experience in the quantization of such systems was used to formulate a
consistent general scheme of operator quantization for an arbitrary system with
canonical Hamiltonian equations of motion for phase-space variables. It is this
scheme that was called canonical quantization. In what follows, we outline the
canonical quantization rules as they are usually expounded in standard textbooks
on QM for physicists. This is a “first approximation” to a proper quantization, so to
speak, the naive treatment, as was already mentioned before, or the idealized scheme
of operator canonical quantization. In short, this scheme is as follows.

(a) It is assumed that there exists a canonical Hamiltonian formulation of the
classical mechanics of a physical system under consideration. This means that
a state of the system at any instant of time is specified by a point of some
even-dimensional phase space; the points of this space are labeled by canonical
generalized coordinates x“ and momenta p,, a = 1,...,n, where n is the
number of degrees of freedom. The time evolution of a state of the system in
the course of time ¢ is described by the Hamiltonian (canonical) equations of
motion for the canonical coordinates x“(¢) and p,(¢):

0 ={x"H}, po={psH}.

SFor a mathematician, quantization is a quantum deformation of classical structures; the deforma-
tion parameter is the Planck constant .
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where H = H (x, p) is the Hamiltonian of the system and {, } is the canonical
Poisson bracket. The canonical Poisson bracket of two arbitrary functions f
and g on the phase space is defined by

_ df og  9df dg
{f,g}—;(@% T axu)’ (1.1)

in particular, {x“, p,} = §j. All local physical quantities (classical observables)
f are real functions of the phase-space variables, f = f(x, p). Classical ob-
servables form a real associative commutative algebra, in particular, [ f, 3] =
Nfa=hfi =0,V fa

In QM, a state of a physical system at any instant of time is specified by a vector
Y in a Hilbert space $), which is called the space of states. A scalar product of
two vectors | and ¥, is denoted by (v, ¥»). To a first approximation, it is
assumed that any state ¥ € §) can be realized physically; in particular, the
superposition principle holds: if states ¥, and y, are realizable, then the state
¥ = a1y + axy, with any a;, a, € C is also realizable.

In QT, each classical observable f = f(x, p) is assigned an s.a. operator f ,
f — f , acting in a Hilbert space $). It is called a quantum observable. To a
first approximation, it is assumed that any operator f , including observables, is
defined on any state ¥, i.e., f v € 9, VY € 9, and is uniquely determined by
its matrix elements (wl, f 1//2), Y, ¥, € 9, and what is more, by its matrix

on = (e, Ae,, with respect to any orthonormal basis {e,}S°, a complete
p y 1 p

orthonormalized set of vectors in §). Then any operator f is assigned its adjoint
f 7T defined by

(Wlsz"Llﬁz) = (flﬁl,%), Vi, ¥ € 9,

and thereby the involution (conjugation) f —> f T is defined in the algebra of
operators with the properties®

(f+)+=f, af)+=af+, VaeC.

+

R + N A\t R
(f+g) =fr+it, (fg) =&
The self-adjointness of f means that f = f +, or

(%,f%) = (flﬁl,%), VY1, € 9.

6The bar ~ over an expression denotes complex conjugation.
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The mean value f )y of any quantum observable f in a state ¥ and the
corresponding dispersion Af are respectively defined by

W (wrv)
U =w

ar = (7= )

The self-adjointness of observables is assumed to imply that any observable
f can be diagonalized, which means that the eigenvectors, or eigenstates, of
f form an orthonormal basis in §); the spectrum of an observable is defined
as a set of all its eigenvalues. The spectrum determines possible measurable
values of the corresponding observable, while the complete orthonormalized
set of the eigenstates of the observable provides a probabilistic interpretation of
its measurements.

(d) According to the correspondence principle, there exists a certain relation
between the Poisson bracket { 1, /2} = f3 of classical observables f; and f;
and the commutator [ fl, f;] of their quantum counterparts fl and f;, namely,
[/, /o] = ihfs + O (h%); a supplementary operator O (A?) vanishes with
vanishing % as 2. A more transparent form can be given to this correspondence:

14

Ui iy — = [ Bl + 0.

That is, according to the correspondence principle, the Poisson bracket of
classical observables i 1s assigned the commutator of their quantum counterparts
times the factor (i)' plus in general, a supplementary operator 0 (h).

The position operators X and momentum operators p* are postulated to be
s.a. and satisfy the canonical commutation relations

[£4.2°] = [Pa. Pp] = 0. [89, pp] = ih {x“, pp} = B8} . (1.2)

The correspondence principle requires that the quantum counterpart f
of a classical observable f (x, p) be of the form f = f(&, p) + O (h).
A supplementary operator 0 (h) is generally necessary to provide the self-
adjointness of f . In the general case, the correspondence principle does not
allow a unique construction of the operator function f(X, p) in terms of the
classical function f(x, p) because of the noncommutativity of X and p (the
so-called ordering problem.”)

"Numerous papers have been devoted to the study of various rules of assigning operators to
classical quantities. A substantial contribution to a resolution of this problem is due to Berezin
[25].
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To the first approximation whereby any observable can be diagonalized, it
is argued that commuting observables fl and fz have a joint spectrum, i.e., a
common set of eigenvectors, which implies the simultaneous measurability of
the observables. A complete set of observables is defined as a minimum set
of n commuting observables fk, k=1,...,n, [f;f;] = 0, Vk,I, whose
joint spectrum is nondegenerate and whose common eigenvectors provide a
unique specification of any vector in terms of the corresponding expansion
with respect to these eigenvectors. For a complete set of observables, we can
choose all the position operators X¢. The momentum operators p, can also be
chosen for a complete set of observables. Different complete sets of observables
can be considered, and their spectrum and eigenvectors specify the quantum
description of a system under consideration.
The time evolution of a state of the system in the course of time ¢ is described
by the Schrodinger equation for the state vector y(¢),

ih— = Hy, (1.3)

with an initial condition v (fy) = ¥, where the operator H, the quantum
Hamiltonian, the energy observable, corresponds to the classical Hamiltonian H.

Because the initial state v can be arbitrary, it is assumed that His certainly
applicable to any state Y € §.

A realization of the canonical commutation relations (1.2) in a specific
Hilbert space (representation of canonical commutation relations) offers a prac-
tical possibility for solving the Schrodinger equation and finding probabilities
of transitions from one state to another, means of physical quantities, and
probabilities of measurements using the accepted rules.

It was canonical quantization that was first used to construct the QT for
the simplest systems. There exist alternative formulations of QT, for example
formulations in terms of Green’s functions, functional integrals, and so on.
Each of these formulations can either be introduced independently by a set of
postulates or “derived” logically from the operator formulation based on the
canonical quantization method. In the latter case, an alternative formulation of
QT for a specific system is said to be obtained by the canonical quantization
method. It should be noted that among all the formulations, the operator
formulation based on canonical quantization is the best-developed and most
consistent one. This explains the existing tendency to quantize every classical
system canonically. We should note that for classical systems of general form,
canonical quantization is not always possible or cannot be carried out directly
as described above without an essential analysis and reformulation of the
initial classical theory. The majority of modern physical theories belong to



1.3 Some Paradoxes of Naive Implementation of an Idealized Scheme 9

the so-called singular theories, theories with constraints and extra nonphysical
variables in the initial Hamiltonian formulation (gauge theories are a particular
case of singular theories). There exist different methods for quantizing such
theories; see, e.g., [49, 75, 91]. Some of these methods are based on the
possibility of passing to physical variables, which allows the standard canonical
quantization. Canonical quantization remains the most reliable quantization
scheme.

1.3 Some Paradoxes of Naive Implementation
of an Idealized Scheme

In this section, we examine some simple QM systems obtained in the framework of
the above-described idealized scheme of operator canonical quantization. We show
that if we follow this scheme literally, we arrive at certain paradoxes in the form of
obvious contradictions with well-known statements.

We consider an example of a very simple system: a free nonrelativistic particle
of mass m moving on an interval (a, b) of the real axis. The interval can be finite or
infinite, a semiaxis or the whole axis. The finite ends of an interval are considered
to be included in the interval; in particular, by a finite interval, we mean a closed
interval [a, b].

In classical mechanics, the phase space of this system is a strip (a,b) x R; the
ranges of the particle position x and momentum p are respectively (a, b) and R.
The Poisson bracket (1.1) of x and p is {x, p} = 1. Free motion is defined by the
free Hamiltonian . = p?/2m. If |a| < oo and/or |b| < oo, the peculiarity of the
system is that its phase space is a space with boundaries. The behavior of the particle
near the boundaries must be specified by some subsidiary conditions such as elastic
reflection, delay, trapping, or something else.

At first glance, we may not face the problem of boundaries when quantizing this
system. The canonical observables for a QM particle are the position operator X and
the momentum operator p satisfying the canonical commutation relations

[X.%] =[p.pl = 0. [X,p] = ihi{x. p} =ih. (1.4)

For a complete set of observables, we can take the position operator X with the
prescription that its spectrum be given by spec X = (a, b). It is natural to take the
x-representation of canonical commutation relations (1.4) where the Hilbert space
$ of states is the space of functions ¥ (x) square-integrable on the interval (a, b);
$ = L?(a, b); the operator £ is the operator of multiplication by x, namely

XY (x) = xy (x):
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while the operator p is a multiple of the differentiation operator® d, = d/dx:

p=—ihds: py (x) =—ihy’ (x).

The canonical commutation relations (1.4) seem obviously to hold.
Other observables are certain differential operators

f=f(x,—ihd)+ O ().
In particular, the free quantum Hamiltonian is given by

- 132 hz 5
H = = Zmd"' (1.5)
All this appears quite natural from the following standpoint as well. If |a| < oo
and/or |b| < oo, the space L*(a,b) can be considered the subspace of functions
vanishing outside the interval (a,b) in the space L? (R) of states of a particle on
the whole real axis R, whereas all the observables defined on L?(a, b), including X
and p, can be considered restrictions to this subspace of well-known s.a. operators
defined on L? (R). For the case of a finite interval [a, b], the position operator £
becomes a bounded s.a. operator defined everywhere. Considering p as an s.a.
operator, we have a set of three s.a. operators X, p, and H with the commutation
relations

%, p] = ih, [ﬁ,@] — 0. (1.6)

If all the previous statements hold, then the following observations seem
paradoxical and cast doubt on the consistency of the adopted quantization scheme.

1.3.1 Paradox 1

Let ¥, (x) be an eigenvector of the s.a. momentum operator, py, = py,. Based
on the self-adjointness of the operators p and X, we have the chain of equalities

(Voo 1%, B1Wp) = (V. $5Y,) = (V. PRV)

which obviously contradicts the commutation relation (1.6).

81t is rather a differential operation than a differential operator; see Chap. 4. A rigorous definition
of the differentiation operator d, is given in the end of Sect. 2.3.4.
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In addition, this commutation relation implies the well-known Heisenberg
uncertainty relation

h
AxAp > 5 (1.7)

where Ax and Ap are the respective dispersions of the position and momentum for
any state ¥ of a particle. But for the case of a finite interval [a, b] and for ¥ = v,
we have Ax < b —a, Ap = 0, and therefore AxAp = 0, which contradicts (1.7).

An explanation of the above paradoxes is given in Chap.6. It is different
for different types of interval: depending on the type of interval, either an s.a.
momentum operator does not exist, or it exists but has no eigenvectors, or even if
such vectors exist, they do not belong to the domain of the operator px. In addition,
in the case of a semiaxis or a finite interval, the canonical commutation relations
together with the uncertainty principle do not hold.

1.3.2 Paradox 2

We now consider a free particle moving on a finite interval [0, /]. If we treat a motion
governed by the Hamiltonian (1.5) as a motion in an infinite rectangular potential
well, then the eigenvalues of the Hamiltonian and the corresponding eigenfunctions
are well known from any textbook:

h? )
i () = Enn (). By =5 (7). (1.8)

Y (x) = \/7$1n (nl—nx), neN. (1.9)

The set {¥, (x)}$° of these eigenfunctions is an orthonormal basis in L2 (0,1),
which confirms the self-adjointness of the Hamiltonian.

As is also well known, two commuting s.a. operators have common eigenvectors,
and if the spectrum of one of the commuting s.a. operators is nondegenerate, then its
eigenvectors must be eigenvectors of another s.a. operator. In our case, we have two
commuting s.a. operators p and H, and the spectrum (1.8) of # is nondegenerate.
Therefore, eigenfunctions (1.9) must be the eigenfunctions of p. But we have

pvfn(x)——zhf—cos T pat ()

for any n, which contradicts the above assertion.

As explained in Chap. 6, this paradox is a consequence of the incorrect assump-
tion that p and 7—[ commute; in particular, it is a consequence of the naive belief that
the Hamiltonian A can be represented as H= p*/2m.
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1.3.3 Paradox 3

As mentioned above, in standard textbooks on QM for physicists, some important
notions related to operators in Hilbert spaces are often introduced in terms of their
matrix elements with respect to an orthonormal basis, because it is believed that the
matrix elements f,,, = (em, f en) of an operator f with respect to an orthonormal
basis {e,}]° completely determine the operator f according to the following chain
of equalities:

Y= ZWnens Y = (en, V), fen = menemy
m=1

n=1
. o0 . o0 o0
fv= Zl/fnfen = Z (Z fman) €m-
n=1 m=1 \n=1
For example, the adjoint f * of f is defined as an operator whose matrix elements
are given by

(fh),, = (em,f”Le,,) = (fem,e,,) = (e,,,fem) = fom.

Correspondingly, an s.a. operator f = f T is defined as an operator whose matrix
is Hermitian f,,,, = fum.

But let us consider the matrix p,,, = (e,;, pe,) of the momentum operator p in
the Hilbert space L2(0, /) with respect to the orthonormal basis {e, }5°,

en(x) = \/?cos (Z—nx) ,neR;. (1.10)

A direct calculation by integrating by parts shows that

Pum = Pmn + ilem(Den(l) — e, (0)e,(0)] # pmn, m +n =2k + 1, (1.11)

i.e., the matrix p,,, is not Hermitian, contrary to our expectations.

As is explained in Chap. 6, the paradox is related to the fact that the orthonormal
basis (1.10) does not belong to the domain of any s.a. operator p from the whole
family of admissible momentum operators.

1.3.4 Paradox 4

Let us consider a free particle on a segment [0,/] as a particle in an infinite
rectangular potential well, and let us calculate the mean of the squared energy (E?)
for the state given by the wave function
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v (x)=Nx(x-=1), (1.12)

N2
where N is a normalization factor. Because (’H) ¥ = 0, this mean must be zero:

(E?) = (x/f, (@)zw) 0.

On the other hand, using the self-adjointness of 7/-2, we obtain a nonzero result for
the same quantity:

N2h4l
m?

(E%) = (Ry. Ay ) =

As explained in Chap. 6, a solution of the paradox is related to the fact that the
function Hy (x) does not belong to the domain of a correctly defined Hamiltonian
‘H associated with an infinite potential well, although the function v (x) does.

1.3.5 Paradox 5

We consider the Schrodinger equation for a free particle on the segment [0, /],

v (1, x) K 92
h———— = ———Y (t,x), 0,7]. 1.13
ih=— SV (L) x e 0.1] (1.13)
We recall that in the idealized quantization scheme, the time-evolution problem
in the form (1.13) can be posed for an arbitrary initial state. Let the initial state

Yo (x) = ¥ (fy, x) at to = 0 be

(1.14)

v (0.x) = Cexp(l+lkx)

N

where k is a fixed real parameter with dimension of momentum. It is easy to verify
that the solution v (¢ , x) of (1.13) with initial condition (1.14) is given by

2

¥ (t,x) = exp (—k—z) Vo (x) . (1.15)

It is surprising that the evolution of the given initial state is not unitary: the wave
function ¥ (¢, x) “vanishes” with time. This situation is evidently related to the fact
that formally, we have

)

~ ik ~ ik?
Hipo (x) = —%% (x) = Hy (t,x) = —%W (. x),
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i.e., the initial state v and the evolving state v (¢) are the eigenstates of the
s.a. Hamiltonian with a pure imaginary eigenvalue, which is impossible, as is
well known.

As explained in Chap.6, a resolution of the paradox lies in the fact that if
the function ¥ (x) does not belong to the domain of any correctly defined s.a.
Hamiltonian ‘H from the whole family of admissible Hamiltonians for a free particle
on the interval [0, /], then v (¢, x) also does not, which is irreconcilable with the
Schrodinger equation.

1.3.6 Concluding Remarks

In the foregoing, we discussed some QM paradoxes arising under a naive treatment
of simple one-dimensional systems with boundaries. The number of paradoxes can
be extended (see, for example, [31, 74]), and certain of the others are examined
below. In Chap. 7, we discuss possible paradoxes related to singular potentials with
a simple example of a particle moving on the real axis or a semiaxis in the so-
called Calogero potential field V (x) = a/x>. But even the above examples seem
to be sufficient to convince the reader—physicist that a rigorous approach to the
definition of operators and especially of observables in QM is a necessity. The
point is that up to now, we were too naive in our analysis; strictly speaking, our
arguments were incorrect, and our conclusions were wrong. The reason is that all
the operators involved are unbounded, and for unbounded operators, the algebraic
rules and the notion of commutativity are nontrivial. In fact, the above-used rules
and notions were uncritically borrowed from finite-dimensional algebra; they are
valid for bounded operators, while for unbounded operators, a special treatment is
necessary. The correct treatment removes all the paradoxes.



Chapter 2
Linear Operators in Hilbert Spaces

In this chapter, we remind the reader of basic notions and facts from the theory
of Hilbert spaces and of linear operators in such spaces which are relevant to the
subject of the present book.

2.1 Hilbert Spaces

2.1.1 Definitions and General Remarks

Definition 2.1. (A) A Hilbert space$) is a linear space over the complex numbers.
As a rule, the elements of §) (vectors or points) are denoted by Greek letters:
EnC oo, ¥, x, ... € $H, whereas numbers, complex or real, are denoted by
italic Latin letters: a,b,c, x,y,z,... € C or R. In what follows, we consider
infinite-dimensional Hilbert spaces.'

(B) The space $) is endowed with a scalar product that is a positive definite
sesquilinear form on ). This means that every pair of vectors &, 7 is assigned a
complex number (£, ), the scalar product of £ and 5, with the properties’

En)=8; (£, >0, and(£,§) =0 iff £ = 0;
(E.al+bn) = aE Q) +bEn) = (@& +bty) =aEn) +bE ).

!Finite-dimensional Hilbert spaces (or Euclidean spaces) are also encountered in QM as spaces of
states, e.g., in QM of two-level systems, finite spin systems, and so on. Finite-dimensional spaces
are free from the problems that are examined in the present book.

2We use “iff” in its standard usage for “if and only if.” For brevity, the arrow == stands for
“implies.”

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 15
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_2,
© Springer Science+Business Media New York 2012
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The nonnegative arithmetic square root /(&, &) is called the norm, or length,

of a vector £, and is denoted by €], €] = /(§,&). A vector £ is called
normalized if ||€|| = 1. Any nonzero vector £ can be normed: § — &" = £/||&||.

For any two vectors £ and 7, the Cauchy-Schwarz inequality (also known as the
Cauchy—Bunyakovskii inequality) |(§,7)] < ||&]llln]l holds. A corollary of the
Cauchy-Schwarz inequality is the triangle inequality ||§ + 75| < ||&|| + [In| for
the norm.

The distance between two points £ and 7 is defined as ||§ — 7|. The triangle
inequality for the distance becomes ||E — || < [|E =] + [In =]

The distance determines a topology® in $). A sequence {£,}5° of vectors is said
to be convergent to a vector £, or equivalently, we say that & is the limit of this
sequence, written £, — &, n — oo, or £ = lim, 0 &y, if ||§, — €] — 0, n — o0.
Because of the triangle inequality, a necessary condition for convergence is

1&n —&ull = 0, m,n — oco. 2.1

A sequence {§, }7° with property (2.1) is called a fundamental sequence or a Cauchy
sequence.

Linear operations in $ (multiplication of vectors by complex numbers and vector
addition) and the scalar product are continuous in their arguments; for example,

bn > &= G — (5.1, VneH,

because of the Cauchy—Schwarz inequality.

A set M C §) is said to be dense in §) if any vector in §) can be approximated by
vectors belonging to M with any desired accuracy, i.e., if for any £ € §), there exists
a sequence {£,}{°, &, € M, sothat§ = lim,_ 0 &.

(C) $ is complete. This means that every Cauchy sequence {&,}{° in $ is
convergent, or has a limit in £:

len =&l = 0, mn >00=3E€H: & > & n— oo.

As mentioned above, any convergent sequence {&,}7° is a Cauchy sequence. In a
Hilbert space, the converse also holds.* A space satisfying requirements (A) and
(B) is called a pre-Hilbert space. Any pre-Hilbert space can be made a complete
Hilbert space by adding the “limits” of Cauchy sequences.

We note that the requirement of completeness is crucial, and not only technical,
for applications of Hilbert spaces to QM.

(D) A Hilbert space ) is called separable if it contains a countable dense set.

3 A Hilbert space is a particular case of a normed and metric space in which a norm and a metric
(distance) satisfying standard requirements are generated by a scalar product; see [9].

“In short, a Hilbert space is complete with respect to a metric generated by a scalar product.
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Separable Hilbert spaces are sufficient for treating conventional QM, and we here
restrict ourselves to separable Hilbert spaces. We return to the notions of dense set
and separability below.

An example of a Hilbert space is the space /? of sequences § = {x,}° of
complex numbers such that the sum of their moduli squared is convergent,

o0
12 = g:{xn}fo,xne(C:Z|xn|2<oo .

i=1

The numbers x, are called the components of a vector £. Linear operations are
defined via components: if § = {x,}7° and n = {y,}{°, then aé + by =
{ax, + by,}7°. The scalar product of vectors £ and 7 is defined by (§,7) =
> %2 X Vu. The correctness of the definition and the completeness of /2 are easily
verified.

A vector £ is called terminating if it has a finite number of nonzero components.
The set of all terminating vectors is a dense subspace in /2. A Euclidean space of
arbitrary dimension is naturally embedded in /2 as a subspace. The Hilbert space
[? is separable: a countable dense set in /2 is the set of terminating vectors whose
components are complex numbers with rational real and imaginary parts.

2.1.2 Elements of Geometry and Topology

By an e-neighborhood of a point §) we mean an open ball By ¢, = {§ : [|§—=&| < &}.
A point £ is called an interior point of a set M C ) if it belongs to M together with
an e-neighborhood of £. A set M C §) is called an open set if all of its points are
interior. A set M C $ is called a bounded set if M C B, for some r > 0.

A point £ is called a limit point of a set M C §) if in any neighborhood of &,
there exists an infinite number of points belonging to M. An equivalent definition
of a limit point is this: a vector £ is a limit point of a set M if there exists a sequence
{6,)7°, € € M, s0 that § = lim,— 00 &, A set M is said to be closed if it contains
all of its limit points, which is denoted by M = M. The complement £ \ M of an
open set M in $) is closed.

Any set M C $) can be made closed by adding all of its limit points. We call
this operation the closure operation and denote the closure of a set M by M .> It
is evident that M C M equality holds for a closed set M, and ‘M is the minimal
closed set containing M .

Returning to the notion of a dense set, we can now say that a set M C §) is said
to be dense (in 9) if M = $, i.e., if its closure coincides with the whole space.

SWe hope that there will be no confusion with the similar symbols for complex conjugation and
closure; they refer to different notions, the first involving complex numbers, and the second, sets.
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In connection with QM, the sets in $) that are linear spaces in themselves, i.e.,
are invariant under linear operations, are of special importance. A set that is a linear
space is called a subspace and is usually denoted by D:

D={:(&neD=at+byeD, Va,becC}CH.

It is evident that in any subspace D, there exists an induced scalar product that
is the restriction of the original scalar productin §) to D. If D is finite-dimensional,
then it is a Euclidean space, which is always closed and complete. If D is infinite-
dimensional, it is at least a pre-Hilbert space. If such a D is closed, D = D, then
D itself is a Hilbert space.

The simplest example of a subspace is the linear envelope L({én}iv ) of a
sequence of vectors {§, }{V (N can be infinite). This is the set of all finite linear
combinations of vectors in {&, }{V :

L(t8)) =6 € = an b+ +anby, , Yk <N}

Equality in the last inequality is possible only if N < oo.

IfL ({én }1°°) is dense, the sequence {&,}{° is called a complete sequence.

The criteria for D to be dense and for {&,}7° to be complete are formulated in
terms of orthogonality. The notions of orthogonality and orthogonal decomposition
are of primary importance for QM.

Two vectors £ and 7 are called orthogonal, and we write & L n, if (§,7) = 0.
A sequence {e‘,,}iV (N can be infinite) is called an orthonormalized sequence if
(ex,e;) = 8, where 8y is the Kronecker symbol. In a separable Hilbert space,
any orthonormalized sequence of vectors is a finite or countable set. A proof of this
fact can be found in [9, 116]. A similar assertion is easily extended to sequences of
nonzero orthogonal vectors.

Any sequence {én}iv (N can be infinite) can be orthonormalized (by the
Gram—Schmidt orthogonalization procedure). This means that there exists an
orthonormalized sequence {e‘,,}iV equivalent to {g,,}f’ in the sense that L({g,,}f') =
L({e,,}iv). A complete orthonormalized sequence {e,}]° is called a (countable)
orthonormal basis in £, or simply an orthonormal basis. A Hilbert space §) is
separable iff it has a countable orthonormal basis {e, }{°.

A vector 7 is called orthogonal to a set M C ), and we write n L M, if n L &,
V& € M. The notion of orthogonality is naturally extended to any number of sets.
The set of all vectors orthogonal to a given subspace D is called the orthogonal
complement of D and is denoted by D+, D+ = {5:n L D}. By definition,
D 1 Dt

We call the operation * that assigns the orthogonal complement D= to each
subspace D, D i) D+, the orthogonal complement operation.

It is evident that D= is a linear space and moreover is a closed subspace
coinciding with 5J',

Dt =DL =D, 22
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because of the continuity of the scalar product in both arguments; in other words,
the orthogonal complement of any subspace is closed, the closure operation ~ and
the orthogonal complement operation - commute, and the orthogonal complements
of a subspace and of its closure are the same. It is evident that the orthogonal
complement of the whole of §) is the zero subspace {0}: (,§) = 0, V&€ € H —
n = 0; it is sufficient to take & = 7.

It is also evident that

Dy C D, = Di- 2 D5~ (2.3)

Before we proceed further, we recall the notions of direct sum in the theory of
linear spaces. Let L; and L, be subspaces in a linear space L. We call L the direct
sum of L and L,, and write

L=L+1L,
if
E=&+5&el, V& el, Vel
and any £ € L is uniquely represented as § = £, +&,, & € Ly, & € L,. A necessary
condition for the equality L = L; + L, is L; N L, = {0}. Conversely, if L, and
L, do not intersect except at zero, L1 N L, = {0}, we can construct the direct sum

L=L1+L2={§Z §1+é§2, V&ELI, V§2€L2}.

By induction, the notion of a direct sum is extended to any number of summands.

Moreover, we can construct a direct sum of two linear spaces that are not
subspaces of the same linear space. Let L| and L, be linear spaces (L, can be
a copy of Lj). Then their direct sum L = L; + L, is the set of all ordered pairs
£1.&,where £ € Ly and & € L,. These pairs are conveniently written as columns®
(&1/&),sothat L = L1+ L, = {(§ &), V& € L1, V& € L,}. Linear operations
in L are defined componentwise.

In Hilbert spaces, there exists an additional structure of a direct sum associated
with a possible orthogonality of summands. Let D = D; 4+ D; and let Dy L D,.
Then the direct sum is called the orthogonal direct sum. For such a sum, we use
the sgn @, D = D; & D,. This equality is equivalent to each of the equalities
D, = D6 D;and D, = D & D,. The notion of an orthogonal direct sum is easily
extended to any number of mutually orthogonal subspaces:

D= "®Di. Dy LDy, k#1, kL
k

SWe are forced to use the symbol (& /&) for a two-component column (“spinor”) instead of the

conventional symbol (El for reasons of space.
2
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We call the operation @ of taking the orthogonal direct sum of (sub)spaces,

Dy, D> i) D & D», the orthogonal direct sum operation.

A useful construction for defining and studying linear operators in a Hilbert space
§) is the Hilbert space H=5$) & £, the orthogonal direct sum of two copies of .
Elements ¥ of H (vectors) are ordered pairs &, € §) arranged in columns, ¥ =
(§,/1), where £ is the upper component and 7 is the lower component:

Linear operations in H are conventionally defined via components; the scalar
product is defined by (¥, ¥;) = (&1, &) + (11, n2)-
We now can cite a theorem on projection onto a closed subspace [9].

Theorem 2.2. Let D be a closed subspace of a Hilbert space $), D = D C $, and
let DL denote its orthogonal complement, DLt =pL c 9, DL 1 D.
For any D, the Hilbert space $) is decomposed into the orthogonal direct sum of
D and D%,
9 =Da&DH (2.4)

which means that any vector § € ) is uniquely represented as

E=& +EL,8 €D, & Db (§.5)=0; (2.5)

the vector & is called the projection of § on D.
The orthogonal decomposition (2.4) has a number of corollaries.

Corollary 2.3. 1. The evident symmetry between D = D and D= in (2.4) and
(2.5) shows that

D = (DH*t (2.6)

and that the vector £ is the projection of &€ on D*.
2. It is also evident that if D is dense in ), then D+ = {0}, and conversely.

One of the corollaries is a criterion for D to be dense and a criterion for a
sequence to be complete. We formulate it as a lemma for future reference.

Lemma 2.4. A subspace D is dense, D = §, iff n L D = n = 0, and a
sequence {&,}7° is complete, L ({g,,}j”) =9if(n,&)=0,Vn = n=0.

The completeness of an orthonormal basis implies that each vector £ € §) can
be expanded with respect to the orthonormal basis, § = Z;ozl a,e,, in the sense
that limy o0 Z,N:l anpe, = &, where a, = (e,, £) are the Fourier coefficients with
respect to this basis, and Parseval’s equality [|€]|> = Y02 | |a,|? holds.

So, separability implies the possibility of representing any vector as an expansion
with respect to an orthonormal basis. In other words, a separable §) can be
considered an infinite orthogonal sum of one-dimensional subspaces spanned by
the vectors of the orthonormal basis. It follows that all separable Hilbert spaces are
isomorphic.
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Any closed subspace D C $) is either a Euclidian space, if it is finite dimensional,
or a separable Hilbert space, if it is infinite dimensional (an orthonormal basis in D
is provided by orthogonalized nonzero projections {e, |} of an original orthonormal
basis {e,};° onto D). Any infinite-dimensional closed subspace D C §) is thus
isomorphic to the whole of § (one of the paradoxes of infinities).

Any s.a. operator with discrete spectrum generates an orthonormal basis in )
as the set of all its eigenvectors. For example, the sequence {e,}{° of vectors
e, = {8,m}7° with zero components except unity in the mth row is an orthonor-
mal basis in /2: the orthonormality is evident; the completeness is also clear:
(&,ey) =X, = 0,Vn, implies £ = 0 (in particular, this shows once again that / 2
is separable). This orthonormal basis is the set of eigenvectors of the s.a. “particle
number” operator 71 (the name is borrowed from QM), 71§ = {nx, }{°.

Observables in QM are s.a. operators, and Parseval’s equality provides the
quantum-mechanical probabilistic interpretation of the Fourier coefficients for the
corresponding observables. An s.a. operator with continuous spectrum generates the
so-called generalized orthonormal basis.

2.1.3 The Hilbert Space L* (a, b)

Definition 2.5. The Hilbert space L? (a, b) is the linear space of square-integrable
functions on an interval (a, b) of the real axis,

b
L% (a,b) = {w(x) : / dx |y (0))* < oo} .
The scalar productin L? (a, b) is defined by

b —
(W ¥) = / dx T (Y ().

a

It is significant that the integrals are Lebesgue integrals, and strictly speaking,
the elements of L2 (a, b) are equivalence classes of functions that are equal almost
everywhere.’

The correctness of the definition is evident; for a proof of completeness, see, for
example, [9].

The endpoints a and b of an interval can be infinities, ¢ = —oo and/or b = +o0,
and in particular, the case of a = —oo, b = oo corresponds to the whole real

"When speaking about some function belonging to L?(a, b) and possessing some additional spe-
cific properties like absolute continuity, we actually mean the representative of the corresponding
equivalence class.
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axis R, while the case of a = 0, b = oo corresponds to the semiaxis R;. By
convention, see Chap. 1, the finite endpoints of an interval are considered to belong
to the interval, so that by a finite interval is meant a closed interval [a, ] and by a
positive semiaxis is meant R . This is simply a matter of convenience, because the
measure of the endpoints is equal to zero, but under this convention, the boundary
values of functions ¥ (x) at finite endpoints, for example ¥ (@), have an obvious
sense. We also adopt the following convention on terminology relating to functions
defined on an interval (a,b) with at least one finite endpoint. The term “in an
interval” concerns all the interior points of the interval, i.e., the open interval (a, b),
while the term “on an interval” concerns all the points of the interval including its
finite endpoints, i.e. the whole interval.

It is useful to note that every function ¥ (x) belonging to L? (a,b) is locally
integrable on the interval,® which follows from the Cauchy—Schwarz inequality, and
therefore allows the representation ¥ (x) = ¥’(x), where ¥(x) = [ S dyv(y),
¢ € (a,b), is a function absolutely continuous on the interval (a,b) (a.c. function
in what follows). We recall that one of the equivalent definitions of an a.c. function
reads as follows: a function ¥ (x) defined on an interval (a, b) is said to be a.c. in
the interval if it can be represented as

W(x)zfxdw(y)woco), a < xo <b,

0

in which case ¥ (x) = ¥’ (x) almost everywhere. In other words, an a.c. function
is differentiable almost everywhere and is restored in the interval by integrating its
derivative. If the left endpoint a is finite and the integral on the right-hand side exists
for x = a (which is the case if ¥ (x) is square-integrable on (a, b)), then ¥ (x) is
continuous up to the left endpoint and has a boundary value ¥ (a). The same can be
said about the right endpoint b. Absolutely continuous functions can be integrated
by parts in the usual way.

If (a,b) C (c.d), the Hilbert space L?(a,b) can be considered a closed
subspace in L2 (¢, d), L? (a,b) C L?(c,d), and any L? (a, b) can be considered a
closed subspace in L2(R).

Hilbert spaces L2 (a,b) are of paramount importance for QM, and they are
extensively exploited in the present book.

Let D (a, b) be a linear complex space of smooth compactly supported functions
on the interval’ (a,b):

D(a.b) = {p (x) : ¢ (x) € C*(a.b). suppy C [a, f] C (a.b)}.

8By local integrability on an interval (a,b), we mean the (absolute) integrability on any finite
interval [«, B] belonging to (a,b), a < a < f < b, where the equality signs are meaningful for
finite endpoints; by local integrability in an interval (a, b), we mean the integrability on any finite
interval [or, B8] within (a,b),a <o < 8 < b.

°In the Russian mathematical literature, a smooth compactly supported function is known as a
“finitnaya” function.
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where C* (a, b) is the linear space of smooth, or infinitely differentiable, functions
on the interval (a, b); as usual, we let supp ¢ denote the support of ¢, the closure of
the set of points x where ¢ (x) # 0; o and § are generally different for different ¢.
The condition on supp ¢ is that it be contained entirely inside the interval (a, b), and
each function belonging to D (a, b) vanishes in some neighborhood of the endpoints
a and b of the interval. It is evident that D (a, b) C L? (a.b).

We define some other useful spaces of functions that appear in our considerations
below.

D(a,b) is the linear space of arbitrary functions on the interval (a,b) with
compact Support.

¢ (x) € D(a,b) = suppy C [, B] C (a,b);

D, (a,b) is the linear space of arbitrary functions on the interval (a,b) with
support bounded from the right :

@ (x) € Dy (a,b) = suppg C [a,B], B < b;

Dj (a,b) is the linear space of arbitrary functions on the interval (a,b) with
support bounded from the left:

¢ (x) € D;(a,b) = suppy C [o,b], o > a;

Dk (a, b) is the linear space of real smooth compactly supported functions on
the interval (a, b):

(p(x) € Dg (avb) — QD(X) = m € D(a’b)v

Dr (a, b) is a real subspace of D (a, b).
Theorem 2.6. The subspace D (a, b) is dense in L? (a,b), D (a,b) = L* (a, b).
A proof of this theorem is based on two lemmas in the theory of real functions.

Lemma 2.7. Let v (x) be a continuous real function on (a, b). Then the condition

b
/ dxy (x) ¢ (x) =0, Vo (x) € Dg (a,b),

implies that ¥ (x) = 0.

Proof. Assume the contrary. Let xo € (a,b) be an inner point of (a,b), and let
¥ (xo) # 0, for example, ¥ (xo) > 0 (the arguments for the case of ¥ (xo) < 0 are
the same). Then there exists a closed interval [xg — &9, X0 + €0] C (a,b), g9 > 0,
where ¥ (xg) > 0.

On the other hand, there exists a function ¢, (x) € Dg (a, b) such that supp ¢, =
[x0 — €0, X0 + 0] and ¢ (x) > 0 for x € (xo — &9, X0 + &0), and we have
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b Xo+¢&o
/dxw(x)%(x)zf dvy (x) g, () > 0,

a X0—¢&0

which contradicts the condition and thus proves the lemma. O

Lemma 2.8. Letr V¥ (x) be a continuous real function on (a, b). Then the condition

b
/ dxy (x) ¢ (x) = 0. Yo (x) € Dy (a.b). @.7)

a
implies that ¥ (x) = ¢ = const.
A proof of Lemma 2.8 is based on the following simple lemma and its corollary.
Lemma 2.9. Let y (x) € Dg(a,b). Then y (x) = ¢’ (x), ¢ (x) € Dg(a,b) iff

fub dxy (x) = 0. In addition, if supp y C [«, B] C (a, b), then supp¢ C [a, B] as
well.

Proof. Necessity. Let y (x) € Dg (a,b) and let y (x) = ¢’ (x), ¢ (x) € Dg (a, b).
It follows from the definition of Dy (a, b) that

b b
/ dry (x) = / dxg’ (1) = p ()2 = 0

a

because ¢ (x) vanishes outside of its support that is strictly inside of (a, b). It is also
easy to see that if supp y < [, B] C (a.b), then ¢(x) = [ dyy (y) must be zero
outside of [«, B] (the corresponding reasoning is similar to that below in proving
sufficiency).

Sufficiency. Let y (x) € Dg (a,b), let supp y C [«, B] C (a,b), and let

b B
/ dxy (x) =/ dxy(x)=0. (2.8)

We consider the function ¢ (x) given by

w(x)zfaxdyx(y)zfxdyx(y).

o

It is evident that ¢ (x) € C*® (a,b) and y (x) = ¢’ (x). Because y (x) =0, x < «,
we have ¢(x) = 0 for x < «, while for x > 8, we have

X B
qo(x)zf dyx(y)=/ dyz(y) =0

because of y (x) = 0, x > B, and condition (2.8). This means that supp ¢ C [«, B],
which proves the lemma. O
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Corollary 2.10. Any function ¢ (x) € Dg (a,b) allows the representation
b
¢ (x) = c(@)po (x) + ¢ (x). clp) = / dxe (x) (2.9

with some @y (x) € Dg(a,b) such that fab dxgo (x) = 1 and some ¢ (x) €
Dk (a,b).

A function ¢y (x) with the indicated properties does exist: it is sufficient to take
any function ¢ (x) € Dg (a, b) with fub dx¢ (x) # 0. Then the function

, -1
00 (x) = [ / dyp (y)} o )

is the required one. We then consider the function y (x) = ¢ (x) — c(¢)@o (x) with
the evident properties: y (x) € Dg (a,b) and

b b b
/ dxy (x) = / dx [p () — c(@)g0 (O] = c(@) — c(9) / dxgo (x) = 0.

It follows from Lemma 2.9 that y (x) = ¢’ (x), ¢ (x) € Dg (a,b), which gives
representation (2.9).

Proof of Lemma 2.8. We take any ¢ € Dg (a, b). According to representation (2.9),
we have ¢ (x) — c(@)@o (x) = ¢’ (x), ¢ € Dy (a,b). With this ¢’ (x), the left-hand
side in (2.7) becomes

b b
[ e @ = [ e em-dew.
where ¢ = fab dyy (¥) ¢o (y) = const, and condition (2.7) becomes

b
/ dx[¥ (x) —c]o(x) =0, Yo (x) € Dg(a,b).

By Lemma 2.7, it follows that ¥ (x) = ¢, which completes the proof of Lemma 2.8.
O

‘We can now return to the theorem.

Proof of Theorem 2.6. By virtue of Lemma 2.4 it is sufficient to prove that

b
/ dxy (x)¢ (x) =0, ¥ € L*>(a,b) , Yo € D (a.b),
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implies that ¥ (x) = O (almost everywhere). It is easy to see that this assertion
is equivalent to a similar assertion for real-valued functions v (x) and ¢ (x). We
therefore assume that ¥ (x) and ¢ (x) are real-valued functions and prove that the
condition

b
/ dxy (x) o (x) =0, Vo (x) € Dg(a,b), (2.10)

implies that ¢ (x) = 0 (almost everywhere).

For this purpose, we use the above-cited representation ¥ (x) = ¥’ (x) with
v(x)= fcx dyv (), c €(a,b), for alocally integrable function ¥ (x). Substituting
this representation into the left-hand side in (2.10), integrating by parts, and taking
into account that ¢ (x) vanishes near both endpoints ¢ and b, we convert condition
(2.10) into the condition

b
/ dx¥ (x) ¢’ (x) =0, Yo (x) € Dg (a,b)

for a continuous function ¥ (x). It then follows from Lemma 2.8 that ¥ (x) = ¢ =
const, and therefore, ¥ (x) = 0 almost everywhere. The theorem is proved. O

Remark 2.11. We note that in fact, the proof of the theorem is reduced to a proof of
the extension of Lemma 2.7 to locally integrable functions.

Lemma 2.8 also allows a similar extension.

Lemma 2.12 (Du Bois—Reymond lemma). Let v (x) be a locally integrable real
function on (a, b). Then the condition

b
/ dxy (x)¢' (x) =0, V¢ (x) € Dr(a,b),

a

implies that W (x) = ¢ = constalmost everywhere.

The proof of this lemma is similar to that of Lemma 2.8: we take any ¢ (x) €
Dk (a,b), use representation (2.9), substitute the respective ¢’ (x) = ¢ (x) —
c(¢)o (x) into the defining integral of the condition of the lemma, and reduce this
condition to the equivalent condition

b
/dx(x/x(x)—c)go(x):o,wo(x)eDR(a,b),

where ¢ = f“b dyy (¥) o (y) = const. It then follows from the extended version
of Lemma 2.7 that ¥ (x) = c almost everywhere.

Different sets of functions are known as orthonormal bases in the Hilbert space
L?(a,b); of course, they are different for different intervals. We cite only the best-
known ones.
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The Hermite functions
12
H, (x) = (ﬁZ”n!) 2 er)’:e_xz, neZy,

form an orthonormal basis in L? (R). A proof can be found in [9]. It follows
that the Hilbert space L?(R) is separable, and therefore, every Hilbert space
L?(a, b) is also separable as a closed subspace in L? (R). The Hermite functions
are the eigenfunctions of the s.a. QM oscillator Hamiltonian H = — d 2+ x?. The
isomorphism between /2 and L? (R) is realized by the mapping e, < H, (x)
extended by linearity. One of the orthonormal bases in L? (R4) is given by the
Laguerre functions, while one of the orthonormal bases in L? (—1,1) is given by
the Legendre polynomials.!'”

In conclusion, we consider a relation between the behavior of functions at infinity
and their square-integrability at infinity. This remark concerns functions belonging
to Hilbert spaces L?*(a, b) where the interval (a, b) is infinite, i.e., a = —ooc or/and
b = oo. The notion of square-integrability at infinity is an extension of the notion
of local square-integrability to a point at infinity. We call a function ¥ (x) square-
integrable at oo (plus infinity) if | > |¢()c)|2 < oo for some finite ¢, i.e., ¥(x) €
L?(c,00) for x > ¢ > —oo. The square-integrability at —oo (minus infinity) is
defined similarly. An assertion is rather common in the physics literature that the
square-integrability of a wave function at plus or minus infinity implies that the
function vanishes at the respective infinity, for example, if ¥ (x) € L?(R), then
¥(x) — 0as x — *oo. This assertion is wrong: it is easy to construct a function
that belongs to L?(IR) and takes arbitrarily large values at arbitrarily large |x|. An
example is given by

—4
n,n—n*<x<n, |n| €N,
V(x) =
0 elsewhere.

But if a function is a.c. at infinity and is square-integrable at infinity together with
its first derivative, then it does vanish at infinity.

Lemma 2.13. Let a function ¥ (x) be a.c. for x > ¢ (x < ¢), |c| < oo, and
let Y, y' € L?(c,00) (L? (—00,¢)). Then ¥ (x) — 0 as x — 00 (—00).

Proof. We give a proof for the case (c,00); a proof for the case (—oo,c) is
completely similar. We consider the identity

w2 @l = [ ar (FOW 0+ TOwm) + v .

10A subtlety is that the set of powers of x, {x¥}5°, is a complete sequence in L2 (—1, 1), but it
does not form a basis [9].
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Because ¥, ' € L?(c, o0), the integral on the right-hand side has a finite limit as
x — oo. It follows that | (x)| has a finite limit as x — oo. This limit must be zero
because of the square-integrability of ¥ (x) at infinity, which proves the lemma. O

The next lemma can be also useful.

Lemma 2.14. Let Y(x) and ¥'(x) be a.c. for x > ¢ (x < c¢), |c| < oo,
and let ¥, " € L*(c,o0)(L*(—00,¢)). Then y' € L*(c,o0) (L*(—00,c)), and
Y(x), ¥ (x) = 0as x — oo (—0).

Proof. We give a proof for the case (c,00); a proof for the case (—oo,c) is
completely similar. We consider the identity

dy @F =2 [ |y of
+ [ @ [T0W 0+ O] + dilv @P|

Because v,y € L?*(c,0), the second integral on the right-hand side has a
finite limit as x — oo. It follows that if f; dy |y’ (y)|2 — 00 as X — 0o, then
dy |w()c)|2 — 00 as x — oo as well. But if this is the case, then |1ﬂ(x)|2 — 00 as
x — 0o, which contradicts the square-integrability of i at infinity. We thus obtain
that there must be fcoo dy |y (y)|2 < o0, which proves the first assertion of the
lemma. The second assertion then immediately follows from Lemma 2.13. O

In QM, the Hilbert space L>(a, b) is the space of states for a particle moving
on an interval (a, b) of the real axis. For a particle moving in a multidimensional
space or for many-particle systems, appropriate spaces of states are Hilbert spaces
LZ(R”), n = 2,3,....Forexample, the space of states for n particles,n = 2,3,...,
moving in the three-dimensional space R? is the Hilbert space L?(IR*"). A definition
of a Hilbert space L?(R") is a copy of the above definition of the Hilbert space
L?(a,b) with the evident substitution of integrals over (a,b) for the respective
integrals over R”. For a system of n particles moving in a volume V C R?, the
space of states is reduced to L2(V").

Physical systems with varying or nonconserving number of particles are de-
scribed in terms of orthogonal direct sums of L2(R") with different n. An example
from the many-body theory and quantum field theory is the so-called Fock space F:

F=) ®L*[R"), L*(R") =C.
n=0

Vectors of the Fock space F' are Fock columns whose first component is a
complex number ¢, while other components are functions of increasing number
of space variables ¥ (ry),¥2(ry,12), ..., ¥, (r1,...,T,),..., where r € R3 and
Y (r1,...,1,) € L2 (R™).
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For identical bosons or fermions, these functions are respectively symmetric or
antisymmetric with respect to transpositions of arguments.

We now turn to functions in Hilbert spaces. We restrict ourselves to linear
functions: linear functionals and linear operators.

2.2 Linear Functionals

Definition 2.15. A linear functional @ in $) with a domain of definition, or simply
domain, Dy C $) is a linear mapping @ : Dy +—— C; this means that Dy is a
subspace and that any vector § € Dy is assigned a complex number z = @(£), or

£+2s () € C, VE € Do, so that
D (1§61 + az6r) = a1 P (§1) + ax® (&) . V1.6 € Dy, Vaj,ax € C.

We only cite (as a rule, without proof) some necessary facts and notions from the
theory of linear functionals that we shall need later when expounding the theory of
linear operators in §). The details of the theory of linear functionals can be found,
for example, in [9].

In connection with the topology in ) and the usual topology in C, the natural
notions of boundedness and continuity are introduced for linear functionals.

A linear functional @ is called bounded if there exists a finite nonnegative
number K such that

@ ()] = K[I§]l, V& € Do .

The norm ||@|| of a functional @ is the infimum of such K’s. It is evident that
@ (&) < |2 |I€]| and @ is bounded iff its norm is finite.
A linear functional @ is called continuous if

£,5€Do, & — &= D) — D (), Vo € Do .
It is evident that a linear functional @ is continuous iff it is continuous at the origin,
£€eDp, E—>0= P& —0.

The notions of boundedness and continuity are equivalent for linear functionals:
a linear functional is continuous iff it is bounded. We note only that sufficiency is
evident from the inequality |® (§)| < ||@]|| ||€]-

A bounded linear functional with domain Dy # $) can be extended to the
whole of $ without changing its norm: it is first extended to the closure Dg of
its domain by continuity and is then defined by zero on the orthogonal complement
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D_qu_Of Dg. Therefore, bounded linear functionals can be considered as defined
everywhere without loss of generality.!!

The kernel of a linear functional @, denoted by ker @, is the set of all vectors &
such that @(§) = 0, ker @ = {£ : @ (§) = 0}. Itis evident that the kernel of a linear
functional is a subspace, and if the functional is bounded and defined everywhere,
its kernel is a closed subspace, ker @ = ker @.

Theorem 2.16 (Riesz theorem). Any bounded linear functional defined every-
where has the form @ (§) = (n,&) with some n € $); its norm is given by
@l = |Inll, and its kernel is given by ker @ = {& : £ Ln}.

Proof. The proof is so simple and instructive that we reproduce it here. For @ = 0,
the assertion is evident: n = 0. Let @ # 0. Because ker @ is a closed subspace, the
decomposition

H=ker® @ (ker ®)*

holds. Let ¢ € (ker <1§)L, @(¢) # 0. For any vector &, the vector @ () § — @ (§) ¢
evidently belongs to ker @ and is therefore orthogonal to ¢, i.e., @ (¢) ({, &) —
@ (£) ||¢]|* = 0. It follows that

) =2EHEE)=m8E. n=2EMN" "=/l

It is evident that 1 is defined uniquely (and therefore, (ker cD)J‘ is a one-dimensional
subspace): the relation (', &) = (n,&), V& € §, implies (' —n,&) = 0, V&€ € 9,
or (" —n) L 9, which in turn implies that ' — n = 0, or ' = 7. The equality
|2l = |In|| follows from the Cauchy—Schwarz inequality, while the formula for the
kernel of @ is evident. O

Bounded linear functionals naturally form a linear space that is called a dual
space: @ = a; P + a, P, is defined by

(@1P) + ay®,) (§) = a1D; (§) + ax P> (§) .

The Riesz theorem, Theorem 2.16, shows that there exists an anti-isomorphism
between $) and its dual space.

The notion of a linear functional allows introducing the so-called weak topology
in $, in particular, weak boundedness and weak convergence. As for the conven-
tional topology, we call it the strong topology and speak about strong boundedness
and strong convergence.

A set M C $ is weakly bounded if the values of any functional on M are
uniformly bounded, i.e., |(n,§)| < C(n), VE e M, Vn € H.

Encountered unbounded linear functionals cannot be defined in the whole Hilbert space:
an unbounded linear functional defined everywhere is equal to zero almost everywhere. The
requirement of boundedness is often included in the definition of a linear functional.
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A sequence {&}° is called weakly convergent to a vector &, which is written
Wlimk_mogk = E, if

kll?olo(nsék) = (U»é)s V?’] € ~6

In a finite-dimensional Euclidean space, the strong and weak topologies are
equivalent. In an infinite-dimensional Hilbert space, these topologies are not
equivalent; indeed, the strong topology is stronger than the weak topology, i.e.,
strong convergence implies weak convergence:

lim & = £ = & — &, k — 00, or § = whimy—oofs .
k—o0

A proof follows from the Cauchy—Schwarz inequality. But the converse gener-
ally does not hold. A counterexample is given by an orthonormal basis {e;}]":
limg 00 (17, €x) =0, Vn € $, because of the Parseval equality, i.e., wlimy e =0,
whereas {e}7° is not a Cauchy sequence, |ex —¢;|| = V2,Vk #1.

As for the relation between strong boundedness and weak boundedness, it is
clear that strong boundedness implies weak boundedness because of the Cauchy—
Schwarz inequality. It appears that the converse also holds.

Theorem 2.17. The weak boundedness of a set M C $) is equivalent to its strong
boundedness.

An elegant proof of this theorem can be found in [87].

2.3 Linear Operators

2.3.1 Definitions and General Remarks

The notion of linear operator in a Hilbert space is a direct generalization of the
notion of linear transformation in a finite-dimensional Euclidean space. But in
Euclidean spaces, linear transformations can be and are usually defined in the whole
space, while in an infinite-dimensional Hilbert space, this is generally not the case,
and the notion of domain of a linear operator takes on great importance. The same
transformation (“rule of acting”) applied to different domains determines different
operators with sometimes crucially different properties. This is particularly true for
the unbounded operators, which are absent in the finite-dimensional case.

Definition 2.18. A linear operator f with a domain of definition, or simply
domain, Dy C $) is a linear mapping of Dy to $), f : Dy —> $; this means that
D s is a subspace and that any vector § € D, is assigned some vector n = f§, or

¢l feen vee D,
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(this is the “rule of acting”), so that

flarb + ab) = a) f& +ar f&, Y&, € Dy, Vaj,a, € C.

We emphasize that in contrast to linear functionals, the continuity (or bounded-
ness) of linear operators is not required. Many QM observables are discontinuous
(unbounded). .

A vector n = f£ is called the image of a vector &, and £ is called the preimage
of 1. The set of all images, sometimes denoted by f D, is called the range of the

operator f , and is denoted by R 7,
Ry=fDs={n:n=ft Ve Dy}.

If Dy = §, the operator f is said to be defined everywhere; it is typical for
bounded (or continuous) operators.

In general, D r is not a closed subspace, D s # D_f; it is typical for unbounded
(or discontinuous) operators, and is a specific feature of an infinite-dimensional §).

If D/ £ = 9, the operator f is called a densely defined operator; it is typical for
QM observables. In general, R ; # Rf, and even R / r#9.

A number A is called an eigenvalue of an operator f if there exists a nonzero
vector & € D such that f& = A&; the vector & is called an eigenvector of

f corresponding to the eigenvalue A. The set of all eigenvectors corresponding
to an eigenvalue A supplemented with the zero vector is called the eigenspace of
f corresponding to the eigenvalue A; it is evident that an eigenspace is a subspace
belonging to D ;. The dimension of an eigenspace corresponding to an eigenvalue A
is called the multiplicity of the eigenvalue. If ) is a space of functions like L?(a, b),
the eigenvectors are also called eigenfunctions.

We note that there is a stable distinction between the physical and mathematical
terminologies at this point. As an illustration, we consider the operator p = —ihd,
in L2(IR) that is the momentum operator for a particle moving along the real axis (its
domain is defined below). In physics textbooks, the function v, (x) = exp(ipx/#)
satisfying the differential equation —i hlﬂ]/, (x) = pv¥,(x) is called the eigenfunction
of the momentum corresponding to the eigenvalue p. But the function exp(ipx/#)
does not belong to the Hilbert space L*(R) because it is not square-integrable on
the whole axis (more specifically, not square-integrable at infinity). Therefore, from
the standpoint of the adopted definition, exp(ipx/#) is not an eigenfunction of p,
and p is not its eigenvalue; this function is the so-called generalized eigenfunction
of p, while p is a point of the spectrum of p (see below).

Now we list some useful definitions:

N .
(a) We call the number (E f 5) , & € Dy, the mean of the operator f in the

state £ (the last term is borrowed from QM).
(b) We call an operator f nonnegative, written f > 0, if (&, f S) >0,V§€ € Dy,
i.e., if all of its means are nonnegative. We call an operator f positive, written
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f > 0if (&, fé) >0,Vée Dy, § 7é 0, i.e., if all of its means for nonzero states
are positive. We call an operator f nonpositive, written f < 0, or negative,
written f < 0, if the operator — f is respectively nonnegative or positive. The
1nequa11ty f1 > fz or fz < fl, implies that Dy = D and means that

f1 fz >0, or f2 — f1 <0.
(c) We call an operator f bounded from below if (é fé) >y (£.§8),VEe Dy

(d) We call an operator f bounded from above if (é, f E) <vy(.§),V¢E e Dy.
Clearly, the constants y in (c) and (d) are real, y = .

2.3.2 Graphs

We now present an equivalent definition of a linear operator in §) in terms of graphs
(this is true for any functions; recall graphs of school functions).

Wecallaset G = {(§,/n)} C H = $H @ $ a graph if its abscissas £ uniquely
determine its ordinates 7, i.e.,

{6/M}eG

{(s/o}eG}:”zé‘

An equivalent definition of a linear operator in $) is then as follows:
A linear operator f in a Hilbert space §) is a triple

=996 G;= {(s/fg)} CH

where the graph G ¢ is a subspace in H, i.e.,

(51/f§1) . <§z/f§2) €eGr=a (51/];51) +as (52/f§2)
= (0151 t b/ ar fEra fgz) €Gy.

The set of all abscissas of G is the domain D ¢ of the operator f Dy = {E
&/ f &) € G}; the set of all ordinates of G, is the range R s of the operator f
Rr=1{n:En= f §) € G,}. An equivalence of the two definitions is easily

verified.
It is also easy to verify the following criterion.
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Lemma 2.19. Any set G C H determines a linear operator f in$, ie, G=Gy
iff G is a subspace with the property

(0,/n) € G=n=0 2.11)

ensuring that G be a graph (G  is a “hyperplane” passing through the origin in §) ).

We call this criterion the graph criterion for a linear operator.

In the language of graphs, it is particularly evident that the definition of a linear
operator f includes both the “rule of acting” and the domain of definition.

Many notions and theorems in the theory of linear operators are easily formulated
and proved in terms of graphs; because we deal only with linear operators, we often
omit the term “linear” in what follows.

The first example is the notion of equal operators: two operators fl and fz are
equal, or coincide, written f1 = fz, if their graphs coincide, G, = Gyp,. In the
language of maps, this means that D, = Dz, and flé = fgé Vée Dy =Dy,

Another example is given by the important notions of extension and restriction
of an operator. An operator fz is called an extension of an operator fl, while f1 is
called a restriction of an operator fz, if G, C Gy, which is naturally written
fl C f; In the language of maps, this means that Dy C Dy, and f;é = fls,
VE € Dy. We say that the operator f is a restriction of the operator fz to the
subspace D s, C D ,, while the operator f is an extension of the operator fl to the
subspace D, D D ;. Any operator f allows restricting to any subspace D, C D,
which defines a restriction g of the operator f .

In what follows, we use both languages.

2.3.3 Examples of Operators

Examples of operators include the identity or unity operator I:

[:9—9, [E=§, VEeH, D=9, Ri=9H, G = {(£/8)} = diagH,
and the multiple of unity operator d,7eC,z # 0:

d:H—9H. @HE=z. VE€H, Du=9. Ri=9. Gy =1{E/H)}

It is evident that the multiple of unity operator maps any subspace onto the same
subspace, (zI )D = D. With z = 0, we obtain the zero operator 0: 6 — {0}. The
multiple of unity operator with |z| # 1 changes the lengths of vectors.

The momentum operator for a particle moving on the real axis is the operator
p = —ihd, in L>(R); its domain D p 1s the space of absolutely continuous functions
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square-integrable on the whole axis together with their derivatives,'> D p = 1V(x):
¥ are a.c., ¥, ¥’ € L?*(R)}. This operator is an extension of the operator ¥ =
—ihd, with the same rule of action, but defined on the space of smooth functions
with compact support, D0 = D(R), p© c p. Other examples of differential
operators in Hilbert spaces L?(a, b) are considered in detail in Chaps. 4 and 6.

Analogues of rotation in finite-dimensional spaces are isometric and unitary
operators.

An operator U is called isometric if it preserves the norm of vectors, ||(7 &l =
II€]l, V& € Dy, or, which is the same, if it preserves the scalar product of vectors,
(17 £, U n) = (&,n), V&, n € Dy. The equivalence of the two conditions follows
from the chain of equalities

(U(g +on), Ut + zn)) - (05, 05) +z (Ug, 0 n) +3 (Un, Ug)
+kf(0m0ﬁ)=(é+zmé+zm

= (&6 +z(E ) +201.6) + 2> (0,0

We say that the range and the domain of an isometric operator are related by an
isometry relation, or simply by isometry; therefore, an isometric operator is also
called an isometry. For completeness, we say in advance that an isometric operator
is bounded and its norm is equal to unity, the corresponding notions are introduced
in Sect. 2.3.4. It is evident that the domain and the range of an isometric operator U
are of the same dimension, dim Dy = dim Ry . In contrast to the finite-dimensional
case, this does not mean that if an isometric operator is defined everywhere, then
its range must be all of §). A counterexample is the operator U first defined on
an orthonormal basis {e,}° by Uey, = eny1 and then extended to any vector
£ = > {7 aye, by linearity: Ug = Y% anen+i; it is evident that the operator is
isometric, and Dy = ), while Ry = {ae|,Va € (C}J-, the orthogonal complement
of the one-dimensional space spanned by the vector e;.

An isometric operator U is called unitary if it is defined everywhere and maps
onto the whole of ), Dy = $ = Ry.

We cite some important properties of unitary operators that are used below and
are easily verified.

Lemma 2.20. (i) A unitary operator is bounded, and its norm is equal to unity.
(ii) A unitary operator maps a closed set onto a closed set and commutes with the
closure operation ~:

UM=UM=UM (2.12)

for any set M C $). In particular, a unitary operator maps a closed subspace
onto a closed subspace, UD=UD=0UD.

2In what follows, we often omit the symbol for the argument of a function if it is clear from
context.
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(iii) A unitary operator transforms an orthonormal basis {e; }{° to an orthonormal
basis {e]}$° and is completely determined by its action on an orthonormal
basis, Ue; = el,i eN

(iv) For any subspace D C $), a unitary operator transforms its orthogonal com-
plement to the orthogonal complement of the image UD, i.e., it commutes with
the orthogonal complement operation +,

UDt = (UD)L . (2.13)

(v) A unitary operator commutes with the orthogonal direct sum operation @,

N a P N = N 1
§=09=0DeD")=0Da0D*=0Da(UD) .

A trivial example of a unitary operator is the unity operator I. The simplest
nontrivial example is the multiple of unity operator U =zl withz =¢e¥, 0 <
¢ < 2m.

We also introduce some simple “matrix” unitary operators X; and & in the
composite Hilbert space H that are well known to physicists as the spin operators:

b =(?(’)) e M = 8

o1

e=im=( ") cem=-n-o. 2.14)

The operators X'} and £ are evidently unitary and therefore commute with the
closure operation and the orthogonal complement operation. These operators are
extensively used below in defining the inverse and adjoint operators in terms
of graphs.

2.3.4 Properties of Linear Operators

We now touch upon some general properties of operators. In general, an operator f
rotates and stretches the vectors belonging to D ;. The measure of stretching is its

norm || f || defined by

7= s |7elien™ = swp | 7). @.15)

(€D, E#0 E€Dy, |IElI=1

It is evident that [| f €| < || ]| |£]l, V& € D, and
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. 70| < | | 1gnimi. ve e Dy vnes.

An operator f is called a bounded operator if its norm is finite, || f| < oo;
otherwise, it is cglled an unbounded operator.
An operator f is called a continuous operator if

$—>§0,§s§0€Df:>f5—>fA$0-

The continuity of any operator is obviously equivalent to its continuity at the
origin: § — 0= f¢& — 0.

Some of the trivial examples of bounded and continuous operators are the
multiple of unity operator f =z, I f || = |z|, and the unitary operator, f =0,
1] = 1.

We list some well-known properties of bounded operators (see, for example, [9]).

Lemma 2.21. (i) An operator f is continuous iff it is bounded.
(ii) A continuous operator f can be extended by continuity to the closure D ¢ 7 of

the initial domain D y with the same norm. Ifo ;é £, an operator f can
be extended to the whole of $ with the same norm'> (for example, by setting

/Dt = (o}

Bounded operators defined everywhere form an associative algebra with the
natural operations of addition and multiplication respectively defined by

(af +b8)s =afE+bgk, VE€$H, Va,beC, (f)E = f(36),

and obeying the distributive law:
(f +h = fh+gh h(f+@=hf+hs

In particular, the commutator of two bounded operators is well defined.

This algebra is normed with the previously defined norm || f || which fulfills
the standard requirements for a norm and also has the property I f gl =< f Mgl
The distance between two operators f and ¢ is defined as || f £|l; it determines
the so-called uniform operator topology, similar to the strong topology in 9.
A sequence { f,,}°° of operators is called uniformly convergent to an operator f

written fn => f , if || fn — f I "% 0. As a linear space the algebra is complete
with respect to the uniform operator topology.

Along with uniform convergence, two other kinds of convergence, namely, strong
operator convergence and weak operator convergence, are introduced for bounded
operators defined everywhere. A sequence { f,}7° of operators is called strongly

13 An unbounded operator cannot in general be defined in all of §).
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~ . A n—>00 A .. A N—>00 2
convergent to an operator f, written f, — f,if f,§ — f& V& € 9, and
weakly convergent to an operator f , written f; = f , if wlim,, o0 ﬁ,g = f g, VE e
$. Strong convergence follows from uniform convergence, and weak convergence
follows from strong convergence and a fortiori from uniform convergence.
A bounded operator f generates a bounded sesquilinear form w s defined by

wy (.6 = (1. /%), = |7 ] imnnen.

and f is completely determined by w r. Moreover, f is completely determined by
its matrix elements f,,, = (e, f e,) with respect to any orthonormal basis {e,}7".
In this sense, bounded operators are similar to finite-dimensional operators.

The algebraic situation with unbounded operators is more involved because of
generally different domains and ranges for different operators.

The multiplication of an unbounded operator f by a complex number z € C is
naturally defined by (z f ¥ =z f §,& € D,y = D. But the sum and product of
two unbounded operators f and & with the respective domains D s and D are more
involved. They are respectively defined by

(f+2)&=re+8t. §eDyrg=DyN Dy,

and

(fe)e=7 . teDp={E:6eDy. s5eDy).

It f or & is defined everywhere, D y = § or D, = $), then we respectlvely have
Dyie = DgorDyye = Dy. In partlcular the domain of the operator f — zI
is Dy_;; = Dy, so that f — = f — zIDf , where IDf is the restriction of the
identity operator [toD £

It may be that Dy N R, = {0}, in which case the product fg is defined on only

the zero subspace, butif Dy = §, then D s, = D,.
As to the distributive law, we have the equality

(f+8)h=fh+sh (2.16)

and in general, the inclusion };( f +8)2 h f + hg,but if h is defined everywhere,
the inclusion becomes an equality:

h(f +8&) =hf +hg. if Dy = 9. 2.17)

We see that there is no natural associative algebra for arbitrary operators, notably
unbounded ones. In particular, a notion of commutativity cannot be naturally defined
for two arbitrary operators. But if at least one of two operators f and g is defined
everywhere, let it be f , Dy = $), then we say that these operators commute if
f gcC¢ f ,1.e., the product & f is an extension of the product f &, which means that
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f ¢ € Dy, V& € Dy and f gE=¢ f €. We note that this notion of commutativity is
extensively used in QM in defining the symmetry of unbounded observables g under
unitarily implemented group transformations f = U.In QM, a commutativity
of observables is also extensively used; we say in advance that for s.a. operators,
commutativity can be defined by reducing to the case of bounded operators.

Remark 2.22. An unbounded operator is not generally determined by its matrix
{fmn} With respect to an orthonormal basis {e,};° even if e, € Dy, Vn, and
the matrix does exist (an example is given below). Therefore, any operations with
unbounded operators, in particular definitions of the adjoint operator, and conse-
quently of self-adjointness, in terms of the corresponding matrices are generally
improper. In relativistic quantum field theory, a situation with observables and with
a proper formulation of the theory itself is more involved and even dramatic. For
example, in the relativistic local Ag*-theory of a scalar field ¢ in 3 + 1 dimensions,
the Hamiltonian H in the Fock space is formally given by

A = [ox| 5200+ (9020 + 200 + o]

A / dk; - - - dky
121 | \2ok) - 20(k)

x[aT(kp)--at (k)8 (ki + -+ k) + -], ok) = VK2 + m?,

_ / dko(k)a* (K)a (k) +

where 7 is the canonical momentum operator, and at,a are the conventional
creation and annihilation operators. But this H actually defines only a sesquilinear
form (¥, H ¢) on the linear envelope of terminating Fock vectors, or a matrix in
the (generalized) orthonormal basis %&*’ (kp)---at (ky) QASO, where q30 is the Fock
vacuum, and not an operator: H has no nontrivial domain of definition because of
the volume and ultraviolet divergences. To be defined, H requires some volume and
ultraviolet cutoffs; this is the subject matter of constructive field theory.

After this remark, we turn to properties of unbounded operators. An analogue of
continuity for unbounded operators that is sufficient in many cases is closedness.

An operator f is called a closed operator, written f = f (the notation becomes
clear below), if its graph is closed (as a subspace in H), G = G.

A weakened version of closedness is closability. An operator f is called a
closable operator if the closure G of its graph Gy in H is also a graph, and
therefore determines the operator f » which is called the closure of f .

For a closable operator f , we have f C f ; a closed operator E atrivial particular

case of a closable operator that coincides with its closure, f = f . Therefore, when
we use the term “closable operator” in what follows, we as a rule actually mean a
“closable, in particular closed, operator,” which is explicitly represented in formulas
by the symbol C .
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It is easy to see that an operator f is closable if it has a closed extension & = g
Gy C G, = G, implies that G C Gy, whence it follows that G is a graph,

the graph of the closure f , which is evidently the minimum closed extension of a
closable f .

In the language of maps, definitions of these notions are more lengthier. An
operator f is called closed if the simultaneous realization of the two relations

lim & =&, lim f§& =7 V& € Dy,
n—>o0 n—>oo )

implies that § € D, and f$ =1.
An operator is called closable, or has a closure, if the simultaneous realization of
the relations

lim & = lim & =& lim f& =7, lim f& =y, V&.£ €Dy,
n—o0 n—o0 n—oo n—o00

implies that n = 7.

The difference between continuous and closed operators is that if f is continuous
(bounded) then &, —> & implies that'* /&, —> n, while if £ is only closed, the
sequence { f g,,} can diverge (for an unbounded f ). But in both cases, a situation
in which £ — &, £ — ¢ and simultaneously f£) — ), f£@ — @
with " £ @ is forbidden.

The latter is a necessary and sufficient condition for closability. An equivalent cri-
terion for closability directly follows from the graph criterion (2.11), Lemma 2.19:
an operator f is closable iff the simultaneous realization of the relations §,—>0, &, €
Dy, and f &,—>n implies that 7 = 0. The closure f of a closable operator f now
can be described in terms of sequences as follows: a vector § belongs to the domain

D of f iff there exists a sequence of vectors {§,}7°,&, € D/, so thatif §,—§
and fén—m, then fg =1.

For a continuous operator, the relation &, —> 0 implies that f§, — 0, and
therefore, any continuous operator f is closable, its closure f is also continuous,
and || f = f ||. For future reference, the following assertion is formulated as a
lemma.

Lemma 2.23. The domain of a closed continuous (bounded) operator f , f = f ,
is closed, Dy = Dy, i.e., Dy is either a closed subspace in §) or the whole of %,

and conversely, if D y = D_f, a continuous operator f is closed, f = f .

“It may be that £ ¢ D if f is not closed; a continuous f can be nonclosed, but is always closable
(see below).
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In part, this assertion is a paraphrase of the above-cited assertion that a
continuous operator allows extending by continuity to the closure of its domain.
We note that in general, the range of a continuous operator is not necessarily closed.

In contrast to continuous operators, not every unbounded operator has a closure.
Of course, any graph G ; is closable, but the closure (CTf may be not a graph.

A counterexample is the operator f in L? (0, r) defined on the subspace of all
continuous functions and given by

£y (x) = ¥ (0)sinx. (2.18)

This operator is evidently densely defined and unbounded. For the sequence
{¥n (x) = e }{° of continuous functions, we have ¥, —> 0, but f Yy (x) =
sin x # 0. It follows that this operator is nonclosable, and a fortiori nonclosed.

The characteristic property of a nonclosable operator is that its matrix { f,,, } with
respect to an orthonormal basis {e, }{° does not determine the operator. Taking the
orthonormal basis {en = /2/msin nx}oo in the above example, we have f,,, = 0,

1
whereas f # 0.

For a closed unbounded operator f, neither its domain D ; nor, in general, its
range Ry is a closed subspace.

Remark 2.24. QM observables must be closed operators. This is clear from the
physical considerations related to the inaccuracy of measurement: the inaccuracy
in determining a state must have no strong effect on measurable observables. On the
other hand, QM observables must be densely defined.

There is no strong relation between the closure operation and algebra of
unbounded operators. It is evident that if an operator f is closable, then the operator

af, Va e C, is also closable, and af = af. As to the closability and closure of
the sum and product of closable operators, we cannot say something definite in the
general case. For example, the sum of two closed operators may be nonclosed, and
the same holds for their product. But if one of the two closable operators f and g
is bounded and defined everywhere, and is therefore closed, letitbe &, § = E, then
their sum is closable, and the closure of the sum is the sum of the corresponding

closures, f +g = f +¢. In particular, if an operator f is closable, then the
operator f — z/ is also closable, and

f—zf=fF—z vzec. (2.19)

Under the same conditions, the product f g is closable, and f g C f g = f g.
A condition on f under which the product f g is closable is given below.



42 2 Linear Operators in Hilbert Spaces

2.3.4.1 Examples of Unbounded Operators

As an example, we consider the differentiation operator dAx in the Hilbert space
L%(a,b),

i Dy = {V(x): vacin(a,b), .y € L*(a.b)},
T dop(x) = ¥ (x).

We show that the operator ‘?x is unbounded for any interval (a,b) C R.
Let (a,b) = [0, 1]. We consider the sequence {1/, }{° of functions of unit norm,

1
V) = 201+ 1/m] 22 P = 201+ 1/m) / PG
0

It is easy to see that

Ao (x) = ¥i(x) = (1/2 4+ 1/m)[2(1 + 1/n)] /21241
[yl = (1/2 4 1/n)*(1 + 1/n)n = n/4+ O(1),

whence it follows that the functions v, with any n belong to the domain D, of
the operator c?x and its norm is estimated from below by ||dAx|| > n/4, where n
is arbitrarily large, which means that c?x is an unbounded operator. The operator
dAx cannot be defined on the whole of L2(0, 1); for example, it is not defined on
functions ¥, = x%, —1/2 < a < 1/2: although ¥, € L*(0, 1), we have ¥, ¢
L*(0, 1) because ||V ||* = oo.

The same conclusions hold for the operators c?x in L?(Ry) and L*(R) due to
similar arguments.

By similar arguments, similar conclusions hold for the double differentiation
operator with the rule of action d?.

It can be shown that the operator of multiplication by the independent variable
x in L>(R4) and L?*(R) is unbounded, whereas in L?(a,b), |a|,|b| < oo, it is
bounded, see Sect. 4.3.3.

We now turn to the notions and properties of inverse and adjoint operators,
which are of great importance in what follows.!> These notions are most easily
defined and described in the language of graphs via the above-introduced unitary
transformations X and £ (2.14) in H.

STn particular, criteria for closability and methods for constructing the closure are formulated in
terms of them.
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2.4 Inverse Operator

As a preliminary step, we need the important notion of the kernel of an operator.
By definition, the kernel of an operator f (or null space),'® denoted by ker f, is
the eigenspace of f corresponding to the zero eigenvalue: ker f = {§ : § € Dy,

f& = 0}. For a closed f, its kernel is a closed subspace: f = f - kerf =
ker f

It is evident that the elgenspace of an operator f correspondlng to the elgenvalue
A can be defined as ker(f AI) A is an eigenvalue of f iff ker(f Al) # {0}.

2.4.1 Definition and Properties

We now consider the action of the unitary operator Y in H=$ & $ on the graph
Gr=1{¢&n= f §)} C Hof an operator f The natural question arises whether

the subspace X1Gy = {(n = fé/é)} C H (with transposed abscissas and
ordinates) is a graph in itself and therefore determines some operator.

Definition 2.25. An operator f is called invertible if the subspace X¥|G r C His a
graph. If so, this graph determines the operator called the i 1nverse operator, or simply
the inverse, of f which is denoted by f ,such that § = f n,

G =56y = {(n/e = F ),

A criterion for invertibility follows from the graph crlterlon (2.11), Lemma 2.19:
an operator f is invertible and the inverse operator f exists iff n = f E=0—=
£ =0,or f has the zero kernel, ker f {0}. An evident generahzatlon of this
assertion is that an operator f —z[l, z € C, is invertible and its inverse ( f —zl )~
exists iff ker( f —zl ) = 0, or z is not an elgenvalue of f Conversely, if A is an
eigenvalue of f then the operator ( f Al )~! does not exist, and vice versa.

In the language of maps, if ker f = {0}, then there is a one-to-one correspon-
dence between any £ € Dy and n= f £§eR /s and the operator f has the inverse
operator f ! that maps n = f Eto& & = f 1. We call the operation ~' that
assigns the inverse operator f ~! to every invertible operator f , f L f ~1, the
inversion operation.

The invertibility of an operator f implies that the equation f E=mn&e Dy,
n € Ry is resolvable uniquely: £ = f‘ln.

We cite the properties of an inverse operator, which are easily verified.

16The latter term is used to avoid confusion with the kernel of an integral operator.
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Lemma 2.26. For any invertible operator f , the following relations hold:
(i) f_l is invertible, i.e., ker f_l = {0}, and (fA_l)_1 = f (because 212 =T
the identity operator in H). . .
(i) f7'f = Ip,.ff~" = Ig,, where Ip, and I, are the restrictions of the

identity operator I to the respective subspaces D ¢ and R y.
(iii) Df—l = Ry, Rf—l = Dy.

a |17 =
As an example, an isometric (unitary) operator U is invertible and U~ is also
isometric (unitary).

The following are the connections between the notion of invertibility and the
previously defined notions of boundedness, extension, closability, and algebra.

2.4.2 Invertibility and Boundedness

Lemma 2.27. If ||f§|| > c|lé]l, ¢ > 0, then f is invertible and f_l is bounded.:
| f7Y < c¢™L. The converse also holds.

Proof. The inequality || f &l = cll&]l, ¢ > 0, evidently implies that ker f = {0}
and therefore f is invertible. The equality n = f f~'n, Vn € D ;-1, then implies
Il = 11£ /="l = ¢l f~"nll. It follows that

[ 7=l il < e vie Dyt n o,

which means that || f ~! < ¢7!. The converse is proved similarly using the equality

E=f"1fE,VEeDy. O

2.4.3 Invertibility, Extension, and Closability

It is evident, especially in the language of graphs, that if an operator f allows an
invertible extension, f C g, kerg = {0}, then f is also invertible and f ~! allows
an invertible extension /' C g7

For a closable operator, the relation between its inverse and the inverse of its
closure is more specific.

Lemma 2.28. Let an invertible operator be closable, fg f, and let its inverse f_l

~ —_ = ~ =
also be closable, f=' C f~1. Then its closure f is invertible, and (?) =f-L
Conversely, let f be a closable operator, and let its closure f be invertible. Then f

A~ —_ - —1
is invertible, its inverse f~'is closable, and f~'= (? ) .
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Proof. The lemma can be formulated as follows: for a closable operator f , the

~

_1 —_—
equality ( f ) = f~1 holds if one of its sides, left-hand side or right-hand side,

has a sense, i.e., the closure operation ~ and the inversion operation ~! commute.

This is a direct consequence of the commutativity of the closure operation and the
unitary transformation X', which yields the following chain of equalities:

G %G =Gy =Gy =Gy =G

H=' =
The direct and converse assertions of the first part of the lemma are proved by
respectively reading these equalities from left to right and from right to left. O

It may be that f is invertible, but its closure f is not. For example, let {e, }7° be
an orthonormal basis in $), and let 1 be a unit vector of the form

o0

o0
n= anes, Ya, #0, [l = Y la,|* = 1.
1

1

The operator f densely defined on Dy = L({e,}7°) and given by f E=E—(8n
is bounded:

IFEI? = IEI? = 1. ©)F = I £l = 1,

and therefore is closable, but is not closed, by Lemma 2.23, because D is

not a closed subspace. It is easy to see that ker f = {0} because the equality
& —(n,&)n=0 is impossible for a nonzero § € Dy, a finite linear combination

of basis vectors, and therefore, the operator f is invertible. The closure f of f is
defined everywhere and is given by the same formula, while its kernel is the one-

dimensional subspace {an, Ya € C} spanned by the vector 7. Because ker f # {0},

the operator f is not invertible.

Changing f to /' and /=1 to f = (/)" in the second part of Lemma 2.28
provides a useful criterion for closability and a method for constructing the closure:
Let an operator f be invertible, and let its inverse f ~! be bounded, || f < oo,

and therefore closable. Then f is closable if the closure f —1 of the inverse is

= —\ !
invertible, and f = (f—l) .

Because operators f and f — zi ,z € C, are closable or nonclosable

simultaneously and f —d = f — 2, see (2.19), these criteria and method can
be used with the operator f replaced by the operator f — I for some z.

For future reference, we combine some parts of Lemmas 2.23 and 2.28 into a
separate lemma.
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Lemma 2.29. [fan operator f is closed and invertible, then its inverse f ~lis also
closed. If, in addition, the inverse f ~!is bounded, then the range R r of the operator
f, which is the domain D ;-1 of the inverse f_l, isclosed; Ry = Dy—1 = D1 =
Ry, i.e., Ry is either a closed subspace in §) or the whole of $).

The first assertion of the lemma is the second assertion of Lemma 2.28 related to

a closed operator f = f : f -l = f —1. The second assertion is the first assertion
of Lemma 2.23: Ry = D ;-1 is a closed set as the domain of the closed bounded

operator f .

2.4.4 Inversion Operation and Algebra

Lemma 2.30. Ifan operator f is invertible and a number a is not equal to zero,
a 75 0, then the operatoraf is also invertible and (a f) - a_lf - If operators
f and g are invertible, then their product fg is invertible, (fg) - g_lf !, and

Dy =%"(ReNDys). Ryg=f (RN Dy).

We leave the proof to the reader.

We can also make a promised addition concerning the closability of the product
of two operators. Let ¢ be a closable operator, let f be an invertible operator, and
let its inverse f ~! be a bounded operator defined everywhere and therefore closed,
so that the operator f = ( f ~H~1is also closed by Lemma 2.29. Then the product

f g is closable, and f g = f E We leave the proof to the reader (it is based on the
existence of the continuous inverse f —h.

As to the invertibility of the sum f +¢ of two operators, we cannot say something
definite in the general case (for example, let § = — f ). A useful exception is given
by the following lemma.

Lemma 2.31. Let an operator f be bounded with ||f|| ¢ < 1 and deﬁned
everywhere, D f= .6 Then the operatorl — f is invertible; the inverse (I f )~
is bounded, ||(I f) " < (1 =¢)7", and is also defined everywhere, D(I_f)fl =
R;—y = $; and it is given by (i — f)_l = > fk, where the series on the
right-hand side is uniformly convergent (the operator analogue of the formula for
the sum of a geometric progression).

Proof. A proof of the first assertion of the lemma follows from the triangle
inequality

[ = D) =81 - | 7] = -0l vee s,
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and then from Lemma 2.27. The proof of the second and third assertions is based
on the evident equality

T-H Y fr=10-fm. (2.20)
k=0

We first note that the operator sequence { f ntl }go uniformly converges to the zero

~ n—>00 A
operator: f"*1 — 0, because

A

1
n+ n41 >0

/

’

and a fortiori, it converges strongly: f ntlg e 0, V& € $. Second, the operator f
is evidently closed, and therefore, the operator I — f is also closed. Then by virtue
of Lemma 2.29, its range R;_ s is a closed subspace, R;—r = R;_ . Leta vector 7

belong to (RI_f)J-, the orthogonal complement of R;_¢, i.e., (1, (f — f)g) =0,
V& € . Then (2.20) yields

(. (F = f™NE) = (0,6 — (. f"7E) = 0, VE €.

Passing to the limit » —> oo in the last equality and using that f"+t'§ —> 0in
this limit, we obtain (1, §) = 0, V& € §, whence it follows that n = 0. This means
that (RI_f)J- = {0}, and therefore, R;; = T_f = §, which proves the second
assertion. Multiplying (2.20) by (f — f )~! from the left, we obtain

(=) =it = (=) e
k=0
whence it follows that
(=) -2
k=0

which proves the third assertion. O

< Cn+l (1 _ c)—l ”10;3

_ H(j_f)_l i

2.5 Spectrum of an Operator

An 1mp0rtant notion of the spectrum of an operator f is formulated in terms of the
operator f —zl,z € C,and of its inverse ( f —zl ) !, In what follows, for the sake
of brevity, we let f (z) denote the operator f —z,
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and conventionally let the operator R (z) denote its inverse ( f —z ),
R@=(-DH"=fo™"

For the closure f of a closable operator f we use the natural notation f (z) =
f-dadR@ = (f@)" =(f -

In the finite-dimensional case in which all operators are bounded and are
conventionally defined everywhere, by the spectrum of an operator f is meant the
set of its eigenvalues, i.e., the set of numbers A € C for which ker f () # {0} and
the operator 7@(&) does not exist.

Other points of the complex plane, usually denoted by z, are called regular
points. For a regular point z, the operator R (z) exists and is bounded and defined
everywhere; the latter implies that the equation f (z)¢€ = 7 is uniquely resolvable
forany n: £ = R () n. A

In the infinite-dimensional case, there is another possibility: the operator R (z)
exists, but it is unbounded or it is bounded but not densely defined.

We note that for a closed f , the last case will allow a more precise formulation
after a preliminary simple lemma.

Lemma 2.32. Let f be a closed operator, let the operator f (z) be invertible, and
let its inverse 7A€(z) be bounded. Then the range R s, of the operator f (z), which is
the domain Dr ;) of the inverse 7%(2), is closed, Ryi;) = D) = m = m,
i.e., Ry = DRy is either a closed subspace in §) or is the whole of $).

After the remark that for a closed f , the operator f —zf is also closed, see (2.19),
the assertion of the lemma becomes a paraphrase of Lemma 2.29. 17

The case that the operator R (z) is bounded but is not densely defined now can
be formulated for a closed f as “the operator R (z) exists, is bounded, but is defined
on a closed subspace in §).”

We now give a definition of the spectrum of an operator f in a Hilbert space in
two steps.

Definition 2.33. A number z € C s called a regular point or a point of the resolvent
set of an operator f if the operator f (z) is invertible and the inverse operator R (z)
is bounded and densely defined. For a closed f , the last condition is replaced by
“defined everywhere, or R r(;) = $)” by virtue of Lemma 2.32.

We let regp f denote the resolvent set of an operator f

The operator-valued function R(z) of a complex variable z defined on the
resolvent set, i.e., for z € regp f , is called the resolvent of an operator f
Sometimes, the operator 7@(1) with a fixed z € regp f is also referred to as the
resolvent (at the point z).

7We separate Lemmas 2.32 and 2.29 for our later convenience.
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For any z < regp f the domain and the range of the resolvent of a closed
operator f are respectively $) and D ;. This implies that the equation f ()& =nis
uniquely resolvable with respect to & belonging to D r forany n € $: § = R (@)1
(whence the name resolvent), which is equivalent to the equalities f (2) R (2 = I,
RG@fG@) =1 p,- In particular, we have

R (&)= R () F@QRG@.,R@=R () f () R(z), Vz.Z eregp f .
(2.21)
Definition 2.34. The complement of the resolvent set in the complex plane C is
called the spectrum of an operator f and is denoted by spec f so that

regpr specf = C, regpfﬂ specf = 0.

The points of the spectrum are usually denoted by A. It is evident that the
eigenvalues of an operator f belongs to its spectrum, but in general, they do not
exhaust it. The eigenvalues form the point spectrum; if A belongs to the point
spectrum, the operator R (1) does not exist. For s.a. operators, a more detailed
specification of the spectrum is given in Sect. 2.8.6.

Lemma 2.35. (1) The resolvent sets of a closable operator f and of its closure ?
are the same, regp f = regp f . Therefore, their spectra coincide, spec f =
spec?. X .

(2) The resolvent set regp f of a closable operator f is an open set in C, and
therefore, its spectrum spec f is a closed set.'s

Proof. (1) An operator f (2) is closable together with f , and f (z) = f (z); see

(2.19). Then by Lemma 2.28, the equality (F@)™" = (f @, or E(z) =

R (z), holds if one of its sides has a sense. It immediately follows that for a

closable operator f, a number z € C is a regular point of f iff z is a regular
point of its closure f . R A

Necessity: Let z be a regular point of /. Then the bounded operator R (z)

has a bounded closure R (z) = R (z) with the domain D = m ==

sz " Sufficiency is evident.

(2) In view of item (1), it suffices to consider a closed operator f Letz € regp f
Then the operator f (z + 82) defined on Dy, as well as f (z), allows the
representation

fe+d)=f(@)~8zdp, = f@—8RE@ f)=U-6R@)f ().

181n fact, the spectrum of any operator is closed [125].
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If |6z H’I@(z) H < 1, the operator 8zR (z) satisfies the conditions of Lemma

2.31, and therefore, the > operator (f —8zR (z))~! exists and is bounded and defined
everywhere as well as R (z). Then by virtue of Lemma 2.30, the operator f (z+387) is
invertible, and its inverse is given by R(z+682) = R (z) (I =8zR (z))~". In addition,
R(z + §z) is bounded and defined everywhere as the product of bounded operators
defined everywhere, which means that the point z + 8z also belongs to regp f . We
thus obtain that an e-neighborhood of a regular point z with ¢ < ||7A€(z) |~ is a set
of regular points, which completes the proof of the lemma.

For a closed operator f and arbitrary z,7 € regp f , we have the Hilbert identity

N

R(EZ)-R@ =(Z-2)RE)R{).
To prove this identity, it is sufficient to use in sequence the identity
R(E)-R@=R({) /S @QR@-R()f(Z)R@

following from (2.21), (2.16), and (2.17), taking into account that D) = 9.
It follows from the Hilbert identity that for arbitrary regular points z and 7/, the
respective resolvents R (z) and R (') commute with each other, [R (z) , R ()] = 0,
and that the resolvent is an analytic function on the resolvent set (in the sense of
uniform operator topology) with derivative d R (z) /dz = R (2).

If f is a bounded operator defined everywhere, then a point z such that lz| > || f I
isa regular point of f and therefore, the spectrum of f lies within the circle of
rad1us||f||, spec f Clz:lz] < ||f||} To prove this assertion, it is sufficient to use
the representation f (z) = —z(i —z! f ) and then Lemma 2.31. O

2.6 Adjoint Operators

2.6.1 Definition and Properties

By analogy with an inverse operator, an adjoint operator is defined in the language
of graphs simply via the replacement of the unitary operator X' in H by the unitary
operator £ defined by (2.14). But the construction is more involved.

Let G, ={(&/ f )} C H be a graph of an operator f . We consider a subspace

EGr ={( f&,/ —§£)} C H. In connection with the decomposition

H=9&H =26, @ (EG,)",
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the question arises whether the orthogonal complement (5 (Gf)J' of the subspace

EG 4 is a graph.'® By definition, the subspace (c‘f((}_,r)l is given by
J- ~
(66" = {6/ m e H: (6. f6) —(n0) =0, Vee D} 222)

Definition 2.36. Let (5 G f)J' be a graph and therefore determine an operator. This

operator is called the adjoint operator, or simply the adjoint, of f and is denoted by
ft suchthatn = fTE,,

Gpe = (8= F*8)} = (€6/)" . (2.23)

The graph criterion (2.11), Lemma 2.19, prov1des a criterion for the existence of
the adjoint f T of an operator f the operator f T exists iff f is densely defined,
D r = $. Indeed, (2.22) and (2.11) yield the following chain of conclusions: £x =
0= (n.§) =0,VE € Dy = n = 0iff D is dense in §. So only a densely
defined operator has an adjoint operator.

An equivalent definition of f ¥ in the language of maps is lengthier and goes as
follows.

Definition 2.37. Given an operator f, we consider the linear equation

(6. f¢) = .5 . vEe Dy, (2.24)

for pairs of vectors £, . A vector 7 in each pair is uniquely determined by vector &,
iff the operator f is densely defined, D s r = 9. 1f so, the operator f has the adjoint
operator f +, its domain is the subspace of all those vectors &, for which there exist
vectors 7 satisfying (2.24), and n = f+§*

We call (2.24) with a densely defined operator f the defining equation for the
adjoint operator f *. This is the equation for the pairs of vectors & and n = f tE,
that form respectively the domain and range of the operator f +,

We call the operation * that assigns the adjoint operator f * to any densely

rop t A .. . .
defined operator f, f —> f™T, the adjoint operation. Another name is the
Hermitian adjoint operation.

“We can also ask whether the subspace EG s is a graph. In fact, we already know the answer: it is

easy to see that £G s is a graph iff f is invertible, and if so, £G s determines the operator — f -1
ng = G_ffl .
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Remark 2.38. In some textbooks for physicists, the adjoint f T is defined via its
matrix elements with respect to an orthonormal basis {ex}7° by

fi= (ek,fA+€1) = (fek,el) = (EI,fek) = fix..

This definition is very restrictive and is generally incorrect. In general, the matrix of
an operator does not determine the operator. In addition, this formulation assumes
that {e; }7° C D+, and therefore that /™ is densely defined, D ;+ = £, which is

generally not the case. Finally, it follows that ( f Ht = f , which is generally not
true. In other words, it is believed that any operator f can always be rearranged to
the left in a matrix element (£, f&) with a cross over it: (£, f&) = (f+$*, ),
with the domain D + not specified in any way. Strictly speaking, this definition is
applicable to bounded operators defined everywhere (see below). The point of this
remark is that for a given densely defined operator f , and only for such an operator,
the adjoint operator f * is evaluated by solving the defining equation (2.24) for pairs

€« and n = fA+$*

As an illustration, we evaluate the adjoints of some operators.

It is easy to see that (z/ )t = zl. A simple evaluation shows that the
adjoint U™ of a unitary operator U coincides with its inverse U™, Ut=U"",
and a unitary operator U can be defined as an operator satisfying the equahtles
Ut0=00%=1.

An interesting example is presented by the above operator (2.18). The defining
equation

V7 /2¢ (0) (Ex,e1) = (1, ¥), e1 (x) = /2/msinx, V continuous ¥ (x),

for the adjoint f * has the following solution: Let ¥ € D (0, 7). Because ¥ (0) = 0,
we find (n,¥) = 0, V¢ € D (0, 7). Then it follows from Lemma 2.4 and Theorem
2.6 that n = 0. Taking now ¥ such that ¥ (0) # 0, we find («,e;) = 0, which
implies that D ,+ = {ae; (x), Va € (C}J‘, the subspace orthogonal to sin x, and

f+ = 0. It is remarkable that /* is not densely defined, and therefore, (f )"
does not exist. The reason is the nonclosability of f (see below).

The Riesz theorem, Theorem 2.16, provides a criterion for a vector &, to belong
to the domain D ;+ of the adjoint f * of a densely defined operator f namely, £, €
D s+, i.e., there exists a vector 7 satisfying the defining equation (2.24), iff a linear

functional @, (§) = («. f £), V&€ € D, is bounded (continuous). The necessity is
obvious: @, (§) = (1, §) implies \@g* (§)| < |Inll €l The sufficiency is also easy
to prove: the bounded functional @, defined on the dense domain D  is extended
to the whole of $) by continuity as a bounded functional with the same norm, and
then by Theorem 2.16, it is represented as @z, (§) = (1, §) with a uniquely defined

1. The pair £, 7 is clearly a solution of the defining equation, and n = f T&.
An immediate consequence is the following lemma for bounded operators.
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Lemma 2.39. If an operator f is defined everywhere, Dy = $), and bounded,
| 1l < oo, then its adjoint f+ exists and is defined everywhere, Dy+ =9y itis
bounded with || f+|| = | f|I; and (f )T = f.

Proof. The first assertion is evident. The second assertion follows from the estimate

‘(é*,fé)) < IFINEIIEN, VE & € 5,

and from the Riesz theorem. The third assertion follows from the chain of equalities

3

I

= ‘(%‘i‘, f S“)

=/

where £" = &/ ||&||, X = &« ||€«||- The fourth assertion follows from the evident
symmetry between f and f T in the defining equation (it is sufficient to perform
complex conjugation and transposition of the left-hand side and the right-hand side
in the defining equation to obtain (&, f+§*) = (fé £x), VE Ex € 9. O

This result is sometimes cited in textbooks on QM for physicists as a general one
and is implicitly applied to unbounded operators, which is incorrect.

We cite separately the properties of adjoint operators that concern their relation
to the notions of extension, invertibility, closability, and algebra.

2.6.2 Adjoint and Extensions

Lemma 2.40. Let a densely defined operator f with the adjoint f"’ have an
extension &, f C &. Then g has the adjoint §*, which is a restriction of f7,
gre st

So, extending a densely defined operator f is accompanied by restricting its
adjoint . This fact is fundamental in what follows.
In the language of graphs, the proof is very simple (see (2.3)):

Gy S Gy = EGy CEGy = Gyt = (EGy)t 2 (EGy)* =G+,

which means that g+ exists and g+ €/ the left-hand side of the last inclusion is
a graph, the graph of f . Therefore, the right-hand side is also a graph, the graph
of g%+, and the inclusion itself means that g+ < f .

Remark 2.41. This property is useful for analyzing extensions and evaluating
adjoints. Namely, let a densely defined operator f allow a restriction f; that is also
densely defined, D_f[) = §. Let the adjoint fO+ be easily evaluated. We then know
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“the rule of acting” for the adjoint f + c fAO+, and it remains to find its domain
D s+ . The domain is determined by solving the linear equation

(5*,f§) = (f;fé*,é), VEe Dy, foréx € Dyy C Dﬁ)Jr,

to which the defining equation for f * reduces after taking the equality f e =
f;+ Ex,VEx €D fts into account. This method is often used for differential opera-
tors. In particular, for differential operators with smooth coefficients in an interval
(a, D) of the real axis, the set D(a, b) of compactly supported smooth functions is
taken as D z,. Then the methods of distribution theory [88] are used for evaluating

fo , while the adjoints f * of different extensions f of fo are naturally specified
by boundary conditions for functions belonging to D ot (see Chap. 4).
0

2.6.3 Adjoint, Closability, and Closure

Lemma 2.42. An adjoint operator is closed, f T = f * (although the operator f
can be nonclosed and even nonclosable). The adjoint of a closable densely defined

operator f and the adjoint of its closure f are identical, f+ = f+ = (f)"(the
adjoint operation * and the closure operation — commute if they make sense).

Proof. The proof reduces to chains of graph equalities. For any densely defined
operator f, the chain of equalities

G+ = (Gt = (Gt =G4+

holds, while for a closable densely defined operator f , the equalities can be
continued to

—_— 1L
€T = (€G5) = (€B)* = (€GP  =Gos.

where we successively use (2.2) and (2.12). |

The following lemma is of great importance.

Lemma 2.43. A densely defined operator f is closable iff its adjoint f * s
densely defined or, which is the same, the operator (f ) texists. For any closable
densely defined operator f, we have ( f Ht = f (the double adjoint operation

is equivalent to the closure operation); in particular, if f is densely defined and
closed, then (f )T = f.
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Proof. The proof reduces to a chain of graph equalities, which can be read from left
to right and from right to left:

Gyt = (€G+) =€ ((5Gf)l)l =& (@) =(©’Gs =Gy =Gy,

where we use sequentially (2.13), (2.6), (2.12), the equality (6’)2 = —i, where T
is the identity operator in H, and the fact that a multiple of unity transforms any
subspace to the same subspace. O

Lemma 2.43 yields not only a criterion for closability of a densely defined
operator f (for a counterexample, see operator (2.18)), but also a method for

constructing its closure f . This method is effectively used in the theory of
differential operators; see Chap. 4.

Lemmas 2.39, 2.40, and 2.42 together with Lemma 2.23 and Theorem 2.17 allow
us to prove an important theorem.

Theorem 2.44. A closed operator f , f = 7, defined everywhere, Dy = §, is
bounded, || f || < oc.

Proof. The idea of the proof is to show that the adjoint f * of f is bounded and
defined everywhere. Let {¢]} be the set of all unit vectors in D ;+,

E =8 8 eDy. |8l =1}.
Because Dy = $yand £} € Df+, we have
(e2.7¢) = (Frene) = (6 /). veen, ver
By the Cauchy—Schwarz inequality, it follows that

[C¥ar

- ‘(g:,fg)‘ < Hng VE €9, VEL

which means that the set { f TEM is weakly bounded. By Theorem 2.17, the set
{fTEMY is then strongly bounded, i.e., || fTE"| < C, V&, which implies that
||j?+ | < o0, i.e., the operator f+ is bounded. By Lemma 2.42,_fA+ is closed; hence
by Lemma 2.23, its domain is a closed subspace, D y+ = D +. But by Lemma
2.43 as applied to the operator f , we have D_f+ = §), which yields Df+ = §, and
f = (f*)*. The operator /' is thus bounded and defined everywhere. Applying
now Lemma 2.39 to the operator /+ and using the equality / = (f )T, we finally
obtain that the initial operator f is bounded. O
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This theorem is very important for QM. Unbounded closed operators, in
particular unbounded s.a. operators, cannot be defined everywhere in the whole of $).
Therefore, we must be careful in finding an appropriate domain for any unbounded
QM observable to ensure its self-adjointness. A direct consequence of Theorem 2.44
is the following useful lemma concerning the spectrum of a closed operator.

Lemma 2.45. A number z € C is a regular point of a closed operator f iff the

operator f(z) = f — 2zl is invertible and the inverse operator R(z) is defined

everywhere, or R sy = $). In fact, this is a reduced definition of a regular point for

a closed operator.

Proof. Necessity is evident by the definition of a regular point; see Sect.2.6.3.
Sufficiency. Let f (z) be invertible, and let R ;) = $). Because f (z) is closed

as well as f , its inverse Ié(z) defined everywhere is also closed; see Lemma 2.29.

Then by the theorem, ﬁ(z) is bounded, and therefore, z is a regular point of f by
the same definition. O

2.6.4 Adjoint and Invertibility

We first prove a lemma.

Lemma 2.46. For a densely defined operator f , the orthogonal complement of its
range is the kernel of its adjoint, (R f)J' = ker f, so that the decomposition

H = R_f @ ker f T holds. If in addition, the operator f is closable, f C f , then
we also have ker f = R+, so that the decomposition §) = R y+ @ ker f holds.

Proof. For &, € ker f *, the defining equation (2.24) becomes (£ , f £ =

V& € Dy, which means that £, € (Rf)J', and conversely, if £, € (Rf)J', we have
(6. f&) = 0 = (0.£), V& € Dy, which implies that & € D+ and f+&, = 0,
i.e., &« € ker f T It remains to refer to (2.4) to prove the first assertion of the lemma.
If, in addition, i - f , then by Lemma 2.43, the adjoint f * is densely defined

and ()T = f, and it remains to apply the first assertion to the operator /* to
complete the proof. O

Corollary 2.47. The adjoint of a densely defined operator f is invertible,
ker ft =0, iff the range of f is dense in $, R_f = 9. If, in addition, the operator
f is closable, then its closure f is invertible, together with f, kerf = kerf =0,
ffR;+ = 9.

It is interesting to compare the operators( £ ¥)~! and (£ ~!)™. It may be that one
of these operators exists, whereas the other does not, for example, if D_f = $ and
ker f+ =0, butker f # {0}, or ker f= {0}and D, = 9, but Dy # 9, etc.
But if both operators exist simultaneously, they are identical.



2.6 Adjoint Operators 57

Lemma 2.48. The operators (];_1)+ and (fA'F)_l exist simultaneously lﬁ‘D_f =9

and ker f = ker f+ = {0} (for a closed operator, f f this is equivalent

to the equalities Df = Rf = R+ = 9), and if so, the equality (f Ht =
+

(f+) Yholds (the inversion operation ~' and the adjoint operation
they make sense).

commute if

Proof. The proof of the first assertion reduces to the reference to the criteria for
invertibility and the existence of the adjoint and to Lemma 2.46. The proof of the
second assertion reduces to the chain of graph equalities

Gyt = (E(1G)" = (E1EG) " = —21 (€G)”

= Ele+ = G(f+)—1 s

where we use the equalities £X| = —X € and (2.13). O

2.6.5 Adjoint Operation and Algebra

With the adjoint operation ¥, the algebra of bounded operators defined everywhere
becomes a normed associative algebra with involution:

(af)+ =aft, VaeC; (f+g)+ = ft +8™; (f§)+ — ot Ft. (225)

and with the equality || f =1 f *||. Such an algebra is called a C *-algebra.

Some textbooks on QM for physicists implicitly extend the above rules for
bounded operators to unbounded ones, which is incorrect.

For unbounded densely defined operators, (2.25) are modified as follows:

@ (af)yt =aft.
(b) If the sum f + g is densely defined, then its adjoint ( f + g)Texists, and we
have

(F+8) 27" +&.iD;AD, =9
(c) If one of the operators is bounded and defined everywhere, the inclusion
becomes an equality:

N + N
(f+§) =ft+8t ifD;=9HorD; =9,

in particular,

(/ (z))+ = ft—zl = /). (2.26)
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(d) If the product f g is densely defined, then its adjoint exists and we have
R S S —
(f2) 287 /* iD= 9. (227)
(e) If f is bounded and defined everywhere, the inclusion becomes an equality:

(f§)+ =gt ft itD; = 9. (2.28)

2.7 Symmetric Operators
2.7.1 Definition and Properties

Definition 2.49. A densely defined operator f is called a symmetric operator or
Hermitian operator if its adjoint f T is an extension of f f - f T, In the language

of graphs, this means that Gy € G+ = (5Gf) . In the language of maps, this
means that

(n. /&) = (fn.¢). ve.ne ;. (2.29)

We note that to prove the symmetricity, or hermiticity, of a densely defined operator
f, we need not know its adjoint f T; it is sufficient to verify (2.29).

In some textbooks on QM for physicists, this definition is considered the
definition of an s.a. operator. This implicitly means that only bounded operators
defined everywhere are considered (see Sect.2.8.5 below). For unbounded op-
erators, symmetricity and self-adjointness are different notions: self-adjointness
implies symmetry, but not vice versa. Symmetricity is generally insufficient for QM
observables; they must be s.a.

We cite two simple criteria for symmetricity.

Lemma 2.50. A densely defined operator is symmetric:

(i) iff its matrix fun = (em, fen) with respect to an orthonormal basis {e,};° C
D is Hermitian, fin, = fum (Whence the name “Hermitian”), or

(ii) iff all means of the operator are real, (&, f&) = (f;‘, ff;‘), VéEeDy.

Proof. For the proof we note only that the necessity follows directly from (2.29),
while the sufficiency of (i) is proved by a verification of (2.29) starting from
&.n e L({e,}7°), and then proceeding by extension to any £, € D s based on the
continuity arguments, whereas the sufficiency of (ii) follows from the remark that
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(6 +an fE+m) - (5 7)1z (0. fn) =2(n. /&) +2(5 /n)

is a real number for any z € C. O

We emphasize that for unbounded operators, the cited criteria are the criteria for
symmetricity, but not for self-adjointness.

Corollary 2.51. A densely defined operator bounded from above or from below is
symmetric.

Indeed, all means of such an operator are necessarily real-valued, and by criterion
(ii), the operator is symmetric.

If a symmetric operator is bounded and closed, then by Lemma 2.23, it is defined
everywhere. By continuity arguments, a bounded symmetric operator f with
Dy # $ can be extended to a bounded symmetric operator defined everywhere (and
therefore closed). For the general relation between symmetricity and closability,
see below.

Lemma 2.52. For symmetric operators, the following equalities hold (§ € D y):

7] = sup. | 7¢] = e (v 7¢)| = sup (¢.7¢)]. @30

It follows that if a symmetric operator i is bounded, || f || = ¢ < oo, it is bounded
from below and from above, —l < f < ¢l, and conversely, zfa symmetric
operator is bounded from below and from above, —l < f < b, it is bounded
and || || < max([c|, |b]).

Strictly speaking, these equalities are meaningful for bounded operators. The
meaning of the equalities for unbounded operators is that all three suprema are
infinite.

Proof. The first equality is the definition (2.15) of the norm of an operator. The
second equality holds for any operators because of the Cauchy—Schwarz inequality,
which yields

sup ‘(n,fé)‘f sup HfSH

mlElLlnll=1 llEl=1
and because of the evident inverse inequality,
s |(n. 7¢)| = sup (v 7€)| = sup | /¢
mlElInll=1 lel=1./e£0;n= fe/|| fe| IISII 1
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The third equality is characteristic of symmetric operators. We first prove it for a
bounded symmetric operator assuming, without loss of generality, that the operator
is defined everywhere. The proof is based on the general equality (Vz € C)

2(n. f8) +2(5 /n) = 5 [(6 +on 7€ +2m) — (6~ 20 fe —am)]

(one of the so-called polarization formulas) and on the equality (£, f n) = (n, f £)
for symmetric operators. Let (1, f£) = |(n, f£)|e', and let z = €. Then the first
equality becomes

(n. 7€) = 3 [( + &#n. fi& +e¥m) — (e —en. 6~ e¥m)].

Based on this equality and using the intermediate notation u = & + €'¥n, v =
& —e'%n, we arrive at the inequality

(079 =00} 510 )
(o For) IlR] < 5 sup |(&.7¢)| (1ulP + 1oIF)
).

=5 3 [(& £ (1617 + 1) o = bl 0" =/ o

whence the final inequality

el b=t ‘(n fé)) = e )(s fg))

follows. The inverse inequality is evident, which yields the required equality

L= )(n fg)) "l Ké fg)) " ki H /¢ H '

For unbounded symmetric operators, which are densely defined by definition, the
equality
sup )(n,fé)) = sup ‘(n,fé)‘

gD mlélLlInll=1 §.neD g3lE L lInll=1

holds because any vector 7 € ) can be approximated by vectors belonging to D ¢

with arbitrary accuracy. The infinite value of  sup |(§, f &)| for unbounded
teDy. lgl=1
symmetric operators then follows from the naturally modified above estimates (the

proof is by contradiction); we leave the details to the reader. O
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2.7.2 Symmetricity and Algebra

The algebraic properties of symmetric operators directly follow from the relation
between the adjoint operation and algebra; see Sect. 2.6.5.

Multiplication by a real number transforms a symmetric operator into a symmet-
ric one:

NS N ry N\ F
fCff,aeR=afCaf =<af) :
the densely defined sum of symmetric operators is a symmetric operator:

A

~ ~ ~ ~ +
VESUARE <3 a8 DfﬂDg=fJ:>f+g£f++g+£(f+g) :

the last inclusion becoming an equality if one of the operators is bounded and
defined everywhere, in particular,

A

NN . A N
f—al c f*—al = (f—aI) ifa eR.
For the densely defined product of two symmetric operators, we have
Fe £+ sc st Do S f 5t s A\*F
feftecet. Dy=9= fecftetc(af) .

the last inclusion becoming an equality if ¢ is bounded and defined everywhere;
in general, the product of two symmetric operators is not symmetric, but if f is
bounded and defined everywhere, D ; = $), and if f and ¢ commute, f gCg f
(see Sect. 2.3.4), then the product f g is symmetric:

~ ~ ~ AN\t
fecefcet/rc(fs)

2.7.3 Symmetricity and Extensions

We start with a simple assertion, which is very important in what follows.

Lemma 2.53. If a symmetric operator f allows a symmetric extension g, f C g,
with § C 87T, then the chain of inclusions

fcegcegtcft
holds.

The proof follows directly from Lemma 2.40.
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By Lemma 2.53, a densely defined restriction fo of a symmetrlc operator f is
also symmetric: fo - f C f T C f0+ If the adjoint fo of fo is easily evaluated,
we can evaluate the adjoint f A+ of f using Remark 2.41 in Sect. 2.6.2. A symmetric
operator f not identical with its adjoint, f C f * (a strict inclusion), is called a
maximal symmetric operator if it does not allow a symmetric extension:

A

fcegcegtcft=g=1

Different chains of successive symmetric extensions g, ..., /1 of a given symmetric
operator f are generally possible, resulting in chains of inclusions

A

fcgcchchtc...cgtcfr

In these chains, successive symmetric extensions are accompanied by successive
restrictions of the respective adjoint operators, so that the extensions and their
adjoints “go to meet each other.” We note in advance that an alternative holds:
for all the chains of symmetric extensions of a given symmetric f , either the final
extension and its adjoint coincide, h = ﬁ*’ i.e., the procedure of symmetrically
extending ends with an s.a. operator, or any chaln ends with a maximal symmetric
operator, i.e., with a strict inclusion h C h™. This is the subject of the theory of s.a.
extensions of symmetric operators; see Chap. 3.

2.7.4 Symmetricity, Closability, and Closure

Lemma 2.54. A symmetric operator f is closable, its closure f is a symmetric
operator, and the chain of inclusions

holds.

Proof. Any symmetric operator f is closable because it has a closed extension f +.
Its closure f is the minimum closed extension of f , which yields f - f C f +.
By Lemma 2.40, it follows that (f*)* C (f)* € f*, and it remains to refer to
Lemmas 2.42 and 2.43 to obtain the required chain of inclusions. O

It follows from Lemma 2.54 that a maximal symmetric operator is closed because
it is identical with its symmetric extension, which is its closure.
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2.7.5 Symmetricity and Invertibility

Lemma 2.55. For a symmetric operator f

(i) its kernel belongs to the kernel of its adjoint, ker f - ker f, £+, and
(ii) if ker f t = {O} then f is invertible, its inverse f is symmetric, and we

have f= < (f ) = (/)7

Proof. The first assertion is obvious. As to the second assertion, its proof reduces to

references to Lemma 2.28 and Lemma 2.48. O
We note that if ker f i+ ;é {0}, it may be that ker f = {0} and f is invertible.
But in this case, the inverse f lis not symmetrlc Df | = Ry = (ker f+)J- %9,

and therefore, the adjoint ( /1), as well as (f )™, does not exist.

2.7.6 Spectrum, Deficient Subspaces, and Deficiency Indices

We first note that by Lemmas 2.54 and 2.35, the spectra of a symmetric operator
and of its closure, which is also symmetric, are the same and are closed sets.

Lemma 2.56. The eigenvalues of a symmetric operator f are real-valued, and the
eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. A proof can be found in any textbook on QM. First, we have
fo =26 = (& 8) =2EH = Aal’,
and because (&, fé) is real, it follows that A is real, A = A. Second, we have

fé)»l = AISM’ ngkz = A2é§-)»2v &1’&2 € Df’
— 0= (8. /6.) = (f80.6.) = Q2= 20) G, 60,

which yields (&3, £1,) = 0 for A; # A,. O

In some textbooks on QM for physicists, this statement is formulated for s.a.
operators with the conclusion that the spectrum of such operators is real-valued
and the corresponding eigenvectors form an orthonormal basis. We see that this
statement also holds for symmetric operators that are not s.a. in the general case,
but—more importantly—eigenvalues generally do not form the whole spectrum
(it may be that there are no eigenvalues at all).
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According to Sect. 2.5, a number A is a point of the spectrum of an operator f if
either:

(i) The operator R (A) does not exist, or, which is the same, A is an eigenvalue of

f,or
(ii) The operator R () exists, but is unbounded, or
(iii) The operator R (1) exists and is bounded, but is not densely defined, D) =

Ry # 9 Gf f is closed, we have D) = Dg() by Lemma 2.32).

We briefly discuss different possibilities for a number z € C to be a point of the
spectrum of a symmetric operator f or to be a regular point.

By Lemma 2.56, the operator R (z) may not exist (case (i)) only for real z that
are the eigenvalues of f (again, the set of eigenvalues may be empty). Cases (ii) and
(iii) are possible for real z as well, and regular points may also belong to the real
axis.

As for complex numbers z with nonzero imaginary part, the following assertions
hold.?

Lemma 2.57. Let f be a symmetric operator, and let z be a complex number with
nonzero imaginary part, z € C'. Then the operator f (z) is invertible, its inverse
R () is bounded with ||’R(z)|| <|y|I”%, and lff is a closed operator, the domain of
R (z), which is the range of f (z), is a closed subspace:

Dri = Ry) = Rf) = Drey-

Proof. The first assertion follows directly from Lemma 2.56 (we already know this).
For a symmetric operator f and a complex number z = x +iy, we have the equality

70t = (Fewe—ive foe—ivg) = |7 @]+ veen,

(the cross terms cancel), and therefore the inequality || FQEI = |y |€ ]| holds. The
second assertion of the lemma then follows from Lemma 2.27. The third assertion
follows from Lemma 2.32 (we also noted this above). O

It follows from Lemma 2.57 that a complex number z € C’ can be either a regular
point of a symmetric operator f or a point of its spectrum (case (iii)). To distinguish
the possibilities, we refer to Lemma 2.46 and (2.26), according to which

=Ry @ ker fr@ = Dr) @ ker T @).

and therefore, the operator R (z) is densely defined iff ker f () = {0}, while R (z)
is not densely defined iff ker £ (Z) # {0}.

20Some of the assertions are already known; we collect them for future reference.
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We thus obtain that a complex number z € C’ is a regular point of a symmetric
operator f iff Z is not an eigenvalue of the adjoint f *, and z is a point of the
spectrum of f iff 7 is an eigenvalue of f ¥ in other words, the complex part of the
spectrum of a symmetric operator f coincides with the set of complex-conjugate
eigenvalues of its adjoint f *. By the same arguments, this alternative holds for real
z = x if the operator R (x) exists and is bounded; in particular, case (iii) is realized
iff x is an eigenvalue of f *. We note that the above arguments actually show that
for the general densely defined operator f a number A is a point of its spectrum
if the complex conjugate number A is an eigenvalue of the adjomt operator f +
because in that case, Rf(l) = (ker f +()L))J- # 9, and even if R()\) exists and is
bounded, it is not densely defined.

We now need some new notions.

For any operator f , the orthogonal complement (Rf)l of its range is called the
deficient subspace of the operator f (the “deficiency” is due to the impossibility of
solving the equation f & = nif n belongs to the deficient subspace). The dimension
dim (R f)J' of the deficient subspace is called the deficiency index of the operator f .

In the case of finite-dimensional spaces, the deficiency index of an operator (or
its matrix) is the difference between the dimension of the space and the rank of the
operator.

If an operator f is closable, the deficient subspaces and deficiency indices of f

and of its closure f are the same because of the obvious inclusions
Ry SR; SRy = (R = (R)) 2 (Rp* 2 (R))".

where we use (2.2) and (2.3). A
By Lemma 2.46, the deficient subspace of a densely defined operator f is the

kernel of its adjoint, (R f)J' = ker £, and therefore dimker T is its deficiency
N —\ T
index. We note that the equality f+ = ( f ) , see Lemma 2.42, shows that the

deficient subspaces and deficiency indices of a densely defined operator f and of
its closure f are the same.

We now return to symmetric operators, which are densely defined by definition
and at the same time are closable by Lemma 2.54. In our case of the operator
f (2 = f — zI with a varying complex number z, it is reasonable to call the
deficient subspace and the deficiency index of this operator the deficient subspace
and the deficiency index of the operator f corresponding to the complex number z.

Let m(z) denote this deficiency index,

m(z) = dim (R ;)" = dimker /¥ ().

If z is a regular point of f , the respective deficient subspace is trivial, and m(z) = 0.
If z € C/, the converse holds: m(z) = 0 implies that z is a regular point of f . In the
general case, it appears sufficient to distinguish the two cases: z € C_, the lower
complex half-plane, and z € C, the upper complex half-plane.
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Theorem 2.58. For a symmetric operator f , the deficiency index m(z) is a constant
my independent of 7 in the lower half-plane C_ and is a constant m_ independent
of z in the upper half-plane C,

my4, z€C_,
m(z) =
@ m_, z€ Cy.

In general, my and m_ are different, but if there is a real point x such that R (x)
exists and is bounded, then m+ = m = dimker f T (x).

We call attention to the anticorrespondence between the subscripts + and — of
m4 and the sign of the imaginary part y of z = x + iy; the correspondence is
with z = x — iy. The numbers m 4 are called the deficiency indices of a symmetric
operator f corresponding to the respective lower half-plane C_ and upper half-
plane C..

This theorem has a topological nature: as z continuously changes in C_ or
C4, the operator R (z) remains bounded and changes continuously; the deficient
subspace only “rotates” without any jumps of its dimension, which is an integer
or infinity (two infinite-dimensional subspaces are considered to be of equal
dimension), and if this operator remains bounded at some point of the real axis,
then m and m_ are equal.

Proof. The proof is a modification of the proof of Lemma 2.35. Let z € C_. We
first note that the bounded operator R (2) can be extended from its domain Dy ;) =
R #(;) to the whole of $) with the same norm?!' (see Lemma 2.21). Let 7. be such an
extension:??

R Ch D=9, 7] =|RE@| =™

According to Lemma 2.26, we have IADf =R (z) f (z) = fzf (2).

We now examine the operator f(z + §2), where [6z] < |y| < ||7A€(z)||_1 =
[7.]7", such that z + 8z € C_ and |8z|||7.]| < 1. This operator allows the
representation

fe+8=F@)—8zlp, = (I —8:7)F (2) .

The operator I -6z 7, is a sum of two bounded operators defined everywhere,
which allows successively using (2.26), (2.28), and (2.25) to find

(fetd)® =T c+5) = [T @0 -5,

2I'Without loss of generality, we can assume f to be closed; then the domain of R (2) is closed.

2If R (2) is densely defined, the point z is a regular point, and R (2) is the resolvent of f at the
point z.
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where by Lemma 2.39 the operator r , the adjoint of 7., is defined everywhere and

bounded with |7 | = |7 Because H—Sz

= |8z] ||| < 1, the operator[ —

8z F rZ satisfies the conditions of Lemma 2.31. By this lemma, the operator [—68z7F 7]
is invertible, and its inverse is also bounded and defined everywhere. It follows that
the kernels of the operators FT(z+ 82) and fT(2) are of the same dimension,?3
ie, m(z+ 6z) = m(z).

We thus obtain that in an open circle around any point z € C_ of radius ¢ < |y|,
the deficiency index of a symmetric operator f is constant. To prove that m(z) =
m4 = const in the whole half-plane C_, it is sufficient to invoke the Heine—Borel
theorem: we connect any two points of C_ with a straight line and cover it by a
finite number of intersecting open circles where the deficiency index is constant.

