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D. Sternheimer, Université de Bourgogne, Dijon, France
C. Tracy, University of California, Davis, USA



D.M. Gitman � I.V. Tyutin � B.L. Voronov

Self-adjoint Extensions
in Quantum Mechanics

General Theory and Applications
to Schrödinger and Dirac Equations
with Singular Potentials



D.M. Gitman
Instituto de Fı́sica
Universidade de São Paulo
São Paulo, Brasil

B.L. Voronov
Department of Theoretical Physics
P.N. Lebedev Physical Institute
Moscow, Russia

I.V. Tyutin
Department of Theoretical Physics
P.N. Lebedev Physical Institute
Moscow, Russia

ISBN 978-0-8176-4400-0 ISBN 978-0-8176-4662-2 (eBook)
DOI 10.1007/978-0-8176-4662-2
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012934834

Mathematics Subject Classification (2010): 81Qxx, 81Sxx, 81Vxx

c� Springer Science+Business Media New York 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publishers location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.birkhauser-science.com)

www.birkhauser-science.com


Preface

Quantization of physical systems includes a correct definition of physical
observables (such as the Hamiltonian and the momentum) as self-adjoint operators
in an appropriate Hilbert space and their proper spectral analysis. A solution of
this problem is not a straightforward and unambiguous procedure for nontrivial
quantum systems (systems on nontrivial manifolds, in particular on manifolds
with boundaries or with singular interactions). Quantum-mechanical models with
singular potentials, both relativistic and nonrelativistic, and/or with boundaries,
play an important role in physics. A consistent treatment of nontrivial quantum
systems is beyond the scope of the mathematical apparatus in standard textbooks
on quantum mechanics (QM). But a “naı̈ve” treatment based on finite-dimensional
linear algebra or even on the theory of bounded operators can result in paradoxes
and incorrect results. Some paradoxes due to a “naı̈ve” treatment demonstrate that
even simple physical models can be nontrivial from the mathematical standpoint.
It is well known that a rigorous pure-mathematical approach to constructing
physical observables in nontrivial quantum systems leads to a result that is not
unique. Additional physical arguments must eventually be used to choose a proper
quantization for a given physical system. An application of the technique of
self-adjoint extensions of symmetric operators makes the inherent nonuniqueness
obvious and facilitates a physically proper choice.

In this book, we focus on the problem of a correct definition of quantum-
mechanical observables, which is an important part of operator quantization. We
show how this problem can be solved for comparatively simple but nontrivial
quantum-mechanical systems. The solution of the above problem requires invoking
some nontrivial notions of functional analysis concerning the theory of linear
operators in Hilbert spaces, in particular, the notions of unbounded self-adjoint
operators and their spectral analysis and of self-adjoint extensions of symmetric
operators. The general theory is then illustrated on a number of physical examples.
In particular, it is shown how the problem of a correct definition of observables is
solved for a free one-dimensional particle on the whole axis, on a semiaxis, and
on a finite interval. In addition, various nontrivial quantum systems are treated
in accordance with the general mathematical theory of self-adjoint extensions
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and a rigorous spectral theory. These are the one-dimensional particles in the
Calogero potential and in the potentials localized at the origin, in particular, deltalike
potentials. Additionally, a rigorous treatment of the Schrödinger operators with
all the so-called exactly solvable potentials is given, and the relativistic problem
for an electron in the Coulomb field of arbitrary (including supercritical) charge
is considered in detail. A similar analysis is carried out for nonrelativistic and
relativistic electrons in the Aharonov–Bohm field and in the so-called magnetic-
solenoid field.

The book is addressed to readers who are interested in deepening their under-
standing of mathematical problems in QM beyond the scope of standard textbooks.

São Paulo, Brasil Dmitry Gitman
Moscow, Russia Igor Tyutin and Boris Voronov
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Chapter 1
Introduction

1.1 General Remarks

Among different approaches to constructing a quantum description of physical
systems and its proper interpretation, operator quantization is the oldest and most-
used one. The main first-stage problem of operator quantization is the problem of
a correct definition of observables as self-adjoint operators (s.a. operators in what
follows) in an appropriate Hilbert space. The self-adjointness of observables is of
crucial importance for quantum theory (QT). An s.a. operator possesses a real-
valued spectrum and a complete orthogonal set of (generalized) eigenvectors in the
corresponding Hilbert space. These properties of any observable provide a basis
for the probabilistic interpretation of QT (in particular, quantum mechanics (QM),
which is the principal object of our consideration). The problem of a correct defini-
tion of quantum observables is generally nontrivial in the case of physical systems
with boundaries and/or with singular interactions (including QFT models). In what
follows, for the sake of brevity, we call such systems nontrivial physical systems
(or simply nontrivial systems). The interest in this problem revives periodically
in connection with studies of specific nontrivial systems such as a particle on a
finite interval or on a semiaxis, a particle in singular potential fields, in particular
in the Aharonov–Bohm or in ı-like potential fields, and so on. The reason is that
the solution of the problem, and therefore a consistent QM treatment of nontrivial
systems, requires a considerable amount of preliminary information from different
advanced chapters of functional analysis. However, the content of such chapters
usually goes beyond the scope of the mathematical apparatus presented in standard
textbooks on QM for physicists,1 e.g., [32,39,44,48,64,104,109,112,136,138] and
even in recently published textbooks [23, 37, 63, 98].

1The exceptions such as [27, 57, 83, 84, 128, 144, 147, 153] are mainly intended for mathematically
minded physicists and mathematicians.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 1,
© Springer Science+Business Media New York 2012
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2 1 Introduction

One of the aims of this book is of a pedagogical nature, namely, to convince the
reader–physicist that he or she must be very careful when reading standard textbooks
on QM for physicists, and particularly careful when applying the notions and
prescriptions from such textbooks to nontrivial systems as regards the mathematical
apparatus of QM.

The mathematical apparatus of QM is functional analysis, more specifically, the
theory of linear operators in Hilbert spaces. It is a quite extensive and “subtle”
science, so it takes considerable time to master it. For this reason, standard textbooks
on QM for physicists present a rather simplified version of the relevant parts
of functional analysis in the form of brief “rules” such that many mathematical
subtleties are necessarily left aside. The simplified rules are usually based on
systematic references to our experience in finite-dimensional linear algebra, which
often proves to be misleading. We recall these rules below. They can be sufficient as
long as we examine comparatively simple QM systems. But if we follow these rules
literally in our treatment of even the simplest nontrivial systems (in what follows, we
call this approach the naı̈ve treatment), we encounter some paradoxes that may lead
us to incorrect conclusions. In this chapter, we present a number of such paradoxes,
and a resolution of them is given in subsequent chapters.

As stated above, QM generally and a consistent QM treatment of nontrivial
systems particularly require the language of the theory of linear operators in Hilbert
spaces and realizing subtleties associated with unbounded operators, in particular,
with such basic notions as a closed operator, an adjoint operator, a symmetric
operator, and an s.a. operator,2 the spectrum of an s.a. operator and its spectral
decomposition, the so-called inversion formulas for s.a. differential operators, and
so on. Another aim of this book is to remind the reader–physicist of (or provide an
introduction to) these notions and some related subjects.

A crucial subtlety is that an unbounded s.a. operator cannot be defined in the
whole Hilbert space, i.e., on an arbitrary QM state, which is usually assumed in a
preliminary “idealized” scheme of operator quantization. But there is no operator
without its domain of definition: an operator is not only a rule of acting, but also a
domain in a Hilbert space to which this rule is applicable. In the case of unbounded
operators, the same rule for different domains generates different operators with
sometimes completely different properties. Provided a rule of acting is given, it is
an appropriate choice of a domain for a QM observable that makes it an s.a. operator.
The main problems are related to this point. The formal rules of operator canonical
quantization (see below) are of a preliminary nature and generally provide only
“candidates” for unbounded QM observables, so to speak, for example in the form of
the so-called s.a. differential operations,3 because their domains are not prescribed
by the canonical quantization rules. Appropriate domains even are not clear at the
first stage of quantization, especially in the case of nontrivial physical systems,

2For unbounded operators, there is a crucial difference between the notions of symmetric
(Hermitian) and s.a. operators; for bounded operators, these notions actually coincide.
3S.a. according to Lagrange in mathematical terminology; see Chap. 4.
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although it is prescribed that observables must be s.a. operators. It should be noted
that the choice of domains providing the self-adjointness of all observables involved,
especially the primarily important observables such as the position, momentum,
Hamiltonian, and symmetry generators, is a necessary part of quantization resulting
in a specification of a QM description of a physical system in question. This is
actually a physical problem. Mathematics can only help a physicist in making a
choice by indicating various possibilities.

It is expected that for physical systems whose classical description includes
infinite (but finite-dimensional) flat phase spaces such as R

2n and nonsingular
interactions, a quantization is practically unique: the most important physical
observables are defined as s.a. operators on some “natural” domains; in particular,
classical symmetries can survive under quantization. The majority of textbooks
for physicists begin their exposition of QM with a treatment of such physical
systems. Of course, nontrivial physical systems are also examined thereafter.
Nevertheless, the common belief is that no actual singularities exist in nature.
They are the products of our idealization of reality, i.e., are of a model nature,
which is related, for example, to our ignorance of the details of interaction at
small distances. We formally extend an interaction law known for finite distances
between finite objects to infinitely small distances between pointlike objects. We
treat boundaries as a result of infinite potential walls that are actually always
finite.4 The consequence is that singular problems in QM are commonly solved
via some regularization considered to be natural and then via a subsequent limiting
process of removing the regularization. In some cases, this procedure requires the
so-called infinite renormalization (of coupling constants, for example). But in some
cases, no reasonable limit is known. (It should be pointed out that here, we mean
conventional QM rather than quantum field theory.) It may also happen that different
regularizations yield different physical results. It is precisely the case in which
mathematics can help a physicist with the theory of s.a. extensions of symmetric
operators. This was first recognized by Berezin and Faddeev [26] in connection
with the three-dimensional ı-potential problem.

The practice of quantizing nontrivial systems shows that preliminary candidates
for observables can be quite easily assigned symmetric operators defined on such
domains that “avoid” problems: they do not “touch” boundaries and “escape” any
singularities of interaction; this is a peculiar kind of “mathematical regularization.”
But such symmetric operators are commonly non-s.a. The main question then is
whether these preliminary observables can be assigned s.a. operators by some
extensions of the initial symmetric operators that convert the candidates to real
observables. The answer is simple, positive, and unique if a symmetric operator
under consideration is bounded. However, if it is unbounded, the problem is
generally nontrivial.

4Of course, a flat infinite space is also an idealization, as is any infinity.
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The theory of s.a. extensions of unbounded symmetric operators provides the
main tool for solving this problem. It turns out that these extensions are generally
nonunique, if they are possible at all. From the physical standpoint, this implies
that when quantizing a nontrivial physical system, we are generally presented with
different possibilities for its quantum description. The general theory describes all
the possibilities that mathematics can offer to a physicist. Of course, a physical in-
terpretation of available s.a. extensions is a purely physical problem. Any extension
is a certain prescription for the behavior of a physical system under consideration
near its boundaries and singularities. We also believe that each extension can be
understood through an appropriate regularization and a subsequent limiting process,
although this is generally a complicated problem in itself. But in any case, the right
of a final choice belongs to the physicist.

The book is organized as follows. In the introduction, we demonstrate that an
idealized scheme of operator canonical quantization applied to nontrivial systems
can lead to a number of paradoxes. Chapters 2 and 5 (purely mathematical chapters
in a sense) contain all the information about Hilbert spaces, linear operators in
such spaces, and a strict formulation of the spectral problem for s.a. operators that
physicists need and that is used in the book. This standard material is followed by the
general theory of s.a. extensions of symmetric operators presented in Chap. 3. The
traditional exposition (due to von Neumann) is accompanied by a nontraditional
approach that is based on the notion of asymmetry forms generated by adjoint
operators, see our works [156,157]. The basic statements concerning the possibility
and specification of s.a. extensions both in terms of isometries between the deficient
subspaces and in terms of the sesquilinear asymmetry form are collected in the
main theorem. It is followed by a comment on a direct application of the main
theorem to physical problems of quantization. We outline a possible general scheme
of constructing QM observables as s.a. operators starting from initial formal
expressions supplied by canonical quantization rules. The subsequent Chap. 4 is
devoted to the exposition of specific features and appropriate modifications of the
general theory as applied to ordinary (one-dimensional) differential operators in
Hilbert spaces L2.a; b/ [158]. For symmetric differential operators, the isometries
between deficient subspaces specifying s.a. extensions can be converted to s.a.
boundary conditions, explicit or implicit, based on the fact that asymmetry forms
are expressed in terms of the (asymptotic) boundary values of functions and their
derivatives. We describe various ways of specifying s.a. operators by s.a. boundary
conditions depending on the regularity or singularity of the ends of the interval
under consideration. In particular, we propose a new method for specifying s.a.
ordinary differential operators by s.a. boundary conditions based on evaluation
of the quadratic asymmetry form in terms of asymptotic boundary coefficients.
A comparative advantage of the method is that it makes it possible to avoid
the evaluation of deficient subspaces and deficiency indices. Its effectiveness is
illustrated in Chaps. 6–10 with examples of constructing QM observables for a
number of nontrivial systems. In Chaps. 6–8, we consider various one-dimensional
systems: a free particle on a semiaxis and on a segment of the real axis (Chap. 6),
a particle in different potential fields including the Calogero potential, deltalike
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potentials, and so-called exactly solvable potentials (Chaps. 7 and 8). In Chaps. 9
and 10, we study certain one-particle three-dimensional problems. In Chap. 9, we
consider a Dirac particle moving in the Coulomb field of a point charge Ze. We
interpret the Dirac equation with the Coulomb field as the Schrödinger equation;
the corresponding quantum Hamiltonian is called the Dirac Hamiltonian. We define
the Dirac Hamiltonian with the Coulomb field as an s.a. operator for any real Z and
solve the corresponding spectral problem. In Chap. 10, we similarly examine the
Dirac Hamiltonian with the Aharonov–Bohm field and with the so-called magnetic-
solenoid field.

1.2 Idealized Scheme of Operator Canonical Quantization

For a physicist, quantization means constructing a QT for a given physical system
on the basis of an initial classical theory and in accordance with the correspondence
principle. The correspondence principle requires that the QT must reproduce the
predictions of the initial classical theory in the classical limit (large masses,
macroscopic scales, smooth potentials, and so on), which is formally the limit
„ ! 0, where „ is the Planck constant.5 The quantization problem usually does not
have a unique solution. The only criterion for whether a constructed QT is proper
remains the coincidence of its predictions with experiment. The development of
QT began with the quantization of the simplest systems such as a free particle,
a harmonic oscillator, and a nonrelativistic particle in some potential fields. In
fact, the experience in the quantization of such systems was used to formulate a
consistent general scheme of operator quantization for an arbitrary system with
canonical Hamiltonian equations of motion for phase-space variables. It is this
scheme that was called canonical quantization. In what follows, we outline the
canonical quantization rules as they are usually expounded in standard textbooks
on QM for physicists. This is a “first approximation” to a proper quantization, so to
speak, the naı̈ve treatment, as was already mentioned before, or the idealized scheme
of operator canonical quantization. In short, this scheme is as follows.

(a) It is assumed that there exists a canonical Hamiltonian formulation of the
classical mechanics of a physical system under consideration. This means that
a state of the system at any instant of time is specified by a point of some
even-dimensional phase space; the points of this space are labeled by canonical
generalized coordinates xa and momenta pa, a D 1; : : : ; n, where n is the
number of degrees of freedom. The time evolution of a state of the system in
the course of time t is described by the Hamiltonian (canonical) equations of
motion for the canonical coordinates xa.t/ and pa.t/:

Pxa D ˚xa;H� ; Ppa D
˚
pa;H

�
;

5For a mathematician, quantization is a quantum deformation of classical structures; the deforma-
tion parameter is the Planck constant „.
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whereH D H .x; p/ is the Hamiltonian of the system and f ; g is the canonical
Poisson bracket. The canonical Poisson bracket of two arbitrary functions f
and g on the phase space is defined by

ff; gg D
X

a

�
@f

@xa
@g

@pa
� @f

@pa

@g

@xa

�
; (1.1)

in particular, fxa; pbg D ıab . All local physical quantities (classical observables)
f are real functions of the phase-space variables, f D f .x; p/. Classical ob-
servables form a real associative commutative algebra, in particular, Œf1; f2� �
f1f2 � f2f1 D 0, 8f1; f2:

(b) In QM, a state of a physical system at any instant of time is specified by a vector
 in a Hilbert space H, which is called the space of states. A scalar product of
two vectors  1 and  2 is denoted by . 1;  2/. To a first approximation, it is
assumed that any state  2 H can be realized physically; in particular, the
superposition principle holds: if states  1 and  2 are realizable, then the state
 D a1 1 C a2 2 with any a1; a2 2 C is also realizable.

(c) In QT, each classical observable f D f .x; p/ is assigned an s.a. operator Of ,
f 7�! Of , acting in a Hilbert space H. It is called a quantum observable. To a
first approximation, it is assumed that any operator Of , including observables, is
defined on any state  , i.e., Of  2 H, 8 2 H, and is uniquely determined by
its matrix elements

�
 1; Of  2

�
, 8 1; 2 2 H, and what is more, by its matrix

fmn D .em; Of en/ with respect to any orthonormal basis feng11 , a complete
orthonormalized set of vectors in H. Then any operator Of is assigned its adjoint
Of C defined by

�
 1; Of C 2

�
D
� Of  1;  2

�
; 8 1; 2 2 H;

and thereby the involution (conjugation) Of 7�! Of C is defined in the algebra of
operators with the properties6

� Of C
�C D Of ;

�
a Of
�C D a Of C; 8a 2 C ;

� Of C Og
�C D Of C C OgC ;

� Of Og
�C D OgC Of C:

The self-adjointness of Of means that Of D Of C, or

�
 1; Of  2

�
D
� Of  1;  2

�
; 8 1; 2 2 H:

6The bar over an expression denotes complex conjugation.
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The mean value h Of i of any quantum observable Of in a state  and the
corresponding dispersion�f are respectively defined by

D Of
E

 
D
�
 ; Of  

�

. ; /
;

�f D
s	� Of � h Of i 

�2


 

D
s
D Of 2

E

 
�
D Of
E2

 
:

The self-adjointness of observables is assumed to imply that any observable
Of can be diagonalized, which means that the eigenvectors, or eigenstates, of
Of form an orthonormal basis in H; the spectrum of an observable is defined

as a set of all its eigenvalues. The spectrum determines possible measurable
values of the corresponding observable, while the complete orthonormalized
set of the eigenstates of the observable provides a probabilistic interpretation of
its measurements.

(d) According to the correspondence principle, there exists a certain relation
between the Poisson bracket ff1; f2g D f3 of classical observables f1 and f2
and the commutator Œ Of1; Of2� of their quantum counterparts Of1 and Of2, namely,
Œ Of1; Of2� D i„ Of3 C OO �„2�; a supplementary operator OO �„2� vanishes with
vanishing „ as „2. A more transparent form can be given to this correspondence:

ff1; f2g �! 1

i„
h Of1; Of2

i
C OO .„/ :

That is, according to the correspondence principle, the Poisson bracket of
classical observables is assigned the commutator of their quantum counterparts
times the factor .i„/�1 plus, in general, a supplementary operator OO .„/.

The position operators Oxa and momentum operators Opa are postulated to be
s.a. and satisfy the canonical commutation relations

� Oxa; Oxb� D � Opa; Opb
� D 0; � Oxa; Opb

� D i„ ˚xa; pb
� D i„ıab : (1.2)

The correspondence principle requires that the quantum counterpart Of
of a classical observable f .x; p/ be of the form Of D f . Ox; Op/ C OO .„/.
A supplementary operator OO .„/ is generally necessary to provide the self-
adjointness of Of . In the general case, the correspondence principle does not
allow a unique construction of the operator function f . Ox; Op/ in terms of the
classical function f .x; p/ because of the noncommutativity of Ox and Op (the
so-called ordering problem.7)

7Numerous papers have been devoted to the study of various rules of assigning operators to
classical quantities. A substantial contribution to a resolution of this problem is due to Berezin
[25].
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To the first approximation whereby any observable can be diagonalized, it
is argued that commuting observables Of1 and Of2 have a joint spectrum, i.e., a
common set of eigenvectors, which implies the simultaneous measurability of
the observables. A complete set of observables is defined as a minimum set
of n commuting observables Ofk , k D 1; : : : ; n, Œ Ofk; Ofl � D 0, 8k; l , whose
joint spectrum is nondegenerate and whose common eigenvectors provide a
unique specification of any vector in terms of the corresponding expansion
with respect to these eigenvectors. For a complete set of observables, we can
choose all the position operators Oxa. The momentum operators Opa can also be
chosen for a complete set of observables. Different complete sets of observables
can be considered, and their spectrum and eigenvectors specify the quantum
description of a system under consideration.

(e) The time evolution of a state of the system in the course of time t is described
by the Schrödinger equation for the state vector  .t/,

i„@ 
@t
D OH ; (1.3)

with an initial condition  .t0/ D 0, where the operator OH , the quantum
Hamiltonian, the energy observable, corresponds to the classical HamiltonianH.

Because the initial state  0 can be arbitrary, it is assumed that OH is certainly
applicable to any state  2 H.

A realization of the canonical commutation relations (1.2) in a specific
Hilbert space (representation of canonical commutation relations) offers a prac-
tical possibility for solving the Schrödinger equation and finding probabilities
of transitions from one state to another, means of physical quantities, and
probabilities of measurements using the accepted rules.

It was canonical quantization that was first used to construct the QT for
the simplest systems. There exist alternative formulations of QT, for example
formulations in terms of Green’s functions, functional integrals, and so on.
Each of these formulations can either be introduced independently by a set of
postulates or “derived” logically from the operator formulation based on the
canonical quantization method. In the latter case, an alternative formulation of
QT for a specific system is said to be obtained by the canonical quantization
method. It should be noted that among all the formulations, the operator
formulation based on canonical quantization is the best-developed and most
consistent one. This explains the existing tendency to quantize every classical
system canonically. We should note that for classical systems of general form,
canonical quantization is not always possible or cannot be carried out directly
as described above without an essential analysis and reformulation of the
initial classical theory. The majority of modern physical theories belong to
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the so-called singular theories, theories with constraints and extra nonphysical
variables in the initial Hamiltonian formulation (gauge theories are a particular
case of singular theories). There exist different methods for quantizing such
theories; see, e.g., [49, 75, 91]. Some of these methods are based on the
possibility of passing to physical variables, which allows the standard canonical
quantization. Canonical quantization remains the most reliable quantization
scheme.

1.3 Some Paradoxes of Naı̈ve Implementation
of an Idealized Scheme

In this section, we examine some simple QM systems obtained in the framework of
the above-described idealized scheme of operator canonical quantization. We show
that if we follow this scheme literally, we arrive at certain paradoxes in the form of
obvious contradictions with well-known statements.

We consider an example of a very simple system: a free nonrelativistic particle
of massm moving on an interval .a; b/ of the real axis. The interval can be finite or
infinite, a semiaxis or the whole axis. The finite ends of an interval are considered
to be included in the interval; in particular, by a finite interval, we mean a closed
interval Œa; b�.

In classical mechanics, the phase space of this system is a strip .a; b/ � R; the
ranges of the particle position x and momentum p are respectively .a; b/ and R.
The Poisson bracket (1.1) of x and p is fx; pg D 1. Free motion is defined by the
free Hamiltonian H D p2=2m. If jaj < 1 and/or jbj < 1, the peculiarity of the
system is that its phase space is a space with boundaries. The behavior of the particle
near the boundaries must be specified by some subsidiary conditions such as elastic
reflection, delay, trapping, or something else.

At first glance, we may not face the problem of boundaries when quantizing this
system. The canonical observables for a QM particle are the position operator Ox and
the momentum operator Op satisfying the canonical commutation relations

Œ Ox; Ox� D Œ Op; Op� D 0; Œ Ox; Op� D i„fx; pg D i„: (1.4)

For a complete set of observables, we can take the position operator Ox with the
prescription that its spectrum be given by spec Ox D .a; b/. It is natural to take the
x-representation of canonical commutation relations (1.4) where the Hilbert space
H of states is the space of functions  .x/ square-integrable on the interval .a; b/;
H D L2.a; b/; the operator Ox is the operator of multiplication by x, namely

Ox .x/ D x .x/ I
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while the operator Op is a multiple of the differentiation operator8 dx D d=dx:

Op D �i„dx W Op .x/ D �i„ 0 .x/ :

The canonical commutation relations (1.4) seem obviously to hold.
Other observables are certain differential operators

Of D f .x;�i„dx/CO .„/ :

In particular, the free quantum Hamiltonian is given by

bH D Op2
2m
D � „

2

2m
d2x : (1.5)

All this appears quite natural from the following standpoint as well. If jaj < 1
and/or jbj < 1, the space L2.a; b/ can be considered the subspace of functions
vanishing outside the interval .a; b/ in the space L2 .R/ of states of a particle on
the whole real axis R, whereas all the observables defined on L2.a; b/, including Ox
and Op, can be considered restrictions to this subspace of well-known s.a. operators
defined on L2 .R/. For the case of a finite interval Œa; b�, the position operator Ox
becomes a bounded s.a. operator defined everywhere. Considering Op as an s.a.
operator, we have a set of three s.a. operators Ox, Op, and bH with the commutation
relations

Œ Ox; Op� D i„;
h
Op;bH

i
D 0: (1.6)

If all the previous statements hold, then the following observations seem
paradoxical and cast doubt on the consistency of the adopted quantization scheme.

1.3.1 Paradox 1

Let  p .x/ be an eigenvector of the s.a. momentum operator, Op p D p p . Based
on the self-adjointness of the operators Op and Ox, we have the chain of equalities

�
 p; Œ Ox; Op� p

� D � p; Ox Op p
� � � p; Op Ox p

�

D p � p; Ox p
� � � Op p; Ox p

�

D p � � p; Ox p
� � � p; Ox p

�� D 0;

which obviously contradicts the commutation relation (1.6).

8It is rather a differential operation than a differential operator; see Chap. 4. A rigorous definition
of the differentiation operator Odx is given in the end of Sect. 2.3.4.
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In addition, this commutation relation implies the well-known Heisenberg
uncertainty relation

�x�p � „
2
; (1.7)

where�x and �p are the respective dispersions of the position and momentum for
any state  of a particle. But for the case of a finite interval Œa; b� and for  D  p ,
we have �x � b � a, �p D 0, and therefore�x�p D 0, which contradicts (1.7).

An explanation of the above paradoxes is given in Chap. 6. It is different
for different types of interval: depending on the type of interval, either an s.a.
momentum operator does not exist, or it exists but has no eigenvectors, or even if
such vectors exist, they do not belong to the domain of the operator Op Ox. In addition,
in the case of a semiaxis or a finite interval, the canonical commutation relations
together with the uncertainty principle do not hold.

1.3.2 Paradox 2

We now consider a free particle moving on a finite interval Œ0; l�. If we treat a motion
governed by the Hamiltonian (1.5) as a motion in an infinite rectangular potential
well, then the eigenvalues of the Hamiltonian and the corresponding eigenfunctions
are well known from any textbook:

bH n .x/ D En n .x/ ; En D „
2

2m

��
l

�2
n2; (1.8)

 n .x/ D
r
2

l
sin
��n
l
x
�
; n 2 N: (1.9)

The set f n .x/g11 of these eigenfunctions is an orthonormal basis in L2 .0; l/,
which confirms the self-adjointness of the Hamiltonian.

As is also well known, two commuting s.a. operators have common eigenvectors,
and if the spectrum of one of the commuting s.a. operators is nondegenerate, then its
eigenvectors must be eigenvectors of another s.a. operator. In our case, we have two
commuting s.a. operators Op and bH, and the spectrum (1.8) of bH is nondegenerate.
Therefore, eigenfunctions (1.9) must be the eigenfunctions of Op. But we have

Op n .x/ D �i„
r
2

l

�n

l
cos

�n

l
x ¤ pn n .x/

for any n, which contradicts the above assertion.
As explained in Chap. 6, this paradox is a consequence of the incorrect assump-

tion that Op and bH commute; in particular, it is a consequence of the naı̈ve belief that
the Hamiltonian bH can be represented as bH D Op2=2m.
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1.3.3 Paradox 3

As mentioned above, in standard textbooks on QM for physicists, some important
notions related to operators in Hilbert spaces are often introduced in terms of their
matrix elements with respect to an orthonormal basis, because it is believed that the
matrix elements fmn D .em; Of en/ of an operator Of with respect to an orthonormal
basis feng11 completely determine the operator Of according to the following chain
of equalities:

 D
1X

nD1
 nen;  n D .en;  / ; Of en D

1X

mD1
fmnem;

Of  D
1X

nD1
 n Of en D

1X

mD1

 1X

nD1
fmn n

!

em:

For example, the adjoint Of C of Of is defined as an operator whose matrix elements
are given by

�
f C�

mn
D
�
em ; Of Cen

�
D
� Of em; en

�
D
�
en; Of em

�
D fnm:

Correspondingly, an s.a. operator Of D Of C is defined as an operator whose matrix
is Hermitian fmn D fnm.

But let us consider the matrix pmn D .em; Open/ of the momentum operator Op in
the Hilbert space L2.0; l/ with respect to the orthonormal basis feng10 ,

en.x/ D
r
2

l
cos

��n
l
x
�
; n 2 RC: (1.10)

A direct calculation by integrating by parts shows that

pnm D pmn C i Œem.l/en.l/� em.0/en.0/� ¤ pmn; mC n D 2k C 1; (1.11)

i.e., the matrix pmn is not Hermitian, contrary to our expectations.
As is explained in Chap. 6, the paradox is related to the fact that the orthonormal

basis (1.10) does not belong to the domain of any s.a. operator Op from the whole
family of admissible momentum operators.

1.3.4 Paradox 4

Let us consider a free particle on a segment Œ0; l� as a particle in an infinite
rectangular potential well, and let us calculate the mean of the squared energy hE2i
for the state given by the wave function
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 .x/ D Nx .x � l/ ; (1.12)

where N is a normalization factor. Because
�
bH
�2
 D 0, this mean must be zero:

hE2i D
�
 ;
�
bH
�2
 

�
D 0:

On the other hand, using the self-adjointness of bH, we obtain a nonzero result for
the same quantity:

hE2i D
�
bH ; bH 

�
D N2„4l

m2
:

As explained in Chap. 6, a solution of the paradox is related to the fact that the
function bH .x/ does not belong to the domain of a correctly defined Hamiltonian
bH associated with an infinite potential well, although the function  .x/ does.

1.3.5 Paradox 5

We consider the Schrödinger equation for a free particle on the segment Œ0; l�,

i„@ .t; x/
@t

D � „
2

2m

@2

@x2
 .t; x/ ; x 2 Œ0; l�: (1.13)

We recall that in the idealized quantization scheme, the time-evolution problem
in the form (1.13) can be posed for an arbitrary initial state. Let the initial state
 0 .x/ D  .t0; x/ at t0 D 0 be

 .0; x/ D C exp

�
iC 1p
2

kx

„
�
; (1.14)

where k is a fixed real parameter with dimension of momentum. It is easy to verify
that the solution  .t ; x/ of (1.13) with initial condition (1.14) is given by

 .t ; x/ D exp

�
� k2

2m„ t
�
 0 .x/ : (1.15)

It is surprising that the evolution of the given initial state is not unitary: the wave
function  .t; x/ “vanishes” with time. This situation is evidently related to the fact
that formally, we have

bH 0 .x/ D � ik
2

2m
 0 .x/ H) bH .t; x/ D � ik

2

2m
 .t; x/ ;
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i.e., the initial state  0 and the evolving state  .t/ are the eigenstates of the
s.a. Hamiltonian with a pure imaginary eigenvalue, which is impossible, as is
well known.

As explained in Chap. 6, a resolution of the paradox lies in the fact that if
the function  0 .x/ does not belong to the domain of any correctly defined s.a.
Hamiltonian bH from the whole family of admissible Hamiltonians for a free particle
on the interval Œ0; l�, then  .t; x/ also does not, which is irreconcilable with the
Schrödinger equation.

1.3.6 Concluding Remarks

In the foregoing, we discussed some QM paradoxes arising under a naı̈ve treatment
of simple one-dimensional systems with boundaries. The number of paradoxes can
be extended (see, for example, [31, 74]), and certain of the others are examined
below. In Chap. 7, we discuss possible paradoxes related to singular potentials with
a simple example of a particle moving on the real axis or a semiaxis in the so-
called Calogero potential field V .x/ D ˛=x2. But even the above examples seem
to be sufficient to convince the reader–physicist that a rigorous approach to the
definition of operators and especially of observables in QM is a necessity. The
point is that up to now, we were too naı̈ve in our analysis; strictly speaking, our
arguments were incorrect, and our conclusions were wrong. The reason is that all
the operators involved are unbounded, and for unbounded operators, the algebraic
rules and the notion of commutativity are nontrivial. In fact, the above-used rules
and notions were uncritically borrowed from finite-dimensional algebra; they are
valid for bounded operators, while for unbounded operators, a special treatment is
necessary. The correct treatment removes all the paradoxes.



Chapter 2
Linear Operators in Hilbert Spaces

In this chapter, we remind the reader of basic notions and facts from the theory
of Hilbert spaces and of linear operators in such spaces which are relevant to the
subject of the present book.

2.1 Hilbert Spaces

2.1.1 Definitions and General Remarks

Definition 2.1. (A) A Hilbert spaceH is a linear space over the complex numbers.
As a rule, the elements of H (vectors or points) are denoted by Greek letters:
�; �; �; ';  ; �; : : : 2 H, whereas numbers, complex or real, are denoted by
italic Latin letters: a; b; c; x; y; z; : : : 2 C or R. In what follows, we consider
infinite-dimensional Hilbert spaces.1

(B) The space H is endowed with a scalar product that is a positive definite
sesquilinear form on H. This means that every pair of vectors �; � is assigned a
complex number .�; �/, the scalar product of � and �, with the properties2

.�; �/ D .�; �/ I .�; �/ � 0 ; and .�; �/ D 0 iff � D 0 I

.�; a� C b�/ D a.�; �/C b.�; �/ H) .a� C b�; �/ D a.�; �/C b.�; �/ :

1Finite-dimensional Hilbert spaces (or Euclidean spaces) are also encountered in QM as spaces of
states, e.g., in QM of two-level systems, finite spin systems, and so on. Finite-dimensional spaces
are free from the problems that are examined in the present book.
2We use “iff” in its standard usage for “if and only if.” For brevity, the arrow H) stands for
“implies.”

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 2,
© Springer Science+Business Media New York 2012
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The nonnegative arithmetic square root
p
.�; �/ is called the norm, or length,

of a vector �, and is denoted by k�k, k�k D p
.�; �/. A vector � is called

normalized if k�k D 1. Any nonzero vector � can be normed: � 7�! �n D �=k�k.
For any two vectors � and �, the Cauchy–Schwarz inequality (also known as the
Cauchy–Bunyakovskii inequality) j.�; �/j � k�kk�k holds. A corollary of the
Cauchy–Schwarz inequality is the triangle inequality k� C �k � k�k C k�k for
the norm.

The distance between two points � and � is defined as k� � �k. The triangle
inequality for the distance becomes k� � �k � k� � �k C k� � �k.

The distance determines a topology3 in H. A sequence f�ng11 of vectors is said
to be convergent to a vector �, or equivalently, we say that � is the limit of this
sequence, written �n ! �; n!1, or � D limn!1 �n, if k�n � �k ! 0; n!1.
Because of the triangle inequality, a necessary condition for convergence is

k�m � �nk ! 0; m; n!1: (2.1)

A sequence f�ng11 with property (2.1) is called a fundamental sequence or a Cauchy
sequence.

Linear operations in H (multiplication of vectors by complex numbers and vector
addition) and the scalar product are continuous in their arguments; for example,

�n ! � ) .�n; �/! .�; �/; 8� 2 H;

because of the Cauchy–Schwarz inequality.
A set M � H is said to be dense in H if any vector in H can be approximated by

vectors belonging toM with any desired accuracy, i.e., if for any � 2 H, there exists
a sequence f�ng11 , �n 2M , so that � D limn!1 �n.

(C) H is complete. This means that every Cauchy sequence f�ng11 in H is
convergent, or has a limit in H:

k�m � �nk ! 0; m; n!1) 9� 2 H W �n ! �; n!1:

As mentioned above, any convergent sequence f�ng11 is a Cauchy sequence. In a
Hilbert space, the converse also holds.4 A space satisfying requirements (A) and
(B) is called a pre-Hilbert space. Any pre-Hilbert space can be made a complete
Hilbert space by adding the “limits” of Cauchy sequences.

We note that the requirement of completeness is crucial, and not only technical,
for applications of Hilbert spaces to QM.

(D) A Hilbert space H is called separable if it contains a countable dense set.

3A Hilbert space is a particular case of a normed and metric space in which a norm and a metric
(distance) satisfying standard requirements are generated by a scalar product; see [9].
4In short, a Hilbert space is complete with respect to a metric generated by a scalar product.
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Separable Hilbert spaces are sufficient for treating conventional QM, and we here
restrict ourselves to separable Hilbert spaces. We return to the notions of dense set
and separability below.

An example of a Hilbert space is the space l2 of sequences � D fxng11 of
complex numbers such that the sum of their moduli squared is convergent,

l2 D
(

� D fxng11 ; xn 2 C W
1X

iD1
jxnj2 <1

)

:

The numbers xn are called the components of a vector �. Linear operations are
defined via components: if � D fxng11 and � D fyng11 , then a� C b� D
faxn C byng11 . The scalar product of vectors � and � is defined by .�; �/ DP1

iD1 xnyn. The correctness of the definition and the completeness of l2 are easily
verified.

A vector � is called terminating if it has a finite number of nonzero components.
The set of all terminating vectors is a dense subspace in l2. A Euclidean space of
arbitrary dimension is naturally embedded in l2 as a subspace. The Hilbert space
l2 is separable: a countable dense set in l2 is the set of terminating vectors whose
components are complex numbers with rational real and imaginary parts.

2.1.2 Elements of Geometry and Topology

By an "-neighborhood of a point �0 we mean an open ballB";�0 D f� W k���0k < "g.
A point � is called an interior point of a setM � H if it belongs toM together with
an "-neighborhood of �. A set M � H is called an open set if all of its points are
interior. A set M � H is called a bounded set if M � Br;0 for some r > 0.

A point � is called a limit point of a set M � H if in any neighborhood of �,
there exists an infinite number of points belonging to M . An equivalent definition
of a limit point is this: a vector � is a limit point of a setM if there exists a sequence
f�ng11 ; �n 2 M , so that � D limn!1 �n. A set M is said to be closed if it contains
all of its limit points, which is denoted by M D M . The complement H nM of an
open set M in H is closed.

Any set M � H can be made closed by adding all of its limit points. We call
this operation the closure operation and denote the closure of a set M by M .5 It
is evident that M � M ; equality holds for a closed set M , and M is the minimal
closed set containingM .

Returning to the notion of a dense set, we can now say that a set M � H is said
to be dense (in H) if M D H, i.e., if its closure coincides with the whole space.

5We hope that there will be no confusion with the similar symbols for complex conjugation and
closure; they refer to different notions, the first involving complex numbers, and the second, sets.
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In connection with QM, the sets in H that are linear spaces in themselves, i.e.,
are invariant under linear operations, are of special importance. A set that is a linear
space is called a subspace and is usually denoted by D:

D D f� W �; � 2 D H) a� C b� 2 D; 8a; b 2 Cg � H:

It is evident that in any subspace D, there exists an induced scalar product that
is the restriction of the original scalar product in H to D. IfD is finite-dimensional,
then it is a Euclidean space, which is always closed and complete. If D is infinite-
dimensional, it is at least a pre-Hilbert space. If such a D is closed, D D D, then
D itself is a Hilbert space.

The simplest example of a subspace is the linear envelope L.f�ngN1 / of a
sequence of vectors f�ngN1 (N can be infinite). This is the set of all finite linear
combinations of vectors in f�ngN1 :

L
�
f�ngN1

�
D f� W � D an1�n1 C 	 	 	 C ank �nk ; 8k � N g:

Equality in the last inequality is possible only if N <1.
If L

�f�ng11
�

is dense, the sequence f�ng11 is called a complete sequence.
The criteria for D to be dense and for f�ng11 to be complete are formulated in

terms of orthogonality. The notions of orthogonality and orthogonal decomposition
are of primary importance for QM.

Two vectors � and � are called orthogonal, and we write � ? �, if .�; �/ D 0.
A sequence fengN1 (N can be infinite) is called an orthonormalized sequence if
.ek; el / D ıkl, where ıkl is the Kronecker symbol. In a separable Hilbert space,
any orthonormalized sequence of vectors is a finite or countable set. A proof of this
fact can be found in [9, 116]. A similar assertion is easily extended to sequences of
nonzero orthogonal vectors.

Any sequence f�ngN1 (N can be infinite) can be orthonormalized (by the
Gram–Schmidt orthogonalization procedure). This means that there exists an
orthonormalized sequence fengN1 equivalent to f�ngN1 in the sense that L.f�ngN1 / D
L.fengN1 /. A complete orthonormalized sequence feng11 is called a (countable)
orthonormal basis in H, or simply an orthonormal basis. A Hilbert space H is
separable iff it has a countable orthonormal basis feng11 .

A vector � is called orthogonal to a set M � H, and we write � ? M , if � ? �,
8� 2 M . The notion of orthogonality is naturally extended to any number of sets.
The set of all vectors orthogonal to a given subspace D is called the orthogonal
complement of D and is denoted by D?, D? D f� W � ? Dg. By definition,
D ? D?.

We call the operation ? that assigns the orthogonal complement D? to each

subspaceD, D
?�! D?, the orthogonal complement operation.

It is evident that D? is a linear space and moreover is a closed subspace

coinciding with D
?

,

D? D D? D D?
; (2.2)
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because of the continuity of the scalar product in both arguments; in other words,
the orthogonal complement of any subspace is closed, the closure operation and
the orthogonal complement operation ? commute, and the orthogonal complements
of a subspace and of its closure are the same. It is evident that the orthogonal
complement of the whole of H is the zero subspace f0g: .�; �/ D 0, 8� 2 H H)
� D 0; it is sufficient to take � D �.

It is also evident that

D1 � D2 H) D?
1 
 D?

2 : (2.3)

Before we proceed further, we recall the notions of direct sum in the theory of
linear spaces. Let L1 and L2 be subspaces in a linear space L. We call L the direct
sum of L1 and L2, and write

L D L1 C L2
if

� D �1 C �2 2 L ; 8�1 2 L1 ; 8�2 2 L;
and any � 2 L is uniquely represented as � D �1C�2, �1 2 L1, �2 2 L2. A necessary
condition for the equality L D L1 C L2 is L1 \ L2 D f0g. Conversely, if L1 and
L2 do not intersect except at zero, L1 \ L2 D f0g, we can construct the direct sum

L D L1 C L2 D f� W �1 C �2; 8�1 2 L1; 8�2 2 L2g:

By induction, the notion of a direct sum is extended to any number of summands.
Moreover, we can construct a direct sum of two linear spaces that are not

subspaces of the same linear space. Let L1 and L2 be linear spaces (L2 can be
a copy of L1). Then their direct sum L D L1 C L2 is the set of all ordered pairs
�1; �2, where �1 2 L1 and �2 2 L2. These pairs are conveniently written as columns6

.�1��2/, so thatL D L1CL2 D f.�1��2/,8�1 2 L1,8�2 2 L2g. Linear operations
in L are defined componentwise.

In Hilbert spaces, there exists an additional structure of a direct sum associated
with a possible orthogonality of summands. Let D D D1 CD2 and let D1 ? D2.
Then the direct sum is called the orthogonal direct sum. For such a sum, we use
the sgn ˚, D D D1 ˚ D2. This equality is equivalent to each of the equalities
D1 D D�D2 andD2 D D�D1. The notion of an orthogonal direct sum is easily
extended to any number of mutually orthogonal subspaces:

D D
X

k

˚Dk ; Dk ? Dl ; k ¤ l ; 8k; l:

6We are forced to use the symbol .�1��2/ for a two-component column (“spinor”) instead of the

conventional symbol

�
�1
�2

�
for reasons of space.
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We call the operation ˚ of taking the orthogonal direct sum of (sub)spaces,

D1;D2 �̊! D1 ˚D2, the orthogonal direct sum operation.
A useful construction for defining and studying linear operators in a Hilbert space

H is the Hilbert space HDH ˚ H, the orthogonal direct sum of two copies of H.
Elements 	 of H (vectors) are ordered pairs �; � 2 H arranged in columns, 	 D
.���/, where � is the upper component and � is the lower component:

HDH˚ H D f	 D .���/ ; 8�; � 2 Hg:
Linear operations in H are conventionally defined via components; the scalar
product is defined by .	1; 	2/ D .�1; �2/C .�1; �2/.

We now can cite a theorem on projection onto a closed subspace [9].

Theorem 2.2. Let D be a closed subspace of a Hilbert space H,D D D � H, and
let D? denote its orthogonal complement,D? D D? � H, D? ? D.

For any D, the Hilbert space H is decomposed into the orthogonal direct sum of
D andD?,

H D D ˚D?; (2.4)

which means that any vector � 2 H is uniquely represented as

� D �k C �?; �k 2 D; �? 2 D?; .�k; �?/ D 0I (2.5)

the vector �k is called the projection of � on D.

The orthogonal decomposition (2.4) has a number of corollaries.

Corollary 2.3. 1. The evident symmetry between D D D and D? in (2.4) and
(2.5) shows that

D D .D?/? (2.6)

and that the vector �? is the projection of � on D?.
2. It is also evident that if D is dense in H, then D? D f0g, and conversely.

One of the corollaries is a criterion for D to be dense and a criterion for a
sequence to be complete. We formulate it as a lemma for future reference.

Lemma 2.4. A subspace D is dense, D D H, iff � ? D H) � D 0, and a

sequence f�ng11 is complete, L
�f�ng11

� D H, iff .�; �n/ D 0, 8n H) � D 0.

The completeness of an orthonormal basis implies that each vector � 2 H can
be expanded with respect to the orthonormal basis, � D P1

nD1 anen, in the sense
that limN!1

PN
iD1 anen D �, where an D .en; �/ are the Fourier coefficients with

respect to this basis, and Parseval’s equality k�k2 DP1
nD1 janj2 holds.

So, separability implies the possibility of representing any vector as an expansion
with respect to an orthonormal basis. In other words, a separable H can be
considered an infinite orthogonal sum of one-dimensional subspaces spanned by
the vectors of the orthonormal basis. It follows that all separable Hilbert spaces are
isomorphic.
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Any closed subspaceD � H is either a Euclidian space, if it is finite dimensional,
or a separable Hilbert space, if it is infinite dimensional (an orthonormal basis in D
is provided by orthogonalized nonzero projections fenkg of an original orthonormal
basis feng11 onto D). Any infinite-dimensional closed subspace D � H is thus
isomorphic to the whole of H (one of the paradoxes of infinities).

Any s.a. operator with discrete spectrum generates an orthonormal basis in H
as the set of all its eigenvectors. For example, the sequence feng11 of vectors
en D fınmg11 with zero components except unity in the mth row is an orthonor-
mal basis in l2: the orthonormality is evident; the completeness is also clear:
.�; en/ D xn D 0,8n, implies � D 0 (in particular, this shows once again that l2

is separable). This orthonormal basis is the set of eigenvectors of the s.a. “particle
number” operator On (the name is borrowed from QM), On� D fnxng11 .

Observables in QM are s.a. operators, and Parseval’s equality provides the
quantum-mechanical probabilistic interpretation of the Fourier coefficients for the
corresponding observables. An s.a. operator with continuous spectrum generates the
so-called generalized orthonormal basis.

2.1.3 The Hilbert Space L2 .a; b/

Definition 2.5. The Hilbert space L2 .a; b/ is the linear space of square-integrable
functions on an interval .a; b/ of the real axis,

L2 .a; b/ D
(

 .x/ W
Z b

a

dx j .x/j2 <1
)

:

The scalar product in L2 .a; b/ is defined by

. 1;  2/ D
Z b

a

dx 1 .x/ 2.x/:

It is significant that the integrals are Lebesgue integrals, and strictly speaking,
the elements of L2 .a; b/ are equivalence classes of functions that are equal almost
everywhere.7

The correctness of the definition is evident; for a proof of completeness, see, for
example, [9].

The endpoints a and b of an interval can be infinities, a D �1 and/or b D C1,
and in particular, the case of a D �1, b D 1 corresponds to the whole real

7When speaking about some function belonging to L2.a; b/ and possessing some additional spe-
cific properties like absolute continuity, we actually mean the representative of the corresponding
equivalence class.
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axis R, while the case of a D 0, b D 1 corresponds to the semiaxis RC. By
convention, see Chap. 1, the finite endpoints of an interval are considered to belong
to the interval, so that by a finite interval is meant a closed interval Œa; b� and by a
positive semiaxis is meant RC. This is simply a matter of convenience, because the
measure of the endpoints is equal to zero, but under this convention, the boundary
values of functions  .x/ at finite endpoints, for example  .a/, have an obvious
sense. We also adopt the following convention on terminology relating to functions
defined on an interval .a; b/ with at least one finite endpoint. The term “in an
interval” concerns all the interior points of the interval, i.e., the open interval .a; b/,
while the term “on an interval” concerns all the points of the interval including its
finite endpoints, i.e. the whole interval.

It is useful to note that every function  .x/ belonging to L2 .a; b/ is locally
integrable on the interval,8 which follows from the Cauchy–Schwarz inequality, and
therefore allows the representation  .x/ D 	 0.x/, where 	.x/ D R x

c
dy .y/,

c 2 .a; b/, is a function absolutely continuous on the interval .a; b/ (a.c. function
in what follows). We recall that one of the equivalent definitions of an a.c. function
reads as follows: a function 	.x/ defined on an interval .a; b/ is said to be a.c. in
the interval if it can be represented as

	 .x/ D
Z x

x0

dy .y/C 	 .x0/ ; a < x0 < b;

in which case  .x/ D 	 0 .x/ almost everywhere. In other words, an a.c. function
is differentiable almost everywhere and is restored in the interval by integrating its
derivative. If the left endpoint a is finite and the integral on the right-hand side exists
for x D a (which is the case if  .x/ is square-integrable on .a; b/), then 	 .x/ is
continuous up to the left endpoint and has a boundary value 	 .a/. The same can be
said about the right endpoint b. Absolutely continuous functions can be integrated
by parts in the usual way.

If .a; b/ � .c; d /, the Hilbert space L2 .a; b/ can be considered a closed
subspace in L2 .c; d/,L2 .a; b/ � L2 .c; d/, and any L2 .a; b/ can be considered a
closed subspace in L2.R/.

Hilbert spaces L2 .a; b/ are of paramount importance for QM, and they are
extensively exploited in the present book.

Let D .a; b/ be a linear complex space of smooth compactly supported functions
on the interval9 .a; b/:

D .a; b/ D f' .x/ W ' .x/ 2 C
1 .a; b/ ; supp' � Œ˛; ˇ� � .a; b/g ;

8By local integrability on an interval .a; b/, we mean the (absolute) integrability on any finite
interval Œ˛; ˇ� belonging to .a; b/, a � ˛ < ˇ � b, where the equality signs are meaningful for
finite endpoints; by local integrability in an interval .a; b/, we mean the integrability on any finite
interval Œ˛; ˇ� within .a; b/, a < ˛ < ˇ < b.
9In the Russian mathematical literature, a smooth compactly supported function is known as a
“finitnaya” function.
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where C1 .a; b/ is the linear space of smooth, or infinitely differentiable, functions
on the interval .a; b/; as usual, we let supp' denote the support of ', the closure of
the set of points x where ' .x/ ¤ 0; ˛ and ˇ are generally different for different '.
The condition on supp' is that it be contained entirely inside the interval .a; b/, and
each function belonging to D .a; b/ vanishes in some neighborhood of the endpoints
a and b of the interval. It is evident that D .a; b/ � L2 .a; b/.

We define some other useful spaces of functions that appear in our considerations
below.
D.a; b/ is the linear space of arbitrary functions on the interval .a; b/ with

compact support:

' .x/ 2 D .a; b/ H) supp' � Œ˛; ˇ� � .a; b/I
Dr .a; b/ is the linear space of arbitrary functions on the interval .a; b/ with

support bounded from the right :

' .x/ 2 Dr .a; b/ H) supp' � Œa; ˇ� ; ˇ < bI
Dl .a; b/ is the linear space of arbitrary functions on the interval .a; b/ with

support bounded from the left:

' .x/ 2 Dl .a; b/ H) supp' � Œ˛; b� ; ˛ > aI
DR .a; b/ is the linear space of real smooth compactly supported functions on

the interval .a; b/:

'.x/ 2 DR .a; b/ H) '.x/ D '.x/ 2 D .a; b/;

DR .a; b/ is a real subspace of D .a; b/.
Theorem 2.6. The subspace D .a; b/ is dense in L2 .a; b/, D .a; b/ D L2 .a; b/.

A proof of this theorem is based on two lemmas in the theory of real functions.

Lemma 2.7. Let  .x/ be a continuous real function on .a; b/. Then the condition

Z b

a

dx .x/ ' .x/ D 0 ; 8' .x/ 2 DR .a; b/;

implies that  .x/ D 0.

Proof. Assume the contrary. Let x0 2 .a; b/ be an inner point of .a; b/, and let
 .x0/ ¤ 0, for example,  .x0/ > 0 (the arguments for the case of  .x0/ < 0 are
the same). Then there exists a closed interval Œx0 � "0; x0 C "0� � .a; b/, "0 > 0,
where  .x0/ > 0.

On the other hand, there exists a function '" .x/ 2 DR .a; b/ such that supp'" D
Œx0 � "0; x0 C "0� and ' .x/ > 0 for x 2 .x0 � "0; x0 C "0/, and we have
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Z b

a

dx .x/ '" .x/ D
Z x0C"0

x0�"0
dx .x/ '" .x/ > 0;

which contradicts the condition and thus proves the lemma. ut
Lemma 2.8. Let  .x/ be a continuous real function on .a; b/. Then the condition

Z b

a

dx .x/ 
0 .x/ D 0 ; 8
 .x/ 2 DR .a; b/ ; (2.7)

implies that  .x/ D c D const:

A proof of Lemma 2.8 is based on the following simple lemma and its corollary.

Lemma 2.9. Let � .x/ 2 DR .a; b/. Then � .x/ D ' 0 .x/ ; ' .x/ 2 DR .a; b/ iffR b
a

dx� .x/ D 0 : In addition, if supp� � Œ˛; ˇ� � .a; b/, then supp' � Œ˛; ˇ� as
well.

Proof. Necessity. Let � .x/ 2 DR .a; b/ and let � .x/ D ' 0 .x/, ' .x/ 2 DR .a; b/.
It follows from the definition of DR .a; b/ that

Z b

a

dx� .x/ D
Z b

a

dx' 0 .x/ D ' .x/jba D 0

because ' .x/ vanishes outside of its support that is strictly inside of .a; b/. It is also
easy to see that if supp� � Œ˛; ˇ� � .a; b/, then '.x/ D R x

a
dy� .y/ must be zero

outside of Œ˛; ˇ� (the corresponding reasoning is similar to that below in proving
sufficiency).

Sufficiency. Let � .x/ 2 DR .a; b/, let supp� � Œ˛; ˇ� � .a; b/, and let

Z b

a

dx� .x/ D
Z ˇ

˛

dx� .x/ D 0: (2.8)

We consider the function ' .x/ given by

' .x/ D
Z x

a

dy� .y/ D
Z x

˛

dy� .y/ :

It is evident that ' .x/ 2 C
1 .a; b/ and � .x/ D ' 0 .x/. Because � .x/ D 0, x < ˛,

we have '.x/ D 0 for x < ˛, while for x > ˇ, we have

' .x/ D
Z x

˛

dy� .y/ D
Z ˇ

˛

dy� .y/ D 0

because of � .x/ D 0; x > ˇ, and condition (2.8). This means that supp' � Œ˛; ˇ�,
which proves the lemma. ut
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Corollary 2.10. Any function ' .x/ 2 DR .a; b/ allows the representation

' .x/ D c.'/'0 .x/C 
0 .x/; c.'/ D
Z b

a

dx' .x/ ; (2.9)

with some '0 .x/ 2 DR .a; b/ such that
R b
a dx'0 .x/ D 1 and some 
 .x/ 2

DR .a; b/.

A function '0 .x/ with the indicated properties does exist: it is sufficient to take
any function ' .x/ 2 DR .a; b/ with

R b
a dx' .x/ ¤ 0. Then the function

'0 .x/ D
"Z b

a

dy' .y/

#�1
' .x/

is the required one. We then consider the function � .x/ D ' .x/ � c.'/'0 .x/ with
the evident properties: � .x/ 2 DR .a; b/ and

Z b

a

dx� .x/ D
Z b

a

dx Œ' .x/ � c.'/'0 .x/� D c.'/ � c.'/
Z b

a

dx'0 .x/ D 0 :

It follows from Lemma 2.9 that � .x/ D 
0 .x/, 
 .x/ 2 DR .a; b/, which gives
representation (2.9).

Proof of Lemma 2.8. We take any ' 2 DR .a; b/. According to representation (2.9),
we have ' .x/� c.'/'0 .x/ D 
0 .x/, 
 2 DR .a; b/. With this 
0 .x/, the left-hand
side in (2.7) becomes

Z b

a

dx .x/ 
0 .x/ D
Z b

a

dx Œ .x/ � c� ' .x/ ;

where c D R b
a

dy .y/ '0 .y/ D const, and condition (2.7) becomes

Z b

a

dx Œ .x/ � c� ' .x/ D 0 ; 8' .x/ 2 DR .a; b/ :

By Lemma 2.7, it follows that .x/ D c , which completes the proof of Lemma 2.8.
ut

We can now return to the theorem.

Proof of Theorem 2.6. By virtue of Lemma 2.4 it is sufficient to prove that

Z b

a

dx .x/' .x/ D 0 ;  2 L2 .a; b/ ; 8' 2 D .a; b/ ;
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implies that  .x/ D 0 (almost everywhere). It is easy to see that this assertion
is equivalent to a similar assertion for real-valued functions  .x/ and ' .x/. We
therefore assume that  .x/ and ' .x/ are real-valued functions and prove that the
condition

Z b

a

dx .x/ ' .x/ D 0 ; 8' .x/ 2 DR .a; b/ ; (2.10)

implies that  .x/ D 0 (almost everywhere).
For this purpose, we use the above-cited representation  .x/ D 	 0 .x/ with

	 .x/ D R x
c

dy .y/, c2.a; b/, for a locally integrable function .x/. Substituting
this representation into the left-hand side in (2.10), integrating by parts, and taking
into account that ' .x/ vanishes near both endpoints a and b, we convert condition
(2.10) into the condition

Z b

a

dx	 .x/ ' 0 .x/ D 0 ; 8' .x/ 2 DR .a; b/

for a continuous function 	 .x/. It then follows from Lemma 2.8 that 	 .x/ D c D
const, and therefore,  .x/ D 0 almost everywhere. The theorem is proved. ut
Remark 2.11. We note that in fact, the proof of the theorem is reduced to a proof of
the extension of Lemma 2.7 to locally integrable functions.

Lemma 2.8 also allows a similar extension.

Lemma 2.12 (Du Bois–Reymond lemma). Let  .x/ be a locally integrable real
function on .a; b/. Then the condition

Z b

a

dx .x/ 
0 .x/ D 0 ; 8
 .x/ 2 DR .a; b/ ;

implies that  .x/ D c D const almost everywhere.

The proof of this lemma is similar to that of Lemma 2.8: we take any ' .x/ 2
DR .a; b/, use representation (2.9), substitute the respective 
0 .x/ D ' .x/ �
c.'/'0 .x/ into the defining integral of the condition of the lemma, and reduce this
condition to the equivalent condition

Z b

a

dx . .x/ � c/ ' .x/ D 0 ; 8' .x/ 2 DR .a; b/ ;

where c D R b
a

dy .y/ '0 .y/ D const. It then follows from the extended version
of Lemma 2.7 that  .x/ D c almost everywhere.

Different sets of functions are known as orthonormal bases in the Hilbert space
L2.a; b/; of course, they are different for different intervals. We cite only the best-
known ones.
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The Hermite functions

Hn .x/ D
�p
�2nnŠ

�� 1
2 e

x2

2 d nx e�x2 ; n 2 ZC ;

form an orthonormal basis in L2 .R/. A proof can be found in [9]. It follows
that the Hilbert space L2 .R/ is separable, and therefore, every Hilbert space
L2.a; b/ is also separable as a closed subspace in L2 .R/. The Hermite functions
are the eigenfunctions of the s.a. QM oscillator Hamiltonian OH D � d2x C x2. The
isomorphism between l2 and L2 .R/ is realized by the mapping en � Hn .x/

extended by linearity. One of the orthonormal bases in L2 .RC/ is given by the
Laguerre functions, while one of the orthonormal bases in L2 .�1; 1/ is given by
the Legendre polynomials.10

In conclusion, we consider a relation between the behavior of functions at infinity
and their square-integrability at infinity. This remark concerns functions belonging
to Hilbert spaces L2.a; b/ where the interval .a; b/ is infinite, i.e., a D �1 or/and
b D 1. The notion of square-integrability at infinity is an extension of the notion
of local square-integrability to a point at infinity. We call a function  .x/ square-
integrable at1 (plus infinity) if

R1
c j .x/j2 < 1 for some finite c, i.e.,  .x/ 2

L2.c;1/ for x � c > �1. The square-integrability at �1 (minus infinity) is
defined similarly. An assertion is rather common in the physics literature that the
square-integrability of a wave function at plus or minus infinity implies that the
function vanishes at the respective infinity, for example, if  .x/ 2 L2.R/, then
 .x/ ! 0 as x ! ˙1. This assertion is wrong: it is easy to construct a function
that belongs to L2.R/ and takes arbitrarily large values at arbitrarily large jxj. An
example is given by

 .x/ D


n; n � n�4 < x < n; jnj 2 N;

0 elsewhere:

But if a function is a.c. at infinity and is square-integrable at infinity together with
its first derivative, then it does vanish at infinity.

Lemma 2.13. Let a function  .x/ be a.c. for x � c (x � c), jcj < 1, and
let  ; 0 2 L2 .c;1/ (L2 .�1; c/). Then  .x/! 0 as x !1 (�1).

Proof. We give a proof for the case .c;1/; a proof for the case .�1; c/ is
completely similar. We consider the identity

ˇ
ˇ 2 .x/

ˇ
ˇ D

Z x

c

dy
�
 .y/ 0 .y/C  0 .y/ .y/

�
C ˇˇ 2 .c/ˇˇ :

10A subtlety is that the set of powers of x, fxkg1

0 , is a complete sequence in L2 .�1; 1/, but it
does not form a basis [9].
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Because  ; 0 2 L2 .c;1/, the integral on the right-hand side has a finite limit as
x !1. It follows that j .x/j has a finite limit as x !1. This limit must be zero
because of the square-integrability of  .x/ at infinity, which proves the lemma. ut

The next lemma can be also useful.

Lemma 2.14. Let  .x/ and  0.x/ be a.c. for x � c .x � c/, jcj < 1,
and let  ; 00 2 L2.c;1/.L2.�1; c//. Then  0 2 L2.c;1/ .L2.�1; c//, and
 .x/;  0.x/! 0 as x !1 .�1/.
Proof. We give a proof for the case .c;1/; a proof for the case .�1; c/ is
completely similar. We consider the identity

dx j .x/j2 D 2

Z x

c

dy
ˇ
ˇ 0 .y/

ˇ
ˇ2

C
Z x

c

dy
h
 .y/ 00 .y/C  00 .y/ .y/

i
C dx j .x/j2

ˇ
ˇ̌
xDc :

Because  ; 00 2 L2 .c;1/, the second integral on the right-hand side has a
finite limit as x ! 1. It follows that if

R x
c

dy j 0 .y/j2 ! 1 as x ! 1, then
dx j .x/j2 ! 1 as x ! 1 as well. But if this is the case, then j .x/j2 ! 1 as
x !1, which contradicts the square-integrability of  at infinity. We thus obtain
that there must be

R1
c

dy j 0 .y/j2 < 1, which proves the first assertion of the
lemma. The second assertion then immediately follows from Lemma 2.13. ut

In QM, the Hilbert space L2.a; b/ is the space of states for a particle moving
on an interval .a; b/ of the real axis. For a particle moving in a multidimensional
space or for many-particle systems, appropriate spaces of states are Hilbert spaces
L2.Rn/, n D 2; 3; : : : . For example, the space of states for n particles, n D 2; 3; : : : ,
moving in the three-dimensional space R3 is the Hilbert spaceL2.R3n/. A definition
of a Hilbert space L2.Rn/ is a copy of the above definition of the Hilbert space
L2.a; b/ with the evident substitution of integrals over .a; b/ for the respective
integrals over Rn. For a system of n particles moving in a volume V � R

3, the
space of states is reduced to L2.V n/.

Physical systems with varying or nonconserving number of particles are de-
scribed in terms of orthogonal direct sums of L2.Rn/ with different n. An example
from the many-body theory and quantum field theory is the so-called Fock space F :

F D
1X

nD0
˚L2

�
R
3n
�
; L2

�
R
0
� D C:

Vectors of the Fock space F are Fock columns whose first component is a
complex number c, while other components are functions of increasing number
of space variables  1.r1/, 2.r1; r2/; : : : ,  n .r1; : : : ; rn/ ; : : : , where r 2 R

3 and
 n .r1; : : : ; rn/ 2 L2

�
R
3n
�
.
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For identical bosons or fermions, these functions are respectively symmetric or
antisymmetric with respect to transpositions of arguments.

We now turn to functions in Hilbert spaces. We restrict ourselves to linear
functions: linear functionals and linear operators.

2.2 Linear Functionals

Definition 2.15. A linear functional ˚ in H with a domain of definition, or simply
domain, D˚ � H is a linear mapping ˚ W D˚ 7�! C; this means that D˚ is a
subspace and that any vector � 2 D˚ is assigned a complex number z D ˚.�/, or

�
˚7�! ˚.�/ 2 C, 8� 2 D˚ , so that

˚ .a1�1 C a2�2/ D a1˚ .�1/C a2˚ .�2/ ; 8�1; �2 2 D˚; 8a1; a2 2 C:

We only cite (as a rule, without proof) some necessary facts and notions from the
theory of linear functionals that we shall need later when expounding the theory of
linear operators in H: The details of the theory of linear functionals can be found,
for example, in [9].

In connection with the topology in H and the usual topology in C, the natural
notions of boundedness and continuity are introduced for linear functionals.

A linear functional ˚ is called bounded if there exists a finite nonnegative
numberK such that

j˚ .�/j � K k�k ; 8� 2 D˚ :

The norm k˚k of a functional ˚ is the infimum of such K’s. It is evident that
j˚ .�/j � k˚k k�k and ˚ is bounded iff its norm is finite.

A linear functional ˚ is called continuous if

� ; �0 2 D˚ ; � �! �0 H) ˚ .�/ �! ˚ .�0/; 8�0 2 D˚ :

It is evident that a linear functional˚ is continuous iff it is continuous at the origin,

� 2 D˚ ; � �! 0 H) ˚ .�/ �! 0 :

The notions of boundedness and continuity are equivalent for linear functionals:
a linear functional is continuous iff it is bounded. We note only that sufficiency is
evident from the inequality j˚ .�/j � k˚k k�k.

A bounded linear functional with domain D˚ ¤ H can be extended to the
whole of H without changing its norm: it is first extended to the closure D˚ of
its domain by continuity and is then defined by zero on the orthogonal complement
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D˚
?

of D˚ . Therefore, bounded linear functionals can be considered as defined
everywhere without loss of generality.11

The kernel of a linear functional ˚ , denoted by ker˚ , is the set of all vectors �
such that˚.�/ D 0, ker˚ D f� W ˚ .�/ D 0g. It is evident that the kernel of a linear
functional is a subspace, and if the functional is bounded and defined everywhere,
its kernel is a closed subspace, ker˚ D ker˚ .

Theorem 2.16 (Riesz theorem). Any bounded linear functional defined every-
where has the form ˚ .�/ D .�; �/ with some � 2 H; its norm is given by
k˚k D k�k, and its kernel is given by ker˚ D f� W �?�g.
Proof. The proof is so simple and instructive that we reproduce it here. For ˚ D 0,
the assertion is evident: � D 0. Let ˚ ¤ 0. Because ker˚ is a closed subspace, the
decomposition

HD ker˚ ˚ .ker˚/?

holds. Let � 2 .ker˚/?, ˚.�/ ¤ 0. For any vector �, the vector ˚ .�/ � � ˚ .�/ �
evidently belongs to ker˚ and is therefore orthogonal to �, i.e., ˚ .�/ .�; �/ �
˚ .�/ k�k2 D 0: It follows that

˚ .�/ D ˚ .�n/ .�n; �/ D .�; �/ ; � D ˚ .�n/�n; �n D �= k�k :

It is evident that � is defined uniquely (and therefore, .ker˚/? is a one-dimensional
subspace): the relation .�0; �/ D .�; �/, 8� 2 H, implies .�0 � �; �/ D 0, 8� 2 H,
or .�0 � �/ ? H, which in turn implies that �0 � � D 0, or �0 D �. The equality
k˚k D k�k follows from the Cauchy–Schwarz inequality, while the formula for the
kernel of ˚ is evident. ut

Bounded linear functionals naturally form a linear space that is called a dual
space: ˚ D a1˚1 C a2˚2 is defined by

.a1˚1 C a2˚2/ .�/ D a1˚1 .�/C a2˚2 .�/ :

The Riesz theorem, Theorem 2.16, shows that there exists an anti-isomorphism
between H and its dual space.

The notion of a linear functional allows introducing the so-called weak topology
in H, in particular, weak boundedness and weak convergence. As for the conven-
tional topology, we call it the strong topology and speak about strong boundedness
and strong convergence.

A set M � H is weakly bounded if the values of any functional on M are
uniformly bounded, i.e., j.�; �/j < C.�/, 8� 2M , 8� 2 H:

11Encountered unbounded linear functionals cannot be defined in the whole Hilbert space:
an unbounded linear functional defined everywhere is equal to zero almost everywhere. The
requirement of boundedness is often included in the definition of a linear functional.
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A sequence f�kg11 is called weakly convergent to a vector �, which is written
wlimk!1�k D �, if

lim
k!1 .� ; �k/ D .�; �/ ; 8� 2 H:

In a finite-dimensional Euclidean space, the strong and weak topologies are
equivalent. In an infinite-dimensional Hilbert space, these topologies are not
equivalent; indeed, the strong topology is stronger than the weak topology, i.e.,
strong convergence implies weak convergence:

lim
k!1 �k D � H) �k

w! �; k !1; or � D wlimk!1�k :

A proof follows from the Cauchy–Schwarz inequality. But the converse gener-
ally does not hold. A counterexample is given by an orthonormal basis fekg11 :
limk!1 .�; ek/ D 0,8� 2 H, because of the Parseval equality, i.e., wlimk!1ekD 0,
whereas fekg11 is not a Cauchy sequence, kek � elk D

p
2, 8k ¤ l .

As for the relation between strong boundedness and weak boundedness, it is
clear that strong boundedness implies weak boundedness because of the Cauchy–
Schwarz inequality. It appears that the converse also holds.

Theorem 2.17. The weak boundedness of a set M � H is equivalent to its strong
boundedness.

An elegant proof of this theorem can be found in [87].

2.3 Linear Operators

2.3.1 Definitions and General Remarks

The notion of linear operator in a Hilbert space is a direct generalization of the
notion of linear transformation in a finite-dimensional Euclidean space. But in
Euclidean spaces, linear transformations can be and are usually defined in the whole
space, while in an infinite-dimensional Hilbert space, this is generally not the case,
and the notion of domain of a linear operator takes on great importance. The same
transformation (“rule of acting”) applied to different domains determines different
operators with sometimes crucially different properties. This is particularly true for
the unbounded operators, which are absent in the finite-dimensional case.

Definition 2.18. A linear operator Of with a domain of definition, or simply
domain, Df � H is a linear mapping of Df to H, Of W Df �! H; this means that
Df is a subspace and that any vector � 2 Df is assigned some vector � D Of �, or

�
f�! Of � 2 H; 8� 2 Df
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(this is the “rule of acting”), so that

Of .a1�1 C a2�2/ D a1 Of �1 C a2 Of �2 ; 8�1; �2 2 Df ; 8a1; a2 2 C :

We emphasize that in contrast to linear functionals, the continuity (or bounded-
ness) of linear operators is not required. Many QM observables are discontinuous
(unbounded).

A vector � D Of � is called the image of a vector �, and � is called the preimage
of �. The set of all images, sometimes denoted by Of Df , is called the range of the

operator Of , and is denoted by Rf ,

Rf D Of Df D f� W � D Of �; 8� 2 Df g :

If Df D H, the operator Of is said to be defined everywhere; it is typical for
bounded (or continuous) operators.

In general, Df is not a closed subspace, Df ¤ Df ; it is typical for unbounded
(or discontinuous) operators, and is a specific feature of an infinite-dimensional H.

If Df D H, the operator Of is called a densely defined operator; it is typical for
QM observables. In general,Rf ¤ Rf , and even Rf ¤ H.

A number � is called an eigenvalue of an operator Of if there exists a nonzero
vector �� 2 Df such that Of �� D ���; the vector �� is called an eigenvector of
Of corresponding to the eigenvalue �: The set of all eigenvectors corresponding

to an eigenvalue � supplemented with the zero vector is called the eigenspace of
Of corresponding to the eigenvalue �; it is evident that an eigenspace is a subspace

belonging toDf . The dimension of an eigenspace corresponding to an eigenvalue �
is called the multiplicity of the eigenvalue. If H is a space of functions like L2.a; b/,
the eigenvectors are also called eigenfunctions.

We note that there is a stable distinction between the physical and mathematical
terminologies at this point. As an illustration, we consider the operator Op D �i„dx
inL2.R/ that is the momentum operator for a particle moving along the real axis (its
domain is defined below). In physics textbooks, the function  p.x/ D exp.ipx=„/
satisfying the differential equation�i„ 0

p.x/ D p p.x/ is called the eigenfunction
of the momentum corresponding to the eigenvalue p. But the function exp.ipx=„/
does not belong to the Hilbert space L2.R/ because it is not square-integrable on
the whole axis (more specifically, not square-integrable at infinity). Therefore, from
the standpoint of the adopted definition, exp.ipx=„/ is not an eigenfunction of Op,
and p is not its eigenvalue; this function is the so-called generalized eigenfunction
of Op, while p is a point of the spectrum of Op (see below).

Now we list some useful definitions:

(a) We call the number
�
� ; Of �

��1
, � 2 Df , the mean of the operator Of in the

state � (the last term is borrowed from QM).
(b) We call an operator Of nonnegative, written Of � 0, if .�; Of �/ � 0, 8� 2 Df ,

i.e., if all of its means are nonnegative. We call an operator Of positive, written
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Of > 0 if .�; Of �/ > 0,8� 2 Df , � ¤ 0, i.e., if all of its means for nonzero states

are positive. We call an operator Of nonpositive, written Of � 0, or negative,
written Of < 0, if the operator � Of is respectively nonnegative or positive. The
inequality Of1 � Of2, or Of2 � Of1, implies that Df1 D Df2 and means that
Of1 � Of2 � 0, or Of2 � Of1 � 0.

(c) We call an operator Of bounded from below if
�
�; Of �

�
� � .�; �/, 8� 2 Df .

(d) We call an operator Of bounded from above if
�
�; Of �

�
� � .�; �/, 8� 2 Df .

Clearly, the constants � in (c) and (d) are real, � D � .

2.3.2 Graphs

We now present an equivalent definition of a linear operator in H in terms of graphs
(this is true for any functions; recall graphs of school functions).

We call a set G D f.���/g � H D H ˚ H a graph if its abscissas � uniquely
determine its ordinates �; i.e.,

˚
.���/

� 2 G˚
.���/

� 2 G

�
H)� D � :

An equivalent definition of a linear operator in H is then as follows:
A linear operator Of in a Hilbert space H is a triple

Of D H; H; Gf D
n�
�� Of �

�o
� H ;

where the graph Gf is a subspace in H, i.e.,

�
�1� Of �1

�
;
�
�2� Of �2

�
2 Gf H) a1

�
�1� Of �1

�
C a2

�
�2� Of �2

�

D
�
a1�1 C a2�2�a1 Of �1Ca2 Of �2

�
2 Gf :

The set of all abscissas of Gf is the domain Df of the operator Of ; Df D f� W
.�� Of �/ 2 Gf g; the set of all ordinates of Gf , is the range Rf of the operator Of ;
Rf D f� W .��� D Of �/ 2 Gf g: An equivalence of the two definitions is easily
verified.

It is also easy to verify the following criterion.
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Lemma 2.19. Any set G � H determines a linear operator Of in H, i.e., G D Gf

iff G is a subspace with the property

.0��/ 2 GH)� D 0 (2.11)

ensuring that G be a graph (Gf is a “hyperplane” passing through the origin in H ).

We call this criterion the graph criterion for a linear operator.
In the language of graphs, it is particularly evident that the definition of a linear

operator Of includes both the “rule of acting” and the domain of definition.
Many notions and theorems in the theory of linear operators are easily formulated

and proved in terms of graphs; because we deal only with linear operators, we often
omit the term “linear” in what follows.

The first example is the notion of equal operators: two operators Of1 and Of2 are
equal, or coincide, written Of1 D Of2, if their graphs coincide, Gf1 D Gf2 . In the
language of maps, this means thatDf1 D Df2 and Of1� D Of2�, 8� 2 Df1 D Df2 .

Another example is given by the important notions of extension and restriction
of an operator. An operator Of2 is called an extension of an operator Of1, while Of1 is
called a restriction of an operator Of2, if Gf1 � Gf2 , which is naturally written
Of1 � Of2. In the language of maps, this means that Df1 � Df2 and Of2� D Of1�,
8� 2 Df1 . We say that the operator f1 is a restriction of the operator Of2 to the

subspaceDf1 � Df2 , while the operator f2 is an extension of the operator Of1 to the
subspaceDf2 � Df1 . Any operator Of allows restricting to any subspaceDg � Df ,

which defines a restriction Og of the operator Of .
In what follows, we use both languages.

2.3.3 Examples of Operators

Examples of operators include the identity or unity operator OI :

OI W H �! H ; OI� D � ; 8� 2 H ; DI D H ; RI DH ; GI D f.���/g D diagH ;

and the multiple of unity operator z OI , z 2 C, z ¤ 0:

z OI W H �! H ; .z OI /� D z� ; 8� 2 H ; DzI D H ; RzI D H ; GzI D f.��z�/g :

It is evident that the multiple of unity operator maps any subspace onto the same
subspace, .z OI /D D D. With z D 0, we obtain the zero operator O0: H �! f0g. The
multiple of unity operator with jzj ¤ 1 changes the lengths of vectors.

The momentum operator for a particle moving on the real axis is the operator
Op D �i„dx inL2.R/; its domainDp is the space of absolutely continuous functions



2.3 Linear Operators 35

square-integrable on the whole axis together with their derivatives,12 Dp D f .x/ W
 are a.c.,  ; 0 2 L2.R/g. This operator is an extension of the operator Op.0/ D
�i„dx with the same rule of action, but defined on the space of smooth functions
with compact support, Dp.0/ D D.R/, Op.0/ � Op. Other examples of differential
operators in Hilbert spaces L2.a; b/ are considered in detail in Chaps. 4 and 6.

Analogues of rotation in finite-dimensional spaces are isometric and unitary
operators.

An operator OU is called isometric if it preserves the norm of vectors, k OU�k D
k�k, 8� 2 DU , or, which is the same, if it preserves the scalar product of vectors,
. OU�; OU �/ D .�; �/, 8�; � 2 DU . The equivalence of the two conditions follows
from the chain of equalities

� OU .� C z�/; OU .� C z�/
�
D
� OU�; OU �

�
C z

� OU�; OU �
�
C z

� OU�; OU �
�

C jzj2
� OU�; OU�

�
D .� C z�; � C z�/

D .�; �/C z .�; �/C z.�; �/C jzj2 .�; �/ :
We say that the range and the domain of an isometric operator are related by an
isometry relation, or simply by isometry; therefore, an isometric operator is also
called an isometry. For completeness, we say in advance that an isometric operator
is bounded and its norm is equal to unity, the corresponding notions are introduced
in Sect. 2.3.4. It is evident that the domain and the range of an isometric operator OU
are of the same dimension, dimDU D dimRU . In contrast to the finite-dimensional
case, this does not mean that if an isometric operator is defined everywhere, then
its range must be all of H. A counterexample is the operator OU first defined on
an orthonormal basis feng11 by OUen D enC1 and then extended to any vector
� D P1

1 anen by linearity: OU� D P1
1 anenC1; it is evident that the operator is

isometric, andDU D H, while RU D fae1;8a 2 Cg?, the orthogonal complement
of the one-dimensional space spanned by the vector e1.

An isometric operator OU is called unitary if it is defined everywhere and maps H
onto the whole of H, DU D H D RU .

We cite some important properties of unitary operators that are used below and
are easily verified.

Lemma 2.20. (i) A unitary operator is bounded, and its norm is equal to unity.
(ii) A unitary operator maps a closed set onto a closed set and commutes with the

closure operation :
OUM D OUM D OUM (2.12)

for any set M � H. In particular, a unitary operator maps a closed subspace

onto a closed subspace, OUD D OUD D OUD.

12In what follows, we often omit the symbol for the argument of a function if it is clear from
context.
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(iii) A unitary operator transforms an orthonormal basis feig11 to an orthonormal
basis fe0

ig11 and is completely determined by its action on an orthonormal
basis, OUei D e0

i , i 2 N.
(iv) For any subspace D�H, a unitary operator transforms its orthogonal com-

plement to the orthogonal complement of the image OUD, i.e., it commutes with
the orthogonal complement operation ?,

OUD? D
� OUD

�?
: (2.13)

(v) A unitary operator commutes with the orthogonal direct sum operation˚,

H D OUH D OU �D ˚D?� D OUD ˚ OUD? D OUD ˚
� OUD

�?
:

A trivial example of a unitary operator is the unity operator OI . The simplest
nontrivial example is the multiple of unity operator OU D z OI with z D ei'; 0 �
' � 2� .

We also introduce some simple “matrix” unitary operators ˙1 and E in the
composite Hilbert space H that are well known to physicists as the spin operators:

˙1 D
�
0 OI
OI 0

�
; ˙1 .���/ D .���/ I

E D i˙2 D
�
0 OI
� OI 0

�
; E .���/ D .�� � �/ : (2.14)

The operators ˙1 and E are evidently unitary and therefore commute with the
closure operation and the orthogonal complement operation. These operators are
extensively used below in defining the inverse and adjoint operators in terms
of graphs.

2.3.4 Properties of Linear Operators

We now touch upon some general properties of operators. In general, an operator Of
rotates and stretches the vectors belonging to Df . The measure of stretching is its
norm k Of k defined by

�
�
� Of
�
�
� D sup

�2Df ; �¤0

�
�
� Of �

�
�
� k�k�1 D sup

�2Df ; k�kD1

�
�
� Of �

�
�
� : (2.15)

It is evident that k Of �k � k Of k k�k, 8� 2 Df ; and
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ˇ
ˇ
ˇ.�; Of �/

ˇ
ˇ
ˇ �

�
�
� Of
�
�
� k�k k�k ; 8� 2 Df ; 8� 2 H :

An operator Of is called a bounded operator if its norm is finite, k Of k < 1;
otherwise, it is called an unbounded operator.

An operator Of is called a continuous operator if

� �! �0; �; �0 2 Df H) Of � �! Of �0 :

The continuity of any operator is obviously equivalent to its continuity at the
origin: � �! 0 H) Of � �! 0.

Some of the trivial examples of bounded and continuous operators are the
multiple of unity operator Of D z OI , k Of k D jzj, and the unitary operator, Of D OU ,
k OU k D 1.

We list some well-known properties of bounded operators (see, for example, [9]).

Lemma 2.21. (i) An operator Of is continuous iff it is bounded.
(ii) A continuous operator Of can be extended by continuity to the closure Df of

the initial domain Df with the same norm. If Df ¤ H, an operator Of can
be extended to the whole of H with the same norm13 (for example, by setting
Of D? D f0g).

Bounded operators defined everywhere form an associative algebra with the
natural operations of addition and multiplication respectively defined by

.a Of C b Og/� D a Of � C b Og� ; 8� 2 H ; 8a; b 2 C ; . Of Og/� D Of . Og�/;

and obeying the distributive law:

. Of C Og/ Oh D Of OhC Og Oh; Oh. Of C Og/ D Oh Of C Oh Og:

In particular, the commutator of two bounded operators is well defined.
This algebra is normed with the previously defined norm k Of k, which fulfills

the standard requirements for a norm and also has the property k Of Ogk � k Of kk Ogk.
The distance between two operators Of and Og is defined as k Of � Ogk; it determines
the so-called uniform operator topology, similar to the strong topology in H.
A sequence f Ofng11 of operators is called uniformly convergent to an operator Of ,

written Ofn n!1H) Of , if k Ofn � Of k n!1�! 0. As a linear space the algebra is complete
with respect to the uniform operator topology.

Along with uniform convergence, two other kinds of convergence, namely, strong
operator convergence and weak operator convergence, are introduced for bounded
operators defined everywhere. A sequence f Ofng11 of operators is called strongly

13An unbounded operator cannot in general be defined in all of H.
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convergent to an operator Of , written Ofn n!1�! Of , if Ofn� n!1�! Of �, 8� 2 H, and

weakly convergent to an operator Of , written Ofn w! Of , if wlimn!1 Ofn� D Of �, 8� 2
H. Strong convergence follows from uniform convergence, and weak convergence
follows from strong convergence and a fortiori from uniform convergence.

A bounded operator Of generates a bounded sesquilinear form wf defined by

wf .�; �/ D
�
�; Of �

�
;
ˇ
ˇwf .�; �/

ˇ
ˇ �

�
�
� Of
�
�
� k�k k�k ;

and Of is completely determined by wf . Moreover, Of is completely determined by

its matrix elements fmn D .em; Of en/ with respect to any orthonormal basis feng11 .
In this sense, bounded operators are similar to finite-dimensional operators.

The algebraic situation with unbounded operators is more involved because of
generally different domains and ranges for different operators.

The multiplication of an unbounded operator Of by a complex number z 2 C is
naturally defined by .z Of /� D z Of �, � 2 Dzf D Df . But the sum and product of

two unbounded operators Of and Og with the respective domainsDf andDg are more
involved. They are respectively defined by

� Of C Og
�
� D Of � C Og� ; � 2 Df Cg D Df \Dg ;

and � Of Og
�
� D Of . Og�/; � 2 Dfg D

˚
� W � 2 Dg ; Og� 2 Df

�
:

If Of or Og is defined everywhere,Df D H orDg D H, then we respectively have

DfCg D Dg or DfCg D Df . In particular, the domain of the operator Of � z OI
is Df �zI D Df , so that Of � z OI D Of � z OIDf , where OIDf is the restriction of the

identity operator OI to Df .

It may be that Df \Rg D f0g, in which case the product Of Og is defined on only
the zero subspace, but if Df D H, then Dfg D Dg .

As to the distributive law, we have the equality

. Of C Og/ Oh D Of OhC Og Oh (2.16)

and in general, the inclusion Oh. Of C Og/ 
 Oh Of C Oh Og, but if Oh is defined everywhere,
the inclusion becomes an equality:

Oh. Of C Og/ D Oh Of C Oh Og; ifDh D H: (2.17)

We see that there is no natural associative algebra for arbitrary operators, notably
unbounded ones. In particular, a notion of commutativity cannot be naturally defined
for two arbitrary operators. But if at least one of two operators Of and Og is defined
everywhere, let it be Of , Df D H, then we say that these operators commute if
Of Og � Og Of , i.e., the product Og Of is an extension of the product Of Og, which means that
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Of � 2 Dg , 8� 2 Dg and Of Og� D Og Of �. We note that this notion of commutativity is
extensively used in QM in defining the symmetry of unbounded observables Og under
unitarily implemented group transformations Of D OU . In QM, a commutativity
of observables is also extensively used; we say in advance that for s.a. operators,
commutativity can be defined by reducing to the case of bounded operators.

Remark 2.22. An unbounded operator is not generally determined by its matrix
ffmng with respect to an orthonormal basis feng11 even if en 2 Df ; 8n, and
the matrix does exist (an example is given below). Therefore, any operations with
unbounded operators, in particular definitions of the adjoint operator, and conse-
quently of self-adjointness, in terms of the corresponding matrices are generally
improper. In relativistic quantum field theory, a situation with observables and with
a proper formulation of the theory itself is more involved and even dramatic. For
example, in the relativistic local �'4-theory of a scalar field ' in 3C 1 dimensions,
the Hamiltonian OH in the Fock space is formally given by

OH DW
Z

dx


1

2
O�2.x/C .r O'/2.x/Cm2 O'2.x/C �

4Š
O'4.x/

�
W

D
Z

dk!.k/ OaC.k/ Oa.k/C �

4Š.2�/3

Z
dk1 	 	 	 dk4p

2!.k1/ 	 	 	 2!.k4/
� Œ OaC.k1/ 	 	 	 OaC.k4/ı3.k1 C 	 	 	 C k4/C 	 	 	 � ; !.k/ D

p
k2 Cm2;

where O� is the canonical momentum operator, and OaC; Oa are the conventional
creation and annihilation operators. But this OH actually defines only a sesquilinear
form . ; OH
/ on the linear envelope of terminating Fock vectors, or a matrix in
the (generalized) orthonormal basis 1

nŠ
OaC .k1/ 	 	 	 OaC .kn/ O
0, where O
0 is the Fock

vacuum, and not an operator: OH has no nontrivial domain of definition because of
the volume and ultraviolet divergences. To be defined, OH requires some volume and
ultraviolet cutoffs; this is the subject matter of constructive field theory.

After this remark, we turn to properties of unbounded operators. An analogue of
continuity for unbounded operators that is sufficient in many cases is closedness.

An operator Of is called a closed operator, written Of D Of (the notation becomes
clear below), if its graph is closed (as a subspace in H), Gf D Gf .

A weakened version of closedness is closability. An operator Of is called a
closable operator if the closure Gf of its graph Gf in H is also a graph, and

therefore determines the operator Of , which is called the closure of Of .

For a closable operator Of , we have Of � Of ; a closed operator is a trivial particular

case of a closable operator that coincides with its closure, Of D Of . Therefore, when
we use the term “closable operator” in what follows, we as a rule actually mean a
“closable, in particular closed, operator,” which is explicitly represented in formulas
by the symbol� .
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It is easy to see that an operator Of is closable if it has a closed extension Og D Og:
Gf � Gg D Gg implies that Gf � Gg, whence it follows that Gf is a graph,

the graph of the closure Of , which is evidently the minimum closed extension of a
closable Of .

In the language of maps, definitions of these notions are more lengthier. An
operator Of is called closed if the simultaneous realization of the two relations

lim
n!1 �n D �; lim

n!1
Of �n D �; 8�n 2 Df ;

implies that � 2 Df and Of � D �:
An operator is called closable, or has a closure, if the simultaneous realization of

the relations

lim
n!1 �n D lim

n!1 � 0
n D �; lim

n!1
Of �n D �; lim

n!1
Of � 0
n D �0; 8�n; � 0

n 2 Df ;

implies that � D �0.
The difference between continuous and closed operators is that if Of is continuous

(bounded) then �n �! � implies that14 Of �n �! �, while if Of is only closed, the
sequence

˚ Of �n
�1
1

can diverge (for an unbounded Of ). But in both cases, a situation

in which �.1/n �! �, �.2/n �! � and simultaneously Of �.1/n �! �.1/, Of �.2/n �! �.2/

with �.1/ ¤ �.2/ is forbidden.
The latter is a necessary and sufficient condition for closability. An equivalent cri-

terion for closability directly follows from the graph criterion (2.11), Lemma 2.19:
an operator Of is closable iff the simultaneous realization of the relations �n�!0; �n 2
Df , and Of �n�!� implies that � D 0. The closure Of of a closable operator Of now
can be described in terms of sequences as follows: a vector � belongs to the domain

Df of Of iff there exists a sequence of vectors f�ng11 ; �n 2 Df , so that if �n�!�
and Of �n�!�, then Of � D �.

For a continuous operator, the relation �n �! 0 implies that Of �n �! 0, and

therefore, any continuous operator Of is closable, its closure Of is also continuous,

and k Of k D k Of k. For future reference, the following assertion is formulated as a
lemma.

Lemma 2.23. The domain of a closed continuous (bounded) operator Of , Of D Of ;
is closed, Df D Df , i.e., Df is either a closed subspace in H or the whole of H,

and conversely, if Df D Df , a continuous operator Of is closed, Of D Of .

14It may be that � … Df if Of is not closed; a continuous Of can be nonclosed, but is always closable
(see below).
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In part, this assertion is a paraphrase of the above-cited assertion that a
continuous operator allows extending by continuity to the closure of its domain.
We note that in general, the range of a continuous operator is not necessarily closed.

In contrast to continuous operators, not every unbounded operator has a closure.
Of course, any graph Gf is closable, but the closure Gf may be not a graph.

A counterexample is the operator Of in L2 .0; �/ defined on the subspace of all
continuous functions and given by

Of  .x/ D  .0/ sin x: (2.18)

This operator is evidently densely defined and unbounded. For the sequence
f n .x/ D e�nxg11 of continuous functions, we have  n �! 0, but Of  n .x/ D
sin x ¤ 0. It follows that this operator is nonclosable, and a fortiori nonclosed.

The characteristic property of a nonclosable operator is that its matrix ffmngwith
respect to an orthonormal basis feng11 does not determine the operator. Taking the
orthonormal basis

˚
en D

p
2=� sin nx

�1
1

in the above example, we have fmn � 0,

whereas Of ¤ 0.
For a closed unbounded operator Of , neither its domain Df nor, in general, its

range Rf is a closed subspace.

Remark 2.24. QM observables must be closed operators. This is clear from the
physical considerations related to the inaccuracy of measurement: the inaccuracy
in determining a state must have no strong effect on measurable observables. On the
other hand, QM observables must be densely defined.

There is no strong relation between the closure operation and algebra of
unbounded operators. It is evident that if an operator Of is closable, then the operator

a Of , 8a 2 C, is also closable, and a Of D a Of . As to the closability and closure of
the sum and product of closable operators, we cannot say something definite in the
general case. For example, the sum of two closed operators may be nonclosed, and
the same holds for their product. But if one of the two closable operators Of and Og
is bounded and defined everywhere, and is therefore closed, let it be Og, Og D Og, then
their sum is closable, and the closure of the sum is the sum of the corresponding

closures, Of C Og D Of COg. In particular, if an operator Of is closable, then the
operator Of � z OI is also closable, and

Of � z OI D Of � z OI ; 8z 2 C: (2.19)

Under the same conditions, the product Of Og is closable, and Of Og � Of Og D Of Og.
A condition on Of under which the product Of Og is closable is given below.
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2.3.4.1 Examples of Unbounded Operators

As an example, we consider the differentiation operator Odx in the Hilbert space
L2.a; b/,

Odx W
(
Dd D

˚
 .x/ W  a.c. in .a; b/;  ; 0 2 L2.a; b/� ;

Odx .x/ D  0.x/:

We show that the operator Odx is unbounded for any interval .a; b/ � R.
Let .a; b/ D Œ0; 1�. We consider the sequence f ng11 of functions of unit norm,

 n.x/ D Œ2.1C 1=n/�1=2x1=2C1=n; k nk2 D 2.1C 1=n/
Z 1

0

x2.1=2C1=n/dx D 1:

It is easy to see that

Odx n.x/ D 0
n.x/ D .1=2C 1=n/Œ2.1C 1=n/�1=2x�1=2C1=n;

k 0
nk2 D .1=2C 1=n/2.1C 1=n/n D n=4CO.1/;

whence it follows that the functions  n with any n belong to the domain Dd of
the operator Odx and its norm is estimated from below by k Odxk > n=4, where n
is arbitrarily large, which means that Odx is an unbounded operator. The operator
Odx cannot be defined on the whole of L2.0; 1/; for example, it is not defined on

functions  ˛ D x˛ , �1=2 < ˛ � 1=2: although  ˛ 2 L2.0; 1/, we have  0̨ …
L2.0; 1/ because k 0̨ k2 D1.

The same conclusions hold for the operators Odx in L2.RC/ and L2.R/ due to
similar arguments.

By similar arguments, similar conclusions hold for the double differentiation
operator with the rule of action d2x .

It can be shown that the operator of multiplication by the independent variable
x in L2.RC/ and L2.R/ is unbounded, whereas in L2.a; b/, jaj; jbj < 1, it is
bounded, see Sect. 4.3.3.

We now turn to the notions and properties of inverse and adjoint operators,
which are of great importance in what follows.15 These notions are most easily
defined and described in the language of graphs via the above-introduced unitary
transformations˙1 and E (2.14) in H.

15In particular, criteria for closability and methods for constructing the closure are formulated in
terms of them.
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2.4 Inverse Operator

As a preliminary step, we need the important notion of the kernel of an operator.
By definition, the kernel of an operator Of (or null space),16 denoted by ker Of , is
the eigenspace of Of corresponding to the zero eigenvalue: ker Of D f� W � 2 Df ;

Of � D 0g. For a closed Of , its kernel is a closed subspace: Of D Of H) ker Of D
ker Of .

It is evident that the eigenspace of an operator Of corresponding to the eigenvalue
� can be defined as ker. Of � � OI /; � is an eigenvalue of Of iff ker. Of � � OI / ¤ f0g.

2.4.1 Definition and Properties

We now consider the action of the unitary operator ˙1 in HDH˚ H on the graph
Gf D f.��� D Of �/g � H of an operator Of . The natural question arises whether
the subspace ˙1Gf D f.� D Of ���/g � H (with transposed abscissas and
ordinates) is a graph in itself and therefore determines some operator.

Definition 2.25. An operator Of is called invertible if the subspace ˙1Gf � H is a
graph. If so, this graph determines the operator called the inverse operator, or simply
the inverse, of Of , which is denoted by Of �1, such that � D Of �1�,

Gf �1 D ˙1Gf D
n�
��� D Of �1�

�o
:

A criterion for invertibility follows from the graph criterion (2.11), Lemma 2.19:
an operator Of is invertible and the inverse operator Of �1 exists iff � D Of � D 0 H)
� D 0, or Of has the zero kernel, ker Of D f0g. An evident generalization of this
assertion is that an operator Of � z OI ; z 2 C, is invertible and its inverse . Of � z OI /�1
exists iff ker. Of � z OI / D 0, or z is not an eigenvalue of Of . Conversely, if � is an
eigenvalue of Of , then the operator . Of � � OI /�1 does not exist, and vice versa.

In the language of maps, if ker Of D f0g, then there is a one-to-one correspon-
dence between any � 2 Df and � D Of � 2 Rf , and the operator Of has the inverse
operator Of �1 that maps � D Of � to �, � D Of �1�. We call the operation �1 that

assigns the inverse operator Of �1 to every invertible operator Of ; Of �1�! Of �1, the
inversion operation.

The invertibility of an operator Of implies that the equation Of � D �, � 2 Df ,

� 2 Rf is resolvable uniquely: � D Of �1�.
We cite the properties of an inverse operator, which are easily verified.

16The latter term is used to avoid confusion with the kernel of an integral operator.
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Lemma 2.26. For any invertible operator Of , the following relations hold:

(i) Of �1 is invertible, i.e., ker Of �1 D f0g, and
� Of �1��1 D Of (because ˙2

1 D bI,
the identity operator in H).

(ii) Of �1 Of D OIDf ; Of Of �1 D OIRf , where OIDf and OIRf are the restrictions of the

identity operator OI to the respective subspacesDf and Rf .
(iii) Df �1 D Rf ; Rf �1 D Df .

(iv)
�
�
� Of
�
�
�
�
�
� Of �1

�
�
� � 1 .

As an example, an isometric (unitary) operator OU is invertible and OU�1 is also
isometric (unitary).

The following are the connections between the notion of invertibility and the
previously defined notions of boundedness, extension, closability, and algebra.

2.4.2 Invertibility and Boundedness

Lemma 2.27. If k Of �k � ck�k; c > 0, then Of is invertible and Of �1 is bounded:
k Of �1k � c�1. The converse also holds.

Proof. The inequality k Of �k � ck�k, c > 0, evidently implies that ker Of D f0g
and therefore Of is invertible. The equality � D Of Of �1�, 8� 2 Df �1 , then implies

k�k D k Of Of �1�k � ck Of �1�k. It follows that
�
�
� Of �1�

�
�
� k�k�1 � c�1; 8� 2 Df �1 ; � ¤ 0;

which means that k Of �1k � c�1. The converse is proved similarly using the equality
� D Of �1 Of � , 8� 2 Df : ut

2.4.3 Invertibility, Extension, and Closability

It is evident, especially in the language of graphs, that if an operator Of allows an
invertible extension, Of � Og, ker Og D f0g, then Of is also invertible and Of �1 allows
an invertible extension Of �1 � Og�1.

For a closable operator, the relation between its inverse and the inverse of its
closure is more specific.

Lemma 2.28. Let an invertible operator be closable, Of � Of , and let its inverse Of �1

also be closable, Of �1 � Of �1. Then its closure Of is invertible, and
� Of
��1
D Of �1.

Conversely, let Of be a closable operator, and let its closure Of be invertible. Then Of
is invertible, its inverse Of �1 is closable, and Of �1D

� Of
��1

.
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Proof. The lemma can be formulated as follows: for a closable operator Of , the

equality
� Of
��1
D Of �1 holds if one of its sides, left-hand side or right-hand side,

has a sense, i.e., the closure operation and the inversion operation �1 commute.
This is a direct consequence of the commutativity of the closure operation and the
unitary transformation˙1, which yields the following chain of equalities:

G.f /�1 D ˙1Gf D ˙1Gf D ˙1Gf D Gf�1 D G
f �1 :

The direct and converse assertions of the first part of the lemma are proved by
respectively reading these equalities from left to right and from right to left. ut

It may be that Of is invertible, but its closure Of is not. For example, let feng11 be
an orthonormal basis in H, and let � be a unit vector of the form

� D
1X

1

anen; 8an ¤ 0; k�k2 D
1X

1

janj2 D 1:

The operator Of densely defined onDf D L.feng11 / and given by Of � D �� .�; �/�
is bounded:

k Of �k2 D k�k2 � j.�; �/j2 H) k Of k D 1;
and therefore is closable, but is not closed, by Lemma 2.23, because Df is

not a closed subspace. It is easy to see that ker Of D f0g because the equality
� � .�; �/�D 0 is impossible for a nonzero � 2 Df , a finite linear combination

of basis vectors, and therefore, the operator Of is invertible. The closure Of of Of is
defined everywhere and is given by the same formula, while its kernel is the one-

dimensional subspace fa�; 8a 2 Cg spanned by the vector �. Because ker Of ¤ f0g,
the operator Of is not invertible.

Changing Of to Of �1 and Of �1 to Of D . Of �1/�1 in the second part of Lemma 2.28
provides a useful criterion for closability and a method for constructing the closure:
Let an operator Of be invertible, and let its inverse Of �1 be bounded, k Of �1k < 1,

and therefore closable. Then Of is closable if the closure Of �1 of the inverse is

invertible, and Of D
� Of �1

��1
.

Because operators Of and Of � z OI ; z 2 C, are closable or nonclosable

simultaneously and Of � z OI D Of � z OI , see (2.19), these criteria and method can
be used with the operator Of replaced by the operator Of � z OI for some z.

For future reference, we combine some parts of Lemmas 2.23 and 2.28 into a
separate lemma.
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Lemma 2.29. If an operator Of is closed and invertible, then its inverse Of �1 is also
closed. If, in addition, the inverse Of �1 is bounded, then the rangeRf of the operator
Of , which is the domainDf �1 of the inverse Of �1, is closed;Rf D Df �1 D Df �1 D
Rf , i.e., Rf is either a closed subspace in H or the whole of H.

The first assertion of the lemma is the second assertion of Lemma 2.28 related to
a closed operator Of D Of W Of �1 D Of �1. The second assertion is the first assertion
of Lemma 2.23: Rf D Df �1 is a closed set as the domain of the closed bounded

operator Of �1.

2.4.4 Inversion Operation and Algebra

Lemma 2.30. If an operator Of is invertible and a number a is not equal to zero,
a ¤ 0, then the operator a Of is also invertible and .a Of /�1 D a�1 Of �1. If operators
Of and Og are invertible, then their product Of Og is invertible, . Of Og/�1 D Og�1 Of �1, and

Dfg D Og�1 �Rg \Df

�
; Rfg D Of �Rg \Df

�
:

We leave the proof to the reader.
We can also make a promised addition concerning the closability of the product

of two operators. Let Og be a closable operator, let Of be an invertible operator, and
let its inverse Of �1 be a bounded operator defined everywhere and therefore closed,
so that the operator Of D . Of �1/�1 is also closed by Lemma 2.29. Then the product
Of Og is closable, and Of Og D Of Og. We leave the proof to the reader (it is based on the

existence of the continuous inverse Of �1).
As to the invertibility of the sum Of C Og of two operators, we cannot say something

definite in the general case (for example, let Og D � Of ). A useful exception is given
by the following lemma.

Lemma 2.31. Let an operator Of be bounded with k Of k D c < 1 and defined
everywhere,Df D H. Then the operator OI � Of is invertible; the inverse . OI � Of /�1
is bounded, k. OI � Of /�1k < .1 � c/�1, and is also defined everywhere,D.I�f /�1 D
RI�f D H; and it is given by . OI � Of /�1 D P1

kD0 Of k, where the series on the
right-hand side is uniformly convergent (the operator analogue of the formula for
the sum of a geometric progression).

Proof. A proof of the first assertion of the lemma follows from the triangle
inequality

�
�
�. OI � Of /�

�
�
� � k�k �

�
�
� Of �

�
�
� � .1 � c/ k�k ; 8� 2 H ;
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and then from Lemma 2.27. The proof of the second and third assertions is based
on the evident equality

. OI � Of /
nX

kD0
Of k D OI � Of nC1: (2.20)

We first note that the operator sequence
˚ Of nC1�1

0
uniformly converges to the zero

operator: Of nC1 n!1�! O0, because

�
�
� Of nC1

�
�
� �

�
�
� Of
�
�
�
nC1 D cnC1 n!1�! 0;

and a fortiori, it converges strongly: Of nC1� n!1�! 0, 8� 2 H. Second, the operator Of
is evidently closed, and therefore, the operator OI � Of is also closed. Then by virtue
of Lemma 2.29, its rangeRI�f is a closed subspace,RI�f D RI�f . Let a vector �

belong to .RI�f /?, the orthogonal complement of RI�f , i.e., .�; . OI � Of /�/ D 0,
8� 2 H. Then (2.20) yields

.�; . OI � Of nC1/�/ D .�; �/ � .�; Of nC1�/ D 0; 8� 2 H:

Passing to the limit n �! 1 in the last equality and using that Of nC1� �! 0 in
this limit, we obtain .�; �/ D 0, 8� 2 H, whence it follows that � D 0. This means
that .RI�f /? D f0g, and therefore, RI�f D RI�f D H, which proves the second
assertion. Multiplying (2.20) by . OI � Of /�1 from the left, we obtain

� OI � Of
��1 �

nX

kD0
Of k D

� OI � Of
��1 Of nC1;

whence it follows that
��
�
�
�

� OI � Of
��1 �

nX

kD0
Of k

��
�
�
�
D
�
�
�
�
� OI � Of

��1 Of nC1
�
�
�
� � cnC1 .1� c/�1 n!1�! 0;

which proves the third assertion. ut

2.5 Spectrum of an Operator

An important notion of the spectrum of an operator Of is formulated in terms of the
operator Of � z OI , z 2 C, and of its inverse . Of � z OI /�1. In what follows, for the sake
of brevity, we let Of .z/ denote the operator Of � z OI ,

Of .z/ D Of � z OI D Of � z OIDf;
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and conventionally let the operator OR .z/ denote its inverse . Of � z OI /�1,
OR .z/ D . Of � z OI /�1 D Of .z/�1:

For the closure Of of a closable operator Of , we use the natural notation Of .z/ D
Of � z OI and OR .z/ D . Of .z//�1 D . Of � z OI /�1.

In the finite-dimensional case in which all operators are bounded and are
conventionally defined everywhere, by the spectrum of an operator Of is meant the
set of its eigenvalues, i.e., the set of numbers � 2 C for which ker Of .�/ ¤ f0g and
the operator OR.�/ does not exist.

Other points of the complex plane, usually denoted by z, are called regular
points. For a regular point z, the operator OR .z/ exists and is bounded and defined
everywhere; the latter implies that the equation Of .z/� D � is uniquely resolvable
for any �: � D OR .z/ �.

In the infinite-dimensional case, there is another possibility: the operator OR .z/
exists, but it is unbounded or it is bounded but not densely defined.

We note that for a closed Of , the last case will allow a more precise formulation
after a preliminary simple lemma.

Lemma 2.32. Let Of be a closed operator, let the operator Of .z/ be invertible, and
let its inverse OR.z/ be bounded. Then the rangeRf.z/ of the operator Of .z/, which is
the domain DR.z/ of the inverse OR.z/, is closed, Rf.z/ D DR.z/ D DR.z/ D Rf.z/,
i.e., Rf.z/ D DR.z/ is either a closed subspace in H or is the whole of H.

After the remark that for a closed Of , the operator Of �z OI is also closed, see (2.19),
the assertion of the lemma becomes a paraphrase of Lemma 2.29.17

The case that the operator OR .z/ is bounded but is not densely defined now can
be formulated for a closed Of as “the operator OR .z/ exists, is bounded, but is defined
on a closed subspace in H.”

We now give a definition of the spectrum of an operator Of in a Hilbert space in
two steps.

Definition 2.33. A number z 2 C is called a regular point or a point of the resolvent
set of an operator Of if the operator Of .z/ is invertible and the inverse operator OR .z/
is bounded and densely defined. For a closed Of , the last condition is replaced by
“defined everywhere, or Rf.z/ D H” by virtue of Lemma 2.32.

We let regp Of denote the resolvent set of an operator Of .
The operator-valued function OR .z/ of a complex variable z defined on the

resolvent set, i.e., for z 2 regp Of , is called the resolvent of an operator Of .
Sometimes, the operator OR .z/ with a fixed z 2 regp Of is also referred to as the
resolvent (at the point z/.

17We separate Lemmas 2.32 and 2.29 for our later convenience.
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For any z 2 regp Of , the domain and the range of the resolvent of a closed
operator Of are respectively H andDf . This implies that the equation Of .z/ � D � is
uniquely resolvable with respect to � belonging to Df for any � 2 H: � D OR .z/ �

(whence the name resolvent), which is equivalent to the equalities Of .z/ OR .z/ D OI ,
OR .z/ Of .z/ D OIDf . In particular, we have

OR �
z0� D OR �

z0� Of .z/ OR .z/ ; OR .z/ D OR �
z0� Of �z0� OR .z/ ; 8z; z0 2 regp Of :

(2.21)

Definition 2.34. The complement of the resolvent set in the complex plane C is
called the spectrum of an operator Of and is denoted by spec Of , so that

regp Of [ spec Of D C; regp Of \ spec Of D ;:

The points of the spectrum are usually denoted by �. It is evident that the
eigenvalues of an operator Of belongs to its spectrum, but in general, they do not
exhaust it. The eigenvalues form the point spectrum; if � belongs to the point
spectrum, the operator OR .�/ does not exist. For s.a. operators, a more detailed
specification of the spectrum is given in Sect. 2.8.6.

Lemma 2.35. (1) The resolvent sets of a closable operator Of and of its closure Of
are the same, regp Of D regp Of . Therefore, their spectra coincide, spec Of D
spec Of .

(2) The resolvent set regp Of of a closable operator Of is an open set in C, and
therefore, its spectrum spec Of is a closed set.18

Proof. (1) An operator Of .z/ is closable together with Of , and Of .z/ D Of .z/; see

(2.19). Then by Lemma 2.28, the equality . Of .z//�1 D . Of .z/�1/, or OR .z/ D
OR .z/, holds if one of its sides has a sense. It immediately follows that for a

closable operator Of , a number z 2 C is a regular point of Of iff z is a regular

point of its closure Of .
Necessity: Let z be a regular point of Of . Then the bounded operator OR .z/

has a bounded closure OR .z/ D OR .z/ with the domain D OR.z/ D D OR.z/ D H D
D OR.z/. Sufficiency is evident.

(2) In view of item (1), it suffices to consider a closed operator Of . Let z 2 regp Of .
Then the operator Of .z C ız/ defined on Df , as well as Of .z/, allows the
representation

Of .zC ız/ D Of .z/ � ız OIDf D Of .z/ � ız OR .z/ Of .z/ D . OI � ız OR .z// Of .z/ :

18In fact, the spectrum of any operator is closed [125].
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If jızj
�
�
� OR .z/

�
�
� < 1, the operator ız OR .z/ satisfies the conditions of Lemma

2.31, and therefore, the operator . OI � ız OR .z//�1 exists and is bounded and defined
everywhere as well as OR .z/. Then by virtue of Lemma 2.30, the operator Of .zCız/ is
invertible, and its inverse is given by OR.zCız/ D OR .z/ . OI�ız OR .z//�1: In addition,
OR.zC ız/ is bounded and defined everywhere as the product of bounded operators

defined everywhere, which means that the point zC ız also belongs to regp Of . We
thus obtain that an "-neighborhood of a regular point z with " < k OR.z/k�1 is a set
of regular points, which completes the proof of the lemma.

For a closed operator Of and arbitrary z,z0 2 regp Of , we have the Hilbert identity

OR �
z0�� OR .z/ D �z0 � z

� OR �
z0� OR .z/ :

To prove this identity, it is sufficient to use in sequence the identity

OR �
z0� � OR .z/ D OR �

z0� Of .z/ OR .z/� OR �
z0� Of �z0� OR .z/

following from (2.21), (2.16), and (2.17), taking into account that DR.z0/ D H.
It follows from the Hilbert identity that for arbitrary regular points z and z0, the
respective resolvents OR .z/ and OR .z0/ commute with each other, Œ OR .z/ ; OR .z0/� D 0,
and that the resolvent is an analytic function on the resolvent set (in the sense of
uniform operator topology) with derivative d OR .z/ =d z D OR2 .z/.

If Of is a bounded operator defined everywhere, then a point z such that jzj > k Of k
is a regular point of Of , and therefore, the spectrum of Of lies within the circle of
radiusk Of k, spec Of � fz W jzj � k Of kg. To prove this assertion, it is sufficient to use
the representation Of .z/ D �z. OI � z�1 Of / and then Lemma 2.31. ut

2.6 Adjoint Operators

2.6.1 Definition and Properties

By analogy with an inverse operator, an adjoint operator is defined in the language
of graphs simply via the replacement of the unitary operator˙1 in H by the unitary
operator E defined by (2.14). But the construction is more involved.

Let Gf D f.�� Of �/g � H be a graph of an operator Of . We consider a subspace
EGf D f. Of �� � �/g � H. In connection with the decomposition

H D H˚ H D EGf ˚
�EGf

�?
;
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the question arises whether the orthogonal complement
�EGf

�?
of the subspace

EGf is a graph.19 By definition, the subspace
�EGf

�?
is given by

�EGf

�? D
n
.����/ 2 H W

�
��; Of �

�
� .�; �/ D 0; 8� 2 Df

o
: (2.22)

Definition 2.36. Let
�EGf

�?
be a graph and therefore determine an operator. This

operator is called the adjoint operator, or simply the adjoint, of Of and is denoted by
Of C such that � D Of C��,

Gf C D
n�
���� D Of C��

�o
D �EGf

�?
: (2.23)

The graph criterion (2.11), Lemma 2.19, provides a criterion for the existence of
the adjoint Of C of an operator Of : the operator Of C exists iff Of is densely defined,
Df D H. Indeed, (2.22) and (2.11) yield the following chain of conclusions: �� D
0 H) .�; �/ D 0, 8� 2 Df H) � D 0 iff Df is dense in H. So only a densely
defined operator has an adjoint operator.

An equivalent definition of Of C in the language of maps is lengthier and goes as
follows.

Definition 2.37. Given an operator Of , we consider the linear equation

�
��; Of �

�
D .�; �/ ; 8� 2 Df ; (2.24)

for pairs of vectors ��; �. A vector � in each pair is uniquely determined by vector ��
iff the operator Of is densely defined,Df D H. If so, the operator Of has the adjoint

operator Of C, its domain is the subspace of all those vectors �� for which there exist
vectors � satisfying (2.24), and � D Of C��.

We call (2.24) with a densely defined operator Of the defining equation for the
adjoint operator Of C. This is the equation for the pairs of vectors �� and � D Of C��
that form respectively the domain and range of the operator Of C.

We call the operation C that assigns the adjoint operator Of C to any densely

defined operator Of , Of C�! Of C, the adjoint operation. Another name is the
Hermitian adjoint operation.

19We can also ask whether the subspace EGf is a graph. In fact, we already know the answer: it is

easy to see that EGf is a graph iff Of is invertible, and if so, EGf determines the operator � Of �1,
EGf D G

�f �1 :
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Remark 2.38. In some textbooks for physicists, the adjoint Of C is defined via its
matrix elements with respect to an orthonormal basis fekg11 by

f C
kl D

�
ek; Of Cel

�
D
� Of ek; el

�
D
�
el ; Of ek

�
D flk :

This definition is very restrictive and is generally incorrect. In general, the matrix of
an operator does not determine the operator. In addition, this formulation assumes
that fekg11 � Df C , and therefore that Of C is densely defined, Df C D H, which is

generally not the case. Finally, it follows that . Of C/C D Of , which is generally not
true. In other words, it is believed that any operator Of can always be rearranged to
the left in a matrix element .��; Of �/ with a cross over it: .��; Of �/ D . Of C��; �/,
with the domain Df C not specified in any way. Strictly speaking, this definition is
applicable to bounded operators defined everywhere (see below). The point of this
remark is that for a given densely defined operator Of , and only for such an operator,
the adjoint operator Of C is evaluated by solving the defining equation (2.24) for pairs
�� and � D Of C��.

As an illustration, we evaluate the adjoints of some operators.
It is easy to see that .z OI /C D z OI . A simple evaluation shows that the

adjoint OUC of a unitary operator OU coincides with its inverse OU�1; OUCD OU�1,
and a unitary operator OU can be defined as an operator satisfying the equalities
OUC OU D OU OUCD OI .

An interesting example is presented by the above operator (2.18). The defining
equation

p
�=2 .0/ .��; e1/ D .�;  / ; e1 .x/ D

p
2=� sin x; 8 continuous  .x/ ;

for the adjoint Of C has the following solution: Let 2 D .0; �/. Because .0/ D 0,
we find .�;  / D 0, 8 2 D .0; �/. Then it follows from Lemma 2.4 and Theorem
2.6 that � D 0. Taking now  such that  .0/ ¤ 0, we find .��; e1/ D 0, which
implies that Df C D fae1 .x/ ; 8a 2 Cg?, the subspace orthogonal to sinx, and
Of C D 0. It is remarkable that Of C is not densely defined, and therefore, . Of C/C

does not exist. The reason is the nonclosability of Of (see below).
The Riesz theorem, Theorem 2.16, provides a criterion for a vector �� to belong

to the domainDf C of the adjoint Of C of a densely defined operator Of , namely, �� 2
Df C , i.e., there exists a vector � satisfying the defining equation (2.24), iff a linear

functional ˚��.�/ D .��; Of �/, 8� 2Df , is bounded (continuous). The necessity is
obvious: ˚��.�/ D .�; �/ implies

ˇ̌
˚��.�/

ˇ̌ � k�k k�k. The sufficiency is also easy
to prove: the bounded functional ˚�� defined on the dense domain Df is extended
to the whole of H by continuity as a bounded functional with the same norm, and
then by Theorem 2.16, it is represented as ˚��.�/ D .�; �/ with a uniquely defined

�. The pair ��; � is clearly a solution of the defining equation, and � D Of C�.
An immediate consequence is the following lemma for bounded operators.
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Lemma 2.39. If an operator Of is defined everywhere, Df D H, and bounded,

k Of k < 1, then its adjoint Of C exists and is defined everywhere, Df C D H; it is

bounded with k Of Ck D k Of k; and . Of C/C D Of .

Proof. The first assertion is evident. The second assertion follows from the estimate

ˇ
ˇ
ˇ
�
��; Of �

�ˇˇ
ˇ � kf k k��k k�k ; 8�; �� 2 H ;

and from the Riesz theorem. The third assertion follows from the chain of equalities

�
�
� Of C

�
�
� D sup

8�;��¤0

ˇ
ˇ
ˇ
�
�n; Of C�n�

�ˇˇ
ˇ D sup

8�;��¤0

ˇ
ˇ
ˇ
�
�n�; Of �n

�ˇˇ
ˇ D

�
�
� Of
�
�
� ;

where �n D �� k�k, �n� D ��� k��k. The fourth assertion follows from the evident
symmetry between Of and Of C in the defining equation (it is sufficient to perform
complex conjugation and transposition of the left-hand side and the right-hand side
in the defining equation to obtain .�; Of C��/ D . Of �; ��/, 8�; �� 2 H. ut

This result is sometimes cited in textbooks on QM for physicists as a general one
and is implicitly applied to unbounded operators, which is incorrect.

We cite separately the properties of adjoint operators that concern their relation
to the notions of extension, invertibility, closability, and algebra.

2.6.2 Adjoint and Extensions

Lemma 2.40. Let a densely defined operator Of with the adjoint Of C have an
extension Og; Of � Og. Then Og has the adjoint OgC, which is a restriction of Of C,
OgC � Of C.

So, extending a densely defined operator Of is accompanied by restricting its
adjoint Of C. This fact is fundamental in what follows.

In the language of graphs, the proof is very simple (see (2.3)):

Gf � Gg H) EGf � EGg H) Gf C D .EGf /
? 
 .EGg/

? D GgC ;

which means that OgC exists and OgC � Of C: the left-hand side of the last inclusion is
a graph, the graph of Of C. Therefore, the right-hand side is also a graph, the graph
of OgC, and the inclusion itself means that OgC � Of C.

Remark 2.41. This property is useful for analyzing extensions and evaluating
adjoints. Namely, let a densely defined operator Of allow a restriction Of0 that is also
densely defined, Df0 D H. Let the adjoint Of C

0 be easily evaluated. We then know
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“the rule of acting” for the adjoint Of C � Of C
0 , and it remains to find its domain

Df C . The domain is determined by solving the linear equation

�
��; Of �

�
D
� Of C

0 ��; �
�
; 8� 2 Df ; for �� 2 Df C � D

f
C

0
;

to which the defining equation for Of C reduces after taking the equality Of C��DOf C
0 ��;8�� 2Df C , into account. This method is often used for differential opera-

tors. In particular, for differential operators with smooth coefficients in an interval
.a; b/ of the real axis, the set D.a; b/ of compactly supported smooth functions is
taken as Df0 . Then the methods of distribution theory [88] are used for evaluating
Of C
0 , while the adjoints Of C of different extensions Of of Of0 are naturally specified

by boundary conditions for functions belonging to D
f

C

0
(see Chap. 4).

2.6.3 Adjoint, Closability, and Closure

Lemma 2.42. An adjoint operator is closed, Of C D Of C (although the operator Of
can be nonclosed and even nonclosable). The adjoint of a closable densely defined

operator Of and the adjoint of its closure Of are identical, Of C D Of C D . Of /C(the
adjoint operation C and the closure operation commute if they make sense).

Proof. The proof reduces to chains of graph equalities. For any densely defined
operator Of , the chain of equalities

Gf C D .EGf /
? D .EGf /? D G

f C

holds, while for a closable densely defined operator Of , the equalities can be
continued to

.EGf /? D
�
EGf

�? D .EGf /
? D .EGf /

? D G
f

C ;

where we successively use (2.2) and (2.12). ut
The following lemma is of great importance.

Lemma 2.43. A densely defined operator Of is closable iff its adjoint Of C is
densely defined or, which is the same, the operator . Of C/Cexists. For any closable

densely defined operator Of; we have . Of C/C D Of (the double adjoint operation
is equivalent to the closure operation); in particular, if Of is densely defined and
closed, then . Of C/C D Of .
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Proof. The proof reduces to a chain of graph equalities, which can be read from left
to right and from right to left:

G
.f C/

C D �EGf C

�? D E
��EGf

�?�? D E
�
EGf

�
D .E/2Gf D Gf D Gf ;

where we use sequentially (2.13), (2.6), (2.12), the equality .E/2 D �bI, wherebI
is the identity operator in H, and the fact that a multiple of unity transforms any
subspace to the same subspace. ut

Lemma 2.43 yields not only a criterion for closability of a densely defined
operator Of (for a counterexample, see operator (2.18)), but also a method for

constructing its closure Of . This method is effectively used in the theory of
differential operators; see Chap. 4.

Lemmas 2.39, 2.40, and 2.42 together with Lemma 2.23 and Theorem 2.17 allow
us to prove an important theorem.

Theorem 2.44. A closed operator Of , Of D Of , defined everywhere, Df D H, is

bounded, k Of k <1.

Proof. The idea of the proof is to show that the adjoint Of C of Of is bounded and
defined everywhere. Let f�n�g be the set of all unit vectors in Df C ,

f�n�g D
˚
�n� W �n� 2 Df C ; k�n�k D 1

�
:

Because Df D H and �n� 2 Df C , we have

�
�n�; Of �

�
D
� Of C�n�; �

�
D
�
�; Of C�n�

�
; 8� 2 H ; 8�n�:

By the Cauchy–Schwarz inequality, it follows that

ˇ
ˇ̌�
�; Of C�n�

�ˇˇ̌ D
ˇ
ˇ̌�
�n�; Of �

�ˇˇ̌ �
�
�� Of �

�
�� ; 8� 2 H; 8�n�;

which means that the set f Of C�n�g is weakly bounded. By Theorem 2.17, the set
f Of C�n�g is then strongly bounded, i.e., k Of C�n�k � C , 8�n�, which implies that
k Of Ck � 1, i.e., the operator Of C is bounded. By Lemma 2.42, Of C is closed; hence
by Lemma 2.23, its domain is a closed subspace, Df C D Df C . But by Lemma

2.43 as applied to the operator Of , we haveDf C D H, which yieldsDf C D H, and
Of D . Of C/C. The operator Of C is thus bounded and defined everywhere. Applying

now Lemma 2.39 to the operator Of C and using the equality Of D . Of C/C, we finally
obtain that the initial operator Of is bounded. ut
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This theorem is very important for QM. Unbounded closed operators, in
particular unbounded s.a. operators, cannot be defined everywhere in the whole ofH.
Therefore, we must be careful in finding an appropriate domain for any unbounded
QM observable to ensure its self-adjointness. A direct consequence of Theorem 2.44
is the following useful lemma concerning the spectrum of a closed operator.

Lemma 2.45. A number z 2 C is a regular point of a closed operator Of iff the
operator Of .z/ D Of � z OI is invertible and the inverse operator OR.z/ is defined
everywhere, or Rf.z/ D H. In fact, this is a reduced definition of a regular point for
a closed operator.

Proof. Necessity is evident by the definition of a regular point; see Sect. 2.6.3.
Sufficiency. Let Of .z/ be invertible, and let Rf.z/ D H. Because Of .z/ is closed

as well as Of , its inverse OR.z/ defined everywhere is also closed; see Lemma 2.29.
Then by the theorem, OR.z/ is bounded, and therefore, z is a regular point of Of by
the same definition. ut

2.6.4 Adjoint and Invertibility

We first prove a lemma.

Lemma 2.46. For a densely defined operator Of , the orthogonal complement of its

range is the kernel of its adjoint,
�
Rf
�? D ker Of C, so that the decomposition

H D Rf ˚ ker Of C holds. If, in addition, the operator Of is closable, Of � Of , then

we also have ker Of D Rf C , so that the decomposition H D Rf C ˚ ker Of holds.

Proof. For �� 2 ker Of C, the defining equation (2.24) becomes .�� ; Of �/ D 0,

8� 2 Df ; which means that �� 2
�
Rf
�?

, and conversely, if �� 2
�
Rf
�?

, we have

.��; Of �/ D 0 D .0; �/, 8� 2 Df ; which implies that �� 2 Df C and Of C�� D 0,

i.e., �� 2 ker Of C. It remains to refer to (2.4) to prove the first assertion of the lemma.

If, in addition, Of � Of , then by Lemma 2.43, the adjoint Of C is densely defined

and . Of C/C D Of , and it remains to apply the first assertion to the operator Of C to
complete the proof. ut
Corollary 2.47. The adjoint of a densely defined operator Of is invertible,
ker Of C D 0, iff the range of Of is dense in H, Rf D H. If, in addition, the operator
Of is closable, then its closure Of is invertible, together with Of , ker Of D ker Of D 0,

iff Rf C D H.

It is interesting to compare the operators. Of C/�1 and . Of �1/C. It may be that one
of these operators exists, whereas the other does not, for example, if Df D H and

ker Of C D 0, but ker Of ¤ f0g, or ker Of D f0g and Df �1 D H, but Df ¤ H, etc.
But if both operators exist simultaneously, they are identical.
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Lemma 2.48. The operators . Of �1/C and . Of C/�1 exist simultaneously iffDf D H

and ker Of D ker Of C D f0g (for a closed operator, Of D Of , this is equivalent
to the equalities Df D Rf D Rf C D H), and if so, the equality . Of �1/C D
. Of C/�1holds (the inversion operation �1 and the adjoint operation C commute if
they make sense).

Proof. The proof of the first assertion reduces to the reference to the criteria for
invertibility and the existence of the adjoint and to Lemma 2.46. The proof of the
second assertion reduces to the chain of graph equalities

G
.f �1/

C D �E �˙1Gf

��? D ��˙1EGf

�? D �˙1

�EGf

�?

D ˙1Gf C D G
.f C/

�1 ;

where we use the equalities E˙1 D �˙1E and (2.13). ut

2.6.5 Adjoint Operation and Algebra

With the adjoint operation C, the algebra of bounded operators defined everywhere
becomes a normed associative algebra with involution:

�
a Of
�C D a Of C; 8a 2 C I

� Of C Og
�C D Of C C OgCI

� Of Og
�C D OgC Of C ; (2.25)

and with the equality k Of k D k Of Ck. Such an algebra is called a C �-algebra.
Some textbooks on QM for physicists implicitly extend the above rules for

bounded operators to unbounded ones, which is incorrect.
For unbounded densely defined operators, (2.25) are modified as follows:

(a) .a Of /C D a Of C.
(b) If the sum Of C Og is densely defined, then its adjoint . Of C Og/Cexists, and we

have � Of C Og
�C 
 Of C C OgC; if Df \Dg D H:

(c) If one of the operators is bounded and defined everywhere, the inclusion
becomes an equality:

� Of C Og
�C D Of C C OgC; if Df D H; or Dg D H ;

in particular, � Of .z/
�C D Of C � z OI D Of C.z/: (2.26)
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(d) If the product Of Og is densely defined, then its adjoint exists and we have

� Of Og
�C 
 OgC Of C; ifDfg D H: (2.27)

(e) If Of is bounded and defined everywhere, the inclusion becomes an equality:

� Of Og
�C D OgC Of C; if Df D H: (2.28)

2.7 Symmetric Operators

2.7.1 Definition and Properties

Definition 2.49. A densely defined operator Of is called a symmetric operator or
Hermitian operator if its adjoint Of C is an extension of Of , Of � Of C. In the language

of graphs, this means that Gf � Gf C D �EGf

�?
. In the language of maps, this

means that �
�; Of �

�
D
� Of �; �

�
; 8� ; � 2 Df : (2.29)

We note that to prove the symmetricity, or hermiticity, of a densely defined operator
Of , we need not know its adjoint Of C; it is sufficient to verify (2.29).

In some textbooks on QM for physicists, this definition is considered the
definition of an s.a. operator. This implicitly means that only bounded operators
defined everywhere are considered (see Sect. 2.8.5 below). For unbounded op-
erators, symmetricity and self-adjointness are different notions: self-adjointness
implies symmetry, but not vice versa. Symmetricity is generally insufficient for QM
observables; they must be s.a.

We cite two simple criteria for symmetricity.

Lemma 2.50. A densely defined operator is symmetric:

(i) iff its matrix fmn D .em; Of en/ with respect to an orthonormal basis feng11 �
Df is Hermitian, fmn D fnm (whence the name “Hermitian”), or

(ii) iff all means of the operator are real, .�; Of �/ D
�
�; Of �

�
, 8� 2 Df :

Proof. For the proof we note only that the necessity follows directly from (2.29),
while the sufficiency of (i) is proved by a verification of (2.29) starting from
� ; � 2 L.feng11 /, and then proceeding by extension to any � ; � 2 Df based on the
continuity arguments, whereas the sufficiency of (ii) follows from the remark that
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�
� C z�; Of .� C z�/

�
�
�
�; Of �

�
� jzj2

�
�; Of �

�
D z

�
�; Of �

�
C z

�
�; Of �

�

is a real number for any z 2 C. ut
We emphasize that for unbounded operators, the cited criteria are the criteria for

symmetricity, but not for self-adjointness.

Corollary 2.51. A densely defined operator bounded from above or from below is
symmetric.

Indeed, all means of such an operator are necessarily real-valued, and by criterion
(ii), the operator is symmetric.

If a symmetric operator is bounded and closed, then by Lemma 2.23, it is defined
everywhere. By continuity arguments, a bounded symmetric operator Of with
Df ¤ H can be extended to a bounded symmetric operator defined everywhere (and
therefore closed). For the general relation between symmetricity and closability,
see below.

Lemma 2.52. For symmetric operators, the following equalities hold (� 2 Df ):

�
�
� Of
�
�
� D sup

k�kD1

�
�
� Of �

�
�
� D sup

�Ik�k;k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ D sup

k�kD1

ˇ
ˇ
ˇ
�
� ; Of �

�ˇˇ
ˇ : (2.30)

It follows that if a symmetric operator is bounded, k Of k D c <1, it is bounded
from below and from above, �c OI � Of � c OI , and conversely, if a symmetric
operator is bounded from below and from above, �c OI � Of � b OI , it is bounded
and k Of k � max.jcj; jbj/.

Strictly speaking, these equalities are meaningful for bounded operators. The
meaning of the equalities for unbounded operators is that all three suprema are
infinite.

Proof. The first equality is the definition (2.15) of the norm of an operator. The
second equality holds for any operators because of the Cauchy–Schwarz inequality,
which yields

sup
�Ik�k;k�kD1

ˇ
ˇ̌�
�; Of �

�ˇˇ̌ � sup
k�kD1

�
�� Of �

�
�� ;

and because of the evident inverse inequality,

sup
�Ik�k;k�kD1

ˇ
ˇ̌�
�; Of �

�ˇˇ̌ � sup
k�kD1; Of �¤0I �D Of �=k Of �k

ˇ
ˇ̌�
�; Of �

�ˇˇ̌ D sup
k�kD1

�
�� Of �

�
�� :
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The third equality is characteristic of symmetric operators. We first prove it for a
bounded symmetric operator assuming, without loss of generality, that the operator
is defined everywhere. The proof is based on the general equality (8z 2 C)

z
�
�; Of �

�
C z

�
�; Of �

�
D 1

2

h�
� C z�; Of .� C z�/

�
�
�
� � z�; Of .� � z�/

�i
;

(one of the so-called polarization formulas) and on the equality .�; Of �/ D .�; Of �/
for symmetric operators. Let .�; Of �/ D j.�; Of �/jei' , and let z D ei' . Then the first
equality becomes

ˇ
ˇ̌�
� ; Of �

�ˇˇ̌ D 1

4

h�
� C ei'�; Of .� C ei'�/

�
�
�
� � ei'�; Of .� � ei'�/

�i
:

Based on this equality and using the intermediate notation u D � C ei'�, 
 D
� � ei'�, we arrive at the inequality

ˇ
ˇ̌�
�; Of �

�ˇˇ̌ � 1

4

hˇˇ̌�u; Of u
�ˇˇ̌C

ˇ
ˇ̌�

; Of 


�ˇˇ̌i D 1

4

h�
un; Of un

�
kuk2

C
�

n; Of 
n

�
k
k2

i
� 1

4
sup

k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ
�
kuk2 C k
k2

�

D 1

2
sup

k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ
�
k�k2 C k�k2

�
; un D u= kuk ; 
n D 
= k
k ;

whence the final inequality

sup
k�k;k�kD1

ˇ̌
ˇ
�
�; Of �

�ˇ̌
ˇ � sup

k�kD1

ˇ̌
ˇ
�
�; Of �

�ˇ̌
ˇ

follows. The inverse inequality is evident, which yields the required equality

sup
k�k;k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ D sup

k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ D sup

k�kD1

�
�
� Of �

�
�
� :

For unbounded symmetric operators, which are densely defined by definition, the
equality

sup
�2Df ; �Ik�k;k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ D sup

�; �2Df Ik�k;k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ

holds because any vector � 2 H can be approximated by vectors belonging to Df

with arbitrary accuracy. The infinite value of sup
�2Df ; k�kD1

j.�; Of �/j for unbounded

symmetric operators then follows from the naturally modified above estimates (the
proof is by contradiction); we leave the details to the reader. ut
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2.7.2 Symmetricity and Algebra

The algebraic properties of symmetric operators directly follow from the relation
between the adjoint operation and algebra; see Sect. 2.6.5.

Multiplication by a real number transforms a symmetric operator into a symmet-
ric one:

Of � Of C; a 2 R H) a Of � a Of C D
�
a Of
�C I

the densely defined sum of symmetric operators is a symmetric operator:

Of � Of C; Og � OgC; Df \Dg D H H) Of C Og � Of C C OgC �
� Of C Og

�C
;

the last inclusion becoming an equality if one of the operators is bounded and
defined everywhere, in particular,

Of � a OI � Of C � a OI D
� Of � a OI

�C
if a 2 R:

For the densely defined product of two symmetric operators, we have

Of � Of C; Og � OgC; Dfg D H H) Of Og � Of C OgC �
�
Og Of
�C
;

the last inclusion becoming an equality if Og is bounded and defined everywhere;
in general, the product of two symmetric operators is not symmetric, but if Of is
bounded and defined everywhere, Df D H, and if Of and Og commute, Of Og � Og Of
(see Sect. 2.3.4), then the product Of Og is symmetric:

Of Og � Og Of � OgC Of C �
� Of Og

�C
:

2.7.3 Symmetricity and Extensions

We start with a simple assertion, which is very important in what follows.

Lemma 2.53. If a symmetric operator Of allows a symmetric extension Og, Of � Og;
with Og � OgC, then the chain of inclusions

Of � Og � OgC � Of C

holds.

The proof follows directly from Lemma 2.40.
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By Lemma 2.53, a densely defined restriction Of0 of a symmetric operator Of is
also symmetric: Of0 � Of � Of C � Of C

0 . If the adjoint Of C
0 of Of0 is easily evaluated,

we can evaluate the adjoint Of C of Of using Remark 2.41 in Sect. 2.6.2. A symmetric
operator Of not identical with its adjoint, Of � Of C (a strict inclusion), is called a
maximal symmetric operator if it does not allow a symmetric extension:

Of � Og � OgC � Of C H) Og D Of:

Different chains of successive symmetric extensions Og; : : : ; Oh of a given symmetric
operator Of are generally possible, resulting in chains of inclusions

Of � Og � 	 	 	 � Oh � OhC � 	 	 	 � OgC � Of C:

In these chains, successive symmetric extensions are accompanied by successive
restrictions of the respective adjoint operators, so that the extensions and their
adjoints “go to meet each other.” We note in advance that an alternative holds:
for all the chains of symmetric extensions of a given symmetric Of , either the final
extension and its adjoint coincide, Oh D OhC, i.e., the procedure of symmetrically
extending ends with an s.a. operator, or any chain ends with a maximal symmetric
operator, i.e., with a strict inclusion Oh � OhC. This is the subject of the theory of s.a.
extensions of symmetric operators; see Chap. 3.

2.7.4 Symmetricity, Closability, and Closure

Lemma 2.54. A symmetric operator Of is closable, its closure Of is a symmetric
operator, and the chain of inclusions

Of � Of D
� Of C

�C �
� Of
�C
D Of C

holds.

Proof. Any symmetric operator Of is closable because it has a closed extension Of C.

Its closure Of is the minimum closed extension of Of , which yields Of � Of � Of C.

