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Preface

This book explains how to describe quantum effects in mesoscopic systems by
semiclassical methods. These methods combine on the one hand concepts of
classical mechanics as classical trajectories and on the other hand of quantum
mechanics as interference effects. By this they are especially suited to describe the
transition region between the macroscopic and the microscopic world, i.e. the
mesoscopic regime. Within the semiclassical framework classical orbits alone can
lead to a basic understanding of quantum effects, e.g. of quantum spectra. However
for a full understanding quantum interference between different paths need to be
taken into account. These attracted huge interest during the last years. We thus
want to review here the most important developments and present recent advances.

The content of this book originates from my Ph.D. thesis Semiclassical
Approach to Mesoscopic Systems: Classical Trajectory Correlations and Wave
Interference at the Institute for Theoretical Physics at the University of
Regensburg in 2011. This work was supervised by Prof. Klaus Richter. Him I
would like to thank for his guidance and encouragement during the last years.

I am grateful to some colleagues in Regensburg with whom I had the pleasure
of discussing several topics of semiclassics: Inanc Adagideli, Marcus Bonanca,
Tobias Dollinger, Christopher Eltschka, Arseni Goussev, Martha Gutiérrez, Tobias
Kramer, Jack Kuipers, Cyril Petitjean, Peter Schlagheck, Gregor Tanner and
Juan-Diego Urbina. Furthermore I enjoyed the fruitful discussions with other
members of the quantum chaos community during their visits in Regensburg or at
workshops and conferences especially with Jens Bolte, Piet Brouwer, Stefan
Heusler, Philippe Jacquod, Sebastian Miiller, Dima Savin, Martin Sieber and
Robert Whitney to mention just a few.

I want to thank Jack Kuipers for proof reading this book and commenting on it
and Tobias Dollinger, Christopher Eltschka and Juan-Diego Urbina for critically
reading different parts of it.

Furthermore I am grateful to Prof. Frank Steiner for recommending the pub-
lication of this book and his suggestions to improve the presentation and Ute
Heuser and Jacqueline Lenz from the Springer Verlag for the editorial guidance.



vi Preface

The results presented in this book were obtained at the Institute for Theoretical
Physics of the University of Regensburg. In this context I acknowledge financial
support by the DFG-Graduiertenkolleg “Nonlinearity and Nonequilibrium in
Condensed Matter”.

Finally I thank my family and especially my parents for their generous support
and encouragement.

Regensburg, August 2011 Daniel Waltner



Contents

1 Introduction ............. ... . . .. . . e

and Methods of Description. . . .........

1.1.1 Mesoscopic Systems: Methods of Description . . ... ...
1.1.2  Quantum Chaos: Considered Systems . .............
1.1.3  Quantum Chaos and Semiclassical Methods. . ........

1.1 Considered Systems
1.2 Outline of the Book
References . . ........

2 Semiclassical Techniques . .. ............................

assical and Quantum Systems. . .........

Introduction into Semiclassical Techniques. . . .............
Quantum Corrections to the Transmission . ...............
2.3.1 Diagonal Contribution . . .. .....................
2.3.2  First Quantum Correction: Configuration-Space

2.3.3 Quantum Transmission: Phase-Space Approach .. ... ..

2.1 Basic Features of Cl
2.2
2.3

Approach . .
2.4 Spectral Statistics .
References . ... ......

3 Survival Probability and Fidelity Decay . ...................

3.1

32
33

Survival Probability
Approximation . . .

and Fidelity Within Diagonal

3.1.1 Survival Probability. . . . ....... .. .. ... L.
3.1.2 Fidelity Amplitude and Fidelity . .................
Unitarity in Semiclassics .. ........... ... ... ... ......
Higher-Order Contributions and the Effect of Spin-Orbit

Interaction . ... ..

3.3.1 Higher-Order Contributions . .. ..................

3.3.2  Unitary Case

23
29
35
38

41

41
41
44
48

52

52
58

vii


http://dx.doi.org/10.1007/978-3-642-24528-2_1
http://dx.doi.org/10.1007/978-3-642-24528-2_1
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect1
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect1
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect2
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect2
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect3
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect3
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect4
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect4
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect5
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Sect5
http://dx.doi.org/10.1007/978-3-642-24528-2_1#Bib1
http://dx.doi.org/10.1007/978-3-642-24528-2_2
http://dx.doi.org/10.1007/978-3-642-24528-2_2
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect1
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect1
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect2
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect2
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect3
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect3
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect4
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect4
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect5
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect5
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect5
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect7
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect7
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect10
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Sect10
http://dx.doi.org/10.1007/978-3-642-24528-2_2#Bib1
http://dx.doi.org/10.1007/978-3-642-24528-2_3
http://dx.doi.org/10.1007/978-3-642-24528-2_3
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec3
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec3
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec4
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec4
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec5
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec5
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec5
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec6
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec6
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec10
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec10

viii

Contents

333 Orthogonal Case. ............ ... ...
3.3.4 Spin-Orbit Interaction and the Symplectic Case . . . . ...
34 Continuity Equation. . . . ........ ... ... ... ... .. . .. ...
3.4.1 Higher-Order Contributions to the Integrated
Current Density . ........... .. .. ...
3.42 PFourier Transforms . . . ........................
3.43 Recursion Relations. . . ............... ... .. ...
344 Implications for Transport . ... ..................
3.4.5 Application of Recursion Relations
to the Fidelity Amplitude. . . ... .................
3.5 Effects not Accessed by RMT. .. ......................
3.5.1 Lyapunov Decay of the Fidelity . .. ...............
3.5.2 Effect of a Time-Dependent Perturbation. ... ........
References . . ... ... ..

Ehrenfest-Time Effects in Mesoscopic Systems . ..............
4.1 Leading-Order Quantum Correction to the Conductance. . . . . . .
4.2 Non-zero Ehrenfest-Time for Time-Dependent Processes . . . . . .
4.3 Variance of the Conductance . ........................
4.4 Next-to-Leading Order Quantum Corrections . .. ...........
4.4.1 Transmission and Reflection for dc Transport. . . ... ...
4.4.2 Frequency Dependence of Transmission
and Reflection .. ....... ... . ... ... ... ... ...
443 Spectral Form Factor. . . ....... ... ... ... ... ....
4.5 Correlation Function of an Arbitrary Number of Pairs
of Scattering Matrices . . .. ...... ...,
4.5.1 Influence of the Ehrenfest-Time on Orbits
with Encounters . . ........... ... ... ... .. .....
4.5.2 Trajectories Always Correlated. . ... ..............
453 Mixed Terms . . ... ...
4.6 The Density of States of Chaotic Andreev Billiards. . .. ......
4.6.1 Scattering Approach for the Andreev Billiard
and the RMT Density of States. . . ................
4.6.2 Density of States for Non-vanishing Ehrenfest-Time . . . .
References . . . ... .. ..

Semiclassical Analogues to Field-Theoretical Effects . . . ...... ..

5.1 Spectral Form Factor for T > 1 and Unitarity in Semiclassics. . .
5.1.1 Semiclassical Approximations for the Spectral

Determinant . . .. .......... .. .. .. .. .. .. ...

5.1.2  Spectral Form Factor fort > 1...................

5.2 Curvature and Multiple Traversals of Periodic Orbits. . . ... ...

5.2.1 Semiclassical Calculation. . ... ..................

59
61
62

66
66
68
72

75
81
81
83
86

89
90

123


http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec11
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec11
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec12
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec12
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec13
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec13
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec14
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec14
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec14
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec17
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec17
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec20
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec20
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec23
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec23
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec24
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec24
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec24
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec25
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec25
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec26
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec26
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec27
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Sec27
http://dx.doi.org/10.1007/978-3-642-24528-2_3#Bib1
http://dx.doi.org/10.1007/978-3-642-24528-2_4
http://dx.doi.org/10.1007/978-3-642-24528-2_4
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec3
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec3
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec4
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec4
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec5
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec5
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec9
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec9
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec9
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec10
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec10
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec11
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec11
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec11
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec12
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec12
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec12
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec26
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec26
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec27
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec27
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec28
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec28
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec29
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec29
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec29
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec30
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Sec30
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Bib1
http://dx.doi.org/10.1007/978-3-642-24528-2_5
http://dx.doi.org/10.1007/978-3-642-24528-2_5
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec1
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec2
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec3
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec3
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec4
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec4
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec5
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec5

Contents ix

5.2.2 Field-Theoretical Calculation: The Curvature

Contribution. . . . ... ... .. .. . 160

5.2.3 Semiclassical Interpretation of Curvature Effects ... ... 162

5.24 Consistency with Former Results . ................ 164
References . .. ... ... ... . . 166

6 Conclusions and Outlook . . . ........... ... ... ............ 167
References . . . . ... . 171
Appendix A: Recursion Relations for Transport. . ............... 173
Appendix B: Encounter Integrals for Non-zero Ehrenfest-Time . . . . . 175

Appendix C: Conductance Variance with Tunnel Barriers . . . . ... .. 177


http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec6
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec6
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec6
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec7
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec7
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec8
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Sec8
http://dx.doi.org/10.1007/978-3-642-24528-2_5#Bib1
http://dx.doi.org/10.1007/978-3-642-24528-2_6
http://dx.doi.org/10.1007/978-3-642-24528-2_6
http://dx.doi.org/10.1007/978-3-642-24528-2_6#Bib1

Chapter 1
Introduction

1.1 Considered Systems and Methods of Description

Improved experimental and numerical techniques generated an increasing interest
in theoretical methods to describe mesoscopic systems. Such systems with the size
of a few micrometers are situated with respect to their dimensions between the
microscopic and the macroscopic world. The motion of microscopic particles is
described by quantum mechanics, i.e. the Schrodinger equation, whereas the dynam-
ics of macroscopic bodies is described by classical mechanics, i.e. Newton’s equation
of motion. If the number of conserved quantities in a classical system is less than the
number of degrees of freedom, the dynamics is no longer regular but becomes mixed
or even chaotic. The last case is characterised by the fact that most of the neighboring
trajectories approach or deviate from each other exponentially and almost all long
trajectories cover the accessible space uniformly.

1.1.1 Mesoscopic Systems: Methods of Description

Due to phase-coherent motion through the underlying system, an exact description
of mesoscopic systems is only possible by means of quantum mechanics, i.e. of the
Schrodinger equation. As, however, the systems are already relatively large compared
to microscopic systems, using an exact quantum mechanical description quite often
reaches the computational limits. Three alternative theoretical approaches are used
here: numerical methods, Random Matrix Theory (RMT) and semiclassical methods.

Due to the large size of the considered systems compared to microscopic ones,
numerical investigations based on quantum calculations already need a lot of com-
puter power. Additionally in most cases they do not lead to an intuitive explanation of
the observed phenomena. However they can be used to confirm and to correct results
obtained by the other approximate methods. For this purpose this method will be
applied in this book.

D. Waltner, Semiclassical Approach to Mesoscopic Systems, 1
Springer Tracts in Modern Physics 245, DOI: 10.1007/978-3-642-24528-2_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

The second method, RMT! [1], was originally invented to study the correlations
in the rather complex spectra of nuclei. The basic idea of this method is that matri-
ces appearing in the corresponding quantum mechanical description of the system,
e.g. the Hamiltonian, are replaced by random matrices, i.e. averages over all possible
matrix entries. The only constraint comes from the symmetries of the underlying sys-
tem leading to several ensembles of matrices used for the calculation. For Hermitian
matrices to be analysed in the case of no time-reversal symmetry the Gaussian unitary
ensemble (GUE), in the case of time-reversal symmetry and no spin-orbit interaction
the Gaussian orthogonal ensemble (GOE) and in the case of time-reversal symmetry
and spin-orbit interaction the Gaussian symplectic ensemble (GSE) is used. When
unitary instead of Hermitian matrices are considered, e.g. scattering matrices, the
corresponding circular instead of Gaussian ensembles have to be studied. For more
details see [1]. A newer related method, supersymmetry [2], performs the ensemble
averages not directly but at cost of introducing further integrals over commuting and
anticommuting variables. Furthermore for disordered systems there is the perturba-
tive diagrammatic technique that is known to be equivalent to the supersymmetric
method for these systems. For an overview over disordered systems and the dia-
grammatic technique see for example [3]. The connection between RMT and the
study of classically chaotic mesoscopic systems was made in the so-called Bohigas,
Giannoni, Schmit (BGS) conjecture [4]. It states, based on numerical results that the
statistics of energy levels of individual classically chaotic systems is well described
by RMT. Although RMT is quite often the only feasible way of describing analyti-
cally systems with complex dynamics, this approach has disadvantages: A dynamical
interpretation is not available and additionally its applicability to quantum systems
with classically chaotic counterpart relies on the BGS conjecture.

In this work we will mainly present results obtained by using semiclassical meth-
ods. This method contains on the one hand elements of classical mechanics like
classical orbits and on the other hand also elements of quantum mechanics like inter-
ference effects. In this approach exact quantum mechanical expressions are replaced
by approximations that are asymptotically valid in the semiclassical limit. This limit
usually means that the Fermi wavelength Ar of the considered particles is much
smaller than the typical system size £, but not fully negligible, which is fulfilled
in the considered mesoscopic systems. Here we will mostly take the semiclassical
limit by considering 7 — 0 and mean by this that /2 is much smaller than all relevant
classical actions like the classical actions of the considered orbits.

Despite semiclassical expressions as introduced below are quite complicated to
analyse, this method has several advantages compared to the ones mentioned before:
Itis applicable to regular and chaotic mesoscopic systems; not only to chaotic systems
like RMT. Second it makes it possible to develop a dynamical understanding of
phenomena obtained by RMT calculations or by numerical simulations based on the
elements of a semiclassical theory, i.e. in terms of properties of classical trajectories
and interference effects. Third it is even possible to identify corrections to the RMT

I We will sometimes use RMT synonymous with supersymmetry and refer to these theories as

field-theoretical methods.
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results for example due to the Ehrenfest-time, the time up to that spatially localised
initial wave packets follow the classical dynamics, or due to non universal effects,
which we will come back to soon. Semiclassics is thus a very useful tool to examine
and understand mesoscopic systems.

1.1.2 Quantum Chaos: Considered Systems

The interest in mesoscopic systems often comes together with interest in the research
field of quantum chaos [5]. The central question in this field is the following: Consider
two classical systems, one of them with chaotic and one with regular dynamics, how
are the quantum properties of the systems that get important when we shrink them
down, influenced by the underlying classical dynamics?

As the semiclassical expressions given below are quite complicated to analyse
already for relatively simple physical systems, one often considers in quantum
chaos simple low-dimensional model systems such as two-dimensional billiards. The
dynamics in these systems is ballistic, i.e. free motion inside and specular reflection
at the boundary. The boundary in this context determines if the system possesses
chaotic or regular motion. For example the circular and rectangular billiard possess
regular dynamics. In the rectangular billiard the magnitudes of the momenta along
the rectangle’s axes are conserved and in the circular billiard apart from the energy
also the angular momentum is conserved. The number of conserved quantities is thus
equal to the number of degrees of freedom. The stadium billiard obtained by attaching
two half circles to two opposite sides of a rectangle, the Sinai billiard, a quadratic or
rectangular billiard with a circular hole in the centre and the desymmetrised diamond
(DD) billiard, see Fig. 1.1 are examples of billiards with chaotic dynamics. Billiards
are studied analytically, numerically and also experimentally. Experimentally they
are realised for example as quantum dots—the electrons are confined to interfaces in
semiconductor heterostructures, see Fig. 1.2—, quantum wells and quantum corrals
probing the dynamics of electrons, for an overview see for example [5]. However due
to the structural similarity of the stationary Schrodinger equation and the electromag-
netic wave equation also two-dimensional microwave billiards confining microwaves
to metallic or superconducting cavities are studied. Also cold atoms confined by laser
beams are realised experimentally [6].

Also, periodic arrays as the antidot superlattice, obtained by etching a regular
lattice of circular nanometer sized holes into the interface region of a semiconductor
heterostructure containing a two-dimensional electron gas are considered. In the case
of a steep potential at the holes in the antidot this represents another example of a
chaotic system, the Lorentz gas.

Apart from these Euclidean billiards in quantum chaos, mainly in theoretical
studies, also systems endowed with a non-Euclidean metric like surfaces of con-
stant negative curvature [7] can be considered. Although they are hard to study
experimentally, in analytical calculations they lead, compared to Euclidean billiards,
to simplifications. For example the semiclassical approximation for the density of
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Fig.1.1 Quantum mechanical wave packet launched into a mesoscopic cavity with the geometry
of a desymmetrised diamond billiard. The wave packet evolution is monitored at times t=1, 2, 3, 4,
and 25, in units of the average time between collisions with the walls of a corresponding classical
particle. (Courtesy of A. Goussev)

GaAs  AlLGa; As

Fig.1.2 A mesoscopic quantum dot obtained by confining electrons at a two-dimensional interface
between GaAs and AlGaAs [taken from [8]]. The motion of the electrons is further confined by
negatively charged surface gates to the dot, this allows the electrons to enter and leave only through
the two openings indicated in the right figure

states is sometimes exact. Another example of a model system are quantum graphs
[9, 10]. Here one considers a set of vertices connected by a set of edges. The prop-
agation of an initial state Yo on a graph is normally determined by the following
rule: On the edges the state is propagated according to the one-dimensional free
Schrodinger equation and at the vertices the state is scattered into one of the edges
reaching this vertex. The scattering is determined by scattering matrices at each
vertex. Also for these systems the semiclassical expression for the density of states
is exact. Compared to surfaces of constant negative curvature these systems possess
the advantage that they are often studied numerically and realized experimentally as
microwave networks, see for example [11]. Another example for model systems often
studied numerically are maps, i.e. discrete mappings of position and momentum. One
example is the kicked rotator; i.e. a pendulum that is driven by instantaneous kicks
resulting from a gravitational potential. It shows, depending on the kicking parameter
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Fig.1.3 Experimentally measured histogram for distances s between successive eigenenergies
shown for a regular system on the left and for a chaotic system on the right hand side probing
a microwave billiard [taken from [12]]. The dotted curves indicate a Wigner distribution in the
chaotic and a Poisson distribution in the regular case. The decrease of the first data point in the left
histogram is due to imperfections of the resonator

K, a transition from almost regular dynamics via a mixed phase space to complete
chaos.

1.1.3 Quantum Chaos and Semiclassical Methods

In applying semiclassical methods, quantum chaotic questions are of course of inter-
est. We first show here, considering different examples, how the quantum properties
are influenced by the kind of the underlying classical dynamics. A first example
is the nearest neighbour distribution of the eigenenergies of a system. One finds a
Wigner distribution with a characteristic suppression of small level distances, referred
to as level repulsion, for classically chaotic systems [4] (see the right diagram in
Fig.1.3). For classically regular systems like the rectangular billiard, however, one
expects a Poisson distribution as shown semiclassically in Ref. [13], see the left
panel in Fig. 1.3, as all the energies can be assumed in this case to be distributed
in an uncorrelated manner. In the latter figure the experimental results studying the
difference between the spectral properties of chaotic and regular systems obtained
from a microwave billiard are shown. In this case the number of eigenenergies p(s)
in the interval of successive eigenenergies between s and s + As is plotted for a
regular system, a rectangular billiard, on the left and for a chaotic system, a Sinai
billiard of the same size, on the right. The decrease in the regular case for small s
is due to imperfections of the resonator. To describe the functional form of p(s) for
mixed dynamics several approaches were developed, for example the Berry Robnik
distribution [14] was obtained by assuming that the subspectra of the chaotic and the
regular part of the phase space can be superimposed uncorrelatedly. The function
p(s) determined within this approach is however larger for s — 0 than the one found
numerically. This region is better explained by the purely phenomenological Brody
distribution [15]. Recently it was shown that by additionally taking into account
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dynamical tunnelling between the chaotic and the regular parts of the phase space
the Berry Robnik distribution also yields the correct behaviour for s — 0 [16].

A further example is the dependence of the transmission through a quantum dot on
the applied magnetic field. Here one observes weak localisation, i.e. a decrease of the
conductance with decreasing magnetic field. Probing an ensemble of circular cavities
one here finds for the dependence of the conductance on the magnetic field a triangular
curve; this curve is in general system dependent, whereas for chaotic cavities, here
stadium shaped billiards, one finds an universal Lorentzian [5], predicted also by
RMT and by semiclassics, see Fig. 1.4.

A third example to which we will return in Chap. 4 is the density of states of
Andreev billiards, i.e. normal conducting billiards with a superconductor attached.
Whereas, as just mentioned, in normal conducting billiards correlations between
energy levels are considered in order to find traces of the underlying classical dynam-
ics, these traces can be found in Andreev billiards directly in the density of states.
In the chaotic case, i.e. a superconductor attached to a chaotic billiard one finds a
gap in the density of states for small energies above the Fermi energy E = 0 in
accordance with RMT [17] and semiclassics (as shown in this book). In the regu-
lar case the density of states is in general system dependent, for a circular cavity it
increases linearly with increasing energy (exact quantum calculations are shown in
the left panel in Fig. 1.5). For the corresponding result for chaotic systems—here a
Sinai billiard—see the right diagram in Fig. 1.5.

Besides the comparison of quantum features of systems with different underlying
classical dynamics, semiclassical methods have several other applications. First they
can be used to explain quantum spectra by relating certain peaks in the quantum
spectrum to contributions of certain classical trajectories. Also the semiclassical cal-
culation of spectra is an important field of interest. In this case one faces however the
problem that the spectral density expressed as a sum over periodic-orbit contribu-
tions (see below) yields a divergent result when evaluated for real energies E. Only
grouping the trajectory contributions together in a sophisticated way, as it is done
within the cycle expansion method [20], that makes the cancellation of a huge part of
the contributions obvious, leads to convergent results. Another interesting research
topic starts from the similarity of the semiclassical expression for the density of states
in terms of classical orbits and the formula determining the density of the nontrivial
zeros of the Riemann zeta function in terms of a summation over prime numbers,
for an introduction see for example [21]. Apart from similarities between the lat-
ter formulas, there are further parallels between these two branches. For example
there is strong evidence that the distribution of zeros is given by the GUE, i.e. here
it shows the same behaviour as a chaotic system without time-reversal symmetry.
However there are also differences between the two research directions: The action
of the trajectories depends linearly on the length of the trajectory, the corresponding
quantities for the primes logarithmically on the prime number. Furthermore primes
are not randomly distributed, i.e. the probability to find a prime in the neighbour-
hood of another one is not independent of the difference between the two. This is
stated by the Hardy-Littlewood conjecture. A corresponding correlation for orbits is
not known. The ultimate goal of this research is to find a self-adjoint operator that
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Fig.1.4 Measured resistance as a function of the applied magnetic field for an ensemble of
circular—i.e. regular—billiards on the left and an ensembles of stadium—i.e. chaotic—billiard
on the right [adapted from [18]]. For regular dynamics here a triangular curve and for chaotic
systems a Lorentzian lineshape is observed
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Fig.1.5 Numerically calculated average density of states d (£) multiplied by one half of the mean
level spacing A of the normal conducting billiard, i.e. the inverse of twice the mean spectral density,
as a function of the energy divided by the Thouless energy E7 defined in Chap. 4, for a regular
billiard in the left diagram and a chaotic Andreeyv billiard in the right one [taken from [19]]. Whereas
in the chaotic case a pronounced gap is observed for small energies, the density of states increases
here linearly for small energies in the regular case. The continuous curve on the right is the RMT
prediction, the one on the left is obtained from a semiclassical calculation

possesses the eigenvalues y, where z = 1/2 + iy are the zeros of the Riemann zeta
function. This would prove that y always has to be real and thus prove the Riemann
hypothesis. Although a possible Hamiltonian was conjectured about ten years ago,
this connection is still not understood and an subject of ongoing research, see for
example [22, 23].
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1.2 Outline of the Book

In this book we study classically chaotic mesoscopic systems by means of semiclas-
sical techniques. On the one hand we confirm and explain in terms of correlations
between classical trajectories results obtained before by RMT. On the other hand we
also study effects beyond RMT, mostly the effects of a non-zero Ehrenfest-time, and
check in this case some of our predictions by comparison with numerics.

First we explain the main assumptions made in our calculations and the corre-
sponding requirements that need to be fulfilled by potential systems: We use semiclas-
sical techniques. In order to make them applicable the Fermi wavelength A r should
be the shortest length scale in the system. In order to obtain all considered inter-
ference effects between different paths, phase-coherent motion is assumed. When
probing electron transport thus low temperatures are required to suppress electron-
phonon scattering. To obtain ballistic and not diffusive dynamics impurity scattering
should be strongly suppressed. Finally we neglect all kinds of interaction effects, e.g.
electron-electron interaction, for a justification of this approximation and its limits
see for example [24].

Now we summarise the contents of the chapters: In Chap. 2 we introduce, after
reviewing basic features of classical and quantum systems, semiclassical expressions
for the time evolution operator, the Green function, the density of states and the con-
ductance. Afterwards we explain the two known methods to calculate semiclassically
contributions to the conductance and the Fourier transform of the two-point autocor-
relation function of spectral densities, the so-called spectral form factor, in agreement
with RMT.

In Chap. 3 we study time-dependent processes. More precisely we consider on
the one hand decay of open chaotic systems and calculate the quantum survival prob-
ability as a function of the time for that systems, for a possible initial situation see
the left panel in Fig. 1.6. On the other hand we study the effect of perturbations on
closed chaotic systems and treat the spatially integrated overlap of the wavefunc-
tions characterising the perturbed and the unperturbed systems. A possible situation
is illustrated in the right part of Fig. 1.6. We there evolve a wave packet up to time ¢
in the unperturbed system, then we perform a perturbation—here a deformation of
the boundary—and then evolve the state for the time ¢ backwards in time keeping
the perturbation. Finally we consider the overlap between the initial and final wave-
functions, i.e. the ones obtained for the two billiards on the left. We first show in
this chapter how to obtain in a way consistent with RMT the leading-order quantum
corrections in £ to the classical contributions. We check that our semiclassical and
the RMT results coincide order by order in 7 for the GUE, GOE and GSE. Further-
more we confirm that exact relations as for example the continuity equation are also
fulfilled within our semiclassical approach. We show a relation between the spec-
tral form factor and the spatially integrated overlap of perturbed and unperturbed
wavefunction obtained previously using RMT within our approach. Finally we treat
effects not accessed by RMT. We there extend our studies on the effect of a perturba-
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Fig.1.6 Left: Possible initial state for the calculation of the survival probability, a localised wave
packet inside the DD billiard, Right: Situation studied when analysing the effect of a perturbation
[taken from [25, 26]]

Fig.1.7 An example of a
possible system for studying ’
transport, a stadium billiard ,
with two leads attached. The ’
dashed line indicates a
possible classical trajectory
traversing the system

tion on additional contributions occurring in the regime of strong perturbations and
on time-dependent perturbations.

Chaper 4 is devoted to the probably most prominent effects apart from the ones
obtained by RMT, the effects of a non-zero Ehrenfest-time. We first consider a chaotic
system containing two semi-infinite straight leads, see Fig. 1.7. We review the cal-
culation of [27] determining semiclassically the Ehrenfest-time dependence of the
transmission up to the first subleading order in the number of open channels in the
leads. We then consider the effect of a non-vanishing Ehrenfest-time when studying
a perturbation and the decay as in Chap. 3. Our results for the latter quantity are
additionally checked by numerical simulations. For the next application we include
tunnel barriers in the leads. We study in this case the Ehrenfest-time dependence of
the variance of the conductance to leading order in the number of open channels in
dependence of the tunnelling rate, these results are confirmed by numerical simu-
lations. We then return to the transmission and the reflection of the chaotic system
with perfectly coupled leads and calculate the next-order quantum correction in the
number of open channels for non-zero Ehrenfest-time.

Next we study the spectral form factor and confirm previous field-theoretical
results predicting the Ehrenfest-time dependence that are in contrast to previous
semiclassical findings. We furthermore study the leading-order contribution in the
number of open channels in the leads to the correlation function of n pairs (n € N)
of scattering matrices for non-zero Ehrenfest-time, that can be used for calculating
the Ehrenfest-time dependence of the density of states of a chaotic Andreev billiard
that we determine afterwards.
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The following chapter is devoted to a semiclassical interpretation of RMT effects.
We first show the connection between the unitarity of the semiclassical time evo-
Iution and the form of the two-point autocorrelation function of spectral densities
predicted by RMT. Afterwards we give an interpretation of the integration over a
curved manifold in field theory in terms of multiply surrounded periodic orbits in
semiclassics for the two-point correlation function of spectral determinants.

Most of the results presented in this work have been published in Refs. [25, 28-37],
and the presentation follows these articles to a large extent.
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Chapter 2
Semiclassical Techniques

We start this chapter with describing the main features of classical and quantum
systems. We focus in contrast to the previous chapter here on expressing them in
terms of formulas. Afterwards we introduce basic semiclassical techniques yielding
approximations for the time evolution operator, the Green function, the density of
states and the conductance. In the next two sections we explain how to calculate
semiclassically the contributions from correlated orbit pairs using the configuration-
[1, 2] and the phase-space approach [3—6] in the case of the conductance and the
spectral form factor.

2.1 Basic Features of Classical and Quantum Systems

Classical mechanics completely describes the state of a particle at time ¢ by its
position and its momentum. These are solutions of Newton’s equations of motion at
time 7 for given initial conditions.! The motion of a particle in classical mechanics is
thus deterministic. This however does not imply that the motion of a particle is easy
to predict, for example in the case of a strong dependence of the motion on the initial
conditions. This strong dependence is one main characteristic of classically chaotic
systems. In order to quantify this dependence one studies how the motion changes
under the influence of a perturbation of the initial conditions. We therefore consider
one orbit in a system with initial conditions (r, p) with position r and with momentum
p and one with slightly perturbed initial conditions (r + €dr, p + €5p) with € < 1.
We calculate now the difference between the two phase-space coordinates at time ¢
and expand it in a Taylor series in €

(r +edr,p+edp)(t) — (r,p)(t) = €D’ (r, p)(Sr, 5p) + (’)(62) (2.1)

1 1In this work we only consider Hamiltonian systems, that are not explicitly time dependent.

In particular this excludes dissipation.

D. Waltner, Semiclassical Approach to Mesoscopic Systems, 13
Springer Tracts in Modern Physics 245, DOI: 10.1007/978-3-642-24528-2_2,
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with the differential of the Hamiltonian flow D¢’ (r, p) defined as

or(t) or(r)

. ar  0p
ar ap

with (r,p)(¢) = (r(z), p(t)) and (r + €dr, p + €6p)(¢) defined analogously. The
differential in Eq.(2.2) containing the derivatives of the momenta and positions at
time ¢ with respect to the initial momenta and positions thus determines the stability
of an orbit. Of special interest in chaotic systems are orbits deviating from each other
or approaching each other exponentially with ¢. In order to quantify this exponen-
tial separation one usually considers the 2d positive eigenvalues of the symmetric
matrix D¢’ (r, p)T D¢’ (r, p) denoted by uf (r, p, t) in a d-dimensional system. The
exponent 7" denotes here the transposed of a matrix. A measure for the exponential
separation is then obtained by defining the Lyapunov exponent

. 1
Ap (r,p) = lim (?lnm (r,p, t))- (2.3)

The above quantity has the following properties: If A; > 0, the initial perturbation
(8r, 8p) increases exponentially like e*i’, for A; < 0 it decreases exponentially and
for A; = O there is a non-exponential change of the perturbation with time. The
Lyapunov exponents always come in pairs. For each A; > 0 there exists an exponent
—A; < 0. Two exponents vanish in every system, the one in the direction of the flow
and the one perpendicular to the surface of constant energy. Definition (2.3) leads us
to a first property of chaotic systems: Hyperbolicity, meaning that (2d —2) Lyapunov
exponents A; (r, p) are different from zero for almost all (r, p).

We define here the monodromy matrix M that will appear later in this work: It is
a (2d —2) x (2d — 2)-matrix in the case of a d-dimensional system and is obtained
from the differential of the flow D¢’ (r, p) by restricting it to the directions where
the Lyapunov exponents do not vanish thus reducing the dimension by two.

A further property of chaotic system is ergodicity: This means that almost all
orbits with duration t — oo are equidistributed in the part of the energy surface at
energy E filled by the system. This implies for almost all initial conditions in closed
systems, that time averages are equal to phase-space averages, in terms of formulas,

N B A , s Jdr [dpf(r,p)8(E—H (r,p))
Jim_ ; dr'f (r(t"), p(t)) = &) (2.4)

for a smooth function f (r, p) of position and momentum and the Hamilton function
H (r, p) of the considered system. The phase-space integrals here are performed
with respect to the phase-space parts filled by the system. We defined in this context
the volume of the energy shell of the system
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R(E) = /dr/dpzS(E — H (r,p)). (2.5)

These two conditions are the main characteristics of chaotic systems that we will
use in this book. There are however also stronger conditions as mixing, that implies
ergodicity: This means that correlations between the starting point of a trajectory
and the phase-space point one obtains for the trajectory at time ¢ can be neglected
for t — oo implying in terms of formulas

1
tl_i)ngom/dr/dph(r(t),p(t))f(l', p)é(E—H(r,p))

1
Q(E)?

X /dr’/dp/f (r',p) s (E—H (r,p)) (2.6)

with another smooth function %(r, p) of position and momentum.

Up to now we only considered one class of classical systems, chaotic ones. The
counterpart, integrable systems, possess in d-dimensions apart from the Hamilton
function d — 1 conserved quantities F; (r, p) . This means that all F;, F; (i, j €
{1, ...,d}) are in involution, i.e. that their Poisson brackets

/m/dph(r,p)a(E—H(r,p))

OF; (r,p) F; (r,p) 0F; (r,p) F; (r,p)
ar ap ap ar

(Fi. Fj} . p) = 2.7)

vanish. In this context we defined Fy (r, p) = H (r, p) . These systems show linear
stability, i.e. neighbouring trajectories deviate from each other linearly with time.
An ergodicity relation as in (2.4) can be also obtained for these systems, however
the integration range is no longer given by the energy shell but further restricted by
additional conserved quantities. The motion in phase space can be shown by studying
the dynamics in terms of action-angle variables to take place on tori.

In the intermediate case of mixed dynamics the two kinds of phase-space dynamics
coexist in a single system: The phase space contains regions of chaotic, i.e. ergodic,
motion and regular motion, i.e. motion on tori.

In contrast to macroscopic systems, the theory to describe the dynamics of micro-
scopic systems is quantum mechanics. In this case the state of the system at time
t is described by a wavefunction obtained as solution of the Schrédinger equation
for a certain initial state at time zero. The state of the underlying system cannot,
in contrast to classical mechanics, be described by a point in phase space due to the
Heisenberg uncertainty principle. It is not even possible to derive joint probability
distributions for position and momentum, only functions that are similar to these
distributions, for example Wigner or Husimi functions. Another difference between
classical and quantum mechanics is that the Schrodinger equation is, in contrast to
the Newton equation, always a linear differential equation leading only to a linear
dependence of the state at time 7 on a perturbation of the initial state.
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2.2 Introduction into Semiclassical Techniques

After having introduced the methods to describe classical and quantum systems we
now want to explain in more detail the method used in this book for describing meso-
scopic systems, that contains features of both theories: semiclassics. How does this
method really work? We explain the procedure in detail for the quantum propaga-
tor. The propagator K (r,r’, 1) evolves the initial quantum state v (r’) describing
a system at time r = O into the state at time ¢, ¥ (r,?), i.e.

¥(r, 1) = /dr/K (r.x', 1) yo (r), (2.8)

with the integration over the configuration space of the considered system. In order to
find a semiclassical approximation for K (r, r, t) we start by making a WKB-ansatz

/ l d / v / . / /!
K (r,r, )= (ﬂ) /Rddp Vg\;‘oh ay (r.p' 1) exp[Gi/h) (R (r,p', 1) —X'P)],
(2.9)

with the (for the moment) arbitrary scalar functions R (r, P, t) and a, (r, P, t) .
The initial condition K (r,r’,0) = §@ (r —r’) that guarantees that Eq.(2.8) is
fulfilled for 7 = 0 leads to R (r, p’,0) = rp’, ag (r,p’,0) = landa, (r,p’,0) =0
for v > 0. The ansatz (2.9) is then inserted into the Schrodinger equation for the
propagator with the Hamilton operator H governing the dynamics of the quantum
system

(1{( — zh%) K (r,r',1) =0 (2.10)

with H acting on the r-coordinate. In the next step the result is sorted by powers of .
This yields that R (r, p. t) solves to leading order in /2 the classical Hamilton-Jacobi
equation [7]

H raR +8R—o (2.11)
" dr ar ’

with the classical Hamilton function H (r, dR/dr) corresponding to the Hamilton-
operator H, that is obtained by replacing the position operator by the position
coordinate r and the momentum operator p by the momentum dR/dr. Following
Hamilton-Jacobi theory there exists a classical trajectory of duration ¢ connecting
(8R /op’, p/ ) and (r, 9 R/dr) . Furthermore this implies that the Legendre transform
of R (r,p’, 1) from p’ to r given by

S(e,r',t)=R(r,p, 1) —r'p (2.12)
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is Hamilton’s principal function [8]
t
S(r,r' 1) = / di'L (r(t"), #(t"), 1) (2.13)
0

with the Lagrange function L (r(t’ ), 1 (1), ) and the velocity r(¢’) of the particle at
time ¢'.

By considering now the equation next-to-leading order in A the prefactor
ag (r, p’, 1) can be determined to be given by [7]

oR /,t
ao (r.p.1) = \/det (%) (2.14)

with R (r, p’, 1) again the solution of the Hamilton Jacobi equation (2.11).

From now on we will neglect the higher-order terms a, (r, p’, ) with v > 0 and
insert the expressions for ag (r, P, t) and R (r, p, t) into the ansatz (2.9).

Next we perform the p’-integral. Therefore we use the method of stationary phase
that extracts from integrals containing rapidly oscillating phases the leading contri-
butions in A yielding [9]

/Rd dra (r,r') e/Me(er’) — (7 p)d/2 Za (0.1 (/M9 (xo,j.1")
J
Tion (<28 (pn ¢/ ))
<P (i%sien (st (ro 1) +0 (nt2)

2
‘det % (ro,j. 1)

2.15)

with the scalar functions a (r, r') and ¢ (r, r’) . The sum on the right hand side of the
last equation runs over all stationary points ro_; of the integral on the left hand side
defined as d¢ (r, r’) /or = 0. Here sign(A) denotes the difference of the number
of positive and negative eigenvalues of the matrix A. The intuitive interpretation
of this method is: For i — 0 the integrand on the left hand side of Eq.(2.15) is
rapidly oscillating in dependence of r everywhere except for regions close to points
where 0¢ (r, r ) /0r = 0. Thus only those points contribute in leading order in /. To
apply relation (2.15) these points need to be isolated and the determinant of second
derivatives needs to be non-zero at the stationary points

2

t—— r 0. 2.16
€ Arior (rOvJ I') # ( )

For a more detailed description of the assumptions, see for example [8, 9].
Using now the method of stationary phase we find the semiclassical expression
for the quantum propagator, the so-called van Vleck-Gutzwiller propagator [10, 11]

1\ : N
Ky (r,0/,1) = ( > Ay et/MS =it/ Dy, (2.17)
V2mih

y(x'—r,1)
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given by a sum over classical orbits from r’ to r of duration ¢. Each summand

a2 / anY
contains the prefactor A, = \/ ‘det (—%)‘ = \/ ‘det (‘%‘))’ obtained first

by Morette and van Hove [12] with the initial momentum pg and a phase with
the aforementioned principal function. The phase factor e ~*7#»/? results from the
h-independent phase in Eq.(2.15) and the sign of ag (r, p. t) in Eq.(2.14). This
so-called Maslov phase can be expressed by the number of conjugated points along
the orbit, so-called caustics, i.e. by the number of times the prefactor A, gets singular
along the orbit plus twice the number of hard wall boundary reflections [11]. The
number of vanishing eigenvalues of the inverse matrix aaT'; determines the order of
a caustic. If the number is equal to the dimension of conﬁ%uration space, we have a
focal point: Changing pg leaves all components of r unchanged.

The expression (2.17) contains as classical element the sum over classical orbits
and as quantum mechanical one phases with the principal functions of the underlying
trajectories in the exponentials, that can cause interference effects.

Starting from the semiclassical formula for the propagator, semiclassical expres-
sions can be also obtained for other quantities that we will need here like Green
functions, or the density of states of a system. In that cases, relation (2.17) is again
the building block: One uses in the derivation of semiclassical expressions for these
quantities the exact relation between the propagator and the Green function (a Fourier
transformation) and the exact relation between the Green function and the density
of states (a trace integral) plus the semiclassical form of the propagator to obtain
an approximate formula for these quantities. This yields for the (retarded) Green
function G (r, r', E ) at energy E given in terms of the propagator by

G(r,x' E)= 1 lim OOdtK (r,x' 1) el/M(E+iey (2.18)
T T il e—0 0 Y '

the semiclassical expression [11] by performing the z-integral by stationary phase

1 1 \¢! . o
G (r7 r, E) = — (_) Z Bye(t/h)Sy(r,r JE)—i(/2)vy, (2.19)
ih \V2rih

y('—>r,E)

with the orbits y connecting r’ and r at energy E, the prefactors B, calculated
in [11] are given by B, = (1/ (|¥||¥']) |det (BzSy/Brlar’J_)Dl/z and the classical
actions of y, S, (r, r, E) = frr/ dyp(y, E) , in the exponentials. Here I and ¥’ are
the final and initial velocities and r | and rl denote the (d — 1) final and initial spatial
coordinates perpendicular to the trajectory, respectively. The Maslov phases v, are
determined by the ones of the propagator and the phases resulting from performing
the z-integral in (2.18) within stationary phase [8].
The spectral density is defined in terms of the spectrum {E,} as

d(E) = §(E - Ey,). (2.20)
n=1
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It is proportional to the imaginary part of trace of G (r, r', E )
1 1
d(E)=——V.Tr[G(E)]=——3 | drG (r,1, E) (2.21)
b4 T

with J denoting the imaginary part, the real part will be denoted by ). The famous
Gutzwiller trace formula [11] for chaotic systems is obtained by performing the
r-integral within stationary phase yielding

nQ(E)

i (B) = =50 +3 70 DLICpe WS )
14

TrGEo(E)

with the oscillatory part of the trace of the Green function TrG *°(E) defined for
later reference. The spectral density can thus be expressed semiclassically as

(';2 (s))d + 177/‘){ Z TfrimCye(i/h)SV (E)—i(m/2)Ty ) (2.23)
T b
Y

dyc (E) =

The first summand, the so-called Weyl term, follows after performing the r-integral by
stationary phase from very short trajectories contained in (2.19). It can be interpreted
as the number of Planck cells of the volume (277 /)¢ in d dimensions fitting into the
volume of the energy shell £2(E). The second summand is rapidly oscillating as
function of the energy and characterises the oscillations of the density of states
around the mean part. It contains a sum over periodic orbits y of primitive duration
T; "™ with the prefactor C y =1/ |det (My - ]12d—2) ’ 172 containing the monodromy
matrix M, defined before Eq.(2.4) and the actions S, (E) = § dyp(y, E). The
Maslov phases 7, contain the phases j,, from the Green function and the additional
phases from the additional stationary phase.

Note that the stationary phase approximation in Eq. (2.22) can only be performed
for isolated stationary points, i.e. isolated orbits. For integrable systems they form
families covering the tori, here a different formula developed by Berry, Tabor and
Balian, Bloch applies, see [13—17].

Whereas the semiclassical expression for the spectral density is of interest itself,
the semiclassical Green function will be mainly used here to derive a semiclassical
form of the transmission coefficients; i.e. the elements of the scattering matrix S(E)
at energy E. Considering a two lead geometry this matrix contains the reflection
and transmission subblocks r(E), t(E) for the incoming wave in the lead 1 and
r'(E), ' (E) for the incoming wave in the lead 2, respectively

_(r(E){(E)
S(E) = (I(E) r,(E)). (2.24)

The dimension of the matrices is determined by the condition that the longitudi-
nal wavefunction possesses positive energy, i.e. by the largest number N; fulfilling
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E — h?/(2m)(N;/W;)? > 0 with the total energy E and the energy of the trans-
verse wavefunction /2 /Cm)(N;m/ Wi)? containing the width of the ith lead, W;.
The dimension of S(E) is then given by N = N + N>. Using the Landauer-Biittiker
formalism [18-20] an expression for the conductance G can be obtained in terms of
the subblock ¢

G = 2eh—2Tr (nT) (2.25)

with the factor 2 accounting for spin degeneracy in the absence of spin-orbit interac-
tion. These scattering-matrix elements #, g (E), that we will in the following consider
as a function of the absolute value of the wave vector k = +/2m E /h with the particle
mass m, are related to the Green function by the Fisher Lee relations [21]

Wi W
ta,p(k) = —ih, /vav,g/o dy/O dy'®y ()G (v, Y. E)Ps(y).,  (2:26)

i.e. the scattering-matrix elements are given by the projections of the Green func-
tion onto the transverse eigenfunctions in the leads of width W; and W,. The
star denotes here complex conjugation. These eigenfunctions are, for hard wall
boundary conditions, given by @, (y) = /2/Wysin(amy/W)) and @g (y') =
V2/Wasin (By’/ W) . The longitudinal velocities in the left and right lead are
denoted vg and vy, respectively. For the matrix elements of the reflection subblock
a relation similar to Eq.(2.26) can be obtained [21]

Wi Wi
) = b = ihfiTg [ dy [ ay @06 (5 E) @ () 227

with y, y" now both lying in the same lead.