A proof for the upper half-plane is quite similar. The same argument shows that
if there exists a real point x such that the operator R (x) exists and is bounded, then
there exists an open circle around this point of radius ¢ < ||7A€(x)||_1 where the
deficiency index of f is a constant m = m(x), which implies that my = m. O

In particular, if a real x is a regular point of a symmetric operator f , then its
deficiency indices are equal to zero, m+ = 0. Conversely, if at least one of the
deficiency indices of f differs from zero, there can be no regular points of f on the
real axis, and the real axis, as a whole, belongs to the spectrum of the operator f .
We can confirm the last assertion in a different way. If my # 0 or m— # 0, the
spectrum of f must contain the half-plane C_ or C. respectively together with its
boundary, the real axis, because the spectrum of f is a closed set.

Corollary 2.59. If a densely defined operator f is bounded from below or from
above, it is symmetric and its deficiency indices coincide; if both its deficiency
indices are equal to zero, my = 0, then spec f C [a, 00) for f > al and spec
f S (~c0.bl for f <bl.

The first assertion is a paraphrase of Corollary 2.51. According to Theorem 2.58,
it is then sufficient to indicate a point x of the real axis such that the operator
R (x) exists and is bounded. Let, for example, f >al,a=a,ie., (&, f(a)é) >0,
V& € Dy. For x < a, we have

(6.7 @E) = (6 /@&) + @0 EH = @-x)g*. Ve Dy

On the other hand, (&, f x)&) < | f (x)&] |€|| because of the Cauchy—Schwarz
inequality, which yields

Hf(x)sH > (a—x) g, a—x >0, V& €Dy

21f two operators & and / are related by § = A3, where § is defined everywhere and invertible and
5 ~!is also defined everywhere, the kernels of these operators are related by ker g = 5! kerh
and ker 1 = § ker g, which implies that the kernels are of the same dimension.
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By virtue of Lemma 2.27, it follows that the operator R (x) exists and is bounded
for all x < a. If, in addition, m+ = 0, the points x < a are the regular points of f
together with the complex points z € C/, and the spectrum of f belongs to the real
semiaxis on the rlght of a: spec f C [a, o).

The case f < bl,b = b, is considered similarly.

We notice once again that the deficiency indices of a symmetric operator and of
its closure are the same.

We outline different possibilities for the deficiency indices m 4+ and for the
spectrum of a symmetric operator f . The following variants are possible:

(i) my+ = 0, i.e., the adjoint f * has no complex eigenvalues and m = 9,
Im z # 0, which, in particular, holds in the case of f = f *: both half-planes
C_ and C; belong to the resolvent set, while the spectrum of f is real-valued,
spec f C R.

(i) my = 0, m— # 0, i.e., the adjoint f * has complex eigenvalues that fill
C4+; C_ belongs to the resolvent set, while C4 belongs to the spectrum of f
together with the real axis (since the spectrum is a closed set), regp f =C_
and spec f =RUC,.

(iii)) m4 # 0, m— = 0, i.e., the adjoint f * has complex eigenvalues that fill
C_; C4+ belongs to the resolvent set, while C_ belongs to the spectrum of f
together with the real axis, regp f = C4 and spec f =RUC_.

(iv) my # 0, i.e., the adjoint f * has complex eigenvalues filling C_and C4; C’
belongs to the  spectrum of f together with the real axis, which means that the
spectrum of f is the whole complex plane spec f = C. It may be that any
z € Cis an eigenvalue of T, i+, whereas f has no eigenvalues; an example is
presented in Sect. 6.1.3.

(v) If there is a point x of the real axis such that the operator ﬁ(x) exists and
is bounded, then the deficiency indices are equal, m+ = m; if there exists a
regular point on the real axis, then the deficiency indices are equal to zero,
my = 0.

2.8 Self-adjoint Operators
2.8.1 Definitions and Properties

Definition 2.60. A densely defined operator f is called a self-adjoint operator (s.a.
operator) if it coincides with its adjomt f f F+. In the language of graphs, this

means that G, = G+ = (EG f) . In the language of maps, this means that f is
symmetric, and Dy = D ;+.



2.8 Self-adjoint Operators 69

The following criterion for self-adjointness is evident.

Lemma 2.61. A symmetric operator f iss.a. ifféx € D+ = £x € Dy, ie,
(S*,fé) = (f+§*,§), V& e Dy = & € Dy.

To make sure that an operator f is s.a., we can verify that (1) f is symmetric
and that (2) the criterion of Lemma 2.61 holds.

It is not infrequent that a physicist easily verifies (1), but forgets about (2),
which must never be forgotten. Physical QM observables must be represented by
s.a. operators, and not simply symmetric ones. Only s.a. operators possess the
remarkable properties of a real-valued spectrum and a complete orthogonal system
of (in general “generalized”) eigenvectors corresponding to this spectrum, which
provides the possibility of a probabilistic physical interpretation of QM states,
observables, and measurements.

Regarding the relationship between self-adjointness to all other previous notions,
all properties of adjoint and symmetric operators listed in the previous sections are
valid for s.a. operators, sometimes in evidently weaker or stronger forms. We only
cite them with brief remarks and references.

Lemma 2.62. All means of an s.a. operator f are real, (&, fé) = (¢, fé) V& e
D¢, and determine the norm of the operator,

~

- ol

§eDy. f§l=1

These assertions are the respective paraphrases of the necessary condition of item
(i1) of Lemma 2.50 and the last equality in (2.30) of Lemma 2.52.

The first property is well known to physicists. The last equality is evident
for physicists: the norm of an s.a. operator f is determined by its eigenvalue of
maximum modulus in view of the following (naive) expansions with respect to the
complete orthonormalized system {e; }{° of eigenvectors of f :

=Y e 61 = Y lals £& =Y heaver. | 18] = 2oAF laul’.
k k k k

2.8.2 Self-adjointness and Algebra

As for symmetric operators, the algebraic properties of s.a. operators follow from
the relation between the adjoint operation and algebra presented in Sect.2.6.5.
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Lemma 2.63. The following relations hold for s.a. operators:

(i) f=fTaeR=af = @f)* Du =Dy

(ii) f: f+, §¢=87, D/ND; =H= (f—i-g)+ ) f+g In general,
the sum f + & of two s.a. operators is no more than symmetric if densely
defined, but if one of the operators, let it be g, is defined everywhere, and is
therefore bounded,” then the sum is an s.a. operator, f +g= (f + )T with
Drve =Dy o

(iii) f=f*, &§=8%, Dry =9 = (f&)" 2 &f. In general, the product
f g of two s.a. operators is not even symmetric; the product f g is symmetric,
(fg)+ fg, if f is defined everywhere, and is therefore bounded, and if
gf ) fg, ie., f and g commute; theproductfg is s.a., (fg)+ = fg,
if both f and g are defined everywhere, and are therefore bounded, and
commute, [f, gl=0.

The property (ii) is of particular importance for physics. If the unbounded
. “free” Hamiltonian H, is perturbed by a bounded s.a. potential V defined

everywhere then the total Hamiltonian H = Ho + V is s.a. with D H = Dug,.
But if V is unbounded, then the sum Hy + V in general is no more than symmetric
if densely defined, and we encounter the problem of its s.a. extension.

In contrast to the general unbounded operators, s.a. operators allow one to define
the notion of their commutativity, which can be done in terms of the one-parameter
family {U /() = exp(ia £). @ € R} of mutually commuting unitary operators>

[0/ @.0, )] =0 va.per.

associated with each s.a. operator f . Self-adjoint operators f and g are called
commuting, or commute, if the respective families {lA]f (o)} and {Ug (o)} of the
associated unitary operators mutually commute: [(7 7 (o), Ug B)]=0,Va,B eR.

The families of associated unitary operators make it possible to formulate some
nontrivial commutation relations for s.a. operators. For example, the canonical
commutation relation [§, p] = i# for the position operator § and the momentum
operator p is properly formulated as the Weil relation [128]

Uy (@)U, (B) =e 0, (B) U, (@), Vo, B € R,

for the corresponding associated unitary operators Uq () = exp(ixkoq) and

Uq (B) = exp (i p/koh), where ko is a fixed parameter of dimension of inverse
length.

24 According to Theorem 2.44; see also Lemma 2.67.

25We recall that unitary operators are bounded and defined everywhere, and the notion of
commutativity for such operators is unambiguous; see Sect. 2.3.3.
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2.8.3 Self-adjointness, Closability, and Extensions

Lemma 2.64. An s.a. operator is closed, f = f+ = f, and allows no symmetric
extensions.

The proof reduces to citing Lemmas 2.42 and 2.53.

2.8.4 Self-adjointness and Invertibility

Lemma 2.65. For an invertible s.a. operator, its range is dense in $), and its inverse
is also s.a.,

The proofs of the first and second assertions directly follow from Corollary 2.47
and Lemma 2.48 respectively.

2.8.5 Symmetricity, Self-adjointness, and Boundedness

Lemma 2.66. A bounded symmetric operator defined everywhere is s.a.:
feff D=9 |fl<co= f=/"
Proof. Indeed, the conditions f C f * and D £ = $ imply Df+ = §; then see

Lemma 2.61. O

We note that in fact, the boundedness of f is not involved; moreover, the
boundedness can be moved from the conditions of the lemma to its conclusions,
and we obtain a stronger assertion.

Lemma 2.67. A symmetric operator defined everywhere is s.a. and bounded, in
particular, an s.a. operator defined everywhere is bounded.

We must prove only boundedness, but this immediately follows from Lemma
2.64 and Theorem 2.44.

Corollary 2.68. An operator defined everywhere and bounded from above or from
below is s.a. and bounded.

It is sufficient to note that by Corollary 2.51, such an operator is symmetric.
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Lemma 2.69. A symmetric operator whose range coincides with the whole of ) is
s.a. and invertible, and its inverse is s.a. and bounded:

A A

Fe it Ry =0 =k f =10k = 7 = () |7 <o

Proof. By the corollary to Lemma 2.46, the conditions Ry = ) and f - f +
imply that f * is invertible together with f . By Lemma 2.55, the inverse f s
symmetric and therefore, by the previous Lemma 2.67, is s.a. and bounded since
defined everywhere, D ;-1 = Ry = §). Then by Lemma 2.65, f itself is s.a. as the

inverse of f L. O

Corollary 2.70. A positive (negative) operator whose range coincides with the
whole of $ is s.a., and its inverse is s.a. and bounded.

It is sufficient to prove that a positive (negative) operator f with Rr=$) is
densely defined, D_f:ﬁ, and is therefore symmetric by Corollary 2.51. Letn € DL,
ie., (§,7)=0,Y§ € D,. Because R ;=$), the vector 1 allows the representation
n=/§, with some &, € D . For this &,, we have (&5, 1) =(&,. f&,)=0, which
implies for positive (negative) f that §,=0andn = 0,Vn € Df;. This means that
Df;:{O}, orD_f:Y). ‘

Remark 2.71. We see that for operators defined everywhere, symmetricity is equiv-
alent to self-adjointness and implies boundedness. But this is true only for such
operators, which is sometimes hidden in textbooks on QM for physicists. An
unbounded physical observable cannot be defined everywhere, and a proper choice
of domains for unbounded physical observables providing their self-adjointness
under quantization is one of the main problems in quantizing physical systems. In
general, the choice of a domain is not unique if possible, and different possible
choices result in different QM.

A simple geometric corollary of the above assertions can be useful. The condition
f c f * implies the possibility of a symmetric extension for f , while the condition
Dy = $ implies that a nontrivial extension is possible only at the expense of the
range R . But the property to be a graph is then violated for a nontrivial extension:
two images would have one preimage. And f cannot be a maximal symmetric
operator, because f is then a strict restriction of f 7+ and its domain must be smaller
than §). According to similar geometric arguments, if f is symmetric, f C f +, and
its range coincides with the whole of §), Ry = §), a nontrivial symmetric extension
is possible only at the expense of the domain D ¢, but the property to be a graph is
then violated for the inverse operator f ~!, which exists and is bounded.
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2.8.6 Spectrum. Essentially Self-adjoint Operators

An s.a. operator can be considered a particular case of a symmetric operator with
zero deficiency indices; see item (i) in the end of Sect. 2.7.6. The general assertions
concerning the spectrum of such operators are presented in that section. We collect
them in a separate lemma as applied to s.a. operators, taking Lemma 2.62 into
account.

Lemma 2.72. The deficiency indices of an s.a. operator f are equal to zero,
my = 0.

The spectrum of an s.a. operator is real-valued, and its eigenvectors correspond-
ing to different eigenvalues are orthogonal. 26

Iff is bounded from below, f >al,a =a, la| < oo, or from above, f <bl,
b = b, |b| < oo, its spectrum is respectively bounded from below, spec f Cla,o00),
or from above, spec f C (=00, b]. If both conditions hold, al < f < bf, then
specf C la,b] and the operatorf is bounded, ||f|| < max(|a]|, |b]).

Iff is bounded, ||f|| = ¢ < o0, then it is bounded from below and from above,
—cl < f <cl, and specf C [—c,c]

The real-valuedness of the spectrum of any s.a. operator is equivalent to that any
complex number z = x + iy, y # 0, is a regular point. An additional restriction on
the spectrum of an s.a. operator is the following criterion for a real number x to be
aregular point of the operator and not a point of its spectrum.

Lemma 2.73. A real number x € R is a regular point of an s.a. operator f iff the
range of the operator f(x) = f — x1 is the whole Hilbert space ), Ryxy = 9,
which is equivalent to that the equation fA(x)E = (f — xf)E =nwithanyn € $
has a (unique) solution § € D ¢. In fact, this is a reduced definition of a real regular
point for an s.a. operator.

Proof. Because f is closed, a proof will be achieved by reference to Lemma 2.45
if we prove that the operator f (x) is invertible. But this is indeed the case, because
f(x) is s.a. as well as f f(x) = (f(x))+ and its kernel satisfies kerf(x)

(Rf(x)) = {0} by Lemma 2.46. O

The spectrum of an s.a. operator is not empty.?’ For s.a. operators, the following
specification of the spectrum is conventional [9, 116]. As before, the set of all
eigenvalues is called the point spectrum. The point spectrum of an s.a. operator
in a separable Hilbert space (we recall that we restrict ourselves to such spaces) is
finite or countable, because the eigenvectors corresponding to different eigenvalues
are orthogonal, while any set of nonzero orthogonal vectors in a separable Hilbert
space is at most countable; see Sect. 2.1.2.

0]t may be that an s.a. operator has no eigenvectors, in which case its spectrum is continuous.

?"In contrast to the general closed operator, whose spectrum can be empty [128]. We also note that
the spectrum of any bounded operator is not empty.
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The union of the closure of the complement of the point spectrum in the
whole spectrum and the eigenvalues of infinite multiplicity is called the continuous
spectrum.”® A point A is the point of the spectrum of an s.a. operator f iff there
exists an infinite orthonormalized set {£,}7° of vectors such that ( f Al )&, — 0
as n — o0. For the point spectrum, this assertion is trivial. As for the continuous
spectrum, this assertion can be interpreted as an indication that a point of a
continuous spectrum that is not an eigenvalue of infinite multiplicity is an “almost
eigenvalue” of an s.a. operator.

The set of isolated points of the spectrum (they are eigenvalues) except the
eigenvalues of infinite multiplicity is called the discrete spectrum.”

So, a real number A belongs to the spectrum of an s.a. operator f , A € spec f ,
if either:

(a) The operator R (A) does not exist, in which case A is an eigenvalue of f and
belongs to the point spectrum, or

(b) The operator R (A) exists, but is unbounded, in which case A belongs to the
continuous spectrum.

In the latter case, the operator 7@()&) is densely defined, but is not defined
everywhere. Indeed, it cannot be defined everywhere because otherwise it would
be bounded as a closed operator by Theorem 2.44, and it is densely defined because

- R Aot .
Droy = Ry = (ker(f(x)) ) butker (f(1) " = kerf (1) = {0}.

The situation (iii) from Sect. 2.7.6 that R (4) is bounded but not densely defined is
thus excluded for an s.a. operator.

A subtlety is that A may belong to the point spectrum and to the continuous
spectrum simultaneously: an example is an eigenvalue of infinite multiplicity>°
that an eigenvalue of finite multiplicity can lie in the continuous spectrum. The
possibility of a continuous spectrum is a distinctive feature of s.a. operators in
infinite-dimensional Hilbert spaces.

It appears that zero deficiency indices are not only a necessary condition for the
self-adjointness of a symmetric operator, but also are an almost sufficient condition.

Definition 2.74. A symmetric operator f is called an essentially s.a. operator if its

closure f is s.a.

28This classification is sufficient for our purposes. A more advanced classification can be found in
[128].

It may be an exotic situation whereby the point spectrum is dense in the continuous spectrum
and the eigenvectors corresponding to the point spectrum form a complete orthonormalized set.
30For the identity operator I, the point and continuous spectra coincide, reducing to the single
eigenvalue A = 1 of infinite multiplicity.
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Lemma 2.75. A symmetric operator is essentially s.a. iff its deficiency indices are
equal to zero. In particular, a closed symmetric operator with zero deficiency indices
is s.a.

Proof. By Lemma 2.54, the closure f of a symmetric operator f is symmetric,
— ~ T o o —
f C (?) = f7T, and the deficiency indices of f and f coincide. Therefore,

it is sufficient to prove that if a closed symmetric operator f has zero deficiency
indices, i.e., ker f+ (z) = {0}, Vz # Z, then f is s.a. To prove this, we first note that
by Lemma 2.57, the range of the operator f (2), 2 # Z,is closed, Ry(;) = m
Then by Lemma 2.46, we find that R ;) = $ because ker f T (z) = {0}, which
means that any vector n € §) allows the representation 1 = f (2) &, where £ € Dy.
In particular, for any vector §x € D ;+, there exists some vector § € Dy such
that fT ()& = f ()& But f € f implies that f (z)§ = f 7 (2) €, and we
obtain that f+ (2)& = fT (2)&, or fT (2) (Ex — &) = 0, whence it follows that
€x = & € Dy, V&« € Dy+. It remains to refer to Lemma 2.61 to conclude that

f=f". O
We thus obtain that a symmetric operator f with zero deficiency indices is either
s.a., if f is closed, or allows an s.a. extension, if f is nonclosed. This s.a. extension

is its closure f coinciding with its adjoint f * and is therefore unique because f is
a minimum closed symmetric extension of f , whereas by Lemma 2.53, the operator
f T is a maximum possible symmetric extension. In other words, if the deficiency
indices of a symmetric operator are equal to zero, then the operator is either s.a., if
closed, or if nonclosed, allows a unique s.a. extension that is its adjoint.

As for symmetric operators with nonzero deficiency indices, their s.a. extensions
are nonunique, if they exist at all, which is determined by the values of the deficiency
indices. By analogy with an essentially s.a. operator, we call a symmetric operator
f with nonzero deficiency indices an essentially maximal symmetric operator if

its closure f is a maximal symmetric operator. An essentially maximal symmetric
operator has no s.a. extensions. This is the subject of Chap. 3.

We now consider some specific classes of s.a. operators that are of particular
importance.

2.8.7 Orthoprojectors

An important class of bounded s.a. operators is a class of orthoprojectors. The
notion of orthoprojector is a basic notion in the spectral analysis of s.a. operators;
see Chap. 5 below.

Definition 2.76. Let D C $) be a closed subspace, D = D. To each vector
& € $, we assign its projection on a closed subspace D; see Theorem 2.2.
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This correspondence defines the operator that is called the (ortho)projection opera-
tor or (ortho)projector (on D), and is denoted by P,or PD if we stress that P is the
orthoprojector just on D,

5_ b Dp =9,
P="Py,=1]"
Pt = §||, Vég' € 9.
In particular, we have P{O} = 0, while Py-_, =1.
We cite the properties of orthoprojectors that directly follow from the defini-
tion.

. Any orthoprojector P is a linear operator defined everywhere, Dp = §).

. The range of the orthoprojector Pp is the subspace D, Rp, = D.

. ker PD = DL

. Any orthoprojector P is bounded, and its norm is equal to unity, | Pl =
Indeed, |12 = &>+ [l€1 |2, V& € 5, which implies | P£1 = [ = 1]
and equality is achieved for £ € D = Rp.

5. Any orthoprojector Pisa nonnegative operator not exceeding the identity

operator, 0 < P < I.Indeed, (£, P£) = (& + &L, &) = (£,&)) > 0, while

(. (P~ D) = (61, —£1) = —(£1,£1) < 0.

6. If an operator P is the orthoprojector on a subspace D, P = Pp, then the
operator I — P is also an orthoprojector, namely, the orthoprojector on the
subspace D+, [ - Py :APD&. Indeed, according to Corollary 2.3, we have
Ppit= §L=§8-§=U~-Pp).

7. P2 = P for any orthoprojector P, which means that its range Rp is the
eigenspace of P with the eigenvalue +1: P$ = &, V& € Rp. Indeed, Pzé =
Pg =g, VE € .

8. Any orthoprojector P is an s.a. operator, Pt=P. It is sufficient to refer to
Corollary 2.68.

Properties 7 and 8 are the characteristic properties of orthoprojectors.

AW N =

Theorem 2.77. A linear operator P with the properties P=Ptand P> = Pis
the orthoprojector on the closed subspace D = Rp.

Proof. We first prove that the operator P is bounded and defined everywhere. Using
both properties of P, we obtain

Pe|" = (e ) = (P Pe.e) = (Pe.o) < P 161 ve e Dy
which implies that ||13§|| < |&ll, Y& € Dp,ie, P is bounded. But as an s.a.

operator, P is densely defined, Dp = $, and is closed, P = P together with the
operator [ I — P. 1t then follows from Lemma 2.23 that P is defined everywhere,
Dp =Dp=9.
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Let D denote the range Rp of P D = Rp, and let D+ denote its orthogonal
complement. We now prove that D is a closed subspace. The property P2 =P
means that D is an eigenspace of P with the eigenvalue +1: P§ =§¢if&é € D, or
D = ker(] .y ) and is therefore closed as the kernel of a closed operator.

It follows that by Theorem 2.2, any vector £ € $) allows a uniquely defined
decomposition § = & + &_, where £ € D is the projection of §on D, & = PDE
and £, € D*. Because P§|| = 5”, we have P§ =§ + PEJ_, and it remains to
prove that PEJ_ = 0 to obtain that P$ =§ = PD§ V& € $, which just means that
P = PD. But

Hﬁﬂ HZ = (PE1, PE1) = (61, PPEL) = (51, PEL) =0,

because P§ 1 € D, which completes the proof. O

The following is a collection of assertions concerning the product, addition, and
subtraction of orthoprojectors.

Lemma 2.78. The product of two orthoprOJectors PD1 and PD2 is an orthopro-
Jector, PDIPD2 = P lﬁ‘PD1 and PD2 commute, PDIPD2 = PDZPDI, and if this
condition holds, then P = PD, where D = D N D,.

Proof. Necessity Let the product of two orthoprojectors PDl and PD2 be an
orthoprojector, Pp, Pp, = P. The equality P = P2 = P then yields

A A A

~ ~ A A + LB ~
PDlPDzz(PDlPDz) :PDZPDI = Pp, Pp,

ie., PDl and PD2 commute.
Sufﬁ01ency Let two orthoprojectors PD1 and PD2 commute. The operator P =
P PD2 = PD2 PD1 evidently satisfies the conditions of Theorem 2.77:

A

B+ = (Bo, B,) = P3PS, = By, By, = P
and
P2 = Pp, Pp,Pp,Pp, = Pp, Pp, Py, = Pp, Pp, Pp, = Pp Pp, = P,

whence it follows that Pi s an orthoprojector.

We know that P = P, where D = Rp = {Pé VE et =1{&: Pg = £}
According to the first representation P = PD1 PDZ, we have P £ = PD1 Png S
Dl, while according to the second representation P = PD2 PDI, we have P§
PD2 PD1$ € D,, which implies that D € D; N D,. Conversely, let D € D; N D,.
Then we have § = PDIE = PDzé = PDl PD2$ = PE, which implies that Dy N
D, C D, and therefore, D = D N D,.
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Corollary 2.79. Two closed subspaces Dy and D, are orthogonal, Dy L D, iff
PDIPDZZPDZPDI =0. O

A geometric sense of the equality ﬁD 1’3D2 = 1’3D2 ﬁDl is that the closed
subspaces D © (D, n Dz) and Dz (DN Dz) are orthogonal because if equality
holds, the operators PD (I — PD ) and PDZ(I — PDI) are orthoprojectors on the
respective subspaces DN D = D©(DiND;y)and D,N DLt =D,o6 (DN Dy)
and A o o .

(Pp, (I = Pp,))(Pp,(I — Pp,)) =0.

Lemma 2.80. The sum of orthoprojectors 13]- = ISD‘/., j=1...,n < oo isan
orthoprojector, Z’;:l 13], = P, iff the subspaces D ; are mutually orthogonal, i.e.,
iﬁflsj P, =0, Jj # k, and in this case, P = Pp, where D = Z'}Sl D;.

Proof. Necessity. Let the operator P = Z};’=1 13j be an orthoprojector. Then the
inequalities

IEN* > (&, P&)

£) PiE]| = (¢ PiH) + (5 Bid)
j=1

~ 12 ~
=2+

s VEE.@,

hold whatever the different indices j and k may be. Taking § = Py 1, we obtain that

P 2 ~ 2
|20 + [ 2]

and therefore || 13j ﬁanz = 0, V7 € $, which proves the equality ﬁj Py =0, or the
orthogonality of the subspaces D; and Dy, for j # k.

Sufficiency. If ﬁj Py =0,ie., the subspaces D ; and D are mutually orthogonal,
then evidently s.a. operator P = Z'J’: | 13]- satisfies the equality P2 = P, and it
remains to refer to Theorem 2.77. The last assertion of the lemma is also evident.

O

Lemma 2.81. The diﬁ”erence of two orthoprojectors ﬁDl and ﬁDz is an orthopro-
Jector PD1 — PD2 = P zﬁ D, C Dy, which is equivalent to each ofthe relations
Pp, = Po, Po, = Pp, Pp,, | Poy€ll < || P,€ll for V€ € 5, and Pp, < Pp,, and
in this case, P = PD, where D = D © D,.

Proof Necessuy Let PDl — PD2 = Pp, an orthoprojector on some D. Then the
sum Pp + PD2 = PDl is also an orthoprojector, and therefore by Lemma 2.80,
Dy = D & D;, which implies that D, € Dy and D = D; © D,.

Sufficiency. Let D, Dl, and let D = D, o D;. Then Dl = D & D,, and
therefore by Lemma 2.80, PDl = PD + PDZ, or PDl PD2 = PD, which completes
the proof.
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It remains to prove the equivalence relations:
1. DZCDlﬁﬁDz—ﬁDlﬁDz—ﬁDzﬁDl —ﬁDz
The relation D, C D is evidently equivalent to the relation PD2 = PDl PDZ,
Lemma 2.78 allows extendlng the latter relation to PD2 = PD1 PD2 = PD2 PD1
2. D, € Dy & |[Pp.tl| < || Pp £, V& € 5.
Let D, € D,. Then Pp, = Pp, Pp,, which implies that

[

| = |70: 20t = |

o] = [

, VE e,

Conversely, let ||PD2§|| ||PD1§|| V& € $. Then the condition PDlg =0,or
& € ker PDl = Di, implies that PD2$ =0,o0ré& € ker PD2 = Dy ,Wthh means
that D& € Dzi, whence it follows that D3~ = (D3)* € (D)t =
3. D, C D& PD2 < PDI-
In view of relation 2 above, it is sufficient to prove the equivalence of the
inequalities
2
. VEe®,

~ 2 ~
I =]

=[] o |2

and 1’3D2 < ISDI, or by definition, see the end of Sect.2.3.1, (¢, ﬁDzé)
(¢, PDlg) Vé € $. But this equivalence directly follows from the equality

||P§||2 = (Pg Pé) = (¢, Pé) V& € §), for any orthoprojector P in view of
its basic properties Pt =P and P2 = P. O

We complete this subsection with some simple assertions about sequences of
orthoprojectors.

Lemma 2.82. An infinite monotonjc sequence {Iak}‘lx’ of orthoprojectors strongly
converges to some orthoprojector P.

Proof. Let an operator sequence {ﬁk}‘l’o be nondecreasing, P < 13k+1, ie.,
(&, Pkg) < (&, 13k+1§) V& € $. Then the number sequence {(§, ﬁkg)}w with any
€ is convergent as a nondecreasing bounded sequence, 0 < (§, Pkg) ||§|| and
is therefore a Cauchy sequence, (&, P, §) — (. Pub) = (¢, (P - P, )¢) — 0,
m,n — 00. By Lemma 2.81, the difference P,—P, isan orthoprojector up to a sign,
which implies that ||(13,, — I—A’W,)SH2 = |(&, (13,1 — ﬁm)g)| It follows that the vector
sequence {ISkE}‘fO with any & is a Cauchy sequence and is therefore convergent,
lim;,— 00 ﬁké - P &, where, as is easily seen, the operator P is linear, defined
everywhere, and bounded. This means that the operator sequence {ﬁk}‘l’o is strongly
convergent to the operator P. Taking then the limit k — oo in the equalities

(n, Pe&) = (Pen, €) = (Peny, Pe§), VE 0 € 9,

we obtain that
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(n, P§) = (Pn,£) = (Pn, P§), Y&, n €9,

which means that P = P = P2, and therefore Pisan orthoprojector by Theorem
2.77. O

A proof for a nonincreasing sequence {ﬁk}fo of orthoprojectors, 13k+1 < P is
completely similar

Lemma 2.83. [fthe sequence {ﬁk}?o of orthoprojectors weakly converges to some
orthoprojector P, then it converges to P strongly.

Proof. By the condition of the theorem, we have

(0, Pc&) — (n, P§), k — oo, Y&, 1 € 9,

which in particular implies that
N 2 ~ 12
|| = | Pe| k> o0, vE € 9.

The proof follows directly from the equality

[ b = | But ] — (Bt by — Pt By + | e

2.8.8 Self-adjoint Operators of Oscillator Type

We call the operators of the form N = £+ f and M = f f+ operators of oscillator
type. The name is due to the well-known oscillator Hamiltonian.

Many physicists and textbooks on QM for physicists consider these operators ev-
idently s.a. Their arguments are based on the following commonly used formal rules
for the Hermitian adjoint operation: (£ )™ = f and (f+ f)* = fH(fH*+ =
f + f . However, we know that in general, these formal rules fail for unbounded
operators: by Lemma 2.43, the operator ( f )T exists only for a closable operator
f,and (f )T = f, which is not equal to f unless f is closed, while by (2.27),
we generally have (£ )t D g+ /. Fortunately, physicists are almost right, but a
correct formulation and especially a proof need some nontrivial observations.

The following theorem is due to von Neumann [154]. In the proof of the theorem,
we follow [9].

Theorem 2.84. Ifan operator f is densely deﬁned Dy = $, and closed, f f
then the operators N = f+f and M = ff+ are s.a. and nonnegative, N =
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N* > 0and M = M+ > 0. In addition, ker N = ker f and ker M = ker f+;
consequently, zf ker f # {0}, the operator N has a zero ezgenvalue whereas if
ker f {0} N is positive, the same holds for the operator M with the substitution

of f* for f.

Proof. 1t is sufficient to prove the theorem for N = f + f because for a closed f
we have f = (f )", and M = £ f* can be represented as M = (f+)+f+
where f i+ is closed. By Lemma 2.63, the operators N and K = N +1 are s.a.
or non-s.a. simultaneously. It is therefore sufficient to prove that K = K. By
the corollary of Lemma 2.69, to do this, it is sufficient to prove that K is positive,
K > 0,and Rx = $. The positivity of K is evident. The operator N = f+f is
nonnegative for any f , not necessarily closed:

(6. /% f¢) = (/& fe) =0, vee Dy < D,

whence it follows that K = N + I > I>o0.
We now prove that Ry = ). The central point of the proof is a geometric

observation: f = f means that G ¢ = G, which by (2.12) implies that EG ; =
EG s, where the unitary operator £ is given by (2.14), and therefore by (2.4) and
(2.23), the decomposition

H=EG, @ (EGy)" =EG; @Gyt

holds. This decomposition means that for any pair of vectors 1,{ € ), the
representation’!

/-0 =(f&/ )+ (6 f¥e) = (e + 86/ 6 —§)

holds with some § € Dy and §x € D+, which are uniquely defined by 7 and . If

n = 0, we have £, = — f & and obtain the representation
§=f+f§+§, Ofé':(N"_f)g:ké, §eDy =Dk C Dy,

for any ¢ € ), which means that Ry = ). We have thus proved that K is s.a., and
therefore, N is also s.a.

The remaining part of the theorem does not require that f be closed. It is
evident that ker / C ker /* f : f€ = 0 automatically implies that £+ /& = 0.
Conversely, /+ f& = 0implies that(&, /+ f€) = (F&, f£) = 0, whence it follows

3I'The convenience of the minus sign in front of the vector ¢ becomes clear below.
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that f&¢ = 0, or ker f T/ C ker f. Therefore, ker /+ f = ker f. The equality
ker T f =ker f T is proved similarly. O

For a symmetric operator with nonzero deficiency indices, it may happen that the
operator allows an extension of oscillator type with a closed cofactor, and therefore
at least one s.a. extension of the operator exists. We note in advance that this implies
that the operator has equal deficiency indices and allows different s.a. extensions if
the deficiency indices differ from zero; see Chap. 3.



Chapter 3
Basics of the Theory of Self-adjoint Extensions
of Symmetric Operators

3.1 Deficient Subspaces and Deficiency Indices of Symmetric
Operators

In this chapter, we expound only a necessary part of the general theory concerning
s.a. extensions of unbounded symmetric operators, see [156, 157]. The content of
this part is actually reduced to three theorems presented in Sects.3.1, 3.3, and
3.4. These theorems are not assigned any names in the conventional mathematical
literature [9, 116]; instead, their crucial formulas are called the “von Neumann
formulas.” We call these three theorems the first and second von Neumann theorems
and the main theorem.!

We begin by recalling the minimum necessary notions and facts concerning
symmetric operators from Sect.2.7, especially Sect.2.7.6, and introducing some
new notation. .

Let $) be a Hilbert space, and let f be a generic symmetric operator in §), not

necessarily closed, with domain D s and adjoint f + f - f + Its closure f with

domain D+ is also a symmetric operator with the same adjoint, f C(f )Jr = fT; f+,
we let § denote the vectors belonging to D7, § € D7. We let C’ denote the set of
complex numbers with nonzero imaginary parts, C'" = {z =Xx+iyy # 0} =

C4+UC_. For any z € C’, the range R+, of the operator f (z) = f —z[I isaclosed
set in $. The orthogonal complement of Rf( ) in ) is called the deficient subspace

of f , as well as of f , corresponding to the point z € C’; the deficient subspace
coincides with the kernel of the operator ( f (@) = f T2 = f + 7. We let R,

'The reader interested in the final statement (without the details of a rigorous proof) can go directly
to the main theorem in Sect. 3.4, and to the subsequent comments in Sect. 3.5.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 83
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_3,
© Springer Science+Business Media New York 2012
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denote this deficient subspace and let &- denote the vectors belonging to X,

M= Ry =ker [t @=teD/r: [T=1%) (3.1)

Accordingly, the decomposition
H =Ry, OX, (3.2)

holds, which implies that any vector £ € $) can be represented as

E=/@E+E (3.3)
with some vectors § € D7 and & € R, uniquely determined by &. We note that for

a generic nonclosed operator f , its closure f enters the decompositions (3.2) and
(3.3).

The dimension of the deficient subspace R, is independent of z in the respective
domains C_ ={z=x+iy, y<0}andCy = {z=x +1iy, y >0},

. my, z€C,,
dimR. ={ T -
m—, z€ Cyq,

where m and m_ are called the deficiency indices of the operator f , as well as of

f . For a given z € C/, we distinguish two deficient subspaces R, and Rz,
No=ker [t @) = {6 e Dy frE =), (34)

such that if 7 € C_(C4) then dim®. = m (m_), whereas®> dim®: = m_ (m ).
Both m 4 and m_ can be infinite. If both m 4 and m_ are infinite, they are considered
equal, m4 = m_ = oo.

A basic starting point in studying symmetric operators and s.a. extensions of
symmetric operators is the following theorem, which we call the first von Neumann
theorem.

Theorem 3.1 (The first von Neumann theorem). For any symmetric operator f ,

theddz:main D ;+ of its adjoint f+ is the direct sum of the three subspaces D7, Nz,
and N;:

Dy = D7+ 8+ R, VzeC, (3.5)

2We point out that there exists an anticorrespondence z 2 Z between the subscript z of &, and the
respective eigenvalue z and the subscript of the eigenvector & of f +. Perhaps it would be more
convenient to change the notation X, 2 X; the conventional notation is due to tradition. The
same concerns the subscripts of 74 and C.
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such that any vector §x € D + is uniquely represented as

§*=§+é§z+é§23 §€D77 gzexﬁ gZENZ7 (3.6)

and

free= fE+it 475 (3.7)

Formula (3.6) is called the first von Neumann formula; we assign the same name
to (3.5). .
It should be emphasized that for an initial symmetric operator f, the domain D+

of its closure 7 enters the decompositions (3.5)—(3.7).

Proof. We first note that the domain D7 and the deficient subspaces Nz and R, are
subspaces belonging to D s+ ; therefore, a vector §x = § + &, + &z belongs to D ,+
with any § € D, &, € Rz and & € R, It remains to prove that for any vector
€x € D s+, a unique representation (3.6) holds.

Let &« € D p+. According to (3.2) and (3.3), the vector f+ (z) &« is represented
as

fT@E=f@5+E-2k. VzeC! (3.8)
with some § € D+ and & € R, that are uniquely determined by &, (the nonzero

factor 7 — z in front of & is introduced for convenience). But f £ = f TEand zE =

f+§g, and (3.8) becomes f+ (z) (6« — & — &) = 0, whichyields éx — & — & = &,
or £, = £ + £ + &, where £ belongs to 8- and is evidently uniquely determined
by &, £, and & and is therefore uniquely determined by &, alone. This proves the
representation (3.6) for any vector & € D ;+. After this representation has been
established, (3.7) becomes evident. O

‘We note that:

(a) Representations (3.5)—(3.7) hold for any z € C..

(b) Although representations (3.6) and (3.7) are explicitly z-dependent, because the
deficient subspaces R= and X_, and hence the sum® Rz + X_, depend on z, the
subspace D ;+ and the operator f * do not depend on z, and dim (X: + R,) =
my + m_, as well as m4 by themselves, is independent of z.

(c) The sum in (3.5) is direct, but not orthogonal; it cannot be orthogonal because
D_7 = §), and therefore D% = {0}.

It follows immediately from the first von Neumann theorem that a nonclosed
symmetric operator f is essentially s.a., and a closed symmetric operator is s.a., iff

3 Although R and R, are closed subspaces in §), we cannot generally assert that their direct sum
R; 4+ R, is also a closed subspace. The latter is always true if one of the subspaces is finite-
dimensional.
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Nz = R, = {0}, i.e., iff its deficiency indices are equal to zero, m4+ = 0, because
in this case, D = D7, and therefore f = f *. In other words, the adjoint f *is
symmetric iff m4+ = 0; compare with Lemma 2.75. But this theorem, namely (3.6)
and (3.7), also allows estimating the asymmetricity of the adjoint f * in the case
that the deficiency indices m 4+ and m_ are not equal to zero (one or both of them)
and analyzing the possibilities of symmetric and s.a. extensions of f . We now turn
to this case, the case of maxmy # 0.

3.2 Asymmetry Forms

The following consideration deals with some arbitrary, but fixed, complex number
z € C'. A choice of a specific z is a matter of convenience, all z being equivalent; in
the mathematical literature, it is a tradition to choose z = i.A

By definition (see Sect.2.7), a symmetric operator f is a densely defined
operator satisfying the condition

(n, f&) - (fAn,S) =0, ¥&.ne Dy.

The criterion for symmetricity of a densely defined operator f is that all its diagonal
matrix elements be real-valued,* i.e.,

(6 7¢) = (Fe8) = (8 f5) = (5. f¢) =2im (5. f¢) = 0. VE e D
see Lemma 2.50. For this reason, it is natural to introduce two forms defined by

the adjoint operator f * on its domain D s+ the sesquilinear form @ s+ (1x, §+),
given by

W r+ (%, 6+) = (’7*7 f+§*> - (f+77*7§*) s §x, M € Dy, (3.9

and the quadratic form A ;+ (§«), which is a restriction of ® + (7«,x) to the
diagonal &, = 1,

Aps (€)= 0pr 68 =20 (6 [6) &€ Dy (310)

“4This is well known to physicists as applied to s.a. operators.
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The form w ;+ is anti-Hermitian, while the form A ,+ is pure imaginary:

o+ (M, £x) = W+ (Ex, 1), Apy (&x) = —A+ (§4).

The form w ;+ is completely determined by A ;+ in view of the equality

1
p+ (e ) =7 { [A g+ G410 = Aps 6 = 1))
— i [Apr G+ in) = Aps G —inn)] |

which is the so-called polarization formula.

Each of these forms is a measure of asymmetricity of the adjoint operator f +,
i.e., a measure of the extent to which the adjoint operator f T deviates from a
symmetric operator. We therefore call w ;+ and A (+ respectively the sesquilinear
asymmetry form and quadratic asymmetry form. If w,+ = 0, or equivalently,

A+ = 0, then the adjoint f * is symmetric and f is essentially s.a.
One of the immediate advantages of introducing the sesquilinear form w ;+ is

that it allows simply evaluatmg the closure f of an initial, generally nonclosed,
symmetric operator f once the adjoint f 7+ is known. Indeed, by Lemma 2.43, the

closure f of a symmetric operator f can be determined as the adjoint of the adjoint,
f =t The defining equation (see Sect. 2.6.1) for (f )T = £, i.e., for pairs
Y €Dyand y = fAz, is given by

(ﬂ f“;‘*) - (1, 5*) =0, V& € Dy (3.11)

But the inclusion /' € /7 implies that D € D+ ie. ¥ € D+, and y =
f Y= f + ¥ (we know the “rule” for f ); therefore, the defining equation (3.11) for
the closure f reduces to the equation
(v. /% 8) - (frv.6) =00 (v.6) =0
— o+ (0¥) =0, Ve € Dy, (3.12)

for € D+ only, which is the linear equation for the domain D7 C D+ of the

closure. The closure f of a symmetric operator f , f c f *, is thus given by

7. Dr={y:y eDypsiwpr () =0. Ve € Dy,

— . (3.13)
fv=ry
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Formula (3.13) specifies the closure 7 of a symmetric operator f as an evidently

symmetric restriction of its adjoint f T: the equality e+ (g*, z) = 0 implies that
ope (n8) = (n.78) = (/&) =0. vnkeDrc D G

Because w,+ vanishes on D+ 7> and because of the representation (3.6) for &, €

D 4+, the nontrivial content of (3.12) for the domain Df in (3.13) is due only to the

presence of the deficient subspaces. Indeed, substltutmg representation (3.6) into
(3.12) and using (3.14), we reduce this equation to the equation

ope (E+EY) =0, VE X, VEEN,,
which is equivalent to
s+ (Ez,z) =0, op+ (&, Z) =0, V§ e Rz, V&R, (3.15)
Let the deficient subspaces be finite-dimensional, dim®; = m(z7) < oo and
dim®, = m(z) < oo (m(7) is equal to my or m—_ and m(z) = m—_ or my for the
respective z € C4 orz € C_), and let {e;, k}m(Z) and {ez x }'I"(Z) be some bases in the

respective Rz and R,. Then the last set of equations can be replaced by a finite set
of equations

W+ (ez,k,Z) =0, ws+ (eg,/,Z) =0, k=1,....m@), [ =1,....,m(z).

The inverse statement also holds: if

o+ ) =0+ (6 9) =0, Y € Dyy, VE € R, VE ER,,

thenyy = € D7
Taking the aforementloned into account, we can specify D in (3.13) as follows:

Dy = {Z tYEeDsis wps (5zv£) =wpt (%’ﬂ) =0,
VE €N, Vi e R, (3.16)
which is equivalent to
Dy ={yeDps o (e ¥) = s+ (e, 9) =0
k:l,...,m(z),l=1,...,m(z)}, (3.17)

in the case of finite-dimensional deficient subspaces.
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3.3 Symmetric Extensions

The main advantage of the two asymmetry forms w ;+ and A ,+ is that they allow a
comparatively simple analysis of the possibilities of symmetric and s.a. extensions
of symmetric operators and an efficient description of such extensions. The key
ideas formulated, so to speak in advance are as follows. Any symmetric extension
of a symmetric operator f is simultaneously a restriction of its adjoint f Ttoa
subdomain in D ,+ such that the restriction of @+ and A ;+ to this subdomain
vanishes. On the other hand, w ;+ allows a comparatively simple evaluation of the
adjoint of the extension, while A ;- allows estimating the measure of closedness of
the extension and the possibility of any further extension. Because any s.a. operator
does not allow nontrivial symmetric extensions, see Lemma 2.64, any s.a. extension
of a symmetric operator f , if it is possible, is a maximal symmetric extension. By
a maximal symmetric extension, we mean an extension to a maximal subdomain
in D 7+ 0n which o o+ and Af+ vanish, maximal in the sense that any further
extension to a larger domain on which w (+ and A ,+ vanish is impossible.
According to (3.15), both w + and A ;+ vanish on the domain D7 C Dy+ of

the closure f C f+,

o (g,g) =0, Vp.6e Dy < Ay (g) =0, Vi e Dy,

and are nonzero only because of the presence of the deficient subspaces Rz and R,
(we recall that we consider the case in which maxm1 # 0 and at least one of the
deficient subspaces is nontrivial).

Based on the first von Neumann theorem, we evaluate the contributions of the
deficient subspaces to the form w,+. Substituting representation (3.6) for both
€x and 7y int0 @ s+ (N, §x), then using the sesquilinearity and anti-Hermiticity
of the form w,+ together with (3.14) and (3.15), we obtain that w s+ (1x,&x) =
o s+ (N + 0z, & + &). Using now definitions (3.9), (3.1), and (3.4), we obtain the
required representation of the form w (+ in terms of the deficient subspaces:

0+ (M, ) = 20y (0, 6) — (12,8, 20y = (2—2). (3.18)

There follows a similar representation for the form A ,+:

Ape €)= 20y (1617 = 1E0?). (3.19)

Formula (3.19) is sometimes called the von Neumann formula (without any number
attached to it). We assign the same name to (3.18).

We can see that the asymmetricity of the adjoint operator f T is indeed due to
the deficient subspaces, and what is more, the forms w ;+ and A ;+ are of a specific
structure: up to a nonzero factor (z —7) = 2iy, the contrlbutlons of the different
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deficient subspaces Xz and X, are of opposite signs, and in principle, can compensate
each other under an appropriate correspondence between &, and &z, which are the
respective 8z- and X;-components of vectors §x € D +.

In the present exposition, (3.18) and (3.19), together with the first von Neumann
theorem, form a basis for estimating the possibility of s.a. extensions of a generic
symmetric operator f and constructing all its possible s.a. extensions. Even
though the forms OFEs and A r+ and the respective formulas (3.18) and (3.19)
are equivalent, it is convenient to use them both, one or another, depending on the
context.

An alternative method for the study and construction of symmetric and s.a.
extensions of symmetric operators is based on the so-called Cayley transformation
of a closed symmetric operator f to an isometric operator V= f (z) ( f @)~
with domain Dy = Ry and range Ry = Ry(; and inverse transformation
f = (Zf - ZV)(f - 17)_1; for reference, see [9, 116].

A nontrivial symmetric extension ﬁ of a symmetric operator f , f C ﬁ -
f;+ C £+, with domain Dy, D7 C Dy, C D+, is possible only at the expense
of the deficient subspaces Nz and R.:

Dy = {Se s & :§+ Ere + & VgE DT’ §oe €Nz fre € xz}

(any § € Dy and some §; . € Rzand §: . € R.), or
Dy =Dy+Dj, Dj ={E} CR 4R, & = et o

where the set Dﬁﬁc is a nontrivial one, Djﬁz #+ {0}.

The set Di is a subspace, as is D s, ; therefore, the sets

Rg =S8, D ” ={&.} CN,

of &, and &: . involved must also be certain subspaces. We only note that it is not

to be supposed that DR , which is a subspace in Rz + R, is a direct sum of D;e and
R R R R

DZ., D ;é D2, + DZ .5 see below.

A cruc:lal remark here is that a symmetric extension f. of f to Dy, = D7+ DR
is simultaneously a symmetric restriction of the ad]01nt f ttw Dy, CD - In
particular, this implies that we know the “rule” for fg, according to (3.7), fe acts as
f on D+ and as a multiplication by z on D;e and by Z on Dw.

The requirement that the restriction ﬁ of the adjoint f * to a subspace Dy, C
D s+ be symmetric is equivalent to the requirement that the restrictions of the
asymmetry forms @+ and A ;+ to D, vanish:

®p+ (e &) =0, Ve, & € Dys Ayy () =0, Vé. € Dy (3.20)
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We now establish necessary and sufficient conditions for the existence of such
nontrivial domains D s, and describe their structure.

The conditions (3.20) are equivalent to each other. In the following consideration,
we mainly deal with the quadratic asymmetry form A ;+.

According to von Neumann formula (3.19), the only nontrivial point in the
condition A s+ (§,) = 0 is that the restriction of A ;+ to Di vanishes:

Ape (68) = 20y (J6e — lgel?) =0, vE¥ e DY 32D)

It follows immediately that if one of the deficient subspaces of the initial
symmetric operator f is trivial, i.e., if Xz = {0} or X, = {0}, whereas the other
is not, R, # {0} or R; # {0}, or equivalently, if one of the deficiency indices
is equal to zero, i.e., minmy = 0, whereas the other is not, i.e., maxmy # 0,
then there are no nontrivial symmetric extensions of this operator. In other words, a
symmetric operator f withminm4 = 0and maxm4 # 0 is an essentially maximal
symmetric operator.

In what follows, we therefore examine theA case that both of the deficient
subspaces Rz and X, of a symmetric operator f are nontrivial, or minm+ # 0.
We show that in this case, nontrivial symmetric extensions of f exist, and their
structure can be constructively specified. Without loss of generality, we assume that

0 <minmy = dim®; < dim®, = maxm,

which always can be achieved by an appropriate choice of z.

We first assume the existence of a nontrivial symmetric extension ﬁ in the case
under consideration. The equation (3.21) suggests that both deficient subspaces Nz
and R, must be involved in this extension, i.e., both DR # {0} and DR # {0},
and any involved &, € DR C Nz must be assigned a certain &, € DR C R,
of the same norm, [|§.¢|| = [[§ .||, for their contributions to A ,+ to compensate
each other. This assignment must be a one-to-one correspondence. Indeed, if, for
instance, both vectors £¥ = & + & and £ = & + & belong to D , then
their difference éf/ — éf = &, — & with a zero Rz-component also belongs to
Di because Di is a subspace. But (3.21) then implies that H . — éz,cH = 0,
ie, &, = &.. A similar analysis for a pair of vectors Y =f +E&, € Di
and €Y = £ +&. € DR results in the conclusion that the equality £/ , = & . must
hold. This proves that there is a one-to-one isometric correspondence between D;c
and Dﬁfe. Moreover, this correspondence must be a linear mapping of D;e onto foe

in order that Di be a subspace.’

>We can omit this requirement because an isometric operator is linear [9].
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We thus obtain that any nontrivial symmetric extension f, of a symmetric
operator f is determined by a certain linear isometric mapping, or simply an
isometry, U : N; — R, with domain Dy and range Ry such that

Dy =D X, Ry =D} =UD} CN,.

Because any isometry preserves dimension, D;e and D?c must be of the same
dimension:

dim DY, = dim DY, = my < minmy ;

Di is also of dimension my because of the one-to-one correspondence between the
& . and &, . components of any vector Sf =§&.+&. € Di . It is now reasonable to
let U Dy denote DX, and change the

change the notation: we let Dy denote D} es

z,e’

subscript “¢” to the subscript “U” in other cases, so that f., D, Di , etc., are now

denoted by fU , Dy, D?U , etc. In particular, D 7, is now represented as follows:

D.?u = (DU + 0DU) = {’g‘f} =&u+Eu =&u+ Uk,

f.u €Dy SR, g = Uty e UDy SN, (3.22)

where (DU + U DU) denotes a special subspace of dimension my in the direct

sum ¥z + X,. This subspace can be considered the “diagonal” of the direct sum
Dy + U Dy.

We can now prove the existence of nontrivial symmetric extensions of a
symmetric operator f with minm4 # 0 by reversing the above consideration.
Namely, it is now evident that if the deficient subspaces X; and R, of f are
nontrivial, then any isometry U : R; — N, with domain Dy C N; and range
UDy C R, generates a nontrivial symmetric extension fU of f as the restriction
of the adjoint f * to the domain D, given by (3.22) because this restriction is
evidently symmetric.

We summarize the aforesaid in a theorem which we call the second von Neumann
theorem.

Theorem 3.2 (The second von Neumann theorem). A symmetric operator f is
essentially s.a. iff its deficiency indices are equal to zero, my = 0. A symmetric
operator f is essentially maximal, i.e., does not allow nontrivial symmetric, much
less s.a., extensions iff one of its deficiency indices is equal to zero, minm4 = 0,
while the other is nonzero, max my # 0.
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Ifminmy # 0, i.e., both deficient subspaces Nz and X, ofa symmetric operator
f are nonzero, then nontrivial symmetric extensions of f exist. Any symmetric
extension fU of f is determined by some isometric operator U with domain
Dy C R;and range UDy C R.. This extension is given by

Dy =Dy +(1+0) Dy ={eviév =&+ & + U
VE € D7 .Véu € Dy S8 Uky e UDy C xz}, (3.23)

and

fuéw = 7§ + k0 +Z0E v (3.24)

Conversely, any isometric operator U: Rz —> W, with domain Dy C Rz and range
U Dy C R, defines a symmetric extension fy of f given by (3.23) and (3.24).

The equality
fv=§+&uv+Ubyu (3.25)

in (3.23) is called the second von Neumann formula.

We do not dwell on the theory of symmetric extensions of symmetric operators in
every detail because it can hardly find applications in constructing QM observables;
instead, we restrict ourselves to a few remarks on the general properties of arbitrary
symmetric extensions. All the details can be found in [9, 116].

Remark 3.3. (i) It is evident that if fU is a closed extension of a symmetric

operator f ,then Dy and U Dy are closed subspaces in the respective deficient
subspaces Rz and ¥, and vice versa.

(i) The deficient subspaces of an extension fU are the respective subspaces
1 . 2 + .
Moo = Df =N:\Dy and X =(0Dy) =N\UDy,

the orthogonal complements of Dy and UDy in the respective deficient
subspaces 8z and R, of the initial symmetric operator f . The deficiency indices
of the extension fU are myy = m4 — my, where my = dim Dy . The
evaluation of the deficient subspaces and deficiency indices in the particular
case of a maximal symmetric extension fU is given below. Its modification to
the general case is evident.

(iii) Any symmetric operator f with both deficiency indices different from zero
can be extended to a maximal or s.a. symmetric operator; see below.

(iv) The description of symmetric extensions of a symmetric operator f in terms
of isometries U : R- — R, is evidently z- dependent for a given symmetric
extension of f the corresponding isometry U changes with a change of z
together with the deficient subspaces Rz and ¥,.



94 3 Basics of the Theory of Self-adjoint Extensions of Symmetric Operators
3.4 Self-adjoint Extensions

Our prime interest here is in the possibility and construction of s.a. extensions of
symmetric operators with nonzero deficiency indices.

As we mentioned above, any s.a. extension, if at all possible, is a maximal
symmetric extension that does not allow further symmetrlc extensions. For a max-
imal symmetric extension fU of a symmetric operator f with nonzero deﬁc1ency
indices, the deficient subspace 8z must be involved in the extension as a whole,°
i.e., Dy = Rz otherwise, a further symmetric extension is possible by extending
the isometry U to the whole of X;. The domain of a maximal symmetric extension

fu of £ is thus given by
Dy, =Dy+ (I +0):

={ev it =g+8+08; VEe Dy Ve ex, Ug enf,  (3.26)

A N L
while R, can be represented as R, = UN: @ (U &g) , where

(0%)" = {etu s (sh.05) =0, vs. e

is the orthogonal complement of a subspace U R; C R, in the deficient subspace R,.
We now evaluate the adjomt fU Because both fU and fU are the restrictions of
the adjoint operator f a fU c fU cf A+, we can use arguments similar to those

used in evaluating the closure f of f see (3.11)—(3.13). The defining equation for
fU is reduced to a linear equation for the domain D o C D+, ie., for vectors
n«y € D it namely,

U

s+ (v, nxv) =0, YEu € Dy, (3.27)
Let n«y = n+n.+nz be the representation (3.6) of 7.y, which we rewrite as
nev =N+ 0.+ Un.+ (:—Un.) = nu + (nz— Uno),

where ny € Dy,, see (3.26), and 7z — Unz € N,. Because i+ vanishes on D,
(3.27) reduces to an equation for the component 7z — U n, € R,

W+ (&/, Nz — 0771) =0, Y&y € Dy,. (3.28)

SUnder our agreement that dim 8 < dim ..
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Substituting (3.26) for £y into (3.28) and using representation (3.18) for W+, wWe
finally obtain that (UEZ, Nz — Unz) = 0, V&, € Rz, which implies that 1z — Unz =
n?J'U € (UN;)J-. Any nxy € Df+ is thus represented as n«y = nu + n?J'U with

, " ,

some 1y € Dy, and n?J:U € (U R:)L C N.; this representation is clearly unique.

Conversely, it is evident from the above consideration that a vector n«y = ny +
n?J:U with any ny € Dy, and nng € (U R:)* satisfies the defining equation (3.27),
and therefore belongs to D. ot We thus obtain that

~ L
DfUJr =Dy + (ng)
~ L
= {s*u Hew = fu + 8y VEU € Dy, VR € (O%) }

fU+E*U = fuku +Z§;‘U.

This result allows us to answer the main question that concerns possible s.a.
extensions of symmetric operators. If the subspace (U R:) is nontrivial, (U Nt =
N\ UR- # {0}, we have a strict inclusion D5, C D , i.e., the extension fU

is only the maximal symmetric operator and not an s. a operator If the subspace
(U&Z)J- is trivial, (U&Z)J- {0}, wehave Dy, = D},+ which implies the equality

fU = fU , i.e., the maximal extension fU is an s.a. operator. We now evaluate the
dimension of the subspace (U R-)*, which provides an evident criterion for (U N+
to be nontrivial, dlm(U R:)T £ 0, or trivial, dlm(U R;)* =0, and respectlvely, for
a maximal symmetric extension fU to be non-s.a. or s.a. It appears that dlm(U No)+
is essentially determined by the deficiency indices of the initial symmetric operator.

If one of the (nontrivial) deficiency indices of the initial symmetric operator f is
finite, i.e., 0 < dim X; = minm+ < oo, while the other, dim X; = maxm 4, can be
infinite, we have

dim (Urzz)L = dimX, — dim (sz) — maxmy —minmy = |my —m_|,

where we use the equality dim(U Nz) = dim ;. If both deficient subspaces Rz
and R, are infinite = dimensional, m4+ = o0, we encounter the uncertainty
dim(U R:)© = 0o — 00, and a special consideration is required. The point is that in
this case, the isometry U : R; —> N, defining the maximal symmetric extension
fU can be an isometric mapping of the infinite-dimensional subspace R both into
and onto the infinite-dimensional subspace R.. In the case of “into,” the subspace
(U R:)* is nontrivial, dlm(U X)L+ £ 0, while in the case of * ‘onto,” the subspace
(U&Z)J- is trivial, dlm(U&Z)J- =0.
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It follows that:

(a) A symmetric operator f with different deficiency indices, m4+ # m_ (which
implies that minm+ < o0), has no s.a. extensions. Such an operator can be
extended only to a maximal symmetric operator.

(b) A symmetric operator f with equal and finite deficiency indices, m+=m<oo,
has s.a. extensions, and what is more, any maximal symmetric extension of such
an operator is s.a.

(c) A symmetric operator f with infinite deficiency indices, m+ = oo, allows both
s.a. extensions and non-s.a. extensions that are maximal symmetric operators.

Any s.a. extension fU of f is determined by an isometric mapping U of one
of the deficient subspaces, for example ¥z, onto another deficient subspace, N,
U : Rz > R.. This mapping establishes an isomorphism between the deficient
subspaces. Conversely, any such isometric mapping U : R: — N, defines an s.a.
extension fU of f given by (3.23) and (3.24) with Dy = Nz and UDU =N,

We note that there exists another way (perhaps more mformatlve) of establishing
these results. It seems evident from (3.26), and it can be proved using arguments
similar to those used in proving the first von Neumann theorem, that in our case of
dimR; y < dim R, y, the deficient subspaces of the maximal symmetric extension
fU are N;y = {0} and R,y = (U R:)L C R, and its respective deficiency indices
are dimN; y = min (m4y,m—y) = 0 and

N 1
dimR, y = max (m4y, m_y) = dim (sz)

It then remains to evaluate dim(U R:)L and to refer to the above-established
relation between the deficiency indices of the maximal symmetric extension and
its self-adjointness: the maximal symmetric extension is s.a. iff both its deficient
indices are equal to zero.

The presented consideration seems more direct.

An s.a. extension fU of a symmetric operator f with equal deficiency indices,
i.e., with isomorphic deficient subspaces Nz and R, that is specified by an isometry
U R: — R, and is given by (3.23) and (3.24) with Dy = ¥ and UDy = R,
can be equivalently determined in terms of the sesquilinear asymmetry form w

similarly to the closure f ;see (3.13) and (3.15). Namely, fU is such an extension iff
itis a restriction of the adjoint /¥ to the domain Dy, defined by the linear equation

o (nz n Unz,gy) —0,EyeDyj, CDpr, V. €X:. (3.29)
Necessity: let fU be an s.a. extension of f . Then the restriction of the form

s+ to its domain D f, vanishes, i.e., s+ (mu.&v) = 0,VEy, nu € Dy,. Using
now the representation ny = 1 + 1 + U 1. and the equality w + (ﬂv &/) = 0,
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see (3.12) with = n and &« = &y, we reduce the equality @+ (nv,év) = 0,
Vég'U, Nu € DfU? to (3 29)

Sufficiency: let U: R: —> R, be an isometry of one of the deficient subspaces
onto another. We consider the linear equation (3.29) for a subspace D s, = {§y} C
D ;+ and show that its general solution is given by

fu=§+6+UE. VEeDy, Ve eX:, Uk eX,. (3.30)

Indeed, a vector &y of the form (3.30) evidently satisfies (3.29),
W+ (nz + U’]z»§ + %-z + U%‘z) = 2iy I:(ﬂz, Ez) — (UT]Z, USZ)] =0,

where we use (3.18) and the fact that U is an isometry. Conversely, let a vector
§u € D ;+ satisfy (3.29). Using the representation

=+ +E=§+E+05+ (&-08),

where § € Dy, £ e Nz, &, Uéz € R, then using (3.18) and that U is an isometry,
we reduce (3.29) to (U N, & — Uéz) = 0, V7, € Nz, whence it follows that & —
USZ =0,0r& = UEZ, because {(jnz, Vn, € Ng} = ng = N,.

We note that (3.29) is actually the defining equation for the adjoint fU+ of the
operator fU that is the restriction of the adjoint operator f * to the domain D, =
D + (f +U )Rz, an equation that we already encountered above, see (3.27), where
the substitutions £y — nu and | nvy — &y must be made. Its solution in the case of
UN = R, shows that fU = fU

In the case of a symmetrlc operator f with equal and finite deﬁ01ency indices,
my = m < 00, the isometry U: X- —> N, and hence an s.a. extension fU, can be
specified by a unitary m x m matrix. To this end, we choose a certain orthonormal
basis {e,}]' in R such that any vector &, € R; is represented as &, = Y || cke. i,
cx € C, and a certain orthonormal basis {ez,;}]" in X.. Then any isometric operator
U with domain N7 and range R, is given by

Uek =) Upez, or Uk = Z (Z Ulkck) ez
k=1

=1

where U = {Uik} is a unitary matrix. Conversely, any unitary m x m matrix U
defines an isometry U given by the above formulas. It is evident that for a given U,
the matrix U changes appropriately with the change of the orthogonal bases {e_ x }’
and {ez;}]".
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It follows that in the case under consideration, the family { fU} of all s.a.
extensions of a given symmetric operator f is a manifold of dimension m? that
is a unitary group U(m).

This result can be extended to the case of infinite deficiency indices, m = co.

In the case that both deficiency indices coincide, there is no difference in the
choice of z € C4 or z € C_. In what follows, we take z € C, so from this point
on, my = dim Rz and m_ = dim R,.

We now summarize all the relevant previous results in a theorem that we call
the main theorem. This theorem is of paramount importance: it is precisely what we
need from mathematics for our physical purposes. We therefore present this theorem
in sufficient detail and in fact, in an independent self-contained way for the ease of
using the theorem without any further references.

Theorem 3.4 (The main theorem). Let f be an initial symmetric operator with
domain D ; and adjoint [+, f C f, let R; and R, be the deficient subspaces of f,

Ne=ker [ ) = {0 e =),
N =ker [T () = {6 frE =2,

where 7z € C4 is arbitrary, but fixed, and let my be the deficiency indices of f ,
my = dim ¥z and m_ = dim R, . . . .

The operator [ has s.a. extensions fy = fU+ , f € fu iff both its deficient
subspaces ¥z and R, are isomorphic, or iff its deficiency indices are equal, m+ = m.

If the deficient subspaces are trivial, i.e., if both deficiency indices are equal to
zero, my = 0, the operator f is essentially s.a., and its unique s.a. extension is its
closure f = (f+)+, which coincides with its adjoint, f = (fA)+ = f+.

If the deficient subspaces are nontrivial, i.e., if the deficiency indices are different
from zero, my = m # 0, there exists an m>-parameter family {fy} of s.a.
extensions that is the manifold U (m), a unitary group.

Each s.a. extension fU is determined by an isometric mapping U: R — R, of
one of the deficient subspaces onto another and is given by

Dy, =D7+(f+0)&z

= {&/ tfu=§+65+ 0&, VE € D7, V& €, USZ € &Z}, (3.31)
where D7 is the domain of the closure ? and

fAUSU :7§+Z§z+20‘§z (332)
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Conversely, any isometry U : Rz —> R, that establishes an isomorphism between
the deficient subspaces defines an s.a. extension fU off given by (3.31) and (3.32).

The s.a. extension fU can be equivalently defined as an s.a. restriction of the
adjoint f + given by

;o DfU = {gU:gU € Der; Wr+ (ﬂz+077z,§z/) =0, Vﬁzexz},

A n (3.33)
fubu = fréu.

If the deficient subspaces are finite-dimensional, 0 < m < 00, then s.a.

extensions fy can be specified in terms of unitary matrices U € U (m). Namely, let

{e.r}|" and {ez;}|" be some orthogonal bases in the respective deficient subspaces

Nz and R,. Then an s.a. extension fy is given by

D, = v bu =&+ XY\ ckevk. VE € D7,
fu T Vep € C, evg = ek + 211, Unezy, ’ (3.34)

fuku = f§ + i ci (e + 2272 Uikes),

where U = ||Uyi|| is a unitary matrix.
An equivalent definition of fy in terms of the adjoint f+ becomes

(3.35)

f { Dy, = {gU tEu € Df+§ W+ (evk.év) =0, Vk},
U -

fotv = feu.

The main theorem finishes our exposition of the general theory of s.a. extensions
of symmetric operators.

3.5 Summary

We would like to finish this chapter with a comment about a possible application of
the general theory of s.a. extensions of symmetric operators to the physical problem
of constructing QM observables as s.a. operators, the problem that was extensively
discussed in Chap. 1. We mainly address the case of nontrivial physical systems with
boundaries and/or singularities of interaction where observables are represented
by differential operators and where the main difficulties are related to a proper
definition of s.a. Hamiltonians. Our comment has the form of brief “instructions”,
which are of a preliminary nature. A more detailed discussion of ordinary s.a.
differential operators including their spectral analysis is given in Chaps. 4 and 5.
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We recall that the challenge is to construct an s.a. operator starting from a
preliminary “candidate” for a QM observable,” a certain formal expression giving
“a rule of action” and formally s.a., in particular, starting from an s.a. differential
operation® f(x, —idy).

3.5.1 The First Step

The first step of a standard program for solving this problem is to give the meaning
of a symmetric operator f in an appropriate Hilbert space $) to the formal expression
by indicating its domain Dy C §), which must be dense. In the case of singular
differential operators arising under quantization of nontrivial physical systems, this
is usually achieved by choosing a domain D f in a Hilbert space of functions (wave
functions in the conventional physical terminology) like L2(a, b) so that it avoids
the problems associated with boundaries and singularities. The simplest way is
to require that wave functions in D ; vanish fast enough near the boundaries and

singularities. The symmetricity of f is then easily verified by integrating by parts.

A symmetric operator thus defined will be called an initial symmetric operator f in
what follows; see also Chap. 5.

3.5.2 The Second Step

We then must evaluate the adjoint operator f *, ie., find its “rule of action”
and its domain D+ 2 D/, solving the defining equation for the adjoint f +,
In general, this is a nontrivial task. Fortunately, as regards differential operators,
the solution of this task for rather general symmetric operators is known in the
mathematical literature—see, for example, [9,116, 128,131, 142]—and is presented
in the next chapter.

3.5.3 The Third Step

This step consists in evaluating the deficient subspaces Xz and X, with some fixed
z € C4 as the spaces of solutions of the respective equations f tE =26, & €
D+, and f te = %, 6 € D s+, and in determining the deficiency indices
my = dim¥Y; and m_ = dim,. This problem can also present a laborious
task. In the case of differential operators, it usually requires extensive experience
in special functions.

"Provided, for example, by canonical quantization rules for classical observables f(q, p).
8Self-adjoint by Lagrange.
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Suppose the deficiency indices to have been found. If they are found to be
unequal, m4+ # m—, our work stops with the inconsolable conclusion that there
is no QM analogue for the given classical observable f(g, p). Such a situation, i.e.,
unequal deficiency indices, is encountered in physics, thus preventing some classical
observables to be transferred to the quantum level (an example is the momentum of
a particle on a semiaxis; see below). We note in advance that for s.a. differential
operators with real coefficients, the deficiency indices are always equal.

If the deficiency indices are found to be zero, m4+ = 0, our work also stops: a
symmetric operator f is essentially s.a., and a uniquely defined QM observable is

its closure f , which coincides with the adjoint f +, f = f +.
If the deficiency indices are found to be equal and nonzero, m+ = m > 0, the
fourth step becomes a necessity.

3.5.4 The Fourth Step

At this step, we correctly specify the entire m?-parameter family { fU} of s.a.
extensions fU of an initial symmetric operator f in terms of isometries U : Rz —>
R., or in terms of unitary m x m matrices U. The general theory provides two
ways of specification given by the main theorem. The specification based on (3.31)
and (3.32) or (3.34) (and usually presented in the mathematical literature) appears
more explicit in comparison with the specification based on (3.33) or (3.35), which
requires solving the corresponding linear equation for the domains Dz, . But the

first specification assumes knowledge of the closure f of f if the initial symmetric
operator is nonclosed,” which requires solving linear equations in (3.13), (3.16), or
(3.17) for the domain D?. The second specification can sometimes become more

economical because it avoids the evaluation of the closure f and deals directly with
the domains D y, of extensions. This particularly concerns the case of differential
operators where f T is usually given by the same differential expression as the initial
operator f and where the second specification allows eventually specifying the s.a.
extensions fU in the customary form of s.a. boundary conditions; an additional
advantage is that only the asymptotic behavior of functions belonging the deficient
subspaces near boundaries and singularities is actually required to be known. This
possibility is discussed in Chap.4. We say in advance that we also propose a
third possible way of specifying s.a. extensions of symmetric differential operators
directly in terms of, generally asymptotic, boundary conditions; see Chap. 4.

9We would like to emphasize that at this point, the general theory requires evaluating the closure f .
It is precisely f and D7 that enter (3.31), (3.32), (3.34), and (3.35), while in the physics literature
we can sometimes see that in citing and using these formulas, f and D s stand for f and D7 even

for a nonclosed symmetric operator f, which is incorrect.
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3.5.5 The Final Step

The final step is the standard spectral analysis, i.e., finding the spectrum and
(generalized) eigenvectors of the resulting s.a. extensions fU and their proper
physical interpretation see Chap.5. The problem of the physical interpretation of
the new m? parameters, which are absent from the initial formal expression and
from the initial symmetric operator f and are associated with the isometries U or
unitary matrices U in the case of nonzero deficiency indices, is sometimes the most
difficult one. The usual approach to solving this problem is related to a search for
an appropriate regularization of singularities in the operator f .

The above-described general procedure for constructing QM observables starting
from preliminary formal expressions is not universally obligatory. In some particular
cases, more immediate procedures are possible, especially if there exist additional
physical arguments. For example, in some cases, we can guess a proper domain D ¢
for an initial symmetric operator f such that f proves to be essentially s.a. from
the very beginning.



Chapter 4
Differential Operators

The present chapter is devoted to differential operators, more specifically, to
a comparative presentation of various methods of constructing s.a. differential
operators starting from formal s.a. differential operations. All the constructions are
based on the general theory of s.a. extensions of symmetric operators outlined in
the previous chapter. They cannot, however, be considered simple applications of
the general theory: they possess such additional features that make it necessary
to present differential operators as a separate chapter, which reveals the specific
features of differential operators, in particular, specific ways of describing s.a.
extensions of various symmetric operators. The peculiarity of ordinary differential
operators lies mainly in the fact that the asymmetry forms w+ and A ;4 permit
their representation in terms of boundary forms, which, eventually, allows one to
define s.a. operators in terms of s.a. boundary conditions.

Because of a particular importance of this subject for QM, we have attempted
to make the exposition of this chapter as self-contained as possible, so that the
reader could read it independently of Chap. 3. With respect to Chap. 3, it is actually
sufficient to be familiar with it only as far as the main theorem (Theorem 3.4) and
the brief “instructions” in Sect. 3.5.

It seems useful to make some remarks concerning the subject of our exposition
from the standpoint of the general theory of differential operators.

The subject area of differential operators has an almost century-long history and
is inexhaustible in its volume. We restrict ourselves to ordinary differential operators
in Hilbert spaces L?(a, b), scalar operators. But the main results and conclusions
presented below can be extended to matrix differential operators in Hilbert spaces of
vector functions such as L2 (a, b)®L? (a, b)®- - - with some obvious modifications.

The foundations of the general theory of ordinary differential equations, includ-
ing their spectral analysis, were laid by Weyl [161-163]. Further development of the
theory, including different approaches to the subject and discussions of a number of
particular questions, can be traced along [9,27,51,71,79, 80,93,99, 102, 108, 116,
128,131,132, 142, 143, 148, 156, 160]. This list of references is mainly oriented to
physicists and in no way pretends to be complete; it can be considerably extended
and will be continued below.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 103
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_4,
© Springer Science+Business Media New York 2012
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As for partial differential operators, we refer to [24,27,56,96,99, 128,131, 142,
149], where an extensive bibliography on the subject can be found. To physicists,
we especially recommend the books [27,56], where three-dimensional Hamiltonians
were classified.

We leave aside the theory of non-s.a. differential operators, which may have some
applications in the physics of open systems with emission and absorption.

The problem of spectral analysis of a physically important class of s.a. differen-
tial operators is discussed in the next chapter.

4.1 Differential Operations

A linear differential operation f of order n>0 on the interval' (a,b) is an
expression of the form

f=LEd+ i ()dT 4+ fi () de+ fo(x), (4.1)

where the functions f; (x), k=0,1,...,n, defined on (a,b) are called the
coefficient functions, or simply coefficients, of the differential operation. It is
naturally adopted that f, (x) # 0. A differential operation of order zero is a
function. 5

The differential operation f of (4.1) is naturally applicable to functions ¥ (x)
that are a.c. in the interval together with their n — 1 derivatives® ¢V, ... =D
(v = y’') producing differential expressions

@ =Y fix)y® ).
k=0

and generating linear differential equations, the homogeneous one fv v(x) =0
and the inhomogeneous one f ¥ (x) = yx(x). Under conditions that v (x) is
square-integrable on (a,b) together with f ¥ (x), the differential operation f
generates a differential operator in the Hilbevrt space L*(a,b). Depending on the

properties of the coefficient functions of the f, various additional requirements can
be imposed on the functions ¥ (x), so that a differential operation f can generate
various operators in L?(a, b). All such operators are called the differential operators
associated with a given differential operation. We let f with a possible subscript
or/and superscrlpt denote a differential operator associated with a given differential
operation f The associated operators f differ by their domains D y, while the

“rule of action” of all the operators is given by f

'Our conventions about understanding this notion and the related terminology are explained in
Sect.2.3.1.

2The derivative of order k of a function ¥ is commonly denoted by ).
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Admissible domains of operators associated with a given differential operation
f (4.1) depend on regularity (integrability, continuity, differentiability, etc.) of the
coefficients of f . The standard conditions on the coefficients are that the coefficients
fr (x), k = 1,...,n, should be a.c. in the interval (a, b) together with their k — 1
derivatives, and their kth derivatives and the coefficient fy(x) should be locally
integrable (the local integrability means (absolute) integrability in any finite interval
inside (a, b)). These conditions are sufficient for the product y(x) f ¥ (x) to allow
its integration by parts and for the corresponding adjoint differential operation (see
below) with coefficients satisfying the same conditions to exist. The coefficients,
for example fp(x), may tend to infinity as x — a and/or x — b. In addition,
it is required that the functions f;(x)/f,(x), k = 0,...,n — 1, and 1/f,(x) be
locally integrable. This condition is necessary for the standard theory of differential
equations to be applicable to the linear differential equatlons generated by a given
differential operation like /v = 0, (f W)y = 0,and fy =y, (f =W)¥ =y,
W e C (as arule, we henceforth omit the obvious function argument x). For reasons
that will become clear later, we call the solutions of these equations that are a.c.
in (a,b) together with their n — 1 derivatives the ordinary solutions. We do not
consider here the cases in which the coefficients have nonintegrable singularities
inside the interval. If the singularities are located at interior points of the interval
(as, for example, in the case of §-potentials), the consideration must be appropriately
modified; see in this respect Chap. 7.

A differential operation (4.1) is called a regular differential operation if the
interval (a, b) is finite and if the functions fi/f,, k = 0,....,n — 1, and 1/f,
are integrable on the interval (a, b), i.e., on the closed interval [a, b] including the
endpoints. In the opposite case, i.e., if at least one of these conditions does not
hold, f is called a singular differential operation. The left endpoint a is called
a regular endpoint if a > —oo and the functions f;/f, and 1/f, are integrable
on a subinterval [a, B8], B < b. In the opposite case, i.e., if at least one of these
conditions is invalid, the endpoint a is called a singular endpoint. Similar notions
are introduced for the right endpoint ». For a regular differential operation, both
endpoints of the interval are evidently regular.

In order to facilitate some technical points of the following exposition, we assume
that the coefficient functions fj are smooth functions in the interval (a, b) (although
they can be singular at finite endpoints). We partly justify this assumption by noting
that this condition holds for most QM problems. On the other hand, this assumption
allows a comparatively simple proof of some of the basic assertions that hold in
more general cases. We make special reservations concerning each of these cases; in
particular, the standard conditions on the coefficients can be considerably weakened
for even s.a. differential operations in their canonical representation (see below).

‘We now turn our attention to some other notions related to differential operations.

3This restriction is natural, e. g., for radial Hamiltonians.
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Let the functions ¢ and ¢ belong to D (a, b), the space of compactly supported
smooth functions; see Sect.2.1. It is evident that f¢ € D(a,b) and ¢, ¢, fp €
L?(a,b). We consider the integral fab dx¢ f ¢, which can be treated as the scalar

product <¢>, fvgo) in L%(a, b),
b b on
Fo) — T f o — 5 (k)
(#.f0) = [ axdfo= | a3 sie

Integrating each term ¢ fro®) by parts k times, and taking the vanishing of
boundary terms into account because ¢ and ¢ vanish near the boundaries, we obtain

(6.79) = [ aFd0= (F9.6).

a

where the differential operation f * is given by

fr=(d)" fu+ (~d)" " Fusi A+ (—d) fi + fo. (4.2)

This differential operation (4.2) is called the adjoint differential operation, or the
adjoint by Lagrange, with respect to the initial differential operation f. The adjoint
differential operation f* can be presented in the standard form (4.1),

" I+ k
=) R mdl )= Z( 1)"“( " )fk‘Q,(x)
k=0

where (") are binomial coefficients.

A differential operation f is called an s.a. differential operation, or s.a. by
Lagrange, if it coincides with its adjoint, f = f *. The self-adjointness of a
differential operation f is equivalent to the equality

(¢.7¢) = (f9.0). vo.¢ € D(@.b). (43)

We emphasize that the self-adjointness of a differential operation is only a
necessary, and generally not sufficient, condition for its associated operator f
in L% (a,b) to be s.a. But only s.a. differential operations that can generate s.a.
differential operators are interesting from the standpoint of QM. The main problem
is to indicate a proper domain in L? (a, b) for an s.a. f . This proves to be impossible



4.1 Differential Operations 107

sometimes, whereas in other cases, a family of different s.a. operators can be
associated with a given s.a. differential operation.
We describe the general structure of s.a. differential operations of arbitrary order.
The coefficients of an s.a. differential operation f satisfy the relations

S (x) = Z( 1)k+l<l+k)fk(ﬂ:,() k=0.1,...,n

=0

These relations can be resolved in the general form, which results in the so-called
canonical form of an s.a. differential operation

f= va(/), fory = (=d)* pud*,

1=0
v I
forsn = 5 [ (a0 dund! + digorr (=) ).

Dok = Pok. Pok41 = Pos+1. (4.4)

which is a sum of even canonical s.a. differential monomials f(zk) of even order 2k
with real coefficients ¢ (x), k = 0,1, ..., [n/2], and odd canonical s.a. differential
binomials f(zk+1) of odd order 2k + 1 with pure imaginary coefficient i1 (x),
k=0,1,...,[(n —1)/2].

Even s.a. differential operations of even order n, n/2 € Z., are the sum of only
even S.a. monomials,

n/2 n/2
f= Z Jox = Z (—dy)* poed®
k=0 k=0
n/2
= > " (=d)* pujpicdf . pujpk = P, (4.5)
k=0

and their coefficients are real; conversely, any s.a. differential operation with real
coefficients is even. Odd s.a. differential operations of oddordern, (n—1)/2 € Z+,
are the sum of only odd s.a. binomials, f Z(" /2 f(2k+1), and their coefficients
are pure imaginary; any s.a. differential operation Wlth pure imaginary coefficients
is odd. The general s.a. differential operation that is a sum of both even monomials
and odd binomials can be called a mixed one.

The simplest odd s.a. differential operation is

p = —id,, (4.6)
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and is identified with the QM momentum operator for a particle moving on an

interval of the real axis;* see Chap. 1. This differential operation and its associated

operators, in particular, possible s.a. operators, are considered in detail in Chap. 6.
The simplest even s.a. differential operation is given by

H=—d> 4.7

In the physics literature, it is usually identified (for simplicity, we omit here the
factor 1/2m; see (1.5)) with the QM Hamiltonian for a free particle moving on an
interval of the real axis. Its simplest modification

H=H+Vx) =-d>+Vx). V(x)=V(x), (4.8)

is identified with the QM Hamiltonian for a particle in a potential field V(x).
Such second-order differential operations with various potentials V' (x) and their
associated s.a. operators are considered in detail in Chaps. 7-10.

Even s.a. differential operations are distinguished in a certain way. First, at
least one s.a. operator is associated with any such differential operations (see
below). Second, the theory of linear differential equations generated by even s.a.
differential operations f can be conveniently formulated in terms of the so-called
quasiderivatives, which have made possible great advances in developing the theory
of even s.a. differential operators associated with even s.a. differential operations;
in particular, the associated s.a. operators can be conveniently specified in terms
of the quasiderivatives; for details, see [9, 116]. We reproduce the corresponding
definitions below. .

For each even s.a. differential operation f of order n, we introduce the
quasiderivative differential operations K Lk], k = 1,...,n, defined recursively for
a given f by

KM =gk k=0, .n/2—1 KM= pan?
RW/2k) = gni2—k _ g gln/2+k=11 g n/2
* x X X ’ g e e ey .
and defining the so-called quasiderivatives ¥,
Yyl = KBy, 4.9)
by the recursion

Ip[k] — w(k)’ k=1,....n/2—1, Ip[ﬂ/Z] — pow(n/2)7
w[n/Z"rk] — pkw(n/z—k) _ dxw[n/z-f'k—l]’ k — 1’ . ,n/2,

“4This identification implies that we use a system of units where # = 1.
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we recall that p, /o = ¢ ; see (4.5). The recursive equations can be resolved to
yield the following explicit representation for quasiderivatives®:

yl =y ® k=0..n/2-1,
n/2
Yl = N (—d ) 2 (D). k=0, /2. (4.10)
I=n/2—k
In these terms, the even s.a. differential operation (4.5) can be simply repre-
sented as

f =K"= fy =ybl A.11)

For the representation (4.9)—(4.11) of even s.a. differential operations, the
regularity conditions for the coefficient functions py can be considerably weakened:
it is sufficient that the functions pi, ..., py/2, 1/ po be locally integrable. An even
s.a. differential operation of order # is then applicable to functions ¥ that are a.c. in
the interval (a, b) together with their quasiderivatives ¥, k = 1,...,n — 1. The
definitions of regular and singular endpoints are modified accordingly.

In the theory of differential equations generated by even s.a. differential oper-
ations f , it is useful to introduce the quasi-Wronskian Wr (uy, ..., u,) of a set of
functions u;, i = 1,...,n, instead of the ordinary Wronskian Wr (uy, ..., u,). We
recall both definitions:

, Wy = MBI:_I] ,

Wr (ur. ... i) = det | Wi |, Wy =70 i j =1, on;

Wr (I/tl, R ,I/tn) = det |W,‘j

see, e.g., [9, 116].

Both the quasi-Wronskian and the ordinary Wronskian are equal to zero for
linearly dependent solutions u;, i = 1,...,n, of the equation f u = 0, but in
contrast to the ordinary Wronskian, the quasi-Wronskian is a nonzero constant for
a set of n linearly independent solutions.

As an example, we consider an s.a. differential operation of second order,

f = —d; [po(x)di] + pi(x).
In this case,
RO =1, R = po)ds, KE = pi(x) — K = .

Wr (uy, up) = ulu[zl] - u[ll]uz = po(X)Wr (uy, uy) .

SQuasiderivatives naturally emerge in this form when a product 7fv Y is integrated by parts. The
representation (4.10) can be taken as an independent definition of quasiderivatives. A similar
representation evidently holds for quasiderivative differential operations.
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For any s.a. differential operation f of order n, the so-called differential
Lagrange identity

/v - (Fr)v=d v, (4.12)

holds, where the local sesquilinear form [x,¥], (x) is a sesquilinear form in
functions and their derivatives at the point x up to order n — 1 (for n = 0, this
form is evidently zero).

The form [y, ¥] ; is specific for each f ; its coefficients are determined by the
coefficients of f , but to simplify notation, we usually omit the generic subscript f if
we speak about properties of the form that are common to all f under consideration
or if an origin of the form is clear from the context. For the general (mixed) s.a.
differential operation f (4.4), the local sesquilinear form [y, ¥] 7 1s a sum of the
corresponding partial forms for even s.a. monomials f(zk) and odd s.a. binomials
fv(2k+1) that constitute the f :

n

vl = vl s,

=1
k—1

(¥ oy = = 2 [7 (—d) T @) — @ S W) | k= 1,

1=0
; ke

V] gy = —i 7O o1y ® + > > {7(1)(—dx)k_[_l
1=0

x [¢zk+1w‘k+” - (¢zk+n/f(k))’] +0s w)}, k>0. (4.13)

For even s.a. differential operations of (even) order n, the local sesquilinear form
x, ] 7 1s a simple sesquilinear form in quasiderivatives with coefficients £1:

n/2—1
Devly (0 = Y2 (G F iy — g, (4.14)

k=0

As simple examples, we have [y, ¥],(x) = —i x(x)¥(x), and

[ Y1 (x) =[x ¥la (x) = X ()Y (x) — x ()Y’ (x), (4.15)

for the respective first-order differential operation (4.6) and second-order differ-
ential operations (4.7) and (4.8). The simplest way of verifying the differential
Lagrange identity (4.12) is by directly differentiating representations (4.13) and
(4.14).
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We now indicate some properties of the forms (4.13) and (4.14). We first warn the
reader against possible confusion with notation: the symbol of the form, especially
without a generic subscript, [, |, coincides with the conventional symbol of a
commutator. But the form does not possess the properties of a commutator, in
particular, [, ¥] # 0. The form is evidently anti-Hermitian, [y, ¥] = —[¥, x].
Therefore, its reduction to the diagonal y = y defines the quadratic form [y, /],
which is pure imaginary, [y, ] = —[¥, ¥]. In addition, for even s.a. differential
operations whose coefficients are real, we have [y, ¥] = [7, ﬂ, whence it follows
that [W, w] = 0, while for odd s.a. differential operations whose coefficients are
pure imaginary, we have [y, ] = — [7. V]

It directly follows from (4.12) that the reduction of the local form [y, v¥],
to the space of solutions of the homogeneous equation f u = 0 is independent
of x: [x,y¥], =const, if flp f)( 0. We note that for even and odd s.a.
differential operations with the respective real and pure imaginary coefficients, the
corresponding complex-conjugate functions also satisfy the homogeneous equation.
For even second-order s.a. differential operations, the form [y, ¥] coincides with the
quasi-Wronskian of the functions ¥ and ¥ up to a sign:

Wr(g,¥) = x0)y ) — )y x) = =[x, v].

Similar assertions, obviously modified, hold for solutions of the eigenvalue problem
qu = AM)L, ImA =0.
The differential Lagrange identity yields the integral Lagrange identity

B . B — 8
[ azfv- [ axfaw = v ol (4.16)

where [, f] C (a, b).

If the corresponding integrals converge on the whole interval (a, b), so that we
can set « = a and B = b in the left-hand side of (4.16), the integral Lagrange
identity is generalized to the whole interval in the form

/ ax7 ¥ — / axfr = vl = tim vl @l @

The integrals certainly exist if one of the functions is compactly supported, for
example, ¥ = ¢ € D (a,b). In this case, we evidently have [y, (p]f(x)‘i =0,
and the integral Lagrange identity becomes an equality:

b b P
/ dxyfo = / dx/ 19, Vo € D(a.b). “.18)

which is an extension of equality (4.3).
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The integral Lagrange identity makes it possible to evaluate the scalar-product-
like integrals (uﬂ, ul) = fab dxu,,uy for solutions of the eigenvalue problem, f u; =

Auy, fu, = Auy, in terms of limit values of the corresponding local sesquilinear
form®:

b o 1 »
/u dxuuy = P [uu,ul”a. (4.19)

The functions u, and/oru, may not belong to the Hilbert space L?(a,b). In this

case, by the integral fab dxu,uy, we mean the limit 111/131 ) ff dxu,uy in the
a—a,p—>

sense of distributions. The representation (4.19) can be used, and is indeed used
in the physics literature, for establishing the orthonormality relations between
(generalized) eigenfunctions of physical observables.

4.2 Some Notions on Solutions of Ordinary Differential
Equations

The theory of s.a. differential operators in L (a,b) is based on the theory of
ordinary differential equations, both homogeneous and inhomogeneous, on the
interval (a, b). We therefore remind the reader of some necessary facts from this
theory as applied to differential equations generated by s.a. differential operations
on the interval (a,b) with special emphasis on their general solutions, including
the so-called generalized solutions. As noted above, we restrict ourselves to the
case in which possible nonintegrable singularities of the coefficient functions of the
corresponding differential operations can be located only at the ends of the interval
(a,b). For simplicity’s sake, we also assume that these functions are smooth in
the interval, but the conclusions obtained within this framework are appropriately
extended to more general cases, about which we shall make some special remarks.

To make the exposition more illuminating for physicists, we present the basic
points of the theory of ordinary differential equations by considering examples of
differential equations generated by the s.a. first-order differential operation (4.6)
and the second-order differential operation (4.8), widely encountered in physical
applications. The extension to the general case is not a particular problem, and
remarks in that direction are made where appropriate.

Regarding the s.a. differential operation (4.6), the general solutions of the
corresponding homogeneous and inhomogeneous equations are obvious and well
known. This allows a complete solution of the problem of constructing an s.a.
differential operator (the momentum operator) associated with this differential
operation on different intervals; see Chap. 6.

SIn the physics literature, such integrals are called overlap integrals. The formula (4.19) that follows
implies that the overlap integrals for solutions of the eigenvalue problem are determined by the
asymptotic behavior of the eigenfunctions at the endpoints of the interval.
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We therefore turn to differential operation (4.8), which defines an ordinary
differential operator in a complex linear space of functions that are a.c. in the interval
(a, b), together with their first derivatives, the square-integrability of the functions
involved is not assumed in advance. By our facilitating convention, the potential
V is assumed to be a smooth function in the interval, which does not exclude
singular behavior of the potential at the ends of the interval. We note that from
the standpoint of constructing associated s.a. operators, this condition is actually
not too restrictive. For instance, let the potential V' (x) be not smooth, but locally
bounded with possible steplike jumps. Any such potential can be approximated
by a smooth potential Vi, such that the difference §V(x) = V (x) — Vieg (x) is
bounded. Then the operators H and ﬁreg associated with the respective differential
operations (4.8) differ from each other by the bounded s.a. multiplication operator
S/I\/ = §V (x), defined everywhere, H = I;Vreg + 8/1\/ , and therefore, they are s.a. or
non-s.a. simultaneously; in other words, any s.a. operator ﬁreg is assigned the s.a.

operator H = I-AIreg + &V with the same domain, and vice versa.
In the above-mentioned space of functions, we first examine the homogeneous
differential equation

Hu=—u"4+V(x)u=0 (4.20)
and then the inhomogeneous differential equation
Hy=—y"+Vx)y=h(x)), 4.21)

where & (x) is a locally integrable function.

It is known from the theory of ordinary differential equations that if V' (x) is
locally integrable, then (4.20) has two linearly independent solutions u; and u»,
Hu 12 = 0, that form a fundamental system, in the sense that the general solution
of (4.20) is given by

u(x) = crui(x) + coua(x), (4.22)

where ¢; and ¢, are arbitrary complex constants; these constants are fixed by initial
conditions for u and u’ at some interior point of the interval (a, b) or at its regular
endpoint. The linear independence of u; and u is equivalent to the requirement’
Wr(ul, I/tz) 7é 0.

It is evident that the fundamental system u , is defined up to a nonsingular linear
transformation. For real-valued potentials, V = V, the functions u1, can also be
chosen as real-valued. If the left endpoint a of the interval (a,b) is regular, in
particular, V' is integrable up to a, ff dx |V| < oo, B < b, then any solution (4.22)
and its first derivative have finite limits at this endpoint; see Lemma 4.5 below. The
same is true for the regular right endpoint b. In the case of singular endpoints, the

7In the case under consideration, the usual Wronskian coincides with the quasi-Wronskian.
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fundamental solutions and/or their first derivatives can have no limits, in particular,
can be infinite, at such endpoints. If the potential V' is smooth in the interval (a, b),
then any solution (4.22) is also smooth in this interval.

The general solution of the inhomogeneous equation (4.21) is given by

Y (x) = cruy (x) + cauz (x)

1 x B
+ — | (x)/ dx'ush 4 uy (x)/ dx'uih |, (4.23)
Wr(ul s I/tz) o x

where @ and B are some interior points of the interval (a,b), and ¢ and ¢, are
arbitrary constants fixed by initial conditions for y and y’ at some inner point of
the interval (a,b) or at its regular endpoint. If the left endpoint a of the interval
is regular, we can always take @« = a. This is also possible in case the endpoint a
is singular if the corresponding integral is certainly convergent, for example, if the
functions u; and & are square-integrable on the interval (a, x); the same is true for
the right endpoint b.

We now examine the question of so-called generalized solutions of the ho-
mogeneous equation (4.20), i.e., the question of functions u satisfying the linear
functional equation®

b
(u, H¢>) — / dxiiH¢ = 0, ¥ € D (a,b). (4.24)

It is evident that any ordinary solution u of the homogeneous equation (4.20) is a
generalized solution by virtue of the equality

b b R
/ dxuH¢ = / dxHup, Y¢D(a,b), (4.25)

which is a particular case of the integral Lagrange identity (4.18) with f =H
and y = u. We show that conversely, any generalized solution of the homogeneous
equation under consideration is an ordinary solution, i.e., any solution of (4.24) is
given by (4.22). We actually need a generalization of du Bois—Reymond lemma,
Lemma 2.12. We obtain this generalization on the basis of two auxiliary lemmas,
and it then becomes clear how the obtained result can be extended to differential
equations of any order.

Lemma 4.1. A function y € D (a, b) can be represented as

x=He¢, ¢ €D(a,b)

8For a smooth V, the function u in (4.24) can be considered a distribution; then the sign of the
integral in (4.24) is symbolic; however, for our purposes it is sufficient to consider u a usual
function.



4.2 Some Notions on Solutions of Ordinary Differential Equations 115

iff x is orthogonal to all solutions u of the homogeneous equation® (4.20),
b — v
(u, ) = / dxu(x)x(x) =0, Yu: Hu=0, (4.26)
a

which is equivalent to the orthogonality of the function y to a fundamental system
of solutions uy and u; of (4.20), (uy, x) = (uz, y) = 0.

Proof. Necessity immediately follows from (4.25).

Sufficiency: Let the function y € D (a,b) satisfy condition (4.26) and let
suppx < [y,6] C (a,b). We choose the particular solution ¢ of the inhomogeneous
equation I:Iq& = y given by (4.23) withc¢; = ¢, =0, = a, 8 = b,

x b
¢ (x) = m |:“1 (x)/a dx'uz y + uz (X)/X dx/ul)(i| ;

we can set « = aand B = b even if the interval (a, b) is infinite because of the
compactness of the support of the function y. Because the functions u;, iy, and
x are smooth, the function ¢ is also smooth; because of condition (4.26) and the
compactness of the support of the function y, we have ¢ = 0 for x < y and x > 6,
i.e., ¢ € D(a,b), which proves the lemma. O

Lemma 4.2. Any function ¢ € D (a, b) can be represented as follows:

p=ci@@+c(@ e+ Hep, ci (@) = (ui9), i = 1,2,

where uy and uy form a fundamental system of solutions of (4.20) and ¢y, @2, and ¢
are functions from D (a, b) such that

(i 0)) = 8ij, i,j = 1,2; (4.27)

the functions ¢ and @, can be considered fixed functions, independent of ¢.

Proof. We first prove the existence of a pair ¢;, ¢, of functions with property
(4.27). Tt is sufficient to demonstrate that there exists a pair ¢, ¢, of functions
such that the matrix 4;; = (ui, ¢ j) is nonsingular, det A # 0. Then the functions
@ = (A_l)jl. ¢, form the required pair. Let (¢, 8) be any finite interval inside the
interval (a, b). The restrictions of the fundamental system u; and u; to this interval,
i.e., u; and up, considered only for x € («, ), belong to L2 (a, B). The linear
independence of #; and u; implies that the matrix U;; = faﬂ dxu;u; is nonsingular.
Because D («, B) is dense in L? («, B), we can find some functions ¢; and ¢, from
D («, p) arbitrarily close to the respective functions u; and u, on the interval (¢, ).

9 Although u is generally not square-integrable, the symbol ( , ) for the scalar product in (4.26) is
correct because of the compactness of the support of the function y.
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It follows that the matrix 4;; = ff dxu;¢; is also arbitrarily close to the matrix U,
and therefore, the matrix A is also nonsingular. At this point, it remains to note that
the function ¢ — ¢1 (¢) @1 — ¢ (@) @, satisfies the condition of Lemma 4.1. O

We can now prove a lemma generalizing the du Bois—Reymond lemma,
Lemma 2.12.

Lemma 4.3. A locally integrable function u satisfies (4.24) iff u is smooth on (a, b)
and satisfies the homogeneous equation (4.20). This implies that any generalized
solution of the equation is a usual smooth solution.

Proof. Sufficiency immediately follows from (4.25). Necessity is proved on the
basis of Lemma 4.2. Let ¢ be an arbitrary function in D (a,b). By virtue of
Lemma 4.2, we have the representation

¢ —(u1,9) o1 — (2, 0) @ = H,

where @1, ¢, and ¢ are some functions in D (a, b) and uy, u; is a fundamental
system of solutions of (4.20). Substituting the corresponding representation of H ¢
in the left-hand side of (4.24) and rearranging the obtained expression in an obvious
way, we obtain that (V¢ € D (a, b))

(u, ﬁqb) = (u, ¢ — (u1,9) 1 — (U2, 9) ¥2)

= (u — (u, p1)uy — (u, @2)uz, €0)

B
= / dx(u — ciu; — coun)p = 0,

where ¢; = (¢;,u),i = 1,2, are constants, whence it follows that u = cyu; + cauz;
the representation (4.22) for u is a solution of (4.20). This completes the proof of
the lemma. O

We note that the above-presented method of proving the lemma on the basis of the
fundamental system of solutions of the homogeneous equation under consideration
is obviously extended to the general case of homogeneous equations generated by
differential operation (4.1) (not necessarily s.a.) with smooth coefficients.

Lemma 4.4. A locally integrable function u satisfies the equation

(u, qu) - /bdxﬁqu —0, Vo = D(a,b), (4.28)

where f is an arbitrary nth-order differential operation (4.1) with smooth coeffi-
cient functions, iff u is smooth in (a, b) and satisfies the adjoint equation f*u =0.
This implies that any generalized solution of (4.28) is an ordinary smooth solution
of the adjoint equation. It is evident that lffv is an s.a. differential operation, then u
satisfies the equation fv u=>0.
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This statement is well known in the theory of distributions [88, 140].

An obviously modified similar statement can be extended to the general differ-
ential operation (4.1) with coefficients not necessarily smooth, but satisfying the
standard conditions cited in Sect. 4.1. For even s.a. differential operations, a similar
statement formulated in terms of quasiderivatives holds under the above-mentioned
weakened conditions on the coefficient functions; see [9, 116].

This result provides a basis for evaluation of the adjoint of an initial symmetric
operator associated with a given s.a. differential operation; see below.

As is known, an ordinary differential equation of order n can be reduced to a
system of n first-order differential equations, so that any differential operation f
(4.1) is assigned a matrix differential operation of first order with n X n matrix
coefficients, and vice versa. This reduction is useful for proving the solvability of
homogeneous and inhomogeneous equations and for establishing the structure of
their general solutions. In particular, it can be shown that under standard conditions
on the coefficients, the solutions of both homogeneous, f u = 0, and inhomoge-
neous, f y = h, equations and their n — 1 derivatives, all being a.c. in the interval,
have finite boundary values at regular endpoints, or continuous up to such endpoints,
and these boundary values can be arbitrary; for the inhomogeneous equation, it is
required that its right-hand side & be locally integrable up to the regular (finite)
endpoints. Needless to say, this is true for differential equations generated by s.a.
differential operations. For differential equations generated by even s.a. differential
operations, a similar assertion holds under weakened conditions on the coefficients
with the replacement of derivatives by quasiderivatives.

After all this, the concluding remark of this section looks rather natural. The
previous consideration and all that follows is directly generalized to matrix differ-
ential operations, i.e., to differential operations with matrix coefficients, generating
systems of differential equations, both homogeneous and inhomogeneous, and
their associated differential operators in Hilbert spaces of vector functions like
L?(a,b)®---®L? (a, b), wherein vector functions are columns of square-integrable
functions. Such matrix differential operators are inherent in both nonrelativistic and
relativistic QM, describing in particular the radial motion of spinning particles, for
example, the Dirac particles; see Chaps. 9 and 10.

4.3 Natural Domain

4.3.1 General Remarks

We are now in a position to proceed to constructing s.a. differential operators in
L? (a, b) associated with s.a. differential operations (4.1) on the basis of the general
theory of s.a. extensions of symmetric operators outlined in Chap. 3.

We begin with the so-called natural domain for the s.a. differential operation f
of order n defined on an interval (a, b).
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Let D’)';(a, b) be a subspace of L? (a, b) of functions 4 a.c. in the interval (a, b)

together with their derivatives of order up to n — 1 and such that the functions f [/
are square-integrable on the interval, i.e.,

D*(a.b) = {w* Y VT acin (@, b); Vs, F € Lz(a,b)}.
(4.29)

It is evident that D;(a, b) is the largest subspace of L? (a, b) on which a differential

operator with the rule of action f can be defined: the requirement of absolute
continuity for functions Y., ¥%, .. ., ,ff'_l) in the interval (a, ) is necessary for the
expression fv V¥« to be meaningful, while the requirement that ¥, and fv ¥« belong to
L? (a, b) is necessary for the expression f Y« to define an operator in L? (a, b). We
call the domain (4.29) the natural domain for an s.a. differential operation f and let

f * denote the operator in L? (a, b) associated with this differential operation and
defined on the natural domain, so that

Dye =D (ab).

R ! (4.30)
S = fhs, YUu € D_; (a,b).

It is evident that the linear space D (a, b) of smooth functions with compact
support belongs to the natural domain, D (a,b) C D’)'; (a,b), and because D (a, b)

is dense in L? (a, b), the domain D; (a,b) is also dense in L2 (a,b), so that the

operator f * is densely defined.
A function ¥ belonging to the natural domain and its derivatives can be singular
at an endpoint of the interval unless the endpoint is regular.

Lemma 4.5. Let D;’}, (a, b) be the natural domain for an s.a. differential operation

f of order n with regular endpoints, one or both. The functions belonging to
D; (a, b) and their derivatives of order up to n — 1 have finite boundary values at

the regular endpoints, or are continuous up to these endpoints, and these boundary
values can be arbitrary. For example, let a be a regular endpoint. Then

lim P () = y®P @) <00, k=0,1,....n—1, Yys € D(a, b).
Xx—a f

For even s.a. differential operations with appropriately modified natural domain
(under weakened conditions on the coefficients), a similar assertion holds for
quasiderivatives, for example,

lim v =yH@) <o, k=0,1,....n—1, Vi, € D%(a.b).

if the endpoint a is regular.
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Proof. Any function v, € D’;(a, b) can be considered a solution of the inhomoge-
neous differential equation

F(x) = n(x), 431)

where the right-hand side 7(x) is square-integrable on (a,b) and is therefore
locally integrable up to the regular (finite) endpoints. It then remains to refer to
the behavior of solutions of inhomogeneous differential equations at regular ends;
see the penultimate paragraph of the previous section. O

As was mentioned above, in the physics literature and even in textbooks on
QM for physicists, an s.a. differential operation f is not infrequently identified
with an observable, an s.a. operator f in L?(a,b), whereas the spectrum and
eigenfunctions of this operator are searched for without any reservations about
its domain. This actually implies that by the domain of f is implicitly meant the
natural domain for f , i.e., by the observable is meant the operator f *, f = f *
it is believed that the only requirements for an observable are the requirement of
square-integrability for its eigenfunctions of bound states and the requirement of
local square-integrability and “normalizability to §-function” for its (generalized)
eigenfunctions of continuous spectrum. This proves to be sufficient sometimes,
but generally, this is not the case; see the paradoxes in Chap. 1 and the following
chapters.

Therefore, the question we try to answer first is whether the operator f *(4.30)
associated with an s.a. operation f and defined on the natural domain is really s.a.
In general, to answer this question is not a simple task. A simpler preliminary task
is to check the symmetricity of f *, which is a necessary condition for its self-
adjointness. We note that in the physics literature, symmetricity is not infrequently
identified with self-adjointness, which is wrong for unbounded operators. But for the
operator f *, as we will see below, its symmetricity implies its self-adjointness be-
cause it is the adjoint of a symmetric operator. The general theory of s.a. extensions
of symmetric operators, see Chap. 3, suggests that studies on possible symmetricity,
and then self-adjointness, of the operator f *, or its restrictions, are conveniently
carried out in terms of the asymmetry forms (3.9) and (3.10) for the operator f *.
These forms are completely similar to the asymmetry forms for the adjoint of
a symmetric operator'® introduced in Sect.3.2. The sesquilinear asymmetry form
w ¢+ and the quadratic asymmetry form A ¢« are defined respectively by

b . b _
wf*(x*,w*)=/ dXﬁfl/f*—/ dx fretre, Vite e € D5(a,b), (432)

a

19The more so, since f* proves to be the adjoint of a symmetric operator; see below.
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and
b b _
apwa = [ 0 fua = [ e v v e Di@h. @33)
a a
where the form A ¢« is a reduction of the form w s+ to the diagonal y. = V.

The forms w s+ and Ay« determine each other; the arguments are similar to those
in Sect.3.2; we use both for cor}venience. Each of these forms is a measure of
asymmetricity of the operator f™*: if the asymmetry forms are trivial, i.e., are
identically zero, the operator f * is symmetric, and vice versa. It is essential that
the values of the asymmetry forms for the differential operator f * are determined'!
by the asymptotic behavior of functions belonging to D* (a b) at the endpoints a

and b of the interval. Namely, the forms w s+ and A s« are expressed in terms of the
boundary values of the respective local sesquilinear form [y, w*]f (4.13), (4.14)
and the local quadratic form [, w*]f, the reduction of the local sesquilinear form
to the diagonal y« = ¥«. Indeed, according to definition (4.32) and to the integral
Lagrange identity (4.17), we have

s (o Vx) =[x Yl (x)i:, Vs Vs € D;(ﬁhb)’ (4.34)

where by definition,
[x W*]f (a/b) = XEIL?/}) (X W*]f (x). (4.35)

Each of the boundary values (4.35) exists by itself because of the existence of
the integrals on the right-hand side of (4.32). We note that their existence does not
imply that the functions belonging to D% (a b) and their (quasi)derivatives have

finite boundary values at the endpoints of the interval, unless the endpoints are
regular.
For the quadratic asymmetry form, we similarly have

Apx (Ys) = [Vs. U f

. VY € D}a.b), (4.36)

where

[V, W*]f (a/b) = xl_i)gl/b [V, W*]f (x). (4.37)

It is natural to call the boundary values (4.35) and (4.37) of the local forms
the boundary forms, respectively the sesquilinear boundary form and quadratic
boundary form. It is also natural to distinguish the left and right boundary forms
defined on the respective left, a, and right, b, endpoints of the interval. It is
significant that the left and right boundary forms are independent in the following

T As for any differential operator associated with an s.a. differential operation.
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sense. Let us evaluate the left form [y, W*]f (a) for some functions y«, Vs €
D;’},(a, b). For any function y., we can find a function yx € D’)'; coinciding with

¥+ near the left endpoint ¢ and vanishing near the right endpoint b, more exactly,
T« = pxoa <x <a<bandys« =0, < B < x < b. For differential operations
satisfying the standard conditions on the coefficients,'? such a function can be
obtained by multiplying y. by a steplike smooth function 6 (x) equal to unity near
x = a and zero near x = b. Accordingly, we have [x, Vil (@) =[x ¥l f (@),
whereas [f«, V4] 7 () = 0. A similar argument holds for the right endpoint b.
It follows that the condition for triviality of the asymmetry form w/=, i.e., the
condition for its identically vanishing w /= (x«, ¥x) = 0, ¥V xx, ¥« € D’;(a, b),
is equivalent to the condition for triviality of each of the left and right boundary
forms (4.35) by itself, i.e., to the boundary conditions [x«,¥«], (a/b) = O,
Vs, xx € D;},(a, b). This assertion is evidently extended to the boundary forms

[V, ¥«] (a/b): the condition Ay« (Yx) = 0, Vi € D;’},(a, b) is equivalent to the
boundary conditions [V«, ¥«] s (a/b) = 0, Vs € D;(a, b).

We thus obtain that an answer to the question whether the operator f * s
symmetric (and consequently, s.a.), is determined by the respective triviality or
nontriviality of the boundary forms, both left and right, i.e., by whether these forms
vanish identically on D;(a, b). We briefly discuss a possible way to answer this

question. For definiteness, we examine the boundary forms [V«, V]  (a/b). As
was mentioned above, the natural domain D;(a, b) can be defined as the subspace

of square-integrable solutions ¥/, of the differential equations (4.31). Therefore, we
can evaluate the boundary forms [y, ¥«] » (a/b) by establishing the asymptotic
behavior of the general solution ¥« of (4.31) at the endpoints a and b of the interval
under the subsidiary condition that ¥, be square-integrable on (a, b), i.e., at the
endpoints. If we can prove that the boundary forms [, V], (a/b) are trivial,

we thus prove that the operator f * is symmetric, and consequently s.a. What is
more, we show below that in such a case, the operator f * defined on the natural
domain is a unique s.a. operator associated with an s.a. differential operation f .
But if we can indicate at least one function ¥, € D}(a, b) such that, for instance,

[V, ¥](a) # 0, we prove that the operator f * is not symmetric and a fortiori is
not s.a.

In the general case, the triviality or nontriviality of the boundary forms [/, ¥« ]
(a/b) depends on the type of the interval, whether it is infinite or finite, and on
the behavior of the coefficients of f at the endpoints of the interval, in particular,
on whether the endpoints are regular or singular. We illustrate possible situations
by the simple examples of s.a. second-order differential operations H (4.7) and H
(4.8).

2For even differential expressions with the coefficients satisfying the weakened conditions, the
existence of the functions y with the required properties can also be proved [9, 116].
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We first examine the s.a. differential operation H = — d 2 on the whole real axis
R. The natural domain D:Z (R) for this operation is, see (4.29),

DX (R) = (Vi : Y, ¥ ac.inR; ¥, ¥ € LA(R)} .

By Lemma 2.14, the condition ¥/, € D;’}L(R) implies that ¥ (x), ¥, (x) ‘x‘::o 0,

and consequently, the quadratic local form [/, Vx| = — (VWL —VL ¥4), vanishes
as |x| — oo. We thus obtain that the boundary forms [V, ¥«]% (00/ — 00)
are trivial, which means that the operator 7TL* defined on the natural domain is
symmetric and consequently is s.a., and is a unique s.a. operator associated with the
s.a. differential operation H on the whole real axis. From the physical standpoint,
this means that there is a unique s.a. Hamiltonian for a free nonrelativistic particle
moving along the real axis.

4.3.2 Physical Examples

We now examine the s.a. differential operation
H=—d>+V(x), V(x) #0,

on the real axis. We first note that the formal expressions for the corresponding
local forms for H and H are the same, see (4.15), and therefore, the boundary
forms for H*and H* can differ only because of the difference of the respective
natural domains, namely, the difference in the behavior of the functions belonging
respectively to D:Z(R) and DZ (R) at the boundaries, here at +oc0.

If the potential V(x) is a uniformly bounded function on the whole axis, the
conditions ¥ € L*(R) and —y + vy e L?(R) are equivalent, which implies
that the natural domains for 7/ and for H are the same, D* R) = D* (R), and

consequently, the boundary forms for #* and for H* are the same, i.c., the boundary
forms for H* are trivial as well as those for 7*. This means that the operator H*
is a unique s.a. operator in Lz(R) associated with the s.a. differential operation H
if the potential V' is bounded.'® From the physical standpoint, this means that there
is a unique s.a. Hamiltonian for a nonrelativistic particle moving along the real axis
in a bounded potential field.

If the potential V(x) is only locally bounded, the self-adjointness or non-self-
adjointness of the operator H* is determined by the behavior of the potential at
infinity. It seems useful to illustrate possible situations in advance. We show in

13 Another way to make sure that this is correct is to note that H* =H* +V, where V = Vi(x)
is a bounded operator defined everywhere.
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Chap. 7 that if the potential at infinity is bounded from below by a falling quadratic
parabola, i.e., V(x) > —Kx?, K > 0,as x — Zo0, then the boundary forms for the
operator H* are trivial, which means that H* is a unique s.a. operator associated
with H. For example, V(x) = kx?/2 evidently satisfies this criterion, and we
conclude that the well-known textbook Hamiltonian H for a harmonic oscillator
that is associated with the s.a. differential operation H=—d 2+ kx?/21is uniquely
defined as the operator H* with the natural domain D1*§ (R). But if the potential

falls at infinity more rapidly than —Kx? with an arbitrary K > 0 (of course,
such a potential is rather exotic), the situation changes radically. For example, let
V(x) = —x*, so that we deal with the s.a. differential operation H=—d f —x*
Let ¢(x) be a smooth function exponentially decreasing as x — —oo and such
that ¢ = x'exp (ix3/3) x > N > 0. It is easy to verify that ¢ € D* (R)
and [p,¢]y (x) = —2i for x > N, but this means that the right boundary
form [V, ¥«]m (00) is nontrivial, and consequently, the operator H* defined on
the natural domain is not symmetric, a fortiori s.a., and cannot be considered a
QM Hamiltonian for a particle moving along the real axis in the potential field
V(x) = —x*. A correct Hamiltonian in this case requires a refined definition; such
a definition is possible, although it is not unique; see Sect. 7.3.

If at least one of the endpoints of the interval (a, b) is finite (a semiaxis or a finite
interval), the self-adjointness of the operator H* crucially depends on the behavior
of the potential at finite endpoints. Let the left endpoint a be regular. Then by
Lemma 4.5, the functions ¥ € DZ’I (a, b) and their derivatives v/}, can take arbitrary
values at this endpoint, which implies that the left boundary form [V, Y]y (@) is
nontrivial, and therefore, the operator H* is not s.a. for any potential V, including
V = 0. Again, a correct definition of an s.a. Hamiltonian in this case is possible,
but is not unique, see Chaps. 7-9.

An important remark concerning QM is in order. In physics, differential op-
erations'* similar to (4.8) on the positive semiaxis are usually of three- or two-
dimensional origin. Their standard sources are the problems of a QM description of
a spatial motion of a particle in spherically symmetric or axially symmetric fields.

Let us consider a spinless particle in a spherically symmetric field V(r), r = |r|,
where r is the three-dimensional position vector of the particle. Quantum states of
such a particle are described by the wave functions ¥ (r) € L?(R?), and its motion is
governed by a Hamiltonian associated with the differential operation (in appropriate
units) H = —A + V(r), where A is the Laplacian. The problem of correctly
describing the motion that incorporates correctly defining an s.a. Hamiltonian and
finding its stationary states is usually solved by separating variables in the spherical
coordinates r, 6, ¢, i.e., by passing from the three-dimensional wave function ¥ (r)
to the spherical partial waves: Y/(r) = > o, an:_[(Zl + Dupn (r)Y;,(6, ),
where Y}, are spherical harmonics. The partial waves uy,, ()Y, (6, ¢) describe
the motion of the particle with certain values [ and m of the respective angular

14“Hamiltonians” in the language of physics.
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momentum and its z-projection. For each partial wave, the total Hamiltonian is
reduced to the so-called radial Hamiltonian, which governs the radial motion of
the particle.!> The radial states are conveniently described in terms of the radial
wave functions v, (r) € L*(R4 ), which differ from the partial amplitudes u;,, (r)
by the factor r, Y1, (r) = rui,(r). The radial Hamiltonians are then associated
with the differential operations H, of the form (4. ), H = —d? + Vi(r), where
the partial potential V;(r) is given by Vi(r) = V(r) + (Il + l)r_2 and contains
the so-called centrifugal term /(I + 1)r~2 independent of m. If the initial three-
dimensional potential V(r) is nonsingular or has some admissible singularity at
the origin (for a more exact definition of an admissible singularity, see [56]; in
particular, the Coulomb singularity 1/r is admissible), the natural domain for the
three-dimensional H consists of functions V¥« (r) sufficiently regular at the origin
such that the partial amplitudes u;,, (r) are finite at » = 0, and therefore, the radial
wave functions vy, (r) must vanish at r = 0. This means that the natural domain
D;?, (R4) for H; must be additionally restricted with the boundary condition

¥1m(0) = 0. This boundary condition for the radial eigenfunctions is well known
to physicists; in fact, it is essential only for s-waves, / = 0, because for / # 0, it
holds automatically. By virtue of these conditions, the left boundary form is trivial
on D}';[ (R4). If the behavior of the potential at +o00 is not exotic, for example,
if V.(r) — 0asr — oo, the right boundary form is also trivial. Therefore, the
operator H; associated with the differential operation H; and defined on the domain
D;‘;l (R4) is s.a. and can be considered the radial Hamiltonian in accordance with
textbooks.

This analysis is extended to the case in which the potential V(r) is strongly
singular and positive at the origin. But it fails if the potential is strongly singular
and negative at the origin, for example, if V = a/r?, a < —1/4or V = a/rf,
a < 0,8 > 2asr — 0;in such cases, the so-called “a fall to the center” occurs,
see [5,21,118,123,151]. Again, s.a. Hamiltonians can be defined in these cases, but
not uniquely.'®

A completely similar analysis can be carried out for a particle in an axially
symmetric field V' (p), where p = |x| and x is the two-dimensional position vector of
the particle in the plane perpendicular to the symmetry axis. After separating the free
motion along the symmetry axis, the problem is reduced to a description of a two-
dimensional motion in the perpendicular plane. It is usually solved by separating the
polar coordinates p, ¢ in the form ¥ (x) = Y, o um(p) exp(im¢), where the axial
partial waves u,, (p) exp(img), m € Z, describe the states of the particle with certain
values m of the angular-momentum projection. If we describe the radial states in
terms of the wave functions ¥,,(p) = p"?un(p) € L*(Ry), which differ from
the initial partial waves u,,(p) by the factor p'/2, then the radial Hamiltonians are

15We mean the reductions of the total Hamiltonian to the subspaces of partial waves with fixed /
and m.

18Curiously, in these cases, we have ;,,(r) — 0 as r — 0, but wl/m (r) = oo.
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associated with the differential operations H, = —d g ~+ Vi (p), where the partial
potentials are given by V,, (p) = V (p) + m?p~2 and contain the centrifugal term
m?p~2. It is evident that all we have said concerning the radial Hamiltonians of the
spherically symmetric problem is extended to these radial Hamiltonians.

If both endpoints of the interval (a, b) are regular, the operator H* associated
with (4.8) is certainly not s.a. for any V', because both the left and the right boundary
forms are nontrivial. Consequently, this operator cannot be considered a correctly
defined s.a. QM Hamiltonian for a particle moving on a finite interval of the real
axis, a Hamiltonian that provides a unitary evolution. In particular, this statement
holds for the operator H* associated with (4.7). That is, an s.a. Hamiltonian for a
free particle on a finite interval cannot be defined on the natural domain.

Let us consider the one-dimensional Schrédinger equation on the interval (a, b)
with a Hamiltonian H. As a consequence of this equation, we have

P b
o | wPax =—iau ) = —itv 9l L

The physical interpretation is evident: the quadratic boundary form coincides, up to
a constant factor, with the probability flux through the corresponding endpoint, and
the nontriviality of the boundary forms implies that the particle can escape or enter
the interval through its endpoints, which would imply the nonunitarity of evolution.
Sometimes, a similar interpretation is possible in three-dimensional cases.