By Lemma 2.40, it follows that . Of C/C � . Of /C � Of C, and it remains to refer to
Lemmas 2.42 and 2.43 to obtain the required chain of inclusions. ut

It follows from Lemma 2.54 that a maximal symmetric operator is closed because
it is identical with its symmetric extension, which is its closure.
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2.7.5 Symmetricity and Invertibility

Lemma 2.55. For a symmetric operator Of ,

(i) its kernel belongs to the kernel of its adjoint, ker Of � ker Of C, and
(ii) if ker Of C D f0g, then Of is invertible, its inverse Of �1 is symmetric, and we

have Of �1 � . Of �1/C D . Of C/�1.

Proof. The first assertion is obvious. As to the second assertion, its proof reduces to
references to Lemma 2.28 and Lemma 2.48. ut

We note that if ker Of C ¤ f0g, it may be that ker Of D f0g and Of is invertible.
But in this case, the inverse Of �1 is not symmetric:Df �1 D Rf D .ker Of C/? ¤ H,

and therefore, the adjoint . Of �1/C, as well as . Of C/�1, does not exist.

2.7.6 Spectrum, Deficient Subspaces, and Deficiency Indices

We first note that by Lemmas 2.54 and 2.35, the spectra of a symmetric operator
and of its closure, which is also symmetric, are the same and are closed sets.

Lemma 2.56. The eigenvalues of a symmetric operator Of are real-valued, and the
eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. A proof can be found in any textbook on QM. First, we have

Of �� D ��� H)
�
��; Of ��

�
D � .�; �/ D �k��k2 ;

and because .�; Of �/ is real, it follows that � is real, � D �. Second, we have

Of ��1 D �1��1 ; Of ��2 D �2��2 ; ��1 ; ��2 2 Df ;

H) 0 D
�
��1 ;

Of ��2
�
�
� Of ��1 ; ��2

�
D .�2 � �1/ .��1 ; ��2 /;

which yields .��1 ; ��2 / D 0 for �1 ¤ �2. ut
In some textbooks on QM for physicists, this statement is formulated for s.a.

operators with the conclusion that the spectrum of such operators is real-valued
and the corresponding eigenvectors form an orthonormal basis. We see that this
statement also holds for symmetric operators that are not s.a. in the general case,
but—more importantly—eigenvalues generally do not form the whole spectrum
(it may be that there are no eigenvalues at all).
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According to Sect. 2.5, a number � is a point of the spectrum of an operator Of if
either:

(i) The operator OR .�/ does not exist, or, which is the same, � is an eigenvalue of
Of , or

(ii) The operator OR .�/ exists, but is unbounded, or
(iii) The operator OR .�/ exists and is bounded, but is not densely defined,DR.�/ D

Rf .�/ ¤ H (if Of is closed, we have DR.�/ D DR.�/ by Lemma 2.32).

We briefly discuss different possibilities for a number z 2 C to be a point of the
spectrum of a symmetric operator Of or to be a regular point.

By Lemma 2.56, the operator OR .z/ may not exist (case (i)) only for real z that
are the eigenvalues of Of (again, the set of eigenvalues may be empty). Cases (ii) and
(iii) are possible for real z as well, and regular points may also belong to the real
axis.

As for complex numbers z with nonzero imaginary part, the following assertions
hold.20

Lemma 2.57. Let Of be a symmetric operator, and let z be a complex number with
nonzero imaginary part, z 2 C

0. Then the operator Of .z/ is invertible, its inverse
OR .z/ is bounded with k OR.z/k � jyj�1, and if Of is a closed operator, the domain of
OR .z/, which is the range of Of .z/, is a closed subspace:

DR.z/ D Rf .z/ D Rf .z/ D DR.z/:

Proof. The first assertion follows directly from Lemma 2.56 (we already know this).
For a symmetric operator Of and a complex number z D xCiy, we have the equality

��
� Of .z/ �

��
�
2 D

� Of .x/ � � iy�; Of .x/ � � iy�
�
D
��
� Of .x/ �

��
�
2 C y2 k�k2 ; 8� 2 Df

(the cross terms cancel), and therefore the inequality k Of .z/�k � jyj k�k holds. The
second assertion of the lemma then follows from Lemma 2.27. The third assertion
follows from Lemma 2.32 (we also noted this above). ut

It follows from Lemma 2.57 that a complex number z 2 C
0 can be either a regular

point of a symmetric operator Of or a point of its spectrum (case (iii)). To distinguish
the possibilities, we refer to Lemma 2.46 and (2.26), according to which

H D Rf .z/ ˚ ker Of C.z/ D DR.z/ ˚ ker Of C.z/;

and therefore, the operator OR .z/ is densely defined iff ker Of C.z/ D f0g, while OR .z/
is not densely defined iff ker Of C.z/ ¤ f0g.

20Some of the assertions are already known; we collect them for future reference.



2.7 Symmetric Operators 65

We thus obtain that a complex number z 2 C
0 is a regular point of a symmetric

operator Of iff z is not an eigenvalue of the adjoint Of C, and z is a point of the
spectrum of Of iff z is an eigenvalue of Of C; in other words, the complex part of the
spectrum of a symmetric operator Of coincides with the set of complex-conjugate
eigenvalues of its adjoint Of C. By the same arguments, this alternative holds for real
z D x if the operator OR .x/ exists and is bounded; in particular, case (iii) is realized
iff x is an eigenvalue of Of C. We note that the above arguments actually show that
for the general densely defined operator Of , a number � is a point of its spectrum
if the complex conjugate number � is an eigenvalue of the adjoint operator Of C,
because in that case, Rf.�/ D .ker Of C.�//? ¤ H, and even if OR.�/ exists and is
bounded, it is not densely defined.

We now need some new notions.
For any operator Of , the orthogonal complement

�
Rf
�?

of its range is called the

deficient subspace of the operator Of (the “deficiency” is due to the impossibility of
solving the equation Of � D � if � belongs to the deficient subspace). The dimension

dim
�
Rf
�?

of the deficient subspace is called the deficiency index of the operator Of .
In the case of finite-dimensional spaces, the deficiency index of an operator (or

its matrix) is the difference between the dimension of the space and the rank of the
operator.

If an operator Of is closable, the deficient subspaces and deficiency indices of Of
and of its closure Of are the same because of the obvious inclusions

Rf � R Nf � Rf H) .Rf /
? D �Rf

�? 
 .R Nf /
? 
 �Rf

�?
;

where we use (2.2) and (2.3).
By Lemma 2.46, the deficient subspace of a densely defined operator Of is the

kernel of its adjoint,
�
Rf
�? D ker Of C, and therefore dim ker Of C is its deficiency

index. We note that the equality Of C D
� Of

�C
, see Lemma 2.42, shows that the

deficient subspaces and deficiency indices of a densely defined operator Of and of

its closure Of are the same.
We now return to symmetric operators, which are densely defined by definition

and at the same time are closable by Lemma 2.54. In our case of the operator
Of .z/ D Of � z OI with a varying complex number z, it is reasonable to call the

deficient subspace and the deficiency index of this operator the deficient subspace
and the deficiency index of the operator Of corresponding to the complex number z.

Let m.z/ denote this deficiency index,

m.z/ D dim
�
Rf .z/

�? D dim ker Of C.z/ :

If z is a regular point of Of , the respective deficient subspace is trivial, andm.z/ D 0.
If z 2 C

0, the converse holds:m.z/ D 0 implies that z is a regular point of Of . In the
general case, it appears sufficient to distinguish the two cases: z 2 C�, the lower
complex half-plane, and z 2 CC, the upper complex half-plane.
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Theorem 2.58. For a symmetric operator Of , the deficiency indexm.z/ is a constant
mC independent of z in the lower half-plane C� and is a constant m� independent
of z in the upper half-plane CC,

m.z/ D


mC; z 2 C�;
m�; z 2 CC:

In general, mC and m� are different, but if there is a real point x such that OR .x/

exists and is bounded, then m˙ D m D dim ker Of C.x/:

We call attention to the anticorrespondence between the subscripts C and � of
m˙ and the sign of the imaginary part y of z D x C iy; the correspondence is
with z D x � iy. The numbersm˙ are called the deficiency indices of a symmetric
operator Of corresponding to the respective lower half-plane C� and upper half-
plane CC.

This theorem has a topological nature: as z continuously changes in C� or
CC, the operator OR .z/ remains bounded and changes continuously; the deficient
subspace only “rotates” without any jumps of its dimension, which is an integer
or infinity (two infinite-dimensional subspaces are considered to be of equal
dimension), and if this operator remains bounded at some point of the real axis,
then mC andm� are equal.

Proof. The proof is a modification of the proof of Lemma 2.35. Let z 2 C�. We
first note that the bounded operator OR .z/ can be extended from its domainDR.z/ D
Rf .z/ to the whole of H with the same norm21 (see Lemma 2.21). Let Orz be such an
extension:22

OR .z/ � Orz; Drz D H; kOrzkD
��
� OR .z/

��
� � jyj�1 :

According to Lemma 2.26, we have OIDf D OR .z/ Of .z/ D Orz
Of .z/.

We now examine the operator Of .z C ız/, where jızj < jyj � k OR.z/k�1 D
kOrzk�1 ; such that z C ız 2 C� and jızj kOrzk < 1. This operator allows the
representation

Of .zC ız/ D Of .z/ � ız OIDf D . OI � ızOrz/ Of .z/ :

The operator OI � ız Orz is a sum of two bounded operators defined everywhere,
which allows successively using (2.26), (2.28), and (2.25) to find

. Of .zC ız//C D Of C.zC ız/ D Of C.z/. OI � ız OrC
z /;

21Without loss of generality, we can assume Of to be closed; then the domain of OR .z/ is closed.
22If OR .z/ is densely defined, the point z is a regular point, and OR .z/ is the resolvent of Of at the
point z.
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where by Lemma 2.39 the operator OrC
z , the adjoint of Orz, is defined everywhere and

bounded with
�
� OrC

z

�
� D kOrzk. Because

�
�
��ız OrC

z

�
�
� D jızj kOrzk < 1, the operator OI �

ız OrC
z satisfies the conditions of Lemma 2.31. By this lemma, the operator OI � ız OrC

z
is invertible, and its inverse is also bounded and defined everywhere. It follows that
the kernels of the operators Of C.zC ız/ and Of C.z/ are of the same dimension,23

i.e., m.zC ız/ D m.z/.
We thus obtain that in an open circle around any point z 2 C� of radius " < jyj,

the deficiency index of a symmetric operator Of is constant. To prove that m.z/ D
mC D const in the whole half-plane C�, it is sufficient to invoke the Heine–Borel
theorem: we connect any two points of C� with a straight line and cover it by a
finite number of intersecting open circles where the deficiency index is constant.

A proof for the upper half-plane is quite similar. The same argument shows that
if there exists a real point x such that the operator OR .x/ exists and is bounded, then
there exists an open circle around this point of radius " < k OR.x/k�1 where the
deficiency index of Of is a constant m D m.x/, which implies that m˙ D m. ut

In particular, if a real x is a regular point of a symmetric operator Of , then its
deficiency indices are equal to zero, m˙ D 0: Conversely, if at least one of the
deficiency indices of Of differs from zero, there can be no regular points of Of on the
real axis, and the real axis, as a whole, belongs to the spectrum of the operator Of .
We can confirm the last assertion in a different way. If mC ¤ 0 or m� ¤ 0, the
spectrum of Of must contain the half-plane C� or CC respectively together with its
boundary, the real axis, because the spectrum of Of is a closed set.

Corollary 2.59. If a densely defined operator Of is bounded from below or from
above, it is symmetric and its deficiency indices coincide; if both its deficiency
indices are equal to zero, m˙ D 0, then spec Of � Œa;1/ for Of � a OI and spec
Of � .�1; b� for Of � b OI .

The first assertion is a paraphrase of Corollary 2.51. According to Theorem 2.58,
it is then sufficient to indicate a point x of the real axis such that the operator
OR .x/ exists and is bounded. Let, for example, Of � a OI , a D a, i.e., .�; Of .a/�/ � 0,
8� 2 Df . For x < a, we have

�
�; Of .x/ �

�
D
�
�; Of .a/ �

�
C .a � x/ .�; �/ � .a � x/ k�k2 ; 8� 2 Df :

On the other hand, .�; Of .x/�/ � k Of .x/�k k�k because of the Cauchy–Schwarz
inequality, which yields

�
�
� Of .x/ �

�
�
� � .a � x/ k�k ; a � x > 0; 8� 2 Df:

23If two operators Og and Oh are related by Og D OhOs, where Os is defined everywhere and invertible and
Os �1 is also defined everywhere, the kernels of these operators are related by ker Og D Os�1 ker Oh
and ker Oh D Os ker Og, which implies that the kernels are of the same dimension.
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By virtue of Lemma 2.27, it follows that the operator OR .x/ exists and is bounded
for all x < a. If, in addition, m˙ D 0, the points x < a are the regular points of Of
together with the complex points z 2 C

0, and the spectrum of Of belongs to the real
semiaxis on the right of a: spec Of � Œa;1/.

The case Of � b OI , b D b, is considered similarly.
We notice once again that the deficiency indices of a symmetric operator and of

its closure are the same.
We outline different possibilities for the deficiency indices m˙ and for the

spectrum of a symmetric operator Of . The following variants are possible:

(i) m˙ D 0; i.e., the adjoint Of C has no complex eigenvalues and Rf .z/ D H,

Im z ¤ 0, which, in particular, holds in the case of Of D Of C; both half-planes
C� and CC belong to the resolvent set, while the spectrum of Of is real-valued,
spec Of � R.

(ii) mC D 0, m� ¤ 0, i.e., the adjoint Of C has complex eigenvalues that fill
CC; C� belongs to the resolvent set, while CC belongs to the spectrum of Of
together with the real axis (since the spectrum is a closed set), regp Of D C�
and spec Of D R [ CC.

(iii) mC ¤ 0 ; m� D 0; i.e., the adjoint Of C has complex eigenvalues that fill
C�; CC belongs to the resolvent set, while C� belongs to the spectrum of Of
together with the real axis, regp Of D CC and spec Of D R [ C�.

(iv) m˙ ¤ 0; i.e., the adjoint Of C has complex eigenvalues filling C�and CC; C0
belongs to the spectrum of Of together with the real axis, which means that the
spectrum of Of is the whole complex plane, spec Of D C. It may be that any
z 2 C is an eigenvalue of Of C, whereas Of has no eigenvalues; an example is
presented in Sect. 6.1.3.

(v) If there is a point x of the real axis such that the operator OR .x/ exists and
is bounded, then the deficiency indices are equal, m˙ D m; if there exists a
regular point on the real axis, then the deficiency indices are equal to zero,
m˙ D 0.

2.8 Self-adjoint Operators

2.8.1 Definitions and Properties

Definition 2.60. A densely defined operator Of is called a self-adjoint operator (s.a.
operator) if it coincides with its adjoint, Of D Of C. In the language of graphs, this

means that Gf D Gf C D �EGf

�?
. In the language of maps, this means that Of is

symmetric, andDf D Df C .
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The following criterion for self-adjointness is evident.

Lemma 2.61. A symmetric operator Of is s.a. iff �� 2 Df C H) �� 2 Df , i.e.,

�
��; Of �

�
D
� Of C��; �

�
; 8� 2 Df H) �� 2 Df :

To make sure that an operator Of is s.a., we can verify that (1) Of is symmetric
and that (2) the criterion of Lemma 2.61 holds.

It is not infrequent that a physicist easily verifies (1), but forgets about (2),
which must never be forgotten. Physical QM observables must be represented by
s.a. operators, and not simply symmetric ones. Only s.a. operators possess the
remarkable properties of a real-valued spectrum and a complete orthogonal system
of (in general “generalized”) eigenvectors corresponding to this spectrum, which
provides the possibility of a probabilistic physical interpretation of QM states,
observables, and measurements.

Regarding the relationship between self-adjointness to all other previous notions,
all properties of adjoint and symmetric operators listed in the previous sections are
valid for s.a. operators, sometimes in evidently weaker or stronger forms. We only
cite them with brief remarks and references.

Lemma 2.62. All means of an s.a. operator Of are real, .�; Of �/ D .�; Of �/, 8� 2
Df , and determine the norm of the operator,

�
�
� Of
�
�
� D sup

�2Df ; k�kD1

ˇ
ˇ
ˇ
�
�; Of �

�ˇˇ
ˇ:

These assertions are the respective paraphrases of the necessary condition of item
(ii) of Lemma 2.50 and the last equality in (2.30) of Lemma 2.52.

The first property is well known to physicists. The last equality is evident
for physicists: the norm of an s.a. operator Of is determined by its eigenvalue of
maximum modulus in view of the following (naı̈ve) expansions with respect to the
complete orthonormalized system fekg11 of eigenvectors of Of :

� D
X

k

akek; k�k D
X

k

jak j2 I Of � D
X

k

�kakek;
��
� Of �

��
� D

X

k

�2k jakj2 :

2.8.2 Self-adjointness and Algebra

As for symmetric operators, the algebraic properties of s.a. operators follow from
the relation between the adjoint operation and algebra presented in Sect. 2.6.5.
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Lemma 2.63. The following relations hold for s.a. operators:

(i) Of D Of C; a 2 R H) a Of D .a Of /C, Daf D Df .

(ii) Of D Of C; Og D OgC; Df \Dg D H H) . Of C Og/C 
 Of C Og. In general,

the sum Of C Og of two s.a. operators is no more than symmetric if densely
defined, but if one of the operators, let it be Og, is defined everywhere, and is
therefore bounded,24 then the sum is an s.a. operator, Of C Og D . Of C Og/C with
Df Cg D Df .

(iii) Of D Of C; Og D OgC; Dfg D H H) . Of Og/C 
 Og Of . In general, the product
Of Og of two s.a. operators is not even symmetric; the product Of Og is symmetric,
. Of Og/C 
 Of Og, if Of is defined everywhere, and is therefore bounded, and if
Og Of 
 Of Og, i.e., Of and Og commute; the product Of Og is s.a., . Of Og/C D Of Og,
if both Of and Og are defined everywhere, and are therefore bounded, and
commute, Œ Of ; Og� D 0.

The property (ii) is of particular importance for physics. If the unbounded
s.a. “free” Hamiltonian OH0 is perturbed by a bounded s.a. potential OV defined
everywhere, then the total Hamiltonian OH D OH0 C OV is s.a. with DH D DH0:

But if OV is unbounded, then the sum OH0 C OV in general is no more than symmetric
if densely defined, and we encounter the problem of its s.a. extension.

In contrast to the general unbounded operators, s.a. operators allow one to define
the notion of their commutativity, which can be done in terms of the one-parameter
family f OUf .˛/ D exp.i˛ Of /; ˛ 2 Rg of mutually commuting unitary operators25

h OUf .˛/ ; OUf .ˇ/
i
D 0; 8˛; ˇ 2 R;

associated with each s.a. operator Of . Self-adjoint operators Of and Og are called
commuting, or commute, if the respective families f OUf .˛/g and f OUg .˛/g of the
associated unitary operators mutually commute: Œ OUf .˛/ ; OUg .ˇ/� D 0, 8˛; ˇ 2 R :

The families of associated unitary operators make it possible to formulate some
nontrivial commutation relations for s.a. operators. For example, the canonical
commutation relation Œ Oq; Op� D i„ for the position operator Oq and the momentum
operator Op is properly formulated as the Weil relation [128]

OUq .˛/ OUp .ˇ/ D e�i˛ˇ OUp .ˇ/ OUq .˛/ ; 8˛; ˇ 2 R;

for the corresponding associated unitary operators OUq .˛/ D exp .i˛�0 Oq/ and
OUq .ˇ/ D exp .iˇ Op=�0„/, where �0 is a fixed parameter of dimension of inverse

length.

24According to Theorem 2.44; see also Lemma 2.67.
25We recall that unitary operators are bounded and defined everywhere, and the notion of
commutativity for such operators is unambiguous; see Sect. 2.3.3.
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2.8.3 Self-adjointness, Closability, and Extensions

Lemma 2.64. An s.a. operator is closed, Of D Of C D Of , and allows no symmetric
extensions.

The proof reduces to citing Lemmas 2.42 and 2.53.

2.8.4 Self-adjointness and Invertibility

Lemma 2.65. For an invertible s.a. operator, its range is dense in H, and its inverse
is also s.a.,

Of D Of C; ker Of D f0g H) Rf D H and Of �1 D
� Of �1

�C
:

The proofs of the first and second assertions directly follow from Corollary 2.47
and Lemma 2.48 respectively.

2.8.5 Symmetricity, Self-adjointness, and Boundedness

Lemma 2.66. A bounded symmetric operator defined everywhere is s.a.:

Of � Of C; Df D H; kf k <1H) Of D Of C:

Proof. Indeed, the conditions Of � Of C and Df D H imply Df C D H; then see
Lemma 2.61. ut

We note that in fact, the boundedness of Of is not involved; moreover, the
boundedness can be moved from the conditions of the lemma to its conclusions,
and we obtain a stronger assertion.

Lemma 2.67. A symmetric operator defined everywhere is s.a. and bounded, in
particular, an s.a. operator defined everywhere is bounded.

We must prove only boundedness, but this immediately follows from Lemma
2.64 and Theorem 2.44.

Corollary 2.68. An operator defined everywhere and bounded from above or from
below is s.a. and bounded.

It is sufficient to note that by Corollary 2.51, such an operator is symmetric.
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Lemma 2.69. A symmetric operator whose range coincides with the whole of H is
s.a. and invertible, and its inverse is s.a. and bounded:

Of � Of C; Rf D H H) ker Of D f0g; Of D Of C; Of �1 D
� Of �1

�C
;
�
�
� Of �1

�
�
� <1 :

Proof. By the corollary to Lemma 2.46, the conditions Rf D H and Of � Of C

imply that Of C is invertible together with Of . By Lemma 2.55, the inverse Of �1 is
symmetric and therefore, by the previous Lemma 2.67, is s.a. and bounded since
defined everywhere,Df �1 D Rf D H. Then by Lemma 2.65, Of itself is s.a. as the

inverse of Of �1. ut
Corollary 2.70. A positive (negative) operator whose range coincides with the
whole of H is s.a., and its inverse is s.a. and bounded.

It is sufficient to prove that a positive (negative) operator Of with RfDH is
densely defined,DfDH, and is therefore symmetric by Corollary 2.51. Let � 2 D?

f ,
i.e., .�; �/D0;8� 2 Df . Because RfDH, the vector � allows the representation
�D Of �� with some �� 2 Df . For this ��, we have

�
��; �

�D.��; Of ��/D0, which

implies for positive (negative) Of that ��D0 and � D 0;8� 2 D?
f . This means that

D?
f Df0g, or DfDH.

Remark 2.71. We see that for operators defined everywhere, symmetricity is equiv-
alent to self-adjointness and implies boundedness. But this is true only for such
operators, which is sometimes hidden in textbooks on QM for physicists. An
unbounded physical observable cannot be defined everywhere, and a proper choice
of domains for unbounded physical observables providing their self-adjointness
under quantization is one of the main problems in quantizing physical systems. In
general, the choice of a domain is not unique if possible, and different possible
choices result in different QM.

A simple geometric corollary of the above assertions can be useful. The condition
Of � Of C implies the possibility of a symmetric extension for Of , while the condition
Df D H implies that a nontrivial extension is possible only at the expense of the
range Rf . But the property to be a graph is then violated for a nontrivial extension:
two images would have one preimage. And Of cannot be a maximal symmetric
operator, because Of is then a strict restriction of Of C and its domain must be smaller
than H. According to similar geometric arguments, if Of is symmetric, Of � Of C, and
its range coincides with the whole of H, Rf D H, a nontrivial symmetric extension
is possible only at the expense of the domain Df , but the property to be a graph is

then violated for the inverse operator Of �1, which exists and is bounded.
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2.8.6 Spectrum. Essentially Self-adjoint Operators

An s.a. operator can be considered a particular case of a symmetric operator with
zero deficiency indices; see item (i) in the end of Sect. 2.7.6. The general assertions
concerning the spectrum of such operators are presented in that section. We collect
them in a separate lemma as applied to s.a. operators, taking Lemma 2.62 into
account.

Lemma 2.72. The deficiency indices of an s.a. operator Of are equal to zero,
m˙ D 0.

The spectrum of an s.a. operator is real-valued, and its eigenvectors correspond-
ing to different eigenvalues are orthogonal.26

If Of is bounded from below, Of � a OI , a D a, jaj <1, or from above, Of � b OI ,
b D b, jbj <1, its spectrum is respectively bounded from below, spec Of � Œa ;1/,
or from above, spec Of � .�1 ; b�. If both conditions hold, a OI � Of � b OI , then
spec Of � Œa ; b� and the operator Of is bounded, k Of k � max.jaj ; jbj/.

If Of is bounded, k Of k D c <1, then it is bounded from below and from above,
�c OI � Of � c OI , and spec Of � Œ�c; c�.

The real-valuedness of the spectrum of any s.a. operator is equivalent to that any
complex number z D x C iy, y ¤ 0, is a regular point. An additional restriction on
the spectrum of an s.a. operator is the following criterion for a real number x to be
a regular point of the operator and not a point of its spectrum.

Lemma 2.73. A real number x 2 R is a regular point of an s.a. operator Of iff the
range of the operator Of .x/ D Of � x OI is the whole Hilbert space H, Rf.x/ D H,

which is equivalent to that the equation Of .x/� D . Of � x OI /� D � with any � 2 H
has a (unique) solution � 2 Df . In fact, this is a reduced definition of a real regular
point for an s.a. operator.

Proof. Because Of is closed, a proof will be achieved by reference to Lemma 2.45
if we prove that the operator Of .x/ is invertible. But this is indeed the case, because
Of .x/ is s.a. as well as Of , Of .x/ D . Of .x//C, and its kernel satisfies ker Of .x/ D
.Rf.x//

? D f0g by Lemma 2.46. ut
The spectrum of an s.a. operator is not empty.27 For s.a. operators, the following

specification of the spectrum is conventional [9, 116]. As before, the set of all
eigenvalues is called the point spectrum. The point spectrum of an s.a. operator
in a separable Hilbert space (we recall that we restrict ourselves to such spaces) is
finite or countable, because the eigenvectors corresponding to different eigenvalues
are orthogonal, while any set of nonzero orthogonal vectors in a separable Hilbert
space is at most countable; see Sect. 2.1.2.

26It may be that an s.a. operator has no eigenvectors, in which case its spectrum is continuous.
27In contrast to the general closed operator, whose spectrum can be empty [128]. We also note that
the spectrum of any bounded operator is not empty.
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The union of the closure of the complement of the point spectrum in the
whole spectrum and the eigenvalues of infinite multiplicity is called the continuous
spectrum.28 A point � is the point of the spectrum of an s.a. operator Of iff there
exists an infinite orthonormalized set f�ng11 of vectors such that . Of � � OI /�n �! 0

as n �! 1. For the point spectrum, this assertion is trivial. As for the continuous
spectrum, this assertion can be interpreted as an indication that a point of a
continuous spectrum that is not an eigenvalue of infinite multiplicity is an “almost
eigenvalue” of an s.a. operator.

The set of isolated points of the spectrum (they are eigenvalues) except the
eigenvalues of infinite multiplicity is called the discrete spectrum.29

So, a real number � belongs to the spectrum of an s.a. operator Of , � 2 spec Of ,
if either:

(a) The operator OR .�/ does not exist, in which case � is an eigenvalue of Of and
belongs to the point spectrum, or

(b) The operator OR .�/ exists, but is unbounded, in which case � belongs to the
continuous spectrum.

In the latter case, the operator OR .�/ is densely defined, but is not defined
everywhere. Indeed, it cannot be defined everywhere because otherwise it would
be bounded as a closed operator by Theorem 2.44, and it is densely defined because

DR.�/ D Rf.�/ D
�

ker
� Of .�/

�C�?
; but ker

� Of .�/
�C D ker Of .�/ D f0g:

The situation (iii) from Sect. 2.7.6 that OR .�/ is bounded but not densely defined is
thus excluded for an s.a. operator.

A subtlety is that � may belong to the point spectrum and to the continuous
spectrum simultaneously: an example is an eigenvalue of infinite multiplicity30 or
that an eigenvalue of finite multiplicity can lie in the continuous spectrum. The
possibility of a continuous spectrum is a distinctive feature of s.a. operators in
infinite-dimensional Hilbert spaces.

It appears that zero deficiency indices are not only a necessary condition for the
self-adjointness of a symmetric operator, but also are an almost sufficient condition.

Definition 2.74. A symmetric operator Of is called an essentially s.a. operator if its

closure Of is s.a.

28This classification is sufficient for our purposes. A more advanced classification can be found in
[128].
29It may be an exotic situation whereby the point spectrum is dense in the continuous spectrum
and the eigenvectors corresponding to the point spectrum form a complete orthonormalized set.
30For the identity operator OI , the point and continuous spectra coincide, reducing to the single
eigenvalue � D 1 of infinite multiplicity.
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Lemma 2.75. A symmetric operator is essentially s.a. iff its deficiency indices are
equal to zero. In particular, a closed symmetric operator with zero deficiency indices
is s.a.

Proof. By Lemma 2.54, the closure Of of a symmetric operator Of is symmetric,

Of �
� Of
�C
D Of C, and the deficiency indices of Of and Of coincide. Therefore,

it is sufficient to prove that if a closed symmetric operator Of has zero deficiency
indices, i.e., ker Of C .z/ D f0g, 8z¤ z, then Of is s.a. To prove this, we first note that
by Lemma 2.57, the range of the operator Of .z/, z ¤ z, is closed, Rf .z/ D Rf .z/.

Then by Lemma 2.46, we find that Rf .z/ D H because ker Of C .z/ D f0g, which

means that any vector � 2 H allows the representation � D Of .z/ �, where � 2 Df .
In particular, for any vector �� 2 Df C , there exists some vector � 2 Df such

that Of C .z/ �� D Of .z/ �. But Of � Of C implies that Of .z/ � D Of C .z/ �, and we
obtain that Of C .z/ �� D Of C .z/ �, or Of C .z/ .�� � �/ D 0, whence it follows that
�� D � 2 Df , 8�� 2 Df C . It remains to refer to Lemma 2.61 to conclude that
Of D Of C. ut

We thus obtain that a symmetric operator Of with zero deficiency indices is either
s.a., if Of is closed, or allows an s.a. extension, if Of is nonclosed. This s.a. extension

is its closure Of coinciding with its adjoint Of C and is therefore unique because Of is
a minimum closed symmetric extension of Of , whereas by Lemma 2.53, the operator
Of C is a maximum possible symmetric extension. In other words, if the deficiency

indices of a symmetric operator are equal to zero, then the operator is either s.a., if
closed, or if nonclosed, allows a unique s.a. extension that is its adjoint.

As for symmetric operators with nonzero deficiency indices, their s.a. extensions
are nonunique, if they exist at all, which is determined by the values of the deficiency
indices. By analogy with an essentially s.a. operator, we call a symmetric operator
Of with nonzero deficiency indices an essentially maximal symmetric operator if

its closure Of is a maximal symmetric operator. An essentially maximal symmetric
operator has no s.a. extensions. This is the subject of Chap. 3.

We now consider some specific classes of s.a. operators that are of particular
importance.

2.8.7 Orthoprojectors

An important class of bounded s.a. operators is a class of orthoprojectors. The
notion of orthoprojector is a basic notion in the spectral analysis of s.a. operators;
see Chap. 5 below.

Definition 2.76. Let D � H be a closed subspace, D D D. To each vector
� 2 H, we assign its projection on a closed subspace D; see Theorem 2.2.
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This correspondence defines the operator that is called the (ortho)projection opera-
tor or (ortho)projector (onD), and is denoted by OP , or OPD if we stress that OP is the
orthoprojector just on D,

OP D OPD D


DP D H;
OP� D �k; 8� 2 H:

In particular, we have OPf0g D 0, while OPH D OI .
We cite the properties of orthoprojectors that directly follow from the defini-

tion.

1. Any orthoprojector OP is a linear operator defined everywhere,DP D H.
2. The range of the orthoprojector OPD is the subspaceD, RPD D D.
3. ker OPD D D?.
4. Any orthoprojector OP is bounded, and its norm is equal to unity, k OP k D 1.

Indeed, k�k2 D ���k
�
�2Ck�?k2, 8� 2 H, which implies k OP�k2 D ���k

�
�2 � k�k2,

and equality is achieved for � 2 D D RP .
5. Any orthoprojector OP is a nonnegative operator not exceeding the identity

operator, 0 � OP � OI . Indeed, .�; OP�/ D .�k C �?; �k/ D .�k; �k/ � 0, while

.�; . OP � OI /�/ D .�?;��?/ D �.�?; �?/ � 0:
6. If an operator OP is the orthoprojector on a subspace D, OP D OPD , then the

operator OI � OP is also an orthoprojector, namely, the orthoprojector on the
subspace D?, OI � OPD D OPD? . Indeed, according to Corollary 2.3, we have
OPD?� D �? D � � �k D . OI � OPD/�.

7. OP2 D OP for any orthoprojector OP , which means that its range RP is the
eigenspace of OP with the eigenvalue C1: OP� D �, 8� 2 RP . Indeed, OP2� D
OP�k D �k, 8� 2 H.

8. Any orthoprojector OP is an s.a. operator, OPCD OP . It is sufficient to refer to
Corollary 2.68.

Properties 7 and 8 are the characteristic properties of orthoprojectors.

Theorem 2.77. A linear operator OP with the properties OP D OPC and OP2 D OP is
the orthoprojector on the closed subspaceD D RP .

Proof. We first prove that the operator OP is bounded and defined everywhere. Using
both properties of OP , we obtain

�
�
� OP�

�
�
�
2 D . OP�; OP�/ D . OP OP�; �/ D . OP�; �/ �

�
�
� OP�

�
�
� k�k ; 8� 2 DP ;

which implies that k OP�k � k�k ; 8� 2 DP , i.e., OP is bounded. But as an s.a.

operator, OP is densely defined, DP D H, and is closed, OP D OP , together with the
operator OI � OP . It then follows from Lemma 2.23 that OP is defined everywhere,
DP D DP D H.
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Let D denote the range RP of OP , D D RP , and let D? denote its orthogonal
complement. We now prove that D is a closed subspace. The property OP2 D OP
means that D is an eigenspace of OP with the eigenvalueC1: OP� D � if � 2 D, or
D D ker. OI � OP/ and is therefore closed as the kernel of a closed operator.

It follows that by Theorem 2.2, any vector � 2 H allows a uniquely defined
decomposition � D �k C �?, where �k 2 D is the projection of � on D, �k D OPD�,
and �? 2 D?. Because OP�k D �k, we have OP� D �k C OP�?, and it remains to
prove that OP�? D 0 to obtain that OP� D �k D OPD�, 8� 2 H, which just means that
OP D OPD . But

�
�
� OP�?

�
�
�
2 D . OP�?; OP�?/ D .�?; OP OP�?/ D .�?; OP�?/ D 0;

because OP�? 2 D, which completes the proof. ut
The following is a collection of assertions concerning the product, addition, and

subtraction of orthoprojectors.

Lemma 2.78. The product of two orthoprojectors OPD1 and OPD2 is an orthopro-
jector, OPD1 OPD2 D OP , iff OPD1 and OPD2 commute, OPD1 OPD2 D OPD2 OPD1; and if this
condition holds, then OP D OPD , where D D D1 \D2:

Proof. Necessity. Let the product of two orthoprojectors OPD1 and OPD2 be an
orthoprojector, OPD1 OPD2 D OP . The equality OP D OP2 D OPC then yields

OPD1 OPD2 D
� OPD1 OPD2

�C D OPC
D2
OPC
D1
D OPD2 OPD1 ;

i.e., OPD1 and OPD2 commute.
Sufficiency. Let two orthoprojectors OPD1 and OPD2 commute. The operator OP D
OPD1
OPD2 D OPD2 OPD1 evidently satisfies the conditions of Theorem 2.77:

OPC D
� OPD1 OPD2

�
D OPC

D2
OPC
D1
D OPD2 OPD1 D OP

and

OP2 D OPD1 OPD2 OPD2 OPD1 D OPD1 OPD2 OPD1 D OPD1 OPD1 OPD2 D OPD1 OPD2 D OP ;
whence it follows that OP is an orthoprojector.

We know that OP D OPD , where D D RP D f OP�;8� 2 Hg D f� W OP� D �g.
According to the first representation OP D OPD1 OPD2 , we have OP� D OPD1 OPD2� 2
D1, while according to the second representation OP D OPD2 OPD1 , we have OP� D
OPD2 OPD1� 2 D2, which implies that D � D1 \D2. Conversely, let D 2 D1 \D2.

Then we have � D OPD1� D OPD2� D OPD1 OPD2� D OP�, which implies that D1 \
D2 � D, and therefore,D D D1 \D2.
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Corollary 2.79. Two closed subspaces D1 and D2 are orthogonal, D1 ? D2, iff
OPD1
OPD2 D OPD2 OPD1

D O0. ut
A geometric sense of the equality OPD1 OPD2 D OPD2 OPD1 is that the closed

subspacesD1� .D1\D2/ andD2� .D1\D2/ are orthogonal, because if equality
holds, the operators OPD1 . OI � OPD2/ and OPD2. OI � OPD1/ are orthoprojectors on the
respective subspacesD1\D?

2 D D1�.D1\D2/ andD2\D?
1 D D2�.D1\D2/

and
. OPD1 . OI � OPD2//. OPD2. OI � OPD1// D O0:

Lemma 2.80. The sum of orthoprojectors OPj D OPDj , j D 1; : : : ; n < 1, is an

orthoprojector,
Pn

jD1 OPj D OP , iff the subspaces Dj are mutually orthogonal, i.e.,

iff OPj OPk D 0, j ¤ k, and in this case, OP D OPD , where D DPn˚
jD1 Dj .

Proof. Necessity. Let the operator OP D Pn
jD1 OPj be an orthoprojector. Then the

inequalities

k�k2 � .�; OP�/ D
0

@�;
nX

jD1
OPj �
1

A � .�; OPj �/C .�; OPk�/

D
�
�
� OPj �

�
�
�
2 C

�
�
� OPk�

�
�
�
2

; 8� 2 H;

hold whatever the different indices j and k may be. Taking � D OPk�, we obtain that

�
�
� OPj OPk�

�
�
�
2 C

�
�
� OPk�

�
�
�
2 �

�
�
� OPk�

�
�
�
2

and therefore k OPj OPk�k2 D 0, 8� 2 H, which proves the equality OPj OPk D 0, or the
orthogonality of the subspaces Dj and Dk , for j ¤ k.

Sufficiency. If OPj OPk D 0, i.e., the subspacesDj andDk are mutually orthogonal,
then evidently s.a. operator OP D Pn

jD1 OPj satisfies the equality OP2 D OP , and it
remains to refer to Theorem 2.77. The last assertion of the lemma is also evident.

ut
Lemma 2.81. The difference of two orthoprojectors OPD1 and OPD2 is an orthopro-
jector, OPD1 � OPD2 D OP , iff D2 � D1, which is equivalent to each of the relations
OPD2 D OPD1 OPD2 D OPD2 OPD1 , k OPD2�k � k OPD1�k for 8� 2 H, and OPD2 � OPD1 , and

in this case, OP D OPD , where D D D1 �D2.

Proof. Necessity. Let OPD1 � OPD2 D OPD , an orthoprojector on some D. Then the
sum OPD C OPD2 D OPD1 is also an orthoprojector, and therefore by Lemma 2.80,
D1 D D ˚D2, which implies that D2 � D1 and D D D1 �D2.

Sufficiency. Let D2 � D1, and let D D D1 � D2. Then D1 D D ˚ D2, and
therefore by Lemma 2.80, OPD1 D OPDC OPD2 , or OPD1 � OPD2 D OPD , which completes
the proof.
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It remains to prove the equivalence relations:

1. D2 � D1, OPD2 D OPD1 OPD2 D OPD2 OPD1 D OPD2 .
The relation D2 � D1 is evidently equivalent to the relation OPD2 D OPD1 OPD2 ,

Lemma 2.78 allows extending the latter relation to OPD2 D OPD1 OPD2 D OPD2 OPD1 .
2. D2 � D1, k OPD2�k � k OPD1�k, 8� 2 H.

Let D2 � D1. Then OPD2 D OPD2 OPD1 , which implies that
�
�� OPD2�

�
�� D

�
�� OPD2 OPD1�

�
�� �

�
�� OPD2

�
��
�
�� OPD1�

�
�� D

�
�� OPD1�

�
�� ; 8� 2 H:

Conversely, let k OPD2�k � k OPD1�k, 8� 2 H. Then the condition OPD1� D 0, or
� 2 ker OPD1 D D?

1 , implies that OPD2� D 0, or � 2 ker OPD2 D D?
2 , which means

that D?
1 � D?

2 , whence it follows that D?
2 D .D?

2 /
? � .D?

1 /
? D D1.

3. D2 � D1, OPD2 � OPD1 .
In view of relation 2 above, it is sufficient to prove the equivalence of the

inequalities

�
�� OPD2�

�
�� �

�
�� OPD1�

�
�� ; or

�
�� OPD2�

�
��
2 �

�
�� OPD1�

�
��
2

; 8� 2 H;

and OPD2 � OPD1 , or by definition, see the end of Sect. 2.3.1, .�; OPD2�/ �
.�; OPD1�/, 8� 2 H. But this equivalence directly follows from the equality
k OP�k2 D . OP�; OP�/ D .�; OP�/, 8� 2 H, for any orthoprojector OP in view of
its basic properties OPC D OP and OP2 D OP . ut
We complete this subsection with some simple assertions about sequences of

orthoprojectors.

Lemma 2.82. An infinite monotonic sequence f OPkg11 of orthoprojectors strongly
converges to some orthoprojector OP .

Proof. Let an operator sequence f OPkg11 be nondecreasing, OPk � OPkC1, i.e.,
.�; OPk�/ � .�; OPkC1�/, 8� 2 H. Then the number sequence f.�; OPk�/g11 with any
� is convergent as a nondecreasing bounded sequence, 0 � .�; OPk�/ � k�k2, and
is therefore a Cauchy sequence, .�; OPn�/ � .�; OPm�/ D .�; . OPn � OPm/�/ ! 0,
m; n!1. By Lemma 2.81, the difference OPn� OPm is an orthoprojector up to a sign,
which implies that k. OPn � OPm/�k2 D j.�; . OPn � OPm/�/j. It follows that the vector
sequence f OPk�g11 with any � is a Cauchy sequence and is therefore convergent,
limn!1 OPk� ! OP�, where, as is easily seen, the operator OP is linear, defined
everywhere, and bounded. This means that the operator sequence f OPkg11 is strongly
convergent to the operator OP . Taking then the limit k !1 in the equalities

.�; OPk�/ D . OPk�; �/ D . OPk�; OPk�/; 8�; � 2 H;

we obtain that
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.�; OP�/ D . OP�; �/ D . OP�; OP�/; 8�; � 2 H;

which means that OP D OPC D OP2, and therefore OP is an orthoprojector by Theorem
2.77. ut

A proof for a nonincreasing sequence f OPkg11 of orthoprojectors, OPkC1 � OPk , is
completely similar

Lemma 2.83. If the sequence f OPkg11 of orthoprojectors weakly converges to some
orthoprojector OP , then it converges to OP strongly.

Proof. By the condition of the theorem, we have

.�; OPk�/! .�; OP�/; k !1; 8�; � 2 H;

which in particular implies that

�
�
� OPk�

�
�
�
2 !

�
�
� OP�

�
�
�
2

; k !1; 8� 2 H:

The proof follows directly from the equality

�
�
�. OPk � OP/�

�
�
�
2 D

�
�
� OPk�

�
�
�
2 � . OPk�; OP�/ � . OP�; OPk�/C

�
�
� OP�

�
�
�
2

:

ut

2.8.8 Self-adjoint Operators of Oscillator Type

We call the operators of the form ON D Of C Of and OM D Of Of C operators of oscillator
type. The name is due to the well-known oscillator Hamiltonian.

Many physicists and textbooks on QM for physicists consider these operators ev-
idently s.a. Their arguments are based on the following commonly used formal rules
for the Hermitian adjoint operation: . Of C/C D Of and . Of C Of /C D Of C. Of C/C D
Of C Of . However, we know that in general, these formal rules fail for unbounded

operators: by Lemma 2.43, the operator . Of C/C exists only for a closable operator
Of , and . Of C/C D Of , which is not equal to Of unless Of is closed, while by (2.27),

we generally have . Of Og/C 
 OgC Of C. Fortunately, physicists are almost right, but a
correct formulation and especially a proof need some nontrivial observations.

The following theorem is due to von Neumann [154]. In the proof of the theorem,
we follow [9].

Theorem 2.84. If an operator Of is densely defined,Df D H, and closed, Of D Of ,

then the operators ON D Of C Of and OM D Of Of C are s.a. and nonnegative, ON D
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ONC � 0 and OM D OMC � 0. In addition, ker ON D ker Of and ker OM D ker Of C;
consequently, if ker Of ¤ f0g, the operator ON has a zero eigenvalue, whereas if
ker Of D f0g, ON is positive, the same holds for the operator OM with the substitution
of Of C for Of .

Proof. It is sufficient to prove the theorem for ON D Of C Of , because for a closed Of ,
we have Of D . Of C/C, and OM D Of Of C can be represented as OM D . Of C/C Of C,
where Of C is closed. By Lemma 2.63, the operators ON and OK D ON C OI are s.a.
or non-s.a. simultaneously. It is therefore sufficient to prove that OK D OKC. By
the corollary of Lemma 2.69, to do this, it is sufficient to prove that OK is positive,
OK > 0, and RK D H. The positivity of OK is evident. The operator ON D Of C Of is

nonnegative for any Of , not necessarily closed:

�
�; Of C Of �

�
D
� Of �; Of �

�
� 0 ; 8� 2 DN � Df;

whence it follows that OK D ON C OI � OI > 0.
We now prove that RK D H. The central point of the proof is a geometric

observation: Of D Of means that Gf D Gf , which by (2.12) implies that EGf D
EGf , where the unitary operator E is given by (2.14), and therefore by (2.4) and
(2.23), the decomposition

H D EGf ˚
�EGf

�? D EGf ˚Gf C

holds. This decomposition means that for any pair of vectors �; � 2 H, the
representation31

.�� � �/ D
� Of �� � �

�
C
�
��� Of C��

�
D
� Of � C ��� Of C�� � �

�

holds with some � 2 Df and �� 2 Df C , which are uniquely defined by � and �. If

� D 0, we have �� D � Of � and obtain the representation

� D Of C Of � C �; or � D
� ON C OI

�
� D OK�; � 2 DN D DK � Df ;

for any � 2 H, which means that RK D H. We have thus proved that OK is s.a., and
therefore, ON is also s.a.

The remaining part of the theorem does not require that Of be closed. It is
evident that ker Of � ker Of C Of W Of � D 0 automatically implies that Of C Of � D 0.
Conversely, Of C Of � D 0 implies that.�; Of C Of �/ D . Of �; Of �/ D 0, whence it follows

31The convenience of the minus sign in front of the vector � becomes clear below.
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that Of � D 0, or ker Of C Of � ker Of . Therefore, ker Of C Of D ker Of . The equality
ker Of C Of D ker Of C is proved similarly. ut

For a symmetric operator with nonzero deficiency indices, it may happen that the
operator allows an extension of oscillator type with a closed cofactor, and therefore
at least one s.a. extension of the operator exists. We note in advance that this implies
that the operator has equal deficiency indices and allows different s.a. extensions if
the deficiency indices differ from zero; see Chap. 3.



Chapter 3
Basics of the Theory of Self-adjoint Extensions
of Symmetric Operators

3.1 Deficient Subspaces and Deficiency Indices of Symmetric
Operators

In this chapter, we expound only a necessary part of the general theory concerning
s.a. extensions of unbounded symmetric operators, see [156, 157]. The content of
this part is actually reduced to three theorems presented in Sects. 3.1, 3.3, and
3.4. These theorems are not assigned any names in the conventional mathematical
literature [9, 116]; instead, their crucial formulas are called the “von Neumann
formulas.” We call these three theorems the first and second von Neumann theorems
and the main theorem.1

We begin by recalling the minimum necessary notions and facts concerning
symmetric operators from Sect. 2.7, especially Sect. 2.7.6, and introducing some
new notation.

Let H be a Hilbert space, and let Of be a generic symmetric operator in H, not

necessarily closed, with domain Df and adjoint Of C, Of � Of C. Its closure Of with

domain Df is also a symmetric operator with the same adjoint, Of � . Of /C D Of C;
we let � denote the vectors belonging to Df , � 2 Df . We let C0 denote the set of
complex numbers with nonzero imaginary parts, C0 D fz D x C iy; y ¤ 0g D
CC[C�. For any z 2 C

0, the rangeRf .z/ of the operator Of .z/ D Of �z OI is a closed
set in H. The orthogonal complement of Rf .z/ in H is called the deficient subspace

of Of , as well as of Of , corresponding to the point z 2 C
0; the deficient subspace

coincides with the kernel of the operator . Of .z//C D Of C .z/ D Of C � z OI . We let @z

1The reader interested in the final statement (without the details of a rigorous proof) can go directly
to the main theorem in Sect. 3.4, and to the subsequent comments in Sect. 3.5.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 3,
© Springer Science+Business Media New York 2012

83



84 3 Basics of the Theory of Self-adjoint Extensions of Symmetric Operators

denote this deficient subspace and let �z denote the vectors belonging to @z,

@z D R?
f .z/
D ker Of C .z/ D f�z 2 Df C W Of C�z D z�zg: (3.1)

Accordingly, the decomposition

H D Rf .z/ ˚ @z (3.2)

holds, which implies that any vector � 2 H can be represented as

� D Of .z/ � C �z; (3.3)

with some vectors � 2 Df and �z 2 @z uniquely determined by �. We note that for

a generic nonclosed operator Of , its closure Of enters the decompositions (3.2) and
(3.3).

The dimension of the deficient subspace @z is independent of z in the respective
domains C� D fz D x C iy; y < 0g and CC D fz D x C iy; y > 0g,

dim@z D


mC; z 2 C ;

m�; z 2 CC;

where mC and m� are called the deficiency indices of the operator Of , as well as of
Of . For a given z 2 C

0, we distinguish two deficient subspaces @z and @z,

@z D ker Of C .z/ D
n
�z 2 Df C W Of C�z D z�z

o
; (3.4)

such that if z 2 C .CC/ then dim@z D mC .m�/, whereas2 dim@z D m� .mC/.
BothmC andm� can be infinite. If bothmC andm� are infinite, they are considered
equal,mC D m� D 1.

A basic starting point in studying symmetric operators and s.a. extensions of
symmetric operators is the following theorem, which we call the first von Neumann
theorem.

Theorem 3.1 (The first von Neumann theorem). For any symmetric operator Of ,
the domainDf C of its adjoint Of C is the direct sum of the three subspaces Df , @z,
and @z:

Df C D Df C@z C @z ; 8z 2 C
0; (3.5)

2We point out that there exists an anticorrespondence z � Nz between the subscript z of @z and the
respective eigenvalue Nz and the subscript of the eigenvector �Nz of Of C. Perhaps it would be more
convenient to change the notation @z � @Nz; the conventional notation is due to tradition. The
same concerns the subscripts of m

˙
and C�.
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such that any vector �� 2 Df C is uniquely represented as

�� D � C �z C �z; � 2 Df ; �z 2 @z; �z 2 @z ; (3.6)

and

Of C�� D Of � C z�z C z�z : (3.7)

Formula (3.6) is called the first von Neumann formula; we assign the same name
to (3.5).

It should be emphasized that for an initial symmetric operator Of , the domainDf

of its closure Of enters the decompositions (3.5)–(3.7).

Proof. We first note that the domain Df and the deficient subspaces @z and @z are
subspaces belonging to Df C ; therefore, a vector �� D � C �z C �z belongs to Df C

with any � 2 Df , �z 2 @z, and �z 2 @z. It remains to prove that for any vector
�� 2 Df C , a unique representation (3.6) holds.

Let �� 2 Df C . According to (3.2) and (3.3), the vector Of C .z/ �� is represented
as

Of C .z/ �� D Of .z/� C .z� z/ �z ; 8z 2 C
0; (3.8)

with some � 2 Df and �z 2 @z that are uniquely determined by �� (the nonzero

factor z � z in front of �z is introduced for convenience). But Of � D Of C� and z�z D
Of C�z , and (3.8) becomes Of C .z/ .�� � � � �z/ D 0, which yields �� � � � �z D �z ,

or �� D � C �z C �z, where �z belongs to @z and is evidently uniquely determined
by ��, � , and �z and is therefore uniquely determined by �� alone. This proves the
representation (3.6) for any vector �� 2 Df C . After this representation has been
established, (3.7) becomes evident. ut

We note that:

(a) Representations (3.5)–(3.7) hold for any z 2 C
0.

(b) Although representations (3.6) and (3.7) are explicitly z-dependent, because the
deficient subspaces @z and @z, and hence the sum3 @z C @z, depend on z, the
subspace Df C and the operator f C do not depend on z, and dim .@z C @z/ D
mC Cm�, as well as m˙ by themselves, is independent of z.

(c) The sum in (3.5) is direct, but not orthogonal; it cannot be orthogonal because
Df D H, and thereforeD?

f
D f0g.

It follows immediately from the first von Neumann theorem that a nonclosed
symmetric operator Of is essentially s.a., and a closed symmetric operator is s.a., iff

3Although @z and @z are closed subspaces in H, we cannot generally assert that their direct sum
@z C @z is also a closed subspace. The latter is always true if one of the subspaces is finite-
dimensional.
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@z D @z D f0g, i.e., iff its deficiency indices are equal to zero, m˙ D 0, because

in this case, Df C D Df , and therefore Of D Of C. In other words, the adjoint Of C is
symmetric iff m˙ D 0; compare with Lemma 2.75. But this theorem, namely (3.6)
and (3.7), also allows estimating the asymmetricity of the adjoint Of C in the case
that the deficiency indices mC and m� are not equal to zero (one or both of them)
and analyzing the possibilities of symmetric and s.a. extensions of Of . We now turn
to this case, the case of maxm˙ ¤ 0.

3.2 Asymmetry Forms

The following consideration deals with some arbitrary, but fixed, complex number
z 2 C

0. A choice of a specific z is a matter of convenience, all z being equivalent; in
the mathematical literature, it is a tradition to choose z D i .

By definition (see Sect. 2.7), a symmetric operator Of is a densely defined
operator satisfying the condition

�
�; Of �

�
�
� Of �; �

�
D 0; 8�; � 2 Df:

The criterion for symmetricity of a densely defined operator Of is that all its diagonal
matrix elements be real-valued,4 i.e.,

�
�; Of �

�
�
� Of �; �

�
D
�
�; Of �

�
�
�
�; Of �

�
D 2i Im

�
�; Of �

�
D 0 ; 8� 2 DfI

see Lemma 2.50. For this reason, it is natural to introduce two forms defined by
the adjoint operator Of C on its domain Df C : the sesquilinear form !f C .��; ��/,
given by

!f C .��; ��/ D
�
��; Of C��

�
�
� Of C��; ��

�
; ��; �� 2 Df C; (3.9)

and the quadratic form �f C .��/, which is a restriction of !f C .��; ��/ to the
diagonal �� D ��,

�f C .��/ D !f C .��; ��/ D 2i Im
�
��; Of C��

�
; �� 2 Df C: (3.10)

4This is well known to physicists as applied to s.a. operators.
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The form !f C is anti-Hermitian, while the form�f C is pure imaginary:

!f C .��; ��/ D �!f C .��; ��/ ; �f C .��/ D ��f C .��/:

The form !f C is completely determined by �f C in view of the equality

!f C .��; ��/ D1
4

n �
�f C .�� C ��/ ��f C .�� � ��/

�

� i ��f C .�� C i��/ ��f C .�� � i��/
� o
;

which is the so-called polarization formula.
Each of these forms is a measure of asymmetricity of the adjoint operator Of C,

i.e., a measure of the extent to which the adjoint operator Of C deviates from a
symmetric operator. We therefore call !f C and �f C respectively the sesquilinear
asymmetry form and quadratic asymmetry form. If !f C D 0, or equivalently,

�f C D 0, then the adjoint Of C is symmetric and Of is essentially s.a.
One of the immediate advantages of introducing the sesquilinear form !f C is

that it allows simply evaluating the closure Of of an initial, generally nonclosed,
symmetric operator Of once the adjoint Of C is known. Indeed, by Lemma 2.43, the

closure Of of a symmetric operator Of can be determined as the adjoint of the adjoint,
Of D . Of C/C: The defining equation (see Sect. 2.6.1) for . Of C/C D Of , i.e., for pairs

 2 Df and � D Of  , is given by

�
 ; Of C��

�
�
�
�; ��

�
D 0 ; 8�� 2 Df C: (3.11)

But the inclusion Of � Of C implies that Df � Df C , i.e.,  2 Df C , and � D
Of  D Of C (we know the “rule” for Of ); therefore, the defining equation (3.11) for

the closure Of reduces to the equation

�
 ; Of C��

�
�
� Of C ; ��

�
D !f C

�
 ; ��

�
D 0

H) !f C

�
��;  

�
D 0 ; 8�� 2 Df C; (3.12)

for  2 Df only, which is the linear equation for the domain Df � Df C of the

closure. The closure Of of a symmetric operator Of ; Of � Of C; is thus given by

Of W
8
<

:

Df D
n
 W  2 Df C I !f C

�
��;  

�
D 0 ; 8�� 2 Df C

o
;

Of  D Of C :
(3.13)
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Formula (3.13) specifies the closure Of of a symmetric operator Of as an evidently

symmetric restriction of its adjoint Of C: the equality !f C

�
��;  

�
D 0 implies that

!f C

�
�; �

�
D
�
�; Of �

�
�
� Of �; �

�
D 0 ; 8�; � 2 Df � Df C: (3.14)

Because !f C vanishes on Df , and because of the representation (3.6) for �� 2
Df C , the nontrivial content of (3.12) for the domainDf in (3.13) is due only to the
presence of the deficient subspaces. Indeed, substituting representation (3.6) into
(3.12) and using (3.14), we reduce this equation to the equation

!f C

�
�z C �z;  

�
D 0 ; 8�z 2 @z ; 8�z 2 @z ;

which is equivalent to

!f C

�
�z;  

�
D 0 ; !f C

�
�z;  

�
D 0 ; 8�z 2 @z ; 8�z 2 @z : (3.15)

Let the deficient subspaces be finite-dimensional, dim@z D m.z/ < 1 and
dim@z D m.z/ < 1 (m.z/ is equal to mC or m� and m.z/ D m� or mC for the
respective z 2 CC or z 2 C�), and let fez;kgm.z/1 and fez;kgm.z/1 be some bases in the
respective @z and @z. Then the last set of equations can be replaced by a finite set
of equations

!f C

�
ez;k;  

�
D 0 ; !f C

�
ez;l ;  

�
D 0; k D 1; : : : ; m.z/; l D 1; : : : ; m.z/:

The inverse statement also holds: if

!f C .�z;  / D !f C .�z;  / D 0;  2 Df C ; 8�z 2 @z ; 8�z 2 @z;

then  D  2 Df .
Taking the aforementioned into account, we can specifyDf in (3.13) as follows:

Df D
n
 W  2 Df C I !f C

�
�z;  

�
D !f C

�
�z;  

�
D 0;

8�z 2 @z ; 8�z 2 @z

o
; (3.16)

which is equivalent to

Df D
n
 2 Df C W !f C

�
ez;k ;  

�
D !f C

�
ez;l ;  

�
D 0;

k D 1; : : : ; m.z/ ; l D 1; : : : ; m.z/
o
; (3.17)

in the case of finite-dimensional deficient subspaces.
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3.3 Symmetric Extensions

The main advantage of the two asymmetry forms !f C and�f C is that they allow a
comparatively simple analysis of the possibilities of symmetric and s.a. extensions
of symmetric operators and an efficient description of such extensions. The key
ideas formulated, so to speak, in advance are as follows. Any symmetric extension
of a symmetric operator Of is simultaneously a restriction of its adjoint Of C to a
subdomain in Df C such that the restriction of !f C and �f C to this subdomain
vanishes. On the other hand, !f C allows a comparatively simple evaluation of the
adjoint of the extension, while �f C allows estimating the measure of closedness of
the extension and the possibility of any further extension. Because any s.a. operator
does not allow nontrivial symmetric extensions, see Lemma 2.64, any s.a. extension
of a symmetric operator Of , if it is possible, is a maximal symmetric extension. By
a maximal symmetric extension, we mean an extension to a maximal subdomain
in Df C on which !f C and �f C vanish, maximal in the sense that any further
extension to a larger domain on which !f C and �f C vanish is impossible.

According to (3.15), both !f C and �f C vanish on the domain Df � Df C of

the closure Of � Of C,

!f C

�
�; �

�
D 0 ; 8�; � 2 Df ” �f C

�
�
�
D 0 ; 8� 2 Df ;

and are nonzero only because of the presence of the deficient subspaces @z and @z

(we recall that we consider the case in which maxm˙ ¤ 0 and at least one of the
deficient subspaces is nontrivial).

Based on the first von Neumann theorem, we evaluate the contributions of the
deficient subspaces to the form !f C . Substituting representation (3.6) for both
�� and �� into !f C .��; ��/, then using the sesquilinearity and anti-Hermiticity
of the form !f C together with (3.14) and (3.15), we obtain that !f C .��; ��/ D
!f C .�z C �z; �z C �z/. Using now definitions (3.9), (3.1), and (3.4), we obtain the
required representation of the form !f C in terms of the deficient subspaces:

!f C .��; ��/ D 2iy Œ.�z; �z/ � .�z; �z/� ; 2iy D .z � z/: (3.18)

There follows a similar representation for the form�f C :

�f C .��/ D 2iy
�
k�zk2 � k�zk2

�
: (3.19)

Formula (3.19) is sometimes called the von Neumann formula (without any number
attached to it). We assign the same name to (3.18).

We can see that the asymmetricity of the adjoint operator Of C is indeed due to
the deficient subspaces, and what is more, the forms !f C and�f C are of a specific
structure: up to a nonzero factor .z � z/ D 2iy, the contributions of the different
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deficient subspaces@z and @z are of opposite signs, and in principle, can compensate
each other under an appropriate correspondence between �z and �z, which are the
respective @z- and @z-components of vectors �� 2 Df C .

In the present exposition, (3.18) and (3.19), together with the first von Neumann
theorem, form a basis for estimating the possibility of s.a. extensions of a generic
symmetric operator Of and constructing all its possible s.a. extensions. Even
though the forms !f C and �f C and the respective formulas (3.18) and (3.19)
are equivalent, it is convenient to use them both, one or another, depending on the
context.

An alternative method for the study and construction of symmetric and s.a.
extensions of symmetric operators is based on the so-called Cayley transformation
of a closed symmetric operator Of to an isometric operator OV D Of .z/ . Of .z//�1
with domain DV D Rf .z/ and range RV D Rf .z/ and inverse transformation
Of D .z OI � z OV /. OI � OV /�1; for reference, see [9, 116].

A nontrivial symmetric extension Ofe of a symmetric operator Of , Of � Ofe �Of C
e � Of C, with domain Dfe , Df � Dfe � Df C , is possible only at the expense

of the deficient subspaces @z and @z:

Dfe D
n
�e W �e D � C �z;e C �;e; 8� 2 Df ; �z;e 2 @z; �z;e 2 @z

o

(any � 2 Df and some �z;e 2 @z and �z;e 2 @z), or

Dfe D Df CD@
fe
; D@

fe
D ˚�@

e

� � @z C @z ; �
@
e D �z;e C �z;e;

where the set D@
fe

is a nontrivial one, D@
fe
¤ f0g.

The set D@
fe

is a subspace, as is Dfe ; therefore, the sets

D@
z;e D f�z;eg � @z; D

@
z;e D f�z;eg � @z

of �z;e and �z;e involved must also be certain subspaces. We only note that it is not
to be supposed thatD@

fe
, which is a subspace in @zC@z, is a direct sum ofD@

z;e and

D@
z;e, D

@
fe
¤ D@

z;e CD@
z;e; see below.

A crucial remark here is that a symmetric extension Ofe of Of toDfe D Df CD@
fe

is simultaneously a symmetric restriction of the adjoint Of C to Dfe � Df C . In

particular, this implies that we know the “rule” for Ofe; according to (3.7), Ofe acts as
Of onDf and as a multiplication by z onD@

z;e and by z onD@
z;e.

The requirement that the restriction Ofe of the adjoint Of C to a subspace Dfe �
Df C be symmetric is equivalent to the requirement that the restrictions of the
asymmetry forms !f C and�f C to Dfe vanish:

!f C .�e; �e/ D 0; 8�e; �e 2 Dfe I �f C .�e/ D 0; 8�e 2 Dfe: (3.20)
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We now establish necessary and sufficient conditions for the existence of such
nontrivial domainsDfe and describe their structure.

The conditions (3.20) are equivalent to each other. In the following consideration,
we mainly deal with the quadratic asymmetry form�f C .

According to von Neumann formula (3.19), the only nontrivial point in the
condition�f C .�e/ D 0 is that the restriction of �f C to D@

fe
vanishes:

�f C

�
�@
e

� D 2iy
�
k�z;ek2 � k�z;ek2

�
D 0; 8�@

e 2 D@
fe
: (3.21)

It follows immediately that if one of the deficient subspaces of the initial
symmetric operator Of is trivial, i.e., if @z D f0g or @z D f0g, whereas the other
is not, @z ¤ f0g or @z ¤ f0g, or equivalently, if one of the deficiency indices
is equal to zero, i.e., minm˙ D 0, whereas the other is not, i.e., maxm˙ ¤ 0,
then there are no nontrivial symmetric extensions of this operator. In other words, a
symmetric operator Of with minm˙ D 0 and maxm˙ ¤ 0 is an essentially maximal
symmetric operator.

In what follows, we therefore examine the case that both of the deficient
subspaces @z and @z of a symmetric operator Of are nontrivial, or minm˙ ¤ 0.
We show that in this case, nontrivial symmetric extensions of Of exist, and their
structure can be constructively specified. Without loss of generality, we assume that

0 < minm˙ D dim@z � dim@z D maxm˙ ;

which always can be achieved by an appropriate choice of z.
We first assume the existence of a nontrivial symmetric extension Ofe in the case

under consideration. The equation (3.21) suggests that both deficient subspaces @z

and @z must be involved in this extension, i.e., both D@
z;e ¤ f0g and D@

z;e ¤ f0g,
and any involved �z;e 2 D@

z;e � @z must be assigned a certain �z;e 2 D@
z;e � @z

of the same norm, k�z;ek D k�z;ek, for their contributions to �f C to compensate
each other. This assignment must be a one-to-one correspondence. Indeed, if, for
instance, both vectors �@

e D �z;e C �z;e and �@0
e D �z;e C � 0

z;e belong to D@
fe

, then

their difference �@0
e � �@

e D � 0
z;e � �z;e with a zero @z-component also belongs to

D@
fe

because D@
fe

is a subspace. But (3.21) then implies that
�
�� 0

z;e � �z;e

�
� D 0,

i.e., � 0
z;e D �z;e. A similar analysis for a pair of vectors �@

e D �z;e C �z;e 2 D@
fe

and �@0
e D � 0

z;eC�z;e 2 D@
fe

results in the conclusion that the equality � 0
z;e D �z;e must

hold. This proves that there is a one-to-one isometric correspondence between D@
z;e

andD@
z;e. Moreover, this correspondence must be a linear mapping ofD@

z;e ontoD@
z;e

in order that D@
fe

be a subspace.5

5We can omit this requirement because an isometric operator is linear [9].
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We thus obtain that any nontrivial symmetric extension Ofe of a symmetric
operator Of is determined by a certain linear isometric mapping, or simply an
isometry, OU W @z �! @z with domainDU and range RU such that

DU D D@
z;e � @z; RU D D@

z;e D OUD@
z;e � @z :

Because any isometry preserves dimension, D@
z;e and D@

z;e must be of the same
dimension:

dimD@
z;e D dimD@

z;e D mU � minm˙ I
D@
fe

is also of dimensionmU because of the one-to-one correspondence between the

�z;e and �z;e components of any vector �@
e D �z;eC�z;e 2 D@

fe
. It is now reasonable to

change the notation: we let DU denote D@
z;e, let OUDU denote D@

z;e, and change the

subscript “e” to the subscript “U ” in other cases, so that Ofe,Dfe ,D@
fe

, etc., are now

denoted by OfU , DfU , D@
fU

, etc. In particular,DfU is now represented as follows:

DfU D Df CD@
fU
D
n
�U D � C �@

U; 8� 2 Df ; 8�@
U 2 D@

fU

o
;

D@
fU
D
�
DU C OUDU

�
D
n
�@
U D �z;U C �z;U D �z;U C OU�z;U ;

�z;U 2 DU � @z ; �z;U D OU�z;U 2 OUDU � @z

o
; (3.22)

where
�
DU C OUDU

�
denotes a special subspace of dimension mU in the direct

sum @z C @z. This subspace can be considered the “diagonal” of the direct sum
DU C OUDU .

We can now prove the existence of nontrivial symmetric extensions of a
symmetric operator Of with minm˙ ¤ 0 by reversing the above consideration.
Namely, it is now evident that if the deficient subspaces @z and @z of Of are
nontrivial, then any isometry OU W @z 7�! @z with domain DU � @z and range
OUDU � @z generates a nontrivial symmetric extension OfU of Of as the restriction

of the adjoint Of C to the domain DfU given by (3.22) because this restriction is
evidently symmetric.

We summarize the aforesaid in a theorem which we call the second von Neumann
theorem.

Theorem 3.2 (The second von Neumann theorem). A symmetric operator Of is
essentially s.a. iff its deficiency indices are equal to zero, m˙ D 0. A symmetric
operator Of is essentially maximal, i.e., does not allow nontrivial symmetric, much
less s.a., extensions iff one of its deficiency indices is equal to zero, minm˙ D 0,
while the other is nonzero, max m˙ ¤ 0.
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If minm˙ ¤ 0, i.e., both deficient subspaces @z and @z of a symmetric operator
Of are nonzero, then nontrivial symmetric extensions of Of exist. Any symmetric

extension OfU of Of is determined by some isometric operator OU with domain
DU � @z and range OUDU � @z. This extension is given by

DfU D Df C
� OI C OU

�
DU D

n
�U W �U D � C �z;U C OU�z;U I

8� 2 Df ;8�z;U 2 DU � @z ;I OU �z;U 2 OUDU � @z

o
; (3.23)

and
OfU �U D Of � C z�z;U C z OU�z;U: (3.24)

Conversely, any isometric operator OU : @z �! @z with domainDU � @z and range
OUDU � @z defines a symmetric extension OfU of Of given by (3.23) and (3.24).

The equality

�U D � C �z;U C OU�z;U (3.25)

in (3.23) is called the second von Neumann formula.
We do not dwell on the theory of symmetric extensions of symmetric operators in

every detail because it can hardly find applications in constructing QM observables;
instead, we restrict ourselves to a few remarks on the general properties of arbitrary
symmetric extensions. All the details can be found in [9, 116].

Remark 3.3. (i) It is evident that if OfU is a closed extension of a symmetric
operator Of , thenDU and OUDU are closed subspaces in the respective deficient
subspaces @z and @z, and vice versa.

(ii) The deficient subspaces of an extension OfU are the respective subspaces

@z;U D D?
U D @z nDU and @z;U D

� OUDU

�? D @z n OUDU;

the orthogonal complements of DU and OUDU in the respective deficient
subspaces@z and@z of the initial symmetric operator Of . The deficiency indices
of the extension OfU are m˙;U D m˙ � mU , where mU D dimDU . The
evaluation of the deficient subspaces and deficiency indices in the particular
case of a maximal symmetric extension OfU is given below. Its modification to
the general case is evident.

(iii) Any symmetric operator Of with both deficiency indices different from zero
can be extended to a maximal or s.a. symmetric operator; see below.

(iv) The description of symmetric extensions of a symmetric operator Of in terms
of isometries OU W @z 7�! @z is evidently z-dependent: for a given symmetric
extension of Of , the corresponding isometry OU changes with a change of z
together with the deficient subspaces @z and @z.
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3.4 Self-adjoint Extensions

Our prime interest here is in the possibility and construction of s.a. extensions of
symmetric operators with nonzero deficiency indices.

As we mentioned above, any s.a. extension, if at all possible, is a maximal
symmetric extension that does not allow further symmetric extensions. For a max-
imal symmetric extension OfU of a symmetric operator Of with nonzero deficiency
indices, the deficient subspace @z must be involved in the extension as a whole,6

i.e., DU D @z; otherwise, a further symmetric extension is possible by extending
the isometry OU to the whole of @z. The domain of a maximal symmetric extension
OfU of Of is thus given by

DfU D Df C . OI C OU /@z

D
n
�U W �U D � C �z C OU�zI 8� 2 Df ; 8�z 2 @z; OU�z 2 @z

o
; (3.26)

while @z can be represented as @z D OU@z ˚
� OU@z

�?
, where

� OU@z

�? D
n
�?

z;U 2 @z W
�
�?

z;U ;
OU�z

�
D 0 ; 8�z 2 @z

o

is the orthogonal complement of a subspace OU@z � @z in the deficient subspace @z.
We now evaluate the adjoint Of C

U . Because both OfU and Of C
U are the restrictions of

the adjoint operator Of C, OfU � Of C
U � Of C, we can use arguments similar to those

used in evaluating the closure Of of Of ; see (3.11)–(3.13). The defining equation for
Of C
U is reduced to a linear equation for the domain D

f
C

U
� Df C , i.e., for vectors

��U 2 Df
C

U
, namely,

!f C.�U ; ��U / D 0; 8�U 2 DfU: (3.27)

Let ��U D �C �z C �z be the representation (3.6) of ��U , which we rewrite as

��U D �C �z C OU�z C .�z � OU�z/ D �U C .�z � OU�z/;

where �U 2 DfU , see (3.26), and �z � OU�z 2 @z. Because !f C vanishes on DfU ,

(3.27) reduces to an equation for the component �z � OU�z 2 @z,

!f C

�
�U ; �z � OU�z

�
D 0 ; 8�U 2 DfU: (3.28)

6Under our agreement that dim @z � dim @z.
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Substituting (3.26) for �U into (3.28) and using representation (3.18) for !f C , we

finally obtain that . OU�z; �z � OU�z/ D 0, 8�z 2 @z, which implies that �z � OU�z D
�?

z;U 2 . OU@z/
?. Any ��U 2 Df

C

U
is thus represented as ��U D �U C �?

z;U with

some �U 2 DfU and �?
z;U 2 . OU@z/

? � @z; this representation is clearly unique.
Conversely, it is evident from the above consideration that a vector ��U D �U C

�?
z;U with any �U 2 DfU and �?

z;U 2 . OU@z/
? satisfies the defining equation (3.27),

and therefore belongs to D
f

C

U
. We thus obtain that

D
f

C

U
D DfU C

� OU@z

�?

D


��U W ��U D �U C �?

z;U ; 8�U 2 DfU ; 8�?
z;U 2

� OU@z

�?�
;

Of C
U ��U D OfU �U C z�?

z;U:

This result allows us to answer the main question that concerns possible s.a.
extensions of symmetric operators. If the subspace . OU@z/

? is nontrivial, . OU@z/
? D

@z n OU@z ¤ f0g, we have a strict inclusion DfU � D
f

C

U
, i.e., the extension OfU

is only the maximal symmetric operator and not an s.a. operator. If the subspace
. OU@z/

? is trivial, . OU@z/
? D f0g, we haveDfU D Df

C

U
, which implies the equality

OfU D Of C
U , i.e., the maximal extension OfU is an s.a. operator. We now evaluate the

dimension of the subspace . OU@z/
?, which provides an evident criterion for . OU@z/

?
to be nontrivial, dim. OU@z/

? ¤ 0, or trivial, dim. OU@z/
? D 0, and respectively, for

a maximal symmetric extension OfU to be non-s.a. or s.a. It appears that dim. OU@z/
?

is essentially determined by the deficiency indices of the initial symmetric operator.
If one of the (nontrivial) deficiency indices of the initial symmetric operator Of is

finite, i.e., 0 < dim@z D minm˙ <1, while the other, dim@z D maxm˙, can be
infinite, we have

dim
� OU@z

�? D dim@z � dim
� OU@z

�
D maxm˙ �minm˙ D jmC �m�j;

where we use the equality dim. OU@z/ D dim@z. If both deficient subspaces @z

and @z are infinite D dimensional, m˙ D 1, we encounter the uncertainty
dim. OU@z/

? D 1�1, and a special consideration is required. The point is that in
this case, the isometry OU W @z 7�! @z defining the maximal symmetric extension
OfU can be an isometric mapping of the infinite-dimensional subspace @z both into

and onto the infinite-dimensional subspace @z. In the case of “into,” the subspace
. OU@z/

? is nontrivial, dim. OU@z/
? ¤ 0, while in the case of “onto,” the subspace

. OU@z/
? is trivial, dim. OU@z/

? D 0.
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It follows that:

(a) A symmetric operator Of with different deficiency indices, mC ¤ m� (which
implies that minm˙ < 1), has no s.a. extensions. Such an operator can be
extended only to a maximal symmetric operator.

(b) A symmetric operator Of with equal and finite deficiency indices, m˙Dm<1,
has s.a. extensions, and what is more, any maximal symmetric extension of such
an operator is s.a.

(c) A symmetric operator Of with infinite deficiency indices,m˙ D1, allows both
s.a. extensions and non-s.a. extensions that are maximal symmetric operators.

Any s.a. extension OfU of Of is determined by an isometric mapping OU of one
of the deficient subspaces, for example @z, onto another deficient subspace, @z,OU W @z 7�! @z. This mapping establishes an isomorphism between the deficient
subspaces. Conversely, any such isometric mapping OU W @z 7�! @z defines an s.a.
extension OfU of Of given by (3.23) and (3.24) with DU D @z and OUDU D @z.

We note that there exists another way (perhaps more informative) of establishing
these results. It seems evident from (3.26), and it can be proved using arguments
similar to those used in proving the first von Neumann theorem, that in our case of
dim@z;U � dim@z;U , the deficient subspaces of the maximal symmetric extension
OfU are @z;U D f0g and @z;U D . OU@z/

? � @z, and its respective deficiency indices
are dim@z;U D min .mCU ;m�U / D 0 and

dim@z;U D max .mCU ;m�U / D dim
� OU@z

�?
:

It then remains to evaluate dim. OU@z/
? and to refer to the above-established

relation between the deficiency indices of the maximal symmetric extension and
its self-adjointness: the maximal symmetric extension is s.a. iff both its deficient
indices are equal to zero.

The presented consideration seems more direct.
An s.a. extension OfU of a symmetric operator Of with equal deficiency indices,

i.e., with isomorphic deficient subspaces @z and @z, that is specified by an isometry
OU W @z 7�! @z and is given by (3.23) and (3.24) with DU D @z and OUDU D @z

can be equivalently determined in terms of the sesquilinear asymmetry form !f C

similarly to the closure Of ; see (3.13) and (3.15). Namely, OfU is such an extension iff
it is a restriction of the adjoint Of C to the domainDfU defined by the linear equation

!f C

�
�z C OU�z; �U

�
D 0 ; �U 2 DfU � Df C ; 8�z 2 @z : (3.29)

Necessity: let OfU be an s.a. extension of Of . Then the restriction of the form
!f C to its domain DfU vanishes, i.e., !f C .�U ; �U / D 0, 8�U , �U 2 DfU . Using

now the representation �U D � C �z C OU�z and the equality !f C

�
�; �U

�
D 0,
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see (3.12) with  D � and �� D �U , we reduce the equality !f C .�U ; �U / D 0,
8�U , �U 2 DfU , to (3.29).

Sufficiency: let OU W @z 7�! @z be an isometry of one of the deficient subspaces
onto another. We consider the linear equation (3.29) for a subspace DfU D f�U g �
Df C and show that its general solution is given by

�U D � C �z C OU�z ; 8� 2 Df ; 8�z 2 @z ; OU�z 2 @z : (3.30)

Indeed, a vector �U of the form (3.30) evidently satisfies (3.29),

!f C

�
�z C OU�z; � C �z C OU�z

�
D 2iy

h
.�z; �z/�

� OU�z; OU�z

�i
D 0;

where we use (3.18) and the fact that OU is an isometry. Conversely, let a vector
�U 2 Df C satisfy (3.29). Using the representation

�U D � C �z C �z D � C �z C OU�z C
�
�z � OU�z

�
;

where � 2 Df , �z 2 @z , �z; OU�z 2 @z , then using (3.18) and that OU is an isometry,

we reduce (3.29) to . OU�z; �z � OU�z/ D 0, 8�z 2 @z, whence it follows that �z �
OU�z D 0, or �z D OU�z, because

n OU�z;8�z 2 @z

o
D OU@z D @z.

We note that (3.29) is actually the defining equation for the adjoint Of C
U of the

operator OfU that is the restriction of the adjoint operator Of C to the domain DfU D
Df C . OI C OU /@z, an equation that we already encountered above, see (3.27), where
the substitutions �U ! �U and ��U ! �U must be made. Its solution in the case of
OU@z D @z shows that Of C

U D OfU .
In the case of a symmetric operator Of with equal and finite deficiency indices,

m˙ D m <1, the isometry OU W @z 7�! @z; and hence an s.a. extension OfU , can be
specified by a unitary m �m matrix. To this end, we choose a certain orthonormal
basis fez;kgm1 in @z such that any vector �z 2 @z is represented as �z DPm

kD1 ckez;k ,
ck 2 C, and a certain orthonormal basis fez;lgm1 in @z. Then any isometric operator
OU with domain @z and range @z is given by

OUez;k D
mX

kD1
Ulkez;l ; or OU�z D

mX

lD1

 
mX

kD1
Ulkck

!

ez;l;

where U D fUlkg is a unitary matrix. Conversely, any unitary m � m matrix U
defines an isometry OU given by the above formulas. It is evident that for a given OU ,
the matrix U changes appropriately with the change of the orthogonal bases fez;kgm1
and fez;lgm1 .
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It follows that in the case under consideration, the family f OfU g of all s.a.
extensions of a given symmetric operator Of is a manifold of dimension m2 that
is a unitary group U.m/.

This result can be extended to the case of infinite deficiency indices, m D1.
In the case that both deficiency indices coincide, there is no difference in the

choice of z 2 CC or z 2 C�. In what follows, we take z 2 CC, so from this point
on,mC D dim@z and m� D dim@z.

We now summarize all the relevant previous results in a theorem that we call
the main theorem. This theorem is of paramount importance: it is precisely what we
need from mathematics for our physical purposes. We therefore present this theorem
in sufficient detail and in fact, in an independent self-contained way for the ease of
using the theorem without any further references.

Theorem 3.4 (The main theorem). Let Of be an initial symmetric operator with
domainDf and adjoint Of C, Of � Of C, let @z and @z be the deficient subspaces of Of ,

@z D ker Of C .z/ D
n
�z W Of C�z D z�z

o
;

@z D ker Of C .z/ D
n
�z W Of C�z D z�z

o
;

where z 2 CC is arbitrary, but fixed, and let m˙ be the deficiency indices of Of ,
mC D dim@z andm� D dim@z.

The operator Of has s.a. extensions OfU D Of C
U , Of � OfU iff both its deficient

subspaces@z and@z are isomorphic, or iff its deficiency indices are equal,m˙ D m.
If the deficient subspaces are trivial, i.e., if both deficiency indices are equal to

zero, m˙ D 0, the operator Of is essentially s.a., and its unique s.a. extension is its

closure Of D . Of C/C, which coincides with its adjoint, Of D . Of /C D Of C.
If the deficient subspaces are nontrivial, i.e., if the deficiency indices are different

from zero, m˙ D m ¤ 0, there exists an m2-parameter family f OfU g of s.a.
extensions that is the manifold U .m/, a unitary group.

Each s.a. extension OfU is determined by an isometric mapping OU W @z 7�! @z of
one of the deficient subspaces onto another and is given by

DfU D Df C
� OI C OU

�
@z

D
n
�U W �U D � C �z C OU�z; 8� 2 Df ; 8�z 2 @z; OU�z 2 @z

o
; (3.31)

where Df is the domain of the closure Of , and

OfU �U D Of � C z�z C z OU�z : (3.32)
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Conversely, any isometry OU W @z 7�! @z that establishes an isomorphism between
the deficient subspaces defines an s.a. extension OfU of Of given by (3.31) and (3.32).

The s.a. extension OfU can be equivalently defined as an s.a. restriction of the
adjoint Of C given by

OfU W
8
<

:
DfU D

n
�U W �U 2 Df C I !f C

�
�z C OU�z; �U

�
D 0; 8�z 2 @z

o
;

OfU �U D Of C�U :
(3.33)

If the deficient subspaces are finite-dimensional, 0 < m < 1, then s.a.
extensions OfU can be specified in terms of unitary matrices U 2 U .m/. Namely, let
fez;kgm1 and fez;lgm1 be some orthogonal bases in the respective deficient subspaces
@z and @z. Then an s.a. extension OfU is given by

OfU W

8
ˆ̂
<

ˆ̂
:

DfU D
(
�U W �U D � CPm

kD1 ckeU;k; 8� 2 Df ;

8ck 2 C; eU;k D ez;k CPm
lD1 Ulkez;l ;

)

;

OfU �U D Of � CPm
kD1 ck

�
zez;k C z

Pm
lD1 Ulkez;l

�
;

(3.34)

where U D kUlkk is a unitary matrix.
An equivalent definition of OfU in terms of the adjoint Of C becomes

OfU W
(
DfU D

˚
�U W �U 2 Df C I !f C .eU;k; �U / D 0; 8k

�
;

OfU �U D Of C�U:
(3.35)

The main theorem finishes our exposition of the general theory of s.a. extensions
of symmetric operators.

3.5 Summary

We would like to finish this chapter with a comment about a possible application of
the general theory of s.a. extensions of symmetric operators to the physical problem
of constructing QM observables as s.a. operators, the problem that was extensively
discussed in Chap. 1. We mainly address the case of nontrivial physical systems with
boundaries and/or singularities of interaction where observables are represented
by differential operators and where the main difficulties are related to a proper
definition of s.a. Hamiltonians. Our comment has the form of brief “instructions”,
which are of a preliminary nature. A more detailed discussion of ordinary s.a.
differential operators including their spectral analysis is given in Chaps. 4 and 5.
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We recall that the challenge is to construct an s.a. operator starting from a
preliminary “candidate” for a QM observable,7 a certain formal expression giving
“a rule of action” and formally s.a., in particular, starting from an s.a. differential
operation8 Lf .x;�idx/.

3.5.1 The First Step

The first step of a standard program for solving this problem is to give the meaning
of a symmetric operator Of in an appropriate Hilbert spaceH to the formal expression
by indicating its domain Df � H, which must be dense. In the case of singular
differential operators arising under quantization of nontrivial physical systems, this
is usually achieved by choosing a domainDf in a Hilbert space of functions (wave
functions in the conventional physical terminology) like L2.a; b/ so that it avoids
the problems associated with boundaries and singularities. The simplest way is
to require that wave functions in Df vanish fast enough near the boundaries and

singularities. The symmetricity of Of is then easily verified by integrating by parts.
A symmetric operator thus defined will be called an initial symmetric operator Of in
what follows; see also Chap. 5.

3.5.2 The Second Step

We then must evaluate the adjoint operator Of C, i.e., find its “rule of action”
and its domain Df C 
 Df , solving the defining equation for the adjoint Of C.
In general, this is a nontrivial task. Fortunately, as regards differential operators,
the solution of this task for rather general symmetric operators is known in the
mathematical literature—see, for example, [9,116,128,131,142]—and is presented
in the next chapter.

3.5.3 The Third Step

This step consists in evaluating the deficient subspaces @z and @z with some fixed
z 2 CC as the spaces of solutions of the respective equations Of C�z D z�z, �z 2
Df C , and Of C�z D z�z, �z 2 Df C , and in determining the deficiency indices
mC D dim@z and m� D dim@z. This problem can also present a laborious
task. In the case of differential operators, it usually requires extensive experience
in special functions.

7Provided, for example, by canonical quantization rules for classical observables f .q; p/.
8Self-adjoint by Lagrange.
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Suppose the deficiency indices to have been found. If they are found to be
unequal, mC ¤ m�, our work stops with the inconsolable conclusion that there
is no QM analogue for the given classical observable f .q; p/. Such a situation, i.e.,
unequal deficiency indices, is encountered in physics, thus preventing some classical
observables to be transferred to the quantum level (an example is the momentum of
a particle on a semiaxis; see below). We note in advance that for s.a. differential
operators with real coefficients, the deficiency indices are always equal.

If the deficiency indices are found to be zero, m˙ D 0, our work also stops: a
symmetric operator Of is essentially s.a., and a uniquely defined QM observable is

its closure Of , which coincides with the adjoint Of C, Of D Of C.
If the deficiency indices are found to be equal and nonzero, m˙ D m > 0, the

fourth step becomes a necessity.

3.5.4 The Fourth Step

At this step, we correctly specify the entire m2-parameter family f OfU g of s.a.
extensions OfU of an initial symmetric operator Of in terms of isometries OU W @z 7�!
@z, or in terms of unitary m � m matrices U . The general theory provides two
ways of specification given by the main theorem. The specification based on (3.31)
and (3.32) or (3.34) (and usually presented in the mathematical literature) appears
more explicit in comparison with the specification based on (3.33) or (3.35), which
requires solving the corresponding linear equation for the domains DfU . But the

first specification assumes knowledge of the closure Of of Of if the initial symmetric
operator is nonclosed,9 which requires solving linear equations in (3.13), (3.16), or
(3.17) for the domain D Of . The second specification can sometimes become more

economical because it avoids the evaluation of the closure Of and deals directly with
the domains DfU of extensions. This particularly concerns the case of differential

operators where Of C is usually given by the same differential expression as the initial
operator Of and where the second specification allows eventually specifying the s.a.
extensions OfU in the customary form of s.a. boundary conditions; an additional
advantage is that only the asymptotic behavior of functions belonging the deficient
subspaces near boundaries and singularities is actually required to be known. This
possibility is discussed in Chap. 4. We say in advance that we also propose a
third possible way of specifying s.a. extensions of symmetric differential operators
directly in terms of, generally asymptotic, boundary conditions; see Chap. 4.

9We would like to emphasize that at this point, the general theory requires evaluating the closure Of .

It is precisely Of and Df that enter (3.31), (3.32), (3.34), and (3.35), while in the physics literature

we can sometimes see that in citing and using these formulas, Of andDf stand for Of andDf even

for a nonclosed symmetric operator Of , which is incorrect.
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3.5.5 The Final Step

The final step is the standard spectral analysis, i.e., finding the spectrum and
(generalized) eigenvectors of the resulting s.a. extensions OfU and their proper
physical interpretation; see Chap. 5. The problem of the physical interpretation of
the new m2 parameters, which are absent from the initial formal expression and
from the initial symmetric operator Of and are associated with the isometries OU or
unitary matrices U in the case of nonzero deficiency indices, is sometimes the most
difficult one. The usual approach to solving this problem is related to a search for
an appropriate regularization of singularities in the operator Of .

The above-described general procedure for constructing QM observables starting
from preliminary formal expressions is not universally obligatory. In some particular
cases, more immediate procedures are possible, especially if there exist additional
physical arguments. For example, in some cases, we can guess a proper domainDf

for an initial symmetric operator Of such that Of proves to be essentially s.a. from
the very beginning.



Chapter 4
Differential Operators

The present chapter is devoted to differential operators, more specifically, to
a comparative presentation of various methods of constructing s.a. differential
operators starting from formal s.a. differential operations. All the constructions are
based on the general theory of s.a. extensions of symmetric operators outlined in
the previous chapter. They cannot, however, be considered simple applications of
the general theory: they possess such additional features that make it necessary
to present differential operators as a separate chapter, which reveals the specific
features of differential operators, in particular, specific ways of describing s.a.
extensions of various symmetric operators. The peculiarity of ordinary differential
operators lies mainly in the fact that the asymmetry forms !f C and �f C permit
their representation in terms of boundary forms, which, eventually, allows one to
define s.a. operators in terms of s.a. boundary conditions.

Because of a particular importance of this subject for QM, we have attempted
to make the exposition of this chapter as self-contained as possible, so that the
reader could read it independently of Chap. 3. With respect to Chap. 3, it is actually
sufficient to be familiar with it only as far as the main theorem (Theorem 3.4) and
the brief “instructions” in Sect. 3.5.

It seems useful to make some remarks concerning the subject of our exposition
from the standpoint of the general theory of differential operators.

The subject area of differential operators has an almost century-long history and
is inexhaustible in its volume. We restrict ourselves to ordinary differential operators
in Hilbert spaces L2.a; b/, scalar operators. But the main results and conclusions
presented below can be extended to matrix differential operators in Hilbert spaces of
vector functions such asL2 .a; b/˚L2 .a; b/˚	 	 	 with some obvious modifications.

The foundations of the general theory of ordinary differential equations, includ-
ing their spectral analysis, were laid by Weyl [161–163]. Further development of the
theory, including different approaches to the subject and discussions of a number of
particular questions, can be traced along [9, 27, 51, 71, 79, 80, 93, 99, 102, 108, 116,
128, 131, 132, 142, 143, 148, 156, 160]. This list of references is mainly oriented to
physicists and in no way pretends to be complete; it can be considerably extended
and will be continued below.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 4,
© Springer Science+Business Media New York 2012
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As for partial differential operators, we refer to [24, 27, 56, 96, 99, 128, 131, 142,
149], where an extensive bibliography on the subject can be found. To physicists,
we especially recommend the books [27,56], where three-dimensional Hamiltonians
were classified.

We leave aside the theory of non-s.a. differential operators, which may have some
applications in the physics of open systems with emission and absorption.

The problem of spectral analysis of a physically important class of s.a. differen-
tial operators is discussed in the next chapter.

4.1 Differential Operations

A linear differential operation Lf of order n� 0 on the interval1 .a; b/ is an
expression of the form

Lf D fn .x/ dnx C fn�1 .x/ dn�1
x C 	 	 	 C f1 .x/ dx C f0 .x/ ; (4.1)

where the functions fk .x/ ; kD 0; 1; : : : ; n, defined on .a; b/ are called the
coefficient functions, or simply coefficients, of the differential operation. It is
naturally adopted that fn .x/ ¤ 0. A differential operation of order zero is a
function.

The differential operation Lf of (4.1) is naturally applicable to functions  .x/
that are a.c. in the interval together with their n � 1 derivatives2  .1/; : : : ;  .n�1/
�
 .1/ D  0� producing differential expressions

Lf  .x/ D
nX

kD0
fk .x/  

.k/ .x/ ;

and generating linear differential equations, the homogeneous one Lf  .x/ D 0

and the inhomogeneous one Lf  .x/ D �.x/. Under conditions that  .x/ is
square-integrable on .a; b/ together with Lf  .x/, the differential operation Lf
generates a differential operator in the Hilbert space L2.a; b/. Depending on the
properties of the coefficient functions of the Lf , various additional requirements can
be imposed on the functions  .x/, so that a differential operation Lf can generate
various operators in L2.a; b/. All such operators are called the differential operators
associated with a given differential operation. We let Of , with a possible subscript
or/and superscript, denote a differential operator associated with a given differential
operation Lf . The associated operators Of differ by their domains Df , while the

“rule of action” of all the operators is given by Lf .

1Our conventions about understanding this notion and the related terminology are explained in
Sect. 2.3.1.
2The derivative of order k of a function  is commonly denoted by  .k/.
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Admissible domains of operators associated with a given differential operation
Lf (4.1) depend on regularity (integrability, continuity, differentiability, etc.) of the

coefficients of Lf . The standard conditions on the coefficients are that the coefficients
fk .x/, k D 1; : : : ; n, should be a.c. in the interval .a; b/ together with their k � 1
derivatives, and their kth derivatives and the coefficient f0.x/ should be locally
integrable (the local integrability means (absolute) integrability in any finite interval
inside .a; b/). These conditions are sufficient for the product �.x/ Lf  .x/ to allow
its integration by parts and for the corresponding adjoint differential operation (see
below) with coefficients satisfying the same conditions to exist. The coefficients,
for example f0.x/, may tend to infinity as x ! a and/or x ! b. In addition,
it is required that the functions fk.x/=fn.x/, k D 0; : : : ; n � 1, and 1=fn.x/ be
locally integrable. This condition is necessary for the standard theory of differential
equations to be applicable to the linear differential equations generated by a given
differential operation like Lf  D 0, . Lf �W / D 0, and Lf  D �, . Lf �W / D �,
W 2 C (as a rule, we henceforth omit the obvious function argument x). For reasons
that will become clear later, we call the solutions of these equations that are a.c.
in .a; b/ together with their n � 1 derivatives the ordinary solutions. We do not
consider here the cases in which the coefficients have nonintegrable singularities
inside the interval.3 If the singularities are located at interior points of the interval
(as, for example, in the case of ı-potentials), the consideration must be appropriately
modified; see in this respect Chap. 7.

A differential operation (4.1) is called a regular differential operation if the
interval .a; b/ is finite and if the functions fk=fn, k D 0; : : : ; n � 1, and 1=fn
are integrable on the interval .a; b/, i.e., on the closed interval Œa; b� including the
endpoints. In the opposite case, i.e., if at least one of these conditions does not
hold, Lf is called a singular differential operation. The left endpoint a is called
a regular endpoint if a > �1 and the functions fk=fn and 1=fn are integrable
on a subinterval Œa; ˇ�, ˇ < b. In the opposite case, i.e., if at least one of these
conditions is invalid, the endpoint a is called a singular endpoint. Similar notions
are introduced for the right endpoint b. For a regular differential operation, both
endpoints of the interval are evidently regular.

In order to facilitate some technical points of the following exposition, we assume
that the coefficient functions fk are smooth functions in the interval .a; b/ (although
they can be singular at finite endpoints). We partly justify this assumption by noting
that this condition holds for most QM problems. On the other hand, this assumption
allows a comparatively simple proof of some of the basic assertions that hold in
more general cases. We make special reservations concerning each of these cases; in
particular, the standard conditions on the coefficients can be considerably weakened
for even s.a. differential operations in their canonical representation (see below).

We now turn our attention to some other notions related to differential operations.

3This restriction is natural, e.g., for radial Hamiltonians.
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Let the functions ' and 
 belong to D .a; b/, the space of compactly supported
smooth functions; see Sect. 2.1. It is evident that Lf ' 2 D .a; b/ and ', 
, Lf ' 2
L2.a; b/. We consider the integral

R b
a

dx
 Lf ', which can be treated as the scalar

product
�

; Lf '

�
in L2.a; b/,

�

; Lf '

�
D
Z b

a

dx
 Lf ' D
Z b

a

dx
nX

kD1

fk'

.k/:

Integrating each term 
fk'
.k/ by parts k times, and taking the vanishing of

boundary terms into account because ' and 
 vanish near the boundaries, we obtain

�

; Lf '

�
D
Z b

a

dx Lf �
' D
� Lf �
; '

�
;

where the differential operation Lf � is given by

Lf � D .�dx/n fn C .�dx/n�1 fn�1 C 	 	 	 C .�dx/ f1 C f0: (4.2)

This differential operation (4.2) is called the adjoint differential operation, or the
adjoint by Lagrange, with respect to the initial differential operation Lf . The adjoint
differential operation Lf � can be presented in the standard form (4.1),

Lf � D
nX

kD0
f �
k .x/ d

k
x ; f

�
k .x/ D

n�kX

lD0
.�1/kCl

 
l C k
k

!

f
.l/

kCl .x/;

where
�
m
n

�
are binomial coefficients.

A differential operation Lf is called an s.a. differential operation, or s.a. by
Lagrange, if it coincides with its adjoint, Lf D Lf �. The self-adjointness of a
differential operation Lf is equivalent to the equality

�

; Lf '

�
D
� Lf 
; '

�
; 8'; 
 2 D.a; b/: (4.3)

We emphasize that the self-adjointness of a differential operation is only a
necessary, and generally not sufficient, condition for its associated operator Of
in L2 .a; b/ to be s.a. But only s.a. differential operations that can generate s.a.
differential operators are interesting from the standpoint of QM. The main problem
is to indicate a proper domain inL2 .a; b/ for an s.a. Lf . This proves to be impossible
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sometimes, whereas in other cases, a family of different s.a. operators can be
associated with a given s.a. differential operation.

We describe the general structure of s.a. differential operations of arbitrary order.
The coefficients of an s.a. differential operation Lf satisfy the relations

fk .x/ D
n�kX

lD0
.�1/kCl

 
l C k
k

!

f
.l/

kCl .x/; k D 0; 1; : : : ; n:

These relations can be resolved in the general form, which results in the so-called
canonical form of an s.a. differential operation

Lf D
nX

lD0
Lf.l/; Lf.2k/ D .�dx/k 
2kdkx ;

Lf.2kC1/ D i

2

h
.�dx/kC1 
2kC1d kx C dkx 
2kC1 .�dx/kC1i ;


2k D 
2k; 
2kC1 D 
2kC1; (4.4)

which is a sum of even canonical s.a. differential monomials Lf.2k/ of even order 2k
with real coefficients 
2k.x/, k D 0; 1; : : : ; Œn=2�, and odd canonical s.a. differential
binomials Lf.2kC1/ of odd order 2k C 1 with pure imaginary coefficient i
2kC1.x/,
k D 0; 1; : : : ; Œ.n � 1/=2�.

Even s.a. differential operations of even order n, n=2 2 ZC, are the sum of only
even s.a. monomials,

Lf D
n=2X

kD0
Lf.2k/ D

n=2X

kD0
.�dx/k 
2kdkx

D
n=2X

kD0
.�dx/k pn=2�kdkx ; pn=2�k D 
2k; (4.5)

and their coefficients are real; conversely, any s.a. differential operation with real
coefficients is even. Odd s.a. differential operations of odd order n, .n�1/=2 2 ZC,
are the sum of only odd s.a. binomials, Lf DP.n�1/=2

kD0 Lf.2kC1/, and their coefficients
are pure imaginary; any s.a. differential operation with pure imaginary coefficients
is odd. The general s.a. differential operation that is a sum of both even monomials
and odd binomials can be called a mixed one.

The simplest odd s.a. differential operation is

Lp D �idx; (4.6)
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and is identified with the QM momentum operator for a particle moving on an
interval of the real axis;4 see Chap. 1. This differential operation and its associated
operators, in particular, possible s.a. operators, are considered in detail in Chap. 6.

The simplest even s.a. differential operation is given by

LH D �d2x : (4.7)

In the physics literature, it is usually identified (for simplicity, we omit here the
factor 1=2m; see (1.5)) with the QM Hamiltonian for a free particle moving on an
interval of the real axis. Its simplest modification

LH D LHC V .x/ D �d2x C V .x/ ; V .x/ D V.x/; (4.8)

is identified with the QM Hamiltonian for a particle in a potential field V.x/.
Such second-order differential operations with various potentials V.x/ and their
associated s.a. operators are considered in detail in Chaps. 7–10.

Even s.a. differential operations are distinguished in a certain way. First, at
least one s.a. operator is associated with any such differential operations (see
below). Second, the theory of linear differential equations generated by even s.a.
differential operations Lf can be conveniently formulated in terms of the so-called
quasiderivatives, which have made possible great advances in developing the theory
of even s.a. differential operators associated with even s.a. differential operations;
in particular, the associated s.a. operators can be conveniently specified in terms
of the quasiderivatives; for details, see [9, 116]. We reproduce the corresponding
definitions below.

For each even s.a. differential operation Lf of order n, we introduce the
quasiderivative differential operations LKŒk�

x , k D 1; : : : ; n, defined recursively for
a given Lf by

LKŒk�
x D dkx ; k D 0; : : : ; n=2 � 1; LKŒn=2�

x D p0dn=2x ;

LKŒn=2Ck�
x D pkdn=2�kx � dx LKŒn=2Ck�1�

x ; k D 1; : : : ; n=2;

and defining the so-called quasiderivatives  Œk�,

 Œk� D LKŒk�
x  ; (4.9)

by the recursion

 Œk� D  .k/; k D 1; : : : ; n=2 � 1;  Œn=2� D p0 .n=2/;
 Œn=2Ck� D pk .n=2�k/ � dx Œn=2Ck�1�; k D 1; : : : ; n=2;

4This identification implies that we use a system of units where „ D 1.
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we recall that pn=2�k D 
2k ; see (4.5). The recursive equations can be resolved to
yield the following explicit representation for quasiderivatives5:

 Œk� D  .k/; k D 0; : : : ; n=2 � 1;

 Œn=2Ck� D
n=2X

lDn=2�k
.�dx/lCk�n=2.
2l .l//; k D 0; : : : ; n=2: (4.10)

In these terms, the even s.a. differential operation (4.5) can be simply repre-
sented as

Lf D LKŒn�
x H) Lf  D  Œn�: (4.11)

For the representation (4.9)–(4.11) of even s.a. differential operations, the
regularity conditions for the coefficient functions pk can be considerably weakened:
it is sufficient that the functions p1; : : : ; pn=2; 1=p0 be locally integrable. An even
s.a. differential operation of order n is then applicable to functions  that are a.c. in
the interval .a; b/ together with their quasiderivatives  Œk�, k D 1; : : : ; n � 1. The
definitions of regular and singular endpoints are modified accordingly.

In the theory of differential equations generated by even s.a. differential oper-
ations Lf , it is useful to introduce the quasi-Wronskian Wr .u1; : : : ; un/ of a set of
functions ui , i D 1; : : : ; n, instead of the ordinary Wronskian Wr .u1; : : : ; un/. We
recall both definitions:

Wr .u1; : : : ; un/ D det
ˇ
ˇWij

ˇ
ˇ ; Wij D uŒi�1�j ;

Wr .u1; : : : ; un/ D det
ˇ
ˇWij

ˇ
ˇ ; Wij D u.i�1/j ; i; j D 1; : : : ; nI

see, e.g., [9, 116].
Both the quasi-Wronskian and the ordinary Wronskian are equal to zero for

linearly dependent solutions ui , i D 1; : : : ; n, of the equation Lf u D 0, but in
contrast to the ordinary Wronskian, the quasi-Wronskian is a nonzero constant for
a set of n linearly independent solutions.

As an example, we consider an s.a. differential operation of second order,

Lf D �dx Œp0.x/dx�C p1.x/:
In this case,

LKŒ0�
x D 1; LKŒ1�

x D p0.x/dx; LKŒ2�
x D p1.x/ � dx LKŒ1�

x D Lf ;
Wr .u1; u2/ D u1u

Œ1�
2 � uŒ1�1 u2 D p0.x/Wr .u1; u2/ :

5Quasiderivatives naturally emerge in this form when a product � Lf  is integrated by parts. The
representation (4.10) can be taken as an independent definition of quasiderivatives. A similar
representation evidently holds for quasiderivative differential operations.
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For any s.a. differential operation Lf of order n, the so-called differential
Lagrange identity

� Lf  �
� Lf �

�
 D dx Œ�;  �f (4.12)

holds, where the local sesquilinear form Œ�;  �f .x/ is a sesquilinear form in
functions and their derivatives at the point x up to order n � 1 (for n D 0, this
form is evidently zero).

The form Œ�;  �f is specific for each Lf ; its coefficients are determined by the

coefficients of Lf , but to simplify notation, we usually omit the generic subscript f if
we speak about properties of the form that are common to all Lf under consideration
or if an origin of the form is clear from the context. For the general (mixed) s.a.
differential operation Lf (4.4), the local sesquilinear form Œ�;  �f is a sum of the

corresponding partial forms for even s.a. monomials Lf.2k/ and odd s.a. binomials
Lf.2kC1/ that constitute the Lf :

Œ�;  �f D
nX

lD1
Œ�;  �f.l/ ;

Œ�;  �f.2k/ D �
k�1X

lD0

h
�.l/ .�dx/k�l�1 .
2k .k//� .� �  /

i
; k � 1;

Œ�;  �f.2kC1/
D �i�.k/
2kC1 .k/ C i

2

k�1X

lD0

n
�.l/.�dx/k�l�1

�
h

2kC1 .kC1/ C �
2kC1 .k/

�0iC .� �  /
o
; k � 0: (4.13)

For even s.a. differential operations of (even) order n, the local sesquilinear form
Œ�;  �f is a simple sesquilinear form in quasiderivatives with coefficients˙1:

Œ�;  �f .x/ D
n=2�1X

kD0

�
�Œn�k�1� Œk� � �Œk� Œn�k�1�

�
: (4.14)

As simple examples, we have Œ�;  �p.x/ D �i�.x/ .x/, and

Œ�;  �H.x/ D Œ�;  �H .x/ D �0.x/ .x/ � �.x/ 0.x/; (4.15)

for the respective first-order differential operation (4.6) and second-order differ-
ential operations (4.7) and (4.8). The simplest way of verifying the differential
Lagrange identity (4.12) is by directly differentiating representations (4.13) and
(4.14).



4.1 Differential Operations 111

We now indicate some properties of the forms (4.13) and (4.14). We first warn the
reader against possible confusion with notation: the symbol of the form, especially
without a generic subscript, Œ; �, coincides with the conventional symbol of a
commutator. But the form does not possess the properties of a commutator, in
particular, Œ ;  � ¤ 0. The form is evidently anti-Hermitian, Œ�;  � D � Œ ; ��.
Therefore, its reduction to the diagonal � D  defines the quadratic form Œ ;  �,
which is pure imaginary, Œ ;  � D � Œ ;  �. In addition, for even s.a. differential
operations whose coefficients are real, we have Œ�;  � D �

�; 
�
, whence it follows

that
�
 ; 

� � 0, while for odd s.a. differential operations whose coefficients are

pure imaginary, we have Œ�;  � D � ��; �.
It directly follows from (4.12) that the reduction of the local form Œ�;  �f

to the space of solutions of the homogeneous equation Lf u D 0 is independent
of x: Œ�;  �f D const, if Lf  D Lf �D 0. We note that for even and odd s.a.
differential operations with the respective real and pure imaginary coefficients, the
corresponding complex-conjugate functions also satisfy the homogeneous equation.
For even second-order s.a. differential operations, the form Œ�;  � coincides with the
quasi-Wronskian of the functions � and  up to a sign:

Wr. N�; / D �.x/ Œ1�.x/ � �Œ1�.x/ .x/ D � Œ�;  � :
Similar assertions, obviously modified, hold for solutions of the eigenvalue problem
Lf u� D �u�, Im� D 0:

The differential Lagrange identity yields the integral Lagrange identity

Z ˇ

˛

dx� Lf  �
Z ˇ

˛

dx Lf � D Œ�;  �f .x/
ˇ
ˇˇ
˛
; (4.16)

where Œ˛; ˇ� � .a; b/.
If the corresponding integrals converge on the whole interval .a; b/, so that we

can set ˛ D a and ˇ D b in the left-hand side of (4.16), the integral Lagrange
identity is generalized to the whole interval in the form

Z b

a

dx� Lf  �
Z b

a

dx Lf � D Œ�;  �f .x/
ˇ
ˇb
a
D lim

˛!a;ˇ!b
Œ�;  �f .x/

ˇ
ˇˇ
˛
: (4.17)

The integrals certainly exist if one of the functions is compactly supported, for

example,  D ' 2 D .a; b/. In this case, we evidently have Œ�; '�f .x/
ˇ
ˇb
a
D 0,

and the integral Lagrange identity becomes an equality:

Z b

a

dx� Lf ' D
Z b

a

dx Lf �'; 8' 2 D.a; b/; (4.18)

which is an extension of equality (4.3).
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The integral Lagrange identity makes it possible to evaluate the scalar-product-
like integrals

�
u�; u�

� D R b
a

dxu�u� for solutions of the eigenvalue problem, Lf u� D
�u�, Lf u� D �u�, in terms of limit values of the corresponding local sesquilinear
form6:

Z b

a

dxu�u� D 1

� � � Œu�; u��
ˇ̌b
a
: (4.19)

The functions u� and/or u� may not belong to the Hilbert space L2.a; b/. In this

case, by the integral
R b
a

dxu�u�, we mean the limit lim
˛!a;ˇ!b

R ˇ
˛

dxu�u� in the

sense of distributions. The representation (4.19) can be used, and is indeed used
in the physics literature, for establishing the orthonormality relations between
(generalized) eigenfunctions of physical observables.

4.2 Some Notions on Solutions of Ordinary Differential
Equations

The theory of s.a. differential operators in L2 .a; b/ is based on the theory of
ordinary differential equations, both homogeneous and inhomogeneous, on the
interval .a; b/. We therefore remind the reader of some necessary facts from this
theory as applied to differential equations generated by s.a. differential operations
on the interval .a; b/with special emphasis on their general solutions, including
the so-called generalized solutions. As noted above, we restrict ourselves to the
case in which possible nonintegrable singularities of the coefficient functions of the
corresponding differential operations can be located only at the ends of the interval
.a; b/. For simplicity’s sake, we also assume that these functions are smooth in
the interval, but the conclusions obtained within this framework are appropriately
extended to more general cases, about which we shall make some special remarks.

To make the exposition more illuminating for physicists, we present the basic
points of the theory of ordinary differential equations by considering examples of
differential equations generated by the s.a. first-order differential operation (4.6)
and the second-order differential operation (4.8), widely encountered in physical
applications. The extension to the general case is not a particular problem, and
remarks in that direction are made where appropriate.

Regarding the s.a. differential operation (4.6), the general solutions of the
corresponding homogeneous and inhomogeneous equations are obvious and well
known. This allows a complete solution of the problem of constructing an s.a.
differential operator (the momentum operator) associated with this differential
operation on different intervals; see Chap. 6.

6In the physics literature, such integrals are called overlap integrals. The formula (4.19) that follows
implies that the overlap integrals for solutions of the eigenvalue problem are determined by the
asymptotic behavior of the eigenfunctions at the endpoints of the interval.
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We therefore turn to differential operation (4.8), which defines an ordinary
differential operator in a complex linear space of functions that are a.c. in the interval
.a; b/, together with their first derivatives, the square-integrability of the functions
involved is not assumed in advance. By our facilitating convention, the potential
V is assumed to be a smooth function in the interval, which does not exclude
singular behavior of the potential at the ends of the interval. We note that from
the standpoint of constructing associated s.a. operators, this condition is actually
not too restrictive. For instance, let the potential V .x/ be not smooth, but locally
bounded with possible steplike jumps. Any such potential can be approximated
by a smooth potential Vreg such that the difference ıV .x/ D V .x/ � Vreg .x/ is
bounded. Then the operators OH and OHreg associated with the respective differential
operations (4.8) differ from each other by the bounded s.a. multiplication operator
cıV D ıV .x/, defined everywhere, OH D OHreg C cıV , and therefore, they are s.a. or
non-s.a. simultaneously; in other words, any s.a. operator OHreg is assigned the s.a.

operator OH D OHreg CcıV with the same domain, and vice versa.
In the above-mentioned space of functions, we first examine the homogeneous

differential equation
LHu D �u00 C V .x/ u D 0 (4.20)

and then the inhomogeneous differential equation

LHy D �y00 C V .x/ y D h .x/ ; (4.21)

where h .x/ is a locally integrable function.
It is known from the theory of ordinary differential equations that if V .x/ is

locally integrable, then (4.20) has two linearly independent solutions u1 and u2,LHu1;2 D 0, that form a fundamental system, in the sense that the general solution
of (4.20) is given by

u.x/ D c1u1.x/C c2u2.x/; (4.22)

where c1 and c2 are arbitrary complex constants; these constants are fixed by initial
conditions for u and u0 at some interior point of the interval .a; b/ or at its regular
endpoint. The linear independence of u1 and u2 is equivalent to the requirement7

Wr.u1; u2/ ¤ 0.
It is evident that the fundamental system u1;2 is defined up to a nonsingular linear

transformation. For real-valued potentials, V D V , the functions u1;2 can also be
chosen as real-valued. If the left endpoint a of the interval .a; b/ is regular, in
particular, V is integrable up to a,

R ˇ
a

dx jV j <1, ˇ < b, then any solution (4.22)
and its first derivative have finite limits at this endpoint; see Lemma 4.5 below. The
same is true for the regular right endpoint b. In the case of singular endpoints, the

7In the case under consideration, the usual Wronskian coincides with the quasi-Wronskian.
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fundamental solutions and/or their first derivatives can have no limits, in particular,
can be infinite, at such endpoints. If the potential V is smooth in the interval .a; b/,
then any solution (4.22) is also smooth in this interval.

The general solution of the inhomogeneous equation (4.21) is given by

y .x/ D c1u1 .x/C c2u2 .x/

C 1

Wr.u1; u2/

"

u1 .x/
Z x

˛

dx0u2hC u2 .x/
Z ˇ

x

dx0u1h
#

; (4.23)

where ˛ and ˇ are some interior points of the interval .a; b/, and c1 and c2 are
arbitrary constants fixed by initial conditions for y and y0 at some inner point of
the interval .a; b/ or at its regular endpoint. If the left endpoint a of the interval
is regular, we can always take ˛ D a. This is also possible in case the endpoint a
is singular if the corresponding integral is certainly convergent, for example, if the
functions u2 and h are square-integrable on the interval .a; x/; the same is true for
the right endpoint b.

We now examine the question of so-called generalized solutions of the ho-
mogeneous equation (4.20), i.e., the question of functions u satisfying the linear
functional equation8

�
u; LH


�
D
Z b

a

dxu LH
 D 0; 8
 2 D .a; b/ : (4.24)

It is evident that any ordinary solution u of the homogeneous equation (4.20) is a
generalized solution by virtue of the equality

Z b

a

dxu LH
 D
Z b

a

dx LHu
; 8
D.a; b/; (4.25)

which is a particular case of the integral Lagrange identity (4.18) with Lf D LH
and � D u. We show that conversely, any generalized solution of the homogeneous
equation under consideration is an ordinary solution, i.e., any solution of (4.24) is
given by (4.22). We actually need a generalization of du Bois–Reymond lemma,
Lemma 2.12. We obtain this generalization on the basis of two auxiliary lemmas,
and it then becomes clear how the obtained result can be extended to differential
equations of any order.

Lemma 4.1. A function � 2 D .a; b/ can be represented as

� D LH
; 
 2 D .a; b/

8For a smooth V , the function u in (4.24) can be considered a distribution; then the sign of the
integral in (4.24) is symbolic; however, for our purposes it is sufficient to consider u a usual
function.
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iff � is orthogonal to all solutions u of the homogeneous equation9 (4.20),

.u; �/ D
Z b

a

dxu .x/� .x/ D 0; 8u W LHu D 0; (4.26)

which is equivalent to the orthogonality of the function � to a fundamental system
of solutions u1 and u2 of (4.20), .u1; �/ D .u2; �/ D 0.

Proof. Necessity immediately follows from (4.25).
Sufficiency: Let the function � 2 D .a; b/ satisfy condition (4.26) and let

supp� � Œ�; ı� � .a; b/. We choose the particular solution 
 of the inhomogeneous
equation LH
 D � given by (4.23) with c1 D c2 D 0, ˛ D a, ˇ D b,


 .x/ D 1

Wr .u1; u2/

"

u1 .x/
Z x

a

dx0u2�C u2 .x/
Z b

x

dx0u1�
#

I

we can set ˛ D a and ˇ D b even if the interval .a; b/ is infinite because of the
compactness of the support of the function �. Because the functions u1; u2, and
� are smooth, the function 
 is also smooth; because of condition (4.26) and the
compactness of the support of the function �, we have 
 D 0 for x < � and x > ı,
i.e., 
 2 D .a; b/, which proves the lemma. ut
Lemma 4.2. Any function ' 2 D .a; b/ can be represented as follows:

' D c1 .'/ '1 C c2 .'/ '2 C LH
; ci .'/ D .ui ; '/ ; i D 1; 2;

where u1 and u2 form a fundamental system of solutions of (4.20) and '1, '2, and 

are functions from D .a; b/ such that

�
ui ; 'j

� D ıij ; i; j D 1; 2 I (4.27)

the functions '1 and '2 can be considered fixed functions, independent of '.

Proof. We first prove the existence of a pair '1, '2 of functions with property
(4.27). It is sufficient to demonstrate that there exists a pair 
1, 
2 of functions
such that the matrix Aij D

�
ui ; 
j

�
is nonsingular, detA ¤ 0. Then the functions

'i D
�
A�1�

j i

j form the required pair. Let .˛; ˇ/ be any finite interval inside the

interval .a; b/. The restrictions of the fundamental system u1 and u2 to this interval,
i.e., u1 and u2, considered only for x 2 .˛; ˇ/, belong to L2 .˛; ˇ/. The linear
independence of u1 and u2 implies that the matrix Uij D

R ˇ
˛

dxuiuj is nonsingular.
Because D .˛; ˇ/ is dense in L2 .˛; ˇ/, we can find some functions 
1 and 
2 from
D .˛; ˇ/ arbitrarily close to the respective functions u1 and u2 on the interval .˛; ˇ/.

9Although u is generally not square-integrable, the symbol . ; / for the scalar product in (4.26) is
correct because of the compactness of the support of the function �.
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It follows that the matrix Aij D
R ˇ
˛

dxui
j is also arbitrarily close to the matrix U ,
and therefore, the matrix A is also nonsingular. At this point, it remains to note that
the function ' � c1 .'/ '1 � c2 .'/ '2 satisfies the condition of Lemma 4.1. ut

We can now prove a lemma generalizing the du Bois–Reymond lemma,
Lemma 2.12.

Lemma 4.3. A locally integrable function u satisfies (4.24) iff u is smooth on .a; b/
and satisfies the homogeneous equation (4.20). This implies that any generalized
solution of the equation is a usual smooth solution.

Proof. Sufficiency immediately follows from (4.25). Necessity is proved on the
basis of Lemma 4.2. Let ' be an arbitrary function in D .a; b/. By virtue of
Lemma 4.2, we have the representation

' � .u1; '/ '1 � .u2; '/ '2 D LH
;
where '1; '2, and 
 are some functions in D .a; b/ and u1; u2 is a fundamental
system of solutions of (4.20). Substituting the corresponding representation of LH

in the left-hand side of (4.24) and rearranging the obtained expression in an obvious
way, we obtain that (8' 2 D .a; b/)

�
u; LH


�
D .u; ' � .u1; '/ '1 � .u2; '/ '2/

D
�

u � .u; '1/u1 � .u; '2/u2; '
�

D
Z ˇ

˛

dx.u � c1u1 � c2u2/' D 0;

where ci D .'i ; u/, i D 1; 2, are constants, whence it follows that u D c1u1C c2u2;
the representation (4.22) for u is a solution of (4.20). This completes the proof of
the lemma. ut

We note that the above-presented method of proving the lemma on the basis of the
fundamental system of solutions of the homogeneous equation under consideration
is obviously extended to the general case of homogeneous equations generated by
differential operation (4.1) (not necessarily s.a.) with smooth coefficients.

Lemma 4.4. A locally integrable function u satisfies the equation

�
u; Lf 


�
D
Z b

a

dxu Lf 
 D 0; 8
 D D .a; b/ ; (4.28)

where Lf is an arbitrary nth-order differential operation (4.1) with smooth coeffi-
cient functions, iff u is smooth in .a; b/ and satisfies the adjoint equation Lf �u D 0.
This implies that any generalized solution of (4.28) is an ordinary smooth solution
of the adjoint equation. It is evident that if Lf is an s.a. differential operation, then u
satisfies the equation Lf u D 0.
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This statement is well known in the theory of distributions [88, 140].
An obviously modified similar statement can be extended to the general differ-

ential operation (4.1) with coefficients not necessarily smooth, but satisfying the
standard conditions cited in Sect. 4.1. For even s.a. differential operations, a similar
statement formulated in terms of quasiderivatives holds under the above-mentioned
weakened conditions on the coefficient functions; see [9, 116].

This result provides a basis for evaluation of the adjoint of an initial symmetric
operator associated with a given s.a. differential operation; see below.

As is known, an ordinary differential equation of order n can be reduced to a
system of n first-order differential equations, so that any differential operation Lf
(4.1) is assigned a matrix differential operation of first order with n � n matrix
coefficients, and vice versa. This reduction is useful for proving the solvability of
homogeneous and inhomogeneous equations and for establishing the structure of
their general solutions. In particular, it can be shown that under standard conditions
on the coefficients, the solutions of both homogeneous, Lf u D 0, and inhomoge-
neous, Lf y D h, equations and their n � 1 derivatives, all being a.c. in the interval,
have finite boundary values at regular endpoints, or continuous up to such endpoints,
and these boundary values can be arbitrary; for the inhomogeneous equation, it is
required that its right-hand side h be locally integrable up to the regular (finite)
endpoints. Needless to say, this is true for differential equations generated by s.a.
differential operations. For differential equations generated by even s.a. differential
operations, a similar assertion holds under weakened conditions on the coefficients
with the replacement of derivatives by quasiderivatives.

After all this, the concluding remark of this section looks rather natural. The
previous consideration and all that follows is directly generalized to matrix differ-
ential operations, i.e., to differential operations with matrix coefficients, generating
systems of differential equations, both homogeneous and inhomogeneous, and
their associated differential operators in Hilbert spaces of vector functions like
L2 .a; b/˚	 	 	˚L2 .a; b/, wherein vector functions are columns of square-integrable
functions. Such matrix differential operators are inherent in both nonrelativistic and
relativistic QM, describing in particular the radial motion of spinning particles, for
example, the Dirac particles; see Chaps. 9 and 10.

4.3 Natural Domain

4.3.1 General Remarks

We are now in a position to proceed to constructing s.a. differential operators in
L2 .a; b/ associated with s.a. differential operations (4.1) on the basis of the general
theory of s.a. extensions of symmetric operators outlined in Chap. 3.

We begin with the so-called natural domain for the s.a. differential operation Lf
of order n defined on an interval .a; b/.
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LetD�
Lf .a; b/ be a subspace ofL2 .a; b/ of functions � a.c. in the interval .a; b/

together with their derivatives of order up to n� 1 and such that the functions Lf  �
are square-integrable on the interval, i.e.,

D�
Lf .a; b/ D

n
 � W  �;  0�; : : : ;  

.n�1/� a:c: in .a; b/I  �; Lf  � 2 L2.a; b/
o
:

(4.29)

It is evident thatD�
Lf .a; b/ is the largest subspace ofL2 .a; b/ on which a differential

operator with the rule of action Lf can be defined: the requirement of absolute
continuity for functions �;  0�; : : : ;  

.n�1/� in the interval .a; b/ is necessary for the
expression Lf  � to be meaningful, while the requirement that � and Lf  � belong to
L2 .a; b/ is necessary for the expression Lf  � to define an operator in L2 .a; b/. We
call the domain (4.29) the natural domain for an s.a. differential operation Lf and let
Of � denote the operator in L2 .a; b/ associated with this differential operation and

defined on the natural domain, so that

Of � W
8
<

:

Df � D D�
Lf .a; b/ ;

Of � � D Lf  �; 8 � 2 D�
Lf .a; b/ :

(4.30)

It is evident that the linear space D .a; b/ of smooth functions with compact
support belongs to the natural domain, D .a; b/ � D�

Lf .a; b/, and because D .a; b/
is dense in L2 .a; b/, the domain D�

Lf .a; b/ is also dense in L2 .a; b/, so that the

operator Of � is densely defined.
A function � belonging to the natural domain and its derivatives can be singular

at an endpoint of the interval unless the endpoint is regular.

Lemma 4.5. Let D�
Lf .a; b/ be the natural domain for an s.a. differential operation

Lf of order n with regular endpoints, one or both. The functions belonging to
D�

Lf .a; b/ and their derivatives of order up to n � 1 have finite boundary values at

the regular endpoints, or are continuous up to these endpoints, and these boundary
values can be arbitrary. For example, let a be a regular endpoint. Then

lim
x!a

 
.k/
� .x/ D  .k/� .a/ <1; k D 0; 1; : : : ; n � 1; 8 � 2 D�

Lf .a; b/:

For even s.a. differential operations with appropriately modified natural domain
(under weakened conditions on the coefficients), a similar assertion holds for
quasiderivatives, for example,

lim
x!a

 
Œk�
� .x/ D  Œk�� .a/ <1; k D 0; 1; : : : ; n � 1; 8 � 2 D�

Lf .a; b/;

if the endpoint a is regular.
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Proof. Any function  � 2 D�
Lf .a; b/ can be considered a solution of the inhomoge-

neous differential equation
Lf  �.x/ D �.x/; (4.31)

where the right-hand side �.x/ is square-integrable on .a; b/ and is therefore
locally integrable up to the regular (finite) endpoints. It then remains to refer to
the behavior of solutions of inhomogeneous differential equations at regular ends;
see the penultimate paragraph of the previous section. ut

As was mentioned above, in the physics literature and even in textbooks on
QM for physicists, an s.a. differential operation Lf is not infrequently identified
with an observable, an s.a. operator Of in L2.a; b/, whereas the spectrum and
eigenfunctions of this operator are searched for without any reservations about
its domain. This actually implies that by the domain of Of is implicitly meant the
natural domain for Lf , i.e., by the observable is meant the operator Of �, Of D Of �:
it is believed that the only requirements for an observable are the requirement of
square-integrability for its eigenfunctions of bound states and the requirement of
local square-integrability and “normalizability to ı-function” for its (generalized)
eigenfunctions of continuous spectrum. This proves to be sufficient sometimes,
but generally, this is not the case; see the paradoxes in Chap. 1 and the following
chapters.

Therefore, the question we try to answer first is whether the operator Of � (4.30)
associated with an s.a. operation Lf and defined on the natural domain is really s.a.
In general, to answer this question is not a simple task. A simpler preliminary task
is to check the symmetricity of Of �, which is a necessary condition for its self-
adjointness. We note that in the physics literature, symmetricity is not infrequently
identified with self-adjointness, which is wrong for unbounded operators. But for the
operator Of �, as we will see below, its symmetricity implies its self-adjointness be-
cause it is the adjoint of a symmetric operator. The general theory of s.a. extensions
of symmetric operators, see Chap. 3, suggests that studies on possible symmetricity,
and then self-adjointness, of the operator Of �, or its restrictions, are conveniently
carried out in terms of the asymmetry forms (3.9) and (3.10) for the operator Of �.
These forms are completely similar to the asymmetry forms for the adjoint of
a symmetric operator10 introduced in Sect. 3.2. The sesquilinear asymmetry form
!f � and the quadratic asymmetry form �f � are defined respectively by

!f �.��;  �/ D
Z b

a

dx�� Lf  � �
Z b

a

dx Lf �� �; 8��;  � 2 D�
Lf .a; b/; (4.32)

10The more so, since Of � proves to be the adjoint of a symmetric operator; see below.
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and

�f �. �/ D
Z b

a

dx � Lf  � �
Z b

a

dx Lf  �  �; 8 � 2 D�
Lf .a; b/; (4.33)

where the form �f � is a reduction of the form !f � to the diagonal �� D  �.
The forms !f � and �f � determine each other; the arguments are similar to those
in Sect. 3.2; we use both for convenience. Each of these forms is a measure of
asymmetricity of the operator Of �: if the asymmetry forms are trivial, i.e., are
identically zero, the operator Of � is symmetric, and vice versa. It is essential that
the values of the asymmetry forms for the differential operator Of � are determined11

by the asymptotic behavior of functions belonging to D�
Lf .a; b/ at the endpoints a

and b of the interval. Namely, the forms !f � and�f � are expressed in terms of the
boundary values of the respective local sesquilinear form Œ��;  ��f (4.13), (4.14)
and the local quadratic form Œ �;  ��f , the reduction of the local sesquilinear form
to the diagonal �� D  �. Indeed, according to definition (4.32) and to the integral
Lagrange identity (4.17), we have

!f � .��;  �/ D Œ��;  ��f .x/
ˇ̌b
a
; 8��;  � 2 D�

Lf .a; b/; (4.34)

where by definition,

Œ��;  ��f .a=b/ D lim
x!a=b

Œ��;  ��f .x/ : (4.35)

Each of the boundary values (4.35) exists by itself because of the existence of
the integrals on the right-hand side of (4.32). We note that their existence does not
imply that the functions belonging to D�

Lf .a; b/ and their (quasi)derivatives have

finite boundary values at the endpoints of the interval, unless the endpoints are
regular.

For the quadratic asymmetry form, we similarly have

�f � . �/ D Œ �;  ��f .x/
ˇ
ˇb
a
; 8 � 2 D�

Lf .a; b/; (4.36)

where
Œ �;  ��f .a=b/ D lim

x!a=b
Œ �;  ��f .x/ : (4.37)

It is natural to call the boundary values (4.35) and (4.37) of the local forms
the boundary forms, respectively the sesquilinear boundary form and quadratic
boundary form. It is also natural to distinguish the left and right boundary forms
defined on the respective left, a, and right, b, endpoints of the interval. It is
significant that the left and right boundary forms are independent in the following

11As for any differential operator associated with an s.a. differential operation.



4.3 Natural Domain 121

sense. Let us evaluate the left form Œ��;  ��f .a/ for some functions ��;  � 2
D�

Lf .a; b/. For any function ��, we can find a function e�� 2 D�
Lf coinciding with

�� near the left endpoint a and vanishing near the right endpoint b, more exactly,
e�� D ��, a � x < ˛ < b ande�� D 0, ˛ < ˇ < x � b. For differential operations
satisfying the standard conditions on the coefficients,12 such a function can be
obtained by multiplying �� by a steplike smooth function Q� .x/ equal to unity near
x D a and zero near x D b. Accordingly, we have Œe��;  ��f .a/ D Œ��;  ��f .a/,
whereas Œe��;  ��f .b/ D 0. A similar argument holds for the right endpoint b.
It follows that the condition for triviality of the asymmetry form !f � , i.e., the
condition for its identically vanishing !f � .��;  �/ D 0, 8��;  � 2 D�

Lf .a; b/,
is equivalent to the condition for triviality of each of the left and right boundary
forms (4.35) by itself, i.e., to the boundary conditions Œ��;  ��f .a=b/ D 0,
8 �; �� 2 D�

Lf .a; b/. This assertion is evidently extended to the boundary forms

Œ �;  �� .a=b/: the condition �f � . �/ D 0, 8 � 2 D�
Lf .a; b/ is equivalent to the

boundary conditions Œ �;  ��f .a=b/ D 0, 8 � 2 D�
Lf .a; b/.

We thus obtain that an answer to the question whether the operator Of � is
symmetric (and consequently, s.a.), is determined by the respective triviality or
nontriviality of the boundary forms, both left and right, i.e., by whether these forms
vanish identically on D�

Lf .a; b/. We briefly discuss a possible way to answer this

question. For definiteness, we examine the boundary forms Œ �;  ��f .a=b/. As
was mentioned above, the natural domain D�

Lf .a; b/ can be defined as the subspace

of square-integrable solutions � of the differential equations (4.31). Therefore, we
can evaluate the boundary forms Œ �;  ��f .a=b/ by establishing the asymptotic
behavior of the general solution  � of (4.31) at the endpoints a and b of the interval
under the subsidiary condition that  � be square-integrable on .a; b/, i.e., at the
endpoints. If we can prove that the boundary forms Œ �;  ��f .a=b/ are trivial,

we thus prove that the operator Of � is symmetric, and consequently s.a. What is
more, we show below that in such a case, the operator Of � defined on the natural
domain is a unique s.a. operator associated with an s.a. differential operation Lf .
But if we can indicate at least one function  � 2 D�

Lf .a; b/ such that, for instance,

Œ �;  ��.a/ ¤ 0, we prove that the operator Of � is not symmetric and a fortiori is
not s.a.

In the general case, the triviality or nontriviality of the boundary forms Œ �;  ��
.a=b/ depends on the type of the interval, whether it is infinite or finite, and on
the behavior of the coefficients of Lf at the endpoints of the interval, in particular,
on whether the endpoints are regular or singular. We illustrate possible situations
by the simple examples of s.a. second-order differential operations LH (4.7) and LH
(4.8).

12For even differential expressions with the coefficients satisfying the weakened conditions, the
existence of the functionse� with the required properties can also be proved [9, 116].
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We first examine the s.a. differential operation LH D � d2x on the whole real axis
R. The natural domainD�

LH.R/ for this operation is, see (4.29),

D�
LH.R/ D

˚
 � W  �;  0� a:c: in RI  �;  00� 2 L2.R/

�
:

By Lemma 2.14, the condition  � 2 D�
LH.R/ implies that  �.x/;  0�.x/

jxj!1�! 0,

and consequently, the quadratic local form Œ �;  ��H D �. � 0�� 0� �/, vanishes
as jxj ! 1. We thus obtain that the boundary forms Œ �;  ��H .1=�1/
are trivial, which means that the operator bH� defined on the natural domain is
symmetric and consequently is s.a., and is a unique s.a. operator associated with the
s.a. differential operation LH on the whole real axis. From the physical standpoint,
this means that there is a unique s.a. Hamiltonian for a free nonrelativistic particle
moving along the real axis.

4.3.2 Physical Examples

We now examine the s.a. differential operation

LH D �d2x C V.x/; V .x/ ¤ 0;

on the real axis. We first note that the formal expressions for the corresponding
local forms for LH and LH are the same, see (4.15), and therefore, the boundary
forms for bH�and OH� can differ only because of the difference of the respective
natural domains, namely, the difference in the behavior of the functions belonging
respectively to D�

LH.R/ andD�
LH .R/ at the boundaries, here at˙1.

If the potential V.x/ is a uniformly bounded function on the whole axis, the
conditions  00� 2 L2.R/ and � 00� C V 2 L2.R/ are equivalent, which implies
that the natural domains for LH and for LH are the same, D�

LH.R/ D D�
LH.R/, and

consequently, the boundary forms for bH� and for OH� are the same, i.e., the boundary
forms for OH� are trivial as well as those for bH�. This means that the operator OH�
is a unique s.a. operator in L2.R/ associated with the s.a. differential operation LH
if the potential V is bounded.13 From the physical standpoint, this means that there
is a unique s.a. Hamiltonian for a nonrelativistic particle moving along the real axis
in a bounded potential field.

If the potential V.x/ is only locally bounded, the self-adjointness or non-self-
adjointness of the operator OH� is determined by the behavior of the potential at
infinity. It seems useful to illustrate possible situations in advance. We show in

13Another way to make sure that this is correct is to note that OH� DbH� C OV , where OV D V .x/

is a bounded operator defined everywhere.
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Chap. 7 that if the potential at infinity is bounded from below by a falling quadratic
parabola, i.e., V.x/ > �Kx2,K > 0, as x ! ˙1, then the boundary forms for the
operator OH� are trivial, which means that OH� is a unique s.a. operator associated
with LH . For example, V.x/ D kx2=2 evidently satisfies this criterion, and we
conclude that the well-known textbook Hamiltonian OH for a harmonic oscillator
that is associated with the s.a. differential operation LH D �d2x C kx2=2 is uniquely
defined as the operator OH� with the natural domain D�

LH.R/. But if the potential

falls at infinity more rapidly than �Kx2 with an arbitrary K > 0 (of course,
such a potential is rather exotic), the situation changes radically. For example, let
V.x/ D �x4, so that we deal with the s.a. differential operation LH D �d2x � x4.
Let 
.x/ be a smooth function exponentially decreasing as x ! �1 and such
that 
 D x�1 exp

�
ix3=3

�
, x > N > 0. It is easy to verify that 
 2 D�

LH .R/
and Œ
; 
�H .x/ D �2i for x > N , but this means that the right boundary
form Œ �;  ��H .1/ is nontrivial, and consequently, the operator OH� defined on
the natural domain is not symmetric, a fortiori s.a., and cannot be considered a
QM Hamiltonian for a particle moving along the real axis in the potential field
V.x/ D �x4. A correct Hamiltonian in this case requires a refined definition; such
a definition is possible, although it is not unique; see Sect. 7.3.

If at least one of the endpoints of the interval .a; b/ is finite (a semiaxis or a finite
interval), the self-adjointness of the operator OH� crucially depends on the behavior
of the potential at finite endpoints. Let the left endpoint a be regular. Then by
Lemma 4.5, the functions � 2 D�

LH.a; b/ and their derivatives 0� can take arbitrary
values at this endpoint, which implies that the left boundary form Œ �;  ��H .a/ is
nontrivial, and therefore, the operator OH� is not s.a. for any potential V , including
V D 0. Again, a correct definition of an s.a. Hamiltonian in this case is possible,
but is not unique, see Chaps. 7–9.

An important remark concerning QM is in order. In physics, differential op-
erations14 similar to (4.8) on the positive semiaxis are usually of three- or two-
dimensional origin. Their standard sources are the problems of a QM description of
a spatial motion of a particle in spherically symmetric or axially symmetric fields.

