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Preface

Advances in high performance semiconductor electronic and optoelectronic
devices over the last 40 years are due in large measure to the developments in
growth, fabrication and experimental techniques. However, predicting and
understanding the operation of these novel devices would not have been possible
without the parallel developments in theoretical and modelling techniques.

This book aims to provide a comprehensive account of the theoretical and
modelling techniques used in semiconductor research and is suitable for
researchers and postgraduate students. It covers the theoretical description of
electronic and optical properties of semiconductors and devices, and techniques
used to understand the electronic band structure and the band gap engineering
where the strain and quantum confinement can be optimised for ideal device
performance. It also covers the fundamental theory of lasers and semiconductor
optical amplifiers, as well as the main computational techniques used to under-
stand linear and nonlinear electronic transport.

The book is based on the lectures given by leading experts in the EU-COST
Action MP0805 training school held in Izmir in April 2011.

Toulouse Xavier Marie
Colchester Naci Balkan
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Chapter 1
Introduction to Semiconductor
Heterostructures

R. Ferreira

Abstract We present an introduction to the physics of semiconductor nanostruc-
tures. We review the main assumptions of the k - p method applied to a bulk crystal
and then focus on the envelope function method to describe the electronic states of
semiconductor heterostructures.

1.1 Introduction

Semiconductor heterostructures have become in the last decades a cornerstone in
applicative and fundamental researches on condensed matter. Progresses in the field
of semiconductor nano-objects are actually the result of concomitant immense devel-
opments in various areas: growth and processing techniques, mastering of materials
properties, impressive advances in experimental set-ups and spectroscopic tools, new
concepts of structures and devices functioning, the understanding of new physical
aspects regarding the coupling of electrons, photons and phonons in low-dimensional
systems.

Most such developments are, so to speak, relatively recent, i.e. related to the last
two or three decades. The seminal proposal by Esaki and Tsu for band gap engi-
neering by stacking layers of different semiconductors, as well as the early sample
realisations, date instead from the 1970s. In the 1980s, systematic optical studies
in quantum wells and resonant transport through thin barriers were undertaken. At
that time, the main concepts underlying the physics of electrons in semiconductor
heterostructures were established. In particular, experimental and theoretical efforts
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2 R. Ferreira

have permitted to clearly establish quantum confinement and tunnel coupling as key
concepts in the field. The appearance of new structures and concepts marked the
1990s. Amongst them we quote (non exhaustively): (i) fabrication and first theoret-
ical modelling of quantum wires and dots, which pushed forward the field of lower
(quasi one and zero) dimensional electronic systems; (ii) the exploitation of more
and more elaborate stacks of alternating well and barrier layers, like in semicon-
ductor superlattices and periodic structures for quantum cascade lasers (QCL) and
(iii) the coming into play of dielectric light confinement altogether with electronic
confinement, which launched the field of strong light—matter coupling in semiconduc-
tor heterostructures. Quantum dots (QDs), semiconductor microcavities and quantum
cascade structures brought to the stage many new aspects of heterostructure physics:
the realisation of quasi-atomic structures in a crystalline matrix, the ability to control
the light-matter coupling and the study of new elementary quasi-particles (cavity
polaritons) in condensed matter, and a new concept (unipolar scheme) for laser light
generation in the mid-IR spectral domain. In the last decade the multiple develop-
ments of these fields can be observed, as well as the rapid growth of new ones, like
nanoacoustics and nanophotonics. A key concept underlying the research efforts in
this period is “coherence”. Indeed, many efforts in the semiconductor nanostructure
domain have been devoted, in parallel with worldwide studies in many fields, to the
realisation of physical systems operating in the (ideally) pure quantum regime, as
motivated by the potential implementation of future opto-electronic devices. This has
in particular pushed the understanding of decoherence sources in the nano-objects,
revealing both the profound influence of the nano-object environment on its elec-
tronic and optical properties, as well as many particular aspects of electron—phonon
coupling in low-dimensional systems. Additionally, crossing domains have emerged
and become mature fields by themselves, like: (a) studies of quantum dots in vari-
ous kinds of optical (micro-) cavities; (b) studies of strong light—matter couplings in
quantum-cascade-like structures (inter subbands polaritons); (c) use of superlattices
and quantum dots for the optical generation of acoustic signals. It is finally worth
stressing the continuous improvement of the theoretical description of electronic
states of nanostructures, in parallel and jointly with advances in sample realisation
and experimental studies (we shall come back to this point later on in this chapter;
see also Paul Voisin’s contribution in this volume).

Delimiting the field of semiconductor heterostructures is nonsense: in fact, semi-
conductor nano-objects are today present in numerous areas, and concepts and
techniques from many different fields contribute to the advance of nanostructured
semiconductor physics. Thus, interdisciplinary concepts and efforts have become
a driving force of research nowadays. To illustrate this point, and without aiming
to be exhaustive, one can quote: (i) the tremendous developments of the physics
of an electron gas confined near a semiconductor heterojunction; (ii) the realisa-
tion of structures containing either semiconductor or metallic layers, in the field of
spintronics, aiming at developing hybrid devices for the concomitant generation and
detection of spin-polarised carriers; (iii) embedding semiconductor-based systems
(like QDs and QCL structures) in photonic crystals, aiming at improving/controlling
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light-matter coupling and developing light sources with specific characteristics; (iv)
the impressive number of transport and optical studies done on carbon nanotubes.

This book aims at presenting an introduction to the physics of semiconductor
heterostructures (for a comprehensive review see [1]; see also [2, 3]). This cannot be
envisioned without recalling the physics of bulk semiconductors. Indeed, in a rough
image, a semiconductor nanostructure is made of juxtaposed pieces of different
semiconductors, and, as we will recall, their electronic levels and optical properties
retain many fundamental aspects of the corresponding ones for the original materials.
The first part is thus devoted to a quick review of bulk properties: the electron Bloch
states and the effective mass description of near-edge conduction and valence bands
states (see e.g. [4—6]). In the second part we introduce the envelope function method
to describe electronic levels in perturbed semiconductors. Indeed, an overwhelming
number of studies in semiconductor physics are intimately related to the presence
of some kind of perturbation: doping with shallow impurities provide carriers; a d.c.
bias triggers a current; the optical characteristics are the response of the crystal to
an external e.m. excitation. The building of a theoretical framework allowing the
description of electronic levels in perturbed crystals is thus naturally the object of
immense efforts from the very beginning of semiconductor physics [7]. The envelope
function method appeared as a versatile approach for many cases of interest, namely
whenever the perturbation strength is “weak” enough (as compared to typical band
energy widths or separations) and “slowly varying” in space (as compared e.g. to the
lattice period). The simplest heterostructures are introduced in the third part. We also
present an envelope function description of their one-electron states. As we shall see,
although the nanostructuration process introduces as a rule a large (in energy) and
abrupt (i.e., at the cell size scale) variation of the crystal potential, it can nevertheless
be properly tackled by the envelope function method, provided some assumptions,
to be discussed later on, are retained in the model.

1.2 Electronic States of Bulk Semiconductors

We review in the first part of this paragraph the fundamental concepts related to
the formation of energy bands in a semiconductor and the principal characteristics
of their electronic states (Bloch functions). The second part is devoted to the k - p
method.

1.2.1 Fundamental Concepts

The key concept in a perfect crystal is translational invariance, which characterises
the presence of a spatial order at the microscopic level. To describe translational
invariance we define a set of lattice vectors: the Bravais ensemble {R}. In this way,
two points in space differing by a lattice vector are physically equivalent. As a
consequence, any physical property (i.e. any observable) of an idealised crystal in
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its ground state is invariant under translation by a lattice vector. For instance, the
density of electronic charge is a periodic function on the crystal lattice. This is a
very fundamental statement, to which any theoretical model aiming at describing the
physical properties of a semiconductor should conform, and distinguishes from the
very beginning a crystal from an atomic or molecular system in empty space. Strictly
speaking, a real sample is finite in size. Nonetheless, the initial assumption of strict
periodicity, which applies only for infinite size material, turns out to be a very robust
concept in “large enough” systems. Deviations from this infinite-size model for a
crystal introduce surface effects, but do not affect its bulk properties. Also, interface
effects will be of primary importance in nanostructures. For the moment, we keep
considering the assumption of translational invariance and shall have the opportunity
to come back again to surface and interface effects later on.

From this single assumption, a full set of physical and theoretical results follows.
At the outset, it is worth recalling the very useful mathematical concept of reciprocal
lattice. Indeed, any periodic function in the real lattice can be decomposed in Fourier
series within an ensemble of reciprocal lattice vectors {K'} obeying K - R =2 7 n,
with n an arbitrary integer. We thus possess two equivalent discrete sets of vectors
to describe a perfect crystal: {ﬁ} and {12 }. The two ensembles share some important
properties: (i) the vectors of the ensemble form a periodic lattice in either real or
reciprocal spaces, so that each vector can be written in terms of elementary basis
vectors R = i1dy + izdz +izdz and K = jiby + jaba + j3bs, where i1 23 (j1,2.3)
are integers and dj 2,3 (131 2.3) are the generating basis in the real (reciprocal) space;
(ii) the volume span by the basis vectors form a unitary cell, rigid translations of
which within the lattice (i.e. by using the different combinations of i1 23 or ji.2.3)
permits completely filling the space without overlap. The choice of the basis vectors,
and thus also of the unitary cells is however arbitrary. There is nevertheless one
particular choice that more clearly reflects the symmetry properties of the crystal:
this is the Wigner-Seitz cell in real space and its corresponding reciprocal lattice
counterpart, the Brillouin Zone (BZ). These particular unit cells, definitions and their
constructions in the two spaces are presented and discussed in many workbooks (see
e.g. [4, 5]). In the following, we shall implicitly assume the Wigner-Seitz cell in real
space and first Brillouin cell in reciprocal space.

Our principal objective is to discuss a method for calculation of electronic states
in a semiconductor. This task is of course impossible for a real system, i.e. con-
stituted of a (virtually) infinite number of carriers of either charges: electrons and
nuclei. Two approximations are usually invoked to overcome this difficulty: the Born-
Oppenheimmer and the Hartree-Fock approximations. The first allows disentangling
the nuclei and electron motions, whereas the second replaces the true N-electrons
problem into an effective one-electron problem. These assumptions, exhaustively
discussed in the literature, will not be detailed here. We shall only recall two major
consequences of them. (i) The problem of finding the electronic eigenstates of a
crystal fits a one-electron problem Her = T + Vi (7), where T = p2/(2my) is the
kinetic energy operator (m the bare electron mass) and V., (¥) the effective crystal
potential. (ii) However, the true expression of V() is hardly known: although the
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bare interactions are coulombic-like in the original N-body problem, the simplifica-
tions brought about by the Born-Oppenheimer and Hartree-Fock schemes consid-
erably influence the profile of the effective crystal potential. A lot of considerable
theoretical effort has been put in evaluating its precise form or, equivalently, differ-
ent matrix elements involving Ve, (¥). We shall here instead adopt a more pragmatic
strategy, namely, exploit as much as possible the symmetry properties of V. (¥) and
push as far as possible the description of the crystal eigenstates. As we shall see
in the following, we will end up with a semi-phenomenological description of the
electronic states in terms of effective parameters, which are ultimately related to
different matrix elements involving the eigenstates of H,.

Accounting thus for the two aforementioned approximations, we shall look in the
following for the stationary eigenstates of one electron in a static potential Ve ().
Although not analytically known, the effective potential should comply with trans-
lational invariance: Ve (¥ + R) = V¢ (¥) for any R. Mathematically speaking, this
constraint on V¢ (¥) classes the possible one-electron eigenstates of H, into a very
particular kind of solutlons: those fulﬁlling the Bloch congition, ngmely, any solution
W (7) verifying W (¥ + R) = exp{if(R)} W (¥), where 6 (R) is an R-dependent phase.
Note that 6 ( 13) should be real to ensure wavefunction normalisation and crystal invari-
ance of any physical property depending upon the electron charge density MG
can also be readily checked that the term exp{i6(R)} is simply the eigenvalue of the
operator T performing a translation by R in the real space: T f(F) = f(r + R) for
any functlon f (). More information about this phase can be obtalned by the fact that
two translation operations in space commute, and thus 0 (R 1= + Rz) =0 (R1 )+0 (Rz)
These results can be cast in the form G(R) k- R where k = (kx, ky, k;) is a con-
stant (and so far unspecified) three-dimensional real vector. The k wavevector can
thus be used to label the eigenstates: W 7).

In order to proceed, we note that a Bloch state can be written in the form

W (F) = e KT ug (7) (1.1)

where u,—(*(?) is a periodic function over the crystal lattice: u,;(? + I_é) = u,—(*(?). Itis
evident that this form fulfils the Bloch property W (7 + R) = ¢! ¥ W (¥) imposed by
the existence of translational invariance. Also, one can easily show that the periodic
part of the Bloch state is solution of the stationary eigenvalue problem

[Hor + hk - p/mo ) up(F) = [E(k) — h*K/(Q2mo) 1uz () (1.2)

The determination of the total eigenstate Wy (7) is replaced by the determination
of the periodic solutions u (7). Of course, this cannot be accomplished without
knowledge of V(7). However, it is important to realise that such an eigenvalue
problem admits more than one solution. Actually, there should be infinity of solutions
for a given k value. We need correspondingly a new label (or a new set of labels)
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to fully determine the eigenstates. This label is the band index, n. The reason for
this name is the following: the eigenfunctions read now as W, (r), whereas the

corresponding energies Ej, (I;) become (quasi-) continuous functions of the (quasi-
continuous) variable k, so that E, (k) describes an energy band when 7 is kept constant
and k is varied inside the first BZ.

Let us now stress the fact that the wavevector labelling the crystal eigenstates
can be restricted to the first Brillouin zone. Indeed, two wavevectors differing by a
reciprocal lattice vector K have the same Bloch phase (as can be immediately shown
by using K-R=2nx n). The values thatk can assume are usually specified by
imposing the so- called Born —von-Karm boundary conditions to the problem: the ide-
alised infinite crystal is replaced by a finite-size sample with periodic eigenstates, i.e.

Wi+ Ly, o) = Bbw o) = W, p() (1.3)

for a translation along the Ox direction over the whole sample size L, = Nya,, where
a, is the lattice period along the Ox direction and N, the number of crystals sites along
this same direction. This restricts the k, wavevectors to the ensemble of N, values:
{2ny/N,},0 < n, < Ny.Note that there is thus as many allowed k, values as unity
cells along the Ox direction, and that k, values outside this interval are redundant
since they lead to the same Bloch phase: indeed, for k|, = ky + 2mi, /L, there is
exp{ik, Ly} = exp{ikyL,} for any integer i, # 0. The ensemble {27i,/L} is equal
to the previously defined reciprocal space wavevectors (here in one dimension). Thus,
it results that k, can be restricted to values inside the first Brillouin Zone. The same
results hold for the two other real space directions, defining analogously &y and k;.
In conclusion, the two principal results that follow the Born — von-Karm assumption
are that:

(i) the non-redundant wavevectors can be restricted to the first Brillouin zone of the
crystal lattice; ~

(i1) there are as many k allowed wavevectors (and thus one-electron eigenstates per
band, without considering spin degeneracy) as unity cells in the crystal.

Note that the first result does not follow straightforwardly from the effec-
tive eigenvalue problem defining uj(r). However, it can be demonstrated that the
set of eigensolutions obtained when replacing k by k+ K in (1.2) is actually
K-independent (see e.g. [4, 5]): un),;Jr,g(?) = un),;(?) (except possibly by an
absolute constant phase); E, (/? +K ) = E, (12). As a consequence, both the peri-
odic functions and the energy dispersions (i.e. energy variation as a function of the
wavevector) related to Bloch states are periodic functions in the reciprocal space.

Note additionally that the second result (ii) is essential, since it allows recovering
extensibility for average physical properties regarding a finite-size sample. It could,
actually, surprise us, owing to the sample-dependent nature of the result. Nonetheless,
the sample-to-sample variations are meaningless in practice, since for a fixed band
n the energy difference between states related to two consecutive k values is very
small (it is actually roughly inversely proportional to the squared inverse of the
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characteristic sample size), and thus impossible to be observable in any actual (i.e.,
macroscopic) sample. That implies that any small (as compared to the BZ) volume
Ay in reciprocal space contains a large number of states: AgQ2¢;/ (271)3, where Q¢
is the crystal volume (a result that can be easily demonstrated by recalling that one
state occupies the length 27 /L, of the first BZ of a one-dimensional crystal, and
thus a volume (27/Ly) (2w /Ly) (2m/L;) in a three-dimensional crystal). Finally,
in any practical calculation involving the whole set of eigenstates of a given energy
band, we will be authorized to replace any summation over k as follows:

dk F (k) (1.4)

with dk = dk, dky dk;, provided the function F (/2) varies “slowly enough” with k
(its Fourier transform varies “slowly enough” in real space as compared to the lattice
parameter).

Let us now come back to the periodic functions u y: ~(r). As mentioned, we cannot
calculate u . -(7) without the knowledge of V., (r). However similar to the existence
of Bloch states (and the natural introduction of wavevectors as well as the existence of
energy bands) that directly follows from the translational symmetry, one can proceed
further and obtain a deeper insight into the crystal eigenstates by considering another
very general symmetry property of V¢, (¥), namely, the fact that V., (¥) should equally
reflect the local invariance of the crystal lattice. As far as rotational symmetry is
considered, of course, there is no infinitesimal rotational invariance in a crystal, as
one finds for an isolated atom (in this latter case the invariance is related to the isotropy
of space, whereas a crystal medium is intrinsically anisotropic and physical properties
are isotropic only in certain limits and/or under certain conditions). However, it is
quite intuitive that there is angular isotropy inside a crystal for finite rotations in space.
For instance, a cubic lattice with a single atom per site is invariant under an nx/2
rotation around any of its principal axis, with n an arbitrary integer. The stationary
eigenstates should reflect this symmetry. Such rotations are better dealt with within
the group theory formalism. Without going into the details, one may say, on very
general grounds, that the Bloch eigenstates related to high symmetry points in the
Brillouin zone should be invariant under a certain number of local transformations
that leave invariant the crystal lattice structure. Such local transformations include
both finite rotations as well as eventual reflexions through given plans. By high
symmetry points we mean particular points (values of k) of the Brillouin zone, and
at these points only the wavefunctions fulfil specific symmetry requirements.

For the sake of this review, we shall concentrate on semiconductors with a par-
ticular lattice structure: the so-called zinc-blend lattice. This particular structure
includes a large variety of semiconductors that will be considered in the following:
II-V (GaAs, InAs, AlAs, . . .) and II-VI (CdTe, CdSe, . . .) materials. Group IV mate-
rials (Ge, Si) have a diamond structure, which corresponds to the zinc-blend structure
with two identical atoms per unity cell. Conversely, the zinc-blend structure is the
diamond one with two different atoms per unit cell.
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It turns out that the k£ = 0 point of the BZ is particularly important in zinc-blend
materials and has been given a particular name: the I" point. It is a “high-symmetry”
point, i.e. the solutions (eigenfunctions) related to this point display well-defined
symmetry properties. Let us now quote two important results that will be used in the
following:

(a) It is known from experiments that the fundamental band gap of the semicon-
ductors we will be interested in (like GaAs) occurs at k = 0 and also that most
of the optical and low bias transport characteristics of such materials involve
electronic states (of the uppermost filled valence band and/or low lying empty
conduction band) with small wavevectors, i.e. conduction and valence states near
the I" point. Moreover, other k = 0 edges are energetically far below the upper
most filled valence band or far above the low-lying empty conduction band. As
a consequence, in most semiconductors and semiconductor-based heterostruc-
tures we will mostly be concerned with a small part of the crystal band structure,
inboth k and energy axes, namely, with states around k = 0 and pertaining to the
topmost valence and low-lying conduction bands. Note however that the remote
bands cannot be neglected, as we will see below.

(b) Group theory analysis (not detailed here) indicates that the k = 0 states around
the fundamental interband gap have the following symmetry characteristics (in
absence of spin-orbit coupling, to be considered later): there is one low-lying
conduction state with “S” orbital symmetry and three uppermost valence states
with “P” orbital symmetry. The “practical” meaning of “S” and “P” orbital
symmetries will be given later on.

In the following paragraph, we use these two results to discuss the k- p method,
which is particularly versatile for the description of electronic states with energy
around the fundamental band gap and k near the I" point.

1.2.2 The k - p Method

As mentioned above, we are particularly interested in the description of the states
pertaining to a small part of the crystal band structure, in both k and energy axes,
namely, the states around £k = 0 and related to the topmost valence and low-lying
conduction bands. The & - p method is particularly versatile for the description of
such electronic states. However, its starting point is actually much more general than
focusing in the more interesting but rather small region in energy versus k space.
Indeed, the structure of the effective eigenvalue problem (1.2) strongly suggests
spanning the k& # 0 solutions on the basis of the k=0 solutions, assumed to be
known:

w, 1) = > aw (k) uy oF) (1.5)
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where Hey 1y 0(F) = En0 tn,0(F) With 0 (F) = u,, z_o(7) and E,, o = E,(k = 0).
This gives the matrix eigenvalue problem to solve:

[ Eno = Ea®) + 1282/ @m0) |8+ BE - Bypn/mo} aw®) =0 (1.6)

This method gives in principle exact crystal eigensolutions if one is able to provide a
complete set of energy values (E}, o) and matrix elements for the momentum operator
(Pw.n) associated with the k = O states. This is actually impossible to implement
and a truncation of the £ = 0 ensemble is unavoidable in actual calculations. Before
considering such approximations, it is worth stressing at this point one important
aspect of the k - p formalism. One could envision combining group theory analysis
and experiments to obtain detailed information about the parameters E, o and p ,:
the theory allowing to ascertain which of the numerous matrix elements actually do
not vanish, while an ideally complete set of experiments would provide the values
of such matrix elements (at least their absolute values) as well as the energy edges
En 0. In this sense, the k - p approach appears as a semi-phenomenological model, in
which general considerations based on symmetry arguments are used to push as far
as possible the theoretical description, whereas the final determination of ultimate
parameters is ensured by experiments. This strategy allows circumventing the very
first (and possibly the principal) difficulty underlying the modelling of the one-
electron crystal eigenstates, namely, the lack of detailed knowledge of the actual
crystal potential Ve, (7).

Different kinds of approximations follow from different truncation schemes and/or
treatment of “remote” k = 0 edges (i.e. states with energy E, o very far from the
energy interval around the fundamental band gap we are interested in). The crudest
approximation consists in retaining only the four states (the conduction “S” and the
three valence “P” states) mentioned above in the basis: the simplified Kane model.
In this case the 4 x 4 hamiltonian matrix (in the basis S, Py, Py, P;) reads as:

[S)  |Px) [|Py) |P)
1S)  as Tk, Tk, Tk,
|P)) ¥k, Ap 0 0 (1.7)
Py M, 0 ip O
P,y Mk, 0 0 Ap

where As p = Esp + h2/22/(2m0). Es = E.pand Ep = Ey are the edges
of the conduction and valence band, respectively, which define the interband gap
Eg = Eg — Ep. This matrix has been obtained by making explicit use of the
aforementioned symmetry properties of the “S” and “P” orbitals, which in the present
case states that only three interband matrix elements do not vanish and they are all
equal: (S|pc|Px) = (SIpy|Py) = (S|pzIP.) = TI, where capital P is used to
label the three P-like orbitals, while small p denotes momentum operator. The four
eigenenergies are readily obtained as:
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Ap—e)? =0 = 2 solutions
(Ap —e)(As —e) = |1|> k2 = 2 solutions (1.8)
Inserting the obtained solutions back in the matrix eigenproblem allows extracting
the expansion coefficients and thus the searched periodic functions (and the full
Bloch wavefunction) for any k value. Note that the model lies on two parameters: the
interband matrix element of the momentum operator and the interband gap Eg =
Es — Ep. Their precise values cannot, of course, be inferred from the model itself,
but can be extracted from measurements. To illustrate this point, let us consider the
eigenstates for energies around the conduction band edge : E =~ E§. To the lowest
order in the inter-band coupling one has:

7N A k2. 1 _ 1 |2
E(k)’“ES‘i‘m, m_j‘._m_o—l—E_G

(1.9)
u ;) ~ S + g { kP + ky Py + kP }

The dispersion is parabolic with effective mass m: < mg. As a consequence, infor-
mation on |I1| can be extracted from the electron effective mass (as measured e.g. in
cyclotron resonance experiments), while E¢ can be inferred from optical absorption
experiments. It turns out that for various zinc-blend semiconductors Ep &~ 23 meV.
For GaAs, Eg = 1.5eV at low temperature and thus m/mg =~ 0.07 < 1.

As crude as it appears (we discuss below its main drawbacks), this model captures
two essential features of the crystal electronic states: (i) the near edge dispersions are
to a good approximation parabolic with effective masses governed by second order

(interband) k- p couplings, and (ii) the Bloch functions for mobile electrons are
adrllixtures of conduction and valence band solutions. If, on the one hand, the effect
of k - p couplings on the effective masses cannot be disregarded (m}/my < 1), on
the other hand the admixtures in the wavefunctions can in many circumstances be
neglected, allowing to speak in terms of conduction and valence states as thought
pure (i.e. non-admixed) in character: for instance, u,. (P 2 uco() = SF).

The principal drawback of the simplified Kane model is the occurrence of two
valence band dispersions with positive effective mass (and equal to the bare electron
one). The corresponding eigenstates are pure valence-band states, thus unaffected by
the interband couplings. One can explain this result by invoking a general quantum
mechanical argument: the problem of one discrete state (the conduction one) coupled
to the states of a degenerate ensemble (the valence ones) can always be reduced to a
two levels problem. Indeed, it is always possible to properly hybridize (i.e. linearly
combine) the degenerate states in such a way that amongst the states of the new
(degenerated and orthonormalized) ensemble only one posseses a nonzero matrix
element with the discrete state, all others remaining uncoupled. Actual band structure
models account for three essential ingredients not present in the simplified Kane
model: spin degeneracy, spin-orbit coupling and interband coupling to states ouside
the {S, Py, Py, P.} subspace, keeping nonetheless the initial semi-phenomenological
strategy of the k- p method. We illustrate this point with the Luttinger Hamiltonian that
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describes the topmost valence states in diamond-like semiconductors (in this case the
low-lying conduction band is treated as a remote band). First point: the consideration
of spin enlarges the k = 0 basis to six states: Py 15 Py |; Py 15 Py | P 15 P 1}
Second point: the consideration of the spin-orbit coupling (of the same physical
origin as isolated atoms) within this new basis splits the 6-fold degenerate state into
a quadruplet (Q) and a doublet (D):

state energy shift

101 1+3/2) SI(Pe+iPy) 1) +4/3

02 1-1/2)  HP—ipy = 2P L) +As3

03 1+1/2)  LlPeripy =P +A3 0 (L10)
104)  1-3/2) AP —iPy) 1) +4/3

D) ISO:+1/2)  L|(Pe+iPy) L)+ =P 1) —24/3

ID2) ISO:=1/2)  Z(Pe+iP) D)+ IP L) —24/3

where A is the spin-orbit energy involving the { Py, Py, P.} states. The states of the
lower energy doublet are called “split-off” (SO) states. The linear combinations of
orbital and spin components displayed in the previous table are the same as obtained
for the three P states of an isolated atom in the presence of spin-orbit coupling, whose
orbital wavefunctions possess well-defined orbital angular momentum components
along a given axis, whereas the total wavefunctions possess well-defined total angular
momentum components along this same axis. In a crystal the & = 0 orbital states
are said to be eigenstates of a pseudo-angular momentum operator, whereas the
quadruplet and triplet states are eigenstates of a pseudo-total angular momentum
operator. Third point: the inclusion of remote k = 0 states are necessary to obtain
a fair description of the energy dispersions (i.e. dependence of the energies with k).
Indeed, the k - p matrix elements amongst the restricted basis of P-like states vanish.
Such couplings involve, as previously mentioned, a number of interband matrix
elements and interband energy gaps. However, symmetry analysis shows that only
a small number of parameters “effectively” govern the valence band dispersions.
To illustrate this point, let us further restrict ourselves to the description of the sole
uppermost states (i.e. associated with the quadruplet of k = O states). In this case
the four dispersions are eigensolutions of the 4 x 4 Luttinger matrix

432 =12 1+1/2) |-3/2)
| +3/2) Hp, c b 0
| —1/2) c* Hyy, 0 —b (1.11)
| 4+ 1/2) b* 0 Hp c
| —3/2) 0 —b* c* Hyy,

where
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g 2
Hin®) = 522 [ on =2v20k2 + (1 +v) (& +4D) |

Hi() = 2 [0 42708 + 01 =3+ |
(1.12)

g 2
c®) = CE 202 = kD) — 2ivakeky |

2mg

- . 2 .
bk) = “BE vy (k, — iky)k.

are functions of only three adimensional parameters, Y12 3: the Luttinger parameters.
They incorporate all non-diagonal k - p couplings of the valence states with remote
bands. Their values have been obtained for a series of materials. For instance, for
GaAs there is: V| = 6.85; Yo = 2.1; Y3 = 2.9. The labels “hh” and “lh” correspond,
respectively, to the “heavy” and the “light” dispersions: for propagation along the
Oz axis (ky,y = 0), the non-diagonal terms of the Luttinger matrix vanish and one
readily obtains two dispersions, related respectively to the £3/2 and to the £1/2
states. Since the hh-related mass (mq/(Y1 —27V>)) is larger than the lh-related one
(mo/(Y1+7Y2)), the £3/2 states are usually called “heavy” states and the £1/2
ones “light” states. Note however that for k, , # 0, the non-diagonal terms do not
vanish and the corresponding valence state wavefunction contains both heavy and
light components.

1.3 Envelope Function Model

Let us now introduce the envelope function method to describe electronic levels in
perturbed semiconductors. Indeed, as previously mentioned, an overwhelming num-
ber of studies in semiconductor physics is related to the modification of the crystal
properties due to the presence of some kind of perturbation: doping with shallow
impurities provides carriers; a d.c. bias triggers a current; the optical characteristics
are the response of the crystal to an external e.m. excitation. The envelope function
method is a versatile approach for many cases of interest, namely whenever the per-
turbation strength is “weak” enough (as compared to typical band energy widths or
separations) and “slowly varying” in space (as compared e.g. to the lattice period)
[5]. However, our main objective is to show that the envelope function description
can be used to describe the electronic states of heterostructures. This is actually not
evident per se, since, as we shall see, the nanostructuration process introduces as a
rule large (in energy) and abrupt (i.e. at the cell size scale) variation of the crystal
potential.

For definiteness, let us assume a position-dependent perturbation to the crystal
Hamiltonian H = H. + W(F). As a starting point, we take advantage of the
fact that the Bloch states (eigenstates of H;) form a complete basis ((‘-Ifn’ NS . )
= 8w O 1) that can be used to diagonalise the perturbation term. We expand
correspondingly the perturbed eigenfunctions within this basis:
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W) = > and [,z) (1.13)
ik

The coefficients are solutions of the Hamiltonian matrix

> { [ E (i) - E ] S S 1 + WI;( } ay®) =0 (114

n' k'

The sum runs over the whole set of Bloch states. Using the definition of Bloch
function, the matrix elements of the perturbation reads as:

n'

Wit = /d? ¢ EITWE L F) () (1.15)
The main difficulty for the evaluation of this integral (for a given W, and besides the
fact that the u’s are unknown functions) comes from the fact that it presents terms
with completely different spatial behaviours: the product of the two u’s is rapidly
varying (actually this product is periodic on the crystal lattice), whereas the plane
wave is slowly varying over a unit cell (for wavevectors near the I" point, which is of
particular interest here). However, this drawback can be turned into an advantage, and
serve as the starting point for an important approximation, which is a fundamental
aspect of the envelope function method. To illustrate this point, we consider a simpler,
one-dimensional version of this same problem:

I=/dx F(x) ux) (1.16)

where F(x) (u(x)) is a slowly (periodic) function.

I = Z /dx F(x) u(x)
Pop
~ Z F(x,,)/ dx u(x) = |:Z F(x,,)] /dx u(x) (1.17)
P P P 0

~ |:/ dxF(x)i| %/dx u(x)
0

In the first step, the integral over the whole space is exactly replaced by a sum over
contributions coming from the different cells (labelled by the integer p and of spatial
period agp). In the second line we take profit of the slow variation of F'(x) over the
p-th unit cell (centred around x ). Since u(x) is periodic, its integral is the same over
any cell, which permits taking its value (evaluated for instance at the central cell)
out from the summation. Then, in the last step we use the very notion of an integral
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as a limiting of a summation to (approximately) transform the discrete sum into an
integral over the whole space. This same procedure can be employed for the original
three-dimensional problem:

T W A= d?
n,k ~ = i(k'=k)-r = ¥ (7 - (r
W [/dre W(r)} /Qo wy 2 (F) o (F) (1.18)

Note that we have explicitly assumed that the perturbation potential varies slowly
inside one unit cell. This assumption is quite good for a large class of perturba-

tion potentials, for which additionally interband mixings (W:,’]]%,; n’ # n) can be
neglected (at least in a first order description of perturbed states). As examples, we
quote: (i) weak static electric or magnetic field, which leads to intraband motion of
electrons, and (ii) bound and scattering states in the presence of shallow impurities
(e.g. donors). Low frequency (as compared with the interband one) electromagnetic
fields can also be tackled by this approach (which can be generalised to account for
time-dependent effects). On the contrary, an optical excitation near the interband gap
does not, of course, belong to this class: however weak, an interband excitation effec-
tively couples valence and conduction band states. Also, the effect of a perturbation
on the valence band states deserves a particular treatment, because of the important
mixing of the states at k # 0 (as e.g. the previously mentioned heavy-light mixings).
For the sake of simplicity, let us here restrict ourselves to the simplest one-band
description (a multi-band generalisation of the following developments can be found
in the literature). In this case, the band index # is fixed.

The procedure leading to the last equation allows transforming the original integral
into the product of two integrals. Its enormous advantage is that it allows decoupling
the slowly and rapidly varying terms. Moreover, we can show that the second integral
can, for many purposes, be set equal to unity:

i, L.
/ Qi Pty g )~ 8 + 0P (k= k) (1.19)
Qo

where the second term is a second order correction in the one-band model. Finally,

one gets
W 8, 0 WK — k) (1.20)

s
n/’ /

Ee R

where the tilde refers to Fourier transform. We endup with the eigenvalue problem:

S [E®) - E] sp+ Wi =) | an@ =0 (1.21)
v

Solving this matrix Hamiltonian is equivalent to solving the operator equation
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[ E,(k — —iV) + W) ] F() = EF()

FG) =S an(k) et (1.22)
P

where V is the gradlent operator. This can be demonstrated by (i) formally expanding
E, (k) in powers of k and using (—zV)” kP, (k)” ik , and (ii) multiplying on

the left by e=iF'7 and integrating over the whole space. In the simplest case of a
parabolic dispersion there is:

En(k) = Ey(0) + 2

2m3,
e (1.23)
|52+ W@ | FO) = [E - .0 F?)
Finally, the steps leading to this last equation resume in the replacement
h2 2 h2§2
-+ WE + Vo (F) > — py + W) + E,(0) (1.24)

2mo *
On the left-hand side of this expression, one has the original problem of one electron
moving in the crystal with its bare mass and in the presence of the perturbing potential.
In the envelope function model the crystal potential is no longer explicitly present
but its effect is contained in two effective parameters, the effective mass m;; and
the energy edge E, (0), both related to a given band. This constitutes the essence of
the envelope function method, namely, incorporating the role of the crystal potential
into a few (two in the simple one-band model) effective parameters that can be either
separately calculated (via more accurate theories) or inferred from experiments. In
this sense, it extends to a perturbed crystal the strategy of the k- p method developed
to calculate the electronic states of a perfect one.

As previously mentioned, this model has been applied with success to many
physical situations of practical interest (calculations of low field electron transport,
shallow impurity levels, cyclotron resonance effects). In the last part of this chapter,
we indicate how it can also be implemented to describe the electronic levels of
nanostructured systems.

In the following, we describe the electronic levels of nanostructured systems
within the envelope function approach. To this end, we shall return to the one-band
envelope function Hamiltonian and consider an “unperturbed” crystal: W () = 0.
On very general grounds, a nanostructure is obtained by the juxtaposition of regions
of different semiconductors. For simplicity, we shall focus on the case of multilay-
ers, i.e. a nanostructure formed by juxtaposing layers of different semiconductors
(we shall not enter into the details of the growth process). Figure 1.1 shows some
examples of such structures. The simplest one is, of course, the simple heterojunction
(uppermost scheme), where two semi-infinite layers are brought into contact through
a common surface (the heterojunction interface). Before discussing the envelope
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A large variety of multi-layers heterostructures:

Vs(F)= V,(z) = quasi—1D systems

Heterojunction : Double quantum well:

interface effect tunnel coupling

0 ‘ Voaul2)|
IL"r_ fZ)I J J

L, B'L,
Quantum well: Superfaﬂ:‘f:e »
1D gquantum confinement 1D super-periodicity
Valz)
Vowl) L
" L B
L d=1+8 = super-period

Fig. 1.1 Schematic representation of the band alignments related to the formation of four 1D
heterostructures: a single heterojunction, a quantum well, a double quantum well and a superlattice

function formalism, it is worth pointing out two important aspects: (i) the two mate-
rials are often chosen “not so different”, namely, they usually share the same crys-
talline structure and energy band sequence and (ii) the interface is assumed to be
“ideal”, namely, the materials on either sides of the interface conserve their bulk-
like characteristics (crystal symmetry, interatomic bounds). Departures from either
assumption do actually lead to new physics in the nanostructures; the consideration
of such fine effects is nevertheless beyond the scope of these introductory notes.

The key point in the envelope function analysis is the fact that the energy edges
E,,(0) of different semiconductors have different values. Calculation of the alignment
of such bands is a very complex problem. One has, nevertheless been able to infer
from experiments the relative alignment of, e.g., the conduction band edges. As a
practical example, let us consider the binary GaAs and the ternary Al,Gaj_,As
(other systems will be discussed in the forthcoming chapters). The ternary has a
larger fundamental bandgap than the binary and it is nowadays well established
how the energy difference between the two conduction band edges (at the I" point)
varies with the Al content in the ternary. In a multilayer, the edge E, (0) related to
the same band becomes a position-dependent function, E,(z). More generally, in a
nanostructure the edge variation writes E,, () and the envelope function Hamiltonian
for the heterostructure becomes:

[ | } R .
——V—V+E,(")| F*)=EF®F) (1.25)
2 m*

n

The kinetic energy term has been rewritten in order to comply with the requirement of
current conservation through a given interface (another condition is the continuity of
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the envelope wavefunction F(7)). Note that the difference in mass introduces much
weaker effects, as compared to those due to the band edge offsets; correspondingly,
the effective mass is very often taken to be position-independent.

The different structures in Fig. 1.1 correspond to model systems, which have been
extensively studied in the framework of the envelope function method, with the help
of the last equation. They allow envisioning many different fundamental physical
effects, as the quantum confinement of carriers in a quantum well of nanometric
width, the interwell (tunnel) coupling through a thin barrier in a double quantum
well system, and the formation of a super-periodicity in superlattice structures. The
physics of such structures, as well as of many others, will be discussed in detail in
the later chapters. Additionally, more accurate methods will be presented and dis-
cussed, allowing a deeper understanding and finer description of the electronic states
of electrons in nano-objects and their interactions. Also, other effects will be pre-
sented and discussed, as the response of different heterostructures to both external
(applied electric bias and electromagnetic fields) and internal (coupling of electrons
to lattice ions motions, strains) perturbations. In conclusion, nanostructuration repre-
sents nowadays a whole field of research in semiconductor heterostructures, leading
to powerful concepts as band engineering, in particular in the field of optoelectronics
and aiming at the development of new transport-based devices.
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Chapter 2
Theory and Modelling for the Nanoscale: The
spds* Tight Binding Approach

R. Benchamekh, M. Nestoklon, J.-M. Jancu and P. Voisin

Abstract The potential of the extended-basis tight binding method for quantitative
modelling in nanosciences is discussed and illustrated with various examples. We
insist on the method’s ability to account for atomistic symmetries and to treat all
the energy scales of electronic structures (from sub-meV quantities such as spin
splittings to full-band properties like the optical index) using a single set of material
parameters.

This chapter does not deal with the mathematics of the tight binding theory: there
are excellent references—in particular, the celebrated text books by P. Yu and M.
Cardona [1] and W. A. Harrison [2], and seminal papers [3-5] that the interested
reader can use to dig into the technical aspects of the method. Here, we shall focus
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on conceptual aspects in connection with the importance of atomistic symmetries in
the emerging field of nanosciences.

2.1 Introduction: A Snapshot View of Theoretical
Methods for Nanosciences

As the solid-state community goes deeper and deeper into the exploration of the
“nanoworld”, a need for new modelling approaches taking into account bond-length
scale variations of chemical composition and strain distribution becomes more and
more apparent. Accuracy of the theoretical prediction is one issue, in particular
when very large confinement energies come into play. But more importantly, atom-
istic symmetry breakings usually missed by “continuum” approaches contribute to
qualitatively important features, in particular for discrete quantum systems such as
impurity or quantum dot states. Another aspect of the modeling problem is the extra-
ordinarily large number of objects populating the nanoworld, each having speci-
ficities that are as many modeling problems. Hence, flexibility of the theoretical
methods is an essential issue. The need to take into account atomistic details of the
nanostructure obviously points towards computational methods based on atomistic
description of the electronic properties. On the other hand, a real risk exists that such
methods provide accurate modeling results but do not explain them: confrontation
of computational results with simple (eg effective mass) models remains essential to
understanding. In this chapter, we shall discuss theoretical methods from the point
of view of modeling experimental situations.

The landscape of theoretical methods can be separated into first-principle methods
on one side, and methods using empirical parameters, on the other side. Among the
latter, one can further distinguish atomistic and non-atomistic methods. The k.p (or
envelope function) theory is a typical example of a non-atomistic method where the
underlying crystal structure is represented through symmetries of bandedge Bloch
functions that have empirically determined energies and momentum matrix elements
between them [6—8]. Conversely, tight-binding and atomistic pseudopotential meth-
ods start with the atomic texture of the crystal potential or wave functions and keep
them explicitly in the formal development. In the last 30 years, the k.p theory has
had many successes and it remains by far the most popular method in semiconductor
physics, due to its (relatively) simple formalism that can be mastered up to excellent
levels by experimentalists. A distinctive feature is that the k.p theory is a toy model
where complexity can be introduced progressively in the form of new basis states
and new couplings in the Hamiltonian. Typically, one can start with the simple effec-
tive mass concept, then introduce non-parabolicity, spin-splittings, etc. Conversely,
atomistic methods tend to operate in a “nothing or all” mode, complexity comes as
a whole and cannot be decomposed in a perturbative spirit. In the following para-
graph, we briefly introduce and compare the atomistic pseudopotential and the tight
binding methods. The former was developed by A. Zunger and co-workers [9] since
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the early 1990s. An analytical shape of potential around each atomic site is consid-
ered, depending on a few parameters that will be determined empirically. Then the
crystal (or possibly, nanostructure) potential is obtained as the sum of the atomistic
potentials and eigensolutions are expanded on a plane wave basis. The most difficult
part of the game is to fit the coefficients of the atomistic pseudopotentials (APP) in
order to reproduce as precisely as possible the band structure of parent materials (for
instance, to reproduce binary bulk material band structure). Depending on which
set of constraints is used, one may get rather different pseudopotentials. The major
avantages of the technique are its ability to treat chemical discontinuities (another
material is only another set of pseudopotentials) and strain, and the expansion in a
naturally complete plane wave basis. However, nothing guarantees the transferability
of parameters (say, the As pseudopotential in AlAs may differ considerably from the
As pseudopotential in GaAs), and in its present implementation, the method suffers
from parametric poverty that hampers precise full-band representation. Conversely,
the tight binding method has its historical root in the early 1930s, when chemists
and physicists were trying to formulate a quantum theory of the covalent bond. The
leading idea was that electrons are “tightly” bound to individual atoms but can occa-
sionally visit neighboring sites by tunnelling through the potential barrier. Hence
the theory relies on “on-site” energies of various orbitals and “hopping” matrix
elements between adjacent sites. These simple concepts were used by Slater and
Koster [3] to formulate a description of crystal band structure where parameters of a
tight binding model are considered as adjustable parameters whose values are empir-
ically fixed in order to reproduce experimental features. Since in general, hopping
between distant orbitals depends not only on distance but also on relative orientations,
the empirical tight binding method has unavoidable parameter richness. From a prac-
tical point of view, this is both convenient (parametric flexibility) and inconvenient
(multidimensional optimisation required for any parameter determination). Finally,
it is important to note that the model uses on-site orbitals whose radial dependency
is completely unknown: writing and diagonalising the Hamiltonian does not require
any assumption on local wavefunctions, but their symmetry properties. There is a
similar situation with the k.p theory that ignores the spatial dependencies of the zone
centre Bloch functions.

2.2 The Empirical Tight Binding Formalism

While a number of physicists and chemists contributed to the emergence of the
method, the present form of the Empirical Tight Binding (ETB) formalism was set
in a seminal paper by Slater and Koster in 1954 [3]. The formalism is based on the
(mathematically demonstrated) existence of a set of orthonormal orbitals (named the
Lowdin orbitals) ¢, (f — 7j;) localised in the vicinity of the atomic sites, where r;
denotes the position of the [th atom of the jth unit cell and m labels the different
atomic-like orbitals. Translational invariance allows the introduction of Bloch sums:
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@, :(F) = J_ﬁ > exp(i?,-l.l_é) @m(F — Fj1), where N is the number of primitive
cells. Bloch sums form a complete basis for the crystal eigenstates (Bloch functions)
that can be expressed as W} (F) = 2omil Coui®,,;(7).

Injecting this expression into the Schrodinger equation HW; = EpWg, and
using explicitly the orthogonality of Loéwdin orbitals, one gets a set of linear equa-
tions for the C,,; coefficients: zm,’,, (Hut,m'r — EgSmnm1,1) Cowy = 0, where the
Hamiltonian matrix elements are:

Hytr = 5 2 exp ik.Gjt = Fju) (¢m = 70| H |ow G =7y} @2.1)

Since the spatial forms of the Lowdin orbitals (and the potentiel..) are unknown, these
matrix elements cannot be calculated: in the empirical approach, they are treated as
adjustable parameters and fitted in order to reproduce supposedly known features of
the band structure (e.g. fit to experimental data and/or ab initio calculations). The
number of matrix elements depends obviously on the number of orbitals per atom,
and on the range of interactions. As shown by Jancu et al. [5], a model with s, p,
d and s* orbitals and limited to nearest neighbour interactions is actually “numer-
ically complete” over a large energy range (15 eV) sufficient for a nearly perfect
representation of bulk semiconductor band structure up to the two first conduction
bands. An extremely important result of Ref. [5] is that free electron states (corre-
sponding to Bloch functions of an “empty crystal”) can be very well represented into
this spds* basis. This implies that the method can be used to calculate features of
surface physics.

Although the method itself and the rigorous classification of matrix elements was
available since 1954, one had to wait until the mid 1970’s for the first practical
implementation of the method by Chadi and Cohen [10], due to the computational
difficulty of the “inverse problem”: while calculating the band structure for a given
set of parameters is relatively easy, devising a strategy to get parameters fitting a
known band structure is a very difficult task.

2.3 Band Structure of Bulk Materials: From sp> to sp> d° s*

When restricted to the nearest neighbour interaction, the model using the simplest
basis formed by the s and p orbitals of the anion and cation requires 9 parameters.
This model is still widely used because it accounts qualitatively for the main features
of covalent bonding. In particular, it gives a fair account of the valence band structure
and band gap energy of direct gap semiconductors. However, the energies of L. and
X valleys cannot be fitted correctly. This motivated the work of P. Vogl et al. [4] who
introduced a new state in the basis, corresponding to an empty, upperlying state of
S symmetry, called the s* state. The minimum model now involves 13 parameters,
and the energies of L and X valleys can be reasonably well fitted. The transferability
of on-site parameters is also significantly improved. However, the dispersion near
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Fig. 2.1 Best fit of GaAs band structure in the sp>, sp3s* and sp3d’s* nearest neighbor tight
binding models. Red (green) circles indicate the regions of discrepancy (agreement) with experiment

the X point is still impossible to fit. The sp3s* model has been widely used in the
1980s to calculate III-V quantum well properties [11, 12], but the methodological
difficulties finally led to a decline of the method’s popularity in the early 1990s. In
1998, J.-M. Jancu et al. [5] finally extended the basis to the full shell of empty d
states, and this extension of the basis allowed at last a nearly perfect modelling of
semiconductor band structure, including Silicon, using essentially transferable on-
site parameters. With the advent of the spds* model, tight binding becomes a fully
quantitative method, at the expense of a significant increase of the minimum number
of parameters from 13 to 33. The best fit of GaAs band structure in the three models
is shown in Fig.2.1.

One should keep in mind that as long as the basis is not complete, interactions
with other orbitals, either deep atomic states or upperlying free electron states are
somehow included in the empirical approach as a “renormalisation” of the empirical
parameters. For instance, in the sp3s* model, the matrix elements of the s* orbital
stand for the interactions with all the upperlying energy states, and as a consequence,
the fitted on-state energy and two-centre integrals differ considerably from the
values obtained for the s* orbital in the sp3d°s* model. The latter are close to
the free electron limit, which is physically sound. The neglected interactions with
the deep atomic states (namely the d orbitals of the n=3 shell for Ga and As) would
manifest themselves mostly as a shift of the absolute energies of band extrema: this
is introduced in the modeling of heterostructures as a “band offset” parameter. To
the best of our knowledge, no attempt was made so far to predict band offsets in the
tight binding theory by introducing explicitly the coupling to deep atomic states, but
this should be technically feasible and in line with the current theory of band offsets
[13, 14]. A most remarkable success of the spds* model for bulk semiconductors is
the perfect description of the band structure of Silicon [15], including the values of
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valence band Luttinger parameters and effective masses of the X conduction valleys,
for which extremely precise experimental data exist.

Tight binding is also suitable for calculations of optical matrix elements, either by
introducing optical matrix elements between Lowdin orbitals as additional empirical
parameters, or by using a k-space formulation [16] of the kinetic momentum operator
as p(k) = m—,{’V,—g H . This approach has the merit of being gauge invariant, and gives
excellent practical results without introducing any new parameter. Yet, it should be
mentioned that there is still active theoretical discussions [17, 18] concerning the
fact that this formulation misses intra atomic contributions to the optical properties.

2.4 Strain Effects: The Tight Binding Point of View

The effect of uniaxial stress on the band structure of semiconductors has been a major
theoretical and experimental topic for many years. With the development of strained-
layer epitaxy, it has also become an important issue in modern material science and
device physics. Elastic deformations are ubiquitus in nano-objects. In their seminal
approach, half a century ago, Bir and Pikus [19] established the strain Hamiltonian
[19, 20] using the theory of invariants. It depends on a number of deformation poten-
tials describing the shifts and splittings of the various band extrema. For instance,
for a given band near the Brillouin zone centre, it reads as:

_ ) . 1
H = —a'(ex + &yy +670) — 3D [(L2 — gLz)sZZ + cp)

—V3d'[(LyLy + LyLy)exy + cpl

where ¢;; are the components of the strain tensor €, L is the angular momentum
operator and cp refers to circular permutations with respect to the axes x, y and z. @'
is the hydrostatic deformation potential describing the energy shift of band i, while
b’ and d' are the tetragonal and rombohedral (or trigonal) deformation potentials
accounting for the eventual splitting of band i under the effect of corresponding
uniaxial strain, respectively [001] or [111]. Other deformation potentials are involved
at different high symmetry points of the Brillouin zone like X and L.

Within the tight binding formalism, strain effects are mainly determined by scal-
ing the two-centre integrals (or transfer integrals) with respect to bond-length alter-
ations, while bond-angle distortions are automatically incorporated via the phase
factors in the Hamiltonian matrix elements (2.1). This leaves a more than sufficient
number of strain-dependent parameters to fit the deformation potentials at the Bril-
louin zone centre. However, when trying to fit simultaneously the splittings of the
zone-edge conduction valleys, one encounters difficulties [5, 21]. These have been
overcome by considering that on-site energies of “quasi-free electron” states s* and
d must be shifted hydrostatically according to the change in unit cell volume, and,
more importantly, d states split according to strain symmetry. With this approach,
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absolutely general strain tensor can be handled, which is of utmost importance for
many nanostructures, like self-assembled quantum dots or nanowires. Fitting defor-
mation potentials clearly introduces a number of new parameters, but this is not a
theoretical problem as long as the convergence of parameter-search routines remains
good [21]. Again, it is important to check that the values of parameters coming
out of blind-research procedures are compatible with the physical origin of these
parameters.