To obtain a semiclassical form of Eq. (2.26) [22, 23], the semiclassical expression
of the Green function (2.19) is used and the integrals with respect to y and y’ are
performed within stationary phase yielding the condition

BS], Brh
= =—— 2.28
3y’ —DPy = W, ( )
with B = +B. An analogous condition is obtained for the momenta py- Thus

only those paths which enter into the cavity at (x’, y") with a fixed angle sin 6§’ =
+pm/ (kW3) and exit the cavity at (x, y) with angle sin 0 = a7/ (kW)) contribute
to 7o, g (k). There is an intuitive explanation for this condition: The trajectories are
those whose transverse wave vectors on entrance and exit match the wave vectors
of the modes in the leads. One then obtains for the semiclassical expression for the
transmission amplitudes 7, g (k)

T

wr® ==

Z sign(@)sign(B) D, exp (h (@ B, E) — ,-Zny)

2
y@.B)
(2.29)
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with the reduced actions

S, (@, B, E) = S,(r,x, E) + hiky'sin 0’ — hky sin. (2.30)

Furthermore one obtains D, = \/ [(0y/d0")| /(hk|cos 6'|); the index n,, contains the
Maslov index appearing in the Green function and additional phases due to the two
stationary phase integrals. For the reflection (2.27) an analogous expression in terms
of trajectories returning to the same lead holds. The 4 g in Eq.(2.27) is cancelled
by direct trajectories not entering the cavity.

The three Eqs. (2.17, 2.23, 2.29) are the basic semiclassical formulas we will use
in this book.

In the next two sections we want to present the main advances in showing how
the RMT results can be derived with semiclassical methods: First we analyse the
transmission through a chaotic system based on the Landauer-Biittiker formalism
and afterwards we consider the spectral form factor.

2.3 Quantum Corrections to the Transmission

In this section we want to study the expression obtained by inserting the semiclassical
approximation (2.29) into the Landauer-Biittiker formula (2.25). Here we obtain with

2
GEZ%T

N1 Ny 2 Th N1 N ,
sC __ sc _ Y.V
=33 || = s 2 > 2 E (231
a=1g=1 a=1p=ly,y’
with
vy i T
Flf = DyDyexp| (s, =8y =iZnrs) (2.32)

with u,, ., containing the indices 7, and n,/, the sign-factors in Eq.(2.29) and the
phases due to the two last summands in Eq. (2.30). For i — 0 the function in (2.32)

is rapidly oscillating in dependence of the energy due to the factor e(l/h)(sy_s”/).
In the following we wish to identify those contributions to Eq. (2.31) which survive
an average over a classically small but quantum mechanically large k-window Ak.
Important contributions to (2.31) will result from very similar trajectories y and y’.
Afterwards we wish to evaluate their contributions to | to,p(k) |2 using basic principles
of chaotic dynamics: For our calculation we will need hyperbolicity and ergodicity.

This section is divided into three subsections: After showing how to obtain the
diagonal contribution in the first subsection we describe the calculation of the simplest
non-diagonal contribution in the second part and study its behaviour as a function
of a magnetic field. In the third subsection we introduce an approach to calculate
further quantum corrections.



22 2 Semiclassical Techniques

2.3.1 Diagonal Contribution

The simplest approximation is ¥y = y’, the so-called diagonal approximation,
yielding
2 wh 2
|10, () 30 = W > (2.33)
¥

The remaining sum over classical trajectories in Eq.(2.33) can be calculated using
a classical sum rule [24] that can be derived using in the ergodicity relation (2.4)
a proper function f(r, p), see for a derivation of a similar rule [25] and for a detailed
derivation of this sum rule [26]. It yields

AW W, [
> by~ Q(IE)Z [ dTo(D). (2.34)
14

where §2(F) again denotes the phase-space volume of the system at energy E, and
p(T) is the classical probability to find a particle still inside an open system after
a time 7T if it was inside at T = 0. For long times this function decays exponen-
tially p(T') ~ e~ 1/™ for T — oo for a chaotic system, with the dwell time 7 =

2(E)
RN +N2) °

tribution of trajectories: The number AN of particles leaving the system during
AT is given by the overall number of particles N times the ratio of the phase-space
volume from which the particles leave during AT and the whole phase-space volume
of the system. The differential equation for NV, obtained in the case of infinitesimal
AT, has obviously an exponential solution.

By inserting Eq. (2.34) into Eq. (2.33), we obtain

1
Ni+ Ny

Its derivation required ergodicity valid only for long trajectories. We will assume that
the classical dwell time is large enough, i.e. the opening is small enough, in order to
have a statistically relevant number of long trajectories left after time 7. The result in
Eq.(2.35) allows for a very simple interpretation: It is just the probability of reaching
one of the N1 + N, channels if each of the channels can be reached equally likely.

Next we want to evaluate off-diagonal (interference) contributions to the quantum
transmission. We will present here two approaches: The first one, the configuration-
space approach, that was also chronologically the first one to calculate off-diagonal
contributions is very illustrative as it measures the difference between the orbit and
its partner in terms of the crossing angle of the crossing orbit and not in terms
of the phase-space difference as the second one, the phase-space approach [3-6].
The latter one is however more general as the configuration-space approach relies
on assumptions valid only for two-dimensional systems. Originally developed for
surfaces of constant negative curvature [1, 2], it could later be generalised to general
hyperbolic chaotic systems with two degrees of freedom [27].

This exponential decay can be easily understood based on the equidis-

e ) g = (2.35)
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2.3.2 First Quantum Correction: Configuration-Space Approach

In the following we will describe the calculation of the contributions from pairs of
different trajectories, however with similar actions.
We want to remark that this calculation was motivated by the existence of RMT

results for |to,,ﬁ(k)‘2 [28]

1

2
a8 ®)rur = ¥, (2.36)

for the circular unitary ensemble, i.e. for systems without time-reversal symmetry,
and

o] k
Vo () = ! _ ! Z( -l ) (2.37)
«p RMT ™ N+ Ny + 1 N1+ N> = N1+ N ’

for the circular orthogonal ensemble, i.e. for systems with time-reversal symmetry.
The result (2.36) shows that in the absence of time-reversal symmetry semiclassically
there are no additional contributions expected when semiclassical and RMT results
coincide apart from the one obtained in diagonal approximation above. In the pres-
ence of time-reversal symmetry there exist apart from the diagonal contribution—the
k = O-termin (2.37)—further contributions that need to be explained semiclassically,
if semiclassics reproduces RMT results.

For a long time it was not clear how orbits could look like that are on the one
hand correlated but on the other hand different. There are many orbit pairs in a
chaotic system having accidentally nearly equal actions. Their number is usually
exponentially increasing as a function of their duration 7}, as can be seen by applying
the sum rule (2.34) directly in Eq. (2.29) and taking into account that usually D,,
e *1v/2 for large T, . These contributions are however assumed to appear randomly
and to be cancelled by the energy average. In order to describe universal features of
a chaotic system after energy averaging, one has to find orbits that are correlated in a
systematic way. These orbits were first identified and analysed in 2000 in the context
of spectral statistics [1]. There, periodic orbits were studied to compute correlations
between energy eigenvalues of quantum systems with classically chaotic counterpart,
we will come to this point in the next section. Based on open, lead-connecting
trajectories, in Ref. [24] this approach was generalised to the conductance we study
here. Still, the underlying mechanism to form pairs of classically correlated orbits
is the same in the two cases. In Fig.2.1 we show a representative example of such
a correlated (periodic) orbit pair in the chaotic hyperbola billiard. The two partner
orbits are topologically the same up to the region marked by the circle where one orbit
exhibits a self-crossing (left panel) while the partner orbit an “avoided crossing” (right
panel). Usually, such trajectory pairs are drawn schematically as shown in Fig.2.2.

We here consider very long orbits with self-crossings characterised by crossing
angles € < m. In Refs. [1, 2] it was shown that there exists for each orbit a partner
orbit starting and ending (exponentially) close to the first one. It follows the first
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Fig.2.1 Pair of two periodic orbits in the hyperbola billiard differing from each other essentially in
the region marked by the circle, where the left orbit exhibits a self-crossing while the right partner
orbit shows an “avoided crossing” (taken from [29])

Fig.2.2 Schematic drawing

of a pair of orbits yielding

the first non-diagonal

contribution to the

transmission considered in ) , (X,Y)
Ref. [24]. One of the orbits :
crosses itself under an angle | <

€, the other one possesses an N

“avoided crossing”. Except (xVy )I 9'

for the crossing region both

orbits are almost identical

orbit until the crossing, avoids this, however, traverses the loop in reversed direction
and avoids the crossing again.

In order to quantify the contribution of these trajectory pairs to Eq. (2.31) we need
two inputs: an expression for the action difference and for the density quantifying
how often an orbit of time 7 exhibits a self-intersection, both quantities expressed
as a function of the parameter €. The formula for the action difference AS can be
derived by linearising the dynamics of the orbit without crossing around the reference
orbit with crossing giving, in the limit € < 7, [1, 2]

2,2
AS ~ — (2.38)
2mA
with p the absolute value of the momentum. At this point we can justify our assump-
tion of small crossing angles €: In the limit 7 — 0, we expect important contributions
to Eq.(2.31) only from orbit pairs with small action differences, larger action dif-
ferences will yield rapidly oscillating contributions as a function of the energy. This
implies that the crossing angles have to be small, as we see from Eq. (2.38).

Before deriving the number of self-crossings, P (€, T) de, in the range between
€ and € 4 de for an orbit of time 7', we give rough arguments how this expression
depends on € and T for trajectories in billiards. There, each orbit is composed of a
chain of N chords connecting the reflection points. Following an orbit, the first two
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chords cannot intersect, the third chord can cross with up to one, the fourth chord
with up to two segments, and so on. Hence, the overall number of self-crossings will
be proportional to Z,Ilv:3 (n—2) « N2, toleading orderin N, i.e. proportional to T2

The crossing-angle dependence of P (e, T') can be estimated for small € as follows:
Given a trajectory chord of length L, a second chord, tilted by an angle € with respect
to the first one, will cross it inside the billiard (with area of order L?) only if the
distance between the reflection points of the two chords at the boundary is smaller
than L sin €. The triangle formed in the latter case includes a fraction sin € of the
entire billiard size. From this rough estimation we expect P (¢, T) o T? sine.

More rigorously, the quantity P (€, T') de, can be expressed for an arbitrary orbit
y as[1, 2]

T —Tmin(€) T—t;—Tmin(€)/2
P(e, T)yde = / dt,/ dts |J16 (r (ts) —r(ts +17))
Tmin(€) Tmin(€)/2

X § (€ —a(ty, ty + 1)) >d6 (2.39)

with the average (...) taken over different initial conditions (Xg, po) - The time of
the closed loop of the trajectory is denoted by # and the time before the loop by #;.
a (ty, ty + 17) denotes the absolute value of the angle between the velocities v (z;)
and v (; + #;) . |J]| is the Jacobian for the transformation from the argument of the
first delta function to # and #; ensuring that P (¢, T') de yields a 1 for each crossing
of y. With the absolute value of the velocity, v, it can be expressed as

[J| = |V () X V(ts + 1) = v”sina (&, ts + ). (2.40)

As the derivation [1] of the formula for P (e, T') for a chaotic system, starting from
the formal expression (2.39), is instructive to see how information can be extracted
from the basic principles of chaotic dynamics beyond the diagonal approximation,
we will present it here in detail. Hyperbolicity will yield a justification for the minimal
time Tin (€) already introduced in Eq.(2.39); we will come back to that point later
and first study the effect of ergodicity. To proceed we interchange the phase-space
integral of the average with the time integrals, substitute (r (¢;) , p (#;)) —> (¥o, Po)
in Eq.(2.39) and obtain

T —Tmin(€)

P(e,T)= 2m/ dyv?sinepg (€, 1) (T — 11 — Ton(€)),  (2.41)
Tmin (€)

with the averaged classical return probability density

1
pE (€ 1) = 7 (8 (ro —r (1)) (€ — 1< (vo, v (1)) (2.42)

7
m
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This yields the probability density that a particle possessing the energy E returns
after the time 7 to its starting point with the angle |£ (vg, v (f7))| = €. For long times
this can be replaced by 1/2 (E) , assuming ergodicity. Then we obtain

T —Tin(€) 2
P, T)~ 2m/ dtjv“sine (T — 11 — Tin(€))
Tmin(f) Q (E) e
_m sine (T — 2Tin (€)) (2.43)
= 2(E) min . .

Now we return to our assumption of hyperbolicity and explain the cutoff time
Tmin(€), introduced in the equations above. To this end, we consider two classi-
cal paths leaving their crossing with a small angle €. The initial deviation of their
velocities is §v; ~ ev. In order to form a closed loop, the deviation of the veloc-
ities Sv s, when both paths have traversed half of the closed loop, has to be given
by vy = cv with ¢ of the order unity. Then we get for the minimal time Ty, (€)
to form a closed loop, due to the maximally exponential divergence of neighboring
orbits for T, (€) — o0,

c~ ee(kTmin(E))/z’ (2.44)
implying
2 c
Toin (€) ~ S 1n (5). (2.45)

An argument similar to the one used here for the closed loop can also be applied
to the other two parts of the trajectory leaving the crossing with an angle € towards
the opening of the conductor. Suppose ¢, in Eq.(2.39) has a length between 0 and
Tin(€)/2, then both parts have to be so close together that they must leave both
through the same lead. As we are interested in the transmission, we also have to
exclude in that case a length of #; between 0 and Trin (€) /2. A similar argument holds
for the case where the last part of the orbit has a length between 0 and Tiin(€)/2,
in this case the orbit has to come very close to the opening already before the crossing
and leave before it could have crossed. Accounting for all these restrictions, gives
the integration limits in Eq. (2.39).

We want to remark here that the restrictions of the time integrals given above
only hold for the transmission 7. If we would calculate the reflection

R = Zg 1,3=1 }ra, g (k) |2 with the reflection elements of the scattering matrix 7y g (k),
the effect of short legs—to the corresponding contribution is referred as coherent
backscattering—has to be taken into account, see for example [23, 30]. This con-
tribution was actually the first off-diagonal contribution that could be calculated
semiclassically and that is changed by a magnetic field as the orbit and its partner
enclose non-zero flux, because both traverse the loop in different directions. In the
articles [23, 30] this contribution was then used to explain the Lorentzian lineshap of

the reflection in dependence of the magnetic field for weak magnetic fields that do
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not change the shape of the the trajectories significantly. Via the current conservation
relation

T+R=N, (2.46)

that follows from the unitarity of the scattering matrix—for a proof of the latter
relation see for example [26, 31]—the lineshape of the transmission 7 was then
predicted semiclassically.

Now we are prepared to calculate the contribution of the considered trajectory
pairs to the transmission. Therefore we keep in Eq.(2.31) one sum over trajectories
that we will perform using the same classical sum rule as in diagonal approximation,
the other we can replace by a sum over all the partner trajectories of one trajectory,
which can be calculated using P (€, T'). There is, however, one subtlety concerning
the survival probability p(7') in the sum rule: We argued already, that if the crossing
happens near the opening, both parts of the orbit act in a correlated way; p(T) is
changed in the case of the trajectory pairs considered here for a similar reason:
Because we know that the two parts of the orbit leaving the crossing on each side are
very close to each other, the orbit can either leave the cavity during the first stretch,
i.e. during the first time it traverses the crossing region, or cannot leave at all. This
implies that we have to change2 the survival probability from p(7T") to o (T — Trin (€)).
Then we arrive at the loop (L) contribution

tap @} = 57 3 3 Dy [P 20t .
@b LT aww, £ T T P\ " 2man

2.2
_ 47'[77/ /” de /OO dTe_(T_Tmin(e))/‘rDP (6 T) cos pe
Q(E) Jo 2T (€) ’ 2mAh
87 hmv?td, [T . e
— #/ dee™Tnin(©/0 sin ¢ cos (£ € (2.47)
.Q(E)2 0 2m)»h

with the sum over the partner trajectories P in the first line. As the important con-
tributions require very small action differences, i.e. very similar trajectories, and as
the prefactor D,, is not as sensitive as the actions to small changes of the trajectories,
we can neglect differences between y and y’ in the prefactor.® In the second line we

2 This effect together with the requirement of a finite length of the orbit parts leaving towards the
opening was originally not taken into account in Ref. [24]. In that calculation, the contributions from
these two effects cancel each other, they will be only important when considering more complicated
diagrams as in the next subsection.

3 We assumed here that the two trajectories possess the same Maslov index: Although this was not

yet shown for pairs of open orbits considered here there are several reasons why the Maslov indices
can be assumed not to influence properties of chaotic systems showing behaviour predicted by
RMT: For special chaotic systems like surfaces of constant negative curvature the Maslov indices
do not depend on the specific orbit and thus drop out in Eq.(2.47). Furthermore the following
interpretation is helpful: The Maslov index is given by the number of times the stable and unstable
manifolds rotate by half a turn plus twice the number of reflections on walls with Dirichlet boundary



28 2 Semiclassical Techniques

applied the classical sum rule with the modification explained before Eq. (2.47) and
used P (e, T') to evaluate the sum over P. After performing the simple time integral
in the third line, we can do the e-integration as for example in Ref. [34] by taking
into account that the important contributions come from very small €, yielding

»  8mhmvit) [T 2 pre?
|la,ﬁ(k)|L= W)ZD/O de(e/c) ™D sin € cos S

2

thmvztg /°° mM\h (1)(”1)) (2m)»hz)/\flu
= dz—— | — cos z
0

R(E)? p? \c p?
1

=_8nhmvzrlz) /Oodzm—h 1 (%) 2mihz Wsinz. (2.48)
QUE? Jo T p*\c p? z

In the first line we already rewrote e~ Tmin /T a5 (€ /c) % , and in the second line we
approximated sin € ~ € and substituted z = p?e%/ (2mAh) . Then we perform a par-
tial integration with respect to z neglecting rapidly oscillating terms that are cancelled
by the k-average, introduced after Eq. (2.32). Eventually, we perform the z-integral by
pushing the upper limit to infinity, i.e. 7 — 0 and taking into account our assumption

of large dwell times, i.e. A\tp — 0o. Additionally we assume (Zm)th/pz)% ~ 1
we will return to the last point in Chap. 4

Finally, we arrive at the leading non-diagonal contribution to the quantum trans-
mission [24],

1

2
k =,
e p 01 (N| + N»)?

(2.49)

that agrees with the kK = 1-term in the RMT expression given in (2.37).

2.3.2.1 Magnetic Field Dependence of the Non-diagonal Contribution

Up to now we assumed time-reversal symmetry. If this symmetry is destroyed, for
example by applying a strong magnetic field, the latter contribution will vanish,
because the closed loop has to be traversed in different directions by the trajectory
and its partner. Here we study the transition region between zero and weak magnetic
field. In particular, we consider a homogeneous magnetic field B, perpendicular to
the sample that is assumed weak enough not to change the classical trajectories, but

Footnote 3 (continued)

conditions [32]. This yields for periodic orbits that the Maslov indices of the orbit and its partner are
equal: First both are classically very similar and second the manifolds have to return to their original
positions for the orbits to become periodic. These facts exclude that stable and unstable manifolds
of orbit and partner differ by at least half a turn. For open orbits similar arguments were applied
in [33]. In the following we will thus always assume that there are no additional contributions due
to Maslov phases.
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only the actions in the exponents. Since the closed loop is traversed in different direc-
tions by the two trajectories, we obtain an additional phase difference (4w AB;/¢$0)
between the two trajectories with the enclosed area A of the loop and the flux quan-
tum ¢o = (hc/e) . We further need the distribution of enclosed areas for a trajectory
with a closed loop of time T in chaotic systems, given by

P(A,T) = (2.50)

1 ( A? )
2nTp P\ 2rp
with a system specific parameter B’. A derivation of this formula can be found for
example in Ref. [35]. Equation (2.50) can be interpreted in the following way [36]:
Long orbits accumulate their enclosed areas in a random way leading due to the
central limit theorem to a Gaussian area distribution. Including the phase difference
due to the magnetic field and the area distribution in a modified P (e, T') yields

2mv2 T —Tmin(€)
Pp (e, T) ~ sin € dt; (T — t; — Tiin (€
B ( ) .Q(E) /Tmm(e) 1 ( 1 mm( ))

o0 4w AB,
X dAP (A, t; — Thin (€)) cos "

oo 0
2mv2 T —Tmin(€) )
= sin € / dt; (T — tj — Tpin (€)) e~ Tmin()/18 (3 57)
$2(E) Tinin (€)
2
with 1p = Sﬂfﬁ. In the first step we used that paths leaving the crossing to form

a closed loop, enclose a negligible flux, as long as they are correlated; for a more
detailed analysis see Appendix D of Ref. [37]. Performing the 7- and e-integrals
similar to the case without magnetic field, yields [24]
1 1
(N1 +N2)* 1+ 7p/t8

|t 5k, B[ = (2.52)

We obtain in dependence of B, an inverted Lorentzian with minimum at zero mag-
netic field, implying that the transmission through our sample increases with increas-
ing magnetic field. This weak-localisation phenomenon is visible as the reduction of
the average quantum transmission in Fig.2.3.

After this introduction into the semiclassical methods for the evaluation of non-
diagonal contributions in configuration space, we will now turn to the generalisation
to phase space which also allows for an elegant way to compute higher-order cor-
rections in 1/N than the leading weak-localisation contribution presented above.

2.3.3 Quantum Transmission: Phase-Space Approach

The above configuration-space treatment, based on self-crossings, is restriced to
systems with two degrees of freedom. For higher-dimensional, dynamical chaotic
systems one cannot assume to find a one-to-one correspondence between partner
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Fig.2.3 Transmission of the depicted geometry as a function of kW /m for Wy = W, = W. The
straight full line is the resulting transmission in diagonal approximation, the fluctuating full line
the numerically determined quantum transmission. The dashed and the dotted curve are smoothed
curves for the quantum transmission without and with a weak magnetic field, respectively (taken
from [23]). Note the large fluctuations around these curves. They are universal in chaotic systems
and referred to as universal conductance fluctuations. We will come back to their semiclassical
description in Chap. 4

orbits and crossings of an orbit [3, 4]. In order to overcome these difficulties, a phase-
space approach was developed for calculating the spectral form factor in spectral
statistics in [3—5] involving periodic orbits. The next challenge was the generalisation
of this theory to trajectory pairs differing from each other at several places, solved
again first for the spectral form factor [6] and generalised to the transport situation
considered here in Ref. [38] which serves as the basis of the following discussion.

We now first explain the phase-space approach and use it afterwards in the way
developed in Refs. [6, 38] for the calculation of the quantum transmission involving
also higher-order semiclassical diagrams.*

2.3.3.1 Phase-Space Approach

Compared to the last subsection, we first switch the role of the reference orbit.
Whereas we used there the crossing orbit as reference and calculated then the action
difference and the crossing-angle distribution in terms of the crossing angle e,
we will consider here the orbit without the crossing that is close to itself in the
encounter region, where the partner orbit crossed in configuration space itself in
the last subsection. To the region, where the orbit is close to itself, we will refer as
encounter region and to the parts of the orbit inside as encounter stretches. These
are connected by so-called links. Imagining this encounter in phase space, we place

4 We restrict for simplicity of presentation to two-dimensional systems with one constant
Lyapunov exponent, generalisations can be found for example in [39, 40].
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A A

tenc

Fig.2.4 An encounter with the ingredients considered in the phase-space approach: The duration
of the encounter is given by Zenc, the sum of the times #; and #, traversed on the left and on the right
of a Poincaré surface of section P, respectively. The piercing points of the trajectory indicated by
the fat (blue) line are given by (0, 0) and (s, u). The partner trajectory is indicated by the dashed
(red) line

a Poincaré surface of section P with its origin at X = (r, p) inside this region. The
section consists of all points X + §x = (r + r, p + 5p) in the same energy shell as
the reference point with the §r perpendicular to the momentum p of the trajectory.
For the two-dimensional systems mostly considered here P is a two-dimensional
surface, where every vector §x can be expressed in terms of the stable direction
es (X) and the unstable one ¢, (x) [41]

86X = sey (X) + uey (x). (2.53)

The expressions stable and unstable refer to the following: Consider two orbits, one
starting at x and the other one at x + 8Xx¢, then the difference between the stable
coordinates will decrease exponentially for positive times and increase for negative
time exponentially in the limit of long time 7', unstable coordinates behave just the
other way round. The functional form of the exponentials can be written as e*” and
e *T. Now we can come back to the trajectory with the encounter region, where we
have put the Poincaré surface of section. The reference trajectory considered here,
the fat (blue) line in Fig.2.4, will pierce the Poincaré section twice: One of these
points we will consider as the origin of the section the other piercing will take place at
the distance (s, u), see Fig.2.4. The coordinates of the piercing points of the partner
trajectory, the dashed (red) one in Fig. 2.4 are determined in the following way: The
unstable coordinate of the partner trajectory has to be the same as the one of that
part of the first trajectory that the partner will follow for positive times. The stable
coordinate is determined by the same requirement for negative times.

After this introduction into the determination of the (s, u)-coordinates, we are
now ready to treat trajectory pairs that differ in encounters of arbitrary complexity.
Following Refs. [6, 39, 40] and using the notation introduced there we will allow here
that the two trajectories differ in arbitrarily many encounters involving an arbitrary
number of stretches. In order to organise this encounter structure we introduce a
vector v = (va, v3, ...) with the component v; determining the number of encounters
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with / stretches involved. The overall number of encounters during an orbit will
be denoted by V = > 7°, v;, the overall number of encounter stretches by L =
Z?iz [v;. In an encounter of [ stretches, we will get [ — 1 (s, u)-coordinates.

Now we can proceed by replacing the former expressions for the minimal loop
time, the action difference and the crossing-angle distribution depending on the
former small parameter €, by the corresponding expressions depending on the new
small parameters (s, u).

We start with the minimal loop time, to that one also refers as the duration of the
encounter as the two parts of the trajectory are close, i.e. linearisable, to each other
during that time, as we saw in the last subsection. Shifting the Poincaré surface of
section through the encounter, the stable components will asymptotically decrease,
the unstable ones will increase for increasing time. We then claim that both compo-
nents have to be smaller than a classical constant ¢, giving the upper bound for the
two trajectories to be linearisable. Its exact value will again, as in the last subsection,
be unimportant for our final results. We then obtain the encounter duration fepc as
the sum of the times ¢,, that the trajectory needs from P till the point where the
first unstable component reaches ¢, and the time ¢, that the trajectory needs from
P till the point where the last stable component falls below ¢, for an illustration see
Fig.2.4. Thus we get for fepe — 00

2

1
) e _ 2.54
lene =I5 + lu P max; {|s; [} max; {|u;|} o

Now we treat the action difference between the two trajectories. Expressing the
actions of the paired trajectories as the line integral of the momentum along the
trajectory as defined after Eq.(2.19), we can expand [3, 4] one action around the
other by linearising the motion on the two trajectories around each other and express
the result in terms of the (s, u)-coordinates. This yields for an / -encounter’

-1
AS ~ > ujs;. (2.55)
j=1

The action difference of a trajectory pair is then obtained by adding the differences
resulting from all encounters.

Finally we come to the crossing-angle distribution that will be replaced here
by a weight function for the stable and unstable coordinates for a trajectory of
time 7. We first notice that the uniformity of the trajectory distribution implies
in terms of our coordinates in P that a trajectory pierces through the section with
the coordinates (u,u + du) and (s, s + ds) within the time interval (¢,t 4 drt)
with the probability dsdudt/S2(E). In general, we obtain for an [-encounter
ds'='du!='dr'=1 (1/22 (E)'—1. Integrating the product of the latter quantities for

5 Strictly speaking [6] the (s, u)-coordinates used here and in the following calculation are for
encounters involving more than two stretches not the same as the ones described before, but related
to them via a linear and volume preserving transformation.
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all encounters over all possible durations of the L — V intra-encounter links, in a way
that their durations are positive yields our weight function for a fixed position of P.
To take into account all possible positions of P, we also integrate over all possible
positions where it can be placed, and divide by e, to avoid overcounting of equiv-
alent positions. Taking all link times positive, we obtain for the weight function®

1 00 \4 L
wu,s, T)~ —/ dh ...er@(T—Zlarg‘m—Zta)
a=1

L-V
Ha 1 enc a=1

L
_ (T Z ll enc) . (2.56)
LIQL-V H

Cl’lC

with the Heaviside theta function @ (x).

One additional problem arises, when treating trajectory pairs differing not only
in one 2-encounter like in the last subsection: One can construct for one v different
trajectory pairs, varying for example in the relative orientation or order in which the
encounter stretches are traversed. We will count this number by a function N (v) and
describe briefly later in this section how it can be calculated.

2.3.3.2 Calculation of the Full Transmission

After the introduction into the phase-space approach we are now ready to calculate
the contributions of orbit pairs differing in an arbitrary number of encounters of
arbitrary size to the transmission. Taking the weight function, the action difference
and the number of structures, we can transform the off-diagonal part of the summands
in Eq.(2.31) into

1,6 (0|2 = A ZZ|D >N

x </ dsdu exp (;—iAS) w @, s, T)> (2.57)
—c Ak

with the average over a small k-window denoted by (. ..) 5 . Inserting the formulas
for the action difference (2.55), the weight function (2.56) and using the classical sum
rule with the modification of the survival probability due to encounters, discussed in
the last subsection, we can transform [38] the integral with respect to the length of
the trajectory into one over the last link and obtain

6 A derivation of this expression starting from a formula analogous to (2.39) and using the mixing
property can be found in Appendix B of [39].
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with the L 4 1 link times 7;. The (s, u)-integrals are calculated using the rule [6], that
after expanding the exponential e’/ ™0 into a Taylor series, only the fc-independent
term contributes and yields for A — 0

1 [ ius 1
— / dsduexp | — ~ — (2.59)
2 ). h )]l TH

with the Heisenberg time Ty = 2/(2wh) = 2 hd(E). Due to the last relation Ty
can be, following the Heisenberg uncertainty principle, regarded as the time needed
to resolve energy levels separated by distances of the order of the mean level spacing
A(E) = 1/d(E).

For the sum with respect to v, one can derive recursion relations, yielding [6, 38]

L—V=n 2 n
Z (-=)V N (v) = (1 - —) (2.60)
" B
with B = 1 and B = 2 for the case with and without time-reversal symmetry,

respectively. Relations of this kind are derived from recursion relations obtained
by expressing the connections inside and between encounters by permutations and
considering the effect of shrinking one link in an arbitrarily complicated structure to
ZEero.

We then obtain for 7 (k) in the case with time-reversal symmetry [38]

T()P=! ~ NN n NN i —1 ”_% 2.60)
Ni+N» Ni+M Ni+ N> Ni+Ny+1 '

n=1

and in the case without time-reversal symmetry

TP~ ——— | (2.62)

which agrees with the diagonal contribution, already obtained in the first subsection
of this section. Both results are in agreement with RMT predictions [28] given in
(2.36) and (2.37).
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2.4 Spectral Statistics

After this introduction to transport through open systems we now want to analyse
the spectral properties of chaotic systems. We first introduce the quantities usu-
ally studied in this context and afterwards show how the spectral form factor,
for its definition see below, is calculated semiclassically within the phase-space
approach.

In the context of spectral statistics often the autocorrelator of two spectral densities
d(E) (we will come to another quantity characterising the spectral properties of a
chaotic system in Chap. 5 ) is considered, defined as

1 € €
¢ d? <d( + 2nd) d( 27Td)>Ak (269

The (—1) subtracts the contributions due to the mean spectral densities d contained
in the first term. The function C (¢) can be expressed semiclassically using (2.23) and
linearising the actions around the mean energy E, S, (E +¢/(2nd)) ~ S, (E) +
ehT, /Ty, as

Cyc(€)

_ m% <Z T}?rimT;/rimCy Cy,e(i/h)(Syfsy/)Jr(ie/TH)(TV+TV/)7i(n/2) (ryry/)> .
H \y,y' Ak
(2.64)

We also define

1 —+osc € —0sc €
R(e) = —— (TrG E+— )G E-—_)) , (65
47242 2wd 27d ) | ax

expressed by using TrG™ (E) = [TrG+(E )]* and Eq. (2.22) semiclassically as

Ry (€)
| i i G/(Sy =5, Y rGe/ T (T, +T, ) —i(e/2) (1, —7,
_ prim -prim y H)\ 1y y
= F<ZTV T)'"C,)Cyre ( V) ( V) ( V)
H \yy Ak
(2.66)

Often also the corresponding Fourier transform, the spectral form factor is considered

K(t) = %</OO dee_2i€TR(e)> , (2.67)

—o0 Ak, At

that we want to study here.
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The RMT results for the latter quantity are

Kgug(t) =1, for t <1

Kgue(z) =1, for © > 1 (2.68)

in the case of the Gaussian unitary ensemble and

KGoe(t) =2t —tln(1 4+ 27) =27t =212+ 203+ O (r4) , fort <1

2t +1)
K =2—tln——, fi 1
GOE(T) Tin 2r—1) ort >
(2.69)
in the case of the Gaussian orthogonal ensemble.
A semiclassical expression for K(t) can be obtained by inserting (2.66) in

Eq.(2.67) and performing the e-integral

1 im . pri A/ (8=, ) =it/ (ty—1,
K (1) = <E Z T)grlmT;),nmCyCy/e i/ ( y =S, ) i(/ (ry T, )
vy

T, +T,
x8 1Ty — L—2L : (2.70)
2 Ak, At

As already in the last section we obtain a double sum over trajectories, however
now periodic orbits are considered instead of lead-connecting paths like in the last
section. We will now proceed with calculating the contributions to (2.70) surviving
the averaging. In diagonal approximation we obtain the contribution Kgise(7)

1 rim') 2
Kaiag (1) = 7 > (Typ ) |Cy |78 (xTy —T,). (2.71)
14

The sum over orbits in the last equation is performed with the Hannay and Ozorio
de Almeida sum rule [42]

> (Typrim)z Cy |8 (cTu — Ty)) ~ T, 2.72)
Y

that can be derived in a similar way like (2.34) using ergodicity yielding finally [43]
Kdiag(t) =T (2.73)

and twice the latter contribution in the presence of time-reversal symmetry, because
then we can additionally pair each orbit with its time-reversed counterpart.

We want to show now that the semiclassically calculated off-diagonal contribu-
tions to K (t) are in accordance with the results (2.68, 2.69) from RMT. We will as for
the introduction to the phase-space approach follow [6, 39, 40] and use the notation
introduced there. The calculation is performed within the phase-space approach. We
introduced for the transmission in the last section
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e the duration of an encounter ¢, (u, §),

* the weight function w (u, s, 7') measuring the density of encounters,

* the action difference of the orbit and its partner AS,

¢ the function N (v) characterising the number of possible orbits for a vector v.

Compared to the last section the only change in these quantities is that the weight
function is altered due to the fact that here periodic orbits are considered. It is now
given by

L—1

T (7 = X0 et
(L )"QL VHa lenc.

w(u,s, T) =~ 2.74)

The factor T not appearing in the case of open trajectories, Eq. (2.56), results here
from the possibility that the final point of the first encounter stretch can lie everywhere
on a periodic orbit. This was not possible on an open orbit. With these quantities
we obtain for the off-diagonal contributions to the spectral form factor K (t) after
applying the sum rule (2.72) [6, 39, 40]

2 N ¢ .
Kofi(r) = =71 <Z L(V) / dsduw (u, s, tTy) e(’/h)AS> (2.75)
v —C

Ak, At

with 8 = 2 in the unitary and 8 = 1 in the orthogonal case. The factor % avoids
overcounting of equivalent diagrams: In contrast to an open orbit for a periodic orbit
each encounter stretch can be singled out to be the first one. All these contributions
lead however to the same contribution to (2.75) that should only be counted once.
As already mentioned before Eq.(2.59) only terms of w (u, s, T') contribute to the
s, u-integrals that are independent of #e,c.. We consider in (2.74) only those terms,
we thus replace

T\ D" Tlo_; b
W(u,s, T) i (5) m, (276)

where ng/:l Iy can be transformed into []72, /" by noting that /, depends only on

the number / of encounter stretches in an encounter. This yields together with (2.59)
for Kofr (1)

2 L—V(_I)VH?EZIUI < <" Ve n
Kofw):Eer)N(v)r AT :ﬁ(n—z) Z Z N
(2.77)

with

DV TS
7 .

N (V) =N (v) (2.78)

The function K (7) can thus be expressed as



38 2 Semiclassical Techniques

Kot (1) = = > Kyt 2.79)
'8 n=2
with
1 L—V+1=n _
K, = s ; N (V). (2.80)

The sum over v is like in the case of the transmission in the last section performed with
the help of recursion relations for the contributions for different n, for a derivation
see e.g. [39, 40], in the unitary case this yields

K,=0 (2.81)
and in the orthogonal case

_ 2!

K
" n—1

(2.82)

Both results are consistent with the RMT predictions (2.68) and (2.69) for t < 1.
This is obvious for the unitary case, while in the orthogonal case it is obtained by
comparing the t-expansions of the semiclassical and RMT result for t < 1. This
semiclassical theory we have described is up to now however not able to explain the
correlations that lead to the behaviour of K (7) for T > 1; we will come back to this
point in Chap. 5.

References

. Sieber, M., Richter, K.: Phys. Scr. T 90, 128 (2001)
. Sieber, M.: J. Phys. A 35, L613 (2002)
. Turek, M., Richter, K.: J. Phys. A 36, L455 (2003)
. Turek, M.: Semiclassics beyond the diagonal approximation. Ph.D. thesis, Universitit
Regensburg (2004)
. Spehner, D.: J. Phys. A 36, 7269 (2003)
. Miiller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. Lett. 93, 014103 (2004)
7. Keppeler, S.: Spinning Particles-Semiclassics and Spectral Statistics, Springer Tracts in Modern
Physics vol. 193, Berlin, Heidelberg (2003)
8. Grosche, C., Steiner, F.: Handbook of Feynman Path Integrals, Springer Tracts in Modern
Physics vol. 145, Berlin, Heidelberg (1998)
9. Grigis, A., Sjostrand, J.: Microlocal Analysis for Differential Operators. Cambridge University
Press, Cambridge (1994)
10. van Vleck, J.H.: Proc. Natl. Acad. Sci. USA 14, 178 (1928)
11. Gutzwiller, M.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)
12. Choquard, P., Steiner, F.: Helv. Phys. Acta 69, 637 (1996)
13. Berry, M.V,, Tabor, M.: Proc. R. Soc. Lond. A 349, 101 (1976)
14. Berry, M.V., Tabor, M.: J. Phys. A 10, 371 (1977)

B LN =

AN


http://dx.doi.org/10.1007/978-3-642-24528-2_5

References 39

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

217.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

42.
43.

Balian, R., Bloch, C.: Ann. Phys. 60, 401 (1970)

Balian, R., Bloch, C.: Ann. Phys. 64, 271 (1971)

Balian, R., Bloch, C.: Ann. Phys. 69, 76 (1972)

Landauer, R.: IBM J. Res. Dev. 1, 223 (1957)

Landauer, R.: IBM J. Res. Dev. 32, 306 (1988)

Biittiker, M.: Phys. Rev. Lett. 57, 1761 (1986)

Fisher, D.S., Lee, P.A.: Phys. Rev. B 23, 6851(R) (1981)

Jalabert, R.A., Baranger, H.U., Stone, A.D.: Phys. Rev. Lett. 65, 2442 (1990)

Baranger, H.U., Jalabert, R.A., Stone, A.D.: Chaos 3, 665 (1993)

Richter, K., Sieber, M.: Phys. Rev. Lett. 89, 206801 (2002)

Sieber, M.: J. Phys. A 32, 7679 (1999)

Waltner, D.: Spin-Bahn Kopplung in mesoskopischer Physik: Ein semiklassischer Zugang.
VDM-Verlag Dr. Miiller, Saarbriicken (2011)

Miiller, S.: Eur. Phys. J. B 34, 305 (2003)

Beenakker, C.W.J.: Rev. Mod. Phys. 69, 731 (1997)

Waltner, D., Richter, K.: Classical correlations and quantum interference in ballistic conductors.
In: Radons, G., Schuster, H.G., Rumpf, B. (eds.) Nonlinear Dynamics of Nanosystems. Wiley-
VCH, Berlin (2010)

Baranger, H.U., Jalabert, R.A., Stone, A.D.: Phys. Rev. Lett. 70, 3876 (1993)

Stone, A.D., Szafer, A.: IBM J. Res. Develop. 32, 384 (1988)

Creagh, S.C., Robbins, J.M., Littlejohn, R.G.: Phys. Rev. A 42, 1907 (1990)

Kuipers, J., Sieber, M.: Phys. Rev. E 77, 046219 (2008)

Brouwer, P.W., Rahav, S.: Phys. Rev. B 74, 075322 (2006)

Jensen, R.V.: Chaos 1, 101 (1991)

Doron, E., Smilansky, U., Frenkel, A.: Phys. D 50, 367 (1991)

Jacquod, P., Whitney, R.S.: Phys. Rev. B 73, 195115 (2006)

Heusler, S., Miiller, S., Braun, P.,, Haake, F.: Phys. Rev. Lett. 96, 066804 (2006)

Miiller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. E 72, 046207 (2005)
Miiller, S.: Periodic-Orbit Approach to Universality in Quantum Chaos. Ph.D. thesis, Univer-
sitidt Duisburg Essen (2005)

Gaspard, P.: Chaos, Scattering and Classical Mechanics. Cambridge University Press, Cam-
bridge (1998)

Hannay, J., deAlmeida, A.O.: J. Phys. A 17, 3429 (1984)

Berry, M.V.: Proc. R. Soc. A 400, 229 (1985)



Chapter 3
Survival Probability and Fidelity Decay

Here we consider decay of open systems and the stability of closed systems under
perturbations. For the quantities characterising these effects that can be treated semi-
classically in a related manner we want to explain how to calculate for chaotic sys-
tems quantum corrections to the classical results in a similar way as shown in the last
chapter. The corresponding calculations were published mainly in [1-4]. In the first
section we define and introduce the relevant expressions. Afterwards we explain the
unitarity problems occurring in a semiclassical calculation of quantum corrections
presenting as an example the first quantum correction in the presence of time-reversal
symmetry and how to remove those problems by considering additional diagrams.
Then we extend our analysis to more complicated diagrams and explain the effect of
spin-orbit interaction in this case. Afterwards we discuss how certain exact relations
like the continuity equation are fulfilled in this semiclassical approach. Finally we
explain the effect of quantum corrections in the regime of strong perturbations and
for a time-dependent perturbation.

3.1 Survival Probability and Fidelity Within Diagonal
Approximation

3.1.1 Survival Probability

We consider the quantum mechanical survival probability of a particle inside a cavity
of an area A, i.e. the spatially integrated probability density

Pgm (1) =/Adl‘1/f(l', HY*(r, 1) (3.1)

of the wave function ¥ (r, 7). In the case of a closed system the probability to stay
inside the system is conserved, pgm (£) = 1. This fact is retained in the classical
limit 2 — 0, since a classical particle also has to stay inside a closed system, i.e. the
classical survival probability pc| (7) is equal to the quantum one pgm (7). Turning now
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42 3 Survival Probability and Fidelity Decay

to an open system, pqm () can deviate from its classical counterpart, ¢ (7). We can
thus get access to quantum properties by opening up the system and comparing o (7)
and pgm (7). As already given in the last chapter after Eq. (2.34), for an open system
with completely chaotic dynamics, the classical survival probability is asymptotically
given for long times by

pel (1) ~ e~/ (3.2)

with the classical dwell time tp = $2/(2wAN) obtained in the case of N open
channels.

We will study now pgm (#), or more exactly quantum corrections to o) (f): Various
methods were used to gain information about this quantity: Experimentally they
have been studied either directly in atom billiards [5, 6], or indirectly in the spectral
regime of Ericson fluctuations—i.e. when the average width of the resonances in
the spectrum is much larger than their spacing—using electrons [7] or microwaves
[8], and in atomic photoionisation [9]. Numerically they have been analysed by
[10] for the kicked rotator. Furthermore pgm (#) was also studied by supersymmetry
techniques [11-13]. As several examples considered up to now showed, these results
can be expected to be applicable to classically chaotic systems. It was found there
that the quantum decay pqm (?) follows pc1(¢) only up to a quantum relaxation time
t* ~ /tp Ty, shorter than the Heisenberg time 7'y. It was shown in Refs. [11-13]
that p(¢) is given by a universal function depending only on tp and 7'y . In contrast
to the conductance and the spectral form factor in the last chapter the results do not
possess a simple closed form. In the unitary case the first correction in 7/ Ty to (3.2)
is given by

Z4
PGUE (1) = e !/ (1 + P + - ) (3.3)
2415 Ty

and in the orthogonal case by

2
pGoE (1) = e~'/™ (1 + ! +-- ) (3.4)
2tpTy

with the dots indicating higher-order terms in ¢/ 7'y . For quantum graphs the given
corrections were studied semiclassically and numerically in [14].