Let us consider a spinless particle in a spherically symmetric field V.r/, r D jrj,
where r is the three-dimensional position vector of the particle. Quantum states of
such a particle are described by the wave functions .r/ 2 L2.R3/, and its motion is
governed by a Hamiltonian associated with the differential operation (in appropriate
units) LH D �4 C V.r/, where 4 is the Laplacian. The problem of correctly
describing the motion that incorporates correctly defining an s.a. Hamiltonian and
finding its stationary states is usually solved by separating variables in the spherical
coordinates r; �; ', i.e., by passing from the three-dimensional wave function  .r/
to the spherical partial waves:  .r/ D P1

lD0
Pl

mD�l .2l C 1/ulm.r/Ylm.�; '/,
where Ylm are spherical harmonics. The partial waves ulm.r/Ylm.�; '/ describe
the motion of the particle with certain values l and m of the respective angular

14“Hamiltonians” in the language of physics.
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momentum and its z-projection. For each partial wave, the total Hamiltonian is
reduced to the so-called radial Hamiltonian, which governs the radial motion of
the particle.15 The radial states are conveniently described in terms of the radial
wave functions  lm.r/ 2 L2.RC/, which differ from the partial amplitudes ulm.r/
by the factor r ,  lm.r/ D rulm.r/. The radial Hamiltonians are then associated
with the differential operations LHl of the form (4.8), LHl D �d2r C Vl.r/, where
the partial potential Vl.r/ is given by Vl.r/ D V.r/ C l.l C 1/r�2 and contains
the so-called centrifugal term l.l C 1/r�2 independent of m. If the initial three-
dimensional potential V.r/ is nonsingular or has some admissible singularity at
the origin (for a more exact definition of an admissible singularity, see [56]; in
particular, the Coulomb singularity 1=r is admissible), the natural domain for the
three-dimensional LH consists of functions  �.r/ sufficiently regular at the origin
such that the partial amplitudes ulm .r/ are finite at r D 0, and therefore, the radial
wave functions  lm .r/ must vanish at r D 0. This means that the natural domain
D�

LHl .RC/ for LHl must be additionally restricted with the boundary condition

 lm.0/ D 0. This boundary condition for the radial eigenfunctions is well known
to physicists; in fact, it is essential only for s-waves, l D 0, because for l ¤ 0, it
holds automatically. By virtue of these conditions, the left boundary form is trivial
on D�

Hl
.RC/. If the behavior of the potential at C1 is not exotic, for example,

if V .r/ ! 0 as r ! 1, the right boundary form is also trivial. Therefore, the
operator OHl associated with the differential operation LHl and defined on the domain
D�

LHl .RC/ is s.a. and can be considered the radial Hamiltonian in accordance with

textbooks.
This analysis is extended to the case in which the potential V.r/ is strongly

singular and positive at the origin. But it fails if the potential is strongly singular
and negative at the origin, for example, if V D ˛=r2, ˛ < �1=4 or V D ˛=rˇ,
˛ < 0, ˇ > 2 as r ! 0; in such cases, the so-called “a fall to the center” occurs,
see [5,21,118,123,151]. Again, s.a. Hamiltonians can be defined in these cases, but
not uniquely.16

A completely similar analysis can be carried out for a particle in an axially
symmetric field V.�/, where � D jxj and x is the two-dimensional position vector of
the particle in the plane perpendicular to the symmetry axis. After separating the free
motion along the symmetry axis, the problem is reduced to a description of a two-
dimensional motion in the perpendicular plane. It is usually solved by separating the
polar coordinates �; ' in the form  .x/ D P

m2Z um.�/ exp.im'/, where the axial
partial waves um.�/ exp.im'/,m 2 Z, describe the states of the particle with certain
values m of the angular-momentum projection. If we describe the radial states in
terms of the wave functions  m.�/ D �1=2um.�/ 2 L2.RC/, which differ from
the initial partial waves um.�/ by the factor �1=2, then the radial Hamiltonians are

15We mean the reductions of the total Hamiltonian to the subspaces of partial waves with fixed l
and m.
16Curiously, in these cases, we have  lm.r/ ! 0 as r ! 0, but  0

lm.r/ ! 1.
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associated with the differential operations LHm D �d2� C Vm .�/, where the partial
potentials are given by Vm .�/ D V .�/ C m2��2 and contain the centrifugal term
m2��2. It is evident that all we have said concerning the radial Hamiltonians of the
spherically symmetric problem is extended to these radial Hamiltonians.

If both endpoints of the interval .a; b/ are regular, the operator OH� associated
with (4.8) is certainly not s.a. for any V , because both the left and the right boundary
forms are nontrivial. Consequently, this operator cannot be considered a correctly
defined s.a. QM Hamiltonian for a particle moving on a finite interval of the real
axis, a Hamiltonian that provides a unitary evolution. In particular, this statement
holds for the operator bH� associated with (4.7). That is, an s.a. Hamiltonian for a
free particle on a finite interval cannot be defined on the natural domain.

Let us consider the one-dimensional Schrödinger equation on the interval .a; b/
with a Hamiltonian OH . As a consequence of this equation, we have

@

@t

Z b

a

j j2dx D �i�H . / D �i Œ ;  �H .x/jba :

The physical interpretation is evident: the quadratic boundary form coincides, up to
a constant factor, with the probability flux through the corresponding endpoint, and
the nontriviality of the boundary forms implies that the particle can escape or enter
the interval through its endpoints, which would imply the nonunitarity of evolution.
Sometimes, a similar interpretation is possible in three-dimensional cases.

We usually ensure the self-adjointness of a QM Hamiltonian for a free particle
on a finite interval with additional boundary conditions on the wave functions,
conditions that provide the vanishing of the corresponding asymmetry form; such
boundary conditions are called s.a. boundary conditions; see, e.g., [11]. The
most familiar s.a. boundary conditions are the zero boundary conditions  .a/ D
 .b/ D 0, which correspond to a particle in an “infinite potential well,” and the
periodic boundary conditions  .a/ D  .b/,  0.a/ D  0.b/, which correspond to
“quantization in a box” customarily used in quantum-statistical physics.

4.3.3 Operators of Multiplication

4.3.3.1 Self-adjoint Operator of Multiplication by a Function

The simplest examples of s.a. operators that are s.a. when defined on natural
domains are multiplication operators first mentioned in Sect. 2.3.4. Let all the
coefficient functions in representation (4.1) for the general differential operation be
zero except the lowest one, fk .x/ D 0, k D 1; : : : ; n, while f0 .x/ D V .x/ ¤ 0, so
that we deal with the operation Lf � LV , LV  .x/ D V .x/ .x/, of multiplication by
a function; according to our terminology, see Sect. 4.1, this is a differential operation
of order zero. For simplicity, we assume that V .x/ is a locally square-integrable
function in the interval .a; b/ (and as a consequence, is locally integrable). This
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requirement can be essentially weakened; see below. If V .x/ D x then LV D Lx,
Lx .x/ D x .x/, is called the operation of multiplication by the independent
variable x.

We consider the operator OV associated with the operation LV and defined on its
natural domain by17

OV W
(
DV D D�

LV .a; b/ D
˚
 W  .x/; V .x/ .x/ 2 L2.a; b/� ;

OV  .x/ D V .x/ .x/ :

The following assertions hold.

Proposition 4.6. If the function V .x/ is real, V .x/ D V .x/, then the operator OV
is s.a.

Proof. First of all, it is evident that the operator OV is densely defined, DV D
L2.a; b/, because D.a; b/ � DV . It is easy to verify that OV is a symmetric operator.
Its adjoint OV C is also easily calculated. The corresponding defining equation (2.24)
for the pairs of functions  � 2 DVC � L2 .a; b/ and � D OV C � 2 L2 .a; b/ is

Z b

a

dx �.x/V .x/ .x/ D
Z b

a

dx�.x/ .x/; 8 2 DV : (4.38)

We rewrite (4.38) as

Z b

a

dxŒ�.x/ � V.x/ �.x/� .x/ D 0; 8 2 DV ;

which is a linear equation for the function �.x/ � V.x/ �.x/. Because the
functions �, V , and  � are locally square-integrable, the function � � V � is
locally integrable as well as � and V �. It then follows from a generalization of
Lemma 2.7 (see Remark 2.11) that �.x/ � V.x/ �.x/ D 0 almost everywhere,
or �.x/ D OV C �.x/ D V.x/ �.x/, which implies that OV C � OV . The inverse
inclusion OV � OV C is evident, which means that OV C D OV . In conclusion, we note
that the condition of local square-integrability can be weakened to the condition that
V.x/ be finite almost everywhere and measurable [125, 130]. ut
Proposition 4.7. Let jV.x/j � C , C > 0, 8x 2 .a; b/. Then OV is a bounded
operator in L2.a; b/ defined everywhere, and k OV k � C , which directly follows
from the inequality

k OV  k2 D
Z b

a

dxjV.x/j2j j2 � C2

Z b

a

dxj j2 D C2k k2; 8 2 L2.a; b/:

17In fact, this is the operator OV � associated with the operation LV D V .x/. For simplicity, we do
not write here the superscript �.
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As a consequence, if V.x/ is real and jV.x/j � C , then OV is a bounded s.a.
operator defined on all of L2.a; b/.

4.3.3.2 Self-adjoint Operator of Multiplication by an Independent
Variable

Let V .x/ D x, i.e., we consider the operation LV D Lx of multiplication by an
independent variable. The associated operator Ox defined on the natural domain
Dx D D�

Lx .a; b/ 2 L2.a; b/ of Lx is called the operator of multiplication by an
independent variable.

I. Let .a; b/ D R. According to item (a) of Sect. 4.3.3.1, the operator Ox defined
by

Ox W


Dx D D�

Lx .R/ D
˚
 W  ; x 2 L2.R/� ;

Ox .x/ D x .x/;
is s.a.

The following assertions hold for this operator.

(a) The operator Ox is unbounded and cannot be defined on the whole Hilbert
space, i.e., Dx ¤ L2.R/, althoughDx D L2.R/.

Indeed, let f ˛.x/ 2 L2.R/; ˛ 2 RCg be a set of functions parameter-
ized by a parameter ˛ 2 RC, where

 ˛.x/ D


 C˛.x/; x � 0;
0; x < 0;

;  C˛.x/ D .1C x/�3=2�˛
p
2.1C ˛/ ;

k ˛k D 1 H)  ˛ 2 L2.R/; 8˛ 2 RC:

For these functions, we have

k Ox ˛k2 D 1

2.1C ˛/
Z 1

0

x2dx

.1C x/3C2˛ D
1

4˛.1C 2˛/.1C ˛/2 ;

k Ox ˛k D ˛�1=2=2CO.1/ as ˛ ! 0:

Because the norms of the vectors Ox ˛ become arbitrarily large as ˛ ! 0,
the operator Ox is unbounded. Moreover, Ox is not defined on some vectors
 2 L2.R/, e.g., on the vector  0, which proves that Dx ¤ L2.R/.

(b) The operator Ox has no eigenvalues and eigenfunctions, and spec Ox D R.

Indeed, the eigenvalue problem for the s.a. operator Ox is formulated as the
equation

. Ox � �/�.x/ D .x � �/�.x/ D 0 (4.39)
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for a number � 2 R and a function �.x/ 2 L2 .R/. By virtue of this equation,
the function �.x/ differs from zero at only one point x D �, which implies that
this function belongs to the equivalence class of the zero function in L2 .R/;
see Chap. 2. This means that (4.39) with any real � has no nontrivial solutions
in L2 .R/, i.e., no � 2 R can be an eigenvalue of Ox.

It remains to prove that any � 2 R is a spectrum point of Ox. Assume the
contrary: let �0 2 R, and let �0 62 spec Ox. This means that �0 is a regular point
of Ox, and in particular, the equation

. Ox � �0/�.x/ D .x � �0/�.x/ D �.x/ (4.40)

has a solution � 2 L2.R/ for any � 2 L2.R/. Let

�.x/ D


1; jx � �0j � 1;
0; jx � �0j > 1:

Because the homogeneous equation (4.39) has only trivial solutions, (4.40) has
a unique solution,

�.x/ D


.x � �0/�1; jx � �0j � 1;
0; jx � �0j > 1;

which is not square-integrable on R. This contradiction proves that spec Ox D R.
II. Let .a; b/ D RC. Similarly to the previous case, it is easy to prove that:

(a) The operator Ox defined on the natural domainD�
x .RC/ is an s.a. unbounded

operator.
(b) The operator Ox has no eigenvalues and eigenfunctions.
(c) spec Ox D RC.

Regarding item (c), we have only to verify that all � < 0 are regular points of Ox.
Indeed, a unique solution of (4.40) with any � < 0 is �.x/ D .x C j�j/�1�.x/,
so that �.x/ 2 L2.RC/ for any �.x/ 2 L2.RC/ and k�k � j�j�1 k�k.

III. Let .a; b/ be a finite interval Œ0; l�. Similarly to the previous cases, it is easy to
prove that:

(a) The operator Ox defined everywhere is a bounded s.a. operator in L2 .0; l/
and its norm is equal to l , k Oxk D l (in the case of an arbitrary finite interval
Œa; b�, we have k Oxk D max.jaj; b/).

(b) The operator Ox has no eigenvalues and eigenfunctions.
(c) spec Ox D Œ0; l�.
Regarding item (a), we have only to prove that k Oxk D l . Because jxj � l , we
have k Oxk � l according to item (b) in Sect. 4.3.3.1. Let f�n.x/g11 be a sequence
of functions belonging to L2.0; l/, where
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�n.x/ D


0; 0 � x < l � n�1;
n1=2; l � n�1 � x � l; k�nk D 1:

It is easy to verify that

k Ox�nk2 D n
Z l

l�n�1

x2dx > .l � n�1/2;

so that we have the estimate l � n�1 < k Ox�nk � l . Taking the limit n ! 1, we
obtain that k Oxk D l .

4.4 Initial Symmetric Operator and Its Adjoint

Because the operator Of � associated with a given s.a. differential operation Lf and
defined on the natural domainD�

Lf .a; b/ is generally not s.a., we turn to the canonical

methods for constructing s.a. operators associated with Lf . To facilitate an exposition
in some places, basic constructions are illustrated by the examples of differential
operations with smooth coefficients. But all the main results are extended, with
natural modifications, to the general case of nonsmooth coefficients under the above-
mentioned conditions, which is indicated where appropriate or even formulated
explicitly.

We start with the so-called initial symmetric operator Of associated with Lf and
defined on a certain domain Df � D�

Lf .a; b/ that must be dense in L2.a; b/ and

ensure the symmetricity of Of . If the coefficient functions of Lf are smooth in the
interval .a; b/, the subspace D .a; b/ of compactly supported smooth functions is
convenient (and natural) to take for Df , so that the initial symmetric operator is
defined by

Of W
(
Df D D .a; b/;
Of ' D Lf '; 8' 2 D .a; b/: (4.41)

The definition is correct because Lf ' 2 D .a; b/ � L2.a; b/ and both conditions for
symmetricity of Of , see Sect. 2.7.1, are fulfilled: Of is densely defined, D .a; b/ D
L2 .a; b/ by Theorem 2.6, and (2.29) coincides with (4.3), which manifests the self-
adjointness of the differential operation Lf .

In some sense, the operator Of is a minimum densely defined operator associated
with Lf ; other associated operators that follow are its extensions. In the case of
the general s.a. differential operation (4.1), we can take the same Of (4.41) for the
initial symmetric operator; moreover, we believe that the domain of any operator
associated with Lf must contain the subspace of compactly supported smooth
functions. We emphasize that the initial symmetric operator Of is only symmetric,
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but not s.a., because its adjoint Of C is generally a nontrivial extension of Of ; it is not

even closed, Of � Of , D .a; b/ � Df ; see below.

The second step consists in evaluating the operator Of C, the adjoint of the initial
symmetric operator Of , by solving the defining equation (2.24), which in our case
becomes18

Z b

a

dx � Lf ' D
Z b

a

dx�'; 8' 2 D .a; b/ ; (4.42)

an equation for pairs of functions  � 2 L2.a; b/ and � D Of C � 2 L2.a; b/.
Theorem 4.8. The operator Of C coincides with the operator Of � defined by (4.30),
Of C D Of �. In particular, its domainDf C is the natural domainD�

Lf .a; b/. In other

words, a pair of functions  � 2 L2 .a; b/ and � 2 L2 .a; b/ is a solution of defining
equation (4.42) iff  � 2 D�

Lf .a; b/ and � D Lf  �.

Proof. Sufficiency is evident because of the integral Lagrange identity (4.18) with
� D  �. Necessity is proved as follows. Let a pair  �, � 2 L2 .a; b/ be a solution
of (4.42), and let a function e � be a certain solution of the inhomogeneous equation
Lf e � D �: Such a function, a.c. in the interval .a; b/ together with its n � 1

derivatives, indeed exists, because the square-integrability of � implies its local
integrability. We therefore can represent the right-hand side of defining equation
(4.42) as

Z b

a

dx �' D
Z b

a

dx Lf e �' D
Z b

a

dxe � Lf ';

using the same Lagrange identity, which reduces the defining equation to

Z b

a

dx u Lf ' D 0; u D  � � e �;8' 2 D .a; b/ ;

the equation for the function u. By Lemma 4.4, the function u is an ordinary smooth
solution of the homogeneous equation Lf u D 0. We thus obtain the representation
 � D e � C u for the function  �, where the properties of summands e � and u
allow the conclusion that  � is a.c. in the interval .a; b/ together with its n � 1
derivatives and � D Lf  �, which completes the proof of the theorem. ut

As was mentioned above, this theorem is extended to the initial symmetric
operator associated with the general s.a. differential operation (4.1) with coefficients
satisfying the standard conditions.

For even s.a. differential operations, the conditions on the coefficients can be
weakened to the conditions of absolute continuity for quasiderivatives; see [9, 116].

18It appears convenient to replace �� in (2.24) by  �, see immediately below, while � is naturally
replaced with '.
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Now we present a generalization of Theorem 4.8 for the case of non-s.a.
differential operations.

Theorem 4.9. Let Lf be a general differential operation (4.1), let Of be the
corresponding initial operator defined by (4.41), and let Of � be a differential
operator associated with Lf � and defined on the natural domain D�

Lf �
.a; b/ as

Of � � D Lf � �, 8 � 2 D�
Lf �
.a; b/. Then the operator Of � coincides with the

adjoint Of C, i.e., Of � D Of C.

The proof of Theorem 4.9 is completely similar to the proof of Theorem 4.8.
From this point on, we return to s.a. operations Lf . By virtue of Theorem 4.8, the

asymmetry forms !f C and �f C for the operator Of C coincide with the asymmetry
forms !f � (4.32) and �f � (4.33) introduced above and allow the respective
representations (4.34) and (4.36) in terms of the respective boundary forms (4.35)
and (4.37). According to the general theory of symmetric operators, see Sect. 3.2, if
the adjoint operator Of C is symmetric, which is equivalent in our case to the triviality
of the boundary forms (4.35) and (4.37), then this operator is automatically s.a.,
which implies that the initial symmetric operator Of is essentially s.a., and its unique

s.a. extension Ofe is its closure coinciding with its adjoint, Ofe D Of D Of C D Of �.
This justifies our preliminary assertions made in advance in the previous section and
related to the operator Of � defined on the natural domain.

If the adjoint operator Of C is not symmetric, which is what occurs in the general
case, in particular, in the case of regular endpoints, we must proceed to the next steps
of the general program for constructing s.a. operators as s.a. extensions of the initial
symmetric operator Of , or equivalently, s.a. restrictions of the adjoint operator19 Of C.

The next step is an evaluation of the deficient subspaces and the deficiency
indices of the initial symmetric operator Of ; see the beginning of Sect. 3.1 and
Sect. 3.5.

An important remark is in order. In the mathematical literature, there is a
tradition to choose z D i and Nz D �i (we remind the reader that all z 2 CC or
z 2 C� are equivalent) because all the variables are conventionally assumed to
be dimensionless. But in physics, an initial symmetric operator Of and its adjoint
Of C are usually assigned a certain dimension,20 the dimension of the generating

differential operation Lf . It is therefore natural to choose z D �i and Nz D ��i, where
� is an arbitrary, but fixed, constant parameter of the corresponding dimension. It
may happen that a differential operation Lf , as well as a parent classical theory, does
not contain any scale parameter. However, in constructing a physical observable as

19In particular, the above-discussed additional boundary conditions on the wave functions belong-
ing to the domain of the Hamiltonian OH , which are justified by physical arguments, actually define
s.a. restrictions of the non-s.a. operator OH� defined on the natural domain.
20In conventional units, a certain degree of length or momentum (or energy).
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an s.a. extension of an initial symmetric operator Of , the dimensional parameter �
can enter a quantum theory and acquire a physical meaning of a scale parameter,
violating the scale invariance of the classical theory.

For convenience, we change notation21 and letDC andD� denote the respective
deficient subspaces @�i� and @i� and accordingly let  C and  � denote the
functions belonging to the respective deficient subspaces DC and D�, so that the
deficient subspaces and the deficiency indices of an initial symmetric operator Of are
now defined by

D˙ D
n
 ˙ W  ˙ 2 D�

Lf .a; b/ ;
Lf  ˙ D ˙i� ˙

o
; m˙ D dimD˙: (4.43)

In this notation, first von Neumann formulas (3.5) and (3.6) become

Df C D D�
Lf .a; b/ D Df CDC CD� (4.44)

and
 � D  C  C C  �;

while von Neumann formulas (3.18) and (3.19) for the respective sesquilinear
asymmetry form !f C and quadratic asymmetry form �f C , which are nontrivial
only on the sum DC CD� of the deficient subspaces, become

!f C .��;  �/ D 2i� Œ.�C;  C/� .��;  �/� (4.45)

and

�f C. �/ D 2i�
�
k Ck2 � k �k2

�
:

Evaluating the deficient subspaces D˙ is equivalent to finding the systems
f ˙;kgm˙

1 of all linearly independent square-integrable solutions of the respective
homogeneous linear differential equations22

� Lf 
 i�
�
 ˙ D 0: (4.46)

We also need to fix somehow the orthonormalized basis functions fe˙;kgm˙

1 in D˙
by applying the standard procedure of orthogonalization to the systems23 f ˙;kgm˙

1 ,
so that for any  ˙ 2 D˙, the representations

21We are following here a recent convention in the physics literature.
22In general, these sysyems are subsystems of the respective fundamental systems of solutions of
(4.46), because the fundamental systems can contain non-square-integrable solutions.
23It is not obligatory to normalize the basis functions to unity; it is sufficient that their norms be
the same.



4.4 Initial Symmetric Operator and Its Adjoint 133

 ˙ D
m

˙X

kD1
c˙;ke˙;k ; Lf e˙;k D ˙i�e˙;k ; .e˙;k ; e˙;l / D ıkl ;

c˙;k D .e˙;k;  ˙/; k; l D 1; : : : ; m˙; (4.47)

hold.
This stage is the most laborious in the general case. It requires a certain expe-

rience in solving differential equations, including the theory of special functions;
the particular features of a specific problem manifest themselves exactly at this
stage. But there are several useful assertions relating to possible values of deficiency
indices and requiring no specific calculations; we elaborate on them.

We first note that the deficiency indicesm˙ of a symmetric differential operator
Of of order n associated with an s.a. differential operation Lf of order n are always

finite and do not exceed n. Indeed, the fundamental system of solutions of each
of the homogeneous differential equations (4.46) contains exactly n functions; the
additional requirement of their square-integrability may only decrease this number,
so that in the general case, we have the restriction 0 � m˙ � n.

As follows from the equality Of C D Of � and the discussion of the operator Of �
carried out in the previous subsection, the deficiency indices of the initial symmetric
operator Of depend on the type of the endpoints of an interval under consideration,
whether they are regular or singular. If an endpoint is regular, the general solution of
each equation from the set (4.46) is square-integrable at this endpoint by Lemma 4.5;
therefore, the square-integrability of the functions ˙ is determined by their square-
integrability at singular endpoints.

Let an interval .a; b/ be finite, and let Lf be an arbitrary s.a. differential operation
of order n on this interval. If Lf is regular, i.e., both endpoints of the interval are
regular, then m˙ D n for the associated initial symmetric operator Of . According
to the main theorem, Theorem 3.4, there exists an n2-parameter U .n/ family of
s.a. operators associated with a given s.a. differential operation Lf in this case. For
example (see Chap. 6), the differential operation Lp (4.6) on a finite interval generates
a one-parameter U.1/ family of s.a. operators, each of which can be considered the
QM momentum operator for a particle moving along a finite interval of the real
axis. The differential operation LH (4.7) generates a four-parameter U.2/ family
of s.a. operators, each of which can be adopted as the QM energy operator for a
free particle moving along a finite interval, and the same holds for the differential
operation LH (4.8) if the potential V.x/ is integrable at both endpoints and therefore
preserves the regularity of the endpoints. We thus obtain that for a particle moving
along a finite interval of the real axis, the well-known s.a. differential operations
(4.6)–(4.8) with a regular V do not define the corresponding QM observables in
a unique way; each of the observables needs an additional specification. In what
follows, we show that this specification is achieved by means of s.a. boundary
conditions on the wave functions belonging to the domain of the observable, which
was already mentioned at the end of the previous section. An optimistic remark
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in conclusion is that in the regular case, s.a. operators associated with any s.a.
differential operation of any order do in fact exist.

If one or both endpoints of the interval are singular, the situation is not so
optimistic in the general case. In particular, it is different for even s.a. differential
operations with real coefficients, for odd differential operations with pure imaginary
coefficients, and for mixed differential operations.

We dwell on initial differential symmetric operators associated with even s.a.
differential operations; see [9, 116]. For brevity, we call them even symmetric
operators. The deficiency indices of any even symmetric operator Of are equal,
m˙ D m, irrespective of the type of the endpoints of the interval. Indeed, because
the coefficients of Lf are real, any square-integrable solution C of the first of (4.46)
is assigned a square-integrable solution  � D  C of the second equation, whereas
the linear independence of solutions is preserved under complex conjugation. In
particular, for basis functions e˙;k in D˙, defined by (4.47), we can choose
complex-conjugate functions such that e�;k D eC;k , k D 1; : : : ; m. Therefore, any
even s.a. differential operation generates at least one s.a. operator in L2.a; b/, in
contrast to odd s.a. differential operations; see an example of a first-order differential
operation Lp in Chap. 6. In particular, for any interval .a; b/, the Hamiltonian of
a nonrelativistic particle associated with the differential operation LH (4.8) can be
defined as an s.a. operator for any potential V , perhaps not uniquely.

Two other useful assertions about the deficiency indices of even symmetric
operators are based on the notion of the dimension of a linear space modulo its
subspace and on the boundary properties of the functions belonging to the domain of
the closure of an even symmetric operator at regular endpoints. In addition, we need
(3.5) from the first von Neumann theorem, Theorem 3.1, and item (ii) in Remark 3.3
concerning a relationship between the deficiency indices of a symmetric operator
and its symmetric extension.

We first remind the reader of the notion of a linear factor space. Let L be a linear
space, and let M be one of its subspaces, M � L. By definition, the factor space
L=M (or the space Lmodulo the subspaceM ) is the linear space whose vectors are
equivalence classes of vectors in L generated by the following equivalence relation:
two vectors � 2 L and � 2 L are considered equivalent if their difference belongs to
M , � � � 2 M . The dimension of the factor space L=M is denoted by dimM L and
is called the dimension of L moduloM . Linearly independent vectors �1; : : : ; �k 2
L are called linearly independent modulo M if no nontrivial linear combinationPk

iD1 ci �i belongs to M . If dimM L D n, then the maximum number of vectors
belonging to L and linearly independent modulo M is equal to n, so that k � n.
Let L be a direct sum of two of its subspaces L1 and L2, L D L1 C L2. Then
its dimension is the sum of the dimensions of these subspaces, dimL D dimL1 C
dimL2, whereas dimL1 L D dimL2 and dimL2 L D dimL1.

Information about the boundary properties of functions belonging to the domain
of the closure of an even symmetric operator at a regular endpoint is preliminary;
the closures of differential symmetric operators are discussed in detail in the next

section. Let Of be an even symmetric operator of order n and let Of be its closure
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with domain Df . It turns out that the functions belonging to Df vanish at regular
endpoints together with their n�1 quasiderivatives; for example, if the left endpoint
a is regular, then  2 Df implies that  Œk�.a/ D 0, k D 0; : : : ; n � 1.

After these short digressions, we return to the deficiency indices of even
symmetric operators in the case that at least one of the endpoints of the interval
is singular.

We have the following theorem:

Theorem 4.10. Let Of be the initial symmetric operator associated with an even
s.a. differential operation Lf of order n on an interval .a; b/, and let one of the
endpoints of the interval be regular, whereas the other will be assumed singular.
Then the deficiency indices of Of , being equal, m˙ D m, and bounded from above,
m � n, are also bounded from below by n=2, so that the double-sided restriction

n=2 � m � n (4.48)

holds.

Proof. We must prove only the boundedness of m from below. Let Of with domain
Df be the closure of Of . By the first von Neumann formula (3.5), we have the
representationD�

Lf .a; b/ D Df CDCCD� for the domain of the adjoint operator

Of C. It follows from this representation that

dimDf
D�

Lf .a; b/ D dim.DC CD�/ D dimDC C dimD� D 2m;

which means that the maximum number of functions belonging to D�
Lf .a; b/ and

linearly independent modulo Df is equal to 2m. If we find a set f �lgn1 of
functions belonging to D�

Lf .a; b/ and linearly independent modulo Df , we prove

that 2m � n, which is required. By Lemma 4.5, the functions  � 2 D�
Lf .a; b/ and

their quasiderivatives  Œk�� of order up to n � 1 are finite at a regular endpoint, let
it be the endpoint a, and can take arbitrary values at this endpoint. This implies
that there exists a set f �lgn1 of linearly independent functions in D�

Lf .a; b/ such

that the n � n matrix A, Akl D  
Œk�

�l .a/; l D 1; : : : ; n; k D 0; : : : ; n � 1, is
nonsingular, detA ¤ 0. But these functions are also linearly independent modulo
Df , i.e., the equality

P
l cl �l D  2 Df implies that cl D 0, 8l . Indeed,

let
P

l cl �l D  . By the above-cited assertion about the behavior of functions

belonging toDf at a regular endpoint, we know that Œk�.a/ D 0; k D 0; : : : ; n�1,

or
P

l cl 
Œk�

�l .a/ D
P

l A
k
l cl D 0, whence it follows that cl D 0, 8l , because the

matrix A is nonsingular. This completes the proof of the theorem. ut
As an example, the deficiency indices of the initial symmetric operator OH

associated with the differential operation LH (4.8) on the semiaxis RC with a
potential V integrable at x D 0 can bem D 1 orm D 2, but not zero, depending on
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the behavior of the potential at infinity. This implies that the QM Hamiltonian for a
particle on the semiaxis, even though the particle is free, cannot be defined uniquely
as an s.a. operator in L2.RC/ without some additional arguments. This fact has
been known since the paper by Weyl [162], where the casesm D 1 andm D 2 were
respectively called the cases of “limit point” and “limit circle,” in accordance with
the method of embedded circles used by Weyl.

If both ends of the interval .a; b/ are singular, an evaluation of the deficiency
indices of an initial symmetric operator Of is reduced to the case of one regular
endpoint and one singular endpoint by means of a special symmetric restriction
of this operator and a comparison of the closures of this restriction and the initial
operator.24

Let Lf be an even s.a. differential operation of order n given on an interval
.a; b/, both ends of which are singular; let Of be an initial symmetric operator;

let m˙ D m be its deficiency indices, and let Of be its closure. Let c be an
arbitrary, but fixed, interior point of the interval .a; b/, a < c < b. We note that
L2.a; b/ D L2.a; c/ ˚ L2.c; b/. We examine the restrictions Lf� and LfC of the
initial s.a. differential operation Lf to the respective intervals .a; c/ and .c; b/. It is
evident that both differential operations are of the same order n, they are s.a., and
the endpoint c, the right one for Lf� and the left one for LfC, is regular for each of
them. Let Of� and OfC be respectively the initial symmetric operators in L2 .a; c/
and L2 .c; b/ associated with these differential operations, let m.�/

˙ D m.�/ and

m
.C/
˙ D m.C/ be their deficiency indices, and let Of� and OfC be their closures

with the respective domains Df�

� L2 .a; c/ and DfC

� L2 .c; b/. Because the
endpoint c is regular for both differential operations, the functions in bothDf�

and
DfC

vanish at the point c, together with their quasiderivatives of order up to n � 1.

We consider a new symmetric operator Ofc in L2 .a; b/ associated with the same
differential operation Lf ; its domainDfc is a direct orthogonal sum of the subspaces
D .a; c/ and D .c; b/, Dfc D D .a; c/ ˚ D .c; b/. It is evident that this operator
is densely defined, Dfc D L2 .a; b/, and Dfc � D .a; b/ D Df , so that Ofc
is a symmetric operator, which is a specific symmetric restriction of the initial
symmetric operator Of , Ofc � Of . Let mcC D mc� D mc be its deficiency indices,

and let Ofc be its closure; it is evident that Ofc � Of .
It is of crucial importance to observe that the operator Ofc is a direct sum of the

operators Of� and OfC, Ofc D Of� C OfC , whence it follows, first, that its deficiency
indices are the sums of the corresponding deficiency indices of the summands, i.e.,

mc D m.�/ Cm.C/; (4.49)

24This is the starting point of the so-called method of splitting [116].
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and second, that its closure Ofc is a direct sum of the closures Of� and OfC of the

summands. But this means that the operator Ofc is a restriction of the operator Of to
the domain Dfc

� Df , which differs from Df only by the subsidiary condition

on the functions  2 Df , namely,  2 Dfc
)  2 Df ,  Œk�.c/ D 0, k D

0; 1; : : : ; n � 1, whence it follows that there exist exactly n, and not more, linearly
independent functions belonging to Df that do not satisfy this condition and are
linearly independent moduloDfc

, i.e.,

dimDfc
Df D n: (4.50)

Because the operator Of is a nontrivial symmetric extension of Ofc , the second von
Neumann theorem, Theorem 3.2, is applicable to this operator. According to item
(ii) in Remark 3.3, the dimension of Df modulo Dfc

is equal to the difference of

the deficiency indices of the operators25 Of and Ofc ,

dimDfc
Df D mc �m: (4.51)

A comparison of (4.49)–(4.51) results in the relation

m D m.C/ Cm.�/ � n (4.52)

between the deficiency indices of the operator Of and the deficiency indices of the
operators Of˙. We note that this relation is consistent with the general restriction 0 �
m � n for the deficiency indices of the operator Of because by Theorem 4.10, we
have n=2 � m.˙/ � n and therefore n � m.C/Cm.�/ � 2n. It is known that if both
endpoints are singular, the deficiency indices can take any values between 0 and n
[9, 116].

We note that in deducing relation (4.52), we actually don’t use the fact that the
endpoints a and b of the interval are singular, and consequently, relation (4.52)
holds in the general case. If both endpoints are regular, then we have m.˙/ D n

and relation (4.52) is reduced to the already known relation m D n. But if only
one endpoint is regular, let it be a, we obtain a useful relation m D m.C/, which,
in particular, implies that the deficiency indices are independent of a choice of the
position of the regular endpoint.

We now return to the main problem of constructing s.a. operators associated
with a given s.a. differential operation Lf on an interval .a; b/ as s.a. extensions
of the initial symmetric operator Of . Let the deficient subspaces D˙ and the
deficiency indices m˙ of the symmetric operator Of be considered to have been

25We recall that the deficiency indices of a symmetric operator and those of its closure are the
same.



138 4 Differential Operators

found. According to the main theorem, Theorem 3.4, there are three possibilities for
s.a. extensions of this operator.

Let the deficiency indices be different, mC ¤ m�, which is possible only for
odd or mixed s.a. differential operations Lf with at least one singular endpoint. In this
case, there are no s.a. extensions of the operator Of , i.e., there exist no s.a. differential
operators associated with the given differential operation Lf .

Let both deficiency indices be equal to zero, m˙ D 0; for even differential
operations, this is possible only if both endpoints of the interval .a; b/ are singular.
In this case, the initial symmetric operator Of is essentially s.a., and its unique s.a.

extension is its closure Of identical with its adjoint, Of D Of C D Of �. In other
words, there exists only one s.a. differential operator associated with the given
differential operation Lf and defined on the natural domain. As we mentioned in
the previous section, this fact can be established without explicitly evaluating the
deficient subspaces and deficiency indices of the operator Of if we are able to prove
that the asymmetry forms �f C or !f C for the adjoint operator are trivial, i.e.,
identically equal to zero.

Let both deficiency indices be different from zero and equal, m˙ D m > 0,
which always holds if both endpoints of the interval are regular. In this case, there
exists an m2-parameter U.m/ family of s.a. extensions of the initial symmetric
operator Of . In other words, there exists a nontrivial family f OfU ; U 2 U.m/g of
s.a. operators associated with the given differential operation Lf , and the problem of
their proper and convenient specification arises.

Of course, such a specification must follow Theorem 3.4.26 But as we already
mentioned in the introduction to this chapter, an application of the main theorem to
differential operators has several distinctive features, the main peculiarity being that
the asymmetry forms for adjoint operators are expressed in terms of boundary forms.
We indicate two other features. First, any s.a. extension OfU of an initial symmetric

operator Of is simultaneously an s.a. extension of its closure Of with domainDf and

a symmetric restriction of its adjoint Of C. All these operators are associated with the
same initial differential operation Lf , which gives a common rule of action, but are
defined on generally different domains Df � Df � DfU � Df C D D�

Lf .a; b/

in L2.a; b/. Therefore, a specification of an s.a. operator OfU associated with a
given s.a. differential operation Lf is completely determined by a specification of

its domain DfU . The same concerns the closure Of . Second, because the deficiency
indices of an initial symmetric operator Of are finite, m < 1, the isometries
OU W DC 7�! D� defining the s.a. extensions OfU are specified by m � m unitary

matrices U .

26Of course taking into account the change of notation for some basic notions in this chapter in
comparison with the previous one.
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4.5 Self-adjoint Extensions in Terms of Closure and Deficient
Subspaces

The main theorem, Theorem 3.4, furnishes two ways (or methods) for specifying
s.a. operators associated with a given s.a. differential operation Lf as s.a. extensions
OfU of an initial symmetric operator Of . In this section, we dwell on the first way

based on (3.34). This way requires the knowledge of both the deficient subspaces
D˙ of the initial symmetric operator Of and the domain Df of its closure f . The
domainDf is given by (3.13), or equivalently by (3.16) or (3.17) in Chap. 3, which
in our new notation adopted for differential operators reads

Df D
n
 W  2 D�

Lf .a; b/ I !f C. �;  / D 0; 8 � 2 D�
Lf .a; b/

o
;

where the asymmetry form !f C. �;  / D !f �. �;  / is given by (4.34) in
terms of boundary forms (4.35). Because of the independence of the left and right
boundary forms, the condition !f C. �;  / D 0, 8 � 2 D�

Lf .a; b/ reduces to

a couple of independent implicit zero boundary conditions at the left and right
endpoints of the interval .a; b/, and we finally obtain that the domain Df of the

closure Of of the initial symmetric operator Of associated with a given s.a. differential
operation Lf is given by

Df D


 W  2 D�

Lf .a; b/ I
h
 �;  

i

f
.a=b/ D 0; 8 � 2 D�

Lf .a; b/
�
: (4.53)

In some cases, the implicit boundary conditions in (4.53) can be converted to
explicit boundary conditions on functions  2 Df and their (quasi)derivatives. For

example, let Lf be an even s.a. differential operation of order n on the interval .a; b/,
and let the left endpoint a be regular. Then, the functions , as well as any functions
 � 2 D�

Lf .a; b/, take finite values at the endpoint a together with their n � 1
quasiderivatives, and according to (4.14), the boundary condition Œ �;  �f .a/ D 0,
8 � 2 D�

Lf .a; b/, becomes

n=2�1X

kD0

�
 
Œk�� .a/ Œn�k�1� .a/ �  Œn�k�1�� .a/ Œk� .a/

�
D 0; 8 � 2 D�

Lf .a; b/ :

Because the boundary values  Œk�� .a/, k D 0; : : : ; n � 1, can be arbitrary, see
Lemma 4.5, the implicit boundary condition Œ �;  �.a/ D 0, 8 � 2 D�

Lf .a; b/,
is equivalent to the explicit boundary conditions  Œk� .a/ D 0, k D 0; : : : ; n � 1.
A similar assertion holds for the regular endpoint b. This result was announced in
advance in the previous section. We thus obtain that the domain Df of the closure
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Of of the initial symmetric operator Of associated with a regular even s.a. differential
operation Lf of order n is given by

Df D
n
 W  2 D�

Lf .a; b/ I  
Œk� .a=b/ D 0; k D 0; : : : ; n � 1

o
; (4.54)

and if only one endpoint, let it be a, is regular, thenDf is given by

Df D
8
<

:

 W  2 D�
Lf .a; b/ I  

Œk� .a/ D 0; k D 0; : : : ; n � 1;
h
 �;  

i

f
.b/ D 0; 8 � 2 D�

Lf .a; b/

9
=

;
: (4.55)

Remark 4.11. These assertions are extended to the initial symmetric operator
associated with any regular s.a. differential operation of order n with the replace-
ment quasiderivatives by ordinary derivatives because, as is shown below, see
Lemma 4.23, the corresponding boundary forms are finite nondegenerate forms in
the boundary values of functions belonging toD�

Lf .a; b/ and their n� 1 derivatives.

As an illustration, we consider the simplest known second-order regular s.a.

differential operation LH (4.7) on an interval Œ0; l�. The domainDH of the closure bH
of the initial symmetric operator bH is given by

DH D
n
 W  2 D�

LH .0; l/ I  .0/ D  .l/ D  0.0/ D  0.l/ D 0
o
: (4.56)

We note that this domain is also the domain of the closure OH of the initial
symmetric operator OH , associated with s.a. differential operation LH (4.8) if the
potential V is bounded jV.x/j < c < 1. If V is not bounded, but locally

integrable, the domainDH of the corresponding closure OH differs from (4.56) only
by replacing the condition  00 2 L2.0; l/ with the condition� 00CV  2 L2.0; l/.
We also note that both bH and OH are evidently symmetric, but not s.a. because of the
additional zero boundary conditions on the derivatives.

Once the domain Df has been established, we are able to formulate a theorem

that describes all s.a. extensions of the initial symmetric operator Of . This theorem
is actually a paraphrase of the main theorem in the part associated with (3.34).

Theorem 4.12. If the initial symmetric operator Of associated with an s.a. differ-
ential operation Lf has nonzero deficiency indices m˙ D m > 0, then all its

s.a. extensions form an m2-parameter U.m/ family
n OfU ; U 2 U.m/

o
. Each s.a.

operator OfU is specified by a unitary m �m matrix U D ��Ujk
�
� and is given by

OfU W

8
ˆ̂
<

ˆ̂
:

DfU D
(
 U W  U D  CPm

kD1 ckeU;k ; eU;k D eC;k
CPm

jD1 Ujke�;j ; 8 2 Df ; 8ck; k D 1; : : : ; m

)

;

OfU U D Lf  U;
(4.57)
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where Df is given by (4.53), or (4.54) or (4.55) if Lf is even and respectively both
or one of the endpoints of the interval is regular, while fe˙;kgm1 are some (arbitrary,
but fixed) orthonormalized basis functions in the respective deficient subspacesD˙
given by (4.43) and (4.47). In the case of even Lf , we can take e�;k D eC;k.

As an illustration, we examine the same second-order regular differential oper-
ation LH (4.7) on an interval Œ0; l�. Because LH is even, of order 2, and regular, the
deficiency indicesm˙ of the initial symmetric operator bH are equal andm˙ D m D
2. It then follows from Theorem 4.12 that for the differential operation LH, we have
a four-parameter family bHU , U 2 U.2/, of associated s.a. operators bHU , which we
describe in equivalent different ways below. According to our convention, we cite
only the domainDHU of bHU .

To simplify the description, it is convenient to choose the dimensional parameter
� in (4.43) as 2.�=l/2. For orthonormalized basis functions in the two-dimensional
deficient subspacesD˙, it is natural to take the functions

eC;1 D N exp�; eC;2 D N exp .� � �/ ; � D .1 � i/ �x=l;
e�;1 D eC;1 ; e�;2 D eC;2; N D

�
e2� � 1��1=2 .2�=l/1=2 ; (4.58)

where N is a normalization factor. According to (4.57), the domain DHU of an s.a.
operator bHU is given by

DHU D
(
 U W  U D  CP2

kD1 ckeU;k ; eU;k D eCk
CP2

jD1 UjkeC;j ; 8 2 Df ; 8ck; k D 1; 2

)

; (4.59)

where the domain DH is given by (4.56) and U D Ujk is a unitary 2 � 2 matrix.
The normalization factor N in (4.58) can be included in the coefficients c1, c2 and
is irrelevant.

This specification of DHU in terms of DH and deficient subspacesD˙ seems to
be inconvenient from the standpoint of a future spectral analysis of the s.a. operators
bHU and is not adopted in physics, where we are used to dealing with s.a. boundary
conditions on the wave functions  U . These conditions equivalently specifying
DHU are linear relations between the boundary values of the wave functions  U
and their first derivatives  0

U , without mentioning the domainDH.
When deducing s.a. boundary conditions in our case, we proceed from represen-

tation (4.59) for  U , U D  CP2
kD1 ckeU;k , with a given U . Because functions

 and  0 vanish at the endpoints of the interval, the four boundary values of the

functions  U and  0
U are determined only by the second term

P2
kD1 ckeU;k , the

deficient space contribution, namely, by the certain boundary values of the functions
eU;k and e0

U;k , k D 1; 2, and by two arbitrary constants c1 and c2, which results in
two relations between the boundary values of functions  U and  0

U after excluding
the constants c1;2; these relations evidently depend on the unitary matrix U .
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To obtain these relations, it is convenient to work in terms of two-component
columns and 2 � 2 matrices. We introduce the two-component columns 	U .x/ D�
 U .x/� 0

U .x/
�

and C D .c1�c2/ ; and 2 � 2 matrices

EU .x/ D kEU;ak.x/k; EU;ak.x/ D e.a�1/
U;k .x/; a; k D 1; 2:

It then follows from (4.59) that

	U .0/ D EU .0/C; 	U .l/ D EU .l/C: (4.60)

It turns out that the rank of the rectangular 4�2matrix .EU .0/�EU .l// is maximal
and is equal to 2. We could, therefore, express the constants c1 and c2 in terms
of  U .0/; : : : ;  0

U .l/ from one of the two relations in (4.60), then substitute the
obtained expressions in the remaining two relations and thus obtain two linear
relations between the boundary values of the functions belonging to DHU and their
first derivatives. But it is more convenient to proceed as follows. We multiply the
first and second relations in (4.60) from the left by the respective matrices EC

U .0/E
and EC

U .l/E , where E D �i�2 and �2 is the Pauli matrix, which yields

EC
U .0/E	U .0/ D EC

U .0/EEU .0/C; EC
U .l/E	U .l/ D EC

U .l/EEU .l/C:

The crucial remark is that the matrix

R D kRjkk D EC
U .l/EEU .l/ � EC

U .0/EEU .0/

is zero. Indeed, using (4.15) written as

Œ�;  � LH.x/ D
2X

a;bD1
�.a�1/.x/Eab .b�1/.x/

and representation (4.34) and (4.35) for !f � with Of � D bH� D bHC, it is easy
to verify that the matrix elements of the matrix R are represented as Rjk D
ŒeU;j ; eU;k �.x/

ˇ
ˇl
0
D !HC.eU;j ; eU;k/ and are therefore equal to zero because the

restriction of the asymmetry form !HC to DHU , the domain of an s.a. operator,
vanishes. This means that the relation

EC
U .l/E	U .l/ D EC

U .0/E	U .0/ (4.61)

holds, which is equivalent to the relations

�
eU;j ;  U

�
LH .x/

ˇ
ˇl
0
D 0; j D 1; 2: (4.62)
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Relations (4.61), or (4.62), are just the s.a. boundary conditions specifying an s.a.
extension bHU . We note that the explicit form of boundary conditions depends on a
choice of the orthonormal basis functions e˙;j , j D 1; 2, in the deficient subspaces.
But it is easy to trace that under a change of the orthogonal bases, s.a. boundary
conditions specifying a given s.a. extension are replaced by equivalent s.a. boundary
conditions related to the initial ones by a nonsingular linear transformation.

It is clear that the representation (4.59) for U 2 DHU is restored from boundary
conditions (4.61), or (4.62), by reversing the above consideration.

It is also clear how this consideration is extended to s.a. operators associated with
regular even s.a. differential operations of any order.

4.6 Self-adjoint Extensions in Terms of Self-adjoint
Boundary Conditions

In this section, we dwell on the second way provided by Theorem 3.4 for specifying
s.a. operators associated with a given s.a. differential operation Lf as s.a. extensions
OfU of the initial symmetric operator Of .

This way is based on (3.35) and incorporates representation (4.34) and (4.35) of
the asymmetry form !f C for the adjoint Of C in terms of boundary forms, which
allows specifying s.a. differential operators by s.a. boundary conditions. They are
explicit or implicit depending on whether the endpoints of the interval are regular or
singular; on singular endpoints, they are generally of implicit asymptotic character.
There are different, but of course equivalent, versions of the formulation of s.a.
boundary conditions.

We reformulate the corresponding part of the main theorem as applied to
differential operators; the following theorem is an alternative to Theorem 4.12.

Theorem 4.13. If the initial symmetric operator Of associated with an s.a. differen-
tial operation Lf on an interval .a; b/ has nonzero deficiency indices m˙ D m > 0,
then all its s.a. extensions form an m2-parameter family f OfU ; U 2 U.m/g. Each
s.a. operator OfU is specified by s.a. boundary conditions including a unitarym�m
matrix U D kUlkk and is given by

OfU W

8
ˆ̂
<

ˆ̂
:

DfU D
(
 U W  U 2 D�

Lf .a; b/ ; ŒeU;k;  U �f .x/jba D 0;
eU;k D eC;k CPm

lD1 Ulke�;l ; k D 1; : : : ; m

)

;

OfU U D Lf  U ;
(4.63)

where fe˙;kgm1 are some (arbitrary, but fixed) orthonormalized basis functions in the
respective deficient subspaces D˙ of the operator Of given by (4.43) and (4.47). In
the case of even Lf , we can take e�;k D eC;k .
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Remark 4.14. (1) The equation (4.63) defines the s.a. operator OfU as a restriction
of the adjoint operator Of C to the domain DfU specified by the s.a. boundary
conditions that restrict the asymptotic behavior of functions  � 2 D�

Lf .a; b/
at the endpoints of the interval. These boundary conditions considered as
additional linear equations for the functions  � are linearly independent.
Indeed, let the relation

mX

kD1
ck ŒeU;k ;  ��f .x/

ˇ
ˇ
ˇ̌
ˇ

b

a

D 0; 8 � 2 D�
Lf .a; b/ ;

with some constants ck hold. Because of the independence of the left and right
sesquilinear boundary forms and because of their anti-Hermiticity, this relation
is equivalent to the relations

"

 �;
mX

kD1
ckeU;k

#

f

.a=b/ D 0; 8 � 2 D�
Lf .a; b/ :

But by (4.53), this implies that
Pm

kD1 ckeU;k 2 Df , which is possible only
if all ck , k D 1; : : : ; m, are zero, because the functions feU;kgm1 belonging to
DC CD�

are linearly independent moduloDf .
(2) We recall that the relations

ŒeU;k ; eU;l � .x/jba D !f C.eU;k; eU;l / D 0; k; l D 1; : : : ; m; (4.64)

hold, so that the functions feU;kgm1 belong to DfU , and any  U allows the
representation  U D  CPm

kD1 ck; eU;k , so that the operators OfU appearing
in Theorems 4.12 and 4.13 are the same under the same matrix U and the same
basis functions fe˙;kgm1 (see the proof of the main theorem).

The s.a. boundary conditions (4.63) in Theorem 4.13 are generally of implicit
asymptotic character because the existence of the boundary forms does not imply
the existence of boundary values of functions belonging to D�

Lf .a; b/ and their

(quasi)derivatives. But in some particular cases, these conditions become explicit
boundary conditions for the functions and their (quasi)derivatives. We examine two
cases of this kind.

The first one is the case of a regular even s.a. differential operation Lf of (even)
order n on a finite interval .a; b/. We recall that in this case, representation (4.14)
for the local form Œ:; :�f holds, the functions belonging to D�

Lf .a; b/ and their n � 1
quasiderivatives have finite boundary values at both endpoints of the interval, see
Lemma 4.5, and the deficiency indices of the initial symmetric operator Of are equal
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and maximum, m˙ D n; see Sect. 4.4. Consequently, the s.a. boundary conditions
can be written as

nX

l;mD1
e
Œl�1�
U;k .x/Elm Œm�1�

U .x/

ˇ
ˇ
ˇ
ˇ
ˇ̌

b

a

D 0; k D 1; : : : ; n; (4.65)

where the n � n matrix E D kElmk is given by

Elm D ıl;nC1�m�
�
l � nC 1

2

�
; l; m D 1; : : : ; n; (4.66)

and � .�x/ D �� .x/, � .x/ D 1 for x > 0.
The s.a. boundary conditions (4.65) are conveniently represented in a condensed

form by introducing the two n � n matrices

EU .a=b/ D kEU;lk .a=b/k ; EU;lk .a=b/ D eŒl�1�U;k .a=b/ ; (4.67)

and the two n-component columns 	U .a=b/with components 	U k .a=b/,

	Uk .a=b/ D  Œk�1�
U .a=b/ ; k D 1; : : : ; n: (4.68)

In this condensed notation, s.a. boundary conditions (4.65) become

EC
U .b/E	U .b/ D EC

U .a/ E	U .a/ : (4.69)

We consider it useful to present a separate brief version of Theorem 4.13 for the
case of regular differential operations using the condensed notation.

Theorem 4.15. Let Of be the initial symmetric operator associated with a regular
even s.a. differential operation Lf of order n on an interval .a; b/. Then all its
s.a. extensions OfU form an n2-parameter U.n/ family f OfU ; U 2 U.n/g; each s.a.
operator OfU is specified by s.a. boundary conditions (4.69) including a unitary n�n
matrix U D kUlkk and is given by

OfU W

8
<̂

:̂

DfU D
(
 U W  U 2 D�

Lf .a; b/;
EC
U .b/ E	U .b/ D EC

U .a/ E	U .a/

)

;

OfU  U D Lf  U ;

where the matrices E andEU.a=b/ and the columns 	U .a=b/ are defined by the
respective formulas (4.66), (4.67), and (4.68).
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Remark 4.14 following Theorem 4.13 is modified for Theorem 4.15 as follows.

1. The s.a. boundary conditions (4.69) are linearly independent, which is equivalent
to the assertion that the 2n � n matrix E composed of the matrices EU .a/ and
EU .b/ has maximal rank:

E D .EU .a/�EU .b// ; rankE D n: (4.70)

Indeed, similarly to the above proof of the linear independence of the boundary
conditions we deduce that according to (4.54), the condition

Pn
kD1 E˛kck D 0

implies that
Pm

kD1 ckeU;k 2 D Nf , which in turn implies that ck D 0, 8k.
2. Relations (4.64) are written as

EC
U .b/EEU .b/ D EC

U .a/ EEU .a/ : (4.71)

Of course, in practical applications, the condensed notation needs deciphering.
We also note that the matrices EU .a=b/ with a given U depend on the choice of

the dimensional parameter � in (4.43), or in differential equations (4.46), defining
the deficient subspaces D˙ and on the choice of the orthogonal basis fe˙;kgn1 in
D˙. For example, if we change the orthogonal basis,

eC;k 7�! QeC;k D
nX

lD1
VClkeC;l ; e�;k 7�! Qe�;k D

nX

lD1
V�lke�;l ;

where the matrices V˙ are unitary, and the choice V� D VC is optional, then the
matrix U for the same s.a. extension is changed for the matrix QU D V �1� UVC .

Theorem 4.15 is extended, appropriately modified, to s.a. operators associated
with any regular s.a. differential operations Lf with the replacement of quasideriva-
tives by ordinary derivatives. This remark is similar to Remark 4.11.

As an illustration, we consider the previous second-order regular differential
operation LH (4.7) on a finite interval Œ0; l�. It is easy to see that the s.a. boundary
conditions specifying the associated s.a. differential operators bHU in accordance
with Theorem 4.15 and given by (4.69), or (4.65), with n D 2 actually coincide
with s.a. boundary conditions (4.61), or (4.62), obtained in the previous section
as an illustration of Theorem 4.12. Such must be the case because the two ways
for specifying s.a. differential operators presented by Theorems 4.12 and 4.15, the
version of Theorem 4.13, are equivalent.

It seems interesting to present examples of s.a. operators corresponding to a
particular choice of the unitary matrix U . Each bHU is a candidate for a Hamiltonian
for a free particle on the interval Œ0; l�. It is sufficient to indicate the corresponding
s.a. boundary conditions. Henceforth, when presenting explicit boundary conditions
corresponding to a particular choice of the matrix U , we conventionally omit the
subscript U in the notation of the functions belonging to DHU .
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ChoosingU D I , where I is the 2�2 identity matrix, we obtain the Hamiltonian
bHI specified by s.a. boundary conditions, which, written in the conventional
expanded form, looks rather exotic:

 .l/ D � cosh�  .0/� l��1 sinh�  0 .0/;

 0 .l/ D �l��1 sinh�  .0/� cosh�  0 .0/: (4.72)

Choosing U D �I; we obtain the Hamiltonian bH�I specified by the familiar s.a.
boundary conditions

 .0/ D  .l/ D 0 (4.73)

and describing the behavior of a particle in an infinite square potential well.
Choosing U D iI; we obtain the Hamiltonian bHiI specified by the s.a. boundary

conditions

 0 .0/ D  0 .l/ D 0: (4.74)

Choosing U D � �.1 � i/ I C .1C i/ �1� =2, where �1 is the Pauli matrix, we

obtain the Hamiltonian bHU specified by the periodic boundary conditions27

 .0/ D  .l/;  0 .0/ D  0 .l/; (4.75)

which are conventionally adopted in quantizing an ideal gas in a box.
We now examine the second case, in which the s.a. boundary conditions in

Theorem 4.13 can be made into a conventional explicit form in terms of the
boundary values of functions and their (quasi) derivatives. It is rather evident after
the above discussion that such a possibility is realized for a singular even s.a.
differential operation with one regular endpoint and one singular endpoint if the
boundary form at the singular endpoint is trivial, i.e., vanishes identically. We only
need to clear up the deficiency indices of the initial symmetric operator associated
with such an s.a. differential operation in order to know the number of basis
functions eU;k , and therefore, the number of boundary conditions. It turns out that
these two questions are interrelated: the boundary form at the singular endpoint is
trivial if the deficiency indices of the initial symmetric operator are a minimum of
possible ones, i.e., if m˙ D n=2; see Theorem 4.10. We formulate this assertion as
a lemma.

Lemma 4.16. Let the deficiency indices of the initial symmetric operator Of
associated with an even s.a. differential operation Lf of order n on an interval .a; b/
with one regular endpoint, let it be a, and one singular endpoint, b, be minimum,
m˙ D n=2 . Then the boundary form at the singular endpoint is trivial,

Œ��;  �� .b/ D 0; 8��;  � 2 D�
Lf .a; b/ : (4.76)

27It must be confessed that in this case we actually solve the inverse problem of finding a matrix
U that yields periodic boundary conditions.
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If the endpoint a is singular, while the endpoint b is regular, then b in (4.76) must
be replaced by a.

Proof. A proof of the lemma is based on the arguments used in proving the
independence of the boundary forms at different endpoints, see Sect. 4.3, and on
the arguments used in proving Theorem 4.10. Because the endpoint a is regular,
there exist n functions wk 2 D�

Lf .a; b/, k D 1; : : : ; n; vanishing near the singular

endpoint b and linearly independent modulo Df . On the other hand, by the

condition of the lemma, the deficiency indices of the operator Of , as well of Of , are
equal to n=2, and therefore, the dimension of the subspaceD�

Lf .a; b/ moduloDf is

equal to n=2C n=2 D n, dimDf
D�

Lf .a; b/ D n. The latter means that any function

 � 2 D�
Lf .a; b/ can be represented as  � D  CPn

kD1 ckwk , where  2 Df

and ck are some coefficients. Consequently, the boundary form Œ��;  �� .b/ for any
��;  � 2 D�

Lf .a; b/ can be represented as

Œ��;  ��.b/ D Œ��;  �.b/C
nX

kD1
ckŒ��;wk�.b/:

The first term on the right-hand side of the last equality vanishes due to (4.53), while
the second term vanishes because all functions wk vanish near the singular endpoint
b, which proves the lemma. ut

In the next section, we show that conversely, if the boundary form at a singular
endpoint is trivial, then the deficiency indices of the initial symmetric operator are
minimum,m˙ D n=2.

It follows from Lemma 4.16 that in the case under consideration, the terms
ŒeU;k ;  U � .b/ in boundary conditions (4.63) in Theorem 4.13 vanish, and the
boundary conditions reduce to

ŒeU;k ;  U � .a/ D 0; k D 1; : : : ; n=2:

Using arguments similar to those in deducing (4.65), we represent these boundary
conditions in an explicit form

nX

l;mD1
e
Œl�1�
U;k .a/Elm Œm�1�

U .a/ D 0; k D 1; : : : ; n=2; (4.77)

where Elm are given by (4.66). If we introduce a rectangular n � n=2 matrix
E1=2;U .a/ with the matrix elements

�
E1=2;U .a/

�
lk
D eŒl�1�U;k .a/ ; l D 1; : : : ; n; k D 1; : : : ; n=2; (4.78)
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then s.a. boundary conditions (4.77) are represented in a condensed form as

EC
1=2;U .a/ E	 .a/ D 0; (4.79)

where 	 .a/ is given by (4.68).
We consider it useful to present a separate brief version of Theorem 4.13 for the

case under consideration using the condensed notation.

Theorem 4.17. Let Lf be an even s.a. differential operation of order n on an
interval .a; b/ with a regular endpoint a and a singular endpoint b, and let the
associated initial symmetric operator Of have the minimum possible deficiency
indices m˙ D n=2 , which is equivalent to the triviality of the boundary form at
the singular endpoint b. Then all s.a. extensions OfU of Of form an .n=2/2-parameter
family f OfU ; U 2 U.n=2/g; each s.a. operator OfU is specified by s.a. boundary
conditions (4.79) and is given by

OfU W
(
DfU D

n
 U W  U 2 D�

Lf .a; b/ ; E
C
1=2;U .a/ E	U .a/ D 0

o
;

OfU U D Lf  U ;
(4.80)

where the matrices E and E1=2;U .a/ are defined respectively by (4.66) and (4.78)
and the column 	U .a/ is defined by (4.68). If the endpoint a is singular, while the
endpoint b is regular, then a in (4.80) is replaced by b.

Remark 4.14 following Theorem 4.13 is modified for Theorem 4.17 as follows:

1. The s.a. boundary conditions (4.79) are linearly independent, or equivalently, the
rectangular n�n=2matrixE1=2;U .a/ has maximum rank, rankE1=2;U .a/ D n=2,
which is an analogue of (4.70).

2. Relation (4.64) becomes EC
1=2;U .a/ EE1=2;U .a/ D 0, which is an analogue of

relation (4.71).

In Sect. 6.2, we consider the s.a. operators associated with the s.a. differential
operation LH (4.7) on the semiaxis RC as an illustration of Theorem 4.17.

Specifying the s.a. differential operators OfU by means of s.a. boundary conditions
according to Theorems 4.13, 4.15, and 4.17 requires evaluating the orthonormal
basis functions fe˙;kgm1 in the corresponding deficient subspaces D˙. But it is
only the behavior of these functions at the boundary that is essential. In addition,
there is an arbitrariness in the choice of these functions, while examples show
(see Chaps. 6–9) that their specific boundary values actually do not enter into the
answer. All this allows us to suggest that many analytic details are irrelevant from
the standpoint of the general construction. Indeed, there exists another way of
specifying s.a. boundary conditions that allows us to avoid a detailed evaluation
of deficient subspaces, a way whereby the analytic problem is reduced significantly
and is actually replaced by some algebraic problem. This way may turn out to be
more convenient for applications. It is based on an equivalent, but modified, version
of the main theorem in the part associated with (3.35).
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We emphasize that all that follows up to Theorem 4.20 is concerned with general
operators, not only differential ones.

We recall representation (3.35) for the domain DfU of an s.a. extension OfU with
the deficiency indices m˙ D m, 0 < m < 1. For future convenience, we take
z D i� and use a naturally changed notation28:

@z ! DC; �z ! �C; ez;k ! eC;k; @z ! D�; �z ! ��; ez;k ! e�;k :

Then the representation (3.35) becomes

DfU D


�U W �U 2 Df C I !f C .eU;k ; �U / D 0;
eU;k D eC;k CPm

lD1 Ulke�; l ; k D 1; : : : ; m
�
; (4.81)

where fe˙;kgm1 are the orthogonal bases in the respective deficient subspaces D˙
and U D kUlkk is a unitarym �m matrix.

The two properties are characteristic for the vectors eU;k : first, the vectors eU;k ,
k D 1; : : : ; m, form a basis in the subspace . OIC OU /DC and are linearly independent
moduloDf , and second, because each of them belongs to DfU , the relations

!f C .eU;k ; eU;l / D 0; k; l D 1; : : : ; m; (4.82)

hold.29 It turns out that in fact, it is only the linear independence of these m vectors
modulo Df and relations (4.82) for them, and not their specific form, that are of
importance.

Indeed, the vectors eU;k in representation (4.81) can be equivalently replaced by
their nondegenerate linear combinations,

eU;k ! wU;k D
mX

aD1
XakeU;a;

where the matrix X D kXakk is nonsingular. Similar to feU;kgm1 , the vectors
fwU;kgm1 form a basis in the subspace . OI C OU /DC and are linearly independent
modulo Df , and relations (4.82) are also evidently extended to these vectors,
!f C .wU;k ;wU;l / D 0. In addition, we can add an arbitrary vector �

k
belonging

to the domainDf of the closure Of to any vector wU;k ,

wU;k ! wk D wU;k C �
k
D

mX

aD1
XakeU;k C �

k
; �

k
2 Df ; (4.83)

28Following the above convention for differential operators.
29These properties as applied to differential operators were already cited above.
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and obtain an equivalent representation of the domain DfU in terms of the new m

vectors fwkgm1 (4.83):

DfU D
˚
�U W �U 2 Df C I !f C .wk; �U / D 0; 8k

�
; (4.84)

because !f C.�
k
; �U / D !f C.�U ; �

k
/ D 0 according to the defining property (3.17)

of the domainDf . For the same reason, relations (4.82) hold for the newm vectors
fwkgm1 ,

!f C .wk;wl / D 0; k; l D 1; : : : ; m: (4.85)

It is also evident that these new vectors are linearly independent moduloDf .

It turns out that the inverse also holds. Namely, let Of be a symmetric operator;

let Of be its closure; let Of C be its adjoint, and let the deficiency indices of Of be
finite, equal, and different from zero, m˙ D m, 0 < m < 1, so that Df � Df �
Df C and dimDf

Df C D 2m. Let fwkgm1 be a set of vectors with the following
properties:

(1) wk 2 Df C , k D 1; : : : ; m.
(2) all wk are linearly independent moduloDf , i.e.,

mX

kD1
ckwk 2 Df ; 8ck 2 C H) ck D 0; 8k:

(3) The vectors wk , k D 1; : : : ; m, satisfy relations (4.85).

Then the set of vectors fwkgm1 defines some s.a. extension OfU of the symmetric
operator Of as an s.a. restriction of its adjoint Of C, Of � OfU D Of C

U � Of C, to the
domainDfU belonging to Df C and given by (4.84).

To prove this assertion, it is sufficient to prove that all the vectors wk can be
represented as

wk D
mX

aD1
Xak

 

eC;a C
mX

bD1
Ubae�;b

!

C �
k
; 8k;

where fe˙;kgm1 are some orthogonal bases in the respective deficient subspaces D˙
of the initial symmetric operator Of , Xak and Uba are some coefficients such that the
m �m matrix X D kXakk is nonsingular, the m �m matrix U D kUbak is unitary,
and all the vectors �

k
belong to Df .

We first turn to the condition (1). According to the first von Neumann formula
(3.6), any vector wk belonging to Df C is uniquely represented (taking the change
of notation into account) as

wk D �C;k C ��;k C �
k
D

mX

aD1
XakeC;a C

mX

aD1
Yake�;a C �

k
;
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where �˙;k 2 D˙, �
k
2 Df , andXak and Yak are some coefficients. We then turn to

the conditions (2) and (3). The crucial remark is that according to these conditions,
both m � m matrices X D kXakk and Y D kYakk are nonsingular. The proof
is by contradiction. Let, for instance, the rank of the matrix X be not maximal,
rankX < m;which means that there exists a set fckgm1 of complex numbers ck such
that at least one of them is different from zero, while

Pm
kD1 Xakck D 0, 8a. In such

a case, we have
mX

kD1
ck�C;k D

mX

aD1

 
mX

kD1
Xakck

!

eC;a D 0;

and the vector w DPm
kD1 ckwk is represented as

w D �� C �; �� D
mX

kD1
ck��;k ; � D

mX

kD1
ck�k

:

According to the condition (3), we have

!f C .w;w/ D �f C .w/ D
mX

k;lD1
Nckcl!f C .wk;wl / D 0:

On the other hand, by the von Neumann formula (3.19) for the quadratic asymmetry
form �f C , we have that �f C .w/ D �2i� k��k2, whence it follows that �� D 0,
and therefore w D � 2 D Nf . Condition (2) then implies that all the numbers ck
are equal to zero, which is a contradiction that proves the nonsingularity of the
matrix X .

The proof of the nonsingularity of the matrix Y is similar.
The nonsingularity of the matrixX allows representing the vectors wk as follows:

wk D
mX

aD1
Xak

 

eC;a C
mX

bD1
Ubae�;b

!

C �
k
; k D 1; : : : ; m;

where the nonsingularm�mmatrixU is given byU D YX�1. Using representation
(3.18) for the asymmetry form !f C , condition (3) can be written as

!f C .wk;wl / D 2i� Œ.�C;k ; �C;l /� .��;k ; ��;l /� D 0; 8k; l;

which is reduced to

mX

a;bD1

�
Xak .eC;a; eC;b/ Xbl � Y ak .e�;a; e�;b/ Ybl

� D
mX

aD1

�
XakXal � Y akYal

� D 0
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by virtue of the orthonormalization relations .e˙;a; e˙;b/ D ıab . The last equality
can be represented in matrix form as

XCX � Y CY D XC
h
I �

��
XC��1 Y C

� �
YX�1�

i
X D XC �I � UCU

�
X D 0:

In view of the nonsingularity of the matrix X , it follows that UCU D I , i.e., the
matrix U is unitary.

We simultaneously see how the unitary matrix U labeling an s.a. extension OfU
of the symmetric operator Of is uniquely restored from a given set of vectors fwkgm1
under a certain choice of the orthogonal bases fe˙;kgm1 in the respective deficient
subspacesD˙ of Of .

We formulate the results of the above consideration as a supplement to the main
theorem; this supplement is the promised modification of the main theorem in its
part associated with (3.35).

Theorem 4.18 (Supplement to the main theorem). Any s.a. extension OfU of a
symmetric operator Of with finite equal nonzero deficiency indices, m˙ D m, 0 <
m <1, can be defined as

OfU W
(
DfU D

˚
�U W �U 2 Df C I !f C .wk; �U / D 0; 8k

�
;

OfU �U D Of C�U;
(4.86)

where fwkgm1 is a certain set of vectors belonging to the domain Df C , wk 2
Df C , linearly independent modulo the domainDf , and satisfying relations (4.85).
Conversely, any set fwkgm1 of vectors belonging to Df C , linearly independent
modulo Df , and satisfying relations (4.85) defines a certain s.a. extension of the

symmetric operator Of by (4.86).

Remark 4.19. We note that the U.m/-nature of the set f OfU g of all s.a. extensions
proves to be hidden in this formulation of the main theorem. This manifests itself
in the fact that the two sets fwkgm1 and f Qwkgm1 of vectors related by a linear
transformation Qwk D Pm

lD1 Zlkwl , where the matrix Z D kZlkk is nonsingular,
define the same s.a. extension. We can say that the description of s.a. extensions
according to the supplement to the main theorem is a description with a certain
“excess” that is inessential, but controlled.

An application of the supplement to the main theorem to differential operators in
L2 .a; b/ results in an evident modification of Theorem 4.13.

Theorem 4.20. Any s.a. extension OfU of the initial symmetric operator Of associ-
ated with an s.a. differential operation Lf on an interval .a; b/ and having equal
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nonzero deficiency indices, m˙ D m > 0, can be specified by s.a. boundary
conditions as follows:

OfU W
(
DfU D

n
 U W  U 2 D�

Lf .a; b/ ; Œwk;  U �f .x/
ˇ
ˇb
a
D 0; 8k

o
;

OfU U D LfU ;
(4.87)

where fwkgm1 is a certain set of functions belonging to the domain Df C , wk 2
D�

Lf .a; b/, linearly independent modulo the domainDf and satisfying the relations

Œwk;wl �f .x/
ˇ
ˇb
a
D 0; k; l D 1; : : : ; m: (4.88)

Conversely, any set fwkgm1 of functions belonging to Df C , linearly independent

modulo Df , and satisfying relations (4.88) defines a certain s.a. extension of Of
given by (4.87).

Remark 4.19 following the supplement to the main theorem is completely
applicable to Theorem 4.20.

Theorem 4.20 yields a modified version of Theorem 4.15 related to regular
differential operations. The modification consists in the replacement of the matrices
EU .a=b/ (4.67) by the similar n � n matrices W .a=b/ with the matrix elements
Wlk .a=b/ D wŒl�1�k .a=b/ generated by the functions wk 2 D�

Lf .a; b/, k D
1; : : : ; n, satisfying the conditions of Theorem 4.20. These conditions, the linear
independence of the functions wk moduloDf , and relations (4.88) are equivalent to
the following two conditions on the matricesW .a=b/:

(1) The rank of the rectangular 2n � n matrix W composed of the two matrices
W .a=b/ is maximum,

W D .W .a/�W .b// ; rankW D n: (4.89)

This property is a complete analogue of (4.70).
(2) The relation

W C .b/EW .b/ D W C .a/ EW .a/ (4.90)

holds, which is an analogue of relation (4.71).

The proof of the necessity of (4.89) is by contradiction. Let rankW < n. This
means that there exists a set fckgn1 of numbers such that at least one of them is
different from zero, and

nX

kD1
Wlk .a=b/ ck D

nX

kD1
wŒl�1�k .a=b/ ck D 0:
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The representation (4.54) then implies that the function w D Pn
kD1 ckwk belongs

to the domainDf of the closure Of of Of , which contradicts the linear independence
of the functions wk modulo Df unless all ck are equal to zero. In fact, we here
repeat the arguments leading to (4.70).

Conversely, let W.a=b/ be two arbitrary matrices satisfying condition (4.89).
Because the functions belonging to D�

Lf .a; b/ and their n � 1 quasiderivatives can

take arbitrary values at the regular endpoints a and b, there exists a set fwkgn1 of
functions wk 2 D�

Lf .a; b/ such that Wlk .a=b/ D wŒl�1�k .a=b/. These functions are

evidently linearly independent moduloDf .
As to relation (4.90), it is equivalent to relation (4.88) in view of representation

(4.14) for the local form Œ:; :�f generated by even s.a. differential operations and
its modification in terms of the matrix E (4.66), which were already used before in
deducing (4.65) and (4.71). This relation is a direct generalization of relation (4.71).
Because the functions wk are represented in this context only by the boundary values
of their quasiderivatives of order from 0 up to n � 1, it is natural to introduce the
notation A D kalkk D W .a/, B D kblkk D W .b/ and to formulate a modified
version of Theorem 4.15 as follows.

Theorem 4.21. Any s.a. extension OfU of the initial symmetric operator Of associ-
ated with a regular even s.a. differential operation Lf of order n on an interval .a; b/
can be specified by s.a. boundary conditions as follows:

OfU W
(
DfU D

n
 U W  U 2 D�

Lf .a; b/ I BCE	U .b/ D ACE	U .a/
o
;

OfU U D Lf  U ;
(4.91)

where A and B are some n � n matrices satisfying the conditions

rank .A=B/ D n; BCEB D ACEA; (4.92)

the matrix E and columns 	U .a=b/ are defined respectively by (4.66) and (4.68).
Conversely, any two matrices A and B satisfying conditions (4.92) define a certain
s.a. extension of Of given by (4.91).

A similar theorem, appropriately modified, holds for any regular s.a. differential
operations with the replacement of quasiderivatives by ordinary derivatives because
the corresponding boundary forms are finite forms in the boundary values of
functions and their derivatives; see Lemma 4.23.

We can also add that the matrices QA D AZ and QB D BZ, where the n � n
matrix Z is nonsingular, define the same s.a. operator. This remark is related to the
hiddenU .n/-nature of s.a. boundary conditions (4.91) and is similar to Remark 4.19
following Theorems 4.18.
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In fact, this arbitrariness in the choice of the matrices A and B is unremovable
only if their ranks are not maximum,30 rankA < n, rankB < n (it follows
from condition (4.92) that the matrices A and B are singular or nonsingular
simultaneously). If these matrices are nonsingular, which is a generic situation,
the indicated arbitrariness can be removed. Indeed, let detB ¤ 0; and therefore,
detA ¤ 0 as well. Then, in view of the property E�1 D �E of the nonsingular
matrix E , s.a. boundary conditions (4.91) can be written as

	 .b/ D S	 .a/ ; 	 .a/ D S�1	 .b/ ; (4.93)

where the nonsingular matrix S is given by S D �E �AB�1�C E . Because the
matrix E is anti-Hermitian, EC D �E , the conjugate matrix SC is given by
SC D �E �AB�1� E , and the second condition in (4.92) is written in terms of S as

SCES D E : (4.94)

Otherwise, the matrix S is arbitrary.
The algebraic sense of relation (4.94) is clear: this relation implies that the linear

transformations 	 7�! S	 defined in an n-dimensional space of n-component
columns 	 with components  l , l D 1; : : : ; n, preserve the Hermitian sesquilinear
form .1=i/�CE	 , where � is a column with components �l , l D 1; : : : ; n, or
equivalently, preserve the Hermitian quadratic form .1=i/	CE	 . The Hermitian
matrix �iE can be easily diagonalized by a unitary transformation:

� iE D T C˙3T; (4.95)

where the diagonal n � n matrix ˙3 equals diag(I;�I ), where I is the n=2 � n=2
identity matrix, and the unitary n � n matrix T D kTlmk is given by

p
2Tlm D ıl;m Œ� .�k/ � i� .k/�C ıl;nC1�m Œ� .�k/C i� .k/� ;

k D m � .nC 1/ =2; (4.96)

where � .x/ is the well-known step function. The signature of the matrix .1=i/E is
equal to .n=2; n=2/, which implies that the transformations S satisfying condition
(4.94) form the group U .n=2; n=2/. We thus obtain that in the generic case, the
s.a. boundary conditions are parameterized by elements of the group U .n=2; n=2/,
which defines an embedding of the group U .n=2; n=2/ into the group U .n/

that parameterizes all possible s.a. boundary conditions. This embedding is an
embedding “into,” but not “onto”: although both U .n=2; n=2/ and U .n/ are n2-
parameter manifolds, the group U .n=2; n=2/ is noncompact, whereas the group
U .n/ is compact; it is also clear from the above discussion that s.a. boundary
conditions (4.91) cannot be represented in the form (4.93) if the matrices A and

30Of course, this condition is compatible with condition (4.92).
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B are singular. In the latter case, the boundary conditions can be obtained from
(4.93) by a certain limiting process whereby some matrix elements of the matrix
S tend to infinity, while some others tend to zero (we note that jdetS j D 1). This
process corresponds to a compactification of the group U .n=2; n=2/ to the group
U .n/ by adding some limit elements.

It is worth noting that in looking at the representation of the asymmetry form
!f C in terms of the boundary values of functions and their quasiderivatives in the
case of regular even s.a. differential operations,31

!f C .��;  �/ D �C� .b/E	� .b/ � �C� .a/E	� .a/ ; (4.97)

where the n-component columns �� .a/ ; �� .b/ and 	� .a/ ; 	� .b/ are defined by
(4.68) under the respective changes  U ! �� and  U !  �, we can easily see
from the very beginning that boundary conditions (4.93) with any fixed matrices S
satisfying condition (4.94) result in the vanishing of the asymmetry form !f C and

thus define a symmetric restriction of the adjoint operator Of C. Using the standard
technique of evaluating the adjoint operator in terms of the asymmetry form !f C ,
see Sect. 3.2, it is easy to prove that boundary conditions (4.93) and (4.94) are
actually s.a. boundary conditions defining an s.a. restriction of the operator Of C.
Unfortunately, they do not exhaust all possible s.a. boundary conditions.

It may be instructive to illustrate Theorem 4.21 and also s.a. boundary conditions
(4.93) and (4.94) by our favorite example of the regular second-order s.a. differential
operation LH (4.7) on an interval Œ0; l�. Our goal is to show how already known
s.a. boundary conditions (4.72)–(4.75) are obtained without evaluating the deficient
subspaces.

Let now A D ��ıi2ıj 2
�� and B D ��ıi2ıj1

��. It is easy to verify that these
matrices satisfy conditions (4.92); then (4.91) yields the s.a. boundary conditions
 .0/ D  .l/ D 0 coinciding with (4.73). These boundary conditions can be
obtained from (4.93) with the matrix S ."/ D antidiag .1=";�"/ by passing to the
limit " ! 0. Such a matrix S ."/ arises if we slightly deform the initial matrices A
and B , A!A ."/ D diag ."; 1/ and B!B ."/ D antidiag .1;�"/, removing their
singularity without breaking conditions (4.92).

Let now A D ��ıi1ıj 2
�� and B D ��ıi1ıj1

��. These matrices also satisfy conditions
(4.92); then (4.91) yields the s.a. boundary conditions  0 .0/ D  0 .l/ D 0

coinciding with (4.74). Again, these boundary conditions can be obtained from
(4.93) with the matrix S ."/ D antidiag .";�1="/ by passing to the limit " ! 0.
The matrix S ."/ arises as a result of the deformationA! A ."/ D antidiag .�"; 1/,
and B ! B ."/ D diag .1; "/.

If we choose A D ��a2ıi1ıj 2 C a4ıi2ıj 2
�� andB D ��b1ıi1ıj1 C b3ıi2ıj1

��, where
at least one of the numbers in the pairs a2; a4 and b1; b3 is different from zero,
which is required by the first of conditions (4.92), and in addition a2a4 D a2a4 and

31In fact, this representation based on (4.14), (4.34) and (4.35), could have been cited much earlier,
at least at the beginning of the above consideration leading to (4.65)–(4.71).
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b1b3 D b1b3, which is required by the second of conditions (4.92), we obtain the
so-called split s.a. boundary conditions

 0 .0/ D � .0/ ;  0 .l/ D � .l/ ;
where � D a4=a2 D a4=a2, � D b3=b1 D b3=b1 2 R, so that � D ˙1 yield
the same boundary condition  .0/ D 0, and � D ˙1 yield the same boundary
condition  .l/ D 0.

Setting S D I in (4.93), we obtain the periodic boundary conditions  .0/ D
 .l/,  0 .0/ D  0 .l/, coinciding with (4.75). But if we choose S D ei#I , # 2
S .0; 2�/, we obtain the modified periodic boundary conditions  .l/ D ei# .0/,
 0 .l/ D ei# 0 .0/, which include both periodic, # D 0, and antiperiodic, # D � ,
boundary conditions.

As to the “mixed” s.a. boundary conditions (4.72), it is easy to verify that they
can be represented in the form (4.93), 	 .l/ D S	 .0/, with the matrix

S D �
�

cosh � l��1sinh�
�l�1 sinh � cosh �

�
;

satisfying condition (4.94).
Theorem 4.20 also provides a modified version of Theorem 4.17 that is obtained

by reasoning completely similar to the previous one.

Theorem 4.22. Let Lf be an even s.a. differential operation of order n on an
interval .a; b/ with a regular endpoint a and a singular endpoint b, and let the
associated initial symmetric operator Of have the minimum possible deficiency
indices m˙ D n=2 , which is equivalent to the triviality of the (right) boundary
form at the singular endpoint b. Then any s.a. extension OfU can be specified by s.a.
boundary conditions as follows:

OfU W
8
<

:
DfU D

n
 U W  U 2 D�

Lf .a; b/ ; A
C
1=2E U .a/ D 0

o
;

OfU  U D Lf  U;
(4.98)

where A1=2 is a rectangular n � n=2 matrix satisfying the conditions

rank A1=2 D n=2; AC
1=2EA1=2 D 0; (4.99)

and the matrix E and column 	U .a/ are defined respectively by (4.66) and (4.68).
Conversely, any n � n=2 matrix A satisfying conditions (4.99) defines a certain s.a.
extension of Of given by (4.98). If the endpoint a is singular, while the endpoint b is
regular, A1=2 and a in (4.98) and (4.99) are respectively exchanged for B1=2 and b.

Similar to Theorem 4.21, this theorem can be supplemented with a remark about
a hidden U.n=2/-nature of s.a. boundary conditions (4.98): the matrices A1=2 and
A1=2Z, where Z is any nonsingular n=2 � n=2 matrix, yield the same s.a. operator.
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We illustrate this theorem by the example of s.a. differential operation LH (4.7) of
order n D 2 on the semiaxis RC. This differential operation satisfies the conditions
of Theorem 4.22, as well as of Theorem 4.17: the left endpoint a D 0 is evidently
regular, the right endpoint b is singular, but the boundary form at the singular
endpoint is trivial, Œ:; :�H.1/ D 0, by Lemma 2.14 (we already mentioned this
fact in Sect. 4.3 when we considered LH on the whole axis).32

Again, our aim is to demonstrate how s.a. operators associated with LH on RC
can be constructed and specified without evaluating the deficient subspaces of the
initial symmetric operator bH. The matrix A1=2 in the case of n D 2 is a column of
two numbers a1; a2 at least one of which is different from zero, which is required
by the first of conditions (4.99), while the second of conditions (4.99) requires that
the equality a1a2 D a1a2 be fulfilled. Formula (4.98) with Lf D LH then defines
a one-parameter family bH�, � 2 R, of s.a. operators bH� associated with LH and
specified by the s.a. boundary conditions  0 .0/ D � .0/, � D a2=a1 D a2=a1;
see also Sect. 6.2. It is evident that the same s.a. boundary conditions specify the
s.a. operators OH� associated with the s.a. differential operation LH D LH C V.x/
(4.8) on the semiaxis RC in the case that the potential is bounded, jV .x/j < M ;
an operator OH� is defined on the same domain as an operator bH�. The same s.a.
boundary conditions holds also for a set of unbounded potentials. See Sect. 7.1.

4.7 Asymmetry Form Method for Specifying Self-adjoint
Extensions in Terms of Explicit Self-adjoint Boundary
Conditions

The above-presented traditional methods for constructing s.a. operators associated
with s.a. differential operations as s.a. extensions of the initial symmetric operators
and their specification in terms of s.a. boundary conditions do not always provide an
explicit form of these conditions, especially in the presence of singular endpoints,
so that the U .m/-nature of the whole family of the associated s.a. operators is not
evident.

We now discuss another possible method, additional to the traditional ones, for
specifying the associated s.a. differential operators in terms of explicit, generally
asymptotic, s.a. boundary conditions; theU .m/-nature of this description is evident.
For brevity, we call this method the asymmetry form method. The idea of this
method is based on two observations. Both observations equally concern the
asymmetry forms !f C and �f C . It is more convenient for us to deal with the
quadratic asymmetry form �f C , although all that is stated below is applicable to
the sesquilinear asymmetry form !f C as well: we recall that the forms �f C and

32It is also easy to verify that the deficiency indices of the initial symmetric operator bH are
minimum, m

˙
D n=2 D 1 (see Sect. 6.2).
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!f C determine each other; see Sect. 3.2. This section is comparatively independent
of the previous section, and for its completeness, we cite some basic notions.

The first observation is as follows. For ordinary differential operators, it is
convenient to represent finite-dimensional deficient subspaces D˙ (4.43) in terms
of their orthogonal decompositions (4.47), i.e., to represent deficient vectors  ˙ in
terms of their expansion coefficients c˙;k , which are dimensionless by definition.
Namely, under a certain choice (arbitrary, but fixed) of the orthogonal basis
fe˙;kgm˙

1 in D˙, the deficient subspaces DC and D� can be identified with
the respective finite-dimensional Euclidean linear spaces C

mC

C of mC-component
columns fcC;kgmC

1 and C
m�� of m�-component columns fc�;kgm�

1 , DC , C
mC

C
and D� , C

m�� . In this representation, the quadratic asymmetry form, which is
defined on the natural domainD�

Lf .a; b/ D Df C D DfCDCCD�, but is nontrivial

only on DC CD�, becomes

�f C . �/ D 2i�

 
mCX

kD1
jcC;kj2 �

m�X

kD1
jc�;k j2

!

; (4.100)

or the quadratic form .1=2i�/�fC becomes a canonical diagonal Hermitian form
in the complex linear space C

mCCm� D C
mC

C C C
m�� , the direct sum33 of the

spaces C
mC

C and C
m�� giving contributions of opposite signs to the quadratic

form. The deficiency indices m˙ determine the signature of this quadratic form,
sgn .1=2i�/�fC D .mC; m�/, and manifest themselves as its inertia indices; we

recall thatm˙ � n, where n is the order of the differential operation Lf ; see Sect. 4.4.
For brevity, we call representation (4.100) the canonical diagonal form for�f C and
call mC; m� its inertia indices, by this is actually the form .1=2i�/�fC .

We can examine the problem of symmetric and s.a. extensions of the initial
symmetric operator Of in terms of the expansion coefficients c˙;k . We can repeat
all the arguments in Sects. 3.3 and 3.4 resulting in the main theorem with the same
conclusions in these terms. In particular, if the inertia indices are equal, m˙ D m,
the isometries OU W CmC 7�! C

m� that are directly given by unitary m � m matrices
U provide the vanishing of the forms �f C and !f C and thereby produce the

m2-parameter family f OfU ; U 2 U.m/g of s.a. extensions of the initial symmetric
operator Of .

We now observe that we can choose an arbitrary mixed basis fekgmCCm�

1 in the
direct sum DC CD� such that

 C C  � D
mCCm�X

kD1
ckek: (4.101)

33We recall that this sum is direct, but not orthogonal.
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Correspondingly, the basis in C
mCCm� also changes, and the form�f C becomes

�f C . �/ D 2i�
mCCm�X

k;lD1
ck!kl cl ; (4.102)

where .mCCm�/�.mCCm�/matrix ! D k!klk is dimensionless and Hermitian,
!kl D !lk , or .1=2i�/�fC becomes a general Hermitian quadratic form, of course
of the same signature. We can reduce representation (4.102) to canonical diagonal
form (4.100) in a standard way34 and repeat the already known arguments with the
same conclusions.

The second observation includes some suggestions. In the case of differential
operators, the quadratic asymmetry form�f C is expressed in terms of the quadratic
boundary forms, the boundary values of the quadratic local form Œ �;  ��f .x/ in
functions and their (quasi)derivatives; see representations (4.36) and (4.37). We
know that for an even s.a. differential operation Lf of order n, the boundary forms,
both sesquilinear and quadratic, at a regular endpoint are finite nontrivial forms of
order n in finite boundary values of functions and their quasiderivatives of order
up to n � 1, see (4.14), which considerably simplified the analysis of s.a. boundary
conditions in the previous section. More specifically, let the left endpoint a of the
interval be regular. As is evident from representation (4.97) for the sesquilinear form
!f C in terms of boundary forms, the left quadratic boundary form Œ �;  ��f .a/ is
represented as

Œ �;  ��f .a/ D 	C� .a/E	�.a/; (4.103)

where the n-column 	�.a/ is given by (4.68) with the change of subscript U ! �,
and the n � n matrix E is given by (4.66). Of course, a similar representation holds
for the right boundary form Œ �;  ��f .b/ if the right endpoint b is regular.

To our knowledge, the notion of quasiderivatives and similar assertions are absent
for odd and mixed s.a. differential operations. However, we can prove the following
lemma.

Lemma 4.23. For any s.a. differential operation of finite order, the sesquilinear and
quadratic boundary forms at a regular endpoint are finite forms in the respective
boundary values of functions and their derivatives of order up to n � 1.

Proof. According to (4.13), the anti-Hermitian sesquilinear local form

Œ��;  ��f .x/

34The so-called reduction to the principal axes of inertia by invertible linear transformations of the
expansion coefficients.



162 4 Differential Operators

for an s.a. differential operation Lf of order n on an interval .a; b/ allows the
representation

Œ��;  ��f .x/ D i
nX

k;lD1
�
.k/
� .x/e!kl.x/  

.l/
� .x/ (4.104)

inside the interval, where the Hermitian n � n matrix e!.x/ D ke!kl.x/k is
continuous. We prove that this matrix has a finite limit at a regular endpoint, i.e.,
it is continuous up to a regular endpoint. For brevity, we speak about continuity
at a regular endpoint. The proof is based on the continuity of the sesquilinear
local form Œ��;  ��f .x/ at any endpoint and the continuity of functions  .k�1/� .x/,
k D 1; : : : ; n, at a regular endpoint. Let the left endpoint a be a regular endpoint.
We take a collection of functions  �˛.x/, ˛ D 1; : : : ; n, so that the n � n matrix
	.x/ D �

� .k�1/
�˛ .x/

�
�, which is continuous at the left endpoint a, is nonsingular

on an interval Œa; a C ��, where � is sufficiently small.35 We then consider the
n � n matrix ˝.x/ D Œ �˛;  �ˇ�f .x/. According to (4.104), this matrix allows
the representation

˝.x/ D 	C.x/e!.x/	.x/; 	C.x/ D .	.x//C;

inside the interval, whence follows the representation

e!.x/ D .	C.x//�1˝.x/ .	.x//�1

for the matrix e!.x/. Because all the matrices on the right-hand side of this
representation are continuous at the regular endpoint a, the matrix e!.x/ is also
continuous at this endpoint, i.e., the matrix e!.a/ exists and is finite. This means
that representation (4.104) can be extended to x D a, i.e., to the left sesquilinear
boundary form Œ��;  ��f .a/ and therefore to its reduction to the diagonal, the
quadratic boundary form Œ �;  ��f .a/. Similar arguments are applicable to the
right regular endpoint b, which completes the proof of the lemma. ut

This lemma allows considering even and noneven s.a. differential operations Lf
on an equal footing. The only difference is that derivatives for the general Lf are
replaced by quasiderivatives for even Lf .

Because the boundary values of functions and their (quasi)derivatives are
generally dimensional, it is convenient to introduce dimensionless quantities ck
coinciding with derivatives  .k�1/

� , or quasiderivatives  Œk�1�
� for even Lf , at a

regular endpoint up to a corresponding dimensional factor. It is also convenient to
redefine the dimensional matrix elementse!kl.a=b/, if they occur, by a dimensional

35For example, we can take functions  �˛ such that  .k�1/
�˛ .x0/ D ık˛ , x0 2 Œa; aC ��.
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factor, e!kl.a=b/ ! !kl.a=b/, where !kl .a=b/ are dimensionless.36 Then the left
quadratic boundary form for an s.a. differential operation Lf of order nwith a regular
endpoint a becomes37

Œ �;  �� .a/ D 2i�
nX

k;lD1
ck.a/!kl .a/cl .a/; !kl .a/ D !lk.a/; (4.105)

where ck.a/, k D 1; : : : ; n, are boundary values of (quasi)derivatives of  � of
respective orders 0; 1; : : : ; n � 1 at the left endpoint a up to some arbitrary, but
fixed, dimensional factor, its own for each k, so that all ck.a/ are dimensionless, the
Hermitian n�n matrix !.a/ D k!kl .a/k is also dimensionless, and � is a common
dimensional factor of the dimension of Lf . The common dimensional factor 2i�
is extracted for the convenience of further comparisons. In principle, the number
p.a/ of essential parameters ck.a/ in (4.105) could be less than n if the matrix
!kl.a/ were singular, i.e., rank!.a/ < n, but we show below that p.a/ D n, or
rank!.a/ D n for a regular endpoint.38

A similar representation holds for the right boundary form Œ �;  �� .b/ if the
right endpoint b is regular:

Œ �;  �� .b/ D 2i�
nX

k;lD1
ck.b/!kl .b/cl .b/; !kl .b/ D !lk.b/; (4.106)

with a similar meaning of the quantities ck.b/, k D 1; : : : ; n, and a dimensionless
Hermitian n � n matrix !.b/ D k!kl.b/k. Again, the number p.b/ of essential
parameters ck.b/ is equal to n, or rank!.b/ D n.

For a singular endpoint where the functions belonging to D�
Lf .a; b/ and their

(quasi)derivatives can have singularities, an evaluation of the corresponding bound-
ary form, which is certainly finite, is generally nontrivial. Our suggestion is that
the quadratic boundary form at a singular endpoint is a quadratic form in finite
dimensionless coefficients of asymptotic expansions of the functions belonging to
D�

Lf .a; b/ at the endpoint. More specifically, let the left endpoint a be singular for

an s.a. differential operation Lf of order n. We assume that the asymptotic behavior
of the functions belonging to D�

Lf .a; b/ at this endpoint can be represented as

 �.x/ D
p.a/X

kD1
ck.a/ as k.a; x/C e as.a; x/; x ! a; (4.107)

36We clarify this point below by the example of a regular even s.a. differential operation.
37From this point on, we omit the subscript f in the symbol of boundary forms.
38For even s.a. differential operations, this is evident from (4.103).
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the sum of leading asymptotic summands
Pp.a/

kD1 ck.a/ ask.a; x/ and an irrelevant
summand e as.a; x/; the (quasi)derivatives of order up to n� 1 for  �.x/ are given
by directly differentiating representation (4.107). The functions  as k.a; x/ are lin-
early independent functions, generally singular together with their (quasi)derivatives
as x ! a, that give finite contributions to the left quadratic boundary form
Œ �;  �� .a/, so that this form is a finite quadratic form in the independent dimen-
sionless coefficients ck.a/; k D 1; : : : ; p.a/, of asymptotic expansion (4.107):

Œ �;  �� .a/ D 2i�
p.a/X

k;lD1
ck.a/!kl .a/cl .a/; !kl .a/ D !lk.a/; (4.108)

where the Hermitian p.a/ � p.a/ matrix !.a/ D k!kl.a/k is dimensionless. This
representation of the left quadratic boundary form for a singular endpoint is similar
to representation (4.105) for a regular endpoint, but the meaning of the coefficients
ck.a/ and matrix elements!kl.a/ is different, in particular, generallyp.a/ ¤ n. The
functions as k.a; x/, k D 1; : : : ; p.a/, in particular, their number p.a/, are specific
for a given singular Lf . We show below that p.a/ � n. The functions e as.a; x/ give
no contribution to the left boundary form. Representations similar to (4.107) and
(4.108) with the change a! b;

 �.x/ D
p.b/X

kD1
ck.b/ as k.b; x/C e as.b; x/; x ! b; (4.109)

Œ �;  �� .b/ D 2i�
p.b/X

k;lD1
ck.b/!kl .b/cl .b/; !kl .b/ D !lk.b/; (4.110)

hold for the singular endpoint b. The functions  as k.a; x/ and  as k.b; x/, their
numbers p.a/ and p.b/, and the matrices !.a/ and !.b/ are generally different.
If the left or/and right boundary form is trivial, i.e., is identically zero,39 we
respectively set p.a/ D 0 or/and p.b/ D 0.

We thus obtain that in the general case, the quadratic boundary forms are
expressed in terms of the dimensionless coefficients proportional to the boundary
values of functions belonging toD�

Lf .a; b/ and their (quasi)derivatives (the case of a

regular endpoint) and/or in terms of the dimensionless coefficients ck of asymptotic
expansions (4.107), (4.109) (the case of a singular endpoint). We combine these
quantities into one set under the name of asymptotic boundary coefficients (a.b.
coefficients in what follows). Because the boundary forms at different endpoints of
the interval .a; b/ are independent, see Sect. 4.3, the independent left a.b. coeffi-
cients ck.a/, k D 1; : : : ; p.a/, and right a.b. coefficients ck.b/, k D 1; : : : ; p.b/,

39This is possible for a singular endpoint; examples are given below.
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are naturally distinguished. As a result, the set Cp.a/ of left a.b. coefficients that
is the linear space of p.a/-component columns fck.a/gp.a/1 is associated with the
left endpoint a, while the (independent) set Cp.b/ of right a.b. coefficients that is
the linear space of p.b/-component columns fck.b/gp.b/1 is associated with the right
endpoint b. If the endpoint a for a given s.a. differential operation Lf of order n is
regular, then p.a/ D n, and the same holds for the right endpoint b. The whole
number of a.b. coefficients is the sum p.a/C p.b/.

At present, we do not know a universal recipe for finding the a.b. coefficients for
singular endpoints; a solution of this problem remains a matter of craftsmanship.
We can only make a suggestion. Its validity is confirmed by examples considered
in subsequent chapters, but its applicability to the general case is not clear now.
The suggestion is that the set f as;k.x/g of leading asymptotic functions for a
singular endpoint is the set of the fundamental solutions of the homogeneous
equation Lf u D 0 that are square-integrable at this endpoint, in other words, the
asymptotic behavior of functions  � at the singular endpoint is described by linear
combinations of such fundamental solutions. Because of the requirement of square-
integrability, the number of a.b. coefficients for a singular endpoint can be less than
the order n of Lf . It may happen that the set of a.b. coefficients for some singular
endpoint is empty, in which case the boundary form at this endpoint is trivial.

Let the .p.a/ C p.b//-component column fckgp.a/Cp.b/1 combine the left and
right a.b. coefficients for a function  �.x/ belonging to D�

Lf .a; b/,

fckgp.a/Cp.b/1 D
�
fck.a/gp.a/1

.
fck.b/gp.b/1

�
:

Such columns form the linear space C
p.a/Cp.b/ D C

p.a/ C C
p.b/, and the quadratic

asymmetry form�f C becomes an (anti-Hermitian) quadratic form in this space:

�f C . �/ D Œ �;  ��.x/jba D 2i�
p.b/X

k;lD1
ck.b/!kl .b/cl .b/

� 2i�
p.a/X

k;lD1
ck.a/!kl .a/cl .a/ D 2i�

p.a/Cp.b/X

k;lD1
ck!klcl ; (4.111)

where the dimensionless .p.a/ C p.b// � .p.a/ C p.b// Hermitian matrix ! D
k!klk is block diagonal,

! D diag .�!.a/; !.b// ; (4.112)

and the contributions of the right and left a.b. coefficients enter additively.
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The representation (4.111) for�f C . �/ can be reduced to a canonical diagonal
form40 in a standard way by invertible linear transformations of a.b. coefficients
ck . Such a reduction can be done separately for the forms Œ �;  ��.a/ and
Œ �;  ��.b/ (again, we actually mean the Hermitian forms .2i�/�1 Œ �;  ��.a/
and .2i�/�1 Œ �;  ��.b/, or the respective Hermitian matrices !.a/ and !.b/) by
invertible linear transformations of the respective a.b. coefficients ck.a/ and ck.b/
to yield

Œ �;  ��.a/ D 2i�

0

@
mC.a/X

kD1
jcC k.a/j2 �

m�.a/X

kD1
jc� k.a/j2

1

A ; (4.113)

Œ �;  ��.b/ D 2i�

0

@
mC.b/X

kD1
jcC k.b/j2 �

m�.b/X

kD1
jc� k.b/j2

1

A ; (4.114)

where c˙ k.a/ and c˙ k.b/ are certain linear combinations of the respective a.b.
coefficients ck.a/ and ck.b/. It is natural to call these quantities the respective left
and right diagonal a.b. coefficients. The integers m˙.a/ and m˙.b/ are the inertia
indices of the respective boundary forms Œ �;  ��.a/ and Œ �;  ��.b/,

mC.a/Cm�.a/ D p.a/; mC.b/Cm�.b/ D p.b/:

In terms of the diagonal a.b. coefficients, the quadratic asymmetry form �f C

becomes

�f C . �/ D 2i�

2

4

0

@
mC.b/X

k

jcC k.b/j2 �
m�.b/X

kD1
jc� k.b/j2

1

A

�
0

@
mC.a/X

k

jcC k.a/j2 �
m�.a/X

kD1
jc� k.a/j2

1

A

3

5

D 2i�

0

@
mC.b/Cm�.a/X

kD1
jcC kj2 �

m�.b/CmC.a/X

lD1
jc� kj2

1

A ; (4.115)

where the .mC.b/Cm�.a//-component columns fcCgmC.b/Cm�.a/

1 and .m�.b/C
mC.a//-component columns fc gm�.b/CmC.a/

1 of the diagonal a.b. coefficients
combine the partial right and left diagonal a.b. coefficients c˙ k.b/ and c˙ k.a/

respectively as follows:

40We recall that by this, we actually mean the Hermitian form 1
2i� �f C ; this reduction is equivalent

to reducing the Hermitian matrix ! to a canonical diagonal form.
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fcC kgmC.b/Cm�.a/

1 D
�
fcC k.b/gmC.b/

1

.
fc� k.a/gm�.a/

1

�
;

fc� kgm�.b/CmC.a/

1 D
�
fc� k.b/gm�.b/

1

.
fcC k.a/gmC.a/

1

�
: (4.116)

The inertia indices of�f C as the quadratic form in the a.b. coefficients aremC.b/C
m�.a/ and m�.b/ C mC.a/. Of course, there are different, but equivalent, ways
of reducing the form �f C to a canonical diagonal form with other diagonal a.b.
coefficients.

It now suffices to compare representations (4.102) and (4.111) and representa-
tions (4.100) and (4.115) of the same quadratic asymmetry form in terms of the
quantities ck and c˙k, the respective expansion coefficients and a.b. coefficients
different as to their origin, to reach some important conclusions.

The first conclusion is that the a.b. coefficients must be identified with the
expansion coefficients in (4.101) under a certain choice of the basis fekgmCCm�

1 in
the direct sum DC C D of the deficient subspaces; that is why we intentionally
let the same letters denote the expansion coefficients and the a.b. coefficients.
We can say that in the case of differential operators, the nonzero contributions to
the quadratic asymmetry form �f C , which owe their existence to the deficient
subspaces, are completely determined by the a.b. coefficients for the functions
belonging to the natural domain D�

Lf .a; b/, more exactly, to their .DC C D /-

components; it is only the asymptotic behavior of these functions at the boundary
of the interval .a; b/ that is significant. Correspondingly, the total number of a.b.
coefficients is the sum of the deficiency indices,

p.a/C p.b/ D mC Cm�; (4.117)

and the signature of �f C considered as the quadratic form in a.b. coefficients, see
(4.115), determines the deficiency indices m˙ identifying them with the inertia
indices of this form,

mC D mC.b/Cm�.a/; m� D m�.b/CmC.a/: (4.118)

Equality (4.117) allows us to establish certain relations between the numbers
p.a/ and p.b/ of the respective left and right a.b. coefficients, the deficiency indices
m˙, and the order n of a given differential operation. In the general case, we have
m˙ � n and mC C m� � 2n, so that the total number of a.b. coefficients cannot
exceed 2n, p.a/C p.b/ � 2n.

We now show that if the endpoint a is regular, then p.a/ D n. Let Lfa˛ be the
restrictions of the initial s.a. differential operation Lf to the interval .a; ˛/, a <

˛ < b. It is evident that Lfa˛ is a regular s.a. differential operation of the same
order n; therefore the deficiency indices ma˛;˙ of the associated initial symmetric
operator Ofa˛ are equal to n. It is also evident that the endpoint ˛ is regular and
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therefore p.˛/ � n. Because p.a/ � n, equality (4.117) (with b ! ˛) yields
p.a/ D p.˛/ D n. If the endpoint b is regular, we similarly obtain that p.b/ D n.

Let the endpoint a be singular. Considering the restrictions Lfa˛ of the initial s.a.
differential operation Lf to the interval .a; ˛/, a < ˛ < b, and taking into account
equality (4.117) with b ! ˛ and p.˛/ D n and the inequalityma˛;CCma˛;� � 2n,
we obtain that p.a/ � n. If the right endpoint b is singular, similar arguments show
that p.b/ � n.

We thus obtain that the number of a.b. coefficients for any endpoint does not
exceed n.

In the case of even s.a. differential operations, we are able to make several
additional assertions, in particular, to confirm some facts from the previous sections
in a simple way. For an even s.a. differential operation, the deficiency indices of the
associated initial symmetric operator are always equal,m˙ D m, and we obtain the
equality

m D 1

2
Œp.a/C p.b/� : (4.119)

We dwell on the interesting case, considered in Sect. 4.4, that one of the endpoints
of the interval .a; b/, let it be a, is regular, while the second endpoint b is singular.
In this case, we have p.a/ D n, while p.b/ � n and we obtain the estimate n=2 �
m � n known since (4.48). It also follows from (4.119) that p.b/=2 is integral,
which implies that in the case of the generic even s.a. differential operation, both
p.a/ and p.b/ are even integers. Moreover, as follows from (4.119), a necessary
and sufficient condition for the equality m D n=2 is p.b/ D 0, i.e., the triviality of
the boundary form at the singular endpoint. As to the sufficiency, it is the assertion of
Lemma 4.16; the necessity is its promised converse. The following remark can also
be useful. As follows from representations (4.103) and (4.95), (4.96), the inertia
indices of the left boundary form at a regular endpoint a are equal to n=2 each,
m˙.a/ D n=2. The equalities (4.118) with m˙ D m together with the equality
p.b/ D mC.b/ C m�.b/ then show once again that n=2 � m � n and that p.b/
is an even integer. In addition, these equalities show that the inertia indices of the
right boundary form at the singular endpoint b are equal, mC.b/ D m�.b/, which
implies that for the generic even s.a. differential operation, the inertia indices of
each, left and right, boundary form are equal. The last remark is as follows. Let
us divide the interval .a; b/ into two subintervals .a; c/ and .c; b/, where c is an
arbitrary interior point of .a; b/. We examine the restrictions Lf� and LfC of the initial
s.a. differential operation Lf to the respective subintervals. The corresponding initial
symmetric operators Of� and OfC have the respective deficiency indices

m
.�/
˙ D m.�/ D 1=2 Œp.a/C p.c/� ; m.C/

˙ D m.C/ D 1=2 Œp.c/C p.b/� :

But the point c is certainly a regular endpoint for both subintervals, and therefore,
p.c/ D n. Then (4.119) and the last two equalities result in the relation m D
m.�/ C m.C/ � n between the deficiency indices of the initial symmetric operator
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Of and those of the symmetric operators Of� and OfC, which reproduces the already
known relation (4.52).

We see that the consequences of the first conclusion are rather extensive.
The second conclusion is that representation (4.111) of the quadratic asymmetry

form �f C in terms of the a.b. coefficients fckgp.a/Cp.b/1 , as well as representation

(4.102) of �f C in terms of the expansion coefficients fckgmCCm�

1 , allows a com-
plete solution of the problem of constructing s.a. operators in L2.a; b/ associated
with the initial s.a. differential operation Lf similarly to that in Sects. 3.3 and 3.4
with the same conclusions. These s.a. operators, if they exist, are s.a. restrictions of
the operator Of C associated with Lf and defined on the natural domainD�

Lf .a; b/ and

are specified by (asymptotic) s.a. boundary conditions. We formulate a final result
as a theorem that can be considered a version of the main theorem, Theorem 3.4,
for ordinary differential operators. When formulating its conditions, we repeat the
whole set of conditions and facts given and discussed above, so that the theorem can
be read independently of the previous text.41

Theorem 4.24. Let Lf be an s.a. differential operation of order n on an interval
.a; b/. Let Of C be the operator associated with Lf and defined on the natural domain
D�

Lf .a; b/. Let this domain be assigned a linear space C
p.a/Cp.b/ of a.b. coefficients

that is the space of .p.a/Cp.b//-columns fckgp.a/Cp.b/1 of dimensionless constants
characterizing the (asymptotic) behavior of functions  �.x/ belonging to D�

Lf .a; b/
at the endpoints a and b of the interval and having the following origin and
properties. The space C

p.a/Cp.b/ is a direct sum of two linear spaces C
p.a/ and

C
p.b/, where C

p.a/ is the space of p.a/-component columns fck.a/gp.a/1 of left a.b.

coefficients and C
p.b/ is the space of p.b/-component columns fck.b/gp.b/1 of right

a.b. coefficients, so that

ck D


ck.a/; k D 1; : : : ; p.a/;
ck�p.a/.b/; k D p.a/C 1; : : : ; p.a/C p.b/;

or

fckgp.b/Cp.a/1 D
 
fck.a/gp.a/1

fck.b/gp.b/1

!

:

For regular endpoints42 a=b, the respective a.b. coefficients are boundary values
of functions and their (quasi)derivatives of order k D 0; : : : ; n � 1, so that

41Which is partly done for future reference.
42The symbol a=b means a and/or b depending on whether both endpoints a and b are regular or
one of the endpoints, a or b, is regular.
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p.a=b/ D n, up to some dimensional factor, its own for each k, rendering the
a.b. coefficients dimensionless: ck.a=b/ �  .k�1/.a=b/ or  Œk�1�.a=b/ for even Lf .
For singular endpoints a=b, the a.b. coefficients are the coefficients of asymptotic
expansions

 �.x/ D
p.a=b/X

kD1
ck.a=b/ as k.a=b; x/C e as.a=b; x/; x ! a=b (4.120)

(see (4.107) and (4.109)), where as k.a=b; x/, k D 1; : : : ; p.a=b/ � n, are linearly
independent functions that give finite nonzero contributions to the respective
boundary forms Œ �;  �� .a=b/, while e as.a=b; x/ give no contribution; for even
Lf , p.a=b/ are even integers. The (quasi)derivatives of functions  �.x/ of order up

to n�1 as x ! a=b are given by directly differentiating asymptotic representations
(4.120). In any case, the boundary forms allow the representations, see (4.105),
(4.108), (4.106) and (4.110),

Œ �;  �� .a=b/ D 2i�
p.a=b/X

k;lD1
ck.a=b/!kl .a=b/cl .a=b/;

as quadratic forms in the dimensionless a.b. coefficients ck.a=b/with dimensionless
.p.a=b/ � p.a=b// Hermitian matrices !.a=b/ D k!kl .a=b/k; � is a factor of
dimension of Lf . The quadratic asymmetry form �f C is then represented as a
quadratic form in the a.b. coefficients ck , see (4.111) and (4.112),

�f C . �/ D Œ �;  ��.b/� Œ �;  ��.a/ D 2i�
p.a/Cp.b/X

k;lD1
ck!klcl ; (4.121)

where the dimensionless .p.a/ C p.b// � .p.a/ C p.b// Hermitian matrix ! D
k!klk is block-diagonal43

! D diag .�!.a/; !.b//: (4.122)

The Hermitian form .2i�/�1 �f C , or the matrix !, can be reduced to a canonical
diagonal form (a reduction to principal axes of inertia) by invertible linear
transformations of the a.b. coefficients. This reduction can be done by separately
reducing the Hermitian boundary forms .2i�/�1 Œ �;  �� .a=b/, see (4.113) and
(4.114),

43In some cases, the a.b. coefficients arise as numbers of the same nonzero dimension, in which
case the factor 2i� changes to a pure imaginary factor of appropriate dimension, while the matrix
! remains dimensionless.
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Œ �;  ��.a=b/ D 2i�

0

@
mC.a=b/X

kD1
jcC k.a=b/j2 �

m�.a=b/X

kD1
jc� k.a=b/j2

1

A;

where the diagonal a.b. coefficients fc˙ k.a=b/gm˙
.a=b/

1 are certain linear combina-

tions of the respective a.b. coefficients fck.a=b/gp.a=b/1 . The integers m˙.a=b/ are
the inertia indices of the respective forms

.2i�/�1 Œ �;  �� .a=b/ ; mC.a=b/C m�.a=b/ D p.a=b/:

If Lf is even, then the inertia indices are equal, so that we have mC.a=b/ D
m�.a=b/ D n=2 for regular endpoints a=b and mC.a=b/ D m�.a=b/ D
p.a=b/=2 for singular endpoints a=b. The quadratic asymmetry form is then
represented as, see (4.115),

�f C . �/ D 2i�

 
mCX

kD1
jcC kj2 �

m�X

lD1
jc� kj2

!

; (4.123)

where the diagonal a.b. coefficientsfc˙ kgm˙

1 ,

mC D mC.b/Cm�.a/; m� D m�.b/CmC.a/;

are given by

c˙ k D


c˙ k; k D 1; : : : ; m˙.b/;
c� k�m

˙
.b/; k D m˙.b/C 1; : : : ; m˙;

or

fc˙ kgm˙

1 D
�
fc˙ kgm˙

.b/

1 � fc� kgm�.a/

1

�
;

where the inertia indices mC and m� of the Hermitian form .2i�/�1 �f C are

the deficiency indices of the initial symmetric operator Of associated with Lf ,
Of D �f C�C; for even Lf these indices coincide,mC D m�.

Under the above conditions, the following assertions concerning s.a. differential
operators associated with a given s.a. differential operation Lf hold:

(i) If the inertia indices are different, mC ¤ m�, which is possible only for odd
or mixed s.a. differential operations, there exists no s.a. differential operator
associated with Lf .

(ii) If the inertia indices are zero, m˙ D 0, which implies that all the a.b.
coefficients are zero and the quadratic asymmetry form �f C is trivial, which
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is possible only if both endpoints, a and b, are singular, then a unique s.a.
differential operator associated with Lf is the operator Of C.

(iii) If the inertia indices are equal and nonzero, m˙ D m > 0, then there
exists an m2-parameter U.m/ family f OfU ; U 2 U.m/g of s.a. operators,
associated with Lf . Any s.a. operator OfU is a restriction of the operator
Of C and is specified by (asymptotic) s.a. boundary conditions defined by

an m � m unitary matrix U D kUklk establishing the isometric rela-
tion

fc�kgm1 D U fcCkgm1 ; (4.124)

or

c�k D
mX

kD1
UklcCl ; (4.125)

between the diagonal a.b. coefficients fc� kgm1 and fcC kgm1 . Conversely, an
isometric relation (4.124), or (4.125), between the diagonal a.b. coefficients
with an arbitrary m �m unitary matrix U defines an s.a. operator associated
with Lf .

In other words, the domain DfU of an s.a. operator OfU associated with Lf is
a subspace of functions  �.x/ belonging to the natural domain D�

Lf .a; b/ and

additionally satisfying (asymptotic) s.a. boundary conditions defined by (4.124), or
(4.125). If Lf is regular, i.e., both endpoints of the interval are regular, then the s.a.
boundary conditions can be given a conventional form of a finite relation between
the boundary values of functions and their (quasi)derivatives of order up to n � 1
at the endpoints—this relation is determined by relation (4.124), or (4.125)—and a
linear relation connecting these boundary values with the diagonal a.b. coefficients.
If at least one of the endpoints a=b is singular and the associated a.b. coefficients are
not identically zero (the corresponding boundary form Œ �;  ��.a=b/ is nontrivial),
then the corresponding asymptotic s.a. boundary conditions are given by asymptotic
expansions (4.120), by a linear relation connecting the a.b. coefficients, including
the boundary values of functions and their (quasi)derivatives of order up to n � 1
at a regular endpoint if it exists, and the diagonal a.b. coefficients, and by relation
(4.124), or (4.125), between the diagonal a.b. coefficients.

In the case of even s.a. differential operations where mC.a=b/ D m�.a=b/ D
p.a=b/=2, the matrix U can be of a block-diagonal form

U D diag .U.b/; U.a// ; (4.126)

where the p.a/=2 � p.a/=2 unitary matrix U.a/ establish an isometric relation
between the left diagonal a.b. coefficients c� k.a/ and cCk.a/ (associated with the
left endpoint a), while p.b/=2� p.b/=2 unitary matrix U.b/ establish an isometric
relation between the right diagonal a.b. coefficients cC k.b/ and c� k.b/ (associated
with the right endpoint b). We call the (asymptotic) s.a. boundary conditions defined
by a unitary matrix U of block-diagonal form (4.126) the split s.a. boundary
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conditions , they are divided into two separate independent sets of (asymptotic)
boundary conditions for each endpoint of the interval, see also Sect. 4.6.

As an illustration, we consider an application of the asymmetry form method to
regular even s.a. differential operations. This method allows us to solve completely
and simply the problem of constructing s.a. differential operators associated with
such operations.

Let Lf be a regular even s.a. differential operation of order n on a finite interval
Œa; b�. A reduction of representation (4.97) for the sesquilinear asymmetry form
!f C in this case to the diagonal �� D  � yields the following representation for
the quadratic asymmetry form44:

�f C . �/ D 	C� .b/ E	� .b/ � 	C� .a/ E	� .a/ ; (4.127)

where the n � nmatrix E is given by (4.66), while the n-columns	� .a/ and	� .b/
are given by (4.68) with the change of subscript U ! �,

	�k .a/ D  Œk�1�� .a/ ; 	�k .b/ D  Œk�1�� .b/ ; k D 1; : : : ; n:
We now make an important preliminary remark related to dimensional con-

siderations. In the mathematical literature, the variable x and functions  � are
considered dimensionless, so that the quantities  �;  Œ1�� ; : : : ;  Œn�1�� are of the
same zero dimension, as well as the differential operation Lf itself. Therefore,
when comparing representation (4.127) with representation (4.121) and (4.122),
where p.a/ C p.b/ D 2n and � D 1, as is conventionally adopted in the
mathematical literature, we could immediately identify the a.b. coefficients fckg2n1
with the corresponding boundary values,

fckg2n1 D
�n
 
Œk�1�� .a/

on

1
�
n
 
Œk�1�� .b/

on

1

�
;

and the 2n � 2n Hermitian matrix ! would be ! D .1=2i/diag .�E ; E/. But in
physics, the variable x is assigned a certain dimension, the dimension of length,
which we write as Œx� D Œlength� ; whereas Œ �� D Œlength��1=2. If we assume
that the first coefficient function fn .x/ of Lf is dimensionless,45 then Œ Œk�� � D
Œlength��k�1=2, Œ Lf � D Œlength��n, and Œ�f C � D Œlength��n.

According to our convention, the left and right a.b. coefficients ck.a=b/ coincide
with the respective boundary values Œk�1�� .a=b/ up to a dimensional factor, specific
for each k, so that all the a.b. coefficients are dimensionless, or are of the same
dimension, and the matrix ! is dimensionless. In our case, this can be accomplished
as follows We introduce an arbitrary, but fixed, parameter � of dimension of length,

44We could equivalently use representation (4.103) for the quadratic boundary form at a regular
endpoint.
45Which can always be done by multiplying Lf by an appropriate inessential constant dimensional
factor.
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Œ� � D Œlength� (in particular, we can take the length l D b � a of the interval for
such a parameter), and define the n-columns of left and right a.b. coefficients by

fck.a=b/gn1 D f	� k .a=b/gn1 D 	�.a=b/; 	� k .a=b/ D �k�1 Œk�1�� .a=b/ :

All the a.b. coefficients are of dimension Œlength��1=2. In terms of these a.b.
coefficients 	� k.a=b/, the asymmetry form�f C is represented as

�f C . �/ D ��nC1 �	C
� .b/E	� .b/ � 	C

� .a/ E	� .a/
�
;

and the matrix ! is the same. We can now proceed to reducing the Hermi-
tian form �i�n�1�f C . �/ to a canonical diagonal form. We separately reduce
the left and right Hermitian quadratic boundary forms �i	C

� .a/ E	� .a/ and
�i	C

� .b/ E	� .b/ to a canonical diagonal form, which is equivalent to diagonal-
izing the matrix �iE . But the latter has already been done; see (4.95) and (4.96).
The final representation for �f C is

�f C . �/ D i��nC1 �	C
� C	� C � 	C

� �	� �
�
; (4.128)

where the n-component columns 	� C and 	� � of the diagonal a.b. coefficients are
given by

	� C D .	� C .b/�	� � .a// ; 	� � D .	� � .b/�	� C .a// ; (4.129)

where in turn 	� ˙ .a=b/ are the n=2-component columns with the components
	� ˙;k .a=b/, k D 1; : : : ; n=2, given by

	�C;k .a=b/ D
r
1

2

h
�k�1 Œk�1�� .a=b/C i�n�k Œn�k�� .a=b/

i
; (4.130)

	��;k .a=b/ D
r
1

2

h
�n=2�k Œn=2�k�� .a=b/� i�n=2Ck�1 Œn=2Ck�1�

� .a=b/
i
:

(4.131)

According to Theorem 4.24, it follows from representation (4.128) that the s.a.
boundary conditions specifying an s.a. operator OfU are given by

	U;� � D U	U;� C; (4.132)

where U is an n � n unitary matrix and the columns 	U;� ˙ differ from the general
columns 	�˙ (4.129)–(4.131) by the change � ! U of the index at the functions
indicating the belonging of the corresponding functions to the domain DfU of OfU .
As U ranges over all the group U .n/, we obtain the whole n2-parameter U .n/
family f OfU ; U 2 U .n/g of s.a. differential operators associated with the given
regular even s.a. differential operation Lf of order n.

We complete this item with several obvious remarks.
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Remark 4.25. (1) We used the same symbol OfU to denote s.a. operators associated
with Lf as in Sect. 4.6, although the subscript U here has a somewhat different
meaning. In the previous context, the subscript U was the symbol of an
s.a. extension of an initial symmetric operator Of generated by an isometry
OU W DC 7�! D� of its deficient subspaces. In the present context, this is

the symbol of an s.a. restriction of the adjoint operator Of C D Of � generated by
the isometric mapping (4.132) of one set of diagonal a.b. coefficients to another
one.

(2) We could organize the column 	� � in a different way, for example, as follows:

	� � ! �	� � D .	� C .a/�	� � .b// ;

where � D antidiag .I; I / is an n� n unitary matrix, I is the n=2�n=2
identity matrix. Then the unitary matrix U in (4.132) would change to the
matrix �U , which is also unitary.

(3) It is evident that we can define s.a. boundary conditions by the relation 	� C D
U	� �. To this end, it is sufficient to make the replacement U ! U�1 in
(4.132).

(4) If the matrix U in (4.132) is of block-diagonal form (7.6), U D diag . U .b/ ;
U .a/ /, where U .a/ and U .b/ are n=2 � n=2 unitary matrices, we obtain the
split s.a. boundary conditions

	� C .a/ D U .a/	� � .a/ ; 	� � .b/ D U .b/	�C .b/ :

The asymmetry form method also works well as applied to singular even s.a.
differential operations Lf in the case that one endpoint of the interval, let it be the
left endpoint a, is regular, while the second one, the right endpoint b, is singular
and the right boundary form is trivial, Œ �;  �� .b/ D 0. In this case, the asymmetry
form�f C allows the representation following from (4.128) with 	� ˙ .b/ D 0:

�f C . �/ D i��nC1 �	C
� � .a/ 	�� .a/ � 	C

� C .a/ 	�C .a/
�
; (4.133)

where the n=2-component columns	� ˙ .a/ of the left diagonal a.b. coefficients are
given by (4.130) and (4.131). It follows from representation (4.133) that the s.a.
boundary conditions specifying an s.a. operator OfU associated with Lf are given by

	U;� C .a/ D U	U;� � .a/ ; (4.134)

where U is a unitary n=2 � n=2 unitary matrix and the columns 	U;� ˙.a/ differ
from the general columns 	�˙.a/ (4.130) and (4.131) by the change � ! U of the
index at the functions indicating the belonging of the corresponding functions to the
domain DfU of OfU . As U ranges over all the group U .n=2/, we obtain the whole
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(n=2/2-parameter U .n=2/ family f OfU ; U 2 U .n=2/g of s.a. differential operators
associated with the given singular even s.a. differential operation Lf of order n.

Of course, we can interchange the columns 	� �
.a/ and 	� C .a/ in (4.134), as

well as repeat a remark similar to Remark 4.25 following (4.132) and concerning the
new meaning of the symbol OfU . We also note that representation (4.133) manifestly
confirms the above assertion about the deficiency indices of the initial symmetric
operator Of associated with a singular s.a. differential operation Lf of order n in the
case that one endpoint of the interval is regular while another endpoint is singular:
for Of to have the minimum possible deficiency indices .n=2; n=2/, it is necessary
and sufficient that the boundary form at the singular endpoint be trivial.

In conclusion, we note that the specification of s.a. differential operators asso-
ciated with such s.a. differential operations by s.a. boundary conditions (4.134) is
in complete agreement with the previous specification according to Theorems 4.17
and 4.22. We only repeat that the application of Theorem 4.17 requires an explicit
evaluation of the deficient subspaces and that the matrix A1=2 in Theorem 4.22 is
defined up to the change A1=2 ! A1=2Z, where Z is a nonsingular matrix, while
s.a. boundary conditions (4.134) do not require evaluating the deficient subspaces
and contain no arbitrariness.



Chapter 5
Spectral Analysis of Self-adjoint Operators

5.1 Preliminaries

Constructing an s.a. operator for a given physical quantity is only the first part of the
QM problem associated with this quantity. The second part is solving the spectral
problem, i.e., a spectral analysis of the obtained observable. In this book, we mainly
deal with s.a. differential operators, at least in what concerns physical applications.
In spectral analysis of operators, we restrict ourselves to finding their spectra and
deriving formulas for (generalized) eigenfunction expansions; following1 [9, 116],
we call the latter the inversion formulas. These formulas are a foundation for a
physical probabilistic interpretation of measuring the observable.

Before going into mathematical details, we outline a treatment of spectral
analysis conventional for physics literature, or a physical approach to the spectral
problem; in passing, we briefly recall basic notions concerning the spectrum of an
s.a. operator; see Chap. 2.

Standard textbooks on QM for physicists treat the spectral problem as the
eigenvalue problem similarly to the finite-dimensional case. We recall that a number
� 2 C and a vector �� 2 Df are respectively called an eigenvalue of the operator Of
and an eigenvector of Of corresponding to the eigenvalue � if

Of .�/ �� D 0; Of .�/ D Of � � OI D Of � � OIDf ; (5.1)

or �� 2 ker Of .�/, the eigenspace of Of corresponding to the eigenvalue �; see
Sect. 2.3.1. In the finite-dimensional case, the spectrum spec Of of an operator Of
is defined as the set of all its eigenvalues, spec Of D f� W ker Of .�/ ¤ f0gg. The
operator OR .z/ D . Of .z//�1 does not exist for z 2 spec Of , whereas for all other z,

1There exist recent monographs on spectral theory for unbounded self-adjoint operators and its
application to QM; see for example [43, 92, 95, 145].

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 5,
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z … spec Of , it exists and is bounded. In the n-dimensional Euclidian space with a
fixed basis, an s.a. operator is defined by a Hermitian n � n matrix. Its spectrum is
real, and the eigenvectors of the matrix form an orthogonal basis in this space.

As was already said in Sect. 2.5, in the case of an infinite-dimensional Hilbert
space H, there exists another, third, possibility for the operator OR .z/ at some z: it
exists, but is unbounded or is bounded, but is not densely defined. The corresponding
z are also assigned to the spectrum of Of .

In the infinite-dimensional case, the definition of the spectrum of an operator
Of , similarly to the finite-dimensional case, as the set of eigenvalues is not suitable.

Indeed, by definition (5.1), all the eigenvectors must belong to the Hilbert space,
�� 2 H, 8�. But with this definition of spectrum, we can miss a part of the
spectrum’s points, in which case the admissible eigenvectors �� do not form a
complete set of vectors in H, and we cannot afford the probabilistic interpretation
of QM. That is why in the physical approach, the condition �� 2 H is not imposed
from the beginning. For differential operators, the spectral problem is treated as
the conventional eigenvalue problem for differential equations, ordinary or partial.
Eigenvalues enter such equations as numerical parameters.

The first question for a physicist to be solved is which values of the parameters
can be considered the spectrum points of the corresponding differential operator. If
we do not require that �� 2 H, there are no restrictions on these parameters from
a formal mathematical standpoint. But physicists effectively use heuristic, physical,
considerations that restrict admissible values of these parameters. Among these are
appropriate boundary conditions, the requirement for eigenfunctions to be locally
square-integrable, the requirement for eigenfunctions of bound states to vanish at
spatial infinity so that their norms will be finite; an eigenfunction may not vanish at
infinity, but become a plane wave corresponding to a free motion of particles. Such
functions are “normalized to ı-function,” and so on. In many cases, such physical
considerations allow finding both the discrete eigenvalues for bound states and the
continuous part of the spectrum for unbound states. But then the question arises
whether the obtained eigenfunctions form a complete set in H.

In solving this problem in the case of a pure discrete spectrum, physicists use the
well-studied properties of special functions and the well-developed general theory
of Fourier series expansions with respect to special functions. In the presence of a
continuous spectrum, the situation is more complicated. No regular methods for
proving the completeness of eigenfunctions including the eigenfunctions of the
continuous spectrum, even if they are orthonormalized to a delta function, are
known. It is safe to say that in many cases, the construction of a complete set of
eigenfunctions and especially a proof of its completeness seem to be an art. All
this suggests that the formulation of the spectral problem in the infinite-dimensional
case has to be modified in comparison with the finite-dimensional case. A proper
formulation of the spectral problem for s.a. operators and its general solution are
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well known in the mathematical literature under the name of spectral analysis.
For s.a. ordinary differential operators, we now have different well-elaborated
methods for finding the spectrum and constructing the corresponding (generalized)
eigenfunction expansions. The probabilistic interpretation of QM is formulated in
terms of spectral resolutions of s.a. operators.

We begin by recalling necessary notions and facts concerning the spectrum of an
s.a. operator Of in an infinite-dimensional Hilbert space; see Sects. 2.5 and 2.8.6.

A number z 2 C is called a regular point, or a point of the resolvent set (regp Of ),
of an operator Of if the operator OR .z/ D Of .z/�1 D . Of �z OI /�1 exists and is bounded
and defined everywhere. In this case, the operator OR .z/ is called the resolvent of
the operator Of . For a regular point z, the equation Of .z/ � D � with any � 2 H is
uniquely resolvable with respect to �: � D OR .z/ �. The complement of the resolvent
set regp Of to the whole complex plane C is called the spectrum of the operator Of
and is denoted by spec Of . The points of the spectrum are usually denoted by �, or
by E if Of is a Hamiltonian. The resolvent set of an s.a. operator is an open set, and
any complex z 2 C

0 .Im z ¤ 0/, is a regular point; it follows that the spectrum of an
s.a. operator is a closed real set. It is evident that the eigenvalues of the operator Of
belong to its spectrum; they form the so-called point spectrum.

If � belongs to the point spectrum, the operator Of .�/ is noninvertible. The point
spectrum of an s.a. operator in a separable Hilbert space (we recall that we restrict
ourselves to such spaces) is at most countable.

The union of the closure of the point spectrum in the whole spectrum and the
eigenvalues of infinity multiplicity forms the continuous spectra. It may be that the
intersection of the point and continuous spectra is not empty: a spectrum point �
may belong to the point spectrum and to the continuous spectrum simultaneously.

A real number � is in spec Of if either (a) the operator OR .�/ does not exist,
in which case � is an eigenvalue of Of , or (b) the operator OR .�/ exists but is
unbounded.

In what follows, we present the basic notions of the general spectral theory of
s.a. operators and its application to the spectral analysis of s.a. ordinary differential
operators. Our exposition is organized as a set of definitions and statements
(theorems) and closely follows that of [9, 116], except that proofs are abandoned.
The subsequent chapters contain a number of illustrations of the general theory.

We note that in all the known examples considered on the basis of physical
arguments, the results are confirmed by the rigorous approach. Nevertheless, even
in these cases, the advantage of the rigorous approach is justified by the fact that in
this approach, the necessity of applying physical considerations (being, in essence,
an art) is replaced by a set of mathematically well formulated rules.
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5.2 Spectral Decomposition of Self-adjoint Operators

5.2.1 Identity Resolution

The notion of identity resolution is formulated in terms of orthoprojectors; see
Chap. 2.

Definition 5.1. A family of orthoprojection operators P.�/ defined on the real
axis, � 2 R, is called an identity resolution (IRin what follows)2 if it has the
following properties:

(a) P.�/ � P.�/ for � < � (which is equivalent to P.�/P.�/ D P.�/P.�/ D
P.�/ for � < �/

(b) P.�C 0/ D P.�/
(c) P.�1/ D 0, P.C1/ D OI
(the equalities (b) and (c) are meant in the strong sense).

Theorem 5.2. Any s.a. operator Of with domain Df uniquely defines an IR
such that:

(a) A vector � belongs to Df iff

Z 1

�1
�2dkP.�/�k2 <1:

(b) The operator Of has the following integral representation:

Of � D
Z 1

�1
�dP.�/�; 8� 2 Df; (5.2)

which implies that

k Of �k2 D
Z 1

�1
�2dkP.�/�k2 <1:

Integrals in (5.2) are operator analogues of the Lebesgue–Stieltjes integrals;
see [9, 116].

Conversely, any operator Of that is defined by (5.2) with a certain IR P.�/ on the
domainDf of item (a) is s.a., and its IR coincides with P.�/.

In addition, a bounded operator OS defined on the whole Hilbert space H
commutes with Of iff it commutes with P.�/ for any �.

2Another name is “an (operator) spectral function.”
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We call �0 the constancy point of an IR P.�/ if there exists a neighborhood U�0
of �0 where P.�/ is constant. An open set (see item (a) in Theorem 5.3 below)
of all constancy points of P.�/ is denoted by CnP . The closed set GrP that is the
complement of CnP in R is called the growth set of P.�/. A point � is called the
jump point of P.�/ if the orthoprojector˘� � P.�/� P.� � 0/ is not zero.

Theorem 5.3. Let P.�/ be the IR of an s.a. operator Of . Then the following
assertions hold.

(a) A real number � is a regular point of Of iff � 2 CnP (which implies that CnP is
a open set).

(b) The spectrum of Of coincides with GrP, the growth set of P.�/:
(c) A real number � is an eigenvalue of Of iff � is a jump point of P.�/, ˘� ¤ 0;

˘� is the projection operator on the corresponding eigenspace of Of .

5.2.2 Degeneracy of the Spectrum

In the finite-dimensional case, in which the spectrum of an operator coincides with
the set of its eigenvalues, the spectrum is called simple if the multiplicity of each
eigenvalue is one. Otherwise, the spectrum is said to be degenerate. For operators in
infinite-dimensional Hilbert spaces, the spectrum generally does not coincide with
the set of eigenvalues, and such a definition becomes unsuitable. In what follows,
we discuss a general definition of degeneracy, in particular, simplicity, of a spectrum
for s.a. operators in Hilbert spaces.

We first introduce the notion of generating vector for an s.a. operator Of with the
IR P.�/ and a definition of s.a. operator with a simple spectrum.

Definition 5.4. A vector �g 2 H is called a generating vector3 of an s.a. operator Of
if the linear envelope of vectors �g.�/ D ˘.�/�g is dense in H.

Here, � denotes an arbitrary interval of the real axis. If the interval is closed,
� D Œ�1; �2�, �1 � �2; then ˘.�/ is defined by ˘.�/ D P.�2/ � P.�1 � 0/,
and if � D .�1; �2�, then ˘.�/ D P.�2/ � P.�1/, and similarly for intervals of
other types.

Definition 5.5. A spectrum of an s.a. operator Of is called simple4 if the operator
has a generating vector.

If the spectrum is simple, its point spectrum (if it exists) is nondegenerate.
It is useful to introduce the notion of the Hilbert space L2� of functions '.�/,

� 2 R, which is defined as follows. We call any real nondecreasing function �.�/

3Another name is “cyclic vector.”
4Nondegenerate in physics terminology.
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continuous from the right a spectral function. Let a spectral function be given. To
avoid the trivial case, we assume that �.�/ is nonconstant. Then by analogy with
the Lebesgue measure, we can introduce the notion of a �-measurable set defining
a �-measure Q�.�/ of intervals by

Q�.�/ D �.�2/� �.�1 � 0/; � D Œ�1; �2�; �1 � �2;

and similarly for intervals of other types.
The �-measure of a nonzero interval is zero if the interval is a constancy

interval of the spectral function, while Q�.Œ�; ��/ D �.�/ � �.� � 0/ differs from
zero if � is a discontinuity point of �.�/. Using a �-measure, we can define
�-measurable functions and the Lebesgue–Stieltjes integral

R
'.�/d�.�/. The

Hilbert space L2� is defined as the linear space of �-measurable functions of finite
�-norm

R j'.�/j2d�.�/ with the scalar product

.'1; '2/ D
Z
'1.�/'2.�/d�.�/; '1; '2 2 L2� :

Details of the construction can be found in [9, 116, 141].
Let �� denote the operator in L2� defined as

�� W


D� D

˚
' W '.�/; �'.�/ 2 L2�

�
;

��'.�/ D �'.�/:

This operator is called the operator of multiplying by independent variable. The
following assertions hold:

(a) The operator�� is s.a.
(b) The spectrum of �� is simple, and any function '.�/ 2 L2� different from zero

at any point � is a generating vector of �� .