We usually ensure the self-adjointness of a QM Hamiltonian for a free particle
on a finite interval with additional boundary conditions on the wave functions,
conditions that provide the vanishing of the corresponding asymmetry form; such
boundary conditions are called s.a. boundary conditions; see, e.g., [11]. The
most familiar s.a. boundary conditions are the zero boundary conditions ¥ (a) =
¥(b) = 0, which correspond to a particle in an “infinite potential well,” and the
periodic boundary conditions ¥ (a) = ¥ (b), ¥'(a) = ¥’ (b), which correspond to
“quantization in a box” customarily used in quantum-statistical physics.

4.3.3 Operators of Multiplication

4.3.3.1 Self-adjoint Operator of Multiplication by a Function

The simplest examples of s.a. operators that are s.a. when defined on natural
domains are multiplication operators first mentioned in Sect.2.3.4. Let all the
coefficient functions in representation (4.1) for the general differential operation be
zero except the lowest one, fx (x) =0,k = 1,...,n,while fo(x) =V (x) # 0, s0
that we deal with the operation f = V, Vy/(x) = V (x) ¥ (x), of multiplication by
a function; according to our terminology, see Sect. 4.1, this is a differential operation
of order zero. For simplicity, we assume that V' (x) is a locally square-integrable
function in the interval (a,b) (and as a consequence, is locally integrable). This



126 4 Differential Operators

requirement can be essentially weakened; see below. If V' (x) = x then V =X,
X¥(x) = xv¥(x), is called the operation of multiplication by the independent
variable x.

We consider the operator V associated with the operation V and defined on its
natural domain by!”

o § Py =Dy @h) = v .V @y € L b}
Vv =V K.

The following assertions hold.

Proposition 4.6. If the function V (x) is real, V (x) = V (x), then the operator 1%
is s.a.

Proof. First of all, it is evident that the operator V is densely defined, Dy =
L?(a,b), because D(a, b) C Dy.Itis easy to verify that Visa symmetric operator.
Its adjoint Vs also easily calculated. The corresponding defining equation (2.24)
for the pairs of functions ¥ € Dy+ C L (a,b) andp = V1. € L2 (a,b) is

b b
/ T2 OV OV (x) = / OV (). Yy € Dy, (438)

We rewrite (4.38) as

b
/ X1 — Vv Y (x) = 0. Yy € Dy.

which is a linear equation for the function 7n(x) — V(x)¥«(x). Because the
functions 7, V, and ¥, are locally square-integrable, the function n — Vi, is
locally integrable as well as 1 and V. It then follows from a generalization of
Lemma 2.7 (see Remark 2.11) that n(x) — V(x)¥«(x) = 0 almost everywhere,
or n(x) = V+w*(x) = V(x)¥«(x), which implies that V*+ C V. The inverse
inclusion V' € V7 is evident, which means that ¥+ = V. In conclusion, we note
that the condition of local square-integrability can be weakened to the condition that
V(x) be finite almost everywhere and measurable [125, 130]. O

Proposition4.7. Let [V(x)| = C, C > 0, Vx € (a,b). Then V is a bounded
operator in L*(a,b) defined everywhere, and ||V | < C, which directly follows
from the inequality

b
vyl :/ dx|V(x)|2|w|2§C2/ dx|[y > = C*|yI’, Y¥ € L*(a,b).

a a

17In fact, this is the operator V* associated with the operation V = V (x). For simplicity, we do
not write here the superscript *.
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As a consequence, if V(x) is real and |V (x)| < C, then V is a bounded s.a.
operator defined on all of L?(a, b).

4.3.3.2 Self-adjoint Operator of Multiplication by an Independent
Variable

Let V (x) = x, i.e.,, we consider the operation V = X of multiplication by an
independent variable. The associated operator X defined on the natural domain
D, = Di(a,b) € L?(a,b) of ¥ is called the operator of multiplication by an
independeJnt variable.

I. Let (a,b) = R. According to item (a) of Sect.4.3.3.1, the operator X defined
by
% DxZD;(R)Z{WHﬂ,XIPGLZ(R)},
XY (x) = xy(x),

is s.a.
The following assertions hold for this operator.

(a) The operator X is unbounded and cannot be defined on the whole Hilbert
space, i.e., D, # L*(R), although D, = L*(R).
Indeed, let {y,(x) € L?>(R), a € Ry} be a set of functions parameter-
ized by a parameter @ € R, where

_ | ¥4ex), x =0, (L4 )
Yo (x) = { 0. x <0, , Yia(x) = W’

Vel =1 = ¥ € L*(R), Vo € R
For these functions, we have

1 /°° x*dx 1
20+a) Jo (14 x)32  da(l + 20)(1 + a)?’
I8Vall = & 2/2 4+ O(1) as & — 0.

S 12
1XYal” =

Because the norms of the vectors Xy, become arbitrarily large as « — 0,
the operator X is unbounded. Moreover, X is not defined on some vectors
¥ € L?(R), e.g., on the vector ¥y, which proves that D, # L?*(R).

(b) The operator X has no eigenvalues and eigenfunctions, and spec * = R.

Indeed, the eigenvalue problem for the s.a. operator X is formulated as the
equation

(X - =(x-DEMx) =0 (4.39)
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for a number A € R and a function £(x) € L? (R). By virtue of this equation,
the function & (x) differs from zero at only one point x = A, which implies that
this function belongs to the equivalence class of the zero function in L? (R);
see Chap. 2. This means that (4.39) with any real A has no nontrivial solutions
in L? (R), i.e.,no A € R can be an eigenvalue of %.

It remains to prove that any A € R is a spectrum point of X. Assume the
contrary: let Ao € R, and let A & spec X. This means that A is a regular point
of X, and in particular, the equation

(X =20)E(x) = (x = A0)§(x) = n(x) (4.40)
has a solution § € L?(R) for any n € L?(R). Let

L x =2 =1,
n(x) = % 0, |x — Ao| > 1.
Because the homogeneous equation (4.39) has only trivial solutions, (4.40) has
a unique solution,

_ =27 x =R =1,
s = { 0. v — Aol > 1,
which is not square-integrable on R. This contradiction proves that spec X = R.
Let (a,b) = R.. Similarly to the previous case, it is easy to prove that:

(a) The operator X defined on the natural domain D (R ) is an s.a. unbounded
operator.

(b) The operator X has no eigenvalues and eigenfunctions.

(c) spec X = Ry.

Regarding item (c), we have only to verify that all A < 0 are regular points of .
Indeed, a unique solution of (4.40) with any A < 0is £(x) = (x + |A])"'n(x),
so that £ (x) € L*(Ry) for any n(x) € L*(R+) and [I£]| < [A[™" [|n]].

Let (a, b) be a finite interval [0, []. Similarly to the previous cases, it is easy to
prove that:

(a) The operator £ defined everywhere is a bounded s.a. operator in L2 (0,/)
and its norm is equal to /, || X|| = / (in the case of an arbitrary finite interval
[a, b], we have || x| = max(|a]|, b)).

(b) The operator X has no eigenvalues and eigenfunctions.

(c) spec x = [0,1].

Regarding item (a), we have only to prove that ||X|| = /. Because |x| < [, we
have ||| <[ according to item (b) in Sect. 4.3.3.1. Let {£, (x)}$° be a sequence
of functions belonging to L*(0,1), where
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0,0<x<l—n"",
5n(x) = {nl/Z, I—nt<x<l,

€1l = 1.

It is easy to verify that

I
X&) = n/l 1 x2dx > (I —n™ 12,
-

-1

so that we have the estimate [ — n™' < ||x§,| < /. Taking the limit n — oo, we

obtain that || x| = /.

4.4 Initial Symmetric Operator and Its Adjoint

Because the operator f * associated with a given s.a. differential operation f and
defined on the natural domain D;(a, b) is generally not s.a., we turn to the canonical

methods for constructing s.a. operators associated with f . To facilitate an exposition
in some places, basic constructions are illustrated by the examples of differential
operations with smooth coefficients. But all the main results are extended, with
natural modifications, to the general case of nonsmooth coefficients under the above-
mentioned conditions, which is indicated where appropriate or even formulated
explicitly.

We start with the so-called initial symmetric operator f associated with f and
defined on a certain domain D s C D;’},(a, b) that must be dense in L?(a,b) and

ensure the symmetricity of f . If the coefficient functions of f are smooth in the
interval (a, b), the subspace D (a, b) of compactly supported smooth functions is
convenient (and natural) to take for D ¢, so that the initial symmetric operator is
defined by
~ VD Dp = D (a,b),
fo=f¢. Yo eDa,b).

The definition is correct because f ¢ €Da,b)C Lz(a b) and both conditions for
symmetricity of f see Sect.2.7.1, are fulfilled: f is densely defined, D (a,b) =
L? (a, b) by Theorem 2.6, and (2.29) coincides with (4.3), which manifests the self-
adjointness of the differential operation fv .

In some sense, the operator f is a minimum densely defined operator associated
with f ; other associated operators that follow are its extensions. In the case of
the general s.a. differential operation (4.1), we can take the same f (4.41) for the
initial symmetric operator; moreover, we believe that the domain of any operator
associated with f must contain the subspace of compactly supported smooth
functions. We emphasize that the initial symmetric operator f is only symmetric,

(4.41)
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but not s.a., because its adjoint f T is generally a nontrivial extension of f ; it is not
even closed, f C f ,D(a,b) C DT; see below.

The second step consists in evaluating the operator f *, the adjoint of the initial
symmetric operator f, by solving the defining equation (2.24), which in our case
becomes'®

b b
/ XV fop = / dxTig. Vo € D (a.b). 4.42)

an equation for pairs of functions ¥, € L2(a.b) and n = f . € L2(a,b).

Theorem 4.8. The operator f+ coincides with the operator f* defined by (4.30),
f+ = f* In particular, its domain D ;+ is the natural domain D* (a,b). In other

words, a pair of functions Y« € L? (a,b) andn € L*(a,b) isa solutlon of defining
equation (4.42) iff ¥« € Df,(a b)andn = fw*

Proof. Sufficiency is evident because of the integral Lagrange identity (4.18) with
X = VY. Necessity is proved as follows. Let a pair ¥«, 1 € L? (a, b) be a solution
of (4 42), and let a function W* be a certain solution of the inhomogeneous equation
f w* = 7. Such a function, a.c. in the interval (a,b) together with its n — 1
derivatives, indeed exists, because the square-integrability of n implies its local
integrability. We therefore can represent the right-hand side of defining equation
(4.42) as

/abdxw =LbdeJ*¢ =/abdXEf<p,

using the same Lagrange identity, which reduces the defining equation to

b
/ dxufe =0, u=v«— vV« Yo € D(a,b),

the equation for the function u. By Lemma 4.4, the function u is an ordinary smooth
solution of the homogeneous equation f u = 0. We thus obtain the representation
Yy = %k + u for the function v, where the properties of summands FJ* and u
allow the conclusion that v, is a.c. in the interval (a, b) together with its n — 1
derivatives and n = f ¥+, which completes the proof of the theorem. O

As was mentioned above, this theorem is extended to the initial symmetric
operator associated with the general s.a. differential operation (4.1) with coefficients
satisfying the standard conditions.

For even s.a. differential operations, the conditions on the coefficients can be
weakened to the conditions of absolute continuity for quasiderivatives; see [9, 116].

181t appears convenient to replace £ in (2.24) by ¥4, see immediately below, while £ is naturally
replaced with .
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Now we present a generalization of Theorem 4.8 for the case of non-s.a.
differential operations.

Theorem 4.9. Let f be a general differential operation (4.1), let f be the
corresponding initial operator defined by (4.41), and let f* be a differential
operator associated with fv * and defined on the natural domain D’)'},* (a,b) as
f*l//* = f*w*, Vs € D;* (a,b). Then the operator f* coincides with the
adjoint f+, ie., f* = f+.

The proof of Theorem 4.9 is completely similar to the proof of Theorem 4.8.

From this point on, we return to s.a. operations f By virtue of Theorem 4.8, the
asymmetry forms s+ and A ,+ for the operator f A+ coincide with the asymmetry
forms wys+ (4.32) and Ay« (4.33) introduced above and allow the respective
representations (4.34) and (4.36) in terms of the respective boundary forms (4.35)
and (4.37). According to the general theory of symmetric operators, see Sect. 3.2, if
the adjoint operator f T is symmetric, which is equivalent in our case to the triviality
of the boundary forms (4.35) and (4.37), then this operator is automatically s.a.,
which implies that the initial symmetric operator f is essentially s.a., and its unique
s.a. extension ﬁ is its closure coinciding with its adjoint, ﬁ = f = f t = f *,
This justifies our preliminary assertions made in advance in the previous section and
related to the operator f * defined on the natural domain.

If the adjoint operator f * is not symmetric, which is what occurs in the general
case, in particular, in the case of regular endpoints, we must proceed to the next steps
of the general program for constructing s.a. operators as s.a. extensions of the initial
symmetric operator f or equivalently, s.a. restrictions of the adjoint operator!® f +

The next step is an evaluation of the deficient subspaces and the deficiency
indices of the initial symmetric operator f ; see the beginning of Sect.3.1 and
Sect. 3.5.

An important remark is in order. In the mathematical literature, there is a
tradition to choose z = i and z = —i (we remind the reader that all z € C4 or
z € C_ are equivalent) because all the variables are conventionally assumed to
be dimensionless. But in physics, an initial symmetric operator f and its adjoint
f + are usually assigned a certain dimension,?’ the dimension of the generating
differential operation f . It is therefore natural to choose z = ki and 7 = —«i, where
k is an arbitrary, but fixed, constant parameter of the corresponding dimension. It
may happen that a differential operation f , as well as a parent classical theory, does
not contain any scale parameter. However, in constructing a physical observable as

9Tn particular, the above-discussed additional boundary conditions on the wave functions belong-
ing to the domain of the Hamiltonian A, which are justified by physical arguments, actually define
s.a. restrictions of the non-s.a. operator HA* defined on the natural domain.

20In conventional units, a certain degree of length or momentum (or energy).
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an s.a. extension of an initial symmetric operator f , the dimensional parameter «
can enter a quantum theory and acquire a physical meaning of a scale parameter,
violating the scale invariance of the classical theory.

For convenience, we change notation?! and let D and D_ denote the respective
deficient subspaces N_j, and Rj. and accordingly let {4 and ¥_ denote the
functions belonging to the respective deficient subspaces D4 and D_, so that the
deficient subspaces and the deficiency indices of an initial symmetric operator f are
now defined by

Dy = {wi Y€ D5 (b), fye = iiwi}, my =dimDy.  (4.43)
In this notation, first von Neumann formulas (3.5) and (3.6) become
D+ = D; (a,b) = D7+ D+ D_ (4.44)

and
Ve =¥ + V4 + 9,

while von Neumann formulas (3.18) and (3.19) for the respective sesquilinear
asymmetry form w,+ and quadratic asymmetry form A ,+, which are nontrivial
only on the sum D + D_ of the deficient subspaces, become

W r+ s ¥e) = 21k [+, ¥4) — (=, ¥-)] (4.45)

and

Ape () = 2ic (0417 = IY-17) -

Evaluating the deficient subspaces D4 is equivalent to finding the systems
{V+k }’lni of all linearly independent square-integrable solutions of the respective
homogeneous linear differential equations?

( f¥ i/c) Ve = 0. (4.46)

We also need to fix somehow the orthonormalized basis functions {e4 x }’1"jE in Dy
by applying the standard procedure of orthogonalization to the systems® {1 x }:ﬂi ,
so that for any Y+ € D4, the representations

2I'We are following here a recent convention in the physics literature.
22In general, these sysyems are subsystems of the respective fundamental systems of solutions of
(4.46), because the fundamental systems can contain non-square-integrable solutions.

21t is not obligatory to normalize the basis functions to unity; it is sufficient that their norms be
the same.



4.4 Initial Symmetric Operator and Its Adjoint 133

g
Yo=Y cxkeri ferp = Fikerr, (exr.exr) =S,

k=1
crk = (exk. Y1), kI =1,....mx, (4.47)

hold.

This stage is the most laborious in the general case. It requires a certain expe-
rience in solving differential equations, including the theory of special functions;
the particular features of a specific problem manifest themselves exactly at this
stage. But there are several useful assertions relating to possible values of deficiency
indices and requiring no specific calculations; we elaborate on them.

We first note that the deficiency indices m 4+ of a symmetric differential operator
f of order n associated with an s.a. differential operation f of order n are always
finite and do not exceed n. Indeed, the fundamental system of solutions of each
of the homogeneous differential equations (4.46) contains exactly n functions; the
additional requirement of their square-integrability may only decrease this number,
so that in the general case, we have the restriction 0 < m4 < n.

As follows from the equality f t = f * and the discussion of the operator f *
carried out in the previous subsection, the deficiency indices of the initial symmetric
operator f depend on the type of the endpoints of an interval under consideration,
whether they are regular or singular. If an endpoint is regular, the general solution of
each equation from the set (4.46) is square-integrable at this endpoint by Lemma 4.5;
therefore, the square-integrability of the functions ¥4 is determined by their square-
integrability at singular endpoints.

Let an interval (a, b) be finite, and let f be an arbitrary s.a. differential operation
of order n on this interval. If f is regular, i.e., both endpoints of the interval are
regular, then my = n for the associated initial symmetric operator f . According
to the main theorem, Theorem 3.4, there exists an nz-parameter U (n) family of
s.a. operators associated with a given s.a. differential operation f in this case. For
example (see Chap. 6), the differential operation p (4.6) on a finite interval generates
a one-parameter U(1) family of s.a. operators, each of which can be considered the
QM momentum operator for a particle moving along a finite interval of the real
axis. The differential operation H (4.7) generates a four-parameter U(2) family
of s.a. operators, each of which can be adopted as the QM energy operator for a
free particle moving along a finite interval, and the same holds for the differential
operation H (4.8) if the potential V(x) is integrable at both endpoints and therefore
preserves the regularity of the endpoints. We thus obtain that for a particle moving
along a finite interval of the real axis, the well-known s.a. differential operations
(4.6)—(4.8) with a regular V' do not define the corresponding QM observables in
a unique way; each of the observables needs an additional specification. In what
follows, we show that this specification is achieved by means of s.a. boundary
conditions on the wave functions belonging to the domain of the observable, which
was already mentioned at the end of the previous section. An optimistic remark
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in conclusion is that in the regular case, s.a. operators associated with any s.a.
differential operation of any order do in fact exist.

If one or both endpoints of the interval are singular, the situation is not so
optimistic in the general case. In particular, it is different for even s.a. differential
operations with real coefficients, for odd differential operations with pure imaginary
coefficients, and for mixed differential operations.

We dwell on initial differential symmetric operators associated with even s.a.
differential operations; see [9, 116]. For brevity, we call them even symmetric
operators. The deficiency indices of any even symmetric operator f are equal,
my = m, irrespective of the type of the endpoints of the interval. Indeed, because
the coefficients of f are real, any square-integrable solution v of the first of (4.46)
is assigned a square-integrable solution ¥_ = ¥, of the second equation, whereas
the linear independence of solutions is preserved under complex conjugation. In
particular, for basis functions et in D4, defined by (4.47), we can choose
complex-conjugate functions such that e_; = e;x, k = 1,...,m. Therefore, any
even s.a. differential operation generates at least one s.a. operator in L?(a, b), in
contrast to odd s.a. differential operations; see an example of a first-order differential
operation p in Chap.6. In particular, for any interval (a, b), the Hamiltonian of
a nonrelativistic particle associated with the differential operation H (4.8) can be
defined as an s.a. operator for any potential V', perhaps not uniquely.

Two other useful assertions about the deficiency indices of even symmetric
operators are based on the notion of the dimension of a linear space modulo its
subspace and on the boundary properties of the functions belonging to the domain of
the closure of an even symmetric operator at regular endpoints. In addition, we need
(3.5) from the first von Neumann theorem, Theorem 3.1, and item (ii) in Remark 3.3
concerning a relationship between the deficiency indices of a symmetric operator
and its symmetric extension.

We first remind the reader of the notion of a linear factor space. Let L be a linear
space, and let M be one of its subspaces, M C L. By definition, the factor space
L /M (or the space L modulo the subspace M) is the linear space whose vectors are
equivalence classes of vectors in L generated by the following equivalence relation:
two vectors § € L and € L are considered equivalent if their difference belongs to
M, & —n € M. The dimension of the factor space L /M is denoted by dimy, L and
is called the dimension of L modulo M. Linearly independent vectors &, ..., & €
L are called linearly independent modulo M if no nontrivial linear combination
Zf;l c;i& belongs to M. If dimy; L = n, then the maximum number of vectors
belonging to L and linearly independent modulo M is equal to n, so that k < n.
Let L be a direct sum of two of its subspaces L; and L,, L = L; + L,. Then
its dimension is the sum of the dimensions of these subspaces, dim L = dim L +
dim L,, whereas dim;, L = dim L, and dim;, L = dim L;.

Information about the boundary properties of functions belonging to the domain
of the closure of an even symmetric operator at a regular endpoint is preliminary;
the closures of differential symmetric operators are discussed in detail in the next

section. Let f be an even symmetric operator of order n and let f be its closure
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with domain D~. It turns out that the functions belonging to D vanish at regular
endpoints together with their n — 1 quasiderivatives; for example, if the left endpoint
a is regular, then ¥ € D implies that w[k] (a)=0,k=0,...,n—1.

After these short digressions, we return to the deﬁ01ency indices of even
symmetric operators in the case that at least one of the endpoints of the interval
is singular.

We have the following theorem:

Theorem 4.10. Let f be the initial symmetric operator associated with an even
s.a. differential operation f of order n on an interval (a,b), and let one of the
endpoints of the interval be regular, whereas the other will be assumed singular.
Then the deficiency indices of f, being equal, my+ = m, and bounded from above,
m < n, are also bounded from below by n/2, so that the double-sided restriction

n/2<m<n (4.48)

holds.

Proof. We must prove only the boundedness of m from below. Let f with domain
D7 be the closure of f. By the first von Neumann formula (3.5), we have the
representation D;’}, (a,b) = D7+ D4 + D— for the domain of the adjoint operator

f *. It follows from this representation that
dirnDTD;v (a,b) =dim(D4 + D-) =dim D4 + dim D_ = 2m,

which means that the maximum number of functions belonging to Dj}, (a,b) and

linearly independent modulo D7 is equal to 2m. If we find a set {y}] of
functions belonging to D;’}, (a,b) and linearly independent modulo D7, we prove

that 2m > n, which is required. By Lemma 4.5, the functions s € D;(a, b) and

their quasiderivatives wik] of order up to n — 1 are finite at a regular endpoint, let
it be the endpoint a, and can take arbitrary values at this endpoint. This implies
that there exists a set {{/}] of linearly independent functions in D}(a, b) such

that the n x n matrix A4, Ak = w[k](a) I =1,....n,k = 0,...,n—1, is
nonsingular, det A # 0. But these functions are also linearly independent modulo
D, i.e., the equality YV = Y € Dyimplies that ¢; = 0, VI. Indeed,
let Y, cipas = V. By the above- cited assertlon about the behavior of functions

belonging to Df at a regular endpoint, we know that z[k] (a)=0,k=0,...,n—1,
ory ¢ W;E(k[] (@) =), A]fcl = 0, whence it follows that ¢; = 0, V[, because the
matrix A is nonsingular. This completes the proof of the theorem. O

As an example, the deficiency indices of the initial symmetric operator H
associated with the differential operation H (4.8) on the semiaxis R4 with a
potential V' integrable at x = O can be m = 1 or m = 2, but not zero, depending on
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the behavior of the potential at infinity. This implies that the QM Hamiltonian for a
particle on the semiaxis, even though the particle is free, cannot be defined uniquely
as an s.a. operator in L?(R4) without some additional arguments. This fact has
been known since the paper by Weyl [162], where the cases m = 1 and m = 2 were
respectively called the cases of “limit point” and “limit circle,” in accordance with
the method of embedded circles used by Weyl.

If both ends of the interval (a, b) are singular, an evaluation of the deficiency
indices of an initial symmetric operator f is reduced to the case of one regular
endpoint and one singular endpoint by means of a special symmetric restriction
of this operator and a comparison of the closures of this restriction and the initial
operator.24

Let f be an even s.a. differential operation of order n given on an interval
(a,b), both ends of which are singular; let f be an initial symmetric operator;
let my+ = m be its deficiency indices, and let f be its closure. Let ¢ be an
arbitrary, but fixed, interior point of the interval (a,b), a < ¢ < b. We note that
L*(a,b) = L*(a,c) ® L*(c,b). We examine the restrictions f_ and f+ of the
initial s.a. differential operation f to the respective intervals (a, c¢) and (c, b). It is
evident that both differential operations are of the same order n, they are s.a., and
the endpoint ¢, the right one for f_ and the left one for f+, is regular for each of
them. Let f and f+ be respectively the initial symmetric operators in L2 (a, )

and L? (c,b) associated with these differential operatlons let m( ) = m© and
m(;) = m™) be their deficiency indices, and let f and f+ be their closures

with the respective domains D7— C L?(a,c) and D+— = C L?(c,b). Because the
endpoint c is regular for both differential operations, the functions in both D7 and
D— 75 vanish at the point ¢, together with their quasiderivatives of order up to n — 1.

We consider a new symmetric operator fc in L? (a, b) associated with the same
differential operation f ; its domain D 4, is a direct orthogonal sum of the subspaces
D(a,c) and D(c,b), Dy = D(a,c) ® D(c,b). It is evident that this operator
is densely defined, D_f( = L?(a,b), and Dy C D(a,b) = Dy, so that ﬁ
is a symmetric operator, which is a specific symmetric restriction of the initial
symmetrlc operator f ﬁ C f Let m, b= Mo = me be its deficiency indices,

and let fc be its closure; it is evident that fc C f

It is of crucial importance to observe that the operator ﬁ is a direct sum of the
operators f_ and f+, ﬁ = f_ + f+ , whence it follows, first, that its deficiency
indices are the sums of the corresponding deficiency indices of the summands, i.e.,

me =mS +m™, (4.49)

24This is the starting point of the so-called method of splitting [116].
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and second, that its closure ﬁ is a direct sum of the closures f_ and f+ of the

summands. But this means that the operator ﬁ is a restriction of the operator f to
the domain D7~ C D, which differs from D~ only by the subsidiary condition
on the functions ¥ € D, namely, ¥y € Dy- = ¢ € Dy w[k] (c) =0,k =
0,1,. — 1, whence it follows that there ex1st exactly 7, and not more, linearly
independent functions belonging to D~ that do not satisfy this condition and are
linearly independent modulo ij, ie.,

dimp_ D7 = n. (4.50)

Because the operator f is a nontrivial symmetric extension of fc, the second von
Neumann theorem, Theorem 3.2, is applicable to this operator. According to item
(i1) in Remark 3.3, the dimension of D7 modulo Df is equal to the difference of

the deficiency indices of the operators® f and f.,

dimD_fT D7 =m,—m. 4.51)
A comparison of (4.49)—(4.51) results in the relation

m=m +m —n (4.52)

between the deficiency indices of the operator f and the deficiency indices of the
operators fi. We note that this relation is consistent with the general restriction 0 <
m < n for the deficiency indices of the operator f because by Theorem 4.10, we
haven/2 < m™® < n and therefore n < m™ +m™ < 2n. It is known that if both
endpoints are singular, the deficiency indices can take any values between 0 and n
[9,116].

We note that in deducing relation (4.52), we actually don’t use the fact that the
endpoints ¢ and b of the interval are singular, and consequently, relation (4.52)
holds in the general case. If both endpoints are regular, then we have m® = n
and relation (4.52) is reduced to the already known relation m = n. But if only
one endpoint is regular, let it be a, we obtain a useful relation m = m™), which,
in particular, implies that the deficiency indices are independent of a choice of the
position of the regular endpoint.

We now return to the main problem of constructing s.a. operators associated
with a given s.a. differential operation f on an interval (a,b) as s.a. extensions
of the initial symmetric operator f . Let the deficient subspaces D4 and the
deficiency indices m+ of the symmetric operator f be considered to have been

25We recall that the deficiency indices of a symmetric operator and those of its closure are the
same.
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found. According to the main theorem, Theorem 3.4, there are three possibilities for
s.a. extensions of this operator.

Let the deficiency indices be different, m4 # m_, which is possible only for
odd or mixed s.a. differential operations f with at least one singular endpoint. In this
case, there are no s.a. extensions of the operator f ,1.e., there exist no s.a. differential
operators associated with the given differential operation f .

Let both deficiency indices be equal to zero, m4+ = O0; for even differential
operations, this is possible only if both endpoints of the interval (a, b) are singular.
In this case, the initial symmetric operator f is essentially s.a., and its unique s.a.

extension is its closure f identical with its adjoint, f = f t = f *. In other
words, there exists only one s.a. differential operator associated with the given
differential operation f and defined on the natural domain. As we mentioned in
the previous section, this fact can be established without explicitly evaluating the
deficient subspaces and deficiency indices of the operator f if we are able to prove
that the asymmetry forms A ;+ or w,+ for the adjoint operator are trivial, i.e.,
identically equal to zero.

Let both deficiency indices be different from zero and equal, m+ = m > 0,
which always holds if both endpoints of the interval are regular. In this case, there
exists an m?-parameter U(m) family of s.a. extensions of the initial symmetric
operator f . In other words, there exists a nontrivial family { fU, U e Um)}of
s.a. operators associated with the given differential operation fv , and the problem of
their proper and convenient specification arises.

Of course, such a specification must follow Theorem 3.4.2° But as we already
mentioned in the introduction to this chapter, an application of the main theorem to
differential operators has several distinctive features, the main peculiarity being that
the asymmetry forms for adjoint operators are expressed in terms of boundary forms.
We indicate two other features. First, any s.a. extension fU of an initial symmetric

operator f is simultaneously an s.a. extension of its closure f with domain D+ and

a symmetric restriction of its adjoint f *. All these operators are associated with the
same initial differential operation f, which gives a common rule of action, but are
defined on generally different domains Dy C Dy C Dy, C Dy = D; (a,b)

in L?(a,b). Therefore, a specification of an s.a. operator fU associated with a
given s.a. differential operation f is completely determined by a specification of
its domain D g, . The same concerns the closure f Second, because the deficiency
indices of an initial symmetric operator f are finite, m < oo, the isometries

U : Dy +—— D_ defining the s.a. extensions fU are specified by m x m unitary
matrices U.

260f course taking into account the change of notation for some basic notions in this chapter in
comparison with the previous one.
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4.5 Self-adjoint Extensions in Terms of Closure and Deficient
Subspaces

The main theorem, Theorem 3.4, furnishes two ways (or methods) for specifying
s.a. operators associated with a given s.a. differential operation f as s.a. extensions
fU of an initial symmetric operator f In this section, we dwell on the first way
based on (3.34). This way requires the knowledge of both the deficient subspaces
D of the initial symmetric operator f and the domain D7 of its closure f The
domain Df is given by (3.13), or equivalently by (3.16) or (3.17) in Chap. 3, which
in our new notation adopted for differential operators reads

Dy ={¥:¥ € D3 (@.b): 0pr (YY) =0, VY € D} (a, b},

where the asymmetry form w+ (Y« ¥) = w@g«(Y«. ¥) is given by (4.34) in
terms of boundary forms (4.35). Because of the independence of the left and right
boundary forms, the condition @+ (Y, ¥) = 0, Vi € Df (a, b) reduces to

a couple of independent implicit zero boundary conditions at the left and right
endpoints of the interval (a, b), and we finally obtain that the domain D7 of the

closure f of the initial symmetric operator f associated with a given s.a. differential
operation f" is given by

Dy =1y :y € D%@ab); [w*, ] (a/b) =0, VY € D} (a,b){. (4.53)

In some cases, the implicit boundary conditions in (4.53) can be converted to
explicit boundary conditions on functions ¢ € D~ and their (quasi)derivatives. For

example, let f be an even s.a. differential operation of order n on the interval (a, b),
and let the left endpoint a be regular. Then, the functions ¥/, as well as any functions
Yy € D; (a,b), take finite values at the endpoint a together with their n — 1

quasiderivatives, and according to (4.14), the boundary condition [/, z] r(a) =0,
Vi € D; (a,b), becomes

n/2—1

> (W@ @ -yl @y @) = 0, Yy € D3 (a.b).
k=0
Because the boundary values Ip,Lk] (a), k = 0,...,n — 1, can be arbitrary, see

Lemma 4.5, the implicit boundary condition [{«, ¥](a) = 0, Vi« € Dj}, (a,b),

is equivalent to the explicit boundary conditions w[k] (a) =0,k =0,...,n—1.
A similar assertion holds for the regular endpoint b. This result was announced in
advance in the previous section. We thus obtain that the domain D+ of the closure
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f of the initial symmetric operator f associated with a regular even s.a. differential
operation f of order n is given by

D= {z:geD}(a,b); v (a/b) =0, k=0,...,n—1}, (4.54)

and if only one endpoint, let it be a, is regular, then D is given by

w:weD}(a,b); v (@) =0 k=0,....n—1,
Df

5= [w*, ] (b) = 0. Yy € D% (a.b) (4.55)

Remark 4.11. These assertions are extended to the initial symmetric operator
associated with any regular s.a. differential operation of order n with the replace-
ment quasiderivatives by ordinary derivatives because, as is shown below, see
Lemma 4.23, the corresponding boundary forms are finite nondegenerate forms in
the boundary values of functions belonging to D} (a,b) and their n — 1 derivatives.

As an illustration, we consider the simplest known second-order regular s.a.

differential operation 2 (4.7) on an interval [0, []. The domain D7 of the closure H
of the initial symmetric operator His given by

= {z LY e DL O.0): Y(0) = y() = Y'(0) = /(1) = o} . (4.56)

We note that this domain is also the domain of the closure H of the initial
symmetric operator H, associated with s.a. differential operation H (4.8) if the
potential V' is bounded |V(x)|] < ¢ < oo. If V is not bounded, but locally

integrable, the domain D of the corresponding closure E differs from (4.56) only
by replacing the condition " € L*(0,1) with the condition —" + V' € L*(0,1).

We also note that both H and H are evidently symmetric, but not s.a. because of the
additional zero boundary conditions on the derivatives.
Once the domain D7 has been established, we are able to formulate a theorem

that describes all s.a. extensions of the initial symmetric operator f . This theorem
is actually a paraphrase of the main theorem in the part associated with (3.34).

Theorem 4.12. [f the initial symmetric operator f associated with an s.a. differ-
ential operation f has nonzero deficiency indices my = m > 0, then all its

s.a. extensions form an m*-parameter U(m) family {f[], U e U(m)} Each s.a.

operator fU is specified by a unitary m x m matrix U = H Ujk H and is given by

D Yu i Yu =Y + 2o Ckeuks euk = etk

N f )

fu: v +3 0 Upe—j. Yy € Dy Ver. k=1....m | (457
fovu = fvu,
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where D7 is given by (4.53), or (4.54) or (4.55) lff is even and respectively both
or one ofthe endpoints of the interval is regular, while {e+ i} are some (arbitrary,
but fixed) orthonormalized basis functions in the respective deficient subspaces D +
given by (4.43) and (4.47). In the case of even f, we can take e j = ey .

As an illustration, we examine the same second-order regular differential oper-
ation H (4.7) on an interval [0, /]. Because H is even, of order 2, and regular, the
deficiency indices m + of the initial symmetric operator H are equalandmy = m =
2. It then follows from Theorem 4.12 that for the differential operation H, we have
a four-parameter family Hy,UeU (2), of associated s.a. operators Hy, which we
describe in equivalent different ways below. According to our convention, we cite
only the domain D4, of Hy .

To simplify the description, it is convenient to choose the dimensional parameter
K in (4.43) as 2(sr/ I)2. For orthonormalized basis functions in the two-dimensional
deficient subspaces D, it is natural to take the functions

er1=Nexpp, exs=Nexp(r—p), p=10—-i)nx/l,
eoi =t ees =53, N = (" —1)" P @r/D'?, (459

where N is a normalization factor. According to (4.57), the domain Dy, of an s.a.
operator Hy is given by

2
Yu Yy =¥+ 3 ckeuk, euk = etk

D =
MOT 42 Unerg, VY € D Ve k= 1,2

(4.59)

where the domain D77 is given by (4.56) and U = Uy is a unitary 2 X 2 matrix.
The normalization factor N in (4.58) can be included in the coefficients c;, ¢, and
is irrelevant.

This specification of D4, in terms of D37 and deficient subspaces D+ seems to
be inconvenient from the standpoint of a future spectral analysis of the s.a. operators
7’-\&/ and is not adopted in physics, where we are used to dealing with s.a. boundary
conditions on the wave functions ¥y. These conditions equivalently specifying
D4y, are linear relations between the boundary values of the wave functions ¥y
and their first derivatives y,, without mentioning the domain D;.

When deducing s.a. boundary conditions in our case, we proceed from represen-
tation (4.59) for Yy, ¥y = ¥ + Zi=1 creuk, with a given U. Because functions
¥ and ¥’ vanish at the endpoints of the interval, the four boundary values of the

functions ¥y and % are determined only by the second term Zi=1 creuvk, the
deficient space contribution, namely, by the certain boundary values of the functions
eyx and e{/’k, k = 1,2, and by two arbitrary constants ¢; and ¢,, which results in
two relations between the boundary values of functions ¥y and ¥, after excluding
the constants ¢ ; these relations evidently depend on the unitary matrix U'.
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To obtain these relations, it is convenient to work in terms of two-component
columns and 2 x 2 matrices. We introduce the two-component columns ¥y (x) =

(Vv (x),/ ¥ (x)) and C = (¢1,/¢2) ., and 2 x 2 matrices
Ey(x) = | Evac (). Evar(x) = ey " (x). a.k = 1,2.
It then follows from (4.59) that
Wy (0) = Ey(0)C, Wy () = Eu(I)C. (4.60)

It turns out that the rank of the rectangular 4 x 2 matrix (Ey (0) / Ey (1)) is maximal
and is equal to 2. We could, therefore, express the constants ¢; and ¢, in terms
of Yy (0),..., ¥ (/) from one of the two relations in (4.60), then substitute the
obtained expressions in the remaining two relations and thus obtain two linear
relations between the boundary values of the functions belonging to D4, and their
first derivatives. But it is more convenient to proceed as follows. We multiply the
first and second relations in (4.60) from the left by the respective matrices E ;’ )¢
and Ef ()€, where & = —io? and 0 is the Pauli matrix, which yields

EF(0)EWy(0) = EF(0)EEy(0)C, EFf(DEWy () = Ef(DEEL()C.
The crucial remark is that the matrix
R=|Rjill = Ef ()EEy () — Ef (0)EEy(0)

is zero. Indeed, using (4.15) written as

2

V) = D @D 0)ERY D (x)

ab=1

and representation (4.34) and (4.35) for w/+ with f * = H* = 7’-\L+, it is easy

to verify that the matrix elements of the matrix R are represented as Rj; =
!

[eU,j,eU,k](x)\O = wy+(ev,euk) and are therefore equal to zero because the

restriction of the asymmetry form w;,+ to Dy, , the domain of an s.a. operator,

vanishes. This means that the relation

EF(DEWY (1) = Ef (0)EWy(0) (4.61)

holds, which is equivalent to the relations

[evj yuly (), = 0. j = 1.2. (4.62)
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Relations (4.61), or (4.62), are just the s.a. boundary conditions specifying an s.a.
extension Hy . We note that the explicit form of boundary conditions depends on a
choice of the orthonormal basis functions e+ ;, j = 1,2, in the deficient subspaces.
But it is easy to trace that under a change of the orthogonal bases, s.a. boundary
conditions specifying a given s.a. extension are replaced by equivalent s.a. boundary
conditions related to the initial ones by a nonsingular linear transformation.

It is clear that the representation (4.59) for Yy € D4y, is restored from boundary
conditions (4.61), or (4.62), by reversing the above consideration.

It is also clear how this consideration is extended to s.a. operators associated with
regular even s.a. differential operations of any order.

4.6 Self-adjoint Extensions in Terms of Self-adjoint
Boundary Conditions

In this section, we dwell on the second way provided by Theorem 3.4 for specifying
s.a. operators associated with a given s.a. differential operation f as s.a. extensions
fU of the initial symmetric operator f

This way is based on (3.35) and incorporates representation (4.34) and (4.35) of
the asymmetry form w ,+ for the adjoint f * in terms of boundary forms, which
allows specifying s.a. differential operators by s.a. boundary conditions. They are
explicit or implicit depending on whether the endpoints of the interval are regular or
singular; on singular endpoints, they are generally of implicit asymptotic character.
There are different, but of course equivalent, versions of the formulation of s.a.
boundary conditions.

We reformulate the corresponding part of the main theorem as applied to
differential operators; the following theorem is an alternative to Theorem 4.12.

Theorem 4.13. [f the initial symmetric operator f associated with an s.a. differen-
tial operation f on an interval (a, b) has nonzero deficiency indicesmy+ = m > 0,
then all its s.a. extensions form an m?-parameter family {fy, U € U(m)}. Each
s.a. operator fU is specified by s.a. boundary conditions including a unitary m x m
matrix U = |Uj| and is given by

D Yu tyu € D% (a.b). [evk. Yuly (x)|b =

2 /i ’

foid 7 |evk =ess + 2,_1 Uie—p. k = 1,. (4.63)
fovu = fyu.

where {e+ i} are some (arbitrary, but fixed) orthonormalized basis functions in the

respective deficient subspaces D+ of the operator f given by (4.43) and (4.47). In
the case of even f, we can take e_j = e1 k.



144 4 Differential Operators

Remark 4.14. (1) The equation (4.63) defines the s.a. operator fU as a restriction

(@)

of the adjoint operator f to the domain D, specified by the s.a. boundary
conditions that restrict the asymptotic behavior of functions ¥, € D; (a,b)

at the endpoints of the interval. These boundary conditions considered as
additional linear equations for the functions . are linearly independent.
Indeed, let the relation

b
=0, Yy € D% (a.b).

NE

cr levk, 1p*]f (x)

k=1

a

with some constants ¢ hold. Because of the independence of the left and right
sesquilinear boundary forms and because of their anti-Hermiticity, this relation
is equivalent to the relations

[w*,zc-kew] (a/b) = 0. VY € D% (a.b).
k=1 f
But by (4.53), this implies that Y ,'_, ckeux € D+, which is possible only
if all ¢, Kk = 1,...,m, are zero, because the functions {ey x }’1" belonging to

Dy + D_ are linearly independent modulo D—.
We recall that the relations

[eU,ks eU,l] (x)|Z = (Uf—i—(@[]’k, eU,l) = 07 ksl - 1, e, m, (4’64)

hold, so that the functions {ey}|" belong to Dy, , and any wUA allows the

representation Yy = ¥ + Y ;. Ck, ey, so that the operators fy appearing
in Theorems 4.12 and 4.13 are the same under the same matrix U and the same
basis functions {e+ x}|' (see the proof of the main theorem).

The s.a. boundary conditions (4.63) in Theorem 4.13 are generally of implicit

asymptotic character because the existence of the boundary forms does not imply
the existence of boundary values of functions belonging to D; (a,b) and their

(quasi)derivatives. But in some particular cases, these conditions become explicit
boundary conditions for the functions and their (quasi)derivatives. We examine two
cases of this kind.

The first one is the case of a regular even s.a. differential operation f of (even)

order n on a finite interval (a, b). We recall that in this case, representation (4.14)
for the local form [., .] y holds, the functions belonging to D;’}, (a,b) and theirn — 1

quasiderivatives have finite boundary values at both endpoints of the interval, see
Lemma 4.5, and the deficiency indices of the initial symmetric operator f are equal
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and maximum, m+ = n; see Sect. 4.4. Consequently, the s.a. boundary conditions
can be written as

b

> I @Emlr | =0 k=1....n, (4.65)

I.m=1
a

where the n x n matrix £ = ||&,,|| is given by

i
Eim = S1mt1me (1 _ ”er ) Lm=1.....n. (4.66)

and € (—x) = —€ (x),e(x) = 1 forx > 0
The s.a. boundary conditions (4.65) are conveniently represented in a condensed
form by introducing the two n x n matrices

Ey(a/b) = |Evux (@/b)||. Evu (a/b) = el M (a/b),  (4.67)
and the two n-component columns ¥y (a/b) with components ¥y« (a/b),
Wi (a/b) =y @a/b), k=1,... .n. (4.68)
In this condensed notation, s.a. boundary conditions (4.65) become
El (b)EWy (b) = Ef (a) EWy (a). (4.69)

We consider it useful to present a separate brief version of Theorem 4.13 for the
case of regular differential operations using the condensed notation.

Theorem 4.15. Let f be the initial symmetric operator associated with a regular
even s.a. dlﬁ‘erentlal operatlon f of order n on an interval (a,b). Then all its
s.a. extensions fU form an n*-parameter U(n) family {fU, U € U(n)}; each s.a.
operator fU is specified by s.a. boundary conditions (4.69) including a unitary n xn
matrix U = |Uj| and is given by

) D Yu Yy € D (a,b),
Jo i1 7TV ER ) ewy (b) Ef (a) E¥y (a)
fuvu = fyu,

where the matrices £ and Ey(a/b) and the columns Wy (a/b) are defined by the
respective formulas (4.66), (4.67), and (4.68).
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Remark 4.14 following Theorem 4.13 is modified for Theorem 4.15 as follows.

1. The s.a. boundary conditions (4.69) are linearly independent, which is equivalent
to the assertion that the 2n x n matrix E composed of the matrices Ey (a) and
Ey (b) has maximal rank:

E = (Ey (a) /Ey (b)), rankE = n. (4.70)

Indeed, similarly to the above proof of the linear independence of the boundary
conditions we deduce that according to (4.54), the condition ZZ=1 Eqrcr = 0
implies that Z',Ll creyk €D 7> which in turn implies that ¢, = 0, Vk.

2. Relations (4.64) are written as

E} (b)EEy (b) = Ef (a) EEy (a). (4.71)

Of course, in practical applications, the condensed notation needs deciphering.

We also note that the matrices Ey (a/b) with a given U depend on the choice of
the dimensional parameter « in (4.43), or in differential equations (4.46), defining
the deficient subspaces D+ and on the choice of the orthogonal basis {e+ x}] in
D4 . For example, if we change the orthogonal basis,

n n

erp > ey = Z Vieq ), e—px—>é_j = Z V_ike—y,
=1 =1

where the matrices V1 are unitary, and the choice V_ = V_+ is optional, then the
matrix U for the same s.a. extension is changed for the matrix U=v_'uv,.

Theorem 4.15 is extended, appropriately modified, to s.a. operators associated
with any regular s.a. differential operations fv with the replacement of quasideriva-
tives by ordinary derivatives. This remark is similar to Remark 4.11.

As an illustration, we consider the previous second-order regular differential
operation H (4.7) on a finite interval [0, /]. It is easy to see that the s.a. boundary
conditions specifying the associated s.a. differential operators Hy in accordance
with Theorem 4.15 and given by (4.69), or (4.65), with n = 2 actually coincide
with s.a. boundary conditions (4.61), or (4.62), obtained in the previous section
as an illustration of Theorem 4.12. Such must be the case because the two ways
for specifying s.a. differential operators presented by Theorems 4.12 and 4.15, the
version of Theorem 4.13, are equivalent.

It seems interesting to present examples of s.a. operators corresponding to a
particular choice of the unitary matrix U. Each H is a candidate for a Hamiltonian
for a free particle on the interval [0, []. It is sufficient to indicate the corresponding
s.a. boundary conditions. Henceforth, when presenting explicit boundary conditions
corresponding to a particular choice of the matrix U, we conventionally omit the
subscript U in the notation of the functions belonging to Dy, .
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Choosing U = I, where [ is the 2 x 2 identity matrix, we obtain the Hamiltonian
H; specified by s.a. boundary conditions, which, written in the conventional
expanded form, looks rather exotic:

¥ (1) = —cosh ¥ (0) — Iz~ " sinh 7w ¥/ (0),
V' (1) = —lx~ " sinh 7 ¢ (0) — cosh 7w ¢’ (0). 4.72)

Choosing U = —I, we obtain the Hamiltonian H_ 1 specified by the familiar s.a.
boundary conditions

v O0)y=v({)=0 (4.73)

and describing the behavior of a particle in an infinite square potential well.
Choosing U = iI, we obtain the Hamiltonian H;; specified by the s.a. boundary
conditions

v (0) =y () =0. (4.74)

Choosing U = — [(1 -1+ 1+10) al] /2, where ¢! is the Pauli matrix, we

obtain the Hamiltonian ?-\[U specified by the periodic boundary conditions?’

v (0) =y (), ¥ (0) =y (), (4.75)

which are conventionally adopted in quantizing an ideal gas in a box.

We now examine the second case, in which the s.a. boundary conditions in
Theorem 4.13 can be made into a conventional explicit form in terms of the
boundary values of functions and their (quasi) derivatives. It is rather evident after
the above discussion that such a possibility is realized for a singular even s.a.
differential operation with one regular endpoint and one singular endpoint if the
boundary form at the singular endpoint is trivial, i.e., vanishes identically. We only
need to clear up the deficiency indices of the initial symmetric operator associated
with such an s.a. differential operation in order to know the number of basis
functions ey, and therefore, the number of boundary conditions. It turns out that
these two questions are interrelated: the boundary form at the singular endpoint is
trivial if the deficiency indices of the initial symmetric operator are a minimum of
possible ones, i.e., if m+ = n/2; see Theorem 4.10. We formulate this assertion as
a lemma.

Lemma 4.16. Let the deficiency indices of the initial symmetric operator f
associated with an even s.a. differential operation fv of order n on an interval (a, b)
with one regular endpoint, let it be a, and one singular endpoint, b, be minimum,
my = n/2. Then the boundary form at the singular endpoint is trivial,

[ ¥l (B) = 0, ¥ xu, i € D (a ). (4.76)

271t must be confessed that in this case we actually solve the inverse problem of finding a matrix
U that yields periodic boundary conditions.
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If the endpoint a is singular, while the endpoint b is regular, then b in (4.76) must
be replaced by a.

Proof. A proof of the lemma is based on the arguments used in proving the
independence of the boundary forms at different endpoints, see Sect.4.3, and on
the arguments used in proving Theorem 4.10. Because the endpoint a is regular,
there exist n functions wy, € D;’}, (a,b), k = 1,...,n, vanishing near the singular

endpoint » and linearly independent modulo D+. On the other hand, by the

condition of the lemma, the deficiency indices of the operator f , as well of f , are
equal to n/2, and therefore, the dimension of the subspace D; (a, b) modulo Dy is

equalton/2 +n/2 = n, dim D+ D, (a b) = n. The latter means that any function
Ve € D (a,b) can be represented as Y = ¥ + Y k= CkWk, Where ¥ e Dy

and cj are some coefficients. Consequently, the boundary form [y, ¥«] (b) for any
X, Ux € D’; (a, b) can be represented as

(s Wl (B) = [, 1(0) + Y ci [, il (B).

k=1

The first term on the right-hand side of the last equality vanishes due to (4.53), while
the second term vanishes because all functions wy vanish near the singular endpoint
b, which proves the lemma. O

In the next section, we show that conversely, if the boundary form at a singular
endpoint is trivial, then the deficiency indices of the initial symmetric operator are
minimum, m4 = n/2.

It follows from Lemma 4.16 that in the case under consideration, the terms
l[evk, Wyl (b) in boundary conditions (4.63) in Theorem 4.13 vanish, and the
boundary conditions reduce to

levi. Yul(a) =0, k =1,...,n/2.

Using arguments similar to those in deducing (4.65), we represent these boundary
conditions in an explicit form

i @émyl ™ @) =0 k=1.....n/2, A.77)

I.m=1

where &, are given by (4.66). If we introduce a rectangular n x n/2 matrix
E\ 2,y (a) with the matrix elements

(Evjpv @), =ep @), I =1,....n. k=1,....n/2, (4.78)
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then s.a. boundary conditions (4.77) are represented in a condensed form as
1/2 y @ EW(a)=0, (4.79)

where ¥ (a) is given by (4.68).
We consider it useful to present a separate brief version of Theorem 4.13 for the
case under consideration using the condensed notation.

Theorem 4.17. Let fv be an even s.a. differential operation of order n on an
interval (a,b) with a regular endpoint a and a singular endpoint b, and let the
associated initial symmetric operator f have the minimum possible deficiency
indices my = n/2, which is equivalent to the trlwaltty of the boundary form at
the singular endpomtb Then all s.a. extensions fU offform an (n/2)?-parameter
family {fU, U € Un/2)}, each s.a. operator fU is specified by s.a. boundary
conditions (4.79) and is given by

A

Ju - Dy, = {WU Yu € D* (a,b), El/zU(a)ElIIU (a) = ()},

R (4.80)
fovu = fyu,

where the matrices € and E\/» y (a) are defined respectively by (4.66) and (4.78)
and the column Wy (a) is defined by (4.68). If the endpoint a is singular, while the
endpoint b is regular, then a in (4.80) is replaced by b.

Remark 4.14 following Theorem 4.13 is modified for Theorem 4.17 as follows:

1. The s.a. boundary conditions (4.79) are linearly independent, or equivalently, the
rectangular nxn /2 matrix E1/5 ¢ (a) has maximum rank, rankE;» v (a) = n/2,
which is an analogue of (4.70).

2. Relation (4.64) becomes El—i;2,U (a) EEy2,u (a) = 0, which is an analogue of
relation (4.71).

In Sect. 6.2, we consider the s.a. operators associated with the s.a. differential
operation H (4.7) on the semiaxis R4 as an illustration of Theorem 4.17.

Specifying the s.a. differential operators fU by means of s.a. boundary conditions
according to Theorems 4.13, 4.15, and 4.17 requires evaluating the orthonormal
basis functions {e4 x}]' in the corresponding deficient subspaces D.. But it is
only the behavior of these functions at the boundary that is essential. In addition,
there is an arbitrariness in the choice of these functions, while examples show
(see Chaps. 6-9) that their specific boundary values actually do not enter into the
answer. All this allows us to suggest that many analytic details are irrelevant from
the standpoint of the general construction. Indeed, there exists another way of
specifying s.a. boundary conditions that allows us to avoid a detailed evaluation
of deficient subspaces, a way whereby the analytic problem is reduced significantly
and is actually replaced by some algebraic problem. This way may turn out to be
more convenient for applications. It is based on an equivalent, but modified, version
of the main theorem in the part associated with (3.35).
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We emphasize that all that follows up to Theorem 4.20 is concerned with general
operators, not only differential ones.

We recall representation (3.35) for the domain D y, of an s.a. extension fU with
the deficiency indices m+ = m, 0 < m < oo. For future convenience, we take
7 = ik and use a naturally changed notation?®:

R: > Dy, & =& e —eqn, \e—> Do, &> 8, e — ey
Then the representation (3.35) becomes

Dy = Ev v € Dy+; r+ (evk,§v) =0, , 4.81)
eyr = e+ + Zl=l Uke—1, k=1,....m

where {e+ ;}]" are the orthogonal bases in the respective deficient subspaces D+

and U = ||Ujk|| is a unitary m x m matrix.
The two properties are characteristic for the vectors ey : first, the vectors ey,
k =1,...,m, formabasis in the subspace (/ +U) D+ and are linearly independent

modulo D7, and second, because each of them belongs to D y,, the relations
s+ (evk,evr) =0, k,l=1,...,m, (4.82)

hold.? It turns out that in fact, it is only the linear independence of these m vectors
modulo D7 and relations (4.82) for them, and not their specific form, that are of
importance.

Indeed, the vectors ey in representation (4.81) can be equivalently replaced by
their nondegenerate linear combinations,

m
ey —> Wygx = E Xukeva,

a=1

where the matrix X = | X| is nonsingular. Similar to {ey}|’, the vectors

{wux}| form a basis in the subspace (I + U)D, and are linearly independent
modulo D7, and relations (4.82) are also evidently extended to these vectors,
s+ (Wux,wyy) = 0. In addition, we can add an arbitrary vector § . belonging

to the domain D~ of the closure f to any vector wy ,

m
wok > we =wuk +§ =Y Xaevx +§,. E €Dy, (483)

a=1

ZFollowing the above convention for differential operators.
These properties as applied to differential operators were already cited above.



4.6 Self-adjoint Extensions in Terms of Self-adjoint Boundary Conditions 151

and obtain an equivalent representation of the domain Dz, in terms of the new m
vectors {wx }|' (4.83):

Dy, ={v :6v € Dyt wpt (Wi, Eu) =0, Vk}, (4.84)

because @+ (5 JEu) = w s+ (G, g ) = 0 according to the defining property (3.17)
of the domain D . For the same reason, relations (4.82) hold for the new m vectors
il

e+ wr,wy)) =0, k1l =1,...,m. (4.85)

Itis also evident that these new vectors are linearly independent modulo D~

It turns out that the inverse also holds. Namely, let f be a symmetric operator;
let f be its closure; let f * be its adjoint, and let the deficiency indices of f be
finite, equal, and different from zero, m+ = m,0 < m < oo, so that Dy C D7 C

Dyt and dimD7 D+ = 2m. Let {wy }1' be a set of vectors with the following
properties:

(1) wi € Df+,k =1,....m
(2) all wy are linearly independent modulo D7, i.e.,

chwk € D7, Ve € C = ¢ =0, Vk.
k=1

(3) The vectors wi, k = 1,...,m, satisfy relations (4.85).

Then the set of vectors {wy }" defines some s.a. extension fU of the symmetrlc
operator f as an s.a. restriction of its adjoint f T, f+ f C fU = fU c fT, A+, to the
domain D y, belonging to D ;+ and given by (4. 84)

To prove this assertion, it is sufficient to prove that all the vectors wy can be
represented as

W = ZXak <€+,a + Z Ubae—,b) +§k’ vk,

a=1 b=1

where {e4 1 }|' are some orthogonal bases in the respective deficient subspaces D+
of the initial symmetric operator f , X1 and Uy, are some coefficients such that the
m x m matrix X = || X || is nonsingular, the m x m matrix U = ||Up, || is unitary,
and all the vectors gk belong to D7.

We first turn to the condition (1). According to the first von Neumann formula
(3.6), any vector wy belonging to D ,+ is uniquely represented (taking the change
of notation into account) as

m

m
wie =6k +5-x +§ Z kerat Y Yae—a+E&,

a=1 a=1
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where £+ € Dy, E € D ,and X, and Y, are some coefficients. We then turn to
the conditions (2) and (3). The crucial remark is that according to these conditions,

both m x m matrices X = || X4 | and Y = | Y| are nonsingular. The proof
is by contradiction. Let, for instance, the rank of the matrix X be not maximal,
rank X < m, which means that there exists a set {c}|" of complex numbers ¢ such
that at least one of them is different from zero, while Z',Ll Xarcr = 0, Ya. In such
a case, we have

ch$+ k= Z (Z Xakck) erq =0,
k=1

and the vector w = Z',?zl crwy s represented as

m m
W= E =) abu E=) ad,
k=1 k=1
According to the condition (3), we have

m
wpr Wow) =Apr ) = Y Geo o+ (we,wr) = 0.
k=1

On the other hand, by the von Neumann formula (3.19) for the quadratic asymmetry
form A/, we have that A o+ (w) = —2ik |[§- |2, whence it follows that £ = 0,
and therefore w = E € D . Condition (2) then implies that all the numbers cj
are equal to zero, which is a contradiction that proves the nonsingularity of the
matrix X.

The proof of the nonsingularity of the matrix Y is similar.

The nonsingularity of the matrix X allows representing the vectors wy as follows:

m m
W = ZX“k <e+,u + ZUb“e_’b) +§k’ k=1,....m
a=1 b=1

where the nonsingular m xm matrix U is givenby U = Y X ~!. Using representation
(3.18) for the asymmetry form W+, condition (3) can be written as

o+ (Wi, wr) = 2ik [k, 64+0) — (E—k, E-)] = 0, Vk, 1,

which is reduced to

> [Kak (earess) Xor = Yar (e—are—p) Yo ] = Y [ Xk Xar = Yo Ya] = 0

ab=1 a=1
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by virtue of the orthonormalization relations (e+ 4, e+5) = 84,. The last equality
can be represented in matrix form as

XPX vty =x+ - ((x )y (rx )| x = x*t (1 -vtu) x =0,

In view of the nonsingularity of the matrix X, it follows that U tU =1,ie,the
matrix U is unitary.

We simultaneously see how the unitary matrix U labeling an s.a. extension fU
of the symmetric operator f is uniquely restored from a given set of vectors {wy }’
under a certain choice of the orthogonal bases {e+ ;}|" in the respective deficient
subspaces D4 of f .

We formulate the results of the above consideration as a supplement to the main
theorem; this supplement is the promised modification of the main theorem in its
part associated with (3.35).

Theorem 4.18 (Supplement to the main theorem). Any s.a. extension fU of a
symmetric operator f with finite equal nonzero deficiency indices, my = m, 0 <
m < oo, can be defined as

Ao Dy, = {gU 2Eu € Df+§ W+ (wi,Ev) =0, Vk},

Uiy R (4.86)
fukv = fTEu,

where {wi}|' is a certain set of vectors belonging to the domain D+, we €

D s+, linearly independent modulo the domain D7, and satisfying relations (4.85).

Conversely, any set {wi}|' of vectors belonging to D 7+ linearly independent

modulo D7, and satisfying relations (4.85) defines a certain s.a. extension of the

symmetric operator f by (4.86).

Remark 4.19. We note that the U(m)-nature of the set { fU} of all s.a. extensions
proves to be hidden in this formulation of the main theorem. This manifests itself
in the fact that the two sets {wi}]' and {Wwr}|' of vectors related by a linear
transformation wy, = Z;”Z \ Zixwi, where the matrix Z = || Z«|| is nonsingular,
define the same s.a. extension. We can say that the description of s.a. extensions
according to the supplement to the main theorem is a description with a certain
“excess” that is inessential, but controlled.

An application of the supplement to the main theorem to differential operators in
L? (a, b) results in an evident modification of Theorem 4.13.

Theorem 4.20. Any s.a. extension fy of the initial symmetric operator [ associ-
ated with an s.a. differential operation f on an interval (a,b) and having equal
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nonzero deficiency indices, my = m > 0, can be specified by s.a. boundary
conditions as follows:

N

i 4P = {ve v € D3 @) Doyl () = 0. VA,

g (4.87)
Juvu = fu,

where {wi}\' is a certain set of functions belonging to the domain Dy, wi €
D} (a, b), linearly independent modulo the domain D+ and satisfying the relations

wiowil, ()0 =0, k.l =1.....m. (4.88)

Conversely, any set {w}|' of functions belonging to D ¢+, linearly independent

modulo D7, and satisfying relations (4.88) defines a certain s.a. extension of f
given by (4.87).

Remark 4.19 following the supplement to the main theorem is completely
applicable to Theorem 4.20.

Theorem 4.20 yields a modified version of Theorem 4.15 related to regular
differential operations. The modification consists in the replacement of the matrices
Ey (a/b) (4.67) by the similar n x n matrices W (a/b) with the matrix elements
Wik (a/b) = w,[{l_” (a/b) generated by the functions wy € D; (a,b), k =
1,...,n, satisfying the conditions of Theorem 4.20. These conditions, the linear
independence of the functions wy modulo D, and relations (4.88) are equivalent to
the following two conditions on the matrices W (a/b):

(1) The rank of the rectangular 2n x n matrix W composed of the two matrices
W (a/b) is maximum,

W = (W (a) /W (b)), rankW = n. (4.89)

This property is a complete analogue of (4.70).
(2) The relation

W (B)EW (b) = WT (a) EW (a) (4.90)
holds, which is an analogue of relation (4.71).

The proof of the necessity of (4.89) is by contradiction. Let rankW < n. This
means that there exists a set {¢x}] of numbers such that at least one of them is
different from zero, and

> Wia/byer =y wi M @/bye = 0.
k=1 k=1



4.6 Self-adjoint Extensions in Terms of Self-adjoint Boundary Conditions 155

The representation (4.54) then implies that the function w = Y} _, cxwx belongs

to the domain D~ of the closure f of f , which contradicts the linear independence
of the functions w; modulo D7 unless all ¢, are equal to zero. In fact, we here
repeat the arguments leading to (4.70).

Conversely, let W(a/b) be two arbitrary matrices satisfying condition (4.89).
Because the functions belonging to D;’}, (a,b) and their n — 1 quasiderivatives can

take arbitrary values at the regular endpoints a and b, there exists a set {wy}| of

functions wy € Dj}, (a, b) such that Wy (a/b) = wg_l] (a/b). These functions are

evidently linearly independent modulo D~

As to relation (4.90), it is equivalent to relation (4.88) in view of representation
(4.14) for the local form [.,.] generated by even s.a. differential operations and
its modification in terms of the matrix £ (4.66), which were already used before in
deducing (4.65) and (4.71). This relation is a direct generalization of relation (4.71).
Because the functions wy are represented in this context only by the boundary values
of their quasiderivatives of order from O up to n — 1, it is natural to introduce the
notation A = |lai|| = W (a), B = ||bi|| = W (b) and to formulate a modified
version of Theorem 4.15 as follows.

Theorem 4.21. Any s.a. extension fy of the initial symmetric operator [ associ-
ated with a regular even s.a. differential operation f of order n on an interval (a, b)
can be specified by s.a. boundary conditions as follows:

A Dy = : D* (a,b); BTEY = ATEY ,
i AP =y v e Dr@h) BrEw () = atew @) o
Juvu = fyu.
where A and B are some n x n matrices satisfying the conditions
rank (A/B) =n, BTEB = ATEA, (4.92)

the matrix € and columns Wy (a/b) are defined respectively by (4.66) and (4.68).
Conversely, any two matrices A and B satisfying conditions (4.92) define a certain
s.a. extension of f given by (4.91).

A similar theorem, appropriately modified, holds for any regular s.a. differential
operations with the replacement of quasiderivatives by ordinary derivatives because
the corresponding boundary forms are finite forms in the boundary values of
functions and their derivatives; see Lemma 4.23.

We can also add that the matrices A = AZ and B = BZ , where the n X n
matrix Z is nonsingular, define the same s.a. operator. This remark is related to the
hidden U (n)-nature of s.a. boundary conditions (4.91) and is similar to Remark 4.19
following Theorems 4.18.
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In fact, this arbitrariness in the choice of the matrices A and B is unremovable
only if their ranks are not maximum,’® rank A < n, rank B < n (it follows
from condition (4.92) that the matrices A and B are singular or nonsingular
simultaneously). If these matrices are nonsingular, which is a generic situation,
the indicated arbitrariness can be removed. Indeed, let det B # 0, and therefore,
det A # 0 as well. Then, in view of the property £~! = —& of the nonsingular
matrix &, s.a. boundary conditions (4.91) can be written as

U (b)) =S¥ (), ¥(a)=S"'wb), (4.93)

where the nonsingular matrix S is given by § = —& (AB_I)+ E. Because the
matrix £ is anti-Hermitian, £ = —&, the conjugate matrix ST is given by
St =-¢ (AB_I) £, and the second condition in (4.92) is written in terms of S as

Stes = €. (4.94)

Otherwise, the matrix S is arbitrary.

The algebraic sense of relation (4.94) is clear: this relation implies that the linear
transformations ¥ +— SV defined in an n-dimensional space of n-component
columns ¥ with components ¥;, [ = 1,...,n, preserve the Hermitian sesquilinear
form (1/i)YTEW, where T is a column with components y;, [ = 1,...,n, or
equivalently, preserve the Hermitian quadratic form (1/i)¥TEW. The Hermitian
matrix —i £ can be easily diagonalized by a unitary transformation:

—iE =TT 34T, (4.95)

where the diagonal n x n matrix X5 equals diag(/, —I), where [ is the n/2 x n/2
identity matrix, and the unitary n x n matrix T = ||T},,| is given by

V2T = 81 [0 (=k) — i (k)] + 8104 1-m [0 (—K) + 6 (k)] ,

k=m—(n+1)/2, (4.96)

where 6 (x) is the well-known step function. The signature of the matrix (1/7)& is
equal to (n/2,n/2), which implies that the transformations S satisfying condition
(4.94) form the group U (n/2,n/2). We thus obtain that in the generic case, the
s.a. boundary conditions are parameterized by elements of the group U (n/2,n/2),
which defines an embedding of the group U (n/2,n/2) into the group U (n)
that parameterizes all possible s.a. boundary conditions. This embedding is an
embedding “into,” but not “onto”: although both U (n/2,n/2) and U (n) are n>-
parameter manifolds, the group U (n/2,n/2) is noncompact, whereas the group
U (n) is compact; it is also clear from the above discussion that s.a. boundary
conditions (4.91) cannot be represented in the form (4.93) if the matrices A and

300f course, this condition is compatible with condition (4.92).
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B are singular. In the latter case, the boundary conditions can be obtained from
(4.93) by a certain limiting process whereby some matrix elements of the matrix
S tend to infinity, while some others tend to zero (we note that |[det S| = 1). This
process corresponds to a compactification of the group U (n/2,n/2) to the group
U (n) by adding some limit elements.

It is worth noting that in looking at the representation of the asymmetry form
w s+ in terms of the boundary values of functions and their quasiderivatives in the
case of regular even s.a. differential operations,’!

@+ (e ¥e) = TN O)EW (b) = 1,7 (@) €W (@) (4.97)

where the n-component columns 7 (a) , T« (b) and Wy (a) , Yx (b) are defined by
(4.68) under the respective changes ¥y — y« and Yy — V¥, we can easily see
from the very beginning that boundary conditions (4.93) with any fixed matrices S
satisfying condition (4.94) result in the vanishing of the asymmetry form w ,+ and

thus define a symmetric restriction of the adjoint operator f *. Using the standard
technique of evaluating the adjoint operator in terms of the asymmetry form w -+,
see Sect.3.2, it is easy to prove that boundary conditions (4.93) and (4.94) are
actually s.a. boundary conditions defining an s.a. restriction of the operator f +.
Unfortunately, they do not exhaust all possible s.a. boundary conditions.

It may be instructive to illustrate Theorem 4.21 and also s.a. boundary conditions
(4.93) and (4.94) by our favorite example of the regular second-order s.a. differential
operation # (4.7) on an interval [0,/]. Our goal is to show how already known
s.a. boundary conditions (4.72)—(4.75) are obtained without evaluating the deficient
subspaces.

Let now A = |[8;28;2| and B = |[§i28;1. It is easy to verify that these
matrices satisfy conditions (4.92); then (4.91) yields the s.a. boundary conditions
¥ (0) = ¥ (/) = 0 coinciding with (4.73). These boundary conditions can be
obtained from (4.93) with the matrix S (¢) = antidiag (1/¢, —¢) by passing to the
limit &¢ — 0. Such a matrix S (¢) arises if we slightly deform the initial matrices A
and B, A—A (¢) = diag(e, 1) and B— B (¢) = antidiag (1, —¢), removing their
singularity without breaking conditions (4.92).

Letnow A = |8;18,2|| and B = ;16;1]|. These matrices also satisfy conditions
(4.92); then (4.91) yields the s.a. boundary conditions ¥’ (0) = ¢’ (I) = 0
coinciding with (4.74). Again, these boundary conditions can be obtained from
(4.93) with the matrix S (¢) = antidiag (¢, —1/¢) by passing to the limit & — 0.
The matrix S (¢) arises as a result of the deformation A — A (¢) = antidiag (—¢, 1),
and B — B (¢) = diag(1, ¢).

If we choose A = ||a28;18;2 + a48i28;2| and B = ||b18:18;1 + b38;28;1 |, where
at least one of the numbers in the pairs a;, a4 and by, b3 is different from zero,
which is required by the first of conditions (4.92), and in addition a,as = aa4 and

31 fact, this representation based on (4.14), (4.34) and (4.35), could have been cited much earlier,
at least at the beginning of the above consideration leading to (4.65)—(4.71).
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blb_g, = b_1b3, which is required by the second of conditions (4.92), we obtain the
so-called split s.a. boundary conditions

Y (0) =y (0), ' () =py ().

where A = ag/a; = aq4/az, p = b_3/b_1 = b3/b, € R, so that A = oo yield
the same boundary condition ¥ (0) = 0, and u = o0 yield the same boundary
condition ¥ (/) = 0.

Setting S = [ in (4.93), we obtain the periodic boundary conditions i (0) =
Y (1), ¥' (0) = ¥’ (I), coinciding with (4.75). But if we choose S = e”1, ¥ €
S (0,2m), we obtain the modified periodic boundary conditions ¥ (/) = e (0),
¥’ (1) = e”y’ (0), which include both periodic, = 0, and antiperiodic, ¥ = 7,
boundary conditions.

As to the “mixed” s.a. boundary conditions (4.72), it is easy to verify that they
can be represented in the form (4.93), ¥ (I) = S¥ (0), with the matrix

§—_ cosh 7 Imxlsinhm
- 7l 'sinh 7 coshnw )’

satisfying condition (4.94).
Theorem 4.20 also provides a modified version of Theorem 4.17 that is obtained
by reasoning completely similar to the previous one.

Theorem 4.22. Let fv be an even s.a. differential operation of order n on an
interval (a,b) with a regular endpoint a and a singular endpoint b, and let the
associated initial symmetric operator f have the minimum possible deficiency
indices my = n/2, which is equivalent to the triviality of the (right) boundary
form at the singular endpoint b. Then any s.a. extension fU can be specified by s.a.
boundary conditions as follows:

. | Pw= {vo v € D% (@b). A8y @ =0},

fu R 5 (4.98)
Juvu = fyu,
where Ay, is a rectangular n x n/2 matrix satisfying the conditions
rank Aijp =n/2, Af,EA12 =0, (4.99)

and the matrix £ and column Wy (a) are defined respectively by (4.66) and (4.68).
Conversely, any n x n/2 matrix A satisfying conditions (4.99) defines a certain s.a.
extension of f given by (4.98). If the endpoint a is singular, while the endpoint b is
regular, Ayj» and a in (4.98) and (4.99) are respectively exchanged for By, and b.

Similar to Theorem 4.21, this theorem can be supplemented with a remark about
a hidden U(n/2)-nature of s.a. boundary conditions (4.98): the matrices A;> and
Ai)»2Z, where Z is any nonsingular n/2 x n/2 matrix, yield the same s.a. operator.
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We illustrate this theorem by the example of s.a. differential operation H (4.7) of
order n = 2 on the semiaxis R . This differential operation satisfies the conditions
of Theorem 4.22, as well as of Theorem 4.17: the left endpoint @ = 0 is evidently
regular, the right endpoint b is singular, but the boundary form at the singular
endpoint is trivial, [, ]y (c0) = 0, by Lemma 2.14 (we already mentioned this
fact in Sect. 4.3 when we considered 2 on the whole axis).3?

Again, our aim is to demonstrate how s.a. operators associated with H on Ry
can be constructed and specified without evaluating the deficient subspaces of the
initial symmetric operator H. The matrix A/, in the case of n = 2 is a column of
two numbers aj, a; at least one of which is different from zero, which is required
by the first of conditions (4.99), while the second of conditions (4. 99) requires that
the equality aja, = a 14y be fulfilled. Formula (4.98) w1th f # then deﬁnes
a one-parameter family Hy, A € R, of sa. operators H, associated with 7 and
specified by the s.a. boundary conditions ¥’ (0) = Ay (0), A = @x/a; = ax/ay;
see also Sect. 6.2. It is evident that the same s.a. boundary conditions specify the
s.a. operators H; associated with the s.a. differential operation H =H+ V()
(4.8) on the semiaxis Ry in the case that the potential is bounded, |V (x)| < M;
an operator H; is defined on the same domain as an operator H 1. The same s.a.
boundary conditions holds also for a set of unbounded potentials. See Sect.7.1.

4.7 Asymmetry Form Method for Specifying Self-adjoint
Extensions in Terms of Explicit Self-adjoint Boundary
Conditions

The above-presented traditional methods for constructing s.a. operators associated
with s.a. differential operations as s.a. extensions of the initial symmetric operators
and their specification in terms of s.a. boundary conditions do not always provide an
explicit form of these conditions, especially in the presence of singular endpoints,
so that the U (m)-nature of the whole family of the associated s.a. operators is not
evident.

We now discuss another possible method, additional to the traditional ones, for
specifying the associated s.a. differential operators in terms of explicit, generally
asymptotic, s.a. boundary conditions; the U (m)-nature of this description is evident.
For brevity, we call this method the asymmetry form method. The idea of this
method is based on two observations. Both observations equally concern the
asymmetry forms @+ and A +. It is more convenient for us to deal with the
quadratic asymmetry form A ,+, although all that is stated below is applicable to
the sesquilinear asymmetry form w + as well: we recall that the forms A+ and

31t is also easy to verify that the deficiency indices of the initial symmetric operator H are
minimum, my = n/2 = 1 (see Sect. 6.2).
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o s+ determine each other; see Sect. 3.2. This section is comparatively independent
of the previous section, and for its completeness, we cite some basic notions.

The first observation is as follows. For ordinary differential operators, it is
convenient to represent finite-dimensional deficient subspaces D+ (4.43) in terms
of their orthogonal decompositions (4.47), i.e., to represent deficient vectors ¥4 in
terms of their expansion coefficients c4 x, which are dimensionless by definition.
Namely, under a certain choice (arbitrary, but fixed) of the orthogonal basis
{ei,k}’lni in D4, the deficient subspaces Dy and D_ can be identified with
the respective finite-dimensional Euclidean linear spaces (C’_"FJr of m4-component
columns {c4«}; " and C"~ of m_-component columns {c_}{'"", Dy < CI*
and D_ < C”-. In this representation, the quadratic asymmetry form, which is
defined on the natural domain D;(a, b)y=D+ = D7+ D +D_, butis nontrivial

only on D4 + D_, becomes

er m—
At () = 2ik (Z i’ =) |c_,k|2) , (4.100)

k=1 k=1

or the quadratic form (1/2ix)A ;+ becomes a canonical diagonal Hermitian form
in the complex linear space C"+ %"~ = C/* 4+ C”-, the direct sum* of the
spaces (C'rr and C™- giving contributions of opposite signs to the quadratic
form. The deficiency indices m4 determine the signature of this quadratic form,
sgn (1/2ik)A p+ = (m4,m-), and manifest themselves as its inertia indices; we
recall that m4 < n, where n is the order of the differential operation fv ; see Sect. 4.4.
For brevity, we call representation (4.100) the canonical diagonal form for A ;+ and
call m, m— its inertia indices, by this is actually the form (1/2ik)A ;+.

We can examine the problem of symmetric and s.a. extensions of the initial
symmetric operator f in terms of the expansion coefficients c4 ;. We can repeat
all the arguments in Sects. 3.3 and 3.4 resulting in the main theorem with the same
conclusions in these terms. In particular, if the inertia indices are equal, m+ = m,
the isometries U : C" +—— C™ that are directly given by unitary m X m matrices
U provide the vanishing of the forms A+ and w,+ and thereby produce the

m?-parameter family { fU, U € U(m)} of s.a. extensions of the initial symmetric
operator f.

We now observe that we can choose an arbitrary mixed basis {ej }T++m_ in the
direct sum D + D_ such that

my+m—

Vi Y- = Y e (4.101)
k=1

33We recall that this sum is direct, but not orthogonal.
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Correspondingly, the basis in C"+1™~ also changes, and the form A ¢+ becomes

m4+m—
Apt (Yx) = 2ik Z CrowkiCl, (4.102)
k=1
where (m 4 +m_) x (m4 +m_) matrix ® = ||wg/|| is dimensionless and Hermitian,

w1 = g , or (1/2ik)A s+ becomes a general Hermitian quadratic form, of course
of the same signature. We can reduce representation (4.102) to canonical diagonal
form (4.100) in a standard way>* and repeat the already known arguments with the
same conclusions.

The second observation includes some suggestions. In the case of differential
operators, the quadratic asymmetry form A ;+ is expressed in terms of the quadratic
boundary forms, the boundary values of the quadratic local form [/, W*]f (x) in
functions and their (quasi)derivatives; see representations (4.36) and (4.37). We
know that for an even s.a. differential operation f of order n, the boundary forms,
both sesquilinear and quadratic, at a regular endpoint are finite nontrivial forms of
order n in finite boundary values of functions and their quasiderivatives of order
up to n — 1, see (4.14), which considerably simplified the analysis of s.a. boundary
conditions in the previous section. More specifically, let the left endpoint a of the
interval be regular. As is evident from representation (4.97) for the sesquilinear form
o s+ in terms of boundary forms, the left quadratic boundary form [V«, Y] ; (@) is
represented as

[V, Yl (@) = U (@)W (a), (4.103)

where the n-column W, (a) is given by (4.68) with the change of subscript U — x,
and the n x n matrix £ is given by (4.66). Of course, a similar representation holds
for the right boundary form [/, ¥«] ; (b) if the right endpoint b is regular.

To our knowledge, the notion of quasiderivatives and similar assertions are absent
for odd and mixed s.a. differential operations. However, we can prove the following
lemma.

Lemma 4.23. For any s.a. differential operation of finite order, the sesquilinear and
quadratic boundary forms at a regular endpoint are finite forms in the respective
boundary values of functions and their derivatives of order up ton — 1.

Proof. According to (4.13), the anti-Hermitian sesquilinear local form

(X, W*]f (x)

34The so-called reduction to the principal axes of inertia by invertible linear transformations of the
expansion coefficients.



162 4 Differential Operators

for an s.a. differential operation f of order n on an interval (a,b) allows the
representation

e Wl y ) =i Y 200 @ () v () (4.104)
k=1
inside the interval, where the Hermitian n X n matrix @(x) = | (x)]| is

continuous. We prove that this matrix has a finite limit at a regular endpoint, i.e.,
it is continuous up to a regular endpoint. For brevity, we speak about continuity
at a regular endpoint. The proof is based on the continuity of the sesquilinear
local form [x«, ¥x] ; (x) at any endpoint and the continuity of functions wik_l) (x),

k = 1,...,n, at a regular endpoint. Let the left endpoint a be a regular endpoint.
We take a collection of functions Y. (x), @ = 1,...,n, so that the n X n matrix
w(x) = | vy |. which is continuous at the left endpoint a, is nonsingular

on an interval [a,a + €], where € is sufficiently small.’> We then consider the

n x n matrix £2(x) = [V, Vgl s (x). According to (4.104), this matrix allows
the representation

20x) = ¥ )@ () ¥ (x), ¥ (x) = (),
inside the interval, whence follows the representation
@) = (@) T'2) @)™

for the matrix @(x). Because all the matrices on the right-hand side of this
representation are continuous at the regular endpoint @, the matrix w(x) is also
continuous at this endpoint, i.e., the matrix @(a) exists and is finite. This means
that representation (4.104) can be extended to x = a, i.e., to the left sesquilinear
boundary form [y, V«]; (a) and therefore to its reduction to the diagonal, the
quadratic boundary form [{«, ¥« ; (@). Similar arguments are applicable to the
right regular endpoint b, which completes the proof of the lemma. O

This lemma allows considering even and noneven s.a. differential operations f
on an equal footing. The only difference is that derivatives for the general f are
replaced by quasiderivatives for even f .

Because the boundary values of functions and their (quasi)derivatives are
generally dimensional, it is convenient to introduce dimensionless quantities c
coinciding with derivatives 1//>(kk_l), or quasiderivatives 1//>[kk_1] for even f ,at a
regular endpoint up to a corresponding dimensional factor. It is also convenient to
redefine the dimensional matrix elements @y, (a/b), if they occur, by a dimensional

35For example, we can take functions ¥, such that wﬂi;l)(xo) =8k, xo € [a.a + €]
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factor, Wy (a/b) — wii(a/b), where wy;(a/b) are dimensionless.>® Then the left
quadratic boundary form for an s.a. differential operation f of order n with a regular
endpoint a becomes®’

[V, ¥ (@) = 2ik Y ex(@wri(@)ei(a), wrila) = op(), (4.105)

kil=1

where ci(a), k = 1,...,n, are boundary values of (quasi)derivatives of . of
respective orders 0, 1,...,n — 1 at the left endpoint @ up to some arbitrary, but
fixed, dimensional factor, its own for each k, so that all ¢ (a) are dimensionless, the
Hermitian n x n matrix w(a) = ||wk;(@)|| is also dimensionless, and « is a common
dimensional factor of the dimension of f . The common dimensional factor 2ix
is extracted for the convenience of further comparisons. In principle, the number
p(a) of essential parameters ci(a) in (4.105) could be less than n if the matrix
wii(a) were singular, i.e., rankw(a) < n, but we show below that p(a) = n, or
rank w(a) = n for a regular endpoint.*®

A similar representation holds for the right boundary form [V«, ¥«] (b) if the
right endpoint b is regular:

[V, Y] (b) = 2ic D cx(D)wri(b)ei (b), i (b) = wix (b), (4.106)

k=1
with a similar meaning of the quantities ¢, (b), k = 1,...,n, and a dimensionless
Hermitian n x n matrix w(b) = ||wx(D)||. Again, the number p(b) of essential

parameters ¢ (b) is equal to n, or rank w(b) = n.
For a singular endpoint where the functions belonging to D;(a, b) and their

(quasi)derivatives can have singularities, an evaluation of the corresponding bound-
ary form, which is certainly finite, is generally nontrivial. Our suggestion is that
the quadratic boundary form at a singular endpoint is a quadratic form in finite
dimensionless coefficients of asymptotic expansions of the functions belonging to
D;(a, b) at the endpoint. More specifically, let the left endpoint a be singular for

an s.a. differential operation f of order n. We assume that the asymptotic behavior
of the functions belonging to D}(a, b) at this endpoint can be represented as

pla)

Yalx) = Y i@ Vask (@, X) + Yasla. ). x > a, 4.107)

k=1

36We clarify this point below by the example of a regular even s.a. differential operation.
37From this point on, we omit the subscript f in the symbol of boundary forms.
38For even s.a. differential operations, this is evident from (4.103).
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the sum of leading asymptotic summands ]f(;’; cr (@) Yk (a, x) and an irrelevant

summand FIEaS (a, x); the (quasi)derivatives of order up to n — 1 for . (x) are given
by directly differentiating representation (4.107). The functions ¥,sx (@, x) are lin-
early independent functions, generally singular together with their (quasi)derivatives
as x — a, that give finite contributions to the left quadratic boundary form
[V, ¥«] (@), so that this form is a finite quadratic form in the independent dimen-
sionless coefficients cx(a), k = 1,..., p(a), of asymptotic expansion (4.107):

pla)

[V Y] (@) = 2ik Y cx(@wri(@)ei(a). wi(a) = wla), (4.108)

k=1

where the Hermitian p(a) x p(a) matrix w(a) = ||k (a)| is dimensionless. This
representation of the left quadratic boundary form for a singular endpoint is similar
to representation (4.105) for a regular endpoint, but the meaning of the coefficients
¢k (a) and matrix elements wy, (@) is different, in particular, generally p(a) # n. The
functions Y51 (a, x), k = 1,..., p(a), in particular, their number p(a), are specific
for a given singular f . We show below that p(a) < n. The functions st (a, x) give
no contribution to the left boundary form. Representations similar to (4.107) and
(4.108) with the change a — b,

pb)
Ya(x) = Y ck(B)Wusk (b, x) + Yas(b.x), x — b, (4.109)
k=1
p(b) _
[V, Y] (b) = 21 Y cx(B)ogi(b)er(b), wra(b) = wix (b), (4.110)
k=1

hold for the singular endpoint . The functions Vs (a, x) and Y5k (b, x), their
numbers p(a) and p(b), and the matrices w(a) and w(b) are generally different.
If the left or/and right boundary form is trivial, i.e., is identically zero,”® we
respectively set p(a) = 0 or/and p(b) = 0.

We thus obtain that in the general case, the quadratic boundary forms are
expressed in terms of the dimensionless coefficients proportional to the boundary
values of functions belonging to D’)';(a, b) and their (quasi)derivatives (the case of a

regular endpoint) and/or in terms of the dimensionless coefficients ¢ of asymptotic
expansions (4.107), (4.109) (the case of a singular endpoint). We combine these
quantities into one set under the name of asymptotic boundary coefficients (a.b.
coefficients in what follows). Because the boundary forms at different endpoints of
the interval (a, b) are independent, see Sect. 4.3, the independent left a.b. coeffi-
cients ¢k (a), k = 1,..., p(a), and right a.b. coefficients cx(b), k = 1,..., p(b),

3This is possible for a singular endpoint; examples are given below.
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are naturally distinguished. As a result, the set CP@ of left a.b. coefficients that
is the linear space of p(a)-component columns {c(a)}} @ s associated with the
left endpoint a, while the (independent) set C*®) of right a.b. coefficients that is
the linear space of p(b)-component columns {c (b)}" ®) s associated with the right

endpoint b. If the endpoint a for a given s.a. differential operation f of order n is
regular, then p(a) = n, and the same holds for the right endpoint . The whole
number of a.b. coefficients is the sum p(a) + p(b).

At present, we do not know a universal recipe for finding the a.b. coefficients for
singular endpoints; a solution of this problem remains a matter of craftsmanship.
We can only make a suggestion. Its validity is confirmed by examples considered
in subsequent chapters, but its applicability to the general case is not clear now.
The suggestion is that the set {{¥,sx(x)} of leading asymptotic functions for a
singular endpoint is the set of the fundamental solutions of the homogeneous
equation f u = 0 that are square-integrable at this endpoint, in other words, the
asymptotic behavior of functions ¥, at the singular endpoint is described by linear
combinations of such fundamental solutions. Because of the requirement of square-
integrability, the number of a.b. coefficients for a singular endpoint can be less than
the order n of f . It may happen that the set of a.b. coefficients for some singular
endpoint is empty, in which case the boundary form at this endpoint is trivial.

Let the (p(a) + p(b))-component column {cx}{ @+r®) combine the left and
right a.b. coefficients for a function 1. (x) belonging to D;(a, b),

(et = (1@ [tam®).

Such columns form the linear space CP@+7®) = Cr@ 4 CP®) and the quadratic
asymmetry form A (4 becomes an (anti-Hermitian) quadratic form in this space:

p(b)
At () = [V Yl 1 = 21 Y e (B)wri (b)ei(b)
kl=1
pla) p(a)+p(b)
—2ik Y G(@wu(@)e(a) =2k Y Gowe,  (4111)
k=1 k=1

where the dimensionless (p(a) + p(b)) x (p(a) + p(b)) Hermitian matrix @ =
|l || is block diagonal,

o = diag (—w(a), w(b)), 4.112)

and the contributions of the right and left a.b. coefficients enter additively.
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The representation (4.111) for A ;+ () can be reduced to a canonical diagonal
form*® in a standard way by invertible linear transformations of a.b. coefficients
ck. Such a reduction can be done separately for the forms [V« V«](a) and
[V«. V4] (b) (again, we actually mean the Hermitian forms (2ik) ™" [V« V«](@)
and (2ik) ! [, ¥ ](b), or the respective Hermitian matrices w(a) and w(b)) by
invertible linear transformations of the respective a.b. coefficients ¢ (a) and ci (b)
to yield

m4(a) m—(a)

[V ul(@) = 2ic | Y lesw(@’ = D le—r@* ], (4.113)
k=1 k=1
my (b) m—(b)

[V, Yl (b) = 2ikc [ Y ek = Y le—x D) | (4.114)
k=1 k=1

where c4 ;(a) and c4 i (b) are certain linear combinations of the respective a.b.
coefficients cx(a) and cx (b). It is natural to call these quantities the respective left
and right diagonal a.b. coefficients. The integers m 4 (a) and m4 () are the inertia
indices of the respective boundary forms [V, ¥«](a) and [V, ¥«](D),

my(a) +m-(a) = p(a), my(b) +m—_(b) = p(b).

In terms of the diagonal a.b. coefficients, the quadratic asymmetry form A ;4
becomes

m+(b) m—(b)

Ape () =2ik | | D lesx®)F = D e @)
k k=1

m (@) m—(a)
2 2
— D lerk@P = Y le—r(@)
k k=1
m 4 (b)+m—(a) m—(b)+m4(a)

=2ik| Y ewiP— D k). @115)

k=1 =1

where the (m 4 (b) + m_(a))-component columns {ct :"+(b)+m_(a) and (m_(b) +

m4(a))-component columns {c_ 'lnf(b) @ of the diagonal a.b. coefficients
combine the partial right and left diagonal a.b. coefficients c+ (b) and c+ i (a)

respectively as follows:

40We recall that by this, we actually mean the Hermitian form ﬁ A £+ this reduction is equivalent
to reducing the Hermitian matrix @ to a canonical diagonal form.
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el = (e @7 e k@i =),

fe_ @ <{c_ b)Y~ ()/{c_,_k(a)}er(u)) (4.116)

The inertia indices of A ;+ as the quadratic form in the a.b. coefficients are m. (b) +
m—(a) and m_(b) + m4(a). Of course, there are different, but equivalent, ways
of reducing the form A ;+ to a canonical diagonal form with other diagonal a.b.
coefficients. !

It now suffices to compare representations (4.102) and (4.111) and representa-
tions (4.100) and (4.115) of the same quadratic asymmetry form in terms of the
quantities ¢x and c+, the respective expansion coefficients and a.b. coefficients
different as to their origin, to reach some important conclusions.

The first conclusion is that the a.b. coefficients must be identified with the
expansion coefficients in (4.101) under a certain choice of the basis {e }; "
the direct sum D4 + D_ of the deficient subspaces; that is why we intentionally
let the same letters denote the expansion coefficients and the a.b. coefficients.
We can say that in the case of differential operators, the nonzero contributions to
the quadratic asymmetry form A+, which owe their existence to the deficient
subspaces, are completely determined by the a.b. coefficients for the functions
belonging to the natural domain D* (a b), more exactly, to their (D4 + D.)-

components; it is only the asymptotlc behavior of these functions at the boundary

of the interval (a, b) that is significant. Correspondingly, the total number of a.b.
coefficients is the sum of the deficiency indices,

p@) + pd) =my +m—, (4.117)

and the signature of A ,+ considered as the quadratic form in a.b. coefficients, see
(4.115), determines the deficiency indices m+ identifying them with the inertia
indices of this form,

my =my(b) +m_(a), m— =m_(b) + my(a). (4.118)

Equality (4.117) allows us to establish certain relations between the numbers
p(a) and p(b) of the respective left and right a.b. coefficients, the deficiency indices
mx, and the order n of a given differential operation. In the general case, we have
my < nand my 4+ m_ < 2n, so that the total number of a.b. coefficients cannot
exceed 2n, p(a) + p(b) < 2n.

We now show that if the endpoint a is regular, then p(a) = n. Let f;a be the
restrictions of the initial s.a. differential operation f to the interval (a,«), a <
a < b. It is evident that f:m is a regular s.a. differential operation of the same
order n; therefore the deficiency indices m,q + of the associated initial symmetric
operator f:m are equal to n. It is also evident that the endpoint « is regular and
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therefore p(a) < n. Because p(a) < n, equality (4.117) (with b — «) yields
p(a) = p(a) = n. If the endpoint b is regular, we similarly obtain that p(b) = n.

Let the endpoint a be singular. Considering the restrictions f:,a of the initial s.a.
differential operation f to the interval (a,«), a < o < b, and taking into account
equality (4.117) with b — « and p(«) = n and the inequality M4 + + Mo — < 2n,
we obtain that p(a) < n. If the right endpoint b is singular, similar arguments show
that p(b) < n.

We thus obtain that the number of a.b. coefficients for any endpoint does not
exceed n.

In the case of even s.a. differential operations, we are able to make several
additional assertions, in particular, to confirm some facts from the previous sections
in a simple way. For an even s.a. differential operation, the deficiency indices of the
associated initial symmetric operator are always equal, m+ = m, and we obtain the
equality

m=31p@+ p(b)]. .119)

We dwell on the interesting case, considered in Sect. 4.4, that one of the endpoints
of the interval (a, b), let it be a, is regular, while the second endpoint b is singular.
In this case, we have p(a) = n, while p(b) < n and we obtain the estimate n/2 <
m < n known since (4.48). It also follows from (4.119) that p(b)/2 is integral,
which implies that in the case of the generic even s.a. differential operation, both
p(a) and p(b) are even integers. Moreover, as follows from (4.119), a necessary
and sufficient condition for the equality m = n/2is p(b) = 0, i.e., the triviality of
the boundary form at the singular endpoint. As to the sufficiency, it is the assertion of
Lemma 4.16; the necessity is its promised converse. The following remark can also
be useful. As follows from representations (4.103) and (4.95), (4.96), the inertia
indices of the left boundary form at a regular endpoint a are equal to n/2 each,
m+(a) = n/2. The equalities (4.118) with m+ = m together with the equality
p(b) = my(b) + m_(b) then show once again that n/2 < m < n and that p(b)
is an even integer. In addition, these equalities show that the inertia indices of the
right boundary form at the singular endpoint b are equal, m(b) = m_(b), which
implies that for the generic even s.a. differential operation, the inertia indices of
each, left and right, boundary form are equal. The last remark is as follows. Let
us divide the interval (a, b) into two subintervals (a, ¢) and (c, b), where ¢ is an
arbitrary interior point of (a, b). We examine the restrictions fv_ and f+ of the initial
s.a. differential operation f to the respective subintervals. The corresponding initial
symmetric operators f_ and f+ have the respective deficiency indices

my) =m =1/2[p@ + p@]. m” =m™ =1/2[p(c) + p(®)).
But the point ¢ is certainly a regular endpoint for both subintervals, and therefore,

p(c) = n. Then (4.119) and the last two equalities result in the relation m =
m™) 4+ m™) — n between the deficiency indices of the initial symmetric operator
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f and those of the symmetric operators f_ and f+, which reproduces the already
known relation (4.52).

We see that the consequences of the first conclusion are rather extensive.

The second conclusion is that representation (4.111) of the quadratic asymmetry
form A ;+ in terms of the a.b. coefficients {ck}f @+p@) , as well as representation

(4.102) of A s+ in terms of the expansion coefficients {ck }T++m7, allows a com-
plete solution of the problem of constructing s.a. operators in L?(a, b) associated
with the initial s.a. differential operation f similarly to that in Sects. 3.3 and 3.4
with the same conclusions. These s.a. operators, if they exist, are s.a. restrictions of
the operator f A+ associated with f and defined on the natural domain D* (a b) and
are specified by (asymptotic) s.a. boundary conditions. We formulate a ﬁnal result
as a theorem that can be considered a version of the main theorem, Theorem 3.4,
for ordinary differential operators. When formulating its conditions, we repeat the
whole set of conditions and facts given and discussed above, so that the theorem can

be read independently of the previous text.*!

Theorem 4.24. Let f be an s.a. differential operatlon of order n on an interval
(a,b). Let f A+ be the operator associated with f and defined on the natural domain
va(a, b). Let this domain be assigned a linear space CPOTP®) of a.b. coefficients

that is the space of (p(a) + p(b))-columns {ci}} @+p@) of dimensionless constants
characterizing the (asymptotic) behavior of functions Y« (x) belonging to D;(a, b)
at the endpoints a and b of the interval and having the following origin and
properties. The space CP@O+P®) s g direct sum of two linear spaces CP“ and
CP®), where CP@ is the space of p(a)-component columns {ci (a)}f(a) of left a.b.
. . b ;
coefficients and CP®) is the space of p(b)-component columns {cy (b)Y ® of right
a.b. coefficients, so that

cr(a), k=1,..., p(a),
Ck—p(a)(b)v k = p(a) + lv e "p(a) + p(b)v

or

O _ [ L@y
{C }17 r ({C (b)}P(b))

For regular endpoints** a/b, the respective a.b. coefficients are boundary values
of functions and their (quasi)derivatives of order k = 0,...,n — 1, so that

4'Which is partly done for future reference.

“2The symbol a/b means a and/or b depending on whether both endpoints a and b are regular or
one of the endpoints, a or b, is regular.
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p(a/b) = n, up to some dimensional factor, its own for each k, rendering the
a.b. coefficients dimensionless: ci(a/b) ~ y*=V(a/b) or y*=(a/b) for even f
For singular endpoints a/b, the a.b. coefficients are the coefficients of asymptotic
expansions

p(a/b)
Yu(x) = Y crla/b)usi(a/b.x) + Vus(a/b.x). x — a/b (4.120)

k=1

(see (4.107) and (4.109)), where Yo (a/b, x), k = 1,..., p(a/b) < n, are linearly
independent functions that give finite_nonzero contributions to the respective
boundary forms [V, V] (a/b), while ¥ ,(a/b, x) give no contribution; for even
f , p(a/b) are even integers. The (quasi)derivatives of functions ¥« (x) of order up
ton—1as x — a/b are given by directly differentiating asymptotic representations
(4.120). In any case, the boundary forms allow the representations, see (4.105),
(4.108), (4.106) and (4.110),

pla/b)

[V, ¥l (a/b) = 2ik Y ci(a/b)ww(a/b)cila/b),

k=1

as quadratic forms in the dimensionless a.b. coefficients ci (a/b) with dimensionless
(p(a/b) x p(a/b)) Hermitian matrices w(a/b) = |wki(a/b)||; k is a factor of
dimension of f . The quadratic asymmetry form A ,+ is then represented as a
quadratic form in the a.b. coefficients ci, see (4.111) and (4.112),

pa)+p(b)

Ape ) = [P Yu0) =[P ¥l (@) = 2ic - Y Gower.  (4121)

k=1

where the dimensionless (p(a) + p(b)) x (p(a) + p(b)) Hermitian matrix @ =
ki || is block-diagonal®

w = diag (—w(a), w(b)). (4.122)

The Hermitian form (Zi/c)_1 A s+, or the matrix w, can be reduced to a canonical
diagonal form (a reduction to principal axes of inertia) by invertible linear
transformations of the a.b. coefficients. This reduction can be done by separately
reducing the Hermitian boundary forms (2ik)™" [V« ¥«] (a/b), see (4.113) and
(4.114),

“In some cases, the a.b. coefficients arise as numbers of the same nonzero dimension, in which
case the factor 2ik changes to a pure imaginary factor of appropriate dimension, while the matrix
 remains dimensionless.
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my(a/b) m—(a/b)
[V ull@/b) =2ic [ D" ey i@/ = D le—i(a/b)f |.
k=1 k=1
where the diagonal a.b. coefficients {c+ (a/ b)}:ﬂi(u/ Y are certain linear combina-

tions of the respective a.b. coefficients {ci(a/b)}V @?) The integers my(a/b) are
the inertia indices of the respective forms

Qik) ™" Y. Y] (a/b), my(a/b) + m_(a/b) = p(a/b).

If fv is even, then the inertia indices are equal, so that we have my(a/b) =
m—(a/b) = n/2 for regular endpoints a/b and my(a/b) = m_(a/b) =
p(a/b)/2 for singular endpoints a/b. The quadratic asymmetry form is then
represented as, see (4.115),

m+ m—
A (¥s) = 2ik (Z S |c-k|2) , (4.123)

k=1 =1

where the diagonal a.b. coefficients{c+ k}'lni,
my = my(b) +m_(a), m_ = m_(b) +m(a),

are given by

cip, k=1,...,my(b),

Ctp =
{ CF k—my by, kK =me(D) +1,... ,myg,

or

fear)i® = ({C:I: k}Ti(b)/{C:F k};lu(a))’

where the inertia indices my and m_ of the Hermitian form (2ik)”" Apt are
the deficiency indices of the initial symmetric operator f associated with f,
2 + X . L
f= (f+) ; for even f these indices coincide, m4 = m_.

Under the above conditions, the following assertions concerning s.a. differential
operators associated with a given s.a. differential operation f hold:

(i) If the inertia indices are different, my # m_, which is possible only for odd
or mixed s.a. differential operations, there exists no s.a. differential operator
associated with f .

(ii) If the inertia indices are zero, m+ = 0, which implies that all the a.b.
coefficients are zero and the quadratic asymmetry form A ;+ is trivial, which
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is possible only if both endpoints, a and b, are singular, then a unique s.a.
differential operator associated with f is the operator f +

(iii) If the inertia indices are equal and nonzero, my = m > 0, then there
exists an m>*-parameter U(m) family {fy, U € U(m)} of s.a. operators,
associated with fv . Any s.a. operator fU is a restriction of the operator
f T and is specified by (asymptotic) s.a. boundary conditions defined by

an m x m unitary matrix U = ||Uy| establishing the isometric rela-
tion
{e—it = U ey s (4.124)
or
m
ek =Y Uncy, (4.125)

between the diagonal a.b. coefficients {c—}|' and {c+}\'. Conversely, an
isometric relation (4.124), or (4.125), between the diagonal a.b. coefficients
with an arbitrary m x m unitary matrix U defines an s.a. operator associated
with f.

In other words, the domain Dy, of an s.a. operator fU associated with f is
a subspace of functions ¥« (x) belonging to the natural domain D*(a,b) and

additionally satisfying (asymptotic) s.a. boundary conditions defined by (4.124), or
(4.125). If f is regular, i.e., both endpoints of the interval are regular, then the s.a.
boundary conditions can be given a conventional form of a finite relation between
the boundary values of functions and their (quasi)derivatives of order up to n — 1
at the endpoints—this relation is determined by relation (4.124), or (4.125)—and a
linear relation connecting these boundary values with the diagonal a.b. coefficients.
If at least one of the endpoints a /b is singular and the associated a.b. coefficients are
not identically zero (the corresponding boundary form [«, ¥«](a/b) is nontrivial),
then the corresponding asymptotic s.a. boundary conditions are given by asymptotic
expansions (4.120), by a linear relation connecting the a.b. coefficients, including
the boundary values of functions and their (quasi)derivatives of order up to n — 1
at a regular endpoint if it exists, and the diagonal a.b. coefficients, and by relation
(4.124), or (4.125), between the diagonal a.b. coefficients.

In the case of even s.a. differential operations where my (a/b) = m_(a/b) =
p(a/b)/2, the matrix U can be of a block-diagonal form

U = diag (U(b), U(a)). (4.126)

where the p(a)/2 x p(a)/2 unitary matrix U(a) establish an isometric relation
between the left diagonal a.b. coefficients c_(a) and c4 (@) (associated with the
left endpoint ), while p(b)/2 x p(b)/2 unitary matrix U(b) establish an isometric
relation between the right diagonal a.b. coefficients ¢ (b) and c_ (b) (associated
with the right endpoint ). We call the (asymptotic) s.a. boundary conditions defined
by a unitary matrix U of block-diagonal form (4.126) the split s.a. boundary
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conditions, they are divided into two separate independent sets of (asymptotic)
boundary conditions for each endpoint of the interval, see also Sect. 4.6.

As an illustration, we consider an application of the asymmetry form method to
regular even s.a. differential operations. This method allows us to solve completely
and simply the problem of constructing s.a. differential operators associated with
such operations.

Let f be a regular even s.a. differential operation of order n on a finite interval
[a,b]. A reduction of representation (4.97) for the sesquilinear asymmetry form
w ¢+ In this case to the diagonal y» = ¥ yields the following representation for
the quadratic asymmetry form**:

At () = VT () EWL (b) — W (a) EWs (a) (4.127)

where the n x n matrix £ is given by (4.66), while the n-columns ¥, (a) and ¥, (b)
are given by (4.68) with the change of subscript U — x,

U (@) = vE V@), v ) = vV 0y k=1,....n.

We now make an important preliminary remark related to dimensional con-
siderations. In the mathematical literature, the variable x and functions ¥, are
considered dimensionless, so that the quantities v, ,Ll], e, ,L"_l] are of the
same zero dimension, as well as the differential operation f itself. Therefore,
when comparing representation (4.127) with representation (4.121) and (4.122),
where p(a) + p(b) = 2n and k = 1, as is conventionally adopted in the
mathematical literature, we could immediately identify the a.b. coefficients {ck}%"
with the corresponding boundary values,

et = (@) o)),
and the 2n x 2n Hermitian matrix @ would be w = (1/2i)diag (=€, ). But in
physics, the variable x is assigned a certain dimension, the dimension of length,
which we write as [x] = [length], whereas [V«] = [length]_l/ 2. If we assume
that the first coefficient function f, (x) of f is dimensionless,* then [WLH] =
[length] *~1/2, [f] = [length]™, and [A ;+] = [length]™".

According to our convention, the left and right a.b. coefficients ¢, (a/b) coincide
with the respective boundary values 1//,Lk_1] (a/b) up to a dimensional factor, specific
for each k, so that all the a.b. coefficients are dimensionless, or are of the same
dimension, and the matrix w is dimensionless. In our case, this can be accomplished
as follows We introduce an arbitrary, but fixed, parameter t of dimension of length,

#We could equivalently use representation (4.103) for the quadratic boundary form at a regular
endpoint.

4Which can always be done by multiplying f by an appropriate inessential constant dimensional
factor.
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[t] = [length] (in particular, we can take the length [ = b — a of the interval for
such a parameter), and define the n-columns of left and right a.b. coefficients by

{ck(@/b)}i = (Wek (a/b)} = We(a/b), Yok (a/b) = 'yl (ayb).

All the a.b. coefficients are of dimension [length]_l/ 2 In terms of these a.b.
coefficients ¥, (a/b), the asymmetry form A ;- is represented as

Apr (o) = "W (B) WL (0) — ¥ (@) EW: (a)]

and the matrix  is the same. We can now proceed to reducing the Hermi-
tian form —it"~'A s+ (¥x) to a canonical diagonal form. We separately reduce
the left and right Hermitian quadratic boundary forms —i ¥t (a) £V, (a) and
—iWF (b) E¥, (b) to a canonical diagonal form, which is equivalent to diagonal-
izing the matrix —i €. But the latter has already been done; see (4.95) and (4.96).
The final representation for A ;+ is

A (Yu) =it "W v — vt ], (4.128)

where the n-component columns ¥; 4 and ¥, _ of the diagonal a.b. coefficients are
given by

Vip =Wt b) /Wi (), Yo = (- (D) /Y4 (a)), (4.129)

where in turn ¥, 4+ (a/b) are the n/2-component columns with the components
.1k (a/b),k =1,...,n/2, given by

Vers (a/b) = @ [ @y it P @p)] @0

Wi (afb) = \E [y (@) — i Py L gy
(4.131)

According to Theorem 4.24, it follows from representation (4.128) that the s.a.
boundary conditions specifying an s.a. operator fy are given by

Wy, =UWy, 4, (4.132)

where U is an n x n unitary matrix and the columns ¥y ; 4 differ from the general
columns ¥, 4 (4.129)—(4.131) by the change * — U of the index at the functions
indicating the belonging of the corresponding functions to the domain Dz, of fU.
As U ranges over all the group U (1), we obtain the whole n?-parameter U (1)
family { fU, U € U (n)} of s.a. differential operators associated with the given
regular even s.a. differential operation f of order n.

We complete this item with several obvious remarks.
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Remark 4.25. (1) We used the same symbol fU to denote s.a. operators associated
with f as in Sect. 4.6, although the subscript U here has a somewhat different
meaning. In the previous context, the subscript U was the symbol of an
s.a. extension of an initial symmetric operator f generated by an isometry
U : D +—— D_ of its deficient subspaces. In the present context, this is
the symbol of an s.a. restriction of the adjoint operator f T = f * generated by
the isometric mapping (4.132) of one set of diagonal a.b. coefficients to another
one.

(2) We could organize the column ¥, _ in a different way, for example, as follows:

v, — BV, = (lpr-l-(a)/lp —(b))v

where Z = antidiag (/,/) is an n x n unitary matrix, / is the n/2xn/2
identity matrix. Then the unitary matrix U in (4.132) would change to the
matrix Z U, which is also unitary.

(3) Itis evident that we can define s.a. boundary conditions by the relation ¥, =
UW, _. To this end, it is sufficient to make the replacement U — U -1
(4.132).

(4) If the matrix U in (4.132) is of block-diagonal form (7.6), U =diag (U (b),
U (a) ), where U (a) and U (b) are n/2 x n/2 unitary matrices, we obtain the
split s.a. boundary conditions

Vip (@) =U(@¥:—(a), ¥:—(b) =U (b) ¥4 (b).

The asymmetry form method also works well as applied to singular even s.a.
differential operations fv in the case that one endpoint of the interval, let it be the
left endpoint a, is regular, while the second one, the right endpoint b, is singular
and the right boundary form is trivial, [V, ¥«] (b) = 0. In this case, the asymmetry
form A ;+ allows the representation following from (4.128) with ¥, + (b) =0:

Apr (Yu) = it " W (@) Yo (@) = W (@) Wy (a)], (4.133)

where the n/2-component columns ¥; 1 (a) of the left diagonal a.b. coefficients are
given by (4.130) and (4.131). It follows from representatlon 4. 133) that the s.a.
boundary conditions specifying an s.a. operator fU associated with f are given by

lI/U,t + (a) = UWU,I— (a) s (4.134)

where U is a unitary n/2 x n/2 unitary matrix and the columns ¥y, 4+ (a) differ
from the general columns ¥, 4 (a) (4.130) and (4.131) by the change * — U of the
index at the functions indicating the belonging of the corresponding functions to the
domain D g, of fU. As U ranges over all the group U (n/2), we obtain the whole
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(n/2)*-parameter U (n/2) family { fy, U € U (n/2)} of s.a. differential operators
associated with the given singular even s.a. differential operation f of order n.

Of course, we can interchange the columns ¥; _ (a) and ¥, 4 (a) in (4.134), as
well as repeat a remark similar to Remark 4.25 following (4.132) and concerning the
new meaning of the symbol fy. We also note that representation (4.133) manifestly
confirms the above assertion about the deficiency indices of the initial symmetric
operator f associated with a singular s.a. differential operation f of order n in the
case that one endpoint of the interval is regular while another endpoint is singular:
for f to have the minimum possible deficiency indices (n/2,n/2), it is necessary
and sufficient that the boundary form at the singular endpoint be trivial.

In conclusion, we note that the specification of s.a. differential operators asso-
ciated with such s.a. differential operations by s.a. boundary conditions (4.134) is
in complete agreement with the previous specification according to Theorems 4.17
and 4.22. We only repeat that the application of Theorem 4.17 requires an explicit
evaluation of the deficient subspaces and that the matrix A/, in Theorem 4.22 is
defined up to the change A, — Ai/»Z, where Z is a nonsingular matrix, while
s.a. boundary conditions (4.134) do not require evaluating the deficient subspaces
and contain no arbitrariness.



Chapter 5
Spectral Analysis of Self-adjoint Operators

5.1 Preliminaries

Constructing an s.a. operator for a given physical quantity is only the first part of the
QM problem associated with this quantity. The second part is solving the spectral
problem, i.e., a spectral analysis of the obtained observable. In this book, we mainly
deal with s.a. differential operators, at least in what concerns physical applications.
In spectral analysis of operators, we restrict ourselves to finding their spectra and
deriving formulas for (generalized) eigenfunction expansions; following' [9, 116],
we call the latter the inversion formulas. These formulas are a foundation for a
physical probabilistic interpretation of measuring the observable.

Before going into mathematical details, we outline a treatment of spectral
analysis conventional for physics literature, or a physical approach to the spectral
problem; in passing, we briefly recall basic notions concerning the spectrum of an
s.a. operator; see Chap. 2.

Standard textbooks on QM for physicists treat the spectral problem as the
eigenvalue problem similarly to the finite-dimensional case. We recall that a number
A € Cand a vector §, € D are respectively called an eigenvalue of the operator f

and an eigenvector of f corresponding to the eigenvalue A if
fMa=0fW=F-rl=f~ip, (5.

or & € ker f (A), the eigenspace of f corresponding to the eigenvalue A; see
Sect.2.3.1. In the finite-dimensional case, the spectrum spec f of an operator f
is defined as the set of all its eigenvalues, spec f {A : ker f (A) # {0}}. The
operator R (z) = ( f (z))~! does not exist for z € spec f whereas for all other z,

'There exist recent monographs on spectral theory for unbounded self-adjoint operators and its
application to QM; see for example [43,92,95, 145].

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 177
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_5,
© Springer Science+Business Media New York 2012
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Z ¢ spec f , it exists and is bounded. In the n-dimensional Euclidian space with a
fixed basis, an s.a. operator is defined by a Hermitian n x n matrix. Its spectrum is
real, and the eigenvectors of the matrix form an orthogonal basis in this space.

As was already said in Sect.2.5, in the case of an infinite-dimensional Hilbert
space ), there exists another, third, possibility for the operator R (z) at some z: it
exists, but is unbounded or is bounded, but is not densely defined. The corresponding
z are also assigned to the spectrum of f .

In the infinite-dimensional case, the definition of the spectrum of an operator
f , similarly to the finite-dimensional case, as the set of eigenvalues is not suitable.
Indeed, by definition (5.1), all the eigenvectors must belong to the Hilbert space,
&, € £, VA. But with this definition of spectrum, we can miss a part of the
spectrum’s points, in which case the admissible eigenvectors &, do not form a
complete set of vectors in §3, and we cannot afford the probabilistic interpretation
of QM. That is why in the physical approach, the condition &), € §) is not imposed
from the beginning. For differential operators, the spectral problem is treated as
the conventional eigenvalue problem for differential equations, ordinary or partial.
Eigenvalues enter such equations as numerical parameters.

The first question for a physicist to be solved is which values of the parameters
can be considered the spectrum points of the corresponding differential operator. If
we do not require that &, € $), there are no restrictions on these parameters from
a formal mathematical standpoint. But physicists effectively use heuristic, physical,
considerations that restrict admissible values of these parameters. Among these are
appropriate boundary conditions, the requirement for eigenfunctions to be locally
square-integrable, the requirement for eigenfunctions of bound states to vanish at
spatial infinity so that their norms will be finite; an eigenfunction may not vanish at
infinity, but become a plane wave corresponding to a free motion of particles. Such
functions are “normalized to §-function,” and so on. In many cases, such physical
considerations allow finding both the discrete eigenvalues for bound states and the
continuous part of the spectrum for unbound states. But then the question arises
whether the obtained eigenfunctions form a complete set in §3.

In solving this problem in the case of a pure discrete spectrum, physicists use the
well-studied properties of special functions and the well-developed general theory
of Fourier series expansions with respect to special functions. In the presence of a
continuous spectrum, the situation is more complicated. No regular methods for
proving the completeness of eigenfunctions including the eigenfunctions of the
continuous spectrum, even if they are orthonormalized to a delta function, are
known. It is safe to say that in many cases, the construction of a complete set of
eigenfunctions and especially a proof of its completeness seem to be an art. All
this suggests that the formulation of the spectral problem in the infinite-dimensional
case has to be modified in comparison with the finite-dimensional case. A proper
formulation of the spectral problem for s.a. operators and its general solution are
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well known in the mathematical literature under the name of spectral analysis.
For s.a. ordinary differential operators, we now have different well-elaborated
methods for finding the spectrum and constructing the corresponding (generalized)
eigenfunction expansions. The probabilistic interpretation of QM is formulated in
terms of spectral resolutions of s.a. operators.

We begin by recalling necessary notions and facts concerning the spectrum of an
s.a. operator f in an infinite-dimensional Hilbert space; see Sects. 2.5 and 2.8.6.

A number z € C is called a regular point, or a point of the resolvent set (regp f ),
of an operator f if the operator’li (z) = f @7 '=( f —zI )" exists and is bounded
and defined everywhere. In this case, the operator R (z) is called the resolvent of
the operator f For a regular point z, the equation f (z) € = nwithany n € § is
unlquely resolvable with respectto £: £ = R (z) n. The complement of the resolvent
set regp f to the whole complex plane C is called the spectrum of the operator f
and is denoted by spec f The points of the spectrum are usually denoted by A, or
by E if f is a Hamiltonian. The resolvent set of an s.a. operator is an open set, and
any complex z € C’' (Imz # 0), is a regular point; it follows that the spectrum of an
s.a. operator is a closed real set. It is evident that the eigenvalues of the operator f
belong to its spectrum; they form the so-called point spectrum.

If A belongs to the point spectrum, the operator f (A) is noninvertible. The point
spectrum of an s.a. operator in a separable Hilbert space (we recall that we restrict
ourselves to such spaces) is at most countable.

The union of the closure of the point spectrum in the whole spectrum and the
eigenvalues of infinity multiplicity forms the continuous spectra. It may be that the
intersection of the point and continuous spectra is not empty: a spectrum point A
may belong to the point spectrum and to the continuous spectrum simultaneously.

A real number A is in spec f if either (a) the operator R ()L) does not exist,
in which case A is an eigenvalue of f or (b) the operator R(/\) exists but is
unbounded.

In what follows, we present the basic notions of the general spectral theory of
s.a. operators and its application to the spectral analysis of s.a. ordinary differential
operators. Our exposition is organized as a set of definitions and statements
(theorems) and closely follows that of [9, 116], except that proofs are abandoned.
The subsequent chapters contain a number of illustrations of the general theory.

We note that in all the known examples considered on the basis of physical
arguments, the results are confirmed by the rigorous approach. Nevertheless, even
in these cases, the advantage of the rigorous approach is justified by the fact that in
this approach, the necessity of applying physical considerations (being, in essence,
an art) is replaced by a set of mathematically well formulated rules.
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5.2 Spectral Decomposition of Self-adjoint Operators

5.2.1 Identity Resolution

The notion of identity resolution is formulated in terms of orthoprojectors; see
Chap. 2.

Definition 5.1. A family of orthoprojection operators P(A) defined on the real

axis, A € R, is called an identity resolution (IRin what follows)2 if it has the

following properties:

(a) P(A) < P(u) for A < p (which is equivalent to P(A)P(u) = P(u)P(A) =
P(A) for A < )

(b)y P(A+0)=P(Q) R

(¢) P(—00) =0, P(+o0) =1

(the equalities (b) and (c) are meant in the strong sense).

~

Theorem 5.2. Any s.a. operator f with domain Dy uniquely defines an IR
such that:

(a) A vector § belongs to D  iff
o0
/ A2d| P(L)E|? < oo.

(b) The operator f has the following integral representation:

fe =/ AdP(M)E, VE€ Dy, (5.2)

which implies that

1 fElP = [ 2d|POEP < oo.

o0

Integrals in (5.2) are operator analogues of the Lebesgue—Stieltjes integrals;
see [9,116].

Conversely, any operator f that is defined by (5.2) with a certain IR P(A) on the
domain Dy of item (a) is s.a., and its IR coincides with P ().

In addition, a bounded operator S defined on the whole Hilbert space $)
commutes with f iff it commutes with P()) for any A.

2 Another name is “an (operator) spectral function.”
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We call A the constancy point of an IR P (1) if there exists a neighborhood Uy,
of Ao where P(A) is constant. An open set (see item (a) in Theorem 5.3 below)
of all constancy points of P(A) is denoted by Crnp. The closed set Grp that is the
complement of Cnp in R is called the growth set of P(1). A point A is called the
Jjump point of P (1) if the orthoprojector IT) = P(A) — P(A — 0) is not zero.

Theorem 5.3. Let P(A) be the IR of an s.a. operator f . Then the following
assertions hold.

(a) A real number A is a regular point off iff A € Cnp (which implies that Cnp is
a open set).

(b) The spectrum of f coincides with Grp, the growth set of P(L).

(c) A real number A is an eigenvalue off iff A is a jump point of P(A), IT) # 0;
I, is the projection operator on the corresponding eigenspace of f .

