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Preface

The stereoselective synthesis of olefins has been one of the major topics in the arena

of organic synthesis for many decades. The methods for olefin synthesis have

evolved from classic elimination reactions to more modern methods such as the

Wittig reaction and its variants, cross-coupling reactions and olefin metathesis.

Numerous reviews are available on these topics. The purpose of this special volume

is to cover the most recent advances in this ever-growing field, with a focus on

stereocontrol in C=C double formation.

Two chapters in this volume highlight the recent development of the widely used

methods for olefin synthesis, namely Wittig reactions (Chapter 7) and olefin

metathesis (Chapter 6). For olefin metathesis, the focus is put on its applications

in complex natural product synthesis. Owing to the importance of introducing

fluorine atoms to organic molecules, the methods for the stereoselective synthesis

of monofluoroalkenes have been summarized in Chapter 3. 1,3-Dienes, as a special

type of olefin, widely exist in natural products, and also find various applications in

organic synthesis. Therefore, stereoselective synthesis of 1,3-dienes is considered

as an important part of olefin synthesis. This is also included in this special volume

(Chapter 4).

Stereoselective synthesis of tetrasubstituted alkenes remains a challenging task.

A unique solution to this problem is to use torquoselectivity-controlled olefina-

tion of carbonyl compounds with ynolates, which is summarized in Chapter 1.

In general, the stereoselective synthesis of Z-alkenes, which are thermodynamically

less favorable, is more difficult than the synthesis of corresponding E-isomers.

In Chapter 2, various methods for stereoselective synthesis of Z-alkenes are

reviewed. Finally, the C=C double bond formation through catalytic carbene trans-

formation has recently emerged as a new approach toward olefin synthesis. Two

chapters covering olefin synthesis based on catalytic carbene transformations are

included (Chapter 5 and Chapter 8) .

Having read all the chapters, I hope that readers are left with the notion

that stereoselective olefin synthesis is still a rapidly growing area with constant

emergence of novel synthetic methods.
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Stereoselective Synthesis of Tetrasubstituted

Alkenes via Torquoselectivity-Controlled

Olefination of Carbonyl Compounds

with Ynolates

Mitsuru Shindo and Kenji Matsumoto

Abstract The efficient synthesis of tetrasubstituted alkenes by the olefination of

carbonyl compounds with ynolates is described. This reaction involves the cyclo-

addition of ynolates with carbonyl groups, followed by electrocyclic ring-opening

of the resulting b-lactone enolates. Orbital symmetry during the electrocyclic ring

opening requires conrotatory motion. The direction of this rotation (inward or

outward) determines the E/Z geometry to the tetrasubstituted olefin product through

torquoselectivity. Theoretical calculations revealed that several secondary orbital

interactions are essential for the high torquoselectivity. This methodology is a novel

olefination for constructing multisubstituted olefins.

Keywords Electrocyclic reaction � Olefination � Secondary orbital interaction �
Torquoselectivity � Ynolate
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1 Introduction

Stereoselective olefination of carbonyl groups giving tetrasubstituted alkenes is a

hot topic in synthetic organic chemistry, because there have been very few

reports on this process [1, 2]. These moieties are sometimes contained in natural

products, such as materials of the Stemona alkaloids [3] and kainoid amino acids

[4], drugs such as tamoxifen [5], and dipeptide mimetics (Fig. 1) [6, 7]. Importantly,

tetrasubstituted olefins also contribute extensively to material sciences in such

capacities as photoswitches based on photochromism [8]. Besides being useful

final products, stereodefined tetrasubstituted olefins would be potential precursors

for various asymmetric transformations generating contiguous stereogenic centers

such as hydrogenations [9], dihydroxylations [10, 11], epoxidations [12, 13],

conjugate additions [14, 15], and Heck reaction [16]. Even with the significance

of these olefins, conventional direct olefination methods such as the Wittig and
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Fig. 1 Biologically active compounds with tetrasubstituted olefins
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Horner–Wadsworth–Emmons reactions encounter serious problems of reactivity,

stereoselectivity, and generality when used to form tetrasubstituted olefins. Most

studies on the synthesis of tetrasubstituted olefins exploit alternative routes based

on carbometalation of alkynes [17–19]. However, these processes have difficulties

associated with the regioselectivity of the initial carbometalation and with reactivity

during the final coupling. Here we describe stereoselective syntheses of tetrasub-

stituted olefins, via the olefination of carbonyl compounds with ynolates, as well as

some synthetic applications [20, 21].

2 Preparation of Ynolates

Ynolates are carbanions having a C–C triple bond in place of a double bond that is

found in enolates. Ynolates can be used as precursors of alkynyl ethers, and also ketene

anions acting as ketene precursors (Fig. 2). Their chemistry would show interesting

facets that are impossible to attain with enolates, and also contribute to ketene

chemistry. However, ynolates have attracted little attention in synthetic organic chem-

istry, with only scattered reports in the literature until recently [22, 23]. Sch€ollkopf
reported the first synthesis of an ynolate, which was generated by fragmentation of

isoxazolyllithium (2), prepared by lithiation of 3,4-diphenylisoxazole (1) (Fig. 3) [24,

25]. Lithiation of trimethylsilylketene 3 with butyllithium at �100 �C provides an

ynolate in good yield [26, 27]. Kowalski reported that ynolates are synthesized by the

rearrangement of a-keto dianions 5, which are prepared by adding

dibromomethyllithium (4) to esters followed by base-induced elimination [28–30].

The hypervalent organoiodine7 reactswith the terminal alkynes 6 to give the iodonium

tosylates 8, which are then treated with CuOTf to afford the ynol tosylates 9. The ynol

tosylates 9 are converted into ynolates by treatment with methyllithium [31, 32].

Lithium acetylides 10 are oxygenated by lithium tert-butylperoxide, prepared from

anhydrous tert-butylhydroperoxide and LHMDS, to afford ynolates [33, 34]. The a-
chloro-a-sulfinyl ketone 11 is dimetalated by potassium hydride and tert-butyllithium
to give the keto dianion, which is converted into ynolate [35–38]. The trimethylsilyl

ynolate 12 is prepared on treatment of trimethylsilyldiazomethane with butyllithium

followed by exposure to carbon monoxide [39, 40]. Transmetalation of bis

(trimethylsilyl)ketene 13by t-BuOK in the presence ofHMPAaffords the ynolate [41].

Ynolates cannot be prepared in a similar fashion to metal enolates, because the

intermediatesmay be labilemonosubstituted ketenes. Several preparativemethods for

ynolates have been reported, amongwhich some have been used as a precursor of silyl

ynol ethers, that is, silyl ynolates, in organic syntheses [42–45]. However, a general

methodology for the preparation of ynolates has not yet been established. This is one

of the reasons why ynolates have attracted much less attention than the corresponding

enolates.

R O C O
R

Ynolate ketene anion

Fig. 2 Ynolates
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We have developed a convenient method for the preparation of ynolates via

thermal cleavage of ester dianions [46]. The starting materials are a,a-dibromo

esters, which are readily prepared by bromination of bromo esters or precursors

[47]. For example, 2,2-dibromopropionate 15 is synthesized by dibromination of

the acyl bromide 14 via the Hell–Volhardt–Zelinski reaction (Fig. 4). In the case

of 2,2-dibromocaproate 16, the bromination with dibromotetrafluoroethane or

dibromotetrachloroethane of the derived a-bromoester enolate can be employed. A

THF solution of a,a-dibromo esters 17 is treated with 4 equiv. of tert-butyllithium or

sec-butyllithium at –78 �C and, after 10min, the reaction is allowed towarm to 0 �C to

afford the lithiumynolate 19 solutionwithin 30min (Fig. 5) [48]. The efficiency of this

method is estimated by the result of several reactions to be more than 90%. The

butyllithium is transformed by lithium–halogen exchange into bromobutane, which is

immediately decomposed by another 1 equiv. of butyllithium. Overall, 4 equiv. of

butyllithium are required. The key mechanism is thermal cleavage of ester dianions

18, prepared by double lithium–halogen exchange of 17. Thismethod takes advantage

of the properties of ester enolates 20, which are easily converted into ketenes 21 by the

elimination of alkoxide (Fig. 6) [49, 50].
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Although this method is convenient in the laboratory and we can successfully

carry out work on up to a 10-g scale, tert- or sec-butyllithium is somewhat

expensive and should be handled carefully, especially on a large scale. With this

in mind, we develop a more practical method for the synthesis of ynolates using

reductive lithiation (Fig. 7). The dibromo esters 22 are treated with lithium

naphthalenide at �78 �C to give the ynolates in good yield. Naphthalene-catalyzed
reductive lithiation of the dibromo esters 22 is also achieved, providing the ynolates

COXMe

X = Br, Cl

Br2 COXMe

Br Br

CO2EtBu LDA CO2EtBu

Br BrBr CF2BrCF2Br
or

CCl2BrCCl2Br

EtOH CO2EtMe

Br Br14
15

16

Fig. 4 Preparation of a,a-dibromo esters
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Fig. 5 Efficient preparation of ynolates via ester dianions
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more efficiently [51]. The synthetic methods for preparing ynolates via the cleavage

of ester dianions 18 are not only convenient, but also highly general, because alkyl-,

aryl-, and trimethylsilylsubstituted ynolates can be synthesized in good yields.

3 Olefination of Aldehydes

An ynolate reacts with aldehydes 23 at –78 �C, followed by quenching at this

temperature, to afford b-lactones 24 [46, 48]. When this reaction is carried out at

higher temperature, the (E)-a,b-unsaturated carboxylic acid 28 is obtained in good

yield, after protonation of the carboxylate 27, with none of the Z-isomer detected

(Fig. 8). Further investigation indicates that product 28 is generated by an

electrocyclic reaction of the b-lactone enolate 26, that is, formally, an oxetene.

This sequential reaction involving cycloaddition–electrocyclic ring opening reac-

tion is a stereoselective olefination of aldehydes 25. Although this type of reaction

has been reported by Kowalski and Fields [28], they did not follow up this research.

Our careful investigations on this reaction reveal that olefination of aldehydes 25

with ynolates provide trisubstituted alkenes 28 with high E selectivity in good to

moderate yields. Even the thermodynamically unfavorable E-olefins can be

provided by the ynolates with sterically hindered aldehydes [52].

Since conventional methods such as the Wittig reaction and the Horner–

Wadsworth–Emmons reaction are also good at olefination of aldehydes, olefination

via ynolateswould not necessarily be the first choice for the preparation of unsaturated

esters. If, however, one would like to synthesize unsaturated carboxylic acids

directly, this method is advantageous. For example, in the synthesis of the natural

product bongkrekic acid 32, olefination of aldehyde 29 giving a,b-unsaturated MOM

ester 31 is required (Fig. 9). Since preparation of theWittig reagent 33 bearing aMOM
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ester is unsuccessful, the ethyl ester is initially formed by the Wittig reaction, and

subsequent hydrolysis, followed by MOM esterification, affords the MOM ester 31.

Alternatively, the aldehyde 29 is olefinated by the ynolate to give an unsaturated

carboxylate 30, which is esterified in situ with MOMCl to afford the desired MOM

ester 31 in one pot [53].

4 Olefination of Ketones

Stereoselective olefination of ketones giving tetrasubstituted alkenes is at present

very challenging in synthetic organic chemistry; there have been very few reports

on successful stereoselective olefination of ketones giving multisubstituted olefins,

probably due to the low reactivity compared to aldehydes and much more difficult

discrimination of the substituents on the carbonyl group (Fig. 10) [1]. For examples,

the Horner–Emmons olefination of acetophenone (34) under reflux in EtOH for

24 h gives the corresponding tetrasubstituted olefins 35 in 65% yields with 2:1 E/Z
selectivity (Fig. 11) [54]. The Julia olefination using sulfoxides as a nucleophile

provides the tetrasubstituted olefins in low yields [55].

4.1 Unfunctionalized Ketones

Simple unfunctionalized ketones such as aryl alkyl ketones 36 can be olefinated by

ynolates to provide tetrasubstituted olefins 37–42 in good to excellent yield

(Fig. 12) [56]. While the Wittig and the Horner–Emmons reagents are not suitable

reagents for this type of olefination, especially for tert-butyl phenyl ketone (43), the
ynolate affords the corresponding olefin 41 in 74% yield (Fig. 13). Ynolates are

actually much better reagents for the olefination of ketones than the conventional

OMe
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OMe

OMPM

CO2MOM

HMe

OLi
+

OMe

OMPM

H CO2Li
MOMCl

OMe

CO2H

CO2H

CO2H

Ph3P
CO2MOM

75%
>99:1

33

Bongkrekic acid (32)

29 30
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Fig. 9 Synthesis of bongkrekic acid using olefination with ynolate
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ones. The E/Z selectivity (80:20 to 85:15) is much better than that obtained by

conventional methods. The aryl group tends to be positioned preferentially trans to
the carboxylate group, and the alkyl groups are cis to it. Instead of carboxylic acids,

C

O

C

C

Wittig Reaction

Ph3P +

(RO)2P CO2R

Horner-Wadsworth-Emmons Reaction

O

+

Peterson Olefination

Me3Si +

Julia Olefination

RO2S +

Tebbe Reaction

Ti Al
Cl

Cp

Cp
+

O

O

O

H

O

O

CO2R

Julia Olefination (sulfoxide)

ROS +
O

Fig. 10 Representative olefination of carbonyl compounds

O

+

EtOH, reflux
24 h

CO2Et

65%
E:Z = 2 : 1

NaOEtCO2Et(EtO)2P

Me

O

34 35

Fig. 11 Horner–Emmons olefination of a ketone providing tetrasubstituted olefins
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carboxylic acid esters can be isolated in one pot by adding an alkylating reagent like

alkyl halide along with HMPA or DMPU to the reaction mixture without loss of

selectivity and yield.

This olefination strategy has been used by Kobayashi to synthesize globostellatic

acid analogs, an antiangiogenic triterpene derivative from the marine sponge

Stelletta globostellata (Fig. 14) [57]. Thus ketone 44 is olefinated by ynolate to

yield the tetrasubstituted olefin 45.
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+
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2. MeI

Ph Me
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>99%
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96%
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Fig. 13 Olefination of tert-butyl phenyl ketone (43) by Wittig and HWE reagents
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4.2 Stereoelectronic Effect

The E/Z-selectivity of this olefination is strongly affected by the electronic properties
of the substituents (X) of the ketones 46 (Table 1) [58]. The acetophenones with

electron-withdrawing groups afford lower E-selectivity, and p-nitroacetophenone
gives the corresponding Z-olefin selectively (entry 1). On the other hand, substrates

with electron-donating groups at the para-position give 47 with higher E-selectivity
(up to >99:1) (entries 6, 7), as compared to the unsubstituted compounds (X¼H,

entry 4). In the olefination of para-substituted benzophenones (R¼Ph), in which both

substituents on the carbonyl group are sterically equivalent, the same tendency in the

selectivity is observed. It is noteworthy that phenyl substituents are recognized only by

remote para-substituents. The stereochemistry is controlled by a stereoelectronic, as

well as by a steric effect of the substituents.

4.3 Torquoselectivity

The stereoelectronic effect controlling the selectivity is closely related to

torquoselectivity. The ring opening of the b-lactone enolates is mechanistically

the conrotatory electrocyclic reaction of the oxetene, rather than the “forbidden”

b-elimination [59], in which the p-orbital of the enolate C¼C bond and the s*-
orbital of the disconnecting C–O bond are fixed in an orthogonal position, and thus

the torquoselectivity concept should be taken into account. Thermal ring opening of

cyclobutenes giving butadienes has been well studied experimentally [60, 61] and

theoretically (Fig. 15) [62, 63]. In this reaction, the E/Z selectivities are determined by

the torquoselectivity. Thus, the electron-donating substituents (D), such as OMe, Me,

NH2, and BH3
�, rotate outward preferentially and the electron-accepting substituents

(A), such as CHO, SiH2F, SiHF2, and BH2, rotate inward. The torquoselectivity is

Table 1 Stereoelectronic effect on the olefination of para-substituted acetophenones and

benzophenones

Acetophenone (R¼Me) Benzophenone (R¼Ph)

Entry X E/Z Yield (%) E/Z Yield (%)

1 NO2 25:75 68 30:70 95

2 Cl 70:30 94 45:55 >99

3 F 80:20 86 55:45 >99

4 H 80:20 >99 – >99

5 Me 88:12 >99 60:40 >99

6 MeO 93:7 98 70:30 >99

7 Me2N >99:1 51 86:14 >99

10 M. Shindo and K. Matsumoto



explained by the orbital interactions between the breaking C–C bond and some bond

orbitals on the substituents. In the transition states of the ring opening, repulsive

interaction between the HOMO of the donor substituent and the cleaving C–C

s-orbital leads the substituents to outward rotation, while interaction between the

vacant orbital of the accepting substituent and the cleaving C–C s-orbital makes the

substituents rotate inward. For examples, since a methoxy group is relatively electron-

donating compared to a tert-butyl group, the methoxy group rotates outward prefer-

entially to give (E)-1,3-diene 48. Likewise, the methyl group exhibits preference for

outward rotation to give E-olefin 49. On the other hand, the formyl group rotates

inward (50) exclusively, due to the electron withdrawing character of the substituent.

Oxetene and cyclobutene are mutually isoelectronic and there are few theoretical

studies on substituent effects in the ring opening of oxetenes, although there have been

several reports on molecular orbital studies of oxetene ring openings [64, 65]. There-

fore, if the cyclobutene is replaced by the oxetene, this concept provides a rational

explanation for the olefination with ynolates (Fig. 16). Theoretical calculations on the

transition states revealed the strong interactions between the breakingC–Os orbital in

the oxetene and the p (p*) orbitals of the aromatic ring in the transition states (Fig. 17).

Since the phenyl group has a p-orbital with a high energy level of the occupied orbital,
it is a better electron-donating group than the alkyl group (51!52). However, it

depends on the substituents. For examples, the p-nitro substituent on the aromatic

ring alters its property to electron accepting in torquoselectivity. The transition state

leading to the Z-olefins would be stabilized by the overlap of the orbitals of the

breaking C–O s bond with the p*-orbitals, in which the energy level of the antibond-
ing orbital is lowered by the electron-withdrawing substituents (X) (53!54). The s*
orbitals are also important acceptors in the torquoselectivity [66, 67]. Since theC–CH3

s*-orbital is reported to be more electron accepting than the C–H s*-orbital [68],
a tert-butyl group in 55would be more electron accepting than a methyl group, which

would work as an electron-donating group. Therefore, the tert-butyl group preferen-

tially rotates inward (56) when compared to a methyl group (Fig. 18) [69]. In order to

DD
A A

via outward
rotation of D

MeOMeO

t -Bu t-Bu

MeMe

OHC
CHO

E -only

E -only

Z-only

D: electron-donating substituents
A: electron-accepting substituents

48

49

50

Fig. 15 Torquoselectivity in the electrocyclic ring-opening of cyclobutenes
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clarify the torquoselectivity, careful considerations of the secondary orbital

interactions would be necessary.

4.4 a-Alkoxyketones

For good stereocontrol in the olefination of ketones with ynolates, it would be required

that groups of quite different bulkiness and/or electronic properties are attached to the

carbonyl group. Simpler ketones like 2-butanone are less discriminating in this process.

If both substituents on the ketones should be distinguished, strong stereocontrolling

directing groups for olefination are essential in the ketones. Ethereal oxygens often

work as a hard Lewis basic directing group by coordination to the Lewis acidic metal

cations. Since chelation control is expected,a-alkoxyketones are suitable candidates as
the substrate. The a-alkoxy and a-trialkylsiloxy acyclic ketones 57 provide the olefins
58–62, respectively, with high Z-selectivity by the torquoselective olefination with

ynolates (Fig. 19). The a-trialkylsiloxy cyclic ketones afford the olefins 63 and 64with
low to excellent stereoselectivity. This selectivity depends on the conformation of the

siloxy group; for example, the axially oriented siloxy group induces a high Z-selectiv-
ity (65!66) but the equatorially oriented group does not (67!68) (Fig. 20).

The mechanism of olefination can be deduced by consideration of orbital

interactions to proceed via torquoselective olefination, rather than chelation control,

for the following reasons: (1) the sterically hindered siloxy (60) and the poor Lewis-

basic phenoxy groups (61) are also effective for high Z-induction; (2) in the presence
of a crown ether, the selectivity still remains high; and (3) an axially oriented siloxy

group (65), which is far from a lithium cation, induces a highZ-selectivity. Theoretical
calculations indicate that the transition state of inward rotation is stabilized by an

orbital interaction betweens(C–O) and s*(C–OR) orbitals (Fig. 21) [70]. The higher
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Fig. 19 Olefination of a-alkoxy and a-siloxy ketones
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energy level of s(C–H) orbital at a-position is more important. Namely, the s(C–H)
orbital on the alkoxy-substitutedmethyl group is at lower energy level than that on the

non-substituted methyl group. Therefore, the simple alkyl substituent tends to rotate

outward rather than the alkokymethyl group.

The products, Z-a-siloxyacrylic acids, are easily converted into polysubstituted

g-lactones 70 by acidic treatment. This transformation can be carried out in one pot

from the starting ketones 69 (Fig. 22).

4.5 a-Amino, a-Thio, a-Selenoketones

In a similar fashion, olefination of a-amino ketones also induces good Z-selectivity.
As shown in Fig. 23, the reaction of the ynolates with the a-amino ketone 71 gives the

g-amino unsaturated carboxylates 72, which are treatedwithmesyl chloride to provide

the unsaturated lactams 73 in good yield, without any detection of minor isomers.
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This concept can be applied to the olefination of a-thioketones if the secondary

orbital interactions between the breaking C–O s orbital and the C–X s* orbital are

critical for the selectivity rather than chelation control. Olefination of a-dodecylthio-
and a-phenylthioketones 74 furnishes the tetrasubstituted alkenes 75 with good

to excellent Z-selectivity (Fig. 24) [71]. In contrast to the acyclic ketones and

a-siloxyketones, 2-phenylthiocycloalkanones give no selectivity, probably because

the conformation of the directing group (RS–) might be more strongly fixed in the

equatorial position due to the larger A-value of alkylthio group than that of the
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corresponding alkoxy group. In a similar fashion, a-selenoketones 76 are olefinated to
give 77 with good Z selectivity (Fig. 25).

Desulfurization of the multisubstituted allylsulfides 78 and 80 results in isomeri-

zation of the olefin to give the less substituted one 79, probably due to the steric strain

in the transition states of the protonation of the allylic radical or anion species (Fig. 26).

4.6 Alkynyl Ketones

The above-mentioned highly stereoselective olefination of ketones is controlled by

heteroatom-assisted torquoselectivity. The effect of nonpolarized carbon functional

groups on torquoselectivity would also work as a controlling factor. C–C double

bonds present in substituents such as alkenyl and aromatic groups do not afford

sufficient selectivity in the olefination of the corresponding alkyl ketones (Fig. 27).

The energy level of the HOMO and LUMO in the C¼C bond would not be high or

low enough to achieve high selectivity.

In contrast, the C–C triple bond shows excellent effect on torquoselectivity.

Alkynyl alkyl ketones 81 are olefinated by ynolates to afford the tetrasubstituted

olefins 83 in good E-selectivity (Fig. 28) [72]. In the electrocyclic reaction of 82, the
alkynyl group prefers outward rather than inward rotation over the alkyl and alkenyl
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groups, and the substituent on the terminal position of the ethynyl group has a slight

effect on the torquoselectivity. The triple bond of the resulting conjugate enyne

compounds 84 can be reduced into alkyl (85) and cis-alkenyl groups (86) (Fig. 29).
Theoretical calculations (B3LYP/6-31G(d)) for the ring-opening transition states

of the oxetene reveal that the transition state to the E-form (TSE) is 8.3 kJ/mol more

stable than the transition state to the Z-form (TSZ). In addition, the natural bond
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orbital (NBO) analysis indicates the secondary orbital interactions between the

p-orbital of the alkyne and the s*-orbital of the breaking C–O bond, and between

the p*-orbital of the alkyne and the s-orbital of the breaking C–O bond (Fig. 30).

5 Olefination of Acylsilanes, Acylgermanes, and Acylstannanes

5.1 Olefination

Acylsilanes, acylgermanes, and acylstannanes are potential precursors of

alkenylsilanes, alkenylgermanes, and alkenylstannanes, which are important and

powerful synthetic tools [73, 74]. However, practical methodology for their prepa-

ration via olefination had not been reported. Olefination of the acylsilanes 87 with

ynolates provides the b-silyl-a,b-unsaturated esters 88 in high yields with excellent
Z-selectivity (Fig. 31). In most cases, the E isomers cannot be detected by 1H NMR

and HPLC at all. This is the first general method for the stereoselective synthesis of

tetrasubstituted olefins [75].

Theoretical calculations and NBO analysis suggest that this torquoselectivity is

due to orbital interactions of the breaking s(C–O)–s*(Si–C) in the transition state

of the inward rotation during the ring opening of the b-lactone enolate (Fig. 32).

This is in good agreement with the results obtained from the ring opening of

silylcyclobutenes [66, 67, 76–79]. However, the torquoselectivity of silyloxetenes

is much higher than that of silylcyclobutenes. One reason for the different selectivity

would be the reaction temperature. The silyloxetene ring-opens at room tempera-

ture although the silylcyclobutene does so at higher temperature. Another reason

would be the interaction between the nonbonding orbital of oxygen on the oxetene
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and s*(Si–C), which is indicated by the NBO analysis. This secondary orbital

interaction is also an important factor for stabilization of that transition state [69].

In the same way, acylgermanes 89 and acylstannanes 90 are olefinated with

ynolates to give Z-alkenylgermanes 91 and Z-alkenylstannanes 92 (Fig. 33).

Although the E/Z ratios are a little lower than that of acylsilanes 87, satisfactory

ratios are obtained [80].

5.2 Properties and Reactions of Intramolecularly Activated
Alkenylsilanes, Alkenylgermanes

The importance of the torquoselective olefination is illustrated in Fig. 34 for the

particular case in which a multisubstituted alkenylsilane is converted to various

kinds of multisubstituted olefins. The silyl-substituted allyl alcohol 93 is allylated to

give the 1,4-diene 94, and the iodoalkene 95, prepared by desilyliodination of 93, is

subjected to palladium-catalyzed cross-coupling reactions (the Heck reaction, Stille

coupling) to afford the dienes 96 and 97 without E/Z isomerization.
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5.3 Hypervalent Silicones and Germanes

The alkenylsilane 98 reacts with iodine to afford the silalactone 99, with elimination

of iodomethane, in good yield (Fig. 35) [81]. This unexpected process involves the

mild oxidative cleavage of a silicon–carbon bond which should otherwise be stable.

The silicon–carbon bond is activated by hypervalency induced by intramolecular

coordination of the carbonyl oxygen to the silicon atom. This is supported by the

observation that the O–C bond length is shorter than that of the sum of the van der

Waals radii (3.35 Å) in the X-ray crystal structure analysis of 98. The TBP value [82]

is 20%,meaning that it is not a perfect trigonal bipyramidal structure but is on the way
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to this structure. The C–Si bond is therefore weakened and can be cleaved under mild

conditions via a push–pull mechanism, as depicted in Fig. 36. In the samemanner, the

alkenylgermanes are transformed into germalactones 100–102 in good yields. These

compounds are very useful synthons, as described in the next sections.

5.4 Reactions of Silalactones

The carbonyl group on the silalactone 99 is reduced by lithium aluminum hydride to

afford 1,2-oxasilole 103. However, Grignard reagents attack the silicon atom to

provide b-silylacrylic acids 104 (Fig. 37). Repetition of the oxidative cleavage and

the Grignard reaction will potentially lead to other alkenylsilanes bearing various

kinds of carbon substituents on the silicon. The palladium-catalyzed cross coupling

of silalactones 99 with aryl halides can be carried out without using fluoride anion

to afford the corresponding coupling product 105. For a review on fluoride-free

Hiyama reaction, see [83].

5.5 Pd-Catalyzed Fluoride-Free Cross Coupling
of Alkenylsilanes and Germanes

The coupling reactions of alkenylsilanes generally require activation of the silicon

due to the low reactivity of the C–Si bond. Introduction of heteroatoms on the
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Fig. 36 Push–pull mechanism
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silicon [84, 85] and/or the addition of fluoride ion to the reaction are standard

activation methods to form reactive hypervalent silicates. The palladium-catalyzed

cross coupling of the alkenylsilane 98 with aryl iodides (the Hiyama coupling)

[86–90] produces the coupling product 105 in good to moderate yield. This reaction

can be carried out without using fluoride ion (Fig. 38), since the alkenylsilane 98 is

intrinsically activated by forming hypervalency [91–97]. This reactivity can be

exploited in an E/Z-selective synthesis of fully-carbon-substituted olefins. How-

ever, the generation of protodesilylation side products could not be prevented. This

is the reason why less than excellent yields are obtained.

The intrinsically activated alkenylgermanes 106 are more reactive in the cross

coupling reaction (Fig. 39). The reaction is dependent on the palladium catalyst

and, as a ligand, Pd(Pt-Bu3)2 works very efficiently in NMP to afford the desired

coupling product 107 in better yield without the generation of the protonated

byproducts, which generally cause poor yields in this type of coupling reaction.

This coupling reaction of alkenylgermanes can be applied to the synthesis of

estrogen receptor modulator tamoxifen (112), which is used in the clinical treat-

ment of estrogen-dependent breast cancer (Fig. 40). The benzoyl triethylgermane

(108) is olefinated with ynolate to give the alkenylgermane 109, which is coupled
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Fig. 38 Palladium catalyzed cross-coupling of alkenylsilane
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with aryl iodide to afford the tetrasubstituted alkene 110. A modified Hunsdiecker

reaction, followed by the Dakin reaction, leads to bromoalkene 111, which is

subjected to the Suzuki–Miyaura coupling to afford tamoxifen (112). This reaction

sequence for the preparation of the tetrasubstituted olefins can be regarded as an

introduction of all four substituents separately on the olefin (Fig. 41).

6 Olefination of Esters

6.1 Olefination

The olefination of ester carbonyl groups has generally been unsuccessful due to the

lower reactivity of the ester function and the elimination of alkoxide. Metal

carbenoids, such as the Tebbe reagents, accomplish this transformation, but they

are limited to the preparation of simple unfunctionalized enol ethers. On the other

hand, the highly stereoselective synthesis of tetrasubstituted, functionalized

(E)-enol ethers 115 via olefination of esters 113 with ynolates is successfully

achieved (Fig. 42) [98]. Aliphatic esters afford excellent E-selectivities
(116–118), whereas esters of aromatic carboxylic acids give good to moderate

selectivity (119–121), which depends on the electronic properties of the

substituents on the aromatic ring. This torquoselectivity can be rationalized by

the fact that the ethoxy group in 114 preferentially rotates outward because of its

electron-donating property.
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6.2 Homologation

In the olefination of an ester carbonyl, the elimination of alkoxide, leading to a

ketene, causes low yield. If this “side reaction” becomes the major reaction course,

it would be a new reaction other than olefination. The reaction of thiol esters

(thiolates are better leaving groups than alkoxides) with lithium ynolates takes

place by a route different from that for alcohol esters (Fig. 43). Thiol esters 122

undergo a two-carbon homologation to afford b-keto thiol esters 126 in good yield.
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Intermediates 123 undergo a two-step rearrangement to a b-keto thiol ester enolate

125, via elimination of thiolate to yield a ketene 124, followed by the nucleophilic

attack of the thiolate on 124. Finally, the homologated b-keto thioester 126 is

obtained on acidification of the reaction mixture. This is a two-carbon homologa-

tion via insertion of ynolate into the C–S bond of thiol esters.

6.3 Synthetic Applications

The enol ethers thus produced are expected to be very useful in synthetic organic

chemistry. Herein, the Nazarov reaction is demonstrated for an application of the

products.

The Nazarov reaction is a 4p electrocyclic reaction giving cyclopentenones and

mediated by acids (Fig. 44) [99–101]. Although it was discovered a long time ago,

the harsh conditions and the poor regiochemistry of the alkene in the cyclopentenone

product have kept the reaction from enjoying a wider use in synthetic organic

chemistry. In recent years, improved Nazarov reactions, such as the Lewis acid

catalyzed reaction and a substituent-controlled regioselective reaction, are reported,

and are being widely used [102–110].

The (E)-b-alkoxy divinyl ketones 129, potential Nazarov reaction precursors,

are prepared according to the torquoselective olefination methodology with

ynolates (Fig. 45). For example, ethyl 3-phenylpropionate (127) is olefinated by

the ynolate to afford the b-alkoxy-a,b-unsaturated acid 128 with high E-selectivity.
The acid 128 is converted into the Weinreb amide, which is subjected to

alkenylation to provide the b-alkoxy divinyl ketone 129 in good overall yield.

The (E)-b-alkoxy divinyl ketones 129 are treated with a trace amount of triflic

acid at ambient temperature to afford a-alkoxycyclopentenone 130 in excellent
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yield within 1 min (Fig. 46) [111]. This is an unexpected result for the following

reasons. In most of the modern catalytic Nazarov reaction, the a-alkoxy divinyl

ketones are used as the substrate, and the b-alkoxy divinyl ketones were believed to be
poor substrates, because the cyclopentenyl cation intermediate is destabilized by the

b-alkoxy group, and thus the electrocyclization does not proceed. However, in this

case, the methyl groups beside the carbonyl stabilize the oxyallyl cation intermediate

131 via hyperconjugation, and thus the cyclization quickly proceeds (Fig. 47). Fur-

thermore, the alkoxide migration enhances the reaction and controls the

regioselectivity of the double bond in the five-membered ring 132 (path A). However,

this migration is not intramolecular, but intermolecular, according to crossover and

isotope-labeling experiments. The initial alkoxide (or alcohol) would be generated by

the side reaction (path B) giving the a-methylenecyclopentenoids 133.

The a-methylene cyclopentenones of the side products are also often found in

natural products as bioactive moieties. In the absence of nucleophiles, the a-exo-
methylene products become the major products. When the Nazarov reaction with

134 is carried out in the presence of tert-butanol, which is expected to displace the

other nucleophile, the exo-methylene cyclopentenone 135 is produced as a major

product (Fig. 48).

Using this protocol, antibiotic antitumor natural product xanthocidin (136) is

synthesized as shown in Fig. 49 [112].
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Catalytic asymmetric Nazarov reactions have been reported by Aggarwal [113],

Trauner [114, 115], Togni [116], Rueping [117, 118], and Tius [119, 120]. Most of

these successful results used bidentate-type substrates bearing an a-oxy group

(mostly dihydropyran-2-yl, 137) or a,b-carbonyl unit (e.g., 138) for fixing the

metal ternary complex by chelation as well as for stabilizing the intermediates.

Chiral Lewis acid-catalyzed asymmetric Nazarov reaction of b-alkoxy divinyl

ketones 139, which is a monodentate-type substrate, is also possible. As shown in

Fig. 50, Pybox/Ph-Sc(OTf)3 complex catalyzes the reaction to afford the cyclized

product 140 up to 91% ee in the presence of sterically hindered alcohol [121]. In

this reaction, a quaternary chiral carbon is created in the step of addition of the

alkoxide to the intermediate oxyallyl cation. The stereochemical course of the

reaction can be rationalized by assuming the reacting complex depicted in Fig. 51.
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7 Olefination of Aldimines

A silyl-substituted ynolate 141 undergoes cycloaddition to N-sulfonyl aldimines

142, followed by ring opening, to afford the a,b-unsaturated amide 143 at 20 �C
(Fig. 52) [39]. This stereoselectivity is unexpected for the torquoselective

olefination. The steric interaction between bulky Me3Si and the phenyl groups

may be critical. N-o-Methoxyphenylaldimines 144 with ynolates at room tempera-

ture produce a,b-unsaturated amides 145 in good yield with high E-selectivity
(Fig. 53) [122]. Since the double adduct 146 is produced as an intermediate, the

process involves the retro-Mannich reaction.

8 Conclusion

Since the torquoselectivity concept was proposed in the 1980s, this concept has

been used in various aspects of organic chemistry. Most of these investigations

involved syntheses of 1,3-dienes via electrocyclic ring-opening reactions of
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cyclobutenes. Recently, the significance of torquoselectivity has been considered

for the stereoselective Nazarov reaction. In the ring opening of oxetenes (b-lactone
enolates), much higher torquoselectivity is achieved than that in the case of

cyclobutenes and that leads to highly stereoselective olefination. Torquoselective

olefination is mechanistically quite different from conventional methods such as

the Wittig reaction and can achieve high efficiency and stereoselectivity in the

olefination of various kinds of carbonyl compounds, providing alkenes that are

otherwise difficult to prepare. The stereoselectivity can be estimated theoretically

by a consideration of the electronic properties of the substituents. At present, the

order of electron-donating and accepting properties is apparent as shown in Fig. 54.

Further studies will possibly make it clearer. This methodology will hopefully be

used in various types of organic syntheses in the near future.
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Stereoselective Synthesis of Z-Alkenes

Woon-Yew Siau, Yao Zhang, and Yu Zhao

Abstract This chapter offers a general review of the evolvement of methods for

the stereoselective synthesis of Z-alkenes, with a focus on the development of

catalytic systems towards this goal in recent years.

Keywords Cross coupling � Lindlar reduction � Olefin metathesis � Olefination �
Z-Alkene
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1 Introduction

Alkenes are ubiquitous in biologically active entities and serve as versatile starting

materials for a large number of chemical transformations [1–6]. The stereochemistry

of the alkenes, namely theE- or Z-isomeric form, not only determines the property of

the molecules but also in most cases alters the stereochemical outcome of the

reactions utilizing alkenes as starting materials. Stereoselective access to either

isomer, therefore, is a key component of alkene synthesis. In general, methods for

highly selective access to Z-alkenes are less established than those for theE-isomers.

One of the reasons is thermodynamic control that favors the lower-in-energy E-
alkenes.

Since a wide variety of methods are suitable for Z-alkene synthesis (albeit not

always general methods), including the most important reactions in organic synthesis

such as Wittig olefination, cross coupling, and olefin metathesis, it is the intention

of the authors to illustrate the evolution of methods for Z-alkene synthesis through
representative examples, with a focus on the development of catalytic methods in

recent years.

2 Olefination Reactions: from Carbonyls to Alkenes

2.1 Wittig Reaction

The Wittig reaction has proved to be one of the most important methods for alkene

synthesis and has found much use in natural product synthesis [7–10]. In this

transformation, the carbonyl compound reacts with a phosphorus ylide (prepared

from a triaryl- or trialkylphosphine and an alkyl halide followed by deprotonation

with a suitable base) to yield the alkene product with concomitant generation of

phosphine oxide as the side product. The stereoselectivity of Wittig reaction is

influenced by many factors including type of ylides, type of carbonyl compounds,

nature of solvent, and even the counterion for the ylide formation. In general, good

to high Z-selectivity (typically ~9:1) can be expected when “nonstabilized” (alkyl

substituted) ylides react with aldehydes under salt-free conditions in a dipolar

aprotic solvent. One impressive example reported in recent years, in which two

partners with a complex structure were coupled in a highly Z-selective fashion, is
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shown in Fig. 1 [11]. The alkene product was then transformed to the natural

product named (+)-discodermolide, a potent inhibitor of tumor cell growth.

The utilization of the Wittig reaction to prepare functionalized alkenes such as

Z-vinyl halides has also been demonstrated since the early 1990s (Fig. 2) [12]. The

iodoalkyl phosphonium salt is deprotonated with sodium hexamethyldisilazane to

yield the ylide that reacts with aldehydes to generate the Z-alkenyl halides in good

to excellent selectivity. Not only disubstituted Z-alkenyl halides, but also trisubsti-

tuted ones can be prepared using this method, albeit with moderate chemical yields

[13]. These products are useful synthons in organic synthesis, especially in cross

coupling reactions.

Much effort was expended on improving the Z-selectivity of Wittig reaction for

a wider range of substrates by modifying the nature of the ylide or the carbonyl

compounds. Very recently, the Tian group reported Wittig olefination utilizing

sulfonyl imines as the substrate that provides a wide range of alkenes including

conjugated dienes exclusively as the Z-isomer (Fig. 3) [14]. Traditional Wittig

olefination only provides these products as a mixture of E- and Z-alkenes. It is
important to note that the substituent on the sulfonyl imines has a significant impact

on the stereoselectivity of the process. By tuning the steric and electronic properties

of the substituents, either E- or Z-alkenes can be accessed exclusively. Even though

Fig. 2 Wittig reaction for the preparation of Z-alkenyl iodides
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Fig. 1 Wittig olefination coupled two pieces with a complex structure to yield Z-alkene
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this method is not very appealing in terms of atom economy, it represents an

exciting improvement of Z-selective Wittig olefination.

While being widely used for alkene synthesis, it is noteworthy that, as a

stoichiometric transformation, Wittig reaction generates extensive waste due to

the high mass of phosphine oxide side product which is not always easily separable

from the desired product. While Wittig reaction catalytic in phosphine is merging

[15], the establishment of fully compatible catalytic olefination processes is yet to

be seen.

2.2 Still–Gennari Modification of the
Horner–Wadsworth–Emmons Olefination

As an important modification of Wittig reaction, the Horner–Wadsworth–Emmons

(HWE) olefination gives rise to a,b-unsaturated ketones and esters with significant

advantages over Wittig reaction including easier reagent preparation, wider sub-

strate scope (especially as hindered ketones undergo HWE but not Wittig reaction),

as well as much more straightforward separation of the dialkyl phosphate side

product (since it is water soluble) from the alkenes of interest [16]. However, HWE

reaction proceeds in an exclusively E-selective fashion.
In 1983, Still and Gennari introduced the first general way to prepare Z-alkenes by

coupling electrophilic bis(trifluoroalkyl) phosphonoesters in the presence of strong

bases with aldehydes (Fig. 4) [17]. The bis(trifluoroethyl)phosphonoesters are easily

prepared from the commercially available trialkylphosphonoesters and trifluor-

oethanol. Both 1,2-disubstituted and trisubstituted Z-alkenes can be accessed using

thismethod, but the products are limited toa,b-unsaturated ketones, esters, or cyanides,
since the electrophilic phosphonate reagent requires an electron-withdrawing group at

 

Fig. 3 Highly Z-selective Wittig reaction of sulfonyl imines
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its a-position to stabilize the carbanion. Usually 18-crown-6 is used as an additive

because a non-coordinating metal cation is necessary for the reaction to work.

Since its original report, the Still–Gennari modified HWE olefination has been

widely used in natural product synthesis to access Z-alkenes [18]. One example

from the Roush group is shown in Fig. 5, where the olefination reaction was used to

provide the conjugated polyene precursor for their key one-pot tandem intramolec-

ular Diels–Alder reaction and vinylogous Baylis–Hillman cyclization [19].