Here we want to calculate corrections to p1(#) by semiclassical methods for gen-
eral classically chaotic quantum systems. In order to obtain a semiclassical approx-
imation for the quantum survival probability we express

v = [ arKer v (3.5)
A
with the initial state ¥ (r’) at # = 0 and approximate the time-dependent propa-

gator K (r, 1, t) semiclassically by (2.17). This yields the semiclassical expression
for p(¢):


http://dx.doi.org/10.1007/978-3-642-24528-2_2
http://dx.doi.org/10.1007/978-3-642-24528-2_2

3.1 Survival Probability and Fidelity Within Diagonal Approximation 43

1y’ /g Nk !
Psc(l) = (zn—h) /Adl'dl' dr” Yo(r) gy ()

x> AJ;A);/ei<S’7_S17')/ it/ (17 =) (3.6)
7 (' —r0)
7 (" —> 1)

with the trajectories denoted by 7, 7’. Similarly as in the last chapter we want to
study now pg(f) averaged over a classically small but quantum mechanically large
time window A¢. Important contributions will thus again result from very similar
trajectories. Therefore we first single out in the double sum in (3.6) all paths with
similar starting points. We thus introduce midpoint coordinates rg = (r' +r”)/2 and
difference coordinates q = (r’ — r”’) and replace the original paths 7, 7', by nearby
trajectories y and ¥’ connecting ro and r in time ¢. Then, upon expanding the action
Sy, r' 1) >~ S, (r,ro, 1) — qpy /2 with p}) the initial momentum of path y and
expanding in the same way S}/, we obtain

q
pelt) = o [ drdrodao (o + 3) i (vo - 3)
D SR Da21-ie (i) (3
ysy'(to—=r,0)

The main contribution to pg.(?) in the semiclassical limit 7 — 0 arises from pairs
y = y’, because they involve no action differences. We obtain

)= — 4 o (rg— & 2 —(i/pla
Pdiag (1) = aahy? /dl‘dl‘o dq v (1‘0 + 2) v (1‘0 2) y(rgm) [y |"e 0%
(3.8)

Here |4, |2 = |det (—9%S, /drdr’)| = |det (dp{, /dr)| acts as a Jacobian for trans-
forming the r-integral into one with respect to the initial momentum pg . This yields
then the diagonal contribution [15]

Paiag (1) = (™), . (3.9)
Here (...)y, p, indicates the phase-space average,
(Fegpo = an h)2 /dl'o dpo F (ro, po) pw (ro, Po), (3.10)

where

ow (to.p0) = [ davo (ro+ 3) v (ro— 5) exp (—%QPO) G.11)

denotes the Wigner function of the initial wave packet yy. In the case that vy has a
small energy dispersion around a mean energy Ey, Eq. (3.9) can be approximated by
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Paiag (1) = =/, (3.12)

with 7p = 2 (Eo) / 27N (Ep)).

3.1.2 Fidelity Amplitude and Fidelity

The fidelity M (¢) was originally introduced by Peres [16] as a measure of the stability
of a quantum system with respect to a perturbation, and has since then advanced to an
important quantity characterising the sensitivity of a quantum system in the fields of
quantum chaos and quantum information. It is given by the squared modulus of the
fidelity amplitude, m(¢), defined as the overlap integral of an initial state, e.g. a wave
packet, with the state obtained upon forward and backward propagation governed
by two Hamiltonians differing slightly by a perturbation, remember the right panel
in Fig. 1.6. In terms of formulas we obtain

M(t)=/dl‘lﬁ* (r,0)¢(r, 1) (3.13)
A
and

M(t) = [m(0)[%, (3.14)

with i (r, 7) obtained by propagating the initial state (r’) with the Hamiltonian H
and ¢ (r, 1) by propagating the same initial state with the Hamiltonian H' = H + X
with the perturbation X'. As for the survival probability we represent ¥ (r, ¢) with
the help of the quantum propagator Ky (r, r, l) for the Hamiltonian H:

Y(r, 1) = / dr'Ky (v, x', 1) o (r'). (3.15)
4

A similar representation holds for @ (r, ¢), with Ky replaced by the propagator
Kpp. Next we replace in Eq. (3.15) again the propagators by their semiclassical
representations (2.17). We will assume that the perturbation X' is classically small
like the considered magnetic field in Sect.2.3 such that only the actions, i.e. the
phases, are affected while the classical trajectories y remain unchanged. Under this
assumption, after inserting Eqs. (2.17) and (3.15) into Eq. (3.13) we obtain the
following semiclassical approximation [15] for m(z):

1 2
mge (1) = (%) /4611‘ dr’ dr” Yo (l‘/) ‘/,8‘ (r//)

X Z Al;A};/ exp (% (S}; — S};/ + AS;:) —i(/2) (:u“)7 - /’LJ;/))’
7 (' > 1)
7 (" =)

(3.16)
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where ASZ stands for the change in the action along the trajectory 7 due to the
perturbation X. Introducing again midpoint and difference coordinates like after
Eq. (3.6) we obtain

Mg (1) = (ﬁi—h)z/drdm dq o (ro + %) Yo (ro - g)

i
x 2 Ay Ay exp (ﬁ (Sy — SV’))
.y (o=>r.0)

X exp |:% (—g (pg + pg/) + AS},) — i% (uy - uy/):l, (3.17)

with 1y, q, pg and pg ' defined after Eq. (3.6). To treat this quantity like the survival
probability on the level of the diagonal approximation for chaotic systems we need
to know more about the effect of the perturbation. We summarise here results from
Refs. [15, 17, 18]. The perturbation is given by

!
AS), = /O di'Ly; (1) (3.18)

with the Lagrangian Lf (t/ ) i.e. the difference between the kinetic and potential
energy of the perturbation X'. In the case of a perturbation potential X', Eq. (3.18)
simplifies to

t
AS, (1) = — /0 dt' g, (). 7] (3.19)

We want to study now the average phase difference resulting from the perturbation.
The average can be understood in this context as the average in the phase space
over trajectories y with different initial conditions like in the case of the crossing-
angle distribution in the last chapter. Alternatively, one can fix y and consider an
average over an ensemble of different perturbations X'. When the action difference
results from a huge number of uncorrelated interactions of the particle with the
disorder potential, AS), (1)/t is distributed according to the central limit theorem as
Gaussian random variable and the variance of AS,, () is given by ¢ ffooo dtC(7),
where C(7) = (Lf (7) Lf (0)) is the time correlation of the perturbation. Assuming
that the mean value of AS), (¢) is zero, that the perturbation thus leads in average to
no additional action difference, this implies

i <AS§> !
<exp (ﬁASy)> =exp|— 2 = exp (_E)’ (3.20)
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where

~1| —

1 o0
- ﬁ/ dzC (7). (3.21)

—00

To illustrate this treatment of the perturbation we consider a possible realisation by
a quenched static disorder potential

Ni

» I
Tm=> 2:;? exp [—25—2 (r — RQ)Z}. (3.22)

a=1

It is given by N; random impurities in a cavity of an area A with the Gaussian
profile characterised by a finite correlation length &, see [15, 18]. The independent
impurities can be assumed to be uniformly distributed at positions R, with the
densities n; = N;/A and strengths u, obeying (ua u,g) = u26aﬁ.

The action differences AS), accumulated by segments of y separated by distances
larger than & are regarded for sufficiently small & as uncorrelated. Consequently the
stochastic accumulation of AS), along y can be described by a random process,
resulting in a Gaussian distribution of the action difference AS,, . This yields the
previous result (3.20). Note that the average here is over the ensemble of the disorder
potentials [15, 18]. For the potential in Eq. (3.22) the decay time 7 in Eq. (3.20) can
be calculated explicitly. In this case the correlation function is given by

2
N , _ u-n; 1 N2
Cy(r=r|)=(Z@@) X (r@))= pos, exp [—@ (r—r) ], (3.23)
and it depends only on the difference between r = r(¢) and r’ = r(¢’). Using then
ergodicity of the classical flow and substituting time averages in Eq. (3.21) by the
integration over the cavity domain we obtain for the decay time 7¢ the relation [18]

i = V21 k&ls. (3.24)

Here, 75 = 13 /(nju>m) is the quantum elastic scattering time for the white-noise case
of §-scatterers. Note that for k& > 1, fg coincides with the elastic scattering time
obtained quantum mechanically within the first Born approximation for the disorder
potential (3.22). In the limit k& < 1, where the semiclassical treatment of disorder
effects in terms of unperturbed trajectories is no longer valid, Eq. (3.20) can still be
used but with 7 replaced by 7s.

With (3.20) it is now possible to obtain mgijag (1), i.e. m(?) in diagonal approxima-
tion. After inserting Eq. (3.20) into Eq. (3.17) we obtain [15]:

Miag (1) = (ﬁy/drdro dq o (ro + g) Vo (1'0 — %)

] t
> |4y exp (—%qu) exp (—5) (3.25)

y(ro—r,7)
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In the same way as for the survival probability, see Egs. (3.9, 3.12), we obtain

t
Miag (1) = <eXp (—2—;) >m’p0 , (3.26)

that again simplifies for small energy dispersion around Ej to
Mdiag (1) = exp (=1"1), (3.27)

with the decay rate I' = 1/(27 (Ep)). As our expressions for the fidelity amplitude
depend on I', we will also use in the following the notation m (¢; I") instead of
m(t). Equation (3.27) represents the exponential, so-called Fermi Golden Rule decay
in the universal regime [15, 19, 20].

As we just introduced the Fermi Golden Rule decay we want to give here a brief
overview of the decay regimes of the fidelity: Due to Eq. (3.17), the fidelity M (¢),
Eq. (3.14), can be expressed semiclassically as

1\* q
M (1) = (ﬁ) </ dr dro dq dr dry dq o (l’o + %) v (l‘o - %) v (fo + g)

_q
cn(@-3) X S Ay
y1(ro —>r, 1), y2(fo > T, 1),
y{(xo > r,0) y{To—>T, 0
i

q N, 4q ;
X exp [ﬁ (SV, =Sy =S+, - 5 (pgl +p();') + 2 (pgz +pgz))]

X exp [% (A4S, — AS,,) — i% (i = by = i + M)D. (3.28)
Three main decay regimes for M (¢) are distinguished, depending on the strength of
the perturbation X': In the limit of a weak perturbation, i.e. if X' is smaller than the
quantum mean level spacing A(E), the fidelity decay is Gaussian characterising the
perturbative regime [19-21]. As in this regime the perturbation dependence of M (t)
has to be resolved on scales smaller than the mean level spacing the behaviour of
M (t) cannot be yet predicted in this regime semiclassically. This regime can only
be described by RMT within linear response with respect to the perturbation [22]
and with supersymmetric techniques [23, 24]. For perturbations of the order of or
larger than A(E), the decay is predominantly exponential, M (¢; I') ~ e~>!"!| with
a decay constant I" that can be obtained by Fermi’s golden rule [19]. The corre-
sponding perturbation range is hence called the Fermi golden rule (FGR) regime
[15, 19, 20]. For strong perturbations the decay is still exponential in time, but with a
Y-independent decay rate given by the Lyapunov exponent A of the classically
chaotic counterpart of the quantum system characterising the Lyapunov regime
[15, 17]. The last two regimes were accessed semiclassically within diagonal approx-
imation in the cited literature. For the first one additionally RMT results [22] and
results from supersymmetry calculations exist [23, 24]. For a review of the extensive
literature on fidelity decay see Ref. [25]. All the regimes given here refer usually to
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global perturbations affecting the whole system. Recently the effect of local pertur-
bations, e.g. local boundary deformations as in the right panel of Fig. 1.6 was studied,
see for example [26, 27].

In this section we introduced semiclassical expressions for the survival probability
and the fidelity and calculated both quantities in diagonal approximation. Now we
want to turn to non-diagonal contributions to the double sums in Egs. (3.7, 3.17).

3.2 Unitarity in Semiclassics

We now want to analyse quantum corrections to the survival probability and the
fidelity amplitude. In this context we first explain the unitarity problems occurring
when using previously developed techniques to calculate double sums considering
as example the survival probability and afterwards show how to overcome them by
introducing so-called one-leg-loops. As the corresponding calculation of the contri-
butions to the fidelity amplitude is very similar we will afterwards just briefly explain
the differences between the two cases and give the results. In order to simplify the
presentation we restrict to localised wave packets. A generalisation to extended wave
packets is straightforward by taking the phase-space average (3.10) of the results in
the localised case, as explained in the last section.

As in the last chapter, for systems with time-reversal symmetry, leading-order
quantum corrections to pgiag (#) arise from the double sum over orbits in Eq. (3.7),
by considering correlated orbit pairs depicted as full and dashed line in Fig.3.1a,
The ingredients for determining the contribution of these pairs within the phase-
space approach are given for general orbit pairs in Egs. (2.54-2.56). We repeat
them here for the orbit pair depicted in Fig.3.1a: The duration of the encounter is
fenc = A~ n(c? /Isul), the action difference S, — S, = su between orbit and its
partner and the density of encounters

(t = 2lenc)?

won(u, s, 1) = 22 Bt
enc

(3.29)
The index “2Il” is an abbreviation for “two-leg loops” because the configuration
depicted in Fig. 3.1a possesses two links connecting the encounter to the initial and
final point of the orbit.

We additionally take into account that the survival probability is, as discussed
before Eq. (2.47), augmented by the factor e’er/™ Having characterised now the
partner orbits of one orbit y we perform the sum over y by taking |Ay ‘2 as Jacobian
like in Eq. (3.9) and get

C
pan(t) = ds du e e /Dy (s, 1) e/ (3.30)

—C

Using the rules for performing the s, u-integrals explained before and in Eq. (2.59),
we obtain the contribution from the configuration depicted in Fig.3.1a to p(7):
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Fig.3.1 Pairs of correlated classical trajectories y (full line) and y’ (dashed) generating the leading
quantum corrections to the classical decay probability. While in panel a the encounter region (box)
connects a loop with two legs, the paths begin or end inside the encounter region (one-leg-loops) in
b with and in ¢ without a self-crossing in configuration space. The zoom into the encounter region
in b depicts the position of the Poincaré surface of section used

Y _tz
() =e ( 2TH + ZTDTH) . (3.31)
The term quadratic in 7 coincides with the first-order quantum correction found within
supersymmetry in Refs. [11-13], see also (3.4). However, the linear term in Eq. (3.31)
violates unitarity, since it does not vanish upon closing the system, i.e. as Tp — 0.
To cure this we have to consider a new type of diagrams. These orbit pairs, to
which we refer as “one-leg-loops” (111), are characterised by an initial or final point
inside the encounter region, see Fig. 3.1b, c. They are relevant for open orbits starting
or ending inside V and hence have not arisen in conductance treatments based on
lead-connecting paths in the last chapter, since for an encounter at the opening the
exit of one encounter stretch implies the exit of the other one. They also could not
occur when periodic orbits are involved.
To evaluate their contribution we consider as additional variable the time ¢’
between the initial or final point of the trajectory and the Poincaré surface of section
‘P, defined in the zoom into Fig. 3.1b that is shorther than #;. Then

Tene (1, u) = ' +2 "V In(e/u]) (3.32)

with0 < ¢ < A~ VIn(c/|s]), i.e. fenc (¢, u) is shorter than fenc (12, s) = A~ In(c?/|sul)
considered before. The density of encounters is

2~ n(e/ls) t— 2% (f
win (@, 5, ) = 2/ gy L= 2lenc(. 1) (3.33)
0 $2(E)tenc(t, u)

The derivation of the last equation is analogous to the one described before Eq. (2.56):
The prefactor 2 accounts for the two cases of the orbit beginning or ending in an
encounter region. The factor (f — 2Zene (¢, 1)) accounts for the freedom where on the
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orbits in Fig.3.1b, ¢ to put the encounter stretch that is not located at the beginning
or end of the orbit and the additional time integral for the additional freedom to cut a
part of the encounter stretch. The survival probability correction due to the proximity
of the stretches is given by e’e»/™  The sum over original orbits is again performed

by considering |Ay |2 as Jacobian for the transformation from r to pg yielding!

¢ - .
o (0) = [ dsdue ey 1w, s, 1)e /MU (3.34)

—C

To evaluate the integrals we substitute [29] ¢/ = ¢ + A~ ' In(c/|u|), 0 = ¢/u and
x = su/c?, with integration domains —1 < x < 1,1 < ¢ < e and 0 < ¢/ <
A~ 1@ /1x]). Note that the limits for # include the case when the paths do not have a
self-crossing in configuration space, for an example see Fig. 3.1c. At first we perform
the o-integral, its contribution cancels essentially the enc (¢, 1) in the denominator
and we obtain

42, 2 Lin(1/x) .
o (1) = };—T 7’/”)/ dx cos (X; )/ dr’ (1 — 2¢")e! /™
Thifg

2
¢!/ (z - de, )467;;[)/ dx cos( ) (x_”lD - 1). (3.35)
T Thilfg

The (—1) in the last curved bracket just yields as a function of ¢ a highly oscillating
contribution that is cancelled by the #-average. For the other term the integration over
x can be performed by parts, neglecting again in the second step highly oscillating
terms, yielding

4 2)" . 2 h 1 1 . ) h
ol (l):e_t/m(’—2 : ) Ty (SmC/ T R Gl ))

d151 7hTy c2/h rtp Jo 2x/h
2 h .
= ie—f/fD /C / dy Sy ~ 4 e—t/fu/ dysmy ﬁe—t/rp_
7Ty 0 y nTh 0 Y TH
(3.36)
It precisely cancels the linear term in p11(¢), Eq. (3.31), i.e.
2
pan () + pi(t) = e /™ , (3.37)
Z‘EDTH

recovering unitarity! We recognise that this first quantum correction is positive,
i.e. the survival probability is quantum mechanically enhanced compared to the
classical one, again an effect of weak localisation resulting here from the survival
probability enhancement during the encounter.

1" The action difference depends [28] on the actual length of the encounter stretches Zenc only by

additional exponentially small summands sue™"*n with n € N, that can be shown to yield no
further contribution by following the steps presented here for the leading contribution to the action
difference.
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After having calculated the first quantum correction to the survival probability we
now want to consider the analogous quantum correction to the fidelity amplitude.
As already mentioned quantum corrections to the classical result for the fidelity
amplitude were studied by RMT and supersymmetrical approaches in the FGR-
regime. For the GUE case, the result for the fidelity amplitude in the universal FGR
regime takes the particularly compact form

—% (ey;: sinh(yt)) fort <1,
MmGUE(T; Y) = ) (3.38)
-L (

e;:r sinh(y)) fort > 1,
withy = I't, t = t/Ty. In particular, these supersymmetrical calculations revealed
a fidelity recovery at the Heisenberg time, that however cannot be completely under-
stood semiclassically like all effects occurring beyond the Heisenberg time that we
encountered up to now. In the orthogonal case a closed form of m(#; I") cannot be
obtained, the first quantum correction is given by

re
mlop(t; ') = ———e 1. (3.39)
Tu
In the semiclassical calculation of quantum corrections to the classical result for the
fidelity amplitude the only difference compared to the one for the survival probability
results from the fact that the correction of the survival probability due to the fact that
the two encounter stretches escape in a correlated manner is replaced by a correction
due to the fact that the two encounter stretches traverse the disorder potential in a
correlated way: As the stretches of a certain encounter are on classical scales very
close together, one can assume that they traverse a region with the same disorder
potential. The corrections for the survival probability and for the fidelity amplitude
possess different functional forms. To calculate the phase difference induced by
the disorder potential in the presence of encounters we here consider the orbit pair
depicted in Fig.3.1a. To this end we split the orbit into parts consisting of two
encounter-stretches e(7) and three links /(7),

. . 3 2
<exp [%AS{D = <exp |:% (Z ASyiy + Z ASg(l-))i|>
i=1 i=1
i 3
= <exp |:ﬁ (Z ASjiy + ZASg(l)):| > . (3.40)
i=1

In the last line we assume that, in the semiclassical limit and for a fixed disorder
correlation length &, the nearly parallel encounter stretches in the box are so close to
each other (at a distance smaller than &) that they experience the same perturbation.
Considering a Gaussian phase distribution for each orbit segment (encounter stretch
and three links) and neglecting further correlations between the different segments
we finally apply Eq. (3.20) to every part of the orbit individually and obtain
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<exp(%ASy)>=exp B > <ASIZ(I-)>+4<AS§(1)>

2h? 2h2
= exp[—1" (¢ + 2fenc)]. (3.41)

Note that the correction due to traversing correlated disorder is here given by
exp (—2TI tenc) wWhereas it was given by exp (I fenc) for the survival probability with
I =1/tp.

Repeating now the steps of the calculation of the survival probability for two-leg-
and one-leg-loops we indeed recover the first quantum correction given in (3.39) [4].
The corresponding contribution to the fidelity Mgog(¢) is, when including also the
diagonal term, given by

rs
Maog(t) = exp(=2T"1) (1 _ 2—). (3.42)
Ty

Having treated the leading quantum correction in ¢/ 7Ty in the orthogonal case,
we want to generalise this in the next section to more complicated diagrams.

3.3 Higher-Order Contributions and the Effect
of Spin-Orbit Interaction

Up to now we showed how to obtain semiclassically for chaotic systems the first
quantum correction in ¢/ Ty to the survival probability and the fidelity amplitude.
As already explained in Chap.2 further corrections result from orbit pairs differing in
several encounter regions involving an arbitrary number of encounter stretches. In this
section we show how to obtain general expressions for further quantum corrections
to pc1(2). Afterwards we explain how to reproduce semiclassically the results from
the symplectic ensemble of RMT mentioned in the introduction. These results can be
obtained semiclassically by including a classically weak spin-orbit-interaction term
into the Hamiltonian describing the considered system. We will concentrate in this
presentation on the survival probability. Similar results can however also be obtained
in the case of the fidelity amplitude and are published in [4].

3.3.1 Higher-Order Contributions

The orbital configurations yielding non-diagonal contributions can then be separated
into three classes:

A where the start and end points are outside of the encounters (211),
B where either the start or end point is inside an encounter (111) and
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C where both the start and end point are inside different encounters on).2

The cases A and B were introduced in the last section, while case C involves at least
two independent encounters and thus could not occur there.

3.3.1.1 Case A

This contribution can be written as
¢ v i
py.A() = N(v) ds duwy a(u, s, t)e_’”eZa:l(l“_l)”tg"ceﬁ”s, (3.43)
—C
with u = 1/7p, the number of structures N (v), the density of encounters for open
orbits wy A (u, s, t), the action difference AS = us and the correction to the survival

o . . 4 o ..
probability of the trajectories e2a=1le=Ditle due to the proximity of encounter
stretches during the encounters. These quantities were introduced in the last chapter
in Egs. (2.54-2.56). To calculate the semiclassical contribution we will rewrite Eq.
(3.43) as
c

ova(t) = Nv) | dsduzyaGu,s, e ek, (3.44)

—c

where zy A(u, s, t) is an augmented weight including the term from the survival
probability correction of the encounters

Zy A, s, 1) = wy A, s, {)eala™Ditlene

~ (t B Z(?tozl lﬂttgnc)L Holt/=l (1 + (o — I)Mlgnc) (3.45)
LIQLV IV, ’

enc

where we have expanded in the second line the exponent to first order in the encounter
times. We can now use the fact that the semiclassical contribution comes from terms
where the encounter times in the numerator cancel those in the denominator exactly,
see the text before Eq. (2.59) in the last chapter. Keeping only those terms, we
then get a factor of (27rh)X~" from the integrals over s and u and obtain the result
for trajectories described by the vector v of interest. This implies that for obtaining
contributions to the survival probability of the order " we have to consider diagrams
withn =L — V.

We want to study now as example the case n = 2. We first consider one
3-encounter shown in Fig.3.2a. The density for this type of encounter is

(t - 3lenc)3

, 3.46
6822 tenc (3.46)

U)(3)1’A(u,s, Z) =

2 The case where start and end point are inside the same encounter is negligible here as it only
contributes for classically very close initial and final points.
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Fig.3.2 Scheme of orbit pairs that do not require time-reversal symmetry and give higher-order
corrections: a a single 3-encounter, b a double 2-encounter. The trajectories y (full line) and y’
(dashed) connect the points ro with r in a time ¢, and they differ by the way they are connected in
the encounter regions marked by boxes

where we use the notation (/)" to indicate that the trajectory has v; /-encounters. We
insert w3y A (@, s, 1) in Eq. (3.43) and modify the classical survival probability by a
factor e2“enc _Tn the case of time-reversal symmetry there are four possible structures
in this case [30], and the final result is

(1) = 4e™"/™® 3" + & (3.47)
1 =4e ——t— 1, .
Pey.a 2T% ' 3tpTh

which is four times the contribution obtained in the case of no time-reversal symmetry,

where only one structure exists [30]. For a double 2-encounter shown in Fig.3.2b,
2

we define two encounter times: fepe,1 ~ 1n and fepc 2 & ln

. |H|S1| |u2S2\
The density of such a double—encounter is given by
t — 2tene)?
W AWM, S, 1) = U o) (3.48)

24~taenc,ltenc, 2 ’

Wwith fene = fenc,1 + fenc, 2. In this case the number of possible structures for systems
with time-reversal symmetry is 5. The contribution of such orbits to the survival
probability is obtained by inserting everything into Eq. (3.43)

() = 571/ (2 & 2 + a (3.49)
P22, All) = ¢ 7 2 o E ‘
Ty 3wpTy 24T

which is five times the contribution obtained in the case of no time-reversal symmetry,
where only one structure exists [30].

The total contribution of structures with L — V' = 2 of 21I’s in the presence of
time-reversal symmetry is then

(n=eo|4 ’ 20 + 5t (3.50)
p2,A(l) =e — - : :
Ty wTh  2413Th
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3.3.1.2 Case B

Now we consider the generalisation of the one-leg-loops introduced in the last section
to orbit pairs differing in an arbitrary number of encounters with an arbitrary number
of stretches involved. This contribution can be written as
c .
ovB() =N | dsduzyp,s, e *er™. (3.51)
—C

The augmented weight function zy g(u, s, ) is composed like for case A out of
the weight function wy p(u, s, ) and the survival probability correction due to the
proximity of the encounter stretches. To determine wy g (u, s, ) we note: Compared
to case A one encounter overlaps with the start or end of the trajectory, we have
thus like for one 2-encounter in the last section one link fewer (L in total) and an
extra integral over the position of the encounter relative to the starting point of the
trajectory like in Eq.(3.33). To determine the number of possible structures in this
case we start with a closed periodic orbit, and divide by the overcounting factor of L,
as in the case of the spectral form factor in the last chapter. We can then cut each of
the L links in turn and move the encounter on either side of the cut to either the start
or the end. In total we obtain /,, copies of the same 111 involving the encounter o',
and an additional factor of 2 appears due to the possibilities of having the encounter
at the beginning or at the end of the trajectory. The augmented weight can then be
expressed as a sum over the different possibilities, each of which involves an integral
over the distance from the Poincaré surface of section to the initial or final point, 7,

S NL—1
v Lin ¢ (z— gt — Lt )
o B 5, ) =22“la//A (ma"./'&a/j)dta/ Z“f“{/“ e e
' 0 L125= ]‘[#a, 1o 1%

a'=1 enc‘enc

v -/
« e azl’a#a/(la_l)/‘lgnc+(la’_l)l"lgnc’ (3.52)

where the time of encounter &’ is related to the starting position via

_ 1 »
=ty +—Inf — ). (3.53)
A\ max; [ug |

Because of the integrals over the position of the encounter at the start or end of the
trajectory, the semiclassical calculation of this contribution differs from the one in
case A. It can be however shown that this additional integral can, when calculating
the contribution to the survival probability, be effectively replaced by an additional
factor th;c- In order to understand this one can perform the same substitution as in
Eq.(3.35) for sy, uy and frd By comparing this with the recipe just given we see
@ This change of variables can be done

enc*
that the 7,/-integral yields effectively a 7g...
o . for each integral over 7,

for each (uy/, So/, t4), giving effectively a factor of ¢
so that the augmented weight can be written as
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2 (Za lat(exnc) (t B Za latgnc)L_l L
1+ (ly — Hpts), (3.54
R [T+ = Dug,e), (3.54)

enc a=1

ZV,B(u,S, 1~

and treated as before.
Returning to our example we find that for a single 3-encounter, Eq. (3.54) corre-
sponds to

(¢ — 3tenc)?
2y B8, 1)~ —— o (1 2ptlenc). (3.55)

Multiplying by the number of possible structures, the resulting contribution for sys-
tems with time-reversal symmetry (3.51) is

_ r
,()(3)1’13([) =4e t/to (T_Z) . (356)
H
For the double 2-encounter the corresponding augmented weight is given by
1 (¢ = 2fene)’
2@, 8, 0~ 3 (1 + flenc), (3.57)

enc
yielding for time-reversal symmetric systems

— 5¢~!/™D £ 2
,0(2)2’1:3(2‘) = 5e -2 . (358)

3T12{'L'D T_121

The multiplicity factors present only for time-reversal symmetry are here the same
as for case A. The total contribution of 11I’s for L — V' = 2 for systems with time-

reversal symmetry is
56 ?
pet) =e ' —— —6— ). (3.59)
3Tt Th

3.3.1.3 Case C

This contribution can be written as

C .
pv.c(t) = ds du zy c(u,s, t)e "en™. (3.60)

—C

For determining zy c(u, s, #) we note: As one encounter overlaps with the start of
the trajectory, and a second (different) encounter with the end of the trajectory,
there is again one link fewer (L — 1 in total) and now we have two extra integrals
over the position of the start and end encounters relative to the start and end point.
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Also the number of such structures is different. To explain how to obtain this number
we start with a closed periodic orbit, we can cut each of the L links in turn and move
the encounters on either side of the cut to both the start and the end, as long as the link
joins two different encounters. We therefore need to count the number of ways that
this is possible for the different sizes of encounters that are linked. We record these
numbers in a matrix \'(v), where the elements N g(v) record the number of links
(divided by L) linking encounter « with encounter §. In this case it is convenient to
include Vg (v) in the augmented weight function. The augmented weight, including
these possibilities, can then be expressed as the following sum over the Oll encounters

(t - Z a4 lata l lﬂ/lgnL)L_z
ata’, enc fene
Zy.clu,s, 1) = Z Ny ﬁ/(V)/df rdt g o B
o el (L —)1L-V Ha;éa’,ﬂ’ e 1% Tonc

vV

—ﬁ/
< e a=1.a;éat/,ﬁ/(l l)utcnc-'r(l /—l)ﬂtcnc+(1ﬂ/_l)ﬂtenc (361)

with the same limits of the time integrals as in Eq. (3.52). Again we can expand
the exponent to first order in the encounter times and replace the time integrals by
1 1B

enc“enc

% 2

zy,c(u, s, 1) ~ Z N ﬁ’(v)tenc enc (t _Zlﬂltgnc)
a=1

o, B'=1

« H ( + (l - l)l’l“tenc)

(3.62)
(L—2)'QL-V IV, 1

enc

and treat it as before.

In our example, for a single 3-encounter there cannot be such a contribution, as
two different encounters are needed. For a double 2-encounter the augmented weight
function for systems with time-reversal symmetry is given by

2t
Zopcls, b~ 2(9—‘““)0 + tlenc)- (3.63)

This yields the following contribution to the survival probability (3.60) in the presence
of time-reversal symmetry

_ 212
:0(2)2,(](1) =e !/ (T_z) ) (3.64)
H

which is four times the contribution in the absence of time-reversal symmetry as can
be obtained by examining the diagrams considered in Refs. [30-32].

Summing the contributions from the three cases yields the overall contribution in
the unitary case due to these diagrams
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t4
GUE —t/t
p(2)2 3! ([) =e D (1 + —2 1-2 2 ) (365)

and in the orthogonal case

GOE __ .—t/tp 1 t2 t3 5t4 3.66
PRy +er+a) () =@ 20Ty " 3eprh | 2rd ) (3:60)

including also the diagonal contribution and the first quantum correction in the pres-
ence of time-reversal symmetry discussed in the last section.

3.3.2 Unitary Case

With these general expressions at hand we can easily calculate the contribution for
each vector v for each of the three cases, as long as we know the numbers of pos-
sible trajectory structures. For cases A and B, these numbers can be found in Refs.
[31, 32] and are repeated in the first four columns of Table3.1. For case C we will
go up to the sixth-order correction, L — V' = 6, and for this we have at most
three different types of /-encounters together in one diagram. It is useful to rewrite
the sum over « and B as a sum over the components of the vector v. Ny g(V)
records the number of ways of cutting links that connect encounter « and S, in
the periodic orbit structures described by v. However the important quantities are
the sizes of the encounters o and B. Instead we record in N ;(v) the number of
links that join an encounter of size k to an encounter of size /. If we number the
encounters from 1 to V in order of their size, then we only need to know the num-
bers Ny, 1,(v), Ny, .1, (v) and Nj, | 1, (), as the maximal number of different sized
encounters in one diagram is three. Moreover NV ; is symmetric, therefore we include
in Table 3.1 both N} ; and NV x together. Using a program to count and classify the
possible permutation matrices one obtains the remaining columns in Table 3.1 for sys-
tems without time-reversal symmetry. Note that Ny, 1, (v), NV, 7, (V) and N, 1, (V)
might describe the same encounter combinations, in this case we record their number
in the leftmost column.

Table 3.1 allows us to obtain the following results for the quantum corrections to
the classical decay for the unitary case

__t
e v

2 27
T} 247

w=2C(L__+ | _* (3.68)
RO =72\ 90~ 1807 T 19203 ) '

p2(t) = (3.67)
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Table3.1 The number of trajectory pairs and the number linking certain encounters for systems

without time-reversal symmetry, for details see text

v L v N(v) Niy ., (V) Ni ., (V) Niy_y.1y (V)
(2)2 4 2 1 1
3)! 3 1 1
)4 8 4 21 21
223! 7 3 49 12 32
@' @)! 6 2 24 16
(3)2 6 2 12 8
5)! 5 1 8
2)° 12 6 1,485 1,485
@*3)! 11 5 5,445 2,664 2,592
2)3@)! 10 4 3,240 984 1,920
(2)2(3)2 10 4 4,440 464 2,624 960
2)25)! 9 3 1,728 228 1,080
'3 @)! 9 3 2,952 552 760 1,080
3)3 9 3 464 380
WOROE 8 2 720 360
35! 8 2 608 360
(4)2 8 2 276 180
N! 7 1 180
o e w1 89 311 r N *
po T w3\ 224 22680tp 3024073 10080ty  3225607f )

(3.69)

These results enable us to calculate the decay up to 8th order in 7, giving as the final

result

_
PGUE(D) =e ™ [1 +

1
+ +
( 1920t/ Ty, 22473 T,

3.3.3 Orthogonal Case

_|_ —
2473T%  90t3 Ty 180ty T,

)m...]

(3.70)

Similarly, we can find all possible permutation matrices and obtain Table3.2 for
systems with time-reversal symmetry. This gives us the result up to 7th order in ¢
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Table 3.2 The number of trajectory pairs and the number linking certain encounters for systems
with time-reversal symmetry

v L v N(v) Niy ., (V) Ni iy (V) Niy_y.1y (V)
@! 2 1 1

(2)2 4 2 5 4

3! 3 1 4

2)? 6 3 41 36

@'3)! 5 2 60 40

@! 4 1 20

)4 8 4 509 468

2)2(3)! 7 3 1,092 228 672

@'@! 6 2 504 296

(3)? 6 2 228 148

5)! 5 1 148

)° 10 5 8,229 7,720

WHOL 9 4 23,160 8,220 12,256

2)2(4)! 8 3 12,256 1,884 7,480

)13)? 8 3 10,960 5,024 3,740
@'5)! 7 2 5,236 2,696

)'@! 7 2 4,396 2,696

(©6)! 6 1 1,348

2)° 12 6 1,66,377 1,58,148

2)*3)! 11 5 5,79,876 2,66,040 2,65,056

23! 10 4 3,31,320 93,456 1,86,160

2)%2(3)2 10 4 4,43,400 41,792 2,49,216 93,080
2)2(5)! 9 3 1,67,544 19,872 98,712

O3 @)! 9 3 2,80,368 49,576 66,240 98,712
3)?3 9 3 41,792 33,120

@)1 (6)! 8 2 65,808 30,208

3)'5)! 8 2 52,992 30,208

(4)? 8 2 24,788 15,104

! 7 1 15,104

(=e |1+ & A + AN S,
= T, —_
PGOE 20pTy 3tpTh  \24t3T%  3tpT5,
2 s, a7 8 6
30t375  StTh 7205 T 12t3TH  15tpT3,

29 14 16\,
— =t =+ )7+ 3.71)
1681 7% 150373, 21tpT§

We can now compare these results with the predictions for the decay obtained using
supersymmetry [12, 13], after expanding the integrals appearing there in powers
of t/Ty, following steps indicated for example in Ref. [33]. The results of these
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expansions agree with Egs. (3.70) and (3.71). Along with the cases with and without
time-reversal symmetry, there has recently been interest in a semiclassical treat-
ment corresponding to the symplectic RMT ensemble in different contexts, such
as in spectral statistics [31] and in the quantum transmission through mesoscopic
conductors in the Landauer-Biittiker approach [34-36]. There the symplectic case
is reproduced semiclassically by including in the Hamiltonian a classically weak
spin-orbit interaction.

3.3.4 Spin-Orbit Interaction and the Symplectic Case

In the following we study the effect of spin-orbit interaction on the survival proba-
bility. The spin-orbit interaction is accounted for by replacing the Hamiltonian for
the orbital dynamics, Hy considered up to now, by

H=Hy+5-C (% p), (3.72)

with C (f(, f)) characterising the coupling of the translational degrees of freedom to
the spin operator §.

For weak spin-orbit interaction and time-reversal symmetry, the semiclassical
propagator is similar to Eq. (2.17), where the classical trajectories are the same as
for the case without interaction [37] and presence of time-reversal symmetry. The
only modification appears in the prefactor D,, that contains now the additional factor
B, (x’ P, t), which is the spin-s representation of the spin-1/2 propagator matrix
by (X', p', 1), defined as the solution of [37],

%by (. p. 1)+ %a L C(X(), P(1) by (X, P, 1) =0, (3.73)
with the initial condition b, (x’ P, 0) = 1, and the vector o containing the Pauli
matrices. This propagator can be used now in the derivation of a modified semi-
classical formula for the survival probability in the case of spin-orbit interaction.
After replacing the initial state |vg) introduced in Eq. (2.8) by [¥y) = | Yo ® So)
containing additionally the initial spin state |sp), we obtain the matrix element

<so ‘ByB;‘ s0> as an additional factor inside the double sum in Eq. (3.7). We

are interested in the average behaviour of this quantity. Therefore, we analyse
ﬁTr(By B;:) with Tr denoting here the trace in the spin space. This quantity
was already considered in Refs. [36, 38], where by assuming the mixing property of
the combined spin and orbital dynamics, i.e. full spin relaxation, it was shown that

we can effectively write

1 >\
- )~
i (BVBV) (2s+1) (3.74)
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with L and V defined as before. It is important to notice that the contribution from
spin-orbit interaction depends, apart from the spin quantum number s, only on the
difference L— V. The term (3.74) can now be inserted as prefactor into the expression
(3.71) for the GOE case after choosing in each term the correct value of L — V. For
s = 1/2 this yields

2 3
o -+ 1 t t n 5 1 A
:e T —_ J— —
PaSE 4ipTy  12tpT%  \96T3T% 24173,
11 1 5
+ - t
24013 T3 40tpTh

41 7 1 6
- - + t
5760t3 T3 192t3T}  60tpTy

29 7, ! 74 (3.75)
268813 T4  240t3T3  84tpT§ ' '

This result is again consistent with supersymmetric results for the symplectic ensem-
ble [11]. The second, negative term in (3.75) reflects weak-antilocalisation effects in
the quantum decay, i.e. the quantum correction reduces the survival probability.

This section showed how to obtain semiclassically higher-order contributions to
the survival probability. The quantities studied up to now, the survival probability
and the fidelity amplitude, involved paths starting and ending inside the system.
We now turn to the semiclassical expression for the current that contains paths starting
in the system and ending on a cross section in the lead through that the particles can
leave the system and connect it via the continuity equation to the semiclassical
expression for the survival probability.

3.4 Continuity Equation

In order to see how the new kind of diagrams introduced in the last section preserve
unitarity it is instructive to reformulate the decay problem in terms of paths reaching
the opening. This connection will be made in this section in two steps:

* First we transform, by using a semiclassical version of the continuity equation, the
sum over orbits starting and ending inside the system into a sum over orbits starting
inside the system and ending at a cross section in the lead, for an illustration see
Fig.3.3a, b.

» Afterwards we use a continuity equation for the current to transform the sum over
orbits starting inside the system and ending at a cross section in the lead into a sum
over orbits starting and ending on a cross section in the lead, see Fig. 3.3c.

To this end we consider first the integrated version of the continuity equation for
probability flow, dp(r, t)/dt + V - j(r, ) = 0 with spatially resolved probability
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Fig.3.3 Illustration of the
three scenarios considered in
this section in diagonal
approximation. In a the orbit
pairs start and end inside the
system, in b the orbits start
inside the system and end on
a cross section inside the
lead, in ¢ the orbits start and
end on the cross section
considered in b. The cross
section is indicated by a
dashed-dotted line

density p(r, 7) yielding the survival probability p(¢) after a spatial integration over
the area A, and the spatially resolved current density j(r, 7), namely

—,0([)— /de(r 1) - iy, (3.76)

where S is the cross section of the opening with a normal vector 71y pointing to the
outside of the system. In Eq. (3.76), the quantum mechanical current density

l
ie,n) = 1# (r, OV (r, 0] (3.77)

can be semiclassically expressed by Eq. (2.17) in terms of orbit pairs connecting
points inside A with the opening yielding

. 1 / ! A
Jse(r, 1) = m/Adl'/ dr” Yo"y (")

% Z A};A?,G%(S?*Sy/)fi%(IJW*N-);/) [p);’f +p?,’f]’ (3.78)

7 (' >r,1)
7/ (x/ >r,1)

which involves a sum over pairs of trajectories 7 and ' with final momenta
py.f and py ¢ at r. These result from differentiating the actions with respect to

the final positions as required in Eq. (3.77). Again expanding the actions and the
stability amplitudes of 7 and 7’ around the midpoint ry, we obtain

. L8, =S, )—iZ(py—p.
Jse(r, ) = ZEZ /dr() AyAy/eh Y Py 2( 4 1/),()W(ro’pgy,)piy,7
v,y (ro—>r,1)

(3.79)

where p?, Y and p;y, are the average initial and final momenta of the trajectories

y and y’, respectively and pw (ro, pgy,) is defined in Eq. (3.11). We now want to
consider the integrated current density obtained by inserting j(r, ¢) into
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J(t) = / dxj(r,t) - . (3.80)
S

This is the quantity we wish to evaluate semiclassically now as it is related via a time
integration to the survival probability, see Eq. (3.76). The integral over the cross
section of the lead implies that we are interested in trajectory pairs that start inside
the system and end in the lead.

The classical contribution results again from the diagonal approximation where
we pair the trajectories with themselves, y = y’. Restricting ourselves to these pairs,
(3.79) simplifies to

. . 1 2 f
Jdiag(r, 1) - 1ty = m/dro Z [Ay | PW(I'O,P;/,O)PX,W (3.81)

y (ro—r,1)

with the component of p)f/ y in the direction of 7, pi’y for y = y’. When Eq. (3.81)
is inserted into Eq. (3.80), apart from the factor pfm, and the fact that the sum over
final positions runs only over a cross section in the lead and not over the whole
configuration space of the system, the resulting expression is the same as the one for
the survival probability in Eq. (3.8), we can thus perform the sum over orbits in a
similar manner.

Although it is possible to calculate the sum over orbits obtained when inserting
(3.81) into (3.80) by using sum rules [3, 39-41] we want to give here a simple
argument showing

Jdiag (1) = (ne™) (3.82)

10,0
with the average defined in Eq. (3.10). As we know how to perform the sum in the
case of the survival probability we will transform the diagonal contribution to the
current into that. As we assume that the considered trajectories are very long in order
to become ergodic, their contribution to the survival probability can be assumed not
to depend on the specific values of their final points but to be proportional to the
number of possible final points of the orbits in phase space. Considering thus that the
sum over orbits is proportional to phase-space area the particle trajectory is allowed
to end in, we have to multiply our results for pgiag(#) by 2p W /(2mm A). Here W /A
results from the ratio of the possible endpoints in configuration space and the factor
2p/(2m) from the ratio of the possible final momenta in longitudinal direction in the
lead and the possible momentum directions for the survival probability. The factor
1/m is due to the prefactor in (3.77). With the relation W = N h/p it follows that
2pW /(2mm A) = p and by this Eq. (3.82).

By integrating Eq. (3.82) with respect to time and setting pgiag(0) = 1, we obtain

Pdiag (1) = (e7H) (3.83)

ro.po ’

i.e. in diagonal approximation the continuity equation is fulfilled.
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For simplicity of presentation we again assume the initial wave function to possess
a well defined energy and thus drop again the average in Eqgs. (3.82, 3.83) from
Nnow on.

Next we want to consider off-diagonal contributions: In this case different dia-
grams are allowed in the case of the survival probability and the integrated current
density, because the orbits have to end in the case of the integrated current density
at the opening.

Before turning to the general case of orbit pairs differing in an arbitrary number of
encounters we want as in the calculation of non-diagonal contributions to the survival
probability present the calculation of the first quantum correction in the presence of
time-reversal symmetry. Remember that for the survival probability the contributions
came from encounters inside the orbit (case A) and from encounters situated at the
beginning or at the end of the orbit (case B). For orbit pairs differing by several
encounters different encounters can be situated additionally at the beginning and at
the end of the orbit (case C). For the integrated current density we again have the
possibility of encounters inside the orbit but only encounters at the beginning and not
at the end of the orbit; thus only one half of this contribution in case B. An encounter
at the end of the orbit obtained by shrinking the last link of the orbit is not possible
here because then already the first encounter stretch has to touch the opening and
the orbit has to exit already during traversing the first stretch. Thus a configuration
containing one encounter at the beginning and one at the end of the orbit (case C) is
also not possible for the integrated current density.