5.2.2 Degeneracy of the Spectrum

In the finite-dimensional case, in which the spectrum of an operator coincides with
the set of its eigenvalues, the spectrum is called simple if the multiplicity of each
eigenvalue is one. Otherwise, the spectrum is said to be degenerate. For operators in
infinite-dimensional Hilbert spaces, the spectrum generally does not coincide with
the set of eigenvalues, and such a definition becomes unsuitable. In what follows,
we discuss a general definition of degeneracy, in particular, simplicity, of a spectrum
for s.a. operators in Hilbert spaces.

We first introduce the notion of generating vector for an s.a. operator f with the
IR P(A) and a definition of s.a. operator with a simple spectrum.

Definition 5.4. A vector £, € §) is called a generating vector® of an s.a. operator f
if the linear envelope of vectors £,(A) = I1(A)&, is dense in §).

Here, A denotes an arbitrary interval of the real axis. If the interval is closed,
A = [A1, A2], A1 < Ay, then T1(A) is defined by I[1(A) = P(A;) — P(A; —0),
and if A = (4, 4;], then [T(A) = P(A,) — P(A)), and similarly for intervals of
other types.

Definition 5.5. A spectrum of an s.a. operator f is called simple* if the operator
has a generating vector.

If the spectrum is simple, its point spectrum (if it exists) is nondegenerate.
It is useful to introduce the notion of the Hilbert space L2 of functions ¢(1),
A € R, which is defined as follows. We call any real nondecreasing function o (1)

3 Another name is “cyclic vector.”
4Nondegenerate in physics terminology.
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continuous from the right a spectral function. Let a spectral function be given. To
avoid the trivial case, we assume that (1) is nonconstant. Then by analogy with
the Lebesgue measure, we can introduce the notion of a o-measurable set defining
a o-measure 6 (A) of intervals by

6(A) =0(A2) —0o(A1 —0), A=[A1,A2], A1 <Ay,

and similarly for intervals of other types.

The o-measure of a nonzero interval is zero if the interval is a constancy
interval of the spectral function, while 6([A,A]) = a(1) — (A — 0) differs from
zero if A is a discontinuity point of o(A). Using a o-measure, we can define
o-measurable functions and the Lebesgue-Stieltjes integral [ ¢(A)do (). The
Hilbert space L§ is defined as the linear space of o-measurable functions of finite
o-norm [ |¢(A)|*do () with the scalar product

(¢1.92) = /%(k)wz(l)da(/*), @1, € L2,

Details of the construction can be found in [9, 116, 141].
Let A, denote the operator in L?T defined as

A { Dy={p:9().291) € LT},
T Aep) = Ap(R).

This operator is called the operator of multiplying by independent variable. The
following assertions hold:

(a) The operator A, is s.a.
(b) The spectrum of A, is simple, and any function ¢(1) € L2 different from zero
at any point A is a generating vector of A,.

It is useful to introduce the so-called improper generating element of an s.a.
operator f.
Definition 5.6. An arbitrary vector function £,(A) of intervals A € R that takes
values in the Hilbert space §) is called an improper generating element of an s.a.
operator f if
(a) TT(A1)Eg(Ar) = §,(A)) for A} € A, (T1(A) is constructed with respect to IR
P(A) of the operator f).

(b) The linear envelope of vectors &,(A) is dense in $).

It is evident that if &, is a generating vector of an s.a. operator f ,then £,(A) =
I1(A)&, is its improper generating element with the property

E, =5 lim £,(A), A =[A1, L]

A1 —>00,Ap—>—00
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It appears that conversely, if an s.a. operator f has an improper generating
element §,(A), then this operator also has a generating vector &, and therefore
a simple spectrum (see Theorem 5.7 below); in particular, if the strong limit
slimy, 00,2, —00 £g(A) = &, exists, then the vector &, is a generating vector, and

§¢(A) = M (A)&,.

Theorem 5.7. Let an s.a. operator f have an improper generating element §,(A).
Let a spectral function o (L) and a vector function (1) € ) be defined by

o(d) = e(M)G(Ay). 6(A2) = |E.(AN)|*, 0(0) =0,
X)) = e(M)Eg(Ay). A #0, x(0) =0,

(0,A], A >0,

(,0], X <0. (5-3)

e(A) =sgn i, Ay = %
Then the formulas

+oo R +o0
£ = [ o()dx(). f& = [ ANz (D)

o0 —00

establish an isometric map of L2 onto $), L2 +> § with A, +—> f If z(X)
is a generating vector of the operator A, then the corresponding vector &, is the

generating vector of the operator f, which implies that f has a simple spectrum.
Self-adjoint operators with multiple spectrum are defined similarly.

Definition 5.8. A set of vectors &, € H,i = 1,...,k, is called a generating basis
of an s.a. operator f if the linear envelope of vectors & ,(A) = I[1(A); ; is dense

in $. The generating basis of a given f is not defined uniquely. It is evident that the
number k of generating basis vectors is bounded from below and not bounded from
above: we always can extend a generating basis by adding a new basis vector.

Definition 5.9. The minimum admissible number m of the generating basis vectors
is called the multiplicity of the spectrum of f, and the spectrum is called m-fold. If
the multiplicity satisfies m > 1, the spectrum is called multiple.’

In the case of finite-dimensional spaces, the multiplicity of a spectrum thus
defined coincides with the maximum degeneracy of eigenvalues.

Just as an s.a. operator with simple spectrum is conveniently represented in terms
of the Hilbert spaces L2, so an s.a. operator with m-fold spectrum is conveniently
represented in terms of the Hilbert space L2, . The latter notion is defined in terms
of the so-called matrix spectral function.

SIn the physics literature, the term “degenerate spectrum” is conventionaly used.
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5.2.3 Matrix Spectral Function

Any Hermitian matrix function 0;; (A), A € R,i, j = 1,...,k, nondecreasing (i.e.,
the matrix o;; (A) — 07; (') is positive semidefinite for A > 1”) and continuous from
the right is called a matrix spectral function. To avoid the trivial case, we assume
that 0;; (1) is nonconstant. We note that we make no reservations on the rank of the
matrix o;; (A); it may be not maximum even at all A.

A matrix spectral function generates the Hilbert space Lia of k-component
vector functions ¢ (A) = {¢'(X),i =1,...k, A € R} with the scalar product
given by

(0. 0) = / e (o (3. (5.4)

Elements ¢ (A1) of this Hilbert space have finite norms induced by scalar product
(5.4). Details can be found in [9, 116, 141].

An example of an s.a. operator with multiple spectrum is the operator A, of
multiplying by the independent variable in Li o

. { Dy ={p:9l). o) € L? (a,b)}.
T Asp(M) = 29() = A’ (M), i =1,.. .k}

The multiplicity® of its spectrum is less than or equal to k. As a generating basis,
we can take k vectors ¢; ¢(A) such that ¢/, (1) = &/ vi (), where all the functions
v;i (A) differ from zero for any A.

It is useful to introduce the so-called improper generating basis of an s.a.
operator f .

Definition 5.10. An arbitrary set of vector functions & ¢(A) of intervals A € R
that take values in the Hilbert space §) is called an improper generating basis of an
s.a. operator f if

(@) TT(A1)§ig(A2) = &ig(Ay) for Ay € As.
(b) The linear envelope of vectors &; ,(A) is dense in §.

It is evident that if vectors §; , form a generating basis of an s.a. operator f , then

& 4(A) = I1(A)& , is its improper generating basis with the property
éi,g =S lim gi,g(A)s A=A, ],
Al —>00,Ay —>—00

and conversely, if & ,(A) form an improper generating basis and the strong limit
slimy, o002, —00 Ei,g(A) = &i g, A = [A1, A2], exists, then the vectors &; , form a
generating basis, and &; ;(A) = IT(A)§; 4.

An analogue of Theorem 5.7 holds for an improper generating basis.

SWhich is determined by the rank of the matrix o;; (A).
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Theorem 5.11. Let an s.a. operator f have an improper generating basis & 4(A),
i =1,...,k. Let a matrix spectral function 0;; (1) and a set of k vectors {y;(A) €
9,i=1,...,k} be defined by

0ij(A) = e(V)di;(Ar), 6ij(A) = (§i4(A),§;4(A)), 0i(0) =0,
Xi(A) = ()& (A2, A #0, xi(0) =0, (5.5)

where £(A) and A are defined in (5.3). Then the relations

oo k . +oo K ‘
E=| DM@ fE=| Y A Mdu).

i=1 i=1

e o) ={p'(V)}ell,

establish an isometric map Li o, onto § with Ay — f .
Let (A)iq, i = 1,...,k, be a generating basis of the operator Ay in Lia. Then

the corresponding set of vectors & , € §) is a generating basis of the operator f.

It thus turns out that if an s.a. operator f has an improper generating basis formed
by k vector functions &; z(A), then this operator also has a generating basis formed

by k generating vectors, and the multiplicity of the spectrum of the operator f is
less than or equal to k.

5.3 Self-adjoint Differential Operators

5.3.1 Guiding Functionals

In this section, we consider s.a. ordinary differential operators associated with
s.a. differential operations of even order.” A spectral theory of such operators
is well developed. In particular, an even s.a. differential operator of order n
always has an improper generating basis formed by n vector functions, which
implies that the multiplicity of its spectrum never exceeds n. There exist different
methods for constructing complete (sometimes overcomplete) sets of (generalized)
eigenfunctions of such operators and the corresponding eigenfunction expansion
formulas [9, 24,27,70,71, 101, 108, 116, 129, 148, 149, 162]. The presented list of
references is in no way complete. In this book, we follow the Krein method of
guiding functionals [101] as presented in [9, 116].

7We recall that coefficients of even s.a. differential operations are real-valued.
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Definition 5.12. Let f be an s.a. differential operation of finite even order n defined
on an interval (a, b), and let f be an s.a. operator associated with f* and with domain
D ;. A linear functional @(£; z) of the form

b
D(&5z) = / u(x;2)€(x)dx, £ e D, (5.6)
a
where u(x; z) is a solution of the homogeneous equation

(f —2u(x) =0, (5.7)

and £(x) is a function belonging to a domain D) that is dense in L?(a,b) and
such that the integral on the right-hand side of (5.6) exists, is called the guiding
functional.

In what follows, we introduce a special fundamental system of solutions of (5.7).

Definition 5.13. A fundamental system u; (x; z) of solutions of (5.7) satisfying the
initial conditions

Wiy =68, i.j=1.....n (5.8)
where ¢ is a fixed inner point of the interval (a,b), a < ¢ < b, is called a special

fundamental system. If one of the ends of the interval (a, b) is regular, it can be
taken for c.

It is evident that the functions u;(x;z) are real entire in z at any fixed inner
point x.

Using a special fundamental system of solutions, we introduce a set of n guiding
functionals &; (§; 2),

b
@;(&;2) =/ ui(x;2)(x)dx, i =1,...,n, £ €D ="D(a,b).

This set of the guiding functionals satisfies the following properties:

1. All @;(&; z) are entire in z for every £ € D(a, b).

2. If @;(&y; Ao) = 0,1 = 1,...,n, for a function & (x) € D(a,b)and Ay € R, then
the equation (f — A0)€(x) = &y(x) has a solution £(x) € D(a, b).

3. The relation ®; ( £ €:2) = z®; (£; z) holds.

It follows from these properties that for any finite interval A € R, there exists a
set of functions {& (x) € D(a,b),i = 1,...,n} such that

det | @;(§;: )| #£0. VA € A. (5.9)

In turn, this fact furnishes the following theorem.
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Theorem 5.14. Let f be an s.a. differential operator associated with an even s.a.
differential operation f of order n, and let P()) be its IR. Let A be any finite
interval of the real axis, and let a set of functions

{& (x) € D(a,b), i =1,...,n}

satisfy condition (5.9). Let functions gg) (x) be defined by

g?(x):/AZgij(,\)dp(x)gj x), i=1,....n,

Jj=1

where the matrix §2;; (A) is the inverse of the matrix ®; (§;; L) (it can be proved that
the functions g (x, A) are actually independent of the choice of the functions & i)
Then for any function § € D(a, b) and any interval A" € A, the relation

n
nE e = [ 3 e narngd o
A=
holds.
It follows from this theorem that gg) (x) as the functions of A form an improper

generating basis of the operator f, and therefore, the multiplicity of its spectrum
does not exceed n.

5.3.2 Inversion Formulas, Green’s Function, and Matrix
Spectral Functions

A main consequence of Theorem 5.14 is the following theorem on inversion
formulas.

Theorem 5.15. Letoji(A), j.k = 1,...,n, be a matrix spectral function given by
(5.5) with the substitution g(Aj)(x) for &j 4(A). Then the formulas

1) = Z/

ij=1

o0

b
0 Vg (x: Mo (1), (1) = / uy (e ()dx (5.10)

establish an inverse isometric map L*(a,b) <= L2, with f < A,, so that the
Parseval equality

b n [ele)
[ neoras= Y [ G (o) 5.11)
a ij=17"%®

holds. The integrals in these formulas converge in the respective metrics of L*(a, b)
and L2,.
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The formulas (5.10) and (5.11) are called inversion formulas.

The theorem allows one to find spectral representations for integral kernels of the
operators [1(A) and R (z). One such representation is given and used below.

As is known, the resolvent R (z) of any even s.a. differential operator f in
L?(a,b) with Imz # 0 is a bounded operator defined everywhere that allows the
integral representation

b
R @) = / G(x.y: )y, V() € L(a.b),

where the uniquely defined kernel G(x, y; z) is called the Green’s function of an s.a.
operator f; see [9,116].

This means that there exists a one-to-one correspondence between the domain
D ¢ of the operator f and the whole Hilbert space L?(a, b) given by

(f—2)&@) =n(), mz#£0, € Dy, e l2@h),  (.12)
b
E() =R () = / G(x. y:n()dy. (5.13)

It follows that a constructive way for evaluating the Green’s function is to find a
unique solution of (5.12) in integral form (5.13). Below, in Sect. 5.3.4, we discuss
this possibility in detail.

It can be shown that if Im z # 0, then one has the representation

](x A)u[”(y;x)
— A2

dGml(A’),

(5.14)

where K )[(k] and K g Vare quasiderivatives of orders k and / in x and y respectively,
andk,! =0,...,n—1. The integrals in (5.14) are uniformly convergent with respect
to both x and y in any square @ < x,y < ff,a < a < B < b. All the elements of
the matrix function on the right-hand side of (5.14) are continuous in both x and y
in any square @ < x,y < f.

We introduce the notation

K[k]K[J][G(x v;2)—G(x,y;2)]=(2—72) Z /

I,m=1

e ) — - k1] g li—1] .
My = tim  KEIRTTIGG y:2),

Mjk(c; Z) - x—>c—%)i,I§l—>c+0 K)[fk_l]K,{vj_l]G(y, X3 Z),

1 _
Mjk(c;z) = % [Mjk(C;Z) —Mjk(c;z)], jk=1,....n. (5.15)
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Taking the limit x — ¢ — 0 and y — ¢ + 0 in representation (5.14) with due regard
to the relation G(x, y;Z) = G(y, x;z) and normalization condition (5.8), we obtain
the relation
* dojx(A)
ix(c;z7) =Imz LA
,LL]k( ) /_OO |Z _ Alz

Applying the Stieltjes inversion formula [9, 116] to (5.16), we obtain the
following important representation for the matrix spectral function o (1):

(5.16)

1 A+S
o (h) = ;SEIEO/S k(e A+ i0)dn, (5.17)

where we take the normalization condition ¢4 (0) = 0 into account.

If an s.a. operator is real,? then its Green’s function is symmetric, G(x, y;z) =
G(y,x;z2) [9,116]. In this case, we have Mjk(c;z) = Mji(c;z) and pjk(c;z) =
Im M (c; z), and representation (5.17) becomes

A48
ojr(A) = n—1811n+10/ Im M i (c: A + i0)dA. (5.18)
- 8

It follows from (5.18) that o;(A) is real and is therefore symmetric, 0z (1) =
0kj(A). In all problems considered in this book, the Green’s functions are really
symmetric. In what follows, we therefore assume (5.18) for the spectral matrix
function o ¢ (4).

In many cases, in particular, in all the specific cases considered in this book,
the matrix spectral function is the sum of an a.c. matrix function with a positive
semidefinite derivative on a certain interval A € R and a nondecreasing step
function’ with jumps at certain points A,,, m € N C Z.

In these cases, the derivative 0} « (1) treated in the sense of distributions is of the
following structure:

ol W) =7 Im My (c: A +i0) = pjx (M) + Y %jim( — Am).  (5.19)
meN

with a positive semidefinite matrix function p;x(A) on an interval A and positive

matrix coefficients x|, > 0, so that spec f = AU {A,, m € N'}. The points 1,
always can be numbered so that A, < A,,+1, Vm € N.

8 An operator f is called real if £ € D ; implies that fe Dy and f & = n implies that f? =7.
9The spectral function generally can contain the so-called singular, or singular continuous, term;
see [97]. Such terms are absent in all the cases encountered in this book.
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If representation (5.19) holds, then the inversion formulas become

100 = 3 [ 0 p i+ T Y it )

jk=1 meN jk=1

b b
;) =/ uj(x; A)n(x)dx, L € A, @jm :/ uj (x5 Am)n(x)dx,

b n n
[ merar= 3 [ Genmunn+ XY T

jk=1 meN jk=1
(5.20)

The integrals in (5.20) converge in the respective metrics of L2(a, b) and L2 .

5.3.3 Multiplicity of Spectrum; Simple Spectrum

Integrating in A in (5.10) and (5.20) is in fact performed over the spectrum (over the
set Grp of the matrix o(1)).

This means that the constancy points A of the matrix o(4) and the respective
functions u; (x; A) with such A are not involved in the inversion formulas, so that
the functions u;(x;A) entering the integrands in the inversion formulas can be
redefined by zero outside the spectrum points of the operator f (outside the growth
points of the matrix o(4)). We note that in all known examples, the functions
u; (x; A) for A that do not belong to the “mathematical” spectrum are eliminated by
physical considerations, for example, because of their unrestricted growth at infinity
for infinite intervals, while for finite intervals, they do not satisfy s.a. boundary
conditions specifying the operator f .

The inversion formulas represent a generalized Fourier expansion of any function

belonging to the Hilbert space in terms of the functions u;(x;A), j = 1,...,n,

which may not belong to the domain of the operator f or even to the Hilbert space.'®

It is conventional to say that these functions form a complete system. But it
may happen that for a given f , there exists a complete system that contain a lesser
number, say m, of functions, m < n.

It can be shown that for even s.a. differential operators considered in this book,
the minimum m determines the multiplicity of the spectrum, so that the multiplicity
of the spectrum does not exceed n. If m = 1, the spectrum is simple; if m > 1, the
spectrum is m-fold.

1%In such a situation, the functions u; (x; 1) are conventionally called the generalized eigenfunc-
tions of the operator f.
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A qualitative explanation for the multiplicity of the spectrum to be less than » is
as follows. Although all the functions u; (x;A),i = 1,...,n, at a fixed A formally
are involved in inversion formulas (5.10) and (5.11), it may happen that in fact,
they enter these formulas only via some linear combinations, and perhaps with zero

coefficients. This is the case if the derivative of the matrix spectral function 0;. )

is singular and its rank is equal to m for all A belonging to the spectrum.'!

For technical reasons, it is sometimes difficult to find the minimum complete
system. In what follows, we formulate the conditions for the spectrum of f to be
simple, i.e., conditions for a complete system to contain only one function u(x; A).

Definition 5.16. Let the following conditions hold: there exists a solution u(x; z) of
(5.7) that is real entire in z, and there exists a subspace ID of functions & (x) € Dy
that is dense in the Hilbert space, D C Dy, D = L%(a,b), such that the guiding
functional @(£; z) defined on D by (5.6) has the following properties:

(i) @(&;z) isentire in z for every £ (x) € D.
(ii) If @(&;A0) = O for a function & (x) € D and Ay € R, then the equation
(f — Xo)¥ (x) = &y(x) has a solution ¥ (x) € D.
(iii) For any £(x) € D, the relation ®( f£;z) = z&(£; 2) holds.

Then we call the functional @(§; z) a simple guiding functional.

We emphasize that a simple guiding functional for a given s.a. operator f exists
iff an appropriate function u and subspace DD exist.

One of the leading principles in constructing a simple guiding functional is to
find a solution u(x; z) with asymptotic behavior that coincides with the asymptotic
behavior of functions belonging to D ; at one of the endpoints (a or b).

For the simple guiding functional @(§; z), analogues of Theorems 5.14 and 5.15
hold with the natural substitutions i, j = 1 and ga(x), @(&; 1), 2(&: 1), £(x),
@(A), u(x; A), and o (4) for the respective gg)(x), Di(E:1), 82i;(E; ), & (x), ¢ (A),
uj(x;A), and ok (1), and ga(x) as a function of A is an improper element of
the operator f . The existence of a simple guiding functional thus implies that the
spectrum of the operator f is simple.

In the case of a simple spectrum, the matrix spectral function o4 (1) is reduced
to a spectral function o (1) that is given by (5.3) with the substitution ga(x) for
£,(A) and can be evaluated in accordance with the following formulas:

A48
X(c;A) = lim ]T_l/ ImM(c; M +i0)d),
$

§——40
A
Z(e;A) = / w?(c;A)do (1), M(c;z) = G(c —0,¢ + 0;2), (5.21)
0

where c¢ is a fixed inner point of the interval (a,b),a < ¢ < b.

For some A, it may be less than m.
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The inversion formulas for an operator with simple spectrum are

e’} b
n(x) = /_ o(Mu(x: Hdo(R) . 9(h) = / u(x: Dn(x)dx,

oo

b [’}
[ (o) Pdx = / o) Pdo ().

—00

As was mentioned above, in all the problems considered in this book, the
derivative of the matrix spectral function is of the form (5.19), which implies that in
the case of a simple spectrum, the following general representation holds:

W(c;M)o'(A) = n M ImM(c; A +i0),

o' (W) =)+ D a8 —A), (5.22)
meN

with a nonnegative function p(4) defined on an interval A, suppp = A, and some
positive coefficients x,,, %, > 0, so that spec f = AU {A,, m € N}. The
interval A determines the continuous part of the spectrum of f , while the points
Am determine its point spectrum.

If we introduce the normalized eigenfunctions U, (x), Uy, (x) by

Ua(x) = p(Mu(x;A), A € A;
Un(x) = xpu(x;Ay), m e N,

the inversion formulas become

100 = [ SOV + 3 B (),

meN

b b
p(1) = / Uy ()n(0dx, ¢ = / Up (x)7(x)dx.,

b
/ [n(x)Pdx = /A pMLPAA+ Y [l (5.23)

menN

Using physics terminology and notation, we say that the system of eigenfunctions
{Us(x), Upn(x)} is complete in L?(a,b) and satisfies the orthogonality and
completeness relations'?

12For the continuous spectrum, these relations are symbolic in a sense.
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b b
/ Uy (x)Uy (x)dx = §(A — 1), / Up(x)Uy(x)dx =0,
b
/ Un(X) Uy (x)dx = 8y ALA €A, m,m' € N,
/A U0 0)A + 3 Un(0)Un () = 80x — ). (5.24)

meN

In physics texts on QM, considerable effort is usually devoted to establishing just
these relations.

5.3.4 Finding a Green’s Function

Constructing integral representation (5.13) for a unique solution & (x) of (5.12), and
thereby finding the Green’s function G(x, y;z), proceeds in two steps.

The first step consists in finding the general solution of the inhomogeneous
differential equation

(f —z) £(x) = n(x), Imz #£ 0, € L*(a, b) (5.25)

using the method of variation of constants. According to this method, we seek a
solution in the form

E(x) =) ci(x)ui(x:2). (5.26)

i=1

where u;(x;z), i = 1,...,n, is the fundamental system of solutions of the
homogeneous equation

(f - z) u(x) = 0 (5.27)
and¢;(x),i = 1,...,n, are some unknown functions subject to the conditions
Y W TN (0) =0 k=10 =1, ¢(x) = deei(x). (5.28)
i=1

Substituting representation (5.26) into (5.25) and taking conditions (5.28) into
account, we obtain the equation

> W N (x2)e (x) = —n(x) . (5.29)

i=1
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Equations (5.28) and (5.29) together form the system of linear algebraic equa-
tions

Y Wi (x:2)¢](x) = —=me(x), k= 1,....n,

i=1

() = Sean(x), Wi (x:2) = ul (x:2) (5.30)

for the derivatives ¢/(x) of the desired coefficient functions. The determinant
of the matrix Wy; (x;z) in (5.30) is the quasi-Wronskian Wr (uy, ..., u,) of the
fundamental system of solutions of homogeneous equation (5.27). The quasi-
Wronskian is independent of x and is different from zero, and therefore, system
(5.30) has a unique solution:

n

/() =Y W9, m(x) = —vi(x: n(x),

=1
vi(x;z) = [W_I(x;z)]l.n )

The functions v; (x;z) can be shown to satisfy the homogeneous equation (5.27)
and therefore can be represented as linear combinations of the solutions u; (x;z),
i = 1,...,n, of the fundamental system. The general solution of (5.25) finally is
given by

n

X

JOEDS [Ciui(x;Z) - ui(x;z)/ Vi (y;z)n(y)dy} (5.31)
i=1 0

where ¢; are arbitrary constants, and Xy is a fixed inner point of the interval (a, b).

As an illustration, we consider the case of an s.a. differential operation of second
order (n = 2)

f = —d [po(x)d.] + pi(x),

which is important from the standpoint of further applications.
In this case, we have

)

KO =1, K = po(0)dy. KP = pi(x) - do KW = f

and the fundamental system of solutions of the homogeneous equation (5.27)
consists of two functions u; (x;z), i = 1,2. The matrices W and W~! are given

by
_ up us —1 _ -1 M[zl] —Us
W=\,m o Wi=o2t o )
1 2 1 1

[21] — u[ll]uz = const.

where

o = Wr(uy,uz) = uu
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The functions v;, i = 1,2, are vi = —up/w and v, = u;/w, so that the general
solution of the inhomogeneous equation (5.25) reads

2 X
600 = Y cnria) + o7t [ i) - oG9m0 1),
i=1 *o

(5.32)
where ¢y, ¢, are some constants.

The second step in finding the Green’s function consists in taking the condition
& € Dy on the solution of (5.12) into account, which leads to determining the
constants ¢;, i = 1,...,n, in (5.31) as linear functionals in 7; the condition £ €
D s means that &(x) belongs to L*(a, b) and satisfies the s.a. boundary conditions
specifying the s.a. operator f . This results in integral representation (5.13) for the
resolvent and thereby in the Green’s function.

5.3.5 Matrix Operators

We here present a spectral analysis scheme for s.a. 2 x 2 matrix operators in
the Hilbert space L?(Ry) = L%*(R4) @ L?(Ry). Such operators emerge as
certain radial Hamiltonians in Chaps. 8 and 9. A specific feature of these radial
Hamiltonians is that their spectra are simple, so that it suffices to consider only one
simple guiding functional.

A guiding functional @(F’; z) for an s.a. 2 x 2 matrix operator h . associated with
an s.a. 2 x 2 matrix differential operation h and acting in the space of doublets

F(r) = (f/g) € L*(Ry) is given by
D(F;z) = / U(r;z)F(r)dr, FeD=D,(Ry)NDy,,
R4
U(r) = (u/v), Ur;2)F(r) = uf +vg, (533)

where the doublet U is a solution of the homogeneous equation (}; —2)U(r;z) =0
that is real entire in z and satisfies s.a. boundary conditions at the left end (the origin)
specifying the s.a. operator l;e. By definition, the functional (5.33) is simple if it has
the following properties:

1. @(F;z) is entire in z for every F(r).
2. If @(Fy;A9) = O for a doublet Fy(r) € D and A9 € R, then the equation

(}; — Ao) ¥ (r) = Fy(r) has a solution ¥ € D.
3. For any F(r) € D, the relation @(ﬁQF; 7) = z®(F'; ) holds.

In all the problems considered in Chaps. 8 and 9, the doublet U satisfies required
s.a. boundary conditions, and the corresponding guiding functional (5.33) is simple.
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It follows that the spectrum of the Hamiltonian h . is simple and there exists
a spectral function (1), A € R, that determines the inversion formulas for this
operator (see below). The derivative' o/(1) of the spectral function, ¢’(1) > 0, is
related to the Green’s function of the operator ﬁg by

Ue; V) @ U(e; Mo’ (A) = 7 ' Im G(e —0,¢ + 0; A +i0),

where ¢ is an arbitrary internal point of the interval R4, and ¢’ (1) is independent
of c.
In addition, o’(A) is of the structure

o'W = PP+ Y 038( — )

neN

with a nonnegative function p(1), p(1) > 0, and some positive coefficients Q,,
0, > 0; the support A of the function p(1), A = supp p, is the continuous part of
the spectrum of the operator ﬁe, while the points A,, determine its point spectrum,
so that spec he = A U {A,, n € N'}.

The matrix Green’s function G(r,r’; z) is the integral kernel of the resolvent of
the s.a. matrix operator };e. To find the Green’s function with Imz > 0, we have to
represent a unique solution F(r) € Dy, of the differential equation

(h—2)F(r) = (r), V¥ € L2(R,), (5.34)

in the integral form

F(r) =/ G(r,r' )W (r)dr'. (5.35)
R4+

The normalized (generalized) eigendoublets U, (r) = p(A)U(r;1), A € A,
of ﬁg corresponding to the continuous spectrum, and normalized eigendoublets
U,(x) = 0,U(r;1,), n € N, corresponding to the discrete spectrum form
a complete orthonormalized system in the space L?(R;). This means that the
following inversion formulas hold:

F = [ p0tia+ ¥ e t.0)

neN

0() = /R Uy F(r)dr . ¢, = /R Uy () F(r)dr .
+ +

F(r)|’dr = A)|dA nEs 5.36
/R+|(r)|r /A|¢>()| + 3 164l (5.36)

neN

3Treated in the sense of distributions.
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5.4 Appendix

5.4.1 Some Simple Guiding Functionals

In most problems considered in the subsequent chapters, spectra of s.a. operators are
simple. Moreover, a choice of guiding functionals and a proof of their simplicity are
quite similar and can be reduced to five typical cases, which we consider in detail
in this section. All the cases have common features described just below and differ
only in s.a. boundary conditions listed in items A, B, C, D, E in Sect.5.4.1.2. In
what follows, when solving spectral problems where simple guiding functionals fall
into one of these cases, we refer to this subsection and to the corresponding item.
We first describe common features inherent in each of the cases. We consider s.a.
differential operators f, in L?(a, b), where (a, b) are various intervals with a finite
left endpoint, |a| < oo. Each operator f; is associated with an s.a. Schrodinger
differential operation f = —d? + V(x) on the interval (a, b), where the potential
V(x) is a smooth function in the interval,'* and its domain D f. 1s specified by split
s.a. boundary conditions.'> According to Theorem 4.24, the latter means that the
asymptotic behavior of functions ¢ € Dy, C D;’},(a, b) at the endpoints of the

interval is given by (4.120) and the diagonal a.b. coefficients {c4 ; }|' are related by
(4.124), or (4.125), where the matrix U is of the form (4.126). For our purposes, it
is convenient to change U(a) to U ¥ (a) and to take the matrix U in the form

U = diag(U(b), U (a)), U(b) = Un(b), Lk =1,..., p4+(b) = p—(b),
Ula) = Ui (a), I.k = p1+(b) + 1..... p4+(b) + p—(a), p+(a) = p—(a),

where U(b) is a unitary p4(b) x p4(b) matrix and U(a) is a unitary p4(a) X p+(a)
matrix, so that the split s.a. boundary conditions become

p+(0))

c—i1(b) = Z Ui(D)eq i (b), I =1,..., p1(b), (5.37)
=1
P+ (a).

c—i(a) = Z Uk(a)eri (@), I =1,..., p+(a). (5.38)

=1

It may be that p4(b) = 0, which is equivalent to vanishing of the right boundary
form, [Y«, ¥«] () = 0; in such a case, s.a. boundary conditions are reduced to
(5.38). A similar remark also refers to the endpoint a.

4That is, the potential can be singular only at the endpoints of the interval.

I5We note that possible mixed s.a. boundary conditions, like periodic ones, are beyond the scope of
our consideration in this section, although such boundary conditions can yield a simple spectrum.
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For guiding functionals in all the cases, we take the functionals @(§; z) defined
on the domains D = D, (a,b) N Dy, dense in L*(a, b) and given by

b
D7) = / U(x;2)§(x)dx, € €D (5.39)

(a unique functional in each case),'® where U (x;z) is a solution of the homoge-
neous equation

(f —2U(x;2) = 0, (5.40)

which is smooth in (a, b) as a function of x at any fixed z, real entire in z at any
fixed inner point x of (a, b), and satisfies the following properties:

(a) U(x;z) is continuous as a function of two variables in any open restricted
region O C (a,b) ® C; it is also evident that the function U,(x;z) =
n(x)U(x;z), where n(x) is a smooth function given by

n(x) =1, x € [a,ao]; n(x) =0, x € [bo,b]; a <ag < by <D,

belongs to Dy, .
(b) U(x;z) has an asymptotic behavior at the left endpoint a given by (4.120) and
satisfies boundary conditions (5.38).

In what follows, we examine whether the above-introduced functionals have the
properties (i), (ii), and (iii) defining a simple guiding functional in Sect.5.3.3 and
show that under some special additional conditions relevant to the properties (i) and
(i1), they have, and therefore, the spectra of the operators f; prove to be simple,
which allows us to establish the inversion formulas for f; An interesting remark is
in order. It is remarkable that boundary conditions at the right endpoint b are not
involved even if they are nontrivial. They enter the final result for the (generalized)
eigenfunctions via the Green’s functions, which take these conditions into account,
and the respective spectral functions.
We begin with property (iii), whose proof is simplest.

5.4.1.1 Property (iii)

By definition (5.39), we have

A b v
O(fi:2) = / Ulx:2) fE()dr.

a

Using the integral Lagrange identity (4.16) and (5.40) for U(x; z), we obtain

D(feki2) = 2P(E:2) + [U.E]L .

1oWhich is sufficient if the functional proves to be simple.
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But the right boundary form [U, £](b) vanishes because every & € D is equal to zero
in a neighborhood of the right endpoint b, while the left boundary form [U, £](«)
vanishes because both U(x;z) and £(x) have a similar asymptotic behavior at the
left endpoint a given by (4.120) and satisfy boundary conditions (5.38) with the
same matrix U(a), which yields ®( f,&:2) = z®(&: z), the required property (ii).

As for properties (i) and (ii), we can prove them under certain additional specific
conditions on the asymptotic behavior of the functions ¥ € D, and the respective
functions U(x, z) at the left endpoint a. We distinguish five different cases of the
asymptotic behavior (see the items A, B, C, D, E below).

We continue with the property (ii).

5.4.1.2 Property (ii)

L
et , ;s
B(Eo: Ao) = / U(x: do)éo(x)dx = / Ux: ho)éo(x)dx = 0

a
for some Ay € R and some & € D, suppéy € [a.B], B < b, and let U(x) be
a solution of (5.~40) with z = A that is linearly independent of U(x; A¢), so that
w = —Wr(U,U) # 0. We consider a particular solution ¥ (x) of the equation

(f = 20)¥(x) = &(x) that is given by!”?

1 B - x
Y(x) = > [U(x:ko) / U (x)éo(x)dx + U(x) / U(X;Ao)éo(x)dX},

1 B - x
V' (x) = > [U’(x;ko) / U(x)&(x)dx + U'(x) / U(x;ko)i-‘o(x)dx}-
(5.41)

The function (5.41) has the following evident properties: v is correctly defined on
(a,b), and ¢ and v’ are a.c. in (a, b); suppy¥ € [a, B], and therefore, ¥ is square-
integrable on any interval (¢, b), ¢ > a, and trivially satisfies boundary conditions
(5.37) at the right endpoint b (the respective a.b. coefficients c+ , = 0). If we can
prove that v is square-integrable at the left endpoint a, i.e., is square-integrable
on an interval [a,c], a < ¢ < b, we will prove that € L?(a,b) and fvw =
AoV + & € L%(a,b). If in addition we prove that v satisfies boundary conditions
(5.38) at the left endpoint,'® we will prove that v € D f. and therefore (because

17See the representation (5.32) for the general solution of such an equation in the end of Sect.5.3.3
with the substitutions § = ¥, u; — U, and uy — U.

$We note that a preliminary estimate of the asymptotic behavior of the function v (5.41) at the
left endpoint @ may be sufficient to assert that v € L?(a, b).
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supp¥ € [a,B], B < b) ¥ € D, which means that the guiding functional @(£; z)
(5.39) has the property (ii).

We don’t know a general method for evaluating the asymptotic behavior of
the function v (x) (5.41) at the left endpoint a for arbitrary f , i.e., for arbitrary
potentials V(x). But for our further purposes, it is sufficient to consider five special
cases labeled A, B, C, D, and E, which we examine separately below.

We introduce the notation § = x — a and represent the asymptotic behavior of
the relevant functions at the left endpoint a, as § — 0, in terms of §.

A. Let u > 1, and let the asymptotics of the relevant functions as § — 0 be
given by!”

U(x;z) = gyt 0(33/2+;A)’ U'(x:z) = (1/2+ H)8—1/2+u + 0(31/2+"),
U(X) = §l/2—n + O(SS/Z_M), U/(x) _ (1/2_H)8_1/2_M + O(SI/Z_M),

0@, p>1, Lo 0@, p>1,
§00) = { 0(8*2v/néd), pu =1, £ = { 0(8'2y/Ing), pu = 1.
(5.42)

We represent the function ¥ (x) (5.41) as
Y() = UG o) + o [U(x;xo) [ o

. x B .
—}—U(x;/\o)/ U(x)f;‘o(x)dx:|, c :w_I/ U(x)&(x)dx, (5.43)

0

where xo > a is a fixed point such that §¢ = xo — a is small enough to use
asymptotics (5.42) for estimating the integral terms on the right-hand side of
(5.43) by means of the Cauchy—Schwarz inequality. Performing the estimates,
we obtain
o7y, 1 <u<3,
V(x) =1 0@"*Iné), u =3, §— 0,
0%, u >3,

which in particular means that ¥ is square-integrable at the endpoint a. In a
similar way, we obtain

OB~/ M), 1 <p <3,
V'(x) = ¢ 0(8°?1né), p =3, § — 0.
0(8%?), > 3,

19This is the case in which p (a) = p—(a) = 0, i.e., the left a.b. coefficients are equal to zero.
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These estimates show that the asymptotic behavior of the function ¥ (x) (5.41)
is within the limits (5.42) for the asymptotic behavior of the functions &(x),
whence it follows that ¥ € D, which proves property (ii) in case A.

B. Let0 < u < 1,letv € S(—m/2,7/2), and let the asymptotics of the relevant
functions as § — 0 be given by*°

U(x;7) = upas(x) + 0(32—\1/2—u|)7
U'(x;2) = g,y (x) + O 1271,
Upas(X) = (ko8) /> cos v + uapas(x) sin v,
U(x) = (ko8) /> sin v — uzpas (x) cos v + O(87>7H),
07 (x) = (1/2 + w)(ko8) ™" >H sinv — iy, (x) cos v + 021,
E(x) = ceupas(x) + O(Y?), £'(x) = ceulp, (x) + 0('),
Ugas (X) = (k08)"/ > + c1(ko8)* >, (5.44)

where ko and ¢; are some constants and c¢ is an arbitrary constant.2! We
represent the function ¥ (x) (5.41) as

P(x) = cUGx:ho) + 0! [U(x) / * U Ao ()

X B _
—U(x;/lo)/ U(x)éo(x)dxi|, c :w_I/ U(x)&(x)dx. (5.45)

A similar representation holds for ’(x). These representations allow us to
establish the asymptotics of ¥ (x) and ¥’ (x) as § — 0 to yield

Y(x) = cupas(x) + O@77H),
V' (x) = culp, (x) + 087,

which implies that ¥/ (x) is square-integrable at the left endpoint a and satisfies
s.a. boundary condition (5.44) at this endpoint. It follows that » € DD, which
proves property (ii) in case B.

C. Let the asymptotics of the relevant functions as § — 0 be given by

U(x:2) = ucas(x) + 0(8*?1né),
U(x) = (k08)"? sin v — uncas(x) cos v + 0(8*?1n ),

20This is the case in which p4 (a) = p—(a) = 1.

21 The constant Ky is of dimension of inverse length, so that k(4 is dimensionless.



202 5 Spectral Analysis of Self-adjoint Operators

S(X) = cé”Cas(-x) + 0(53/2 In 5),
Ucas(x) = (ko8)"/? cos v 4 upcas(x) sin v,

Urcas(x) = (ko8)"/? In(ko8) + c2(ko8)"/2, (5.46)

where ko and ¢, are some constants and c¢ is an arbitrary constant, and let the
asymptotics of the functions U’, U’ and £ as § — 0 be given by the derivatives
of respective asymptotics (5.46). Using representation (5.45) for the function
¥ (x) (5.41) and a similar representation for ¥’(x) and estimating the integral
terms in these representations by means of the Cauchy—Schwarz inequality, we
obtain

V(X)) = cucas(x) + 0(8*1n?§),
Y (x) = culp, (x) + 0102 8), § — 0,

which implies that ¥ (x) is square-integrable at the left endpoint a and satisfies
s.a. boundary condition (5.46) at this endpoint. It follows that ¥ € D, which
proves property (ii) in case C.

D. Let & = ix, » > 0, and let the asymptotics of the relevant functions as § — 0
be given by??

U(x:2) = upas(x) + O(87),
U(x) — eiG(KOS)l/Z_H” _ e—i0(K08)1/2—i;¢ + 0(53/2)’
E(x) = ceupas(x) + 0(8Y?),
Upas(x) = € (ko8) /2 + 7 (ko) /27, (5.47)

where kg is some constant and c; is an arbitrary constant, and let the asymptotics
of the functions U’, U’, and & as 6 — 0 be given by the derivatives of respective
asymptotics (5.47). Using representation (5.45) for the function vy (x) (5.41)
and a similar representation for ¥’(x) and estimating the corresponding integral
terms by means of the Cauchy—Schwarz inequality, we obtain

W()C) = cuDas(x) + 0(85/2)7
V' (x) = culp, (x) + 0%, § -0,

which implies that ¥/ (x) is square-integrable at the left endpoint a and satisfies
s.a. boundary condition (5.47) at this endpoint. It follows that » € I, which
proves property (ii) in case D.

E. Let the left endpoint a be regular, and let the asymptotic behavior of the relevant
functions as § — 0 be given by

22This is the case in which p4 (a) = p—(a) = 1.
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U(x;2) = ugas(x) + 0(8?), Upas(X) = cosv + kpd sin v,
U(x) = sinv — koS cosv + O(8?), £(x) = ceupas(x) + 0(8*?),

where v € S(—n/2, w/2), ko is some constant, and ¢; is an arbitrary constant.

A proof of property (ii) in this case is completely similar to that in the case B
with u = 1/2.

It remains to prove property (i) for the guiding functional @(&;z) (5.39) in the
above cases A, B, C, D, and E.

5.4.1.3 Property (i)

We recall that the function U(x; z) has the following properties®: as a function of
X, it is smooth in (a, b) for any z € C, but can be singular at the endpoints of the
interval, and as a function of z, it is (real) entire for any inner point x € (a, b).

In the cases A, C, D, and E, the function U(x;z) has a finite limit at the left
endpoint a, which implies that it is entire in z for any x € [a, 8], VB < b, and is
bounded as a function of two variables in [a, f] x O, where O is any bounded region
in C. Let D be any circle in C of finite radius, and let I" be its boundary. As an entire
function in z, the function U(x; z) allows the contour integral representation

U(x;z)=% U;i?i e D\T.

Then for any £ € D with suppé C [a, B], the guiding functional @(&;z) (5.39)
allows the representation

D(E:2) = —/ [_(ﬁr U(xg C_)é( )} teD\I, (548

where the integral is an iterated one. But in the cases A, C, D, and E, the function
(¢ —2)7'U(x; 0)&(x) is bounded and is therefore integrable on [a, 8] x <. It then
follows from Fubini’s theorem [97] that the order of integration on the right-hand
side of (5.48) can be interchanged, and the representation becomes

1 1 p
D(&z) = %fédém [/ de(x;g)g(x)] ,zeD\T. (5.49)

The representation (5.49) demonstrates that @(£;z) is an analytic function in z in
the circle D and is therefore entire in z because D is arbitrary.

23By the function U(x; z), we here mean the specific function U for each operator fe.
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In case B, the function U(x;z) is generally singular®* at the left endpoint a, but
allows the representation

U(x;z2) = upas(x) + Uy (x:2),

where up,s(x) is generally singular at a, but is independent of z, while U(y)(x;z) =
O (8> 11271y as § = x —a — 0. Accordingly, the guiding functional @(£; z) (5.39)
is represented as a sum of two functionals

b b
D7) = DPus(§) + D1y (§52) = / dxupas(x)&(x) +/ dxUq)(x:2)€(x),

where the first functional @,(§) is trivially entire in z, while for the second
functional @(1)(§; z), we can repeat all the previous arguments proving that @(y)(§; z)
is entire in z because the function U(;)(x; z) repeats all the required properties of the
previous function U(x; z). Therefore, property (i) also holds in case B.

A summary of this subsection is that in the above cases A, B, C, D, and E, the
functional @(£;z) (5.39) is a simple guiding functional.

5.4.2 A Useful Lemma

When solving spectral problems, we often encounter expressions of the form
Imw~'(E +i0), E € R.

For a certain class of functions w (W) of a complex variable W, such limits allow
a convenient representation in terms of distributions based on the Sokhotsky formula

Im(x +i0)"" = —78(x). (5.50)

Lemma 5.17. Let o(W) be an analytic function of W in a region U such that
UNR = Uy # @, and let o(W) have only one simple root Ey € U, so that
w(Eg) =0, o' (Ey) # 0, andImw'(Ey) = 0. Then

Imo ™ (E +i0) = Q8(E — Eo) + p(E), Q = —x [o'(Ey)] ",

_ (Imo™\(E). E # E.

E) =
PE) =\ Ime— (Ey + 0). E = Eo.

EEU().

24Namely, for > 1/2 and v # +7m/2.
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In particular, if Imw(E) = 0, VE € Uy, then
Imw ™ (E +i0) = Q8(E — Ep), Q = —n [0 (Ep)|, E € U

Proof. Introducing the notation A = W — Ey and a = w'(Ey), we represent the
function w(W) as w(W) = aA+b(W)A? and the function ™! (W) respectively as

b(W)

(U_I(W) = a_lA_l + C(W), C(W) = —m,

where ¢(W) is continuous in U. With due regard to the Sokhotsky formula, it
immediately follows from this representation that

Imw (E 4i0) = —wa '§(E — E¢) + Imc(E), E € U,
where

Imc(E) = Imow ' (E), E # E,,
Imc(Ey) = —a 2 Imb(Ey) = Imw ™' (Ey £ 0).

O

As an illustration, we evaluate two limits, Im I' (X (E + i0)) and Im ¢ (X(E +
i0)), where v is the logarithmic derivative of the I" function, and

X(E+ie)=—-n+c(A+ie),ne€Zy, c=c, A=E—FEy, EyeR, |cA| < 1.

In the case of the first limit, we have (W) = 'Y (X(W)). Itis well known that
I''(X) is real entire in X, whence w(W) is real entire in W and evidently satisfies
the conditions of the lemma including the additional condition Imw(E) = 0.
Therefore, to find the first limit, we have only to evaluate w’(Ey), for which it is
sufficient to estimate the behavior of w(E) near the root point up to A%, Using the
representation

I''X)=="'rd - X)sin(zX),
we obtain that w(E) = (—1)"cn!A + O(A?) and find that

Im F(X(E + i0)) = (—1)"“%3@ — Ey).
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Similar arguments with a certain modification are applicable to the case of the
second limit, where we have o(W) = I'(X(W)[I"'(X(W))]~"'. The difference
with the previous case is that the function w(W) is real meromorphic with poles
at certain real points where I''(X) vanishes. But we note that in the regions under
consideration, Imy(X) = 0 for A # 0, and therefore, it is sufficient to consider
only a neighborhood of the root point £y where the lemma is applicable. By virtue
of the same representation for I"(X), the behavior of w(E) near the root point is
given by w(E) = —cA + O(A?), which yields

Imy (X(E +i0)) = nc '§(E — Ep).



Chapter 6
Free One-Dimensional Particle on an Interval

Based on the general considerations in Chaps.3, 4, and 5, we here consider
s.a. extensions and spectral problems for the momentum and Hamiltonian for
a free one-dimensional nonrelativistic particle moving on an interval (a,b). It
turns out that the solution of these problems crucially depends on the type of the
interval: whether it is the whole real axis, (¢, b) = R, or a semiaxis, (a,b) = R4
(a is taken to be zero for convenience; it can be any finite number), or («,b) = R_,
or a finite interval, —oo < a < b < oo; without loss of generality, we always
consider a finite interval [0, ], [ < oo.

For the space of states of the system, we conventionally take the Hilbert
space L*(a,b), whose vectors are wave functions ¥ (x), x € (a,b) (we use the
x-representation). In Sect. 6.1, we discuss the momentum operator on different
intervals. The Hamilton operator is discussed in Sect. 6.2. In Sect. 6.3, we discuss
in detail how the correct treatment removes all the paradoxes presented in Sect. 1.3.
In the present chapter, with the exception of Sect. 6.3, we set & = 1.

6.1 Self-adjoint Extensions and Spectral Problem
for the Momentum Operator

To construct an s.a. momentum operator, we start with the corresponding differential
operation p = —id, (4.6), which follows from the formal canonical quantization in
the coordinate representation; see Chap. 1. We next construct the initial symmetric
operator p, its adjoint p, and possible s.a. extensions of p. All these operators
differ by their domains, whereas each of them acts on the corresponding domain by
the same differential operation p. That is why we only indicate the domains of these
operators in what follows.

The domain of the initial symmetric operator p is the space D (a, b) of smooth
functions with compact support, D, = D (a,b). The operator p is evidently
symmetric: the boundary forms [y, ¥] (a/b) are trivial because all the functions
belonging to D (a, b) vanish in a neighborhood of the boundaries.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 207
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_6,
© Springer Science+Business Media New York 2012
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It is instructive to directly evaluate the adjoint pT, although such a problem was
solved for the initial symmetric operator associated with the general s.a. differential
operation in Sect. 4.4.

We have to solve the defining equation

b
(M)—(l/f*,ﬁfp):/ dx (¢ + iTeg)) =0, Yo € D(a.b).  (6.1)

for pairs Y« € D+ and y = P .. Let a pair ¥, and yx be a solution of defining
equation (6.1). We represent the function y(x) as

2(0) = =i (), () = / Cdy (). 6.2)

where the point ¢ is an interior point or a finite (regular) endpoint of the interval
(a, D). By definition, the function ¥ (x) is a.c. Substituting representation (6.2) for
x into (6.1) and integrating by parts, we reduce (6.1) to the equation

b
/ dx(y« — V)¢’ =0, Vo € D(a,b)

(the boundary terms vanish because of vanishing ¢ near the boundaries). Applying
Lemma 2.12, we conclude that ¥ — ¥ = C = const, or

Ve (0) =i / a4+ C. ©63)

whence it follows that ¥« is a.c. in (a,b) and y = p¥« = —iy,. Conversely,
any pair ¥, and y of functions belonging to L*(a, b) and satisfying relation (6.3)
evidently satisfies defining equation (6.1). Therefore, D ,+ = D; (a,b).

To check the symmetricity of p+, we consider the quadratic asymmetry form
A+ (¥) (3.10) of this operator. According to (4.36), (4.37), it is represented in
terms of the quadratic boundary forms [/, V¥«](a/b) as

Aer (V) = [V, Y] (x)|Z o Vs U] () = =i ()Y () (6.4)

In the case of (a,b) = R, the boundary forms [V«, ¥«|(£00) are trivial, see
below, and therefore, the operator 13+ is symmetric.

In the case that one or both endpoints of an interval (a,b) are finite, for
example, |a| < oo and/or |b| < oo, we generally have [V, ¥«] (a) # 0 and/or
[V, ¥«] (b) # 0, which implies that the operator pT is not symmetric.

The deficient subspaces and deficiency indices of the operator p are determined
by solutions of the differential equations

PY= (x) = =iyl (x) = Zikyz (x), (6.5)
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where k is an arbitrary, but fixed, parameter of dimension of inverse length. The
respective general solutions of these equations are

Vi (x) = cxeT, (6.6)

where ¢4+ are some constants.
From this point on, our consideration depends on the type of interval. We first
consider the whole real axis.

6.1.1 Whole Real Axis

The Hilbert space of states for a particle on the whole real axis is $ = L?*(R). The
domain of the initial symmetric operator p is D, = D (R), while the domain of
its adjoint pT is D o= D; (R). The functions v, belonging to D; (R) satisfy
the conditions V., ¥, € L? (R) and therefore vanish at infinity, see Lemma 2.13,
which implies that the quadratic boundary forms are trivial, [/«, ¥«](£o00) = 0. It
follows that quadratic asymmetry form (6.4) is zero and the operator p* is therefore
symmetric. This means that the operator p is essentially s.a., and its unique s.a. ex-
tension, we let p. denote it, is its closure coinciding with its adjoint, p, = p = pT.

An alternative argument for the validity of this assertion is the general standard
one. The solutions (6.6) of (6.5) are both non-square-integrable on the whole
axis, ¥4 is non-square-integrable at —oo, while y_is at co. This means that
the deficiency indices of the operator p are zero, and therefore this operator is
essentially s.a.

Thus there exists only one s.a. momentum operator p, on the whole axis.

As we know from Chaps. 2 and 5, the spectrum of any s.a. operator is on the real
axis. We now prove that the spectrum of the s.a. momentum operator p, is the whole
axis, spec p. = R.

Assume the contrary. Suppose a point A € R does not belong to spec p., i.e.,
the point A¢ is a regular point of the operator p.. This means that the operator
(pe — Ao)~ ! is defined on the whole of L?(R) (see the definition of a regular point
in Sect. 5.1), or the equation

(P—20)€=n (6.7)

with any n € L*(R) has a (unique) solution £ € Dp"i (R). Let suppn € («, B),
—00 < & < B < oo. The general solution of differential equation (6.7) is

E(x) = 0t [i / dye M p(y) + C} ,

where C is an arbitrary constant. For x < «, we have £(x) = Ce'**, and the
condition £ € L?(R) requires that C = 0. For x > f8, we then have

) B )
E(x) = L™, Ci(y) = i / dye 0 (y),

o
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and the condition £ € L2(R) requires that C;(n) = 0. But it is easy to present
functions € L*(R) for which C;(n) # 0, for example, n(x) = e**¢p(x), p(x) >
0, which implies that for such functions, (6.7) has no square-integrable solutions.
This contradiction proves that spec p. = R.

The operator p, has no eigenvectors. Again, assume the contrary. Let a function
U, (x) be an eigenfunction of the operator p, corresponding to an eigenvalue A € R.
By definition, this function is a square-integrable solution of the equation U; (x) =
i AU, (x). But the general solution of this equation is

Uy(x) =Cexp(irx), C €C, (6.8)

which is not square-integrable for any A € R and C # 0. This contradiction proves
that p. has no point spectrum, and its spectrum is pure continuous; see Chap. 5.

However, it is well known that functions (6.8) form a complete orthonormalized
system in L?(R); they are therefore called the generalized eigenfunctions. Namely,
inversion formulas (5.23) with U, (x) = (271)_1/ 2 exp (iAx) and U, = 0, which are
well known as Fourier transformations, hold,

n(x) = /R SOV ()AL, $(1) = /R Uy(n(odx, Vi € L2®).  (69)

As was mentioned in Chap. 5, the integrals in the inversion formulas converge in
the sense of the metrics of the respective Hilbert spaces. We illustrate this point with
the above transformations.

As an example, we consider the first integral in (6.9). This integral has to be
understood as follows. We introduce the functions 1y (x) defined by

ﬂ(x)7 -N S-x S N7

v (x) = {o, x| > N.

Their Fourier transforms are

oy (L) = (2m)~ 12 / dxe* ny(x), pn(A) € LT (R).

—0Q

It is evident that {ny(x)} is a Cauchy sequence and that it converges to the vector
n(x) as N — oo. Due to the equality

||¢N2 - ¢N1 ”2 = ”nNz — N ”2’

{¢n (1)} is also a Cauchy sequence. Because the space Li (R) of functions of
the variable A is complete, the sequence {¢y (1)} converges to a vector ¢(A) as
N — oo.
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6.1.2 A Semiaxis

The Hilbert space of states is the space L>(Ry). The domains of the initial
symmetric operator p and its adjoint pT are respectively D, = D (Ry) and
D,+ = D; R4).

It is useful to evaluate the closure ; of the operator p using the relation ; =
( ﬁ+) Jr; see Chap. 3. In that chapter, it was demonstrated that the domain D of the
operator ; consists of functions Y € Dp"i (R4 ) that satisfy the additional condition
0t (Vs ) = 0, Vi € D; (R4); see (3.12). In the case under consideration,

X—>00 ..
(/. =3 0, so that the latter condition becomes

Y«(0)Y(0) = 0, Vs € D} (Ry) = ¥(0) = 0,

and we obtain
Dy = {z : z € Dp’f Ry), E(O) = 0}. (6.10)

We now turn to the deficient subspaces of the operator p. They are determined by
the same solutions (6.6) of the differential equations (6.5) reduced to the semiaxis
R.. The function ¥4 is square-integrable on R, whereas ¥_ is not. This means
that the deficient subspaces of the initial symmetric operator p on the semiaxis are

Dy = {cet}l, e = e, ¢ € C, and D_ = {0} and its deficiency indices
are (1,0).

We come to the same conclusion considering the quadratic form A ,+ (V«), ¥« €
D; R4).

Indeed, the right boundary form is trivial, [{«, ¥«](co) = 0. The left endpoint
of the semiaxis is regular, and the left boundary form is nontrivial, [, ¥«](0) =
—i|¥«(0)|? # 0, because in general, ¥/, (0) # 0.

The boundary value v, (0) plays the role of a unique asymptotic boundary
coefficient.

The Hermitian form (1/i) A+ (¥x) = |¥« (O)|2 is a positive semidefinite form
in this boundary value, its inertia indices, and therefore the deficiency indices of the
initial symmetric operator p, are evidently equal to (1,0). We note that we obtain
this result without finding the deficient subspaces.

The unequal deficiency indices imply that there are no s.a. extensions of the
initial symmetric operator p associated with the differential operation p on the
semiaxis Ry. In the language of physics, this means that for a particle moving on
the semiaxis, the notion of momentum as a QM observable is lacking. In particular,
there is no notion of radial momentum.

Although the operator p has no s.a. extensions, we can find some closed
extensions of p such that their adjoints are also the extensions of p: if we let g
denote such an extension, then p € ¢ = g and p € g*. We show that there are
only two such extensions, §; = p and ¢» = p*. Indeed, because p is the minimum
closed extension of p, wehave p € ¢ = gand p C g+. Taking the adjoints of these



212 6 Free One-Dimensional Particle on an Interval

two inclusions and using the relation (+)* = g, we obtain that pCgC ptand
p C §+ - 13+. In the case under consideration, the first von Neumann formula
(4.44) becomes

Dp+ = D; (R+) = Dﬁ"‘r‘ D+ = Dﬁ"}‘ {C€+},

and therefore, the domain D, of g coincides either with D or with D e

6.1.3 A Finite Interval

6.1.3.1 Self-adjoint Momentum Operator

The Hilbert space of states is L.2(0, /). The domains of the initial symmetric operator
p and its adjoint p are respectively D, = D (0,/) and D, = D; 0,1).

The functions ¥+ in (6.6) are square-integrable on a finite interval, which implies
that the deficient subspaces of the operator p are one-dimensional subspaces Dy =
{c+et,cxt € C}, where ey = e and e = e *U=%) are the respective basis
vectors of the same norm, so that the initial symmetric operator p on a finite interval
has the equal deficiency indices m4 = 1. By the main theorem, Theorem 3.4, there
exists a one-parameter family {py, U € U (1)} of s.a. extensions of p (the group
U (1) is a circle {e’o, 0 €S0, 27{)}). We consider both ways of specification of
s.a. extensions given by the main theorem and a third, alternative, way of directly
finding s.a. boundary conditions, which is given by Theorem 4.24.

The first way requires evaluating the closure ;, which reduces to finding its
domain D. The equivalent defining equations for ¢ € Dy are given in (3.13)
and in (3.16) or (3.17). We use the defining equation in (3.13), which in our case is
Opt (s, ¥) =0, Vs € Dp"f (0,17). This equation reduces to the equation

U Y (1)~ Y O (0) = 0. Vi € D% (0.1).

for the boundary values of functions ¥ belonging to D5. Because ¥ (0) and
V4 (1) can take arbitrary values independently, which in particular follows from
representation (6.3), we obtain that ¢ (0) = ¥ (/) = 0. We arrive at the same
result considering defining equation (3.17) for T)ﬁ because the determinant of the
boundary values of the basis vectors e4 is nonzero,

er () er (0)) _ o
det(e_(l) e_(O))_e 2 1 #0.

Therefore, the functions € Dy are specified as the functions belonging to
D; (0,1) and satisfying the additional zero boundary conditions

Dﬁz{gzzebl’;(o,z); K(O)zg(l)zo}.
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Isometries U : Dy +—— D_ are determined by complex numbers of unit modu-
lus, U (9) e+ = e'%e_, and are labeled by an angle 6 € S (0, 27r). Respectively, the
one-parameter U (1) family {py} of s.a. extensions of p is given by the domains

Dy, = {we TP =Y+ (e_” + em_’(”_")) L Ye D;} : 6.11)

where ¢ is an arbitrary constant.

The second way of specifying s.a. extensions of p requires solving the defining
equation @+ (e+ +efe_, w@) = 0 for functions vy belonging to D, ; see (3.33)
or (3.35). In our case, this equation reduces to

[e+ +efe_, Iﬁe]‘g =—i(e™ +e )y (1) +i(1+e )y (0) = 0.

Its solution is the relation

Vo (1) = ey (0), ¥ = 6 —2arctan (ﬂ) , (6.12)

ev! + cosf

between the boundary values of the functions belonging to D ,,. The angle ¢} ranges
from 0 to 27 as O ranges from 0 to 27w, ¥ € S(0,27), and is in one-to-one
correspondence with the angle 6 (it is sufficient to show that ¢ (6) is a monotonic
function, do¥/df > 0); therefore, the angle ¥ equivalently labels the U (1) family of
s.a. extensions, which we write as py = py.

The domain D,, = D, of the momentum operator py = pg consists of func-
tions ¥y = Yy that belong to D; (0,7) and satisty the additional boundary condition
(6.12). This boundary condition is an s.a. boundary condition specifying the s.a.
extensions of the initial symmetric operator p:

Dy ={¥o i 90 € DFO.D: Yo D = Y O (613)

It is easy to verify that representation (6.12) is equivalent to representation (6.11).

The second way of specifying s.a. extensions appears to be more direct and
explicit than the first one! because it specifies s.a. extensions in the customary form
of s.a. boundary conditions, which is more suitable for spectral analysis.

And finally, we can use the third way, the asymmetry form method given by
Theorem 4.24. Namely, we impose the condition A+ (%) = —i Ve (X) Vs
(x)|f) = 0 to reduce the domain Dp"f (0.1) of the adjoint operator p* to the domain
of an s.a. momentum operator, which directly yields the s.a. boundary conditions

Vo (1) = ey (0), 9 € S(0,27), (6.14)

and reproduces the result (6.13) without evaluating the deficient subspaces.

! Although in the general formulation of Theorem 3.4, the situation seems to be the opposite.
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A conclusion of the above consideration is that for a particle moving on a
finite interval, the momentum operator is defined nonuniquely. There exists a
one-parameter U(1) family {py} of s.a. operators associated with the differential
operation p, labeled by an angle ¥, and specified by s.a. boundary conditions (6.14).
Each py can be considered the momentum operator for a particle moving on a finite
interval.

As_in the previous case of a semiaxis, we find all closed extensions g of p,
& = &, such that their adjoints g™ are also the extensions of p. In perfect analogy
with the previous case, these requirements imply that the following inclusions
hold: p € ¢ C pTand p € ¢ C pt, which is equivalent to that both ¢ and g+
are associated with the differential operation p and their domains are restricted by

Dy € Dy © D3(0,1), Dy © Dyt € D5(0,1).
By the first von Neumann formula (4.44) as applied to our case, we have
D;f (0,0) =Dy + Dy + D_ = Dy + {creq} + {c_e_}.

It follows from this representation and the above inclusions that for any extension
g, its domain D, allows the representation D, = Dy + AD,, where AD, is a
subspace of the direct sum of the deficient subspaces, AD, C D + D_; the same
holds for the adjoint g*: D+ = Dy + ADy+, ADy+ © Dy + D—. Because
Dy + D_ is two-dimensional, there are three possibilities for AD,:

(1) The minimum A D, is the zero subspace of Dy + D_, AD, = {0}, in which
case § = g, = pand gt = pt.

(2) The maximum A D, is two dimensional and coincides with the whole of D +
D_,AD; =Dy + D_,inwhichcase § = &, = p™ and §* = b.

(3) An intermediate AD, is a one-dimensional subspace of the two dimensional
sum Dy + D_. There is the two-parameter family {A D } of such
one-dimensional subspaces determined by basis vectors

) (01 0)

v=v(a, ) = e+sina+e“9e_cosa, 0<a<nm/2,0<0 <2m,

sothat AD = {cv}, ¢ € C, which generates the two-parameter family {g(,) =
8«0y} of the required closed extensions of p such that
D

sy = Dgos = Dy +AD, = Dy +cleqsina + e'e_cosa).

The adjoint g g( ) i.e., its domain D_+, can be evaluated using defining equation
)

(2.24), which is reduced to the equation (y, &w)¥) = (g(v))( V), V¥ € Dy,
fory e D g It is evident from the equality (¢7)* = ¢ and the previous two

items that D o = =Dy + AD o where the subspace AD o S Dy + D_ is
8w Ew) 8w)
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also one-dimensional, ADg+ =ADE =AD@ge =clessinp + e'?e_cos p).
v)

Because both g,y and g:(t) are restrictions of pT, the defining equation is
equivalent to the equation w,+(x,¥) = 0,Yy € Dg . In view of the von
Neumann formula (4.45) and the equality |le+| = ||e—]|, this equation reduces
to sin B sina—e ™"~ cos B cos = 0 (of course, the same result follows from
the representation of @, + (x, ¥) in terms of boundary forms). The solution of
the latter equationis ¥ = 6 and 8 = 7/2 — «, so that

D+ =D+ =Dy+c(ercosa + efe_sina).
g (@b
We note that all the s.a. operators pg (6.11) represent a part of the above family,
Do = &x/s6. In addition, the property 8o o = g;/z_a holds, and the operators

YR gr{{@, 8x/2.0, and g;/w do not depend on 6.

6.1.3.2 Spectrum and Inversion Formulas

We begin with the spectra of the s.a. operators py.

The eigenvalues A, () and the corresponding normalized eigenfunctions U, (; x)
of the s.a. operator py are easily found as the solutions of the eigenvalue problem
for the homogeneous first-order differential equation (p — A, (9))U,(J;x) = 0,
where U, (¥; x) satisfy s.a. boundary condition (6.14), to give

(@) = Qan+ )1, Uy(®:x) = (1) 22Dy ez (6.15)

We show that all other real points u, u € R\ {A,(0), n € Z}, are the regular
points of py and therefore do not belong to its spectrum. By Lemma 2.73, it is
sufficient to show that the inhomogeneous first-order differential equation

(P =Wy (x.u) = 1(x). ¥n(x) € L*(0.1),

has a (unique) solution belonging to D, (6.13). It is easy to verify that the required
solution is given by

X i
Wﬁ(x;u) — l-eiux [ei(ﬂ—ul) _ 1]—1 |:ei(z9—ul)/(; dye—iuyn(y) +/ dye_i"yn(y):| .

We thus obtain that the spectrum of the s.a. operator py is a simple pure discrete
spectrum, spec py = {A,(3), n € Z}, where the eigenvalues A,(¢) and the
corresponding eigenfunctions U, (; x) are given by (6.15). _

We note that the initial symmetric operator p and its closure p have no
eigenvalues, while any complex number z is the eigenvalue of their adjoint p.
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Itis well known from the theory of Fourier series that the orthonormalized system
of functions {U,(0;x), n € Z} is complete in L?(0,/). It immediately follows
that for any @, the system of functions {U,(¢;x), n € Z} is also complete in
L2(0,1): the two systems are related by the unitary transformation U (8) = e/?*//,
The well-known Fourier-series expansion formulas written in terms of the functions
U, (¥; x) are just inversion formulas (5.23), with (a,b) = [0,1], U, = U,(¥; x),
and U, = 0, for the s.a. operator py.

6.2 Self-adjoint Extensions and Spectral Problem
for Free Particle Hamiltonian

To construct an s.a. quantum Hamiltonian for a one-dimensional free nonrelativistic
particle, we start with the corresponding differential operation H = —d ? 4.7),
which follows from the formal canonical quantization rule of replacing the mo-
mentum p in the classical Hamiltonian { = p? by differential operation (4.6).
According to our general scheme, we successively construct the initial symmetric
operators H, its adjoint H*, and some other relevant operators associated with H.
All these operators differ by their domains. However, each of them acts on the
corresponding domain by the same differential operation #. That is why we only
indicate the domains of these operators in what follows.

The domain of the initial symmetric operator H is the space D (a,b), Dy =
D (a,b), in which case the domain of its adjoint Htis D:l (a,b), Dy+ =

D* (a,b), the natural domain for 7—2, as follows from the general theory; see
Sect 4.4. R

The deficient subspaces D4 and deficiency indices of the operator H are
determined by solutions of the differential equations

Hyg (x) = =¥/ (x) = i Ps (X)), (6.16)

where k > 0 is an arbitrary, but fixed, parameter of dimensionality of inverse length.
The respective general solutions of these equations are

Ve =c1£V1+(X) +2£¥2+(x), ¥;-(x) =¥;4+(x), j =1,2,

(1\;)”} . Vaa(x) =exp [—(1\;{.)”} , (6.17)

where ¢; + are some constants.
From this point on, our considerations depend on the type of interval. We first
consider the whole real axis.

Vi+(x) = exp[
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6.2.1 Whole Real Axis

6.2.1.1 Self-adjoint Hamiltonian

In the case under consideration, the Hilbert space of states is L*(R). The domain of
the initial symmetric operator H is Dy = D (R), while the domain of its adjoint
tis Dyt = D;Z (R).

It is evident that both solutions (6.17) and their arbitrary linear combinations
are not square-integrable on R for any «, which means that deficient subspaces are
trivial and both deficiency indices of H are zero, which implies that the operator H
is essentially s.a., its umque s.a. extension ’Hc, ’Hc = ’H+ is its closure coinciding

with its adjoint, H, = H = H™T, and Dy, = D;‘i (R).
The same result follows from a consideration of the asymmetry form A+ (V).
According to (4.36), (4.37), and (4.15), it is represented in terms of the quadratic

boundary forms [, Y«](00/ — 00) = [Vr«, V] (00/ — 00) as

Apt () = W, Yl 0o [, Y] (2) = PL0) Y () — P () ¥4 ().

By Lemma 2.14, we have ¥, ¥, |x|:>oo 0, Vs € D:Z (R). It follows that the
boundary forms are trivial and A4+ (%) = 0, which implies that the operator Ht
is symmetric and therefore the operator H is essentially s.a.

Therefore, there exists only one s.a. free Hamiltonian 7/%3 on the whole real axis.

We now establish the well-known relation between the s.a. free Hamiltonian ”ﬁe
and the s.a. momentum operator p. constructed in Sect. 6.1.1. We note that the initial
symmetric ORerators H and p are defined on the same domain, D (R) and it is
evident that = p>. The operator p has a unique s.a. extension p, = p defined on

2
the natural domain D; (R). By Theorem 2.84, the operator ( p) is s.a. Its restriction

~ 2 ~
to D (R) coincides with p> = #, i.e., the operator ( ﬁ) is an s.a. extension of .

But ’?[6 is a unique s.a. extension of H. This implies that for the whole real axis, the
relation?

Re=pi=(7) (6.18)

holds. This relation can be proved independently: it is evident that both operators
are associated with the s.a. differential operatlon H= —d? = p?, and it is easy to
verify that by definition of the operator p?, its domain commdes with D; (R).

2This relation is considered evident in most physics textbooks and sometimes incorrectly extended
to other intervals; we discuss this point below.
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6.2.1.2 Spectrum and Inversion Formulas

In solving the spectral problem, we follow the way described in Sect. 5.3. Following
Sect.5.3.1, in particular, see (5.8), for the special fundamental system of solutions
of the homogeneous equation

(H — Wiu(x) =0, (6.19)

we choose the functions
w (x: W) = cos(Bx), uz(x; W) = " sin(Bx). p = VW, (6.20)

normalized at the point ¢ = 0 by u;k_l)(O; W) = §k, j.k = 1,2, and evidently
real entire in W.

Following Sect.5.3.4, we evaluate the Green’s function of the operator 7/-2?,
finding a unique solution of the inhomogeneous equation

(H —W)E(x) = n(x), ¥y € LAR), InW > 0, 6.21)

belonging to Dy, = D (R) and representing it in integral form (5.13) (with the
substitution W for z). For W with Im W > 0, we use the parameterization W =
[W1eX¢, 0 < ¢ < /2. Then B = VW = /|W|(cos¢ + i sing), ImB > 0, and
real W are always denoted by E. The general solution of (6.21) is of the form

£() = cre P+ crelt
X

+$[/we‘iﬂ(“‘_y)n(Y)dy+ / efﬂ(x—”n(y)dy] (6.22)

Because Im 8 > 0, the sum of the first two terms on the right-hand side of (6.22)
grows exponentially at infinity unless ¢;, = 0, while by the Cauchy—Schwarz
inequality, the integral terms are bounded at the whole axis, which implies that
the required solution is given by (6.22) with ¢;» = 0. It follows that the Green’s
function is given by

i o=y x> y,
Glx.yi W) = 28 { eIy <y

Following Sect. 5.3.2, we calculate the matrix M (0; W), see (5.15) (with the
substitution W for z and taking into account that in our case, the quasiderivatives
coincide with ordinary derivatives),

M (0; W) = 21—’3 (

1 —ip

[
=—ip¥ 38 +io?
i /32) R
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and then the derivative 0;. «(E) of the matrix spectral function, see (5.19) (with the
substitution E for 1),

- . 1 . R2j—
o}k(E) =7 lImMjk(O;E +i0) = o Im[i g% 3]|ﬁ=«/m5fk'
In calculating the derivative of the matrix spectral function, we have to distin-
guish the semiaxis £ > 0 and E < 0:
(a) For E > 0,wehave 8 = VE +i0 = \/f, and we obtain
2j-3

, 1
ol (E) = 5 (ﬁ) 8k (6.23)

(b) For E < 0,wehave B = o/E +i0 =1i./|E|, and we obtain

ol (E) =0. (6.24)

According to Sect. 5.3.3, the spectrum of the operator 7/%3 consists of the growth
points of the matrix spectral function. It then follows from (6.23) and (6.24) that
spec ’;’/-\[e = R,. Because the matrix G}[(E ) is nonsingular, the spectrum of 7/%3 is
twofold (twofold degenerate).

And finally, the general inversion formulas (5.20) (with the substitutions E for A
and @ for ¢) in our particular case in whichn = 2, p;;(E) = %(«/F)zf_%jk, and
*jik.m = 0 become

Cos (ﬁx)

T + ¢2(E) sin(x/fx) dE,

”w =5 /0 ()

®,(E) = / - cos(x/fx) n(x)dx, @r(E) = / = o WEX) n(x)dx.

oo o E

After the natural change of the variable E to p = +/E and the replacement of the
functions @; »(E) by the functions ¢; »(p) given by

o1(p) = ()2 D1(E), $a(p) = ()2 pda(E),

the inversion formulas are reduced to the conventional sine—cosine form of the
Fourier transformation,

n(x) = (7r)_1/2/0 [$1(p) cos(px) + ¢2(p) sin(px)] dp,

1(p) = (1) / cos(px) ()dx . da(p) = ()2 / sin(px) ¥ ()dx.

— —00

The following remark is worth noting.
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The eigenfunctions cos (ﬁx) and sin (\/Ex) /E respectively are even

and odd under the transformation x — —x, or equivalently, they are symmetric or
antisymmetric with respect to the origin. This is a consequence of a diagonal struc-
ture of the spectral matrix o’ ik (E) (6.23). In turn, the latter is a manifestation of the

fact that that the unitary parity operator P defined by Pl//(x) = ¥ (—x) commutes
with the operator ’H, As a consequence, the Hilbert space L?*(R) is decomposed
into the orthogonal direct sum of the two subspaces L )(R) and Lz_) (R) of the

respective symmetric and antisymmetric functions that are the eigenspaces of P
with the respective eigenvalues +1 and —1, L?(R) = L( +)(]R) @L(Z_) (R). The

subspaces L?, (R) and L(_) (R) reduce the operator H., so that the inversion

)
formulas for . in the whole space L?(R) actually split into a couple of independent
inversion formulas in the subspaces L{,,(R) and L¢_ (R).

In conclusion, we note that all the results in this section gl\irectly follow from
the representation (6.18); in particular, the eigenfunctions of 7, are certain linear
combinations of the eigenfunctions of p..

6.2.2 A Semiaxis

6.2.2.1 Self-adjoint Hamiltonians

The Hilbert space of states is L?*(R4). The domains of the initial symmetric operator
H and its adjoint HT are respectively Dy = D (R4) and Dyy+ = D R4).

The deficient subspaces D4+ as the spaces of square-integrable solutlons (6.17)
of equations (6.16) are easily evaluated. It suffices to find D, and then D_ is
obtained by complex conjugation. Among the two linearly independent solutions
¥1+(x) and ¥ 4+ (x), only ¥ +(x) is square-integrable on the semiaxis. This
means that the deficiency indices in our case are m+ = 1, and we have a one-
parameter U (1) family {HU} of s.a. extensions of the initial symmetric operator H.
If we parameterize elements U of the group U (1) by the angle §: U = 7,
0 € S(—m, m), then each s.a. extension is naturally labeled by an angle 0,
7/-\[(/ = 7/-29. A specification of s.a. operators 7/%9, which are associated with 7:[,, by s.a.
boundary conditions is performed in accordance with Theorem 4.17: H is an even
s.a. differential operator of second order, » = 2, on an interval (a,b) = (0, c0),
the left endpoint @ = 0 is regular, the right endpoint b = oo is singular, and the
right boundary form is equal to zero by Lemma 2.14. For illustration, we trace
the specification in detail. The normalized basis functions in Dy are respectively

+ = sz,i(x), a unique basis function ey = ey in the one-dimensional
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subspace (f + U)D+ C Dy, iseg = ey + e'?e_, the matrix Eiu (a) in (4.80)
defined by (4.78) is a column given by?

. 1+ei9
vz (0) = @(2—1/% [(—1)—(1+ i)e”’])’

the matrix £ (4.66) is given by £ = antdiag (1, —1), the column ¥y (a) (4.68) is

given by
Vo (0)
"7 = ,
'O (wg (0))

so that s.a. boundary conditions (4.79) specifying 7/-29 become
(L+e7 )y (0) + 272 [(1 +i) + (1 —i)e ]y (0) = 0,
or equivalently
Yy (0) cosv = kg (0)sinv, tanv = 2712 (tan6/2 — 1) (6.25)

As 6 ranges from —x to 7, v ranges from —x/2 to w/2,and v = £x/2 (60 = £m)
equivalently yield the s.a. boundary condition v (0) = 0. It is natural to change the
notation ﬂg — 7/-\[1) and ¥y — . In this notation, the boundary condition (6.25)
becomes

V! (0)cosv =k, (0)sinv, v € S(—7/2,7/2). (6.26)

So, for a free particle on a semiaxis, there exists a family {ﬁu} of s.a. operators
associated with the differential operation #; their domains D4, are given by

Dy, = {wv Ly € D (Ry): Y, satisfies (6.26)}.

Each of the operators 7’-\[V is a candidate for the s.a. Hamiltonian for a free particle
on the semiaxis. In physics, the boundary condition (6.26) with v = +m/2 is
conventional. In particular, it is characteristic for a free radial motion in the s-wave.
However, the boundary condition (6.26) with |v| < 7/2 is also encountered.

We note that even though the Hamiltonian with a fixed v depends on the parame-
ter k, the whole family {#{, } is the same for any choice of k. We also emphasize that
ifv # +m/2, Ehe dimensional parameter k, which is lacking in the initial differen-
tial operation H, enters QT as an additional parameter specifying a Hamiltonian.

3We note in passing that the correctness of the calculation, which is very simple in this case, is con-

firmed by the fact that both necessary conditions rankE;/,9 = 1 and E 1"’/'29 (0)EE1)20(0) =0
hold; see the remark following Theorem 4.17.
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The same results are easily obtained by the asymmetry form method without
evaluating the deficient subspaces. According to the above-mentioned properties of
H, our case falls within the realms of the cases considered at the end of Sect. 4.7 and
associated with formulas (4.133) and (4.134). In our case, the columns ¥y ; 4+ (@)
and ¥, _ (a) defined by (4.130) and (4.131) are the respective numbers

Vi 4 (0) = Yoo+ (0) =9, (0) + ity (0),
Yoo (0) = ¥, (0) — ity (0),

where the unitary matrix U € U(1) is a complex number of unit modulus. If we
set T = 1/kand U = e*V, v € S(—m/2,7/2), s.a. boundary conditions (4.134)
directly reduce to (6.26).

We recall that for a particle on a semiaxis, no s.a. momentum operator exists,
but there exist two closed densely defined operators g; and g, associated with p,
namely, &1 = & = pand g, = & = pT; see Sect. 6.1.2.

Then, according to Theorem 2.84, the operators 7’-\[(1) = ptpand @(2) = ppt
are s.a. operators associated with H. We first evaluate the domain D3y, of the

operator 7’-\[(1) following from its definition. A function ¥ belonging to D3, must
belong to Dy given by (6.10); its derivative ¥ belonging to Ry must be a.c. for
to belong to D ,+; and its second derivative Y¥” must be square-integrable. All this
means that ¢ € D:% (R4). On the other hand, by Lemma 2.14, the requirement

v e D?*_v[ (R4 ) implies that ¥’ is square-integrable. It follows that
Dy, ={¥ ¥ € D (Ry). ¥(0) =0},

ie., DH“) = DH:I:n/z’ and therefore 7’-\[(1) = ﬂin/z. Similarly we obtain that
Dy ={¥ : ¥ € D, (Ry). ¥'(0) =0},

i.e., Dy, = D3y, and therefore ?-\[(2) = Ho.
The general problem of representations of all the Hamiltonians 7/-\[V as quadratic

combinations of first-order differential momentum-like operators (we call such
representations the oscillator representations) is considered in [77].

6.2.2.2 Spectrum and Inversion Formulas

We begin by following a method adopted in Sect. 6.2.1. For the special fundamental
system u; (x; W), j = 1,2, of solutions of the homogeneous equation (6.19) on the
semiaxis, we take the same functions (6.20) reduced to the semiaxi&

Next is an evaluation of the Green’s function of the operator H, by finding a
unique solution of the inhomogeneous equation (6.21) on the semiaxis belonging to
D+,,. The general solution of this equation can be represented as
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—iBx iBx l —iBx o iBy iBx * —ifBy
E(x) = c1e P 4 cpelP +ﬁ[e p / P (y)dy + / ¢ f”n(y)dy]
X 0

where ¢, are some constants. Using the Cauchy—Schwarz inequality, it is easy to
verify that the last three summands on the right-hand side of this representation are
bounded as x — oo, while the first one grows exponentially unless ¢c; = 0. The
condition § € D, implies that £ is square-integrable and satisfies s.a. boundary
condition (6.26). The first requirement fixes the constant ¢;, ¢; = 0, while the
second requirement fixes the constant ¢,

. o0
Cy = —%(K sinv + iB cos v)[B(k sinv —if cosv)] ! / P (x)dx
0
so that the required solution is
£(x) = (ksinv —ifcosv)!

x [e"‘“ / 0y (v W)n(y)dy + uy (x: W) / e’ﬁyn(y)dy} :

0 X
sin(Bx)

u, (x; W) = cos(Bx)cosv + « sin v.

It follows that the Green’s function of the operator 7/-2” is given by

ePu,(y; W), x > y,

G(x,y; W) = (ksinv —if cosv)_1 { o (v W)eiﬁy v <y
v k) E) .

We note that the function u, (x; W) is a solution of the homogeneous equation
(6.19), which is real entire in W and satisfies s.a. boundary condition (6.26).
The matrix M ;(0; W) calculated in accordance with (5.15) and its imaginary
part respectively are
M (0) = (ksinv — iBcosv)”! (,COSU _KSH?U ) ,
ifcosv ifksinv

ImM;(0; W) =ImA,(W)m®n)jx, n={n;} = (cosv,ksinv),
A, (W) = [cosv(ksinv —if cosv)] L.

We could next calculate the derivative 0} (E) of the matrix spectral function in

accordance with (5.19), find the spectrum of the operator 7/-21,, and explicitly write
the inversion formulas (5.20). On the other hand, the structure of the matrix Im M j
indicates that the functions u; and u; enter the inversion formulas not independently
but as a unique linear combination nju; + nu; = u,. This observation shows that
the spectrum of the operator 7/-2” is actually simple. We prove this fact using the
simple guiding functional method.
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Consider the guiding functional

DEW) = /0 dxu, (x; W)E(x), £ € D,(Ry) N D, .

It is easy to see that this functional belongs to the class E of simple guiding
functionals considered in Sect.5.4.1 with the functions U(x, W) = u,(x, W) and
U(x) = u,(x; Ag), where

it,(x; W) = —cos(Bx) sinv + kB! sin(Bx) cos v

is a solution of the homogeneous equation (6.19), which is linearly independent of
u,(x, W) and real entire in W. Therefore, the spectrum of H, is simple.
‘We rewrite the Green’s function as

G(x,y; W) = QW)u,(x; Wu,(y; W)

_ o G W (i W), x>y,
u, (x; Wi, (y; W), x <y,

where
Kcosv + ifsinv
(W) =K_1#.
ksinv —if cosv

Using this representation and representations (5.22) and (5.21) with A changed
to E, we obtain that the derivative of the spectral function is given by ¢’(E) =
7' Im 2(E + i0). We consider the semiaxis £ > 0 and E < 0 separately.

(1) For E > 0, we have B = /E 4 i0 = +/E, the function 2(E + i0) = 2(E)
is a finite complex function, and we obtain

o' (E) = VE [r(k*sin* v + E cos? v)]_l .
(2) For E < 0,wehave § = VE +i0 =i./|E|, and formally,

Kkcosv — /|E|sinv

2(E) = = Y(E),

ksinv + y/|E|cosv

but we have to distinguish two regions of the extension parameter v:

(a) ForO <v < m/2and v = £7/2, the function w(E) is a real function without
zeros, so that Im 2(E + i0) = Im 2(E), VE < 0, and we obtain ¢/(E) = 0.
(b) For —m/2 < v < 0, the function w(E) is a real function with a single simple

zero at the point £ = 1, = —k2tan? v,

Imw(E) =0, VE <0; w(E) #0, E # 1,; w(r,) =0, 1, = —i2tan’ v,
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and using Lemma 5.17, we obtain
o'(E) = 2k cos 2 vtan |v|§(E — 1),

which means that in this case, there exists a negative energy level 7, =
— (k tan v)>.

The final results for the spectrum and eigenfunctions of the operators 7/-2” are as
follows.

For 0 < v < w/2 and v = +£x/2, the spectrum of the operator ’?[V is simple
and continuous, spec 7/-2” = R, and its corresponding generalized eigenfunctions

U 1(5") (x) forming a complete orthonormalized system in L?(R4.) are

(k2 sin® v + E cos? v)

Uy (x) = \/ vE uy(x; E), E > 0. (6.27)

For —n/2 < v < 0, the spectrum of the operator H, is simple, contains a
continuous nonnegative part and a point part consisting of a unique negative energy
level t,,

spec H, = Ry U {ru = — (k tan v)z} ,

and the corresponding eigenfunctions forming a complete orthonormalized system
in L>(R) are the generalized eigenfunctions of the continuous spectrum U 1(5”) (x)
given by the same formula (6.27), but of course with different v, and a unique

eigenfunction
U™ (x) = cos™' v/ 2k tan |v|u(x; 7,)

of the point spectrum.
The inversion formulas for v = =7 /2 written in terms of the functions Ug (x) =

V/2/m sin (\/ E x) coincide with the standard sine decomposition on the semiaxis;

the cosine decomposition on the semiaxis is covered by the inversion formulas with
v=20.

6.2.3 A Finite Interval

6.2.3.1 Self-adjoint Hamiltonians

The Hilbert space of states is L?(0,1). The domains of the initial symmetric operator
H and its adjoint H " are respectively Dy = D (0,1) and D4+ = D:Z (0,1). The

point is that Hisa regular even, second-order, s.a. differential operation.
A construction of all s.a. extensions of H, in particular their specification by
s.a. boundary conditions, was already given above by three different methods in
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Sect. 4.5, see (4.61) or (4.62), in Sect.4.6, see (4.65) or (4.69), and (implicitly)
in Sect.4.7, see (4.132), as an illustration of Theorems 4.12, 4.15, and 4.24,
respectively.

__In our opinion, the most direct and convenient specification of s.a. extensions
Hy of H in terms of s.a. boundary conditions is due to the asymmetry form method
as applied to regular even s.a. differential operations, which is presented in Sect. 4.7
and associated with formulas (4.127), (4.128), (4.129), (4.130), (4.131), and (4.132).
For a dimensional parameter t, we take the length / of the interval, and lest the
notation be overloaded, we omit the index /. With this convention, s.a. boundary
conditions (4.132) in our case become

YO =iy () _ (VO i)

where U € U(2). R 5
The whole U(2) family {Hy, U € U(2)} of s.a. operators associated with # is
completely determined by their domains D4, given by

Dy, = {w 1 € D% (0.1) and satisfy (6.28)}. (6.29)

Each ’?[U can be considered a candidate for a Hamiltonian for a free particle on a
finite interval.

In the spectral analysis of free Hamiltonians on a finite interval, we restrict
ourselves to the two well-known Hamiltonians, the Hamiltonian H J corresponding
to the choice U = —1,

Dy, ={y ¥ € DL (0.1), ¥(0) =y () =0}, (6.30)
and the Hamiltonian 7/-\101 corresponding to the choice U = o,

Dy, =4y 1y € DL (0.1), y(I) = ¥(0), ¥'(1) = ¥'(0)}. (6.31)

In physics, the zero s.a. boundary conditions in (6.30) are conventionally
associated with a particle in an infinite rectangular potential well, whereas the
periodic s.a. boundary conditions in (6.31) are conventionally associated with a
particle on a circle (a rigid rotator) or with an ideal gas in a box. _

We note that the Hamlltoman’H 1 allows the representatlon’H 1 = pT p.where
the operators p and p are defined in Sect. 6.1.3.

For the Hamiltonian ﬂgl , the representation

~

Hoi = p (6.32)

holds, where the operator py is one of the family {py} of the momentum operators
on the interval [0,/] with ¥ = 0; see Sect.6.1.3. These representations (6.32)
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are easily verified following the definition of the right-hand sides. By the way,
the representation (6.32) suggests a way to construct some of the possible free
Hamiltonians. Namely, the one-parameter family {p» } of s.a. momentum operators
generates the one-parameter family {# } of s.a. operators defined by

~

Hy = p3. (6.33)

As directly follows from their definition, these operators are associated with the
differential operation #, and their domains are given by

Dy =¥ ¥ € DL (0.0, y(1) =y (0), y'(1) ="y (0)}.  (6.34)

The one-parameter family {7/-219} is a subfamily of the whole four-parameter family
{Hy} of free Hamiltonians that is obtained if we take the subfamily {Uy} of 2 x 2
unitary matrices, where Uy = antidiag (e™'”, ¢/”) in (6.28).

6.2.3.2 Spectrum and Inversion Formulas

In both cases labeled below by I and II, for the special fundamental system
uj(x; W), j = 1,2, of solutions of homogeneous equation (6.19) on the interval
[0, [], we take the same functions (6.20) leduced to the interval.

(I) We first consider the s.a. operator H_;. The simple guiding functional method
proves to be applicable to this operator.

Becaugs: the function u, satisfies the s.a. boundary condition in (6.30) for the
operator H_ at the left endpoint, u» (0, W) = 0, we consider the guiding functional

DEW) = /O dxus(x; W)E(x), € € D,(R4) N D,,_,.

It is easy to verify that this functional belongs to the class E of simple guiding
functionals considered in Sect.5.4.1 with the functions U = u, and U = ui,
whence it follows that the spectrum of the operator H_ 7 is simple and the derivative
of its spectral function is evaluated using representations (5.22) and (5.21) (with A
changed to E).

Next is an evaluation of the Green’s function G(x, y; W) of the operator H_, by
the standard procedure.

The general solution of the inhomogeneous equation (6.21) on the interval [0, /]
can be represented as

Ex) = cru(x; W) + coua(x; W) + up (x; W)

[ x
« / (v WGy + (e W) /0 ua(y: WnG)dy,  (6.35)
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where ¢, are some constants. The requirement that £(x) € D _, is equivalent to
the requirement that & (x) satisfies the boundary conditions & (0) = £(/) = 0, which
fixes the constants ¢; and c,, namely,

1
cr=0. s = 7 cotpl [ (i Win(r)ay.
0
It follows that the Green’s function is given by

Gx,y: W) = o\ (W)ua(x; W)up(y: W)

ur(x; Wiua(y: W), x >y,

_ _p-1
e W (W) v =y @OV = =B an(BD. (636)

and according to (5.22), with u = up, ¢ = 0, and A changed to E, the derivative
o’ (E) of the spectral function is given by

o' (E)y=n"'Imw™ ' (E +i0).

Because the function w(E + i0) = w(FE) is real-valued, the derivative o’(E)
differs from zero only at the zeros of w(E).

We have to distinguish the semiaxis £ < 0 and £ > 0.

For E < 0, we have 8 = ~/E +i0 = i+/|E|, the real-valued function w(E)
has no zeros,

o(E) = o(E) = — (\/E)_l tanh(l\/E) £0, VE <0,

and we obtain o’ (E) = 0.
For £E > 0, we have § = VE +i0 = VE > 0, the real-valued function w(E)
has an infinite sequence {E, = 7*n?l~2}$° of simple zeros going to infinity,

w(E,) = —,Bn_l tan(B,l) = 0, B, = wnl™",

13

/ J—
w (E,) = —W, n

eN,

and using Lemma 5.17, we obtain

o'(E) = Z 20?138 (E — Ey).,

neN

so that E, are the eigenvalues of H ; and the corresponding eigenfunctions are
uy(x; Ey). .
The conclusion is that the spectrum of the operator 7 _; is simple and pure point,

spec H_; = {E, =n’n’l"%, n e N},
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and the normalized eigenfunctions

U, (x) = \/? sin (”Z—”x)  neN, (6.37)

form a complete orthonormalized system in L?(R.).

We note that the eigenfunctions (6.37) are even if n is odd, and odd if n is
even, under the transformation x — [ — x, or equivalently, they are symmetric
or antisymmetric with respect to the point x = //2, which is in agreement with the
fact that the unitary parity operator P defined by Pw(x) = ¥ (I — x) commutes
with H_ 7- An extended comment on this point would be an appropriately modified
copy of the remark on the relation between the operator . and the parity operator
P on the whole axis; see the end of SEct. 6.2.1.

(I) Passing to the s.a. operator H,1, we note that because the s.a. boundary
conditions for 1, see (6.31), are nonsplit, the simple guiding functional method is
not applicable, and in the spectral analysis of this operator, we have to deal with the
generic matrix spectral function and formulas (5.15), (5.19), and (5.20), completely
similarly to the analysis in Sect. 6.2.1.2.

We begin with the Green’s function. The general solution of inhomogeneous
equation (6.21) on the interval [0, /] is given by the same (6.35). The requirement
that §(x) € Dy, is equivalent to the requirement that §(x) satisfies the periodic
boundary conditions £(0) = &(/) and &'(0) = &’(I), which fixes the constants ¢
and ¢, namely,

I
v == [ [B" corB1/2m i W)y + un(y: W] (),

[
=3 /0 r(y: W) + B eot(BL/ 2us(y: W)l 1(y)dy.

It follows that the Green’s function G(x, y; W) of the operator ?-\[01 is given by

G(x,y; W) = = (2B) " {sin(Blx — y|) + cot(Bl/2) cos[B(x — y)]}.  (6.38)

The matrix M ; (0, W) given by (5.15) with ¢ = 0, and the substitutionz — W is

M (0.W) = o' (W)8i + ’5 (az)jk , ;(W) = =28 tan(Bl/2),

and accordingly, the derivative aj/. « (E) of the matrix spectral function defined by
(5.19) is given by

o (E) = Imw; ' (E +i0) 8.
Because the functions w;(E + i0) = w;(E), j = 1,2, are real-valued, the

derivative 0} (E) differs from zero only at the zeros of the functions w; (E).
We have to distinguish the semiaxis £ < 0 and £ > 0.



230 6 Free One-Dimensional Particle on an Interval

For £ < 0, wehave 8 = +/E +i0 = i /| E|, the real-valued functions w; (E)
has no zeros,

wj(E) = w;(E) = —2 (m)Hj tan h (%1\/@) £0, VE <0,

and we obtain (r;.k (E)=0.

For E > 0, we have 8 = VE +i0 = VE, the real-valued functions w; (E)
and w;(E) have the respective infinite sequences {E, = 4721272} and {E, }$°
of simple zeros going to infinity,

2
o1(Ey) = —2Bp tan (Bul/2) = 0, B = % nez,,
01 (0) = =1, w((E,) =-1/2, neN;
13
wy(E,) = —2B; " tan (B,1/2) = 0, wh(E,) = ———,n €N,
8m2n?
and using Lemma 5.17, we obtain
ol (E) =17'8(E) +2) 178 (E — Ey).
neN
/ _ 2,273 —0 .
0h(E) =Y 8n°n’ 178 (E — Ey). 05 (E) =0, i # j.

neN
so that E,, n € Z, are the eigenvalues of 7TL,,1 and the corresponding eigenfunc-
tions are u; (x; E,),n € Z4, and up(x; E,), n € N.
The conclusion is that the spectrum of the operator H,: is pure point,

spec H,1 = {E, =4m°n*l72 n € Ly},

and twofold degenerate, except the ground level Ey = 0, and the normalized

eigenfunctions
2 2
U,(x) = ‘/7005 (%x) , nE Ly,

2. (2
Vi (x) = \/;sin (%"x) , neN, (6.39)

form a complete orthonormalized system in L?(R.).
The inversion formulas (5.20) written in terms of the normalized eigenfunctions
(6.39) become
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3 arUe(x) + Y baVa(x).

kEZ+ neN

n(x)

[ [
a = /0 Ur(x)(x)dx. by = /0 Va()(x)dx.

The functions U,(x) are even, while the functions V,(x) are odd under the
transformation x — [ — x. The structure of the matrix spectral function is such
that the inversion formulas actually are split into a couple of independent inversion
formulas in the subspaces L(2 4 (0,7) and L%_) (0,1) of the respective even and odd

functions that reduce the Hamiltonian 7/-201 . Completely similarly to the comment on
the operator H_ ; at the end of the part I above, an extended comment on this point
would be an appropriately modified copy of the remark on the relation between the
operator ’;’/-\[e and the parity operator P on the whole axis at the end of Sect. 6.2.1.

It should be noted that all the results of the spectral analysis of the Hamiltonian
7/-201 directly follow from the representation (6.32); in particular, the eigenfunctions
of 7/% 1 are certain linear combinations of the eigenfunctions of py.

To conclude this section, we note that all the results concerning both Hamil-
tonians H_ ;7 and 7{01 , well known to physicists, can be easily obtained by
the conventional method adopted in physical textbooks if supplemented with a
certain argument. The eigenvalues and eigenfunctions of both operators are easily
evaluated. It remains only to show that all the points E of the real energy axis
not coinciding with the eigenvalues are regular ones, so that the spectra of the
operators are pure point. But this follows from the existence of the Green’s functions
G(x,y; E) at such points; see (6.36) and (6.38) respectively.

6.3 Explanation of Paradoxes

In this section, it is convenient to restore the Planck constant 7 and the factor (Zm)_l
in front of the free particle Hamiltonian.

6.3.1 Paradox 1

We recall that the first paradox presented in Sect.1.3.1 is a consequence of the
relation

(Vp. [R. D1Vp) = (V. 2DV)) — (¥p, PRY,) =0, (6.40)

where p is an s.a. momentum operator, and ¥, (x) is an eigenvector of this operator.
Obviously, canonical commutation relations (1.4) and uncertainty principle (1.7) are
necessarily violated if (6.40) holds.
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In the following, we resolve the paradox based on the results obtained in this
chapter. We consider separately three cases: the whole real axis, a semiaxis, and a
finite interval.

Consider a particle on the whole real axis R with the Hilbert space L?(RR). As
was demonstrated in Sect. 6.1.1, in this case, there exists a unique s.a. momentum
operator p.. But this operator has no eigenfunctions, i.e., ¥, in (6.40) do not exist as
vectors in L*(R): solutions ¢ = 7~ of the differential equations pp(x) = pe(x)
are not square-integrable on the whole axis.

Consider a particle on the semiaxis R with the Hilbert space of states L?(R.).
As was demonstrated in Sect. 6.1.2, in this case, there is no s.a. momentum operator
at all, and therefore, eigenvectors v, in (6.40) are meaningless.

We thus obtain that in the cases of the whole axis and a semiaxis, the matrix
elements in (6.40), and therefore (6.40) itself, make no sense.

Consider a particle on an interval [0, /] with the Hilbert space of states L>(0,1).
As was demonstrated in Sect.6.1.3, in this case, there exists a family {py, ¥ €
S(0,2m)} of s.a. momentum operators. Their domains D, are given by (6.13), and
in particular, the functions belonging to D ,, must satisfy the boundary condition

Yy (1) =9y (0) (6.41)

and their spectra are pure point spectra. The eigenvalues A, () and eigenfunctions
Yon(x) of the operator py, psWsn = An(D)¥y,, are presented in (6.15). The
functions vy, certainly satisfy condition (6.41). We now turn to the matrix element
on the left-hand side of (6.40), where v, is identified with y,. The first term
(V9n, X poWyn) is evidently equal to A, () (V9n, X¥s,). But as for the second term
(V9n, PsXWyn), we cannot write the equality

(wﬂnvﬁﬂiwﬂn) = (ﬁ&lﬁﬂnviw&n) = /\n(ﬁ) (wﬂns-’%Wﬂn)

to provide zero on the right-hand side of (6.40). The reason is that the vector Xy,
does not belong to the domain D, because the function x3,(x) does not satisfy
condition (6.41): the operator X removes the vector ¥y, from the domain D,,.
The equality (V9,, PoXW¥on) = (PsWon, XWy,) is meaningless, because the matrix
element (Vy,,, pyXW¥y,) is not defined.

Because Heisenberg uncertainty relation (1.7) is derived by considering matrix
elements of the operator [X, p], a similar consideration makes it possible to explain
the second part of the first paradox related to the Heisenberg uncertainty relation.

6.3.2 Paradox 2

We recall that the second paradox presented in Sect. 1.3.2 is a consequence of the
assertion that the Hamiltonian for a nonrelativistic particle in an infinite rectangular
potential well, which we call a free particle on a finite interval, can be represented
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asH = p?/2m, and therefore, it commutes with the s.a. momentum operator p. If
so, both operators must have a common set of eigenfunctions, which is not the case.

An explanation of this paradox is based on the results obtained in Sects. 6.1.3
and 6.2.3, where it was demonstrated that there exists only one s.a. Hanliltonian for
a particle in an infinite rectangular potential well. It was denoted by H_;, and its
domain is given by (6.30). On the other hand, as was just mentioned in Sect. 6.3.1,
there exists the one-parameter family {py} of s.a. momentum operators on a finite
interval. This family generates the one-parameter family {H@ = (pg)*/2m} of
s.a. Hamiltonians; see (6.33) (where the factor 1 /2m is omitted). However, none of
these Hamiltonians coincides with #_;. Indeed, none of the domains Dy, given
by (6.34) coincides with D4;_,. Moreover, the eigenfunctions of any p19 given by
(6.15) do not belong to the domain of H_;, and the eigenfunctions of H_, given
by (6.37) do not belong to the domain of any py. The operators H_ ; and py do not
commute and have no common eigenfunctions. This is consistent with the physical
fact that the particle momentum changes (is not conserved) due to the reflection
from the wall.

An example in which we do not encounter such a paradox offers a free particle on
acircle. The s.a. Hamiltonian 71,1 for such a particle is defined by (6.31) and allows
the representation 7’:((,1 = (130)2 /2m, where py is the s.a. momentum operator
Do ly—os see (6.32) (where the factor 1/2m is omitted). The operators H,1 and py
have a common set of eigenfunctions. The paradox is also absent in the case of a free
particle on the whole axis, which was considered in Sects. 6.1.1 and 6.2.1, where it
was demonstrated that there exist a unique s.a. Hamiltonian ’H, and a unlque s.a.
momentum operator p. for such a particle and the representation ’H,e = p; / 2m
holds; see (6.18). It is easy to verify that both operators act on their domains as Hp D.
This means that the operators . and p. commute, which agrees with physical
considerations. In addition, both operators have a common complete system of
generalized eigenfunctions exp (ikx), k € R.

6.3.3 Paradox 3

The third paradox described in Sect. 1.3.3 treats an s.a. momentum operator p for
a particle on a finite interval [0, /] and the matrix elements p,,, = (e, pe,) of
the operator with respect to the orthonormal basis {e,}7° (1.10). It turns out that
contrary to naive expectation, the matrix p,,, is not Hermitian; see (1.11). The
incorrect assumption underlying the paradox is that basis (1.10) belongs to the
domain of an s.a. momentum operator for a particle on a finite interval. But the
functions belonging to the domains D, of the admissible momentum operators py
must satisfy boundary conditions (6.41), ¥ (/) = e'”(0), whereas for the functions
ey (x), we have

en(l) = (=1)"ex(0). (6.42)
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It is easy to see that there is no angle ¥, one and the same for all 7, so that condition
(6.42) could be identified with condition (6.41). This means that there is no domain
D, such that the basis {e, }° as a whole belongs to D, . For any ¥, some elements
of the basis {e,}7° do not belong to the domain of the s.a. operator py, so that
the matrix elements p,,, and py, in (1.11) are not defined for any m and n, and
therefore, inequality (1.11) itself makes no sense.

6.3.4 Paradox 4

The fourth paradox described in Sect. 1.3.4 treats the case of a free particle in an
infinite rectangular potential well on an interval [0, /] with an s.a. Hamiltonian H
for which the paradoxical inequality

(w, (ﬂ)zw) # (. #y) (6.43)

with a particular state ¥ given by (1.12), ¥ (x) = Nx (x — /), N a normalization
factor, seemingly holds.

An explanation of this paradox is as follows. As was already said above in
Sect. 6.3.2, a unique Hamiltonian for a particle in an infinite rectangular potential
well is 7’-\[_1. The functions belonging to its domain Dy,_, satisfy the boundary
conditions ¥ (0) = ¥ (/) = 0. It is easy to see that the state y belongs to Dy _,, but

the state H_;y, H_1¥(x) = const # 0, just does not belong to Dy,_,, the state

~ 2
('H,_ 1) Y is not defined, and therefore, inequality (6.43) makes no sense.

6.3.5 Paradox 5

The fifth paradox described in Sect. 1.3.5 is concerned with a solution (1.15) of the
Schrodinger equation (1.13) for a free particle on a finite interval [0, /]. The right-
hand side in (1.13) is treated as @w(t, x), under a special choice (1.14) of the initial
state. The presented solution vanishes with time, which means that the evolution is
not unitary; the particle “disappears” with time evolution. It was stated in advance
that the origin of the paradox is an intolerable choice of the initial state: initial wave
function (1.14) does not belong to the domain of any admissible s.a. Hamiltonian,
which is irreconcilable with the Schrédinger equation. We now are able to prove
this statement. As was demonstrated in Sect. 6.2.3, there exists a U(2) family {7-\[[/}
of s.a. Hamiltonians for a free particle on the finite interval; their domains D1y,
are given by (6.29). We can directly verify that the initial state v, presented by
the wave function ¥o(x) = ¥(0,x) (1.14) belongs to none of the domains Dy,
Yo ¢ Dy, YU, ie., does not satisfy s.a. boundary conditions (6.28) with any 2 x 2
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unitary matrix U (of course, ¥ in (6.28) has to be changed to v). The proof is by
contradiction. Let 1y(x) satisfy boundary conditions (6.28) with some U, which
implies that the two two-component vectors

W — (w(l) +ilw/(l))’ w

_ (Iﬁ(l)—illﬁ’(l))
¥ (0) —ily'(0) ’

¥ (0) +ily'(0)

belonging to C? have the same norm, 11/0+_ Yy — 11/0+ o+ ¥y + = 0, because the matrix
U is unitary. But a simple calculation yields lI/O+_ 2 lI/O+ Yo+ =4|C [25¢(e¥ —1)
# 0 because x = kI /+/2h # 0, which is a contradiction. As a consequence,
the “solution” ¥ (¢, x) (1.15) of the Schrédinger equation also belongs to none of
Dy, ¥(t) ¢ Dy, . This means that the state 7’-\£U1//(t), the right-hand side of the
Schrodinger equation, is not defined, and therefore, the Schrodinger equation with
the initial state ¥y and the solution 1/ (¢) makes no sense. An extended comment on
this point is given below.

6.3.6 Some Remarks to Paradox 5

In considering the fifth paradox, we encounter an evolving state that formally is
a solution of the Schrodinger equation with a given initial state, but the norm of
the evolving state is not conserved with time, which implies the nonunitarity of
evolution. We would like to make a comment on this point.

In QM, we actually have two ways for determining the time evolution of a
system with an s.a. Hamiltonian H. The first one consists in solving the Cauchy
problem for the Schrodinger equation (1.3) with given initial data. This way is
not universal. It requires that the initial state and the evolving state belong to the
domain Dy of the Hamiltonian. In cases in which the Schrodinger equation has
the form of partial differential equations, this requirement means that a solution of
the Cauchy problem is sought under certain boundary conditions specifying the s.a.
Hamiltonian; otherwise, a solution of the Cauchy problem is not unique. The second
way consists in evaluating the unitary evolution operator

U(Z) = exp{—%]flt},

and then applying it to the initial state. This way is universal, it is applicable to any
initial state iy because the operator U(¢) is bounded and defined everywhere, the
evolving state

y(t) = Uy (6.44)

Y(t) = U ()Y always exists, and the time evolution is unitary. As an illustration,
let ¥, be a complete orthonormalized system of eigenvectors of H, and let an initial
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state be 1. The initial state can be represented as ¥ = Y, a, ¥y, an = (¥u. V),
[[¥[|> = 3", las|. Then the evolving state ¥ (¢) is given by

V) =00y =) a5y, (6.45)

it is evidently defined at any instant of time and its norm is evidently conserved with
time, ||y (1) | = [lv]|. R

The unitary evolution operator U (¢) determines an integral evolution law (6.44),
which is universal, whereas the Schrodinger equation (1.3) determines a differential
evolution law, which is not universal. The Schrodinger equation is conventionally
derived by an integral evolution law (6.44) by differentiating the latter with respect
to time 7. But the derivative i hd, U Oy = HU (t)¥ exists iff the initial state v,
and then also the evolving state y (¢) = U (t)y, belongs to Dy, in other words, the
derivative i hd, U () of the evolution operator exists and is equal to HU (t) only on
the domain Dy of the Hamiltonian H. Applied to the above example, this means
thatif = Y a, ¥, then there must be IHY|? = |Hy(@)|? = > E2ay| < oo
for ¥ (¢) (6.45) to satisfy the Schrodinger equation.

Turning back to the fifth paradox, we now can say that we can construct an
evolving wave function v (¢, x) with the initial wave function ¥ (x) (1.14) for any
admissible s.a. Hamiltonian 7’-\£U using formula (6.45). But this function does not
satisfy the Schrodinger equation with the given 7T[U because ¥(x) does not belong
to any Dy, . It also does not coincide with function (1.15) that is the solution of
differential equation (1.13) with the initial condition (1.14), but under no additional
conditions, and is therefore a nonunique solution of (1.13). To prove the latter
assertion, it is sufficient to verify that a function J(t, x) defined on the interval
[0,/] by

~ 1 o0
T =— [ dvew[iZe- e,

where ¢(y) is a smooth function with compact support on the semiaxis [b, 00), b > [,
is a solution of differential equation (1.13) on [0, /] satisfying the initial condition
¥ (0, x) = 0 because

hm—ex [l—x— ]~5x— .
im Pligg (x=) (x—»)
A conclusion that deserves remembering is that not every state—in particular not
every wave function—that evolves unitarily satisfies the Schrodinger equation, but
only the one that belongs to the domain of the corresponding s.a. Hamiltonian.



Chapter 7
A One-Dimensional Particle in a Potential Field

In this chapter, we consider s one-dimensional nonrelativistic particle in a potential
field.! As was already mentioned, see Chap. 4, all possible s.a. quantum Hamiltoni-
ans corresponding to such systems are associated with the s.a. differential operation
H given by (4.8),

H=H+V(x) =—-d>+ V(x), V(x) = V(x) . (7.1)

which we call the Schrodinger differential operation.

Our aim is to study possible s.a. quantum Hamiltonians associated with H and
the corresponding spectral problems. Such quantum Hamiltonians are sometimes
called the Schrodinger operators.

We call an equation of the form

(ﬁ—W)w(x) =0, x € (a,h) CR, (1.2)
where W is a complex constant, the one-dimensional (stationary) Schrodinger

equation. If W is real, it is denoted by E. We conventionally call E the energy,
V(x) the potential, and ¥ (x) the wave function.

'In this and subsequent chapters, we set &z = 1 and omit the factor 1/2m in .

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 237
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_7,
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7.1 Some Remarks on the Schrodinger Differential
Operation

7.1.1 First Remark

In constructing s.a. extensions of symmetric differential operators on an interval
(a,b), it is useful to know the corresponding boundary forms [V« V«](a/b),
Vi € DE (a,b); see Chap.4. Sometimes, this is a difficult task that requires a
knowledge of function asymptotics at the interval boundaries. However, it turns out
that there may exist simple estimates of the potential V'(x) in (7.1) that allow one
to make immediate conclusions about the boundary forms without calculating the
asymptotics. Below, we present two sufficient conditions for the potential V(x) in
the Schrodinger operation on the interval (a, co) with |a| < oo that guarantee that
the boundary form will be zero at infinity. In our opinion, these conditions are rather
general and at the same time are rather simple from the standpoint of applications.

Theorem 7.1. Let the Schrodinger differential operation be given on the interval
(a,00) with |a| < oo. Then the boundary form at infinity is zero, [Vs, V«]
(00) =0, Vi € DE (a, <), if either

V(x) e L*(N,00), a < N < o0, (7.3)
i.e., the potential V (x) is square-integrable at infinity, or
V(x)>—-Kx* x>N, K>0, (7.4)

i.e., the potential is bounded from below for sufficiently large x by a negative
quadratic parabola.”

Proof. First we suppose that condition (7.3) takes place. Then the proof of the
theorem is based on the observation proved below that under this condition, the
function x~'/2y/ is bounded at infinity,

2y < € () <00, x> N ¥y € DY (a,00). (75)

where C () is a constant that may be different for different .. It follows that the
function x~"/2, ¥, is square-integrable at infinity together with v/, and therefore,
the function x~"/2 [y, Yu] = x7V2 (Y9« — Yu}) is also square-integrable at
infinity. On the other hand, the finiteness of the boundary form [V, ¥«] (00),

[V, ¥u] = C1 (Yx) . x = 00, |Cy (Y)| < 00, (7.6)

2The condition (7.3) was first mentioned in [127], and the condition (7.4) in [90]. The latter
condition is a particular case of a more general condition [106, 116].
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implies that x~V/2 [, ¥«] — x7V2C| (¥4)as x — oo. But the function at the
left is square-integrable at infinity, whereas the limit function at the right is not
square-integrable unless C; ({+) is equal to zero. This proves that [V, ¥«] (c0) =
Ci (Y«) = 0. It remains to prove estimate (7.5). For this purpose, we recall that
Yy € DZ (a, 00) means that ¥, and ¢ = H ¥« belong to L? (a, 00), and therefore

Vs, ¢ € L*> (N, o0). For any n € L? (N, o0) , the function f]:, dy |77|2 is bounded,

X
/ dy [n* < G2 (n) < o0. (1.7)
N
In particular,
/N 4y a2 < G (W) /N dy g < C ().

Using the Cauchy—Schwarz inequality, we obtain

/ dye
N

On the other hand, if V € L2 (N, 0co) (as well as v,), then the function Vi, is
integrable on the interval (N, 00), and therefore, the function || 1\); dy V. is bounded

on the same interval,
X
/ dyVirs
N

Integrating H Y+« = @ on the interval (N, x), we first obtain the equality

<G (@) Vx—=N, x>N. (7.8)

< C3 (Ys) < 0. (7.9)

v = [Cawu- [Caves v,
N N
and then, using (7.8) and (7.9), we obtain that Vi, € D:? (a, o0) the inequality

VL) < C3 () + G2 () VX = N + | (N)

, x> N,

holds, whence follows estimate (7.5), which completes the proof of the theorem
under the condition (7.3).

We now turn to condition (7.4). Here the proof of the theorem is based on the
observation (proved below) that under this condition, the function x ™!y, is square-
integrable at infinity together with v,

/N dy [y 'i]” < Ci(¥a) < 00, Y9 € D% (a.00). (7.10)
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It follows that the function x‘lﬁw; is also integrable at infinity, and therefore, the
function x ! [/, V4] is integrable at infinity as well. On the other hand, the finite-
ness of the boundary form [/«, ¥«] (00), see (7.6), implies that x™! [, ¥s] —
C; () x 'as x — oo. But the function x~! [y, V4] is integrable at infinity,
whereas the limit function C; (¥«) x~! is not integrable unless C; ({x) = 0. This
proves that [{«, ¥«] (00) = Cy (¥«) = 0. It remains to prove the validity of formula
(7.10). This is proved by contradiction. We first make some preliminary estimates
based on the condition that the functions ¥, and ¢ = H Y« belong to L2 (a, o0). It
follows from this condition that (see (7.7)) that

/}; dy ’y_SW*|2 < Cs (Yx) < 00, [v dy ’y_4W*|2 < C7 (Yx) <00,

<2y () Cr (s). (7.11)

/ Ay (@Y + V)

Condition (7.4) implies that X2V (x) > =K, K > 0, for x > N and therefore,

X X
[ an i s -k [ ayivfs kG a2
N N
On the other hand, we have the equality

Vo + 93P = —dZ ol + 2y 2V [yl
Multiplying both sides by x 2 and integrating, we obtain the equality
X7 [ () = 2/}: dy [yl + 2/; dyy 2V [y’
=6 [Cany Tl = [ ay (v Vo) - 27 WP + G ).
Co () = (¥ 2 [yl +257 0’| _ -
Taking estimates (7.11) and (7.12) into account, we arrive at the inequality

2

3

Ay [Vel? > 32 21 = Co(Y)] — 207 9P 1 = [N ay [y~

Co = 2KCs (¥4) + 6C7 (Vrs) + 2/ C2 () C7 (Ys) — Cs (¥4 .

Suppose now that the integral I diverges as x — oo. Then for sufficiently large x,
x > ¢ > N, the estimate 2/ — Co(¥x) > Cio (¥x) > 0 holds, and we arrive at the
inequality

dy [Us]? > X2Cro (Yu) — 2x73 [P ]”
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Integrating this inequality and taking estimates (7.11) into account, we obtain

[Yu|* > Cro (W) x° /3 = 2C (Yri) — Cro (i) /3 + |9 (),

whence it follows that |/, |2 — 00 as X — oo, which contradicts the square-
integrability of the function v, at infinity. This contradiction proves that the function
x~ 1! is square-integrable at infinity, i.e., (7.10) holds, which completes the proof
of the theorem under the condition (7.4).

The above criteria can clearly be extended to the Schrodinger differential
operation defined on the interval (—oo, b), or on the whole real axis R, providing
the triviality of the boundary forms at the infinite endpoints:

Theorem 7.2. Suppose the Schridinger differential operation is given on the
interval (—oo,b) with |b| <oo. Then the boundary form at infinity is zero,
[V, Us](—00) = 0, Vi € Dl’g (—o0, b), if either

V (x) € L* (=00, —N), (7.13)
where N is a finite real number; or
V(x)>—-Kx*, x <—N, K >0. (7.14)

Suppose the Schrodinger differential operation is given on the interval R. Then
the boundary forms at infinity are zero, [V, ¥«](£oo) = 0, Vi € Dl’g ®), if
V (x) satisfies either condition (7.3), or (7.4) on 0o, and either condition (7.13), or
(7.14) on —o0.

7.1.2 Second Remark

Consider the Schrodinger differential operation defined on (a, b) with a a regular
endpoint and b singular. We recall that the condition that a is a regular endpoint
means that the potential V/ (x) is integrable at the left endpoint,’ i.e., is integrable
on any interval (a,c), ¢ < b. We know, see Chap.4, (4.48), that ip such a case,
the deficiency indices of the initial symmetric Schrodinger operator H can be either
my = 1 ormg = 2. Self-adjoint boundary conditions have the simplest form when
my = 1. As follows from Lemma 4.16, in such a case, the boundary form vanishes
on the singular endpoint b, and s.a. boundary conditions have the form ¥’ (0) =
Ay (0) according to Theorem 4.22. Self-adjoint Schrodinger operators H, of a free

3We recall that we consider only such potentials that are locally integrable inside the interval (a, b).
We also recall that for us, integrability always means absolute integrability.



242 7 A One-Dimensional Particle in a Potential Field

particle on the semiaxis associated with the differential operation H=H ‘V=O can
serve as an illustration of the latter fact; see Sect. 6.2. An inverse statement holds as
well: if the boundary form vanishes on the singular endpoint b, then the deficiency
indices are m+ = 1; see Sect.4.7. .

Therefore, the initial symmetric Schrodinger operator H on the interval (a, 00),
la| < oo, with a potential V' (x) that obeys either condition (7.3) or (7.4) has the
deficiency indices m+ = 1.

At this point, we refer also to a useful result concerning the maximum deficiency
indices m+ = n of the initial symmetric operator f associated with an even s.a.
differential operation f of order n defined on the interval with one regular and one
singular endpoint. It turns out (see [9, 116]) that the maximality of the deficiency
indices is uniquely related to the maximality of the dimension of the kernel of the
adjoint operator, dim ker f *, i.e., of the number of linearly independent square-
integrable solutions of the homogeneous equation ( f — W)u = 0 of order n.
Namely, the initial symmetric operator f has the maximum deficiency indices
my = n iff the indicated homogeneous equation has the maximum number n of
linearly independent square-integrable solutions for any W, in particular, with any
real W = E. It follows from this general statement that to have the deficiency
indices m+ = 1, in our particular case where n = 2, it suffices to point out the
conditions on V(x) under which the homogeneous equation (H — W)u = 0 on the
semiaxis R has at least one non-square-integrable solution. Some such conditions
have been known since Weyl; see [162].