2.5 Tight Binding as a Parameter Provider: Inversion
Asymmetry and Parameters of the 14-Band k.p Model

Recent years have seen a strong interest in “semiconductor spintronics”, follow-
ing the paradigmatic idea of manipulating spin currents using electrostatic gates.
A major issue in spin physics is the spin splitting of dispersion relations, which is due
to the combined effects of spin—orbit interaction and inversion asymmetry. Spin split-
tings govern spin dynamics. They have historically been introduced in the k.p theory
using the theory of invariants, with empirical material coefficients for the Bulk Inver-
sion Asymmetry (or Dresselhaus term) and for the Strutural Inversion Asymmetry
(or Rashba term). However, these terms are related to gaps and zone centre k.p
matrix elements and can be deduced comprehensively from band structure calcu-
lations. Alternatively, spin splittings are “naturally” obtained in the tight binding
calculation. The minimum framework to obtain spin-splitted dispersion relations in
the k.p theory is a 14-band model including explicitly the anti-bonding p-type con-
duction band I'g., and the momentum matrix element P’ coupling I'g. and I'g., which
is allowed by inversion asymmetry. However, the original 14-band model introduced
by Hermann and Weisbuch [22] missed the existence of another term allowed by
inversion asymmetry, the off-diagonal spin-orbit , named A™, coupling between the
bonding (valence) and anti-bonding (conduction) p-type bands I'sy and I'g., which
was introduced by M. Cardona et al. [23] few years later. The model was further
developed and applied to quantum wells by Pfeffer and Zawadski [24]. The scheme
of band coupling is illustrated in Fig. 2.2a. It is interesting to point that this historical,
progressive enrichment of the k.p theory has endorsed somewhat arbitrary values of
the parameters, because it was constantly supposed that the main contribution to
inversion asymmetry was the momentum matrix element P’. This topic was revisited
by J.-M. Jancu et al. [25] who derived a new set of k.p parameters by fitting the
14-band k.p band structure to the spds* tight binding band structure.

The salient result of this re-examination is that new P’ (resp. A™) values are
much smaller (resp. much larger) than old ones, to the extent that in new parameter-
ization, the off-diagonal spin—orbit coupling A™ is by far the dominant contribution
to the Dresselhaus constant y,, for all III-V semiconductors. It is also found that
A~ is proportional to the difference between anion and cation spin—orbit constants,
and hence vanishes for centro-symmetric semiconductors like Ge and Si. This new
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Fig. 2.2 Left: Band structure of GaAs as calculated with the 40-band TB model (solid lines) and
the 14x 14 k - p model using the new set of parameters. Right: Calculated conduction band spin
splittings (solid lines: TB; dashed lines: k.p using new parameters) for main III-V semiconductors.
From Ref. [25]

parametrization was later used by T. Nguyen-Quang [26] to calculate various prop-
erties of quantum well structures, like in-plane dispersion and spin splittings of
valence bands or electric field-induced birefringence (Pockels effect) spectra, and
yielded unprecedented agreement with experiments.

2.6 Quantum Confinement and Atomistic Symmetries: Interface
Rotational Symmetry Breakdown

The merit of atomistic approaches is that lattice symmetries are automatically
included in the Hamiltonian, which is not always the case for envelope function
approaches. A remarkably simple example is the classical case of an interface
between two semiconductors grown along the [001] axis. The presence of the inter-
face obviously breaks the translational symmetry along the z axis, and the usual
approach consists in writing the continuity relations for the “envelope” functions
and their derivatives [6-8]. This can be done in the frame of a simple effective
mass theory, or using a more elaborate multiband formalism. An immense major-
ity of theoretical studies of quantum well structures was done along these lines,
from the mid-1970s to the mid-1990s, assuming that an interface can be represented
by a potential step Y(z) having full rotational symmetry. However, as illustrated in
Fig.2.3, the arrangement of chemical bonds at a (001) interface between a CpAy,
“barrier” material and a Cy Ay, “well” material (C and A stand for cation and anion
species) is such that all the C, — Ap bonds leaning backward in the barrier are
in the ‘horizontal’ (-110) plane, and all the A, — Cy, bonds leaning forward into
the well are in the ‘vertical’ (110) plane. This evidences that the [110] and [-110]
directions are not equivalent in the interface unit cell: in addition to breaking the
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Fig. 2.3 Scheme of the atomic arrangement near successive interfaces in a Common Anion (left)
or No Common Atom (right) quantum well. Here, we compare the technologically important
(InGa)As / (Alln)As and (InGa)As / InP systems. In, (InGa) and (Alln) must be considered as
three different effective cations

translational invariance, the presence of the interface breaks a rotational degree of
freedom, namely the 4-fold roto-inversion symmetry 4. This implies that J;, (the
z-component of the total angular momentum) is not a good quantum number. The
point group symmetry of a single interface is Cp,. The main consequence is that
heavy (J; = £3/2) and light (J; = =£1/2) hole states are admixed by the interface
potential. When considering a quantum well, one must combine the effects of two
interfaces. It becomes necessary to distinguish between systems where the well and
barrier materials share a common atom (in general the anion, like in GaAs/AlAs)
and those where both the well and barrier anions and cations differ, or “No Common
Atom” (NCA) systems, like InAs/GaSb or (Galn)As/InP. In the former, one interface
transforms into the other by the roto-inversion with respect to the well centre, and the
resulting point group symmetry is D24, while the latter retains the C,, point group
symmetry of a single interface.

The important experimental consequence of Co, symmetry is that the strength of
optical transitions from valence to conduction band depends on (in-plane) polarisa-
tion of light. Krebs and Voisin [27], Ivchenko and co-workers [28] and B. Foreman
[29] have independently shown how the envelope function theory (EFT) can be com-
pleted in order to include these symmetry considerations. Yet, valence band mixing
by interfaces introduce specific material parameters that require atomistic informa-
tion not provided by the theory. Conversely, tight binding calculations directly give
quantitative account of these effects [30, 31], in good agreement with the measure-
ment of absorption polarisation anisotropy in (Galn)As/InP multi-quantum wells
[30]. This is illustrated in Fig.2.4. It is clear that the concept of interface rotational
symmetry breaking is completely general and applies to any situation of chemical
composition gradient, but an envelope function formulation based on the theory of
invariants necessarily depends on the interface cristallographic orientation, that fixes
the point group symmetry. Tight binding will model these effects in any situation,
without introducing new parameters.
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Fig. 2.4 Room-temperature absorption spectra of a 4.5/6.8nm InGaAs/InP MQW for a photon
polarisation along [110] (6 = m/4) or along [-110] (6 = m/4) (left, upper panel) and relative
difference of these spectra, or ‘polarisation spectrum’ (left, lower panel). Calculated TB absorption
curves are also shown. Right panel shows the projection of the valence band ground state on the
anion J, = 3/2 (heavy hole) and J; = 1/2 (light hole) orbitals, evidencing the valence band
mixing. From Ref. [30]

2.7 Quantum Confinement and Valley Mixing: X-valley
and L-valley Quantum Wells

In some circumstances of large confinement, a direct gap semiconductor can trans-
form into indirect due to the crossing of quantised levels at the zone centre with those
associated with lateral valleys. This is in general due to the fact that effective masses
at I' are smaller than those at X or L, so confinement at I" increases faster when
well width decreases. The case of GaAs/AlAs where levels associated with the Z and
X, Y valleys of AlAs become the ground state for narrow wells has been studied
in great detail [32]. An anticrossing of I'" and Z valleys occurs due to coupling
by the interface potential, and again EFT needs to introduce a specific parameter
while TB naturally predicts the anticrossing. Here, we shall discuss the case of nar-
row GaSb/AlSb quantum wells grown along [001], where L-valley states of GaSb
become the quantum well ground state for well widths smaller than 4.3 nm. The
physical ingredients there are the confinement in an L valley, the coupling of pairs
of L valleys projecting onto the same point of the two-dimensional Brillouin zone,
e.g. (111) and (11-1), and the spin splitting of bulk L valleys for wavevectors perpen-
dicular to the corresponding [111] axis. An EFT approach of this system was devel-
opped by Jancu et al. [33] and compared with TB modelling. In the basis spanned
by the zeroth order wavefunctions Wi11| 1), Y111] ), Yii—1] 1), Y11-1] {) the
Hamiltonian reads as:
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where E»; includes the quantized energy minimum and in-plane kinetic energy,
A and C are related to the k-dependent matrix elements of the L-valley spin invari-
ant «k - (0 x n), and V and W are spin-conserving and spin-flip contributions of
interface coupling. The calculation can be simplified using the infinite quantum well
approximation, which leads to simple analytical forms for E»; , A and C. The point
that we wish to stress is that even this simplified approach contains three unknown
material parameters (o, V and W). Again, the tight binding modeling directly gives
the dispersion of electrons in these L-valley quantum wells without adjustable para-
meters. The fit of the EFT to the TB dispersion yields nice qualitative agreement,
and gives the values of the missing parameters. It is also noteworthy that the EFT
approach had to be developed for this specific problem of L valleys, while the tight
binding code is exactly the same for any quantum well problematics Fig.2.5.

2.8 Three-Dimensional Confinement: Symmetry Mistake in
Current Theories of Impurity States

Another interesting example of atomistic symmetry importance can be found in the
problem of substitutional impurities. The current theory of hydrogenic impurity states
assumes that the electron (for the donor case) or hole (for the acceptor case) evolves
under the effect of kinetic energy operator and the spherical electrostatic potential
of an ionic charge. A quasi-Germanium model is implicitly used. This corresponds
(for zinc-blende semiconductors) to solving a problem with Oy, instead of T, point
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Fig. 2.6 (110) Plane cross-sections of a neutral acceptor state in Germanium in the impurity
plane (leff) and four atomic planes apart (right). The model includes Coulomb interaction and a
S-potential central-cell correction adjusted to produce a 100meV binding energy. The positions
of the Ge atoms in the section planes are shown by black and white circles. Atomic orbitals are
represented by Gaussians with a 1.5 A radius (M. Nestoklon et al. unpublished results)

group symmetry: indeed, nothing in the corresponding Hamiltonian accounts for the
fact that the substitutional impurity potential is centred on an atomic site, and not at
the inversion symmetry centre of the diamond structure. As pointed by Castner [34],
correct Td symmetry can be restored by adding a tetrahedral (or octupolar) term in
the Coulomb potential, that accounts for the atomic arrangement and correspond-
ing non-spherical charge distribution near the impurity centre. Clearly, the octupolar
correction is larger for deep impurity states, that are more sensitive to details of the
“central cell” potential. Castner implemented this octupolar correction in the descrip-
tion of donors in silicon, for which valley degeneracy introduce another complexity.
Here, we briefly discuss the case of acceptor states. There is abundant literature on the
difficult problem of treating analytically I'g degeneracy [35], but modern computing
has allowed brute force solutions of the Luttinger kinetic operator in presence of a
central force potential. Either in the case of very small or large spin—orbit splitting
(resp. GaP and GaAs), it is found [36] that the cross-section of the local density of
state (LDOS) of the 4-fold (resp. 6-fold) degenerate ground state in a (110) plane
admits two planes of symmetry, the (001) and the (-110) planes. These symmetries
are not compatible with Tq symmetry for which the reflection symmetry with respect
to (001) plane does not exist. Conversely, as illustrated in Fig.2.6, TB solutions of
the same problem for a deep neutral acceptor state in Ge shows a large asymmetry
with respect to (001) reflection. Clearly, the asymmetry of the impurity LDOS has
nothing to do with crystal inversion asymmetry (which is absent in Ge), and simply
reflects the tetrahedral environment of the impurity.



2 Theory and Modelling for the Nanoscale: The spds* Tight Binding Approach 31

2.9 Alloys, beyond the Virtual Crystal Approximation:
Dilute Nitrides

In the preceeding section, results of TB modelling of a three-dimensional object
(actually, a supercell) are discussed. Calculations displayed in Fig. 2.6 correspond to
diagonalisation of a 10,000 atom TB Hamiltonian, thatis a4 - 10° x 4 - 10° matrix.
Much larger objects are actually accessible to computation, especially if only a few
specific eigenstates are searched. The supercell frame can also be used to model
realistic (random) alloys. This method was used to investigate the “giant bandgap
bowing” of dilute nitride alloys. When a few percent of N atoms are substituted to As
in GaAs, the bandgap decreases by a large amount (about 150meV/%), instead of
increasing by 198 meV/% as a linear interpolation between GaAs and GaN band gap
would suggest. This intriguing experimental fact has raised considerable interest, due
to the practical perspective of reaching Telecom wavelengths with materials epitaxied
on a GaAs substrate. A simple heuristic model, the so-called band anticrossing model
(BAC) [37] has accounted for the main observations, based on the consideration of
an isoelectronic level associated with N, resonant with GaAs conduction band states.
However, both the energy of the resonant level and the strength of its interaction
with delocalised conduction states are free parameters of the BAC model. Jancu et
al. (unpublished results) have applied TB to this problem, by distributing randomly
the parent chemical species in a few thousand atom supercell, letting the atoms
find their equilibrium positions through atomistic elasticity (using the Valence Force
Field theory), and solving the resulting Hamiltonian. Figure 2.7 shows the successful
comparison of TB calculations with experimental results.

Similar calculations were made for quaternary and quinary alloys InGaAsN and
InGaAsSbN and yielded equally good agreement with experiments. These calcula-
tions also explained the unexpected trends observed when annealing the quaternary
alloys. When annealing a GalnAsN alloy, only the first neighbors of an N atom (i.e.
Ga and In) can rearrange, enriching the environment of N atoms with In as compared
with the random distribution. Conversely, when annealing a GaAsSbN alloy, only
the second neighbors of an N atom (i.e. As and Sb) can rearrange. Calculations show,
in agreement with the astonishing experimental results, that annealing produces a
larger increase of the bandgap in the second case!

For higher N-contents, the role of cluster states has to be considered. Lindsay and
O’Reilly [38] successfully included in a TB model the interaction between the GaAs
I"-states and the full range of N-related levels present in the alloy.

While this example illustrates the predictive capability of the spds™* TB model, it
is so far tantalising in the sense that TB gives the correct result but not the explanation
of the result in terms of features of the parent hosts band structures and couplings
to (or hybridisation with) substitutional species. However, we believe that it should
be possible to dig this issue and end up with a general theory of alloys explaining
why some systems (InAsSb, dilute nitrides) show giant bowings and some others
(AlGaAs), almost none.
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Fig. 2.7 Comparison of TB supercell calculations of random GaAsN alloys with experiment. From
(J.-M. Jancu et al. unpublished results)

2.10 Full-Band Calculations: Dielectric Function
and Piezo-Optical Constants

In this section, we shall focus on a completely different aspect of theoretical mod-
els, i.e. their ability to produce results valid throughout the Brilloin zone, and in a
large energy range. k.p theory is a perturbative development valid in a narrow range
of wave vectors in the vicinity of a high symmetry point, and is clearly disquali-
fied when it comes to calculating full band properties such as a dielectric function.
Current atomistic pseudopotentials lack parametric flexibility to reproduce full
Brillouin zone: dielectric functions have been reported, but close examination reveals
that a correct value of the optical index is obtained using very incorrect energy posi-
tions for the “E2” gap (R. Magri, unpublished results and private communications).
Other methods are poorly compatible with heterostructures (nonatomistic pseudopo-
tentials) or computationally very demanding (ab initio). Figure 2.8 compares the TB
and experimental dielectric functions for GaAs. Although some significant discrep-
ancy (which is currently attributed to excitonic effects) does exist near the so-called
E2 gap near 5eV, the overall agreement is excellent, and in particular, the value of
the zero-frequency optical index (10.5) is very close to experimental value (10.9).
Again, excitonic effects are not taken into account. From comparison with ab initio
calculations, their influence on zero-frequency optical index is indeed expected to
be in the 5% range. A similar agreement is found for all III-V semiconductors.
The effect of uniaxial strain on the optical index is also interesting because it tests
the ability of a model to describe strain effect over the whole Brillouin zone. Under a
uniaxial stress in the [001] direction, the bulk semiconductor becomes birefringent,
with optical indices ny = n, # n,. One defines the related piezo-optical constant
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aoo1 as the relative difference (ny — n;)/X, where X is the applied stress [20].
The calculated dispersion of ogg; in GaAs is compared with experimental results in
Fig.2.9. Equally satisfactory agreement is obtained for all semiconductors.

The successful calculation of spectral functions allow their extension to
heterostructures. In principle, a superlattice grown along the [001] direction has the
Dyg or Cyy symmetry which allows an anisotropic dielectric function with, respec-
tively, ny = ny # n; orn, # ny # n;. However, itis clear that breaking the tetrahe-
dral symmetry around each atom will play a prominent role in the optical anisotropy,
so uniaxial strain and interfaces are an essential ingredient. In order to investigate the
feasibility of artificial semiconductors with significant optical anisotropy, Jancu et al.
[39] have explored numerically the dielectric function of a number of configurations
of ultrashort period superlattices (USPSL). The case of GalnAs/GaP or GalnAs/AIP
is interesting because the free-standing USPSL is lattice-matched to a GaAs sub-
strate, while the individual layers store considerable strain. GalnAs and GaP (or
AlP) layers undergo, respectively, biaxial compression and biaxial tensile strain of
about 3.6%. Calculated dielectric function for a GalnAs/GaP 3/3 USPSL is shown
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Fig. 2.10 Calculated dielec- 30
tric function for a GalnAs/GaP
3/3 USPSL (from Ref. [39])

[
[=]

dielectric function (1)
]

energy (eV)

in Fig.2.10. The observed optical anisotropy is in agreement with the C2v symmetry
of this NCA material, but shows a rather complex spectral distribution. Strangely
enough, an extremely simple zeroth order empirical rule could be inferred from the
calculation of various cases: the birefringence of an USPSL is the atomic layer per
atomic layer average of the piezo birefringences undergone by the various materials
involved. As the piezo-optical constants of GalnAs and GaP are very different, one
gets a situation where compressive and tensile strains compensate each other, but not
the contributions to birefringence. Experimentally, the GalnAs/AIP (that gives sim-
ilar theoretical spectra) could be grown by MBE and combined guided-wave optics
and ellipsometric measurements revealed a material birefringence n, — n; = 0.035
of the same order of magnitude as the prediction, n, — n, = 0.05.

2.11 Surface Physics and Modeling of STM Images

Another domain where only few theoretical methods can be used is surface physics.
There has been tremendous progress in this domain during the 1990s, thanks to the
combination of ab initio calculations and scanning tunnelling microscopy (STM).
In particular, the properties of the (110) natural cleavage surfaces of zinc blende
semiconductors were thoroughly studied. Ab initio calculations have correctly pre-
dicted the elastic relaxation (the so-called buckling) of these surfaces, as well as the
energy position and local density of states of surface electronic states. However, these
methods cannot be used for the large supercells (>10,000 atoms) that are required
to handle the situation of a sub-surface impurity state. The observation of single
acceptor signature in STM images has raised enormous interest [40] because of the
unpredicted shapes associated with resp. shallow and deep neutral acceptor states,
respectively a triangle for GaAs: Be (binding energy 25 meV) or an asymmetric but-
terfly for GaAs: Mn or GaP: Cd (binding energy 115 meV). It was rapidly realised
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that the local environment of the impurity should be important, and that tight binding
should be a suitable method, but most contributors neglected surface physics effects
and attempted to compare STM images with the cross-section of a bulk impurity
state. Figure2.10 (right panel) shows the experimental STM images measured for
Mn acceptors respectively localised in the third, fourth and fifth sub-surface planes.
Besides the striking ‘butterfly’ shape, one should notice that the atomic texture of
the image shows only the rectangular lattice associated with the Ga surface atom,
instead of the zig-zag chains of Ga and As atoms along the [1-11] direction that
is present on a (110) surface. This atomic texture is also observed on naked (110)
surface and explained in terms of the LDOS of specific surface states having a strong
dangling bond character and, for this reason, extending much more into the vacuum
than other crystal states. Hence, the schematic interpretation is that when the current
flows from the STM tip to the semiconductor, one sees the lattice formed by empty
dangling bonds on Ga atoms, while when it flows from the semiconductor to the tip,
one should rather see doubly occupied dangling bonds on As atoms. Thus, atomic
texture suggests that STM images are formed due to the hybridisation of surface
and impurity states. In order to test this simple idea, Jancu et al. first calculated the
situation of a 10,000 atom GaAs supercell containing a central Mn atom, includ-
ing in the calculation Coulomb interaction and the hybridisation of Mn s, p and
d-orbitals with neighboring As, but not the atomic exchange splitting among these
d orbitals. A 4-fold degenerate neutral acceptor state with binding energy of about
100meV comes out of the calculation. Cross-sections of the LDOS of this state in a
(110) plane, respectively 3, 4 and 5 atomic planes above the impurity, are shown in
Fig.2.11 (left panel). While some similarities with the STM images can be argued,
a striking discrepancy exists concerning the “orientation” of the butterfly asymmetry.
Then, the electronic structure of the (110) surface was considered, taking into con-
sideration relaxed atomic positions calculated by ab initio methods. This is possible
only because free electron states can be reasonably well reproduced in the spds*
model. Both the spectrum and local density of surface states of ab initio calculations
were fairly well reproduced (without any extra parameter) by the TB calculation.
For instance, the charge density of the “C3” conduction state at 2.2 eV, which has a
prominent Ga dangling bond character, is identical in the two calculations. Finally,
a supercell containing a free (110) surface and a Mn subsurface impurity at various
depths was considered. A large splitting of the acceptor level due to surface strain
(buckling) and a strong transfer of density probability from As to Ga atomic sites
are the salient features of the results. The LDOS of the two-fold ground state in
a (110) plane 2 A above the surface, corresponding to simulated STM images, are
shown in the central panel of Fig.2.11. They agree rather well with the experimental
images [41].
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Fig. 2.11 Bulk impurity cross-section (BICS) (/eft), simulated STM images (SSTM) (centre), and
experimental STM images (right) of an Mn neutral acceptor located n monolayers (n=3 to 5) below
the (110) surface. BICS is calculated in a (110) plane, n atomic planes away from the impurity, and
SSTM 2 A above the surface. SSTM LDOS is multiplied by 10* with respect to BICS. As (white)
and Ga (black) positions on the surface are indicated. From Ref. [41]

2.12 Back to Theory: Local Wavefunction in the Tight
Binding Approach

In the previous sections, we have evidenced that the spds* tight binding approach
is a powerful method to model single particle states in a variety of situations. In this
final section, we come back to the more fundamental issue of calculating interac-
tions between electronic states or quasi-particles. Compared to other methods, where
single particle states are expanded in a complete basis of explicitly known functions
(for instance, plane waves), tight binding suffers from the lack of information about
the spatial dependencies of the Lowdin orbitals that form the basis but are never
used explicitly in the formalism. This lack of knowledge on the local wavefunc-
tions obviously hampers the calculation of interactions (in particular, short range
interactions) between quasi particles. Benchamekh et al. (to be published), have
recently attempted to solve this important theoretical issue. We start with local orbitals
in the form of Slater orbitals that depend on adjustable “screening” parameters.
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Fig.2.12 Isodensity contours of the S, Y’ =X+Y and Z (from top to bottom) valence Bloch functions
in the (1,1,0) plane, at the zone centre in bulk Ge. TB method as described in text (left) is compared
with ABINIT calculations (right)

Once orthogonalised, these orbitals can be considered as trial functions for the
Lowdin orbitals. They do reproduce the correct angular symmetry properties and
expected long-distance behavior. Using this explicit basis, the momentum matrix
elements between different bands at different points in the Brillouin zone can be cal-
culated in real space and compared to those deduced from the derivation of Hamil-
tonian in momentum space. This procedure allows a fitting of the screening parame-
ters, that is a self-consistent determination of approximate local wavefunctions. In
Fig.2.12, a representation of valence band states Sy, X+Y and Z at the zone centre
obtained by this method for bulk Ge (neglecting spin-orbit interaction) is compared
to equivalent ab initio calculations using the ABINIT package. The general agree-
ment is very good, with minor discrepancies in the regions of low density. Similar
agreement is obtained for conduction band states. While still in a preliminary stage,
this approach opens a real perspective of combining the established potential of tight
binding for single particle modelling with an ability to perform electron correlation
calculations.
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2.13 Conclusion

In this chapter, we have illustrated the potential of the extended basis spds* tight
binding model for quantitative modelling of III-V semiconductor structures. In fact,
this model has also been applied successfully to many other materials, ranging from
semiconductors to oxides and metals. A large range of nanostructures of major inter-
est, for instance hybrid organic—inorganic nanostructures formed by semiconduc-
tor nanocrystals surrounded by organic ligands can be described with this method.
Somehow, the spds* TB model appears as a universal quantitative method for single
particle states. Moreover, the recent attempt discussed in the preceeding section to
derive self-consistently the local wavefunctions opens a route towards reconciling
tight binding with many body physics. Yet, the method has some drawbacks that
should also be stressed. First, it inherently requires a large number of empirical
parameters, the determination of which is a most difficult task. Secondly, the com-
putational difficulty is rather serious, and in absence of a well-tested open-source
code, entering the tight binding community requires considerable effort. More fun-
damentally, as all computional methods, TB produces “numbers”, but generally does
not explain them in simple terms as the K.P theory usually does. Thus, the problem
of qualitative understanding (which, in the authors’ views, is the real intellectual
challenge) tends to be decorrelated from that of obtaining quantitative results.
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Chapter 3
Theory of Electronic Transport
in Nanostructures

Eoin P. O’Reilly and Masoud Seifikar

Abstract As the first of three chapters on transport properties, we begin by explain-
ing some of the key factors relevant to electron transport on a macroscopic scale.
We then turn to address a range of novel nanoscale transport effects. These include
the quantum Hall effect and quantised conductance, as well as the recent predic-
tion and observation of quantised conduction associated with the spin quantum Hall
effect in a topological insulator. We next consider graphene and the consequences
of its unusual band structure before concluding with an overview of the potential
use of “‘junctionless” transistors as one of the most promising approaches for future
nanoscale electronic devices.

3.1 Introduction

There is considerable interest in transport at the nanoscale both from a fundamental
perspective and also because of the requirements of current and future electronic
devices. The invention of the transistor at Bell Labs in 1948 [1] enabled the develop-
ment and widespread application of electronic devices. Since 1960, electronic devices
have followed what is referred to as Moore’s Law [2]: there has been an annual
reduction of over 10% in the minimum feature size in electronic circuits, with the
minimum feature size dropping from 10 wm in 1970 to 0.5 pwm around 1990, and to
45 nmin 2010. As the feature size decreases it is no longer possible just to use macro-
scopic models to describe the electronic and transport properties—mesoscopic and
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nanoscale effects and models need to be considered. So far the reduction in device fea-
ture size has been achieved through inventive solutions and detailed understanding,
but scaling based on existing technology is now reaching its limits: if Moore’s law
continued to hold, then we would have subatomic scale devices by 2020! A range
of new concepts are therefore being investigated to push towards and beyond the
limits of Moore’s Law. These include the use of new materials, such as graphene
and carbon nanotubes, as well as the use of new device concepts based on existing
materials, including the introduction of junctionless transistors [3].

As structure size scales down, quantum effects come into play. This can occur at
very low temperatures in mesoscale devices, when thermal energies become com-
parable to quantum confinement effects, but can also be expected at higher temper-
atures in nanoscale devices, due to the larger quantum confinement effects in these
structures. Many classical phenomena display measurable quantum character as the
dimensions in which current can flow become restricted. The most widely known
example is probably the quantum Hall effect for a 2-D electron gas, where carriers
are confined in one dimension. In this case, the measured longitudinal resistance goes
to zero at the same time as the Hall resistance becomes quantised in units of /e
When carriers are further confined—in two dimensions—to form a quantum wire,
the resistance of the wire itself can then become quantised, again in units of 4 /e

Further effects can be observed by modifying the material band structure. It is
reasonable to assume for most semiconductors that the electrons behave as parti-
cles with an effective mass, m*, and then to treat carrier acceleration and transport
as if the carriers were particles in free space with mass m™*. There are however at
least two interesting classes of material where this assumption breaks down, namely
graphene and so-called “topological insulators”. In the case of graphene, which is a
zero-gap semiconductor, the band dispersion varies linearly rather than quadratically
with wavevector k, giving a band dispersion equivalent to that expected for photons
or relativistic particles. As the name suggests, the band structure of a topological
insulator is topologically different from that of a conventional semiconductor, with
distinctly different gap states at the edges or surfaces of the material. This has sur-
prising consequences, including the possibility to achieve a spin quantum Hall effect
in zero magnetic field in suitably chosen samples.

3.1.1 Scope and Overview

This is the first of three chapters to address transport behaviour of semiconductor
materials and heterostructures. In order to set up the framework for these three chap-
ters, this chapter first presents an overview of some of the key factors relevant to
electron transport on a macroscopic scale. This overview of macroscopic transport
properties sets the scene for the more detailed consideration of transport in nanos-
tructures in the remainder of this chapter, as well as providing relevant background
for the discussion of hot electron transport in Chap. 4, and the introduction to Monte
Carlo techniques in Chap. 5.
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We begin in the next section by first providing an overview of macroscopic trans-
port models. This begins with a definition of carrier effective mass and mobility, as
well as a review of some of the key carrier scattering processes in semiconductor
materials, and the use of Fermi’s golden rule to calculate specific carrier scatter-
ing rates. We then introduce the detailed balance method as a high-level approach
to estimating carrier mobility before going on to a more detailed model for carrier
mobility based on solving the Boltzmann transport equation. We show that such
models can account very well for the observed transport behaviour across a wide
range of examples. We discuss briefly in Sect.3.3 the need to go beyond Fermi’s
golden rule in cases where the scattering mechanisms strongly perturb the electronic
properties, taking as example the strong scattering due to nitrogen-related resonant
defect states in the dilute nitride alloy GaAs;_,Ny. It has been proposed to include
this alloy in GaAs-based multi-junction solar cells, to optimise the solar cell absorp-
tion efficiency. However, the intrinsically strong carrier scattering in the alloy has to
date limited its usefulness in such applications.

Having established the key macroscopic models for carrier transport, we then
turn to consider nanoscale transport effects. We start with the quantum Hall effect in
Sect. 3.4, discussing the role both of quantisation and of edge states in a 2-D electron
gas in an applied magnetic field. We then consider in Sect. 3.5 the spin quantum Hall
effect, in which there has been considerable recent interest. In this case, the unusual
band structure of a topological insulator can generate spin-polarised edge states,
analogous to those observed in the quantum Hall effect, but leading, in this case,
to the observation of quantised conductance associated with transport by identical
spin carriers when no magnetic field is present. We continue in Sect. 3.6 with a more
general discussion of the quantised conduction associated with current flow through
quantum wires and quantum dots.

The overall interest in nanoscale transport is driven both by the novel fundamen-
tal phenomena which emerge at the nanoscale and also by the demands of future
nanoscale devices, some of which may exploit these phenomena. There are a wide
range of approaches being considered for future nanoscale devices. These include the
development both of new materials with novel properties, as well as the investigation
of novel device concepts. We overview in Sect.3.7 graphene, one of the most inter-
esting materials currently being investigated, and then turn in Sect. 3.8 to describe the
junctionless transistor, as one of the more promising future device concepts currently
being investigated, concluding with a brief summary in Sect.3.9.

3.2 Macroscopic Transport Models

3.2.1 Carrier Effective Mass

From Bloch’s theorem, we can associate a wavevector k with each energy state in
a periodic solid, with the wavefunction 1, of the nth state with wavevector k and
energy E,; = hwyi being given by
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Fig. 3.1 Band structure of
a direct gap semiconductor
such as GaAs in the vicinity
of the band gap and near the
centre of the Brillouin zone.
The lowest conduction state
(at energy E.) is separated by
the band-gap energy E, from
the highest valence state, at
energy E,. The labels CB,
HH, LH and SO indicate the
conduction band, heavy-hole,

v
light-hole and spin-split-off
bands, respectively HH
LH

SO

CB

Vi (r) = exp (ik - r)unk(r) (3.1)

where u,x (r) is a function with the same periodicity as the lattice. Figure 3.1 shows as
an example the band structure close to the energy gap between the filled valence and
empty conduction band states of a direct gap semiconductor, such as GaAs. We have
near the bottom of the conduction band that the energy E.(k) varies quadratically
with wavevector k, which we can write as

h2k>
2m*

c

Ec(k) =Eq +

3.2)

where we use an effective mass, m to describe the conduction band dispersion.
This concept of effective mass is very useful—we show below that we can treat an
electron at the bottom of the conduction band as if it were a particle in free space
with effective mass, m.
If we apply an external electric field E, such that the electron experiences a force
F = —cF this implies the electron will move with an acceleration a given by
m’a = —eE, so that
a=F/m;=—eE/m] (3.3)

For small effective mass the electron then accelerates more rapidly in the solid
than in free space. This is at first surprising, but reflects the fact that the electron is
acted on not only by the external field E but also by the periodic field due to the
lattice structure. If we were to take explicit account of both fields in discussing the
dynamics of the electron it would exhibit its ordinary mass.

In order to derive the correct form for the electron effective mass, we consider an
electron represented by a wave packet near the bottom of the conduction band, so
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that the electron velocity is then given by the group or energy velocity, v, defined
in terms of the variation of energy E with wavevector k as

do  1dE
=== (3.4)

YT 4k T hdk

Inthe applied field E, the electron experiences a force F such that its energy increases
by

0E = Féx = Fv,0t

= F——t (3.5)

O0E = — 0k (3.6)
By comparing the right-hand sides of (3.5) and (3.6) we find that

dk
F=h— 3.7
” (3.7)

This holds irrespective of whether the electron is in free space or a periodic potential.
We can use (3.4) to determine the electron acceleration a as

_dv, 1 dE  1dEdk

_ _ = il 3.8
dt hdkdr  hdk?dt (3-8)
Substituting (3.7) into (3.8) we find
1 d%E 3.9)
T RA ‘

By comparison with Newton’s law (3.3), we see that the electron then behaves as if
it has an effective mass, m; given by

1 1 d&

— == 3.10
miz R dik2 G-10)

This broadens the definition of effective mass for a parabolic band in (3.2) to the
more general case of a non-parabolic band dispersion.
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3.2.2 Carrier Mobility

The current density J flowing in a bulk semiconductor with constant carrier density
n due to an applied electric field E is given by

J =nevy =0E 3.11)

where v, is the average carrier (drift) velocity, e is the electron charge and o is the
conductivity of the semiconductor. The mobility p describes how the drift velocity
depends on applied electric field as:

vg = ukE 3.12)
with the conductivity then depending on carrier density and mobility as
o =nej (3.13)

When a distribution of electrons, initially in equilibrium, is subjected to an applied
electric field, the electrons will start to accelerate, as described by (3.9). Their con-
tinued acceleration is however limited by a variety of scattering mechanisms, as
discussed further below. If we assume that the electrons move with an average drift
velocity, vy, and assume an average carrier scattering relaxation time, 7|, then we can
describe the evolution of the carrier distribution using the detailed balance method,
with the rate of change of carrier momentum with time given by

d *
% = —eE —m*vg/Trel (3.14)

where (3.14) is a generalisation of (3.3) to take account of dissipation processes.
Under steady-state conditions the left-hand side of (3.14) must equal zero, so that

eE = —m™vg/Trel

or
€Trel

p=— (3.15)
m

For any scattering process, the scattering rate depends directly on the density of avail-
able final states—there can be no scattering if there are no final states available into
which the electron can scatter. Hence, the relaxation time 7] is typically inversely
proportional to the density of states. The density of states scales with dimension D as
(m*)P/2 5o that the relaxation time should scale as (m*) ! in a 2-D electron gas, and
as (m*)’3/ 2 in a bulk semiconductor. We see from (3.15) that the highest low-field
mobility values may then be expected in materials with low carrier effective mass,
with the expected low field mobility scaling with effective mass in a quantum well
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structure as
o (m*)~2 (3.16)

3.2.3 Carrier Scattering Mechanisms

We saw above that the electron acceleration is limited by carrier scattering, but did
not specify what causes the carriers to be scattered. In practice, any perturbation that
breaks the perfect periodicity of the crystal lattice can scatter electrons. Scattering
mechanisms which can be important in typical semiconductor samples include:

e Acoustic phonons: theseintroduce long wavelength distortions of the lattice,
where the displacement of neighbouring atoms is in phase. Because the phonon
energy goes to zero as the phonon wavelength goes to infinity, acoustic phonon
scattering can be of particular importance at low temperatures, where they provide
the first excitations of the lattice;

e Polar optic phonons:inthiscase, neighbouring atoms vibrate out of phase.
A polar optic phonon is a higher energy excitation than an acoustic phonon; polar
optic phonon absorption or emission is therefore negligible at low temperature, but
becomes an increasingly important inelastic scattering process as the temperature
is increased;

e Tonised impurities: when an electron becomes unbound from a dopant
atom and is free to move through the lattice, it leaves behind an ionised impurity
centre, which acts as a Coulombic scattering centre;

e Alloy fluctuations: semiconductor alloys such as In,Gaj_,As or
SiyGe|_y are used in many applications; the fluctuations due to the difference
in potential associated with the different atom types in the alloy provide an addi-
tional scattering mechanism whose magnitude scales as x(1 — x);

e Electron-electron:due tothe Coulomb repulsion between electrons as they
propagate through the semiconductor;

e Resonant defect levels: within the conduction or valence band, provide
an additional scattering path when the propagating electron energy is close to the
resonant state energy;

e Quantum well width fluctuations lead to a position-dependent con-
finement energy, and tend to become increasingly important as the well width
decreases.

For an indirect semiconductor such as unstrained bulk Si, there are six equivalent
conduction band minima, each of which lies close to the X point along the six
different I"-X directions in the first Brillouin zone. The scattering in such an indirect
gap material is generally considerably stronger than at the conduction band minimum
in a direct gap semiconductor, both because of the larger density of states at the (X and
L) points, and also because both intravalley and intervalley processes can be expected
to contribute to the total scattering rate. Scattering between X valleys and between
L valleys also become important at high electric fields in direct gap semiconductors:
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as the electrons accelerate to higher energy in the I” valley, they can acquire sufficient
energy to become degenerate with and scatter into the L or X states. This will be
discussed in more detail in Chap. 4.

3.2.4 Carrier Scattering Rates and Boltzmann Transport
Equation

The rate of transition from an initial occupied state |1);) to an empty final state |?) )
can be calculated from time-dependent perturbation theory, and is given by Fermi’s
golden rule as

) 2m 2
R — f) = |(Wi| AH | ¢)|” D(E ) (3.17)

where A H in the matrix element is the perturbation to the Hamiltonian due to the
scattering mechanism, |+;) and |1 r) are both eigenstates of the unperturbed Hamil-
tonian Hy, the density of final states is D(Es) and E y = E; for elastic scattering.

When we introduced the detailed balance approach in (3.14), we assumed that all
carriers moved with the same average drift velocity and scattering time. In practice,
the carriers are described by a distribution function f(r, p,t), where f describes
the probability of a state at position r and with momentum p = hk being occupied.
In the absence of scattering, each particle follows the trajectory given by its group
velocity v, and the rate of change of momentum p is given by the external force
F acting on the particle. (For external electric and magnetic, B, fields acting on
electrons, the force F = —e[E + v, x B].) Thus, for short time-intervals At, those
particles of momentum p which are at position r at time ¢ were at position r—v,(p) At
at time ¢ — At (for short At) and had momentum p — F At. Then, following the
trajectories of all particles, we have that

fr,p.t) = f(r—v,At, p— FAt, t — Ar)
= f(r.p.t = At) —[vy -V, f+F -V, flAt (3.18)

where we have assumed that the distribution function f is smooth when deriving the
second line of this equation. We then have, in the absence of scattering, that

47

=V Ve —F-Vyf (3.19)

When we include scattering, we write

v v _F. 47
dr vg Vrf = F fo+|:df ]scatt (320


http://dx.doi.org/10.1007/978-3-642-27512-8_4

3 Theory of Electronic Transport in Nanostructures 49

where the last term on the right denotes the contribution of scattering, which can be
written in detail as

d 1
[d—f} = —3/ [R(p’, pfPH{1— f(p}—Rp.p)f(p) {1 - f(p’)}]d3p

t scatt h
3.21)

where R(p, p’) is the scattering rate of a particle of initial momentum p to final
momentum p’. The factors [1 — f(p)] and [1 — f(p’)] are there because of the Pauli
exclusion principle, which prevents scattering into a state which is already occupied.
Equation (3.21) emphasises that scattering can only occur if there is an empty final
state available. This is usually the case in a bulk semiconductor, but we shall see
below that some of the novel features observed in nanoscale transport arise precisely
because scattering is suppressed due to there being no suitable final states available.

Equations (3.20) and (3.21) together give the full Boltzmann transport equation.
The most difficult term to solve for is the scattering contribution of (3.21). It can be
solved by various specialised numerical methods, including Monte Carlo simulation,
as described in detail in Chap. 5. However, for many purposes in considering elastic
alloy scattering, it is appropriate to use the relaxation time approximation, assuming

that:
[ﬂ} _ ) = folp)
scatt

= ) (3.22)

where 7(p) is the overall carrier relaxation time for carriers with momentum p.

3.2.5 Mobility in Bulk Semiconductors and Heterostructures

Knowing the magnitude and temperature dependence of different scattering mech-
anisms, it is possible to provide a clear understanding of the overall temperature
dependence of the mobility across a wide range of bulk semiconductors and semicon-
ductor heterostructures. The data points in Fig. 3.2 show as an example the measured
variation of mobility with germanium composition, x, in bulk silicon-germanium
alloys, Sij—_yGe, at room temperature. The upper dashed line shows the calculated
mobility due to phonon scattering. It can be seen that this gives a good estimate
of the mobility in Si and Ge, where it is the main scattering mechanism in low-
doped samples, but significantly overestimates the mobility across a wide range of
alloy compositions. The lower curve (solid line) shows the calculated mobility when
alloy scattering is included. First-principles electronic structure methods were used
to find the rates of intravalley and intervalley n-type carrier scattering due to alloy
disorder in the alloys, with scattering parameters for all relevant A and L intravalley
and intervalley alloy scattering processes being calculated [4]. It can be seen that
the n-type carrier mobility, calculated from the scattering rate using the Boltzmann
transport equation in the relaxation time approximation, is in excellent agreement
with experiments across the full range of bulk, unstrained alloys.
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Fig. 3.2 Data points: mea-
sured variation of mobility
with germanium composition,
x, in bulk silicon-germanium
alloys, Sij—,Ge, at room
temperature. Dashed line cal-
culated scattering rate due 3
to phonon scattering; solid
line calculated mobility with
alloy scattering included using
first-principles calculation of
scattering rates. The inset 1
shows the mobility in the

region near where the alloy X e oy g B e o B0 .
and L bands cross each other o 02 04 0.6 08 L

u (10% emiVs)
=2

(following [4]) x (Ge content)
(@ (b) Confined

Too |

/ states

Fig. 3.3 a A modulation-doped heterojunction formed by doping a thin region of a wide-gap
semiconductor close to the interface with a narrower gap material; b it is energetically favourable
for the electrons to transfer into the narrower gap material, where they become confined at the
heterojunction because of the electrostatic potential due to the positively charged ionised impurity
sites

®@®

We saw from (3.13) that the conductivity, o, in a bulk semiconductor, depends
on the carrier density per unit volume, n, and the carrier mobility, i, as ¢ = nep.
The obvious route to increasing conductivity, then is to increase the carrier density
by increasing the doping density, N;. However, this also increases the number of
ionised impurity scattering centres (=N ), thereby reducing the mobility, particularly
at lower temperatures.

By contrast, the areal carrier density, ng, can be increased in a low-dimensional
system without significantly degrading the mobility. This can be achieved through
modulation doping, where the dopant atoms are placed in a different layer from
that in which conduction is occurring. This is illustrated in Fig.3.3, where donor
atoms are placed in the barrier layer adjacent to a layer with a lower conduction band
edge energy. The excess donor electrons are transferred into the layer with lower
band edge, leaving the ionised impurity centres in the barrier, typically over 10 nm
from the conduction channel. At very low temperatures and in very pure materials,
the electron mobility at GaAs/AlGaAs heterojunctions can exceed 107 cm?/(Vs),
four orders of magnitude larger than in low-doped bulk material, due to the virtual
elimination of ionised impurity scattering. The effect is much less marked at room
temperature, where other scattering mechanisms dominate, in particular scattering by
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Fig. 3.4 Data points: exper-
imentally measured variation
of mobility with temper- 10°
ature in a GaAs/AlGaAs
modulation-doped het-
erostructure, compared to
calculated mobility, includ-
ing temperature-dependent
contributions from differ-
ent scattering mechanisms.
Experimental data from Ref.
[5]; theoretical data courtesy
of S. Birner, http://www.
nextnano.de
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polar-optic phonons. This is illustrated in Fig. 3.4, which shows as example the mea-
sured variation of mobility with temperature, as well as the calculated temperature
dependence of the main scattering mechanisms. Although polar-optic phonon scat-
tering becomes more important with increasing temperature, the room temperature
mobility in modulation-doped heterojunction field effect transistors is nevertheless
typically double that of the doped GaAs previously used in metal-gate field-effect
transistors. This has two important consequences for the performance of high-speed
transistors: first, the resistances are reduced, and with them the RC time constants,
so that devices of a given size are faster and second, largely because of the reduced
resistance, the levels of noise generated by the device (due to scattering processes)
are also much reduced. The lowest noise transistors presently available are, therefore,
based on modulation-doped heterojunctions, which find widespread application, for
instance, in the amplifier circuits in satellite receivers and in mobile phones.

3.3 Scattering in Dilute Nitrides: Beyond Fermi’s
Golden Rule

We saw above how scattering in conventional semiconductor alloys can be well
described using Fermi’s golden rule to determine the carrier scattering rate. There
are however a number of cases where a scattering centre introduces such a strong
perturbation that it is necessary to go beyond Fermi’s golden rule. This is the case
for example when considering the strong scattering due to nitrogen-related resonant
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defect states in the dilute nitride alloy GaAs;_,N,, a material which will be discussed
further in Chap.5. When a small fraction of arsenic atoms in GaAs is replaced by
nitrogen the energy gap initially decreases rapidly, at about 0.1 eV per % of N for
x < ~0.03 [6]. This behaviour is markedly different from conventional semiconduc-
tors, and is of interest both from a fundamental perspective and also because of its
significant potential device applications. It has been proposed for instance to include
GalnNAs lattice-matched to GaAs in multi-junction solar cells, to optimise the solar
cell absorption efficiency. However, the intrinsically strong carrier scattering in the
alloy has to date limited its usefulness in such applications.

The strong perturbation and large scattering cross-section due to an isolated N
impurity in GaAs can be estimated using S-matrix theory (distorted Born wave
approach). This was previously applied to successfully describe resonant scattering
due to conventional impurities in GaAs [7, 8]. For a sufficiently localised pertur-
bation, AVy, the total scattering cross-section ¢ for an isolated impurity is given
by

* 2
o =4 (2’:7) (et | AV [tbeo) 262> (3.23)

where m™ is the electron effective mass at the band edge and 2 is the volume of
the region in which the wave functions are normalised. The state 1), is the I"-point
conduction band Bloch wave function (in the absence of the N atom) and ). is the
exact band-edge state in the presence of the N atom.

We note that the Born approximation is equivalent to setting 1.0 = %, in the
required matrix elements. Although we saw above following (3.17) how this is per-
fectly adequate to describe conventional alloy and impurity scattering, it is entirely
inadequate for the case of N defect scattering in GaAs.

Consider a perfect crystal for which the electron Hamiltonian is Hy and the con-
duction band edge state has wave function .o and energy E.o. When we introduce a
single N atom into a large volume 2 of the otherwise perfect lattice, the new Hamil-
tonian, H; = Hy + AVy, leads to a modified band edge state 1. with energy E.;.
We can therefore rewrite the scattering matrix element of (3.23) as

(et |AVN [eo) = (et |Hy — Holeo) = (Ect — Eco) (Yt [Ye0) (3.24)

Because (¥¢1|1c0) — 1 for sufficiently large §2, it can be shown that at low impurity

concentrations
dE,

dn

Q1| AVNIY0) = (3.25)

where E. is the conduction band edge energy and n is the number of impurities
per unit volume. Substituting (3.25) into (3.24), and noting that n is related to the
concentration x by n = 4x /aS, where ag is the GaAs unit cell dimension, the
scattering cross-section for an isolated impurity is then given by
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Fig. 3.5 Data points: mea- 104

- ® Jin 3-8x10"7
sured variation of electron O Reason 0.5-5x1012
mobility with N composition # Young 0.5x10%

A Skierbiszewski 1.7x10"7
B Hashimoto <1x107
s w Ishikawa 0.4-5x10'%

x in GaAs|_,N, (from [9]).
The uppermost dashed line
shows the calculated mobil-
ity, assuming scattering by

Electron Mobility (cm2/V-s)
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isolated N atoms only (3.26)
while the lower lines show the
calculated mobility assuming
a distribution of N states [10] Sion o T e -
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4 \ 27h? dx 0

This result is key: it establishes a fundamental connection between the composition-
dependence of the conduction band edge energy and the n-type carrier scattering
cross-section in the ultra-dilute limit for semiconductor alloys, imposing general
limits on the carrier mobility in such alloys.

We can see this by extending the isolated N result of (3.26) to the case of a dilute
nitride alloy, GaAs|_,N,. The mean free path [ of carriers depends in an independent
scattering model on the scattering cross-section ¢ for a single defect and the number
of defects n per unit volume as [ ~! = no. The mobility 1 is then related to the mean
free path [ as . = er/m*, with the scattering time 7 = [/u, where u is the mean
electron velocity.

The dashed line in Fig.3.5 shows the estimated variation of the room tempera-
ture electron mobility with x in GaAs|_,N,, calculated using the two-level band-
anticrossing model for GaAs;_,N, [11, 12], which assumes all N resonant defect
states to be at the same energy Ey. The electron mobility is estimated to be of the
order of 1,000 cm?/(Vs) when x = 1%, of similar magnitude to the highest val-
ues observed to date in dilute nitride alloys [13] but larger than that found in many
samples, where ;i ~ 100-300 cm?/(Vs), as shown by the data points in Fig.3.5
(following [14, 9]). In practice, there is a wide distribution of N resonant state ener-
gies in GaAs|_ Ny, associated with N-N nearest neighbour pairs and clusters [15,
16], with a significant number of these defect levels calculated to be close to the
conduction band edge. The lower lines in Fig. 3.5 show the calculated mobility when
scattering associated with this distribution of defect levels is included. It can be seen
that inclusion of this distribution can largely account for the low measured electron
mobility in this alloy system.
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The intrinsically low electron mobilities in dilute nitride alloys have significant
consequences for potential device applications. The low electron mobility, combined
with the short non-radiative lifetimes observed to date, limit the electron diffusion
lengths and efficiency achievable in GalnNAs-based solar cells. Further efforts may
lead to increased non-radiative lifetimes, but are unlikely to see significant further
improvements in the alloy-scattering-limited mobility [13].

3.4 Quantum Hall effect

The Hall effect provides a well-established technique to determine the mobility
and carrier density per unit area in bulk semiconductor samples [17]. It was, there-
fore, an obvious technique to apply to low-dimensional semiconductor nanostruc-
tures. However, when such measurements were carried out at low temperatures on a
2-D electron gas, the results were completely unexpected [18]. The measured Hall
resistance was quantised in units of /1/e?, where h is Planck’s constant and e is the
electron charge. As a consequence, a basic semiconductor experiment has become
the standard for defining resistance and, more interestingly, has opened a wide field
of fundamental research, some of which we discuss further in the following sections.
We consider first the classical Hall effect in a 2-D sample, with the current, 7,

given by
I = wngev (3.27)

where n; is the areal carrier density, v the average carrier velocity and w the width
of the sample. When a magnetic field, B, is applied perpendicular to the sample, it
causes a force on each carrier, F' = e(v X B), whose magnitude is then ev B, directed
towards the side of the sample. This leads to a build-up of charge on the two sides of
the sample, until the induced electric field, E i, exactly balances the magnetic force,
eEy = evB, with a measurable Hall voltage, Vp, across the sample then given by

Vg = Egw = vBw (3.28)

Combining (3.27) and (3.28), we can use the Hall voltage V to determine the areal

carrier density n; as

B
Vi = —1 (3.29)
nge

with the Hall resistance, Ry, defined as

B
Ry = 2L - = (3.30)
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The Hall effect is widely used to measure the carrier density, ng, and also the carrier
mobility, i, which can be determined knowing the current, /, carrier density and
applied longitudinal voltage, V.

How then does the Hall effect become quantised in two dimensions? Two key
factors need to be included in a description of the quantum Hall effect, namely,
carrier quantisation and the existence of edge states in a finite sample.