It is useful to introduce the so-called improper generating element of an s.a.
operator Of .

Definition 5.6. An arbitrary vector function �g.�/ of intervals � 2 R that takes
values in the Hilbert space H is called an improper generating element of an s.a.
operator Of if

(a) ˘.�1/�g.�2/ D �g.�1/ for �1 � �2 (˘.�/ is constructed with respect to IR
P.�/ of the operator Of ).

(b) The linear envelope of vectors �g.�/ is dense in H.

It is evident that if �g is a generating vector of an s.a. operator Of , then �g.�/ D
˘.�/�g is its improper generating element with the property

�g D s lim
�1!1;�2!�1 �g.�/; � D Œ�1; �2�:
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It appears that conversely, if an s.a. operator Of has an improper generating
element �g.�/, then this operator also has a generating vector �g , and therefore
a simple spectrum (see Theorem 5.7 below); in particular, if the strong limit
s lim�1!1;�2!�1 �g.�/ D �g exists, then the vector �g is a generating vector, and
�g.�/ D ˘.�/�g .

Theorem 5.7. Let an s.a. operator Of have an improper generating element �g.�/.
Let a spectral function �.�/ and a vector function �.�/ 2 H be defined by

�.�/ D ".�/ Q�.��/; Q�.��/ D j�g.��/j2; �.0/ D 0;
�.�/ D ".�/�g.��/; � ¤ 0; �.0/ D 0;

".�/ D sgn �; �� D


.0; ��; � > 0;

.�; 0�; � < 0:
(5.3)

Then the formulas

� D
Z C1

�1
'.�/d�.�/; Of � D

Z C1

�1
�'.�/d�.�/

establish an isometric map of L2� onto H, L2� 7�! H with �� 7�! Of . If 'g.�/
is a generating vector of the operator �� , then the corresponding vector �g is the

generating vector of the operator Of , which implies that Of has a simple spectrum.

Self-adjoint operators with multiple spectrum are defined similarly.

Definition 5.8. A set of vectors �i;g 2 H , i D 1; : : : ; k, is called a generating basis

of an s.a. operator Of if the linear envelope of vectors �i;g.�/ D ˘.�/�i;g is dense
in H. The generating basis of a given Of is not defined uniquely. It is evident that the
number k of generating basis vectors is bounded from below and not bounded from
above: we always can extend a generating basis by adding a new basis vector.

Definition 5.9. The minimum admissible numberm of the generating basis vectors
is called the multiplicity of the spectrum of Of , and the spectrum is called m-fold. If
the multiplicity satisfies m > 1, the spectrum is called multiple.5

In the case of finite-dimensional spaces, the multiplicity of a spectrum thus
defined coincides with the maximum degeneracy of eigenvalues.

Just as an s.a. operator with simple spectrum is conveniently represented in terms
of the Hilbert spaces L2� , so an s.a. operator with m-fold spectrum is conveniently
represented in terms of the Hilbert space L2m� . The latter notion is defined in terms
of the so-called matrix spectral function.

5In the physics literature, the term “degenerate spectrum” is conventionaly used.
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5.2.3 Matrix Spectral Function

Any Hermitian matrix function �ij .�/, � 2 R, i; j D 1; : : : ; k, nondecreasing (i.e.,
the matrix �ij .�/� �ij .�0/ is positive semidefinite for � > �0) and continuous from
the right is called a matrix spectral function. To avoid the trivial case, we assume
that �ij .�/ is nonconstant. We note that we make no reservations on the rank of the
matrix �ij .�/; it may be not maximum even at all �.

A matrix spectral function generates the Hilbert space L2k� of k-component
vector functions ' .�/ D ˚

'i .�/; i D 1; : : : k; � 2 R
�

with the scalar product
given by

.'; ' 0/ D
Z
'i .�/' 0j .�/d�ij .�/: (5.4)

Elements ' .�/ of this Hilbert space have finite norms induced by scalar product
(5.4). Details can be found in [9, 116, 141].

An example of an s.a. operator with multiple spectrum is the operator �� of
multiplying by the independent variable in L2k� :

�� W


D� D

˚
' W '.�/; �'.�/ 2 L2k� .a; b/

�
;

��'.�/ D �'.�/ D f�'i.�/; i D 1; : : : kg:

The multiplicity6 of its spectrum is less than or equal to k. As a generating basis,
we can take k vectors 'i;g.�/ such that 'ji;g.�/ D ı

j
i vi .�/, where all the functions

vi .�/ differ from zero for any �.
It is useful to introduce the so-called improper generating basis of an s.a.

operator Of .

Definition 5.10. An arbitrary set of vector functions �i;g.�/ of intervals � 2 R

that take values in the Hilbert space H is called an improper generating basis of an
s.a. operator Of if

(a) ˘.�1/�i;g.�2/ D �i;g.�1/ for�1 � �2.
(b) The linear envelope of vectors �i;g.�/ is dense in H.

It is evident that if vectors �i;g form a generating basis of an s.a. operator Of , then
�i;g.�/ D ˘.�/�i;g is its improper generating basis with the property

�i;g D s lim
�1!1;�2!�1 �i;g.�/; � D Œ�1; �2�;

and conversely, if �i;g.�/ form an improper generating basis and the strong limit
s lim�1!1;�2!�1 �i;g.�/ D �i;g , � D Œ�1; �2�, exists, then the vectors �i;g form a
generating basis, and �i;g.�/ D ˘.�/�i;g .

An analogue of Theorem 5.7 holds for an improper generating basis.

6Which is determined by the rank of the matrix �ij .�/.



5.3 Self-adjoint Differential Operators 185

Theorem 5.11. Let an s.a. operator Of have an improper generating basis �i;g.�/,
i D 1; : : : ; k. Let a matrix spectral function �ij .�/ and a set of k vectors f�i .�/ 2
H; i D 1; : : : ; kg be defined by

�ij .�/ D ".�/ Q�ij .��/; Q�ij .�/ D .�i;g.�/; �j;g.�//; �ij .0/ D 0;
�i .�/ D ".�/�i;g.��/; � ¤ 0; �i .0/ D 0; (5.5)

where ".�/ and�� are defined in (5.3). Then the relations

� D
Z C1

�1

kX

iD1
'i .�/d�i .�/; Of � D

Z C1

�1

kX

iD1
�'i.�/d�i .�/;

� 2 H; '.�/ D f'i.�/g 2 L2k� ;

establish an isometric map L2k� onto H with �� 7�! Of .
Let '.�/i;g, i D 1; : : : ; k, be a generating basis of the operator�� in L2k� . Then

the corresponding set of vectors �i;g 2 H is a generating basis of the operator Of .

It thus turns out that if an s.a. operator Of has an improper generating basis formed
by k vector functions �i;g.�/, then this operator also has a generating basis formed

by k generating vectors, and the multiplicity of the spectrum of the operator Of is
less than or equal to k.

5.3 Self-adjoint Differential Operators

5.3.1 Guiding Functionals

In this section, we consider s.a. ordinary differential operators associated with
s.a. differential operations of even order.7 A spectral theory of such operators
is well developed. In particular, an even s.a. differential operator of order n
always has an improper generating basis formed by n vector functions, which
implies that the multiplicity of its spectrum never exceeds n. There exist different
methods for constructing complete (sometimes overcomplete) sets of (generalized)
eigenfunctions of such operators and the corresponding eigenfunction expansion
formulas [9, 24, 27, 70, 71, 101, 108, 116, 129, 148, 149, 162]. The presented list of
references is in no way complete. In this book, we follow the Krein method of
guiding functionals [101] as presented in [9, 116].

7We recall that coefficients of even s.a. differential operations are real-valued.
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Definition 5.12. Let Lf be an s.a. differential operation of finite even order n defined
on an interval .a; b/, and let Of be an s.a. operator associated with Lf and with domain
Df . A linear functional ˚.�I z/ of the form

˚.�I z/ D
Z b

a

u.xI z/�.x/dx; � 2 D; (5.6)

where u.xI z/ is a solution of the homogeneous equation

. Lf � z/u.x/ D 0; (5.7)

and �.x/ is a function belonging to a domain D that is dense in L2.a; b/ and
such that the integral on the right-hand side of (5.6) exists, is called the guiding
functional.

In what follows, we introduce a special fundamental system of solutions of (5.7).

Definition 5.13. A fundamental system ui .xI z/ of solutions of (5.7) satisfying the
initial conditions

uŒj�1�
i .cI z/ D ıij ; i; j D 1; : : : ; n; (5.8)

where c is a fixed inner point of the interval .a; b/, a < c < b, is called a special
fundamental system. If one of the ends of the interval .a; b/ is regular, it can be
taken for c.

It is evident that the functions ui .xI z/ are real entire in z at any fixed inner
point x.

Using a special fundamental system of solutions, we introduce a set of n guiding
functionals ˚i.�I z/,

˚i.�I z/ D
Z b

a

ui .xI z/�.x/dx; i D 1; : : : ; n; � 2 D D D.a; b/:

This set of the guiding functionals satisfies the following properties:

1. All ˚i.�I z/ are entire in z for every � 2 D.a; b/.
2. If ˚i.�0I�0/ D 0, i D 1; : : : ; n, for a function �0.x/ 2 D.a; b/and �0 2 R, then

the equation ( Lf � �0/�.x/ D �0.x/ has a solution �.x/ 2 D.a; b/.
3. The relation ˚i. Lf �I z/ D z˚i.�I z/ holds.

It follows from these properties that for any finite interval � 2 R; there exists a
set of functions f�i .x/ 2 D.a; b/, i D 1; : : : ; ng such that

det
�
�˚i.�j I�/

�
� ¤ 0; 8� 2 �: (5.9)

In turn, this fact furnishes the following theorem.
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Theorem 5.14. Let Of be an s.a. differential operator associated with an even s.a.
differential operation Lf of order n, and let P.�/ be its IR. Let � be any finite
interval of the real axis, and let a set of functions

f�i .x/ 2 D.a; b/; i D 1; : : : ; ng

satisfy condition (5.9). Let functions g.i/� .x/ be defined by

g
.i/
� .x/ D

Z

�

nX

jD1
˝ij .�/dP.�/�j .x/; i D 1; : : : ; n;

where the matrix ˝ij .�/ is the inverse of the matrix ˚i.�j I�/ (it can be proved that
the functions g.i/.x;�/ are actually independent of the choice of the functions �j ).
Then for any function � 2 D.a; b/ and any interval �0 2 �, the relation

˘.�0/� .x/ D
Z

�0

nX

iD1
˚i .�I�/dP.�/g.i/� .x/

holds.

It follows from this theorem that g.i/� .x/ as the functions of � form an improper
generating basis of the operator Of , and therefore, the multiplicity of its spectrum
does not exceed n.

5.3.2 Inversion Formulas, Green’s Function, and Matrix
Spectral Functions

A main consequence of Theorem 5.14 is the following theorem on inversion
formulas.

Theorem 5.15. Let �jk.�/, j; k D 1; : : : ; n, be a matrix spectral function given by

(5.5) with the substitution g.j /� .x/ for �j;g.�/. Then the formulas

�.x/ D
nX

i;jD1

Z 1

�1
'j .�/uk.xI�/d�jk.�/; 'j .�/ D

Z b

a

uj .xI�/�.x/dx (5.10)

establish an inverse isometric map L2.a; b/” L2n� with Of ” �� , so that the
Parseval equality

Z b

a

j�.x/j2dx D
nX

i;jD1

Z 1

�1
'k.�/'j .�/d�jk.�/ (5.11)

holds. The integrals in these formulas converge in the respective metrics ofL2.a; b/
and L2n� .
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The formulas (5.10) and (5.11) are called inversion formulas.
The theorem allows one to find spectral representations for integral kernels of the

operators˘.�/ and OR .z/. One such representation is given and used below.
As is known, the resolvent OR .z/ of any even s.a. differential operator Of in

L2.a; b/ with Im z ¤ 0 is a bounded operator defined everywhere that allows the
integral representation

OR .z/ �.x/ D
Z b

a

G.x; yI z/�.y/dy; 8�.x/ 2 L2.a; b/;

where the uniquely defined kernelG.x; yI z/ is called the Green’s function of an s.a.
operator Of ; see [9, 116].

This means that there exists a one-to-one correspondence between the domain
Df of the operator Of and the whole Hilbert space L2.a; b/ given by

� Of � z
�
�.x/ D �.x/; Im z ¤ 0; � 2 Df ; � 2 L2.a; b/; (5.12)

�.x/ D OR .z/ �.x/ D
Z b

a

G.x; yI z/�.y/dy: (5.13)

It follows that a constructive way for evaluating the Green’s function is to find a
unique solution of (5.12) in integral form (5.13). Below, in Sect. 5.3.4, we discuss
this possibility in detail.

It can be shown that if Im z ¤ 0, then one has the representation

LKŒk�
x
LKŒj �
y ŒG.x; yI z/ �G.x; yI z/� D .z� Nz/

nX

l;mD1

Z 1

�1
uŒk�l .xI�/uŒj �m .yI�/

jz � �j2 d�ml.�/;

(5.14)

where LKŒk�
x and LKŒl�

y are quasiderivatives of orders k and l in x and y respectively,
and k; l D 0; : : : ; n�1. The integrals in (5.14) are uniformly convergent with respect
to both x and y in any square ˛ � x; y � ˇ, a < ˛ < ˇ < b. All the elements of
the matrix function on the right-hand side of (5.14) are continuous in both x and y
in any square ˛ < x; y < ˇ.

We introduce the notation

Mjk.cI z/ D lim
x!c�0; y!cC0

LKŒk�1�
x

LKŒj�1�
y G.x; yI z/;

QMjk.cI z/ D lim
x!c�0; y!cC0

LKŒk�1�
x

LKŒj�1�
y G.y; xI z/;

�jk.cI z/ D 1

2i

h
Mjk.cI z/ � QMjk.cI z/

i
; j; k D 1; : : : ; n: (5.15)
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Taking the limit x ! c � 0 and y ! cC 0 in representation (5.14) with due regard
to the relation G.x; yI z/ D G.y; xI z/ and normalization condition (5.8), we obtain
the relation

�jk.cI z/ D Im z
Z 1

�1
d�jk.�/

jz � �j2 : (5.16)

Applying the Stieltjes inversion formula [9, 116] to (5.16), we obtain the
following important representation for the matrix spectral function �jk.�/:

�jk.�/ D 1

�
lim
ı!C0

Z �Cı

ı

�jk.cI�0 C i0/d�0; (5.17)

where we take the normalization condition �jk.0/ D 0 into account.
If an s.a. operator is real,8 then its Green’s function is symmetric, G.x; yI z/ D

G.y; xI z/ [9, 116]. In this case, we have QMjk.cI z/ D Mjk.cI z/ and �jk.cI z/ D
ImMjk.cI z/, and representation (5.17) becomes

�jk.�/ D ��1 lim
ı!C0

Z �Cı

ı

ImMjk.cI�0 C i0/d�0: (5.18)

It follows from (5.18) that �jk.�/ is real and is therefore symmetric, �jk.�/ D
�kj .�/. In all problems considered in this book, the Green’s functions are really
symmetric. In what follows, we therefore assume (5.18) for the spectral matrix
function �jk.�/.

In many cases, in particular, in all the specific cases considered in this book,
the matrix spectral function is the sum of an a.c. matrix function with a positive
semidefinite derivative on a certain interval � 2 R and a nondecreasing step
function9 with jumps at certain points �m, m 2 N � Z.

In these cases, the derivative � 0
jk.�/ treated in the sense of distributions is of the

following structure:

� 0
jk.�/ D ��1 ImMjk.cI�C i0/ D �jk.�/C

X

m2N
~jkjmı.�� �m/; (5.19)

with a positive semidefinite matrix function �jk.�/ on an interval � and positive
matrix coefficients ~jkjm > 0, so that spec Of D � [ f�m; m 2 N g. The points �m
always can be numbered so that �m � �mC1, 8m 2 N .

8An operator Of is called real if � 2 Df implies that � 2 Df and Of � D � implies that Of � D �.
9The spectral function generally can contain the so-called singular, or singular continuous, term;
see [97]. Such terms are absent in all the cases encountered in this book.



190 5 Spectral Analysis of Self-adjoint Operators

If representation (5.19) holds, then the inversion formulas become

�.x/ D
nX

j;kD1

Z

�

'j .�/�jk.�/uk.xI�/d�C
X

m2N

nX

j;kD1
'j jm~jkjmuk.xI�m/;

'j .�/ D
Z b

a

uj .xI�/�.x/dx; � 2 �; 'j jm D
Z b

a

uj .xI�m/�.x/dx;
Z b

a

j�.x/j2dx D
nX

j;kD1

Z

�

'j .�/�jk.�/'k.�/d�C
X

m2N

nX

j;kD1
'j jm~jkjm'kjm:

(5.20)

The integrals in (5.20) converge in the respective metrics of L2.a; b/ and L2n� .

5.3.3 Multiplicity of Spectrum; Simple Spectrum

Integrating in � in (5.10) and (5.20) is in fact performed over the spectrum (over the
set GrP of the matrix �.�/).

This means that the constancy points � of the matrix �.�/ and the respective
functions ui .xI�/ with such � are not involved in the inversion formulas, so that
the functions ui .xI�/ entering the integrands in the inversion formulas can be
redefined by zero outside the spectrum points of the operator Of (outside the growth
points of the matrix �.�/). We note that in all known examples, the functions
ui .xI�/ for � that do not belong to the “mathematical” spectrum are eliminated by
physical considerations, for example, because of their unrestricted growth at infinity
for infinite intervals, while for finite intervals, they do not satisfy s.a. boundary
conditions specifying the operator Of .

The inversion formulas represent a generalized Fourier expansion of any function
belonging to the Hilbert space in terms of the functions uj .xI�/; j D 1; : : : ; n,
which may not belong to the domain of the operator Of or even to the Hilbert space.10

It is conventional to say that these functions form a complete system. But it
may happen that for a given Of , there exists a complete system that contain a lesser
number, say m, of functions,m < n.

It can be shown that for even s.a. differential operators considered in this book,
the minimumm determines the multiplicity of the spectrum, so that the multiplicity
of the spectrum does not exceed n. If m D 1, the spectrum is simple; if m > 1, the
spectrum is m-fold.

10In such a situation, the functions uj .xI�/ are conventionally called the generalized eigenfunc-

tions of the operator Of .
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A qualitative explanation for the multiplicity of the spectrum to be less than n is
as follows. Although all the functions ui .xI�/, i D 1; : : : ; n, at a fixed � formally
are involved in inversion formulas (5.10) and (5.11), it may happen that in fact,
they enter these formulas only via some linear combinations, and perhaps with zero
coefficients. This is the case if the derivative of the matrix spectral function � 0

jk.�/

is singular and its rank is equal to m for all � belonging to the spectrum.11

For technical reasons, it is sometimes difficult to find the minimum complete
system. In what follows, we formulate the conditions for the spectrum of Of to be
simple, i.e., conditions for a complete system to contain only one function u.xI�/.
Definition 5.16. Let the following conditions hold: there exists a solution u.xI z/ of
(5.7) that is real entire in z, and there exists a subspace D of functions � .x/ 2 Df

that is dense in the Hilbert space, D � Df ; D D L2.a; b/, such that the guiding
functional˚.�I z/ defined on D by (5.6) has the following properties:

(i) ˚.�I z/ is entire in z for every � .x/ 2 D.
(ii) If ˚.�0I�0/ D 0 for a function �0.x/ 2 D and �0 2 R; then the equation

. Lf � �0/ .x/ D �0.x/ has a solution  .x/ 2 D.
(iii) For any �.x/ 2 D, the relation ˚. Of �I z/ D z˚.�I z/ holds.

Then we call the functional ˚.�I z/ a simple guiding functional.

We emphasize that a simple guiding functional for a given s.a. operator Of exists
iff an appropriate function u and subspace D exist.

One of the leading principles in constructing a simple guiding functional is to
find a solution u.xI z/ with asymptotic behavior that coincides with the asymptotic
behavior of functions belonging to Df at one of the endpoints (a or b).

For the simple guiding functional ˚.�I z/, analogues of Theorems 5.14 and 5.15
hold with the natural substitutions i; j D 1 and g�.x/, ˚.�I�/, ˝.�I�/, �.x/,
'.�/, u.xI�/, and �.�/ for the respective g.i/� .x/, ˚i.�I�/, ˝ij .�I�/, �i .x/, 'j .�/,
uj .xI�/, and �jk.�/, and g�.x/ as a function of � is an improper element of
the operator Of . The existence of a simple guiding functional thus implies that the
spectrum of the operator Of is simple.

In the case of a simple spectrum, the matrix spectral function �jk.�/ is reduced
to a spectral function �.�/ that is given by (5.3) with the substitution g�.x/ for
�g.�/ and can be evaluated in accordance with the following formulas:

˙.cI�/ D lim
ı!C0 �

�1
Z �Cı

ı

ImM.cI�0 C i0/d�0;

˙.cI�/ D
Z �

0

u2.cI�0/d�.�0/; M.cI z/ D G.c � 0; c C 0I z/; (5.21)

where c is a fixed inner point of the interval .a; b/, a < c < b.

11For some �, it may be less than m.
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The inversion formulas for an operator with simple spectrum are

�.x/ D
Z 1

�1
'.�/u.xI�/d�.�/ ; '.�/ D

Z b

a

u.xI�/�.x/dx;
Z b

a

j�.x/j2dx D
Z 1

�1
j'.�/j2d�.�/:

As was mentioned above, in all the problems considered in this book, the
derivative of the matrix spectral function is of the form (5.19), which implies that in
the case of a simple spectrum, the following general representation holds:

u2.cI�/� 0.�/ D ��1 ImM.cI�C i0/ ;
� 0.�/ D �2.�/C

X

m2N
~2mı.� � �m/; (5.22)

with a nonnegative function �.�/ defined on an interval �, supp� D �, and some
positive coefficients ~m, ~m > 0, so that spec Of D � [ f�m; m 2 N g. The
interval � determines the continuous part of the spectrum of Of , while the points
�m determine its point spectrum.

If we introduce the normalized eigenfunctionsU�.x/, Um.x/ by

U�.x/ D �.�/u.xI�/; � 2 �I
Um.x/ D ~mu.xI�m/; m 2 N ;

the inversion formulas become

�.x/ D
Z

�


.�/U�.x/d�C
X

m2N

mUm.x/;


.�/ D
Z b

a

U�.x/�.x/dx; 
m D
Z b

a

Um.x/�.x/dx;

Z b

a

j�.x/j2dx D
Z

�

j
.�/j2d�C
X

m2N
j
mj2: (5.23)

Using physics terminology and notation, we say that the system of eigenfunctions
fU�.x/; Um.x/g is complete in L2.a; b/ and satisfies the orthogonality and
completeness relations12

12For the continuous spectrum, these relations are symbolic in a sense.
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Z b

a

U�.x/U�0.x/dx D ı.�� �0/;
Z b

a

U�.x/Um.x/dx D 0;
Z b

a

Um.x/Um0.x/dx D ımm0; �; �0 2 �; m;m0 2 N ;
Z

�

U�.x/U�.y/d�C
X

m2N
Um.x/Um.y/ D ı.x � y/: (5.24)

In physics texts on QM, considerable effort is usually devoted to establishing just
these relations.

5.3.4 Finding a Green’s Function

Constructing integral representation (5.13) for a unique solution �.x/ of (5.12), and
thereby finding the Green’s functionG.x; yI z/, proceeds in two steps.

The first step consists in finding the general solution of the inhomogeneous
differential equation

� Lf � z
�
�.x/ D �.x/; Im z ¤ 0; � 2 L2.a; b/ (5.25)

using the method of variation of constants. According to this method, we seek a
solution in the form

�.x/ D
nX

iD1
ci .x/ui .xI z/; (5.26)

where ui .xI z/, i D 1; : : : ; n, is the fundamental system of solutions of the
homogeneous equation

� Lf � z
�

u.x/ D 0 (5.27)

and ci .x/, i D 1; : : : ; n, are some unknown functions subject to the conditions

nX

iD1
uŒk�1�
i .xI z/c0

i .x/ D 0; k D 1; : : : ; n � 1; c0
i .x/ D dxci .x/ : (5.28)

Substituting representation (5.26) into (5.25) and taking conditions (5.28) into
account, we obtain the equation

nX

iD1
uŒn�1�
i .xI z/c0

i .x/ D ��.x/ : (5.29)
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Equations (5.28) and (5.29) together form the system of linear algebraic equa-
tions

nX

iD1
Wki .xI z/c0

i .x/ D ��k.x/ ; k D 1; : : : ; n;

�k.x/ D ıkn�.x/; Wki .xI z/ D uŒk�1�
i .xI z/ (5.30)

for the derivatives c0
i .x/ of the desired coefficient functions. The determinant

of the matrix Wki .xI z/ in (5.30) is the quasi-Wronskian Wr .u1; : : : ; un/ of the
fundamental system of solutions of homogeneous equation (5.27). The quasi-
Wronskian is independent of x and is different from zero, and therefore, system
(5.30) has a unique solution:

c0
i .x/ D

nX

kD1

�
W

�1.xI z/�
ik
�k.x/ D �vi .xI z/�.x/;

vi .xI z/ D
�
W

�1.xI z/�
in
:

The functions vi .xI z/ can be shown to satisfy the homogeneous equation (5.27)
and therefore can be represented as linear combinations of the solutions ui .xI z/,
i D 1; : : : ; n, of the fundamental system. The general solution of (5.25) finally is
given by

�.x/ D
nX

iD1

�
ciui .xI z/ � ui .xI z/

Z x

x0

vi .yI z/�.y/dy
�
; (5.31)

where ci are arbitrary constants, and x0 is a fixed inner point of the interval .a; b/.
As an illustration, we consider the case of an s.a. differential operation of second

order (n D 2)
Lf D �dx Œp0.x/dx�C p1.x/;

which is important from the standpoint of further applications.
In this case, we have

LKŒ0�
x D 1; LKŒ1�

x D p0.x/dx; LKŒ2�
x D p1.x/ � dx LKŒ1�

x D Lf;

and the fundamental system of solutions of the homogeneous equation (5.27)
consists of two functions ui .xI z/, i D 1; 2: The matrices W and W

�1 are given
by

W D
 

u1 u2
uŒ1�1 uŒ1�2

!

; W�1 D !�1
 

uŒ1�2 �u2
�uŒ1�1 u1

!

;

where

! DWr.u1; u2/ D u1u
Œ1�
2 � uŒ1�1 u2 D const:
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The functions vi , i D 1; 2, are v1 D �u2=! and v2 D u1=!, so that the general
solution of the inhomogeneous equation (5.25) reads

�.x/ D
2X

iD1
ciui .xI z/C !�1

Z x

x0

Œu1.xI z/u2.yI z/ � u2.xI z/u1.yI z/� �.y/dy;
(5.32)

where c1; c2 are some constants.
The second step in finding the Green’s function consists in taking the condition

� 2 Df on the solution of (5.12) into account, which leads to determining the
constants ci , i D 1; : : : ; n, in (5.31) as linear functionals in �; the condition � 2
Df means that �.x/ belongs to L2.a; b/ and satisfies the s.a. boundary conditions

specifying the s.a. operator Of . This results in integral representation (5.13) for the
resolvent and thereby in the Green’s function.

5.3.5 Matrix Operators

We here present a spectral analysis scheme for s.a. 2 � 2 matrix operators in
the Hilbert space L

2.RC/ D L2.RC/ ˚ L2.RC/. Such operators emerge as
certain radial Hamiltonians in Chaps. 8 and 9. A specific feature of these radial
Hamiltonians is that their spectra are simple, so that it suffices to consider only one
simple guiding functional.

A guiding functional˚.F I z/ for an s.a. 2� 2 matrix operator Ohe associated with
an s.a. 2 � 2 matrix differential operation Lh and acting in the space of doublets
F .r/ D .f�g/ 2 L

2.RC/ is given by

˚.F I z/ D
Z

RC

U.r I z/F.r/dr; F 2 D D Dr .RC/\Dhe ;

U.r/ D .u�v/ ; U.r I z/F.r/ D uf C vg; (5.33)

where the doublet U is a solution of the homogeneous equation . Lh � z/U.r I z/ D 0
that is real entire in z and satisfies s.a. boundary conditions at the left end (the origin)
specifying the s.a. operator Ohe. By definition, the functional (5.33) is simple if it has
the following properties:

1. ˚.F I z/ is entire in z for every F.r/.
2. If ˚.F0I�0/ D 0 for a doublet F0.r/ 2 D and �0 2 R; then the equation� Lh� �0

�
	.r/ D F0.r/ has a solution 	 2 D.

3. For any F.r/ 2 D, the relation ˚. OheF I z/ D z˚.F I z/ holds.

In all the problems considered in Chaps. 8 and 9, the doublet U satisfies required
s.a. boundary conditions, and the corresponding guiding functional (5.33) is simple.
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It follows that the spectrum of the Hamiltonian Ohe is simple and there exists
a spectral function �.�/, � 2 R, that determines the inversion formulas for this
operator (see below). The derivative13 � 0.�/ of the spectral function, � 0.�/ � 0, is
related to the Green’s function of the operator Ohe by

U.cI�/˝ U.cI�/� 0.�/ D ��1 ImG.c � 0; c C 0I�C i0/;

where c is an arbitrary internal point of the interval RC, and � 0.�/ is independent
of c.

In addition, � 0.�/ is of the structure

� 0.�/ D �2.�/C
X

n2N
Q2
nı.� � �n/

with a nonnegative function �.�/, �.�/ � 0, and some positive coefficients Qn,
Qn > 0; the support � of the function �.�/, � D supp�, is the continuous part of
the spectrum of the operator Ohe, while the points �n determine its point spectrum,
so that spec Ohe D � [ f�n; n 2 N g.

The matrix Green’s function G.r; r 0I z/ is the integral kernel of the resolvent of
the s.a. matrix operator Ohe. To find the Green’s function with Im z > 0, we have to
represent a unique solution F.r/ 2 Dhe of the differential equation

. Lh � z/F.r/ D 	.r/; 8	 2 L
2.RC/; (5.34)

in the integral form

F.r/ D
Z

RC

G.r; r 0I z/	.r 0/dr 0: (5.35)

The normalized (generalized) eigendoublets U�.r/ D �.�/U.r I�/, � 2 �,
of Ohe corresponding to the continuous spectrum, and normalized eigendoublets
Un.x/ D QnU.r I�n/, n 2 N , corresponding to the discrete spectrum form
a complete orthonormalized system in the space L

2.RC/. This means that the
following inversion formulas hold:

F.r/ D
Z

�

'.�/U�.r/d�C
X

n2N
'nUn.r/;

'.�/ D
Z

RC

U�.r/F.r/dr ; 'n D
Z

RC

Un.r/F.r/dr ;

Z

RC

jF.r/j2dr D
Z

�

j
.�/j2d�C
X

n2N
j
nj2: (5.36)

13Treated in the sense of distributions.
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5.4 Appendix

5.4.1 Some Simple Guiding Functionals

In most problems considered in the subsequent chapters, spectra of s.a. operators are
simple. Moreover, a choice of guiding functionals and a proof of their simplicity are
quite similar and can be reduced to five typical cases, which we consider in detail
in this section. All the cases have common features described just below and differ
only in s.a. boundary conditions listed in items A, B, C, D, E in Sect. 5.4.1.2. In
what follows, when solving spectral problems where simple guiding functionals fall
into one of these cases, we refer to this subsection and to the corresponding item.
We first describe common features inherent in each of the cases. We consider s.a.
differential operators Ofe in L2.a; b/, where .a; b/ are various intervals with a finite
left endpoint, jaj < 1. Each operator Ofe is associated with an s.a. Schrödinger
differential operation Lf D �d2x C V.x/ on the interval .a; b/, where the potential
V.x/ is a smooth function in the interval,14 and its domainDfe is specified by split
s.a. boundary conditions.15 According to Theorem 4.24, the latter means that the
asymptotic behavior of functions  2 Dfe � D�

Lf .a; b/ at the endpoints of the

interval is given by (4.120) and the diagonal a.b. coefficients fc˙;kgm1 are related by
(4.124), or (4.125), where the matrix U is of the form (4.126). For our purposes, it
is convenient to change U.a/ to UC.a/ and to take the matrix U in the form

U D diag.U.b/; UC.a//; U.b/ D Ulk.b/; l; k D 1; : : : ; pC.b/ D p�.b/;

U.a/ D Ulk.a/; l; k D pC.b/C 1; : : : ; pC.b/C p�.a/; pC.a/ D p�.a/;

whereU.b/ is a unitary pC.b/�pC.b/matrix andU.a/ is a unitary pC.a/�pC.a/
matrix, so that the split s.a. boundary conditions become

c�;l .b/ D
pC.b//X

lD1
Ulk.b/cC;k .b/; l D 1; : : : ; pC.b/; (5.37)

c�;l .a/ D
pC.a/:X

lD1
Ulk.a/cC;k .a/; l D 1; : : : ; pC.a/: (5.38)

It may be that pC.b/ D 0, which is equivalent to vanishing of the right boundary
form, Œ �;  �� .b/ � 0; in such a case, s.a. boundary conditions are reduced to
(5.38). A similar remark also refers to the endpoint a.

14That is, the potential can be singular only at the endpoints of the interval.
15We note that possible mixed s.a. boundary conditions, like periodic ones, are beyond the scope of
our consideration in this section, although such boundary conditions can yield a simple spectrum.



198 5 Spectral Analysis of Self-adjoint Operators

For guiding functionals in all the cases, we take the functionals ˚.�I z/ defined
on the domains D D Dr.a; b/\Dfe dense in L2.a; b/ and given by

˚.�I z/ D
Z b

a

U.xI z/�.x/dx; � 2 D (5.39)

(a unique functional in each case),16 where U.xI z/ is a solution of the homoge-
neous equation

. Lf � z/U.xI z/ D 0; (5.40)

which is smooth in .a; b/ as a function of x at any fixed z, real entire in z at any
fixed inner point x of .a; b/, and satisfies the following properties:

(a) U.xI z/ is continuous as a function of two variables in any open restricted
region O � .a; b/ ˝ C; it is also evident that the function U�.xI z/ D
�.x/U.xI z/, where �.x/ is a smooth function given by

�.x/ D 1; x 2 Œa; a0�I �.x/ D 0; x 2 Œb0; b�I a < a0 < b0 < b;
belongs to Dfe .

(b) U.xI z/ has an asymptotic behavior at the left endpoint a given by (4.120) and
satisfies boundary conditions (5.38).

In what follows, we examine whether the above-introduced functionals have the
properties (i), (ii), and (iii) defining a simple guiding functional in Sect. 5.3.3 and
show that under some special additional conditions relevant to the properties (i) and
(ii), they have, and therefore, the spectra of the operators Ofe prove to be simple,
which allows us to establish the inversion formulas for Ofe. An interesting remark is
in order. It is remarkable that boundary conditions at the right endpoint b are not
involved even if they are nontrivial. They enter the final result for the (generalized)
eigenfunctions via the Green’s functions, which take these conditions into account,
and the respective spectral functions.

We begin with property (iii), whose proof is simplest.

5.4.1.1 Property (iii)

By definition (5.39), we have

˚. Ofe�I z/ D
Z b

a

U.xI z/ Lf �.x/dx:

Using the integral Lagrange identity (4.16) and (5.40) for U.xI z/, we obtain

˚. Ofe�I z/ D z˚.�I z/C ŒU; ��ba :

16Which is sufficient if the functional proves to be simple.
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But the right boundary form ŒU; ��.b/ vanishes because every � 2 D is equal to zero
in a neighborhood of the right endpoint b, while the left boundary form ŒU; ��.a/

vanishes because both U.xI z/ and �.x/ have a similar asymptotic behavior at the
left endpoint a given by (4.120) and satisfy boundary conditions (5.38) with the
same matrix U.a/, which yields ˚. Ofe�I z/ D z˚.�I z/, the required property (iii).

As for properties (i) and (ii), we can prove them under certain additional specific
conditions on the asymptotic behavior of the functions  2 Dfe and the respective
functions U.x; z/ at the left endpoint a. We distinguish five different cases of the
asymptotic behavior (see the items A, B, C, D, E below).

We continue with the property (ii).

5.4.1.2 Property (ii)

Let

˚.�0I�0/ D
Z b

a

U.xI�0/�0.x/dx D
Z ˇ

a

U.xI�0/�0.x/dx D 0

for some �0 2 R and some �0 2 D, supp�0 2 Œa; ˇ�, ˇ < b, and let QU .x/ be
a solution of (5.40) with z D �0 that is linearly independent of U.xI�0/, so that
! D �Wr.U; QU/ ¤ 0. We consider a particular solution  .x/ of the equation
. Lf � �0/ .x/ D �0.x/ that is given by17

 .x/ D 1

!

"

U.xI�0/
Z ˇ

x

QU .x/�0.x/dx C QU .x/
Z x

a

U.xI�0/�0.x/dx
#

;

 0.x/ D 1

!

"

U 0.xI�0/
Z ˇ

x

QU .x/�0.x/dx C QU 0.x/
Z x

a

U.xI�0/�0.x/dx
#

:

(5.41)

The function (5.41) has the following evident properties:  is correctly defined on
.a; b/, and  and  0 are a.c. in .a; b/; supp 2 Œa; ˇ�, and therefore,  is square-
integrable on any interval .c; b/, c > a, and trivially satisfies boundary conditions
(5.37) at the right endpoint b (the respective a.b. coefficients c˙; k D 0). If we can
prove that  is square-integrable at the left endpoint a, i.e., is square-integrable
on an interval Œa; c�, a < c < b, we will prove that  2 L2.a; b/ and Lf  D
�0 C �0 2 L2.a; b/. If in addition we prove that  satisfies boundary conditions
(5.38) at the left endpoint,18 we will prove that  2 Dfe and therefore (because

17See the representation (5.32) for the general solution of such an equation in the end of Sect. 5.3.3
with the substitutions � !  , u1 ! U , and u2 ! QU .
18We note that a preliminary estimate of the asymptotic behavior of the function  (5.41) at the
left endpoint a may be sufficient to assert that  2 L2.a; b/.
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supp 2 Œa; ˇ�, ˇ < b)  2 D, which means that the guiding functional ˚.�I z/
(5.39) has the property (ii).

We don’t know a general method for evaluating the asymptotic behavior of
the function  .x/ (5.41) at the left endpoint a for arbitrary Lf , i.e., for arbitrary
potentials V.x/. But for our further purposes, it is sufficient to consider five special
cases labeled A, B, C, D, and E, which we examine separately below.

We introduce the notation ı D x � a and represent the asymptotic behavior of
the relevant functions at the left endpoint a, as ı ! 0, in terms of ı.

A. Let � � 1, and let the asymptotics of the relevant functions as ı ! 0 be
given by19

U.xI z/ D ı1=2C� CO.ı3=2C�/; U 0.xI z/ D .1=2C �/ı�1=2C� CO.ı1=2C�/;
QU .x/ D ı1=2�� CO.ı3=2��/; QU 0.x/ D .1=2� �/ı�1=2�� CO.ı1=2��/;

�.x/ D


O.ı3=2/; � > 1;

O.ı3=2
p

ln ı/; � D 1; � 0.x/ D


O.ı1=2/; � > 1;

O.ı1=2
p

ln ı/; � D 1:
(5.42)

We represent the function  .x/ (5.41) as

 .x/ D cU.xI�0/C !�1
�
U.xI�0/

Z x0

x

QU.x/�0.x/dx

C QU .xI�0/
Z x

a

U.x/�0.x/dx

�
; c D !�1

Z ˇ

x0

QU .x/�0.x/dx; (5.43)

where x0 > a is a fixed point such that ı0 D x0 � a is small enough to use
asymptotics (5.42) for estimating the integral terms on the right-hand side of
(5.43) by means of the Cauchy–Schwarz inequality. Performing the estimates,
we obtain

 .x/ D
8
<

:

O.ı1=2C�/; 1 � � < 3;
O.ı7=2 ln ı/; � D 3;
O.ı7=2/; � > 3;

ı ! 0;

which in particular means that  is square-integrable at the endpoint a. In a
similar way, we obtain

 0.x/ D
8
<

:

O.ı�1=2C�/; 1 � � < 3;
O.ı5=2 ln ı/; � D 3;
O.ı5=2/; � > 3;

ı ! 0:

19This is the case in which pC.a/ D p�.a/ D 0, i.e., the left a.b. coefficients are equal to zero.
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These estimates show that the asymptotic behavior of the function  .x/ (5.41)
is within the limits (5.42) for the asymptotic behavior of the functions �.x/,
whence it follows that  2 D, which proves property (ii) in case A.

B. Let 0 < � < 1, let � 2 S.��=2; �=2/, and let the asymptotics of the relevant
functions as ı ! 0 be given by20

U.xI z/ D uBas.x/CO.ı2�j1=2��j/;

U 0.xI z/ D u0
Bas.x/CO.ı1�j1=2��j/;

uBas.x/ D .�0ı/1=2C� cos � C u2Bas.x/ sin �;

QU .x/ D .�0ı/1=2C� sin � � u2Bas.x/ cos � CO.ı5=2��/;
QU 0.x/ D .1=2C �/.�0ı/�1=2C� sin � � u0

2Bas.x/ cos � CO.ı3=2��/;
�.x/ D c�uBas.x/CO.ı3=2/; � 0.x/ D c�u0

Bas.x/CO.ı1=2/;
u2Bas.x/ D .�0ı/1=2�� C c1.�0ı/3=2��; (5.44)

where �0 and c1 are some constants and c� is an arbitrary constant.21 We
represent the function  .x/ (5.41) as

 .x/ D cU.xI�0/C !�1
�
QU .x/

Z x

a

U.xI�0/�0.x/dx

�U.xI�0/
Z x

a

QU .x/�0.x/dx
�
; c D !�1

Z ˇ

a

QU .x/�0.x/dx: (5.45)

A similar representation holds for  0.x/. These representations allow us to
establish the asymptotics of  .x/ and  0.x/ as ı ! 0 to yield

 .x/ D cuBas.x/CO.ı5=2��/;
 0.x/ D cu0

Bas.x/CO.ı3=2��/;
which implies that  .x/ is square-integrable at the left endpoint a and satisfies
s.a. boundary condition (5.44) at this endpoint. It follows that  2 D, which
proves property (ii) in case B.

C. Let the asymptotics of the relevant functions as ı ! 0 be given by

U.xI z/ D uC as.x/CO.ı3=2 ln ı/;

QU .x/ D .�0ı/1=2 sin � � u2C as.x/ cos � CO.ı3=2 ln ı/;

20This is the case in which pC.a/ D p�.a/ D 1.
21The constant �0 is of dimension of inverse length, so that �0ı is dimensionless.
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�.x/ D c�uC as.x/CO.ı3=2 ln ı/;

uC as.x/ D .�0ı/1=2 cos � C u2C as.x/ sin �;

u2C as.x/ D .�0ı/1=2 ln.�0ı/C c2.�0ı/1=2; (5.46)

where �0 and c2 are some constants and c� is an arbitrary constant, and let the
asymptotics of the functions U 0, QU 0, and � as ı ! 0 be given by the derivatives
of respective asymptotics (5.46). Using representation (5.45) for the function
 .x/ (5.41) and a similar representation for  0.x/ and estimating the integral
terms in these representations by means of the Cauchy–Schwarz inequality, we
obtain

 .x/ D cuC as.x/CO.ı5=2 ln2 ı/;

 0.x/ D cu0
C as.x/CO.ı3=2 ln2 ı/; ı ! 0;

which implies that  .x/ is square-integrable at the left endpoint a and satisfies
s.a. boundary condition (5.46) at this endpoint. It follows that  2 D, which
proves property (ii) in case C.

D. Let � D i~; ~ > 0; and let the asymptotics of the relevant functions as ı ! 0

be given by22

U.xI z/ D uDas.x/CO.ı3=2/;
QU .x/ D ei� .�0ı/

1=2Ci~ � e�i� .�0ı/
1=2�i~ CO.ı3=2/;

�.x/ D c�uDas.x/CO.ı3=2/;
uDas.x/ D ei� .�0ı/

1=2Ci~ C e�i� .�0ı/
1=2�i~ ; (5.47)

where �0 is some constant and c� is an arbitrary constant, and let the asymptotics
of the functionsU 0, QU 0, and � as ı ! 0 be given by the derivatives of respective
asymptotics (5.47). Using representation (5.45) for the function  .x/ (5.41)
and a similar representation for  0.x/ and estimating the corresponding integral
terms by means of the Cauchy–Schwarz inequality, we obtain

 .x/ D cuDas.x/CO.ı5=2/;
 0.x/ D cu0

Das.x/CO.ı3=2/; ı ! 0;

which implies that  .x/ is square-integrable at the left endpoint a and satisfies
s.a. boundary condition (5.47) at this endpoint. It follows that  2 D, which
proves property (ii) in case D.

E. Let the left endpoint a be regular, and let the asymptotic behavior of the relevant
functions as ı ! 0 be given by

22This is the case in which pC.a/ D p�.a/ D 1.
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U.xI z/ D uEas.x/CO.ı2/; uEas.x/ D cos � C �0ı sin �;

QU .x/ D sin � � �0ı cos � CO.ı2/; �.x/ D c�uBas.x/CO.ı3=2/;

where � 2 S.��=2; �=2/, �0 is some constant, and c� is an arbitrary constant.

A proof of property (ii) in this case is completely similar to that in the case B
with � D 1=2.

It remains to prove property (i) for the guiding functional ˚.�I z/ (5.39) in the
above cases A, B, C, D, and E.

5.4.1.3 Property (i)

We recall that the function U.xI z/ has the following properties23: as a function of
x, it is smooth in .a; b/ for any z 2 C, but can be singular at the endpoints of the
interval, and as a function of z, it is (real) entire for any inner point x 2 .a; b/.

In the cases A, C, D, and E, the function U.xI z/ has a finite limit at the left
endpoint a, which implies that it is entire in z for any x 2 Œa; ˇ�, 8ˇ < b, and is
bounded as a function of two variables in Œa; ˇ��O , whereO is any bounded region
in C. LetD be any circle in C of finite radius, and let � be its boundary. As an entire
function in z, the function U.xI z/ allows the contour integral representation

U.xI z/ D 1

2�i

I

�

U.xI �/
� � z

d�; z 2 D n �:

Then for any � 2 D with supp� � Œa; ˇ�, the guiding functional ˚.�I z/ (5.39)
allows the representation

˚.�I z/ D 1

2�i

Z ˇ

a

dx

�I

�

d�
U.xI �/�.x/

� � z

�
; z 2 D n �; (5.48)

where the integral is an iterated one. But in the cases A, C, D, and E, the function
.� � z/�1U.xI �/�.x/ is bounded and is therefore integrable on Œa; ˇ� � �. It then
follows from Fubini’s theorem [97] that the order of integration on the right-hand
side of (5.48) can be interchanged, and the representation becomes

˚.�I z/ D 1

2�i

I

�

d�
1

� � z

"Z ˇ

a

dxU.xI �/�.x/
#

; z 2 D n �: (5.49)

The representation (5.49) demonstrates that ˚.�I z/ is an analytic function in z in
the circle D and is therefore entire in z because D is arbitrary.

23By the function U.xI z/, we here mean the specific function U for each operator Ofe.
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In case B, the function U.xI z/ is generally singular24 at the left endpoint a, but
allows the representation

U.xI z/ D uBas.x/C U.1/.xI z/;

where uBas.x/ is generally singular at a, but is independent of z, while U.1/.xI z/ D
O.ı2�j1=2��j/ as ı D x�a! 0. Accordingly, the guiding functional˚.�I z/ (5.39)
is represented as a sum of two functionals

˚.�I z/ D ˚as.�/C˚.1/.�I z/ D
Z b

a

dxuBas.x/�.x/C
Z b

a

dxU.1/.xI z/�.x/;

where the first functional ˚as.�/ is trivially entire in z, while for the second
functional˚.1/.�I z/, we can repeat all the previous arguments proving that˚.1/.�I z/
is entire in z because the function U.1/.xI z/ repeats all the required properties of the
previous function U.xI z/. Therefore, property (i) also holds in case B.

A summary of this subsection is that in the above cases A, B, C, D, and E, the
functional˚.�I z/ (5.39) is a simple guiding functional.

5.4.2 A Useful Lemma

When solving spectral problems, we often encounter expressions of the form
Im!�1.E C i0/, E 2 R.

For a certain class of functions!.W / of a complex variableW , such limits allow
a convenient representation in terms of distributions based on the Sokhotsky formula

Im .x C i0/�1 D ��ı.x/: (5.50)

Lemma 5.17. Let !.W / be an analytic function of W in a region U such that
U \ R D U0 ¤ ¿, and let !.W / have only one simple root E0 2 U0, so that
!.E0/ D 0, !0.E0/ ¤ 0, and Im!0.E0/ D 0. Then

Im!�1.E C i0/ D Qı.E � E0/C �.E/; Q D ��
�
!0.E0/

��1
;

�.E/ D



Im!�1.E/; E ¤ E0;
Im!�1.E0 ˙ 0/; E D E0; E 2 U0 :

24Namely, for � > 1=2 and � ¤ ˙�=2.
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In particular, if Im!.E/ D 0, 8E 2 U0, then

Im!�1.E C i0/ D Qı.E � E0/; Q D ��
�
!0.E0/

��1
; E 2 U0:

Proof. Introducing the notation � D W � E0 and a D !0.E0/, we represent the
function!.W / as !.W / D a�Cb.W /�2 and the function!�1.W / respectively as

!�1.W / D a�1��1 C c.W /; c.W / D � b.W /

aŒaC b.W /�� ;

where c.W / is continuous in U . With due regard to the Sokhotsky formula, it
immediately follows from this representation that

Im!�1.E C i0/ D ��a�1ı.E �E0/C Im c.E/; E 2 U0;

where

Im c.E/ D Im!�1.E/; E ¤ E0;
Im c.E0/ D �a�2 Im b.E0/ D Im!�1.E0 ˙ 0/:

ut
As an illustration, we evaluate two limits, Im� .X.E C i0// and Im .X.E C

i0//, where  is the logarithmic derivative of the � function, and

X.EC i"/ D �nCc.�C i"/; n 2 ZC; c D c; � D E�E0; E0 2 R; jc�j < 1:

In the case of the first limit, we have !.W / D � �1.X.W //. It is well known that
� �1.X/ is real entire in X , whence !.W / is real entire inW and evidently satisfies
the conditions of the lemma including the additional condition Im!.E/ D 0.
Therefore, to find the first limit, we have only to evaluate !0.E0/, for which it is
sufficient to estimate the behavior of !.E/ near the root point up to �2. Using the
representation

� �1.X/ D ��1� .1 � X/ sin.�X/ ;

we obtain that !.E/ D .�1/ncnŠ�CO.�2/ and find that

Im� .X.E C i0// D .�1/nC1 �
cnŠ

ı.E �E0/:
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Similar arguments with a certain modification are applicable to the case of the
second limit, where we have !.W / D � .X.W //Œ� 0.X.W //��1. The difference
with the previous case is that the function !.W / is real meromorphic with poles
at certain real points where � 0.X/ vanishes. But we note that in the regions under
consideration, Im .X/ D 0 for � ¤ 0, and therefore, it is sufficient to consider
only a neighborhood of the root point E0 where the lemma is applicable. By virtue
of the same representation for � .X/, the behavior of !.E/ near the root point is
given by !.E/ D �c�CO.�2/, which yields

Im .X.E C i0// D �c�1ı.E �E0/:



Chapter 6
Free One-Dimensional Particle on an Interval

Based on the general considerations in Chaps. 3, 4, and 5, we here consider
s.a. extensions and spectral problems for the momentum and Hamiltonian for
a free one-dimensional nonrelativistic particle moving on an interval .a; b/. It
turns out that the solution of these problems crucially depends on the type of the
interval: whether it is the whole real axis, .a; b/ D R, or a semiaxis, .a; b/ D RC
(a is taken to be zero for convenience; it can be any finite number), or .a; b/ D R�,
or a finite interval, �1 < a < b < 1; without loss of generality, we always
consider a finite interval Œ0; l�, l <1.

For the space of states of the system, we conventionally take the Hilbert
space L2.a; b/, whose vectors are wave functions  .x/, x 2 .a; b/ (we use the
x-representation). In Sect. 6.1, we discuss the momentum operator on different
intervals. The Hamilton operator is discussed in Sect. 6.2. In Sect. 6.3, we discuss
in detail how the correct treatment removes all the paradoxes presented in Sect. 1.3.
In the present chapter, with the exception of Sect. 6.3, we set „ D 1.

6.1 Self-adjoint Extensions and Spectral Problem
for the Momentum Operator

To construct an s.a. momentum operator, we start with the corresponding differential
operation Lp D �idx (4.6), which follows from the formal canonical quantization in
the coordinate representation; see Chap. 1. We next construct the initial symmetric
operator Op, its adjoint OpC, and possible s.a. extensions of Op. All these operators
differ by their domains, whereas each of them acts on the corresponding domain by
the same differential operation Lp. That is why we only indicate the domains of these
operators in what follows.

The domain of the initial symmetric operator Op is the space D .a; b/ of smooth
functions with compact support, Dp D D .a; b/. The operator Op is evidently
symmetric: the boundary forms Œ�;  � .a=b/ are trivial because all the functions
belonging to D .a; b/ vanish in a neighborhood of the boundaries.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 6,
© Springer Science+Business Media New York 2012
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It is instructive to directly evaluate the adjoint OpC, although such a problem was
solved for the initial symmetric operator associated with the general s.a. differential
operation in Sect. 4.4.

We have to solve the defining equation

.�; '/ � . �; Op'/ D
Z b

a

dx
�
�' C i �' 0� D 0; 8' 2 D .a; b/ ; (6.1)

for pairs  � 2 DpC and � D OpC �. Let a pair  � and � be a solution of defining
equation (6.1). We represent the function �.x/ as

�.x/ D �i Q 0.x/; Q .x/ D i
Z x

c

dy� .y/ ; (6.2)

where the point c is an interior point or a finite (regular) endpoint of the interval
.a; b/. By definition, the function Q .x/ is a.c. Substituting representation (6.2) for
� into (6.1) and integrating by parts, we reduce (6.1) to the equation

Z b

a

dx
�
 � � Q 

�
' 0 D 0 ; 8' 2 D .a; b/

(the boundary terms vanish because of vanishing ' near the boundaries). Applying
Lemma 2.12, we conclude that  � � Q D C D const, or

 � .x/ D i
Z x

c

dy� .y/C C ; (6.3)

whence it follows that  � is a.c. in .a; b/ and � D Lp � D �i 0�. Conversely,
any pair  � and � of functions belonging to L2.a; b/ and satisfying relation (6.3)
evidently satisfies defining equation (6.1). Therefore,DpC D D�

Lp.a; b/.
To check the symmetricity of OpC, we consider the quadratic asymmetry form

�pC . �/ (3.10) of this operator. According to (4.36), (4.37), it is represented in
terms of the quadratic boundary forms Œ �;  ��.a=b/ as

�pC . �/ D Œ �;  �� .x/jba ; Œ �;  �� .x/ D �i � .x/ � .x/ : (6.4)

In the case of .a; b/ D R, the boundary forms Œ �;  ��.˙1/ are trivial, see
below, and therefore, the operator OpC is symmetric.

In the case that one or both endpoints of an interval .a; b/ are finite, for
example, jaj < 1 and/or jbj < 1, we generally have Œ �;  �� .a/ ¤ 0 and/or
Œ �;  �� .b/ ¤ 0, which implies that the operator OpC is not symmetric.

The deficient subspaces and deficiency indices of the operator Op are determined
by solutions of the differential equations

Lp ˙ .x/ D �i 0̇ .x/ D ˙i� ˙ .x/ ; (6.5)
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where � is an arbitrary, but fixed, parameter of dimension of inverse length. The
respective general solutions of these equations are

 ˙ .x/ D c˙e��x; (6.6)

where c˙ are some constants.
From this point on, our consideration depends on the type of interval. We first

consider the whole real axis.

6.1.1 Whole Real Axis

The Hilbert space of states for a particle on the whole real axis is H D L2.R/. The
domain of the initial symmetric operator Op is Dp D D .R/, while the domain of
its adjoint OpC is DpC D D�

Lp.R/. The functions  � belonging to D�
Lp.R/ satisfy

the conditions  �;  0� 2 L2 .R/ and therefore vanish at infinity, see Lemma 2.13,
which implies that the quadratic boundary forms are trivial, Œ �;  ��.˙1/ D 0. It
follows that quadratic asymmetry form (6.4) is zero and the operator OpC is therefore
symmetric. This means that the operator Op is essentially s.a., and its unique s.a. ex-
tension, we let Ope denote it, is its closure coinciding with its adjoint, Ope D Op D OpC.

An alternative argument for the validity of this assertion is the general standard
one. The solutions (6.6) of (6.5) are both non-square-integrable on the whole
axis,  C is non-square-integrable at �1, while  � is at 1. This means that
the deficiency indices of the operator Op are zero, and therefore this operator is
essentially s.a.

Thus there exists only one s.a. momentum operator Ope on the whole axis.
As we know from Chaps. 2 and 5, the spectrum of any s.a. operator is on the real

axis. We now prove that the spectrum of the s.a. momentum operator Ope is the whole
axis, spec Ope D R.

Assume the contrary. Suppose a point �0 2 R does not belong to spec Ope, i.e.,
the point �0 is a regular point of the operator Ope. This means that the operator
. Ope � �0/�1 is defined on the whole of L2.R/ (see the definition of a regular point
in Sect. 5.1), or the equation

. Lp � �0/� D � (6.7)

with any � 2 L2.R/ has a (unique) solution � 2 D�
Lp .R/. Let supp � 2 .˛; ˇ/,

�1 < ˛ < ˇ <1. The general solution of differential equation (6.7) is

�.x/ D ei�0x
�
i

Z x

˛

dye�i�0y�.y/C C
�
;

where C is an arbitrary constant. For x < ˛; we have �.x/ D C ei�0x, and the
condition � 2 L2.R/ requires that C D 0. For x > ˇ, we then have

�.x/ D C1.�/ei�0x; C1.�/ D i
Z ˇ

˛

dye�i�0y�.y/;
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and the condition � 2 L2.R/ requires that C1.�/ D 0. But it is easy to present
functions � 2 L2.R/ for which C1.�/ ¤ 0, for example, �.x/ D ei�0x'.x/, '.x/ >
0, which implies that for such functions, (6.7) has no square-integrable solutions.
This contradiction proves that spec Ope D R.

The operator Ope has no eigenvectors. Again, assume the contrary. Let a function
U�.x/ be an eigenfunction of the operator Ope corresponding to an eigenvalue � 2 R.
By definition, this function is a square-integrable solution of the equation U 0

�.x/ D
i�U�.x/. But the general solution of this equation is

U�.x/ D C exp .i�x/ ; C 2 C; (6.8)

which is not square-integrable for any � 2 R and C ¤ 0. This contradiction proves
that Ope has no point spectrum, and its spectrum is pure continuous; see Chap. 5.

However, it is well known that functions (6.8) form a complete orthonormalized
system in L2.R/; they are therefore called the generalized eigenfunctions. Namely,
inversion formulas (5.23) with U�.x/ D .2�/�1=2 exp .i�x/ and Un D 0, which are
well known as Fourier transformations, hold,

�.x/ D
Z

R


.�/U�.x/d�; 
.�/ D
Z

R

U�.x/�.x/dx; 8� 2 L2.R/: (6.9)

As was mentioned in Chap. 5, the integrals in the inversion formulas converge in
the sense of the metrics of the respective Hilbert spaces. We illustrate this point with
the above transformations.

As an example, we consider the first integral in (6.9). This integral has to be
understood as follows. We introduce the functions �N .x/ defined by

�N .x/ D


�.x/; �N � x � N;
0; jxj > N:

Their Fourier transforms are


N .�/ D .2�/�1=2
Z 1

�1
dxei�x�N .x/; 
N .�/ 2 L2� .R/ :

It is evident that f�N .x/g is a Cauchy sequence and that it converges to the vector
�.x/ as N !1. Due to the equality

k
N2 � 
N1k2 D k�N2 � �N1k2;

f
N .�/g is also a Cauchy sequence. Because the space L2� .R/ of functions of
the variable � is complete, the sequence f
N .�/g converges to a vector 
.�/ as
N !1.
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6.1.2 A Semiaxis

The Hilbert space of states is the space L2.RC/. The domains of the initial
symmetric operator Op and its adjoint OpC are respectively Dp D D .RC/ and
DpC D D�

Lp .RC/.
It is useful to evaluate the closure Op of the operator Op using the relation Op D� OpC�C; see Chap. 3. In that chapter, it was demonstrated that the domainDp of the

operator Op consists of functions  2 D�
Lp .RC/ that satisfy the additional condition

!pC. �;  / D 0, 8 � 2 D�
Lp .RC/; see (3.12). In the case under consideration,

 �
x!1�! 0, so that the latter condition becomes

 �.0/ .0/ D 0; 8 � 2 D�
Lp .RC/ H)  .0/ D 0;

and we obtain

Dp D f W  2 D�
Lp .RC/ ;  .0/ D 0g: (6.10)

We now turn to the deficient subspaces of the operator Op. They are determined by
the same solutions (6.6) of the differential equations (6.5) reduced to the semiaxis
RC. The function  C is square-integrable on RC, whereas  � is not. This means
that the deficient subspaces of the initial symmetric operator Op on the semiaxis are
DC D fceCg; eC D e��x; c 2 C, and D� D f0g and its deficiency indices
are .1; 0/.

We come to the same conclusion considering the quadratic form�pC . �/, � 2
D�

Lp .RC/.
Indeed, the right boundary form is trivial, Œ �;  ��.1/ D 0. The left endpoint

of the semiaxis is regular, and the left boundary form is nontrivial, Œ �;  ��.0/ D
�i j �.0/j2 ¤ 0; because in general,  �.0/ ¤ 0:

The boundary value  �.0/ plays the role of a unique asymptotic boundary
coefficient.

The Hermitian form .1=i/�pC . �/ D j � .0/j2 is a positive semidefinite form
in this boundary value, its inertia indices, and therefore the deficiency indices of the
initial symmetric operator Op, are evidently equal to .1; 0/. We note that we obtain
this result without finding the deficient subspaces.

The unequal deficiency indices imply that there are no s.a. extensions of the
initial symmetric operator Op associated with the differential operation Lp on the
semiaxis RC. In the language of physics, this means that for a particle moving on
the semiaxis, the notion of momentum as a QM observable is lacking. In particular,
there is no notion of radial momentum.

Although the operator Op has no s.a. extensions, we can find some closed
extensions of Op such that their adjoints are also the extensions of Op: if we let Og
denote such an extension, then Op � Og D Og and Op � OgC. We show that there are
only two such extensions, Og1 D Op and Og2 D OpC. Indeed, because Op is the minimum
closed extension of Op, we have Op � Og D Og and Op � OgC. Taking the adjoints of these
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two inclusions and using the relation . OgC/C D g, we obtain that Op � Og � OpCand
Op � OgC � OpC. In the case under consideration, the first von Neumann formula

(4.44) becomes

DpC D D�
Lp .RC/ D Dp CDC D Dp C fceCg;

and therefore, the domainDg of Og coincides either with Dp or with DpC .

6.1.3 A Finite Interval

6.1.3.1 Self-adjoint Momentum Operator

The Hilbert space of states isL2.0; l/. The domains of the initial symmetric operator
Op and its adjoint OpC are respectivelyDp D D .0; l/ and DpC D D�

Lp .0; l/.
The functions ˙ in (6.6) are square-integrable on a finite interval, which implies

that the deficient subspaces of the operator Op are one-dimensional subspacesD˙ D
fc˙e˙; c˙ 2 Cg, where eC D e��x and e� D e��.l�x/ are the respective basis
vectors of the same norm, so that the initial symmetric operator Op on a finite interval
has the equal deficiency indicesm˙ D 1. By the main theorem, Theorem 3.4, there
exists a one-parameter family f OpU ; U 2 U .1/g of s.a. extensions of Op (the group
U .1/ is a circle

˚
ei� ; � 2 S .0; 2�/

�
). We consider both ways of specification of

s.a. extensions given by the main theorem and a third, alternative, way of directly
finding s.a. boundary conditions, which is given by Theorem 4.24.

The first way requires evaluating the closure Op, which reduces to finding its
domain Dp . The equivalent defining equations for  2 Dp are given in (3.13)
and in (3.16) or (3.17). We use the defining equation in (3.13), which in our case is
!pC. �;  / D 0, 8 � 2 D�

Lp .0; l/. This equation reduces to the equation

 � .l/ .l/ �  � .0/ .0/ D 0 ; 8 � 2 D�
Lp .0; l/ ;

for the boundary values of functions  belonging to Dp . Because  � .0/ and
 � .l/ can take arbitrary values independently, which in particular follows from
representation (6.3), we obtain that  .0/ D  .l/ D 0. We arrive at the same
result considering defining equation (3.17) for Dp because the determinant of the
boundary values of the basis vectors e˙ is nonzero,

det

�
eC .l/ eC .0/
e� .l/ e� .0/

�
D e�2�l � 1 ¤ 0:

Therefore, the functions  2 Dp are specified as the functions belonging to
D�

Lp .0; l/ and satisfying the additional zero boundary conditions

Dp D
n
 W  2 D�

Lp .0; l/ I  .0/ D  .l/ D 0
o
:
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Isometries OU W DC 7�!D� are determined by complex numbers of unit modu-
lus, OU .�/ eC D ei� e� , and are labeled by an angle � 2 S .0; 2�/. Respectively, the
one-parameter U .1/ family f Op�g of s.a. extensions of Op is given by the domains

Dp� D
n
 � W  � D  C c

�
e��x C ei���.l�x/� ;  2 Dp

o
; (6.11)

where c is an arbitrary constant.
The second way of specifying s.a. extensions of Op requires solving the defining

equation !pC

�
eC C ei� e�;  �

� D 0 for functions  � belonging to Dp� ; see (3.33)
or (3.35). In our case, this equation reduces to

�
eC C ei� e�;  �

�ˇˇl
0
D �i �e��l C e�i�� � .l/C i

�
1C e�i���l� � .0/ D 0:

Its solution is the relation

 � .l/ D ei# � .0/ ; # D � � 2 arctan

�
sin �

e�l C cos �

�
; (6.12)

between the boundary values of the functions belonging toDp� . The angle # ranges
from 0 to 2� as � ranges from 0 to 2� , # 2 S .0; 2�/, and is in one-to-one
correspondence with the angle � (it is sufficient to show that # .�/ is a monotonic
function, d#=d� > 0); therefore, the angle # equivalently labels the U .1/ family of
s.a. extensions, which we write as Op# D Op� .

The domain Dp# DDp� of the momentum operator Op# D Op� consists of func-
tions # D � that belong toD�

Lp .0; l/ and satisfy the additional boundary condition
(6.12). This boundary condition is an s.a. boundary condition specifying the s.a.
extensions of the initial symmetric operator Op:

Dp# D
n
 # W  # 2 D�

Lp .0; l/ I  # .l/ D ei# # .0/
o
: (6.13)

It is easy to verify that representation (6.12) is equivalent to representation (6.11).
The second way of specifying s.a. extensions appears to be more direct and

explicit than the first one1 because it specifies s.a. extensions in the customary form
of s.a. boundary conditions, which is more suitable for spectral analysis.

And finally, we can use the third way, the asymmetry form method given by
Theorem 4.24. Namely, we impose the condition �pC . �/ D �i  � .x/  �
.x/jl0 D 0 to reduce the domain D�

Lp .0; l/ of the adjoint operator OpC to the domain
of an s.a. momentum operator, which directly yields the s.a. boundary conditions

 # .l/ D ei# # .0/ ; # 2 S .0; 2�/ ; (6.14)

and reproduces the result (6.13) without evaluating the deficient subspaces.

1Although in the general formulation of Theorem 3.4, the situation seems to be the opposite.
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A conclusion of the above consideration is that for a particle moving on a
finite interval, the momentum operator is defined nonuniquely. There exists a
one-parameter U.1/ family f Op#g of s.a. operators associated with the differential
operation Lp, labeled by an angle # , and specified by s.a. boundary conditions (6.14).
Each Op# can be considered the momentum operator for a particle moving on a finite
interval.

As in the previous case of a semiaxis, we find all closed extensions Og of Op,
Og D Og, such that their adjoints OgC are also the extensions of Op. In perfect analogy
with the previous case, these requirements imply that the following inclusions
hold: Op � Og � OpC and Op � OgC � OpC, which is equivalent to that both Og and OgC
are associated with the differential operation Lp and their domains are restricted by

Dp � Dg � D�
Lp .0; l/ ; Dp � DgC � D�

Lp .0; l/ :

By the first von Neumann formula (4.44) as applied to our case, we have

D�
Lp .0; l/ D Dp CDC CD� D Dp C fcCeCg C fc�e�g:

It follows from this representation and the above inclusions that for any extension
Og, its domain Dg allows the representation Dg D Dp C $Dg , where $Dg is a
subspace of the direct sum of the deficient subspaces,$Dg � DC CD�; the same
holds for the adjoint OgC: DgC D Dp C $DgC , $DgC � DC C D�. Because
DC CD� is two-dimensional, there are three possibilities for$Dg:

(1) The minimum $Dg is the zero subspace of DC CD�, �Dg D f0g, in which
case Og D Og1 D Op and OgC D OpC.

(2) The maximum$Dg is two dimensional and coincides with the whole ofDCC
D�, $Dg D DC CD�, in which case Og D Og2 D OpC and OgC D Op.

(3) An intermediate $Dg is a one-dimensional subspace of the two-dimensional
sum DC CD�. There is the two-parameter family f$D

.�/
D $D

.˛;�/
g of such

one-dimensional subspaces determined by basis vectors

� D �.˛; #/ D eC sin ˛ C ei#e� cos˛ ; 0 � ˛ � �=2; 0 � # � 2�;

so that$D
.�/
Dfc�g, c 2 C, which generates the two-parameter family f Og.�/ D

Og.˛;�/g of the required closed extensions of Op such that

Dg.�/ D Dg.˛;�/ D Dp C$D.�/
D Dp C c.eC sin ˛ C ei� e� cos˛ /:

The adjoint OgC
.�/, i.e., its domainD

g
C

.�/
, can be evaluated using defining equation

(2.24), which is reduced to the equation .�; Og.�/ / D . OgC
.�/�;  /,8 2 Dg.�/ ,

for � 2 D
g

C

.�/
. It is evident from the equality . OgC/C D Og and the previous two

items that D
g

C

.�/
D Dp C$Dg

C

.�/
, where the subspace $D

g
C

.�/
� DC CD� is
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also one-dimensional,$D
g

C

.�/
D$D.Q�/D$D.ˇ;�/D c.eC sinˇC ei� e� cosˇ/.

Because both Og.�/ and OgC
.�/ are restrictions of OpC, the defining equation is

equivalent to the equation !pC .�;  / D 0,8 2 Dg.�/ . In view of the von
Neumann formula (4.45) and the equality keCk D ke�k, this equation reduces
to sinˇ sin ˛�e�i.#��/ cosˇ cos˛ D 0 (of course, the same result follows from
the representation of !pC .�;  / in terms of boundary forms). The solution of
the latter equation is # D � and ˇ D �=2� ˛, so that

D
g

C

.�/
D D

g
C

.˛;�/
D Dp C c.eC cos˛ C ei� e� sin ˛ /:

We note that all the s.a. operators Op� (6.11) represent a part of the above family,
Op� D Og�=4;� . In addition, the property Og˛;� D OgC

�=2�˛ holds, and the operators

Og0;� , OgC
0;� , Og�=2;� , and OgC

�=2;� do not depend on � .

6.1.3.2 Spectrum and Inversion Formulas

We begin with the spectra of the s.a. operators Op#:
The eigenvalues�n.#/ and the corresponding normalized eigenfunctionsUn.# I x/

of the s.a. operator Op# are easily found as the solutions of the eigenvalue problem
for the homogeneous first-order differential equation . Lp � �n.#//Un.# I x/ D 0,
where Un.# I x/ satisfy s.a. boundary condition (6.14), to give

�n.#/ D .2�nC #/=l; Un.# I x/ D .l/�1=2 ei�n.#/x; n 2 Z: (6.15)

We show that all other real points u, u 2 R n f�n.#/; n 2 Zg, are the regular
points of Op# and therefore do not belong to its spectrum. By Lemma 2.73, it is
sufficient to show that the inhomogeneous first-order differential equation

. Lp � u/ #.x; u/ D �.x/; 8�.x/ 2 L2.0; l/;

has a (unique) solution belonging toDp# (6.13). It is easy to verify that the required
solution is given by

 #.xI u/ D ieiux
�
ei.#�ul/ � 1��1

"

ei.#�ul/
Z x

0

dye�iuy�.y/C
Z l

x

dye�iuy�.y/
#

:

We thus obtain that the spectrum of the s.a. operator Op# is a simple pure discrete
spectrum, spec Op# D f�n.#/; n 2 Zg, where the eigenvalues �n.#/ and the
corresponding eigenfunctionsUn.# I x/ are given by (6.15).

We note that the initial symmetric operator Op and its closure Op have no
eigenvalues, while any complex number z is the eigenvalue of their adjoint OpC.
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It is well known from the theory of Fourier series that the orthonormalized system
of functions fUn.0I x/; n 2 Zg is complete in L2.0; l/. It immediately follows
that for any # , the system of functions fUn.# I x/; n 2 Zg is also complete in
L2.0; l/: the two systems are related by the unitary transformation OU .#/ D ei#x=l .
The well-known Fourier-series expansion formulas written in terms of the functions
Un.# I x/ are just inversion formulas (5.23), with .a; b/ D Œ0; l�, Un D Un.# I x/,
and U� D 0, for the s.a. operator Op# .

6.2 Self-adjoint Extensions and Spectral Problem
for Free Particle Hamiltonian

To construct an s.a. quantum Hamiltonian for a one-dimensional free nonrelativistic
particle, we start with the corresponding differential operation LH D �d2x (4.7),
which follows from the formal canonical quantization rule of replacing the mo-
mentum p in the classical Hamiltonian H D p2 by differential operation (4.6).
According to our general scheme, we successively construct the initial symmetric
operators bH, its adjoint bHC, and some other relevant operators associated with LH.
All these operators differ by their domains. However, each of them acts on the
corresponding domain by the same differential operation LH. That is why we only
indicate the domains of these operators in what follows.

The domain of the initial symmetric operator bH is the space D .a; b/, DH D
D .a; b/, in which case the domain of its adjoint bHCis D�

LH .a; b/, DHC D
D�

LH .a; b/ ; the natural domain for LH, as follows from the general theory; see
Sect. 4.4.

The deficient subspaces D˙ and deficiency indices of the operator bH are
determined by solutions of the differential equations

LH ˙ .x/ D � 00̇ .x/ D ˙i�2 ˙ .x/ ; (6.16)

where � > 0 is an arbitrary, but fixed, parameter of dimensionality of inverse length.
The respective general solutions of these equations are

 ˙ D c1;˙ 1;˙.x/C c2;˙ 2;˙.x/;  j;�.x/ D  j;C.x/; j D 1; 2;

 1;C.x/ D exp

�
.1 � i/p

2
�x

�
;  2;C.x/ D exp

�
� .1 � i/p

2
�x

�
; (6.17)

where cj;˙ are some constants.
From this point on, our considerations depend on the type of interval. We first

consider the whole real axis.
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6.2.1 Whole Real Axis

6.2.1.1 Self-adjoint Hamiltonian

In the case under consideration, the Hilbert space of states is L2.R/. The domain of
the initial symmetric operator bH is DH D D .R/, while the domain of its adjoint
OpC is DHC D D�

LH .R/.
It is evident that both solutions (6.17) and their arbitrary linear combinations

are not square-integrable on R for any �, which means that deficient subspaces are
trivial and both deficiency indices of bH are zero, which implies that the operator bH
is essentially s.a., its unique s.a. extension bHe; bHe D bHC

e , is its closure coinciding

with its adjoint, bHe D bH D bHC, and DHe D D�
LH .R/.

The same result follows from a consideration of the asymmetry form$HC . �/.
According to (4.36), (4.37), and (4.15), it is represented in terms of the quadratic
boundary forms Œ �;  ��.1= �1/ � Œ �;  ��H.1=�1/ as

�pC . �/ D Œ �;  �� .x/jba ; Œ �;  �� .x/ D  0�.x/ �.x/�  �.x/ 0�.x/:

By Lemma 2.14, we have  �;  0�
jxj!1�! 0, 8 � 2 D�

LH .R/. It follows that the

boundary forms are trivial and�HC . �/ � 0, which implies that the operator bHC
is symmetric and therefore the operator bH is essentially s.a.

Therefore, there exists only one s.a. free Hamiltonian bHe on the whole real axis.
We now establish the well-known relation between the s.a. free Hamiltonian bHe

and the s.a. momentum operator Ope constructed in Sect. 6.1.1. We note that the initial
symmetric operators bH and Op are defined on the same domain, D .R/, and it is
evident that bH D Op2. The operator Op has a unique s.a. extension Ope D Op defined on

the natural domainD�
Lp .R/. By Theorem 2.84, the operator

�
Op
�2

is s.a. Its restriction

to D .R/ coincides with Op2 D bH, i.e., the operator
�
Op
�2

is an s.a. extension of bH.

But bHe is a unique s.a. extension of bH. This implies that for the whole real axis, the
relation2

bHe D Op2e D
�
Op
�2

(6.18)

holds. This relation can be proved independently: it is evident that both operators
are associated with the s.a. differential operation LH D �d2x D Lp2, and it is easy to
verify that by definition of the operator Op2e , its domain coincides with D�

LH .R/.

2This relation is considered evident in most physics textbooks and sometimes incorrectly extended
to other intervals; we discuss this point below.
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6.2.1.2 Spectrum and Inversion Formulas

In solving the spectral problem, we follow the way described in Sect. 5.3. Following
Sect. 5.3.1, in particular, see (5.8), for the special fundamental system of solutions
of the homogeneous equation

. LH �W /u.x/ D 0; (6.19)

we choose the functions

u1.xIW / D cos.ˇx/; u2.xIW / D ˇ�1 sin.ˇx/; ˇ D pW ; (6.20)

normalized at the point c D 0 by u.k�1/
j .0IW / D ıjk , j; k D 1; 2, and evidently

real entire in W .
Following Sect. 5.3.4, we evaluate the Green’s function of the operator bHe,

finding a unique solution of the inhomogeneous equation

. LH �W /�.x/ D �.x/; 8� 2 L2.R/; ImW > 0; (6.21)

belonging to DHe D D�
LH .R/ and representing it in integral form (5.13) (with the

substitution W for z). For W with ImW > 0, we use the parameterization W D
jW je2i' , 0 < ' < �=2. Then ˇ D pW D pjW j.cos' C i sin '/, Imˇ > 0, and
real W are always denoted by E . The general solution of (6.21) is of the form

�.x/ D c1e�iˇx C c2eiˇx

C i

2ˇ

�Z 1

x

e�iˇ.x�y/�.y/dy C
Z x

�1
eiˇ.x�y/�.y/dy

�
: (6.22)

Because Imˇ > 0, the sum of the first two terms on the right-hand side of (6.22)
grows exponentially at infinity unless c1;2 D 0, while by the Cauchy–Schwarz
inequality, the integral terms are bounded at the whole axis, which implies that
the required solution is given by (6.22) with c1;2 D 0. It follows that the Green’s
function is given by

G.x; yIW / D i

2ˇ



eiˇ.x�y/; x > y;
e�iˇ.x�y/; x < y:

Following Sect. 5.3.2, we calculate the matrix Mjk.0IW /, see (5.15) (with the
substitution W for z and taking into account that in our case, the quasiderivatives
coincide with ordinary derivatives),

Mjk.0IW / D i

2ˇ

�
1 �iˇ
iˇ ˇ2

�
D 1

2
iˇ2j�3ıjk C i�2jk;
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and then the derivative � 0
jk.E/ of the matrix spectral function, see (5.19) (with the

substitution E for �),

� 0
jk.E/ D ��1 ImMjk.0IE C i0/ D 1

2�
ImŒiˇ2j�3�

ˇ
ˇ
ˇDp

ECi0 ıjk:

In calculating the derivative of the matrix spectral function, we have to distin-
guish the semiaxis E � 0 and E < 0:

(a) For E � 0, we have ˇ D pE C i0 D pE , and we obtain

� 0
jk.E/ D

1

2�

�p
E
�2j�3

ıjk: (6.23)

(b) For E < 0, we have ˇ D pE C i0 D ipjEj, and we obtain

� 0
jk.E/ D 0: (6.24)

According to Sect. 5.3.3, the spectrum of the operator bHe consists of the growth
points of the matrix spectral function. It then follows from (6.23) and (6.24) that
specbHe D RC. Because the matrix � 0

jl .E/ is nonsingular, the spectrum of bHe is
twofold (twofold degenerate).

And finally, the general inversion formulas (5.20) (with the substitutions E for �
and ˚ for ') in our particular case in which n D 2, �jk.E/ D 1

2�
.
p
E/2j�3ıjk , and

~jk;m D 0 become

�.x/ D 1

2�

Z 1

0

2

4˚1.E/
cos

�p
Ex

�

p
E

C ˚2.E/ sin.
p
Ex/

3

5 dE;

˚1.E/ D
Z 1

�1
cos

�p
Ex

�
�.x/dx ; ˚2.E/ D

Z 1

�1

sin
�p

Ex
�

p
E

�.x/dx:

After the natural change of the variable E to p D pE and the replacement of the
functions ˚1;2.E/ by the functions 
1;2.p/ given by


1.p/ D .�/�1=2 ˚1.E/; 
2.p/ D .�/�1=2 p˚2.E/;
the inversion formulas are reduced to the conventional sine–cosine form of the
Fourier transformation,

�.x/ D .�/�1=2
Z 1

0

Œ
1.p/ cos.px/C 
2.p/ sin.px/� dp;


1.p/ D .�/�1=2
Z 1

�1
cos.px/ .x/dx ; 
2.p/ D .�/�1=2

Z 1

�1
sin.px/ .x/dx:

The following remark is worth noting.
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The eigenfunctions cos
�p

Ex
�

and sin
�p

Ex
�

�
p
E respectively are even

and odd under the transformation x ! �x, or equivalently, they are symmetric or
antisymmetric with respect to the origin. This is a consequence of a diagonal struc-
ture of the spectral matrix � 0

jk.E/ (6.23). In turn, the latter is a manifestation of the

fact that that the unitary parity operator OP defined by OP .x/ D  .�x/ commutes
with the operator bHe. As a consequence, the Hilbert space L2.R/ is decomposed
into the orthogonal direct sum of the two subspaces L2.C/.R/ and L2.�/.R/ of the

respective symmetric and antisymmetric functions that are the eigenspaces of OP
with the respective eigenvalues C1 and �1, L2.R/ D L2.C/.R/ ˚L2.�/.RP/. The

subspaces L2.C/.R/ and L2.�/.R/ reduce the operator bHe, so that the inversion

formulas for bHe in the whole spaceL2.R/ actually split into a couple of independent
inversion formulas in the subspaces L2.C/.R/ and L2.�/.R/.

In conclusion, we note that all the results in this section directly follow from
the representation (6.18); in particular, the eigenfunctions of bHe are certain linear
combinations of the eigenfunctions of Ope.

6.2.2 A Semiaxis

6.2.2.1 Self-adjoint Hamiltonians

The Hilbert space of states isL2.RC/. The domains of the initial symmetric operator
bH and its adjoint bHC are respectivelyDH D D .RC/ andDHC D D�

LH .RC/.
The deficient subspaces D˙ as the spaces of square-integrable solutions (6.17)

of equations (6.16) are easily evaluated. It suffices to find DC, and then D� is
obtained by complex conjugation. Among the two linearly independent solutions
 1;C.x/ and  2;C.x/, only  2;C.x/ is square-integrable on the semiaxis. This
means that the deficiency indices in our case are m˙ D 1, and we have a one-
parameterU .1/ family fbHU g of s.a. extensions of the initial symmetric operator bH.
If we parameterize elements U of the group U .1/ by the angle � : U D ei� ,
� 2 S .��; �/, then each s.a. extension is naturally labeled by an angle � ,
bHU D bH� . A specification of s.a. operatorsbH� , which are associated with LH, by s.a.
boundary conditions is performed in accordance with Theorem 4.17: LH is an even
s.a. differential operator of second order, n D 2, on an interval .a; b/ D .0;1/,
the left endpoint a D 0 is regular, the right endpoint b D 1 is singular, and the
right boundary form is equal to zero by Lemma 2.14. For illustration, we trace
the specification in detail. The normalized basis functions in D˙ are respectively
e˙ D 4

p
2�2 2;˙.x/, a unique basis function eU � e� in the one-dimensional
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subspace . OI C OU /DC � DH�
is e� D eC C ei� e�, the matrix E1=2;U .a/ in (4.80)

defined by (4.78) is a column given by3

E1=2;� .0/ D 4
p
2�2

�
1C ei�

2�1=2�
�
.i � 1/� .1C i/ ei�

�
�
;

the matrix E (4.66) is given by E D antdiag .1;�1/, the column 	U .a/ (4.68) is
given by

	� .0/ D
�
 � .0/

 0
� .0/

�
;

so that s.a. boundary conditions (4.79) specifying bH� become

�
1C e�i�� 0

� .0/C 2�1=2�
�
.1C i/C .1 � i/ e�i� � � .0/ D 0 ;

or equivalently

 0
� .0/ cos � D � � .0/ sin �; tan � D 2�1=2 .tan �=2� 1/ : (6.25)

As � ranges from �� to � , � ranges from ��=2 to �=2, and � D ˙�=2 (� D ˙�)
equivalently yield the s.a. boundary condition  .0/ D 0. It is natural to change the
notation bH� ! bH� and  � !  � . In this notation, the boundary condition (6.25)
becomes

 0
� .0/ cos � D � � .0/ sin �; � 2 S .��=2; �=2/ : (6.26)

So, for a free particle on a semiaxis, there exists a family fbH�g of s.a. operators
associated with the differential operation LH; their domainsDH� are given by

DH� D
n
 � W  � 2 D�

LH .RC/ I  � satisfies .6.26/
o
:

Each of the operators bH� is a candidate for the s.a. Hamiltonian for a free particle
on the semiaxis. In physics, the boundary condition (6.26) with � D ˙�=2 is
conventional. In particular, it is characteristic for a free radial motion in the s-wave.
However, the boundary condition (6.26) with j�j < �=2 is also encountered.

We note that even though the Hamiltonian with a fixed � depends on the parame-
ter �, the whole family fbH�g is the same for any choice of �. We also emphasize that
if � ¤ ˙�=2, the dimensional parameter �, which is lacking in the initial differen-
tial operation LH, enters QT as an additional parameter specifying a Hamiltonian.

3We note in passing that the correctness of the calculation, which is very simple in this case, is con-
firmed by the fact that both necessary conditions rankE1=2;� D 1 and EC

1=2;�
.0/ EE1=2;� .0/ D 0

hold; see the remark following Theorem 4.17.
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The same results are easily obtained by the asymmetry form method without
evaluating the deficient subspaces. According to the above-mentioned properties of
H, our case falls within the realms of the cases considered at the end of Sect. 4.7 and
associated with formulas (4.133) and (4.134). In our case, the columns 	U;� C .a/
and 	� � .a/ defined by (4.130) and (4.131) are the respective numbers

 U;� C .0/ �  �;� C .0/ D  � .0/C i� 0
� .0/ ;

 �;� � .0/ D  � .0/� i� 0
� .0/ ;

where the unitary matrix U 2 U.1/ is a complex number of unit modulus. If we
set � D 1=� and U D e2i� , � 2 S .��=2; �=2/, s.a. boundary conditions (4.134)
directly reduce to (6.26).

We recall that for a particle on a semiaxis, no s.a. momentum operator exists,
but there exist two closed densely defined operators Og1 and Og2 associated with Lp,
namely, Og1 D OgC

2 D Op and Og2 D OgC
1 D OpC; see Sect. 6.1.2.

Then, according to Theorem 2.84, the operators bH.1/ D OpC Op and bH.2/ D Op OpC
are s.a. operators associated with LH. We first evaluate the domain DH.1/

of the

operator bH.1/ following from its definition. A function  belonging to DH.1/
must

belong to Dp given by (6.10); its derivative  0 belonging to Rp must be a.c. for
to belong to DpC ; and its second derivative  00 must be square-integrable. All this
means that  2 D�

LH .RC/. On the other hand, by Lemma 2.14, the requirement
 2 D�

LH .RC/ implies that  0 is square-integrable. It follows that

DH.1/
D f W  2 D�

LH .RC/ ;  .0/ D 0g;

i.e., DH.1/
D DH

˙�=2
, and therefore bH.1/ D bH˙�=2. Similarly we obtain that

DH.2/
D f W  2 D�

LH .RC/ ;  0.0/ D 0g;

i.e., DH.2/
D DH0 , and therefore bH.2/ D bH0.

The general problem of representations of all the Hamiltonians bH� as quadratic
combinations of first-order differential momentum-like operators (we call such
representations the oscillator representations) is considered in [77].

6.2.2.2 Spectrum and Inversion Formulas

We begin by following a method adopted in Sect. 6.2.1. For the special fundamental
system uj .xIW /, j D 1; 2; of solutions of the homogeneous equation (6.19) on the
semiaxis, we take the same functions (6.20) reduced to the semiaxis.

Next is an evaluation of the Green’s function of the operator bH� by finding a
unique solution of the inhomogeneous equation (6.21) on the semiaxis belonging to
DH� . The general solution of this equation can be represented as
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�.x/ D c1e�iˇx C c2eiˇx C i

2ˇ

�
e�iˇx

Z 1

x

eiˇy�.y/dy C eiˇx
Z x

0

e�iˇy�.y/dy
�
;

where c1;2 are some constants. Using the Cauchy–Schwarz inequality, it is easy to
verify that the last three summands on the right-hand side of this representation are
bounded as x ! 1, while the first one grows exponentially unless c1 D 0. The
condition � 2 DH�

implies that � is square-integrable and satisfies s.a. boundary
condition (6.26). The first requirement fixes the constant c1, c1 D 0, while the
second requirement fixes the constant c2;

c2 D � i
2
.� sin � C iˇ cos �/Œˇ.� sin � � iˇ cos �/��1

Z 1

0

eiˇx�.x/dx ;

so that the required solution is

�.x/ D .� sin � � iˇ cos �/�1

�
�

eiˇx
Z x

0

u�.yIW /�.y/dy C u�.xIW /
Z 1

x

eiˇy�.y/dy

�
;

u�.xIW / D cos.ˇx/ cos � C � sin.ˇx/

ˇ
sin �:

It follows that the Green’s function of the operator bH� is given by

G.x; yIW / D .� sin � � iˇ cos �/�1



eiˇxu�.yIW /; x > y;
u�.xIW /eiˇy; x < y:

We note that the function u�.xIW / is a solution of the homogeneous equation
(6.19), which is real entire in W and satisfies s.a. boundary condition (6.26).

The matrix Mjk.0IW / calculated in accordance with (5.15) and its imaginary
part respectively are

Mjk.0/ D .� sin � � iˇ cos �/�1
�

cos � � sin �
iˇ cos � iˇ� sin �

�
;

ImMjk.0IW / D ImA�.W /.n˝ n/jk; n D fnj g D .cos �; � sin �/;

A�.W / D Œcos �.� sin � � iˇ cos �/��1:

We could next calculate the derivative � 0
jk.E/ of the matrix spectral function in

accordance with (5.19), find the spectrum of the operator bH� , and explicitly write
the inversion formulas (5.20). On the other hand, the structure of the matrix ImMjk

indicates that the functions u1 and u2 enter the inversion formulas not independently
but as a unique linear combination n1u1 C n2u2 D u� . This observation shows that
the spectrum of the operator bH� is actually simple. We prove this fact using the
simple guiding functional method.
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Consider the guiding functional

˚.�IW / D
Z 1

0

dxu�.xIW /�.x/; � 2 Dr .RC/ \DH�
:

It is easy to see that this functional belongs to the class E of simple guiding
functionals considered in Sect. 5.4.1 with the functions U.x;W / D u�.x;W / and
QU .x/ D Qu�.xI�0/, where

Qu�.xIW / D � cos.ˇx/ sin � C �ˇ�1 sin.ˇx/ cos �

is a solution of the homogeneous equation (6.19), which is linearly independent of
u�.x;W / and real entire in W . Therefore, the spectrum of bH� is simple.

We rewrite the Green’s function as

G.x; yIW / D ˝.W /u�.xIW /u�.yIW /

� ��1

 Qu�.xIW /u�.yIW /; x > y;

u�.xIW /Qu�.yIW /; x < y;
where

˝.W / D ��1 � cos � C iˇ sin �

� sin � � iˇ cos �
:

Using this representation and representations (5.22) and (5.21) with � changed
to E , we obtain that the derivative of the spectral function is given by � 0.E/ D
��1 Im˝.E C i0/. We consider the semiaxis E � 0 and E < 0 separately.

(1) For E � 0, we have ˇ D pE C i0 D pE , the function˝.E C i0/ D ˝.E/
is a finite complex function, and we obtain

� 0.E/ D pE ��.�2 sin2 � C E cos2 �/
��1

:

(2) For E < 0, we have ˇ D pE C i0 D ipjEj, and formally,

˝.E/ D � cos � �pjEj sin �

� sin � CpjEj cos �
D !�1.E/;

but we have to distinguish two regions of the extension parameter �:

(a) For 0 � � < �=2 and � D ˙�=2, the function !.E/ is a real function without
zeros, so that Im˝.E C i0/ D Im˝.E/, 8E < 0, and we obtain � 0.E/ D 0.

(b) For ��=2 < � < 0, the function !.E/ is a real function with a single simple
zero at the point E D �� D ��2 tan2 �,

Im!.E/ D 0; 8E < 0I !.E/ ¤ 0; E ¤ �� I !.��/ D 0; �� D ��2 tan2 �;
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and using Lemma 5.17, we obtain

� 0.E/ D 2� cos�2 � tan j�jı.E � ��/;

which means that in this case, there exists a negative energy level �� D
� .� tan �/2.

The final results for the spectrum and eigenfunctions of the operators bH� are as
follows.

For 0 � � < �=2 and � D ˙�=2, the spectrum of the operator bH� is simple
and continuous, spec bH� D RC; and its corresponding generalized eigenfunctions
U
.�/
E .x/ forming a complete orthonormalized system in L2.RC/ are

U
.�/
E .x/ D

s p
E

�.�2 sin2 � C E cos2 �/
u�.xIE/; E � 0: (6.27)

For ��=2 < � < 0, the spectrum of the operator bH� is simple, contains a
continuous nonnegative part and a point part consisting of a unique negative energy
level �� ,

spec bH� D RC [
n
�� D � .� tan �/2

o
;

and the corresponding eigenfunctions forming a complete orthonormalized system
in L2.RC/ are the generalized eigenfunctions of the continuous spectrum U

.�/
E .x/

given by the same formula (6.27), but of course with different �, and a unique
eigenfunction

U .�/.x/ D cos�1 �
p
2� tan j�ju.xI ��/

of the point spectrum.
The inversion formulas for � D ˙�=2written in terms of the functionsUE.x/ Dp
2=� sin

�p
Ex

�
coincide with the standard sine decomposition on the semiaxis;

the cosine decomposition on the semiaxis is covered by the inversion formulas with
� D 0.

6.2.3 A Finite Interval

6.2.3.1 Self-adjoint Hamiltonians

The Hilbert space of states isL2.0; l/. The domains of the initial symmetric operator
bH and its adjoint bHCare respectively DH D D .0; l/ and DHC D D�

LH .0; l/. The

point is that LH is a regular even, second-order, s.a. differential operation.
A construction of all s.a. extensions of bH, in particular their specification by

s.a. boundary conditions, was already given above by three different methods in
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Sect. 4.5, see (4.61) or (4.62), in Sect. 4.6, see (4.65) or (4.69), and (implicitly)
in Sect. 4.7, see (4.132), as an illustration of Theorems 4.12, 4.15, and 4.24,
respectively.

In our opinion, the most direct and convenient specification of s.a. extensions
bHU of bH in terms of s.a. boundary conditions is due to the asymmetry form method
as applied to regular even s.a. differential operations, which is presented in Sect. 4.7
and associated with formulas (4.127), (4.128), (4.129), (4.130), (4.131), and (4.132).
For a dimensional parameter � , we take the length l of the interval, and lest the
notation be overloaded, we omit the index l . With this convention, s.a. boundary
conditions (4.132) in our case become

�
 .l/ � i l 0.l/
 .0/C i l 0.0/

�
D U

�
 .l/C i l 0.l/
 .0/ � i l 0.0/

�
; (6.28)

where U 2 U.2/.
The whole U.2/ family fbHU ; U 2 U.2/g of s.a. operators associated with LH is

completely determined by their domainsDHU given by

DHU D
n
 W  2 D�

LH .0; l/ and satisfy (6.28)
o
: (6.29)

Each bHU can be considered a candidate for a Hamiltonian for a free particle on a
finite interval.

In the spectral analysis of free Hamiltonians on a finite interval, we restrict
ourselves to the two well-known Hamiltonians, the Hamiltonian bH�I corresponding
to the choice U D �I ,

DH�I D f W  2 D�
LH .0; l/ ;  .0/ D  .l/ D 0g; (6.30)

and the Hamiltonian bH�1 corresponding to the choice U D �1,

DH�1
D f W  2 D�

LH .0; l/ ;  .l/ D  .0/;  0.l/ D  0.0/g: (6.31)

In physics, the zero s.a. boundary conditions in (6.30) are conventionally
associated with a particle in an infinite rectangular potential well, whereas the
periodic s.a. boundary conditions in (6.31) are conventionally associated with a
particle on a circle (a rigid rotator) or with an ideal gas in a box.

We note that the Hamiltonian bH�I allows the representation bH�I D OpC Op;where
the operators Op and OpC are defined in Sect. 6.1.3.

For the Hamiltonian bH�1 , the representation

bH�1 D Op20 (6.32)

holds, where the operator Op0 is one of the family f Op#g of the momentum operators
on the interval Œ0; l� with # D 0; see Sect. 6.1.3. These representations (6.32)
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are easily verified following the definition of the right-hand sides. By the way,
the representation (6.32) suggests a way to construct some of the possible free
Hamiltonians. Namely, the one-parameter family f Op#g of s.a. momentum operators
generates the one-parameter family fbH#g of s.a. operators defined by

bH# D Op2#: (6.33)

As directly follows from their definition, these operators are associated with the
differential operation LH, and their domains are given by

DH#
D f W  2 D�

LH .0; l/ ;  .l/ D ei# .0/;  0.l/ D ei# 0.0/g: (6.34)

The one-parameter family fbH#g is a subfamily of the whole four-parameter family
fbHU g of free Hamiltonians that is obtained if we take the subfamily fU#g of 2 � 2
unitary matrices, where U# D antidiag

�
e�i# ; ei#

�
in (6.28).

6.2.3.2 Spectrum and Inversion Formulas

In both cases labeled below by I and II, for the special fundamental system
uj .xIW /, j D 1; 2; of solutions of homogeneous equation (6.19) on the interval
Œ0; l�, we take the same functions (6.20) reduced to the interval.

(I) We first consider the s.a. operator bH�I . The simple guiding functional method
proves to be applicable to this operator.

Because the function u2 satisfies the s.a. boundary condition in (6.30) for the
operator bH�I at the left endpoint, u2.0;W / D 0, we consider the guiding functional

˚.�IW / D
Z 1

0

dxu2.xIW /�.x/; � 2 Dr .RC/ \DH
�I
:

It is easy to verify that this functional belongs to the class E of simple guiding
functionals considered in Sect. 5.4.1 with the functions U D u2 and QU D u1,
whence it follows that the spectrum of the operator bH�I is simple and the derivative
of its spectral function is evaluated using representations (5.22) and (5.21) (with �
changed to E).

Next is an evaluation of the Green’s functionG.x; yIW / of the operator bH�I by
the standard procedure.

The general solution of the inhomogeneous equation (6.21) on the interval Œ0; l�
can be represented as

�.x/ D c1 u1.xIW /C c2 u2.xIW /C u2.xIW /

�
Z l

x

u1.yIW /�.y/dy C u1.xIW /

Z x

0

u2.yIW /�.y/dy; (6.35)
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where c1;2 are some constants. The requirement that �.x/ 2 DH�I is equivalent to
the requirement that �.x/ satisfies the boundary conditions �.0/ D �.l/ D 0, which
fixes the constants c1 and c2, namely,

c1 D 0; c2 D ˇ�1 cotˇl
Z l

0

u2.yIW /�.y/dy:

It follows that the Green’s function is given by

G.x; yIW / D !�1.W /u2.xIW /u2.yIW /

C



u1.xIW /u2.yIW /; x > y;

u2.xIW /u1.yIW /; x < y;
!.W / D �ˇ�1 tan.ˇl/; (6.36)

and according to (5.22), with u D u2, c D 0, and � changed to E , the derivative
� 0.E/ of the spectral function is given by

� 0.E/ D ��1 Im!�1.E C i0/:
Because the function !.E C i0/ D !.E/ is real-valued, the derivative � 0.E/

differs from zero only at the zeros of !.E/.
We have to distinguish the semiaxis E < 0 and E � 0.
For E < 0, we have ˇ D pE C i0 D i

pjEj, the real-valued function !.E/
has no zeros,

!.E/ D !.E/ D �
�p
jEj
��1

tan h
�
l
p
jEj
�
¤ 0; 8E < 0;

and we obtain � 0.E/ D 0.
For E � 0, we haveˇ D pE C i0 D pE � 0, the real-valued function !.E/

has an infinite sequence fEn D �2n2l�2g11 of simple zeros going to infinity,

!.En/ D �ˇ�1
n tan.ˇnl/ D 0; ˇn D �nl�1;

!0.En/ D � l3

2�2n2
; n 2 N;

and using Lemma 5.17, we obtain

� 0.E/ D
X

n2N
2�2n2l�3ı .E � En/ ;

so that En are the eigenvalues of bH�I and the corresponding eigenfunctions are
u2.xIEn/.

The conclusion is that the spectrum of the operator bH�I is simple and pure point,

spec bH�I D
˚
En D �2n2l�2; n 2 N

�
;
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and the normalized eigenfunctions

Un.x/ D
r
2

l
sin
��n
l
x
�
; n 2 N; (6.37)

form a complete orthonormalized system in L2.RC/.
We note that the eigenfunctions (6.37) are even if n is odd, and odd if n is

even, under the transformation x ! l � x, or equivalently, they are symmetric
or antisymmetric with respect to the point x D l=2, which is in agreement with the
fact that the unitary parity operator OP defined by OP .x/ D  .l � x/ commutes
with bH�I . An extended comment on this point would be an appropriately modified
copy of the remark on the relation between the operator bHe and the parity operator
OP on the whole axis; see the end of Sect. 6.2.1.

(II) Passing to the s.a. operator bH�1 , we note that because the s.a. boundary
conditions for bH�1 , see (6.31), are nonsplit, the simple guiding functional method is
not applicable, and in the spectral analysis of this operator, we have to deal with the
generic matrix spectral function and formulas (5.15), (5.19), and (5.20), completely
similarly to the analysis in Sect. 6.2.1.2.

We begin with the Green’s function. The general solution of inhomogeneous
equation (6.21) on the interval Œ0; l� is given by the same (6.35). The requirement
that �.x/ 2 DH�1

is equivalent to the requirement that �.x/ satisfies the periodic
boundary conditions �.0/ D �.l/ and � 0.0/ D � 0.l/, which fixes the constants c1
and c2, namely,

c1 D �1
2

Z l

0

�
ˇ�1 cot.ˇl=2/u1.yIW /�.y/dy C u2.yIW /

�
�.y/dy;

c2 D �1
2

Z l

0

Œu1.yIW /C ˇ cot.ˇl=2/u2.yIW /� �.y/dy:

It follows that the Green’s function G.x; yIW / of the operator bH�1 is given by

G.x; yIW / D � .2ˇ/�1 fsin.ˇjx � yj/C cot.ˇl=2/ cosŒˇ.x � y/�g : (6.38)

The matrixMjk.0;W / given by (5.15) with c D 0, and the substitution z! W is

Mjk.0;W / D !�1
j .W /ıjk C i

2

�
�2
�
jk
; !j .W / D �2ˇ3�2j tan.ˇl=2/;

and accordingly, the derivative � 0
jk.E/ of the matrix spectral function defined by

(5.19) is given by

� 0
jk.E/ D ��1 Im!�1

j .E C i0/ ıjk:
Because the functions !j .E C i0/ D !j .E/; j D 1; 2, are real-valued, the
derivative � 0

jk.E/ differs from zero only at the zeros of the functions !j .E/.
We have to distinguish the semiaxis E < 0 and E � 0.



230 6 Free One-Dimensional Particle on an Interval

For E < 0, we have ˇ D pE C i0 D i
pjEj, the real-valued functions !j .E/

has no zeros,

!j .E/ D !j .E/ D �2
�p
jEj
�3�2j

tan h

�
1

2
l
p
jEj
�
¤ 0; 8E < 0;

and we obtain � 0
jk.E/ D 0:

For E � 0, we have ˇ D pE C i0 D pE , the real-valued functions !1.E/
and !2.E/ have the respective infinite sequences fEn D 4�2n2l�2g10 and fEng11
of simple zeros going to infinity,

!1.En/ D �2ˇn tan .ˇnl=2/ D 0; ˇn D 2�n

l
; n 2 ZC;

!0
1.0/ D �l; !0

1.En/ D �l=2; n 2 NI

!2.En/ D �2ˇ�1
n tan .ˇnl=2/ D 0; !0

2.En/ D �
l3

8�2n2
; n 2 N;

and using Lemma 5.17, we obtain

� 0
11.E/ D l�1ı.E/C 2

X

n2N
l�1ı .E �En/ ;

� 0
22.E/ D

X

n2N
8�2n2l�3ı .E � En/ ; �ij .E/ D 0; i ¤ j;

so that En; n 2 ZC; are the eigenvalues of bH�1 and the corresponding eigenfunc-
tions are u1.xIEn/, n 2 ZC; and u2.xIEn/, n 2 N.

The conclusion is that the spectrum of the operator bH�1 is pure point,

spec bH�1 D
˚
En D 4�2n2l�2; n 2 ZC

�
;

and twofold degenerate, except the ground level E0 D 0, and the normalized
eigenfunctions

Un.x/ D
r
2

l
cos

�
2�n

l
x

�
; n 2 ZC;

Vn.x/ D
r
2

l
sin

�
2�n

l
x

�
; n 2 N; (6.39)

form a complete orthonormalized system in L2.RC/.
The inversion formulas (5.20) written in terms of the normalized eigenfunctions

(6.39) become
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�.x/ D
X

k2ZC

akUk.x/C
X

n2N
bnVn.x/;

ak D
Z l

0

Uk.x/�.x/dx; bn D
Z l

0

Vn.x/�.x/dx:

The functions Un.x/ are even, while the functions Vn.x/ are odd under the
transformation x ! l � x. The structure of the matrix spectral function is such
that the inversion formulas actually are split into a couple of independent inversion
formulas in the subspaces L2.C/ .0; l/ and L2.�/.0; l/ of the respective even and odd

functions that reduce the Hamiltonian bH�1 . Completely similarly to the comment on
the operator bH�I at the end of the part I above, an extended comment on this point
would be an appropriately modified copy of the remark on the relation between the
operator bHe and the parity operator OP on the whole axis at the end of Sect. 6.2.1.

It should be noted that all the results of the spectral analysis of the Hamiltonian
bH�1 directly follow from the representation (6.32); in particular, the eigenfunctions
of bH�1 are certain linear combinations of the eigenfunctions of Op0.

To conclude this section, we note that all the results concerning both Hamil-
tonians bH�I and bH�1 , well known to physicists, can be easily obtained by
the conventional method adopted in physical textbooks if supplemented with a
certain argument. The eigenvalues and eigenfunctions of both operators are easily
evaluated. It remains only to show that all the points E of the real energy axis
not coinciding with the eigenvalues are regular ones, so that the spectra of the
operators are pure point. But this follows from the existence of the Green’s functions
G.x; yIE/ at such points; see (6.36) and (6.38) respectively.

6.3 Explanation of Paradoxes

In this section, it is convenient to restore the Planck constant „ and the factor .2m/�1
in front of the free particle Hamiltonian.

6.3.1 Paradox 1

We recall that the first paradox presented in Sect. 1.3.1 is a consequence of the
relation

�
 p; Œ Ox; Op� p

� D � p; Ox Op p
� � � p; Op Ox p

� D 0; (6.40)

where Op is an s.a. momentum operator, and p .x/ is an eigenvector of this operator.
Obviously, canonical commutation relations (1.4) and uncertainty principle (1.7) are
necessarily violated if (6.40) holds.
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In the following, we resolve the paradox based on the results obtained in this
chapter. We consider separately three cases: the whole real axis, a semiaxis, and a
finite interval.

Consider a particle on the whole real axis R with the Hilbert space L2.R/. As
was demonstrated in Sect. 6.1.1, in this case, there exists a unique s.a. momentum
operator Ope. But this operator has no eigenfunctions, i.e., p in (6.40) do not exist as
vectors in L2.R/: solutions ' D eipx of the differential equations Lp'.x/ D p'.x/

are not square-integrable on the whole axis.
Consider a particle on the semiaxis RC with the Hilbert space of states L2.RC/.

As was demonstrated in Sect. 6.1.2, in this case, there is no s.a. momentum operator
at all, and therefore, eigenvectors  p in (6.40) are meaningless.

We thus obtain that in the cases of the whole axis and a semiaxis, the matrix
elements in (6.40), and therefore (6.40) itself, make no sense.

Consider a particle on an interval Œ0; l� with the Hilbert space of states L2.0; l/:
As was demonstrated in Sect. 6.1.3, in this case, there exists a family f Op#; # 2
S .0; 2�/g of s.a. momentum operators. Their domainsDp# are given by (6.13), and
in particular, the functions belonging to Dp# must satisfy the boundary condition

 # .l/ D ei# # .0/ ; (6.41)

and their spectra are pure point spectra. The eigenvalues �n.#/ and eigenfunctions
 #n.x/ of the operator Op# , Op# #n D �n.#/ #n, are presented in (6.15). The
functions #n certainly satisfy condition (6.41). We now turn to the matrix element
on the left-hand side of (6.40), where  p is identified with  #n. The first term
. #n; Ox Op# #n/ is evidently equal to �n.#/ . #n; Ox #n/. But as for the second term
. #n; Op# Ox #n/, we cannot write the equality

. #n; Op# Ox #n/ D . Op# #n; Ox #n/ D �n.#/ . #n; Ox #n/

to provide zero on the right-hand side of (6.40). The reason is that the vector Ox #n
does not belong to the domain Dp# , because the function x #n.x/ does not satisfy
condition (6.41): the operator Ox removes the vector  #n from the domain Dp# .
The equality . #n; Op# Ox #n/ D . Op# #n; Ox #n/ is meaningless, because the matrix
element . #n; Op# Ox #n/ is not defined.

Because Heisenberg uncertainty relation (1.7) is derived by considering matrix
elements of the operator Œ Ox; Op�, a similar consideration makes it possible to explain
the second part of the first paradox related to the Heisenberg uncertainty relation.

6.3.2 Paradox 2

We recall that the second paradox presented in Sect. 1.3.2 is a consequence of the
assertion that the Hamiltonian for a nonrelativistic particle in an infinite rectangular
potential well, which we call a free particle on a finite interval, can be represented
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as bH D Op2=2m, and therefore, it commutes with the s.a. momentum operator Op. If
so, both operators must have a common set of eigenfunctions, which is not the case.

An explanation of this paradox is based on the results obtained in Sects. 6.1.3
and 6.2.3, where it was demonstrated that there exists only one s.a. Hamiltonian for
a particle in an infinite rectangular potential well. It was denoted by bH�I , and its
domain is given by (6.30). On the other hand, as was just mentioned in Sect. 6.3.1,
there exists the one-parameter family f Op#g of s.a. momentum operators on a finite
interval. This family generates the one-parameter family fbH# D . Op#/2 =2mg of
s.a. Hamiltonians; see (6.33) (where the factor 1=2m is omitted). However, none of
these Hamiltonians coincides with bH�I . Indeed, none of the domains DH#

given
by (6.34) coincides with DH�I . Moreover, the eigenfunctions of any Op# given by
(6.15) do not belong to the domain of bH�I , and the eigenfunctions of bH�I given
by (6.37) do not belong to the domain of any Op# . The operators bH�I and Op# do not
commute and have no common eigenfunctions. This is consistent with the physical
fact that the particle momentum changes (is not conserved) due to the reflection
from the wall.

An example in which we do not encounter such a paradox offers a free particle on
a circle. The s.a. Hamiltonian bH�1 for such a particle is defined by (6.31) and allows
the representation bH�1 D . Op0/2 =2m, where Op0 is the s.a. momentum operator
Op# j#D0; see (6.32) (where the factor 1=2m is omitted). The operators bH�1 and Op0

have a common set of eigenfunctions. The paradox is also absent in the case of a free
particle on the whole axis, which was considered in Sects. 6.1.1 and 6.2.1, where it
was demonstrated that there exist a unique s.a. Hamiltonian bHe and a unique s.a.
momentum operator Ope for such a particle and the representation bHe D Op2e=2m
holds; see (6.18). It is easy to verify that both operators act on their domains as LH Lp.
This means that the operators bHe and Ope commute, which agrees with physical
considerations. In addition, both operators have a common complete system of
generalized eigenfunctions exp .ikx/, k 2 R.

6.3.3 Paradox 3

The third paradox described in Sect. 1.3.3 treats an s.a. momentum operator Op for
a particle on a finite interval Œ0; l� and the matrix elements pmn D .em; Open/ of
the operator with respect to the orthonormal basis feng11 (1.10). It turns out that
contrary to naı̈ve expectation, the matrix pmn is not Hermitian; see (1.11). The
incorrect assumption underlying the paradox is that basis (1.10) belongs to the
domain of an s.a. momentum operator for a particle on a finite interval. But the
functions belonging to the domainsDp# of the admissible momentum operators Op#
must satisfy boundary conditions (6.41), .l/ D ei# .0/, whereas for the functions
en.x/, we have

en.l/ D .�1/nen.0/: (6.42)
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It is easy to see that there is no angle # , one and the same for all n, so that condition
(6.42) could be identified with condition (6.41). This means that there is no domain
Dp# such that the basis feng11 as a whole belongs toDp# . For any # , some elements
of the basis feng11 do not belong to the domain of the s.a. operator Op# , so that
the matrix elements pmn and pnm in (1.11) are not defined for any m and n, and
therefore, inequality (1.11) itself makes no sense.

6.3.4 Paradox 4

The fourth paradox described in Sect. 1.3.4 treats the case of a free particle in an
infinite rectangular potential well on an interval Œ0; l� with an s.a. Hamiltonian bH
for which the paradoxical inequality

�
 ;
�
bH
�2
 

�
¤
�
bH ; bH 

�
(6.43)

with a particular state  given by (1.12),  .x/ D Nx .x � l/, N a normalization
factor, seemingly holds.

An explanation of this paradox is as follows. As was already said above in
Sect. 6.3.2, a unique Hamiltonian for a particle in an infinite rectangular potential
well is bH�I . The functions belonging to its domain DH�I satisfy the boundary
conditions .0/ D  .l/ D 0. It is easy to see that the state  belongs toDH�I , but
the state bH�1 , bH�1 .x/ D const ¤ 0, just does not belong to DH�I , the state
�
bH�I

�2
 is not defined, and therefore, inequality (6.43) makes no sense.

6.3.5 Paradox 5

The fifth paradox described in Sect. 1.3.5 is concerned with a solution (1.15) of the
Schrödinger equation (1.13) for a free particle on a finite interval Œ0; l�. The right-
hand side in (1.13) is treated as bH .t; x/, under a special choice (1.14) of the initial
state. The presented solution vanishes with time, which means that the evolution is
not unitary; the particle “disappears” with time evolution. It was stated in advance
that the origin of the paradox is an intolerable choice of the initial state: initial wave
function (1.14) does not belong to the domain of any admissible s.a. Hamiltonian,
which is irreconcilable with the Schrödinger equation. We now are able to prove
this statement. As was demonstrated in Sect. 6.2.3, there exists a U.2/ family fbHU g
of s.a. Hamiltonians for a free particle on the finite interval; their domains DHU

are given by (6.29). We can directly verify that the initial state  0 presented by
the wave function  0.x/ D  .0; x/ (1.14) belongs to none of the domains DHU ,
 0 … DHU , 8U , i.e., does not satisfy s.a. boundary conditions (6.28) with any 2� 2
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unitary matrix U (of course,  in (6.28) has to be changed to  0). The proof is by
contradiction. Let  0.x/ satisfy boundary conditions (6.28) with some U , which
implies that the two two-component vectors

	0C D
�
 .l/C i l 0.l/
 .0/� i l 0.0/

�
; 	0� D

�
 .l/ � i l 0.l/
 .0/C i l 0.0/

�
;

belonging to C
2 have the same norm, 	C

0�	0� �	C
0C	0C D 0, because the matrix

U is unitary. But a simple calculation yields	C
0�	0��	C

0C	0C D 4jC j2~.e2~�1/
¤ 0 because ~ D kl�

p
2„ ¤ 0, which is a contradiction. As a consequence,

the “solution”  .t; x/ (1.15) of the Schrödinger equation also belongs to none of
DHU ,  .t/ … DHU . This means that the state bHU .t/, the right-hand side of the
Schrödinger equation, is not defined, and therefore, the Schrödinger equation with
the initial state  0 and the solution  .t/ makes no sense. An extended comment on
this point is given below.

6.3.6 Some Remarks to Paradox 5

In considering the fifth paradox, we encounter an evolving state that formally is
a solution of the Schrödinger equation with a given initial state, but the norm of
the evolving state is not conserved with time, which implies the nonunitarity of
evolution. We would like to make a comment on this point.

In QM, we actually have two ways for determining the time evolution of a
system with an s.a. Hamiltonian OH . The first one consists in solving the Cauchy
problem for the Schrödinger equation (1.3) with given initial data. This way is
not universal. It requires that the initial state and the evolving state belong to the
domain DH of the Hamiltonian. In cases in which the Schrödinger equation has
the form of partial differential equations, this requirement means that a solution of
the Cauchy problem is sought under certain boundary conditions specifying the s.a.
Hamiltonian; otherwise, a solution of the Cauchy problem is not unique. The second
way consists in evaluating the unitary evolution operator

OU .t/ D exp



� i„
OHt
�
;

and then applying it to the initial state. This way is universal, it is applicable to any
initial state  because the operator OU.t/ is bounded and defined everywhere, the
evolving state

 .t/ D OU .t/ (6.44)

 .t/ D OU .t/ always exists, and the time evolution is unitary. As an illustration,
let  n be a complete orthonormalized system of eigenvectors of OH , and let an initial
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state be  . The initial state can be represented as  D P
n an n, an D . n;  /,

k k2 DPn janj2. Then the evolving state  U .t/ is given by

 .t/ D OU .t/ D
X

ane�iEnt=„ nI (6.45)

it is evidently defined at any instant of time and its norm is evidently conserved with
time, k .t/ k D k k.

The unitary evolution operator OU.t/ determines an integral evolution law (6.44),
which is universal, whereas the Schrödinger equation (1.3) determines a differential
evolution law, which is not universal. The Schrödinger equation is conventionally
derived by an integral evolution law (6.44) by differentiating the latter with respect
to time t . But the derivative i„dt OU .t/ D OH OU .t/ exists iff the initial state  ,
and then also the evolving state  .t/ D OU .t/ , belongs toDH , in other words, the
derivative i„dt OU .t/ of the evolution operator exists and is equal to OH OU .t/ only on
the domain DH of the Hamiltonian OH . Applied to the above example, this means
that if  DP an n, then there must be k OH k2 D k OH .t/k2 DPn E

2
njanj <1

for  .t/ (6.45) to satisfy the Schrödinger equation.
Turning back to the fifth paradox, we now can say that we can construct an

evolving wave function  .t; x/ with the initial wave function  0.x/ (1.14) for any
admissible s.a. Hamiltonian bHU using formula (6.45). But this function does not
satisfy the Schrödinger equation with the given bHU because  0.x/ does not belong
to any DHU . It also does not coincide with function (1.15) that is the solution of
differential equation (1.13) with the initial condition (1.14), but under no additional
conditions, and is therefore a nonunique solution of (1.13). To prove the latter
assertion, it is sufficient to verify that a function e .t; x/ defined on the interval
Œ0; l� by

e .t; x/ D 1p
t

Z 1

b

dy exp
h
i
m

2„t .x � y/
2
i
'.y/;

where '.y/ is a smooth function with compact support on the semiaxis Œb;1/, b > l ,
is a solution of differential equation (1.13) on Œ0; l� satisfying the initial condition
e .0; x/ D 0 because

lim
t!0

1p
t

exp
h
i
m

2„t .x � y/
2
i
� ı.x � y/:

A conclusion that deserves remembering is that not every state—in particular not
every wave function—that evolves unitarily satisfies the Schrödinger equation, but
only the one that belongs to the domain of the corresponding s.a. Hamiltonian.



Chapter 7
A One-Dimensional Particle in a Potential Field

In this chapter, we consider s one-dimensional nonrelativistic particle in a potential
field.1 As was already mentioned, see Chap. 4, all possible s.a. quantum Hamiltoni-
ans corresponding to such systems are associated with the s.a. differential operation
LH given by (4.8),

LH D LHC V.x/ D �d2x C V.x/ ; V .x/ D V.x/ ; (7.1)

which we call the Schrödinger differential operation.
Our aim is to study possible s.a. quantum Hamiltonians associated with LH and

the corresponding spectral problems. Such quantum Hamiltonians are sometimes
called the Schrödinger operators.

We call an equation of the form

� LH �W
�
 .x/ D 0; x 2 .a; b/ � R; (7.2)

where W is a complex constant, the one-dimensional (stationary) Schrödinger
equation. If W is real, it is denoted by E . We conventionally call E the energy,
V.x/ the potential, and  .x/ the wave function.

1In this and subsequent chapters, we set „ D 1 and omit the factor 1=2m in LH.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 7,
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7.1 Some Remarks on the Schrödinger Differential
Operation

7.1.1 First Remark

In constructing s.a. extensions of symmetric differential operators on an interval
.a; b/; it is useful to know the corresponding boundary forms Œ �;  ��.a=b/,
8 � 2 D�

LH .a; b/; see Chap. 4. Sometimes, this is a difficult task that requires a
knowledge of function asymptotics at the interval boundaries. However, it turns out
that there may exist simple estimates of the potential V.x/ in (7.1) that allow one
to make immediate conclusions about the boundary forms without calculating the
asymptotics. Below, we present two sufficient conditions for the potential V.x/ in
the Schrödinger operation on the interval .a;1/ with jaj < 1 that guarantee that
the boundary form will be zero at infinity. In our opinion, these conditions are rather
general and at the same time are rather simple from the standpoint of applications.

Theorem 7.1. Let the Schrödinger differential operation be given on the interval
.a;1/ with jaj < 1. Then the boundary form at infinity is zero, Œ �;  ��
.1/ D 0, 8 � 2 D�

LH .a;1/, if either

V .x/ 2 L2 .N;1/ ; a < N <1; (7.3)

i.e., the potential V.x/ is square-integrable at infinity, or

V .x/ > �Kx2 ; x > N; K > 0; (7.4)

i.e., the potential is bounded from below for sufficiently large x by a negative
quadratic parabola.2

Proof. First we suppose that condition (7.3) takes place. Then the proof of the
theorem is based on the observation proved below that under this condition, the
function x�1=2 0� is bounded at infinity,

ˇ
ˇx�1=2 0�

ˇ
ˇ < C . �/ <1; x > N; 8 � 2 D�

LH .a;1/; (7.5)

where C . �/ is a constant that may be different for different �. It follows that the
function x�1=2 � 0� is square-integrable at infinity together with  �, and therefore,
the function x�1=2 Œ �;  �� D x�1=2 � 0� � �  � 0�

�
is also square-integrable at

infinity. On the other hand, the finiteness of the boundary form Œ �;  �� .1/,

Œ �;  ��! C1 . �/ ; x !1; jC1 . �/j <1; (7.6)

2The condition (7.3) was first mentioned in [127], and the condition (7.4) in [90]. The latter
condition is a particular case of a more general condition [106, 116].
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implies that x�1=2 Œ �;  �� ! x�1=2C1 . �/ as x ! 1. But the function at the
left is square-integrable at infinity, whereas the limit function at the right is not
square-integrable unless C1 . �/ is equal to zero. This proves that Œ �;  �� .1/ D
C1 . �/ D 0. It remains to prove estimate (7.5). For this purpose, we recall that
 � 2 D�

LH .a;1/ means that  � and ' D LH � belong to L2 .a;1/, and therefore

 �; ' 2 L2 .N;1/. For any � 2 L2 .N;1/ ; the function
R x
N

dy j�j2 is bounded,

Z x

N

dy j�j2 < C2 .�/ <1: (7.7)

In particular,

Z x

N

dy j �j2 < C2 . �/ ;
Z x

N

dy j'j2 < C2 .'/ :

Using the Cauchy–Schwarz inequality, we obtain

ˇ
ˇ
ˇ
ˇ

Z x

N

dy'

ˇ
ˇ
ˇ
ˇ < C

1=2
2 .'/

p
x �N ; x > N: (7.8)

On the other hand, if V 2 L2 .N;1/ (as well as  �), then the function V � is
integrable on the interval .N;1/, and therefore, the function

R x
N dyV � is bounded

on the same interval, ˇ̌
ˇ
ˇ

Z x

N

dyV �
ˇ̌
ˇ
ˇ < C3 . �/ <1: (7.9)

Integrating LH � D ' on the interval .N; x/, we first obtain the equality

 0� .x/ D
Z x

N

dyV � �
Z x

N

dy' C  0� .N / ;

and then, using (7.8) and (7.9), we obtain that 8 � 2 D�
LH .a;1/ the inequality

ˇ
ˇ 0�.x/

ˇ
ˇ < C3 . �/C C1=2

2 .'/
p
x �N C ˇˇ 0� .N /

ˇ
ˇ; x > N;

holds, whence follows estimate (7.5), which completes the proof of the theorem
under the condition (7.3).

We now turn to condition (7.4). Here the proof of the theorem is based on the
observation (proved below) that under this condition, the function x�1 0� is square-
integrable at infinity together with  �,

Z 1

N

dy
ˇ
ˇy�1 0�

ˇ
ˇ2 < C4 . �/ <1; 8 � 2 D�

LH .a;1/ : (7.10)
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It follows that the function x�1 � 0� is also integrable at infinity, and therefore, the
function x�1 Œ �;  �� is integrable at infinity as well. On the other hand, the finite-
ness of the boundary form Œ �;  �� .1/, see (7.6), implies that x�1 Œ �;  �� !
C1 . �/ x�1 as x ! 1: But the function x�1 Œ �;  �� is integrable at infinity,
whereas the limit function C1 . �/ x�1 is not integrable unless C1 . �/ D 0. This
proves that Œ �;  �� .1/ D C1 . �/ D 0. It remains to prove the validity of formula
(7.10). This is proved by contradiction. We first make some preliminary estimates
based on the condition that the functions  � and ' D LH � belong to L2 .a;1/. It
follows from this condition that (see (7.7)) that

Z x

N

dy
ˇ̌
y�3 �

ˇ̌2
< C6 . �/ <1;

Z x

N

dy
ˇ̌
y�4 �

ˇ̌2
< C7 . �/ <1;

ˇ
ˇ̌
ˇ

Z x

a

dyy�2 �' � C  �'
�
ˇ
ˇ̌
ˇ < 2

p
C2 .'/C7 . �/: (7.11)

Condition (7.4) implies that x�2V .x/ > �K , K > 0, for x > N and therefore,

Z x

N

dyy�2V j �j2 > �K
Z x

N

dy j �j2 > �KC2 . �/ : (7.12)

On the other hand, we have the equality

 �' C  �' D �d2x j'j2 C 2
ˇ
ˇ 0�

ˇ
ˇ2 C 2V j �j2 :

Multiplying both sides by x�2 and integrating, we obtain the equality

x�2dx j �.x/j2 D 2
Z x

N

dy
ˇ
ˇy�1 0�

ˇ
ˇ2 C 2

Z x

N

dyy�2V j �j2

� 6
Z x

N

dyy�4 j �j2 �
Z x

N

dy
�
�� � C  ���

� � 2x�3 j �.x/j2 C C8 . �/ ;

C8 . �/ D
�
x�2dx j �j2 C 2x�3 j �j2

�ˇˇ̌
xDN :

Taking estimates (7.11) and (7.12) into account, we arrive at the inequality

dx j �j2 > x2 Œ2I � C9 . �/� � 2x�3 j �j2 ; I D
Z x

N

dy
ˇ
ˇy�1 0�

ˇ
ˇ2 ;

C9 D 2KC2 . �/C 6C7 . �/C 2
p
C2 .��/ C7 . �/ � C8 . �/ :

Suppose now that the integral I diverges as x ! 1. Then for sufficiently large x,
x > c > N , the estimate 2I � C9. �/ > C10 . �/ > 0 holds, and we arrive at the
inequality

dx j �j2 > x2C10 . �/� 2x�3 j �j2 :
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Integrating this inequality and taking estimates (7.11) into account, we obtain

j �j2 > C10 . �/ x3=3 � 2C6 . �/� C10 . �/ c3=3C j � .c/j2 ;

whence it follows that j �j2 ! 1 as x ! 1, which contradicts the square-
integrability of the function � at infinity. This contradiction proves that the function
x�1 0� is square-integrable at infinity, i.e., (7.10) holds, which completes the proof
of the theorem under the condition (7.4).

The above criteria can clearly be extended to the Schrödinger differential
operation defined on the interval .�1; b/; or on the whole real axis R; providing
the triviality of the boundary forms at the infinite endpoints:

Theorem 7.2. Suppose the Schrödinger differential operation is given on the
interval .�1; b/ with jbj <1. Then the boundary form at infinity is zero,
Œ �;  ��.�1/ D 0, 8 � 2 D�

LH .�1; b/, if either

V .x/ 2 L2 .�1;�N/ ; (7.13)

where N is a finite real number, or

V .x/ > �Kx2 ; x < �N; K > 0: (7.14)

Suppose the Schrödinger differential operation is given on the interval R. Then
the boundary forms at infinity are zero, Œ �;  ��.˙1/ D 0, 8 � 2 D�

LH .R/ ; if
V .x/ satisfies either condition (7.3), or (7.4) on1, and either condition (7.13), or
(7.14) on �1:

7.1.2 Second Remark

Consider the Schrödinger differential operation defined on .a; b/ with a a regular
endpoint and b singular. We recall that the condition that a is a regular endpoint
means that the potential V .x/ is integrable at the left endpoint,3 i.e., is integrable
on any interval .a; c/, c < b. We know, see Chap. 4, (4.48), that in such a case,
the deficiency indices of the initial symmetric Schrödinger operator OH can be either
m˙ D 1 orm˙ D 2. Self-adjoint boundary conditions have the simplest form when
m˙ D 1: As follows from Lemma 4.16, in such a case, the boundary form vanishes
on the singular endpoint b, and s.a. boundary conditions have the form  0 .0/ D
� .0/ according to Theorem 4.22. Self-adjoint Schrödinger operators bH� of a free

3We recall that we consider only such potentials that are locally integrable inside the interval .a; b/.
We also recall that for us, integrability always means absolute integrability.
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particle on the semiaxis associated with the differential operation LH D LH ˇˇ
VD0 can

serve as an illustration of the latter fact; see Sect. 6.2. An inverse statement holds as
well: if the boundary form vanishes on the singular endpoint b; then the deficiency
indices are m˙ D 1; see Sect. 4.7.

Therefore, the initial symmetric Schrödinger operator OH on the interval .a;1/,
jaj < 1; with a potential V .x/ that obeys either condition (7.3) or (7.4) has the
deficiency indicesm˙ D 1.

At this point, we refer also to a useful result concerning the maximum deficiency
indices m˙ D n of the initial symmetric operator Of associated with an even s.a.
differential operation Lf of order n defined on the interval with one regular and one
singular endpoint. It turns out (see [9, 116]) that the maximality of the deficiency
indices is uniquely related to the maximality of the dimension of the kernel of the
adjoint operator, dim ker Of C, i.e., of the number of linearly independent square-
integrable solutions of the homogeneous equation . Lf � W /u D 0 of order n.
Namely, the initial symmetric operator Of has the maximum deficiency indices
m˙ D n iff the indicated homogeneous equation has the maximum number n of
linearly independent square-integrable solutions for any W , in particular, with any
real W D E . It follows from this general statement that to have the deficiency
indices m˙ D 1; in our particular case where n D 2, it suffices to point out the
conditions on V.x/ under which the homogeneous equation . LH �W /u D 0 on the
semiaxis RC has at least one non-square-integrable solution. Some such conditions
have been known since Weyl; see [162].

Let now the s.a. differential operation LH be given on the whole real axis R,
and suppose that the potential V .x/ satisfies condition (7.3) or (7.4) on 1 and
condition (7.13) or (7.14) on �1. Because in such a case the boundary forms at
the infinite endpoints˙1 are zero, and the quadratic form�H. �/ is zero as well,
there exists a unique s.a. extension OHe of the initial symmetric operator OH , which
is OHe D OHC, DHe D D�

LH .R/. The case of a free particle certainly falls under

these conditions, so that the Hamiltonian bHe associated with LH and defined on the
natural domain is truly s.a., as was demonstrated in Chap. 6. The majority of the
potentials encountered in physics satisfy these conditions, so that the above assertion
implicitly adopted in physics textbooks is actually justified. In particular, this
concerns one-dimensional Hamiltonians with bounded potentials such as a potential
barrier, a potential well of finite depth, or with the exactly solvable potentials such
as V0ch�2 .ax/ and also concerns Hamiltonians with potentials growing at infinity,
for example, the Hamiltonian of a harmonic oscillator, in which case LH D LHC x2,
and even a Hamiltonian with linear potential V.x/ D kx that tends to �1 at one of
the endpoints, but only linearly and not faster then quadratically; see Chap. 8.
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7.1.3 Third Remark

The majority of potentials encountered in physics, in particular, potentials decreasing
or growing at infinity, satisfy condition (7.4). This condition is optimum in the sense
that if V.x/ v �Kx2.1C"/ as x ! 1, where " > 0 can be arbitrarily small, then
both linearly independent solutions u1;2 of the Schrödinger equation (7.2) with any
W are square-integrable at infinity:

u˙ .x/ v x�.1C"/=2 exp

�
˙i K

1=2

2C "x
2C"
�
; x !1;

and the s.a. boundary conditions must include the boundary conditions at infinity.
This fact is crucial in the sense that ignoring it results in a “paradox.” If we directly,
without thinking about it, proceed to solving (7.2), which not infrequently happens
in physics texts, we find ourselves in a situation in which for any energy E this
equation has solutions square-integrable on the semiaxis and corresponding to the
bound states. From a naı̈ve standpoint, this means that all the eigenstates in such a
potential are bound, and what is more, the spectrum of such states, which must be
discrete, turns out to be continuous, which is an absurdity! This situation4 is similar
to the case of “the fall to the center” for a particle of negative energy in the strongly
attractive potential V .x/ � ˛x�2, ˛ < �1=4 as x ! 0, see [5, 21, 118, 123, 151].
The resolution of this paradox lies in the necessity of the s.a. boundary conditions at
infinity in addition to the customary boundary conditions at the origin; without these
boundary conditions, we are in fact dealing with the “Hamiltonian” OH� D OHC,
which is not s.a. Taking only the s.a. boundary conditions at infinity into account,
we obtain an s.a. Hamiltonian all of whose eigenstates are bound states, and the
spectrum is discrete.

To all this we add a remark concerning the s.a. differential operation (7.1) defined
on the interval Œ0; l�. The remark is that s.a. operators OHU associated with this
differential operation are specified by the same s.a. boundary conditions (6.28) as
the operators bHU if the potential V.x/ is integrable on the interval, because under
this condition, the s.a. differential operation LH remains regular and the asymmetry
form !HC does not change. This is all the more clear in the case that the potential
is bounded, jV .x/j < M , because the addition of a bounded s.a. operator defined
everywhere to any s.a. operator yields the s.a. operator with the same domain.

In the following chapters, we consider examples of singular endpoints for which
the boundary form is nontrivial.

4It can be called “the fall to infinity” because a classical particle goes out to infinity in a finite time.
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7.2 The Calogero Problem

7.2.1 Introduction

Here we consider the potential field

V .x/ D ˛x�2 (7.15)

in (7.1) and (7.2), singular at the origin. The case of ˛ > 0 corresponds to a repulsion
potential (repulsion from the origin); the case of ˛ < 0 corresponds to an attraction
potential (attraction to the origin). Our considerations are based on our work [76].

Starting from the basic papers by Calogero on the exactly solvable one-
dimensional QM models [34–36], the potential (7.15) is conventionally called the
Calogero potential and the problem of QM description of the system is known as the
Calogero problem. In fact, Calogero considered a more general case with quadratic
and inversely quadratic terms in V .x/. We call such a potential the generalized
Calogero potential. Self-adjoint Schrödinger operators with such a potential are
considered in Sect. 8.4. Physicists identify the corresponding differential operation
(7.1) with a radial “Hamiltonian”; see Sect. 4.3. Such a potential causes the
phenomenon that is known as “the fall to the center”, see [5, 21, 118, 123, 151].
Historically, it is the potential with which the first case is associated, whereby
the standard physical approach did not allow the construction of the scattering
states because of an unusual uncertainty in the choice of the behavior of the wave
functions at the origin, and even the question arose whether QM is applicable to
systems with strongly attractive potentials [115]. Since then, the QM problem with
the potential ˛x�2 has been discussed repeatedly and in various aspects; see, for
example, [12, 38, 111]. And the discussion continues.

We restrict ourselves here to the case of a motion on a semiaxis5
RC. The case

can be considered the problem of a radial motion (with x ! r) of a particle in higher
dimensions in a potential field � r�2; see for example Chap. 9. The peculiarity of
higher-dimensional classical mechanics in the case of attraction is that under some
initial conditions the particle “falls to the center” in a finite time interval, see [103],
so that the final state at the endpoint of this interval is a position r D 0 and a
momentum jpj D 1 of uncertain direction, and the problem arises how to define
the motion of the particle after this time interval. In some sense, QM “inherits” these
difficulties, although it gives them a QM form.

We first discuss QM paradoxes related to singular potentials on the example of
the problem under consideration.

5The case of the whole axis R can be considered by the same methods. We mention only that the
corresponding QM contains more ambiguity.
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7.2.2 A “Naı̈ve” Treatment of the Problem and Related
Paradoxes

Here we start with the Calogero differential operation defined as

LH D �d2x C ˛x�2: (7.16)

In the x-representation, the Hilbert space of QM states for the Calogero problem
is H D L2 .RC/, and in the naı̈ve consideration, the Calogero Hamiltonian OH is
identified with the apparent s.a. operator (7.16) in L2 .RC/ for any ˛, because it is
the sum of what are certainly two s.a. operators �d2x and OV D ˛x�2, although OV
is unbounded if ˛ ¤ 0; we say in advance that the latter is precisely the reason for
paradoxes.

In QM with such an understood Calogero Hamiltonian OH , the time evolution is
unitary and is defined for all moments of time, although an analogue of “the fall to
the center” is well known from textbooks for ˛ < �1=4: in this case, the spectrum of
OH is unbounded from below (although the spectrum itself as well as eigenfunctions

are not presented; see [104]). This is argued by considering the Calogero potential
as a limit of bounded regularized potentials:

Vr0 .x/ D


˛x�2 ; x � r0;
˛r�2

0 ; x < r0;
(7.17)

with r0 ! 0. To be sure, the limit (r0 ! 0) spectrum is not presented; moreover,
the attentive reader can see that there is no limit spectrum, so that the problem of
the spectrum as well as limit eigenfunctions of the Calogero Hamiltonian in the case
˛ < �1=4 remains completely open.

Let us look at the problem in more detail. It is natural to expect that for ˛ � 0;
the spectrum of OH is nonnegative, and no bound states exist. Let ˛ < 0: Because
any symmetric one-dimensional well “traps” a particle, we expect that there must
be a negative energy level E0 < 0 in addition to the nonnegative spectrum.