Let now the s.a. differential operation H be given on the whole real axis R,
and suppose that the potential V' (x) satisfies condition (7.3) or (7.4) on oo and
condition (7.13) or (7.14) on —oo. Because in such a case the boundary forms at
the infinite endpoints +00 are zero, and the quadratic form A g () is zero as well,
there exists a unique s.a. extension H . of the initial symmetric operator H, which
is I{Ve = H*, D H, = D;} (R). The case of a free particle certainly falls under

these conditions, so that the Hamiltonian ﬁe associated with 7{ and defined on the
natural domain is truly s.a., as was demonstrated in Chap. 6. The majority of the
potentials encountered in physics satisfy these conditions, so that the above assertion
implicitly adopted in physics textbooks is actually justified. In particular, this
concerns one-dimensional Hamiltonians with bounded potentials such as a potential
barrier, a potential well of finite depth, or with the exactly solvable potentials such
as Voch™2 (ax) and also concerns Hamiltonians with potentials growing at infinity,
for example, the Hamiltonian of a harmonic oscillator, in which case H=% + x2,
and even a Hamiltonian with linear potential V' (x) = kx that tends to —oo at one of
the endpoints, but only linearly and not faster then quadratically; see Chap. 8.
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7.1.3 Third Remark

The majority of potentials encountered in physics, in particular, potentials decreasing
or growing at infinity, satisfy condition (7.4). This condition is optimum in the sense
that if V(x) «~ —Kx2!%9 as x — 0o, where & > 0 can be arbitrarily small, then
both linearly independent solutions u; » of the Schrodinger equation (7.2) with any
W are square-integrable at infinity:

K1/2
us (x) «~ x—(1+e)/2 exp |::l:i x2+£:|, X — 00,
2+4+¢

and the s.a. boundary conditions must include the boundary conditions at infinity.
This fact is crucial in the sense that ignoring it results in a “paradox.” If we directly,
without thinking about it, proceed to solving (7.2), which not infrequently happens
in physics texts, we find ourselves in a situation in which for any energy E this
equation has solutions square-integrable on the semiaxis and corresponding to the
bound states. From a naive standpoint, this means that all the eigenstates in such a
potential are bound, and what is more, the spectrum of such states, which must be
discrete, turns out to be continuous, which is an absurdity! This situation” is similar
to the case of “the fall to the center” for a particle of negative energy in the strongly
attractive potential V (x) < ax2 o < —1/4as x — 0, see [5,21,118,123,151].
The resolution of this paradox lies in the necessity of the s.a. boundary conditions at
infinity in addition to the customary boundary conditions at the origin; without these
boundary conditions, we are in fact dealing with the “Hamiltonian” H* = AT,
which is not s.a. Taking only the s.a. boundary conditions at infinity into account,
we obtain an s.a. Hamiltonian all of whose eigenstates are bound states, and the
spectrum is discrete.

To all this we add a remark concerning the s.a. differential operation (7.1) defined
on the interval [0,/]. The remark is that s.a. operators Hy associated with this
differential operation are specified by the same s.a. boundary conditions (6.28) as
the operators ’;’/-\[U if the potential V(x) is integrable on the interval, because under
this condition, the s.a. differential operation H remains regular and the asymmetry
form wy+ does not change. This is all the more clear in the case that the potential
is bounded, |V (x)| < M, because the addition of a bounded s.a. operator defined
everywhere to any s.a. operator yields the s.a. operator with the same domain.

In the following chapters, we consider examples of singular endpoints for which
the boundary form is nontrivial.

“It can be called “the fall to infinity” because a classical particle goes out to infinity in a finite time.
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7.2 The Calogero Problem

7.2.1 Introduction

Here we consider the potential field
V(x) =ax? (7.15)

in (7.1) and (7.2), singular at the origin. The case of « > 0 corresponds to a repulsion
potential (repulsion from the origin); the case of o < 0 corresponds to an attraction
potential (attraction to the origin). Our considerations are based on our work [76].

Starting from the basic papers by Calogero on the exactly solvable one-
dimensional QM models [34-36], the potential (7.15) is conventionally called the
Calogero potential and the problem of QM description of the system is known as the
Calogero problem. In fact, Calogero considered a more general case with quadratic
and inversely quadratic terms in V' (x). We call such a potential the generalized
Calogero potential. Self-adjoint Schrodinger operators with such a potential are
considered in Sect. 8.4. Physicists identify the corresponding differential operation
(7.1) with a radial “Hamiltonian”; see Sect.4.3. Such a potential causes the
phenomenon that is known as “the fall to the center”, see [5, 21, 118, 123, 151].
Historically, it is the potential with which the first case is associated, whereby
the standard physical approach did not allow the construction of the scattering
states because of an unusual uncertainty in the choice of the behavior of the wave
functions at the origin, and even the question arose whether QM is applicable to
systems with strongly attractive potentials [115]. Since then, the QM problem with
the potential x> has been discussed repeatedly and in various aspects; see, for
example, [12,38, 111]. And the discussion continues.

We restrict ourselves here to the case of a motion on a semiaxis® R. The case
can be considered the problem of a radial motion (with x — r) of a particle in higher
dimensions in a potential field ~ r~2; see for example Chap. 9. The peculiarity of
higher-dimensional classical mechanics in the case of attraction is that under some
initial conditions the particle “falls to the center” in a finite time interval, see [103],
so that the final state at the endpoint of this interval is a position r = 0 and a
momentum |[p| = oo of uncertain direction, and the problem arises how to define
the motion of the particle after this time interval. In some sense, QM “inherits” these
difficulties, although it gives them a QM form.

We first discuss QM paradoxes related to singular potentials on the example of
the problem under consideration.

5The case of the whole axis R can be considered by the same methods. We mention only that the
corresponding QM contains more ambiguity.
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7.2.2 A “Naive” Treatment of the Problem and Related
Paradoxes

Here we start with the Calogero differential operation defined as
H=—d*>+ax> (7.16)

In the x-representation, the Hilbert space of QM states for the Calogero problem
is § = L?>(R4), and in the naive consideration, the Calogero Hamiltonian H is
identified with the apparent s.a. operator (7.16) in L? (R4) for any a, because it is
the sum of what are certainly two s.a. operators —d 2 and V = ax2, although 1%
is unbounded if & # 0; we say in advance that the latter is precisely the reason for
paradoxes.

In QM with such an understood Calogero Hamiltonian H , the time evolution is
unitary and is defined for all moments of time, although an analogue of “the fall to
the center” is well known from textbooks for & < —1/4: in this case, the spectrum of
H is unbounded from below (although the spectrum itself as well as eigenfunctions
are not presented; see [104]). This is argued by considering the Calogero potential
as a limit of bounded regularized potentials:

-2
ax <, X = ro,

Vip (X) = )
ary =, X < rop,

(7.17)

with 7o — 0. To be sure, the limit (ry — 0) spectrum is not presented; moreover,
the attentive reader can see that there is no limit spectrum, so that the problem of
the spectrum as well as limit eigenfunctions of the Calogero Hamiltonian in the case
a < —1/4 remains completely open.

Let us look at the problem in more detail. It is natural to expect that for « > 0,
the spectrum of H is nonnegative, and no bound states exist. Let « < 0. Because
any symmetric one-dimensional well “traps” a particle, we expect that there must
be a negative energy level Ey < 0 in addition to the nonnegative spectrum.

We now turn to some symmetry arguments. It seems evident that the Calogero
Hamiltonian has scale symmetry: under the scale transformations x — x' = lx,
[ > 0, the operators H = —d? and V = ax? transform uniformly and are
of the same spatial dimension, dg, = dV = —2; therefore, the operator H also
transforms uniformly under scale transformations, and dy = —2. This observation
is formalized as follows.

We consider the group of scale transformations x — x’ = Ix, x € R4, VI > 0,
and its unitary representation in L? (R, ), the space of quantum states by unitary
operators U (1),

Uy (x) =172y (I7'x) (7.18)
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(the spatial dimension d, of wave functions v (x) is dy = —1/2 because |} (x)|2
is the spatial probability density). The unitarity of U (1) is easily verified,

0w = /_+°°dxl“ )l = /_+°°dx|w(x)|2 = v,

(o0} o0
as well as the group law U () U L) = U (I1y). Tt is also easily verified that
HU() =120 ()H < U~ ()HU () = 172H, (7.19)

ordy = —2.
For completeness, we present the infinitesimal version of the scale symmetry.
The unitary scale transformations U (/) can be presented as

U= exp(i lnlﬁ), D =ixd,+i/2,

where D is the s.a. generator of the scale transformations. The scale symmetry
algebra for the Hamiltonian His [ﬁ H ]=-2i H.

Let now ¥ £ (x) be an eigenfunction of H with an eigenvalue E, then the scale-
symmetry operator relation (7.19) applied to this function yields

A0 0 ve @] =120 0 Ave () = (7E) 0 Oy (),

which implies that U () YE (x) = Yy—f (x), VI > 0, is an eigenfunction of H
with the eigenvalue /=2 E. But this means that the group of scale transformations
acts transitively on both positive and negative parts of the energy spectrum such that
these parts must either be empty or fill the respective positive and negative semiaxis
of the real axis. .

This is completely consistent with what we expect for the spectrum of H in the
case of repulsion, @ > 0 where £ > 0.

But in the case of attraction, ¢ < 0, we meet paradoxes. Indeed, for o < 0, we
expect at least one negative level £y < 0. But if there is at least one such level,
then, according to the scale symmetry, there must be a continuous set of normalized
eigenstates with the energies /"2 E, YI > 0, and the negative part of the spectrum
is the whole negative semiaxis, and “the fall to the center” occurs for all @ < 0.

This picture is quite unusual and contradictory, because there can be no con-
tinuous set of normalizable eigenstates for any s.a. operator in L? (R ): it would
contradict the fact that L% (R.) is a separable Hilbert space. Another surprising fact
is that the spectrum of the Calogero Hamiltonian is not bounded from below for any
a < 0, not only fora < —1/4.

_ The situation becomes even more entangled if we try to find bound states of
H corresponding to negative energy levels, £ < 0. The corresponding differential
equation for these eigenstates Vg (x) = ¥y (x) is
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Hy (x) = kY (x), k* = —E > 0. (7.20)

There are two “dangerous” points for the square-integrability of v (x): infinity,
X = 00, and the origin, x = 0, which is a point of singularity of the potential and a
boundary simultaneously.

The behavior of a solution v (x), if it exists, at infinity is evident: ¥ (x) ~c
exp (—kx) as x—o00.

The behavior of a solution ¥y (x), if it exists, at infinity where the potential
vanishes is evident: ¥, (x) ~ cexp(—kx), x — oo. This behavior, which
manifests the square-integrability of iy (x) at infinity, must be compatible with
the local square-integrability of ¥ (x) at the origin. The existence of ¥ (x) for
a given k is thus defined by its asymptotic behavior at the origin, which, because
of the singularity, coincides with the asymptotic behavior of the general solution of
the homogeneous equation H ¥ (x) = 0 at the origin. The general solution of this
equation is

X2 (e x* 4+ cox7*), a # —1/4,

X) =
y ) x'2(c; + c2lnx), a = —1/4,

where

Y1/4+a, a>—1/4,
io, 0 =4/|l/44+«a|, a <—1/4.

We can see that if —1/4 < a < 0, we have x < 1/2,and y (x) = Oas x — 0,
so that ¥ (x) is certainly square-integrable at the origin irrespective of k. The same
holds true if « < —1/4, in which case x = io and y (x) — O infinitely oscillating
as x — 0. This implies that v (x) exists forany k > 0, which confirms the previous
arguments that the negative “discrete” spectrum is in fact continuous and occupies
all the negative real semiaxis.

Furthermore, both functions x are also square-integrable if 1/2 < » < 1,
ie, if 0 < a < 3/4, so that there is a continuous set of negative energy levels
unbounded from below for & = 0 (the case of a free particle) and even for repulsive
potentials, V (x) > 0. “The fall to the center” for repulsive potentials is quite
paradoxical.

We can present an explicit form of vy (x). By the substitution ¥y (x) =
x'2u; (kx), we reduce (7.20) to the following equation for the function u(z) =
ur(kx), z = kx:

x=+1/44+a=

1/2+x%

W+ 7w — (14 2% ) =0,

whose solutions are the Bessel functions of imaginary argument. It follows that for
a < 3/4 and for any k > 0 the square-integrable solution of the eigenvalue problem
(7.20) for bound states is given by ¥ (x) = x'/2K,, (kx), where K,, (x) is the so-
called McDonald function.
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Our final remark is that 1 (x) remains square-integrable for complex k = k| +
ik, ki > 0, so that the seemingly s.a. H has complex eigenvalues.

These inconsistencies, or paradoxes, reveal that something is wrong with QM
in the case of singular potentials, as well as in the case of boundaries, or at least
something is wrong with our previous considerations following the conventional
methods. It appears that we have been too “naive” in our considerations; strictly
speaking, we have been incorrect, and our arguments have been wrong. The main
reason is that almost all operators involved are unbounded, while for unbounded
operators, in contrast to bounded operators defined everywhere, the algebraic rules,
the notions of self-adjointness, commutativity, and symmetry are nontrivial.

In particular, we actually implicitly adopted that the operator H acts (is defined)
on the so-called natural domain, which is the set of square-integrable functions ¥
satisfying only the conditions that the differential operation H is applicable to ¥
and H Y is also square-integrable.

As we shall see below, this operator with « < 3/4 is not s.a.

7.2.3 Self-adjoint Calogero Hamiltonians

We now proceed with a more rigorous QM treatment of the Calogero problem
on the semiaxis Ry. The first problem to be solved is constructing and suitably
specifying all Calogero Hamiltonians as s.a. operators in the Hilbert space $ =
L? (Ry); the second problem is a complete spectral analysis of each of the obtained
Hamiltonians, and finally, resolving the paradoxes discussed in the previous section,
in particular, the paradox concerning the apparent scale symmetry.

We are going to be brief when presenting the main steps of the solution. The
details can be easily elaborated.

We start with the differential operation (7.16) to construct the initial symmetric
operator H, its adjoint H™, and s.a. extensions of H. All these operators differ
by their domains, while thelr action on the corresponding domains is given by the
same differential operation (7.16). When defining these operators in what follows,
we therefore cite only their domains.

The domain Dy of the initial symmetric operator H is the linear space D (R+)
The domain D+ of the operator H is the natural domain for H, i.e., D H+ =
Dg (R4); see (4.29).

In constructing s.a. extensions of the operator H, we will apply the method that
uses the asymmetry form A+ (Y«), where ¥4 € D;} (R4); see Chaps. 3 and 4. In
the case under consideration, the asymmetry form is given by

A () = lim (Vo — )|

L—00
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The further specification of A+ requires the knowledge of the behavior of the
wave functions ¥, and ¥} near the origin and at infinity.
Regarding infinity, we assert that

Yu € DY (Ry) = Y (). YL (x) = 0. (7.21)

This is proved similarly to the free particle case, see Lemmas 2.13 and 2.14, in
view of the fact that if ¥ (x) and H V¥« (x) are square-integrable at infinity, then
7 (x) = ax 2P, (x) — H(x) is also square-integrable at infinity.
As for the behavior of ¥, and V), near the origin, it is established as follows: Let
us consider the relation
Hy. =y € L> (Ry) (7.22)

as a differential equation with respect to the function ¥, via a given y. The general
solution of this equation for & # —1/4 (x # 0) can be represented in the form

w*(x) — Cl (kox)l/Z"rJ{ +CZ (kox)l/z—%

x'/? * 1/2 * 1/2
+5- [X"‘/ dyy"/ +"X—X"/ dyy"/ "‘x}
X 0 a

—1/2

2x%

X

W;(X) = [Cl (ko)c)l/z""‘f + ¢y (kox)l/z_”]/ 4

x [(1/2 —x)x~* / dyy" /2y — (1/2 + ) x* / dyy‘/z‘”x}
0 a
(7.23)

where k is an arbitrary but fixed parameter of dimensionality of inverse length
introduced for dimensional reasons; ¢ > 0 for @ > 3/4,and a = 0 for o < 3/4.
The case « = —1/4 <= » = 0 is considered below.

We now estimate the behavior of the integral terms in (7.23) near the origin using
the Cauchy—Schwarz inequality. For example, if « > —1/4 <= x > 0, we have

X 1/2 X 1/2
< x!/Fx [/ dyy‘“"} [/ dylxlz} . (7.24)
0 0

The integrals on the right-hand side of (7.24) vanish as x — 0. More precisely

X 1/2 X 1/2 0
[/ dyyl+2%i| =0 (xl-l—%) , |:/ dy |X|2i| / 0.
0 0

The second estimate follows from the fact that y € L>(R.). Then

X
xl/Z—h/ dyy1/2+xX
a

< 0(x*?).

X
xl/Z—Jf/ dyyl/2+}tX
0
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We thus obtain the behavior of ¥« near the origin (we recall that « # —1/4),

0(x*?), a # 3/4,

Vi (x) = ¥ (x) + 0(x3>VInx), a = 3/4,

O(x'?), a #3/4,

vl (x) = ¥ (x) + O(x"2VInx), a = 3/4,

(7.25)

where
B(x) = ¢1 (kox)"* + ¢3 (kox)' /> 7%

We stress that estimates for ¥, (x) and ¥/, (x) are performed independently. We now
recall that ¥, € L? (R4), which requires that ¢c; = 0 for o > 3/4 (x > 1}, because
the term ¢, (kox)l/ 27 is not square-integrable at zero unless ¢, = 0. Furthermore,
for « > 3/4, the term ¢ (kox)l/ 2% in Y3 (x) can be included in the remainder
term O(x/?) in (7.25). We thus can assume ¢; = ¢, = 0 for o > 3/4.

The general solution of (7.22) fora = —1/4 is

Va(x) = 1372 + 352 In(kox) + x'/? / dy©(y) In(koy)
0

X
—x'"2 In(kox)O(x) = —xl/z/ dyy~'O(y) + c1x"? + cox"? In(kox).
0
VL(x) = [e1x!? 4+ e2x 2 In(kox)] — [x"/? In(kox)]' O (x)
X
4271y 712 / dy®(y) In(koy) = [c1x"? + c2x"/? In(kox)]
0
X
—27IxT12 / dyy'O(y) — x?20(x),
0
X
Ox) = / dyy'2x (). [0(x)] = 0(x). x =0,
0
which implies the following behavior as x — 0:
V() = Y (0) + 0G2), Yi(x) = Y (x) + O(x'?),
3(x) = c1x"? 4+ e2x? In(kox) . (7.26)
With these estimates in hand, we can specify the asymmetry form A+ in terms
of the asymptotic behavior of ¥, at the origin; infinity appears to be irrelevant as in
the case of a free particle. It is natural because the potential vanishes at infinity.

The result essentially depends on the coupling constant «, and we distinguish
four cases.
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7.2.3.1 The First Region o« > 3/4

In this region » > 1. Taking into account (7.25) and (7.23), and the fact that
¢1 = ¢ = 0 in the region under consideration, we get Ay+ = 0. It follows that
the deficiency indices of H in this case are zero, and therefore H is essentially s.a.,
and its unique s.a. extension, we denote it by HyisH = H* . Thus, in the case
under consideration, there exists only one s.a. Calogero Hamiltonian H, defined on
the domain Dy, = DZ (R4). As follows from the above estimates at o > 3/4, the
functions ¥« (x) € D:? (R4 ) satisfy a.b. conditions as x — 0,

Ye(x) = O(x*?), YL(x) = O(x'?), a > 3/4,
Ya(x) = O(x**VInx), ¥.(x) = O(x'"*/Inx), a = 3/4.

7.2.3.2 The Second Region —1/4 < a < 3/4

In this region 0 < x < 1, and the asymmetry form A+ is calculated with the help
of (7.25) and (7.21),

Ap+ (Ys) = 2kox (c2¢1 — C1c2) = ikox <|C+|2 - |C—|2) ,cx=c Eic.

Restrictions on the natural domain D* (R4) follow from the condition

Ap+ (Ys) = 0, which implies c— = ePc , 19 € S (0, 2m), or equivalently
cpcosv =c¢; sinv, v=0/2—n/2€S(—n/2,7/2). (7.27)

According to (7.25) and (7.21), relation (7.27) specifies a.b. conditions as
x — 0,

Yo (x) = CYP(x) + O(?), Y (x) = CY& (x) + O(x'/?),

Y (x) = (kox)"/?T sinv + (kox)"/?>™* cos v. (7.28)

It follows that in this case the deficiency indices of H are my = 1. Therefore,
in the case under consideration, there exists a one-parameter U (1) family of s.a.
extensions Hz y of the initial symmetric operator H, specified by their domains
Dy, ,.

Dy, = {wv ;Y € D% (Ry): ¥, obey (7.28)}. (7.29)
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7.2.3.3 The Third Region o = —1/4

In this region x = 0. Taking into account (7.26) and (7.21), we obtain

_ _ i .
A+ (Yx) = —ko (Cicr — 1) = Eko (|c+|2 — |c_|2) ,cr=citic.

Restrictions on the natural domain Dl’g (Ry) follow from the condition
Ay+ () = 0, which implies c— = e/’c , # € S(0, 27), or equivalently

cpcosv =cysinv, v=0/2—n/2€S(—n/2,7/2). (7.30)

According to (7.26), relation (7.30) defines a.b. conditions for functions v, (x) from
D;il (Ry)asx — 0,

Yo (x) = CYS(x) + 0(x*?), Yl (x) = Cy>(x) + O(x'/?),

1/2

Plx) = x2sinv 4 x"2In (kox) cos v. (7.31)

It follows that in this case the deficiency indices of H are m4 = 1. Therefore,
in the case under consideration, there exists a one-parameter U (1) family of s.a.
extensions Hs, of the initial symmetric operator H, specified by their domains
D Hsys

D, = {¥ ¥ € D}y (Ra): ¥, obey (7.3D)). (7.32)

7.2.3.4 The Fourth Regiona < —1/4

In this region » = io, o > 0. The asymptotic behavior of the general solution at the
origin is given by (7.23). Taking it into account, we obtain

Age () = i2k0 (Jer = leal?).
Restrictions on the natural domain DZ’I (R4) follow from the condition Ap+

(¥%) =0, which implies e’?c, = e™?¢;, 6 € S(0, ). According (7.23), this defines
s.a. boundary conditions for functions ¥ (x) from D; (Ry)asx — 0,

Yo(x) = CYE(x) + O(x¥?), ¥j(x) = CY§(x) + O(x'?),
a) = x"2[e" (kox)"” + e (kox) 7] (7.33)

It follows that in this case the deficiency indices of H are m4 = 1. Therefore,
in the case under consideration, there exists a one-parameter U (1) family of s.a.
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extensions 1:14,9, 0 € S (0, ) of the initial symmetric operator H, specified by their
domains Dy, ,,

D,y = {Wo: W0 € D (Ry); o obey (733)). (7.34)

7.2.4 Spectral Problem and Inversion Formulas

We follow Chap. 5 in solving the spectral problem and finding inversion formulas.

_ Letus we constructa Green’s function G(x, y; W) of s.a. Calogero Hamiltonians
H,,a = 1,2,3,4. As follows from Sect.5.3.4, we have first to find the general
solutions of the inhomogeneous equation

(H-W)y =neL*Ry), W=|We* 0<¢<m ImW >0. (7.35)
To this end, we first consider the corresponding homogeneous equation
(H-=W)y =0, (7.36)
andasetu; (x;W),i = 1,2, and v; (x; W) of its solutions,
w (x; W) = T'(1 4 ) (B/2ko) ™ (kox)"* . (Bx),
wy (x; W) = T'(1 =) (B/2ko)" (kox)"/? I (Bx)

vi (x; W) = (B/2ko)” (kox)">H (Bx)
ir(x)

= _7% (e_i”/zﬂ/Zko)M I'(=x)uy (x; W) — up (x: W),

where B = VW = e'¢/2/|[W],ImB > 0, and J,(x) and H,gl)(x) are the Bessel
and Hankel functions respectively; see [1,20, 81]. Note that the functions u; (x; W)
and uy (x; W) are entire in W, are real entire in W for « > —1/4 (x > 0), and
satisfy the relation u, (x; E) = uy (x; E) for@ < —1/4 (x = io). The function
v1 (x; W) is analytic in the upper half-plane.

As x — oo, ImW > 0, we have

ra : 3
wy (x: W) = (2\/";%) (B 2kg)" V2 =1 Bx=xn/2=7/9 G (x~1) S5 o0,

2k 4 N
vi (s W) = = (B 2kg) 12+ gl Brx—xn/2=7/4) 5 (x~1) — 0, (7.37)

NE:
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and thus the solution v; (x; W) is square-integrable at infinity for ImW > 0. As
x — 0, we have

w (6 W) = (kox)' PO (P), wa (x; W) = (kox) /> O(x%), vi (x; W)

— B (kox)' 27 O(x?), @ = 3/4,

— 28 (ko) 27 O (a2,

—ie7 L0 (B /2ko)™ (kox) /2 o < 3/4, o £ —1/4,

20092 [7/2i + C + In(B/2k0) + In(kox)] O(2), & = —1/4,
(7.38)

where C is Euler’s constant.
The Wronskians of the solutions u;, u,, and v, are

Wr (11, un) = —2kox, Wr(uy,vi) = 2in ko' (1 + x).
Then the general solution of (7.35) has the form

Y(x) = ajui(x; W) + avi(x; W) + m

x[/ G (e, ys Wn(y)dy + /0 Gi"(x,y;mn(y)dy] (7.39)

X

where

G (x,y: W) = un (x; Wwi (y; W),

G (e, yi W) = vi(xs Wu (y; W).

To find solutions ¥ € Dp,, one needs to determine coefficients a; and a,, using
first the condition ¥ € L?(R.) and then s.a. boundary conditions as x — 0 that
specify the domains Dy, .

With the help of the Cauchy—Schwarz inequality, we can easily estimate integral
summands on the right-hand side of (7.39). These terms, as well as the term a,vy,
are restricted as x — oo. Therefore the condition ¥ € L*(R4) implies a; = 0.

7.2.4.1 The First Region ¢ > 3/4

In this region, » > 1 and there exists only one s.a. Calogero Hamiltonian H, defined
on the domain Dy, = D;il (R4).

For @ > 3/4, with the help of the Cauchy—Schwarz inequality, we find that
the integral summands in (7.39) are restricted as x — 0 (in fact, they vanish in
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such a limit), so that the condition ¢ € L*(Ry) implies a; = 0 and the Green’s
function of the Hamiltonian H; reads

i?l’ G§_)(X,y;W),X>y,

Gx,y; W)= ———
2ko " (1 + x) G§+) (x,y: W), x < y.

Consider the guiding functional
o0
B(E W) = / dxus (x; W)E(x), & € D,(Ry) N D,
0

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U = u; and U= v1. Therefore, the spectrum of H1

is simple.
The derivative of the spectral function is calculated via the function M (c; W)
using relations (5.22). The function M in this region is

imuy(c; Wyvi(e; W)
2ko (1 4 x)

M(c; W) =

Let W = E = p?>>0,8=p = +E > 0. Using the relation H}gl)(px) =
Jy(px) + iN,(px) and the fact that N, (px) is real, we get
(E/4k5)"

NE) = —~~/ "0
oE) = 0+ 7))

Let W =E = —1><0,7 = /|E| > 0, B = ¢"/?z. In this range of energies,
we use the representations

wi(x; E) = T'(1+ %) (v/2ko) ™ (kox) '/ L (vx),

vi(x; E) = % (t/2ko)” (kox)" > K, (tx),

where 7, (x) and K, (x) are Bessel functions of imaginary argument (see [1,20,81]),
to obtain¢’(E) = 0, E < 0.

Thus, the simple spectrum of H, is given by spec H = R . The generalized
eigenfunctions

Up (x) = o/ (E)ui (x: E) = \/gj,f (ﬁx) E >0, (7.40)
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of H, form a complete orthonormalized system in L?(R.). We note that in this
case the corresponding inversion formulas coincide with the known formulas for
the Fourier—Bessel transformation; see, for example, [7,50].

7.2.4.2 The Second Region —1/4 < o < 3/4

In this region, 0 < » < 1 and there exists a one-parameter U (1) family of s.a.
Calogero Hamiltonians I—AIZJ,, v € S(—n/2,7/2), acting on the domains Dy, ,
defined by (7.29).

For any &« < 3/4, the function v;(x; W) is square-integrable on R, so that
(7.39) can be rewritten as

Y(x) = ai(x: W) + u (s Wxy +Y (x),

i
Zkor(l + }f)
i

— = | O, yw d
kol (U570 Jo O (x, y; W) x(»)dy

xv =/ vi(y; W)x(y)dy, Y (x) =
0
4

i [T W dy. 7.41

Estimating the term Y (x) with the help of the Cauchy—Schwarz inequality, we
obtain
Y (x) = 0(x*?), x -0, (7.42)

which means that the asymptotic behavior of ¥ (x) as x — 0 is due to the first
two summands in (7.41). This allows one to find a, from the corresponding s.a.
boundary conditions.

Using asymptotic formulas (7.37) and (7.38), we find that solution (7.41) satisfies
s.a. boundary condition (7.28) if

2
= ST mon ) @) = S cosy +sinv,
_rd—=s) i 2x
fw) = i (e7'™/2B/2ko) ™" .

This implies that the Green’s function of the Hamiltonian I:I“ reads
G(X, y; W) = ‘Q(W)UZ,U(X; W)U2,v(y; W)

1 GO (x,y; W), x>y,

- 7.43
2kox G (x,y; W)a X<y, ( )
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where

G (i W) = Uny (s W) U2 (92 W),
G (v y: W) = Uay (s W)U (v W),
Usy(x; W) = uy(x; W) sinv + up(x; W) cosv,
Uz,u (x; W) =ui(x; W)cosv —up(x; W)sinv,

67)2,\;(W)

“O = Sk, 07y

@,(W) = f(W)sinv — cos v,
and we used the relations
] U. 4
w (x; W) + Lvl(x; W) = 206 W)

F(}f)wz,v(W) wv(W) ,
il (x)
s

vi(x; W) = [@0 (W) Usy (x: W) + 0, (W)U (x: W)] .

We note that U, ,(x; W) and Uz,v (x; W) are solutions of (7.36) real entire in W';
U, ,(x; W) obeys the boundary condition (7.28), and the second summand on the
right-hand side of (7.43) is real forreal W = E.

Consider the guiding functional

o0
PE W)= / dxUs,(x; W)E(x), § € D,(Ry)N D, .
0 :
One can see that this functional belongs to the class B of simple guiding functionals
cgnsidered in Sect.5.4.1 with U = U,, and U = U,,,. Therefore, the spectra of
H, ) are simple.
The spectral function is calculated via the function

M(c;W) = inw, " (W)G (c,c; W).

Thus, we obtain 0’ (E) = 7' Im (E + i0).
Let W =E >0,8=p=+E > 0. We obtain

, (E/4k3)"
o'(E) = Y - ——
ol2(1 + x) [¢? + g cos(7x) sin(2v) + sin” v ]
- x
0'(E)>0, E>0, qg= ﬁ (E/4k2)"

0’(0) = 0 for v # 0, and ¢’(F) has an integrable singularity of the type O(E ™)
forv = 0.
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LetW=E=—-12<0,71= \/m > 0,e7"/2B = . In this energy region, we
find thatif v € [0, 7 /2] or v = —mr/2 then §2(E) is finite and real and consequently
o'(E) = 0.

Letv € (—x/2,0). Then we have

Im £\ (E + i0)

i
E) =
o' (E) 2mkox cos? v

, (W) = f(W) —tan |v|. (7.44)
Since f,(E) is a real function, the left-hand side of (7.44) can differ from zero

only at the points E that are negative roots of the equation f, (E) = 0. For any fixed
v € (—m/2,0), the equation f,(E) = 0 has only one negative solution,

E (v) = —4k2 %tanhﬂ v (7.45)
According to Lemma 5.17, we obtain
o'(E) = QU8(E — E (v)),
EW) /437" |Ew|ra
QU:(I(;me) J|2%¥UQ:;LI;<Q (7.46)
Thus, for v € LO, /2] or v = —m/2, the simple continuous spectrum of I-AI“ is
given by spec H;, = R. The generalized eigenfunctions
Ug(x) = o/ (E) Uz, (x: E). E > 0. (7.47)

of I—AIZ,V form a complete orthonormalized system in L>(R.).

For v € (—m/2,0), the spectrum of any s.a. Calogero Hamiltonian I-AI“ is
simple, and in addition to the nonnegative continuous spectrum, here there exists
one negative level (7.45). Thus, spec I—AIZ,V = Ry U {E (v)}, and a complete
orthonormalized system in L?(R4) consists of generalized eigenfunctions (7.47)
and one function

U = 0.V x: £ ) = | ZHEOLIN) (G,

We note that the second region under consideration contains the point ¢ = 0
(x = 1/2), which represents the free-particle case. One can easily see that all the
results obtained in Chap. 6 match the above consideration at o = 0.
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7.2.4.3 The Third Region o = —1/4

In this region there exists a one-parameter U (1) family of s.a. Calogero Hamiltoni-
ans I-AI3,V, v € S(—m/2,m/2), acting on the domains Dy, (7.32).

In the case under consideration, formulas (7.41) and (7.42) hold. This allows one
to find the constant a, from the boundary conditions (7.31),

JTZCOSU

4w, (W)’
fW)=In(B/2ky) +C—in/2,

a, = w,(W) = f(W)cosv —sinv,

which implies that the Green’s function of the s.a. Hamiltonian 1:13,1; is

Gx,y: W) =QW)Us,(x: W)Us . (x: W)

L (GO (x,y; W), x>y,

— 7.48
ko 1 G (x.y: W), x <y, (7.48)

where

G (x, ;W) = Us o (x; W)Us, (y; W),
GO (x,y; W) = Us, (x; W)U, (y; W),

QW) = w—W, @, (W) = f(W)sinv + cos v,

Usy(x; W) = uy(x; W)sinv + uz(x; W) cosv,
Us,(y: W) = uy (x; W) cosv — uz(x: W) sin v,
w (x; W) = (kox)" 2 Jo(Bx), us(x: W) = 0y [ur (ox; W), 0],y -

i W) = (kox)'2Hy" (Bx).
us(x; W) = (kox)"? In (kox) O(x?), x — 0,

and we used the relations

i cos Vvl(x; W) = Us(x; W)
20, (W) wy (W)

avi(x; W) /2i = &,(W)Us, (x; W) 4+ 0,(W)Us, (y; W).

ui(x; W) +

3

We note that Us ,(x; W) and 03,V(x; W) are solutions of (7.36) real-entire in W
Us ., (x; W) obeys s.a. boundary condition (7.31), and the second summand on the
right-hand side of (7.48) is real forreal W = E.
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Consider the guiding functional

o0

OEW) = [ dxUs, (s WEC), £ €D, R D,
One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect.5.4.1 with U = Uj, and U = lj_o,,,,. Therefore, the spectra of
1:13,1; are simple.

The derivative of the spectral function is calculated via the function M (c; W) =
G (c,c; W), so that we have 0/(E) = 7~ ' Im 2(E +i0).

Let W =E>0,8=p=+E > 0. We obtain

o'(E) = {Zko ([(ln (p/2ko) + C) cosv —sinv]* 4 (7%/4) cos’ v)}_l .

Let W = E <0,7 = /|E| > 0,e "/ = . In this energy region, we have

, _ f(E)sinv +cosv _
o (E) = F(E)cosv —sinv’ f(E) = In(t/2ko) + C.

Let v = 4/2. In this case 2(E) = — f(E)/ ko is a finite and real function
such that we obtain o’ (E) = 0.
Let |v| < 7/2. Then we have

Im fY(E +i0)

/
E p—
o (E) ko cos? v

, (W) = f(W) —tanv. (7.49)

Since f, (E) is a real function, the left-hand side of (7.49) can differ from zero only
at the points E that are negative roots of the equation f,(E) = 0. For any fixed
v € (—m/2,m/2), the equation f,(E) = 0 has only one negative solution,
E@Ww) = —4k§ exp(2tanv — 2C).
According to Lemma 5.17, we obtain the right-hand side of (7.49),

L 2IEW)]

o'(E) = QX(E—E (), 0, = — |71 E <.
cos v ko
Thus, for v = +/2, the simple continuous spectrum of ﬁg,,,, is given by

spec H3 4,5 = R.
The generalized eigenfunctions

Ug(x) = Vo (Eyuy(x; E) = v/x/2J, (ﬁx) E >0,

of I—AIMM /2 form a complete orthonormalized system in L*(Ry).
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For v € (—m/2,7/2), the spectrum of any s.a. Calogero Hamiltonian 1;73,,,, is
simple, and in addition to the nonnegative continuous spectrum, here there exists
one negative level (7.45). Thus, spec ﬁg,,,, = R4 U {E (v)}, and a complete
orthonormalized system in L?(R.) consists of generalized eigenfunctions Ug (x)
of the continuous spectrum,

Ug(x) = Vo'(E)Us,(x: E), E >0,

and one function U(x) of the discrete spectrum,

U) = =0.Usu(x: E (v)) = V2[E D) [xKo (VIE@ Ix)

7.2.4.4 The Fourth Regiona < —1/4

In this region ¥ = io and there exists a one-parameter U (1) family of s.a. Calogero
Hamiltonians I—AI4,9, 6 € S (0, ), specified by their domains (7.34).

In the case under consideration ¥ = ig, 0 > 0, and formulas (7.41) and (7.42)
hold. This allows one to find the constant a, from the boundary conditions (7.33),

7 sin(io)e? i (min)2 die  §
= IPOOC (W) = ei? (e7i7/28/2k 0
a Yows (1) wg(W) = e (777 /2ko)” " +e
_ 1. I'(1+io0)
0=0+06r, Op = —In —————.
O 0= N T i)

This implies that the Green’s function of s.a. Hamiltonian I—AI4,9 reads

Gx,y; W) =Q2(W)Usp(x; W)Usp(y; W)

1 GO (x,y; W), x>y,

_ 7.50
4koo | G (x,y; W), x <y, (7.50)

where

i @sp(W)

G (x, y; W) = Usg(x; W)Uy g (y: W), 2(W) = ’
(x,y ) 1.0(x Yap(y ) (W) 4koo w49 (W)

G (x,y; W) = Usp(x: W)U (y: W),
Uso(x; W) = e ui (s W) + e Pup (s W),
Uso(x: W) = —i [eu1(x: W) — e Pup(x; W)]

(I)@(W) — e—ié (e—iﬂ/Zﬁ/sz)zia _ eié’
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and we used the relations

(i —if ; ior

o) SO EET I W) = S Ui,
e o) .. . -

vi(x; W) = om [i @6 (W)Usg(x: W) — wg(W)Us g(x: W)].

We note that Uy g(x; W) and 04,9 (x; W) are solutions of (7.36), real entire in W
Uy g (x; W) satisfies the boundary conditions (7.33), and the second summand in the
right-hand side of (7.50) is real forreal W = E.

Consider the guiding functional

o0

o) = [ Gt WEW, § € DEDND,,,.
One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect.5.4.1 with U = Usp and U = (74,9. Therefore, the spectra of
1:14,9 are simple.

The derivative of the spectral function is calculated via the function M (c; W) =
G (c,c; W), so that we have 0/(E) = 7' Im 2(E + i0).

For E > 0, we obtain

o (4mkoo) ' sinh(mo) B , y
o'(E) = cosh(w0) T 003 B(E) ®(E) = o In(E/4k2) — 26. (7.51)

Let W = E < 0. In this energy region the function £2(E) is real, 2(E) =
— [2koo cot[®(E)], P(E) = o In(zr/2ko) — 6, so that ¢’ (E) can differ from zero
only at the points E, (6) where cot[®(E, (€))] = 0. These points are

E, (8) = 4k (/2 tmn+0)lo e 7,

Using considerations similar to what we used to derive (7.46), we obtain

L (0
o'(E) = Y0 OI(E ~ £, (6)). 0y = IEz/EO) B @) <0 152
nez

Equations (7.51) and (7.52) imply that the simple spectrum of 1:14,9 reads
spec Hy 9 =R U{E, (0), n € Z}. A complete orthonormalized system in L?(R)
consists of the generalized eigenfunctions

Ur (x) = Vo' (E)Usp(x; E), E >0,
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and of the eigenfunctions U, (x), n € Z,

2x|E, (0)|sinh(wo)
o

Un(-x) = iQnU4,9(X; E, (9)) = \/ Kio(lEn (9) |1/2X),

of the discrete negative part of the spectrum. We see that the discrete spectrum is
unbounded from below and has an accumulation point in zero energy.

7.2.5 The Fate of Scale Symmetry

The scale parameter kg, introduced for dimensional reasons, appears to be signif-
icant in s.a. extensions for « < 3/4: its change ko — lko generally changes the
extension parameter, which indicates the breaking of scale symmetry.

From the mathematical standpoint, it is convenient to parameterize s.a. exten-
sions by a dimensionless parameter, v or §. However, from the physical standpoint,
it seems more appropriate to convert the two parameters, the fixed dimensional
parameter ko of spatial dimension dy, = —1 and the varying dimensionless
parameters v and 6, to a one-dimensional parameter  of spatial dimension d, =
—1 uniquely parameterizing the extensions, and the parameter ko no longer enters
the description. This makes evident the spontaneous breaking of the scale symmetry.

As is easily seen from (7.28), in the case of —1/4 < o < 3/4 and for v €
(0, 7/2), this parameter is = ko(tanv)"/?*, 0 < u < oo. The s.a. Calogero
Hamiltonian I—AIZ,V with v € (0, /2) is now naturally labeled by the subscript  and
an extra subscript 4 indicating the sign of v, I—AIZ,}ML = I—AIZJ,, v € (0,7/2),and is
specified by the a.b. conditions at the origin,

Vit (1) = Cx' 2 [(ua)” + ()™ + 0(*2),
¥l (0) = Cx 72 [(1/2 4 30 (ux)* + (1/2 =) (ux) ] + O(x'/?).  (7.53)

The complete orthonormalized system (7.47) of eigenfunctions for the Hamiltonian
H, , . is presented in terms of the scale parameter u as follows:

x J(WEx)+y(u E)J ,(VEx)

U =4/ ,
£ (x) 2 /1 +2y(u, E)cosmx + y2(u, E)
_Ir'd—2 2y% .
Y, E) = R (E/4%)", E = 0; (7.54)

the auxiliary scale parameter k¢ then disappears.
For v € (—m/2,0), the dimensional parameter is p© = k0|tanv|1/2xi 0 <
u <oo. The Hamiltonian H,, with v € (—x/2,0) is now denoted by H,, _:
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I:Izﬁu,_ = I:IQ,V, v € (—m/2,0), and is specified by the a.b. conditions at the origin,

Vu— () = Cx' 2 [(ux)* — (ux) ] + 02,
Ve () = Cx712(1/2 4 20) (ux)* = (1/2 = 3) (ux) ] + O(x'/?). (71.55)

The single negative energy level representing its discrete spectrum is now given by

r( 1/x
E,— = —4? (%) . (7.56)

The complete orthonormalized system of eigenfunctions for the Hamiltonian
H, , ., written in terms of the scale parameter , consists of the functions (7.55)
and one additional function

2x iEu,—i sin wx
V) =\ ——— —Kx ( |EM,_|x). (7.57)

We note that the s.a. Calogero Hamiltonian 1:12, 11— 1s uniquely determined by the
position of the negative energy level.

The exceptional values v = 0 and |v| = /2 of the extension parameter are
naturally included in this scheme as the respective exceptional values © = 0 and
p = oo of the scale parameter, and in terms of u the corresponding Hamiltonians
are respectively denoted by Hzo = qu 0 = Hz v=0 and H200 = qu 0 =
Hz,\u|—n/2

As can be seen from (7.31), in the case of « = —1/4 and for |v| < /2, the
dimensional parameter is u = koe™", 0 < u < oo. In terms of u, the respective
s.a. Calogero Hamiltonian I—AIM, 1:13# = 1_}3% is specified by a.b. conditions at the
origin,

Y (x) = Cx'2In(ux) + 0(x*?),

¥ (x) =Cx™'/? [% In(1x) + 1} + 0(x'?). (7.58)

The single negative energy level representing its discrete spectrum is given by E,, =
—A4,u2 exp(—2C); the position of this level uniquely determines the Hamiltonian
Hs .

The exceptional values A = /2 ~ A = —m/2 of the extension parameter v
are naturally included as the respective exceptional values 1 = co ~ u = 0 of the
scale parameter p. In terms of 1, we let H; denote the corresponding Hamiltonian,
H3 = Hj)y\=z)2-



7.2 The Calogero Problem 265

As is seen from (7.33), in the case of ¢ < —1/4, the dimensional parameter is

0/o

w=koe”", o << o™, po~ poe™° (7.59)

with some fixed po > 0. In terms of w, the respective s.a. Calogero Hamiltonian
H,,, Hy, = H,g, is specified by a.b. conditions at the origin,

Yu(x) = Cx'2[(ux)' + (ux) 7] + 0(x*/?),
Y, (x) = Cx'2[(1/2 4 i0)(ux)'® — (1/2 = io)(ux) "] + O(x'/?). (7.60)

The infinite sequence of negative energy levels representing its discrete spectrum is
given by

7w+ 6, + 27n . I'l+io)
E n — —4 2 — 9(7 = — 1 =1 - N
- foexp o ! n]"(l—io) "

€ Z; (7.61)
the position of one of negative energy levels in any of the intervals

O +m+427m 2 O —n+2mm

(—4,u%e o, —duge © ), m € Z,

uniquely determines the Hamiltonian 194, - The complete orthonormalized system
of eigenfunctions for the Hamiltonian Hy ;, is written in terms of the scale parameter
u as follows:

_ -x/4 2 —io/2 :
Uelx) = \/cos hmo + cos @, (E) [('0“ (E) (E/45") Jio (\/Ex)

+oi (B) Jio (VEx)].

Du(E) = 0 In(E/4:>) — b, ¢, (E) = &%/ (Ejap?) ™" E > 0;

2x|E, ,|sinhmo
U, (x) = \/%Km (,/lEWAx), ner. (7.62)

The scale parameter w, as well as o, is evidently defined modulo the factor
exprm/o, m € Z; the a.b. conditions (7.60) are invariant under the change
w — e™™/9; accordingly, the discrete spectrum (7.61) is also invariant under
this change, and the same holds for the normalized eigenfunctions (7.62) up to the
irrelevant factor —1 in front of eigenfunctions of continuous spectrum for odd m.

All s.a. Calogero Hamiltonians that form a U(1) family for each value of the
coupling constant « in all three regions of the values of @ < 3/4 are thus
parameterized by a scale parameter i, and in the region —1/4 < o < 3/4 we
must distinguish two different subfamilies by an additional index + or —.
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We now turn to the problem of the scale symmetry for s.a. Calogero Hamilto-
nians. The scale symmetry is associated with the one-parameter group of unitary
scale transformations U (1), [ > 0, defined by (7.18). Under a preliminary “naive”
treatment of the Calogero problem, see Sect.7.2.2, the “naive” Hamiltonian a
identified with the initial differential expression (7.16), which has been considered
an s.a. operator without any reservations about its domain, formally satisfies the
scale symmetry relation (7.19). It is this relation that is a source of “paradoxes”
concerning the spectrum of the “naive” H . Below, we resolve these paradoxes.

If we extend relation (7.19) to the s.a. Calogero Hamiltonians ﬁ[i], (] = 1;
2, 1,452, 10, —; 3, s 4, 0, we must recognize that this relation is nontrivial because
the operators I:I[i] are unbounded, and in general, their domains D p,; change with
changing the scale parameter p that naturally changes under scale transformations.
The relation

U~ (1) HyU (1) = I7*Hy) <= HpuyU (1) = 1720 (1) Hy (7.63)

for the Hamiltonian I:I[i] with a specific [i], if it holds, implies that apart from the
fact that “the rule of action” of the operator Hj;) changes in accordance with (7.63),

its domain D g, is invariant under scale transformations:

U(l)Dy, = Dy (7.64)

-
In such a case, we say that the Hamiltonian I:I[i] is scale-covariant and is of
scale dimension dp,, = —2; in short, we speak about the scale symmetry of

the Hamiltonian I;V[,-]. If relation (7.64) does not hold, i.e., if the domain D Hyj

of the Hamiltonian ﬁ[i] is not scale-invariant, we are forced to speak about the
phenomenon of a spontaneous breaking of scale symmetry for the Hamiltonian H lil-

The initial symmetric operator H and its adjoint H™ associated with the
differential expression (7.16) are scale-covariant because both Dy = D (R4)
and Dy+ = Dl’g (R4) are evidently scale-invariant. The s.a. extensions Hj;

of the scale-covariant H can lose this property. On the other hand, I:I[i] are s.a.
restrictions of H 1, and their domains D Hyj belong to the scale-invariant domain

Dy+,D Hy € Dy +. Therefore, the scale symmetry of a specific Hamiltonian H, Ii]
is determined by the behavior of the a.b. conditions specifying this s.a. operator and
thus restricting its domain in comparison with D+ under scale transformations.
This behavior is different for different [i]; namely, it is different for the above four
regions of the values of « (see Sect.7.2.3) and strongly depends on the value of the
scale parameter u specifying the s.a. Hamiltonians in each of the last three regions.
We consider these four regions sequentially.
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(i) First region: o > 3/4.

For each « in this region, the single s.a. Calogero Hamiltonian H, coincides with
the operator H +, H;, = H™, and is therefore scale-covariant,

U () HU() =172H,. (7.65)

In other words, the scale symmetry holds for « > 3/4. The scale transformation law
(7.18) as applied to eigenfunctions (7.40) yields

Up(x) = U () Up(x) = 17" U2 (x), (7.66)
which we treat, in particular, as the scale transformation law for the energy
spectrum, given by

E v+ [’E, (7.67)
i.e., the spatial dimension of energy dg = —2. The group of scale transformations
acts transitively on the energy spectrum, the semiaxis R, except the point £ = 0,

which is a stationary point. This coincides with our preliminary expectations in
Sect. 7.2.2.

(i) Second region: —1/4 < o < 3/4.
The change of a.b. conditions (7.53) under scale transformations (7.18) is given
by the natural scale transformation

wr— 1"ty (7.68)

of the dimensional scale parameter p (its spatial dimension being —1), or, in terms
of the dimensionless extension parameter A, by

tanv — [~ tan v, (7.69)

which implies that under the scale transformations the respective domain Dy, , | of

the Hamiltonian I—AIZ,}ML transforms to Dy, g

Du,,, —> U()Dy,,, = Dn

20 b4 °

(7.70)

It follows that the scale transformations change the Hamiltonian I:IZ’M’J,_ to another
Hamiltonian H, j—1, 4,

Hypyi = U () Byt U = 172 Hy 1 (7.71)
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which means that the scale symmetry is spontaneously broken for the Hamiltonians
Hj ;. +. The scale transformation law for the eigenfunctions (7.54) is given by

U (x) — U () Ug (x) = I7'Uj—2p (x)) (7.72)

It

The same evidently holds for the Hamiltonians I:Izﬁu,_ specified by a.b. condi-
tions (7.55): the respective formulas (7.68) and (7.69) remain unchanged, while in
formulas (7.70), (7.71), and (7.72) the subscript + changes to the subscript —, and
formula (7.72) for the eigenfunctions of the continuous spectrum is supplemented
by the formula for the bound-state eigenfunction (7.57), (7.56),

U)—UOU @) =UE@)] 1y By =172E, . (7.73)

The Hamiltonians ﬁz,oo and ﬁz,o corresponding to the respective exceptional
values 4 = oo (|[v| = m/2) and © = 0 (A = 0) and specified by the respective a.b.
conditions

U(x) = Cx'?P £ 0(x¥?), x > 0; y(x) = Cx"*™* 4+ 0(x*?), x >0,

are scale-covariant, which means that copies of formulas (7.65), (7.66), and (7.67)
with subscript 1 replaced by the respective subscripts 2, co and 2,0 hold. If we
require scale symmetry in the Calogero problem, then only the two possibilities
1’:12.OO and I:Iz,o remain for the s.a. Calogero Hamiltonian in the interval —1/4 <
a < 3/4.

We note that this interval of « includes the point « = 0 corresponding to a free
motion. Therefore, all we have said concerning the spontaneous scale-symmetry
breaking relates to the case of a free particle on a semiaxis.

(iii) Third region: « = —1/4.

The change of the a.b. conditions (7.58) under the scale transformations (7.18) is
equivalent to rescaling (7.68) the dimensional parameter u, or to the change tanv —
tanv — In/ of the dimensionless extension parameter v. A further consideration is
completely similar to the preceding one, to yield that copies of relations (7.70),
(7.71), (7.72), and (7.73), with the subscript 2 replaced by the subscript 3, and with
the subscripts 4+ and — eliminated, hold for the Hamiltonians I;V3,,L, which implies
scale-symmetry breaking for these Hamiltonians.

Regarding the Hamiltonian H; corresponding to the exceptional values u = 0
and i = oo of the scale parameter p, which are equivalent, 0 ~ oo, and specified
by the a.b. conditions ¥ (x) = Cx'/24 O(x*?), this Hamiltonian is scale-covariant,
and copies of relations (7.65), (7.66), and (7.67) with the substitution 1 — 3 hold. If
we require scale symmetry for the s.a. Calogero Hamiltonian with « = —1/4, then
it is only the Hamiltonian Hj that survives.
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(iv) Fourth region: @ < —1/4.

The change of the a.b. conditions (7.60) under the scale transformations (7.18)
is equivalent to a modified rescaling © — [~'expmm/o of the dimensional
extension parameter ., where an integer m is defined by the condition

po <17 pwexp (wm/o) < poexp (w/0);

the changed p must remain within the interval [, o exp /o), see (7.59); this
is equivalent to the change 8 — (0 + o In/)|,,.4, of the dimensionless extension
parameter 0. It follows that for the Hamiltonians Hy ,,, o < p < uoe”/ 9, Ko ~

Woe™ 7, the relations

DH4.;4 > U(Z)DHAL;L = DH

4.;1171 exprm/o’

1:14# > U (l) 1:14#0_1(1) = 1_21:14.;Llflexpﬂm/m

Up () /= U (D Uy () = Uy 0, ok,

—lexpam/o,.n—m ’
_ 12
E}L171 exprm/o,n—m l E},Lle

Up (x) —> U () Ug (x) = (=1)" 17" Up=2 ()| s =1 exprm /o

hold.

This means that the scale symmetry is spontaneously broken for I—AIW. The
peculiar feature of the fourth region is that for /| = expnwn/o, n € Z, the scale
symmetry holds. In other words, the scale symmetry is not broken completely, but
to up an infinite cyclic subgroup. In particular, this subgroup acts transitively on the
discrete energy spectrum.

This is the fate of the scale symmetry in the QM Calogero problem.

The paradoxes concerning the scale symmetry in the Calogero problem and
considered in Sect.7.2.2 are thus resolved. Namely, in general, there is no scale
symmetry in the problem for ¢ < 3/4. In the latter case, the “naive” Calogero
Hamiltonian H of Sect.7.2.2 is actually the operator H™ that is scale-covariant
but not s.a. As for s.a. Calogero Hamiltonians, all possibilities for a negative part
of the energy spectrum considered in Sect.7.2.2 are generally realized by different
Hamiltonians specified by different a.b. conditions. In general, the scale symmetry
shifts energy levels together with Hamiltonians.

We conclude the above consideration with the following remarks for physicists.

We have a unique QM description of a nonrelativistic particle moving on a
semiaxis in the Calogero potential with the coupling constant o > 3 /4. In the case of
a < 3/4, mathematics presents different possibilities related to different admissible
s.a. asymptotic boundary conditions at the origin that are specified in terms of the
scale parameter . But a final choice, which is reduced to a specific choice of the
scale parameter 1, belongs to the physicist.
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The origin of this parameter presents a physical problem, as well as the physical
interpretation of the chosen s.a. Hamiltonian, as a whole. We note only that the
usual regularization (7.17) of the Calogero potential by a cutoff at a finite radius
and the consequent passage to the limit of zero radius yields 4 = oo in the case
of —1/4 < a < 3/4; a peculiar feature of the case of « = —1/4 is that u = oo
is equivalent to . = 0. Such a choice of the scale parameter corresponds to the
minimum possible singularity of wave functions in the s.a. Hamiltonian domain at
the origin. In the case of @ < —1/4, the regularization procedure does not provide
an answer: the zero-radius limit does not exist. A suggestion on the nature of the
scale parameter p, 0 < u < oo, inthe case of —1/4 < o < 3/4,0 < p < oo in the
case of « = —1/4,and po < u < ppexpn/o in the case of « < —1/4, has been
presented above in Sect. 7.2.3: it is conceivable that this parameter is a manifestation
of an additional §-like term in the potential.

In deciding on a specific value of the scale parameter u, one of the additional
arguments can be related to scale symmetry. In the case of « > 3/4, scale symmetry
holds. In the case of —1/4 < o < 3/4, scale symmetry is spontaneously broken
for a generic p. As for any spontaneously broken symmetry, scale symmetry does
not disappear but transforms one physical system to another inequivalent physical
system. But if we require scale symmetry, as we do in similar situations with
rotational symmetry or reflection symmetry, then a possible choice strongly narrows
to © = oo (the minimum possible singularity of wave functions at the origin) or
# = 0 (the maximum possible singularity) in the case of —1/4 < o < 3/4 and to
w = 0o ~ pu = 0 (the minimum possible singularity) in the case of « = —1/4.
For strongly attractive Calogero potentials with « < —1/4, the requirement of scale
symmetry cannot be fulfilled: scale symmetry is spontaneously broken for any .

7.3 Schrodinger Operators with Potentials Localized
at the Origin

7.3.1 Self-adjoint Schrodinger Operators

Let V° (x) be an arbitrary potential localized at the origin, and H the corresponding
differential operation,

H=H+V°(x)=—-d>+V°(x).

Our aim is to study possible s.a. Schrodinger operators associated with this
differential operation. Using additional physical considerations, one can identify
some of them with specific forms of V°(x), namely, with a §-potential field
Ve(x) =38 (x).

As usual, we start with an initial symmetric operator H associated with H .
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The first supposition is that the domain Dy of the initial symmetric operator H
has the form

Dy =D (fé{) — D(—00,0) UD(0,00), R = (=00,0) U (0, 0).

In other words, we believe that domains of any extensions of H must include all the
functions from D (I&)

The subspace D (R ) is dense in L2 (R), D R) = L*(R). All the functions from
P

D (I&) vanish both at infinity and in a neighborhood of the point x = 0 together

with all their derivatives.
The second supposition, which seems to be quite natural, is that the operator H

v o
acts as H = —d? on functions from D (R) (i.e., V° (x) acts as the zero operator on

such functions).
Thus, we choose the initial symmetric operator H as follows:

o DH=D(}13<),

Ay = Hy = —d>y, V¥ €D (ﬁé) (7.74)

The symmetry of the operator (7.74) is obvious.

The next step is standard. One needs to calculate the adjoint HttoH. Following
the general considerations of Chap. 4, we first construct the operator H*, which in
the case under consideration, we define as

e [ P ® =D ®) = {w* Y YL ac.on R, ., ¥y € LZ(R)},
| At = Hp (), ¥ £ 0 AMY0) = a, Yy € DY (R),

where a is an arbitrary constant.
Using the Lemma 2.14, one can easily verify that functions ¥, € D:} (R) have

the following asymptotic behavior at infinity: ¥« (x), ¥ (x) ‘x‘:go 0. To find the
behavior of functions v, at the origin, we consider the condition H*vy, = n €
L?(R) as an equation for v.. The general solution of such an equation reads

X
) =ei ket [ 0=on0ua.
0
which implies
[<(0)| < 00; [, (0)] < 00, Vi € D (|),

Vu(£0) = lim ¥ (x), ¥i(£0) = lim 95 (x).
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In addition, the following relation holds:
(v AY) = (A*yuv). Yy eD(R). vy e D ®R). (7.79)

Let us now demonstrate that A+ and H* coincide. We first note that relation
(7.75) implies the inclusion At ) H*. Below, we show that the inverse inclusion
H* < H* holds as well.

Letf € Dy+,ie.,

e ’®), AT =ne L’®), (6 AY) = (1.y). Vv eD(R). (776)

and let ¢ be an ordinary solution of the equation H ¢ =n e L*(R) (we recall that
£, ¢ are a.c. on R). Then it follows from (7.76) that

/0 ) LTy () = 0, Yy € D(Ry).

0
/_ EC) — C0THY(x) = 0. Yy € D(RL), a.77)

According to Lemma 4.3, (7.77) implies that, excluding the point x = 0, the
function £(x) can differ from {(x) by a function u (x) that is a solution of the
equation Hu (x) = 0. Such a solution reads

u(x) = % Ciy + copx, x >0,
Cl— + c—x, x <0,
where ¢;+ and c¢,4 are arbitrary constants.
Therefore, the functions £(x) € Dy+ have the properties: £(x) € L*(R),

£, & are a.c. on R and the operator H* is defined on the domain D 1+, because
H*€ = HE = n = HtE € LA(R), which means that

€Dy — € Dy~ A N
%*EZHI?”LS,S o — At C A,
which completes the proof of the equality Ht = H* 5

We stress that the operator H ™ acts on its domain as 7 for any x # 0, and one
can define H T£(0) = a in an arbitrary way. Recall that two functions ¥, ¥, €
L?(R) are considered equivalent if they differ on a set of zero Lebesgue measure;
see Sect. 2.1.

Having H™ in hand, we calculate the asymmetry form

Ap+ W) = Y (F0) YL (+0) — YL(+0)Yw (+0)
e (SO (—0) + PL—0)Yu(—0) = 2’—K0<c+c —dtd). (7.78)
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where k is a fixed parameter of dimension of inverse length, and

o (xow(+0) —iw/(+0)) do (xow(+0) +iw’(+0))
koY (=0) +iy'(=0) )7 Koy (=0) =iy’ (=0) J°

The structure (7.78) of an asymmetry form implies that the deficiency indices
of H are my = 2. The condition A+ (¥«) = 0 reduces the space D;il R),
imposing restrictions

cfe—dtd=0=d=Uec, U € U(2), (7.79)

on possible functions from DB (R).

Thus, there exists a U(2) family of s.a. extensions Hy of the initial symmetric
operator H, acting on their domains Dy,

Dy ={¥: ¥ € D5 ®R), d=Ue UcUQ),
Hyy(x) = Hy (x), x # 0; Hyy(0) =a, VY € D

A

HUI

7.3.2 Parity Considerations

Let P be the parity operator that acts on functions ¥ (x) from L?(RR) as
Py (x) =y (). (7.80)

The Hilbert space L?(R) can be decomposed into the direct orthogonal sum of a
subspace Lf(]R) of symmetric functions ¥, 13% = VY, and a subspace Lfl (R) of
antisymmetric functions v, 131#“ = —,, so that L>(R) = L2(R) & L2(R). One
can easily see that [13, H ] = [}3, H *] = 0. Indeed, acting rules of the operators
commute with 13, and their domains are invariant with respect to (7.80). This means
that the operators H and H* can be represented in the form of a direct sum of
their parts, acting in the corresponding subdomains of symmetric and antisymmetric
functions:

A

H=H,& H,, Hy = Hyy + HoVa, ¥ = ¥ + V.

yeD(R) =D, (&) @D, (R), you € Do (),

HY=H @ H', A Y = AN Yy + H Yar Ve = Vs + Vras
Yu € D}, (R) = D (R), & D (R), .
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Owing to the fact that the operator P is bounded, ||1'3 | = 1, and P2 = 1, the
assertion that P commutes with Hy means that

[P,Hy)=0=—= Hy = H,y ® H.v, (7.81)

where operators H , iy are s.a. extensions of the operators H; ;. In turn, if Hy , iy are
s.a. extensions of Hy, in L?a(R), then the operator Hy = H,y @ H,y is an s.a.

extension of H in L*(R) that commutes with P. Thus, it is enough to describe all
s.a. extensions of operators H, , in the subspaces Lf’a (R) to find all s.a. extensions

Hy of the operator H commuting with P. This will be done in the next section.
Here, finishing the present section, we represent the general form of a matrix Up
conserving parity (commuting with P).

We start with the remark that the commutativity U with P implies that functions
Ysa € Lf’a (R) obey (7.78). On the other hand, functions v, , have the properties

Vsa(—0) = £, 4 (+0), ¥y, (—0) = Fy, ,(+0), (7.82)

so that the corresponding doublets d, and ¢, , from (7.78) are

ds,a = \/E[Ko%,a (+0) + lw;a (+O)]ns,as
Ca = \/E[KOWS,LI (+0) — i%,a (4+0)]n; 4,
n, = (1/@/1/&), n, = (1/«5/— 1/@).

It follows from (7.79) that doublets ny , are eigenvectors of the matrix Up defined
above,

KoWs.a(+0) + i, (+0)
UPns,u = A's,uns.a7 As,u = ; - s
' KoWs.qa(4+0) — ”/fs/,a (+0)

A’S,u = ei(/’s.a’ (ps’u S S(—]T, ]T) . (783)

The general form of the Up satisfying condition (7.83) is
Up = Ayng @ ng + A,ng ® ng. (7.84)

The inverse statement is true as well. Namely, if a matrix U has the form (7.84),
then the subspaces Lia (R) reduce the corresponding s.a. Hamiltonian Hy, ie.,
(7.81) takes place.

In terms of a.b. conditions, such a form of the matrix Up implies

Vs 0 (+0) €08 §5o = koVsa(+0)sinya, §5a €S (=7/2,7/2). (7.85)
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where (s, = ¢;5.4/2. The inverse statement is true as well. Namely, if a matrix Up
implies a.b. boundary conditions of the form (7.85), then it has the form (7.84) with
Osa = 2§s,a~

7.3.2.1 Self-adjoint Extensions of ﬁs
Functions ¥, y € L?(R) satisfy the relations (7.82) which implies

(Xv W) = 2(Xs w)-l—s AH"!‘(‘W) = 2(‘% W)+,
where

¥+ = /0 2(0Y (x) dx, (7.86)

and A+ (¥)+ is the asymmetry form with respect to the scalar product (7.86).
Let us consider the isometry 7: ¥ € R i) V2y € Ry. Then

Dy

s

T T
— Dy =D(Ry), D+ —> Dyt = D% (Ry). (7.87)

It follows from (7.87) that there is a one-to-one correspondence (the isometry 7')
between s.a. extensions I—AIS,U and s.a. Hamiltonians Hy of the free particle on the
semiaxis. The latter extensions were described in detail in Sect. 6.2. Using these
results we obtain that there is a family of s.a. Hamiltonians I—AIS,E, teS(—n/2,1/2),
defined on the domain Dy,

Dy, = {w RV DE (R),, ¥’ (+0)cos¢ = ko (+0) sin{‘},

where they act as H.
For { > 0 or { = —m/2, the spectrum of H; is continuous and simple, spec

A

H; = R,. The generalized eigenfunctions Ug(x), £ > 0,

_ am sin (VEIx|)
Ur(x) = \/71 [co ¢ + (2/E) s’ {] {cos («/Ex) cos ¢ + KQT sin¢ |,

form a complete orthonormalized system in L2(RR).

For —m/2 < ¢ < 0, the spectrum of H,; is simple and, in addition to the
previous positive continuous part, contains a negative level,

spec ﬁs,; =Ry U m

B (ko tan §)2 §
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The generalized eigenfunctions Ug(x), E > 0, and an eigenfunction U(x),
U(x) = ko tan [C[e 0l andl

form a complete and orthonormalized system in L2(R).

7.3.2.2 Self-adjoint Extensions of ﬁa

Using similar arguments, one can see that there is a one-to-one correspondence (the
isometry 7)) between s.a. extensions Hu v and s.a. Hamiltonians ’H,U of the free
particle on the semiaxis. Therefore, there is a family of s.a. Hamiltonians ﬁa,;,
§ € S(—m/2,7/2), defined on the domain Dy, ,

Dpy,, = {W 1y e DL (R),, Y (40) cost = kpyr (+0) sing},

where they act as H. . .
For ¢ > 0, the simple spectrum of H,, ¢ is given by spec H,; = R.
The generalized eigenfunctions Ug(x), E > 0,

B m Ko sin («/fx) .
Uel) = \/n [coszf—i- (Kg/E) sin’ é’] |:| | o8 (fx) cos{+ T sm§:|,

form a complete orthonormalized system in L2(R).
For —7/2 < ¢ < 0, the spectrum of H, . is simple and, in addition to the
previous positive continuous part, contains a negative level,

spec ﬁa,; =R, U

B (ko tan §)2 §

2m

The generalized eigenfunctions Ug(x), E > 0, and an eigenfunction U(x),

U(x) = (sgnx) me—m)lmanﬂ ,

form a complete orthonormalized system in L2(R).
For s.a. Hamiltonians Hy, that commute with P, we have

Hy, = Hyr, ® Hag,, &.8o € S(—n/2,7/2),

spec I;VUP = spec ﬁs,g U spec I:Iu,;a,
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where the eigenfunctions of the s.a. Hamiltonians H up and the correspondlng
inversion formulas are the respective unions of the elgenfuncnons of Hy ¢, and H, L
and the corresponding inversion formulas (for H 5.¢, and Ha,;a ).

7.3.3 Self-adjoint Schrodinger Operators with §-Potential

Below, we apply the above results to the old problem of particle motion in a §-
potential field; see [3,26,94]. We need to find a matrix U such that the corresponding
s.a. Hamiltonian Ay can be physically interpreted as a Hamiltonian describing the
motion of a particle in a §-potential field.

Let us now recall the well-known consideration that allows one to reformulate the
QM problem with poorly defined Schrodinger operator (in fact, for the Schrédinger
differential operation with §-potential) in terms of some boundary conditions. For
example, let us consider the stationary Schrédinger equation of the form

[—d? + g8(x)] ¥ (x) = Ey(x). (7.88)

where g is a coupling constant. We suppose that 1 (x) is continuous at the origin
(otherwise, the product §(x)v (x) is not well defined). Integrating the left and the
right sides of (7.88) over x in the limits —e and ¢ and considering the limit ¢ — 0,
we find that solutions of (7.88) must obey the boundary conditions

¥ (0) = éwf’(w) (O, (7.89)

Considering a nonstationary or inhomogeneous Schrodinger equation implies the
same result.

One can see that the boundary condition (7.89), together with continuity of the
wave function at the origin, coincides with some s.a. boundary conditions for s.a.
extensions of the initial symmetric operator H.

Indeed, being rewritten in terms of symmetric and antisymmetric components,
(7.89) takes the form

1
Va(+0) = 0. ¥ (+0) = £W§(+0)- (7.90)

The boundary conditions (7.90) correspond to doublets d and ¢ having the form

d = v2(1 +i/2g)¥s(+0)n, + i V2! (+0)n,,
¢ = V2(1 —i/28) ¥, (+0)n, — i V29! (+0)n,,
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so that the corresponding matrix U reads
U=Up=(2g—i)"'(2¢+i)n, ®n;—n, @n,.

It coincides with the matrix (7.84) for
sgng

J1+4g2 Y

Such a matrix U specifies s.a. operators of the form

@s = 2arcsin . = L.

sgng

V1+4g?

conserving the parity (commuting with 13). Thus, s.a. operators (7.91) can be
identified with s.a. Schrodinger operators that describe one-dimensional particle
motion in the §-potential. The spectrum and inversion formulas for such operators
can be extracted from the above considerations depending on concrete values of
parameters g and .

Hy, = Hyr, ® Hu,, ¢ = arcsin , o= £7/2, (7.91)

Remark 7.3. Regarding the potential V° (x) = §’(x), one can meet in the literature
(see, e.g., [3]) a supposition that the domain of an s.a. Schrédinger operator with the
potential V° (x) = §’(x) is defined by s.a. boundary conditions

koW (+0) — koY (—0) = g¥/(+0), ¥'(+0) = y/(-0). (7.92)

Indeed, s.a. boundary conditions (7.92) correspond to an s.a. Schrédinger operator
with a potential V° (x) localized at the origin. One can verify that they correspond
to the following matrix U':

U= UP =n, ® ng + (g _21)_1(g + Zi)na & ngy,

which defines a an s.a. Schrodinger operator that conserves the parity (commutes
with P). For this reason, such an operator cannot correspond to the potential
V°(x) = 4&'(x); the latter potential is not invariant under the transformation
X = —X.



Chapter 8
Schrodinger Operators with Exactly Solvable
Potentials

It is known that an infinite number of potentials V/(x) admit exact solutions of the
one-dimensional (stationary) Schrodinger equation (7.2). Below, we are going to
study some of them that are of prime importance. We consider all the potentials of
the form

Vi)=Y gvi(x),

where g; are arbitrary constants, for which the one-dimensional Schrédinger
equation has a general solution in terms of elementary or special functions for
all values of parameters g;. In particular, potentials of such a form usually arise
as a result of separating variables in the course of solving the nonrelativistic and
relativistic wave equations in 3 4+ 1 or 2 4+ 1 dimensions. Potentials resulting
from these manipulations depend on the separation constants g; (being integrals
of motion).

We are also interested in having not just one, or several, solutions of (7.2) for
a given potential and some values of the energy, but in a sense (see Chap.5), a
complete set of solutions. Potentials that admit a solution of the one-dimensional
Schrodinger equation in this sense will be called exactly solvable potentials (ESP).

There exist eleven types of potentials that are candidates for ESP; see, e.g., [13].
Below, we study the one-dimensional Schrodinger equation with such potentials,
constructing the corresponding s.a. Schrodinger Hamiltonians and solving the
corresponding spectral problems. In each section below, we start with a specification
of the ESP V (x) in the Schrodinger differential operation H=—d 2+ V (x),and
with the corresponding one-dimensional Schrodinger equation.

81 ESPI

In this case,
V(x) =cx, xeR,

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 279
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_8,
© Springer Science+Business Media New York 2012



280 8 Schrodinger Operators with Exactly Solvable Potentials

and the corresponding Schrodinger equation is
V"' —cexy + Wy =0. (8.1)

It is sufficient to consider only the case ¢ > 0. The case with a negative ¢ can be
reduced to the previous one by the transformation x — —x in (8.1).

The initial symmetric Schrodinger operator H associated with H is defined on
the domain Dy = D (R). Its adjoint H™ is defined on the natural domain D;il (R),

where it acts as I-VI, ie, Dy+ = D:? (R). As follows from results of Sect.7.1,
[V« Y4l(£00) = 0, ¥y« € D, (R), because V(x) > —x72 as x — oo. Thus, we

have A+ (¥«) = 0. Therefore the operator Htissa,and H = H" isa unique
s.a. extension of H.

Let us introduce new variables y and v, and a new function ¢ (x), instead of x
and ¥ (x) in (8.1),

y=c P We v =2 Y@= ). 82)
Then ¢ (y) obeys the Bessel equation
A2 + v 'dyd — [1 n (31))_2] $=0.
Solutions of (8.1) can be obtained from solutions of the Bessel equation by the

transformation (8.2).
As a fundamental set of solutions of (8.1), we chose u; (x; W),i = 1,2,

u (x; W) = /yKijz(v) =/ y/3[1-13 (v) — 113 (V)]
= Vs @) + S @) T =P Wje -2, T = 37,
o (3 W) = /3 [Kijs (0) + me ™00 5 (0)] = %’fy“Hf}; @), (8.3)

where [, and K, are Bessel functions of an imaginary argument [1,20,81]. In (8.3)
we have used the following relations:

ck(x — W/c)3k
3%k (4/3 + k) k!

Vs ) = Ve/3(x=W/e) Y =31,
k=0

x  k —W/e 3k —
Vs ) = Z32Ck1£x(2/3 f&m = V¥ @)

k=0

The representation of the solutions in terms of the variables ¥ and U is useful for
finding asymptotics as x — —oo. We note that u; (x; W) is a real entire function of
W and u; (x; W) is an entire function of W.
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Denoting W/c = a + ib, and taking into account that!

y =c'"*x0 (x7). x = oo,
v=cl? (2)63/2/3—61)61/2 —ibxl/z) +0 (x_l/z), X — 00,

1/3|x|0~(|x|_1)’ X — =00,

y=c
T =22 (1x?/3 + alx|"?/2) + b x|V 4+ O (Ix]7V?), x = —o0,

we obtain the asymptotic of u; (x; W) as |x| — oo:

1. WelC, x > oc:
u = \/T/él(cl/?’x)_l/4 e_#(“‘3/2_%““‘1/2)_"}"'1/2“‘1/2 + o >0,

—1/4 c1/2 a .
uy = \/31/4(c'"x) 14 gim 6+ 255 (2= 5 12)—ibe 2312 0 - .

2.ImW/c=b>0,x > —oc:

_ [2cl/2 3/2 3a . 1/2\_ = .
ut = V3 (¢ V3]~ eI (P ) g e
+ 0 (|x|_3/4) — 00,

. 174 i[2eY2 () 3/2 0 3a 12y 5x | _pa1/2)01/2
M2=l\/37t/4(6’1/3|x|) /e’[ (PP 3 ) 12] bellZlxl

+ 0 (|x]7*) — 0.
3. ImW/c=b=0,a=E/c,x - —o0:
= 3 (el) ™ cos (X — /) + 0 (7).
uy = —/37/4 (c1/3|x|)—1/4 S XHT12) 4 0 (x| 734),
X = 2¢1/2 (|x|3/2 /34 E |x|1/2 /26).

Since Wr (uy, up) does not depend on x, one can calculate it using the above
asymptotics. Thus, we obtain

3 .
Wr (ug, up) = 7”61/36_”’/6 =w#0,

I'We recall that O (x) = 1+ O (x).
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which means that u; and u; are linearly independent and form a fundamental set of
solutions of (8.1). One can see that any linear combination of the fundamental set is
not square-integrable for any W € C. This means that the deficiency indices of H
are zero. The fact that u; , (x; E) ¢ L? (R) implies the absence of bound states for
the linear potential under consideration. However, we note that u; € L? (=00, xp)
and uy, € L2 (x,00) for any finite xo. This fact will be used in constructing a
Green’s function of the s.a. H 1.

One can see that u; decreases exponentially for big x, which is matched with the
physical expectation about the behavior of the wave function in classically forbidden
areas.

The general solution of the inhomogeneous equation

(Hr - W) £(x) = n(x) € LX(R), ImW 0,
has the form
E(x) = ciur(x; W) + coun(x; W) +w™' (W)

x[ul(x;W) /_ (s W)y + (e W) / ul(y;W)n(y)dy]

where ¢ » are arbitrary constants. With the help of the Cauchy—Schwarz inequality,
we can verify that both terms in square brackets are bounded as |x| — oo, which
implies that ¢; = ¢, = 0 must hold if £ € L? (R). Then following Sect. 5.3.4, we
find the Green’s function of the operator H 1

G(x,y; W)= wluy Wyuy (y; W)

2 (G (x,y; W), x>y,

_— 7% 8.4
+3c1/3 GO (x,yiW), x <y, (84)

where
G (x, y; W) = m(x; Wua(y; W), GO (x, y; W) = ua(x; W (v; W),
G @y W) = (W (i W), G (i W) = s (v W (y: W),
us (x; W) = "1 5 (v).
We stress that uz (x; W) is a real entire function in W, and therefore, the functions

G (x,y; W) are real for In W = 0.
Let us consider the guiding functional

B(E: W) = A (¥ DE(X)dx, & € D =Dy(R) N D (R).



8.1 ESPI 283

Properties (i) and (iii) (see Sect.5.3) for @ (&; W) to be simple are obviously
fulfilled. We need only check Property (ii). Let there exist &(x) € D and Ey € R
such that

o

@ (0; Eo) = /

—0o0

dx uy (x; Eo) & (x) = / dx uy (x5 Eo) § (x) =0, (8.5)

where supp & € [a, 00). Consider a solution

1 X
v = | [ 6V wrEamar+ [

a X

G (x,y: Eo) o () dy}
(8.6)

of the equation (ﬁ — Eo) Y = &. Since &(x) is compact on —oo, the function

¥(x) is well defined. Since &y(x) is compact on —oo and Property (8.5) holds,
the function ¥ (x) is compact on —oo. One can see that both summands in square
brackets of (8.6) behave as x~¥/4 as x — oo, which implies that ¥, Hy = & +
Eoy € L*> (R),i.e., ¥ € D. Thus, @ (§; W) is a simple guiding functional, and the
spectrum of the s.a. Hamiltonian H, is simple.

With the help of (5.21), (5.22), and the Green’s function (8.4), we obtain the
derivative of the spectral function:

o' (E) =7 "Imw ' =772713/3 > 0.

Thus, the simple spectrum of H, reads spec I:{ 1 =R.
The generalized eigenfunctions Ug (r) of H,

1
Ur (x) = 7= Vy/3Ki3 (2y"7/3), y = ¢! (x = E/o), E €R,
form a complete and orthonormalized system in L?(R). Formally, the latter means
that relation (5.24) must hold. Indeed, we can write

/oo dx Ug (x) Ugr (x) = /: dx {UE (x) (H - E) U (x)

—00 —

1

- [(H - E/) Ups (x)] Ups (x)} =[(E - E')37%]”

x [ﬁlel/?) (V) K3 (V) — y\/?Kzﬂ (v) K3 (v’)]x

=[x (E—E)]'sin [ (E - £') (21ex1"* /3) |

In the course of the calculations, we have omitted terms that vanish as x — —oo,
and have used the well-known relation limg o, £E~! sin(ER) = n8(E). To obtain

the second relation (5.24), we note that Ug (x) = ¥ (x — E/c). Then it follows
from (8.7) that

—>—00

=8(E—-E'). (87

|x|—>o00
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/oodeE(x)UE/(x):/oodzw(z)lﬁ(z—f-A/c):S(A), A=E—FE,

and therefore,

/_OO dE Ug (x) Ug (x') =c/_oo dzy (2 ¥ (z+ Afc)

=c§(A)=8(x—x"), A=c(x'—x).

82 ESPII

In this case, we have
V(x) = gix*+ gox, x €R.
By a shift of x, one can always reduce the problem to that with g, = 0. That is why

it is sufficient to consider only the case in which g; = g # 0 and g, = 0. The
corresponding Schrodinger equation is

V' —gx> + Wy =0. (8.8)

The initial symmetric operator H associated with H is defined on the domain
Dy = D(R)and Dy+ = D;il (R). The potential under consideration obeys the

condition V(x) > —(|g| + 1)x2, so that [, ¥«](£00) = 0, as was proved in
Sect.7.1. Thus, for any real g, we have Ay+ (Y«) = 0, which implies that the
operator Htissa,and H = Ht isa unique s.a. extension of H . Further analysis
will be done separately for the two ranges g > O and g < 0.

8.2.1 Rangel
In this range, we have
g=v*>0 v>0.

Let us introduce a new variable z and a new function ¢, instead of x and v (x) in
(8.8),

2= (x), ¥(x) =e P (2). (8.9)

Then ¢ (y) obeys the equation for the confluent hypergeometric function,

2d2p+ (1/2—2)dp —adp =0, a = 1/4—w, w=W/4’; (8.10)
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see [1, 20, 81]. Therefore, solutions of (8.8) can be obtained from solutions of
(8.10) by the transformation (8.9). Thus, we obtain a fundamental set u; »(x; W)
of solutions of (8.8),

P(o,1/2;2) _ 2(vx)
'a+1/2) I'(x)

Ui (x; W) = Jme /2 [ D(a + 1/2,3/2;2)}, (8.11)

where @(«, 8; x) is the confluent hypergeometric function. Solutions (8.11) are real
entire in W for any fixed x, and are independent for o, o« + 1/2 # —n, n € Z4, in
particular, for Im W # 0,

4mv
Wr(u],uz) = m = Q)(W)

The functions u;, and their linear combinations are not square-integrable for
Im W # 0. The latter means that the deficiency indices are zero, which confirms the
factthat H; = HT isa unique s.a. extension of the initial symmetric operator H.

Fora, o + 1/2 # —n, n € Z, the solutions u, » have the following asymptotic
behavior as |x| — co:

u = e—(vx)z/z(v|x|)—1/2+2w0~(x—2) — 0, x > 00,

21 2 ~
_ (vx)“/2 —1/2—-2w -2
Uy =——"690-——¢€ vlx O(x™°) = 00, x > —00,
= ety ek ()
2w ~
uy = e(“"")z/z(v|x|)_l/z_zwO(x_z) — 00, X —> 00,

T (e +1/2)

2 ) A —
uy = e~V 2(|x)) VO (x72) - 0, x - —o0.
In finding the asymptotics, we have used the representations

u(x; Wy, x >0

= e W (a, 1/2:2).
Mz(x:W),x<0} © (o, 1/2;2)

Following Sect. 5.3.4, we find the Green’s function of the operator H I

u (x; Wiup(y; W), x >y,

8.12
s Wty (v W), x < . (859

Gx.y:W)=w'(W) {
As in Sect.7.3.1, one can see that the guiding functional
0 W) = [ n(x2s0dr. € € DN DY @
R

is simple, and therefore the spectrum of H, is simple.
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With the help of (5.21) and (5.22), the Green’s function (8.12), and the fact that
uy2(c; W) arereal forreal W = E, we obtain the derivative of the spectral function:

ur(c; E)

/
E)= 208
o' (E) 4dm2vu(c; E)

Im ')« + 1/2) [y =g440 »

where ¢ € R is an arbitrary constant.

The fact that Im I" (x) = 0 for x ¢ Z_ implies that o’ (E) # 0 only for those E
for which eithera = —k ora + 1/2 = —k, k € Z4, i.e., for those E that provide
poles either for I'(1/4 — E/(4v?)) or for I'(3/4 — E /4v?).

Fora = -k = —n/2,n = 2k = 0,2,4,...,and E, = 20%(n + 1/2), we
obtain

w(x; Ey) = ur(x; Ep) = (—=1/2)"*(n — YNe™2d(—n/2,1/2;2),

ur(c: Ey) = m
neE) b Me+1/2=—e

For E in a neighborhood of E,,, one can write (see Lemma 5.17)

4rv?(=2)"/?
Im F(“)|W=E+io = TME - E,).
Then
2"v
Jrn!

Fora = -k —1/2=-n/2,n =2k +1=1,3,5,..., E, = 2v*(n + 1/2),
we obtain

0'(E) = Qu8(E — Ex), Qu =

MI(X; En) = _MZ(X; En)
= (=2)' 2" 2ple ™ (ux)P(—(n — 1)/2,3/2:2), z = (vx)?,

ux(c; Ey) (=)
ui(c; Ep) L I'e) = il ’
402 (—1)k
Im I'(e + 1/2)lw=pyi0.e~E, = %5(}5 —Ey)
v (=2)*
= (n——l)!!S(E - Ey),

and 0’ (E) = Q28(E — E,), so that the simple spectrum of H, reads

spec Hy = {E, =20 (n + 1/2), n € Zy}.

It consists of the eigenvalues of H,, well known from any textbook.
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The functions

v _(Ux)z
Un(x) = Quui(x; Ey) = ‘/2nﬁn!e > H,(vx),

which are the standard eigenfunctions of the harmonic oscillator Hamiltonian,
form a complete orthonormalized system in L?(R). Here, we have used relations
between the confluent hypergeometric functions and the Hermite polynomials H,,;
see, e.g., [81].

8.2.2 Range?2

In this range, we have
g=—v4<0, v > 0.

Here we introduce a new variable z and a new function ¢, instead of x and ¥ (x)
in (8.8),

z=i(Wx)>=e"?(vx)?, Y(x)=e 7P (2). (8.13)
Then ¢ (y) obeys the equation for the confluent hypergeometric function,

2 () +(1/2—2)dp (D) —agp (2) =0, & = 1/d+iw, w= W/(4v?). (8.14)
Therefore, solutions ¥ (x) of (8.8) can be obtained from solutions of (8.14) by the
transformation (8.13). Thus, we obtain a fundamental set u; »(x; W) of solutions of
(8.8):

ui(x; W) = e ?@(a, 1/2;2),
w(x; W) = e x®(a +1/2,3/2:2), ua(x; W) = uip(; W), (8.15)

The solutions u; »(x; W) are real entire functions in W for any fixed x, and they
form a special fundamental system of solutions of (8.8) for any v and W, for which

WO W) = S, el = 1,2, Wr(uy,u) = 1.

Solutions (8.15) have the following asymptotics as |x| — oo (o, o + 1/2 #
—n, n €7Zy4):

u(x; W) u(x; W)
r@ ' T

ui(x; W) = [ ] O(x2) =0 (|x|—l/2+2|1mw\)’
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1 in/4 W —in/4 ;W N
o W) = sl |:e u(x; W) e iy (x ):| O(x2)
v

r@+1/2) " T+1/2)
— 0(|x|—1/2+2\lmw|)’ & = 1/4_ iw,

M()C; W) — ﬁe—i(ux)z/Z(e—in/llv|x|)—l/2—2iw.

Another fundamental system vy 5 (x; W),

in/4 2v
V:t(x; W)Z m 1(.X W):b ( )uz(x W)
in/
Wr(vg,v_) = L et L,

r@r@+1/2)

0(|x|—l/2:|:21mW)’ X — 00,

vi(X; W) = 0(|x|—1/2:F21mW) X = —00

Imw > 0,

of solutions of (8.8) (for o, + 1/2 # —n, n € Zy) is convenient (due to their
asymptotic properties) to construct the Green’s function.

These solutions are well defined for any v and W, in particular for Im W > 0,
and are normalized as follows:

ve (0; W) = ™Y@+ 1/2), V, (0; W) = —v_(0; W) = 2vI ! (@).

The functions v+ and their linear combinations are not square-integrable for
Im W > 0. The latter means that deficiency indices are zero, which confirms the
factthat H, = Ht isa unique s.a. extension of H.

In the standard manner, we obtain the Green’s function

_ —(x;Wyve(y: W), x >y,
G ey W) = o~ (W) ) V- WV

(. y; W) = 0= (W) vie(x; Wv—(y; W), x < y.
Then following Sect. 5.3.2, we obtain the matrix function My;(0; W),

My (0; W) = Gy (—0, +0; W) = antidiag (—1/2,1/2)
+diag ([e ™™ +i] p1(E).[-e™™ +i] p2(E)), E =Re W,

. 7 E/4v?
PE) = oI (144 0B /40?) Pert/*
p2(E) = %IF (3/4 +iE/4v?) PB4,
Y

and the derivative of the matrix spectral function, o, (E) = diag (p; (E), p2(E)) .
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Thus, the spectrum of H, is twofold degenerate and reads spec H, = R. The
eigenfunctions Ujg(x) = /pi(E)u;(x;E), i = 1,2, E € R, of H; form a
complete orthonormalized system in L?(R).

8.3 ESPIII

In this case,

V(x) =gix~' 4+ gx7?, x € Ry, (8.16)

and the corresponding Schrodinger equation is
Y = (gix T+ gx P = W)y =0. (8.17)

The case g; = 0 corresponds to the Calogero potential and was already consid-
ered in Sect. 7.2, so that we keep g; # 0 in what follows.

It should be noted that on the physical level of rigor, the Schrodinger equation
with potential (8.16) was studied for a long time in connection with different phys-
ical problems; see for example [61, 137] and books [59, 104]. The potential (8.16)
is singular at the origin. It is repulsive at this point for g, > 0, and has a minimum
at a point xo > 0 for g, > 0 and g; > 0. The potential with g;, g» in the latter range
is known as the Kratzer potential [100]. The Kratzer potential is conventionally
used to describe molecular energy and structure, interactions between different
molecules [22]. For g, > 0 and g; > 0, we have the inverse Kratzer potential, which
is conventionally used to describe tunnel effects, scattering of charged particles
[115] and decays, in particular, molecule ionization and fluorescence [19]. In
addition, valence electrons in a hydrogen-like atom are described in terms of such a
potential [54].

First we consider the case g» # 0 (the case go = 0 is considered below in
Sect. 8.3.5.

As in the previous cases, the initial symmetric operator H associated with H is
defined on the domain Dy = D (R4) and H™ is defined on the natural domain
D;I R4).

We first consider the Schrodinger equation (8.17). Introducing a new variable z
and new functions ¢, instead of the respective x and ¥ (x),

7= Ax7 A, = 2\/—W =2 |W|el(§0_7f)/2, w(x) — _X{-I/Zﬂ:ﬂe_z/zd):t(Z)7

> — .
— V82 + 1/4, go > —1/4 W=|W|e? 0<¢<mx (8.18)

o i, x =/|g2l = 1/4, g2 < —1/4"

we reduce (8.17) to the confluent hypergeometric equations for ¢+ (z),
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2d2¢+(2) + (B+ — 2)d:p+(x) — s (2) =0,
ar =1/2+pu+g1/A, B =142pu, (8.19)
whose solutions are the known confluent hypergeometric functions @ (., B4 ; z) and
Y(ax, B+;2); see [1,20,81].
Solutions ¥ (x) of (8.17) are restored from solutions of (8.19) by transformation
(8.18). In what follows, we use u; (x; W), up(x; W), and v, (x; W) defined by
up (s W) = x"2He 2oy, B1i2) = ur (x; W),y s

wy (x; W) = x> e 2 P(a_, Biz) = us (x; W)lis-a

= (G W)y 01 (W) = AP P (B2
(-2 r2
_ 2w e (8.20)
I'(-) I(ery)
The function u, is not defined for f— = —n,oru = (n + 1)/2,n € Z4, in

particular, for © = 1/2. For such u, we replace u; by other solutions of (8.17); they
are considered in the subsequent sections.

The coefficients of the Taylor expansion of functions u;(x; W)/x'/?>T# and
us(x; W) /x!/>7# with respect to x are polynomials in A. Because these functions
are even in A, the coefficients are polynomials in W, whence it follows that
uy (x; W) and up (x; W) are entire functions in W at any point x except x = 0
for up with u > 1/2.

If go > —1/4 (u > 0), then u; (x; W) and u, (x; W) are real entire functions
of W.If go < —1/4(u = ix), thenuy (x; E) = uy (x; E).

The pairs uj,u; with u # 0 and u;, v, for ImW # 0 are the fundamental
systems of solutions of (8.17) because the respective Wronskians are

Wr (u1, u2) = =2, Wr(ui,v1) = —I'(B4)/ T (a4) = —o(W). (8.21)

The well-known asymptotics of the special functions @ and ¥, see e.g. [20],
entering solutions (8.20) allow us to estimate simply the asymptotic behavior of the
solutions at the origin as x — 0, and at infinity as x — oo.

As x — 0, we have

w (W) =g P g () + OG>, (s W) = i) g (x)

O(x%?1), —1/4 < g, <3/4, g2 #0,
+3O<pu<l1, ps1/2), (8.22)
O(x*?), go < —1/4 (u=ix),

andifay # —n,a— # —m,n,m € Z,
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TR X210 (x), g2 2 3/4 (1 = 1),

AHIr(=2p) , —1/2— rep  —1/2+
#)V‘) 0 / Hulds(x)"' F((ai)) / ILMZaq(x),

v W) =49 4+0(x%?), —1/4<g,<3/4, &2 #00<pu<1, u#1/2),

A2 P(=2ix) —1/2— rQe —1/24i
F(é_)z%) ) / lJfM as(x) + anl;_{; / mu2as(-x),

+0(x*?), g» < —1/4 (n = ix),
(8.23)
where

t1as (x) = (o) 2H,
(kox) /271 — g‘/K"(K x)¥PR —1/4 < gy <3/4, g2 #0,

ups(x) =3 (0O < <1, u#1/2),
(kox)'271% gy < —1/4 (u = ix),

and « is an arbitrary, but fixed, parameter of dimension of inverse length.
As x — oo, ImW > 0, we have

w(x; W) = Ifﬁgjxw Prxs1/te20(x )

=0 (xae|W|l/zsin((p/2)) U (x’ W) — A—a—x—gl/le—z/Zé(x—l)
=0 (x—ue—|W|l/2sin(<p/2)) La= 2_1|W|_1/2g1 sm(<p/2) )

The obtained asymptotics are sufficient to allow definite conclusions about the
deficiency indices of the initial symmetric operator H as functions of the parameters
g1, &> and thereby about a possible variety of its s.a. extensions. It is evident
that for Im > 0, the function u;(x; W) exponentially increasing at infinity is not
square-integrable. The function v; (x; W) exponentially decreasing at infinity is not
square-integrable at the origin for go > 3/4 (u > 1), whereas for g, <3/4, it is
(moreover, for g, < 3/4, any solution of (8.17) is square-integrable at the origin).
Because for Im W > 0, the functions u;, v; form a fundamental system of (8.17),
this equation with Im W >0 has no square-integrable solutions for g, > 3/4,
whereas for g, < 3/4, there exists one square-integrable solution, v; (x; W). This
means that the deficiency indices of the initial symmetric operator H are equal to
zero for g > 3/4, and are my = 1 for g, < 3/4.

Analogously, for g, > 3/4, there is a unique s.a. extension of )il , whereas for
g2 < 3/4, there exists a one-parameter family of s.a. extensions of H. A structure
of these extensions, in particular an appearance of their specifying asymptotic
boundary conditions, depends crucially on a specific range of values of the
parameter g,. In what follows, we distinguish five such regions and consider them
separately.
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8.3.1 Rangel

In this range, we have
g =3/4(u=1). (8.24)

As was mentioned above, the deficiency indices of the initial symmetric operator
H with g, in this range are zero. This implies that for g, > 3/4, the operator H
is s.a. and 1:11 = H'isa unique s.a. extension of H with the domain D H =
D (Ry).

A spectral analysis of the s.a. operator H =H" begins with an evaluation of
its Green’s function G (x, y; W), which is the kernel of the integral representation
of the solution ¥, (x) of the inhomogeneous differential equation

(H = W)y () = n(x), n(x) € L(R+) (8.25)

with Im W # 0 under the condition that ¥, € D1*§ (R4). The general solution of
this equation without the condition of square-integrability can be represented as

Ye(x) = ajui(x; W) + apvi(x; W) + I(x; W),
V(X)) = aru) (x; W) + axv[ (x; W) + I'(x; W), (8.26)

where

W) = /0 G (x.y: W) n(»)dy + / GO (x. y: W) n(»)dy,

X o0
' W) = /0 4,G™ (x.y: W) n()dy + / .G (x. y; W) n(»)dy,

G (x.y: W) = o~ W) (e W (y: W),
GO (x,y; W) = o' W)y (x; Wyvy (v; W),

with @ given in (8.21). Using the Cauchy—Schwarz inequality, it is easy to show
that 7(x; W) is bounded as x — oo. The condition ¥« (x) € L?>(R4) then implies
that a; = 0, because u; (x; W) exponentially grows while v, (x; W) exponentially
decreases at infinity. As x — 0, we have I(x) ~ O(x*?), I'(x) ~ O(x'/?) (up
to logarithmic accuracy at g, = 3/4), whereas v, (x; W) is not square-integrable at
the origin. The condition ¥« (x) € L*(R4) then implies that @ = 0. In addition,
we see that the asymptotic behavior of functions ¥/« (x) belonging to D;il (R4) at
the origin, as x — 0, is estimated by

P (x) = O(?), yi(x) = O(x'7).



8.3 ESPII 293

Together with the fact that the functions v vanish at infinity (see below), this
implies that the asymmetry form A+ is trivial, which confirms that in the first
range, the operator HT is symmetric and therefore s.a. (in contrast to the next ranges
considered in the subsequent sections).

It follows that the Green’s function of H is given by

Gywy =G Gy x>y,
GO (x,y; W), x <y.

The representation (8.20) of the function v; in terms of the functions u; and u;
is inconvenient sometimes because the individual summands do not exist for some
w although v; does. For our purposes, other representations are convenient. For
m—1<2u<m+1,m > 2, the function v, (x; W) can be represented as

VI W) = A (W s (s W) + “’;LV) Vi (3 W),
o I(=2p) rQurB-)
An(W) = 24 L ()
Uy W) =u (x; W) —an (W) (Bo)uy (x; W),
am T(ogm) _lEm
aw(W) =2 m, O = —— +g1/1.

It is easy to see that all the coefficients a,, (W) are polynomials in W that are real
forIimW = 0 (W = E). In view of the relation

X" +n+1)
n+ )@

ﬂlin_l I '(B)®(«, B;x) = Dla+n+1,n+2:x) (827

(see [20, 81]), the functions v, (x; W) and A,, (W) existform —1 < 2u <m + 1
and for any W. In fact, v, (x; W) are particular solutions of (8.17) that are real
entire in W and have the properties (form — 1 <2 <m + 1)

Wr(ui, Uon)) = =21, U (x; W) = xl/z_“é(x), x — 0.

Consider the guiding functional

DEW) = /0 w (x; W)E(x)dx, € € D,(Ry) N Dy,

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect.5.4.1 with U = u; (U = V), and therefore, the spectrum of
H, is simple.
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The derivative of the spectral function is given by
o'(E) =n'Im[w  (E +i0)A,(E +i0)]. (8.28)

Because o~ ! (W)A,,(W) is an analytic function of , its value at & = m/2 is a
limit as u — m/2. For u # m /2, representation (8.28) can be simplified to

nl (@) (B+)

o' (E) =ImQ Y (E +i0), 2(W) = P2 s

For E = p> >0, p > 0,1 = 2pe~"/2, we obtain

> 0.

o'(E) = (|F(Ol+)|)2 (2p)*re ez
r'(B+) 2m

We see that o/ (E) is a nonsingular function for £ > 0. It follows that the spectrum

of the s.a. Hamiltonian A 1 is continuous for all such values of E.

For E = —t2 < 0,7 > 0, A = 27, the function 27!(E) is real for all values
of E where 27(E) is finite, which implies that Im 27! (E + i0) can differ from
zero only at the discrete points E, where £2(E,) = 0. It is easy to see that the latter
equation is reduced to the equations a4 (E,) = —n, n € Z4, which have solutions
only if g; < 0, and the solutions E,, are then given by

E,=—g(1+2u+2n)72, ©, = || (1 +2u +2n)"". (8.29)

We thus obtain that for E < 0, the function o’ (E) is equal to zero if g; > 0, whereas
if g < 0, this function is given by

N 2 _Qu)tt [ I +2u+0)
U(E)—;)Q,,S(E—En% On =555 \/(Hz“”n)n!,

The final result of this section is as follows. For g, > 3/4, the spectrum of Hi is
simple and given by

n R+, g1 > 0,
spec fh { Ry U{E,}, &1 <0.

For g; > 0, the generalized eigenfunctions Ug (x) = /o'(E)u;(x; E), E > 0,
of H, form a complete orthonormalized system in L*(R;). For g < 0, the
generalized eigenfunctions Ug (x) = /o/(E)u;(x; E), E > 0, of I{h together
with the eigenfunctions U,(x) = Q,ui(x;E,), n € Z4, form a complete
orthonormalized system in L>(R.).
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8.3.2 Range2

In this range, we have
3

> gy > 1(1> > 0)
1 82 4 12 .

To obtain asymptotics of functions from Dl’g (R4), we consider the general solution
of (8.25). Because in the range under consideration, any solution of (8.17) is
square-integrable at the origin, the general solution of (8.25) with W = 0 can be
represented as

Ve (x) = ayuy (x;0) + azuz(x; 0)

o / (110 0 (35 0) =t (x: 0y (v: )] )y, (8.30)
K Jo

It follows from Lemma 2.14 that . (x), ¥, (x) "% 0 because the corresponding
potential tends to zero as x — oo.

The asymptotic behavior of integral terms in (8.30) as x — 0 is estimated with
the help of the Cauchy—Schwarz inequality, and we obtain

Vi (X) = a1u1a5(X) + axtingg(x) + O (x3/?),
Vi(x) = @il (x) + aatlh (x) + O (x'1?).

Taking into account the asymptotic behavior of functions (8.30) as x — 0 and
X — 00, we obtain A+ (§) = —2uko(aia; — aza;). Such a structure implies that
the deficiency indices of Haremy = 1. Imposing the condition A+ (§) = 0, we
obtain a relation on the coefficients a@; and a»,

asinvy =ajcosv, v € S(—n/2,7/2).

Thus, in the range under consideration, there exists a family of s.a. Hamiltonians
H,, parameterized by v with domains Dy, that consist of functions from
DE (R4) with the following asymptotic behavior at the origin x — 0:

Y (x) = CY™(x) + 0(x*?), ¥/(x) = Cy™(x) + O(x'?),
Y3 (x) = upas(kox) sin v + uas(x, ko) cos v. (8.31)

Imposing boundary condition (8.31) on the function (8.26) (with a; = 0), and
using asymptotics (8.22) and (8.23), we obtain Green’s functions of the operators
H2’V:

G(x,y; W) = Q27 (W), (x; W)ua o (y; W)

n L (G, (x: Wup (v W), x >,
ko | Uz (x; Winn, (y; W), x <y,

(8.32)
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where
uy, (x; W) = ké/H“ul(x; W)sinv + ké/z_“uz(x; W)cosv,
iy, (x; W) = —ké/2+“u1(x; W)cosv + kéﬂ_“uz(x; W)sinv,
QW) = 2ukowry (W)@, (W),
wr (W) =sinv + f(W)cosv, @(W) =cosv— f(W)sinv,

Fa)I"(B-)

= (A/ ko)™
W) = Ok e,

and we used the relation
v W) = ) kg P (W) @2, (W), (x5 W) + @ (W )ity (x3 W)).

We note that the functions u, ,,(x; W) and i, (x; W) are solutions of (8.17) that
are real entire in W, u, ,,(x; W) satisfies boundary condition (8.31), and the second
summand on the right-hand side of (8.32) is real for real W = E.

Consider the guiding functional

DEW) = /0 1., (x: W)E(x)dx, £ €D = D,(Ry) N Dy, .

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = u,, (U = ip,), and therefore, the spectra
of I—AIZ,V are simple. The derivative of the spectral function reads o'(E) =
7' Im7Y(E +i0).

It is convenient to consider the cases |v| < 7/2 and v = *7/2 separately. We
first consider the case v = /2, where we have

T (B-)(A/ ko)™
2ukol (@) (B+)

We see that all results for spectrum and system of the normalized (generalized)
eigenfunctions coincide with those of the first range (g2 > 3/4). In particular, the
expressions for discrete energy levels (we will denote them by &,) are given by
(8.29):

s 2 (s W) = k) (s W), 27N (W) =

2
S  {/  JU— i1

(2 + 202 1+2p+2n

We obtain the same results in the case v = — /2.
Second, we consider the case v = 0. Here we have

12006 W) = k> un(x; W),

(ko/2)*' I (B4) I ()
2pkol (BT (o4)

o'(E)=n"'ImQ Y(E 4+i0), 27'(W) =
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Letg, >0.For E = p?>>0, p>0,1 =2pe "2 we have

2 2Ua—Tg1/2
() = (I’ Goj2ppremers .

I (B-)l 2mko

For E = —12 < 0, t > 0, A = 21, the function .Q_I(E) is real for those E for
which 27'(E) is finite, so that Im 2~'(E + i0) can differ from zero only for E
that provide £27!(E) = oo. The latter is possible only for a— = —n (I'(a—) = 00),
n e Zyg,or

1-2u+g1/t=-2n,neckl;. (8.34)

Equations (8.34) have no solutions for 0 < u < 1/2 and have one solution for
1/2<pu<lin=0,t=11(0)=g1/Qu—-1), E=E_(0) =—72,(0).

Letg; < 0.For E = p2 >0,p>0,A= 2pe_i”/2, the derivative of the spectral
function is given by (8.33).

For E = —12 < 0,7 > 0, 1 = 21, the function 27! (E) is real for E # E,(0)
(2(E,(0)) = 00), so that ¢/ (E) does not vanish only at the points E = E,(0). The
equation 27! (E,(0)) = oo implies the condition o— = 1/2 — u — |g1|/27,(0) =
—n (I'(e—) = o0), which gives

2
g1 n,0<,u<1/23

E,(0)=-72(0)=——2>—— ) , k= € Ly

n(0) = —7,(0) (1—2u+2k) %n+1, a<p<1, "5

Thus for g; < 0, the simple spectrum of ﬁz,o is given by spec Hyy = R4 U
{E,(0), n € Z4} and a complete orthonormalized system in L?(R) consists of
(generalized) eigenfunctions

Up(x) = o'(E)ua(x: E), E >0,

_ Q)" | r(1 =2 +k) ]
U,(x) = TEOIN T —2i + 2k)k!u2(x’ E,0)), neZy, (8.35)

of Hz’().

For0 < pu < 1/2, g1 > 0, the simple spectrum of I-Alz,o is given by spec I-Alz,o =
R4, and a complete orthonormalized system in L?(R.) consists of generalized
eigenfunctions Ug(x) (8.35) with the corresponding parameters and the function
o' (E).

For 1/2 < u < 1, g1 > 0, the simple spectrum of 1312,0 is given by spec Hy o =
R4 U {E_(0)} and a complete orthonormalized system in L?(Ry) consists of
generalized eigenfunctions Ug (x) (8.35) with the corresponding parameters and the
function ¢’(E), and only one eigenfunction of the discrete spectrum U_;(x), given
by (8.35) withn = —1 and k = 0.
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Now we turn to the general case |v| < /2. In this case we have
o'(E) = (2 ko cos® v)_1 Im £, '(E +i0),

(A/ ko) T (B)T (0r1)
rB)re-)
For E = p>>0,p>0,A =2pe "/2, we have

B(E)
2mkocos? V[A2(E) + u?B2(E)]’

HW) = fW) +tanv, f(W)=

o/(E) = (8.36)

where A(E) = Re f,(E) and uB(E) = —Im f,(E). A direct calculation gives

wl T () [*2p/ ko)™

A(E) = —ng1/2p ) 7g1/2p t .
(E) )2y (e cos(2mp) + e ) + tanv
r 22 p/ ko)He—781/2p
p(g) = [[@e)PCp/ ke 837
r=p)
For E = —t2 < 0,7 > 0, A = 27, the function fuv(E) is real, and therefore,

o’ (E) can differ from zero only at the discrete points E, (v) such that f, (E,(v))=0,
or f(E,(v)) = —tanv, and we obtain that

o'(E) = Y [~2uko f,(Es(v)) cos®v] ™ 8(E — E,(v)).

n

fUE,(v)) = f(E,(v)) <0, 3,E,(v) = —cos > v [f’(En(v))]_1 > 0. (8.38)

1. Letg; > 0.For E = p?> > 0, p > 0, the function o/ (E) (8.36) is a finite positive
function. At £ = 0, we have B(0) = 0 and

(g1/ko))™ TC(B-) (v_1 >0, 1/2<p <1,
v=v_ - 0, tan v_] == e —
! r'-'(8+) v <0,0<p<1/2.

A(0)]
It is easy to see that

fo(W) =tanv —tanv_; — (ZMkO cos? v_l)_l W 4+ ow), w -0,

_ gl(gl/ko)‘“\/ 30(1+ 2p)

'4

JLCOS V_1 2ko(1 +2u) (2 —2p)°

It follows that for v # v_, the function ¢’(E) is finite at £ = 0. But for v = v_,
and for small E, we have

o'(E) = —%wz Im(E +i0)"" 4+ 0(1) = ¥2§(E) + 0(1),
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which means that there is the eigenvalue £ = 0 in the spectrum of the s.a.
Hamiltonian H, ,_,.
For E = —1t? < 0, A = 21, the function f(E),

_ T(B-) I'(1/2 + p + g1/20) 27/ ko)

I =gy r=pntazo

has the properties that f(E) is a smooth function for E € (—00,0), f(E) — 0o as
E = —o0,
<0, 12<p<l,
0) = —tanv_
SO ==tanv-iy o0 C < 1/2
Because f'(E, (v)) < O, the straight line f(E) = —tanv, E € (—00,0],
can intersect the plot of the function f(E) no more than once. That is why the
equation f,(£) = 0 has no solutions for v € (v_;,n/2), while for any fixed
v € (—m/2,v_1], this equation has only one solution £_; (v) € (—oo,0], which
increases monotonically from —oo to 0 as v changes from —n/2+0tov_;.

We thus obtain that the spectrum of H,, |v| < /2, with g; > 0 is simple and
given by
Ry U{E_;(V)}, ve(—n/2,v-],

HA =
Spec M2 R4, v e (voy,/2).

The generalized eigenfunctions

Up(x) = o'(E)us,(x; E), E >0,

and (for v € (—m/2, v_]) the eigenfunction

—1/2
U1 () = [~2uko f'(E—i ) cos?v] ™ s, (65 E—y (1)
of I:Iz,u , form a complete orthonormalized systems in L*(R.).

2. Let gy < 0.Thenfor E = p?> > 0, p > 0, A = 2pe~"™/2, formulas (8.36)
and (8.37) hold. Because the functions A(E) and B(E) are finite at £ = 0
(B(0) # 0), the function o’ (E) (8.36) is a finite positive function for E > 0.
This means that for £ > 0, the spectra of s.a. Hamiltonians I—AIZ,V are simple,
purely continuous, and given by spec I-AI“ =R,.

For E = —12<0,7t > 0,1 = 21, we have

_ I T(1/2+ p—|gil/27) 27/ ko)**
r(B+) r/2—p—lgil/27)

It is easy to see that for fixed v, the spectrum is bounded from below and the
equation f, (E, (v)) = 0 has an infinite number of solutions,

E,(v) = —gi/4n* + O(n?),

J(E)

asymptotically coinciding with (8.29) as n — oo.
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We thus obtain that the spectrum of ﬁz,\,, [v| < /2, with g; < 0 is simple and
given by spec H,, = Ry U{E, (v)}. The corresponding generalized eigenfunctions
of the continuous spectrum

Ug(x) = Vo'(E)uz,(x; E), E >0,

and eigenfunctions of the discrete spectrum
-1/2
U,(x) = [—2,uk0f’(E,, (v)) cos? v] / uy(x; E, (v)), E, (v) <0,

of I—AIZ,V form a complete orthonormalized system in L>(R.).

It is possible to give a description of the discrete spectrum of the Hamiltonians
I—AIZJ,, |v] < /2, g1 <0, in more detail.

The function f(E) has the properties f(E) — ocoas E — —o0; f (£, £0) =
+o0, n € Z4+, and we have

E,(0) <& < Ent1(0) < &py1, n € Zy.

Taking the second equality in (8.38) into account, we can see that in each energy
interval (&,—1,&,), n € Z4, forafixedv € (—x/2, m/2), there is one discrete level
E,(v) that increases monotonically from &,—; + 0 to £, — 0 when v changes from
w/2—0to—m/2+ 0 (weset E_; = —o0). We note that the relations

lim E,(v) = lirn/2 E,.r1(v) =&, neZy,

v—>m/2

confirm the equivalence of s.a. extensions with parameters v = —z/2and v = /2.
It should be also pointed out that bound states exist even for the repulsive
potential, g»,g; > 0.

8.3.3 Range3

In this range, we have
g =—1/4(n=0).

The analysis in this section is similar to that in the previous section. A peculiarity
isthatoy = o = a =124+ g /A B+ =P = Luy (x; W) = up (x; W),
and representation (8.20) of v; (x; W)in terms of u; and u, does not hold. As
the solutions of (8.17) with g, = —1/4, we therefore use the functions u; (x; W),
uz(x; W), and v; (x; W) respectively defined by
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u (W) =x"2e7 (. 1:2) = uy (x; W)y
d
us (x; W) = @ [u1 (x: W)|f‘7é0]u=0 + Inkou; (x; W),

v (W) = x2e7 2P (e, 1:2) = T' (@) [wo(W)uy (x; W) —us (x; W),
wo(W) =2y (1) — ¥ () — In(A/ ko),

where ¥ (a) = I'’(a)/I'(«) and k is a constant. The functions u; (x; W) and
us (x; W) are real entire in W,

The asymptotic behavior of these functions at the origin and at infinity is
respectively as follows.

Asx — 0,z = Ax — 0, we have

w (W) = ky Punas(x) + 0(Y?), uras(x) = (kox)'/2,
us(x; W) = ky P uzas(x) + 02 Inx), uzes(x) = (kox)? In(kox).
Ui W) = kg T (@) [wo(W)itras (x) — ttzes (x)] + O(x7?Inx).  (8.39)
As x — oo, ImW > 0, we have

u (x; W) = I N a)A* 'x81/4e20(x71) — oo,

v (x; W) = A 9x 8420 (x 7 — 0.
Both sets u;, u3 and u;, V; are linearly independent,

Wr (uy, u3) = 1, Wr (u,v1) = =1 Na);

in particular, #; and v; form a fundamental system of solutions of (8.17) for Im W #
Oand W = 0.

Because any solution of (8.17) is square-integrable at the origin, to study
asymptotics of functions vy, € D;(R+), we use the general solution (8.30) of
(8.25), performing there the substitutions asuy — azusz and up /20 — —us.

Taking into account that the potential vanishes as x — oo, we have ¥ (x),

Yl (x) . Using the Cauchy—Schwarz inequality for estimating the integral
terms, we obtain that the desired asymptotic as x — 0 is given by

Ya (X) = a1ut1a5(x) + @rttzas(x) + O (x**1Inx),
VL (X) = @i, (x) + asuthy (x) + O (x'/Inx).

TAhen we obtain A+ (Y«) = ko(@raz — aza,). Therefore, the deficiency indices of
H are my = 1. The requirement that A ;+ vanish results in the relation

ajcost =apsind, ¢ € S(—n/2,7/2).
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Thus, there exists a family of s.a. Hamiltonians ﬁg,,ﬁ with the domains Dy,
that consist of functions from D;I(R+) with the following asymptotic behavior as
x — 0:

Y = CY3pa5(x) + O Inx), ¥ = Cy} g, (x) + O(x'?Inx),

V3.9as (X) = U1a5(x) Sin T + uzas(x) cos 0. (8.40)

Therefore,
Dy, = (¥ ¥ € D}y (Ry), v obey (8.40))

Imposing s.a. boundary condition (8.40) on the functions (8.26) (with a; = 0),
and using asymptotics (8.39), we obtain the Green’s functions of the operators H3 »:

G(x.yi W) = 27 (W)uso (x: W)uss (y: W)
{ it3,9 (ox; Wz (y: W), x >y,
uzy (x: W)z p(y: W), x <y,
where
QW) = (wpcos ¥ + sin ) (wp sin ¥ — cos¥) !,
uz 9 (x; W) = uy(x; W)sind + uz(x; W) cos 9,
w39 (x; W) = uy(x; W) costr —usz(x; W) sin o,
I'(@)v; = (wpsin ¥ — cos )uz g + (wpcos ¥ + sin )itz y.

We note that u3 » and 3y are solutions of (8.17) real entire in W, the solution u3 »
satisfies the boundary condition (8.40), and the second summand in G(x, y; W) is
real forreal W = E.

Consider the guiding functional

D W) = /0 uny (i W)E()dx, & € D, (Ry) N Dy, .

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect.5.4.1 with U = uz (U = U3y), and therefore, the spectra of
I—AIM are simple.
The derivative of the spectral function is given by o/(E) = 7! Im 2~ '(E +i0).
We first consider the case © = /2, where we have

U322 W) = u (s W), W) = —[yr(@) +In(A/ko)] "

For E = p>>0,p > 0,1 = 2pe~""/2, we obtain

1
o' (E) == | —tanh 251 > 0.
2 2p
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ForE = —12<0,7>0,A =27, and g1 > 0, the function £2(E) is of the form
Q(E) = —[¥(1/2+ g1/27) + In2t/ ko) " .

which implies that for g; > 0, there is no negative part of the spectrum.
ForE=—-1><0,7>0,1 = 27,and g; < 0, we have

Q(E) = - [y (1/2—|g1]/20) + InQt/ko)] ",
which implies that there are discrete negative energy levels &, in the spectrum,
&= —g%(l +2m)72 1, = |g|(1+2n)"Y, neZy,

o'(E)= Y QN(E—&). Qu=2lg1l(1+2m) .

ne€Zy

It is easy to see that for the case of ¥ = —m/2, we obtain the same results for
spectrum and eigenfunctions, as must be the case.
We thus obtain that for gy > 0, the spectrum of H3 1/, is simple, given by

spec I;Vg,,iﬂ/z = R,, and a complete orthonormalized system in L>(R,) of its
generalized eigenfunctions is

Ug(x) = Vo' (E)u(x; E), E > 0.

For g; < 0, the spectrum of I:Ig,iﬂ/z is simple and given by spec I;Vg,,iﬂ/z =
R4 U {&,, n € Z+}, and a complete orthonormalized system in L?*(R4) of its
(generalized) eigenfunctions reads

Ug(x) = Vo' (E)u(x; E), E >0,
Un(x) =2|g1] (1 +20) 2 uy(x: &), &, < 0.

We note that the spectrum and eigenfunctions for I-AI3,7T /2 coincide with those for

H, with g, > 3/4, if we set u = 0 in the respective formulas in Sect. 8.3.1.
We now turn to the case || < /2. In this case, o’ (E) can be represented as

o' (E) = (wcos? ) ' Im w3 (E +i0)] ",
w3(W) =¥ () + In(A/ ko) — 2y (1) — tan 0.
For E = p2 >0,p>0,A= Zpe_’”/z, and g; < 0, we have

B(E)
7 cos2 O[A2(E) + BX(E)]’

o' (E) = (8.41)
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where w3(E) = A(E) — i B(E). The function B(E) can be explicitly calculated:

81

2VE

whence it follows that for all E > 0, the spectrum of 1:13,19 is purely continuous.
For E = p> > 0,p > 0, A = 2pe™™/?, and g; > 0, the spectral function
is given by the same (8.41) and (8.42). But in this case, B(0) = 0 and the limit
limy ¢ w3 (W) must be carefully examined.
At small W, we have

B(E) = % (1 —tanh ) >0, VE >0, (8.42)

w3(W) = (tan¥_)—tan ) — (6g%)_1 W +0(W?), tan® - = In(g1/ ko) —2¢(1).
For ¥ # 9, the function ¢’(E) is finite at E = 0. But for ¥ = ¢ and small E,

we have
687
cos? ¥

687

/
E)y=——"%__
o(E) 7 cos? ¥

Im(E +i0)"' 4+ 0(1) = S(E)+ 0(1),

which means that the spectrum of the Hamiltonian 1:13,,9(7) contains an eigenvalue
E =0.

For E = —t2 < 0,7 > 0, A = 27, the function w3(E) is real. Therefore, o/ (E)
can differ from zero only at zero points E, (%) of w3(E), which yields

o'(E) = Y [~kows(Eq (9)) cos’ 9] 8(E — E, (9)).

n

w3(Ey () = 0. wj(Ex (9)) <0,

and
3y Ey (9) = [cos® Bl (E, (9)] < 0. (8.43)

For g; > 0, we have
w3(E) =v¥(1/2+ g1/2t) + In(2t/g1) + tan ) — tan v},
w3(E) = (1/2)In|E| —tand + O(1), E — —o0,
®3(0) = tan ) —tan ¥

For ¥ < (), the equation w3(E) = 0 has no solution, whereas for ¢ > 9,
it has only one solution, £ (). Because (8.43) holds for 93 E) (), EC) (9)
increases from —oo to 0 as ¢ changes from /2 — 0 to ¢_.