Although the mechanism for the HWE olefination is not fully understood, the

rationale for the reverse selectivity of Still–Gennari modification merits further

discussion [20]. As shown in Fig. 6, it is believed that the steps for the HWE

Fig. 4 Still–Gennari modification of HWE olefination leads to Z-a,b-unsaturated ketones/esters
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Fig. 5 Still–Gennari modified HWE olefination for polyene synthesis
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olefination are reversible (or quasi-reversible) so that the E-alkene that is lower in
energy is selectively formed in essentially all cases. In the Still–Gennari modified

version, however, due to the electron-withdrawing effect of the two trifluoroalkoxy

groups on the phosphorus, the formation of the oxaphosphetane from the chelated

adduct is much more favored than in the regular HWE reaction, rendering a faster

elimination step than the initial addition. Since the whole process becomes irre-

versible, the kinetic selectivity in the initial addition step that favors anti-addition
leading to Z-alkene product based on steric interaction is maintained.

3 Cross Coupling Reactions

3.1 Pd- or Ni-Catalyzed Cross Coupling: Complexity Generation
from Z-Alkenyl Halides or Alkenylmetals

Pd- or Ni-catalyzed cross coupling reactions of alkenyl halides or alkenylmetal

species have established themselves as powerful tools for accessing either E- or
Z-alkenes [21]. The cross coupling step is stereospecific in most cases and results in

the retention of the stereochemistry of the starting alkenyl halides or alkenylmetal

species. The control of the alkene isomer, therefore, has to be established before the

cross coupling step, which is invaluable as the complexity generation step in

organic synthesis. Instead of presenting a general review of this area of research

that is beyond the scope of this chapter, two representative examples of Suzuki and

Negishi coupling to access Z-alkenes from Z-alkenyl iodides or Z-alkenyl boranes
are shown in Figs. 7 and 8.

The Molander group reported a formal total synthesis of oximidine II, in which an

intramolecular Suzuki cross coupling between an E-alkenyl potassium trifluoroborate

and a Z,Z-dienyl bromide constructed the highly strained 12-membered macrolactone

core of the natural product (Fig. 7) [22]. Importantly, the stereochemistry of the starting

partners was conserved to deliver the E,Z,Z-conjugated triene in the natural product.
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Fig. 7 Suzuki coupling for macrocyclization to install E,Z,Z-triene
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Negishi and co-workers compared Negishi coupling and Suzuki coupling for the

preparation of conjugated dienes (Fig. 8) [23]. In particular, Z,Z-dienes are

constructed in high purity starting from Z-alkenyl iodides and either Z-alkenyl
borane or zinc species. The Negishi coupling, however, was found to be more

efficient and to deliver the products in higher chemical yields.

3.2 Other Cross Coupling Reactions

The Micalizio group reported an interesting cross coupling of allylic alcohols and

vinyl silanes mediated by a titanium complex (Fig. 9) [24]. Good Z-selectivity (95%
in most cases) was obtained for a wide range of substrates. The titanium complex is

proposed to coordinate to both substrates and join them together in a closed

transition state. As shown in the proposed model, the minimization of A-1,2 strain

is believed to be the source of Z-selectivity of the system.
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Fig. 8 Cross coupling of Z-alkenyl halide leads to Z-alkenes
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4 Transformation of Alkynes to Z-Alkenes

4.1 Partial Hydrogenation with Lindlar’s Catalyst and Beyond

4.1.1 Lindlar Reduction

The partial hydrogenation of alkynes using Lindlar’s catalyst is widely utilized for

accessing disubstituted Z-alkenes. In contrast to Pd on activated carbon which

readily catalyzes the hydrogenation of alkynes and alkenes to the corresponding

alkanes, in Lindlar catalyst the Pd catalyst (5–10 wt%) is deposited on CaCO3 and

further “poisoned” with a lead co-catalyst (lead acetate or lead oxide) and quinoline

in order to decrease its catalytic activity so that the reaction can be intercepted at the

alkene stage. The mechanism is believed to be similar to the heterogeneous Pd- or

Pt-catalyzed hydrogenation of alkenes. Due to the nature of heterogeneous

catalysts, H2 is bound to the surface of the catalyst and Z-configured alkenes

could be generated exclusively.

Ever since its introduction by Hebert Lindlar [25], Lindlar reduction has found

extensive application in organic synthesis. One representative example from the

Ghosh group, where Lindlar reduction was used at a late stage of the total synthesis

of the potent antitumor macrolide (�)-laulimalide, is shown in Fig. 10 [26]. Thus,

Yamaguchi macrolactonization of the hydroxy alkynoic acid followed by Lindlar

reduction yielded the Z-a,b-unsaturated ester in high efficiency that is only a few

deprotection steps away from the natural product. It is important to point out that in

their earlier attempts, when the corresponding Z-a,b-unsaturated acid was first

prepared and used for the Yamaguchi macrolactonization step, significant isomeri-

zation of Z-alkene to the E-isomer was observed. It was postulated that this

undesired isomerization was the result of the reversible Michael addition of

DMAP (instead of 1,2-addition for Yamaguchi macrolactonization) to the mixed

anhydride intermediate of this macrocyclization step. The fact that Lindlar reduc-

tion can be carried out efficiently at such a late stage was key for the success of the

synthesis.
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In an effort to address the problem of lack of stereo-control for the alkene

geometry in ring closing olefin metathesis macrocyclization, the F€urstner group
introduced ring-closing alkyne metathesis (RCAM) followed by Lindlar reduction

as a powerful tool for accessing Z-macrocycloalkenes stereoselectively [27]. The

Schrock tungsten carbyne complex [(t-BuO)3W�C-t-Bu] [28] or the molybdenum

chloride species formed in situ from [Mo{N(t-Bu)(Ar)}3] and CH2Cl2 [29] were

found to be efficient precatalysts for these processes. Unlike alkene metathesis,

where terminal diene serves effectively as the substrate, the substrate for alkyne

metathesis has to be internal alkynes. In the past decade the F€urstner group has used
this method to prepare a wide range of macrocyclic natural products, representative

examples of which are shown in Fig. 11 [30]. The Z-alkenes highlighted in red were
all prepared using the RCAM/Lindlar reduction sequence.

In spite of the great synthetic utility, Lindlar’s catalyst suffers from several

significant drawbacks. As a heterogeneous catalyst, the performance of Lindlar’s

catalyst may vary from batch to batch. While the use of not enough catalyst results

in incomplete conversion, adding excess catalyst very often leads to over reduction

to the saturated alkanes. This is a serious problem because it is extremely difficult to

convert the alkane back to the desired alkene product. As a matter of fact, addition

of Lindlar’s catalyst in portions while closely monitoring the reaction conversion is

a common practice, which makes this procedure tedious and impractical. In addi-

tion, the use of toxic lead co-catalyst poses problems in terms of environmental and

safety issues.

Much effort was expended to improve the performance of the catalytic system,

including using Pd on pumice [31] as well as different amine co-catalysts to

deactivate Pd such as ethylenediamine [32]. A new general catalytic system supe-

rior to the original Lindlar’s catalyst has not been discovered so far.
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4.1.2 Other Metals for Partial Hydrogenation of Alkynes to Z-Alkenes

In 1973, Brown and Ahuja introduced an interesting alternative method to Lindlar

reduction that uses P-2 nickel in the presence of ethylenediamine for the partial

hydrogenation of alkynes to Z-alkenes [33]. The nickel catalyst can be generated in

situ through the reduction of nickel acetate byNaBH4, whichmakes it straightforward

to control the exact catalyst loading for the reaction.

In their efforts to prepare a [D4]-labeled F4t-neuroprostane, the Galano group

carried out partial reduction of the skipped diyne substrate in order to access the

Z,Z,Z-triene moiety of the final product (Fig. 12) [34]. While Lindlar’s catalyst

provided a mixture of mono-reduction of the less hindered alkyne (with the

ethyl substituent), the desired triene as well as over-reduced diene product, P-2

nickel yielded a much cleaner conversion to the desired product with 98%

purity. The product was then transformed into the target molecule by a sequence

of TBAF deprotection of the TBS ether and saponification.

In 1995, Sato and co-workers reported that low-valent titanium alkoxide

prepared from Ti(Oi-Pr)4 and i-PrMgCl (1:2) can readily incorporate alkynes to

give a titanacyclopropene complex, hydrolysis of which then leads to Z-alkenes
with high efficiency and excellent stereoselectivity (Fig. 13) [35].

Very recently, the groups of Bergman and Arnold reported that a d2

niobium–imido complex catalyzes an efficient and selective partial hydrogenation

of 1-phenyl-1-propyne to Z-b-methylstyrene under H2/CO mixtures (Fig. 14) [36].

An Nb(V) metallacyclopropene complex similar to the previous Ti system was

proposed, which was followed by s-bond metathesis with H2 and subsequent

reductive elimination to yield the Z-alkene. An excess of CO is required not only

for catalyst stability but also for achieving catalyst turnover by replacing the

product from the Nb complex. However, only one substrate was included in this

report.
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CO2MeTBSO Ni(OAc)2·4H2O, D2

NaBH4, NH2CH2CH2NH2

EtOH, 16 oC, 6 h

75%
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D D D D
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Fig. 12 P-2 Nickel-catalyzed hydrogenation of skipped diyne
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Fig. 13 Z-Alkenes from reaction of low-valent Ti alkoxide with alkynes followed by hydrolysis
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4.2 Hydrometalation of Alkynes to Z-Alkenes

Hydrometalation of alkynes is one of the most direct and powerful synthetic tools

for the formation of alkenyl metal species, which could be simply hydrolyzed to

yield the corresponding alkenes or readily utilized as building blocks for further

transformations such as cross coupling and electrophilic substitution reactions.

4.2.1 Syn-Hydrometalation of Internal Alkynes to Disubstituted Z-Alkenes

In general, non-catalyzed hydrometalation reactions including hydroboration pro-

ceed in a syn-fashion. When internal alkynes undergo hydrometalation followed by

hydrolysis, disubstituted Z-alkenes can be accessed selectively; representative

examples of Ti-catalyzed hydroalumination and hydromagnesation are demonstrated

in Fig. 15. In the first example, it was noted that the hydroalumination reaction in the

absence of the Ti catalyst led to the E-isomer [37]. In the second example, it was

shown that, in addition to hydrolysis, the alkenylmagnesium intermediate could

undergo addition to aldehydes and alkyl halides to yield trisubstituted alkene products

in high stereoselectivity [38].
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H
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Fig. 15 Ti-catalyzed hydroalumination and hydromagnesation of internal alkynes
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4.2.2 Hydrometalation of Terminal Alkynes to Access Z-Alkenes

The Brown group developed a multi-step procedure including syn-hydroboration of
terminal alkynes and trans-bromination followed by trans-elimination to access

Z-alkenyl bromides (Fig. 16) [39].

Transition metal catalyzed hydroboration may alter the stereoselectivity of

hydroboration of terminal alkynes. Miyaura and co-workers reported a rhodium-

catalyzed trans-hydroboration of terminal alkynes (Fig. 17) [40]. Deuterium labeling

studies strongly suggested that the reaction proceeded through a vinylidene interme-

diate, which explained the formation of Z-alkene products.
In contrast to hydroboration, hydrosilylation and hydrostannation generally do

not take place in the absence of a Lewis acid catalyst or a radical initiator. Two

representative examples of such reaction types are illustrated in Fig. 18 [41, 42].

These reactions are postulated to proceed through the trans-attack of hydrosilane/

hydrostannane on the Lewis acid-activated alkyne followed by transmetallation to

produce the Z-alkenyl silane/stannane products and regenerate the catalyst.

Other trans-hydrometalation of alkynes includes the use of a combination of

InCl3 and DIBAL to produce alkenyl indium species [43], and a Lewis acid

catalyzed hydrogermylation of terminal/internal alkynes (Fig. 19) [44]. In both

cases, trans-hydrometalation was believed to account for the stereoselectivity of the

reactions.
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Fig. 16 Multiple-step procedure to access Z-alkenyl bromide based on hydroboration
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5 Z-Selective Olefin Metathesis

In spite of impressive advances in the development of catalytic olefin metathesis

reactions [45], lack of stereoselective access to Z-alkenes represented a significant

shortcoming in olefin metathesis for decades. With the exception of ring-closing

metathesis (RCM) to access small-sized rings where the formation of E-isomer

causes too much strain in the molecule, most metathesis reactions afford either

mainly E-alkenes or a mixture of the two isomers in low ratios. Only in a few cases,

especially when one of the starting alkenes bears a sp-hybridized substituent, was

moderate to good Z-selectivity obtained for metathesis reactions (see Section 5.1).

Very recently, through the development of new Mo- or W-alkylidene complexes

(see Section 5.2) and Ru-carbene complexes (see Section 5.3), a general access to

Z-alkenes in high to excellent stereoselectivities through olefin metathesis was

finally realized.

5.1 Early Examples

As one of the earliest demonstrations of the synthetic utility of selective ring-

opening cross-metathesis (ROCM) reactions, Snapper and co-workers reported

the ROCM of substituted cyclobutene and terminal olefins to yield 1,5-diene

products catalyzed by Grubbs’ first generation catalyst in 1995 (Fig. 20) [46].

Although the selectivity was only moderate (generally 2:1 Z:E for six examples

reported), the bias towards the formation of Z-alkene represents a rare example.

A model was proposed to account for the selectivity, where steric interactions

between the substrate and the phosphine ligand are minimized [47].

R

R = aryl, alkyl

R SnBu3

73-89%, 95% Z

20 mol % ZrCl4, Bu3SnH

toluene, 0 oC, 1 h
R SnBu3
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R
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R SiPh3

53-94% for 12 examples
Z:E = 92:8 to >98:<2

5 mol % [RuCl2(p-cymene)]2

Ph3SiH, CH2Cl2, 45 oC, 3 h

Fig. 18 trans-Hydrosilylation and hydrostannation of terminal alkynes

R
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R GeR''3

89-99% for 13 examples
>98% Z

5 mol % B(C6F5)3

CH2Cl2, 25 oC, 3 h
+ R''3GeH

R' R'

Fig. 19 trans-Hydrogermylation of alkynes
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In the same year the Crowe group reported the first example of Z-selective cross
metathesis of acrylonitrile and various terminal olefins catalyzed by Schrock

catalyst shown in Fig. 21 [48]. Acrylonitrile was required to achieve moderate to

good Z-selectivities. A model that minimizes steric interaction between imido

ligand of the catalyst and the substituent on the alkene was proposed to account

for the Z-selectivity. In 2001 the Blechert group reported that second-generation

Hoveyda–Grubbs catalyst promoted similar reactions with essentially the same

level of Z-selectivity (typically 4:1 Z:E) [49].
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Fig. 20 ROCM of substituted cyclobutene with terminal alkenes
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Z-Selective cross metathesis employing conjugated enynes as one of the cross

partners was developed by the Chang group (Fig. 22) and the Lee group, among

others [50–52]. Over 20 examples were reported in the original paper, but the

Z-selectivity varied from 72:28 to 96:4. Second-generation Grubbs’ catalyst or

the more reactive pyridine supported complex was used for these reactions.

An interesting preparation of Z-alkenyl chlorides by cross metathesis was

reported by the Grela group (Fig. 23) [53]. NO2-substituted Hoveyda–Grubbs

second-generation catalyst promoted the cross metathesis of 1,2-dichloroethane

with a few highly functionalized terminal alkenes to yield the products with up to

>98% Z-selectivity. A large excess of 1,2-dichloroethane was required in this

reaction. The rationale for this intriguing Z-selectivity was not provided.

As one of the earliest applications of RCM for macrocyclization in natural

product synthesis, the Hoveyda group reported in 1995 that Schrock catalyst

catalyzed Z-selective formation of the macrocycle in Fig. 24 as a single alkene

stereoisomer, which is a late stage intermediate for the total synthesis of Fluvirucin

B [54]. While the conformational control of the substrate was believed to be crucial

for the selectivity, recent studies showed that catalyst control also played a key role

in the reaction outcome, as Ru-catalyzed RCM of a very similar substrate yielded a

1:1 mixture of Z:E isomers [55].
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5.2 Recent Development of Mo- andW-Alkylidene Monoaryloxide
Pyrrolide Complexes for Highly Z-Selective Olefin Metathesis

In the past few years the groups of Schrock at MIT and Hoveyda at Boston College

introduced a new type of Mo-alkylidene MonoAryloxide Pyrrolide (MAP)

complexes as highly reactive and enantioselective olefin metathesis catalysts

[56, 57]. These stereogenic-at-metal complexes supported by non-chelating ligands

turned out to be fascinating catalysts for Z-selective olefin metathesis reactions with

the level of Z-selectivities that was completely out of reach before.

5.2.1 ROCM and Ring-Opening Metathesis Polymerization

The first report was ROCM of oxabicycles with styrene (one example of allyl TBS

ether was also reported) to yield the trisubstituted tetrahydropyran products in high

enantioselectivities, and, more importantly, up to>98% Z-selectivity (Fig. 25) [58].
It is noteworthy that when a closely related catalyst supported by a more bulky

2,6-diisopropylphenyl imido group (instead of the smaller adamantyl imido as in

the catalyst shown) was used, no product was obtained.

An intriguing model for Z-selectivity was proposed: the formation of a trigonal

bipyramidal metallacyclobutane intermediate and the size difference of the imido

and the aryloxide ligands are considered to be the key factors (Fig. 26). The

combination of a sterically demanding but freely rotating (around the Mo–O

bond) aryloxide and a sufficiently smaller imido group favors reaction through

the syn alkylidene isomer and the approach of the incoming alkene with the

substituents directed towards the imido ligand to form an all-cis metallacy-

clobutane. Cycloreversion then produces Z-alkene products with regeneration of

the syn alkylidene.
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Fig. 25 Highly enantioselective and Z-selective ROCM of oxabicycle with styrene
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Ring-Opening Metathesis Polymerization (ROMP) of norbornadiene derivatives

catalyzed by the new Mo-MAP catalyst was carried out successfully by Schrock

and co-workers (Fig. 27) [59]. Polymers with a cis-, syndiotactic configuration,

which was not known in pure form before, can be accessed in this way. The same

model was believed to account for the Z-selectivity of the reactions, for which the

Mo-catalyst bearing an even more sterically bulky hexaisopropyltriphenoxide

(HIPTO) ligand turned out to be optimal. Another intriguing feature of this system

is the control of the tacticity by the stereogenic metal center. The same principle

was also extended to the preparation of cis-, syndiotactic ROMP polymers

containing alternating enantiomers when racemic norbornadiene derivatives were

used for the polymerization [60].

5.2.2 Cross Metathesis Reactions Catalyzed by Mo- or W-MAP Complexes

Extension of the previous systems to general cross metathesis had another hurdle to

overcome: isomerization of the kinetically formed Z-alkene to the E-alkene that is
lower in energy. This is due to the fact that there is no release of strain in the

substrate to manipulate as in ROCM and the reactions are under thermodynamic

control.

The Schrock lab focused on the development of new catalysts to address the

Z-selectivity for a simplified cross metathesis: homocoupling of terminal alkenes

(Fig. 28) [61, 62]. While various Mo-MAP catalysts including the optimal ones for

the previous systems failed to provide homocoupled internal olefins in high

Z-selectivity, it was discovered that the less reactive W-based MAP complexes

A and B supported by the sterically bulky HIPTO or the 3,30-bismesityl-aryloxide
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can catalyze the homocoupling reactions with good to excellent levels of Z-selec-
tivity. The isomerization pathway was minimized under the reaction conditions,

resulting in a better conservation of the kinetic Z-selectivity. Metallacyclobutane A

can be used efficiently as a catalyst for this reaction; the corresponding

neophylidene precatalyst can also be generated in situ and used for the reaction

with the same efficiency. The X-ray structure of A provided strong support for the

model of Z-selectivity proposed earlier: in this trigonal bipyramidal structure, the

imido group and the sterically demanding HIPTO ligand reside at the axial

positions; the bottom face of the metallacyclobutane is much less accessible due

to steric hindrance of the aryloxide. As a matter of fact, space filling model of A

showed that the protons on the lower face of the metallacycle are in close contact

with the protons on the isopropyl group from the aryloxide ligand.

The Hoveyda group worked out an elegant cross metathesis of terminal alkenes

with vinyl ethers or allylic amides [63]. Functionalized vinyl ethers and allylic

amides can be directly accessed with unprecedented Z-selectivity, which have been
applied to the total synthesis of two highly valuable natural products including an

anti-oxidant plasmalogen phospholipid (Fig. 29) and a potent immunostimulant

KRN7000.

As shown by the sequence in Fig. 29, cross metathesis between the vinyl ether

and an aliphatic alkene proceeded in a highly Z-selective fashion to provide, after

removal of the silyl group, the propargyl alkenyl ether in high chemical yield and in a

stereoisomerically pure form. Cu-catalyzed site- and enantioselective dihydroboration

of the alkyne, another methodology developed in the Hoveyda group [64], then

furnished the glycerol derivative in high enantioselectivity as a single Z-isomer,

which could be converted to the desired product C18 (plasm)-16:0 (PC) in four

steps [65].

The use of vinyl ethers (usually in excess) is mechanistically intriguing. The

excess vinyl ether readily reacts with the reactive Mo-methylidene complex

generated after the productive metathesis step and circumvents diminution in
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Z-selectivity of the product through equilibration of the isomers that would be facile

if Mo-methylidene is allowed to accumulate. The more stable alkoxy-substituted

alkylidene does not undergo homocoupling due to an electronic mismatch, but can

efficiently undergo productive cross metathesis with terminal alkenes; in this way, a

selective cross metathesis can be achieved.

5.2.3 Z-Selective RCM Catalyzed by W-MAP Complexes

RCM has been extensively utilized to access macrocyclic natural products, the

stereoselectivity of which, however, represented a significant limitation of this

methodology. In most cases the low energy difference between the alkene isomers

resulted in a mixture of two products in low ratios. The reported chemical syntheses

of the anti-cancer drug epothilones from a few research groups, for example, all

relied on RCM as a key step and the macrocyclic intermediates were only generated

in a Z:E ratio ranging from 1:2 to <2:1 [66, 67] (see [30] for the alternative alkyne

metathesis/Lindlar reduction sequence by the F€urstner group).
Very recently the Hoveyda group extended the application of W-MAP catalysts

to Z-selective RCM macrocyclization (Fig. 30) [68]. In contrast to previous

systems that delivered the desired product in low Z:E ratios, the desired Z-isomer

was obtained in a selectivity up to 97% and with good to high chemical yield.
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It is believed that the W-based catalyst (less reactive than the Mo analog) possesses

the appropriate reactivity level so that it readily catalyzes the Z-selective cycliza-

tion of the terminal diene substrate but fails to promote, to a significant extent, the

ring-opening/ring-closing pathway that can cause alkene isomerization. In this

paper the authors also reported the use of the same catalytic system for the highly

Z-selective synthesis of the 15-membered ring moiety of nakadomarin A (another

anti-cancer agent), as well as a highly flexible 16-membered lactone. It is also noted

that numerous other total syntheses of biologically active macrocyclic molecules

may similarly benefit from the reported protocols.

One drawback of the Schrock type olefin metathesis catalysts that limited their

synthetic utility is their high sensitivity to air (oxygen) or moisture. The W-catalyst

used in this study, however, turned out to be sufficiently stable to be handled in air

under up to 80% humidity. This practical advantage will certainly facilitate its wide

use in organic synthesis.

5.3 Recent Development of Ru–Carbene Complexes for Highly
Z-Selective Olefin Metathesis

Earlier this year, the Grubbs group reported the preparation of the Ru-based catalyst

with a chelating N-heterocyclic carbene (NHC) ligand that catalyzes highly

Z-selective olefin metathesis (Fig. 31) [69, 70]. This catalytic system provided

similar levels of efficiency and selectivity to the W-alkylidene complexes for

homocoupling reactions. The reason for the Z-selectivity is not clear at this point.

Extension of the substrate scope of this catalytic system is expected.
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6 Miscellaneous Reactions with Generation of Z-Alkenes

6.1 Elimination Reactions

Elimination reactions have been traditionally used for olefin synthesis; one such

example (essentially the second step of Peterson olefination) is shown in Fig. 32

[71]. Reactions of this type take advantage of the high stereoselectivity of the

elimination step. However, the control of the alkene geometry in the product

necessitates the diastereopurity of the starting material, access to which is arguably

more difficult. This limits the application of this method to special cases. One

example of Grob fragmentation to yield a trisubstituted Z-alkene as a key step in

natural product synthesis is shown in Fig. 33 [72]. Thus, saponification induced a

decarbonylation-trans-elimination sequence to provide the trisubstituted alkene as

a single Z-isomer.

Su and co-workers reported an interesting Sc-catalyzed reaction of ketones with

benzoyl chloride to produce aryl-Z-vinyl chlorides (Fig. 34) [73]. While Sc(OTf)3
activated the carbonyls towards attack by the acid chloride, bis(trichloromethyl)

carbonate (triphosgene) regenerated the benzoic chloride catalyst from the benzoic

acid side product. All the products in this report were obtained as pure Z-isomer.

A transition state model was proposed to account for the stereoselectivity of the

system, in which cis-elimination took place through a six-membered chair transi-

tion state with the substituents on the substrate residing at the equatorial position.

6.2 Rearrangement Reactions

Rearrangement reactions that involve alkenes (e.g., Wittig rearrangement and

Claisen rearrangement) have the potential for delivering alkenes in a stereoselective

fashion. However, in most cases the E-alkenes are generated predominately based

on conformational control in the cyclic transition states of these reactions. Only in

selected examples were Z-alkenes produced, where high substrate dependence is

observed. As one example, Yamamoto reported a Lewis acid promoted Z-selective
Claisen rearrangement in 1990 (Fig. 35) [74]. Up to 97:3 Z:E was obtained for the

alkene products using the sterically bulky Al-based Lewis acid.
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Fig. 31 New Ru-carbene catalyst for highly Z-selective olefin metathesis reactions
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6.3 Allylic Substitution/Allylation Reactions

Basavaiah [75] reported in 1992 that allylic reduction of allyl acetates with a a-CN
substituent yielded the vinyl cyanide products in complete Z-selectivity (Fig. 36).

One decade later, Kabalka reported that Pd-catalyzed allylic substitution of similar

substrates using p-TolBF3K also led to the products as an exclusive Z-isomer

(Fig. 37) [76]. The CN group was necessary for Z-selectivity and the substrate

scope was limited in both systems.

R1

SiPh2t-Bu

R2

OH

KH

THF, 22 oC, 1 h
R1 R2

80-93% for 5 examples
Z :E =85:15 to 96:4

R1 = n-Bu, Ph
R2 = Me, vinyl, n-Bu, Ph

Fig. 32 Elimination of a-silyl alcohol to yield Z-alkenes
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Fig. 33 Grob fragmentation to yield trisubstituted Z-alkene
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O O

O
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R

Cl O
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H H
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Fig. 34 Sc-catalyzed formation of alkenyl chlorides from ketones
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Shibasaki and Kumagai reported the catalytic asymmetric addition of allyl

cyanide to ketoimines [77] and ketones [78]. As shown in Fig. 38, different regio-

selectivities were obtained for these two substrate types. Alkenes in the products,

however, are all produced predominantly as the Z-isomer. The Cu catalyst and the

lithium salt work together to render this reaction feasible, with high enantioselec-

tivities obtained for a range of substrates. The origin of the Z-selectivity was

rationalized by the pseudo-axial orientation of CN group in the six-membered-ring

transition state of allyl Cu addition to the ketones [79].

7 Conclusions

Stereoselective synthesis of Z-alkenes represents a significant challenge in synthetic
organic chemistry. While many methods, especially catalytic systems, have been

developed towards this goal, Wittig olefination/Still–Gennari modified HWE

reactions and heterogeneous partial reduction of alkynes have proved to be the

most widely used and reliable methods for accessing Z-alkenes in complex mole-

cule synthesis. The recent development of highly Z-selective olefin metathesis

OR

R'

2 equiv.

Al
O

Me

OBr Br

t -Bu

t -Bu

t -Bu

t -Bu

CH2Cl2, -78 oC, 15 min R

R'

CHO 40-97% for 7 examples
Z:E = 60:40 to 97:3

R = alkyl, vinyl, allyl, alkynyl
R' = H, Me

Fig. 35 Lewis acid promoted Z-selective Claisen rearrangement

R

OAc

CN
2.4 equiv. LAH, EtOH

Et2O, -78 oC, 1 h

R
Me

CN

R= alkyl, aryl

62-77% for 6 examples
>98% Z

Fig. 36 Z-Selective allylic reduction of a-CN allyl acetates

OAc

CN
3 mol % Pd(OAc)2

MeOH, 22 oC, 1 h

CN

R= H, Cl, OMe 81-87% for 3 examples
>98% Z

R
p-TolBF3K R Me

Fig. 37 Z-Selective allylic substitution of a-CN allyl acetates
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represents the most exciting advances in this area of research; application of this

methodology to more efficient and selective preparation of complex molecules has

been demonstrated through a few elegant examples. With the introduction of more

robust and user-friendly catalysts, this method will certainly find more use in

organic synthesis.
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Stereoselective Synthesis of Mono-fluoroalkenes

Shoji Hara

Abstract Recent developments in the stereoselective synthesis of fluoroalkenes,

which include hydrofluorination of alkyne, fluorination of alkenylmetal, condensa-

tion methods, dehydrofluorination of gem-difluoro compounds, and a cross-

coupling reaction using fluorohaloalkenes or fluoroalkenylmetal, are described in

this chapter.

Keywords Condensation � Cross-coupling � Elimination � Fluoroalkene �
Hydrofluorination � Stereoselective synthesis

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Hydrofluorination of Alkyne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.1 Metal-Catalyzed Hydrofluorination Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Fluorination of an Alkenylmetal with an Electrophilic Fluorination Reagent . . . . . . . . . . . . . 61

4 Condensation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Horner–Wadsworth–Emons Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Fluoro–Julia Olefination Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Reductive Elimination Reaction of poly-Halo Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Reductive Defluorination of Allylic gem-Difluorides
Using Pd Catalyst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Reductive Defluorination of Allylic gem-Difluorides
by Intramolecular Redox Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Reductive Dehalogenation of Dibromofluoromethyl Compounds Using CrCl2 . . . . . 70

6 Cross-Coupling Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Cross-Coupling Reaction Using 2-Fluorovinyl Tosylate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Cross-Coupling Reaction Using 1-Fluoro-1-halo-1-alkene . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Cross-Coupling Reaction Using (1-Fluoro-1-alkenyl)metal Reagents . . . . . . . . . . . . . . . 74

S. Hara (*)

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

e-mail: shara@eng.hokudai.ac.jp

mailto:shara@eng.hokudai.ac.jp


6.4 Cross-Coupling Reaction Using 2-Fluoro-1-halo-1-alkenes or (2-Fluoro-1-alkenyl)

iodonium Salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Cross-Coupling Reaction Using 1-Fluoro-2-halo-1,2-dialkylethenes . . . . . . . . . . . . . . . . 79

6.6 Cross-Coupling Reaction Using (2-Fluoro-1,2-dialkylethenyl)boronates . . . . . . . . . . . . 82

7 Fluoroalkene Synthesis Using [3.3] Sigmatropic Rearrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1 Introduction

The introduction of a fluorine atom to bioactive compounds can modify their activity,

so much effort has been invested in the development of selective fluorination

reactions. Many bioactive compounds that have double bonds are known, and their

analogs, which have a fluorine atom at their double bond, have been attracting the

attention of biochemists and organic chemists [1–4]. In order to induce an effect on the

activity of bioactive compounds, a fluorine atom must be introduced to the desired

position at the double bond with the correct stereochemistry. The stereoselective

synthesis of fluoroalkene is therefore important. There have been articles written

recently that concern fluoroalkene synthesis [5–7] so I would like to introduce the

recent development in the stereoselective synthesis of mono-fluorinated alkenes.

2 Hydrofluorination of Alkyne

The hydrofluorination reaction of alkynes is the most direct method to synthesize

fluoroalkenes. However, it is difficult to produce a fluoroalkene from a non-

activated alkyne through a non-catalyzed hydrofluorination reaction. This is

because strongly acidic HF reagents, such as pyridinium poly(hydrogen fluoride)

(30% pyridine–70% HF), are required for the synthesis and 2 equiv. of HF adds to

the triple bond to give a gem-difluoride under the acidic conditions [8, 9]. The non-
catalyzed hydrofluorination reaction is effective only for producing fluoroalkenes

having an electron-withdrawing group [10, 11].

2.1 Metal-Catalyzed Hydrofluorination Reaction

A gold complex catalyzed hydrofluorination of non-activated alkyne was reported

recently [12]. Initially, the gold catalyst forms a complex 1 with an alkyne, and

subsequent reaction of 1 with a fluoride yields a fluoroalkene 2. A less acidic

Et3N-3HF was used as a fluoride source, and (Z)-fluoroalkene was stereose-

lectively formed by trans-addition of HF to the triple-bond (Scheme 1). With

aryl alkyl acetylene 3, the HF addition occurred regioselectively to give a (Z)-1-
aryl-2-fluoro-1-alkene 4 as a main product (Scheme 2). The regiochemistry of the

HF addition can be controlled more effectively by introducing a directing group

(Dg) in the substrate [13]. A carbamate group serves as an effective directing
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group; it coordinates to the Au catalyst and controls the regiochemistry of HF

addition. In the reaction with an alkyne 6 which has a directing group, a fluorine

atom is selectively introduced to a carbon positioned distant from the directing

group (Scheme 3). The gold or palladium catalyzed fluorination of functionalized

alkynes was also reported [14–16].

3 Fluorination of an Alkenylmetal with an Electrophilic

Fluorination Reagent

The fluorination of alkenylmetal reagents using electrophilic fluorination reagents

such as Selectfluor™ [17, 18], XeF2 [19–21], and N-fluoro-N-alkylsulfonamide

[22] has been well studied for the stereoselective synthesis of fluoroalkene.

Ph C C Hex

NN ArAr

AuOBut

Et3N-3HF, KHSO4

2.5 mol%

78%

HexH

Ph F

HexF

Ph H

+

13 : 1

3
(Z )-4 (Z )-5

Scheme 2 Regioselective hydrofluorination of aryl alkyl acetylene
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CH F
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CH H
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+
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2.5mol% AgBF4
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Scheme 3 Regioselective hydrofluorination of alkyne having a directing group
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Scheme 1 Au catalyzed hydrofluorination of alkyne
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However, the method has serious drawbacks. During fluorination of the alkenylmetal

species, an alkene is formed as a by-product and it is difficult to separate this from the

fluoroalkene [19–22]. Moreover, the fluorination of alkenylmetal species such as

alkenylsilane and alkenylborane proceeds non-stereoselectively, and a mixture of

stereoisomers is formed [17, 18]. Recently Ritter et al. reported that the fluorination

of alkenylboronic acid 9 with Selectfluor™ proceeds stereoselectively and (E)-1-
fluoroalkene 10 can be obtained stereoselectively [23] (Scheme 4). The use of AgOTf

is critical for the stereoselective synthesis of fluoroalkene and the formation of

undesired alkene was not observed under these conditions. The alkenylsilver species

11 was postulated as an intermediate.

4 Condensation Reaction

TheWittig reaction of a fluoromethylidene or a fluoroalkylidenephosphonium ylide

with an aldehyde afforded a fluoroalkene with poor stereoselectivity [24–28]. The

Wittig reaction is therefore not helpful itself for the stereoselective synthesis of

fluoroalkenes, but modifications of the Wittig reaction have been reported to

achieve stereoselective synthesis of fluoroalkenes [29].

4.1 Horner–Wadsworth–Emons Reaction

Horner–Wadsworth–Emons reaction (HWE reaction) of triethyl 2-fluorophos-

ponoacetate 12 with an aldehyde stereoselectively yields an (E)-a-fluoro-a,b-
unsaturated ester 13 [30], and it has been used to synthesize a fluorinated analog

of natural compounds [31–33]. Nagao et al. reported recently that the (Z)-isomer of

a-fluoro-a,b-unsaturated ester 13 can be prepared stereoselectively by the reduction
of triethyl 2-acyl-2-fluoro-2-phophonoacetate 14 with NaBH4 at low temperature

[34]. As the starting compound 14 can be prepared by the acylation of 12, both

(E)- and (Z)-13 can be prepared from 12 stereoselectively [34] (Table 1).

Hex
B(OH)2

9

Hex
F

85%(E only)

N
N

Cl

F
2BF4

NaOH, AgOTf

Hex
Ag-F

11

10

Scheme 4 Stereoselective synthesis of fluoroalkene by fluorination of alkenylboronic acid
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This selectivity was explained by the Felkin–Anh model in which the reduction

of 14 proceeds through a conformation A to minimize the sterical interaction, and

(Z)-13 was formed by syn-elimination of oxygen and phosphine from the resulting

pro-(Z)-oxyanion intermediate (Scheme 5). A low temperature reduction (�78 �C)
is critical for obtaining (Z)-13 selectivity.

This method has been used for the synthesis of peptide isosteres having a (Z)-
fluoroalkene moiety [34–37] (Scheme 6).

4.2 Fluoro–Julia Olefination Reaction

Recently, fluoro–Julia olefination reaction using a-fluorinated heteroaryl sulfone

has been actively studied for the synthesis of fluoroalkene [38]. Fluorinated

Table 1 Stereoselective synthesis of (E)- and (Z)-a-fluoro-a,b- unsaturated
ester 13 by HWE reaction using 12

Yield of 14 (%) E : Z

COOEt

F
(EtO)2P

O

RCHO

R

COOEt

F
R

F

COOEt+

(E)-13 (Z)-13

(E)-13 (Z)-13

12

COOEt

F
(EtO)2 P

O
COR +

1) BuLi, THF

2)

1) BuLi, THF

2) RCOCl

NaBH412
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Ph
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E : Z
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Ph
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benzothiazolyl sulfones (BT-sulfone) 15 are most frequently used as starting

materials and can be prepared from 2-methcapto-1,3-benzothiazole in three steps

[39]. The method is also applicable for the synthesis of various fluorinated

heteroaryl sulfones (Scheme 7).

CbzN
H

COOH

F

N

X
F

X = O or S

N

O
HN

HOOC

F

HN

Ph

O

Boc

Scheme 6 Peptide isosters having a (Z)-fluoroalkene moiety synthesized by Nagao method

X W
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2) m-CPBA
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4) Selectfluor
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W: alkyl, aryl, ester, CN, SO2Ph

N

S
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Scheme 7 Fluorinated benzothiazolyl sulfone synthesis
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O
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Scheme 5 Reaction mechanism of (Z)-fluoroalkene formation by the reduction of 14
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The reaction of 15with aldehyde in the presence of a base afforded fluoroalkenes in

good yield. Themechanism of the fluoro–Julia reaction is as follows. The carbanion of

15 is added to an aldehyde in either syn or anti fashion to afford syn or anti b-alkoxy
sulfone 16, respectively. The b-alkoxy sulfone 16 changes to a sulfonate 17 through a
spiro-cyclic intermediate (Smiles rearrangement), and the subsequent concerted anti-
elimination of sulfur dioxide and 2-oxobenzothiazolide produces a- or b-type

fluoroalkene, respectively (Scheme 8). Generally, the stereochemistry of the product

in the Julia reaction is difficult to predict, and the selectivity in the fluoro–Julia

reaction is lower than that in the non-fluoro–Julia reaction [38].

In the reaction of a non-stabilized BT-sulfone anion (W ¼ alkyl or aryl in 15)

with an aldehyde, the stereoselectivity is generally low [39, 40] (Entries 1 and 2 in

Table 2). On the other hand, in the reaction of the stabilized BT-sulfone anion

W

F
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W

F
R
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+

W
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S N
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O
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O
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F
W H

NS

O

H
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F
W R
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O
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S N
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Scheme 8 Mechanism of fluoro-Julia olefination reaction
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(W ¼ electron-withdrawing group in 15) with an aldehyde, better stereoselectivity

can be expected. However, the stereochemistry of the product and the selectivity

are dependent on the reaction conditions and the type of electron-withdrawing

group in 15. When DBU was used as a base in the reaction of 15 (W ¼ COOEt),

an a-type fluoroalkene was formed as the main product [41, 42] (Entry 4). On the

other hand, when NaHMDS or DBU with MgBr2 was used, a b-type isomer was

formed selectively [40] (Entries 3 and 5). The difference in selectivity was

explained by the difference in their transition state. When DBU was used, the

reaction proceeds through a non-chelated open-chain transition state to provide a

syn-b-alkoxy sulfone 16, which is a precursor of the a-type isomer. On the other

hand, when NaHMDS or DBU with MgBr2 was used, the reaction proceeds through

a chelated chair-like transition state to afford an anti-b-alkoxy sulfone 16, which is

the precursor of the b-type isomer (Scheme 8). In the reaction using the

phenylsulfonyl group substituted 15 (W ¼ SO2Ph), a similar selectivity was

observed [43] (Entry 7). However, when a cyano or keto group substituted substrate

was used (W ¼ CN or COPh) with DBU, the b-type isomer was selectively formed

[44, 45] (Entries 6 and 8). Furthermore, when N-methoxy-N-methyl amide

(Weinreb amide) is used, the selectivity of the reaction and stereochemistry of the

product are highly dependent on the reaction conditions [45] (Entries 9–11).

The reaction of an a-fluorosulfoximine 18 with a nitrone 19 was also reported,

and (Z)-fluoroalkene 20 was formed in good yield with high stereoselectivity [46]

(Scheme 9).

Table 2 Fluoro–Julia olefination reaction using various reagentsa

W

F
R

W

F
R

F

W
+

N

S
SO2

RCHO

a b
base

15

Entry W R Base Yield (%) a:b

1 Me p-NO2C6H4
tBuOK 88 61:39

2 Ph 2-Nap LHMDS 100 70:30

3 COOEt Ph NaHMDS 53 15:85

4 COOEt Ph DBU 70 76:24

5 COOEt Ph DBU(MgBr2) 72 7:93

6 CN Ph DBU 93b 19:81

7 SO2Ph Ph DBU 90b 84:16

8 COPh p-MeOC6H4 DBU 61 0:100

9 CON(OMe)Me 2-Nap DBU 84c 4:96

10 CON(OMe)Me 2-Nap DBU 93 78:22

11 CON(OMe)Me 2-Nap NaH 90 0:100
aIf otherwise not mentioned, THF was used as a solvent
bCH2Cl2 was used as solvent
cDMPU was used as a solvent
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5 Reductive Elimination Reaction of poly-Halo Compounds

The reductive elimination reaction of poly-halo compounds has been used to make

fluoroalkenes stereoselectively. Recently, themethodwas successfully used to prepare

amino acids having a (Z)-fluoroalkene moiety 22, fluoroalkene dipeptide isosteres

(FADIs), which are currently attracting much attention as nonhydrolyzable peptide

mimics [4, 47, 48]. The (Z)-fluoroalkene moiety was synthesized by the reductive

defluorination reaction of g,g-difluoro-a,b-unsaturated ester 21 using Me2CuLi or

SmI2. As the reaction proceeds through a fluorodienolate intermediate 23, the intro-

duction of a substituent at thea-position of the ester group is possible by the addition of
an electrophile [49–56] (Scheme 10). When Me3Al is used with Cu salt in a reaction

with 21, an SN2
0 type reaction occurs to give (Z)-22 (E ¼ Me) directly [57–59].