We now turn to some symmetry arguments. It seems evident that the Calogero
Hamiltonian has scale symmetry: under the scale transformations x ! x0 D lx,
l > 0, the operators bH D �d2x and OV D ˛x�2 transform uniformly and are
of the same spatial dimension, dH0 D dV D �2; therefore, the operator OH also
transforms uniformly under scale transformations, and dH D �2: This observation
is formalized as follows.

We consider the group of scale transformations x ! x0 D lx, x 2 RC, 8l > 0,
and its unitary representation in L2 .RC/, the space of quantum states by unitary
operators OU .l/,

OU .l/  .x/ D l�1=2 �l�1x� (7.18)
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(the spatial dimension d of wave functions  .x/ is d D �1=2 because j .x/j2
is the spatial probability density). The unitarity of OU .l/ is easily verified,

�
�
� OU .l/  

�
�
� D

Z C1

�1
dxl�1

ˇ
ˇ 
�
l�1x

�ˇˇ2 D
Z C1

�1
dx j .x/j2 D k k2 ;

as well as the group law OU .l2/ OU .l1/ D OU .l2l1/. It is also easily verified that

OH OU .l/ D l�2 OU .l/ OH” OU�1 .l/ OH OU .l/ D l�2 OH; (7.19)

or dH D �2.
For completeness, we present the infinitesimal version of the scale symmetry.

The unitary scale transformations OU .l/ can be presented as

OU .l/ D exp
�
i ln l OD

�
; OD D ixdx C i=2;

where OD is the s.a. generator of the scale transformations. The scale symmetry
algebra for the Hamiltonian OH is Œ OD; OH� D �2i OH .

Let now  E .x/ be an eigenfunction of OH with an eigenvalue E , then the scale-
symmetry operator relation (7.19) applied to this function yields

OH
h OU .l/  E .x/

i
D l�2 OU .l/ OH E .x/ D

�
l�2E

� OU .l/ E .x/ ;

which implies that OU .l/  E .x/ D  l�2E .x/, 8l > 0; is an eigenfunction of OH
with the eigenvalue l�2E . But this means that the group of scale transformations
acts transitively on both positive and negative parts of the energy spectrum such that
these parts must either be empty or fill the respective positive and negative semiaxis
of the real axis.

This is completely consistent with what we expect for the spectrum of OH in the
case of repulsion, ˛ > 0 where E � 0:

But in the case of attraction, ˛ < 0, we meet paradoxes. Indeed, for ˛ < 0, we
expect at least one negative level E0 < 0: But if there is at least one such level,
then, according to the scale symmetry, there must be a continuous set of normalized
eigenstates with the energies l�2E0, 8l > 0, and the negative part of the spectrum
is the whole negative semiaxis, and “the fall to the center” occurs for all ˛ < 0.

This picture is quite unusual and contradictory, because there can be no con-
tinuous set of normalizable eigenstates for any s.a. operator in L2 .RC/: it would
contradict the fact thatL2 .RC/ is a separable Hilbert space. Another surprising fact
is that the spectrum of the Calogero Hamiltonian is not bounded from below for any
˛ < 0, not only for ˛ < �1=4.

The situation becomes even more entangled if we try to find bound states of
OH corresponding to negative energy levels, E < 0. The corresponding differential

equation for these eigenstates  E .x/ �  k .x/ is
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LH k .x/ D �k2 k .x/ ; k2 D �E > 0: (7.20)

There are two “dangerous” points for the square-integrability of  k .x/: infinity,
x D 1, and the origin, x D 0, which is a point of singularity of the potential and a
boundary simultaneously.

The behavior of a solution  k .x/ ; if it exists, at infinity is evident:  k .x/�c
exp .�kx/ as x!1:

The behavior of a solution  k .x/ ; if it exists, at infinity where the potential
vanishes is evident:  k .x/ ' c exp .�kx/ ; x ! 1: This behavior, which
manifests the square-integrability of  k .x/ at infinity, must be compatible with
the local square-integrability of  k .x/ at the origin. The existence of  k .x/ for
a given k is thus defined by its asymptotic behavior at the origin, which, because
of the singularity, coincides with the asymptotic behavior of the general solution of
the homogeneous equation LHy .x/ D 0 at the origin. The general solution of this
equation is

y .x/ D
(
x1=2 .c1x

~ C c2x�~/ ; ˛ ¤ �1=4;
x1=2.c1 C c2 lnx/; ˛ D �1=4;

where

~ Dp1=4C ˛ D
8
<

:

C

p
1=4C ˛; ˛ � �1=4;

i�; � D pj1=4C ˛j; ˛ < �1=4:

We can see that if �1=4 � ˛ < 0, we have ~ < 1=2, and y .x/ ! 0 as x ! 0;

so that  k .x/ is certainly square-integrable at the origin irrespective of k: The same
holds true if ˛ < �1=4, in which case ~ D i� and y .x/ ! 0 infinitely oscillating
as x ! 0. This implies that k .x/ exists for any k > 0;which confirms the previous
arguments that the negative “discrete” spectrum is in fact continuous and occupies
all the negative real semiaxis.

Furthermore, both functions x1=2˙~ are also square-integrable if 1=2 � ~ < 1;

i.e., if 0 � ˛ < 3=4, so that there is a continuous set of negative energy levels
unbounded from below for ˛ D 0 (the case of a free particle) and even for repulsive
potentials, V .x/ > 0. “The fall to the center” for repulsive potentials is quite
paradoxical.

We can present an explicit form of  k .x/. By the substitution  k .x/ D
x1=2uk .kx/, we reduce (7.20) to the following equation for the function u.z/ D
uk.kx/, z D kx:

u00 C z�1u � .1C ~2z�2/u D 0;
whose solutions are the Bessel functions of imaginary argument. It follows that for
˛ < 3=4 and for any k > 0 the square-integrable solution of the eigenvalue problem
(7.20) for bound states is given by  k .x/ D x1=2K~ .kx/, where K~ .x/ is the so-
called McDonald function.
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Our final remark is that  k .x/ remains square-integrable for complex k D k1 C
ik2; k1 > 0, so that the seemingly s.a. OH has complex eigenvalues.

These inconsistencies, or paradoxes, reveal that something is wrong with QM
in the case of singular potentials, as well as in the case of boundaries, or at least
something is wrong with our previous considerations following the conventional
methods. It appears that we have been too “naı̈ve” in our considerations; strictly
speaking, we have been incorrect, and our arguments have been wrong. The main
reason is that almost all operators involved are unbounded, while for unbounded
operators, in contrast to bounded operators defined everywhere, the algebraic rules,
the notions of self-adjointness, commutativity, and symmetry are nontrivial.

In particular, we actually implicitly adopted that the operator OH acts (is defined)
on the so-called natural domain, which is the set of square-integrable functions  
satisfying only the conditions that the differential operation LH is applicable to  
and LH is also square-integrable.

As we shall see below, this operator with ˛ < 3=4 is not s.a.

7.2.3 Self-adjoint Calogero Hamiltonians

We now proceed with a more rigorous QM treatment of the Calogero problem
on the semiaxis RC. The first problem to be solved is constructing and suitably
specifying all Calogero Hamiltonians as s.a. operators in the Hilbert space H D
L2 .RC/; the second problem is a complete spectral analysis of each of the obtained
Hamiltonians, and finally, resolving the paradoxes discussed in the previous section,
in particular, the paradox concerning the apparent scale symmetry.

We are going to be brief when presenting the main steps of the solution. The
details can be easily elaborated.

We start with the differential operation (7.16) to construct the initial symmetric
operator OH , its adjoint OHC, and s.a. extensions of OH . All these operators differ
by their domains, while their action on the corresponding domains is given by the
same differential operation (7.16). When defining these operators in what follows,
we therefore cite only their domains.

The domainDH of the initial symmetric operator OH is the linear space D .RC/.
The domain DHC of the operator OHC is the natural domain for LH , i.e., DHC D
D�

LH .RC/; see (4.29).

In constructing s.a. extensions of the operator OH , we will apply the method that
uses the asymmetry form�HC . �/, where  � 2 D�

LH .RC/; see Chaps. 3 and 4. In
the case under consideration, the asymmetry form is given by

�HC . �/ D lim
"!0
L!1

�
 0� � �  � 0�

�ˇˇL
"
:
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The further specification of �HC requires the knowledge of the behavior of the
wave functions  � and  0� near the origin and at infinity.

Regarding infinity, we assert that

 � 2 D�
LH .RC/ H)  � .x/ ;  0� .x/

x!1�! 0: (7.21)

This is proved similarly to the free particle case, see Lemmas 2.13 and 2.14, in
view of the fact that if  �.x/ and LH �.x/ are square-integrable at infinity, then
 00� .x/ D ˛x�2 �.x/ � LH �.x/ is also square-integrable at infinity.

As for the behavior of  � and  0� near the origin, it is established as follows: Let
us consider the relation

LH � D � 2 L2 .RC/ (7.22)

as a differential equation with respect to the function  � via a given �. The general
solution of this equation for ˛ ¤ �1=4 .~ ¤ 0/ can be represented in the form

 �.x/ D c1 .k0x/1=2C~ C c2 .k0x/1=2�~

Cx
1=2

2~

�
x�~

Z x

0

dyy1=2C~� � x~
Z x

a

dyy1=2�~�
�
;

 0�.x/ D
h
c1 .k0x/

1=2C~ C c2 .k0x/1=2�~
i0 C x�1=2

2~

�
�
.1=2� ~/ x�~

Z x

0

dyy1=2C~� � .1=2C ~/ x~
Z x

a

dyy1=2�~�
�
;

(7.23)

where k0 is an arbitrary but fixed parameter of dimensionality of inverse length
introduced for dimensional reasons; a > 0 for ˛ � 3=4, and a D 0 for ˛ < 3=4.
The case ˛ D �1=4” ~ D 0 is considered below.

We now estimate the behavior of the integral terms in (7.23) near the origin using
the Cauchy–Schwarz inequality. For example, if ˛ > �1=4” ~ > 0; we have

ˇ
ˇ
ˇ̌x1=2�~

Z x

a

dyy1=2C~�
ˇ
ˇ
ˇ̌ � x1=2�~

�Z x

0

dyy1C2~
�1=2 �Z x

0

dy j�j2
�1=2

: (7.24)

The integrals on the right-hand side of (7.24) vanish as x ! 0. More precisely

�Z x

0

dyy1C2~
�1=2
D O �x1C~� ;

�Z x

0

dy j�j2
�1=2

x!0�! 0:

The second estimate follows from the fact that � 2 L2.RC/. Then

ˇ
ˇ
ˇ
ˇx
1=2�~

Z x

0

dyy1=2C~�
ˇ
ˇ
ˇ
ˇ � O.x3=2/ :
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We thus obtain the behavior of  � near the origin (we recall that ˛ ¤ �1=4),

 �.x/ D  as� .x/C
(
O.x3=2/; ˛ ¤ 3=4;
O.x3=2

p
lnx/; ˛ D 3=4;

 0�.x/ D  as0� .x/C
(
O.x1=2/; ˛ ¤ 3=4;
O.x1=2

p
lnx/; ˛ D 3=4; (7.25)

where

 as� .x/ D c1 .k0x/1=2C~ C c2 .k0x/1=2�~ :
We stress that estimates for �.x/ and 0�.x/ are performed independently. We now
recall that  � 2 L2 .RC/, which requires that c2 D 0 for ˛ � 3=4 (~ � 1g, because
the term c2 .k0x/

1=2�~ is not square-integrable at zero unless c2 D 0. Furthermore,
for ˛ � 3=4, the term c1 .k0x/

1=2C~ in  as� .x/ can be included in the remainder
term O.x3=2/ in (7.25). We thus can assume c1 D c2 D 0 for ˛ � 3=4.

The general solution of (7.22) for ˛ D �1=4 is

 �.x/ D c1x1=2 C c2x1=2 ln.k0x/C x1=2
Z x

0

dy%.y/0 ln.k0y/

�x1=2 ln.k0x/%.x/ D �x1=2
Z x

0

dyy�1%.y/C c1x1=2 C c2x1=2 ln.k0x/;

 0�.x/ D Œc1x1=2 C c2x1=2 ln.k0x/�0 � Œx1=2 ln.k0x/�0%.x/

C2�1x�1=2
Z x

0

dy%.y/0 ln.k0y/ D Œc1x1=2 C c2x1=2 ln.k0x/�0

�2�1x�1=2
Z x

0

dyy�1%.y/ � x�1=2%.x/;

%.x/ D
Z x

0

dyy1=2�.y/; j%.x/j D O.x/; x ! 0;

which implies the following behavior as x ! 0:

 �.x/ D  as� .x/CO.x3=2/;  0�.x/ D  as0� .x/CO.x1=2/;
 as� .x/ D c1x1=2 C c2x1=2 ln.k0x/ : (7.26)

With these estimates in hand, we can specify the asymmetry form�HC in terms
of the asymptotic behavior of  � at the origin; infinity appears to be irrelevant as in
the case of a free particle. It is natural because the potential vanishes at infinity.

The result essentially depends on the coupling constant ˛, and we distinguish
four cases.
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7.2.3.1 The First Region ˛ � 3=4

In this region ~ � 1. Taking into account (7.25) and (7.23), and the fact that
c1 D c2 D 0 in the region under consideration, we get �HC D 0. It follows that
the deficiency indices of OH in this case are zero, and therefore OH is essentially s.a.,
and its unique s.a. extension, we denote it by OH1, is OH1 D OHC. Thus, in the case
under consideration, there exists only one s.a. Calogero Hamiltonian OH1 defined on
the domainDH1 D D�

LH .RC/. As follows from the above estimates at ˛ � 3=4, the
functions  �.x/ 2 D�

LH .RC/ satisfy a.b. conditions as x ! 0;

 �.x/ D O.x3=2/;  0�.x/ D O.x1=2/; ˛ > 3=4;
 �.x/ D O.x3=2

p
lnx/;  0�.x/ D O.x1=2

p
ln x/; ˛ D 3=4:

7.2.3.2 The Second Region �1=4 < ˛ < 3=4

In this region 0 < ~ < 1, and the asymmetry form�HC is calculated with the help
of (7.25) and (7.21),

�HC . �/ D 2k0~ .c2c1 � c1c2/ D ik0~
�
jcCj2 � jc�j2

�
; c˙ D c1 ˙ ic2:

Restrictions on the natural domain D�
LH .RC/ follow from the condition

�HC . �/ D 0, which implies c� D ei#cC , # 2 S .0; 2�/, or equivalently

c2 cos � D c1 sin �; � D #=2 � �=2 2 S .��=2; �=2/ : (7.27)

According to (7.25) and (7.21), relation (7.27) specifies a.b. conditions as
x ! 0;

 �.x/ D C as
� .x/CO.x3=2/;  0

�.x/ D C as0
� .x/CO.x1=2/;

 as
� .x/ D .k0x/1=2C~ sin � C .k0x/1=2�~ cos �: (7.28)

It follows that in this case the deficiency indices of OH are m˙ D 1. Therefore,
in the case under consideration, there exists a one-parameter U .1/ family of s.a.
extensions OH2;� of the initial symmetric operator OH , specified by their domains
DH2;� ;

DH2;� D
n
 � W  � 2 D�

LH .RC/ I  � obey .7.28/
o
: (7.29)
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7.2.3.3 The Third Region ˛ D �1=4

In this region ~ D 0. Taking into account (7.26) and (7.21), we obtain

�HC . �/ D �k0 .c1c2 � c2c1/ D i

2
k0

�
jcCj2 � jc�j2

�
; c˙ D c1 ˙ ic2 :

Restrictions on the natural domain D�
LH .RC/ follow from the condition

�HC . �/ D 0, which implies c� D ei#cC , # 2 S .0; 2�/, or equivalently

c2 cos � D c1 sin �; � D #=2 � �=2 2 S .��=2; �=2/ : (7.30)

According to (7.26), relation (7.30) defines a.b. conditions for functions �.x/ from
D�

LH .RC/ as x ! 0,

 �.x/ D C as
� .x/CO.x3=2/;  0

�.x/ D C as0
� .x/CO.x1=2/;

 as
� .x/ D x1=2 sin � C x1=2 ln .k0x/ cos �: (7.31)

It follows that in this case the deficiency indices of OH are m˙ D 1. Therefore,
in the case under consideration, there exists a one-parameter U .1/ family of s.a.
extensions OH3;� of the initial symmetric operator OH , specified by their domains
DH3;� ;

DH3;� D
n
 � W  � 2 D�

LH .RC/ I  � obey .7.31/
o
: (7.32)

7.2.3.4 The Fourth Region ˛ < �1=4

In this region ~ D i� , � > 0. The asymptotic behavior of the general solution at the
origin is given by (7.23). Taking it into account, we obtain

�HC . �/ D i2k0�
�
jc1j2 � jc2j2

�
:

Restrictions on the natural domain D�
LH .RC/ follow from the condition �HC

. �/D0, which implies ei� c2 D e�i� c1, � 2 S .0; �/. According (7.23), this defines
s.a. boundary conditions for functions  �.x/ fromD�

LH .RC/ as x ! 0,

 �.x/ D C as
� .x/CO.x3=2/;  0

� .x/ D C as0
� .x/CO.x1=2/;

 as
� .x/ D x1=2

�
ei� .k0x/

i� C e�i� .k0x/�i�
�
: (7.33)

It follows that in this case the deficiency indices of OH are m˙ D 1. Therefore,
in the case under consideration, there exists a one-parameter U .1/ family of s.a.
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extensions OH4;� , � 2 S .0; �/ of the initial symmetric operator OH , specified by their
domainsDH4;� ;

DH4;� D
n
 � W  � 2 D�

LH .RC/ I  � obey .7.33/
o
: (7.34)

7.2.4 Spectral Problem and Inversion Formulas

We follow Chap. 5 in solving the spectral problem and finding inversion formulas.
Let us we construct a Green’s functionG.x; yIW / of s.a. Calogero Hamiltonians
OHa, a D 1; 2; 3; 4. As follows from Sect. 5.3.4, we have first to find the general

solutions of the inhomogeneous equation

. LH �W / D � 2 L2.RC/; W D jW jei'; 0 � ' � �; ImW > 0: (7.35)

To this end, we first consider the corresponding homogeneous equation

. LH �W / D 0; (7.36)

and a set ui .xIW /, i D 1; 2, and v1 .xIW / of its solutions,

u1 .xIW / D � .1C ~/ .ˇ=2k0/�~ .k0x/1=2J~.ˇx/;
u2 .xIW / D � .1 � ~/ .ˇ=2k0/~ .k0x/1=2J�~.ˇx/

v1 .xIW / D .ˇ=2k0/~ .k0x/1=2H.1/
~ .ˇx/

D � i
�

�
e�i�=2ˇ=2k0

�2~
� .�~/u1 .xIW /� i� .~/

�
u2 .xIW / ;

where ˇ D pW D ei'=2
pjW j, Imˇ > 0, and J~.x/ and H.1/

~ .x/ are the Bessel
and Hankel functions respectively; see [1,20,81]. Note that the functions u1 .xIW /

and u2 .xIW / are entire in W , are real entire in W for ˛ � �1=4 (~ � 0), and
satisfy the relation u2 .xIE/ D u1 .xIE/ for ˛ < �1=4 (~ D i�). The function
v1 .xIW / is analytic in the upper half-plane.

As x !1, ImW > 0, we have

u1 .xIW / D � .1C ~/
2
p
�

.ˇ=2k0/
�1=2�~ e�i.ˇx�~�=2��=4/ QO.x�1/!1;

v1 .xIW / D 2k0p
�ˇ

.ˇ=2k0/
1=2C~ ei.ˇx�~�=2��=4/ QO.x�1/! 0; (7.37)
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and thus the solution v1 .xIW / is square-integrable at infinity for ImW > 0. As
x ! 0, we have

u1 .xIW / D .k0x/1=2C~ QO.x2/; u2 .xIW / D .k0x/1=2�~ QO.x2/; v1 .xIW /

D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

� i� .~/
�
.k0x/

1=2�~ QO.x2/; ˛ � 3=4;
� i� .~/

�
.k0x/

1=2�~ QO.x2/;
�ie�i�~ � .�~/

�
.ˇ=2k0/

2~ .k0x/
1=2C~; ˛ < 3=4; ˛ ¤ �1=4;

2i.k0x/
1=2

�
Œ�=2i C CC ln.ˇ=2k0/C ln.k0x/� QO.x2/; ˛ D �1=4;

(7.38)

where C is Euler’s constant.
The Wronskians of the solutions u1, u2, and v1 are

Wr .u1; u2/ D �2k0~; Wr .u1; v1/ D 2i��1k0� .1C ~/:

Then the general solution of (7.35) has the form

 .x/ D a1u1.xIW /C a2v1.xIW /C i�

2k0� .1C ~/

�
�Z 1

x

G
.C/
1 .x; yIW /�.y/dy C

Z x

0

G
.�/
1 .x; yIW / �.y/dy

�
; (7.39)

where

G
.C/
1 .x; yIW / D u1.xIW /v1.yIW /;
G
.�/
1 .x; yIW / D v1.xIW /u1.yIW /:

To find solutions  2 DHa , one needs to determine coefficients a1 and a2, using
first the condition  2 L2.RC/ and then s.a. boundary conditions as x ! 0 that
specify the domainsDHa .

With the help of the Cauchy–Schwarz inequality, we can easily estimate integral
summands on the right-hand side of (7.39). These terms, as well as the term a2v1,
are restricted as x !1. Therefore the condition  2 L2.RC/ implies a1 D 0.

7.2.4.1 The First Region ˛ � 3=4

In this region, ~ � 1 and there exists only one s.a. Calogero Hamiltonian OH1 defined
on the domainDH1 D D�

LH .RC/.
For ˛ � 3=4, with the help of the Cauchy–Schwarz inequality, we find that

the integral summands in (7.39) are restricted as x ! 0 (in fact, they vanish in
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such a limit), so that the condition  2 L2.RC/ implies a2 D 0 and the Green’s
function of the Hamiltonian OH1 reads

G.x; yIW / D i�

2k0� .1C ~/

8
<

:

G
.�/
1 .x; yIW /; x > y;

G
.C/
1 .x; yIW /; x < y:

Consider the guiding functional

˚.�IW / D
Z 1

0

dxu1.xIW /�.x/; � 2 Dr .RC/\DH1
:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D u1 and QU D v1. Therefore, the spectrum of OH1

is simple.
The derivative of the spectral function is calculated via the function M.cIW /

using relations (5.22). The functionM in this region is

M.cIW / D i�u1.cIW /v1.cIW /
2k0� .1C ~/ :

Let W D E D p2 � 0, ˇ D p D pE � 0. Using the relation H.1/
~ .px/ D

J~.px/C iN ~.px/ and the fact that N~.px/ is real, we get

� 0.E/ D
�
E=4k20

�~

2k0� 2.1C ~/ ; E � 0:

Let W D E D ��2 < 0, � D pjEj > 0, ˇ D ei�=2� . In this range of energies,
we use the representations

u1.xIE/ D � .1C ~/ .�=2k0/�~ .k0x/1=2I~.�x/;

v1.xIE/ D 2

i�
.�=2k0/

~ .k0x/
1=2K~.�x/;

where I~.x/ andK~.x/ are Bessel functions of imaginary argument (see [1,20,81]),
to obtain � 0.E/ D 0, E < 0.

Thus, the simple spectrum of OH1 is given by spec OH1 D RC. The generalized
eigenfunctions

UE .x/ D
p
� 0.E/u1.xIE/ D

r
x

2
J~

�p
Ex

�
; E � 0; (7.40)
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of OH1 form a complete orthonormalized system in L2.RC/. We note that in this
case the corresponding inversion formulas coincide with the known formulas for
the Fourier–Bessel transformation; see, for example, [7, 50].

7.2.4.2 The Second Region �1=4 < ˛ < 3=4

In this region, 0 < ~ < 1 and there exists a one-parameter U .1/ family of s.a.
Calogero Hamiltonians OH2;� , � 2 S .��=2; �=2/, acting on the domains DH2;�

defined by (7.29).
For any ˛ < 3=4, the function v1.xIW / is square-integrable on RC, so that

(7.39) can be rewritten as

 .x/ D a2v1.xIW /C i�

2k0� .1C ~/u1.xIW /�v C Y .x/ ;

�v D
Z 1

0

v1.yIW /�.y/dy; Y .x/ D i�

2k0� .1C ~/
Z x

0

G
.�/
1 .x; yIW /�.y/dy

� i�

2k0� .1C ~/
Z x

0

G
.C/
1 .x; yIW /�.y/dy: (7.41)

Estimating the term Y .x/ with the help of the Cauchy–Schwarz inequality, we
obtain

Y .x/ D O.x3=2/; x ! 0; (7.42)

which means that the asymptotic behavior of  .x/ as x ! 0 is due to the first
two summands in (7.41). This allows one to find a2 from the corresponding s.a.
boundary conditions.

Using asymptotic formulas (7.37) and (7.38), we find that solution (7.41) satisfies
s.a. boundary condition (7.28) if

a2 D � �v�
2 cos �

2k0� .~/� .1C ~/!2;� .W / ; !�.W / D f .W / cos � C sin �;

f .W / D � .1 � ~/
� .1C ~/

�
e�i�=2ˇ=2k0

�2~
:

This implies that the Green’s function of the Hamiltonian OH2;� reads

G.x; yIW / D ˝.W /U2;�.xIW /U2;�.yIW /

� 1

2k0~



G.�/ .x; yIW / ; x > y;

G.C/ .x; yIW / ; x < y;
(7.43)
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where

G.C/ .x; yIW / D U2;�.xIW / QU2;�.yIW /;

G.�/ .x; yIW / D QU2;�.xIW /U2;�.yIW /;
U2;�.xIW / D u1.xIW / sin � C u2.xIW / cos �;

QU2;�.xIW / D u1.xIW / cos � � u2.xIW / sin �;

˝.W / D � Q!2;�.W /
2k0~!2;� .W /

; Q!�.W / D f .W / sin � � cos �;

and we used the relations

u1.xIW /C i�

� .~/!2;�.W /
v1.xIW / D U2;�.xIW /

!�.W /
;

v1.xIW / D i� .~/

�

� Q!�.W /U2;�.xIW /C !�.W / QU2;�.xIW /
�
:

We note that U2;�.xIW / and QU2;�.xIW / are solutions of (7.36) real entire inW ;
U2;�.xIW / obeys the boundary condition (7.28), and the second summand on the
right-hand side of (7.43) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

dxU2;�.xIW /�.x/; � 2 Dr .RC/\DH2;�
:

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D U2;� and QU D QU2;� . Therefore, the spectra of
OH2;� are simple.

The spectral function is calculated via the function

M.cIW / D i�!�1
� .W /G.C/ .c; cIW / :

Thus, we obtain � 0.E/ D ��1 Im˝.E C i0/.
Let W D E � 0, ˇ D p D pE � 0: We obtain

� 0.E/ D
�
E=4k20

�~

2k0� 2.1C ~/ �q2 C q cos.�~/ sin.2�/C sin2 �
� ;

� 0.E/ > 0; E > 0; q D � .1 � ~/
� .1C ~/

�
E=4k20

�~
;

� 0.0/ D 0 for � ¤ 0, and � 0.E/ has an integrable singularity of the type O.E�~/
for � D 0.
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LetW D E D ��2 < 0, � DpjEj > 0, e�i�=2ˇ D � . In this energy region, we
find that if � 2 Œ0; �=2� or � D ��=2 then˝.E/ is finite and real and consequently
� 0.E/ D 0.

Let � 2 .��=2; 0/. Then we have

� 0.E/ D Imf �1
� .E C i0/

2�k0~ cos2 �
; f�.W / D f .W / � tan j�j: (7.44)

Since f�.E/ is a real function, the left-hand side of (7.44) can differ from zero
only at the pointsE that are negative roots of the equation f�.E/ D 0. For any fixed
� 2 .��=2; 0/, the equation f�.E/ D 0 has only one negative solution,

E .�/ D �4k20
ˇ̌
ˇ
ˇ
� .1C ~/
� .1 � ~/ tan j�j

ˇ̌
ˇ
ˇ

1=~

: (7.45)

According to Lemma 5.17, we obtain

� 0.E/ D Q2
�ı.E � E .�//;

Q� D
�jE .�/ j=4k20

��~=2

~ cos �

s
jE .�/ j� .1C ~/
2k0� .1 � ~/ ; E < 0: (7.46)

Thus, for � 2 Œ0; �=2� or � D ��=2, the simple continuous spectrum of OH2;� is
given by spec OH2;� D RC. The generalized eigenfunctions

UE.x/ D
p
� 0.E/U2;�.xIE/; E � 0; (7.47)

of OH2;v form a complete orthonormalized system in L2.RC/.
For � 2 .��=2; 0/, the spectrum of any s.a. Calogero Hamiltonian OH2;� is

simple, and in addition to the nonnegative continuous spectrum, here there exists
one negative level (7.45). Thus, spec OH2;� D RC [ fE .�/g, and a complete
orthonormalized system in L2.RC/ consists of generalized eigenfunctions (7.47)
and one function

U.x/ D Q�U2;�.xIE .�// D
r
2xjE .�/ j sin.�~/

�~
K~

�p
jE .�/ jx

�
:

We note that the second region under consideration contains the point ˛ D 0

(~ D 1=2), which represents the free-particle case. One can easily see that all the
results obtained in Chap. 6 match the above consideration at ˛ D 0.
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7.2.4.3 The Third Region ˛ D �1=4

In this region there exists a one-parameter U .1/ family of s.a. Calogero Hamiltoni-
ans OH3;� , � 2 S .��=2; �=2/, acting on the domainsDH3;� (7.32).

In the case under consideration, formulas (7.41) and (7.42) hold. This allows one
to find the constant a2 from the boundary conditions (7.31),

a2 D � �2 cos �

4k0!�.W /
; !�.W / D f .W / cos � � sin �;

f .W / D ln .ˇ=2k0/C C � i�=2;

which implies that the Green’s function of the s.a. Hamiltonian OH3;� is

G.x; yIW / D ˝.W /U3;�.xIW /U3;�.xIW /

C 1

k0



G.�/ .x; yIW /; x > y;

G.C/ .x; yIW /; x < y;
(7.48)

where

G.C/ .x; yIW / D U3;�.xIW / QU3;�.yIW /;
G.�/ .x; yIW / D QU3;�.xIW /U3;�.yIW /;

˝.W / D Q!�.W /
k0!�.W /

; Q!�.W / D f .W / sin � C cos �;

U3;�.xIW / D u1.xIW / sin � C u3.xIW / cos �;

QU3;�.yIW / D u1.xIW / cos � � u3.xIW / sin �;

u1.xIW / D .k0x/1=2J0.ˇx/; u3.xIW / D @~
�

u1.xIW /j~¤0
�
~D0 ;

v1.xIW / D .k0x/1=2H.1/
0 .ˇx/;

u3.xIW / D .k0x/1=2 ln .k0x/ QO.x2/; x ! 0;

and we used the relations

u1.xIW /C i� cos �

2!�.W /
v1.xIW / D U3;�.xIW /

!�.W /
;

�v1.xIW /=2i D Q!�.W /U3;�.xIW /C !�.W / QU3;�.yIW /:

We note that U3;�.xIW / and QU3;�.xIW / are solutions of (7.36) real-entire inW ;
U3;�.xIW / obeys s.a. boundary condition (7.31), and the second summand on the
right-hand side of (7.48) is real for real W D E .
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Consider the guiding functional

˚.�IW / D
Z 1

0

dxU3;�.xIW /�.x/; � 2 Dr .RC/\DH3;�
:

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D U3;� and QU D QU3;� . Therefore, the spectra of
OH3;� are simple.

The derivative of the spectral function is calculated via the functionM.cIW / D
G .c; cIW /, so that we have � 0.E/ D ��1 Im˝.E C i0/.

Let W D E � 0, ˇ D p D pE � 0. We obtain

� 0.E/ D
n
2k0

�
Œ.ln .p=2k0/C C/ cos � � sin ��2 C .�2=4/ cos2 �

�o�1
:

Let W D E < 0, � D pjEj > 0, e�i�=2ˇ D � . In this energy region, we have

� 0.E/ D f .E/ sin � C cos �

f .E/ cos � � sin �
; f .E/ D ln.�=2k0/C C:

Let � D ˙�=2. In this case ˝.E/ D �f .E/=k0 is a finite and real function
such that we obtain � 0.E/ D 0.

Let j�j < �=2. Then we have

� 0.E/ D Imf �1
� .E C i0/
�k0 cos2 �

; f�.W / D f .W / � tan �: (7.49)

Since f�.E/ is a real function, the left-hand side of (7.49) can differ from zero only
at the points E that are negative roots of the equation f�.E/ D 0. For any fixed
� 2 .��=2; �=2/, the equation f�.E/ D 0 has only one negative solution,

E .�/ D �4k20 exp.2 tan � � 2C/:

According to Lemma 5.17, we obtain the right-hand side of (7.49),

� 0.E/ D Q2
�ı.E �E .�//; Q� D 1

cos �

s
2jE .�/ j
k0

E < 0:

Thus, for � D ˙�=2, the simple continuous spectrum of OH3;� is given by
spec OH3;˙�=2 D RC.

The generalized eigenfunctions

UE.x/ D
p
� 0.E/u1.xIE/ D

p
x=2J0

�p
Ex

�
; E � 0;

of OH3;˙�=2 form a complete orthonormalized system in L2.RC/.
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For � 2 .��=2; �=2/, the spectrum of any s.a. Calogero Hamiltonian OH3;�; is
simple, and in addition to the nonnegative continuous spectrum, here there exists
one negative level (7.45). Thus, spec OH3;� D RC [ fE .�/g, and a complete
orthonormalized system in L2.RC/ consists of generalized eigenfunctions UE.x/
of the continuous spectrum,

UE.x/ D
p
� 0.E/U3:�.xIE/; E � 0;

and one function U.x/ of the discrete spectrum,

U.x/ D �Q�U3;�.xIE .�// D
p
2jE .�/ jxK0

�p
jE .�/ jx

�
:

7.2.4.4 The Fourth Region ˛ < �1=4

In this region ~ D i� and there exists a one-parameterU .1/ family of s.a. Calogero
Hamiltonians OH4;� , � 2 S .0; �/; specified by their domains (7.34).

In the case under consideration ~ D i� , � > 0; and formulas (7.41) and (7.42)
hold. This allows one to find the constant a2 from the boundary conditions (7.33),

a2 D �� sin.i�/e�i Q�

2k0!� .W /
; !� .W / D e�i Q� �e�i�=2ˇ=2k0

�2i� C ei
Q� ;

Q� D � C �� ; �� D 1

2i
ln
� .1C i�/
� .1 � i�/ :

This implies that the Green’s function of s.a. Hamiltonian OH4;� reads

G.x; yIW / D ˝.W /U4;� .xIW /U4;� .yIW /

� 1

4k0�



G.�/ .x; yIW / ; x > y;

G.C/ .x; yIW / ; x < y;
(7.50)

where

G.C/ .x; yIW / D U4;� .xIW / QU4;� .yIW /; ˝.W / D i

4k0�

Q!4;� .W /
!4;� .W /

;

G.�/ .x; yIW / D QU4;� .xIW /U4;� .yIW /;
U4;� .xIW / D ei�u1.xIW /C e�i�u2.xIW /;

QU4;� .xIW / D �i �ei�u1.xIW /� e�i�u2.xIW /
�
;

Q!� .W / D e�i Q� �e�i�=2ˇ=2k0
�2i� � ei

Q� ;
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and we used the relations

u1.xIW /C sin.i��/e�i Q�� .1C i�/
!� .W /

v1.xIW / D ei��

!� .W /
U4;� .xIW /;

v1.xIW / D e�i�� � .i�/
2�

�
i Q!�.W /U4;� .xIW /� !�.W / QU4;� .xIW /

�
:

We note that U4;� .xIW / and QU4;� .xIW / are solutions of (7.36), real entire in W ;
U4;� .xIW / satisfies the boundary conditions (7.33), and the second summand in the
right-hand side of (7.50) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

dxU4;� .xIW /�.x/; � 2 Dr .RC/ \DH4;�
:

One can see that this functional belongs to the classD of simple guiding functionals
considered in Sect. 5.4.1 with U D U4;� and QU D QU4;� . Therefore, the spectra of
OH4;� are simple.

The derivative of the spectral function is calculated via the functionM.cIW / D
G .c; cIW /, so that we have � 0.E/ D ��1 Im˝.E C i0/.

For E � 0; we obtain

� 0.E/ D .4�k0�/
�1 sin h.��/

cosh.��/C cos˚.E/
; ˚.E/ D � ln.E=4k20/� 2 Q�: (7.51)

Let W D E < 0. In this energy region the function ˝.E/ is real, ˝.E/ D
� Œ2k0� cotŒ˚.E/�, ˚.E/ D � ln.�=2k0/ � Q� , so that � 0.E/ can differ from zero
only at the points En .�/ where cotŒ˚.En .�//� D 0. These points are

En .�/ D �4k20e2.�=2C�nC Q�/=� ; n 2 Z :

Using considerations similar to what we used to derive (7.46), we obtain

� 0.E/ D
X

n2Z
Q2
nı.E � En .�//; Qn D 1

�

s
jEn .�/ j
2k0

; En .�/ < 0: (7.52)

Equations (7.51) and (7.52) imply that the simple spectrum of OH4;� reads
spec OH4;� DRC[fEn .�/ ; n 2 Zg. A complete orthonormalized system inL2.RC/
consists of the generalized eigenfunctions

UE .x/ D
p
� 0.E/U4;� .xIE/; E � 0;
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and of the eigenfunctionsUn.x/, n 2 Z,

Un.x/ D iQnU4;� .xIEn .�// D
r
2xjEn .�/ j sin h.��/

��
Ki�.jEn .�/ j1=2x/;

of the discrete negative part of the spectrum. We see that the discrete spectrum is
unbounded from below and has an accumulation point in zero energy.

7.2.5 The Fate of Scale Symmetry

The scale parameter k0, introduced for dimensional reasons, appears to be signif-
icant in s.a. extensions for ˛ < 3=4: its change k0 ! lk0 generally changes the
extension parameter, which indicates the breaking of scale symmetry.

From the mathematical standpoint, it is convenient to parameterize s.a. exten-
sions by a dimensionless parameter, � or � . However, from the physical standpoint,
it seems more appropriate to convert the two parameters, the fixed dimensional
parameter k0 of spatial dimension dk0 D �1 and the varying dimensionless
parameters � and � , to a one-dimensional parameter � of spatial dimension d� D
�1 uniquely parameterizing the extensions, and the parameter k0 no longer enters
the description. This makes evident the spontaneous breaking of the scale symmetry.

As is easily seen from (7.28), in the case of �1=4 < ˛ < 3=4 and for � 2
.0; �=2/, this parameter is � D k0.tan �/1=2~ , 0 < � < 1. The s.a. Calogero
Hamiltonian OH2;� with � 2 .0; �=2/ is now naturally labeled by the subscript � and
an extra subscript C indicating the sign of �, OH2;�;C D OH2;� , � 2 .0; �=2/, and is
specified by the a.b. conditions at the origin,

 �;C.x/ D Cx1=2 Œ.�x/~ C .�x/�~ �CO.x3=2/;
 0
�;C.x/ D Cx�1=2 Œ.1=2C ~/.�x/~ C .1=2� ~/.�x/�~ �CO.x1=2/: (7.53)

The complete orthonormalized system (7.47) of eigenfunctions for the Hamiltonian
OH2;�;C is presented in terms of the scale parameter � as follows:

UE .x/ D
r
x

2

J~.
p
Ex/C �.�;E/ J�~.

p
Ex/

p
1C 2�.�;E/ cos�~ C �2.�;E/ ;

�.�;E/ D � .1 � ~/
� .1C ~/

�
E=4�2

�~
; E � 0I (7.54)

the auxiliary scale parameter k0 then disappears.
For � 2 .��=2; 0/, the dimensional parameter is � D k0j tan �j1=2~ , 0 <

�<1 . The Hamiltonian OH2;� with � 2 .��=2; 0/ is now denoted by OH2;�;�:
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OH2;�;� D OH2;�; � 2 .��=2; 0/; and is specified by the a.b. conditions at the origin,

 �;� .x/ D Cx1=2 Œ.�x/~ � .�x/�~ �CO.x3=2/;
 0
�;� .x/ D Cx�1=2 Œ.1=2C ~/.�x/~ � .1=2� ~/.�x/�~ �CO.x1=2/: (7.55)

The single negative energy level representing its discrete spectrum is now given by

E�;� D �4�2
�
� .1C ~/
� .1 � ~/

�1=~
: (7.56)

The complete orthonormalized system of eigenfunctions for the Hamiltonian
OH2;�;�, written in terms of the scale parameter �, consists of the functions (7.55)

and one additional function

U.x/ D
s
2x
ˇ̌
E�;�

ˇ̌
sin�~

�~
K~

�qˇ
ˇE�;�

ˇ
ˇx
�
: (7.57)

We note that the s.a. Calogero Hamiltonian OH2;�;� is uniquely determined by the
position of the negative energy level.

The exceptional values � D 0 and j�j D �=2 of the extension parameter are
naturally included in this scheme as the respective exceptional values � D 0 and
� D 1 of the scale parameter, and in terms of � the corresponding Hamiltonians
are respectively denoted by OH2;0 D OH2;�D0 D OH2;�D0 and OH2;1 D OH2;�D1 D
OH2;j�jD�=2.

As can be seen from (7.31), in the case of ˛ D �1=4 and for j�j < �=2, the
dimensional parameter is � D k0etan � , 0 < � < 1. In terms of �, the respective
s.a. Calogero Hamiltonian OH3;�, OH3;� D OH3;� , is specified by a.b. conditions at the
origin,

 �.x/ D Cx1=2 ln.�x/CO.x3=2/;

 0
�.x/ D Cx�1=2

�
1

2
ln.�x/C 1

�
CO.x1=2/ : (7.58)

The single negative energy level representing its discrete spectrum is given byE� D
�4�2 exp.�2C/; the position of this level uniquely determines the Hamiltonian
OH3;�.

The exceptional values � D �=2 � � D ��=2 of the extension parameter �
are naturally included as the respective exceptional values � D 1 � � D 0 of the
scale parameter �. In terms of �, we let OH3 denote the corresponding Hamiltonian,
OH3 D OH3;j�jD�=2.
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As is seen from (7.33), in the case of ˛ < �1=4, the dimensional parameter is

� D k0e�=� ; �0 � � � �0 e�=� ; �0 � �0e�=� (7.59)

with some fixed �0 > 0. In terms of �, the respective s.a. Calogero Hamiltonian
OH4;�, OH4;� D OH4;� , is specified by a.b. conditions at the origin,

 �.x/ D Cx1=2
�
.�x/i� C .�x/�i� �CO.x3=2/;

 0
� .x/ D Cx�1=2 �.1=2C i�/.�x/i� � .1=2� i�/.�x/�i� �CO.x1=2/: (7.60)

The infinite sequence of negative energy levels representing its discrete spectrum is
given by

E�;n D �4�2 exp
� C �� C 2�n

�
; �� D �i ln

� .1C i�/
� .1 � i�/ ; n 2 ZI (7.61)

the position of one of negative energy levels in any of the intervals

�
�4�20e

��C�C2�m
� ; �4�20e

����C2�m
�

�
; m 2 Z;

uniquely determines the Hamiltonian OH4;�. The complete orthonormalized system
of eigenfunctions for the Hamiltonian OH4;� is written in terms of the scale parameter
� as follows:

UE.x/ D
s

x=4

cosh�� C cos˚�.E/

h
'� .E/

�
E=4�2

��i�=2
Ji�

�p
Ex

�

C'�1
� .E/ J�i�

�p
Ex

�i
;

˚�.E/ D � ln.E=4�2/ � �� ; '� .E/ D ei��=2
�
E=4�2

��i�=2
; E � 0I

Un.x/ D
r
2xjE�;nj sinh��

��
Ki�

�q
jE�;njx

�
; n 2 Z: (7.62)

The scale parameter �, as well as �0, is evidently defined modulo the factor
exp�m=� , m 2 Z; the a.b. conditions (7.60) are invariant under the change
� ! e�m=��; accordingly, the discrete spectrum (7.61) is also invariant under
this change, and the same holds for the normalized eigenfunctions (7.62) up to the
irrelevant factor �1 in front of eigenfunctions of continuous spectrum for oddm.

All s.a. Calogero Hamiltonians that form a U.1/ family for each value of the
coupling constant ˛ in all three regions of the values of ˛ < 3=4 are thus
parameterized by a scale parameter �, and in the region �1=4 < ˛ < 3=4 we
must distinguish two different subfamilies by an additional indexC or �.
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We now turn to the problem of the scale symmetry for s.a. Calogero Hamilto-
nians. The scale symmetry is associated with the one-parameter group of unitary
scale transformations OU .l/ ; l > 0, defined by (7.18). Under a preliminary “naı̈ve”
treatment of the Calogero problem, see Sect. 7.2.2, the “naı̈ve” Hamiltonian OH
identified with the initial differential expression (7.16), which has been considered
an s.a. operator without any reservations about its domain, formally satisfies the
scale symmetry relation (7.19). It is this relation that is a source of “paradoxes”
concerning the spectrum of the “naı̈ve” OH . Below, we resolve these paradoxes.

If we extend relation (7.19) to the s.a. Calogero Hamiltonians OHŒi�; Œi � D 1;
2; �;C; 2; �;�; 3; �; 4; �, we must recognize that this relation is nontrivial because
the operators OHŒi� are unbounded, and in general, their domains DHŒi� change with
changing the scale parameter � that naturally changes under scale transformations.
The relation

OU�1 .l/ OHŒi�
OU .l/ D l�2 OHŒi�” OHŒi�

OU .l/ D l�2 OU .l/ OHŒi� (7.63)

for the Hamiltonian OHŒi� with a specific Œi �, if it holds, implies that apart from the
fact that “the rule of action” of the operator OHŒi� changes in accordance with (7.63),
its domainDHŒi� is invariant under scale transformations:

OU .l/DHŒi� D DHŒi� : (7.64)

In such a case, we say that the Hamiltonian OHŒi� is scale-covariant and is of
scale dimension dHŒi� D �2; in short, we speak about the scale symmetry of

the Hamiltonian OHŒi�. If relation (7.64) does not hold, i.e., if the domain DHŒi�

of the Hamiltonian OHŒi� is not scale-invariant, we are forced to speak about the
phenomenon of a spontaneous breaking of scale symmetry for the Hamiltonian OHŒi�.

The initial symmetric operator OH and its adjoint OHC associated with the
differential expression (7.16) are scale-covariant because both DH D D .RC/
and DHC D D�

LH .RC/ are evidently scale-invariant. The s.a. extensions OHŒi�

of the scale-covariant OH can lose this property. On the other hand, OHŒi� are s.a.
restrictions of OHC, and their domains DHŒi� belong to the scale-invariant domain

DHC , DHŒi� � DHC . Therefore, the scale symmetry of a specific Hamiltonian OHŒi�

is determined by the behavior of the a.b. conditions specifying this s.a. operator and
thus restricting its domain in comparison with DHC under scale transformations.
This behavior is different for different Œi �; namely, it is different for the above four
regions of the values of ˛ (see Sect. 7.2.3) and strongly depends on the value of the
scale parameter � specifying the s.a. Hamiltonians in each of the last three regions.
We consider these four regions sequentially.
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(i) First region: ˛ � 3=4:
For each ˛ in this region, the single s.a. Calogero Hamiltonian OH1 coincides with

the operator OHC, OH1 D OHC, and is therefore scale-covariant,

OU .l/ OH1
OU�1.l/ D l�2 OH1: (7.65)

In other words, the scale symmetry holds for ˛ � 3=4. The scale transformation law
(7.18) as applied to eigenfunctions (7.40) yields

UE.x/ 7�! OU .l/ UE.x/ D l�1Ul�2E.x/; (7.66)

which we treat, in particular, as the scale transformation law for the energy
spectrum, given by

E 7�! l�2E; (7.67)

i.e., the spatial dimension of energy dE D �2. The group of scale transformations
acts transitively on the energy spectrum, the semiaxis RC, except the point E D 0,
which is a stationary point. This coincides with our preliminary expectations in
Sect. 7.2.2.

(ii) Second region: �1=4 < ˛ < 3=4:
The change of a.b. conditions (7.53) under scale transformations (7.18) is given

by the natural scale transformation

� 7�! l�1� (7.68)

of the dimensional scale parameter � (its spatial dimension being �1), or, in terms
of the dimensionless extension parameter �, by

tan � 7�! l�2~ tan �; (7.69)

which implies that under the scale transformations the respective domainDH2;�;C of

the Hamiltonian OH2;�;C transforms to DH2;l�1�;C
,

DH2;�;C 7�! OU .l/DH2;�;C D DH
2;l�1�;C

: (7.70)

It follows that the scale transformations change the Hamiltonian OH2;�;C to another
Hamiltonian OH2;l�1�;C,

OH2;�;C 7�! OU .l/ OH2;�;C OU�1.l/ D l�2 OH2;l�1�;C; (7.71)
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which means that the scale symmetry is spontaneously broken for the Hamiltonians
OH2;�;C. The scale transformation law for the eigenfunctions (7.54) is given by

UE .x/ 7�! OU .l/ UE .x/ D l�1Ul�2E .x/
ˇ
ˇ
�7�!l�1�

: (7.72)

The same evidently holds for the Hamiltonians OH2;�;� specified by a.b. condi-
tions (7.55): the respective formulas (7.68) and (7.69) remain unchanged, while in
formulas (7.70), (7.71), and (7.72) the subscript C changes to the subscript �, and
formula (7.72) for the eigenfunctions of the continuous spectrum is supplemented
by the formula for the bound-state eigenfunction (7.57), (7.56),

U .x/ 7�! OU .l/ U .x/ D U .x/j�7�!l�1� ; El�1�;� D l�2E�;� : (7.73)

The Hamiltonians OH2;1 and OH2;0 corresponding to the respective exceptional
values � D 1 .j�j D �=2/ and � D 0 .� D 0/ and specified by the respective a.b.
conditions

 .x/ D Cx1=2C~ CO.x3=2/; x ! 0I  .x/ D Cx1=2�~ CO.x3=2/; x ! 0;

are scale-covariant, which means that copies of formulas (7.65), (7.66), and (7.67)
with subscript 1 replaced by the respective subscripts 2;1 and 2; 0 hold. If we
require scale symmetry in the Calogero problem, then only the two possibilities
OH2;1 and OH2;0 remain for the s.a. Calogero Hamiltonian in the interval �1=4 <
˛ < 3=4.

We note that this interval of ˛ includes the point ˛ D 0 corresponding to a free
motion. Therefore, all we have said concerning the spontaneous scale-symmetry
breaking relates to the case of a free particle on a semiaxis.

(iii) Third region: ˛ D �1=4:
The change of the a.b. conditions (7.58) under the scale transformations (7.18) is

equivalent to rescaling (7.68) the dimensional parameter�, or to the change tan � !
tan � � ln l of the dimensionless extension parameter �. A further consideration is
completely similar to the preceding one, to yield that copies of relations (7.70),
(7.71), (7.72), and (7.73), with the subscript 2 replaced by the subscript 3, and with
the subscripts C and � eliminated, hold for the Hamiltonians OH3;�, which implies
scale-symmetry breaking for these Hamiltonians.

Regarding the Hamiltonian OH3 corresponding to the exceptional values � D 0

and � D 1 of the scale parameter �, which are equivalent, 0 � 1, and specified
by the a.b. conditions .x/ D Cx1=2CO.x3=2/, this Hamiltonian is scale-covariant,
and copies of relations (7.65), (7.66), and (7.67) with the substitution 1! 3 hold. If
we require scale symmetry for the s.a. Calogero Hamiltonian with ˛ D �1=4, then
it is only the Hamiltonian OH3 that survives.
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(iv) Fourth region: ˛ < �1=4:
The change of the a.b. conditions (7.60) under the scale transformations (7.18)

is equivalent to a modified rescaling � ! l�1� exp�m=� of the dimensional
extension parameter �, where an integerm is defined by the condition

�0 � l�1� exp .�m=�/ < �0 exp .�=�/ I

the changed � must remain within the interval Œ�0; �0 exp�=�/, see (7.59); this
is equivalent to the change � ! .� C � ln l/jmod� of the dimensionless extension
parameter � . It follows that for the Hamiltonians OH4;�, �0 � � � �0e�=� , �0 �
�0e�=� , the relations

DH4;� 7�! OU.l/DH4;� D DH
4;�l�1 exp�m=�

;

OH4;� 7�! OU .l/ OH4;�
OU�1.l/ D l�2 OH

4;�l�1 exp�m=�;

Un .x/ 7�! OU .l/ Un .x/ D Un .x/jE�;n 7�!E�l�1 exp�m=�; n�m
;

E�l�1 exp�m=�; n�m D l�2E�;n;
UE .x/ 7�! OU .l/ UE .x/ D .�1/m l�1 Ul�2E .x/j�7�!�l�1 exp�m=�

hold.
This means that the scale symmetry is spontaneously broken for OH4;�. The

peculiar feature of the fourth region is that for l D exp�n=� , n 2 Z, the scale
symmetry holds. In other words, the scale symmetry is not broken completely, but
to up an infinite cyclic subgroup. In particular, this subgroup acts transitively on the
discrete energy spectrum.

This is the fate of the scale symmetry in the QM Calogero problem.
The paradoxes concerning the scale symmetry in the Calogero problem and

considered in Sect. 7.2.2 are thus resolved. Namely, in general, there is no scale
symmetry in the problem for ˛ < 3=4. In the latter case, the “naı̈ve” Calogero
Hamiltonian OH of Sect. 7.2.2 is actually the operator OHC that is scale-covariant
but not s.a. As for s.a. Calogero Hamiltonians, all possibilities for a negative part
of the energy spectrum considered in Sect. 7.2.2 are generally realized by different
Hamiltonians specified by different a.b. conditions. In general, the scale symmetry
shifts energy levels together with Hamiltonians.

We conclude the above consideration with the following remarks for physicists.
We have a unique QM description of a nonrelativistic particle moving on a

semiaxis in the Calogero potential with the coupling constant ˛ � 3=4. In the case of
˛ < 3=4, mathematics presents different possibilities related to different admissible
s.a. asymptotic boundary conditions at the origin that are specified in terms of the
scale parameter �. But a final choice, which is reduced to a specific choice of the
scale parameter �, belongs to the physicist.
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The origin of this parameter presents a physical problem, as well as the physical
interpretation of the chosen s.a. Hamiltonian, as a whole. We note only that the
usual regularization (7.17) of the Calogero potential by a cutoff at a finite radius
and the consequent passage to the limit of zero radius yields � D 1 in the case
of �1=4 � ˛ < 3=4; a peculiar feature of the case of ˛ D �1=4 is that � D 1
is equivalent to � D 0. Such a choice of the scale parameter corresponds to the
minimum possible singularity of wave functions in the s.a. Hamiltonian domain at
the origin. In the case of ˛ < �1=4, the regularization procedure does not provide
an answer: the zero-radius limit does not exist. A suggestion on the nature of the
scale parameter �, 0 � � <1, in the case of �1=4 < ˛ < 3=4, 0 < � <1 in the
case of ˛ D �1=4, and �0 � � � �0 exp�=� in the case of ˛ < �1=4, has been
presented above in Sect. 7.2.3: it is conceivable that this parameter is a manifestation
of an additional ı-like term in the potential.

In deciding on a specific value of the scale parameter �, one of the additional
arguments can be related to scale symmetry. In the case of ˛ � 3=4, scale symmetry
holds. In the case of �1=4 � ˛ < 3=4, scale symmetry is spontaneously broken
for a generic �. As for any spontaneously broken symmetry, scale symmetry does
not disappear but transforms one physical system to another inequivalent physical
system. But if we require scale symmetry, as we do in similar situations with
rotational symmetry or reflection symmetry, then a possible choice strongly narrows
to � D 1 (the minimum possible singularity of wave functions at the origin) or
� D 0 (the maximum possible singularity) in the case of �1=4 < ˛ < 3=4 and to
� D 1 � � D 0 (the minimum possible singularity) in the case of ˛ D �1=4.
For strongly attractive Calogero potentials with ˛ < �1=4, the requirement of scale
symmetry cannot be fulfilled: scale symmetry is spontaneously broken for any �.

7.3 Schrödinger Operators with Potentials Localized
at the Origin

7.3.1 Self-adjoint Schrödinger Operators

Let V ı .x/ be an arbitrary potential localized at the origin, and LH the corresponding
differential operation,

LH D LHC V ı .x/ D �d2x C V ı .x/ :

Our aim is to study possible s.a. Schrödinger operators associated with this
differential operation. Using additional physical considerations, one can identify
some of them with specific forms of V ı .x/, namely, with a ı-potential field
V ı .x/ D ı .x/.

As usual, we start with an initial symmetric operator OH associated with LH .
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The first supposition is that the domain DH of the initial symmetric operator OH
has the form

DH D D
� VR
�
D D.�1; 0/[D.0;1/; VR D .�1; 0/[ .0;1/:

In other words, we believe that domains of any extensions of OH must include all the

functions from D
� VR
�

.

The subspace D
� VR
�

is dense inL2 .R/, D
� VR
�
D L2.R/. All the functions from

D
� VR
�

vanish both at infinity and in a neighborhood of the point x D 0 together

with all their derivatives.
The second supposition, which seems to be quite natural, is that the operator OH

acts as LH D �d2x on functions from D
� VR
�

(i.e., V ı .x/ acts as the zero operator on

such functions).
Thus, we choose the initial symmetric operator OH as follows:

OH W
8
<

:

DH D D
� VR
�
;

OH D LH D �d2x ; 8 2 D
� VR
�
:

(7.74)

The symmetry of the operator (7.74) is obvious.
The next step is standard. One needs to calculate the adjoint OHC to OH . Following

the general considerations of Chap. 4, we first construct the operator OH�, which in
the case under consideration, we define as

OH� W
8
<

:

DH� .R/ D D�
LH .R/ D

n
 � W  �;  0� a:c: on VR;  �; OH� � 2 L2.R/

o
;

OH� �.x/ D LH �.x/; x ¤ 0I OH� �.0/ D a; 8 � 2 D�
LH
� VR
�
;

where a is an arbitrary constant.
Using the Lemma 2.14, one can easily verify that functions  � 2 D�

LH .R/ have

the following asymptotic behavior at infinity:  �.x/;  0�.x/
jxj!1�! 0. To find the

behavior of functions  � at the origin, we consider the condition OH� � D � 2
L2.R/ as an equation for  �. The general solution of such an equation reads

 �.x/ D c1 C c2x C
Z x

0

.y � x/�.y/dy;

which implies

j �.˙0/j <1I j 0�.˙0/j <1; 8 � 2 D�
LH
� VR
�
;

 �.˙0/ D lim
x!˙0 �.x/;  0�.˙0/ D lim

x!˙0 
0�.x/:
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In addition, the following relation holds:
�
 �; OH 

�
D
� OH� �;  

�
; 8 2 D

� VR
�
; 8 � 2 D�

LH .R/ : (7.75)

Let us now demonstrate that OHC and OH� coincide. We first note that relation
(7.75) implies the inclusion OHC 
 OH�. Below, we show that the inverse inclusion
OHC � OH� holds as well.

Let � 2 DHC , i.e.,

� 2 L2.R/; OHC� D � 2 L2.R/;
�
�; OH 

�
D .�;  / ; 8 2 D

� VR
�
; (7.76)

and let � be an ordinary solution of the equation OH� D � 2 L2.R/ (we recall that

�; � 0 are a.c. on VR). Then it follows from (7.76) that
Z 1

0

Œ�.x/ � �.x/� LH .x/ D 0; 8 2 D .RC/ ;

Z 0

�1
Œ�.x/ � �.x/� LH .x/ D 0; 8 2 D .R�/: (7.77)

According to Lemma 4.3, (7.77) implies that, excluding the point x D 0, the
function �.x/ can differ from �.x/ by a function u .x/ that is a solution of the
equation LHu .x/ D 0. Such a solution reads

u .x/ D


c1C C c2Cx; x > 0;
c1� C c2�x; x < 0;

where c1˙ and c2˙ are arbitrary constants.
Therefore, the functions �.x/ 2 DHC have the properties: �.x/ 2 L2.R/,

�; � 0 are a.c. on VR, and the operator OH� is defined on the domain DHC , because
OH�� D LH� D � D OHC� 2 L2.R/, which means that

� 2 DHC H) � 2 DH�

OH�� D OHC�;

�
H) OHC � OH�;

which completes the proof of the equality OHC D OH�.
We stress that the operator OHC acts on its domain as LH for any x ¤ 0, and one

can define OHC�.0/ D a in an arbitrary way. Recall that two functions  1; 2 2
L2.R/ are considered equivalent if they differ on a set of zero Lebesgue measure;
see Sect. 2.1.

Having OHC in hand, we calculate the asymmetry form

�HC. �/ D  �.C0/ 0�.C0/�  0�.C0/ �.C0/

� �.�0/ 0�.�0/C  0�.�0/ �.�0/ D i

2�0
.cCc � dCd/; (7.78)
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where �0 is a fixed parameter of dimension of inverse length, and

c D
�
�0 .C0/ � i 0.C0/
�0 .�0/C i 0.�0/

�
; d D

�
�0 .C0/C i 0.C0/
�0 .�0/ � i 0.�0/

�
:

The structure (7.78) of an asymmetry form implies that the deficiency indices
of OH are m˙ D 2. The condition �HC. �/ D 0 reduces the space D�

LH .R/,
imposing restrictions

cCc � dCd D 0 H) d D U c; U 2 U.2/; (7.79)

on possible functions fromD�
LH .R/.

Thus, there exists a U.2/ family of s.a. extensions OHU of the initial symmetric
operator OH , acting on their domainsDHU ,

OHU W
(
DHU D

n
 W  2 D�

LH .R/ ; d D U c; U 2 U.2/
o
;

OHU .x/ D LH .x/; x ¤ 0I OHU .0/ D a; 8 2 DHU :

7.3.2 Parity Considerations

Let OP be the parity operator that acts on functions  .x/ from L2.R/ as

OP .x/ D  .�x/ : (7.80)

The Hilbert space L2.R/ can be decomposed into the direct orthogonal sum of a
subspace L2s .R/ of symmetric functions  s , OP s D  s , and a subspace L2a.R/ of
antisymmetric functions  a, OP a D � a, so that L2.R/ D L2s .R/˚ L2a.R/. One
can easily see that Œ OP ; OH� D Œ OP ; OHC� D 0. Indeed, acting rules of the operators
commute with OP , and their domains are invariant with respect to (7.80). This means
that the operators OH and OHC can be represented in the form of a direct sum of
their parts, acting in the corresponding subdomains of symmetric and antisymmetric
functions:

OH D OHs ˚ OHa; OH D OHs s C OHa a;  D  s C  a;
 2 D

� VR
�
D Ds

� VR
�
˚Da

� VR
�
;  s;a 2 Ds;a

� VR
�
;

OHC D OHC
s ˚ OHC

a ;
OHC � D OHC

s  �s C OHC
a  �a;  � D  �s C  �a;

 � 2 D�
LH .R/ D D�

LH .R/s ˚D�
LH .R/a :



274 7 A One-Dimensional Particle in a Potential Field

Owing to the fact that the operator OP is bounded, k OP k D 1, and OP2 D 1, the
assertion that OP commutes with OHU means that

Œ OP ; OHU � D 0 H) OHU D OHs;U ˚ OHa;U ; (7.81)

where operators OHs;a;U are s.a. extensions of the operators OHs;a. In turn, if OHs;a;U are
s.a. extensions of OHs;a in L2s;a.R/, then the operator OHU D OHs;U ˚ OHa;U is an s.a.

extension of OH in L2.R/ that commutes with OP . Thus, it is enough to describe all
s.a. extensions of operators OHs;a in the subspaces L2s;a.R/ to find all s.a. extensions
OHU of the operator OH commuting with OP . This will be done in the next section.

Here, finishing the present section, we represent the general form of a matrix UP
conserving parity (commuting with OP ).

We start with the remark that the commutativityU with OP implies that functions
 s;a 2 L2s;a.R/ obey (7.78). On the other hand, functions  s;a have the properties

 s;a.�0/ D ˙ s;a.C0/;  0
s;a.�0/ D 
 0

s;a.C0/; (7.82)

so that the corresponding doublets ds;a and cs;a from (7.78) are

ds;a D
p
2Œ�0 s;a.C0/C i 0

s;a.C0/�ns;a;
cs;a D

p
2Œ�0 s;a.C0/� i 0

s;a.C0/�ns;a;
ns D

�
1=
p
2�1=

p
2
�
; na D

�
1=
p
2�� 1=p2

�
:

It follows from (7.79) that doublets ns;a are eigenvectors of the matrix UP defined
above,

UPns;a D �s;ans;a; �s;a D
�0 s;a.C0/C i 0

s;a.C0/
�0 s;a.C0/� i 0

s;a.C0/
;

�s;a D ei's;a ; 's;a 2 S .��; �/ : (7.83)

The general form of the UP satisfying condition (7.83) is

UP D �sns ˝ ns C �sns ˝ ns : (7.84)

The inverse statement is true as well. Namely, if a matrix U has the form (7.84),
then the subspaces L2s;a.R/ reduce the corresponding s.a. Hamiltonian OHU , i.e.,
(7.81) takes place.

In terms of a.b. conditions, such a form of the matrix UP implies

 0
s;a.C0/ cos �s;a D �0 s;a.C0/ sin �s;a; �s;a 2 S .��=2; �=2/ ; (7.85)
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where �s;a D 's;a=2. The inverse statement is true as well. Namely, if a matrix UP
implies a.b. boundary conditions of the form (7.85), then it has the form (7.84) with
's;a D 2�s;a.

7.3.2.1 Self-adjoint Extensions of OHs

Functions  ; � 2 L2s.R/ satisfy the relations (7.82) which implies

.�;  / D 2.�; /C; �HC. / D 2. ; /C;

where

.�;  /C D
Z 1

0

�.x/ .x/ dx; (7.86)

and�HC. /C is the asymmetry form with respect to the scalar product (7.86).

Let us consider the isometry T :  2 R
T�! p2 2 RC. Then

DHs

T�! DH D D.RC/; DH
C

s

T�! DHC D D�
LH .RC/: (7.87)

It follows from (7.87) that there is a one-to-one correspondence (the isometry T )
between s.a. extensions OHs;U and s.a. Hamiltonians bHU of the free particle on the
semiaxis. The latter extensions were described in detail in Sect. 6.2. Using these
results we obtain that there is a family of s.a. Hamiltonians OHs;� , � 2 S .��=2; �=2/,
defined on the domainDHs;� ,

DHs;� D
n
 W  2 D�

LH .R/s ;  
0 .C0/ cos � D �0 .C0/ sin �

o
;

where they act as LH.
For � � 0 or � D ��=2, the spectrum of OHs;� is continuous and simple, spec
OHs;� D RC. The generalized eigenfunctions UE.x/, E � 0;

UE.x/ D
s

2m

�
�
cos2 � C �

�20=E
�

sin2 �
�

2

4cos
�p

Ex
�

cos � C �0

sin
�p

Ejxj
�

p
E

sin �

3

5 ;

form a complete orthonormalized system in L2s.R/:
For ��=2 < � < 0; the spectrum of OHs;� is simple and, in addition to the

previous positive continuous part, contains a negative level,

spec OHs;� D RC [
(

� .�0 tan �/2

2m

)

:
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The generalized eigenfunctionsUE.x/, E � 0, and an eigenfunction U.x/,

U.x/ D
p
�0 tan j�je��0jx tan �j ;

form a complete and orthonormalized system in L2s.R/.

7.3.2.2 Self-adjoint Extensions of OHa

Using similar arguments, one can see that there is a one-to-one correspondence (the
isometry T ) between s.a. extensions OHa;U and s.a. Hamiltonians bHU of the free
particle on the semiaxis. Therefore, there is a family of s.a. Hamiltonians OHa;� ,
� 2 S .��=2; �=2/, defined on the domainDHa;� ,

DHa;� D
n
 W  2 D�

LH .R/a ;  
0 .C0/ cos � D �° .C0/ sin �

o
;

where they act as LH.
For � � 0, the simple spectrum of OHa;� is given by spec OHa;� D RC.
The generalized eigenfunctionsUE.x/, E � 0;

UE.x/ D
s

2m

�
�
cos2 � C �

�20=E
�

sin2 �
�

2

4 x

jxj cos
�p

Ex
�

cos � C
�0 sin

�p
Ex

�

p
E

sin �

3

5;

form a complete orthonormalized system in L2a.R/:
For ��=2 < � < 0, the spectrum of OHa;� is simple and, in addition to the

previous positive continuous part, contains a negative level,

spec OHa;� D RC [
(

� .�0 tan �/2

2m

)

:

The generalized eigenfunctionsUE.x/, E � 0; and an eigenfunction U.x/,

U.x/ D .sgnx/
p
�0 tan j�je��0jx tan �j ;

form a complete orthonormalized system in L2a.R/.
For s.a. Hamiltonians OHUP that commute with OP , we have

OHUP D OHs;�s ˚ OHa;�a ; �s; �a 2 S .��=2; �=2/ ;
spec OHUP D spec OHs;�s [ spec OHa;�a ;
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where the eigenfunctions of the s.a. Hamiltonians OHUP and the corresponding
inversion formulas are the respective unions of the eigenfunctions of OHs;�s and OHa;�a

and the corresponding inversion formulas (for OHs;�s and OHa;�a ).

7.3.3 Self-adjoint Schrödinger Operators with ı-Potential

Below, we apply the above results to the old problem of particle motion in a ı-
potential field; see [3,26,94]. We need to find a matrixU such that the corresponding
s.a. Hamiltonian OHU can be physically interpreted as a Hamiltonian describing the
motion of a particle in a ı-potential field.

Let us now recall the well-known consideration that allows one to reformulate the
QM problem with poorly defined Schrödinger operator (in fact, for the Schrödinger
differential operation with ı-potential) in terms of some boundary conditions. For
example, let us consider the stationary Schrödinger equation of the form

��d2x C gı.x/
�
 .x/ D E .x/; (7.88)

where g is a coupling constant. We suppose that  .x/ is continuous at the origin
(otherwise, the product ı.x/ .x/ is not well defined). Integrating the left and the
right sides of (7.88) over x in the limits �" and " and considering the limit " ! 0,
we find that solutions of (7.88) must obey the boundary conditions

 .0/ D 1

g
Œ 0.C0/�  0.�0/�: (7.89)

Considering a nonstationary or inhomogeneous Schrödinger equation implies the
same result.

One can see that the boundary condition (7.89), together with continuity of the
wave function at the origin, coincides with some s.a. boundary conditions for s.a.
extensions of the initial symmetric operator OH .

Indeed, being rewritten in terms of symmetric and antisymmetric components,
(7.89) takes the form

 a.C0/ D 0;  s.C0/ D 1

2g
 0
s.C0/: (7.90)

The boundary conditions (7.90) correspond to doublets d and c having the form

d D p2.1C i=2g/ s.C0/ns C i
p
2 0

s.C0/na;
c D p2.1 � i=2g/ s.C0/ns � i

p
2 0

s.C0/na;
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so that the corresponding matrix U reads

U D UP D .2g � i/�1.2gC i/ns ˝ ns � na ˝ na:

It coincides with the matrix (7.84) for

's D 2 arcsin
sgng

p
1C 4g2 ; 'a D ˙�:

Such a matrix U specifies s.a. operators of the form

OHUP D OHs;�s ˚ OHa;�a ; �s D arcsin
sgng

p
1C 4g2 ; �a D ˙�=2; (7.91)

conserving the parity (commuting with OP ). Thus, s.a. operators (7.91) can be
identified with s.a. Schrödinger operators that describe one-dimensional particle
motion in the ı-potential. The spectrum and inversion formulas for such operators
can be extracted from the above considerations depending on concrete values of
parameters g and �0.

Remark 7.3. Regarding the potential V ı .x/ D ı0.x/, one can meet in the literature
(see, e.g., [3]) a supposition that the domain of an s.a. Schrödinger operator with the
potential V ı .x/ D ı0.x/ is defined by s.a. boundary conditions

�0 .C0/ � �0 .�0/ D g 0.C0/;  0.C0/ D  0.�0/: (7.92)

Indeed, s.a. boundary conditions (7.92) correspond to an s.a. Schrödinger operator
with a potential V ı .x/ localized at the origin. One can verify that they correspond
to the following matrix U :

U D UP D ns ˝ ns C .g � 2i/�1.g C 2i/na ˝ na;

which defines a an s.a. Schrödinger operator that conserves the parity (commutes
with P ). For this reason, such an operator cannot correspond to the potential
V ı .x/ D ı0.x/; the latter potential is not invariant under the transformation
x ! �x.



Chapter 8
Schrödinger Operators with Exactly Solvable
Potentials

It is known that an infinite number of potentials V.x/ admit exact solutions of the
one-dimensional (stationary) Schrödinger equation (7.2). Below, we are going to
study some of them that are of prime importance. We consider all the potentials of
the form

V .x/ D
X

i

gi vi .x/ ;

where gi are arbitrary constants, for which the one-dimensional Schrödinger
equation has a general solution in terms of elementary or special functions for
all values of parameters gi . In particular, potentials of such a form usually arise
as a result of separating variables in the course of solving the nonrelativistic and
relativistic wave equations in 3 C 1 or 2 C 1 dimensions. Potentials resulting
from these manipulations depend on the separation constants gi (being integrals
of motion).

We are also interested in having not just one, or several, solutions of (7.2) for
a given potential and some values of the energy, but in a sense (see Chap. 5), a
complete set of solutions. Potentials that admit a solution of the one-dimensional
Schrödinger equation in this sense will be called exactly solvable potentials (ESP).

There exist eleven types of potentials that are candidates for ESP; see, e.g., [13].
Below, we study the one-dimensional Schrödinger equation with such potentials,
constructing the corresponding s.a. Schrödinger Hamiltonians and solving the
corresponding spectral problems. In each section below, we start with a specification
of the ESP V .x/ in the Schrödinger differential operation LH D �d2x C V .x/, and
with the corresponding one-dimensional Schrödinger equation.

8.1 ESP I

In this case,
V.x/ D cx; x 2 R ;

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 8,
© Springer Science+Business Media New York 2012
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and the corresponding Schrödinger equation is

 00 � cx CW D 0: (8.1)

It is sufficient to consider only the case c > 0. The case with a negative c can be
reduced to the previous one by the transformation x ! �x in (8.1).

The initial symmetric Schrödinger operator OH associated with LH is defined on
the domainDH D D .R/. Its adjoint OHC is defined on the natural domainD�

LH .R/,
where it acts as LH , i.e., DHC D D�

LH .R/. As follows from results of Sect. 7.1,

Œ �;  ��.˙1/ D 0, 8 � 2 D�
LH .R/, because V.x/ > �x�2 as x !1. Thus, we

have �HC . �/ D 0. Therefore the operator OHC is s.a., and OH1 D OHC is a unique
s.a. extension of OH .

Let us introduce new variables y and 
 , and a new function 
 .x/, instead of x
and  .x/ in (8.1),

y D c1=3 .x �W=c/ ; 
 D 2

3
y3=2;  .x/ D py
 .
/ : (8.2)

Then 
.y/ obeys the Bessel equation

d2

 C 
�1d

 �
h
1C .3
/�2

i

 D 0 :

Solutions of (8.1) can be obtained from solutions of the Bessel equation by the
transformation (8.2).

As a fundamental set of solutions of (8.1), we chose ui .xIW /, i D 1; 2,

u1 .xIW / D pyK1=3 .
/ D �
p
y=3ŒI�1=3 .
/� I1=3 .
/�

D �
p
Qy=3ŒJ1=3 .e
/C J�1=3 .e
/�; ey D c1=3 .W=c � x/ ; e
 D 2

3
ey3=2;

u2 .xIW / D py �K1=3 .
/C �e�i�=6I1=3 .
/
� D i�

2

p
eyH.1/

1=3 .e
/ ; (8.3)

where I� and K� are Bessel functions of an imaginary argument [1,20,81]. In (8.3)
we have used the following relations:

p
yI1=3 .
/ D 3

p
c=3 .x �W=c/

1X

kD0

ck .x �W=c/3k
32k� .4=3C k/ kŠ D �

p
eyJ1=3 .e
/ ;

p
yI�1=3 .
/ D

1X

kD0

ck .x �W=c/3k
32k� .2=3C k/ kŠ D

p
eyJ�1=3 .e
/ :

The representation of the solutions in terms of the variablesey ande
 is useful for
finding asymptotics as x ! �1. We note that u1 .xIW / is a real entire function of
W and u2 .xIW / is an entire function of W .
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DenotingW=c D aC ib, and taking into account that1

y D c1=3x QO �x�1� ; x !1;

 D c1=2 �2x3=2=3 � ax1=2 � ibx1=2�CO �x�1=2� ; x !1;
ey D c1=3jxj QO.jxj�1/; x ! �1;
e
 D 2c1=2 �jxj3=2=3C ajxj1=2=2�C bc1=2jxj1=2 CO �jxj�1=2� ; x ! �1;

we obtain the asymptotic of ui .xIW / as jxj ! 1:

1. W 2 C, x !1:

u1 D
p
3�=4

�
c1=3x

��1=4
e� 2c1=2

3 .x3=2� 3
2 ax

1=2/�ibc1=2x1=2 CO.x�3=4/! 0;

u2 D
p
3�=4

�
c1=3x

��1=4
ei�=6C

2c1=2

3 .x3=2� 3a
2 x

1=2/�ibc1=2x1=2 CO.x�3=4/!1:

2. ImW=c D b > 0, x ! �1:

u1 D
p
3�=4

�
c1=3jxj��1=4 e�i

h
2c1=2

3 .jxj3=2C 3a
2 jxj1=2/� �

4

i
Cbc1=2jxj1=2

CO �jxj�3=4�!1;

u2 D i
p
3�=4

�
c1=3jxj��1=4 ei

h
2c1=2

3 .jxj3=2C 3a
2 jxj1=2/� 5�

12

i
�bc1=2jxj1=2

CO �jxj�3=4�! 0:

3. ImW=c D b D 0, a D E=c, x ! �1W

u1 D
p
3�
�
c1=3jxj��1=4 cos .X � �=4/CO

�
jxj�3=4

�
;

u2 D �
p
3�=4

�
c1=3jxj��1=4 ei .XC�=12/ CO �jxj�3=4� ;

X D 2c1=2
�
jxj3=2 =3CE jxj1=2 =2c

�
:

Since Wr .u1; u2/ does not depend on x, one can calculate it using the above
asymptotics. Thus, we obtain

Wr .u1; u2/ D 3�

2
c1=3e�i�=6 � w ¤ 0;

1We recall that QO .x/ D 1CO .x/ :
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which means that u1 and u2 are linearly independent and form a fundamental set of
solutions of (8.1). One can see that any linear combination of the fundamental set is
not square-integrable for any W 2 C. This means that the deficiency indices of OH
are zero. The fact that u1;2 .xIE/ … L2 .R/ implies the absence of bound states for
the linear potential under consideration. However, we note that u1 2 L2 .�1; x0/
and u2 2 L2 .x0;1/ for any finite x0. This fact will be used in constructing a
Green’s function of the s.a. OH1.

One can see that u1 decreases exponentially for big x, which is matched with the
physical expectation about the behavior of the wave function in classically forbidden
areas.

The general solution of the inhomogeneous equation

� LH �W
�
� .x/ D �.x/ 2 L2.R/; ImW ¤ 0;

has the form

�.x/ D c1u1.xIW /C c2u2.xIW /C w�1 .W /

�
�

u1.xIW /
Z x

�1
u2.yIW /�.y/dy C u2.xIW /

Z 1

x

u1.yIW /�.y/dy

�
;

where c1;2 are arbitrary constants. With the help of the Cauchy–Schwarz inequality,
we can verify that both terms in square brackets are bounded as jxj ! 1, which
implies that c1 D c2 D 0 must hold if � 2 L2 .R/. Then following Sect. 5.3.4, we
find the Green’s function of the operator OH1,

G .x; yIW / D w�1u1 .xIW / u1 .yIW /

C 2

3c1=3


 QG.C/ .x; yIW /; x > y;
QG.�/ .x; yIW /; x < y;

(8.4)

where

G.C/ .x; yIW / D u1.xIW /u2.yIW /; G.�/ .x; yIW / D u2.xIW /u1.yIW /;
QG.C/ .x; yIW / D u1.xIW /u3.yIW /; QG.�/ .x; yIW / D u3.xIW /u1.yIW /;

u3 .xIW / D y1=2I1=3 .
/ :

We stress that u3 .xIW / is a real entire function in W , and therefore, the functions
QG.˙/ .x; yIW / are real for ImW D 0.

Let us consider the guiding functional

˚.�IW / D
Z

R

u1.xI z/�.x/dx; � 2 D DDl .R/ \D�
LH .R/ :
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Properties (i) and (iii) (see Sect. 5.3) for ˚ .�IW / to be simple are obviously
fulfilled. We need only check Property (ii). Let there exist �0.x/ 2 D and E0 2 R

such that

˚ .�0IE0/ D
Z 1

�1
dx u1 .xIE0/ �0 .x/ D

Z 1

a

dx u1 .xIE0/ �0 .x/ D 0; (8.5)

where supp �0 2 Œa;1/. Consider a solution

 .x/ D 1

w

�Z x

a

G.C/ .x; yIE0/ �0 .y/ dy C
Z 1

x

G.�/ .x; yIE0/ �0 .y/ dy

�

(8.6)

of the equation
� LH � E0

�
 D �0. Since �0.x/ is compact on �1, the function

 .x/ is well defined. Since �0.x/ is compact on �1 and Property (8.5) holds,
the function  .x/ is compact on �1. One can see that both summands in square
brackets of (8.6) behave as x�3=4 as x ! 1, which implies that  ; LH D �0 C
E0 2 L2 .R/, i.e.,  2 D. Thus, ˚ .�IW / is a simple guiding functional, and the
spectrum of the s.a. Hamiltonian OH1 is simple.

With the help of (5.21), (5.22), and the Green’s function (8.4), we obtain the
derivative of the spectral function:

� 0 .E/ D ��1 Im w�1 D ��2c�1=3=3 > 0:

Thus, the simple spectrum of OH1 reads spec OH1 D R.
The generalized eigenfunctionsUE.r/ of OH1,

UE .x/ D 1

c1=6�

p
y=3K1=3

�
2y3=2=3

�
; y D c1=3 .x � E=c/; E 2 R;

form a complete and orthonormalized system in L2.R/. Formally, the latter means
that relation (5.24) must hold. Indeed, we can write

Z 1

�1
dx UE .x/UE0 .x/ D

Z 1

�1
dx
n
UE .x/

� LH � E
�
UE .x/

�
h� LH � E 0

�
UE0 .x/

i
UE0 .x/

o
D ��E � E 0� 3�2

��1

�
hp
yy0K1=3 .
/K2=3

�

 0� � ypy0K2=3 .
/K1=3

�

 0�i

x!�1

D �� �E �E 0���1 sin
h�
E � E 0�

�
2 jcxj1=2 =3

�i

jxj!1 D ı
�
E � E 0� : (8.7)

In the course of the calculations, we have omitted terms that vanish as x ! �1,
and have used the well-known relation limR!1E�1 sin.ER/ D �ı.E/. To obtain
the second relation (5.24), we note that UE .x/ D  .x �E=c/. Then it follows
from (8.7) that
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Z 1

�1
dx UE .x/UE0 .x/ D

Z 1

�1
dz .z/  .zC�=c/ D ı .�/ ; � D E �E 0;

and therefore,

Z 1

�1
dE UE .x/UE

�
x0� D c

Z 1

�1
dz .z/  

�
zC Q�=c�

D cı � Q�� D ı �x � x0� ; Q� D c �x0 � x� :

8.2 ESP II

In this case, we have

V.x/ D g1x2 C g2x; x 2 R:

By a shift of x, one can always reduce the problem to that with g2 D 0. That is why
it is sufficient to consider only the case in which g1 � g ¤ 0 and g2 D 0. The
corresponding Schrödinger equation is

 00 � gx2 CW D 0: (8.8)

The initial symmetric operator OH associated with LH is defined on the domain
DH D D .R/ and DHC D D�

LH .R/. The potential under consideration obeys the

condition V.x/ > �.jgj C 1/x2, so that Œ �;  ��.˙1/ D 0, as was proved in
Sect. 7.1. Thus, for any real g, we have �HC . �/ D 0, which implies that the
operator OHC is s.a., and OH1 D OHC is a unique s.a. extension of OH . Further analysis
will be done separately for the two ranges g > 0 and g < 0:

8.2.1 Range 1

In this range, we have

g D 
4 > 0; 
 > 0:
Let us introduce a new variable z and a new function 
, instead of x and  .x/ in
(8.8),

z D .
x/2 ;  .x/ D e�z=2
 .z/ : (8.9)

Then 
.y/ obeys the equation for the confluent hypergeometric function,

zd2z 
 C .1=2� z/dz
 � ˛
 D 0; ˛ D 1=4� w; w D W=4
2 I (8.10)
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see [1, 20, 81]. Therefore, solutions of (8.8) can be obtained from solutions of
(8.10) by the transformation (8.9). Thus, we obtain a fundamental set u1;2.xIW /

of solutions of (8.8),

u1;2.xIW / D p�e�z=2

�
˚.˛; 1=2I z/
� .˛ C 1=2/ 


2.
x/

� .˛/
˚.˛ C 1=2; 3=2I z/

�
; (8.11)

where˚.˛; ˇI x/ is the confluent hypergeometric function. Solutions (8.11) are real
entire in W for any fixed x, and are independent for ˛, ˛ C 1=2 ¤ �n, n 2 ZC, in
particular, for ImW ¤ 0;

Wr.u1; u2/ D 4�


� .˛/� .˛ C 1=2/ � !.W /:

The functions u1;2 and their linear combinations are not square-integrable for
ImW ¤ 0. The latter means that the deficiency indices are zero, which confirms the
fact that OH1 D OHC is a unique s.a. extension of the initial symmetric operator OH .

For ˛, ˛ C 1=2 ¤ �n, n 2 ZC, the solutions u1;2 have the following asymptotic
behavior as jxj ! 1:

u1 D e�.
x/2=2.
jxj/�1=2C2w QO.x�2/! 0; x !1;

u1 D 2�

� .˛/� .˛ C 1=2/e
.
x/2=2.
jxj/�1=2�2w QO.x�2/!1; x ! �1;

u2 D 2�

� .˛/� .˛ C 1=2/e
.
x/2=2.
jxj/�1=2�2w QO.x�2/!1; x !1;

u2 D e�.
x/2=2.
jxj/�1=2C2w QO.x�2/! 0; x ! �1:

In finding the asymptotics, we have used the representations

u1.xIW /; x > 0

u2.xIW /; x < 0

�
D e�z=2	.˛; 1=2I z/:

Following Sect. 5.3.4, we find the Green’s function of the operator OH1,

G .x; yIW / D !�1.W /



u1.xIW /u2.yIW /; x > y;

u2.xIW /u1.yIW /; x < y: (8.12)

As in Sect. 7.3.1, one can see that the guiding functional

˚.�IW / D
Z

R

u1.xI z/�.x/dx; � 2 Dl .R/\D�
LH .R/

is simple, and therefore the spectrum of OH1 is simple.



286 8 Schrödinger Operators with Exactly Solvable Potentials

With the help of (5.21) and (5.22), the Green’s function (8.12), and the fact that
u1;2.cIW / are real for realW D E , we obtain the derivative of the spectral function:

� 0.E/ D u2.cIE/
4�2
u1.cIE/ Im � .˛/� .˛ C 1=2/jWDECi0 ;

where c 2 R is an arbitrary constant.
The fact that Im� .x/ D 0 for x … Z� implies that � 0.E/ ¤ 0 only for those E

for which either ˛ D �k or ˛ C 1=2 D �k, k 2 ZC, i.e., for those E that provide
poles either for � .1=4� E=.4
2// or for � .3=4� E=4
2/.

For ˛ D �k D �n=2, n D 2k D 0; 2; 4; : : : , and En D 2
2.n C 1=2/, we
obtain

u1.xIEn/ D u2.xIEn/ D .�1=2/n=2.n � 1/ŠŠe�z=2˚.�n=2; 1=2I z/;
u2.cIEn/
u1.cIEn/ D 1; � .˛ C 1=2/ D

.�2/n=2p�
.n � 1/ŠŠ :

For E in a neighborhood of En; one can write (see Lemma 5.17)

Im � .˛/jWDECi0 D
4�
2.�2/n=2

nŠŠ
ı.E � En/:

Then

� 0.E/ D Q2
nı.E �En/; Qn D

s
2n
p
�nŠ

:

For ˛ D �k � 1=2 D �n=2, n D 2k C 1 D 1; 3; 5; : : : , En D 2
2.n C 1=2/,
we obtain

u1.xIEn/ D �u2.xIEn/
D .�2/1=2�n=2nŠŠe�z=2.
x/˚.�.n � 1/=2; 3=2I z/; z D .
x/2 ;

u2.cIEn/
u1.cIEn/ D �1; � .˛/ D

.�2/kC1p�
nŠŠ

;

Im � .˛ C 1=2/jWDECi0;E�En D
4
2�.�1/k

kŠ
ı.E �En/

D 4
2�.�2/k
.n � 1/ŠŠ ı.E � En/;

and � 0.E/ D Q2
nı.E � En/, so that the simple spectrum of OH1 reads

spec OH1 D
˚
En D 2
2.nC 1=2/; n 2 ZC

�
:

It consists of the eigenvalues of OH1, well known from any textbook.
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The functions

Un.x/ D Qnu1.xIEn/ D
r




2n
p
�nŠ

e� .
x/2

2 Hn.
x/;

which are the standard eigenfunctions of the harmonic oscillator Hamiltonian,
form a complete orthonormalized system in L2.R/. Here, we have used relations
between the confluent hypergeometric functions and the Hermite polynomials Hn;
see, e.g., [81].

8.2.2 Range 2

In this range, we have

g D �
4 < 0; 
 > 0:
Here we introduce a new variable z and a new function 
, instead of x and  .x/

in (8.8),

z D i .
x/2 D ei�=2 .
x/2 ;  .x/ D e�z=2
 .z/ : (8.13)

Then 
.y/ obeys the equation for the confluent hypergeometric function,

zd2z 
 .z/C .1=2� z/dz
 .z/� ˛
 .z/ D 0; ˛ D 1=4C iw; w D W=.4
2/: (8.14)

Therefore, solutions  .x/ of (8.8) can be obtained from solutions of (8.14) by the
transformation (8.13). Thus, we obtain a fundamental set u1;2.xIW / of solutions of
(8.8):

u1.xIW / D e�z=2˚.˛; 1=2I z/;
u2.xIW / D e�z=2x˚.˛ C 1=2; 3=2I z/; u1;2.xIW / D u1;2.xIW /: (8.15)

The solutions u1;2.xIW / are real entire functions in W for any fixed x, and they
form a special fundamental system of solutions of (8.8) for any 
 andW , for which

u.l�1/k .0IW / D ıkl ; k; l D 1; 2; Wr.u1; u2/ D 1 :

Solutions (8.15) have the following asymptotics as jxj ! 1 (˛; ˛ C 1=2 ¤
�n; n 2 ZC/:

u1.xIW / D
"

u.xIW /
� . Q̨ / C

u.xIW /
� .˛/

#
QO.x�2/ D O

�
jxj�1=2C2j Im wj� ;
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u2.xIW / D ˙ 1

2


"
ei�=4u.xIW /
� . Q̨ C 1=2/ C

e�i�=4u.xIW /
� .˛ C 1=2/

#
QO.x�2/

D O.jxj�1=2C2j Im wj/; Q̨ D 1=4� iw;
u.xIW / D p�e�i .
x/2=2.e�i�=4
jxj/�1=2�2iw:

Another fundamental system v1;2.xIW /;

v˙.xIW / D ei�=4

� . Q̨ C 1=2/u1.xIW /˙ 2


� . Q̨ /u2.xIW /;

Wr.vC; v�/ D � 4
ei�=4

� . Q̨ /� . Q̨ C 1=2/ D �!.W /;

v˙.xIW / D


O.jxj�1=2˙2 Im w/; x !1;
O.jxj�1=2�2 Im w/; x ! �1; Im w > 0;

of solutions of (8.8) (for ˛; ˛ C 1=2 ¤ �n; n 2 ZC) is convenient (due to their
asymptotic properties) to construct the Green’s function.

These solutions are well defined for any 
 and W , in particular for ImW > 0,
and are normalized as follows:

v˙.0IW / D ei�=4� �1. Q̨ C 1=2/; v0C.0IW / D �v0�.0IW / D 2
� �1. Q̨ /:

The functions v˙ and their linear combinations are not square-integrable for
ImW > 0. The latter means that deficiency indices are zero, which confirms the
fact that OH1 D OHC is a unique s.a. extension of OH .

In the standard manner, we obtain the Green’s function

G .x; yIW / D !�1.W /



v�.xIW /vC.yIW /; x > y;
vC.xIW /v�.yIW /; x < y:

Then following Sect. 5.3.2, we obtain the matrix functionMkl.0IW /;

Mkl.0IW / D Gkl .�0;C0IW / D antidiag .�1=2; 1=2/
Cdiag

��
e�2�w C i� �1.E/;

��e�2�w C i� �2.E/
�
; E D ReW;

�1.E/ D 1

8�2

j� �1=4C iE=4
2� j2e�E=4
2 ;

�2.E/ D 


2�2
j� �3=4C iE=4
2� j2e�E=4
2 ;

and the derivative of the matrix spectral function, � 0
kl .E/ D diag .�1.E/; �2.E// :
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Thus, the spectrum of OH1 is twofold degenerate and reads spec OH1 D R. The
eigenfunctions UiE.x/ D

p
�i .E/ui .xIE/, i D 1; 2, E 2 R, of OH1 form a

complete orthonormalized system in L2.R/.

8.3 ESP III

In this case,

V.x/ D g1x�1 C g2x�2; x 2 RC; (8.16)

and the corresponding Schrödinger equation is

 00 � .g1x�1 C g2x�2 �W / D 0 : (8.17)

The case g1D 0 corresponds to the Calogero potential and was already consid-
ered in Sect. 7.2, so that we keep g1 ¤ 0 in what follows.

It should be noted that on the physical level of rigor, the Schrödinger equation
with potential (8.16) was studied for a long time in connection with different phys-
ical problems; see for example [61, 137] and books [59, 104]. The potential (8.16)
is singular at the origin. It is repulsive at this point for g2 >0, and has a minimum
at a point x0 > 0 for g2 > 0 and g1 > 0. The potential with g1; g2 in the latter range
is known as the Kratzer potential [100]. The Kratzer potential is conventionally
used to describe molecular energy and structure, interactions between different
molecules [22]. For g2 > 0 and g1 > 0, we have the inverse Kratzer potential, which
is conventionally used to describe tunnel effects, scattering of charged particles
[115] and decays, in particular, molecule ionization and fluorescence [19]. In
addition, valence electrons in a hydrogen-like atom are described in terms of such a
potential [54].

First we consider the case g2 ¤ 0 (the case g2 D 0 is considered below in
Sect. 8.3.5.

As in the previous cases, the initial symmetric operator OH associated with LH is
defined on the domain DH D D .RC/ and OHC is defined on the natural domain
D�

LH.RC/.
We first consider the Schrödinger equation (8.17). Introducing a new variable z

and new functions 
˙, instead of the respective x and  .x/ ;

z D �x; � D 2p�W D 2
p
jW jei.'��/=2;  .x/ D x1=2˙�e�z=2
˙.z/;

� D

 p

g2 C 1=4; g2 � �1=4
i~; ~ Dpjg2j � 1=4; g2 < �1=4 ; W D jW je

i' ; 0 � ' � �; (8.18)

we reduce (8.17) to the confluent hypergeometric equations for 
˙.z/,
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zd2z 
˙.z/C .ˇ˙ � z/dz
˙.z/ � ˛˙
˙.z/ D 0;
˛˙ D 1=2˙ �C g1=�; ˇ˙ D 1˙ 2�; (8.19)

whose solutions are the known confluent hypergeometric functions˚.˛˙; ˇ˙I z/ and
	.˛˙; ˇ˙I z/; see [1, 20, 81].

Solutions  .x/ of (8.17) are restored from solutions of (8.19) by transformation
(8.18). In what follows, we use u1.xIW /, u2.xIW /, and 
1.xIW / defined by

u1 .xIW / D x1=2C�e�z=2˚.˛C; ˇCI z/ D u1 .xIW /j�!�� ;

u2 .xIW / D x1=2��e�z=2˚.˛�; ˇ�I z/ D u2 .xIW /j�!��
D u1 .xIW /j�!�� ; 
1 .xIW / D �2�x1=2C�e�z=2	.˛C; ˇCI z/

D �2� � .�2�/
� .˛�/

u1 C � .2�/

� .˛C/
u2: (8.20)

The function u2 is not defined for ˇ� D �n, or � D .n C 1/=2; n 2 ZC, in
particular, for � D 1=2. For such �, we replace u2 by other solutions of (8.17); they
are considered in the subsequent sections.

The coefficients of the Taylor expansion of functions u1.xIW /=x1=2C� and
u2.xIW /=x1=2�� with respect to x are polynomials in �. Because these functions
are even in �, the coefficients are polynomials in W , whence it follows that
u1 .xIW / and u2 .xIW / are entire functions in W at any point x except x D 0

for u2 with � > 1=2.
If g2 � �1=4 (� � 0), then u1 .xIW / and u2 .xIW / are real entire functions

of W . If g2 < �1=4 (� D i~), then u2 .xIE/ D u1 .xIE/.
The pairs u1; u2 with � ¤ 0 and u1; 
1 for ImW ¤ 0 are the fundamental

systems of solutions of (8.17) because the respective Wronskians are

Wr .u1; u2/ D �2�; Wr .u1; 
1/ D �� .ˇC/=� .˛C/ � �!.W /: (8.21)

The well-known asymptotics of the special functions ˚ and 	 , see e.g. [20],
entering solutions (8.20) allow us to estimate simply the asymptotic behavior of the
solutions at the origin as x ! 0, and at infinity as x !1.

As x ! 0, we have

u1.xIW / D ��1=2��
0 u1as.x/CO.x3=2C�/; u2.xIW / D ��1=2C�

0 u2as.x/

C
8
<

:

O.x5=2��/; �1=4 < g2 < 3=4; g2 ¤ 0;
.0 < � < 1; � ¤ 1=2/;
O.x3=2/; g2 < �1=4 .� D i~/;

(8.22)

and if ˛C ¤ �n, ˛� ¤ �m, n;m 2 ZC,
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1.xIW / D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

� .2�/

� .˛C/
x1=2�� QO.x/; g2 � 3=4 .� � 1/;

�2�� .�2�/
� .˛�/

�
�1=2��
0 u1as.x/C � .2�/

� .˛C/
�

�1=2C�
0 u2as.x/;

CO.x3=2/; �1=4 < g2 < 3=4; g2 ¤ 0 .0 < � < 1; � ¤ 1=2/;
�2i~� .�2i~/
� .˛�/

�
�1=2�i~
0 u1as.x/C � .2i~/

� .˛C/
�

�1=2Ci~
0 u2as.x/;

CO.x3=2/; g2 < �1=4 .� D i~/;
(8.23)

where

u1as.x/ D .�0x/1=2C�;

u2as.x/ D

8
ˆ̂<

ˆ̂
:

.�0x/
1=2�� � g1=�0

2��1 .�0x/
3=2��; �1=4 < g2 < 3=4; g2 ¤ 0;

.0 < � < 1; � ¤ 1=2/;

.�0x/
1=2�i~ ; g2 < �1=4 .� D i~/;

and �0 is an arbitrary, but fixed, parameter of dimension of inverse length.
As x !1; ImW > 0, we have

u1.xIW / D � .ˇC/
� .˛C/

�˛C�ˇCxg1=�ez=2 QO.x�1/

D O
�
xaejW j1=2 sin.'=2/

�
; 
1.xIW / D ��˛�x�g1=�e�z=2 QO.x�1/

D O
�
x�ae�jW j1=2 sin.'=2/

�
; a D 2�1jW j�1=2g1 sin.'=2/ :

The obtained asymptotics are sufficient to allow definite conclusions about the
deficiency indices of the initial symmetric operator OH as functions of the parameters
g1; g2 and thereby about a possible variety of its s.a. extensions. It is evident
that for Im >0, the function u1.xIW / exponentially increasing at infinity is not
square-integrable. The function 
1 .xIW / exponentially decreasing at infinity is not
square-integrable at the origin for g2 � 3=4 (� � 1/, whereas for g2 <3=4, it is
(moreover, for g2 <3=4, any solution of (8.17) is square-integrable at the origin).
Because for ImW > 0, the functions u1; 
1 form a fundamental system of (8.17),
this equation with ImW >0 has no square-integrable solutions for g2 � 3=4,
whereas for g2 < 3=4, there exists one square-integrable solution, 
1 .xIW /. This
means that the deficiency indices of the initial symmetric operator OH are equal to
zero for g2 � 3=4, and are m˙ D 1 for g2 < 3=4.

Analogously, for g2 � 3=4, there is a unique s.a. extension of OH , whereas for
g2 < 3=4, there exists a one-parameter family of s.a. extensions of OH . A structure
of these extensions, in particular an appearance of their specifying asymptotic
boundary conditions, depends crucially on a specific range of values of the
parameter g2. In what follows, we distinguish five such regions and consider them
separately.
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8.3.1 Range 1

In this range, we have
g2 � 3=4 .� � 1/ : (8.24)

As was mentioned above, the deficiency indices of the initial symmetric operator
OH with g2 in this range are zero. This implies that for g2 � 3=4, the operator OHC

is s.a. and OH1 D OHC is a unique s.a. extension of OH with the domain DH1 D
D�

LH .RC/.
A spectral analysis of the s.a. operator OH1 D OHC begins with an evaluation of

its Green’s function G .x; yIW /, which is the kernel of the integral representation
of the solution  � .x/ of the inhomogeneous differential equation

� LH �W
�
 � .x/ D �.x/; �.x/ 2 L2.RC/ (8.25)

with ImW ¤ 0 under the condition that  � 2 D�
LH .RC/. The general solution of

this equation without the condition of square-integrability can be represented as

 �.x/ D a1u1.xIW /C a2
1.xIW /C I.xIW /;

 0�.x/ D a1u0
1.xIW /C a2
 0

1.xIW /C I 0.xIW /; (8.26)

where

I.xIW / D
Z x

0

G.C/ .x; yIW / �.y/dy C
Z 1

x

G.�/ .x; yIW /�.y/dy;

I 0.xIW / D
Z x

0

dxG
.C/ .x; yIW /�.y/dy C

Z 1

x

dxG
.�/ .x; yIW / �.y/dy;

G.C/ .x; yIW / D !�1.W /
1.xIW /u1.yIW /;
G.�/ .x; yIW / D !�1.W /u1.xIW /
1.yIW /;

with ! given in (8.21). Using the Cauchy–Schwarz inequality, it is easy to show
that I.xIW / is bounded as x ! 1. The condition  �.x/ 2 L2.RC/ then implies
that a1 D 0, because u1.xIW / exponentially grows while 
1.xIW / exponentially
decreases at infinity. As x ! 0, we have I.x/ � O.x3=2/, I 0.x/ � O.x1=2/ (up
to logarithmic accuracy at g2 D 3=4), whereas 
1.xIW / is not square-integrable at
the origin. The condition  �.x/ 2 L2.RC/ then implies that a2 D 0. In addition,
we see that the asymptotic behavior of functions  �.x/ belonging to D�

LH .RC/ at
the origin, as x ! 0, is estimated by

 �.x/ D O.x3=2/;  0�.x/ D O.x1=2/:
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Together with the fact that the functions  � vanish at infinity (see below), this
implies that the asymmetry form �HC is trivial, which confirms that in the first
range, the operator OHC is symmetric and therefore s.a. (in contrast to the next ranges
considered in the subsequent sections).

It follows that the Green’s function of OH1 is given by

G .x; yIW / D


G.C/ .x; yIW /; x > y;

G.�/ .x; yIW /; x < y:

The representation (8.20) of the function 
1 in terms of the functions u1 and u2
is inconvenient sometimes because the individual summands do not exist for some
� although 
1 does. For our purposes, other representations are convenient. For
m � 1 < 2� < mC 1, m � 2, the function 
1.xIW / can be represented as


1.xIW / D Am.W /u1.xIW /C !.W /

2�

.m/.xIW /;

Am.W / D �2� � .�2�/
� .˛�/

C am.W /� .2�/� .ˇ�/
� .˛C/

;


.m/.xIW / D u2 .xIW /� am.W /� .ˇ�/u1 .xIW / ;

am.W / D �m � .˛Cm/
mŠ� .˛�m/

; ˛˙m D 1˙m
2
C g1=�:

It is easy to see that all the coefficients am.W / are polynomials in W that are real
for ImW D 0 (W D E). In view of the relation

lim
ˇ!�n �

�1.ˇ/˚.˛; ˇI x/ D xnC1� .˛ C nC 1/
.nC 1/Š� .˛/ ˚.˛ C nC 1; nC 2I x/ (8.27)

(see [20,81]), the functions 
.m/.xIW / and Am.W / exist form� 1 < 2� < mC 1
and for any W . In fact, 
.m/.xIW / are particular solutions of (8.17) that are real
entire in W and have the properties (form � 1 < 2� < mC 1)

Wr.u1; 
.m// D �2�; 
.m/.xIW / D x1=2�� QO.x/; x ! 0:

Consider the guiding functional

˚.�IW / D
Z 1

0

u1.xIW /�.x/dx; � 2 Dr.RC/ \DH1:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D u1 ( QU D V.m//, and therefore, the spectrum of
OH1 is simple.
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The derivative of the spectral function is given by

� 0.E/ D ��1 Im
�
!�1.E C i0/Am.E C i0/

�
: (8.28)

Because !�1.W /Am.W / is an analytic function of �, its value at � D m=2 is a
limit as �! m=2. For � ¤ m=2, representation (8.28) can be simplified to

� 0.E/ D Im˝�1.E C i0/; ˝.W / D �� .˛�/� .ˇC/
�2�� .�2�/� .˛C/

:

For E D p2 � 0, p � 0, � D 2pe�i�=2, we obtain

� 0.E/ D
� j� .˛C/j
� .ˇC/

�2
.2p/2�e��g1=2p

2�
> 0:

We see that � 0.E/ is a nonsingular function for E � 0. It follows that the spectrum
of the s.a. Hamiltonian OH1 is continuous for all such values of E .

For E D ��2 < 0, � > 0, � D 2� , the function ˝�1.E/ is real for all values
of E where ˝�1.E/ is finite, which implies that Im˝�1.E C i0/ can differ from
zero only at the discrete pointsEn where˝.En/ D 0. It is easy to see that the latter
equation is reduced to the equations ˛C.En/ D �n, n 2 ZC, which have solutions
only if g1 < 0, and the solutions En are then given by

En D �g21.1C 2�C 2n/�2; �n D jg1j .1C 2�C 2n/�1 : (8.29)

We thus obtain that forE < 0, the function � 0.E/ is equal to zero if g1 > 0, whereas
if g1 < 0, this function is given by

� 0.E/ D
1X

nD0
Q2
nı.E � En/; Qn D .2�n/

�C1

� .ˇC/

s
� .1C 2�C n/
.1C 2�C 2n/ nŠ :

The final result of this section is as follows. For g2 > 3=4, the spectrum of OH1 is
simple and given by

spec OH1 D


RC; g1 > 0;
RC [ fEn; g; g1 < 0:

For g1 > 0, the generalized eigenfunctions UE .x/ D
p
� 0.E/u1.xIE/, E � 0,

of OH1 form a complete orthonormalized system in L2.RC/. For g1 < 0, the
generalized eigenfunctions UE .x/ D

p
� 0.E/u1.xIE/, E � 0, of OH1 together

with the eigenfunctions Un.x/ D Qnu1.xIEn/, n 2 ZC, form a complete
orthonormalized system in L2.RC/.



8.3 ESP III 295

8.3.2 Range 2

In this range, we have
3

4
> g2 > �1

4
.1 > � > 0/:

To obtain asymptotics of functions fromD�
LH .RC/, we consider the general solution

of (8.25). Because in the range under consideration, any solution of (8.17) is
square-integrable at the origin, the general solution of (8.25) with W D 0 can be
represented as

 �.x/ D a1u1.xI 0/C a2u2.xI 0/

� 1

2�

Z x

0

Œu1.xI 0/u2.yI 0/� u2.xI 0/u1.yI 0/� �.y/dy: (8.30)

It follows from Lemma 2.14 that  �.x/;  0�.x/
x!1�! 0 because the corresponding

potential tends to zero as x !1.
The asymptotic behavior of integral terms in (8.30) as x ! 0 is estimated with

the help of the Cauchy–Schwarz inequality, and we obtain

 �.x/ D a1u1as.x/C a2u2as.x/CO
�
x3=2

�
;

 0�.x/ D a1u0
1as.x/C a2u0

2as.x/CO
�
x1=2

�
:

Taking into account the asymptotic behavior of functions (8.30) as x ! 0 and
x !1; we obtain �HC.�/ D �2�k0.a1a2 � a2a1/. Such a structure implies that
the deficiency indices of OH are m˙ D 1. Imposing the condition�HC.�/ D 0; we
obtain a relation on the coefficients a1 and a2,

a2 sin � D a1 cos �; � 2 S .��=2; �=2/ :
Thus, in the range under consideration, there exists a family of s.a. Hamiltonians
OH2;� parameterized by � with domains DH2;� that consist of functions from
D�

LH.RC/ with the following asymptotic behavior at the origin x ! 0:

 .x/ D C as.x/CO.x3=2/;  0.x/ D C as0.x/CO.x1=2/;
 as.x/ D u1as.k0x/ sin � C u2as.x; k0/ cos �: (8.31)

Imposing boundary condition (8.31) on the function (8.26) (with a1 D 0), and
using asymptotics (8.22) and (8.23), we obtain Green’s functions of the operators
OH2;� :

G.x; yIW / D ˝�1.W /u2;�.xIW /u2;�.yIW /

C 1

2�k0


 Qu2;�.xIW /u2;�.yIW /; x > y;
u2;�.xIW /Qu2;�.yIW /; x < y; (8.32)
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where

u2;�.xIW / D k1=2C�0 u1.xIW / sin � C k1=2��0 u2.xIW / cos �;

Qu2;�.xIW / D �k1=2C�0 u1.xIW / cos � C k1=2��0 u2.xIW / sin �;

˝.W / D 2�k0!2.W / Q!�1
2 .W /;

!2.W / D sin � C f .W / cos �; Q!2.W / D cos � � f .W / sin �;

f .W / D .�=k0/2� � .˛C/� .ˇ�/
� .˛�/� .ˇC/

;

and we used the relation


1.xIW / D .2�/�1k�1=2C�
0 !.W /Œ Q!2;�.W /u2;�.xIW /C !2;�.W /Qu2;�.xIW /�:

We note that the functions u2;�.xIW / and Qu2;�.xIW / are solutions of (8.17) that
are real entire in W , u2;�.xIW / satisfies boundary condition (8.31), and the second
summand on the right-hand side of (8.32) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

u2;�.xIW /�.x/dx; � 2 D D Dr.RC/\DH2;� :

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D u2;� ( QU D Qu2;�/, and therefore, the spectra
of OH2;� are simple. The derivative of the spectral function reads � 0.E/ D
��1 Im˝�1.E C i0/:

It is convenient to consider the cases j�j < �=2 and � D ˙�=2 separately. We
first consider the case � D �=2, where we have

u2;�=2.xIW / D k1=2C�0 u1.xIW /; ˝�1.W / D �� .˛C/� .ˇ�/.�=k0/2�

2�k0� .˛�/� .ˇC/
:

We see that all results for spectrum and system of the normalized (generalized)
eigenfunctions coincide with those of the first range (g2 � 3=4). In particular, the
expressions for discrete energy levels (we will denote them by En) are given by
(8.29):

En D � g21
.1C 2�C 2n/2 ; �n D

p
jEnj D jg1j

1C 2�C 2n:

We obtain the same results in the case � D ��=2.
Second, we consider the case � D 0. Here we have

u2;0.xIW / D k1=2��0 u2.xIW /;

� 0.E/ D ��1 Im˝�1.E C i0/; ˝�1.W / D .k0=�/
2�� .ˇC/� .˛�/

2�k0� .ˇ�/� .˛C/
:
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Let g1 > 0. For E D p2 � 0, p � 0, � D 2pe�i�=2, we have

� 0.E/ D
� j� .˛�/j
j� .ˇ�/j

�2
.k0=2p/

2�e��g1=2p

2�k0
: (8.33)

For E D ��2 < 0, � > 0, � D 2� , the function ˝�1.E/ is real for those E for
which ˝�1.E/ is finite, so that Im˝�1.E C i0/ can differ from zero only for E
that provide˝�1.E/ D1. The latter is possible only for ˛� D �n (� .˛�/ D1),
n 2 ZC, or

1 � 2�C g1=� D �2n; n 2 ZC: (8.34)

Equations (8.34) have no solutions for 0 < � < 1=2 and have one solution for
1=2 < � < 1: n D 0, � D ��1.0/ D g1=.2�� 1/, E D E�1.0/ D ��2�1.0/.

Let g1 < 0. ForE D p2 � 0, p � 0, � D 2pe�i�=2, the derivative of the spectral
function is given by (8.33).

For E D ��2 < 0, � > 0, � D 2�; the function ˝�1.E/ is real for E ¤ En.0/

(˝.En.0// D1), so that � 0.E/ does not vanish only at the pointsE D En.0/. The
equation ˝�1.En.0// D 1 implies the condition ˛� D 1=2� � � jg1j=2�n.0/ D
�n (� .˛�/ D 1), which gives

En.0/ D ��2n.0/ D �
�

g1

1 � 2�C 2k
�2
; k D



n; 0 < � < 1=2;

nC 1; 1=2 < � < 1; n 2 ZC:

Thus for g1 < 0, the simple spectrum of OH2;0 is given by spec H2;0 D RC [
fEn.0/; n 2 ZCg and a complete orthonormalized system in L2.RC/ consists of
(generalized) eigenfunctions

UE.x/ D
p
� 0.E/u2.xIE/; E � 0;

Un.x/ D .2�n/
1��

j� .ˇ�/j

s
� .1 � 2�C k/
.1 � 2�C 2k/kŠu2.xIEn.0//; n 2 ZC; (8.35)

of OH2;0:

For 0 < � < 1=2, g1 > 0, the simple spectrum of OH2;0 is given by spec OH2;0 D
RC, and a complete orthonormalized system in L2.RC/ consists of generalized
eigenfunctions UE.x/ (8.35) with the corresponding parameters and the function
� 0.E/.

For 1=2 < � < 1, g1 > 0; the simple spectrum of OH2;0 is given by spec H2;0 D
RC [ fE�1.0/g and a complete orthonormalized system in L2.RC/ consists of
generalized eigenfunctionsUE.x/ (8.35) with the corresponding parameters and the
function � 0.E/, and only one eigenfunction of the discrete spectrum U�1.x/, given
by (8.35) with n D �1 and k D 0.
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Now we turn to the general case j�j < �=2. In this case we have

� 0.E/ D �2��k0 cos2 �
��1

Imf �1
� .E C i0/;

f�.W / D f .W /C tan �; f .W / D .�=k0/
2�� .ˇ�/� .˛C/

� .ˇC/� .˛�/
:

For E D p2 � 0, p � 0, � D 2pe�i�=2, we have

� 0.E/ D B.E/

2�k0 cos2 �ŒA2.E/C �2B2.E/�
; (8.36)

where A.E/ D Re f�.E/ and �B.E/ D � Imf�.E/. A direct calculation gives

A.E/ D �j� .˛C/j2.2p=k0/2�
sin.2��/� 2.ˇC/

�
e��g1=2p cos.2��/C e�g1=2p

�C tan �;

B.E/ D j� .˛C/j2.2p=k0/2�e��g1=2p

� 2.ˇ/
: (8.37)

For E D ��2 < 0, � > 0, � D 2� , the function f�.E/ is real, and therefore,
� 0.E/ can differ from zero only at the discrete pointsEn.�/ such that f�.En.�//D 0,
or f .En.�// D � tan �, and we obtain that

� 0.E/ D
X

n

��2�k0f 0
� .En.�// cos2 �

��1
ı.E � En.�//;

f 0
� .En.�// D f 0.En.�// < 0; @�En.�/ D � cos�2 �

�
f 0.En.�//

��1
> 0: (8.38)

1. Let g1 > 0. ForE D p2 > 0, p > 0, the function � 0.E/ (8.36) is a finite positive
function. At E D 0, we have B.0/ D 0 and

A.0/j�D��1
D 0; tan ��1 D � .g1=k0/

2�� .ˇ�/
� �1.ˇC/

;



��1 > 0; 1=2 < � < 1;
��1 < 0; 0 < � < 1=2:

It is easy to see that

f�.W / D tan � � tan ��1 �
�
2�k0 cos2 ��1

��1
	�2W CO.W /; W ! 0 ;

	 D g1.g1=k0/
��

� cos ��1

s
3� .1C 2�/

2k0.1C 2�/� .2 � 2�/:

It follows that for � ¤ ��1, the function � 0.E/ is finite at E D 0. But for � D ��1
and for small E , we have

� 0.E/ D � 1
�
	2 Im .E C i0/�1 CO.1/ D 	2ı.E/CO.1/;
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which means that there is the eigenvalue E D 0 in the spectrum of the s.a.
Hamiltonian OH2;��1 .

For E D ��2 < 0, � D 2� , the function f .E/,

f .E/ D � .ˇ�/
� .ˇC/

� .1=2C �C g1=2�/.2�=k0/2�
� .1=2� �C g1=2�/ ;

has the properties that f .E/ is a smooth function for E 2 .�1; 0/, f .E/!1 as
E D �1,

f .0/ D � tan ��1


< 0; 1=2 < � < 1;

> 0; 0 < � < 1=2:

Because f 0.En .�// < 0, the straight line Qf .E/ D � tan �, E 2 .�1; 0�,
can intersect the plot of the function f .E/ no more than once. That is why the
equation f�.E/ D 0 has no solutions for � 2 .��1; �=2/, while for any fixed
� 2 .��=2; ��1�, this equation has only one solution E�1 .�/ 2 .�1; 0�; which
increases monotonically from �1 to 0 as � changes from ��=2C 0 to ��1.

We thus obtain that the spectrum of OH2;� , j�j < �=2, with g1 > 0 is simple and
given by

spec OH2;� D


RC [ fE�1 .�/g; � 2 .��=2; ��1�;
RC; � 2 .��1; �=2/:

The generalized eigenfunctions

UE.x/ D
p
� 0.E/u2;�.xIE/; E � 0;

and (for � 2 .��=2; ��1�) the eigenfunction

U�1.x/ D
��2�k0f 0.E�1 .�// cos2 �

��1=2
u2;� .xIE�1 .�//

of OH2;� , form a complete orthonormalized systems in L2.RC/.

2. Let g1 < 0. Then for E D p2 � 0, p � 0, � D 2pe�i�=2, formulas (8.36)
and (8.37) hold. Because the functions A.E/ and B.E/ are finite at E D 0

(B.0/ ¤ 0), the function � 0.E/ (8.36) is a finite positive function for E � 0.
This means that for E � 0, the spectra of s.a. Hamiltonians OH2;� are simple,
purely continuous, and given by spec OH2;� D RC.

For E D ��2 < 0, � > 0, � D 2� , we have

f .E/ D � .ˇ�/
� .ˇC/

� .1=2C � � jg1j=2�/.2�=k0/2�
� .1=2� � � jg1j=2�/ :

It is easy to see that for fixed �, the spectrum is bounded from below and the
equation f�.En .�// D 0 has an infinite number of solutions,

En .�/ D �g21=4n2 CO.n�3/;

asymptotically coinciding with (8.29) as n!1.
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We thus obtain that the spectrum of OH2;� , j�j < �=2, with g1 < 0 is simple and
given by spec OH2;� D RC[fEn .�/g. The corresponding generalized eigenfunctions
of the continuous spectrum

UE.x/ D
p
� 0.E/u2;�.xIE/; E � 0;

and eigenfunctions of the discrete spectrum

Un.x/ D
��2�k0f 0.En .�// cos2 �

��1=2
u2;�.xIEn .�//; En .�/ < 0;

of OH2;� form a complete orthonormalized system in L2.RC/.
It is possible to give a description of the discrete spectrum of the Hamiltonians
OH2;� , j�j < �=2, g1 < 0, in more detail.

The function f .E/ has the properties f .E/ ! 1 as E ! �1; f .En ˙ 0/ D
˙1; n 2 ZC, and we have

En .0/ < En < EnC1 .0/ < EnC1; n 2 ZC:

Taking the second equality in (8.38) into account, we can see that in each energy
interval .En�1; En/, n 2 ZC, for a fixed � 2 .��=2; �=2/, there is one discrete level
En.�/ that increases monotonically from En�1 C 0 to En � 0 when � changes from
�=2� 0 to ��=2C 0 (we set E�1 D �1). We note that the relations

lim
�!�=2

En .�/ D lim
�!��=2 EnC1 .�/ D En; n 2 ZC;

confirm the equivalence of s.a. extensions with parameters � D ��=2 and � D �=2.
It should be also pointed out that bound states exist even for the repulsive

potential, g2,g1 > 0.

8.3.3 Range 3

In this range, we have

g2 D �1=4 .� D 0/:

The analysis in this section is similar to that in the previous section. A peculiarity
is that ˛C D ˛� D ˛ D 1=2 C g1=�, ˇC D ˇ� D 1, u1 .xIW / D u2 .xIW /,
and representation (8.20) of 
1 .xIW / in terms of u1 and u2 does not hold. As
the solutions of (8.17) with g2 D �1=4, we therefore use the functions u1.xIW /,
u3.xIW /, and 
1 .xIW / respectively defined by
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u1 .xIW / D x1=2e�z=2˚.˛; 1I z/ D u1 .xIW /j�!��;

u3 .xIW / D @

@�

�
u1 .xIW /j�¤0

�
�D0 C ln k0u1 .xIW /;


1 .xIW / D x1=2e�z=2	.˛; 1I z/ D � �1.˛/ Œ!0.W /u1 .xIW / � u3 .xIW /�;

!0.W / D 2 .1/ �  .˛/ � ln.�=k0/;

where  .˛/ D � 0.˛/=� .˛/ and k0 is a constant. The functions u1 .xIW / and
u3 .xIW / are real entire in W .

The asymptotic behavior of these functions at the origin and at infinity is
respectively as follows.

As x ! 0, z D �x ! 0, we have

u1.xIW / D k�1=2
0 u1as.x/CO.x3=2/; u1as.x/ D .k0x/1=2;

u3.xIW / D k�1=2
0 u3as.x/CO.x3=2 ln x/; u3as.x/ D .k0x/1=2 ln.k0x/;


1.xIW / D k�1=2
0 � �1.˛/ Œ!0.W /u1as .x/ � u3as .x/�CO.x3=2 lnx/: (8.39)

As x !1, ImW > 0, we have

u1.xIW / D � �1.˛/�˛�1xg1=�ez=2 QO.x�1/!1;

1.xIW / D ��˛x�g1=�e�z=2 QO.x�1/! 0:

Both sets u1; u3 and u1; V1 are linearly independent,

Wr .u1; u3/ D 1; Wr .u1; 
1/ D �� �1.˛/I
in particular, u1 and 
1 form a fundamental system of solutions of (8.17) for ImW ¤
0 and W D 0.

Because any solution of (8.17) is square-integrable at the origin, to study
asymptotics of functions  � 2 D�

LH.RC/, we use the general solution (8.30) of
(8.25), performing there the substitutions a2u2 ! a2u3 and u2=2�! �u3.

Taking into account that the potential vanishes as x ! 1; we have  �.x/;
 0�.x/

x!1�! 0. Using the Cauchy–Schwarz inequality for estimating the integral
terms, we obtain that the desired asymptotic as x ! 0 is given by

 �.x/ D a1u1as.x/C a2u3as.x/CO
�
x3=2 lnx

�
;

 0�.x/ D a1u0
1as.x/C a2u0

3as.x/CO
�
x1=2 lnx

�
:

Then we obtain �HC. �/ D k0.a1a2 � a2a1/: Therefore, the deficiency indices of
OH are m˙ D 1. The requirement that�HC vanish results in the relation

a1 cos# D a2 sin#; # 2 S .��=2; �=2/ :
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Thus, there exists a family of s.a. Hamiltonians OH3;# with the domains DH3;#

that consist of functions from D�
LH.RC/ with the following asymptotic behavior as

x ! 0:

 D C 3;#as.x/CO.x3=2 ln x/;  0 D C 0
3;#as.x/CO.x1=2 ln x/;

 3;#as.x/ D u1as.x/ sin# C u3as.x/ cos#: (8.40)

Therefore,

DH3;# D
n
 W  2 D�

LH.RC/;  obey (8.40)
o
:

Imposing s.a. boundary condition (8.40) on the functions (8.26) (with a1 D 0),
and using asymptotics (8.39), we obtain the Green’s functions of the operators OH3;# :

G.x; yIW / D ˝�1.W /u3;#.xIW /u3;#.yIW /

C

 Qu3;#.xIW /u3;#.yIW /; x > y;

u3;#.xIW /Qu3;#.yIW /; x < y;

where

˝.W / D .!0 cos# C sin#/.!0 sin# � cos#/�1;

u3;#.xIW / D u1.xIW / sin# C u3.xIW / cos#;

Qu3;#.xIW / D u1.xIW / cos# � u3.xIW / sin#;

� .˛/
1 D .!0 sin# � cos#/u3;# C .!0 cos# C sin#/Qu3;# :
We note that u3;# and Qu3;# are solutions of (8.17) real entire in W , the solution u3;#
satisfies the boundary condition (8.40), and the second summand in G.x; yIW / is
real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

u2;#.xIW /�.x/dx; � 2 Dr.RC/ \DH3;# :

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D u3;# ( QU D Qu3;# /, and therefore, the spectra of
OH3;# are simple.

The derivative of the spectral function is given by � 0.E/ D ��1 Im˝�1.ECi0/:
We first consider the case # D �=2, where we have

u3;�=2.xIW / D u1.xIW /; ˝.W / D � Œ .˛/C ln.�=k0/�
�1 :

For E D p2 � 0, p � 0, � D 2pe�i�=2, we obtain

� 0.E/ D 1

2

�
1 � tan h

�g1

2p

�
� 0:
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For E D ��2 < 0, � > 0, � D 2� , and g1 > 0, the function˝.E/ is of the form

˝.E/ D � Œ .1=2C g1=2�/C ln.2�=k0/�
�1 ;

which implies that for g1 > 0, there is no negative part of the spectrum.
For E D ��2 < 0, � > 0, � D 2� , and g1 < 0, we have

˝.E/ D � Œ .1=2 � jg1j=2�/C ln.2�=k0/�
�1 ;

which implies that there are discrete negative energy levels En in the spectrum,

En D �g21.1C 2n/�2; �n D jg1j.1C 2n/�1; n 2 ZC;

� 0.E/ D
X

n2ZC

Q2
nı.E � En/; Qn D 2jg1j .1C 2n/�3=2 :

It is easy to see that for the case of # D ��=2, we obtain the same results for
spectrum and eigenfunctions, as must be the case.

We thus obtain that for g1 > 0, the spectrum of OH3;˙�=2 is simple, given by
spec OH3;˙�=2 D RC, and a complete orthonormalized system in L2.RC/ of its
generalized eigenfunctions is

UE.x/ D
p
� 0.E/u1.xIE/; E � 0:

For g1 < 0, the spectrum of OH3;˙�=2 is simple and given by spec OH3;˙�=2 D
RC [ fEn; n 2 ZCg, and a complete orthonormalized system in L2.RC/ of its
(generalized) eigenfunctions reads

UE.x/ D
p
� 0.E/u1.xIE/; E � 0;

Un.x/ D 2jg1j .1C 2n/�3=2 u1.xI En/; En < 0:

We note that the spectrum and eigenfunctions for OH3;�=2 coincide with those for
OH1 with g2 � 3=4, if we set � D 0 in the respective formulas in Sect. 8.3.1.

We now turn to the case j#j < �=2. In this case, � 0.E/ can be represented as

� 0.E/ D .� cos2 #/�1 Im Œ!3.E C i0/��1 ;
!3.W / D  .˛/C ln.�=k0/� 2 .1/� tan#:

For E D p2 � 0, p � 0, � D 2pe�i�=2, and g1 < 0, we have

� 0.E/ D B.E/

� cos2 #ŒA2.E/C B2.E/�
; (8.41)
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where !3.E/ D A.E/� iB.E/. The function B.E/ can be explicitly calculated:

B.E/ D �

2

�
1 � tan h

�g1

2
p
E

�
> 0; 8E � 0; (8.42)

whence it follows that for all E � 0, the spectrum of OH3;# is purely continuous.
For E D p2 > 0, p > 0, � D 2pe�i�=2, and g1 > 0, the spectral function

is given by the same (8.41) and (8.42). But in this case, B.0/ D 0 and the limit
limW!0 !3.W / must be carefully examined.

At small W , we have

!3.W / D .tan#.�/�tan#/��6g21
��1

W CO.W 2/; tan#.�/ D ln.g1=k0/�2 .1/:
For # ¤ #.�/, the function � 0.E/ is finite at E D 0. But for # D #.�/ and small E ,
we have

� 0.E/ D � 6g21
� cos2 #.�/

Im .E C i0/�1 CO.1/ D 6g21
cos2 #.�/

ı.E/CO.1/;

which means that the spectrum of the Hamiltonian OH3;#.�/ contains an eigenvalue
E D 0.

For E D ��2 < 0, � > 0, � D 2� , the function !3.E/ is real. Therefore, � 0.E/
can differ from zero only at zero points En .#/ of !3.E/, which yields

� 0.E/ D
X

n

��k0!0
3.En .#// cos2 #

��1
ı.E � En .#//;

!3.En .#// D 0; !0
3.En .#// < 0;

and

@#En .#/ D
�
cos2 #!0

3.En .#//
��1

< 0: (8.43)

For g1 > 0, we have

!3.E/ D  .1=2C g1=2�/C ln.2�=g1/C tan#.�/ � tan#;

!3.E/ D .1=2/ ln jEj � tan# CO.1/; E ! �1;
!3.0/ D tan#.�/ � tan#:

For # < #.�/, the equation !3.E/ D 0 has no solution, whereas for # � #.�/;
it has only one solution, E.�/ .#/. Because (8.43) holds for @#E.�/ .#/, E.�/ .#/
increases from �1 to 0 as # changes from �=2 � 0 to #.�/.

For g1 < 0, we have

!3.E/ D  .1=2 � jg1j=2�/C ln.2�=k0/� 2 .1/� tan#;

!3.E/ D .1=2/ ln jEj � tan# CO.1/; E ! �1:
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It is easy to verify that the equation !3.E/ D 0 has an infinite number of solutions
En, n 2 ZC, bounded from below and asymptotically coinciding with (8.29) as
n!1, En D �g21=4n2 CO.n�3/.

We thus obtain that for g1 > 0, the spectrum of OH3;# is simple and given by
spec OH3;# D RC [

˚
E.�/ .#/

�
, and a complete orthonormalized system in L2.RC/

of its (generalized) eigenfunctions reads

UE.x/ D
p
� 0.E/u3;# .xIE/; E � 0;

U.x/ D
h
�k0 cos2 #!0

3.E
.�/ .#//

i�1=2
u3;#.xIE.�/ .#//

(the eigenvalue E.�/ .#/ exists, and therefore E.�/ .#/ and the corresponding
eigenfunction U.x/ enter the inversion formulas only if # � #.�/); for g1 < 0,
the spectrum of OH3;# is simple and given by spec OH3;# D RC [ fEn .#/g, and
a complete orthonormalized system in L2.RC/ of its (generalized) eigenfunctions
reads

UE.x/ D
p
� 0.E/u3;#.xIE/; E � 0;

Un.x/ D
��k0 cos2 #!0

3.En .#//
��1=2

u3;#.xIEn .#//; En .#/ < 0:
It is possible to describe the discrete spectrum for j#j < �=2 and g1 < 0

in greater detail. To this end, we represent the equation !3.E .#// D 0 in the
equivalent form

f .E/ D tan#; f .E/ D  .1=2 � jg1j=2�/C ln.2�=k0/� 2 .1/:
Then we have

f .�1/ D1; f .En ˙ 0/ D ˙1; n 2 ZC:

Because (8.43) holds, we can see that in each interval .En; EnC1/, n 2 f�1g [ ZC,
there is one discrete eigenvalue En .#/, and En .#/ increases monotonically from
En C 0 to EnC1 � 0 as # changes from �=2 � 0 to ��=2C 0 (we set E�1 D �1).
We note the relations

lim
#!��=2 En�1.#/ D lim

#!�=2
En.#/ D En:

8.3.4 Range 4

In this range, we have

g2 < �1=4 .� D i~; ~ > 0/ :
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Since any solution of (8.17) is square-integrable at the origin in the domain of the
parameter � under consideration, to study asymptotics of functions � 2 D�

LH.RC/,
we use the general solution (8.30) of (8.25).

Since the potential is vanishing for big x, we have  �.x/;  0�.x/
x!1�! 0; see

Sect. 7.2.3. Using the Cauchy–Schwarz inequality for the estimation of integral
terms, we obtain as x ! 0;

 �.x/ D a1u1as.x/C a2u2as.x/CO.x3=2/;
 0�.x/ D a1u0

1as.x/C a2u0
2as.x/CO.x1=2/;

u1as.x/ D .k0x/1=2Ci~ ; u2as.x/ D .k0x/1=2�i~ D u1as.x/:

Thus, we obtain �HC. �/ D �2i~.a1a1 � a2a2/; which means that the
deficiency indices of OH are m˙ D 1. The condition �HC. �/ D 0 yields
a1 D e2i�a2, � 2 S .0; �/. Therefore, there exists a family of s.a. Hamiltonians
OH4;� with domainsDH4;� that consist of functions fromD�

LH.RC/with the following
asymptotic behavior as x ! 0:

 D C 4as.x/CO.x3=2/;  0 D C 0
4as.x/CO.x1=2/;

 4as.x/ D ei�u1as.x/C e�i�u2as.x/ D  4as.x/: (8.44)

Therefore,

DH4;� D
n
 W  2 D�

LH.RC/;  obey (8.44)
o
:

Imposing s.a. boundary condition (8.44) on the functions (8.26) (with a1 D 0),
and using asymptotics (8.22), we obtain the Green’s function of the operators OH4;� ,

G.x; yIW / D ˝�1.W /u4;� .xIW /u4;� .yIW /

� 1

4~k0


 Qu4;� .xIW /u4;� .yIW /; x > y;
u4;� .xIW /Qu4;� .yIW /; x < y;

where

˝.W / D 4i~k0!4;� .W /

Q!4;� .W / ; !4;� .W / D a.W /C b.W /;

Q!4;� .W / D a.W /� b.W /; a.W / D ei�
� .ˇ/.�=k0/

�i~

� .˛/
;

b.W / D e�i� � .ˇ�/.�=k0/i~

� .˛�/
; u4;� .xIW /

D ei� k1=2Ci~0 u1.xIW /C e�i�k1=2�i~0 u2.xIW /; Qu4;� .xIW /

D i
h
e�i� k1=2�i~0 u2.xIW /� ei�k1=2Ci~0 u1.xIW /

i
; 4~V1.xIW /

D �.�=k0/i~k�1=2Ci~
0 Œi Q!4;� .W /u4;� .xIW /C !4;� .W /V� .xIW /� ;
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where u4;� and Qu4;� solutions of (8.17) are real entire inW , the solution u4;� satisfies
boundary conditions (8.44), and the second term in G.x; yIW / is real for real
WD E .

Consider the guiding functional

˚.�IW / D
Z 1

0

u4;� .xIW /�.x/dx; � 2 Dr.RC/\DH4;� :

One can see that this functional belongs to the classD of simple guiding functionals
considered in Sect. 5.4.1 with U D u4;� ( QU D Qu4;� /, and therefore, the spectra of
OH4;� are simple.

The derivative of the spectral function has the form � 0.E/D��1 Im˝�1.EC i0/.
For E D p2 � 0, p � 0, � D 2pe�i�=2, g1 < 0, we obtain

� 0.E/ D ��1 Im˝�1.E/ D .4�~k0/
�1 �1 � jD.E/j2�

.1CD.E//.1CD.E// ;

D.E/ D a.E/

b.E/
D e�2i�� .ˇ/� .˛�/e2i~ ln.k0=2p/e��~

� .ˇ�/� .˛/
: (8.45)

Because

jD.E/j2 D 1C e�2�~e��g1=p

1C e2�~e��g1=p < 1; p � 0; (8.46)

we have spec OH4;� D RC.
For E D p2 > 0, p > 0, � D 2pe�i�=2, g1 > 0, expressions (8.45) and (8.46)

for � 0.E/ hold.
But in this case, we have jD.0/j D 1 and must carefully examine the limit

limW!0 ˝
�1.W /.

It is easy to see that for small W , we have the representation

˝�1.W / D � i

4~k0

1C e2i.�0��/

Œ1 � e2i.�0��/�C iW=A CO.1/; A D
3g1

2

~.1C 4~2/ ;

�0 D ' � �Œ'=��; ' D ~ ln.g1=k0/� �� C �=2; �� D 1

2i
ln
� .ˇ/

� .ˇ�/
;

where Œ'=�� is the entire part of '=� . For � ¤ �0, the function � 0.E/ is finite at
E D 0. But for � D �0, we obtain

� 0.E C 0/ D ���1 .A=2~k0/ Im .E C i0/�1 CO.1/ D .A=2~k0/ ı.E/CO.1/;

which means that the spectrum of the Hamiltonian OH4;�0 with g1 > 0 contains the
eigenvalueE D 0.

For E D ��2 < 0, � > 0, � D 2� , the function˝.E/ can be represented as

˝.E/ D Œ� tan%.E/��1; %.E/ D � C �� � �� .E/C ~ ln.k0=2�/;
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where

�� .E/ D 1

2i
Œln� .1=2C g1=2� C i~/ � ln� .1=2C g1=2� � i~/�

D

8
<̂

:̂


 ��jg1j=2� C ~ ln.jg1j=2�/CO.1/; g1 < 0;
~ ln.g1=2�/CO.�/; g1 > 0;

�
E ! 0;

�� .�1/ D 1
2i

ln � .1=2Ci~/
� .1=2�i~/ CO.1=�/; E ! �1:

The asymptotic behavior of %.E/ at the origin and at minus infinity is given by

%.E/ D
8
<

:



�jg1j=2� CO.1/; g1 < 0;
� C �� C ~ ln.k0=g1/CO.�/; g1 > 0;

�
E ! 0;

� C �� � �� .�1/C ~ ln.k0=2�/CO.1=�/; E ! �1:

Because ˝.E/ is a real function for E < 0, � 0 .E/ can differ from zero only at
the points En.�/ where %.En.�// D �=2C �n, n 2 Z, which yields

� 0.E/ D
X

n

Q2
nı.E �En.�//; Qn D

�
4~k0%

0.En.�//
��1=2

;

%0.En.�// > 0:

We can obtain additional information about the discrete spectrum of OH4;� .
Representing the equation%.En.�// D �=2C �n, n 2 Z, in the equivalent form

f .En.�// D �=2C �.n � �=�/; f .E/ D �� � �� .E/C ~ ln.k0=2�/;

@�En.�/ D �
�
f 0.En.�//

��1 D � �%0.En.�//
��1

< 0;

we can see that the following assertions hold.

(a) The eigenvalue En.�/ with fixed n decreases monotonically from En .0/ to
En .�/ � 0 as � changes from 0 to � � 0. In particular, we have En�1.�/ <
En.�/, 8n.

(b) For any g1, the spectrum is unbounded from below:En.�/! �1 as n! �1.
(c) For any � , the negative part of the spectrum is of the form En.�/ D
�k20m2e2�jnj=~.1C O.1=n// as n ! �1, where m D m.g1; g2; �/ is a scale
factor, and asymptotically (as n! �1) coincides with the negative part of the
spectrum in the Calogero model with coupling constant g2 under an appropriate
identification of scale factors.

(d) For g1 < 0, the discrete part of the spectrum has an accumulation point E D 0.
More specifically, the spectrum is of the formEn.�/ D �g21=4n2CO.1=n3/ as
n ! 1 (as in all the previous ranges of the parameter g2) and asymptotically
coincides with the spectrum for g2 D 0; see below.
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(e) For g1 > 0, the discrete spectrum has no finite accumulation points. In
particular, possible values of n are restricted from above, n � nmax, where

nmax D
8
<

:
n0 if



f .0/=� � 1=2 D n0; 0 � � < �
f .0/=� � 1=2 > n0; 0 � � < �0

�
;

n0 C 1 if f .0/=� � 1=2 > n0 and �0 � � < �;

and the level E D 0 is present in the spectrum for � D �0 only.