For g; < 0, we have

0y (E) = ¥(1/2 — [211/27) + In(27/ ko) — 29:(1) — tan 9,
w3(E) = (1/2)In|E| —tan®¥ + O(1), E — —o0.
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It is easy to verify that the equation w3(E) = 0 has an infinite number of solutions
E,, n € Z4, bounded from below and asymptotically coinciding with (8.29) as
n— oo, E, = —gl/4n* + O(n™3).

We thus obtain that for g; > 0, the spectrum of ﬁg,,ﬁ is simple and given by
spec 1:13,19 =R, U {E = (z‘})}, and a complete orthonormalized system in L?(R )
of its (generalized) eigenfunctions reads

Up(x) = Vo'(E)uzp(x: E), E =0,
U = [kocos? 9 (ED )] us o B 0))

(the eigenvalue E) (1) exists, and therefore E) (99) and the corresponding
eigenfunction U(x) enter the inversion formulas only if ¢ > ¥)); for g < 0,
the spectrum of I—AI3,,9 is simple and given by spec 1313,19 = Ry U{E, (¥)}, and
a complete orthonormalized system in L?(IR4) of its (generalized) eigenfunctions
reads

Up(x) = Vo'(E)usy(x; E), E >0,
Uy (x) = [~kocos? D (Ey 0] usp (x; By (9)), E, (9) < 0.

It is possible to describe the discrete spectrum for || < m/2 and g < 0
in greater detail. To this end, we represent the equation w3(E (¢)) = 0 in the
equivalent form

f(E) =tand, f(E)=vy(1/2—|g1]/27) + In(2t/ko) — 2¢(1).
Then we have
f(=00) =00, f(E +£0)=*o00, neZ;.

Because (8.43) holds, we can see that in each interval (&, &,+1), n € {—1} U Z4,
there is one discrete eigenvalue E, (9), and E, () increases monotonically from
& +0to & 41 —0as ¥ changes from 7/2 — 0to —/2 + 0 (we set E_; = —00).
We note the relations

0_1)11171_[/2 Ey— (D) = 191_1)1713/2 E, (D) = &

8.3.4 Range 4

In this range, we have

g <—1/4 (u=1ix, »>0).
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Since any solution of (8.17) is square-integrable at the origin in the domain of the
parameter p under consideration, to study asymptotics of functions ¥« € D*v R4),

we use the general solution (8.30) of (8.25).
Since the potential is vanishing for big x, we have ¥, (x), ¥, (x) gy 0; see

Sect.7.2.3. Using the Cauchy—Schwarz inequality for the estimation of integral
terms, we obtain as x — 0,

Ve () = a11a5(X) + aattngs (x) + O(x%?),
Yo (x) = @], (x) + azuh (x) + O(x'/?),

w1as(X) = (kox)2T% 1y (x) = (kox) /> = wyy5(x).

Thus, we obtain AH+(W*) = —2ix(aja, — aza;), which means that the
deficiency indices of H are my+ = 1. The condition A+ (¥«) = 0 yields
ap = %%, 0 € S (0, ). Therefore, there exists a family of s.a. Hamiltonians

1:14,9 with domains Dy, , that consist of functions from DZ’I (R4) with the following
asymptotic behavior as x — 0:

Y = Cas(x) + O(X*?), ' = Cf (x) + O(x'/?),
Viaas () = € 10(X) 4+ €70 lnas (X) = Vgas (X). (8.44)

Therefore,
Dy,, = {w 1y € D% (Ry). ¥ obey (8.44)}.

Imposing s.a. boundary condition (8.44) on the functions (8.26) (with a; = 0),
and using asymptotics (8.22), we obtain the Green’s function of the operators Hy g,

Gx, ys W) = 27 (W)uao(x; W)ua o (y; W)

1 {u49(x Wugg(y; W), x >y,
oo | uap(x; Witag(y; W), x <y,
where

2w) = % ws0(W) = a(W) + bOW),
o L'(B)(A] ko)™

49(W) = a(W) —b(W). a(W) = @) :

i L(B=)(A/ko)™
I'(a-)

= kg U (e W) + e ua (e W, g (e W)

b(W) = . usp(xs W)

= [e_ioké/z_i”uz(x; W) — ekl (x; W)] L dxVi(x W)

= — (W ko) kg P i @a g (W ita s (x; W) + wa (W) Ve (x; W),
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where u4 9 and ity ¢ solutions of (8.17) are real entire in W, the solution u4 ¢ satisfies
boundary conditions (8.44), and the second term in G(x, y; W) is real for real
W=E.

Consider the guiding functional

BEW) = /0 s 5 (x: WE(x)dx, £ € D,(Ry) N Dy, ,.

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect.5.4.1 with U = uyp (U = U4 ), and therefore, the spectra of
I—AI4,9 are simple.
The derivative of the spectral function has the form o’ (E)=n"' Im 2~ (E+i0).
For E = p>>0,p>0,A=2pe "2 g/ <0, we obtain

(4rxcko)™" (1= |D(E)P)
(1+ D(E))(1+ D(E))

a(E) e 20T (B)I (o )e*nko/2p) g
bE) F(F)Tr @)

o (E)y=n"'ImQ Y(E) =

D(E) =

(8.45)

Because
1 4 e 2mxg=ng1/p

|D(E)* = <1, p>0, (8.46)

1+ e2nxe—mgl /p

we have spec 1:14,9 = R;.

For E = p> > 0,p > 0,1 = 2pe™"/2, g, > 0, expressions (8.45) and (8.46)
for ¢’ (E) hold.

But in this case, we have |D(0)| = 1 and must carefully examine the limit
limpy —o ! (W)

It is easy to see that for small W, we have the representation

. 1 4 2i(0—6) 3g12
27 W) = —— : O A= oy
R L BT 77 BT D
1 r
b= ¢ —nlp/xl. ¢ = xIn(g1/ko) — 6r + /2. Or = - In F((ﬁﬂ—))’

where [¢/n] is the entire part of ¢ /. For 6 # 6, the function o’ (E) is finite at
E = 0. But for 8 = 6,, we obtain

0'(E 4+ 0) = =" (4/2xko) Im (E 4+ i0)~" + O(1) = (A/2xko) $(E) + O(1),

which means that the spectrum of the Hamiltonian Iﬁ,go with g; > 0 contains the
eigenvalue £ = 0.
For E = —12 < 0,7 > 0, A = 27, the function 2(E) can be represented as

(E) = [rtan O(E)]™", O(E) = 0 + 0 — 0 (E) + x In(ko/27),
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where

Or(E) %[1n1"(1/2+g1/2t +ix)—InI'(1/2 4 g1/2t —ix)]

{ —n|g1]/2t + % In(|g1]/27) + O(1), g1 <0,
xIn(g1/27) + O(7), g1 > 0,

Or(—00) = 3: In (29 + 0(1/7),  E — —o0.

} E — 0,

The asymptotic behavior of @(E) at the origin and at minus infinity is given by

% mlgil/2t + 0(1), g1 <0,
O(E) = 0 + 0r + xIn(ko/g1) + O(7), g1 >0,
0+ 0r — 0r(—o0) + xIn(ky/27) + O(1/1), E — —o0.

} E — 0,

Because §2(E) is a real function for E < 0, o’ (E) can differ from zero only at
the points E,(0) where @(E,(0)) = n/2 + 7n, n € Z, which yields

o' (E) = 3 Q(E — E,(0)), 0, = [4xko®'(E,(0))] 2,
O'(E(6)) > 0.

We can obtain additional information about the discrete spectrum of 1314,9.
Representing the equation @ (E,(0)) = 7/2 + wn, n € Z, in the equivalent form

F(En(0)) = 7/2+ m(n — 0/7), f(E) =0 — 0r(E) + x In(ko/27),
B9 En(0) = — [ f'(E(0)] ' = —[0'(E.0)] " <0.

we can see that the following assertions hold.

(a) The eigenvalue E,(6) with fixed n decreases monotonically from E, (0) to
E, () — 0 as 6 changes from 0 to 7 — 0. In particular, we have E,_;(0) <
E,(0), Vn.

(b) Forany g, the spectrum is unbounded from below: E, (f) — —coasn — —oo.

(c) For any 6, the negative part of the spectrum is of the form E,(f) =
—kam?e> /% (1 + O(1/n)) as n — —oo, where m = m(g1, g2,6) is a scale
factor, and asymptotically (as n — —o0) coincides with the negative part of the
spectrum in the Calogero model with coupling constant g, under an appropriate
identification of scale factors.

(d) For g; < 0, the discrete part of the spectrum has an accumulation point £ = 0.
More specifically, the spectrum is of the form E, (0) = —g7/4n*>+ O(1/n?) as
n — oo (as in all the previous ranges of the parameter g,) and asymptotically
coincides with the spectrum for g, = 0; see below.
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(e) For gy > 0, the discrete spectrum has no finite accumulation points. In
particular, possible values of n are restricted from above, n < ny,,x, where

e if fO)/m—1/2=np, 0<0 <m
M =3 00 | £(0)/m—1/2>n. 0<60 <6,
no+ 1if f(0)/mr —1/2>npand 6y <6 < 7,

and the level E = 0 is present in the spectrum for 6 = 6, only.

The final result is as follows: the spectrum of 1314,9 is simple and given by
spec 1314,9 =Ry U{E, <0, —00 < n < Hmax},

where np,x < oo for g7 > 0 and npax = oo for g < 0, and the set of the
corresponding (generalized) eigenfunctions

Urp(x) = Vo'(E)usp(x; E), E >0,
Un(x) = Qnu4,9(X; E, (0)), E, (0) <0,

forms a complete orthonormalized system in L? (R.).

8.3.5 Range5

In this range, we have
& =0(u=1/2).

Here, the function u; is not defined for © = 1/2, and we therefore use the following
solutions of (8.17):

ur(x; W) = xe (a1 2,2 2), us(x; W) = iis(x; W) — g1 In ko (x; W),
Vi W) = xe W ()2, 2:2) = T eyo) [012(W)us (6 W) + us(xs W),
where
aip =14 gi/A,
is(e; W) = e 22 xF D, Bs2) + @1 T (B) X D, B3 D] ms 2
w12(W) = g1C+g1 [V (1) + In(A/ ko) | — g1 — A/2,

Here C is Euler’s constant. The asymptotics of these functions at the origin and at
infinity are respectively as follows.
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Asx — 0,z = Ax — 0, we have

ur(x; W) = kg s (x) + O(x2), us(x; W) = usys(x) + O(x*Inx),
v W) = T @iy2) [k @10 (W )itias (x) + uses(x) ] + O(x* Inx),
Uas(X) = kox, usas(x) =1+ g1x In(kox) + Cgix. (8.47)

As x — oo, ImW > 0, we have

w(x: W) = I o)A H8/2 x40 (x 1) - oo,

vi(x; W) = A—gl/lx—gl/le—z/zé(x_l) 50

The functions u; (x; W) and us (x; W) are real entire in W. These functions form
a fundamental system of solutions of (8.17), and the same holds for the functions
uy, vy forImW # 0,

Wr(ul,u5) = —1, Wr(ul, Ul) = —1/F(O(1/2) = —a)(W)

As we already know, for g, < — 1/4, the deficiency indices of the initial
symmetric operator H are m+ = 1, and therefore there exists a one-parameter
family of its s.a. extensions.

For evaluating the asymmetry form A+, we determine the asymptotics of
functions v, belonging to D* (R.) at the origin using representation (8.30) of the
general solution of (8.25) with W = 0, where the natural substitutions au; — asus
and u, /24 — us must be made, and estimating the integral terms by means of the
Cauchy-Schwarz inequality, which yields

Vs (X) = @qugas(x) + asusys(x) + 0(x3/2)s

VL) = @l () + azdsy (x) + O(x"2),
and we obtain A+ (Yx) = —ko(@ra> —azay). This structure of A+ confirms that
the deficiency indices of H are m+ = 1. The requirement that A+ vanish results
in the relation a; cos€ = a; sine, € € S(—n/2,7/2).

. The final result is that for g, = 0, there exists a family of s.a. Hamiltonians
Hs . with domains D g, _ that consist of functions from D:? (R4) with the following
asymptotic behavior as x — 0:

¥ = Csea(x) + O, Y = Cyf 0 (x) + O,
W5 cas (X) = Upas(koXx) sin € + usys(X) cose. (8.48)

Therefore,
Dy, = {w LY € DY (Ry), ¥ satisfy (8.48)}.
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To obtain the Green’s function G(x, y; W) for ﬁs,e, we use representation (8.26)
with a; = 0 for ¥« (x) belonging to Dy, , C DB (R4), boundary conditions (8.48),
and asymptotics (8.47). Then we obtain

Gx,y: W) = Q7 W)use(x: Wus (y; W)
s (s Wus(vi W), x >y,
ko (use(x;W)ise(y; W), x <y,

where

(W) = ko [kosine —wyj2(W)cose] [w1/2(W) sine + ko cos e]_l,
us.(x; W) = kouy (x; W) sine + us(x; W) cose,
s (x; W) = kouy(x; W) cose — us(x; W) sine,
koI (ct172) 1 (x; W) = [w1/2(W) cose — ko sin €] iis e (x; W)
+ [w1/2(W) sin€ + ko cos €| us (x; W).
We note that us ¢ (x; W) and its . (x; W) are solutions of (8.17) real entire in W, the
solution us ¢ (x; W) satisfies boundary conditions (8.48), and the second summand

in G(x,y; W) isreal forreal W = E.
Consider the guiding functional

B W) = /0 use (o W)E)dx, & € D,(Ry) N D

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = us, (0 = i5.), and therefore, the spectra of
1’:15,6 are simple.
The derivative of the spectral function is given by o (E) = 7 ' Im Q7 (E+i0).
We first consider the case of ¢ = /2, where we have us,,(x;W) =
kouy (x; W) and

o'(E) = (7k2) " ImO(E +i0),
OW) = g1v(ai2) + g1 In(A/ ko) —A/2.
For E = p>>0,p>0,1 =2pe "% we have

—ng1/2p
2|§’1|e =0
2kgsinh(m|g1|/2p)

o'(E) =

ForE = —-1><0,7>0,A=2r,and g; > 0, ai2 = 1 + g1/2r, the function
O (E) is finite and real, whence it follows that there are no negative spectrum points.
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For E =—-1><0,7>0,1A =2r,and g| < 0,12 = 1—|g1]/27, we have

4 3
)= Y () s e,

ne€l4
2
8i
&y =———"—.,n€e’Zy.
T2+ 2n) +
It is easy to see that for the case of € = —m/2, we obtain the same results for

spectrum and eigenfunctions, as must be the case.

We thus obtain that for g; > 0, the spectrum of 1:15,71/2 is simple and given by
spec ﬁs,iﬂ/z = IR, . The set of generalized eigenfunctions Ug (x) = /0’ (E)us 72
(x: E), E > 0, forms a complete orthonormalized system in L? (R.).

For g; < 0, the spectrum of I:I5¢7,/2 is simple and given by spec ﬁs,iﬂ/z =
R4+ U{&,, n € Z4}, and the set of (generalized) eigenfunctions

Ug(x) = Vo'(E)us z2(x; E), E >0,

2 (ol \7?
Un = N A~ g ;gn E) E Z £
(x) 0 (2+2n us2(x;E), n +

forms a complete orthonormalized system in L? (R.).
We now turn to the case |e| < 7/2, where we have

o'(E) = (]T cos? 6)_1 Im Q27 (E 4i0), 2(W) =kotane — wi2(W) .

Forg, <0, E = p2 >0,p>0,A= Zpe_’”/z, we obtain that
B(E)

(E) = : 8.49
o) = o e[AE) T BE)] (8.49)
where 2(E) = A(E) — iB(E). The function B(E) is explicitly given by
—ng1/2p
B(E) = & 181k >0, Vp>0. (8.50)

2 sinh(x|gi|/2p)

It follows that for g; < 0, E > 0, the spectrum of I—AIS,E is purely continuous.

Forg; > 0, E = p> > 0, p > 0, A = 2pe'"/2, the derivative of the spectral
function is also given by (8.49) and (8.50). But in this case, we have B(0) = 0, and
the limit limy —o £2(W) has to be carefully examined. For small W, we have

- w
(W) = (tane — tan €) ko — P + O(W?),
81

taney = (g1/ko) [In(g1/ko) + C—1].
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For € # €, the function ¢’ (E) has a finite limit as £ — 0. But for € = ¢ and small
E, we have

381
cos? €

o'(E) = S(E)+0(1).

which means that the spectrum of the Hamiltonian 125,60 has an eigenvalue E = 0.
For E = —t?> < 0,7 > 0, A = 27, the function §2(E) is real. Therefore, o' (E)
can differ from zero only at zero points E, (¢) of $2(E), and ¢’(E) is represented as

o'(E) = Y [~ (Es(e))] ' 8(E - Eu(e)).

n

Q2(En(€)) =0, 2'(E,(e)) < 0.
For g; > 0, we have

fZ(E) =—g1v(1+g1/2t)— g1 In(2t/g1) + © + ko(tan € — tan ¢y),
Q2(E) = VIE| = (&1/2In|E| + O(1), E — —o0,
.Q(O) = ko(tane€ — tan€).

For € > €, the equation 2(E) = 0 has no solution, while for € € (—7/2, €] it
has a unique solution E ) (¢). It is easy to see that

BGE(_) (e) = —ko [Q’ (E(_)(e)) cos’ e]_l > 0,

so that £ (¢) increases monotonically from —oo to 0 as € changes from —7/2 +0
to €.
For g; < 0, we have

QUE) = |g1l¥(1/2 = |g11/27) + |1 In(27/ ko) + T — &,
€ =g1C— g —kotane.

Representing the equation Q(E,) = 0inthe equivalent form

S(Ey) =€, f(E)=I|g1l¥(1/2—[g1]/27) + [g1]In(27/ ko) + 7,
we can see that:

@
F(E) "Z5% 00, f (£, % 0) = +o0,

so that in each region of energy (€y,Exv1), n € (—1) U Z4., the equation
£2(E,) = 0 has one solution E,(¢) for any fixed €, |¢| < 7/2, and E,(¢€)
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increases monotonically from &, + 0 to &,+; — 0 as € changes from —7/2 + 0
to /2 — 0 (here, by definition, 5_1 = —00).

(b) For any fixed €, E,(€) = —g7/4n> + O(n™®) as n — oo, asymptotically
coinciding with (8.29).

(c) The point E = 0 is an accumulation point of the discrete spectrum for g; < 0.

Note the relation

lim/2 E,—1(e) = hm E (e) =&y, neZs.

€—>T

The above results can be briefly summarized as follows. For g; < 0, the spectrum
of Hs, is simple and given by

spec 1’:15,6 =R;U{E,(e) <0, ne(—1)UZ4}.

The (generalized) eigenfunctions of H 5.¢ given by

Up(x) = /o' (E)us.(x; E), E >0,

~ -1/2
Un(x) = [~ (En()] " use (x; Eu(€)), n € (1) UZy,
form a complete orthonormalized system in L> (Ry).

For g; > 0, the spectrum of H56 is simple and given by spec H56 =Ry U
{E) (¢) < 0}. For € € (—1/2, €], the (generalized) eigenfunctions

Ur(x) = \Jo! (Fyus (x; E), E >0,
UG) = [ (9 @) wse (v 27 0)

form a complete orthonormalized system in L? (R.). For € > ¢, the spectrum has
no negative eigenvalues.

84 ESPIV

In this case,
V(x) =gix >+ gx”, x € Ry, (8.51)

and the corresponding Schrodinger equation is

Y —(g1x 7+ gx )Y + Wy =0. (8.52)
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The case g = 0 corresponds to the harmonic oscillator potential, and the case
g> = 0 was considered in Sect. 7.2. Thus, here, we assume both g; # 0 and g, # 0.
In this case, we call (8.51) the generalized Calogero potential; see [34-36].

8.4.1 RangeA

In this range, we have
@=v'>0 v>0.

Here we introduce a new variable p and new functions ¢, instead of x and ¥ (x)
in (8.52),

p=(x)’ x=/p/v, peRy, Y(x) =e"p/*Fe (p),
1
_)avar+1/4 g1 = —1/4, 8.53)
H= Vi = Ll = 174, g1 < —1/4,
Then ¢+ (p) satisfy the equations
pd} ¢+ (p) + (B+ — p)dpds (p) — axds (p) =0,
ar =1/2+xp—w, Br=1%2u, w=W/4>

which have as solutions the confluent hypergeometric functions @(«+, f+; p) and

U(as, B+;p) (see[1,20,81]).
In what follows, we will use the following three solutions of (8.52):

up (x; W) = e P2 /41, Bip), a = ay, B =Py,
wy (x; W) = e ?2p!/*hd(a, Bip) = uy (x: W), .
r'a—p

Vi (s W) = e ?Pp i (a, B; p) = T (x; W)
rg-1y
+ W“z x;W).

We note that u; (x; W) is not defined for 24 = m € N. The function V; (x; W) is
real entire in W for any g1, while u; (x; W) is real entire in W for g > —1/4 (u >
0), and u, (x; W) is real entire in W for gy > —1/4 and 2u # m.If gy < —1/4
(u =ix), thenu; (x; W) and up (x; W) are entire in W and u; (x; E) = u; (x; E).

Below, we list some asymptotics of the introduced functions as x — 0 and x —
oo; see [1,20,81].

For x — 00 (p — 00), we have

uy ;W) =T He)L(B)e?p /40 (p™)
= 0(x772eP?) S5 0, « ¢ R_,

Vi (.X; W) — e—p/2p—l/4+vv0(p—l) — 0(x—1/2+2we—p/2) = 0.
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For x — 0 (p — 0), we have

U = p1/4+uo~(p) — (Ux)1/2+2;L0~(x2) -0,

uy = p!"*10(p) = () FFHOGP) - 0, @ ¢ R, (8.54)
and
Tt W0 272107, g1 > 3/4,
I'Ya)(vx)"Y20(x21Inx), g, = 3/4,
F(ﬁ—l)(vx)l/z 2wy F(l ﬁ) (vx)l/”zl‘

View)=4{ @ (8.55)
+O(X27), 3/4 > g 79 ~1/4,
r~'(wx)"?2y (1) = ¥ (@) = 2In(vx)]
+0(x**Inx), g = —1/4.

Regarding

Wr (uy, up) = —4pv, Wr(u, Vi) = =2vI(B)/ I (@) = —w(W),

solutions #; and V) are linearly independent and form a fundamental system of
solutions of (8.52) for Im W # 0.

We note that for g > 3/4, the function V; (x; W) is not square-integrable at the
origin, whereas for g; < 3/4 it is (moreover, any solution is square-integrable at
the origin). This means that for g, > 3/4, (8.52) has no square-integrable solutions,

and deficient indices of the initial symmetric operator H (with the domain Dy =
D(R4)) are zero, and H = H* (Dp, D* (R4 ) is the unique s.a. extension
of H. For g1 < 3/4 there is one square-integrable solution, V7 (x; W), and the
deficiency indices of Haremy = 1.

The adjoint H™ is defined on functions Y4« from the domain DE (R4). Such
functions satisfy the equation

Hyri(x) = n(x) € L2 (Ry). (8.56)

The potential under consideration is bounded from below by —(|g2| + 1)x? as
x — o0. In such a case, the boundary form at infinity is zero, [V«, ¥«|(c0) = 0,
Vs € D:? (R4); see Sect. 7.1. The asymptotic behavior as x — 0 can be found by
analyzing solutions of (8.56). For g; > 3/4, one can represent its general solution
in the following form:

Ye(x) = crui(x;0) + 2 V1 (x;0) + I(x),

1(x) = 0™} (0) [ul(x; 0) / Vi(: 0)n(n)dy + Vi(x:0) /0 e O)U(y)dy} .
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Using the Cauchy—Schwarz inequality, we obtain that /(x) is bounded as x — oo
and I(x) ~ O(x*?) as x — 0 (with logarithmic accuracy for g; = 3/4; see below).
The condition ¥, € L?(R.) implies ¢; = ¢; = 0, so that the asymptotic as x — 0
is due to the term 7(x).

For g; < 3/4, one can represent the general solution in the form

VYu(x) = crur(x;0) + 2 Vi (x;0) + I1(x),

L) = 0™ (0) [Vl(x;O) /0 1 (y: 0 (n)dy — 10, (x:0) /0 Vl(y;om(y)dy]

Using the Cauchy—Schwarz inequality, we obtain that I;(x) ~ O(x*?) as x — 0
(with logarithmic accuracy for gy = —1/4; see below). Analyzing the asymptotics
of u;(x;0) and V(x;0) as x — 0, we obtain
O(x*?), g1 #3/4,—1/4,
Y (X) = Vuas(x) + 1 O(x¥?VInx), g1 = 3/4,
0(x*?Inx), g = —1/4,
O(x'/?), g1 #3/4.~1/4,
Vi(x) = YL, (x) + 1 O(x"?VInx), g =3/4, (8.57)
O(x'"?1nx), g, = —1/4,

where

0, g1 >3/4,
Vras(X) = | c1(ux) /2 4 oo (ux) 2, g < 3/4, g1 # —1/4,
c1(Ux)Y? + 2¢,(vx) /2 In(vx), g1 = —1/4.

The general solution of the inhomogeneous equation
(H=w)vE) =ne) e L2®e), InW #0,
can be represented as
Y(x) = (W) + Vi W) + 1 W), [ W) = o™ (W) (8.58)

y [ul(x;W) / Vi WnG)dy + Vi W) /0 ul(y;W)n(y)dy]

Estimates of the integral terms with the help of the Cauchy—Schwarz inequality
show that I(x) is bounded as x — oco. The condition ¥ € L*(R, ) implies ¢; = 0.

If g, > 3/4, then I(x) ~ O(x*/?) as x — 0 (with logarithmic accuracy for
g1 = 3/4), and Vi (x; W) is not square-integrable at the origin. The condition v €
L?*(R.) implies ¢; = 0.
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For g < 3/4, it is convenient to use another representation for the general
solution (8.58):

Y(x) = Vil W) + o™ (W)u (x; W)/0 Vi(y: Win(y)dy + Ii(x; W),
L W) = o™ (W) [vl(x; W) [ s w ey

—u (x; W)/0 Vi(y; W)n(y)dy} . (8.59)

Estimates with the help of the Cauchy—Schwarz inequality give I;(x) ~ O(x*/?) as
X — 0 (with logarithmic accuracy for g; = —1/4).

8.4.1.1 Subrange g; > 3/4 (n > 1/2)

For such g1, as was mentioned above, H | = Htisa unique s.a. extension of .
Its Green’s function can be found from (8.58) with ¢; = ¢, = 0:

Vi Wyu(y; W), x >y,

8.60
(e WOVA(y: W), x < . (868

Gx.y;W)=w"'(W) {
The Green’s function allows one to calculate the derivative of the spectral
function,

Vile; W)

. 8.61
ui(c; W):|W=E+i0 ®-6h

o'(E) =n""Im [a)—l(W)
Consider the guiding functional

(e W) = /0 dxuy(v; WHE(x), § € D,(R4) N D,

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U = u4 (U V1), and therefore, the spectrum of Vit 1
is simple.

In the ranges m — 1 < 2u < m + 1, m > 1, the function V;(x; W) can be
represented as

Vi W) = A (W) (x; W) + %V(m(x w).
. b4 I'(0tg) _ 1
W)= Gaaw [m!r(a)r(a_m) r(a_)r(m}
—2/
Vo (1 W) =e"’/2p”2+“F(/3—)[ If(ﬁ 0 fip)

I'(oym)

‘mq)(%ﬂ:p)} O = 1/24£m/2—w.
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Using the relation (8.27), one can verify that V,,)(x; W) is well defined for any W
and form — 1 < 2u < m + 1, and V() (x; E) is real. The same holds for 4,,(W).
As a result, we obtain

An(E)
o'(E)=—""ZImI(@)|weprig, m—1<2u<m+1.
(E) 30l (B) (@) w=£+io 2
Let |I'(«)] < oo. Then I'(«) is real for W = E. Therefore, the quantity
Im I' () |y = g 110 can differ from zero only fora = —n, n € Z, or for the energies

E, = 2v?(1 + 2n + 2u). Near these points, we have

4uv3

Im (@) |y =g yi0 = (=1)" $(E — Ey),

see Lemma 5.17, so that the derivative of the spectral function reads

r
o(E)= Y QN(E—-E,). 0= %Z(;))
n€l4 :

Thus, the simple spectrum of H, reads spec H = {Ey, n € Z4}, and the
set of eigenfunctions U,(x) = Q,u(x; E,), n € Zy of H, forms a complete
orthonormalized system in L2 (R4).

n!

8.4.1.2 Subrange3/4>g;>-1/4(1/2> p >0)

Using the asymptotics (8.57), we obtain A+ (Y«) = —4uv(cica — ¢ac1), which
means that the deficiency indices of H are m4 = 1. At the same time, the condition
Apy+(Ws) = 0 implies ¢jcosv = ¢psinv, v € S(—n/2,7/2). Thus, in the
subrange under consideration, there exists a family of s.a. I-AI“ parameterized by
v with domains Dy, that consist of functions from D:? (R4) with the following
asymptotic behavior as x — 0,

Y(x) = Crus(x) + O(x¥?), ¥/ (x) = Cyl(x) + O(x'?),
Vs (x) = ()2 sinv + (vx)"/>72 cos v. (8.62)
Therefore,
Dy,, ={y : ¥ € D (Ry), ¥ satisfy (8.62)}.

Imposing the boundary conditions (8.62) on the functions (8.59) and using the
a§ympt0tics (8.54) and (8.55), we obtain the Green’s function of the Hamiltonian
HZ,V7

Glx,y; W) = 7 (W)uz(x; Wz, (y; W)
L iy (s Wun o (y; W), x >y,

A |z (s Wit (v W), x <,
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where
QW) = 4pvfcosv — f(W)sinv] ' (sinv + f(W)cosv),
_ r@r.)
Ca-)r(p)’
upy(xX; W) = uy(x; W)sinv + up(x; W) cosv,

yy(x; W) = uy(x; W)cosv — up(x; W)sinv.

Jw)

We note that uy, (x; W) and iy, (x; W) are solutions of (8.52) real entire in
W, uy, (x; W) satisfies the boundary condition (8.62), and the second summand in
G(x,y;W)isreal forreal W = E.

Consider the guiding functional

O W) = [ drin, (5 W)ER), € € DR ND,,,.

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = uy, (U = Up,), and therefore, the spectra of
Dy, , are simple.

The Green’s function allows one to calculate the derivative of the spectral
function, 0’ (E) = 7' Im 271 (E +i0).

The function $27!(E) is real for any E where $2(E) # 0. That is why only
the points E, (v) satisfying the equation §2(E, (v)) = 0 can provide nonzero
contributions to o’ (E). Thus, we obtain

o' (E) = 3 028(E - E, (v)), 00 = - buv@/(E, o)™ . (863)

As a result, we find that the simple spectrum of H,, reads spec H,, = {E, (V)},
and the set of its eigenfunctions U,(x) = Q,u,(x; E, (v)) forms a complete
orthonormalized system in L2 (R).

One can make some remarks on the spectrum structure. For v = £/2, we have

r
B = T 0B(E-E). 0= [P,
n€Z 4 :

&, = E, (£7/2) = 20%(1 4+ 2 + 2n).

For |v| < m/2, the expression (8.63) for ¢/(E) can be reduced to the following
form:

o'(E) = 3" 02(E — E,()), 0y =/ [4pve, (E,0))] ",

w20 (E,(v)) =0, w2, (W) = f(W) 4+ tanv, o) (E,(v)) <O0.
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We note that w, ,(E,(v)) = 0 = f(E,(v)) = —tanv and the function f(E) has
the properties

FE) 257 00r f(E,+0) = 00, n € Ly
S(Ex(0)) =0, Ex(0) = 2v°(1 — 21 4 2k), k € Zy;
En(o) < gn < En+1(0) < gn+17 ne Z+‘

Since
WE,(v) = —[f"(E,(v)) cos’ v] ! = [~} (Eq(v)) cos’v] ™' > 0,

we can see that in each interval (£,-1,&,), n € Z4, for fixed v € (—n/2,7/2),
there is one solution E,(v) of w;, (E,(v)) = 0 (we set formally £_; = —o0); the
solution E, (v) increases monotonically from &,—; + 0 (passing E,(0) at v = 0) to
&y, — 0 as v changes from —7/2 + 0 to /2 — 0. Note the relation

lim E,(v) = lim E,+1(v)=¢&, ne€Zy.
v—=>m/2 v—=>—m/2

We stress that all the results (for spectrum, spectral function, and eigenfunctions)
obtained for 3/4 > gy > —1/4(1/2> u >0),v = £x/2, and v = 0 can be
obtained from the case g; > 3/4 (setting there in addition © — —p in the case
v =0).

8.4.1.3 Subrange g, =-1/4(n =0)

Using the asymptotics (8.57), we obtain Ay+(¥«) = 2vu(cica — ¢z¢1), which
means that deficiency indices of H are m+ = 1. The condition A u+@Ws) =0
implies ¢;cos® = cpsind, ¥ € S(—n/2,7/2). Thus, in the subrange under
consideration, there exists a family of s.a. Hamiltonians ﬁg,,ﬁ parameterized by
¥ with domains Dy, that consist of functions from D1*{r (R4) with the following
asymptotic behavior as x — 0:

Y(x) = Cs(x) + O(x*?), ¥/ (x) = Cyl (x) + O(x'?),
Vas(x) = (vx)?sin ¥ + 2(vx)"? In(vx) cos . (8.64)

Therefore,

Dpy, = {y ¥ € D}, (R4), V¥ satisty (8.64)}.
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Imposing the boundary conditions (8.64) on the functions (8.59), where now
u (x; W) = pY*e 2 ® (g, 1: p), g = alymg =1/2—w, w= W /402,

Vi = p'*e™P2W (o, 1: p) = I' (o) [(R¥ (1) — Y (et)) s (x; W) — uz(x; W),
us(x; W) = p4e ™20, [p*d(1/2+ 1 —w. 1+ 2p: p)] 1= -

using asymptotics (8.54) and (8.55), and the representation

I(ao)Vi(x; W) = =AW )uz 5 (x: W) — B(W )iz 9 (x; W),
w3 (x; W) = wuy(x; W)sint + us(x; W) cos 9,
w9 (x; W) = ui(x; W)cos — uz(x; W) sin o,
A(W) = f(W)sind + cost, B(W) = f(W)cos? — sin 9,
JW) =v(a) —2¢(1),

we obtain the Green’s function of the Hamiltonian 1:1319,

G(x,y; W) = Q7 W)uzs(x; W)us 5 (y; W)

1 fin (s Wusp (s W), x >y, (8.65)
2v (uz (s Wiz p(y; W), x <y, '
where 2(W) = 2uB(W)/A(W).

We note that u3 » (x; W) and it3 9 (x; W) are solutions of (8.52) that are real entire
in W satisfying boundary condition (8.64), and the second term on the right-hand
side of (8.65) is real forreal W = E.

Consider the guiding functional

O W) = [ dins (W)W, £ DR ND,,.

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect.5.4.1 with U = u3y (U = u3,), and therefore, the spectra of
1:1319 are simple.

The Green’s function allows one to calculate the derivative of the spectral
function, 0’ (E) = 7~ ' Im 271 (E +i0).

One can see that all finite values of the function £27!(E) are real. That is why
the only points E, () that satisfy the equation 2(E, (#)) = 0 provide nonzero
contributions to o’ (E). Thus, we obtain

o'(E) = Y Q3(E — E, (9)), 00 = - Qu2/(E, #)™ . (8.66)
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Taking this into account, we see that the simple spectra of 1:1319 are spec 1:1319 =
{E, (¥)} and the eigenfunctions U,(x) = Quusy(x;E, (¥)) of ﬁg,ﬁ form a
complete orthonormalized system in L? (R).

One can make some remarks about the spectrum structure. For ¢ = +m/2, we
have

o(E) = — 2nv)~! Iml//(()éo)‘W=E+i0 =Y w8 (E-6&).

nEZ+
&, = E, (£7/2) = 20%(1 + 2n).

For || < 7/2, expression (8.66) can be written as

o'(E) = 3 Q(E — Eo(9), Qu = \/— (v (Ea(9) ",

FE(9)) = tan . f'(E,(3)) <0,
where
FE) "Z5% 00, fIEE) £0) = oo, n € Ly,
09 En(9) = £ (Ex(9)) cos? 9" < 0.

We can see that in each interval (£,—1,&,), n € Zy, for fixed ¥ € (—n/2,7/2),
there is one solution E,(¢) of the equation f(E,(¥})) = tanv (we set formally
&_1 = 00); the solution E, () increases monotonically from &, +0to &, — 0 as
¥ changes from /2 — 0 to —r/2 + 0. Note the relation

p dim E () = plim Ep1(9) =& n €Ly,

We stress that all the results (spectrum and eigenfunction) for gy = —1/4
(u=0), 9 = £m/2, can be obtained from the case g; > 3/4 by a formal limit
n—0.

8.4.1.4 Subrange g, < —1/4(u =ix,x > 0)

Using the asymptotics (8.57), we obtain A+ (Y«) = —4ixv(cica — ¢2c1), which
means that the deficiency indices of H are m+ = 1. The condition A u+(Ws) =0
implies ¢; = e*%¢,, 0 € S(0, 7).

Thus, in the subrange under consideration, there exists a family of s.a. Hamiltoni-
ans parameterized by 6 with domains D p,, that consist of functions from DZ R4)
with the following asymptotic behavior as x — 0:

Y(x) = Crus(x) + O(x¥?), ¥'(x) = CYL (x) + O(x'?),
Was(x) — ei@(vx)l/2+2i}t + e—i@(vx)l/Z—Zi}t‘ (867)
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Therefore,

Dy, = {I// Ly € DY (Ry), ¥ satisfy (8.67)}.

Imposing the boundary conditions (8.67) on the functions (8.59), using the
asymptotics (8.54), (8.55), and representing the function Vi (x; W) in the form

Vi W) =~ (A Y (3 W) + BOV )i W),

us o (s W) = eOui (s W) 4+ e uy(x; W),
ao(es W) =ile Pur(x; W) —e'%uy (x; W),
AW) =i [e’wy (W) - e‘"’w_(W)] :
BW) =e“wr(W) +e o (W), 0x(W) = I'(Bx)/T ().

where ug 9(x; W) and 114 g (x; W) are real entire solutions of (8.52) and us g(x; W)
satisfies the bpundary conditions (8.67), we obtain the Green’s function of the
Hamiltonian Hyg,

G(x,y; W) = 27" (W) ugp(x;s Wuap(y; W)

b Mg (s Wuae(y; W), x >y, (8.68)
8xv | ugo(x; Witap(y; W), x <y, '
where (W) = —8xvB(W)/A(W) and the second term on the right-hand side of

(8.68) isreal forreal W = E.
Consider the guiding functional

O W) = [ deup (i W)ER), € € DR ND,,,

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 withU = uy ¢ (U = li4.p), and therefore the spectra of H49
are simple.

The Green’s function allows one to calculate the derivative of the spectral
function, 0’ (E) = 7~ ' Im 271 (E +i0).

The function £27!(E) is real for any values of E where |27 (E)| < oco. That is
why only the points E,(6) obeying the equation £2(E,(0)) = 0,n € Z, can provide
nonzero contributions to ¢’ (E). Thus, we obtain

1/2

o'(E) =) Qr8(E = E,(6)), Qu = (8xv2'(E,(0))) ", 2'(E.(6)) > 0.
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Thus, the simple spectrum of Hig is spec Hip = {E,(0)} and the eigenfunctions
U,(x) = Quuqp(x; E,(0)) of the Hamiltonian Iﬁ@ form a complete orthonormal-
ized system in L2 (R4).

One can make some remarks about the spectrum structure. Let us represent the
function 27! (E) in the following form:

27 (B) = (6 + f(B), f(E) =6 —6r(E),
Xv

1 I'(1+2ix) 1
O =—In———=, Op(E) = —[InI"(1/2 —Inl(1/2 4 z-)],
r = N 2 r(E) = [Inl'(1/2+z4) —In(1/2+ )]
e =—E/4 +ix=|—E/4% +ixleT?, 40 < ¢ = arccot(E/x) <7 —0,

—xIn(|E|/4v?) + O(1), E — —o0,
) — (IE|/4v?) + 0(1)

7E + O(1), E — oo,
so that the equation £2(E,(6)) = 0 is reduced to one f(E,(0)) = n/2 + n(n —
0/ 7). On the other side,

B0 En(0) = — (f/(Ea(0)) " = — (2'(E,(0))) " < 0.

This implies that the eigenvalue E, (0) (for a fixed 6) decreases monotonically from
E,(0) to E,(r) = E,—1(0) as 6 changes from 0 to 7. In particular, E,_(0) <
E,(9), Yn.

For any g, the spectrum is unbounded from below. For any 6, the negative
energy levels have the asymptotic (as n — —oo) form E, = —mZe?™/*(1 +
O(1/n)), which tends asymptotically to the spectrum of the Calogero problem (with
a = g1);m =m(g, g, 0) is a scale factor.

For n — oo, the spectrum has the form E,(0) = 4vn + O(1) (this fact holds
for any range of the parameter g;). As an exercise, the reader can compare this

spectrum with the harmonic oscillator spectrum.

8.4.2 Range B

In this range, we have
g =-v">0v>0.

Here, we introduce a new variable z = ip and new functions ¢+, instead of x
and ¥ (x) in (8.52),

e=ip=pe™ p=(x)’, 7= pe T =~z Y(x) = p/HEHe (),

where p is given by expression (8.53). Then ¢4 (z) satisfy the equations
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2d2 ¢+ (2) + (B+ — 2)d:p+(z) —ars(z) =0,
ar =1/24€ pu+iw, Br=1%2u, w=W/4?

which have the confluent hypergeometric functions @ (a4, f+;z) and ¥(ax, B+;7)
as solutions; see [1,20, 81].
In what follows, we will use the following three solutions of (8.52):

u (x; W) = p/* e 2 d(a, B12). @ =y, B = B4,
ur(x; W) = p"/4 e 2P (a_, B_;2),

Vi(x; W) = p1/4+“e_z/2llf(a,,3;z) — e_i”“%ul(x; W)
-2 . I'(B— I (2
= [—If(a_l;) —e ' —(II?(,B)O{):| uy(x; W) + e_’”"—r(((f)) ur (x; W).

We note that the functions u; (x; W) and V) (x; W) are defined for any values
of parameters o and f, whereas u, (x; W) is defined for 24 # m € N. All three
functions are entire in W. The function u; (x; W) is real entire in W for g; > —1/4
(u = 0), and uy (x; W) is real entire in W for g; > —1/4 and 2u # m € N. If
g1 <—1/4(u =ix),thenu; (x; W)and u, (x; W) are entire in W and u, (x; E) =
ui (x; E)

Below, we list some asymptotics of the introduced functions as x — 0 and x —
oo; see [1,20,81].

For x — oo (p — 00), wehave (W =a +ib,0 < b < 3/4)

r . .
" (X; W) — F(ﬂ(é a) ezrm/Z—t [o/2+a lnp](vx)—(l/Z—Zb)

_’_11:%3% ¢/ T(@=B)/2Filp/2+alnpl (1, ) =(1/24+20) 4 () (x—(5/2—2b)) ’
o

F(,B —O{) —in(a i aln —
Vi (o W) = @ @)/ 2+ilp/2+alnpl (1, )= (1/2425)

+0 (x~6/220).
For x — 0 (p — 0), we have

u = p1/4+uo~(p) — (Ux)1/2+2u0~(x2) -0,
u = p/* 1 0(p) = (vx)* O (x?), (8.69)
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and

e L (0) 22102, g1 > 3/4,
_ﬁ(ux)—l/zé(lenx), g1 = 3/4,

Vi (W) = e_i”“%(vx)l/z_z" + (vx)l/2Hm [—1;((;27“)) —eine —Fﬁx)]
FO(XP7H), g1 <3[4, g1 # —1/4,

— WO [e(W) + 2In(ux)] + 02 Inx), g1 = —1/4,

(8.70)
where

—irroc()

) =1/24+iw, c(W) =¥ (o) =29 (1) +in/2 + ———. (8.71)
cos h(mw)

Since
Wr (1, u2) = —4pv, Wr(uy, Vi) = —2ve "™ I'(B) () = —o(W),

solutions u; and V; are linearly independent and form a fundamental set of solutions
of (8.52) for Im W # 0.

We note that for g; > 3/4, the function V; (x; W) is not square-integrable at the
origin, whereas for g; < 3/4 it is (moreover, any solution is square-integrable at the
origin). One can see that for g; > 3/4, (8.52) has no square-integrable solutions,
and the deficiency indices of the initial symmetric operator H are zero, and H, =
HT, Dy, = D;I(R+), is a unique s.a. extension of H. For g1 < 3/4 there is one

square-integrable solution, V; (x; W), and the deficiency indices of H are my = 1.
Moreover, one can easily see that the discrete spectrum is absent.

The majority of results obtained in range A, such as a description of the natural
domain, can be used without any modification in the present range B. We shall use
these results below.

8.4.2.1 Subrange g, > 3/4

For such g1, the unique s.a. extension of His H 1= H. The Green’s function and
the derivative of the spectral function have the forms (8.60) and (8.61) respectively.
The same guiding functional as in the range A allows one to conclude that the
spectrum of H, is simple.

Inthe range m — 1 < 2u < m + 1, m € N, the function V;(x; W) can be
represented as

Vie; W) = Ay (W)ui (x; W) + @V(m)(ﬁ W),
J7AY,
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r(=2p) 202002 (BT (o)

Am(W) =

T(a-) m!I ()T (a—y,)
N —irm%7 V(m)(x; W) =uy(x; W)
intm/
_e Zr(am)F(:B—)ul (x;W),Oéim=1/2im/2+iW‘
m!'T" (a—,,)

One can see that the function A,, (W) is well defined for any W and for m —
1 < 2pu < m + 1, and is analytic in a neighborhood of the real axis (at least for
|b| < 1/2), and the function V{,,)(x; W) is real entire in W. As a result, we obtain

e"EIV | D(1)2 4 o+ i E/40?))?
4wul2(B)

o'(E) =

Thus, the simple spectrum of H\ has the form spec H, = R, and the generalized
eigenfunctions Ug (x) = /o' (E)u;(x; E) of H; form a complete orthonormalized
systemin L? (Ry).

8.4.2.2 Subrange3/4> gy >—-1/4(1/2> pn > 0)

Using the asymptotics (8.57), we obtain A+ (¥x) = —4upv(cica — ¢z¢1), which
means that deficiency indices of H are m+ = 1. The condition A u+@Ws) =0
implies ¢;cosv = c¢psinv, v € S(—n/2,7/2). Thus, in the subrange under
consideration, there exists a family of s.a. Hamiltonians ﬁz,v parameterized by v
with domains Dy, ,

D, = {1 ¥ € D% (R4). ¥ obey (8.62)}.

Imposing the boundary conditions (8.62) on the functions (8.59), using the
asymptotics (8.69), (8.70), and representing the function Vi (x; W) in the form

1 -
Vi W) = 3 [AOV s (5 W) = BOW i (s W)
Uz (X; W) = uy(x; W)sinv + ua(x; W) cos v,
tyy(x; W) = uy(x; W)cosv —up(x; W) sinv,
where

AW) = —a(W)sinv + b(W)cosv, B(W) =a(W)cosv + b(W)sinv,

[ AT S 7 ) DB
I(ao) rew F@)’

a(W) +e (W) =e
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we obtain the Green’s function of the Hamiltonian I:Izu s

1 [AW
Gx,y; W) = T [%MZ,V(X; Wuz, (y; W)

N (W (v W), x > y,} 872

{ s (e Witz (i W), x <y | (872

where the second term on the right-hand side of (8.72) is real forreal W = E.

We note that the functions u, ,,(x; W) and i, (x; W) are solutions of (8.52) real
entire in W and u, ,, (x; W) satisfies the boundary condition (8.62).

Consider the guiding functional

DE W) = /O dxuz, (x: W)E(x), & € D,(R+) N D, .

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = u,, (U = Uy ,), and therefore the spectra of
I—LV are simple.

The Green’s function allows one to calculate the derivative of the spectral
function,

(dmpv) ' [ (@)| 220 ) T(B) sin® 2 p)e™ 54

o'(E) = ;
{[e7E/4 cos(2m ) + e~ "E/4?] cos v+17}2 +e2E/4” 5in® (2 1) cos? v

b= ()| 2C2u)C(B) sin(2 ) sin v.

Because 0/ (E) > 0, the simple spectrum of I—LV has the form spec I:IZV = R.The
generalized eigenfunctions Ug(x) = +/o'(E)uy,(x; E) of H,, form a complete
orthonormalized system in L2 (R4).

One can see that for v = 4/2, all the results coincide with those of the previous
subrange for g;.

8.4.2.3 Subrangeg; =-1/4(n =0)

Using the asymptotics (8.57), we obtain A ;;+ (¥«) = 2v(cica—c2¢1), which means
that the deficiency indices of H are m+ = 1. The condition A u+ (¥s) = 0 implies
c1cost = cpsint, ¥ € S(—m/2,m/2). Thus, in the subrange under consideration,
there exists a family of s.a. Hamiltonians Hsy parameterized by ¢ with domains
D Hsy»

Dy, = {w LY € DY (Ry), ¥ satisfy (8.64)}.
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Imposing the boundary conditions (8.64) on the functions (8.59), using the
asymptotics (8.69), (8.70), and representing the function —I" (o) Vy (x; W) as
—F(@Vi(x: W) = AW )uz g (x; W) + BW )itz 9 (x; W),
uz g (x; W) = uy(x; W)sind + uz(x; W) cos 9,
w39 (x; W) = ui(x; W)cos v — us(x; W) sin 9,
uz(x; W) = —c(W)ui (x: W) — I' (o) Vi(x; W)
= 0, [pV/* e PD(1/2+ p+iw, Br = 1 +2u;7)]
A(W) = c(W)sind + cos, B(W) = c(W)cos ¥ — sin 9,

|;L=0 ’

_ wherec (W) is given in (8.71), we obtain the Green’s function of the Hamiltonian
Hsy,

AW
Glx,yi W) = - [ Bﬁwi

uz 9 (x; Wuz o (y; W)
2v

% ’7[3,19()6; W)M3,19(J’§ W)a X >, :| (8 73)
uzp (x: Wiz s (y: W), x <y |’

where the second term on the right-hand side of (8.73) is real forreal W = E.

We note that the functions u3 » (x; W) and u3 » (x; W) are solutions of (8.52) real
entire in W, and u3 » (x; W) satisfies the boundary condition (8.64).

Consider the guiding functional

P W) = [ deins (W)W, £ DR ND,,.

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect.5.4.1 with U = u3y (U = iu39), and therefore the spectra of
1:1319 are simple.

The Green’s function allows one to calculate the derivative of the spectral
function,

o'(E)
(4v)~! [1 + tanh(rrE/4u2)]

{[Rel//(ao) — 21//(1)] cos ¢ — sin 19}24-(712/4)[1 + tanh(rrE/4vz)]200$2 19'

Because o/(E) > 0, the simple spectrum of 1:1319 has the form spec 1:1319 = R.
The generalized eigenfunctions Ug(x) = /o/(E)uzg(x; E) of Hjy form a complete
orthonormalized system in L? (R4.). Note that for # = 4/2, all the results coincide
with those of the range g; > 3/4 in the limit u = 0, i.e., in the limit g; — —1/4.



8.4 ESPIV 331

8.4.2.4 Subrange g, < —-1/4(u =ix,x > 0)

Using the asymptotics (8.57), we obtain A+ (Y«) = —4ixv(cic;—cac1), which means

that the deficiency indices of H are m = 1. The condition Ay+ (¥«) = O implies
g = e*¢,, 0 €S 0, ). :l“hus, in the subrange under consideration, there exists a

family of s.a. Hamiltonians H,y parameterized by 6 with domains
Dy, =y 1 ¥ € D5(Ry), ¥ satisfy (8.67)}.

Imposing the boundary conditions (8.67) on the functions (8.59), using the asymp-
totics (8.69), (8.70), and representing the function V;(x; W) in the form

Vi W) = = LA s (3 W) + BOV )i (3 W)

us o (s Wy =eur (x; W) 4+ e uy (x; W),
tgo(: W) =ile uy(x; W) —euy (x: W),
AW) =i [ebW) —e Pa(W)]. BW) =€ b(W) +ePa(W),
where ug g(x; W) and it4 o (x; W) are real entire solutions of (8.52) and uy g (x; W) sat-

isfies the boundary conditions (8.67), we obtain the Green’s function of the Hamiltonian
Hyg,

1

AW
G(X,y:W)=—%[ W)

B(W)

g (s Wua o (s W), x > y,]
' - 8.74
{ g (6 Wiig g (v: W), x <y 874

ug o (X: Wiug o(y; W)

where the second term on the right-hand side of (8.74) is real for real W = E.
Consider the guiding functional

B(E: W) = /0 Aty o (x; WE(x), & € D(R1) N D,

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U = uy (U = U4.9), and therefore the spectra of H49 are
simple.

The Green’s function allows one to calculate the derivative of the spectral function,

1 D(E)D(E)—1

/ _ N _ 2
o' (E) = s7ev D(E) £ 11 >0, D(E)D(E) = |D(E)|",
 _oia(E) e [coshlm(x 4+ E/4v?)] 12
DE) =gy IPE = (cosh[n(x—E/4u2)]) &
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Thus, the simple spectra of H,o have the form spec H, = R and the generalized
eigenfunctions Ug (x) = +/0/(E)us¢(x; E) of Hy form a complete orthonormalized
systems in L? (R4.).

The main conclusion is that for the ESP IV under consideration, with g, < 0, the
spectrum of any s.a. Schrédinger operator is simple, continuous, unbounded from below,
and all the points of the real axis R belong to the spectrum.

85 ESPV

In this case,
V(x)=gie > + ge ", xeR, (8.75)

and the corresponding Schrodinger equation is
v — (817" + g2 Y) Yy + Wy = 0. (8.76)

It is sufficient to consider only the case ¢ > 0, because the case with ¢ < 0 is reduced to
the former one by the transformation x — —x.

The potential (8.75) is known as the Morse potential; see [113]. Such a potential was
suggested to explain the observed vibrational energy levels and dissociation energies of
diatomic molecules. It has been also applied to the deuteron problem [114].

Below, we consider separately three ranges: g, = v2>0,v>0; g1 = —v? <0,
v>0;and g, = 0.

8.5.1 Rangel

In this range, we have
g =v>>0 v>0.

Here, we introduce a new variable z € Ry and a new function ¢, instead of x and

¥ (x) in (8.76),

z=2vc e, x =—c"'In (E) L Y(x) =P (2),
2v

w=c ' =mW)V2 =YW |2 (sing/2 —i cos 9/2)
Rep > 0; Rep > O0for ImW > 0, (8.77)

where W = |W|e?, 0 < ¢ < 7. Then ¢ () obeys the equation

d2p )+ (A +2u—2)dp (@) —(1/2+ p+q) ¢ (z) =0,
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where g = g,/2cv. This equation has the confluent hypergeometric functions @(«, B; z)
and ¥ (o, B;z) (Withoe = 1/2 4+ u + ¢, B = 1 + 2u) as solutions; see [1,20,81].
In what follows, we use the following two solutions of (8.76):

w (3 W) = e W (a, B;2)
e ~/? (z"‘@(a—,ﬂ—:z) B Z“‘P(a’ﬁ;Z))

" sin(2rp) T'(e)(B-) T'(a=)T(B)
Z;te—z/2
175 ()C; W) = st(a,ﬂ;Z)a

ao_=a—PB+1=1/2—pu+q, p—=2—B=1—-2u, Ref > 1.

We note that u; (x; W) and u, (x; W) are defined for any o and B, u; (x; W) is real
entire in W, and u, (x; E 4 i0) is real for £ < 0.

Below, we list some asymptotics as |x| — oo of the introduced functions; see
[1,20,81].

For x — o0 (z — 0), Im W > 0, we have

rp)Qu/e)™* W12 i costy/2)xsinp/2)] 5 (e—e)
2ul (o)

—0 (exIWI‘/zsin(w/Z)) 5 00

— (2U/C)M e|W|1/2[i)c cos(q)/2)—xsin(q)/2)] 0 (e—CX)

r )
_0 (e—xlwl‘/z sin(w/2>> —0.

u

For x — —o0 (z = o0), we have

u = e—Z/ZZ—l/Z—gz/(ZCU)O"'(Z—l)

=0 I:e_(v/c)ec\xle_(gz/(cu)+c)|x|/2] o0,

uy = F_l (O[)ez/ZZ—l/Z-i-gz/(ZCU)O(Z—l)

-0 [e(v/we"""e(gz/(vw—v)IXI/Z] s 0.

Since Wr (u1,u,) = —c/I"(«), the solutions u; and u, are linearly independent and
form a fundamental set of solutions of (8.76) for Im W # 0.

One can see that for Im W # 0, any linear combination of the fundamental set is
not square-integrable. The latter means that the deficient subspaces are empty and both
deficiency indices are zero.
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We note that u; € L? (—o0, xo) and u, € L? (xo, 00) for any finite xo and Im W > 0.
This fact will be used in constructing Green’s functions.

As usual, starting with the s.a. differential operation H with the potential (8.76), we
construct the initial symmetric operator H defined on the domain D (R). Its adjoint At
is defined on the natural domain D;il (R). Taking into account that in the case under

— 00

consideration [Y«, ¥«] (x) e 0, Vi € DE(JR), see Sect.7.1, we calculate the
asymmetry form A+ (¥x) to obtain

AH+ (W*) = [W*,l//*“o_ooo =0, Vl//* € D;} (R) .

This result implies that the operator Htissa,and H, = Ht isa unique s.a. extension
of H.

To construct the Green’s function of the operator H 1, we consider, following
Sect. 5.3.2, the general solution of the inhomogeneous equation

(FI—W)l//:neLz(R), mW > 0.

Such a solution has the form

I' ()

Cc

V(x) = cru(x; W) + coup (x; W) + [ (x; W)

X/ ul(y;W)n(y)dy+u1(x;W)f uz(y;W)n(y)dy],

where ¢, are arbitrary constants. By the help of the Cauchy—Schwarz inequality, we
can see that both terms in square brackets are bounded as |x| — oo, which implies
c; = ¢ = 0 for functions V¥ to be square-integrable. Then the Green’s function of the
operator H 1 has the form

G (x.y: W) (o) { wy(xX; Wy (y; W), x > y

c w (x; WMo (y; W), x <y
A(W) (o) sin(2 )
o

uy (x; Wug (x; W)

{ w3 (x; Wy (y; W), x >y, ]
w(x; Wus(y; W), x <y |’

where

_ T@r(e-)
AW) = ')+ Cas)’

— | S i) + ps 0 poia)|
B D7) R 70 R

We note that uz(x; W) is a solution of (8.76) real entire in W.
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Consider a guiding functional
DEW) = [ @ WIEW. ED=D,@®NDF®.  (678)
R

The space D is dense in L% (R) owing to D (R) C D. Properties (i) and (iii) of
Sect. 5.3.3 are obviously fulfilled, and we have only to check Property (ii).
Let there exist £y(x) € D and Ey € R such that

b
@ (&0; Eo) = / dx u;y (x; Eo) & (x) = 0, suppé&p € (—o0, b].

—0o0

Let us consider a solution
X o0
V) =GB [ B0 & 01y i) [ u(i En 6 () dy
—0c0 X

of the equation (I-} — Eo)y = &, where u; (x; W) is an arbitrary solution of (8.76)
satisfying the condition Wr(u, u;) = 1. Using the Cauchy—Schwarz inequality, we can
prove? that

Y(x) = 0% = 0@ M2, x > —c0,
so that , 1:11// =& + Eoy € L*(R). Thus, ¥ € D, and therefore @ (§; W) is a simple
guiding functional, so that the spectrum of H; is simple.
With the help of (5.22), we obtain
meuy (xo; E) o’ (E) = Im[I(0)ua (x0: W)]w=E+io = =7 'y (x0; E)
x Im[I (&) sin(Qe WA (W) w=g+i0 + u3 (xo; E)ImA(E + i0). (8.79)

1. Considerthecase 1/2+¢q ¢ Z_.
(a) LetE =c?p?>>0and

nw=—-ip, p=>0,a=1/24+q—ip,a_=1/24+q+ip, B =1-2ip.

Then I'(@—) = I'(a), I'(«) # oo. If Re I' (&) # 0, then A(E > 0) is finite and
real, so that it follows from the second line in (8.79) that

sin h(2mp)

inh(2Qep)A(E
o' (E) = %Re I'a) = e | ()]

2For estimating integrals, it is convenient to pass from integration over x to integration over z.
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If Re I'(a) = 0, then
uy (x0; E) = 27 [sinh 2z p) Im I'(«)] ' Re uy (xo: E),
and it follows from the first line in (8.80) that

sinh(2zp) [Im I' (@)]? Imfius (xo: E)] = sin k(27 p)
272c Reuy (xo; E) 12 - 2l

o' (E) = | ()]

Finally, we obtain that

sin (27 p)

/
E =
o (E) 2r2c

|l ()> >0, E >0,
which means that spec H, = Ry.
(b) Let E = —c?t? < 0. Then
u=1t>0,a=1/24+qg+71, =1+ 21.
Here, we find from the first line in (8.79) that

us (xo; E)
weuy (x: E)

o' (E) = Im I'(&) =g 40+

where we recall that u; (xo; E) and u, (xo; E) are real. Because " («)|y,— is real
if I'(@)|y — is finite, it follows that Im I"(«) and ¢’ (E) differ from zero only at
the points E, for which |I"(«)| = oo. At these points,« =, = 1/24+q + 1, =
—n,n € Z4, so that

E,=—-c>(1/24n+¢q)* . neZy.
If g» < —cv, and there exists a natural number 71y, € Z4 such that
cv(1 + 2nmax) < [g2] < ¢V B + 2nmax),
then there exist ny,,x + 1 discrete levels
E,=—c>(gl—n—1/2)*, n=0,1,... Nmax.
For « = o, = —n, we have
uy (xo; En) = (=1)"T'~"2lq| — m)ur (xo; En) -

Using relations

A

Al w=gtic = N — ———

Iw=r+ 2 /1Ey|
2eJ|E,

Im (o) = (—1y ZV Bl g g

n!

+ O0(A%, A=E —E, +ie,
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for E in a neighborhood of E,, see Lemma 5.17, we obtain

) Nmax zm
o' (E) = ZOQ,ES(E ~ B O = G =y

2. Considerthecase 1/2 4+ g = —I,] € Z4,ie., go = —cvu(l + 2I).

(a) Let E # 0. Then all the above considerations and conclusions hold, and in
particular, there exist / discrete energy levels £, # 0,n =0,1,...,] — 1.
(b)  Suppose E is situated in a neighborhood of £ = 0. Here . ~ 0, and

l

I(a) = Q y(x:0) = e 2D(—1, 1:2). uy(x:0) = (=) NNz (x;0),

ul!

so that

[n(u)zﬁ]_l L E>0,
0, £ <0,

o/ (E) = [x(1)*] Im[—(E +i0)] "> =

2WE ()] E >0,

T E)=30"F <o

Because o (E) has a square-root singularity at £ = 0, there is no discrete level at
this point. This conclusion can be justified by a direct solution of (8.76) with W = 0. Its
unique solution square-integrable on —oo is

V(x) = Ce ¥ W(a, 1:2), a = 1/2+4q.
As x — 0o, we obtain

' Ya)ex, o ¢ 7,
Y ) @ @ F
=D)'n!, 0 =—n,ne’Zy4.
This means that there exists no square-integrable solution of (8.76) with zero energy.
Finally, we obtain for the simple spectrum of H,

Ry, g2 = —cv,
spec Hy = § R U{E,}, n=0,1,..., 0naxs Hmax € Z-,
—cu(l + 2k) > g2 = —cv(3 + 2k).

The (generalized) eigenfunction Ug (x) = /o/(E)ui(x; E), E > 0, and U, (x) =
Q,ui(x; Ey,) of H, form a complete orthonormalized system in L2(R).
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We note that U, (x) are really eigenfunctions of H 1. Indeed, fora = —n,n € Z,
we have
me” 2z (—n, Biz)
sin(2rt,)[(a—)T"(B)

U, ()C) = -

and ®(—n, f;z) is a polynomial, so that U, (x) € L*(R).

8.5.2 Range 2

In this range, we have

g1:—U2<0,U>0.

Here, we introduce new variables z; and new functions ¢ ¢, instead of x and ¥ (x)
in (8.76),

e =iép=e""p p=2vc"le™, peRy, £ =£1,
—z +
Y=e "f/zzg ’L¢:t,g (Zg),

where p is defined in (8.77). Then ¢ (Zg) satisfy the equation

zedypig (ze) + (1 £ 20 —z)depa g (ze) — (1/2 £ p—i6q) pr g (z2) = O,
which has the confluent hypergeometric functions @ and ¥ as solutions; see
[1,20,81].

In our considerations, we will use different sets of solutions of (8.76). The first of
them is

P(x;W) =TI (B (e, B:2),
P_(x;W) = I (B)e™ " d(a—. pi2) = P W)y
=04, 0— =04, B =P, ag ;=1/2x p—ikq, fr=1L2u, z=24.

The second set reads

up (x; W) = e ' ¥(a, B;7) = ﬂ (P_(X; W) _ Pl W)>,

sin(27 i) I'(@) I'(a-)
(W) = e 2l Wy fiz-)

_ i (ei”"P_(x;W) _e_i”"P(x;W))
Iaq)-) I'(a—-)

T sinQrp)
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And the third set has the form
Up (x: W) =ePu; ;W) 4+ e 0uy (x; W), (8.80)
Uy (x; W) =i [eur (x; W) — ey (x; W)].
There exist relations between functions from different sets:

ie™d einy, P aTTq

ie
P(x, W) = mul (x, W) - muz (x, W)
ie™ e ~
== bo(n)Us (X§W)—709(M)U0 (x: W),
e—if+imu eif e—ifFimu eif
bo(p) = TerD) T@ ag(p) = T + @ (8.81)

‘We note that solutions P, P_, u;, and u, are defined for any Ot and B; u; 5 (x; W)
are even entire functions of p and therefore are entire in W';

ur (W) = (x; W), uy (x;E) = up (x; E);

P (x; W) and P_ (x; W) are analytic functions in C. with respect to W; the functions
Up (x; W) and Uy (x; W) are real entire in W .

Below, we list some asymptotics of the introduced functions as |x| — oo; see [1, 20,
81].

For x — —oo (p — 00), we have

w (W) = (1) + 0 (¢7112) iy (r: W) = () + 0 (71172).

P (W e e 0 (e73112), vw

X; =10 s (X) — ——uye(x) | + (e_ ) )

( ) F(O[_H_)MM( ) F(O[)uaq( )

where u,s(x) = U,5(p) and
ﬁas(p) — (ein/Zp)—l/Z-i-iqe—ip/Z — ei(qlnp—p/2—7r/4+i7rq/2)p—1/2’ (882)
uag(x) — (C/ZU)I/ZCi{q[ln(ZK/C)—cx]—(v/c)exp(—cx)—yr/4+i7rq/2}ecx/2’ (883)

i.e., any solution of (8.76) is square-integrable on —oo (for any W).
For x — oo (p — 0), we have

P(x;W)=T""8)7"0O(p) = 0 (e_xlwll/zsm(“’/z)) — 0, ImW >0,
and

n(ZK/C)—Me—iﬂl’«/2e—ix|Wll/z exp(e/2)
B - O(p)
sinQru)IM(a—+)I'(B-)

-0 (exIWP” sin(«)/z)> = o

u (x; W) =



340 8 Schrodinger Operators with Exactly Solvable Potentials

for 0 <Im W < by, where

by = min [¢?/2,83/(2c%)]. g2 # 0.
00, g =0.

Under such a limitation on W (which is enough for our aims), O g, B+ ¢ Z_.
As far as

Wr(uy, up) = —ice ™, Wr (uy, P) = —c/I" (&), Wr(up, P) = —ce'™ /T (ot |—)

is concerned, both sets u;, up and uy, P (the latter for ImW > 0, « ¢ Z_) are
fundamental sets of solutions of (8.76). Because P (x; W) € L*(R) and u; (x; W) ¢
L?(R), there exists only one independent square-integrable solution of (8.76) for a fixed
W (ImW > 0) for all the values of parameters. This means that in the case under
consideration, the deficiency indices of H are my = 1.

The adjoint H is defined on functions ¥4 from the natural domain D;‘? (R). Such
functions satisfy the equation

HE (x) = n(x) € LA(R). (8.84)
X—>00 X—>00
Regarding V(x) "—> 0, we have ¥4 (x), ¥} (x) —> 0 (see Sect.2.1), so that

Ap+ (Ys) = — [V, Y] (—00), Vs € DE R).

‘We can obtain the asymptotic behavior of ¥+ using the general solution

Vs (x) = crun (x;0) + caup(x; 0)

ielem / 0y 0t (:0) — > (x: O)uey (: O)n (v)dy  (8.85)

of (8.84).
To estimate integral terms on the right-hand side of (8.85), it is convenient to rewrite
¥+ and its derivative in terms of the variable p (Y« (p) = ¥ (x)),

U (p) = c1ity (p; 0) + caiia (p; 0)
o0 d /
tic 2™ / (60141 ('50) = 1043 010 ) -
P

V5 (p) = c1d,it (p: 0) + cad,iiz(p; 0)

o . oo . . . . B d /
+ic e "/ [,z (p: 0)it1 (p': 0) — d,pity (p: 0)uz(p’;0)]n(p)p—p,.
P
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Using the fact that i (p; 0), i (p; 0), @i2(p;0), and it5(p; 0) have the asymptotics
O(p~"?) as p — oo (x — —oc) and the Cauchy-Schwarz inequality, we obtain as
p — 00,

1,71*(/)) = clﬁas(p) + CZi‘as(p) + 0([)—1)’
V5 (p) = c1d,itas(p) + c2d,itas(p) + O(p™2),

where it,5(p) is defined by (8.82).

By the help of the asymptotics, we obtain A+ () = ice™ " (c1c; — ¢2¢3), which
confirms the fact that deficiency indices of H are m4 = 1. The condition Ay + (Y«) =
0 implies ¢; = exp (2i0) ¢3, 0 € S(0, 7).

Thus, in the range under consideration, there exists a family of s.a. Hamiltonians ﬁg
parameterized by 6 € S (0, =) with domains D, that consist of functions belonging to
D:vl (R) with the following asymptotic behavior as x — —o0:

W(x)=C [el‘@uas(x) + e—“’m] +o0 (e_cl"l), (8.86)

where the function u,(x) is defined by (8.83).
The general solution of (8.84) with by > Im W > 0, has the form

V(x) = cu (x; W) + 2 P(x; W) + ¢ 7'M a)

x[ul(x;W) / P(:Wn(n)dy + Px: W) /_ ul(y;W)n(y)dy],

where ¢, are arbitrary constants. With the help of the Cauchy—Schwarz inequality, we
can verify that both terms in square brackets are bounded as x — oo, which implies that
for the function v to be square-integrable, the conditions ¢; = 0 must hold. Then we
represent ¥ (x) as

V(X)) = P W)+ e ' T(@)npuy(x; W) 4+ ¢ TMa)

X[P(x;W) /_ s (s W)n()dy — uy(x: W) /_ P(y;W)n(y)dy],

np =/ P(y; W)n(y)dy. (8.87)

Again, estimating integral terms in (8.87) with the help of the Cauchy-Schwarz
inequality, we obtain as x — —oq

eiﬂﬂuas(x) . uas(x)
Mot T@

1//()() = Czieﬂq |: :| + C_IF((X)UPMas(XQ W) 4 o) (e—C|x|) .
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Then condition (8.86) implies

¢ =ic ' T(@)npay (e 07,

Using relations (8.80) and (8.81), we obtain the Green’s function of the operator I:I(g
from (8.87):

Gx.y; W) =27 W)Uy (x, W)Uy (y; W)

e Us (x, W)Uy (y; W), x >y,
2¢ (Ug (x, W)Uy (y; W), x <,

2cag(p) _
QW) =i =l
W) : be () ¢

The imaginary part of the function M (xy, E + i0), given by (5.21), has the form

Im M (xo, E 4 i0) = [Up (x0. E)*Im 27 (E + i0),

el (1/2 + w—iq) +e O 1/2 + p+iq)
2= (/2 + p—iq) —e W20 (1/2 + p+iq)

QW)= —2ice ™

Taking into account that Uy (x, W) is a real entire function satisfying the boundary
condition (8.86), one can prove that the guiding functional

B W) = /R Uy (x. W) E()dx, € € D,(R) N Dy,

is simple, so that the spectra of the operators ﬁg are simple.
The derivative of the spectral function has the form ¢’(E) = 7~ ' Im 2~ '(E + i0).
For E = 62p2 >0, p >0, u=—ip, we obtain

e [D(E)P -1 (E) = F(1/2—ip—iq)e_2,-9+ﬂp'

R I T S UE )

A straightforward calculation gives

coshln(p + q)]

D= s (p —g)

>1, p>0.

The derivative o’ (E) is finite for £ > 0 and 6 satisfying the condition

ra/2—iq)

216 _
K= 2t
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If ¢2? = K, the derivative has an integrable singularity of the form o/(E) ~ E~'/2.
Thus, any E € R4 belongs to the continuous spectrum.
For E = —c?1%> < 0,7 > 0, = 1, the function £2(F) reads
(E) = —2ce ™ cot[f (E)—6],
1
f(E)=mnt/2+ T[lnF(l/Z +t—ig)—Inl(1/24+ 7+ iq)]. (8.88)
i

The function £27!(E) is real at the points where §2(£) # 0. Thus, only the E = E,(6)
obeying the equation

QEN0)=0—= f(E,0)=n/2+7an+06,neZ, (8.89)

provide nonzero contributions to Im 2~ (E + i0).
The derivative of the spectral function has the form

"(E) = 28(E — En(0)), 0, = VIEn(0]em .
7 HEQ"( 0. ¢ 7/2 +Imy(1/2 + ¢ 1/|E, (0] —iq)

Finally, we see that spec Hy equals Ry U {E,(0), n € Z} and is simple, the set
of its (generalized) eigenfunctions Ug(x) = /o/(E)Uy(x; E), E > 0, and U,(x) =
0,Uq(x; E,(6)) form a complete orthonormalized system in L? (R).

Some remarks on the spectrum structure can be made: First of all, one can show that

FUE)=—2t[n/2+Imy(1/2+1—iq)] <0, E <O. (8.90)

According to [81, 8.363.4], the expression |Imr(1/2 + t — iq)| is a monotonically
decreasing function of t for ¢ > 0. For = 0, we obtain [81, 8.365.9] that

Imy(1/2—ig)| = T anh(rlg) < 5 =
= |Imy(1/2+1—iq)| < 7/2,
which implies (8.90). In addition, f(E) has the properties

f(E)=nt/2—qglnt + O(1), E - —0o0;
f0) = =840 + O(7), T >0,
g0 = arctan(2lgl), ¢, = seng = sgn g,

and 0 E, = [f/(E, («9))]_1 < 0. Thus, as E passes from —oo to 0, the function f(E)
decreases monotonically from co to f(0) = —¢,¢yo.
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Because any number from the interval Ry = (—{,¢0,00) can be represented as
w/2 4+ w(n + 0/m) with some n > —1 and some 6 € (0, ], we have n € {—1} U Z,
and any E <0 is a solution of (8.89) for some n and 6 (depending, in general, on E).

Regarding 0y E,(6) < 0 for a given n € {—1} U Z4, we can draw the following
conclusions: Let &, be solutions of (8.89) for n € Z4 and 6 = 0 (there exists only
one solution for any fixed n € Z, and furthermore, &, < &, for any n). Then in
the interval [£y, 0) there are no solutions of (8.89) for extensions with 6 € (0,6, =
/2 — {4¢o], and for any fixed 6 € (6y, 7], there is one solution £_; () monotonically
decreasing from —0 to E_(w) = &) as 6 goes from 6y + 0 to m; in any interval
[En+1.&0), n € Z 4, for a fixed 6 € (0, x], there is one solution E, () monotonically
decreasing from &, — 0 to £, as 6 goes from 40 to . We stress that the relations

Eyoi(m) = Jim E, () = E,(0) = &. n € Zy

confirm once again the equivalence of extensions § = 7 and 6 = 0.

8.5.3 Range 3

In this range, we have g; = 0. Below, we list briefly only the principal results.

8.5.3.1 Subrange g; = v?*>0,v >0

In this subrange, it is convenient to introduce a new variable ¢,
.= 2ucT e x = —In(cz/2v), dx = —dz/cz, z € Ry,

and a new function ¢ ({) = v (x) to transform (8.76) to the Bessel equation of the
imaginary argument,

[d2 4+ 67 = (1 4+ 7240) [ 9(0) = 0, = 7' V=W

One can see that the deficiency indices of H are m4 = 0, so that there exists only
one s.a. Hamiltonian H 1= at.

One can verify that the guiding functional (8.78) with u;(x; W) = K5, ({), where
K>,,(¢) is a real entire solution of (8.76), is simple, and therefore the spectrum of H 11
simple.

One can see that for £ = c2p2 >0, p >0, we have

o' (E) = % sinh (27 p),
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so that the simple spectrum of H, reads spec H = R4, and the generalized

eigenfunctions
[2sinh 27
Up(x) = n—ch)Kzip(é')

of H, form a complete orthonormalized system in L? (R).

8.5.3.2 Subrange g; = —v? < 0,v > 0

Introducing ¢ = ¢~'ve™¢*/2 and the function f(¢) = ¥ (x), we transform (8.76) to the
Bessel equation

(a2 + 67 + (1= £72euP) | F©) = 0, = ' V=W,

Deficiency indices of H are m4 = 1, and there exists a family of s.a. extensions ﬁg,
parameterized by 6 € S (0, =), with domains D g, that consist of functions from DE (R)
with the following asymptotic behavior as x — —oo:

Y(x)=C [eievas(x) + e_igvas(x)] +0 (e—3CIXI/4> 7
Vas(-x) — e_i[(ZU/C)e_(I'V/2+7T/4]eCX/4' (8.91)

One can verify that the guiding functional (8.78) with u; (x; W) = Uy(x; W), where
T i0—mp— i —m—
Up(x: W) = % [/ O Q) + e T ) 0],

is a real entire solution of (8.76) satisfying s.a. boundary condition (8.91). Also, it is
simple, and therefore the spectra of Hy are simple.
For E = 62p2 >0, p > 0, we have

(re) ' sinh(2np)

o'(E) = cos(20) + cos h(2mp)”

For E = —c?7% < 0, t > 0, we have
1/2
o/(E) = Y QI(E — E,(0)). 0, = (2VIE,@)]/x) .

where
E,(0) = —c*(1 + 2770 + 2n)?,

ne {(-3UZy, n/2<6<m,
Zy, 0<6 <m/2,

En—1(n) = E,(0), n € Z.
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Finally, the simple spectrum of Hy is given by spec Hy = Ry U {E,(0)}. The
(generalized) eigenfunctions Ug(x) = +/o/(E)Up(x;E), E > 0, and U,(x) =
0.Up(x; E (0)) of Hy form a complete orthonormalized system in L? (R).

We note that all the results in the case gy = 0 under consideration can be derived
from the corresponding results obtained for g; # 0. To see this, we first set g = 0, and
then perform the following change of notation: g, ¢, u, p, T — &1, ¢, i, p, T. In the
new notation,

&p* E>0,

—&%2 E <.

j=¢"'"V-W, E=

In addition, one needs to make the change g, = g»,¢ = ¢/2, it = 2u, p = 2p, and
7 = 27 in all the expressions to arrive at the case g; = 0. Then expressions that arise
are simplified. For example,

P(x;W) =TI (B)e 2 @(a. Biz) — P(x; W) = ' ' (B)z'e > ®(B/2. B:2)

AT (1 + )
(1 +2p)

uy (s W) = zle W (a, fiz) — uy (x: W)
=W (B/2,p:2) = w7 PK,(z/2)

IM(Z/Z),

(see [1,20,81]), so that expression (8.88) and (8.89) take the form

Q(E) =cot[f (E)—0], f(E)=nt/2, nt,/2—60 =7m/2+ 7n.

8.6 ESP VI

In this case,
V(x) = c¢*gysin 2(cx) + c2grcos 2 (cx), x € [0,7r/2¢], (8.92)
and the corresponding Schrodinger equation is
V" — g1 sin"2(cx) + c?gacos 2 (ex)|Y + Wi = 0. (8.93)
It is sufficient to consider only the case ¢ > 0 without loss of generality. The potential
(8.92) is known as the Pdschi-Teller potential; see [126]. This potential was used to

study the vibron model of a molecular system and describe anharmonic effects in the
dissociation [105].
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Introducing a new variable z and new functions ¢, (z), instead of x and ¥ (x) in
(8.93),

z =sin?(cx), z € [0, 1],
1//()(7) — Z1/4+E#M/2(1 _Z)1/4+V/2¢§u (Z), E,u, = 41,

where

w=gi+1/4

ix, x=4/|g1| —1/4, g1 <—1/4,

B % &+ 1/4, g, > —1/4,

B ik, k =4/|g2| —1/4, g» < —1/4,

we obtain equations for the new functions,

= { Ve 174, g1 = —1/4.

V2 = g+ 1/4,

2(1 = 2)d2¢e, (2) + e, — (1 + g, + Be,)ldops, (2) — g, Be, e, (2) =0,
ag, = (1 +&pn+v+1)/2, B, =+ 5 +v—2)/2, yg, = 1 + &1,
w=W/c? =|wle", 0<¢ <21, A= |we*>. (8.94)

Introducing a new variable u and a new function ¢ (u) instead of x and ¥ (x) in

(8.93),
u=1-—z, ¥vx)=010- u)1/4+”/2u1/4+”/2¢(u)’

we obtain an equation for ¢ (1),
u(l = u)d;p@) + [y = (1 + ' + puldugp(u) — e/ B'p(u) = 0.
o =(1+p+v+0)/2, F=0+pu+v-21)/2,y =1+v. (8.95)

Equations (8.94) and (8.95) have hypergeometric functions F(«, B; y; z) as solutions;
see [20,81]. Using these functions, we can construct solutions of (8.93).
We use three solutions of (8.93) in what follows:

uy (x; W = 24021 — ) VAR F (o, Briyiiz) = un (65 W) |y
ur (x; W) = 24712 (1 = ) VAR (i, Bai i 2) = ua (63 W) |,y
Vi (x: W) = /421 — ) VAR F (g Briysil —2) = Vi (s W) s
where
= (4 ptv+a)/2 Br=(+pu+v—1/2,
w=>_0-pn+v+21)/2, fo=10-pn+v-2)/2,
n=l+p p=1-pu y=1+v
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We note that u, (x; W) = uy (x; W)|,_,_,,. There is a relation between these solutions:

_ F(V3)F(—M)u I'(y3)I' () ;
YT Tl By Tl By

We note that the functions u; (x; W), k = 1,2, are entire in W for any g; and g,. They
are real entire in W for g > —1/4 (u > 0), and up (x; E) = uy (x; E) for gy < —1/4
(u = ix). The function V; (x; W) is entire in W and real entire in W for g, > —1/4
(v = 0).

8.6.1 Rangel
In this range, we have
g=3/4(v=1).

The asymptotic behavior of special functions in solutions (8.95) are well known, see
[1,20,81], so that we can find their asymptotics.
As x — 0, we have

u (X W) = 15 (x) O (x2), uras(x) = (cx)V/2H0, 8.96)
uw(x; W) = u2as(x)0~(x2)’ Unas(X) = (CX)1/2_'M,

LONLG ) ()0 (x2), w> 1, g1 > 3/4,

Fla) (1)
. — I Ir'(— r r A
Vit ) = [ FEnT T s & T ”M(X)] 0, ®97

g1 <3/4, g1 #—1/4.
Asx — m/2¢c,v =m/2c — x — 0, we have

Vi W) = (en) >0 (%), ImW > 0,

Cy)re)

_— 1/2—v A2 _
Fanr@y e TI00), mW > 0o W =o0.

Ml(X;W) =

The above asymptotics allow us to obtain

Wr(uy, up) = —2uc, Wr(uy, V) = —w =—w(W).

(o) I (B1)

It is easily seen that

Vu € D5(0.7/2¢) = Y, Hyrae € L2(0,1/4¢) = Y € D50, 7/4c).
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Representing the potential (8.92) as V(x) = g1 x~2 + v(x), where v(x) is a bounded
function on [0, r/4c], we can treat ¥« (x) on the interval (0, 7 /4c] as a solution of the
equation

YL (x) + gix T (x) = (x), (x) = Hrw (x) — v(x) P (x) € L2(0, /4c).

Asymptotic behavior of such functions as x — 0 was studied in Sect.7.2, so that we
have

0(x*?), g1 # 3/4,

1//*()6) = Vi (X) + 0 (X3/2m> , 81 = 3/4,

0w, g #3
Yo (x) = ¥ (X) + 0 (XI/Z /1nx) . g1 = 3/4’

where

0, g1 > 3/4,
L) =1 e (kox)' P 4 oy (kox)' P g1 < 3/4, g1 # —1/4,
x4 e3x % In(kox), g1 = —1/4.

8.6.1.1 Subrange g, > 3/4, g1 = 3/4

We note that for g; > 3/4 (u > 1), the solution V; (x; W) is not square-integrable at
the origin, but for g; < 3/4, it is (moreover, any solution is square-integrable at the
origin). This means that for g; > 3/4, (8.93) has no square-integrable solutions, and the
deficiency indices of the initial symmetric Hamiltonian H are zero. This implies that
the operator H7t iss.a. and H 1 = = Htisa unique s.a. extension of H with domain
Dy, = DH (0,7/2c).

The general solution of inhomogeneous equation

(ﬁ—W)w — e L?(0,7/2c), InW > 0,
can be represented as
V(x) = au (W) +aa Vi W) + I W), I(x: W) = o Y(W)
x [ul(x; [ G Wy + Vi W) [ o W)n(y)dy}.

(8.98)
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Using the Cauchy—Schwarz inequality, we estimate that I(x) = O((7/2c — x)*?)
as x — m/2c (with logarithmic accuracy for g = 3/4). The condition V. €
L?(0,w/2c) implies a; = O for any g;. Similarly, we obtain 7(x) = O(x*/?) as x — 0
(with logarithmic accuracy for g; = 3/4) and the condition ¥ € L?(0, w/2¢) implies
a; = 0.

Thus, the Green'’s function of the operator H; has the form

_ Vi Wu(y; W), x >y,
Gx,y;W)y=w Yw
(632 W) N s Wi W), x < .
so that
M(xg; W) = G(xg—0,x0 + 0; W) = o L (W)uy (xo; W)Vi (x0; W).

Consider the guiding functional
w/2¢
PEW) = / ui(x; W)é(x)dx, &€ € D,(0,7/2¢) N Dy,.
0

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U = uy (U = V1), and therefore the spectrum of A 118
simple.

Following Chap. 5, we obtain the derivative of the spectral function,

_ _ . (x0; W)
o' (E) = 7' Im Q7N (E +i0), 20V) = o(W)220")
(E) ) 20) = e
Let E = —c?t2 < 0,7 > 0, A = it. In this case all the quantities u; (xo; E),

Vi(xo; E), and w(E) are real and finite, and w(E) # 0, so that o/(E) = 0.

Let E = c?p? >0, p > 0,1 = p.Inthis case 27 (E) is real except for the energies
where 2(E) = oco. The latter is possible only for 8; = —n, n € Z . Therefore, in this
case,

o' (E) = L Vilxe: E)I ()
2me uy(xo; E)(y1) I (y3) W=E

Im F(ﬂ1)|w=E+io~

Near the points f; = —nor 1 + u + v — A, = —2n, we obtain (using Lemma 5.17)
E—E, +i
W =E—-E,+is, ,81:—n—¢
4c?py
dwe?p
Im F(,Bl)|w=5+io = (=1)" n8(E - E,),

n!
M=po=14+pu+v+2n, E, =c>(1+ p+v+2n)2, (8.99)

T'(y)'(1 4w+ n)
I'(ys +n)I(y1)

Vi(xo; Ep) = (=1)" ui (xo; E,),
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and

\/2617” I'(yi+v+m)(y1 +n) (8.100)

0'(E) = Qi8(E = En), Q= [=7 r2(y)I(ys +n)

n=0

Finally, we obtain that the simple spectrum of H, reads spec H = {E,, n € Z4}.
The eigenfunctions U,(x) = Q,ui(x; E,), n € Z4, form a complete orthonormalized
system in L2(0, r/2c¢).

8.6.1.2 Subrange g, > 3/4,3/4> g1 >—-1/4, 1> pu >0
In this subrange, we have as x — 0,

Vs (%) = arugas(x) + aauzas(x) + O (X3/2) s
Yl (x) = aqul, () + axth, (x) + O (x'/?). (8.101)

Using the asymptotics of functions u; (x; W) and V; (x; W), one can verify that
[V, ¥s](/2¢) = 0. Using (8.101), we obtain A+ (V+) = —2uc(ara,—azay), which
means that the deficiency indices of H are my = 1. The condition Ay+(¢¥«) = 0
implies

ajcos =azsing, ¢ e€S(—n/2,1/2).
Thus, in the range under consideration, there exists a family of s.a. Hamiltonians I-AIM

parameterized by { with domains Dy, , that consist of functions from D’;? (0, w/2¢) with
the following asymptotic behavior as x — 0:

Y (x) = Cagas(x) + O (X*2) ¥/ (x) = CYj 4 (x) + O (x'1?),
V2,605 (X) = t1a5(X) $in & + upa5(x) cOS L. (8.102)

Therefore,

Diny = ¥ € D0, 7/2¢), ¥ satisfy (8.102)}

To obtain Green’s functions of the operators ﬁz,;, we impose boundary condition
(8.102) on the functions (8.98) (with @; = 0). Using asymptotics (8.96) and (8.97), we
obtain the coefficient a, and then, following Sect. 5.3.2, the Green’s functions

Gx,y: W) = Q7' (W) Us e (x; W)Us e (y: W)
1 Upe (s WU (9; W), x >y,

- - (8.103)
2uc | Ure(i; WYUp e (s W), x < y.
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Here

Us e (x; W) = ui(x; W)sing + up(x; W) cos g,
Us e (x; W) = uy (x; W) cos { — up(x; W)sin¢,

c wz.g(W)
D2 e(W)'

QW)= -2 Wy (W) = f(W)cos{ —sing,
(=) () I"(B1)

@y (W) = f(W)sin¢ +cos¢, f(W) = T (Ba)

and we used the relation
21cVy = @(W) [@2e(W)Us g + wr e (W)Ua ] .

The second summand on the right-hand side of (8.103) is real for real W = E. We note
that both U, ¢ and 172@ are solutions of (8.93) real entire in W, and the solutions U, ¢
satisfy the boundary condition (8.102).

Consider the guiding functional

w/2¢
DEW) = /(; Uz e(x; W)E(x)dx, & € D,(0,7/2c) N Dy, ,.

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = U, (U = U2 .£), and therefore the spectra of Hzg
are simple.

The derivative of the spectral function reads ¢’(E) = 7~ 'Im 27 '(E + i0). The
function 27! (E) is real for any E where £2(E) # 0. That is why only the points E,, (¢)
obeying the equation £2(E, ({)) = 0 can provide nonzero contributions to 6’ (E). Thus,

we obtain
0'(E) =) Q28(E = E, (£), Qu = —[2/(E, )],

where $2'(E, (£)) < 0.
Let us consider the extension with { = /2. Here Uy 5/2(x; W) = u;(x; W) and

Qmpe)” T'(y)I (o)
I'(y)I () (B2)

o/(E)=— Im I"(B)lw=g+io -

W=E

One can see that in this case the spectrum and inversion formulas can be derived from
results obtained in the previous subrange. Namely, here 0/(E) = >, o, N QX8(E —
&y), where &, and Q, are given by expressions for £, and Q, in (8.99) and (8.100)
respectively.

The same results hold for the extension with { = —m /2.
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For the extension with { = 0, we have U, o(x; W) = wup(x; W) and 0/(E) =
Zn€Z+ Q28(E — E, (0)), where E, (0) are determined by the equation 8, = —n, so
that

En(O):cz(l—M+v+2n)2>0,neZ+,

and the coefficients Q, read

0, — 2c(l—p+v+2n) Ty +v+n)(y2+n)
" n'I'2(y2) I (y3 +n) .

We note that £,(0) < &, < E,,+1(0) < E,41.
All these results coincide with those for the region g, > 3/4 if we substitute
by —pu.

For the extensions with |{| < /2, we can represent ¢’ (E) and the spectrum equation
as

o'(E)=Y 0},8(E~E,(©). Quu= \/ [2uerE @]

= Nmin

FENQ) =tanl, fr(W) = f(W)—tani, f'(E,()) > 0.
We note that
S(E) 5 o, f (& £0) = Foo, 8:E, () = [ f'(Ea(0)) cos® E]_l > 0.

Then one can see that for any ¢ € (—n/2,7/2), in each interval (£,—1,&,), n € Z 4,
there exists one discrete level E, ({) monotonically increasing from £,—; + 0to &, — 0
as ¢ goes from —n/2 + 0 to 7/2 — 0 (we set £_; = —o0). Furthermore, we find that
Nmin = 0. R R

Thus, the simple spectra of operators H, ¢ read spec H,; = {E,({), n € Zy}. The
eigenfunctions U, (x) = Q¢|,Us¢(x: E,(§)) of the Hamiltonian I-AIM form a complete
orthonormalized system in L? (0, 7/2c).

8.6.1.3 Subrange g, >3/4,g1=-1/4, 0 =0

In this subrange the solutions u;(x; W) and u,(x; W) are dependent (1; = up), so
that we are going to use solutions u;(x; W), usz(x; W), and V) (x; W) that are real
entire in W,
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uy (; W) = 240 = )V F (@, B 152), uz (x; W)

d
B @Zl/“rm(l — VAR By = s (W),
n=0
Vi (s W) =241 — )42 F (o, By 1 - 2),

a=aq,ax=01xv+1)/2, =B+, B=0F£v—-2)/2, y=1+0.

There is a relation between these solutions:

r
Vi (e W) = j (F) T (6 W) — F(ZT%M (W),
Sy 32T _ @+ v B
91 T@)T () o r@r

Asx > 0Oorx > 7 /2c the above solutions have the following asymptotic behavior:
Asx — 0,z = (cx)?>0(x?) — 0, we have
(v W) = 105 (1) O (¥%), wias(x) = (ex)'/2,
uz(xX; W) = uzas(x; W)O(xz), Uzas(X; W) = (cx)l/2 In(cx),

2I°(y)

_ _ 12 - —
Vi(x: W) = (cx) [1 W) I'(y) T @I'(B)

ln(cx)] O(x*Inx). (8.104)

Asx - m/2¢c,1—z= (cv)zé(vz) —0,z—> L,v=mn/2c —x,ImW > 0, we have

r'(v)
()" (B)

Vi W) = (ev) 2TV 0 ().

wy (x; W) = ()70,

Using the above asymptotics, we obtain

2cI(y)

Wr (uy,u3) = ¢, Wr(uy, V) = T(@I(B) B

—w(W).

The solutions u; and V; form a fundamental set of solutions of (8.93) for ImW # 0
and W = 0.

As was established at the beginning of this section, the functions ¥, € D;il (0,7t/2c¢)
have the following asymptotics:

l//*(X) = alulas(x) + a2u3as(x) + 0()63/2),

VL) = @] () + @il (x) + O(x'1?),
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as x — 0, and [y« ¥](w/2¢) = 0. Using these results, we obtain Ay+(Ys) =
c(aya,—aza;), which means that the deficiency indices of H are m4. = 1. The condition
A+ (¥s) = 0 implies

ajcost = apsind, ¥ € S(—n/2,7/2).
Thus, in the subrange under consideration, there exists a family of s.a. I-Alw parame-

terized by ¢ with domains Dy, , that consist of functions from DE(O, /2c) with the
following asymptotic behavior as x — 0:

Y (x) = C¥3.905(x) + O(x?1nx),
Y/ (x) = CYj yos(x) + O(x'Inx),
1;//'3.z9as(x) - ulas(x) sind + u3as(x) cos . (8105)

Therefore,

Dy, ={y € D3(0,7/2¢), ¥ satisfy (8.105)}.

Imposing the boundary conditions (8.105) on the functions (8.98) and using the
asymptotics (8.104), we obtain the Green’s function of the Hamiltonian H3 y,

Gx,y: W) = Q7" (W) Uz (x; W)Us g (y; W)

Us 5 (x; W)Usp(y: W), x >y,

8.106
e Usp (s W)U (vi W), x < 3, (8100
where
W)= M, w3 (W) = f(W)cos? —sin?,
@39 (W)

@39 (W) = f(W)sind +cosd, f(W) = v¥()/2+y(B)/2+C,
Usy(x; W) = up(x; W)sind + uz(x; W) cos 9,
03_19(x; W) = uy(x; W)cos? —uz(x; W)sind,

Vi W) = =20 ey (W) 3 W) -3 (W)U 3 W),

Usy and []3_19 are solutions of (8.93) real entire in W, U;y satisfies the boundary
condition (8.105), and the second summand on the right-hand side of (8.106) is real
forreal W = E.

Consider the guiding functional

BE:W) = /O Usp (v W)E(x)dx, & € D,(0.7/2¢) N D,
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One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U = Ui » (U U3 #), and therefore the spectra of A 3.9
are simple.

The Green’s function allows one to calculate the derivative of the spectral function,
0/(E) = 7~ ' Im 271 (E 4 i0). The function 27! (E) is real for any E where 2(E) #
0. That is why only the points E, (¢) that satisfy the equation £2(E, (4)) = 0 can
provide nonzero contributions to ¢’(E). Thus, we obtain

o/ (E) =" 05,8(E = E, (9)). Qppy = vV—2'(E, (9))~".

One can make some remarks on the spectrum structure. For the extension with =
/2, we have Us /> = uy, and

o'(E) = — Qre) ™ Im[y (@) + v (B)llwergiio-

For E = —c?t? < 0,7t > 0, A = i, the function [y (a) + ¥ (B)]|y— is finite and
real, so that we have 6/(E) = 0. For E = ¢?p?> > 0, p > 0, A = p, the function
V¥ ()| —p 1s finite and real, so that we have (denoting the spectrum points by &,)

o/(E)= Y 285/%8(E—&). & =c*(1+v+2n). nely .
nELy

The same results hold for the extension with ¢ = — /2. Note that the spectrum and
complete set of eigenfunctions can be extracted from the case g; > 3/4 in the limit
n— 0.

Let us consider extensions with || < /2. In this case,

o(E)y= 3 02,8(E—E,(9), Qop = y/—[ef{(E0D] ",

N =Tmin

fo(W) = fW) —tand, fy(E,(D)) = tan®, f(E,(9) = f'(Eg)a) <O.
The function f(E) has the properties f(E) (1/2) In(|E|) + O(1), and

F(E£0) = H00, n € Zp, Iy En(®) = [f{(Ex(®)) cos?] ™" < 0.

Thus, for any ¢ € (—n/2, 7/2), in each interval (§,—1,&,), n € Z, there exists one
discrete level E () monotonically increasing from &,—; + 0to &, — 0 as ¥ goes from
w/2—0to—m/2+0 (weset E_ (:I:n/2) —00). Funhermore we find that 7, = 0.

Thus, the simple spectra of H319 have the form spec H319 ={E,(9), n € Z4}.
The eigenfunctions U,(x) = Qy,Uss(x; Ey),) of each H3 » form a complete
orthonormalized system in L2 (0, /2c).
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8.6.1.4 Subrange g, >3/4,g1 <-1/4,u =ix, x>0

In this subrange, the functions ¥, € DI’g(O, 7/2c) have the following asymptotics as
x — 0O

Vs () = arunias(0) + aatizas(x) + 02,
YL(xX) = aruf, (x) + asuby (x) + O(x'?),
t1as(X) = ()27 s (x) = ()T = s ().

Using these asymptotics and the fact that [y, ¥«](r/2¢) = 0, we obtain A+ (V¥x) =
2ixc(aja; — ayaz), which means that the deficiency indices of H are m4 = 1. The
condition Ay +(¥x) = 0 implies a; = ¢*%a,, 6 € S(0, ). Thus, in the subrange
under consideration, there exists a family of s.a. operators H,g parameterized by 6

with domains Dy, , that consist of functions from DI’g(O, m/2c) with the following
asymptotic behavior as x — 0:

Y (x) = Cypus(x) + O(x?), Y/ (x) = CYf 4, (x) + O(?),
lr//4.9as(x) = eieulas(x) + e_iGMZaS(X) = w4,0as(x)- (8107)

Therefore,
Du,, = {1// € D%(0.7/2¢), ¥ satisty (8.107)}.

Imposing the boundary conditions (8.107) on the functions (8.98) and using,i the
asymptotics (8.96) and (8.97), we obtain the Green’s function of the Hamiltonian Hy g,

G(x,y: W) = Q7' W)Usp(x: W)Uy (y; W)

1 (Uso(x; W)Usp(y; W), x > y,

— ~ 8.108
4xc { Usog(x; WYUsp(y: W), x <y, ( )

where

Q2= 4izc‘f4~9—(W), wsg(W) =ela(W) +e (W),
W40 (W)

sg(W) =ela(W) —e b(W),
Uso(x: W) = eCuy (x; W) + e ur (x; W).
Usg(i; W) = i[euy(x; W) —e O up (x; W)),

@4 0(W wq9g(W) ~
Vi W) = %}f)we(x; W) — %Uw(x; w).
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We note that U g(x; W) and 04’9()(; W) are solutions of (8.93) real entire in W,
Uy g(x; W) satisfies the boundary condition (8.107), and the second summand on the
right-hand side of (8.108) is real for real W = E.

Consider the guiding functional

DEW) = /0 Usg(x; W)E(x)dx, £ € D, (0,/2¢) N Dyyp.

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect.5.4.1 with U = U,y (U U4 ¢), and therefore spectra of H4 g are
simple.

The derivative of the spectral function reads ¢/(E) = 7' Im 2~ '(E + i0). For
W = E,wehave b(E) = a(E), so that 2(E) = 4xc cot O(E), where

O(E) = 0 + f(E), f(E)= %[m(l + i) —In(l — )]
+ 500 (@) + In T (B2) ~In Te) ~In ().

Only the points E, (6) obeying the equation cot ®(E, ()) = 0, provide nonzero
contributions to ¢’ (E). Thus, we obtain

o'(E) =) 05,8(E — E, (6)), O(E, (6)) = w/2+7n, n € Z,

nez

Qo = \/(4xcO'(E, ()™, O/(E, 0) = f/(E, (6)) > 0.

The spectrum equation can be rewritten in the following form:
f(E,(0)=7n/24+7n(n—0/n), n €.
Taking into account that

—(x/2)In(JE|/c*) + O(1) - —00, E — —o00,

f(E) = .
7(E/4c*)V? — (x/2)In(|E|/c?) + O(1) = oo, E — o0,

we can see that for any 6 € [0,x), in each interval (E, (x) = E,—; (0), E, (0)],
n € Z, there exists one discrete level E, (6) monotonically decreasing from E, (0)
to E, 4+ (0) + 0 as 0 goes from 0 to 7 — 0.In particular, En 0) > E,—1 (0).

Finally, we see that simple spectra of H ¢ read spec H4 o ={Ex(0), n € Z}. The
eigenfunctions U, (x) = Qg Us¢(x; E, (0)), n € Z, of each H4,9 form a complete
orthonormalized system in L2 (0, /2c).
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We note that for g; < —1/4, the spectra of I-AI4’9 are unbounded from below. For high
negative energies, such spectra coincide with that of the Calogero problem with ¢ = g
and kg ~ c.

8.6.2 Range 2

In this range, we have
g < 3/4

In this range of g, and in the subrange g; > 3/4, all the results can be obtained from the

above results by substitutions x — 7/2¢ — x and g; <— g».

In the subrange g; <3/4 all the solutions are square-integrable and the deficiency
indices of the initial symmetric operator H are m4 = 2. We omit further analysis of
such a case because of the unwieldiness of the corresponding formulas.

We note that for any g; and g,, the spectra of any s.a. extensions are not bounded
from above and in the high positive energy limit asymptotically coincide with the energy
spectrum of a free nonrelativistic particle of mass m = 1/2 in an infinite rectangular
potential well of width [ = 7/2c.

8.7 ESP VII

In this case,
V(x) = 4c*[g) tan’(cx) + g tan(cx)], x € [—m/2¢,7/2c], (8.109)
and the corresponding Schrodinger equation is
V" — 4c?[g tan(cx) + go tan(cx)|y + Wy = 0. (8.110)

It is sufficient to consider only the case ¢ > 0 and g, > 0 without loss of generality.

8.7.1 Self-adjoint Extension and Spectral Problem

Let us introduce a new variable z = —e2“* and new parameters i, v, and A as follows:

K=+g —ig2+w A=y/g+ig+w g>0,
L=A=g1+w g=0w= W/4c2,
4g1 +1/4, g1 = —1/16,

ix, x = /4 g|—1/4, g1 <-—1/16,

V2 =dg, + 1/4.

<
I
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We note that the path —/2¢ = 7/2c of the variable x on the real axis corresponds
to the path 1 == 1 of the variable z in the complex plane along (counter-clockwise) a
circle |z| = 1 with the center at the origin.

In addition, we introduce new functions ¢, (z) instead of ¥ (x) in (8.110),

Y(x) = (% (1—2)"* T, (2). &, = £1. (8.111)

Then ¢, () satisty the following equations:

(1= 2)d2 e, (@) + [yg, — (1 + o, + Be,)ldops, (2) — g, Be, Bs, (2) = 0,
ag, = 1/2+Eu+v+A, Be, =1/2+5u+v—2~, v, =1+28,u, (8.112)

which have hypergeometric functions F(«, §; y; z) as solutions; see [1,20,81], and also
the appendix to this section.

Solutions of (8.110) can be obtained from solutions of (8.112) by the transformation
(8.111). In what follows, we use several solutions of (8.110). Two of them, u;(x; W)
and u, (x; W), have the form

w (W) = (=2 (1= 2) P TV Flan, friyis2)

- —%A(—z)"(l — )V Fay, Briys 1 —2)

+ %B(—z)"(l — ) VPV Flos, By 1 —2) = i (xs W)y
_rewris , _ remrys
I'(as)C(B3)’ INCOHINCHE
w (x; W) = (=) 7" (1 = 2P TV Flaa, Bo1 23 2)
C(=)7"(1 =)' Fla. Boryai 1 —2)
+ D(—2) (1 =)' > Flay, Baiysi 1 —2)
w (W) = w (S W)y s

_ T2 _ L) @2v)
F(a) I (Ba) I'()I(B2)’

AD 4+ BC =1, (8.113)

where
iy =1/2+pu+v+A Bo=1/2xu+v—A2,
asa=1/2xpu—v+A, fa=1/2£p—-v-2,
vig=1x£2u, y34=1x2v,
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and the function F(«, 8; y;z) is the analytic continuation of the hypergeometric series
in the complex plane with a cut along the real semiaxis x > 1 and is given, for example,
by the Barnes integral; see, e.g., [164] and the appendix to this section.

Note that all the points z: |[z] = 1, z # 1, belong to analyticity domains of the
functions (—z)%, (1 — z)%, and F(«, B;¥;z), so that u; (x; W) and u, (x; W) are indeed
solutions of (8.110) for x € (—w/2c, w/2c).

The asymptotic behavior of special functions in solutions (8.113) are well known;
see, e.g., [1,20, 81]. We use these asymptotics and we restrict ourselves by the range
0 <Imw < by,

by :min(th_, g2, 21@}{), t =/ «/5/8— 1/8,

which is enough for our purposes. Considering the strip 0 < Imw < by, where
P, Vi & Z—, k = 1,2,3,4,i = 1,2,3, we obtain the following: For x =
—n/2c¢ + 8,6 — 0, we have

" = [_ﬁAe—m(l/4+u+u/z>(zc8)1/2+u n ﬁBe—m(l/H—u—u/z)(2C8)1/2—u] 5(8),
v v
1y = [e_i”(1/4_"+”/2)C(208)1/2+” 4 e—im(1/4—p—v/2) D(265)1/2—v] 0(5).
For x = n/2¢ — 8,8 — 0, we have
"y = [_ﬁAein(1/4+ﬂ+u/2)(zc8)1/2+v i ﬁBein(1/4+ﬂ—v/2)(268)1/2—u] 0(8),
v v
1y = [Cei”(1/4_“+”/2>(2c8)1/2+” n Dein(1/4—u—v/2)(2C8)1/2—v] 0(5).

Regarding Wr(uy,u;) = —4iuc, solutions u; and u, form a fundamental set of
solutions of (8.110).

Another set of solutions of (8.110) with definite asymptotics at one of the endpoints
are solutions V; (x; W),

V, = =2 pelm(/A+utvi2, (o Wy 4 Bel /A2 (W) |
"

50 | [F1(2¢8)'2F" + P1(2¢8)!/>7"] 0(), x = m/2¢ =8
| 2e8)2H0@), x = —m/2¢ + 8 ’
e ™V cos(2m ) + eV cos(2mA)

Fiy = ie'™" (ADe*™ + BCe ™) = — (@)
si(Zmv

)

— dimp _ —impy _ 27" (2v) I (y3) .
Pr=—IBD (5 =) = R R B e [ B

solutions V5 (x; W)
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V, = —iDe_"”“/“*“”/”ul (x; W) + Be~im(W/A=ntv/2y (o) |
Q2e§)'2H0(6), x = /2¢ =6

v, 2
: [~ F(2¢8)/2+ 4 P1(2¢8)127] O(5), x = —7/2c + 8
'™ cos(2 ) + e~V cos(2mA)

)

Fy =ie”""" (ADe™*™ 4+ BC*™H) =

sin(27rv)

solutions V3(x; W)
v, = Kcein(l/4+u—v/2)ul (: W) 4 Aei VA== (e Wy,
m
s—0 | [F3(2¢8)/2F + F,(2¢8)'27"] 0(5), x = w/2c =
) 2e8)208), x = —1/2¢ + 8
27 '(=2v) I (y4)
(a3)C(B3) T (@) T (Ba)

’

Fy = —iAC (&7 —e27H) =

For these solutions, we have

Wr(V1, V3) = —dcv, Wr(Vy, V3) = —4cvP) = —o(W),
WI'(V3, Vz) = —4CVF2 = —U)Q(W),

Vol W) = = [0 )V W) = on W)V (33 ).

For gy = —1/16 (v > 0), all solutions V; are real entire in W, and for g; < —1/16
(v = —ix), they are entire in W and V3(x; E) = Vi(x; E).

The initial symmetric operator H associated with H is defined on the domain D H=
D (—n/2¢,7/2¢) and its adjoint H T on the domain Dy+ = D;il (—m/2¢,m/2c). The
solutions V; and V, form a fundamental set of solutions of (8.110) for Imw > 0. Taking
their asymptotics into account, one can see the following:

For g; = 3/16 (v = 1), (8.110) has no square-integrable solutions on [—7/2¢, 7r/2c],
so that in this region, the deficiency indices of H are zero, -which implies that the operator
Htissaand H = Ht isa unique s.a. extension of H.

For g < 3/16 (Rev < 1), any solution of (8.110) is square-integrable on
[=7/2¢,7w/2c], so that in this region, the deficiency indices are equal, m = 2, which
implies that there exists a U(2) family of s.a. extensions HU of H. Their study in detail
is an enormous problem. Below, we consider only the case g; > 3/16 in detail.

Asymptotics of functions ¥4« € Dg(—n/ZC, m/2c¢) as x — —m/2c can be
found with the help of the method used in Sect.8.6. First, we note that any ¥, €
D;il(—n/Zc, 7/2¢) belongs also to D;il(—n/Zc, 0); in particular,

Yu € DE(—7/2¢.7/20) = Yue, HYrie € L*(—7/2¢.0).
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Due to the fact that the potential (8.109) can be represented as V(x) = 4g,87% —
dcgr8™ ' +v(x), x = —m/(2c) + 8, where v(x) is a bounded function on the segment
[=m/2¢, 0], functions V. (x) can be considered on the interval (—x/2c, 0] as solutions
of the equation

— YL () + (421872 — dega8 TP (x) = n(x),
n(x) = Hra(x) —v(x)Ys(x) € L2(—7/2¢,0).

The asymptotic behavior of such solutions as § — 0 was studied in Sect.7.3.3. For
g1 > 3/16, we have

Vi (x) = 08Y?), Yi(x) = 0("?), § - 0 (x - —7/2¢),

with logarithmic accuracy for g; = 3/16.
In the same manner, we obtain for x — 7 /2¢

Y (x) = 0?), yi(x) = 0(8'?), 8 = n/2¢c) —x — 0,

with logarithmic accuracy for g; = 3/16. A
The Green’s function of the s.a. operator H; has the form

) - (x; WHVi(y: W), x >y,
Gy W) = o™ (W) % Vi W)Va (v W), x < y.

Let us consider the guiding functional

w/2¢
PEW) = / dxVi(x; W)E(x), § € D, (—n/2¢,7w/2¢) N D,

—/2¢

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect.5.4.1 with U =V (U = V5), and therefore the spectrum of H 118
simple.

The derivative of the spectral function has the form

Va(xo; E)

o(E) = Vi(xo: E)

Im[zw(E +i0)] " (8.114)

For v # n/2, the function V,(xo; W) can be represented as V5 (xo; W) = —F> Vi (xo; W)+
(w/4cv)V3(xo; W), so that expression (8.114) is simplified:

0'(E) = —Falw=g Im[rw(E +i0)] !

It is easy to see that ¢’ (E) is continuous in v, so that it is enough to calculate o’ (E) for
v # n/2 only.
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Because w(FE) is real, 0’ (E) can be nonzero only at the zero points of w(E), i.e., at
the points By = —n,n € Z4 (I"(B2) = 00), so that we obtain in the standard way,

()|l pnle™™ ™ | T(y3 +n)
"(E) = 2 En s n = | P
o (E) nEZZ:+ Qu5(Ew). Q I'(y3) 4wen! Re wy,

E, = c¢* [(1/2+n +v)? —4g —4g3(1/24+n + v)_z],

Mn = \/gl —ig+ En/4C2'

Thus, the simple spectrum of H, is given by spec H = {E,, n € Z4}. The set of
eigenfunctions U, (x) = Q,Vi(x; E,), n € Z4, forms a complete orthonormalized
system in L% (—m/2c, w/2c).

Note that the spectrum of H, coincides asymptotically (as n — o0o) with the spectrum
of the Hamiltonian of free non-relativistic particle with mass m = 1/2 in an infinite
rectangular potential well of width [ = n/c.

8.7.2 Appendix

The function F(e, f; y;z) is the analytic continuation of the hypergeometric series in
the complex plane with a cut along real semiaxis x > 1 and is given by the Barnes
integral; see [164]. We used three relations for the function F(«, §; y; 2):

Flo, Bsyin) =1 -2 FPFy —ay — Biy:2), (8.115)
IF'a+n+1HI'B+n+1)
') B)n+ 1!

xZ T Fla+n+1,8+n+1;n+22), (8.116)

: —1 Caye —
Jim () F (e Bryio) =

Fla,B;yi2)

roré-o, . o
_m( Z) F(l‘i‘(}t y,a,l_i_a ﬂ,Z )+((X ﬂ),
Fla,Bryiz) = F(V)F(y_a_ﬁ)f(a,ﬂ;l+a+/8—y;l—z)

I'y—a)l'(y—p)
royre+pg-y)
I'(@)I'(B)

(1= PFy —a,y—Bil+y—a—p;1-2).
(8.117)

For any complex u, the function u* is defined as the principal value of the power
function,

alnluleiqb,,a

U = |u|%' " = ¢ cu=ule'®, || < 7.
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The function u* is analytic in the complex plane u with the cut along negative real
semiaxis and obeys the following relations:

(1/uw)® =u™, wuf =T, W = @),

(—u)* (1 = 1/w)f = (—u)* P (1 —u)P.

8.8 ESP VIII

In this case,
V(x) = 4c*g  tanh*(cx) + 4cgr tanh(cx), x € R, (8.118)
and the corresponding Schrodinger equation is
Y — [4c’gi tanh*(cx) + 4’ grtanh(ex)| ¢ + Wy = 0. (8.119)

It is sufficient to consider only the case g, > 0, ¢ > 0 without loss of generality.

The potential (8.118) is known as the Rosen—Morse potential; see [134].

Let us introduce a new variable z and new functions ¢, instead of x and ¥ (x) in
(8.119),

e= 2l —tanh(en)], <€ 0.1], ¥ = 25401 - 91 )

L=Vgitg—w v=g—g—w A= /ag + /4, w=W/4c.

If Imw > 0, then

0 —if
LLgi— g —w=pe 7,

gi+g—w=pe”’
0<6,,0, <m,
n= me_ie‘/z, V= me_iGZ/z, Reu >0, Rev > 0,

P Vg +1/4, g1 = —1/16,
io, 0 =+/4lg1|—1/4>0, g1 <—1/16,

and ¢ (z) satisty the equation

(1 —2)d?¢y () + [1 £21 — (2 £ 21 + 2v)2)d. 4 (2)
—(12Ep+v+0)A2+pu+v—21) s (x) =0, (8.120)

which has hypergeometric functions F («, ; y; z) as solutions, see [1,20, 81].



366 8 Schrodinger Operators with Exactly Solvable Potentials

Solutions 1 (x) of (8.119) can be obtained from solutions of (8.120) by the above
transformations. We use solutions u; (x; W) and u, (x; W) in what follows,

u(x; W)y =21-2"F(a.B;y:2) = uy (x; W), _,,
w (s W) =z7"(1 —2)" Flay, Bi;yis2) = ua (s W) ys
a=124p+v+A, =1/2+pn+v—-21, y=1+42u,
v=al_y=12—p+v+A =0, =1/2-p+v—4A
=V =120 wp (W) =y (W),

Another set of sglutions can be obtained as follows. We introduce a new variable z;

and new functions ¢,

1
71 = 5 [1+tank(cx)] =1—2z z1 €[0,1],

Y) =41 —2)Fhs @),
The new functions satisfy the same type of equation (8.120),
a(l—2)d2 ¢y (1) + [1 £ 20 — 2+ 2p £ 2v)2)d;, by (21)
—(1/24+puxv+A)A/24+pn+v—21) by (z1) = 0.

In such way, we obtain two additional solutions of (8.119),

(W) =21 =2)"Fla. Byl —2), y2 = 1420,

v (W) =21 -2 "Flaz, faiysi 1 —2), y3 =1-2v,

ao=124u—v+A B=1/24+pu—v—A2A,

=)y =1/2—p—v+A, B3= B, :%—,u—v—)t,

vip (s W) = via (x: W) nxW)y=vix:W),-_,.

P>

There exist relations between the four solutions introduced (see [1,20, 81]),
_ Irinre2v) " I'(y)I"(2v) "

() (B2) rre) -

1“()/2)1“(—2@”1 F(V2)F(2M)u
I(a)I(B1) (@) (B)

These relations are useful for obtaining asymptotics of the functions #; and vi: As x —
00,z =e2*0(e™**) — 0, Im W > 0, we have

V) =

2.

u (x; W) = e_z”‘xé(e_z”) — 0,

vi(x; W) = —F(yz)F(2,u) XM O (e72) - oo.

F)re)
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Asx - —oo,1 —z = e_2C|X|O~(e_2C|"|) — 0,Im W > 0, we have

I'(y)I'(2v) 2eulx| A
rarp s 0

v (W) = e 2l g ey .

up (x; W) = 2y 5 o0,

For Im W > 0, solutions u; and v form a fundamental set of solutions because

2P ()
rrg

As usual, starting with the s.a. differential operation H , we construct the initial
symmetric operator H defined on the domain D (R) . Its adjoint H7 is defined on the
natural domain Dg (R).

Because the potential V(x) is bounded on R, |V(x)| < 4c*(|gi| + |g2l), the
asymmetry form A+ (¥4) vanishes on functions 4 from Dg R),

Wr (ul,vl) =

AH+ (W*) = [w*v l/l*]lo—ooo = 0’ Vl//* € D;_il (R)’

according to Theorem 7.1. This implies that the operator At issa,and H = HT
is a unique s.a. extension of H. On the other hand, any linear combination of the
fundamental set «; and v is not square-integrable at Im W # 0. The latter means that the
deficiency indices of H are zero, which matches the previous conclusion.

It is convenient to introduce two additional independent and real entire solutions of
(8.119), Ty (x; W), k = 1,2, for which

7700 W) = 84, kol = 1,2, Wi(T1.Ty) = 1.
One can see that
w (x; W) = w1 (0; WHT1 (x; W) + up (0, W) T (x; W),
vi(xs W) = vi(0; W)Ty (x; W) + v (0; W) Ta(x: W),
T W) = o~ (W) V(0 Wy (x; W) — il (0 W)v (x; W],
To(x; W) = o (W) [=v1 (0; W)y (x; W) + 1y (0; W)vy (x: W)).
The Green’s function of the operator H 1 has the form

u(x; Wvi(y: W), x >y,
i Wu (y: W), x < y.

This allows us to find the matrix My;(0; W),

G(x,y; W)= w“(W){

M (0; W) = 0™ " (W) K (W) + ((1) 8) .

Ku(W) = (m(o; W )uy (0; W) vy (0; W )it (0; W)) ’

vi(0; W)ui (0: W) v (0: W)ty (0: W)
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see Sect. 5.3.2, and the derivative of the matrix spectral function
oy(E) =n""Im[w (E +i0)Ki (E +i0)]. (8.121)

As the set of guiding functionals, we chose
O (W) = / dx T (v W) £ (x), € € D (R) N D(R).
R

Let E < 4c¢?(g1 — g»). In this case the functions K, (E) are finite and real and the
function w(E) is real. That is why only the points E obeying the equation w(E) = 0
can provide nonzero contributions to the right-hand side of (8.121). One can easily see
that the latter equation has solutions only for g; > —1/16. In that case, parameters «, y,
and y, are real and positive and  is real, so that

w(E)y=0=p=8,=—n,nely =

Van + Van +2g =4 —(n+1/2),

aw = g1 — g — E,/(4c*) > 0. (8.122)
It follows from (8.122) that
A—(@m+1/2)— a, +2g, >0,

O = 3= 1) -

m > 0. (8.123)

Finally, we obtain

2¢gy

2

En = 4C2g1 - (

One can verify that g, — g» — E,/4c? > 0, so that all the discrete levels are situated
below the continuous spectrum, which consists of the continuous levels £ > 4c2(g1 —
g2); see below.