The contribution to the current from encounters inside the orbit is calculated in
the same way as the corresponding contribution to the survival probability obtained
in Sect. 3.2 with the modification of the sum rule discussed after Eq. (3.82). As for
the survival probability we refer to this contributions as two-leg-loops (211), it is
given by

(lzu — 4[) Me*‘”.

Jou(t) = 3T

(3.84)

In the same way we obtain the contribution from encounters at the beginning of the
orbit, referred to as Jy1(¢),

t
Jii(t) = T—’;e‘“’. (3.85)

Now it can be checked easily that Joy (#)+J111(2) is equal to —a (p211(?) + p1u(?)) /0t.
Thus also for these diagrams the continuity equation is fulfilled.

The latter relation shows that the first non-diagonal contributions to J(¢) and p ()
satisfy the following connection, which should hold in general: On one hand we can
calculate the non-diagonal contributions to J(#). On the other hand we can also con-
sider non-diagonal contributions to —p(#) and differentiate afterwards the obtained
result with respect to ¢. The result should be the same as for J(¢). We now want to
prove this nontrivial connection between the semiclassical contributions to p(7) and



66 3 Survival Probability and Fidelity Decay

J(?) for orbit pairs differing in an arbitrary number of encounters. Therefore we first
give general expressions for the contributions to J(7), then first prove the unitarity
of the overall semiclassical contribution to p(z), i.e. that the semiclassical expres-
sion for p() yields one for a closed system. Finally we show that the semiclassical
contributions to p(¢) and J(z) fulfil the continuity equation.

3.4.1 Higher-Order Contributions to the Integrated
Current Density

3.4.1.1 Case A: Two-Leg-Loops

As for the survival probability, by again invoking the sum rule for the integrated
current density we obtain here

Ty A1) = ppy (1) = uN(v) / ds du wy, A (u, s, )e et Tam e Ditrc s,
(3.86)
with py A (7) defined in Eq. (3.43). There also the definition of the other quantities
appearing after the second equality sign can be found.
This contribution can again be expressed in terms of the augmented weight func-
tion zy A (u, s, ¢) defined in Eq. (3.45).
3.4.1.2 Case B: One-Leg-Loops

We can write this contribution as
] i
JyvB(t) = EMPV,B(Z) = MN(V)/dS duzygu,s, e Mer™. (3.87)

with py g(#) defined in Eq. (3.51) and zy g(u, s, ¢) in Eq. (3.52).

3.4.2 Fourier Transforms

To show that the continuity equation holds to all orders it is simpler to make a Fourier
transform rather than showing, for each L — ¥/, that all terms sum to zero for each
power of .

For convenience we restrict ourselves to positive times, and we will consider the
(one-sided) inverse Fourier transform of the current J ()

o0
J(w) = / dt J(t Ty)er T, (3.88)
0
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as well as of the survival probability p(¢)

P(w) = / dt p(t Ty)e*™ ", (3.89)
0

where T = /Ty . In the Fourier space the continuity Eq. (3.76) becomes
TuJ(w) — Qrio)P(w) = 1, (3.90)

and this is the relation which we want to show semiclassically. We note that the 1
on the right hand side comes semiclassically from the diagonal terms given in (3.82)
and (3.83).

3.4.2.1 Transformed Current Density

The semiclassical contribution for the current can be separated into a product of
contributions over the encounters and the links of the trajectory, in a similar way as
described for the conductance in Chap.2. This means that we can obtain the semi-
classical result very simply. For example for case A the contribution from trajectories
with structures described by v is

L+1 .
; 1N (V) ( > (=)
Ty alw) = [T due 0
Th \;_1J)o

_ 2mioly \ ;a .
(,LL Ty )tence%uasa

c v -
e
X ds du . (3.91)
‘/_C H ‘Qlailtgnc

a=1

‘We can perform these integrals as before, and because the Heisenberg times mutually
cancel, we effectively get a factor of (N — 2miw)~! for each link and a factor of
—(N — 2miwly) for each encounter. The contribution therefore simplifies to

. M_ (N = 27iwly)
Ta(@) = pNW) (DY e o

(3.92)

Considering case B, we have one link fewer (L in total) and one encounter, o’ at
the start of the trajectory pair. We again replace the time integral in the augmented
weight function by a 1% like we did it in Eq. (3.54) and effectively obtain a factor of
1 from the integration with respect to s,/ and u,/. We also remember that to obtain
the structures for this case we started from the corresponding closed orbits, so that
we divide by the overcounting factor L, and note that the encounter o’ occurs at the

start /,/ times. Altogether, the contribution simplifies to

UNW)(=1)V ! ZV: oo N — 27iwle)

J. =
vB(®) L (N — 2riw)L

, (3.93)

a’'=1
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which we can also write as

UNW (=) (& Iy [V, (N = 27iwly)
L (N = 2riwly) (N — 2miw)L

JyB(w) = , (3.94)

to remove the restriction on the product over «.

3.4.2.2 Transformed Survival Probability

The semiclassical contributions to the survival probability were given in the last
section. Taking again the inverse Fourier transform we can also write them as a
product of contributions from the links and encounters and for the first two cases
we obtain very similar results as for the integrated current density in Egs. (3.92) and
(3.94). For case A we arrive due to Eq. (3.86) at

J
Poatw) = 8@ (3.95)
For case B the result is due to Eq. (3.87)
J
Py (@) = 220 (3.96)

In case C the two encounters at the ends effectively give factors of 1 while the
remaining encounters and links give their usual contributions. The number of possible
structures is characterised again by N g(v) defined in the last section. Additionally
we have again one link fewer leading us to the contribution

v 2V .
_ Ne,g (V) =DV 2 [Toei (N = 27iwly)
Prelw) = a%:: | (N = 27iwly)(N — 2 iwlp) (N — 2miw)L—1 '

(3.97)

3.4.3 Recursion Relations

In the limit w — 0 (or tp — 00) the quantum wave packet remains inside the cavity
and the survival probability is identically 1 for all times. This term comes from the
diagonal approximation, which means that all higher-order terms from correlated
trajectories should vanish. As we have shown in Sect. 3.2 for the survival probability,
p(t), one-leg-loops are necessary to ensure this unitarity and cancel the term from
two-leg-loops which does not vanish when the system is closed. We first show that
this holds to all orders by considering recursion relations between the different types
of contribution.
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3.4.3.1 Unitarity

Restricting the sum over vectors v to the ones that share the same value of L— V' = m,
and summing over the different cases, we will show that P,,(w, u = 0) vanishes
for all m > 0 and in the presence and absence of time-reversal symmetry. This is
equivalent to showing that the lowest-order ¢ terms in the polynomial multiplying
exp(—ut) of the various py () also sum to zero, so that p,,(#) involves a polynomial
with lowest term proportional to "+, We start with the semiclassical results for
each case when p = 0, and for case A we have

(—DE Y

Pyalw, n=0)= N(V)W, (3.98)
while similarly for case B, the result is
2V (=DETIL_ I
P ,u=0 =N - L el 3.99
V,B(w 1% ) ( ) L (277,'16())[‘ V41 ( )
because Z(L/:] 1 = V. For case C we obtain
v - v
N —DE oy !
Pyclwu=0={> wp M) ) D7 Moz e (3.100)

st lolp Qriw)L-V+1

Replacing again Ny, g(v) by N ;(v) defined in the last section before Eq. (3.67)
we can replace the sum over «, § by a sum over k and /. With this in place we can
sum the different types of contributions, and then sum over vectors v with the same
L—-V=m

(— l)m—i-l L—V=m
_ v
P, p=0)= (27Zla))m+1 Z (=D Hl
2V = Ni(v)
x (1——)N(v)+z : . (3.101)
L k=2 ki
Let us first consider the third contribution
L—V=m
(=1t v Neav)
P ,u=0 1 Iy 3.102
me(@ =0 = oty Z( )(}'[1 ;2 o (3.102)

To simplify this further we use the following recursion relation which can be deduced
from [31,32]. We have that N} ;(v) records the number of links that join a k-encounter
to an [-encounter. Instead of cutting the link to make the trajectory structure, we
imagine shrinking the link so that the k- and /-encounters merge to form a new
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(k +1—1)-encounter. By considering the number of ways that it is possible to shrink
the link and create a smaller periodic orbit structure, the following result is obtained
[31, 32]

(k+1— 1) (g g1 + 1)N(V[k,zﬁk+1_1])’

Niei(v) = 1

(3.103)

where v/ is the (kK + / — 1)-th component of v and ylkI=k+1=11 5 the vector
obtained by decreasing the components vy and v; by one and increasing the compo-

nent vi4/—| by one (sothat vy ;1 +1 = vl[(]:l:l”l*]]). We also use the substitution
_ ~DVTI_, 1
Fy = T ezt e {L"“ EN(V), (3.104)
which allows us to rewrite (3.103) as
4
N1 (v) k= k+1—11 7 _
OV [T == =~y o IR, (3.105)
a=l1
so that (3.102) becomes
(—ymtt B & k= k+1=11 77 < [k I—k-+1—1]
S - = —
Pclo.n=0) = =7 = St D v N ).
v k=2

(3.106)

As combining a k- and /-encounter reduces both L and V by one, the resulting vector
vyl l=k+1=11 gti]] has the same value of L — ¥ = m and by considering v/-/~4+/=1]
as a dummy variable v’ it can be shown [31, 32] that
L—V=m L—V=m
kJ—k+1—1]1 % _ ~
Z vl[€+1:>1 + ]N(V[k,l—>k+l 1]) — Z v]/(+]_1N(V/)~ (3.107)
V/

v

By identifying this dummy vector v/ with v and substituting into (3.106), the total
contribution to Py, (w, u = 0) in Eq.(3.101) simplifies to

(—l)m+l L—V=m [ _
Pr(@.p=0)=o—rmey 20 | L=2V)= > vt | N). (3.108)
v k,1=2

Concentrating on the sum over k and I, we define k' = k + / — 1| where k' > [
because k > 2. The sum then becomes

Dovir = > v = (K =2 = D (K = 2up

k=2 [>2 k'>1 k'>3 k'>2

- Zk’vk/ —221;,(/ =L-2V, (3.109)

k'>2 k'>2
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and so the term in the square brackets in (3.108) is identically O.

This result shows that P, (w, u = 0) = 0 and hence that p,,,(¢, © = 0) = 0 for all
m > 0, for both symmetry classes. This is consistent with the fact that the survival
probability should be identically 1 for a closed system (u = 0).

3.4.3.2 Continuity Equation

Building on this, we are now able to treat the full continuity equation in the Fourier
space. Again this will require re-expressing the contribution from the third case, and
we also need to sum over different vectors v with the same value of L — V' = m.
If we define here

DV IV, (N = 27iwly)

N(v,N) =
V. N) =—7 (N — 2mim)L

N(v), (3.110)

then the first two contributions to the transformed survival probability, see Egs. (3.95)
and (3.96), can be written as

L—V=m

L N
Pm,A(CU)Z ZV: mN(V, N) (3.111)
and
L—-V=m oo 21v1
Pup(w) = Z:E%N 2iah N, N), (3.112)

where we have replaced the sum over « by a sum over the components of the vector v.
To simplify the third contribution from (3.97) we use a version of (3.105), modified
for this situation to include the extra factors

(=D Nea(v) M_ (N = 27iwl,)
(N = 2miwk)(N — 2wiwl) (N — 2miw)Lt-!
(k 4 l _ l)v[k,l—>k+l—1]

_ k-1 & rolkd—k+1-1]
- N N). 3.113
N 2otk +i—1) ) (3.113)

We can then rewrite the sum over the dummy vector v/ = vlI5:/=*+=11 45 3 sum over
v and obtain

L—V=m oo

o k+1—Dojrrr <
Puc(w) = Zzggmwdmmku—mN“N) (3.114)

We return to the continuity equation for the off-diagonal terms (J,;(¢) + 90, (?)
/0t = 0) in the Fourier space (3.90). To ensure that the continuity equation holds,
we have to check that
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Pm,B(a))

N |:Pm,A(w) + )

:| — (Qriw) [Pm,A(w) + Ppnp(w) + Pm,C(w)] =0.
(3.115)
Writing the left hand side in terms of the sum over vectors, we have to evaluate
L—V=m 00 .
vy (N — 4miw) 2miwk’ vy N
L— _— N(v,N), (3.116
ZV: [ ; (N = 27iwl) 122:;1 N —2rmiwiy | VN (3116)

where k' = k + [ — 1. Following similar reasoning to (3.109) we can simplify the
double sum inside the square brackets as follows

2wk vy o 2mio (I — 2)1
S R o O
l2k'1( Twiwk’) [:2( —2miwl)
so that (3.116) becomes

L—V=m L_izv,(]v_4niw—2niw(l—2)) Nev. Ny
2. (N — 2riol) "

L—V=m 00
= > |:L—Zlv[:| N(v,N) =0, (3.118)

=2

since > j2, lvy = L. This verifies Eq. (3.115) and shows that the semiclassical expan-
sion satisfies the continuity equation for all 2 > 0. For the remaining diagonal terms
(which can be thought of as corresponding to 7 = 0) this can be verified directly.

Both of these proofs rely on being able to re-express the contribution from case
C in terms of a sum over vectors which has a similar form as in the other two cases.
This relation is then responsible for the fact that we can shift from the survival
probability to the current via the continuity equation and remove the possibility of
having trajectories from case C (Ol1).

3.4.4 Implications for Transport

We have seen how by differentiating p(¢), with respect to time, we obtain —J () in
line with the continuity equation. For p(#) we have a picture involving trajectories
that start and end inside the cavity, and we have three cases to consider. When we
differentiate p(¢), and shift to J(¢), we arrive at a picture in terms of trajectories
that start inside the cavity but end in the lead, effectively removing the third case
(O11) (and halving the contribution of 111). The next step is to repeat this process and
differentiate again with respect to time. This will lead to the more usual transport
picture involving trajectories that start and end in the leads, where we can only have
case A (211).
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We therefore consider the conservation of the current density, which has its own
continuity equation. For systems with constant potentials, like billiards, this conti-
nuity equation has the simple form

% + Vfi(r, 1) =0, (3.119)

where f'(r, ?) is the second (antisymmetric spatial) derivative of the local density

2

e [Y*(x, OVY(r, 1) — 2VY*(r, HVY(x, 1) + ¥ (r, HVY*(x, D).

(3.120)

f(rv l) =

To obtain a semiclassical approximation for this quantity, we express the wavefunc-
tion in terms of the semiclassical propagator using equations (2.17) and (3.5) and
follow the same steps as at the beginning of this section

£(Sy=8,0-% (=)

. 1 0
Jse(r, 1) =m/dr0 Z AyAye PW(I'O,PVV/)

vy (xo—>r.1)
2
f
< (of,)". (3.121)

We are interested in the integrated version of this quantity

F(t) = / drV>2f(r, 1), (3.122)
A

which can be expressed in terms of trajectories starting and ending at the lead-
cross section. Instead of using (3.121), which involves trajectories which start and
end inside the cavity, we first insert (3.120) in Eq. (3.122). Note that F(¢) equals
32p(1)/(81%), in Eqgs. (3.120), (3.122) these time derivatives are however replaced by
spatial derivatives. We then replace all derivatives with respect to r, originating from
the derivative with respect to time of the current density (i.e. not the ones resulting
from the first derivative of p(#) with respect to f), by derivatives with respect to
ro. This replacement is justified semiclassically, it neglects changes in the slower
varying amplitudes in Eq. (3.121). We can then rewrite the resulting expression as a
divergence with respect to r and r in a similar way as it is done with respect to r to
obtain the continuity equation itself. Upon applying Gauss’ theorem for transforming
the integrals with respect to r and ry to surface integrals, and again supposing that
the initial wave function has a well defined energy, we arrive at the semiclassical
expression

1 LS, =S, )—iZ(p,—p,
F(z)mﬁ/dxdx’ Z Ay Ay 2( ! V)Px,yV/Px/,yy/
dmem h* Jg
v,y (x—>x'.1)

(3.123)
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with the normal components of average initial and final momenta py ,,,» and py/ 7,
respectively. The last formula expresses F'(#) as a sum over trajectories travelling
from the lead to itself. The connection to transport can be extended by project-
ing onto the channel basis and performing the sums over orbits with the sum rule
(2.34). Alternatively the sum over orbits in (3.123) can be calculated in diagonal
approximation in an analogous way as described before Eq. (3.83) by relating it to
the calculation of the survival probability in diagonal approximation, that yielded
e /™D gee Egs. (3.9, 3.12). The additional factor for the diagonal contribution to
F(1) is 4p2 w2/ (4n2m2A2) = u?2, obtained in a similar way as for the current
before Eq. (3.83).

Because in this situation encounters cannot occur in the leads we only have case
A and the weight function zy A (u, s, 7), Eq. (3.45), as before. However we have
an additional contribution for systems with time-reversal symmetry due to coherent
backscattering. As we briefly discussed before Eq. (2.46) when the start and end
channels coincide (¢ = b), we can also compare the trajectory y with the time
reversal of its partner y’ and we obtain a factor of 2 for this combination [42, 43].
The sum over channel combinations therefore gives a factor of N(N + 2/8 — 1).
The diagonal contribution is

Faiag (1) = p* (1 + 2/@_ 1) e, (3.124)

while we can simply express the contribution of trajectories described by a
vector v as

2/B — 1
N

K@) =n (1 + )Jv,A(l)- (3.125)

We again shift to the Fourier space, where because of (3.125), the integrated
continuity equation

%J(z) +F(t) =0, (3.126)

becomes, for the off-diagonal terms

n2/p—1)

— —, (3.127)
(N —2miw)

(N +2/8 = DIa@) = @rie) [Ja@) + Jp(@)] =
where the term on the right is what is leftover from the diagonal approximation for
the orthogonal case when pairing the orbits with their time reversed. Rewriting the
left hand side in terms of a sum over vectors we have to see if the following holds
(dividing through by w)

oo L—V=m 00 .
Iy@riw) @/ —DL] « _ 2/p—1
mzzl ZV: [L + lé N — 2niel) T (N = 27n'a)):| NON) = =N onia)

(3.128)
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Focusing on the left hand side, we recall that L = > 72, [v; and so we can rewrite
the first term in square brackets as
o
lvy(N —2miwl)
L= 3.129
; (N —2miwl) ( )
so that we can combine it with the second term. We also separate the third term to
rewrite the left hand side of (3.128) as

oo L-V=m oo

> 5 O e D) v 1)
v e (N —2miwl)

oo L—V=m
+Q/B-DD> D] N oo N, N). (3.130)
m=1 v

For the unitary case, the second line vanishes, and because of the result (A.6) in
Appendix A, we can see that the sum in (3.130) is identically zero for each m and
so the continuity equation is satisfied. For the orthogonal case, using the result (A.9)
in Appendix A, we can see that the terms in the sum in the first line for m = k
cancel with the terms in the sum in the second line where m = k — 1. The only term
remaining when we sum over all m is therefore the term from the first line where
m = 1. This corresponds to a vector with a single 2-encounter for which we can
easily evaluate

Z N —2miol =) gL gy
(N —2miwl) (N —2miw)

v 1=2

as N(v) = 1. This term cancels exactly with the remaining term from the diagonal
approximation, and hence Egs. (3.128) and (3.126) are verified for both symmetry
classes.

3.4.5 Application of Recursion Relations
to the Fidelity Amplitude

In this last part of the section we want to show how the recursion relations applied
in this section can be used in the context of the fidelity amplitude. Therefore we
first give general expressions for the contributions to the fidelity amplitude in the
three cases A, B and C and their Laplace transforms, the (one sided) inverse Fourier
transforms considered before in this section with imaginary arguments. Afterwards
we first show the unitarity of the semiclassical expression for m(t), i.e. m(t) = 1
for I' = 0 and a relation between m1(¢) and the spectral form factor, Eq. (2.67), first
derived in the RMT framework in [44].
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We start with giving the non-diagonal contributions to m:(¢; I") in the three cases.
As already explained for one 2-encounter after Eq. (3.39), the only change compared
to the corresponding contributions to the survival probability (3.43, 3.51, 3.60) is that
the survival probability correction for orbit pairs due to the proximity of encounters
given after Eq. (3.43) is replaced by a correction caused by the fact that the encounter
stretches of one encounter traverse regions of the same disorder. Compared to the
correction to the survival probability the correction due to correlated disorder is
smaller than one and has a different functional form, for an orbit with V encounters
with each of them possessing /, encounter stretches, it is given by

[ 14
<exp (%Asy» = exp |:—1“ (z +>(2-1) zg‘nc)} . (3.132)
a=1

The last equation can be derived in an analogous way as shown for an orbit pair
differing by a 2-encounter in Eqs. (3.40, 3.41); a derivation can also be found
in [45, 46].

With this we obtain for encounters inside the orbit

L
¢ |:l - Z(x 1 Lo tenc:l i
my 4 (t; ") =N (v) ds du Y eRUS
—¢ Ha 1 18nc

X exp |:—F (z + Z (15 - 10,) rgnc)] . (3.133)
a=1

Considering in Eq. (3.133) again the terms independent of #&

ency We get

1 L-V u (ppk r

(3.134)

where we used the definition of the components v;. In a similar way we can derive
the contribution for the case B:

1 L-V 00 llvll ll 9 5 v/l_l
.5 (1 F)_Z(T r) N(V)lzzT(_Ta_r ll)
-

o0 —
19 Uity exp (—I't)
x E(Tar i ) =D , (3.135)
I,

with an /;-encounter at the beginning or end of the trajectory. Finally we obtain for
the case C
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. ) = 1\ & L 9 2 vn = N L 9 2 v —1
my c ;) = m IZ R i (V) ~Tar 12

as 1o H\YanE2exp(-ro
< 11 (_,7_;) — -} (3.136)

with an /j-encounter and an /-encounter at the beginning and at the end of the
trajectory, respectively.

The entire contribution from orbit pairs to m. (¢; I") is obtained from Eqgs. (3.134—
3.136) by summing over all possible vectors v and finally adding up the three con-
tributions together with the diagonal term (3.27):

M (5 T) = maiag (15 1)+ > [my 4 (5.T)
iy, (6 1)y c (1) |, (3.137)

In the case of vanishing perturbation (1" = 0) the fidelity amplitude m1(¢) should be
equal to one by the unitarity of quantum evolution. In the following we will show
that this property holds using the semiclassical form of m(#) obtained in Sect. 3.1
whent < Ty.

As one can immediately see from Eq. (3.27), ms.(¢; I’ = 0) = 1 within the
diagonal approximation. Hence one has to show that all further semiclassical loop
contributions vanish for I" = 0. To this end we will demonstrate that the off-
diagonal terms my_4(¢; 0), my_g(t; 0) and my c(z; 0) cancel each other. According to
Egs. (3.134-3.136) they read:

L)L_V (H(XVZI la)

. — _1\V
My 4 (1:0) =N (v) (=1) (TH TR (3.138)
roy = —n L (L) (M- ) 3.139
my g (1;0) = 2N (v) (=1) Z(T_H) o= (3.139)

N, L-¥V H()Iz/z Lo
mv,C(Z;0)=Z kllk(v)( 1)V2(TIH) % (3.140)

k=2
To simplify the notation we replaced the summation indices /1, /» by /, k. Adding

these contributions, one can see that the off-diagonal corrections disappear if the
following condition is satisfied:

L—V=m

Z (- I)VHI N W -2- N()+ZN"I(V) 0.  (3.141)

a=1 k=2
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Exactly this was shown to be fulfilled in the calculation following Eq. (3.101).

Next we want to semiclassically show a remarkable relation between the fidelity
amplitude and the spectral form factor (2.67). The form factor K(t; I") considered
here now additionally depends parametrically on /" : This additional dependence is
included by allowing each of the two densities of states and by this also the actions
of the classical orbits in the exponential contained in (2.70) to depend on an addi-
tional parameter. The effect of the phase resulting from this additional dependence
is then calculated to obtain RMT results in a similar way as we did it for the fidelity
in Eq. (3.20) by assuming that it is randomly accumulated. For more details on the
definition of and the semiclassical expression for K (z; I"), see [45, 46]. The con-
nection between the quantum fidelity amplitude and parametric spectral correlations
was derived in Ref. [44] within an RMT approach. The idea was to use a certain
invariance property of the integration measure for the ensemble of random matrices.
A corresponding Ward identity [47] then led to

_TuBdK (D) _
22 9r

Here we show how this relationship can be obtained in the framework of our semi-
classical approach for systems with and without time-reversal symmetry (8 = 1, 2).
To this end it is convenient to work with the Laplace transforms of the semiclassical
expressions for the form factor and fidelity.

In order to reveal a systematic structure for the contribution of each encounter
stretch and each link, it is instructive to take the Laplace transform of Eq. (3.137)
with respect to y = I't while keeping n = t/ (Tyy) = (Ty ')~ fixed:

mt:T). (3.142)

F.m= /0 dyme (nTy: @Tm)™") exp (—q7) (3.143)

Inserting the expressions for my. (#; ") and performing the Laplace transformation
by partial integration gives rise to the perturbative expression (in powers of 1)

Fg.m=> F.@n" (3.144)

where the n-th term in this expansion originates from trajectory pairs with L— V" = n.
Explicitly, the terms F, (¢) take the form

L—V=n yyoo vy
> l_[1: (—lq—l2) hoy qg+1
Bo= 2 S [N<V>+ZZN<> g

v

N i N, ) (g + 1)?

(3.145)
L= llq—12 ( lzq—lzz)

In Eq. (3.145) we again recognise a diagrammatic rule: Every link contributes to
F, (¢) afactor (¢ + 1)_1 and every [-encounter a factor —/(q + /).
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Now we turn to the parametric spectral form factor for which we use the following
semiclassical expression [45]:

22 | R v (Fyk—te-It
KT =>— — E— R —
=57, 2 (FTH) g( (oo Z) N

(3.146)

After taking the Laplace transform (3.143) of the left hand side of Eq. (3.142) we
obtain for the nth term of the expansion (in powers of 1)

L—V=n 3

T~ _ i N(V1 Q)
Fn(q)—(nJrqaq) ZV: —7 (3.147)
where N (v, @) is defined as
- N1 5
Nv,g)=————TTd@g+n)". 3.148
™) = =T l]l((q ) (3.148)

Upon performing the derivatives in Eq. (3.147) we obtain

L—V=n £ 00
Frooo N, q) L qu;
Fa= > —F [(qu TS (q+1)i|' (3.149)

\4 1=2

This must be compared with the F, (g)-term, Eq. (3.145), for the Laplace transform
of the fidelity amplitude. Using Eq. (3.148) we can rewrite (3.145) as

L—V=n

- N, q) L S 2y
Fo(q) = _
@= 2 [<q+1) ,zzz(qw)]

v

4 (—1)V2 z " Nia (V) [1.2, g+ D) ’. (3.150)

L—1
= +K)I(g+1) g+ 1
Furthermore, we can simplify this by expressing the matrix elements Ny (v) in terms
of N (v, q). Using Eq. (3.103) and taking into account the additional g-dependent
factors we get for the terms in the second line in Eq. (3.150)

Ny 12, dg + )"
k(g+k)lg+1) (g+ DL

~ _ [k, l—>k+1-1]
_N(V[k,l%kJrl 1],(]) vk—i—l—l

(L—-1) (q+k+1—1)

(3.151)

We can then rewrite the sum over the dummy vectors, v/ = ylkl—=k+l —11 as a sum
over v which gives for the second line in Eq. (3.150):
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_ Lézli N, q) i Vfeti—1 (3.152)
- L e+ k+1=1) ' '

By a similar calculation like in Eq. (3.109) we perform the sum over k

L—V=n 3} oo
N(v, q) (I =2y
_ T (2:_(q+1) ) (3.153)

v 1=2

leading to the following expression for F},(¢):

L-V=n % [e'e)
- N(v,q) L v
F, = - . 3.154
W= 2~ [(q+1> éww)} G159

v

The final step is to show that Eq. (3.154) coincides with Eq. (3.149). This is indeed
s0, since the difference between the two expressions,

Li:”N(V,q) V_Oo qu; _i I
L = (q+D g+

v =2

L—V=n

- > N(z’@ [V—Zw] (3.155)
=2

v

vanishes due to the fact that ' = >"7°, v;. This completes the prove of relationship
(3.142) with semiclassical means. This result has the added bonus of showing that
we recover the fidelity amplitude in Eq. (3.38) for 7 < 1 for systems with broken
time-reversal symmetry as we know that the semiclassical and RMT parametric form
factor exactly agree in that regime [45, 46], when knowing the functional form of
the parametric form factor.

To show semiclassically that Eq. (3.142) also holds in the symplectic case (8 = 4)
we consider spin-orbit interaction for spin-1/2 particles. In this case the spectral form
factor K (7; I') on the left hand side of Eq. (3.142) is modified to — %KGOE(—I/Z r)
[31] with Kgog(t; I') being the form factor in the GOE-case. The right hand side
obtains with spin-orbit interaction the additional factor (—1/ DLV see Eq. (3.74).
A short calculation then shows that Eq. (3.142) also holds in the symplectic case.
However, we note here that it is not true for general spin-s particles.

To conclude, in this section we introduced quantum mechanically exact continuity
equations first for the time derivative of the survival probability and second for the
time derivative of the current. Expressing the latter quantities semiclassically we
showed that with these continuity equations we obtain formulas for the survival
probability, expressed originally semiclassically in terms of orbits starting and ending
inside the system, that express it first in terms of orbits starting inside the system
and ending at the lead and second in terms of orbits starting and ending at the
lead. Afterwards we showed within our approach, using recursion relations, that
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the two continuity equations hold semiclassically to all orders in #/7Ty. For the
fidelity amplitude we finally proved the unitarity and a relation to the spectral form
factor.

Up to now we concentrated mainly on explaining semiclassically results derived
before by RMT methods. In the next section however we want to turn to results not
calculated by the latter method.

3.5 Effects not Accessed by RMT

In this section we consider the effect of non-diagonal contributions to the fidelity in
the Lyapunov regime. Finally we generalise the case of a time-independent pertur-
bation considered up to now in this chapter to a time-dependent one. The orbits then
feel different kinds of perturbations during the different traversals of the encounters.

3.5.1 Lyapunov Decay of the Fidelity

Up to now we always considered the case where the disorder average in the calcula-
tion of M.(7) can be performed independently for the trajectory pairs occurring in
the calculation of each m. (7). However, already on the level of the diagonal approx-
imation there is a further contribution originating from configurations where all four
trajectories are too close together to perform the disorder average independently. The
regime of large I" where the FGR terms (3.38, 3.39) are rapidly decaying and this
contribution becomes important is referred to as the Lyapunov regime, because it
decays as e * [15].

Here we examine whether additional contributions may arise in this regime from
loop diagrams. To this end we briefly review the semiclassical calculation of the diag-
onal contribution to the fidelity in the Lyapunov regime [15] and consider afterwards
the role of trajectories differing at encounters.

Starting from Eq. (3.28), one performs the disorder average along the trajectories
no longer independently for both action differences AS), and AS),,. For two nearby
trajectories yp, y2, one instead linearises the motion of one trajectory around the
other to obtain

t
AS,, — AS,, = /0 ' VLE (¢) [ay () - ap (1)]. (3.156)

where L))/:: (7') is the Lagrangian associated with the disorder, see Eq. (3.18), and
qy, (l’) denote the coordinates of the trajectories y; at time . The difference
qy, (t’ ) —qy, (z’ ) can then be expressed by the difference of the final points r and ¥
of y1 and y», respectively, using the possible exponential separation of long neigh-
boring trajectories in the chaotic case. Assuming again that the action difference is
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accumulated during a large number of uncorrelated events leading to a Gaussian dis-
tribution of AS,,, — AS),, as in the FGR regime for AS,, in Eq. (3.20), one obtains

<exp [% (AS,, — ASVZ)D

1 t l / Y
= exp |:——/0 dl’/o dt" (=20 0o o (1 — r2)2:|

2n? (3.157)

with the force correlator Cyz = (VL. (/')VL,, (¢”)) and the final positions of two
trajectory pairs ry and rp.

Replacing in Eq. (3.157) the second time integral by one with respect to ¢ — ¢ and
taking into account the short range behaviour of the force correlator (it vanishes on
scales larger than the correlation length &) one can perform the (¢ —”)-integral in the
range from —oo to 0o. Further evaluation of the ¢'-integral, where one neglects con-
tributions from the lower limit because they are damped by a factor e™*/, eventually
gives

i A )
eXp |7 (ASy, — AS),) | ) =exp Y] (rp —r)7|. (3.158)

Here the constant A depends on & and the disorder strength. Equation (3.158) is
afterwards inserted into the full expression for the fidelity (3.28) finally yielding a
contribution proportional to e ~*! within the diagonal approximation [15]. We note
that when performing the two time integrals in Eq. (3.157), only contributions from
" and ¢’ close to ¢ (a time of the order 1/A apart) mattered. All further contributions
are exponentially damped due to the factor e*('+"=20)

We now consider a possible effect of non-diagonal loop contributions. The basic
contribution of this kind would originate from trajectories y; and y| forming pairs
as depicted in Fig.3.1 and two nearly identical trajectories y» and y;. When calcu-
lating Cy 5, correlations between points of y; traversed at different times could get
important as the latter quantity depends on the difference of the positions along y;
at two different times. However, as we noted below Eq. (3.158), correlations in the
Lyapunov regime only matter between points at the end of the orbit, that are a time
of the order 1/A apart. Compared to that distance, an encounter stretch is exceed-
ingly long, so that correlations between different encounter stretches cannot play an
important role for this contribution. This implies that there is no significant effect of
such orbit pairs in the Lyapunov regime, because there exists, apart from the action
difference and the weight function, no further relevant phase change induced by the
encounter (depending on the (s, u)-coordinates).

The same reasoning can be directly carried over to correlated orbits differing by an
arbitrary number of encounters, and hence no off-diagonal interference contributions
from orbits differing in encounters can be obtained in the Lyapunov regime. This
constitutes another distinct difference between FGR- and Lyapunov decay.
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3.5.2 Effect of a Time-Dependent Perturbation

Many physical situations require a generalisation of fidelity decay to systems with a
time-varying perturbation. This is relevant if a subsystem evolves under the influence
of a time-dependent external environment or may arise if one models fidelity decay
for a many-body system in terms of single-particle dynamics exposed to an external
fluctuating potential mimicking the mutual interactions. Fidelity decay for time-
dependent perturbations has been addressed in Refs. [48, 49] in numerical studies of
periodically kicked systems and in Ref. [S0] in the context of decoherence. Coupling
to an external environment and its connection to fidelity decay has semiclassically
been treated in [51, 52] and in Ref. [53], which represents a direct extension of
the semiclassical approach of Refs. [15, 17] to a spatially and time-varying random
potential.

In Ref. [53], both a finite disorder correlation length £ (and associated time & /vg
with v the particle velocity) as well as a finite correlation time 7o characterising
temporal fluctuations were introduced. It was shown semiclassically on the level of
the diagonal approximation, how the FGR decay is governed by a decay rate I" into
which both time scales generally enter and which is predominantly determined by
the shorther of the two times, & /vg or 1o, if they strongly differ.

In this subsection we will use the perturbation model of Ref. [53] and illustrate
the effect of a spatially and time-dependent perturbation for the representative case
of the first quantum correction, m%'OE(t; I'), see Eq. (3.39) for the static case. Since
this interference contribution is based on the mechanism that the same (static) per-
turbation exists along the two encounter stretches traversed at different times we can
compute how finite correlation times tp will reduce this effect.

We will consider the interesting case where & /vy < 70 so that I" depends only on
the spatial fluctuations and not on 7. (For pure temporal fluctuations or & /vy > 19,
the spatial proximity of the encounter stretches cannot have an important effect.
A change in 7 will thus alter the exponential decay rate I" and thereby mask the
effect of 79 on quantum fidelity contributions.) We assume that the time dependence
and the spatial dependence of the perturbation can be separated, i.e.

t
AS, = / dr'v (q(t)) W), (3.159)
0

which allows for further analytical treatment. We first calculate the averaged phase
difference for this perturbation similar as in Eqgs. (3.40, 3.41)

/ tenc
<exp (%ASV)> — exp (—%< [ d'v (q(0) W)

xV (Q(Z[ + 2fenc — Z/)) W (t; + 2tenc — l/)>) exp (—1't)

(3.160)
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with a loop of length #; connecting the two encounter stretches. The last contribution
in the second line of this equation is the overall exponential decay, not taking into
account the correlated way the perturbation acts during the encounter. The additional
effects of this correlation are included in the first exponential in the equation above,
and yielded a contribution proportional to e =2/ ‘enc for an explicitly time-independent
perturbation. However we now have to analyse this contribution in more detail: First
we again use that the two stretches during the encounter are very close together
implying q(#; + 2ftenc — ') &~ q(¢'). Furthermore, we assume in this subsection, as
in Ref. [53], a Gaussian form of the spatial and the time-dependent perturbation

(V (@@) W@V (q(t;+2tenc—1)) W (t;+2tene—1"))

_ Iwl? aw —a))? N (42— =07\ GiA6D)
BV £ P 2 :

70

The two time integrals in Eq. (3.160) are transformed into one integral with respect
to T = ¢ — ¢’ and one with respect to T/ = (¢ + ¢')/2. The integral with respect to
7 is performed from —oo to oo. Here our assumption that the correlation length of
the spatial part, V' (q(¢)), is much shorter than the one of the time-dependent part
W (1), & < votp enters. The integral with respect to T’ is from 0 to fepe, and we thus
obtain from Eq. (3.160)

. or tenc , o] 2.L.2
<exp (%AS)/)> =exp(—€\/l;_: </0 dt /_Oodr exp(—vg—z)

N2
X exp (— (11 + 2ene = 27) )>) exp(—=Tf).  (3.162)

2
70

We perform the two time integrals taking into account that only terms linear in Zepc
will give a contribution when performing the s, u-integrals. This finally yields for
the action difference due to the perturbation

ex i'AS =|1-=-2I" —i 2 —
p(545,))= exp| — renc+(9(tm) exp (—I'1). (3.163)

0

The first term in the square bracket gives a contribution independent of the perturba-
tion and is cancelled by the contribution coming from one-leg-loops. We insert the
remaining term into our expression for quIOE(t; I', 7p), evaluated as in the first two
sections of this chapter, but that it now depends additionally on the correlation time
7 of the explicitly time-dependent part of the potential:

¢ " t—2lenc (t — 2fenc — 1 N 2
mgOE(t; T, 19) :/ ds du/o dtl% (—2Mer™exp| —1I't — Lz .

—C TO

(3.164)
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After performing the remaining integrals we finally obtain the leading quantum
correction in the presence of an explicitly time-dependent perturbation

2 2
or ! 7 !
mGor( . 70) =~ M“ (w)-3 (l ) "(‘))} e
0

(3.165)

with the error function Erf(x) = % o dtexp (—*). By expanding Erf(x) we
obtain in the limit t < 7p:

G Moy~ L (2 ’ (3.166)
m 10, I, 19) >~ ———¢ — = — , .
GOE 0 0 TH 6 70
indicating a small reduction of the interference term (3.39), —(I't?/Tw) exp(—1I't)
of the static case.
Much more interesting and relevant is the opposite limit, 7 > 1y, where we find

12

re 0 (T0)2
mop(t > 10: T, 10) = — T I [ﬁ7 - (7) } (3.167)

Quantum fidelity corrections (3.39) in the static case arise at time scales ¢ given
by the geometrical mean, (7T, 17)'/%, of the Heisenberg time and the decay time
i =1/(2I") from Eq. (3.24). Equation (3.167) hence implies, in view of the hierar-
chy of timescales, that the quantum fidelity contributions are suppressed (by 7(/?)
compared to the static case, if tp is much smaller than the above mentioned geo-
metrical mean that usually represents a large time scale. Together with the initial
assumption, £ /vy < 19, we can conclude that quantum fidelity contributions are
suppressed for time-varying perturbations with & /vg < 10 < (7 Ty)'/?. Further-
more, such a suppression of this negative quantum correction implies that upon
reducing tp, that is introducing faster time variations, the overall fidelity amplitude
increases in the FGR regime and approaches exp(—1"7).

Finally we mention that we treated besides fidelity decay and the survival
probability in [2, 54] also another example of decay: molecular photodissociation
[55, 56] and atomic photoionisation [9, 57], where the molecule or atom absorbs one
or several photons such that the system is (highly) excited to an intermediate con-
figuration, which subsequently allows for decay, i.e. dissociation or ionisation of the
system. If this decay is sufficiently slow, a large portion of the complex, presumably
chaotic phase space of the excited system can be explored and the statistics of such
processes are assumed to show universal behaviour. In semiclassical approaches in
this case usually the autocorrelation function of photodissociation-cross sections is
studied. Previous approaches were limited to the diagonal approximation [58, 59].
We extended this calculation also to non-diagonal contributions.

To summarise, we presented in this chapter semiclassical results for time-
dependent processes: The calculation of quantum corrections to the survival proba-
bility and the fidelity decay was explained in detail. It was checked that the obtained
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results are unitary and that they fulfil the continuity equation in the case of the sur-
vival probability and a relation between the fidelity amplitude and the parametric
spectral form factor. Finally also effects not accessed by RMT are discussed.

In the next chapter we return mainly to the stationary transport process introduced
in Chap.?2 and consider there especially the effect of a non-vanishing Ehrenfest-time.
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Chapter 4
Ehrenfest-Time Effects in Mesoscopic
Systems

This chapter is devoted to the most prominent universal effect in ballistic systems
beyond RMT that can be accessed by semiclassical methods: the effect of a non-zero
Ehrenfest-time. The Ehrenfest-time [1] provides a separation between the timescales
when the dynamics of an initially spatially localised wave packet can be described by
classical mechanics on the one hand and when it is dominated by wave interference
on the other hand, for an illustration of this transition see Fig. 1.1. For an estimate we
consider two points inside the wave packet a distance A y apart and calculate the time
until they feel the effect of the boundary, i.e. until they are a distance of the order
of the system size £ apart taking into account the possible exponential separation of
neighbouring trajectories in chaotic systems. This yields for the Ehrenfest-time tg

L 1 L
AME ~—In{—). 4.1
e e TEN n<kF) 4.1)

Usually a more general definition is applied: The Ehrenfest-time is given by a time
logarithmically diverging with £ in the semiclassical limit defined only up to a clas-
sical constant inside the logarithm. That this time can lead to corrections to the RMT
result for the conductance was first noticed by Aleiner and Larkin [2]: Modelling the
scattering off the curved walls in ballistic systems by a small amount of disorder they
took into account that orbits scattered under a small angle need special considera-
tion as the motion of the outgoing orbit can be obtained for long times in linearised
approximation around the motion of the incoming orbit.! This was then generalised
to ballistic systems in [3]. We review this calculation in the first section of this chapter.
Afterwards we analyse the effect of a non-zero Ehrenfest-time on the fidelity ampli-
tude and the survival probability, the latter result is supported by numerical simu-
lations. We then consider additionally tunnel barriers in the leads and describe the
dependence of the variance of the conductance for non-zero Ehrenfest-time on the
tunnel probability. Returning to the transmission and reflection for perfectly trans-
mitting barriers we calculate the Ehrenfest-time dependence in one order lower in N

I We will often refer to this calculation as field-theoretical approach to describe Ehrenfest-time

effects.
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Springer Tracts in Modern Physics 245, DOI: 10.1007/978-3-642-24528-2_4,
© Springer-Verlag Berlin Heidelberg 2012


http://dx.doi.org/10.1007/978-3-642-24528-2_1#Fig1

90 4 Ehrenfest-Time Effects in Mesoscopic Systems

than in first section of this chapter. Afterwards we apply the gained insight on possi-
ble orbital configurations to the calculation of the Ehrenfest-time dependence of the
spectral form factor. Our result differs from a previous semiclassical result [4] but
agrees with the field-theoretical prediction of [5]. In the fifth section we calculate the
dependence on the Ehrenfest-time of correlation functions of arbitrarily many pairs
of scattering matrices at different energies to leading order in N. Finally we show
an application of the last result: We determine in the last section the spectral density
of a chaotic Andreev billiard for non-zero Ehrenfest-time, recall the discussion in
Sect. 1.1. The corresponding results were published in [6—11].

4.1 Leading-Order Quantum Correction to the Conductance

In this section we want to explain how the contributions to the transmission calcu-
lated in Sect. 2.3 are influenced by a non-zero Ehrenfest-time. The diagonal (clas-
sical) contribution, see Sect. 2.3, is independent of the Ehrenfest-time as the orbit
pairs do not differ in encounters and thus involve no dependence on /. To explain
how the leading-order quantum correction in NN is changed by a non-zero Ehrenfest-
time for clean chaotic systems we follow the pioneering work [3] that has later
been extended to the reflection [12—-14], including a distinction between different
Ehrenfest-times. To this end, we directly start from Eq. (2.48); however, we have to
be more careful when evaluating the e-integral: In our former calculation we assumed

1
e "E/™ = (2mAh/p*) 7> ~ 1,% requiring Tz < p. Lifting however, this strong
restriction for 7p, but still keeping it large enough to fulfil our assumption of chaotic
dynamics, we obtain

1
(N1 + N»)?

i.e. an exponential suppression of the non-diagonal contribution due to the Ehrenfest-
time. This dependence has been confirmed in numerical simulations for chaotic maps
[13, 15]. Experimentally Ehrenfest-time signatures were found in antidot lattices in
[16] probing the effect of weak localisation. The same dependence as in Eq. (4.2)
holds for the reflection and coherent backscattering contribution [12, 13] implying
that the current conservation relation (2.46) is also fulfilled at this order in V.

|t 5k, T0) [ = S 4.2)

4.2 Non-zero Ehrenfest-Time for Time-Dependent Processes

In the last section we explained how Ehrenfest-time effects appear in stationary
processes considering the conductance. Signatures of the Ehrenfest-time g were
however, also studied in the time domain [4, 17, 18]. Here we semiclassically compute

2 Using the estimate that 1/X is of the order of the free flight time, A ~ p/(mL), we obtain
2mah/p* ~ Ap /L and by this consistency with Eq. (4.1).
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Fig.4.1 Sketch of
trajectories y and y’ with a
2-encounter illustrating the
length restrictions in the case
of non-vanishing
Ehrenfest-time

the tg-dependence of the first quantum correction to p(¢) given in Eq. (3.37) in the
presence of time-reversal symmetry.