The final result is as follows: the spectrum of OH4;� is simple and given by

spec OH4;� D RC [ fEn � 0; �1 < n < nmaxg;

where nmax < 1 for g1 > 0 and nmax D 1 for g1 < 0, and the set of the
corresponding (generalized) eigenfunctions

UE.x/ D
p
� 0.E/u4;� .xIE/; E � 0;

Un.x/ D Qnu4;� .xIEn .�//; En .�/ � 0;

forms a complete orthonormalized system in L2 .RC/.

8.3.5 Range 5

In this range, we have

g2 D 0 .� D 1=2/:
Here, the function u2 is not defined for � D 1=2, and we therefore use the following
solutions of (8.17):

u1.xIW / D xe�z=2˚.˛1=2; 2I z/; u5.xIW / D Qu5.xIW /� g1 ln k0u1.xIW /;


1.xIW / D xe�z=2	.˛1=2; 2I z/ D � �1.˛1=2/
�
!1=2.W /u1.xIW /C u5.xIW /

�
;

where

˛1=2 D 1C g1=�;
Qu5.xIW / D e�z=2x1=2 Œx��˚.˛�; ˇ�I z/C g1� .ˇ�/x�˚.˛C; ˇCI z/��!1=2;

!1=2.W / D g1CCg1
�
 .˛1=2/C ln.�=k0/

� � g1 � �=2;

Here C is Euler’s constant. The asymptotics of these functions at the origin and at
infinity are respectively as follows.



310 8 Schrödinger Operators with Exactly Solvable Potentials

As x ! 0, z D �x ! 0, we have

u1.xIW / D k�1
0 u1as.x/CO.x2/; u5.xIW / D u5as.x/CO.x2 lnx/;


1.xIW / D � �1.˛1=2/
�
k�1
0 !1=2.W /u1as.x/C u5as.x/

�CO.x2 lnx/;

u1as.x/ D k0x; u5as.x/ D 1C g1x ln.k0x/C Cg1x: (8.47)

As x !1, ImW > 0, we have

u1.xIW / D � �1.˛1=2/��1Cg1=�xCg1=�ez=2 QO.x�1/!1;

1.xIW / D ��g1=�x�g1=�e�z=2 QO.x�1/! 0:

The functions u1 .xIW / and u5 .xIW / are real entire in W . These functions form
a fundamental system of solutions of (8.17), and the same holds for the functions
u1; 
1 for ImW ¤ 0,

Wr .u1; u5/ D �1; Wr .u1; 
1/ D �1=� .˛1=2/ D �!.W /:

As we already know, for g2 < � 1=4, the deficiency indices of the initial
symmetric operator OH are m˙ D 1, and therefore there exists a one-parameter
family of its s.a. extensions.

For evaluating the asymmetry form �HC , we determine the asymptotics of
functions  � belonging to D�

LH.RC/ at the origin using representation (8.30) of the
general solution of (8.25) withW D 0, where the natural substitutions a2u2 ! a2u5
and u2=2�! u5 must be made, and estimating the integral terms by means of the
Cauchy–Schwarz inequality, which yields

 �.x/ D a1u1as.x/C a2u5as.x/CO.x3=2/;
 0�.x/ D a1u0

1as.x/C a2u0
5as.x/CO.x1=2/;

and we obtain�HC. �/ D �k0.a1a2�a2a1/. This structure of�HC confirms that
the deficiency indices of OH are m˙ D 1. The requirement that �HC vanish results
in the relation a1 cos � D a2 sin �, � 2 S .��=2; �=2/.

The final result is that for g2 D 0, there exists a family of s.a. Hamiltonians
OH5;� with domainsDH5;� that consist of functions fromD�

LH.RC/ with the following
asymptotic behavior as x ! 0:

 D C 5;�as.x/CO.x3=2/;  0 D C 0
5;�as.x/CO.x1=2/;

 5;�as.x/ D u1as.k0x/ sin � C u5as.x/ cos �: (8.48)

Therefore,

DH5;� D
n
 W  2 D�

LH.RC/;  satisfy (8.48)
o
:
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To obtain the Green’s functionG.x; yIW / for OH5;� , we use representation (8.26)
with a1 D 0 for  �.x/ belonging toDH4;� �D�

LH .RC/, boundary conditions (8.48),
and asymptotics (8.47). Then we obtain

G.x; yIW / D ˝�1.W /u5;�.xIW /u5;�.yIW /

� 1
k0


 Qu5;�.xIW /u5;�.yIW /; x > y;

u5;�.xIW /Qu5;�.yIW /; x < y;

where

˝.W / D k0
�
k0 sin � � !1=2.W / cos �

� �
!1=2.W / sin � C k0 cos �

��1
;

u5;�.xIW / D k0u1.xIW / sin � C u5.xIW / cos �;

Qu5;�.xIW / D k0u1.xIW / cos � � u5.xIW / sin �;

k0� .˛1=2/
1.xIW / D �!1=2.W / cos � � k0 sin �
� Qu5;�.xIW /

C �!1=2.W / sin � C k0 cos �
�

u5;�.xIW /:

We note that u5;�.xIW / and Qu5;�.xIW / are solutions of (8.17) real entire in W , the
solution u5;�.xIW / satisfies boundary conditions (8.48), and the second summand
in G.x; yIW / is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

u5;�.xIW /�.x/dx; � 2 Dr.RC/\DH5;� :

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D u5;� ( QU D Qu5;�/, and therefore, the spectra of
OH5;� are simple.

The derivative of the spectral function is given by �
0

.E/ D ��1 Im˝�1.ECi0/.
We first consider the case of � D �=2, where we have u5;�=2.xIW / D

k0u1.xIW / and

� 0.E/ D ��k20
��1

Im%.E C i0/;
%.W / D g1 .˛1=2/C g1 ln.�=k0/� �=2:

For E D p2 � 0, p � 0, � D 2pe�i�=2, we have

� 0.E/ D jg1je��g1=2p

2k20 sin h.�jg1j=2p/ � 0:

For E D ��2 < 0, � > 0, � D 2� , and g1 > 0, ˛1=2 D 1C g1=2� , the function
%.E/ is finite and real, whence it follows that there are no negative spectrum points.
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For E D ��2 < 0, � > 0, � D 2� , and g1 < 0, ˛1=2 D 1 � jg1j=2� , we have

� 0.E/ D
X

n2ZC

4

k20

� jg1j
2C 2n

�3
ı.E � En/;

En D � g21
.2C 2n/2 ; n 2 ZC :

It is easy to see that for the case of � D ��=2, we obtain the same results for
spectrum and eigenfunctions, as must be the case.

We thus obtain that for g1 > 0, the spectrum of OH5;�=2 is simple and given by
spec OH5;˙�=2 D RC. The set of generalized eigenfunctionsUE.x/ D

p
� 0.E/u5;�=2

.xIE/, E � 0, forms a complete orthonormalized system in L2 .RC/.
For g1 < 0, the spectrum of OH5;˙�=2 is simple and given by spec OH5;˙�=2 D

RC [ fEn; n 2 ZCg, and the set of (generalized) eigenfunctions

UE.x/ D
p
� 0.E/u5;�=2.xIE/; E � 0;

Un.x/ D 2

k0

� jg1j
2C 2n

�3=2
u5;�=2.xI En/; n 2 ZC;

forms a complete orthonormalized system in L2 .RC/.
We now turn to the case j�j < �=2, where we have

� 0.E/ D �� cos2 �
��1

Im Q̋ �1.E C i0/; Q̋ .W / D k0 tan � � !1=2.W / :

For g1 < 0, E D p2 � 0, p � 0, � D 2pe�i�=2, we obtain that

�
0

.E/ D B.E/

� cos2 �ŒA2.E/C B2.E/�
; (8.49)

where Q̋ .E/ D A.E/� iB.E/. The function B.E/ is explicitly given by

B.E/ D �

2

jg1je��g1=2p

sinh.�jg1j=2p/ > 0; 8p � 0: (8.50)

It follows that for g1 < 0, E � 0, the spectrum of OH5;� is purely continuous.
For g1 > 0, E D p2 > 0, p > 0, � D 2pe�i�=2, the derivative of the spectral

function is also given by (8.49) and (8.50). But in this case, we have B.0/ D 0, and
the limit limW!0

Q̋ .W / has to be carefully examined. For small W , we have

Q̋ .W / D .tan � � tan �0/k0 � W

3g1
CO.W 2/;

tan �0 D .g1=k0/ Œln.g1=k0/C C � 1� :
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For � ¤ �0, the function � 0.E/ has a finite limit asE ! 0. But for � D �0 and small
E , we have

� 0.E/ D 3g1

cos2 �0
ı.E/CO .1/ ;

which means that the spectrum of the Hamiltonian OH5;�0 has an eigenvalueE D 0.
For E D ��2 < 0, � > 0, � D 2� , the function Q̋ .E/ is real. Therefore, � 0.E/

can differ from zero only at zero pointsEn.�/ of Q̋ .E/, and � 0.E/ is represented as

� 0.E/ D
X

n

�� Q̋ 0.En.�//
��1

ı.E � En.�//;

Q̋ .En.�// D 0; Q̋ 0.En.�// < 0:

For g1 > 0, we have

Q̋ .E/ D �g1 .1C g1=2�/� g1 ln.2�=g1/C � C k0.tan � � tan �0/;

Q̋ .E/ D
p
jEj � .g1=2/ ln jEj CO.1/; E ! �1;

Q̋ .0/ D k0.tan � � tan �0/:

For � > �0; the equation Q̋ .E/ D 0 has no solution, while for � 2 .��=2; �0� it
has a unique solution E.�/ .�/. It is easy to see that

@�E
.�/ .�/ D �k0

h Q̋ 0 �E.�/.�/
�

cos2 �
i�1

> 0;

so thatE.�/ .�/ increases monotonically from�1 to 0 as � changes from��=2C0
to �0.

For g1 < 0, we have

Q̋ .E/ D jg1j .1=2� jg1j=2�/C jg1j ln.2�=k0/C � � Q�;
Q� D g1C � g1 � k0 tan �:

Representing the equation Q̋ .En/ D 0 in the equivalent form

f .En/ D Q�; f .E/ D jg1j .1=2 � jg1j=2�/C jg1j ln.2�=k0/C �;

we can see that:

(a)

f .E/
E!�1�! 1; f .En ˙ 0/ D ˙1;

so that in each region of energy .En; EnC1/, n 2 .�1/ [ ZC, the equation
Q̋ .En/ D 0 has one solution En.�/ for any fixed �, j�j < �=2, and En.�/



314 8 Schrödinger Operators with Exactly Solvable Potentials

increases monotonically from En C 0 to EnC1 � 0 as � changes from ��=2C 0
to �=2� 0 (here, by definition, E�1 D �1).

(b) For any fixed �, En.�/ D �g21=4n2 C O.n�3/ as n ! 1, asymptotically
coinciding with (8.29).

(c) The point E D 0 is an accumulation point of the discrete spectrum for g1 < 0.

Note the relation

lim
�!�=2

En�1.�/ D lim
�!��=2 En.�/ D En; n 2 ZC:

The above results can be briefly summarized as follows. For g1 < 0, the spectrum
of OH5;� is simple and given by

spec OH5;� D RC [ fEn.�/ < 0; n 2 .�1/[ ZCg:

The (generalized) eigenfunctions of OH5;� given by

UE.x/ D
q
�

0

.E/u5;�.xIE/; E � 0;

Un.x/ D
�� Q̋ 0.En.�//

��1=2
u5;� .xIEn.�// ; n 2 .�1/[ ZC;

form a complete orthonormalized system in L2 .RC/.
For g1 > 0, the spectrum of OH5;� is simple and given by spec OH5;� D RC [

fE.�/ .�/ � 0g. For � 2 .��=2; �0�, the (generalized) eigenfunctions

UE.x/ D
q
�

0

.E/u5;�.xIE/; E � 0;

U.x/ D
h
�!0

5

�
E.�/ .�/

�i�1=2
u5;�

�
xIE.�/ .�/

�

form a complete orthonormalized system in L2 .RC/. For � > �0, the spectrum has
no negative eigenvalues.

8.4 ESP IV

In this case,
V.x/ D g1x�2 C g2x2; x 2 RC; (8.51)

and the corresponding Schrödinger equation is

 00 � .g1x�2 C g2x2/ CW D 0 : (8.52)
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The case g1 D 0 corresponds to the harmonic oscillator potential, and the case
g2 D 0 was considered in Sect. 7.2. Thus, here, we assume both g1 ¤ 0 and g2 ¤ 0.
In this case, we call (8.51) the generalized Calogero potential; see [34–36].

8.4.1 Range A

In this range, we have
g2 D 
4 > 0; 
 > 0:

Here we introduce a new variable � and new functions 
˙, instead of x and  .x/
in (8.52),

� D .
x/2; x D p�=
; � 2 RC;  .x/ D e��=2�1=4˙�
˙ .�/ ;

� D


1
2

p
g1 C 1=4; g1 � �1=4;

i~; ~ D 1
2

pjg1j � 1=4; g1 < �1=4: (8.53)

Then 
˙ .�/ satisfy the equations

�d2� 
˙ .�/C .ˇ˙ � �/d�
˙ .�/� ˛˙
˙ .�/ D 0;
˛˙ D 1=2˙ �� w; ˇ˙ D 1˙ 2�; w D W=4
2;

which have as solutions the confluent hypergeometric functions ˚.˛˙; ˇ˙I �/ and
	.˛˙; ˇ˙I �/ (see [1, 20, 81]).

In what follows, we will use the following three solutions of (8.52):

u1 .xIW / D e��=2�1=4C�˚.˛; ˇI �/; ˛ D ˛C; ˇ D ˇC;

u2 .xIW / D e��=2�1=4��˚.˛�; ˇ�I �/ D u1 .xIW /j�!�� ;

V1 .xIW / D e��=2�1=4C�	.˛; ˇI �/ D � .1 � ˇ/
� .˛�/

u1 .xIW /

C � .ˇ � 1/
� .˛/

u2 .xIW / :

We note that u2 .xIW / is not defined for 2� D m 2 N. The function V1 .xIW / is
real entire in W for any g1, while u1 .xIW / is real entire inW for g1 � �1=4 (� �
0), and u2 .xIW / is real entire in W for g1 � �1=4 and 2� ¤ m. If g1 < �1=4
(� D i~), then u1 .xIW / and u2 .xIW / are entire in W and u2 .xIE/ D u1 .xIE/.

Below, we list some asymptotics of the introduced functions as x ! 0 and x !
1; see [1, 20, 81].

For x !1 (�!1/, we have

u1 .xIW / D � �1.˛/� .ˇ/e�=2��1=4�w QO.��1/

D O.x�1=2�2we�=2/!1; ˛ … R�;

V1 .xIW / D e��=2��1=4Cw QO.��1/ D O
�
x�1=2C2we��=2

�
! 0:
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For x ! 0 (�! 0), we have

u1 D �1=4C� QO.�/ D .
x/1=2C2� QO.x2/! 0;

u2 D �1=4�� QO.�/ D .
x/1=2C2� QO.x2/! 0; ˛ … R�; (8.54)

and

V1 .xIW / D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

� .ˇ�1/
� .˛/

.
x/1=2�2� QO.x2/; g1 > 3=4;
� �1.˛/.
x/�1=2 QO.x2 ln x/; g1 D 3=4;
� .ˇ�1/
� .˛/

.
x/1=2�2� C � .1�ˇ/
� .˛�/

.
x/1=2C2�

CO.x5=2�2�/; 3=4 > g1 ¤ �1=4;
� �1.
x/1=2Œ2 .1/ �  .˛/ � 2 ln.
x/�

CO.x5=2 lnx/; g1 D �1=4:

(8.55)

Regarding

Wr .u1; u2/ D �4�
; Wr .u1; V1/ D �2
� .ˇ/=� .˛/ D �!.W /;

solutions u1 and V1 are linearly independent and form a fundamental system of
solutions of (8.52) for ImW ¤ 0.

We note that for g1 � 3=4, the function V1 .xIW / is not square-integrable at the
origin, whereas for g1 < 3=4 it is (moreover, any solution is square-integrable at
the origin). This means that for g1 � 3=4; (8.52) has no square-integrable solutions,
and deficient indices of the initial symmetric operator OH (with the domain DH D
D.RC/) are zero, and OH1 D OHC (DH1 D D�

LH.RC) is the unique s.a. extension

of OH . For g1 < 3=4 there is one square-integrable solution, V1 .xIW /, and the
deficiency indices of OH are m˙ D 1.

The adjoint OHC is defined on functions  � from the domain D�
LH .RC/. Such

functions satisfy the equation

LH �.x/ D �.x/ 2 L2 .RC/ : (8.56)

The potential under consideration is bounded from below by �.jg2j C 1/x2 as
x ! 1: In such a case, the boundary form at infinity is zero, Œ �;  ��.1/ D 0,
8 � 2 D�

LH.RC/; see Sect. 7.1. The asymptotic behavior as x ! 0 can be found by
analyzing solutions of (8.56). For g1 � 3=4, one can represent its general solution
in the following form:

 �.x/ D c1u1.xI 0/C c2V1.xI 0/C I.x/;

I.x/ D !�1.0/
�

u1.xI 0/
Z 1

x

V1.yI 0/�.y/dy C V1.xI 0/
Z x

0

u1.yI 0/�.y/dy
�
:
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Using the Cauchy–Schwarz inequality, we obtain that I.x/ is bounded as x ! 1
and I.x/ � O.x3=2/ as x ! 0 (with logarithmic accuracy for g1 D 3=4; see below).
The condition  � 2 L2.RC/ implies c1 D c2 D 0, so that the asymptotic as x ! 0

is due to the term I.x/.
For g1 < 3=4, one can represent the general solution in the form

 �.x/ D c1u1.xI 0/C c2V1.xI 0/C I1.x/;

I1.x/ D !�1.0/
�
V1.xI 0/

Z x

0

u1.yI 0/�.y/dy � u1.xI 0/
Z x

0

V1.yI 0/�.y/dy
�
:

Using the Cauchy–Schwarz inequality, we obtain that I1.x/ � O.x3=2/ as x ! 0

(with logarithmic accuracy for g1 D �1=4; see below). Analyzing the asymptotics
of u1.xI 0/ and V1.xI 0/ as x ! 0; we obtain

 �.x/ D  �as.x/C

8
<̂

:̂

O.x3=2/; g1 ¤ 3=4;�1=4;
O.x3=2

p
ln x/; g1 D 3=4;

O.x3=2 lnx/; g1 D �1=4;

 0�.x/ D  0�as.x/C

8
<̂

:̂

O.x1=2/; g1 ¤ 3=4;�1=4;
O.x1=2

p
ln x/; g1 D 3=4;

O.x1=2 lnx/; g1 D �1=4;
(8.57)

where

 �as.x/ D

8
ˆ̂
<

ˆ̂
:

0; g1 � 3=4;
c1.
x/

1=2C2� C c2.
x/1=2�2�; g1 < 3=4; g1 ¤ �1=4;
c1.
x/

1=2 C 2c2.
x/1=2 ln.
x/; g1 D �1=4:

The general solution of the inhomogeneous equation
� LH �W

�
 .x/ D �.x/ 2 L2 .RC/ ; ImW ¤ 0;

can be represented as

 .x/ D c1u1.xIW /C c2V1.xIW /C I.xIW /; I.xIW / D !�1.W / (8.58)

�
�

u1.xIW /

Z 1

x

V1.yIW /�.y/dy C V1.xIW /
Z x

0

u1.yIW /�.y/dy

�
:

Estimates of the integral terms with the help of the Cauchy–Schwarz inequality
show that I.x/ is bounded as x !1. The condition  2 L2.RC/ implies c1 D 0.

If g1 � 3=4, then I.x/ � O.x3=2/ as x ! 0 (with logarithmic accuracy for
g1 D 3=4), and V1.xIW / is not square-integrable at the origin. The condition  2
L2.RC/ implies c2 D 0.



318 8 Schrödinger Operators with Exactly Solvable Potentials

For g1 < 3=4, it is convenient to use another representation for the general
solution (8.58):

 .x/ D c2V1.xIW /C !�1.W /u1.xIW /
Z 1

0

V1.yIW /�.y/dy C I1.xIW /;

I1.xIW / D !�1.W /
�
V1.xIW /

Z x

0

u1.yIW /�.y/dy

�u1.xIW /
Z x

0

V1.yIW /�.y/dy
�
: (8.59)

Estimates with the help of the Cauchy–Schwarz inequality give I1.x/ � O.x3=2/ as
X ! 0 (with logarithmic accuracy for g1 D �1=4).

8.4.1.1 Subrange g1 � 3=4 (� � 1=2)

For such g1, as was mentioned above, OH1 D OHC is a unique s.a. extension of OH .
Its Green’s function can be found from (8.58) with c1 D c2 D 0:

G.x; yIW / D !�1.W /


V1.xIW /u1.yIW /; x > y;
u1.xIW /V1.yIW /; x < y: (8.60)

The Green’s function allows one to calculate the derivative of the spectral
function,

� 0.E/ D ��1 Im

�
!�1.W /

V1.cIW /

u1.cIW /

�

WDECi0
: (8.61)

Consider the guiding functional

˚.�IW / D
Z 1

0

dxu1.xIW /�.x/; � 2 Dr .RC/\DH1
:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D u1 ( QU D V1/, and therefore, the spectrum of OH1

is simple.
In the ranges m � 1 < 2� < m C 1, m � 1, the function V1.xIW / can be

represented as

V1.xIW / D Am.W /u1.xIW /C !.W /

4�

V.m/.xIW /;

Am.W / D �

sin.2��/

�
� .˛Cm/

mŠ� .˛/� .˛�m/
� 1

� .˛�/� .ˇ/

�
;

V.m/.xIW / D e��=2�1=2C�� .ˇ�/
�
��2�

� .ˇ�/
˚.˛�; ˇ�I �/

� � .˛Cm/
mŠ� .˛�m/

˚.˛; ˇI �/
�
; ˛˙m D 1=2˙m=2� w:
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Using the relation (8.27), one can verify that V.m/.xIW / is well defined for any W
and for m � 1 < 2� < mC 1, and V.m/.xIE/ is real. The same holds for Am.W /.
As a result, we obtain

� 0.E/ D Am.E/

2�
� .ˇ/
Im� .˛/jWDECi0 ; m � 1 < 2� < mC 1:

Let j� .˛/j < 1. Then � .˛/ is real for W D E . Therefore, the quantity
Im� .˛/jWDECi0 can differ from zero only for ˛ D �n, n 2 ZC; or for the energies
En D 2
2.1C 2nC 2�/. Near these points, we have

Im� .˛/jWDECi0 D .�1/n
4
2�

nŠ
ı.E � En/;

see Lemma 5.17, so that the derivative of the spectral function reads

� 0.E/ D
X

n2ZC

Q2
nı.E � En/; Qn D

s
2
� .ˇ C n/
nŠ� 2.ˇ/

:

Thus, the simple spectrum of OH1 reads spec OH1 D fEn; n 2 ZCg, and the
set of eigenfunctions Un.x/ D Qnu1.xIEn/, n 2 ZC of OH1 forms a complete
orthonormalized system in L2 .RC/.

8.4.1.2 Subrange 3=4 > g1 > �1=4 .1=2 > � > 0/

Using the asymptotics (8.57), we obtain �HC. �/ D �4�
.c1c2 � c2c1/, which
means that the deficiency indices of OH arem˙ D 1. At the same time, the condition
�HC. �/ D 0 implies c1 cos � D c2 sin �, � 2 S .��=2; �=2/. Thus, in the
subrange under consideration, there exists a family of s.a. OH2;� parameterized by
� with domains DH2;� that consist of functions from D�

LH.RC/ with the following
asymptotic behavior as x ! 0;

 .x/ D C as.x/CO.x3=2/;  0.x/ D C 0
as.x/CO.x1=2/;

 as.x/ D .
x/1=2C2� sin � C .
x/1=2�2� cos �: (8.62)

Therefore,
DH2;� D f W  2 D�

LH .RC/;  satisfy (8.62)g:
Imposing the boundary conditions (8.62) on the functions (8.59) and using the

asymptotics (8.54) and (8.55), we obtain the Green’s function of the Hamiltonian
OH2;� ,

G.x; yIW / D ˝�1.W /u2;�.xIW /u2;�.yIW /

� 1

4�



 Qu2;�.xIW /u2;�.yIW /; x > y;
u2;�.xIW /Qu2;�.yIW /; x < y;
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where

˝.W / D 4�
Œcos � � f .W / sin ���1.sin � C f .W / cos �/;

f .W / D � .˛/� .ˇ�/
� .˛�/� .ˇ/

;

u2;�.xIW / D u1.xIW / sin � C u2.xIW / cos �;

Qu2;�.xIW / D u1.xIW / cos � � u2.xIW / sin �:

We note that u2;�.xIW / and Qu2;�.xIW / are solutions of (8.52) real entire in
W , u2;�.xIW / satisfies the boundary condition (8.62), and the second summand in
G.x; yIW / is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

dxu2;�.xIW /�.x/; � 2 Dr .RC/\DH2;�
:

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D u2;� ( QU D Qu2;�/, and therefore, the spectra of
DH2;� are simple.

The Green’s function allows one to calculate the derivative of the spectral
function, � 0.E/ D ��1 Im˝�1.E C i0/.

The function ˝�1.E/ is real for any E where ˝.E/ ¤ 0. That is why only
the points En .�/ satisfying the equation ˝.En .�// D 0 can provide nonzero
contributions to � 0.E/. Thus, we obtain

� 0.E/ D
X

n

Q2
nı.E � En .�//; Qn D

q
� Œ4�
˝ 0.En .�//��1 : (8.63)

As a result, we find that the simple spectrum of OH2� reads spec OH2� D fEn .�/g,
and the set of its eigenfunctions Un.x/ D Qnu2�.xIEn .�// forms a complete
orthonormalized system in L2 .RC/.

One can make some remarks on the spectrum structure. For � D ˙�=2, we have

� 0.E/ D
X

n2ZC

Q2
nı .E � En/ ; Qn D

s
2
� .ˇ C n/
nŠ� 2.ˇ/

;

En D En .˙�=2/ D 2
2.1C 2�C 2n/:
For j�j < �=2, the expression (8.63) for � 0.E/ can be reduced to the following
form:

� 0.E/ D
X

n

Q2
nı.E � En.�//; Qn D

q
� �4�
!0

2;�.En.�//
��1
;

!2;�.En.�// D 0; !2;�.W / D f .W /C tan �; !0
2;�.En.�// < 0:
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We note that !2;�.En.�// D 0 H) f .En.�// D � tan � and the function f .E/ has
the properties

f .E/
E!�1�! 1I f .En ˙ 0/ D ˙1; n 2 ZCI

f .Ek.0// D 0; Ek.0/ D 2
2.1 � 2�C 2k/; k 2 ZCI
En.0/ < En < EnC1.0/ < EnC1; n 2 ZC:

Since

@�En.�/ D �Œf 0.En.�// cos2 ���1 D Œ�!0
2;�.En.�// cos2 ���1 > 0;

we can see that in each interval .En�1; En/, n 2 ZC, for fixed � 2 .��=2; �=2/,
there is one solution En.�/ of !2;�.En.�// D 0 (we set formally E�1 D �1); the
solution En.�/ increases monotonically from En�1 C 0 (passing En.0/ at � D 0) to
En � 0 as � changes from ��=2C 0 to �=2 � 0. Note the relation

lim
�!�=2

En.�/ D lim
�!��=2EnC1.�/ D En; n 2 ZC:

We stress that all the results (for spectrum, spectral function, and eigenfunctions)
obtained for 3=4 > g1 > �1=4 .1=2 > � > 0/, � D ˙�=2; and � D 0 can be
obtained from the case g1 � 3=4 (setting there in addition � ! �� in the case
� D 0).

8.4.1.3 Subrange g1 D �1=4 .� D 0/

Using the asymptotics (8.57), we obtain �HC. �/ D 2
.c1c2 � c2c1/, which
means that deficiency indices of OH are m˙ D 1. The condition �HC. �/ D 0

implies c1 cos# D c2 sin# , # 2 S .��=2; �=2/. Thus, in the subrange under
consideration, there exists a family of s.a. Hamiltonians OH3;# parameterized by
# with domains DH3# that consist of functions from D�

LH.RC/ with the following
asymptotic behavior as x ! 0:

 .x/ D C as.x/CO.x3=2/;  0.x/ D C 0
as.x/CO.x1=2/;

 as.x/ D .
x/1=2 sin# C 2.
x/1=2 ln.
x/ cos#: (8.64)

Therefore,

DH3# D f W  2 D�
LH.RC/;  satisfy (8.64)g:
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Imposing the boundary conditions (8.64) on the functions (8.59), where now

u1.xIW / D �1=4e��=2˚.˛0; 1I �/; ˛0 D ˛j�D0 D 1=2� w; w D W=4
2;
V1 D �1=4e��=2	.˛0; 1I �/ D � �1.˛0/ Œ.2 .1/ �  .˛0// u1.xIW / � u3.xIW /� ;

u3.xIW / D �1=4e��=2@� Œ��˚.1=2C � � w; 1C 2�I �/��D0 ;

using asymptotics (8.54) and (8.55), and the representation

� .˛0/V1.xIW / D �A.W /u3;# .xIW / � B.W /Qu3;#.xIW /;

u3;#.xIW / D u1.xIW / sin# C u3.xIW / cos#;

Qu3;#.xIW / D u1.xIW / cos# � u3.xIW / sin#;

A.W / D f .W / sin# C cos#; B.W / D f .W / cos# � sin#;

f .W / D  .˛0/� 2 .1/;

we obtain the Green’s function of the Hamiltonian OH3# ,

G.x; yIW / D ˝�1.W /u3;#.xIW /u3;#.yIW /

C 1

2



 Qu3;#.xIW /u3;#.yIW /; x > y;
u3;#.xIW /Qu3;#.yIW /; x < y; (8.65)

where˝.W / D 2
B.W /=A.W /:

We note that u3;#.xIW / and Qu3;#.xIW / are solutions of (8.52) that are real entire
in W satisfying boundary condition (8.64), and the second term on the right-hand
side of (8.65) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

dxu3;# .xIW /�.x/; � 2 Dr .RC/\DH3#
:

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D u3;# ( QU D Qu3;# ), and therefore, the spectra of
OH3# are simple.

The Green’s function allows one to calculate the derivative of the spectral
function, � 0.E/ D ��1 Im˝�1.E C i0/.

One can see that all finite values of the function ˝�1.E/ are real. That is why
the only points En .#/ that satisfy the equation ˝.En .#// D 0 provide nonzero
contributions to � 0.E/. Thus, we obtain

� 0.E/ D
X

n

Q2
nı.E �En .#//; Qn D

q
� .2
˝ 0.En .#///�1 : (8.66)
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Taking this into account, we see that the simple spectra of OH3# are spec OH3# D
fEn .#/g and the eigenfunctions Un.x/ D Qnu3#.xIEn .#// of OH3# form a
complete orthonormalized system in L2 .RC/.

One can make some remarks about the spectrum structure. For # D ˙�=2, we
have

� 0.E/ D � .2�
/�1 Im .˛0/
ˇ
ˇ
ˇ
WDECi0 D

X

n2ZC

2
ı .E � En/ ;

En D En .˙�=2/ D 2
2.1C 2n/:
For j#j < �=2, expression (8.66) can be written as

� 0.E/ D
X

n

Q2
nı.E � En.#//; Qn D

q
� .4�
f 0.En.#///�1;

f .En.#// D tan#; f 0.En.#// < 0;

where

f .E/
E!�1�! 1; f .E.˙�=2/

n ˙ 0/ D ˙1; n 2 ZC;

@#En.#/ D Œf 0.En.#// cos2 #��1 < 0:

We can see that in each interval .En�1; En/, n 2 ZC, for fixed # 2 .��=2; �=2/,
there is one solution En.#/ of the equation f .En.#// D tan# (we set formally
E�1 D 1); the solution En.#/ increases monotonically from En�1 C 0 to En � 0 as
# changes from �=2� 0 to ��=2C 0. Note the relation

lim
#!��=2 En.#/ D lim

#!�=2
EnC1.#/ D En; n 2 ZC:

We stress that all the results (spectrum and eigenfunction) for g1 D �1=4
.� D 0/, # D ˙�=2, can be obtained from the case g1 � 3=4 by a formal limit
�! 0.

8.4.1.4 Subrange g1 < �1=4 (� D i~, ~ > 0/

Using the asymptotics (8.57), we obtain �HC. �/ D �4i~
.c1c2 � c2c1/; which
means that the deficiency indices of OH are m˙ D 1. The condition �HC. �/ D 0

implies c1 D e2i� c2, � 2 S .0; �/.
Thus, in the subrange under consideration, there exists a family of s.a. Hamiltoni-

ans parameterized by � with domainsDH4� that consist of functions fromD�
LH.RC/

with the following asymptotic behavior as x ! 0:

 .x/ D C as.x/CO.x3=2/;  0.x/ D C 0
as.x/CO.x1=2/;

 as.x/ D ei� .
x/1=2C2i~ C e�i� .
x/1=2�2i~ : (8.67)
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Therefore,

DH4� D
n
 W  2 D�

LH .RC/;  satisfy (8.67)
o
:

Imposing the boundary conditions (8.67) on the functions (8.59), using the
asymptotics (8.54), (8.55), and representing the function V1.xIW / in the form

V1.xIW / D � 1

4~
ŒA.W /u4;� .xIW /C B.W /Qu4;� .xIW /� ;

u4;� .xIW / D ei�u1.xIW /C e�i�u2.xIW /;
Qu4;� .xIW / D i Œe�i�u2.xIW /� ei�u1.xIW /�;

A.W / D i �ei�!C.W / � e�i�!�.W /
�
;

B.W / D ei�!C.W /C e�i�!�.W /; !˙.W / D � .ˇ˙/=� .˛˙/;

where u4;� .xIW / and Qu4;� .xIW / are real entire solutions of (8.52) and u4;� .xIW /

satisfies the boundary conditions (8.67), we obtain the Green’s function of the
Hamiltonian OH4� ,

G.x; yIW / D ˝�1 .W / u4;� .xIW /u4;� .yIW /

� 1

8~



 Qu4;� .xIW /u4;� .yIW /; x > y;

u4;� .xIW /Qu4;� .yIW /; x < y;
(8.68)

where ˝.W / D �8~
B.W /=A.W / and the second term on the right-hand side of
(8.68) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z 1

0

dxu4;� .xIW /�.x/; � 2 Dr .RC/\DH4�
:

One can see that this functional belongs to the classD of simple guiding functionals
considered in Sect. 5.4.1 withU D u4;� ( QU D Qu4;� ), and therefore the spectra of OH4�

are simple.
The Green’s function allows one to calculate the derivative of the spectral

function, � 0.E/ D ��1 Im˝�1.E C i0/.
The function˝�1.E/ is real for any values of E where j˝�1.E/j <1. That is

why only the pointsEn.�/ obeying the equation˝.En.�// D 0, n 2 Z; can provide
nonzero contributions to � 0.E/. Thus, we obtain

� 0.E/ D
X

n

Q2
nı.E �En.�//; Qn D

�
8~
˝ 0.En.�//

��1=2
; ˝ 0.En.�// > 0:
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Thus, the simple spectrum of OH4� is spec OH4� D fEn.�/g and the eigenfunctions
Un.x/ D Qnu4� .xIEn.�// of the Hamiltonian OH4� form a complete orthonormal-
ized system in L2 .RC/.

One can make some remarks about the spectrum structure. Let us represent the
function˝�1.E/ in the following form:

˝�1.E/ D 1

8~

tan Œ� C f .E/� ; f .E/ D �� � �� .E/;

�� D 1

2i
ln
� .1C 2i~/
� .1 � 2i~/ ; �� .E/ D

1

2i
Œln� .1=2C zC/ � ln� .1=2C z�/� ;

z˙ D �E=4
2 ˙ i~ D j � E=4
2 ˙ i~je˙i'; C0 � ' D arccot.E=~/ � � � 0;

f .E/ D

 �~ ln.jEj=4
2/CO.1/; E ! �1;
�E CO.1/; E !1;

so that the equation ˝.En.�// D 0 is reduced to one f .En.�// D �=2 C �.n �
�=�/: On the other side,

@�En.�/ D �
�
f 0.En.�//

��1 D � �˝ 0.En.�//
��1

< 0:

This implies that the eigenvalueEn.�/ (for a fixed �) decreases monotonically from
En.0/ to En.�/ D En�1.0/ as � changes from 0 to � . In particular, En�1.�/ <
En.�/, 8n.

For any g2, the spectrum is unbounded from below. For any � , the negative
energy levels have the asymptotic (as n ! �1) form En D �m2e2�jnj=~.1 C
O.1=n//, which tends asymptotically to the spectrum of the Calogero problem (with
˛ D g1); m D m.g1; g2; �/ is a scale factor.

For n ! 1, the spectrum has the form En.�/ D 4
2nC O.1/ (this fact holds
for any range of the parameter g1). As an exercise, the reader can compare this
spectrum with the harmonic oscillator spectrum.

8.4.2 Range B

In this range, we have
g2 D �
4 > 0; 
 > 0:

Here, we introduce a new variable z D i� and new functions 
˙, instead of x
and  .x/ in (8.52),

z D i� D �ei�=2; � D .
x/2; z D �e�i�=2 D �z;  .x/ D �1=4˙�e�z=2
˙.z/;

where � is given by expression (8.53). Then 
˙ .z/ satisfy the equations
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zd2z 
˙.z/C .ˇ˙ � z/dz
˙.z/ � ˛˙
˙.z/ D 0;
˛˙ D 1=2˙ �C iw; ˇ˙ D 1˙ 2�; w D W=4
2;

which have the confluent hypergeometric functions˚.˛˙; ˇ˙I z/ and 	.˛˙; ˇ˙I z/
as solutions; see [1, 20, 81].

In what follows, we will use the following three solutions of (8.52):

u1.xIW / D �1=4C�e�z=2˚.˛; ˇI z/; ˛ D ˛C; ˇ D ˇC;

u2.xIW / D �1=4��e�z=2˚.˛�; ˇ�I z/;

V1.xIW / D �1=4C�e�z=2	.˛; ˇI z/ � e�i�˛ � .ˇ � ˛/
� .ˇ/

u1.xIW /

D
�
� .�2�/
� .˛�/

� e�i�˛ � .ˇ � ˛/
� .ˇ/

�
u1.xIW /C e�i�� � .2�/

� .˛/
u2.xIW /:

We note that the functions u1 .xIW / and V1 .xIW / are defined for any values
of parameters ˛ and ˇ, whereas u2 .xIW / is defined for 2� ¤ m 2 N. All three
functions are entire inW . The function u1 .xIW / is real entire inW for g1 � �1=4
(� � 0), and u2 .xIW / is real entire in W for g1 � �1=4 and 2� ¤ m 2 N. If
g1 < �1=4 (� D i~), then u1 .xIW / and u2 .xIW / are entire inW and u2 .xIE/ D
u1 .xIE/.

Below, we list some asymptotics of the introduced functions as x ! 0 and x !
1; see [1, 20, 81].

For x !1 (�!1/, we have (w D aC ib, 0 � b < 3=4/

u1 .xIW / D � .ˇ/

� .ˇ � ˛/ei�˛=2�i Œ�=2Ca ln ��.
x/�.1=2�2b/

C� .ˇ/
� .˛/

ei�.˛�ˇ/=2Ci Œ�=2Ca ln ��.
x/�.1=2C2b/ CO �x�.5=2�2b/� ;

V1 .xIW / D �� .ˇ � ˛/
� .˛/

e�i�.˛Cˇ/=2Ci Œ�=2Ca ln ��.
x/�.1=2C2b/

CO �x�.5=2�2b/� :

For x ! 0 (�! 0), we have

u1 D �1=4C� QO.�/ D .
x/1=2C2� QO.x2/! 0;

u2 D �1=4�� QO.�/ D .
x/1=2�2� QO.x2/; (8.69)
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and

V1 .xIW / D

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

e�i�� � .2�/
� .˛/

.
x/1=2�2� QO.x2/; g1 > 3=4;
� i
� .˛/

.
x/�1=2 QO.x2 ln x/; g1 D 3=4;
e�i�� � .2�/

� .˛/
.
x/1=2�2� C .
x/1=2C2�

h
� .�2�/
� .˛�/

� e�i�˛ � .ˇ�˛/
� .ˇ/

i

CO.x5=2�2�/; g1 < 3=4; g1 ¤ �1=4;
� .
x/1=2

� .˛0/
Œc.W /C 2 ln.
x/�CO.x5=2 lnx/; g1 D �1=4;

(8.70)

where

˛0 D 1=2C iw; c.W / D  .˛0/ � 2 .1/C i�=2C �e�i�˛0
cosh.�w/

: (8.71)

Since

Wr .u1; u2/ D �4�
; Wr .u1; V1/ D �2
e�i��� .ˇ/� �1.˛/ D �!.W /;

solutions u1 and V1 are linearly independent and form a fundamental set of solutions
of (8.52) for ImW ¤ 0.

We note that for g1 � 3=4, the function V1 .xIW / is not square-integrable at the
origin, whereas for g1 < 3=4 it is (moreover, any solution is square-integrable at the
origin). One can see that for g1 � 3=4; (8.52) has no square-integrable solutions,
and the deficiency indices of the initial symmetric operator OH are zero, and OH1 DOHC, DH1 D D�

LH.RC/, is a unique s.a. extension of OH . For g1 < 3=4 there is one

square-integrable solution, V1 .xIW /, and the deficiency indices of OH arem˙ D 1.
Moreover, one can easily see that the discrete spectrum is absent.

The majority of results obtained in range A, such as a description of the natural
domain, can be used without any modification in the present range B. We shall use
these results below.

8.4.2.1 Subrange g1 � 3=4

For such g1, the unique s.a. extension of OH is OH1 D OHC. The Green’s function and
the derivative of the spectral function have the forms (8.60) and (8.61) respectively.
The same guiding functional as in the range A allows one to conclude that the
spectrum of OH1 is simple.

In the range m � 1 < 2� < m C 1, m 2 N, the function V1.xIW / can be
represented as

V1.xIW / D Am.W /u1.xIW /C !.W /

4�

V.m/.xIW /;
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Am.W / D � .�2�/
� .˛�/

C ei.�=2/.m�2�/� .2�/� .ˇ�/� .˛m/
mŠ� .˛/� .˛�m/

�e�i�˛ � .ˇ � ˛/
� .ˇ/

; V.m/.xIW / D u2 .xIW /

�ei�m=2� .˛m/� .ˇ�/
mŠ� .˛�m/

u1 .xIW / ; ˛˙m D 1=2˙m=2C iw:

One can see that the function Am.W / is well defined for any W and for m �
1 < 2� < m C 1, and is analytic in a neighborhood of the real axis (at least for
jbj < 1=2), and the function V.m/.xIW / is real entire in W . As a result, we obtain

� 0.E/ D e�E=4

2 j� .1=2C �C iE=4
2/j2

4�
� 2.ˇ/
> 0:

Thus, the simple spectrum of OH1 has the form spec OH1 D R, and the generalized
eigenfunctionsUE.x/ D

p
� 0.E/u1.xIE/ of OH1 form a complete orthonormalized

system in L2 .RC/.

8.4.2.2 Subrange 3=4 > g1 > �1=4 .1=2 > � > 0/

Using the asymptotics (8.57), we obtain �HC. �/ D �4�
.c1c2 � c2c1/, which
means that deficiency indices of OH are m˙ D 1. The condition �HC. �/ D 0

implies c1 cos � D c2 sin �, � 2 S .��=2; �=2/. Thus, in the subrange under
consideration, there exists a family of s.a. Hamiltonians OH2;� parameterized by �
with domainsDH2� ,

DH2� D f W  2 D�
LH .RC/;  obey (8.62)g:

Imposing the boundary conditions (8.62) on the functions (8.59), using the
asymptotics (8.69), (8.70), and representing the function V1.xIW / in the form

V1.xIW / D 1

2�
ŒA.W /u2;�.xIW / � B.W /Qu2;�.xIW /� ;

u2;�.xIW / D u1.xIW / sin � C u2.xIW / cos �;

Qu2;�.xIW / D u1.xIW / cos � � u2.xIW / sin �;

where

A.W / D �a.W / sin � C b.W / cos �; B.W / D a.W / cos � C b.W / sin �;

a.W / D � .ˇ�/
� .˛�/

C e�i�˛ � .ˇ � ˛/
� .2�/

; b.W / D e�i�� � .ˇ/
� .˛/

;
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we obtain the Green’s function of the Hamiltonian OH2� ,

G.x; yIW / D 1

4�


�
A.W /

B.W /
u2;�.xIW /u2;�.yIW /

�

 Qu2;�.xIW /u2;�.yIW /; x > y;

u2;�.xIW /Qu2;�.yIW /; x < y
�
; (8.72)

where the second term on the right-hand side of (8.72) is real for real W D E .
We note that the functions u2;�.xIW / and Qu2;�.xIW / are solutions of (8.52) real

entire in W and u2;�.xIW / satisfies the boundary condition (8.62).
Consider the guiding functional

˚.�IW / D
Z 1

0

dxu2;�.xIW /�.x/; � 2 Dr .RC/ \DH2�
:

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D u2;� ( QU D Qu2;�), and therefore the spectra of
OH2� are simple.

The Green’s function allows one to calculate the derivative of the spectral
function,

� 0.E/ D .4��
/�1 j� .˛/j�22� .2�/� .ˇ/ sin2.2��/e�E=4

2

˚
Œe�E=4
2 cos.2��/C e��E=4
2 � cos �CQ��2Ce2�E=4
2 sin2.2��/ cos2 �

;

Q� D j� .˛/j�2� .2�/� .ˇ/ sin.2��/ sin �:

Because � 0.E/ > 0, the simple spectrum of OH2� has the form spec OH2� D R: The
generalized eigenfunctions UE.x/ D

p
� 0.E/u2;�.xIE/ of OH2� form a complete

orthonormalized system in L2 .RC/.
One can see that for � D ˙�=2, all the results coincide with those of the previous

subrange for g1.

8.4.2.3 Subrange g1 D �1=4 .� D 0/

Using the asymptotics (8.57), we obtain�HC. �/ D 2
.c1c2�c2c1/, which means
that the deficiency indices of OH are m˙ D 1. The condition�HC. �/ D 0 implies
c1 cos# D c2 sin# , # 2 S .��=2; �=2/. Thus, in the subrange under consideration,
there exists a family of s.a. Hamiltonians OH3# parameterized by # with domains
DH3# ,

DH3# D
n
 W  2 D�

LH.RC/;  satisfy (8.64)
o
:
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Imposing the boundary conditions (8.64) on the functions (8.59), using the
asymptotics (8.69), (8.70), and representing the function �� .˛0/V1.xIW / as

�� .˛/V1.xIW / D A.W /u3;# .xIW /C B.W /Qu3;# .xIW /;
u3;#.xIW / D u1.xIW / sin# C u3.xIW / cos#;

Qu3;#.xIW / D u1.xIW / cos# � u3.xIW / sin#;

u3.xIW / D �c.W /u1.xIW / � � .˛0/V1.xIW /

D @�
�
�1=4C�e�z=2˚.1=2C �C iw; ˇ˙ D 1C 2�I z/

�ˇˇ
�D0 ;

A.W / D c.W / sin# C cos#; B.W / D c.W / cos# � sin#;

where c.W / is given in (8.71), we obtain the Green’s function of the Hamiltonian
OH3# ,

G.x; yIW / D 1

2


�
A.W /

B.W /
u3;# .xIW /u3;# .yIW /

C

 Qu3;#.xIW /u3;#.yIW /; x > y;

u3;#.xIW /Qu3;#.yIW /; x < y
�
; (8.73)

where the second term on the right-hand side of (8.73) is real for real W D E .
We note that the functions u3;#.xIW / and Qu3;#.xIW / are solutions of (8.52) real

entire in W , and u3;#.xIW / satisfies the boundary condition (8.64).
Consider the guiding functional

˚.�IW / D
Z 1

0

dxu3;# .xIW /�.x/; � 2 Dr .RC/\DH3#
:

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D u3;# ( QU D Qu3;# ), and therefore the spectra of
OH3# are simple.

The Green’s function allows one to calculate the derivative of the spectral
function,

� 0.E/

D .4
/�1
�
1C tanh.�E=4
2/

�

n�
Re .˛0/ � 2 .1/

�
cos # � sin#

o2C.�2=4/
h
1C tan h

�
�E=4
2

�i2
cos2 #

:

Because � 0.E/ > 0, the simple spectrum of OH3# has the form spec OH3# D R.
The generalized eigenfunctions UE.x/ D

p
� 0.E/u3;# .xIE/ of OH3# form a complete

orthonormalized system in L2 .RC/. Note that for # D ˙�=2, all the results coincide
with those of the range g1 � 3=4 in the limit � D 0, i.e., in the limit g1 ! �1=4.
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8.4.2.4 Subrange g1 < �1=4 (� D i~, ~ > 0/

Using the asymptotics (8.57), we obtain�HC. �/ D �4i~
.c1c2�c2c1/, which means
that the deficiency indices of OH are m

˙
D 1. The condition �HC. �/ D 0 implies

c1 D e2i� c2, � 2 S .0; �/ : Thus, in the subrange under consideration, there exists a
family of s.a. Hamiltonians OH4� parameterized by � with domains

DH4� D f W  2 D�

LH
.RC/;  satisfy (8.67)g:

Imposing the boundary conditions (8.67) on the functions (8.59), using the asymp-
totics (8.69), (8.70), and representing the function V1.xIW / in the form

V1.xIW / D � 1

4~
ŒA.W /u4;� .xIW /C B.W /Qu4;� .xIW /� ;

u4;� .xIW / D ei�u1.xIW /C e�i�u2.xIW /;
Qu4;� .xIW / D i Œe�i�u2.xIW / � ei�u1.xIW /�;

A.W / D i �ei� b.W / � e�i� a.W /
�
; B.W / D ei� b.W /C e�i� a.W /;

where u4;� .xIW / and Qu4;� .xIW / are real entire solutions of (8.52) and u4;� .xIW / sat-
isfies the boundary conditions (8.67), we obtain the Green’s function of the Hamiltonian
OH4� ,

G.x; yIW / D � 1

8~


�
A.W /

B.W /
u4;� .xIW /u4;� .yIW /

C

 Qu4;� .xIW /u4;� .yIW /; x > y;

u4;� .xIW /Qu4;� .yIW /; x < y
�
; (8.74)

where the second term on the right-hand side of (8.74) is real for real W D E .
Consider the guiding functional

˚.�IW / D
Z

1

0

dxu4;� .xIW /�.x/; � 2 Dr .RC/ \DH4�
:

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U D u4;� ( QU D Qu4;� ), and therefore the spectra of OH4� are
simple.

The Green’s function allows one to calculate the derivative of the spectral function,

� 0.E/ D 1

8�~


D.E/ ND.E/ � 1
jD.E/C 1j2 > 0; D.E/ ND.E/ D jD.E/j2;

D.E/ D e�2i� a.E/

b.E/
; jD.E/j D e�~

�
cos hŒ�.~ CE=4
2/�
cos hŒ�.~ � E=4
2/�

�1=2
> 1:
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Thus, the simple spectra of OH4� have the form spec OH4� D R and the generalized
eigenfunctions UE.x/ D

p
� 0.E/u4;� .xIE/ of OH4� form a complete orthonormalized

systems in L2 .RC/.
The main conclusion is that for the ESP IV under consideration, with g2 < 0; the

spectrum of any s.a. Schrödinger operator is simple, continuous, unbounded from below,
and all the points of the real axis R belong to the spectrum.

8.5 ESP V

In this case,
V.x/ D g1e�2cx C g2e�cx; x 2 R ; (8.75)

and the corresponding Schrödinger equation is

 00 � �g1e�2cx C g2e�cx
�
 CW D 0: (8.76)

It is sufficient to consider only the case c > 0, because the case with c < 0 is reduced to
the former one by the transformation x ! �x.

The potential (8.75) is known as the Morse potential; see [113]. Such a potential was
suggested to explain the observed vibrational energy levels and dissociation energies of
diatomic molecules. It has been also applied to the deuteron problem [114].

Below, we consider separately three ranges: g1 D 
2 > 0, 
 > 0; g1 D �
2 < 0,

 > 0; and g1 D 0.

8.5.1 Range 1

In this range, we have
g1 D 
2 > 0; 
 > 0:

Here, we introduce a new variable z 2 RC and a new function 
, instead of x and
 .x/ in (8.76),

z D 2
c�1e�cx; x D �c�1 ln
� cz

2


�
;  .x/ D z�e�z=2
 .z/ ;

� D c�1.�W /1=2 D c�1jW j1=2 .sin'=2 � i cos '=2/ ;

Re� � 0I Re� > 0 for ImW > 0; (8.77)

where W D jW jei' , 0 � ' � � . Then 
 .z/ obeys the equation

zd2z 
 .z/C .1C 2� � z/dz
 .z/ � .1=2C �C q/ 
 .z/ D 0;
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where q D g2=2c
 . This equation has the confluent hypergeometric functions˚.˛; ˇI z/
and 	.˛; ˇI z/ (with ˛ D 1=2C �C q, ˇ D 1C 2�) as solutions; see [1, 20, 81].

In what follows, we use the following two solutions of (8.76):

u1 .xIW / D z�e�z=2	.˛; ˇI z/

D �e�z=2

sin.2��/

�
z��˚.˛�; ˇ�I z/
� .˛/� .ˇ�/

� z�˚.˛; ˇI z/
� .˛�/� .ˇ/

�
;

u2 .xIW / D z�e�z=2

� .ˇ/
˚.˛; ˇI z/;

˛� D ˛ � ˇ C 1 D 1=2 � �C q; ˇ� D 2 � ˇ D 1 � 2�; Reˇ � 1:

We note that u1 .xIW / and u2 .xIW / are defined for any ˛ and ˇ, u1 .xIW / is real
entire in W , and u2 .xIE C i0/ is real for E � 0:

Below, we list some asymptotics as jxj ! 1 of the introduced functions; see
[1, 20, 81].

For x !1 (z! 0), ImW > 0, we have

u1 D � .ˇ/.2
=c/��

2�� .˛/
ejW j

1=2Œ�ix cos.'=2/Cx sin.'=2/� QO .e�cx/

D O
�

exjW j
1=2 sin.'=2/

�
!1;

u2 D .2
=c/�

� .ˇ/
ejW j

1=2Œix cos.'=2/�x sin.'=2/� QO .e�cx/

D O
�

e�xjW j
1=2 sin.'=2/

�
! 0:

For x ! �1 (z!1), we have

u1 D e�z=2z�1=2�g2=.2c
/ QO.z�1/

D O
h
e�.
=c/ecjxj

e�.g2=.c
/Cc/jxj=2
i
! 0;

u2 D � �1.˛/ez=2z�1=2Cg2=.2c
/ QO.z�1/

D O
h
e.
=c/e

cjxj

e.g2=.c
/�c/jxj=2
i
!1:

Since Wr .u1; u2/ D �c=� .˛/, the solutions u1 and u2 are linearly independent and
form a fundamental set of solutions of (8.76) for ImW ¤ 0.

One can see that for ImW ¤ 0, any linear combination of the fundamental set is
not square-integrable. The latter means that the deficient subspaces are empty and both
deficiency indices are zero.
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We note that u1 2 L2 .�1; x0/ and u2 2 L2 .x0;1/ for any finite x0 and ImW > 0.
This fact will be used in constructing Green’s functions.

As usual, starting with the s.a. differential operation LH with the potential (8.76), we
construct the initial symmetric operator OH defined on the domain D .R/. Its adjoint OHC

is defined on the natural domain D�

LH
.R/. Taking into account that in the case under

consideration Œ �;  �� .x/
jxj!1�! 0, 8 � 2 D�

LH
.R/, see Sect. 7.1, we calculate the

asymmetry form �HC . �/ to obtain

�HC . �/ D Œ �;  ��j1�1
D 0; 8 � 2 D�

LH
.R/ :

This result implies that the operator OHC is s.a., and OH1 D OHC is a unique s.a. extension
of OH .

To construct the Green’s function of the operator OH1, we consider, following
Sect. 5.3.2, the general solution of the inhomogeneous equation

� LH �W
�
 D � 2 L2 .R/ ; ImW > 0:

Such a solution has the form

 .x/ D c1u1.xIW /C c2u2.xIW /C � .˛/

c
Œu2.xIW /

�
Z x

�1

u1.yIW /�.y/dy C u1.xIW /
Z

1

x

u2.yIW /�.y/dy
�
;

where c1;2 are arbitrary constants. By the help of the Cauchy–Schwarz inequality, we
can see that both terms in square brackets are bounded as jxj ! 1, which implies
c1 D c2 D 0 for functions  to be square-integrable. Then the Green’s function of the
operator OH1 has the form

G .x; yIW / D � .˛/

c



u2.xIW /u1.yIW /; x > y
u1.xIW /u2.yIW /; x < y

D �.W /

c

�
�� .˛/ sin.2��/

�
u1.xIW /u1.xIW /

C



u3.xIW /u1.yIW /; x > y;
u1.xIW /u3.yIW /; x < y

�
;

where

�.W / D � .˛/� .˛�/

� .˛/C � .˛�/
;

u3 D e�z=2

�
z�

� .ˇ/
˚.˛; ˇI z/C z��

� .ˇ�/
˚.˛�; ˇ�I z/

�
:

We note that u3.xIW / is a solution of (8.76) real entire in W .
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Consider a guiding functional

˚ .�IW / D
Z

R

dx u1 .xIW / � .x/ ; � 2 D D Dr .R/ \D�

LH
.R/ : (8.78)

The space D is dense in L2 .R/ owing to D .R/ � D. Properties (i) and (iii) of
Sect. 5.3.3 are obviously fulfilled, and we have only to check Property (ii).

Let there exist �0.x/ 2 D and E0 2 R such that

˚ .�0IE0/ D
Z b

�1

dx u1 .xIE0/ �0 .x/ D 0; supp�0 2 .�1; b�:

Let us consider a solution

 .x/ D u .xIE0/
Z x

�1

u1 .yIE0/ �0 .y/ dy C u1 .xIE0/
Z

1

x

u .yIE0/ �0 .y/ dy

of the equation . LH � E0/ D �0, where uI .xIW / is an arbitrary solution of (8.76)
satisfying the condition Wr.u; u1/ D 1. Using the Cauchy–Schwarz inequality, we can
prove2 that

 .x/ D O.z�3=2/ D O.e�3cjxj=2/; x ! �1;

so that  ; LH D �0 CE0 2 L2.R/. Thus,  2 D, and therefore ˚ .�IW / is a simple
guiding functional, so that the spectrum of OH1 is simple.

With the help of (5.22), we obtain

�cu1 .x0IE/� 0 .E/ D ImŒ� .˛/u2 .x0IW /�WDECi0 D ���1u1 .x0IE/
� ImŒ� .˛/ sin.2��/�.W /�WDECi0 C u3 .x0IE/ Im�.E C i0/: (8.79)

1. Consider the case 1=2C q … Z�.

(a) Let E D c2p2 � 0 and

� D �ip; p � 0; ˛ D 1=2C q � ip; ˛� D 1=2C q C ip; ˇ D 1 � 2ip:

Then � .˛�/ D � .˛/, � .˛/ ¤ 1: If Re� .˛/ ¤ 0, then �.E � 0/ is finite and
real, so that it follows from the second line in (8.79) that

� 0 .E/ D sinh.2�p/�.E/

�2c
Re� .˛/ D sin h.2�p/

2�2c
j� .˛/j2:

2For estimating integrals, it is convenient to pass from integration over x to integration over z.
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If Re� .˛/ D 0, then

u1 .x0IE/ D 2� Œsinh.2�p/ Im� .˛/��1 Re u2 .x0IE/;
and it follows from the first line in (8.80) that

� 0 .E/ D sinh.2�p/ ŒIm� .˛/�2

2�2c Re u2 .x0IE/ ImŒiu2 .x0IE/� D sin h.2�p/

2�2c
j� .˛/j2:

Finally, we obtain that

� 0 .E/ D sinh.2�p/

2�2c
j� .˛/j2 > 0; E � 0;

which means that spec OH1 D RC.
(b) Let E D �c2�2 < 0. Then

� D � > 0; ˛ D 1=2C q C �; ˇ D 1C 2�:
Here, we find from the first line in (8.79) that

� 0 .E/ D u2 .x0IE/
�cu1 .x0IE/ Im � .˛/WDECi0 ;

where we recall that u1 .x0IE/ and u2 .x0IE/ are real. Because � .˛/jWDE is real
if � .˛/jWDE is finite, it follows that Im� .˛/ and � 0 .E/ differ from zero only at
the points En for which j� .˛/j D 1. At these points, ˛ D ˛n D 1=2C qC �n D
�n, n 2 ZC; so that

En D �c2 .1=2C nC q/2 ; n 2 ZC:

If g2 < �c
; and there exists a natural number nmax 2 ZC such that

c
.1C 2nmax/ < jg2j < c
.3C 2nmax/;

then there exist nmax C 1 discrete levels

En D �c2 .jqj � n � 1=2/2 ; n D 0; 1; : : : ; nmax:

For ˛ D ˛n D �n, we have

u2 .x0IEn/ D .�1/n� �1.2jqj � n/u1 .x0IEn/ :
Using relations

˛jWDECi" D �n �
Q�

2c
pjEnj

CO. Q�2/; Q� D E � En C i";

Im� .˛/ D .�1/n 2�c
pjEnj
nŠ

ı.E � En/;
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for E in a neighborhood of En, see Lemma 5.17, we obtain

� 0 .E/ D
nmaxX

nD0

Q2
nı.E � En/; Qn D

s
2
pjEnj

nŠ� .2jqj � n/ :

2. Consider the case 1=2C q D �l , l 2 ZC, i.e., g2 D �c
.1C 2l/.
(a) Let E ¤ 0: Then all the above considerations and conclusions hold, and in

particular, there exist l discrete energy levels En ¤ 0, n D 0; 1; : : : ; l � 1.
(b) Suppose E is situated in a neighborhood of E D 0. Here � � 0, and

� .˛/ D .�1/l
�lŠ

; u2.xI 0/ D e�z=2˚.�l; 1I z/; u1.xI 0/ D .�1/l lŠu2.xI 0/;

so that

� 0 .E/ D ��.lŠ/2��1 ImŒ�.E C i0/��1=2 D
( h
�.lŠ/2

p
E
i

�1

; E > 0;

0; E < 0;

� .E/ D
(
2
p
E
�
�.lŠ/2

�
�1
; E � 0;

0; E < 0:

Because �.E/ has a square-root singularity at E D 0, there is no discrete level at
this point. This conclusion can be justified by a direct solution of (8.76) withW D 0. Its
unique solution square-integrable on �1 is

 .x/ D C e�z=2	.˛; 1I z/; ˛ D 1=2C q:

As x !1, we obtain

 .x/!


� �1.˛/cx; ˛ … Z�;

.�1/nnŠ; ˛ D �n; n 2 ZC:

This means that there exists no square-integrable solution of (8.76) with zero energy.
Finally, we obtain for the simple spectrum of OH1,

spec OH1 D
8
<

:

RC; g2 � �c
;
RC [ fEng; n D 0; 1; : : : ; nmax; nmax 2 ZC;

�c
.1C 2k/ > g2 � �c
.3C 2k/:

The (generalized) eigenfunction UE .x/ D
p
� 0.E/u1.xIE/, E � 0, and Un.x/ D

Qnu1.xIEn/ of OH1 form a complete orthonormalized system in L2.R/.
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We note that Un.x/ are really eigenfunctions of OH1. Indeed, for ˛ D �n, n 2 ZC;

we have

Un .x/ D � �e�z=2z�n˚.�n; ˇI z/
sin.2��n/� .˛�/� .ˇ/

and ˚.�n; ˇI z/ is a polynomial, so that Un .x/ 2 L2.R/.

8.5.2 Range 2

In this range, we have

g1 D �
2 < 0; 
 > 0:
Here, we introduce new variables z� and new functions 


˙;� , instead of x and  .x/
in (8.76),

z� D i�� D ei��=2�; � D 2
c�1e�cx; � 2 RC; � D ˙1;
 D e�z� =2z˙�

� 

˙;�

�
z�
�
;

where � is defined in (8.77). Then 
�
�
z�
�

satisfy the equation

z�d
2
z� 
˙;�

�
z�
�C .1˙ 2� � z�/dz� 
˙;�

�
z�
� � .1=2˙ � � i�q/ 


˙;�

�
z�
� D 0;

which has the confluent hypergeometric functions ˚ and 	 as solutions; see
[1, 20, 81].

In our considerations, we will use different sets of solutions of (8.76). The first of
them is

P.xIW / D � �1.ˇ/e�z=2z�˚.˛; ˇI z/;
P�.xIW / D � �1.ˇ�/e�z=2z��˚.˛�; ˇ�I z/ D P.xIW /j�!�� ;

˛ D ˛CjC; ˛� D ˛�jC; ˇ D ˇC; ˛˙j�D1=2˙ � � i�q; ˇ˙
D1˙ 2�; zDzC:

The second set reads

u1 .xIW / D e�z=2z�	.˛; ˇI z/ D �

sin.2��/

�
P�.xIW /
� .˛/

� P.xIW /
� .˛�/

�
;

u2 .xIW / D e�z�=2z�
�
	.˛Cj�; ˇI z�/

D �

sin.2��/

�
ei��P�.xIW /

� .˛Cj�/
� e�i��P.xIW /

� .˛�j�/

�
:
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And the third set has the form

U� .xIW / D ei�u1 .xIW /C e�i�u2 .xIW / ; (8.80)

QU� .xIW / D i
�
e�i�u2 .xIW / � ei�u1 .xIW /

�
:

There exist relations between functions from different sets:

P.xIW / D ie�qei��

� .˛Cj�/
u1 .xIW / � ie�q

� .˛/
u2 .xIW /

D ie�q

2
b� .�/U� .xIW / � e�q

2
a� .�/ QU� .xIW /;

b� .�/ D e�i�Ci��

� .˛Cj�/
� ei�

� .˛/
; a� .�/ D e�i�Ci��

� .˛Cj�/
C ei�

� .˛/
: (8.81)

We note that solutions P , P�, u1, and u2 are defined for any ˛
˙j� and ˇ; u1;2 .xIW /

are even entire functions of � and therefore are entire in W I
u1 .xIW / D u2

�
xIW �

; u1 .xIE/ D u2 .xIE/ I
P .xIW / and P� .xIW / are analytic functions in C

˙
with respect to W ; the functions

U� .xIW / and QU� .xIW / are real entire in W .
Below, we list some asymptotics of the introduced functions as jxj ! 1; see [1, 20,

81].
For x ! �1 (�!1/, we have

u1 .xIW / D uas.x/CO
�

e�3jxj=2
�
; u2 .xIW / D uas.x/CO

�
e�3jxj=2

�
;

P .xIW / D i
"

ei��C�q

� .˛Cj�/
uas.x/ � e�q

� .˛/
uas.x/

#

CO
�

e�3jxj=2
�
; 8W;

where uas.x/ D Quas.�/ and

Quas.�/ D .ei�=2�/�1=2Ciqe�i�=2 D ei.q ln ���=2��=4Ci�q=2/��1=2; (8.82)

uas.x/ D .c=2
/1=2eifqŒln.2�=c/�cx��.
=c/ exp.�cx/��=4Ci�q=2gecx=2; (8.83)

i.e., any solution of (8.76) is square-integrable on �1 (for any W ).
For x !1 (�! 0/, we have

P .xIW / D � �1.ˇ/z� QO.�/ D O
�

e�xjW j
1=2 sin.'=2/

�
! 0; ImW > 0;

and

u1 .xIW / D ��.2�=c/
��e�i��=2e�ixjW j

1=2 exp.'=2/

sin.2��/� .˛�jC/� .ˇ�/
QO.�/

D O
�

exjW j
1=2 sin.'=2/

�
!1;
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for 0 < ImW < b0, where

b0 D



min
�
c2=2; g22=.2�

2/
�
; g2 ¤ 0;

1; g2 D 0:

Under such a limitation on W (which is enough for our aims), ˛
˙;� ; ˇ˙

… Z�.
As far as

Wr.u1; u2/ D �ice��q; Wr .u1; P / D �c=� .˛/; Wr .u2; P / D �cei��=� .˛Cj�/

is concerned, both sets u1, u2 and u1, P (the latter for ImW > 0, ˛ … Z�) are
fundamental sets of solutions of (8.76). Because P .xIW / 2 L2.R/ and u1 .xIW / 62
L2.R/, there exists only one independent square-integrable solution of (8.76) for a fixed
W (ImW > 0/ for all the values of parameters. This means that in the case under
consideration, the deficiency indices of OH are m

˙
D 1.

The adjoint OHC is defined on functions  � from the natural domain D�

LH
.R/. Such

functions satisfy the equation

LH� .x/ D �.x/ 2 L2.R/: (8.84)

Regarding V.x/
x!1�! 0; we have  � .x/ ;  

0

�
.x/

x!1�! 0 (see Sect. 2.1), so that

�HC . �/ D �Œ �;  �� .�1/ ; 8 � 2 D�

LH
.R/ :

We can obtain the asymptotic behavior of  � using the general solution

 �.x/ D c1u1.xI 0/C c2u2.xI 0/

Cic�1e�q
Z x

�1

Œu1.xI 0/u2.yI 0/ � u2.xI 0/u1.yI 0/��.y/dy (8.85)

of (8.84).
To estimate integral terms on the right-hand side of (8.85), it is convenient to rewrite

 � and its derivative in terms of the variable � ( Q �.�/ D  �.x/),

Q �.�/ D c1 Qu1.�I 0/C c2 Qu2.�I 0/

Cic�2e�q
Z

1

�

ŒQu2.�I 0/QuC1.�
0I 0/ � Qu1.�I 0/Qu2.�0I 0/� Q�.�/d�0

�0
;

Q 0

�
.�/ D c1d� Qu1.�I 0/C c2d� Qu2.�I 0/

Cic�2e�q
Z

1

�

Œd� Qu2.�I 0/Qu1.�0I 0/ � d� Qu1.�I 0/Qu2.�0I 0/� Q�.�/d�0

�0
:
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Using the fact that Qu1.�I 0/, Qu0

1.�I 0/, Qu2.�I 0/, and Qu0

2.�I 0/ have the asymptotics
O.��1=2/ as � ! 1 (x ! �1) and the Cauchy–Schwarz inequality, we obtain as
�!1;

Q �.�/ D c1 Quas.�/C c2 Quas.�/CO.��1/;

Q 0

�
.�/ D c1d� Quas.�/C c2d� Quas.�/CO.��2/;

where Quas.�/ is defined by (8.82).
By the help of the asymptotics, we obtain �HC . �/ D ice��q.c1c1 � c2c2/, which

confirms the fact that deficiency indices of OH are m
˙
D 1. The condition �HC . �/ D

0 implies c1 D exp .2i�/ c2, � 2 S .0; �/.
Thus, in the range under consideration, there exists a family of s.a. Hamiltonians OH�

parameterized by � 2 S .0; �/ with domains DH� that consist of functions belonging to
D�

LH
.R/ with the following asymptotic behavior as x ! �1:

 .x/ D C
h
ei�uas.x/C e�i�uas.x/

i
CO

�
e�cjxj

�
; (8.86)

where the function uas.x/ is defined by (8.83).
The general solution of (8.84) with b0 > ImW > 0, has the form

 .x/ D c1u1.xIW /C c2P.xIW /C c�1� .˛/

�
�

u1.xIW /
Z

1

x

P.yIW /�.y/dy C P.xIW /

Z x

�1

u1.yIW /�.y/dy
�
;

where c1;2 are arbitrary constants. With the help of the Cauchy–Schwarz inequality, we
can verify that both terms in square brackets are bounded as x !1, which implies that
for the function  to be square-integrable, the conditions c1 D 0 must hold. Then we
represent  .x/ as

 .x/ D c2P.xIW /C c�1� .˛/�P u1.xIW /C c�1� .˛/

�
�
P.xIW /

Z x

�1

u1.yIW /�.y/dy � u1.xIW /
Z x

�1

P.yIW /�.y/dy
�
;

�P D
Z

1

�1

P.yIW /�.y/dy: (8.87)

Again, estimating integral terms in (8.87) with the help of the Cauchy–Schwarz
inequality, we obtain as x ! �1,

 .x/ D c2ie�q
"

ei��uas.x/

� .˛Cj�/
� uas.x/

� .˛/

#

C c�1� .˛/�P uas.xIW /CO
�

e�cjxj

�
:



342 8 Schrödinger Operators with Exactly Solvable Potentials

Then condition (8.86) implies

c2 D ic�1� .˛/�P a
�1
� .�/e�i���q :

Using relations (8.80) and (8.81), we obtain the Green’s function of the operator OH�

from (8.87):

G .x; yIW / D ˝�1 .W /U� .x;W /U� .yIW /

�e�q

2c


 QU� .x;W /U� .yIW / ; x > y;
U� .x;W / QU� .yIW / ; x < y;

˝ .W / D �i 2ca� .�/
b� .�/

e��q :

The imaginary part of the function M.x0;E C i0/; given by (5.21), has the form

ImM.x0;E C i0/ D ŒU� .x0; E/�2 Im˝�1.E C i0/;

˝.W / D �2ice��q ei.��=2��/� .1=2C � � iq/C e�i.��=2��/� .1=2C �C iq/
ei.��=2��/� .1=2C � � iq/ � e�i.��=2��/� .1=2C �C iq/ :

Taking into account that U� .x;W / is a real entire function satisfying the boundary
condition (8.86), one can prove that the guiding functional

˚.�IW / D
Z

R

U� .x;W / �.x/dx; � 2 Dr .R/ \DH�

is simple, so that the spectra of the operators OH� are simple.
The derivative of the spectral function has the form � 0.E/ D ��1 Im˝�1.E C i0/.
For E D c2p2 � 0, p � 0, � D �ip, we obtain

� 0.E/ D e�q

2�c

jD.E/j2 � 1
jD.E/C 1j2 ; D.E/ D

� .1=2 � ip� iq/

� .1=2 � ipC iq/
e�2i�C�p:

A straightforward calculation gives

jD.E/j D e�p
s

cos hŒ�.p C q/�
cos hŒ�.p � q/� > 1; p > 0:

The derivative � 0.E/ is finite for E � 0 and � satisfying the condition

e2i� ¤ K D � � .1=2 � iq/
� .1=2C iq/ :
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If e2i� D K; the derivative has an integrable singularity of the form � 0.E/ � E�1=2.
Thus, any E 2 RC belongs to the continuous spectrum.

For E D �c2�2 < 0, � > 0, � D �; the function ˝.E/ reads

˝.E/ D �2ce��q cot Œf .E/ � �� ;

f .E/ D ��=2C 1

2i

�
ln� .1=2C � � iq/ � ln� .1=2C � C iq/�: (8.88)

The function ˝�1.E/ is real at the points where ˝.E/ ¤ 0. Thus, only the E D En.�/
obeying the equation

˝.En.�// D 0 H) f .En.�// D �=2C �nC �; n 2 Z; (8.89)

provide nonzero contributions to Im˝�1.E C i0/.
The derivative of the spectral function has the form

� 0.E/ D
X

n2Z

Q2
nı.E � En.�//; Qn D

vu
ut

pjEn.� je�q
�=2C Im .1=2C c�1

pjEn.� j � iq/
:

Finally, we see that spec OH� equals RC [ fEn.�/; n 2 Zg and is simple, the set
of its (generalized) eigenfunctions UE.x/ D

p
� 0.E/U�.xIE/, E � 0, and Un.x/ D

QnU�.xIEn.�// form a complete orthonormalized system in L2 .R/.
Some remarks on the spectrum structure can be made: First of all, one can show that

f 0.E/ D �2� Œ�=2C Im .1=2C � � iq/� < 0; E < 0: (8.90)

According to [81, 8.363.4], the expression j Im .1=2 C � � iq/j is a monotonically
decreasing function of � for � � 0. For � D 0, we obtain [81, 8.365.9] that

j Im .1=2 � iq/j D �

2
tanh.� jqj/ < �

2
H)

H) j Im .1=2C � � iq/j < �=2;

which implies (8.90). In addition, f .E/ has the properties

f .E/ D ��=2 � q ln � CO.1/; E ! �1I
f .0/ D ��q
0 CO.�/; � ! 0;


0 D arctan.2jqj/; �q D sgn q D sgn g2;

and @�En D Œf 0.En.�//�
�1
< 0. Thus, as E passes from �1 to 0, the function f .E/

decreases monotonically from1 to f .0/ D ��q
0.
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Because any number from the interval Rf D .��q
0;1/ can be represented as
�=2C �.n C �=�/ with some n � �1 and some � 2 .0; ��, we have n 2 f�1g [ ZC,
and any E<0 is a solution of (8.89) for some n and � (depending, in general, on E).

Regarding @�En.�/ < 0 for a given n 2 f�1g [ ZC, we can draw the following
conclusions: Let En be solutions of (8.89) for n 2 ZC and � D 0 (there exists only
one solution for any fixed n 2 ZC, and furthermore, EnC1 < En for any n). Then in
the interval ŒE0; 0/ there are no solutions of (8.89) for extensions with � 2 .0; �0 D
�=2 � �q
0�, and for any fixed � 2 .�0; ��, there is one solution E�1.�/ monotonically
decreasing from �0 to E�1.�/ D E0 as � goes from �0 C 0 to � ; in any interval
ŒEnC1; En/, n 2 ZC, for a fixed � 2 .0; ��, there is one solution En.�/ monotonically
decreasing from En � 0 to EnC1 as � goes from C0 to � . We stress that the relations

En�1.�/ D lim
�!0

En.�/ D En.0/ D En; n 2 ZC

confirm once again the equivalence of extensions � D � and � D 0.

8.5.3 Range 3

In this range, we have g1 D 0: Below, we list briefly only the principal results.

8.5.3.1 Subrange g2 D �2 > 0, � > 0

In this subrange, it is convenient to introduce a new variable �,

� D 2
c�1e�cx=2; x D � ln.cz=2
/; dx D �dz=cz; z 2 RC;

and a new function 
 .�/ D  .x/ to transform (8.76) to the Bessel equation of the
imaginary argument,

h
d2� C ��1d� � .1C ��24�2/

i

.�/ D 0; � D c�1

p�W :

One can see that the deficiency indices of OH are m
˙
D 0, so that there exists only

one s.a. Hamiltonian OH1 D OHC.
One can verify that the guiding functional (8.78) with u1.xIW / D K2�.�/, where

K2�.�/ is a real entire solution of (8.76), is simple, and therefore the spectrum of OH1 is
simple.

One can see that for E D c2p2 � 0; p � 0; we have

� 0.E/ D 2�.E/

�2c
sinh .2�p/;
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so that the simple spectrum of OH1 reads spec OH1 D RC, and the generalized
eigenfunctions

UE.x/ D
r
2 sin h .2�p/

�2c
K2ip.�/

of OH1 form a complete orthonormalized system in L2 .R/.

8.5.3.2 Subrange g2 D ��2 < 0, � > 0

Introducing � D c�1
e�cx=2 and the function f .�/ D  .x/, we transform (8.76) to the
Bessel equation

h
d2� C ��1d� C

�
1 � ��2.2�/2

�i
f .�/ D 0; � D c�1

p�W :

Deficiency indices of OH arem
˙
D 1, and there exists a family of s.a. extensions OH� ,

parameterized by � 2 S .0; �/, with domainsDH� that consist of functions fromD�

LH
.R/

with the following asymptotic behavior as x ! �1:

 .x/ D C
h
ei�vas.x/C e�i�vas.x/

i
CO

�
e�3cjxj=4

�
;

vas.x/ D e�i Œ.2
=c/e�cx=2
C�=4�ecx=4: (8.91)

One can verify that the guiding functional (8.78) with u1.xIW / D U�.xIW /, where

U�.xIW / D
p
�

2

h
ei.�����1=2/H

.2/
2� .�/C e�i.�����1=2/H

.1/
2� .�/

i
;

is a real entire solution of (8.76) satisfying s.a. boundary condition (8.91). Also, it is
simple, and therefore the spectra of OH� are simple.

For E D c2p2 � 0, p � 0, we have

� 0.E/ D .�c/�1 sinh.2�p/

cos.2�/C cos h.2�p/
:

For E D �c2�2 < 0, � > 0; we have

� 0.E/ D
X

n

Q2
nı.E �En.�//; Qn D

�
2
p
jEn.�/j=�

�1=2
;

where

En.�/ D �c2.1C 2��1� C 2n/2;

n 2

 f�1g [ ZC; �=2 < � � �;
ZC; 0 � � � �=2;

En�1.�/ D En.0/; n 2 ZC:
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Finally, the simple spectrum of OH� is given by spec OH� D RC [ fEn.�/g. The
(generalized) eigenfunctions UE.x/ D

p
� 0.E/U�.xIE/, E � 0, and Un.x/ D

QnU�.xIEn.�// of OH� form a complete orthonormalized system in L2 .R/.
We note that all the results in the case g1 D 0 under consideration can be derived

from the corresponding results obtained for g1 ¤ 0. To see this, we first set g2 D 0, and
then perform the following change of notation: g1, c, �, p, � ! Qg1, Qc, Q�, Qp, Q� . In the
new notation,

Q� D Qc�1
p�W ; E D

(
Qc2 Qp2; E � 0;
�Qc2 Q�2; E < 0:

In addition, one needs to make the change Qg1 D g2, Qc D c=2, Q� D 2�, Qp D 2p, and
Q� D 2� in all the expressions to arrive at the case g1 D 0. Then expressions that arise
are simplified. For example,

P.xIW / D � �1.ˇ/z�e�z=2˚.˛; ˇI z/! P.xIW / D � �1.ˇ/z�e�z=2˚.ˇ=2; ˇI z/

D 4�� .1C �/
� .1C 2�/ I�.z=2/;

u1 .xIW / D z�e�z=2	.˛; ˇI z/! u1 .xIW /
D z�e�z=2	.ˇ=2; ˇI z/ D ��1=2K�.z=2/

(see [1, 20, 81]), so that expression (8.88) and (8.89) take the form

˝.E/ D cot Œf .E/� �� ; f .E/ D ��=2; ��n=2 � � D �=2C �n:

8.6 ESP VI

In this case,

V.x/ D c2g1 sin�2.cx/C c2g2 cos�2.cx/; x 2 Œ0; �=2c� ; (8.92)

and the corresponding Schrödinger equation is

 00 � c2Œg1 sin�2.cx/C c2g2 cos�2.cx/� CW D 0: (8.93)

It is sufficient to consider only the case c > 0without loss of generality. The potential
(8.92) is known as the Pöschl–Teller potential; see [126]. This potential was used to
study the vibron model of a molecular system and describe anharmonic effects in the
dissociation [105].
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Introducing a new variable z and new functions 
��.z/, instead of x and  .x/ in
(8.93),

z D sin2.cx/; z 2 Œ0; 1�;
 .x/ D z1=4C���=2.1 � z/1=4C�=2
��.z/; �� D ˙1;

where

� D
( p

g1 C 1=4; g1 � �1=4;
i~; ~ Dpjg1j � 1=4; g1 < �1=4;

�2 D g1 C 1=4I

� D
( p

g2 C 1=4; g2 � �1=4;
i�; � D pjg2j � 1=4; g2 < �1=4;

�2 D g2 C 1=4;

we obtain equations for the new functions,

z.1 � z/d2z 
��.z/C Œ��� � .1C ˛�� C ˇ��/z�dz
��.z/ � ˛��ˇ��
��.z/ D 0 ;
˛�� D .1C ���C � C �/=2; ˇ�� D .1C ���C � � �/=2; ��� D 1C ���;
w D W=c2 D jwjei' ; 0 � ' < 2�; � D

p
jwjei'=2: (8.94)

Introducing a new variable u and a new function 
.u/ instead of x and  .x/ in
(8.93),

u D 1 � z;  .x/ D .1 � u/1=4C�=2u1=4C�=2
.u/;

we obtain an equation for 
.u/,

u.1 � u/d2u 
.u/C Œ� 0 � .1C ˛0 C ˇ0/u�du
.u/ � ˛0ˇ0
.u/ D 0;
˛0 D .1C �C � C �/=2; ˇ0 D .1C �C � � �/=2; � 0 D 1C �: (8.95)

Equations (8.94) and (8.95) have hypergeometric functions F.˛; ˇI � I z/ as solutions;
see [20, 81]. Using these functions, we can construct solutions of (8.93).

We use three solutions of (8.93) in what follows:

u1 .xIW / D z1=4C�=2.1 � z/1=4C�=2F .˛1; ˇ1I �1I z/ D u1 .xIW /j�!�� ;

u2 .xIW / D z1=4��=2.1 � z/1=4C�=2F .˛2; ˇ2I �2I z/ D u2 .xIW /j�!�� ;

V1 .xIW / D z1=4C�=2.1 � z/1=4C�=2F .˛1; ˇ1I �3I 1 � z/ D V1 .xIW /j�!��;

where

˛1 D .1C �C � C �/=2; ˇ1 D .1C �C � � �/=2;
˛2 D .1 � �C � C �/=2; ˇ2 D .1 � �C � � �/=2;
�1 D 1C �; �2 D 1 � �; �3 D 1C �:
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We note that u2 .xIW / D u1 .xIW /j�!��. There is a relation between these solutions:

V1 D � .�3/� .��/
� .˛2/� .ˇ2/

u1 C � .�3/� .�/

� .˛1/� .ˇ1/
u2:

We note that the functions uk .xIW /, k D 1; 2, are entire in W for any g1 and g2. They
are real entire in W for g1 � �1=4 (� � 0), and u2 .xIE/ D u1 .xIE/ for g1 < �1=4
(� D i~). The function V1 .xIW / is entire in W and real entire in W for g2 � �1=4
(� � 0).

8.6.1 Range 1

In this range, we have
g2 � 3=4 .� � 1/ :

The asymptotic behavior of special functions in solutions (8.95) are well known, see
[1, 20, 81], so that we can find their asymptotics.

As x ! 0, we have

u1.xIW / D u1as.x/ QO.x2/; u1as.x/ D .cx/1=2C�; (8.96)

u2.xIW / D u2as.x/ QO.x2/; u2as.x/ D .cx/1=2��;

V1.xIW / D

8
ˆ̂
<

ˆ̂:

� .�3/� .�/

� .˛1/� .ˇ1/
u2as.x/ QO.x2/; � � 1; g1 � 3=4;

h
� .�3/� .��/

� .˛2/� .ˇ2/
u1as C � .�3/� .�/

� .˛1/� .ˇ1/
u2as.x/

i QO.x2/;
g1 < 3=4; g1 ¤ �1=4:

(8.97)

As x ! �=2c, v D �=2c � x ! 0, we have

V1.xIW / D .cv/1=2C� QO.v2/; ImW > 0;

u1.xIW / D � .�1/� .�/

� .˛1/� .ˇ1/
.cv/1=2�� QO.v2/; ImW > 0 or W D 0:

The above asymptotics allow us to obtain

Wr.u1; u2/ D �2�c; Wr.u1; V1/ D �2c� .�1/� .�3/
� .˛1/� .ˇ1/

D �!.W /:

It is easily seen that

 � 2 D�

LH
.0; �=2c/ H)  �; LH � 2 L2.0; �=4c/ H)  � 2 D�

LH
.0; �=4c/:
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Representing the potential (8.92) as V.x/ D g1x
�2 C v.x/, where v.x/ is a bounded

function on Œ0; �=4c�, we can treat  �.x/ on the interval .0; �=4c� as a solution of the
equation

� 00

�
.x/C g1x�2 �.x/ D �.x/; �.x/ D LH �.x/ � v.x/ �.x/ 2 L2.0; �=4c/:

Asymptotic behavior of such functions as x ! 0 was studied in Sect. 7.2, so that we
have

 �.x/ D  as
�
.x/C

8
<

:

O.x3=2/; g1 ¤ 3=4;
O
�
x3=2
p

ln x
�
; g1 D 3=4;

 0

�
.x/ D  as0

�
.x/C

8
<

:

O.x1=2/; g1 ¤ 3=4;
O
�
x1=2
p

lnx
�
; g1 D 3=4;

where

 as
�
.x/ D

8
<̂

:̂

0; g1 � 3=4;
c1 .k0x/

1=2C� C c2 .k0x/1=2�� ; g1 < 3=4; g1 ¤ �1=4;
c1x

1=2 C c2x1=2 ln.k0x/; g1 D �1=4:

8.6.1.1 Subrange g2 � 3=4, g1 � 3=4

We note that for g1 � 3=4 (� � 1), the solution V1 .xIW / is not square-integrable at
the origin, but for g1 < 3=4, it is (moreover, any solution is square-integrable at the
origin). This means that for g1 � 3=4, (8.93) has no square-integrable solutions, and the
deficiency indices of the initial symmetric Hamiltonian OH are zero. This implies that
the operator OHC is s.a. and OH1 D OHC is a unique s.a. extension of OH with domain
DH1 D D�

LH
.0; �=2c/.

The general solution of inhomogeneous equation

� LH �W
�
 D � 2 L2 .0; �=2c/ ; ImW > 0;

can be represented as

 .x/ D a1u1.xIW /C a2V1.xIW /C I.xIW /; I.xIW / D !�1.W /

�
"

u1.xIW /
Z �=2c

x

V1.yIW /�.y/dy C V1.xIW /

Z x

0

u1.yIW /�.y/dy
#

:

(8.98)
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Using the Cauchy–Schwarz inequality, we estimate that I.x/ D O..�=2c � x/3=2/
as x ! �=2c (with logarithmic accuracy for g2 D 3=4). The condition  � 2
L2.0; �=2c/ implies a1 D 0 for any g1. Similarly, we obtain I.x/ D O.x3=2/ as x ! 0

(with logarithmic accuracy for g1 D 3=4) and the condition  � 2 L2.0; �=2c/ implies
a2 D 0.

Thus, the Green’s function of the operator OH1 has the form

G.x; yIW / D !�1.W /



V1.xIW /u1.yIW /; x > y;
u1.xIW /V1.yIW /; x < y;

so that

M.x0IW / D G.x0 � 0; x0 C 0IW / D !�1.W /u1.x0IW /V1.x0IW /:

Consider the guiding functional

˚.�IW / D
Z �=2c

0

u1.xIW /�.x/dx; � 2 Dr.0; �=2c/ \DH1:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D u1 ( QU D V1/, and therefore the spectrum of OH1 is
simple.

Following Chap. 5, we obtain the derivative of the spectral function,

� 0.E/ D ��1 Im˝�1.E C i0/; ˝.W / D !.W / u1.x0IW /
V1.x0IW / :

Let E D �c2�2 � 0, � � 0, � D i�: In this case all the quantities u1.x0IE/,
V1.x0IE/, and !.E/ are real and finite, and !.E/ ¤ 0, so that � 0.E/ D 0:

LetE D c2p2 > 0, p > 0, � D p. In this case˝�1.E/ is real except for the energies
where ˝.E/ D 1. The latter is possible only for ˇ1 D �n, n 2 ZC. Therefore, in this
case,

� 0.E/ D 1

2�c

V1.x0IE/� .˛1/
u1.x0IE/� .�1/� .�3/

ˇ
ˇ̌
ˇ
WDE

Im � .ˇ1/jWDECi0 :

Near the points ˇ1 D �n or 1C �C � � �n D �2n, we obtain (using Lemma 5.17)

W D E � En C i"; ˇ1 D �n � E � En C i"
4c2pn

;

Im � .ˇ1/jWDECi0 D .�1/n
4�c2pn

nŠ
ı.E �En/;

�n D pn D 1C �C � C 2n; En D c2.1C �C � C 2n/2; (8.99)

V1.x0IEn/ D .�1/n � .�3/� .1C �C n/
� .�3 C n/� .�1/ u1.x0IEn/;
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and

� 0.E/ D
1X

nD0

Q2
nı.E � En/; Qn D

s
2cpn

nŠ

� .�1 C � C n/� .�1 C n/
� 2.�1/� .�3 C n/ : (8.100)

Finally, we obtain that the simple spectrum of OH1 reads spec OH1 D fEn; n 2 ZCg.
The eigenfunctions Un.x/ D Qnu1.xIEn/, n 2 ZC, form a complete orthonormalized
system in L2.0; �=2c/.

8.6.1.2 Subrange g2 � 3=4, 3=4 > g1 > �1=4; 1 > � > 0

In this subrange, we have as x ! 0,

 �.x/ D a1u1as.x/C a2u2as.x/CO
�
x3=2

�
;

 0

�
.x/ D a1u0

1as.x/C a2u0

2as.x/CO
�
x1=2

�
: (8.101)

Using the asymptotics of functions u1 .xIW / and V1 .xIW /, one can verify that
Œ �;  ��.�=2c/ D 0. Using (8.101), we obtain�HC . �/ D �2�c.a1a2�a2a1/, which
means that the deficiency indices of OH are m

˙
D 1. The condition �HC. �/ D 0

implies

a1 cos � D a2 sin �; � 2 S.��=2; �=2/:

Thus, in the range under consideration, there exists a family of s.a. Hamiltonians OH2;�

parameterized by � with domainsDH2;� that consist of functions fromD�

LH
.0; �=2c/ with

the following asymptotic behavior as x ! 0:

 .x/ DC 2;�as.x/CO
�
x3=2

�
;  0.x/ D C 0

2;�as.x/CO
�
x1=2

�
;

 2;�as.x/ D u1as.x/ sin � C u2as.x/ cos �: (8.102)

Therefore,

DH2;� D
n
 2 D�

LH
.0; �=2c/;  satisfy (8.102)

o
:

To obtain Green’s functions of the operators OH2;�; we impose boundary condition
(8.102) on the functions (8.98) (with a1 D 0). Using asymptotics (8.96) and (8.97), we
obtain the coefficient a2 and then, following Sect. 5.3.2, the Green’s functions

G.x; yIW / D ˝�1.W /U2;�.xIW /U2;�.yIW /

� 1

2�c


 QU2;�.xIW /U2;�.yIW /; x > y;
U2;� .xIW / QU2;�.yIW /; x < y: (8.103)
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Here

U2;�.xIW / D u1.xIW / sin � C u2.xIW / cos �;

QU2;�.xIW / D u1.xIW / cos � � u2.xIW / sin �;

˝.W / D �2�c !2;�.W /Q!2;�.W / ; !2;�.W / D f .W / cos � � sin �;

Q!2;�.W / D f .W / sin � C cos �; f .W / D � .��/� .˛1/� .ˇ1/
� .�/� .˛2/� .ˇ2/

;

and we used the relation

2�cV1 D !.W /
� Q!2;�.W /U2;� C !2;�.W / QU2;�

�
:

The second summand on the right-hand side of (8.103) is real for real W D E . We note
that both U2;� and QU2;� are solutions of (8.93) real entire in W , and the solutions U2;�
satisfy the boundary condition (8.102).

Consider the guiding functional

˚.�IW / D
Z �=2c

0

U2;�.xIW /�.x/dx; � 2 Dr.0; �=2c/ \DH2;� :

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D U2;� ( QU D QU2;�/, and therefore the spectra of OH2;�

are simple.
The derivative of the spectral function reads � 0.E/ D ��1 Im˝�1.E C i0/. The

function˝�1.E/ is real for anyE where˝.E/ ¤ 0. That is why only the points En .�/
obeying the equation ˝.En .�// D 0 can provide nonzero contributions to � 0.E/. Thus,
we obtain

� 0.E/ D
X

n

Q2
nı.E �En .�//; Qn D

q
� Œ˝0.En .�//�

�1;

where ˝0.En .�// < 0.
Let us consider the extension with � D �=2. Here U2;�=2.xIW / D u1.xIW / and

� 0.E/ D � .2��c/�1 � .�2/� .˛1/

� .�1/� .˛2/� .ˇ2/

ˇ̌
ˇ
ˇ̌
WDE

Im� .ˇ1/jWDECi0 :

One can see that in this case the spectrum and inversion formulas can be derived from
results obtained in the previous subrange. Namely, here � 0.E/ D P

n2ZC

Q2
nı.E �

En/, where En and Qn are given by expressions for En and Qn in (8.99) and (8.100)
respectively.

The same results hold for the extension with � D ��=2.



8.6 ESP VI 353

For the extension with � D 0, we have U2;0.xIW / D u2.xIW / and � 0.E/ DP
n2ZC

Q2
nı.E � En .0//, where En .0/ are determined by the equation ˇ2 D �n, so

that

En .0/ D c2.1 � �C � C 2n/2 > 0; n 2 ZC;

and the coefficients Qn read

Qn D
s
2c .1 � �C � C 2n/ � .�2 C � C n/� .�2 C n/

nŠ� 2.�2/� .�3 C n/ :

We note that En.0/ < En < EnC1.0/ < EnC1.
All these results coincide with those for the region g1 � 3=4 if we substitute �

by ��.
For the extensions with j�j < �=2, we can represent � 0.E/ and the spectrum equation

as

� 0.E/ D
X

n�nmin

Q2
�jnı.E �En .�//; Q�jn D

rh
2�cf 0

� .En .�//
i

�1

;

f .En.�// D tan �; f�.W / D f .W / � tan �; f 0.En.�// > 0:

We note that

f .E/
E!�1�! �1; f .En ˙ 0/ D 
1; @�En.�/ D

�
f 0.En.�// cos2 �

�
�1
> 0:

Then one can see that for any � 2 .��=2; �=2/, in each interval .En�1; En/, n 2 ZC,
there exists one discrete level En.�/ monotonically increasing from En�1 C 0 to En � 0
as � goes from ��=2 C 0 to �=2 � 0 (we set E�1 D �1). Furthermore, we find that
nmin D 0.

Thus, the simple spectra of operators OH2;� read spec OH2;� D fEn.�/; n 2 ZCg. The
eigenfunctions Un.x/ D Q�jnU2;�.xIEn.�// of the Hamiltonian OH2;� form a complete
orthonormalized system in L2 .0; �=2c/.

8.6.1.3 Subrange g2 � 3=4, g1 D �1=4, � D 0

In this subrange the solutions u1.xIW / and u2.xIW / are dependent (u1 D u2), so
that we are going to use solutions u1.xIW /, u3.xIW /, and V1 .xIW / that are real
entire in W ,
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u1 .xIW / D z1=4.1 � z/1=4C�=2F .˛; ˇI 1I z/; u3 .xIW /

D @

@�
z1=4C�=2.1 � z/1=4C�=2F .˛1; ˇ1I �1I z/

ˇ̌
ˇ̌
�D0

D u3 .xIW /j�!�� ;

V1 .xIW / D z1=4.1 � z/1=4C�=2F .˛; ˇI � I 1� z/;

˛ D ˛C; ˛˙
D .1˙ � C �/=2; ˇ D ˇC; ˇ˙

D .1˙ � � �/=2; � D 1C �:

There is a relation between these solutions:

V1 .xIW / D j .W /� .�/u1 .xIW / � 2� .�/

� .˛/� .ˇ/
u3 .xIW / ;

j .W / D @

@�

2� .�1/

� .˛1/� .ˇ1/

ˇ
ˇ̌
ˇ
�D0

D �2CC  .˛/C  .ˇ/
� .˛/� .ˇ/

:

As x ! 0 or x ! �=2c the above solutions have the following asymptotic behavior:
As x ! 0, z D .cx/2 QO.x2/! 0, we have

u1.xIW / D u1as.x/ QO.x2/; u1as.x/ D .cx/1=2;
u3.xIW / D u3as.xIW / QO.x2/; u3as.xIW / D .cx/1=2 ln.cx/;

V1.xIW / D .cx/1=2
�
j .W /� .�/ � 2� .�/

� .˛/� .ˇ/
ln.cx/

�
QO.x2 ln x/: (8.104)

As x ! �=2c, 1 � z D .cv/2 QO.v2/! 0, z! 1, v D �=2c � x, ImW > 0; we have

u1.xIW / D � .�/

� .˛/� .ˇ/
.cv/1=2�� QO.v2/;

V1.xIW / D .cv/1=2C� QO.v2/:

Using the above asymptotics, we obtain

Wr .u1; u3/ D c; Wr .u1; V1/ D � 2c� .�/

� .˛/� .ˇ/
D �!.W /:

The solutions u1 and V1 form a fundamental set of solutions of (8.93) for ImW ¤ 0
and W D 0.

As was established at the beginning of this section, the functions  � 2 D�

LH
.0; �=2c/

have the following asymptotics:

 �.x/ D a1u1as.x/C a2u3as.x/CO.x3=2/;
 0

�
.x/ D a1u0

1as.x/C a2u0

3as.x/CO.x1=2/;
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as x ! 0, and Œ��;  ��.�=2c/ D 0. Using these results, we obtain �HC . �/ D
c.a1a2�a2a1/, which means that the deficiency indices of OH arem

˙
D 1. The condition

�HC. �/ D 0 implies

a1 cos# D a2 sin#; # 2 S.��=2; �=2/:

Thus, in the subrange under consideration, there exists a family of s.a. OH3;# parame-
terized by # with domains DH3;# that consist of functions from D�

LH
.0; �=2c/ with the

following asymptotic behavior as x ! 0:

 .x/ D C 3;#as.x/CO.x3=2 lnx/;

 0.x/ D C 0

3;#as.x/CO.x1=2 lnx/;

 3;#as.x/ D u1as.x/ sin# C u3as.x/ cos #: (8.105)

Therefore,

DH3;# D f 2 D�

LH
.0; �=2c/;  satisfy (8.105)g:

Imposing the boundary conditions (8.105) on the functions (8.98) and using the
asymptotics (8.104), we obtain the Green’s function of the Hamiltonian OH3;# ,

G.x; yIW / D ˝�1 .W /U3;#.xIW /U3;# .yIW /

C1
c


 QU3;#.xIW /U3;# .yIW /; x > y;
U3;#.xIW / QU3;# .yIW /; x < y; (8.106)

where

˝ .W / D c!3;# .W /

Q!3;#.W / ; !3;#.W / D f .W / cos # � sin#;

Q!3;#.W / D f .W / sin# C cos#; f .W / D  .˛/=2C  .ˇ/=2CC;

U3;#.xIW / D u1.xIW / sin# C u3.xIW / cos #;

QU3;#.xIW / D u1.xIW / cos # � u3.xIW / sin#;

V1.xIW / D �!.W /
c

�
!3;#.W / QU3;# .xIW /C Q!3;#.W /U3;#.xIW /

�
;

U3;# and QU3;# are solutions of (8.93) real entire in W , U3;# satisfies the boundary
condition (8.105), and the second summand on the right-hand side of (8.106) is real
for real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

U3;#.xIW /�.x/dx; � 2 Dr.0; �=2c/ \DH3;# :
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One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D U3;# ( QU D QU3;#/, and therefore the spectra of OH3;#

are simple.
The Green’s function allows one to calculate the derivative of the spectral function,

� 0.E/ D ��1 Im˝�1.EC i0/. The function˝�1.E/ is real for anyE where˝.E/ ¤
0. That is why only the points En .#/ that satisfy the equation ˝.En .#// D 0 can
provide nonzero contributions to � 0.E/. Thus, we obtain

� 0.E/ D
X

n

Q2
#jnı.E �En .#//; Q#jn D

p
�˝0.En .#//�1:

One can make some remarks on the spectrum structure. For the extension with # D
�=2, we have U3;�=2 D u1, and

� 0.E/ D � .2�c/�1 ImŒ .˛/C  .ˇ/�jWDECi0 :

For E D �c2�2 � 0, � � 0, � D i� , the function Œ .˛/C  .ˇ/�jWDE is finite and
real, so that we have � 0.E/ D 0. For E D c2p2 > 0, p > 0, � D p, the function
 .˛/jWDE is finite and real, so that we have (denoting the spectrum points by En)

� 0.E/ D
X

n2ZC

2E1=2n ı.E � En/; En D c2 .1C � C 2n/2 ; n 2 ZC :

The same results hold for the extension with # D ��=2. Note that the spectrum and
complete set of eigenfunctions can be extracted from the case g1 � 3=4 in the limit
�! 0.

Let us consider extensions with j# j < �=2. In this case,

� 0.E/ D
X

nDnmin

Q2
#jnı.E � En.#//; Q#jn D

q
� �cf 0

# .En.#//
�

�1
;

f#.W / D f .W / � tan#; f#.En.#// D tan#; f 0

# .En.#// D f 0.E#jn/ < 0:

The function f .E/ has the properties f .E/
E!�1�! .1=2/ ln.jEj/CO.1/, and

f .En ˙ 0/ D ˙1; n 2 ZC; @#En.#/ D
�
f 0

# .En.#// cos2#
��1

< 0:

Thus, for any # 2 .��=2; �=2/, in each interval .En�1; En/, n 2 ZC, there exists one
discrete level E.#/ monotonically increasing from En�1 C 0 to En � 0 as # goes from
�=2� 0 to ��=2C 0 (we set E�1.˙�=2/ D �1). Furthermore, we find that nmin D 0.

Thus, the simple spectra of OH3;# have the form spec OH3;# D fEn.#/; n 2 ZCg.
The eigenfunctions Un.x/ D Q#jnU3;# .xIE#jn/ of each OH3;# form a complete
orthonormalized system in L2 .0; �=2c/.
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8.6.1.4 Subrange g2 � 3=4, g1 < �1=4, � D i~, ~ > 0

In this subrange, the functions  � 2 D�

LH
.0; �=2c/ have the following asymptotics as

x ! 0:

 �.x/ D a1u1as.x/C a2u2as.x/CO.x3=2/;
 0

�
.x/ D a1u0

1as.x/C a2u0

2as.x/CO.x1=2/;
u1as.x/ D .cx/1=2Ci~ ; u2as.x/ D .cx/1=2�i~ D u1as.x/:

Using these asymptotics and the fact that Œ��;  ��.�=2c/ D 0;we obtain�HC. �/ D
2i~c.a1a1 � a2a2/, which means that the deficiency indices of OH are m

˙
D 1. The

condition �HC . �/ D 0 implies a1 D e2i�a2, � 2 S .0; �/. Thus, in the subrange
under consideration, there exists a family of s.a. operators OH4;� parameterized by �
with domains DH4;� that consist of functions from D�

LH
.0; �=2c/ with the following

asymptotic behavior as x ! 0:

 .x/ D C 4;�as.x/CO.x3=2/;  0.x/ D C 0

4;�as.x/CO.x3=2/;
 4;�as.x/ D ei�u1as.x/C e�i�u2as.x/ D  4;�as.x/: (8.107)

Therefore,

DH4;� D
n
 2 D�

LH
.0; �=2c/;  satisfy (8.107)

o
:

Imposing the boundary conditions (8.107) on the functions (8.98) and using the
asymptotics (8.96) and (8.97), we obtain the Green’s function of the Hamiltonian OH4;� ,

G.x; yIW / D ˝�1.W /U4;� .xIW /U4;� .yIW /

C 1

4~c


 QU4;� .xIW /U4;� .yIW /; x > y;
U4;� .xIW / QU4;� .yIW /; x < y; (8.108)

where

˝ D 4i~c !4;� .W /

Q!4;� .W /
; !4;� .W / D ei� a.W /C e�i� b.W /;

Q!4;� .W / D ei� a.W / � e�i� b.W /;

U4;� .xIW / D ei�u1.xIW /C e�i�u2.xIW /:
QU4;� .xIW / D i Œei�u1.xIW / � e�i�u2.xIW /�;

V1.xIW / D Q!4;� .W /
2i~

U4�.xIW / � !4;� .W /

2~
QU4;� .xIW /:
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We note that U4;� .xIW / and QU4;� .xIW / are solutions of (8.93) real entire in W ,
U4;� .xIW / satisfies the boundary condition (8.107), and the second summand on the
right-hand side of (8.108) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

U4;� .xIW /�.x/dx; � 2 Dr.0; �=2c/ \D4;� :

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U D U4;� . QU D QU4;� /, and therefore spectra of OH4;� are
simple.

The derivative of the spectral function reads � 0.E/ D ��1 Im˝�1.E C i0/. For
W D E , we have b.E/ D a.E/, so that ˝.E/ D 4~c cot%.E/; where

%.E/ D � C f .E/; f .E/ D 1

2i
Œln.1C i~/ � ln.1 � i~/�

C 1

2i
Œln� .˛2/C ln� .ˇ2/ � ln� .˛1/ � ln� .ˇ1/�:

Only the points En .�/ obeying the equation cot%.En .�// D 0; provide nonzero
contributions to � 0.E/. Thus, we obtain

� 0.E/ D
X

n2Z

Q2
� jnı.E �En .�//; %.En .�// D �=2C �n; n 2 Z;

Q� jn D
q
.4~c%0.En .�///

�1; %0.En .�// D f 0.En .�// > 0:

The spectrum equation can be rewritten in the following form:

f .En .�// D �=2C �.n � �=�/; n 2 Z:

Taking into account that

f .E/ D
(
�.~=2/ ln.jEj=c2/CO.1/! �1; E ! �1;
�.E=4c2/1=2 � .~=2/ ln.jEj=c2/CO.1/!1; E !1;

we can see that for any � 2 Œ0; �/, in each interval .En .�/ D En�1 .0/ ; En .0/�,
n 2 Z, there exists one discrete level En .�/ monotonically decreasing from En .0/

to EnC1 .0/C 0 as � goes from 0 to � � 0. In particular, En .0/ > En�1 .0/.
Finally, we see that simple spectra of OH4;� read spec OH4;� D fEn .�/ ; n 2 Zg. The

eigenfunctions Un.x/ D Q� jnU4;� .xIEn .�//, n 2 Z, of each OH4;� form a complete
orthonormalized system in L2 .0; �=2c/.
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We note that for g1 < �1=4, the spectra of OH4;� are unbounded from below. For high
negative energies, such spectra coincide with that of the Calogero problem with ˛ D g1
and k0 � c.

8.6.2 Range 2

In this range, we have

g2 < 3=4:

In this range of g2 and in the subrange g1 � 3=4, all the results can be obtained from the
above results by substitutions x ! �=2c � x and g1  ! g2.

In the subrange g1 <3=4 all the solutions are square-integrable and the deficiency
indices of the initial symmetric operator OH are m

˙
D 2. We omit further analysis of

such a case because of the unwieldiness of the corresponding formulas.
We note that for any g1 and g2, the spectra of any s.a. extensions are not bounded

from above and in the high positive energy limit asymptotically coincide with the energy
spectrum of a free nonrelativistic particle of mass m D 1=2 in an infinite rectangular
potential well of width l D �=2c.

8.7 ESP VII

In this case,

V.x/ D 4c2Œg1 tan2.cx/C g2 tan.cx/�; x 2 Œ��=2c; �=2c�; (8.109)

and the corresponding Schrödinger equation is

 00 � 4c2Œg1 tan2.cx/C g2 tan.cx/� CW D 0: (8.110)

It is sufficient to consider only the case c > 0 and g2 � 0 without loss of generality.

8.7.1 Self-adjoint Extension and Spectral Problem

Let us introduce a new variable z D �e2icx and new parameters �, �, and � as follows:

� D pg1 � ig2 C w; � D pg1 C ig2 C w; g2 > 0;

� D � D pg1 C w; g2 D 0; w D W=4c2;

� D
( p

4g1 C 1=4; g1 � �1=16;
i~; ~ D p4jg1j � 1=4; g1 < �1=16;

�2 D 4g1 C 1=4:
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We note that the path��=2c H) �=2c of the variable x on the real axis corresponds
to the path 1 H) 1 of the variable z in the complex plane along (counter-clockwise) a
circle jzj D 1 with the center at the origin.

In addition, we introduce new functions 
��.z/ instead of  .x/ in (8.110),

 .x/ D .�z/���.1 � z/1=2C�
��.z/; �� D ˙1: (8.111)

Then 
��.z/ satisfy the following equations:

z.1 � z/d2z 
��.z/C Œ��� � .1C ˛�� C ˇ��/z�dz
��.z/ � ˛��ˇ��
��.z/ D 0;
˛�� D 1=2C ���C � C �; ˇ�� D 1=2C ���C � � �; ��� D 1C 2���; (8.112)

which have hypergeometric functions F.˛; ˇI � I z/ as solutions; see [1, 20, 81], and also
the appendix to this section.

Solutions of (8.110) can be obtained from solutions of (8.112) by the transformation
(8.111). In what follows, we use several solutions of (8.110). Two of them, u1.xIW /
and u2 .xIW /, have the form

u1 .xIW / D .�z/�.1 � z/1=2C�F.˛1; ˇ1I �1I z/
D ��

�
A.�z/�.1 � z/1=2C�F.˛1; ˇ1I �3I 1 � z/

C �

�
B.�z/�.1 � z/1=2��F.˛3; ˇ3I �4I 1 � z/ D u1 .xIW /j�!�� ;

A D � .2�/� .�4/

� .˛3/� .ˇ3/
; B D � .2�/� .�3/

� .˛1/� .ˇ1/
I

u2 .xIW / D .�z/��.1 � z/1=2C�F.˛2; ˇ2I �2I z/
D C.�z/��.1 � z/1=2C�F.˛2; ˇ2I �3I 1 � z/

CD.�z/��.1 � z/1=2��F.˛4; ˇ4I �4I 1 � z/

D u2 .xIW /j�!�� D u1 .xIW /j�!�� ;

C D � .�2/� .�2�/
� .˛4/� .ˇ4/

; D D � .�2/� .2�/

� .˛2/� .ˇ2/
; AD C BC D 1; (8.113)

where

˛1;2 D 1=2˙ �C � C �; ˇ1;2 D 1=2˙ �C � � �;
˛3;4 D 1=2˙ � � � C �; ˇ3;4 D 1=2˙ � � � � �;
�1;2 D 1˙ 2�; �3;4 D 1˙ 2�;
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and the function F.˛; ˇI � I z/ is the analytic continuation of the hypergeometric series
in the complex plane with a cut along the real semiaxis x � 1 and is given, for example,
by the Barnes integral; see, e.g., [164] and the appendix to this section.

Note that all the points z: jzj D 1, z ¤ 1, belong to analyticity domains of the
functions .�z/˛ , .1 � z/˛ , and F.˛; ˇI � I z/, so that u1 .xIW / and u2 .xIW / are indeed
solutions of (8.110) for x 2 .��=2c; �=2c/.

The asymptotic behavior of special functions in solutions (8.113) are well known;
see, e.g., [1, 20, 81]. We use these asymptotics and we restrict ourselves by the range
0 < Im w < b0,

b0 D min
�
t
p
g2; g2; 2t

p
g2~

�
; t D

qp
2=8 � 1=8;

which is enough for our purposes. Considering the strip 0 < Im w < b0, where
˛k; ˇk; �i … Z�, k D 1; 2; 3; 4, i D 1; 2; 3, we obtain the following: For x D
��=2c C ı, ı ! 0, we have

u1 D
h
��
�
Ae�i�.1=4C�C�=2/.2cı/1=2C� C �

�
Be�i�.1=4C���=2/.2cı/1=2��

i QO.ı/;

u2 D
h
e�i�.1=4��C�=2/C.2cı/1=2C� C e�i�.1=4����=2/D.2cı/1=2��

i QO.ı/:

For x D �=2c � ı, ı ! 0, we have

u1 D
h
��
�
Aei�.1=4C�C�=2/.2cı/1=2C� C �

�
Bei�.1=4C���=2/.2cı/1=2��

i QO.ı/;

u2 D
h
C ei�.1=4��C�=2/.2cı/1=2C� CDei�.1=4����=2/.2cı/1=2��

i QO.ı/:

Regarding Wr.u1; u2/ D �4i�c, solutions u1 and u2 form a fundamental set of
solutions of (8.110).

Another set of solutions of (8.110) with definite asymptotics at one of the endpoints
are solutions V1.xIW /,

V1 D � �
�
Dei�.1=4C�C�=2/u1 .xIW /C Bei�.1=4��C�=2/u2 .xIW / ;

V1
ı!0D

( �
F1.2cı/

1=2C� C P1.2cı/1=2��
� QO.ı/; x D �=2c � ı

.2cı/1=2C� QO.ı/; x D ��=2c C ı ;

F1 D iei��
�
ADe2i�� C BC e�2i��

� D �e�i�� cos.2��/C ei�� cos.2��/

sin.2��/
;

P1 D �iBD
�
e2i�� � e�2i��

� D 2�� .2�/� .�3/

� .˛1/� .ˇ1/� .˛2/� .ˇ2/
I

solutions V2.xIW /
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V2 D � �
�
De�i�.1=4C�C�=2/u1 .xIW /C Be�i�.1=4��C�=2/u2 .xIW / ;

V2
ı!0D

(
.2cı/1=2C� QO.ı/; x D �=2c � ı
��F2.2cı/1=2C� C P1.2cı/1=2��

� QO.ı/; x D ��=2c C ı ;

F2 D ie�i��
�
ADe�2i�� C BC e2i��

� D ei�� cos.2��/C e�i�� cos.2��/

sin.2��/
I

solutions V3.xIW /

V3 D �

�
C ei�.1=4C���=2/u1 .xIW /C Aei�.1=4����=2/u2 .xIW /;

V3
ı!0D

( �
F3.2cı/

1=2C� C F2.2cı/1=2��
� QO.ı/; x D �=2c � ı

.2cı/1=2�� QO.ı/; x D ��=2c C ı ;

F3 D �iAC
�
e2i�� � e�2i��

� D 2�� .�2�/� .�4/
� .˛3/� .ˇ3/� .˛4/� .ˇ4/

:

For these solutions, we have

Wr.V1; V3/ D �4c�; Wr.V1; V2/ D �4c�P1 D �!.W /;
Wr.V3; V2/ D �4c�F2 D �!2.W /;

V2.xIW / D 1

4c�
Œ!.W /V3.xIW / � !2.W /V1.xIW /� :

For g1 � �1=16 (� � 0), all solutions Vi are real entire in W , and for g1 < �1=16
(� D �i~), they are entire in W and V3.xIE/ D V1.xIE/.

The initial symmetric operator OH associated with LH is defined on the domain DH D
D .��=2c; �=2c/ and its adjoint OHC on the domain DHC D D�

LH
.��=2c; �=2c/. The

solutions V1 and V2 form a fundamental set of solutions of (8.110) for Im w > 0. Taking
their asymptotics into account, one can see the following:

For g1 � 3=16 (� � 1), (8.110) has no square-integrable solutions on Œ��=2c; �=2c�,
so that in this region, the deficiency indices of OH are zero, which implies that the operator
OHC is s.a. and OH1 D OHC is a unique s.a. extension of OH .

For g1 < 3=16 (Re � < 1), any solution of (8.110) is square-integrable on
Œ��=2c; �=2c�, so that in this region, the deficiency indices are equal, m

˙
D 2, which

implies that there exists a U.2/ family of s.a. extensions OHU of OH . Their study in detail
is an enormous problem. Below, we consider only the case g1 � 3=16 in detail.

Asymptotics of functions  � 2 D�

LH
.��=2c; �=2c/ as x ! ��=2c can be

found with the help of the method used in Sect. 8.6. First, we note that any  � 2
D�

LH
.��=2c; �=2c/ belongs also to D�

LH
.��=2c; 0/; in particular,

 � 2 D�

LH
.��=2c; �=2c/ H)  �; LH � 2 L2.��=2c; 0/:
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Due to the fact that the potential (8.109) can be represented as V.x/ D 4g1ı
�2 �

4cg2ı
�1 C v.x/, x D ��=.2c/ C ı, where v.x/ is a bounded function on the segment

Œ��=2c; 0�, functions  �.x/ can be considered on the interval .��=2c; 0� as solutions
of the equation

�  00

�
.x/C .4g1ı�2 � 4cg2ı�1/ �.x/ D �.x/;

�.x/ D LH �.x/ � v.x/ �.x/ 2 L2.��=2c; 0/:

The asymptotic behavior of such solutions as ı ! 0 was studied in Sect. 7.3.3. For
g1 � 3=16, we have

 �.x/ D O.ı3=2/;  0

�
.x/ D O.ı1=2/; ı ! 0 .x ! ��=2c/;

with logarithmic accuracy for g1 D 3=16.
In the same manner, we obtain for x ! �=2c

 �.x/ D O.ı3=2/;  0

�
.x/ D O.ı1=2/; ı D �=.2c/ � x ! 0;

with logarithmic accuracy for g1 D 3=16.
The Green’s function of the s.a. operator OH1 has the form

G.x; yIW / D !�1.W /



V2.xIW /V1.yIW /; x > y;
V1.xIW /V2.yIW /; x < y:

Let us consider the guiding functional

˚.�IW / D
Z �=2c

��=2c

dxV1.xIW /�.x/; � 2 Dr .��=2c; �=2c/ \DH1
:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D V1 ( QU D V2/, and therefore the spectrum of OH1 is
simple.

The derivative of the spectral function has the form

� 0.E/ D V2.x0IE/
V1.x0IE/ ImŒ�!.E C i0/��1: (8.114)

For � ¤ n=2, the function V2.x0IW / can be represented as V2.x0IW / D �F2V1.x0IW /C
.!=4c�/V3.x0IW /, so that expression (8.114) is simplified:

� 0.E/ D �F2jWDE ImŒ�!.E C i0/��1:

It is easy to see that � 0.E/ is continuous in �, so that it is enough to calculate � 0.E/ for
� ¤ n=2 only.
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Because !.E/ is real, � 0.E/ can be nonzero only at the zero points of !.E/, i.e., at
the points ˇ2 D �n, n 2 ZC (� .ˇ2/ D 1), so that we obtain in the standard way,

� 0.E/ D
X

n2ZC

Q2
nı.En/; Qn D j� .˛2/k�nje

�� Im�n

� .�3/

s
� .�3 C n/
4�cnŠRe�n

;

En D c2
�
.1=2C nC �/2 � 4g1 � 4g22.1=2C nC �/�2

�
;

�n D
p
g1 � ig2 CEn=4c2:

Thus, the simple spectrum of OH1 is given by spec OH1 D fEn; n 2 ZCg. The set of
eigenfunctions Un .x/ D QnV1.xIEn/, n 2 ZC, forms a complete orthonormalized
system in L2 .��=2c; �=2c/.

Note that the spectrum of OH1 coincides asymptotically (as n!1) with the spectrum
of the Hamiltonian of free non-relativistic particle with mass m D 1=2 in an infinite
rectangular potential well of width l D �=c.

8.7.2 Appendix

The function F.˛; ˇI � I z/ is the analytic continuation of the hypergeometric series in
the complex plane with a cut along real semiaxis x � 1 and is given by the Barnes
integral; see [164]. We used three relations for the function F.˛; ˇI � I z/:

F.˛; ˇI � I z/ D .1 � z/��˛�ˇF.� � ˛; � � ˇI � I z/; (8.115)

lim
�!�n

� �1.�/F.˛; ˇI � I z/ D � .˛ C nC 1/� .ˇ C nC 1/
� .˛/� .ˇ/.nC 1/Š

� znC1F.˛ C nC 1; ˇ C nC 1InC 2I z/; (8.116)

F.˛; ˇI � I z/

D � .�/� .ˇ � ˛/
� .ˇ/� .� � ˛/ .�z/�˛F.1C ˛ � �; ˛I 1C ˛ � ˇI z�1/C .˛ $ ˇ/;

F.˛; ˇI � I z/ D � .�/� .� � ˛ � ˇ/
� .� � ˛/� .� � ˇ/F.˛; ˇI 1C ˛ C ˇ � � I 1 � z/

C � .�/� .˛ C ˇ � �/
� .˛/� .ˇ/

.1 � z/��˛�ˇF.� � ˛; � � ˇI 1C � � ˛ � ˇI 1 � z/:

(8.117)

For any complex u, the function u˛ is defined as the principal value of the power
function,

u˛ D juj˛ei
u˛ D e˛ ln jujei
u˛; u D jujei
u ; j
uj < �:



8.8 ESP VIII 365

The function u˛ is analytic in the complex plane u with the cut along negative real
semiaxis and obeys the following relations:

.1=u/˛ D u�˛; u˛uˇ D u˛Cˇ; u˛ D .u/˛;

.�u/˛.1 � 1=u/ˇ D .�u/˛�ˇ.1 � u/ˇ:

8.8 ESP VIII

In this case,

V.x/ D 4c2g1 tanh2.cx/C 4c2g2 tan h.cx/; x 2 R; (8.118)

and the corresponding Schrödinger equation is

 00 � �4c2g1 tanh2.cx/C 4c2g2 tan h.cx/
�
 CW D 0: (8.119)

It is sufficient to consider only the case g2 � 0, c > 0 without loss of generality.
The potential (8.118) is known as the Rosen–Morse potential; see [134].
Let us introduce a new variable z and new functions '

˙
, instead of x and  .x/ in

(8.119),

z D 1

2
Œ1 � tan h.cx/� ; z 2 Œ0; 1�;  D z˙�.1 � z/�


˙
.z/;

� D pg1 C g2 � w; � D pg1 � g2 � w; � D
p
4g1 C 1=4; w D W=4c2:

If Im w � 0, then

g1 C g2 � w D �1e�i�1 ; g1 � g2 � w D �2e�i�2 ;

0 � �1; �2 � �;
� D p�1e�i�1=2; � D p�2e�i�2=2; Re� > 0; Re � > 0;

� D

 p

4g1 C 1=4; g1 � �1=16;
i�; � D p4jg1j � 1=4 > 0; g1 < �1=16;

and 

˙
.z/ satisfy the equation

z.1 � z/d2z 
˙
.z/C Œ1˙ 2� � .2˙ 2�C 2�/z�dz
˙

.z/

� .1=2˙ �C � C �/ .1=2˙ �C � � �/ '
˙
.z/ D 0; (8.120)

which has hypergeometric functions F .˛; ˇI � I z/ as solutions, see [1, 20, 81].
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Solutions  .x/ of (8.119) can be obtained from solutions of (8.120) by the above
transformations. We use solutions u1.xIW / and u2 .xIW / in what follows,

u1 .xIW / D z�.1 � z/�F .˛; ˇI � I z/ D u1 .xIW /j�!�� ;

u2 .xIW / D z��.1 � z/�F .˛1; ˇ1I �1I z/ D u2 .xIW /j�!�� ;

˛ D 1=2C �C � C �; ˇ D 1=2C �C � � �; � D 1C 2�;
˛1 D ˛j�!�� D 1=2 � �C � C �; ˇ1 D ˇj�!�� D 1=2 � �C � � �;
�1 D � j�!�� D 1 � 2�; u2 .xIW / D u1 .xIW /j�!�� :

Another set of solutions can be obtained as follows. We introduce a new variable z1
and new functions Q


˙
;

z1 D 1

2
Œ1C tan h.cx/� D 1 � z; z1 2 Œ0; 1�;

 .x/ D z�1 .1 � z1/
˙� Q


˙
.z1/:

The new functions satisfy the same type of equation (8.120),

z1.1 � z1/d
2
z1
Q

˙
.z1/C Œ1˙ 2� � .2C 2�˙ 2�/z�dz1

Q

˙
.z1/

� .1=2C �˙ � C �/ .1=2C �˙ � � �/ Q

˙
.z1/ D 0:

In such way, we obtain two additional solutions of (8.119),

v1 .xIW / D z�.1 � z/�F .˛; ˇI �2I 1 � z/; �2 D 1C 2�;
v2 .xIW / D z�.1 � z/��F .˛2; ˇ2I �3I 1 � z/; �3 D 1 � 2�;
˛2 D 1=2C � � � C �; ˇ2 D 1=2C � � � � �;

˛3 D ˛2j�!�� D 1=2 � � � � C �; ˇ3 D ˇ2j�!�� D
1

2
� � � � � �;

v1;2 .xIW / D v1;2 .xIW /j�!�� ; v2 .xIW / D v1 .xIW /j�!�� :

There exist relations between the four solutions introduced (see [1, 20, 81]),

u1 D � .�/� .�2�/
� .˛2/� .ˇ2/

v1 C � .�/� .2�/

� .˛/� .ˇ/
v2;

v1 D � .�2/� .�2�/
� .˛1/� .ˇ1/

u1 C � .�2/� .2�/

� .˛/� .ˇ/
u2:

These relations are useful for obtaining asymptotics of the functions u1 and v1: As x !
1, z D e�2cx QO.e�2cx/! 0, ImW > 0, we have

u1 .xIW / D e�2c�x QO.e�2cx/! 0;

v1 .xIW / D � .�2/� .2�/

� .˛/� .ˇ/
e2c�x QO.e�2cx/!1:
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As x ! �1, 1 � z D e�2cjxj QO.e�2cjxj/! 0, ImW > 0, we have

u1 .xIW / D � .�/� .2�/

� .˛/� .ˇ/
e2c�jxj QO.e�2cjxj/!1;

v1 .xIW / D e�2c�jxj QO.e�2cjxj/! 0:

For ImW > 0; solutions u1 and v form a fundamental set of solutions because

Wr .u1; v1/ D 2c� .�/� .�2/

� .˛/� .ˇ/
D !.W /:

As usual, starting with the s.a. differential operation LH , we construct the initial
symmetric operator OH defined on the domain D .R/ : Its adjoint OHC is defined on the
natural domain D�

LH
.R/.

Because the potential V.x/ is bounded on R, jV.x/j � 4c2.jg1j C jg2j/, the
asymmetry form �HC . �/ vanishes on functions  � from D�

LH
.R/,

�HC . �/ D Œ �;  ��j1�1
D 0; 8 � 2 D�

LH
.R/ ;

according to Theorem 7.1. This implies that the operator OHC is s.a., and OH1 D OHC

is a unique s.a. extension of OH . On the other hand, any linear combination of the
fundamental set u1 and v is not square-integrable at ImW ¤ 0. The latter means that the
deficiency indices of OH are zero, which matches the previous conclusion.

It is convenient to introduce two additional independent and real entire solutions of
(8.119), Tk.xIW /, k D 1; 2; for which

T
.l�1/

k .0IW / D ıkl ; k; l D 1; 2; Wr.T1:T2/ D 1:
One can see that

u1.xIW / D u1.0IW /T1.xIW /C u0

1.0IW /T2.xIW /;
v1.xIW / D v1.0IW /T1.xIW /C v0

1.0IW /T2.xIW /;

T1.xIW / D !�1.W /Œv0

1.0IW /u1.xIW / � u0

1.0IW /v1.xIW /�;
T2.xIW / D !�1.W /Œ�v1.0IW /u1.xIW /C u1.0IW /v1.xIW /�:

The Green’s function of the operator OH1 has the form

G .x; yIW / D !�1.W /



u1.xIW /v1.yIW /; x > y;
v1.xIW /u1.yIW /; x < y:

This allows us to find the matrix Mkl.0IW /,

Mkl.0IW / D !�1.W /Kkl .W /C
�
0 0

1 0

�
;

Kkl .W / D
�

v1.0IW /u1.0IW / v1.0IW /u0

1.0IW /

v1.0IW /u0

1.0IW / v0

1.0IW /u0

1.0IW /

�
;
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see Sect. 5.3.2, and the derivative of the matrix spectral function

� 0

kl .E/ D ��1 Im
�
!�1.E C i0/Kkl .E C i0/

�
: (8.121)

As the set of guiding functionals, we chose

˚k .�IW / D
Z

R

dx Tk .xIW / � .x/ ; � 2 D�

LH
.R/ \D.R/:

Let E < 4c2.g1 � g2/. In this case the functions Kkl .E/ are finite and real and the
function !.E/ is real. That is why only the points E obeying the equation !.E/ D 0

can provide nonzero contributions to the right-hand side of (8.121). One can easily see
that the latter equation has solutions only for g1 > �1=16. In that case, parameters ˛, � ,
and �2 are real and positive and ˇ is real, so that

!.E/ D 0 H) ˇ D ˇn D �n; n 2 ZC H)
p
an C

p
an C 2g2 D � � .nC 1=2/;

an D g1 � g2 �En=.4c2/ > 0: (8.122)

It follows from (8.122) that

� � .nC 1=2/ �pan C 2g2 > 0;
p
an D 1

2
Œ� � .nC 1=2/� � g2

�� .nC 1=2/ � 0: (8.123)

Finally, we obtain

En D 4c2g1 �
�

2cg2

� � .nC 1=2/
�2
� c2Œ� � .nC 1=2/�2:

One can verify that g1 � g2 �En=4c2 > 0; so that all the discrete levels are situated
below the continuous spectrum, which consists of the continuous levels E � 4c2.g1 �
g2/; see below.

Substituting En in the second inequality (8.123), we obtain n < � � p2g2 � 1=2.
This inequality implies that there exist nmax C 1 discrete levels, where

nmax D


Œg�; g > Œg�;

Œg� � 1; g D Œg�; g D � �p2g2 � 1=2:

The condition g1 > g2=2C
p
g2=8 provides the existence at least of one energy level.
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Using the relations

v1.xIW / D � .�2/� .�2�/
� .˛1/� .ˇ1/

u1.xIW /

ˇ̌
ˇ
ˇ
ˇD�n

;

Im� .ˇ/ D .�1/n�bnı.E � En/ for EnC1 < E < En�1;

bn D � � .nC 1=2/
2nŠ

p
an.an C 2g2/

;

we obtain

� 0

kl .E/ D
(
0; g1 � g2=2C

p
g2=8;

Pk
nD0 Q

2
nı.E � En/en;k ˝ en;l ; g1 > g2=2C

p
g2=8;

Q2
n D bncn; cn D

� .˛/

2c� .˛1/

ˇ̌
ˇ
ˇ
� .�2�/

� .�n � 2�/
ˇ̌
ˇ
ˇ

ˇ̌
ˇ
ˇ
E!En

;

en;1 D u1.0IEn/; en;2 D u0

1.0IEn/: (8.124)

It follows from (8.124) that in the range E < 4c2.g1 � g2/, there can be only discrete
levels (if they exist).

Let 4c2.g1�g2/ � E < 4c2.g1Cg2/. In this case � and � are real and positive, and

� D �i j�j; j�j D
p
g2 � g1 C E=4c2; � D ��;

˛; ˇ ¤ �n; n 2 ZC; 0 < j� .�2/j <1;

˛ D
(
˛2; g1 � �1=16;
ˇ2; g1 < �1=16;

ˇ D
(
ˇ2; g1 � �1=16;
˛2; g1 < �1=16:

In turn, this implies that u1 D u1 and !.E/ ¤ 0;1.
Let us introduce the notation

!�1.E/v1.xIE/ D Qv1.xIE/; Im Qv1.xIE/ D I.xIE/:
It follows that Wr.u1; Qv1/ D 1 H) Im Wr.u1; Qv1/ D 0, so that

I.xIE/
u1.xIE/ D

I 0.xIE/
u0

1.xIE/
: (8.125)

Since u1 and u0

1 cannot vanish simultaneously, both sides of the relation (8.125) are finite
for any x and E .

Then we obtain

� 0

kl .E/ D �.E/ek.E/˝ el .E/; �.E/ D
I.0IE/
�u1.0IE/ ;

e1.E/ D u1.0IE/; e2.E/ D u0

1.0IE/;
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where �.E/ is a smooth function of E , so that the spectrum of OH1 is continuous.
Let E � 4c2.g1 C g2/. For these energies we have

� D �i j�j; j�j D pE � g1 � g2; � D �i j�j; j�j D
p
j�j2 C 2g2;

˛; ˇ; �; �2 ¤ n; n 2 ZC; !.E/ ¤ 0;1;

and u1.xIE/ and v1.xIE/ form a fundamental set of solutions.
Then

� 0

kl .E/ D Im
�
Kkl .E/

�!.E/

�
D �kl .E/;

where �kl .E/ are smooth functions of E , so that the spectrum of OH1 is continuous.
Finally, we obtain

spec OH1 D
(
Œ4c2.g1 � g2/;1/; g1 � g2=2C

p
g2=8;

Œ4c2.g1 � g2/;1/ [ fEn; n D 0; 1; : : : ; nmaxg; g1 > g2=2C
p
g2=8:

We note that En < 4c2.g1 � g2/; all the discrete levels are situated below
the continuous spectrum (and certainly above the minimum of the potential energy
�c2g22=g1).

Inversion formulas for different ranges of parameters g1 and g2 are listed below.
Namely, for any  .x/ 2 L2 .R/, we have

(1) g1 � g2=2C
p
g2=8,

 .x/ D
Z 4c2.g1Cg2/

4c2.g1�g2/

˚.E/u1.xIE/�.E/dE

C
Z

1

4c2.g1Cg2/

˚i .E/�ij .E/Tj .xIE/dE;

˚.E/ D
Z

R

u1.xIE/ .x/dx; 4c2.g1 � g2/ � E < 4c2.g1 C g2/;

˚i .E/ D
Z

R

Ti .xIE/ .x/dx; E � 4c2.g1 C g2/;
Z

R

j .x/j2dx D
Z 4c2.g1Cg2/

4c2.g1�g2/

j˚.E/j2�.E/dE

C
Z

1

4c2.g1Cg2/

˚i .E/�ij .E/˚j .E/dE:
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(2) g1 > g2=2C
p
g2=8;

 .x/ D
Z 4c2.g1Cg2/

4c2.g1�g2/

˚.E/u1.xIE/�.E/dE

C
Z

1

4c2.g1Cg2/

˚i .E/�ij .E/Tj .xIE/dE C
nmaxX

nD0

Q2
n˚n.E/u1.xIEn/;

˚.E/ D
Z

R

u1.xIE/ .x/dx; 4c2.g1 � g2/ � E < 4c2.g1 C g2/;

˚i .E/ D
Z

R

Ti .xIE/ .x/dx; E � 4c2.g1 C g2/; i D 1; 2;

˚n.E/ D
Z

R

u1.xIEn/ .x/dx; n D 0; 1; : : : ; nmax;

Z
1

�1

j .x/j2dx D
Z 4c2.g1Cg2/

4c2.g1�g2/

j˚.E/j2�.E/dEu1.xIE/

C
Z

1

4c2.g1Cg2/

˚i .E/�ij .E/˚j .E/dE

C
nmaxX

nD0

Q2
nj˚n.E/j2:

The spectrum is twofold for E � 4c2.g1 C g2/ and is simple for E<4c2.g1 C g2/

(only the combination ekTk D u1 enters the inversion formulas), in complete agreement
with physical considerations.

8.9 ESP IX

In this case

V.x/ D 4c2Œg1 coth2.cx/C g2 coth.cx/�; x 2 RC; (8.126)

and the corresponding Schrödinger equation is

 00 � 4c2Œg1 coth2.cx/C g2 coth.cx/� CW D 0: (8.127)

It is sufficient to consider only the case c > 0 without loss of generality.
The potential (8.126) is known as the Eckart potential; see [52]. This potential is used

to describe effects involving all sorts of barrier penetration: tunneling, molecular barrier
permeability, and so on [29].

Introducing a new variable z and new functions 
��;�� .z/, instead of x and  .x/ in
(8.127),
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z D 1 � e�2cx; z 2 Œ0; 1/;
 .x/ D z1=2C���.1 � z/���
��;�� .z/; ��; �� D ˙1;

where

� D


2
p
g1 C 1=16; g1 � �1=16

i~; ~ D 2pjg1j � 1=16; g1 < �1=16 ; �
2 D 4g1 C 1=4;

� D pg1 C g2 � w D p�1e�i'1=2; g1 C g2 � w D �1e�i'1 ;

� D pg1 � g2 � w D p�2e�i'2=2; g1 � g2 � w D �2e�i'2 ;

w D W=.4c2/ D aC ib; b � 0; 0 � '1;2 � �;

we obtain equations for the new functions,

z.1 � z/d2z 
��.z/C Œ��� � .1C ˛�� C ˇ��/z�dz
��.z/ � ˛��ˇ��
��.z/ D 0;
˛�� D 1=2C ���C � C �; ˇ�� D 1=2C ���C � � �; ��� D 1C 2���:

Solutions of these equations are the hypergeometric functions F .˛; ˇI � I z/; see [1, 20,
81].