Substituting E,, in the second inequality (8.123), we obtain n < A — /2g;, — 1/2.
This inequality implies that there exist ny,,x + 1 discrete levels, where

_ ) gl &> lsl. — - -
S I R

The condition g; > g>/2+ 4/ g»/8 provides the existence at least of one energy level.
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Using the relations

Vi W) = MMI(X;W) ,

I(a)I(B1) p=—n
ImI"(B) = (=1)"nb,6(E — E,) for E,41 < E < E,—y,
b — A—(n+1/2)
" ot Jana, 3 220
we obtain
oy (E) = . 51 - i2/2+ VeS8
Sk Q(E — Epenr ®enr, g1 > 82/2+ /82/8,

() I'(=2p)
2¢l (oy) | T(—n —2p)

2 —
w=bucy, ¢y =

s
E—E,

€nl = u1 (0; En)a €no = l/t/l (0; En)- (8.124)

It follows from (8.124) that in the range E < 4c?(g1 — g2), there can be only discrete
levels (if they exist).
Let 4c?(g1 —g2) < E < 4c?(g1 + g»). In this case y and y are real and positive, and

v=—iv], v = Vg —g + E/4c? vV =—v,
a,B#-—n,neZy, 0<|I'(y)| < oo,

_ o, g1 = —1/16, B2, g1 = —1/16,
o = =

B2, g1 < —1/16, o, g1 < —1/16.

In turn, this implies that u; = uy and w(E) # 0, co.
Let us introduce the notation

o T (EWi(x: E) = ¥1(x; E), Im¥y(x: E) = I(x; E).
It follows that Wr(uy,v;) = 1 = Im Wr(u;, V1) = 0, so that

I(x;E)  I'(x;E)

u(x;E) ) (x;E)’ (8.125)

Since u; and ] cannot vanish simultaneously, both sides of the relation (8.125) are finite
for any x and E.
Then we obtain

1(0; E)

01 (E) = p(E)er(E) ® ei(E), p(E) = 70 (0 E)’

el(E) = ui(0; E), ex(E) = uj(0; E),
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where p(E) is a smooth function of E, so that the spectrum of H 1 is continuous.
Let E > 4c*(g; + g»). For these energies we have

M= —l|//L|, |,U«| =JVE — 81— &2, V= —i|v|’ |v| — /|M|2 +2g2’
Ol,ﬂ,)/, V2 # n,ne Z+, CU(E) 75 0, oo,
and u; (x; E) and v; (x; E) form a fundamental set of solutions.
Then

K (E)
rw(E)

a/,(E) :Im[ } = pri(E),

where py; (E) are smooth functions of E, so that the spectrum of H | is continuous.
Finally, we obtain

spec /i [4c* (g1 — £2),00), &1 < €2/2 + v/£2/8,
1 =
[4c%(g1 — g2).00) ULE,,n =0,1,... . nmat. g1 > 82/2 + V/22/8.

We note that E, < 4c?(g, — g»); all the discrete levels are situated below
the continuous spectrum (and certainly above the minimum of the potential energy

—c*g3/81).
Inversion formulas for different ranges of parameters g; and g, are listed below.
Namely, for any ¥ (x) € L? (R), we have

(1) g1 =g/2+/8/8,
4c(g14g22)
o) = f O (E Y (x: E)p(E)AE
4c2(g1—g2)

o0
+ / @, (E)py; (E)T; (x: E)E.
4c2(g1+g2)

O(E) = /R u(v: Y (x)dx. 4c2(g1 — g2) < E < 4c>(g1 + g2).

() = / T,(c: EY()dx, E = 4c2(g1 + g2).
R
4c2(g14g2)
/ Iy ()Pl = / |®(E)P p(E)dE
R 4c2(g1—g2)

o0
+ f & (E)pyj (E)®; (E)dE.
4c2(g1+g2)
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2 g1>g/2+ Vg/8.

4c%(g1+g2)
V) = A S(E ) (x: E)p(EE

c2(g1—82)

[ele] Nmax
+f &:(E)py (E)T;(v: ENE + 3 02, (Eyus(x: E),
4c2(g1+82) n—0

O(E) = /R ur (s Y (x)dx, 4c2(g1 — g2) < E < 4c2(g1 + g2).
¢i<E)=/Ti(x;E)vf(x>dx, E>4c(gi +g0). i = 1.2,
R

®,(E) = / w1 (s (), 1= 0,1, . s
R

o] 5 4c%(g14g2) s
/ [y () 2dx = / (®(E)p(E)dEu (x: E)
—o0 4c2(g1—g2)

oo
+f & (E)pyj (E)®; (E)IE
4c2(g1+g2)

Nmax

+ > 0NBu(E)P.
n=0

The spectrum is twofold for E > 4c¢%(g; + g») and is simple for E<4c?(g; + £2)
(only the combination e, T; = u; enters the inversion formulas), in complete agreement
with physical considerations.

8.9 ESPIX

In this case

V(x) = 4c*[g) coth’(cx) + g» coth(cx)], x € Ry, (8.126)
and the corresponding Schrodinger equation is
" — 4c?[g; coth®(cx) + g» coth(cx)]y + Wy = 0. (8.127)

It is sufficient to consider only the case ¢ > 0 without loss of generality.

The potential (8.126) is known as the Eckart potential; see [52]. This potential is used
to describe effects involving all sorts of barrier penetration: tunneling, molecular barrier
permeability, and so on [29].

Introducing a new variable z and new functions ¢, ¢, (z), instead of x and ¥ (x) in
(8.127),
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z=1-e%"z€]0,1),
W(_x) = Z1/2+E#M(1 _ Z)Euv(ﬁ&_w&_v (Z)7 %‘M’ EV = :l:l’
where
2y/g1+1/16, g1 = —1/16
= , =4 1/4,
K= Vix, % = 2/Ta[ = 1716, g1 < —1/16 w=da+1/
= Ve +a—w=pie " g+ g —w=pe,

= V21— g —w= e % gl —gr—w=pe i,
w=W/4c®)=a+ib,b>0,0<¢,<m.

we obtain equations for the new functions,

(1 —2)d2 e, (2) + [ye, — (1 + ag, + Be,)2ldops, (2) — g, Be, e, (2) = 0
g = 1/2+&pu+v+A, Be, =1/2+&n+v—2~, v, =1+28,0
Solutions of these equations are the hypergeometric functions F («, 8;y;2); see [1, 20,
81].

Introducing a new variable # = 1 — z and a new function ¢, (1) instead of x and
¥ (x) in (8.127),

Y(x) = (1 =)' T g, (),

we obtain an equation for ¢g, (1),

u(l —wydy e, () + [vf, — (1 + oz, + Be,uldude, (u) — oz, B, ¢z, () = 0,
ag, =124+ p+Ev+A, Be, =1/2+pu+Ev -4, yi = 14250,

In what follows, we will use four solutions of (8.127):

w (i W) =221 = 2)" Flay, Briyiia) = w (x: W),
w (x: W) = 22711 = 2)" Flaa, Bai y2:2) = ua (x; W), s,
= (x; W),y
Vi (s W) =221 =) Fay, Briysi 1 —2) = Vi (x; W) s
Va (s W) =221 =) Flay Baryai 1= 2) = Va (i W),
= Vi W),y (8.128)
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where

ar=0aqp 4 =1/24p+v+A =44+ =1/2+pn+v-2,
w=a—4+=12—p+v+i fpo=p_4+=1/2—p+v-21,

g =04 =1/24p—v+A fs=p4-=1/24+pn—-v-2,
M=r+=142u yp=y—=1-2pu, p3=yL =1+2v, py=y. =1-2v.

There are relations between the introduced solutions:

_Tgorew) o Faor@y)

Fa)lBa) ' Tl )
INCAIA (—2M)u INCAIA (2M)u
M)l (B " Tnl )

2

Vi =

We note that the functions uy, k = 1,2, are entire in W; in particular, u;, k = 1,2,
are real entire in W for g; > —1/16 (u > 0), and up (x; E) = uy (x; E) for g; < —1/16
(1 = —ix).

The asymptotic behavior of special functions in solutions (8.128) is well known, see
[1,20], so that we can obtain their asymptotics.

Asx —0,z= ZCxé(x) — 0, we have

u (x; W) =20 @) = 2ex)/*TH0(x),
w(x; W) =2"2710(2) = (2ex)* 7 O(x).
ImW >0: Vi(x; W) =

FEBFGS ) /2710 (x), g1 = 3/16,

T(a) I (B1) (8.129)
FOAT(=2) 5 . 21/ COITCI) 12— ] :
[ Pt (200! A T 4+ TSR Qex)Y ﬂ] 0(x), g1 <3/16.

Asx > 00,1 —z=¢72% 50,7 — 1,ImW > 0, we have

F()/I)F(2V) 200X ) (a—2Cx
Fanrgn® € )
Vl (X; W) — e—2ucx0"' (e—ZCx) .

Ml(X;W) =

The above asymptotics allow us to obtain

2¢(y) I (y3)

Wr (ul,ug) = —4MC, Wr (Ltl, Vl) = — F(O{l)r(ﬂl) = —L()(W).

Thus, solutions #; and V; are linearly independent and form a fundamental set of
solutions of (8.127) for Im W # 0
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One can see that for g; < 3/16 (u < 1), the function V; (x; W) is square-integrable at
the origin (moreover, any solution is square-integrable at the origin), and for g; > 3/16
(u = 1), it is not. Thus, for g; > 3/16, (8.127) has no square-integrable solutions (for
Im W # 0), so that the deficiency indices of the initial symmetric operator H are zero.
For g; < 3/16, such an equation has only one square-integrable solution, V; (x; W), so
that the deficiency indices are m4. = 1.

As usual, starting with the s.a. differential operation H with the potential (8.126), we
construct the initial symmetric operator H defined on the domain D (R4). Its adjoint
H 7 is defined on the natural domain D;il R4).

8.9.1 Rangel

In this range, we have
g1 >3/16 (u > 1).

Let us study the asymptotic behavior of the functions Vs € Dg (Ry)asx — 0and
as x — oo. Such functions can be considered square-integrable solutions of the equation

Hye =€ L2 (Ry). (8.130)
Its general solution has the form
W*(X) =a1u1(x;0) + QQVI(X;O)

+ 0™ '(0) [ul(x;O)f Vl(y;0)+/ Vl(x;O)ul(y;O)] n(y)dy
X 0

(one can verify that yy, y2. o1, B1 # —n, n € Z4, so that ®(0) # 0 and u;(x;0) and
Vi(x;0) are independent). The condition ¥, € L?>(R) implies a; = a, = 0. Because
the potential (8.126) is bounded at infinity, we have [, ¥]|°® = 0 according to
Theorem 7.1.

The asymptotics of the functions ¥« (x) and ¥ (x) as x — 0 can be found by
estimation of integral summands with the help of the Cauchy—Schwarz inequality,

0(x%?), g > 3/16,
0(x3?/Inx), g, = 3/16,

O(x'/?), g1 > 3/16,
0(x'*/Inx), g = 3/16.

Pa(x) = {

VL) = {

Calculating the asymmetry form, we obtain Apy+(¥s) = 0, Vs € DZ(]R).

This result implies that the operator Htissa.,and H 1= Htisa unique s.a. extension
of H.
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To construct the Green’s function of the operator H 1, we consider, following
Sect. 5.3.2, the general solution of the inhomogeneous equation

(H-—W)y =ne L>(Ry), InW > 0.
Such a solution has the form
Y(x) = ai (W) +aVile W) + 1 W), 1 W) = o™ (W)

x[ul(x;W) / Vi W)n(ndy + Vi(x: W) /0 ul(y;W)n(y)dy]- 8.131)

With the help of the Cauchy—Schwarz inequality, we can estimate that both terms in
square brackets are bounded as x — oo, which implies a; = 0 for ¥y € L2(R4). As
x — 0, we obtain that /(x) ~ O(x?/?) (with logarithmic accuracy for g; = 3/16) and
Vi (x; W) is not square-integrable at the origin. Then ¥ € L?(R.) implies a, = 0.

Thus, the Green’s function of the operator H | has the form

Vi Wu(y; W), x >y,
u (x; WHYVi(y; W), x <y,

G(x,y; W) =
so that
M(x: W) = G(xg—0,x0 + 0; W) = o " (W)uy (xo; W)Vi (x0; W).

Form —1 <2u <m+ 1, m > 2, we represent Vi (x; W) as

Vi W) = AW e w) + 2y ew),
4uc
A En PO (r)
W)= ety T T rayrey

Vimy(x: W) = uo (x; W) — an (W) (y2)uy (x; W),

I (e + m)I" (B2 + m)
m!T (a2) I (B2) dp=m

am (W) =

Using the second relation (8.116), one can verify that all the functions V., (x; W) exist
for any W and for m — 1 < 2 < m + 1. Note that a,, (W) are polynomials in v? and
A2, and therefore in W, with real coefficients, so that a,,(E) are real and Vimy (x; W)
are real entire functions in W. One can also verify that A4,,(W) exist for any W and for
m—1<2u <m+1,and 4,,(E) are real. In addition, V{,,(x; W) are solutions of
(8.127) and

Wr(uy, Viny) = —4pc, Viny(x; W) = (ex)'*7* O (x), x — 0.
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Let us consider the guiding functional

DEW) = /0 dxuy (x; W)E(x). £ € D,(R4) N D,

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U = u, (U = V(m)), and therefore the spectrum of H 118
simple.

Following Chap. 5, we obtain the derivative of the spectral function,

o'(E) =1 _ N W) = Im B(E +i0),
rw(W)ui(xo; W) W=E~+i0
Am
B(W) = (W), m—1<2u<m+1. (8.132)
mTw(W)

Since B(W) is an analytic function of u, the value of Im B(W) at the point u = m/2
can be found as a limit u — m/2. For u # m/2, the quantity o’ (E) is essentially
simplified:

o'(E) = Ty Im27'(E + iO), Q- = INCRINTD)

drepnl (yr) I'(a) I (B2)

For E > 4c? (g) + g2) and v = —ip, p = \/E/(4c?) — g, — g2 > 0, we have

o'(E) = p*(E). p(E) = - ;‘j‘f‘}fy‘ﬁ‘” | nhmp) (8.133)

One can see that 0 < 6’(E) < oo for p > 0.If o/=2g, # 1/2+ u +n,n € Z4, then
o/(E) = Ofor p = 0.1f \/=2g; = 1/2+u+n, then o/ (E) has an integrable singularity
of the type ~ p~!, which means the absence of discrete levels for p = 0. This matches
the fact that (8.127) has no square-integrable solutions for E/4¢? = g| + g,. Thus, all
points of the semiaxis E > 4c¢*(g; + g) belong to the continuous spectrum of H,.

For E < 4c* (g + g2) and v = /g, + g2 — E/4c? > 0, the function 27 '(E) is
real for any E where §2(E) # 0. That is why only points E, obeying the equation

2(E)=0=p1+n=0,neZy4,
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can provide nonzero contributions to o/( E). Thus, in this case, we obtain

111 max

o'(E) =) OM(E — Ey),

n=0

0, \/ 4cv, A T(y1 + )T (y1 + 2v, + 1)

n'FZ(J/l)F(l + 2‘}11 + n) (An - Vn)’

An = V& — &2 — En/462 >V = V&l + g2 — En/462, (8134)

where E, are solutions of the equation

1/2+pn+ Vg + 8 — Ei/4c> — /g1 — g2 — E, /42 = —n. (8.135)

Equation (8.135) has solutions E, only if g, < 0 and 2|g,| > (1/2 + u)?. They are

2¢g>

2
m) — /24 (8.136)

En = 4czg1 - (
The number of all discrete levels is equal to 7.« + 1,

(8.137)

_ { [K], for [K] < K,
nmax -
[K]—1, for [K] = K,

where K=./2|g,| — 1/2 — 1. At least one discrete level exists for 2|g»|>(1/2 + ).
Finally, the simple spectrum of the operator H 1 is given by

spec 1:11 = g1+ g2,00)U{E,, n=0,1,...,0na}-
The (generalized) eigenfunctions

U(x:E) = p(E)u(x; E), E > 4c%(g1 + £2).
Up(x) = Quui(x: Ey), Ey <4c*(g1+ &), n=0,1,... Npax.

of the operator H, forma complete orthonormalized system in L? (R4.).

8.9.2 Range?2

In this range, we have

3/16 > g1 > —1/16 (1 > u > 0).
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In this range, it is convenient to introduce a new solution uz(x; W) of (8.127),

us(x; W) = ur (x; W) + %m(}c; w),

Vi W) = [A{(W) — Bi(W)]uy (x; W) + C (W )uz(x; W),
. () (2w - () I'2u)  o(W)
A = T er ) "M = Fary T aue
5 _ 28I'(2p) ~ _ 28I(y3)'(—2p)
B ==ran M = "ranrey

The solution u3(x; W) is real entire in W and the solutions u;, uz, and V; have the
following asymptotic behavior as x — 0:

U (x; W) = tta5(x) + O(x*?), upas(x) = Q2ex)#He,
us(x; W) = uzes(x) + 0(x¥?),

r 2
3 () = 2ex) 27 = 2, DU (g g2 %(2@6)3/2—“,
2

I'(y1)
Vi(xs W) = [A{(W) — By(W)]uas(x) + Cr (W )uzes (x) + O(x3/?).
Using the asymptotics, we obtain Wr(u, u3) = —4puc.

As for whether in the range under consideration, any solution of (8.127) is square-
integrable at the origin, we represent the general solution of (8.130) as follows:

Ve (x) = ajui (x:0) + azuz(x;0)

1 X
b [ [0 0:0 - w0 0s0)aay. 6139
e Jo

As in the previous section, here we have [V, ¥«]|° = 0.
The asymptotics of the functions ¥« (x) and ¥ (x) as x — 0 can be found by
estimating the integral summands with the help of the Cauchy—Schwarz inequality,

Y (X) = @1ttas(X) + Qattzs (x) + O(x/?),

Vi (x) = ayid), (x) 4 azd, (x) + O(x'/?). (8.139)

Using these asymptotics, we obtain Ay + (Y« ) —4pc(aax —aza, ), which means that the
deficiency indices of H are m4 = 1. The condition A+ (%) = 0 implies @ cos{ =
azsing, ¢ € S(—n /2, /2). Thus, in the range under consideration, there exists a family
of s.a. operators I-}z,; parameterized by { with domains Dy, that consist of functions
from Dg (R ) with the following asymptotic behavior as x — 0:
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Y (x) = Cagas(x) + O(*?), ¥/ (x) = CYJ 1 (x) + O(x'72),
WZ,Zas(X) = U1a5(X) SIN§ + uze5(x) cOS &, (8.140)

Therefore,
Dy,, ={y € DE(R+), ¥ satisfy (8.140)}.

Imposing the boundary conditions (8.140) on the functions (8.131) (with a; = 0) and
using asymptotics (8.139), we obtain the Green’s function of the Hamiltonian H, ¢,

G(x,y; W) = QW) Us e (x: W)Us e (y; W)
1 (O (x; W)Us e (y; W), x >y,

T | Un i O (W), x <y, OHY
Here
Us e (x; W) = ui(x; W)sin& + uz(x; W) cos ¢,
l72~¢(x; W) = u(x; W)cos ¢ —uz(x; W)sing,
wr(W) = M@%ﬂil(mco@— sin g,
s AW) = Bi(W) _4dpcay(W)
or(W) = —C’I(W) sin¢ +cos¢, (W) = o (W)

dpeco WV W) = (W)U e (x; W) + 0c(W)Us ¢ (x; W).

We note that U, ¢ and 172@ are solutions of (8.127) real entire in W, U, ¢ satisfies the
boundary condition (8.140), and the second summand on the right-hand side of (8.141)
isreal forreal W = E.

Let us consider the guiding functional

O W) = [ el W), £ DR ND

HZ-Z .

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = U, ¢ (U = l~]2~¢), and therefore the spectra of D, ,
are simple.

Using the Green’s function, we obtain the derivative of the spectral function, o’ (E) =
771 Im 271 (E +i0). We first consider the extension with ¢ = /2. In this case we have
Uz zj2(x; W) = uy (x; W), and in fact, the function £271 (W) is reduced to the function
B(W) given by (8.132) for u € (0, 1), namely, 7'~ (W) = B(W). Therefore, we
can use results obtained in the first range. Finally, we have for the simple spectrum of
the s.a. Hamiltonian 1312_7,/2,

spec Ha o = [g1 + £2,00) U{E 1 =0, 1, Hinax )
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where the discrete spectrum points &, are given by the right-hand side of (8.136) and
Nmax 18 given by (8.137). The set of (generalized) eigenfunctions

Up(x) = p(E)Uznpa(x: E), E = 4c*(g1 + £2).
Ui(x) = QuUs z0(x:€0), n = 0,1,..., lmay,
of I-Alzﬂ /> form a complete orthonormalized system in L? (R4.). Here p(E) and Q,, are

given by (8.133) and (8.134). For the case { = —/2, we obtain the same results.
Considering extensions with |{| < /2, we represent ¢’ (E) as

o/ (E) = (4mpc cos’ §)_l Im [T (E +i0), fy(W)= f(W)+ tang,

Lw) = BW) _ T(r) [r(almﬂl) - ]
(W) T [Tl By 2

Jw) =

For E > 4¢* (g1 + &), v = —ip, p = VE/(4?) — g1 — g2 = 0,and f(E) =
A(E) —iB(E), we have o/ (E) = p*(E) > 0, where

[I"(e2) " (B2)| /¢ " sinh (27 p)

— 2 _ _ 2 2
pE) = R o F B et BN = A(E) —tan P+ B(E),
_ 2
AB) = GG o
X (#|F(QI)F(ﬂ1)|2[COS(2nM) cos h(2mp) + cos(2mA)] — 2g2),
sy = MO@ITEE

al(yy)

For E > 4c%(g; + g»), the function p?(E) is finite. For E = 4c?(g; + g»), the function
p*(E) is finite if tan ¢ # A(4c(g1 + g2)), and if tan¢ = A(4c%(g; + g2)), we have
p*(E) — O(1/p) as E — 4c?(g; + g»), so that all E > 4c¢*(g, + g») belong to the
simple continuous spectrum of I-AIM.

For E < 4c%(g1 + 2), v = V& + g — E/4c? > 0, the function f;(E) is real,
so that o’ (E) differs from zero only at the points E,(¢) for which f;(E,({)) = 0.

Therefore,

=1/
0'(E) = ey Q(E — E, (). O = [~4uef{(E,@)] .
FUEN) <0,

where A = —1,0, 1, ..., nmax; See below.
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Finally, the simple spectrum of I-AIM is given by

spec Mz = [g1 + 82.00) ULE,(§). n € A}, En(§) < 4c*(81 + g2).
The set of (generalized) eigenfunctions

Up(x) = p(E)Ur(x;: E), E > 4> (g1 + g2).
Ui(x) = Q11U2.§(X;En(é—))a n=-—101,... "mna,

of I:Iz’; forms a complete orthonormalized system in L2 (R.).
Let us rewrite the spectrum equation as f(E,({)) = —tan , taking into account that

8 E,(©) = — [ f/(Ea©)cos’ ] > 0. f(E) 757 o,

and

(1) For2g, > —(1/2 4 w)*: f(E)is smooth for E € (—oo, 4c*(g; + g2) — 0);

(2) For2g, = —(1/24+ pu+ k), k e N: f(§, £0) = £oo,n =0,...,k—1, and
f4c (g1 + &) —0) = —o0;

(3) For—(1/2+pu+k+1)? <2gy < —(1/2+p+k)?, k € Z4: we have f(&,40) =
+oo,n =0,...,k.

Then some remarks to the spectrum structure can be made: In the region (1): there
are no discrete negative levels (nma = —2) for extensions with { € [{(), 7/2)), where
¢y = arctan f(4c>(g1 + g2)). Forany ¢ € (—7/2,¢()), there exists one discrete level
E_1(¢) (nmax = —1), which increases monotonically from £_; to 4c?(g; + g2) — 0 as
¢ goes from —m/2 4 0 to {g) — 0 (we set E_| = —00).

In the region (2): For any extension with { € (—mx/2,7/2), in each interval
(&n,Ent1),n = —1,0,... k — 1, there exists one discrete level E,({) (nmax = k — 1),
which increases monotonically from &, + 0 to &,41 — 0 as ¢ goes from —7/2 4 0 to
/2 —0.

In the region (3): For any extension with { € (—n/2,7/2), in each interval
(&n,Ent1),n = —1,0,... k — 1, there exists one discrete level E,({) (nmax = k — 1),
which increases monotonically from &, + 0 to &,41 — 0 as ¢ goes from —7/2 4 0 to
7/2—0. For any extension with € [{(), /2), there are no other discrete levels (nmax =
k —1). For any ¢ € (—m/2, {()), there is one discrete level Ex () € (&, 4c(g1 + &2))
(nmax = k) which increases monotonically from & + 0 to 4c*(gy +g2) —0as¢ goes
from —7/2 + 0 to g — 0.

Note that the relation

(11:71[1/2 En—l(é—) = ;_1)13/2 E, (é—) =&

holds if the level E, () exists.
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We stress that more explicit equations for the spectral function and the discrete
spectrum can be obtained for the extension with

¢ = arctan [2g:1 ()" ™' (y1)] -

8.9.3 Range3

In this range, we have
g1 =—1/16 (L = 0).

Here, we use the following solutions of (8.127),

up (W) =241 =2 Fla, B 152) = uy (xs W),y

ad
ug (W) = = (6 W)l st =/*1—2)"InzF (e, B: 1;2)
1 ©n=0; v, are fixed

ad
+7741 -2 77 Pl Bryidlux
w n=0; v,A are fixed

ug (x; Wl —,,
Vi W) =2"*1—2)"Fla.Biyil—2), e =aq, oy =1/2+ v+ 2,
B=B+. Br=1/2tv—-A y=yq, yp =142

The solutions u; (x; W) and uy (x; W) are real entire in W . The following relations hold:

a0 [T () (y2) ,
e W= 8“ |:F(O[2)F(ﬂ2) u W):|M=0; v,A are fixed
- - LW :
=Jj W) L(y)u (x; W) T @™ (x;W),
oy =2 [&} _ €+ (@) + (B
a“ F((X[)F(ﬂl) ©n=0; v, are fixed F(a)F(ﬂ) '

Below, we list some asymptotics of the introduced functions as x — 0 and x — ©00;
see [1,20,81]. 3
For x — 0,z = 2¢x0O(x) — 0, we have

u (x; W) = (2cx)1/20(x),
us(x; W) = (2ex)? Inex) O (x),

I'(y)

) _ /2] ; -
Vi W) = @ex) [1 W= Frare

ln(ZCx)] O(x). (8.142)
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Forx > 00,1l —z=¢e72% 50,z — 1, ImW > 0, we have

. _ F(ZU) 206X A (a—2Cx
u(x; W) = —F(a)F(ﬂ)e O(e ),
Vi(x: W) = e 2" 0(e ).
Regarding
Wr (ul,u4) = 26, Wr (ul, Vl) = —%}% = —w(W),

solutions u; and V; are linearly independent and form a fundamental set of solutions of
(8.127) forImW £ 0 and W = 0.

Because any solution is square-integrable at the origin in the range under considera-
tion, it is convenient to use the general solution of (8.130) in the form (8.138) with the
substitutions uz /4uc — —ug/2c and a,u3 — —asuy.

As in previous ranges, we have [/, ¥+]|° = 0 for functions ¥4 € DE(R.Q. Their
asymptotics as x — 0 are

Y (x) = @rigs (x) + aattses (x) + 02,
l//;(X) = alu/las(x) + azué/tas(x) + O(XI/Z)’
Uias(X) = (2¢x)"2, Ugas(x) = (2cx)? In(2cx).
Using these asymptotics, we obtain A+ (¥«) = 2¢(a@1a, —aza,), which means that
deficiency indices of H are m4 = 1. The condition A+ (¥«) = 0 implies a; cos { =
axsini, ¢ € S(—rrA/ 2,/2). Thus, in the range under consideration, there exists a family

of s.a. operators Hj; parameterized by { with domains Dy, that consist of functions
from Dg (R) with the following asymptotic behavior as x — 0:

Y (x) = Craes(x) + O (x**Inx), ¥/ (x) = CPly(x) + O (x'*Inx),
lr//3as(x) = ulas(x) Sillé‘ + u4as(x) cos E (8143)

Therefore,

Dipy, = {¥ € D} Ry). v satisfy (8.143)) .

Imposing the boundary conditions (8.143) on the functions (8.131) (with a; = 0)
and using the asymptotics (8.142), we obtain the Green’s function of the Hamiltonian
Hsg,

G(x,y; W) = Q7 (W)Us e (x; W)Us ¢ (y: W)
1 (Ts30(; W)Use(y; W), x > v,

. (8.144)
2¢ (Us (s W)Us e (y; W), x < y.
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Here

Usc(x; W) = uy (x; W) sin & + ug(x; W) cos ¢,
03@—()(; W) = ui(x; W)cos ¢ — uq(x; W)sing,
w3 (W) = j(W)I'(«)I"(B)cos & + sing,

w3 (W)
w3:(W)’

@3:(W) = jW)I (o) (B)sin¢ —cos¢, (W) =2c¢
200 WVi(s W) = @3 (W) Us ¢ (x: W) + 03 (W)Us e (x; W).

We note that Uz ¢ and l~]3~¢ are real entire solutions in W, U; ; satisfies the boundary
condition (8.143), and the second summand on the right-hand side of (8.144) is real for
real W = E.

Consider the guiding functional

O W) = [ AU W), £ DR ND,, .

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect.5.4.1 with U = Us (U = 03@), and therefore the spectra of Dy,
are simple.

Using the Green’s function, we obtain the derivative of the spectral function, o’ (E) =
7 ' Im 27YE +i0).

We first consider the extension with { = /2. In this case, we have U3 ;> = u; and

0/(E) = — 2re) " Im[y (@) + ¥ (B)lw=E+i0.

For E/4c* > gy — 1/16and v = —ip, p = \/E/(4c?) — g2 + 1/16 > 0, we have

sinh (2w p).
2¢ [cos h(2mp) + cos(2m )]

o'(E) =

It follows that
0 <0'(E) < o0, E>d4c(g,—1/16);
o' (4c*(g2 = 1/16) = 0, g2 # —(1/2+n)*/2;
o'(E) = 0(1/p) as E — 4c*(g2 — 1/16), g2 = —(1/2 4+ n)*/2,

i.e., all points of the semiaxis E/4c? > g, — 1/16 belong to the simple continuous
spectrum of H3 ;5.
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For E/(4c?) < go—1/16and v = /g, — E /4c% — 1/16 > 0, the function [y () +
¥ (B)]w=k is real if it is finite, so that 6’ (E) can be different from zero only at the points
where ¥ (B) is infinite, i.e., at the points 8 € Z_.

‘We obtain
n
— 4cv, A
o'(E) =Y Or8(E—&). Oy = Ly
n=0 An —Vn

where the spectrum points £, are solutions of the equation
B=1/24v,—A, =n, neZ_,
Vn = v |Wn| - |g2| - 1/165 An = \/|g2| + |Wn| — 1/16, E, = 4C2W”.

Such solutions have the form

el n+1/2 el n+1/2
Vp = - ) n — + )
Ar12 2 n+1/2 2
2 2
g n+1/2) 1
&, = —4c? — |, nezs.
" |:(n—|—1/2)2 T R

We see that for g, < —1/8, there exists at least one discrete energy level. For a given
g» < —1/8, there exist nyax + 1 discrete levels,

_ J[K]. K> [K]. — el
nmax—{[K]_l’ K:[K], K = 2|g2|_1/2

Thus, the simple spectrum of I-}3,ﬂ /2 1s given by
spec 1:13,71/2 =[g2—1/16,00) U{&,, n =0,1,..., Npax}-
The (generalized) eigenfunctions

Ug(x) = o/ (E)Us 1 )2(x; E), E > dc*(g2 — 1/16),
Un(x) = Q11U3.n/2(X;gn), & < 462(g2 - 1/16), n=01... "npx,

of the operator ﬁ;»,, /2 form a complete orthonormalized system in L? (Ry).

For the case { = —m/2, we obtain the same results.

We note that the solution of the spectral problem in the case under consideration can
be obtained from the corresponding solution for g; > 3/16, setting there u = 0.

Let us consider extensions with || < /2. In this case,

o’ (E) = (2mc cos? é’)_l Im f;_l(E +1i0),
fe (W) = f(W) —tang, f(W) = ¥(a)+ v () +2C.
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For E > 4c¢?(gy —1/16) and v = —ip, p = VE/(4c%) — g» + 1/16 > 0, we have

B(E)

o(E) =7 [(AE) — ¢ 1 BXE)] =

7 sinh(2m p).

A(E) =Re f(E), B(E) =—Im f(E) = cos h(2mp) + cos(2m )’

The function o’ (E) is finite and positive for any E > 4c?(g, — 1/16). If tan¢ #
A(4c*(go — 1/16)), then 0’ (4c?(go — 1/16)) = 0. If tan ¢ = A(4c%(gy — 1/16)), then
o’(E) — O(1/p) as E — 4c*(g, — 1/16). Thus all points of the semiaxis E/4c? >
g2 — 1/16 belong to the simple continuous spectrum of ﬁ;»,, /2.

For E < 4c?(g; — 1/16) and v = /g, — 1/16 — E/4c? > 0, the function f;(E)
is real, so that ¢’ (E) can be different from zero only at the points E, ({) that satisfy the
equation f;(E,(¢)) = 0. Thus,

o/(E) =Y QI8(E — Ex(0), Qu = \/ ey @]

neA

where fg(E,,) <0,and A = —1,0,1, ..., nyax; see below.

Finally, we have for the simple spectrum of the operator ﬁ;»;,
spec Hy; = [4¢*(g1 + £2).00) U{E,(§). n € A}

The (generalized) eigenfunctions

Ur(x) = Vo' (E)Us ¢ (x; E), E > 4c*(g2 — 1/16),
Up(x) = Q,Use(x; Ef (), E < dc*(ga—1/16), n € A,

of the operator ﬁ;y; form a complete orthonormalized system in L? (R4.).
Let us rewrite the equation for spectrum points E,(¢) in the form f(E,) = —tan{,
taking into account that

0 En(8) = —[f/(Ea(@©)cos2E] ™ > 0. f(E) "= o0,

and

(1) For g, > —1/8: f(E) is smooth on (—o0, 4c*(g, — 1/16) — 0);

(2) For2g, = —(1/2+k)* ke N: f(§,£0) = do00,n=0,....k—1, f(4c* (g2 —
1/16) — 0) = —o0;

(3) For —(1/2 +k + 1)? < 2gy < —(1/2 + k)’ k € Zy: f(E, £0) = +oo,
n=0,...k.
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Then some remarks on the spectrum structure can be made:

(1) For ¢ € [£0),7/2), o)), Loy = arctan f(4c?(g2 — 1/16)), there are no discrete
levels on the negative £ semiaxis (nmax = —2). For any ¢ € (—n/2,{()), there is
one discrete eigenvalue E_{(¢) (nmax = —1) monotonically increasing from £_; to
4¢%(gr — 1/16) — 0 as ¢ goes from —7/2 + 0 to {g) — 0 (we set E_; = —00).

(2) In each interval (§,,&,+1), n = —1,0,...,k — 1, and for any { € (—n/2,7/2),
there is one (nn.x = k — 1) discrete eigenvalue E,({) monotonically increasing
from &, + 0to &,41 — 0 as ¢ goes from —7/2 4+ 0to /2 — 0.

(3) In each interval (§,,&,+1), n = —1,0,...,k — 1, and for any { € (—n/2,7/2),
there is one discrete eigenvalue E,({) monotonically increasing from &, + 0 to
Ert1 —0as ¢ goes from —n/2 + 0to /2 — 0. For any ¢ € [{(), w/2), there are
no other discrete eigenvalues (nmax = k — 1). For any { € (—m/2, (), there is
one (nma = k) discrete eigenvalue Ey(¢) € (&, 4c?(g2 — 1/16)) monotonically
increasing from & + 0 to 4c?(g, — 1/16) — 0 as ¢ goes from -7/2 + 0 to {(g) — 0.

Note that the relation

lejj?/z E,—1(§) = (—1111}1/2 E, () =&

holds if the discrete level E, () exists for the corresponding ¢.

8.9.4 Range4

In this range, we have
g1 <—1/16 (u =ix, » > 0).
Because any solution of (8.127) is square-integrable at the origin in the range under
consideration, it is convenient to use the general solution of (8.130) in the form (8.138).
As in the previous ranges, we have [Y/«, ¥x]|°" = 0 for functions ¥, € DE(R.Q.
Their asymptotics as x — 0 are
I/f*(x) = alulas(x) + a2u2as(x) + 0(x3/2)5
YL(xX) = aruf, (x) + azuby (x) + O(x'?),
135 () = (262)'2F g (x) = (2ex)FT
Using these asymptotics, we obtain A+ (Y«) = 4ixc(a,a; — aa,), which means
that the deficiency indices of H are m = 1. The condition Ay+ (¥«) = O implies
a =e*%q,,0 S(0, 7). Thus, in the range under consideration, there exists a family

of s.a. operators Hy ¢y parameterized by { with domains Dy, , that consist of functions
from D;’; (R ) with the following asymptotic behavior as x — 0:

Y (x) = C¥ygas(x) + O(Y?), Y/ (x) = CY} g (x) + O(x'),
V.05 (%) = € u1as(x) + €7t (x) = Y4 gas(x). (8.145)
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Therefore,

Dag = {w € DE(R4). ¥ satisfy (8.145)} .

Imposing the boundary conditions (8.145) on the functions (8.131) (with a;= O)A and
using the asymptotics (8.129), we obtain the Green’s function of the Hamiltonian Hy g,

G(x,y; W) = Q27 (W)Usg(x; W)Usp(y; W)

l { 04’9()(7; W)U4,9(y5 W)’ X > Vs (8 146)

8xe | Usp(x: W)Uap(y: W), x <,

Here

Usp(x; W) = e%uy (x; W)+ e Oy (x; w),
Uso(x: W) = i[e P uy(x; W) — e %uy (x; W),

i i r r
wy (W) =e’a(W) +e"bW), a(W) = %’

i i r r
@sg(W) =ela(W) —e (W), b(W) = %,
7= 8i%cw4’9(W)

@4 p(W)’

4uVi(x; W) = g g(W)Usg(x; W) — iwgo(W)Uyg(x: W).

We note that solutions Uy g(x; W) and 04_9(x; W) are real entire in W, Uy g(x; W)
satisfies the boundary condition (8.145), and the second summand on the right-hand side
of (8.146) is real for real W = E.

Consider the guiding functional

P(E: W) = /0 dxUs s (x; W)E(Y), € € DR N D, .

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U = U, ¢ (U = Uw), and therefore the spectra of Dy, ,
are simple.

Using the Green’s function, we obtain the derivative of the spectral function, 0’ (E) =
7' Im Q7Y E +i0).

Forw = E/(4c¢?) > g1+ g andv = —ip, p = VE/(4c?) — g1 — g2 > 0, we
obtain

o'(E) = D - 1 b _ T @) (B)
8rxc(1+ D)(1+ D)’ 0T (@) (B)
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One can see that |[D| > 1 for p > 0,

2= cos h[2m(x + p)] + cos(2wA)

= 1 f 0.
cos h[2m(x — p)] + cos(2mA) Coere

|D

Thus, o/ (E) is finite and positive for p > 0 and can have an integrable singularity of the
type ~ p~! as p — 0 (for parameters that imply D| p—0 = —1), so that the spectra of
Iﬂﬂ on the interval R are simple and continuous.

For E/(4c?) < g1 + g2 and v = /g, + g2 — E/(4c?) > 0, we have

Q(E) = —-8xccot@(E), O(E) =0r(E)—0,
Or(E) = -1 ')~ In ()]
+ 500 (@) + I T (B2) ~In T(a) —In ().

Therefore o’ (E) can be different from zero only for energies E,(#) that satisfy the
equation cot ©(E, (0)) = 0. Thus, we obtain

o'(E) = Y QI(E — E,(0)). Qu = [~8xcO'(E,(6)] 7.
neN

O(E(9)) = m/2+ mn, O'(E,(9)) <0,

where N =nin, imin — 1, . . . ; see below.
Finally, we have for the simple spectrum of the operator Hy g,

spec Hyg = [4c?(g1 + £2).00) U {E,(0). n € N},
The (generalized) eigenfunctions

Ur(x) = o/ (E)Usg(x;: E), E > 4c*(g1 + g2).
Uy (x) = 0,Usg(x: E,(0)), E,(0) < 4c*(g1 +g2), n € N,

of the operator ﬁw form a complete orthonormalized system in L2 (R4.).
Some remarks on the spectrum structure can be made: Let us rewrite the spectrum
equation as follows:

Or(E,(0) =n/24+ra(n+6/n),

8- (En(0)) = O'(E,(8)) <0, dE,(0) = [0-(E.(0))] " <0. (8.147)
Taking into account that

Or(E) =xIn/|E|+ O(1), E — —o0,
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and 01 (4c%(g) + g2)) = Oro = m(no + 8) is a finite real number for any g, < —1/16
and g,, where ny = [0r¢/7], 0 < § < 1, we obtain the following:

(1) Forafixedn and 8,n + 6/7 > ng + 8, (8.147) has only one solution E, (0);

(2) For fixed 6 € (78, 7), in the energy interval (E,,(78)=4c*(g1 + &2), En,(7) =
E,,+1(0)), there is one eigenvalue E,, () monotonically decreasing from 4¢2(g; +
g2) —0to E, () + 0as 8 goes from 7§ + 0 to 7 — 0;

(3) Inany energy interval [E,(0), E, () = E,41(0)), n > no+ 1, for fixed 6 € [0, 7),
there is one eigenvalue E,(0) monotonically decreasing from to E, () + 0 as 6
goes from 0 to & — 0O;

(4) For 6 € (78, ), we have npy, = no;

(5) For 0 € [0, 6], we have nyi, = ng + 1;

(6) We have E,1(0) < E,(0), Vn, for any g, < —1/16 and g, so that the spectrum
is unbounded from below;

(7) For high negative energies the spectrum has the form

E, = —4cimlemnlx [14+0(/n)], n — oo,

where m = m(g, g2, 6) is a scale factor. The spectrum coincides asymptotically
with the spectrum of the Calogero model (for @ = g;).

8.10 ESPX

In this case
_ Vi+ Vacosh(2cx)

4 , x € Ry, 8.148
(x) sin h?(2¢x) *E Rt ( )
and the corresponding Schrodinger equation is
i+ V h(2
g — ALt Tacos ( Cx),/, LWy =0, (8.149)

sin h%(2¢x)

It is sufficient to consider only the case ¢ > 0 without loss of generality.
Let us introduce a new variable z and new functions ¢, (z), instead of x and ¥ (x) in
(8.149),

z=tanh’(cx), z € [0, 1), ¥ (x) = /T80 —2) e, (2). £, = £1,

V&1, &1 >0, i+t

H= ix, x = +/lgil, & <0, &= 16¢2

)

w=W/4c* = |wle'’, v = V/=w = /|w| (sin% —icos %) ,0<¢ <m (8.150)
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Then we obtain an equation for ¢, (2),

21 =2 d2 g, (2) + [y, — (1 + ag, + Be,)2ld- ¢z, (2) — o, Be, e, (2) = 0.
g, = 1/2+Epu+v+2A, By, =1/2+&u+v—A, y;, = 1+25,1,
0 Vl—Vz—I—Cz
A=) Ve 8220 =A-2re 8.151
i, Kk =+/|g|, g <0, &2 16¢2 ( )

Introducing the variable u = 1 — z and the function gf;gv (u) in (8.149),
Y(x) = (1 —w)/*Trb e (), & = +1, (8.152)
we obtain an equation for J)gv (u),

u(l = w)d; ge, () + [vf, — (1 + oz, + Be, ) ulduz, (W) — oz, i, fe, (u) =0,
ag, =124+ pu+Ev+A, e, =1/2+pn+Ev -4, yi =1+25v.  (8.153)
The solutions of equations (8.151) and (8.153) are the hypergeometric functions
F («, B;y:2); see [1,20, 81]. The solutions i (x) of (8.149) can be obtained from
solutions of these equations by the transformations (8.150) and (8.152).
We use three solutions of (8.149),
w (W) = 2/ = )" Flan, B yisa) = w (6 W)y
uy (x; W) = 24711 = 2)" Flag, Bas y2:2) = ua (x; Wl ——, .
Vi (s W) = /4T = 2" Fay, Brs v 1 —2) = Vi (x; W)l —p s

yo_ Poar2w Tl ew
' TGy T TG

(8.154)

where

ap=1/2xp+v+2A, fio=1/2xp+v-24,
Vie=1x2u, y3=1+2v.

We note that the solutions u; (x; W) and u, (x; W) are entire in W. They are real entire
inWforgy >0(u=>0),andu, (x; E) = uy (x; E) for g <0 (u = ix).

Using the asymptotics of special functions in solutions (8.154), see e.g. [1, 20, 81],
we obtain the asymptotics of the solutions. As x — 0, z = (cx)20(x2) — 0, we have

ur(x; W) = 2410 (2) = (ex) P21 0(x?),

w(x; W) =2/4710(@2) = (ex)' P 0(x?). g1 #0.
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T'(y3)I'2p) (CX)I/Z—ZM O~(x2), g1 > 1/4,

I'(a)I'(B1)
Vilx: W) = I'(y3)(=2p) 1/242 L) 2p) 1/2—2 A (+2 8.155
1 W) [ FamT (€022 4 G () M] 02, 13

g1 <1/4, ImW > 0.

Asx — +00,1 —z =4e72%0(e™2*) > 0,z — 1, Im W > 0, we obtain

. _ F(VI)F(ZU) 20X ) (a—20X
W& = S reorgn® 0

Vl (X; W) — 4ve—2vcx0~ (e—Zcx) ,

where we have used identity (8.117).
Regarding

2¢(y) I (y3)
Wr (1, uz) = —4pe, Wr(ur, V1) T By w(W),
the solutions u; and V; form a fundamental set of solutions of (8.149) for Im W > 0.

The initial symmetric operator H associated with H is defined on the domain D =
D(R4) and its adjoint H™ on the domain Dy+ = D;‘? R4).

We note that for gy > 1/4, u > 1/2, the solution V; (x; W) is not square-integrable
at the origin, but for g; < 1/4, it is (moreover, any solution of (8.149) is square-
integrable at the origin). This means that for g; > 1/4, (8.149) has no square-integrable
solutions, so that the deficiency indices of H are zero. For g1 < 1/4, this equation
has one square-integrable solution V; (x; W), so that the deficiency indices of H are
my = 1.

Let us consider the inhomogeneous equation

(H—W)y =neL*Ry), InW > 0.
Its general solution has the form
V() = aun (W) + @i W) + 1 W), 1@ W) = o™ (W)

« [ul(x;W) f Vil Wn)dy + Vi(x: W) /0 m(y:W)n(y)dy]

One can see (using the Cauchy—Schwarz inequality) that /(x) is bounded as x — oo.
The condition ¥, € L?>(R) implies a; = 0.

For g > 1/4, we have I(x) ~ O(x*?) and I'(x) ~ O(x'/?) as x — 0 (with
logarithmic accuracy for g; = 1/4), and V;(x; W) is not square-integrable at the origin.
Then the condition ¥ € L?(R4.) implies a; = 0.

For g; < 1/4, it is convenient to represent ¥ (x) as follows:
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V@) = aaVi (6 W) + o~ (W (x: W) /0 Vi Wn)dy + 1, (e W),
L W) = o™ (W) [Vl(x; W) /0 i (v Wn(y)dy
o fo Vl(y;W)n(y)dy]. (8.156)

Here, using the Cauchy—Schwarz inequality, one can see that /1 (x) ~ O(x*?) and I{(x)
~ O(x'?)as x = 0.

Let us study the asymptotic behavior of functions ¥, € DZ (R4)asx — 0 and as
x — 00. Such functions can be considered square-integrable solutions of the equation

Hy =ne LX(Ry) = (H —W)ys = i1, fi=n— Wi € L*(Ry).  (8.157)

Then, according to Theorem 7.1, we obtain [« ¥«]|°° = 0, Vs € DZ R4).
The aymptotics of the functions ¥« (x) and ¥/ (x) as x — 0 are as follows: For
g1 > 1/4, we have

Va(x) = 0, YL (x) = 0(x"?), x -0

(with logarithmic accuracy for g; = 1/4; see below).
For g < 1/4, we use the general solution (8.156) and estimates I;(x) ~ O(x*/?)
and I/(x) ~ O(x'/?) as x — 0. Then
O(x*?), g1 #1/4,
0(x**\/Inx), g = 1/4,

O(x'?), g1 #1/4,
O0(x'?VInx), g = 1/4,

W*(X) = w*as(x) +

‘/f;(x) = w;as(x) +

0, g1 > 1/4,

Vias(X) = (8.158)
o ai(cx)'2 2 gy (ex)V/P721 ) g < 1/4.

As usual, starting with the s.a. differential operation H with the potential (8.148), we
construct the initial symmetric operator H defined on the domain D (R4). Its adjoint
HT is defined on the natural domain D;il R4).

8.10.1 Range 1

In this range, we have
g1 > 1/4(n>1/2).

Here Ay +(¥«) = 0. This means that the operator At issa,and H = Ht isa
unique s.a. extension of H.
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Consider the guiding functional

B(E: W) = /0 douy (x; WIE(X), § € D,(R1) N D,

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect.5.4.1 with U = u, (U is any solution of (8.149) with Wr (ul, U) =

1), and therefore the spectrum of H 118 mmple.
The Green’s function G(x,y; W) of H| and the derivative 6/(E) of the spectral
function have the form

_ Vi Wu(y; W), x >y,
Gx,y:W)=w"'(W %
(o) TV s e w). x < .
Vi(xo; W)

’ — ! —
o(E)=m Im[w(W)ul(XO; W)]W=E+i0 '

Form—1<2u<m+1,m > 1, we have

Vi W) = o)

I(ys)I"(=2p) _i_am(W)F(%)F(zM)F(Vz)’
I'(e2) I (B2) ()" (B1)
Viy (W) =z (s W) — am (W) I (y2)ur (x; W),
(o +m)["(Br + m)

m\C(e)l(B2)  ymm

An(W) =

an(W) =

As follows from (8.131), the function V) (x; W) exists for any W and form—1 < 2u <
m + 1. Note that a,, (W) are polynomials in v2and A2, i.e., in W, with real coefficients,
so that a,, (E) are real and V{,,)(x; W) are real entire functions in W It is a simple task
to check that functions A,,(W) exist for any W and form — 1 < 2u < m + 1, and
Ap(E) are real. As a result, we obtain

(W)
Am (W) '

Since 27!(W) is an analytic function of 4, its values at the points u = m/2 can be
found as a limit u — m/2. Then ¢’/ (E) for ;1 # m/2 has the form

I'(y2)
drepl (y1)

o’(E) =7 " Im .(2_1(W)|W=E_H0, QW) = m—1<2u<m++1.

T (a2)I"(B2)

o'(E) = - T (B)

Im 27 W)y 21(W) =
For E = 4czp2 >0, p>0,v=—ip, we obtain

IF(m)F(ﬂl)I)Z -0

o'(E) = ¢ 'sinh(2np) ( 211 (y1)
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The function o’ (E) is finite and positive for £ > 0. It is finite and positive for £ = 0

if A # 1/2 +n,n € Z4, and has an integrable singularity of the type O(E~"/?) if

A=1/2+n,n € Z4,sothatall E € Ry belong to the continuous spectrum of H,.
For E = —4c%t> < 0,7 > 0, v = 7, the function £2;(E) reads

FA/2—p+t+MFA/2—pn+1—A)
Fra2+u+t+M0)rA/24+pu+t-21)°

2(E) =

If g < 0, then 2, (E) is finite real number for all 7 (for all E < 0) and 6/ (E) = 0,
and the negative spectrum points are absent.

If g» > 0, then £2]"'(E) can have nonzero imaginary part at the point where B, =
124+ p+1t—A=—n,ne’Zy,ie., for energies

E,=—4c (0 —p—n—1/2) = —4c (Vg1 — /&1 —n —1/2)".

The derivative of the spectral function has the form (there exist np,x + 1 discrete
levels)

Mmax 4CTnF(y1 + n)F()/1 + 2‘Eﬂ + n)
’ E = 28 E - En ’ n = ’

where

_(IK], K > [K],
”’“*‘*‘{[Kl—l,Kz[Kl,

K=l-—p—1/2=Jg — /g1 —1/2.

Thus, there exists at least one discrete level (. > 0)if go > (1/2 + /g 1)2.
Finally, the simple spectrum of the operator Hi is given by

spec ﬁl =Ry U{E,, n=0,1,... 0na}-
The (generalized) eigenfunctions
Ux:E) = Vo' (Eyu (x: E). E 20,
U,(x) = Quui(x;Ey), E, <0, n=0,1,... A,

of the operator H, forma complete orthonormalized system in L2 (R4.) .

8.10.2 Range 2

In this range, we have

1/4>g,>0(1/2>p>0).



396 8 Schrodinger Operators with Exactly Solvable Potentials

Using asymptotics (8.158), we obtain in the range under consideration:
Ay+(Ys) = —4uc(aja, — aza;). This means that the deficiency indices of H are
m4 = 1. The condition A+ (Y«) = Oimpliesa; cos{ = aysing, ¢ € S(—n/2,7/2).
Thus, in this range, there exists a family of s.a. operators I-AIZ_; parameterized by
{ € S(—n/2,7/2) with domains Dy, that consist of functions from D;(R.,.) with
the following asymptotic behavior as x — 0:

W(X) = CI/IZ.Zas(x) + 0()63/2),
Y/ (x) = CYj 40 (x) + O(x'7?),
Vo as(X) = (ex) /22 sin ¢ + (ex)V/>7 2 cos é. (8.159)
Therefore,
Dy, = {w € D% (Ry), v satisty (8.159)}.

Imposing the boundary conditions (8.159) on the functions (8.156) and using the
asymptotics (8.155), we obtain Green’s functions of the Hamiltonians H ¢,

G(x,y; W) = Q7 W)Uz (x: W)Us(y; W)

L O (s W)U (3 W), x >y,
duc % Us ¢ (x; W)UQ@-(X; W), x < y. (8.160)
Here
Us e (x; W) = ui(x; W)sin§ + up(x; W) cos ¢,
Us e (x; W) = uy (x; W) cos { — up(x; W)sin¢,
dpc[f(W)cos { +sind] I'(y) I ()" (B1)
W) =-— Wy= ——"—"—""""-" 8.161
W =="Fwyinc—ont " T Foorergy ¢V

Vi(s W) = @, (W)U e (x; W) — 03d(W)Ua ¢ (x; W),
w2t (W) = q1(W)cos { + q2(W)sing,
@2 (W) = q(W)sing — ga(W)cos ¢,

T(y) I (=2p) (W) = Ly ep _ oW)
Ma)(By) " ™ Fnl(B)  4pe

aWw) =

Note that U, ; and 02_5 are solutions of (8.149) real entire in W, U, ; satisfies the
boundary condition (8.159), and the second summand on the right-hand side of (8.160)
is real for real W = E.

Consider the guiding functional

HZ,{ :

B(E W) = fo dxUs (x; W)E(x), § € D,(R4) N D
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One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect.5.4.1 with U = U, (U = U2 .£), and therefore the spectra of Hzg
are simple.

The derivative of the spectral function reads 6/(E) = 7~ ! Im 27 '(E +i0).

We first consider the extension with { = /2. In this case, U, ,/» = u; and

o'(E) = —(4npc) ' Im f(E + i0).

We can see that the spectrum and inversion formulas coincide with those in the first
region for 0 < g; < 1/4 (0 < w < 1/2). In particular, the energy levels E,[,—,/, = &,

Er = —4c2(J82 — VBT~ 1/2=m* n = 0.1 i,

[Kn/2] s KJT/2 > [Kn/2] s
n = Kyp =48 — V&g —1/2.
U [Kapp] = 1 Kapp = [Kapa] .

and the levels &, exist only for g, > 0, /g2 — /&1 > 1/2.

We obtain the same results for the case { = —n/2.

Let us consider the extension with { = 0. In this case, U, r/» = u and 0/(E) =
(4mpe)™ Im f~Y(E + i0). Here, the spectrum and inversion formulas coincide with

those in the first region if we replace j by —. In particular, the energy levels E,[,—, =
E, (0) are

En (0) = _462(\/5_‘_ Vgl - 1/2_’1)27 n = 0717---7nmaXs

_ | [Kol. Ko > [Ko]. _ _
Nmax = [K()]—l, K()=[K0], KO—\/E‘F«/E 1/2a

and the levels E, (0) exist only for g, > 0, ./g> + /g1 > 1/2.
Let us consider extensions with || < /2. For such extensions, we have

o/(E) = Im[4rpc cos* {fr(E +i0)] Z O28(E — Ey (©)).

neA

0, = e cos ¢/ (E, )", £/(E, (©)) <0,

where A = {0, ..., nmx}, see below, and

f:(W) = f(W) +tan, f(E, ()= —tang,
0Ey (8) = —[f/(Ey () cos*t] ™ >0

The function f(W) is given by (8.161). One can see that f(E) is real; f(E) — oo as
E — —oo; if there exists a level &,, n € Z4, then the level E, (0) exists as well, and
E, (0) < &;; if there exists a level E, 4 (0), n € Z4, then the level &, exists as well,
and &, < E, 4+ (0).
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Then we obtain the following:

(1) Letg, <0org; >0,./g < 1/2+ ,/g1. Here the function f(E) is monotonically
decreasing and smooth for £ € (£—1,0) (we set E_; = —o0). For ¢ € [y, 7/2),
{y = —arctan f(—0), there are no negative discrete energy levels (. = —1);
for any ¢ € (—m/2,¢;), there is one discrete level Eg ({) (nmax = 0), which
monotonically increases from £_; + 0 to —0 as ¢ goes from —m/2 to {; — 0.

(2) Let /g2 — /&1 = 1/2 + k, k € N. Here, we have f(§, £0) = oo, n =
0,....k — 1, f(—=0) = —oc. For any fixed { € (—x/2,7/2), in each interval
(En=1,&1),n =0,...,k (here we set & = 0), there exists one discrete level E,, ({)
(Mmax = k), which monotonically increases from &£,—; + 0 to £, — 0 as ¢ goes from
w/2—0to—m/2+0.

3) Letl/2+k <pu+A<1/2+k+ 1,k € Z4.Here, we have

F(E£0) =200, 1 =0,....k, |f(—0)| < co.

For any ¢ € (—m/2,7/2), in each interval (£,—1,&,), n = 0,...,k, there exists one
discrete level E, ({), which monotonically increases from &,—; + 0 to &, — 0 as ¢ goes
from —7/2 4 0 to 7r/2 — 0. For any { € [{1,7/2), there are no other discrete levels
(Nmax = k). For any ¢ € (—n/2,{;) there exists one discrete level Ex1; () € (&, 0)
(Mmax = k + 1), which monotonically increases from & + 0 to —0 as ¢ goes from
—n/240to ¢ —0.

8.10.3 Range 3

In this range, we have
gr=pn=0.

Here, we use the following solutions of (8.149):

up (s W) =241 —2)" Flo, Bs 152) = wy (s W)y

0
uz (x; W) = @ [”1 (x5 W)|u;é0]#=o; VA are fixed

=7/*(1=2)"InzF(a, B:1:2)

d
+ 21 =2)" o Flen, Bri v 9o = u3 (s W),y
1% n=0; v,A are fixed

Vi W) =241 =2 F(a,B:y:1—2), a =aq, ap = 1/24+v + A,
B=B+ Pr=1/2£v—A y=y4, yp =1%2.
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The solutions u; (x; W) and uz (x; W) are real entire in W. The following relations
hold:

| I'(y3)I'(y2)
VixiW)=——| ———5>— W
1 W) =—3 |:F(a2)F(ﬂ2) e ) l‘5‘é0:|u=0: o
_ LW .
=j W) I (y)ur (x; W) Tl ®™ (xs W),
i) = 9 I'(n) _ 2+ Y@ +v(B)
a“ F(al)r(ﬂl) 1=0; v\ are fixed F(O‘)F(ﬂ) '

Below, we list some asymptotics of the introduced functions as x — 0 and x — oo;
see [1,20,81]. ~
As x = 0,z = (cx)>O(x*) — 0, we have

u(x; W) =27740(z) = (ex)'?0(x?),
u3(x: W) = 2/ (In2) O(zInz) = 2(ex)"*(Inex) O (* In.x),

I'(y)

. _ /2| —
Vi(x: W) = (cx) [1 W) I'(y) -2 T (B)

ln(cx)] O(x*Inx). (8.162)

Asx > 00,1 —z= 4e_2C"O~(e_2cx) —0,z— 1, ImW > 0, we have

Vl (X; W) _ 4ve—2vcx0~ (e—ZCx) .

I'(2v)

20X M) (a—2cx
rwrg” 7

u(x; W) =

We stress that V; (x; W) is square-integrable at the origin.
Since
2cl'(y)
r@re)

the solutions #; and V; form a fundamental set Im W # 0 and W = 0.

Let us study asymptotics of functions 4 € D;‘? (R4)asx — 0and as x — oo. Such
functions can be considered square-integrable solutions of (8.157) with the following
asymptotics as x — 0:

Wr (ul,ug) = 26‘, Wr (Ltl, Vl) = —a)(W),

Vs (X) = Yos(x) + O(x*? Inx), ¥l (x) = ¥/ (x) + O(x'*Inx),
Vas(X) = a1 (ex)"? + 2a>(cx)"/? In(ex).

As in the previous ranges, here we have [, ¥«]|” = 0 and Ay+ (Yy) =
2c(aja; — azay), which means that the deficiency indices of H are m4 = 1. The
condition Ay +(¥x) = 0 implies a;cos¢ = apsing, { € S(—n/2,7/2). Thus, in
the range under consideration, there exists a family of s.a. operators I-AI3~¢ parameterized
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by ¢ with domains Dy, that consist of functions from DZ(]R.,.) with the following
asymptotic behavior as x — 0,

W(X) = Cl//3.{'as(x) + 0(X3/2 IIIX),
‘///(x) = CI//?:,g'as('x) + O(.xl/2 lnx),
V3gas(x) = (ex)"?sin¢ +2(cx)"? In(ex) cos &. (8.163)

Therefore,

Dy, = {y € D3 (Ry), ¥ satisfy (8.163)}.

Imposing the boundary conditions (8.163) on the functions (8.156) and using the
asymptotics (8.162), we obtain the Green’s function of H3 ¢,
G(x,y; W) = 27 (W)Us ¢ (x; W)Us ¢ (y; W)

1 Use(x; W)Us ¢ (y; W), x >y,

(8.164)
2c (Use(x: W)Uz (s W), x <y,

where

2cwz (W)

@3c(W)
w3 (W) = f(W)sinl +cosg, f(W) =2C+ ¥ (a) + ¥ (B),
Use(x; W) = uy(x; W)sin& + uz(x; W) cos ¢,

QW) = w3 (W) = f(W)cos{ —sing,

[]3_(()6; W) = u(y; W)cos ¢ —uz(x; W)sin(,
2e0 ' WHVi(x; W) = 03 (W)Use(x; W) — w3’;(W)l~]3~¢(x; w). (8.165)

We note that U ; and l~]3~¢ are solutions of (8.149) real entire in W, Us ¢ satisfies the
boundary condition (8.163), and the second summand on the right-hand side of (8.164)
isreal forreal W = E.

Consider the guiding functional

(o)

B(E: W) = /0 dxUs(x: W), § € D,R4)N D, .
One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U = Uz, U = 03’;), and therefore the spectra of I-AI3’;
are simple.

Using the Green’s function, we obtain the derivative of the spectral function, 6’ (E) =
7' Im Q7Y E +i0).

Let us consider the extension with { = /2. In this case, we have Us ;/2(x; W) =
uy(x; W), and
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1
0'(E) = —— Im [y (@) + V(B)lw=g+i0-

2mce

For E = 4c¢*p?> >0, p > 0, v = —ip, we have

sinh (2w p).

o'(E) = 2¢ [cos h(2mp) + cos(2mA)]

(8.166)

The function (8.166) is finite and positive for £ > 0; if A # 1/2 +n,n € Z4,
0’(0) =0;if A = 1/2+n,n € Z4, the function ¢’ (E) has an integrable singularity of
type O(E~"/?). Therefore, all E € R belong to the continuous spectrum of I:I3,ﬂ /2.

For E = —4¢?1? < 0,7 > 0, v = 1, the function ¥ (&) + ¥ () is real, so that ¢’ (E)
can be different from zero only at the points &, where ¥ (f) is infinite. This is possible
only for g, > 1/4, where we have

Mmax

o/(E) =) Q28(E &), Qu = BlEN",
n=0

& = —4 (YT —1/2—n)’,

_ | [K], K> [K], B
nmx_{[K]—l, K = [K], K =g —1/2.

Finally, the simple spectrum of ﬁ;»,, /2 1s given by
spec 1:13_7,/2 =Ry U{&, n=0,1,... 0nux}-

The set of (generalized) eigenfunctions

Up(x) = Vo' (E)U; 1,5 (x: E), E =0,
U,,(X) = QVIU3,7T/2(X;€VI)7 n = 0, l, <o s Mmaxs

of I:I3,ﬂ /2 form a complete orthonormalized system in L? R4).

The same results hold for { = —n/2.

Let us note that the solution of the spectral problem in the case under consideration
can be obtained from the corresponding solution of the first range g; > 1/4 in the limit
n— 0.

Now we consider extensions with |¢| < /2. For such extensions, we have

o' (E) = (271c cos? é‘)_l Im fg_l(E +i0), fe(W)= f(W)—tan{,

where f(W) is given by (8.165).
For E = 4czp2 >0, p>0,v=—ip, we obtain

) B(E)
o'(E) = = ’
2mc[(A(E) — ) + B2(E)]
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where [V () + ¥ (B)lyy—g = A(E) —iB(E), and E = tan { — 2C. The function B(E)
can be explicitly calculated:

7 sinh(2np).
cos h(2wp) + cos(2md) —

B(E) =

Thus, o/(E) is finite and positive for £ > 0. It can have an integrable singularity of type
O(E™'?)as E — 0, so that all E € R belong to the continuous spectrum of Hs,.
For E = —4¢?1? < 0,7 > 0, v = 7, the function f;(E),
Je(E) = f(E)—tang, f(E) =y (1/2+7+A) +¥(1/2+7-4) +2C,
f(E)=In|E|+ O(l) > o0 as E — —oo0,

is real, so that only the points E, ({) that satisfy the equation f;(E, ({)) = 0 can
contribute to ¢’ (E). That is why

o/(E)= Y QI(E ~ E, ). 0 = [2ccotf{ (B, )] .

n=A

where

F(Ey (©) <0, f(E, (©)) = tanC,
0cEyn () = [f/(Ey (0))cos>E] ™ < 0.

Finally, the simple spectrum of the s.a. Hamiltonian I-AI3’; is given by
spec 1:13@ =Ry U{E,({) <0, n e A},

where A = {0, 1,..., Hmax}-
The set of (generalized) eigenfunctions

Up(x) = o' (E)Us ¢ (x: E), E >0,
Un(x) = QnU3,§(x; En (é-))a neA,

of I-AI3’; form a complete orthonormalized system in L2 (R4.).
Some remarks on the spectrum structure can be made:

(1) Let go < 1/4. Then f(E) is smooth on (£—;,0) (we set E_; = —o0). In this
region, there are no discrete negative levels (n,,x = —1) for extensions with ¢ €
(—m/2,84], & = arctan f(—0). For any fixed ¢ € (¢, /2), there is one discrete
level E1o () (nmax = 0), which monotonically increases from £_; to —0 as { goes
from /2 —0to {; + 0.

(2) LetA =1/2+k,k € N.Then f(£,£0) = £oo,n =0,...,k—1, f(—0) = —o0.
For such a region of parameters, for any fixed { € (—x/2,m/2), in each interval
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(En=1,&1),n = 0,...,k (in this item only, we set & = 0), there exists one discrete
level E, (§) (nmax = k), which monotonically increases from £,—; +0to &, — 0 as
¢ goes from /2 —0to —m/2 4 0.

(3) Letl/24+k < pu+A <1/24+k+1,k € Z4,then f(£,£0) = £oo,n =0,...,k,
| /3(=0)| < oo. For such region of parameters, for any fixed { € (—n/2,7/2), in
each interval (£,—1,&,),n = 0,..., k, there exists one discrete level E, (), which
monotonically increases from &,—; +0to &,—0 as ¢ goes from 7 /2—0 to —r/24-0.
For any ¢ € (—7/2, ¢], there are no other discrete eigenvalues (11,,x = k). For any
fixed ¢ € (g1, /2), there is one (nm, = k + 1) discrete level Ex4 (¢) € (&, 0),
which monotonically increases from & 4 0 to —0 as ¢ goes from /2 —0to {; + 0.

8.10.4 Range 4

In this range, we have
g1 <0(u=1ix, x>0).

Using the asymptotics (8.158) and the fact that [y, ¥+]|” = 0, we obtain
Ay+(Ys) = 4ixc(aa, — aya;). This means that the deficiency indices of H are
m4 = 1. The condition Ay + (¥x) = 0 implies a; = e, 0 GAS(O, 7). Thus, in
the range under consideration, there exists a family of s.a. operators H, g parameterized
by 6 with domains Dy, , that consist of functions from D’;?(R+) with the following
asymptotic behavior as x — 0:

Y () = Cupas(x) + OG2),
V() = CY g () + 072,
Vapas(x) = €7 (cx) 22 4 710 (ex) /272 (8.167)
Therefore,
Dy,, ={v € DZ(]R.,.), Y satisfy (8.167)}.

Imposing the boundary conditions (8.167) on the functions (8.156) and using the

asymptotics (8.155), we obtain the Green’s functions of the Hamiltonians Hy g,

Gao(x,y; W) = Q7 (W)Usg(x: W)Usp(y: W)

1 (Usg(xs W)Usg(y; W), x > y,

- — ~ 8.168
8xc | Uspg(x; W)Usp(y; W), x < y. ( )
Here
8 w ) .
@ = i ZCosW) Wy = (W) + e bW,
4.9(W)

@sp(W) =ea(W) —e h(W),
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I'(y3) I (y1) ') (y2)
renr By "W = Tl

Usg(x: W) = e uy(x; W) + e up(x; W),

a(W) =

Uso(x: W) = ife™" ur(x: W) — uy (x: W),
4uVi(x: W) = g g(W)Usg(x; W) — iy o(W)Usa(x: W).

Note that Uy g and Uw are solutions of (8.149) real entire in W, Uy 4 satisfies boundary
conditions (8.167), and the second summand on the right-hand side of (8.168) is real for
real W = E.

Consider the guiding functional

DEW) = [ AU WIER), £ DEDND,,,

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U = Uy g (U U4 0), and therefore the spectra of H4 0
are simple.

The derivative of the spectral function reads ¢/(E) = 7' Im 2~ 1(E + i0).

For E = 4c*p> >0, p > 0,v = —ip, we have InQ2~'(E +i0) = ImQ2~(E),
and

7 [T (y) (@) (B2) —e T (y2) IN(e) T ()]

Q7NE) = 2 > — :
mxe [T (y) I (@) (B2) + e~ T (y2) () T(B1)]

One can verify that ¢/(E) is finite and positive for £ > 0. It can have an integrable
singularity of the type O(E ~'/?) as E — 0, so thatall E € R belong to the continuous
spectrum of Iﬁ 9.

For E = —4c*t?> < 0,7 > 0, v = 1, we have 2(E) = 8xccot @(E), where
O(E) = f(E) + 6,

f(E) = % (In " (1 4 2ix) —InI"(1 — 2ix)]
+%[lnI"(l/Z—ix+f+x\)—ln1’(1/2+i}f+r+)t)]
+%[lnI"(l/Z—ix+f—)t)—ln1"(1/2+i)f+r—/l)].

Thus, only the points E,, (0) that satisfy the equation
O(E, (0)) = %— wn, ne’, (8.169)
can contribute to ¢’ (E). Thus, we obtain

o'(E) =Y Q28 (E — E,(8)). Qu = [8xcO'(E, ()], ©'(E, (8)) > 0.
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Finally, the simple spectra of I-AI4~9 are given by
spec Hy g = Ry U{E,(0), n € Z}.
The sets of (generalized) eigenfunctions

Ug(x) = Vo' (E)Usg(x; E), E =0,
Un(x) = Q11U4.9(X;En (9))’ n€Z,

of I-AI4’9 form complete orthonormalized systems in L2 (R.).
Some remarks on the spectrum structure can be made. Let us rewrite the spectrum
equation (8.169) as follows:

f(E,(0)=n/24+nmany—n(n+0/r), n €Z, (8.170)

where

no = [1/2+ f(0)/x], f(0) = m/2+ mng— 6, 0 <6 <.
We note that
f(E) = —xIn(|E|/4¢*) + O(1), E — oo
J(E, (8)) >0, 0 E, (0) = —1/f"(E, (0)) <O.

Then, one can see that (8.170) has no solutions for n < —1, so that n € Z; for
n = 0and 6 € [0, 6], (8.170) has no solutions; for n = 0 and 6 € (6, ), (8.170)
has only one solution E, () € (Eq () = E;(0),0), which monotonically increases
from Ey () + 0 to —0 as 0 goes from & — 0 to 6y + 0; in each interval (E, () =
E,+1(0),E, (0)], n € N, there exists only one discrete level E, (f) for a given 6 €
[0, r), which monotonically increases from E, () + 0to E, (0) as 6 goes from 7 — 0
to 0. In particular, E,4+; (0) < E, (0), Vn € Z4.

We note also that in the range under consideration, the spectrum of I-AI4’9 is unbounded
from below and asymptotically coincides with the spectrum of the Calogero Hamiltonian
with o = 4g; — 1/4 = (V| + V,)/4c? and ko = ¢ for high negative energies.

8.11 ESPXI

In this case,
1/16 — g1 + g>sinh(cx)
cos h%(cx)

V(x) = 4c? ,xeR (8.171)
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and the corresponding Schrodinger equation is

402 1/16 — g1 + g2 sinh(cx)
cos h%(cx)

I)[/_// _

v+ Wy = 0. (8.172)

It is sufficient to consider only the case ¢ > 0 and g, > 0 without loss of generality.
Let us introduce a new variable z,

v+i 2 ox
= . ,V=¢e",
v—i

and parameters i, A, and v:

M= \/g1+igz, A= \/gl—igz, V=+~—-Wc?2
= /|W|c2[sin(p/2) —i cos(p/2)], W = |W|e'¥, 0 < ¢ < .
W ¢ ¢ ¢

We note that the path —oo == oo of the variable x along the real axis corresponds
to the path 1 —i0 == 1 + i 0 of the variable z in the complex plane along (clockwise) a
circle |z] = 1.

In addition, we introduce new functions gbgu (2),

Y (x) = (=) /41— 2) ¢, (2), £, = £ (8.173)

They satisfy the following equations:

(1= 2)d2 e, (2) + [ye, — (1 + o, + Be,)2ld-g, (2)
—ag, Be,de, () =0, g, = 1/2+ &, n+v + 4,
Be, = 1/24+ & +v—2A, yg, = 14251,

which have hypergeometric functions F(w, B;Y;z) as solutions; see [1,20,81] and the
appendix to Sect. 8.7.

Solutions of (8.172) can be obtained from solutions of the latter equations by the
transformation (8.173).

The first pair of solutions of (8.172), which we are going to use for constructing
Green'’s functions, are solutions u; (x; W), i = 1,2,

ey = S [e_i”“F(Vz)P+(x;W) ~ e"”“F(Vl)P—(x;W)],
27 I'(a) I (B2) I(a) I (B1)
ity = L [T W) e P )]
’ 2mp I(e2)I"(B2) F(a)I'(Br) 7

Mi(X;W) = ui(X;W)|;L—>—;L’ M,‘()C;W) = ui(X;W)L\—)—Aa i=1,2.
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The last of these relations means that u; (x; W) are entire functions of parameters g; and
&2. Here auxiliary solutions Pg, and parameters have the form

Py(:W) = (=1 =" Flen. Briviid). yio = y4— = 1520,
P_(x;W) = (=2)/*7*(1 = 2)" F(ar, B2, v2:2),

Gy =ap—=1/25p+v+ A fra=Pyo=1/2Fpu+v A
where F(a, B; y;z) is an analytic extension of the hypergeometric series in the complex
plane C with a cut along the real x > 1 semiaxis given by the Barnes integral; see, e.g.,
[164].

Using identity (8.115), we find that Py, = Pg, | _ _ , and therefore u; (x; W) are
entire functions in W. We note also that the functions P, are analytic in z in the complex
plane with a cut along the real positive semiaxis, so that the circle |z] = 1 is situated in

the analyticity domain of the functions P, .
Using (8.117) and (8.115), we obtain another representations for u; (x; W):

Da(—z) V4R = 2)" Flan, Brsyss 1 — 2)

u (x; W) = 1 +D3(—2) /Tl — 2) 7 F(as, B3 ya: 1 —2), Imz > +0,
Ci (=41 (1 — 2" Fley, Bri y3s 1 — 2), Imz < —0,

Dy (=) /411 = 2)" Far. Briysi 1 —2). Imz > +0,
U (x; W) = 1 Co(—z) V41— 2)" Fe, Bri 3 1 — 2) (8.174)
+C3(=2) /4 (1 — )TV F(as, Baiya: 1 —2), Imz < =0,

where
e—in(1/4+putv/2) .
Cl=———+—— D, =(C4 |:1 + 2ie”TH
: 7l (ys)

D3 = =2iB7' I Qu)e " W/4=1rHv/2 " B — ()T (B1) T (a) I (B2).

sin(y;3)

el (1/44p+v/2) )
D=——— C,=D [1 —2je  ~ITH
! 7l (y3) !

C3 = 2iB7 ' " (Qu)e/ "1/4=1tv/2),

sin(7y3)

(X3=l/2+/¢L—U+A, ﬂ3=1/2+/¢L—U—A, )/3_4=1:|:2U.

Representations (8.174) are useful for obtaining asymptotics of the functions u; as x —
+o0.
It is easy to verify that u; (x;v) = u; (x;V), so that u; (x;v) are real for real v (for
W = E < 0). In addition, the functions u; (x; v) are analytic in W for Im W # 0.
Another pair of solutions of (8.172) that we are going to use is Vi (x; W), k = 1,2,
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Vi W) = o W) [ (0; Wug (x; W) — uh(0; Wuy (x; W),
Va(x; W) = o (W) [uz (0; Wy (x; W) — 1 (0; Wua (x; W),
ur(x: W) = ug (0: W)Vi(x: W) + ul (0; W)Va(x; W),
where w(W) = —Wr(u;,uz) # 0. These solutions are normalized, Vk(l_l)(O; W) =

8k, k,1 = 1,2, and are independent, Wr(V1, V3) = 1.
As x — —o0, v =e <l — 0, we have

z=1—4iv + 0(v2), —z=¢€" + OoWw), 1—z= 4uel™/? 4 o(?),
w (W) = =[xl (y3)] " (de= ) 0(v) — 0,
u(x; W) = =2B~' T (2v) (e /4)" O (v) — o0,

and as x — o0, v =e“* — o0

z=144i/v+0W™?), 2=+ 0w, 1 —z=4/v)e ™2 + 0(?),
ur(x; W)y =—=2B"'T'2v)(v/4)" O(v™") - oo,
(W) = =[xl (y)]~' (4/v)"O(W™") - 0.

Using the above asymptotics, we obtain

Wr(uy, up) = —j—; =—w(W) #0,00, InW > 0,
whence it follows that (8.172) has no square-integrable solutions for Im W > 0. That is
why the initial symmetric operator H defined on the domain D (R) has zero deficiency
indices. In addition, the potential (8.171) tends to zero as |x| — 00, so that A+ (Yx) =
0, as follows from Theorem 7.1. All this implies that the adjoint H + defined on the
domain D* (R) is s.a., and H 1 =H%isa unique s.a. extension of H.
As a set of guiding functionals, we can choose

W) = [ arViWEw. & € D@ N D) ®).

Following Sect. 5.3.2, we obtain the Green’s function of H 1 and the matrix My, (0; W),

wy(xX; Wuy (y; W), x >y,

. _—1
Gx,y;W)=w (W){ u (s Wyuo (y; W), x <y,

M (0; W) = 0™ (W) K (W),

Ky (W) = (ul(O; W)z (0; W) 1y (0; W )uh (0; W))

ul (0; W)ua (0; W) uf (0; W)us (0; W)
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Then the matrix spectral function reads
o/ (E) = "Imo (E +i0)Ki (E +i0).

For E > 0, v = —i/E/c, the functions Kj;(E) are finite and w~'(E) is
finite for E > 0. For E = 0, the function w™'(E) is finite if B, # —n
(W+ia#n+1/2,ne€Zy),sothato),(E)isfinite. f p+ji =n+1/2 <= n =g,

where
g=2e +2\ef + & -1/2,

we have ™' (W) = O (1/\/ W) as W — 0, so that g/,(E) has an integrable

singularity. Thus, o/,(E) = 7 'Imw ' (E)Ky (E), and therefore all the points of
the semiaxis £ > 0 belong to the continuous spectrum.

For E = —c?t%? < 0,7 > 0, v = 1, all the functions u; (x; 7), u>(x; 7), Ki;(E), and
w(E) are real and finite; o}, (E) differs from zero only at the points E,,,

En :_CZ(g_n)Z, T, =8—n, I’lZO,l,...,I’lmax,

ao ) lsl g > sl
max —
[¢] =1, ¢ =gl
that are solutions of the equation w(E,) = 0 <= B, = —n (at least one negative

energy level exists if 4¢3 > 1/16 — g).
Then we obtain

1
wr(x; Ep) = (—1)"eX™ ™y (x: E,), Imp = \/5 (\/g% + 43 —gl),

Ku(E,) = (—1)"e™™e, ; @ ey, enr = (u1(0; Ey), uj(0: E,))

and

Nmax

UIQI(E) = Z Qnen,k ® en,IS(E —E,),

n=0

0, = \/ﬂcrnF(Zg T 1—n)|T(By)[Pe2rmn
n— .
n!

Finally, the complete spectrum of H, is given by

spec ﬁl =Ry U{E,, n=0,1,... 0}
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The continuous part of the spectrum is twofold degenerate. The discrete spectrum is
simple. The inversion formulas have the form

1= X [ aBolEVi BN + Y g U, Vi e @),
+

kil=12 n=0

o (E) = /R Ve(x: EYY (x)dx, ¢, = /R Uy ()Y (x)dx,

/wadx -y

Nmax
| S Bl EnENE + Y ol
ki=12"R+

n=0

U,(x) = Z Qnen,ka(x§ E,) = Quui(x; E,).

k=12



Chapter 9
Dirac Operator with Coulomb Field

9.1 Introduction

It is common knowledge that the complete sets of solutions of the Dirac equation,
when used in quantizing the spinor free field, allow an interpretation of the QT
of the spinor field in terms of particles and antiparticles; see, for example [139].
The space of quantum states of such a free field is decomposed into sectors with
a definite number of particles (the vacuum, one-particle sector, and so on). Each
sector is stable under time evolution. A description of the one-particle sector of the
free spinor field can be formulated as a relativistic QM in which the Dirac equations
play the role of the Schrodinger equation and their solutions are interpreted as wave
functions of particles and antiparticles.

In QED (and some other models), the concept of the external electromagnetic
field is widely and fruitfully used. It can be considered an approximation in which
a “very intensive’part of the electromagnetic field is treated classically and is
not subjected to any back reaction of the rest of the system. The Dirac equation
with such a field plays an important role in QED with an external field (external
background). Of special interest are the cases in which an external field allows an
exact solution of the Dirac equation. There are a few such exactly solvable cases
of physically interesting external electromagnetic fields; see, for example [13, 146].
They can be classified into groups such that the Dirac equations with fields of each
group have a similar interpretation.

The constant uniform magnetic field, the plane-wave field, and their parallel
combination form the first group; the fields of this group do not violate vacuum
stability (do not create particles from the vacuum). Exact solutions of the Dirac
equation with such fields form complete systems and can be used in the quantization
procedure, providing a particle interpretation for a quantum spinor field in the
corresponding external background. This makes possible the construction of an
approximation whereby the interaction with the external field is taken into account
exactly, while the interaction with the quantized electromagnetic field is treated
perturbatively. Such an approach to QED with external fields of the first group is

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 411
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_9,
© Springer Science+Business Media New York 2012
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known as the Furry picture; see, for example [62, 139]. In the Furry picture, the state
space of the QT of the spinor field with the external fields is decomposed into sectors
with a definite number of particles; each sector is stable under the time evolution,
which is similar to the zero-external-field case. A description of the one-particle
sector also can be formulated as a consistent relativistic QM [65].

A uniform electric field and some other electromagnetic fields violate vacuum
stability. A literal application of the above approach to constructing the Furry picture
in QED with such fields fails. However, it has been demonstrated that existing exact
solutions of the Dirac equation with electric-type fields can be used for describing a
variety of quantum effects in such fields, in particular, the electron—positron pair
production from vacuum [119]. Moreover, these sets of solutions form a basis
for constructing a generalized Furry picture in QED with external fields violating
vacuum stability; see [60]. It should be noted that the one-particle sector in such
external fields is unstable under time evolution, and therefore, the corresponding
QM of a spinning particle cannot, in principle, be constructed.

The Dirac equation with the Coulomb field, and with some additional fields,
has always been of particular interest. The Coulomb field is even referred to as a
“microscopic external field”to underline its qualitative distinction from the above-
mentioned external fields, which are sometimes referred to as “macroscopic’ones.
Until recently, the commonly accepted view of this situation in theoretical analysis
was the following. The Dirac equation for an electron of charge —e in an external
Coulomb field created by a positive pointlike electric charge Ze of a nucleus of
atomic number! Z < Z, = a~! = 137 is solved exactly, has a complete set of
solutions, and allows the construction of a relativistic theory of atomic spectra that
is in agreement with experiment [28]. This field does not violate vacuum stability,
and therefore, the Furry picture can be constructed, and the relativistic QM of the
spinning particle in such a Coulomb field exists. As for the Dirac equation with
the Coulomb field with Z > Z., it was considered inconsistent and physically
meaningless [8,45, 133]. One of the standard arguments is that the formula for the

lower 1S5/, energy level,
Eiy =mc*\/1—(Za)?,

formally gives imaginary eigenvalues for the Dirac Hamiltonian with Z > Z.. The
question of consistency of the Dirac equation with the Coulomb field with Z > Z,
is of fundamental importance. The formulation of QED cannot be considered really
complete until an exhaustive answer to this question is given.

Although nuclei of electric charges of such magnitude cannot yet be syn-
thesized,” the existing heavy nuclei can imitate the supercritical Coulomb fields
at collision. Nuclear forces can hold the colliding nuclei together for 107'%s

la = e?/hc is the fine structure constant.

2 At present, the maximum Z = 118.
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or more. This time is enough to effectively reproduce the experimental situation
whereby the electron experiences the supercritical Coulomb field [82]. Several
groups of researchers have attacked the problem of the behavior of the electron
in the supercritical Coulomb field; see [82, 166]. The difficulty of the imaginary
spectrum in the case of Z > Z. was attributed to an inadmissible singularity of
the supercritical Coulomb field for a relativistic electron.? It was believed that this
difficulty could be eliminated if a nucleus of some finite radius R were considered.
It was shown that in cutting off the Coulomb potential with Z < 173 at a radius
R ~ 1.2 x 107'2 c¢m, the Dirac equation has physically meaningful solutions [122].
But even in the presence of the cutoff, another difficulty arises at Z ~ 173. Namely,
the lower bound state energy descends to the upper boundary E = —mc? of the
lower continuum, and it is generally agreed that in such a situation, the problem
can no longer be considered a one-particle one because of the electron—positron pair
production, which in particular results in a screening of the Coulomb potential of the
nucleus. Probabilities of particle production in heavy-ion collisions were calculated
within the framework of this concept [82]. Unfortunately, experimental conditions
for verifying the corresponding predictions are unavailable at present.

In this chapter, we return to the problem of consistency of the Dirac equation
with the Coulomb field with no cutoff and with arbitrary nucleus charge values
(with arbitrary Z). Our point of view is that the above-mentioned difficulties with
the spectrum for Z > Z. do not arise if the Dirac Hamiltonian is correctly defined
as an s.a. operator. We present a rigorous treatment of all the aspects of this problem
including a complete spectral analysis of the model based on the theory of s.a.
extensions of symmetric operators and the Krein method of guiding functionals;
see [155]. We show that from a mathematical standpoint, the definition of the Dirac
Hamiltonian as an s.a. operator for arbitrary Z presents no problem. Moreover, the
transition from the noncritical charge region to the critical one does not lead to
qualitative changes in the mathematical description of the system. A specific feature
of the overcritical charges is a nonuniqueness of the s.a. Dirac Hamiltonian, but this
nonuniqueness is characteristic even for Z > Z; = (v/3/2)a”" ~ 118.68. For
each Z > Z, there exists a family of s.a. Dirac Hamiltonians parameterized by a
finite number of extra parameters (and specified by additional boundary conditions
at the origin). The existence of these parameters is a manifestation of a nontrivial
physics inside the nucleus. A real spectrum and a complete set of eigenstates can
be evaluated for each Hamiltonian, so that a relativistic quantum mechanics for an
electron in such a Coulomb field can be constructed.

3An equation for the radial components of wave functions has the form of the nonrelativistic
Schridinger equation with an effective potential with the r —2 singularity at the origin, which is
associated with a “fall to the center”.
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9.2 Reduction to the Radial Problem

We consider the Dirac equation for a particle of charge ¢; and mass m moving in
an external Coulomb field of a charge ¢,; for an electron in a hydrogen-like atom,
we have?* q1 = —e,q» = Ze,Z € N. We choose the electromagnetic potentials
for such a field in the form A° = ¢,r=', A* = 0,k = 1,2, 3. The Dirac equation
with this field, written in the form of the Schrodinger equation (in the Hamiltonian
form), is’

IV (x)
ot

i :ﬁlll(x),x:(xo,r),r:(xk,k=1,2,3),x0=t,

where ¥ (x) = {¥,(x), @ = 1,...,4} is a bispinor (Dirac spinor) and H is the s.a.
Dirac differential operation,

v —_ _l D
e imar = ("0 )
op —m—gqr
p=-iV,V = (ax, dy, 81),r = |r|, and ¢ = —qi¢»; for an electron in a

hydrogen-like atom, we have ¢ = Za. For brevity, we call the coupling constant g
the charge. We restrict ourselves to the case g > 0.

In the case under consideration, we deal with the Hilbert space $) = L? (R3) of
square-integrable Dirac spinors ¥ (r) with the scalar product

(¥, ¥,) = / dr?;" (r)¥s(r), dr =dx'dx?dx® = r2dr dp(9, ¢),

where du = du(f,¢) = sinfdfdg is the integration measure on the sphere,
0<6 <m,0<¢ <2m. The space ) has the form

4
H=L*R) =Y 5. 5. =L2®).

a=1

We now take the rotational symmetry into account. The group of rotations in
R? naturally acts in the Hilbert spaces L2 (R*) and L* (R?) by unitary operator
groups U and U: if S € Spin(3), then the corresponding operator Us is defined
by the relationship (Usy/) (r) = ¢ (S7'r), ¥ € L*(R?), and Us is defined by

4e = 4.803 x 1071 CGSE is the magnitude of the electron charge.

SWe use bold letters for there-vectors and standard representation for y-matrices, [29], where & =
antidiag (0, 0), B = y° = diag(I,—1), ¥ = diag(0,0), and 0 = (0'1,()'2,()'3) are the Pauli
matrices. We use the notation op =akpk, or =okx*, and so on. We set i = ¢ = 1 in what

follows.
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the relationship (Us¥) (r) = As¥ (S7'r), ¥ € L*(R?); the matrices As are a
unitary bispinor representation of the rotation group Spin(3) with the generators
> /2=diag(c /2,0 /2), the spin angular momentum operators. In addition, we
introduce the operators

J=L+3/2 = diag(j.}). L+ao/2 J

R=5 [1 n (zi)] — diag (%, — %), # =1+ (aﬁ) : 9.2)
where the orbital angular momentum operators L= [r x p] are generators of the
group U, the total angular momentum operators J are generators of the group U,
and J? is the Casimir operator of the group . The operator K is called the spin

operator; J2, J5, and K are mutually commuting operators.
The Hilbert space $ = L (R3 ) is represented as a direct orthogonal sum,

9=3"Fa0 j=1/2.3/2...., ¢ = =1, 9.3)
Jg
where ®
M

of subspaces ) ¢ or ), y.¢, and any bispinor ¥ € §) can be represented as

W)=Y Wi D)

JM.g

where ¥} 3¢ € $; p¢ are functions of the form

me(0.0) f (r)
Yime (r) = (zé,M @, qD)g(r)) 9.5)

£2; m ¢ are spherical spinors, and f (r) and g (r) are radial functions (the factors

r~!and i are introduced for convenience).

We use the following representation for the spherical spinors (see [8]):

G MY i, (M ==+ /21PN W)
M= GG w( Pl ’

j=1/23/2,.... M =—j,—j +1,....j. L =+1, u=cosf, (9.6)

where the adjoint Legendre functions P/ (u) are defined as in [81],

P"() = = (1) (1= )" 2d, " = 1),

zlz'
leZy, m=—1,—1+1,....1.
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The spherical spinors are eigenvectors of the operators J2, fz and »x,
FP2ime (0) = G+ DR (1) J- Qe (1) = M2,
#82jme (1) = =8(j +1/2)82j mz ().

These spinors are orthonormalized,

[ @O 0020506, 00 = 83803

and form a complete orthonormal basis in the space of splnors on the sphere.
The bispinors ¥; 1 ¢ (r) are eigenvectors of the operators J2. J3, and K,

P (0) = j(G 4+ D (0), LW e (1) = MW, g,
KW, pe (0) = =L(j + 1/2)W; pr¢ (x).

The subspaces ) ; ¢ reduce?® the operators jz’ j , and K s
D 5 @D 3
- TR = Tk
it
K= Z@ Kis
g
and the subspaces $) ; ¢ reduce the operators jié’ (J;)j ¢ and Iéj,;,

J;“_ ZEB Jime (j) ' Z®<JA)]M§

A @ A
Kie=Y " Kus
M

In the language of physics, decompositions (9.3) and (9.4) correspond to
an expansion of bispinors ¥ (r) in terms of eigenfunctions of the commuting
operators 72 J;, and K, which permits separation of variables in equations for the
eigenfunctions.

We note that the reductions J ;¢ of the operators J to the subspaces $ j.¢ are
bounded operators.

5This means that the operators 32, /5, and K commute with the projectors to the subspaces H ¢;
see [9, 116].
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Let I.? (R ) be the Hilbert space of doublets F(r),
o = (1) = e o,
g(r)

with the scalar product
(k)= [ arrEO= [ @[FOAO+T0he0),
Ry Ry

sothat L> (Ry) = L2(Ry) & L*>(Ry).
Then (9.5) and the relation

2
sl = [ ar[70P +1g0F]
R4
show that §; u ¢ is isometric to L? (R4):
Wime=SimeF. F =S8 Yime-

The explicit form of this isometry is

Vis(6) = 7 T asg 6.0 FC). F0) =1 [ Q6.0 (6.0)0002(0),
9.7
Here I1 ; 3/ and HI ¢ are respectively (4 x 2) and (2 x 4) matrices,

+
M, = (im0 o+ (% O
S 0 iQu—) Mt o —ief, )

[ 6.0 [0, 6.00:0.0)] | =6 ab=1.2

where 0 = (0,70) is a two-column and 07 = (0, 0) is a two-line.

Now we define a rotationally invariant initial symmetric operator H associated
with the s.a. differential operation H . Because coefficient functions of H are smooth
away from the origin, we choose the space of smooth bispinors with compact
support’ for the domain Dy of H. To avoid trouble with the 1/r singularity of
the potential at the origin, we additionally require that all bispinors in Dy vanish
near the origin.® The operator H is thus defined by

A~

g D= {0 yu) e DE)\ (0},

HW(r) = H¥(r),

7We thus avoid difficulties associated with the behavior of wave functions at infinity.

8Strictly speaking, we thus leave room for §-like terms in the potential.
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where D(IR?) \ {0} is the space of smooth functions in R* with compact support and
vanishing in some neighborhood of the origin. The domain Dy is dense in ), and
the symmetry of H i is easily verified. The operator H evidently commutes with the
operators J2, ), and K.

(a)

(b)

The rotational invariance of H is equivalent to the following statements.

The subspaces $); y¢ reduce this operator: Let ¥(r) = ) . ime Yime (r),
¥ € Dy, and let P;; and P;p . be orthoprOJectors on .V)j; and $; m ¢
respectively. Then lI/]M; = P]M;llf € Dy and Ay = Z}M{ H] meYime
where HJ me = Pj, M;HPJ Mt = HP] M.¢» are parts of H acting in subspaces
Njme N

Each Hj ¢ is a symmetric operator in the subspace $); y¢. Each symmetric
operator H .M in the subspace §); yr ¢ evidently induces a symmetric operator
h ;.u.¢ in the Hilbert space L2 (R.),

. o
hjmeF = SiyeHjmeWime.

so that };j,M,; = S;jl’gﬁj,M,;Sj,M,; is given by

A Dy, =9 Ry)=DR D[R
Binge =1 20 D [R+) (R4) & D(R4), 9.8)
hj,M,;F(r) = hquF(r),
and the s.a. differential operation h j.¢ reads
ﬁj,; =—io’d, +xr o' —qr '+ mo?, x =(j +1/2). (9.9)

The differential operation h j.¢» and consequently, taking (9.8) into account, the
operator h; j.m¢c with fixed j and ¢, are independent of M, that is, h; Mg =
h j.¢c- This fact is equivalent to the commutat1v1ty of the operator H i =
P],;H Pir= HP],; with the operators (Jx,y)],; .

In what follows, while on the subject of the rotational invariance of any (closed)

operator f , we suppose that the following properties hold:

ey

The reducibility of f by the subspaces ) yr,; and therefore by §; ¢, so that the
operator f can be represented in the form

f= Z®ﬁz— @ fie

JME

fie=PicfPic=fPic. fime=Pimef Pisg = f P
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(2) The commutativity of the operators fj@ with the bounded operators J ]'1,,{2 for any
j and C.

Let (h )¢ be an s.a. extension of h; ¢ in L2(R4), an s.a. radial Hamiltonian. It
evidently induces s.a. extensions (H j.m.2)e of the symmetric operators H; ;.M in the
subspaces $); ¢,

(Hjmg)e = Sj,M,E(};j,E)cS;]{/[,p

and the operator (I:I e = Z @M(ﬁ j.M.t)e commutes with J ]'1,,{2. Then the direct

orthogonal sum of the operators (ﬁ j’g)c is an s.a. operator H.,

A.=>"%;0).. 9.10)
7

in the whole Hilbert space $) (see [125]). Thus, H . 1S a rotationally invariant
extension of the rotationally invariant initial symmetric operator H (an s.a. Dirac
Hamiltonian).

Conversely, any rotationally invariant s.a. extension of the initial operator H
has structure (9.10), and the operator (hj e = S] ME(I-AIj,M,g)ch,M,; in L2(Ry)
is independent of M and is an s.a. extension of the symmetric operator’ h g

The problem of constructing a rotationally invariant s.a. Dirac Hamiltonian H.
is thus reduced to the problem of constructing s.a. radial Hamiltonians (}; Ji)e-

In what follows, we consider fixed j and ¢ and therefore omit these indices for
brevity. In fact, we consider the radial differential operations h j.¢ as a two-parameter
differential operation h with the parameters g and »x (the parameters j and ¢ enter
through the one parameter x, the parameter m is considered fixed) and similarly treat
the associated radial operators h and h . defined in the same Hilbert space L. (R ).

9.3 Solutions of Radial Equations

Below, we consider the differential equation hF = WF with an arbitrary complex
W; real W are denoted by E and have the conventional sense of energy. This
equation for the doublet F = (f 7g) is equivalent to a set of radial equations

for f(r) and g(r),

“Roughly speaking, this means that s.a. extensions of the parts H j.m¢ with fixed j and ¢ and
different M’s must be constructed “uniformly”.
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f’+}fr_1f—(W+m+qr_1)g=O,
g —urlg+(W—m+qr7") f=0. 9.11)

We note that the Wronskian of the doublets Fy = (f1,/¢g1) and F> = (f2,/g2)

reads Wr (Fy, F») = fig2 — g1 />
We present the general solution of the radial equations following the standard
procedure; see, for example [8, 133]. We first represent f(r) and g(r) as

fr)=2"e[0@) + P ()] . g(r) =iA"e*[Q(z) — P(2)].
where

W —m .
= 2iKr, A= | W tm=pie¥t, 0< gy <7,
z iKr - m= pye <gpi<m

A= p_]pset =" K = VW22 = Jpopyer@—tes),

and Y obeys the condition > = x> — ¢°. Radial equations (9.11) then become
equations for the functions P and Q,

ZQ//—+_(ﬂ_Z)Q/_OlQ :Os :3 = 1+2T‘s o =0o4,
P=-b"Gd, +a)Q, bs =xtqm(K)™", ax =7 £qW(iK)™". (9.12)
The first equation in (9.12) is the confluent hypergeometric equation for Q; see

[1,20,81].
Let'® Y # —n/2,n € N. Then the general solution for Q can be represented as

0 =AD(a, B;2) + BY(a, B;2) (9.13)

where A and B are arbitrary constants; @(«, 8;z) and ¥(«, f;7) are the known
confluent hypergeometric functions (the function @(«, f;z) is not defined for
B e 7).

It follows from (9.12) and (9.13) that

P=—-4ad(a+1,8;2) + Bb_¥ (x+1;8:2), a = a+bll.

Then the general solution of radial equations (9.11) for any complex W and real
m, x, and q is finally given by

10The parameter 1" is defined up to a sign. The specification of Y is a matter of convenience. In
particular, for specific values of charge, we also use a specification of 7" where " = —n/2; this
case is considered separately below.
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f(r) =" P {A[D(a, B;2) —aP(a + 1, B;2)]
+B[¥(, B:2) + b-¥(x + 1; B;2)]},

g(r) = iAz" e {A[@(a, fi2) +adP(a + 1, B:2)]
+B[¥(,B:2) —b_W(x+ 1;B:2)]}.

Taking the relationship
Do+ 1,B;2iKr)=e 2K"d(B —a — 1,B;2iKr)

into account (see [1, 20, 81]), it is convenient to represent the general solution of
radial equations (9.11) in the form

F=AX(r.Y.W) + B e [W(a. B:2)o+ —b-W(a+1.B:2)0-]. (9.14)
where o+ = (£1,7i A) and doublets X are defined as
(ze—in/ZK/m)—Y

2(1 - a+)

= @ (B, Y, W) + _(r, Y, W)E] d.

&, =KD (o, 1 +27;2iKr) + e K"® (0,14 27:2iKr),

X = e [@(a, Biz) —aP(a + 1, B:2)]

o_ = (K) ' [eXD (o, 1 + 275 2iKr) —e K ® (a_, 1 + 27;2iK7)],
de = (1/ e £7)q™"): (9.15)

the doublet d_ will be used below, and = = antidiag (m — W, m + W).

We now present some particular solutions of radial equations (9.11) that are used
in the following.

One of the solutions given by (9.14) with A = 1, B = 0, and a specific choice of
T reads

Fi(r;W)y=X(r.T. W), Ty = J./, q < x|,
10, ¢4 > |%|s

y=vr?—q*>0,q=<|xl;0=vqg>—=x>>0,q>|x]. (9.16)
The asymptotic behavior of the doublet F|(r; W) at the origin is given by

Fi(r;W) = (mr)*dy + 0™, r > 0.
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In the case T+ # n/2,n € N, we also use another solution,
B W) =X, -1, W), (9.17)
with the asymptotic behavior
F(riW) = mr) +d_+ oG ™+, r > 0. (9.18)
It is useful to introduce the function ¢ (j),
qc (j) =[xl =j +1/2. 9.19)

Forgq = ¢q. (j), we have Ty = 0. For ¢ # ¢q. (j), that is, for 7 # 0, the solutions
F| and F; are linearly independent, Wr (Fy, F>) = —2T+q_1.

It follows from the standard representation for @ that for real T, (T # —n/2),
the functions @ and @_ in (9.15) are real entire in W. It then follows from (9.16)
and (9.17) that the respective doublets F;(r; W) and F,(r; W) are also real entire
in W forreal Y = y. If T4 is pure imaginary, Y1 = io, then F) and F, are entire
in W and are complex conjugate forreal W = E, Fi(r; E) = F,(r; E).

Another useful solution F3(r; W) nontrivial for Ty # n/2,n € N, is given by
(9.14) with A = 0 and a special choice for B:

Fi(r; W) = BOW)Z"+e!X" [W(a, B:2)or —b_W (@ + 1;8:2) 0],

m+W)0+74)
igK

BW) = %F(—a—) (1 + ) (262K /m) """ . (9.20)

Like any solution, F3 is a linear combination of F} and F>,
Fy=T(=2Y)Fi +q QY oW)F, (W) = —Wr(F,F5),  (9.21)
where

”— I'(1+ 27 M (—a-)[igK + (¢ + y)(W + m)|(2e /2K /m) 2T+
B gl (@)[igK + (¢ —y)(W + m)]

9.22)

We note that if ImW > 0 and r — oo, the doublet Fj increases exponentially,
while F3 decreases exponentially (with polynomial accuracy).

Consider the special case of ¢ = ¢. (j) (Y+ = 0), where the doublets F} and F,
coincide.

Differentiating radial equations (9.11) with respect to y at y = 0, we can easily
verify that the doublet

0y P W), = im [Fi(r3 W) = B W] 2) ™!
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is a solution of these equations with y = 0. For two linearly independent solutions
of radial equations (9.11) with y = 0, we choose

FO(riW) = Fi(ri W), o,
FO(r; W) =dy + O(r), r — 0.
EP (W) = 8, Fi(ri W),y = Sa. () B0 (i),
FZ(O)(r; W) =dy(r)+ O(rinr), r — 0;
dily=o = (170).
do(r) = (In(mr) — g (j) /¢ In(mr)). (9.23)
Both solutions F 1(0) and FZ(O) are real entire in W and independent, Wr(Fl(O), FZ(O) )

=4q. ()
As an analogue of F3 in the case of y = 0, we take the doublet F. © R

F” = —lim Fy = — (1 —a0) ' T(@o)e’™
y—>

x [W(o, 1;=2iKr) + bW (g + 1. 1; —2iKr) 0] 0+,
ap = —ige (WK™, ag=W (m+ilK)™",
bo=qc.(j)K ' (K +im). (9.24)

Its representation in terms of F, 1(0) and Fz(o) is given by

F3(°’ _ Fz(O) + fFl(O)’ Wr (F2<0)7 F3(°)) = 09, ©® = O W),
[ = W) =4q:(j) 0@ W)=1In(2e""K/m)+ ¥ (—ig. (j) WK")

+ W —m) +iK) (2q. (j) W)™ = 2y(1),

where ¥ (x) = I''(x)I" "' (x).
We note that for Im W > 0, the doublet F:,,(O) is square-integrable on the semiaxis
Ry, thatis, F\” € L2(R4).
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9.4 Self-adjoint Radial Hamiltonians

9.4.1 Generalities

Here we are going to construct s.a. radial Hamiltonians ﬁc in the Hilbert space
L?(IR) as s.a. extensions of the initial symmetric radial operators h (9.8) associated
with the radial differential operations h (9.9) and analyze the corresponding spectral
problems. We note that the result crucially depends on the value of the charge
q. Therefore, our exposition is naturally divided into subsections related to the
corresponding regions of the charge; there are four of them.

In what follows, all the operators associated to the differential operation h act on
their domains as };, so that we will indicate only these domains.

We begin with the adjoint h of the initial symmetric operator h. Its domain D n+
is the natural domain for ﬁ,

D+ = D} (Ry) = {F* . Frac.inRy, Fu,hFy € LZ(R+)}.

In the case under consideration, the quadratic asymmetry form A,+ (Fy) is
expressed in terms of the local quadratic form [F, Fi] (r) as follows:

Ayt (Fy) = (F*,E+F*) . (ﬁ+F*, F*) = [F.F] ().
[Fe. Ful (r) = g(r) f(r) — f(r)g(r). Fx=(f/3). (9.25)
One can prove that

lim F, (r) =0, VF. € D¥ (Ry). (9.26)
r—00 h

To this end, we first note that Fy € D; (R4) implies that G = hF, is square-
integrable together with F. It then follows that

Fl(r) = (—xr'o” +iqr~'o® + mo') Fu(r) +i0’G(r)

is square-integrable at infinity.
It now remains for us to refer to the assertion that if an a.c. F(r) is square-

integrable at infinity together with its derivative F’(r), then F(r) sy 0; this
assertion is an evident generalization of a similar assertion for scalar functions; see
Lemma 2.13. Therefore, the boundary form [F, Fi] (c0) is identically zero and the
asymmetry form A,+ (F) is determined by the boundary form [Fy, Fi] (0) at the
origin.

A result of constructing s.a. radial Hamiltonians h essentially depends on the
values of the parameters Z and j. There are two regions in the first quadrant j, Z,
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we call them nonsingular and singular ones, where the problem of s.a. extensions
has principally different solutions. These regions are separated by the singular curve

Z = Z(j), where
Z,(j) =i +Da!

such that the nonsingular and singular regions are defined by the respective
inequalities Z < Z;(j) and Z > Z (j). The value Z; (j) = 118.68,265.37, ...
can be called the singular Z-value for a given j. Below, we consider s.a. radial
Hamiltonians /1 and their spectra in the nonsingular and singular regions separately.

For the evaluation of the asymptotic behavior of Fy € D; (R4) at the origin, the
doublets Fy can be considered square-integrable solutions of the inhomogeneous
differential equation

hF, (r) =G (r), G € L*(Ry). (9.27)
It is convenient to represent (9.27) as follows:

h_Fy (r) = G_ (r) € L*(R4),
ho = —io?d, +xr o' —qr7",G_(r) = G (r) —mo*Fy (r).

Let u; and u, be linearly independent solutions of the equation h_u=0,

u(r) = (mr)’+dy, g >0,

(mr)—T+d_ ,q4>0,q9Fq.(j), (9.28)

V=0 do(r). ¢ = 4e ().

Any solution F (r) of (9.27) can be represented as
Fo(r) = crui(r) + coua(r) + 11 (r) + La(r), (9.29)

where ¢ and ¢, are some constants and

(q/274) [P [ur(r) ® ux(»)]G-(y)dy, 0 < q < ¢, (j).
Li(r) = —=(q/27y) [y [ur(r) @ uu(MIG-(y)dy. g > q5(j). q # qc (j).
qc () Jo 1 (r) @ uz (G- (y)dy. ¢ = g (j).

_ [ @/27y) [flua(r) @ ui(D)G-(y)dy, ¢ > 0, g # qc (/)

1 A .
=0 2 () ) ® i ()IG—()dy. ¢ = ge (7).

Here o > 0 is a constant, and ® is the symbol of the tensor product, so that
[u1(r) ® up ()] is a 2 x 2 matrix. It turns out that the boundary form [Fy, Fx] (0) is
determined by the first two terms on the right-hand side in representation (9.29) and



426 9 Dirac Operator with Coulomb Field

essentially depends on the parameter 7. Using the Cauchy—Schwarz inequality for
estimating the integrals 7, (r) and I,(r), we obtain (with logarithmic accuracy)

Li(r)=0(r'?).L(r)=0(r'?).r —o. (9.30)

Using the above estimates, we will fix the constants c; , for different regions of the
charge in what follows.

Finding the spectrum of operators };e, we follow the scheme that was described
in Sect. 5.3.5 for a 2 x 2 matrix of differential operators.

In the case under consideration, any solution F of (5.34) allows the representation

F(r) = Fi(r; W)+ eFs(r; W) + 0™ (W)

X |:/OO[F1(”§ W) ® Fs(r'; W)W (r')dr’
* / G ® R WW(r’)dr’} : ©.31)
0

where Fy, F3, and o are given by (9.16), (9.20), (9.21), and (9.22). This represen-
tation is well defined because F3(r; W) with ImW > 0 decreases exponentially
as r — oo. The condition F € L?(R4), which is sufficient for F to belong to
Dy, (because then automatically hF = WF + n € L*(R4)), implies ¢; = 0;
otherwise, F is not square-integrable at infinity, since F\(r; W) with ImW > 0
grows exponentially as r — oo. The constant ¢; is determined from the condition
F e Dhg .

9.4.2 Nonsingular Region

In this nonsingular charge region, we have
0<qg=¢;(j) =T+ =y =1/2

The representation (9.29) allows the evaluation of the asymptotic behavior of
F e D; (R4 ) at the origin. According to (9.28), the doublet u;(r) ~ r? is square-
integrable at the origin, whereas the doublet u,(r) ~ r~7 is not.

It follows that for F (r) to belong to the space L2(R.), it is necessary that
the coefficient ¢, in front of u; (7) in (9.29) be zero; otherwise, Fy is not square-
integrable at the origin (if ¢, # 0) because F3(r; W) is not square-integrable at the
origin, which yields

Fu(r) = ciur(r) + Ii(r) + L(r) = 0 (r'/?) = 0, r — 0,
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whence it follows that for any Fy € D;;k (R4), we have

see (9.25) and the related discussion. This means that in the first noncritical charge
region, the deficiency indices of the operator h are zero and the operator ﬁl = ht
is a unique s.a. extension of h with domain Dy, = D;lf R4).

We note that this result actually justifies the standard naive treatment of the
“Dirac Hamiltonian” with ¢ < v/3/2 (Z < Z. = +/3/2a ~ 119) in the physics
literature when the natural domain for 7 is implicitly assumed.'!

We thus obtain that the solution F € Dj, of (5.34) is given by (9.31) with
¢ = ¢ = 0. Then, following Sect. 5.3.5, we obtain the Green’s function of the
operator hi,

. o BErW)y Fi(r';W), r>r,
G (r.rsW) == (W) Fir:W)@ B W), r<r.

For the doublet U defining the guiding functional @(F; W) (5.33), we choose
F. Such a guiding functional is simple, that is, satisfies the properties (i)—(iii) of
Sect. 5.3.

Property (i) is evident, property (iii) is easily verified by integrating by parts, and
it remains to verify property (ii): the equation (ﬁl — Eg)W(r) = Fy(r), where Fy is
in D and satisfies the condition @(Fy; Ey) = 0, has a solution belonging to ID.

As such a solution, we choose a doublet

o0 r
()= [ IR0 E) © FOI Ry + [ 170 8 Rl Bl Rdy.

' ) (9.32)
where F(r) is any solution of the equation (2 — Eo) F(r) = 0 with the property
Wr(F, F;) = 1. Itis easy to prove that the function (9.32) belongs to D.

In the region/ — 1 <2y <[ + 1,1 € N, we represent F; in the form
W (W)Fy =A(W)Fi +4qQ2y)"" U,
U =F+aW)I(=2y)F,
A(W) =T'(2y) [0 (W) — 0™ (W)|y=i1].

a(W) =2y [qoW)|,=n] . (9.33)

"IThe uniqueness of the Hamiltonian also implies that the notion of § potential for a relativistic
Dirac particle cannot be introduced, which possibly manifests the nonrenormalizability of the four-
fermion interaction.
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The doublet U; has a finite limit as y — [ /2. A direct calculation (with the use of the
equality I"(w+1) = wI"(w)) shows thata; (W) is a polynomial in W with real coef-
ficients, and because F; and F; are real entire in W, the doublet Uj is also real entire.
Having the Green’s function in hand, and using (9.33), we obtain
Gc—0,c+0;E+i0) = '(W)Fi(c; W) ® F3(c; W)
= A (W)Fi(c: W) ® Fi(e: W) + (q/2y) Fi(c: W)
®Uq) (c;W). (9.34)
Due to the fact that Fi(c; E) and Uj(c; E) are real, it follows from (9.34) that
0'(E) = 7' Im A;(E + i0). Since the function A;(E + i¢) is continuous with

respect to y at the point y = [/2, we can calculate o’ (E) for y # /2 and then
obtain it for y = 1/2:

o (E)ly=1)2 = ygl}}z I:U/(E)|yaél/2:|-

The expression o’ (E) for y # [/2 becomes rather simple:
o'(E) =n'I'(=2y)Imw '(E +i0).

At the points where the function w(E + i0) is different from zero, we have
o'(E) = 7' Imw~!(E). For |E| > m and

E— ‘
A= ,/#, K=ck=e""972% k=vE:—m2>0, ¢ = E/|E|,
m

a direct verification shows that w(E) is continuous, w(E) # 0, and Imw(E) # 0;
the spectral function o (E) is a.c. and

o' (E) = a7 'I'(=2y) Imw™ ' (E),

_ T(142y)e" ™ I (—y +q|E|]ik)[(x + y)ek +iq(E —m)]

E) = G + QB k)0 — y)ek + iq(E — m))2kjm)

(due to the properties of w(E) described above, the limit of 6’ (E) as 2y — n € N
exists). Thus, for | E| > m, the spectrum is continuous (and simple).
For |E| < m and

we have

oy = FOE2OT (Cy —gEe) lgn = B) = (¢ + )]
gT(y —qE/Dlg(m — E) = (x = p)e] 2c/m)¥
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We stress that w(E) is real, and Im @~ (E +i0) can differ from zero only at the
points where w(E) = 0. Since I"(x) does not vanish for real x, the function w(E)
can vanish only at the points where E satisfies one of the following two conditions:

Condition (a):

gm—E)—(x+y)t =0.

Condition (b):
y—qEt ' =—-neZ;.
In case (a), solutions for E do not exist if { = —1. For { = 1, we have E =

—ymx~"'. At this point, y + ¢gEt~! = 0, so that

I'(—y —qEt ") [g(m — E) = (x + y)t] # 0, o(E) # 0.

In case (b), which defines the points where I" (y —gEt™") = oo, there exist

I
solutions £,

1 —1/2
E.=mm+y)[a+m+9?]",

]—1/2

T =qm[q>+ (n +y) . ne€Zy.

)i I
But for { = 1 at the point E = E, we also have g(m — Eo) — (x — y)to = 0, and

consequently,
I I
‘F ()’ —qEot, ) [q (m - Eo) —(x— )’)fo}

)i
We thus obtain that w(E) vanishes at the discrete points E,,

< 0.

! —-1/2
E.=mm+y)[¢+m+9?]",
N, ¢ =1,

Z 1. (9.35)

ne N N = |

which form the well-known discrete spectrum of bound states of the Dirac electron
in the Coulomb field with Z < Z..

We note that the discrete spectrum is accumulated at the point £ = m, and its
asymptotic form as n — oo reads

E}?onrel =m— En — qu (an)_l s (936)

which is the well-known nonrelativistic formula for bound-state energies of an
electron in a Coulomb field.
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I
In a neighborhood of the points E,, we have

-1
I'(=2y)o Y(E +i0) = -Q2 (E — Eln + iO) + 0(1),

-1

02 = r'(~2y) [w’(én)} ,

F@y + 14 )2 Qe /my [q (m _ én) - m]
Qn =

mn\I'22y + 1) [q (m — én) —(x + )/)t,,:|

It is easy to check that Im O(1) = 0 and obviously that Q2 is positive, which is
in agreement with predictions of the general theory.
It follows that for |E| < m, the spectral function o (E) is a jump function with
I

jumps Q2 located at the points E = E, > 0, and

o(E)y= Y 078 (E—EI) |E| < m.

neN;

Thus, the simple spectrum of };1 is given by
N I
spec hy = {|E| > m} U %E,,, n EM}
The generalized eigenvectors Ug (r), | E| > m, and eigenvectors U, (r) of h 1

Us(r) = Up(r) = o E)Fy(r E). |E| = m:
Un(r) = IIJn(r) = 0. F (r; én), nenNg, (9.37)

form a complete orthonormalized system in the space L2(Ry).

9.4.3 Singular Region

In the singular regions, Z > Z, (j), the deficiency indices of the operators h are
(1, 1), and therefore, there exists a family {/,} of s.a. extensions of & parameterized
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by a parameter v € [ — /2,7m/2], —w/2 ~ /2. Technically, it is convenient
to divide the singular region into three subregions, which we call the subcritical,
critical, and overcritical regions. The subregions are distinguished by a character
of asymptotic boundary conditions at the origin specifying the domains D;, of

the operators £, and providing their self-adjointness. The boundary conditions are
similar in each subregion, which provides similar solutions of the corresponding
spectral problems. In what follows, we describe these subregions, the domains Dj,,
in these subregions, and details of discrete spectra.

9.4.4 Subcritical Region

In this subcritical charge region, we have
4s(j) <qg<q.(j) = 0< Ty =y <1/2.

Here we evaluate the asymptotic behavior of doublets Fi. € D;;" (R4) at the
origin with the use of the representation (9.29). In the case under consideration,
both u;(r) ~ r” and uy(r) ~ r~7 are square-integrable at the origin and estimates
(9.30) hold, so that for any Fy € D; (R4), we have

Fu(r) = ci(mr)’dy + cx(mr)7d— + O (r'/?) ,r — 0,
which in turn yields
At (Fu) =2yq7 ' (21 —Tr c2), (9.38)

with account taken of (9.26) and (9.25). The expression (9.38) for the asymmetry
form A,+ (F,) implies that the deficiency indices of h are my+ = 1, and there-
fore there exists a family of s.a. extensions ﬁz,u of h parameterized by'?> v €
S (—m/2,m/2), with domains Dy, ,, specified by s.a. boundary conditions

F(ry=c[(mr)’dycosv + (mr) "d_sinv] + O (rl/z) ,r—>0 (9.39)
(c is an arbitrary complex number) and having the form

Dy, = {F(r) . F(r) € D} (Ry). F obey (9.39)}.

121t should be borne in mind that the extension parameters depend on both j and . The same
remark holds for all the subsequent regions.
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The spectral analysis in this charge region is quite similar to that in the
first noncritical region. We therefore only point out necessary modifications and
formulate final results.

For the doublet U defining guiding functional @(F, W) (5.33), we choose the
solution U, = F|cosv + F,sinv, where F| and F, are given by formulas (9.16)—
(9.18). The solution U, is real entire in W and satisfies the asymptotic condition
(9.39). The guiding functional with the chosen U, is simple.

The Green’s function of the s.a. operator };2,\} has the form

FEEwW)yeU, (" W), r>r,

G(r.rw) = o (W)
U@ WYRQF ;W) r<r,

w1 (W) = —Wr(F, F3) = w(W)cosv + ¢~ 'I'(1 —2y)sinv.  (9.40)

Using the relations

F;=qQy) " [0U, + o 0,],

UV = Uv(r; W) =—F (r;W)sinv + F,(r; W)cosv,
@1 =1 (W) =w(W)sinv —q ' I'(1 —2y)cosv,
and (9.40), we obtain

G(c—0,c+0; E+i0) = 0, ' (W)U, (c; W) @ Uy(c; W)
+q ) U, (c; W) @ Uy(c; W),
w2 (W) = 2yw1(W)[gdr(W)] ™.

Since both U,(c; E) and U, (c; E) are real, the derivative o’(E) of the spectral
function is given by 0’(E) = 7' Imw; (E +i0).

At the points where the function w, (E) is different from zero, we have w; ' (E +
i0) = wy '(E).