5.1 Reductive Defluorination of Allylic gem-Difluorides
Using Pd Catalyst

When an allylic gem-difluoride 24 is treated with Pd catalyst and PhSiH3 in EtOH, a

reductive defluorination reaction occurs to give FADIs 25. The reaction proceeds

through a p-allyl palladium intermediate 26. When an electron-withdrawing group

is attached to the double bond, the (Z)-isomer is formed selectively (Entries 1–3 in

Table 3). However, when an electron-withdrawing group is not attached, selectively

is poor [60] (Entry 4).

When 1-phenyl-2,2-difluoro-3-buten-1-ol 27 was subjected to a reaction with a

Pd catalyst in the presence of sec-amine, the amine attacked the p-allyl intermediate

to give aminated (Z)-fluoroalkene 28 stereoselectively [61] (Scheme 11).

5.2 Reductive Defluorination of Allylic gem-Difluorides
by Intramolecular Redox Reaction

Otaka et al. reported that the reaction of g,g-difluoro-a,b-enal 24e with an

N-heterocyclic carbene (NHC) generated from thiazolium salt 29 gave FADI

25a in moderate yield. When enoylsilane 24f was used in the reaction with an

NHC generated from 30, the result was improved and 25a was obtained in good

yield with high stereoselectivity (Z:E ¼ 96:4) [62] (Table 4).

SPh

F

Ph
O NTs 1) BuLi

2) N

Ph H

PhO

Ph
Ph

F
87%

(Z:E = 3:97)

18

19

20

Scheme 9 Reaction of α-fluorosulfoximine with a nitrone
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The reaction includes the intramolecular redox mechanism. Initially, the addi-

tion of NHC to the carbonyl group occurred to give an adduct 31, and the

subsequent 1,2-shift of the proton or sily group (Brook rearrangement) from the

carbon to oxygen took place to give an allylic anion species 32. The reductive

elimination of fluoride from 32 gave fluorodienoate 33, which in turn gave 25a by

ethanolysis (Scheme 12).

The aminolysis of dienolate 33 was also performed to obtain an amide-type

FADIs 34 [63]. The NHC generated from the thiazolium salt 30 or triazolium

salt was not effective and a cyanide ion was found to be suitable for the aminolysis.

The reaction of 24f with KCN in the presence of 18-crown-6, and subsequent

Ph
FF

OH

[η3-C3H5PdCl]2

Et2NH

Ph
NEt2

F

OH

97% 2827

Scheme 11 Reductive defluorination of allylic gem-difluoride using Pd catalyst

Table 3 Reductive defluorination using Pd catalyst

X

FF

NHBoc EtOH, Et3N, 50°C

[η3-C3H5PdCl]2

dppe

PhSiH3

X

F

NHBoc

24a: X = COOEt
24b: X = COOBut

24c : X = CN
24d : X = CH2OBn

25a-d

X

F
PdLn

26

Entry 24 Yield (%) Z:E

1 24a (X ¼ COOEt) 99 91:9

2 24b (X ¼ COOBut) 91 >97:3

3 24c (X ¼ CN) 73 86:14

4 24d (X ¼ CH2OBn) 77 50:50

F
OEt

OM

22

COOEt

FF

COOEt

F

Me2CuLi

21
or SmI2

E+
E

R

R

NHR'

R

NHR'

NHR'
23

Scheme 10 Reductive defluorination of allylic gem-difluoride using a metallic reagent
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Table 4 Reductive defluorination by intramolecular redox reaction mediated

by NHCs

NS Bn

HO

Cl

30

NS Bn
Cl

29

X

FF

NHBoc
COOEt

F

NHBoc

Z : EYield (%)24

66

81 96 : 4

24e (X = CHO)

24f ( X = COTBS)

29

30

iPr2NEt

DBU

EtOH

29 or 30, base

base29 or 30

24e: X = CHO
24f: X = COTBS

25a

C-X

FF

NS Bn

R'

C

FF
O

X

NS Bn

R'

C

FF
O

NS
Bn

R'

X C

F
O-X

NS
Bn

R'

+

EtOH

X = H or TBS

O

31

32 33

25a

24

COOEt

F

NHBoc

NHBoc
NHBoc

NHBoc NHBoc

Scheme 12 Reductive defluorination of allylic gem-difluoride by intramolecular redox reaction
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addition of benzylamine, gave 34 (RR’N ¼ BnNH) in 85% yield with high

(Z)-selectivity (Z:E ¼ 95:5) (Entry 1 in Table 5). In this reaction, an acyl cyanide

35 must be formed as an intermediate. When an amino acid derivative such as

glycine or valine (H-Gly-OEt or H-Val-OMe) is used as the amine, tripeptide

isosteres can be prepared (Entries 2 and 3). The introduction of a FADI moiety to

the peptide resins was also performed by using a peptide as amine.

5.3 Reductive Dehalogenation of Dibromofluoromethyl
Compounds Using CrCl2

Mioskowski et al. reported that when 2,2-dibromo-2-fluoro-1-tolylethyl benzoate

36 was treated with CrCl2, (Z)-1-fluoro-2-(p-tolyl)vinyl benzoate 37 was formed

stereoselectively. During the reaction, a migration of the benzoyloxy group and

elimination of two bromides occurred [64]. Taguchi et al. also reported that in the

reaction of a silyl ether of dibromofluoro alcohol 38 with CrCl2 and Mn, a silyl enol

ether of a-fluoroketone 39 having (Z)-stereochemistry was formed stereoselectively

[65] (Scheme 13).

Table 5 Reductive defluorination by intramolecular redox reaction mediated

by a cyanide ion

CONRR'

F

NHBoc

Z : EYield (%)

85

1) KCN/18-crown-6

BnNH2

Amine

95 : 5

H-Gly-OEt 93 94 : 6

H-Val-OMe 90 94 : 6
HXb 95 93 : 7

HN
S
O2 HXb

H2NCH2C OEt

O
H2N CHC

CHCH3

OEt
O

CH3H-Gly-OEt
H-Val-OMe

24f

Entry

1

2

3

4

34

COCN

F

NHBoc
35

2) RR'NH
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6 Cross-Coupling Reaction

Transition metal catalyzed cross-coupling reactions using fluoroalkenyl halides or

(fluoroalkenyl)metals are one of the most effective methods for stereoselective

fluoroalkene synthesis. By choosing the appropriate fluoroalkenyl halide or

(fluoroalkenyl)metal reagent, various fluoroalkenes with the desired stereochemis-

try and functional groups can be prepared. Therefore, much effort has been invested

in the stereoselective synthesis of the starting fluoroalkenyl halides and

(fluoroalkenyl)metals, as well as the cross-coupling reaction that utilizes them.

6.1 Cross-Coupling Reaction Using 2-Fluorovinyl Tosylate

(E)-2-Fluorovinyl tosylate 40 was stereoselectively prepared from commercially

available 2,2,2-trifluoroethyl tosylate in two steps. A pure (E)-40, isolated by

column chromatography, was used in the Suzuki–Miyaura coupling with (4-

methoxyphenyl)boronic acid, and (E)-(2-fluorovinyl)-4-methoxybenzene 41 was

obtained stereoselectively [66] (Scheme 14).

6.2 Cross-Coupling Reaction Using 1-Fluoro-1-halo-1-alkene

1-Fluoro-1-halo-1-alkene 42 is prepared by a Wittig-type reaction as a mixture of

stereoisomers whose separation is rather difficult [30, 67, 68] (Scheme 15).

In the transition metal catalyzed cross-coupling reaction of 42, the (E)-isomer

reacts more quickly than the (Z)-isomer. Therefore, it is possible to obtain selec-

tively the cross-coupling product derived from (E)-42 by controlling the reaction

98%

CrCl2, MnBr
Ph

OTMS

F
Br

F
Ph

OTMSTHF

93% 39 (Z only)

36 37

38

THF

CrCl2CBr2F

OBz

F

OBz

(Z:E = >99:1<)

Scheme 13 Reductive dehaloganation of dibromofluoromethyl compounds using CrCl2
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conditions even when a mixture of (Z)- and (E)-42 was used. For instance, in the

carboamidation reaction of 42a (E:Z ¼ 85:15), (Z)-a-fluoro-a,b-unsaturated amide

43 was formed stereoselectively (Z:E ¼ 94:6). It is critical to carry out the reaction

at room temperature to obtain (Z)-43 stereoselectively, even though a long reaction

time is required [69]. Similarly, when 42a (Z:E ¼ 88:12) was applied to the Stille

coupling with PhSnBu3, the (Z)-isomer of fluorostilbene (44) was obtained

stereoselectively (Z:E ¼ 98:2) [70] (Scheme 16).

This methodology was also applied to Negishi coupling. When 1-fluoro-1-iodo-

4-phenyl-1-butene 42b (E:Z ¼ 78:22) was subjected to the reaction with an alkyl

F

TsO

CF3CH2OTs
1) BuLi

2) LiAlH4

(E:Z = 95:5)

B(OH)2MeO + E-40
Pd cat

F

MeO

41
98%

(E only)

40

Scheme 14 Cross-coupling reaction using 2-fluorovinyl tosylate 40

R
X

F

R
F

X

X = Br or I

(E )-42 (Z )-42

Scheme 15 (E)- and (Z)-1-fluoro-1-halo-1-alkene 42

Ph
Br

F
42a (E:Z = 85:15)

PhNH2, CO (160 psi)

Pd cat, NEt3
Ph

CONHPh

Frt, 90h 46% 43 (Z:E = 94:6)

Pd cat, CuI
Ph

Ph

F

PhSnBu3

44 (Z:E = 98:2)

42a
(E:Z = 88:12)

rt, 20h
73%

Scheme 16 Stereoselective fluoroalkene synthesis by cross-coupling reaction using 1-bromo-1-

fluoro-1-alkene 42a
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zinc reagent in the presence of a Pd catalyst, the (Z)-isomer of the fluoroalkene 45

was formed exclusively [71] (Scheme 17).

Pannecoucke et al. also reported the selective synthesis of (E)- and (Z)-a-
fluoroenone 46 by the Negishi coupling of 1-bromo-1-fluoro-1-alkene 42c with

an ethoxyvinylzinc reagent. When a (Z)-isomer of the a-fluoroenone 46 is desired,

an excess amount of a mixture 42c was used. Under these conditions, (E)-42c
reacted more quickly than the (Z)-isomer, and (Z)-a-fluoroenone 46 was formed

selectively, while (Z)-42c remained unchanged. Therefore, pure (Z)-42c could be

obtained from the reaction mixture and was used for the synthesis of (E)-46 by

reaction with the ethoxyvinylzinc reagent [72] (Scheme 18).

Burton et al. reported that when a mixture of (E)- and (Z)-42a is reduced with

HCOOH/NBu3/Pd(II)/DMF, an (E)-isomer is reduced to 1-fluoro-1-alkene 47more

quickly than the (Z)-isomer, and, as the result, pure (Z)-42a can be obtained [73].

Practically, the separation of (Z)-42 is not necessary for the application to the cross-
coupling reactions because 47 is inert to the cross-coupling reactions under stan-

dard conditions. Therefore, when the mixture of (Z)-42a and 47was subjected to the
carboamidation reaction, the (E)-isomer of the a-fluoro-a,b-unsaturated amide 48

was stereoselectively formed with moderate yield [69]. Similarly, when a mixture

was used for the Suzuki–Miyaura coupling with arylboronic acid, the (E)-isomer of

fluorostilbene derivative 49 was obtained stereoselectively [70] (Scheme 19).

F

I

42b (E:Z = 78:22)

F

(CH2)3COOEt
Pd cat, 50-65°C, 24h

60%
45 (Z only)

BrZn(CH2)3COOEt
Ph(CH2)2 Ph(CH2)2

Scheme 17 Stereoselective fluoroalkene synthesis by Negish coupling using 1-bromo-1-fluoro-1-

alkene 42b
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O
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1) Pd cat

2) H+

F
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+

85%
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OMe
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1) Pd cat
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Scheme 18 Stereoselective α-fluoroenone synthesis by Negish coupling using 1-bromo-1-fluoro-

1-alkene 42c
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6.3 Cross-Coupling Reaction Using (1-Fluoro-1-alkenyl)metal
Reagents

An effective method for the stereoselective synthesis of an (E)- or (Z)-(1-fluoro-1-
alkenyl)metal reagent 50 has not yet been reported (Scheme 20). McCathy et al.
reported the stereoselective synthesis of (1-fluoro-1-alkenyl)stannane (M ¼ Sn in

50) from the corresponding 1-fluoro-1-alkenyl sulfone and used it for the

stereoselective synthesis of fluoroalkene by Stille coupling. However, the starting

alkenyl sulfone was prepared as a mixture of stereoisomers and a pure isomer was

obtained by separation using column chromatography [74–76].

In the chromium-mediated reaction of 1-fluoro-1-bromo-1-alkene with an alde-

hyde, the (E)-isomer reacts more quickly than the (Z)-isomer. Therefore, when a

mixture of stereoisomer 42a was subjected to the reaction with benzaldehyde in the

presence of CrCl2 and Ni catalyst, a (Z)-isomer of allylic alcohol 51 was selectively

formed [77, 78] (Scheme 21). The reaction proceeds through an alkenylchromium

species 52, and the formation of the (E)-alkenylchromium species is much faster than

that of the (Z)-isomer. Actually, the reaction of a pure (Z)-isomer of 1-fluoro-1-bromo-

1-alkene with aldehyde is sluggish, and the corresponding (E)-isomer of the product

was obtained in low yield or not obtained at all. Therefore, a good method for the

synthesis of (E)-51 has not yet been reported.
Wnuk et al. synthesized an (E)-(fluoroalkenyl)germane species 54 from a

corresponding fluoroalkenyl sulfone 53 as in the synthesis of the (fluoroalkenyl)

stannane [74–76], and the resulting (E)-(fluoroalkenyl)germane 54 was used in

the cross-coupling reaction [79]. In the reaction of 54 with iodobenzene,

42a
(E:Z = 43:57)

Pd cat, HCOOH

NBu3, DMF
Ph

F

Ph
F

Br

+

83% based on (Z )-
isomer in the mixture

(Z)-42a47

(Z) -42a + 47

(Z) -42a + 47

PhNH2, CO (160 psi)

Pd cat, NBu3

70 °C, 182h

Ph
F

CONHPh

48 (Z:E = 0:100)25%

Pd cat, K2CO3 toluene
F

49 (Z:E = 0:100)reflux, 4h

MeCO

B(OH)2

COMe

83%

Ph

143h

Scheme 19 Synthesis of (Z)-1-bromo-1-fluoro-1-alkene 42a and its application to cross-coupling

reactions
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(Z)-fluorostilbene 44 was formed stereoselectively in good yield. However, when

bromobenzene was used, the yield of 44 decreased to 24% and a homo-coupling

product was formed as a main product (Scheme 22).

6.4 Cross-Coupling Reaction Using 2-Fluoro-1-halo-1-alkenes
or (2-Fluoro-1-alkenyl)iodonium Salts

(E)-2-Fluoro-1-halo-1-alkene 55 can be prepared from 1-alkyne by the reaction

with IF generated in situ (X ¼ I) or BrF (X ¼ Br) [80–82], and the resulting (E)-55

50a 50b

R
M

F

R
F

M

Scheme 20 (E)- and (Z)-1-fluoro-1-alkenyl metal reagent 50

(E:Z = 45:55)

2) PhCHO
1) CrCl2, Ni cat

F
(Z )-51

42a

62%

CrIII

F

Ph

Ph

OH

Ph

(E:Z = 0:100)

(E )-52

DMF

Scheme 21 Reaction of 42a with benzaldehyde in the presence of CrCl2 and Ni catalyst

TMS3GeH/AIBN

(E:Z = 94:6) (E:Z = 98:2)
80%
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Ph
Ge(SiMe3)3
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Ph
SO2Ph

F

H2O2/NaOH

Pd cat PhI

88% (Z only)
54 (E only)

Ph Ge(SiMe3)3

F
44

Ph
Ph

F

54

Scheme 22 Synthesis of (E)-(fluoroalkenyl)germane 54 and its application to cross-coupling

reaction
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species has been used for the synthesis of various (E)-fluoroalkenes by applying it

to the cross-coupling reaction [81, 82] (Scheme 23).

(Z)-2-Fluoro-1-bromo-1-alkene 55awas prepared from 1-bromo-1-alkene by the

addition of BrF, followed by treatment with a base. This method is applicable only

when R is an aryl group. The resulting (Z)-55a was used in the Suzuki–Miyaura

coupling for the synthesis of the (Z)-fluorostilbene derivative 56 [83] (Scheme 24).

Both (E)- and (Z)-(2-fluoro-1-alkenyl)iodonium salt 55 (X ¼ I+Ar) can be

prepared stereoselectively. (E)-(2-Fluoro-1-dodecyl)iodonium salt 55b is prepared

by the addition of iodoarene difluoride to 1-dodecyne [84, 85]. On the other hand,

(Z)-55b was prepared from the 1-dodecynyliodonium salt by a reaction with

aqueous HF [86] or metal fluoride [87, 88] (Scheme 25).

In the transition metal catalyzed cross-coupling reaction, the (2-fluoroalkenyl)

iodonium salt has two reactive sites, a phenyl group and a fluoroalkenyl group.

R
XR

X

X = Br, I or I+Ar

(E )-55 (Z )-55

FF

Scheme 23 (E)- and (Z)-2-Fluoro-1-halo-1-alkene 55
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72%
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Pd cat, 90°C, 8h
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Scheme 24 Synthesis of (Z)-1-bromo-2-fluoro-1-alkene 55a and its application to cross-coupling

reaction
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When (Z)-55b was applied to the methoxycarbonylation reaction, the (Z)-b-fluoro-
a,b-unsaturated ester 57 was formed as a main product (73%) and methyl benzoate

was formed as a minor product (8%). As the reactivity of the iodonium salt with a

transition metal catalyst is higher than that of the corresponding iodide, the

methoxycarbonylation reaction of neither iodobenzene nor fluoroiodoalkene occurs

under these conditions. Therefore, this result shows that the oxidative addition of the

catalyst to (Z)-55b selectively occurred at an alkenyl carbon–iodine bond (path b) [89]
(Scheme 26).

Both (E)- and (Z)-55b can be used for cross-coupling reactions such as

methoxycarbonylation, the Heck reaction, Sonogashira coupling, and Stille coupling,

and the corresponding b-fluoro-a,b-unsaturated ester 57, d-fluoro-a,b,g,d-unsaturated
ketone 58, 2-fluoro-1-alkynylalkene 59, and 4-fluoro-1,3-alkadiene 60 were success-

fully obtained stereoselectively [89] (Scheme 27).

The application of (E)-55b to the Heck reaction with vinylboronate 61 gave

(1E,3E)-(4-fluoro-1,3-dienyl)boronate 62 stereoselectively ((1E,3E) ¼ 96%). The

resulting (fluorodienyl)boronate 62 was used in the Suzuki–Miyaura coupling and

fluorotriene 63 was obtained stereoselectively [90] (Scheme 28).

C C I+Ph
20% aq HF

CHCl3, 60 °C 6h I+Ph
F

(E)-55b (E:Z = >98:2<)
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BF4

(Z )-55b (Z:E = >99:1<)

74%

BF4
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Scheme 25 Stereoselective synthesis of (E)- and (Z)-(2-fluoro-1-alkenyl)iodonium salt 55b
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Scheme 26 Two possible reaction paths in cross-coupling reaction using 55b
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The Suzuki–Miyaura coupling using (2-fluoroalkenyl)iodonium salt 55 (X ¼
I+Ar) proceeds non-selectively and the expected fluoroalkene was formed only as a

minor product [91]. Therefore, the conversion of the iodonium salt to the

corresponding 2-fluoro-1-iodo-1-alkene is required for the application to the

Suzuki–Miyaura coupling [85]. Thus, (9E,11E)-9-fluoro-9,11-tetradecadien-1-yl
acetate 64, a fluorinated analog of an insect pheromone, was synthesized stereose-

lectively by the Suzuki–Miyaura coupling of 1-butenylboronate with (E)-9-fluoro-
10-iodo-9-decen-1-ol 66b, prepared from the (E)-10-hydroxy-2-fluoro-1-
decenyliodonium salt 66a, followed by acetylation of the hydroxyl group. Simi-

larly, its stereoisomer (9Z,11E)-9-fluoro-9,11-tetradecadien-1-yl acetate 65 was

prepared by the reaction of 1-butenylboronate with (Z)-9-fluoro-10-iodo-9-decen-
1-yl acetate 68b, which is prepared from the corresponding iodonium salt 68a [92]

(Scheme 29).
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COOMe

F
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Pd cat.
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73%

F O

O
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70%

C

F
C
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HC C Bu
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F
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Scheme 27 Stereoselective synthesis of various fluoroalkenes by cross-coupling reactions using 55b
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Scheme 28 Synthesis of (fluorodienyl)boronate 62 and its application to cross-coupling reaction

78 S. Hara



6.5 Cross-Coupling Reaction Using 1-Fluoro-2-halo-1,2-
dialkylethenes

For the stereoselective synthesis of trisubstituted fluoroalkene by cross-coupling

reaction, (E)- or (Z)-1-fluoro-2-halo-1,2-dialkylethene 69 is required (Scheme 30).

Paquin et al. reported the synthesis of 1-aryl-2-alkyl-1-bromo-2-fluoroethenes

71 from b,b-difluoro-a-silylstyrene derivatives 70 by alkylation, followed by bro-

mination. With moderate to good selectivity, (Z)-71 was formed (Scheme 31). The

selectivity is dependent on the alkyl groups in RLi and R’3Si.

The resulting (Z)-71a and (Z)-71b were used for the stereoselective synthesis of

trisubstituted fluoroalkene by the Suzuki–Miyaura coupling [93] (Scheme 32).

AcO-(CH2)8

AcO-(CH2)8

Et
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Et
F

F

HO-(CH2)8-C CH
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2) CuI, KI

Et
B(OPri)2

B(OPri)2

1)
Pd cat

2) Ac2O, Et3N
57%

65%
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CX
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68b: X = I
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Et
Pd cat

67%

61%

XF
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F

Scheme 29 Stereoselective synthesis of fluorinated analogs of an insect pheromone
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Scheme 30 (E)- and (Z)-1-fluoro-2-halo-1,2-dialkylethene 69
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However, in their method, the trans- position of the fluorine atom in 72 is always

an aryl group, because the styrene derivative 70 is used as a starting material, and,

furthermore, (E)-71 is not accessible.

Both (E)- and (Z)-1-fluoro-2-iodo-1,2-dialkylethene 69 (X ¼ I) can be prepared

stereoselectively from (1-fluoro-1-alkenyl)iodonium salts. A vinylic proton of the

(1-fluoroalkenyl)iodonium salt is acidic enough to be abstracted by a relatively

weak base, because the resulting alkenyl anion species is stabilized by the forma-

tion of an iodonium ylide species [94, 95]. However, the elimination of iodoarene

from the ylide species occurs to provide the alkenyl carbene species which cyclizes

to fluorocyclopentene by the intramolecular C–H insertion reaction [96, 97]. When

the (Z)-(2-fluoroalkenyl)iodonium salt 55b was treated with LDA at low tempera-

ture in the presence of Et3B, the generated ylide species 76 reacted with Et3B before

decomposition to the carbene, and a borate 77 was formed. Migration of an ethyl

group from the borane to an adjacent carbon occurred in 77 to give (E)-(2-
fluoroalkenyl)borane 75 stereoselectively. Protonation of (E)-75 with acetic acid

gave (E)-fluoroalkene 73. On the other hand, when iodine was added to (E)-75, (Z)-
fluoroiodoalkene 74 was formed stereoselectively. Similarly, (Z)-(fluoroalkenyl)

Ar F

R'3Si F 1) RLi

2) Br2
3) MeONa

Ar R

Br F

70 71

(Z:E = 97-76:3-24)

Scheme 31 Synthesis of 1-aryl-2-alkyl-1-bromo-2-fluoroethene 71
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Ph
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(E)-72a (Z:E = 88:12)71a (Z:E = 88:12)

(Z )-72a (Z:E= 7:93)

B(OH)2

Pd cat
82%

71b (Z:E = 91:9)

Scheme 32 Stereoselective synthesis of trisubstituted fluoroalkenes 72a using 71
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borane 75 was prepared from (E)-55b, and (Z)-fluoroalkene 73 and (E)-fluoroio-
doalkene 74 were obtained stereoselectively from (Z)-75 [98] (Scheme 33).

By applying (Z)- and (E)-74 to the Suzuki–Miyaura coupling, trisubstituted

fluoroalkenes (Z)-78 and (E)-78 were formed stereoselectively [99] (Scheme 34).
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THF F IAr

C10H21
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C10H21 Et
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F Et
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(Z )-73

(Z)-74

(E)-74

72%

66%

52%

61%

(E )-75
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76 77

Scheme 33 Stereoselective synthesis of (E)- and (Z)-1-fluoro-2-iodo-1,2-dialkylethene 74
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Scheme 34 Stereoselective synthesis of trisubstituted fluoroalkenes 78 using 74
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6.6 Cross-Coupling Reaction Using (2-Fluoro-1,2-dialkylethenyl)
boronates

(Z)- and (E)-Dialkyl(fluoroalkenyl)borane 75 can be prepared from the (E)- and (Z)-
(2-fluoroalkenyl)iodonium salts 55b as shown in Scheme 33. However, the

resulting 75 is not stable enough to isolate by column chromatography or recrystal-

lization. The (fluoroalkenyl)boronate (X ¼ OR in 77) is more stable and suitable

for isolation (Scheme 35).

When bis(p-phenoxy)hexylborane was used in the reaction with (Z)-55b, (E)-
(fluoroalkenyl)boronate 79a was obtained after transesterification to pinacol ester.

The pinacol ester 79a is stable enough to be isolated by silica gel column chroma-

tography. Similarly, (Z)-79a can be stereoselectively prepared from (E)-55b [99]

(Scheme 36).

The introduction of various functional groups to 79 is possible and the resulting

79 can be used for the stereoselective synthesis of trisubstituted fluoroalkene by the

application to the Suzuki–Miyaura coupling (Table 6).

R BX2

F

R

BX2FR'

R

(Z )-77 (E )-77

Scheme 35 (E)- and (Z)-(1,2-dialky-2-fluoroethenyl)boronate 77
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Scheme 36 Stereoselective synthesis of (E)- and (Z)-(1,2-dialky-2-fluoroethenyl)lboronate 79
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7 Fluoroalkene Synthesis Using [3.3] Sigmatropic

Rearrangement

Haufe et al. used a Claisen rearrangement to prepare an amino acid having a (Z)-
fluoroalkenyl moiety 81. When a 2-fluoroallyl ester of N-Boc protected amino acid

80a was converted to an enolate for the subsequent [3.3] sigmatropic rearrangement,

the desired product 81awas obtained inmoderate yield [100].On the other hand, when

the N-benzolyated substrate 80b was converted to an oxazole derivative 82b, [3.3]

sigmatropic rearrangement occurred spontaneously to give the oxazolone derivative

83b in quantitative yield. The subsequent hydrolysis gave the desired amino acid

having a (Z)-fluoroalkenyl group 81b in good yield (Scheme 37) [101, 102].

Table 6 Stereoselective synthesis of trisubstituted fluoroalkenes by

Suzuki–Miyaura coupling reaction using (fluoroalkenyl)boronates 79
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Recent Advances in Stereoselective

Synthesis of 1,3-Dienes

Michael De Paolis, Isabelle Chataigner, and Jacques Maddaluno

Abstract The aim of this review is to present the latest developments in the

stereoselective synthesis of conjugated dienes, covering the period 2005–2010.

Since the use of this class of compounds is linked to the nature of their appendages

(aryls, alkyls, electron-withdrawing, and heterosubstituted groups), the review has

been categorized accordingly and illustrates the most representative strategies and

mechanisms to access these targets.

Keywords Conjugated dienes � Ene–ene coupling � Ene–yne coupling �
Isomerization � Organocatalysis � Stereoselective synthesis � Transition metals �
Yne–yne coupling
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Abbreviations

Acac Acetylacetone

BINAP 2,20-Bis(diphenylphosphino)-1,10-binaphthyl
BOM Benzyloxymethyl

COD 1,5-Cyclooctadiene

COT 1,3,5,7-Cyclooctatetraene

Cp Cyclopentadiene

dba Dibenzylideneacetone

DMB 3,4-Dimethoxybenzyl

dmfm Dimethylfumarate

EE Ethoxyethyl

HMDS Hexamethyldisilazane

IPr N,N0-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene

LDA Lithium diisopropylamide

MIP Methoxyisopropyl

MOM Methoxymethyl
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pin Pinacol
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PMB p-Methoxybenzyl

TBAF Tetrabutylammonium fluoride

TBDPS tert-Butyldiphenylsilyl
TBS tert-Butyldimethylsilyl

TES Triethylsilyl

Tf Trifluoromethanesulfonyl

THP Tetrahydropyranyl

TMP 2,2,6,6-Tetramethylpiperidine

TMS Trimethylsilyl

1 Introduction

Conjugated dienes are the object of continuous attention in organic chemistry. These

compounds are encountered in numerous natural products and find applications

in many fundamental methodologies in synthesis (cycloaddition, metathesis, ene-

reaction, oxidoreduction, or reductive aldolization for instance) (Fig. 1). In addition,
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they are employed as building blocks in polymerization processes and thus drive

important developments in materials science.

Conjugated dienes are much more than just two olefins, and their reactivity is very

different from that of non-conjugated dienes. The roots of this difference lie at the

molecular orbitals level: compared to isolated olefins, conjugated dienes having the

same substitution possess higher HOMO and lower LUMO energies which positively

influence the outcome of reactions such as hydrosilylation, hydroamination, or [3+2]

annulation. Since the configuration of the double bonds often influences the stereo-

chemical course of the reactions in which 1,3-dienes are employed, stereoselective

access to these precious building blocks is always welcomed.

The routes to dienes rely on multiple strategies that imply coupling methods as

well as olefination. It is therefore almost impossible to depict the work done in the

area through a limited number of major concepts. The methodologies employed for

the synthesis of dienes, even bearing a specific class of substituents, are surprisingly

diverse. This means that the sections in this chapter all follow different outlines.

The general challenges to be met in the domain in the first decade of the twenty-first

century remain centered on the selectivities: the configuration of each double bond

of course, but also regioselectivity of the processes, particularly critical when

different double bonds are involved in the reaction. In general, access to the

Z-isomers, particularly when bulky substituents are involved, remains a problem

to be solved. Transition metal-based methods have been shown to be particularly

helpful in the matter.

To the best of our knowledge, there are no recent reviews dedicated to the

synthesis of dienes. Papers presenting aspects of their reactivity or applications

in areas of organic synthesis have appeared but none seems to be focused on the

stereoselective access to these species. We have therefore chosen to build this

review around the structure of the diene, and have organized the presentation

according to the substituent borne by the double bonds. The objective of this

chapter is to give the non-specialist reader a comprehensive overview of the most

significant developments published, for major families of substituents, mostly after

2005. Four general classes of 1,3-dienes have been retained:

– Alkyl/aryl substituted dienes (including macrocyclic dienes)

– Dienes substituted by an electron-withdrawing group

– Hetero-substituted dienes (excluding halo-dienes)

– Halo-substituted dienes

We have thus organized the following in four sections. Because of obvious space

limitations, the examples presented in each section correspond to the selection

Fig. 1 Selected examples of conjugated dienes
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made by the authors in an attempt to provide representative cases of interesting

methodologies or family of compounds. This presentation is therefore not

exhaustive, even for the period considered (2005–2010).

2 Stereoselective Preparation of Aryl- and/or

Alkyl-Substituted Conjugated Dienes

2.1 Transition Metal-Based Methods

The metal-based preparations of conjugated dienes represent the majority of the

strategies employed to attain stereoselectively 1,3-dienes connected to aryl and/or

alkyl appendages. The starting material can be stereodefined when double bonds or

enynes are engaged. When alkynes or allenols are employed, two double bonds are

generated in a stereoselective manner.

2.1.1 From Stereodefined 1,3-Enynes

The preparation of conjugated dienes from stereodefined 1,3-enynes can be carried

out differently when they are bromo- or alkyl-substituted. The control of the

stereoselectivity will be discussed in both cases.

The Coupling of Bromo-Substituted 1,3-Enynes to Electrophiles

The one-pot preparation of (Z,E)-2,5-dienol was described by Walsh in 2006 [1].

The strategy is based on the sequential functionalization of bromo-substituted

1,3-enynes such as 4-bromo-1,3-enyne 1 by hydroboration followed by hydride

addition to the resulting borane (steps i and ii in Scheme 1). Next, dialkylzinc and

carboxaldehyde (steps iii and iv) were sequentially introduced to complete the

formal addition of (Z)-dienyl group to an electrophile. The two aldol products

2 and 3 are illustrative of the potential of this methodology. These products contain

both (Z)-olefin and thiophen or triple bond appendages and could, with difficulty, be
prepared by conventional Lindlar reduction due to risks of catalyst poisoning by the

thiophen moiety or over reduction of the triple bond.

The proposed mechanism involves the regioselective cis-hydroboration of the

4-bromo-1,3-enyne as observed by Zweifel [2] followed by addition of hydride,

originating from t-BuLi [3], to initiate a 1,2-metalate rearrangement forging

the C–C bond with inversion at the vinylic center (Scheme 2). This key step enables

the stereospecific character of the whole process. To circumvent the low reactivity of

(Z)-vinylborane toward aldehydes, the corresponding (Z)-vinylzinc was prepared by

transmetalation with diethylzinc and reacted successfully with carboxaldehyde. The

isolation of allylic alcohols in high yieldswas subordinated to a careful selection of the
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solvents employed during the process. Thus, the hydroboration performed smoothly in

polar solvent such as THF, whereas the transmetalation/electrophilic trapping needed

a less polar and non-coordinating solvent such as toluene for optimal results.

Metal-Catalyzed Coupling of 1,3-Enynes

The metal catalyzed reductive coupling of 1,3-enynes to various electrophiles is

an efficient tool for the preparation of conjugated dienes connected to various

functional groups (i.e., alcohols, amines). Besides their preparative steps, 1,3-

enynes can be coupled to electrophiles directly and regioselectively without

further functionalization steps. This constitutes an interesting improvement over

the methods exploiting reactive coupling partners (i.e., organotin or organoboron),

which require steps such as metalations of the precursors for their preparation.

Among the existing methodologies, a brief overview of Ni- and Rh-catalyzed

coupling will be presented. The putative mechanisms, scopes, and limitations will

be discussed. Additionally, Au-catalyzed intramolecular coupling of 1,3-enyne and

alkene will be mentioned.

Ni-Catalysis

In Scheme 3, two general mechanistic pathways that may be operative for the

Ni-catalyzed coupling of 1,3-enynes with carboxaldehydes are depicted. The first

pathway involves a prior oxidative addition of Ni(0) to the reductant M’R leading to

a metal hydride or a metal alkyl species A. The reactive catalyst A may proceed by

sequential insertion into the alkyne bond and the carbonyl bond of the electrophile

to the formation of the polysubstituted 2,4-dienol 5 via vinyl nickel 4.

The second path is initiated by an oxidative cyclization of Ni(0) with two

p-components (i.e., vinylalkyne and carboxaldehyde) to form a metallacycle 7.

The transient interaction between the conjugated alkene and the transition metal in

6 may direct the regioselectivity of the metallacycle formation. A transmetalation

(Z)
Br

HBR2

Br

BR2H

Li
H

Br

BR2H
H

BR2

HH Et2Zn

then E + E

HH (Z )
Li +

Scheme 2 Proposed mechanism for the transformation of 4-bromobut-1-en-3-yne to (Z)-dienes

Br
H

OH

R

iii. Et2Zn, -78°C, PhMe OTBS
OTBS

i. HBCy2, 0°C to rt, THF

ii. tert-BuLi or KB(OiPr)3H
-78°C to rt

iv. RCHO, 0°C to rt

(E) (Z)

(E)

One-pot

1

(90-80%)

2, R =
S

C5H11
removal of THF then 3, R =

Scheme 1 One-pot transformation of 4-bromo-1,3-enyne to (Z)-2,5-dienol
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process would afford 8, followed by a reductive elimination step to lead to

2,4-dienol 5. The descriptions of these putative mechanisms are simplified and

variations are possible depending on the nature of the ligands and the reducing

agents employed during the process [4].

In the following cases, experimental observations are hinting at the oxidative

cyclization as the preferred pathway but the nature of the ligand and the reducing

agent may have an impact on the mechanistic route. Note that the stereocontrol of the

process is ensured by the Ni-promoted oxidative cyclization of the p components.

The methodology implements interesting established features. First, the vinyl

group (R1) increases the reactivity of the alkyne. Second, the directing ability of the

vinyl allows the preparation of substituted 1,3-dienes with very high regioselectivity.

The poor regioselectivity occurring in the same conditions with alkyl-substituted

alkynes is not observed.

In all the cases presented in the following section, it is noteworthy that 1,3-

dienes products are unreactive in the conditions of the reactions.

Montgomery and Jamison reported independently the Ni(0) catalyzed coupling

of 1,3-enynes to aldehydes delivering racemic 2,4-dienol or enantiopure 3,5-dienol

products from chiral epoxides [5–8].

Later studies by Jamison extended this protocol to the reductive coupling of

1,3-enynes to ketones, which proceeded efficiently and with high regioselectivity.

The asymmetric version of the coupling was conducted in the presence of catalytic

amounts of a P-chiral monophosphate ligand attaining modest enantioselectivity

(Scheme 4) [9]. Probably formed according to the oxidative cyclization path and

transmetallatedwith triethylborane, the supposed intermediate 9may have undergone,

in the presence of phosphine additive, sequential b-hydride elimination/reductive

elimination transformations to introduce a hydrogen-atom into the final product via 10.

Rh-Catalysis

The cationic Rh-based catalyst systems have attracted attention to the hydrogen-

mediated C–C bond formation. The preparation of functionalized 2,4-dienes from

R1

R1

OM'

R2

R1
NiM'

R
increase reactivity

and selectivity of
the alkyne

no prefunctionnalization
required

preferred site
of reaction

O

R2

M'R (reductant)+

Ni M'
R

R

Ligand

Ni(0)
O

R2

R1

O

R2 R1

Ni
O

M'R
R2

+

R1

Ni
OM'

R2

R

oxidative addition to reducing agent

Ni(0)

Ni

A

4

6 7 8

5

oxidative cyclization of
two π components

Scheme 3 General putative mechanisms for the Ni-catalyzed reductive coupling of 1,3-enynes to

aldehydes
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1,3-enynes by hydrogenative coupling with electrophiles has been extensively

investigated by Krische [10, 11].

As for the Ni-catalyzed reductive coupling, the experimental observations of the

Rh-catalyzed reductive coupling are consistent with a general mechanism shown in

Scheme 5 involving oxidative cyclization of two p-components (i.e., enyne and

carboxaldehyde). As a specific feature of this methodology, elemental hydrogen is

employed to reduce the cationic oxarhodacyclopentene 11 into 12. In some cases,

the presence of a Brønsted acid as co-catalyst is required to enhance rate and

conversion of the transformation probably by favoring this reduction step. The

use of cationic rhodium or iridium catalysts is mandatory to avoid the conventional

hydrogenation of the substrate. The possible explanation may lie in the lower

reactivity of cationic Rh-catalyst toward elemental hydrogen, thus allowing the

oxidative cyclization to take place despite the reductive environment. Reductive

elimination of 12 affords 2,4-dienol 13 and regenerates the cationic Rh-catalyst.

Note that the configuration of the double bond of the 1,3-dienes prepared by this

methodology is controlled by the oxarhodacyclopentene 11.

In 2005, Krische disclosed the rhodium-catalyzed coupling of 1,3-enynes to

N-sulfinyliminoacetate in order to reach unnatural 1,3-dienes-containing a-amino

acids in a regio- and diastereoselective manner (Scheme 6) [12].

The reaction proceeded successfully with various 1,3-enynes featuring aliphatic

or aromatic substitutions (Fig. 2). In all cases examined, >95:5 regio- and

diastereoselectivity was achieved while no over-reduction of the products was

observed.

R3P =

n-Hex
O

Ph

Ni(COD)2 (10 mol%)

R3P (20 mol%)

Et3 B (200 mol%)

n-Hex

OH

Ph (69%), 64% ee
> 95:5 regio selectivity

Fe

P

Ph

Me

n-Hex

OBEt2

Ph

NiLn

H2C H

n-Hex

OBEt2

Ph

NiLn
HL = PR3

H

109

oxidative cyclization
then transmetalation

reductive
elimination

Scheme 4 Chiral reductive coupling of 1,3-enyne to acetophenone Ni(0)-catalyzed

Scheme 5 General mechanism for the Rh-catalyzed reductive coupling of 1,3-enynes to

aldehydes
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Additionally, this methodology was applied to the reductive coupling of 1,3-enynes

to glyoxalates [13, 14], a-ketoesters [15], and heterocyclic aromatic aldehydes [16]

and ketones as electrophiles. The use of chiral phosphines as ligand to the rhodium

catalyst allowed the enantioselective version of these reactions to take place.

Au-Catalyzed Intramolecular Coupling of Alkenes to 1,3-Enynes

The intramolecular cyclization of alkene to conjugated enyne by Au(I) catalysis has

been observed by Echavarren, the triple bond being activated by the cationic metal

(Scheme 7) [17]. The obtained product features an exocyclic conjugated diene and

the selectivity originated from the intramolecular attack of the olefin to the triple

bond. In the process, a molecule of MeOH traps the cationic intermediate.

2.1.2 From Stereodefined 1,3-Dienes

The coupling of stereodefined and functionalized 1,3-dienes will be described in

this section. Recent developments regarding the functionalization of the dienes in

order to improve the scope of the coupling and the stability of the dienes will be

detailed. Since the starting materials engaged are stereopure, the risk of isomeriza-

tion under the conditions of the coupling has to be taken into consideration.

N
H

NHBoc

O
OTBS

n

n = 1
n = 2

Fig. 2 1,3-Enynes examined for the rhodium-catalyzed reductive coupling

Scheme 7 Gold-catalyzed intramolecular coupling of alkene to conjugated enyne
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N
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O
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O
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Rh(COD)2OTf (5 mol%)

BIPHEP (5 mol%)
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Ph
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O
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PPh2

PPh2

BIPHEP

Scheme 6 Reductive coupling of 1,3-enyne to ethyl (N-sulfinyl)iminoacetates
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Pd-Catalyzed Cross-Coupling

Denmark devised the Pd-catalyzed sequential cross-coupling of (E,E)-1,4-bissilyl-
butadienes 14 to prepare unsymmetrical disubstituted (E,E)-dienes (Scheme 8)

[18]. The strategy is based on the ability to perform the Hiyama–Denmark cross-

coupling reaction at the two different sites under different conditions. Hence, the

silanol reacted under basic activation (TMSOK) in the presence of Pd(dba)2 with

aryl iodides while the other silyl group is inert under these conditions. The second

silyl group was activated in the presence of fluoride by addition of TBAF to

promote the coupling with aryl iodides in the presence of Pd(dba)2. For both

reactions, a wide range of aryl iodides (electron rich or electron poor) were cleanly

reacted with 14 to deliver unsymmetrical 1,4-diaryl (E,E)-1,3-dienes. Furthermore,

the authors designed the bissilane 15 in which the 2-thienyl group replaces the

benzyl appendage to perform the second coupling of Ar2I more efficiently when

the connected aryl (Ar1) is electronically poor. The stereocontrolled synthesis of

(E,E)-1,4-bissilylbutadienes 14 and 15 by hydrosilylation of alkynes is detailed in

Sect. 4.