Introducing a new variable u D 1 � z and a new function 
�� .u/ instead of x and
 .x/ in (8.127),

 .x/ D .1 � u/1=2C�u���
�� .u/;

we obtain an equation for 
�� .u/,

u.1 � u/d2u 
�� .u/C Œ� 0

��
� .1C ˛�� C ˇ�� /u�du
�� .u/ � ˛��ˇ��
�� .u/ D 0;

˛�� D 1=2C �C ��� C �; ˇ�� D 1=2C �C ��� � �; � 0

��
D 1C 2���:

In what follows, we will use four solutions of (8.127):

u1 .xIW / D z1=2C�.1 � z/�F .˛1; ˇ1I �1I z/ D u1 .xIW /j�!��

u2 .xIW / D z1=2��.1 � z/�F .˛2; ˇ2I �2I z/ D u2 .xIW /j�!��

D u1 .xIW /j�!��;

V1 .xIW / D z1=2C�.1 � z/�F .˛1; ˇ1I �3I 1 � z/ D V1 .xIW /j�!��;

V2 .xIW / D z1=2C�.1 � z/��F .˛4; ˇ4I �4I 1 � z/ D V2 .xIW /j�!��

D V1 .xIW /j�!�� ; (8.128)
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where

˛1 D ˛C;C D 1=2C �C � C �; ˇ1 D ˇC;C D 1=2C �C � � �;
˛2 D ˛�;C D 1=2 � �C � C �; ˇ2 D ˇ�;C D 1=2 � �C � � �;
˛4 D ˛C;� D 1=2C � � � C �; ˇ4 D ˇC;� D 1=2C � � � � �;
�1 D �C D 1C 2�; �2 D �� D 1 � 2�; �3 D � 0

C
D 1C 2�; �4 D � 0

�
D 1 � 2�:

There are relations between the introduced solutions:

u1 D � .�1/� .�2�/
� .˛4/� .ˇ4/

V1 C � .�1/� .2�/

� .˛1/� .ˇ1/
V2;

V1 D � .�3/� .�2�/
� .˛2/� .ˇ2/

u1 C � .�3/� .2�/

� .˛1/� .ˇ1/
u2:

We note that the functions uk , k D 1; 2; are entire in W ; in particular, uk , k D 1; 2,
are real entire inW for g1 � �1=16 (� � 0), and u2 .xIE/ D u1 .xIE/ for g1 < �1=16
(� D �i~).

The asymptotic behavior of special functions in solutions (8.128) is well known, see
[1, 20], so that we can obtain their asymptotics.

As x ! 0, z D 2cx QO.x/! 0, we have

u1.xIW / D z1=2C� QO.z/ D .2cx/1=2C� QO.x/;
u2.xIW / D z1=2�� QO.z/ D .2cx/1=2�� QO.x/;
ImW � 0 W V1.xIW / D
8
<

:

� .�3/� .2�/

� .˛1/� .ˇ1/
.cx/1=2�� QO.x/; g1 � 3=16;h

� .�3/� .�2�/

� .˛2/� .ˇ2/
.2cx/1=2C� C � .�3/� .2�/

� .˛1/� .ˇ1/
.2cx/1=2��

i QO.x/; g1 < 3=16:
(8.129)

As x !1, 1 � z D e�2cx ! 0, z! 1, ImW > 0, we have

u1.xIW / D � .�1/� .2�/

� .˛1/� .ˇ1/
e2�cx QO.e�2cx/;

V1.xIW / D e�2�cx QO �e�2cx
�
:

The above asymptotics allow us to obtain

Wr .u1; u2/ D �4�c; Wr .u1; V1/ D �2c� .�1/� .�3/
� .˛1/� .ˇ1/

D �!.W /:

Thus, solutions u1 and V1 are linearly independent and form a fundamental set of
solutions of (8.127) for ImW ¤ 0
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One can see that for g1 < 3=16 (� < 1), the function V1 .xIW / is square-integrable at
the origin (moreover, any solution is square-integrable at the origin), and for g1 � 3=16
(� � 1), it is not. Thus, for g1 � 3=16, (8.127) has no square-integrable solutions (for
ImW ¤ 0), so that the deficiency indices of the initial symmetric operator OH are zero.
For g1 < 3=16, such an equation has only one square-integrable solution, V1 .xIW /, so
that the deficiency indices are m

˙
D 1.

As usual, starting with the s.a. differential operation LH with the potential (8.126), we
construct the initial symmetric operator OH defined on the domain D .RC/. Its adjoint
OHC is defined on the natural domain D�

LH
.RC/.

8.9.1 Range 1

In this range, we have

g1 � 3=16 .� � 1/:
Let us study the asymptotic behavior of the functions  � 2 D�

LH
.RC/ as x ! 0 and

as x !1. Such functions can be considered square-integrable solutions of the equation

LH � D � 2 L2.RC/: (8.130)

Its general solution has the form

 �.x/ D a1u1.xI 0/C a2V1.xI 0/

C !�1.0/

�
u1.xI 0/

Z
1

x

V1.yI 0/C
Z x

0

V1.xI 0/u1.yI 0/
�
�.y/dy

(one can verify that �1; �2; ˛1; ˇ1 ¤ �n, n 2 ZC, so that !.0/ ¤ 0 and u1.xI 0/ and
V1.xI 0/ are independent). The condition  � 2 L2.RC/ implies a1 D a2 D 0. Because
the potential (8.126) is bounded at infinity, we have Œ �;  ��j1 D 0 according to
Theorem 7.1.

The asymptotics of the functions  �.x/ and  0

�
.x/ as x ! 0 can be found by

estimation of integral summands with the help of the Cauchy–Schwarz inequality,

 �.x/ D


O.x3=2/; g1 > 3=16;

O.x3=2
p

lnx/; g1 D 3=16;

 0

�
.x/ D



O.x1=2/; g1 > 3=16;

O.x1=2
p

lnx/; g1 D 3=16:

Calculating the asymmetry form, we obtain �HC. �/ D 0, 8 � 2 D�

LH
.R/.

This result implies that the operator OHC is s.a., and OH1 D OHC is a unique s.a. extension
of OH .
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To construct the Green’s function of the operator OH1, we consider, following
Sect. 5.3.2, the general solution of the inhomogeneous equation

. LH �W / D � 2 L2.RC/; ImW > 0:

Such a solution has the form

 .x/ D a1u1.xIW /C a2V1.xIW /C I.xIW /; I.xIW / D !�1.W /

�
�

u1.xIW /
Z

1

x

V1.yIW /�.y/dy C V1.xIW /
Z x

0

u1.yIW /�.y/dy
�
: (8.131)

With the help of the Cauchy–Schwarz inequality, we can estimate that both terms in
square brackets are bounded as x ! 1, which implies a1 D 0 for  2 L2.RC/. As
x ! 0, we obtain that I.x/ � O.x3=2/ (with logarithmic accuracy for g1 D 3=16) and
V1.xIW / is not square-integrable at the origin. Then  2 L2.RC/ implies a2 D 0.

Thus, the Green’s function of the operator OH1 has the form

G.x; yIW / D


V1.xIW /u1.yIW /; x > y;
u1.xIW /V1.yIW /; x < y;

so that

M.x0IW / D G.x0 � 0; x0 C 0IW / D !�1.W /u1.x0IW /V1.x0IW /:

For m� 1 < 2� < mC 1, m � 2, we represent V1.xIW / as

V1.xIW / D Am.W /u1.xIW /C !.W /

4�c
V.m/.xIW /;

Am.W / D � .�3/� .�2�/
� .˛2/� .ˇ2/

C am.W /� .�3/� .2�/� .�2/
� .˛1/� .ˇ1/

;

V.m/.xIW / D u2 .xIW / � am.W /� .�2/u1 .xIW / ;

am.W / D � .˛2 Cm/� .ˇ2 Cm/
mŠ� .˛2/� .ˇ2/

ˇ̌
ˇ̌
2�Dm

:

Using the second relation (8.116), one can verify that all the functions V.m/.xIW / exist
for any W and for m � 1 < 2� < mC 1. Note that am.W / are polynomials in �2 and
�2, and therefore in W , with real coefficients, so that am.E/ are real and V.m/.xIW /
are real entire functions in W . One can also verify that Am.W / exist for any W and for
m � 1 < 2� < m C 1, and Am.E/ are real. In addition, V.m/.xIW / are solutions of
(8.127) and

Wr.u1; V.m// D �4�c; V.m/.xIW / D .cx/1=2�� QO.x/; x ! 0:
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Let us consider the guiding functional

˚.�IW / D
Z

1

0

dxu1.xIW /�.x/; � 2 Dr .RC/ \DH1
:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D u1 ( QU D V.m//, and therefore the spectrum of OH1 is
simple.

Following Chap. 5, we obtain the derivative of the spectral function,

� 0.E/ D Im
V1.x0IW /

�!.W /u1.x0IW /
ˇ
ˇ̌
ˇ
WDECi0

D ImB.E C i0/;

B.W / D Am.W /

�!.W /
; m � 1 < 2� < mC 1: (8.132)

Since B.W / is an analytic function of �, the value of ImB.W / at the point � D m=2
can be found as a limit � ! m=2. For � ¤ m=2, the quantity � 0.E/ is essentially
simplified:

� 0.E/ D �� .�2/ Im˝�1.E C i0/
4�c�� .�1/

; ˝�1.W / D � .˛1/� .ˇ1/

� .˛2/� .ˇ2/
:

For E � 4c2 .g1 C g2/ and � D �ip, p D pE=.4c2/ � g1 � g2 � 0, we have

� 0.E/ D �2.E/; �.E/ D j� .˛1/� .ˇ1/j
2�� .�1/

r
sinh.2�p/

c
: (8.133)

One can see that 0 < � 0.E/ <1 for p > 0. If
p�2g2 ¤ 1=2C �C n, n 2 ZC, then

� 0.E/ D 0 for p D 0. If
p�2g2 D 1=2C�Cn, then � 0.E/ has an integrable singularity

of the type � p�1, which means the absence of discrete levels for p D 0. This matches
the fact that (8.127) has no square-integrable solutions for E=4c2 D g1 C g2. Thus, all
points of the semiaxis E � 4c2.g1 C g2/ belong to the continuous spectrum of OH1.

For E < 4c2 .g1 C g2/ and � D p
g1 C g2 � E=4c2 > 0, the function ˝�1.E/ is

real for any E where ˝.E/ ¤ 0. That is why only points En obeying the equation

˝.En/ D 0 H) ˇ1 C n D 0; n 2 ZC;
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can provide nonzero contributions to � 0.E/. Thus, in this case, we obtain

� 0.E/ D
n1maxX

nD0

Q2
nı.E � En/;

Qn D
s
4c�n�n� .�1 C n/� .�1 C 2�n C n/
nŠ� 2.�1/� .1C 2�n C n/ .�n � �n/ ;

�n D
p
g1 � g2 � En=4c2 > �n D

p
g1 C g2 � En=4c2; (8.134)

where En are solutions of the equation

1=2C �C
p
g1 C g2 �En=4c2 �

p
g1 � g2 � En=4c2 D �n: (8.135)

Equation (8.135) has solutions En only if g2 < 0 and 2jg2j > .1=2C �/2. They are

En D 4c2g1 �
�

2cg2

1=2C �C n
�2
� c2.1=2C �C n/2: (8.136)

The number of all discrete levels is equal to nmax C 1,

nmax D


ŒK� ; for ŒK� < K;
ŒK� � 1; for ŒK� D K; (8.137)

where KDp2jg2j � 1=2 � �. At least one discrete level exists for 2jg2j>.1=2C �/2.
Finally, the simple spectrum of the operator OH1 is given by

spec OH1 D Œg1 C g2;1/ [ fEn; n D 0; 1; : : : ; nmaxg:

The (generalized) eigenfunctions

U.xIE/ D �.E/u1.xIE/; E � 4c2.g1 C g2/;
Un.x/ D Qnu1.xIEn/; En < 4c2.g1 C g2/; n D 0; 1; : : : ; nmax;

of the operator OH1 form a complete orthonormalized system in L2 .RC/.

8.9.2 Range 2

In this range, we have

3=16 > g1 > �1=16 .1 > � > 0/:
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In this range, it is convenient to introduce a new solution u3.xIW / of (8.127),

u3.xIW / D u2.xIW /C 2g2� .�2�/
� .2�/

u1.xIW /;

V1.xIW / D Œ QA1.W /� QB1.W /�u1.xIW /C QC1.W /u3.xIW /;

QA1.W / D � .�3/� .�2�/
� .˛2/� .ˇ2/

; QC1.W / D � .�3/� .2�/

� .˛1/� .ˇ1/
D !.W /

4�c
;

QB1.W / D 2g2� .�2�/
� .2�/

QC1.W / D 2g2� .�3/� .�2�/
� .˛1/� .ˇ1/

:

The solution u3.xIW / is real entire in W and the solutions u1, u3, and V1 have the
following asymptotic behavior as x ! 0:

u1.xIW / D u1as.x/CO.x3=2/; u1as.x/ D .2cx/1=2C�;

u3.xIW / D u3as.x/CO.x3=2/;

u3as.x/ D .2cx/1=2�� � 2g2 � .�2/
� .�1/

.2cx/1=2C� C 2g2

�2
.2cx/3=2��;

V1.xIW / D Œ QA1.W / � QB1.W /�u1as.x/C QC1.W /u3as.x/CO.x3=2/:

Using the asymptotics, we obtain Wr.u1; u3/ D �4�c.
As for whether in the range under consideration, any solution of (8.127) is square-

integrable at the origin, we represent the general solution of (8.130) as follows:

 �.x/ D a1u1.xI 0/C a2u3.xI 0/

C 1

4�c

Z x

0

h
u3.xI 0/u1.yI 0/ � u1.xI 0/u3.yI 0/

i
�.y/dy: (8.138)

As in the previous section, here we have Œ �;  ��j1 D 0.
The asymptotics of the functions  �.x/ and  0

�
.x/ as x ! 0 can be found by

estimating the integral summands with the help of the Cauchy–Schwarz inequality,

 �.x/ D a1u1as.x/C a2u3as.x/CO.x3=2/;
 0

�
.x/ D a1u0

1as.x/C a2u0

3as.x/CO.x1=2/: (8.139)

Using these asymptotics, we obtain�HC. �/�4�c.a1a2�a2a1/, which means that the
deficiency indices of OH are m

˙
D 1. The condition �HC. �/ D 0 implies a1 cos � D

a2 sin �, � 2 S.��=2; �=2/. Thus, in the range under consideration, there exists a family
of s.a. operators OH2;� parameterized by � with domains DH2;� that consist of functions
from D�

LH
.RC/ with the following asymptotic behavior as x ! 0:
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 .x/ D C 2;�as.x/CO.x3=2/;  0.x/ D C 0

2;�as.x/CO.x1=2/;
 2;�as.x/ D u1as.x/ sin � C u3as.x/ cos �: (8.140)

Therefore,
DH2;� D f 2 D�

LH
.RC/;  satisfy (8.140)g:

Imposing the boundary conditions (8.140) on the functions (8.131) (with a1 D 0) and
using asymptotics (8.139), we obtain the Green’s function of the Hamiltonian OH2;� ,

G.x; yIW / D ˝�1.W /U2;�.xIW /U2;�.yIW /

� 1

4�c


 QU2;�.xIW /U2;� .yIW /; x > y;
U2;�.xIW / QU2;�.yIW /; x < y: (8.141)

Here

U2;�.xIW / D u1.xIW / sin � C u3.xIW / cos �;

QU2;�.xIW / D u1.xIW / cos � � u3.xIW / sin �;

!�.W / D
QA1.W / � QB1.W /
QC1.W /

cos � � sin �;

Q!�.W / D
QA1.W / � QB1.W /
QC1.W /

sin � C cos �; ˝.W / D �4�c!�.W /Q!�.W / ;

4�c!�1.W /V1.xIW / D Q!�.W /U2;� .xIW /C !�.W / QU2;�.xIW /:

We note that U2;� and QU2;� are solutions of (8.127) real entire in W , U2;� satisfies the
boundary condition (8.140), and the second summand on the right-hand side of (8.141)
is real for real W D E .

Let us consider the guiding functional

˚.�IW / D
Z

1

0

dxU2;� .xIW /�.x/; � 2 Dr .RC/ \DH2;�
:

One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D U2;� . QU D QU2;�/, and therefore the spectra of DH2;�

are simple.
Using the Green’s function, we obtain the derivative of the spectral function, � 0.E/ D

��1 Im˝�1.ECi0/. We first consider the extension with � D �=2. In this case we have
U2;�=2.xIW / D u1.xIW /, and in fact, the function ˝�1.W / is reduced to the function
B.W / given by (8.132) for � 2 .0; 1/, namely, ��1˝�1.W / D B.W /. Therefore, we
can use results obtained in the first range. Finally, we have for the simple spectrum of
the s.a. Hamiltonian OH2;�=2,

spec OH2;�=2 D Œg1 C g2;1/ [ fEn; n D 0; 1; : : : ; nmaxg;
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where the discrete spectrum points En are given by the right-hand side of (8.136) and
nmax is given by (8.137). The set of (generalized) eigenfunctions

UE.x/ D �.E/U2;�=2.xIE/; E � 4c2.g1 C g2/;
Un.x/ D QnU2;�=2.xI En/; n D 0; 1; : : : ; nmax;

of OH2;�=2 form a complete orthonormalized system in L2 .RC/. Here �.E/ and Qn are
given by (8.133) and (8.134). For the case � D ��=2, we obtain the same results.

Considering extensions with j�j < �=2, we represent � 0.E/ as

� 0.E/ D �4��c cos2 �
�

�1
Im f �1

� .E C i0/; f�.W / D f .W /C tan �;

f .W / D
QA1.W / � QB1.W /
QC1.W /

D � .�2/

� .�1/

�
� .˛1/� .ˇ1/

� .˛2/� .ˇ2/
� 2g2

�
:

For E � 4c2 .g1 C g2/, � D �ip, p D p
E=.4c2/ � g1 � g2 � 0, and f .E/ D

A.E/� iB.E/, we have � 0.E/ D �2.E/ > 0, where

�.E/ D j� .˛2/� .ˇ2/j
p
c�1 sinh.2�p/

2�� .�1/jF.E/j cos �
; jf�.E/j2 D ŒA.E/ � tan ��2 C B2.E/;

A.E/ D 2��

sin.2��/� 2.�1/

�
�
1

2�2
j� .˛1/� .ˇ1/j2Œcos.2��/ cos h.2�p/C cos.2��/� � 2g2

�
;

B.E/ D �j� .˛1/� .ˇ1/j2
�� 2.�1/

sinh.2�p/:

For E > 4c2.g1Cg2/, the function �2.E/ is finite. For E D 4c2.g1Cg2/, the function
�2.E/ is finite if tan � ¤ A.4c2.g1 C g2//, and if tan � D A.4c2.g1 C g2//, we have
�2.E/ �! O.1=p/ as E ! 4c2.g1 C g2/, so that all E � 4c2.g1 C g2/ belong to the
simple continuous spectrum of OH2;� .

For E < 4c2.g1 C g2/, � D
p
g1 C g2 � E=4c2 > 0, the function f�.E/ is real,

so that � 0 .E/ differs from zero only at the points En.�/ for which f�.En.�// D 0.
Therefore,

� 0.E/ DPn2� Q
2
nı.E � En.�//; Qn D

h
�4�cf 0

� .En.�//
i

�1=2

;

f 0

� .En.�// < 0;

where � D �1; 0; 1; : : : ; nmax; see below.
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Finally, the simple spectrum of OH2;� is given by

spec OH2;� D Œg1 C g2;1/[ fEn.�/; n 2 �g; En.�/ < 4c2.g1 C g2/:

The set of (generalized) eigenfunctions

UE.x/ D �.E/U2;�.xIE/; E � 4c2.g1 C g2/;
Un.x/ D QnU2;�.xIEn.�//; n D �1; 0; 1; : : : ; nmax;

of OH2;� forms a complete orthonormalized system in L2 .RC/.
Let us rewrite the spectrum equation as f .En.�// D � tan �, taking into account that

@�En.�/ D �
�
f 0.En.�// cos2 �

�
�1
> 0; f .E/

E!�1�! 1;

and

(1) For 2g2 � �.1=2C �/2: f .E/ is smooth for E 2 .�1; 4c2.g1 C g2/ � 0/;
(2) For 2g2 D �.1=2 C � C k/2, k 2 N: f .En ˙ 0/ D ˙1, n D 0; : : : ; k � 1, and

f .4c2.g1 C g2/ � 0/ D �1;
(3) For�.1=2C�CkC1/2 < 2g2 < �.1=2C�Ck/2; k 2 ZC: we have f .En˙0/ D
˙1, n D 0; : : : ; k.

Then some remarks to the spectrum structure can be made: In the region (1): there
are no discrete negative levels .nmax D �2/ for extensions with � 2 Œ�.0/; �=2//, where
�.0/ D arctan f .4c2.g1 C g2//. For any � 2 .��=2; �.0//, there exists one discrete level
E�1.�/ (nmax D �1), which increases monotonically from E�1 to 4c2.g1 C g2/ � 0 as
� goes from ��=2C 0 to �.0/ � 0 (we set E�1 D �1).

In the region (2): For any extension with � 2 .��=2; �=2/, in each interval
.En; EnC1/, n D �1; 0; : : : ; k � 1, there exists one discrete level En.�/ (nmax D k � 1),
which increases monotonically from En C 0 to EnC1 � 0 as � goes from ��=2 C 0 to
�=2� 0.

In the region (3): For any extension with � 2 .��=2; �=2/, in each interval
.En; EnC1/, n D �1; 0; : : : ; k � 1, there exists one discrete level En.�/ (nmax D k � 1),
which increases monotonically from En C 0 to EnC1 � 0 as � goes from ��=2 C 0 to
�=2�0. For any extension with � 2 Œ�.0/; �=2/, there are no other discrete levels (nmax D
k � 1). For any � 2 .��=2; �.0//, there is one discrete level Ek.�/ 2 .Ek; 4c2.g1 C g2//
(nmax D k) which increases monotonically from Ek C 0 to 4c2.g1 C g2/ � 0 as � goes
from ��=2C 0 to �.0/ � 0.

Note that the relation

lim
�!�=2

En�1.�/ D lim
�!��=2

En.�/ D En

holds if the level En.�/ exists.
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We stress that more explicit equations for the spectral function and the discrete
spectrum can be obtained for the extension with

� D arctan
�
2g2� .�2/�

�1.�1/
�
:

8.9.3 Range 3

In this range, we have
g1 D �1=16 .� D 0/:

Here, we use the following solutions of (8.127),

u1 .xIW / D z1=4.1 � z/�F .˛; ˇI 1I z/ D u1 .xIW /j�!�� ;

u4 .xIW / D @

@�
u1 .xIW /j�¤0

ˇ
ˇ̌
ˇ
�D0I �;� are fixed

D z1=4.1 � z/� ln zF.˛; ˇI 1I z/

C z1=4.1 � z/�
@

@�
F.˛1; ˇ1I �1I z/j�¤0

ˇ
ˇ̌
ˇ
�D0I �;� are fixed

D u4 .xIW /j�!�� ;

V1 .xIW / D z1=4.1 � z/�F .˛; ˇI � I 1 � z/; ˛ D ˛C; ˛˙
D 1=2˙ � C �;

ˇ D ˇC; ˇ˙
D 1=2˙ � � �; � D �C; �˙

D 1˙ 2�:

The solutions u1 .xIW / and u4 .xIW / are real entire inW . The following relations hold:

V1 .xIW / D � @

@�

�
� .�3/� .�2/

� .˛2/� .ˇ2/
u1 .xIW /

�

�D0I �;� are fixed

D j .W /� .�/u1 .xIW / � � .�/

� .˛/� .ˇ/
u4 .xIW / ;

j .W / D @

@�

�
� .�1/

� .˛1/� .ˇ1/

�

�D0I �;� are fixed
D �2CC  .˛/C  .ˇ/

� .˛/� .ˇ/
:

Below, we list some asymptotics of the introduced functions as x ! 0 and x ! 1;
see [1, 20, 81].

For x ! 0, z D 2cx QO.x/! 0, we have

u1.xIW / D .2cx/1=2 QO.x/;
u4.xIW / D .2cx/1=2 ln.2cx/ QO.x/;

V1.xIW / D .2cx/1=2
�
j .W / � .�/ � � .�/

� .˛/� .ˇ/
ln.2cx/

�
QO.x/: (8.142)
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For x !1, 1 � z D e�2cx ! 0, z! 1, ImW > 0, we have

u1.xIW / D � .2�/

� .˛/� .ˇ/
e2�cx QO.e�2cx/;

V1.xIW / D e�2�cx QO.e�2cx/:

Regarding

Wr .u1; u4/ D 2c; Wr .u1; V1/ D � 2c� .�/

� .˛/� .ˇ/
D �!.W /;

solutions u1 and V1 are linearly independent and form a fundamental set of solutions of
(8.127) for ImW ¤ 0 and W D 0.

Because any solution is square-integrable at the origin in the range under considera-
tion, it is convenient to use the general solution of (8.130) in the form (8.138) with the
substitutions u3=4�c ! �u4=2c and a2u3 ! �a2u4.

As in previous ranges, we have Œ �;  ��j1 D 0 for functions  � 2 D�

LH
.RC/. Their

asymptotics as x ! 0 are

 �.x/ D a1u1as.x/C a2u4as.x/CO.x3=2/;
 0

�
.x/ D a1u0

1as.x/C a2u0

4as.x/CO.x1=2/;
u1as.x/ D .2cx/1=2; u4as.x/ D .2cx/1=2 ln.2cx/:

Using these asymptotics, we obtain�HC. �/ D 2c.a1a2�a2a1/, which means that
deficiency indices of OH are m

˙
D 1. The condition �HC. �/ D 0 implies a1 cos � D

a2 sin �, � 2 S.��=2; �=2/. Thus, in the range under consideration, there exists a family
of s.a. operators OH3;� parameterized by � with domains DH3;� that consist of functions
from D�

LH
.RC/ with the following asymptotic behavior as x ! 0:

 .x/ D C 3as.x/CO
�
x3=2 lnx

�
;  0.x/ D C 0

3as.x/CO
�
x1=2 lnx

�
;

 3as.x/ D u1as.x/ sin � C u4as.x/ cos �: (8.143)

Therefore,

DH3;� D
n
 2 D�

LH
.RC/;  satisfy (8.143)

o
:

Imposing the boundary conditions (8.143) on the functions (8.131) (with a1 D 0)
and using the asymptotics (8.142), we obtain the Green’s function of the Hamiltonian
OH3;� ,

G.x; yIW / D ˝�1.W /U3;�.xIW /U3;�.yIW /

C 1

2c


 QU3;�.xIW /U3;�.yIW /; x > y;
U3;�.xIW / QU3;�.yIW /; x < y: (8.144)
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Here

U3;�.xIW / D u1.xIW / sin � C u4.xIW / cos �;

QU3;�.xIW / D u1.xIW / cos � � u4.xIW / sin �;

!3;�.W / D j.W /� .˛/� .ˇ/ cos � C sin �;

Q!3;�.W / D j.W /� .˛/� .ˇ/ sin � � cos �; ˝.W / D 2c !3;�.W /Q!3;�.W / ;

2c!�1.W /V1.xIW / D Q!3;�.W /U3;� .xIW /C !3;�.W / QU3;�.xIW /:

We note that U3;� and QU3;� are real entire solutions in W , U3;� satisfies the boundary
condition (8.143), and the second summand on the right-hand side of (8.144) is real for
real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

dxU3;� .xIW /�.x/; � 2 Dr .RC/ \DH3;�
:

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D U3;� . QU D QU3;�/, and therefore the spectra of DH3;�

are simple.
Using the Green’s function, we obtain the derivative of the spectral function, � 0.E/ D

��1 Im˝�1.E C i0/.
We first consider the extension with � D �=2. In this case, we have U3;�=2 D u1 and

� 0.E/ D � .2�c/�1 ImŒ .˛/C  .ˇ/�WDECi0:

For E=4c2 � g2 � 1=16 and � D �ip, p D pE=.4c2/ � g2 C 1=16 � 0, we have

� 0.E/ D sin h.2�p/:

2c Œcos h.2�p/C cos.2��/�
:

It follows that

0 < � 0.E/ <1; E > 4c2.g2 � 1=16/I
� 0.4c2.g2 � 1=16// D 0; g2 ¤ �.1=2C n/2=2I
� 0.E/ D O.1=p/ as E ! 4c2.g2 � 1=16/; g2 D �.1=2C n/2=2;

i.e., all points of the semiaxis E=4c2 � g2 � 1=16 belong to the simple continuous
spectrum of OH3;�=2.
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For E=.4c2/ < g2� 1=16 and � D pg2 �E=4c2 � 1=16 > 0, the function Œ .˛/C
 .ˇ/�WDE is real if it is finite, so that � 0.E/ can be different from zero only at the points
where  .ˇ/ is infinite, i.e., at the points ˇ 2 Z�.

We obtain

� 0.E/ D
nmaxX

nD0

Q2
nı.E � En/; Qn D

s
4c�n�n

�n � �n ;

where the spectrum points En are solutions of the equation

ˇ D 1=2C �n � �n D n; n 2 Z�;

�n D
p
jwnj � jg2j � 1=16; �n D

p
jg2j C jwnj � 1=16; En D 4c2wn:

Such solutions have the form

�n D jg2j
nC 1=2 �

nC 1=2
2

; �n D jg2j
nC 1=2 C

nC 1=2
2

;

En D �4c2
�

g22
.nC 1=2/2 C

.nC 1=2/2
4

C 1

16

�
; n 2 ZC :

We see that for g2 < �1=8, there exists at least one discrete energy level. For a given
g2 < �1=8, there exist nmax C 1 discrete levels,

nmax D


ŒK� ; K > ŒK� ;

ŒK� � 1; K D ŒK� ; K D
p
2jg2j � 1=2:

Thus, the simple spectrum of OH3;�=2 is given by

spec OH3;�=2 D Œg2 � 1=16;1/ [ fEn; n D 0; 1; : : : ; nmaxg:

The (generalized) eigenfunctions

UE.x/ D
p
� 0.E/U3;�=2.xIE/; E � 4c2.g2 � 1=16/;

Un.x/ D QnU3;�=2.xI En/; En < 4c2.g2 � 1=16/; n D 0; 1; : : : ; nmax;

of the operator OH3;�=2 form a complete orthonormalized system in L2 .RC/.
For the case � D ��=2, we obtain the same results.
We note that the solution of the spectral problem in the case under consideration can

be obtained from the corresponding solution for g1 � 3=16, setting there � D 0.
Let us consider extensions with j�j < �=2. In this case,

� 0.E/ D �2�c cos2 �
�

�1
Im f �1

� .E C i0/;
f�.W / D f .W / � tan �; f .W / D  .˛/C  .ˇ/C 2C:
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For E � 4c2.g2 � 1=16/ and � D �ip, p D pE=.4c2/ � g2 C 1=16 � 0; we have

� 0.E/ D B.E/

2�c Œ.A.E/ � tan �/2 C B2.E/� � 0;

A.E/ D Ref .E/; B.E/ D � Im f .E/ D � sinh.2�p/:

cos h.2�p/C cos.2��/
:

The function � 0.E/ is finite and positive for any E > 4c2.g2 � 1=16/. If tan � ¤
A.4c2.g2 � 1=16//, then � 0.4c2.g2 � 1=16// D 0. If tan � D A.4c2.g2 � 1=16//, then
� 0.E/ ! O.1=p/ as E ! 4c2.g2 � 1=16/. Thus all points of the semiaxis E=4c2 �
g2 � 1=16 belong to the simple continuous spectrum of OH3;�=2.

For E < 4c2.g2 � 1=16/ and � D p
g2 � 1=16 � E=4c2 > 0, the function f�.E/

is real, so that � 0.E/ can be different from zero only at the points En.�/ that satisfy the
equation f�.En.�// D 0. Thus,

� 0.E/ D
X

n2�

Q2
nı.E � En.�//; Qn D

r

�
h
2cf 0

� .En.�//
i

�1

;

where f 0

� .En/ < 0, and � D �1; 0; 1; : : : ; nmax; see below.

Finally, we have for the simple spectrum of the operator OH3;� ,

spec OH3;� D Œ4c2.g1 C g2/;1/ [ fEn.�/; n 2 �g:

The (generalized) eigenfunctions

UE.x/ D
p
� 0.E/U3;�.xIE/; E � 4c2.g2 � 1=16/;

Un.x/ D QnU3;�.xIEn.�//; E < 4c2.g2 � 1=16/; n 2 �;

of the operator OH3;� form a complete orthonormalized system in L2 .RC/.
Let us rewrite the equation for spectrum points En.�/ in the form f .En/ D � tan �,

taking into account that

@�En.�/ D �
�
f 0.En.�// cos2 �

�
�1
> 0; f .E/

E!1�! 1;

and

(1) For g2 � �1=8: f .E/ is smooth on .�1; 4c2.g2 � 1=16/ � 0/;
(2) For 2g2 D �.1=2C k/2, k 2 N: f .En ˙ 0/ D ˙1, n D 0; : : : ; k � 1, f .4c2.g2 �

1=16/ � 0/ D �1;
(3) For �.1=2 C k C 1/2 < 2g2 < �.1=2 C k/2, k 2 ZC: f .En ˙ 0/ D ˙1,

n D 0; : : : ; k.
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Then some remarks on the spectrum structure can be made:

(1) For � 2 Œ�.0/; �=2/, �.0//, �.0/ D arctan f .4c2.g2 � 1=16//, there are no discrete
levels on the negative E semiaxis (nmax D �2). For any � 2 .��=2; �.0//, there is
one discrete eigenvalue E�1.�/ (nmax D �1) monotonically increasing from E�1 to
4c2.g2 � 1=16/ � 0 as � goes from ��=2C 0 to �.0/ � 0 (we set E�1 D �1).

(2) In each interval .En; EnC1/, n D �1; 0; : : : ; k � 1, and for any � 2 .��=2; �=2/,
there is one (nmax D k � 1) discrete eigenvalue En.�/ monotonically increasing
from En C 0 to EnC1 � 0 as � goes from ��=2C 0 to �=2� 0.

(3) In each interval .En; EnC1/, n D �1; 0; : : : ; k � 1, and for any � 2 .��=2; �=2/,
there is one discrete eigenvalue En.�/ monotonically increasing from En C 0 to
EnC1 � 0 as � goes from ��=2C 0 to �=2 � 0. For any � 2 Œ�.0/; �=2/, there are
no other discrete eigenvalues (nmax D k � 1). For any � 2 .��=2; �.0//, there is
one (nmax D k) discrete eigenvalue Ek.�/ 2 .Ek; 4c2.g2 � 1=16// monotonically
increasing from Ek C 0 to 4c2.g2 � 1=16/ � 0 as � goes from -�=2C 0 to �.0/ � 0.

Note that the relation

lim
�!�=2

En�1.�/ D lim
�!��=2

En.�/ D En

holds if the discrete level En.�/ exists for the corresponding �.

8.9.4 Range 4

In this range, we have

g1 < �1=16 .� D i~; ~ > 0/:

Because any solution of (8.127) is square-integrable at the origin in the range under
consideration, it is convenient to use the general solution of (8.130) in the form (8.138).

As in the previous ranges, we have Œ �;  ��j1 D 0 for functions  � 2 D�

LH
.RC/.

Their asymptotics as x ! 0 are

 �.x/ D a1u1as.x/C a2u2as.x/CO.x3=2/;
 0

�
.x/ D a1u0

1as.x/C a2u0

2as.x/CO.x1=2/;
u1as.x/ D .2cx/1=2Ci~ ; u2as.x/ D .2cx/1=2�i~ :

Using these asymptotics, we obtain �HC. �/ D 4i~c.a1a1 � a2a2/, which means
that the deficiency indices of OH are m

˙
D 1. The condition �HC. �/ D 0 implies

a1 D e2i� a2, � 2 S.0; �/. Thus, in the range under consideration, there exists a family
of s.a. operators OH4;� parameterized by � with domains DH4;� that consist of functions
from D�

LH
.RC/ with the following asymptotic behavior as x ! 0:

 .x/ D C 4;�as.x/CO.x3=2/;  0.x/ D C 0

4;�as.x/CO.x1=2/;
 4;�as.x/ D ei�u1as.x/C e�i�u2as.x/ D  4;�as.x/: (8.145)
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Therefore,

D4;� D
n
 2 D�

LH
.RC/;  satisfy (8.145)

o
:

Imposing the boundary conditions (8.145) on the functions (8.131) (with a1D 0) and
using the asymptotics (8.129), we obtain the Green’s function of the Hamiltonian OH4;� ,

G.x; yIW / D ˝�1.W /U4;� .xIW /U4;� .yIW /

� 1

8~c


 QU4;� .xIW /U4;� .yIW /; x > y;
U4;� .xIW / QU4;� .yIW /; x < y; (8.146)

Here

U4;� .xIW / D ei�u1.xIW /C e�i�u2.xIW /;
QU4;� .xIW / D i Œe�i�u2.xIW / � ei�u1.xIW /�;

!4;� .W / D ei� a.W /C e�i� b.W /; a.W / D � .�3/� .�1/

� .˛1/� .ˇ1/
;

Q!4;� .W / D ei� a.W / � e�i� b.W /; b.W / D � .�3/� .�2/

� .˛2/� .ˇ2/
;

˝�1 D 8i~c !4;� .W /Q!4;� .W / ;

4�V1.xIW / D Q!4;� .W /U4� .xIW / � i!4;� .W / QU4;� .xIW /:

We note that solutions U4;� .xIW / and QU4;� .xIW / are real entire in W , U4;� .xIW /
satisfies the boundary condition (8.145), and the second summand on the right-hand side
of (8.146) is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

dxU4;� .xIW /�.x/; � 2 Dr .RC/ \DH4;�
:

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U D U4;� . QU D QU4;� /, and therefore the spectra of DH4;�

are simple.
Using the Green’s function, we obtain the derivative of the spectral function, � 0.E/ D

��1 Im˝�1.E C i0/.
For w D E=.4c2/ � g1 C g2 and � D �ip, p D p

E=.4c2/ � g1 � g2 � 0, we
obtain

� 0.E/ D jDj2 � 1
8�~c.1CD/.1CD/; D D

e�2i�� .�2/� .˛1/� .ˇ1/

� .�1/� .˛2/� .ˇ2/
:
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One can see that jDj > 1 for p > 0,

jDj2 D cos hŒ2�.~ C p/�C cos.2��/

cos hŒ2�.~ � p/�C cos.2��/
> 1 for p > 0:

Thus, � 0.E/ is finite and positive for p > 0 and can have an integrable singularity of the
type � p�1 as p ! 0 (for parameters that imply DjpD0 D �1), so that the spectra of
OH4;� on the interval RC are simple and continuous.

For E=.4c2/ < g1 C g2 and � D pg1 C g2 � E=.4c2/ > 0, we have

˝.E/ D �8~c cot%.E/; %.E/ D �� .E/ � �;

�� .E/ D 1

2i
Œln� .�2/ � ln� .�1/�

C 1

2i
Œln� .˛2/C ln� .ˇ2/� ln� .˛1/ � ln� .ˇ1/�:

Therefore � 0.E/ can be different from zero only for energies En.�/ that satisfy the
equation cot%.En.�// D 0. Thus, we obtain

� 0.E/ D
X

n2N
Q2
nı.E �En.�//; Qn D

��8~c%0.En.�//
�

�1=2
;

%.En.�// D �=2C �n; %0.En.�// < 0;

where N Dnmin; nmin � 1; : : : ; see below.
Finally, we have for the simple spectrum of the operator OH4;� ,

spec OH4;� D Œ4c2.g1 C g2/;1/ [ fEn.�/; n 2 N g:

The (generalized) eigenfunctions

UE.x/ D
p
� 0.E/U4;� .xIE/; E � 4c2.g1 C g2/;

Un.x/ D QnU4;� .xIEn.�//; En.�/ < 4c2.g1 C g2/; n 2 N ;

of the operator OH4;� form a complete orthonormalized system in L2 .RC/.
Some remarks on the spectrum structure can be made: Let us rewrite the spectrum

equation as follows:

�� .En.�// D �=2C �.nC �=�/;
� 0

� .En.�// D %0.En.�// < 0; @�En.�/ D
�
� 0

� .En.�//
�

�1
< 0: (8.147)

Taking into account that

�� .E/ D ~ ln
p
jEj CO.1/; E ! �1;
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and �� .4c2.g1 C g2// � �� 0 D �.n0 C ı/ is a finite real number for any g1 � �1=16
and g2, where n0 D Œ�� 0=��, 0 � ı < 1, we obtain the following:

(1) For a fixed n and � , nC �=� > n0 C ı, (8.147) has only one solution En.�/;
(2) For fixed � 2 .�ı; �/; in the energy interval .En0.�ı/D4c2.g1 C g2/; En0.�/ D

En0C1.0//, there is one eigenvalue En0.�/monotonically decreasing from 4c2.g1C
g2/ � 0 to En0.�/C 0 as � goes from �ı C 0 to � � 0;

(3) In any energy interval ŒEn.0/; En.�/ D EnC1.0//, n � n0C1, for fixed � 2 Œ0; �/,
there is one eigenvalue En.�/ monotonically decreasing from to En.�/ C 0 as �
goes from 0 to � � 0;

(4) For � 2 .�ı; �/, we have nmin D n0;
(5) For � 2 Œ0; �ı�, we have nmin D n0 C 1;
(6) We have EnC1.0/ < En.0/, 8n, for any g1 < �1=16 and g2, so that the spectrum

is unbounded from below;
(7) For high negative energies the spectrum has the form

En D �4c2m2e2�n=~ Œ1CO.1=n/� ; n!1;

where m D m.g1; g2; �/ is a scale factor. The spectrum coincides asymptotically
with the spectrum of the Calogero model (for ˛ D g1).

8.10 ESP X

In this case

V.x/ D V1 C V2 cos h.2cx/

sinh2.2cx/
; x 2 RC; (8.148)

and the corresponding Schrödinger equation is

 00 � V1 C V2 cos h.2cx/

sinh2.2cx/
 CW D 0; (8.149)

It is sufficient to consider only the case c > 0 without loss of generality.
Let us introduce a new variable z and new functions 
��.z/, instead of x and  .x/ in

(8.149),

z D tan h2.cx/; z 2 Œ0; 1/;  .x/ D z1=4C���.1 � z/�
��.z/; �� D ˙1;

� D

 p

g1; g1 � 0;
i~; ~ D pjg1j; g1 < 0; g1 D V1 C V2 C c2

16c2
;

w D W=4c2 D jwjei'; � D p�w D
p
jwj

�
sin

'

2
� i cos

'

2

�
; 0 � ' � �: (8.150)
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Then we obtain an equation for 
��.z/,

z.1 � z/d2z 
��.z/C Œ��� � .1C ˛�� C ˇ��/z�dz
��.z/ � ˛��ˇ��
��.z/ D 0;
˛�� D 1=2C ���C � C �; ˇ�� D 1=2C ���C � � �; ��� D 1C 2���;

� D

 p

g2; g2 � 0;
i�; � D pjg2j; g2 < 0; g2 D V1 � V2 C c2

16c2
: (8.151)

Introducing the variable u D 1 � z and the function Q
�� .u/ in (8.149),

 .x/ D .1 � u/1=4C�u��� Q
�� .u/; �� D ˙1; (8.152)

we obtain an equation for Q
�� .u/,

u.1 � u/d2u Q
�� .u/C Œ� 0

��
� .1C ˛�� C ˇ�� /u�du Q
�� .u/ � ˛��ˇ�� Q
�� .u/ D 0;

˛�� D 1=2C �C ��� C �; ˇ�� D 1=2C �C ��� � �; � 0

��
D 1C 2���: (8.153)

The solutions of equations (8.151) and (8.153) are the hypergeometric functions
F .˛; ˇI � I z/; see [1, 20, 81]. The solutions  .x/ of (8.149) can be obtained from
solutions of these equations by the transformations (8.150) and (8.152).

We use three solutions of (8.149),

u1 .xIW / D z1=4C�.1 � z/�F .˛1; ˇ1I �1I z/ D u1 .xIW /j�!�� ;

u2 .xIW / D z1=4��.1 � z/�F .˛2; ˇ2I �2I z/ D u2 .xIW /j�!�� ;

V1 .xIW / D z1=4C�.1 � z/�F .˛1; ˇ1I �3I 1 � z/ D V1 .xIW /j�!�� ;

V1 D � .�3/� .�2�/
� .˛2/� .ˇ2/

u1 C � .�3/� .2�/

� .˛1/� .ˇ1/
u2; (8.154)

where

˛1;2 D 1=2˙ �C � C �; ˇ1;2 D 1=2˙ �C � � �;
�1;2 D 1˙ 2�; �3 D 1C 2�:

We note that the solutions u1 .xIW / and u2 .xIW / are entire in W . They are real entire
in W for g1 � 0 (� � 0), and u2 .xIE/ D u1 .xIE/ for g1 < 0 (� D i~).

Using the asymptotics of special functions in solutions (8.154), see e.g. [1, 20, 81],
we obtain the asymptotics of the solutions. As x ! 0, z D .cx/2 QO.x2/! 0, we have

u1.xIW / D z1=4C� QO.z/ D .cx/1=2C2� QO.x2/;
u2.xIW / D z1=4�� QO.z/ D .cx/1=2�2� QO.x2/; g1 ¤ 0;



392 8 Schrödinger Operators with Exactly Solvable Potentials

V1.xIW / D

8
ˆ̂<

ˆ̂
:

� .�3/� .2�/

� .˛1/� .ˇ1/
.cx/1=2�2� QO.x2/; g1 � 1=4;

h
� .�3/� .�2�/

� .˛2/� .ˇ2/
.cx/1=2C2� C � .�3/� .2�/

� .˛1/� .ˇ1/
.cx/1=2�2�

i QO.x2/;
g1 < 1=4; ImW > 0:

(8.155)

As x !C1, 1 � z D 4e�2cx QO.e�2cx/! 0, z! 1, ImW > 0, we obtain

u1.xIW / D � .�1/� .2�/

4�� .˛1/� .ˇ1/
e2�cx QO �e�2cx

�
;

V1.xIW / D 4�e�2�cx QO �e�2cx
�
;

where we have used identity (8.117).
Regarding

Wr .u1; u2/ D �4�c; Wr .u1; V1/ D �2c� .�1/� .�3/
� .˛1/� .ˇ1/

D �!.W /;

the solutions u1 and V1 form a fundamental set of solutions of (8.149) for ImW > 0.
The initial symmetric operator OH associated with LH is defined on the domain DH D

D.RC/ and its adjoint OHC on the domain DHC D D�

LH
.RC/.

We note that for g1 � 1=4, � � 1=2, the solution V1 .xIW / is not square-integrable
at the origin, but for g1 < 1=4, it is (moreover, any solution of (8.149) is square-
integrable at the origin). This means that for g1 � 1=4, (8.149) has no square-integrable
solutions, so that the deficiency indices of OH are zero. For g1 < 1=4, this equation
has one square-integrable solution V1 .xIW /, so that the deficiency indices of OH are
m

˙
D 1.

Let us consider the inhomogeneous equation

. LH �W / D � 2 L2.RC/; ImW > 0:

Its general solution has the form

 .x/ D a1u1.xIW /C a2V1.xIW /C I.xIW /; I.xIW / D !�1.W /

�
�

u1.xIW /

Z
1

x

V1.yIW /�.y/dy C V1.xIW /

Z x

0

u1.yIW /�.y/dy
�
:

One can see (using the Cauchy–Schwarz inequality) that I.x/ is bounded as x ! 1.
The condition  � 2 L2.RC/ implies a1 D 0.

For g1 � 1=4, we have I.x/ � O.x3=2/ and I 0.x/ � O.x1=2/ as x ! 0 (with
logarithmic accuracy for g1 D 1=4), and V1.xIW / is not square-integrable at the origin.
Then the condition  2 L2.RC/ implies a2 D 0.

For g1 < 1=4, it is convenient to represent  .x/ as follows:
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 .x/ D a2V1.xIW /C !�1.W /u1.xIW /

Z
1

0

V1.yIW /�.y/dy C I1.xIW /;

I1.xIW / D !�1.W /

�
V1.xIW /

Z x

0

u1.yIW /�.y/dy

�u1.xIW /

Z x

0

V1.yIW /�.y/dy
�
: (8.156)

Here, using the Cauchy–Schwarz inequality, one can see that I1.x/� O.x3=2/ and I 0

1.x/

� O.x1=2/ as x ! 0.
Let us study the asymptotic behavior of functions  � 2 D�

LH
.RC/ as x ! 0 and as

x !1. Such functions can be considered square-integrable solutions of the equation

LH � D � 2 L2.RC/ H) . LH �W / � D Q�; Q� D � �W � 2 L2.RC/: (8.157)

Then, according to Theorem 7.1, we obtain Œ �;  ��j1 D 0, 8 � 2 D�

LH
.RC/.

The aymptotics of the functions  �.x/ and  0

�
.x/ as x ! 0 are as follows: For

g1 � 1=4, we have

 �.x/ D O.x3=2/;  0

�
.x/ D O.x1=2/; x ! 0

(with logarithmic accuracy for g1 D 1=4; see below).
For g1 < 1=4, we use the general solution (8.156) and estimates I1.x/ � O.x3=2/

and I 0

1.x/ � O.x1=2/ as x ! 0. Then

 �.x/ D  �as.x/C
(
O.x3=2/; g1 ¤ 1=4;
O.x3=2

p
ln x/; g1 D 1=4;

 0

�
.x/ D  0

�as.x/C
(
O.x1=2/; g1 ¤ 1=4;
O.x1=2

p
ln x/; g1 D 1=4;

 �as.x/ D
(
0; g1 � 1=4;
a1.cx/

1=2C2� C a2.cx/1=2�2�; g1 < 1=4:
(8.158)

As usual, starting with the s.a. differential operation LH with the potential (8.148), we
construct the initial symmetric operator OH defined on the domain D .RC/. Its adjoint
OHC is defined on the natural domain D�

LH
.RC/.

8.10.1 Range 1

In this range, we have
g1 � 1=4 .� � 1=2/:

Here �HC. �/ D 0. This means that the operator OHC is s.a., and OH1 D OHC is a
unique s.a. extension of OH .
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Consider the guiding functional

˚.�IW / D
Z

1

0

dxu1.xIW /�.x/; � 2 Dr .RC/ \DH1
:

One can see that this functional belongs to the class A of simple guiding functionals
considered in Sect. 5.4.1 with U D u1 ( QU is any solution of (8.149) with Wr

�
u1; QU

� D
1), and therefore the spectrum of OH1 is simple.

The Green’s function G.x; yIW / of OH1 and the derivative � 0.E/ of the spectral
function have the form

G.x; yIW / D !�1.W /



V1.xIW /u1.yIW /; x > y;
u1.xIW /V1.yIW /; x < y;

� 0.E/ D ��1 Im
�

V1.x0IW /
!.W /u1.x0IW /

�

WDECi0

:

For m� 1 < 2� < mC 1, m � 1, we have

V1.xIW / D Am.W /u1.xIW /C !.W /

4�c
V.m/.xIW /;

Am.W / D � .�3/� .�2�/
� .˛2/� .ˇ2/

C am.W /� .�3/� .2�/� .�2/
� .˛1/� .ˇ1/

;

V.m/.xIW / D u2 .xIW / � am.W /� .�2/u1 .xIW / ;

am.W / D � .˛2 Cm/� .ˇ2 Cm/
mŠ� .˛2/� .ˇ2/

ˇ
ˇ̌
ˇ
2�Dm

:

As follows from (8.131), the function V.m/.xIW / exists for anyW and form�1 < 2� <
mC 1. Note that am.W / are polynomials in �2 and �2, i.e., in W , with real coefficients,
so that am.E/ are real and V.m/.xIW / are real entire functions in W . It is a simple task
to check that functions Am.W / exist for any W and for m � 1 < 2� < m C 1, and
Am.E/ are real. As a result, we obtain

� 0.E/ D ��1 Im ˝�1.W /
ˇ̌
WDECi0

; ˝.W / D !.W /

Am.W /
; m� 1 < 2� < mC 1:

Since ˝�1.W / is an analytic function of �, its values at the points � D m=2 can be
found as a limit �! m=2. Then � 0.E/ for � ¤ m=2 has the form

� 0.E/ D � � .�2/

4�c�� .�1/
Im ˝�1

1 .W /
ˇ
ˇ
WDECi0

; ˝1.W / D � .˛2/� .ˇ2/

� .˛1/� .ˇ1/
:

For E D 4c2p2 � 0, p � 0, � D �ip, we obtain

� 0.E/ D c�1 sin h.2�p/
� j� .˛1/� .ˇ1/j

2�� .�1/

�2
> 0:
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The function � 0.E/ is finite and positive for E > 0. It is finite and positive for E D 0

if � ¤ 1=2 C n, n 2 ZC, and has an integrable singularity of the type O.E�1=2/ if
� D 1=2C n, n 2 ZC, so that all E 2 RC belong to the continuous spectrum of OH1.

For E D �4c2�2 < 0, � > 0, � D � , the function ˝1.E/ reads

˝1.E/ D � .1=2 � �C � C �/� .1=2 � �C � � �/
� .1=2C �C � C �/� .1=2C �C � � �/ :

If g2 � 0, then˝�1
1 .E/ is finite real number for all � (for allE < 0) and � 0.E/ D 0,

and the negative spectrum points are absent.
If g2 > 0, then ˝�1

1 .E/ can have nonzero imaginary part at the point where ˇ2 D
1=2C �C � � � D �n, n 2 ZC, i.e., for energies

En D �4c2 .� � � � n� 1=2/2 D �4c2
�p
g2 �pg1 � n� 1=2

�2
:

The derivative of the spectral function has the form (there exist nmax C 1 discrete
levels)

� 0.E/ D
nmaxX

nD0

Q2
nı.E � En/; Qn D

s
4c�n� .�1 C n/� .�1 C 2�n C n/

nŠ� 2.�1/� .1C 2�n C n/ ;

where

nmax D


ŒK� ; K > ŒK� ;

ŒK� � 1; K D ŒK� ;
K D � � � � 1=2 D pg2 �pg1 � 1=2:

Thus, there exists at least one discrete level (nmax � 0) if g2 > .1=2Cpg1/2.
Finally, the simple spectrum of the operator OH1 is given by

spec OH1 D RC [ fEn; n D 0; 1; : : : ; nmaxg:
The (generalized) eigenfunctions

U.xIE/ D
p
� 0.E/u1.xIE/; E � 0;

Un.x/ D Qnu1.xIEn/; En < 0; n D 0; 1; : : : ; nmax;

of the operator OH1 form a complete orthonormalized system in L2 .RC/ :

8.10.2 Range 2

In this range, we have

1=4 > g1 > 0 .1=2 > � > 0/:
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Using asymptotics (8.158), we obtain in the range under consideration:
�HC. �/ D �4�c.a1a2 � a2a1/. This means that the deficiency indices of OH are
m

˙
D 1. The condition�HC. �/ D 0 implies a1 cos � D a2 sin �, � 2 S .��=2; �=2/.

Thus, in this range, there exists a family of s.a. operators OH2;� parameterized by
� 2 S .��=2; �=2/ with domains DH2;� that consist of functions from D�

LH
.RC/ with

the following asymptotic behavior as x ! 0:

 .x/ D C 2;�as.x/CO.x3=2/;
 0.x/ D C 0

2;�as.x/CO.x1=2/;
 2;�as.x/ D .cx/1=2C2� sin � C .cx/1=2�2� cos �: (8.159)

Therefore,
DH2;� D

n
 2 D�

LH
.RC/;  satisfy (8.159)

o
:

Imposing the boundary conditions (8.159) on the functions (8.156) and using the
asymptotics (8.155), we obtain Green’s functions of the Hamiltonians OH2;� ,

G.x; yIW / D ˝�1.W /U2;� .xIW /U2;� .yIW /

� 1

4�c


 QU2;�.xIW /U2;� .yIW /; x > y;
U2;�.xIW / QU2;�.xIW /; x < y:

(8.160)

Here

U2;�.xIW / D u1.xIW / sin � C u2.xIW / cos �;

QU2;�.xIW / D u1.xIW / cos � � u2.xIW / sin �;

˝.W / D �4�cŒf .W / cos � C sin ��

f .W / sin � � cos �
; f .W / D � .�2/� .˛1/� .ˇ1/

� .�1/� .˛2/� .ˇ2/
; (8.161)

V1.xIW / D Q!2;�.W /U2;� .xIW / � !2;�.W / QU2;�.xIW /;
!2;�.W / D q1.W / cos � C q2.W / sin �;

Q!2;�.W / D q1.W / sin � � q2.W / cos �;

q1.W / D �� .�3/� .�2�/
� .˛2/� .ˇ2/

; q2.W / D � .�3/� .2�/

� .˛1/� .ˇ1/
D !.W /

4�c
:

Note that U2;� and QU2;� are solutions of (8.149) real entire in W , U2;� satisfies the
boundary condition (8.159), and the second summand on the right-hand side of (8.160)
is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

dxU2;� .xIW /�.x/; � 2 Dr .RC/ \DH2;�
:
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One can see that this functional belongs to the class B of simple guiding functionals
considered in Sect. 5.4.1 with U D U2;� ( QU D QU2;�/, and therefore the spectra of OH2;�

are simple.
The derivative of the spectral function reads � 0.E/ D ��1 Im˝�1.E C i0/.
We first consider the extension with � D �=2. In this case, U2;�=2 D u1 and

� 0.E/ D �.4��c/�1 Im f .E C i0/:

We can see that the spectrum and inversion formulas coincide with those in the first
region for 0 < g1 < 1=4 (0 < � < 1=2). In particular, the energy levels Enj�D�=2 � En,

En D �4c2.pg2 �pg1 � 1=2 � n/2; n D 0; 1; : : : ; nmax;

nmax D
( �
K�=2

�
; K�=2 >

�
K�=2

�
;

�
K�=2

� � 1; K�=2 D
�
K�=2

�
;

K�=2 D pg2 �pg1 � 1=2:

and the levels En exist only for g2 > 0,
p
g2 �pg1 > 1=2.

We obtain the same results for the case � D ��=2.
Let us consider the extension with � D 0. In this case, U2;�=2 D u2 and � 0.E/ D

.4��c/�1 Im f �1.E C i0/. Here, the spectrum and inversion formulas coincide with
those in the first region if we replace � by ��. In particular, the energy levels Enj�D0 �
En .0/ are

En .0/ D �4c2.pg2 Cpg1 � 1=2 � n/2; n D 0; 1; : : : ; nmax;

nmax D


ŒK0� ; K0 > ŒK0� ;

ŒK0� � 1; K0 D ŒK0� ;
K0 D pg2 Cpg1 � 1=2;

and the levels En .0/ exist only for g2 > 0,
p
g2 Cpg1 > 1=2.

Let us consider extensions with j�j < �=2. For such extensions, we have

� 0.E/ D Im
�
4��c cos2 �f�.E C i0/

�
�1 D

X

n2�

Q2
nı.E � En .�//;

Qn D
q
Œ4�c cos2 �f 0.En .�//�

�1
; f 0.En .�// < 0;

where � D f0; : : : ; nmaxg, see below, and

f�.W / D f .W /C tan �; f .En .�// D � tan �;

@�En .�/ D �
�
f 0.En .�// cos2 �

�
�1
> 0:

The function f .W / is given by (8.161). One can see that f .E/ is real; f .E/ ! 1 as
E ! �1; if there exists a level En, n 2 ZC, then the level En .0/ exists as well, and
En .0/ < En; if there exists a level EnC1 .0/, n 2 ZC, then the level En exists as well,
and En < EnC1 .0/.
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Then we obtain the following:

(1) Let g2 � 0 or g2 > 0,
p
g2 < 1=2Cpg1. Here the function f .E/ is monotonically

decreasing and smooth for E 2 .E�1; 0/ (we set E�1 D �1). For � 2 Œ�1; �=2/,
�1 D � arctan f .�0/, there are no negative discrete energy levels (nmax D �1);
for any � 2 .��=2; �1/, there is one discrete level E0 .�/ (nmax D 0), which
monotonically increases from E�1 C 0 to �0 as � goes from ��=2 to �1 � 0.

(2) Let
p
g2 � pg1 D 1=2 C k, k 2 N. Here, we have f .En ˙ 0/ D ˙1, n D

0; : : : ; k � 1, f .�0/ D �1. For any fixed � 2 .��=2; �=2/, in each interval
.En�1; En/, n D 0; : : : ; k (here we set Ek D 0), there exists one discrete level En .�/
(nmax D k), which monotonically increases from En�1C 0 to En � 0 as � goes from
�=2 � 0 to ��=2C 0.

(3) Let 1=2C k < �C � < 1=2C k C 1, k 2 ZC. Here, we have

f .En ˙ 0/ D ˙1; n D 0; : : : ; k; jf .�0/j <1:

For any � 2 .��=2; �=2/, in each interval .En�1; En/, n D 0; : : : ; k, there exists one
discrete level En .�/, which monotonically increases from En�1 C 0 to En � 0 as � goes
from ��=2 C 0 to �=2 � 0. For any � 2 Œ�1; �=2/, there are no other discrete levels
(nmax D k). For any � 2 .��=2; �1/ there exists one discrete level EkC1 .�/ 2 .Ek; 0/
(nmax D k C 1), which monotonically increases from Ek C 0 to �0 as � goes from
��=2C 0 to �1 � 0.

8.10.3 Range 3

In this range, we have

g1 D � D 0:

Here, we use the following solutions of (8.149):

u1 .xIW / D z1=4.1 � z/�F .˛; ˇI 1I z/ D u1 .xIW /j�!�� ;

u3 .xIW / D @

@�

�
u1 .xIW /j�¤0

�
�D0I �;� are fixed

D z1=4.1 � z/� ln zF.˛; ˇI 1I z/

C z1=4.1 � z/�
@

@�
F.˛1; ˇ1I �1I z/j�¤0

ˇ̌
ˇ̌
�D0I �;� are fixed

D u3 .xIW /j�!�� ;

V1 .xIW / D z1=4.1 � z/�F .˛; ˇI � I 1 � z/; ˛ D ˛C; ˛˙
D 1=2˙ � C �;

ˇ D ˇC; ˇ˙
D 1=2˙ � � �; � D �C; �˙

D 1˙ 2�:
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The solutions u1 .xIW / and u3 .xIW / are real entire in W . The following relations
hold:

V1 .xIW / D � @

@�

"
� .�3/� .�2/

� .˛2/� .ˇ2/
u1 .xIW /

ˇ̌
ˇ̌
�¤0

#

�D0I �;� are fixed

D j .W / � .�/u1 .xIW / � � .�/

� .˛/� .ˇ/
u3 .xIW / ;

j .W / D @

@�

� .�1/

� .˛1/� .ˇ1/

ˇ
ˇ̌
ˇ
�D0I �;� are fixed

D �2CC  .˛/C  .ˇ/
� .˛/� .ˇ/

:

Below, we list some asymptotics of the introduced functions as x ! 0 and x !1;
see [1, 20, 81].

As x ! 0, z D .cx/2 QO.x2/! 0, we have

u1.xIW / D z1=4 QO.z/ D .cx/1=2 QO.x2/;
u3.xIW / D z1=4 .ln z/ QO.z ln z/ D 2.cx/1=2.ln cx/ QO.x2 ln x/;

V1.xIW / D .cx/1=2
�
j .W / � .�/ � 2 � .�/

� .˛/� .ˇ/
ln.cx/

�
QO.x2 ln x/: (8.162)

As x !1, 1 � z D 4e�2cx QO.e�2cx/! 0, z! 1, ImW > 0, we have

V1.xIW / D 4�e�2�cx QO �e�2cx
�
;

u1.xIW / D � .2�/

4�� .˛/� .ˇ/
e2�cx QO.e�2cx/:

We stress that V1 .xIW / is square-integrable at the origin.
Since

Wr .u1; u2/ D 2c; Wr .u1; V1/ D � 2c� .�/

� .˛/� .ˇ/
D �!.W /;

the solutions u1 and V1 form a fundamental set ImW ¤ 0 and W D 0:
Let us study asymptotics of functions  � 2 D�

LH
.RC/ as x ! 0 and as x !1. Such

functions can be considered square-integrable solutions of (8.157) with the following
asymptotics as x ! 0:

 �.x/ D  as.x/CO.x3=2 lnx/;  0

�
.x/ D  0

as.x/CO.x1=2 lnx/;

 as.x/ D a1.cx/1=2 C 2a2.cx/1=2 ln.cx/:

As in the previous ranges, here we have Œ �;  ��j1 D 0 and �HC. �/ D
2c.a1a2 � a2a1/, which means that the deficiency indices of OH are m

˙
D 1. The

condition �HC. �/ D 0 implies a1 cos � D a2 sin �, � 2 S.��=2; �=2/. Thus, in
the range under consideration, there exists a family of s.a. operators OH3;� parameterized



400 8 Schrödinger Operators with Exactly Solvable Potentials

by � with domains DH3;� that consist of functions from D�

LH
.RC/ with the following

asymptotic behavior as x ! 0;

 .x/ D C 3;�as.x/CO.x3=2 ln x/;

 0.x/ D C 0

3;�as.x/CO.x1=2 ln x/;

 3;�as.x/ D .cx/1=2 sin � C 2.cx/1=2 ln.cx/ cos �: (8.163)

Therefore,

DH3;� D f 2 D�

LH
.RC/;  satisfy (8.163)g:

Imposing the boundary conditions (8.163) on the functions (8.156) and using the
asymptotics (8.162), we obtain the Green’s function of OH3;� ,

G.x; yIW / D ˝�1.W /U3;� .xIW /U3;� .yIW /

C 1

2c


 QU3;�.xIW /U3;� .yIW /; x > y;
U3;�.xIW / QU3;�.yIW /; x < y; (8.164)

where

˝.W / D 2c!3;� .W /

Q!3;�.W / ; !3;�.W / D f .W / cos � � sin �;

Q!3;�.W / D f .W / sin � C cos �; f .W / D 2CC  .˛/C  .ˇ/;
U3;�.xIW / D u1.xIW / sin � C u3.xIW / cos �;

QU3;�.xIW / D u1.yIW / cos � � u3.xIW / sin �;

2c!�1.W /V1.xIW / D � Q!3;�.W /U3;�.xIW / � !3;�.W / QU3;�.xIW /: (8.165)

We note that U3;� and QU3;� are solutions of (8.149) real entire in W , U3;� satisfies the
boundary condition (8.163), and the second summand on the right-hand side of (8.164)
is real for real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

dxU3;� .xIW /�.x/; � 2 Dr .RC/ \DH3;�
:

One can see that this functional belongs to the class C of simple guiding functionals
considered in Sect. 5.4.1 with U D U3;� ( QU D QU3;�/, and therefore the spectra of OH3;�

are simple.
Using the Green’s function, we obtain the derivative of the spectral function, � 0.E/ D

��1 Im˝�1.E C i0/.
Let us consider the extension with � D �=2. In this case, we have U3;�=2.xIW / D

u1.xIW /, and
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� 0.E/ D � 1

2�c
Im Œ .˛/C  .ˇ/�jWDECi0 :

For E D 4c2p2 � 0, p � 0, � D �ip, we have

� 0.E/ D sin h.2�p/:

2c Œcos h.2�p/C cos.2��/�
: (8.166)

The function (8.166) is finite and positive for E > 0; if � ¤ 1=2 C n, n 2 ZC,
� 0.0/ D 0I if � D 1=2C n, n 2 ZC, the function � 0.E/ has an integrable singularity of
type O.E�1=2/. Therefore, all E 2 RC belong to the continuous spectrum of OH3;�=2.

For E D �4c2�2 < 0, � > 0, � D � , the function  .˛/C .ˇ/ is real, so that � 0.E/

can be different from zero only at the points En where  .ˇ/ is infinite. This is possible
only for g2 > 1=4, where we have

� 0.E/ D
nmaxX

nD0

Q2
nı.E � En/; Qn D .3jEnj/1=4 ;

En D �4c2
�p
g2 � 1=2 � n

�2
;

nmax D


ŒK� ; K > ŒK� ;

ŒK� � 1; K D ŒK� ; K D pg2 � 1=2:

Finally, the simple spectrum of OH3;�=2 is given by

spec OH3;�=2 D RC [ fEn; n D 0; 1; : : : ; nmaxg:
The set of (generalized) eigenfunctions

UE.x/ D
p
� 0.E/U3;˙�=2.xIE/; E � 0;

Un.x/ D QnU3;�=2.xI En/; n D 0; 1; : : : ; nmax;

of OH3;�=2 form a complete orthonormalized system in L2 .RC/.
The same results hold for � D ��=2.
Let us note that the solution of the spectral problem in the case under consideration

can be obtained from the corresponding solution of the first range g1 � 1=4 in the limit
�! 0.

Now we consider extensions with j�j < �=2. For such extensions, we have

� 0.E/ D �2�c cos2 �
�

�1
Im f �1

� .E C i0/; f�.W / D f .W / � tan �;

where f .W / is given by (8.165).
For E D 4c2p2 � 0, p � 0, � D �ip, we obtain

� 0.E/ D B.E/

2�cŒ.A.E/ � Q�/2 C B2.E/� ;
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where Œ .˛/C  .ˇ/�WDE D A.E/ � iB.E/, and Q� D tan � � 2C. The function B.E/
can be explicitly calculated:

B.E/ D � sinh.2�p/:

cos h.2�p/C cos.2��/
� 0:

Thus, � 0.E/ is finite and positive for E > 0. It can have an integrable singularity of type
O.E�1=2/ as E ! 0, so that all E 2 RC belong to the continuous spectrum of OH3;� .

For E D �4c2�2 < 0, � > 0, � D � , the function f�.E/;

f�.E/ D f .E/� tan �; f .E/ D  .1=2C � C �/C  .1=2C � � �/C 2C;

f .E/ D ln jEj CO.1/!1 as E ! �1;

is real, so that only the points En .�/ that satisfy the equation f�.En .�// D 0 can
contribute to � 0.E/. That is why

� 0.E/ D
X

nD�

Q2
nı.E � En .�//; Qn D

h
�2c cos2 �f 0

� .En .�//
i

�1=2

;

where

f 0

� .En .�// < 0; f .En .�// D tan �;

@�En .�/ D
�
f 0.En .�// cos2 �

�
�1
< 0:

Finally, the simple spectrum of the s.a. Hamiltonian OH3;� is given by

spec OH3;� D RC [ fEn .�/ < 0; n 2 �g;

where � D f0; 1; : : : ; nmaxg.
The set of (generalized) eigenfunctions

UE.x/ D
p
� 0.E/U3;�.xIE/; E � 0;

Un.x/ D QnU3;�.xIEn .�//; n 2 �;

of OH3;� form a complete orthonormalized system in L2 .RC/.
Some remarks on the spectrum structure can be made:

(1) Let g2 � 1=4. Then f .E/ is smooth on .E�1; 0/ (we set E�1 D �1). In this
region, there are no discrete negative levels (nmax D �1) for extensions with � 2
.��=2; �1�, �1 D arctan f .�0/. For any fixed � 2 .�1; �=2/, there is one discrete
level E10 .�/ (nmax D 0), which monotonically increases from E�1 to �0 as � goes
from �=2 � 0 to �1 C 0.

(2) Let � D 1=2Ck, k 2 N. Then f .En˙0/ D ˙1, n D 0; : : : ; k�1, f .�0/ D �1.
For such a region of parameters, for any fixed � 2 .��=2; �=2/, in each interval
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.En�1; En/, n D 0; : : : ; k (in this item only, we set Ek D 0), there exists one discrete
level En .�/ (nmax D k), which monotonically increases from En�1C 0 to En � 0 as
� goes from �=2 � 0 to ��=2C 0.

(3) Let 1=2Ck < �C� < 1=2CkC1, k 2 ZC, then f .En˙0/ D ˙1, n D 0; : : : ; k,
jf3.�0/j < 1. For such region of parameters, for any fixed � 2 .��=2; �=2/, in
each interval .En�1; En/, n D 0; : : : ; k, there exists one discrete level En .�/ ; which
monotonically increases from En�1C0 to En�0 as � goes from �=2�0 to��=2C0.
For any � 2 .��=2; �1�, there are no other discrete eigenvalues (nmax D k). For any
fixed � 2 .�1; �=2/, there is one (nmax D k C 1) discrete level EkC1 .�/ 2 .Ek; 0/,
which monotonically increases from EkC 0 to �0 as � goes from �=2� 0 to �1C 0.

8.10.4 Range 4

In this range, we have

g1 < 0 .� D i~; ~ > 0/:

Using the asymptotics (8.158) and the fact that Œ �;  ��j1 D 0, we obtain
�HC. �/ D 4i~c.a2a2 � a1a1/. This means that the deficiency indices of OH are
m

˙
D 1. The condition �HC . �/ D 0 implies a1 D e2i� a2, � 2 S.0; �/. Thus, in

the range under consideration, there exists a family of s.a. operators OH4;� parameterized
by � with domains DH4;� that consist of functions from D�

LH
.RC/ with the following

asymptotic behavior as x ! 0:

 .x/ D C 4;�as.x/CO.x3=2/;
 0.x/ D C 0

4;�as.x/CO.x1=2/;
 4;�as.x/ D ei� .cx/1=2C2i~ C e�i� .cx/1=2�2i~ : (8.167)

Therefore,
DH4;� D f 2 D�

LH
.RC/;  satisfy (8.167)g:

Imposing the boundary conditions (8.167) on the functions (8.156) and using the
asymptotics (8.155), we obtain the Green’s functions of the Hamiltonians OH4;� ,

G4;� .x; yIW / D ˝�1.W /U4;� .xIW /U4;� .yIW /

� 1

8~c


 QU4;� .xIW /U4;� .yIW /; x > y;
U4;� .xIW / QU4;� .yIW /; x < y: (8.168)

Here

˝ D i 8~c!4;� .W /Q!4;� .W / ; !4;� .W / D ei� a.W /C e�i� b.W /;

Q!4;� .W / D ei� a.W / � e�i� b.W /;
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a.W / D � .�3/� .�1/

� .˛1/� .ˇ1/
; b.W / D � .�3/� .�2/

� .˛2/� .ˇ2/
;

U4;� .xIW / D ei�u1.xIW /C e�i�u2.xIW /;

QU4;� .xIW / D i Œe�i�u2.xIW / � ei�u1.xIW /�;
4�V1.xIW / D Q!4;� .W /U4;� .xIW / � i!4;� .W / QU4;� .xIW /:

Note that U4;� and QU4;� are solutions of (8.149) real entire inW , U4;� satisfies boundary
conditions (8.167), and the second summand on the right-hand side of (8.168) is real for
real W D E .

Consider the guiding functional

˚.�IW / D
Z

1

0

dxU4;� .xIW /�.x/; � 2 Dr .RC/ \DH4;�
:

One can see that this functional belongs to the class D of simple guiding functionals
considered in Sect. 5.4.1 with U D U4;� ( QU D QU4;� /, and therefore the spectra of OH4;�

are simple.
The derivative of the spectral function reads � 0.E/ D ��1 Im˝�1.E C i0/:
For E D 4c2p2 � 0, p � 0, � D �ip, we have Im˝�1.E C i0/ D Im˝�1.E/,

and

˝�1.E/ D i�
�
ei�� .�1/� .˛2/� .ˇ2/ � e�i�� .�2/� .˛1/� .ˇ1/

�

8�~c
�
ei�� .�1/� .˛2/� .ˇ2/C e�i�� .�2/� .˛1/� .ˇ1/

� :

One can verify that � 0.E/ is finite and positive for E > 0: It can have an integrable
singularity of the typeO.E�1=2/ asE ! 0, so that allE 2 RC belong to the continuous
spectrum of OH4;� .

For E D �4c2�2 < 0, � > 0, � D � , we have ˝.E/ D 8~c cot%.E/, where
%.E/ D f .E/C � ,

f .E/ D 1

2i
Œln� .1C 2i~/ � ln� .1 � 2i~/�

C 1

2i
Œln� .1=2 � i~ C � C �/ � ln� .1=2C i~ C � C �/�

C 1

2i
Œln� .1=2 � i~ C � � �/ � ln� .1=2C i~ C � � �/� :

Thus, only the points En .�/ that satisfy the equation

%.En .�// D �

2
� �n; n 2 Z; (8.169)

can contribute to � 0.E/. Thus, we obtain

� 0.E/ D
X

n

Q2
nı .E � En .�// ; Qn D

�
8~c%0.En .�//

�
�1=2

; %0.En .�// > 0:
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Finally, the simple spectra of OH4;� are given by

spec OH4;� D RC [ fEn .�/ ; n 2 Zg:

The sets of (generalized) eigenfunctions

UE.x/ D
p
� 0.E/U4;� .xIE/; E � 0;

Un.x/ D QnU4;� .xIEn .�//; n 2 Z;

of OH4;� form complete orthonormalized systems in L2 .RC/.
Some remarks on the spectrum structure can be made. Let us rewrite the spectrum

equation (8.169) as follows:

f .En .�// D �=2C �n0 � �.nC �=�/; n 2 Z; (8.170)

where

n0 D Œ1=2C f .0/=�� ; f .0/ D �=2C �n0 � �0; 0 < �0 � �:

We note that

f .E/ D �~ ln.jEj=4c2/CO.1/; E ! �1I
f 0.En .�// > 0; @�En .�/ D �1=f 0.En .�// < 0:

Then, one can see that (8.170) has no solutions for n � �1, so that n 2 ZC; for
n D 0 and � 2 Œ0; �0�, (8.170) has no solutions; for n D 0 and � 2 .�0; �/, (8.170)
has only one solution E0 .�/ 2 .E0 .�/ D E1 .0/ ; 0/, which monotonically increases
from E0 .�/ C 0 to �0 as � goes from � � 0 to �0 C 0; in each interval .En .�/ D
EnC1 .0/ ; En .0/�, n 2 N, there exists only one discrete level En .�/ for a given � 2
Œ0; �/, which monotonically increases from En .�/C 0 to En .0/ as � goes from � � 0
to 0. In particular, EnC1 .0/ < En .0/, 8n 2 ZC.

We note also that in the range under consideration, the spectrum of OH4;� is unbounded
from below and asymptotically coincides with the spectrum of the Calogero Hamiltonian
with ˛ D 4g1 � 1=4 D .V1 C V2/=4c2 and k0 D c for high negative energies.

8.11 ESP XI

In this case,

V.x/ D 4c2 1=16 � g1 C g2 sinh.cx/

cos h2.cx/
; x 2 R; (8.171)
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and the corresponding Schrödinger equation is

 00 � 4c2 1=16 � g1 C g2 sinh.cx/

cos h2.cx/
 CW D 0: (8.172)

It is sufficient to consider only the case c > 0 and g2 > 0 without loss of generality.
Let us introduce a new variable z,

z D
�

 C i

 � i

�2
; 
 D ecx;

and parameters �, �, and �:

� D pg1 C ig2; � D
p
g1 � ig2; � D

p
�Wc�2

D
p
jW jc�2Œsin.'=2/ � i cos.'=2/�; W D jW jei' ; 0 � ' � �:

We note that the path �1 H) 1 of the variable x along the real axis corresponds
to the path 1� i0 H) 1C i0 of the variable z in the complex plane along (clockwise) a
circle jzj D 1.

In addition, we introduce new functions 
��.z/,

 .x/ D .�z/1=4C���.1 � z/�
��.z/; �� D ˙ : (8.173)

They satisfy the following equations:

z.1 � z/d2z 
��.z/C Œ��� � .1C ˛�� C ˇ��/z�dz
��.z/

� ˛��ˇ��
��.z/ D 0; ˛�� D 1=2C ���C � C �;
ˇ�� D 1=2C ���C � � �; ��� D 1C 2���;

which have hypergeometric functions F.˛; ˇI � I z/ as solutions; see [1, 20, 81] and the
appendix to Sect. 8.7.

Solutions of (8.172) can be obtained from solutions of the latter equations by the
transformation (8.173).

The first pair of solutions of (8.172), which we are going to use for constructing
Green’s functions, are solutions ui .xIW /, i D 1; 2,

u1.xI �/ D e�i�.1=4C�=2/

2��

�
e�i��� .�2/PC.xIW /

� .˛2/� .ˇ2/
� ei��� .�1/P�.xIW /

� .˛1/� .ˇ1/

�
;

u2.xIW / D ei�.1=4C�=2/

2��

�
ei��� .�2/PC.xIW /

� .˛2/� .ˇ2/
� e�i��� .�1/P�.xIW /

� .˛1/� .ˇ1/

�
;

ui .xIW / D ui .xIW /j�!�� ; ui .xIW / D ui .xIW /j�!�� ; i D 1; 2:
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The last of these relations means that ui .xIW / are entire functions of parameters g1 and
g2. Here auxiliary solutions P�� and parameters have the form

PC.xIW / D .�z/1=4C�.1 � z/�F.˛1; ˇ1� I �1I z/; �1;2 D �C;� D 1˙ 2�;
P�.xIW / D .�z/1=4��.1 � z/�F.˛2; ˇ2� I �2I z/;

˛1;2 D ˛C;� D 1=2˙ �C � C �; ˇ1;2 D ˇC;� D 1=2˙ �C � � �;

where F.˛; ˇI � I z/ is an analytic extension of the hypergeometric series in the complex
plane C with a cut along the real x > 1 semiaxis given by the Barnes integral; see, e.g.,
[164].

Using identity (8.115), we find that P�� D P��
ˇ̌
�!��

, and therefore ui .xIW / are
entire functions inW . We note also that the functions P�� are analytic in z in the complex
plane with a cut along the real positive semiaxis, so that the circle jzj D 1 is situated in
the analyticity domain of the functions P��:

Using (8.117) and (8.115), we obtain another representations for ui .xIW /:

u1.xIW / D

8
ˆ̂<

ˆ̂:

D2.�z1/1=4C�.1 � z/�F.˛1; ˇ1I �3I 1 � z/

CD3.�z/1=4C�.1 � z/��F.˛3; ˇ3I �4I 1 � z/; Im z � C0;
C1.�z/1=4C�.1 � z/�F.˛1; ˇ1I �3I 1 � z/; Im z � �0;

u2.xIW / D

8
ˆ̂<

ˆ̂:

D1.�z/1=4C�.1 � z/�F.˛1; ˇ1I �3I 1 � z/; Im z � C0;
C2.�z1/1=4C�.1 � z/�F.˛1; ˇ1I �3I 1 � z/

CC3.�z/1=4C�.1 � z/��F.˛3; ˇ3I �4I 1 � z/; Im z � �0;
(8.174)

where

C1 D �e�i�.1=4C�C�=2/

�� .�3/
; D2 D C1

�
1C 2ie2i�� sin.�˛1/ sin.�ˇ1/

sin.��3/

�
;

D3 D �2iB�1� .2�/e�i�.1=4��C�=2/; B D � .˛1/� .ˇ1/� .˛2/� .ˇ2/;

D1 D �ei�.1=4C�C�=2/

�� .�3/
; C2 D D1

�
1 � 2ie�2i�� sin.�˛1/ sin.�ˇ1/

sin.��3/

�
;

C3 D 2iB�1� .2�/ei�.1=4��C�=2/;

˛3 D 1=2C � � � C �; ˇ3 D 1=2C � � � � �; �3;4 D 1˙ 2�:

Representations (8.174) are useful for obtaining asymptotics of the functions ui as x !
˙1.

It is easy to verify that ui .xI �/ D ui .xI �/, so that ui .xI �/ are real for real � (for
W D E < 0). In addition, the functions ui .xI �/ are analytic in W for ImW ¤ 0.

Another pair of solutions of (8.172) that we are going to use is Vk.xIW /, k D 1; 2,
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V1.xIW / D !�1.W /Œu0

1.0IW /u2.xIW / � u0

2.0IW /u1.xIW /�;

V2.xIW / D !�1.W /Œu2.0IW /u1.xIW / � u1.0IW /u2.xIW /�;

u1.xIW / D u1.0IW /V1.xIW /C u0

1.0IW /V2.xIW /;

where !.W / D �Wr.u1; u2/ ¤ 0. These solutions are normalized, V .l�1/

k
.0IW / D

ıkl , k; l D 1; 2, and are independent, Wr.V1; V2/ D 1.
As x ! �1, 
 De�cjxj ! 0, we have

z D 1 � 4i
 CO.
2/; �z D ei� CO.
/; 1 � z D 4
ei�=2 CO.
2/;
u1.xIW / D � Œ�� .�3/��1 .4e�cjxj/� QO.
/! 0;

u2.xIW / D �2B�1� .2�/.ecjxj=4/� QO.
/!1;

and as x !1, 
 Decx !1

z D 1C 4i=
 CO.
�2/; �z D e�i� CO.
�1/; 1 � z D .4=
/e�i�=2 CO.
2/;
u1.xIW / D �2B�1� .2�/.
=4/� QO.
�1/!1;
u2.xIW / D � Œ�� .�3/��1 .4=
/� QO.
�1/! 0:

Using the above asymptotics, we obtain

Wr.u1; u2/ D � 2c
�B
D �!.W / ¤ 0;1; ImW > 0;

whence it follows that (8.172) has no square-integrable solutions for ImW > 0. That is
why the initial symmetric operator OH defined on the domain D .R/ has zero deficiency
indices. In addition, the potential (8.171) tends to zero as jxj ! 1, so that�HC . �/ D
0, as follows from Theorem 7.1. All this implies that the adjoint OHC defined on the
domain D�

LH
.R/ is s.a., and OH1 D OHC is a unique s.a. extension of OH .

As a set of guiding functionals, we can choose

˚k .�IW / D
Z

1

�1

dx Vk .xIW / � .x/ ; � 2 D.R/ \D�

LH
.R/ :

Following Sect. 5.3.2, we obtain the Green’s function of OH1 and the matrixMkl.0IW /,

G .x; yIW / D !�1.W /



u2.xIW /u1.yIW /; x > y;
u1.xIW /u2.yIW /; x < y;

Mkl .0IW / D !�1.W /Kkl .W /;

Kkl .W / D
�

u1.0IW /u2.0IW / u1.0IW /u0

2.0IW /

u0

1.0IW /u2.0IW / u0

1.0IW /u0

2.0IW /

�
:
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Then the matrix spectral function reads

� 0

kl .E/ D ��1 Im!�1.E C i0/Kkl .E C i0/:

For E � 0, � D �ipE=c, the functions Kkl .E/ are finite and !�1.E/ is
finite for E > 0. For E D 0, the function !�1.E/ is finite if ˇ2 ¤ �n
.�C N� ¤ nC 1=2, n 2 ZC/, so that � 0

kl
.E/ is finite. If �C N� D nC 1=2” n D g,

where

g D
r

2g1 C 2
q
g21 C g22 � 1=2;

we have !�1.W / D O
�
1=
p
W
�

as W ! 0, so that � 0

kl .E/ has an integrable

singularity. Thus, � 0

kl .E/ D ��1 Im!�1.E/Kkl .E/, and therefore all the points of
the semiaxis E � 0 belong to the continuous spectrum.

For E D �c2�2 < 0, � > 0, � D � , all the functions u1.xI �/, u2.xI �/, Kkl .E/, and
!.E/ are real and finite; � 0

kl .E/ differs from zero only at the points En;

En D �c2 .g � n/2 ; �n D g � n; n D 0; 1; : : : ; nmax;

nmax D


Œg�; g > Œg�;

Œg� � 1; g D Œg�;

that are solutions of the equation !.En/ D 0 ” ˇ2 D �n (at least one negative
energy level exists if 4g22 > 1=16 � g1).

Then we obtain

u2.xIEn/ D .�1/ne2� Im�u1.xIEn/; Im� D
s
1

2

�q
g21 C g22 � g1

�
;

Kkl .En/ D .�1/ne2� Im�en;k ˝ en;l ; en;k D
�
u1.0IEn/; u0

1.0IEn/
�
;

and

� 0

kl .E/ D
nmaxX

nD0

Qnen;k ˝ en;l ı.E � En/;

Qn D
r
�c�n� .2g C 1 � n/j� .ˇ1/j2e2� Im�

nŠ
:

Finally, the complete spectrum of OH1 is given by

spec OH1 D RC [ fEn; n D 0; 1; : : : ; nmaxg:



410 8 Schrödinger Operators with Exactly Solvable Potentials

The continuous part of the spectrum is twofold degenerate. The discrete spectrum is
simple. The inversion formulas have the form

 .x/ D
X

k;lD1;2

Z

RC

'k.E/�
0

kl .E/Vl .xIE/dE C
nmaxX

nD0

'nUn.x/; 8 2 L2 .R/ ;

'k.E/ D
Z

R

Vk.xIE/ .x/dx; 'n D
Z

R

Un.x/ .x/dx;

Z

R

j .x/j2dx D
X

k;lD1;2

Z

RC

'k.E/�
0

kl .E/'l .E/dE C
nmaxX

nD0

j'nj2;

Un.x/ D
X

kD1;2

Qnen;kVk.xIEn/ D Qnu1.xIEn/:



Chapter 9
Dirac Operator with Coulomb Field

9.1 Introduction

It is common knowledge that the complete sets of solutions of the Dirac equation,
when used in quantizing the spinor free field, allow an interpretation of the QT
of the spinor field in terms of particles and antiparticles; see, for example [139].
The space of quantum states of such a free field is decomposed into sectors with
a definite number of particles (the vacuum, one-particle sector, and so on). Each
sector is stable under time evolution. A description of the one-particle sector of the
free spinor field can be formulated as a relativistic QM in which the Dirac equations
play the role of the Schrödinger equation and their solutions are interpreted as wave
functions of particles and antiparticles.

In QED (and some other models), the concept of the external electromagnetic
field is widely and fruitfully used. It can be considered an approximation in which
a “very intensive”part of the electromagnetic field is treated classically and is
not subjected to any back reaction of the rest of the system. The Dirac equation
with such a field plays an important role in QED with an external field (external
background). Of special interest are the cases in which an external field allows an
exact solution of the Dirac equation. There are a few such exactly solvable cases
of physically interesting external electromagnetic fields; see, for example [13, 146].
They can be classified into groups such that the Dirac equations with fields of each
group have a similar interpretation.

The constant uniform magnetic field, the plane-wave field, and their parallel
combination form the first group; the fields of this group do not violate vacuum
stability (do not create particles from the vacuum). Exact solutions of the Dirac
equation with such fields form complete systems and can be used in the quantization
procedure, providing a particle interpretation for a quantum spinor field in the
corresponding external background. This makes possible the construction of an
approximation whereby the interaction with the external field is taken into account
exactly, while the interaction with the quantized electromagnetic field is treated
perturbatively. Such an approach to QED with external fields of the first group is

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 9,
© Springer Science+Business Media New York 2012
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412 9 Dirac Operator with Coulomb Field

known as the Furry picture; see, for example [62,139]. In the Furry picture, the state
space of the QT of the spinor field with the external fields is decomposed into sectors
with a definite number of particles; each sector is stable under the time evolution,
which is similar to the zero-external-field case. A description of the one-particle
sector also can be formulated as a consistent relativistic QM [65].

A uniform electric field and some other electromagnetic fields violate vacuum
stability. A literal application of the above approach to constructing the Furry picture
in QED with such fields fails. However, it has been demonstrated that existing exact
solutions of the Dirac equation with electric-type fields can be used for describing a
variety of quantum effects in such fields, in particular, the electron–positron pair
production from vacuum [119]. Moreover, these sets of solutions form a basis
for constructing a generalized Furry picture in QED with external fields violating
vacuum stability; see [60]. It should be noted that the one-particle sector in such
external fields is unstable under time evolution, and therefore, the corresponding
QM of a spinning particle cannot, in principle, be constructed.

The Dirac equation with the Coulomb field, and with some additional fields,
has always been of particular interest. The Coulomb field is even referred to as a
“microscopic external field”to underline its qualitative distinction from the above-
mentioned external fields, which are sometimes referred to as “macroscopic”ones.
Until recently, the commonly accepted view of this situation in theoretical analysis
was the following. The Dirac equation for an electron of charge �e in an external
Coulomb field created by a positive pointlike electric charge Ze of a nucleus of
atomic number1 Z � Zc D ˛�1 D 137 is solved exactly, has a complete set of
solutions, and allows the construction of a relativistic theory of atomic spectra that
is in agreement with experiment [28]. This field does not violate vacuum stability,
and therefore, the Furry picture can be constructed, and the relativistic QM of the
spinning particle in such a Coulomb field exists. As for the Dirac equation with
the Coulomb field with Z > Zc, it was considered inconsistent and physically
meaningless [8, 45, 133]. One of the standard arguments is that the formula for the
lower 1S1=2 energy level,

E1s D mc2
q
1 � .Z˛/2 ;

formally gives imaginary eigenvalues for the Dirac Hamiltonian with Z > Zc. The
question of consistency of the Dirac equation with the Coulomb field with Z > Zc

is of fundamental importance. The formulation of QED cannot be considered really
complete until an exhaustive answer to this question is given.

Although nuclei of electric charges of such magnitude cannot yet be syn-
thesized,2 the existing heavy nuclei can imitate the supercritical Coulomb fields
at collision. Nuclear forces can hold the colliding nuclei together for 10�19 s

1˛ D e2=„c is the fine structure constant.
2At present, the maximum Z D 118.
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or more. This time is enough to effectively reproduce the experimental situation
whereby the electron experiences the supercritical Coulomb field [82]. Several
groups of researchers have attacked the problem of the behavior of the electron
in the supercritical Coulomb field; see [82, 166]. The difficulty of the imaginary
spectrum in the case of Z > Zc was attributed to an inadmissible singularity of
the supercritical Coulomb field for a relativistic electron.3 It was believed that this
difficulty could be eliminated if a nucleus of some finite radius R were considered.
It was shown that in cutting off the Coulomb potential with Z < 173 at a radius
R � 1:2� 10�12 cm, the Dirac equation has physically meaningful solutions [122].
But even in the presence of the cutoff, another difficulty arises atZ � 173. Namely,
the lower bound state energy descends to the upper boundary E D �mc2 of the
lower continuum, and it is generally agreed that in such a situation, the problem
can no longer be considered a one-particle one because of the electron–positron pair
production, which in particular results in a screening of the Coulomb potential of the
nucleus. Probabilities of particle production in heavy-ion collisions were calculated
within the framework of this concept [82]. Unfortunately, experimental conditions
for verifying the corresponding predictions are unavailable at present.

In this chapter, we return to the problem of consistency of the Dirac equation
with the Coulomb field with no cutoff and with arbitrary nucleus charge values
(with arbitrary Z). Our point of view is that the above-mentioned difficulties with
the spectrum for Z > Zc do not arise if the Dirac Hamiltonian is correctly defined
as an s.a. operator. We present a rigorous treatment of all the aspects of this problem
including a complete spectral analysis of the model based on the theory of s.a.
extensions of symmetric operators and the Krein method of guiding functionals;
see [155]. We show that from a mathematical standpoint, the definition of the Dirac
Hamiltonian as an s.a. operator for arbitrary Z presents no problem. Moreover, the
transition from the noncritical charge region to the critical one does not lead to
qualitative changes in the mathematical description of the system. A specific feature
of the overcritical charges is a nonuniqueness of the s.a. Dirac Hamiltonian, but this
nonuniqueness is characteristic even for Z > Zs D .

p
3=2/˛�1 � 118:68. For

each Z � Zs, there exists a family of s.a. Dirac Hamiltonians parameterized by a
finite number of extra parameters (and specified by additional boundary conditions
at the origin). The existence of these parameters is a manifestation of a nontrivial
physics inside the nucleus. A real spectrum and a complete set of eigenstates can
be evaluated for each Hamiltonian, so that a relativistic quantum mechanics for an
electron in such a Coulomb field can be constructed.

3An equation for the radial components of wave functions has the form of the nonrelativistic
Schrödinger equation with an effective potential with the r�2 singularity at the origin, which is
associated with a “fall to the center”.
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9.2 Reduction to the Radial Problem

We consider the Dirac equation for a particle of charge q1 and mass m moving in
an external Coulomb field of a charge q2; for an electron in a hydrogen-like atom,
we have4 q1 D �e; q2 D Ze;Z 2 N. We choose the electromagnetic potentials
for such a field in the form A0 D q2r

�1; Ak D 0; k D 1; 2; 3. The Dirac equation
with this field, written in the form of the Schrödinger equation (in the Hamiltonian
form), is5

i
@	 .x/

@t
D LH	 .x/ ; x D �x0; r� ; r D �xk; k D 1; 2; 3� ; x0 D t;

where 	 .x/ D f ˛.x/, ˛ D 1; : : : ; 4g is a bispinor (Dirac spinor) and LH is the s.a.
Dirac differential operation,

LH D ˛ Lp Cmˇ � qr�1 D
�
m � qr�1 � Lp

� Lp �m � qr�1
�
; (9.1)

Lp D �ir ;r D �
@x; @y ; @z

�
; r D jrj, and q D �q1q2; for an electron in a

hydrogen-like atom, we have q D Z˛. For brevity, we call the coupling constant q
the charge. We restrict ourselves to the case q > 0.

In the case under consideration, we deal with the Hilbert space H D L2
�
R
3
�

of
square-integrable Dirac spinors 	.r/ with the scalar product

.	1; 	2/ D
Z

dr	C
1 .r/	2.r/; dr Ddx1dx2dx3 D r2dr d�.�; '/;

where d� D d�.�; '/ D sin � d� d' is the integration measure on the sphere,
0 � � � � , 0 � ' � 2� . The space H has the form

H D L2
�
R
3
� D

4X˚
˛D1

H˛; H˛ D L2.R3/:

We now take the rotational symmetry into account. The group of rotations in
R
3 naturally acts in the Hilbert spaces L2

�
R
3
�

and L2
�
R
3
�

by unitary operator
groups U and U : if S 2 Spin.3/, then the corresponding operator US is defined
by the relationship .US / .r/ D  

�
S�1r

�
,  2 L2 �R3�, and US is defined by

4e D 4:803 	 10�10 CGSE is the magnitude of the electron charge.
5We use bold letters for there-vectors and standard representation for �-matrices, [29], where ˛ D
antidiag .�; � /, ˇ D �0 D diag .I;�I / , † D diag .�; � / , and � D �

�1; �2; �3
�

are the Pauli
matrices. We use the notation �p D�kpk , � r D�kxk , and so on. We set „ D c D 1 in what
follows.
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the relationship .US	/ .r/ D �S	
�
S�1r

�
, 	 2 L2

�
R
3
�
; the matrices �S are a

unitary bispinor representation of the rotation group Spin.3/ with the generators
†=2Ddiag.�=2; �=2/, the spin angular momentum operators. In addition, we
introduce the operators

OJ D OLC†=2 D diag . O| ; O|/ ; O| D OLC �=2; OJ2;
OK D ˇ

h
1C

�
† OL

�i
D diag . O~; � O~/ ; O~ D 1C

�
� OL
�
; (9.2)

where the orbital angular momentum operators OL D Œr � Op� are generators of the
group U , the total angular momentum operators OJ are generators of the group U ,
and OJ2 is the Casimir operator of the group U . The operator OK is called the spin
operator; OJ2, OJ3, and OK are mutually commuting operators.

The Hilbert space H D L2
�
R
3
�

is represented as a direct orthogonal sum,

H D
X˚
j;�

Hj;� ; j D 1=2; 3=2; : : : ; � D ˙1; (9.3)

where
Hj;� D

X˚
M

Hj;M;�; M D �j;�j C 1; : : : ; j; (9.4)

of subspaces Hj;� or Hj;M;� , and any bispinor 	 2 H can be represented as

	.r/ D
X

j;M;�

	j;M;� .r/;

where 	j;M;� 2 Hj;M;� are functions of the form

	j;M;� .r/ D 1

r

�
˝j;M;�.�; '/f .r/

i˝j;M;��.�; '/g .r/

�
; (9.5)

˝j;M;� are spherical spinors, and f .r/ and g .r/ are radial functions (the factors
r�1 and i are introduced for convenience).

We use the following representation for the spherical spinors (see [8]):

˝jM� D
s

.j �M/Š

4�.j CM/Š
ei.M�1=2/'

 
ŒM � �j � .1C �/=2�PM�1=2

jC�=2 .u/
ei'PMC1=2

jC�=2 .u/

!

;

j D 1=2; 3=2; : : : ; M D �j;�j C 1; : : : ; j; � D ˙1; u D cos �; (9.6)

where the adjoint Legendre functions Pm
l .u/ are defined as in [81],

Pm
l .u/ D

1

2l lŠ
.�1/m.1 � u2/m=2d lCmu .u2 � 1/l ;

l 2 ZC; m D �l;�l C 1; : : : ; l:
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The spherical spinors are eigenvectors of the operators OJ2, OJz and O~,

O|2˝j;M;� .r/ D j.j C 1/˝j;M;� .r/ ; O|z˝j;M;� .r/ DM˝j;M;�;

O~˝j;M;� .r/ D ��.j C 1=2/˝j;M;� .r/:

These spinors are orthonormalized,

Z
˝C
j 0M 0�0.�; '/˝jM�.�; '/d� D ıjj 0ıMM 0ı��0 ;

and form a complete orthonormal basis in the space of spinors on the sphere.
The bispinors 	j;M;� .r/ are eigenvectors of the operators OJ2; OJ3, and OK ,

OJ2	j;M;� .r/ D j.j C 1/	j;M;� .r/ ; OJz	j;M;� .r/ DM	j;M;�;

OK	j;M;� .r/ D ��.j C 1=2/	j;M;� .r/:

The subspaces Hj;� reduce6 the operators OJ2; OJ; and OK,

OJ2 D
X˚
j;�

OJ2j;�; OJ D
X˚
j;�

OJj;� ;

OK D
X˚
j;�

OKj;�;

and the subspaces Hj;M;� reduce the operators OJ2j;�;
� OJz

�

j;�
, and OKj;� ,

OJ2j;� D
X˚
M

OJ2j;M;�;
� OJz

�

j;�
D
X˚
M

� OJz

�

j;M;�
;

OKj;� D
X˚
M

OKj;M;�:

In the language of physics, decompositions (9.3) and (9.4) correspond to
an expansion of bispinors 	 .r/ in terms of eigenfunctions of the commuting
operators OJ2, OJz, and OK, which permits separation of variables in equations for the
eigenfunctions.

We note that the reductions OJj;� of the operators OJ to the subspaces Hj;� are
bounded operators.

6This means that the operators OJ2; OJ3, and OK commute with the projectors to the subspaces Hj;� ;
see [9, 116].
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Let L2 .RC/ be the Hilbert space of doublets F.r/,

F.r/ D
�
f .r/

g.r/

�
D .f .r/�g .r// ;

with the scalar product

.F1; F2/ D
Z

RC

drFC
1 .r/ F2 .r/ D

Z

RC

dr
h
f1 .r/f2 .r/C g1 .r/g2 .r/

i
;

so that L2 .RC/ D L2.RC/˚ L2.RC/.
Then (9.5) and the relation

�
�	j;M;�

�
�2 D

Z

RC

dr
�jf .r/j2 C jg.r/j2�

show that Hj;M;� is isometric to L
2 .RC/:

	j;M;� D Sj;M;�F; F D S�1
j;M;�	j;M;� :

The explicit form of this isometry is

	j;M;�.r/ D r�1…j;M;�.�; '/F.r/; F.r/ D r
Z

d�.�; '/…C
j;M;�.�; '/	j;M;�.r/:

(9.7)
Here …j;M;� and …C

j;M;� are respectively .4 � 2/ and .2 � 4/ matrices,

…j;M;� D
�
˝j;M;� 0

0 i˝j;M;��

�
;…C

j;M;� D
 
˝C
j;M;� 0T

0T �i˝C
j;M;��

!

;

Z
d�.�; '/

h
…C
j;M;�.�; '/…j;M;�.�; '/

i

ab
D ıab; a; b D 1; 2;

where 0 D .0�0/ is a two-column and 0T D .0; 0/ is a two-line.
Now we define a rotationally invariant initial symmetric operator OH associated

with the s.a. differential operation LH . Because coefficient functions of LH are smooth
away from the origin, we choose the space of smooth bispinors with compact
support7 for the domain DH of OH . To avoid trouble with the 1=r singularity of
the potential at the origin, we additionally require that all bispinors in DH vanish
near the origin.8 The operator OH is thus defined by

OH D
(
DH D

n
	.r/ W  ˛.r/ 2 D.R3/ n f0g

o
;

OH	.r/ D LH	.r/;

7We thus avoid difficulties associated with the behavior of wave functions at infinity.
8Strictly speaking, we thus leave room for ı-like terms in the potential.
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where D.R3/n f0g is the space of smooth functions in R
3 with compact support and

vanishing in some neighborhood of the origin. The domain DH is dense in H, and
the symmetry of OH is easily verified. The operator OH evidently commutes with the
operators OJ2, OJ, and OK .

The rotational invariance of OH is equivalent to the following statements.

(a) The subspaces Hj;M;� reduce this operator: Let 	.r/ D P
j;M;� 	j;M;� .r/,

	 2 DH , and let Pj;� and Pj;M;� be orthoprojectors on Hj;� and Hj;M;�
respectively. Then 	j;M;� D Pj;M;�	 2 DH and OH	 D P

j;M;�
OHj;M;�	j;M;� ,

where OHj;M;� D Pj;M;� OHPj;M;� D OHPj;M;� , are parts of OH acting in subspaces
Hj;M;� .
Each OHj;M;� is a symmetric operator in the subspace Hj;M;� . Each symmetric
operator OHj;M;� in the subspace Hj;M;� evidently induces a symmetric operator
Ohj;M;� in the Hilbert space L2 .RC/,

Ohj;M;�F D S�1
j;M;�

OHj;M;�	j;M;�;

so that Ohj;M;� D S�1
j;M;�

OHj;M;�Sj;M;� is given by

Ohj;M;� D
(
Dhj;� D D .RC/ D D.RC/˚D.RC/;
Ohj;M;�F .r/ D Lhj;�F .r/; (9.8)

and the s.a. differential operation Lhj;� reads

Lhj;� D �i�2dr C ~r�1�1 � qr�1 Cm�3; ~ D �.j C 1=2/: (9.9)

(b) The differential operation Lhj;� , and consequently, taking (9.8) into account, the

operator Ohj;M;� with fixed j and �, are independent of M , that is, Ohj;M;� D
Ohj;� . This fact is equivalent to the commutativity of the operator OHj;� D
Pj;� OHPj;� D OHPj;� with the operators . OJx;y/j;� .

In what follows, while on the subject of the rotational invariance of any (closed)
operator Of , we suppose that the following properties hold:

(1) The reducibility of Of by the subspaces Hj;M;� and therefore by Hj;� , so that the

operator Of can be represented in the form

Of D
X˚
j;�

Ofj;� D
X˚
j;M;�

Ofj;M;�;

Ofj;� D Pj;� Of Pj;� D Of Pj;� ; Ofj;M;� D Pj;M;� Of Pj;M;� D Of Pj;M;� :
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(2) The commutativity of the operators Ofj;� with the bounded operators OJ 1;2j;� for any
j and �.

Let . Ohj;�/e be an s.a. extension of Ohj;� in L
2.RC/, an s.a. radial Hamiltonian. It

evidently induces s.a. extensions . OHj;M;�/e of the symmetric operators OHj;M;� in the
subspaces Hj;M;� ,

. OHj;M;�/e D Sj;M;�. Ohj;�/eS�1
j;M;�;

and the operator . OHj;�/e D
X˚

M
. OHj;M;�/e commutes with OJ 1;2j;� . Then the direct

orthogonal sum of the operators
� OHj;�

�
e

is an s.a. operator OHe,

OHeD
X˚
j;�

. OHj;�/e; (9.10)

in the whole Hilbert space H (see [125]). Thus, OHe is a rotationally invariant
extension of the rotationally invariant initial symmetric operator OH (an s.a. Dirac
Hamiltonian).

Conversely, any rotationally invariant s.a. extension of the initial operator OH
has structure (9.10), and the operator . Ohj;�/e D S�1

j;M;�.
OHj;M;�/eSj;M;� in L

2.RC/
is independent ofM and is an s.a. extension of the symmetric operator9 Ohj;� .

The problem of constructing a rotationally invariant s.a. Dirac Hamiltonian OHe

is thus reduced to the problem of constructing s.a. radial Hamiltonians . Ohj;�/e.
In what follows, we consider fixed j and � and therefore omit these indices for

brevity. In fact, we consider the radial differential operations Lhj;� as a two-parameter
differential operation Lh with the parameters q and ~ (the parameters j and � enter
through the one parameter ~, the parameterm is considered fixed) and similarly treat
the associated radial operators Oh and Ohe defined in the same Hilbert space L

2 .RC/.

9.3 Solutions of Radial Equations

Below, we consider the differential equation LhF D WF with an arbitrary complex
W ; real W are denoted by E and have the conventional sense of energy. This
equation for the doublet F D .f�g/ is equivalent to a set of radial equations
for f .r/ and g.r/,

9Roughly speaking, this means that s.a. extensions of the parts OHj;M;� with fixed j and � and
different M 0s must be constructed “uniformly”.
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f 0 C ~r�1f � �W CmC qr�1�g D 0;
g0 � ~r�1g C �W �mC qr�1� f D 0: (9.11)

We note that the Wronskian of the doublets F1 D .f1�g1/ and F2 D .f2�g2/

reads Wr .F1; F2/ D f1g2 � g1f2:
We present the general solution of the radial equations following the standard

procedure; see, for example [8, 133]. We first represent f .r/ and g.r/ as

f .r/ D z� e�z=2 ŒQ.z/C P .z/� ; g.r/ D i�z� e�z=2 ŒQ.z/� P.z/� ;

where

z D �2iKr; � D
r
W �m
W Cm; W ˙m D �˙ei'˙; 0 � '˙ < �;

� D
p
��=�Ce

i
2 .'��'C/; K D

p
W 2 �m2 D p���Ce

i
2 .'�C'C/;

and � obeys the condition � 2 D ~2 � q2. Radial equations (9.11) then become
equations for the functions P andQ,

zQ00 C .ˇ � z/Q0 � ˛Q D 0; ˇ D 1C 2�; ˛ D ˛C;

P D �b�1C .zdz C ˛/Q; b˙ D ~ ˙ qm.iK/�1; ˛˙ D � ˙ qW.iK/�1: (9.12)

The first equation in (9.12) is the confluent hypergeometric equation for Q; see
[1, 20, 81].

Let10 � ¤ �n=2, n 2 N. Then the general solution forQ can be represented as

Q D A˚.˛; ˇI z/C B	.˛; ˇI z/ ; (9.13)

where A and B are arbitrary constants; ˚.˛; ˇI z/ and 	.˛; ˇI z/ are the known
confluent hypergeometric functions (the function ˚.˛; ˇI z/ is not defined for
ˇ 2 Z�).

It follows from (9.12) and (9.13) that

P D �Aa˚.˛ C 1; ˇI z/C Bb�	 .˛ C 1IˇI z/ ; a D ˛Cb�1C :

Then the general solution of radial equations (9.11) for any complexW and real
m, ~, and q is finally given by

10The parameter � is defined up to a sign. The specification of � is a matter of convenience. In
particular, for specific values of charge, we also use a specification of � where � D �n=2; this
case is considered separately below.
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f .r/ D z� e�z=2 fA Œ˚.˛; ˇI z/ � a˚.˛ C 1; ˇI z/�
CB Œ	.˛; ˇI z/C b�	.˛ C 1IˇI z/�g ;

g.r/ D i�z� e�z=2 fAŒ˚.˛; ˇI z/C a˚.˛ C 1; ˇI z/�
CB Œ	.˛; ˇI z/ � b�	.˛ C 1IˇI z/�g :

Taking the relationship

˚.˛ C 1; ˇI �2iKr/ D e�2iKr˚.ˇ � ˛ � 1; ˇI 2iKr/

into account (see [1, 20, 81]), it is convenient to represent the general solution of
radial equations (9.11) in the form

F D AX.r; �;W /C Bz� e�z=2 Œ	.˛; ˇI z/%C � b�	.˛ C 1; ˇI z/%�� ; (9.14)

where %˙ D .˙1�i�/ and doublets X are defined as

X D .2e�i�=2K=m/��

2.1� aC/
z� e�z=2Œ˚.˛; ˇI z/ � a˚.˛ C 1; ˇI z/�

D .mr/
�

2
Œ˚C.r; �;W /C ˚�.r; �;W /�� dC;

˚C D eiKr˚ .˛; 1C 2� I �2iKr/C e�iKr˚ .˛�; 1C 2� I 2iKr/;
˚� D .iK/�1

�
eiKr˚ .˛; 1C 2� I �2iKr/� e�iKr˚ .˛�; 1C 2� I 2iKr/

�
;

d˙ D
�
1� .~ ˙ � / q�1�I (9.15)

the doublet d� will be used below, and � D antidiag .m �W;mCW /.
We now present some particular solutions of radial equations (9.11) that are used

in the following.
One of the solutions given by (9.14) with A D 1,B D 0, and a specific choice of

� reads

F1.r IW / D X.r; �C;W /; �C D


�; q � j~j;
i�; q > j~j;

� D
p
~2 � q2 � 0; q � j~jI � D

p
q2 � ~2 > 0; q > j~j: (9.16)

The asymptotic behavior of the doublet F1.r IW / at the origin is given by

F1.r IW / D .mr/�CdC CO.r�CC1/; r ! 0:
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In the case �C ¤ n=2, n 2 N, we also use another solution,

F2.r IW / D X.r;��C;W /; (9.17)

with the asymptotic behavior

F2.r IW / D .mr/��Cd� CO.r��CC1/; r ! 0: (9.18)

It is useful to introduce the function qc .j /,

qc .j / D j~j D j C 1=2: (9.19)

For q D qc .j /, we have �C D 0. For q ¤ qc .j /, that is, for �C ¤ 0, the solutions
F1 and F2 are linearly independent, Wr .F1; F2/ D �2�Cq�1.

It follows from the standard representation for ˚ that for real � , .� ¤ �n=2/,
the functions ˚C and ˚� in (9.15) are real entire in W . It then follows from (9.16)
and (9.17) that the respective doublets F1.r IW / and F2.r IW / are also real entire
inW for real �C D � . If �C is pure imaginary,�C D i� , then F1 and F2 are entire
in W and are complex conjugate for real W D E , F1.r IE/ D F2.r IE/.

Another useful solution F3.r IW / nontrivial for �C ¤ n=2, n 2 N, is given by
(9.14) with A D 0 and a special choice for B:

F3.r IW / D B.W /z�CeiKr Œ	.˛; ˇI z/%C � b�	 .˛ C 1IˇI z/ %�� ;

B.W / D 1

2
� .�˛�/

�
1C .mCW / .~ C �C/

iqK

� �
2e�i�=2K=m

���C

: (9.20)

Like any solution, F3 is a linear combination of F1 and F2,

F3 D � .�2�C/F1 C q .2�C/�1 !.W /F2; !.W / D �Wr .F1; F3/ ; (9.21)

where

! D � .1C 2�C/� .�˛�/ŒiqK C .~ C �/.W Cm/�.2e�i�=2K=m/�2�C

q� .˛/ŒiqK C .~ � �/.W Cm/� :

(9.22)

We note that if ImW > 0 and r ! 1, the doublet F1 increases exponentially,
while F3 decreases exponentially (with polynomial accuracy).

Consider the special case of q D qc .j / (�C D 0), where the doublets F1 and F2
coincide.

Differentiating radial equations (9.11) with respect to � at � D 0, we can easily
verify that the doublet

@�F1.r IW /
ˇ
ˇ
�D0 D lim

�!0
ŒF1.r IW / � F2.r IW /� .2�/�1
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is a solution of these equations with � D 0. For two linearly independent solutions
of radial equations (9.11) with � D 0, we choose

F
.0/
1 .r IW / D F1.r IW /j�D0;

F
.0/
1 .r IW / D dC CO.r/; r ! 0;

F
.0/
2 .r IW / D @�F1.r IW /

ˇ
ˇ
�D0 � �q�1

c .j / F
.0/
1 .r IW /;

F
.0/
2 .r IW / D d0.r/CO.r ln r/; r ! 0I
dCj�D0 D .1��/ ;

d0.r/ D
�
ln.mr/ � �q�1

c .j /�� ln.mr/
�
: (9.23)

Both solutions F .0/
1 and F .0/

2 are real entire in W and independent, Wr.F .0/
1 ; F

.0/
2 /

D q�1
c .j /.

As an analogue of F3 in the case of � D 0, we take the doublet F .0/
3 ,

F
.0/
3 D � lim

�!0
F3 D � .1 � a0/�1 � .˛0/eiKr

� �	.˛0; 1I �2iKr/C b0	 .˛0 C 1; 1I �2iKr/�3
�
%C;

˛0 D �iqc .j /WK
�1; a0 D W .mC i�K/�1 ;

b0 D qc .j /K
�1 .�K C im/ : (9.24)

Its representation in terms of F .0/
1 and F .0/

2 is given by

F
.0/
3 DF .0/

2 C fF .0/
1 ; Wr

�
F
.0/
2 ; F

.0/
3

�
D �!.0/; !.0/ D !.0/.W /;

f Df .W / D qc .j / !
.0/.W / D ln

�
2e�i�=2K=m

�C  ��iqc .j /WK
�1�

C .�.W �m/C iK/ .2qc .j /W /
�1 � 2 .1/;

where  .x/ D � 0.x/� �1.x/.
We note that for ImW > 0, the doublet F .0/

3 is square-integrable on the semiaxis

RC, that is, F .0/
3 2 L

2.RC/.
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9.4 Self-adjoint Radial Hamiltonians

9.4.1 Generalities

Here we are going to construct s.a. radial Hamiltonians Ohe in the Hilbert space
L
2.RC/ as s.a. extensions of the initial symmetric radial operators Oh (9.8) associated

with the radial differential operations Lh (9.9) and analyze the corresponding spectral
problems. We note that the result crucially depends on the value of the charge
q. Therefore, our exposition is naturally divided into subsections related to the
corresponding regions of the charge; there are four of them.

In what follows, all the operators associated to the differential operation Lh act on
their domains as Lh, so that we will indicate only these domains.

We begin with the adjoint OhC of the initial symmetric operator Oh. Its domainDhC

is the natural domain for Lh,

DhC D D�
Lh .RC/ D

n
F� W F� a.c. in RC; F�; LhF� 2 L

2.RC/
o
:

In the case under consideration, the quadratic asymmetry form �hC .F�/ is
expressed in terms of the local quadratic form ŒF�; F�� .r/ as follows:

�hC .F�/ D
�
F�; OhCF�

�
�
� OhCF�; F�

�
D ŒF; F � .r/j10 ;

ŒF�; F�� .r/ D g.r/f .r/ � f .r/g.r/; F� D .f�g/: (9.25)

One can prove that

lim
r!1F� .r/ D 0; 8F� 2 D�

Lh .RC/ : (9.26)

To this end, we first note that F� 2 D�
Lh .RC/ implies that G D LhF� is square-

integrable together with F�. It then follows that

F 0�.r/ D
��~r�1�3 C iqr�1�2 Cm�1�F�.r/C i�2G.r/

is square-integrable at infinity.
It now remains for us to refer to the assertion that if an a.c. F.r/ is square-

integrable at infinity together with its derivative F 0.r/, then F.r/
r!1�! 0; this

assertion is an evident generalization of a similar assertion for scalar functions; see
Lemma 2.13. Therefore, the boundary form ŒF�; F�� .1/ is identically zero and the
asymmetry form �hC .F�/ is determined by the boundary form ŒF�; F�� .0/ at the
origin.

A result of constructing s.a. radial Hamiltonians Oh essentially depends on the
values of the parameters Z and j . There are two regions in the first quadrant j;Z,
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we call them nonsingular and singular ones, where the problem of s.a. extensions
has principally different solutions. These regions are separated by the singular curve
Z D Zs .j /, where

Zs .j / D
p
j .j C 1/˛�1

such that the nonsingular and singular regions are defined by the respective
inequalities Z � Zs .j / and Z > Zs .j /. The value Zs .j / D 118:68; 265:37; : : :

can be called the singular Z-value for a given j . Below, we consider s.a. radial
Hamiltonians Oh and their spectra in the nonsingular and singular regions separately.

For the evaluation of the asymptotic behavior of F� 2 D�
Lh .RC/ at the origin, the

doublets F� can be considered square-integrable solutions of the inhomogeneous
differential equation

LhF� .r/ D G .r/ ; G 2 L
2.RC/: (9.27)

It is convenient to represent (9.27) as follows:

Lh�F� .r/ D G� .r/ 2 L
2.RC/;

Lh� D �i�2dr C ~r�1�1 � qr�1; G� .r/ D G .r/ �m�3F� .r/ :

Let u1 and u2 be linearly independent solutions of the equation Lh�u D 0,

u1.r/ D .mr/�CdC ; q > 0;

u2.r/ D


.mr/��Cd� ; q > 0; q ¤ qc .j / ;

d0.r/; q D qc .j / :
(9.28)

Any solution F� .r/ of (9.27) can be represented as

F�.r/ D c1u1.r/C c2u2.r/C I1.r/C I2.r/; (9.29)

where c1 and c2 are some constants and

I1.r/ D
8
<

:

.q=2�C/
R r0
r
Œu1.r/˝ u2.y/�G�.y/dy; 0 < q � qs .j /;

� .q=2�C/
R r
0
Œu1.r/˝ u2.y/�G�.y/dy; q > qs .j / ; q ¤ qc .j /;

qc .j /
R r
0
Œu1.r/˝ u2.y/�G�.y/dy; q D qc .j /;

I2.r/ D


.q=2�C/

R r
0
Œu2.r/˝ u1.y/�G�.y/dy; q > 0; q ¤ qc .j / ;

�qc .j /
R r
0
Œu2.r/˝ u1.y/�G�.y/dy; q D qc .j / :

Here r0 > 0 is a constant, and ˝ is the symbol of the tensor product, so that
Œu1.r/˝ u2.y/� is a 2� 2 matrix. It turns out that the boundary form ŒF�; F�� .0/ is
determined by the first two terms on the right-hand side in representation (9.29) and
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essentially depends on the parameter � . Using the Cauchy–Schwarz inequality for
estimating the integrals I1.r/ and I2.r/, we obtain (with logarithmic accuracy)

I1.r/ D O
�
r1=2

�
; I2.r/ D O

�
r1=2

�
; r ! 0: (9.30)

Using the above estimates, we will fix the constants c1;2 for different regions of the
charge in what follows.

Finding the spectrum of operators Ohe, we follow the scheme that was described
in Sect. 5.3.5 for a 2 � 2 matrix of differential operators.

In the case under consideration, any solutionF of (5.34) allows the representation

F.r/ D c1F1.r IW /C c2F3.r IW /C !�1.W /

�
�Z 1

r

ŒF1.r IW /˝ F3.r 0IW /�	.r 0/dr 0

C
Z r

0

F3.r IW /˝ F1.r 0IW /	.r 0/dr 0
�
; (9.31)

where F1, F3, and ! are given by (9.16), (9.20), (9.21), and (9.22). This represen-
tation is well defined because F3.r IW / with ImW > 0 decreases exponentially
as r ! 1. The condition F 2 L

2.RC/, which is sufficient for F to belong to
Dhe (because then automatically LhF D WF C � 2 L

2.RC/), implies c1 D 0;
otherwise, F is not square-integrable at infinity, since F1.r IW / with ImW > 0

grows exponentially as r ! 1. The constant c2 is determined from the condition
F 2 Dhe .

9.4.2 Nonsingular Region

In this nonsingular charge region, we have

0 < q � qs .j / H) �C D � � 1=2:

The representation (9.29) allows the evaluation of the asymptotic behavior of
F 2 D�

Lh .RC/ at the origin. According to (9.28), the doublet u1.r/ � r� is square-
integrable at the origin, whereas the doublet u2.r/ � r�� is not.

It follows that for F� .r/ to belong to the space L
2.RC/, it is necessary that

the coefficient c2 in front of u2 .r/ in (9.29) be zero; otherwise, F� is not square-
integrable at the origin (if c2 ¤ 0) because F3.r IW / is not square-integrable at the
origin, which yields

F�.r/ D c1u1.r/C I1.r/C I2.r/ D O
�
r1=2

�! 0; r ! 0;
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whence it follows that for any F� 2 D�
Lh .RC/, we have

ŒF�; F�� .0/ D 0 H) �hC .F�/ D 0I

see (9.25) and the related discussion. This means that in the first noncritical charge
region, the deficiency indices of the operator Oh are zero and the operator Oh1 D OhC
is a unique s.a. extension of Oh with domainDh1 D D�

Lh .RC/.
We note that this result actually justifies the standard naı̈ve treatment of the

“Dirac Hamiltonian” with q � p3=2 .Z � Zsc D
p
3=2˛ � 119/ in the physics

literature when the natural domain for Lh is implicitly assumed.11

We thus obtain that the solution F 2 Dh1 of (5.34) is given by (9.31) with
c1 D c2 D 0. Then, following Sect. 5.3.5, we obtain the Green’s function of the
operator Oh1,

G
�
r; r 0IW � D !�1.W /



F3.r IW /˝ F1 .r 0IW / ; r > r 0;
F1.r IW /˝ F3 .r 0IW / ; r < r 0:

For the doublet U defining the guiding functional ˚.F IW / (5.33), we choose
F1. Such a guiding functional is simple, that is, satisfies the properties (i)–(iii) of
Sect. 5.3.

Property (i) is evident, property (iii) is easily verified by integrating by parts, and
it remains to verify property (ii): the equation . Oh1 �E0/	.r/ D F0.r/, where F0 is
in D and satisfies the condition ˚.F0IE0/ D 0, has a solution belonging to D.

As such a solution, we choose a doublet

	.r/ D
Z 1

r

ŒF1.r IE0/˝ F.y/� F0.y/dy C
Z r

0

ŒF .r/˝ F1.yIE0/�F0.y/dy;
(9.32)

where F.r/ is any solution of the equation . Lh � E0/F.r/ D 0 with the property
Wr.F; F1/ D 1. It is easy to prove that the function (9.32) belongs to D.

In the region l � 1 < 2� < l C 1, l 2 N, we represent F3 in the form

!�1.W /F3 DAl.W /F1 C q .2�/�1 Ul ;
Ul DF2 C al .W /� .�2�/F1;

Al .W / D� .�2�/
�
!�1.W / � !�1.W /j�Dl=2

�
;

al .W / D 2�
�
q!.W /j�Dl=2

��1
: (9.33)

11The uniqueness of the Hamiltonian also implies that the notion of ı potential for a relativistic
Dirac particle cannot be introduced, which possibly manifests the nonrenormalizability of the four-
fermion interaction.
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The doubletUl has a finite limit as � ! l=2. A direct calculation (with the use of the
equality � .wC1/ D w� .w/) shows that al .W / is a polynomial inW with real coef-
ficients, and becauseF1 and F2 are real entire inW , the doubletUl is also real entire.

Having the Green’s function in hand, and using (9.33), we obtain

G.c � 0; c C 0IE C i0/ D !�1.W /F1.cIW /˝ F3.cIW /

D Al.W /F1.cIW /˝ F1.cIW /C .q=2�/F1.cIW /

˝U.l/.cIW /: (9.34)

Due to the fact that F1.cIE/ and Ul.cIE/ are real, it follows from (9.34) that
� 0.E/ D ��1 ImAl.E C i0/. Since the function Al.E C i"/ is continuous with
respect to � at the point � D l=2, we can calculate � 0.E/ for � ¤ l=2 and then
obtain it for � D l=2:

� 0.E/j�Dl=2 D lim
�!l=2

h
� 0.E/j�¤l=2

i
:

The expression � 0.E/ for � ¤ l=2 becomes rather simple:

� 0.E/ D ��1� .�2�/ Im!�1.E C i0/:

At the points where the function !.E C i0/ is different from zero, we have
� 0.E/ D ��1 Im!�1.E/. For jEj � m and

� D
r
E �m
E Cm; K D �k D e.1��/i�=2k; k D

p
E2 �m2 � 0; � D E=jEj;

a direct verification shows that !.E/ is continuous, !.E/ ¤ 0, and Im!.E/ ¤ 0;
the spectral function �.E/ is a.c. and

� 0.E/ D ��1� .�2�/ Im!�1.E/;

!.E/ D � .1C 2�/e�i��� .�� C qjEj=ik/Œ.~ C �/�k C iq.E �m/�
q� .� C qjEj=ik/Œ.~ � �/�k C iq.E �m/�.2k=m/2�

(due to the properties of !.E/ described above, the limit of � 0.E/ as 2� ! n 2 N

exists). Thus, for jEj � m, the spectrum is continuous (and simple).
For jEj < m and

� D i
r
m � E
mC E ; K D i� D ei�=2�; � D

p
m2 � E2 > 0;

we have

!.E/ D � .1C 2�/� ��� � qE��1� Œq.m � E/� .~ C �/��
q� .� � qE=�/Œq.m �E/� .~ � �/��.2�=m/2� :
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We stress that !.E/ is real, and Im!�1.EC i0/ can differ from zero only at the
points where !.E/ D 0. Since � .x/ does not vanish for real x, the function !.E/
can vanish only at the points where E satisfies one of the following two conditions:

Condition (a):
q.m � E/� .~ C �/� D 0:

Condition (b):
� � qE��1 D �n 2 ZC:

In case (a), solutions for E do not exist if � D �1. For � D 1, we have E D
��m~�1. At this point, � C qE��1 D 0, so that

�
��� � qE��1� Œq.m �E/� .~ C �/�� ¤ 0; !.E/ ¤ 0:

In case (b), which defines the points where �
�
� � qE��1� D 1, there exist

solutions
I

En,

I

En D m.nC �/
�
q2 C .nC �/2��1=2 ;

�n D qm
�
q2 C .nC �/2��1=2 ; n 2 ZC:

But for � D 1 at the point E D I

E0, we also have q.m � I

E0/ � .~ � �/�0 D 0, and
consequently,

ˇ
ˇ
ˇ̌�
�
� � q I

E0�
�1
0

��
q

�
m � I

E0

�
� .~ � �/�0

�ˇˇ
ˇ̌ <1:

We thus obtain that !.E/ vanishes at the discrete points
I

En,

I

En D m.nC �/
�
q2 C .nC �/2��1=2 ;

n 2 N� ; N� D


N; � D 1;
ZC; � D �1; (9.35)

which form the well-known discrete spectrum of bound states of the Dirac electron
in the Coulomb field with Z < Zc.

We note that the discrete spectrum is accumulated at the point E D m, and its
asymptotic form as n!1 reads

Enonrel
n � m � En D mq2

�
2n2

��1
; (9.36)

which is the well-known nonrelativistic formula for bound-state energies of an
electron in a Coulomb field.
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In a neighborhood of the points
I

En, we have

� .�2�/!�1.E C i0/ D �Q2
n

�
E � I

En C i0
��1
CO.1/;

Q2
n D � .�2�/

�
!0.

I

En/

��1
;

Qn D

vu
u
u
u
ut

� .2� C 1C n/�3n.2�n=m/2�
�
q

�
m � I

En

�
� .~ � �/�n

�

m2nŠ� 2.2� C 1/
�
q

�
m � I

En

�
� .~ C �/�n

� :

It is easy to check that ImO.1/ D 0 and obviously that Q2
n is positive, which is

in agreement with predictions of the general theory.
It follows that for jEj < m, the spectral function �.E/ is a jump function with

jumpsQ2
n located at the points E D I

En > 0, and

� 0.E/ D
X

n2N�

Q2
nı

�
E � I

En

�
; jEj < m:

Thus, the simple spectrum of Oh1 is given by

spec Oh1 D fjEj � mg [



I

En; n 2 N�

�
:

The generalized eigenvectorsUE.r/, jEj � m, and eigenvectorsUn.r/ of Oh1,

UE.r/ D
I

U E.r/ D
p
� 0.E/F1.r IE/; jEj � mI

Un.r/ D
I

U n.r/ D QnF1

�
r I IEn

�
; n 2 N� ; (9.37)

form a complete orthonormalized system in the space L
2.RC/.

9.4.3 Singular Region

In the singular regions, Z > Zs .j /, the deficiency indices of the operators Oh are
.1; 1/, and therefore, there exists a family f Oh�g of s.a. extensions of Oh parameterized
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by a parameter � 2 Œ � �=2; �=2�, ��=2 � �=2. Technically, it is convenient
to divide the singular region into three subregions, which we call the subcritical,
critical, and overcritical regions. The subregions are distinguished by a character
of asymptotic boundary conditions at the origin specifying the domains Dh� of
the operators Oh� and providing their self-adjointness. The boundary conditions are
similar in each subregion, which provides similar solutions of the corresponding
spectral problems. In what follows, we describe these subregions, the domains Dh�

in these subregions, and details of discrete spectra.

9.4.4 Subcritical Region

In this subcritical charge region, we have

qs .j / < q < qc .j / H) 0 < �C D � < 1=2:

Here we evaluate the asymptotic behavior of doublets F� 2 D�
Lh .RC/ at the

origin with the use of the representation (9.29). In the case under consideration,
both u1.r/ � r� and u2.r/ � r�� are square-integrable at the origin and estimates
(9.30) hold, so that for any F� 2 D�

Lh .RC/, we have

F�.r/ D c1.mr/�dC C c2.mr/��d� CO
�
r1=2

�
; r ! 0;

which in turn yields

�hC.F�/ D 2�q�1 .c2 c1 � c1 c2/; (9.38)

with account taken of (9.26) and (9.25). The expression (9.38) for the asymmetry
form �hC.F�/ implies that the deficiency indices of Oh are m˙ D 1, and there-
fore there exists a family of s.a. extensions Oh2;� of Oh parameterized by12 � 2
S .��=2; �=2/, with domainsDh2;� , specified by s.a. boundary conditions

F.r/ D c Œ.mr/�dC cos � C .mr/��d� sin ��CO �r1=2� ; r ! 0 (9.39)

(c is an arbitrary complex number) and having the form

Dh� D
n
F.r/ W F.r/ 2 D�

Lh .RC/ ; F obey .9.39/
o
:

12It should be borne in mind that the extension parameters depend on both j and �. The same
remark holds for all the subsequent regions.
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The spectral analysis in this charge region is quite similar to that in the
first noncritical region. We therefore only point out necessary modifications and
formulate final results.

For the doublet U defining guiding functional ˚.F;W / (5.33), we choose the
solution U� D F1 cos � C F2 sin �; where F1 and F2 are given by formulas (9.16)–
(9.18). The solution U� is real entire in W and satisfies the asymptotic condition
(9.39). The guiding functional with the chosen U� is simple.

The Green’s function of the s.a. operator Oh2;� has the form

G
�
r; r 0IW � D !�1

1 .W /

(
F3.r IW /˝ U� .r 0IW / ; r > r 0;
U�.r IW /˝ F3 .r 0IW / ; r < r 0;

!1.W / D �Wr.F1; F3/ D !.W / cos � C q�1� .1 � 2�/ sin �: (9.40)

Using the relations

F3 D q .2�/�1
� Q!1U� C !1 QU�

�
;

QU� D QU�.r IW / D �F1.r IW / sin � C F2.r IW / cos �;

Q!1 D Q!1.W / D !.W / sin � � q�1� .1 � 2�/ cos �;

and (9.40), we obtain

G.c � 0; c C 0IE C i0/ D !�1
2 .W /U�.cIW /˝ U�.cIW /

Cq .2�/�1 QU�.cIW /˝ U�.cIW /;

!2.W / D 2�!1.W /Œq Q!1.W /��1:

Since both U�.cIE/ and QU�.cIE/ are real, the derivative � 0.E/ of the spectral
function is given by � 0.E/ D ��1 Im!�1

2 .E C i0/.
At the points where the function !2.E/ is different from zero, we have !�1

2 .EC
i0/ D !�1

2 .E/.
For E � m and E < �m, the function !2.E/ is continuous, !2.E/ ¤ 0, and

� 0.E/ D ��1 Im!�1
2 .E/ ¤ 0. The spectral function �.E/ is therefore a.c. Thus,

the spectrum is continuous and simple (the continuous spectrum includes the point
E D �m as well). However, in the case E D �m, we have

� 0.�m/ˇˇ
�D��m

D1; tan ��m D �.2q/�2�� �1.1 � 2�/� .1C 2�/:
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The range � � ��m, E � �m requires more detailed consideration. Here we obtain

� 0.E/ D ��1 Im Q!�1
2 .E C i0/CO.1/;

Q!2.W / D 2�q�1

� .tan ��m � tan �/ cos2 � � 	�2� cos2 � CO ��2
�
;

� D W Cm;W ! �m;

	 D q.2q/�

2�

s
qm� .1 � 2�/

.q2c � �qc=2� 2�2=3/� .2C 2�/ :

One can see that for � ¤ ��m, the function � 0.E/ is finite as E ! �m. However,
at � D ��m and for small E Cm, we have

� 0.E/ D �	
2 cos�2 ��m

�
Im .E CmC i0/�1 CO.1/

D 	2

cos2 ��m
ı.E Cm/CO.1/;

that is, there is an eigenvalueE D �m in the spectrum of Oh2;��m .
For jEj < m, the function !.E/ is real, and therefore, the function !2.E/ is

also real. As in the case of the nonsingular region, Sect. 9.4.2, it follows that for
jEj < m, the spectral function �.E/ is a jump function with the jumps Q2

n D
�Œ!0

2.
II

En/�
�1; !0

2.
II

En/ < 0, located at the points
II

En that satisfy the equation

!2

�
II

En

�
D 0; IIEn D

II

En .�/ : (9.41)

As a result, we obtain

� 0.E/ D
X

n

Q2
nı

�
E � II

En

�
; jEj < m:

We note that as in the first noncritical charge region, there are infinitely many
energy levels accumulated at the point E D m, and their asymptotic form as
n ! 1 is given by the nonrelativistic expression (9.36), which does not depend on
�. The lower bound state energy essentially depends on �, and there exists a value
of � D ��m for which the lower bound state energy coincides with the boundary
E D �m of the lower (positron) continuous spectrum. Some results relating to
numerical solution of equation (9.41) are presented in Fig. 9.1.

Thus, the simple spectrum of Oh2;� is given by spec Oh2;� D fjEj � mg [ f
II

Eng.
The generalized eigenvectorsUE.r/; jEj � m, and eigenvectors Un.r/ of Oh2;� ,
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a b c

Fig. 9.1 �-dependence of energy levels
II

En for Z D 121; j D 1=2; � D ˙1, and Z-dependence
of ��m; j D 1=2

UE.r/ D
II

U �
E.r/ D

p
� 0.E/U�.r IE/; jEj � mI

Un.r/ D
II

U �
n .r/ D QnU�

�
r I IIEn

�
; (9.42)

form a complete orthonormalized system in the space L
2.RC/:

It is possible to describe the discrete spectrum in more detail. Explicit expressions
for the spectrum and eigenfunctions can be obtained in two cases. For � D �=2, we
have

!2.W / D 2�� .1 � 2�/
�
q2!.W /

��1
; U�D�=2.r IW / D F2.r IW /:

The corresponding analysis is identical to that in Sect. 9.4.2, and all the results
(for the spectrum and eigenfunctions) can be obtained from the corresponding
expressions of the previous subsection with the help of the formal substitution � !
�� . In particular, we obtain that the discrete spectrum

II

En of Oh2;˙�=2 has the form

II

En D .n � �/m
p
q2 C .n� �/2 ; n 2 N� :
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For � D 0, we have

!2.W / D !.W /� �1.�2�/; U�D0.r IW / D F1.r IW /;

so that the corresponding analysis is identical to that in Sect. 9.4.2, and the
expressions obtained there directly serve for the region 0 < � < 1=2. In particular,

we obtain that the discrete spectrum
II

En.0/ of Oh2;0 is given by (9.35).

For j�j < �=2, the equation !2.
II

En/ D 0 can be represented in the equivalent
form

!

�
II

En

�
D �q�1� .1 � 2�/ tan �;

!0
�
II

En

�
D �� .1 � 2�/

2� cos2 �
!0
2

�
II

En

�
> 0;

@�
II

En D � � .1 � 2�/
q!0

�
II

En.�/

�
cos2 �

< 0: (9.43)

The function !.E/ has the properties

!.�m/ D q�1� .1C 2�/.2q/�2� C 0I

!

�
II

En ˙ 0
�
D 
1I !

�
II

En.0/

�
D 0;

II

En <
II

En.0/ <
II

EnC1; n � n�; n1 D 1; n�1 D 0;
II

En� > �m:

It follows from these properties that there are no spectrum points in the interval

Œ�m; IIEn� / for � 2 .��m; �=2/, and for fixed � 2 Œ��m;��=2/, there is one level
II

En��1.�/monotonically growing from�m to
II

En��0 as � goes from ��m to��=2C
0; in each interval .

II

En;
II

EnC1/, for a fixed � 2 .��=2; �=2/, there is one level
II

En.�/

monotonically growing from
II

EnC0 to
II

EnC1�0 as � goes from �=2�0 to��=2C0.
Note the relationships

lim
�!��=2

II

En�1.�/ D
II

lim
�!�=2

En.�/ D
II

En; n 2 N� :
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9.4.5 Critical Region

The critical region is the critical curve Z D Zc .j /. In this critical charge region,
we have

q D qc .j / H) �C D � D 0:
The charge values q D qc .j / stand out because for q > qc .j /, the standard

formula (9.35) for the bound-state spectrum ceased to be true, yielding complex
energy values. But we will see that from a mathematical standpoint, nothing
extraordinary happens with the system for the charge values q � qc .j /, at least
in comparison with the previous case of qs .j / < q < qc .j /.

It should also be noted that this region does not exist if the finite structure
constant ˛ is an irrational number, because here the relation ˛ D .j C 1=2/ =Z
must hold.