We start by considering carrier quantisation. Close to the band edge, the energy
levels in the ground state subband of a 2-D electron gas (2DEG) satisfy the relation

hZ
E(ks. ky) = Eo +

e (k7 + k3) (3.31)

where Ej is the ground state zone centre confinement energy, and the electrons are
free to move in the x—y plane.

When a strong magnetic field, B, is applied perpendicular to the 2DEG, the elec-
tron motion becomes quantised in cyclotron orbits in the 2-D plane. It can be shown
that classically the cyclotron frequency, w,, depends directly on the applied field B as

we =eB/m* (3.32)

When quantisation effects are taken into account, the allowed orbital energies depend
directly on w, as E,, = (n+ 1/2)hw,, where n is an integer and the quantised energy
levels are referred to as Landau levels. The energy levels of the 2DEG are then
given by

E,=FEo+ (n+1/2)hw. + gupB -s (3.33)

where the last term describes the interaction between the electron spin s and the
applied magnetic field B.

The form of the density of states then changes in an applied magnetic field from a
constant density of states to a series of discrete allowed energy levels, as illustrated
in Fig. 3.6a. The total number of electron states is, however, conserved per unit energy
range. The total number of states, N, per unit area between energy E and E + dE is
given for the band dispersion of (3.31) by N = ¢gop(E)dE = (47rm*/ hz) dE, where
gop(E) is the 2-D density of states per unit area. All the states lying within an energy
range dE = hw, are gathered into each pair of spin up and spin down Landau levels.
The number of states, N, in each individual Landau level is then given by

1 (4mm* eB

When j Landau levels are fully occupied, the areal carrier density ny = Nj, and the
Hall resistance are given by

Ry=—=— (3.35)
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Fig. 3.6 a A magnetic field B applied perpendicular to a 2-D structure changes the density of states
from a continuous spectrum (dotted line) to a series of discrete allowed energy levels (black lines),
due to quantisation associated with the circular motion of the electrons in the applied magnetic
field. For simplicity, the electron spin energy, gup B - s is ignored in this spectrum; b illustration
of closed, insulating cyclotron orbits in the body of a 2-D structure, and of conducting states being
repeatedly reflected and propagating along the edges of the sample

E, Energy, E

Because there is no current flow through a filled energy band, it might be expected,
when all the Landau levels are filled, that there should be no longitudinal current
flow through the Hall sample. This however does not take account of the finite size
of the samples, with the carriers being confined overall in a region of width w (see
3.28). An electron near the centre of the sample will have a closed cyclotron orbit,
as illustrated in Fig.3.6b. Such an electron does not contribute to the current flow.
However, let us now consider an electron at the edge of the layer, and assume for
simplicity that it experiences an infinite confining potential to remain within the
layer. Such an electron cannot complete a cyclotron orbit, but instead is repeatedly
reflected off the wall, giving a conducting edge state. At sufficiently low temperature,
there are no final states into which an edge state can be scattered: all edge states on
one side of the sample propagate in the same direction, so back scattering would
require the electron to be scattered to the opposite side of the sample. In addition,
when hw, > kpT (i.e. at high fields and low temperatures) the electrons will not be
scattered to other Landau levels. Given ng carriers per unit area, we then expect that
the longitudinal resistance R; = 0 whenngy = Nj = jeB/h.

In practice, it is found for many samples that R; = 0, and the Hall resistance
is quantised at Ry = h/je* over a finite range of field in the neighbourhood of
B = hng/je, as illustrated in Fig.3.7.

The step heights in the quantum Hall effect can be measured to an accuracy
of order a few parts in 10° and lead to an extremely accurate determination of
h/ €2 =25812.807 2. A basic semiconductor experiment can, therefore, be used in
defining fundamental constants (4 or ¢), and also as a resistance standard, to define
the ohm.

The model of the quantum Hall effect here is greatly oversimplified. It does not,
for example, account for the width of the plateaux in Ry in Fig.3.7. The plateaux
width can be explained in terms of broadening of the Landau levels, for example,
by impurities and the localisation of electron states in the wings of the broadened
Landau levels. Conduction occurs through extended states and so, when the Fermi
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Fig. 3.7 Experimental curves 250
for the longitudinal voltage
(V) and the Hall voltage
(V) of a heterostructure as a
function of the magnetic field
B for a fixed carrier density in
the heterostructure (after [19])

200

150

mV)
V(mV)

100

50

energy lies well within the band of localised states, the conduction electrons again
see no states close in energy to which they can scatter.

Once the magnetic field is sufficiently large that all electrons are in the lowest
Landau level, there should be no further plateaux in the Hall resistance, Ry or zeros
in R;. It was, therefore, a further big surprise when plateaux and zeros were seen
when the lowest level was one-third and two-thirds full, and then, as the material
quality improved at further fractions such as 1/5, 2/5, 2/7, 2/9, etc [20]. The theory
for these plateaux, to explain the fractional quantum Hall effect, requires many-
electron effects which cause energy gaps to open up within the Landau levels: there
are bound states containing, for example, three electrons whose excitations have
an effective charge of 1/3, and which then account for the plateaux at 1/3 and 2/3.
Further discussion of these states is beyond the scope of this book.

3.5 Spin Quantum Hall Effect

The existence and behaviour of edge states in insulating materials has only recently
become a subject of interest. It was generally assumed for an insulato—where a
gap separates the occupied and empty states—that no current should flow when
conducting probes are attached to opposite ends of a sample, and a voltage is applied.
This analysis does not however take account of the edge states which may be expected
in a bounded insulator. Recent analysis has shown that different insulators can have
distinctly different types of edge states. For the vast majority of insulators, the edge
states do not provide a viable current path, and so do not need to be considered
in discussion of the electronic properties. There are however a set of insulators for
which the band structure is topologically distinct from conventional insulators, and
where, just as in the quantum Hall effect, the edge states provide an extremely robust
conduction path, with states at each edge supporting current flow in a given direction
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by carriers with a distinct spin state [21]. The spin quantum Hall effect is then of
interest both in the quest for spin-based electronic devices, and also in the search for
topologically distinct states of matter.

In order to examine the spin quantum Hall effect and the different possible topolo-
gies for the band structure of an insulator, it is useful to consider a model k - p Hamil-
tonian describing the band dispersion due to the interaction between two Electron
states (spin up and down) with s-like symmetry and two Hole states (also spin up
and down) with p-like symmetry in a quantum well (QW) structure [21]. The zero of
energy is chosen midway between the electron and hole states, and the Hamiltonian
associated with dispersion in the QW x—y plane is given by:

(k) 0
H_( 0 h*(_k)) (3.36)

where h(k) is a 2 x 2 matrix describing the interaction between the E and H spin
up states, while 2™ (—k) describes the interaction between the spin down states, with
h(k) for a conventional III-V quantum well being of the form:

e(k) + M + B(k; + k3) Alky + iky)
h(k) = (3.37)
Alky — iky) e(k) — M — B(k} +k3)

where the coefficients B and A can both be assumed to be positive numbers, while
the term (k) = C — D(k)% + k%) can be neglected in the following analysis, as it
only describes the variation of the average energy associated with the two bands.

In a conventional QW structure, where the lowest confined electron state is above
the highest confined hole state (M > 0) both bands show a conventional dispersion,
with the band extremum energy at k = 0, and with the lowest E and highest H state
at energy M and — M, respectively.

Consider however a material where the lowest E state is below the highest H state
(M < 0). Such an arrangement is possible when the QW is formed from a zero-gap
semiconductor, such as HgTe [22]. In the case where M < 0, the band extrema are
no longer at k = 0, but instead are found at finite k, as illustrated in Fig. 3.9a, where
the solid black lines show the calculated dispersion for the case ky, = 0.

In addition to propagating states within the bands of a periodic solid, there are also
evanescent states in the energy gap, which join with the bulk band edges. Because the
amplitude of the evanescent states grows exponentially, they are not valid solutions
to Schrodinger’s equation in an unbounded quantum well. The evanescent states can
however give rise to edge states in a bounded quantum well, defined for instance in
therange0 <y < L.

It is possible based on the Hamiltonian of (3.36) and (3.37) to use analytical
models to calculate the edge states both for the conventional case of M > (0 and also
for M < 0[21]. The edge states join with the bulk bands at the band extrema, and have
a topologically different behaviour in the two cases, with a non-trivial dispersion for
M <0, as shown by the dashed and dotted lines in Fig.3.9a. The dashed line shows
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Fig. 3.9 a Black lines band dispersion for ky = 0 of the Hamiltonian of (3.37); dashed line
dispersion associated with edge states with spin up on side I and spin down on side II of the sample;
dotted line dispersion for edge states with spin down on side I and spin up on side II, as illustrated
in b, where applied voltage is driving net carrier flow to right

the dispersion associated with states with spin up on side I and spin down on side II
of the sample, while the dotted line shows the dispersion for states with spin down
on side I and spin up on side II. When an electron of a given spin is being accelerated
by an applied electric field to a larger k, value then there are no edge states with
the same spin on that side of the sample to which the electron can be backscattered,
thereby giving a robust conduction path, as illustrated schematically in Fig. 3.9b. The
existence of such a topologically nontrivial phase in HgTe-based systems was first
predicted theoretically [22], and subsequently demonstrated experimentally, through
a series of elegant experiments on HgTe/CdTe quantum well structures, in which
the Fermi level was tuned by a gate voltage to lie in the band gap region. These
experiments demonstrated that the conductance o was quantised, taking the value
o = 22/ h predicted for topologically protected edge states in such a structure, as
shown in Fig. 3.8 [23].
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This experimental demonstration of the quantum spin Hall effect has placed the
concept of topological insulating states on a firm footing, with the further extension
of the concept to 3-D materials and with a growing number of predictions of novel
effects related to the carrier spin polarisation at the interfaces between topological
insulators and other materials, such as superconductors and ferromagnets.

3.6 Quantised Conduction Through Wires
and Dots

As the size of current carrying structures shrinks down, quantum confinement effects
can begin to play a key role in determining the conductance, in particular when the
confining energies approach or exceed thermal energies in the device. When the
lateral dimensions of a current carrying wire become small enough, the wire must
be treated as a quantum wire, with states confined in the lateral direction, but with
wavenumber k, remaining a valid quantum number along the wire axis (taken here as
the z direction). In addition to current flow along a quantum wire, it is also possible to
establish current flow through a quantum dot (QD) structure: a region where carriers
are effectively confined in all three dimensions, with the QD only weakly coupled to
the surrounding current carrying regions. Current flow through such nanostructures
has been of considerable interest both from a fundamental perspective, and also
because of its potential consequences for future electronic devices. We provide a brief
overview here of transport through wires and dots, outlining how the conductance
can become quantised when confinement and thermal energies become comparable
to each other. Further details and a more general discussion of transport through such
nanostructures can be found in a wide range of texts, including for instance [24] or
[25].

Figure3.10 shows schematically a quantum dot channel region sandwiched
between metallic source and drain regions. When a voltage V is applied across
the structure, most of the voltage drop will occur across the channel region. The
carriers in each of the metallic regions are expected to be in thermal equilibrium,
with chemical potential ;4 in the source, and p» in the drain region. The probability
of a given state in region i (i = 1, 2) being occupied is then given by:

fi(E) = fo(E — pi) = [1 +exp{(E — pi)/ kpT}] (3.38)

where f;(E) is the Fermi distribution function in region i. Each contact tries to
equilibrate with the channel: the source therefore tries to pump electrons into the
channel, while the drain tries to pull them out, leading to a net current flow through
the channel. For n-type conduction, an electron will flow from a filled state in the
source through alevel in the channel that is empty at equilibrium, and on into an empty
state in the drain. At very low temperature, when all states below y; are filled and
all states above it empty, current can flow only through the finite (small) number of
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Fig. 3.10 Schematic of band
line-up when a bias is applied
between a source and drain
across a quantum-dot channel
region with quantised energy
states
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levels in the channel with energies between p; and pi1, and the conduction therefore
becomes quantised. We now wish to estimate the current flow through a single such
channel, using a formalism due to Landauer [26-28] to do so.

We assume for simplicity that the source and drain in Fig.3.10 are ideal 1-D
conductors. leading to reservoirs on the left and right with quasi-Fermi energies 1
and pp, respectively. The current injected from the left-hand side, /; is found by
integrating for all k states in the wire which propagate to the right (i.e. with k > 0)
the probability of injection into that k state, fi(k), times v(k), the velocity with which
a particle moves in state k, times 7 (E), the probability of a particle in that state being
transmitted through the channel. A similar expression can be written down for the
current injected into the channel from the right, /g, and the net current I = I — Ig
is then given by:

_ 2e
T 2w

I |:/0° dkv(k) f1 (k)T (E) — /OO dk’v(k’)fz(k’)T(E’):| (3.39)
0 0

where the constant is the 1-D density of states in k-space. We can use (3.4) to replace
v(k) by h~'dE /dk, thereby allowing us to transform (3.39) into an integral over
energy. The upper limits of integration at low temperature are given by w1 and up
for I, and Ig, respectively, with [ then given by:

26 M1 d
I =— ET(E 3.40
27h ), (E) (3.40)

This is the Landauer formula for low-temperature quantised current flow.

If we assume that we are in the linear response regime, so that y; — up = eV,
where V is the applied voltage, and further assume that 7 = 1 for current flow
through the given channel, so that the integral then equals 111 — o, this gives that
the conductance G = I/ V for a single current channel takes the value
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where 2¢2/h is referred to as the conductance quantum, with its inverse h/2e?
referred to as the resistance quantum.

The derivation in (3.41) assumed that there was only one current path through
the channel. It can be seen from Fig.3.10 that the number of current channels can
increase with increasing voltage, due to an increasing number of quantum dot levels
becoming available as current paths. At low temperature, the total conductance then
increases by 2¢%/ h each time a new current path becomes available. In addition, the
current flow through a channel can vary with channel area: the number of current
paths N through a channel increases with the cross-sectional area of the channel, but
in discrete steps. This is illustrated in Fig.3.11, showing how the conductance of a
metal point contact changes in units of 2¢?/h as the contact is pulled apart.

Several major simplifying assumptions were made in the derivation of the quan-
tised conductance here, including in particular that we can set 7 = 1 in (3.40), and
also that the full voltage V which is applied is dropped across the channel, with no
voltage drop in the connecting wires. Both these assumptions need to be modified
in a more detailed analysis [24], but the overall conclusion from the more detailed
analysis remains unchanged concerning the value of the conductance quantum, con-
sistent with its measured value across a wide range of experiments, including the
spin quantum Hall measurements discussed in the previous section and point contact
measurements illustrated here.

3.7 Graphene

The overall interest in nanoscale transport is driven both by the novel fundamen-
tal phenomena which emerge at the nanoscale and also by the demands of future
nanoscale devices. Both these interests converge strongly in the case of graphene. It



3 Theory of Electronic Transport in Nanostructures 63

is very well-known that graphite consists of hexagonal carbon sheets stacked on top
of each other. Although the band structure [30] and some of the other properties of a
single layer have been understood theoretically for a long time, it was believed until
recently that it would not be possible to create and investigate experimentally high
quality, single graphite layers. This situation changed dramatically in 2004 with the
discovery by Andre Geim and Konstantin Novoselov of a surprisingly simple tech-
nique to fabricate such individual layers, referred to as graphene sheets [31]. Their
fabrication method is surprisingly simple and, enabled by the details they provided,
could be repeated by others in a very short time. In essence, it involves putting sticky
tape onto a graphite surface, peeling off an individual layer and placing that layer for
measurement and analysis on an inert substrate.

Graphene is a zero-gap semiconductor, It is the first truly 2-D crystalline material,
being only one atomic layer thick, and has many remarkable electronic properties.
We begin here by first describing the band structure of graphene and then overview
how the band structure impacts on the electronic and optical properties.

The band structure of graphene is best understood, using the tight binding method,
with one s and three p states on each C atom. The s state and the two p states which lie
in the graphene plane form sp? hybrids on each C atom. These interact with hybrids
on the neighbouring atoms to give bonding and anti-bonding states, separated by
a wide energy gap. The band structure in the vicinity of the energy gap is then
determined entirely by the interactions between the remaining p, orbital on each of
the C atoms.

Figure 3.12 shows the honeycomb lattice of graphene. There are two atoms per unit
cell, with atom A at (0,0) and atom B at (0, d) for the unit cell that includes the origin

in Fig.3.12. In addition, atom A has two neighbours of type B at (j:Td, —7d),

and atom B also has two further neighbours of type A. We can write the Bloch states
for such a lattice in the form

Yk = D exp(ik - Ryn) (s Gam + bics-Gom ] (3.42)

where ¢4, (Ppm) 1s the p, orbital on atom A (B) in unit cell m, and R, is the lattice
vector linking unit cell 0 and m. We assume that each of the p, states has self-energy
E,, and that there is an interaction U between the p, states on nearest neighbour
atoms. In order to solve the Schrodinger equation, we first multiply Hg+ = Ep+
from the left by ¢7, and then integrate over all space. The only nonzero terms on
the left-hand side are the self-interaction and the interaction with each of the three
nearest neighbours, which gives the relation:

ak+Ep + b U [1 + exp(ik - ay + exp(ik - a2)| = ax+ E (3.43)

where a; and a, are two lattice vectors, given by a; = (*/T§d , —%d) and a, =

(—‘/7§d , —%d). We find a similar expression to (3.43) when we pre-multiply the
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Fig. 3.12 Hexagonal lattice of graphene. There are two atoms per unit cell, with atom A at (0,0)
and B at (0,d) in the unit cell at the origin here. The band structure of graphene close to the Fermi
energy arises due to interactions between the p, orbital on each C atom and its neighbours

Schrédinger equation by ¢y, and again integrate over all space. Simplifying the
exponential terms in (3.43), the band dispersion near the energy gap in graphene can
then be found by solving the 2 x 2 determinant:

—i3kyd
Ep—E U|:1+Zexp( lzy )cos(‘/%‘d)]

i 3kyd
U|:1+Zexp(lTy)cos(%)] Ep—E
(3.44)

Figure3.13 shows the band structure of graphene calculated from (3.44). The
separation between the bonding and anti-bonding states is greatest at k = 0, where
Eo+ = E, +3U, but it can be seen that the band gap between the filled and empty

states goes to zero at the Brillouin zone K point [kg = (%, O) and equivalent

points]. In addition, the dispersion has a linear variation with k close to the K point,
with E = +hvplk — kg|.

This linear E—k relation gives graphene many of its special properties. The Fermi
level in intrinsic (undoped) graphene lies at Er = E,. Because the density of states
is zero at this point, the electrical conductivity of intrinsic graphene is then very low,
being of the order of the conductance quantum, o ~ ¢/ h, with the exact prefactor
still being debated. The linear E—k relation is similar to the dispersion relation for
photons. The electron density can be changed with a gate potential and, by shifting the
Fermi level, one can have electrons or holes with very similar properties. The mobility
of these charge carriers is extremely high (~10 cm?/(Vs) at room temperature in
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Fig. 3.13 The band structure
of graphene calculated from
(3.44). The band gap between
the filled and empty states goes
to zero at the Brillouin zone K
point, and the dispersion has
a linear variation with k close
to K
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Fig. 3.14 Quantum Hall
effect in graphene, with
Hall plateaux at values of
(n+ 1) 4e?/h, where n > 0
for electron conduction and
n < 0 for hole conduction
(after [32])
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the best samples). With a linear dispersion, the carriers behave as massless relativistic
fermions, and are best described using the Dirac equation. One result of the special
dispersion relation is that the quantum Hall effect becomes unusual in graphene
(Fig.3.14), with the spacing between Hall plateaux equal to 4e”/ h, twice as large
as that in conventional 2-D structures, and with the first plateaux for electrons and
holes occurring at +-2¢2/ h, respectively.

With its fascinating properties and ease of fabrication for experimental analy-
sis, there has been an explosion of interest in graphene. The behaviour of graphene
bilayers has also been widely studied. It can be shown by extending the tight binding
model of (3.42)—(3.44) that there are significant differences between the band struc-
ture of graphene bilayers and of single-sheet graphene. Because it is only one atomic
layer thick, graphene is also practically transparent—the absorption coefficient per
layer of graphene is about 2.3%. Graphene is very interesting for a diverse range
of applications. The very high mobility could be very beneficial for high frequency
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Fig. 3.15 Schematic of an n-channel nanowire transistor. The underlying insulator layer (buried
oxide) is not shown. The silicon nanowire is uniformly doped n-type and the gate material is p-type
to enable pinch-off. Opposite dopant polarities can be used for p-channel devices

electronic applications. As an ultimately thin and mechanically very strong material,
it also has high potential for use as a transparent conductor, in applications such as
touch screens, light panels and solar cells. Many challenges remain to develop tech-
niques to produce graphene on an industrial scale, but it is clear that the material could
bring enormous benefits across a wide range of electronic and other applications.

3.8 Junctionless Transistor

The major technological driver behind the investigation of electron transport at the
nanoscale is the continued shrinkage in the size of the transistors in integrated circuits,
referred to as Moore’s Law. This has resulted in the number of transistors on a
single microchip increasing from a few hundred in the early 1970s to over several
billion today. Conventional devices are now approaching their limits, and a wide
range of approaches are being pursued to allow the continued improvement in device
density. Some of these approaches, such as the use of high-k dielectrics to reduce the
thickness of capacitative layers, can benefit existing devices [33]. Other approaches
are targeting exotic new materials, such as the use of carbon nanotube field-effect
transistors (CNFETs), that can operate at room temperature and are capable of digital
switching using a single electron [34].
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All current transistors are based on the use of p—n junctions to control the device
switching on and off. Because a p—n junction relies on the sharp transition between a
region doped with donor atoms and a region doped with acceptor atoms, it becomes
increasingly difficult to achieve the controlled formation of a junction with decreasing
device dimension. Interestingly, an Austro-Hungarian physicist, Julius Edgar Lilien-
field proposed in 1925 that it could be possible to achieve transistor action in a piece
of semiconductor material with only one type of carrier—a conventional resistor—if
the semiconductor layer could be made thin enough to allow for a gate to control the
density of electrons, and thus the current flow through the piece of semiconductor.
This could not be demonstrated in the macroscale structures investigated at the time,
but has recently been shown by our colleague at Tyndall, Jean-Pierre Colinge, to be
a viable and very promising approach on the nanoscale.

He and his co-workers fabricated heavily n-doped silicon nanowires with cross-
sectional dimensions of ~10 x 10nm, and with a section of the wire of length ~50
nm covered on three sides by a p-doped gate, as illustrated schematically in Fig.3.15
[3]. The heavy n doping ensures that the nanowires are highly conducting when the
gate is off. Application of a gate voltage pinches off current flow through the gated
section, thereby giving transistor action.

Proof-of-concept simulations of junctionless gated Si nanowire transistors, based
on a first-principles approach, predict that Si-based transistors are physically possible
without major changes in design philosophy down to scales of ~1 nm wire diameter
and ~3 nm gate length, with the junctionless transistor avoiding potentially serious
difficulties affecting junctioned channels at these length scales [35]. The junctionless
structure is relatively simple to build, even at the nanoscale, compared to conventional
junction fabrication technologies, which are becoming increasingly complex, and
therefore looks to be one of the more promising approaches to develop and extend
silicon technology beyond its current limits.

3.9 Summary and Conclusions

This is the first of three chapters to address electronic transport in semiconductor
materials and heterostructures. In order to set up the framework for these three chap-
ters, we began by presenting an overview of some of the key factors relevant to
electron transport on a macroscopic scale. We then discussed how quantum effects
come into play as structure size is scaled down. Many classical phenomena dis-
play measurable quantum character as the dimensions in which current flow become
restricted. These include not just the well-known quantum Hall effect, and quantised
conductance through nanoscale current channels, but also the recent realisation of
quantised conductance along the edges of a “topological insulator”. As the name
suggests, the band structure of a topological insulator is topologically different from
that of a conventional semiconductor, with distinctly different gap states at the edges
or surfaces of the material. We showed that this has surprising consequences, includ-
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ing the possibility to achieve a spin quantum Hall effect in zero magnetic field in
suitably chosen samples.

The overall interest in nanoscale transport is driven both by the novel fundamen-
tal phenomena which emerge at the nanoscale and also by the demands of future
nanoscale devices, some of which may exploit these phenomena. We saw how both
these interests converge in the case of graphene, and then finally considered the
junctionless transistor, as one of the most promising future device concepts currently
being investigated. Overall, the results and topics considered here emphasise the
ongoing interest in nanoscale transport, and also provide the background relevant to
the more detailed discussion of high-field transport and Monte Carlo techniques in
Chaps.4 and 5.
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Chapter 4
Hot Electron Transport

Martin P. Vaughan

Abstract In a high electric field, a population of electrons may be driven out of
thermal equilibrium with the crystal lattice, hence becoming ‘hot’. In this chapter, the
basic concepts of hot electron transport in semiconductors are introduced following
a semiclassical approach. Scattering mechanisms pertinent to hot electron transport
are described, including phonon, electron—electron and alloy scattering. The high-
field phenomena of avalanche breakdown and negative differential resistance are
discussed qualitatively in terms of the underlying physics and as a motivation for
device applications. Techniques to solve the Boltzmann transport equation are then
introduced. A low-field solution, including an introduction to the ladder method for
dealing with polar optical phonon scattering, is first discussed as a foundation for
the subsequent high-field solution.

4.1 Introduction

Hot electron transport in semiconductors pertains to electrical conductivity in high
electric fields. Interest in the high-field electronic properties of semiconductors was
originally motivated by the desire to understand electrical breakdown in insulators.
Since then, hot electron dynamics have been actively exploited in high-field devices.
Impact ionisation, the smoking gun primarily responsible for electrical breakdown,
is used as a photo-current gain mechanism in the avalanche photodiode (APD) [1],
whilst the phenomenon of negative differential resistance (NDR) is exploited in Gunn
diodes [2] to produce microwave oscillations. More recently, novel hot electron lasers
have been developed, such as the hot electron light emitting and lasing semiconductor
heterostructure (HELLISH) [3] and Gunn [4] lasers.
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In this chapter, we introduce the reader to some of the basic concepts of hot elec-
tron transport following a semiclassical approach. At the heart of this approach is the
determination of the distribution function for a population of non-equilibrium elec-
trons. After laying down the basic groundwork, we tackle this problem via solution
of the Boltzmann transport equation. Perhaps a more popular approach to solving
this problem, especially in high fields, is that of Monte Carlo simulation. This is the
subject of the chapter by Vogiatzis and Rorison in this book and we leave it to the
interested reader to decide his or her preferred method.

Due to limitations of space, the introduction to the subject given here is necessarily
limited. In particular, there is no specialization to low dimensional devices and our
discussion of scattering mechanisms pertinent to high-field transport is not claimed to
be comprehensive. For those requiring a specific understanding of high-field transport
in low-dimensions, we recommend Ridley’s review on the subject [5]. It is hoped
that this work may provide a fairly gentle introduction to the more detailed literature
given in the references.

In the remainder of this introductory section, we introduce the fundamental con-
cepts of lattice temperature and non-equilibrium, or ‘hot’ electrons, before specifying
more exactly the scope of this chapter and giving a general overview.

4.1.1 The Lattice Temperature T

In physics, the concepts of temperature and thermal equilibrium are quite
fundamental, being enshrined in the ‘zeroth’ law of thermodynamics. In this law,
bodies in thermal equilibrium are defined to have the same temperature. Perhaps a
more intuitive picture emerges when we consider physical systems at the microscopic
level, where temperature becomes a measure of the average energy of a quantum of
a system. In a crystal lattice, energy is stored in the mechanical vibrations of the
ions and these are quantised as phonons. Specifically, it is on the basis of the aver-
age energy of the acoustic phonons (see Sect.4.3.4) that we may define the lattice
temperature 7g.

Since these are bosons, the statistical distribution of phonons over energy is
governed by the Bose—FEinstein factor

1

= T (4.1)

nq

where nq is the number of phonons in the mode with wavevector q, wq is the energy
of the phonon and kp is Boltzmann’s constant.
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4.1.2 Electrons in Thermal Equilibrium

In a population of electrons in thermal equilibrium with the crystal lattice, the average
electronic energy will again be given in terms of Tj. In this case, however, electrons
are fermions, so their energetic distribution is given by the Fermi-Dirac factor

1
1 +exp([exk — €r]/kpTp)’

Sfolex) = 4.2)

Here, fp(ek) is to be interpreted as the probability that an electronic state with
energy ek (and labelled by wavevector k) will be occupied. At the absolute zero of
temperature, the electronic states fill up completely from the lowest energy to those
states with the Fermi energy er. Strictly speaking, this is actually fixed for a given
system but it is more common in practice to think of the Fermi level as being able
to move due to environmental conditions. This should then be referred to as the
chemical potential but we shall retain what has become the conventional notation
and refer to ef.
It will be useful in later sections to note that

dfo _ folew) (1 — folew))
deg kpTo '

(4.3)

4.1.3 Hot Electrons

Under non-equilibrium conditions, such as the application of a high electric field
over a material sample, the electrons of the system may be driven to higher energy
states, thus becoming ‘hot’. In such circumstances, we may be able to characterise
the electronic population by an electron temperature 7, such that 7, > Ty. Whilst
this is a slight abuse of the thermodynamical definition of temperature and lacks a
precise formulation, it remains a useful intuitive description relating to the (definable)
average electronic energy.

4.1.4 Scope and Overview

It may be argued that a proper treatment of transport in solids should be purely
quantum mechanical, incumbent with all the interference effects that wave-particle
duality entails. Certainly, as the size of semiconductor devices gets ever smaller,
a rigorous quantum mechanical treatment seems increasingly justifiable. However,
in practice we often find that quantum effects become washed out by the many
interactions that the charge carriers in the system undergo with their environment. In
the language of quantum mechanics, we can refer to this as decoherence, since it is
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the loss of phase information that leads to the disappearance of interference effects.
Equivalently, since the time-dependence of the phase (i.e. the angular frequency w
of a particle) is directly proportional to the particle’s energy €, we can describe this
in terms of the inelastic interactions that the carriers undergo, principally with the
crystal lattice via the electron—phonon interaction.

The many interactions a charge carrier undergoes may be dealt with via scattering
theory, based on quantum mechanical perturbation theory (see Sect. 4.3). Whilst this
is an inherent feature of a purely quantum mechanical approach, an accurate descrip-
tion of the transport properties of a system can very often be obtained by combining
scattering theory with statistical physics. This is known as the semiclassical approach
and at its heart is the idea of distribution function, giving the probability of an electron
occupying a particular state. The Fermi-Dirac function of (4.2) is a special case of this
for thermal equilibrium. In transport theory, what is of interest is the non-equilibrium
distribution (discussed in greater detail in Sect.4.2.5).

After establishing some basic concepts in Sect. 4.2, some of the scattering mecha-
nisms pertinent to hot electron transport are introduced in Sect. 4.3. This section is not
claimed to be comprehensive but rather representative, covering inelastic scattering
via the electron—phonon interaction and some of the more common elastic scattering
mechanisms. A more qualitatively discussion of high-field phenomena is then given
in Sect.4.4. Here, we focus on avalanche breakdown and negative differential resis-
tance. The discussion is principally from the point of view of the underlying physics,
although this section is also intended as a motivation for device applications. Finally,
in Sect. 4.5 we take on the solution of the Boltzmann transport equation. In the first
part of this section, we start with a low-field solution. This introduces some of the
concepts we will need for the high-field solution as well as giving some insight into
the problem of the relaxation time for polar optical phonon scattering. We deal with
this via the ladder method, which represents a physically more realistic approach to
the problem than assuming a well-defined relaxation time.

4.2 Basic Concepts

4.2.1 Ballistic Transport

Before considering the more general problem of electronic transport with scattering,
we first consider ballistic transport, in which the electron travels only under the influ-
ence of an applied electric field. The situation is illustrated schematically in Fig. 4.1a,
where the application of an electric field E gives rise to a spatially varying potential
V(x). An electron with a total energy e travelling ballistically in the conduction band
for a distance Ax gains a kinetic energy e E Ax above the conduction band edge,
where e is the magnitude of the electronic charge. If e E Ax is significantly greater
than the thermal energy k7o, then we may describe the electron as being ‘hot’.
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E E
(a) = b) <
X x+Ax x x .
Ax Ax scattering
event
V(i) — @—— total energy € V(x) — @—k

V(x+4%) ¢ V(x+A%)

Fig. 4.1 a The application of an electric field E gives rise to a spatially varying potential V (x).
If the electron travels ballistically for a distance Ax, it gains a kinetic energy e AEx above the
conduction band edge. b The electron undergoes an energy relaxing (inelastic) scattering event,
changing to a state with energy €

4.2.2 Energy and Momentum Relaxation

Relaxation Times

An electron will not continue to travel ballistically indefinitely. At some point it
is likely to scatter, with a consequent change in its momentum and, in inelastic
interactions, its energy. Such an inelastic scattering event is illustrated in Fig.4.1b.
Here, the electron undergoes an energy relaxing event, changing to a state with
energy €.

To describe such events statistically, we may define an energy relaxation time
T¢(€) as the average time an electron of energy e will travel before undergoing an
inelastic scattering event. Note that since € = hw, where £ is Dirac’s constant, and
is therefore related to the phase of the electronic state, 7.(e) may also be thought of
as a coherence time.

In the same way, we may also define a momentum relaxation time 7k (ex) as the
average time an electron with wavevector k will travel before undergoing a scattering
event, changing its momentum from /K to Ak’ (without necessarily changing its
energy). Note that, particularly at low Tp, we usually have 7.(e) > 7k (ex), meaning
an electron may change momentum many times before losing coherence.

Intrinsic Scattering Rates

Before discussing any particular scattering processes, we introduce the concept of the
intrinsic scattering rate s(k’, K), by which we mean the probability per unit time that
a state |k’ ) makes a transition to another state |k) due to some perturbing potential
V(r) (we take the r dependence of this potential to be tacit and abbreviate to V).
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This rate may be derived from time-dependent perturbation theory and is given by

27

s k) = = (kI V [K)[* 6 (e — ek + Ae). (4.4)

This form allows the interaction between states to be inelastic, with Ae rep-
resenting the energy difference between initial and final energies. Since, overall,
energy must be conserved, the Ae must be taken up elsewhere in the system. In this
chapter, the only inelastic processes that we will consider will be those due to the
electron—phonon interaction (due to the time scales involved, in transport theory the
electron—photon interaction, for instance, is considered a rare event).

To obtain the total scattering rates for a given k-vector, will need to perform a
summation over all k’-states. Although in reality the states are discrete, the physical
size of a system is usually large enough that we can take kK’ to vary continuously.
This means that whenever we have to sum a particular quantity over the states of
the system to determine a macroscopic transport property, we may transform to an

integration via the rule
\%
> 5 / 4k, (4.5)
— " ()

where V¢ is the crystal volume and (27)3/ V¢ is the (3- D) volume of reciprocal space
occupied by a k-state. For lower dimensions this result will need some modification.
For a cubic volume of side L, we would have Vc/(27r)3 — (L/@m)™, d*k — d"Kk,
where m is the dimension, and the integral would need further summation over the
discrete states due to quantum confinement.

Using this notation we are now in a position to define a momentum relaxation
time for a purely elastic scattering event (for which Ae = 0)

= /S(k’,k) (1 —cosa’) (ZVTC)3d3k/ = w(ek), (4.6)

Tk (€k)

where ' is the angle between k and k” and w (¢) is the energy-dependent scattering
rate. As we shall see in Sect.4.5.3, if the squared matrix element contains no o’
dependence, this expression is equal to Fermi’s Golden rule for the energy dependent
scattering rate.

Energy and Momentum Relaxation Rates

In an inelastic process, an electron may gain or lose energy. In the context of phonon
scattering, we shall speak of rates for absorption, when the electron gains the energy
of a phonon, and emission, where the electron loses energy to the lattice. Denoting
these processes by the subscripts A and E respectively, the rate of change of energy
for an electron with initial energy ex may be defined as
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doc) / Al {sa (K. K) — 55K )} — <~ K 4.7)
E S— €| 15A , — SE , (27‘(‘)3 s .

where the s subscript indicates that this is the rate for scattering processes. Whether
or not this rate is negative will depend on the electron’s energy relative to the thermal
energy of the lattice. For hot electrons, the rate must be negative in accordance with
the second law of thermodynamics. The energy relaxation time for hot electrons may
then be defined over this high-energy range by

(dek) _ &k~ € 48)

? s - Te (ex)

where ¢ is the energy at which (dek/dr); = 0.
We may also define the rate of change of momentum for an electron with initial
wavevector k along similar lines as

drky) , , Ve o s
(?)S = /hq{sA(k k) +sp(k', k)} —(271_)341 k', 4.9)

where q = k' — k. Here, the rates are added, as the momentum change for emission
will be —q. As the components of q perpendicular to k will cancel on integration,
we may put q — (k' cosa/ — k)k, where K is the unit vector in the direction of k.
Furthermore, s4 (k’, k) + sg (K, K) is the total intrinsic scattering rate s(k’, k) for a
given process, SO we may now put

dhk K Vi
(—) = —hk/s(k’, k) (1 — —cos o/) —ng3k’. (4.10)
dr ), k (2m)-

For elastic processes, k' = k and the integral just becomes 1/7k(ek) as in (4.6). More

generally, we may define
dhk hk
— ) =- . 4.11)
dr J Tk (€k)

4.2.3 Describing Energy Bands

In this chapter, we shall assume that the dispersion relations, i.e. the variation of
electronic energy with wavevector, are well defined, so that we may label electronic
states unambiguously by k. Moreover, we shall assume a periodic crystal lattice, so
thatenergy levels € = (k4 G), where G is areciprocal lattice vector, are folded back
to the point k in the reduced Brillouin zone (i.e. the periodically repeating primitive
cell in k-space—see, for instance, Ref. [6]). This gives rise to different energy bands
associated with a given wavevector.



78 M. P. Vaughan
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X-valley

[-valley
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Fig. 4.2 a The Brillouin zone of a face-centred cubic crystal, showing the I", X and L symmetry
points; b schematic band-structure of a direct band-gap semiconductor showing the I", X and L
valleys

As we shall be primarily concerned with electron transport, it is the conduction
bands that we shall focus on here. Since these bands have minima at some point in
k-space, we often refer to these as ‘valleys’ and are associated with special points
of high symmetry in the Brillouin zone. In a face-centred-cubic (FCC) crystal, the
valleys of particular interest are the I" valley, with a minimum at k = 0, the X
or A valley, with a minimum somewhere along the A line and the L valley with a
minimum along the A line in the (111) direction (see Fig.4.2).

Spherical and Spheroidal Valleys

Treating the conduction valleys exactly according to their dispersion relations over
the entire Brillouin zone is an onerous task, so certain approximations may be
assumed to make transport calculations more tractable. In particular, it usually proves
to be a good approximation if we only try to model a valley close to its minimum at
some wavevector ko and consider how isotropic the valley looks from this point. If,
locally, the states of equal energy lie on a sphere centred on the valley minimum, then
we describe the band as being ‘spherical’. This often proves to be the case for the
I" valley. More generally, the valleys along the A and A lines tend to be spheroidal,
so that states of equal energy lie on a spheroid that has the symmetry line (A or A)
as its major axis. Obviously, as we move towards the Brillouin zone boundaries, the
isotropy of the bands no longer holds.

Next, we look at the way the energy varies with the magnitude of k away from the
valley minima. Close to a minimum, the dispersion relations are qualitatively similar
to those for free electrons, i.e. they are parabolic. Specifically, we would have for a
spherical energy band

R k?

€k =
2m*

, (4.12)
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where m™ is the effective mass at the band-edge. For spheroidal bands, we decompose
k? into the components parallel to and perpendicular to the symmetry line, which are
referred to as the longitudinal and transverse directions respectively. These directions
will also be associated with different effective masses ml* and m], so that, relative to
the k-vector of the band minimum, we have

_RGRK?

- * *
2m, 2m}

€k (4.13)

Very often, spheroidal valleys can be dealt with by making a transformation to
a coordinate system in which they are spherical. We shall not pursue this analysis
explicitly in this chapter but assume instead that this can be done and just use the
simpler formulae for spherical valleys.

Non-Parabolicity

At higher energies, the conduction bands generally become non-parabolic. This is
dealt with formally by defining a function of energy

h2k?
(k) = oy (4.14)

where the particular form of v (ex) must be fitted to actual band-structure calculations.
Since we are concerned with high-field transport, we will retain this more general
expression and use formulae derived from it throughout this chapter.

As a particular example of non-parabolicity, consider the dispersion relations in a
direct band-gap semiconductor, for which the band-gap, ¢, is much larger than the
spin-orbit splitting energy. In this case, it can be shown via k - p theory that y(ek)
may be approximated by [7, 8]

~(er) = ex (1 T oo+ 5612() , (4.15)
where 5
1 *
az_(l_’i) , (4.16)
€g mo
2 m* %\ 3
5:__2'"_(1_’"_) (4.17)
€5 Mo mo

and my is the free electron mass.
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IntraValley and InterValley Scattering

Scattering processes that take an electron from a state with wavevector Kk to a state
with wavevector k' may be broadly categorized into two types. In intravalley scat-
tering the initial and final wavevectors all lie within the same valley. For low-field
transport in direct band-gap materials (i.e. those in which the I” valley band-edge
is the lowest conduction band energy), it is usually sufficient to treat only this kind
of scattering. For high-field transport, on the other hand, it is often important to
know the distribution of electrons in different valleys and the rate of intervalley scat-
tering between them. This is crucial, for instance, to the understanding of negative
differential resistance due to transferred electrons, as we shall see in Sect.4.4.2.

Bloch Functions

Generally we shall assume that the wavefunctions of the system are Bloch func-
tions. In a periodic structure, such wavefunctions may be given according to Bloch’s
theorem by
—-1/2 i :
Uk =V 2D Curge! ®TOT, (4.18)
G

where n labels the band index, k the wavevector and the G are reciprocal lattice

vectors of the primitive cell. The factor multiplying the plane-wave ¢’k

—1/2 iG-
Unk = VC 1 Z Cn,kJrGelGr: (4.19)
G

thus has the periodicity of the lattice, with the normalisation condition on the
coefficients Cp, k+G

> Cuxra| = 1. (4.20)
G

4.2.4 Group Velocity and the Density of States

The dispersion relations defined in (4.12), (4.13) or (4.14) determine the electronic
group velocity v(k) = Vkex/h. Now since

d 2k
Viey(ek) = ﬁvk& = 421)

we have

m* \ dek

~1
v(k) = % (di) (4.22)
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and the energy dependent magnitude of v(k) is

172 ~1
v(Ek)=(2Z}§ik)) (dl) . (4.23)

dek

One further essential ingredient required is the density of states (DOS), which is
the number of states per unit energy (although this is sometimes given in the literature
as the number of states per unit energy per unit volume). In a non-parabolic energy
band for which the dispersion relations are well-defined, this is given by

#13/2
D) = Ve 2 o' Y (4.24)

472 p3 dek

(note that V¢ is often omitted from this expression in the literature). The DOS in a
spheroidal valley can be rendered in exactly the same way by substituting the density
of states effective mass mZ, defined by

* * %2 173
my = \mjm; ) , (4.25)

for m*. Where a function of wavevector, g (e ), actually only depends on the energy,
we may now transform integrals over wavevector to integrals over energy via the
following rule:

v %
(2;)3 / g(ex) d’k — Z / g(ex) Dy (ex) dek, (4.26)

where the summation is over bands, so €, and D, (ex) are the band-edge energy and
DOS respectively of the nth band.

4.2.5 The Non-Equilibrium Distribution Function

Dealing with the plethora of interactions a particle experiences is generally more
tractable using a semiclassical approach rather than a full quantum mechanical treat-
ment. In the semiclassical approach, the wavefunctions and energies of the system
are still obtained quantum mechanically but the occupancies of the single particle
states are assumed to be given by some semiclassical distribution in which interfer-
ence effects are neglected. Thus, we assume the existence of an electron distribution
function f (k) that gives the probability of an electron being in a region of k-space
close to wavevector k. Since electrons are fermions, for each k point we may only
have a maximum occupancy of two electrons, each having opposite spin. Generally
we do not need to label the spin explicitly.
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One caveat that does need to be applied here is that assuming a distribution
function f (k) implies assuming K to be a good quantum number. This means that,
at the very least, we can label states unambiguously in terms of their momenta.
This will not generally be the case in disordered materials where the electronic
states become highly localised in real space (and hence, extended in k-space). In
such cases, charge transport may occur via ‘hopping’ conduction where an electron
jumps discontinuously from one localised state to another.

The essence of transport theory calculations is that we are trying to find f (k)
under non-equilibrium conditions, i.e. under the influence of some applied force and
/ or temperature gradient in the material. Electronic conduction may therefore be of
any physical quantity the carriers can transport, e.g. charge, spin or energy. In this
chapter, we shall assume no temperature gradient or magnetic field and limit our
attentions to charge transport in the presence of an electric field E.

The dynamics of f(k) are then governed by two processes. First, there is the
change in energy and momentum of the particles under the influence of the electric
field. Second, there will be the scattering of the particles due to varied interactions
that generally act to relax the energy and randomise the momentum. The states
that a carrier can occupy are usually those solved for the system under equilibrium
conditions, whilst the scattering processes are found from perturbation theory. The
strength of the scattering then determines an average time, 7, between scattering
events as discussed in Sect.4.2.2. On average, a carrier will pick up a wavevector
shift of 6k = —eE7/h, giving an overall displacement to f (k). We use this explicitly
in the linearized distribution function for the low-field solution of the Boltzmann
equation in Sect.4.5.2.

4.2.6 Transport Properties

Under the semiclassical approach, the starting point for the determination of the
macroscopic transport properties of a material is the expression for the current
density j

j= / v(k) f (k) d°k. (4.27)

Cen?

Here, the factor of 2 accounts for spin and the negative sign has been inserted for
consistency since, by convention, j is in the opposite direction to the electron flow.
Note that the omission of the factor of the crystal volume, V¢, introduces dimensions
of reciprocal volume.
Equation (4.27) may be compared to the phenomenological expression for the
current density
j=0o([E)E, (4.28)

where o (E) is the conductivity tensor. The electric field dependence of j must enter
through the distribution function, which to first order will be linear in E. Hence, for
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low-field solutions of f(k), o(E) is constant. As we move to higher electric fields,
the higher order terms in f(k) become increasingly significant and o (E) becomes
field dependent.

Another common transport property is the mobility, defined by

w(E) = @, (4.29)
en

where 7 is the free carrier density, i.e. the density of electrons excited into the con-
duction bands,

=G / f &) &k, (4.30)

where the integration is just over those states in the conduction bands. Another
expression for the current density is then

j=new(E)E = nevp(E). 4.31)

Here, vp (E) is the drift velocity. Hence, when p is constant, it is the rate of change
of vp(E) with respect to E.

4.2.7 The Conservation Equations

The Balance of Energy and Momentum

The dynamics of an electron in a material sample over which an electric field E is
applied may be described by equations expressing the conservation of energy and
momentum. The balance of energy for a given electron is

dek dek
%k _ _E. k) 432
a et ( dr )S (4-32)

where vk is a shortened notation for the group velocity. Here, the first term on the
right hand side is the energy the electron gains from the field and the second term is
the energy it loses to the lattice. Similarly, for the balance of momentum we have

dhk dhk
— = —¢E — . 4.
dr ¢ +( dr )S (4.33)

Note that since

k dik -
dﬂ = h_ dn , (4.34)
dr m*  dt dek
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where we have used (4.14), these coupled equations are clearly nonlinear, even for
parabolic bands.

To describe the macroscopic transport properties, (4.32) and (4.33) must be av-
eraged over the electron distribution f (k). We define this averaging process for a
general quantity Q (k) by

(Qk)) = A/CB fK)0(Kk) &K, (4.35)

where
A7l = f(k) d°k. (4.36)
CB

Using (4.35), the balance equations averaged over the free electron population then
become

d (ek) _ dek
= —cEvp +< = >X (4.37)
and d (hk dhk
dink) _ —eE+<—> . (438)
dr dr [,

Note that, using the Boltzmann factor f(k) = exp(—ex/kpT,) in (4.35) and
(4.36) for a spherical, parabolic band, we would obtain the thermal energy

3
(ex) = EkBTe’ (4.39)

from classical kinetic theory. Equation (4.39) therefore gives us a rule-of-thumb re-
lation between average electron energy and electron temperature.

Relaxation Time Approximations
‘We may gain some insight into the hot electron dynamics by returning to (4.32) and

(4.33) and substituting in the definitions of the energy and momentum relaxation
times given by (4.8) and (4.11), yielding

de €k — €
K _E.y — X (4.40)
dr Te
and
drk hk
— = —¢E — —. “4.41)
dt Tk

Before proceeding, it should be noted that these equations are now no longer
strictly accurate. In the first place, as commented in Sect. 4.2.2, the energy relaxation
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time used in (4.40) is only really appropriate for hot electrons. More generally, a
relaxation time cannot always be well-defined, as we shall see in Sect.4.5.3 in the
case of polar optical phonon scattering.

Using the definition of group velocity given by (4.22) together with (4.41), we

find X
% (dhk dy\

=——|——+eE){— . 4.42

Yk m* ( dr e ) (dek) (442)

Combining this with (4.40) and making use of (4.34), we obtain

drk [ hk E)? —€) d
dnk Rk emk _ By m (e 60)_7. (4.43)
dr m*  m* m* Te dey
In the steadystate, (4.42) and (4.43) reduce to
eTk dy -
vk =——E|— (4.44)
m* dek
and 5 .
E dvy\~
k= €0+ (eE) ke ((dy ) (4.45)
m* dek

Field Dependencies of ex and vk

As Ridley points out in Ref. [9], the field dependencies of vk and ex may be neatly
illustrated by assuming energy dependencies for the relaxation times of the form
Tk(€) = A€ and 7.(¢) = Be?. For simplicity, we shall take the variation of
(dvy/dex)™" with energy to be small so that, taking the derivative of (4.45) with
respect to ek and re-arranging, we have

((eE)2 (p+q) AB)I/(I_p_q)
€k = .

(4.46)
m*dy/dex
Hence, the energy varies with the field as
ex oc EX/=P=4), (4.47)

Note that, for p+¢q > 1, we would have the physically invalid situation of the energy
going to infinity at £ = 0 and approaching zero asymptotically thereafter, whilst e
is undefined for p+¢ = 1. Under these conditions, then, there can be no steady-state
solution and high-field electron dynamics may be unstable.

The field variation of the magnitude of vk is now given by
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1—p—
¢AE ((eE)Z(p+q)AB)p/( e

vk = — (4.48)
m*dy/dek m*dy/dek
S0
E(]+p7q) 1/(1=p—q)
Vg X | ————— . (4.49)
(dy/de) '~

Neglecting the variation of (dy/dex) !, we see that for ¢ = p + 1, the field
dependency of vk disappears. Such cases are referred to as velocity saturation or,
when this happens in the averaged electron population, drift velocity saturation.

For ¢ < p + 1 in the region of p — g space where steady-state solutions exist, it
can be shown that the exponent (1 + p —¢g)/(1 — p — ¢) is always positive, meaning
that vk increases with increasing E. In the particular case when vk varies linearly
with E, we must have p = 0 and hence a constant momentum relaxation time.

Where the energy dependencies are such that ¢ > p + 1, we find that vk de-
creases with increasing E. This is not a tenable situation over all energy ranges
since, physically, we must have vx = 0 at E = 0. However, it may be that as
different scattering processes become predominant at higher energies, the energy
dependence of the relaxation times will change. Thus we can envisage, in princi-
ple at least, situations in which vk turns over and starts to decrease at higher fields
due scattering processes alone. This would be an example of a negative differential
resistance, which we discuss in greater detail in Sect.4.4.2.

A more common mechanism for NDR would be due to the non-parabolicity of the
band. Using the form for y(e) given in (4.15), we see from (4.49) that vk becomes
multiplied by a factor

dvy\ V(=P 1 /d=p=a)
it =— : (4.50)
dek 1+ 2cek + 3¢

For p + g < 1, for which steady-state solutions exist, this factor decreases
monotonically with increasing energy, which, by (4.47) increases monotonically
with E. Hence, this factor will act in opposition to processes that would otherwise
lead to an increase in vk, possibly leading to velocity saturation or a decrease in vk
with increasing field.

4.3 Scattering Mechanisms

4.3.1 General Comments

So far we have only discussed scattering processes in the abstract, doing little more
than differentiating between elastic and inelastic mechanisms. In this section, we
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go a little way towards rectifying this deficiency. Whilst not a comprehensive or in-
depth discussion of scattering processes, we highlight some of the more important
phenomena and flesh out a little more of the physics.