The methodology was also applied to the Pd-catalyzed cross-coupling of

bissilane with vinyl iodides for the synthesis of the polyene chain of RK-397 in

Fig. 3 [19]. When the regioselectivity of the reaction is not an issue, silanol can be

activated by TBAF�8H2O to promote the cross-coupling with vinyl iodide as

illustrated during the syntheses of isodomoic acids [20]. It has to be stressed that

Si

SiHO

R

fluoride-promoted
cross coupling

TMSOK-promoted
cross couplingPd(dba)2 (2.5 mol%)

Ar1I, dioxane, rt

Pd(dba)2 (2.5 mol%)

Ar2I, THF, rt

TBAF (2 equiv)

TMSOK (2 equiv)

(E)
(E)

Ar2

Ar1sequential
coupling

S

14, R = Bn

(E)
(E)

(22 examples)

(76-96%)

First

Second

15, R =

Scheme 8 1,4-Bissilylbutadienes for Pd-catalyzed cross-coupling reaction

O
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OHOHOHOHOHOH
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HO2C
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CO2H CO2H
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HO2C HO2C

RK-397 isodomoic acids G and H

Fig. 3 Selected natural products and their synthetic disconnections for Pd-catalyzed cross-

coupling
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conversion of benzyl(dimethyl)vinylsilane into dimethylvinylsilanol can be carried

out with TBAF�xH2O and should therefore be avoided when regioselective

couplings are intended.

The Pd-coupling between the potassium salt of silanolate (fluoride-free) and aryl

iodide was the subject of mechanistic investigations by Denmark (Scheme 9) [21].

Kinetic, spectroscopic and synthesis experiences demonstrated that the trans-

metalation step occurs from a neutral tetracoordinate intermediate containing an

Si–O–Pd bond formed by displacement of iodide. After the transmetalation step,

a reductive elimination process provides the coupled adduct.

The methodology was extended to the Pd-catalyzed coupling between 1,1-alkene

bissilane and vinyl iodide for the preparation of (E,E)-dienes bisaryls [22].

Fe-Catalyzed Coupling of Dienol Phosphates with Grignard Reagents

Cahiez described a new stereoselective route to prepare terminal conjugated dienes

(Scheme 10) [23]. The cross-coupling of stereopure dienol phosphates and Grignard

reagents catalyzed by Fe(acac)3 allowed the expedient preparation of various alkyl

terminal dienes. During the coupling, the dienol phosphate is not isomerized when

reacted with alkyl Grignard reagents. On the other hand, partial isomerization

occurred when aryl Grignard reagents were employed.

The dienol phosphates are known to be less reactive and more stable than

the corresponding dienic iodides or bromides. However, under iron catalysis, the

oxidative addition step is easier than with palladium or nickel catalysts. This

methodology circumvents the conventional use of dienyl iodides or bromides.

Since these reagents are known to be sensitive and prone to polymerization, this

strategy constitutes a substantial improvement for the synthesis of stereodefined

conjugated dienes.

The configuration of the phosphate being maintained during the process, it

is crucial to have stereodefined dienol phosphates at one’s disposal. The authors

published an interesting and simple methodology for preparing the dienol phos-

phate in a diastereoselective manner, the details of which can be found in Sect. 4.

Si

R
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Ph

Ln
Pd I +

Ph
Ln
Pd

O
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R

Ph PdLn

R
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Rdisplacement transmetalation
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Scheme 9 Mechanism for the Pd-catalyzed cross-coupling of potassium silanolate to phenyl

iodide
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Scheme 10 Fe-catalyzed coupling of (E)-dienol phosphate with Grignard reagent
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Ru-Catalyzed Ring Closing Metathesis of 1,3-Dienic Systems

The ring closing metathesis (RCM) of conjugated diene for the formation of

macrocycle is not a trivial task in regards to the stereoselectivity issue (Scheme 11).

This is in stark contrast to the RCM of medium size rings in which the constraint of

the ring imposes the configuration of the diene moiety, usually (Z/Z). Recently,
F€urstner investigated the preparation of conjugated dienes incorporated into

macrocycles (10–18 membered rings) by RCM [24]. To be successful, the strategy

requires control of both the configuration and the regioselectivity of the newly

formed double bond as well as discrimination of the two olefinic sites of the

1,3-diene group.

The authors unveiled a new strategy for the metathesis, based on the substitution

of the 1,3-diene appendage by a bulky R3Si group. This substituent directs the

regioselectivity by protecting the internal alkene, and the stereoselectivity by

exerting a steric effect in favor of the E isomer (Scheme 12). Hence, when

compound 16 was treated with ruthenium carbene catalyst, the macrocycle 17

was obtained in good yield and selectivity. The reaction was exemplified with

different ring sizes (10–18 membered rings). Note that the use of a catalytic amount

of tricyclohexylphosphine oxide is mandatory to prevent the isomerization of the

double bond before the ring closure. Next, the protodesilylation occurred smoothly

in the presence of TBAF to afford the conjugated E,Z-diene 18. Alternatively, the

O O

Z

E

O O

H
retrosynthesis

Z

?

Ring Closing
Metathesis

regioselectivity
stereoselectivity

Scheme 11 Challenges associated to ring closing metathesis (RCM) of 1,3-dienic system

Scheme 12 Strategy for the RCM of 1,3-dienic system
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silane moiety can be converted into silanol before pallado-catalyzed coupling with

phenyl iodide to afford the trisubstituted conjugated diene 19.

The stereodefined silyl-substituted diene was prepared by hydrosilylation of

the corresponding conjugated enyne in the presence of platinum carbene complex

(for details see Sect. 4).

This investigation culminated with the total synthesis of lactimidomycin,

a macrolide containing the E,Z-conjugated diene motif.

Ring-closing metathesis (RCM) was also applied to the macrocyclization of

16-membered lactone core of plecomacrolides [25]. The reaction required the use

of the robust second generation Grubbs catalyst under refluxing toluene. The

stereochemistry of the process proved to be highly influenced by the functional

groups present on the substrate.

2.1.3 From Stereodefined Alkenes

Pd-Catalyzed Cross-Coupling

The Pd-catalyzed coupling of stereodefined vinyl iodides and vinylzinc is a conve-

nient method for the stereoselective construction of conjugated dienes. Among all

the groups involved, the group of Negishi explored the Pd-catalyzed C–C bond

formation between alkenyl iodides and vinylzinc or borane to obtain (Z,Z)- or

(Z,E)-conjugated dienes (Scheme 13) [26].

The strategy, which applies to the synthesis of several complex natural products,

is documented in the recent Negishi’s Nobel Lecture [27, 28].

2.1.4 From Alkynes

The strategies involving the use of alkynes for the preparation of conjugated dienes

usually require more challenging stereocontrol of the double bonds generated

during the reaction. The transition metal-catalyzed intramolecular coupling of

1,6-enynes, known as cycloisomerization, gives carbo- or heterocycles possessing

a 1,3-diene group. Among the metals employed, palladium was the most

exemplified. These methods are the focus of a recent review and will not be covered

here [29].

Rh-Catalyzed Isomerization of Unactivated Alkynes

While the isomerization of activated (i.e., bearing electron-deficient groups)

alkynes into 1,3-dienes is well documented, the challenging isomerization of non-

activated alkynes into 1,3-enynes has been less investigated. In 2006, Hayashi

reported the Rh-catalyzed isomerization of unactivated alkynes to conjugated

dienes promoted by the azomethine imine reagent 20 (Scheme 14) [30]. Thus,
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alkyl substituted alkynes were converted into the corresponding conjugated dienes

with varying stereoselectivities (E/Z from 2.2:1 to 5.6:1). The exact contribution

of 20 is unclear but the authors suspected it could play a role in the formation of

rhodium hydride species, which in turn could promote the isomerization process.

Rh-Catalyzed Reductive Coupling of Acetylene to Electrophiles

As an extension of the 1,3-enyne coupling, acetylene was directly coupled to

electrophiles (i.e., carboxaldehydes and imines) in the presence of cationic rhod-

ium catalyst and Brønsted acid as co-catalyst to provide (Z)-2,4-dienyl allylic

alcohols or amines (Scheme 15). a-Ketoesters, activated aldehydes [31, 32], and

N-arylsulfonylimine [33] were described as suitable electrophiles for the reductive

coupling of acetylene delivering (Z)-dienyl allylic alcohols or amines in a

stereocontrolled manner.

The mechanism postulated was supported by mass spectrometry, computational

modeling, and insightful experiments [34]. As in the previous examples involving

Scheme 14 Rh-catalyzed isomerization of unactivated alkynes

R1CO2H (cat), H2 (1 atm)

OH

R2

RhLn

oxidative cyclization of
two π components

RhILn (cat)

21 23

RhLn

RhLn
O

R2

22

R2CHO,

R2CHO

RhLn

OH
R2

O
Ln
Rh

OH

R2

H

H2R1CO2H

reductive elimination

(Z)-2,4-dienol

O R2
24

Scheme 15 General mechanism for the Rh-catalyzed reductive coupling of acetylene to

carboxaldehydes

XZn

R3

R4

Pd

R2

R1
R3

R4
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R1 I(Z)
(Z)

Pd-coupling of (Z)-vinyliodide

Scheme 13 Pd-catalyzed Negishi coupling
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1,3-enynes, the catalytic cycle involves a prior oxidative cyclization of two

molecules of acetylene with the rhodium catalyst to form the cationic rhodacyclo-

pentadiene 21. The insertion of the carbonyl group would convert 21 into the

oxarhodacycloheptadiene 22, which is too electron-deficient to tolerate the

hydrogenolysis of the Rh–O bond. Possible prior protonation of the Rh–O bond

of 21 by the Brønsted acid followed by its binding to the rhodium would enable

the hydrogenolysis of the Rh–O bond and the dissociation of the carboxylic acid

to form cationic hydride intermediate 24. Consecutive reductive elimination of

24 would deliver the (Z)-2,4-dienol and the cationic Rh-catalyst. In some cases,

chiral phosphine-containing catalysts enabled the formation of adducts with high

enantioselectivity.

In the course of the investigation on the Rh-catalyzed reductive coupling of

acetylene to a-chiral aldehydes, the authors noticed a good to excellent level of

catalyst-directed diastereofacial selectivity for the conversion to (Z)-dienol adducts
with diastereoselectivities ranging from 12:1 to 20:1 when carried out with

(S)-MeO-BIPHEP (Scheme 16) [32].

Further broadening the methodology, the conversion of a (Z)-2,4-dienyl ether
into its (E)-isomer has been exemplified in the presence of Pd(II) (Scheme 17) [35].

Alternatively, the Sakurai reaction was employed by the same authors to convert

stereoselectively 2,4-dienyl(trimethyl)silane and aldehyde into 2,4-dienol adducts

in the presence of Lewis acid.

Direct Co-catalyzed Ene–Yne Coupling

The intermolecular coupling of alkyne and alkene is a straightforward solution for the

preparation of conjugated dienes without prefunctionalization of reagents. Cheng

recently described the use of Co(II) salts and ethylenebis(diphenylphosphine) (dppe)

C6F5CO2H (5 mol%)
OH

R[Rh(cod)2] BARF (5 mol%)

(Z)-2,4-dienol

HC CH2
O

R

(S)-MeO-BIPHEP (5 mol%)

H2 (1 atm)

Na2SO4 (200 mol%)
PhCH3, rt (67-95%)

(Z/E) > 95:5

O
O

OBn

NHBoc NHBoc
Ph

R = PPh2
PPh2

MeO
MeO

(S)-MeO-BIPHEP

Scheme 16 Reductive coupling of acetylene to chiral aldehydes

Scheme 17 Pd-catalyzed isomerization of (Z)-dienol ether and Sakurai reaction with 2,4-

dienyltrimethylsilane
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in combination with Zn and ZnI2 to perform the coupling between alkynes

(1 equiv.) and alkenes (1.2 equiv.) and afford trisubstituted conjugated dienes

(Scheme 18) [36]. The chemistry works particularly well when the alkynes are

substituted with aromatic rings, giving the coupled adducts in best yields. The

regioselectivity of the reaction was examined with unsymmetrical alkynes

(R1 ¼ Ph, R2 ¼ Alkyl) and was found to reach a value of 9:1 in favor of the

product possessing minored steric interactions between R2 and the vinyl appendage.

The proposed mechanism involves the initial formation of Co(I) from Co(II)

by reduction with Zn. Coordination of the alkyne and the alkene to Co(I) to form

a metalocyclopentene intermediate could be followed by sequential b-hydride
elimination/reductive elimination to provide the conjugated diene.

Ti(II)-Promoted Alkylation of Propargyl Carbonates

Takeda employed the Ti(II) reagent, Cp2Ti[P(OEt)3]2, to perform the reductive

titanation of g-monosubstituted propargyl carbonate and to produce the substituted

diene after treatment with an electrophile (Scheme 19) [37]. The attack of

Ti-reagent on the propargyl carbonate 25 leads indirectly to the formation of

titanacyclobutene 26, a key intermediate for the stereoselective formation of the

conjugated diene after b-elimination step and reductive elimination of 27. Whereas

CoI2, dppe, ZnI2, Zn
R1

CH2Cl2, rt

(38-97%)

(E/Z) from9:1 to 20:1
(17 examples)

R1 = Ph, Ar, Alkyl

R2 R3+ R1

R2

R3

R2 = Ph, Alkyl

R3 = Ar, Si(Me)3

(E) only
(E)

Ph
Ph

example of major
regioisomer

Scheme 18 Co-catalyzed coupling of alkynes and alkenes
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O

Ph Ph

OH

(E,E) only
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Scheme 19 Preparation of conjugated dienes by Ti-promoted alkylation of propargyl carbonate
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benzylchloride, methallyl chloride, and cyclohexylchloride were suitable electro-

philic partners, delivering the conjugated dienes in 60–83% yields, benzyl bromide

and n-butylchloride failed to afford the expected products. The use of an epoxide

provided the primary carbinol after nucleophilic ring opening. Note that only the

formation of (E,E)-conjugated dienes was observed by the authors.

Various aryl or alkyl substitutions of the propargyl carbonate, shown in Fig. 4, were

compatible with this chemistry, delivering the corresponding conjugated dienes in fair

to good yields (36–73%) upon treatment with the aforementioned electrophiles.

The Ti(II)-promoted couplings of alkynes and vinyl sulfone [38] and vinyl

pivalate [39] were also reported by Takeda.

Ti(II)-Promoted and Directed Coupling of Alkynes

The cross-coupling of two alkynes is another direct route to 1,3-dienes. Micalizio

reported a strategy in which the Ti-promoted one-pot coupling of an appropriately

functionalized internal alkyne 28 with a terminal alkyne takes place regio- and

stereoselectively (Scheme 20) [40]. In order to attain such levels of selectivity, the

course of the reaction is directed by the hydroxyl group of the internal alkyne and

to some extent to the OPMB group. The first step involves the deprotonation of the

hydroxyl. Then sequential introductions of Ti(IV) and the Grignard reagent acting

as reductant are followed by the addition of terminal alkyne substituted with alkyls

or heterocyclic rings. This procedure resulted in the coupling of the two alkynes

with total control of the regioselectivity and selectivity.

As depicted in Scheme 21, the regioselectivity observed in this coupling reaction

can be rationalized by assuming that coordination of the titanium hydroxylate to the

internal alkyne as in 30 could direct the course of the process. The insertion of

the terminal alkyne according to a transition-state structure minimizing 1,2-steric

interactions would afford the metalacyclopentadiene 31 then, after work-up, the

coupled product 29.

Hex

OCO2Et
OCO2Et

OCO2EtOCO2EtOCO2Et

Ph Ph Ph
O

Ph Ph

Fig. 4 Propargyl carbonates examined for the Ti-catalyzed coupling

28 29

(43-68%)
(E/Z) > 20:1

regioselectivity  >20:1
(16 examples)

OPMBOH

required for
optimal

regioselectivity

R2
+

OPMBOH

R2

i. n-BuLi, Et2O, rt

iii. c-C5H9 MgCl,-78 to -30°C

ii.Ti (OR1)4,rt

terminal alkyne

iv. terminal alkyne, -78 to 0°C

internal alkyne R2 = aryl, alkyl, TMS, heteroaryl

Scheme 20 Cross-coupling of two alkynes
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Cu-Promoted Coupling of Alkynes to Alkenyls Iodide

Georg reported recently the reductive alkyne–alkene coupling applied to the prepa-

ration of macrocyclic conjugated dienes or trienes (Scheme 22) [41]. The classical

conditions of the Castro–Stephens coupling were applied but in the presence

of sodium formate which allowed diene to be obtained instead of enyne.

Hence, when compound 32 was treated with CuI/PPh3/K2CO3 and HCO2Na in

DMF, the macrocycle 33 was formed as the sole (E,Z) isomer. Even though

sodium formate has been identified as the source of hydride, the mechanism of

the transformation does not involve a “simple” reduction of the possible enyne

intermediate. Indeed, the enyne 34 is not reduced into the diene 33 in the

conditions of the reaction. Eventually, the study culminated with the elegant

synthesis of oximidine.

2.1.5 From Allenic Alcohols

Ti-Mediated Coupling of Allenic Alcohols with p-Components

The cross-coupling of allenic alcohols with p-components (i.e., imines, alkenes,

alkynes) has also been investigated by Micalizio to prepare substituted 1,3-dienes

bearing allylic amine functionality when reacted with imines (Scheme 23) [42].

The strategy is based on the reactivity of azatitanocyclopropanes 36 formed by

c-C5H9MgCl
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O
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Scheme 22 Reductive ene–yne macrocyclization
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the reaction of Ti(IV) and Grignard reagent in the presence of p-components

(i.e., imines). After a probable ligand exchange with 35 conducting to 37, the

intramolecular carbometalation of the allene moiety would lead to the

metalaoxetane 38 which is expected to furnish the diene 39 according to the syn-
elimination pathway.

The stereoselectivity of the reaction is highly dependent on the nature of R3:

when R3 ¼ Me, moderate selectivity was observed (E/Z ¼ 4:1), whereas excellent

results were obtained when R3 ¼ i-Pr (E/Z > 20:1).

This methodology was later extended to the cross-coupling of vinylsilane and

allenol (Scheme 24) allowing the preparation of conjugated dienes with high

selectivities (E/Z ¼ 20:1) [43].

Interestingly, the coupling of the lithium alkoxide of the allenol 35 and

vinyldimethylchlorosilane delivering chlorosilane 40 was followed by oxidation

of the sC–Si bond to afford the primary carbinol 41 in global yields ranging from

53% to 55%.

The stereocontrol of the reaction has also been investigated using stereodefined

allenol for the coupling with vinyldimethylchlorosilane (Scheme 25). The reaction

of 42 and 44, described in Scheme 25, provided substituted 1,3-dienes 43 and

45 with varying levels of selectivity. While in both case the (Z)-trisubstituted olefin
was obtained with high selectivity, the configuration of the second disubstituted

olefin was secured with a moderate level of selectivity (E/Z ¼ 5:1 to 1:3). Although

the formation of the (Z)-trisubstituted olefin is consistent with a stereoselective

syn-carbometalation, the formation of the disubstituted olefin is not stereospecific

since the configuration of the hydroxyl group in the starting material is not

completely directing the configuration of the double bond. As suggested by the

Scheme 23 Proposed mechanism

40, R2 = SiMe2Cl

R3

•
OLi

Ti(OR1)4
+ c-C5H9MgClor

ClTi(OR1)3

R2

+

R3

R2 = SiMe3 or SiMe2Cl

35

(50-56%)
(E/ Z) from 3:1 to 20:1

(6 examples)

R2

41, R2 = OH

R3 = alkyl groups

KF, KHCO3,
H2O2

Et2O, -78 to -50°C

Scheme 24 Preparation of 1,3-dienes by Ti-promoted cross-coupling of vinylsilane and allenol
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authors, the moderate level of selectivity observed could be explained by

competition between syn- and anti-elimination of the organometallic intermediate.

Applied to substituted alkynes, the titanium-mediated cross-coupling of 1,3-

disubstituted allenol delivered stereoselectively trienic products (Scheme 26)

[44]. When the alkyne is symmetrically substituted (R1 ¼ R2), only one

regioisomer 46 is produced in 69% yield and the stereocontrol of the two olefins

is very efficient (E/Z up to 20:1). When an unsymmetrical alkyne is engaged

(R1 6¼ R2), two regioisomers 47 and 48 may be expected according to the path of

the attack of the titanocyclopropenes 49 and 50. The regioselectivity of the reaction

may be dictated by the steric hindrance of the substituent R1 vs R2 to reach a value

of 3:1 (47/48) when R1 ¼ Me and R2 ¼ alkyl. Interestingly, the regioselectivity

was reversed with silyl-substituted alkynes providing the coupled products with

a regioselectivity of 1:4 (47/48) in 71–82% yields. In both cases, though, the

selectivity reached the same level (E/Z up to 20:1). The disubstitution of the allenol

is essential for the success of the transformation: monosubstituted allenols led

to 1,4-dienes.
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2.2 Transition Metal-Free Methods

While the stereocontrol of the transition metal-based preparations of conjugated

dienes originates mainly from the ability of the metal to bind the p-components,

electronic and steric effects usually dictate the stereoselectivity of transition

metal-free methodologies. Some evolution of known methodologies and recent

development in this field will be presented in the following section.

2.2.1 From Imines

Tian developed a tunable stereoselective synthesis of conjugated dienes through

the olefination of activated imines with semi-stabilized phosphonium ylides

(Scheme 27) [45]. Based on the Wittig reaction, this strategy requires prior

deprotonation of the phosphonium salt by a strong base for the formation of the

ylide which acts as nucleophile. Whereas many modifications centered on the

nucleophile of the Wittig reaction have been reported over the years, Tian unveiled

a study based on the modification of the electrophiles employing imines. Hence,

the use of a p-toluenesulfonyl group to activate the imine as in 51 resulted in

the exclusive formation of (E,E)-dienes when the allylphosphonium was employed

for the coupling in the presence of LDA. On the other hand, it was found that the

2,6-dichlorobenzenesulfonyl group activated the imine as in 52 and steered the

selectivity of the reaction exclusively toward (Z,E)-diene production.
The methodology was exemplified with various substituted imines (R2 ¼ aryl,

alkyl, styrenyl) allowing the stereodefined access to several substituted (E,E)- or
(Z,E)-conjugated dienes in yields ranging from 64% to 90%.

The coupling between activated imines and non-stabilized phosphonium ylides

was studied next (Scheme 28) [46]. In this case, the (E)-selectivity was observed

when the imine was activated with o-toluenesulfonyl group and treated with

phosphonium ylides generated by action of n-BuLi. Interestingly, when a

methanesulfonyl group activated the imine, the selectivity was reversed to produce

the (Z)-isomer.

2.2.2 From Epoxide

a-Lithiated epoxides are highly electrophilic species. Due to the ring strain of the

epoxides and the important polarization of the Li–C–O bonds, a-lithiated epoxides

53 can suffer ring opening when exposed to alkenyllithiums leading to hydroxylate

54, which b-eliminates Li2O to form conjugated dienes (Scheme 29) [47]. Hodgson

has illustrated this reactivity with 1,2-epoxidodecane and stereodefined

alkenyllithiums for the stereoselective formation of conjugated dienes. After the

deprotonation of the epoxide with LiTMP, the addition of the alkenyllithium to

53 occurred with almost total retention (from 91:9 to 100:0) of the configuration of
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the double bond. Next, the syn-elimination of Li2O afforded the (E)-olefin with an

excellent control of the selectivity.

Recently, the stereoselective preparation of 1,3-dienes was described according

to metal-free methodologies with reagents that are air and moisture insensitive.

2.2.3 From N-Allylhydrazones

The strategy reported by Thomson relies on the [3,3] sigmatropic rearrangement of

N-allylhydrazone initiated by a brominating agent such as NBS (Scheme 30) [48].

The one-flask procedure began with the formation of the hydrazone 55, from aryl

carboxaldehyde and N-allylhydrazine, followed by its sequential treatment with

NBS and DBU as a base.

The mechanism involves probably the bromination of the hydrazone 55 followed

by [3,3] sigmatropic rearrangement of the oxidized intermediate to furnish the

Scheme 28 Preparation of 1,3-dienes from imines and non-stabilized phosphoniums
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Scheme 27 Cross-coupling of imines and semi-stabilized phosphoniums
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diazonium 56. Consecutive substitution at the benzylic position by bromide ion and

DBU-mediated elimination of HBr would afford the conjugated diene. The forma-

tion of the (E)-isomer can be rationalized through an E2-mechanism of the

conformer A presenting minor steric interactions compared to B.

Interestingly, the procedure was extended to substituted N-allylhydrazine to

afford various polyfunctionalized conjugated dienes (Scheme 31).

2.2.4 From Allenoates and Alkynoates

Another strategy for the metal-free preparation of stereocontrolled bisaryl

substituted 1,3-dienes relying on the conjugate addition of phosphine to allenoate

was reported by He [49] and to alkynoates by Gothelf (Scheme 32) [50]. The

strategy is inspired by the seminal work of Trost who described the isomerization

of 2-alkynoate into conjugated dienes promoted by a catalytic amount of

Scheme 30 One-flask transformations of carboxaldehydes to 1,3-dienes

H2N

H
N R3
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Scheme 31 Preparation of polysubstituted 1,3-dienes

Scheme 32 Preparations of polysubstituted 1,3-dienes

108 M. De Paolis et al.



triphenylphosphine [51]. The authors carried out the reactions with allenoate or

2-alkynoate and phosphine in the presence of an aldehyde as electrophile. It was

anticipated that in situ generated phosphonium ylide would react with this aldehyde

in a Wittig olefination reaction to furnish conjugated dienes. Triphenylphosphine

and the phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) were employed by

He in CH2Cl2 at room temperature to promote the transformation of allenoate in

conjugated diene. On the other hand, PTA in refluxing 1,4-dioxane gave the best

result with 2-alkynoate as electrophile.

The mechanism for both methods is similar and has been proposed to begin with

the conjugate addition of the phosphine to theMichael electrophile (i.e., allenoate or 2-

alkynoate). In Scheme 33 themechanismdescribing the transformation of 2-alkynoate

is presented. After Michael addition, protons shift of the Michael adduct leads

eventually to phosphonium ylide 57 that would react in a Wittig reaction with an

aldehyde and displace the previous equilibria. Note that, despite the elevated temper-

ature of the reaction with 2-alkynoate, no isomerization of the double bond allowing

the conjugation of the ester with the double bonds was observed.

3 Dienes Substituted by Electron-Withdrawing Groups

Grafting an electron-withdrawing group onto a dienic structure has important

consequences on its reactivity; therefore many methods have been proposed to access

dienic esters, amides, nitriles, etc. The electron-deficiency induced on a diene not only

reverses its behavior in cycloaddition reaction but alsomakes it a possible substrate for

Michael additions. This well-known phenomenon has, for instance, been put into

evidence in the recently isolated bioactive diterpenoid briareolate esters L–Nwhere an

(E,Z)-dienone motive acts as a reversible “spring-loaded” acceptor [52].

Here again an exhaustive review is impossible but significant examples among

the recent developments are proposed in the following. Thus, selected illustrative

examples have been gathered in four categories (couplings, isomerizations,

metathesis, miscellaneous) presented herein. Note that the structure of the

electron-attracting substituent and its position on the four carbons of the diene

have been left undetermined.
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Scheme 33 Proposed mechanism for the transformation of 2-alkynoate into conjugated dienes
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3.1 Ene–Ene or Ene–Yne Couplings

Transition-metal-catalyzed cross-coupling reactions offer obvious solutions to

design dienic scaffolds through carbon–carbon bond formation. The most com-

monly used catalytic organometallic reactions (e.g., Suzuki, Stille, Heck, Negishi)

involve the coupling of two functionalized olefins. These widely employed methods

are robust and relatively general in scope, warranting a good versatility. More

recently, the direct coupling between simple alkenes and acrylates (or analogs)

has also been developed. Alternatively, the palladium-catalyzed cross-couplings

between alkenes and alkynes, the ene–yne couplings (also called intermolecular

codimerization), offer attractive complementary solutions. The latter route has

been the object of many developments lately, probably because it is based on the

intramolecular enyne cycloisomerization (for review, see [53]), and resorts to

unfunctionalized starting materials. It thus benefits from the advantages of simplicity

and atom economy.

3.1.1 Functionalized Ene–Ene-Couplings

Palladium-catalyzed cross-coupling reactions have been largely employed in the

synthesis of dienic structures. The very general Suzuki–Miyaura methodology has

found a successful application in the stereoselective synthesis of ethyl substituted

(E,E)-dienoic esters and dienones [54]. This coupling involved a series of

vinylboronates 58 and vinyltriflates (or nonaflates) 59, and led, in good yield, to

the expected esters and ketones 60. However, a partial isomerization of the electro-

philic partner 59 occurred (Scheme 34).

The Stille coupling, which also applies to dienes, is typically catalyzed by

Pd(PPh3)4. Since the preliminary hydrostannylation of an alkyne such as 61 uses

the same catalyst, a one-pot procedure was recently designed to access (Z,E)-2-
arylsulfonyl-1,3-dienes 62 in good yields (Scheme 35) [55].

The Heck–Mizoroki coupling, which goes through a carbopalladation step,

applies particularly well to electron-deficient alkenes that react even at room

temperature [56]. A broad range of 1,3-dienes has been prepared from vinyl

bromides and functionalized alkenes such as acrylates or enones [57]. Recent

developments aim at involving functions sensitive to palladium catalysts or

to tackle regioselectivity issues [58]. Thus, it was shown for instance that

(Z)-iodoacrylates 64 could be assembled with hindered vinylboronates 63 to afford

the borono dienic ester 65 (Scheme 36) [59, 60]. A side-reductive coupling of

64 into the (Z,E)-dienic diester 66 is observed that could be suppressed after

optimization of the conditions [61].

The problem associated with the 1,2-migration of the alkenyl-palladium inter-

mediate when gem-disubstituted olefins are employed has also been addressed

recently for vinylphosphate 67. Elegant solutions have been found that rely on

the modulation of the phosphine ligand and the amount of added LiCl (Scheme 37).
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Thus, the expected (“regular”) branched dienic amide 69 or its rearranged

(“migrated”) isomer 70 was obtained as desired [62].

A novel type of coupling was introduced in 2006 when Pd(II) was directly used

under an atmosphere of dioxygen to perform oxidative Pd(II) catalysis [63].

This methodology, which connects alkenylboron derivatives 71 to olefins 72

(even highly substituted or cyclic ones) in the absence of base, works at moderate

temperatures and in short times, minimizing undesired side-reactions. The dienic

esters are recovered stereoselectively in good to high yields (Scheme 38).

Some less classical coupling methodologies open complementary access

to functionalized dienes. For instance, an alkyne hydrozirconation followed by

a Pd-catalyzed alkenylation has been employed to prepare stereoselectively ethyl

(E,E)-2-methyl-6-hydroxysorbate in excellent yield [64]. N-Vinyl-pyridinium

Scheme 35 Stille-coupling to access trisubstituted dienic sulfones

Scheme 36 Heck-coupling to access dienic esters

O-PO(OPh)2

O

NHt-Bu
+

PdCl2(COD)
(5 mol%)

Ligand - LiCl
Cy2NMe

dioxane-DMF
100°C, 24h

O

67
69 "Regular product"

(R = Ar, t-Bu,
adamantyl,...)

68

R

70 "Migrated product"
(R = Ar, i-Pr, t-Bu,

adamantyl,...)

+
R

O

NHt-BuNHt-Bu

R

Scheme 37 Control of the regioselectivity in the Heck-coupling

Scheme 34 Suzuki-coupling to access trisubstituted dienones
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tetrafluoroborate salts can also be employed as electrophilic coupling partners.

Under palladium-catalysis conditions, they provide symmetrical (2E,4E)-1,6-
dioxo-2,4-dienes in medium to good yields [65]. Very recently, a Pd(0)-catalyzed,

Cu(I)-mediated methodology inspired from the Liebeskin–Srogl cross-coupling

was described to connect a-oxo ketene dithioacetals with alkenylboronic acids

[66]. It led to a series of aryl-substituted dienones in generally good yields.

3.1.2 Direct Ene–Ene Couplings

Transition-metal-catalyzed cross-couplings through C–H bond activation of olefins

have been under intense scrutiny lately as they open new routes to carbon–carbon

bond formation. When applied to acrylates or acrylamides 75, such a direct oxida-

tive coupling affords dienes 76 in medium to good yields (Scheme 39). The

catalytic system employed consists of Pd(II) derivatives in the presence of oxidants

(such as PMo11VO40 [67] or CuX2 [68] + O2, AgOAc [69], etc.). Because it resorts

to very simple precursors, this process is extremely attractive. However, its

stereoselectivity still strongly depends on the substrate.

A synthetically useful application of this methodology to protected glucals 77

appeared recently (Scheme 40) [70]. It involves a variety of activated terminal

olefins 78 and gives access to highly functionalized dienes 79, ready for [4+2]

cycloadditions, used for instance in the synthesis of natural products such as Olivin

or Forsolin.

Scheme 38 Oxidative Pd(II) catalysis for coupling of vinylboronates

O

Y Pd(II)
oxidant

solvent
50-90°C
5-24h

O

Y

74 7675
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+
R2 Y = OAlk, NMe2

R1 = OAc, Alk, Ar, SCH2-
R2 = H, Alk, Ar, SCH2-
R3 = H, COMe, COAr

R3

R3

Scheme 39 Direct cross-coupling involving acrylates

Scheme 40 Direct cross-coupling involving glucals and various activated olefins

112 M. De Paolis et al.



3.1.3 Ene–Yne-Couplings

As for the direct alkene–alkene case mentioned above, the alkene–alkyne cross-

couplings present the major advantage of involving simple non-functionalized

partners and a catalytic amount of a transition metal complex. Note that these

couplings are mechanistically distinct from metal carbene-mediated pathways (the

enyne metathesis which also produces 1,3-dienes) (for review see [71]). Depending

on the metal employed, the alkene–alkyne cross-couplings follow two different

mechanistic pathways. Hence, electron deficient dienes have been prepared using

Ti [72], Ni [73], Co [36], Rh [74], or Ru [75] (Ir has not been used for electron-

deficient dienes to our knowledge). In all these cases, the formation of a metalacy-

clopentene resulted from a [2+2+1] cycloaddition, that involved, except for nickel,

endocyclic b-hydrogen insertion (Scheme 41).

In general, an ester (or a carboxylate) is borne by the alkyne 80 (except for nickel

where a second olefin inserts and extends themetallacycle) while the substituents on the

olefin 81 vary a great deal, depending on the catalyst. Scheme 42 illustrates the synthetic

utility of this coupling in the case of ruthenium catalysis [75]. Here, the dienes 82 are

recovered regioselectively, the stereoselectivity depending on the olefin structure.

Note that a three-component version working in water and at room temperature

has been reported [76]. It involves an arylboronic acid, an unactivated alkyne

and methyl acrylate and is catalyzed by Rh(OH)(COD)2 (4 mol%). It afford

3,4,40-trisubstituted dienic esters in good yields and full stereoselectivity.

A totally different mechanism has been shown to apply to the palladium-

catalyzed route. The speculated mechanism involves an in situ generated Pd(II)-H

entity rather than a Pd(0) complex [77]. This hydride is supposed to add across the

triple bond of the alkyne in a syn fashion, leading to a vinylpalladium intermediate

that then behaves as in the classical Heck mechanism toward the olefin and affords

the diene [78]. This methodology has allowed the transformation of acrylamide 84

into a series of dienamides 85 in good regio- and stereo-selectivities (Scheme 43).

A somewhat related intramolecular oxy-carbopalladation reaction described for a

series of hydroxy ynones 86 leads to a vinylpalladium intermediate that cannot

undergo b-elimination and adds onto ethyl acrylate 87 (following a Pd(II)-catalyzed

cascade Wacker–Heck reaction) to afford, stereoselectively, dihydropyranones 88

(Scheme 44) [79].

Scheme 41 Metalacyclopentene intermediate in the ene–yne couplings

Scheme 42 Examples of Ru-catalyzed ene–yne coupling
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Complementarily, a chloropalladation of the alkyne can be set using PdCl2, and

the resulting vinylpalladium chloride adds, in turn, on acrylates. Cholorodienic

diesters are thus obtained provided CuCl2 is added to the medium to re-oxidize the

Pd(0) and close the catalytic cycle [80]. This reaction is further discussed in the

section dedicated to halodienes (Sect. 5).

Let us close this section with a gold- and palladium-cocatalyzed carbostan-

nylation of substituted propiolates 89 by vinylstannanes 90 (Scheme 45) [81].

The Au(I) electrophilic activation of the triple bond is said to promote the oxidative

addition of the Pd(0) to the alkyne. Next, a transmetallation of the vinylstannane

across one of the Pd–C bonds puts the reaction back on a Stille-type track. Several

a-stannylated dienic esters such as 91were thus prepared in medium to good yields.

The stereocontrol is similar to that observed in the Stille coupling (high syn
selectivity for the addition and stereospecificity with respect to the vinylstannane),

albeit some stereochemical leakage was observed with bulky Z-stannanes.

3.2 Isomerizations and Rearrangements

The allenes and alkynes have the same oxidation state as 1,3-dienes. Therefore,

they just require an adjustment of the oxidation level by internal hydrogen reorga-

nization, a process that is obviously more atom economical than external sequential

Scheme 43 Synthesis of dienamide by Pd-catalyzed ene–yne coupling

Scheme 44 Pd(II)-catalyzed cascade Wacker–Heck reaction

Scheme 45 Au-/Pd- cocatalyzed carbostannylation of substituted propiolates by vinylstannanes
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reduction-oxidation operations. The isomerization of alkynones [82, 83] and

alkynoates [51, 84] into dienones and dienoates, respectively, has been studied

for a while. Although transition metal catalysts have been the first to be proposed to

promote these reactions, several recent examples show that organocatalytic

approaches are also relevant.

3.2.1 Isomerization of Allenes

The carbopalladation of allenes provides a convenient entry to p-allyl palladium
species. In the presence of a non-conjugated ester group, such as in the 3,4-

allenoates 92, the b-H elimination transforms this intermediate stereoselectively

into conjugated 1,3-dienes 93 incorporating di-, tri-, or even tetra-substituted

double bonds (Scheme 46) [85].

A recently described palladium-catalyzed elimination/isomerization of enol

triflates is to be mentioned at this stage since it involves intermediate conjugated

allenoates. This reaction is sensitive to the configuration of the starting enol triflate

94, only the E-isomer being spontaneously transformed. However, addition of

TMSOTf along with Hunig’s base extends the reactivity to the Z-isomer

(Scheme 47) [86]. The 1,3-dienic esters 95 are generally recovered in good yields

and high to total stereoselectivity.

A simple base-induced tandem isomerization/hydroxyalkylation of the easily

accessible 3,4-allenoates 96 has been described that furnishes, in a fully regio- and

stereo-controlled manner, the expected dienic esters 97 (Scheme 48) [87]. The

addition step involves an aldehyde but it can be extended to sulfonimines.

Complementarily, a similar isomerization/hydroxyalkylation sequence has been

shown to isomerize the 2,3-allenoates into (E,E)-1,3-dienes. It is based on an

organocatalytic process (reversible addition of phosphines in the 3-position of the

Scheme 46 Isomerization of allenes by carbopalladation/b-H elimination

Scheme 47 Palladium-catalyzed elimination/isomerization of enol triflates
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allenoate 98) that generates a resonance-stabilized zwitterionic intermediate. The

latter evolves by proton migration into an allylic phosphorus ylide that, in turn,

undergoes a Wittig olefination toward aldehyde 99, providing substituted dienes

such as 100 (Scheme 49) [88, 89]. The conjugate character of the substrate explains

that the regioselectivity of the aldolization step is the opposite to that in Scheme 48.

It has been shown very recently that replacing the aldehyde in the reaction above

by azomethine imines 102 can lead, using PCy3 as a catalyst in DCM/benzene (4:1)

at 0 �C, to the incorporation of two allenoates 101 following a formal [3+2+3]

cycloaddition process (Scheme 50) [90]. Thus, cyclic dienic esters are obtained as

an equilibrating mixture of tautomers 103 and 104.

Another convenient isomerization process relies on an addition–elimination

process in which NaI, LiBr, or LiCl react with an allenol [91]. The resulting product

being a 2-methoxycarbonyl-3-halo-diene, this methodology will be detailed in the

section dedicated to halodienes (Sect. 5).

3.2.2 Isomerization of Alkynes

As mentioned in the introduction, the isomerization of alkynoates into (E,E)-1,3-
dienes is well-known [82–84]. Although organometallic routes have been the first

Scheme 48 Base-induced isomerization/hydroxyalkylation of b-allenoates

Scheme 49 Isomerization of a conjugated allenoate by tributylphosphine

Scheme 50 Phosphine-catalyzed [3 + 2 + 3] cycloadditions of azomethine imines with

allenoates
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proposed for this reaction, they have been rapidly followed by phosphine-catalyzed

processes, and the latter have gained momentum, as underlined in a review dedi-

cated to the isomerization of alkynes [92]. Among the successive improvements

listed in this paper, let us mention the use of phenol as a co-catalyst, of

pentafluorophenol alkynoates as the activating group and the possibility to run

the isomerization in water or the catalysis by polymer-supported phosphines.

For instance, and in parallel to results obtained for the aza-Baylis–Hillman reaction,

triphenylphosphine supported on JandaJel resin (JJ-TPP) has been shown to

promote the efficient isomerization of a relatively large set of alkynones 105 in

solvent-free conditions giving access to dienones 106 in medium to high yields

(Scheme 51) [93].

More functionalized substrates have also been considered recently [94], giving,

for instance, access to 5-alkoxy-2E,4E-dienones that are regarded as useful

1,4-disubstituted push-pull dienes.

3.2.3 Rearrangements

The rearrangement of 2-benzylidenecylopropyl-carbinols 107 [95] or 2-benzylide-

necylopropyl-ketones 109 [96] co-catalyzed by Pd(0) and Pd(II) has been shown to

give access to (E,E)-2,4-dienals 108 and dienones 110, respectively, in slightly

different conditions (Scheme 52). A mechanism going through (E,E)-5-arylpenta-
2,4-dien-1-ols has been proposed.

Finally, the spontaneous electrocyclic ring opening of pyran derivatives

(obtained by a vinylogous aldol reaction between vinyl malononitriles and

aldehydes) into dienamides is to be mentioned in this section [97].