It follows from representations (9.23) and (9.24) that the asymptotic behavior of
doublets F� 2 D�

Lh .RC/ in the case under consideration is given by

F�.r/ D c1dC C c2d0.r/CO
�
r1=2 ln r

�
; r ! 0;

which yields the expression �hC.F�/ D q�1
c .j / .c1c2 � c2c1/ for the asymmetry

form. Therefore, here, we also have a one-parameter U.1/ family of s.a. extensions
Oh3;# , # 2 S .��=2; �=2/, specified by s.a. asymptotic boundary conditions

F.r/ D c Œd0.r/ cos# C dC sin#�CO �r1=2 ln r
�
; r ! 0; (9.44)

and the corresponding domainsDh3;# are

Dh3;# D
n
F.r/ W F 2 D�

Lh .RC/ ; F obey (9.44)
o
:

The spectral analysis follows in the standard way presented in the previous
subsections, and therefore, we only cite the final results. For the doublet U defining
the guiding functional (5.33), we choose the doubletU .0/

# D F .0/
1 sin#CF .0/

2 cos# ,

real entire inW , where F .0/
1 and F .0/

2 are given by (9.23). The doublet U .0/

# satisfies
the s.a. asymptotic boundary conditions (9.44). The guiding functional with this
U
.0/

# is simple.

The Green’s function G.r; r 0IW / of the Hamiltonian Oh3;# is given by

G.r; r 0IW / D !�1
3 .W /

(
F
.0/
3 .r IW /˝ U .0/

# .r 0IW /; r > r 0;

U
.0/

# .r IW /˝ F .0/
3 .r 0IW /; r < r 0;

F
.0/
3 D qc .j / Q!3.W /U .0/

# C qc .j / QU .0/

# ;
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QU .0/

# D F .0/
1 cos# � F .0/

2 sin#;

!3.W / D �Wr
�
U
.0/

# ; F
.0/
3

�
D q�1

c .j / Œf .W / cos# � sin#�;

Q!3.W / D q�1
c .j / Œf .W / sin# C cos#�:

The derivative � 0.E/ of the spectral function reads

� 0.E/ D ��1 Im!�1
4 .E C i0/; !4.W / D Œqc .j / Q!3.W /��1 !3.W /:

At the points where the function !4.E/ is different from zero, we have !�1
4 .E C

i0/ D !�1
4 .E/.

For jEj � m and K D �k D e.1��/i�=2k; k D pE2 �m2 � 0; � D jEj=E , the
function f .E/ is given by

f .E/ D lnŒ2e�i��=2km�1�C  ��iqc .j / jEjk�1�

C
�
� C .i�k � �m/E�1�

2qc .j /
� 2 .1/:

In the regions E � m and E < �m, K D �k D ei�k, the function !4.E/
is continuous, different from zero, complex, and � 0 .E/ D ��1 Im!�1

3 .E/ ¤ 0.
Therefore the spectral function �.E/ is a.c., and the spectrum is continuous and
simple (the continuous spectrum includes also the point E D �m). However, in the
case E D �m, we have � 0.�m/j#D#�m

D1, where

tan#�m D ln.2qc/ � 2 .1/C �=qc D ln.2qc/C .2CC �=qc/ > 0;

and therefore the range # � #�m, E � �m requires a more detailed consideration.
Here we obtain

� 0.E/ D qc

� cos2 #
Im Q!�1

4 .E C i0/CO.1/; Q!4.W / D .tan#�m � tan#/

� 	�2�CO.�2/; � D W Cm; 	 D
r

qcm

1� �=2qc
; W ! �m:

One can see that for # ¤ #�m, the function � 0.E/ is finite as E ! �m. However,
at # D #�m and for small E Cm, we have

� 0.E/ D� 	2

� cos2 #�m
Im .E CmC i0/�1 CO.1/

D 	2

cos2 #�m
ı.E Cm/CO.1/;

that is, there is an eigenvalueE D �m in the spectrum of Oh3;#�m .
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For jEj < m and K D i� D ei�=2� , � D pm2 � E2 > 0, the function f .E/ is
given by

f .E/ D ln
�
2�m�1�C  ��qc .j / E�

�1�C � � .� C �m/E�1

2qc .j /
C 2C: (9.45)

It is real, and therefore the function !4.E/ is also real.
As in the previous cases, the spectral function �.E/ for jEj < m is a jump

function with the jumpsQ2
n D �Œ!0

4.
III

En/�
�1 located at the discrete energy levels

III

En
determined by the equations

!4

�
III

En

�
D 0; !0

4

�
III

En

�
< 0;

III

En D
III

En .#/ ; (9.46)

so that

� 0.E/ D
X

n

Q2
nı

�
E � III

En

�
:

We note that there exists an infinite number of discrete levels, which are
accumulated at the point E D m, and their asymptotic behavior as n ! 1 is
described by the nonrelativistic formula (9.36).

The lower bound state of energy essentially depends on # , and there exists such
a value of # D #�m for which the lower bound state energy coincides with the
boundaryE D �m of the lower (positron) continuous spectrum.

Thus, the simple spectrum of Oh3;# is given by spec Oh3;# D fjEj � mg [ f
III

Eng.
The generalized eigenvectors UE.r/, jEj � m, and eigenvectors Un.r/ of Oh3;# ,

UE.r/ D
III

U #
E .r/ D

p
� 0.E/U .0/

# .r IE/; jEj � mI

Un .r/ D
III

U #
n .r/ D QnU

.0/

#

�
r I IIIEn

�
; (9.47)

form a complete orthonormalized system in the space L
2.RC/.

For # D �=2, it is possible to obtain the explicit formulas for spectrum and
eigenvectors of a complete set. Here,

!4.W / D � Œqc .j / f .W /��1 ; U .0/

#D�=2 D F .0/
1 ;

and

� 0.E/ D ���1qc .j / Im f .E C i0/:
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For jEj � m and K D �k D e.1��/i�=2k, k D pE2 �m2 � 0, � D E=jEj, we
have

� 0.E/ D Œqc .j / =2� Œcoth.qc .j / jEj=k/C �� :
The spectrum is simple and continuous.

For jEj < m, and K D i� D ei�=2� , � D pm2 � E2 > 0, we obtain

� 0.E/ D
X

n2N�

Q2
nı

�
E � III

En
�
; Qn D �3=2n =m;

III

En D mn.q2c C n2/�1=2; �n D qcm.q
2
c C n2/�1=2; n 2 N� :

Thus, the simple spectrum of Oh3;�=2 is given by spec Oh3;�=2 D fjEj � mg [ f
III

En g.
The generalized eigenvectors UE.r/, jEj � m, and eigenvectors Un.r/ of Oh3;�=2,

UE.r/ D
III

U
�=2
E D

p
� 0.E/U .0/

#D�=2.r IE/; jEj � mI

Un.r/ D
III

U
�=2
E D QnU

.0/

#D�=2
�
r I IIIEn

�
; n 2 N�;

form a complete orthonormalized system in the space L
2.RC/.

We note that all the above results for the spectrum and for the inversion formulas
can be obtained from the corresponding expressions of the first charge region in the
limit � ! 0.

For j#j < �=2, it is also possible to describe the discrete spectrum in more detail.
In this case, (9.46) can be represented in the equivalent form

f

�
III

En

�
D tan#; f 0

�
III

En

�
D qc

cos2 #
!0
4

�
III

En

�
< 0;

@#
III

En D
�
f 0
�
III

En

�
cos2 #

��1
< 0; (9.48)

where the function f .E/ is given by (9.45) and has the properties

f .�m/ D ln.2qc/C .2CC �=qc/ � 0I f
�
III

En ˙ 0
�
D ˙1I

III

En <
III

EnC1; n � n�; n1 D 1; n�1 D 0;
III

En� > �m:
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Thus, we come to the following conclusion: there are no spectrum points in the

interval Œ�m; IIIEn� / for # 2 .#�m; �=2/, and for # 2 .��=2; #�m�, there is one

level
III

En��1.#/ monotonically growing from �m to
III

En� � 0 as # goes from #�m to

��=2 C 0; in each interval .
III

En ;
III

EnC1/, for # 2 .��=2; �=2/, there is one level
III

En.#/ monotonically growing from
III

En C 0 to
III

EnC1 � 0 as # goes from �=2� 0 to
��=2C 0.

9.4.6 Overcritical Region

In this overcritical charge region, we have Z > Zc.j / and

q > qc .j / H) �C D i�; � D
p
q2 � ~2 > 0:

According to representation (9.29), the asymptotic behavior of doublets F� 2
D�

Lh .RC/ in the case under consideration is given by

F�.r/ D c1.mr/i�dC C c2.mr/�i�d� CO
�
r1=2

�
; r ! 0;8F� 2 D�

Lh .RC/ ;

where d˙ D
�
1� .~ ˙ i�/ q�1�, which yields �hC.F�/ D 2i�q�1 �jc1j2 � jc2j2

�

for the asymmetry form. It follows that we have a one-parameterU.1/ family of s.a.
extensions Oh4;� ; � 2 S .0; �/, specified by s.a. asymptotic boundary conditions

F.r/ D c �ei� .mr/i�dC C e�i� .mr/�i�d�
�CO �r1=2� ; r ! 0; (9.49)

and acting on the domainsDh4;� ,

Dh4;� D
n
F.r/ W F.r/ 2 D�

Lh .RC/ ; F obey .9.49/
o
:

For the doublet U defining the guiding functional (5.33), we choose U� D
ei�F1 C e�i�F2, where F1 and F2 are given by (9.16)–(9.18); U� is real entire in
W because F2 D F1 for �C D i� and satisfies the boundary condition (9.49). Then
one can verify that the guiding functional is simple.

The Green’s function of the Hamiltonian Oh4;� has the form

G.r; r 0IW / D !�1
6 .W /U�.r IW /˝ U�.r 0IW /

� 2

4�


 QU�.r IW /˝ U�.r 0IW /; r > r 0;
U�.r IW /˝ QU�.r 0IW /; r < r 0;
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where

QU� D i
�
e�i�F2 � ei�F1

�
;

2F3 D� .�2i�/e�i� ˚�1C e2i�!5.W /
�
U� C i

�
1 � e2i�!5

� QU�
�
;

!5.W / D � q!.W /=� .1 � 2i�/; !6.W / D �4i�q�1 1 � !5.W /e2i�
1C !5.W /e2i� :

The derivative of the spectral function is � 0.E/ D ��1 Im!�1
6 .E C i0/. At the

points where the function!6.ECi0/ is different from zero, we have!�1
6 .ECi0/ D

!�1
6 .E/.

For E � m and E < �m, K D �k D ei.1��/�=2k, k D pE2 �m2 � 0,
� D E=jEj, the function !6.E/ is continuous, complex, and differs from zero.
Therefore � 0.E/ D ��1 Im!�1

6 .E/ ¤ 0, the spectral function �.E/ is a.c., so that
the spectrum is continuous and simple (the continuous spectrum includes the point
E D �m as well). However, for E D �m, we have

� 0.�m/ˇ̌
�D��m

D1; e2i��m D .2q/2i�� .�2i�/� �1.2i�/; (9.50)

and therefore the range � � ��m, E � �m requires a more detailed consideration.
Here we obtain

� 0.E/ D ��1	2 Im Q!�1
6 .E C i0/CO.1/;

Q!6.W / D i Qa�1
2

�
e2i.����m/ � 1� � e2i.����m/�CO ��2

�
;

Qa2 D 2�

q2m

�
q2c � �qc=2C �2

�
;

	 D
s

q3m

4�2.q2c � �qc=2C �2/ ; � D W Cm; W ! �m:

One can see that for � ¤ ��m, the function � 0.E/ is finite for E D �m. However,
for � D ��m and for small E Cm, we have

� 0.E/ D ���1	2 Im .E CmC i0/�1 CO.1/ D 	2ı.E Cm/CO.1/;

that is, there is an eigenvalueE D �m in the spectrum of Oh4;��m .
For �m � E < m and K D i� D ei�=2� , � D pm2 � E2 > 0, we have

!5.E/ D � .2i�/� .�i� � Eq��1/ Œ�.~ C i�/ � q.m �E/�
� .�2i�/� .i� �Eq��1/ Œ�.~ � i�/ � q.m �E/�

�
2�m�1��2i�
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� e�2i%.E/; %.E/ D � ln
2�

m
C 1

2i
fln� .�2i�/ � ln� .2i�/

C ln�
�
i� �Eq��1� � ln�

��i� �Eq��1�

C ln Œ�.qc � i��/ � �q.m �E/� � ln Œ�.qc C i��/� �q.m � E/�g ;

and therefore the function !6.E/ D 4�q�1 tan Œ%.E/� �� is real.
Finally, we obtain

� 0.E/ D
X

n

Q2
nı

�
E � IV

En

�
;

Q2
n D�

�
!0
6

�
IV

En

���1
D �q

�
4�%0

�
IV

En

���1
; %0

�
IV

En

�
< 0;

so that for �m � E < m, jumps Q2
n of the spectral function are located at discrete

points
IV

En defined by the equation

!6

�
IV

En

�
D 0 H) sin

�
%

�
IV

En

�
� �

�
D 0; IV

En D
IV

En.�/: (9.51)

Thus, the simple spectrum of Oh4;� is given by

spec Oh4;� D fjEj � mg [


IV

En

�
:

Some results relating to numerical solution of eq. (9.51) are presented in Figs. 9.2
and 9.3.

The generalized eigenfunctions UE.r/; jEj � m, and eigenfunctions Un.r/ of
Oh4;� ,

UE.r/ D
IV

U �
E.r/ D

p
� 0.E/U�.r IE/; jEj � mI

Un.r/ D
IV

U �
n .r/ D QnU�

�
r I IVEn

�
; (9.52)

form a complete orthonormalized system in the space L
2.RC/.

Let us describe the point spectrum in more detail. To this end, we rewrite (9.51)
in the equivalent form

%

�
IV

En

�
D f .n; �/ D ��l0 C �.�nC �=�/;

@�
IV

En D
�
%

�
IV

En

���1
< 0; n 2 Z; (9.53)
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a b c

Fig. 9.2 �-dependence of energy levels
IV

En for Z D 138; j D 1=2; � D ˙1, and Z-dependence
of ��m; j D 1=2

where the integer l0 is defined below. We note that %.E/ is a smooth function on
the interval Œ�m;m/ and

%.E/ D ��qm1=2Œ2.m� E/��1=2 CO.1/;E ! m � 0:

In addition, we have the relation%.�m/ D ��m��l0, where l0 is an integer, which
follows from the equality

e2i%.�m/ D !�1
5 .�m/ D e2i��m:

One can see that the range of the function f .n; �/, n 2 Z, � 2 Œ0; ��, is the
whole real axis. This means that for any E , there exist n 2 Z, � 2 Œ0; �� such that
%.E/ D f .n; �/. In turn, this means that any E 2 Œ�m;m/ is a solution of (9.53)
for some n and � . Therefore, any E 2 Œ�m;m/ is the spectrum point for some s.a.
Hamiltonian Oh4;� . As a consequence, we have %0.E/ < 0, 8E 2 Œ�m;m/. Thus,
as E goes from �m to m � 0, the function %.E/ decreases monotonically from
��m � l0 to �1. One can easily see that in fact, n � 0 (n 2 ZC). Thus we have the
following:
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a b

Fig. 9.3 �-dependence of energy levels
IV

En; Z D 180; j D 1=2; � D ˙1

(a) in the interval of energies Œ�m; IVE0.0/ D
IV

E1.�// there are no levels for � 2
Œ�=2; ��m/, and for any � 2 Œ��m; 0/, there is one discrete level

IV

E0.�/, which

increases monotonically from �m to
IV

E0.0/� 0 as � goes from ��m toC0;

(b) in each interval of energies .
IV

En.�/;
IV

En.0/ D
IV

EnC1.�//, n 2 N, there is one

discrete level
IV

En.�/, which increases monotonically from
IV

En.�/ to
IV

En.0/ � 0
as � goes from � toC0. In particular,�m <

IV

En.0/ <
IV

EnC1.0/ < m, 8n 2 ZC.

We note also that there is an infinite number of discrete levels that are accu-
mulated at the point E D m. Their asymptotic form as n ! 1 is given by the
previous nonrelativistic formula (9.36). The energy of the lower bound state depends
essentially on � , and there exists such an extension parameter ��m (see (9.50)) for
which this energy coincides with the boundary E D �m of the lower continuous
spectrum.

9.5 Summary

In Sect. 8.4 we constructed all s.a. radial Hamiltonians Ohe for all values of q (we
recall that q D �q1q2 > 0, q1 D �e, q2 D Ze, so that q D Ze2 D Z˛ > 0, and
Z D 137q in a hydrogen-like atom) as s.a. extensions of the initial symmetric
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operators Oh for any j , �, and M , and solved spectral problems for all these
Hamiltonians. As a result, (10.13) and (9.10) allow one to restore all s.a. Dirac
Hamiltonians OHe (all s.a. operators associated with the differential operation (9.1))
for any q and to describe the solution of the corresponding spectral problems for all
the Hamiltonians OHe.

It is convenient to introduce charge ranges in which the spectral problem has
a similar description. These ranges are defined by characteristic points jk D k �
1=2, k 2 ZC, on the axis j of angular momentum eigenvalues. At these points, the
functions qc .j / and qs .j / are given by

qc.jk/ D k; qc.j0/ D 0;
qs.jkC1/ D

p
.k C 1/2 � 1=4; qs.j0/ D

p
3=2;

and satisfy the following inequalities:

qc.jk/ < qs.jkC1/ < qc.jkC1/ < qs.jkC2/; k 2 ZC: (9.54)

Let us introduce intervals�.k/, k 2 ZC, as follows:

�.k/ D .qc.jk/; qc.jkC1/� D .k; k C 1� ; k 2 ZC:

The semiaxis .0;1/ can be represented as .0;1/ D [k2ZC
�.k/. In turn, due

to (9.54), each interval�.k/ can be represented as�.k/ D [iD1;2;3�i .k/, where

�1 .k/ D .qc.jk/; qsc.jkC1/�;

�2 .k/ D .qsc.jkC1/; qc.jkC1//;

�3 .k/ D fqc.jkC1/g; k 2 ZC:

According to this division, we define three rangesQi , i D 1; 2; 3, of charges q:

Qi D [k2ZC
�i .k/ ; i D 1; 2; 3;

such that any given q > 0 generates a pair of two integers, k 2 ZC and i D 1; 2; 3,

q H) .k; i/ ; if q 2 Qi:

Then, as follows from the consideration represented in Sects. 9.4.2–9.4.6, we have
the following picture.

A. Let q H) .k; 1/, that is, q 2 �1 .k/ for some k 2 ZC, which means that

k D qc.jk/ < q � qsc.jkC1/ D
p
.k C 1/2 � 1=4:
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Consider quantum numbers j � jk (such j exist for k � 1 only). Then
q > qc.jk/ � qc.j /, which means that q > qc.j /. Such quantum numbers j
are characteristic for the IV range considered in Sect. 9.4.6.

Consider quantum numbers j � jkC1. Then q � qsc.jkC1/ � qsc.j /. Such
quantum numbers j are characteristic for the I range considered in Sect. 9.4.2.

Therefore, for such charges q, we have

UE.r/D
8
<

:

IV

U �
E.r/; j � jk;

I

U E.r/; j � jk C 1;
jEj � m;

Un.r/D
8
<

:

IV

U �
n.r/; j � jk;

I

U n.r/; j � jk C 1;
En D

8
<

:

IV

En.�/; j � jk;
I

En; j � jk C 1:
(9.55)

The doublets
I

UE and
I

Un have the form (9.37), and
IV

U �
E and

IV

U �
n have the form

(9.52).

The energy spectrum
I

En is defined by (9.35). The energy spectra
IV

En.�/ are
defined by (9.51) and (9.53).

B. Let q H) .k; 2/, that is, q 2 �2 .k/ for some k 2 ZC, which means that

p
.k C 1/2 � 1=4 D qs.jkC1/ < q < qc.jkC1/ D k C 1:

Consider quantum numbers j � jkC1 � 1 D jk (such j exist for k � 1

only). Then
q > qs.jkC1/ > qc.jkC1 � 1/ � qc.j /;

which means that q > qc.j /. Such quantum numbers j are characteristic for the
IV range considered in Sect. 9.4.6.

Consider quantum number j D jkC1. In this case qs.j / < q < qc.j /. Such
quantum numbers j are characteristic for the II range considered in Sect. 9.4.4.

Consider quantum numbers j � jkC1 C 1 D jkC2. Then

q < qc.jkC1/ < qs.jkC2/ � qsc.j /;

so that q < qs.j /. Such quantum numbers j are characteristic for the I range
considered in Sect. 9.4.2.

Therefore, for such charges q, we have

UE.r/ D

8
ˆ̂
<̂

ˆ̂
:̂

IV

U �
E.r/; j � jk;

II

U �
E.r/; j D jkC1;
I

U E.r/; j � jkC2;

jEj � m;
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Un.r/ D

8
ˆ̂
<̂

ˆ̂
:̂

IV

U �
n.r/; j � jk;

II

U �
n .r/; j D jkC1;
I

U n.r/; j � jkC2;

En D

8
ˆ̂
<̂

ˆ̂
:̂

IV

En.�/; j � jk;
II

En.�/; j D jkC1;
I

En; j � jkC2:

(9.56)

The doublets
II

U �
E and

II

U �
n have the form (9.42), and the energies

II

En.�/ are
defined by (9.41) and (9.43).

C. Let q H) .k; 3/, that is, q 2 �3 .k/ for some k 2 ZC, which means that

q D qc.jkC1/ D k C 1:

Consider quantum numbers j � jkC1 � 1 D jk (such j exist for k � 1 only).
Then

q D qc.jkC1/ > qc.jkC1 � 1/ � qc.j /;

so that q > qc.j /. Such quantum numbers j are characteristic for the IV range
considered in Sect. 9.4.6.

Consider a quantum number j D jkC1. Then q D qc.j /. Such quantum numbers
j are characteristic for the III range considered in Sect. 9.4.5.

Consider quantum numbers j � jkC1 C 1 D jkC2. Then

q D qc.jkC1/ < qsc.jkC1 C 1/ � qsc.j /;

so that q < qsc.j /. Such quantum numbers j are characteristic for the I range
considered in Sect. 9.4.2.

Therefore, for such charges, we have

UE.r/D

8
ˆ̂
<̂

ˆ̂
:̂

IV

U �
E.r/; j � jkC1 � 1;

III

U #
E .r/; j D jkC1;
I

U E.r/; j � jkC1 C 1;

jEj � m;

Un.r/D

8
ˆ̂
<̂

ˆ̂
:̂

IV

U �
n .r/; j � jkC1 � 1;

III

U #
n .r/; j D jkC1;
I

U n.r/; j � jkC1 C 1;

EnD
8
<

:

IV

En.�/; j � jkC1 � 1;
III

En.#/; j DjkC1
I

En; j � jkC1 C 1:

(9.57)

The doublets
III

U #
E and

III

U #
n have the form (9.47), and the energies

III

En.#/ are
defined by (9.46) and (9.48).
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We are now in a position to describe the spectral problem for all the s.a. Dirac
Hamiltonians with any charge q. Consider eigenvectors	j;M;�;E.r/ of any s.a. Dirac
Hamiltonian OHe. They satisfy the following set of equations (see Sect. 9.2):

LH	j;M;�;E.r/ DE	j;M;�;E.r/;
OJ2	j;M;� .r/ D j.j C 1/	j;M;� .r/ ; j D k C 1=2; k 2 ZC;

OJz	j;M;� .r/ DM	j;M;�; M D �j;�j C 1; : : : ; j � 1; j;
OK	j;M;� .r/ D � �.j C 1=2/	j;M;� .r/ ; � D ˙1;

where the Dirac differential operation is LH , and operators OJ2, OJz, and OK, are given by
(9.1) and (9.2), whereas the eigenvectors have the form	j;M;�;E.r/ D …j;M;�UE.r/,
see (9.7).

For any charge q, the energy spectrum of any s.a. Dirac Hamiltonian OHe consists
of the continuous part jEj � m and a discrete partEn, which is placed in the interval
Œ�m;m/:

The eigenvectors 	j;M;�;E.r/, jEj � m, which correspond to the continuous
part of the spectrum, are generalized eigenvectors of OHe, whereas the eigenvectors
	j;M;�;En.r/ of OHe, which correspond to the discrete part of the spectrum, belong to
the Hilbert space L2

�
R
3
�
. Doublets UE.r/, which belong to the discrete energies

En, are denoted by UEn.r/ D Un .r/. All the doublets UE.r/ and Un .r/ and the
spectra En depend on the extension parameters, on the quantum numbers j , M ,
and �, and on the charge q according to (9.55), (9.56), and (9.57). It should be
remembered that the extension parameters depend on both j and �.

Finally, the total s.a. Dirac Hamiltonian OH .Z/withZ � 118 is defined uniquely.
For Z � 119, there is a family of possible total s.a. Dirac Hamiltonians. The
family is parameterized by the extension parameters. The number of the extension
parameters is equal to 2k.Z/, where k.Z/ D .1=4CZ2˛2/1=2 � ı is an integer and
0 < ı � 1. For Z � 119, any specific s.a. Dirac Hamiltonian OH .Z/ corresponds
to a certain prescription for the behavior of an electron at the origin. The general
theory thus describes all the possibilities that can be offered to a physicist. Which to
choose is a completely physical problem.

We believe that each s.a. Dirac Hamiltonian with superstrong Coulomb field
can be understood through an appropriate regularization of the potential and a
subsequent limit process of removing the regularization. We recall that a physical
interest in the electronic structure of superheavy atoms was mainly motivated by
a possible pair creation in the superstrong Coulomb field. Consideration of this
effect in the framework of the simplest model of a pointlike nucleus was considered
impossible due to the conclusion (which is wrong, as is now clear) that this model
is mathematically inconsistent [166]. We believe that the described rehabilitation of
the model allows a return to a consideration of particle creation in this model, which
provides great scope for analytical studies.



Chapter 10
Schrödinger and Dirac Operators with
Aharonov–Bohm and Magnetic-Solenoid Fields

10.1 Introduction

10.1.1 General Remarks

The Aharonov–Bohm (AB) effect plays an important role in QT, revealing a peculiar
status of electromagnetic potentials in the theory [89, 120, 124]. This effect was
discussed in [6] in relation to the scattering of a nonrelativistic charged spinless
particle by an infinitely long and infinitely thin magnetic field of a solenoid (the AB
field in what follows) of finite magnetic flux (a similar effect was discussed earlier
by Ehrenberg and Siday [53]). It was found that a particle wave function vanishes
at the solenoid line. Although the particle does not penetrate the solenoid, while the
magnetic field vanishes outside of it, the partial scattering phases are proportional
to the magnetic flux (modulo a flux quantum) [165].

A nontrivial particle scattering by such a field was interpreted as a capability of a
quantum particle to “feel” an electromagnetic field vector potential because the AB
field vector potential does not vanish outside of the solenoid.1 An s.a. nonrelativistic
Hamiltonian with the AB field was first constructed in [150]; see also [33, 135].
The problem of s.a. extensions of Dirac operators with the AB field in 2C 1
dimensions was first recognized in [72, 73, 85]. Self-adjoint Dirac Hamiltonians
with the AB field in 3C 1 dimensions were constructed in [10, 40, 42, 159]. In
all these cases, s.a. Hamiltonians are specified by s.a. boundary conditions on
the solenoid line. One possible boundary condition was obtained in [4, 58, 85]
by a specific regularization of the Dirac delta function, starting from a model
in which the continuity of both components of the Dirac spinor is imposed at a
finite radius, and then this radius is shrunk to zero; see also [2, 121]. Physically

1It should be mentioned that in the relativistic case (Dirac equation with AB field) some of the
wave functions from a complete set of solutions do not vanish on the solenoid line.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 10,
© Springer Science+Business Media New York 2012
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motivated boundary conditions for particle scattering by a superposition of the AB
field and a Coulomb field were studied in [41, 86, 152]. A splitting of Landau
levels in a superposition of the AB field and a parallel uniform magnetic field
gives an example of the AB effect for bound states. In what follows, we call such
a superposition the magnetic-solenoid field (MSF). Solutions of the nonrelativistic
stationary Schrödinger equation with MSF were first studied in [107]. Solutions
of the relativistic wave equations (Klein–Gordon and Dirac) with MSF were first
obtained in [15] and then used to study the AB effect in cyclotron and synchrotron
radiations in [16–18]. On the basis of these solutions, the problem of the self-
adjointness of Dirac Hamiltonians with MSF was studied in [66–69]. Coherent
states in MSF were constructed in [14]. A complete spectral analysis for all the
s.a. nonrelativistic and relativistic Hamiltonians with MSF was performed in [78].
Recently, interest in such a superposition has been renewed in connection with
planar physics problems and the quantum Hall effect [55, 110, 117].

In this chapter, we construct all the s.a. relativistic and nonrelativistic Hamiltoni-
ans with MSF and solve the corresponding spectral problems.

10.1.2 AB and Magnetic-Solenoid Fields

The AB field of an infinitely thin solenoid (with constant flux ˚) along the axis
z D x3 can be described by the electromagnetic potentials A�AB; � D 0; 1; 2; 3,

A
�
AB D .0;AAB/ ;AAB D

�
AkAB; k D 1; 2; 3

�
; A3AB D 0;

A1AB D �
˚ sin '

2��
;A2AB D

˚ cos'

2��
;

where �; ' are cylindrical coordinates, x1 D x D � cos'; x2 D y D � sin ', and
� Dpx2 C y2.

The magnetic field of an AB solenoid has the form BAB D .0; 0; BAB/. It is
easy to see that outside the z-axis, the magnetic field BAB D rotAAB is equal to
zero. Nevertheless, for any surface˙ with boundary L that is any contour (even an
infinitely small one) around the z-axis, the circulation of the vector potential along
L does not vanish and reads

H
L AABdl D ˚ . If one interprets this circulation as the

flux of the magnetic field BAB through the surface˙ ,

Z

˙

BABd� D
I

L

AABdl D ˚;

then we obtain an expression for the magnetic field,

BAB D ˚ı
�
x1
�
ı
�
x2
�
;

which is the origin of the term “infinitely thin solenoid”.
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One can see that AAB D �rot	 , 	 D .0; 0; ˚
2�

ln �/, so that divAAB D 0; and
again

BAB D rotAAB D .0; 0; BAB/; BAB D ˚

2�
� ln � D ˚ı �x1� ı �x2� :

We have
e

c„A
1
AB D �
��1 sin ' ;

e

c„A
2
AB D 
��1 cos';

where 
 D ˚=˚0, and ˚0 is a fundamental unit of magnetic flux, [46, 47],

˚0 D 2�c„=e D 4:135 � 10�7 G 	 cm2

(we recall that e > 0 is the absolute value of the electron charge).
As already mentioned, the MSF is defined as a superposition of a constant

uniform magnetic field of strengthB directed along the z-axis and the AB field with
the flux ˚ in the same direction. The MSF can be described by electromagnetic
potentials of the form A� D .0;A/, A D �Ak; k D 1; 2; 3�;

A1 D A1AB �
Bx2

2
; A2 D A2AB C

Bx1

2
; A3 D 0: (10.1)

The potentials (10.1) define the magnetic field B D .0; 0; B C BAB/. Such a
magnetic field is called MSF. In cylindrical coordinates, the potentials of the MSF
have the form

e

c„A
1 D � Q
��1 sin';

e

c„A
2 D Q
��1 cos';A3 D 0;

Q
 D 
 C �B��
2

2
; � D ejBj

c„ > 0; �B D sgn B: (10.2)

Below, we consider nonrelativistic and relativistic quantum Hamiltonians of a
charged particle of mass me and charge q D �qe; �q D sgn q D ˙1 (positron or
electron) in the AB field and the MSF.

For further consideration, it is convenient to represent the dimensionless quantity
q˚.2�c„/�1 as follows:

q˚

2�c„ D �q
˚

˚0
D �q
 D �.
0 C �/” 
 D �B .
0 C �/ ;

� D �q�B D sgn .qB/ ; 
0 D Œ�B
� 2 Z; � D �B
 � 
0; 0 � � < 1:
The quantity � is called the mantissa of the magnetic flux, and in fact, it determines
all the quantum effects in the AB field; see, for example [17].
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10.2 Self-adjoint Schrödinger Operators

In this section, we consider two-dimensional and three-dimensional Schrödinger
operators with AB and MSF. The starting point is the s.a. differential Schrödinger
operation LH with MSF. In three dimensions, it is given by the expression

LH D 1

2me

�
Lp� q

c
A
�2
; Lp D �i„r;r D �@x; @y; @z

�
: (10.3)

It is convenient to represent LH as a sum of two terms, LH? and LH k,

LH D LH? C LH k;

where the two-dimensional s.a. differential Schrödinger operation LH? with the
MSF,

LH? DM�1 LH?; LH? D
�
�ir? � q

c„A?
�2
;

M D 2me„�2;r? D �@x; @y
�
;A? D �A1;A2� ; (10.4)

A1 and A2 are given by (10.2), corresponds to a two-dimensional motion in the
xy-plane, while the one-dimensional differential operation LH k,

LH k D LH D Lp2z
2me

; Lpz D �i„@z;

corresponds to a one-dimensional free motion along the z-axis.
The problem to be solved is to construct two- and three-dimensional s.a.

Hamiltonians OH? and OH associated with the respective s.a. differential operations
LH? and LH and to perform a complete spectral analysis for these operators.

We begin with the two-dimensional problem. We successively consider the case
of a pure AB field, with B D 0, and then the case of the MSF. Then, we generalize
and obtain results in three dimensions.

10.2.1 Two-Dimensional Case

10.2.1.1 Reduction to Radial Problem

In the case of two dimensions, the space of the particle quantum states is the Hilbert
space H D L2 �R2� of square-integrable functions .�/; � D .x; y/, with the scalar
product

. 1;  2/ D
Z
 1.�/ 2.�/d�; d� D dx dy D � d� d':
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A quantum Hamiltonian should be defined as an s.a. operator in this Hilbert
space. It is more convenient to deal with s.a. operators associated with the s.a.
differential operation LH? DM LH? defined in (10.4).

The construction is essentially based on the requirement of rotational symmetry,
which certainly holds in a classical description of the system. This requirement
is formulated as the requirement of the invariance of an s.a. Hamiltonian under
rotations around the solenoid line, the z-axis. As in classical mechanics, the
rotational symmetry makes it possible to separate the polar coordinates � and '
and reduce the two-dimensional problem to a one-dimensional radial problem.

The group of rotations SO.2/ in R
2 naturally acts in the Hilbert space H by

unitary operators: if S 2 SO.2/, then the corresponding operator OUS is defined by

the relation
� OUS 

�
.�/ D  �S�1�

�
;  2 H.

The Hilbert space H is a direct orthogonal sum of subspaces Hm that are the
eigenspaces of the representation OUS ,

H D
X˚
m2Z

Hm; OUSHm D e�im�Hm;

where � is the rotation angle corresponding to S .
It should be noted that Hm consists of eigenfunctions  m.�/ for the angular

momentum operator OLz D �i„@=@';

OLz m.�/ D „m m.�/;  m.�/ D 1p
2��

eim'fm .�/ ; 8 m 2 Hm :

It is convenient to change the indexing, m! l , Hm ! Hl ,  m.�/!  l.�/, as
followsm D � .
0 � l/, so that

OLz l.�/ D „� .
0 � l/  l .�/; 8 l 2 Hl:

We define a rotationally invariant initial symmetric operator bH? associated with
LH? as follows:

bH? W
(
DH? D ˚ .�/ W  2 D �R2 n f0g�� ;
bH? D LH? ; 8 2 DH? ;

where D �R2 n f0g� is the space of smooth and compactly supported functions
vanishing in a neighborhood of the point æ D0. The domain DH? is dense in H,
and the symmetry of bH? is obvious.

In polar coordinates � and ', the operation LH? becomes

LH? D �@2� � ��1@� C ��2�i@' C �q Q

�2
; (10.5)
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where Q
 is given by (10.2).
For every l , the relation

.Slf /.�/ D  l.�/ D 1p
2��

ei�.
0�l/'fl .�/ ; (10.6)

where f D f .�/ 2 L2.RC/ and fl .�/ D f .�/, determines a unitary operator
Sl WL2.RC/ 7�! Hl , where L2.RC/ is the Hilbert space of square-integrable
functions on the semiaxis RC with scalar product

.f; g/ D
Z

RC

f .�/g .�/ d�:

For every l , we define a linear operator Vl from H to L2.RC/ by setting

.Vl /.�/ D
r
�

2�

Z 2�

0

 .�; '/e�i�.
0�l/'d': (10.7)

If  2 H DPl2Z l ,  l 2 Hl , then we have  l D SlVl for all l . In other words,
Vl D S�1

l Pl , where Pl is the orthogonal projector onto the subspace Hl . However,
we prefer to work with Vl rather than Pl because the latter cannot be reasonably
defined in the three-dimensional case, where the Hilbert state space should be
decomposed into a direct integral instead of a direct sum (see Sects. 10.2.2 and 10.4).

Clearly, Vl 2 D.RC/ for any  2 D �R2 n f0g�, and it follows from (10.5) and
(10.7) that

VlbH? D Oh.l/Vl ;  2 D �R2 n f0g� ; (10.8)

where the initial symmetric operator Oh.l/ is defined onDh.l/ D D.RC/ � L2.RC/,
where it acts as

Lh.l/ D �@2� C ��2
h�
l C �C ��2=2�2 � 1=4

i
: (10.9)

In view of (10.8), for any  2 D �R2 n f0g�, the Hl -component
�
bH? 

�

l
of

bH? can be written as

�
bH? 

�

l
D SlVlbH? D Sl Oh.l/S�1

l SlVl D Sl Oh.l/S�1
l  l : (10.10)

Suppose we have a (not necessarily closed) operator Ofl in Hl for each l . We
define the operator

Of D
X˚
l2Z

Ofl (10.11)
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in H by setting

Of  D
X

l2Z
Ofl l ;  D

X

l2Z
 l :

The domain Df of Of consists of all  DP
l2Z  l 2 H such that  l 2 Dfl for all

l and the series
P

l2Z Ofl l converges in H. The operator Of is closed (s.a.) iff all Ofl
are closed (respectively, s.a.). For every l , we have Dfl D Df \Hl .

We say that a closed operator Of in H is rotationally invariant if it can be
represented in the form (10.11) for some family of operators Ofl in Hl .

By (10.10), the direct sum of the operators Sl Oh.l/S�1
l is an extension of bH?:

bH? �
X˚
l2Z

Sl Oh.l/S�1
l : (10.12)

Let Ohe.l/ be s.a. extensions of the symmetric operators Oh.l/. Then the operators

bH?
e .l/ D Sl Ohe.l/S�1

l (10.13)

are s.a. extensions of Sl Oh.l/S�1
l , and it follows from (10.12) that the orthogonal

direct sum

bH?
e D

X˚
l2Z

bH?
e .l/ (10.14)

represents rotationally invariant s.a. extensions of the initial operator bH?.
Conversely, let bH?

e be a rotationally invariant s.a. extension of bH?. Then it
has the form (10.14), where bH?

e .l/ are s.a. operators in Hl . Let us set Ohe.l/ D
S�1
l
bH?

e .l/Sl . For all l , Ohe.l/ are s.a. operators in L2.RC/. If f 2 D.RC/, then
Slf 2 D �R2 n f0g�\Hl and (10.12) and (10.14) imply that

Sl Oh.l/f D Sl Oh.l/S�1
l Slf D bH?Slf D bH?

e Slf D bH?
e .l/Slf D Sl Ohe.l/f:

Hence, Oh.l/f D Ohe.l/f , that is, Ohe.l/ is an s.a. extension of Oh.l/. We thus conclude
that bH?

e can be represented in the form (10.14), where bH?
e .l/ are given by (10.13)

and Ohe.l/ are s.a. extensions of Oh.l/.
The problem of constructing a rotationally invariant s.a. Hamiltonian bH?

e is thus
reduced to constructing s.a. radial Hamiltonians Ohe .l/. We first consider the case of
a pure AB field where B D 0. In such a case, we set �B D 1 and � D �q:
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10.2.1.2 Self-adjoint Radial Hamiltonians with Pure AB Field

In this case, we have � D 0, and s.a. radial differential operations Lh.l/ (10.9)
become

Lh .l/ D �@2� C ˛��2; ˛ D ~2l � 1=4; ~l D jl C �j; l 2 Z:

It is easy to see that these differential operations and the corresponding initial
symmetric operators Oh .l/ are actually identical to the respective operations and op-
erators encountered in studying the Calogero problem in Sect. 7.2. We can therefore
directly carry over the previously obtained results to s.a. extensions of Oh .l/.

First Region: ˛ � 3=4

In this region, we have .l C �/2 � 1, which is equivalent to l � 1�� or l � �1��:
Because l 2 Z and 0 � � < 1, we have to distinguish the cases of� D 0 and� > 0:

� D 0 W l � �1 or l � 1; i:e:; l ¤ 0;
� > 0 W l � �2 or l � 1; i:e:; l ¤ 0;�1:

For such l , the initial symmetric operator Oh .l/ has zero deficiency indices, is
essentially s.a., and its unique s.a. extension is Oh1 .l/ D OhC .l/ with domain
D�

Lh.l/ .RC/. The spectrum of Oh.1/ .l/ is simple and continuous and coincides with

the positive semiaxis, spec Oh1 .l/ D RC.
The generalized eigenfunctionsUE ,

UE.�/ D .�=2/1=2 J~l
�p

E�
�
;

of Oh1 .l/ form a complete orthonormalized system in L2.RC/.

Second Region: �1=4 < ˛ < 3=4

In this region, we have 0 < .l C �/2 < 1, which is equivalent to

� � < l < 1 � � or � 1 � � < l < ��: (10.15)

If � D 0, inequalities (10.15) have no solutions for l 2 Z. If � > 0, these
inequalities have two solutions l D la, a D 0;�1, where for brevity, we introduce
the notation la D a, a D 0;�1: So in the second region, we remain with the case
� > 0.
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For each l D la, there exists a one-parameter U .1/ family of s.a. radial
Hamiltonians Oh�a .la/ parameterized by the real parameter �a 2 S .��=2; �=2/.
These Hamiltonians are specified by the asymptotic s.a. boundary conditions at
�! 0,

 �a.�/ DC
h
.�0�/

1=2C~a cos�a C .�0�/1=2�~a sin�a
i
CO ��3=2�; (10.16)

such that

Dh�a .la/
D
n
 W  2 D�

Lh.la/ .RC/ ;  satisfy (10.16)
o
;

where ~a � ~la D j�C aj; 0 < ~a < 1, and C is an arbitrary constant, whereas k0
is a constant of dimension of inverse length.

For �a 62 .��=2; 0/, the spectrum of each Oh�a .la/ is simple and continuous, and
spec Oh�a .la/ D RC.

The generalized eigenfunctionsUE ,

UE.�/ D
r

�

2Qa

�
J~a

�p
E�
�
C Q�a

�p
E=2�0

�2~a
J�~a

�p
E�
��
;

Qa D 1C 2 Q�a .E=4/~a cos.�~a/C
� Q�a

�2
.E=4/2~a > 0;

Q�a D � .1 � ~a/� �1.1C ~a/ tan�a ; (10.17)

of the Hamiltonian Oh�a .la/ form a complete orthonormalized system in the Hilbert
space L2.RC/.

For �a 2 .��=2; 0/, the spectrum of each of Oh�a .la/ is simple, but in addition
to the continuous part of the spectrum, there exists one negative level E .�/�a

D
�4k20

ˇ
ˇ
ˇ Q�a
ˇ
ˇ
ˇ
�~�1

a

, so that the simple spectrum of Oh�a .la/ is given by spec Oh�a .la/ D
RC [

n
E .�/�a

o
.

In this case, the generalized eigenfunctions UE of the continuous spectrum,
E � 0, are given by the same (10.17), while the eigenfunction U .�/ corresponding
to the discrete level E .�/�a

is

U .�/.�/ D

vu
u
t2�

ˇ
ˇ
ˇE .�/�a

ˇ
ˇ
ˇ sin.�~a/

�~a
K~a

 rˇ
ˇ
ˇE .�/�a

ˇ
ˇ
ˇ�

!

:

They together form a complete orthonormalized system in each Hilbert space
L2.RC/.
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Third Region: ˛ D �1=4

In this region, we have l C � D 0. If � D 0, this equation has a unique solution
l D l0 D 0, while if � > 0, there are no solutions, and we remain with the only
case, � D 0.

For l D l0, there exists a one-parameter U .1/ family of s.a. radial Hamiltonians
Oh� .l0/, parameterized by the real parameter � 2 S .��=2; �=2/. These Hamiltoni-
ans are specified by the asymptotic s.a. boundary conditions at �! 0,

 �.�/ D C
�
�1=2 ln .�0�/ cos�C �1=2 sin�

�CO ��3=2 ln �
�
; (10.18)

such that

Dh�.l0/ D
n
 W  2 D�

Lh.l0/ .RC/ ;  satisfy (10.18)
o
;

where the constants C and k0 are of the same meaning as in (10.16).
The spectrum of Oh� .l0/ is simple. For j�j D �=2, the simple spectrum is given

by spec Oh˙�=2 .l0/ D RC. For j�j < �=2, in addition to the continuous part of the

spectrum, there exists one negative level E .�/� D �4�20 exp Œ2.tan� � C/� ; where C
is Euler’s constant, such that

spec Oh� .l0/ D RC [
n
E .�/�

o
; j�j < �=2:

The generalized eigenfunctionsUE of the continuous spectrum,

UE.�/ D
vu
ut

�

2
� Q�2 C �2=4

�
h Q�J0

�p
E�
�
C �

2
N0

�p
E�
�i
;

Q� D tan� �C � ln
�p

E=2�0
�
; j�j � �=2;

and the eigenfunction U .�/ corresponding to the discrete level,

U .�/.�/ D
r

2�
ˇ
ˇ
ˇE .�/�

ˇ
ˇ
ˇK0

 rˇ
ˇ
ˇE .�/�

ˇ
ˇ
ˇ�

!

; j�j < �=2;

form a complete orthonormalized system in the Hilbert space L2.RC/.

Complete Spectrum and Inversion Formulas in Two Dimensions
with Pure AB Field

In the previous subsubsections, we have constructed all s.a. radial Hamiltonians
associated with the s.a. differential operations Lh .l/ as s.a. extensions of the
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symmetric operators Oh .l/ for any l 2 Z and for any 
0 and �. We assemble our
previous results into two groups.

For � D 0, we have the following s.a. radial Hamiltonians:

Oh1 .l/ ; l ¤ l0; Dh1.l/ D D�
Lh.l/ .RC/ ;

Oh� .l0/ ; � 2 S .��=2; �=2/ ; Dh�.l0/ is given by (10.26).

For � > 0, they are

Oh1 .l/ ; l ¤ la D a D 0;�1; Dh1.l/ D D�
Lh.l/ .RC/ ;

Oh�a .la/ ; �a 2 S .��=2; �=2/ ; Dh�a .la/
is given by (10.22):

Each set of possible s.a. radial Hamiltonians Ohe .l/ generates s.a. Hamiltonians
in accordance with the relations (10.13) and (10.14). As a final result, we have a
family of s.a. rotationally invariant two-dimensional Schrödinger operators OH?

e D
M�1bH?

e associated with the s.a. differential operation LH? (10.4) with B D 0.
When presenting the spectrum and inversion formulas for OH?

e , we also consider
the cases � D 0 and � > 0 separately. We let E denote the spectrum points
of OH?

e and let 	E denote the corresponding (generalized) eigenfunctions. The
spectrum points of the operators Ohe .l/ and OH?

e are evidently related by E D ME .
In addition, when writing formulas for eigenfunctions 	E of the operator OH?

e in
terms of eigenfunctions UE of the operators Ohe.l/, we have to introduce the factor
.2��/�1=2 ei�q.
0�l/' in accordance with (10.6) with � D �q (because �B D 1),

to make the substitutions E D ME and E .�/�a
D ME

.�/
�a

, E .�/� D ME
.�/
� for the

respective points of the continuous spectrum and discrete spectrum, and in addition,
to multiply eigenfunctions of the continuous spectrum of the operators Ohe .l/ by the
factor

p
M because of the change of the spectral measure dE to the corresponding

spectral measure2 dE .
For � D 0, there is a family of s.a. two-dimensional Schrödinger operators
OH?
e D OH?

� parameterized by a real parameter � 2 S .��=2; �=2/;

OH?
� D

X˚
l2Z;l¤l0

OH? .l/˚ OH?
� .l0/ ;

OH? .l/ DM�1Sl Oh.1/.l/S�1
l ; l ¤ l0 ;

OH?
� .l0/ DM�1Sl0 Oh�.l0/S�1

l0
:

2From a physical standpoint, the latter is related to the change of the “normalization of the
eigenfunctions of the continuous spectrum to ı function” from ı .E � E 0/ to ı .E � E 0/.
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The spectrum of OH?
� is given by

spec OH?
� D RC [

(
E
.�/
� D �4M�1�20 exp Œ2.tan� � C/� ; j�j < �=2

¿; � D ˙�=2

)

:

The complete system of orthonormalized (generalized) eigenfunctions of OH?
�

consists of the generalized eigenfunctions 	l;E.�/ of the continuous spectrum,

	l;E.�/ D .M=4�/1=2 ei�q.
0�l/'J~l
�p

ME�
�
; l ¤ l0 ; E � 0;

	�
l0;E
.�/ D

vu
u
t

M

4�
� Q�2 C �2=4

�ei�q
0'
h Q�J0

�p
ME�

�
C �

2
N0.
p
ME�/

i
;

Q� D tan� �C � ln
�p

ME=2�0

�
;

and (in the case of j�j < �=2) the eigenfunction	�
l0
.�/ corresponding to the discrete

level E.�/
� ,

	�
l0
.�/ D M

rˇ̌
ˇE.�/

�

ˇ̌
ˇ
.
�ei�q
0'K0

 r
M
ˇ̌
ˇE.�/

�

ˇ̌
ˇ�

!

;

such that

LH?	l;E.�/ D E	l;E.�/; LH?	�
l0;E
.�/ D E	�

l0;E
.�/; E � 0;

OH?
� 	

�
l0
.�/ D E.�/

� 	�
l0
.�/; j�j < �=2:

The corresponding inversion formulas have the form

	.�/ D
X

l2Z;l¤l0

Z 1

0

˚l .E/	l;E.�/dE

C
Z 1

0

˚l0.E/	
�
l0;E
.�/dE C ˚l0	�

l0
.�/;

˚l .E/ D
Z

d�	l;E.�/	.�/; ˚l0.E/ D
Z

d�	�
l0;E
.�/	.�/;

˚l0 D
Z

d�	�
l0
.�/	.�/; 8	 2 L2 �R2� ;

Z
d� j	.�/j2 D

X

l2Z

Z 1

0

j˚l.E/j2 dE C j˚l0 j2 :

The terms with ˚l0 and 	�
l0
.�/ are absent in the case of j�j D �=2.
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For � > 0, there is a family of s.a. two-dimensional Schrödinger opera-
tors OH?

e D OH?
f�ag, a D 0;�1; parameterized by two real parameters �a 2

S .��=2; �=2/,
OH?

f�ag D
X˚

l2Z;l¤la
OH? .l/˚

X˚
a

OH?
�a
.la/ ;

OH? .l/ DM�1Sl Oh.1/.l/S�1
l ; l ¤ la;

OH?
�a
.la/ DM�1Sla Oh�a .la/ S�1

la
:

The spectrum of OH?
f�ag is given by

spec OH?
f�ag D RC [

8
<

:
E
.�/
�a
D �4M�1k20

ˇ
ˇ
ˇ Q�a
ˇ
ˇ
ˇ
�~�1

a

; �a 2 .��=2; 0/
¿; �a … .��=2; 0/

9
=

;
;

where ~a D j�C aj, Q�a D � .1 � ~a/� �1.1C ~a/ tan�a.
A complete system of orthonormalized (generalized) eigenfunctions of OH?

f�ag
consists of the generalized eigenfunctions 	l;E.�/; l ¤ la, and 	�a

la;E
.�/ of the

continuous spectrum,

	l;E.�/ D .M=4�/1=2 e�q .
0�l/'J~l
�p

ME�
�
; ~l D jl C �j ; l ¤ la;

	
�a
la;E
.�/ D

s
1

4�Qa

ei�q.
0�la/'
�
J~a

�p
ME�

�

CQ�a
�p

ME=2�0

�2~a
J�~a

�p
ME�

��
;

Qa D 1C 2 Q�a .ME=4/~a cos.�~a/C
� Q�a

�2
.ME=4/2~a ; E � 0;

and (in the case of �a 2 .��=2; 0// the eigenfunctions	�a
la
.�/ corresponding to the

discrete levels E.�/
�a

,

	
�a
la
.�/ D

vu
u
tM2

ˇ
ˇ
ˇE.�/

�a

ˇ
ˇ
ˇ sin.�~a/

�2~a
ei�q .
0�la/'K~a

 rˇ
ˇ
ˇME.�/

�a

ˇ
ˇ
ˇ�

!

;

such that

LH?	l;E.�/ D E	l;E.�/; l ¤ la; LH?	�a
la;E
.�/ D E	�a

la;E
.�/; E � 0;

OH?
f�ag	

�b
lb
.�/ D E.�/

�b
	
�b
lb
.�/; b D 0;�1:
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The corresponding inversion formulas have the form

	.�/ D
X

l2Z; l¤la

Z 1

0

˚l.E/	l;E.�/dE

C
X

a

�Z 1

0

˚la.E/	
�a
la;E
.�/dE C ˚la	�a

la
.�/

�
; 8	 2 L2 �R2�;

˚l .E/ D
Z

d�	l;E.�/	.�/; l ¤ la ;

˚la .E/ D
Z

d�	�a
la;E
.�/	.�/; ˚la D

Z
d�	�a

la
.æ/	.æ/;

Z
d� j	.�/j2 D

X

l2Z

Z 1

0

j˚l.E/j2 dE C
X

a

j˚la j2 :

The terms with ˚la and 	�a
la
.�/ are absent in the case of �a … .��=2; 0/.

We now consider the case of the MSF where B ¤ 0.

10.2.1.3 Self-adjoint Radial Hamiltonians with MSF

In this case, the radial differential operation Lh .l/ is given by (10.9) with � D
ejBj=c„ ¤ 0,

Lh .l/ D �@2� C g1��2 C g2�2 C E .0/l ;

g1 D ~2l � 1=4; ~l D jl C �j ; g2 D �2=4; E .0/l D �.l C �/:

Up to the constant term E .0/l , these s.a. differential operations and the correspond-

ing initial symmetric operators Oh .l/ are identical to the respective operations and
symmetric operators encountered in Sect. 8.4. We can therefore directly carry over
the previously obtained results to s.a. extensions of Oh .l/. We note that as in the case
of a pure AB field, a division to different regions of g1 is actually determined by the
same term g1�

�2 singular at the origin and independent of the value of B .

First Region: g1 � 3=4

In this region, we have .l C �/2 � 1, so that

� D 0 W l � �1 or l � 1; i:e:; l ¤ l0 ;
� > 0 W l � �2 or l � 1; i:e:; l ¤ la:
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For such l , the initial symmetric operator Oh .l/ has zero deficiency indices. It
is essentially s.a., and its unique s.a. extension is Oh1 .l/ D OhC .l/ with domain
D�

Lh.l/ .RC/. The spectrum of Oh1 .l/ is simple, discrete, and given by

spec Oh1 .l/ D
n
El;m D � .1C jl C �j C .l C �/C 2m/ ; m 2 ZC

o
: (10.19)

The eigenfunctions U .1/

l;m,

U
.1/

l;m.�/ D Ql;m .�=2/
1=4C~l =2 �1=2C~l e���2=4˚

��m; 1C ~l I ��2=2
�
;

Ql;m D
�p

2�� .1C ~l Cm/
mŠ� 2.1C ~l /

�1=2
; (10.20)

of the Hamiltonian Oh1 .l/ form a complete orthonormalized system in the Hilbert
space L2.RC/.

Second Region: �1=4 < g1 < 3=4

In this region, we have 0 < .l C �/2 < 1, or equivalently (10.15). We know that if
� D 0, these inequalities have no solutions for l 2 Z, while if � > 0 there are the
two solutions l D la D a, a D 0;�1. Therefore, we again remain with the case
� > 0.

For each l D la , there exists a one-parameter U .1/ family of s.a. radial
Hamiltonians Oh�a .la/ parameterized by a real parameter �a 2 S .��=2; �=2/.
These Hamiltonians are specified by the asymptotic s.a. boundary conditions at
�! 0,

 �a.�/ DC
��p

�=2�
�1=2C~a

sin�a C
�p

�=2�
�1=2�~a

cos�a

�
CO ��3=2� ;

(10.21)

where ~a D j�Caj; 0 < ~a < 1, and C is an arbitrary constant,3 and their domains
are given by

Dh�a .la/
D
n
 W  2 D�

Lh.la/ .RC/ ;  satisfy (10.21)
o
: (10.22)

The spectrum of Oh�a .la/ is simple, discrete, and is bounded from below,

spec Oh�a .la/ D
n
Ea;m D �a;m C E .0/la ; m 2 ZC

o
;

3In comparison with (10.16), we fix the dimensional parameter k0 by k0 D p
�=2.
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where �a;m are solutions of the equation !�a.�a;m/ D 0,

!�a.W / D !C.W / sin�a C !�.W / cos�a;

!˙.W / D � .1˙ ~a/=� .1=2˙ ~a=2�W=2�/: (10.23)

The eigenfunctions U .2/

�a;m
,

U
.2/

�a;m
.�/ DQa;m ŒuC.�I �a;m/ sin�a C u�.�I �a;m/ cos�a� ;

Qa;m D
 

Q!
�a
.�a;m/p

2�~a!
0
�a
.�a;m/

!1=2
;

Q!�a .W / D!C.W / cos�a � !�.W / sin�a;

u˙.�IW / D .�=2/1=4˙~a=2 �1=2˙~ae���2=4˚
�
1=2˙ ~a=2�W=2�; 1˙ ~aI ��2=2

�
;

(10.24)

of the Hamiltonian Oh�a .la/ form a complete orthonormalized system in the Hilbert
space L2.RC/.

For �a D ˙�=2 and �a D 0 one can easily obtain explicit expressions for the
spectrum and eigenfunctions. For �a D ˙�=2, they are given by the respective
formulas (10.19) and (10.20) with the substitutions l ! la and ~l ! ~a. For
�a D 0; these formulas are modified by the additional substitution ~a ! �~a.

In addition, one can see that in each interval
�
�
.˙�=2/
a;m ; �

.˙�=2/
a;mC1

�
; m 2 f�1g [ ZC,

where �.˙�=2/a;m ;m 2 ZC, are solutions of the equation !˙�=2.�a;m/ D 0, and we set

formally �.˙�=2/a;�1 D �1. There is one solution �a;m of the equation !�a.�a;m/ D 0

for a fixed �a 2 .��=2; �=2/; the solution �a;m increases monotonically from

�
.˙�=2/
a;m C 0 to �.˙�=2/a;mC1 � 0 as �a goes from ��=2C 0 to �=2� 0.

Third Region: g1 D �1=4

In this region, we have l C � D 0. Thus, we remain with the only case, � D 0, and
with l D l0 D 0.

For l D l0, there exists a one-parameter U .1/ family of s.a. radial Hamiltonians
Oh� .l0/, parameterized by the real parameter � 2 S .��=2; �=2/. These Hamiltoni-
ans are specified by the asymptotic s.a. boundary conditions at �! 0,

 �.�/ D C
h
�1=2 ln

�p
�=2�

�
cos�C �1=2 sin�

i
CO ��3=2 ln �

�
; (10.25)
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where C is an arbitrary constant, and their domains are given by

Dh�.l0/ D
n
 W  2 D�

Lh.l0/ .RC/ ;  satisfy .10.25)
o
: (10.26)

The spectrum of Oh� .l0/ is simple, discrete, and is bounded from below, and

spec Oh� .l0/ D


Em; m 2



ZC; � D ˙�=2
f�1g [ ZC; j�j < �=2

�
;

where Em are solutions of the equation !�.Em/ D 0,

!�.W / D cos�Œ .˛0/� 2 .1/� � sin�; ˛0 D 1=2�W=2� : (10.27)

The limit � ! ˙�=2 in this equation and its solutions is described by the
equation  �1.˛0/ D 0 or 1=2 � E .˙�=2/m =2� D �m, m 2 ZC, and by the solution
E .˙�=2/m D �.1C 2m/.

A qualitative description of the spectrum is given in Sect. 8.4. One can see that

in each interval
�
E .˙�=2/m ; E .˙�=2/mC1

�
; m 2 f�1g[ZC, there is one solution Em (for a

fixed � 2 .��=2; �=2/) of (10.27) (we set formally E.˙�=2/
�1 D �1); the solution

Em increases monotonically from E .˙�=2/m C0 to E .˙�=2/mC1 �0 as � goes from �=2�0
to ��=2C 0.

The eigenfunctions U .3/

�;m,

U
.3/

�;m D Q�;m Œu1.�I Em/ sin�C u3.�I Em/ cos�� ;

u1.�IW / D .�=2/1=4 �1=2e���2=4˚
�
˛0; 1I ��2=2

�
;

u3.�IW / D u1.�IW / ln
�p

�=2�
�

C .�=2/1=4 �1=2e���2=4 @�˚.1=2C � �W=2�; 1C 2�I ��2=2/
ˇ
ˇ
�D0 ;

Q�;m D
�
� Q!�.Em/p

2�!0
�.Em/

�1=2
; Q!�.W / D sin�Œ .˛0/� 2 .1/�C cos�;

(10.28)

of the Hamiltonians Oh� .l0/, form a complete orthonormalized system in the Hilbert
space L2.RC/.

We note that the spectrum and eigenfunctions in the case � D ˙�=2 can be
obtained from the respective formulas for the first region in the formal limit l ! 0.
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10.2.1.4 Complete Spectrum and Inversion Formulas in Two Dimensions
with MSF

In the previous subsubsections, we constructed all s.a. radial Hamiltonians associated
with the s.a. differential operation Lh .l/ as s.a. extensions of the symmetric operator
Oh .l/ for any l 2 Z and for any 
0, �, and B . We assemble our previous results into
two groups.

For � D 0, we have

Oh1 .l/ ; l ¤ l0 D 0; Dh1.l/ D D�
Lh.l/ .RC/;

Oh� .l0/ ; � 2 S .��=2; �=2/;

and the domainDh�.l0/ is given by (10.26).
For � > 0, we have

Oh1 .l/ ; l ¤ la D a D 0;�1; Dh1.l/ D D�
Lh.l/ .RC/ ;

Oh�a .la/ ; �a 2 S .��=2; �=2/;

and the domainDh�a .la/
is given by (10.22).

As a result, each set of possible s.a. radial Hamiltonians Ohe .l/ generates an s.a.
rotationally invariant Schrödinger operator OH?

e D M�1bH?
e in accordance with

relations (10.13) and (10.14). As in the case of a pure AB field where B D 0,
we let E denote the spectrum points of OH?

e .
It is convenient to change the indexing l , m of the spectrum points and

eigenfunctions to l , n, as follows:

n D n.l;m/ D


m; l � �1;
mC l; l � 0; m 2 ZC; l 2 ZI

m D m.n; l/ D


n; l � �1;
n � l; 0 � l � n; n 2 ZC; l 2 Z; (10.29)

and then to interchange their positions, so that finally, the indices l , m are replaced
by indices n, l .

When writing formulas for eigenfunctions 	n;l of an operator OH?
e in terms

of eigenfunctions Ul;m of the operators Ohe.l/, we have to introduce the factor
.2��/�1=2 ei�.
0�l/' in accordance with (10.6) and to make the substitution El;m D
MEn;l for the corresponding spectrum points.

The final result is the following. There is a family of s.a. two-dimensional
Schrödinger operators OH?

e parameterized by real parameters ��, such that
OH?
e D OH?

��

,
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OH?
��

D
X˚

l2Z;l¤l�
OH? .l/˚

X˚
l�

OH?
��

.l�/ ;

OH? .l/ DM�1Sl Oh1.l/S�1
l ; l ¤ l�;

OH?
��

.l�/ DM�1Sl� Oh��
.l�/ S�1

l�
;

l� D


l0; � D 0;
la; � > 0;

�� D
(
� 2 S .��=2; �=2/ ; � D 0;
�a 2 S .��=2; �=2/ ; � > 0: (10.30)

The spectrum of OH?
��

is given by

spec OH?
��

D
n
[l2Z;l¤l� .En;l ; n 2 ZC/

o
[
n
[lDl�

�
E.��/
n ; n 2 ZC

�o
;

En;l D �M�1Œ1C 2nC 2�.l/��; l � n; l ¤ l�; �.l/ D


1; l � 0;
0; l < 0;

(10.31)

E.�/
n W

(
!�
�
ME.�/

n

� D 0; j�j < �=2;
E
.˙�=2/
n D �M�1.1C 2n/; � D 0;

(
E
.�a/
n DM�1 Œ�a;n C �.aC �/� ; !�a .�a;n/ D 0;

E
.˙�=2/
n D �M�1Œ1C 2nC 2�.a/��; n2ZC; � > 0;

(10.32)

where !� .W / and !�a .W / are given respectively by (10.27) and (10.23).
A complete set of orthonormalized eigenfunctions of OH?

��

consists of the func-

tions 	n;l .�/; l ¤ l�; and 	��

n;l�
.�/,

	n;l .æ/ D 1p
2��

ei�.
0�l/'U .1/

l;m.n;l/.�/; (10.33)

where U .1/

l;m.�/ are given by (10.20), and (we note that m.n; l�/ D n)

	�
n;l0
.�/ D 1p

2��
ei�
0'U .3/

�;n.�/; � D 0;

	
�a
n;la
.�/ D 1p

2��
ei�.
0�la/'U .2/

�a;n
.�/; � > 0;

where U .3/

�;n.�/ and U .2/

�a;n
.�/ are given respectively by (10.28) and (10.24), so that

OH?
��

	n;l .�/ D En;l	n;l .�/; l ¤ l�; OH?
��

.�/	
��

n;l�
D E.��/

n 	
��

n;l�
.�/:
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We note that for the case of � D ˙�=2, l D l0 D 0, and for the case of
�a D ˙�=2, l D la D a D 0;�1, the energy eigenvalues E.�/

n and E.�a/
n and

the corresponding eigenfunctions	�
n and 	�a

n are given respectively by (10.31) and
(10.33) extended to all values of l .

The corresponding inversion formulas have the form

	.�/ D
X

l2Z; l¤l�

X

n2ZC

˚n;l	n;l .�/C
X

l�;n2ZC

˚n;l�	
��

n;l�
.�/;

˚n;l D
Z

d�	n;l.�/	.�/; l ¤ l�; ˚n;l� D
Z

d�	��

n;l�
.�/	.�/;

Z
d� j	.�/j2 D

X

l2Z

X

n2ZC

j˚n;l j2 ; 8	 2 L2
�
R
2
�
:

10.2.2 Three-Dimensional Case

In three dimensions, we start with the differential operation LH (10.3). The initial
symmetric operator OH associated with LH is defined on the domain DH D
D �R3 n Rz

� 2 H D L2.R3/, where D �R3 n Rz
�

is the space of smooth and
compactly supported functions vanishing in a neighborhood of the z-axis. The
domain DH is dense in H, and the symmetry of OH is obvious. An s.a. Schrödinger
operator must be defined as an s.a. extension of OH .

There is an evident spatial symmetry in the classical description of the system, the
symmetry with respect to rotations around the z-axis and translations along this axis,
which is manifested as the invariance of the classical Hamiltonian under these space
transformations. The key point in constructing a quantum description of the system
is the requirement of the invariance of the Schrödinger operator under the same
transformations. Namely, let G be the group of the above space transformations S W
r 7�! Sr. This group is unitarily represented in H: if S 2 G, then the corresponding
operator US is defined by

.US /.r/ D  
�
S�1r

�
; 8 2 H:

The operator OH evidently commutes4 with US for any S .
We search only for s.a. extensions OHe of OH that also commute with US for

any S . This condition is the explicit form of the invariance, or symmetry, of a
Schrödinger operator under the space transformations. As in classical mechanics,

4We remind the reader of the notion of commutativity in this case (where one of the operators,
US , is bounded and defined everywhere): we say that the operators OH and US commute if US OH

 OHUS , that is, if  2 DH , then also US 2 DH and US OH D OHUS .
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this symmetry allows for the separation of the cylindrical coordinates �; ', and z and
the reduction of the three-dimensional problem to a one-dimensional radial problem.
LetL2 .R � RC/ denote the space of square-integrable functions with respect to the
Lebesgue measure dpzd� on R � RC, and let V WP˚

l2ZL2 .R � RC/ 7�! H be the
unitary operator defined by the relationship

.Vf /.�; '; z/ D 1

2�
p
�

Z

Rz

dpz

X

l2Z
ei.�.
0�l/'Cpzz/f .l; pz; �/:

Similarly to the preceding subsection, it is natural to expect that any s.a. Schrödinger
operator OHe can be represented in a form of the type

OHeDV
Z

Rz

dpz

X

l2Z
Ohe.l; pz/V

�1;

where Ohe .l; pz/ for fixed l and pz is an s.a. extension of the symmetric operator
Oh .l; pz/ D Oh.l/C p2z =2me in L2 .RC/ and the operator Oh.l/ in L2 .RC/ is defined
on the domainDh.l/ D D .RC/, where it acts as

Lh.l/ D �@2� C ��2
h�
l C �C ��2=2�2 � 1=4

i
:

The correct expression for OHe can be written in terms of a suitable direct integral,

OHe D V
Z ˚

Rz

dpz

X˚
l2Z

Ohe .l; pz/ V
�1:

Its rigorous justification is discussed in [78].
The inversion formulas in three dimensions are obtained by the following mod-

ifications in the two-dimensional inversion formulas:
P

l2Z
R

dE ! R
dpz

P
l2ZR

dE?, where E? are spectrum points of two-dimensional s.a. Schrödinger oper-
ators OH?

e , whereas the eigenvalues (spectrum points) E of three-dimensional s.a.
Schrödinger operators OHe are E D E? C p2z =2m; pz 2 R:

(1) The contributions of discrete spectrum points of the two-dimensional s.a.
Schrödinger operator OH?

e have to be multiplied by
R

dpz.
(2) Eigenfunctions of two-dimensional s.a. Schrödinger operators OH?

e have to
be multiplied by .2�„/�1=2 eipzz=„ in order to obtain eigenfunctions of three-
dimensional s.a. Schrödinger operators OHe.

(3) The extension parameters �a and � have to be replaced by functions �a.pz/ and
�.pz/.
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10.2.2.1 Self-adjoint Schrödinger Operators with AB Field

For the case of � D 0, there is a family of s.a. three-dimensional Schrödinger
operators parameterized by a real-valued function �.pz/ 2 S .��=2; �=2/, pz 2 R.

The spectrum of OH�.pz/ is given by

spec OHf�.pz/g

D RC [


p2z =2me � 4M�1�20 exp Œ2.tan�.pz/� C/� ; j�.pz/j < �=2
¿; �.pz/ D ˙�=2

�
:

A complete system of orthonormalized generalized eigenfunctions of OH�.pz/

consists of functions 	l;pz ;E?.r/; l ¤ l0; and 	�.pz/

l0;pz;E?
.r/,

	l;pz ;E?.r/ D �8�2„=M ��1=2
eipzz=„Ci�q.
0�l/'J~l

�p
ME?�

�
;

	
�.pz/

l0;pz ;E?
.r/ D

�
8�2„

� Q�2 C �2=4
�.

M
��1=2

eipzz=„Ci�q
0'

�
h Q�J0

�p
ME?�

�
C �

2
N0

�p
ME?�

�i
;

Q� D tan�.pz/ �C � ln
�p

ME?=2�0
�
;

and functions 	�.pz/

l0;pz
.r/,

	
�.pz/

l0;pz
.r/ D 1

2�
p„eipzz=„Ci�q
0'

�
8
<

:

r
2M2

ˇ
ˇ̌
E

?.�/
�.pz/

ˇ
ˇ̌
K0

�r
M
ˇ
ˇ̌
E

?.�/
�.pz/

ˇ
ˇ̌
�

�
; j�.pz/j < �=2

0; �.pz/ D ˙�=2
;

E
?.�/
�.pz/
D �4M�1�20 exp 2.tan�.pz/� C/;

such that

LH	l;pz;E? .r/ D �p2z =2me C E?�	l;pz ;E?.r/; E? � 0;
LH	�.pz/

l0;pz;E?
.r/ D �p2z =2me C E?�	�.pz/

l0;pz;E?
.r/; E? � 0;

LH	�.pz/

l0;pz
.r/ D

�
p2z =2me C E?.�/

�.pz/

�
	
�.pz/

l0;pz
.r/:
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The corresponding inversion formulas have the form

	.r/ D
Z

dpz

2

4
X

l2Z; l¤0

Z 1

0

˚l;pz

�
E?�	l;pz;E? .r/dE?

C
Z 1

0

˚l0;pz

�
E?�	�.pz/

l0;pz ;E?
.r/dE? C ˚l0;pz	

�.pz/

l0;pz
.r/

3

5 ;

8	 2 L2 �R3� ;

˚l;pz

�
E?� D

Z
	l;pz;E? .r/	.r/dr; l ¤ l0;

˚l;pz

�
E?� D

Z
	
�.pz/

l0;pz;E?
.r/	.r/dr; ˚l0;pz D

Z
	
�.pz/

l0;pz
.r/	.r/dr;

Z
j	.r/j2 dr D

Z
dpz

"
X

l2Z

Z 1

0

ˇ
ˇ˚l;pz

�
E?�ˇˇ2 dE? C ˇˇ˚l0;pz

ˇ
ˇ2
#

:

In the case � > 0, there is a family of s.a. three-dimensional Hamiltonians
OHf�a.pz/g parameterized by two real-valued functions �a.pz/ 2 S .��=2; �=2/,
a D 0;�1, pz 2 R.

The spectrum of OHf�a.pz/g is given by

spec OHf�a.pz/g D
8
<

:
p2z =2me � 4M�1k20

ˇ
ˇ
ˇ Q�a
ˇ
ˇ
ˇ
�~�1

a

; �a.pz/ 2 .��=2; 0/
¿; �a.pz/ … .��=2; 0/

9
=

;
[ RC;

~a D j�C aj; Q�a D � .1 � ~a/� �1.1C ~a/ tan�a.pz/; ~a D j�C aj:

A complete orthonormalized system in L2
�
R
3
�

consists of both generalized

eigenfunctions	l;pz ;E?.r/; l ¤ la, and 	�a.pz/

la;pz;E?
.r/,

	l;pz;E? .r/ D �8�2„=M ��1=2
eipzz=„Ci�q.
0�l/'J~l

�p
ME?�

�
;

	
�a.pz/

la;pz;E?
.r/ D �8�2„Qa

��1=2
eipzz=„Ci�q.
0�la/'

�
�
J~a

�p
ME?�

�
C
�p

ME?
.
2�0

�2~a Q�a J�~a
�p

ME?�
��
;

Qa D 1C 2
�
ME?=4

�~a Q�a cos.�~a/C .ME=4/2~a Q�2a;

and eigenfunctions 	�a.pz/

la;pz
.r/,



472 10 Schrödinger and Dirac Operators with AB and MS Fields

	
�a.pz/

la;pz
.r/ D �2�2„��1 eipzz=„Ci.laC�q
0/'

�

8
<̂

:̂

r
M2

ˇ
ˇ
ˇE?.�/
�a.pz/

ˇ
ˇ
ˇ sin.�~a/

2�~a
K~a

�r
M
ˇ̌
ˇE?.�/

�a.pz/

ˇ̌
ˇ�
�
; �a.pz/ 2 .��=2; 0/

0; �a.pz/ … .��=2; 0/
;

E
?.�/
�a.pz/

D� 4M�1�20 exp 2.tan�a.pz/ �C/;

such that

LH	l;pz;E? .r/ D �p2z =2me C E?�	l;pz ;E?.r/; E? � 0;
LH	�a.pz/

la;pz;E?
.r/ D �p2z =2me C E?�	�a.pz/

la;pz;E?
.r/; E? � 0;

LH	�a.pz/

la;pz
.r/ D

�
p2z =2me C E?.�/

�a.pz/

�
	
�a.pz/

la;pz
.r/:

The corresponding inversion formulas have the form

	.r/ D
Z

dpz

2

4
X

l2Z; l¤la

Z 1

0

˚l;pz

�
E?�	l;pz ;E?.r/dE?

C
X

a

Z 1

0

˚la;pz

�
E?�	�a.pz/

la;pz;E?
.r/dE? C ˚la;pz	

�a.pz/

la;pz
.r/

3

5 ;

8	 2 L2 �R3� ;

˚l;pz

�
E?� D

Z
dr	l;pz;E?.r/	.r/; E? � 0; l ¤ la;

˚la;pz

�
E?� D

Z
dr	�a.pz/

la;pz;E?
.r/	.r/; E? � 0;

˚la;pz D
Z

dr	�a.pz/

la;pz
.r/	.r/;

Z
dr j	.r/j2 D

Z
dpz

"
X

l2Z

Z 1

0

ˇ
ˇ˚l;pz

�
E?�ˇˇ2 dE? C

X

a

ˇ
ˇ˚la;pz

ˇ
ˇ2
#

:

10.2.2.2 Self-adjoint Schrödinger Operators with MSF

There is a family of s.a. three-dimensional Schrödinger operators OH��.pz/ parame-
terized by real-valued functions ��.pz/ 2 S .��=2; �=2/, pz 2 .R/, where �� are
defined by (10.30).
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The spectrum of OH��.pz/ is given by

spec OH��.pz/ D
˚
p2z =2me C E?��.pz/

n ; n 2 ZC
�[ Œ�M�1;1/;

where E?��.pz/
n are defined by (10.31) and (10.32) with the substitution �� !

��.pz/.
A complete system of generalized orthonormalized eigenfunctions of OH��.pz/

consists of functions 	pz;l;n.r/, l ¤ l�, and 	��.pz/

pz;l�;;n
.r/, n 2 ZC,

	pz;l;n.r/ D
1

2�
p„�eipzz=„C�.
0�l/'U .1/

l;m.n;l/.�/; l ¤ l�; (10.34)

where l� are defined by (10.30), m.n; l/ is given by (10.29), and U .1/

l;m.�/ are given
by (10.20),

	
�.pz/

pz;l0;n
.r/ D 1

2�
p„� eipzz=„Ci�
0'U .3/

�.pz/;n
.�/; � D 0;

	
�a.pz/

pz;la;n
.�/ D 1

2�
p„� eipzz=„Ci�.
0�la/'U .2/

�a.pz/;n
.�/; � > 0;

where U .3/

�.pz/;n
.�/ and U .2/

�a.pz/;n
.�/ are given respective by (10.28) and (10.24) with

the substitution �� ! ��.pz/, so that

LH	pz;l;n.r/ D
�
p2z =2me C E?

n;l

�
	pz;l;n.r/; l ¤ l�;

LH	��.pz/

pz;l�;;n
.r/ D �p2z

ı
2me C E?��.pz/

n

�
	
��.pz/

pz;l�;;n
.r/; (10.35)

where

E?
n;l D �M�1Œ1C 2nC 2�.l/��; l � n; l ¤ l�; n 2 ZC. (10.36)

We note that for �.pz/ D �a.pz/ D ˙�=2, the energy eigenvalues and
corresponding eigenfunctions 	pz;l;n.r/ are given by (10.34), (10.35), and (10.36)
extended to all the values of l .

The corresponding inversion formulas have the form

	.r/ D
Z

dpz

X

n2ZC

2

4
X

l2Z; l¤l�
˚pz;l;n	pzl;m.n;l/.r/C

X

lDl�
˚pz;l�;n	

��.pz/

pz;l�;n
.r/

3

5 ;

˚pz;l;n D
Z

dr	pz;l;n.r/	.r/; l ¤ l�; ˚pz;l�;n D
Z

dr	�.pz/

pz;l�;n
.r/	.r/;

Z
dr j	.r/j2 D

Z
dpz

X

l2Z

X

n2ZC

ˇ̌
˚pz ;l;n

ˇ̌2
;8	 2 L2 �R3�:
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10.3 Self-adjoint Dirac Operators

10.3.1 Reduction to Radial Problem

Written in the form of the Schrödinger equation, the Dirac equation with the MSF
reads5

i
@	 .x/

@t
D LH	 .x/ ; x D �x0; r� ; r D �xk; k D 1; 2; 3� ; x0 D t;

where 	 .x/ D f ˛.x/; ˛ D 1; : : : ; 4g is a bispinor (Dirac spinor) and LH is the s.a.
Dirac differential operation,

LH D ˛ . Lp�qA/Cmeˇ;

where Lp D �ir;r D �
@x; @y; @z

�
, the vector potential A .x/ is given by (10.2),

˛ D ��0�k; k D 1; 2; 3� ; ˇ D �0, and ��; � D 0; 1; 2; 3, are � -matrices, chosen in
the following representation:

�0 D diag
�
�3;��3� ; �1 D diag

�
i�2;�i�2� ; �2 D diag

��i�1; i�1� ;
�3 D antidiag .�I; I / ; �5 D �i�0�1�2�3 D �antidiag .I; I /;

where I D diag .1; 1/ is the 2�2 identity matrix; for the definition of Pauli matrices,
see Sect. 9.2.

The space of quantum states for the Dirac particle is the Hilbert space H D
L2
�
R
3
�

of square-integrable bispinors 	.r/with the scalar product

.	1; 	2/ D
Z

dr	C
1 .r/	2.r/; dr D dx1dx2dx3 D � d� d' dz;

where �, ', and z are cylindrical coordinates. The Hilbert space H can be
presented as

H D
4X˚

˛D1
H˛; H˛ D L2

�
R
3
�
:

Our first aim is to construct all s.a. Dirac operators (Dirac Hamiltonians) associ-
ated with the s.a. differential operation LH using the general approach presented in
Chaps. 3 and 4. In addition, the construction is also based on the known spatial

5In this section, we set c D „ D 1.
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symmetry in the problem,6 which allows for the separation of the cylindrical
coordinates �; ', and z.

Written in the cylindric coordinates, the differential operation LH then becomes

LH D diag
�
Y Cme�

3; Y �me�
3
�C Lpz antidiag

�
�3; �3

�
;

where

Y D Q �
�3@� C ��1 �i@' C �q Q


��
; Q D �1 sin ' � �2 cos'; Q2 D 1;

and

�q Q
 D �.
0 C �C ��2=2/; 
0 D Œ�B
� D �B
 � �; 0 � � < 1; � D ejBj > 0:

This operation commutes with the s.a. differential operations

Lpz D �i@z ; LSz D �5
�
�3 �m�1

e Lpz
�
;

LJz D �i@' C 1

2
˙3 D diag . L|z; L|z/ ; L|z D �i@' C �3=2;

where˙3 D diag
�
�3; �3

�
.

Now we pass to the pz-representation for bispinors, 	.r/! Q	.pz; �/,

	.r/ D 1p
2�

Z
eipzz Q	.pz; �/dpz; Q	.pz; �/ D 1p

2�

Z
e�ipzz	.x/dz:

In this representation, the operation LJz is the same, while the operation LH and
operation LSz respectively become

LH ! LH .pz/ D LH D diag
�
Y Cme�

3; Y �me�
3
�C pz antidiag

�
�3; �3

�
;

LSz ! LSz .pz/ D m�1
e pz antidiag .I; I /C diag .I;�I / :

We decompose bispinor Q	.pz; �/ for a fixed pz into two orthogonal components
that are eigenvectors of the spin matrix OSz.pz/:

Q	.pz; �/ D Q	1.pz; �/C Q	�1.pz; �/;

6By spatial symmetry, we mean invariance under rotations around the solenoid axis and under
translations along this axis.
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where

Q	1.pz; �/ D
�
M Cme

2M

�1=2 �
�1

pz .M Cme/
�1 �1

�
D �1.pz; �/˝ e1.pz/;

Q	�1.pz; �/ D
�
M Cme

2M

�1=2 ��pz .M Cme/
�1 ��1

��1

�
D ��1.pz; �/˝ e�1.pz/;

e1.pz/ D
�
M Cme

2M

�1=2 �
1

pz .M Cme/
�1
�
; e�1.pz/ D �i�2e1.pz/;

(10.37)

and es.pz/, s D ˙1, are two orthonormalized bispinors, eC
r .pz/e

C
s .pz/ D ırs , and

�s.pz; �/ are some doublets.
The space of bispinors Q	.pz; �/ with a fixed pz is the direct orthogonal sum of

two eigenspaces of OSz.pz/,

OSz .pz/ Q	s.pz; �/ D s M
me

Q	s.pz; �/; M D
q
m2
e C p2z ; s D ˙1:

We thus obtain a one-to-one correspondence 	.r/ ” Q	s.pz; �/ ”
�s.pz; �/ between bispinors 	.r/ and pairs of doublets �s.pz; �/ such that

k	k2 D
X

s

k�sk2 D
X

s

Z
dpzd� �C

s .pz; �/�s.pz; �/:

The differential operations LH and LJz induce the differential operations Lh and L|z

in the space of doublets �s.pz; �/ as follows:

LH .pz/ Q	s D Lh .s; pz/ �s ˝ es; LJz .pz/ Q	s D L|z�s ˝ es;
Lh .s; pz/ D Q

�
�3@� C ��1 �i@' C �q Q


��C sM�3:
The s.a. operator O|z associated with L|z has a discrete spectrum, and its eigenvalues

jz are all half-integers labeled here by integers l as jz D �.
0 � l C 1=2/,
O|z�l .'/ D Œ�.
0 � l C 1=2/��l .'/; l 2 Z:

It is convenient to represent vectors �l .'/ � �l .pz; �; '/ of the corresponding
eigenspaces, as

�l .'/ D .2�/�1=2ei Œ�.
0�lC1=2/��3=2�'#l D Sl.'/ 1p
2��

F.l; pz; �/;

Sl .'/ D ei�.
0�lC1=2/'antidiag
�
iei'=2;�e�i'=2� ; SC

l .'/ Sl.'/ D I; (10.38)

where #l D #l.pz; �/ and F.l; pz; �/ are arbitrary doublets independent of '.
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The space of each of the doublets �s.pz; �/ is a direct orthogonal sum of
the eigenspaces of the operator O|z, which means that the doublets allow the
representations

�s.pz; �/ D
X

l2Z

1p
2��

Sl.'/F.s; l; pz; �/;

where the factor 1=
p
2�� is introduced for later convenience.

Taking into account the relationships

Lh .s; pz/
1p
�
Sl D 1p

�

n
Q�3Sl@� C �QSl

�
��1~l C ��=2

�C sM�3Sl
o
;

Lh .s; pz/ �s D
X

l2Z

1p
2��

Sl.'/ Lh .s; l/ F.s; l; pzI �/;

where

Lh .s; l/ D i�2@� C �.��=2C ��1~l /�1 � sM�3;
~l D l C � � 1=2; (10.39)

we see that the operation Lh .s; pz/ induces an s.a. radial differential operation Lh .s; l/
(depending on the parameter pz as well) in the space of doublets F .

In the Hilbert space7
L
2 .RC/ D L2 .RC/˚ L2 .RC/ of doublets F.�/ (with pz

fixed), we define the initial symmetric radial Hamiltonian Oh .s; l/ associated with
the operation (10.39) and acting on the domainDh.s;l/,

Dh.s;l/ D D .RC/ D D .RC/˚D .RC/ : (10.40)

10.3.2 Solutions of Radial Equations

We first consider the radial equation

h Lh .s; l/ �W
i
F .�/ D 0 (10.41)

and some of its useful solutions.

7See Sect. 9.2.
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We let f and g denote the respective upper and lower components of doublets F ,
F D .f�g/. Then (10.41) is equivalent to a set of radial equations for f and g,

f 0 � �.��=2C ��1~l /f C .W � sM/g D 0;
g0 C �.��=2C ��1~l /g � .W C sM/f D 0; (10.42)

where the prime denotes the derivative with respect to �.
We let LhC D LhC.s; l/ and Lh� D Lh�.s; l/ denote the differential operation Lh with

� D 1 and � D �1 respectively. We then have

LhC.s; l/ D i�2@� C
�
��=2C ��1~l

�
�1 � sM�3;

Lh�.s; l/ D i�2@� �
�
��=2C ��1~l

�
�1 � sM�3

D i�2 �i�2@� C .��=2C ��1~/�1 C sM�3� �i�2�C

D i�2 LhC.�s; l/
�
i�2

�C
:

It follows that solutions F� D F�.s; l; E�.s/I �/ of
h Lh� �E�.s/

i
F� D 0

are bijectively related to solutions FC D FC.s; l; EC.s/I �/ of the equationh LhC � EC.s/
i
FC D 0 as follows:

F�.s; l; E�.s/I �/ D i�2FC.�s; l; EC.�s/I �/; E�.s/ D EC.�s/:

That is why we consider below the case � D sgn .qB/ D 1 only and omit the
subscript “C”.

The set (10.42) can be reduced to second-order differential equations for both f
and g. For example, we have the following set of equations equivalent to (10.42):

f 00 �
�
.��=2/2 C ~l.~l � 1/

�2
� wC �

�
~l C 1

2

��
f D 0;

g D .W � sM/�1
��f 0 C .��=2C ��1~l /f

�
; w D W 2 �M2: (10.43)

By the substitution

f .�/ D za=2e�z=2p.z/; z D ��2=2; a D 1=2˙ .~l � 1=2/;

we reduce the first equation (10.43) to the equation for p.z/ that is the equation for
confluent hypergeometric functions,

z@2zp C .ˇ � z/@zp � ˛p D 0;
ˇ D aC 1=2;
˛ D a=2C ~l=2C 1=2� w=2�: (10.44)
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Known solutions of (10.44) allow us to obtain solutions of (10.41).
In what follows, we use the following solutions F1.�I s;W /, F2.�I s;W /, and

F3.�I s;W / of equation (10.41):

F1 D �1=2�l��e�z=2

�� .2ˇ1/�1 .W � sM/�˚.˛1 C 1; ˇ1 C 1I z/
˚.˛1; ˇ1I z/

�
;

F2 D �lC��1=2e�z=2

�
˚.˛2; ˇ2I z/
.2ˇ2/

�1 .W C sM/�˚.˛2; ˇ2 C 1I z/
�
;

F3 D �1=2�l��e�z=2

�
2�1.W � sM/�	.˛1 C 1; ˇ1 C 1I z/
	.˛1; ˇ1I z/

�
; (10.45)

where

ˇ1 D 1 � l � �; ˛1 D �w=2�; ˇ2 D l C �; ˛2 D l C � � w=2�;

!1 D !1.s;W / D 2 .�=2/ˇ2 � .ˇ1/

.W C sM/� .˛1/
; !2 D !2.W / D � .ˇ2/

� .˛2/
:

All the solutions F1, F2, and F3 are real entire in W , and F3 D !2F1 � !1F2.
The solutions (10.45) have the following asymptotic behavior at the origin and at

infinity: As �! 0, we have

F1 D �1=2�l��
�
� .2ˇ1/�1 .W � sM/��1

� QO ��2� ;

F2 D �lC��1=2
�
1� .2ˇ2/

�1 .W C sM/�1
� QO ��2� ;

f3 D .W � sM/� .ˇ1/

2 .�=2/ˇ1 � .˛1 C 1/
�lC��1=2

8
<

:

QO ��2� ; l � �1;
QO ��2�2�� ; l D 0; � > 0;
QO ��2 ln �

�
; l D 0; � D 0;

g3 D � .ˇ2/

� .˛2/
�1=2�l��


 QO ��2� ; l � 1;
QO ��2�� ; l D 0; � > 0; (10.46)

where F3 D .f3�g3/.
As �!1, we have

F1 D .�=2/˛1�ˇ1 � .ˇ1/
� .˛1/

��~lC2˛1�2ˇ1ez=2
�
��.W C sM/�1�1

� QO ���2� ;

F2 D .�=2/˛1 � .ˇ2/

� .˛2/
�~lC2˛1ez=2

�
1� .��/�1 .W C sM/

� QO ���2� ;

F3 D .�=2/�˛1 �~l�2˛1e�z=2
�
.��/�1 .W � sM/�1

� QO ���2� :
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We define the Wronskian Wr
�
F; QF � of two doublets F D .f�g/ and QF D� Qf� Qg� by

Wr
�
F; QF � D f Qg � g Qf D iF�2 QF :

If
� Lh�W �

F D � Lh�W � QF D 0, then Wr.F; QF / D C D const. Solutions F and QF
are linearly independent iff C ¤ 0. It is easy to see that Wr.F1; F2/ D �1.

If ImW > 0, solutions F1; F2; and F3 are pairwise linearly independent,

Wr.F1; F3/ D !1.W /; Wr.F2; F3/ D !2.W /:

Taking the asymptotics of the linearly independent solutions F1 and F3 into
account, we see that there are no square-integrable solutions of (10.41) with ImW

¤ 0 and jl j � 1 or l D 0, � D 0. This implies that in these cases, the deficiency
indices of Oh .s; l/ are zero. In the case l D 0, � > 0, the solution F3 is square-
integrable, which implies that the deficiency indices of Oh .s; 0/ are m˙ D 1.

For any l and �, the asymptotic behavior of any solution F of (10.41) at the
origin, as �! 0; is no stronger than ��j~l j, that is, F.�/ D O ���j~l j�.

We now consider the inhomogeneous equation

h Lh .s; l/ �W
i
F.�/ D 	.�/; 8	 2 L

2 .RC/ ;

see (5.34) from Chap. 5. Its general solution allows the representations

F.�/ D c1Fd .�IW /C c2F3.�IW /C !�1
d

�
�
Fd.�IW /

Z 1

�

F3.r IW /	.r/dr C F3.�IW /
Z �

0

Fd .r IW /	.r/dr
�
;

!d DWr.Fd ; F3 /; d D


d D 1; l � 0;
d D 2; l � 1: (10.47)

A simple estimate of the integral terms on the right-hand side of (10.47) using
the Cauchy–Schwarz inequality shows that they are bounded as � !1. It follows
that F 2 L

2.RC/ implies c1 D 0.
For j~l j � 1=2, an evaluation shows that as �! 0, the integral terms are of order

O
�
�1=2

�
(up to the factor ln � for j~l j D 1=2) . In this case, F 2 L

2.RC/ implies
c2 D 0, and we obtain

F.�/ D !�1
d

�
Fd.�IW /

Z 1

�

F3.r IW /	.r/drCF3.�IW /
Z �

0

Fd .r IW /	.r/dr
�
:

(10.48)
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For j~l j � 1=2, the doubletF3.�IW / is square-integrable, and a solution F.�/ 2
L
2.RC/ allows the representation

F.�/ D b!�1
1 F1.�IW /C c2F3.�IW /C !�1

1

�
�
F3.�IW /

Z �

0

F1.r IW /	.r/dr � F1.�IW /
Z �

0

F3.r IW /	.r/dr
�
;

(10.49)

so that as �! 0, we have

F.�/ D !�1
1

�Z 1

0

F3.r IW /	.r/dr
�
F1.�IW /C c2F3.�IW /CO

�
�1=2

�
:

Following Sect. 5.3, we will use representations (10.47)–10.49) to obtain Green’s
functions for s.a. radial Hamiltonians.

10.3.3 Self-adjoint Radial Hamiltonians

We proceed to the construction of s.a. radial Hamiltonians Ohe .s; l/ as s.a. extensions
of the initial symmetric radial operators Oh .s; l/ (10.40) and analyze the correspond-
ing spectral problems.

The action of all of the following operators associated with the differential
operations Lh .s; l/ is given by Lh .s; l/; therefore we cite only their domains.

We begin with the adjoint OhC .s; l/ of Oh .s; l/. Its domain DhC is the natural
domainD�

Lh.s;l/ .RC/ for Lh .s; l/;

D�
Lh.s;l/ .RC/ D

n
F� .�/ W F� are a.c.; F�; Lh .s; l/ F� 2 L

2 .RC/
o
:

The quadratic asymmetry form�hC .F�/ of OhC .s; l/ is expressed in terms of the
local quadratic form

ŒF�; F�� .�/ D g.�/f .�/ � f .�/g.�/; F� D .f �g/ ;

as follows:

�hC .F�/ D
�
F�; OhCF�

�
�
� OhCF�; F�

�
D � ŒF�; F�� .�/j10 :



482 10 Schrödinger and Dirac Operators with AB and MS Fields

One can prove that lim�!1 F� .�/ D 0 for any F� 2 D�
Lh .RC/. Indeed, because

F� and Lh .s; l/ F� are square-integrable at infinity, the combination

F 0� � .��=2/�3F� D �i�2
h Lh .s; l/ F� � .~l=�/�1F� C sM�3F�

i

is also square-integrable at infinity. This implies that f and f 0 � .��=2/f; together
with g and g0 C .��=2/g, are square-integrable at infinity. Let us consider the
identity

jf .�/j2 D
Z �

a

h
@f .r/f .r/C f .r/@f .r/

i
dr C �

Z �

a

r jf .r/j2dr C jf .a/j2;

where @ D @� � ��=2. The right-hand side of this identity has a limit (finite or
infinite) as � !1. Therefore, jf .�/j also has a limit as � !1. This limit has to
be zero because f .�/ is square-integrable at infinity. In the same manner, one can
verify that g.�/! 0 as �!1.

To analyze the behavior of F� at the origin, we consider the relationship

	 D Lh .s; l/ F�; 	; F� 2 L
2 .RC/ ;

or

f 0 � ���=2C ��1~l
�
f D� �2; g0 C ���=2C ��1~l

�
g D �1;

� D .�1��2/ D 	 C sM�3F� 2 L
2.RC/;

as an equation for F� at a given �. The general solution of these equations allows
the representation

f .�/ D �~l e��2=4
�
c1 C

Z 1

�

r�~l e��r2=4�2.r/dr
�
;

g.�/ D ��~l e���2=4
�
c2 C

Z �

�0

r~l e�r
2=4�1.r/dr

�
: (10.50)

It turns out that the asymptotic behavior of the functions f and g at the origin
crucially depends on the value of l: Therefore, our exposition is naturally divided
into subsections related to the corresponding regions. We distinguish three regions
of l .

10.3.3.1 First Region: ~l � �1=2

In this region, we have

l �

 �1; � > 0;
0; � D 0:
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The representation (10.50) allows the estimation of the asymptotic behavior of
doublets F� 2 D�

Lh.s;l/ .RC/ as �! 0 for the first region. For f .�/, we have

f .�/ D ��j~l je��2=4
�
Qc1 �

Z �

0

r j~l je��r2=4�2.r/dr
�

D Qc1��j~l j CO ��1=2� ; Qc1 D c1 C
Z 1

0

r j~l je��r2=4�2.r/dr:

The condition f 2 L2 .RC/ implies Qc1 D 0, and therefore, f .�/ D O
�
�1=2

�
as

�! 0. As to g.�/, we obtain as �! 0,

g.�/ D
(
O
�
�1=2

�
; ~l < �1=2;

O
�
�1=2 ln �

�
; ~l D �1=2.l D 0; � D 0/:

Thus, F� .�/ ! 0 as � ! 0, which implies that �hC .F�/ D 0, 8F� 2
D�

Lh.s;l/ .RC/ : This means that the deficiency indices of each of the symmetric

operators Oh .s; l/ in the first region are zero. Therefore, there exists only one s.a.
extension Oh.1/ .s; l/ D OhC .s; l/ of Oh .s; l/, that is, a unique s.a. radial Hamiltonian
with given s and l ; its domain is the natural domain,Dh.1/.s;l/ D D�

Lh.s;l/ .RC/.
The representation (10.48) with d D 1 implies that the Green’s function (see

(5.35)) of the s.a. Hamiltonian Oh.1/ .s; l/ is given by

G
�
�; �0IW � D !�1

1 .W /



F3.�IW /˝ F1 .�0IW / ; � > �0;
F1.�IW /˝ F3 .�0IW / ; � < �0:

Unfortunately, we cannot use representation (10.45) for F3 as a sum of two terms
directly for all the values of � because both are singular at � D 0 (although the sum
is not). To cover the total range of �; we use another representation for F3.

We let Fil .�IW / denote the functions Fi .�IW /, i D 1; 2; 3, with a fixed l and
represent F3l as

F3l D !1ŒA1lF1l C F4l �; A1l D A1l.W / D ˝1.W /� � .ˇ2/P1l .W /;
F4l D F4l .�IW / D � .ˇ2/P1l .W /F1l .�IW /� F2l.�IW /;

˝1.W / D !2.W /

!1.W /
; P1l .W / D .W C sM/.�=2/jlj� .˛1/

2jl jŠ� .˛1 � jl j/ :

Using the relationship (8.27), we can verify that

� �1.ˇ2/F2l .�IW /
ˇ
ˇ
�!0
D P1l .W /F1l .�IW /j�D0:
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Taking the latter relationship into account, it is easy to see that in the first region,
A1l and F4l are finite for � � 0, as well as !1 and F1l , and also that P1l.E/ and
F4l .�IE/ are real.

The Green’s function is then represented as

G
�
�; �0IW � DA1l .W /F1l .�IW /˝ F1l

�
�0IW �

C


F4l .�IW /˝ F1l .�0IW / ; � > �0;
F1l .�IW /˝ F4l .�0IW / ; � < �0; (10.51)

for all � � 0.
We choose the guiding functional ˚.F IW / for the s.a. operator Oh.1/ .s; l/ in

the form (5.33) with U D F1 and D D Dr.RC/ \ Dh.1/.s;l/. To prove that the
guiding functional is simple, it suffices to verify only property (ii) (see Chap. 5). Let
˚.F0IE0/ D 0, where F0 2 D, and let

QF .�/ D F1.�IE0/
Z 1

�

F.r/F0.r/dr C F.�/
Z �

0

F1.r IE0/F0.r/dr

be a solution of the equation
� Lh .s; l/ � E0

� QF D F0, where F.�/ is any solution

of (10.41) with W D E0 satisfying the condition Wr.F1; F / D 1. It is then easy to
verify that QF .�/ 2 D. Therefore, the spectrum of Oh.1/ .s; l/ is simple.

Using representation (10.51) for the Green’s function, we obtain the derivative
of the spectral function,

� 0.E/ D ��1 ImA1l.E C i0/: (10.52)

It is easy to prove that ImA1l.E C i0/ is continuous in � for � � 0, so that it is
sufficient to obtain � 0.E/ only for the case � > 0, where (10.52) is simpler,

� 0.E/ D .W C sM/ .�=2/�ˇ2 � .ˇ2/
2�� .ˇ1/� .˛2/

ˇ
ˇ̌
ˇ
ˇ
WDE

Im� .˛1/jWDECi0 : (10.53)

It is easy to see that � 0.E/ may differ from zero only at the pointsEk defined by
the relationship ˛1 D �k (� .˛1/ D 1), or M2 � E2

k D �2�k; which yields

Ek D ˙Mk; M0 D M; k 2 ZC; Mx D
p
M2 C 2�x: (10.54)

The presence of the factor .E C sM/ on the right-hand side of (10.53) implies
that the points E D �sM D �sM0 do not belong to the spectrum of Oh.1/ .s; l/.
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In what follows it is convenient to change the numeration of the spectrum points. To
this end, let us introduce an index n.s/:

n.s/ 2Z.s/ D ˚n�.s/
�
; � D ˙ ;

nC.s/ 2


ZC; s D 1;
N; s D �1; n�.s/ 2


 �N; s D 1;
Z�; s D �1: (10.55)

Then we can write

Ek D ˙Mk H) En.s/ D �Mjn.s/j; n.s/ 2 Z.s/:

Finally, using the introduced notation, we obtain for � 0.E/,

� 0.E/ D
X

n.s/2Z.s/
Q2

n.s/ı
�
E �En.s/

�
;

Qn.s/ D
s
.�=2/ˇ1 � .ˇ1 C jn.s/j/

�
1C sME�1

k

�

jn.s/jŠ� 2.ˇ1/
; ˇ1 D 1C jl j � �:

Thus, the simple spectrum of Oh.1/ .s; l/ is given by spec Oh.1/ .s; l/ D
n
En.s/; n.s/

2 Z.s/
o
. The eigenvectors

I

Un.s/ D
I

Un.s/ .s; l; pzI �/ D Qn.s/F1.�IEn.s//; n.s/ 2 Z.s/; (10.56)

of Oh.1/ .s; l/ form a complete orthonormalized system in the space L
2.RC/ of

doublets F .�/; see (5.36).

10.3.3.2 Second Region: ~l � 1=2

In this region, we have l � 1:
Here the representation (10.50) yields the following estimates for the asymptotic

behavior of doublets F� 2 D�
Lh.s;l/ .RC/ as �! 0:

f .�/ D
(
O
�
�1=2

�
; ~l > 1=2;

O
�
�1=2 ln �

�
; ~l D 1=2;

g.�/ DO ��1=2� :

It follows that F� .�/ ! 0 as � ! 0, which implies that �hC .F�/ D 0;8F� 2
D�

Lh.s;l/ .RC/. This means that the deficiency indices of each symmetric operator
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Oh .s; l/ are zero in the second region. Therefore, there exists only one s.a. extension
Oh.2/ .s; l/ D OhC .s; l/ of Oh .s; l/, that is, a unique s.a. radial Hamiltonian with given
s and l , whose domain is the natural domain,Dh.2/.s;l/ D D�

Lh.s;l/ .RC/.
The representation (10.48) with d D 2 implies that the Green’s function for the

s.a. Hamiltonian Oh.2/ .s; l/ is given by

G
�
�; �0IW � D !�1

2 .W /

(
F3l .�IW /˝ F2l .�0IW / ; � > �0;
F2l .�IW /˝ F3l .�0IW / ; � < �0:

Again, the representation (10.45) for F3 as a sum of two terms is not applicable
directly for � D 0. We therefore use the following representation for F3:

F3l D !2 .F5l � A2lF2l / ; A2l D A2l.W / D ˝2.W /C � .ˇ1/P2l .W /;
F5l D F5l.�IW / D F1l .�IW /C � .ˇ1/P2l .W /F2l .�IW /;

˝2.W / D !1.W /

!2.W /
; P2l .W / D .W � sM/.�=2/l�1� .˛1 C l/

2.l � 1/PŠ � .˛1 C 1/
:

Using (10.54), one can verify that

� �1.ˇ1/F1l .�IW /
ˇ
ˇ
�!0
D � P2l .W /F2l .�IW /j�D0:

Taking the latter relationship into account, it is easy to see that A2l and F5l are finite
for � � 0, as well as !2 and F2l , and P2l .E/ and F5l .�IE/ are real.

The Green’s function is then represented as

G
�
�; �0IW � D� A2l.W /F2l .�IW /˝ F2l

�
�0IW �

C
(
F5l .�IW /˝ F2l .�0IW / ; � > �0;
F2l .�IW /˝ F5l .�0IW / ; � < �0;

(10.57)

for all � � 0.
We choose the guiding functional˚.F IW / in the form (5.33) with U D F2 and

D D Dr.RC/\Dh.2/.s;l/. Its simplicity is proved in a similar way to the first region

case and implies that the spectrum of Oh.2/ .s; l/ is simple.
Using representation (10.57), we obtain that the derivative � 0.E/ of the spectral

function is given by

� 0.E/ D ���1 ImA2l.E C i0/: (10.58)
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It is easy to prove that ImA2l.E C i0/ is continuous in � for � � 0, so that it is
sufficient to obtain � 0.E/ only for the case � > 0, where the right-hand side of
(10.58) is simpler,

� 0.E/ D .W � sM/ .�=2/ˇ2 � .ˇ1/

��� .ˇ2/� .1C ˛1/

ˇ
ˇ
ˇ
ˇ
ˇ
WDE

Im� .˛2/jWDECi0:

It is easy to see that � 0.E/ may differ from zero only at the pointsEk defined by
the relationship ˛2 D �k (� .˛2/ D 1) or by the relationship

M2 �E2
k C 2�.l C �/ D �2�k ; k 2 ZC ;

which yields Ek D ˙MkClC�; k 2 ZC, where Mx is defined by (10.54). All such
points Ek are spectrum points.

It is convenient to change indexing k for n.s/, defined by (10.55),

Ek H) En.s/ D �Mjn.s/jC�;
n
n.s/ 2 Z.s/; jn.s/j � l

o �
n�.s/ D �.k C l/; k 2 ZC

�
:

Thus, we finally obtain

� 0.E/ D
X

n.s/2Z ;jn.s/j�l
Q2

n.s/ı
�
E �En.s/

�
;

Qn.s/ D

vu
u
t .�=2/lC� � .jn.s/j C �/

�
1 � sME�1

n.s/

�

.jn.s/j � l/Š� 2.l C �/ :

The simple spectrum of Oh.2/ .s; l/ is given by

spec Oh.2/ .s; l/ D
˚
En.s/; n.s/ 2 Z; jn.s/j � l� :

The eigenvectors

II

Un.s/ D
II

Un.s/ .s; l; pzI �/ D Qn.s/F2
�
�IEn.s/

�
; n.s/ 2 Z.s/; (10.59)

of Oh.2/ .s; l/ form a complete orthonormalized system in the space L
2.RC/ of

doublets F .�/.
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10.3.3.3 Third Region: j~l j < 1=2

In this region l D l0 D 0; and ~l is reduced to ~0 D �� 1=2, � > 0.
Representation (10.50) yields the following asymptotic behavior of doublets

F� 2 D�
Lh.s;l0/ .RC/ as �! 0:

F�.�/ D


f .�/ D c1.me�/

~0

g.�/ D c2.me�/
�~0 CO

�
�1=2

�
:

It follows that �hC .F�/ D c2c1 � c1c2. Such a representation for the quadratic
form �hC .F�/ implies that the deficiency indices of the initial symmetric operator
Oh .s; l0/ are m˙ D 1. The condition �hC .F�/ D 0 yields asymptotic boundary
conditions as �! 0,

F.�/ D C
�
.me�/

~0 cos�
.me�/

�~0 sin�

�
CO ��1=2� ; (10.60)

with a fixed � 2 S .��=2; �=2/ (note that � depends on s and pz, � D �.s; pz/)
that define a maximum subspace in D�

Lh.s;l0/ .RC/ where �hC D 0. This subspace

is just the domain of an s.a. extension of Oh .s; l0/ (see Chap. 4 and problems from
Chaps. 6, 7, and 8).

We thus obtain that there exists a one-parameter U.1/ family of s.a. radial
Hamiltonians Oh� .s; l0/ parameterized by the real parameter � 2 S .��=2; �=2/.
These Hamiltonians are specified by the domains

Dh�.s;l0/ D
n
F.�/ W F.�/ 2 D�

Lh�.s;l0/ .RC/ ; F satisfy .10.60/
o
:

According to representation (10.49), which certainly holds for the doublets F
belonging to Dh�.s;l0/, and (10.46), the asymptotic behavior of F as �! 0 reads

F D
��c2!1�~0�
b!�1

1 C c2!2
�
��~0

�
CO ��1=2� :

On the other hand, F satisfies boundary conditions (10.60), whence it follows that
there must be

c2 D �b cos�

!1!.�/
; !.�/ D !2 cos�Cm�2~0

e !1 sin�: (10.61)

Then representation (10.49) for F with c2 given by (10.61) implies that the
Green’s function of Oh� .s; l0/ is given by

G
�
�; �0IW � D ˝�1.W /F.�/.�IW /˝ F.�/

�
�0IW �

C

 QF.�/.�IW /˝ F.�/ .�0IW / ; � > �0;
F.�/.�IW /˝ QF.�/ .�0IW / ; � < �0;

(10.62)
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where

F.�/.�IW / D m�~0
e F1.�IW / sin�Cm~0

e F2.�IW / cos�;

QF.�/.�IW / D m�~0
e F1.�IW / cos� �m~0

e F2.�IW / sin�;

˝.W / D !.�/.W /

Q!.�/.W / ; m
~0
e F3 D Q!.�/F.�/ C !.�/ QF.�/;

Q!.�/.W / D !2 sin� �m�2~0
e !1 cos�:

We note that the doublets F.�/.�IW / and QF.�/.�IW / are real entire inW; and the
doublet F.�/.�IW / satisfies asymptotic s.a. boundary conditions (10.60).

Here, we choose the guiding functional ˚.F IW / in the form (5.33) with U D
F.�/ and D D Dr.RC/ \Dh�.s;l0/. Its simplicity is proved similarly to the first and

second regions and implies that the spectrum of Oh� .s; l0/ is simple.
Using the representation (10.62) for the Green’s function, we obtain that the

derivative � 0.E/ of the spectral function is given by � 0.E/ D ��1 Im˝�1.EC i0/.
Because ˝.E/ is real, � 0.E/ differs from zero only at the points Ek defined by the
relation˝.Ek/ D 0, and we obtain

� 0.E/ D
X

k2Z
Q2
kı.E � Ek/; Qk D

��˝ 0.Ek/
��1=2

; ˝ 0.Ek/ < 0:

Thus, the simple spectrum of Oh� .s; l0/ is given by spec Oh� .s; l0/ D fEk; k 2 Zg.
The eigenvectors

III

Uk D
III

Uk .�; s; pzI �/ D QkF.�/.�IEk/; k 2 Z; (10.63)

of Oh� .s; l0/ form a complete and orthonormalized system in the space L
2.RC/ of

doublets F .�/.
Let us study the spectrum in greater detail.

I. First, we consider the case � D �=2. In this case we have

F.�=2/.�IW / D m�~0
e F1.�IW /; ˝.W / D m�2~0

e !1.W /!
�1
2 .W /;

and

� 0.E/ D m2~0
e � .ˇ2/.W C sM/

2� .�=2/ˇ2 � .ˇ1/� .˛2/

ˇ
ˇ
ˇ
ˇ
WDE

Im� .˛1/jWDECi0: (10.64)

As in the first region, � 0.E/ differs from zero only at the points (for which we
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will use the notation Ek) defined by the relationship ˛1 D �k (� .˛1/ D 1),
or by

M2 � E2k
2�

D �k; Ek D ˙Mk; k 2 ZC :

The presence of the factor .E C sM/ on the right-hand side of (10.64) implies
that the points E D �sM D �sM0 do not belong to the spectrum of
Oh�=2 .s; l0/. Thus,

Ek D .sgn k/Mjkj; jkj � 1; E0 D sM; k 2 Z:

Using (10.55), we change the indexing of the spectrum points,

Ek H) En.s/ D �Mjn.s/j; n D n .s/ 2 Z.s/:

Then we finally obtain

� 0.E/ D
X

n.s/2Z.s/
m2~0
e Q2

�=2jn.s/ı
�
E � En.s/

�
;

Q�=2jn.s/ D

vuu
t� .jn .s/ j C 1 � �/

�
1C sME�1

n.s/

�

.�=2/ˇ2 jnjŠ� 2.1 � �/ :

Thus, the simple spectrum of Oh�=2 .s; l0/ is given by spec Oh�=2 .s; l0/ D˚En.s/; n .s/ 2 Z.s/�. The eigenvectors

III

U�=2jn.s/ D
III

U�=2jn.s/ .�=2; s; l0; pzI �/ D Q�=2jn.s/F1
�
�I En.s/

�
; n .s/ 2 Z.s/;

of Oh�=2 .s; l0/ form a complete orthonormalized system in the space L
2.RC/ of

doublets F .�/.
We note that the spectrum, spectral function, and eigenfunctions of Oh�=2

.s; l0/ can be obtained from the respective expressions from the first region,
~l � �1=2, by the substitution l D 0. We also note that for � < 1=2,
the function F.�=2/.�IW / D m�~0

e F1.�IW / has a minimal singularity in the
family of functions F.�/.�IW /; in fact, it is nonsingular. For � > 1=2, the
function F.0/.�IW / D m~0

e F2.�IW / has a minimal singularity in the family of
F.�/.�IW /. In fact, F.0/.�IW / is nonsingular. For � D 1=2, all functions of
the family F.�/.�IW / have the same type of asymptotics: F.�/.�IW / D O.1/

as �! 0.
We obtain the same results for the spectrum and complete orthonormalized

set of the eigenvectors in the case � D ��=2.
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II. In the same manner, if � D 0; we obtain that F.0/.�IW / D m~0
e F2.�IW /I the

simple spectrum of Oh0 .s; l0/ is given by

spec Oh0 .s; l0/ D fEn.0/; n 2 Zg ; Z D ˚n� 2 �ZC; � D ˙
�
;

and

� 0.E/ D
X

n2Z
m�2~0
e Q2

0jnı.E �En.0//;

Q0jn D
s
.�=2/� � .jnj C �/.1 � sME�1

n .0//

jnjŠ� 2.�/
;

where E0jn are solutions of the equation

˛2 D � �
�
E2

n.0/�M2
�
=2� D �jnj; En.0/ D �MjnjC�;

and nC D 0 and n� D 0 are considered different elements of Z .

The eigenvectors
III

U0jn D
III

U0jn .0; s; l0; pzI �/ D Q0jnF2.�IEn.0//, n 2 Z ,

of the Hamiltonian Oh0 .s; l0/ form a complete orthonormalized system in the
space L2.RC/ of doublets F .�/.

We note that the spectrum, spectral function, and eigenfunctions of Oh0 .s; l0/
can be obtained from the respective expressions for the second region, ~l �
1=2, by the substitution l D 0. We also recall that for � > 1=2, the function
F.0/.�IW / D m~0

e F2.�IW / has a minimal singularity at the origin in the family
of functions F.�/.�IW /; in fact, F.0/.�IW / is completely nonsingular.

III. Now we consider the general case j�j < �=2. In this case we can equivalently
write

� 0.E/ D � �� cos2 �
��1

Im!�1.E C i0/ D
X

k2Z
Q2
kı.E �Ek.�//;

!.W / D t.W /C tan�; !0.Ek.�// > 0; Qk D
hp
!0.Ek.�// cos�

i�1
;

t.W / D � .W C sM/� .�w=2�/

me� .�� w=2�/
; � D

�
2m2

e=�
��
� .�/

2� .1 � �/ > 0;

t.Ek.�// D � tan�; t 0.Ek.�// > 0; @�Ek.�/ D �
�
t 0.Ek.�// cos2 �

��1
< 0:

The function

t.E/ D �m�1
e �

�1.� � w=2�/.E C sM/� .�w=2�/
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has the properties: t.En.s/ ˙ 0/ D 
1; t.En.0// D 0. Thus, we obtain the
following:

(a) s D 1.
In each interval .En��1; En�

/, n� � �1, for a fixed � 2 .��=2; �=2/, there
exists an eigenvalue En�

.�/ that increases monotonically from En��1 C 0

(passing En�
.0/) to En�

� 0 as � goes from �=2� 0 (passing 0) to ��=2C 0;
in the interval .E�1; EnCD0/, for a fixed � 2 .��=2; �=2/, there exists an
eigenvalue En�D0.�/ that increases monotonically from E�1 C 0 (passing
En�D0.0/) to EnCD0�0 as � goes from �=2�0 (passing 0) to��=2C0; in each
interval .EnC

; EnCC1/, nC � 0, for a fixed � 2 .��=2; �=2/, there exists an
eigenvalueEnC

.�/ that increases monotonically from EnC
C0 (passingEnC

.0/)
to EnCC1 � 0 as � goes from �=2 � 0 (passing 0) to ��=2C 0.

(b) s D �1.
In each interval .En��1; En�

/, n� � 0, for a fixed � 2 .��=2; �=2/, there
exists an eigenvalue En�

.�/ that increases monotonically from En��1 C 0

(passing En�
.0/) to En�

� 0 as � goes from �=2� 0 (passing 0) to ��=2C 0;
in the interval .En�D0; EnCD1/, for a fixed � 2 .��=2; �=2/, there exists an
eigenvalueEnCD0.�/ which increases monotonically from En�D0 C 0 (passing
En�D0.0/) to EnCD1 � 0 as � goes from �=2 � 0 (passing 0) to ��=2C 0; in
each interval .EnC

; EnCC1/, nC � 1, for a fixed � 2 .��=2; �=2/, there exists
an eigenvalueEnC

that increases monotonically from EnC
C0 (passingEnC

.0/)
to EnCC1 � 0 as � goes from �=2 � 0 (passing 0) to ��=2C 0.

10.4 Summary

In the previous subsubsections, we have constructed all s.a. radial Hamiltonians
Ohe .s; l; pz/ as s.a. extensions of the symmetric operators Oh .s; l; pz/ for any s, l ,
and pz and for any values of 
0, �, and � . The complete s.a. Dirac operators
OHe associated with the Dirac differential operation LH are constructed from the

sets of Ohe .s; l; pz/ by means of a procedure of “direct summation over s and l and
direct integration over pz”. Each set of possible s.a. radial Hamiltonians Ohe .s; l; pz/

generates a translationary and rotationally invariant8 s.a. Hamiltonian OHe. Namely,
let G be the group of the above space transformations S W r 7�! Sr. This group
is unitarily represented in H: if S 2 G, then the corresponding operator US is
defined by

.US  / .r/ D e�i�˙3=2 .S�1r/; 8 2 H;

where � is the rotation angle of the vector æ around the z-axis. The operator OH
evidently commutes with US for any S . We consider only such s.a. extensions

8That is, invariant under rotations around the z-axis and under translations along the z-axis.
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OHe of OH that also commute with US for any S . This condition is the explicit
form of the invariance, or symmetry, of a quantum Hamiltonian under the space
transformations. As in classical mechanics, this symmetry allows a separation of
the cylindrical coordinates �, ', and z and a reduction of the three-dimensional
problem to a one-dimensional radial problem. Let V be a unitary operator defined
by the relationship

.Vf /.�; '; z/ D 1

2�
p
�

Z

Rz

dpz

X

l2Z
eipzz

h
Sl.'/F.s; l; pz; �/

i
˝ es.pz/;

where Sl.'/ and es.pz/ are given respectively by (10.38) and (10.37).
Similarly to the considerations in Sects. 10.2.1 and 10.2.2, it is natural to expect

that any s.a. Hamiltonian OHe can be represented in the form

OHe D V
Z

Rz

dpz

X

sD˙1

X

l2Z
Ohe.s; l; pz/V

�1;

where Ohe.s; l; pz/ for fixed s, l , and pz is an s.a. extension of symmetric operator
Oh.s; l; pz/ associated with the differential operation Lh.s; l; pz/ given by (10.40). The
operator Oh.s; l; pz/ is defined on the domain Dh.s;l;pz/ D D.RC/ � L

2.RC; d�/ in
the Hilbert space L2.RC; d�/ of functions F.�; l; pz/ with the scalar product

.F1.s; l; pz/; F2.s; l; pz// D
Z

RC

F1.s; l; pz; �/F2.s; l; pz; �/d�:

An exact expression for OHe is

OHe D V
Z ˚

Rz

dpz

X˚
sD˙1

X˚
l2Z

Ohe.s; l; pz/V
�1:

Its rigorous justification is discussed in [78].
The inversion formulas in Hilbert space H are correspondingly obtained from

the known radial inversion formulas by a procedure of summation over s,l , and
integration over pz. It should be noted that here we must consider the extension
parameter � a function of s and pz, � D �.s; pz/. In what follows,

R
dpz meansR1

�1 dpz.
Thus, we can summarize as follows: For � D 0, there is a unique s.a. Dirac

operator OHe. Its spectrum is simple and given by

spec OHe D .�1;�me� [ Œme;1/:
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The generalized eigenfunctions 	s;pz;n.s/;l .r/ of OHe,

	s;pz;n.s/;l .r/ D
1

2�
p
�

eipzzSl.'/Fn.s/.s; l; pzI �/˝ es.pz/;

Fn.s/.s; l; pzI �/ D
8
<

:

I

Un.s/ .s; l; pzI �/ ; l � 0
II

Un.s/ .s; l; pzI �/ ; 1 � l � jn.s/j
;

LH	s;pz;n.s/;l .r/ D Es;pz;n.s/;l	s;pz ;n.s/;l .r/;

Es;pz;n.s/;l D �
q
m2
e C p2z C 2� jn.s/j; n.s/ 2 Z.s/; l � jn.s/j ;

whereZ.s/ is defined by (10.55), and doublets
I

Un.s/ .s; l; pzI �/ and
II

Un.s/ .s; l; pzI �/
are given respectively by (10.56) and (10.59), form a complete orthonormalized
system in the Hilbert space L2

�
R
3
�

of Dirac spinors. The latter means that we have
the following inversion formulas:

	.r/ D
Z

dpz

X

sD˙1

X

n.s/2Z.s/

X

l�jn.s/j
˚s;pz;n.s/;l	s;pz ;n.s/;l .r/;

˚s;pz ;n.s/;l D
Z
	s;pz ;n.s/;l .r/	.r/dr;

Z
j	.r/j2 dr D

Z
dpz

X

sD˙1

X

n.s/2Z.s/

X

l�jn.s/j
j˚s;l;pz ;nj2; 8	 2 L2

�
R
3
�
:

We note that for � D 0 and˙�=2, the spectrum at l D 0 can be found explicitly;
see the third region in Sect. 10.3.3.

For � > 0, there is a family of s.a. Dirac operators OHf�.s;pz/g parameterized by
two real-valued functions �.s; pz/, � 2 S .��=2; �=2/, s D ˙1. Their spectra are
degenerate and continuous.

A complete set of generalized eigenfunctions of OHf�.s;pz/g consists of	s;pz;n.s/;l .r/
and 	�.s;pz/

s;pz ;k;l0
.r/. These bispinors have the form

	s;pz;n.s/;l .r/ D
1

2�
p
�

eipzzSl.'/Fn.s/.s; l; pzI �/˝ es.pz/;

Fn.s; l; pzI �/ D
8
<

:

I

Un .s; l; pzI �/ ; l � �1;
II

Un .s; l; pzI �/ ; 1 � l � jn.s/j;
n.s/ 2 Z.s/; l � jn.s/j; l ¤ 0;
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and

	
�.s;pz/

s;pz;k;l0
.r/ D 1

2�
p
�

eipzzSl0.'/
III

Uk .�.s; pz/; s; pzI �/˝ es.pz/; k 2 Z;

where
III

Un .�.s; pz/; s; pzI �/ are given by (10.63) with the substitution �.s/ !
�.s; pz/, so that

LH	s;pz ;n.s/;l .r/ D Es;pz;n.s/;l	s;pz;n.s/;l .r/; l � jn.s/j; l ¤ 0;

Es;pz ;n.s/;l D �
q
m2
e C p2z C 2�Œjn.s/j C �.l/�; �.l/

D


0; l � 0;
1; l � 1;

LH	�.s;pz/

s;pz;k;l0
.r/ D E�.s;pz/

s;pz;k;l0
	
�.s;pz/

s;pz ;k;l0
.r/;

E
�.s;pz/

s;pz;k;l0
W ˝

�
�;E�

s;pz ;k;l0

�
D 0; ˝ .�;W / D cos�C a .W / sin�

sin� � a .W / cos�
;

a .W / D 2m
2��1
e .�=2/1�� � .�/ � .1 � � � w=2�/

.W C sM/� .1 � �/� .�w=2�/
:

In the case under consideration, the corresponding inversion formulas have the
form

	.r/ D
Z

dpz

X

sD˙1

2

4
X

n.s/2Z.s/

X

l�jn.s/j;l¤0
˚s;pz;n.s/;l	s;pz;n.s/;l .r/

C
X

k

˚s;pz;k;l0	
�.s;pz/

s;pz;k;l0
.r/

3

5 ; 8	 2 L2
�
R
3
�
;

˚s;pz;n.s/;l D
Z
	s;pz ;n.s/;l .r/	.r/dr; l ¤ 0;

˚s;pz ;k;l0 D
Z
	
�.s;pz/

s;pz ;k;l0
.r/	.r/dr;

Z
j	.r/j2 dr D

Z
dpz

X

sD˙1

2

4
X

n.s/2Z.s/

X

l�jn.s/j;l¤0

ˇ̌
˚s;pz;n.s/;l

ˇ̌2 C
X

k

ˇ̌
˚s;pz;k;l0

ˇ̌2
3

5:
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(2007). doi:10.1063/1.2738751
111. Meetz, K.: Singular Potentials in Nonrelativistic Quantum Mechanics. IL Nuovo Cimento 34,

690–708 (1964)
112. Messiah, A.: Quantum Mechanics. Interscience, New York (1961)
113. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels.

Phys. Rev. 34, 57–64 (1929)
114. Morse, P.M., Fisk, J.B., Schiff, L.I.: Collision of neutron and proton. Phys. Rev. 50, 748–754

(1936)
115. Mott, N.F., Massey, H.S.W.: Theory of Atomic Collisions. Oxford University Press, Oxford

(1933)
116. Naimark, M.A.: Linear differential operators. Nauka, Moskva (1959) (in Russian). F. Ungar

Pub. Co. New York (1967)
117. Nambu, Y.: The Aharonov–Bohm problem revisited. Nucl. Phys. B 579, 590–616 (2000);

Hirokawa, M., Ogurisu, O.: Ground state of a spin-1/2 charged particle in a two-dimensional
magnetic field. J. Math. Phys. 42, 3334–3343 (2001)

118. Narnhofer, H.: Quantum theory for 1=r2 potentials. Acta Phys. Aust. 40, 306–322 (1974)
119. Nikishov, A.I.: The role of connection between spin and statistics in QED with pair creating

external field. In: Problems in Theoretical Physics. Collection in commemoration of I.E.
Tamm, pp. 299–305. Nauka, Moscow (1972);
Problems of Intensive External Fields in Quantum Electrodynamics. In: Quantum Electrody-
namics of Phenomena in Intense Fields, Proc. P.N. Lebedev Phys. Inst., 111, pp. 153–271.
Nauka, Moscow (1979);
Bagrov, V.G., Gitman, D.M., Shvartsman, Sh.M.: Concerning the production of electron–
positron pairs from vacuum. Sov. Phys. JETP 41, 191–194 (1975)

120. Olariu, S., Popescu, I.I.: The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57,
339–436 (1985)

121. Oliveira C.R. de, Pereira, M.: Mathematical justification of the Aharonov–Bohm Hamiltonian.
J. Stat. Phys. 133, 1175–1184 (2008)

122. Pomeranchuk I., Smorodinsky, Ya.: On energy levels in systems with Z > 137. J. Phys.
(USSR) 9, 97–100 (1945);
Gershtein S.S., Zel’dovich, Ya.B.: Positron production during the mutual approach of heavy



502 References

nuclei and the polarization of the vacuum. Sov. Phys. JETP 30, 358–361 (1970)
123. Perelomov A.M., Popov, V.S.: Fall to the center in quantum mechanics. Theor. Math. Phys. 4,

664–677 (1970)
124. Peshkin M., Tonomura, A.: The Aharonov–Bohm Effect. Lecture Notes in Physics. Springer,

New York (1989)
125. Plesner, A.I.: Spectral Theory of Linear Operators. Nauka, Moscow (1965)
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Notation

• a.c. : absolutely continuous
• a.b. conditions : asymptotic boundary conditions
• AB : Aharonov–Bohm
• iff : if and only if
• MSF : magnetic-solenoid field
• QM : quantum mechanics, or quantum-mechanical, and so on
• s.a. : self-adjoint

• diag.a; b/ D
�
a 0

0 b

�
, antidiag.a; b/ D

�
0 b

a 0

�

• F D
�
f

g

�
D .f�g/, this notation is used for two-component columns,

spinors, and doublets
• C

1 .a; b/: the linear space of smooth (infinitely differentiable) functions on the
interval .a; b/

• D.a; b/: space of arbitrary functions with compact support on the interval .a; b/
• Dr .a; b/: space of arbitrary functions on the interval .a; b/with support bounded

from the right
• Dl .a; b/: space of arbitrary functions on the interval .a; b/with support bounded

from the left
• D.a; b/: linear complex space of smooth compactly supported functions on an

interval .a; b/
• DR .a; b/: linear space of real smooth compactly supported functions on the

interval .a; b/

• D
� VR
�
D D.�1; 0/[D.0;1/

• L2.a; b/: space of functions square-integrable on .a; b/
• L

2 .RC/ D L2 .RC/ ˚ L2 .RC/: space of two-component columns (doublets)
square-integrable on the semiaxis

• L2
�
R
3
�D

X˚4

˛D1 H˛ , H˛DL2
�
R
3
�
: space of Dirac spinors square-integrable

on R
3
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506 Notation

• D�
Lf .a; b/: the natural domain for a s.a. differential operation Lf defined on an

interval .a; b/
• QO .x/ D 1CO .x/
• I is the 2 � 2 identity matrix and I is the 4 � 4 identity matrix
• N D f1; 2; : : : g: the set of natural numbers
• Z D f0;˙1; : : : g: the set of integers
• ZC D f0; 1; 2; : : : g: the set of nonnegative integers
• Z� D f0;�1;�2; : : : g: the set of nonpositive integers

• N� D


N; � D 1
ZC; � D �1

• R D .�1;1/: the set of all real numbers, the real axis
• RC D Œ0;1/: the set of nonnegative real numbers, semiaxis
• R� D .�1; 0�: the set of nonpositive real numbers
• R

n : n-dimensional real linear space, the set of all real n-tuples (x1; : : : ; xn)

• VR D .�1; 0/[ .0;1/
• R : the compactified real axis where �1 and1 are identified: RD f� W �1 �
� � 1; �1 � 1g; R is homeomorphic to a circle.

• S .a; b/ D Œa; b�, a � b; S .a; b/ is homeomorphic to a circle
• C D fz D x C iy W x; y 2 Rg: the set of all complex numbers, the complex plane
• CCDfz D x C iy W x; y 2 R; y > 0g: the set of complex numbers with positive

imaginary part
• C�Dfz D x C iy W x; y 2 R; y < 0g: the set of complex numbers with negative

imaginary part
• C

0 D fz D x C iy W x; y 2 R; y ¤ 0g D CC [C�: the set of complex numbers
with nonzero imaginary parts

• regp Of : the resolvent set of an operator Of
• spec Of : the spectrum of an operator Of
• LKŒk�

x : the quasiderivative of order k with respect to x
• Of .z/ D Of � z OIDf
• OR .z/ D

� Of .z/
��1

, OR .z/ is called the resolvent if z belongs to the resolvent set

• Wr .u1; : : : ; um/ : the Wronskian of the set of functions u1; : : : ; um;

Wr .u1; : : : ; um/ D det kWkik ; Wki D u.k�1/
i .x/; k; i D 1; : : : ; m:

• Wr .u1; : : : ; um/ : the quasi-Wronskian of the set of functions u1; : : : ; um;

Wr .u1; : : : ; um/ D det kWkik ; Wki D uŒk�1�
i .x/; k; i D 1; : : : ; m:

• An overline denotes complex conjugation unless otherwise specified
• The derivative of order k in x of a function  .x/ is commonly denoted by
 .k/ .x/. In addition, we also use the following notation:

dx D d=dx; dxf .x/ D f 0 .x/ ; : : : ; d nx f .x/ D f .n/ .x/ :
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• The following notation is adopted for special functions (this notation is in
agreement with that used in the reference book [81]): J�.x/ is the Bessel function

of the first kind;H.1/
� .x/ is the first Hankel function; I�.x/ is the Bessel function

of imaginary argument; K�.x/ is the MacDonald function (the first Hankel
function of imaginary argument); ˚.˛; ˇI x/ and 	.˛; ˇI x/ are the confluent
hypergeometric functions; F.˛; ˇI � I x/ is the Gauss hypergeometric function;
Hn.x/ are the Hermite polynomials;  .x/ is the logarithmic derivative of the
� -function, .x/ D � 0.x/� �1.x/

• C D 0:5772156649 : : : : Euler’s constant
• In Chaps. 9 and 10, in which relativistic systems are considered, Greek vector

and tensor indices take on the values 0, 1, 2, 3 and Latin indices take on the
values 1, 2, 3 unless otherwise specified; the convention about summation over
repeated indices is adopted unless otherwise specified; the metric in the four-
dimensional flat space–time is determined by the Minkowski tensor ��� D diag
.1;�1;�1;�1/; contravariant vectors are represented as

.a�/ D �a0; a� D �a0; ai � ; a1 D ax; a2 D ay; a3 D az;

the space–time coordinates are denoted by

x D .x�/ D �x0; r� D �x0; xi � D .t; r/ ; dx D dx0dr;

x1 D x; x2 D y; x3 D z; dr D dx1dx2dx3;

and

@A=@x� D @�A; @=@t D @t D @0 ; @1 D @x; @2 D @y; @3 D @z

• F .x/jba D lim
x!b

F .x/ � lim
x!a

F .x/



Index

A
AB field, 449
absolutely continuous function, 22
a.c. function, 22
adjoint by Lagrange, 106
adjoint differential operation, 106
adjoint operation, 51
adjoint operator, 51
Aharonov–Bohm effect, 449
asymmetry form method, 159

B
boundary forms, 120
bounded operator, 37

C
Calogero differential operation, 245
Calogero potential, 244
Calogero problem, 244
canonical diagonal form, 160
canonical form of an s.a. differential operation,

107
Cauchy–Schwarz inequality, 16
closability, 39
closable operator, 39
closed operator, 39
closure, 39
constancy point of an IR, 181
continuous operator, 37
continuous spectrum, 74

D
deficiency indices, 65, 84
deficiency indices of a symmetric operator, 66

deficient subspace, 65, 83
defining equation for the adjoint operator, 51
densely defined operator, 32
differential Lagrange identity, 110
discrete spectrum, 74
domain of definition, 31

E
Eckart potential, 371
ESP, 279
essentially maximal symmetric operator, 75
essentially s.a. operator, 74
even s.a. differential operations, 107
exactly solvable potentials, 279
extension of an operator, 34

F
first von Neumann formula, 85
fundamental unit of magnetic flux, 451

G
generalized Calogero potential, 244, 315
graph, 33
graph criterion, 34
graphs, language of, 34
Green’s function of an s.a. operator, 188
growth set, 181
guiding functional, 186

H
Hermitian operator, 58
Hilbert space, 15
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I
idealized scheme of operator canonical

quantization, 5
identity resolution, 180
initial symmetric operator, 100, 129
integral Lagrange identity, 111
inversion formulas, 177
IR, 180

J
jump point, 181

K
kernel of an operator, 43
Kratzer potential, 289
Krein method of guiding functionals, 185

L
linear differential operation, 104
linear functional, 29
linear operator, 31
linear space of real smooth compactly

supported functions on the interval
.a; b/, 23

linear space of smooth, or infinitely
differentiable, functions on the
interval .a; b/, 23

local sesquilinear form, 110

M
magnetic-solenoid field, 450
main theorem, 98
map language, 34
matrix spectral function, 184
maximal symmetric extension, 89
maximal symmetric operator, 62
mean of an operator, 32
Morse potential, 332
MSF, 450
multiplicity of a spectrum, 183

N
naı̈ve treatment, 2
natural domain, 118
nontrivial physical systems, 1
norm, or length, of a vector, 16

O
odd s.a. differential operations, 107
one-dimensional (stationary) Schrödinger

equation, 237

operator bounded from above or below, 33
operators of oscillator type, 80
ordinary solutions, 105
orthoprojectors, 75

P
Pöschl–Teller potential, 346
point spectrum, 49
potential localized at the origin, 270

Q
quadratic asymmetry form, 87
quadratic boundary form, 120
quasiderivatives, 108
quasi-Wronskian, 109

R
radial equations, 419, 478
radial Hamiltonian, 419
range of the operator, 32
regular differential operation, 105
regular endpoint, 105
regular point, 48
resolvent of an operator, 48
resolvent set, 48
restriction of an operator, 34
Rosen–Morse potential, 365
rotational invariance, 418
rotationally invariant, 455

S
s.a. boundary conditions, 125
s.a. by Lagrange, 106
s.a. differential operation, 106
s.a. Dirac differential operation, 414, 474
s.a. Dirac Hamiltonian, 419
s.a. extensions of symmetric operators, 94
s.a. operator, 1, 68
Schrödinger differential operation, 237
Schrödinger operators, 237
second von Neumann formula, 93
second von Neumann theorem, 92
sesquilinear asymmetry form, 87
sesquilinear boundary form, 120
simple guiding functional, 191
simple spectrum, 181
singular differential operation, 105
singular endpoint, 105
Sokh, 205
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space of arbitrary functions on the interval
.a; b/ with compact or bounded
support, 23

space of smooth compactly supported functions
on the interval .a; b/, 22

spatial symmetry, 475
special fundamental system, 186
spectral function, 182
spectrum of an operator, 49
split s.a. boundary conditions, 158, 173
strong boundedness, 30
strong convergence, 30
strong operator convergence, 37
strong topology, 30

symmetric extension, 61
symmetric operator, 58

U
unbounded operator, 37

V
von Neumann formula, 83, 89

W
weak operator convergence, 37
weak topology, 30
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