We start with deriving the Ehrenfest-time dependence of pyy1 (7), for the underlying
trajectories, see Figs. 3.1, 4.1. We show here the explicit dependence of the constant
c introduced in Eq. (2.44) and approximated by one in the last section on system
parameters [18]. This also opens the possibility to compare our analytical results
with the numerics presented below.

Note that the different encounter stretches escape in an uncorrelated manner when
their spatial distance becomes of the order of the size of the opening W or larger,
because then the fact that one encounter stretch touches the opening does not imply
that the other also has to touch the opening. We thus require that inside of an encounter
two segments of the trajectory are separated by distances less than W, see Fig. 4.1.
This leads to the following definition of the duration of the encounter?

1 W2h
fone ~ —In{ —— ), 4.3
S H(EAF |su|) (4.3)

where L is of the order of the system size. Specifically, on the right hand side of
the encounter, depicted in Fig. 4.1, the stretches should be separated by a distance
of the order of £ in order to close themselves and form a loop.* On the left side,
however, the encounter stretches have to be separated only by the distance W as we
first consider loops with two legs (211). This means the minimal time of the trajectory
18 2ftenc + 2tw o, where

twe ~ A7 In(L/ W) (4.4)

3 The reason for the special choice of ¢ in Eq. (4.3) can be best seen within the configuration-

space approach introduced in Chap. 2. One therefore needs the monodromy matrix element
My ~ (mi)~!exp(it/2) determining the position difference of two orbits at time 7, given by
W, as a function of the initial angle difference € and the approximation A &~ p/(mL). This yields
fenc & 2/XIn[W/(Le€)] in the configuration-space approach. For a detailed derivation see [13].
Comparing then the constants c¢ in the configuration and in the phase-space approach one finally
arrives at Eq. (4.3).

4 This condition for the minimal loop duration is equivalent to the one in the last section. Note
here that setting W = L in fenc & 2/AIn[W/(Le)] obtained in the last footnote yields the same
expression for fepc as setting ¢ = 1 in Eq. (2.45) as done in the last section.
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is the time it at least takes for the stretches to be separated by the distance £ when they
are initially separated by the distance W. The density woy (@, s, ) in (3.29) and later
also wyy(u, s, t) (3.33) should be multiplied by a Heaviside theta function ® (x) in
time ensuring that a contribution exists only if the trajectory time ¢ is sufficiently long
to enable a closed path. Accordingly, the weight function (3.29) is slightly modified
by introducing these minimal times and takes the form

t—2 (fone + ¢ 2
wanuy s, 1) = L= 2o ¥ WO o o 4w, (4.5)
282 tene

To account for the proximity correction to the survival probability explained before
Eq. (3.30) we again multiply by e’n/™ with fe,. defined in Eq. (4.3) as the encounter
stretches escape in a correlated manner if they are less than a distance W apart. Now
we are in the position to calculate the Ehrenfest-time dependence of )1 (¢). In order to
avoid performing the integrals resulting finally from the phase-space integrals over
a finite range we will study the Ehrenfest-time dependence of the inverse Fourier
transform of the corresponding contribution to the survival probability and finally
transform this back to the survival probability. We thus define

o
pa(w) = / dt pon(t)e¥ ™!
0

1 © .
— ZTH dt 1211(w)t2e—(l—2lﬂer)(l+2tWL)/TD (46)
0

with 72(¢) defined as

- 1 WR/NLhp WVR/VEAE  gli/Pus i
17 (w) = _h/ e du/ ds—t g fene/TDFHAITOIene (4, 7)
Th J-wvh/LAp 0 enc

again using ¢ = W~/h/~/Lir, compare Eqs. (2.54) and (4.3). The s, u-integrals are
best performed by the substitutions x = usCAr/ (hW?) and o = Wv/h/ (v/Liru)
with the limits —1 < x < 1 and I < o < 1/|x|. Calculating now the o -integral,
that essentially cancels the f.pc in the denominator, yields

2 1 2
]211(0)) _ VZ;‘ / dx cos (‘/KVAX) |x|(1—4i7rwru)/()»rp)_ (4.8)
4 F J—1 F

Next we perform the x-integral by partial integration neglecting again rapidly oscil-
lating terms that are cancelled by the time average to obtain

1 —4dinrwtp
—-—— e

I2ll(w) _ —(1-dirwtp)Ty/TD (4.9)

(7))
with the open Ehrenfest-time t9 = A~'In[W?/(LAF)] [18]. We now insert this

expression in Eq. (4.6) to transform the resulting expression back to the survival
probability contribution ooy (#):
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o0
P21 (1) =/ dw poy(w)e= 2Tt

—00
2
t— 218 o
_ ( ) e TR/ (s — 2t5)
2tpTy
t—21¢ o
) ( E) e—(f—TE)/TD@(t — 21—2) (410)
Ty

Here we additionally introduced the escape Ehrenfest-time 27y = 73 + 7 with
the closed Ehrenfest-time tﬁ: =1 In(L/AF) [18]. The same procedure we now
perform for the one-leg-loops, we thus consider the Fourier transform of pqy;(¢)

/0111(60) — Ti/oo dt Illl(w)lef(lfzina)tp)(l+2tWL)/tD (411)
H JO
with
0 | WYR/ITiF ) WA/ LiF . )ﬁlln[Wx/ﬁ/(«/AF[,ls\)} ; eli/hus
I (w) = — u/ s/ 1 —
R N NI Y 0 0 fenc

X e*fenC/TD +4i7TCUt_enc

_ e—(1—4iﬂer)rg/TD 4.12)

with fene = ¢’ + 271 1n [W\/ﬁ/(«/ﬁ)»p|u|)]. The integrals in the last equation are

performed by the substitutions given after Eq. (3.34). Inserting afterwards I'(w)
in p1j1(w) and performing the inverse Fourier transform like for py)1(¢) in Eq. (4.10)
this yields

(t - 212)

e "D/ O (1 — 215). (4.13)
Ty

o) =2

Finally we thus obtain the overall contribution from orbit pairs differing in one
encounter for non-zero Ehrenfest-time

(t —218)?

—_ o (t=1)/D
! H=e¢e E
21 (1) +p111(2) e Th

O — 2t5). (4.14)

For an intuitive interpretation of the last formula we remark that the length of
the encounter (box in Fig. 3.1) is of the order of the Ehrenfest-time. This can be
seen by noting that fe,c in Eq. (4.3) is logarithmically dependent on |su|. When
substituting in the calculation above |su| = yhto cancel the 7 in the phases, we obtain
fene = A1 (ln 4 O(l)). With this in mind, we recognise two competitive effects
of the Ehrenfest-time occurring in (4.14): On one hand the quantum corrections in
(4.14) can occur only for orbits longer than 27}, because otherwise the orbits cannot
complete the encounter. This fact is taken into account by the ®-function in (4.14)
which decreases this quantum correction. On the other hand, after the orbit has
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Fig.4.2 Construction of the 'y 0
DD billiard: It is defined as fiy

the fundamental domain of i N Vs

the area confined by four T L
intersecting disks of radius R i oy 4
centred at the vertices of a - L ~
square of length 2L (taken 37 s

from [20]). In the numerical 2L o e >
simulations described here s :
L =100 and R = 131 are S

considered g i R

traversed an encounter, this quantum correction is enhanced by the Ehrenfest-time,
because of the enhanced survival probability due to the fact that the orbit cannot
escape during the second encounter stretch, if it did not escape during the first one.

After the analytical calculations of quantum corrections to the survival probability,
we want to compare now our semiclassical predictions with quantum calculations of
p(t) based on the numerical propagation of Gaussian wave packets inside a billiard.
We consider the open DD billiard depicted on the left in Fig. 1.6—we already encoun-
tered this billiard in Fig. 1.1—that is classically chaotic. This billiard is defined as
the fundamental domain of the area confined by four intersecting disks of radius
R centred at the vertices of a square of length 2L, for the construction see also
Fig. 4.2. More details about the simulations performed by A. Goussev can also be
found in [19]. We express our system parameters used in the simulations in terms of
the mean free flight time 7/, i.e. the average time between two bounces of the particle
with the wall: We obtain for the Lyapunov exponent A~! ~ 37 r» for the dwell time
tp =~ 157, for the Heisenberg time Ty =~ 1597 ;. We furthermore consider £ = v/A
with A the area of the system, Ay = 3, L and R as given in the caption of Fig. 4.2, an
opening of width W = 16 and N = 10 open channels. Its position is indicated in the
left diagram of Fig. 1.6. We then obtain t; = 2.557; and 7, = 8.257;. In Fig. 4.3
we compare the decay pgy’ () (full line) for a representative wave-packet simula-
tion with the corresponding classical decay, pgl’m (1) (dashed line), obtained from an
ensemble of trajectories with the same phase-space distribution as the Wigner func-
tion of the initial quantum state. The function pcsf’" (t) merges into the exponential
decay exp (—t/tp) and deviations between péfﬁ” (1) and ,ogl’ " (t) are visible.

We proceed with a more detailed analysis of the quantum deviations from pgl’ (1),
therefore we consider now the ratio

Pl (1) = ™ ()

R(t) = :
Py (1)

(4.15)
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Fig.4.3 Survival probability 1
obtained from the numerical
simulations in the classical

(dashed line) and in the

quantum case (full line). Up P(t)
to t/tp ~ 0.5 non universal

effects resulting from a finite

time the trajectories need to 01}
become ergodic in good
approximation are observed
(from [6])

thp,

shown in Fig. 4.4. The dots there represent an average of R(¢) over 27 different
opening positions and initial momentum directions. The full curve depicts the semi-
classical prediction

2

R(t) ~ (4.16)

ZTDTH ’

based on Eq. (3.37), that is dominant for the ¢ /7p-range displayed. We note that our
semiclassical result (4.16) shows, compared to the numerical data, mainly a shift
in time. We try to explain this now by considering the influence of a non-vanishing
Ehrenfest-time. A comparison between the numerical results and our semiclassical
results including a non-zero Ehrenfest-time for R(#) is shown in Fig. 4.5. We find a
much better agreement of the numerical results with our semiclassical ones including
the Ehrenfest-time than with the ones without Ehrenfest-time. This leads us to the
interpretation, that the shift observed in Fig. 4.4 is indeed caused by the Ehrenfest-
time. We note, however, that in order to rule out other effects than the Ehrenfest-time,
we would have to be able to plot the quantum correction (4.14) for a range of tg
instead of 7 to check if the analytically obtained Ehrenfest-time dependence is correct.
This seems impossible to date for wave packets evolved in billiards, because £ cannot
be varied over a sufficiently wide range in these simulations (the Ehrenfest-time
depends logarithmically on £). Furthermore we have to note, that the individual
numerical results for p(¢) exhibit strong fluctuations, which are reflected in a large
standard deviation shown by the error bars in Figs. 4.4 and 4.5.

We remark at the end of this section that an analogous calculation can also be
performed for the leading quantum correction to the fidelity amplitude in the presence
of time-reversal symmetry. For the survival probability the stretches escaped in an
uncorrelated manner when they were more than a distance W away from each other.
Now the different encounter stretches are subject to uncorrelated disorder when their
spatial distance becomes larger than £. We thus require that inside of an encounter
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Fig.4.4 The dots mark the 0.6
results for R(¢) obtained
from numerical simulations,
the bars correspond to the
standard deviation after
averaging (see text),
compared with the
corresponding semiclassical
prediction [Eq. (4.16)]

(full line) (from [6])

Fig.4.5 The dots mark
again the results for R(t)
obtained from numerical
simulations and the bars the
standard deviation, compared
with the corresponding
semiclassical prediction now
with Ehrenfest-time

[Eq. (4.14)] (full line) (from
(6

0 1 2 3
t/'cD

two segments of the trajectory are separated by distances less than & on the left end
of the encounter in Fig. 4.1 and less than £ on the right as before. Performing then
an analogous calculation to the one for the survival probability we find

r £
mil(t; ) = —E(I — 2t Ze T2 91 — 27, 4.17)

where we defined analogously like after Eqs. (4.9, 4.10) ré = 2"'In(&2/(Lxrp)) and

ZIg = 7.'2« + 12. Equation (4.17) reveals the role of Ehrenfest-time corrections in this
case: They lead first to a time shift such that the quantum corrections set in later, i.e.
for short times the system behaves “classically” due to the theta function. Second
they lead to a stronger exponential decay as the disorder is accumulated coherently
during the encounter stretches.

After this excursion to time-dependent processes we now return stationary ones
and study now the variance of the conductance.
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Fig.4.6 A 3-encounter as it can be approximated in the semiclassical treatment to reproduce RMT
results. The encounter stretches are marked by a box (shown red)

Fig.4.7 A 3-encounter as previously treated with Ehrenfest-time [12, 26]. The encounter stretches
are marked by a box (shown red)

4.3 Variance of the Conductance

In Fig. 2.3 we observed large (universal) fluctuations of the conductance around its
mean value. Its variance can also be obtained by RMT [21] that can be reproduced
semiclassically [22]. When calculating the leading order in N contribution to the
variance of the conductance in [ 12] for non-zero Ehrenfest-time, two main difficulties
were noticed:

* when considering encounters containing more than two stretches it was shown to
be sufficient [22-25] to obtain the RMT results semiclassically (as considered in
the Chap. 2) to take into account only encounters where all orbits are linearisable
up to the same point, see for an example Fig. 4.6. Generalising this to non-zero
Ehrenfest-time, for 2-encounters considered in the first section of this chapter, this
is naturally fulfilled. When taking into account the Ehrenfest-time dependence of
more general encounter diagrams this is no longer sufficient as was first shown
in [12, 26], see Fig. 4.7 for an example of an additional diagram analysed in this
case. Here also correlations between some parts of the stretches need to be taken
into account, we will refer to these regions as encounter fringes.

* when studying encounter diagrams involving surrounded periodic orbits, for exam-
ple see Fig. 4.8, it was shown [22-25] that RMT results can be obtained by restrict-
ing the diagrams to those where the encounter stretches do not wind around the
periodic orbit, i.e. where the encounter stretches are shorter than the periodic orbit.
Also this restriction cannot be made for non-zero Ehrenfest-time. We mention that
also these encounter diagrams could not occur for a single 2-encounter or coherent
backscattering.
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Fig.4.8 Diagram studied in the calculation of the first quantum correction to the transmission and
reflection in the absence of time-reversal symmetry. Here the orbit traverses the central periodic
orbit (dashed—dotted line) once during its first encounter and twice during its second encounter. We
draw the parts of the orbit during the second encounter dashed to distinguish them from the first.
The partner orbit (not shown) has one traversal of the central periodic orbit exchanged between
its first and the second encounter with the periodic orbit (i.e. it goes around twice then once). The
fringes where the two orbits approaching the dashed—dotted orbit are correlated with each other but
not with the dashed—dotted orbit are marked by black vertical lines perpendicular to the trajectories

The first calculation taking into account both effects was performed in [12]. This
calculation showed that the leading-order contribution to the variance of the con-
ductance is independent of the Ehrenfest-time. The averaged conductance variance
or more precisely the variance of the transmission T (without the factor 2¢2/h) is

defined as
varT = <Tr (tt+)2>

From the first summand we obtain semiclassically a fourfold sum over orbits, con-
tributions that lead pairwise to small action differences (i.e. by only considering
the two double sums independently) are subtracted by the second summand. Only
quadruplets of orbits that interact through encounters in a way that does not lead to a
small action difference in the second term are then left to give a contribution. In [12]
it was shown that var 7' can be semiclassically also obtained by considering instead
the covariance of the reflection cov RR’, that is defined as

cov RR' = <Tr (rrT) Tr (r/r/T)>Ak - <Tr (rr*)>Ak <Tr (#ﬂ))Ak (4.19)

with R = Tr(rr") and R’ = Tr (r'7'"). Due to the unitarity relation (2.46) this
quantity is equal to var T. Considering the covariance leads however, to the tech-
nical simplification in the semiclassical calculation that no encounters touching the
opening need to be considered, because the two pairs of trajectories start and end in
different leads. In this case two different diagrammatic contributions are identified:

— <Tr (n*))z . (4.18)

Ak Ak

¢ two independent 2-encounters, see Fig. 4.9. The contribution of this diagram is
given by the square of the first quantum correction to the transmission [12], as can
be seen easily by expressing it in terms of link and encounter contributions:
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e RN

Fig.4.9 Diagram occurring in the calculation of the reflection covariance (or the conductance
variance) containing two orbits possessing two independent encounters. The encounters of the two
orbits are marked by a box (shown blue). At the encounters the partners (not shown) differ by
crossing over to the other orbit

Fig.4.10 Diagram occurring in the calculation of the reflection covariance (or the conductance
variance) containing two orbits surrounding a central periodic orbit. The fringes are marked by
black vertical lines perpendicular to the trajectories. Partner orbits are not shown

NPN3

—2tg/
—(N1 n N2)4e *E/™D (4.20)

(cov RRH*? =

with the superscript referring to the number of the figure.

* two trajectories (one from either lead) approach a trapped periodic orbit with one
winding around it an extra time, see Fig. 4.10. Partner trajectories (not shown) can
be found which follow those trajectories almost exactly but where one winding is
exchanged between the two trajectories leading to a quadruplet of trajectories with
a small action difference and a contribution in the semiclassical limit given by’

NIN3
(cov RRYH10 = ——1=2 (1 — e72me/0), @21)
(N1 + N2)

Such a contribution vanishes when the Ehrenfest-time goes to zero and can be seen
to contain the discrete diagram types considered without Ehrenfest-time [22], i.e.
two 2-encounters and one 3-encounter (the contributions from these diagrams sum

5 As the calculation in [12] shows, this contribution is actually only non-zero due to taking into

account the encounter fringes shown in Fig. 4.10.
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Fig.4.11 Schematic drawing of an additional pair of orbits to be considered when calculating the
first non-diagonal contribution to the transmission in the presence of tunnel barriers. This diagram is
obtained from the configuration containing an encounter inside the system, see Fig. 2.2, by cutting
the left link short. An analogous configuration touching the right lead can be obtained by cutting
the right link short

to zero in a similar way as for the conductance in the unitary case in Sect. 2.3). In
contrast to the Ehrenfest-time dependencies considered above a simple intuitive
explanation for the last dependence is not yet available.

In order to show that a non-zero Ehrenfest-time can lead to further interesting
effects, that are however, not easy to access intuitively, we now consider the variance
for a system containing additional tunnel barriers in the leads through that the particles
can tunnel with a probability I". We first describe the general changes induced by
including tunnel barriers and afterwards explain the dependence of the variance on I”
and introduce the most relevant diagrams leading semiclassically to this dependence.

The inclusion of tunnel barriers leads to some changes in the transport calculations
presented up to now that were originally described in [27]: First the dwell time 7p
defined after Eq. (2.34) is usually replaced by tp/I". Without tunnel barriers every
particle that hit the lead left the system, now only the ratio I of the particles hitting
the lead leaves the cavity, if the corresponding trajectory part is not correlated with an
other during an encounter at that time. If such a correlation is present when hitting the
lead, the whole configuration is lost if one stretch of the encounter leaves the system.
This happens with a probability 1 — (1 — I")" for n correlated stretches. The dwell
time is in such a situation thus replaced by tp/ [1 -1 - F)”]. A further change is
that additional encounter diagrams become possible where encounters touch a lead
but the orbit does not exit the system each time it hits the opening, for an example
see Fig. 4.11.

After these explanations of the effects of tunnel barriers in general we now turn
to the variance of the transmission introduced in Eq. (4.18) for arbitrary tunnel prob-
ability and non-zero Ehrenfest-time. As just explained the variance is to leading
order in N for I' = 1 independent of the Ehrenfest-time. For arbitrary I this is
no longer the case: To linear order in the ratio 7g/7p, to that we restrict here, we
obtain that the variance increases with increasing Ehrenfest-time up to I" &~ 0.5 and
then decreases with increasing Ehrenfest-time. We predicted this behaviour—more
exactly the curve in Fig. 4.12—semiclassically. We also compared this analytical
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Fig.4.12 Concentrating on the linear dependence of the variance of the transmission var 7 on
tg/tp; var T =~ var Trmr+a g /Tp with the RMT contribution to the variance var TryT; We obtain
for the dependence of @ on I” the depicted (red) line in the presence of time-reversal symmetry. The
(blue) dots and error bars indicate the corresponding results from numerical simulations performed
for the kicked rotator by Jacquod (from [28])

prediction with numerical data obtained by Jacquod using a kicked rotator in the
chaotic regime [28]. We find fairly good agreement between the numerical results,
see the blue dots in Fig. 4.12 and the analytical prediction, see the red curve: The
analytical curve always lies within the error bars of the numerical results. As the cal-
culation of the complete set of contributions leading to this curve is rather involved
due to the large number of diagrams and the complicated dependence of the dwell
time on I" we show the diagrams causing the main contributions here and give all
contributions leading to the curve in Fig. 4.12 in Appendix C. At first we remem-
ber that in the absence of tunnel barriers the contributions resulted from orbit pairs
depicted in Figs. 4.9 and 4.10. For I" # 1 we first need to take into account these
configurations using the modified survival probability introduced above and second
additional diagrams obtained when encounters touch the opening similar to the one
depictedin Fig. 4.11. When neglecting the effect of encounter fringes, we can concen-
trate on configurations where the encounter stretches are longer than the encountered
periodic orbit: This can be understood by taking into account that there are in this
case no contributions for I = 1 from surrounded periodic orbits and by noticing that
for most of the contributions the number 7 of traversals of the periodic orbit is quite
large implying 1 — (1 — I")" — 1, i.e. the results obtained for I" = 1 still remain
valid for these diagrams for I” # 1. Now we analyse the diagrams leading to the
two peaks: The first positive peak lies in a region of small I'". In this case there exists
for the contributions from most of the diagrams the following approximate cancella-
tion mechanism: The contributions from diagrams containing encounters inside the
orbits (i.e. the ones depicted in Figs. 4.9 and 4.10) are cancelled by the ones obtained
when one and two links are cut short. This cancellation however, does not hold for
3-encounters with the periodic orbit, see the leftmost diagram in Fig. 4.13. In this case
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Fig.4.13 Diagrams contributing to the variance of the conductance. The links are marked by thin
(blue) lines, the encounter stretches by fat (red) lines, the encountered periodic orbit is shown
dashed dotted. The partners (not shown) traverse the encountered periodic orbit once more than the
depicted orbits. In the left diagram the two orbits encountering form together with the periodic orbit
a 3-encounter, in the middle the encounter stretches overlap partially and on the right they overlap
at both ends. For the importance of these diagrams for different values of I", see main text

we have two possibilities: First that the encounter lies inside the system or touches the
lead at one end. This leads in dependence of the Ehrenfest-time to an exponentially
decaying contribution proportional to e "[!=(1=I" Iee /D, Additionally for non-zero
Ehrenfest-time we also need to take into account the contributions from encounters
touching the leads at both sides leading to an increasing contribution proportional
to 1 — e 1=0=12"1E/™ with a larger prefactor than the first one.® This causes the
first peak in Fig. 4.12. In the case of the second peak the factor (1 — I"), i.e. the
probability for the particle to be back reflected at the opening, is quite small. This
implies that we get the main contributions from diagrams with encounters inside the
system, i.e. the ones also obtained for I" = 1. The first important diagram in this
case is obtained from the one depicted in Fig. 4.14 by cutting the link of duration
t3 open and the others are shown in Figs. 4.9, 4.10, 4.13, which yield altogether a
negative contribution.

4.4 Next-to-Leading Order Quantum Corrections

After these results for the I"-dependence of the variance of the transmission we now
return to the case of transparent barriers I" = 1. All the approaches for calculating
conductance or spectral properties for non-vanishing Ehrenfest-time are up to now
restricted to very low order in the inverse channel number for the transmission and
in 1/€ or t for the spectral autocorrelation function or form factor. A calculation of
the corrections to infinite order, as it has been performed in the case of vanishing
Ehrenfest-time tg/tp — 0 (see Chap. 2), is still lacking. In this section we want to
make a step towards filling this gap. More precisely we consider in the first subsection
the next-to-leading order quantum correction to the transmission and reflection in the
case of the dc transport without and with time-reversal symmetry (the contribution

6 For a detailed explanation how such contributions increasing with increasing Ehrenfest-time
arise see Sect. 4.5.2.
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Fig.4.14 Example of an
orbit (and its partner shown t1
dashed), considered in [29], Ni=——=

that contributes to the
transmission for systems
without time-reversal
symmetry. A central periodic
orbit (dashed—dotted) can be
identified

one order lower in N than in the first section of this chapter). We then check the
unitarity of our result, i.e. that 7 and R add up to a constant (N7) at the considered
order. In the next subsection we extend these results to ac transport and then check
that corrections to the closely related Wigner time delay are indeed zero at the order
considered.

4.4.1 Transmission and Reflection for dc Transport

We start in this subsection calculating the Ehrenfest-time dependence of the next-to-
leading order quantum corrections (of order 1/N) with the simpler case where the
scattering system does not have time-reversal symmetry.

4.4.1.1 No Time-Reversal Symmetry

Without Ehrenfest-time the 1/N-order contribution results from orbits with two
encounters with itself [29], see Fig. 4.14 (and additionally an orbit with a single
3-encounter). We can see that there is a central periodic orbit through the two encoun-
ters. This fact is essential for the Ehrenfest-time dependence and simplifies treating
the different cases. Depending on how much these encounters overlap (i.e. depending
on the lengths of the links #4 and #5 in Fig. 4.14), one distinguishes in the case of no
overlap two independent 2-encounters (i.e. encounters involving 2 orbit stretches) as
in Fig. 4.14, in the case the two 2-encounters overlap at one of their ends (shrinking
t4 or t5 say) a 3-encounter (the other discrete diagram) and in the case the two
2-encounters overlap at both ends (shrinking #z4 and #5) an encounter fully sur-
rounding the periodic orbit (a possibility which has only to be treated for non-zero
Ehrenfest-time).
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We first want to describe the length restriction for the considered orbits in this
case. Although we mentioned up to now only one contained periodic orbit shown
dashed dotted in Fig. 4.14, there are two in total: one built up by #4 and 75, the other
by 3 and #4. In the following calculations we could choose either as we actually treat
this configuration as an orbit meeting a central periodic orbit twice, see Fig. 4.8. The
two encounters of the orbit with the central periodic orbit have to be independent,
because otherwise there exists no connected partner with a small but non-zero action
difference. That means the orbit has to decorrelate from the central periodic orbit.
Then this orbit has to become ergodic before returning, therefore an encounter time,
which is of the order of the Ehrenfest-time is required, so the stretch outside the
encounter in Fig. 4.14 must be of positive length. The total orbit has thus to be longer
than the sum of the two durations of the encounters with the central periodic orbit,
Tenc, 1 + fenc,2-

As just explained these orbital configurations also occurred in the calculation of
the covariance of the reflection coefficients [12]. In fact, by cutting the top loop
in Fig. 4.8 and moving the ends to the correct places we can see we recreate
Fig. 4.10. Reversing this cutting though, to return to the transmission and reflec-
tion, we create the second periodic orbit which is the top loop in Fig. 4.8 and travels
through 3 and the encounters in Fig. 4.14. We will see that this changes the orbital
configurations compared to the case of the reflection covariance, changing also the
resulting contribution: For the covariance of the reflection coefficients it turned out
to be essential [12] to note that apart from the orbit being longer than the encounter
stretches (where both orbits in Fig. 4.10 are correlated with the central dashed—dotted
periodic orbit) additionally that the orbit is longer than the encounter fringes, where
the orbits are correlated with each other but where they are no longer correlated to
the periodic orbit. We marked the places where correlations between fringes occur
in Fig. 4.10 by black vertical lines. The duration of the fringes before the orbits get
correlated to the central periodic orbit is denoted by 7, and after the orbits leave the
central periodic orbit by #,. Note that these times possess here another meaning than
in Eqgs. (2.39, 2.54).

These fringes are the key to the difference between the possible orbital config-
urations for the covariance of the reflection coefficients on the one hand and the
transmission and reflection on the other hand: In the case of the covariance of the
reflection these fringes need to have a non-vanishing length, because the two orbits
(see Fig. 4.10) which are correlated during the fringes have to end at two different
leads where they necessarily must be uncorrelated. The orbits away from the central
periodic orbit must be long enough for the chaotic dynamics to allow this to happen.
When we join one end of the dashed and one of the solid orbit in Fig. 4.10 say to
return to the transmission (or reflection) as in Fig. 4.8 then it is no longer necessary
that the upper periodic orbit (in Fig. 4.8) thereby created has to be longer than the
fringe times. These fringes can now start to overlap as depicted in Fig. 4.15; com-
pared to Fig. 4.14 we let the fringes grow till they overlap in the link 73. The stretches
of the orbit that connect to the leads must though still be longer than the duration of
the fringes as they must decorrelate from the upper periodic orbit to exit the system.
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Fig.4.15 Example of a diagram, that has to be considered in the calculation of the transmission,
however, not when the upper periodic orbit is cut open in the calculation of the conductance fluc-
tuations. The parts of the orbit that were changed in comparison to Fig. 4.8 are shown dotted

(red)

Now we can explain the effect of the possible orbital configurations on the resulting
contributions. Applying the sum rule (2.34) in Eq. (2.57), we obtain the following
contribution to 7 resulting from the diagrams shown in Figs. 4.8 and 4.15, which we
denote 748415

NN o0 C .
48415 _ (V2 [ ar [ dsduw(a, s, T)eW/PASp/(my) . (4.22)
T,
H 0 —c Ak

We defined here the modified survival probability in the presence of encounters p’(T')
taking into account the modification explained before Eq. (2.47) for encounters with
the fringes and periodic orbits: When the encounters surround the periodic orbit the
parts of the encounter stretches traversing a certain point of the periodic orbit are so
close to each other that they either leave the cavity during the first traversal or do not
leave at all [12, 29] leading to

p/(T) — p(T)e(tenc,l+tenc,2+ts+tu)/fD — e_(tl+t2+t3+fp)/TD’ (4.23)

assuming that 74 and 5 form the surrounded periodic orbit. Note that although we
are in contrast to Chap. 2 considering now encounters that are not only allowed to
touch but also to surround periodic orbits the functional form of the action difference
remains unchanged [12, 30] AS = Z?:l u;s; . Now however, the coordinates s; and
u; are the stable and unstable coordinate differences between the central periodic
orbit and the ith encounter stretch. The weight function w(u, s, T') derived in an
analogous way like before Eq. (2.56) is given by

2
1 T
wu,s, T)= ——— /dt- /d‘L’ / dt’, 4.24)
taenc,ltenc,Z (11:[1 l) P 0

where #; denotes the duration of two of the three links away from the periodic orbit
(two connecting the opening to the central periodic orbit and one the periodic orbit
to itself), 7, is the duration of the central periodic orbit and t' the time difference
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between the two points (in the different encounters) where each of the two encounter
stretches reaches a phase-space difference ¢ with respect to the periodic orbit. The
limits of the time integrals in (4.24) are determined by the fact that the duration of
the links, the periodic orbit and the encounters have to be positive. This differs from
the treatment of Fig. 4.14 in Chap. 2 as it was assumed there that all five links have to
have positive duration, but here we allow some of them to overlap. This automatically
includes the other cases described at the start of this section as part of a continuous
deformation of Fig. 4.8 or 4.14. In particular we allow 74 and f5 to shrink and instead
just assume that 7, is positive, so we therefore use this variable in (4.24) instead of
t4 and ts.

This expression can be again transformed, using (4.24) and converting the integral
over the full duration of the orbit 7 into one over the link #3, into

3
NN o fi ¢ > "
48415 _ [ V12 / dt; exp (__’) / dsdu/ dr,,/ dr’
Ty 170 D —c 0 0
2

L

T 1 ‘
XX\ =) o2, ;- SXP\ 7 2 Uisi ’
( TD) .Qzl‘enc,ltenc,2 (h Z l l)>Ak

i=1

(4.25)

where we also used the explicit form of the survival probability and the action dif-
ference AS. To understand that the expression in (4.25) yields zero, we perform the
integrals with respect to s;, u;, like in [12]

c . 1 1 1/x; CZX' 1
/ dSi du[ e(l/h)“"x" —_— = 4C2/ dx,- / dUi cos (—Z)
—c Tenc,i 0 1 h Ojlenc,i

a2 [ x;
=4c°A dx; cos (4.26)
0 h

with the substitution u; = c¢/o; and s; = cx;o;. The integral in the last line in (4.26)
rapidly oscillates as a function of energy in the limit 4 — 0 and thus yields no
contribution due to the energy average in (4.25). We want to note that in the case
of the conductance variance or reflectance covariance the expression determining
its contribution additionally contains compared to Eq. (4.25) a factor e~ (s+%)/T»
because of the different length restrictions of the links in that case. As #; and 1,
depend on s;, u; and ¢, this thus yields a non-vanishing contribution [12].

We thus obtain that there are no quantum corrections (at least to this order) to the
transmission when time-reversal symmetry is absent

748415 — 0, (4.27)

and a similar calculation shows that this also holds for the reflection R. Coherent
backscattering, i.e. having encounters at the opening that additionally have to be taken
into account for reflection, is also not possible. First this requires the encounter to be
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Fig.4.16 Periodic orbit with two independent 2-encounters. The different positions, where it can
be cut to obtain an open orbit contributing to the transmission are indicated by (red) perpendicular
lines, the position of the (blue) encounter stretches are indicated by a box

traversed in opposite direction on both traversals, which can only occur with time-
reversal symmetry. Second, even with time-reversal symmetry, when the trajectory
returns to the encounter the second time it would necessarily escape the systems, and
not be able to complete the rest of the semiclassical diagram.

To summarise, we saw in the first part of this section how, despite their close simi-
larities, the two different orbital configurations appearing in the case of the covariance
of the reflection on one hand and the transmission and reflection coefficients on the
other lead to two different results: in the case of the covariance of the reflection to
a term proportional to (1 —e 2t/ TU), in the case of the transmission and reflection
coefficients to zero contribution.

4.4.1.2 With Time-Reversal Symmetry

We now turn to the calculations in the case with time-reversal symmetry. In this
case we also have to consider diagrams where the encounters are traversed in different
directions by the orbit. As their contributions are quite different we will study them
individually. We start with two independent encounters with no central periodic orbit
involved, referred to as two 2-encounters, shown in Fig. 4.16. We first cut the periodic
orbit during one of the middle links and refer to the corresponding contribution as
T416@ Expressing the corresponding contribution again as in Sect. 2.3 in terms
of products of link and encounter contributions the two s, u-integrals for the two
different encounters factorise and can be evaluated for each encounter separately, as
was done in [12] for the case of the reflection covariance (obtained by cutting both
the leftmost and rightmost links in the periodic orbit in Fig. 4.16). Each encounter
provides a factor —Ne™ Tt /0 | the five links factors N1 and the leads the factor
NN, so that we obtain for the contribution 7410®)

7416(@) _ NN, Se*ZIE/’D. (4.28)
(N1 + N2)

with 7z = A7 In (cz/ h) . The corresponding contribution to the reflection R*16(®)
is obtained by multiplying 7416(?) by N /N, to take into account that the orbit leaves
through the lead 1 instead of lead 2. When cutting the left link of the periodic orbit in
Fig. 4.16, whose contribution we denote T416() we obtain for the transmission the
same result as T410(@  However, for the reflection in this case it is also possible to
obtain a coherent backscattering contribution, i.e. a contribution from an encounter
touching the lead, by shrinking the length of both links on the left in Fig. 4.16 to
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A

Fig.4.17 A periodic orbit encounter only existing in the case of time-reversal symmetry. The central
periodic orbit is drawn with a dashed—dotted line, the position of the (blue) encounter stretches are
marked by a box. The (red) lines perpendicular to the orbit mark the places where it can be cut open

zero (or we cut the diagram in Fig. 4.16 at the leftmost encounter and move this to
the lead). For this contribution we have, compared to the corresponding one for all
encounters inside the cavity, two links less and as already in Eq. (3.33) an additional
integral measuring the length of the encounter stretch that was not cut. Additionally
the lead provides a factor N as the orbit has to start and end in this case in the same
channel as we saw in the last chapter. We finally obtain

2
R416(0) _ Ni 3e*2’5/”’ _ Lze””f/m, 4.29)
(N1 + N») (N1 + Np)

where the first term is the same as R*19() and the second comes from the coherent
backscattering.

Next we consider, as for the case of no time-reversal symmetry, the situation of two
2-encounters near a periodic orbit. The configuration where the encounter stretches
are parallel (in the same direction) was treated in the last subsection so, as we have
now the freedom to traverse the two encounter stretches in opposite directions, we
now turn to configurations where some of the stretches are antiparallel to each other.
Starting with the periodic orbit configuration in Fig. 4.17 there are three possible
places to cut this orbit open as shown by the red lines perpendicular to the orbit.
By opening the parts not enclosing the central periodic orbit, we obtain a configuration
shown in Fig. 4.18.

Unlike the case without time-reversal symmetry, we can see that some of the
fringes must have non-vanishing length like considered in [12] for the contribution
to the conductance fluctuations: The two fringes marked by dotted boxes in Fig. 4.18
on the right hand side of the encounter cannot have vanishing length, because as
long as the two parts are correlated, the corresponding loop they form cannot close.
The two fringes in Fig. 4.18 on the left hand side of the encounter can only vanish
in the case of coherent backscattering, i.e. if the orbit starts and ends in a correlated
manner in the same lead. Note that in the left fringe (defined where stretches are
correlated with each other away from the central periodic orbit) we only have the
two stretches which connect to the leads and that the remaining encounter stretch in
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\ 4

Fig.4.18 A periodic orbit encounter only existing in the case of time-reversal symmetry. The
position of the (blue) encounter stretches are marked by a box, the position of the fringes by small
dotted boxes (are marked red)

Fig. 4.18 which follows the central periodic orbit has already decorrelated from the
others so it does not also need to escape. To evaluate the contribution we first need to
determine the values of the prefactors a, b, d in the exponential in J in the Appendix
in Eq. (B.1) in front of fenc,1 + fenc,2, #s + f, and 7, respectively. As the survival
probability along the periodic orbit depends only on ), and not on fenc,1, fenc,2, W€
obtaina = 0 andd = 1/tp. During the fringes we have two correlated stretches with
the survival probability determined by one of them, thus yielding» = —1/7p. When
multiplying the resulting contribution for J by the factors resulting from the links

and the channel factors due to the leads we obtain the contribution 7418 originating
from Fig. 4.18 to the transmission
7418 — ng (1 _ e—ZTE/fD) (4.30)
2(N1+ M)
and to the reflection
2
gis = N (1—e2me/m) - N — (1-e2/m), @3n)
2(N + Ny’ 2(N1 + No)?

with the second term resulting again from coherent backscattering.

The last case, depicted in Fig. 4.19, is obtained by opening along the central
periodic orbit in Fig. 4.17. In general any two of the three stretches on either side of
the encounter could remain correlated in the fringes away from the main encounter
where all three stretches are close and correlated. The duration of the fringes, i.e.
here in general the orbital parts where only two of the three encounter stretches are
correlated, is denoted before and after where all three orbits are correlated by #; and
t,, respectively as in [26]. On each side, fringe correlations become important if the
two orbital parts containing the fringes are connected to each other, referred to as case
A, but not if one orbital part of them is connected to the opening, referred to as case
B. The reason why we have to take into account fringe correlations in case A is that
namely the loop cannot close as long as the two parts of the orbit are still correlated.
In case B the part of the orbit connected to the opening still has to be longer than the
fringes so that when it escapes it does not force the rest of the orbit to also escape.
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...... ;/

Fig.4.19 A 3-encounter involving no periodic orbits. The (blue) encounter stretches are again
marked by boxes, the places where fringe correlations can occur indicated by smaller dotted boxes
(are marked red)

However, the other fringe which lies on the orbit that is not connected to the opening
in Fig. 4.19 has no length restriction: If the length of that fringe tends to zero, the
orbital part connected to the opening will just follow the first one for the time 7, or
t,. The latter part then also contains the survival probability contribution due to the
fringes. The fact, that only the part of the orbit connected to the opening has a length
restriction due to the fringes together with the enhancement of the survival probability
during the fringe parts lets, as already in Eq. (4.25), the #; and the ¢, drop from the
resulting expressions for the contribution 7#!° from these diagrams in case B.

With these remarks in mind we evaluate the contribution 741 in Fig. 4.19 by
making use of the results obtained in [26], that we review in Appendix B as contri-
butions K and K. The overall contribution K is split into two parts K1 and K> : K
contains the contribution resulting from the 3-encounter without fringes and K, the
contribution resulting from the difference between the 3-encounter with fringes and
a 3-encounter without fringes. In all the cases considered here we have the first part
K1 where as for the survival probability during encounters we only need to count
one encounter stretch we get f = —1/7p in K| in the Appendix. To obtain the
contribution K3 in this case we first note that it was shown in [26] to be sufficient to
only consider certain encounter diagrams: Only one stretch contains two fringes, for
an example of a not contributing diagram in this context see Fig. 4.20a, the other two
fringes lie on the other stretches in one distinct way. Furthermore by setting g1 = 0
or g = 0 to study the case that only #; or 7, is non-zero we obtain zero contribution,
see Eq. (B.7). Thus three different possibilities remain: one from each of the three
stretches containing two fringes, one belonging to case A and two to case B. For a
contributing diagram see Fig. 4.20b, the others are obtained by cyclic permutations
of the fringes along the stretches. As already explained there is no #,, #,-dependence
in case B and thus in this case no contribution to K5. As in K> in Appendix B a
non-zero prefactor of #; and #,, is assumed in the cases A and B, we obtain 1/3 of the
contribution K> in Eq. (B.6), we set f = g = —1/7p to take into account that only
one stretch of the encounter is taken into account in the survival probability. For the
overall contribution 741 we therefore have

7419 NiN>

TN N )36_“@' “32
1 2
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Fig.4.20 Illustration of the contributing encounters in the case of the diagram in Fig. 4.19. The
(blue) encounter stretches are again marked by boxes, the places where fringe correlations can occur
(are marked red) indicated by smaller dotted boxes. The encounter in (a) does not contribute to K7,
the encounter shown in (b) and the encounters obtained by cyclic permutations of the fringes along
the stretches yield a non-zero contribution to K»

The same contribution times the factor N1/N> is obtained for the reflection.

To calculate the overall quantum correction to the transmission at the considered
order Thpg in the case of time-reversal symmetry we sum twice (to account for
diagrams related by symmetry) the contributions from (4.28) and (4.30) and the
contribution from (4.32) yielding

N{N>

= 4.33
(N1 4+ N»)? 39

Tong

Note that this quantum correction is independent of the Ehrenfest-time. This also
holds for the corresponding contribution to the reflection Rp,q, which we obtain
here by adding the contribution from (4.29) to twice the contribution from (4.31) and
to the related contributions from (4.28) and (4.32) multiplied by Ni/N;

_ N12 Ny
(N1 +N2)® (N1 + Np)?

Rona (4.34)

4.4.1.3 Current Conservation

Having calculated all contributions to the transmission and reflection we now want
to check if current conservation is fulfilled, i.e. if the transmission and the reflection
calculated for one lead add up to the number of open channels in that lead. As without
time-reversal symmetry there are no contributions at the order 1 /N considered here,
current conservation, already fulfilled at the diagonal level, is thus not violated. In the
case of time-reversal symmetry the contributions to 7 and R at the considered order
are given in (4.33) and (4.34) and sum to zero. Current conservation is thus again
fulfilled. We want to emphasise here that correlations between encounter fringes,
first treated in [12], were important to obtain this result: Forgetting for a moment the
effect of fringe correlations, the contribution (4.32) would possess the Ehrenfest-time



112 4 Ehrenfest-Time Effects in Mesoscopic Systems

dependence e~ E/™ and the contributions (4.30, 4.31) would be zero leading to a
non current conserving result for 75,4 and Ropg.

4.4.2 Frequency Dependence of Transmission and Reflection

In this subsection we want to generalise the results obtained for dc transport to the
ac case. Therefore we consider

T () = (Tr(t (E + ho/2)t"(E — ho/2))) ak (4.35)

and a correspondingly defined R (w) for an incoming wave in lead 1. The correspond-
ing quantities in the case of an incoming wave in lead 2 are denoted by T’ (w), R'(w).
In general adding a frequency dependence means including into the formulas in the
last subsection a factor ¢/®” in linearised approximation of the action with T again
the overall duration of the orbit.