Scheme 51 Isomerization of alkynones by supported PPh3 in solvent-free conditions
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Scheme 52 Pd-catalyzed rearrangement of 2-benzylidenecylopropyl-carbinols and 2-

benzylidenecylopropyl-ketones
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3.3 Metathesis of Olefins

When applied to the synthesis of electron-withdrawing substituted conjugated

dienes, metathesis presents the advantages of mild reaction conditions (and thus

large functional groups tolerance), stability of the reagents and catalysts (such as

ruthenium [98] or molybdenum [99, 100] alkylidenes), and availability of a wide

range of olefin partners. The now classical RCM was for instance employed in a

tandem version to assemble two of the three olefins and the alkynoate borne by

substrate 111 to build up the [7.6.0] bicyclic core in 112 (Scheme 53) [101]. The

tricyclic scaffold was used to complete the synthesis of guanacastepene A.

When it comes to dienes, metathesis is mainly used to scramble preexisting

dienes with olefins, and this strategy applies particularly well to electron-deficient

ones. Obviously, the issues regarding the chemo- and stereo-selectivities have to be

considered with special care when involving dienes since only one double bond

should react. A simple way to steer the regioselectivity consists in shielding

one of the olefins by steric or electronic means. For instance, it was found that

the deactivating effects of an ester group in addition to the influence of the bromine

substituent in ethyl 2-bromosorbate 114 protected the double bond directly conju-

gated to the ester from cross-metathesis in the presence of Grubb’s second genera-

tion catalyst [102]. Thus the reaction could be selectively directed toward the

“remote” olefin and affords a variety of new 5-substituted dienic esters 115 with

a high to total selectivity in favor of the (2E,4E) isomer (Scheme 54). Note that the

carbonyl derivative can also be introduced via the olefin: 1,1-dibromo-1,3-

pentadiene or even 3-methyl-1,3-pentadiene could be reacted, in similar conditions,

with methyl acrylate or MVK, respectively, to afford products in which the

metathesis occurred selectively on the less substituted olefin.

Interestingly, this approach applies to less stable (Z)-1,2-disubstituted alkenes

and was successfully employed to access the (2Z,4E)-dienic fragment found in the

dictyostatin family of anticancer molecules [103], or the Z-dienamide derived from

the rearrangement of a Zincke salt [104]. Similarly, ethyl 2-methylsorbate was

COOMe MeOOC

111 112

[G II]
(12 mol%)

CH2Cl2
Rfx, 3h

(82%)

N N

Ru

Mes Mes

PCy3
Cl

Ph

Cl
[G II]=

Scheme 53 Tandem Ru-alkylidene catalyzed ring-closing metathesis to triene 112

Scheme 54 Ru-alkylidene catalyzed metathesis of ethyl 2-bromosorbate and various olefins
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employed under analogous conditions to prepare the dienic moieties found in

pinnaic acid and halichlorine [105]. Using a less active catalyst (Grubb’s first

generation for instance), ethyl 2E,4E-pentadienoate can be selectively reacted on

its terminal double bond and combined with functionalized olefins to provide the

expected dienic esters in excellent yield but medium stereoselectivity [106].

Another fruitful strategy relies on the combination of metathesis and non-metathesis

reaction in a one-step sequence [107]. Here, the idea is to combine a terminal olefin 116

with an enal 117 through a regularmetathesis step then trapping the resulting unsaturated

aldehyde118 in aWittig reaction, yielding directly dienoate 119 (Scheme55). It requires

full chemical compatibility between the catalyst and reagents, demonstrated in the case

of Grubb’s II catalyst and phosphorus-based olefinating agents [108] (Wittig and

Horner–Wadsworth–Emmons) and also diazoacetates [109].

3.4 Miscellaneous Reactions

The presence of an electron-withdrawing group on the target structure explains that

a relatively large series of miscellaneous reactions, often relying on stabilized

ylides, could be used for the synthesis of these dienes.

The Pd-catalyzed condensation of allyl bromides or chlorides 120 on diazo

ketones and esters 121 is probably one of the most convenient accesses to 2-aryl-

dienone and 2-aryl-dienoate 122 [110]. The yields of this reaction are good and the

selectivity high (Scheme 56).

Other simple reagents for the rapid synthesis of conjugated dienic esters

are the vinylogous Horner–Wadsworth–Emmons reagents, known for a while and

employed for instance for a total synthesis of Efomycine M [111]. This family of

reagents has recently been extended to branched allylic phosphonates such as 123,

opening up access to 4-methyldienoates 125 (Scheme 57) [112].

Note that the Still–Gennari olefination, well-known for its Z-selectivity, can be

employed to transform the (Z)-enal 126 (itself resulting from a previous

Still–Gennari step) into the (Z,Z)-dienoate 128. This approach has been employed

recently in a total synthesis of Archazolid A (Scheme 58) [113].

The ring-opening of arylpyridinium derivatives such as 129 in the presence of

secondary amines provides 5-amino-penta-2,4-dienals better-known as the Zincke

aldehydes. These dienals are useful synthons, explaining why this century-old

reaction continues to find developments and applications in the synthesis of natural

Scheme 55 Sequence metathesis-olefination reaction to assemble dienes from three components
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products such as norfuorocurarine [114] or porothramycins [115]. An unexpected

thermal rearrangement of these Zincke aldehydes 130 led to the discovery of a

selective route leading to Z-dienamides 131 in medium to good yields and stereose-

lectivities (Scheme 59) [104].

This rearrangement, of which the mechanism has been theoretically deciphered

recently [116], can be followed by an intramolecularDiels–Alder cyclization, affording

complex polycyclic lactams [117]. In relation to this pyridinium chemistry, the trans-

formation undergone by pyridine N-oxides under the action of Grignard reagents is

worth mentioning. It leads to substituted (Z)-dienal oximes in good yields [118].

Another well-known category of reactions affording olefin and dienes consists of

1,2- and 1,4-eliminations. In recent applications to electron-deficient dienes, let us

mention a four-component reaction that condenses 1-oxy-1,3-dienes 133, silyl enol

Scheme 56 Pd(0)-catalyzed condensation of allyl halides on diazo esters

Scheme 57 Vinylogous Horner–Wadsworth–Emmons reaction with branched allylic

phosphonates

Scheme 58 Double Still-Gennari olefination to access an advanced synthon for Archazolid A
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ethers 132, SO2 and electrophiles R4X to furnish stereoselectively dienones 134 in

good yields (Scheme 60) [119].

It has been shown recently that the condensation of an allylsilane, ofwhich a double

bond is conjugated to an amide (silylacrylamide), onto aldehydes in the presence of

TBSOTf and NEt3 gives direct access to dienamides after a b-elimination on the

intermediate aldol product [120]. Another paper based on a Knoevenagel condensa-

tion involves b-diketones or b-ketoesters and enals. Proline catalysis leads to the

expected conjugated dienones in good yields and after short reaction times [121].

Another condensation–elimination sequence consists in a modification of the

Morita–Baylis–Hillman reaction which provides dienes bearing an electron-

withdrawing group (cyano or ester) in the 2-position 137 (Scheme 61) [122]. Its

mechanism begins as in a classical Morita reaction; but a 1,2-proton shift occurs

before the elimination of the phosphonium, leading to an intermediate ylide that

condenses readily on a second aldehyde molecule.

4 Stereoselective Preparation of Heterosubstituted

Conjugated Dienes

In this section, some recent representative processes allowing the stereoselective

synthesis of hetero-substituted 1,3-dienes are described. They include access to

chalcogeno dienes such as nitrogenated, phosphono, oxygenated, thio, or seleno

Scheme 59 Thermal rearrangement of Zincke aldehydes into Z-dienamides

Scheme 60 One-pot, four-component transformation to dienones (DNP ¼ 2,4-dinitrophenyl)
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Scheme 61 Modification of the Morita–Baylis–Hillman reaction: an access to dienes
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substituted dienes, as well as metallo dienes such as silylated, stannylated, or

borylated compounds. Worthy of note are the recent reviews that deal with the

synthesis of silylated and borylated 1,3-dienes [123, 124].

4.1 From Enolizable Carbonylated Compounds

The synthesis of oxygenated dienes from methylcarbonyl compounds via formation

of dienolates is a well established method that has been used recently to access 1,3-

dienes bearing silyloxy, alkyloxy, or phosphate substituents in position 2 of the 1,3-

dienyl motif. Wessjohann has reported the efficient synthesis of silyloxy-1,3-dienes

starting from the corresponding enones using a classical method involving

triethylamine as base and a silyltrifluoromethylsulfonate as electrophile. No race-

mization of the chiral dioxolane moiety borne by the substrate was observed under

these smooth conditions (Scheme 62) [125].

The preparation of 1,3-bissilyloxyketene acetals from b-ketoesters has been

largely described in the literature [126] and can sometimes be tedious due to the

inherent reactivity of these bisdienol ethers. A preparative method has recently

been described by Tanabe [127]. Starting from tert-butyl ketoesters and using

sodium bis(trimethylsilyl)amide (NaHMDS) (2 equiv.) as base in cyclopentyl-

methylester, the reaction proceeds efficiently at 0–25 �C and leads to the quasi
exclusive formation of the (1Z,3E) diastereomer (d.r. � 96:4). The authors propose

the approach depicted in Scheme 63, which minimizes the steric repulsions between

the disodium dienolate anion and the TMS groups of the amide, to account for the

good stereoselectivity of the transformation. In 2009, this practical method has been

improved in terms of cost efficiency by replacing the exclusive use of NaHMDS as

base (2.4 equiv.) by a combined use of NaH/NaHMDS (1.4 equiv.:1.4 equiv.) [128].

Scheme 62 Silylation of enone

Scheme 63 Preparation of tert-butyl (1Z,3E)-1,3-bis(TMS)dienol ethers
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O-Protection of dienolates derived from a,b-unsaturated carbonyl compounds is

also a well-established method for the preparation of conjugated dienes featuring an

oxygenated group in position 1 of the 1,3-dienyl moiety, even if the stereose-

lectivity of this process is often unsatisfactory. Dienol phosphates constitute good

candidates for coupling reactions with organometallics and are thus useful for the

synthesis of different types of conjugated dienes [23]. Stereoselective synthesis of

dienol phosphates from a,b-unsaturated aldehydes has been recently reported by

Cahiez [129]. Crucial to the control of the EC1–C2 diastereoselectivity is the use of

potassium tert-butylate as base and the presence of N-methylpyrrolidinone (NMP)

in the medium during the enolization step (Scheme 64).

1,3-Dienamines are usually prepared by condensation of secondary amines with

a,b- or b,g-unsaturated aldehydes or ketones [130]. Recently, transient formation of

dienamine species by interaction of chiral amines with g-enolizable a,b-unsaturated
aldehydes has been largely explored and has been shown to be a powerful tool in

organic synthesis [131, 132]. As the aminodienic compounds thereby generated are

not isolated but further functionalized in situ, their synthesis will not be described

here.

4.2 Elimination Reactions

1,4-Elimination reactions on a,b-unsaturated acetals have been widely studied in

the literature since the 1980s and have become a conventional method for accessing

1-alkoxydienes [133, 134]. Prandi, Venturello, and Deagostino have described a

series of papers showing the large scope of this methodology, allowing the synthesis

of differently substituted 1-alkoxydienes. They had previously shown that lithium/

potassium mixed base (LIC-KOR) promotes the conversion of a,b-unsaturated
acetals 144 into 1-alkoxydienes, inducing a 1,4-elimination reaction that is initiated

by a metalation reaction occurring at the g-allylic position. The elimination product

can be further selectively metalated at the a-position when an excess of base is

employed (at least 2 equiv.). The nucleophilic vinylmetal species thereby generated

145 can then be quenched with electrophiles, yielding the corresponding

1-susbstituted-1-alkoxydienes (Scheme 65). In the last 6 years, electrophiles such

as halotriorganogermanes have been successfully used to access dienylgermanes 146

as pure (1Z) diastereomers [135]. When reacted with 1 equiv. of arylnitrile, the

reaction with 145 leads to the selective formation of imines 147 as (E) isomers

Scheme 64 Stereoselective preparation of dienol phosphates
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[136]. Quenching the same vinylmetallic species with imines furnishes the

corresponding dienyl amines 148. The use of electron-withdrawing substituents

such as tosyl groups on the nitrogen atom of the imine leads to better yields [137].

Chiral N-sulfinyl imines can also be successfully employed and have been shown to

furnish the expected dienes in a completely diastereosective way [138]. Alternatively,

145 can be efficiently trapped as a boronate derivative 149 when quenched with

triisopropylborate and further esterified. These boronates can be coupled, via palla-

dium catalyzed cross-coupling reactions, with lactone derived vinyl triflates to

generate trienic compounds 150 [139, 140], or aryl iodides to yield the corresponding

1-aryl-1-alkoxydienes 151 [141].

The conversion of (Z)-1,4-dialkoxy-but-2-enes or (Z)-1,4-dialkylthio-but-2-enes
into the corresponding 1-alkoxydienes or 1-alkylthiodienes was reported long ago,

using sodium amide in liquid nitrogen or mixed metal bases (LIDAKOR) [142, 143].

Maddaluno had shown later that, when 1,1,4-trialkoxybut-2-enes were involved in

the process, the simpler use of alkyllithium bases (n-BuLi at �40 �C or t-BuLi at
�78 �C) could promote the 1,4-elimination reaction and allow the stereoselective

generation of (1Z,3E)-1,4-dioxygenated or 1-alkylthio-4-alkoxy1,3-dienes [144, 145].
Recently, Tayama has reported similar 1,4-elimination reactions, starting from

R1

R2

OEt

OEt

144

LIC-KOR
( 2 equiv)

THF, -95°C

R1, R2 = H, alkyl

R1

R2

M

OEt

145

R3GeX
-95 to 25°C

R1

R2

GeR3

OEt
146

i) Ar-CN (1 equiv)
ii) H3O+

OEt

ArHN

(E) isomer only

147

N
Ar

PG

OEt

Ar NHPG

148

PG = Ts, (49-91%)

S

O

Tol
PG =

(53-59%)
dr 99:1

i) B(OiPr)3, H20
ii) diol

R1

R2

B

OEt

O O
O OTf

Pd(PPh2)2Cl2
K2CO3, THF

R1

R2
OEt

O

(53-81%)

149 150

NHTs

I

Pd(PPh2)2Cl2
K2CO3, THF

R1

R2

OEt

NHTs

151

R
R

(E) diastereomer only
(50-94%)

³

³

Scheme 65 Synthesis of differently substituted 1-alkoxydienes by metalation and quenching of

a,b-unsaturated acetals
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(Z)-bisallyloxyalkenes (Scheme 66) [146–148]. In some cases, the use of diethylether

as a weakly coordinating solvent proved crucial for the stereoselectivity. When an

alkyl substituent is present on the C2 carbon atom, the stereoselectivity of the process

remains high. In contrast, C3 substituted substrates lead to mixtures of isomers.

The 1,4-elimination reaction can be performed with pyruvic aldehyde

dimethylacetals, thus allowing the synthesis of 1,2,4-trioxygenated 1,3-dienes

(Scheme 67). The stereoselectivity of the process in this case is mainly influenced

by the size of the group on the acetal moiety [149].

The possible enantioselective desymmetrization of a meso-allylic acetal by such
1,4-elimination reaction has been reported recently, using s-BuLi associated to

sparteine. The reaction allows, in this case, the synthesis of a chiral (1Z,3E)-
dialkoxydiene 158 (Scheme 68) [150].

When performing the 1,4-elimination reaction on O-(N-Boc-2-pyrrolidinyl)
derivatives 159, a reversal of the C1¼C2 stereoselectivity of the diene was observed,

leading to the exclusive formation of the (1E,3E) diastereomer (Scheme 69). In this

case, the reaction required the use of an amide as base and the yields were highest

when lithium 2,2,6,6-tetramethylpiperidide (LiTMP) in THF was employed [151].

A significant drop of the yield is observed when an alkyl substituent is present on

position C2 of the substrate.

1-Aminodienes had been accessed in a similar way in the literature [152].

Recently, Tayama reported an analogous approach starting from (Z)-1-amino-4-

methoxyalkenes [153]. When the nitrogen atom is substituted by two alkyl groups,

the reaction can be performed in diethylether using n-BuLi as base and affords the

corresponding 1-aminodiene 164 with generally high (1E,3E) stereoselectivity

((1E,3E)/(1Z,3E) from 87:13 to 98:2). The Z configuration of the initial alkenyl

substrate proved essential to the stereoselectivity and formation of complex 163 is

152

R1O
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Et2O O O

H
H

R1 Me

H
R2

Li
BuR1 = TBS, EE, MOM, BOM

MIP, THP, All, Bn, OMe
R2 = H, nBu, Hept
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H
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Scheme 66 1,4-Elimination reaction of bisallylic ethers leading to (1Z,3E)-1-alkoxydienes
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Scheme 67 Synthesis of 1,2,4-trioxygenated 1,3-dienes
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proposed to explain the observed results (Scheme 70). When applied to the N-Boc
derivatives, the use of NaHMDS as base proved superior to n-BuLi for both yields

and stereoselectivities of the diene formation.

4.3 Isomerization Reactions

4.3.1 Isomerization of Allenic Compounds

Isomerization reactions of allenamides into amido dienes have been recently

reported by Hsung [154, 155]. Depending on the allenyl substrate structure,

regioselective a- or g-isomerization can take place under acidic conditions (cata-

lytic camphor sulfonic acid) or thermal activation (135�C), furnishing the

meso
157

OPMB
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O
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-78°C

ii) H2O
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H H
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Scheme 68 Desymmetrization of meso acetals by 1,4-elimination reaction
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corresponding 2-amido or 1-amido diene in high yields (Scheme 71). The stereose-

lectivity of these processes is high, delivering, in each case, the E isomer exclu-

sively. The amido dienes generated by such method can either be isolated or

engaged in situ in further transformations, such as Diels–Alder reactions.

a-Allenic sulfonates can be easily transformed into 2-oxygenated 1,3-dienes

through a [3,3] sigmatropic rearrangement (Scheme 72). The methylsulfonate sub-

strate is formed in situ from the a-allenol under the smooth reaction conditions

required for the global transformation that do not involve any metal salts nor

expensive reagents. A total E-diastereoselectivity is observed in each reported

case [156].

Recently, allenyl carbinol esters have also been efficiently rearranged into buta-

1,3-dien-2-ol esters via metal catalyzed transformations. Gold (I) catalysis has

proven efficient under smooth conditions (CH2Cl2 at room temperature) when

using the biphenylphosphine-based catalyst 173. The stereoselectivity of the pro-

cess depends on the substrate and favors the formation of the E isomer (Scheme 73)

[157]. More recently, the use of rhodium catalysts in similar transformations has

been reported to lead to higher E selectivities, although in harsher reaction

conditions (Toluene at 120 �C) (Scheme 73) [158].

4.3.2 Isomerization of Propargylic Esters

Metal complexes such as Pd(II), Pt(II), Ru(II), Au(I), or Au(III) have been reported

to activate efficiently propargyl carboxylic esters to form complexes 174, that

evolve toward 1,2- and/or 1,3-acyloxy migration ([3,3] rearrangement) to generate

Scheme 71 Isomerization of allenamides into 1-amido or 2-amido-1,3-dienes

Scheme 72 [3,3] Sigmatropic rearrangement of a-allenol derivatives into 2-oxygenated dienes
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vinyl carbene metal species 176 or allenyl acetates 178, respectively (Scheme 74).

It is widely accepted that terminal or electron deficient alkynes preferentially react

via pathway A while internal alkynes prefer pathway B. The intermediate species

generated by such methods further react to lead to different products, including

carbonyloxy 1,3-dienes (see below).

Through 1,2-Acyl Shift (Reactions Involving Vinyl Carbenoid 176)

Lee has reported that the presence of an electron-withdrawing alkoxy group at the

propargylic position could induce a preferential 1,2-acyl shift [159]. In the presence

of platinum chloride (PtCl2), the vinyl carbenoid is then prone to a 1,2-H shift

reaction, providing an access to 1,3-oxygenated 1,3-dienes with a generally poor

Z/E stereoselectivity. Isomerization reaction involving internal alkynes should lead

to a 1,3-acyl shift pathway. Zhang has however observed a reversal in the 1,2- vs

1,3-acyl shift processes using IPrAuNTf2 180 as catalyst [160]. In this case,

reactions with pivaloyl propargylic esters furnish 2-pivaloyloxy buta-1,3-dienes

through 1,2-acyl migration followed by 1,2-H shift (Scheme 75). In most cases,

formation of the (1Z,3E) isomer was obtained as pure stereoisomer.

Starting from 1,4-bis(propargylacetates), a selective process involving two con-

secutive 1,2-acyl shifts occurs, affording the 1,3-bis(acetoxy)-1,3-dienes [161]. The

stereoselectivity of the process depends mainly on the nature of the catalyst ligands.

Involvement of IPrAu(NTf)2 180 favors the formation of the (1Z,3Z) isomer, while
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the more cationic (Ph3P)Au(NTf)2 leads to the major formation of the (1Z,3E)
isomer (Scheme 76).

Interestingly, Dixneuf has shown recently that vinyl metal carbenoid intermediate

176 generated with an electrophilic ruthenium catalyst [RuCl(cod)Cp*] (Cp* ¼
C5Me5) could be trapped by a diazoalkane carbene to yield acetoxy dienes 186

through carbene dimerization, in good yields (Scheme 77) [162]. No dimerization

product and no cyclopropane formation could be noticed even when the reaction was

run in the beneficial presence of 5 equiv. of styrene.

Ohe has described the trapping of the carbenoid intermediate 176 with

heteroaromatic compounds such as furans or thiophenes [163–165]. Such sequences

lead to the formation of heterosubstituted trienes, which are beyond the scope of this

review.

Through 1,3-Acyl Shift ([3,3] Rearrangement)

1,3-Acyl shift isomerizations are generally observed when propargylic esters bear-

ing an internal alkyne moiety are involved in the process. Zhang has reported that
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when propargylic esters are reacted in the presence of a catalyst such as (PPh3)AuCl

associated with silver perchlorate, the expected [3,3] rearrangement occurred,

leading to the formation of carboxy allenes such as 178. In this case where the

allene bears a trimethylsilylmethylene group, formation of an oxocarbenium inter-

mediate 189 is observed. The latter is prone to desilylation and furnishes, after

protodemetalation, the 2-acyloxy 1,3-diene 190. This process offers efficient access

to dienes with high E-selectivity of the non-enolic double bond (Scheme 78) [166].

In the case where the initial propargylic ester bears a cyclopropyl group, the

formation of the allene intermediate 192 is followed by ring opening of the three-

membered ring to lead to the cation 193 that cyclizes into alkylidene cyclopentenyl

acetates 194 (Scheme 79) [167].

Stereoselective synthesis of 1-oxygenated dienes, starting from propargylic

esters, has been reported with gold catalysts [168]. In this case, a 1,2-H shift on

cyclic intermediate 196 allows the formation of a vinyl gold intermediate 197,

which, upon protodemetalation, furnishes the (1E,3E) diene 198 (Scheme 80).

4.4 Other Transition Metal Catalyzed Reactions

Transition metal catalyzed reactions and in particular cross-couplings are com-

monly employed to access conjugated dienes. Recently, efforts have been devoted

to the stereoselective synthesis of silylated, stannylated, or nitrogenated 1,3-dienes

using such methods.
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4.4.1 Ene–Ene Coupling Reactions

One significant advantage of these coupling reactions lies in the preservation

of the initial alkenes stereochemistry in most cases, thus leading to highly

stereoselective processes. (1Z,3E)-2-Silylated dienes have been synthesized by Cai

through cross-coupling of (E)-a-halovinylsilaneswith (E)-alkenylzirconiumcomplexes

in the presence of Pd(PPh3)4 catalyst [169]. Similarly, coupling of stereodefined

a-silylvinylmagnesium 200 with a-iodovinylstannanes 201 leads to the formation of

(1Z,3Z) difunctionalized 1,3-dienes 202 containing silicon and tin (Scheme 81) [170].

This methodology appears quite general to synthesize differently substituted

conjugate dienes and has been recently applied to the stereoselective synthesis of

chiral 2-sulfinylated dienes via the Stille process [171], or nitrogenated dienes via

Suzuki [172, 173] or Negishi cross-coupling reactions for instance [174, 175].

4.4.2 Ene–Yne Coupling Reactions

Ura and Kondo have recently reported the ruthenium-catalyzed co-dimerization of

N-vinylamides with alkynes. The process leads to the formation of 1-amido-1,3-

dienes 207 with a preferential (1E,3E)-selectivity. The authors proposed a mecha-

nism involving the insertion of the alkyne into an Ru–H bond (generated in situ),

leading to complex 205, followed by a chelation assisted insertion of N-vinylamide

into the Ru–C bond and subsequent b-hydride elimination (Scheme 82) [176].

In a complementary manner, the regioselective coupling of ynamides and

ethylene has been reported to be mediated by a low valent ruthenium catalyst

(Cp*RuCl(cod)). The formation of a ruthenacyclopentene 209 where the ruthenium
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lies in b of the nitrogen atom is proposed and explains the high regio- and

stereoselectivities of the process, that leads, after b-hydride elimination and reduc-

tive elimination, to the formation of 2-nitrogenated dienes 210 (Scheme 83) [177].

4.4.3 Yne–Yne Coupling Reactions

Nickel catalyzed addition of diphenyldichalcogenides (S and Se) on alkynes have

been shown to produce 1,4-dichalcogenodienes 215. The formation of complex 214

can account for the stereoselectivity of the process (Scheme 84) [178].

Cobalt-mediated stereoselective assembly of 1-dienamides has also been

described by Vollhardt recently. The process involves a hydroaminative alkyne

coupling of a,o-diynes and leads to a completely Z-selective formation of the diene

moiety with a regiochemistry that depends on the substrate [179].

4.4.4 Other Transition Metal Catalyzed Reactions

Palladium catalyzed coupling reactions between halodienes and bis(pinacolato)

diborane or hexamethylditin have been reported to yield the corresponding

(1Z,3E)-1,3-dienyl boronate and stannane, respectively (Scheme 85) [180].

2-Amido diene motifs can be accessed by coupling reactions involving a

halodiene and an amide. Movassaghi has, for instance, successfully applied this

Scheme 82 Coupling of enamides with alkynes
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strategy in a copper-catalyzed coupling reaction in the course of the total synthesis

of Galbulimina alkaloid 13 (Scheme 86) [181].

Interestingly, Lam has described a synthesis of enamides via rhodium-catalyzed

carbozincation of ynamides [175]. When applied to dialkenylzinc compounds, this

reaction leads to the regio- and stereoselective formation of 1-amidodienes 224

(Scheme 87). The regioselectivity of the reaction was explained by the possible

formation of a chelated complex 223.

RCM of an ene-ynamide substrate has been reported by Mori and Sato, using a

second-generation ruthenium carbene catalyst. The process generates cyclic

dienamides with a preferential Z configuration of the non-cyclic double bond

(Scheme 88) [182].
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4.5 Hydrofunctionalization of Alkynes

Hydrosilylation, hydroboration, and hydrophosphination of conjugated enynes

have been recently employed to access silylated, borylated, or phosphonylated

1,3-dienes with high stereoselectivities.

4.5.1 Hydrosilylation

Hydrosilylation of alkynes has been intensively studied, but the same reaction has

barely been applied to the hydrosilylation of conjugated enynes. This reaction has

however been reported to be catalyzed by platinum carbene complexes in the

supporting information of a paper by Denmark describing the synthesis of unsymmet-

rical 1,4-disubstituted 1,3-butadienes [18]. In the reported examples, addition of

dimethylalkoxysilane on a terminal enyne already bearing an aryl/benzyldimethylsilyl

substituent at the vinylic terminus allowed the stereoselective formation of

(E,E)-dienic silanols and thus the differentiation of the two silyl groups in the

subsequent coupling reactions.

More recently, F€urstner has described the hydrosilylation of internal enyne

compound 227 to be catalyzed by platinum carbene complex 228 (Scheme 89)

[24]. The corresponding silylated diene 229 is thus efficiently obtained in a regio-

and stereocontrolled way, en route to lactimidomycin.

+ ZnCl2
(1 equiv)

R1 = H, Me
R2 = Ph, (CH2)3OTBS, (CH2)2Ph

O

O N
R2

Rh(COD)(acac)
(5 mol%)

THF, 0°C to rt
221

222R

MgBr
(2 equiv)

R

Zn2

O

O N

ZnL

R2

R O

O N

R2

R

(47-66%)

223 224

Scheme 87 Carbozincation of ynamides

N
Ts

225

Ru

PhCl

Cl

NMesMesN

PCy3

(5-10 mol%)

Toluene, 80°C
15-30 min.

N
Ts

226

Z-225
E-225

(E/Z) (226)
1:5.9
1:5.1

(41-48%)

Scheme 88 RCM of ene-ynamide
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4.5.2 Hydroboration

Compared to the hydroboration of alkynes, the preparation of polyconjugated

hydrocarbon compounds by hydroboration is still challenging both for transition

metal- or non-transition metal-catalyzed processes. Moses has reported the clean

conversion of enyne 230 into boronate 231, as a single diastereoisomer, when using

freshly distilled catecholborane (Scheme 90) [183].

Hydroboration of enyne has also been reported using the conditions developed

by Snieckus to introduce cleanly a vinyl boronate moiety with complete (E)
diastereoselectivity (Scheme 91) [184]. Roush has recently applied such a method

in the course of the synthesis of superstolide A [185].

ODMB OTES

227

ODMB

BnMe2Si

OTES

229

228

(1 mol%)

BnMe2SiH (3 equiv) (93%)
(E/Z) = 96:4

O Pt
N

N

i Pr

Pri

iPr
Pri

HN OH O

O

O

O O

Z

E

Lactimidomycin

Scheme 89 Platinum carbene catalyzed hydrosilylation of enyne

230

O
B

O
H

neat, 80°C

B
O

O

231

(> 99%)
(E) isomer only

Scheme 90 Non-catalyzed hydroboration of enyne

Bu3Sn

i) BH3,

ii) HCHO, H2O
iii) pinacol Bu3Sn

B
O

O

(75%)
only one isomer

232 233

H

H

O

O

H2N

MeO

O

NHAc

OH

superstolide A

Scheme 91 Non-catalyzed hydroboration of ene–yne
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More recently, selective 3,4-hydroboration of 1,3-enynes bearing an internal

alkyne moiety has been developed by Ito [186]. Copper(I) complexes catalysis

allowed highly selective monoborylation of 1,3-enynes, leading to the quasi-

exclusive formation of 1,3-dienylboronates 235, with a regioselectivity depending

on the substitution pattern and the ligand (Scheme 92).

In order to access the (Z) diastereomer, López has reported a formal trans-
hydroboration of terminal enyne using pinacolborane in the presence of a Rh(I)

complex and triethylamine [180] (Scheme 93) The yield is highly influenced by the

presence of substituents on the enyne substrate.

Alternatively, access to (1Z,3E)-1,3-dienes substituted by boron or tin in posi-

tion 1 can be secured by hydrozirconation of 1-alkynylmetals [180].

4.5.3 Hydrophosphination

Komeyama and Takaki have described the hydrophosphination of enynes with

diphenylphosphine to generate 1-phosphinyl-1,3-dienes as the sole products in excel-

lent yields after oxidative workup. In the reported case, conjugated enynes are

generated in situ by selective dimerization of terminal alkynes [187]. The same

authors later developed the ytterbium catalyzed dual hydrophosphination of conju-

gated diynes with 2 equiv. of diphenylphosphine. The corresponding 1,4-bis

(diphosphinyl)buta-1,3-dienes are then efficiently isolated after oxidative work-up.

Formation of (Z,Z) diastereomers is favored with disubstituted diynes, while (E,Z)
diastereomers are mainly obtained from terminal diynes (Scheme 94) [188].

R1

R2

R3

R4 Cu(OtBu)/ligand (5 mol%)
H-B(pin) (1.1-2 equiv)

MeOH (2equiv)
THF, r.t., 1.5-17 h

R1

R2

R3

B(pin)

R4

R1, R2, R3, R4 : H, Alkyl

234 235

+ R1

R2

R3 R4

B(pin)

236

(16->99%)
235/236 = 15:85 to >95:5

Scheme 92 Copper(I) catalyzed hydroboration of enyne

R

OTBDPS

O
B

O
H

[Rh(cod)Cl]2
Pi-Pr3, Et3N
cyclohexane

B

R

OTBDPS

O

O

R= H, (78%)
R= Me, (35%)
only one isomer

R= H, Me

237 238

Scheme 93 Rhodium catalyzed formal trans-hydroboration of enyne
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4.6 From Vinylcarbonyl Compounds

Vinylcarbonyl compounds are common precursors for the generation of conjugated

dienes. Recently, transformations including Wittig or related reactions, Julia or

Takai olefination reactions, have been used to access heterosubstituted 1,3-dienes.

Selenylated 1,3-dienes have been accessed via Wittig and related reactions,

starting from a-phenylselenyl a,b-unsaturated aldehydes. With non- or semi-

stabilized ylides, the reaction mainly leads to the formation of the 1Z diastereomer.

Due to steric instability, isomerization could yield the more stable 1E diastereomer.

Expectedly, when stabilized ylides are involved in the reaction, the C1¼C2 double

bond configuration of the product is mainly E (Scheme 95) [189].

1-Tributyltin-1,3-dienes have been synthesized from tributyltin substituted

benzothiazolyl sulfones and aldehydes via a Julia olefination reaction. The selec-

tivity of the process proved higher in the presence of KHMDS as base (Scheme 96)

[190].

R1 R2 + 2 Ph2PH
i) 240 or 241 (10 mol%)

ii) H2O2
239

R1, R2 = H, Alk

Ph2(O)P

R1

P(O)Ph2

R2
242

(28-98%)
R1, R2 = Alk , (Z,Z)/(Z,E)= 61:39 to 86:14

R1=H, R2=Alk, (Z,Z)/(Z,E)/(E,Z)/(E/E) = 7:0:61:32 to 6:0:7519240 : Yb( 2-Ph2CNPh)(hmpa)3
241 : Yb[N(SiMe3)2](hmpa)3

h

Scheme 94 Ytterbium-catalyzed hydrophosphination of diynes

R1 SePh

CHO

R1 = H,nPr, Ph
R2 = H, Me, Ph, C(O)CH3, CN, CO2Et

Ph3P=CHR2

or (EtO)2P(O)-CH2R
2, n-BuLi

R1 SePh

R2

1

2

(54-94%)
(1E,3Z)/(1E,3E)/(1Z,3Z)= 87:13:0 to 20:0:80

243 244

Scheme 95 Wittig olefination reaction

R1

Bu3Sn SO2BT
+ R2CHO

KHMDS

Toluene or THF
-78°C t or .t.

R1

Bu3Sn
R2

R1 = H, Me

245 246

R2 = alk, allyl, propargyl

(33-78%)
(3E/3Z )= 39:61 to 97:3

3

4

BT =
N

S

Scheme 96 Julia olefination reaction
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The Takai olefination process has been described to allow the efficient genera-

tion of hetero-bis-metallo buta-1,3-diene 249 (Scheme 97) [191]. This type of diene

can then be involved in sequential Stille/Suzuki–Miyaura coupling reactions.

5 Stereoselective Preparation of Halosubstituted

Conjugated Dienes

There are relatively few new methodological developments for the synthesis of

halodienes. We have chosen to separate the results based on isomerization and

rearrangement reactions from the previous part. This section is therefore divided

into two parts.

5.1 Isomerizations and Rearrangements

The isomerization of allenyl derivatives in the presence of halides is a potent

source of halogenated dienes. It has for instance been shown some time ago that

the Pd(II)-catalyzed addition of LiBr on an a-allenic acetate allows the convenient
introduction of a bromine atom in the 2-position of the resulting diene [192].

Since then, it has been established that the conjugate addition of an halide on a

3-(methoxycarbonyl)-1,2-allen-4-ol 250 occurs, in acidic conditions, through an

SN2
0 mechanism, triggering the elimination of an hydroxyl anion (Scheme 98) [91].

Thus, a series of halo-enoates 252 could be accessed in moderate to good yields and

complete Z-selectivity. Other conditions using (COCl)2 and DMSO transform the

same substrate into the corresponding chloride [193]. Note that the 250 ! 252

transformation can also be catalyzed by InX3 [194].

The cyclopropyl ring is another popular motive for the construction of

halogenated dienes. Under the influence of haloniums, 1-cyclopropylallenes 253

undergo a halohydroxylation and provide 2-haloolefine 254 in medium to good

yields (Scheme 99) [195]. The stereoselectivity, which tends to be mainly or

exclusively ZZ, is significantly affected by the nature of the substituents.

Reacting NBS or NIS with vinylidenecyclopropanes triggers a similar cationic

ring-opening (NCS does not work here). When the substrate bears a remote

hydroxyl group, an intramolecular addition of the alcohol on the intermediate

carbocation takes place, to give access to halogenated tetrahydropyran derivatives

Bu3Sn O +
O

B
OCl

Cl

CrCl2, LiCl

23°C, THF
Bu3Sn

B

O

O (75-88%)
one isomer only

247 248 249

Scheme 97 Takai olefination reaction
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(Scheme 100) [196]. Unfortunately, when the terminal aryl substituents differ from

each other, the stereoselectivity is null.

Titanium tetrachloride can also be used to promote the ring opening of cyclopro-

penylmethyl acetates, transforming them into (E)-2-halodienes (Scheme 101)

[197]. This chemically efficient reaction seems to be restricted to poorly substituted

substrates. The mechanism of this transformation has been studied in great detail by

DFT calculations.

Let us finally mention the rearrangement of gem-dibromo- and gem-

bromofluoro-cyclopropanes 259 into 2-bromo or 2-fluoro-dienes 260, respectively

(Scheme 102) [198]. Depending on the substitution of the other carbons of the

cyclopropane ring, a thermal activation is needed or not.

The rearrangement of metal carbenes can also provide halodienes in a very

elegant manner. For instance, Fischer chromium chloro carbenes, generated from

CrCl2 and a trihalomethyl group borne by the substrate, were shown to evolve under

microwave irradiation to provide stereoselectively (Z,E)-1-halo-1,3-dienol esters in

250 252251

CO2Et

OH

TFA or
AcOH

Rfx
+ M-X

CO2Et

X
R = Alk, Ar
M-X = NaI, LiBr, LiCl

R

R

(26-76%)
(Z) only

Scheme 98 Addition–elimination of MX on 3-(methoxycarbonyl)-1,2-allen-4-ol

253

R2

N XS

acetone-H2O
(3:1), N2, RT

254

R 2

X OH

R = Ar, Bn
X = Cl, Br, I

(46-78 %)
(Z ,Z) major

R1 R1

Scheme 99 Halohydroxylation of 1-cyclopropylallenes (NXS ¼ N-halosuccinimide)

Scheme 100 Access to halogenated tetrahydropyrans by ring-opening (NBS ¼ N-
bromosuccinimide)

OAc

Ar

TiCl4
(1.2 equiv)

CH2Cl2
-78°C, 5 min

257 258

Cl

Ar
(68-89%)
(E) =100%

Scheme 101 Ring opening of cyclopropenylmethyl acetates under the action of TiCl4
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good to excellent yields (Scheme 103) [199]. The mechanism is proposed to start

with the insertion of Cr in one of the C–X bonds, formation of a homo-allylic

Fischer chloro carbene, and a final electrocyclic rearrangement.

Gold-catalyzed rearrangements also open new routes to halogenated dienes.

Thus, advantage has been taken of a chlorine or bromine substituent to activate

an alkyne and promote a gold(I)-catalyzed 1,2-acyloxy migration in propargylic

carboxylates [200]. This remarkably mild method affords 1-bromo-2-acyloxy-1,3-

dienes in very high yields and as a single stereoisomer (Scheme 104).

5.2 Miscellaneous Reactions

Coupling strategies have also been applied to the synthesis of halodienes. A Pd(II)-

catalyzed ene–yne coupling has for instance been described recently [80]. It relies

on the initial anti-chloropalladation of the alkyne 265, known to occur in the

presence of an excess of halide, to provide an (E)-vinylpalladium intermediate

that undergoes a classical Heck-coupling with the activated olefin 266 in the

medium. Following this mechanism, a large set of terminal chlorodienoates 267

could be prepared in good yields and generally excellent selectivities (Scheme 105).

A Pt(IV)-catalyzed dimerization of acetylene 268 (yne–yne coupling) in the

presence of iodine, known for a while [201], has been recently optimized. The new

method leads, in good yields and selectivities, to (E,E)-1,4-diiodobuta-1,3-diene

XBr

SiMe3

R R
Me3Si

260

R

X

R

SiMe3

T°C

- BrSiMe3

259
X = Br, F
R = H (T = 100°C), Me (T = 0°C)

(72-81%)
(Z) = 100%

Scheme 102 Spontaneous rearrangements of gem-dibromo- and gem-bromofluoro-

cyclopropanes

261

R1
CrCl2

(3.5 equiv)

THF, MW
70°C, 25 min

OCOR2

OCOR2

CX3

R1

X

262

X = Cl, F
R1 = H, Alk, Ar
R2 = Me, Ar

(64-92%)
(Z ) = 100%

Scheme 103 Stereoselective synthesis of (Z,E)-1-halo-1,3-dienol esters catalyzed by Cr(II)

R1

O O

R2

X

Ph3PAuNTf2
(5 mol%)

CH2Cl2
RT, 10 min

R1

X

264

X = Cl, Br
R1 = Alk, Ar
R2 = Me, t-Bu

(85-96%)
(Z) = 100%

O O

R2263

Scheme 104 Gold-catalyzed 1,2-acyloxy migration in propargylic carboxylates

140 M. De Paolis et al.



269 (Scheme 106) [202]. This remarkable, but fragile, diene is itself an excellent

building block in cross-coupling reactions [203].

The phosphorus-ylides based olefination reactions also find applications to

halogenated dienes. For instance, the Horner–Wadsworth–Emmons methodology

was successfully applied to (Z)-2-methyl-3-iodo-propenal and led efficiently to the

expected g-pyrone-substituted (E,Z)-1,3-diene (E/Z > 6:1), a key-synthon for a

total synthesis of (�)-9,10-deoxytridachione [204].

The classical Wittig reaction can equally be employed to transform enals into

fluorinated dienes, for instance. Thus, reacting an a-fluoro enal and an a-fluoro
phosphonium ylide, difluoro-2,4-dienoates were easily obtained in fine yields and

generally good selectivities [205].

Let us conclude this section with a desilylation process that transforms 1-halo-

1,4-disilylated-1,3-dienes 270 into 1-halo-4-silylated or 1-halo-1-silylated-1,3-

dienes, 271 and 272, respectively, at will through a reagent-controlled process

which allows the selective cleavage of one or the other silyl group (Scheme 107)

[206]. The starting material 270 is readily prepared by a zirconocene-mediated

coupling of silylated alkynes followed by halogenation [207]. When applied to

1,4-dihalo-1,4-bis(trimethylsilyl)-1,3-dienes, this method affords stereoselectively

1,4-dihalo-1,3-dienes 273 in good to excellent yields.