Scattering processes may be divided into two classes: impurity scattering, in
which an electron interacts with a localised perturbation of the potential, and phonon
scattering, in which the electron interacts with the extended oscillations of the crystal
lattice. The former class of processes are usually taken to be elastic, whilst phonon
scattering always involves some exchange of the electronic energy with the lattice.
However, in the case of acoustic phonons, this energy exchange is usually small
enough to consider this type of scattering to be elastic.

4.3.2 Electron—-Electron Scattering

Coulomb Scattering

The interaction of charged particles is governed by the Coulomb potential. However,
in a solid material, an electron will rarely see a bare Coulomb potential due to the
redistribution of free charge, thus screening the charge centre. In the most simple
model of this, the Coulombic potential energy seen by an electron is then weighted
by a decaying exponential

eQ
VIr)=——< ¢ Ir—R[ 4.51
® 4me |r — R| ¢ ( )

where ¢ is the permittivity of the medium and g is a reciprocal screening length.
This may be defined by [9]

ezn

— 4.52
ekgT ( )

2
qdo =

where n is the free electron density. Note that 7 is the temperature emerging from
the Fermi-Dirac factor, so is the electron temperature, although no consideration of
hot electron effects is assumed here. The scattering matrix due to (4.51) is then (to
good approximation) given by

/ wn_€Q/ (Vo)
(o K IV n i) = — g kKt (4.53)
where Jlf,/l’f is the overlap of the periodic parts of the Bloch functions integrated over
the primitive cell.
Using (4.53) for a fixed charge centre, one may derive the Brooks-Herring
result for ionized impurity scattering [10]. However, the |k -K |2 term in the
denominator, has the consequence that the scattering rate (apart from the depen-
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dence of a screening factor involving go) varies with energy as ~(ex) /2. Hence,
ionized impurity scattering becomes weak at high energies and the process is not
significant for hot electron transport.

On the other hand, for electron—electron scattering the matrix element involves the
product of two electron states, for which it is the total energy and momentum that must
be conserved. In this case, the matrix element contains a term like ko — k’12 2 in the
denominator, where /K|, is the relative momentum between electrons. This means
that for electrons with similar momenta, the absolute wavevector, and hence energy,
of either particle will not be a limiting factor. Note that electron—electron scattering
cannot have any net relaxation on the momentum of a population of electrons but will
act to relax the relative momentum of pairs of electrons, thus randomizing the overall
distribution in k-space. The reader may find explicit expressions and derivations for
this class of scattering in Ref. [9].

Impact Ionisation

A particular case of electron—electron scattering of great importance in hot electron
transport is that of impact ionisation, in which high-energy carriers create electron—
hole pairs in collision events. Suppose an electron has been accelerated by an applied
electric field and has acquired an energy Ae above the conduction band edge, such
that Ae is greater than the band-gap energy €,. Under these conditions, this electron
may collide with another electron in the valence band with sufficient energy to ionize
the latter, producing an electron—hole pair in addition to the original electron.

An analogous situation pertains for a hole travelling in the valence band. In this
case, we imagine a hole travelling in the opposite direction to an electron, eventually
obtaining an energy Ae below the valence band edge. Although the term ‘cold” hole
might seem more appropriate, this is usually termed a ‘hot’ hole. An electron close
to the valence band edge may then drop into the hole, giving up the energy it has lost
to another valence band electron and ionizing it into the conduction band. Thus, we
now have two holes and an electron.

A rate for impact ionisation may be derived from constructing the matrix element
in terms of the carriers (now in different bands) and the Coulomb potential. However,
it turns out that more significant than this is the probability that a given carrier will
obtain the necessary threshold energy to create an electron—hole pair. This is covered
in Sect.4.4.1 along with a discussion of the phenomena of avalanche multiplication.

4.3.3 Alloy Scattering

In an alloy, the periodicity of the crystal lattice is broken up by the random positions
of the substitutional components. This is usually treated on the basis of the virtual
crystal approximation (VCA) due to Nordheim [11]. In this model, the potential
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seen by the carriers is divided into two parts: a periodic part, taken to be a linear
interpolation between the alloying species (i.e. the ‘virtual crystal’) and a random
part seen as a perturbation that gives rise to scattering. Hence, two fundamental
assumptions are that there exist Bloch solutions for the virtual crystal and that the
random part of the potential is small enough to be dealt with via perturbation theory.
This is not likely to be the case in materials that exhibit extreme disorder, where
typically the wavefunctions may become highly localised. However, within the remit
of this current text, according to which the dispersion relations are assumed to be
well-defined, we shall consider only ‘well-matched’ alloys, for which the substituting
atomic species have similar covalent radii and electronegativities, and which can be
grown without significant defects.

The formalism of the VCA was developed in the context of metallic alloys
by Flinn [12], Ash and Hall [13, 14] to deal with perturbing potentials extending
beyond the primitive cell of the crystal incorporating short-range order or cluster-
ing. In the generally accepted model of alloy scattering in semiconductors, Harrison
and Hauser [15] assume completely random alloys and model the perturbation as
a potential step associated with some characteristic energy difference, Ae, between
the atomic species. Various candidates have been suggested for Ae, including elec-
tronegativity difference, band-offset and electron affinity difference. However, more
often in practice, the alloy scattering potential is fitted to the experimentally observed
mobilities.

More recently, Murphy-Armando and Fahy [16] have pursued a first-principles
approach to alloy scattering, in which the scattering matrix is obtained from band-
structure calculations based on density functional theory (DFT). At present, this
approach is limited to group IV alloys, for which DFT calculations yield realistic
dispersion relations. In this case, the well-known problem that DFT does not ac-
curately predict the bandgap is not an issue since it is only the difference in the
eigenvalues that is of importance in the method (see Ref [17] for more details on
DFT).

For an alloy of the form A, B|_,, where x is the molar fraction of component A,
the intrinsic alloy scattering rate, including intervalley scattering, may be written as

2 x (1 —x) /
K - — TN nn
s(n',K';n, k)= W Ne ‘<Vk/k>

where N is the number of primitive cells in the crystal (or supercell in the case of
the first-principles approach). The matrix element giving the transition probability
between states is

’ 0 (e — €k), (4.54)

<V”/|?> = Nc (tw x| AVa = AV [t x), (4.55)

where the v, x are the Bloch functions of the virtual crystal and AV, and AV4
are the perturbing potentials arising from substitution of atoms of type A and B
respectively. Assuming that the energy dependence of the scattering matrix is weak
and that it has no angular dependence, (4.54) may be substituted into (4.6) to obtain
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a total scattering rate

i) = 200 5 (Vi) " Dy, (4.56)

h Nc

n/

where the summation is over final valleys.

Now the energy dependence of (4.56) arises solely from the density of states,
which varies as v!/?(ex)d~y/dex. Hence, at least up to very high energies, this is a
monotonically increasing function of ek and so will be of importance in hot electron
transport. Moreover, alloy scattering provides a mechanism for intervalley scattering,
which may have a significant effect on high-field electron dynamics. On the other
hand, being an elastic process, alloy scattering cannot provide a means of energy
relaxation.

4.3.4 Phonons

The Electron—-Phonon Interaction

The electron—phonon interaction gives rise to inelastic scattering, in which the elec-
tron can lose or gain energy to or from the crystal lattice. With this type of interaction
the states involved in the scattering matrix are products of electron and phonon states.
The phonon states are described in the mode occupation representation, so that |nq)
is the state containing nq phonons of wavevector q.

The action of the electron—phonon interaction potential is such that a single phonon
is either added or subtracted to a mode, described as the electron emitting or absorbing
a phonon respectively. Overall, both energy and momentum are conserved. Hence,
the energy of the electron either decreases or increases by the phonon energy Awq,
whilst the electronic wavevector changes by the phonon wavevector q.

Denoting the electron—phonon interaction matrix element for scattering from a

combined state

ng K > to |ngq, k) by Ml'(’,/ﬁ the intrinsic scattering rate is given by

s(k',K) = 54K, K) (e — ek + hwg) + sg (K, K)0 (e — ek — hwg) . (4.57)

where 5 5

sa(K k) = % ‘M",/ﬁ/_ ‘ (4.58)
and ) s

SE(k/,k)Z%‘ e (4.59)

Note that s(K’, K) is the scattering from Kk’ to Kk, so since § (Gk’ — €k + hwq) implies
ek = e +hwg, s4 (K, K) is the intrinsic scattering rate for the absorption of a phonon
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by the new k-state. Hence the phonon mode loses a phonon and the new occupation
numberisng = n:l — 1. Similarly, sg (k’, k) is the rate for phonon emission, meaning
the electron has lost energy and the phonon mode increases by unity.

The matrix element Ml’z,/l’z is given by [18]

5 N1/2
M]r(l//]r(l/_l = iIk/kn(ll/z A 5k/+q,k (4.60)
2NcMwq

for absorption and

12
Mn’nurl = —ilyx (I’l + 1)1/2 h—cé Ok —a.k 4.61)
K'k a 2NcMuw, ¢

for emission. Cgq is the electron—phonon coupling coefficient for the particular process
and M is a characteristic mass for the oscillator. The Kronecker delta serves to enforce
the conservation of total momentum due to the electron gaining or losing the phonon
momentum.

The overlap factor Iy is defined in terms of the Bloch functions, ¥ (r),

Iox = / W (© b () dr (4.62)

where the integral is over the primitive cell and normalised such that Iy, = 1 forall k.
For large q-vector, Ik will generally be less than unity, becoming more markedly
so as the band structure becomes more non-parabolic. As a first approximation,
however, we may take lyx = 1.

Substituting (4.60) and (4.61) into (4.58) and (4.59) respectively and taking the
Kronecker delta to be tacit, we have

2

/ _ 2 ﬂ-Cq
sa(K', k) = | Ikl nqm (4.63)
q
and 5
wC
se(K' k) = |Iokl* (ng + 1) Nchw (4.64)
q

Acoustic Phonons

Acoustic phonons are lattice vibrations associated with the displacement of the prim-
itive cells of a crystal. Close to q = 0, the angular frequency of these modes varies
linearly with wavevector and it proves a good approximation to put wyq = v4q, where
v, is the magnitude of the velocity of a mode averaged over direction. The low



92 M. P. Vaughan

frequencies (and hence energies) of these modes is then reflected in the name
‘acoustic’, since these are the phonon modes that carry audible sound in the ma-
terial.

It can be shown via considerations of energy and momentum conservation [9] that
intravalley scattering via acoustic phonons is limited to long-wavelength modes, for
which the process may be approximated as elastic. Moreover, for temperatures much
above 1K, fwq < kpgTp for this range of phonon energies, so that the Bose—Einstein
factor for the mode occupation, given by (4.1) may be approximated by

kpT;
ng+1~ng~ hl;—: (4.65)

Note that Ty is the lattice temperature. With these considerations, sa(k’,K) =
sg(k’, k) and (4.57) reduces to

27 [ekl? kg To

sk, K) =
Ve o hpulq

5 Cad (e — 1) (4.66)

where p = Nc M/ V¢ is the mass density.

In this chapter, we shall only discuss deformation potential acoustic phonon scat-
tering (see Ref. [9] for details on piezoelectric phonon scattering). The deformation
potential tensor E;; gives the change in the band-edge due to applied strain. The
elements of E;; can be reduced by symmetry to two components Zy, for cubical
dilation, and =, for shear strain. The coupling coefficient Cq is then given by [9]

Ce = E%(0q". (4.67)

where & 2(Gq) = &y for the I" valley. For spheroidal valleys, f is the angle between
q and the principal axis of the valley. Ez(ﬁq) is then decomposed into longitudinal
and transverse components, denoted by the subscripts L and T respectively

E1(0q) = Eq + 8y cos® O (4.68)

and
E1(0q) = &, sinfq cos by. (4.69)

Substituting (4.67) into (4.66), we have

27 | Ik > kg To 2% (0g)
Ve hpv2

sk, k) = S (e — €x) - (4.70)

On insertion of (4.70) into (4.6), we find that the scattering rate for this process will
be proportional to the density of states and, as such, a relevant process for momentum
relaxation in high-field transport.
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Optical Phonons

Whereas acoustic phonons are due to the displacements of the primitive cells in a
crystal, high-frequency optical phonons are associated with the relative displace-
ments of the basis atoms within the cells. The scattering strength of optical phonons
is much greater in polar materials, where an oscillating electric dipole is set up be-
tween the basis atoms. A great simplification is obtained by making the standard
assumption that the optical phonon energy hwyq is a constant.

For non-polar optical phonons, the electron—phonon interaction energy has the
general form d,, -u, where d,, is some optical deformation potential and u is the relative
displacement of the basis atoms. The coupling coefficient may then be equated as
C é = d2, where d, has been suitably scaled. The intrinsic rates for absorption and
emission are then just given by (4.63) and (4.64) with this substitution. As in the
case of deformation potential acoustic phonon scattering, this ultimately yields a
scattering rate proportional to the density of states.

Non-polar optical phonon scattering is of interest in the group IV semiconduc-
tors, particularly in SiGe material systems. In this case, the acoustic and optical
deformation potentials have been obtained from a combination of DFT calculations
and fitting to experimental data [19], as well as from density functional perturbation
theory (DFTP) based on a ‘frozen phonon’ approach [20, 21].

Polar Optical Phonons

In polar materials, an electric dipole is set up between the basis atoms. This causes
strong electron scattering via the Frohlich interaction [22]

V(r) = —%/D(r, R) -P(R) &°R, .71

where D(r, R) is the electric displacement at ionic position R due to the electron at
r and P(R) is the polarization, given by

PRy - CUR)
R) = —=—. 4.72)

Here, ¢* is the effective charge on the basis atoms, u(R) is the optical displacement
and £2 is the primitive cell volume.
It is instructive to expand u(R) as a series of plane-waves with phonon
wavevector q
uR) = N2> uqepelaR, (4.73)
q

where e, is the unit polarization vector for the phonon (strictly, this expansion should
also include the complex conjugate of each term). In general, e, may have longitu-
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dinal (i.e. parallel to q) and transverse components, which we can express by putting
e, = aper +arer. Taking the curl of u(R), we find for each term in the expansion

V x (uqepeiq'R) =iug (q x e,) "M = iuggarere’I®. (4.74)

Hence we may rewrite (4.73) as

u®) = Ng > uq [aLeLe"‘I'R - cilv x (e,,e“l'R)} . (4.75)
q

Now the divergence of P(R) gives the polarization charge density. However, from
(4.72) we see that this is proportional to the divergence of u(R). Since for any vector
fieldu, V- (V x u) is identically zero, taking the divergence of (4.75) gives non-zero
contributions only for the longitudinal terms. Hence, only longitudinal optical (LO)
phonons couple with electrons in this type of scattering.

The electric displacement, including a simple model of screening, is given by

e
DR =V (— iR 4.76
R (47r|r—R|e (476)

Using this together with (4.71)—(4.73) enables us to derive an expression for the
coupling coefficient Cq. After analysis of the effective charge e* via consideration
of the equation of motion for an LO phonon mode, Cy is found to be given by [9]

2 2

e“Muw 2

2= R L — (4.77)
Qgp (qZ +q3)

Here, M is the reduced mass and we have defined

1 1 1 1
—=——-— (4.78)
€p €0 \Koo Ko
in terms of the permittivity of free space £p and the high and low frequency dielectric

constants Ko, and kg respectively.
Substituting (4.77) into (4.63) and (4.64) gives

sk, k) =

2m? | Ivkl* W (hwq

12
Ve ) 2m*) (nq+1/2F1/2) 6 (e — ex £ hwy)

(4.79)
where ¢* = ¢ (1 + (q0/ q)2) and we have defined a characteristic rate for polar
optical phonon scattering
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2 2m*wqy 172
Wy = . 4.80
07 4rhe, ( h ) (480)

Note that the nq appearing in (4.79) is the mode occupation for polar optical
phonons and that this is a function of temperature. Very often, this temperature is
taken to be the lattice temperature, although it is possible to have a population of
optical phonons that are out of thermal equilibrium with the lattice. The topic of ‘hot
phonons’ is beyond the scope of this chapter but the interested reader may pursue
the subject in Refs. [23, 24].

As we shall discover in Sect. 1.5.3, no unique relaxation time may be found for po-
lar optical phonon scattering. However, reasonable approximations have been found
for the energy and momentum relaxation rates and have been given by Conwell and
Vassell [8] (see also Ref. [9]). For momentum relaxation, a composite relaxation time
can be found accurately using the ladder method, which we discuss in Sect. 1.5.3.

4.4 High-Field Phenomena

4.4.1 Impact lonisation and Avalanche Breakdown

Impact Ionisation Coefficients

One of the earliest motivations for studying high-field transport was to gain an
understanding of electrical breakdown in materials. An important process contribut-
ing to this phenomenon is that of impact ionisation and the consequent effect, under
certain conditions, of avalanche breakdown. Less disastrously, impact ionisation
may be exploited to provide gain in the avalanche photodiode (APD) via avalanche
multiplication of charge carriers.

We define the probability that a given carrier will ionize an electron-hole pair in
distance d x by adx (for electrons) or Sdx (for holes), where «v and 3 are the ionisation
coefficients for electrons and holes respectively. These quantities may be interpreted
as spatial rates (i.e. they have dimensions of reciprocal distance). Alternatively, we
can think of the quantities 1/a and 1/ as the average distance traveled between
ionizing collisions for the respective carrier type.

Clearly, the ionisation coefficients will depend on the electric field, although the
exact dependence is difficult to analyze. In an early model of the field dependence,
Wolff [25] derived an expression of the form a ~ exp(—a/E?) based on a simple
band structure and a population of equilibrium electrons. For hot electrons, we might
think of this in terms of thermalization, in which electrons exchange energy and
momentum with each other to form an equilibrium-like distribution.

An alternative form was proposed by Shockley [26], who argued that only those
‘lucky’ carriers that had managed to avoid collisions and gain the required threshold
energy ¢; could impact ionize. Hence the ionisation coefficients should be propor-
tional to a factor exp(—ej/e E)), where A is the mean-free path of the carriers.
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In Shockley’s model, the time between collisions corresponds to a momentum
relaxation time, so that at times less than this, the electron is travelling ballistically.
It was pointed out by Ridley [27] that an intermediate state existed between this
state of ballistic motion and Wolff’s regime of complete thermalization, due to the
disparity between the energy and momentum relaxation times, 7. and 7 respectively.
If 7. > 7k, a carrier may spend significant time in a state of drift, undergoing
momentum relaxing events without energy relaxation. Some of these carriers may
then reach the threshold energy despite having undergone elastic scattering. Ridley
termed this condition ‘lucky-drift’. Using similar terminology, Shockley’s model
may be termed ‘lucky-ballistic’ or ‘lucky-flight’.

Incorporating the different possible mechanisms by which an electron may reach
the threshold for impact ionisation, Ridley’s expression for the ionisation coefficient

is then
eE

a= Z[P2+P8+PT (PF+Ph)]. (4.81)

where €7 /eE is the path length for an electron to reach ¢; and the P terms are the

probabilities for the various processes. The F and D subscripts are for lucky-flight

and lucky-drift respectively, whilst the 0 and T superscripts denote acceleration from

zero energy and acceleration from the average thermalized energy respectively. Pr is

then the probability that the electron will thermalize to the hot electron distribution.
Pg is essentially Shockley’s result

0 _ _ €1 dek
Pp (e) = exp ( /0 —eE)\(ek)) , (4.82)

with the mean free path allowed to vary with energy. The probability for lucky drift
from zero energy is

Po(e)—/qPO(e)PO(e oy dk (4.83)
p\&1) = 0 F \€k) I'p (€k, €] EE/\(Gk)’ .

where

(4.84)

€y % d d d
PP (ex, €1) = exp (—/ w) .

L CE2n(e)Te(ex)
The probabilities P ; and P g are obtained from (4.82) and (4.83) by replacing the

lower limit of the integrals with e, the energy of the thermalized electron. Finally,
for the probability of thermalization, Ridley proposed

Pr=1- exp(——(e/ B 3*), (485)

(vpTe)

where the bar notation denotes averaging.
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Avalanche Breakdown

Having discussed the field dependence of the ionisation coefficients, we turn our
attention to the dynamics of a population of carriers undergoing impact ionisation.
Consider a region in a material of width dx over which an electric field E is applied,
pointed in the negative x direction, so that electrons travel to the right and holes to
the left. Now the total current in the system is the sum of electron and hole currents

Jj = —e(nqv, +npvp), (4.86)

where n, and nj, are the densities of electrons and holes respectively and v, and vy,
are the magnitudes of the drift velocities for each type of carrier. The minus sign just
indicates that the current, in this case, is in the negative x direction.

Now the number of electrons leaving this region at x + dx per unit time will be
equal to the electron flux into it at x plus the flow of electrons generated within it via
impact ionisation for each type of carrier. For a sufficiently small area, we will then
have

Ne(X + 0X)Ve = ne(X)e
+ (an.(x)ve + Bnp(x + 6x)vp) ox, (4.87)

with a similar expression for holes

np(x)vp = np(x + 6x)vy
+ (ane(x)ve + Bnp(x + 6x)vp) ox. (4.88)
Multiplying (4.87) and (4.88) by the magnitude of the electronic charge e, re-
arranging and taking the limit 0x — 0, we obtain the simultaneous differential

equations

die

I = e + Bjn,

d

T~ _aj, - Bin. (4.89)
dx

Solving these equations with boundary conditions

Je(0) = Jo,
Je(Ax) = J,
Jn(Ax) =0, (4.90)

gives us the particular solution
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Fig. 4.3 Schematic example
of negative differential resis-
tance (dV /dI), showing drift
velocity (proportional to cur- C
rent /) against the magnitude
of electric field (proportional

. Q

to voltage V). Between points >
A and C, dV/dI is positive, B D

negative between points C b -

and D, then positive again 1 1
thereafter | 1
1 1
A—L :

7 (o — ﬁ) e(oafﬁ)Ax
J—O = m. (4-91)

Now, when v = ﬁe(“_ﬁ)m , the current J becomes infinite, implying some run-
away condition. This situation is known as avalanche breakdown.

Avalanche Photodiode Gain

In an APD, the photocurrent generated from detected light may be amplified via
the process of impact ionisation. The boundary conditions imposed earlier on (4.89)
describe the situation of electron injection into a multiplication region. Looking
back at the gain figure in (4.91), we see that if 5 = 0, then the gain is just a simple
exponential J/Jy = exp(aAx). Clearly this is a more stable situation and provides
one reason why it is desirable to have a large disparity between « and [ in the
materials used to fabricate APDs. Other reasons include keeping the response time
of the device low [28] and reducing the excess noise factor [28, 29].

4.4.2 Negative Differential Resistance

One of the more interesting (and useful) nonlinear phenomena in high-field transport
is that of negative differential resistance. At low field, conduction generally tends to
be ohmic, following the relation V = IR for the applied voltage, V, current / and
resistance R. Ohm’s law is, of course, not an actual law of nature but rather a general
rule of thumb. More generally, we may take the derivative dV /dI = R, so that R
may now be referred to as the differential resistance. Somewhat counter-intuitively,
we find that under certain circumstances R may become negative.
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A particular example is shown in Fig.4.3. The graph is labelled as drift velocity,
vp against (the magnitude) of the applied field E. However, with only a change of
scale (unnecessary here as the scales are in arbitrary units), we could have labelled
the axes with current / along the ordinate and voltage V along the abscissa. Between
point A (zero voltage, zero current) and C, we have the familiar situation of a positive
differential resistance. However, between C and D, R becomes negative (this would
have been more obvious if we had plotted V along the ordinate and / along the
abscissa). Such a situation may sometimes give rise to oscillations in the current,
as we shall see. However, before discussion of that, we shall consider how an NDR
may arise in the first place.

Transferred Electrons

Several mechanisms for the occurrence of an NDR are known. One of the best
known is that due to transferred electrons [30, 31], in which hot electrons in an
initial valley are scattered into a higher lying valley with a larger effective mass.
At low fields most of the electrons will be in the smaller effective mass valley. As
the electron temperature is increased with the application of a higher electric field,
an increasing number of electrons become resonant with higher lying valleys and
intervalley scattering into these will start to become significant. The electrons in
these higher valleys see a larger effective mass and so have a lower mobility than
those in the lower valley. As the population of these slower moving electrons builds
up, the overall mobility of the entire electron population may then begin to decrease,
leading to a reduction of current and, hence, a negative differential resistance.

Other Mechanisms for NDR

Intervalley scattering into valleys with a larger effective mass is not a necessary
condition for NDR. In some cases, the non-parabolicity within a single band may
be sufficient to bring about a reduction in mobility as the electrons are driven to
higher energies, as discussed briefly in Sect.4.2.7. NDR due to non-parabolicity is
often considered phenomenologically in terms of the larger effective mass seen by
an electron above the conduction band edge but it is more accurate to describe the
phenomenon in terms of the closely related group velocity.

Consider the dispersion relations of a band as one moves out from the wavevector
at the band-edge towards the Brillouin zone boundary. Initially, at the band-edge,
the group velocity v(k) = 0, then begins to increase with increasing wavevector.
However, near the zone boundary, ex will begin to flatten off again, as demanded
by the periodicity of the Brillouin zone, and the group velocity will again become
zero. Hence, at some point in between, ex must go through an inflexion point, after
which the group velocity decreases with increasing energy. If a sufficient proportion
of electrons lies in this range, it is possible to see the emergence of an NDR.



100 M. P. Vaughan

A similar situation appears to arise in the case of the dilute nitrides, in which dilute
concentrations of nitrogen are substituted into arsenic sites in GalnAs. The nitrogen
atoms form localised states resonant with the conduction band that is believed to split
the conduction band via an anti-crossing [32]. According to this band anti-crossing
(BAC) model, the lower subvalley becomes highly non-parabolic and flattens off
even at relatively low energies quite far from the zone boundaries. An NDR has in
fact been observed in dilute GaAs:N by Patane et al. [33], who interpret their results
according to the BAC model.

Yet another example of NDR occurs in resonant tunnelling. However, in this case,
the phenomenon arises due to quantum mechanical tunnelling, which is not easily
dealt with using the semiclassical approach of this chapter.

Charge Fluctuations

It was noted by Ridley and Watkins [30] that the presence of an NDR could lead
to instabilities due to charge fluctuations and the emergence of travelling electrical
domains. Any localised fluctuation in the charge density will cause a space-charge
potential to be imposed onto the potential due to the electric field and will be moving
with the drift velocity of the carriers. At the trailing edge of the space-charge profile
the field will be reduced, whilst at the leading edge, the field is increased. Under
the normal conditions of a positive differential resistance, the carriers at the trailing
edge will be slowed down whilst those at the leading edge will be accelerated. Hence,
the fluctuation will tend to be pulled apart and smoothed out.

On the other hand, if a negative differential resistance pertains, the opposite will
happen. Carriers at the trailing edge will be sped up, whilst those at the leading
edge will slow down with the net effect of causing the carriers to bunch together.
This will continue until the carriers at either edge of the fluctuation obtain the same
drift velocity. It is not immediately obvious under what conditions this will occur
as there may be many pairs of field strengths for which the group velocity will be
equal. However, it has been argued by Ridley [34] on the basis of thermodynamical
considerations that for an NDR of the form shown in Fig. 4.3, this will occur at the
points B and D on the graph.

Current Oscillations

Consider the existence of such travelling electric domains in a device of length L.
If the device is short enough, it is likely that there will only be one such domain in
the device at a time. As this domain leaves the device at the positive terminal, charge
conservation within the device will lead to another being nucleated at the negative
terminal. Hence, we will have a regular series of current pulses travelling through the
device with an approximate frequency of vp /L. The process by which this occurs,
given the transferred electron effect as the cause of the NDR is known as the Ridley—
Watkins—Hilsum mechanism. The oscillations were subsequently observed by Gunn
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[2] and the phenomenon has become better known as the Gunn or Gunn-Hilsum
effect, with the domains often being referred to as Gunn domains. This is, of course,
the physics at the heart of the Gunn diode for generating microwave oscillations.

4.5 The Boltzmann Transport Equation

4.5.1 General Form of the BTE

The Boltzmann transport equation (BTE) governs the statistical distribution of parti-
cles under non-equilibrium conditions. For our purposes, it therefore determines the
dynamics of the distribution function f (k). In its most general form, the BTE may
be written as [35]

dfk) 8f(k)) dk
dr _( o ), i

-V f(k) —v(k) - Vf(k). (4.92)

The first term on the right-hand side of (4.92) is the temporal rate of change of
f(K) due to scattering and can be written

(@f(k)

) / (1) £ O [1 = £ )] =50, K) £ 0 [1 = /()] 50 )gcﬁk’

(4.93)
Note that the rates (per unit k-space) inside the integral are multiplied not only by
the probability that the initial state is occupied but also, since electrons are fermions,
the probability that the final state is not occupied.

The last term on the right-hand-side of (4.92) involves the spatial variation of
f(k), which may be due to a temperature or carrier density gradient. In this current
work, we set this to zero.

Writing the acceleration of a state in terms of a driving force F as dk/dt = F/h,
in the steadystate we have

(4.94)

F afk
E.ka(k)z (&) )

ot

In what follows, we shall assume no magnetic field so that the force is just that due
to an applied electric field F = —¢E.

Before embarking on an attempt to solve (4.94) under high-field conditions, it
will be useful to underpin our understanding by working through a low-field solution
based on the linearization of f (k). One reason for this is that it will caution us to the
limitations of using relaxation times in our formulations, since as we shall see, for
polar optical phonon scattering no unique time exists.
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Since many of the expressions we shall encounter in this chapter are quite long,
as a notational short-hand we shall drop the k and q subscripts on ek and wyq, as this
should not result in any ambiguity.

4.5.2 The Linearized Distribution Function

In equilibrium, the distribution function is just the Fermi factor, given by (4.2). If the
distribution function is now displaced in k-space by an average drift wavevector Jk
due to E, then to first order we can expand f (k) as

F®) = fok — 5K) = fo(e) — Vi fo(e) - k. (4.95)

Since the group velocity is given by v(k) = Vke/h, application of the chain rule

gives

dfo(e)
de

f&K) = fole) —h v(k) - ok. (4.96)

For an electron accelerating in an electric field in the presence of scattering
processes, we can put

E
ok = —ETO (4.97)
h
where 7(€) is the energy dependent relaxation time. Hence, we have
dfo(e)
f &) = fole) + eT(e)J;—EV(k) -E. (4.98)
It will be convenient to denote the asymmetric contribution to f (k) by
d
Ai© = er(@ 329D pyon, (4.99)

de

where the magnitude of the group velocity v(e) only depends on energy in a spherical
band and x is the cosine of the angle § between v(k) and E. Note that we shall assume
throughout that v(k) and k are parallel.

Low-Field Transport Properties

Limiting ourselves to a single, spherical energy band, using (4.95) and (4.99) with
(4.27) and (4.28), the conductivity tensor becomes the scalar

2 g, dfole)
o= —W/v (ex)T(ex) e d’k. (4.100)
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Here, the factor involving the symmetric part of f(k), fo(e) disappears due to the
odd parity of v(k), as do the cross-products involving different Cartesian coordinates
of v(Kk). The factor of 1/3 emerges due to the average value vl.2 = v?/3 of the squared
components of v(Kk) that remain.

Converting to an integral over energy using (4.26), we have

28 fo()
T 2 ()7 (e) ————D(e) de. (4.101)

Now, the group velocity may be written in terms of v (¢) according to (4.23), so only
7(€) is unknown at this stage. This is the quantity that we must compute from the
BTE in the low-field solution.

4.5.3 Low Field Solution and the Ladder Method

Since fi(¢) is proportional to E, taking the dot product of this contribution with E
on the left-hand-side of (4.94) gives a term proportional to E2, which in the present
low-field solution we take to be negligible. Hence, the first order corrections are
neglected entirely from this side of (4.94) and we are left with

= —eEv(e)x

- %E Vi f(K) = v(k) (4.102)

dfo(é) d fo(e)
P

Turning our attention to the other side of (4.94), we now substitute f(k) =
fo(e) + fi(e) into the scattering integral (4.93). Neglecting products of the first
order components of f(K), the scattering integral may be formally decomposed into

ofkY _ (9foe) dfi(e)
( o )‘( o )*( o1 ) (109
where
0
(%gl—/(Hmmmn—m@%ukMﬁ@U—h@]Qy 4K’
(4.104)
and
0
(gf»:=/ﬂﬂm{m&ﬂ—ﬁﬂﬂ—ﬁ©hwﬂ

—w&knﬁ@h—ﬁ@ﬂ<m&m@}apfw (4.105)
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Using the equilibrium condition that for the Fermi factor, fo(€), the zero order con-
tribution given by (4.104) disappears, the scattering integral reduces to

(3f(k)) _(3f1(€))
o ), \ o ),

_ / n 1= fole) Joe)] Ve 5,
‘/S(k’k)[fl(e)l—fo@) f()fo(e)] @ K- @100

Substituting for fi(e) from (4.99) and using (4.3) for the derivative of the Fermi
factor to eliminate the factor of 1/ (1 — fo(e’)) then gives

0f00) _ _ df
(F57), =< e
/ fO( ) / U(E/)X/d VC 34,/
<o )f()[ OO on ] erpd K @GIOD

The ratio of cosines x’/x may be dealt with by choosing coordinates such that,
say, the Kk vector lies along the 7’ axis and E lies in the x — z plane. The dot product
of the unit vectors E and K’ is then

E-K =cost = cosfcosa’ + sinfsina’ cos b, (4.108)

where o is the angle between K’ andk and ¢ is the azimuthal angle. Since any angular
dependence can only come from s (k’, k), which depends, at most, on o/, integrating
cos ¢ over 2w gives zero. So, effectively, x’/x = cos«’. Inserting this result into
(4.107) and equating with the expression for the force term given by (4.102), we
arrive at

12 fO(el) ( ) / 3 12
k', k — d’k' = 1. 4.109
/S( )fo(é) [T(e) () — () a] 203 ( )

As we shall shortly see, for elastic processes at least, this expression enables us
to derive a well-defined result for the relaxation time 7(¢). Before that, we pause to
note that, substituting this result back into (4.107), from (4.106) we have

o Ev(e)x o (4.110)

(3f1(6)) _ dfo(E) _Ji(e
P de

Although this is a low-field result that is only strictly true for elastic scattering
mechanisms, it will prove a useful approximation in our later treatment of high-field
solutions.
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Elastic Scattering Processes
Let us consider purely elastic processes characterized by s, (K, k), so that

s(k',K) = 5. (K", K)6 (¢ —¢). 4.111)

On insertion of (4.111) into (4.109), the action of the delta function means that 7 (¢)
takes the same value of ¢ whilst the fy(e) and v(¢) cancel out, leaving

Ve

— = &K =1. 4.112
an)? ( )

T(E)/Se(k/, K) {1 —cosa'}d (¢ —¢)

Since o/ is the angle between kK’ and K, the integral in (4.112) gives the definition of
an elastic momentum relaxation time 7 (¢), defined earlier in (4.6), as the reciprocal
of the elastic scattering rate w, (€) for a given process:

/Se(k/ k) {1 —cosa'}d (¢ —¢) (Zvc)3d3k/ = w, (6) = %(6) (4.113)

Note that since s (K, K) is given by (4.4), for isotropic processes the elastic scattering
rate w, (¢) may be expressed as

/ 3y,/
we (6) = — |(k|VIK')] /5 (2 )3d K,

2 /
= (kIVIK)|* Do), (4.114)

which is the most familiar form of Fermi’s Golden Rule.

Inelastic Scattering

The principal mechanism of energy relaxation for an electron is via phonon scat-
tering. Strictly speaking, all such interactions are inelastic, however in low-field
calculations acoustic phonon scattering is often approximated as being energy con-
serving. The same is not true for optical phonon scattering and the situation becomes
more complicated. In fact, we shall find that for polar optical phonon scattering no
unique relaxation time can be found.

Consider the case of scattering due to an optical mode of energy 7uw. The intrinsic
rate is given formally by (4.57). When this is inserted into (4.109), the effect of the
delta functions is to introduce values of the 7(€) at energies € & fw, which can then
be taken outside the integrals. The result is an expression of the form

A(e)T(e — hw) + B(e)T(e) + C(e)T(e + hw) = 1, (4.115)
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Fig. 4.4 Calculation of the 1 - I - I - I
room-temperature relaxation
times for polar optical scatter-
ing in GaAs using the ladder
method (see Ref. [37] for de-
tails). Note the characteristic
saw tooth energy dependence,
particularly at low energies,
with discontinuities at inter-
vals of the phonon energy

(hwq=35meV)
90 o 02 03 0.4
energy (eV)
where
A(e) = —O(e — hw)/sA(k’,k)fO( /)—cosa 5(€ — e+ hw) ¢ Pk,
fo(e) v (2 )}
o _ / fO(E) 3 ,
B (e) = O(e hw)/ Ak, k)f() o€ e+ﬁw)(2 )3d
/ fa( /) 34,7
k', k —e—hw a’k’,
/SE( @ )(2)3
C(e) = —/sE(k’, )J;f(( €)v —cosa §(€ — € — hw) on )%d3k’ 4.116)
Here, we have introduced the step function
0,e=<0,
Oe) = [1’ €= 0 4.117)

since an electron with a final energy € < hw could not have absorbed a phonon.
Hence the scattering rate for this process must be zero.

It is clear from (4.115) that, unless the coefficients A(e) and C (¢) disappear, the
relaxation time at € will be coupled with the times at € &= fw. This suggests the picture
of a phonon energy ‘ladder’ with rungs hw apart: the scattering rate on any particular
rung being related to the rates on adjacent rungs.

The notation can be made a little more concise by writing the energy as ¢ +
Jjhw, where 0 < ¢ < hw and j € {0, 1, ...}, and denoting all functions of energy
G(e + jhw) by G ;. Equation (4.115) can then be written out in matrix form as
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By CoO O O--- 0 1
At B C;0 O--- T1

0 AvB, G 0---||m|=]1] (4.118)

Equation (4.118) makes it clear that if we require any 7; at a particular level €, we
need to solve for all the values of 7; separated by integral multiples of Aw. In order
to minimize any truncation error incurred from only solving for a finite number of
rungs, it is assumed that as j — oo, 7; — 7;41. Hence, for the last rung N, we
put By — By + Cy. To include elastic scattering processes, we just make the
substitution

B(e) > B()+ D wei(e). (4.119)

It turns out that for non-polar optical scattering, the A (¢) and C (¢) coefficients
do disappear but not for polar optical phonons. The procedure for determining the
relaxation times described above is known as the ladder method and its development
involves the determination of the ladder coefficients A (¢), B (¢) and C (¢). Fletcher
and Butcher [36] give a good introduction to the method for bulk material in the
presence of a magnetic field, assuming parabolic energy bands. A more detailed
account, covering the generalization to non-parabolic bands as well as scattering in
2D structures may be found in Ref. [37]. Here we just quote the results for bulk:

253/ hw 1/2 - -
Rl C By vy

m*
D) WD+ (1)
Y2 () | 22 (e v(€) ’

o2t hw \ P
B () = I Wo

m* 2m*
X | ©(e~)n fole) Dee-) tanh ™! (7(6_))1/2
T fole) 12 (em)yv 2 (e) Y(e)

+ (nq+1)

Soler) D(ey) coth™! (’Y(€+))1/2
fo(e) Y172 (e)y/2(e) v(€)

and
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23 1/2
I R % foleq) vieq)
C(e) = — I Wo (Zm*) (nq+1) O v

m*
" D(ey) v(e4) +y(e) coth™! (’Y(€+))1/2 _q
Y2 ey 20 | vy () () ’

(4.120)

where we have used the short-hand e+ = € &+ w and Wy was given earlier in (4.80)

Figure 4.4 shows a graph of the room-temperature polar optical phonon relax-
ation times in GaAs using these ladder coefficients. The first point to note is the
characteristic saw-tooth pattern at low energies at intervals of the phonon energy
(hwq=35meV). The first discontinuity occurs at the phonon energy when the step
function in (4.116) becomes non-zero and the process for absorption of a phonon
by a final state becomes viable. The relaxation time goes through a minimum at
about 80meV, implying that the scattering is strongest at this energy. Thereafter,
7(€) increases, smoothing out and approaching a roughly €'/ dependence at very
high energy.

Using (4.39) we find that a population of electrons with an average energy around
the minimum of 7(¢) would have an electron temperature of roughly 600 K. Thus,
whilst polar optical scattering is the dominant scattering process in GaAs at room
temperature, Fig. 4.4 indicates that at high electron temperatures, the scattering rate
weakens. Since there is no weakening of acoustic phonon scattering at high energy,
this latter process starts to become predominant in a hot electron population.

4.5.4 High-Field Solution

Solution in a Single Valley

For the high-field solution of the BTE it will be useful to resurrect the time dependence
so that, for a single valley labelled by n, we have

df'&)  (9f"(K) eF .
= _( > ) + o Vi (). 4.121)

The distribution function may be expanded as a series of Legendre polynomials [8]

1) =" fleOP;(x), (4.122)
7

where x is, again, the cosine of the angle 6 between E and k. It should be borne in
mind that, despite the similarity in notation between this and that used in the last
section, f j” () # fj(e).For j > 0 this is easily seen since in (4.122) these functions
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of energy are multiplied by P;(x). In the case of f (¢), however, it should be noted
that this is not the Fermi-Dirac factor. Rather, it may be approximated as being so in
the low-field solution.

The first two Legendre polynomials are Py(x) = 1 and Pj(x) = x. The higher
order P;(x) and their derivatives may then be obtained from the relations [38]

i+ 1
xP;j(x) = ZJjTPj+1(x) + ZJ,JTP,-_I(;C) (4.123)
and dP;  j(i+1)
G
(1—x2)ﬁzm( () — Pip1(x) . (4.124)

The action of the Vi operator on the terms of the summation in (4.122) is

n

f.
Vicf} (P} (x) = hv(©)— = Pj (x) + f} (O VicP; (x) (4.125)

where the derivative of f7 (€) has been carried out in the same way as before, bringing
out the group velocity v(e). For the action on P;(x) it is more convenient to change
to spherical polar coordinates. Since P;(x) only depends on ¢ via x = cos 6, the
only relevant component of Vy is

18 ldx d 1(

——ey = ——

1 2)1/2 d (4.126)
k00 T % db dx U '

where ey is the unit vector pointing in the direction of increasing 6. Thus, E - eg =
—Esinf = —E(1 — xz)l/ 2 and substitution of (4.122) into the force term of the
BTE gives

dp; fj(e
dx Tk

s
%E.ka”(k)zeE;[v(e)d—ZxPj(x)—i-(l -2 ] (4.127)

Using (4.123) and (4.124) to eliminate x and (1 — x?), we have

1 i fie
ﬁE Vie /" (K) _eEZ[ J + |:v(6)d—€j —jjh—k} Pjy1(x)

J

Tt

|:v(e) 4, +G+1 U :| le(x)] . (4.128)

In practice, the summation in (4.128) must be truncated at some maximum j, which
gives the highest order of the f j" (e). Here, we will consider only terms up to j = 1.
We then have
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d n
ﬁE Vi f" (k)_eE[ [() fl flh/(:)] fOPI(X)
2[ ()df1 %} Pz(x)]. (4.129)

The scattering integral, (4.93), may also be expanded as per (4.122).
Retaining only terms in f{ (¢) and f}'(¢), we obtain integrals with the same form for
the integrands as found earlier in (4.104) and (4.105), with f ]” (€) Pj(x) in the place
of the f;(e). Recalling that Py(x) = 1 and P (x) = x, we then define the scattering
integrals Iy and /] by

o)y = / SR AL 1= 0] — st K) O [1 = ]

(2 )
(4.130)
and
Pi(x)]) = x / s K) {f{'()eosa/ [1 = f @] = fl' @ ff (a)}
— s, K) [ /@1 = fEH] = fi)cosa’ fE(e)} (2 )3 K,
(4.131)

where we have used the same trick as in Sect.4.5.3 to transform x’/x to cosca’.
Equating the coefficients of the P;(x), we then have the simultaneous equations

df() _ _E df] f]n(ﬁ)
=1+ [ - o ] (4.132)
d({,l =1, 4+ ¢Ev(e) dfo (4.133)

We do not include P»(x) in the above for two reasons. Firstly, we did not expand
the scattering integral to high enough order, so there was nothing to equate to, even
though these terms would exist in a more exact treatment. Secondly, even in similar
treatments when P>(x) is included (for instance, Ref. [9]), it is usually averaged
to make it spherically symmetric. However, in 3D, this means that (P>(x)) = 0
anyway. Note that putting f' (€) = fo(e) and f{'(€)x = fi(e), Iy disappears and, in
the steady state, we are left with the low-field solution of Sect.4.5.3.

Equations (4.133) may be re-written using (4.14) and (4.23) to express v(¢) and
k in terms of y(e) and its derivative

afy ¢E (2 \*[dy\ ' d .
O - I+ ER (m*’y(e)) (E) I (v fl©], (4.134)
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n 1/2 —1 n
dfi =1 +¢eE (M) (d—7) % (4.135)

dt m* de ce

These may be simplified by noting that I} = (df{'/dt);/x and using the low-field
result of (4.110) to make the approximation that in the steady state

1(df1"(6)x) O] (4.136)
X dt . T '

Substituting this into the second equation of (4.135) with df{' /dt = 0, we then find

710 :eE( ;(:)) (d—Z) ({37(6), (4.137)

which, in turn, is substituted into the first equation of (4.135) to give

- ~(e) de de | dy/de de

dfy 222E2 (1 \'? (dy(0\ " d [ @1 dfy
=1Io+
dt 3m*

] . (4.138)

Equation (4.38) is the differential equation that needs to be solved for transport
in a single valley. However, as it stands, Iy would still require numerical integration.
As a first simplification, it is straightforward to show that for purely elastic processes
Ip = 0. Thus, we need only consider phonon scattering and put

Iy = ((‘3f61) 5 (4.139)
ph

ot

with the ph subscript standing for ‘phonon’. Considering this scattering term to be
due to polar optical phonon scattering only, Conwell and Vassell’s result [8] may be
written as

o0 r 213 (B \ 12
( ot )Po = Wo = (2m*) [@(6_){an0(6_) ~ (D)

D(e_) - (7(6))1/2
2260 e

+ {(nqg + 1) foler) — nq fo(e)}
D(ey) th! e\ "2
X i €0 — .
Y (ep)y = () y(e)
The method of Seifikar et al. [39] may then be used to solve (4.138) via the finite

difference method. The calculation is started at zero field with an initial function for
/¢ and allowed to evolve to a steady state. In the next iteration, the previously found
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result for f' is used as a starting value with a small increase in the electric field. The
process is repeated until the desired field strength is reached.

InterValley Transfer

The effects of transferred electrons via intervalley scattering may be incorporated by
a generalization of the single valley solution. There will then be a system of equations
like (4.138) for each valley but now additional scattering terms must be included in
each equation for the intervalley scattering rates. In addition, these rates must also
be included in the solution of the I; integrals for each valley, so that the relaxation
times obtained will be modified. The paper by Conwell and Vassell [8] remains a
very good introduction to this method.
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Chapter 5
Monte Carlo Techniques for Carrier Transport
in Semiconductor Materials

N. Vogiatzis and Judy M. Rorison

Abstract Monte Carlo has become a powerful tool for describing complex systems
with many degrees of freedom. It involves simulating a combination of deterministic
and stochastic processes. Here, after a basic introduction to the technique, we focus
on its application in the analysis of carrier transport in semiconductors. This method
is applied to GaAs and to dilute nitride materials.

5.1 Introduction to Monte Carlo

Monte Carlo (MC) is a technique that simulates problems with the help of computer
algorithms. These problems are usually very complex in nature with many degrees
of freedom which do not have an analytical solution.

Monte Carlo techniques are employed nowadays in engineering, physics, biology,
mathematics, finance, telecommunications and many other different areas. Forecast
of the dynamical evolution of a tornado, prediction of the expectation value of a
stock price or planning of the wireless network coverage to optimise capacity, traffic
and quality are some of the many examples of how this technique can be applied.
Essentially, MC employs statistical sampling to solve quantitative problems.

Statistical sampling is associated with the generation of random numbers.
However, “truly” random numbers are not always practical to use for a number
of reasons. This is discussed in the Appendix. From the early stages that this method
was proposed, it was obvious that a quick and reliable way of generating random
numbers was the computer. Since then MC has been associated with computers
and their efficiency in generating random numbers automatically and simulating the
whole problem.

N. Vogiatzis - J.M. Rorison (B<)

Department of Electrical and Electronic Engineering,
University of Bristol, Merchant Venturers Building,
Woodland Rd, Bristol, BS8 1UB, UK

e-mail: judy.rorison@bristol.ac.uk

X. Marie and N. Balkan (eds.), Semiconductor Modeling Techniques, 115
Springer Series in Materials Science 159, DOI: 10.1007/978-3-642-27512-8_5,
© Springer-Verlag Berlin Heidelberg 2012



116 N. Vogiatzis and J.M. Rorison

5.1.1 Historical Review

The earliest record of Monte Carlo is in 1777 describing a problem known as the
Buffon needle problem [1]. This involved dropping a needle to a lined surface in
order to estimate . The credit of inventing the modern Monte Carlo method goes to
Ulam who worked with von Neumann on the Manhattan project during the Second
World War. Ulam invented the Monte Carlo technique in 1946 while trying to work
out the probabilities of winning a card game known as solitaire [2]. He figured out
that he could come up with a method that he could repeat many times and at the end
count the number of successes of these random operations. He then associated this
problem with the neutron diffusion, other problems from mathematical physics and
generally other processes which are described by differential equations.

His big contribution was that the statistical sampling that was required for this
method could be performed by means of the newly invented computer. He described
his idea to von Neumann and Metropolis and they started developing computer
algorithms for this problem, as well as for other non-random problems which could
however be given by some random forms and then through statistical sampling get
the solution. Metropolis named the newly invented method after the casinos in Monte
Carlo and he published with Ulam the first paper on this method in 1946 [3].

5.1.2 Simple Examples of Monte Carlo

First example

Monte Carlo is very useful in the calculation of integrals. Traditional numerical
integration can be done in a number of ways, such as using the rectangle rule, the
trapezoidal rule or Simpson’s rule. Monte Carlo can also do numerical integration by
using random numbers. Especially for the calculation of higher dimensional integrals
this method is very efficient. An example of higher dimensional integration is in
statistical physics for the calculation of the average distance between particles within
a box of length L.

A characteristic example of Monte Carlo integration is the so-called “hit or miss”
method [4] that is used for the calculation of 7r. The idea is that we want to calculate
the integral

b
/ f(@)dx (5.1)

that is the area under the curve f(x) from x = a to z = b. For the case of 7 the
problem is stated as follows. Imagine that we have some grains of rice. The aim is
to calculate how many grains of rice will be within the area defined by the function
y=+/1—22where0 <2 < land 0 < y < 1 to derive the value of 7. Figure 5.1
shows the problem graphically. We can see that the area we want to measure is the
quarter circle which can be squared by a square of length = y = 1. Then the ratio
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Fig. 5.1 Randomly generated 1
pairs of z, y for the calculation
of w

0.5

of the area of the quarter circle over the area of the square is

A=2 (5.2)

which equals /4. This means that if we throw randomly the grains of rice over
the entire area, then by counting the grains in the quarter circle (grey circles) and
dividing them by the total amount of grains (grey and black circles) we should find
a value close to 7 /4.

This can be done easily with Monte Carlo. All we need to do is to generate some
pairs x, y, where z, y are uniformly distributed random numbers within 0 and 1.
Then if 22 4 4> < 1 the grain is within the circle (grey spots), otherwise it will be
outside (black spots). This is shown in Fig.5.2 where we can see that by increasing
the number of random pairs we get a value of 7 = 3.14570 which tends to converge
towards the real value (3.14159). The standard error will be inversely proportional
to the square root of the sample size (number of iterations). We shall see how the
standard error is related to the computational time in the section where we will talk
about the ensemble Monte Carlo in carrier transport in semiconductors.

Itis worth pointing out that the random numbers x and y are taken from the uniform
distribution, i.e. all numbers between 0 and 1 have exactly the same probability of
occurrence. This is very important, for the validity of the results. For example, if
we choose numbers from the bell distribution, then at the corners of the square
of Fig.5.1 the probability of finding a grain will be small as it will correspond to
the tail of the distribution. The numbers will not be uniformly distributed anymore
which will affect the final outcome. For the same reason if we take vertical slices
atr = x1,r = 23, = x3,... 1t is easy to understand that the number of grains
measured would be less sensitive to the shape of the distribution at x — 0 than
at x = 0.5. The random numbers (or pseudorandom numbers to be more accurate
as discussed in the Appendix) which will be used in the following sections are all
generated from the uniform distribution.
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Second example

Another example is a gambling experiment [4]. In this there is a person called
gambler who has 100$ and plays against the house who has 2000$. Let us assume
that we have a random number » which is generated from a uniform distribution. The
rule of the game is the following: if r < 0.5 then the player wins 1$ otherwise the
house wins 13$. The game finishes when either the player or the house goes bankrupt.