For the dc conductance T (w = 0) was directly proportional to the conductance,
remember Eq. (2.25). For the ac conductance this is usually no longer a good approxi-
mation. The time-dependent voltage can lead to a temporary pile up of charge carriers
in the system. An important effect is then the screening of the electric field of the sys-
tem by the environment. To model this one introduces an additional gate capacitively
coupled to the cavity [31, 32]. This leads, when taking into account all leads (i.e. also
the capacitively coupled gate) to a configuration where the condition that the sum
of the incoming currents equals the sum of the outgoing currents is fulfilled. Then
the Landauer-Biittiker formalism can be applied yielding the connection between
the transmission 7' (w) defined in Eq. (4.35) and the transmission determining the
admittance, i.e. the (complex) conductance, denoted by 7€ (w) [31]

T¢ () = T(w) + - [R(w) + T[T (@) + R'(0)]

(4.36)
iwCh/(2¢?) — [R(w) + T () + R (w) + T' (w)]

with R(w), R'(w) and T'(w) introduced after Eq. (4.35). The capacitance C of the
capacitor formed by the cavity and the capacitively coupled gate is determined by
the Coulomb interaction between system and environment.

We now want to show the effect of the transformation 7 (w) — T€(w) con-
sidering the diagonal and the weak-localisation contribution to the conductance in
the presence of tunnel barriers for non-zero Ehrenfest-time [33]. Therefore we first
analyse the expression (4.35) in this case and obtain the overall contribution

I'N\N, NiN;
(N1 + N2) (1 —iwtp/T") (N1 4 N2)*(1 —iwtp/T)?

2 - _ ZinD/F . 2 (1 . F) ei[li(lir)z]rE/rDeziwa'
1 —iwtp/T”
(4.37)

TpywL(w) =
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The first summand, i.e. the diagonal contribution, is as for the dc case independent of
the Ehrenfest-time. Its form is obtained by taking into account that the particles enter
and exit the system with the probability I" yielding a factor I"2. The additional fac-
tor (I — iwtp) is obtained by taking into account in the time integral in Eq. (2.34)
additionally the factor ¢/®” and the modified dwell time tp/I" introduced after
Eq. (4.21). The overall Ehrenfest-time dependence of the second term contains as in
Eq. (4.2) a term exponentially decaying with increasing Ehrenfest-time now con-
taining the dwell time of two correlated orbits. The term /7 leads now additionally
to an oscillating dependence on the Ehrenfest-time. Both dependencies follow from
a straightforward extension of the integrals performed in Eqgs. (2.47, 2.48) to the
present situation. The form of the prefactors of the exponentials follows directly by
including the I"- and the w-dependent factors into the diagrammatic rules presented
in Chap. 2: Each link then yields a factor (I" — iwtp) and a 2-encounter a factor
—(1 = (1 =TI)?% = 2iwtp). The first summand in the curved brackets in Eq. (4.37)
results from encounters inside the system possessing three links and one 2-encounter.
The second summand is due to the diagram depicted in Fig. 4.11 obtained from the
corresponding pair with an encounter inside the system, Fig. 2.2, by cutting the left
link and a corresponding diagram obtained by cutting the right link. This configu-
ration has one link less, an additional integral over the duration of the part of the
encounter remaining inside the system that cancels as for coherent backscattering
the factor —(1 — (1 — I')? — 2iwtp). The additional factor (1 — I') in this case is
the probability for the orbit being back reflected at the opening.

Inserting now Eq. (4.37) in Eq. (4.36), we obtain for the corresponding contribu-
tion 7§, wy (@)

I'N|N> N{N>
(N1 +No) (1 —iwt/T) a (N1 + N2l —iwt/T)(1 —iwtp/T)
2—-T —2iwt/T
X[ 1 —iwt/T

TDC—&-WL (w) =

-2 - F)i| e*[lf(lffﬁ]fg/rpeZier'
(4.38)

This means the only change compared to Eq. (4.37) is that the dwell time tp is
replaced in some cases by a time t defined as

1 1 22N
—=— . 4.39
T D + Ch ( )

Expression (4.38) generalises the result derived for zero Ehrenfest-time and I" = 1
in [34]. Note that for @ = 0 the Eqs. (4.37) and (4.38) are identical.

We now return to the second-order quantum corrections to 7'(w) and R (w). As the
calculation leading to this generalisation is straightforward we only briefly explain
the difference to the calculation before and then show the results. In the case of
no time-reversal symmetry we get in terms of the notation of Eq. (4.25) an addi-
tional factor e/®(7pHenc,1 +enc.2) H?:l e/ . Toinclude this factor when performing the
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s, u-integrals we take a, b, d for v = 0 from the last subsection and include the
w-dependent exponential factor given in the last sentence to obtaina = iw, b =0
and d = 1/tp — iw. Inserting this in J in Appendix B and taking into account the
factors from the links and the leads we obtain

—NiN; (wtp)?
(N1 + N2)? (1 —iwtp)®

N .
748415,y — F?R‘LSAIS(CO) _ 2ot (4.40)

In the orthogonal case, including a frequency dependence into Eq. (4.28) adds an
additional factor e/®(2fenc.1+2fenc.2) H?:l e/ yielding finally

T416@) () = T4160) () — &R4.16(a)(w)
Ny

NiN» (1 =2iwtp)?
p— e
(N1 + N2 (1 —iwtp)?

72{1;/1’[)4’41'0)1’5' (441)

The first term of Eq. (4.29) is modified in the same way as the expression in
Eq. (4.41) while for the second we have three links instead of five, reducing the
power of (1 — iwtp) in the denominator by two, and an additional integral over the
duration of the encounter reducing the power of (1 — 2iwtp) by one compared to
the first term. We thus obtain

N? (1 -2iwtp)?
N1+ N2 (1 —iwp)
N =2iwtp)
Ny + N2 (L= iwtp)

—2tg/tpt+diwtE

RH160) (1) —

—ZTE/TD+4ia)tE' (442)

In Eq. (4.30) the additional factor e/®(7p+fenc.1+enc.2+215+21) H?: | €% occurs, the
equation is thus replaced by

TH18 () = NNy (ezimE _ e—er/rD+4ier)
2(Ny + Np)?
(1 -2iwtp)* 20’1 i 4.43)
(1 —iwtp) (A —iwtp)

The latter equation can be obtained from J in the Appendix by setting a = iw,
b=—1/tp+2iwandd = 1/1p —iw, again considering the additional terms from
the w-dependent exponentials. The additional frequency in the first term in Eq. (4.31)
has the same effect as in Eq. (4.30), in the second term we again have one instead of
three link times #; and an additional integral over #; or t,
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2
R¥18(e) = Ni 5 (ezimE _ e—2rE/rD+4ier)
2 (N1 + N2)
L a —2iwtp)* 20°T) i,
(1 —iwtp) (A —iwtp)

B N, i [(ezmg _ e—er/rD+4mE) M#”ﬂ (4.44)
2(Ny + Ny) (I —iwtp)

In case of Eq. (4.32) we get by taking the corresponding contribution of the encounter
again from the Appendix with f = —1/tp +3iwand g = —1/tp + 2iw in K| and
K> since tey is traversed three times and the fringes two times

. 2
T419(w) = — NiN2 (I —2iwtp) e 2tE/TpHiwTE
(N1 + N | (1 —iwtp)’
2.2
+&G—TE/TD+3IICUTE (4 45)
(1 —iwtp)’ '

and a corresponding contribution for the reflection.
After obtaining these results it is now possible to check if they fulfil the relation

4 4 S (E + ha) ST (E — ho)]

=0 (4.46)
d‘L’E dw

w=0

with the scattering matrix at the energy E, S(E) defined in Eq. (2.24). Up to now we
only considered the reflection and transmission for an incoming wave in the lead 1,
i.e. only the correlators of elements of 7 (E) and ¢ (E). The corresponding results for
the correlators of ' (E) and t'(E) are obtained by swapping N| and N5.

In order to see why relation (4.46) is fulfilled we rewrite it in terms of the Wigner
time delay [35, 36], measuring the additional time spend in the scattering process
compared to the free motion, Ty = %Tr [S (E + hw) ST(E — ha))] |w=0. Equation
(4.46) is then

d

_— =0. 4.47
dtr w (4.47)

That this relation has to hold can be obtained by comparing the two equivalent repre-
sentations of the Wigner time delay given in [35-37]; their semiclassical equivalence
is discussed in [30]. The first representation in terms of the density of states involves
a single sum over trapped periodic orbits, the second representation in terms of trans-
mission coefficients involves a double sum over lead-connecting paths. As the first
representation yields, after taking an energy average, an Ehrenfest-time-independent
result—we cannot identify any Ehrenfest-time-dependent contributions in a single
sum over periodic orbits—rtw has to be Ehrenfest-time independent.

Using the splitting of S(E) into subblocks introduced in Eq. (2.24), Ty can be
expressed as
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W= 4 [T (@) + R(w) + T' () + R'(v)] . (4.48)
do =0

The quantities on the right hand side of the equation above were defined in and after
Eq. (4.35). We start our further analysis with the first two terms: In order to check
if our results for 7' (w) and R(w) given above Eq. (4.46) fulfil relation (4.47), we
first consider the sum of the contributions to 7y which decrease with increasing
Ehrenfest-time. The contribution proportional to e “%2/™0 is obtained by considering
the corresponding term in (4.45) yielding

2.2
i . N] W Th e—rE/rD+3ier
do | (Ny+ N)?> (1 —iwtp)

(4.49)

w=0

For calculating the contribution proportional to e ~>%£/™> we sum the corresponding
terms from (4.41, 4.42) and (4.45)

2.2 .
d { N1t} (1—2mrD)eztE/fD+4,-mE} 450)

do | (Ny + No)? (1 — iwtp)°

w=0

In the case of the contributions increasing or oscillating with increasing Ehrenfest-
time we obtain from (4.43) and (4.44)

2
i —N; a)z‘L'D [Zesz
do | 2(Ny + N»)* (1 — iwtp)’
(4.51)
— (1 =2iwtp) (e2iw75 — e—ZTE/TD+4ier)] }
w=0
and from (4.40)
K | (01p)? Qi @)
do | (N1 + N)? (1 —iwtp)’ w:O’

which is the only contribution also existing in the absence of time-reversal symmetry.
The results in (4.49-4.52) fulfil Eq. (4.47), because all are proportional to w? and
thus are equal to zero after differentiating them with respect to w and setting v = 0.
The results obtained from the two last terms in Eq. (4.48) differ from the first ones
by a factor N> /N and thus also yield zero contribution to Ty .

4.4.3 Spectral Form Factor

In this subsection we want to apply our knowledge gained up to now in this section
about the orbital configurations which contribute to the conductance to calculate the
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Fig.4.21 The correlated orbit pair first analysed by Sieber and Richter [38, 39] where the orbit and
its partner differ in an encounter. This pair leads to the first off-diagonal correction to the spectral
form factor for time-reversal symmetric systems

first off-diagonal quantum correction to the correlation function R(¢), defined in
Eqg. (2.65), in the absence of time-reversal symmetry. We first want to briefly review
the contributions to the spectral form factor (2.67) calculated in [4]. So we will use
a similar notation as there and for further details refer the reader to that paper. The
diagonal contribution is, as for the conductance, independent of the Ehrenfest-time.
In the presence of time-reversal symmetry the next-to-leading order contribution
results from the periodic orbit in Fig. 4.21. We studied its open orbit analogue in
Sect. 2.3. Its contribution to the form factor contains an additional factor @ (r — 27g)
for non-vanishing Ehrenfest-time [4].

For systems without time-reversal symmetry however, we have for the leading
order in 1/€ non-diagonal contributions diagrams starting like in Fig. 4.14 but with
the orbits in the leads connected together so that | and ; join to a single link. Note that
we can then identify four periodic orbits in the picture, one central orbit, one through
t3 as before and two through the newly joined links and #3 and 75, respectively.
From there we can allow the encounters to overlap to create a 3-encounter and
then finally to wind around the central periodic orbit, as described at the start of
Sect. 4.4.1. As we saw for the transmission there are further possibilities compared
to the covariance of the reflection (or we can relax more restrictions) and likewise
here there are additional contributions. We will see how they lead semiclassically to
the field-theoretical result for the first off-diagonal quantum correction to the spectral
form factor [5], but first we recall the results of the diagrams covered in [4].

Also the contributions to § R>(€), i.e. to R(€) at the considered order in 1/€, can
be in a similar way, as the ones to the conductance, expressed for an orbit of duration
T as product over contributions from links and encounters

e(l/h)AS 2i€T /Ty
SRy (€) o< /dtl/dtz/ dsdu/dfp/dt (4.53)
—c Q Tenc, 1%enc,2

with the overall duration 7 of the orbit, 7, and " defined after Eq. (4.24) and the
two links of durations #; and #, decorrelated from the central periodic orbit. The
choice of the limits of the time integrals depends on the considered diagram. We thus
observe that the integrand of the s, u-integrals has the same structure as the one for
the transmission considered in this section up to now. The periodic orbit contributions
to 6 Ry (¢) differ from the corresponding open orbit contributions on the right hand
side of Eq. (4.53) however, by symmetry factors. For this reason the last equation
contains a proportionality sign. We will return to this point soon.
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The contribution of two independent 2-encounters (c.f. Fig. 4.14), denoted by
8 Ryp(€), is given by

82 egie‘[E/TH

dRyp(€) = 692 &2

(4.54)

Compared to the open orbit contribution it is divided by four because each of the
four links can be chosen as the first yielding each time an identical configuration.
The contribution of one 3-encounter, § Ry.(€), obtained by allowing the encounter
stretches to overlap along one enclosed periodic orbit in Fig. 4.14 at one end,
is obtained in [4] using [26] to be

1 8% 1

SRy (€) = 692 2

(366ierE/TH _ 468ierE/TH)_ (4.55)
As each of the three contained periodic orbits can be chosen as the first yielding
identical configurations this contribution is divided by a factor three compared to
the open orbit contribution obtained from (4.53). A further diagram results from
encounter overlap along one enclosed periodic orbit at both ends, see Fig. 4.22. The
overall contribution / containing the contribution from the latter diagram and the
contributions 8 Ry;(€) and 8 Ry, (€) is obtained [4] by considering J in the Appendix
with a = ie, b = 2ie and d = —ie, because the orbit is assumed to be longer
than fenc,1 + fenc,2 + 2t5 + 2t, + 7, and multiplying it by factors resulting from
the links not surrounding the central periodic orbit. A technical complication is that
the contribution from this diagram contains three copies of the contribution with a
3-encounter and four copies of the contribution with two 2-encounters, because I is
constructed for open instead of periodic orbits. To take this into account we subtract
them here with the right multiplicity factors. All told, the contribution resulting from
the periodic orbit encounters, § Ro; (€) was calculated in [4] to be

8Roq(€) =1 — 45Rap(€) — 35 Rac(€)
2

_ %%eiz (3e4lerE/TH _ gebiete/Tn +6681615/TH). (4.56)
However, as already explained above, this is only the complete set of contribu-
tions in the case when the two orbits approaching and leaving the periodic orbit are
open like in the case of the reflection covariance as in Fig. 4.10, otherwise the cor-
responding orbital parts can get shorter than the duration of the fringes, like moving
from Figs. 4.8 to 4.15. To take into account this additional configuration we replace
8 R>4(€) studied in [4] by another contribution denoted by 8 Ry, (¢). Up to now we
only allowed the orbital parts decorrelated from the central periodic orbit, to be
altogether longer than 2z, + 21,. However, the contribution considered now results
like for the conductance from an orbital configuration where the two other links,
those decorrelated from the central periodic orbit in Fig. 4.22, get shorter than #; + 7,
each. The bottom and the top loop in Fig. 4.22 outside of the encounter with the central



4.4 Next-to-Leading Order Quantum Corrections 119

Fig.4.22 A diagram accounted for in the contribution § Ry (€) to the spectral form factor. A central
dashed—dotted periodic orbit is encountered two times. Fringe correlations are marked by black
vertical lines. For the partner (not shown) one traversal of the central periodic orbit is exchanged
between the first and the second encounter

periodic orbit must again have positive length, i.e. must decorrelate from the central
periodic orbit, but do not necessarily need to be longer than the fringes. In order to
calculate this contribution we first consider J in the Appendix with a = ie, b =0
and d = —ie, because the orbit has a minimal length of fepc 1 + fenc,2 + Tp as in
Eq. (4.40), together with the factors resulting from the links not surrounding the cen-
tral periodic orbit and subtract from this contribution like in Eq. (4.56) 6 Ry;(¢€) and
8 R (€) with the right multiplicity factors. The corresponding contribution denoted
by 8Rae1(€) is

1 921 4
8Re,1(€) = Eme—ze‘““ﬂ T — 45 Ryp(€) — 38 Rac(€)

2

— % %Giz (e4l€TE/TH _ 96616'[E/TH + 8eSIETE/TH) ) (457)
This procedure however, counts some configurations containing a surrounded peri-
odic orbit twice: Shrinking in Fig. 4.22 the length of the upper periodic orbit to zero
we again obtain a contribution containing one surrounded periodic orbit. A config-
uration containing one surrounded periodic orbit was however, already taken into
account in § Ry, 1 (¢) when shrinking the length of the central periodic orbit to zero.
We thus subtract the latter contribution. This contribution referred to as § Ry, 2(€) is
calculated by again making use of K1 and K> in the Appendix: We therefore consider
a 3-encounter, i.e. f = 3ie, with fringes with duration between ¢, + ¢, and 2¢; + 21,,.
We thus consider once the prefactor g = 2i€ and once g = i€ in front of #; + 7, and
take the difference of the two results obtained for K in the Appendix yielding for the
contribution § Ry 2(€)
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2
SRQE,Q(E) — 19 1 [4 (eSiETE/TH _ e6iETE/TH) o (eﬁiETE/TH _ e4i€TE/TH):| )

16 0€2 €2
(4.58)
Subtracting § Ry, 2(€) from § Ry, 1(€) we obtain § Ry, (€)
1 82 4 Sietp /T, 6ietg /T
SRoe(€) = 5Rae.1(€) — SRy 2(€) = — - — (eMeTe/ T — eOiere/ T ) - (4.59)
' ' 16 0€2 €2

Summing now the quantum corrections in the absence of time-reversal symmetry
given in (4.54, 4.55) and (4.59) we obtain for the overall quantum correction at the
considered order § R, (€)

82 (eSiETE/TH _ e6iETE/TH)

1
(SRZ(G) = EF 62 . (460)

This yields then after the Fourier transform (2.67) for the corresponding correction
to the spectral form factor § K (7)

2
§Ka(7) = —;—H [V (tTy —3te) — T (zTy — 47E)] 4.61)

with T (x) = f(;c dx'®(x") = xO(x). Expression (4.61) was also obtained in [5] by
field-theoretical methods.

As already noted for the conductance, we also emphasise here that these results for
the spectral correlation function could not be obtained without considering fringes:
Not doing so we would only get the contribution (4.54) with a multiplicity factor four
along with the contribution from a 3-encounter with three equally long encounter
stretches, given by

1 82 eﬁietE/TH

- 4.62
16 92 €2 (462)
with a multiplicity factor three and the overall contribution resulting from all possible

encounter configurations given by

1 82 e4iE‘L'E/TH
16 92 €2 (463)
with a multiplicity factor one. As one can easily see it is not possible to obtain the
field-theoretical result from just these semiclassical contributions.

In this chapter we have so far calculated the Ehrenfest-time dependence of the
next-to-leading order quantum corrections to the transmission through open systems
and the first quantum correction to the spectral form factor of closed systems in
the absence of time-reversal symmetry. For the transmission and reflection the key
step was that we can relax one of the restrictions compared to the calculation of
the reflection covariance in [12]. Namely, because of the slightly different topology


http://dx.doi.org/10.1007/978-3-642-24528-2_2

4.4 Next-to-Leading Order Quantum Corrections 121

formed by rejoining some of the links (previously cut open to get to the reflection
covariance) the fringes were allowed to overlap and surround the second periodic
orbit formed. For closed systems without time-reversal symmetry we then rejoined
one more link and created a third (and fourth) periodic orbit. This also allows to relax
a similar restriction and leads to a modification of the results obtained for the spectral
form factor in [4]. By including all possibilities we showed that our semiclassical
result agrees with the field-theoretical prediction from [5].

When considering in this section the ac conductance we treated the correlation
function of the trace of one pair of scattering matrices with Ehrenfest-time. We want
to generalise this now to n pairs of scattering matrices, however, only treating the
leading order in N contributions.

4.5 Correlation Function of an Arbitrary Number
of Pairs of Scattering Matrices

To be precise we will consider the correlation function of 2n scattering matrices at
alternating energies defined as

Cle.t n)=l<Tr[s (E+ﬂ) st (E—ﬂ)” 4.64)
T N 2TD 2TD Ak’ ’

where the energy € is measured with respect to the (Fermi) energy E and in units of
the so-called Thouless energy E7 = h/2tp. We defined t = tg/tp. We want to
show that C (¢, 7, n) possesses to leading order in N the following form

C(e,t,n) =Ci(e, T,n) + Ca(e, T, 1), (4.65)
Ci(e, T,n) = C(e, n)e T=ine) (4.66)
1— efr(lfine)
Cre,T,n) = ———7, 4.67)
1 —ine

with the RMT (i.e. T = 0) part of this correlation function denoted by C (¢, n). This
form is predicted by effective RMT [26, 40] So far Ref. [26] calculated C (e, 7, n)
within the trajectory based approach used here forn = 1, 2, 3 while [13, 41] showed
the separation into two terms in (4.65) to be a consequence of the preservation under
time evolution of a phase-space volume of the system. Moreover they also calculated
the explicit form we give in (4.67) for the second term and that the first term in (4.66)
is proportional to the factor e =71 =7€)

In this book we already compared several times our results for non-zero Ehrenfest-
time with the ones obtained by field-theoretical methods. In these approaches the fact
that nearby trajectories are linearisable was taken into account in the presence of a
small amount of disorder: In the last paragraph we mentioned another method to
describe the effect of the Ehrenfest-time, effective RMT [40]. It splits the phase
space and thereby also the underlying scattering matrix of the considered system
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into two independent parts. A classical and a quantum part, where the first one is
determined by all trajectories shorter than tg and the second one by all trajectories
longer than tg. The scattering matrix of the system can thus be expressed as

_(SaE) 0
S(E) = ( 0 Sqm(E)). (4.68)

The classical part Sg(E) is treated by considering the motion along classical
trajectories. For Sqn(E) at first an energy dependence is factored out
Sqm(E) = e E=/MS 1 (E), that takes into account that the minimal dwell time of
the trajectories is tg [26]. Afterwards Sqm (E) is assumed to be distributed according
to RMT. Effective RMT proved successful for describing effects at leading order
in N like shot noise [42-45], that is determined by the n = 2 term in (4.64) or
the gap in the density of states of a chaotic Andreev billiard [46, 47] However, this
phenomenological theory does not provide a dynamical justification of the obtained
results.

Using Eqgs. (2.29, 2.31, 2.32), the correlation function can be written semiclassi-
cally in terms of 2n scattering trajectories connecting certain channels in the opening
like shown for n = 3 in Fig. 4.23a. Including the energy dependence in linearised
approximation, the correlation function becomes semiclassically

1 7h \"
sc o
¢ <e,m>—ﬁ<(z—w) > X o.o,
j=lij,oj yjij—o0j)
Vj/-(ijJrlﬁ(’j)

i /B)(Sy; =S ) —i /D, €/2)Ty; + T,
e(z/ )(Sy; y_/,) i(m/ )Mmj y e(ze/ )Ty + yj)/fD> ’ (4.69)

Ak

T, are the times trajectories y spend inside the system, and we identify the channels
in+1 = i1 due to the trace in (4.64).

For n = 1 the leading order contribution in N results from the diagonal approxi-
mation, that yields an Ehrenfest-time-independent result. This changes for n>1: The
trajectories connect channels along a closed cycle as shown in Fig. 4.23a and need
then to be collapsed onto each other as shown in the other diagrams in Fig. 4.23 to
create orbit pairs with small action difference.

As we are only considering leading order in N contributions we can restrict for
a certain n to orbital configurations containing (n — 1) encounters with every orbit
involved in at least one encounter. These encounters are allowed to overlap, like when
moving from Fig. 4.23b to c, or allowed to be moved into the lead, for examples
see Fig. 4.23d-h. Keeping n constant and including one more encounter into these
diagrams always creates diagrams with at least two more links as can be easily
checked. Following then the diagrammatic rule that each encounter leads to a factor
—N and each link to a factor N~ (see Chap. 2) we obtain a contribution one order
lower in N.

In this section we want to show how (4.65-4.67) can be obtained by identifying
systematically correlated orbits and calculating their contributions. In Sect. 4.5.1 we
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Fig.4.23 The trajectory sets with encounters that contribute to the 3rd correlation function C (e, 3)

consider the first term in (4.65): We show that the prefactor C (e, n) of the exponential
is indeed given by the RMT expression obtained semiclassically in [48] and that this
is multiplied by the exponential given in (4.66). The underlying diagrams considered
here are the same as the ones occurring also in the semiclassical calculation of the
RMT contribution. In Sect. 4.5.2 we treat the second term in (4.65) and show how this
contribution arises from trajectories that are always correlated. Furthermore we show
in Sect. 4.5.3 that there exist no mixed terms between the first and the second term
in (4.65), that could result—expressed in terms of the considered diagrams—from
correlations between trajectories always correlated with each other on the one hand
and trajectories only correlated with each other during encounters on the other hand.

4.5.1 Influence of the Ehrenfest-Time on Orbits with Encounters

The main idea in this subsection is to split our diagrams in a different way compared
to the semiclassical analysis without Ehrenfest-time (referred to as the RMT treat-
ment) and the analysis of the Ehrenfest-time dependence of the cases n = 1,2, 3
in [26]: In the semiclassical calculation one considers a certain number of orbits
encountering each other. It turns out in the RMT treatment to be sufficient to con-
sider only encounters where all orbits are linearisable up to the same point, see for an
example Fig. 4.6. As already explained in the last sections when taking into account
the Ehrenfest-time dependence this is no longer sufficient as was first shown in [12],
see Fig. 4.7 for an example of an additional diagram analysed in this case. The main
complication arising in [26] to calculate C (e, t, n) is then to treat these encounters.
In order to simplify the calculation we imagine these encounters being built up out
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Fig.4.24 A diagram with two 2-encounters as we treat it with Ehrenfest-time. The encounter
stretches of the two 2-encounters are marked by boxes (shown red and blue)

of several encounters which each consist of two encounter stretches, we have dis-
tinguished these 2-encounters by different boxes in Fig. 4.24. In this way it is much
easier to consider encounter diagrams for arbitrary n for non-zero Ehrenfest-time,
which appeared not feasible in the formalism used in [26].

We first illustrate our procedure by considering three correlated orbits with two
2-encounters as in Fig. 4.24 and show how the result given in [26] can be obtained
in this case and then treat the general case of n orbits with (n — 1) independent or
overlapping 2-encounters.

4.5.1.1 Explanation of Our Procedure for n = 3

In the treatment of the RMT-type contribution (4.66) we first consider the case where
all the encounters occur inside the system. For n = 3 we have the two semiclassical
diagrams in Fig. 4.23b, ¢ which include a trajectory set (of three original trajectories
and three partners) with two 2-encounters in Fig. 4.23b and a single 3-encounter in
Fig. 4.23c. By shrinking the link connecting the two encounters in Fig. 4.23b we can
see how we deform them into the diagram in Fig. 4.23c and we use this idea in our
Ehrenfest-time treatment.

Two 2-Encounters

In our treatment, the overall contribution C*24 (e, 7, 3) of the two 2-encounters
(depicted in more detail in Fig. 4.24) is obtained by allowing the upper trajectory
to possess a minimal length of the first 2-encounter and the lowest one a minimal
length of the second 2-encounter. The middle trajectory, which passes through both
encounters has a minimal length given by the maximum of the two encounter times
as we allow the encounters to overlap. However, we do not yet allow one encounter
to be subsumed into the other so we also set the time ¢ between the start of the first
encounter and the end of the second to be longer than the maximum encounter time.
To write down the semiclassical contribution of the diagram in Fig. 4.24 we use the
sum rule (2.34) and the expected number of times the classical trajectories would
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approach and form such encounters calculated in an analogous way as before, for
details see for example [22], which gives when transformed again into a product of
link and encounter contributions

c i€ (lenc, 1 ‘Henc.Z)/TD
C*?(e,7,3) = _3(H/ diie™"(1~ ZE)/TD)/ ds d"ez—
D —C

; 2 Tenc,1 tenc,2

/ dt eli/MASg=1(1~i€)/m
max{tenc 1»%enc, 2}

where the superscript refers to Fig. 4.24. We have summed over the possible chan-
nels, and #; withi = 1, ..., 6 label the links from the channels to the encounters.
The action difference of three orbits encountering each other is when the (slf, ug)-
coordinates are measured in one Poincaré surface of section given by [24, 25]
AS = ujs| + ubs) — ubs). If we measure the coordinates in two different sec-
tions, we denote the corresponding coordinates by s;, u;, it is given due to the
exponential increase and decrease of (s;, u;)-coordinates with time by AS =
u1s1 + uzsy — uzsy exp (—AAr), where the time At denotes the time the particle
needs to travel between the two sections. By expanding the part of the exponential
e(t/MAS containing this Af-dependent part into a Taylor series one obtains apart
from the leading one terms rapidly decaying with At because of the factor e *4’ to
some power. One verifies easily that contributions from higher-order terms than the
leading (time-independent) one lead to contributions of higher orderin 1/ (Atp) and
can be neglected. The quantity 1/ (Atp) can be considered as small in this context
because first 1/A is a time related to the underlying classical system, given by the
time between a few number of bounces, second tp however, has to assumed to be
of the order of the Ehrenfest-time tg in order to observe exponential factors like
e E/™ je. tp is assumed to be classically large.

In the first line of (4.70) we can see that each integral over the links is weighted
by its classical probability to remain inside the system for the time #;. As the time ¢
(between the two outer ends of the encounter stretches on the middle trajectory shown
in Fig. 4.24) passes through both encounters their survival probability is included
in the 7-dependent factor in the last line of (4.70) taking into account the survival
probability correction for encounters explained before Eq. (2.47).

Performing the time integrals in the first line of (4.70) we have

(4.70)

T2
C4% (e, 1,3) = —DTH _pa2d 4.71)
(1 —ie)b

where we have moved all Ehrenfest-time-dependent parts into the factor F*24(t)
with the superscript again referring to Fig. 4.24,

c
F4'24(1:):/ ds du
—c

dt e—t(l—is)/rD_

e(i/h)ASeif(tenc,1+tenc.2)/TD /OO

taenc,ltenc,Z max{Zenc, 1,fenc,2}

4.72)
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Here we can also see the connection with the previous Ehrenfest-time treatment of
such adiagram. When ¢ > fepc 1 +Zenc,2 the two encounters separate (the integrals can
then be further broken down into products) and this is the case where the trajectories
can be considered to have two independent 2-encounters as in [26]. Because we
choose a different lower limit though, the contribution above also includes some of
the diagrams previously treated as 3-encounters in [26]. The reason for our choice
becomes clear in the following steps. We first substitute ' = r — max {tenc)l , tenc,Z}»

c e(i/h)ASeif (fenc, 1 ‘Henc.Z)/TD
F42 (1) =/ dsdu 3
—c 2 Tenc, 1%enc,2
x /OO d[/ e—(l/“‘max{lenc,l’[enc,Z})(l_ie)/TD’ (473)
0
and then substitute like in Eq. (4.26) u; = c/o;, si = cxjo; and perform the
o;-integrals using the explicit form of the fepc; = % In (02 / |siu; |). This results in
1 2 4 2 2
Ac c c ;
F42%4 (1) = 16/ dx=—— cos | —x; ) cos [ —x; ) e~ i€(nxit+inx2)/(7p)
() A o7 Pl X2
oo
X / dt ef(t/+max{*lnxl,flnxz}/)n)(lfie)/r[). (474)
0

Now we substitute x/ = x;c?/h and obtain

4.4 _ o0 /)‘252 ’ 7\ a—i€(Inx]+Inx})/(Atp)
F# (@) =16 | dx'—=5 cos (x1) cos (x3) e 1
0

y /oo dr’ e*(t”rmax{* Inx{,—In xé}/)\)(lﬂ'e)/meft(lfSie). (4.75)
0

Here we split the resulting expression into an A-independent integral (or more exactly
trivially dependent on 72), that exists due to the energy average contained in Eq. (4.64),
and an Ehrenfest-time or iZ-dependent part with 7z = 1/X1n (02 / h) This contains
the Ehrenfest-time dependence that is expected from (4.66), so (4.75) already shows
that the diagrams considered here yield the correct Ehrenfest-time dependence.

A 3-Encounter

Now we consider the case that one of the two 2-encounters lies fully inside the other
one, which we will refer to as a generalised version of a 3-encounter, as depicted in
Fig. 4.25.

For the Ehrenfest-time-dependent part we have a similar contribution as in (4.72)
with two differences: First 7 is here best defined as the distance between the midpoints
of the two different encounter stretches and so can vary between
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Fig.4.25 One 2-encounter is located fully inside the other, corresponding to our treatment of a
generalised version of a 3-encounter. The two 2-encounters are marked by boxes (indicated by
different colours)

1 .
7] < 5 (max {tenc,l ) tenc,2} — min {tenc,lv tenc,Z})v
1
7] < §|tenc,1 - tenc,2|- (4.76)
Second the survival probability of the encounters is determined by the longest

encounter stretch and is independent of r. The Ehrenfest-time-dependent part can
then be written as

425 c e(i/h)ASeif(tenc, 1 ‘Henc,Z)/TD
F™=(7) = / dsdu 3
—c 2 Tenc,1fenc,2
%ltenc,l _tenc,Zl .
% / dt e*(max{fenc.lstenc‘2})(lfle)/tD' (477)
_% ‘tenc,l _tenc.2|

Performing the #-integral and following the same steps like for (4.74, 4.75), we find

F*% () = 16/00 dx’mz2 [lnx ~ Inx|
o e x

% COS (xé) e—(max{— In x| ,—lnxé})(l—ie)/(ATD)e—r(1—3ie). (4.78)

e—ie(ln x{+Inx})/(Ap)

cos (x})

Also this part shows an Ehrenfest-time dependence as expected from (4.66). Note
that when performing the #-integral the result in this case is of course proportional
tO |fenc,1 — fenc,2| Which contains, after the substitution from x to x’, two times the
same terms linear in tg with different signs that thus cancel each other.

Touching the Lead

Up to now we concentrated on encounters inside the system, but apart from these
diagrams we also need to consider diagrams where the encounters touch the opening
as in Fig. 4.23d-h. We will, as above, start with considering encounters built up out
of two 2-encounters and focus here on how the calculation of the contribution when
encounters move into the lead is changed compared to the treatment of encounters
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Fig.4.26 The second of two 2-encounters now enters the lead so that only f. of it remains inside
the system

inside the system. As already explained in the last section when encounters touch
the lead we have two links less and one includes an additional time integral running
between zero and the corresponding encounter time, which characterises the duration
of the part of the encounter stretch that has not yet been moved into the lead.

We consider two encounters with durations fepc,1 and fepc2 with the second
encounter touching the opening as in Fig. 4.23d and drawn in more detail in
Fig. 4.26. As the second encounter enters the lead we now define the time ¢ to
be from the start of the first encounter until the lead and introduce the time ¢, which
measures the part of the second encounter that has not yet been moved into the lead.
We also distinguish for the Ehrenfest-time relevant contribution F 426 (1) two cases:
In the first case (A), fenc.2 < fenc,1, We have F;"z(’(r) with the additional integral
over the time ¢,

4.26
Fy™ (1)
c (i/h)AS Liet, 1/ fenc.2 ) e .
= dsdu&/mc dtcelflc/TD/ dteft(lfze)/tD,
o taenc, 1fenc,2 0 fenc.1

Tenc,2 <fenc,1

(4.79)
where the limits on the time integrals derive from the fact that the first encounter is
not allowed to touch the lead (this would be included as a 3-encounter) and that the
second must. Performing the time integrals this is

Fi*(1)
c (i/h)AS 2
— ‘ ds du ze l . TD . I:eiftenc,Z/TD _ 1:| e*tenc,l(lfﬁf)/TD’
[;ncc,2<tenc,l 94 Tenc, 1%enc,2 ie(l1 —ie) ws0)

with the first and second term in the square brackets resulting from the upper and
lower limit of the #.-integration. In the second case (B), fenc,2 > fenc,1, We obtain
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c (i/R)AS ni€lenc,1/TD fenc, 1 )
FA2(7) = dsdut_ ¢ "7 /C"C d1, ei€ie/™
¢ taenc, 1fenc,2 0

Tenc,2>Tenc, 1

e’} X fenc,2 . 0o .
x / dre~'1=i9/m 4 / die e''e/™ / dre~'1=/m |
fenc,1 fenc,1 le

4.81)

where the more complicated limits derive from not allowing the second encounter
to move further left than the first. After integrating we have

C
Fg¥(0) = B ds du

fenc,2>1enc, 1

i/R)AS 2
e(l/ ) 155 |:i [eiefenc,l/TD _ 1]
taenc,ltenc,Z (1 —ie) [ie

weten(=20/m L sei(-3i0)/m
(1 —2ie)
— _1 : eietenc,l/TDe—fenc.2(l—2i€)/TD:|. (4.82)

(1 —2ie)

The last line comes from the upper limit of the second 7.-integral and has the same
Ehrenfest-time dependence as before and in line with (4.66). Likewise the upper
t.-time limit for case A in (4.79) leads to the same dependence and we can conclude
that the upper limits of the 7.-integrations yield contributions similar to when the
encounters are inside the system and with the same Ehrenfest-time dependence. The
remaining (lower) limits of the time integrations in (4.79, 4.81) give contributions
possessing a different Ehrenfest-time dependence which however, always yield zero
in the semiclassical limit due to the fact that the corresponding terms contain no fenc 2
in the exponentials containing 7p. Apart from the action difference, the only term
depending on s, u3 is the 1/fenc,2. The resulting expression is rapidly oscillating
as a function of the energy as shown in Eq. (4.26) and thus cancelled by the energy
average.

We can repeat this procedure for the remaining diagrams in Fig. 4.23 and see
that the contributions are determined by the upper limits of the corresponding .-
integrals. For the diagrams with a generalised 3-encounter (Fig. 4.23g, h) this fol-
lows like for the 3-encounter inside the system but for Fig. 4.23e where the two
2-encounters enter different channels (and possibly different leads) there is an addi-
tional subtlety. The two encounters are still allowed to overlap, so that during the
time ¢ the stretch now connecting both channels can always be inside encounters
but the individual encounters are not allowed to connect leads at both ends. These
additional possibilities are considered later, where if both encounters connect to the
leads at both ends we actually have a band of correlated trajectories (treated in Sect.
4.5.2) and if only one does we have a mixed term (treated in Sect. 4.5.3). With this
organisation of the encounters we see that each diagram has the same Ehrenfest-
time dependence as when the encounters are inside the system and hence in line
with (4.66).
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Intermediate Summary

The reasoning so far in this subsection proves the form of (4.66) for n = 3. First
we know that the resulting contribution from the diagrams analysed contains an
overall factor e77(173/€) second the remaining integrals are independent of 7 and
thus independent of the Ehrenfest-time and third the diagrams we analyse are the
same as the ones analysed in the RMT case in the first part of [8]. As in the limit
7 — 0 we must recover that previous result, this implies that C (¢, t, 3) in (4.66)
is indeed given by the RMT expression.

Full Contributions

Before proceeding to the general case, we first however, want to illustrate how our
calculation can be used to obtain, apart from just the Ehrenfest-time dependence, the
complete dependence on tp and €.

We therefore start for the two 2-encounters from Fig. 4.24 from the last expression
in (4.75) and perform first the #'-integral

00 2%2
F42 (1) = —(]1611.) ) dx/—)}; cos (x}) cos (x}) emin{—Inx{,—Inx}ie/(rp)
—1€) Jo
« efmax{flnx’l,flnxé}(l721‘6)/()»1'1))67‘((1731'6)’ (4.83)

where it is simpler to rewrite the result in terms of the maximum and minimum value
of In x;. For calculating the x;-integrals we perform partial integrations (integrating
each time the cos functions) and then perform the resulting integrals from zero to
infinity

_ 16ie (1 =2ie) [ ,}i sin (x]) sin (x})

emin{—Inxj,—Inxj}ie/(Ap)
p (1—ie) Jo 22 x x5

F42%4(p) =

« e~ max{—Inxj,—Inxs}(1-2i€)/(Atp) o —T(1-3i€)

__ ie (1 — 2'i€)e_.[(1_3ié)'
‘[DTI% (1—ie)

(4.84)

In the first line the further terms due the partial integration are either zero or cancel
due to the energy average. The final result in the last line of (4.84) is also obtained
when replacing max {— Inx{, —In xé} /A = y; and min {— Inxj, —In xé} /A=
and performing the integrals with respect to y; from zero to infinity.

To evaluate the contribution from the generalised 3-encounter in Fig. 4.25 we
again perform two partial integrations in (4.78) and obtain
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F425(7) = 16 d—ie) /00 dx/h—z sin (x]) sin (x})
D 0 22 /

emin{f Inx{,—Inx}}ie/(tp)
X X

« efmax{flnx;,flnxé}(172ie)/(krp)efr(l731'6)
1—ie ;
= —(T Tz)e*f“*“), (4.85)
DIy

where we have also left out the terms from the partial integrations which cancel due
to the energy average.

With these results we can now show how they connect to the RMT-type results. For
this we split our diagrams differently and first need the result for an ideal 3-encounter
as depicted in Fig. 4.6 whose contribution was calculated [26] to be

a- 31‘6)64(1731@)'

4.86
" (4.86)

F4.6(.L,) ——

With the extra factors in (4.71) it is clear how in the limit 7z = 0 this reduces to the
RMT-type result for a 3-encounter as in [8]. All the remaining contributions should
be collected together as two 2-encounters, and as the ideal 3-encounter is included
in our generalised 3-encounter we first subtract (4.86) from (4.85)

(1- 2i6)e—r(l—3ie)'

F42500) _ FA6(0) — 2
(7) (7) -

(4.87)

Before we add the result from our separation of two 2-encounters in (4.84) we
remember that in the treatment we enforce that the first encounter is to the left of the
second. The result in (4.87) does not have this restriction so we divide by 2 to ensure
compatibility and then add the result in (4.84) to obtain

1 (1-2ie)? e—T(1-3i€)

F4¢7 _E —
®© rDTé (1 —ie)

(4.88)

This then reduces to the RMT-type result for trajectories with two 2-encounters
when tg = 0 as in [8]. The agreement of these results with the previous Ehrenfest-
time treatment [26] can be seen as the result in (4.88) includes both the result from
two independent 2-encounters as well as a part of the contribution of the diagram
referred to as a 3-encounter in [26]. When splitting the contribution in a different way
like in [26] this leads to terms in both classes that contain different Ehrenfest-time
dependencies which only cancel when summed together.

4.5.1.2 All Orders

Although up to now we have just reproduced results from [26], the procedure used
here has the advantage that it yields a simple algorithm for determining the Ehrenfest-
time dependence of the corresponding contributions to Cj (¢, T, n) at arbitrary order.
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Fig.4.27 A ladder of consecutive 2-encounters. The encounter stretches are marked by boxes
(shown in different colours)

For our example of n = 3 we showed how it was possible to split the diagrams
into two classes that both showed the Ehrenfest-time dependence as expected from
(4.66). We want to now show how to generalise our way of splitting considered for
3 trajectories to diagrams containing n trajectories.

Ladder Diagrams

We start again with the situation where all of the encounters are inside the system and
by considering a case analogous to Fig. 4.24 involving now however, n instead of 3
trajectories. We first take a diagram that consists of a ladder of (n — 1) 2-encounters so
that the central n — 2 trajectories each contain two encounter stretches while the two
outside trajectories only contain one encounter stretch each. This situation is depicted
in Fig. 4.27 and the encounters are thus characterised by (n — 1) (s, u)-coordinates.

In this case we obtain for the Ehrenfest-time relevant contribution F*27(t) that the
t-integral measuring the time difference between the end points of the two encounter
stretches on the middle orbit in (4.72) is replaced by n — 2 integrals over times #;
with the same meaning as f; they measure the time difference between the outer
end points of the two (consecutive) encounter stretches on the central trajectories
containing 2-encounter stretches. These times likewise run from the maximum of the
corresponding encounter times to infinity. The survival probability is determined by
a single (artificial) stretch that runs through all the encounters so that the exponential
term describing the 7p- and e-dependence is now given by

e~ ::]2 li(l—ié)/fuezy;zz lenc,i/fueie(tenc,l‘Henc,n—l)/fD’ (4.89)

where fepc; are the durations of the (n — 1) individual 2-encounters and the middle
exponential compensates for the fact that the middle encounters are traversed by two
t; and that only one traversal should contribute to the survival probability. Setting
ti’ = t; — max {tenc,,‘, tenc,,‘_H} and repeating now the steps of (4.74, 4.75) we find
the Ehrenfest-time-dependent factor in this case to be
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1

e arh 1” 1 —ie(inx|+Inx/_,)/(p)
F¥ (1) = 7 Tay cos H e "

Y 2(: +max{— Inx/,— lnxlfﬂ}/)n)(l—ie)/r[)ef >n? lnxi’/()url))efr(lfins)7
(4.90)

again confirming the Ehrenfest-time dependence of (4.66).