H

268

H

PtCl4
(3 mol%)

l2 (4 equiv)

acetone, RT
24 h

I
I

269

(85%)
(E,E) > 85%

Scheme 106 Pt(IV)-catalyzed dimerisation of acetylene in the presence of iodine

R2

PdCl2
(10 mol%)

CuX2
(6 equiv)

neat
60°C, 24h

R3

X

266

X = Cl, Br
R1 = Alk, Ar, COOEt
R2 = COR, Alk
R3 = COOR, CN, CONMe2

(53-82%)
(Z,E) / (E,E) = 52 - 98%

265

R1 + R3

R1

R2
267

Scheme 105 Pd(II)-catalyzed ene–yne coupling to access terminal chlorodienoates

SiMe3Me3Si
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X

X'R

R

SiMe3H

X

HR

R

H
Me3Si

X

HR

R

H
H

X

X'R

R

X = Cl, Br / X' = H ((Z,E) = 100%)

X = Cl, Br / X' = H ((Z) = 100%)

X = X' = Cl, Br, I ((Z,Z) = 100%)

Cond a:
Cond b:

MeONa / MeOH, CH2Cl2, Rfx, 4h
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271
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Scheme 107 Chemoselective desilylation of 1-halo-1,4-disilylated-1,3-dienes
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6 Conclusion

Although the methodologies employed for the stereoselective preparation of

1,3-dienes are highly dependent on the nature of the appendages, general trends

can be distinguished. Whereas the vast majority of the strategies rely on transition

metals catalysis to control the stereoselectivity, only a few have been designed

without transition metals. Another interesting challenge is probably the directed

isomerization of diene systems, which would result in stereodefined 1,3-dienes

being obtained from a mixture of isomers. Developments in these two fields will

probably flourish in the near future.
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Abstract A number of transition metal complexes are capable of catalyzing

selective olefination of carbonyl compounds, including aldehydes, activated and

unactivated ketones, with diazo reagents in the presence of triphenylphosphine or

related tertiary phosphines. These catalytic olefination reactions can be carried out

in a one-pot fashion under neutral conditions with the use of different diazo

reagents as carbene sources, typically affording olefins in high yields and high

stereoselectivity.
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1 Introduction

Carbon–carbon double bonds are prevalent in many natural products and serve as

important functionality for a variety of organic transformations. Although new

methodologies includingolefinmetathesis [1] have emerged, the classicWittig reaction

and its variations remain themost general approaches to the stereoselective preparation

of these versatile functional groups [2–4]. Recently there has been an upsurge in the

reports on catalytic olefination of carbonyl compounds by transition metal complexes

with diazo reagents in the presence of triphenylphosphine (Ph3P), enabling the Wittig

reaction to be performed under neutral condition in a one-pot fashion.

The use of diazo compounds as the coupling partner of carbonyl compounds in

olefin synthesis can be traced to the earliest work of Wittig [5] involving copper-

catalyzed coupling of benzophenone and diazomethane in the presence of Ph3P. In this

reaction, 1,1-diphenylethylenewas obtained in only 23%yield. The importance of this

transformation was not recognized until the advent of transition metal complexes

based onMo [6] and Re [7]. It was shown that the use of Mo and Re complexes could

deliver a much better yield in this non-basic version of theWittig olefination reaction.

The mechanisms for both MoO(S2CNEt2)2-mediated process and methyltriox-

orhenium (MTO) catalyzed system, however, are still debated and have yet to be

settled [8–12]. In 2001,Woo and coworkers [12] demonstrated in a seminal report that

iron(II) porphyrin complexes could efficiently catalyze olefination of aldehydes with

ethyl diazoacetate (EDA) in the presence of Ph3P. A carbene transfer mechanism was

proposed for this process and is now generally accepted [13–15].

A couple of excellent reviews [13, 14] on this topic have been published, both of

which covered the literature published up to 2003. Since then, new modifications,

reagents, and catalysts have continued to be developed in this area, making

expanded applications possible. This chapter serves to highlight the past efforts in

developing this catalytic version of Wittig olefination.

2 Molybdenum Catalysis

In their search for a practical organometallic variant of theWittig reaction, Schwartz

and coworkers [16] reported that stoichiometric amounts of MoO(S2CNEt2)2 could

react with diazo reagents to form metalloazenes, which were susceptible to nucleo-

philic attack by phosphorane to generate olefin products. Inspired by this work, Lu

and coworkers demonstrated [6] that MoO2(S2CNEt2)2 could catalyze olefination of

aldehydes with EDA in the presence of Ph3P. The olefin yields varied from 7% to

83% for a series of aldehyde substrates tested, with generally high E-selectivity
observed (Scheme 1). The para-substituents of aryl aldehydes exhibit a drastic effect
on the reactivity, with strong electron-withdrawing groups giving low yields and

electron-donating groups giving high yields. This reactivity order is the opposite of

that shown in common Wittig reactions.
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3 Rhenium Catalysis

Hermann and coworkers [7] reported that MTO was capable of olefination of

aldehydes using diazo reagents in the presence of Ph3P (Scheme 2). In contrast to

the Mo-based catalytic system, the Re-catalyzed olefination performed well with

aryl aldehydes containing strong electron-withdrawing groups. Moreover, olefin 6d

derived from diazomalonate was obtained in 90% yield using MTO as a catalyst

whereas no olefin was formed with MoO2(S2CNEt2)2 as a catalyst. Instead, the Mo-

based system gave a stable phosphorus ylide Ph3P¼C(CO2Me)2, which could not

even react with benzaldehyde in boiling benzene.

A direct follow-up of this work was presented by Carreira and coworkers [17]

using another oxorhenium complex ReOCl3(PPh3)2 as the catalyst. Catalyst loading

as low as 1 mol% was employed without affecting the efficiency of the process.

Moreover, replacement of Ph3P by triethoxyphosphine facilitated product purifica-

tion since the by-product (EtO)3P¼O could easily be removed by aqueous work-up

due to its high solubility in water. In comparison to the original MTO system

RCHO + N2CHCO2Et
Ph3P, benzene, reflux

NO2OMe3a 3b 3c 3d

CO2Et CO2EtCO2EtCO2Et

71% E/Z 93/7 83% E/Z 93/7 7% E/Z n.a. 25% E/Z n.a.

10 mol% MoO2(S2CNEt2)2
RCH=CHCO2Et

1 2 3

Scheme 1 Mo-based catalytic olefination of aldehydes

Ph3P, benzene, 20 °C

NO2
6a 6b 6c 6d

CO2Et
CO2Et

CO2Et

80% E/Z 89/11 93% E/Z 92/8 82% E/Z 85/15

10 mol% CH3ReO3
R1CH=C

4

CO2Me

CO2Me

R1CHO
R2

R3
N2+

90%

R2

R3

5 6

Scheme 2 MTO-catalyzed olefination of aldehydes
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developed by Hermann, higher E-selectivity was generally observed for the

olefination of a series of aldehydes under this modified protocol.

When the MTO/Ph3P-based catalytic system was applied to the new diazo 7 and

aldehyde 8 (Scheme 3) by Mete and coworkers [18], a poor result (<40% yield;

E/Z: ~3:1) was obtained. Other tertiary phosphines bearing different electronic and

steric properties were screened, including P(4-Cl-C6H4)3, P(4-Me-C6H4)3, P(2,4,6-

MeO-C6H2)3, PBn3, PBu3, P(2-furyl)3, and P(2-Py)(Ph)2. It was shown that

phosphines with high steric hindrance or strong nucleophilicity failed to give any

olefin product at all. The less nucleophilic phosphine P(4-Cl-C6H4)3, however, was

able to produce olefin 9 in 40% yield and >10:1 E/Z selectivity (Scheme 3).

K€uhn and coworkers [19] extended the MTO catalytic system to ketone

substrates. Benzoic acid additive was needed to activate the ketones, a strategy

that was first developed by Zhang and coworkers [20] in their investigation

of olefination of unactivated ketones using an iron-based catalyst. In contrast

to the E-selectivity observed for the iron-based system, MTO-catalyzed olefination

of ketones favored Z-olefin products (Scheme 4). Up to 89/11 Z/E selectivity

N
H

O

N2

HN

O

NO2

NO2

CHO

+

7 8
9

(4-Cl-C6H4)3P, DCM, 25 °C

10 mol% CH3ReO3

40%
>10:1 E/Z

Scheme 3 MTO-catalyzed olefination of aldehyde 8 using diazo 7

CH3 CH3

EtO2C

EtO2C

EtO2C EtO2CH H

O2N

CO2Et CO2Et

HCH3

H

11a

65% E/Z 13/87

11b

83% E/Z 30/70

11d

71% 93% E/Z 11/8954% E/Z 48/52

11e

30% E/Z 32/68

11c

11f

R1COR2+N2CHCO2Et

Ph3P, toluene, 80 °C
R1C(R2)=CHCO2Et

50 mol% benzoic acid

5 mol% CH3ReO3

10 11

CH3

H

MeO

CF3

H

Scheme 4 MTO-catalyzed olefination of ketones
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was achieved with a,a,a-trifluoroacetophenone 10f. A conclusion was drawn that

electron-deficient ketones perform better in terms of reactivity and Z-selectivity.

4 Iron Catalysis

As a novel extension of the catalytic activities of metalloporphyrins, iron(II) meso-
tetra(p-tolyl)porphyrin (TTP) catalyst was first reported by Woo and coworkers

[12, 21] for the olefination of aldehydes with EDA in the presence of Ph3P. Both

aromatic and aliphatic aldehydes were found to be suitable substrates, generating

the corresponding olefins in high yields and excellent E-selectivity (Scheme 5). The

proposed mechanism for this reaction involves the activation of EDA with Fe(TTP)

to form an iron-carbene complex, followed by carbene transfer from the iron center

to Ph3P to generate phosphorane (Ph3P¼CHCO2Et), which in turn reacts with

aldehydes to provide olefins (Scheme 6). The viability of the proposed mechanism

was evidenced by two key observations. First, the phosphorane could be generated

from the reaction of EDA and Ph3P under the catalysis of 1 mol% Fe(TTP) in the

absence of aldehydes. Second, the stoichiometric reaction of Ph3P¼CHCO2Et with

benzaldehyde generated ethyl cinnamate in comparable yield and selectivity.

A catalytic cycle proposed for the analogous MTO-catalyzed reaction was

believed to be unlikely for this type of olefination process because no evidence

could be collected, in spite of experimental trials [12], for the existence of oxoiron

(IV) species, a key intermediate for the proposed MTO cycle [7]. The other

plausible mechanism proposed by Lu [6] for the Mo-based system was considered

unlikely because the reactivity profile of the Fe(TTP)-catalyzed olefination reaction

differs significantly from that of the MoO(S2CNEt2)2-mediated process.

In their effort to develop practical catalytic systems for carbon–carbon bond

formations, Zhang and coworkers [22] evaluated a series of commercially available

metal complexes of meso-tetraphenylporphyrin (TPP), including V(TPP)(O),

RCHO + N2CHCO2Et
Ph3P, toluene, rt

NO2
Me13a 13b 13c 13d

CO2Et
CO2EtCO2EtCO2Et

94% E/Z 24/1 99% E/Z 24/1 90% E/Z 24/1 93% E/Z 49/1

1-2 mol%FeII(TTP)
RCH=CHCO2Et

1312

Scheme 5 Olefination of aldehydes catalyzed by Fe(II)(TTP)
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Cr(TPP)Cl, Mn(TPP)Cl, Fe(TPP)Cl, Co(TPP), Ni(TPP), Cu(TPP), Zn(TPP),

and Ru(TPP)(CO), for catalytic olefination of benzaldehyde. Among the metall-

oporphyrins investigated, Fe(TPP)Cl emerged as the best catalyst for the reaction

with both high reactivity (96% yield) and excellent selectivity (E/Z: 96/4)

(Scheme 7). In addition to its low cost, the Fe(III)-based catalyst enjoys a high

stability in comparison with the air and moisture sensitive Fe(II)(TPP). Although it

is more expensive, Ru(TPP)(CO) gave comparable results to Fe(TPP)Cl. Co(TPP)

exhibited moderate activity with isolation of ethyl cinnamate in 62% yield. Other

metalloporphyrins gave no desired olefins but azines, a common side product

formed by condensation of aldehyde and diazo reagents.

Compared to Mo- and MTO-based catalytic systems, Fe(TPP)Cl offered a much

broader substrate scope (Scheme 8). Electron-withdrawing, electron-donating, ste-

rically demanding, and aliphatic aldehydes all performed generally well, providing

the corresponding olefins in high yields (81–99%) and excellent E-selectivity (E/Z:
91/9–98/2). The mechanism for Fe(TPP)Cl-mediated olefination was believed to

proceed in the same catalytic cycle proposed by Woo and coworkers for the Fe(II)

porphyrin complex system, because EDA is known [23] to be effective at reducing

Fe(TPP)Cl in situ.

Although rhodium-based catalysts have been reported [24] for methylenation of

ketones using trimethylsilyldiazomethane (TMSCHN2) in the presence of Ph3P,

stereoselective olefination of ketones utilizing diazo reagents has met with little

success [21]. Zhang and coworkers [25] extended their Fe(TPP)Cl catalytic system

Fe

EDA N2

Fe

H CO2Et

Ph3P

RCHO Ph3P=O

RCH=CHCO2EtPh3P=CHCO2Et

Scheme 6 Proposed mechanism for Fe(TTP)-catalyzed olefination of aldehydes

PhCHO + N2CHCO2Et
Ph3P, toluene, 80 °C

2 mol% M(TPP)
PhCH=CHCO2Et

Fe(TPP)Cl

Ru(TPP)(CO)

Co(TPP)

Catalyst yield(%) E/Z

96

97

62

96/4

96/4

93/7

14 15

Scheme 7 Olefination of benzaldehyde catalyzed by various metalloporphyrins
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to stereoselective olefination of trifluoromethyl ketones 18, leading to efficient syn-

thesis of b-trifluoromethyl-a,b-unsaturated esters 19 (Scheme 9), which may find

potential applications in organic, material, medicinal and agricultural chemistry.

Excellent E-selectivity (>99:1) was recorded with a,b-unsaturated trifluoromethyl

ketone (18b). With sterically demanding substrate 18c, however, no olefin product

was observed. When substrate 18d that contains two ketone carbonyls was used, high

regioselectivity was achieved as only product 19d was formed without observing the

product from the reaction of the unactivated ketone carbonyl.

In addition to EDA, a more bulky diazo reagent, tert-butyl diazoacetate (t-BDA),
was found to be suitable for the catalytic system, generating the corresponding

tert-butyl a,b-unsaturated esters 21 with comparable yields (73–94%) and E-selec-
tivity (E/Z: 62/38–99/1) (1):

RCOCF3
20

þ N2CHCO2
tBu����������������!1:5 mol%FeðTPPÞCl

Ph3P; toluene; 80
�C

RCðCF3Þ ¼ CHCO2
tBu

21
(1)

RCHO + N2CHCO2Et
Ph3P, toluene, 80 °C

NO2OMe17a 17b 17c 17d

CO2EtCO2EtCO2EtCO2EtCO2Et

96% E/Z 96/4 93% E/Z 93/7 89% E/Z 95/5 88% E/Z 98/2

1-2 mol%Fe (TPP)Cl
RCH=CHCO2Et

1716

17e
84% E/Z 91/9

Scheme 8 Olefination of aldehydes catalyzed by Fe(TPP)Cl

CF3 CF3
CF3CF3

EtO2C EtO2C
EtO2CEtO2CH

O

H
HH

19a 19c19b 19d

84% E/Z 69/3177% E/Z >99/190% E/Z > 93/7 N.R.

RCOCF3 + N2CHCO2Et
Ph3P, toluene, 80 °C

1.5 mol% Fe(TPP)Cl

RC(CF3)=CHCO2Et
18 19

Scheme 9 Olefination of trifluoromethylketones with EDA catalyzed by Fe(TPP)Cl
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Normal ketones, such as acetophenone or cyclohexanone, are known [21] to

be inactive to the iron-porphyrin catalytic system. By comparing the reactivity

of acetophenone and trifluoroacetophenone, two substrates with similar steric

hindrance, as well as other experimental results, Zhang and coworkers [20] realized

it is the electronic effect that is responsible for the poor reactivity of simple ketones.

To circumvent this challenging problem, the operational strategy was based on the

expectation that Lewis acid or hydrogen bonding would activate the simple ketones

toward Fe(TPP)Cl-catalyzed olefination reaction. After the screening of different

Lewis acids and Brønsted acids, benzoic acid was revealed to be the most effective

additive to promote olefination of unactivated ketones with EDA in the presence of

PPh3 under catalysis of Fe(TPP)Cl (Scheme 10). Aromatic and a,b-conjugated
ketones provided corresponding olefins in generally high yields, albeit in moderate

E-selectivity. While reactions of cyclohexanones were recorded with high yields,

aliphatic and other cyclic ketones were also found to be suitable substrates albeit

with decreased yields. Replacement of EDA with more bulky t-BDA resulted in

diminished yields whereas E-selectivity remained moderate.

Tang, Zhou and coworkers [26] further extended the Fe(III)-based catalytic

olefination to ketene substrates 24 and showed that the corresponding allenic esters

could be obtained in high yields using 0.5 mol% of tetra(p-chlorophenyl)porphyrin
iron chloride (Fe(TCP)Cl) as the catalyst. When chiral phosphine 25 was used

instead of Ph3P, optically-pure allenes 26 were isolated in good yields and high

enantioselectivity (Scheme 11). Since a stoichiometric amount of chiral phosphine

was consumed in the process, a procedure was developed to regenerate 25 from its

oxidized form. The recycled phosphine 25 was shown to be as effective as the

original.

CH3 CH3
CH3

H CO2Et
CO2Et

CO2EtH

Cl

H HCH3

H CO2Et CO2EtCO2Et

23a

84% E/Z 59/41

23b

83% E/Z 70/30

23d

83% 42%54% E/Z 58/42

H

23e

92% E/Z 72/28

23c

23f

R1COR2 + N2CHCO2Et

Ph3P, toluene, 80 °C

1.5 mol% Fe(TTP)Cl
R1C(R2)=CHCO2Et

50 mol% benzoic acid

22 23

Scheme 10 Acid-promoted olefination of ketones with EDA catalyzed by Fe(TPP)Cl
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As one of the key steps involved in the Fe(TPP)Cl-catalyzed olefination, the

carbene transfer from the metallocarbene to Ph3P could proceed under neutral and

mild conditions. As a result, this process proved to be amenable to other tertiary

phosphines, allowing the generation of certain phosphorus ylides that have been

historically elusive due to the side reactions under harsher conditions. Aggarwal

and coworkers [27] discovered that, instead of using air-sensitive Fe(II) complex,

Fe(TPP)Cl could be used as a precatalyst to catalyze carbene transfer from diazo

reagents to (MeO)3P, generating corresponding phosphorus ylides that could not be

prepared by the classic method. The new class of phosphorus ylides were then

allowed to react with a range of aldehydes and provided styrene derivatives 28 in

high E-selectivity (Scheme 12).

The selectivity of the oxygen-substituted phosphorus ylides proved to be sub-

stantially different from the carbon-substituted analogs when reacted with

aldehydes. For example, in the presence of (MeO)3P and catalyst Fe(TPP)Cl,

phenyldiazo generated in situ could react with p-chlorobenzaldehyde (29) to pro-

duce the stilbene 30with 97/3 E/Z selectivity (Scheme 13). When Ph3P was applied,

only 62/28 E/Z ratio of 30 was observed under the same conditions. With EDA as

the diazo reagent, on the other hand, the situation was reversed and E-selectivity
was significantly lower using (MeO)3P (E/Z: 69/31). By adding NaBr salt, however,
the high E-selectivity was restored presumably due to an intervening Arbuzov-type

reaction, which furnished the phosphonate anion that is known to give high E-
selectivity.

To avoid the generation of stoichiometric amounts of co-product phosphine

oxide (Ph3P¼O) in metal-catalyzed Wittig reactions, a protocol that requires only

catalytic amounts of Ph3P or its analogs would be highly appealing because this

would make the process more environmentally friendly. In the presence of external

reducing reagent sodium hydrosulfite, Tang and coworkers [28] developed a proto-

col of a similar kind that allowed successful olefination of aldehydes with EDA by

Fe(TCP)Cl with the use of only 20 mol% Ph3As. However, their attempt to use less

26a

72%, 93% ee

26b

86%, 97% ee 80%, 98% ee

26c

0.5 mol% Fe(TCP)Cl
O

R1

R1
R2

R2

N2CHCO2Et
+

CO2Et CO2EtCO2Et

Br

P(m-MeOPh)2

P(m-MeOPh)2

MeO

MeO

toluene, 0 °C

CO2Et

24 25 26

Scheme 11 Asymmetric olefination of ketenes
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toxic Ph3P was unsuccessful. Under the optimized conditions, a,b-conjugated esters
32 were obtained in generally high E-selectivity (Scheme 14).

5 Rhodium Catalysis

Lebel and coworkers [29, 30] explored the methylenation of aldehydes with

diazomethane (CH2N2) or its derivative TMSCHN2 in the presence of Ph3P using

several rhodium- and ruthenium-based catalysts. The combination of TMSCHN2

and isopropanol proved to be superior to CH2N2 in terms of reactivity and safety.

Among the catalysts screened, Wilkinson’s catalyst RhCl(PPh3)3 performed best.

The olefination under the Rh-catalysis showed general applicability with a range of

structurally disparate aldehydes (Scheme 15). Substrates containing enolizable

ketone (33b) and racemizable protons (33c, d) were well tolerated, demonstrating

the advantage of the salt-free condition enjoyed by this catalytic system over the

basic conditions encountered in classic Wittig reactions.

The established rhodium-catalyzed methylenation condition was successfully

applied [24] to several optically pure trifluoromethyl ketones 35 containing a-chiral
centers, which are potentially racemizable under basic conditions (Scheme 16). Due

to the mild and non-basic conditions employed in Rh-catalyzed olefination

Cl1. KOtBu, toluene
tosyl hydrazone

2. 1 mol% Fe(TPP)Cl
phosphine

Phosphine

97/3

OHC

Cl

P(OMe)3 PPh3

62/3830 E/Z

29 30

Scheme 13 Effect on E-selectivity by different phosphines

Ar N

H
N

Ts

Cl

MeO

1. KOtBu, toluene, 0 °C - rt

2. 1 mol% Fe(TPP)Cl
RCHO, P(OMe)3, 40 °C

Ar
R

92% E/Z  97/3 91% E/Z  93/7 84% E/Z  98/2

27 28

28a 28b 28c

Scheme 12 Olefination of aldehydes with oxygen-substituted phosphorus ylides
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reactions, trifluoromethylalkenes 36a–c were obtained in good yields with very

little racemization. As for the olefination of substrate 35d, however, the chiral

center was completely racemized during the reaction, resulting in a racemic mixture

of 36d in 90% yield.

After extensive studies, rhodium-catalyzed methylenation of unactivated

ketones was achieved by Lebel and coworkers [31] with the development of new

reaction conditions. Use of excess isopropanol, 1,4-dioxane as solvent and higher

temperatures were the key factors that led to the high yield of the corresponding

olefins (Scheme 17). Substrates containing a-chiral centers were shown to proceed

without racemization under the new reaction conditions (38e–g).

6 Ruthenium Catalysis

Ruthenium-catalyzed olefination of aldehydes with EDA in the presence of Ph3P

was first reported by Fujimura and coworkers [32] in 1998. Since then, several other

Ru complexes have been reported [22, 33–35] to carry out similar reactions.

OTBS

79%

O

86%

Ph

O

87%

O

N
Boc

86%

2.5 mol% RhCl(PPh3)3

RCH=CH2
RCHO + TMSCHN2

iPrOH, PPh3, THF

25 °C

34a 34b 34c

33 34

34d

Scheme 15 Rh-catalyzed methylenation of aldehydes

99% E/Z 99/1 78% E/Z 50/1

0.5 mol% Fe(TCP)Cl

20 mol% AsPh3

RCH=CHCO2EtRCHO + N2CHCO2Et 200 mol% Na2S2O4

toluene/H2O, 80 °C

32a 32b 32c

CO2Et
CO2Et

MeO2C
CF3

85% E/Z 99/1

31 32

EtO2C

Scheme 14 Olefination of aldehydes using substoichiometric amount of Ph3As
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Recently, this process was incorporated into different ruthenium-catalyzed

transformations in the same reaction vessel, leading to the development of several

ruthenium-promoted tandem processes.

In the investigation of Wacker-type oxidations catalyzed by Ru porphyrins, Che

and coworkers [36] realized a tandem process in which Ru porphyrin 45 first

catalyzed oxidation of terminal alkene 39 to aldehyde 40, followed by a reaction

in the same vessel with EDA in the presence of Ph3P to generate the conjugated

ester 41 in high yield (Scheme 18). Subsequently, they developed an aerobic

protocol [37] that allowed the same tandem process to be run using only air as

the oxidant.

Snapper and coworkers [38] developed a tandem process where olefination was

used in conjunction with olefin metathesis. In this process, Ru complex 51 or 52

was an efficient catalyst for cross metathesis of terminal olefins 47 and 48.

EtPh

38a 87% 38b 38c 93%

R1COR2  +  N2CHTMS

37 38

2.5 mol% RhCl(PPh3)3

iPrOH, PPh3,1,4-dioxane

60 °C

R1 R2

MePh

97%

Ph

38d

Me

87%

O

O

Ph
OTBS

n-Bu
Ph

OBn

Ph

86%, 99% ee 87%, 95% ee

Ph
OBn

Me

81%, 97% ee

38e 38f 38g

Scheme 17 Rh-catalyzed methylenation of unactivated ketones

O
NB oc

CF3 CF3

2.5-5 mol% RhCl(PPh3)3

TMSCHN2

iPrOH, PPh3, THF

25 °C

36a 36b 36c

35 36

36d

R CF3

O

+ R CF3

Ph
NHBo c

O
CF3

O2N

BnO CF3

81%, 93 ee% 69%, 96 ee% 83%, 95 ee% 90%, 0 ee%

Scheme 16 Rh-catalyzed methylenation of activated ketones
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The resulting aldehydes 49 were then further reacted with EDA or t-BDA in the

presence of Ph3P to provide a,b,g,d-unsaturated esters 50 with >20:1 E,E-selectiv-
ity (Scheme 19).

7 Cobalt Catalysis

The first example of cobalt-catalyzed stereoselective olefination of carbonyl

compounds was reported by Zhang and coworkers [22, 39], who demonstrated

that EDA and Ph3P could be coupled to form a phosphorane capable of olefination

of different carbonyl compounds, including aldehydes, and activated and

unactivated ketones. A follow-up work by Demir and coworkers [40] described

that Co(TPP) was also an effective catalyst for olefination of acyl phosphonates 53

with EDA in the presence of Ph3P (Scheme 20). Both aroyl and alkoyl

phosphonates were found to be suitable substrates for the system and the resulting

vinyl phosphonates 54 were obtained with high E-selectivity. Steric influence was
investigated and a trend was revealed that increasing the size of the R group in 53

led to decreased reactivity but increased E-selectivity.

CHO CO2Et

Ph3P
EDA

99% NMR yield

CHO CO2Et
NaHCO3 (aq)

Ph3P
EDA

73% yield

BnO

toluene

air

1 mol%

3 mol%

CHCl3, O2
BnOBnO

39 40
41

42 43
44

80 °C

80 °C
25 °C

N
N
N

N
Ru

Cl

Cl

Cl

N
N
N

N

Cl

Cl

Cl

Ru

Cl

Cl

Cl
Cl

Cl

Cl

45 46

45

46

Ru(TDCPP)Cl2 Ru(TMP)Cl2

2,6-dichloropyridine
N-oxide, CHCl3

25 °C

Scheme 18 Tandem Wacker-type oxidation and olefination catalyzed by Ru-porphyrin
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8 Copper and Iridium Catalysis

Lebel and coworkers [41] reported that many simple copper salts and copper

complexes 55, 56 (Fig. 1) could catalyze methylenation of aldehydes and ketones

using TMSCHN2 and isopropanol in the presence of Ph3P, providing the

corresponding terminal olefins in moderate to good yields. While both CuCl and

Cu complex 55 performed equally well for aldehyde substrates, the latter showed

R P

OMeO

O
OMe R P

OMe

OMe
O

O

EtO

EtOEtO

4 mol% Co(TPP)

Ph3P, toluene
N2CHCO2Et+

P

OMe

OMe
O

O

EtO

89% E/ Z 100/0

P
OMe

O
OMe

O

EtO

92% E/ Z 97/3

P

OMe

O
OMe

O

EtO

N.R.

P

OMe

OMe
O

O

90% E/ Z 97/3

P

OMe

OMe
O

O

72% E/ Z 100/0

P

OMe

O
OMe

O

EtO

72% E/ Z 100/0

53 5480 °C

54a 54b 54c

54d 54e 54f

Scheme 20 Olefination of acyl phosphonates catalyzed by Co(TPP)
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Scheme 19 One-pot syntheses of dienoic esters
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superiority with ketone substrates, as substantially higher yields were recorded. CuI

was further utilized [42] to investigate olefination of aldehydes with other diazo

reagents 58 derived from esters, ketones, amides, and phosphonates, generating the

corresponding olefins in good yields and high E-selectivity (Scheme 21). This

process was successfully applied to a short synthesis of natural product

scutifoliamide A. Iridium complexes such as [IrCl(cod)]2 and IrCl(CO)(PPh3)2
were also demonstrated [43] to be effective catalysts for olefination of aldehydes.

9 Conclusions

The past 2 decades have witnessed the great achievement of direct coupling of

carbonyl compounds and various diazo reagents catalyzed by different transition

metal complexes in the presence of Ph3P, generating olefins in typically high yields

and high E-selectivity. A salient feature of this process is the non-basic condition

employed, which greatly broadens the substrate scope of the classic Wittig reaction.

Although high Z-selectivity was reported in a single case with the MTO system,

the challenge in this field is to develop an efficient system that can provide dominant

Z-olefins. There is still room for improvement with reactions of ketone substrates in

terms of selectivity and reactivity. Extension of this chemistry to other carbonyl

substrates such as esters and amides would be another important future direction.
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Selective Alkene Metathesis in the Total

Synthesis of Complex Natural Product

Xiaoguang Lei and Houhua Li

Abstract Alkene metathesis has had a significant impact on the selective and

efficient formation of carbon–carbon bonds and the advances of complex natural

product total synthesis over the last two decades. In this chapter we highlight a

number of recent examples of total syntheses in which selective alkene metathesis

plays a vital role in the design and implementation for efficient synthesis. In this

regard, we expect the influence of this transformation will continue to shape the

landscape of the state of the art and science of natural product total synthesis.

Keywords Alkene metathesis � Cascade reaction � Natural product �
Stereoselective synthesis � Total synthesis
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1 Introduction

Alkene metathesis (“metathesis” means “change of position” in Greek) has signifi-

cantly influenced synthetic chemistry and revolutionized the synthesis of complex

natural products over the last two decades [1–14]. Organic chemists in both

academic and industrial laboratories have demonstrated the broad application

of this transformation. The history of alkene metathesis began with the serendipi-

tous discovery of ring opening polymerization of cycloalkenes and the dispropor-

tionation of linear alkenes in the 1960s [15–18]. The mechanism of olefin

metathesis was initially proposed by Chauvin and Hérisson in 1971, which

indicated that metal carbenes are catalytically active species [19]. In the mid-

1970s, the first well-defined tungsten carbene catalyst for alkene metathesis was

developed by Katz and coworkers [20, 21]. In the late 1980s, more practical

molybdenum based catalysts were developed by Schrock et al. [22], and later

were used by Grubbs and Fu in ring closing metathesis (RCM) to construct

heterocycles [23, 24]. In 1992, Grubbs and coworkers disclosed the first vinylidene

ruthenium catalyst and its successful application in both ring opening and closing

metathesis [25]. Shortly after this discovery, in 1995, Grubbs et al. further refined

the initial catalyst and developed the first air-stable and robust ruthenium based

catalyst known as Grubbs first-generation catalyst (Grubbs I) [26]. The replacement

of phosphine ligand by the N-heterocyclic carbene ligand led to the discovery of

more stable and reactive Grubbs second-generation catalyst (Grubbs II) [27].

Besides Grubbs’ laboratory, Schrock and Hoveyda’s laboratories have also devel-

oped a number of effective catalysts for alkene metathesis [28]. To date, many

effective catalysts have been devised to enable more versatile and robust

applications of alkene metathesis in the synthesis of complex molecules, particu-

larly natural products.

Alkene metathesis has significant advantages in natural product synthesis for

several reasons. First, alkene moieties broadly exist in numerous natural products,

and alkene metathesis allows facile access from the readily available or easily

prepared olefins to those that are difficult to access. Second, alkene metathesis

reactions either do not produce any by-product or only generate the volatile ethylene.

Third, alkenes are relatively stable in the multistep synthesis, and are sufficiently

reactive to be used in a wide range of transformations to generate other functionalities

under specific reaction conditions. Finally, and most importantly, with the help of

effective catalysts, alkene metathesis can provide remarkable selectivities (regio-,

chemo-, and stereoselectivity) in the challenging synthetic operations.

The aim of this review is to highlight the impact of alkene metathesis on the

total synthesis of complex natural products, and emphasize the selectivities that have

been achieved in the application of this transformation to construct carbon–carbon

double bonds. Due to the limited space, we only selected the most recent (normally

in the past 5 years) examples of selective alkene metathesis as a key step for the total

synthesis of natural products. We hope this review will provide a useful and

inspiring source for synthetic chemists who plan to utilize alkene metathesis in

their efforts to accomplish the total synthesis of complex natural products.
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List of Commonly Used Catalysts in Total Synthesis
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2 Selective Alkene Ring-Closing Metathesis

Alkene RCM has been proved to be one of the most reliable and powerful methods

for ring formation [29]. A large number of ring systems including both medium and

large sized rings can be efficiently constructed by this tool. Therefore, alkene RCM

is now broadly applied in the total synthesis of complex natural products. However,

the selective alkene RCM in the presence of multiple alkene moieties is consider-

ably challenging, which requires careful design and implementation.

In 2008, Donohoe and coworkers reported the total synthesis of (�)-(Z)-

deoxpukalide (1) [30], a complex marine natural product with an intriguing 14-

membered carbon macrocyclic skeleton containing a trisubstituted furan moiety

(Fig. 1). The key features in the synthesis involve a selective alkene RCM/aromati-

zation protocol to prepare the disubstituted furan methyl ester (3) as well as a late

stage RCM to furnish the butenolide moiety. Since the five-membered ring forma-

tion is more favored, the marked exomethylene functionality was intact under the

alkene RCM conditions.

The amphidinolides are a unique family of antitumor natural products isolated

from dinoflagellates of the genus Amphidinium [31]. Due to their complex and

fascinating structures as well as promising biological activities, the amphidinolides

have attracted considerable attention in the synthetic community [32]. Amphidi-

nolide E (5) is one of the most complex molecules in this family. In 2006, Roush

and coworkers reported a convergent and highly stereocontrolled approach to the

total synthesis of amphidinolide E (5) (Fig. 2) [33]. The key formation of the C5–C6

olefin and closure of the 19-membered macrocycle in the presence of several alkene
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and alkyne moieties proved to be very challenging. This transformation could only

be achieved by using Grubbs’ first generation catalyst to generate the desired diene

(7) in 73% yield. The authors also showed that use of the more active Grubbs’

second generation catalyst or Grubbs–Hoveyda catalysts only resulted in decompo-

sition of the polyene precursor (6).

In the total synthesis of the related natural product amphidinolide H (8) [34],

F€urstner et al. also utilized the late stage alkene RCM strategy for the challenging

O

O
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1

OTIPS

O
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CH2Cl2, reflux
16 h O
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Fig. 1 Total synthesis of (�)-(Z)-deoxypukalide (1) by Donohoe et al.
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Fig. 2 Total synthesis of amphidinolide E (5) by Roush et al.
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macrocyclization (Fig. 3). In the presence of multiple alkene moieties as well as the

labile vinyl epoxide, the selective alkene RCM was realized by using Grubbs’

second generation catalyst to afford the desired product (10) in 68–72% yield as

the required E isomer only.

Similarly, Lee and coworkers reported the total synthesis of amphidinolide X

(11) through the key alkene RCM using Grubbs’ second generation catalyst to

provide the desired natural product (11) in 74% yield, accompanied by the Z isomer

byproduct in 11% yield (Fig. 4) [35].

Kendomycin (13) was isolated from different Streptomyces species, which

showed potent antibacterial and cytostatic activities [36, 37]. Due to its challenging

chemical structure and interesting biological profile, a number of impressive total

syntheses have been accomplished [38]. However, all attempts to achieve 13,14-

macrocyclization and formation of the desired 13,14-E-olefin by alkene RCM were

unsuccessful [39–41]. In 2009, Mulzer and coworkers described a novel approach

to the total synthesis of kendomycin (13) via the selective alkene RCM at C10–C11

as one of the key steps (Fig. 5) [42]. In this work, they demonstrated that RCM with

Grubbs II catalyst smoothly facilitated ring closure to form the 10,11-E-olefin (15)

O
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Fig. 3 Total synthesis of amphidinolide H (8) by F€urstner et al.
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Fig. 4 Total synthesis of (�)-amphidinolide X (11) by Lee et al.
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exclusively, which highlighted the unparalleled potential of alkene RCM for cou-

pling monosubstituted olefin residues.

Another impressive example of macrocyclization through alkene RCM was

reported by Zakarian et al. in their total synthesis of complex marine natural

product (+)-pinnatoxin A (16) (Fig. 6) [43]. In this study, the remarkable formation

of the 27-membered all-carbon and highly functionalized macrocycle was

O
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Fig. 5 Total synthesis of (�)-kendomycin (13) by Mulzer et al.
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efficiently achieved by alkene RCM. Under the reaction condition with

Hoveyda–Grubbs II catalyst, the desired macrocycle (18) and the undesired isomer

(19) were produced in 66% and 27% yields, respectively. The formation of

the undesired isomer is due to the competitive cyclization involving the 1,1-

disubstituted alkene at C10–C38. It was also reported that no reaction was observed

when Grubbs I catalyst was employed.

One of the most remarkable recent examples using a selective alkene RCM

strategy for the total synthesis of complex macrolide natural product was depicted

by F€urstner and coworkers (Fig. 7) [44]. Iejimalide B (20) is a highly complex

marine natural product isolated from tunicates harvested off the south Japanese

coast [45]. This natural product showed very potent anticancer activities both

in vitro and in vivo, which rendered it an intriguing synthetic target. However,

the daunting chemical structure with highly fragile polyunsaturated systems

for iejimalide B (20) requires careful design and effective execution in order to

accomplish its total synthesis. The risk of using RCM for the final macrolization

had been evaluated as, first, it is extremely challenging to selectively activate two

out of ten double bonds in the polyene precursor, and, second, conjugated dienes are
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Fig. 7 Total synthesis of iejimalide B (20) by F€urstner et al.
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known to be problematic under metathesis conditions. With these analyses, the

authors decided to select the C11–C12 double bond as the only promising position

for the final RCM-based macrocyclization. As a result, cyclization of this polyene

substrate (21) with the aid of Grubbs II catalyst amazingly provided the desired

24-membered macrocycle (22) in 69% yield as a single E isomer, which allowed for

the accomplishment of total synthesis of iejimalide B (20). This particularly

instructive work further highlights the strategic advantages of selective RCM for

the endeavors of complex natural product synthesis.

The construction of a seven-membered ring could be achieved by alkene RCM,

which has been proved to be an effective method for the synthesis of midsized ring

systems [46]. However, when the final alkene is tri- or tetrasubstituted, this trans-

formation can be problematic. In 2010, Hall et al. reported the total synthesis of (+)-

chinensiolide B (23), a bioactive sesquiterpene lactone, which nicely demonstrated

the feasibility of using selective alkene RCM for the formation of a seven-

membered ring with a trisubstituted alkene moiety (Fig. 8) [47]. In this case, a

chemoselective alkene RCM of the triene intermediate (24) using 5 mol% of

Grubbs’ second generation catalyst smoothly afforded the desired tricyclic product

(25) in 93% yield. Conceivably, the steric hindrance of the a-methylene-g-lactone
motif and formation of a bridgehead olefin rendered the possible six-membered ring

less favored, which allowed the a-methylene-g-lactone moiety to be intact. Lei and

coworkers reported the similar strategy to construct the seven-membered ring with

a trisubstituted alkene for the total synthesis of psilostachyin C (26) (Fig. 9) [48].

The formation of a nine-membered ring system through alkene RCM also

proved to be challenging [46]. In 2008, Hoppe et al. reported the asymmetric

total synthesis of (+)-vigulariol (29), a cytotoxic and tetracyclic diterpene which

was isolated from the sea pen Vigularia juncea (Fig. 10) [49]. The key step in this

total synthesis involves the construction of the oxacyclononene framework by
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selective alkene RCM, which was previously regarded to be problematic. In this

study, Grubbs I and Hoveyda’s catalysts did not provide any desired product.

In contrast, Grubbs II catalyst yielded the desired nine-membered ring (31) in

45% yield, along with the eight-membered ring byproduct (32) in 17% yield. The

loss of a methylene group during RCM is presumably due to an olefin isomerization

event occurs prior to the RCM [50]. In 2009, Johnson and coworkers disclosed the

total synthesis of a related natural product polyanthellin A (33), in which the key

RCM was conducted with Hoveyda–Grubbs II catalyst to generate the desired nine-

membered ether (35) (Fig. 11) [51].

Alkaloids are a large family of natural products that represent diverse and

complex structures as well as important biological activities. Total synthesis of

alkaloid has a rich history and has been evoking broad interest in the synthetic

community [52]. Numerous strategies have been reported for the construction of

polycyclic skeletons in alkaloid synthesis. In this regard, alkene RCM has been

proved to be an effective means for the syntheses of a number of alkaloids of

varying complexity [53].

One recent example was reported by Martin et al. in the first total synthesis of

(+)-isolysergol (36) [54]. This synthesis was accomplished by a novel approach that

features a late stage microwave-promoted, diastereoselective alkene RCM

catalyzed by a chiral molybdenum catalyst to construct the desired ring system
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and set the correct stereocenter. The formation of C9–C10 double bond via an

asymmetric RCM presented a great challenge as it required the selective interaction

of catalyst with one of the two diastereotopic vinyl groups prior to the RCM with

the disubstituted exomethylene. Initially, the authors observed that treatment of the

triene precursor (37) with Grubbs I and II catalysts as well as Schrock’s catalyst

either at room temperature or under thermal conditions provided no cyclization

products. However, microwave irradiation (300 W, 10 min) of triene in the pres-

ence of Schrock’s catalyst afforded two cyclization products (38) and (39) in 36%

and 8% yields, respectively. Further optimization of the reaction conditions showed

that the desired product (38) could be formed in 55% yield using (S)-Schrock–Hoveyda

catalyst under microwave condition. Interestingly, using the enantiomeric (R)-

Schrock–Hoveyda catalyst only led to trace amounts of the cyclization products,

which was presumably due to a mismatched consequence. This notable study

demonstrated the feasibility of using chiral catalyst to achieve the diastereoselective

alkene RCM (Fig. 12).