The problem with this experiment is that it is difficult to predict not only who
will be the winner (although the odds are clearly in favour of the house), but most
importantly how long the game is going to last (how many iterations within a single
game), as there is no obvious time limit. However, we can create a small computer
algorithm that will simulate this problem and then we can do multiple runs to get
an idea of who wins and what would the average duration of the game be. This is
shown in Fig. 5.3. In (a) four independent games are shown. We can see that in three
of them the gambler loses and only in one he manages to win. Also, we can see that
the game duration (number of iterations) is not the same. In (b) the histograms show
the number of games (here only 30 are simulated) that will have finished within a
specific number of iterations per game either by means of the gambler winning or
losing. We can see that most of the games are fairly short and within 50000 iterations
(50000 times choosing a random number) there will be a winner, whilst some other
games are more “dramatic” and take longer for someone to win. In fact for the record,
out of the 30 games the gambler wins only in three of them.

This example shows that by using some random numbers and a deterministic
set of rules we can extract a meaningful statistical average of the quantities we are
interested in and which would otherwise be difficult to obtain by other analytical or
numerical methods.
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Fig. 5.3 a Number of iterations for a game to finish either when the gambler loses (0 ($)) or
wins (2100 $). Each curve represents a single game, b histograms of the frequency of occurrence
describing the game time. 30 games are simulated and most of them have relative short duration

5.2 Carrier Transport in Semiconductors

The transport problem in the semiconductors attempts to solve the Boltzmann
Transport Equation (BTE) which gives the distribution function in momentum space
p of the carriers. By carriers we mean either electrons or holes. In other words it
describes the probability of finding a carrier with a momentum p, at the location r
and at time t. Let us from now on assume for simplicity that whenever we say carriers
we shall assume electrons. If n; is the number of electrons in the ith valley per unit
volume of the crystal then

/ fi(p)dp = n; (5.3)

The Boltzmann equation for the distribution function f;(p) of carriers of momen-
tum p in the ith valley in the presence of an applied field F can be written as [5]

a7 5.4)

b i a i 0 i
fi(p) _1 fa(tp)]F +Z[ fa(tp)]“
j

where the first term on the right hand side is the rate of change of f;(p) in time due

to the field 21 (p)
;l" Ir = %kafxp) (5.5)

[



120 N. Vogiatzis and J.M. Rorison

with g being the electronic charge. The second term on the right-hand side is the
summation over all possible valleys ¢ of the rate of change of f;(k) due to the
scattering processes. If 7 = 4, then [0f;(p)/d¢];; is due to intravalley scattering (in
valley 7) andif j # i the change [df; (p)/0t];; is due to intervalley scattering (between
valleys ¢ and 7). In 5.4 the external applied field is assumed to be electric. The problem
can be generalised to include also magnetic fields. For simplicity in what follows we
shall assume that carriers move only under the presence of an electric field.

Equation 5.4 gives a classical description. An analytical solution of this equation
is difficult if summation is over more than one scattering rate making this approach
only useful at low fields or for a specific form of the distribution function. For moder-
ate electric fields several scattering processes must be included to obtain meaningful
results showing the interplay between competing scattering processes and accelera-
tion by the electric field. For high electric fields the so-called hot electron problem
may arise. By hot electrons we mean electrons subject to high electric fields result-
ing in their energy increasing in such a way that their Fermi-Dirac-like distribution
is hotter than the lattice. In such a case we say that electrons are not in thermal
equilibrium with the lattice. Because of the complexity of the scattering processes
5.4 turns out to be complicated. Other constraints of this method have to do with
transport in space and time as well as with the incorporation of the band structure of
the semiconductors.

Another way to solve the Boltzmann equation is by a numerical method. It is
easier to simulate the trajectories of carriers when they move in a device by using
a combination of stochastic and deterministic processes under the presence of an
applied field than solving the BTE. Historically, the proposed techniques were the
iterative method [6] and the Monte Carlo method [7]. Both of them are numerical
methods, but the latter has became more popular and has managed to simulate suc-
cessfully the transport behaviour of a number of semiconductor material systems.
For a comparison between the numerical techniques and the analytical one as well
as for an extensive description on the Monte Carlo method in particular, the reader is
advised to look at the work of Jacoboni et al. [8, 9], Price [10] and Boardman [11].

In the following pages a detailed description of the Monte Carlo method for
carrier transport in semiconductors is given in a step-by-step approach. In each step
we shall attempt to highlight the deterministic and stochastic processes involved.
First, the single electron Monte Carlo (SMC) will be examined which is appropriate
for steady-state conditions. Then the Ensemble Monte Carlo (EMC) will be described
which is related to the dynamical behaviour (transient characteristics) of the carriers
under an external field. Examples of the two methods are given within the GaAs
semiconductor. Also, there will be a discussion on the same problem in dilute nitride
semiconductors. Finally, there will be areference on full band Monte Carlo simulation
where analyticity is not always applicable.
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5.3 Single Electron Monte Carlo

Motion of carriers in a semiconductor takes place within a bath of other carriers.
Therefore, carrier transport is a many-body problem and normally all interactions
between carriers should be taken into account in the description of the system.
However, to our benefit the particular type of problem refers to a system which
is ergodic.

We can understand ergodicity through the following example. Imagine that we are
performing a statistical analysis on a group of people at the type of film they choose
to watch at a specific moment in time. Some may choose to watch a comedy, others
a film with historic content, others an action film, etc. Let us take now a specific
individual from that group and follow his preferences over a large period of time.
We can understand that we can either make a statistical analysis of an ensemble of
people at a specific moment or an analysis of just one person for a longer period. If
the system is ergodic this means that both types of statistical analysis should give
the same result.

In examining the steady-state behaviour of the motion of a carrier, i.e. a long
time after an electric field has been applied and the independent carriers within the
ensemble have obtained a specific velocity, energy or distribution, we can monitor
the behaviour of just a single carrier, assuming that it is identical with the rest. This
is the meaning of the SMC simulation and luckily it does not require any knowledge
of the initial distribution function which simplifies things.

The two subsequent sections will serve as an introduction to the concept of scat-
tering and drift of carriers. The algorithm of the SMC will be presented and each
step will be analysed.

5.3.1 Scattering Processes

When applying an electric field the carrier drifts. It is common to use the term free
flight to describe this process which can be described in a classical way as we shall
see later on. At some point in time the free flight will terminate because the carrier
will be scattered by a process. This scattering that takes place can be due to phonons,
i.e. lattice vibrations, impurities or other carriers (electrons or holes). Also, after
scattering carriers may retain the energy they had before (elastic scattering) or may
have an altered one (inelastic scattering). By scattering we do not necessarily mean
that the carriers have to collide physically with the scatterer as this process can take
place from a distance, such as in a Coulombic type of interaction.

Some basic assumptions which are done in MC are the following. Whilst the
free flight time of the carrier is finite and can be determined easily, the scattering
process is assumed to happen instantaneously. The motion of carriers is described
classically(analogy of carriers/particles being seen as solid spheres), whilst the scat-
tering is treated quantum mechanically. As shown in Fig.5.4 the main scattering
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processes can be further analysed to other subcategories. Although not all scatter-
ing processes are equally important in all types of semiconductors, what remains
the same is their general quantum mechanical expression. This means that for MC
the scattering rate S; of a process j is a deterministic input. As we shall show the
randomness is associated with the frequency of occurrence of this process.

The deterministic carrier scattering rate (or transition rate) from a state K to a state
k' (Fig.5.5) is given by the following formula known as Fermi’s golden rule
2 |

Sk, k') = —|(K'| H'|K) |*8 (ex — ek F hw) (5.6)

where k and K’ is the initial and final wavevector, €k and €y is the energy of the carrier
before and after scattering and hw the energy that has been absorbed (—) or emitted
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(+). For Ae = hw=0 the scattering is elastic. Also, H' is the perturbative potential
characteristic of each scattering process. It is beyond the scope of this chapter to give
the expressions for the potential H'. For a detailed analysis the reader is advised to
see other textbooks [9, 12, 13].

Let us take as an example some scattering mechanisms for electrons in the I'
valley of GaAs [14]. The first is acoustic deformation potential scattering, the second
is polar optical phonon and the third is ionised impurity scattering. The electronic
band is assumed to be spherical and non-parabolic. Non-parabolicity refers to the
shape of the conduction band and it is a very important concept when describing
electron motion away from the bottom of the band, which happens for moderate
and high fields. Therefore, non-parabolicity describes the deviation of the energy
from the simple quadratic dependence for values of k away from the band minima
[14-16] and must be accounted for in the expressions of the scattering rates and later
in the post-scattering selection process. The scattering rates are plotted as a function
of energy in Fig.5.6(a). Note that we have explicitly treated polar optical phonon
absorption and emission. The total scattering rate is the sum of the scattering rate of
each independent process

Stotal = D S; (5.7)
j

We can use Sy to obtain the fractional contribution (weight factor) of each one of
them as

=
! Stotal

(5.8)

This is shown in Fig.5.6(b). We shall use this graph later when we will discuss the
selection of the scattering process which happens in a random fashion.

5.3.2 Drift Process

Let us assume that we have an electron that is moving in the semiconductor crystal
under the presence of an electric field F. We mentioned earlier in Sect.5.3.1 that
this motion can be described in a classical way, meaning that we can use Newton’s
second law which says that the total force f applied in a body is equal to the time
derivative of the momentum of the body.

f=ma=mv=p (5.9)
In our case this can be written after integration as
(—q)F = p = hk (5.10)

where v, p, k is the time derivative d /dt of the velocity, momentum and wavevector
respectively. The time dependence of k can therefore be written as



124 N. Vogiatzis and J.M. Rorison

(@)
‘20 (1)
o F ---Q
& —-=-(3)
5 154 (4)
X, D (1)+(2)+@)+4)
Q LR
£ 10
2 R ettt
'}1:_3, 0.5+ l/'
= i L SR e A
& 0.04— ; : ; ;
0.0 0.1 0.2 0.3 0.4 0.5
e (eV)

b
(b) 1.0 " . ! .
-
& o084 M
5 i )
s 064 === (3
S @)
o
< 04
c
(o]
B 024 . emmrmrmmmem e
g L L e et e e ]

0.0 - : : - T

0.1 0.2 0.3 0.4 0.5
€ (eV)

Fig. 5.6 a Absolute magnitude of scattering rates in GaAs. (1) acoustic deformation potential
(2) polar optical phonon absorption, (3) polar optical phonon emission and (4) ionised impurity
scattering with an impurity concentration of n;=10'°cm ™3 and a free electron concentration no=3n;
using the Brooks-Herrings approach [13]. b The fractional contribution of each scattering process
within the same energy interval. Any intervalley scattering to higher valleys has been omitted for
simplicity

hk(t) = hko — gFt .11

In the above it is assumed that the electron’s energy varies slowly as a function of
the position and therefore it can be treated as a free particle with an effective mass
m}. The electron motion could in principle continue forever if it were not for one
of the mechanisms shown in Fig. 5.6 that terminates the drift process by scattering.
We have defined the duration between two successive scattering events as free flight
time. Figure5.7(a) and (b) show the trajectories of the electrons in the momentum
and real space respectively. The applied electric field can be assumed to be parallel
to only one direction for simplicity (here it is «). The scattering event causes change
of the trajectory in the momentum space. The scattering time is assumed to happen
instantaneously which is indicated by the thin arrows. Figure 5.7(c) shows the drift
velocity which is being built up with time until it reaches a steady state. Typically,
in such simulations electrons are expected to have obtained a steady state within a
few ns. One can get an empirical understanding of how good the convergence is by
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Fig. 5.7 a Electron trajectory in the z-y plane. z dimension is omitted for simplicity. “S” stands
for start, thick arrows represent the drift process happening within the free flight time and the light
arrows correspond to the change in momentum upon a scattering event (in grey circles). The electric
field F' is assumed only along x-direction as indicated by the trajectories. b. Electron trajectories
in the real space ¢ Drift velocity evolution versus time. The outcome of the simulation is sensitive
both to the simulation time and to the initial conditions chosen. The free flight times such as 7 and

72 do not have to be the same and are chosen in a stochastic way. After some time electrons reach
a steady-state velocity (dashed parallel line)

allowing a few different simulation times in the code and by monitoring the progress
of the quantity of interest, or by defining some criteria such as a minimum allowed
deviation of velocity values within a frame of time. Later, we shall mention how the
computational cost can be reduced.
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The position of a carrier varies with time as

t

x(t) = x(0) + / v(t)dt' (5.12)

0

where x(0) is the position of the carrier at 1 = 0. Figure5.7(b) has only half of
the trajectories of (a) because it is assumed that the instantaneous scattering process
does not change the position of the carriers. In other words since the scattering time
Stx— = 0, we have §,=0 (8, = vd;).

5.3.3 Description of the Algorithm

A description of the algorithm is given below:

1. Input of “external” physical parameters and simulation characteristics: Parame-
ters such as electric field strength F, lattice temperature 7', maximum permitted
time of simulation 4, ! and other physical constants are defined. All values are
deterministic.

2. Definition of the physical system: The band structure of the examined semi-
conductor is given. Typically, we assume zero energy at the band edge. The
notion of the non-parabolicity parameter a r which is input later in the scattering
rates is defined here (makes use of the energy band gap value). All values are
deterministic.

3. Scattering parameters: The scattering rates of the various processes and their
fractional contribution are given in a deterministic manner (Fig.5.6). It can be
seen as the “heart” of the code or as the most sophisticated part of it because the
input distribution of the scattering processes will retain the physical characteris-
tics of the system and electrons throughout the simulation time will map on this
distribution.

4. Initial conditions of motion: The initial energy €, the wavevector Kk and its com-
ponents K, k;, and Kk, are defined. The energy is chosen randomly but we should
pay attention to giving a value which will not affect the final result. For example,
an unrealistically high value of € for a low electric field may take more time
to converge to the steady state (computational cost) and in the case where the
simulation time #,,,, is not big enough the final result will be influenced by the
initial wrong conditions. The initial wavevector k is given deterministically by

k = —‘zm‘%y(é) where y (¢) = e(1 + aye) is an expression of carrier energy
accounting for non-parabolicity. € is random and can be a few times bigger or
smaller than the thermal energy k7" by being dependent on a random number in

! The simulation time is the time after which the carriers stop drifting. It should not be confused
with the time required for computer simulation, which will be referred to as computational time.
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the form log () for example. Also k., k, and k; use k (which is random because
it depends on €) and another set of rules with random numbers. An example will
be given later.

5. Free flight time: The free flight time is determined in a stochastic way (see for
example Fig.5.7(c)). Details will be given later.

6. Drift process: The electron drifts deterministically as described in Sect. 5.3.2 for
time equal to the free flight time. For systems that incorporate more than one
valley a control of the carrier energy must be made at this point as carriers may
reside by the end of the free flight on a different band. The final energy before
scattering is obtained.

7. Collection of data for estimators: Quantities of interest such as drift velocity or
energy are being monitored and stored at this point. They will be recalled before
the next scattering event.

8. Selection of scattering process: By using the scattering distribution in step 3 the
selection of the mechanism that terminates the free flight time is made stochas-
tically. An example will be given later.

9. Determination of the post scattering state: The state after scattering is described.
It is a combination of a deterministic expression characteristic of a specific
mechanism and a use of two more random numbers related to the polar and the
azimuthal angle. Details will be also given later.

10. Logic check of the simulation time: Monitor the simulation time. If it is smaller
than #,,,4,, Step 5 is repeated, otherwise the simulation stops and the final results
are collected.

These steps are described by the flowchart in Fig.5.8.

5.3.3.1 Initial Conditions of Motion

Figure 5.9 shows the initial distribution of an electron in the I" valley of GaAs at
two different temperatures.A total of 30000 iterations have been performed and the
vertical axis describes the normalised number of coincidences. Subfigure (a) shows
the energy distribution, (b) the distribution of the respective k, wavevectors and (c)
the distribution of k wavevectors. Also, the average value for each quantity is shown.

5.3.3.2 The Free Flight Time

It is obvious that the duration of the free flight time 7, must be associated with the
total scattering rate—the carrier will drift for less time when the scattering is higher.
Let us now assume a group of carriers n. that have not undergone any scattering
since t'=0 [21]. The rate of change of the collision-free carriers can be given by

dn,
dt’

= —Stotallc (5.13)
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where S;,147 1S the total scattering rate (5.7). Solution of 5.13 gives

_ftsrotaldt,
ne(t) = ne(0)e o (5.14)

Therefore the probability that the carriers that have suffered a collision at time ¢'=0,
have not suffered any other collision at time ¢ is

t
ne(t) - Of Siotardt’

e O) (5.15)

e

The probability that a carrier undergoes its first collision between ¢ and ¢ + dt is the
product of the scattering rate times the probability that it has not suffered any other
collision by that time ¢
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_‘ft‘Smmldt/
P(t)dt = Storate ° dt (5.16)

In order to determine the free flight time one can produce a uniformly distributed
random number » between 0 and 1 and try to evaluate 7 of 5.16 through the relationship

t

r= / P(t)dt' (5.17)

0
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The problem in the evaluation of the integral is associated with the complex form
that some of the scattering rates S;, within S;,4 (5.7) may have. For example in
polar scattering there is no analytic solution of 5.17 and the evaluation becomes very
difficult. However, Rees [17] came up with a method that greatly simplifies this task
by proposing a virtual quantity called “self-scattering” (SS). The SS, S;¢;¢ changes
neither the carrier’s momentum (k' = k) nor its energy. All it does is that it adds
up to the total scattering rate S;,s4; in such a way that the sum of these two will be
constant for all energies.

I'= Siora1 + Sself (518)

With this assumption 5.16 can be written as
P(t) =Te ! (5.19)
and the free flight time #, can be generated by using random numbers as

_ —In(1—r)
b= —— (5.20)

and because r is obtained from the uniform distributed between 0 and 1 we get

—Inr
t, = T (5.21)

Computational efficiency

Figure 5.10 shows the concept of SS and how this can be implemented in practice
to obtain a I' which is used to derive the free flight time (constant I' technique)
(5.21). The shaded region is the SS rate and here we have taken I' = max(S;ya7)-
It is worth pointing out that the simplicity in deriving 7. comes at an expense of
the computational time. The “wasted” computer time corresponds to the times that
a SS event takes place. For example, as shown in Fig.5.10, whilst at very small
energies of few meV the code is efficient as the SS events are few, as the energy
increases the SS events appear approximately 40-50% of the time. This means that
the computational time has increased 2-fold to obtain the same result. This makes
it clear that the choice of I" is very important. To make things even more evident,
imagine the case where ionised impurity scattering which dominates at low energies,
is an order of magnitude higher because of the increase the number of the ionised
impurities ny; [13]. This would result in a I being approximately 10 times bigger
than S;,s4; for almost all energies, meaning that a real scattering event would happen
only once out of ten times, which makes the code highly inefficient.

It is possible to improve the efficiency of the code by introducing a variable I'
scheme [8, 9]. This is shown in Fig.5.11. We take two I' corresponding to two
different energies.
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By applying this technique the computation time is reduced by an amount which
equals the grey shaded box in Fig.5.11. It is straightforward when a carrier both
at the beginning and at the end of the free flight is located within the same region
(indicated with zigzag lines). However, it is more complicated when the carrier at the
start of the free flight is below €1 and just before scattering it has an energy € > €.
t, will be modified from 5.21 as follows [8]:

r
fy = —InrTy +15(1 — =1) (5.23)
I
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where 74 is the time required by the carrier to reach energy €; and which is easily
monitored during the execution of the code. This equation can be further extended
for an N-variable I" technique. A detailed analysis with an evaluation of the “saved”
CPU time can be found in Refs. [18, 19].

5.3.3.3 Choice of the Scattering Mechanism

After the free flight time has been defined we need to choose one scattering mech-
anism randomly that will terminate the electron’s drifting [9, 20, 21]. The choice
is done by using a set of functions ® representing the successive summation of the
fractional contribution I'; of each scattering rate

2. Sj(€)

@n(e)z% for n=1,2,....N (5.24)

where §; is the energy dependent scattering rate of the jth process and N is the total
number of processes. The scattering mechanism is chosen by generating a uniformly
distributed random number » between 0 and 1 and comparing it to ®,. The nth
scattering mechanism is chosen if

Ou—1(e) <r < Oy(€) (5.25)

is satisfied. Let us take for example the scattering rates shown in Fig.5.6.
Figure 5.12(a) shows the probability of occurrence of each scattering process at
€=200meV. We remind that (1) is the acoustic deformation potential (ADP),(2) and
(3) the polar optical phonon absorption (POPab) and emission (POPem) respectively,
(4) the ionised impurity (II) and (5) the SS. In (b) the sum of the fractional contri-
butions ®,,(¢) for the processes in (a) is shown. The shaded region corresponds to
€=200meV.

We can now choose a number 0 < r < 1 and compare it with the ®,,(¢) to choose
the scattering process.

if r<0.01138 then acoustic deformation potential is chosen
if 0.01138<r<0.06798 then POP absorption is chosen

if 0.06798 <r<0.27340 then POP emission is chosen

if 0.27340<r<0.34961 then ionised impurity is chosen

if 0.34961 <r<1 then SS is chosen

The same thing is repeated for every energy of the carrier. This part of the code is
a characteristic example of the core concept of the MC method, i.e. a combination
of stochastic a deterministic processes. In other words, the scattering mechanism
is chosen randomly, but because it maps on a deterministic input (weight factor
of scattering process) it allows the steady-state estimators that will emerge in the
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output of the MC code, to retain the physical characteristics of the system under
investigation.

5.3.3.4 Selection of the Final State After Scattering

After the scattering mechanism has been chosen we must define the new state just
before the next free flight starts. This post-scattering state K’ corresponds to the end
of the light arrows of Fig.5.7(a). Unless the SS process has been selected, the new
state will have a different magnitude and orientation. The new wavevector k’ will be

2 ES
K=Y hmf J7© (5.26)

where y(€) = €/(1 +aye’) and € = € 4 Ae. For elastic scattering, Ae = 0 and for
inelastic Ae # 0. Whether a process is elastic or not will depend on how the energy
of the carrier is compared versus the energy of a phonon which is being absorbed
or emitted. For example, acoustic deformation potential scattering (emission and
absorption) can be taken as elastic at room temperature and inelastic at very low
temperatures.

Also, scattering can be categorised as isotropic or non-isotropic. Isotropic means
that there is an equal probability for a carrier to be scattered in all directions. For exam-
ple, ADP scattering and intervalley phonon scattering are assumed to be isotropic.
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In such a case no coordinate system is required to obtain k’. For the updated orien-
tation the azimuthal angle ¢ and the polar angle 6 are defined by two new random
numbers r| and r, uniformly distributed between 0 and 1

¢ =2mr;

(5.27)
cost =1—2r

For anisotropic scattering such as Coulomb scattering or polar optical phonon
scattering usually the coordinate system k., ky, k, is rotated by an angle ¢ about the
Z axis and then 6 about the 3 axis. Scattering is performed in the rotated coordinate
system k., ky.,, k-, and then transformation back to the original coordinate system
is performed. The reason for performing scattering into the rotated coordinates is that
the initial wavevector k can be set parallel to the Z axis. This is shown in Fig.5.13.
For more details on how to perform the transformations from the initial coordinates
to the rotated and then back to the initial ones can be found in the textbooks of
Lundstrom [21] and Tomizawa [20]. The azimuthal and polar angles in anisotropic

scattering will be

¢ =2mr3

2r4

cos =1 — ————
14+4k2(1—rs) L,

for Coulomb scattering (5.28)

(48§ —(1+28)"
§

cost = for POP scattering

where r3 and r4 are random numbers again and LBI is the screening length (inverse
Debye length) and & = %, where k' was given in 5.26.
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Fig. 5.14 Histograms for the distribution of scattering events in various angles (a) polar angle, (b)
azimuthal angle for isotropic scattering, (c¢) azimuthal angle for anisotropic Coulombic scattering
and (d) azimuthal angle for anisotropic polar optical phonon emission

Figure 5.14 shows the distribution of the azimuthal and polar angles for 50000
events for isotropic and anisotropic scattering. For polar angles (a) the probability
distribution of the carrier within an angle of ¢ = [0, 2rr] is uniform. For isotropic
scattering (b) the azimuthal angle 6 has more of a normal distribution within [0, 7]
with amean value at & = 77/2 radians. For anisotropic scattering such as for Coulomb
(c) or polar optical phonon scattering (d) there is a clear preference towards smaller
scattering angles. For ionised scattering we have assumed here an impurity concen-
tration of n;; = 10'%cm™3 and the carrier having an energy e=10meV. For polar
optical phonon (d) e=200meV and €’=164.4meV after the emission of a phonon.
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5.3.3.5 Calculation of Final Estimators

We have now reached the point that after consecutive accelerations and scattering
events acting upon the carriers the criteria which have been set for steady state are
satisfied. The final mean value of the estimators Q can be defined by summing the
individual contributions at each subhistory [8]

1 Ir N
© = Z /0 0()dt (5.29)

where ¢, is the free flight duration and 7 is the total simulation time. The estimators
that we are basically interested in is the average drift velocity v,; and the average
energy € of the carrier. The former within the free flight time #; is given by

() = =2 (5.30)
= Ak '
where A€ and Ak are the infinitesimal energy and wavevector difference during the
free flight time #.. Equation 5.30 is valid because v; = %g—i. Also, from 5.11 we
have (—o)F
— tr
Ak = L7 (5.31)
h
Using 5.31 we can write 5.30 as
(vl = —— (532)
V)i, = ——— .
" (—Fy
and the average steady-state drift velocity is given by
(va) = 1 2 (va)y,1r
1

(va) = (_qﬁ Z(Ef —€;)
where ¢; is the energy at the start and € s the energy at the end of the free flight. If

€ r>¢; then (vg) is positive, since the negative sign in the previous equations stands
for the electron charge. The average steady state energy is

1
(€)= = D (eduty (5.34)

where (€);, = Q—FTGJ‘
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5.4 Ensemble Electron Monte Carlo

So far we have seen that single Monte Carlo method has been used to evaluate
the steady state characteristics under a static and uniform electric field. However,
it is often the case where carriers move balistically or semi-balistically in small
devices. Ballistic transport means that carriers move from one physical end to the
other end of a semiconductor within a time which is comparable to their relaxation
time. In such a case carriers do not manage to obtain their steady-state and non-
stationary carrier transport such as velocity overshoot takes place. Apart from the
time-dependent phenomena, the study of the space-dependent phenomena requires
an alternative approach to that of SMC as well. An example is the evaluation of
the diffusion coefficient, where at high electric fields the Einstein relation does not
describe sufficiently the diffusion of hot electrons [8].

In order to tackle these problems an EMC method is used [22-25]. Ensemble
refers to the fact that a group of N particles is used for the simulation. For example,
the dynamical response of electrons to an external voltage will typically require the
simulation of a few thousand electrons for a very short space of time §7, typically
three orders of magnitude smaller than the simulation time for steady state.

In the introduction of Sect.5.3 we mentioned that the system we are looking at
is ergodic. Indeed, by simulating an ensemble of carriers for a very large time we
should be able to get the same results as obtained within the SMC.

5.4.1 Description of the Algorithm

Before the algorithm is given a description of the core part of the ensemble simulation
is shown in Fig. 5.15. We assume n particles (n=1,2,3,..N) each one of which is being
simulated for a total time 7. The time increases to the right as shown by the arrow.
The horizontal lines show each particle’s trajectory versus time. Subsequently, we
assume a fixed time step Ar. This is something we define as a in input to the code
and is typically a few femtoseconds. The vertical lines interrupting the trajectories
correspond to this time step. The solid circles represent random scattering events for
each one of the particles which may or may not occur during one At. Therefore, the
time between two successive solid circles is the free flight time #,. Also, it is physical
that not all scattering events will take place at the same time within one step, which
is represented by the small offset in the circles within a A¢. It may also be possible
that within the same step a carrier will be scattered more than once. The sequence is
that every particle is simulated until the end of one time step and then the next one
follows. Over each At the motion of a particle is assumed to be independent of the
other carriers in the ensemble.

The average value of a quantity Q is defined as the ensemble average at an
instantaneous time ¢ = t; over the N particles of the ensemble
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Fig. 5.15 Flowchart of the free flight time within an Ensemble Monte Carlo. The horizontal lines
are the trajectories of the particles and the vertical lines are the times of observation. The circles
are the scattering events taking place. Note that it is possible to have none, one or more than one
scattering event within an observation period. The code is modified accordingly in each case

1 N
i =2 24Dt =1) (5.35)

J=1

We can choose #; = nAt which corresponds to the fixed sampling time. Therefore,
the average value of N particles will be

=

(Qhnar = Z )j(nAD) (5.36)

The standard error s will be

o
§=— (5.37)
VN
where o is the standard deviation with a variance o> given by
1
o’ = —{— Z( (0)%} (5.38)

N —

This highlights the fact that when the ensemble size increases, there is always a trade-
off between the “added” accuracy of the estimators and the “added” computational
time.

In the description of the algorithm some of the steps or basic concepts such as
the band structure of the material which acts as an input to the code, the scattering
processes, or the selection method after scattering remain practically the same as in
the SMC method.
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1. Input of “external” physical parameters and simulation characteristics: Parame-
ters such as electric field strength F, lattice temperature 7', number of simulated
particles N, time step of observation A¢, allowed maximum time of simulation
tmaz and other physical constants are defined. All values are deterministic.

2. Definition of the physical system: It is given deterministically and is similar to
the corresponding part of SMC.

3. Scattering parameters: Also a deterministic input in the same way as described
for SMC.

4. Initial conditions of motion: This step remains the same as well.

5. Free flight time: The free flight time is slightly differently from that defined in the
SMC. At the beginning of the simulation the first free flight duration is derived
from 5.21. This makes use of the maximum scattering rate I' = S§j max and of
a uniformly distributed random number r between O and 1. This is repeated for
all particles N. Also, the momentum vector k is known at this point.

6. Time of scattering event-new free flight time: Let us take a look at Fig.5.15 and
assume that a carrier is located at Ar. There are two cases depending on the
duration of the free flight time 7., i.e. whether it is bigger or smaller than the
observation time interval A¢. Assuming that ¢ is the scattering time (correspond-
ing to the free flight time 7,.), if t; > At, then the particle drifts during Az, whilst
if £, < At the particle is scattered by some process (to be defined later) before
At (in our example before t = 2At). In the second case the carrier’s free flight
time is 7, = #; — At. In this case we must define a new scattering time ¢, and
then we check again whether this is bigger or smaller than Atz.

7. Drift process and collection of data for estimators: These steps are the same as
in SMC. The new wavevector is monitored.

8. Selection of scattering process and determination of the post scattering state:
Also the same as in SMC.

9. Logic check of the simulation time: After scattering the time is increased by the
observation time At. The code execution stops when the steady-state require-
ments we have set at the start of the program are met.

A flowchart with the basic steps of the EMC is given in Fig.5.16. We note that
the steps described above should be repeated for all particles N in the ensemble.
Once this is done we can collect the average quantities in consideration of the whole
ensemble according to 5.36.

5.5 An Example: Electron Motion in Bulk GaAs

In this section the SMC and EMC methods are applied for the case of GaAs. We
shall assume the simplest case where two conduction band valleys are considered
(I" and L) (Fig.5.17). Non-parabolicity in included in the standard form [9, 14-16].
A valley separation of Aer;=0.29eV is assumed. The scattering rates that have been
considered are for the I" valley: Polar optical phonon, acoustic deformation potential,
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Fig. 5.16 Flowchart of the basic steps of the Ensemble Monte Carlo method

non-equivalent intervalley I' — L phonon scattering. For the L valley, all the previous
ones plus the equivalent intervalley phonon scattering . Ionised impurity scattering
is omitted. The formulation of the scattering rates is similar to that of Ref. [14].
We plot the steady-state characteristics which is the average drift velocity (vg),
the average energy (e€) and the average occupation of the two valleys. To obtain
these results we have used a simulation time of 1ns and 60 iterations. If we take a
close look at the curves we can see that in some of them there is a “noise”, which is
associated with stability issues. In principle we can get smoother curves by increas-
ing the simulation time (ex. to 2-3ns) and/or the number of iterations (ex.100).
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The trade-off is the increased computational time which will be required. Therefore,
this could be done only for regions where greater accuracy is necessary for example
in getting the exact value of the overshoot electric field and the corresponding drift
velocity.

For the Ensemble Monte Carlo the same assumptions as the band structure are
made. Due to the small physical length of some heterojunction devices, non-thermally
equilibrium carriers can be injected which do not have enough time to reach their
steady state conditions. If the transit time is comparable to the relaxation time this can
result in electrons travelling at higher velocities than at their steady-state. Physically,
this is due to the nonequivalence of the energy relaxation time and the momentum
relaxation time.

The increase of the transient velocity above the steady-state value is called over-
shoot and is shown in Fig.5.18 [26]. We can see that the instantaneous velocity
is bigger than the steady-state one as shown in Fig.5.19(a). After a few picosec-
onds it tends to saturate towards the steady-state. The overshoot velocity depends on
the applied voltage and the scattering processes. For example although the velocity
Vd.maz for F=10kV/cm is bigger than the corresponding for 5kV/cm, the fact that
more electrons in the first case reside in higher valleys where the energy relaxation
time is smaller, results in a smaller steady state velocity. In (b) the average the dis-
tance = from the source is shown. The distance can also be extracted by monitoring
the x, y and z components of the momentum k.

Using bulk GaAs it has been shown how the solution for the electron distribution
function can be derived without the need of having to tackle the complicated BTE.
Both in the ensemble and in the single particle method, random numbers mapping
on some deterministic process have used. We have seen how despite the randomness
imposed, the physical system retains its signature characteristics.

From what has been described so far both SMC and EMC methods use a model as
an input which in turn includes a description of the conduction band structure. But it
has not been pointed out clearly yet what the limitations of this model are. Whilst for
example it works well for simulating transport from low to high fields, it is expected
to deviate more at extremely high fields. This problem is briefly discussed next.



142 N. Vogiatzis and J.M. Rorison

(a) (b)
3 L = L L L L
p 300
250
—~ 200+
S
[0}
£ 1501
w
1/ 30-400K 100+
f
50+
(] 0
(] 2 4 6 8 10 12 (] 2 4 6 8 10 12
F (kV/cm) F (kV/cm)
() 10
=
S 081
Qo
o
[oN
c 0.6 -
o
©
S 04 -
(6]
[$]
o
T 024
®
>
0.0 -
0

F (kV/cm)

Fig. 5.18 Steady-state characteristics of the SMC in GaAs (a) average drift velocity vy
(b) average carrier energy € and (c) average valley occupation versus applied electric field F
for various temperatures

5.6 Monte Carlo Simulation at Very High Fields

It has been shown previously that the physical characteristics of the material under
simulation are input in the beginning of the Monte Carlo code. Specifically, the
conduction band structure is of importance because the scattering rates are based on
it. For very low field transport, where carriers reside low in the conduction band we
can assume that the latter has a parabolic shape. For moderate and high fields where
electrons become hot, the concept of non-parabolicity must be included.

In the same way, for extremely high fields electrons acquire higher energies. Then
the issue of whether the bands can be still approximated by a first order k - p non-
parabolic type of approach becomes important. The short answer is that for very high
fields a different treatment which will account for the full band is necessary.

This can be understood by looking at the scattering rates S. For example, phonon
scattering is proportional to the density of states in the system in a linear fash-
ion. Figure 5.20 shows the density of states N (¢) in Si calculated in two ways [27].
Similar trends apply for GaAs. The solid line corresponds to empirical-pseudopotential
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Fig. 5.20 Density of states 4
of Si using empricial-
pseudopotential calculations
(solid line) and six ellip-
soidal parabolic bands (dashed
lines). The difference between
the two approaches will have
an impact for very high fields
(Reprinted figure with permis-
sion from Ref. [27], © 1988
American Physical Society)
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calculations accounting for the whole band structure, whilst the dashed line uses six
ellipsoidal parabolic bands. A good agreement between the two exists only for very
low carrier energies, which correspond to low-moderate electric fields. As energy
increases there is an increasing difference between the two methods which is related
to electrons moving under the influence of very high fields. This will have an impact
on the quantities which are being calculated using the Monte Carlo technique. For
example, Shichijo and Hess [28] state that for some valleys the method based on the
effective mass m; and the nonparabolicity starts to break down for energies above
approximately leV.

The MC simulation method in the full band approach is different from the previous
treatments; first, the band structure in the whole Brillouin zone is defined. For a given
wavevector k the energy € is derived by a quadratic interpolation utilising the energies
and the gradients of the surrounding mesh points of the cubic element in the case
of GaAs for example. Next, the scattering rates are evaluated using Fermi’s golden
rule, but the scattering extends over all bands v and all wavevectors q in the first
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Brillouin zone. We shall not give here the exact formulations of the phonon scattering
rates, but the reader is advised to look for a detailed analysis at the work by Fischetti
[27, 29], Hess et al. [28] and Bulutuay et al. [30, 31] in both zinc-blende and wurtzite
semiconductors. For the selection of the final state an analytical way as was done
earlier for simpler bands is not possible and instead a complicated process which
involves a search in the whole Brillouin zone must be implemented. In order for the
energy and the momentum to be conserved, some cubes are selected centred around
k’ that intersect the surfaces €,(k’) = €’. Then the momentum difference between
each possible final state and the initial momentum is computed. Subsequently, cubes
that satisfy these conditions are chosen and their density of states is calculated. Then
all densities are added up and a random number is used to choose one of them.

For a detailed description of how the full band structure can be incorporated in
the MC code as well as how various other effects such as impact ionization rate can
be included the IBM up-to-date simulator DAMOCLES is an excellent source [32].

5.7 Electron Transport in Dilute Nitrides

Dilute nitride semiconductors is a relatively new class of materials where a nitrogen
atom has the tendency to substitute an isoelectronic atom of group V of the periodic
table in a conventional III-V compound semiconductor. Even small amounts of nitro-
gen produce dramatic changes in the electronic properties. This is because nitrogen
is a small atom with high electronegativity that perturbs strongly the host crystal
structure. Results from nitrogen incorporation is the large reduction of the energy
bandgap [33-35] which is much larger than the change observed when alloying con-
ventional III-V semiconductors with other elements. In fact, N perturbs strongly
only the conduction band leaving the valence band unaffected. Also, a significant
increase in the electron effective mass [36—38] and a decrease in the mobility [39-44]
is observed.

Figure 5.21(a) shows what happens when nitrogen is added in GaAs. The localised
N state formed above the parabolic conduction band of GaAs interacts with it, result-
ing in its splitting and the formation of two mixed subbands €; and e, and the
reduction of the energy bandgap. Here, we will focus on carrier transport of bulk
GaN,As;|_;. Mobility in this material has been calculated by using the BTE [42,
43]. This can also be done by employing the MC method. However, GaAsN is a
more challenging material system than the conventional GaAs with regard to the
MC methodology. This is because of the unusual conduction band structure, namely
a prominent non-parabolicity which is added to the standard non-parabolicity a ¢
described earlier in the GaAs section. This extreme non-parabolicity which is promi-
nent at high k wavevectors (Fig. 5.21(a)) is associated with the strong mixing between
the delocalised GaAs host states and the localised N-impurity. As long as the elec-
trons are located away from this region we can still use the standard expression of
non-parabolicity [9, 14-16]. For extremely high fields this assumptions should start
breaking down.
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Fig. 5.21 a Single N state interacts with the GaAs band resulting in two mixed states €; and €.
This is known as 2-band anticrossing (BAC) b Single and pair N state interact with GaAs yielding
3 mixed states, known as 3 BAC

The other unusual characteristic in dilute nitrides is that in the description of the
electron motion we should include a mechanism that will account for the transfer
of electrons from the lower conduction band €; to the higher €;. Also, the carriers
should be allowed to perform the inverse process, i.e. relax to a lower energy state.
This could happen by assuming that electrons hop on the localised nitrogen state and
then back off to the conduction band states. Because nitrogen is highly localised in
real space it is delocalised in the k-space, meaning that scattering can take place in
the momentum space within an allowed extent of k vectors and then by absorption
or emission of a phonon transfer to a higher or lower subband [45, 46]. This could
be used in junction with the energy broadening of the mixed subbands by employing
a complex band structure scheme and the use of Green’s functions [43, 47—49].

The situation becomes even more complicated for higher N concentration (typi-
cally N>0.4%) where apart from the single N state, formation of higher order nitrogen
clusters (pairs, triples) takes place [50-52]. Figure 5.21(b) shows what happens when
a nitrogen pair is present. These localised states mix with the GaAs band as well,
producing a band structure that deviates even more from GaAs. The shape of this
band structure should be appropriately accounted for within the MC algorithm.

5.7.1 Single Electron Monte Carlo in GaAsN

As opposed to the GaAs system the additional scattering process from the localised
N state must be included in GaAsN. This can be incorporated in two ways which
correspond to the two models shown in Fig.5.22. In Model 1, nitrogen scattering is
explicitly included as a separate scattering process and is given by [42, 43]
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Fig. 5.22 Generic schematic of electron motion in GaAsN using Model 1, with a GaAs conduction
band and a localised N state which scatters carriers and Model 2 where the role of nitrogen is
manifested through the altered electron mass and the perturbed band structure

4
mxg By

Sn(€) = —
2h (€ —eN)? + A%

(5.39)

where By is the coupling constant between localised and delocalised states, x is the
concentration of nitrogen, €y is the energy level of the nitrogen localised state, Ay
the broadening of the state and g the lattice constant. The electron mass m; required
in the MC algorithm is that of GaAs.

In Model 2, the effect of nitrogen is manifested by the altered m of GaAsN
and the band dispersion of the mixed conduction band. The average drift veloc-
ity (vg) exhibits Negative Differential Velocity (NDV) characteristic behaviour for
N =0.1% and saturation (Si-like behaviour) for higher concentrations [53]. Also,
the average electron energy (€) at the overshoot point is found to be low and close to
the conduction band minimum, something which allows us to use the standard form
of non-parabolicity at least for these range of electric fields [45].

Model 1 is somehow easier to deal with due to the simpler description of the con-
duction band structure. Again, it gives characteristic NDV behavior as well as good
agreement with experiment on low field mobility for up to N = 0.4% [54]. Here,
nitrogen scattering is assumed elastic and isotropic. Therefore, the post scattering
state will be given by 5.27.

5.7.1.1 Comparison with GaAs

Comparison of the steady-state characteristics of ultra-dilute GaAsN alloys with
GaAs shows the detrimental effect that the addition of nitrogen has even at tiny
fractions. Figure 5.23(a) shows the drift velocity versus the applied field for GaAs
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Fig.5.23 a Average drift velocity versus applied electric field for GaAs and GaAsN for T=30K and
300K. The arrows indicate the field F required for overshoot b valley occupation for I" (solid) and L
valley (dashed lines) for GaAs and GaAsN for two temperatures. N impurity level acts as a barrier
that scatters electrons strongly preventing them from moving higher in energy and transferring to
the L valley

and GaAsg 999Np.oo1 for T=30K and 300K. In (b) the valley occupancy is shown
(solid for I and dashed for L valley). The scattering processes considered in I'
valley are polar optical phonon, acoustic deformation potential, intervalley I' —L
non-equivalent phonon and N scattering. For the L band similar to the previous
excluding N scattering and adding intravalley scattering. Model 1 has been used for
GaAsN.

From Fig.5.23(a) we can see that in GaAsN the drift velocity decreases strongly
compared to GaAs, whilst the electric field required to get the overshoot shifts towards
higher values. Also, GaAsN shows a stronger temperature dependence something
which has been observed experimentally as well [44, 55]. Details on the origin of
the NDV for very small concentrations of nitrogen within GaAsN will not be given
here, but we should say that it is a different effect from than the intervalley transfer
observed in GaAs and is associated with the role of nitrogen in this material.

In conclusion, transport in dilute nitrides from the Monte Carlo point of view
remains in a general context similar to the standard methodology employed earlier
both for SMC and EMC. The difference is that the unusual conduction band structure
needs to be accounted for in the code. Also, N scattering according to 5.39 should
be added to the group of the scattering processes.

5.8 Quantum Monte Carlo

In Sects. 5.3 and 5.4.1, in the description of the SMC and EMC we said that although
an electron may be in a bath of other electrons, it will drift under an external
bias independently from the other electrons, which greatly simplifies calculations.
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The same assumption is made within the simplest form of the Schrodinger wave
equation which gives the energy eigenstates within a potential V.

In the most general case the Schrodinger equation accounts for a fully-interacting
many-electron system given by [56]

N B2 ) Zaq2 qz
HY = — Vi + — )V + — V¥ =V
Z(Zm* @ Z 4meg|r; — da|) ; dmeglr; — 1y €

i=1 e a
(5.40)
where W is the N-electron wavefunction, r; and d; are the positions of the electrons
and atoms respectively, and Z, are the ionic charges, g the electron charge and gg
the vacuum permittivity. In the above equation the kinetic energy from the nuclei is
neglected. Equation 5.40 is impossible to solve exactly.

This many-body problem can be simplified by assuming N electron equations,
in which each electron moves within a mean field potential V which carries the
signature of all other electrons which are present in the system. These single electron
equations are

2

I}
Hep; = —5 V2 + Vidi = €ip; (5.41)
me
where¢ = 1,2, ..., N and ¢; is the single electron wavefunction. To simplify things

more, we can assume that the electrons are not interacting with each other, therefore
the N-electron wavefunction can be written as

YV =0¢i¢2...0N (5.42)

This is known as the Hartree approximation. The Hartree-Fock approximation
extends the Hartree approximation to include the exchange interaction between elec-
trons based on the Pauli’s exclusion principle, which states that no two electrons with
the same spin can occupy the same state simultaneously and that two electrons cannot
have the same set of quantum numbers.

The target of all the previous equations is to find the ground state energy € of
the system by a method based on the variational principle, which uses some trial
wavefunctions W which would ideally be equal to the ground state wavefunction Wy.

Apart from the trial function method that was just described, there is another
candidate theory which tries to tackle the many-body problem. This is the density
functional theory (DFT). It is an exact theory and unlike the trial method which
attempts to find the many-body wavefunction, it is the single electron charge density
o which is the fundamental quantity. We shall not go in further detail in describing this
theory and the improvements that have been made (Local Density Approximation,
Generalized Gradient Approximation) to address the many-body problem. We will
just point out that DFT gives exact solutions for many solids but fails to do so for
some other materials.

This is the reason that another way of tackling the solution of 5.40 was sug-
gested, which is based on a statistical approach, without having to reduce the
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many-body problem to a set of single-particle simulations. This is the Quantum
Monte Carlo (QMC) method. Essentially quantum Monte Carlo tries to solve the
many particle equations without the approximations of a mean field V we described
earlier. There are two basic versions: the variational and the diffusion QMC. The
variational as indicated by the name, uses a set of trial wavefunctions and tries to
solve some high-dimensional integrals. Choosing an optimized trial wavefunction is
crucial for getting a wavefunction which is close to the ground state wavefunction
Wy. The diffusion QMC uses Green’s functions to solve the many electron equations
and in principle it is an exact method and in this case importance sampling is essential
to make the simulation efficient. It is easier to apply this method to Bosonic systems
than to Fermionic ones (and especially large Fermionic systems) and this constraint
is associated with the ground state wavefunction of the fermonic system. A way to
address this issue is by using a technique known as the fixed-node approximation.

Quantum Monte Carlo is by itself a huge area of research where various optimi-
sation techniques and variations can be found. The aim of this section is to present
briefly what it is, which problem it tries to solve and how it compares with the
most important of the other existing methods of condensed matter physics. For more
information above QMC, with references on the details of its development, on its
statistical foundations, on its applications and on how it relates to the other trial
methods the reader can look at Ref. [57-60]

5.9 Appendix: Random and Pseudorandom Numbers

In this chapter it has been pointed out that Monte Carlo is based on the generation of
random numbers. We can now reveal that these numbers are not really as random as
we may think. By random we typically think of an experiment equivalent to throwing
a dice or collecting the numbers from a lottery. But is it possible for a computer to
generate such random numbers for our simulations?

The answer is no, because computers typically use pseudorandom numbers.
A pseudorandom number mimics the behavior of a random one and a pseudorandom
number generator (PRNG) is an algorithm that uses a mathematical formula or pre-
calculated tables to produce series of numbers which appear to be random. A really
good PRNG can produce sequences of numbers with a long period which appear to
be completely random.

What is then a truly random number and why do we not use one such for computer
simulations? To do this we would need a truly random number generator (TRNG)
connected to a computer. The randomness within a TRNG is based on physical
phenomena that are completely unpredictable and aperiodic, such as the exact time
of decay of a radioactive source, the atmospheric noise or the thermal noise. The
problem with TRNGs is that they are very inefficient. One cannot produce a large
quantity of random numbers which is necessary in many applications. Moreover,
they are nondeterministic which makes them bad for simulations, because the same
set of numbers cannot be reproduced (unless this happens by chance).
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On the other hand, PRNGs are extremely efficient and deterministic. For an MC
simulation where many random numbers need to be generated, efficiency is impor-
tant, whilst being deterministic is good for testing or debugging because by having
a fixed input we know the expected output. Also, PRNGs are periodic and at some
point they will repeat, but the period is so long that practically PRNGs can be as
good as TRNGs.

Therefore, it makes sense that the quality of a number generator will be important
for any simulation. In the early years von Neumann used the middle square method.
Later, PRNGs were based on the linear congruential method (LCM) due to its speed.
These generators are still very popular. Other congruential generators are the inverse
and implicit ones. An improvement of the LCG is the additive or multiplicative lagged
Fibonacci generator (LFG), which is based on the generalisation of the Fibonacci
sequence. However, for MC applications or any other study where a high quality of
randomness is critical, especially the linear congruential and to a smaller extent the
lagged Fibonacci generator, are not suitable. Instead, the generalised feedback shift
register (GFSR) generator is used due to its long period and statistical randomness.
Finally, so as to check the nonrandomness of any generator we can use some testing
methods such as the chi-square test or the Kolmogorov-Smirnov test.

From this discussion it becomes clear that the selection of a PRNG is a non-trivial
task and should not be treated as a black box especially when built in a programming
language. The validity of the results of any simulation depends heavily on how good,
reliable and suitable the generator is for the type of problem we are interested in.
Modern softwares use their own PRNGs and it is worth spending some time to
understand how they work and what their inherent limitations are. Sometimes it may
be even useful to use a couple of different PRNGs to test the validity of the results. For
a description of the TRNGs and PRNGs with applications and practical examples the
reader is advised to check the online source of Ref. [61]. Also, for a comprehensive
introduction to random number generation and their statistical testing as well as for
a description of the uniform and non-uniform distributions used in MC Refs. [62,
63] are excellent sources.
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Chapter 6
Band Structure Engineering of Semiconductor
Devices for Optical Telecommunications

Hélene Carrere and Xavier Marie

Abstract This chapter aims to provide an introduction to the main principles of
band structure engineering of semiconductor devices. We show that it is possible to
modify artificially the electronic structure of semiconductor materials. The combina-
tion of strain and quantum confinement can in particular lead to great improvements
of the semiconductor laser characteristics. This explains that most of the commercial
semiconductor lasers and semiconductor optical amplifiers for optical telecommu-
nications (1.3 and 1.55 um) are based on strained quantum wells.

6.1 Basics of Band Structure Engineering

We present in this section the main principles of band structure engineering which
has been applied successfully to optimise the performances of semiconductor devices
for optical telecommunications. In order to get more details the reader can refer to
the excellent review papers written by Yablonovitch et al. [1], O’Reilly et al. [2] and
Thijs et al. [3].

With the great progress in epitaxial growth it is possible to modify artificially the
electronic structure of semiconductor materials. We must regard the natural electronic
band structure of the semiconductor crystals (energy gap, carrier mass, etc.) as a
starting point for application in devices. We will show that the combination of strain
and quantum confinement can lead to great improvements of the semiconductor
device characteristics (for a laser: lower threshold current, better quantum efficiency,
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less temperature sensitivity). In other words, the semiconductor band structure can
be changed in an artificial fashion to suit the device specifications [1].

The main ideas of band structure engineering were originally proposed by Adams
and O’Reilly in United Kingdom and in parallel Kane and Yablonovitch in USA
in 1986 [4, 5]. These authors predicted that the modified band structure of strained
III-V quantum well structures should lead to significant benefits for diode laser per-
formances, i.e. reduced threshold current, improved efficiency, improved temperature
sensitivity and better high speed performance.