Single Encounter

Along with the case where none of the encounters in the ladder can move completely
inside another we can look at the opposite extreme where all the encounter stretches
lie inside of the encounter k with the longest duration fenc ¢t = max; {fenc,i} where
fenc,i are again the durations of the (n — 1) individual 2-encounters. This situation is
like a generalisation of the diagram in Fig. 4.25 and we similarly now define the times
t; to be measured between the centres of encounter i and the encounter k£ of maximum
length (with i # k). Here the same Ehrenfest-time dependence e~ *(!=7€) follows
by taking into account that each time #; has a range of variation of size fenc k — fenc,i
and that the tp- and e-dependent exponential in this case is

e lenck(1—i€)/Tp qi€ Z,':]l fenc,i /TD (4.91)

This yields for the Ehrenfest-time-dependent factor

F427’( ) = 4rh\" lﬁ dx cos el- 1e)lnxk/(kro) —ie >~ 11 Inx]/(htp)
Q ]

n—1

x H (lnx - lnxk) —7(l— zne) (4.92)
t;ék

confirming again the Ehrenfest-time dependence predicted by (4.66).

Mixture

Of course it is additionally possible to have a mixed form between these two extreme
cases. This means that some 2-encounters only overlap like in the case of a ladder
diagram the others form a single encounter. This however, just means that some
t;-integrals behave like in the first (Iadder) case and some like in the second (single
encounter) case. A verification of the predicted Ehrenfest-time dependence is then
straightforward.
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Fig.4.28 A general diagram
containing encounters
marked by boxes (shown in
different colours)

General Encounters

Up to now we restricted our discussion to diagrams where each trajectory is involved
in one or two encounters. This is however, not yet the most general case where the
only restriction is that each trajectory contains at least one encounter stretch, so that
some trajectories can also contain more than two encounter stretches. Note that the
situation where two trajectories interact (pass through the same 2-encounter block)
more than once cannot occur at first order in inverse channel number. An example
of a diagram that is possible is depicted in Fig. 4.28. In the most general case we
define the times #; slightly different: First we separate the k > 2 trajectories that
have one encounter stretch from the remaining n — k that have more than one. Then
we number our encounters accordingly, first those along the trajectories with one

encounter stretch with duration fec ;, ¢ = 1, ..., k then the remaining encounters
with duration fepc j, i = k+1, ..., n—1.Forthe n —k trajectories with two or more
encounter stretches we now define t;, i = 1,...,n — k, to be the time difference

between the outer edges of the outermost encounters along those trajectories.

For any trajectories with more than two encounter stretches we will need additional
time differences to fully fix the positions of the encounters. Because we defined the
times #; to go through the outermost encounters, importantly the exponential factor
with the survival probability and the energy dependence does not depend on these
additional time differences and is given by

—k . —1 .k
e~ - ti(l—lé)/TDeZ?=k+] tenc,i/TDelé Dict tenc,i/fD’ (4.93)

where the middle term ensures that the survival probability only includes one copy
of each encounter and the energy dependence involves all traversals of all the
encounters.

For the remaining times we notice that, starting with the ladder system with 2
trajectories containing one encounter stretch and n — 2 trajectories containing two
stretches, every time we increase the number of trajectories with one encounter
stretch we simultaneously increase the number of stretches on the orbits with two.
Therefore there are k — 2 additional time differences needed to fix the positions of
the central encounters along trajectories with more than two and we define times 7;
fori =1, ..., k—2 from the left hand side of one encounter stretch to the right hand
side of the next encounter stretch following on the right on those trajectories, see
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also Fig. 4.29. As the encounters are ordered, they are not allowed to be pushed past
the outside encounters and each other. The ranges of the times #; are then given by
these restrictions. Using M[i, j] = max {tenc,i, fenc, j} in the following to make the
notation more compact, we obtain for a trajectory containing m encounter stretches
of durations fenci, i = 1,...,m, as illustrated in Fig. 4.29, the time integrals
accounting for their different positions

4 . =" 3 (7= Mlo,0+1]) y
/ dty .. / dtyy—2
M(1,2) Mm—2,m—1]

H=M[12] =30 i = Mim=2,m=1]
= / di; . .. / dil, . (4.94)
0 0

In the second line we substituted f} = 7j — M[j, j + 1]. The time differences
t;, which are more important for the Ehrenfest-time dependence, must instead be
longer than the maximal length of the encounter stretches lying on the considered
trajectory. In general the numbering of the encounters and time differences can be
more complicated than in Fig. 4.29 as the two encounter stretches of one encounter
do not necessarily lie on all orbits in such a way that their number increases from left
to right. Then we define /(i) to be a list of length m (i) of the encounters enclosed
by the time #; (including the outer encounters) and L(7) a list of the corresponding
m(i) — 1 times 7 between the ends of those encounters. Now we can make the
substitution #/ = f; — max je;(j) {fenc, j }. After this substitution we recognise that
(4.94) has become independent of 7 or the Ehrenfest-time. Following then the steps in
(4.74, 4.775) we obtain

408 A\l oo i€ > nx//(vep)
F*°(1) = o H dx cos H dte i=1 D
0

J=1

1t

= (In ¥} M1 121 /2
)

0
=302 7y~ (10 5y AWl 2.l 1) ;
X iy,
0
]" / .
e Tll(/ lnxmax,/ )(1 i€)/Tp —Z k+11nxi/(ArD)e—r(l—tns)’

(4.95)

with — In xl’nax’ ; = max e/ {—In x}.} linked to the duration of the longest encounter

stretch contained within #;. We defined M i, jl=max{—Inx], —Inx }} and dropped
the explicit i-dependence of /, L and m above. Again we obtain the Ehrenfest-time
dependence predicted by (4.66).

As in the case of the ladder diagram above, we can also have the possibility of
some encounter stretches being contained in larger encounter stretches and some
separated from those larger encounters. This just implies that some of the #;-integrals
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Fig.4.29 Definition of the t

times 7; in the case of more \& Lenc,2 Lenc 3 Lenca
than two encounter stretches
on one orbit. The encounter
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—— b
tl — >
t

have to be treated as was done in the case of the configuration shown in Fig. 4.25,
and the Ehrenfest-time dependence predicted by (4.66) also follows in this case.

Touching the Lead

When the encounters are allowed to enter the lead we again have to consider times
representing how far each encounter has moved into the lead (actually how much of
the encounter remains inside the system). For the case treated in detail for n = 3 it
is only the upper limit (namely the full encounter time) of these time integrals which
have the necessary encounter time dependence to contribute in the semiclassical limit.
The reasoning for n = 3 can be carried over directly to the more general cases as first
also here there is only a contribution from the upper limits: For all other contributions
we get at least for one fenc i an integral containing only exp(is;u;/h)/tenc.; as only
s;, u;-dependent factors that yield zero as was shown in Eq. (4.26). Second the
upper limits of these integrations yield contributions that are (up to Ehrenfest-time-
independent factors) the same as the ones obtained when the encounters are inside
the system. We thus obtain the same Ehrenfest-time dependence from encounters
moved into the leads.

4.5.1.3 Summary

The separate diagrams considered in the RMT-type semiclassical treatment [48] can
be created from the original collapse of trajectories onto each other and by sliding
the individual encounters together or into the leads. The Ehrenfest-time treatment
however, suggests treating all of these possibilities instead as part of continuous
families. What we have shown above in this subsection is that, if we partition this
family in a particular way, for any partition we can find a suitable set of coordinates
which allows us to transform the semiclassical contribution so that we can extract the
overall Ehrenfest-time dependence. Though the exact details of this transformation
depend on the structures of the partition, the algorithmic routines described above all
lead to the same Ehrenfest-time dependence. Each partition and hence family then
has the factor e =7 =€) and no other Ehrenfest-time or /i-dependence. As we know
that we must recover the RMT-type result C (e, n) in (4.66) when 7 = 0 (since we
treat the same diagrams) and have no further Ehrenfest-time dependence apart from
e 7(1=1n€) "\e then obtain the full result in (4.66) and hence provide a semiclassical
justification of the first part of the effective RMT ansatz.
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4.5.2 Trajectories Always Correlated

In this subsection we determine the so-called classical contribution in (4.67). To
obtain this contribution Cs(e, 7, n) semiclassically we consider a band of n tra-
jectories which are correlated (inside the same encounter) for their entire duration
between entering and leaving the system as in Fig. 4.30. This implies that all the
trajectories have the same length ¢ and that the maximum of the differences s;, u;
between their stable and unstable coordinates lies below the constant ¢ (related to
the Ehrenfest-time). For the case n = 2 this configuration was first considered in
[45], the calculation was then extended to n = 3 in [26]. For our calculation we
follow [26] and place a Poincaré surface of section at a distance #; from the left end
of the trajectories while the remaining time on the right of the section is denoted by
to =t — t1. The semiclassical contribution C; (€, T, n) can be written as

1 o0 00 eft(lfine)/rp
Cr(e, T,n) = —/ dtl/ dty
™D Jo 0
—1

Qrhy=t(h + 1)

x / ds" / du"1el/MAS, (4.96)
s|<ce™1 |u|<ce=2

where we only include one traversal of the band in the survival probability and the
restrictions on the s- and u-integrals ensure that the band always remains together
under the exponential divergence of the trajectories due to the chaotic dynamics.
Performing an integral over #; — t, and the u;-integrals, this gives

gn—1 oo g—t(l=ine)/tp e M n—1 A 2.
Cor(e,T,n) = / dt —/ dx"! H — sin en ,
o Jo Qrhn=1 ), i h

(4.97)

where x; = e~*"25; /c. Using that in the semiclassical limit

ef)\t h 2 h
/ dx2 sin (ﬂ) =0 (tp —1). (4.98)
0 X h 2
we finally obtain
1— eft(lfine)

Cre,T,n) = ———, (4.99)

1 —ine

proving the Ehrenfest-time dependence of the C; (e, 7, n) in (4.67).

4.5.3 Mixed Terms

Finally we want to consider possible correlations between trajectory structures giving
the RMT-type contribution and those giving the classical part, i.e. contributions
from correlations between bands of trajectories (that are always correlated with each
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r- - -

Fig.4.30 Band of n = 3 correlated trajectories. The length of the orbits is marked by a box; the
duration of the encounter ten = 1/X1n [(,'2 / (max,- |s; | max ; |u j |)] is marked by a dotted box

other) and trajectories that are only correlated with each other during encounters. In
particular we want to show that diagrams that have a correlated band which has any
encounter with other trajectory structures (with encounters) give no contribution in
the semiclassical limit. This, once generalised, then excludes the existence of mixed
terms in (4.65) so that (4.65) is complete. First we consider the case that n — 1 of
the trajectories form a correlated band with the remaining trajectory meeting the
band in an encounter inside the system as depicted in Fig. 4.31. This contribution
C*31(e, 7, n) to the correlation function C(e, T, n) can be written by treating the
correlated band as before and introducing the times #3 and #4 to represent the durations
of the parts of the trajectory that encounter the band on the left and on the right of
the Poincaré surface of section. It reads

Z, 1t (I-ie)/tp
c*3e,t,n) = / H . —— T / ds"_z/ du?
Qmh)r— |s|<ce ™1 lu|<ce ™2

e((/MAS gi€(tenc+(n—=2)(t1+122))/TD
X / ds/ du ’
ce M1 <|s|<c ce™ 2 <|u|<c (1 +1)

(4.100)

where fepc is the time during which the remaining trajectory encounters the band.
Performing the integrals as in (4.97, 4.98) we obtain the Heaviside function ® (tg —
t) from the integral in (4.100) over the stable and unstable distances s;, u; in the
band in the same way as in Eq. (4.98). The integral in (4.100) over the difference
s, u between the coordinates of a band trajectory and the trajectory encountering is
given by

/ s / du ei/Mus gietenc/tp (4.101)
ce™M <|s|<c ce™M2<u|<c

We obtain the upper limit |su| < ¢Ze™*, this implies when performing similar steps
as in Egs. (4.97, 4.98) that the overall duration of the band has to be at least longer
than 7 to give a contribution. As C 43l(¢, 7, n) contains additionally the function
® (tg —t), such a contribution vanishes. If we move more trajectories from the band
(composed of at least two trajectories) to the trajectory structure with encounters we
still obtain these opposing Heaviside functions and hence no contribution.

A similar reasoning can be applied if the encounter of a trajectory (or part of a
trajectory structure) with a band does not happen inside the system but enters the
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Fig.4.31 An example of a
band of 3 trajectories that
possesses an encounter with t t
another trajectory. The band 3

is marked by a thicker box
(red stretches) and the

encounter of the other r=l--
trajectory with the band by a T T
dotted box (blue stretch). — Nt

The duration of the links is
denoted by 3 and 14, the
duration of the band on the
left and on the right of the
Poincaré surface P of section

by #1 and 1, respectively ( ) (— 4)
P

lead at the beginning or the end. In this case we obtain an additional time integral
with respect to the time of the encounter that remains inside the system but, as the
s, u-integrals still yield the same Heaviside functions, this contribution also vanishes.
Note that if we move both ends of the encounter into the leads then the encountering
trajectory can be considered as part of the band and treated as above in Sect. 4.5.2.

The reasoning in this subsection applies to an arbitrary number of bands of cor-
related trajectories connected by trajectories that are only correlated in encounters.
Therefore all such mixed terms vanish and this completes our argument showing the
validity of Eq. (4.65).

Now we want to present an application of the form of C(e, r,n) given in
Egs. (4.65-4.67): We want to calculate the density of states of a chaotic Andreev
billiard for arbitrary Ehrenfest-time.

4.6 The Density of States of Chaotic Andreev Billiards

Although we presented in Fig. 1.5 the density of states of Andreev billiards showing
a gap above the Fermi energy in the chaotic case, we have not yet said anything about
its microscopic origin: If a superconductor (S) is brought in contact with a normal
conductor (N) its spectral density of quasiparticle excitations is considerably changed
due to Andreev reflection [49] at the NS interface: When an electron from the vicinity
of the Fermi energy surface of the normal conductor hits the superconductor, the
bulk energy gap A of the superconductor prevents the negative charge from entering,
unless a Cooper pair is formed in the superconductor. Since a Cooper pair is composed
of two electrons, an extra electron has to be taken from the Fermi sea, thus creating
a hole in the conduction band of the normal metal. The Andreev reflection therefore
leads to a retroreflection of the particle, where Andreev reflected electrons (or holes)
retrace their trajectories as holes (or electrons), i.e. an incoming electron (hole) is
not specularly reflected, but is replaced a hole (electron) flying in the direction of the
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incoming electron. This leads then to a suppression of the density of states (DoS)
directly above the Fermi energy Er. This proximity effect is also expected for an
Andreev billiard [50], an impurity-free quantum dot attached to a superconductor
[51, 52], and has attracted considerable theoretical attention during the last decade
(see [47] for a review).

As we have seen in the introduction in Fig. 1.5, an Andreev billiard has the
interesting peculiarity that the suppression of its (mean) DoS crucially depends on
whether the dynamics of its classical counterpart is integrable or chaotic: While the
DoS vanishes linearly in energy for the considered integrable system, the spectrum
of a chaotic billiard is expected to exhibit a true universal gap above Er [53]. Based
on RMT this gap was predicted to scale with the Thouless energy, Er =h/2tp [53].
On the contrary, semiclassics based on the Bohr-Sommerfeld (BS) quantisation yields
only an exponential suppression of the DoS [54-56], a discrepancy that has attracted
much theoretical interest [40, 57—60]. Lodder and Nazarov [54] pointed out that these
seemingly contradictory predictions are valid in different limits, governed by the ratio
7. In the RMT regime, = 0, the Thouless gap (from RMT) is clearly established
[53, 57], while the BS approximation describes the classical limit T — oo.

Various approaches have been used to better understand the crossover from the
Thouless to the Ehrenfest regime of large v, where RMT loses its applicability [57].
These include effective RMT [40], predicting a gap size scaling with the Ehrenfest
energy Eg = h/2tg, as well as stochastic [59] and perturbative [58] methods.
Recently the gap at w Eg was confirmed for ¢ > 1 in a quasiclassical approach
based on the Eilenberger equation [60].

In this section we first, after introducing the scattering approach [61], briefly
demonstrate that the DoS can be evaluated semiclassically for tg =0 by using an
energy-dependent extension of the work [62] on the moments of the transmission
eigenvalues. This semiclassically computed DoS yields a hard gap, in agreement with
RMT. Secondly we address the whole crossover regime of T > 0, by incorporating the
tg-dependence. In the limit 7 >> 1, the width of the gap approaches 7 E g, eventually
recovering the BS prediction for t — co. More interestingly in the intermediate
regime T > 1 we predict the appearance of a second Ehrenfest gap at 7 Ef.

4.6.1 Scattering Approach for the Andreev Billiard
and the RMT Density of States

In the scattering approach the superconductor is represented by, or can rather be
thought of as replaced by, a lead that carries N scattering channels, and the excitation
spectrum can be entirely expressed in terms of the (electron) scattering matrix S [61].
The average DoS d (e, 7) reads [56] (when divided by twice the average density of
the isolated billiard),
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in terms of correlation functions of 2n scattering matrices, defined in Eq. (4.64). To
obtain a semiclassical expression for d (e, T) containing multiple sums over trajecto-
ries we can insert in Eq. (4.102) for C (¢, t, n) the expression (4.69). This of course
leads to the same trajectory pairs as considered before in this section, see Fig. 4.32a,
b. They can be interpreted here in the following way, see Fig. 4.32c: Each summand
of the n-summation is given by trajectory pairs that hit the superconductor or the
lead in the scattering picture 2n times. Each time an electron is transformed into a
hole and vice versa.

In order to determine the overall contribution to d(€¢) = d(e, 0) of these tra-
jectories, the diagrams contributing to C (e, 0, n) are constructed recursively with
respect to n. For this the diagrams are redrawn as rooted plane trees [11, 48]. The
name derives from the fact that the channel of the first incoming trajectory is cho-
sen as the root (hence rooted trees) and the remaining channels are placed in order
around an anticlockwise loop (hence plane). The factors resulting from a certain tree
can be obtained recursively by analysing in which ways it can be split into its sub-
trees. The contributions of the links and the encounters in these subtrees or diagrams
is determined by diagrammatic rules that we encountered already several times in
this book: Each link gives a factor of [N(1 — i €)]~!, while each /-encounter con-
tributes — N (1 — i/€) when the encounter stretches all remain inside the cavity. If the
encounter touches the lead the latter contribution is again replaced by a 1, because of
the additional integration over the length of the encounter stretch that has not been
moved into the lead.

When summing the contributions of the trees we additionally have to take into
account that no diagram contribution is overcounted. If the top encounter enters both
leads (which can only happen if the diagram involves a single encounter) we have to
ensure that it does not enter the lead at both ends at the same time [11].

Introducing now a generating function of the correlation functions C (¢, n)
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Gle.r)= D r"'Cle.n), (4.103)

n=1

where all possible encounter configurations are allowed and an auxiliary generating
function g(e, r) including all possibilities apart from where the top encounter enters
the lead at one end of the trajectory, it can be shown that both generating functions
are related by [11]

g

Glen ==

(4.104)

and that g fulfils the equation
g(l—ie)—1 :rg2 (g—1—ie), (4.105)

obtained as an extension of the corresponding equation for e = 0in [62]. By inverting
Eq. (4.104) we can see that G is given implicitly by the cubic equation

rir = 1D)?G*+r(Br+ie —3)G>+ GBr +ie — )G = —1. (4.106)
Expanding G (or g) as a power series in r, we can obtain recursively the first couple

of correlation functions (which can also be checked by considering the semiclassical
diagrams explicitly) as:

C(e, 1) =

1 — 2ie —2¢2
, C(e,2) =

(1—ie) 1 —ie)* ’ (4-107)

To obtain now the RMT result for the density of states it might seem most straight-
forword to solve (4.106) and afterwards insert the solution into Eq. (4.102), perform
an integration with respect to r and set r = —1 to obtain the factor (—1)"/n and
finally differentiate with respect to €. As the solutions of the cubic equation (4.106)
are already quite involved, performing the r-integration is not an easy task. For that
reason one instead tries to find the generating function H (e, r) of the terms that
appear in the density of states

e9]

19 =1 3C (e, n)
H(e,r):i—r&/er(e,r) =y ——,

in de

n=1

d(e) =1—2% H(e, —1). (4.108)

Using a computer aided search over cubic equations with low order polynomial
coefficients one obtains the equation fulfilled by H (e, r) [11]

(er)>(1 — r)H> +ier[r(ie —2) +2(1 —ie)| H?
+ [r(l —2ie)—( —ie)2] H+1=0. (4.109)
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As G and H are algebraic generating functions, i.e. solutions of algebraic equations,
so too must be their derivatives. One then proves the result in Eq. (4.109) by differ-
entiating G with respect to € and ir H with respect to r—these quantities are equal
by their definitions in Eqgs. (4.103) and (4.108)—and demonstrating that these deriv-
atives satisfy the same algebraic equation starting once from Eq. (4.106) and once
from Eq. (4.109), for details see [11].

Taking the solution of Eq. (4.109) whose expansion agrees with Eq. (4.107), the
DoS then follows from Eq. (4.108) as

5
3 512
d(e) = é [Q+(6) —0_(6)]. e>2 [fz } , (4.110)

where Q4 (€) = [8 —36€2 + 3e+/3e% + 132€2 — 48]2. This is exactly the RMT
result [53] (dotted line in Fig. 4.33).

4.6.2 Density of States for Non-vanishing Ehrenfest-Time

We now want to generalise the results for t = 0 obtained up to now to non-zero
Ehrenfest-time using Eqs. (4.65-4.67). It is clear that in the limit T = 0 (4.65-4.67)
reduces to the previous (and hence RMT) results while in the opposite limit, T = oo,
substituting (4.67) into (4.102) and performing a Poisson summation we obtain the
BS result [55]

T

doste) = (=)

€

2 cosh(r/€)

_— (4.111)
sinh? (7t /¢€)
This result was previously found semiclassically studying trajectory correlations by
[56] and corresponds to the classical limit where only bands of correlated trajectories
contribute.

For arbitrary Ehrenfest-time dependence we simply substitute the two terms in
(4.65) into Eq. (4.102). With the second term we include 1 — (1 + 7)e™" from the
constant term (this turns out to simplify the expressions) and again perform a Poisson
summation to obtain for its contribution to d (e, t)

_ . N 0 (=" 3 1— e—(l—ine)r
dre,T)=1—(141)e —|—2\sr§ - &( — )
2k k(1 /€)?
= dps(€) —exp (——) (st(G) + —) (4.112)
€ sinh (7t /€)

where k = | (et +m)/(2m)] involves the floor function, and we see that this function
is zero for et < 7.
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Fig.4.33 a Density of states for t = tg/tp = 2 (solid line), along with the BS (dashed) limit
T — oo and the RMT (dotted) limit T = 0, showing a second gap just below et = 7. b Ehrenfest-
time related 27 /t-periodic oscillations in the density of states after subtracting the BS curve (from

(11D

Of course the first term in (4.65) also contributes and when we substitute into
(4.102) we obtain two further terms from the energy differential. These however,
may be written, using the semiclassical generating functions, as

di(e,7) =e T[1 = 2R “TH(e, —e'“T)] + te T[1 — 2R /TG (e, —e'T)].
(4.113)

Because G and H are given by cubic equations, we can write this result explicitly as

- -7
«/ge n \/§re %

di(e, 1) = R[Q4(e, 1) — Q(e,7)] G [Pi(e,T) — P_(e, )],
“4.114)
where
0ier)— [8 _ el —cos(er) ), 5 24 (I —cos(en)) | b€ (1 — cos(er))
sin(et) sin?(e7) sin(e)
1
263 (2 —3cos(er) + COS3(€T)) N 6e+/3D (1 — cos(eT)) ’
+ sin’ (e7) sin?(e7) ’
4.115)
5 3 3
Pile.t) = |: 36¢ - ¢~ sin(eT) . n € . " 33D 2i| .
(1 + cos(et)) (1 + cos(et)) (1 + cos(et)) (1 + cos(et))
4.116)

These all involve the same discriminant D and so the differences in (4.114) are only
real (and hence d (¢, 1) itself is non-zero) when

D(e,7) = €* — 8e3 sin(e1) + 4€” [5 + 6 cos(eT)] + 24€ sin(et) — 8 [1 + cos(eT)]
(4.117)
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Fig.4.34 a Width (and end point) of the first gap and b width of the second gap as a function of ©
(from [11])

is positive. Recalling that the second contribution is zero up to et = 7, the complete
density of states is therefore zero up to the first root of D(e, T) as it lies below
et = m. The width of this gap is then solely determined by the contribution from
quantum interference terms given by the trajectories with encounters. The hard gap
up to the first root shrinks as t increases, see Fig. 4.34a. When taking the limit
T — 0o while keeping the product €t constant (4.117) reduces to —8[1 4 cos(e1)]
which has its first root at et = . The gap then approaches E = w Ef for v > 1,
where Er = /2t is the Ehrenfest energy. So one indeed observes a hard gap up
to w Eg in the limit t — o0 at fixed €t in agreement with the quasiclassical result
of [60].

Alongside this reduction in size of the first gap, which was predicted by effective
RMT [47], when t > 0.916 the discriminant (4.117) has additional roots. Between
the second and third root D (e, t) is also negative and a second gap appears. As T
increases the roots spread apart so the gap widens. For example, the complete density
of states for T = 2 is shown in Fig. 4.33a along with the oscillatory behaviour visible
at larger energies (with period 27 /1) in Fig. 4.33b. There the second gap is clearly
visible and only ends when the second contribution d; (€, ) becomes non-zero at
€t = m. Infactfor t > 7 /2 the third root of D (e, t) is beyond et = 7 so the second
gap is cut short by the jump in the contribution d (e, 7). Since the second root also
increases with increasing t the gap shrinks again, as can be seen in Fig. 4.34b.

To illustrate this behaviour further, we show the density of states for different
values of 7 in Fig. 4.35. One observes first the formation and then the shrinking of
the second gap. As can be seen in the inset of Fig. 4.35b the second gap persists even
for large values of t and the size of the first hard gap slowly approaches et = 7.
The plot for T = 20 also shows how the density of states converges to the BS result.

Having presented the application of Egs. (4.65—4.67) to calculate the gap in chaotic
Andreev billiards we want to emphasise here that the derived result for C (e, 7, n)
possesses a much wider range of applications to all situations where correlators
of pairs of scattering matrices need to be analysed, examples are the moments of
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Fig.4.35 Density of states as a function of et E/Eg for various values of 7 showing the
appearance of a second gap below et = 7. Inset: Density of states for v = 20 (solid line) together
with the BS limit (dashed) (from [11])

the transmission and of the Wigner delay times; their Ehrenfest-time dependence is
determined in [10].

To summarise, in this chapter we presented different effects of a non-zero
Ehrenfest-time in chaotic systems: We calculated its impact on the transmission
and reflection, the conductance variance, the spectral form factor and the correlation
function of n pairs of scattering matrices. The last result opened up the possibility
to determine the Ehrenfest-time dependence of the energy gap of chaotic Andreev
billiards.

In the next chapter we will return to the case of zero Ehrenfest-time and study the
semiclassical analogues of certain field-theoretical or RMT effects.
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Chapter 5
Semiclassical Analogues to Field-Theoretical

Effects

In this chapter we want to present analogues of field-theoretical or RMT effects in
semiclassics: In the first section we study the connection between the unitarity of the
semiclassical time evolution and the functional form of the spectral form factor for
T =t/Ty > 1 predicted by RMT, remember Egs. (2.68, 2.69). It differs from the
one for 7 < 1. We start here with presenting a recipe for obtaining the form factor
as predicted by RMT for t = ¢/ Ty > 1 published in [1]. We then explain how this
method can be connected with semiclassical unitarity. Although the corresponding
result was published in [2], it was found independently during the research carried
out for this book. In the second section we show that the semiclassical analogues
of field-theoretical curvature terms are pairs involving multiply traversed periodic
orbits when considering the two-point correlator of spectral determinants. This result
was published as Fast Track Communication in [3].

5.1 Spectral Form Factor for 7 > 1 and Unitarity
in Semiclassics

5.1.1 Semiclassical Approximations for the Spectral
Determinant

In Chap. 2 we showed how to approximate the density of states d (E) semiclassically
by the Gutzwiller trace formula in (2.23). This formula however has the drawback
that it is divergent, as it contains an infinite sum over an exponentially proliferating
number of periodic orbits. This can qualitatively be understood by taking into account
that in chaotic systems a certain number K of primitive segments of average duration
Tj exists from that all periodic orbits can be constructed. Orbits of duration 7" can be
constructed by gluing the primitive segments together in almost arbitrary succession
yielding K7/70 possibilities. For a rigorous proof of this exponential increase for
surfaces of constant negative curvature, see for example [4]. In the Hannay and
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Ozorio de Almeida sum rule (2.72) this exponential increase is cancelled by the
square of the stability amplitude. As the semiclassical approximation for the density
of states contains however the stability amplitude itself it grows exponentially with
time.

This problem of the trace formula had renewed the interest in the semiclassical
theory of spectral determinants. The quantum spectral determinant is defined as

A(E) = det [Q(E, H)(E — H)] —[[2E ExE-E). 5D

n=1

where §2(E, E,) is a regularisation factor making the infinite product convergent.
It can be chosen real for real E and everywhere non-zero, for details see [5]. By
definition A (E) is real for real E as the Hamiltonian is Hermitian and thus possesses
real eigenvalues E,. Usually A (E) is regularised by dividing it by its value at a
certain energy Ey, then it is related to the trace of the Green function introduced in
Eq. (2.21) by

E[pu+1]
A(E) = exp ( / dE’TrGW(E’)), (5.2)
E

0

where [« + 1] and [x£] in the exponent denote the [« + 1]-fold integration and the
[]-th derivative, respectively. The curved brackets denote the integer part of w,
that is given by the power of energy to that the smooth part of the level counting
function (i.e. the energy integral of the spectral density) is proportional to leading
order [5]. The expression in the exponent on the right hand side of the last equation
is regularised by extracting its finite part, for details and the choice of E(, see again
[5]. Note that an alternative shorter derivation of this formula was given in [6]. An
expression containing periodic-orbit contributions is given by an infinite product over
the periodic orbits y occurring in the Gutzwiller trace formula, the corresponding
quantity will be indexed here by G. The resulting expression is obtained by inserting
in Eq. (5.2) the semiclassical approximation for TrG (E’),! Eq. (2.22). Equivalently,
by expanding the exponential in (5.2), AS(E) can be written as an infinite sum over
composite orbits, so-called pseudo orbits A with overall actions and Maslov phases
given by the sum of the corresponding quantities of the subsets of periodic orbits
with n4 elements. The stability prefactor is obtained as product of the prefactors of
the contained orbits yielding finally [7]?

1" The real part of TrG (E") only contributes to B(E) defined after Eq. (5.3) [5].

2 This form is strictly speaking only correct when neglecting repetitions of periodic orbits, for
an expression taking them into account, see [8]. The contributions of repeated pairs are however
damped exponentially like e=*7/2 with their overall duration T compared to ones from pseudo
orbits traversed once, as the number is the same in both cases, however the stability factors of the
repeated ones are reduced. We can thus neglect them anyway when calculating the contributions of
pseudo-orbit pairs.
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AS(E) = B(E)e—inN(E) Hexp{_cyeiSy(E)/hfinry/Z}
4

— B(E)e—iJTN(E) Z(_l)nAFA(E)eiSA(E)/FL—iT[TA/Z. (53)
A

Here, N (E) is the mean number of states up to energy E, i.e. the energy integral of
the mean spectral density given in Eq. (2.23), and B(E) again a regularisation fac-
tor, that is real and non-zero for real E [5]. As already noted in the introduction, the
periodic-orbit representation of the trace of the Green function diverges for real ener-
gies, i.e. in the physical region. The same holds true for the spectral determinant built
up by periodic-orbit contributions. We emphasise that this divergence is not related
to the semiclassical approximation, it also occurs in cases where the periodic-orbit
representation is exact as for the Selberg trace formula for surfaces of constant nega-
tive curvature. These expressions converge, however, for sufficiently large imaginary
parts of the energy (beyond the so called entropy barrier) and need to be extended to
real energies by analytic continuation. Further problems are encountered in (5.3) for
systems where semiclassics is not exact. Here it is not even clear, if the last formula
yields zeros on the real axis at the eigenenergies of the system.

However, by directly imposing that the spectral determinant is real for real ener-
gies, an expression containing a truncated sum over pseudo orbits can be obtained.
Such an approach was developed by Keating and Berry [8] and derived by Georgeot
and Prange using Fredholm theory [9]. Thereby an improved semiclassical approx-
imation to the quantum spectral determinant is obtained. It is given by

AR(E) = AF, H(E) + AT ), (E), (5.4)

where A?H 1(E) is obtained from AS(E) by including only pseudo orbits with
periods smaller than Ty /2. Comparing (5.3) with (5.4) one can expect that the
pseudo orbits with overall durations longer than 7 /2 contribute to A(E) just the
complex conjugate of the pseudo orbits with durations shorter than T /2. We want to
emphasise that such a relation is semiclassically highly nontrivial: To our knowledge
it can neither be seen to hold based on (5.3) nor on any other semiclassical expression.
Adding the complex conjugate in Eq. (5.4) assures that ARI(E)isreal forreal energies
and including a cut off in the sum over pseudo orbits makes it finite. Another approach
by Sieber and Steiner [10] considers the following periodic-orbit representation of
the spectral determinant

ARY(E) = AS(E) 4+ AS*(E), (5.5)

imposing only the spectral determinant to be real.

3 An improved version considers a smooth classically small cut off at T /2.
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5.1.2 Spectral Form Factor for T > 1

Having introduced semiclassical expressions for spectral determinants, we now want
to explain the recipe for obtaining using (5.3) the spectral form factor as predicted
by RMT for t larger and smaller than 1. In Chap. 2 only the regime T < 1 could
be accessed semiclassically. The latter calculation was first published in [1]; we will
mainly follow this article in our presentation. We introduce a generating function
Z(E) containing in the numerator and in the denominator two spectral determinants
at in total four different energies

(5.6)

+_ - _
25) E<det(EC H)det(Ey, — H) > |
Ak

det(E} — H)det(Ey — H)’

where E,::B,C) p areenergies nearby to £ defined as E/f’B’C’D = E+ejiB)C‘D/(2ncz)
with the = in the exponent determining the sign of the imaginary part y of €4 g.c.D-

As we have already seen in Sect. 3.4 obtaining diagrammatic rules for the con-
tributions of links and encounters is straightforward in the energy domain. We will
thus consider here the spectral correlation function R(¢), Eq. (2.65), instead of the
spectral form factor K (t), Eq. (2.67), studied semiclassically in Chap. 2. For R(¢),
RMT predicts in the unitary case:

GUEN) = 4Ge)? ~ 4ie)? '
and in the orthogonal case
1 (1= —1) 5 ~n (n—3)(n—3)
Raoe(€) = e +,§' dien ¢ }; 4ie) (>-8)

When transforming back to the spectral form factor via the relation (2.67) the
nonoscillating terms in (5.7, 5.8) lead to the contributions to K (t) for t < 1 obtained
semiclassically in Sect. 2.4, and the oscillating terms correct the contributions to K (t)
for T < 1 to the ones for 7 > 1.

To proceed with our semiclassical analysis we approximate A(E) by Eq.(5.3)
and use the following formula for the inverse spectral determinant

AG(E)fl - B(E)fleinl\_/(E)Hexp{cyeiSV(E)/hfinryﬁ}
Y
= B(E)~'e™N(E) > Fa(E)e!SaE)/ hmintal2, (5.9
A

yielding the semiclassical expression for Z(E), Eq.(5.6),
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A S
7G(E) = e2(€a—€p—¢ctep)
. T, . . T, _ T
LS (E)+irtel—inL —Ls (E)y—iez—im%
x {ex Cyeh™ TnA 2 4+ C,e "7 Tn "B 2
(e (3, ¢ >,

i Ty 4+ 1 ; S . &
_Z C_e%SJ;(E)—H%eC—lﬂTy_Z C~e_%SV(E)_l%€D_”TTV))
72 e Ak
14 Y
:etj(éj{—eg—eg+55)( Z FAFgFoFp(—1)1CHnne=im(Ta—ts+1c—7p)/2
A,B,C,D

« ei(SA(E)—SB(E)+SC(E)—SD(E))/hei(TAGX—TBGE-Q—TCGE—TDeE)/TH )Ak’

(5.10)

where we expanded the actions in the exponentials in the same way like before
Eq.(2.64).

The correlation function R(€), Eq. (2.65), can be obtained by differentiating Z (E)
in Eq. (5.6) two times with respective to €, see Eq.(5.2), and identifying afterwards
the two energies in the numerator with the two energies in the denominator in a way
that Z(E) approaches 1:

1 3%z
Re)=—+1

im ———— . 5.11
4  y-0 86;\"865 Il .11

The subscripts ||, x in the last equation refer to the two possible ways used in [1] of
identifying the energies in Z (E) after having performed the differentiations in the last

equation. The so-called parallel identification || sets e:{ = eér =€, €p = €p =
—e™ and the so-called crosswise identification x sets ej{ =€t €5 = —€T, eér =

—€~, €, = € . For both identifications Z (E) approaches unity, in the second case
additionally the limit y — O is required. The observation made in [1, 11] is that
the complete result for the spectral correlation function predicted by RMT can only
be obtained by adding the contributions from the two different identifications in
(5.11). The parallel identification leads together with the (—1/4) in Eq.(5.11) to the
nonoscillating contributions to R(€) and the crosswise identification leads to the as
a function of € oscillating contributions to the spectral correlation function R(€).
This procedure can be connected with the fact that the semiclassical expression
for the spectral determinant has to be real that led to Eq.(5.5). To explain this, we
consider AR2(E + 6/(27Td_)), Eq. (5.5), and expand the action like in (5.10):

T

.= P i L Tx .
AR2 (E 4 € _) — B(E)e mIET5) Z(_l)nA FAeﬁsA(E)Jrzeﬁﬂn 4
2rd "

i . T .
%SA(E)—zeﬁ+m%A

+ BE)S ™) S 1y Fpe”
A
(5.12)

This we insert instead of the expression AG(E ), Eq.(5.3), in Z(E) in the numerator
and approximate the determinants in the denominator again by the expression given
in Eq. (5.9). Performing now only the parallel identification ||, we obtain due to the
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second summand in each determinant in the numerator three further contributions.
Two of them contain a rapidly oscillating phase factor with the argument proportional
to d E and drop when performing the energy average. The last further contribution,
that is not fully cancelled by the energy average, is obtained by pairing the two
additional terms; i.e. the ones in the second line in Eq. (5.12) for the two determinants
in the numerator with the ones in the denominator. When comparing the second and
the first summand in Eq.(5.12) we see that all essential terms finally contained
in Z(E) originating from the second summand can be obtained from the first by
replacing € by —e.* The same replacement is also made when replacing the parallel by
the crosswise identification, showing that these two procedures are identical: It is thus
possible to use the representation (5.5) for the spectral determinant instead of AS (E)
in Z(E), but to consider only one identification of the energies. This connection
between the condition that the spectral determinant is real for real energies and the
RMT prediction for K (t) for t > 1 leaves however also several open questions: The
semiclassical formula for the determinant derived in [8, 9] involves additionally a
truncation of the pseudo-orbit sum at T /2, see Eq. (5.4). Taking this into account
by including an upper cut off when applying the sum rule (2.72) in the calculation of
contributions from pseudo-orbit pairs below, this would lead to further terms, as can
easily be checked, that do not obviously cancel. We want to emphasise in this context
that the method presented in [2] for showing that contributions from the upper cut
off vanish in diagonal approximation does not work in general. Furthermore only the
determinants in the numerator are made real. Claiming the same for the determinants
in the denominator would again lead to additional unwanted contributions. We will
return to these problems in the conclusions.

We now study the diagonal contributionto Z9 (E) . As the overall action difference
has to vanish in this case only orbital configurations where all orbits contained in the
A- and C-sum in Eq. (5.10) are repeated in the B- and D-sum can contribute. As the
stability prefactors of the exponentials for long orbits are dominated by e ~*7/? with
the overall duration of the pseudo orbit 7', consider their explicit form given after
Eq. (2.23), they are approximately multiplicative. We thus obtain for their contri-
bution in diagonal approximation |F4|?|Fc|?. For the time-dependent exponen-
tials we obtain the contribution of the EX— and eg—dependent factor to be given
by el (Taci+Tced)/ T Denoting the set of N orbits contained in the pseudo orbit
taken as A as {a j};v:] and the set taken as C as {c;}M; we can express the € - and
€ »-dependent factor together with the (—1)"? as

N M
H (efiTajGE/TH _ e—iT,,je;,/TH) H (e—mieg/TH _ e—iTcie[_)/TH). (5.13)

j=1 i=1

Reexponentiating this factor together with the other contributions to Zgiag (E), we
obtain

4 As we are considering positive as well as negative action differences in the s, u-integrals, the
sign change of the actions is not important.
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i Iy (et _ex Ty 4+ —
Zdiag (E) = exp Z|Cy|2(eer(6A eB)_ezTH(eA eD))
v

T, _ T, _
=TI, P T ) ) |, (5.14)
y/

The sums over orbits are calculated by the Hannay and Ozorio de Almeida sum
rule (2.72): It implies that Zy |CV |2 (...) can be replaced by f;;o dTT(. ..) with a
minimal period of the orbits 7y from which on the orbits behave ergodically in good
approximation, justifying the application of the sum rule.’ The T will drop out in the
final result for Zgiag (E). Performing the T'-integrals we obtain exponential integrals
that can be expanded for small arguments yielding to leading order in &

(GX — eB)(eg —€g) 2P

(€4 —ex)el —€p)

Zaiag (E) = 2G5t +p) (5.15)

As we need to consider in the presence of time-reversal symmetry also for each orbit
its time reversed as partner, each sum in Eq. (5.14) must be multiplied by 2 yielding
a factor 2 in the exponent in (5.15). As described around Eq.(5.11), one now pro-
ceeds with taking derivatives, performing identifications of the €4 p ¢ p and adding
the resulting contributions. This yields in the absence of time-reversal symmetry the
nonoscillating contribution in (5.7) in the case of the parallel identification || and the
oscillating contribution in the case of the crosswise identification x [1]. In the pres-
ence of time-reversal symmetry with the parallel identification || the first orderin 1/€
of the nonoscillating contribution in (5.8) is obtained and the crosswise identification
X yields zero.

Turning now to non-diagonal terms, the semiclassical contributions to Z(E) can
be expressed as we have seen already several times as product of link and encounter
contributions with each link contributing a factor given by a certain linear combina-
tion of the different €4 g ¢, p in the denominator and each encounter a certain linear
combination of the different €4 g ¢ p in the numerator. For the next-to-leading order
in 1 /e we thus need to consider a pair where the pseudo orbit and its partner differ in
one encounter and possess two links.® Like for pure orbits, i.e. no pseudo orbits, we
will again take into account the configuration depicted in Fig. 4.21, in the following
we will refer toit as “co”. As we are now treating pseudo orbits we have the additional
possibility that two independent orbits encounter each other. As partner we can then
consider one long orbit following the two short orbits and encountering itself at the

5 The Tp could have been introduced always when evaluating sums over orbits by sum rules, but
in all cases considered up to now the semiclassical limit # — 0 and the limit 7y — 0 commuted.
This is not the case here, the resulting integrals do not exist for 7o = 0.

6 As can be easily checked it is not possible to construct diagrams with a larger number of
links where the number of links and of (s, u)-coordinates needed to characterise the encounter
configuration differs by one.
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Fig.5.1 Sketch of an eight
diagram, an example of
correlated pseudo orbits [1]

encounter of the two short partner orbits. Both components are exponentially close
to each other up to deviations in the encounter region, for an illustration see Fig. 5.1,
we will refer to this pseudo-orbit pair as eight orbit “8”.

When calculating the non-diagonal pseudo-orbit contributions we consider these
non-diagonal pairs just in one sum of the pseudo-orbit sums in (5.10) and perform
diagonal approximation in the others. Each non-diagonal contribution Zug (E) to
Z(E) thus possesses the form

Zofi (E) = Zgiag (E) G(E) (5.16)

with Zgj,e (E) given in Eq.(5.15) and G(E) the contribution from a non-diagonal
pair as for example “oco” or “8” to Z(E). The contribution to G (E) from the orbit
pair “o0” depicted in Fig. 4.21 can be obtained by using the explicit form of the sum
rule, weight function, the encounter duration and action difference given in Sect. 2.4.
‘We then obtain when one of the two orbits is included in the A-sum and the other in
the B-sum in Eq.(5.10) [1]

) c 1 _— .
Goo (E) =/ dt1dt2/ dsdu eli/ )Suel(l‘1+t2+2tenc)(€A —€3)/Tn
0 .

—C tenc

2
- (5.17)

i(ex —<p)

with the duration of the left and the right link #; and f;, respectively. Analogous
contributions are also obtained by distributing the two orbits among the other of the
four sums over A, B, C and D. Taking finally the overall contribution to (5.16)
and performing the steps explained around Eq.(5.11), this contribution reproduces
the nonoscillatory second-order contribution in 1/€ in (5.8) given by 1/ [2(i6)3 ]
Considering now the pseudo-orbit pair “8” depicted in Fig. 5.1, we obtain, if we
do not allow encounters to overlap as we did in the last chapter when studying the
effect of a non-zero Ehrenfest-time, again contributions as in Eq. (5.17) with the only
difference that we can allow now the two short orbits to be contained also in two
different pseudo-orbit sums. This leads to the following cancellation mechanism [1]:
consider the long orbit of the “8”-pair to be contained in the A-sum, then the two
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short orbits can be contained either both in the B-sum or both in the D-sum or one
in the B-sum and one in the D-sum. Calculating those contributions in an analogous
manner as in (5.17) we obtain for their sum
1 i(2¢f —€e5 —€p) 1
ieq—eg) ilex—ep)ifeq—ep) iles—ep)
and an analogous cancellation of the other terms. That this cancellation mechanism
is however not yet fully general we will show in the next section.