The successful application of diastereoselective alkene RCM as a key step for

alkaloid synthesis was also documented by two very recent examples. 1n 2011,
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Mukai and coworkers reported the concise total synthesis of Melodinus alkaloid

(�)-meloscine (40) [Route (a), Fig. 13], in which the final key transformation

involved an alkene RCM of the triene precursor (42) in the presence of

Hoveyda–Grubbs II catalyst [55]. The RCM between the N-allyl group and the

top-oriented vinyl moiety exclusively occurred to generate the desired diastereomer

(40) in almost quantitative yield. The extremely high diastereoselectivity could be

rationalized on the basis of ring strain to favor one conformer. Shortly after this

work, Curran et al. disclosed another approach to the total syntheses of (�)-

epimeloscine (41) and (�)-meloscine (40) applying the same RCM protocol for

the final ring formation [Route (b), Fig. 13] [56].

In terms of the application of selective alkene RCM for multiple ring formation,

Martin et al. reported a very interesting example in their total synthesis of indole

alkaloid (�)-pseudotabersonine (44) [57]. In this case, a highly functionalized

tetraene substrate (45) underwent double RCMs in the presence of Hoveyda–Grubbs

II catalyst to afford a mixture of two diastereomers (46) (Fig. 14). During this

process the high regioselectivity for alkene RCM was achieved, which was worthy

of note.

In summary, for the last decade, selective alkene RCM has become a powerful

tool for the synthesis of complex natural products. This method has been broadly

applied to the construction of different ring systems including both medium-size

(five- to ten-membered) and large rings. For the polyene substrate, terminal and less

substituted alkenes are generally more reactive. In addition, steric effects, confor-

mational effects as well as choice of catalysts are also key factors to achieve the

selectivity.
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3 Selective Relay Alkene Metathesis

In the previous section we have demonstrated that alkene RCM is a powerful and

broadly applicable method for the synthesis of complex natural products. However,

not every diene or polyene substrate can be successfully cyclized even with the

significant advantages available by variation of reaction conditions including cata-

lyst selection, additive use, solvent choice, and concentration, etc. In this regard,

selective relay alkene metathesis provides synthetic chemists with an alternative for

reviving these otherwise dead systems when such a limitation is encountered.

Hoye’s laboratory has pioneered in the field of relay alkene metathesis. In 2004,

Hoye and coworkers showed the first example of using relay ring closing metathesis

(RRCM) for the synthesis of tetrasubstituted alkene (49) (Fig. 15) [58].

The first successful application of RRCM in complex natural product synthesis

was reported by Porco et al. in 2005 (Fig. 16) [59]. In the synthesis of oximidine III

(51) they successfully cyclized the polyene precursor (52) to access macrolide (53)

with a Z-double bond using Hoveyda–Grubbs catalyst.

One of the most remarkable examples for the synthesis of macrolide natural

product using selective relay alkene RCM as a key step was reported by Trauner

et al. in 2007 (Fig. 17) [60]. Archazolid B (54) was originally isolated from the

myxobacterium Archangium gephyra and showed highly potent inhibitory activity

against mammalian V-ATPases. This highly unsaturated polyketide has unusual

structural features including a 24-membered macrolactone ring with a rare (Z,Z,E)-
triene moiety. Considering the normal RCM may favor the initiation at the terminal

alkene instead of at the diene moiety which would presumably lead to the undesired

reaction pathway to produce an unsaturated d-lactone, the authors decided to
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facilitate the desired initiation through selective relay RCM. However, the daunting

challenge still exists in terms of selectively activating one out of nine double bonds.

Gratifyingly, the selective relay alkene RCM of precursor (55) using Grubbs II

catalyst proceeded as planned to generate the desired macrocycle (56) in 27% yield,

which allowed for the completion of the total synthesis of (�)-archazolid B (54).

Relay alkene RCM also proved to be a useful tool for the construction of

medium sized ring systems. In a recent example of natural product total synthesis,

Hoye and coworkers have nicely demonstrated this point (Fig. 18) [61]. (+)-

Peloruside A (57) is a highly cytotoxic marine natural product isolated from the

New Zealand sponge Mycale hentscheli [62]. Despite total syntheses of peloruside
A having been previously reported by several groups, Hoye and coworkers devel-

oped a novel strategy to access this molecule efficiently, in which the versatility of

relay RCM was highlighted. The highly functionalized lactone intermediate (59)

was smoothly prepared in 70% yield through relay RCM using Grubbs II catalyst.

Another interesting example of selective relay alkene RCM in the presence of

multiple alkene and alkyne moieties was disclosed by Crimmins et al. [63].

Mucocin (60) was isolated from the leaves of Rollinia mucosa and showed potent

antitumor activity [64]. Crimmins and coworkers described an enantioselective

total synthesis of (�)-mucocin in 2006 (Fig. 19). In this study they highlighted a

key step using selective relay alkene RCM to form the five-membered cyclic ether.
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Previous studies showed that the normal RCM reaction of simple triene (61) gave a

poor regioselectivity to afford a mixture of five- and six-membered cyclic ethers. To

resolve this problem, the authors tested a selective relay alkene RCM strategy, where

the precursor (62) was modified to arm with an allyloxymethyl side chain. In this

case, the initial ruthenium carbene species was selectively formed at the terminal

alkene position of the allyloxymethyl side chain for both steric and electronic
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reasons, which further allowed the second metal carbene complex formed in the

desired position to generate the five-membered cyclic ether (63).

The relay strategy has also been applied to selective alkene cross metathesis

(CM). Very recently, Kim and coworkers reported the total synthesis of (+)-3-(Z)-
isolaureatin (64) via this strategy (Fig. 20) [65]. The crucial cross metathesis of

alkene for stereoselective introduction of the (Z)-enyne unit was successfully

realized in 76% yield in the presence of Grubbs’ catalyst (67) using Lee’s protocol.

The relay precursor, enyne (66), was subjected to the reaction mixture to initiate the

desired process.

In summary, in this section we have reviewed some recent applications of relay

olefin metathesis in the total synthesis of complex natural products. The collection

of examples including both selective RRCM and relay cross metathesis

demonstrates that the relay strategy has been broadly considered and implemented

for complex natural product synthesis. The relay strategy will continue to provide

possible solutions to the challenging synthesis where the limitations in classical

metathesis methods are encountered.
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4 Selective Alkene Cross Metathesis

Selective alkene cross metathesis (CM) has played an important role in the general

plan of complex natural product synthesis, where either the functionalization of

terminal olefins attaching a side chain to the core skeleton, or coupling two

fragments to construct the entire framework of the target molecule is required

[66]. Herein, we select some significant and recent examples to highlight the

successful applications of this strategy to natural product total synthesis.

In 2004, Kozmin et al. reported the total synthesis of bistramide A (69), a marine

natural product with potent cytotoxicity [67]. In this synthesis (Fig. 21) the authors

developed a novel approach featuring a sequential ring opening/selective alkene

cross metathesis of highly strained cyclopropenone ketal (70) with terminal alkenes

(71) and (72). After extensive reaction optimization, this process was successfully

achieved using Grubbs II catalyst. For the cross metathesis reaction, a remarkable

regioselectivity was observed in the presence of two different alkene moieties.

Anominine (75) is a unique and bioactive indole diterpenoid natural product

isolated from the sclerotia of Aspergillus spp. [68]. The first total synthesis of (�)-

anominine (75) was reported by Bonjoch and Bradshaw et al. [69]. In this study

(Fig. 22) they employed a selective alkene cross metathesis reaction in the presence
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of two different olefin moieties at the late stage to install the required prenyl group.

The high regioselectivity for CM is presumably attributed to the steric hindrance of

the disubstituted methylene moiety.

An impressive example of selective alkene cross metathesis in a highly complex

system was recently depicted by Phillips and coworkers (Fig. 23) [70]. In their

studies toward the total synthesis of norhalichondrin B (78), an exceedingly chal-

lenging marine natural product with potent antitumor activity, they encountered a

daunting task to couple selectively two highly functionalized fragments via alkene

cross metathesis. Gratifyingly, this remarkable transformation was achieved in the

presence of 20 mol% of the recently reported Grubbs’ catalyst (81) to afford the

desired cross-coupled product (82) in 62% yield.

The last example in this section is the total synthesis of RK-397 (83) by

Sammakia et al. [71]. RK-397 (83) is an oxopolyene macrolide, which was isolated

from a strain of soil bacteria. This natural product presents several synthetic

challenges, including particularly the installation of the highly sensitive polyene

moiety. Sammakia and coworkers successfully tackled this obstacle through a

selective alkene cross metathesis reaction at a late stage (Fig. 24). By screening a

number of reaction conditions, they found that treatment of alkene (84) and 2,4,6-

hexatrienal with Grubbs I catalyst smoothly afforded polyene product (85) in 72%

yield as a 4:1 mixture of E/Z isomers.

In summary, alkene cross metathesis has been successfully applied to numerous

total syntheses of complex natural products. In most cases, this reaction can provide

high yield, and good regio-, chemo-, and E-stereoselectivities. More importantly,

the outcome of selective alkene cross metathesis can be predicted based on the

propensity of different olefin for dimerization, making it a reliable transformation

for design and implementation of complex natural product synthesis.

5 Selective Ene–Yne Ring Closing Metathesis

Ene–yne RCM is a very useful type of transformation where the double bond of

ene–yne substrate is cleaved and a C–C bond is formed between the double and

triple bonds, and the cleaved alkylidene component migrates to the alkyne moiety

to generate a cyclized 1,3-diene product [72]. This reaction has recently been
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applied to the construction of complex polycyclic frameworks in natural product

synthesis.

The Erythrina alkaloids have drawn broad attention from synthetic chemists

owing to their intriguing chemical structures and promising biological activities.

Recently, Hatakeyama and coworkers developed a novel approach to access effi-

ciently the erythrinan skeleton, which relied on selective ene–yne RCM as a key

step (Fig. 25) [73]. In their total synthesis of (+)-b-erythroidine (86), the trienyne

precursor (87) was subjected to metathesis reactions in the presence of Grubbs I

catalyst to afford the desired natural product (86) in 42% yield. This tandem

sequence is highly regio-selective to form the 6/6/5/6 tetracyclic skeleton. The

authors also indicated that Grubbs II catalyst was less effective and produced (+)-b-
erythroidine (86) in less than 30% yield.

In 2008, Blechert et al. reported the total synthesis of ent-lepadin F (89) and G

(90) by a tandem ene–yne–ene RCM [74]. Lepadins are members of marine

alkaloids with decahydroquinoline framework. As a key step in their synthesis

(Fig. 26) they planned to construct the decahydroquinoline core skeleton by a

selective tandem ene–yne–ene RCM of the dienyne precursor (91). Conceivably,

two different reaction pathways could be expected: (1) initiation of metathesis may

occur at the terminal double bond followed by two consecutive RCMs to afford the

desired 6/6 bicycle (92) or (2) initiation may occur on the disubstituted alkene

followed by tandem RCMs to produce the undesired 5/7 bicycle (93). Considering

the preference of initiation on monosubstituted double bond as well as the directing

effect of free hydroxyl group, pathway (1) may be more favored. Gratifyingly,

treatment of dienyne (91) with 10 mol% Grubbs I catalyst smoothly provided the

desired 6/6 bicycle (92) in 90% yield.

In comparison with the previous examples, Metz and coworkers developed a

similar strategy applying selective tandem ene–yne–ene RCM to assemble a 5/7

bicyclic framework [75]. In their total synthesis of sesquiterpene natural products

(�)-clavukerin A (94) and (�)-isoclavukerin A (95) (Fig. 27), treatment of dienyne

precursors (96) and (97) with phosphane-free Hoveyda–Blechert catalyst under an

ethylene atmosphere cleanly afforded (�)-clavukerin A (94) and (�)-isoclavukerin

A (95) in 53% and 55% yields, respectively. The high selectivity could also be

explained by the preferential initiation of metathesis on the less substituted olefin in

this tandem sequence. Similarly, Metz and coworkers utilized this tandem reaction

in a more complex system to construct efficiently a 5/6/7/6 tetracyclic skeleton and
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accomplish the total syntheses of kempene-2 (98), kempene-1 (99), and 3-epi-

kempene-1 (100) (Fig. 28) [76].

In summary, selective tandem ene–yne–ene RCM has proven to be a powerful

means to construct highly functionalized polycyclic structures. Usually the

regioselectivity could be achieved by the more favored cascade initiation on the

less substituted alkene moiety as well as the effect of directing group. We envision

this transformation will continue to offer synthetic chemists a useful tool for the

synthesis of complex natural products.

N
PMB

OBn

H
OH

10 mol%
Grubbs I cat.

dichoroethane,
60 oC, 90% N

PMB

BnO

OH

H

N
PMB

OBn

H
OH

Ru

N
H

O

H

H
O

4'

OH

89 and 90(D 4')

Ru

N
PMB

OBn

H
OH

a

b

N

OBn

OH

PMB

H

91 92

93

Fig. 26 Total synthesis of ent-lepadin F (89) and G (90) by Blechert et al.

H

94

H

95

H

H

4 mol %
Hoveyda-Blechert cat.

CH2=CH2(1 atm),
toluene, reflux, 53%

4 mol %
Hoveyda-Blechert cat.

CH2=CH2(1 atm),
toluene, reflux, 55%

Ru

H
96

97

N N

Ru

Mes Mes

iPrO

Cl
Cl

Hoveyda-Blechert Cat.

Fig. 27 Total synthesis of (�)-clavukerin A (94) and (�)-isoclavukerin A (95) by Metz et al.

182 X. Lei and H. Li



6 Cascade Reaction Involving Selective Alkene Metathesis

In the previous section we have shown that tandem ene–yne–ene RCM has been

broadly used for the rapid and efficient construction of complex frameworks. In

principle, selective alkene metathesis can be combined with other types of transfor-

mation to achieve a cascade reaction, which will provide a tremendous increase in

molecular complexity [77]. Therefore, in this section, we highlight several recent

examples of cascade reaction involving selective alkene metathesis for natural

product synthesis.

In 2009, Lee and coworkers reported the concise total syntheses of epoxyquinoid

natural products (+)-asperpentyn (103), (�)-harveynone (104), and (�)-tricholo-

menyn A (105) via cascade enyne metathesis and metallotropic [1,3]-shift (Fig. 29)

[78]. In order to initiate the cascade effectively, a relay metathesis strategy was also

adopted. By treatment of the polyenyne precursor (106) with Grubbs II catalyst, a

mixture of epimers (107) and (108) was isolated in 62% yield. This cascade process

selectively commenced from the terminal alkene of the allyl ether (106) to form the

relay intermediate (109), which then underwent sequential relay metathesis and

enyne metathesis to form alkynyl Ru-alkylidene (111). Subsequent facile

metallotropic [1,3]-shift took place to provide the conjugated alkylidene product

(112), which would ultimately deliver the final products (107) and (108) through

termination at the less hindered carbon.

When ring opening metathesis (ROM) and RCM are sequentially combined, the

cascade process is able to construct rapidly highly complex and functionalized

structures. This methodology has proven its remarkable potential for the synthesis

of complex natural product, as highlighted by a recent example reported by Phillips

and Pfeiffer in their total synthesis of diterpenoid (+)-cyanthiwigin U (115) [79]. In

this case, the required 7/6/5 tricyclic skeleton was effectively constructed by an

elegant two-directional ROM–RCM cascade in the presence of Grubbs II catalyst
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(Fig. 30). During this process, a high regioselectivity of two alkene RCM events

was achieved.

In 2008, Stoltz and Enquist disclosed a novel approach to the total synthesis of

the related cyathin diterpenoid (�)-cyanthiwigin F (119) [80]. They applied a

simultaneous alkene RCM and cross metathesis (CM) protocol to achieve the

required closure of the seven-membered ring as well as elaboration of the terminal

allyl group (Fig. 31). This process was effectively and selectively conducted by

treating polyene (120) with Grubbs–Hoveyda catalyst (81) and a vinyl boronate

species to produce the desired bicycle (121) in 51% yield.

Phillips’ laboratory also extended the domino process in natural product synthe-

sis by combining ROM, RCM, and CM. For this cascade reaction, regioselectivity
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is particularly important. In 2006, Phillips and Hart reported the total synthesis of

marine natural product (+)-cylindramide A (122), where the key bicycle[3.3.0]

octane ring system was successfully constructed by a cascade ROM–RCM–CM

in the presence of Grubbs I catalyst (Fig. 32). During this process the high

regioselectivity for alkene RCM and CM was observed [81].

When cascade reaction involving metathesis is applied in the complex natural

product synthesis, proper sequence of multistage metathesis processes is crucial.

The following example underscores this point. In 2006, Hoye and coworkers

reported the total synthesis of (+)-gigantecin (125) [82]. In this work (Fig. 33)
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they systematically studied the tandem ring closing/cross-metathesis sequence by

changing the ordering of the RCM vs CM events. The authors found that in order to

construct (+)-gigantecin (125) successfully, the order of the two metathesis

reactions should be the “CM then RCM” sequence, otherwise an undesired skeleton

was formed. As a result, the treatment of a mixture of triene (126) and alkene (127)

(1:4 molar ratio) with Grubbs II catalyst smoothly provided the desired product

(128) in 63% yield.

The tandem alkene metathesis reactions can also be combined with other types

of transformation. One recent elegant example was reported by Mulzer and

Ramharter et al. in their total synthesis of the Lycopodium alkaloid (+)-lycoflexine

(129) (Fig. 34) [83]. Initially they conducted a tandem enyne/alkene RCM reaction

to generate the key tricyclic diene (131). However, they observed that the yield of

this cascade reaction was low, presumably due to the further decomposition of the

labile diene (131) under this condition. Therefore they decided to attempt a tandem

catalysis sequence and selectively hydrogenate the less-substituted alkene moiety

in situ after the metathesis. As a result, the desired tricyclic product (132) was

produced in 52% yield over three transformations.

The last example in this section is the application of a domino intramolecular

enyne metathesis/cross metathesis reaction to the total synthesis of (+)-8-epi-

xanthatin (133), which was reported by Martin and coworkers [84, 85]. In this

study, the metathesis reactions are highly regioselective and leave the

exomethylene moiety on the g-lactone intact (Fig. 35).
In summary, the aforementioned examples have demonstrated the versatile

utilities of the cascade reaction involving selective alkene metathesis and have
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explained how these domino processes allow for the rapid construction of complex

and highly functionalized polycyclic frameworks. Given the tremendous

advantages of metathesis cascade reactions in terms of catalytic efficiency and

atom economy, we can only envision that more and more applications of this

method in the total synthesis of complex natural product will arise in the future.

7 Catalytic Enantioselective Alkene Metathesis

Catalytic enantioselective alkene metathesis has recently been developed as a

powerful method for the synthesis of complex natural products [86]. The availabil-

ity of various chiral catalysts for olefin metathesis provides more flexible and

concise means to construct efficiently highly functionalized and enantiomerically

pure frameworks than using achiral catalytic complexes with chiral nonracemic

substrates.

Hoveyda and Schrock’s laboratories have pioneered in this field and developed a

number of effective chiral Mo-based catalysts for enantioselective alkene metathe-

sis [28]. A recent application of catalytic enantioselective alkene ROM/RCM in the

total synthesis of (+)-africanol (135) was reported by Hoveyda et al. (Fig. 36) [87].

Treatment of meso tertiary TBS ether (136) with 3 mol% chiral alkylidene [Mo]

catalyst (137) smoothly afforded the desired bicycle (138) in 97% yield and 87% ee.

Very recently, Hoveyda and coworkers reported a very elegant total synthesis of the

Aspidosperma alkaloid (+)-quebrachamine (139) through a highly enantioselective

alkene RCM promoted by molybdenum based catalyst (141) [88, 89]. In this study
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(Fig. 37), the late-stage enantioselective alkeneRCMrequired the closure reaction onto

one of two sterically hindered vinyl groups at a congested quaternary carbon in the

presence of a potentially problematic tertiary amine moiety. Through an extensive

screen of chiral catalysts, gratifyingly, the desired tetracycle (142) was obtained in 84%

yield and 96% ee, which allowed the completion of total synthesis of (+)-

quebrachamine (139).

In 2007, Hoveyda and Gillingham disclosed the total synthesis of (+)-

baconipyrone C (143), which represents the first, and a rare example of, application

of a Ru-catalyzed alkene ROM/RCM to complex natural product synthesis (Fig. 38)

[90]. By treatment of oxabicycle (144) with 2 mol% chiral Ru carbene catalyst, the

key highly functionalized pyran intermediate (145) was prepared in 63% yield

and 88% ee. Notably, the chiral catalyst was generated in situ by subjection of
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N
H

N

N
H

N

i-Pr i-Pr

N

Mo

1 mol% 141

N

O

Me

Me
Ph

Cl
Cl

TBSO

C6H6, 22 oC,1 h

142
> 98% conv., 84% yield

96% ee (e.r., 98:2)

5 mol% PtO2,
H2 (balloon), EtOH,

22 oC, 1 h

N
H

N

Et

139, 97%

140

141

Fig. 37 Total synthesis of (+)-quebrachamine (139) by Hoveyda et al.

188 X. Lei and H. Li



the Ag-based N-heterocyclic carbene (NHC) (146) with the achiral Ru-PCy3 spe-

cies (147) and NaI.

In summary, the development of catalytic enantioselective alkene metathesis has

become a fascinating new direction for olefin metathesis. In this rapidly emerging

field, several elegant applications in complex natural product synthesis have been

reported to date. We can certainly expect that more active and robust catalysts will

be developed and applied to target-oriented synthesis in the near future.

8 Catalytic Z-Selective Alkene Metathesis

Recently the new research direction of olefin metathesis has been focused on the

development of a general method for Z-selective alkene metathesis. For alkene

RCM, a variety of factors including substrate conformation, catalyst, temperature,

solvent, etc., can determine the Z- or E-configuration of the final product, which

makes the development of a general way to achieve Z-selectivity challenging.

In addition, the Z-selective alkene cross metathesis (CM) has proved to be even

more challenging, given that not only is it required that the reaction proceeds with

minimal homocoupled byproduct but also it must exhibit a preference to produce

the thermodynamically less favored stereoisomer. Grubbs and Hoveyda’s labora-

tories have independently developed a number of catalytic systems with the inten-

tion of tackling these challenges.
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Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product 189



Grubbs and coworkers studied a series of Ru-based catalysts and identified two

lead catalysts for alkene cross metathesis that could provide the desired hetero-

coupled product with high Z-selectivity for the resulting alkene moiety (Fig. 39)

[91–93]. Comparably, Hoveyda and coworkers developed a number of Mo-based

catalysts that enabled the selective synthesis of Z-alkenes [94, 95]. They success-

fully demonstrated that the novel molybdenum adamantylimido complexes

(catalysts 154–156) could promote ring opening/cross metathesis (ROCM) of

oxabicycle (157 or 158) in good yield and excellent Z-selectivity (Fig. 40) [96].

These elegant studies paved the way to develop further more effective catalysts for

Z-selective alkene metathesis and utilize these methods for the synthesis of com-

plex natural products.

In 2011, Hoveyda et al. reported the total syntheses of two natural products, C18

(plasm)-16:0 (PC) (162) and KRN7000 (163), an anti-oxidant plasmalogen phospho-

lipid and a potent immunostimulant, respectively, through catalytic Z-selective olefin
cross metathesis (CM) [97]. In this study (Fig. 41), the corresponding disubstituted

alkenes were efficiently formed in good yields and excellent Z-selectivity (up to

>96%) by the treatment of a molybdenum alkylidene complex.

Very recently Hoveyda and coworkers disclosed another elegant study towards the

synthesis of macrocyclic natural products through catalyst-controlled Z-selective
RCM [98]. They developed an air-stable tungsten alkylidene species to promote

efficient RCMof highly functionalized alkenes in useful yieldswith highZ-selectivity.
This catalyst was utilized in the synthesis of complex natural products epothilone
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Fig. 39 Improved ruthenium catalysts for Z-selective olefin metathesis by Grubbs et al.
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C and nakadomarin A (171). The previous syntheses of these two natural products

were all hindered by the late-stage, non-selective RCM to install the required Z-alkene
moiety. The synthesis of nakadomarin A (171) is featured in Fig. 42. The key

N

MoN

O

Me

Me
Ph

X
X

TBSO

TBSO

TBSO

cat. generated
& used in situ

; 22 oC, 0.5-1 h
O

OR

O

Ar

OR

R = TBS, 157;
R = Bn, 158.

X = Cl, 154;
X = Br, 155;
X = I, 156.

Ar2.0-10 equiv

11 examples, up to 98% ee,
up to >98:2 Z/E

R = TBS, 159;
R = Bn, 160.

O

OTBS

substrates (equiv) catalyst (loading, mol%) product

i-Pr i-Pr

N

MoN

O

Me

Me
Ph

Br
Br

(161, <5 mol%)

+ Ph

O

OTBS

+ Ph

(10 equiv)

(2 equiv)

<2% conv

N

MoN

O

Me

Me
Ph

Cl
Cl

(154, 0.56 mol%)

159, 80% yield,
95:5 er, >98:<2 Z:E

O

Ph

OTBS

O

OTBS

+ Ph

(2 equiv)

N

MoN

O

Me

Me
Ph

Br
Br

TBSO

(155, 0.62 mol%)

159, 85% yield,
98.5:1.5 er, >98:<2 Z:E

O

Ph

OTBS

157

157

157

Fig. 40 Z- and enantioselective ring-opening/cross-metathesis reactions by Hoveyda et al.

Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product 191



intermediate (173) was prepared in 90% yield and with 97/3 Z/E selectivity in the

presence of 5 mol% W complex (174). In contrast, reaction of (173) with other

catalysts delivered lower yields and Z-selectivity. Alternatively, the W complex

(174) could also be used successfully for the late-stage stereoselective RCM to

generate the final natural product nakadomarin A (171) in good yield and excellent

Z-selectivity. In comparison, all of the previous attempts for late-stage RCM using

Ru-based catalysts provided much lower Z-selectivity [99–102].
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In summary, despite significant advances having been made in the field of olefin

metathesis, a notable unresolved issue that limits its synthetic utility is the lack of

efficient methods for Z-selective transformation. Recently there have been several

elegant studies reported as shown in this section to resolve this challenge. We

expect that more effective catalysts will be developed and applied to the synthesis

of complex natural products in the near future.

9 Conclusions

We have witnessed the remarkable advance of selective alkene metathesis reactions

over the last a few years. Many synthetic chemists have utilized this reaction as a

very practical, versatile, and selective synthetic tool to prepare complex molecules

including natural products. Selective alkene metathesis has helped to elevate the art

and science of natural product total synthesis to its present high level. However,

many critical discoveries in catalytic alkene metathesis, particularly the develop-

ment of more effective catalysts that are easily obtained and able to provide

excellent selectivities, remain to be made. It has been delightful to review this

field and highlight some of the most significant and exciting examples of recent

applications of selective alkene metathesis in the total synthesis of complex natural
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products. We sincerely hope this review will provide useful information for syn-

thetic chemists and stimulate new developments and applications of selective

alkene metathesis reactions in the field of natural product synthesis.
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Olefination Reactions of Phosphorus-Stabilized

Carbon Nucleophiles

Yonghong Gu and Shi-Kai Tian

Abstract A range of phosphorus-stabilized carbon nucleophiles have been

employed for alkene synthesis with high chemo-, regio-, and stereoselectivity. The

Wittig, Horner–Wadsworth–Emmons, Horner–Wittig, and Evans–Akiba reactions

utilize phosphonium-, phosphonate-, phosphine oxide-, and pentacoordinated

phosphorane-stabilized carbanions as nucleophiles, respectively, to undergo

olefination with aldehydes or ketones, and each of these transformations has its

own advantages and limitations. Modifying the structures of these nucleophiles

along with optimizing reaction conditions results in the formation of a wide variety

of polysubstituted alkenes in a highly stereoselective manner. The olefination of

imines with phosphonium ylides has recently emerged as a useful approach to tune

the stereoselectivity for alkene synthesis. This review focuses on recent advances in

the stereoselective olefination of phosphorus-stabilized carbon nucleophiles.
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1 Introduction

Stereodefined alkenes are ubiquitous structural motifs in many natural products and

pharmaceutics, and, moreover, they serve as a foundation for a broad range of

chemical transformations. Nowadays, carbonyl olefination, elimination, alkyne

addition, alkenylation, and alkene metathesis constitute the most widely used

methods for the stereoselective synthesis of various alkenes [1–3]. Whereas no

single method provides a universal solution to stereoselective alkene synthesis, the

olefination reactions of aldehydes and ketones with phosphorus-stabilized carbon

nucleophiles have enjoyed widespread prominence and recognition owing to their

simplicity, convenience, complete positional selectivity, and generally high levels

of geometrical control [4–9].

A few types of phosphorus-stabilized carbon nucleophiles have been extensively

studied for stereoselective alkene synthesis (Scheme 1). Carbonyl olefination with a

phosphonium ylide is referred to as theWittig reaction, named after GeorgWittig who

first disclosed this transformation in 1953 [10]. Since its inception, this reaction has

received numerous modifications with regard to the structures of the phosphorus-

stabilized carbon nucleophiles. Three important variants, the Horner-Wadsworth-

Emmons, Horner-Wittig, and Evans–Akiba reactions, have been evolved using

phosphonate-, phosphine oxide-, and pentacoordinated phosphorane-stabilized

carbanions as nucleophiles, respectively. Such modifications significantly extend the

scope of stereoselective alkene synthesis. A distinct strategy to modify the Wittig

reaction is to employ imines rather than carbonyl compounds as electrophiles, and

the stereoselectivity for alkene synthesis can be significantly enhanced by tuning the

electronic and steric properties of the substituents on the imine nitrogen atoms.

Each of these transformations has its own advantages and limitations, and the

selection of an appropriate method is essential for a desired stereoselective alkene

synthesis. In this chapter we would like to discuss briefly the general stereochemi-

cal trends and focus on recent developments in the field of olefination reactions

based on these phosphorus-stabilized carbon nucleophiles.
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2 The Wittig Reaction

The employment of phosphorus-stabilized carbon nucleophiles for alkene synthesis

was initiated by the discovery of the Wittig reaction [10], which provides a

convenient method for the preparation of a wide variety of polysubstituted alkenes

with complete positional selectivity and generally high levels of geometrical

control. Moreover, the phosphonium ylides used in the Wittig reaction are readily

formed by the addition of suitable bases to the corresponding phosphonium salts,

which are commonly prepared by treating alkyl halides with phosphines.

R1 R2 R3 R4
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R4
R2 R3 R4

R1 R2 R3 R4
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e Olefination of imines with phosphonium ylides
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Scheme 1 Olefination reactions of phosphorus-stabilized carbon nucleophiles
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2.1 Mechanism

The Wittig reaction was originally thought to occur in three steps: (1) nucleophilic

addition of the phosphonium ylide to the aldehyde (or ketone) to give a betaine;

(2) carbon–carbon bond rotation of the betaine to form an oxaphosphetane; and

(3) decomposition of the oxaphosphetane to yield an alkene and a phosphine oxide

(Scheme 2, Path a). Oxaphosphetanes have been detected by low-temperature 31P,
1H, and 13C NMR spectroscopic analysis of the reaction mixtures of carbonyl

compounds with nonstabilized (R2 ¼ alkyl) or semistabilized (R2 ¼ aryl) phos-

phonium ylides [11–15]. Similar observance is not successful with stabilized

phosphonium ylides (R2 ¼ alkoxycarbonyl, acyl). Although oxaphosphetanes are

generally unstable and decompose readily into alkenes and phosphine oxides upon

warming to room temperature, several stable oxaphosphetanes have been identified

unambiguously by single crystal X-ray analysis [16–21]. In contrast, betaines have

never been observed spectroscopically under salt-free Wittig reaction conditions

(i.e., in the absence of lithium ions) and in some cases they have even been

excluded [22]. Nevertheless, betaines have been observed sometimes in the Wittig

reaction in the presence of strongly coordinating ions such as lithium ion [23, 24].

It is now accepted that the oxaphosphetane intermediate is formed directly by a

[2+2] cycloaddition of the phosphonium ylide with the aldehyde (or ketone)

through a four-center transition state, in which the formation of the carbon–carbon

bond is more advanced than that of the phosphorus–oxygen bond (Scheme 2,

Path b). Although there are some exceptions [25, 26], the oxaphosphetane forma-

tion step is generally nonreversible [27, 28] and decides the stereoselectivity.

The stereochemical outcome of the Wittig reaction is believed to be the result of

steric effects that develop as the phosphonium ylide and the aldehyde approach one

another. A few transition state models have been proposed by Schlosser [29],

McEwen [30, 31], and Vedejs [27, 28, 32]. Among them, the Vedejs model best

accounts for the stereoselectivity on the basis of an interplay of 1,2- and 1,3-steric

interactions in the four-center transition state (Scheme 3). The addition of the

nonstabilized phosphonium ylide to the aldehyde proceeds through an early transi-

tion state that is fairly flexible. A preferred geometry for the cis transition state is

R1 H

O

R2 H
+ R1 R2

R1 R2 +

O PR3

H
R1 R2

H

O PR3

H
R1 H

R2++

Path a Path b

PR3

R1 R2
HO

H PR3

R1 R2
HO

R3P H

O PR3

Scheme 2 Mechanisms of the Wittig reaction
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puckered due to the relief of steric interactions between the ylide substituent and the

aldehyde substituent (1,2-interaction) and between the aldehyde substituent and the

phosphorus substituents (1,3-interaction). On the other hand, a preferred geometry

for the trans transition state is planar because puckering to relieve 1,3-interactions

would increase 1,2-interactions. The balance of steric effects favors the cis transi-
tion state that leads to a Z-alkene. In contrast, the reaction of the stabilized

phosphonium ylide with the aldehyde proceeds through a late transition state that

is less flexible and constrained to be closer to be planar. Since the cis transition state
suffers from serious 1,2-interactions, the trans one is favored and the reaction

preferentially gives an E-alkene.
According to the density functional theory (DFT) calculations of the salt-free

Wittig reaction performed by Aggarwal and Harvey et al. [33, 34], the puckering

ability of the transition states in the Vedejs model does not depend on ylide

stabilization. In the case of nonstabilized and semistabilized phosphonium ylides,

the geometry of the transition states is decided by an interplay of 1,2-, 1,3-, and

C-H. . .O interactions. In contrast, a dipole-dipole interaction governs the transition

state structures for stabilized phosphonium ylides.

2.2 Scope and Limitations

Triphenylphosphonium ylides (Ph3P¼CHR2) are employed most frequently in the

Wittig reaction because they are readily prepared through the reaction of triphenyl-

phosphine, which is inexpensive and air-stable, with alkyl halides followed by

treatment of the resulting phosphonium salts with suitable bases (Scheme 4).

Nonstabilized (R2 ¼ alkyl) and semistabilized (R2 ¼ aryl, vinyl, halo, alkoxy)

triphenylphosphonium ylides are very reactive and unstable toward moisture and

oxygen, and hence they are prepared in situ at low temperature (usually at �78 �C)
in an etheral solvent (e.g., tetrahydrofuran, diethyl ether, or 1,2-dimethoxyethane)

under nitrogen (or argon) in the presence of a strong base such as BuLi, NaNH2,

lithium diisopropylamide (LDA), sodium hexamethyldisilylamide (NaHMDS), or

KOBu-t. In contrast, stabilized triphenylphosphonium ylides (R2 ¼ alkoxycarbonyl,

acyl, cyano) are less reactive and usually isolable, and their preparation often requires

a weaker base such as aqueous NaOH.

P H

R2

Ph

R1O

H

Ph
Ph
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P R2

H

Ph

R1

O H

Ph

Ph

trans TS
planar

R1 R2R1

R2

Scheme 3 Transition state structures according to the Vedejs model

Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles 201



A wide variety of aldehydes and ketones are effective substrates for the Wittig

reaction, and in most cases mono-, di-, and trisubstituted alkenes are prepared in

good yields. Additives (e.g., lithium salts [35, 36], carboxylic acids [37, 38], phase

transfer catalysts (PTC) [39], cyclodextrins [40], and silica gel [41]), elevated

temperature [42], high pressure [43, 44], microwave irradiation [45–48], light

irradiation [49], sonication [50], ionic liquids [51], water [52–54], supercritical

CO2 [55], and solvent-free conditions [56] have been utilized in some cases to

improve the yields, stereoselectivity, manipulations, and environmental impacts.

The Wittig reaction tolerates a range of functional groups such as hydroxy, amino,

halo, aromatic nitro, ester, amide, and cyano groups. The stereochemistry of the

Wittig reaction is governed primarily by the nature of the phosphonium ylide,

though it is affected more or less by a few other variables such as the base used

for ylide formation, ion, solvent, and temperature. In general, the Wittig reaction

yields preferentially Z-alkenes for nonstabilized triphenylphosphonium ylides

under salt-free conditions, and E-alkenes for stabilized triphenylphosphonium

ylides, but mixtures of Z- and E-alkenes for semistabilized triphenylphosphonium

ylides (Scheme 4).

It is a powerful strategy to tune stereoselectivity in the Wittig reaction by

modifying the P-phenyl groups of triphenylphosphonium ylides albeit their prepa-

ration requires extra synthetic manipulations. In this regard, extensive studies have

shown that the employment of ortho-substituted aryl groups on the ylide phospho-

rus atoms is able to modulate stereoselectivity significantly [57–60]. In particular,

this strategy is effective in enhancing Z selectivity for the Wittig reaction with

semistabilized phosphonium ylides. As reported by Schlosser et al., the use of

semistabilized tris(2-methoxymethoxyphenyl)phosphonium ylides leads to high Z
selectivity in the synthesis of stilbenes [61], conjugated dienes [62], alkenyl halides,

and vinyl ethers [63] (Scheme 5).

R1 R2

R1 R2 +

PPh3R2

PPh3X

PPh3

+

base

R1 R2

R1 R2

R2 = alkyl R2 = aryl, vinyl, 
 halo, alkoxy

R2 = COX, CN

X

R2

R2

R1CHO

Scheme 4 Preparation of phosphonium ylides and general stereochemical outcomes of the Wittig

reaction
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The introduction of P-heteroaryl groups to nonstabilized phosphonium ylides

can significantly enhance Z selectivity in the Wittig reaction. Berger et al. have

found that replacement of the P-phenyl groups of nonstabilized triphenylpho-

sphonium ylides with 2-pyridinyl or 2-furyl groups leads to a dramatic increase in

Z selectivity in the corresponding Wittig reaction using NaHMDS to generate the

phosphonium ylides (Scheme 6) [21, 64]. However, the yield is dramatically

decreased when BuLi is used as the base. The formation of a betaine salt adduct

as the intermediate has been proposed to suppress the oxaphosphetane formation

during the Wittig reaction.

In sharp contrast, E selectivity has been achieved by replacing the P-phenyl
groups of semistabilized triphenylphosphonium ylides with simple alkyl groups.

Such phosphonium ylides are prepared by treatment of their corresponding phos-

phonium salts with an appropriate base because of the excellent chemoselectivity

for deprotonation at the benzylic or allylic position over at the alkyl position.

Notably, high E selectivity has been achieved for the newly formed double bond

in the Wittig reaction of either an allylidenemethyldiphenylphosphorane [65] or an

allylidenetributylphosphorane (Scheme 7) [66, 67].

This strategy has been extended to the Wittig reaction of stabilized phosphonium

ylides. In general, low E selectivity has been obtained from the Wittig reaction

of (alkoxycarbonylmethylene)triphenylphosphoranes with a-alkoxy aldehydes or

sugar lactols. Nevertheless, Martin et al. have found that the reaction of

(methoxycarbonylmethylene)tributylphosphorane with a-alkoxy aldehydes or

sugar lactols proceeds smoothly in the presence of a catalytic amount of benzoic

acid to give a,b-unsaturated esters in high yields and E selectivity (Scheme 8) [68].
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Recently, benzylidenetriethylphosphoranes and allylidenetriethylphosphoranes

have been reported by McNulty et al. to be generated chemoselectively from their

corresponding phosphonium salts in water using NaOH or LiOH as the base

(Scheme 9) [69, 70]. These semistabilized phosphonium ylides react with

aldehydes to give conjugated alkenes with moderate to good E selectivity. It is

noteworthy that the triethylphosphine oxide byproduct is water-soluble and hence is

readily removed from the process by simple extraction.

Benzyltriethyl- and allyltriethylphosphonium salts are usually prepared by direct

substitution of benzylic and allylic halides with triethylphosphine, respectively.

However, triethylphosphine is sensitive to air. McNulty et al. have found that

these phosphonium salts can be formed in quantitative yields through the reaction

of air-stable triethylphosphine hydrobromide with allylic or benzylic alcohols,

which are more readily accessible and less reactive than their halide counterparts

(Scheme 10) [71].

A similar procedure has been applied to the preparation of a-methoxy phospho-

nium salts in high yields from triethylphosphine hydrobromide and dimethyl acetals

(Scheme 11) [72]. The resulting phosphonium salts are subjected to ylide forma-

tion/olefination to afford a range of vinyl ethers and functionalized 1,3-dienes with

moderate E selectivity.

It is interesting to replace the P-phenyl groups of triphenylphosphonium ylides

with dialkylamino groups in the Wittig reaction. Verkade et al. have examined the

Wittig reaction of PhCH¼P(MeNCH2CH2)3N with a range of aldehydes

(Scheme 12) [73, 74]. This reaction proceeds at relatively high temperature (0 �C
to room temperature) to give alkenes with exclusive E selectivity. In contrast with
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Scheme 9 Wittig reaction of semistabilized triethylphosphonium ylides
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Scheme 10 Preparation of benzyltriethyl- and allyltriethylphosphonium salts
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commonly used phosphonium ylides, the E selectivity is maintained despite

changes in the metal ion of the ionic base used for ylide formation, temperature,

and solvent polarity.

2.3 The Schlosser Modification

The Schlosser modification of the Wittig Reaction allows the formation of an

E-alkene by delaying normal elimination of a phosphine oxide from the initially

formed oxaphosphetane intermediate through employment of excess soluble lith-

ium salts and an organolithium (preferably PhLi) at low temperature (Scheme 13)

[75–78]. The lithium salt can promote ring opening of the oxaphosphetane to give a

betaine [23, 24, 79], which is subjected to deprotonation to give a b-oxido phos-

phonium ylide. Trapping with a proton source followed by treatment with a base

forms the thermodynamically more stable trans-oxaphosphetane, which yields an

E-alkene via elimination of a phosphine oxide. This reaction relies on the betaine as

a readily epimerizing intermediate and generally gives very high E selectivity.
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Trapping the b-oxido phosphonium ylide intermediate with electrophiles other

than a proton constitutes a powerful approach for the stereoselective synthesis of

polysubstituted alkenes. Early studies by Corey et al. have shown that aldehydes are

able to serve as suitable electrophiles to trap the b-oxido phosphonium ylide

intermediate and this reaction provides a highly stereoselective access to trisubsti-

tuted allylic alcohols (Scheme 14) [80]. According to Schlosser’s modified

sequence, a b,b0-dioxido phosphonium ion is expected to be formed by the sequen-

tial addition of two aldehydes to the phosphonium ylide. Interestingly, the Wittig

elimination from the b,b-dioxido phosphonium ion involves highly selective loss of

that oxygen originated in the second aldehyde molecule except in the case of

formaldehyde.
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Recently, Hodgson et al. have employed halomethyl esters to trap the b-oxido
phosphonium ylide intermediate generated in Schlosser’s modified sequence

(Scheme 15) [81, 82]. Aromatic, unsaturated, and aliphatic aldehydes serve as

suitable substrates for this reaction, which provides a highly Z-selective access to

di- and trisubstituted allylic esters.