At the same time, the first strained epilayers were grown successfully. In 1982,
Goldstein et al. managed to grow strained InGaAs/GaAs superlattices [6-8].
In 1984, Laidig et al. fabricated a strained quantum well semiconductor laser by
adding indium into GaAs in order to reach the wavelength range 0.88—1.1 wm which
was impossible to attain with classical GaAs/AlGaAs or InGaAs/InP standard lat-
tice matched systems [9]. The first successful application of compressive strain for
1.5 pm InGaAs/InGaAsP multiple quantum well strained lasers was demonstrated
in 1989 [10]. Nowadays the dramatic impact of the use of strained layers is well
illustrated by the fact that they are used in almost all the optical devices based
on [II-V semiconductors for telecommunications (lasers and semiconductor optical
amplifiers). Note that the use of strain in SiGe MOSFETSs (which yields high hole
mobility) will not be described in this chapter [11].

6.1.1 What is a Strained Semiconductor Layer?

To begin with, we will first explain what we mean by strained semiconductor structure
and we will give the basic scheme for improving laser characteristics using this strain
degree of freedom.

Let us consider the simple InGaAs/GaAs system. GaAs and InAs are two direct
band gap semiconductor materials. The ternary bulk InGaAs has also a direct
gap E,. The lattice constant a(x) of In,Gaj_,As, which lies between agias =
5.653 A and agmas = 6.058 A is given by a Vegard type law: a(x) = agaas +0.405.x.
Please refer to Fig. 6.23 of Sect. 6.5.1 for illustration.

When x is different from zero, GaAs and In,Ga_, As have different lattice con-
stants (note that it is not the case for GaAs and Al,Ga;_,As which have almost
the same lattice constant). If a thin layer of InGaAs is grown on a thick layer of
GaAs—by molecular beam epitaxy (MBE) for instance—the latter will impose its
lattice constant in the layer plane. If we grow a GaAs layer above this structure,
an elastically strained quantum well is thus obtained. The well is composed of a
semiconductor which would normally have a larger lattice constant than the barrier
material. In this example the InGaAs well is lattice-mismatched and the barrier is
lattice matched (with respect to the GaAs substrate). We see in Fig. 6.1 that the lattice
mismatch is accommodated by a tetragonal distortion of the layer: the lattice constant
is different, parallel or perpendicular to the growth direction. A built-in axial strain is
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Fig. 6.1 Schematic repre-
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clearly present in the layer which is in biaxial compression: the layer is compressed in
the x and y plane and relaxes by expanding along the z growth direction. In contrast,
biaxial tension will occur when the mismatched layer has a smaller lattice constant
than the one of the substrate. The order of magnitude of the lattice mismatch in actual
devices is of the order of 1-2%.

One could wonder about the stability of such strained materials, we discuss below
how these layers can be obtained while keeping crystal stability. From elasticity
theory we know that the stored strain energy is linearly dependent on the layer
thickness; we also know that there is a minimum energy associated with the formation
of a dislocation and plastic relaxation [2]. Figure 6.1 displays the energy stored per
unit area versus the layer thickness in a strained layer (Eg) and in a dislocation
network relieving the strain (Eg;s). It is clear that below a critical thickness (4.), the
elastically strained layer is thermodynamically stable and high quality growth can be
achieved. Matthews et al. showed that the critical thickness /. can be simply related
to the strain ¢ and the Poisson ratio o [12]:

a(l—a/4) [m (hcﬁ/a) n 1]
£ 2V2mh, (I +0)

6.1)

where a is the lattice parameter imposed by the substrate.

For the InGaAs/GaAs system, a good estimation of the critical thickness is given
by: % -h <20nm.%, where % is the lattice mismatch [13].

It was initially feared that the excess energy (heat) which is dissipated in a laser
structure would encourage dislocation formation. This would lead to rapid degrada-
tions of the material quality and laser characteristics. Life tests performed on various
strained quantum well lasers (grown both on GaAs or InP substrates) demonstrated
that it is not the case: very low degradation rates (even lower than comparable lattice-
matched quantum wells) were measured [3].
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The first advantage of strain is that it adds another degree of freedom to the
combinations of materials that can be grown and a larger range of laser wavelengths
can for instance be obtained with the same couple of materials. Without strain it
would have been impossible to grow InGaAs/GaAs quantum well lasers on GaAs
substrates which can reach wavelengths up to 1 pm.

Nevertheless, the main advantage of strain comes from the fact that the biaxial
strain induces dramatic modifications of the electronic structure. In particular, many
benefits of the strained lasers are due to the way in which the strain modifies the
valence band structure. As we will show in the following a proper choice of the strain
value can yield a reduction of the in-plane heavy-hole mass and hence a reduction of
the corresponding density of states. The threshold current density will thus be lower
than in conventional lattice-matched laser structures. The reshaping of the valence
band induced by the strain will also lead to a reduction in the main loss mechanisms
like Auger non-radiative recombination or intervalence band absorption (IVBA) [1].

6.1.2 Main Disadvantages of Lattice Matched I1I-V
Semiconductor Lasers and Solutions Proposed
by Band-Structure Engineering

In their pioneer work, Kane, Yablonovitch, O’Reilly and Adams pointed out clearly
the non-optimised characteristics of the standard band structure of III-V semicon-
ductors in order to fabricate very efficient diode lasers and they proposed the solu-
tions that can be brought by the use of strain and quantum confinement [1-5]. We
summarise here the main ideas.

6.1.2.1 Asymmetry of Conduction and Valence Band Masses

In the III-V semiconductors, there is a strong asymmetry between the very light
conduction band and the heavy valence band masses. In the ideal situation, both
masses should be as light as possible, the corresponding density of states (which is
proportional to the mass in 2-D structures) would be small and the injected carrier
density required to satisfy the Bernard—Duraffourg gain condition would be min-
imised [14]. As a consequence, a laser with a very low threshold current density
could be obtained. The ideal situation of equal conduction (CB) and valence band
(VB) mass is illustrated in Fig. 6.2a. One of the goals of band structure engineering
for laser applications is to get close to this ideal band structure [1].

In a standard lattice-matched semiconductor laser (GaAs/AlGaAs Double Het-
erostructure for instance), the conduction band is filled with degenerate electrons
but the holes in the valence band are non degenerate (i.e. the hole quasi-Fermi level
is above the top of the valence band due to the heavy mass). The hole occupation
probability at the top of the valence band is small (Fig. 6.2a).
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Fig. 6.2 Band structure of (a) (a) (b)
a standard III-V semiconduc- CB CB
tor and (b) an “ideal” semicon-

ductor with equal electron and

hole masses. The Bernard—
Duraffourg condition is min- Ay
imally satisfied in both cases

(Epc — Epy = Eg) (1] ¢

m

VB

In Fig.6.2a, b, the Bernard-Duraffourg condition (Er. — Epy > hw > Eg) is
minimally satisfied; Er. and Epy are the conduction and valence band quasi Fermi
levels.

In the ideal case (Fig.6.2b), the carrier injection level n required to satisfy the
Bernard—Duraffourg condition simply writes: n = fooo f(E) - p(E)dE with the
density of states per unit area p(E) = m, /7 h*(m, is the carrier mass). One can
check easily that:

k B Tmc
h?

n =1n(2) 6.2)

In the standard situation (Fig. 6.2a), the conduction electrons are degenerate and one

finds:
meA .
n = W’ with A = EFC.

The holes are non degenerate and their density can be approximated by:

o0

m

p= /e—<E—EFv)/KBT . ZLdE with Epy = —A

wh
0

Equating n and p results in an equation for A which can be solved numerically. For
a reasonable ratio m./my ~ 1/6, we get A ~ 1.43.KpT. Thus the carrier injection
level required to reach the gain condition in the standard case writes as:

kBTmC
wh?

n=143 (6.3)

The ratio of carrier injection level between the two cases is 1.43/In(2) ~ 2. The key
result of this very simple model is that the carrier injection level for lasing is clearly
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Fig. 6.3 Schematic repre- E E
sentation of two laser loss CB
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Band Absorption (IVBA) and

(b) Auger recombination: HH
Conduction-Heavy hole SO
band-Heavy hole (CHSH)
mechanism [1, 2]
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reduced in the ideal band structure engineered material with equal hole and electron
masses [1]. A lower threshold current density is thus predicted.

6.1.2.2 Losses Due to InterValence Band Absorption

Another problem in a III-V semiconductor laser operating in the near-infrared
region is the free carrier absorption which is present above the lasing threshold.
As shown in Fig.6.3a for a bulk Ing 53Gag 43As laser lattice matched to InP emit-
ting at ~1.5um (E, ~ 0.8eV), the emitted photon from the recombination of a
conduction electron and a valence band hole can be absorbed in the valence band
yielding a transition from the Spin-Orbit split off (SO) band to the heavy hole (HH)
band [1]. This IVBA process can seriously compete with stimulated emission once
lasing has started above the laser threshold. The absorption of the emitted photon
energy—equal to the band gap energy (0.8 eV)—requires the transition to take place
far from the Brillouin zone centre, where the energy difference between HH and SO
bands is equal to the band gap energy (in the example of Fig. 6.3a, the energy differ-
ence between the top of the SO band and the top of the HH band is about 0.35eV).
The key point is that IVBA depends on the population of the off-zone centre heavy
holes which can be influenced if one modifies the heavy hole mass by band structure
engineering. A reduction of the heavy hole mass should yield a steeper variation of
HH band, leading to a decrease of the IVBA efficiency and hence a strong reduction
of this loss mechanism (see Sect.6.2.3) [15].
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6.1.2.3 Losses Due to Auger Recombination

We saw in Sect. 6.1.2.1 that a reduction of the heavy hole mass can yield a reduction
of the threshold current density Jy. But Jy, also strongly depends on non-radiative
recombination processes, especially on Auger recombination. It is a three-body
process which competes with radiative recombination; one of the most problematic
mechanisms involves two HH recombining with one conduction electron leaving a
hole behind in the SO band (called Conduction-Heavy hole-SO band-Heavy hole:
CHSH), see Fig. 6.3b. In an oversimplified picture the Auger process is proportional
to the cube of the carrier density (~C - n®). Obviously, even a factor two reduction
in Jy, (or n) can produce almost an order of magnitude reduction in Auger recom-
bination. But the Auger coefficient itself (labelled C) can also be reduced by band
structure engineering. As displayed in Fig. 6.3b, the Auger recombination is strongly
dependent again on the population of the off-zone centre heavy holes since conser-
vation of energy and momentum implies that the two arrows must be anti-parallel
and of equal length. We can anticipate that a lowering of the heavy hole mass should
also yield a reduction of the Auger losses due to the reduction of the population of
the off zone centre heavy holes [1-3]. This will be detailed in Sect. 6.2.3.

6.2 Effects of Strain on the Band Structure

Asrecalled in Sect. 6.1.1, for sufficiently thin layer below the critical thickness /., the
resulting biaxial in-plane strain causes a tetragonal deformation of the crystal lattice.
This modifies drastically the electronic band structure. If we want to understand the
benefits of strained layers, we have to describe in particular the way in which the
strain modifies the valence band structure.

To illustrate these modifications we describe below the simple situation of strained
InGaAs/GaAs layers grown on (001) substrates. We choose a coordinate axis in which
the strain axis lies along the z-growth direction and the x- and y-axes in the strained
layer plane.

Let us focus first on bulk strained layer (the effect of quantum confinement will
be described in a second step).

6.2.1 Bulk InGaAs Under Biaxial Compression
The strain tensor has three non-vanishing components and simply writes as:

Exx 0
. aGaAs — a(x)
= Eyy , with = =5, =— 6.4
[e] VY 1 Exx = Eyy =€ a(x) (6.4)
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What about the strain along z-direction?

The strain components are linked with the stresses by the usual Hooke law: o; =
Cije;j, where C;; are the components of the elastic stiffness tensor. In 7; symmetry,
the C;; tensor writes as:

Cii Ci2 Ci2
Ci2 Cn Ci2 0
Ci2 Ci2 Ciy
Cl= 6.5
] 1/2(C11 — C1o) >
0 1/2(Ci1 = Cr2)
1/2(C11 — Cr2)
Using the Hooke law, we get:
o, =2Cp2¢, + Cr1&;.
As there is no stress in the z-direction (o, = 0), the strain along z-axis is:
Ci2
=-2—¢, 6.6
&z Cii € (6.6)

It is useful for the calculations to consider that the biaxial stress is equivalent
to the sum of a hydrostatic pressure and a biaxial tension along the z axis. From
simple group theory considerations, the total strain can thus be resolved in a purely
hydrostatic component € :

C
EH = Exx T Eyy + &z =2(1 — ﬁ) g, (6.7)
Ci
and a tetragonal component €@ :
2C
£0 =26, — Exx — Eyy = —2 (1 + C—lz) e, (6.8)
11

Thus the Hamiltonian can be written as a linear combination of ¢y and eg:
H =Hy + Hg =Upgey + Upeyp (6.9)

where Uy and Uy are electronic operators which act on the orbital part of the wave-
functions.

The hydrostatic component affects the band gap; the corresponding shift of the
band edge writes as:
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Fig. 6.4 Influence of strain GaAs InGaAs Strained InGaAs
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a. and a, are the hydrostatic conduction and valence band deformation potential
respectively.

For a biaxial compression (¢ < 0), this means that the conduction band moves
upward whereas the valence band moves downward, as sketched in Fig. 6.4. In con-
trast a biaxial tension will yield a reduction of the band gap.

The most important modification for band structure engineering comes from the
axial component which splits the heavy and light hole states in k = 0 and has no
effect on conduction band.

The corresponding shift of the HH band is:

Er = —byeg (by < 0), 6.11)

where b, is the tetragonal valence band deformation potential.

For a biaxial compression (tension), the HH band edge moves upward (down-
ward). As a result the band edge positions (k = 0) for the conduction, heavy and
light hole bands relative to the GaAs barrier valence band position write as:

SE.=Ay+E, +EI
SEun = Ay + EF + Er

Aso + Er —/(Aso — Er)? +8E}
2

Aso + Er +4/(8so — Ep)? +8E3
2

SEy= A, +EI -

SEso = Ay +E5I —

where Agg is the energy difference between HH and SO band edges. Considering
Er < Aso, one can write:
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Fig. 6.5 Calculated posi-
tion of the bands in strained
In,Ga_,As/GaAs versus the
indium fraction; the reference
energy is taken at the top

of the binary GaAs valence
band [16]
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SEru~ A, + Ef — Er
8Eso ~ Ay + EM — Ago (6.12)

where A, is the valence band offset between the two semiconductor materials.

Note that for compressive strain (g9 > 0) the HH levels lie at the top of the
valence band, as in the InGaAs/GaAs system sketched in Fig. 6.4. In contrast, for
tensile strain (eg < 0), the LH levels are the top of the valence band.

Knowing the parameters ac, ay, by, Cij, Eg, Ay, the band edge positions in the
In,Ga;_,As strained bulk material can be easily calculated as a function of the
Indium content x, see Fig.6.5. When x increases, the overall effect is a decrease in
the band gap energy and an increase in the HH-LH splitting energy [16].

6.2.2 Electronic Band Structure in Strained Quantum Wells

Once the band edge positions in the strained bulk material have been obtained, one can
simply use the envelop function approximation to describe the electronic structure
in the quantum well. The first obvious effect of strain is that there is a different well
depth for the heavy holes compared to the one for the light holes. Both quantum
confinement and strain change the energy of the electron and hole levels. As the
strain and thickness of the quantum well can be changed independently (provided
that it is smaller than the critical thickness /.), this will be very useful to optimise
the characteristics of the optical devices.
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Fig. 6.6 Calculated energy
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quantum well compositions 132 L
and well widths L [17]
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6.2.2.1 Optimisation of the Confined Level Positions

Band structure engineering means playing with the material parameters (composi-
tion, strain, quantum confinement) in order to optimise the device performances. Let
us consider a first optimisation which simply relies on the position of the different
carrier quantised levels in k = 0.

For a low laser threshold current, it is desirable to have a quantum well with
only one populated level at the working temperature of the device. This requires a
separation with the second quantised level to be greater than kT .

This condition is usually easily satisfied for conduction electron because of their
low mass (in the infinite barrier height approximation the confinement energy writes

as £, ~ % (%)2, where m is the carrier mass and L the quantum well thickness).
For holes, the condition is much more difficult to obtain.

Let us consider for illustration that one wants to fabricate an InGaAs/GaAs laser
emitting at 1 wm (1.24eV).

With the curve network displayed in Fig. 6.6, we see that our goal can be reached
with an indium fraction of x = 0.2 and a well thickness L = 12nm for example.
But Fig. 6.7a shows that the second Heavy-hole level (HH2) lies only 15 meV above
HH1 and will thus be populated at the device operating temperature. In Fig. 6.6 we
note that the same emission wavelength can be obtained with another couple of
parameters: x = 0.25 and L = 6nm. This second choice is more favourable to get
a low threshold current since the splitting in k = 0 between HH1 and HH2 is about
40meV, i.e. larger than kg T (see Fig.6.7b).

The same kind of optimisation can be performed on strained In,Gaj_,As/
InGaAsP quantum wells grown on InP which is the most common system used for
1.3 and 1.5 pm optical telecommunication devices (lasers and semiconductor optical
amplifiers). As displayed in Fig.6.8, 1.5 pm emission can be reached for only one
couple of compositions (Indium fraction x = 0.53) and well width (L = 6 nm) if one
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Fig. 6.7 Calculated confined heavy hole energies as a function of the well width for (a) Ing ,Gag gAs
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considers only a lattice matched quantum well. The use of strain (both in compres-
sion x > 0.53 or tension x < 0.53) allows the optimisation of the structure thanks
to the choice of many couples (x, L) which yield the same emission wavelength [3].

6.2.2.2 In-Plane Dispersion Curves and Density of States

The modification of the in-plane effective mass of the valence band is probably the
most important advantage of electronic band structure engineering for the optimisa-
tion of device performances. We saw in the previous section that the axial strain breaks
the cubic symmetry of the semiconductor which leads to a splitting in k = 0 between
heavy and light hole bands (even in the absence of quantum confinement); the typi-
cal splitting is 60—-80meV for 1% lattice mismatch (for instance for Ing 15Gag.75AS).
The tetragonal distortion of the lattice leads to a highly anisotropic band structure
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Fig. 6.9 Schematic representation of the band structure of (a) an unstrained bulk direct-gap cubic
semiconductor; the same semiconductor under (b) biaxial compression or (c) tension [2]

for k different from zero. In other words, the mass along the growth direction will
be different from the mass perpendicular to it. The consequences for the quantum
well properties will be very important since the mass along the growth direction
determines the quantum confinement energy while the density of states (DOS) is
proportional to the in-plane quantum well mass.

The simplest method to calculate the carrier spectra near the conduction band
minimum and valence band maxima is the k - p method which is widely used in band
structure engineering applications [18-20] (see Chap. 1).

For a review of the very powerful techniques based on tight binding, pseudopo-
tential or orthogonalised plane-wave methods, the reader can refer to Chap. 2.

With the k - p technique, the dispersion curves (carrier energy versus the in-
plane wavevector) in strained layers can be calculated by solving the Bir and Pikus
Hamiltonian [20]: HB? = XL 4 Hstain The Kohn Luttinger Hamiltonian (HXL)
can be found in many good textbooks [18-21].

Considering the simple 8-band approach (CB, HH, LH and SO), the strain com-
ponent simply writes as:

Eg" 0 0 0 Ui, U2

~ 0 EH _E 0 V2E7 | us, u
HStram — v T T 3, U4 (6.13)

0 0 EE+Er O us, U

0 2Er 0 EH ] u7,ug

where u; are the periodic parts of the Bloch functions.
A schematic representation of the calculated band structure of unstrained and
strained (biaxial compression or tension) bulk semiconductor is presented in Fig. 6.9.
Under biaxial compression, in addition to the already described change in energy
levels in k = 0, we note that the dispersion curves of the valence band are very
anisotropic. At the top of the valence band lies the heavy holes which are characterised
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by a “heavy” mass along the growth axis k| and a “light” mass in the layer plane
k, . The opposite behaviour holds for the light holes. This raises a serious problem
of terminology. The rule is the following: we label the bands by their mass along the
growth direction; we could also label them by their angular momentum projection
J, = =£3/2 for HH and J, = +1/2 for LH.

As displayed in Fig.6.9b, the main effect of biaxial compression is that the
in-plane heavy hole band has a lighter mass compared to the lattice matched material
[22, 23].

This is a key advantage to fabricate lasers with low thresholds since the DOS
will be smaller and our goal of quasi equal electron and hole mass presented in
Sect.6.1.2.1 can be reached.

So far we commented on the dispersion curves in bulk strained material. The
eigenvalue problem in the quantum well structure can then be solved by the transfer-
matrix method, taking into account the interfacial discontinuity condition [24, 25].

Figure 6.10a presents the calculated in-plane dispersion curve of the valence band
for two quantum well structures emitting at 1.5 wm [3]. The first one is a lattice-
matched Ing 53Gag 47As/InGaAsP/InP quantum well. The second is a 1.2% com-
pressively strained Ing 7Gag 3 As/InGaAsP/InP with a different well width to get the
same emission wavelength.

The first difference between the two structures is the dramatic increase of the
energy separation between the HH1 and LH1 subbands. We also clearly observe the
drastic modification of the in-plane heavy hole mass from ~0.7 mg for the unstrained
quantum well to ~0.15 my for the strained one.

Another example of valence band in-plane dispersion curve is displayed in
Fig.6.11 for a 5nm strained Ing 77Gag 23 As/InP quantum well [1]. The dashed line
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is the heavy hole dispersion of lattice matched Ing 53Gag 47As which has a similar
band gap to the strained layer. Three advantages for laser operation can be identified:

e First advantage: light heavy hole mass, the mass of the HH1 subband is ~0.09 my.

e Second advantage: the splitting between HH1 and HH2 is about 200 meV, this
minimises the undesirable thermal occupation of HH2

e Third advantage: it deals with the loss mechanisms. In Fig.6.11 we note a sig-
nificant depression of the HH1 energy away from the zone centre. The energy
difference between the HH1 subband and the dashed line away from the zone
centre is about 75meV. This leads to ~e~0-973/0025 — &=3 reduction at room
temperature of the off-zone centre heavy hole population due to band structure
engineering. As explained in Sect. 6.1.2.2, InterValence Band Absorption depends
strongly on this population and thus should be reduced by a similar factor. Sim-
ilarly, the Auger effect (CHSH mechanism in particular) should be significantly
reduced.
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6.2.3 Influence of Strain on the Loss Mechanisms

6.2.3.1 InterValence Band Absorption

The magnitude of IVBA depends directly on the density of holes at krypa (Fig.6.3).
If we assume for simplicity a parabolic band structure, the kinetic energy of the heavy
holes (Egp) and SO holes (E) taking part in IVBA write as:

h2k2 h2k2
EHH — 7 "IVBA and ES = ASO + —_IVBA (614)
2my, 2mso

IVBA occurs if the emitted photon with energy E, is absorbed between the SO
and HH bands: Eg — Egy = E. Thus, the kinetic energy of the holes Eng is:

m
Eyn = (¢) {(Eg — Aso) (6.15)
MyH — Mso

When the HH mass is reduced towards that of the SO band, the corresponding hole
energy for IVBA increases. Thus IVBA occurs at a much larger wavevector krypa
at which the hole occupation probability at room temperature is almost zero.

The reduction of IVBA efficiency has been checked experimentally through
hydrostatic pressure measurements. This experimental technique is a very useful tool
to investigate the loss mechanisms in semiconductor lasers. The effect of external
hydrostatic pressure Py is an increase in the bandgap energy (typically 10 meV/kbar)
without affecting the subband dispersion. As a consequence the point in k space at
which IVBA occurs moves to larger k values where the hole carrier density and
hence the IVBA process is less probable. The measurement of the laser differential
efficiency n changes with Py provides a probe of the IVBA strength [2].

We see in Fig.6.12 that the hydrostatic pressure causes a considerable increase
in 7 (i.e. a reduction of IVBA) in bulk InGaAsP and in strained multiple quantum
well devices [3]. This clearly proves the importance of IVBA for these 1.5 um lasers.
In contrast, when the same pressure is applied to compressively or tensile strained
quantum well lasers, no such increase is observed. The interpretation is simply that
IVBA was negligible in these quantum wells and so any further increase in bandgap
due to external pressure had no additional effect.

6.2.3.2 Auger Recombination

Auger recombination, which is a very important loss mechanism for telecommunica-
tion lasers, involves three carriers; so the Auger current Jauger Varies approximately
as: Jauger(T) = C (T)nt3h, where C(T) is the temperature-dependent Auger coeffi-
cient and ny, the threshold carrier density.
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Fig. 6.12 Normalised
efficiency as a function

of an external hydrosta-

tic pressure for (+) bulk
InGaAsP, (A) unstrained
Ing.53Gag 47As/InGaAsP, (o)
1.8% compressively strained
Ing3Gag 2 As/InGaAsP, and
(0)1.6% tensile-strained
Ing.32Gag 63 As/InGaAsP mul-
tiple quantum well lasers
operating at 1.5 um wave-
length [3]

Fig. 6.13 Schematic repre-
sentation of the three types
of Auger recombination
processes. (a) CHCC process
(Conduction-Heavy hole
Conduction—Conduction).
(b) CHSH process
(Conduction-Heavy hole
Spin-orbit-Heavy hole);
(c) Phonon-assisted

CHSH [2]
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The influence of strain and band structure engineering on Auger non-radiative
recombination can be divided into two aspects: first, Jauger i very sensitive to any
reduction in ng, brought about by strain through the decrease of the in-plane valence
band mass; second, strain may change the magnitude of the Auger coefficient C(T)

itself.

There are three kinds of Auger recombinations as schematically sketched in

Fig.6.13 [2, 26, 27]:

e CHCC process (Conduction-Heavy hole Conduction—Conduction):
The energy and wavevector released when an electron and a hole recombine is
used to excite another conduction electron to higher conduction states.

e CHSH process (Conduction-Heavy hole Spin-orbit—-Heavy hole):
Two heavy holes recombine with one free electron leaving a hole behind in the
spin-orbit split-off band. The efficiency of this process is proportional to the square
of the off-zone centre HH population.

e Phonon assisted CHSH:

It is a second order process which involves in addition a phonon: in this non-
radiative recombination a conduction electron and a heavy hole recombine while
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an electron passes from the SO band to the HH band with the simultaneous emission
or absorption of a phonon for the wavevector conservation.

It is clear from Fig. 6.13 that the three processes depend strongly on the population
of the off-zone centre HH population which can be modified by the reshaping of
the valence band induced by strain and quantum confinement [1, 2]. Auger losses
should be reduced in band structure engineered strained quantum well lasers. In a
very simple picture, the Auger current corresponding to CHSH process can be written
as:

~(Ea/KpT) 3 | with the activation energy

(EGc — Aso) (6.16)
0

JAuger ~e
_ mso
.=
2myy + me — mg

If the in-plane heavy hole mass is reduced (as in compressively strained QW for
instance), the activation energy E, increases and we expect to get a reduced Auger
current Jayger-

A more realistic calculation requires to take into account all the possible transi-
tions. If one considers only the transitions which can occur between quantum well
states (bound-bound transitions) [25], one has to calculate:

Tauger 6 D Ple, hy, hy,50). IM*8(E), with
all states

P(e, hy, hy,50), = fe(ke).fo(kn1). fo(kn2) (6.17)

The matrix element for an unscreened Coulomb interaction writes as:

2

e
~ * *
M ’v//‘I’khl(rl)\Ithz(rz)mwkso(m)\l—’k(;(m)drldm

Using this approach, the calculated Auger current can be compared in a lattice-
matched (¢ = 0) and a compressively strained Quantum Well (¢ = 1%) [26, 27].
Figure 6.14 shows that the Auger current is reduced as expected in the strained
quantum well as a consequence of the reduced heavy-hole mass.

The experimental proof of lower Auger recombination in strained quantum well
lasers can be obtained again by performing measurements under external hydrostatic
pressures [2, 3]. A very large proportion of the current at threshold in classical 1.5 pum
lasers is due to Auger non-radiative recombination. Thus the variation of Jiy, as a
function of the hydrostatic pressure Py should give information about the amplitude
on the non-radiative Auger current.

Figure 6.15 presents the results of these measurements in bulk or 1.5 pwm strained
quantum well lasers. A decrease in the threshold current is observed in all lasers
with increasing pressure. This is due to a decrease of the Auger process induced by
a reduction of the off-zone centre HH population [3]. Nevertheless, the reduction
is clearly greater in bulk compared to the one observed in strained quantum wells.
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Fig. 6.14 Calculated Auger
recombination (CHSH) cur-
rent density versus carrier
density for an unstrained 8 nm
Ing.53Gag 47As/InGaAsP/InP
quantum well and an

8nm strained (¢ =

1%) Inp.79Gag.21As0.77P0.23/
InGaAsP/InP quantum well
[26, 27]

Fig. 6.15 Normalised thresh-
old currents as a function of
the hydrostatic pressure for
(e)1.5 pm wavelength bulk
InGaAsP, (0)1.8% compres-
sively strained Ing §Gagp2As
QW, and (v)1.6% tensile-
strained In3;GaggAs QW
lasers [3]
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This shows that the non-radiative current was already reduced in the strained quantum
well laser and hence less reduction is observed by applying an external hydrostatic

pressure.

In contrast to IVBA, the measured reduction of Auger process in strained quantum
well laser is smaller than the one which could be predicted: in an oversimplified
picture a reduction by a factor two of the threshold carrier density should yield almost
an order of magnitude (~2%) decrease of Auger. In addition to the over-simplication
of the model, the discrepancy can be attributed to the persistence of phonon-assisted
Auger which is very difficult to suppress [28, 29].
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6.2.3.3 Influence of Strain on the Temperature Sensitivity

The temperature sensitivity of a semiconductor laser is usually described by the
Tp parameter, where T, also called characteristic temperature, is related to the tem-
perature dependence of the threshold current /iy, by:

1

d
70 = d_T (In(Zn)) (6.18)

Auger recombination, which is temperature dependent, is usually the dominant cause
of the poor temperature characteristics of long-wavelength diode lasers. As a conse-
quence the temperature sensitivity of strained 1.5 pm lasers is improved compared to
that of bulk or lattice-matched quantum wells [2, 3]. The temperature sensitivity of
the laser will also depend on the possible escape of carriers out of the quantum well
due to poor electron or hole confinement; this point will be discussed in Sect. 6.4.

6.2.4 Strain-Induced Changes of the Laser Threshold Current

Figure 6.16 summarises well the advantages of band structure engineering of semi-
conductor lasers for optical telecommunications. It displays the measured threshold
current as a function of strain [3].

In the compressive strain branch, a clear reduction of the threshold current is
observed with increasing compressive strain since the heavy hole mass monotonically
decreases yielding a decrease of the DOS. The occupation of the off-zone centre HH
population is also reduced leading to less loss mechanisms (IVBA and Auger). Both
effects contribute to the measured reduction in threshold current [2, 3].

In the tensile strain branch, for moderate strain, the highest light hole band is
affected by strong valence band mixing, yielding a rather “heavy” mass and large
DOS; this explains the large measured threshold current. However, with increasing
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tensile strain, the HH-LH valence subband separation increases, which reduces the
band mixing effects. This results in a decrease of the light hole mass and again
of the loss mechanism. A dramatic drop of the threshold current density, down to
~90 A/cm?, is observed. For larger strain (up to ~2%), an increase of Jy, is again
measured, which can be attributed both to the poor conduction band offset [3, 22]
and to a quantum well width close to the critical thickness.

The reduction of the laser threshold current is a good demonstration of the way
band structure engineering can improve the optoelectronic device performances. But
many other device features can be optimized through a proper choice of strain and
quantum confinement in the active layers: the reduction of the hole mass can also
yield a useful increase in the differential gain and hence an increase in the relaxation
oscillation frequency and a possible decrease of the linewidth enhancement factor
(see Chap. 7).

To finish this section, let us mention that strain compensated quantum wells are
often used in real devices. This strain compensation is another tool to improve the
performances and reliability. In order to reduce or even eliminate the net strain in
the structure, the idea is to grow opposite strains in the wells and in the barriers.
For instance, the quantum well with a well width Ly can be grown under biaxial
compression (g ) and the barrier with a width L g under tension (¢p) [30]. Thus the

average strain writes as:

o _Ewlwteply (6.19)
YT Lw+Lg .

A proper choice of the parameter can yield g,y ~ 0. It has been shown that this
can improve significantly the reliability of the laser when multiple quantum wells
are used [14]. The possibility of growing strained barriers adds again an additional
degree of freedom for the combinations of materials which can be used for the growth
of the well and the barrier.

6.3 Gain Calculation in ITI-V Quantum Wells

6.3.1 Device Geometry

The following sections are dedicated to the modelling of laser and semiconductor
optical amplifier active layers and to the optimisation of their performances using
band structure engineering. We have chosen to investigate quantum well heterostruc-
ture devices in which light propagates in the layer plane, i.e. perpendicularly to the
quantisation axis.

Assuming that light propagates along x-axis, electric wave can either oscillate
along y-axis in transverse electric mode (TE) or along z-axis in transverse magnetic
mode (TM) as shown in Fig. 6.17.
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Fig. 6.17 Light propagation
(LP along x-axis) and polari-

.o i . y
sation in edge emitting devices
(TE polarization along y-axis TE
and TM polarization along
z-axis), after [2] LP x

6.3.2 Carrier Wavefunctions in Quantum Wells

Using the envelope function model, the wavefunctions of carriers in the quantum
well can be written as follows:

WE = FCuce™ " for electrons(C) (6.20)
lIjrll),h — gyl,}“v,h eikl\'rl\ (621)

and .
Wy = fluns et 622

for heavy (V, h) and light (V, I) hole states, respectively.

FS, gV and f? are the envelope functions of electron, heavy and light hole states in
the quantum well, their variation and symmetry rely on the heterostructure geometry
and on the subband indices (m, n);

uc and u, are the periodic Bloch functions of conduction and valence band;
k,, and r,, are the wave vector and position vector in the layer plane.

6.3.3 Light—Matter Interaction and Optical Selection Rules

In the presence of an electromagnetic field, the one-electron Hamiltonian of a het-
erostructure can be written [18] as:

e
H=Hy+ —[p-A+A-p] (6.23)
2moc

where e and m are the electron charge and mass, A is the vector potential and p is
the electron momentum.
The dipole matrix element coupling electron and hole states writes as:

Mom (k) = (WSle - plw,)) (6.24)

Here ¢ is the light polarization.
For electron-heavy hole recombination, this latter expression can be rewritten as:
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Table 6.1 Selection rules for interband transitions obtained from the absolute value of the matrix
element (ucle - pluy) in k, = 0, after Bastard [18]

Polarization &x £y &, Transition type
Along x-axis Impossible % Forbidden E— HH
Along y-axis % Impossible Forbidden
Along z-axis 5 5 Izmposmble
: : n n
Along x-axis Impossible NG F E— LH
. I . I
Along y-axis 7 Impossible T
Along z-axis Ls % Impossible
Vv
M (ko) = (Fy7 18, (ucle - pluv.a) (6.25)
and for electron-light hole recombination:
Mom (ki) = (FS 1A Vucle - pluv.) (6.26)

|(FS1gy )| and |[(FS|£Y)| are the envelope function overlaps of electronic (F5) and
heavy (g,‘l/ ) and light ( an) hole states, respectively.

(ucle - pluy) depends on the wave polarisation and on the periodic Bloch func-
tions of the conduction and valence band edges, its values are reported in Table 6.1
[18]:

Assuming propagation along x-axis (see Fig.6.17), only TE mode is allowed
(polarisation along y-axis) for electron-heavy hole recombinations (E — H H). For
electron-light hole recombination (E — L H), both polarizations are possible (elec-
tric field along y-axis (TE) or along z-axis (TM)).

Hence, for TE mode, transition matrix element writes as:

I w| =TT (‘<Fn€|g,‘f>‘2 + % ‘<F,,C,|fnv>‘2) 627)

TM emission is only due to electron-light hole recombinations, but the corre-
sponding TM transition is twice more intense than for TE polarization emission:

i of =27 i)

=t L (S|py|X) = =L (S|py|Y) = l;(’) (S|p:1Z) is related to the Kane matrix

element £, = = 2moI1? (E ( ~ 20meV whatever the III-V material is). |S), |X),
|Y) and | Z) are the band edge Bloch functions of s-like conduction band and p-like
valence band at I" point.
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6.3.4 Gain Calculation

Most characteristics of optoelectonic devices such as laser threshold current, laser
linewidth or semiconductor optical amplifier optical bandwidth are related to the
material gain of device active layers. One method to determine the material gain
consists in calculating the first-order dielectric susceptibility x (w) [31].

For a bulk material, x (w) writes as:

X (@) = X’ (@) +ix" ()

2 EFC) f(EFv - Ev))
" Ve (moa)) z Mev| TEC BV ity 0

where f(E¢ — Eg.) and f(Epy — E V) are the Fermi—Dirac conduction and valence
band occupancy numbers. EC and E" are the carrier energies in conduction and
valence band, respectively, and Ef. and Efy are the quasi-Fermi levels of conduction
and valence band, respectively. x (w) is obtained by summing over the whole energy
values in all subbands (C, V).

Vint = # is the reciprocal of intraband relaxation time.

The material gain is then calculated as follows:

G = @Im(@ (6.30)
6= Z Mev P (f (EC = Ere) = f(Er — EV))

moncso ho V
hyint

X 3 5 (6.31)
(ho — E€ — EV)" + (hyin)

In the case of a quantum well with m electron and n hole subbands, the latter
expression transforms [32]:

6t thZZ/ O M (£ (ES k) — Ere)

ncso

hYint
(heo — ES (ki) = EY (ki) + (hyin)®

[ (Er = E) (k) dk,

(6.32)

where L is the quantum well width.
However, due to the Lorentz distribution in the gain formula, this expression leads
to two non physical effects: artificial absorption below band gap and underestimation
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of Bernard—Duraffourg condition. It can be corrected as follows [26, 27, 33-35]:

2

2
G — e“h 11(1_eﬁ(hw—AEF))
mgneeg ho L

+00
X ZZ / % |1an(kll)|2 f (Erg(kll) - EFC) (I - f(Ery — EVY(k"))
noomoy

h .
x Vint dk, (6.33)

(hw — ES (k) — EY (k))” + (hyin)?

with AEr = Ep. — Epy (6.34)

In the following sections, we describe the design and optimisation of 1.3 um
lasers (Sect. 6.4) and 1.55 pm semiconductor optical amplifiers (Sect. 6.5) using band
structure engineering and gain calculation.

6.4 Uncooled Operation of 1.3 wm Lasers

Usual semiconductor lasers operating at 1.3 um are fabricated using InP technology.
The active layers of these devices are InGaAsP/InGaAsP [36] or InGaAlAs/InGaAlAs
[37, 38] heterostructures grown on InP substrate with different quaternary composi-
tions in well and barrier materials. Both technologies have their own advantages. One
the one hand, InGaAlAs system offers large conduction and valence band offsets,
resulting in an efficient carrier confinement in quantum wells and good performance
of laser devices, even at high temperature. Its major drawback is the difficulty of
integration technique with InGaAsP waveguides [39]. On the other hand, InGaAsP
heterostructures are more easily fabricated, but the poor conduction band offset in
this system leads to electron spillover out of the quantum wells, and hence to lower
performances at operating temperatures. One last common disadvantage of these
devices is the high cost of InP technology as compared to GaAs technology.

In 1992, Weyers et al. observed a strong reduction of band gap energy in dilute
nitride GaAsN grown on GaAs substrate [40]. At that time, InP-based lasers emitting
at 1.3 wm required thermoelectric coolers to overcome temperature losses due to poor
electron confinement, and InGaAs/GaAs based lasers grown on [100]-oriented sub-
strates were limited to 1 um emission wavelength due to the large compressive strain
induced by high indium contents necessary to reach these wavelengths. In order to
overcome technological and economic drawbacks of InGaAsP system, Kondow et al.
suggested to grow InGaAsN dilute nitrides on GaAs substrates [41]. Indeed, the band
gap reduction induced by the introduction of nitrogen in GaAs or InGaAs matrix is
related to a strong modification of the conduction band, whereas the valence band
remains almost unchanged. This remarkable property could then allow extension of
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wavelength emission far above 1 um while ensuring a strong electron confinement in
device active layers. Moreover, due to the much smaller size of nitrogen atom as com-
pared to arsenic atom, the introduction of nitrogen is expected to partly compensate
compressive strain in the quantum well.

Many dilute nitride devices have now been fabricated, but the poor material quality
related to the introduction of nitrogen did not give rise to the expected commercial
success. However, recent developments in dilute nitride laser growth have led to very
encouraging results, showing performances comparable to the best lasers on InP
substrates with better characteristic temperatures [42]. In the following, we describe
one approach to predict and optimize laser properties of InGaAsN/GaAs devices.

6.4.1 Conduction Band of InGaAsN

The design of InGaAsN-based devices requires a deep knowledge of the alloy elec-
tronic properties and a development of accurate models. The dramatic band gap
reduction induced by the incorporation of nitrogen in the host matrix has been inten-
sively investigated since it was first published [40] and many experimental and the-
oretical studies have led to a good understanding of the material properties. High
hydrostatic pressure experiments performed by Shan et al. have shown that incor-
poration of small amounts of nitrogen into conventional III-V compounds leads
to a splitting of the conduction band into two subbands and an almost unchanged
valence band structure [43, 44]. The observed effects were very nicely explained by a
phenomenological model called Band AntiCrossing (BAC) considering a strong cou-
pling between the extended conduction band states close to the zone centre and the
localised nitrogen states. Many electronic properties of InGaAsN structures such as
enlarged electron effective mass are well predicted using this simple two-levels BAC
approach [45]. More sophisticated calculations based on the pseudopotential super-
cell technique have confirmed the localised—delocalised duality of the conduction
band edge in III-V Nitride alloys [46—48] (see Chap.2). However, if these calcula-
tions give an accurate description of conduction states, they are not easily expendable
for device modelling. Hence, due to the good consistency between BAC model and
experimental characterisation, we chose to use this latter. A simple description is
presented below.

The localised nitrogen state E is resonant with the conduction band E; (k) and
the interaction between these two states is represented by a coupling parameter Vm
which is composition dependent. The matrix writes as:

Ep (k) Vam
|: Vamt ENj| (6.35)

with:

Vam = Cnmy/y [44] (6.36)
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CnMm = 2.7 — 3.2, depends on indium fraction x [49] (6.37)
Eny =1.65—x(0.5 —0.4x) [44] (6.38)

The energy of the nitrogen level Ey is assumed to be constant relative to the
vacuum level whatever the InGaAsN composition is [44]. The In fraction (x) depen-
dence of E in (6.38) reflects the variation of the valence band offset with respect to
GaAs [16].

The strong interaction results in a splitting of the conduction band into two sub-
bands E4 and E_:

!
Ee) =7 [EM (k) + En %/ (Ey (k) — Ex)? + 4C§My] (6.39)

The new band gap energy is the energy difference between the minimum of
E_ conduction subband and the maximum of valence band, which is not affected
by the introduction of nitrogen. The BAC-induced conduction band reduction is
illustrated in Fig. 6.18 for bulk GaAsN with 0.01 nitrogen fraction using a parabolic
dispersion law for GaAs matrix conduction band.
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6.4.2 Gain Improvement of InGaAsN Structures is Obtained by . . .

6.4.2.1 ... Designing Higher Barriers

InGaAsN/GaAs quantum well devices have been fabricated but their temperature
performances are still limited. Tansu et al. proposed that apart from Auger recombina-
tions, one of the factors contributing to the temperature sensitivity of InGaAsN/GaAs
quantum well lasers could be the hole leakage into the barriers [50] due to a
smaller valence band offset in InGaAsN/GaAs system than in InGaAsP/InGaAsP het-
erostructures. Large band gap GaAsP barriers may be then used in order to increase
both the conduction and valence band offsets.

The presence of nitrogen in the quantum well is also responsible for non radiative
recombination centres and an enlargement of the linewidth. Thus, the best quality
quantum wells are usually obtained for high indium (x > 0.3) and low nitrogen
contents (y < 0.01). These characteristics, combined with the growth of multi-
ple quantum well structures, yield an emission at 1.3 um with a stronger intensity
for room temperature operation. However, the number of quantum wells in such
structures may be limited because of the high compressive strain (lattice mismatch:
Aa/a =~ 2%) inthe quaternary layer. Hence, growth can be facilitated and the number
of quantum wells increased using strain-compensated heterostructures, with barriers
under tensile strain such as GaAsP (Aa/a =~ —0.9%) for (GaAsggPo>/GaAs), as
reported by Kawaguchi et al. [51] or Li et al. [52].

Tansu et al. have shown experimentally that adding phosphorus in the GaAs bar-
rier induces a decrease in the threshold current density [50]. They have fabricated and
compared Ing 4Gag 6 As0.995N0.005/GaAs and Ing 4Gag 6 Aso.995N0.005/GaAsg g5Po.15
quantum well laser structures. The threshold current density increases with temper-
ature for both structures, but the effect is reduced using GaAsP instead of GaAs
barriers, and whatever the temperature, the threshold current density is reduced in
GaAsP barrier devices (Fig. 6.19a).

Taking the strong coupling between the InGaAs conduction band and the localised
nitrogen levels into account, the band structure of Ing4GaggAsp.995N0.005/GaAs
and Ing.4Gag.6As0.995N0.005/GaAso.g5P0.15 quantum wells is calculated by solving
the Liittinger—Kohn Hamiltonian, including tetragonal strain and confinement (see
Sect.6.2.2.1). The eigenvalue problem is solved by the transfer-matrix method, taking
into account the interfacial discontinuity condition [24, 25]. The valence band mate-
rial parameters used for the calculations are the ones of InGaAs [16]. The material
gain of both active layers is calculated using (6.33). We have reported in Fig. 6.19b the
maximum material gain of these two structures as a function of temperature [53]. For
both, the material gain decreases as temperature increases, but this trend is reduced
for GaAsP barrier heterostructure. This gain improvement when hole confinement
is enhanced may impact efficiently on threshold current density reduction.

GaAsP barriers seem very promising for laser applications. However, if the GaAsP
barrier is grown as a bulk layer to form the optical confinement region of the laser,
the phosphorus content should be optimised in order to both compensate the com-
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Fig. 6.19 (a) Temperature dependence of threshold current density for InGaAsN/GaAs (black

triangles) and InGaAsN/GaAsP (grey squares) quantum-well lasers and [50] (b) calculated peak

gain for InGaAsN/GaAs (black triangles) and InGaAsN/GaAsP (grey squares) for sheet carrier

density njyj =4 x 10'2 cm™2, after [53]

Fig. 6.20 Maximum gain
as a function of sheet 4000 |
current density for GaAs — -
(dashed line), GaAsyoPo.1 g , 7 -
(d{)tt?d lin.e) and CfaAso‘gPo‘z = 2000} A Pk -
(straight line) barriers [53] g s - Ga ASOBPO'Z

g 0 [l GaAs) Py,

E 74 ---- GaAs

‘E“ "

4
-2000 o L L
0 2 4 6

Injection density, n (10 cm™)

pressive strain in the QW and minimise the tensile strain in the barrier to prevent
plastic relaxation of the material. Taking this into account, the maximum gain of
Ing.3Gap.7As0.99Ng.01/GaAs;—.P, QW structures for z = 0, z = 0.1 and z = 0.2
can be compared. The results are shown in Fig. 6.20. It can be seen that the tensile
strain in the barrier can be reduced without significantly affecting the material gain.
Phosphorus concentrations in the barrier as small as 10% could be enough to fabri-
cate efficient laser structures. The expected gain increase for a sheet current density
of njnj = 4 10"2cm ™2 is of the order of 30% for phosphorus fractions between 0.1
and 0.2.

6.4.2.2 ... and Self-Confinement of Carrier

In 1992, Barrau etal. [22, 54] have shown that coulombic attraction between electrons
and holes plays a major role in carrier confinement. When carriers are injected, if one
type of carriers is strongly localised in a deep well, as soon as their density increases,
they attract more and more the other type of carriers, an effect which modifies the band
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profile. The modelling consists in solving the coupled set of Schrodinger equations:

2 2

d

(— a2t VG @+ V (z)) F{(z) = ESFS (2) for electrons  (6.40)
e

2 d?
(—%d—zz +vrr @+ v (z)) gV (2) = EV'"gY (2) for heavy holes (6.41)

B d?
(_Mﬁ +vrl@+v (z)) £ @) = EY!£Y(2) forlightholes  (6.42)

and Poisson equation:
2 2

d e
d_z2v () = ;,O(Z) (6.43)

where m,, mpy and my, are the effective masses of electron, heavy and light holes;
VE (2), Vlr‘l/]h (z) and VHYII (z) are the initial square potential profiles for conduction
band and heavy and light hole valence band; an (2), g,‘l/ (z) and an (z) are the
envelope functions of electron, heavy and light holes; and E g s E,Y 7 and E,Y ! are the
energy eigenvalues for conduction and valence states. V (z) is the induced potential
profile.

For Poisson equation, e is the electronic charge, ¢ is the dielectric constant of the
material and p(z) is the total charge density in the heterostructure. p(z) is calculated
as follows:

p)=e [—Z\F,ﬁ of reH+>

3

2
oy @[ &

2
1@ rE) *5} (6.44)

where f (Eg ), f(E ,Y ’h) and f(E ,Y ’l) are the occupancy numbers of conduction and
heavy and light hole valence bands.

The algorithm consists in first solving Schrodinger equation in a square potential
profile (Vo (z) = 0), determining carrier wavefunctions and their occupancy numbers
and determining Poisson coulombic potential V; (z) after the total charge density p(z)
in the square heterostructure. In a second step, the calculated Vj (z) is added to the
initial potential Vlfl v (z). The described algorithm is repeated until V; (z) converges
to an asymptotic value. Note that Poisson potential V; (z) is modified after each
iteration as follows:

Vi) =Vi(@)+aVi1(z) (6.45)
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Fig. 6.21 (a) The band profile of a Gag 7Ing 33As/Gag Ing.80Asp .45Po.55/InP undoped structure
at thermal equilibrium. The structure is symmetric with respect to the origin. (b) The band profile at
sheet carrier density njyj = 2 X 102 cm—? (symmetric with respect to the origin). The first bound
levels and the two pseudo Fermi levels are shown [54]

with &« = [0 — 1] which is a parameter introduced in order to overcome convergence
issues [55].

The effect of carrier self-confinement is highlighted in Fig. 6.21. Barrau et al. have
studied a Gag ¢7Ing 33As/Gag »0Ing 80 Aso.45P0.55/InP heterostructure in which only
holes are confined (Fig.6.21a). For a sheet carrier density of nj,j = 2 x 1012 cm—2,
as holes are confined in the valence band quantum well, they create an attractive
coulombic potential for electrons, which superimposes to the initial flat band poten-
tial while a slightly repulsive potential for holes also appears in the valence band.
A confinement effect in the conduction band then appears and electrons are trapped in
the self-generated quantum well, giving rise to bound states (Fig.6.21b). The higher
the injected carrier density, the stronger the self-confinement effect of carriers Silver
et al. have predicted that lasing could occur even in type II structures [56], this has
been shown experimentally at low temperature in InAsSb/InAs multiple quantum
well laser structure emitting in the midwavelength infrared region [57].

In InGaAsN/GaAs(P) system, electrons are strongly confined, whereas holes may
spillover towards the barriers due to a small valence band offset. Taking the strong
confinement of electrons in the quantum well into account and solving both Poisson
and Schrodinger equations, Healy et al. [58] have shown that the attractive potential
created by electrons is almost sufficient to reach the highest expected gain. Their
calculations are reported in Fig. 6.22. Neglecting self-confinement effects (non self-
consistent calculation: NSC), they find an improvement of ~25% of the material gain
when using GaAsP barriers instead of GaAs barriers. When solving self-consistently
Schrodinger and Poisson equations (self-consistent calculation: SC), the obtained
improvement is ~6% only.
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Hence, taking attractive coulombic effects into account is necessary to accurately
design optoelectronic structures, whereas neglecting them will only give access to
broad trends.

6.5 Large Bandwidth Semiconductor Optical Amplifiers

The needs in telecommunications have considerably increased in the past decade,
leading to very high speed optical communications between metropolitan centres.
By contrast, urban infrastructures have poorly evolved. In order to support the coming
expansion of local exchanges such as video on demand, voiceover IP, interconnec-
tions with mobile phone applications or shared storage and calculation area networks,
coarse-WDM (8-channel/AX = 20nm) standard has been defined as an appropriate
low cost solution. Up to now, no amplification is used in these networks, but the
increasing communication rate will soon require the use of polarisation-independent
broadband (150nm width at —3 dB) amplifiers operating at 10 Gbits/s. We present
in this section the design and optimisation of such semiconductor optical amplifier
(SOA) using band structure engineering.