For E > m and E < —m, the function w,(E) is continuous, w,(E) # 0, and
o/(E) = n ' Imw; ' (E) # 0. The spectral function o (E) is therefore a.c. Thus,
the spectrum is continuous and simple (the continuous spectrum includes the point
E = —m as well). However, in the case £ = —m, we have

o' (—m)| = o0, tanv_,, = —(2¢) T (1 —2y)'(1 + 2y).

V=V—pm
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The range v ~ v_,,, E ~ —m requires more detailed consideration. Here we obtain

o/(E) = n ' Ima; "(E +i0) 4+ O(1),
(W) =2yq”"
X (tanv_,, —tanv) cos?v — W 2Acos?v + O (Az) ,
A=W+m,W — —m,

w - 120" gmI’(1—2y)
2y \ (g2 —¢qc/2—2y2/3) (24 2y)

One can see that for v # v_,,, the function ¢/ (E) is finite as £ — —m. However,
atv = v_,, and for small E + m, we have

2 o2
Y Ccos vy,

o'(E) = — Im(E +m+i0)"" +0(1)
11,2
cos? v_y,
that is, there is an eigenvalue £ = —m in the spectrum of ﬁz,v_m.

For |E| < m, the function w(E) is real, and therefore, the function w,(E) is
also real. As in the case of the nonsingular region, Sect. 9.4.2, it follows that for
|E| < m, the spectral function o(E) is a jump function with the jumps Q2 =

1 1 11
—[wb(E)] !, w5 (E,) < 0, located at the points E,, that satisfy the equation
11 o
w (E) =0,E, = E, (v). (9.41)

As a result, we obtain
11
o'(E)=)_ 038 (E - E) |E| < m.
n

We note that as in the first noncritical charge region, there are infinitely many
energy levels accumulated at the point £ = m, and their asymptotic form as
n — oo is given by the nonrelativistic expression (9.36), which does not depend on
v. The lower bound state energy essentially depends on v, and there exists a value
of v = v_,, for which the lower bound state energy coincides with the boundary
E = —m of the lower (positron) continuous spectrum. Some results relating to
numerical solution of equation (9.41) are presented in Fig. 9.1.

A N 11
Thus, the simple spectrum of £, , is given by spec hy, = {|E| > m} U {E,}.
The generalized eigenvectors Ug (r), |E| > m, and eigenvectors U, (r) of hy ,
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a b c
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11
Fig. 9.1 v-dependence of energy levels E, for Z = 121, j
of vy j = 1/2

1/2,¢ = +£1, and Z-dependence

11
Up(r) = Ug(r) = Vo (E)U,(r; E), |E| > m;
Un(r) = lI/:”(r) = 0,U, (r;li’;), (9.42)

form a complete orthonormalized system in the space (R +.).

Itis possible to describe the discrete spectrum in more detail. Explicit expressions
for the spectrum and eigenfunctions can be obtained in two cases. For v = /2, we
have

0 (W) = 2yT(1 = 2y) [o(W)] ™" Upr o (s W) = Fo(r; W),

The corresponding analysis is identical to that in Sect. 9.4.2, and all the results
(for the spectrum and eigenfunctions) can be obtained from the corresponding
expressions of the previous subsection with the help of the formal substitution y —

.
—y. In particular, we obtain that the discrete spectrum &, of /15 + /> has the form
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For v = 0, we have
(W) = o(W)I' "1 (=2y), Uy=o(r; W) = Fi(r; W),

so that the corresponding analysis is identical to that in Sect. 9.4.2, and the
expressions obtained there directly serve for the region 0 < y < 1/2. In particular,

11 N
we obtain that the discrete spectrum E, (0) of /¢ is given by (9.35).

11
For |v| < m/2, the equation w,(E,) = 0 can be represented in the equivalent
form

11
w (E,,) = —¢ 'I'(1 —2y)tanv,

11 -2 11
o (En) A Uk 23, (En) >0,
2y cos? v

11 ra-2
9, E, = — -2 _, (9.43)

11
' (En (v)) cos?v

The function w(E) has the properties

w(=m) = ¢~ 'T'(142y)(29)"> +0;

11 11
w (En + 0) = Foo; w (En(O)) =0,

I 11 11
En < En(0) <&ip1,nz=ng,m=1,n_y =0, &, >-m.

It follows from these properties that there are no spectrum points in the interval
11
[-m, &Ey,) for v € (v—, 7/2), and for fixed v € [v_,,, —7/2), there is one level

11 11
Ey—1(v) monotonically growing from —m to &, —0 as v goes from v_,, to —7 / 2+

0; in each interval (En,5n+1) foraﬁxed v € (—m/2,7/2), there is one level E v)

monotonically growing from 5 +0to €n+1 —0asv goes from/2—0to —m/240.
Note the relationships

11 11
lim En 1(v) = hm/zEn(v) =&, nekN.
—>TT

1}—)7'[
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9.4.5 Critical Region

The critical region is the critical curve Z = Z. (j). In this critical charge region,
we have
q4=4¢c(j) =T+ =y=0.

The charge values ¢ = ¢. (j) stand out because for ¢ > ¢. (j), the standard
formula (9.35) for the bound-state spectrum ceased to be true, yielding complex
energy values. But we will see that from a mathematical standpoint, nothing
extraordinary happens with the system for the charge values ¢ > ¢. (j), at least
in comparison with the previous case of ¢ (j) < g < gc (j).

It should also be noted that this region does not exist if the finite structure
constant « is an irrational number, because here the relation « = (j +1/2)/Z
must hold.

It follows from representations (9.23) and (9.24) that the asymptotic behavior of
doublets Fy € D; (R4 ) in the case under consideration is given by

Fu(r) = c1d4 + c2do(r) + O (r'*Inr) . r — 0,

which yields the expression A+ (Fx) = ¢! (j) (¢ica — ¢z¢1) for the asymmetry
form. Therefore, here, we also have a one-parameter U(1) family of s.a. extensions
h3s, 9 € S(—m/2,7/2), specified by s.a. asymptotic boundary conditions

F(r) = ¢ [do(r)cos® + dysin®] + O (r'*Inr),r — 0, (9.44)

and the corresponding domains Dy, , are
D, = {F(r) . F € DY (R4). F obey (9.44)}.

The spectral analysis follows in the standard way presented in the previous

subsections, and therefore, we only cite the final results. For the doublet U defining
the guiding functional (5.33), we choose the doublet U, 19(0) = F, 1(0) sin ¥ + FZ(O) cos 1,

real entire in W, where F’ 1(0) and FZ(O) are given by (9.23). The doublet U 1;0) satisfies
the s.a. asymptotic boundary conditions (9.44). The guiding functional with this

U is simpl
9 ple.
The Green’s function G (r, r’; W) of the Hamiltonian /3 » is given by

F;O)(r; W) ® Uﬁ(o)(r’; W), r>r,

G(r,r';W) = w; (W)
’ Uﬁ(o)(r; W)® F;O)(r’; W), r<r,

FO = g () asMUY +qc () T,
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(71;0) = Fl(o) costt — F2(0) sin ¥,
o3(W) = =Wr (U7, %) = g7 () Lf (W) cos & — sin 9],
@3(W) =g (j) [f(W)sin® + cos D).
The derivative o’ (E) of the spectral function reads
o'(E) = 27 Imwy ' (E +i0). 0s(W) = [gc () (V)] s (W).
At the points where the function w4(E) is different from zero, we have a)4_1 (E +
i0) = w;'(E).

For |[E| > mand K = ek = e'79""/2k k = VE2—m? > 0,e = |E|/E, the
function f(E) is given by

S(E) =n2e™ 7 km™ ] + y (=ige (j) |EIk™")

[¢+ (iek —¢m) E7!]
2q.(j)

—2y(1).

In the regions £ > m and £ < —m, K = €k = e'"k, the function w4(E)
is continuous, different from zero, complex, and ¢’ (E) = 7~ ' Imw; ' (E) # 0.
Therefore the spectral function o (E) is a.c., and the spectrum is continuous and
simple (the continuous spectrum includes also the point £ = —m). However, in the
case E = —m, we have o'(—m)|y_,_, = 0o, where

tan¥_,, = In(2¢qc) —2¥ (1) + &/g. = n(2¢.) + 2C + ¢/qc) > 0,

and therefore the range ¢ ~ ¥_,,, E ~ —m requires a more detailed consideration.
Here we obtain

qc
7 cos? ¥

—UTAL O, A=W am w= |
1—5/2%

One can see that for ¥ # _,, the function o/ (E) is finite as £ — —m. However,
at ¥ = v, and for small £ + m, we have

o'(E) = Im@, ' (E +i0) + O(1), @4(W) = (tan9_,, — tan )

2
0'(E)=———+——Im(E+m+i0)" + 0(1)
7 cos? P,

2

that is, there is an eigenvalue £ = —m in the spectrum of 23 9_, .
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For |[E| <mand K = it = ¢™/?1, 1 = «/m2? — E2 > 0, the function f(E) is
given by

{—(t+¢im)E™!

fE)=mQ2tm™") + ¢ (—q. () ET") + 220

+2C. (9.45)

It is real, and therefore the function w4(E) is also real.
As in the previous cases, the spectral function o (E) for |[E| < m is a jump

111 11
function with the jumps Q2 = —[w}(E,)]"" located at the discrete energy levels E,,
determined by the equations
11 11 1r  III
on (En) =0, w, (En) <0, E, =E,(®), (9.46)
so that

o'(E)=)_ 038 (E - Iél) .

We note that there exists an infinite number of discrete levels, which are
accumulated at the point £ = m, and their asymptotic behavior as n — o0 is
described by the nonrelativistic formula (9.36).

The lower bound state of energy essentially depends on ¢, and there exists such
a value of ¢ = ©¥_,, for which the lower bound state energy coincides with the
boundary E = —m of the lower (positron) continuous spectrum.

. R i
Thus, the simple spectrum of /3 is given by spec hzy = {|E| > m} U {E,}.

The generalized eigenvectors Ug (r), | E| > m, and eigenvectors U, (r) of hsy,

111
Ug(r) = UL(r) = Vo (E)U,"(r: E), |E| = m;
11 111
Uy (r) = UL (r) = 0, U (r; E) : (9.47)

form a complete orthonormalized system in the space L2(Ry).
For &+ = m/2, it is possible to obtain the explicit formulas for spectrum and
eigenvectors of a complete set. Here,

(W) = ~lge () SO UL, = F,
and

o' (E) = - 'q. (j)Im f(E +i0).
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For |[E| > mand K = ek = e'"=9""/?k k = /E2—m? > 0,e = E/|E|, we
have

0'(E) = [gc () /2] [coth(ge () |E|/ k) + €] .

The spectrum is simple and continuous.
For |E| <m,and K =it = ¢"/?1, 1 = ¥/m? — E2 > 0, we obtain

&)= 0 (E-E). 0 =5im

nENg

11
&, = mn(qc2 +n?)7V2 g, = qcm(qc2 +n?)7V2 ne Ne.

N A 1
Thus, the simple spectrum of /3 5> is given by spec h3 ;o = {|E| > m} U {&, }.
The generalized eigenvectors Ug (r), | E| > m, and eigenvectors U, (r) of h3 52,
11
/2 0
Up(r) = Ui = Vo' (E)U,2, ,(r: E). |E| = m;

111 111
) = U7 = QUL o (i€ ) m e A,

form a complete orthonormalized system in the space L?(R.).

We note that all the above results for the spectrum and for the inversion formulas
can be obtained from the corresponding expressions of the first charge region in the
limit y — 0.

For |¢| < m/2, it is also possible to describe the discrete spectrum in more detail.

In this case, (9.46) can be represented in the equivalent form

11 e qc (1!
flE,) =tand, f'| E, =0 E,) <0,
cos? ¥
I 1 -1
0 E, = [f’ (E) coszzﬁ‘:| <0, (9.48)
where the function f(E) is given by (9.45) and has the properties

Fem) = In2q0) + C + £/g0) — 0: f ('éf . o) — too:

111 117 117
En <&Etr,nzng,m=1,n4=0,&, >-m.
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Thus, we come to the following conclusion: there are no spectrum points in the
111
interval [-m,&,,) for & € (¥, 7/2), and for ¥ € (—m/2, 9], there is one
111 11
level E,,—1 () monotonically growing from —m to &,, — 0 as ¥ goes from ¥_,, to

—m/2 4+ 0;in each interval (En,8n+1) for ¥ e ( /2, 7/2), there is one level
1 11
E, () monotonically growing from &, + 0 to €n+1 0 as ¥ goes from /2 — 0 to

—/2+ 0.

9.4.6 Overcritical Region

In this overcritical charge region, we have Z > Z.(j) and

qg>q.(j)= Ty =io, 0 =+/¢g*?—x*>0.

According to representation (9.29), the asymptotic behavior of doublets Fy €
D;lf (R4 ) in the case under consideration is given by

Fu(r) = ci(mr)?dy + ca(mr)™7d_+ O (r'/?) .r — 0.V F, € DY (Ry).

where d+ = (1,7 (x £i0)g™"), which yields A+ (Fx) = 2iog™" (|e1]* — |e2/?)
for the asymmetry form. It follows that we have a one-parameter U(1) family of s.a.
extensions h4 9,6 € S (0, ), specified by s.a. asymptotic boundary conditions

F(r)=c[e®mr)°dy + e (mr)7°d_]+ O (r'/?),r -0, (9.49)

and acting on the domains Dy, ,,
Dy, = {F(r) : F(r) € DY (Ry). F obey (9.49)}.

For the doublet U defining the guiding functional (5.33), we choose Uy =
¢! F| + ¢ Y F,, where F; and F, are given by (9.16)—(9.18); Uy is real entire in
W because F, = F, for T+ = io and satisfies the boundary condition (9.49). Then
one can verify that the guiding functional is simple.

The Green’s function of the Hamiltonian };4,9 has the form

G(r,r';s W) = o5 "(W)Us(r; W) & U (r'; W)

_i Us(r; W) @ Ug(r's W), r > 1,
Ug(r: W) Q Ua(r'; W), r < 1/,
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where
09 =i [e_ion — eioFl] ,
2F; =T (=2i0)e " {[1 + e ws(W)|Up +i [1 —e*ws| Uy},

1 1 - a)S(W)GZio

ws(W) = —qu(W)/I'(1 =2i0), ws(W) = —4ioq T+ s (W)e2o

The derivative of the spectral function is 0/ (E) = 7~ ' Imw ' (E + i0). At the
points where the function wg( E +i0) is different from zero, we have w; ' (E +i0) =

—1
wg (E).

For E > mand E < —m, K = ¢k = =972k k = JE2—m2 > 0,
€ = E/|E]|, the function we(E) is continuous, complex, and differs from zero.

Therefore 0/ (E) = 7' Imwg ' (E) # 0, the spectral function o (E) is a.c., so that
the spectrum is continuous and simple (the continuous spectrum includes the point
E = —m as well). However, for E = —m, we have

o' (=m)|,_y =00, & = (29)*°I'(=2i0) ™' (2i0), (9.50)

and therefore the range 6 ~ 0_,,, E ~ —m requires a more detailed consideration.
Here we obtain

o/(E) = n~ "¢ Imag '(E 4 i0) + O(1),
CZ)(J(W) — l&z_l (32i(9_9_m) _ 1) _ eZi(@—@—m)A + 0 (AZ) ;

- 20
a, = qz—m(qcz—é‘qc/Z—i—az),

q’m
= , A=W , W —m.
107(q2 — £q0/2 + 07) o

One can see that for 8 # 6_,,, the function ¢’(E) is finite for E = —m. However,
for & = 6_,, and for small £ + m, we have

o' (E) = —n "2 Im(E +m +i0)"" + 0(1) = ¥>8(E +m) + 0(1),

that is, there is an eigenvalue £ = —m in the spectrum of hi4 9_, .
For—-m < E <mand K =it = ™27, t = Vm?2 — E2 > 0, we have

r'QRio)[(—ic —Eqt™") [t(x +io) —qg(m — E)]
I'(—=2io)(ic — Eqt ) [t(x —io) —qg(m — E)] (

ws(E) = D
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. 2w 1
= 290 9(E)=oln =~ + 57 N (=2i0) ~In(2i0)
m l

+Inl (ic — Eqt") —InI (—ioc — Eqt")
+ In[t(gc — ifo) = Eq(m — E)] —In[r(gc + i{0) — {q(m — E)]},

and therefore the function we(E) = 409~ tan [@(E) — 0] is real.
Finally, we obtain

7(8) =Y 03 (£~ £,).

5 v} v} 2%
(B oo ()] 1)

so that for —m < E < m, jumps Q32 of the spectral function are located at discrete

v
points E,, defined by the equation
v v w1
e (E,,) = 0= sin [@ (En) — 9:| =0, E, = E,(6). (9.51)

Thus, the simple spectrum of };4,9 is given by
. v
spec hap = {|E| > m} U {En} .

Some results relating to numerical solution of eq. (9.51) are presented in Figs. 9.2
and 9.3.
The generalized eigenfunctions Ug(r), |E| > m, and eigenfunctions U, (r) of

A

hag,
1A%
Up(r) = Ul(r) = o' (E)Us(r; E), |E| > m;

1A% v
Uy(r) = US(r) = 0,Us (r; E) , ©0.52)

form a complete orthonormalized system in the space L.2(R).
Let us describe the point spectrum in more detail. To this end, we rewrite (9.51)
in the equivalent form

e (IE:) = f(n,0) =—nly + n(—n + 0/n),

v v\17!
A E, = [o (E):| <0nez, (9.53)
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Fig. 9.2 v-dependence of energy levels E, for Z = 138, j = 1/2,¢{ = %1, and Z-dependence
of vy, j = 1/2

where the integer /y is defined below. We note that @(E) is a smooth function on
the interval [—m, m) and

O(E) = —wqgm"*2(m — E)]7/* + 0(1), E - m — 0.

In addition, we have the relation ®(—m) = 6_,, —wly, where [, is an integer, which
follows from the equality

eZi@(—m) — a)S_l (—I’I’l) — 62i9_'".

One can see that the range of the function f(n,6),n € Z, 8 € [0, ], is the
whole real axis. This means that for any E, there exist n € Z, 6 € [0, 7] such that
O(E) = f(n,0). In turn, this means that any £ € [—m,m) is a solution of (9.53)
for some n and 6. Therefore, any E € [—m,m) is the spectrum point for some s.a.
Hamiltonian };4,9. As a consequence, we have ®'(E) < 0, VE € [—m,m). Thus,
as E goes from —m to m — 0, the function ®(E) decreases monotonically from
60—, — lp to —oo. One can easily see that in fact, n > 0 (n € Z). Thus we have the
following:
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Fig. 9.3 v-dependence of energy levels E,, Z = 180, j = 1/2,¢ = %1

(a) in the interval of energies [—m, IEZ(O) = IEV1 (7)) there are no levels for 6 €
[7/2,60_,), and for any 6 € [6_,,, 0), there is one discrete level g)(@), which
increases monotonically from —m to IEI:) (0) — 0 as 8 goes from 0_,, to +0;

(b) in each interval of energies (IE: (m), IEZ 0) = Ef:.l(zr)), n € N, there is one

v v v

discrete level E,(0), which increases monotonically from E, (7) to E,(0) — 0
v v

as 0 goes from 7 to +0. In particular, —m < E,(0) < E,+1(0) <m,Vn € Z,.

We note also that there is an infinite number of discrete levels that are accu-
mulated at the point £ = m. Their asymptotic form as n — oo is given by the
previous nonrelativistic formula (9.36). The energy of the lower bound state depends
essentially on 6, and there exists such an extension parameter 0_,, (see (9.50)) for
which this energy coincides with the boundary £ = —m of the lower continuous
spectrum.

9.5 Summary

In Sect. 8.4 we constructed all s.a. radial Hamiltonians / . for all values of g (we
recall that g = —¢q1g2 > 0,q1 = —e, qo = Ze, so thatg = Zer = Za > 0, and
Z = 137q in a hydrogen-like atom) as s.a. extensions of the initial symmetric
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operators h for any j, ¢, and M, and solved spectral problems for all these
Hamiltonians. As a result, (10.13) and (9.10) allow one to restore all s.a. Dirac
Hamiltonians H, ¢ (all s.a. operators associated with the differential operation (9.1))
for any ¢ and to describe the solution of the corresponding spectral problems for all
the Hamiltonians H. e

It is convenient to introduce charge ranges in which the spectral problem has
a similar description. These ranges are defined by characteristic points jx = k —
1/2,k € Z4, on the axis j of angular momentum eigenvalues. At these points, the
functions ¢. (j) and ¢, () are given by

q:(jk) = k. qc(jo) = 0.
4 Grr1) = V(k + D2 = 1/4, q.(jo) = V3/2,

and satisfy the following inequalities:

4c(Ji) < q4sCGr+1) < qeCk+1) < gs(k+2), k € Z. (9.54)
Let us introduce intervals A (k), k € Z, as follows:

A (k) = (qe(i), ge(r+D)] = (k. k + 1], k € Z..

The semiaxis (0, co) can be represented as (0,00) = Ugez, A (k). In turn, due
to (9.54), each interval A (k) can be represented as A (k) = U;=1234; (k), where

Ay (k) = (qe(k)+ gse Gr+1)],
Ar (k) = (gse (Gk+1)s gc(Gr+1))s
Az (k) = {qc(r+1)}. k € Zy.

According to this division, we define three ranges Q;,7 = 1, 2, 3, of charges ¢:
Qi = Ugez, Ai (k), i =1,2,3,
such that any given ¢ > 0 generates a pair of two integers, k € Z4 andi = 1,2, 3,
q = (k,i), ifqg € Q;.

Then, as follows from the consideration represented in Sects. 9.4.2-9.4.6, we have
the following picture.

A. Letq = (k, 1), thatis, g € A; (k) for some k € Z., which means that

k=qc(jx) < q < qse(k+1) = V(k +1)>—1/4.
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Consider quantum numbers j < ji (such j exist for k > 1 only). Then
q > q.(jx) = qc(j), which means that ¢ > ¢.(j). Such quantum numbers j
are characteristic for the I V' range considered in Sect. 9.4.6.

Consider quantum numbers j > jr+1. Theng < g (jk +1) < gsc(j). Such
quantum numbers j are characteristic for the / range considered in Sect. 9.4.2.

Therefore, for such charges g, we have

v

] . .
Usn=1{ 0 IS E = m,
Ug(r), j = jk+ 1,
1V0 1V
< Ea(0), j < ji,
U= U0 T e g LB, = 9.55)
Un(r), j = jx +1, E,, j=jk+ 1L

I I 1A% v
The doublets Ug and U,, have the form (9.37), and U g and U,f have the form

(9.52).

1 v
The energy spectrum E,, is defined by (9.35). The energy spectra E, (6) are
defined by (9.51) and (9.53).
B. Let g = (k,2), thatis, g € A, (k) for some k € Z,, which means that

Vik + 1?2 =1/4 = ¢;(ie1) < g < ge(i+1) =k + 1.

Consider quantum numbers j < jry; — 1 = ji (such j exist for k > 1
only). Then

q > qsGr+1) > qeCr+1 — 1) = ge(f),

which means that ¢ > ¢.(j). Such quantum numbers j are characteristic for the
I'V range considered in Sect. 9.4.6.
Consider quantum number j = jx4. In this case ¢s(j) < ¢ < gc(j). Such
quantum numbers j are characteristic for the 7/ range considered in Sect. 9.4.4.
Consider quantum numbers j > jx4+; + 1 = jx42. Then

q < qc(r+1) < qs(Gr+2) < qse(j),

so that ¢ < ¢s(j). Such quantum numbers j are characteristic for the / range
considered in Sect. 9.4.2.
Therefore, for such charges g, we have

1A%
Us(r). j < jk.

Ue(r) = |E| = m,

11 o
Ug(r), j = Jjk+1,
I

Ug(r), j = ji+2s
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IV IV . )
Uen(r)v j E jk7 ?IH(@)? j E jk7
_ 11 _ ) )
U =y 0rm). j = jirr. B = Lin(v), j = ks, 099
1
Un(r)7 ./ > jk+27 Env ./ > jk+2-

11 11 11
The doublets Uy and U, have the form (9.42), and the energies E,(v) are
defined by (9.41) and (9.43).
C. Let¢g = (k,3), thatis, ¢ € Aj (k) for some k € Z,, which means that

q =qc(r+1) =k + 1.

Consider quantum numbers j < jr+; — 1 = ji (such j exist for k > 1 only).
Then

q = qc(r+1) > qc(e+1 — 1) = ge(j),

so that ¢ > ¢c(j). Such quantum numbers j are characteristic for the /V range
considered in Sect. 9.4.6.

Consider a quantum number j = ji4;. Theng = ¢.(j). Such quantum numbers
j are characteristic for the /71 range considered in Sect. 9.4.5.

Consider quantum numbers j > jx4 + 1 = jx+2. Then

q = (Ic(jk-l—l) < qsc(jk-H + 1) = (Isc(j)’

so that ¢ < ¢sc(j). Such quantum numbers j are characteristic for the I range
considered in Sect. 9.4.2.
Therefore, for such charges, we have

v
UL(r), j < jk+1—1,
197;

VEO=NUR0). = e, EIE
I
Ue(r), j = ji+1 + 1,
g
U (r), J < Jjir1—1, v

U ()= 11 g ) En@). ] = jier =1,

"=V U, = e, R

i E,(9), j=Jjk+1 En. J = jiy1+ 1.
Un(r), j = jks1+1,

(9.57)

111 111 117
The doublets U g and Unl9 have the form (9.47), and the energies E,(J) are

defined by (9.46) and (9.48).
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We are now in a position to describe the spectral problem for all the s.a. Dirac
Hamiltonians with any charge g. Consider eigenvectors ¥; y/ ¢ £ (r) of any s.a. Dirac

Hamiltonian H.. They satisfy the following set of equations (see Sect. 9.2):

I'vllpj,M,E,E(r) =EY; yre(r),
Um0 =j(G +D¥me (), j =k +1/2, k € Zy,
Jime(®) =MWjpe, M= —j,—j +1,....j—1,,

KWae () = —¢(j +1/2)Wme (1), = £1,

where the Dirac differential operation is H , and operators j 2 J ., and K , are given by
(9.1) and (9.2), whereas the eigenvectors have the form ¥; y ¢ £ (r) = I 3 Ug (1),
see (9.7). .

For any charge ¢, the energy spectrum of any s.a. Dirac Hamiltonian H, consists
of the continuous part | E'| > m and a discrete part E,, which is placed in the interval
[—m,m).

The eigenvectors ¥,y ¢ g (r), |E| > m, which correspond to the continuous
part of the spectrum, are generalized eigenvectors of H., whereas the eigenvectors
¥ mck, (r) of H., which correspond to the discrete part of the spectrum, belong to
the Hilbert space L2 (R3). Doublets Ug(r), which belong to the discrete energies
E,, are denoted by Ug, (r) = U, (r). All the doublets Ug(r) and U, (r) and the
spectra E, depend on the extension parameters, on the quantum numbers j, M,
and ¢, and on the charge g according to (9.55), (9.56), and (9.57). It should be
remembered that the extension parameters depend on both j and ¢.

Finally, the total s.a. Dirac Hamiltonian H (Z) with Z < 118 s defined uniquely.
For Z > 119, there is a family of possible total s.a. Dirac Hamiltonians. The
family is parameterized by the extension parameters. The number of the extension
parameters is equal to 2k(Z), where k(Z) = (1/4 + Z*a?)"/> — § is an integer and
0 <8 < 1.For Z > 119, any specific s.a. Dirac Hamiltonian Vil (Z) corresponds
to a certain prescription for the behavior of an electron at the origin. The general
theory thus describes all the possibilities that can be offered to a physicist. Which to
choose is a completely physical problem.

We believe that each s.a. Dirac Hamiltonian with superstrong Coulomb field
can be understood through an appropriate regularization of the potential and a
subsequent limit process of removing the regularization. We recall that a physical
interest in the electronic structure of superheavy atoms was mainly motivated by
a possible pair creation in the superstrong Coulomb field. Consideration of this
effect in the framework of the simplest model of a pointlike nucleus was considered
impossible due to the conclusion (which is wrong, as is now clear) that this model
is mathematically inconsistent [166]. We believe that the described rehabilitation of
the model allows a return to a consideration of particle creation in this model, which
provides great scope for analytical studies.



Chapter 10
Schrodinger and Dirac Operators with
Aharonov—-Bohm and Magnetic-Solenoid Fields

10.1 Introduction

10.1.1 General Remarks

The Aharonov—Bohm (AB) effect plays an important role in QT, revealing a peculiar
status of electromagnetic potentials in the theory [89, 120, 124]. This effect was
discussed in [6] in relation to the scattering of a nonrelativistic charged spinless
particle by an infinitely long and infinitely thin magnetic field of a solenoid (the AB
field in what follows) of finite magnetic flux (a similar effect was discussed earlier
by Ehrenberg and Siday [53]). It was found that a particle wave function vanishes
at the solenoid line. Although the particle does not penetrate the solenoid, while the
magnetic field vanishes outside of it, the partial scattering phases are proportional
to the magnetic flux (modulo a flux quantum) [165].

A nontrivial particle scattering by such a field was interpreted as a capability of a
quantum particle to “feel” an electromagnetic field vector potential because the AB
field vector potential does not vanish outside of the solenoid.! An s.a. nonrelativistic
Hamiltonian with the AB field was first constructed in [150]; see also [33, 135].
The problem of s.a. extensions of Dirac operators with the AB field in 2+ 1
dimensions was first recognized in [72, 73, 85]. Self-adjoint Dirac Hamiltonians
with the AB field in 3 4+ 1 dimensions were constructed in [10, 40, 42, 159]. In
all these cases, s.a. Hamiltonians are specified by s.a. boundary conditions on
the solenoid line. One possible boundary condition was obtained in [4, 58, 85]
by a specific regularization of the Dirac delta function, starting from a model
in which the continuity of both components of the Dirac spinor is imposed at a
finite radius, and then this radius is shrunk to zero; see also [2, 121]. Physically

Tt should be mentioned that in the relativistic case (Dirac equation with AB field) some of the
wave functions from a complete set of solutions do not vanish on the solenoid line.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress 449
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2_10,
© Springer Science+Business Media New York 2012
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motivated boundary conditions for particle scattering by a superposition of the AB
field and a Coulomb field were studied in [41, 86, 152]. A splitting of Landau
levels in a superposition of the AB field and a parallel uniform magnetic field
gives an example of the AB effect for bound states. In what follows, we call such
a superposition the magnetic-solenoid field (MSF). Solutions of the nonrelativistic
stationary Schrodinger equation with MSF were first studied in [107]. Solutions
of the relativistic wave equations (Klein—Gordon and Dirac) with MSF were first
obtained in [15] and then used to study the AB effect in cyclotron and synchrotron
radiations in [16-18]. On the basis of these solutions, the problem of the self-
adjointness of Dirac Hamiltonians with MSF was studied in [66—-69]. Coherent
states in MSF were constructed in [14]. A complete spectral analysis for all the
s.a. nonrelativistic and relativistic Hamiltonians with MSF was performed in [78].
Recently, interest in such a superposition has been renewed in connection with
planar physics problems and the quantum Hall effect [55,110, 117].

In this chapter, we construct all the s.a. relativistic and nonrelativistic Hamiltoni-
ans with MSF and solve the corresponding spectral problems.

10.1.2 AB and Magnetic-Solenoid Fields

The AB field of an infinitely thin solenoid (with constant flux @) along the axis

z = x> can be described by the electromagnetic potentials AZB, n=20,1,2,3,

AKB = (O’ AAB)’AAB = (A];B’ k = 17273) 7A2B = Os

Psing ,  Pcosg

o
AAB_ »“2AB T

2mp 2mp

where p, ¢ are cylindrical coordinates, x! = x = pcosg, x> = y = psing, and
p=+/x2+y

The magnetic field of an AB solenoid has the form Bag = (0,0, Bap). It is
easy to see that outside the z-axis, the magnetic field Bog = rotA,p is equal to
zero. Nevertheless, for any surface X' with boundary L that is any contour (even an
infinitely small one) around the z-axis, the circulation of the vector potential along
L does not vanish and reads gSL Aapdl = @. If one interprets this circulation as the
flux of the magnetic field Bop through the surface X,

/ BABdG = ¢ AABdl = ¢,
X L

then we obtain an expression for the magnetic field,
Bag = @8 (x') 8 (x?),

which is the origin of the term “infinitely thin solenoid”.
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One can see that Ayg = —rot¥, ¥ = (0,0, % In p), so that divA,g = 0, and
again

BAB = I'OtAAB = (0,0, BAB), BAB = %Alnp = @§ (Xl) ] (Xz) .

We have

e 1. e _
c_hA‘l*B =—¢p 'sing, C—hA/ZxB = ¢p~' cos g,

where ¢ = @ /@, and @ is a fundamental unit of magnetic flux, [46,47],
@y = 2rch/e = 4135 x 1077 G - cm?

(we recall that e > 0 is the absolute value of the electron charge).

As already mentioned, the MSF is defined as a superposition of a constant
uniform magnetic field of strength B directed along the z-axis and the AB field with
the flux @ in the same direction. The MSF can be described by electromagnetic
potentials of the form A* = (0,A), A = (Ak, k=12, 3),

Bx? Bx!
Y L=+ 2 A= 10.1)

Al = A/le -
The potentials (10.1) define the magnetic field B = (0,0, B + Bag). Such a
magnetic field is called MSF. In cylindrical coordinates, the potentials of the MSF
have the form

iA1 = —¢p 'sing, iA2 = qu_l cosp, A3 =0,
ch ch

2 B
v, 4Bl 0 ey = sen B. (10.2)
2 ch

$=0¢+

Below, we consider nonrelativistic and relativistic quantum Hamiltonians of a
charged particle of mass m, and charge ¢ = €;e,€;, = sgng = %1 (positron or
electron) in the AB field and the MSF.

For further consideration, it is convenient to represent the dimensionless quantity
q®(2mwch)™! as follows:

qP @

m:eqao:eq¢=6(¢o+u)<:>¢=63(¢o+ﬂ)s

€ =¢gep =sgn (qB), ¢o = [eppl €Z, p =€pp — o, 0 < p < 1.

The quantity u is called the mantissa of the magnetic flux, and in fact, it determines
all the quantum effects in the AB field; see, for example [17].
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10.2 Self-adjoint Schrodinger Operators

In this section, we consider two-dimensional and three-dimensional Schrodinger
operators with AB and MSF. The starting point is the s.a. differential Schrodinger
operation H with MSF. In three dimensions, it is given by the expression

v 1 o q 2, . B
T (p_ ZA) P =—ihV,V = (3y,0,,9:) . (10.3)

It is convenient to represent H as a sum of two terms, HL and H s
H=H*+H"

where the two-dimensional s.a. differential Schrodinger operation H+ with the
MSEF,

ol il L _ (ol 9 A1)
H_MH,H_(N ChA),
M =2m472, V= (3, 0,) AL = (4", 4%), (10.4)

A" and A? are given by (10.2), corresponds to a two-dimensional motion in the
xy-plane, while the one-dimensional differential operation H ”,

p; . .
—, = - ha )
2m, Pz Lho;

A==

corresponds to a one-dimensional free motion along the z-axis.

The problem to be solved is to construct two- and three-dimensional s.a.
Hamiltonians A+ and H associated with the respective s.a. differential operations
H~ and H and to perform a complete spectral analysis for these operators.

We begin with the two-dimensional problem. We successively consider the case
of a pure AB field, with B = 0, and then the case of the MSF. Then, we generalize
and obtain results in three dimensions.

10.2.1 Two-Dimensional Case

10.2.1.1 Reduction to Radial Problem

In the case of two dimensions, the space of the particle quantum states is the Hilbert
space ) = L’ (RZ) of square-integrable functions ¥ (p), p = (x, y), with the scalar
product

V1. ¥2) = /Wl(ﬁ)%(ﬁ)dl’s dp = dxdy = pdpde.
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A quantum Hamiltonian should be defined as an s.a. operator in this Hilbert
space. It is more convenient to deal with s.a. operators associated with the s.a.
differential operation HL = M H* defined in (10.4).

The construction is essentially based on the requirement of rotational symmetry,
which certainly holds in a classical description of the system. This requirement
is formulated as the requirement of the invariance of an s.a. Hamiltonian under
rotations around the solenoid line, the z-axis. As in classical mechanics, the
rotational symmetry makes it possible to separate the polar coordinates p and ¢
and reduce the two-dimensional problem to a one-dimensional radial problem.

The group of rotations SO(2) in R? naturally acts in the Hilbert space §) by
unitary operators: if S € SO(2), then the corresponding operator Us is defined by

the relation (Ugw) () =v(S7'p). ¥ €n.
The Hilbert space ) is a direct orthogonal sum of subspaces $),, that are the
eigenspaces of the representation Ug,

5= %0 Ushu =5,

meZ

where 6 is the rotation angle corresponding to S.
It should be noted that $), consists of eigenfunctions ¥, (p) for the angular
momentum operator L, = —i%d/de,

Lo (p) = hmn(p), ¥m(p) = e £ (p) . Y € .

1
J2mp

It is convenient to change the indexing, m — [, $,, — 9, ¥ (p) = V¥1(p), as
follows m = € (¢po — /), so that

Ly (p) = he (po — 1) Y1 (p), Y € 5.

We define a rotationally invariant initial symmetric operator HL associated with
H+ as follows:

gL, ) Py = {W(p): v DR\ {0})},
) HEy = HEy, VY€ Dy

where D (R2 \ {0}) is the space of smooth and compactly supported functions
vanishing in a neighborhood of the point & =0. The domain D, is dense in §,
and the symmetry of H is obvious.

In polar coordinates p and ¢, the operation H~+ becomes
2

HE = =02 = p7'0, + p2(i0, + €,9) (10.5)
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where qg is given by (10.2).
For every [, the relation

1 .
(S1/)(p) =i (p) = ﬁe“(""’"""ﬁ O (10.6)

where f = f(p) € L>(Ry) and fj (p) = f(p), determines a unitary operator
S;:L>(Ry) +— $;, where L?(Ry) is the Hilbert space of square-integrable
functions on the semiaxis R4 with scalar product

(fig) = /R T (o) do.
+

For every /, we define a linear operator V; from ) to L?(R ) by setting

2w
Vi) (p) = ,/% vy, (10.7)

Ify en = ZleZ Y1, Y € 9, then we have y; = S;V;¢ for all /. In other words,
Vi=S§ ; 1P, where P; is the orthogonal projector onto the subspace $3;. However,
we prefer to work with V; rather than P; because the latter cannot be reasonably
defined in the three-dimensional case, where the Hilbert state space should be
decomposed into a direct integral instead of a direct sum (see Sects. 10.2.2 and 10.4).

Clearly, V;¢ € D(R4) forany ¥ € D (R2 \ {O}), and it follows from (10.5) and
(10.7) that

ViH Y = h(OViy. v € D (R?\ {0}). (10.8)

where the initial symmetric operator };(l ) is defined on Djy = D(R4) C L*(R4),
where it acts as

) = = +p [(1 +u+yp2/2)] - 1/4] . (10.9)

In view of (10.8), for any ¥ € D (R?\ {0}), the §);-component (’?[Hﬁ)[ of

’j‘\[llﬁ can be written as
(ﬂlw)l = SViH Y = Sih()S7T S Vi = Sih(1)S; . (10.10)

Suppose we have a (not necessarily closed) operator f/ in §); for each [. We
define the operator

;=% (10.11)

€7
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in $ by setting
fv=>"Jwn.v=> w.

€L I€Z

The domain D ¢ of f consists of all v = ) ",, ¥ € $ such that ¥; € D for all

[ and the series ) ;¢ fllﬁl converges in ). The operator f is closed (s.a.) iff all ﬁ
are closed (respectively, s.a.). For every /, wehave D, = D, N $;.

We say that a closed operator f in ) is rotationally invariant if it can be
represented in the form (10.11) for some family of operators f; in $);.
By (10.10), the direct sum of the operators S;A(/)S;” !'is an extension of H:

< Y ®shast. (10.12)

I€Z
Let ﬁe (1) be s.a. extensions of the symmetric operators };(l ). Then the operators
HEW) = Sih(D)S! (10.13)

are s.a. extensions of S;ﬁ(l)S,_l, and it follows from (10.12) that the orthogonal
direct sum

= >%1tn (10.14)

€7

represents rotationally invariant s.a. extensions of the initial operator 7/-\[/}

Conversely, let Hﬁ' be a rotationally invariant s.a. extension of 7~+. Then it
has the form (10.14), where ’?[ﬁ‘(l) are s.a. operators in §);. Let us set };e(l) =
Sl_l’y'/-\[ﬁ'(l)S/. For all /, };e(l) are s.a. operators in L2(R4). If £ € D(R4), then
S feD (Rz \ {O}) N $; and (10.12) and (10.14) imply that

Sih() f = Sth(DST'Sif = HESif = HESIf = HED)S1f = Sihe(D) f.

Hence, h(l)f =h (l) f, thatis, h (1) is an s.a. extension of h(l) We thus conclude
that ’H,J- can be represented in the form (10.14), where ’H,J‘(Z ) are given by (10.13)
and he(l ) are s.a. extensions of h(l ). R

The problem of constructing a rotationally invariant s.a. Hamiltonian ’Hﬂ' is thus
reduced to constructing s.a. radial Hamiltonians ﬁg (1). We first consider the case of
a pure AB field where B = 0. In such a case, we set g = 1 and € = ¢,.
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10.2.1.2  Self-adjoint Radial Hamiltonians with Pure AB Field

In this case, we have y = 0, and s.a. radial differential operations };(l) (10.9)
become

ﬁ(l)=—3i+ozp_2, a=x—1/4, w=|l+ulleZ

It is easy to see that these differential operations and the corresponding initial
symmetric operators h (1) are actually identical to the respective operations and op-
erators encountered in studying the Calogero problem in Sect. 7.2. We can therefore
directly carry over the previously obtained results to s.a. extensions of h ).

First Region: o > 3/4

In this region, we have (I + u)? > 1, which s equivalentto/ > 1—porl < —1—p.

Because/ € Z and 0 < p < 1, we have to distinguish the cases of & = 0 and p > 0:
nu=0:1<—-lorl>1,ie.,[#0,
nw>0:1<-2o0rl>1,ie., [l #0,—1.

For such /, the initial symmetric operator h (1) has zero deficiency indices, is
essentially s.a., and its unique s.a. extension is /; (/) = h™ () with domain
D;(z) (R4). The spectrum of &y (/) is simple and continuous and coincides with
the positive semiaxis, spec h 1 () =Ry,

The generalized eigenfunctions Ug,

Ue(p) = (/2" 1y (VEp).

of };1 (1) form a complete orthonormalized system in L?(R.).

Second Region: —1/4 <o < 3/4
In this region, we have 0 < (I + w)? < 1, which is equivalent to
—u<l<l—por—-l—-pu<Il<-—pu. (10.15)
If © = 0, inequalities (10.15) have no solutions for [ € Z. If u > 0, these
inequalities have two solutions [ = [,, a = 0, —1, where for brevity, we introduce

the notation /, = a, a = 0,—1. So in the second region, we remain with the case
u>0.
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For each [ = [,, there exists a one-parameter U (1) family of s.a. radial

Hamiltonians /& 1, ({4) parameterized by the real parameter A, € S(—n/2,7/2).
These Hamiltonians are specified by the asymptotic s.a. boundary conditions at
p—0,

Y (p) =C [ (c0p) "> cos Ay + (kop) /7 sin A, | + O (p7%). (10.16)

such that

Dy 1) = {I// Ly e DE, (Ry), ¥ satisfy (10.16)},

where %, = », = |+ a|,0 < %, < 1, and C is an arbitrary constant, whereas kg
is a constant of dimension of inverse length.

For A, & (—m/2,0), the spectrum of each h 1, (I) is simple and continuous, and
spec ﬁxa (l) = Ry

The generalized eigenfunctions Ug,

Us(p) = \/% [un (ﬁp) + Xa (@/2/60)% v (@p)} :

Y ~ \2
Q0 =1+ 234 (/4 costrx) + (L) €/ > 0,

Ao = T'(1 =) 7N (1 + xy) tan Ay, (10.17)

of the Hamiltonian 2, (lg) form a complete orthonormalized system in the Hilbert
space L2(R).
For A, € (—m/2,0), the spectrum of each of &, (I,) is simple, but in addition

to the continuous part of the spectrum, there exists one negative level Ei_) =
—1
—x, . ~ . . r
, so that the simple spectrum of 4, (/,) is given by spec h,, (I,) =

—4k2 %,

Ry U {e}.
In this case, the generalized eigenfunctions Ug of the continuous spectrum,
£ > 0, are given by the same (10.17), while the eigenfunction U™ corresponding

to the discrete level £ ;u_) is

) = 2p ‘d—j :ain(nxa) X, ( ) 5;:)) p) '

They together form a complete orthonormalized system in each Hilbert space
L*(Ry).
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Third Region: « = —1/4

In this region, we have [ + 4 = 0. If u = 0, this equation has a unique solution
[ = ly = 0, while if & > 0, there are no solutions, and we remain with the only
case, u = 0.

For [ = [y, there exists a one-parameter U (1) family of s.a. radial Hamiltonians
h a (lo), parameterized by the real parameter A € S (—n/2, 7/2). These Hamiltoni-
ans are specified by the asymptotic s.a. boundary conditions at p — 0,

Vi (p) = C [p"*1n (kop) cos A + p'/Zsin 1] + O (p**1Inp), (10.18)

such that
D) = {w Ly e D, (Ry), ¥ satisfy (10.18)},

where the constants C and k¢ are of the same meaning as in (10.16).

The spectrum of hy, (lo) is simple. For |A| = 7/2, the simple spectrum is given
by spec };in /2 (lo) = Ry.. For |A| < 7/2, in addition to the continuous part of the
spectrum, there exists one negative level £ ﬁ_) = —dklexp[2(tan A — C)], where C

is Euler’s constant, such that

spec hy, (lp)=Ry U {Ei_)}, A < 7/2.

The generalized eigenfunctions Ug of the continuous spectrum,

Us(p) = m [ifo (\/E,O) + %No (x/gp)] .

A=tani—C—In (\/E/ZK()) LA < /2,

and the eigenfunction U ™) corresponding to the discrete level,

U () = \/2p 7| Ko (\/ )5§")p) A< 72,

form a complete orthonormalized system in the Hilbert space L*(R..).

Complete Spectrum and Inversion Formulas in Two Dimensions
with Pure AB Field

In the previous subsubsections, we have constructed all s.a. radial Hamiltonians
associated with the s.a. differential operations % (/) as s.a. extensions of the
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symmetric operators };(l ) for any [ € Z and for any ¢y and . We assemble our
previous results into two groups.
For i = 0, we have the following s.a. radial Hamiltonians:

hy(lo). A €S(=m/2.7/2). Dp,q, is given by (10.26).
For u > 0, they are
M), 1 #1,=a=0,-1, Dy = D;{(” (R4),

ow (la) s da € S(=7/2,7/2), Dy, q, is given by (10.22).

Each set of possible s.a. radial Hamiltonians ﬁc (1) generates s.a. Hamiltonians
in accordance with the relations (10.13) and (10.14). As a final result, we have a
family of s.a. rotationally invariant two-dimensional Schrodinger operators H j— =
M _lﬂﬂ' associated with the s.a. differential operation HL (10.4) with B = 0.

When presenting the spectrum and inversion formulas for H j—, we also consider
the cases © = 0 and p > O separately. We let E denote the spectrum points
of I:Ij- and let ¥z denote the corresponding (generalized) eigenfunctions. The
spectrum points of the operators ﬁg (7) and H eJ- are evidently related by £ = ME.
In addition, when writing formulas for eigenfunctions ¥ of the operator H eJ' in
terms of eigenfunctions Ug of the operators h (1), we have to introduce the factor
(27p) /2 ei€a#0=D¢ in accordance with (10.6) with € = ¢, (because €5 = 1),
to make the substitutions £ = MFE and 5;:) = ME;:), Ei_) = MEi_) for the
respective points of the continuous spectrum and discrete spectrum, and in addition,
to multiply eigenfunctions of the continuous spectrum of the operators he (I) by the
factor ~/M because of the change of the spectral measure d€ to the corresponding
spectral measure® dE.

For u = 0, there is a family of s.a. two-dimensional Schrodinger operators
H j— =H AJ- parameterized by a real parameter A € S (—n /2, 7/2),

A=Y"®Aatme A1),
1€Z,1#1y
A (1) = M7 Sihay()S;'. 1 # 1o,
A3t (lo) = M7 S),h; (1) S,

2From a physical standpoint, the latter is related to the change of the “normalization of the
eigenfunctions of the continuous spectrum to § function” from § (€ —&’) to § (E — E’).
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The spectrum of H AJ' is given by

H+ =R, U
P T g A= 4a)2

E)(L_) = —4M~'k}exp[2(tanA — C)], |A| < 7T/2§

The complete system of orthonormalized (generalized) eigenfunctions of A AJ-
consists of the generalized eigenfunctions ¥; g (p) of the continuous spectrum,

W) p(p) = (M/4m) /2 el g («/ME,O), 141y, E>0,

V) = MTM)¢ (100 (VAMEp) + 2 No(VMEp)].

A =tanA —C—1In (\/W/Zco),

and (in the case of |[A| < 7/2) the eigenfunction llll)(t (p) corresponding to the discrete

=)
level E, 7,
Wl (p) =M,/ )Ei_))/rreie‘f‘f’"“’Ko (,/M ‘Eﬂp) :

HW, £ (p) = EW £(p). HMW} 1(p) = EW} (p). E >0,

such that

A0l (p) = E\7 0 (p), A < 7/2.

The corresponding inversion formulas have the form

v = Y [ emusen

1ez.1%#1,* 0

+ [ o 0t + 0193,
2(5) = [ W@ 0). 0(E) = [ 0¥ 0o,
o, = [ 0¥ 0. Vo € L2 ().

/dplllf(p)lz - Z/O 01 (E) dE + [

I€Z

The terms with &;, and lIIIAO (p) are absent in the case of |A| = 7/2.
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For 1 > 0, there is a family of s.a. two-dimensional Schrodinger opera-
tors H e | {JX pa = 0,—1, parameterized by two real parameters A, €
S(— rr/ 2, rr/ 2),

AE, =Y"%At0)e ZE‘BHA (L),

1€Z.1#1,
H (1) = M7 'Sihay (DS 1 # L,
Hit (1) = M7, hy, (1) S
The spectrum of H {Jja} is given by

1
N =) _ 17,2 a _
spec i | =R U | Br = —4M kG A e 20

@, Ao & (—7/2,0)
where %, = | —i—al,ia =T(1—x%)C"'(14 x,)tan A,.

A complete system of orthonormalized (generalized) eigenfunctions of H {JA'

consists of the generalized eigenfunctions ¥; g(p), [ # [, and lI/ g (p) of the
continuous spectrum,

W p(p) = (M/4m)" /> eca=De g (x/ME,o) g =1+l 1 # L

lllliizE (p) — 47[Qa eléq((p()_la)(p |:J71-'u (‘/MEP)

+ha («/W/ZK())M“ T, (\/ﬁp)} ,
Qu = 1+ 24, (ME /4y cos(x,) + (A ) (ME/4)*, E > 0,

and (in the case of A, € (—x/2,0)) the eigenfunctions lllli“ (p) corresponding to the

discrete levels E L_) ,

MZ‘EL_)‘sin(mfu) ‘
5 el€a(@o—la)p K}{a ‘ME)(L:) ‘,0 ,
2x,

W (p) =

such that

HW, p(p) = EW p(p). | # lo. HXW,(p) = E“,(p). E >0,

y A — A
A W (p) = ESW) (p), b =0,-1.



462 10 Schrodinger and Dirac Operators with AB and MS Fields

The corresponding inversion formulas have the form

v = Y [ ouEweuE

lez, 131, *°

oo
+y [ / @, (E), - (p)AE + &), W) (,0):|, Vv e L?(R?),
0
a

®/(E) = / TPV (). | # L.

0,(E) = [ a¥ o0 o). 0, = [ apv ).

[awor =3 [~ lewra+ Yo,

I€Z

The terms with &;, and lllli“ (p) are absent in the case of A, ¢ (—m/2,0).
We now consider the case of the MSF where B # 0.

10.2.1.3 Self-adjoint Radial Hamiltonians with MSF

In this case, the radial differential operation };(l ) is given by (10.9) with y =
e|B|/ch # 0,

h(l)=—32+gip~> + gap* + &7

gr=x—1/4 0 =|l+p|, &=7"/4 " =yl +p.

Up to the constant term £ ,(0) , these s.a. differential operations and the correspond-

ing initial symmetric operators h (1) are identical to the respective operations and
symmetric operators encountered in Sect. 8.4. We can therefore directly carry over
the previously obtained results to s.a. extensions of h (7). We note that as in the case
of a pure AB field, a division to different regions of g; is actually determined by the
same term g;p~ > singular at the origin and independent of the value of B.

First Region: g; > 3/4

In this region, we have (I + u)* > 1, so that

u=0:1<—-lorl>1,ie.,l #l,
u>0:1<-22orl>1,1e.,l#I,.
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For such /, the initial symmetric operator h (I) has zero deficiency indices. It
is essentlally s.a., and its unique s.a. extension is I 0 = ht (I) with domain

] ([) (R4). The spectrum of hl () is simple, discrete, and given by

spec hy (1) = {5,,," =y A+l +pul+( +p)+2m). me Z+} (10.19)
The eigenfunctions U, 1(2 ,

U (0) = Quw (p/2)V/40012 pl 251671014 (m 1 + 313 yp%/2)

A V2y (A 4 +m) 172
Q”’”_( m!T2(1 + x)) ) ’

(10.20)

of the Hamiltonian /, (I) form a complete orthonormalized system in the Hilbert
space L2(Ry).

Second Region: —1/4 < g, < 3/4

In this region, we have 0 < (I 4+ )* < 1, or equivalently (10.15). We know that if
u = 0, these inequalities have no solutions for / € Z, while if y > 0 there are the
two solutions /| = [, = a, a = 0,—1. Therefore, we again remain with the case
u > 0.

For each | = [, , there exists a one-parameter U (1) family of s.a. radial
Hamiltonians };Au (I,) parameterized by a real parameter A, € S(—n/2,7/2).
These Hamiltonians are specified by the asymptotic s.a. boundary conditions at
p—0,

1/245, 1/2=x,
¥, (p) =C [( y/20) " sina + (Vy/20) cosxa]+0(p3/2),
(10.21)

where x, = |u+al,0 < x%, < 1, and C is an arbitrary constant,? and their domains
are given by

Diy, ) = {w Y e DY, (Ry),  satisfy (10.21)}. (10.22)

The spectrum of l; 2, (lg) is simple, discrete, and is bounded from below,

spechl (l)—{am—tam—f-é’ ),mEZ+}

3In comparison with (10.16), we fix the dimensional parameter ko by kg = /y/2.
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where 7, ,, are solutions of the equation w, (74m) = 0,

0y, (W) =wy(W)sind, + wo_(W)cosA,,
0r(W) =T (1 E£x)/T(1/2 £ 2,/2—W/)2y). (10.23)

The eigenfunctions U ;j) e

U/x(j)m(p) = Qam [U+(p; Tam) sin Ag + u—(p; tam) cOs Ay] ,

- 1/2
Q _ a)/\u (‘Ca,m)
AV (tam) )
@y, (W) =wyr(W)cosd, —w_(W)sini,,
s (p; W) = (y/ )45/ 25501014 (1/2 4 3, /2-W /2, 1 % x4 y07/2),
(10.24)

of the Hamiltonian 2, (lz) form a complete orthonormalized system in the Hilbert
space L2(R).

For A, = £m/2 and A, = 0 one can easily obtain explicit expressions for the
spectrum and eigenfunctions. For A, = £m/2, they are given by the respective
formulas (10.19) and (10.20) with the substitutions / — [, and %, — x,. For

Aqs = 0, these formulas are modified by the additional substitution x, — —x,.

In addition, one can see that in each interval (t;fn”/ 2), rfltn’:{lz) ) ,m e {—1}UZy,,

where ‘Céj:nﬂ/ 2 ,m € Z, are solutions of the equation @+, /2(74m) = 0, and we set
formally tffi/ Y — _50. There is one solution T,.m of the equation wy, (tam) = 0

for a fixed A, € (—m/2,7/2); the solution 7,, increases monotonically from

3 4 010 rﬁfﬁ) —0as A, goes from —/2 + 0to 7/2 — 0.

Third Region: g, = —1/4

In this region, we have / + u = 0. Thus, we remain with the only case, 4 = 0, and
with/ = [y = 0.

For [ = Iy, there exists a one-parameter U (1) family of s.a. radial Hamiltonians
hy, (lp), parameterized by the real parameter A € S (—x/2, 7/2). These Hamiltoni-
ans are specified by the asymptotic s.a. boundary conditions at p — 0,

Ya(p) =C [,01/2 ln( y/Zp) cos A + p!/? sink] + 0 (,03/2 In p) , (10.25)
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where C is an arbitrary constant, and their domains are given by

D) = {w Ly e D, (Ry), ¥ satisfy (10.25)}. (10.26)

The spectrum of h a1 (lo) is simple, discrete, and is bounded from below, and

specf;x(lo)=§gm,m€{z+’A:iﬂ/z }

{1} UZy, A <7/2
where &, are solutions of the equation wy (&,) = 0,
wpr(W) = cosA[Y(ag) —2¢(1)] —sinA, ag=1/2—W/2y. (10.27)

The limit A — =+7/2 in this equation and its solutions is described by the
equation ¥~ (ctg) = 0 or 1/2 — P /2y = —m, m € Z, and by the solution
EETD = y(1 + 2m).

A qualitative description of the spectrum is given in Sect. 8.4. One can see that
in each interval (Efni”/ 2 , Elfj_nl/ 2 ) ,m € {—1} UZ, there is one solution &,, (for a

fixed A € (—m/2,7/2)) of (10.27) (we set formally E(_jl“’/z) = —o0); the solution

&y increases monotonically from Efni”/ Y4 0to Eﬁ_ﬁ/ 2 _0as A goes from /2 —0
to —m/2 + 0.
The eigenfunctions U ;3}31,

Uﬁl = Qam[u1(p; En) sin A + uz(p; Ey) cos A,
w(p; W) = (y/2)"* p e 1 (e, 1;7p7/2),
us(o: W) = (o W) n (v/7/2p)

—n2
+ (/) pM e B, 0(1/2 + e — W2y, 1+ 213 707 /2))|

n=0"’
~ 1/2
Qs = [—%} > 0 (W) = sin [ (o) = 2¢(1)] + cos A,
(10.28)

of the Hamiltonians A, (lp), form a complete orthonormalized system in the Hilbert
space L2(R4).

We note that the spectrum and eigenfunctions in the case A = =£m/2 can be
obtained from the respective formulas for the first region in the formal limit / — 0.
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10.2.1.4 Complete Spectrum and Inversion Formulas in Two Dimensions
with MSF

In the previous subsubsections, we constructed all s.a. radial Hamiltonians associated
with the s.a. differential operation h () as s.a. extensions of the symmetric operator
h (1) for any [ € Z and for any ¢y, i, and B. We assemble our previous results into
two groups.

For i = 0, we have

hi(). 1#1=0. Dy = Df, (Ry),
hi (o), A eS(—n/2,7/2),

and the domain Dy, () is given by (10.26).
For 1 > 0, we have

(), 1 #1la=a=0,~1 Dy =D}, (Ry),
ha, (). A €S(=1/2,7/2),

and the domain Dy, (,) is given by (10.22).

As a result, each set of possible s.a. radial Hamiltonians he (1) generates an s.a.
rotationally invariant Schrodinger operator H L= I’HJ' in accordance with
relations (10.13) and (10.14). As in the case of a pure AB field where B = 0,
we let E denote the spectrum points of H j—

It is convenient to change the indexing [, m of the spectrum points and
eigenfunctions to /, n, as follows:

m, [ <-—1, .
n_n(l’m)_{m+l,120, meZy, l el
m=mmniy=]""1="1 neZy leZ (10.29)

S | n=1.0<l<n - ’ '

and then to interchange their positions, so that finally, the indices /, m are replaced
by indices n, .

When writing formulas for eigenfunctions ¥,; of an operator I-AIQJ- in terms
of eigenfunctions U;,, of the operators ﬁc(l), we have to introduce the factor
(27p) /2 ei<0=1)¢ in accordance with (10.6) and to make the substitution &, =
ME, ; for the corresponding spectrum points.

The final result is the following. There is a family of s.a. two-dimensional
Schrodinger operators I—AIQJ- parameterized by real parameters A, such that
H} = H!,
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=Y %At e Z@HA (),

1€Z.1%1%
ﬁl (l) — M_lslﬁl(l)sl_l, ! ?é l*,
AL (L) = M7 () S

= A. S - 2, 2 5 =
l*:{lo,u 0. , _)AeS(n/2.7/2), p (10.30)
ly, >0, Ao €S(—m/2,7/2), > 0.
The spectrum of H Li _1s given by
spec I‘AIf; = { Urezi#t, (Eng, n € Z+)} U {U1=l* (E,Sl*), ne Z+)},
1 1,/>0
Ei=yM 7 [14+2n4+200)ul, I <n, l #ls, 0() = 0.1 <0
(10.31)
0 . wy (MEM) =0, |A| < 7/2, L= 0,
! E,(,i”/z) =yM~'(1 + 2n),
E(AU) M [Tun + )/(a + :u*)] Wi, (tan) =0
(£7/2) ) nely,pu >0,
E, =yM~[1 4+ 2n + 206(a)u],
(10.32)

where w; (W) and w;,, (W) are given respectively by (10.27) and (10.23).
A complete set of orthonormalized eigenfunctions of H )t consists of the func-

tions ¥, ;(p), | # l«, and lIIA’; (p),

1 ie(po—
W, () = =° Go=bey) (). (10.33)

where Ul(’z (p) are given by (10.20), and (we note that m(n, [x) = n)

1 )
anl,lo(:o) = ﬁe“‘”"“’Ufi(p), n =0,

Y (p) = m el @ (o), 11> 0,

where U ;3,3 (p) and U ;f)n (p) are given respectively by (10.28) and (10.24), so that

AL 0,1(0) = EniWi(p). | # L, HE(0)X = EXDW (o).
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We note that for the case of A = +7/2,] = [y = 0, and for the case of
Ay = /2,1 =1, = a = 0,—1, the energy eigenvalues E,SM and E,SA“) and
the corresponding eigenfunctions ¥ and ¥« are given respectively by (10.31) and
(10.33) extended to all values of /.

The corresponding inversion formulas have the form

V)= Y. > Pt Y. P (o)

1€Z, 171« n€L4 I« €Ly

D1 = [ TP 1 #1u D0t = [ 40U (D),
[ eF =3 3 10uP . vo e 1 @),

I€Z n€ly

10.2.2 Three-Dimensional Case

In three dimensions, we start with the dlfferentlal operation H (10.3). The initial
symmetric operator H associated with H is defined on the domain Dy =

(R3 \ Rz) e $ = L*(R?), where D (R3 \ RZ) is the space of smooth and
compactly supported functions vanishing in a neighborhood of the z-axis. The
domain Dy is dense in §), and the symmetry of H is obvious. An s.a. Schrodinger
operator must be defined as an s.a. extension of H.

There is an evident spatial symmetry in the classical description of the system, the
symmetry with respect to rotations around the z-axis and translations along this axis,
which is manifested as the invariance of the classical Hamiltonian under these space
transformations. The key point in constructing a quantum description of the system
is the requirement of the invariance of the Schrodinger operator under the same
transformations. Namely, let G be the group of the above space transformations S :
r —> St. This group is unitarily represented in §: if S € G, then the corresponding
operator Ug is defined by

(Usy)(x) = (S7'r), Yy € 9.

The operator H evidently commutes* with Ug for any S.

We search only for s.a. extensions I-AIc of H that also commute with Us for
any S. This condition is the explicit form of the invariance, or symmetry, of a
Schrodinger operator under the space transformations. As in classical mechanics,

4We remind the reader of the notion of commutativity in this case (where one of the operators,
Uy, is bounded and defined everywhere): we say that the operators H and Us commute if Ug H
C HUsg, thatis, if v € Dy, thenalso Usyy € Dy and UsHy = HUgr.
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this symmetry allows for the separation of the cylindrical coordinates p, ¢, and z and
the reduction of the three-dimensional problem to a one-dimensional radial problem.
Let L? (R x R4) denote the space of square-integrable functions with respect to the
Lebesgue measure dp.dp on R x R, and let V: Z;‘ZZ L?> (R x Ry) —> § be the
unitary operator defined by the relationship

1 ; _
e | ap. e n ).

€7

Similarly to the preceding subsection, it is natural to expect that any s.a. Schrodinger
operator H, can be represented in a form of the type

1?1&:1// dp. Y he(l. p)V ",
R,

l€Z

where ﬁg (I, p.) for fixed I and p, is an s.a. extension of the symmetric operator
h(l, p.) = h(l) + p?/2m, in L* (R4) and the operator (/) in L* (Ry) is defined
on the domain Dj) = D (R4), where it acts as

) == +p [(1 +u+yp/2) - 1/4].

The correct expression for H . can be written in terms of a suitable direct integral,

A ® b
A, = v/ ap. YT he . pyv.

I€Z

Its rigorous justification is discussed in [78].

The inversion formulas in three dimensions are obtained by the following mod-
ifications in the two-dimensional inversion formulas: )", [dE — [dp.> ey
f dE+, where E*+ are spectrum points of two-dimensional s.a. Schrodinger oper-
ators H RJ-, whereas the eigenvalues (spectrum points) E of three-dimensional s.a.
Schrodinger operators H.are E = EL + pf/2m, p. € R.

(1) The contributions of discrete spectrum points of the two-dimensional s.a.
Schrodinger operator H j— have to be multiplied by [ dp..

(2) Eigenfunctions of two-dimensional s.a. Schrodinger operators I—AIeJ- have to
be multiplied by (Znh)_l/ 2eipa/h in order to obtain eigenfunctions of three-
dimensional s.a. Schrodinger operators H ¢

(3) The extension parameters A, and A have to be replaced by functions A, (p;) and

A(p2)-
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10.2.2.1 Self-adjoint Schrodinger Operators with AB Field
For the case of u = 0, there is a family of s.a. three-dimensional Schrodinger

operators parameterized by a real-valued function A(p;) € S (=7 /2,7/2), p. € R.
The spectrum of Hj(,,) is given by

spec Hp.)y

. o | P/2me—4MT G exp R(tan A(pe) — O). [A(po)| < n/z}‘

@, AMp;) =xn/2

A complete system of orthonormalized generalized eigenfunctions of I;Q(pz)
. . A(pz)
consists of functions ¥, , p1(r), [ # o, and Wl()!SZ’EL (r),

W (0) = (872h/ M) einslhticinbe g (VMETp),
() = (8% (32 4 w2 /a) [ aa) " ety
x [iJO (Wp) + %No (\/Wp)] ,
A =tanA(p.) —C —In (W/zxo) ,
and functions ¥ 7 (r),

/1(17 )( ) _ eipjz/h-l—iequo(p

Y. n«/ﬁ

\/2M2 Ej(( ;‘Ko(\/M El) ) A(p)| < /2
0, A(p;) = +£m/2

ELS) = —4M G exp2(tan A(po) — ©),

such that

HY,, pi(v) = (p?/2m. + EN) W, p1(r), E- >0,

A ot
HW,(Z)EL(Y)—(pZ/2me+El) ‘”’ L(r), EL >0,

AP oy — [ 2 LY g2
Hlplo Pz (r) = (pz/zme + E/\(P;)) lo.p: (r).
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The corresponding inversion formulas have the form

lll(r)—/dpz > / @, (EY) W), g1 (DdEL

[€Z, 150

o0
A /\
+ / ®IO~,P (EJ_) l]/ (p ) (r)dEJ_ + ®IO~,F l()(;7 )(r) ’
0

VYo e L (RY),
@, (EY) = / @, pL(OW(r)dr, | # I,

@, (E*) = / W) ()W (ndr, @, = / ) (1) W (r)dr,

/lllf(r)l dr—/dpz [Z/ @1, (E*) \ dEL + | @y, | }

€7

In the case p > 0, there is a family of s.a. three-dimensional Hamiltonians
Ifl{lu(pz)} parameterized by two real-valued functions A,(p;) € S(—n/2,7/2),
a=0,—-1, p, eR.

The spectrum of ﬁ{ Aa(p.)} 18 given by

—x;

pzz/2me—4M_lk§ Na
@, Aa(pz) ¢ (—7/2,0)
lu + al, ;\a =1I(l _}fa)r_l(l + %) tan Ay (p2), %4 = |0 + al.

spec Hpy, () = »Aalp) € /200 LR,

Xa

A complete orthonormalized system in L? (R3) consists of both generalized
eigenfunctions ¥, , p1(r),! # l,, and l]/l (p) L (0),

lpl,pz,EL (r) = (gNZh/M)_I/z eip;z/h+i€q(¢o—l)<p_]m (Q/MEJ_p> i

gha —1/2 e (e
W) ) = (812 Q,) P elrlitie

x [un («/Wp) n (x/MEJ-/ 2K0)2X“ Ko I, (x/MEJ-p)i| ,
Qo =142 (ME*/4)“ &, cos(rxy) + (ME/4)* 32,

and eigenfunctions Wli“;f 9(r),
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i -1 ; ;
‘I’zi‘,’,(,f‘)(r) — (2,,2;,) eipz/htillategbole

M2|EEC) | sin(eg) 1
X ) M;lz’;;fa K ( M ‘Ela((pj)‘p)"x“(m) € (-m/2.0) )
0, Aa(p2) ¢ (=7/2.0)

1(— _
EfC) = —4M '@ exp2(tan A (p.) — O),

such that
A, g1 () = (p2/2me+ EY) W), i (), EX >0,
H‘I’,l ;p,im(l‘) (p2/2m, + E7) W* “) (r), EL >0,
A (r) = (pj /2m, + Eﬁ(;)) Wl (r).
The corresponding inversion formulas have the form

lP(r):/dpz > / @, (EY) W, g1 (DdEL

1€, 11,
+ Z/ B, p (ER) 90 (OAES + @1, W0 (0) |
Yo e L (RY),
@, (EF) = /drmlll(r), Et>0.1#1,
@, . (EY) = / drlllli‘j;igl (r¥(r), E+ >0,

@, = / drqﬂ “P (1)@ (r),

/dr|l1/(r)| —/dpz [Z/ @1, (E*) \ dEi+Z\<p,u,,\ }

€7

10.2.2.2 Self-adjoint Schrodinger Operators with MSF

There is a family of s.a. three-dimensional Schrodinger operators H As(p,) Parame-
terized by real-valued functions A«(p;) € S (—n/2,7/2), p, € (R), where A are
defined by (10.30).
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The spectrum of H A« (p.) 18 given by
spec ﬁk*(m = {pf/Zme + E,f‘l*(pz), ne Z+} U [yM_l, ),

where E;**" are defined by (10.31) and (10.32) with the substitution A, —

Ax(p2)-
A complete system of generalized orthonormalized eigenfunctions of H;, (p.)

consists of functions ¥, ;,(r), [ # l«, and llf)k (p ) o (r), n € Zy,

oiP:z/hte(go— IWU(l)(n n(P), 1 # L, (10.34)

lIlpz,l,n (l') = . \l/—

where /. are defined by (10.30), m(n, /) is given by (10.29), and Ul( )(,o) are given
by (10.20),

k [ 3

v ) (1) = Py v elrs/iticdry® | (p). p=0,

k 2

p §Pn)( ) = elip: 2/ htie(po—ly )(pU(azp)n(p)’ >0,
7[\/

where U ((; .(p) and U ;22 ), . (p) are given respective by (10.28) and (10.24) with

the substltutlon Ax = Ax(p;), so that

[{Il]/pm,.,,(r) = (pf/Zme + E,j_]) quz,l,n(r)7 ) 7é Ly,
Hlpx*(p 2 (1) = (Pz /2m + EJ.A*(p)) ‘1’;*1(:7;)1 (r), (10.35)

where
El = yM™' 1 +2n+ 200l I <n, 1 # lu, n € Zy. (10.36)

We note that for A(p,) = A.(p;) = =£n/2, the energy eigenvalues and
corresponding eigenfunctions ¥, _; ,(r) are given by (10.34), (10.35), and (10.36)
extended to all the values of /.

The corresponding inversion formulas have the form

l*
l]/(r) /dpz Z Z ®p ln pl.m(n, l)(r)+ Z ®p l*n Pes [(pn)(r) s

n€Zy | 1€z, 1#1. 1=l

@pin = / Ar¥, 1, (OW(0), ] # L, Py iy n = / dr 9 (r) e (r),

/dr|l11(r)| /dpzz > @, a7 Ve L2 (RY).

leZ n€Z 4
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10.3 Self-adjoint Dirac Operators

10.3.1 Reduction to Radial Problem

Written in the form of the Schrodinger equation, the Dirac equation with the MSF
reads’

0w (x)
ot

i

=HV (x), x = (x%r), r= (xk, k=123, x"=1,

where ¥ (x) = {Yy(x), &« = 1,...,4}is a bispinor (Dirac spinor) and H is the s.a.
Dirac differential operation,

H = o (p—qA) + m.p,

where p = —iV,V = (d,,d,,9;), the vector potential A (x) is given by (10.2),
a= (Y% k=1223),=y"%andy* u=0,1,2,3, are y-matrices, chosen in
the following representation:

y! = diag (07, —0?), y' = diag (io?.—io?), y* = diag (—ic',ic"),

y® = antidiag (—1,1), y° = —iy’y'y*y® = —antidiag (I, ),
where I = diag (1, 1) is the 2 x2 identity matrix; for the definition of Pauli matrices,
see Sect. 9.2.

The space of quantum states for the Dirac particle is the Hilbert space ) =
L? (R3 ) of square-integrable bispinors ¥ (r) with the scalar product

U, ) = | drw(r)d,(r), dr = dx'dx?dx® = pdpdedz,
! pdpde

where p, ¢, and z are cylindrical coordinates. The Hilbert space $ can be
presented as

4
=%, 9, =L ®).
a=1

Our first aim is to construct all s.a. Dirac operators (Dirac Hamiltonians) associ-
ated with the s.a. differential operation H using the general approach presented in
Chaps. 3 and 4. In addition, the construction is also based on the known spatial

51n this section, we set ¢ = A = 1.
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symmetry in the problem,® which allows for the separation of the cylindrical
coordinates p, ¢, and z. 5
Written in the cylindric coordinates, the differential operation H then becomes
H = diag (Y + meo>,Y — meo3) + p. antidiag (03, 03) ,
where

Y:Q[o38p+p—1 (i3¢+6,,(];)], 0 =o'sing —o’cosg, 0> =1,

and

&b =e(do+ i+ 70°/2), ¢o = lepp]l = €epp—p, 0<pu <1,y =elB|>0.

This operation commutes with the s.a. differential operations

v

p.=—i0., S. = VS (V3_mg_1pvz)v

. 1 IV .
Jo=—id, + 523 =diag (Jz, Jj2), J. = —i0, +0°/2,

where X3 = diag (0, 0?).
Now we pass to the p,-representation for bispinors, ¥ (r) — l1~/( Dz P)s

1 R - 1 .
v = = / D) (pap) = = / P (x)dz.

In this representation, the operation JvZ is the same, while the operation H and
operation S, respectively become

H — H (p.) = H = diag (Y +m,0>,Y —m,0°) + p, antidiag (o, 0°) ,

gz — S‘z (py) = me_lpZ antidiag (1, 7)) + diag (1, —1).

We decompose bispinor lf/( p., p) for afixed p. into two orthogonal components
that are eigenvectors of the spin matrix S,(p;):

(p..p) = Wi(po. p) + V-1 (pe. p).

5By spatial symmetry, we mean invariance under rotations around the solenoid axis and under
translations along this axis.
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where

~ M +me 12 Xl
lp S = —— _ == s s
e = (M) (L oy ) = ep ® )

L M +m\? (= D)7y
Y_i(p..p) = (2—Mm) ( p: (M :_": ) ‘) = x-1(pz, p) ® e—1(p2),
M +m,\'? 1 .
er(p) = (2—M’”) (p . )_1), e-1(po) = —io’ei(po).
' (10.37)

and es(p;), s = +1, are two orthonormalized bispinors, e, (p,)e;r (p;) = 8, and
xs(pz, p) are some doublets.

The space of bispinors (p,, p) with a fixed p, is the direct orthogonal sum of
two eigenspaces of S.(p.),

A - M -
Se (p) ¥ (pe.p) = s~ Wi(pe.p). M = m; + p?, s = £L.
e

We thus obtain a one-to-one correspondence ¥(r) < l1~/s (p.,p) <=
xs(pz, p) between bispinors ¥ (r) and pairs of doublets y,(p;, p) such that

11 = Y 1P = 3 [ dpado (o120

The differential operations H and JvZ induce the differential operations h and Je
in the space of doublets y(p., p) as follows:

I:I (pz) li/s = lvl(S’ pz) Xs ® e, jz (pz) li/s = jz)(s ® ey,
his,p.)=0 [030, + p7" (i, + €,0)] + sMo™.

The s.a. operator J, associated with J; has a discrete spectrum, and its eigenvalues
J. are all half-integers labeled here by integers [ as j, = €(¢o — [ + 1/2),

J-Ei(p) = [e(po — 1 + 1/2)&(p). | € Z.

It is convenient to represent vectors & (¢) = & (p., p, @) of the corresponding
eigenspaces, as

. 1
— (27)" 2l Go—I+1/2=02p g _ g F(l. p..o).

Si(p) = €@t/ 20 ntidiag (ie'¥/%, —e79/2) , ST (p) Si(¢) = I, (10.38
(@) g () Si(e) ( )

where ¥; = ¥(p;, p) and F(l, p;, p) are arbitrary doublets independent of ¢.
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The space of each of the doublets y,(p;,p) is a direct orthogonal sum of
the eigenspaces of the operator j,, which means that the doublets allow the
representations

1
XS (pb p) - [zez: \/m

S[((p)F(S, ls Pz p)s

where the factor 1/./27p is introduced for later convenience.
Taking into account the relationships

" 1 _ 1 3 —1 3
h(s,pz)ﬁSl — %{Qa S10, + €08 [p" + yp/2] + sMo S,},
“ 1 .
h(s, po) xs = Si(@)h (s, 1) F(s,1, p::p),
=2 T Z

where

l;(s, )= iazap +e(yp/2 + p~ o' —sMa?,
w=1+pn—-1/2, (10.39)

we see that the operation h (s, p.) induces an s.a. radial differential operation h (s,1)
(depending on the parameter p, as well) in the space of doublets F.

In the Hilbert space’ > (R;) = L? (Ry) @ L? (R4 ) of doublets F(p) (with p.
fixed), we define the initial symmetric radial Hamiltonian h (s, 1) associated with
the operation (10.39) and acting on the domain Dy, ),

Dusy =P R4) =DR4+) @D (Ry). (10.40)

10.3.2 Solutions of Radial Equations

We first consider the radial equation
[ﬁ (s,1) — W] F(p)=0 (10.41)

and some of its useful solutions.

7See Sect. 9.2.
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We let f and g denote the respective upper and lower components of doublets F,
F = (fg). Then (10.41) is equivalent to a set of radial equations for f and g,

[ —elyp/2+p7a) f + (W —sM)g =0,
g +e(p/2+ p~ g = (W +sM) f =0. (10.42)
where the prime denotes the derivative with respect to p.

We let };+ = };+(s, /) and he = l;_(s, 1) denote the differential operation}; with
€ = 1 and ¢ = —1 respectively. We then have

};+(s, l) = iazap + ()/p/2 + p_l}q) ol —sMo?,
ho(s,1) =023, — (yp/2 + p~' ) 0! —sMa>
=io’[io?0, + (yp/2+ p '%)0" + sMo”] (1'02)+
=i02hy(—s.1) (icrz)+
It follows that solutions F_— = F_(s,[, E_(s);p) of [l;_ — E_(s)] F. =0

are bijectively related to solutions Fy = Fi(s,/, E+(s);p) of the equation
I:]:l/.l,_ — E+(s)] F4 = 0 as follows:

F_(s,1.E_(s):p) = i0° F4(=5.1. E1(=5): p). E—(s) = E(s).

That is why we consider below the case € = sgn(¢gB) = 1 only and omit the
subscript “+”.

The set (10.42) can be reduced to second-order differential equations for both f
and g. For example, we have the following set of equations equivalent to (10.42):

7= o2+ D ey (s 4 5) ] £ =0

g=W —sM) ' [—f +(p/2+p ) f]. w=W?— M. (10.43)
By the substitution
fp) =2 p(2), z=yp’/2, a = 1/2+ (o — 1/2),

we reduce the first equation (10.43) to the equation for p(z) that is the equation for
confluent hypergeometric functions,

zafp + (B —2)0,p—ap =0,
B=a+1/2,
a=a/24+x/2+1/2—w/2y. (10.44)
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Known solutions of (10.44) allow us to obtain solutions of (10.41).
In what follows, we use the following solutions Fy(p;s, W), F>(p;s, W), and
F5(p; s, W) of equation (10.41):

-1 .
Fy = pl/2i—ng=es2 (— 2B (W —sM)p®(ar + 1, B1 + LZ)) ’

¢(al7ﬂl;z)
Fy = pl 126302 (q)(az, ,1?2; 2) ) ’
(2B2)" (W +sM)p®P(az, B2 + 1:2)
iy — 27N W —sM)pW(a; + 1,81 + 1:2)
Fy = p!271 e ™2 ’ D), 10.45
e © Y(ar, Biiz) ( )
where

Bi=1—1—p, ap=-w/2y, Bo=1+p, ar =1+ pu—w/2y,

2(y/2)" I (By) ' (B)

w)p = (U](S, W) = m, wy = CUZ(W) = F(az).

All the solutions Fi, F>, and F3 are real entire in W, and F3 = w, F; — w1 F>.
The solutions (10.45) have the following asymptotic behavior at the origin and at
infinity: As p — 0, we have

Fy= 277 (= B0 (W = sM)p,/1) O (o).

F, = plte1/2 (1/(2/32)“ W + sM)pl) 0 ().

0~ (pz) ) l E _17
W —sM)I" ~
£ = ( ;:1 ) (B1) P12 6 (p224) 1 =0, 1> 0,
Z(V/Z) F(Ol1+1) 0~(,021n,0),l=0,p,=0,
_ B2 1y 0 (p?).1=1,
&= Tian” G (o). 1 =0, =0, (10.46)

where F3 = (f3,/¢3).
As p — o0, we have

_ WDITB) rrnap e

—1 5 (=2

F o (yo(W +sM)~' /1) O (p7?%).
— (/2" I'(B2) w201 ,2/2 -1 A (42

By = SRR (1 o 8 50) O (7).

Fy = (7/2) o717 ((yp) ™ (W —sM) /1) O (67
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We define the Wronskian Wr (F F ) of two doublets F = (f /g) and F =
(/&) by
Wi (F,F)= fg—gf =iFo*F.

If (i; —-W)F = (i; — W)F =0, then Wr(F, F) = C = const. Solutions F and F
are linearly independent iff C # 0. It is easy to see that Wr(Fy, F>) = —1.
If Im W > 0, solutions Fj, F,, and F3 are pairwise linearly independent,

Wr(Fy, F3) = o1(W), Wr(F2, F3) = o(W).

Taking the asymptotics of the linearly independent solutions F; and F3 into
account, we see that there are no square-integrable solutions of (10.41) with Im W
# 0and |/| > 1 or/ = 0, x = 0. This implies that in these cases, the deficiency
indices of / (s, ) are zero. In the case [ = 0, u > 0, the solution F3 is square-
integrable, which implies that the deficiency indices of h (s,0)are my = 1.

For any / and p, the asymptotic behavior of any solution F of (10.41) at the
origin, as p — 0, is no stronger than p~ !, that is, F(p) = O (p"”l').

We now consider the inhomogeneous equation

i) = W] F(o) = w(p). VW € L2 (Ry),
see (5.34) from Chap. 5. Its general solution allows the representations
F(p) = ciFa(p:W) + 2 Fs(p: W) + o
<|Fuew) [ Reiwwer+ Rew) [ Reimeor].
P

d=1,1<0,

10.47
d=2,1>1. ( )

wq :Wr(Fd,F3), d = %

A simple estimate of the integral terms on the right-hand side of (10.47) using
the Cauchy—Schwarz inequality shows that they are bounded as p — oo. It follows
that F € L?(R.) implies ¢; = 0.

For |»;| > 1/2, an evaluation shows that as p — 0, the integral terms are of order
0 (pl/z) (up to the factor In p for ;| = 1/2). In this case, F € L?(R) implies
¢» = 0, and we obtain

oo P
Fp) = w7 [Mp; W) [ B+ B [ Fd(r;W)W(r)dr].
o

(10.48)
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For |%;| < 1/2, the doublet F5(p; W) is square-integrable, and a solution F(p) €
L?(R ) allows the representation

F(p) = boy ' Fi(o: W) + 2 Fs(0: W) + o'
P P
x [F3(p; W) /0 Fi(r; W)W (r)dr — Fy(p: W) /0 Fs(r;W)W(r)dr]

(10.49)

so that as p — 0, we have

F(p) = o) ( /O Fs(r; W)llf(r)dr) Fi(p; W) + e2 F3(p; W) + 0 (p'/?).

Following Sect. 5.3, we will use representations (10.47)-10.49) to obtain Green’s
functions for s.a. radial Hamiltonians.

10.3.3 Self-adjoint Radial Hamiltonians

We proceed to the construction of s.a. radial Hamiltonians ﬁg (s,1) as s.a. extensions
of the initial symmetric radial operators h (s, ) (10.40) and analyze the correspond-
ing spectral problems.

The action of all of the following operators associated with the differential
operations h (s,1) is given by h (s,1); therefore we cite only their domains.

We begin with the adjoint ht (s, 1) of h (s,1). Its domain D+ is the natural

domain D;{(v h (R4) for h (s, 1),

D}, (Ry) = {F* (p) : Fyare ac., Fy,hi(s,]) Fy € L? (R+)}.

The quadratic asymmetry form A,+ (Fy) of ht (s,1) is expressed in terms of the
local quadratic form

[Fu. Fx] () = g(p) f(p) — f(0)g(p). Fx=(f/8).

as follows:

Ape (Fo) = (Fo T F2) = (BT P Fo) = = [Fe F ()
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One can prove that lim, oo Fx (p) = 0 for any Fy € D; (R4). Indeed, because

Fyand h (s, 1) F are square-integrable at infinity, the combination
F. —(yp/2)0°Fy = —ic? [l; (s.1) Fx — Ot/ p)o' Fi + sMcr3F*]

is also square-integrable at infinity. This implies that /" and f’ — (yp/2) f. together
with g and g’ + (yp/2) g, are square-integrable at infinity. Let us consider the
identity

2 p
P = [ [0 + Toaro]ar+y [T rizobar + 1@

where 0 = 9, — yp/2. The right-hand side of this identity has a limit (finite or
infinite) as p — oo. Therefore, | f(p)| also has a limit as p — oco. This limit has to
be zero because f(p) is square-integrable at infinity. In the same manner, one can
verify that g(p) — 0 as p — oo.

To analyze the behavior of F, at the origin, we consider the relationship

W =h(s,1)F, W F, ecL?Ry),
or

f'=o/2+p7 ) f ==, &+ (vo/2+ 0 ) g = 11,
X=00/x2) =¥ +sMo’Fe e L’(Ry),

as an equation for F at a given y. The general solution of these equations allows
the representation

o0
ﬂmzwwwﬂm+/ ”WﬂWWNMﬁ,
P

P
g(p) = p e/ [Cz + / rer 4)(1(r)dr] (10.50)
0

It turns out that the asymptotic behavior of the functions f and g at the origin
crucially depends on the value of /. Therefore, our exposition is naturally divided
into subsections related to the corresponding regions. We distinguish three regions
of /.

10.3.3.1 First Region: »; < —1/2

In this region, we have

-1, >0,
10, u=0.
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The representation (10.50) allows the estimation of the asymptotic behavior of
doublets Fy € D;;" o) (R4) as p — O for the first region. For f(p), we have

P
f(p) = p—lfleeypz/4 |:51 _/ r"’le_yrz/4)(2(r)dri|
0
o 2
=ap M+ 0(p), 6 =a +/ rlemr My, (r)dr.
0

The condition f € L?(Ry) implies ¢ = 0, and therefore, f(p) = O (p'/?) as
p — 0. Asto g(p), we obtain as p — 0,

0 (p"?) . < —1/2,

g =y, (p'2Inp), 2 = —1/2(1 = 0, u = 0).

Thus, Fx(p) — 0 as p — 0, which implies that A+ (Fx) = 0, VFyx €

DZ‘( 0 (R4). This means that the deficiency indices of each of the symmetric

operators h (s,1) in the first region are zero. Therefore, there exists only one s.a.
extension h(l) (s,0) = ht (s,1) of h (s, 1), that is, a unique s.a. rad1a1 Hamiltonian
with given s and [; its domain is the natural domain, Dhm(s,l) h( 0 Ry).

The representation (10.48) with d = 1 implies that the Green’s function (see
(5.35)) of the s.a. Hamiltonian };(1) (s, 1) is given by

- Fs(o: W) @ Fi (0 W).p>p,
Glood W) = or 0 b w0 B (W) <
Unfortunately, we cannot use representation (10.45) for F3 as a sum of two terms
directly for all the values of  because both are singular at © = 0 (although the sum
is not). To cover the total range of 1, we use another representation for Fs.

We let F;;(p; W) denote the functions F;(p; W), i = 1,2, 3, with a fixed / and
represent F3; as

Fy = wi[Ay Fuy + Fyl, Ay = Au(W) = 21(W) —T'(B2) Pu(W),
Fy = Fy(p; W) =T (B2)Pu(W)Fi(p; W) — Fy(p: W),

_e) s/ )
A= oy M S TR e )

Using the relationship (8.27), we can verify that

I~ B Fa(p: W)|,_o = Pu(W)Fu(p:W)l,—
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Taking the latter relationship into account, it is easy to see that in the first region,
Ay and Fy; are finite for > 0, as well as w; and Fy;, and also that Py;(E) and
Fy(p; E) are real.

The Green’s function is then represented as

G (p.p W) =Au(W)F(p: W) @ Fy (o1 W)

Fy(o: W) ® Fiy (p's W), p> 0,

10.51
Fi(p; W) ® Fy (o' W), p < p, ( %

forall u > 0.

We choose the guiding functional @(F; W) for the s.a. operator };(1) (s,/) in
the form (5.33) with U = Fj and D = D,(R4) N Dy s.)- To prove that the
guiding functional is simple, it suffices to verify only property (ii) (see Chap. 5). Let
@(Fy; Ep) = 0, where Fy € D, and let

. 00 P
F(p) = Fi(p; Eo)/ F(r)Fy(r)dr + F(p)/o Fi(r; Eo)Fo(r)dr
P

be a solution of the equation (ﬁ (s, 1) — EO) F = F,, where F(p) is any solution
of (10.41) with W = E| satisfying the condition Wr(Fj, F') = 1. Itis then easy to
verify that F (p) € ID. Therefore, the spectrum of hqy (s, 1) is simple.

Using representation (10.51) for the Green’s function, we obtain the derivative
of the spectral function,

o' (E)=n""'ImAy,(E +i0). (10.52)

It is easy to prove that Im A,;(E + i0) is continuous in p for x> 0, so that it is
sufficient to obtain ¢’ (E) only for the case u > 0, where (10.52) is simpler,

_ W +sM)(y/2) > I'(B2)
2l (BT (o2)

o' (E) ImI (@)lyepio-  (10.53)

W=E

It is easy to see that o’ (E) may differ from zero only at the points Ej defined by
the relationship oy = —k (I' () = 00), or M? — E} = —2yk, which yields

Ep =My, My=M, k€ Zy, My = /M2 + 2yx. (10.54)

The presence of the factor (E + sM) on the right-hand side of (10.53) implies
that the points E = —sM = —sM, do not belong to the spectrum of & (s,/).
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In what follows it is convenient to change the numeration of the spectrum points. To
this end, let us introduce an index n(s):

n(s) €Z(s) = {ne(s)}. ¢ =+,

Zy, s =1, n_(s) € -N, s =1,

10.
N, s = —1, Z_, s =—1. (10.55)

ny(s) €

Then we can write
Ey = tM;, — En(s) = é’M‘n(m, n(s) € Z(S)

Finally, using the introduced notation, we obtain for o’ (E),

o'(E) = Z Qi(;)S (E - En(S))v
n(s)eZ(s)
0 — \/ /2P T (Br + In(s)]) (1 + sMEZ")
) In(s)['72(B1)

CB=14-n

Thus, the simple spectrum of };(1) (s, 1) is given by spec };(1) (s,0) = {En(s), n(s)

ez (s)}. The eigenvectors

1 1
Uns) = Ungs) (5,1, p2i p) = Quis) F1(0; Ens)), 1n(s) € Z(s), (10.56)

of ﬁ(l) (s.]) form a complete orthonormalized system in the space L?(Ry) of
doublets F (p); see (5.36).

10.3.3.2 Second Region: »; > 1/2

In this region, we have [ > 1.
Here the representation (10.50) yields the following estimates for the asymptotic

behavior of doublets F € D;( 5 (R4)asp — 0:
S,

0] (pl/z),}q >1/2,
0 (pl/zlnp),}q =1/2,

g(p) =0 (p'?).

fp) =

It follows that Fix (p) — 0 as p — 0, which implies that A,+ (Fyx) = 0,V Fy €

th‘( n (R4). This means that the deficiency indices of each symmetric operator
S,



486 10 Schrodinger and Dirac Operators with AB and MS Fields

h (s, 1) are zero in the second region. Therefore, there exists only one s.a. extension
h(z) (s,1) = ht (s,1) of h (s, 1), that is, a unique s.a. rad1a1 Hamlltonlan with given
s and /, whose domain is the natural domain, Dy sy = h( 5 R4).

The representation (10.48) with d = 2 implies that the Green s function for the
s.a. Hamiltonian Ay (s, ) is given by

Fy(p: W) ® Fy (02 W), p>p,

G (p.p W) =" (W)
( )= Fu(p; W) @ F (p; W), p < p.

Again, the representation (10.45) for F3 as a sum of two terms is not applicable
directly for © = 0. We therefore use the following representation for F3:

F3 = wy (Fs; — Ao Fap) , Aoy = Aoyy(W) = $2,(W) + I'(B1) Pu (W),
Fs; = Fsi(p; W) = Fu(p; W) + T'(B1) Pu (W) Fy(p; W),

_w (W) (W =sM)(y/2) 7T (e +l)
@)= (W)’ PuW) = 21— 1)i My + 1)

Using (10.54), one can verify that

r'='(B1)Fu(p; W)\M_,O == Puy(W)Fu(p: W)|,—o-

Taking the latter relationship into account, it is easy to see that Ay; and Fs; are finite
for u > 0, as well as w, and F;, and Py;(E) and F5;(p; E) are real.
The Green’s function is then represented as

G (p. o' W) == Ay(W)Fy(p: W) ® Fy (p": W)

Fs(p: W) ® Fy (W), p>p,

, , (10.57)
Fa(p: W) @ Fsi (0 W) . p < p/,

forall u > 0.

We choose the guiding functional @(F; W) in the form (5.33) with U = F; and
D = D, (R4) N Dy (s.0y- Its simplicity is proved in a similar way to the first region
case and implies that the spectrum of ﬁ(z) (s,1) is simple.

Using representation (10.57), we obtain that the derivative o’ (E) of the spectral
function is given by

0'(E) = —n ' Im Ay (E +i0). (10.58)
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It is easy to prove that Im Ay (E + i0) is continuous in p for x> 0, so that it is
sufficient to obtain ¢’(E) only for the case i > 0, where the right-hand side of
(10.58) is simpler,

_ (W —sM) (/2" ' (B)
myl(B) (1 + o)

Im I (a2)|W=E+i0'
W=E

o'(E)

It is easy to see that o’ (E) may differ from zero only at the points E; defined by
the relationship o, = —k (I" (az) = 00) or by the relationship

M?— E} +2y(l + p) = 2yk, k € Zy,
which yields £y = =My ;1. k € Z4, where M, is defined by (10.54). All such
points Ej are spectrum points.
It is convenient to change indexing k for n(s), defined by (10.55),
Ey = En(s) = CM\n(s)|+/u

{n(s) € Z(s), |n(s)| > l} (ne(s) =k +1). k €Zy ).

Thus, we finally obtain

oJ(Ey= Y. )8 (E = Engy) »

n(s)EZ.[n(s)|=!

(y/2)" T T (n(s)| + ) (1 _ SME;&))
(In(s)| = D'T2(1 + )

n(s) —

The simple spectrum of };(2) (s, 1) is given by
spec i) (5,1) = {En(y). n(s) € 2, [n(s)] > 1}.
The eigenvectors
11 11
Unis) = Unis) (5.1, P23 p) = Oue) F2 (03 Engs) - 1(s) € Z(5), (10.59)

of };(2) (s.1) form a complete orthonormalized system in the space L*(Ry) of
doublets F (p).
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10.3.3.3 Third Region: |x;| < 1/2

In this region / = [y = 0, and »; is reduced to ¢y = . — 1/2, u > 0.
Representation (10.50) yields the following asymptotic behavior of doublets
F.e DY (Ry)asp— 0:
i (s.lo)
f(p) = ci(m,p)* 1/2
Fi(p) = { T TO(77).
) <) = extmepy T O 10)

It follows that A,+ (Fx) = ¢ac1 — ¢i¢2. Such a representation for the quadratic
form A,+ (Fx) implies that the deficiency indices of the initial symmetric operator

ﬁ(s, lp) are mx+ = 1. The condition A,+ (Fx) = 0 yields asymptotic boundary
conditions as p — 0,

F(p)=C ( (%:g)fif;;i) +0(p'?), (10.60)

with a fixed A € S(—mn/2,7/2) (note that A depends on s and p;, A = A(s, p;))
that define a maximum subspace in D;:( n (R4) where A,+ = 0. This subspace
s,lo

is just the domain of an s.a. extension of h (s, lo) (see Chap. 4 and problems from
Chaps. 6, 7, and 8).

We thus obtain that there exists a one-parameter U(1) family of s.a. radial
Hamiltonians /; (s,lp) parameterized by the real parameter A € S(—x/2,7/2).
These Hamiltonians are specified by the domains

Doy = {F(p) LF(p) e D} | (R+), F satisfy (10.60)}.

According to representation (10.49), which certainly holds for the doublets F
belonging to Dy, (s 1), and (10.46), the asymptotic behavior of F as p — 0 reads

_ [ —cw p™ 1/2
F= ((ba)l_l + c207) P_xo) o).

On the other hand, F satisfies boundary conditions (10.60), whence it follows that
there must be

bcos A

, o) = W cos A+ m; 0w, sin A (10.61)
W10Q)

Cy = —

Then representation (10.49) for F' with ¢, given by (10.61) implies that the
Green’s function of 4, (s, [y) is given by

G (p.p"s W) = 27" (W) Fuy(0: W) ® Fuy (s W)

Foy(o: W) ® Foy (0: W), p>p,

{ 10.62
Foy(p: W) ® Foy (0 W), p <, ( )
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where

Foy(p; W) = m; ™ Fi(p; W) sin A + m F(p; W) cos A,
F(A)(p; W) =m, F(p; W)cosA —m}° F,(p; W)sinA,

W) - =
W) == , MmO Fy = ooy Foy + ooy Foy,
W) ooy e 1 = ow o +ew Fa

dny(W) = wysin A — me_z}“’a)l CosA.

We note that the doublets F(3)(p; W) and F;)(p; W) are real entire in W, and the
doublet Fy(p; W) satisfies asymptotic s.a. boundary conditions (10.60).

Here, we choose the guiding functional @(F; W) in the form (5.33) with U =
Foyand D = D, (Ry) N Dy, 5.1 Its simplicity is proved similarly to the first and
second regions and implies that the spectrum of hy, (s, o) is simple.

Using the representation (10.62) for the Green’s function, we obtain that the
derivative o’ (E) of the spectral function is given by 0/ (E) = 7~ Im 2~ '(E +i0).
Because 2(E) is real, o’ (E) differs from zero only at the points Ej defined by the
relation £2(Ey) = 0, and we obtain

o'(E) =Y OI(E — Ex). O =[-2'(E)] ", 2'(Ex) <.
k€eZ

Thus, the simple spectrum of hy, (s, o) is given by spec hy, (s,lo) = {Ek, k € Z}.
The eigenvectors

111 111
Uc = Uk (A, s, p:s p) = Ok Foy (i Ex), k € Z, (10.63)

of h 5 (s, 1y) form a complete and orthonormalized system in the space L2(R) of
doublets F (p).
Let us study the spectrum in greater detail.

1. First, we consider the case A = 7r/2. In this case we have
Fapn(p: W) =m0 Fi(p; W), (W) =m, o (W)w, ' (W),

and

O_/(E) _ mgkor(ﬁZ)(W +SM)

B ImI” g0 (10.64
2 G/ T BT gy e (06D

As in the first region, ¢’(E) differs from zero only at the points (for which we



490

10 Schrodinger and Dirac Operators with AB and MS Fields

will use the notation &) defined by the relationship oy = —k (I' (1) = 00),
or by

M2 _ 52
——* =k, Ex = +tMy, k € Z4.
2y
The presence of the factor (E + sM) on the right-hand side of (10.64) implies
that the points £ = —sM = —sMj, do not belong to the spectrum of
hyya (8. lo). Thus,
Ex = (sgnk)My, |kl =1, & =sM, k € Z.

Using (10.55), we change the indexing of the spectrum points,
& = Ens) = {Mu(s)), n=n(s) € Z(s).
Then we finally obtain

o'(E) = Z mgoni/z\n(s)S (E _5n(s))’
n(s)€Z(s)

r(n(s)|+1—p) (1 + sMc‘Z;é))

O/2ln(s) =
(r/2) [n|1T2(1 = p)
Thus, the simple spectrum of ﬁﬂ/z (s, lo) is given by spec Eﬂ/z (s,lp) =
{En(s), n(s) e Z(s)}. The eigenvectors

1117 111
Uz 2ty = Uspaints) (/2.5 10, i p) = Qrpainis) Fi (03 Encs)) s (s) € Z(s).

of I, /2 (5, lp) form a complete orthonormalized system in the space L*(R.) of
doublets F (p).

We note that the spectrum, spectral function, and eigenfunctions of };ﬂ /2
(s, lp) can be obtained from the respective expressions from the first region,
% < —1/2, by the substitution / = 0. We also note that for u < 1/2,
the function Fiy/2)(p; W) = m_  Fi(p; W) has a minimal singularity in the
family of functions F(;)(p; W); in fact, it is nonsingular. For u > 1/2, the
function F(g)(p; W) = mX* F,(p; W) has a minimal singularity in the family of
Fiy(p; W). In fact, F)(p; W) is nonsingular. For © = 1/2, all functions of
the family F3)(o; W) have the same type of asymptotics: Fy)(p; W) = O(1)
as p — 0.

We obtain the same results for the spectrum and complete orthonormalized
set of the eigenvectors in the case A = —m/2.
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II. In the same manner, if A = 0, we obtain that F(o)(p; W) = mX F>(p; W); the
simple spectrum of Ay (s, [y) is given by

spec hio (5, 10) = {En(0), n€ Z}, Z = {n; € {Zy, { = %},
and

o/(E) =Y m;> 0% 8(E — Eq(0)).
nez
Oum = /2" L(Inl+p) A —sME'(0)
o = In[1172() ’

where Ey), are solutions of the equation
w = p—(EX0) = M?) /2y = —[n], Eq(0) = { M1y,

and n4+ = 0 and n_ = 0 are considered different elements of Z.

The eigenvectors lllf)fn = (%‘In 0,s,10, pz; p) = QoF2(p; Ex(0)), n € Z,
of the Hamiltonian /2, (s,lp) form a complete orthonormalized system in the
space L?>(R) of doublets F (p).

We note that the spectrum, spectral function, and eigenfunctions of };0 (s, 1p)
can be obtained from the respective expressions for the second region, x; >
1/2, by the substitution / = 0. We also recall that for & > 1/2, the function
Foy(p; W) = m2° F>(p; W) has a minimal singularity at the origin in the family
of functions F)(p; W)j; in fact, F(g)(p; W) is completely nonsingular.

III. Now we consider the general case |[A| < /2. In this case we can equivalently
write

0'(E) = — (mcos’A) " Imo ™ (E +i0) = Y QF(E — Ex (L)),
kel

o(W) = (W) +tan A, ' (Ex(A)) > 0, Ox = [\/w/(Ek()L)) cos /\]_1,

{(W) = MUAS sM)F(—w/2y)’ . (2m2/y)" I(w) o
meI' (e —w/2y) 2r(1—p)

H(Ex(V) = —tan A, '(Ex(A) > 0, 0 Ex(A) = — [t/ (Ex (X)) cos® ] < 0.

The function

H(E) = km ' T ™ (i —w/2y)(E + sM)I"(=w/2y)
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has the properties: (En) £ 0) = Foo; 1(E£,(0)) = 0. Thus, we obtain the
following:

(a) s =1.
In each interval (£, _—1,&,_ ), n— < —1, for a fixed A € (—n/2,7/2), there
exists an eigenvalue E, (A) that increases monotonically from &, _; + 0
(passing E,_(0))to &,_ — 0 as A goes from /2 — 0 (passing 0) to —7/2 + 0;
in the interval (£-1,&,, =¢), for a fixed A € (—m/2,7/2), there exists an
eigenvalue E, —o(L) that increases monotonically from £_; + 0 (passing
E,_=0(0))to & =o—0as A goes from 7 /2—0 (passing 0) to —/2+0; in each
interval (€, ., &, +1), n+ > 0, for a fixed A € (—m/2,7/2), there exists an
eigenvalue £, , (1) that increases monotonically from &, +0 (passing E,, (0))
to &, +1 — 0 as A goes from 77/2 — 0 (passing 0) to —m/2 + 0.
(b) s =—1.

In each interval (&, _1,&,_), n— < 0, for a fixed A € (—x/2,7/2), there
exists an eigenvalue E, (A) that increases monotonically from &, _; + 0
(passing E,_(0))to &,_ — 0 as A goes from /2 — 0 (passing 0) to —7/2 + 0;
in the interval (€,_=o, &, =1), for a fixed A € (—m/2,7/2), there exists an
eigenvalue £, —(A) which increases monotonically from &,_—¢ + 0 (passing
E,_=0(0))to &, =1 —0as A goes from /2 — 0 (passing 0) to —/2 + 0; in
each interval (&, . &y, +1), n+ > 1, forafixed A € (—m/2,7/2), there exists
an eigenvalue £, that increases monotonically from &, , 40 (passing E; (0))
to &, +1 — 0 as A goes from 77/2 — 0 (passing 0) to —m /2 + 0.

10.4 Summary

In the previous subsubsections, we have constructed all s.a. radial Hamiltonians
ﬁg (s,1, p;) as s.a. extensions of the symmetric operators ﬁ(s, [, p,) for any s, [,
and p, and for any values of ¢, u, and y. The complete s.a. Dirac operators
H . associated with the Dirac differential operation H are constructed from the
sets of };e (s,1, p;) by means of a procedure of “direct summation over s and / and
direct integration over p.”. Each set of possible s.a. radial Hamiltonians ﬁc (s, 1, p,)
generates a translationary and rotationally invariant® s.a. Hamiltonian H.. Namely,
let G be the group of the above space transformations S : r —— Sr. This group

is unitarily represented in $): if S € G, then the corresponding operator Uy is
defined by

(Us ¥) (r) = e 052y (s7'r), Yy € 9,

where 0 is the rotation angle of the vector a around the z-axis. The operator H
evidently commutes with Ug for any S. We consider only such s.a. extensions

8That is, invariant under rotations around the z-axis and under translations along the z-axis.



10.4 Summary 493

I:Ie of H that also commute with Us for any S. This condition is the explicit
form of the invariance, or symmetry, of a quantum Hamiltonian under the space
transformations. As in classical mechanics, this symmetry allows a separation of
the cylindrical coordinates p, ¢, and z and a reduction of the three-dimensional
problem to a one-dimensional radial problem. Let V' be a unitary operator defined
by the relationship

VD099 = 502 [ an TSPl pep] @ ero.

€7

where S;(¢) and e;(p;) are given respectively by (10.38) and (10.37).
Similarly to the considerations in Sects. 10.2.1 and 10.2.2, it is natural to expect
that any s.a. Hamiltonian H, can be represented in the form

ﬁe = V/ sz Z Zﬁe(&lvpz)v_la
R,

s==x11€Z

where ﬁc(s, [, p,) for fixed s, /, and p, is an s.a. extension of symmetric operator
ﬁ(s, [, p;) associated with the differential operation hv(s, [, p;) given by (10.40). The
operator i;(s, [, p.) is defined on the domain Dy, ) = D(R4) C L*(Ry,dp) in
the Hilbert space L?>(R ., dp) of functions F(p, [, p.) with the scalar product

(F](S,l, pz)s Fz(S,l, pz)) = /]R Fl(sslv Dz p)Fz(S,l, Pz p)dp
+

An exact expression for H, is

; ® &N D/
H. = V/]R dpzz Z hc(s,l, pz)V_l-

s=x1 [€Z

Its rigorous justification is discussed in [78].

The inversion formulas in Hilbert space $) are correspondingly obtained from
the known radial inversion formulas by a procedure of summation over s,/, and
integration over p.. It should be noted that here we must consider the extension
parameter A a function of s and p,, A = A(s, p.). In what follows, [ dp. means
JZo dp:

Thus, we can summarize as follows: For © = 0, there is a unique s.a. Dirac
operator H..1ts spectrum is simple and given by

spec H. = (=00, —m,| U [m,, 00).
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The generalized eigenfunctions ¥ , () (1) of )i o

1
2w ./p
1
Unis) (5.1, psp), 1 <0
11 ’
Ungs) (5.1, pip) . 1 <1 < |n(s)]

s pon(s) (T) = e"])ZZSI () Fugs) (s, L, p:ip) ® es(p),

Fn(s)(sv ls Pz p) =

v

Hlps,pz,n(s),l (I‘) = Es,pz,n(s),l lIls,pz,n(s),l (r)s

Eyponint = §\Jm2 + p2 42y [n(s)], n(s) € Z(s), 1 = In(s)],

where Z(s) is defined by (10.55), and doublets U:(S) (s,1, p;; p) and Uil(s) (s, 1, p;;p)
are given respectively by (10.56) and (10.59), form a complete orthonormalized
system in the Hilbert space L* (R?) of Dirac spinors. The latter means that we have
the following inversion formulas:

l]/(r) :/dpz Z Z Z d)s,pz,n(s),llps,p;,n(s),l(r)y

s=x1n(s)€Z(s) [<|n(s)]

¢s,pz,n(s),l :/ws,pz,n(s),l(r)lp(r)drv

/llll(r)|2dr:/dpz ST D Bupal VP E L (RY).

s=x1n(s)€Z(s) [<|n(s)]

We note that for A = 0 and +/2, the spectrum at / = 0 can be found explicitly;
see the third region in Sect. 10.3.3.

For p > 0, there is a family of s.a. Dirac operators I{V{ A(s,p.)} Parameterized by
two real-valued functions A(s, p;), A € S(—n/2,7/2),s = 1. Their spectra are
degenerate and continuous.

A complete set of generalized eigenfunctions of I:I{ A(s, p,)} consists of ¥, sy (T)

and llff ;”,:;0 (r). These bispinors have the form

lI/s,pz,n(s),l (I‘) = eipszI ((p)Fn(s) (S, I, Pz /0) ® ey (pz)v

21 /p

I
Un S,l, ; , [ < _1’
Fu(s,l,pip) =4 ;1 (5.1, pss p)

U, (s, 1, pip), 1 =1 <[n(s)],
n(s) € Z(s), I < n(s)|, I #0,
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and

) 111
WP (1) = 7S, (@) Ux (A(s, p2). s, pei p) ® es(p.), k € Z,

s,pz.k.lo

2 /p

111
where U, (A(s, p;), s, p,; p) are given by (10.63) with the substitution A(s) —
A(s, p;), so that

v

Hlps,pz,n(s),l (I‘) = ES,]?Z,I‘I.(S),Iqls,pz,n(s),l(r)a ) = |t1(S)|, l 7é 0,

Eqponiot = 04Jm2 + p2 + 2y[In(s)| + 0D)]. 6(1)

(o, 1<0,
1, 1>,

ﬁlpk(&]’z) (I') — Ek(‘v,pz) lI/MSst) (l'),

S,pz,k,l() S,pz,k,l() S,pz,k,[()
cosA 4+ a (W)sinA
sinA —a (W)cosA’

BN 2 (L EL, 1) =0 20.W) =

2m ™ (/2! M (W) T (1 — e —w/2y)
W +sM)T (1—p) I (—w/2y)

a(W) =

In the case under consideration, the corresponding inversion formulas have the
form

l[/(r) :/dpz Z Z Z ¢s,pz,n(s),lws,pz,n(s),l(r)

s==%1 | n(s)EZ(s) [<|n(s)].[F#0

A(s, pz) 2 (93
+ E @S,pz,k,loqfs’pbk’[o(r) , Vo elL (R ) ,
k

Q‘V,pz,n(s),l =/qjs,pz,n(s),l(r)lp(r)dra [ 7é Oa

A(s,p;
qjss]’zvkslo =/lps’;z;(:;o(r)qj(r)drv

/|l]/(r)|2 dr Z/dpz Z Z Z |¢s,pz,n(s),l|2 + Z |®s,pz,k,lo|2

s==£1 | n(s)€EZ(s) I<|n(s)].[F£0 k
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Notation

e a.c.: absolutely continuous

e a.b. conditions : asymptotic boundary conditions

e AB : Aharonov-Bohm

e iff : if and only if

* MSF : magnetic-solenoid field

* QM : quantum mechanics, or quantum-mechanical, and so on
e s.a.: self-adjoint

o diag(a,b) = (g 2), antidiag(a, b) = (2 (b))

e F = (; ) = (fg), this notation is used for two-component columns,

spinors, and doublets

e € (a, b): the linear space of smooth (infinitely differentiable) functions on the
interval (a, b)

e D(a,b): space of arbitrary functions with compact support on the interval (a, b)

* D, (a,b): space of arbitrary functions on the interval (a, b) with support bounded
from the right

* D (a,b): space of arbitrary functions on the interval (a, b) with support bounded
from the left

* D(a,b): linear complex space of smooth compactly supported functions on an
interval (a, b)

e Dg(a,b): linear space of real smooth compactly supported functions on the
interval (a, b)

) (fé) — D(—00,0) U D(0, 50)

s L?(a, b): space of functions square-integrable on (a, b)

o L2(Ry) = L*>(R4) & L? (Ry): space of two-component columns (doublets)
square-integrable on the semiaxis

. L*(RY) = Z @2_1 $as Ha = L* (R?): space of Dirac spinors square-integrable
on R3
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506 Notation

. D; (a, b): the natural domain for a s.a. differential operation f defined on an

interval (a, b)

c O(x)=140(x)

e [ isthe 2 x 2 identity matrix and I is the 4 x 4 identity matrix

e N ={I1,2,...}: the set of natural numbers

e Z =1{0,%£1,...}: the set of integers

e Z4 ={0,1,2,...}: the set of nonnegative integers

e Z_ =1{0,—1,-2,...}: the set of nonpositive integers

. N =1
Ny = Zy, L =—1

e R = (—00, 00): the set of all real numbers, the real axis

* R4 = [0, 00): the set of nonnegative real numbers, semiaxis

* R_ = (—o0, 0]: the set of nonpositive real numbers

e R": n-dimensional real linear space, the set of all real n-tuples x' .. x™

« R = (~00,0)U(0,00)

*+ R : the compactified real axis where —oo and oo are identified: R= {A : —o0 <
A < 00, —00 ~ 0o}; R is homeomorphic to a circle.

* S(a,b) =la,b],a ~ b; S(a,b) is homeomorphic to a circle

e C={z=x+1iy:x,y e R}: thesetof all complex numbers, the complex plane

e Ci={z=x+iy:x,y € R, y > 0}: the set of complex numbers with positive
imaginary part

e C_={z=x+iy:x,y € R, y <0}: the set of complex numbers with negative
imaginary part

e CU={z=x+iy:x,y €R, y # 0} = Cy UC_: the set of complex numbers
with nonzero imaginary parts

* regp f : the resolvent set of an operator f

* spec f : the spectrum of an operator f

. K ik] : the quasiderivative of order k with respect to x

« f@=f-zp,
N A -1 L
e R(z) = ( f (z)) , R (2) is called the resolvent if z belongs to the resolvent set

e Wr(uy,...,u,) : the Wronskian of the set of functions uy, ..., uy;
(k—1) .
Wr (uy, ... uy) =det| Wi, Wi =u; x), k,i=1,...,m.
o Wr(uy,...,uy) : the quasi-Wronskian of the set of functions uy, .. ., up;
Wr (i, ) = det [Wei ||, Wy = x), ki =1,....m.

e An overline denotes complex conjugation unless otherwise specified
e The derivative of order k in x of a function v (x) is commonly denoted by
¥® (x). In addition, we also use the following notation:

dy=d/dx, d,f (x) = f'(x),....d' f(x) = f" ().
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e The following notation is adopted for special functions (this notation is in
agreement with that used in the reference book [81]): J, (x) is the Bessel function

of the first kind; H." (x) is the first Hankel function; /,,(x) is the Bessel function
of imaginary argument; K, (x) is the MacDonald function (the first Hankel
function of imaginary argument); @(«, ; x) and ¥ (o, B; x) are the confluent
hypergeometric functions; F(«, 8;y;x) is the Gauss hypergeometric function;
H,(x) are the Hermite polynomials; ¥ (x) is the logarithmic derivative of the
I -function, ¥ (x) = I''(x)I" 7! (x)

e C=0.5772156649 ... : Euler’s constant

e In Chaps. 9 and 10, in which relativistic systems are considered, Greek vector
and tensor indices take on the values O, 1, 2, 3 and Latin indices take on the
values 1, 2, 3 unless otherwise specified; the convention about summation over
repeated indices is adopted unless otherwise specified; the metric in the four-
dimensional flat space—time is determined by the Minkowski tensor 7, = diag
(1,—1,—1, —1); contravariant vectors are represented as

(a") = (ao,a) = (ao,ai) s al = dy, a2 = ay, a3 =a,,
the space—time coordinates are denoted by

x= ") = (x%r) = (x"x") = (r.r), dx = dxdr,

xl=x, x*= v, x> =z, dr = dx'dx?dx?,

and
BA/aXM = aILA’ a/at =0, =00, 0y =0y, 0h = ayv 03 = az

* F@l = limF (x) = lim F (x)



Index

A

AB field, 449

absolutely continuous function, 22
a.c. function, 22

adjoint by Lagrange, 106

adjoint differential operation, 106
adjoint operation, 51

adjoint operator, 51
Aharonov-Bohm effect, 449
asymmetry form method, 159

B
boundary forms, 120
bounded operator, 37

C

Calogero differential operation, 245
Calogero potential, 244

Calogero problem, 244

canonical diagonal form, 160

canonical form of an s.a. differential operation,

107
Cauchy—Schwarz inequality, 16
closability, 39
closable operator, 39
closed operator, 39
closure, 39
constancy point of an IR, 181
continuous operator, 37
continuous spectrum, 74

D
deficiency indices, 65, 84

deficiency indices of a symmetric operator, 66

deficient subspace, 65, 83

defining equation for the adjoint operator, 51

densely defined operator, 32
differential Lagrange identity, 110
discrete spectrum, 74

domain of definition, 31

E
Eckart potential, 371
ESP, 279

essentially maximal symmetric operator, 75

essentially s.a. operator, 74

even s.a. differential operations, 107
exactly solvable potentials, 279
extension of an operator, 34

F
first von Neumann formula, 85

fundamental unit of magnetic flux, 451

G

generalized Calogero potential, 244, 315

graph, 33
graph criterion, 34
graphs, language of, 34

Green’s function of an s.a. operator, 188

growth set, 181
guiding functional, 186

H
Hermitian operator, 58
Hilbert space, 15
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I

idealized scheme of operator canonical
quantization, 5

identity resolution, 180

initial symmetric operator, 100, 129

integral Lagrange identity, 111

inversion formulas, 177

IR, 180

J
jump point, 181

K

kernel of an operator, 43

Kratzer potential, 289

Krein method of guiding functionals, 185

L

linear differential operation, 104

linear functional, 29

linear operator, 31

linear space of real smooth compactly
supported functions on the interval
(a,b), 23

linear space of smooth, or infinitely
differentiable, functions on the
interval (a, b), 23

local sesquilinear form, 110

M

magnetic-solenoid field, 450
main theorem, 98

map language, 34

matrix spectral function, 184
maximal symmetric extension, 89
maximal symmetric operator, 62
mean of an operator, 32

Morse potential, 332

MSE, 450

multiplicity of a spectrum, 183

N

naive treatment, 2

natural domain, 118

nontrivial physical systems, 1
norm, or length, of a vector, 16

(0]

odd s.a. differential operations, 107

one-dimensional (stationary) Schrodinger
equation, 237

Index

operator bounded from above or below, 33
operators of oscillator type, 80

ordinary solutions, 105

orthoprojectors, 75

P

Poschl-Teller potential, 346

point spectrum, 49

potential localized at the origin, 270

Q

quadratic asymmetry form, 87
quadratic boundary form, 120
quasiderivatives, 108
quasi-Wronskian, 109

R

radial equations, 419, 478
radial Hamiltonian, 419
range of the operator, 32
regular differential operation, 105
regular endpoint, 105
regular point, 48

resolvent of an operator, 48
resolvent set, 48

restriction of an operator, 34
Rosen—Morse potential, 365
rotational invariance, 418
rotationally invariant, 455

S

s.a. boundary conditions, 125

s.a. by Lagrange, 106

s.a. differential operation, 106

s.a. Dirac differential operation, 414, 474
s.a. Dirac Hamiltonian, 419

s.a. extensions of symmetric operators, 94
s.a. operator, 1, 68

Schrodinger differential operation, 237
Schrodinger operators, 237

second von Neumann formula, 93
second von Neumann theorem, 92
sesquilinear asymmetry form, 87
sesquilinear boundary form, 120

simple guiding functional, 191

simple spectrum, 181

singular differential operation, 105
singular endpoint, 105

Sokh, 205



Index

space of arbitrary functions on the interval
(a, b) with compact or bounded
support, 23

space of smooth compactly supported functions
on the interval (a, b), 22

spatial symmetry, 475

special fundamental system, 186

spectral function, 182

spectrum of an operator, 49

split s.a. boundary conditions, 158, 173

strong boundedness, 30

strong convergence, 30

strong operator convergence, 37

strong topology, 30

511

symmetric extension, 61
symmetric operator, 58

U
unbounded operator, 37

\%
von Neumann formula, 83, 89

W
weak operator convergence, 37
weak topology, 30
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