The arguments given here can again be generalised to orbits differing in an arbi-
trary number of encounters leading again to the result predicted by field theory.
This connection was analysed in detail in [11]: First it was used that there is a one-
to-one correspondence between the contributions from semiclassical diagrams and
the field-theoretical contributions for the nonoscillatory contributions to R(e) shown
in [12, 13]. Second by comparing the contributions from the two saddle points in
the field-theoretical calculation—the one yielding the nonoscillatory and the other
the oscillatory contributions to R(e)—it was shown that they are connected in the
same way like the parallel and the crosswise identification of energies in Z(E) in the
semiclassical calculation. This shows that the field-theoretical and the semiclassical
contributions to R(¢) indeed are identical.

To summarise, in this first section we explained following [1] a procedure to cal-
culate the contributions to the spectral form factor consistent with RMT for all t
values and discussed the current status of a semiclassical understanding of this pro-
cedure. In the next section we will present another problem where a field-theoretical
effect needs to be understood semiclassically: the integration over a curved manifold
in field theory.

=0 (5.18)

5.2 Curvature and Multiple Traversals of Periodic Orbits

We start our analysis with the question, how to obtain semiclassically the RMT results
for the energy-averaged two-point correlator of spectral determinants,

(A(E+¢/(2nd)) A (E — €/ (2nd))) ax
(A (E)?) ak

starting from the semiclassical representation AR? (E) and using the knowledge about
action correlations between orbits and pseudo orbits. This problem was first addressed
by Kettemann et al. [14] in the context of maps using diagonal approximation. The
quantity Cg—>(€) was then reconsidered in diagonal approximation in [2] for contin-
uous flows applying the methods of [1]. In both cases the calculations show perfect
agreement with the universal RMT results for the unitary case

CRMT (6) o % (5.20)
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Here the proportionality sign indicates that we focus on the universal part of Cg(¢€)
and do not consider the semiclassical calculation of the prefactor, that contains for
example the contribution from multiply traversed orbits. To understand this, consider
the first representation of AS(E) in Eq.(5.3).

In the case of time-reversal symmetry, however, Ref. [14] could not obtain semi-
classically the RMT result [14]

CRMT (¢) o (C:SE - %) (5.21)

€3

In this section we evaluate Cg(€) beyond the diagonal approximation. We demon-
strate in the first subsection that the contributions from the “8”-pseudo-orbit pair,
shown to cancel in Eq. (5.18) for R(¢), do not vanish when one considers the simplest
non-rational function of spectral determinants, i.e. Eq.(5.19). The next subsection
is devoted to a corresponding field-theoretical analysis of Cg(e), showing that the
additional terms we find in our semiclassical analysis are cancelled in field theory by
so-called curvature contributions. In the third subsection we then provide the type
of correlations between pseudo orbits that allows us to semiclassically recover the
RMT result in the unitary and, for the first time, also in the orthogonal case. We
finally discuss of the consistency of our results with previous results.

5.2.1 Semiclassical Calculation

We now semiclassically evaluate the correlator Cg(€) by means of AR2(E) . Upon
substituting Egs. (5.3) and (5.5) into the numerator of Eq. (5.19), this leads to

(e 5m) 2 (5~ 5]
27'[d 2md Ak

~ 2Bz(E)}Re_ie <Z FAFE (_l)nA+nB e(i/h)(SA—SB)eie(TA-I-TB)/TH> ,
A,B Ak
(5.22)

where we already neglected terms highly oscillatory in the energy. We also expanded
the actions of the pseudo orbits around E.

We start with calculating contributions that survive the energy average in an
analogous way as in the last section. In diagonal approximation, we can write the
resulting sum over pseudo orbits as an exponentiated sum over orbits y. The Hannay
and Ozorio de Almeida sum rule is afterwards used in the form given after Eq. (5.14)
to yield the first term in the square brackets in

—ie

Cple) o Mg )z/ﬂ[

1+ Cplo). (5.23)
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The function C g (€) contains all universal effects beyond the diagonal approximation,
consisting of both orbit and pseudo-orbit correlations. In the following we compute
C~',3 (¢) to leading order in 1 /€.

In the unitary case, the leading order in 1/€ contribution to C’,gzz (€) comes only
from the first pseudo-orbit correlations, namely, the “8”-diagrams, see Fig.5.1.

Similar to the last section, we include in A a pseudo orbit of order » and in B
a pseudo orbit of order n 4 1 and vice versa. All orbits contained in A and B are
assumed to be equal except for the ones forming an “8”-orbit. As calculated in the
last section in Eq. (5.18), we obtain

- 1
CM ey = ——, (5.24)

where an additional factor 2 accounts for the possibility to include the two short
orbits in the A- or B-sum in Eq. (5.22). Using the expression obtained for C‘;Egt(e)
in Eq.(5.24) now in Eq.(5.23) gives a result which is inconsistent with the RMT
prediction (5.20).

In the orthogonal case we must consider also the contribution C'gozl (¢) from the
“00”-shaped orbit pair sketched in Fig. 4.21, apart from the eight-shaped contribu-
tion. Furthermore, for the latter diagram the possible time-reversal operation leaving
invariant each of the orbits must be taken into account. The calculations follow the

same lines as for the unitary case, consider Eq. (5.17). We finally obtain

e 4
Cole) = ——. (5.25)
L€
- 1
C 1) = —. 5.26
,5_1(6) e ( )

Again this result contains extra terms resulting from the “8”-diagram when compared
with the corresponding RMT result (5.21). We note that the contribution égozl (€)
alone yields a result consistent with the RMT prediction.

We can conclude that, although the analysis based on the semiclassical represen-
tation AR2(E) of the spectral determinant produces the same structure as the RMT
results (both are naturally ordered in powers in 1/¢), the terms (5.24, 5.25) follow-
ing from semiclassical loop contributions are not consistent with RMT and spoil
the agreement found between RMT and the results in [2, 14] based on the diagonal
approximation. Moreover, using the same methods we also obtain non-vanishing
contributions of higher order in 1/€ [15, 16].

As we will see, the problem requires a better insight into possible pseudo-orbit
correlations. Such an insight is gained here through the comparison with a corre-
sponding field-theoretical approach.
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5.2.2 Field-Theoretical Calculation: The Curvature Contribution

In order to better understand the difference between the semiclassical and the RMT
results, we calculate Cg(€) by field-theoretical methods [17]. Our approach consists
of transforming the non-perturbative field-theoretical expression for Cg(€) into a
perturbative expansion. As we will see, the difference between the previous semi-
classical and the RMT results has a direct correspondence in the field theory.

We start with the non-perturbative evaluation of the integral following from field-
theoretical considerations, which is given by [16]

1 e
Cp(e) x E/Sd,u (S) e TS, (5.27)

with § € Sp(4)/ (Sp(2) * Sp(2)) in the orthogonal and S € U(2)/ (U(1) « U(1))
in the unitary case. The group of the n-dimensional symplectic matrices is denoted
in this context by Sp(n) and the group of n-dimensional unitary matrices by U (n).
Parameterising U (2)/ (U (1) %= U (1)) in terms of angles 6 and ¢, we calculate in the
unitary case

1 2 1 ) :
Cpeale) o / de / d cos fe—iecost — M€ (5.28)
T Jo —1 €

In a similar way one obtains in the orthogonal case Eq.(5.21) [16].

To obtain a perturbative evaluation of the field-theoretical expressions, in the form
of a power-series in 1/¢ that is comparable to semiclassics, we perform the following
procedure in the unitary case: We replace the integration variables on the sphere by
stereographic projection variables in the complex plane. In this parametrisation we
rewrite S as

]12//3 0 ) (]lz//g 0 ) -1
S = T T 5.29
( 0 —Typ 0 —Typ 6:29)
with
]12//3 —BT)
T = 5.30
(B 128 30

and the stereographic projection variable B € C in the unitary case. An analogous
procedure yields in the orthogonal case

_(B1 —B
B= (B; 5 ) (5.31)

with By, B, € C. We used here the dagger to indicate the Hermitian conjugate of
a matrix and the power —1 for its inverse. Using this parametrisation a one-to-one
correspondence between the field-theoretical and the semiclassical contributions was
shown to hold in the case of the spectral form factor [12, 13].
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The effect of this parameterisation is twofold: On the one hand this variable
transformation has a nontrivial Jacobian corresponding to a curved measure,

4[dB]

RTEYRG

(5.32)

with B = |B|, [dB] = dBdB* in the unitary and B = VB> + |By|%, [dB] =
dB1d Brd B{d B5 in the orthogonal case. On the other hand it leads to a particular
form of the phase in the exponential

TrS = %(1 +2> (=DF 82"). (5.33)

k=1

For this particular parameterisation of the integral in Eq.(5.27), we can unam-
biguously identify two kinds of terms in the 1 /€ expansion of the correlator obtained
by using in the unitary case [;° dB |B|* e~2i€lB o (1/e)*+! (k € Np) and the
corresponding relation for B; and B; in the orthogonal case. We will call these terms
simply phase contributions if the factor in front of the exponential in the last integral
(i.e. in front of the k = 1-term in (5.33)) results from expanding the right hand side
of Eq. (5.33) and curvature contributions if it results from expanding the right hand
side of Eq.(5.32) in powers of B.

For the spectral form factor a one-to-one correspondence between the field-
theoretical phase contributions and the contributions from semiclassical diagrams
was shown in [12, 13]. In this case the evaluation was performed applying the replica
trick [18]. Here a parameter r contained in the considered quantities, that is allowed
to take positive integer values is at the end of the calculation extrapolated to r — 0.
Although this is mathematically not justified—analytic continuation would need the
functional values on a finite compact region and not just for isolated points—it mostly
leads to reasonable results, although there are also counterexamples where it leads
to wrong conclusions [19]. As the integration in the case of the spectral form fac-
tor is performed with respect to a manifold with a dimension proportional to r, the
curvature vanishes in the replica limit » — 0. In the case of the spectral form factor
curvature contributions can thus be neglected and phase contributions and contribu-
tions from semiclassical diagrams are equal. We can thus expect agreement between
the phase contributions and the contributions from the semiclassical diagrams also
for the correlator of two determinants.

As can be easily checked, we indeed find agreement between the field-theoretical
and the semiclassical results (5.24-5.26), by evaluating Eq. (5.27) and ignoring the
terms originating from the curvature of the measure, i.e. replacing (1 + B8%)~*/# in
Eq. (5.32) by a constant. Clearly, what we are missing in the semiclassical calculation
are the analogues of the terms that can be derived from curvature. This means that a
new kind of pseudo-orbit correlation is lacking which corresponds to the curvature
effects.
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Fig.5.2 Sketch of a pair of
pseudo orbits A, B correlated
in a way that one of the
orbits (dashed-dotted) has a
period smaller than the
encounter time. The two
long orbits (dashed and full
line) differ in the number of
traversals around the short
periodic orbit y;, by one

5.2.3 Semiclassical Interpretation of Curvature Effects

In this subsection we present the missing pseudo-orbit correlations which provide the
curvature effects in the integration over the curved manifold in the field-theoretical
approach and thereby consistency with RMT. The essential step is to lift the constraint
that one of the short periodic orbits does not surround the other one more than once.
This assumption is implicit in the calculation of the eight-shaped diagrams in Ref.
[1] presented in the last section when one assumes that both short orbits have periods
larger than the encounter time.

To be precise, we consider as components of a pseudo orbit two periodic orbits,
(dashed and full line in Fig.5.2) which include several traversals around a common
short periodic orbit ¥}, and differ in the number of repetitions by one. In order to find
further contributions to Eq. (5.22), we have to look for pseudo-orbit pairs possessing
almost equal actions: We thus pair the short periodic orbit y;, and the orbit surrounding
it (k — 1) times with the orbit surrounding it k times. In terms of symbolic dynamics,
i.e. when representing every orbit by the sequence of primitive traversed orbits, this
way of pairing can be described in the following way: We consider an orbit traversing
aloop y| once and a short periodic orbit ¥}, k times possessing the symbolic notation
ylyé‘. This orbit is paired with a pseudo orbit consisting of the orbit y;, and an orbit

traversing y; once and y;, k — 1 times; this pair has the symbolic code (yp) ()/1 ylf_l

This situation occurs in the case, when the encounter time fepc is longer than the
shortest of the periodic orbits, i.e. when the encounters overlap.

For the evaluation of this contribution, we again need the action difference between
the two orbits, obtained as AS = us as discussed before Eq. (4.24) and the weight
function as a function of s, u that is obtained in analogous manner as before to be

given by wr 1, (u,s) = % expressed through the periods of the two short
periodic orbits, T and T;,. The winding number n of the orbit with duration 7" around
the one with duration 7, is thenn = teT—“; This implies, that the integration over T}, for
fixed s, u contains a summation over all possible winding numbers. Using the action
difference and the weight function given above and applying the Hannay and Ozorio

sum rule with respect to 7" and 7}, we find for C‘ﬁzz (¢) the additional “curvature”


http://dx.doi.org/10.1007/978-3-642-24528-2_4

5.2 Curvature and Multiple Traversals of Periodic Orbits 163

contribution

c & °] Tenc
Cuw (€)= —4 </ ds du/ ar / ﬂ<3,("/h)"s<32’-€(TJFTI’)/THwT,Tp (u, s)>
—c Tenc 0 Tp Ak

1

ie
(5.34)

To obtain the second line in Eq. (5.34) we perform first the time integrals exactly and
afterwards do the s, u-integrals using that only terms linear in fep. contribute and
the result given in Eq. (2.59). The expression for Ccuré(e) thus precisely cancels the
undesired term (5.24) coming from the elght—shaped diagram, and allows for the full
explanation of the RMT result (5.20) in purely semiclassical terms.In the orthogonal
case, one obtains in a similar way

4
Cl]l'V( ) [ (535)

cancelling again the extra term (5.25) and yielding the universal RMT result (5.21).

We could thus identify the semiclassical analogue of the field-theoretical curvature
contributions. As in the field-theoretical case the splitting between the two diagrams
analysed in the semiclassical calculation in first and third subsection is completely
arbitrary; the final result, the sum of the two, is however always the same. This can be
taken into account in the semiclassical calculation by considering as reference orbits
in the calculation of the weight function always the two short orbits as we did above
Eq.(5.34) and by allowing for an arbitrary length of one of the two periodic orbits
as long as the other one is longer than the duration of the encounter. This yields

Celght( )+Ccurv(€)
__2</ dsdu/ dT/ dTy ([/h)usCZié(T-'er)/THwT’Tp , s)
—C

Tenc Tenc
+2/ dS d’/l/ d_T/ d&e(i/h)uSeZiG(T-l—Tp)/TH wr.T (u’ S)>
—c 0 r o Ak

=0, (5.36)

i.e. the sum of the two contributions calculated in the first and third subsection. The
final result in the last equation is obtained by taking into account that the expres-
sion before contains no terms linear in fepc. The splitting of the two contributions in
our semiclassical calculation presented before showed however the one-to-one corre-
spondence to the corresponding field-theoretical contributions after the stereographic
projection.

We want to emphasise here the different behaviour of an eight orbit in Fig.5.1
and the “oco”-orbit pair in Fig. 4.21: For an “8”-orbit with overlapping encounter
stretches, one of the short orbits winds around the other and thus yields another
nontrivial contribution, that is not yet contained in the diagonal terms. In the case


http://dx.doi.org/10.1007/978-3-642-24528-2_2
http://dx.doi.org/10.1007/978-3-642-24528-2_4

164 5 Semiclassical Analogues to Field-Theoretical Effects

of an “oo0”-orbit pair with overlapping encounter stretches, however, the orbit and
its partner traverse the whole orbit in the same direction [20, 21], which is already
contained in the diagonal contribution.

By this calculation we demonstrated that overlapping encounter regions, usually
only considered when taking into account the effect of a non-zero Ehrenfest-time as
we did in the last chapter, can lead to non-vanishing contributions even for vanishing
Ehrenfest-time. One question, however, has to be addressed at this point: When are
effects of encounter overlap important and when can they be neglected for zero
Ehrenfest-time? This point will be treated in the following subsection.

5.2.4 Consistency with Former Results

Also in former semiclassical calculations to reproduce RMT results, diagrams involv-
ing orbits surrounding a short periodic orbit occurred. However the contributions
from (approximate) multiple traversals needed never to be taken into account to
reproduce RMT results. Here we discuss the consistency of our results with those
approaches. We distinguish in this context two different situations: first approaches
involving orbits and second the approaches involving pseudo orbits.

In the case of orbit pairs the diagram analysed in the last subsection cannot occur
as two partner orbits are needed for the original trajectory to obtain a pair possessing
small action difference. One simple example for a possible diagram in the case of
orbit pairs, where a longer orbit surrounds a short periodic orbit, is shown in Fig. 5.3.
We treated this orbit pair also in the last chapter, when studying the effect of non-
zero Ehrenfest-time, see for one orbit of the pair Fig. 4.22. In this case a central
dashed-dotted periodic orbit is encountered twice by an orbit and its partner. The
partner is obtained from the original orbit by exchanging one traversal of the dashed-
dotted orbit between the first and the second encounter with it. For orbit correlations,
i.e. no pseudo orbits, it was shown in the case of spectral statistics [12, 13] and
the case of quantities related to the conductance [22, 23], as already mentioned in
Chap. 4, that RMT results can be reproduced when neglecting contributions from
multiply traversed periodic orbits.

This fact can also be obtained independently for the spectral form factor and
the conductance for orbit pairs encountering one periodic orbit twice, see Fig.5.3,
by considering our Ehrenfest-time calculation in the last chapter and studying the
limit Tz — 0. As can be easily checked, just the configurations of two independent
encounters with the periodic orbit, see Fig. 4.14, and one encounter of three stretches
with one of them lying on the periodic orbit, see Fig. 4.6, yield a non-zero contri-
bution for tg = 0. In particular, this means that we do not find a different result by
neglecting configurations where a periodic orbit is surrounded by a longer one many
times. Generalising this calculation to more complicated diagrams would provide
also in these cases the cancellation mechanism and by this show that there are no
contributions from multiply surrounded periodic orbits.
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Fig.5.3 Encounter overlap for different encounters. We consider an orbit (blue) and its partner
(red), that differ by one traversal during the encounter with the central dashed-dotted periodic orbit
(brown). The stretches of one encounter of the orbit and its partner with the central periodic orbit
are indicated by full lines, the others for distinction by dashed lines. We calculated the contribution
of this configuration to the spectral form factor for non-zero Ehrenfest-time in the last chapter

Next we consider the consistency with other approaches involving pseudo orbits.
Correlation functions of spectral densities can be obtained by considering semiclas-
sical expressions for homogeneous ratios of spectral determinants, as explained in
the last section. The contributions from eight-shaped orbits containing surrounded
periodic orbits, see Fig.5.2, and related diagrams did not need to be considered to
obtain RMT results [1, 11], because they apparently all cancel each other. In the case
of the eight-shaped diagram we showed in Eq. (5.18) that the contributions resulting
from different ways to include the orbits in the pseudo-orbit sums cancelled. As can
be easily checked the same cancellation also applies to the corresponding contribu-
tions from surrounded periodic orbits, Fig.5.2. However, it is not fully general, i.e.
it does not work for the two-point correlator of spectral determinants, as was shown
in this section and also not for other non-rational correlators of spectral determinants,
as can be easily checked.

We finally mention that we concentrated in this part on approaches calculating
energy-averaged quantities. Multiply traversed periodic orbits can also occur for
zero Ehrenfest-time when studying not averaged semiclassical expressions as for the
Kubo conductivity in [24] and for the Wigner time delay in [25].

To summarise, we presented in this chapter in the first section a method to obtain
semiclassically the contributions to the spectral form factor K (t) in a way consis-
tent with RMT for all 7, i.e. not only for ¢ < 1 as in Chap. 2 first presented in
Ref. [1]. Furthermore we explained how the additional correlations appearing in this
context are connected with the fact that a correct semiclassical expression for the
spectral determinant needs to be real for real energies. In the second section we
showed that the semiclassical approach from Ref. [1] applied to the two-point cor-
relator of spectral determinants produces spurious terms coming from pseudo-orbit
correlations, spoiling agreement with the universal RMT results. A new additional
contribution is thus required, it results from pseudo-orbit correlations represented by
encounter diagrams with overlapping encounters. We have shown that these effects
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are the semiclassical analogue of the curvature contributions in the field-theoretical
approach, thus providing a semiclassical interpretation of the latter. In the discussion
of the consistency of our results with previous approaches we explained when RMT
results can be obtained in previous semiclassical calculations without considering
contributions from multiply traversed periodic orbits.
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Chapter 6
Conclusions and Outlook

In this chapter we first summarise our results and afterwards present possible exten-
sions: In general we studied mesoscopic systems with classically chaotic dynamics
using semiclassical techniques. On the one hand we confirmed RMT results, on the
other hand we considered corrections to the latter results mainly due to Ehrenfest-time
effects. After introducing in Chap. 2 the semiclassical approaches for calculating the
contributions from correlated orbit pairs to the conductance and spectral correlators,
we considered in Chap.3 two examples of time-dependent processes: the survival
probability and the fidelity amplitude. We showed how to obtain semiclassically
corrections to the classical results consistent with RMT. This was the first semiclas-
sical treatment of pairs involving open orbits starting and ending inside the system.
Before, only periodic orbits or orbits starting and ending on cross sections in the
leads had been considered. To calculate the contributions from these open orbit pairs
starting and ending inside the system new semiclassical diagrams had to be identi-
fied possessing crossings in configuration space at the beginning or at the end of the
trajectory. Then we checked that our results and the corresponding RMT results are
equal to high order in / in presence and absence of time-reversal symmetry and in
the presence of spin-orbit interaction. We furthermore showed that exact relations
like the unitarity of the survival probability, the fidelity amplitude and the conti-
nuity equation for the survival probability also hold in our semiclassical approach.
We could confirm a relation between the fidelity amplitude and the spectral form
factor derived before within the RMT framework. In the last part of this chapter we
studied effects that were not accessed by RMT, namely the effect of non-diagonal con-
tributions in the Lyapunov regime of the fidelity and in the case of a time-dependent
perturbation.

In the next chapter we analysed the effect of a non-zero Ehrenfest-time: After
reviewing previous results for the Ehrenfest-time dependence of the leading-order
quantum correction in the number of open channels to the conductance of a two lead
geometry we calculated the Ehrenfest-time dependence of the survival probability
and the fidelity amplitude. The Ehrenfest-time dependence of the survival probabil-
ity was confirmed by numerical simulations. For the next application we considered
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additionally tunnel barriers in the leads. We then described the dependence of the
conductance variance contribution linear in the Ehrenfest-time and leading order in
the number of open channels on the tunnel probability through the barriers. Due
to the large number of diagrams in the analytical calculation and the complicated
dependence of the dwell time on the tunnelling rate this calculation was much more
involved than the one performed in Ref. [1] for perfectly coupled leads. The calcu-
lated tunnel-probability dependence could be confirmed numerically by simulations
performed by P. Jacquod. Then we considered the next-to-leading order quantum
correction to the dc conductance. In this case we identified previously overlooked
diagrams occurring in the case of multiply surrounded periodic orbits and calcu-
lated their contributions. We checked that taking these diagrams into account leads
to results that fulfil the current conservation relation (2.46). We extended this study
by including a finite frequency w to the ac case and checked in this context that the
corresponding contributions we obtained do not affect the Ehrenfest-time indepen-
dence of the Wigner time delay. Using the gained knowledge about possible orbital
configurations we determined the next-to-leading order quantum correction to the
spectral form factor in the absence of time-reversal symmetry and found a result
consistent with the field-theoretical prediction of Ref. [2] that however differs from
the one obtained previously by semiclassical methods [3]. In the next section we
calculated the Ehrenfest-time dependence of the correlation function of n pairs of
scattering matrices to leading order in the number of open channels for all n € N.
By this, we extended previous approaches that only treated semiclassically cases up
ton = 3 [4, 5]. We applied this result to obtain the Ehrenfest-time dependence of
the density of states of a chaotic Andreev billiard.

In Chap. 5 we gave semiclassical interpretations of effects occurring in the corre-
sponding field-theoretical calculations. In the first section we studied the connection
between the fact that the spectral determinant has to be real for real energies that
implies a nontrivial relation for its semiclassical approximation on the one hand and
the contributions predicted by RMT for the spectral form factor for t > 1 on the
other. For the two-point correlator of spectral determinants we gave in the second
section an interpretation of the integration over a curved manifold in field theory in
terms of multiply surrounded periodic orbits in semiclassics. This implies for the
relation between the RMT results and the semiclassical approaches to understand it:
For some time it was believed that there is a one-to-one correspondence between the
contributions from correlated pairs of trajectories in the semiclassical calculation and
the contributions from diagrams occurring in the corresponding perturbative super-
symmetric treatment studied in Refs. [6, 7]. However our calculation in the second
section of the last chapter showed that there exist cases where both calculations con-
tain different effects that also led to different ways for obtaining the RMT results: In
the field-theoretical calculation we have an integration over a curved manifold that
led to the curvature contributions, however the vertices in field theory that correspond
to the semiclassical encounter regions are essentially points, i.e. possess a vanishing
extension and thus cannot wind around periodic orbits. This is different in semiclas-
sics where we do not consider a curved manifold but the encounter stretches have a
finite length and can thus surround a periodic orbit yielding further contributions.
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One possible extension in this case would be to show that the connection between
the field-theoretical curvature contributions and the contributions from multiply sur-
rounded periodic orbits we presented here for the second-order contribution in 1/€
indeed holds to infinite order in 1/€. Probably this would also provide additional
information about periodic orbit encounters in general.

One further extension is the search for new classes of correlated trajectories to
obtain a semiclassical explanation of further effects predicted by field theory: We have
seen in the first section of the last chapter that the fact that the exact spectral determi-
nant is real for real energies implies semiclassically a nontrivial relation between the
contributions from orbits of different lengths. This relation, that leads as explained
in the last chapter to the behaviour of the spectral form factor for r > 1 predicted by
RMT, should be explained semiclassically in terms of orbit correlations. Up to now
this was only achieved for simple chaotic model systems in [8, 9]. Furthermore this
would probably not only answer the questions posed after Eq. (5.12), i.e. the role of
the upper limit in the time integrations resulting from the application of the Hannay
and Ozorio de Almeida sum rule [10] and how the correct semiclassical expression
for the inverse spectral determinant looks like, but additionally justify semiclassi-
cally the use of finite sums over orbits in semiclassical approximations to the spectral
determinant, see the expression in Eq. (5.4). Remember here that claiming that the
spectral determinant is real for real energies directly led to the latter expression. The
calculation of spectra based on Eq. (5.4) or on a trace formula obtained from the
latter equation could be semiclassically justified by such a procedure. Finally we
mention that also for other phenomena, for example strong (Anderson) localisation
[11],1i.e. alocalisation of all electronic wavefunctions, not yet identified correlations
between orbits could lead to a semiclassical explanation of these effects.

Concerning the approaches for non-zero Ehrenfest-time one can think of two
directions for extending our results. First there are several examples where RMT
results or semiclassical results for Tz = 0 are known. Here it would be interesting
to extend these results to non-zero Ehrenfest-time and compare them for example
with numerical simulations. One concrete application here is transport through a
graphene billiard, i.e. through a chaotic cavity fabricated by cutting a cavity out of a
two-dimensional graphene flake. The corresponding RMT results characterising this
kind of transport are discussed for example in [12].

Second the results obtained in Chap. 4 are a first step towards the semiclassical cal-
culation including the Ehrenfest-time dependence to arbitrary high orders. In Chap. 4
we calculated correlation functions of scattering matrices and spectral densities to
some low order in the inverse channel number and the inverse energy difference.
A first step towards a generalisation to higher orders would be the identification of
a general possible pattern behind the Ehrenfest-time dependencies of the different
diagrams. The probability of identifying such a pattern that can be expected to hold
to infinite order is quite different for the considered cases: In the case of dc transport
we found that the second-order quantum correction is independent of the Ehrenfest-
time, whereas the first-order quantum correction turned out to be proportional to
e~ £/ [13]: Comparing the contributions at different orders in the number of open
channels, it seems thus not yet possible to identify a general pattern behind the
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Ehrenfest-time dependence in this case. For the spectral form factor the final result
could however possess a simple structure: The contribution from each discrete dia-
gram (i.e. those considered without the Ehrenfest-time dependence in Chap. 2) to the
spectral form factor K (7) is given by a function depending on t — ntg /Ty where
n is the number of encounter stretches of the underlying diagram. In the case of
the correlation functions of n pairs of scattering matrices we obtained a huge class
of diagrams possessing the same Ehrenfest-time dependence. In this case a general
pattern could be that also the higher-order contributions in the inverse channel num-
ber possess a simple common Ehrenfest-time dependence. The next step in the last
two cases would be to see if these patterns indeed hold semiclassically to arbitrarily
high order. This would require a general treatment of arbitrarily sized encounters
involving also encounters with periodic orbits and their fringes. Therefore we would
need to proceed mainly in two steps: First an efficient method is needed for par-
titioning the diagrams contributing with the same multiplicity, as we described it
when analysing the Ehrenfest-time dependence of the n-pair correlator of scattering
matrix elements to leading order. Second recursion relations for the corresponding
contributions taking, in contrast to the case of zero Ehrenfest-time [14, 15], also
diagrams with encounter fringes into account, have to be derived. For example this
would mean in the case of the first-order quantum correction to the spectral form
factor in the absence of time-reversal symmetry that not only the contributions of two
2-encounters and one 3-encounter have to be captured by the recursion relations, as
it was done in Chap. 2, but also the contributions from diagrams containing fringes
overlapping at both ends need to be taken into account.

This book is restricted to a semiclassical explanation of quantum features of sys-
tems with classically chaotic dynamics. One possible extension is thus to explain
semiclassically the corresponding features as the weak-localisation lineshape for
systems with regular or mixed classical dynamics. Here these effects are in general
system dependent. The current status of this research is the following: Assuming
ergodicity of the motion on the tori also for integrable systems sum rules were
derived to calculate the contributions to the transmission and reflection from orbit
pairs possessing equal actions, i.e. from equal orbits or orbits time-reversed to each
other [16]. For a corresponding calculation for the circular billiard, see [17]. These
results however do not respect the current conservation relation (2.46), there is a
contribution to the reflection but not to the transmission that is affected by a mag-
netic field. Thus also in this case orbit pairs possessing a small but finite action
difference contributing also to the transmission need to be considered. This is how-
ever not straightforward: The construction scheme for crossing-anticrossing pairs as
depicted in Fig. 2.2 cannot be directly carried over to integrable systems, an essen-
tial assumption for the construction was in the chaotic case that the orbits approach
and depart from each other exponentially with time, in integrable systems this effect
is however linear in time. On the other hand, pairs similar to the ones depicted in
Fig. 4.11 were analysed numerically for example in [18] leading to results respect-
ing the current conservation relation, but a corresponding analytical semiclassical
approach is still lacking.
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We assumed in this book that the considered particles do not interact with
each other. Despite this assumption many experimentally observed effects can be
explained quite well. Interaction effects due to Coulomb interaction however get
important in electron based transport when for example very small dots or dots
weakly coupled to the leads by tunnel barriers are considered [19]. A first step to
depart from the single particle picture is to describe the state of the system no longer
by single particle wavefunctions but by symmetrised or antisymmetrised wavefunc-
tions taking into account that identical particles are considered. Then the effect of
interactions, for example due to the Coulomb potential, needs to be taken into account.
The standard methods of solid state physics are in general not applicable to meso-
scopic systems as they assume translational invariance, that is not given here in good
approximation due to the relatively small systems. Furthermore it would be of interest
to investigate interacting systems from the quantum chaos perspective, which focuses
on identifying the influence of the underlying classical dynamics on the features of
the corresponding inferacting quantum system. A semiclassical theory taking into
account interaction effects is thus highly desireable.

Despite the many achievements made during the last years semiclassical methods
thus possess various further interesting applications.
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Appendix A

Recursion Relations for Transport

To prove the continuity equation for the current (3.126) within our diagrammatic
approach we return to the combinatorics of the number of periodic orbit structures
described by a vector v [1, 2], and we start with the unitary case. By considering
the number of ways a 2-encounter could merge with a k-encounter [to form a
(k + 1)-encounter] by shrinking the links connecting the 2-encounters of the
structure, they arrived at the relation

2v; (k+ 1) (veg1 + 1) 2

“EN(Y) = N(vRA=kH] Al

LN = Y N, (A1)
where vI2*~*+1] i5 the vector formed from v by combining a 2-encounter and a

k-encounter to form a (k + 1)-encounter, so that v, and v, are reduced by one,
while vg; is increased by one. We want to turn this relation into a version for open
systems involving the extra factors we have, in a similar way as was done for
parametric correlations in [3]. Including the extra terms and rearranging, we arrive
at the following

2up(N —27iw)
(N — 4niw)
5 (k+ Do (N — 2micok)
(N = 2miw(k+ 1))

N(v,N)

N(v2A=kH11NY = 0, (A.2)

k>2

where N(v, N) was defined in Eq. (3.110) and v,ikfkﬂ] = vx,1 + 1. Because this
is identically zero, if we sum over all vectors with a common value of L — V =m
the result is still zero

L—V=m [2,k—k+1] .
Z 2vy(N — 27uw +Z (k+1)vg (N—2nza)k)N(v[2kak+1],N)
- (N —4rniw) = (N=2miw(k+1))
=0. (A3)
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As combining a 2-encounter and a k-encounter reduces both L and V by one, the
resulting vector vI2*~*+1l has the same value of L — V = m as v. The important

step is then to express the sum over the resulting vectors as

L—V=m L—V=m
2.k—k+1] SN ~
S T INERER Ny = ST L NV, N). (A4)

v v

If we then identify the dummy vector v/ with v in our original sum, we can rewrite
(A.3) as

Lfm 2vy(N — 2miw) ZZUI(N— 2mia(l — 1))

(N —4riow) (N —2riol) N(v,N) =0, (A.5)

>3

where [ = k + 1. The first term can be included as the [ = 2 term in the sum over /,
so the result reduces to

L—V=m
Iy(N —2mio(l — 1)) «
N =0. A.
zv: ; (N —2riol) (v, N) =0 (A.6)

For the orthogonal case, we can also create a valid periodic orbit structure if we
shrink a link that connects a 2-encounter to itself so that the 2-encounter disappears.
This means that there is an extra term in the recursion relation. Recasting the
relation from [1, 2] into a form we require for our situation, we obtain

20, (N — 27io) (k+ l)v,&ﬁﬂk“](N — 2miwk)

N(v,N) + Z N (V2= N

(N — 4niw) = (N =2miw(k + 1))
L(v2=ly o
L NV N =0 A7
(N —2miw) (Vi N) =0, (A7)
where vI>~ is the vector formed from v by removing a 2-encounter and L(v?~) is

the number of links that the new structure has. As well as the resummation in (A.4)
we can also express

L_zvjm (VEHNGE=L Ny = L_%_ILN(V,,N), (A.8)

but now, because removing a 2-encounter reduces L by two and V by only one, the
value of L — V of our new summation variable v’ is one less than that of v. Using
these resummations, and the fact that when we sum the relation (A.7) over all vectors
v with the same value of L — V = m the sum is still zero, we obtain a result of

LVm (N =2mio(l—1)) - L—V=m—1 L )
Z l; l((N_zm'c(ul) ))N(V,N)Jr Z mN(V,N):O, (A.9)

v

This result, along with (A.6), allows us to prove (3.126), the continuity equation
for the current for both symmetry classes.
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Appendix B

Encounter Integrals for Non-zero Ehrenfest-Time

In this Appendix we want to calculate the integrals over the stable and unstable
coordinates s and u occurring for encounters with periodic orbits for general
prefactors a, b,d in front of fenc,1 + fenc2, s + 1, and 7, respectively. The times
Tenc,1 and tenc 2 denote the durations of the encounters with the periodic orbit, #; and
t, the durations of the fringes, i.e. the correlation times of the two orbits before and
after being correlated with the periodic orbit, respectively, and 7, the duration of
it. We therefore consider the expression J defined as

00 c Tp 1
J= </ drp/ dsdu/ dt'5———
0 —c 0 tenc,ltenc,Z

X exp(a(fenc,i + fenc2) + bty + tu) — dt,) (B.1)

.2
X exp (%Zu,-s,) > .
i=1 Ak

The s,u- and the '-integrals in J are evaluated in [6] yielding

oo 2

a _ _ )

J:/ dt,—71,e (dsp—2ave)
T
0 H

+ / h dt ﬂ(ezm —e?mr). (B.2)
0 "2T}(a — b)
Performing the 7,-integral finally yields

b2
2T%d(a — b)(

a?

J= T3 e 4

eZarE _ eZbrE)’ (B3)

which is frequently used in the main part of this book.

Furthermore we want to consider a 3-encounter and calculate with arbitrary
prefactors f and g in front of the encounter duration f.,. and the sum of the fringe
durations ¢, + f,, respectively,
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‘ 1
K= </_.dsdu 12 exp( ftenc + g1ts + gatu)

enc

- (B.4)
X exp (LZM,-S,'>> .
L i=1 Ak

The first contribution K is obtained by setting g = 0, it yields [4]
K, = izef”:. (B.5)
Ty
The second contribution K», given by K — K, is obtained for g, = g, = g to be
(4]

2
_ g 29tk ftE
Ky=3—"— (e — /%), B.6
* =3 G- ) (B0

For g, # ¢, we have instead [4]

_ 9192 ( (91+92)tE fw)
Ky=3—— = (e ¢ . B.7
2 (91 +9,— Th (B.7)



Appendix C

Conductance Variance with Tunnel Barriers

We give in this Appendix the leading order in N contributions to the variance of
the conductance for non-zero Ehrenfest-time in the presence of tunnel barriers. We
restrict to terms linear in the Ehrenfest-time 7z and Ny = N, as in the numerics in
Fig. 4.12. The results given here are valid in the unitary case; results for the
orthogonal case are obtained by multiplying them by a factor 2. After each con-
tribution we give its size in brackets once for I' = 0.2 and once for I' = 0.8 to
illustrate the main contributions responsible for the two peaks in Fig. 4.12. For
more details of the calculation, see [5].

If not stated differently the given results are obtained by applying the
diagrammatic rules introduced in Chaps. 2-4. The contribution from two
2-encounters in a row (see Fig. 4.9) is given here including also the cases where
stretches touch the opening at one end by

_F2P2‘CE

87s (C.1)

(—0.00187¢/tp; —0.07687£/1p). Twice this contribution is also obtained when
considering two independent 2-encounters with a periodic orbit, see Fig. 4.14 with
the rightmost link cut open.

Furthermore we consider for this diagram also configurations where one
encounter stretch in Fig. 4.14 touches both openings and the other one touches zero
or one time yielding

r’(1—r)
- (C.2)
(—0.00647g/tp; —0.00647E/7p). This contribution from encounters touching
both openings is obtained in a similar way as in Sect. 4.5.2. Note that a config-
uration where both encounters touch both openings yields a contribution at least
quadratic in 1g.
Two partially overlapping 2-encounters (middle diagram in in Fig. 4.13)—the
stretches are as before also allowed to touch the opening at one end—yield
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r’e—-ro)y

. (C.3)

(0.006481g/tp; 0.18432t/tp). This and also the next contribution can be
obtained by taking into account the effect of tunnel barriers in the calculation of K
in Appendix B. In the case of the middle diagram in Fig. 4.13 no further contri-
bution due to stretches touching both openings is obtained as can be checked by
performing a calculation as in Sect. 4.5.2 for this diagram.

Another contribution results from one 3-encounter with a periodic orbit
(leftmost diagram in Fig. 4.13) yielding when again also diagrams with the
encounter touching the opening at one end are considered

(I + T —1)pste
STD

(C4)

(—0.046367£/1p;0.054567 /Tp). Also in this case a diagram similar as in (C.2),
i.e. a 3-encounter touching both leads, needs to be taken into account

31 —rn)

o (C.5)

(0.002561g/1p; 0.010241E/1p). The calculation of the last contribution is again
similar to the one in Sect. 4.5.2. From (C.5) further configurations can be obtained.
In the case of one additional link connecting the encounter to the opening that is
back reflected at the lead (similar as in Fig. 4.11) we get compared to Eq. (C.5) a
factor I" less because there is one link more and a factor 1 — I’ more because of the
backreflection

rra-ry
r,-rwe (C.6)
Tp
(0.020481x/tp; 0.00512t%/1p) and in the case of two additional links
r(1—rn)*c
_— C.7
T (C7)

(0.040967£ /tp; 0.00064tg/7p).

From the rightmost diagram in Fig. 4.13 where the sum of the encounter times
is larger than the duration of the periodic orbit and the stretches overlap at both
ends we obtain

(p3 = 2p2)te

. (C.8)

(—0.0297g/tp; —0.1167¢/7p). Note that to simplify the expressions below we
included some part of this contribution below as k = O-term in (C.18, C.19). Here
again also diagrams are taken into account where stretches touch the opening at
one end, diagrams where the stretches touch the opening at borh ends yield as for
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the configuration considered in (C.3) no contribution.

Up to now we did not treat effects due to correlations of encounter fringes, i.e.
correlations between orbit parts before and after they are correlated with the
periodic orbit, see Fig. 4.10. Here the contribution is obtained by generalising the
calculation of J in Appendix B to this case

F3’L'E

8‘L'D

(C.9)

(0.001tg/7p; 0.0641/1p). In Eq. (C.9) diagrams with fringes inside the system
and with fringes touching the lead are considered. Additionally for I" # 1 we can
cut one fringe completely, then the attached encounter stretch touches the opening
and only one fringe remains leading to the contribution

(1=I)(I*=2r*)e

1
4’L'D (C 0)

(0.007367g/tp; —0.008967%/1p).

Up to now we only considered diagrams where the periodic orbit is longer than
the encounter stretches. Further contributions in terms of infinite sums derive from
the case where the encounter stretches surround the enclosed periodic orbit more
than once. In this case we obtain that the k-th term in these sums is the contribution
from the k-fold winding of each encounter stretch around the periodic orbit.
Configurations where the number of windings of the two stretches differs by more
than one do not contribute here, for a justification see Ref. [6]. The contributions
considered here are calculated by restricting the integral with respect to the
duration of the surrounded periodic orbit appropriately in terms of the encounter
durations fen;; and fenc2. We start with treating a configuration as analysed in
Fig. 4.14, now however both orbits encountering the central periodic one surround
it k times and first consider the contribution from encounters inside the orbit

- P2k+2 P2k+1)’~'E
C.11
8k2 2k+ 1)tp ( )

k=1

and a corresponding contribution where one stretch touches one opening

(P2k+2 - P2k+1)TE
2 C.12
; 8k2(2k+ )tp ’ ( )

further contributions are not obtained in this case.
Analogous calculations yield for the middle diagram in Fig. 4.13

i (P2k+3 - P2k+2)TE _ (1721<+2 - P2k+1)TE (C 13>
“[4(k+ 1)(2k + 1)tp 4k(2k + 1)tp '

and when one stretch touches one opening
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http://dx.doi.org/10.1007/978-3-642-24528-2_4#Fig14
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Fig13

180 Appendix C: Conductance Variance with Tunnel Barriers

o0
Z{ P2 — Paus)TE  (Parss — Pu2)Te (2P2ur2 — Pok1l — Pous3)TE
T

2k(2k+ 1)tp 2(k+1)(2k+1)rD 4k(k+ 1)tp
(C.14)
Turning now to the leftmost diagram in Fig. 4.13 we obtain
i (2paks2 — Pkt — Put3)TE (C.15)
=1 S(k + 1)](‘[1_)
from an encounter inside the orbit and
i 2p2ki2 = Pl — Put3)TE (C.16)
“— 2(k + Dktp
from an encounter touching the opening at one end and
_ Z (2paks2 — Paks1 — Pas3)te (C.17)

k+ 1)k‘ED ’

when one additional link is attached to one stretch that is back reflected at the
opening.
The rightmost diagram in Fig. 4.13 contributes

_io: (P2k+3 ;p2k+2)TE , (C.IS)
8(k+ 1)*(2k + 1)p

when the encounter stretches are inside the system and

- P2u+3 — P2ik+2)T
22( . +)E7 (C.19)
8(k+1)°(2k+ )1p

when one stretch touches the lead at one end.
Summing these contributions we obtain from Eqs. (C.15-C.17) and the last
summand in Eq. (C.14)

FZTE
(1 — F)S‘CD

(0.0017tg/p; 0.00032tg/7p) and from Egs. (C.11-C.13, C.18, C.19) and the
first two summands in Eq. (C.14)

(=1 + pan o] (C.20)

(p3 — p2)te
R (C.21)

(0.0327g/7p; 0.0087tg/tp) and
Li, ((1 - r)2) -

8‘L'D

(C.22)


http://dx.doi.org/10.1007/978-3-642-24528-2_4#Fig13
http://dx.doi.org/10.1007/978-3-642-24528-2_4#Fig13
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(—0.00395tg/tp; —0,0032315/1p) with the polylogarithmic function Liy(x).
The overall contribution to the conductance variance to leading order in N,
linear in 7z and for arbitrary I' is then obtained to be
r(r—1)(7r’ —6r*+4r —2)t; I*(2I =)z
+
S‘L'D (1 — F)8’CD
Lo (1= 1))z

8’L'D

In(2I' — I?)

, (C.23)

which is shown in Fig. 4.12 after multiplication by 2.
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