6.5.1 InGaAsP/InP Heterostructures

Due to their mature technology, InP-based SOAs are good candidates for small,
cheap and integrated amplifiers. Indeed, quaternary InGaAsP can be grown lattice-
matched, or under tensile or compressive strain on InP substrate, allowing to monitor
light polarization (see Fig.6.23). For instance, ternary alloy Ing 53Gag47As (E, =
0.75¢eV) is lattice-matched to InP. Tensile strain can be obtained either by adding
phosphorus element, or decreasing indium content, and at the same time the band
gap energy will be increased. However, if indium and arsenic have almost the same
effect on band gap energy variation, strain is more impacted by indium than by
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arsenic variation. Then, aimed wavelength and strain values are reached by tuning
the four element contents of InGaAsP quaternary.

Commercial SOAs using InGaAsP bulk or multiple quantum well active layers
provide appropriate gain insensitivity to light polarisation, but their optical bandwidth
is typically restricted to about 60-80nm [59, 60]. However, due to the large number of
parameters that can be tuned, multiple quantum well active layers are more suitable
for wide bandwidth amplification applications. In the following, we describe the
optimisation of multiple quantum well active layer in the view of reaching an optical
bandwidth of 150 nm, with a polarisation-dependent gain (TE/TM ratio) lower than
2dB.

6.5.2 How to Realize Polarisation-Independent Gain?

As previously described (see Sect.6.3), E-HH transitions give rise to TE emission
when TM polarisation originates from E-LH transitions. In order to have equal TE
and TM emission contributions to the total material gain, the amplifier active layer
must provide either both compressive and tensile strained quantum wells, or only
one quantum well type in which first heavy and light hole states have almost the
same energy level.

6.5.2.1 Typical InGaAsP Quantum Wells

We have represented the band alignment of InGaAsP heterostructures used in SOA
active layers in Fig. 6.24. The barrier material can be either strained or lattice-matched
to InP substrate. When strained multiple quantum wells are stacked, barriers under
opposite strain can be used to counterbalance the total elastic energy and avoid
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Fig. 6.24 Band alignment of InGaAsP/InGaAsP quantum well under (a) compressive and (b)
tensile strain

relaxation. In Fig.6.24a is reported the band alignment for compressively strained
quantum well material, in this case, the heavy-hole band lies at the top of the valence
band (see Sect.6.2.1). On the contrary, in the case of tensile strain, the valence
band maximum is a light-hole state (Fig. 6.24b). However, the first hole level in the
quantum well is not only related to the valence band maximum; confinement, which
is strongly mass-dependent, has to be taken into account in order to predict TE or
TM polarisation of the electron-hole transitions.

6.5.2.2 Strain and Confinement Balance
In k;, = 0, confinement energy E, of level p, relative to the valence band maximum

(VByn for heavy-hole states and VB y for light-hole states), writes in the simplest
approach as:
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Fig. 6.25 Band alignment and hole confinement energies in InGaAsP/InGaAsP quantum wells
under (a) compressive strain eqw ~ +1%, (b) tensile strain eqw ~ +1% and (c) tensile
strain eqw ~ —0.15%. The barrier is lattice-matched to the InP substrate; its composition is
Ing.§Gag.2As0.45P0.55

h2 2
pzﬁpz, p=12.. (6.46)
m* is the effective mass of the holes, and L is the quantum well width. Given that
the mass of heavy holes in the quantum well is larger that that light holes (along the
growth axis), even in the case of tensile strain, the first quantised hole state in the
quantum well might a heavy-hole state due to a more efficient confinement effect.
We have reported in Fig. 6.25 the three different possibilities, for typical strain values:
in the case of compressive strain (SQW ~ +1%), the first hole state in the quantum
well is a heavy hole (a); in the case of sufficiently high tensile strain (sQw ~ +1%) ,
the valence band maximum and the first hole state are light hole (b). On the contrary,
in the case of slight tensile strain (sQw ~ —0. 15%), in spite of a light-hole valence
band maximum, the first hole state is a heavy hole (c).

6.5.2.3 Polarisation-Independent Operation

A very efficient solution to keep TE and TM mode equal over the —3dB gain
bandwidth consists in stacking both tensile and compressive quantum wells in the
active layer. A simplified scheme of band line-up of such structures is reported
in Fig.6.26. These heterostructures with ~1% tensile and compressive strain have
shown very good results in terms of polarisation dependence both in the 1.55 pm
range [61-63] and 1.3 wm range [64, 65]. However, the —3 dB gain bandwidth was
limited to 70nm. The amplified spontaneous emission (ASE) spectra of a 1.55pm

SOA containing five compressive quantum wells (5C, L = 100 A) and four tensile
wells (4T, L = 140 A) are reported in Fig. 6.27 [62].

6.5.3 How to Increase Bandwidth?

In order to increase the optical bandwidth it has been suggested to insert multiple
quantum wells with the same composition but with different well widths [66, 67].
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However, significant differences between well widths may induce appreciable dif-
ference in the density of states, and carrier redistribution within the active layer (that
can be predicted by resolving self-consistently Schrodinger and Poisson equations
[56, 62]) will occur, resulting in a narrower optical bandwidth than expected. Another
approach for increasing bandwidth consists in using transitions between fundamental
(n = 1) and excited states (n > 2) of both electrons and holes in the quantum well.
Using this technique, Miller et al. have shown that amplification could be realised
over about 100 nm bandwidth with 1% tensile-strain quantum wells [68]. In this
study, due to the high value of tensile strain, light emission is due to the transition
between electrons and light hole states, and is strongly TM polarised (see Fig. 6.28).
However, this solution can be extended to slightly strained quantum wells, in which
first heavy- and light-hole state levels have almost the same energy value [69]. Then,
similar to bulk materials in which hole states are degenerated, TE=TM condition
can be carried out and in the meantime, bandwidth enlargement becomes possible
thanks to quantisation effects.
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6.5.4 Band Structure and Gain

As discussed previously, suitable quantum well for TE =TM emission must be wide
and slightly tensile strained in order to provide LH1~HHI.

The chosen quantum well consists of a 14 nm Ing 53Gag.47As0.96P0.04 layer which
is tensile strained on InP substrate, with a lattice-mismatch equal to —0.15%. The
barrier material consists of InggGag2Asg45P0.55 which is almost lattice-matched
(0.05% compressive strain; quaternary Ing g Gag.2 Asg.45Po.55 isnamed Q1.17 follow-
ing its bulk emission wavelength at 1.17 wm) to InP substrate. These compositions
have been chosen for several reasons: (i) the quantum well material band gap cor-
responds to an emission wavelength around 1.55 pm, (ii) the barrier material offers
a good confinement for both electrons and holes, (iii) strains in the quantum well
and barrier are opposite, which partly compensates the total strain in the device and
(iv) alow strain value in the quantum well, which reduces the heavy/light hole energy
splitting.

The band structure of InGaAsP/InGaAsP quantum well is calculated by solv-
ing the Liittinger—Kohn Hamiltonian, including tetragonal strain and confinement
effects. The eigenvalue problem is solved by the transfer-matrix method, taking into
account the interfacial discontinuity condition [24, 25, 70, 71]. The band structure of
this quantum well is reported in Fig. 6.29. Conduction states show almost parabolic
dispersion laws, on the contrary, hole states are strongly non-parabolic, due to the
strong heavy-light hole state mixing when k,, > 0.

The material gain has been calculated from the dispersion curves and the oscillator
strengths of the different optical transitions [18]. We have plotted in Fig. 6.30 the cal-
culated gain spectra for three carrier injection densities: n; = 0.9 x 10 cm ™2, ny =
1.2 x 108 ecm™2 and n3 = 2.3 x 10'3 cm™2. Both TE (solid line) and TM (dashed
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line) contributions are reported, the largest TM/TE ratio is about 1dB on the —3dB
gain bandwidth. When carrier injection density is increased, population inversion on
excited states of the quantum well is achieved, and transitions between n = 1 and
n > 2 electron and hole levels are observed which leads to a significant increase
of the optical bandwidth. All the involved transitions are labelled at their energy
position on the calculated spectra. The lower energy transition occurs between first
electron and first heavy hole levels (E1-HHI at 0.806eV; A = 1.538 um), leading
to a predominant TE gain, the second transition between first electron and first light
hole levels (E1-LH1 at 0.811 eV—XA = 1.528 um) induces the rise of TM emission.
Note that the gain polarisation insensitivity in the whole bandwidth can be achieved
here thanks to the very large heavy-light hole mixing for all the valence subbands
when k >0.

Based on this band structure engineering, SOAs have been fabricated and char-
acterised [72]; TE (solid line) and TM (dashed line) amplified spontaneous emis-
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sion are reported in Fig.6.31. The same features as the ones given by the material
gain calculation are observed experimentally. Due to their low energy splitting
(E1 — LHI-E1-HH1 = 5meV), E1-HH1 and E1-LH1 transitions cannot be dis-
tinguished experimentally at operating temperature. For the experimental spectra
we have only reported the predominant transitions, i.e. EI-HH1/LH1 and E2-HH2.
The calculated energy splitting between these transitions is 64 and 59 meV regard-
ing E1-HHI1 and E1-LHI1, respectively. These values are in good agreement with
the experimentally measured splitting, which is about 55meV. The large difference
between TE and TM measured amplified spontaneous emission is due to the device
geometry which yields a larger amplification for TE optical mode and can be adjusted
by improving the waveguide design [73]. It is important to note that TE/TM ratio
is constant over a large optical bandwidth. An increase in the injection current (i.e.
populating n > 2 conduction and valence states) results in a significant increase
in amplified spontaneous emission bandwidth. The maximum measured amplified
spontaneous emission bandwidth value of 98 nm is obtained for an injected current
of 200mA (Fig.6.31). Another solution to further extend the bandwidth would be
for instance to increase the splitting between the first and second electron levels, by
reducing the quantum well width [72].

This chapter aimed to give an overview of the broad outlines of band structure
engineering. We focused on optoelectronic applications and showed that device char-
acteristics could be optimised by controlling microscopic parameters such as strain,
composition and confinement. The exposed models and examples are of course non
exhaustive and the literature dedicated to semiconductor physics and related appli-
cations is immensely rich for readers who wish to learn further.
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Chapter 7

Fundamental Theory of Semiconductor
Lasers and SOAs

Mike J. Adams

Abstract This chapter aims to give a basic understanding of semiconductor lasers
and semiconductor optical amplifiers (SOAs). Starting from the underlying physics
of radiative emission, together with the elements of optical waveguide theory, simple
approximations are found for optical gain, lasing threshold and cavity resonances.
Rate equations are used to elucidate time-dependent laser behaviour and, in combi-
nation with a travelling-wave equation for spatial photon distribution, to describe the
effects of saturation and crosstalk in SOAs.

7.1 Review of Key Concepts

This section is intended to give a review of the most significant parts of semiconductor
theory that are needed for subsequent use in the remainder of the chapter. More
details on specific aspects of some of these topics will be found in other chapters
of this book. From the viewpoint of understanding semiconductor laser and optical
amplifier behaviour, a brief discussion of radiative transitions will be presented first.
The transitions of main interest are those that involve recombination of electrons in
the conduction band with holes in the valence band. The topic of (unipolar) quantum
cascade lasers [1] where the transitions are between states in conduction subbands
formed as a result of size quantisation will not be discussed here.
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7.1.1 Radiative Transitions

Radiative transitions are subject to requirements of conservation of energy and elec-
tron wavevector. The first of these requirements means that the photon energy hv is
equal to the difference between the upper and lower electron energy states involved
in the transition. The second requirement states that the wave vector k, of the pho-
ton is equal to the difference between the wave vectors of the two electron states. In
practice, for a visible or near-infrared photon, the magnitude of k, is of the order of
107 m~!, whereas the magnitudes of the electron wave vectors are typically at least
a hundred times this value. Hence, k, is usually negligible by comparison with the
electron wave vectors, and this implies vertical transitions on the energy wavenumber
diagram. The consequence of this for radiative emission is that direct-gap semicon-
ductors are inherently more suitable as candidates for emitters than indirect-gap
materials. This follows since it is usually only possible to pump electrons into the
lowest conduction band minimum and holes into the valence band maximum. Thus in
indirect-gap materials any radiative transition must involve an extra particle (usually
a phonon) to provide conservation of wave vector, and this makes transitions less
probable than single-particle transitions in direct-gap materials. In this context it is
worth noting that the recent announcement of a Ge-on-Si laser [2] was accomplished
by the use of tensile strain and n-type doping in order to compensate the energy
difference between the direct and indirect conduction band minima. This example
of band engineering caused the Ge material to behave like a direct-gap material so
that optically pumped lasing could be achieved.

7.1.2 Spontaneous and Stimulated Emission

It is important to distinguish between the processes of spontaneous and stimulated
emission. Let f, and f, be the occupation probabilities of states in the conduction and
valence bands, respectively. Then the rates of spontaneous and stimulated emission
are proportional to f.(1 — f,) and (f. — f,), respectively. To calculate the emission
rates it is necessary to sum over all states that can emit a photon of energy hv,
subject to the conservation of energy and wave vector discussed above. In the case of
parabolic bands in a bulk semiconductor this leads to particularly simple expressions
for the rates rp (hv), o (hv) of spontaneous and stimulated emission per unit energy
per unit volume

rp(hv) = P(hv — Eg)'? fo(1 = f,) (7.1)

re(hv) = P(hv — EG)'?(fe — f1) (7.2)

where E is the energy gap and the coefficient P has a weak dependence on photon
energy. The reason for writing these equations in this simplified form is to gain insight
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Fig. 7.1 Spontaneous (black)
and stimulated (blue) emis-
sion spectra calculated for
parabolic bands with k-
conservation
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into the spontaneous and stimulated spectra and their dependence on carrier density.
The process is completed by noting that the occupation probabilities are given by
quasi-Fermi distributions with quasi-Fermi levels F, F, for states in the conduction
and valence bands, respectively. The concentrations n, p of electrons and holes can
be found from F, and F, in the usual way.

Figure 7.1 illustrates the difference between spontaneous and stimulated spectra
calculated as described above. Spontaneous emission is a broadband process whose
spectrum has a high-energy tail corresponding to that of the quasi-Fermi distribu-
tion functions in (7.1). However, the stimulated spectrum changes sign from positive
to negative at a value of photon energy determined, from (7.2), by the condition
fe = fv. When the quasi-Fermi distributions are substituted in this condition, the
Bernard—Duraffourg condition [3] for population inversion (positive stimulated emis-
sion) is found.

F.—F, > hv (7.3)

This is a necessary (but not sufficient) condition for lasing in semiconductors and
holds independent of the model used to calculate the stimulated emission rate. On the
low-energy side, both spontaneous and stimulated emission spectra are limited by the
term (hv — Eg)'/? in (7.1) and (7.2); this term arises from the joint density-of-states
for the transitions.

7.1.3 Optical Gain

In a semiconductor laser, the optical gain per unit length is a more useful para-
meter than the stimulated emission rate, but the two are linearly related and the
spectra are very similar. Figure 7.2 illustrates the dependence of the gain spectrum
on electron density, calculated by assuming charge neutrality (n = p). In this case,
wavelength A is used instead of photon energy; the relation between the two is
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A(pm) = 1.24/hv(eV). In Fig.7.2 the wavelengths of the gain maxima exhibit a
linear dependence on 7, and in addition it is found that a linear relation is also a good
approximation for the dependence of peak gain on . The latter observation leads to
the widely used approximation for the peak gain g,

gm =am —n,) (7.4

where a is the differential gain and n, is the transparency concentration.

When quantum well (QW) material is used in semiconductor lasers, the well-
known step-like density of states has a very beneficial effect in that more carriers are
available at energies close to the (effective) band edge than in the case of bulk (3-D)
semiconductors. This makes QWs more efficient at generating optical gain than bulk
semiconductors (more gain per electron). Figure 7.3 shows QW gain spectra calcu-
lated using again the simplest single subband model with wave vector conservation
and parabolic bands. Although this model is not rigorously accurate, from the results
two general observations can be made which aid our understanding of QW lasers: (1)
the wavelength shift with # is much less in QW than in bulk and (2) gain saturation
is much stronger in QW than in bulk. As a result the peak gain variation with n is
different and a better approximation is given by [4]

gm = goln (i) (7.5)
n

o

where g, is the gain at transparency.

It should be stressed that the models for gain and recombination discussed above
are very simple and represent the minimum necessary to proceed to a description of
lasers and SOAs. More sophisticated models for these processes, taking into account
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Fig. 7.3 QW gain spectra calculated for single subband model with k-conservation and parabolic
bands for the same values of n as in Fig.7.2

more accurate band structure information, higher subbands in QWs, many-body
effects, etc. can be found in a number of textbooks [5-7].

7.2 Semiconductor Laser Structures

7.2.1 Heterostructures

The condition (7.3) for stimulated emission implies that a high concentration of elec-
trons and holes must be present simultaneously as a prerequisite for lasing action.
The first semiconductor lasers achieved this condition by a strongly forward-biased
p—n junction; the quasi-Fermi level separation (F, — F,) is then equal to the volt-
age dropped across the junction multiplied by the electron charge. The diode can
thus produce population inversion in the vicinity of the junction, but it has a poorly
defined active region and suffers from carrier wastage due to escape into the neigh-
bouring n- and p-regions. As a consequence, the current densities required to produce
lasing were extremely high (of the order of 10° A /cm?) and continuous wave (cw)
operation at room temperature was not possible. In order to achieve better confine-
ment of electrons and holes to the active region, a double heterostructure is now used.
In this structure a thin layer of lower band-gap material (e.g. GaAs) is placed between
materials of higher band gap (e.g. AlGaAs); the heterojunctions form barriers to elec-
trons and holes and thus confine the carriers to the central active layer. This structure,
using GaAs—AlGaAs materials, was the first to produce cw lasing at room tempera-
ture in 1970 [8, 9]. The emission wavelength was determined by the energy gap of
GaAs (1.43eV) to lie around 0.85 pm.
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When lasers are used as sources for optical fibre communication systems, the
wavelengths of interest are dictated by the properties of the silica fibre. Optical
attenuation in silica fibres is low in the region 1.0 — 1.6 wum with a minimum at
1.55 pm. The wavelength of zero chromatic dispersion in such a fibre is normally
1.3 wm, but can be shifted to 1.55 wm (or, alternatively, reduced to a low value over
the range 1.3 — 1.55 wm) by careful design of the refractive index distribution to
partially compensate material dispersion by waveguide dispersion. These constraints
on wavelength resulted in the development of semiconductor lasers based on materi-
als other than GaAs—AlGaAs, the most commonly used system being InGaAsP-InP.
The choice of suitable materials is limited by the requirement of lattice-matching
to achieve strain-free heterojunctions, as well as the energy gap of the active region
corresponding to the emission wavelength required. The quaternary InGaAsP can be
grown lattice-matched on InP substrates and thus lends itself well to the formation
of double heterostructures. Another material system that offers potential for lasers is
GalnNAs grown on GaAs substrates [10], but there has been as yet no commercial
development of dilute nitride lasers. The use of limited amounts of strain to reduce
the hole effective mass and hence allow reduced laser thresholds [11, 12] has become
commonplace in today’s QW lasers and SOAs (see Chap. 6).

7.2.2 Optical Waveguides

The use of the double heterostructure has a second benefit to laser operation in
addition to the primary one of carrier confinement. The wider band gap confining
layers have a lower refractive index than that of the active layer, so that the structure
forms a planar dielectric waveguide which acts to confine the emitted radiation to
the active layer. For example, for an emission wavelength of 1.55 pm, the refractive
index of the InGaAsP active layer is about 3.57 and that of the InP commonly used as
confining layers is about 3.17. The lowest order transverse mode of this waveguide
has two possible polarisations, one with the electric field normal to the direction of
propagation (transverse electric—TE) and the other with the magnetic field normal
to the propagation direction (transverse magnetic—TM). Here, for simplicity, we
consider only TE (which is normally the preferred polarisation in many lasers);
more detailed descriptions of TE and TM modes can be found, for example, in [6].
For the purpose of analysis, it is convenient to group the active (confining) layer
refractive index N1(N2), the wavelength A and the active layer thickness d into a
single variable, the normalised frequency v, defined as

d
v = ”7 N2 — N2 (7.6)
As v decreases the number of modes that can propagate is reduced (the modes
are “cut oft”). For v < 7/2, only the lowest order mode can propagate. This is the
mode that is of interest for lasers. Using the numbers for the InGaAsP—InP laser
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0.9 {«——single-mode operationr——|

Fig. 7.4 Variation of optical confinement factor with normalised frequency v for a symmetric slab
waveguide. Transverse intensity distributions are also shown for three values of v

given above results in single-mode operation for an active layer thickness d less than
about 0.5 pum.

It is important to know the fraction of light intensity that is propagating in the core
of the waveguide. This is the confinement factor, I", defined as the integral of the
optical intensity over the active region divided by the corresponding integral over the
total structure cross-section (essentially a dimension tending to infinity). A useful
approximation that is accurate to about 1.5% is given by [13]

212

N=— 7.7
14212 7.7

At the cut-off of the first higher order mode, this approximation yields I' = 0.83.
Figure 7.4 shows the variation of I" with v; the transverse optical intensity distribution
is also indicated schematically at three values of v. As v tends to zero the optical
intensity spreads more and more into the cladding layers. With increasing v the
intensity is more strongly confined to the waveguide core, which usually corresponds
to the laser active layer. In the case of QW active layers, extra confining layers of
refractive index intermediate between those of the QW and cladding indices are often
included. Such a structure, often termed a ‘separate confinement heterostructure’
(SCH) gives better optical confinement than could be obtained with QWs alone,
even in the case where multiple quantum wells (MQWs) separated by thin barrier
layers, are used for the active material.

The heterostructure gives optical and electrical confinement in the transverse
direction. In the lateral direction other structures are needed for confinement. Broad-
area lasers suffer from high threshold current and filamentary behaviour (thin lon-
gitudinal regions of lasing determined by inhomogeneities). In the early years of
laser development, lateral confinement was first achieved with the stripe-geometry
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laser [14] which had a narrow (5 — 20 wm) stripe contact defined by oxide insu-
lation. Under the stripe there was a region of gain and elsewhere there was loss.
This is “gain guiding”, sometimes also accompanied by a weak index-guiding (or
anti-guiding) effect. Such lasers suffered from unstable behaviour with increasing
current, and commonly exhibited departures from linearity (“kinks”) in the light-
current (L-I) characteristic. More modern lasers include lateral optical and electrical
confinement by the use of structures such as the buried-heterostructure (BH) [15]
and ridge-waveguide laser [16]. The technological aspects of these structures are
not the primary concern here, but it is relevant to mention the simplest analysis
that can be used to aid understanding of how the optical confinement is achieved.
Figure 7.5 illustrates this approach for the case of the ridge-waveguide laser. This
2-D waveguide problem is difficult to solve exactly, but a very useful simplification
can be made by separating the structure into 3 separate 1-D problems (2 vertical and
1 horizontal, as illustrated in Fig.7.5). Structure A (a vertical 4-layer asymmetric
waveguide) can be solved to give an “effective index” (scaled propagation constant)
which is lower than that of structure B (a 4-layer waveguide in which one layer is
of a different thickness than the one in A). These two effective indices can be used
to form a 3-layer symmetric waveguide in the horizontal direction, as indicated in
Fig.7.5. The solution of this waveguide yields the confinement factor for the lateral
direction which can then be multiplied by the corresponding confinement factor for
the vertical direction to give a result for the complete structure. It is important to note
that the total optical confinement factor is the only waveguide characteristic that is
of interest for laser design and modelling.

7.3 Semiconductor Laser Cavities

7.3.1 Fabry-Perot Cavity

The simplest form of semiconductor laser structure employs a Fabry-Perot (FP)
cavity formed by cleaved facets at each end of the device. The relatively high refrac-
tive index (more accurately, the effective index from the solution of the lateral and
transverse waveguide structure) of the semiconductor gives sufficient power reflec-
tivity, R (typically 30%), at the facets to produce a resonant cavity. In order to model
the cavity, define a modal gain per unit length, g,

g§=lgm — (7.8)

where «y is the loss per unit length (which may be decomposed into contributions
from the active layer and the passive confining layers, if desired) and the other
symbols are as defined previously. The modal gain governs the exponential growth
of the optical intensity in the longitudinal direction of the FP cavity. Using this simple
model and allowing for reflections at the facets, the amplification G (defined as the
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effectiveindex of A effectiveindex of B

Fig. 7.5 The “effective index” method illustrated for a ridge-waveguide laser. The real structure
is first separated into 3 separate 1-D structures (2 vertical and 1 horizontal). Structure A has an
“effective index” (scaled propagation constant) lower than that of B. This results in a horizontal
effective index waveguide

ratio of optical power output to input) can readily be derived in the form

(1 — R)2e8L

_ 7.9
(1 — ResL)2 4 4Re8Lsin¢ (79)

where L is the cavity length, R is the facet reflectivity (assumed the same at each
end) and ¢ is the phase, given by ¢ = 2n N L/ where N is the effective refractive
index.

The FP resonances occur at values of the wavelength (A ;) for which the argument
of the sine function in (7.9) is a multiple of 7, that is

_2NL

A
M=y

(M = an integer) (7.10)

Another way of stating the resonance condition (7.10) is that the effective optical
cavity length (VL) must contain an integral number of half-wavelengths. Typical
cavity lengths L are of the order of a few hundred microns and effective indices
N are in the range 3.2-3.4, so that for a 1.55 pm laser it is clear that the integer
M takes rather large values, typically of the order of 10°. The spacing between

the resonances, A\, can be calculated by differentiating (7.10). Noting that N is a
function of wavelength, the result is
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)\2
)\ =
2LN,

(7.11)

where N, is the group refractive index (given by N — Ad N /d \), which is typically in
the range 3.7—4.0. For example, in a 300 pm-long laser, mode spacings of 0.3, 0.7 and
1.0nm are found for the operating wavelengths of 0.85, 1.3 and 1.55 pm, respectively.
Since the gain spectral bandwidth is usually many tens of nm (see Figs. 7.2 and 7.3),
it is quite likely that more than one longitudinal mode will experience sufficient gain
to satisfy the lasing threshold condition, and hence FP lasers often exhibit multimode
output spectra.

7.3.2 Lasing Threshold and Power Output

The threshold for lasing is given from (7.9) by the condition that the denominator
vanishes at the resonant wavelengths. Combining this result with (7.8) for g yields
the threshold value for material gain, denoted gm, as

—1 ~|—1E ! (7.12)
gmth—l_, ay Ln R .

This equation states that the material gain at threshold is exactly balanced by the
losses within the cavity as well as those through the end mirrors. Although this is
a very good approximation, it neglects the small amount of spontaneous emission
which couples into the lasing mode (this is the optical noise source which drives
the oscillation). The threshold gain can be related to the carrier concentration at
threshold, ng,, by (7.4) for bulk active media or (7.5) in the case of QW active layers.
This carrier concentration, in turn, can be related to the threshold current density,
Jth, by assuming that the carrier recombination (radiative and non-radiative) can
be described by a lifetime, 7., so that the injected rate of electrons balances the
recombination rate: .

Jo _ I (7.13)
ed Te
where d is the thickness of the active material and e is the electron charge. Taking
the case of a bulk active layer as an example and combining (7.4), (7.12) and (7.13)

yields
—— + 1 + 1( ! (7.14)
Jth = p no al’ ay I n R .

Consider now a numerical example to see how this simple analysis can be used.
For a laser emitting at 1.55 pm with an InGaAsP active layer (N; = 3.57) of thick-
ness d = 0.2 wm, and passive confining InP layers (N, = 3.17), the value of the
normalised frequency is given from (7.6) as v = 0.67. The corresponding optical



7 Fundamental Theory of Semiconductor Lasers and SOAs 205

confinement factor can be estimated from (7.7) as I' = 0.47. For the lateral con-
finement, without going into the details of the effective index method as outlined
above, let us assume a value of 0.85 for the confinement factor. Hence the total
confinement factor is 0.85 x 0.47 =~ 0.4. Taking typical values of transparency
concentration n, = 1 x 10'8 cm™3, differential gain ¢ = 2.5 x 10719 cm?, inter-
nal loss ap = 30cm™!, reflectivity R = 0.3, length L = 300 um and electron
lifetime 7, = 1ns, the equation gives the value of threshold current density as
jih A 5.4kA/cm?. For an active width of 2 wm, this would give a threshold current
of about 33 mA.

Above the threshold, in the ideal case the lasing power output P is linearly related
to the difference between the operating current, /, and the threshold current, Iy,

I — In

where Av is the photon energy and np is the differential quantum efficiency (or slope
efficiency), defined as the fraction of photons escaping from the cavity. Hence 7p is
given by the ratio of end-loss to total optical loss

Lon (L
p = Ll—(’*)] (7.16)
a+ ztn (g)

7.3.3 Distributed Bragg Reflectors

It has already been noted that FP lasers often exhibit multimode behaviour. For some
applications, including optical communications, this is undesirable and a single-mode
source is preferred. In order to select a single longitudinal mode (SLM), a grating, in
the form of a distributed Bragg reflector (DBR), is often used in laser cavities. The
simplest version is to replace one or both the laser facets by a DBR. The pitch of the
grating, €2, is related to the centre wavelength, ) ,, by

Q= )\—p (7.17)
~ PN '
where p is an integer. For example, if A\, = 1.55um and N = 3.3, a first-order
grating has a pitch of 0.23 um and a second order grating has a pitch of 0.46 pm.
Higher orders than the second lead to strong coupling to radiation modes and are
therefore rarely used, and then only for specific structures (grating-coupled lasers)
to produce output normal to the grating for surface emission.

The properties of a DBR are determined by the coupling coefficient x which
measures the strength of coupling between forward and backward propagating waves
in the grating. Figure 7.6 shows the grating reflection spectra for two values of the
product kK Lppr where Lpgr is the length of the DBR. Larger values of this product



206 M. J. Adams

KLppr =3

Reflectivity

-5 -4 -3 -2 -1 0 1 2 3 4 5
Wavelength detuning (nm)

Fig. 7.6 Grating reflectivity spectra for two values of KLppr

give a peak reflectivity closer to unity and a more rectangular shape to the main lobe,
together with higher side-lobes; smaller values of K Lppr give lower reflectivities and
a flatter response. In order to achieve SLM operation of a DBR laser, it is desirable to
use a grating with narrow bandwidth and high reflectivity. The reflector at the other
end of the cavity can be either a cleaved facet or a second DBR, this time with lower
reflectivity for optimal output coupling.

DBR cavities are of particular interest for applications in tunable lasers. Injected
current, temperature or an electric field produced by a reverse-biased junction can
all be used to change the effective index N in the DBR, and hence, as is evident
from (7.17), to change the centre wavelength A,. Injected current is the preferred
mechanism, and the tuning range achievable in this way is usually limited to around
10nm. In order to achieve a quasi-continuous tuning range (to overcome gaps at
mode jumps), a phase section (with a current contact) is usually included to make a
three-section tunable laser of the type shown schematically in Fig. 7.7. Wider tuning
ranges can be obtained by using the four-section sampled-grating DBR (SG-DBR)
laser which uses the Vernier effect for tuning. The SG-DBR reflectivity spectrum is
a comb of wavelengths with the peaks spaced by an amount given by an equation
similar to (7.11) where L is now interpreted as the grating sampling period. Using
different sampling periods in the SG-DBRs at each end of a cavity results in two
reflection combs with different wavelength spacings, as illustrated in Fig.7.8. Las-
ing takes place at wavelengths where the reflection peaks align (the Vernier effect).
Changing the current in either reflector causes the comb alignment to alter and hence
tunes the wavelength. Tuning ranges of 50-70nm can be achieved by this strategy.
These structures also lend themselves well to monolithic integration with other opto-
electronic components. More details of tunable lasers and associated devices can be
found in [17].
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Fig. 7.8 Four-section widely-tunable laser: structure and reflectivity combs (schematic)

7.3.4 Distributed Feedback Lasers

The grating can also be incorporated along the length of the gain section, rather
than as a separate reflector for the DBR laser. In this case the structure becomes a
distributed feedback (DFB) laser where gain, g, and feedback (characterised by the
coupling coefficient x) occur in the same region of space, as illustrated in Fig.7.9. In
order to avoid non-radiative recombination due to defects introduced by the grating
fabrication process, it is necessary to separate the corrugations from the active layer
whilst still allowing them to interact strongly with the optical field. Usually this is
achieved by the use of an SCH structure (see Sect.7.2 above) where the grating
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Fig.7.9 Distributed feedback drive current
(DFB) laser (schematic) ?

gain and feedback section

is separated from the active layer by a layer of lower refractive index. Thus the
corrugations interact with the evanescent tail of the optical distribution to provide
feedback along the length of the cavity. Although the reflectivity for each corrugation
is very small (typically about 0.03%), since there can be more than 500 of these along
the length of the laser, the effective reflectivity resulting from the summation can be
similar to that for an FP laser with cleaved mirrors. It is important in the DFB laser
design to try to suppress the effects of reflection from cleaved facets, since these
can adversely affect SLM performance. This is sometimes done by incorporating an
absorbing region at one end of the device or, more commonly, by reducing the facet
reflectivity through the use of anti-reflecting coatings or angled facets. More details
of these approaches will be discussed below in relation to SOAs.

In general, the analysis of DFB lasers is somewhat complicated and there is no
simple expression for lasing threshold. However, in the special case of strong coupling
and low gain, g < k, a useful simple approximate expression has been derived [18]

1 1 T \2
= — — | — 7.18
Zmih F[awu(“)] (7.18)

This equation for the DFB laser threshold has the same form as (7.12) for the FP
laser threshold. In this case the interpretation is that the material gain at threshold
is exactly balanced by the sum of the losses within the cavity as well as those due
to coupling between the forward and backward propagating waves. The character-
istic spectrum of an ideal DFB laser consists of two dominant longitudinal modes
positioned symmetrically on either side of a stop band. The symmetry can be broken
either by reflections from a facet, which is not easy to control since the phase of the
reflection plays a strong role, or, more controllably, by the use of a quarter-wave shift
in the grating. The latter is the preferred method to ensure SLM behaviour in DFB
lasers. Within the constraints of the same approximation g < &, the width of the
stopband (in units of photon wavenumber) is approximately 2+, and measurements
of this width in DFB lasers below threshold are often used to obtain estimates of the
grating coupling coefficient .
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7.4 Transient Behaviour of Lasers

7.4.1 Static Properties

The main objective of this section is to analyse the temporal behaviour of semicon-
ductor lasers using rate equations. However, as a first step towards this, let us first
summarise the equations for cw laser operation. Below threshold, the stimulated
photon density is zero and the electron concentration in the active region is linearly

related to the current
I,

= — 7.19
n=— (7.19)

where V is the volume of the active region. At threshold the photon density is still
zero (neglecting the spontaneous emission) and the electron concentration reaches
the value ny, which can be calculated from the threshold condition for material gain,
gmth, for example using (7.12) for an FP laser or (7.18) for a DFB laser. Above
threshold the carrier concentration is clamped at ny, (if spatial non-uniformities are
neglected), and the photon density S is given by

PR (i _ "—‘h) (7.20)

8mthvg \ eV Te

This equation is equivalent to (7.15), considering that here we are concerned with
the photon density S inside the laser cavity, whereas (7.15) describes the power
output P. It can easily be verified that the relation between these quantities for an
FP laser is

Vg 1
P=SVhv—4tn{— (7.21)
'L R

where the final term on the RHS accounts for the loss rate of photons through both
laser facets.

7.4.2 Rate Equations

The transient behaviour of semiconductor lasers can best be discussed in terms of rate
equations describing the temporal evolution of electron concentration n and photon
density S, each assumed uniform throughout the cavity. For a single-mode laser the
simplest form of these equations is

dn

n
il vea(n —n,)S (7.22)
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ds Ta( )S S (7.23)
— =v,Taln—n - — .
dr 8 ‘ Tp

where j is the current density and 7, is the photon lifetime in the cavity. For an FP
laser the photon lifetime is related to the losses by

1 1 1
; =V, |:ag + Zﬂn (E)i| (7.24)

The first term on the RHS of (7.22) represents the rate of pumping into the active
region, the second term is the total radiative and non-radiative recombination rate
and the third term is the stimulated emission rate. In (7.23) the two terms on the RHS
represent, respectively, the stimulated emission rate and the photon loss rate. It is
easily verified that in the steady state these equations can be solved to give (7.14) at
threshold, and (7.19) and (7.20) below and above threshold, respectively, noting that
current / is related to current density J by Id = jV.

7.4.3 Small-Signal Modulation

Some useful physical insights into the time-dependent behaviour of lasers can be
found by considering the case of small-signal modulation of the current and using
the rate equations to analyse the response. Using the subscript ‘s’ to denote steady-
state values of variables, the current density can be written as

j=Jjs+ Aje' (7.25)
where w is the angular modulation frequency and the small-signal assumption means

that Aj < js. As already discussed the steady-state solutions of (7.22) and (7.23)
are

ng = ngm = n, + (7.26)

CaveT,

_ Tp(j — Jth)

S.
s ed

(7.27)

The small-signal solutions for carrier and photon densities can be written as

n=ns+ Ane'’ (7.28)

S = S,+ ASe'v! (7.29)
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where An << ng, AS << §s. Substituting these solutions into the rate (7.22) and
(7.23), and neglecting terms in AnAS (in the small-signal approximation) yields

. Aj An
iwAn = — — — —vea[SsAn + (ng — ny) AS] (7.30)
ed Te
iwAS =velaSsAn (7.31)

These equations can be solved for the ratio AS/Aj in the form

AS r 2
) PR (7.32)
Aj ed ] wi+iwwg — w?

where w, is the angular relaxation oscillation frequency (ROF)

W2 = %, (7.33)
Tp
and wy is the damping frequency
1
wg = — + Tpw? (7.34)
Te

The frequency dependence of the amplitude of the transfer function is given from
(7.32) as

2
‘ AS(w) wy (735)

AS(0) \/(wg — W22 4 w2w§

Figure7.10 gives a plot of the variation of this function with modulation frequency
f = w/(27). The maximum of the response occurs at the resonance frequency f,
given by
2
1 wy

fr = g w% — 7 (736)

The bandwidth or 3-dB frequency, f3¢gg = w3dp/(27), is given by the solution of

2
(wg - w%dB) + wigpwy = 4w, (7.37)

Since the linear ROF, f, = w,/(2m), is typically of the order of a few GHz, and
Tp, Te are of the order of 1 ps and 1 ns, respectively, itis often a good approximation to
assume that wy from (7.34) is much less than w,,. With this assumption an approximate
solution of (7.37) is

frs = V3f, =31, (7.38)
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It is worth investigating the dependence of these frequencies on the current over-
drive above threshold, j — ji. Substituting (7.22) for Ss into equations (7.33) and

(7.38), respectively, yields
1 [vea(j — jm)
=—,)— 7.39
fo =\ od (7.39)
~ L [3vea(j — jm)
fap = —, ) 22 0 (7.40)
27 ed

These results that both the ROF and the small-signal modulation bandwidth vary
as the square root of the overdrive current have been tested experimentally many
times in the literature and generally describe the measured behaviour very well.

7.4.4 Large-Signal Modulation

A limitation of the small-signal analysis is that it cannot deal with large-signal digital
modulation (which is of fundamental importance when the laser is used as a source
for optical communications). In this case, numerical solutions of the rate equations
must be used to investigate the response. Some elementary insight can be obtained
by considering the response of the laser to a step change in current. For example,
if the laser is initially biased below threshold with current density jj, and a current
density j is applied at time t = 0, what is the optical response? In fact there will be
a short but non-negligible delay between the leading edge of the current pulse and
the resulting optical output. To see this it is only necessary to consider the carrier
rate (7.22) below threshold

dn Jj n

— == - — (7.41)
dt ed T,

The solution at time ¢ is
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Fig.7.11 Relaxation oscillations of electron and photon concentrations in response to a step current
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n=" [j — (= Jp)exp (—i)] (7.42)
ed Te

The turn-on delay of the optical pulse, 74, is defined as the time for the carrier
density to reach its threshold value as given by (7.26). Solving (7.42) thus yields [19]

tg = Toln (J. - J.b) (7.43)
J — Jth

It follows that the turn-on delay decreases as the bias current increases; when jj
approaches ji, the delay tends towards zero. Therefore, in order to modulate at high
data rates, lasers are biased close to threshold to reduce turn-on delay. It is worth
noting also that measured values of #; as a function of current density can be used
to gain an estimate of the recombination lifetime 7, by using a logarithmic plot
according to (7.43).

The laser output following the turn-on delay consists of a series of spikes whose
amplitude decays with time; this is accompanied by the appearance of a damped
saw-tooth oscillation in the electron concentration. This behaviour is illustrated in
Fig.7.11 where the temporal evolution of the photon and electron concentrations
is simulated numerically. At first the carrier concentration increases rapidly until it
exceeds the threshold value and a pulse of light is emitted. This, in turn, has the effect
of reducing the carrier density so that the emission is extinguished. The process is
repeated, with some damping, until the steady state is approached. The frequency
and damping of these relaxation oscillations are given by (7.33) and (7.34) above.
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7.4.5 Chirp

The effective refractive index in the active layer of the laser is a function of the
carrier density. This leads to changes in the lasing wavelength (‘chirp’) during the
relaxation oscillations or small-signal modulation. The effect is strongest during the
initial turn-on period when the carrier density overshoots its steady-state value. To
study laser chirp in more detail, consider a small change Anr in carrier density from
the steady-state value ng, and a corresponding small change A\ in wavelength from
the steady-state value \g. There will be an associated change, AN, of the effective
index N from its steady-state value Ng, given by

ON ON

For a FP laser the resonant wavelength (A7) for mode M is given by (7.10). Using
(7.10) and (7.44), it follows that

N ON ON
— A= —AXN+ —A 7.45
ot xS A (7.45)
which can be rewritten as Ny ON
AN = MET (7.46)
N, On

where Ny is the group index. This result is conveniently re-expressed in terms of
another parameter, a, which relates the change in effective refractive index to that in

gain, and is defined as
47 ON /On

By 0g/on

(7.47)

This parameter is usually called the ‘linewidth enhancement factor’, in view of its
importance in characterising single-mode laser linewidth. It was first introduced by
C.H. Henry in a study of laser linewidth [20] and is therefore also known as ‘Henry’s
a factor’. Using (7.47), the result for wavelength chirp from (7.46) becomes

2
A aa—gAn (7.48)

AN = —
4rN, On

where the wavelength subscript ‘M’ has been omitted for simplicity. Note that for
the linear gain model of (7.4), the differential gain Og/0n is given by I'a. With this
model we can also use the small-signal modulation result (7.31) to re-express the
chirp in terms of the change in photon density

A2 iwAS

AN = — «
4Ny vg Ss

(7.49)
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The chirp can also be expressed as a change in frequency Av, as
Av=a—— (7.50)

It follows from this result that the chirp, or frequency modulation (FM) is simply
proportional to the intensity modulation (IM), and this proportionality is governed
by the modulation frequency w and the linewidth enhancement factor. The FM index
is defined as |2wAv/w|, and the amplitude modulation (AM) index is defined as
|AS/Ss|. Thus the ratio F/A is given from (7.50) as

r_lo (7.51)

Measurements of F/A as a function of modulation frequency can be used to find values
of a [21]. Clearly, large values of « are desirable for FM applications, whereas low
values are required to minimise chirp in IM transmission. Measured values of |«| in
long-wavelength lasers are in the range 3—10, and exhibit a monotonic increase with
wavelength towards the band-edge wavelength. Hence it is possible to design a DFB
or DBR laser with a grating whose centre wavelength is used to select the desired
value of |«].

7.5 Semiconductor Optical Amplifiers

The basic SOA structure consists of a semiconductor laser operated below threshold
and arranged so that an input signal can be coupled into one end of the cavity and
the transmitted signal coupled out of the other end; sometimes the device is operated
in reflection and thus optical coupling is only required for the input end. The cavity
structure can be of any type, e.g. FP, DBR or DFB, and the cavity will selectively
amplify wavelengths corresponding to the resonant modes. A response that is more
tolerant to input wavelength is usually desired, and this can be achieved by reducing
the facet reflectivities of an FP cavity to sufficiently low values. In this case we speak
of anear-travelling wave (NTW) amplifiers when the reflectivities are sufficiently low
that the gain ripple due to residual FP modes is below a specified value, as compared
with the ideal travelling-wave (TW) amplifier where the reflectivities would be zero.

7.5.1 Cavity Effects

In SOAs, as in lasers, the word “gain” can refer to more than one quantity. Hence it
is important to distinguish between the material gain per unit length g, (as given,
for example, by (7.4) and (7.5) which are useful approximations), the modal gain per
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Fig. 7.12 Gain ripple for an FP cavity versus single-pass gain for reflectivities indicated

unit length g (as defined in (7.8) in terms of confinement factor and internal losses),
and the transmission gain G as defined by (7.9) for FP and NTW amplifiers. There
is also the gain in reflection, G, defined, again for the case of equal reflectivities at
each end of the cavity, as

R (1 — egL)z + 4ResL sin® ¢

Gy = 5 (7.52)
(1 — Rest)” + 4Resl sin” ¢
The peak-to-trough ratio V of the transmission gain is given from (7.9) as
2
1+ Rest
V=——— 7.53
(1 - RegL) (7:53)

A plot of this quantity (in dB) versus single-pass gain (e4, also in dB) is given
in Fig.7.12, for a number of different values of reflectivity. It is clear that to obtain
suitable low values of V with high gain, low values of reflectivity are required. For
example, for 30dB gain with less than 1dB ripple, the reflectivity must be less than
0.01%.

Means of reducing the facet reflectivities include single-layer (quarter-wave) coat-
ings using a material whose refractive index would ideally be equal to the square root
of the effective index of the wave in the SOA (silicon monoxide is sometimes used as
a coating). However, this gives a very narrowband response and the minimum occurs
at different wavelengths for the two polarisations (TE and TM). Multilayer coatings
can offer a broader wavelength range and give low gain ripple. Other methods of
reducing reflectivities are the use of angled facets and ‘window’ or buried facets
where the active region is terminated some distance away from the facet. For these
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methods only a small fraction of the reflected light from the facet is captured into the
active region of the SOA. Combinations of the latter techniques can give extremely
low reflectivities and low gain ripple (e.g. less than 0.5dB at a gain of 25dB [22])
even without the use of anti-reflection (AR) coatings.

The resonances in an SOA are characterised by the full-width at half-maximum
(FWHM) in frequency, denoted A f. Writing the phase in terms of frequency f as
¢ = 2w NLf/c (where c is the speed of light), the FWHM for transmission is found
from (7.9) to be

Af c 4| 1= ResEL (7.54)
= sin .
N7L 2(ResL)1/2

For example, for an uncoated SOA (R = 0.3) of length 200 wm with gain of
20dB, the bandwidth is about 9 GHz. It is clear that the bandwidth decreases as the
peak gain increases. A figure of merit for this is the gain-bandwidth product, defined
as the product of the square root of the peak gain, Gmax, and the FWHM, A f. Using
the threshold condition and the approximation sin(x) = x (for small x) in (7.9) and
(7.54) leads to the simple result [23]

VCmx Af = — (i - ﬁ) (1.55)

~2N7L \ VR

This is a particularly useful result in studying the design and analysis of SOAs,
and especially for vertical cavity devices (VCSOAs)—see Chap. 8.

7.5.2 Saturation

SOAs offer high values of transmission gain, but at higher input powers the gain

saturates as the available energy from the electrical current is used. To describe gain

saturation in a simple manner, the rate equation (7.22) can be used in steady state,
rewritten in the form ) ( )P
n n—ny) P

J_ T ) Pin (7.56)

ed Te Te Pg,t

where the photon density S has been expressed in terms of the internal power Piy in
the SOA ;
Pt = SVhv -5 7.57
int v L ( )

Note that (7.57) is similar to (7.21), except that here we deal with the internal
photon density and hence the final term of (7.21) is omitted. The quantity Py is the
saturation power defined as

Vhu

Teal' L

(7.58)

sat =
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The solution of (7.56) gives a simple expression for the saturation of the material
gain
8mo

Lin
1+ Psat

&m = (7.59)

where g, is the unsaturated material gain in the absence of an optical signal, given
by

gmo = d (]ej — n,,) (7.60)

For a TW amplifier we must allow for the spatial variation of power and saturation
along the length of the device. A particularly simple case can be used for illustration
by taking I' = 1 and ay = 0, so that g = g;,. Then the equation for the growth of
power P s a function of position z along the cavity becomes

dp; P
int _ ¢ Pt = 8mo }int (7.61)
dz 14z

Defining the input power as P;, and and the single-pass unsaturated gain as G, =
exp(gmol), (7.61) can be integrated from z = 0 (input) to z = L (output), with the

result
, In (@)
P, G
a7 (7.62)

Psat G-1

The solution of this equation is plotted in Fig.7.13, assuming an unsaturated
gainG,, of 20dB. The plot shows how the saturated gain G varies with the ratio
of input power Pj, to saturation power Pgy. From (7.58), taking typical values of
V/L =02um? hy = 0.8eV,a =2.5x 107 19cm? I = 0.3, and 7, = I ns, we
find Pgye = 3 mW. From Fig. 7.13, it is seen that, for this example, when P, is 3mW,
the amplifier gain has reduced to about 4 dB.

7.5.3 Crosstalk

For some applications, as in the case of a wavelength division multiplexed (WDM)
system, an SOA will be subject to a number of different input signals at different
wavelengths. Crosstalk arises between these signals as a result of their interaction
with the saturable gain as discussed above. To see the implications of this for the
speed of response, consider the time-dependent rate equation

dn _j _n_ (n—no) Pin (7.63)
dt ed T, Te Pt
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and assume an optical signal consisting of a constant term and a small-signal sinu-
soidal term '
Pine = Pincs + APinee’™” (7.64)

The corresponding variation of carrier concentration will follow a similar form
n=ns+ Ane'! (7.65)
and we are interested in finding the dependence of the small-signal amplitude An on

the angular frequency w. Performing a small-signal analysis of (7.63) by neglecting
terms higher than first order in A P, and An yields

AnPare|* _ (ns—no)’ (7.66)
APy w2+ T2
where the time constant 7 is given by
1 1 P
1_1 (1 N "“S) (7.67)
T Te Pgat

It follows from (7.66) that the effects of crosstalk can be minimised by using
amplifiers with large values of the saturation power; QW devices have shown the
best performance in this respect. It is also clear from the form of (7.66) that the elec-
tron concentration, and hence the material gain, will faithfully follow the temporal
variation of the optical power for angular frequencies below that corresponding to
T-!. However, for frequencies much above this value, the variation of the optical
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signal is too fast for the gain to follow accurately, and the gain remains close to its
steady-state mean value corresponding to an electron concentration ng.

Whilst the effect of crosstalk between channels is very undesirable for WDM
transmission systems, the underlying effect of gain saturation can also be used as the
basis of wavelength conversion. Wavelength conversion is of interest for wavelength
re-use and for simplifying switching nodes in WDM networks. Consider an amplifier
with two input signals, one of which is at wavelength A\ and carries data, whilst the
second is of constant power at wavelength ;. Now, provided the data rate is not too
fast, as determined by the time constant 7, then the modulation will be transferred
to the signal at \;. Note also that, from equation (7.67), the time constant can be
decreased, and hence higher data rates accommodated, by increasing the mean power
Pints in the modulated signal. This is true for small-signal modulation assuming
uniform optical power throughout the amplifier. If more realistic assumptions are
made then the situation becomes more complicated, although the basic effect of
speeding up the response by the use of a more intense signal still holds.

In order to model the transient response of wavelength conversion, (7.63) must
be modified to allow for two signals (modulated and cw) and for the wavelength
dependence of the differential gain and the transparency concentration. The result-
ing equation must be solved in parallel with a travelling wave equation similar to
(7.61) in order to account for the spatial and temporal evolution of the optical signals.
Solutions have been reported for models which split the amplifier cavity into longitu-
dinal sections and by analytic small-signal solutions. These theoretical results show
that TW effects are extremely important in determining the maximum bandwidth
for wavelength conversion in SOAs. For the co-propagating case, the longitudinal
dependence of gain can lead to considerable enhancement of the bandwidth. The low-
frequency components are transferred from the modulated signal to the cw beam in
the front portion of the amplifier (where the carrier lifetime is long due to the relatively
low signal level), whilst the high-frequency components are transferred closer to the
rear of the device (where the carrier lifetime is shorter due to the strong stimulated
emission rate).

7.5.4 Polarisation

For applications in optical communications systems, SOAs are required to give the
same gain independent of the polarisation of the input signals. However, this is
difficult to achieve in practice since several physical effects in SOAs are polarisation
dependent. In particular, the wave propagation constant and optical confinement
factor are different for TE and TM polarisation. The cross-section of the active
region is asymmetric (the width is typically an order of magnitude bigger than the
thickness) and this leads to polarisation-dependent gain (PDG). To avoid this it
would be necessary to aim for active regions of square cross-section, using etching
and regrowth techniques. However, the fabrication for this is difficult and can lead
to a reduction in saturation power, since a thick active layer gives a larger optical



7 Fundamental Theory of Semiconductor Lasers and SOAs 221

confinement factor I', and this appears in the denominator of the expression for
saturation power, (7.58). One SOA structure with near-square cross-section has been
reported [24] with PDG less than 0.2 dB.

In QW active regions the selection rules for transitions between the conduction and
valence bands add a further polarisation dependence to the optical gain. In this case
strained layer epitaxy [11, 12] can be used to reduce or eliminate the polarisation
sensitivity. If a material is grown that has a lattice constant less than that of the
substrate, the result will be tensile strain. In the opposite case, compressive strain
can be achieved. For example, the use of tensile strain in the barriers between QWs
can be used to equalise TE and TM gain. More details can be found in Chap. 6 of this
book. MQW SOAs have been reported with PDG less than 0.5 dB in the wavelength
window around 1550nm [25], and with PDG less than 0.6dB over the entire 3-
dB bandwidth of 56nm around 1300nm [26] (using tensile strain in the barriers
combined with compressive strain in the QWSs).

7.6 Conclusion

Whilst this chapter has surveyed elements of the basic theory of semiconductor lasers
and SOAs, it should be emphasised that this is just the “tip of the iceberg” and that
many of the topics covered here have been explored in much greater depth in other
specialised publications. Nevertheless, it is hoped that the present minimalist treat-
ment will suffice to give some insight into the design issues and measured behaviour
of these devices. This concluding section is intended to highlight some of the more
important theoretical expressions presented above.

The relations between material gain per unit length and electron concentration,
for example (7.4) and (7.5), are fundamental to all aspects of lasers and SOAs. The
corresponding definition of modal gain (7.8) in terms of optical confinement factor,
as given by the approximation (7.7), is used to take account of waveguide effects and
optical losses. The expression (7.9) for FP cavity gain is used to derive the resonant
wavelengths (7.10) and lasing threshold condition (7.12), as well as SOA gain ripple
(7.53) and optical bandwidth (7.54). The rate equations for electrons and photons
(7.22) and (7.23) determine the transient behaviour of the laser, including the small-
signal modulation response (7.35), the ROF (7.33), damping frequency (7.34) and
turn-on delay (7.43). The linewidth enhancement factor (7.47) is used to describe
the lasing wavelength chirp in terms of changes in carrier density (7.48) or photon
density (7.49). The rate equation for carrier density is also used in the discussion of
SOA saturation, leading to (7.59) for the saturation of material gain and (7.66) for
the crosstalk between signals. However, more accurate treatments of SOAs must use
travelling wave equations to describe the spatial dependence of photon distributions
within the cavity, and (7.61) offers a simple example.

The relatively small number of key expressions noted here are all that is needed
to furnish the simple theoretical description of device behaviour that has been
adequate for the first half-century of semiconductor laser and SOA history. However,
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as technology develops and more complex physics is utilised in device behaviour,
more sophisticated theoretical tools become necessary. This, coupled with the wide-
spread use of numerical simulations of lasers and SOAs, is leading to a much richer
and more challenging theoretical landscape for future developments.
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Chapter 8
Vertical Cavities and Micro-Ring Resonators

Dimitris Alexandropoulos, Jacob Scheuer and Mike J. Adams

Abstract The scope of this chapter is to present the concepts of vertical cavities
(VCs) and p-ring resonators (MRs). The chapter commences with the motivation for
progressing beyond conventional edge-emitting cavities emphasising on the poten-
tial of VC and MRs. The fundamental physics of VC and MRs is then analysed
focusing on device design aspects. VCs are studied for optical amplifier applica-
tions. Lasing VCs are analysed in terms of polarisation dynamics. MRs in single and
multi-ring configurations, like coupled resonator optical waveguides (CROWSs) and
side-coupled integrated spaced sequence of resonators, (SCISSORs) are discussed.
Active MRs for lasers and amplifiers are investigated.

8.1 Introduction

A functional photonic device can be analysed in its three-structural elements: (1)
the photonic material (2) the waveguide structure and (3) the resonator as shown in
Fig.8.1. Although a semiconductor photonic device is a complex physical system it is
instructive to attempt a decoupling of the various effects so that we identify the main
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Fig. 8.1 A photonic device paradigm

consequences of the above elements to the device’s performance. In broad terms,
the photonic material contributes to the device material gain but also determines
other optical properties like nonlinearities via e.g. carrier-dependent dispersion of
the refractive index. The geometry of the waveguide structure, whose effects are
usually lumped in the effective index, affects the transverse mode profile and the
confinement factor, thus modifying the interaction of the oscillating field with the
active material. Finally the resonator shapes the longitudinal mode structure and
determines the free spectral range (FSR) and the quality factor, Q, of the cavity. In
other words, the photonic material, the waveguide structure and the resonator are
effectively three knobs that can be used to tune the photonic’s device properties to
the application’s requirements.

The bulk of the chapters of this book has dealt with the physics of the gain material.
In Chap.7 the reader is introduced to photonic devices (semiconductor lasers and
SOAs). In this chapter we develop the concepts presented there to apply to two novel
resonator structures, those of vertical cavities (VC) and p-ring resonators (MRs).

Schematics of VCs and MRs are shown in Fig. 8.2.What differentiates VCs from
conventional edge emitters like Fabry—Perot (FP) cavities is that emission occurs
along the direction of growth [1]. This feature as will be explained in more detail in
Sect. 8.2 offers grounds not only for exciting physics but also for many applications.
MRs consist of a circular waveguide and a bus waveguide [2]. The resonance is
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Fig. 8.2 Schematic of vertical cavities and p-ring resonators. a VCSEL, b p-ring resonators

created from the requirement that the field propagating in the bus waveguide and the
ring waveguide have the same phase at the coupler. In this sense MRs are travelling
wave devices as opposed to standing-wave devices (like FPs and VCs) where the
resonance is created from the multiple internal reflections from the front and back
mirrors. The fact that no facets or gratings are required for optical feedback makes
MRs ideal for integration with other passive or active elements.

The rest of the chapter is divided into two parts, one dealing with VCs (Sect. 8.2)
and the other with MRs (Sect. 8.3). For the VCs the fundamental concepts and design
implications of these are analysed. The importance of high reflective distributed
Bragg reflectors (DBRs) is outlined and the relevant theory is presented. Given that
there are a few books that deal extensively with vertical-cavity surface-emitting
laser (VCSEL) modelling the emphasis here is put on the design and applications of
vertical cavity semiconductor optical amplifiers (VCSOAs). The first part closes with
the advanced topic of the performance characteristics of spin-polarised VCSELs.

In the second part we deal with MR resonators. The analysis commences with the
fundamental theory of MR by means of analytic relations. The waveguiding proper-
ties are crucial for the design of MRs and hence are treated in some detail. Single and
multi-ring configurations are discussed and analysed. The modelling and design of
active MR structures is then presented. Finally, the potential of MRs as processing
elements operating below threshold is highlighted via an FP-like modelling approach.

8.2 Vertical Cavities

8.2.1 Basic Design Concepts

The distinctive difference of a Vertical Cavity from the edge emitting laser (EEL)
counterparts is that the optical cavity is orthogonal to those of EEL as shown in
Fig. 8.2a. The research and commercial interest in this peculiarity in the cavity ori-
entation is fuelled by advantages inherent in the vertical geometry [3, 4]:
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e VCs are particularly cost-effective devices that can be produced in high yields.
Production cost s greatly reduced by the ability for on-wafer testing and monolithic
fabrication of VCs. Also, it is possible to fabricate VCs in arrays and matrices, a
feature that can be exploited, for e.g. parallel processing applications.

e The vertical geometry of the cavity allows fabrication flexibility absent from EEL.
It is fairly straightforward to fabricate VC of cylindrical shape with wide emission
surface. The optical beam emitted from this structure has a circular profile and low
divergence, and therefore can be easily coupled to other optical components, e.g.
standard telecom fibre.

e The small cavity volume and small cavity length affect the operational characteris-
tics of VCs in several ways; VCSELSs exhibit very low thresholds and VCs can be
easily designed to support a single longitudinal mode. Both these features prove
quite challenging for EEL.

Although initially VCs were intended for telecommunication applications, the
aforementioned advantages have expanded the range of applications to biosensing,
high density optical storage and imaging, to mention a few [5].

The VC literature is already very rich and includes a number of specialised books
[3, 4]. The bulk of the published material concerns laser applications. In this chapter
we put emphasis on VC applications as amplifiers and also highlight the emerging
field associated with VCSEL polarisation properties. The interested reader is referred
to, e.g. [3, 4] for a detailed account of VC for laser applications.

There are four different sets of main design parameters that need to be optimised
for VC for operation either as lasers or amplifiers.

e Optical feedback. The mirrors must have sufficient reflectivity over the correct
wavelength range.

e The resonance wavelength must be close to the Bragg wavelength of the mirrors.

e The active material’s maximum gain must be aligned with the cavity resonance

e If multi-quantum wells (MQW) are used these must be positioned on the cavity
antinodes.

However, apart from the above there are also some additional technological and
operational challenges that need to be considered. VCSELs emit in only one longi-
tudinal mode, as imposed by the small length of the cavity, but can emit in several
transverse modes which can compromise performance. Also, confinement of pho-
tons and electrical current is very important for minimization of threshold current
and efficiency maximisation. An additional issue is the heat generation due to the
small active dimensions and current flow through the DBRs that induces variation
of the refractive index. On top of these one should also add the requirement for
sufficient output power. Producing a universal design that addresses all the above
is indeed a difficult task, as it is often the case that a design scheme that remedies
some parameters will deteriorate others. In this sense the appropriate VC structure
is application-dependent.

The optical field can be confined using gain guiding, index guiding and antigu-
iding mechanisms [5]. Current leakage can be minimised using ion implantation to
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define current paths through change of the electrical resistivity. An electrical path
for the injection current can be provided by additional doped layers on either surface
of the active layer (tunnel junction). The most popular VCSELSs that are also mas-
sively produced are oxide aperture VCSELs. These are index guided structures that
provide strong confinement of the optical field due to the refractive index difference
between the oxide layer and that of the semiconductor layer. Also, oxide apertures,
being insulating layers, confine injection current through the aperture. Overall oxide
aperture VCSELSs exhibit low threshold currents and enhanced efficiency but limit
output power.

The purpose of the above short account of the various technological open
issues in VC technology is to highlight the interrelation of the various parame-
ters involved in VC device operation. A more detailed account of device details
is certainly beyond the scope of the chapter at hand and can be found elsewhere
[3, 4].

In the following sections we will develop a better understanding on how these
four sets of design parameters affect performance.

8.2.2 Optical Feedback and DBRs

The small length of the cavity (<1 um) translates into small values of single pass
gain. In order to reach lasing, the optical field must experience gain through many
roundtrips. For this to happen, the mirrors must exhibit very high reflectivities, higher
than 99%. This is by no means an easy task and requires mirror technology that goes
well beyond the cleaved facets of simple EELs. High reflectivities can be obtained
from (i) metal mirrors, (ii) stacks of dielectric layers and (iii) stacks of epitaxial
layers [3, 4]. Of the three, the latter is the most attractive fabrication-wise as it
permits monolithic growth of the whole structure providing that the Bragg stack
material and the active material are compatible.

Usually the active material used for telecom wavelengths (1.3 and 1.55 um) in EEL
is InGaAsP [6]. The major drawback of this alloy is that it suffers from temperature-
dependent losses and has motivated research in alternative material systems like
AlGalnAs [7] and GalnNAs [8] as well as (Ga)InAs/GaAs Quantum Dots (QDs)
[9] for EEL applications. Naturally, it would be expected that the active material
technology of EEL, namely InGaAsP alloys, would be adopted for VCs as well.
However, this is not favoured for a number of fabrication and performance issues.
It is noted that the choice of material system for telecom VCSELSs is a compromise
between fabrication complexity and performance requirements.

It is preferable fabrication-wise that the VCSEL structure is monolithically fab-
ricated. Using InP-based active material the requirement for monolithic fabrication
obliges the use of compatible InP-based DBRs. In this case high reflectivities can
only be achieved with InP-based DBRs with nearly 40 pairs due to the small refrac-
tive index difference of the DBR layers. Additionally InP-BDRs have poor thermal
properties. GaInNAs poses an alternative solution as it is compatible with GaAs/
Alj_Ga,As DBRs with high refractive index contrast and thus few number of
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layers. Despite the advances in GaInNAs material growth, it still lacks the quality
compared with InGaAsP and AlGalnAs counterparts. The incompatibility of DBRs
with appropriate refractive index difference with InGaAsP has motivated the devel-
opment of wafer fusion technique for the fabrication of InGaAsP-based VCSELs
with high contrast GaAs/Al;_,Ga,As DBRs and already there are commercially
available VCSELSs that employ this technique [10, 11]. Other commercial avail-
able VCSELs involve more sophisticated designs: Vertilas use one epitaxial Alln-
GaAs/AllnAs DBR and one dielectric DBR and incorporate a buried tunnel junction
for optical and current confinement [12]. Successful monolithic fabrication of InP-
based VCSELs with undoped-InAlGaAs—InAsAs DBRs (28 and 38 pairs for the top
and bottom DBRs respectively) has been demonstrated and subsequently commer-
cialised. In Ref [13] the limitation of large numbers of layers is relaxed with the use
of InAlGaAs phase-matching layer and an Au metal layer in order to increase the
reflectivity. Additionally, the use of undoped layers for the DBRs result in suppressed
free carrier absorption loss.

8.2.2.1 Transfer Matrix Method for the Calculation of the DBR Reflectivity

DBRs are composed of alternating layers of high and low refractive index with layer
thickness of A/4, where X is the wavelength in each layer. As mentioned before it is
important to control the reflectivity of the DBRs and the wavelength of maximum
reflectivity. Transfer matrix is a convenient method for the calculation of the DBR
reflectivity. The optical fields propagating in (E~) and out (E™) of the (i + 1)-layer
are related to the fields propagating in and out of an adjacent i-layer by the matrix
equation (see Fig.8.3) [3], [14]:

1 ri

E*t _ [ exp(—jkih;) 0 4 |[ET
E™ ] 0 exp(jkihj) || _ri 1 E™ |,

ot

Et
M [E, ]i 8.1)

where k; = (2mN;/A) — joaps,;, N; the refractive index of the i layer and oaps,; the
absorption of the i layer. The term:

exp(—jkihi) 0
[ 0 exp(jk,-ho] 8.2)

accounts for the phase accumulation due to field propagation in the i layer of width A;.
The term:

i i (8.3)
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Fig. 8.3 Distributed Bragg reflector schematic

accounts for the effects of transmission (#;) and reflection (r;) that the field experiences
at the interface of the two layers.

Using the transfer matrices the optical fields transmitted and reflected from the m layer
are related to the optical fields transmitted and reflected from the O layer by:

E+ o E+ | mi1 my2 E+
|:E_:|m:1_[1Mi|:E_]i=|:m21 mzz][E_}o ©

i=

The effective field reflectivity observed at the O layer is given by:

E; rmmil —m

0o _ tmmii 21

Teff = —fp = ———————— (8.5)
Eo My, — M2

From (8.4) to (8.5) the effect number of layers m on the reflectivity characteristics can
be calculated as shown in Fig. 8.4, for AlAs/GaAs DBRs (the refractive indices for AlAs
and GaAs are 2.89 and 3.45 respectively).

8.2.2.2 The Assumption of Hard Mirrors

A convenient assumption that lends itself for integration with dynamic device models, is
that of hard mirrors. According to this, the DBRs are approximated as single layer hard
mirrors whose reflectivity is given by [15]:

2
1 — qp2m—1b
RDBR = (m (86)

where: p, ¢ and b are the low-to-high refractive index ratio of intermediate layer,

first DBR interface and last DBR interface, respectively, given by p = %IOG":{ q =

Niow | . . _ Niow
Nuigh | 1*'DBR interface and b = NHIGH

Application of the method requires the modification of the cavity length. The field
penetrates and propagates through the DBR and thus experiences phase change. The
effects of the propagation in the DBRs in the context of the assumption of hard mirrors
are approximated by the length [15]:

last DBR interface -
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In the above expression, A, is the cavity resonance in free space and N, is the cavity
refractive index. We will use this assumption in the analysis presented in Sects. 8.2.4 and
8.2.5.

8.2.3 Material Gain

The choice of material gain determines the wavelength of operation and it is dictated by
the application. Whatever this is, the material gain peak must coincide with the cavity
resonance. The fine-tuning can be achieved with bandstructure engineering presented in
detail in Chap. 7 and involves the use of multi-quantum well structures (MQW). Given that
in MQW-VCSELSs the active material does not span the whole cavity, the maxima of the
optical field (field antinodes) must be aligned with the MQWs. The gain enhancement
factor &, discussed in the following section is a useful parameter that quantifies the
interaction of the optical fields with the active material.

8.2.4 The Gain Enhancement Factor

The gain experienced by the optical mode oscillating in the cavity is given by (see 7.8,
Chap.7):
& =Tgm — oss (8.8)
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where g, is the material gain and oo the loss. T is the confinement factor that consists
of three terms:
=TIy T, (8.9)

Iyy = I'xT"y is the lateral confinement factor commonly used in EEL laser modelling (see
7.7 of Chap.7) and I'; is the longitudinal factor [16]. For EEL I'; is usually not considered
as it is unity for most cases, expect some (e.g. DBR lasers) where it is represented by
the fill factor. In VCs on the other hand it is the longitudinal factor that is important
while Iy is unity due to large lateral dimensions (>5 um). I'; is defined as the ratio of
optical intensity confined in the active region along z, to the total intensity distributed in
the cavity of length L:
factive EZ(Z)dZ

FZ . W (8.10)

E(z) is the electric field which is approximated by E(z) = E, cos(kz). The longitudinal
confinement can be calculated by substituting the expression for E(z) into (8.10). Inte-
gration can be simplified if it is performed over the length ¢, of one period and the result
is multiplied by the ratio of the number of active segments (d/f) over the number of half
wavelengths L /(X /2) (periods)

dr |, cos®(kz)dz

7 = EW (8.11)
Integration yields:
sin (271NC%) d
FZ:Z HT&CC =z-§ (8.12)
where sin(2w Net /Ac)
E=1+ W (8.13)

& is termed as the gain enhancement factor [16] and attains values from 1 to 2. When the
QWs are placed on the field maxima, interaction is maximised producing maximum gain.
This is the case that corresponds to & = 2. When, on the other hand, the QWs are not
aligned with the standing wave antinodes, then the part of the active material is rendered
useless thus not contributing to the stimulated emission process. This case is described
by & = 1. It is apparent that & is a crucial design parameter.
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8.2.5 Vertical Cavity Semiconductor Optical Amplifiers (VCSOA)

The theoretical framework for the modelling of SOAs and EELs is presented in detail in
Chap.7. This is applicable to the cases of VCSOAs and VCSELs with the appropriate
changes to account for the “peculiarities” of the vertical geometry i.e. the DBR reflectors
through the assumption of hard mirrors and the modification of the confinement factor, and
thus modal gain, to include the gain enhancement factor. As mentioned in the introductory
comments of this chapter, VC for conventional lasing applications have been widely
studied, hence we choose to focus on VC as amplifiers and also deal with manipulation
of VCSEL polarisation states.

For optical amplifiers there are various degrees of model accuracy depending on the
application and timescales of the phenomena exploited. The most popular methods are the
rate equation (RE) method [17] and the Fabry Perot (FP) method [18]. The discrepancies
between the two methods were resolved by Royo and co-workers [19].

The VCSOA gain in transmission and reflection are given by the known expressions
for FP etalons (see 7.9 and 7.52 of Chap.7)

(I =Ry)- (- RpGy

Gr = 8.14
"7 (1= JRyR;G,)? + 4 /RyR; Gy sin® ¢ 619

G /Ry — VRG> + 4 /R,R Gy sin® ¢ @15
R — .

(1 — J/RyRfGy)* +4/RyR Gy sin® ¢

G, is the single-pass gain given by Gy = exp[égm? — ajossL]. The phase shift ¢, is
described by:

27 N.L 27 L
= he (Esignal - Er) + TCEsignalAN (816)

¢

E, is the energy of the resonance. The first term in the rh.s. of (8.16) is the linear
phase shift due to the spectral difference (detuning) between the signal wavelength and
the cavity resonance. The second term is the nonlinear phase change that gives rise to
nonlinear effects. More specifically, the origin of the nonlinear effects can be traced to
the dispersion of the refractive index, AN, with carrier concentration (n). There are many
physical mechanisms that affect the refractive index [20]; the principal contributions to
the carrier-dependent refractive index are (a) the bandgap shrinkage (b) the free carrier
plasma effect, often termed as free carrier absorption and (c) the carrier induced shift of
gain or absorption which alters refractive index through the Kramers—Kronig relation.
For active media the dominant mechanism is the carrier-induced shift of gain and AN
reads as:

dN
AN = —ny))— (8.17)
dn

where n7 is the carrier concentration when the input signal is absent and dN/dn is the
differential refractive index.

The RE approach involves the solution of the rate equations for photons S and carriers
n (8.18, 8.19) [17]
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dn J N &lc
— = - — ——gmS (8.18)
dr eLvow T Ng

ds Elc S
a = Rsignal - ,BFRsp + ngms - ?p (8.19)

Rgignal is the pumping rate related to input power Py, 7. is the electron lifetime and
Tp is the photon lifetime. Lyqw is the total width of the Quantum Wells (QWs), j is
the injected current density, e is the electron charge, B the spontaneous emission factor,
I the longitudinal confinement factor (or fill factor) defined by the ratio of the active
length over the cavity length (see 8.12), and Ry, is the spontaneous emission rate defined
as Ryp = Bn? where B is the bimolecular recombination constant. The details of the
vertical cavity are expressed via & and 7,. At steady state the photon density S (including
amplified spontaneous emission photons) can be expressed in terms of material gain, gp,.
The resulting expression can be replaced in (8.18) to solve for carriers and hence g, to
calculate G and from (8.14) to (8.15) the amplifier characteristics.

In the context of the FP method, the rate that corresponds to signal photons and the term
that corresponds to amplified spontaneous emission (ASE) photons, can be decoupled
from emission rate expressed by the term ENLgCng of (8.18). The two different contri-
butions can be found by applying the appropriate boundary conditions and solving the
z-dependent field equation. FP method can be further simplified by applying the Longi-
tudinally Average Travelling Wave Approach. (LTWA) by Adams [18]. The underlining
assumption of LTWA is that the photon density (signal and amplified spontaneous emis-
sion) is uniform throughout the cavity and approximated by average quantities Sy, for
signal photons and Sgpon for amplified spontaneously emitted photons.

o [(Gs—1)-[(1 = R+ RfGy) + (1 — Rp)(1 + RpGy)] 5| RN
L gLc(1 — Ry RpG?) gc
(8.20)
(Gs—1)- (1= Rp)(1+ RpGy) Pin N,
Ssig = 5 " X £ o N2 (8.21)
L (1 = J/R/RyGy)™ +4/R;R,Gysin® ¢ signat ITI(W/2)=Lege

In the above, Ry and R), are the reflectivities of the front and back mirrors respectively,
using the hard mirrors assumptions and L. is the effective cavity length. Using (8.20)
and (8.21) the rate equation for the carrier density can be modified as:

o __J _m $le .
T gy " n Ny (EmEDSwonEDBEN + am(E)Sie(E)) - (822)

For given current density (8.22) yields the carrier and thus material gain in steady state.
The single-pass gain, Gy, can then be calculated and substituted in the expressions for the
VCSOA gain in transmission and reflection (8.14, 8.15). The amplifier gain of GalnNAs
VCSOAs calculated following the methodology outlined above, is shown in Fig. 8.5.
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tively. The effective cavity length is 4.22 pm

An alternative approach to the FP method bypasses the intermediate step of the RE
for the solution of the carrier and photon rate equations to calculate the material gain for
given current injection conditions, and thus Gr and Gr. Instead, it is approximated with
as a function of the average optical intensity in the cavity Iy, the saturation intensity I
and the saturation gain, g,, via the expression (in the steady state) [21]:

L= _18L L (8.23)
= — (oss .
1+ Iav/Is loss

where g is the modal gain and I is given by I = E/ ToossTe, S€€ (7.58). The single-pass
phase change is then approximated as:

_ golLa Loy /15
¢ = ¢, + ) (71 n Iav/ls) (8.24)

The ratio of the transmitted (/irans) and reflected (Irer) intensities with [ are expressed
in a straightforward manner from (8.14) and (8.15) as

Itrans _ 11711 (1 - Rf) . (1 - Rb)Gs (8 25)
I Is (1 — /RuR;G)? + 4/ Ry Ry G sin® ¢ '
Let  Tin (VR — VRyGy)? + 4/ Ry Ri Gy sin” ¢ 8.26)

Is Iy (1 —/RoRiGg)? + 4/ Ry Ry Gy sin® ¢
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Fig. 8.6 VCSOA nonlinear characteristics: calculated reflected verses input power relationship
for a 1550nm VCSOA exhibiting different shapes of OB and nonlinear switching for applied bias
current and initial wavelength detuning as indicated in the figure. (Reprinted with permission from
[22] Copyright 2010, American Institute of Physics)

The ratio of average optical intensity to I; is given by

Iﬂ _ Itrans (1 + RbGs) . (1 - Gs_l)
IS IS (1 - Rb)Gs

(8.27)

Equations (8.25-8.27) can be solved numerically to give transmitted and reflected inten-
sities. The powerful point of the method is that performance is analysed using device
parameters that are readily available from experiment and therefore lends itself for fast
estimations of device performance and comprehension of the effects of various magni-
tudes.

FP method is applicable for the cavities where the expressions of gain in transmission
and reflection (8.14, 8.15) hold. For VC the FP method is applied along with the assump-
tion of hard mirrors. The VC effects are then accounted for in the modified expressions
for the reflectivities and effective cavity length. The FP method is applied in Fig. 8.6 to
calculate the nonlinear reflected verses input power characteristics.

8.2.6 VCSEL Polarisation Properties and Spin-VCSELs

VCs unusual polarisation properties offer solid ground for interesting device physics and
applications. The plurality in VC polarisation states arises from a combination of factors
[23];

e VC emit in only one longitudinal mode (due to the small cavity length), but in several
transverse modes.

e VCs mostcommonly have circular profiles hence based on the cavity waveguide profile,
emit in both orthogonal modes that should be in theory degenerate.

e Quantum confinement is perpendicular to the emission axis which yields modified
selection rules (see Fig.8.7).



238 D. Alexandropoulos et al.

\
!

E_
&'ij

l@nsnnnnnnnnnnnnns

HH

Fig. 8.7 Optical selection rules in the context of the SFM model. n4 (n_) carrier densities refer
to spin-down (spin-up) populations which couple to the right- (left-) circularly polarised field
component E(E_). E(E_) are coupled though the birefringence decay rate y,, whereas the
n4(n_) through the spin relaxation rate y;

e The relative orientation between optical emission and the crystal axes leads to bire-
fringence thus relaxing degeneracy of the two orthogonal polarisations.

e The nonlinear susceptibilities induce self- and cross-saturation thus modifying the
optical gain of the two polarisations contributing to the lift of degeneracy.

From a device viewpoint, the two orthogonal polarisations states may exhibit a plethora
of nonlinear phenomena like switching and bistability that form the basis for various
device functionalities. These can be triggered by applied bias current, optical injection
and variation of device temperature.

The interdependence of the various factors listed above that affect VCSEL properties
are best described with the Spin-Flip Model developed in [24]. The polarisation state of
the emitted light depends on the angular momentum of the quantum states involved in
the emission /absorption process and the details of the laser cavity. Electron—hole recom-
bination occurs through two distinct carrier densities that differ in spin orientation. The
two carrier densities (spin up and spin down) are coupled through spin-flip processes
characterised with spin relaxation rate y; that tend to equalise the two. Recombination
of electrons and holes with spin up yields right-circularly polarised light, whereas left-
circularly polarised is emitted from recombination of electrons and holes with spin down.
Left and right circularly polarised emissions are coupled through birefringence quantified
with birefringence rate y,,. The modes associated with the two circularly polarised emis-
sions may experience different gain-to-loss ratio that leads to an amplitude anisotropy
modelled with the gain anisotropy rate y,,. All these effects are accounted for in the SFM
model phenomenologically by means of the rates ys, yp, and yq.

The SFM rate equations are expressed more conventionally in terms of normalised
carrier variables N = (ny +n_)/2andm = (ny —n_)/2, where n4 (n_) is the spin down
(up) carrier density. Optical pumping, is included through the circularly polarised pump
components (1, n—). Expressing the complex fields in terms of real and imaginary parts
as By = E4 r +iE+ [, the rate equations become:

dEi,R
4 =k (Ntm—1)(Exgr —aE+) —VaE+r +VpEx1 (8.28)
dE+ ;

=k (N£tm—1)(Ex; +@E+r) — YaEx 1 — VpE+r (8.29)

dr
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where 2k = 7, Vand y = 77!, with 7, and 7, as the photon and electron lifetimes,
respectively, « is the linewidth enhancement factor, y,, is the birefringence rate, y is
gain anisotropy rate and ys is the spin relaxation rate. The total normalised pump is

n = n4 + n—, whereas the pump ellipticity, P, and the ellipticity of the output ¢ are
defined as:

p— ZI J‘r Z: (8.32)
=12 = 2
E " —|E_
6= % (833)
|E+[" +[E-]

The above equations can be easily modified to account for optical injection [25]. Equations
(8.28-8.33) can be used to calculate the stability maps in the P, n plane for solitary
optically pumped VCSELs (Fig.8.8a) and corresponding time traces (Fig.8.8b) for a
specific operating point of Fig. 8.8(a) [26]. The dynamics are resolved using the Largest
Lyapunov Exponent (LLE) method [27] whereby negative values of LLE correspond to
stability, zero to oscillatory behaviour and positive values to regions of more complex
dynamics tending towards chaos as the LLE increases.
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Fig. 8.9 Micro ring resonator in an Add/Drop multiplexer configuration

8.3 Microring Resonators

8.3.1 Fundamental Concepts

Micro ring resonators are formed by closing an optical path (e.g. a waveguide) upon itself
to form a loop (see Fig.8.9). Light can propagate either clockwise or counterclockwise
along the closed loop while accumulating phase according to the wavelength and the
effective index of the waveguide mode:

E(s) = Egexp(ikonests) (8.34)

where kg is the wavenumber in vacuum, ne is the modal index and s is a coordinate
along the loop given by RA¢ where R is the radius of the micro ring and A¢ is the angle.
Because of the cyclic boundary conditions, the phase accumulation in a roundtrip
along the resonator must be an integer multiple of 27r. Therefore, only a discrete set of
frequencies, known as the resonance frequencies, can satisfy this condition and resonate

in the micro ring:
wm = mc/Rnegt (8.35)

where w,, is the mth resonance frequency of the micro ring resonator and c is the velocity
of light in vacuum. It should be noted that (8.36) is in fact a transcendental equation
because n.fr is also frequency dependent. This point is highly important because it affects
one of the fundamental properties of the micro ring resonator—the free spectral range
(FSR, see below).

Practical waveguides also incorporate various propagation loss mechanisms such as
absorption and Rayleigh scattering caused primarily by the roughness of the waveguide
side walls [28]. Therefore, (8.34) describing the field at point s must be amended to
include an exponential attenuation of the electric field:

E(s) = Egexp(ikonegrs — as) (8.36)

where « is the attenuation coefficient. The existence of propagation loss modifies the
resonance condition by introducing an imaginary part to the resonance frequency or,
equivalently, a cavity lifetime t indicating the time a photon can resonate in the cavity
before it is absorbed or scattered.
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Probably the most important properties of a micro ring resonator are its FSR and
quality factor (or equivalently, its Finesse). The FSR is the spectral separation between
adjacent resonance frequencies and the quality factor (Q) is proportional to the cavity
lifetime —Q = wt. The Q measures the cavity lifetime in units of the optical frequency
periods [29]. Equivalently, the Finesse measures this lifetime in units of the roundtrip
time, i.e. home many “roundtrips” the photon survives in the cavity before it is scattered
or absorbed: F' = t/t,; where 7, is the roundtrip time.

As mentioned above, the evaluation of the FSR is a somewhat subtle task because of
the dependence of the effective index on the frequency. Approximating the dependence
of the effective index on the frequency to the first order Taylor expansion, the FSR of a
micro ring resonator is given by:

Awrsr = c¢/Rng, (8.37)

where ng is the group index given by ng = ner(wo) + wp - dn/dew and wy is the angular
frequency around which the effective index is expanded.

It is practically difficult to get access to an isolated micro ring resonator, i.e. inject-
ing and extracting light into and out of it. Thus, in practical micro ring devices, /O
waveguide/s are coupled to the micro ring. Referring to Fig. 8.9, two I/O waveguides
are coupled to the micro ring in order to inject and extract light into and out of the
device. Note, that this is a specific configuration (often referred to as the add/drop mul-
tiplexer configuration) and configurations employing single or multiple I/O waveguides
are equally possible.

Assuming ideal, loss-less, directional couplers with power coupling coefficients of
k1 and k (see Fig.8.9) and overall roundtrip loss of L = 1 — exp(—27 R - ), the field
transmission function at the Through and Drop ports (see Fig. 8.9) are given by [30]:

—Jkika LY * exp(ip/2)

P = e T = Lexplie)’ (8:382)
Py = VT8 = YT =L expie) 5350

1 = (I = x1)(I = k2) L exp(ig)

where ¢ = 27 - Aw/Awrsr and Aw = o — wy is the frequency detuning from the
nearest resonance frequency (wg).

Figure 8.10 shows a theoretically calculated D and T spectra for k; = 0.2, ko = 0.4,
a = 1dB/cm, ng = 1.57 and ring radius R = 20 um. As can be expected, the peaks
(notches) at the Drop (Through) ports correspond to the resonance frequencies of the
micro ring and the separation between successive resonance frequencies is the FSR. As
can be expected, the FSR is determined by the circumference of the micro ring and the
group index of the waveguide, where the longer the circumference and the larger the group
index, the smaller the FSR. The spectral width of the resonance peaks are determined by
loaded quality factor which is determined by the coupling coefficients of the propagation
losses in the micro ring. This can be clearly seen from the denominator in (8.38)—note
that the role of the signal attenuation per roundtrip, L, is identical to that of the coupling
losses—(1 — k)1/2.
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Fig. 8.11 Generic Fabry-Perot cavity

It is important to note that the spectral properties of the micro ring resonators are
practically equivalent to those of the Fabry-Perot (FP) cavity as long as nonlinear effects
are neglected. Figure 8.11 illustrates a generic FP resonator where the reflection and
transmission coefficients at each interface are given, respectively, by ry 2 and 1 > and the
phase accumulation in a single roundtrip is given by ¢ = 2kond, where n is the refractive
index and d is the thickness of the FP cavity.

The spectral responses of the transmitted and reflected signals are given by [31]:

E, = wﬂm (8.392)
1— rir exp(z¢)

ity exp(i¢/2) E. (8.39b)

" L—rinexp(ig)
where E,, E; and Ej, are, respectively, the reflected, transmitted and inserted fields.
Note the complete analogy between r; and (1 — «,)'/2, t; and «;, E, and T, and E,
and D. Intuitively, one can consider the two half rings of the micro ring resonator as
equivalent to the opposite propagation directions in the FP cavity, i.e. in the micro ring
the optical paths of the counter-propagating waves are spatially separated. Consequently,
the reflection coefficients in the interfaces of the FP cavity, which connect the amplitudes
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of the counter-propagating waves in each roundtrip, are equivalent to the bar transmission
coefficient of the directional couplers in the micro ring resonator.

Although it seems that the FP cavity and micro ring resonators are completely equiv-
alent, there are two subtle differences which must be indicated. First, for high intensities
where nonlinear effects are non-negligible, the FP and the micro ring differ because of
the formation of a standing wave in the FP cavity (and not in the micro ring resonator).
This standing wave generates an index modulation (because of nonlinear effects) which
modifies the coupling and the interactions between the counter-propagating waves.

Another profound difference between the micro ring and the FP resonators is their
response to rotation. A micro ring resonator circumvents a finite area and is, therefore,
susceptible to Sagnac phase shift when subjected to rotation. As a result, when rotated, the
resonance frequencies of the micro ring undergo a shift which depends on the magnitude
and sign of the rotation. The FP cavity on the other hand does not circumvent an area and
is, therefore, unaffected by rotation.

8.3.2 Waveguiding Properties of Micro Ring Resonators

In the previous section we have treated the properties of the curved waveguide comprising
the micro ring as similar to those of a conventional (straight) waveguide. Although such
analysis is fine for illustration and for extracting the main properties and features of
the micro ring resonator, there are several subtle issues and differences that should be
considered when an accurate analysis of such device is required.

In particular, there are two important effects which should be considered. The first
is the transverse (or radial, to be precise) mode profile of a micro ring resonator. The
lowest order mode of a conventional, straight waveguide with symmetric cladding (e.g. a
symmetric slab waveguide in the 1-D case) is symmetric. In a curved waveguide, on the
other hand, the reflection symmetry of the structure is removed because there is a clear
difference between the inner and external radii of the waveguide boundaries.

The second effect is the emergence of radiation losses stemming from the curved
geometry. This loss mechanism, often referred to as “bending losses” is inherent to the
circular geometry and can be reduced by enlarging the bending radius and increasing the
index contrast between the micro ring core and clad but cannot be eliminated completely.

Figure 8.12 shows the radial profile of silicon over insulator waveguide (250 nm x
400nm) for various bending radii. As the bending radius is decreased the mode profile
becomes more asymmetric and is shifted towards the external interface of the waveguide.
An intuitive understanding of this phenomenon can be obtained by employing a conformal
mapping to the radial and angular coordinates [32]:

p=R-exp(U/R), (8.40a)
6 =V/R (8.40b)

where R is in arbitrary radius although it is convenient to set it as the radius of the micro
ring.
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The conformal transformation (8.40a) maps the wave equation in cylindrical coordi-
nates into a Cartesian-like format (with U and V as the x and y coordinates) but with an
equivalent index profile nq:

PE  PE 5,
S52 T gy T hkineg W) E =0, (8.41a)
neq(U) =n(U) -exp(U/R) (8.41b)

The equivalent index is shown in Fig.8.13 (the parameters are defined in the figure
caption). Note, that the equivalent index increases exponentially as a function of U (i.e.
it is effectively larger for larger radii). As a result, the mode profile is “pulled” towards
the larger index resulting in an asymmetric profile.

The mechanism of the bending losses can also be explained by the effective index
profile. Because the index effectively increases monotonically for larger radii there are
no real confined modes for the curved waveguide, only leaky ones—a phenomenon which
is manifested by the existence of bending losses.

8.3.3 Single and Multi-Micro Ring Configurations

The add/drop multiplexer scheme presented in Sect.8.3.1 is probably one of the sim-
plest micro ring configurations which have been studied. However, from the practical
applications point of view, in particular for telecommunication applications, the single-
micro ring add/drop configuration exhibits several deficiencies. The spectral response
of a single add/drop multiplexer is periodic, thus as an optical filer it does not isolate a
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Fig. 8.14 Indirectly a and directly b coupled micro ring resonators

single frequency band but rather a set of bands which are separated by the FSR of the
micro ring. For telecommunication applications, it is desired that the filter shape would
exhibit a flat-top, sufficiently wide, profile and high extinction ratio. The single micro
ring filter, on the other hand, possesses a Lorentzian line-shape which is inappropriate
for data transmission. In addition, extending the filter bandwidth requires larger coupling
coefficients which, in turn, significantly reduce the extinction ratio of the filter.

In order to resolve some of these deficiencies, multiple-micro ring configurations can
be employed. Multiple micro ring filters can be realised by cascading single micro ring
add/drop filters or by coupling the micro rings directly (see Fig. 8.14). It is interesting to
note that despite the very different geometry, both configurations are equivalent (although
not for the same coupling coefficients). In fact, both configurations can be employed in
order to realise conventional Chebyshev or Butterworth optical filters [33].

By cascading several micro rings it is possible to achieve a flat-top profile, the desired
bandwidth and the extinction ratio. The design parameters are the number of micro rings
and the coupling coefficients which can be determined using the tools of digital signal
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processing which allow to design the positions of the zeros and poles of the transmission
function [33].

The periodic transfer function of the micro ring can also be amended by employing the
Vernier effect and using multiple micro rings having different FSRs [34]. Consequently,
only frequencies which are in resonance with all micro rings comprising the filter are
passed instead of multiple bands. The employment of micro rings with different radii
effectively increases the FSR of the device providing it with a single transmission range
within the telecom band.

In addition to the enhanced FSR, the employment of the Vernier effect can facilitate
the tunability of the device. In order to tune the transmission of micro rings-based filter
composed of identical across the telecom band it is necessary to shift the resonance
frequencies of the micro rings by atleast 40 nm. However, if the Vernier effect is employed,
it is necessary to shift these resonance frequencies by the largest FSR at most [34]. In
this way, different resonances of the individual micro rings can be combined to achieve
a transmission band across the complete band.

Coupled micro rings devices have interesting applications beyond filtering and
telecommunications. Coupled resonator waveguides such as the CROW [35],
SCISSOR [36] and related structures [37], exhibit slow group velocity and provide an
attractive approach for the realisation of optical delay lines and optical storage devices
[38], enhanced optical sensors [38] and more. In addition, the reduction in the group
velocity is accompanied with an increase in the intensity of the field which can prove to
be useful for exploiting optical nonlinearities at relatively modest power levels.

Coupled resonators slow-light structures have been studied extensively during the past
decades. Figure 8.15 depicts schematics some of the most studied coupled micro ring
structures. The CROW (Fig. 8.15(a)) consists of a series of directly coupled and identical
micro resonators. The transmission properties of the CROW consist of passbands centred
at the resonance frequencies of the individual resonators. The dispersion relations at the
passband can be calculated either using a transfer matrix method [39] or a tight binding
approach [40] and yield a cosine shaped relations:

1
Awg = S QAa ~ V& - Qcos(KA)/mm, (8.42)

where Awg = wg — Q2 is the difference between the optical frequency and the resonance
frequency of an individual micro ring. k represents the coupling between the adjacent
microdisks and 1/2-Q A« is the self-frequency shift [40]. It should be noted that the most
important parameter determining the dispersion relations is the coupling between adjacent
coefficients. The stronger the coupling, the wider the passband which is formed around
the resonance frequency. The coupling coefficient also determined the group velocity of
the wave propagating along the CROW. Figure 8.16 depicts the dispersion relations of
the CROW for various coupling coefficients. Decreasing the coupling coefficient results
in a more shallow dispersion relations and, correspondingly, slower group velocity.
The group velocity at the center of the passband is given by:

vg = QVKA/mr = 2A - AVEsR - VK (8.43)



8 Vertical Cavities and Micro-Ring Resonators 247

(a) (b) , .- (0
4 -. Vg
4 \z ! /-'// iy /’/
) A~
7 \ v /
p L8 / Y N
- o r
:\ r /! /{ ;3//
-\{ rd _//. by | /
F ] 7 % }
L i 4 /': ‘;,,/ 3
.
Fig. 8.15 Slow-light structures: a CROW; b SCISSOR; ¢ SC-CROW
131 1

-
[X]

-
-

Normalized Frequency

08
08
07 1
D.s L L L L
0 0.2 04 06 08 1
Normalized Wavevector

Fig. 8.16 Dispersion relations of a CROW

Although this is the fastest group velocity in the passband, the middle of the passband
is the regime with the minimal group velocity dispersion which is crucial for reducing
pulse distortions. Assuming a CROW consisting of N micro ring, the overall delay of the
pulse can be approximated by:

74 = N/2AvEsRVK (8.44)

The corresponding bandwidth of the passband can be obtained directly from (8.42):

Awband = 4\/E . AUFSR (8.45)

Note, that the slower group velocities and longer delays accompanied to smaller cou-
pling coefficients are achieved at the expense of narrower bandwidth. Taking the usable
bandwidth of the CROW as the linear part of the dispersion relations (say, half the band-
width), the delay-bandwidth product, which is one of the common figures of merit of delay
lines, is:
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T-Awye =N (8.46)

The direct trade off between the delay and the bandwidth is clearly seen because their
product depends only on the number of resonators. (8.46) indicates an interesting and
important feature of CROWs when it comes to performance, the specific details of the
realisation are almost insignificant and the only parameter which matters is the number of
micro rings. It should be noted, however, that this is not completely accurate because other
parameters such as the FSR and loss are also important and although not directly related
to the delay-bandwidth product, they do have a significant impact on the performance of
the delay line. In particular, the overall loss of the signal propagating through the CROW
can be estimated by:

Loss = aLRTN /v« (8.47)

where Lg7 is the physical roundtrip length of each resonator and a is the propagation
loss coefficient of the waveguide comprising the micro ring. Thus, trying to improve the
delay-bandwidth product results in larger overall transmission loss through the CROW,
which is also a factor which must be taken into consideration.

The SCISSOR (Fig.8.16(b)) consists of a series of indirectly coupled and identical
micro-resonators. The micro rings are coupled to a mutual waveguide (or waveguides)
which transfer the optical signal between the micro rings. There are several important dif-
ferences between the transmission properties of the CROW and the SCISSOR. First, the
SCISSOR exhibits to independent bands. The first set stems from the resonance frequen-
cies of the individual micro rings and the second—from the periodicity of the structure
determined by the length of the waveguide sections connecting the micro rings. Another
important difference between the two structures is that in CROWs the transmission bands
are centred on the resonance frequencies of the micro rings while in SCISSOREs it is the
bandgaps which are located at these frequencies.

Figure 8.17 depicts the dispersion relations of a SCISSOR. The parameters are defined
in the figure captions. Despite the more complex structure, the dispersion relations of each
transmission band of the SCISSOR are very similar to that of a CROW. The reason is
that both bands stem from a similar mechanism—the periodicity of the micro ring and
the SCISSOR structure. It should be noted, however, that other slow-light micro ring-
based structures such as SC-CROW (see Fig.8.15(c)) [37] exhibit different shapes of
dispersion relation (i.e. not cosine shaped) with unique features such as mid-band zero
group velocity points, etc.

8.3.4 Active Micro Ring Structures

The inherent feedback mechanism and resonance frequencies of micro ring resonators
(as opposed to FP resonators which require the realisation of feedback mirrors) render
them ideal for the realisation of integrated micro-lasers. In fact, active micro ring res-
onators, incorporating optical gain, can be realised in a manner similar to that of passive
micro rings. Figure 8.18 shows a schematic of an active micro ring resonator with an I/O



8 Vertical Cavities and Micro-Ring Resonators 249

1.58 T T T T T T T T T

17 /\
ise \/

m\//
153-/\_

1.52 1 L L 1 L 1 L I 1

Fig. 8.17 Dispersion relations of a SCISSOR

Fig. 8.18 Schematic of a micro ring based integrated laser

waveguide. Such device can be used as an amplifier or a laser depending on the cavity
losses and the pumping level.

8.3.4.1 Microring Lasers
When sufficiently pumped, the structure illustrated in Fig. 8.18 can lase and emit radiation

at the resonance frequencies of the micro ring. The lasing frequencies and the threshold
lasing condition is given by:
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Um = mc/2mRneg, (8.48a)
gh =a+In(1 —«k)/47 R (8.48b)

where gy is the threshold gain of the laser. The coupled waveguide serves as a natural
output coupler which can extract light from the micro ring laser and channel it to any
desired position on the chip.

Because of the clockwise—counterclockwise degeneracy of the structure it is expected
that lasing will be established in both directions simultaneously and that a standing wave
pattern will evolve in the micro ring laser.

Because of the multiple resonance wavelengths of the micro ring, lasing might occur
in various wavelengths simultaneously. In addition, instability phenomena such as mode
hopping may occur as well. This problem can be solved by reducing the radius of the
micro ring to include a single, dominant, resonance in the gain bandwidth or by exploiting
the Vernier effect and cascading rings with different radii.

8.3.4.2 Micro Ring Optical Amplifiers

A micro ring optical amplifier (MROA) is essentially a micro ring laser operated below
threshold. An MROA can be realised using any of the configurations discussed above. The
description of MROA relies on the FP modelling presented in Sect. 8.2.5 with the neces-
sary modifications to account for the ring geometry. Applying the LATW approximation
the static characteristics of the MROA can be analysed using using the modified carrier
RE [41], where now the average photon densities for the signal photons and the amplified
spontaneously emitted photons for MROA configurations of all-pass and add-drop (see
Fig. 8.19 for relevant nomenclature) read [41] as:

All-Pass
gilbpass _ 2R (8= 1) (1) (8.492)
ASE,av gC gL 1 _ leegL ) B
2
all-pass (egL B 1) Kl2 |Ein| |
Ssigna],av = 2 s (8.49b)
8L (1 — 11e8L/2)" + 4esl/2 sin’(p/2)
Add/Drop
Saddfdrop — 4Rspng
ASE,av gc
2 2 2 2 2 2 2
y (52 =) [(1 = 7f) (1 + 5e™2) + (1 = 15) (1 + et )] 1
gL 1— rlzrzzegL ’
(8.50a)
2
add—drop (egL - 1) Kl2 ’Ein2’
Ssignal,av = D) ) (850b)
gL (1 — 1pr1e8L/2)" 4 4esL2 1y 7y sin*(¢/2)
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Fig. 8.19 Schematic of a micro-ring resonator in two configurations a the all-pass and b the add-
drop

Pout (dBm)

_40 1 1 1
-30 -20 -10 0

P,,, (dBm)
Fig. 8.20 Power Input—Output characteristics for MR with x = 0.4 and R = 20 wm in all-pass

configuration for various values of current. Detuning is AL = 0.41 nm

The theoretical framework for MROA is completed with the expressions for the trans-
mitted powers at the through and drop ports, for the all-pass and add-drop configurations

(see also 8.39)

(11 — e81/2)? 4+ 481127, sin?(p/2)

Py =P , (8.51a)
(1 = n1es )} desL 2y sin’ (p)2)
(11 — 12¢81/2)% 4 4e81 2111y 5in (9 /2)
P2 = Pin1 2 5 ’ (8.51b)
(1 — 1170e8L/2)" 4 4esL/2 1y 1 sin* (¢ /2)
(k1K2)* e8L/2
Parop = Pint 1 (8.51c)

(1-1 rzegL/z)z + 4esL/211 1y sin% (¢ /2)
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Fig. 8.21 Power Input—Output characteristics at the drop port for MR with k; = k2 = 0.5 and
R = 20 um in add—drop configuration for various values of current as indicated on the figure.
Detuning is AA = 0.33nm

where P;; is the transmitted power at the through port of the MR in the all-pass config-
uration, whereas P, and Pyrop refer to the transmitted powers in the through and drop
port, respectively, of the add-drop configuration. Equations (8.49-8.51) can be used to
describe the nonlinear performance of MROAs. The input—output power characteristics
for MROAS in all-pass and add-drop configuration are shown in Figs. 8.20, 8.21, respec-
tively, for increasing values of current. In these figures the input signal is injected at
a detuning of AA = 0.41nm and AA = 0.33nm with respect to the cavity resonance
for Figs.8.20, 8.21, respectively. The injected signal detuning along with the carrier-
dependent refractive index (see 8.16) that varies with current, generate the bistable effects
demonstrated in Figs. 8.20, 8.21.

8.4 Conclusion

This chapter aimed at presenting the basic elements of VC and micro ring thus underlining
their potential for device applications.

The VC fundamental concepts were analysed and the design implications of these
were explored. In particular, the importance of high reflective DBRs was outlined and
the relevant theory presented. The analysis of VC was simplified with the help of the
assumption of hard mirrors and the gain enhancement factor. The chapter focused on
VCSOAs which can be studied in the context of RE and/or the FP method. Finally the
SFM model was discussed for the polarisation dynamics of VCSELSs.

The second part of the chapter dealt with MR resonators. The fundamental theory
of MR was presented by means of analytic relations. The waveguiding properties are
crucial for the design of MRs and hence were treated in some detail. Single and multi-
ring configurations were analysed. Particular emphasis was put on MR structures in the



8 Vertical Cavities and Micro-Ring Resonators 253

form of CROWs and SCISSORs as these provide efficient means for the tailoring of the
spectral characteristics and dispersion. Finally the modelling and design of active MR
structures (lasers and optical amplifiers) was presented.

Concluding it must be noted that this chapter serves as an introductory course, rather

than a detailed account of all aspects of MRs and VCs as such an attempt would certainly
extend the limits of a chapter. It is the authors’ hope that this chapter will motivate and
guide the interested reader to study further the exciting research fields of VC and MRs.
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