Schlosser’s modified sequence is also useful for the preparation of trisubstituted

alkenyl halides by trapping the b-oxido phosphonium ylide intermediate with

halogen sources such as bromine, BrCF2CF2Br, and iodine [83, 84]. Studies by

Hodgson et al. have shown that the stereochemical outcome is acutely sensitive to

the size of the alkylidene group in the original alkylidenetriphenylphosphorane

[85]. Although the reaction with ethylidenetriphenylphosphorane gives exclusive Z
selectivity, the employment of higher alkylidenetriphenylphosphorane leads to

good to excellent E selectivity (Scheme 16). Under optimized conditions, the

reaction of alkylidenetriphenylphosphoranes with aldehydes followed by in situ

lithiation and subsequent bromination or iodination provides a highly stereoselective

access to E-alkenyl bromides and iodides (Scheme 17).
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Scheme 15 Z-Selective synthesis of di- and trisubstituted allylic esters

R
Ph

BrPPh3

1) LiBr, THF
-78 oC

Ph

O

H
+

2) PhLi
3) BrCF2CF2Br

R
R = Me, 47%, <1:99 E/Z
R = Et, 68%, 87:13 E/Z
R = Pr, 59%, 92:8 E/Z
R = i-Pr, 72%, 89:11 E/Z
R = (CH2)3OPh, 57%, 94:6 E/Z

Scheme 16 Olefination of alkylidenephosphoranes under Schlosser’s conditions
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2.4 One-Pot Wittig Reaction

Typically, the Wittig reaction requires complete formation of phosphonium ylides

prior to the addition of aldehydes or ketones. If the preparation of the reactants is

compatible with the Wittig reaction conditions, the alkene synthesis could be

significantly facilitated through a one-pot procedure. Such modifications not only

represent greener routes to alkenes through minimizing the amounts of solvents and

reagents needed for the reactions and purifications, but also avoid the isolation of

sensitive reactants.

2.4.1 Tandem Alcohol Oxidation/Wittig Reaction

Alcohols often serve as precursors for aldehydes and, moreover, they are more

stable, less toxic, and cheaper than the latter. In situ oxidation of alcohols to

aldehydes during the Wittig reaction can avoid handling aldehydes, especially

when they are volatile, toxic, and/or highly reactive (Scheme 18). The Wittig

reaction of stabilized phosphonium ylides is compatible with a number of

oxidants such as MnO2 [86–89], Dess–Martin [90], BaMnO4 [91], o-
iodoxybenzoic acid (IBX) [92, 93], pyridinium chlorochromate (PCC) [94], and

SO3·Py [95]. In some cases, semistabilized and nonstabilized phosphonium ylides

are amenable to the tandem alcohol oxidation/Wittig reaction [88, 89]. Recently,

Park et al. have reported an Ru/AlO(OH) catalyzed one-pot synthesis of a,b-
unsaturated esters from alcohols and stabilized phosphonium ylides using molec-

ular oxygen as a terminal oxidant [96]. Alonso and Yus et al. have disclosed a

nickel nanoparticle promoted one-pot Wittig reaction of primary alcohols with

alkylidenetriphenylphosphoranes [97, 98].

R2
R1 XPPh3 1) LiBr, THF, -78 oC
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+
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Scheme 17 E-Selective synthesis of trisubstituted alkenyl halides

Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles 209



Another approach for the in situ generation of aldehydes in the presence of

stabilized phosphonium ylides is the oxidative cleavage of glycols using NaIO4 on

silica gel (Scheme 19) [99]. The simultaneous, one-pot oxidative cleavage/Wittig

reaction of carbohydrates and amino acid derivatives affords a number of syntheti-

cally useful alkenes with high E selectivity.

2.4.2 One-Pot Wittig Reaction of Phosphonium Salts

In general, nonstabilized and semistabilized phosphonium ylides are prepared by

deprotonation of the corresponding phosphonium salts with strong bases that are

incompatible with aldehydes or ketones. However, some studies have shown that

these phosphonium ylides can be generated in the presence of aldehydes by

treatment of the corresponding phosphonium salts with a weaker base such as

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) [100], NaOH, LiOH [101, 102], KOH

[103], or K2CO3 [49, 104, 105] (Scheme 20). In addition, these bases promote the

one-pot Wittig reaction of phosphonium salts with aldehydes in a number of

solvents such as toluene, tetrahydrofuran, dimethyl sulfoxide, isopropanol,

and water.
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Scheme 18 Tandem alcohol oxidation/Wittig reaction
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Scheme 19 Tandem glycol oxidative cleavage/Wittig reaction
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Scheme 20 One-pot Wittig reaction of phosphonium salts
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2.4.3 One-Pot Wittig Reaction of Alkyl Halides

An even more convenient alkene synthesis has been realized through a one-pot

Wittig reaction of aldehydes with alkyl halides involving in situ preparation of

phosphonium salts and ylides (Scheme 21). This type of one-pot Wittig reaction

proceeds in an organic solvent, in water, or without solvent in the presence of

triphenylphosphine (or tributylphosphine) and a base such as triethylamine [106],

K2CO3 [107], NaHCO3 [108], LiOH [109], nanocrystalline MgO [110], or

tetrabutylammonium fluoride (TBAF) [111]. Interestingly, zinc powder has also

been employed to promote this type of one-pot Wittig reaction [112, 113]. These

conditions allow a variety of a-halo carbonyl compounds and benzylic halides to

undergo olefination with aldehydes to give conjugated alkenes with high E
selectivity.

Bases can be generated in situ in a one-pot Wittig reaction of alkyl halides.

Studies by Buddrus have shown that ethylene oxide can trap the halide anion of the

phosphonium salt, which is formed in situ by the reaction of triphenylphosphine

with an alkyl halide, to generate an alkoxide anion as a strong base [114, 115].

Recently, Tian et al. have found that triphenylphosphine in combination with an

electron-deficient alkene can mediate the one-pot Wittig reaction of aldehydes with

a-halo carbonyl compounds for the synthesis of polysubstituted alkenes in an

excellent E selective fashion (Scheme 22) [116]. This protocol has been applied

to the construction of an a,b-unsaturated macrolide with exclusive E selectivity.

The key to realizing this one-pot Wittig reaction rests on the ability of the phos-

phine to undergo a Michael-type addition to the electron-deficient alkene to gener-

ate a zwitterion, which serves as an organic base to deprotonate the phosphonium

salt formed by the nucleophilic attack of the phosphine on the a-halo carbonyl

compound. The resulting phosphonium ylide reacts with the aldehyde to give an

alkene. The appropriate choice of the phosphine and the electron-deficient

alkene prevents unwanted side reactions such as the Rauhut–Currier and

Morita–Baylis–Hillman reactions [117].

When the addition of the aldehyde is postponed, the in situ generated phospho-

nium ylide will undergo a Michael addition to the electron-deficient alkene

followed by proton transfer to generate another phosphonium ylide (Scheme 23).

Based on these transformations, Tian et al. have developed a one-pot, stepwise,

three-component reaction of aldehydes, a-haloacetates, and terminal alkenes in the

R2 R1 R2
X PR3, base

R1 H

O
+

R2

PR3base
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PR3X

PR3 R1CHO

Scheme 21 One-pot Wittig

reaction of alkyl halides
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presence of triphenylphosphine to afford a range of trisubstituted alkenes with

excellent E selectivity [116].

2.4.4 One-Pot Wittig Reaction of Allylic Carbonates

The attack of phosphines on certain carbon electrophiles can generate phosphonium

salts along with bases, which are strong enough to deprotonate phosphonium salts to

yield phosphonium ylides. In 2010, He et al. reported a one-pot Wittig reaction of

aldehydes with allylic carbonates, activated by electron-withdrawing groups, in the

presence of a stoichiometric amount of triphenylphosphine at room temperature

(Scheme 24) [118]. This protocol provides an access to a variety of 1,2,4-trisubstituted

1,3-dienes with high diastereoselectivity.

2.4.5 One-Pot Wittig Reaction of Allenoates

A few functionalized allylic phosphonium ylides are generated by the nucleophilic

attack of phosphines on certain allenoates followed by a set of proton transfers.

Taking advantage of this chemistry, He et al. have developed a triarylphosphine

mediated olefination of aldehydes with g-substituted allenoates to afford trisubsti-

tuted conjugated dienes in moderate to excellent yields and with high E selectivity

(Scheme 25) [119]. Similarly, the reaction of aldehydes with a-substituted
allenoates has been developed in the presence of tributylphosphine to afford

polysubstituted conjugated dienes (Scheme 26) [120, 121].
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Scheme 24 One-pot Wittig reaction of allylic carbonates
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2.4.6 One-Pot Wittig Reaction of Aziridines or Epoxides

Allylic phosphonium ylides can also be generated in situ by the nucleophilic attack

of phosphines on aziridines (or epoxides) followed by a set of proton transfers. On

the basis of these reaction pathways, Hou et al. have realized a slightly E selective

synthesis of conjugated dienes from aldehydes (or ketones) and aziridines

(or epoxides) in the presence of tributylphosphine (Scheme 27) [122].

2.4.7 One-Pot Wittig Reaction of Gramine

Magomedov et al. have developed a highly E selective synthesis of 3-vinylindoles

by direct coupling of gramine with aldehydes in the presence of tributylphosphine

(Scheme 28) [123]. This reaction has been proposed to proceed through elimination
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Scheme 25 One-pot Wittig reaction of g-substituted allenoates
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Scheme 26 One-pot Wittig reaction of a-substituted allenoates
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of dimethylamine, conjugate addition with tributylphosphine, proton transfer, and

the Wittig reaction.

2.4.8 One-Pot Wittig Reaction via Carbene Transfer

Extensive studies have shown that phosphonium ylides are readily generated in situ

from triphenylphosphine and a-diazo carbonyl compounds through carbene transfer

in the presence of a catalytic amount of a metal complex derived from

Re [124–126], Ru [127–130], Ir [131], Fe [132–137], Cu [138, 139], or Co [140,

141] (Scheme 29). The conditions for carbene transfer are well compatible with

aldehydes and ketones, and the metal catalyzed one-pot Wittig reaction of

aldehydes (or ketones) with a-diazo carbonyl compounds proceeds smoothly to

give electron-deficient alkenes with high E selectivity.

Triethyl phosphite has been employed by Carreira et al. in the one-pot Wittig

reaction via carbene transfer [142]. Notably, the phosphonium ylides bearing

oxygen substituents are not accessible by the standard method of phosphite alkyl-

ation due to the Michaelis–Arbuzov reaction [143], and the phosphate byproducts
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Scheme 27 One-pot Wittig reaction of aziridines or epoxides
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are easily removed upon aqueous workup. Aggarwal et al. have found that the

reaction of aldehydes with hydrazones (diazo precursors) in the presence of

trimethyl phosphite and a catalytic amount of mesotetraphenylporphyrin iron

chloride (ClFeTPP) proceeds smoothly to give aryl-substituted alkenes with high

E selectivity (Scheme 30) [144].

2.5 Removal of Phosphine Oxides

For a typical Wittig reaction, the separation of the alkene product from the

phosphine oxide byproduct is carried out by chromatography. To facilitate the

N
H

NMe2

+ RCHO
PBu3, MeCN, 80 oC

N
H

R

PBu3

N N

PBu3

N
H

PBu3

PBu3

RCHO

N
H

CH2OH

76%

N
H

N

69%

N
H

63%

MeO

OMe

Scheme 28 One-pot Wittig reaction of gramine

[M]
PPh3

RCHO

M (cat.), PPh3

M
X

O
Ph3P

X

O

X

O

R
RCHO+N2

X

OScheme 29 One-pot Wittig

reaction via carbene transfer

216 Y. Gu and S.-K. Tian



purification of the alkene product, a few methods have been developed by

modifying the P-substituent of the phosphonium ylide.

The employment of an ion-supported phosphonium ylide allows the alkene

product to be purified by simple filtration of the reaction mixture and subsequent

removal of the solvent from the filtrate. In this regard, a sulfonate anion [145] and

an ammonium cation [146] have been introduced to the phosphonium salt by Chan

and Togo, respectively (Scheme 31). The recovered ion-supported phosphine oxide

byproduct is subjected to reduction to regenerate the corresponding phosphine,

which can be reused for the Wittig reaction.

A similar purification method for the alkene product employs a polymer-

supported reagent. Westman has developed a one-pot Wittig reaction of alkyl

halides with aldehydes mediated by a polymer-supported phosphine and

potassium carbonate under microwave irradiation (Scheme 32) [147]. Recently,
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Toy et al. have realized this type of one-pot Wittig reaction using a bifunctional

polymeric reagent containing the phosphine and amine moieties [148].

Sinou et al. have developed a Wittig reaction of stabilized perfluorinated phos-

phonium ylides with aldehydes performed in a perfluorosolvent. This protocol

allows an easy separation of the alkene product from the perfluorinated phosphine

oxide byproduct by simple liquid-liquid extraction [149].

2.6 Catalytic Wittig Reaction

The Wittig reaction is not atom-economic and, moreover, complete removal of the

phosphine oxide byproduct is not always straightforward. To address these issues,

O’Brien and Chass et al. have recently developed a Wittig reaction catalytic in

phosphine. This reaction rests on the chemoselective reduction of the phosphine

oxide byproduct with Ph2SiH2 and regenerates the phosphine (the active catalyst)

without affecting other reaction components (Scheme 33) [150]. In the presence of

10 mol% of the phosphine oxide precatalyst and a stoichiometric amount of

Ph2SiH2, a variety of aldehydes undergo olefination with a-bromo carbonyl

compounds or even benzylic bromides to give the corresponding alkenes in good

yields (Scheme 34). Since the structure of the phosphonium ylide has a substantial

impact on the stereochemical outcome, further development of the catalytic Wittig

reaction will make it possible to control stereoselective alkene synthesis by using a

phosphine that is difficult to prepare.
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Scheme 33 Proposed mechanism for a catalytic Wittig reaction
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3 The Horner–Wadsworth–Emmons Reaction

A very useful modification of the Wittig reaction involves the reaction of

phosphonate-stabilized carbanions with aldehydes or ketones, which is known as

the Horner–Wadsworth–Emmons (HWE) reaction [7, 151, 152]. This reaction was

originally described by Horner et al. [153, 154] and further defined by Wadsworth

and Emmons [155]. Phosphonate-stabilized carbanions are more nucleophilic and

more basic than phosphonium ylides. They are prepared by the addition of suitable

bases to the corresponding alkylphosphonates, which are readily accessible through

the Michaelis–Arbuzov reaction of trialkyl phosphites with alkyl halides (usually

a-halo carbonyl compounds) [143]. In contrast to the Wittig reaction, the HWE

reaction yields phosphate salt byproducts that are water-soluble and hence are

readily separated from the desired alkene products by simple extraction.

3.1 Mechanism

The mechanism of the HWE reaction is closely related to that of theWittig reaction.

It is generally accepted that the addition of the phosphonate-stabilized carbanion to

the aldehyde gives a mixture of erythro and threo isomeric b-oxido phosphonates

under reversible conditions (Scheme 35) [156–160]. The erythro and threo
intermediates cyclize to form cis- and trans-oxaphosphetanes, rapid elimination

of which affords Z- and E-alkenes, respectively. It should be pointed out that the

decomposition of the b-oxido phosphonate intermediate requires an electron-

withdrawing group (e.g., ester, acyl, amide, cyano, sulfonyl, vinyl, or aryl) a to

the phosphonate moiety. Otherwise, the final product is a b-hydroxy phosphonate
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Scheme 34 Catalytic Wittig reaction
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after hydrolysis of the reaction mixture [161, 162]. The stereochemical outcome of

the HWE reaction is a result of both kinetic and thermodynamic controls upon the

reversible formation of erythro and threo aldehyde/phosphonate adducts and their

decomposition to alkenes.

3.2 Scope and Limitations

The HWE reaction has become one of most versatile tools for the synthesis of

conjugated alkenes, and its stereoselectivity primarily depends on the nature of the

phosphonate. In general, the HWE reaction of simple dialkyl alkylphosphonates

gives preferentially E-alkenes, and in many cases the E selectivity can be further

enhanced by employing bulkier P-substituents [163]. Moreover, the stereose-

lectivity of the HWE reaction is more or less affected by a few other variables

such as the base used for the formation of the phosphonate-stabilized carbanion,

ion, solvent, and temperature [164, 165]. Alkali metal bases such as BuLi, NaH, and

KHMDS are commonly employed for the generation of reactive phosphonate-

stabilized carbanions, and in many cases the nature of the metal counterion of the

base can significantly affect the stereoselectivity. Sano and Nagao et al. have found

that the use of i-PrMgBr as the base leads to better stereoselectivity than that of

BuLi in the HWE reaction of aldehydes with 2-fluoro-2-diethylphosphonoacetic

acid for the synthesis of (Z)-a-fluoro-a,b-unsaturated carboxylic acids [166].

Recently, MeMgBr has been identified by Davies et al. as an effective base for a

highly E selective HWE reaction (Scheme 36) [167]. When compared to commonly

used bases such as BuLi and LiCl/DBU (see below), MeMgBr promotes the HWE

reaction to give a,b-unsaturated esters in much higher yields and with equal or

superior E selectivity.
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Weaker bases have been employed to reduce or even avoid the epimerization of

the stereocenter adjacent to the aldehyde group of the substrate in the HWE reaction.

For example, Myers et al. have found that lithium 1,1,1,3,3,3-hexafluoroisopropoxide

(LiHFI) promotes the HWE olefination of epimerizable aldehydes with dimethyl-

phosphonoacetates to afford the desired alkenes with little or no epimerization and

with high E selectivity [168].

Tertiary amines, such as TBD, DBU, and N-ethylpiperidine, can serve as

alternatives to strong ionic bases in the HWE reaction [100]. In addition, the

HWE reaction can proceed smoothly in the presence of DBU under neat conditions

[169, 170]. Recently, Verkade et al. have employed P[N(i-Bu)CH2CH2]3N to

promote the HWE reaction at room temperature for the synthesis of a,b-unsaturated
esters, ketones, nitriles, and fluorides [171]. In these cases, phosphonate-stabilized

carbanions are generated in situ in the presence of aldehydes.

Bases in combination with Lewis acids are powerful in promoting the HWE

reaction with many substrates that are incompatible with strong bases. In 1984,

Masamune and Roush et al. reported mild conditions using lithium chloride and

DBU (or i-Pr2NEt) [172], and later Rathke et al. extended this Lewis acid/base

system to lithium or magnesium halides with triethylamine [173]. Recently,

Helquist et al. have employed Zn(OTf)2, TMEDA, and DBU to promote the

HWE reaction of aldehydes with diethylphosphonoacetic acid to give a,b-
unsaturated carboxylic acids with excellent E selectivity [174].

3.3 The Still Modification

It is a useful strategy to achieve Z selectivity in the HWE reaction by tuning the

electronic and steric properties of the P-substituents of phosphonate-stabilized

carbanions. In 1983, Still et al. described the employment of bis(2,2,2-

trifluoroethyl)phosphonoacetates in the HWE reaction (Scheme 37) [175]. This

modification, together with strongly dissociating conditions (KHMDS and

CO2R1

(a) BuLi, THF, -78 oC, then R2CHO, -78 oC to rt
or (b) R2CHO, LiCl, DBU, MeCN, rt
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18-crown-6 in tetrahydrofuran), allows the synthesis of a variety of di-and tri-

substituted a,b-unsaturated esters with high Z selectivity. Recently, Touchard has

found that in the Still modification 18-crown-6 can be replaced with TDA-1 [N

(CH2CH2OCH2CH2OMe)3], a cheap and readily available K
+ chelating agent [176].

Nagao et al. have employed Sn(OTf)2 and N-ethylpiperidine to extend the Still

modification to the olefination of aromatic ketones, and a range of tri- and tetrasub-

stituted a,b-unsaturated esters have been prepared with high stereoselectivity

(Scheme 38) [177–180]. In all cases, the aromatic and ester moieties are located

on the same side of the double bond of the alkene product. The role of Sn(OTf)2 in

enhancing the stereoselectivity is related to its ability to chelate with the

phosphonate-stabilized enolate to form a six-membered nucleophilic species.
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Although this reaction can be accelerated by microwave irradiation, it gives much

lower Z selectivity [181].

3.4 The Ando Modification

In 1995, Ando reported that a,b-unsaturated esters could be obtained with high Z
selectivity from the HWE reaction of aldehydes with diphenylphosphonoacetates in

the presence of benzyltrimethylammonium hydroxide (Triton B) or NaH in tetra-

hydrofuran [182]. Later, Ando [183–186], Motoyoshiya [187, 188], and Touchard

[189, 190] further defined this protocol by modifying diphenylphosphonoacetates

and found that the employment of bis(o-alkylphenyl)phosphonoacetates led to

higher Z selectivity (Scheme 39). The combination of NaH and NaI has been

identified as an effective base/additive system to improve the Z selectivity [191].

Moreover, the Ando modification has recently been applied to the ring closure of

various macrolides with high Z selectivity, which is complementary to that of

traditional intramolecular HWE reaction (Scheme 40) [192, 193].
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Scheme 39 The Ando modification
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In addition, the Ando modification has been extended to the preparation of

a,b-unsaturated amides with high Z selectivity from the corresponding aldehydes

and diarylphosphonoacetamides (Scheme 41) [194, 195].

4 The Horner–Wittig Reaction

The olefination reaction of phosphine oxide-stabilized carbanions with aldehydes or

ketones is referred to as the Horner–Wittig reaction [5, 7, 196]. This reaction was

originally described by Horner et al. [153, 154]. Phosphine oxides bearing P-alkyl
groups can be prepared by hydrolysis of phosphonium salts, by the reaction of

organometallic reagents with halophosphines followed by oxidation, or by the

reaction of organometallics with phosphinyl halides. Phosphinate salts are

generated as byproducts in the Horner–Wittig reaction, and they are water-soluble

and are readily removed from the desired alkene products by simple extraction.

4.1 Mechanism

The mechanism of the Horner–Wittig reaction is similar to that of the HWE

reaction. The addition of the phosphine oxide-stabilized carbanion to the aldehyde

gives a mixture of erythro and threo isomeric b-oxido phosphine oxides under

reversible conditions (Scheme 42). When a nonlithium base is used and the

negative charge is stabilized by the R2 group, the erythro and threo intermediates

cyclize to form cis- and trans-oxaphosphetanes that decompose to give Z- and

E-alkenes, respectively. The E-alkene product is formed preferentially because

elimination of the trans-oxaphosphetane occurs much faster than that of the

cis- one.
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When the reaction is carried out at low temperature in the presence of a lithium

base, b-hydroxy phosphine oxides can be isolated but in general with unsatisfied

diastereoselectivity. Upon treatment with a nonlithium base such as NaH, KOH, or

KOBu-t, b-hydroxy phosphine oxides are ready to undergo stereospecific syn-
elimination to afford the corresponding alkenes.

4.2 Scope and Limitations

A variety of functionalized alkenes has been directly obtained with E selectivity

from the Horner–Wittig reaction of aldehydes (or ketones) with phosphine oxide-

stabilized carbanions bearing in the a position certain functional groups such as aryl

[197], vinyl [198–200], cyano [201], sulfonyl [202], isoxazole [203], amino [204],

or alkylthio [205]. The functional group provides stabilization for the negative

charge of the b-oxido phosphine oxide intermediate and lowers the activation

energy for the elimination step to form an alkene (Scheme 42).

The unique feature of the Horner–Wittig reaction is that the phosphine oxide-

stabilized carbanion/aldehyde addition intermediates, b-hydroxy phosphine oxides,
can be isolated and purified, and the elimination step is stereospecific for the

formation of the corresponding alkenes. Usually the reaction gives predominantly

erythro adducts that can be converted to Z-alkenes upon being treated with bases

(Scheme 43). However, threo b-hydroxy phosphine oxides can be obtained by

reduction of the corresponding b-keto phosphine oxides, which are prepared by

oxidation of b-hydroxy phosphine oxides, or by acylation of lithio phosphine

oxides with esters [206].

While diphenylphosphine oxide has been employedmost frequently to activate the

carbon nucleophiles in the Horner–Wittig reaction, alternative use of bis(o-anisyl)
phosphine oxide [207] or dibenzylphosphole oxide [208–210] leads to better stereose-

lectivity for alkene synthesis (Scheme 44).
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5 The Evans–Akiba Reaction

Evans [211] and Akiba [212] reported in 1996 and 1997, respectively, that some

pentacoordinated phosphorane-stabilized carbanions could undergo olefination

with aldehydes, which we suggest be called the Evans–Akiba reaction. Similar to

the HWE and Horner–Wittig reactions, this reaction has been proposed by Akiba

et al. to proceed through diastereoselective carbonyl addition, cyclization, and

elimination to yield an alkene (Scheme 45) [213–216]. It is noteworthy that the

phosphorus atom is hexacoordinated in the four-center transition state.
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A variety of pentacoordinated spirophosphoranes undergo olefination with

aldehydes in the presence of t-BuOK to give a,b-unsaturated esters, amides, and

nitriles with high Z selectivity (Scheme 46) [212, 217]. This method has recently

been extended to the Z selective olefination of ketones by modifying the

pentacoordinated spirophosphoranes, which are readily prepared through the reac-

tion of the corresponding P-H phosphoranes with a-halo carbonyl compounds in the

presence of DBU [218].

6 Olefination of Imines with Phosphonium Ylides

In 1963, Bestmann et al. disclosed that treatment of N-benzylideneaniline with

semistabilized triphenylphosphonium ylides at 150–180 �C afforded alkenes, but

with nonstabilized triphenylphosphonium ylides at 130–150 �C afforded allenes

[219, 220]. For a long time this protocol had not been improved and developed into

a useful stereoselective alkene synthesis, probably owing to the high reaction

temperature and inconvenient operation. Recently, Tian et al. have developed a

highly tunable stereoselective olefination reaction of imines with triphenylpho-

sphonium ylides at low temperature by employing sulfonyl groups to activate the

imines [221–223].

6.1 Mechanism

Bestmann has proposed a mechanism involving initial formation of a betaine

intermediate through the addition of the phosphonium ylide to the N-phenyl
imine (Scheme 47) [224]. The betaine intermediate is isolable and decomposes at

high temperature. In the reaction with the semistabilized phosphonium ylide, the

betaine intermediate cyclizes to form an azaphosphetane that eliminates an

Ph
CO2Et CO2Et

+
R1 H

O
P
O

O

R2

CF3
F3C

F3C CF3

R2R1
t-BuOK, THF

82%, 98:2 Z/E

Ph

73%, >98:2 Z/E

Ph
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71%, 99:1 Z/E

0 oC or rt

CNMe

98%, 93:7 Z/E

Ph

Scheme 46 Olefination of pentacoordinated spirophosphoranes
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iminophosphorane to yield an alkene. However, in the reaction with the

nonstabilized phosphonium ylide, the betaine intermediate undergoes proton trans-

fer followed by fragmentation to release an allene, a phosphine, and an arylamine.

Tian et al. have found that the betaine intermediate generated from an N-sulfonyl
imine and a nonstabilized phosphonium ylide decomposes smoothly at room

temperature according to 31P NMR spectroscopic analysis [222]. Moreover, the

HBr salt of the betaine has been isolated after treatment of the reaction mixture with

HBr at low temperature, and converts to the alkene product with the same Z/E ratio

as that of the corresponding olefination reaction. These results suggest that the

stereoselectivity for alkene synthesis originates from the diastereoselective addition

of the nonstabilized phosphonium ylide to the N-sulfonyl imine, wherein the

stereoselectivity is finely tuned by the interactions among the N-sulfonyl, R1, R2,

and Ph3P groups that develop as the ylide and the imine approach one another

(Scheme 48). If the R2 group suffers greater steric repulsion from the R1 group than

that from the N-sulfonyl group, an anti-betaine intermediate is generated preferen-

tially and decomposes to give a Z-alkene via a cis-azaphosphetane intermediate.

Otherwise, an E-alkene is produced preferentially.
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For the reaction with a stabilized phosphonium ylide, the betaine intermediate

undergoes proton transfer and even extrudes a sulfonamide group to give a vinyl

phosphonium salt that can be trapped with water, a stabilized phosphonium ylide

[223], or nitromethane (solvent) [225]. These findings suggest that the conversion

of the betaine to the azaphosphetane is much slower than the interconversion

between the two betaine diastereomers (Scheme 49). Thus, the Z/E ratio for the

alkene product does not correspond to the diastereoselectivity for the initial imine/

ylide addition. Instead, the Z/E selectivity is decided by the different rates for

the transformation of the two betaine diastereomers into their corresponding

azaphosphetanes.

6.2 Scope and Limitations

The stereoselectivity for the olefination of N-sulfonyl imines with phosphonium

ylides is significantly affected by the substituent on the imine nitrogen atoms and

the bases used for ylide formation. Studies by Tian et al. have shown that BuLi is

the base of choice for the reaction with nonstabilized triphenylphosphonium ylides

[222]. A range of N-methanesulfonyl imines undergo olefination with alkylidene-

triphenylphosphoranes to afford Z-alkenes in good yields and with greater than 99:1
stereoselectivity (Scheme 50). The corresponding E-alkenes have been obtained

with the same level of stereoselectivity by employing an o-toluenesulfonyl group to
activate imines. In addition, this protocol provides a convenient access to both

Z- and E-allylic alcohols and amines with extremely high stereoselectivity.
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LDA has been identified as the base of choice for the olefination of

N-sulfonyl imines with semistabilized triphenylphosphonium ylides [221].

A range of N-(p-toluenesulfonyl) aromatic imines undergo olefination with

benzylidenetriphenylphosphoranes to give Z-stilbene derivatives with greater than

99:1 stereoselectivity (Scheme 51). The exclusive Z selective olefination reaction
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has been extended to a,b-unsaturated and aliphatic imines activated by a 2,6-

dichlorobenzenesulfonyl group and a 1-naphthenesulfonyl group, respectively

(Scheme 52). Moreover, an n-hexadecanesulfonyl group, a 2-naphthenesulfonyl

group, and a 2,6-dichlorobenzenesulfonyl group are able to activate aromatic,

a,b-unsaturated, and aliphatic imines to yield conjugated E-alkenes with greater

than 99:1 stereoselectivity, respectively.

The olefination reaction of N-sulfonyl imines with allylidenetriphenylpho-

sphoranes gives extremely high stereoselectivity with regard to the newly formed

carbon-carbon double bonds when appropriate sulfonyl groups are employed

(Scheme 53) [221]. While the reaction with N-methanesulfonyl imines gives

exclusive E selectivity, the use of a 2,6-dichlorobenzenesulfonyl group to activate

imines results in exclusive Z selectivity.

In 2005, Abdou et al. reported that the reaction of N-aryl imines with stabilized

phosphonium ylides in chloroform under reflux gave a,b-unsaturated nitriles,

esters, and ketones with exclusive E selectivity but in only about 20% yield

[226]. Recently, Tian et al. have found that the employment of N-(p-
toluenesulfonyl) imines to react with (cyanomethylene)triphenylphosphorane in
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acetonitrile at room temperature leads to the formation of a,b-unsaturated nitriles in
good to excellent yields and Z selectivity (Scheme 54) [223]. In contrast, elevated

temperature is needed for the olefination reaction of N-sulfonyl imines with ester-,

amide-, and ketone-stabilized phosphonium ylides, which gives a,b-unsaturated
esters, amides, and ketones with high E selectivity, respectively.

A related example disclosed recently by McNulty et al. is a one-pot Wittig

reaction of aldehydes with phosphonium salts in the presence of 10 mol% of

morpholine, L-proline or p-toluenesulfonamide and 2.0 equiv. of NaHCO3

(Scheme 55) [227]. This reaction gives high E selectivity. A rapid and reversible

condensation of the aldehyde with the amine (derivative) catalyst has been pro-

posed to form an iminium or an imine intermediate that is subjected to olefination

with the in situ generated phosphonium ylides, though a base-catalyzed pathway is

not ruled out. It has been confirmed that an N-sulfonyl imine can be formed

quantitatively from the corresponding aldehyde and sulfonamide under the reaction

conditions.
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7 Conclusion

During the last five decades, phosphonium-, phosphonate-, phosphine oxide-, and

pentacoordinated phosphorane-stabilized carbanions have been identified as effec-

tive nucleophiles for the stereoselective olefination of aldehydes and ketones.

Modifying the structures of these nucleophiles along with optimizing reaction

conditions results in the formation of a wide variety of polysubstituted alkenes in

a highly stereoselective manner. Recently, replacement of aldehydes with the

corresponding N-sulfonyl imines in the Wittig reaction has further improved the

stereoselectivity for the synthesis of 1,2-disubstituted alkenes by tuning the elec-

tronic and steric properties of the substituents on the imine nitrogen atoms.

A number of methods have been developed for the in situ preparation of either

aldehydes or phosphonium ylides during the Wittig reaction. These one-pot

procedures significantly shorten the synthetic sequences for alkenes synthesis,

and represent greener routes through minimizing the amounts of solvents and

reagents needed for the reactions and purifications. To improve the atom-economy,

a Wittig reaction catalytic in phosphine has recently been developed.

In contrast to many other methods commonly employed for stereoselective

alkene synthesis such as elimination, alkenylation, alkene metathesis, alkyne

addition, the Julia olefination, and the Peterson olefination [1–3], the olefination

reactions of phosphorus-stabilized carbon nucleophiles remain very powerful for

modern stereoselective alkene synthesis owing to their convenience, complete

positional selectivity, and generally high levels of geometrical control. However,

further modifications of these olefination reactions are definitely needed to

broaden substrate scope, enhance stereoselectivity, and improve environmental

impacts.
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Alkene Synthesis Through Transition

Metal-Catalyzed Cross-Coupling

of N-Tosylhydrazones

Yan Zhang and Jianbo Wang

Abstract In this chapter, alkene synthesis based on the reaction of

N-tosylhydrazones is described. The reactivity of tosylhydrazones is determined by

either the acidity of a-proton and hydrazone proton or the electropositivity of the

carbon of C¼N bond. This leads to diverse reactivities and a series of N-
tosylhydrazone-based olefination methodologies. Both non-catalytic and transition

metal-catalyzed olefinations from N-tosylhydrazones are introduced in this chapter.

Most of the transition metal-catalyzed reactions proceed via metal carbene

transformations. The synthesis of alkenes through Pd-catalyzed cross-coupling

reactions ofN-tosylhydrazones is particularly attractive andwill be discussed in detail.

Keywords Alkene synthesis � Cross-coupling �Metal carbene � N-Tosylhydrazones
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1 Introduction

N-Tosylhydrazones are common substrates in organic chemistry and are readily

prepared by condensation of carbonyl compounds with N-tosylhydrazide. As stable
and readily available reagents, tosylhydrazones (N-tosylhydrazones) have been

widely applied in organic synthesis over the decades. The reactivity of tosylhydrazone

is determined by acidic protons on a-position of hydrazone, N–H proton, or the

electropositive carbon of C¼N bond. Generally, the N–H proton of tosylhydrazone

is easily removed by base to generate a diazo intermediate (Fig. 1, pathway a) [1, 2].
However, the acidic a-proton of tosylhydrazone can be abstracted by a strong base,

such as organolithiums, to form vinyl lithium (Fig. 1, pathway b) [2]. These

intermediates are very important in organic synthesis. The carbon of the tosyl-

hydrazone C¼N bond is electropositive and thus can be attacked by nucleophiles

(Fig. 1, pathway c) [3]. Finally, the N–H bond of tosylhydrazones can be substituted

(Fig. 1, pathway d) [4, 5]. Therefore tosylhydrazones can undergo various reactions

and thus have been important substrates for current organic synthesis.

The construction of C¼C bonds is fundamental in organic chemistry. Up to now,

several olefination methods by direct use of carbonyl compounds have been

established. The Wittig reaction is one of the most preeminent reactions which can

provide a general way to perform olefination of aldehydes/ketones. Since the discov-

ery of the Wittig reaction, some modified versions with high stereoselectivity

have been developed and extended. As derivatives of carbonyl compounds, tosyl-

hydrazones have been involved in various olefination reactions in recent years. Some

of the methodologies have an advantage over those using carbonyl compounds

directly. In particular, Pd-catalyzed cross-coupling of N-tosylhydrazones with a

number of reagents involving palladium carbenes have attracted great interest –

see (1). Based on these novel catalytic transformations, various functionalized alkenes

can be prepared with high stereoselectivity and regioselectivity.

R R'

NNHTs
R''X

R R'

Pd
R''

+
[Pd]

various alkenes ð1Þ

R
R'

NNHTs

R
R'

NN

R''
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R

R'

Li

R
R'

O
TsNHNH2

R
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N2

b

a
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d

more
reactions

more
reactions

a

Fig. 1 The reaction of tosylhydrazones
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2 Alkene Formation Through Non-catalytic Reactions of

N-Tosylhydrazones

Pioneering work by Bamford and coworkers demonstrated the alkene synthesis by

treatment of N-tosylhydrazones derived from ketone with base, the so-called

Bamford–Stevens reaction – see (2) [1]. A diazo intermediate is supposed to be

initially generated during the process. Subsequent singlet carbene formation in

aprotic solvent leads to the Z-alkenes predominantly through 1,2-H shift to the

carbenic center (Fig. 1, pathway a). However, a carbenium ion intermediate is

produced in protic solvent and finally affords a mixture of Z- and E-olefins.
Notably, the regioselectivity and stereoselectivity of Bamford–Stevens reaction

are also influenced by the non-migrating (i.e., the bystander group) substituents

and various stereochemical features of the substrates [6–10].

R
R'

NNHTs R

R'

alkali metal or
alkali metal hydroxide

thermal or photochemical
condition

R
R'

N2 ð2Þ

The Shapiro reaction is another widely known transformation for alkene synthe-

sis from N-tosylhydrazones – see (3) [2]. In this method, strong bases such as

organolithium are generally utilized to abstract both hydrazone proton and the less

acidic a-proton, leading to the formation of a diazonium group (Fig. 1, pathway b).
The resulting vinyllithium then reacts readily with different electrophiles (H2O,

alkyl halides, aldehyde, etc.) to afford substituted alkenes [11–15]. The reaction can

be considered as a variation of the Bamford–Stevens reaction. However, this

method does not lead to high stereoselectivity between the E and Z isomers of the

products. To the best of our knowledge, tosylhydrazones derived from aldehydes

are not applicable to the Shapiro reaction because addition of the organolithium to

the carbon of the C¼N double bond will occur exclusively [16, 17].

E+ R

R'

Eorganolithium

E = H2O, alkyl halide, aldehyde and etc

R
R'

NNHTs
R

R'

Li

ð3Þ

Borane-mediated reduction of a,b-unsaturated tosylhydrazones is another reli-

able reaction to synthesize alkenes. In this type of reaction, new C¼C bonds are

formed by an “alkene walk” within the substrates through intramolecular rearrange-

ment [18–21].

Known as Barton–Kellogg olefination, C¼C bond formation by the reaction of a

thioketone and a ketone through a diazo intermediate has been pioneered by

Staudinger’s group and further developed by the groups of Barton and Kellogg

[22–24]. The thioketone required for the reaction is commonly derived from a
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ketone and Lawesson’s reagents, and the diazo compounds can be directly utilized

or freshly prepared through a one-pot oxidation of hydrazones [25–30]. A recent

application of ketone tosylhydrazone for Barton–Kellogg olefination has been

reported by Baader and coworkers, but the E/Z selectivity is low – see (4) [31].

NNHTs
+ S

H

1) t-BuOK 1.03 equiv
Py, rt to 60 oC;

2) Et2O, reflux, 5h;
3) PPh3 1.1 equiv,

toluene, reflux, 24h E/Z = 0.72, 42% yield

H3CO H
H3CO

ð4Þ

In 1979, Vedejs and coworkers reported that alkenes were afforded by the reaction

of sterically unhindered aldehyde tosylhydrazones with stabilized carbanions through

a condensation–fragmentation process [3]. An unusual stereoselectivity for trans-
alkenes was observed by treating tosylhydrazone of benzaldehyde with butyronitrile –

see (5) – R3 ¼ Et, R4 ¼ H, X ¼ CN in the presence of lithium diisopropylamide

(LDA). Furthermore, Katrizky and coworkers have achieved highly stereoselective

synthesis of E-stilbene by reaction of tosylhydrazones with benzotriazole-stabilized

carbanionwith the aid of organolithium [32, 33] – see (5) –X ¼ 1-benzotriazolyl (Bt).

This method can be compared with Julia-type olefination, in which aldehyde is the

substrate in the place of tosylhydrazone.

Wicha and coworkers further reported similar reaction of ketone tosylhydrazones

by using organomagnesium – see (5) – X ¼ SO2R [34]. Experimental results showed

that the substituents on a and b positions of metal sulfones affected the stereose-

lectivity of target alkenes. The reaction of lithiated sulfones and b-branchedmagnesio

sulfones generally leads to high E-selectivity, albeit the yield is lower. Moreover, the

regioselective olefination of the corresponding aldehyde tosylhydrazone containing a

potential leaving group such as an alkoxy group or an amino group on the a-position
was reported by Chandrasekhar and Wicha, respectively – see (5) – X ¼ SO2Ar

[35–40]. The competing Shapiro reaction could be restrained by employing

organomagnesium sulfones instead of lithium reagents [40].

R1 R2

NNHTs
+

R4 X
R2

R3R3 organolithium or
organomagnesium

R4

R1

X = CN, SO2R, Bt, etc.
ð5Þ

As mentioned above, the diazo intermediate is initially generated in the

Bamford–Stevens process. The diazo carbon will undergo homocoupling if the in

situ generated diazo intermediates are consumed too slowly by the reaction

partners. However, this coupling is generally inefficient no matter whether the

tosylhydrazones salts are treated under thermal or photolytic promotion [41, 42].

In most of the reactions of tosylhydrazones, homocoupling products are detected as

by-products because low concentration of diazo compounds is generated in situ

under the condition. However, the side reaction may turn into a major one and thus

become synthetically useful. In 2001, Kabalka and coworkers investigated the

formation of stilbene derivatives with high trans-selectivity in good yield through
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homocoupling of aryl aldehyde tosylhydrazones in the presence of trialkyl borate

and base – see (6) [43]. A stoichiometric quantity of trimethyl borate was

required to prevent the possible attack of in situ generated lithium tosylate on the

carbene intermediate [44].

Ar
H

N N
H

Ts

B(OMe)3, t-BuLi

Ar

Ar

THF, reflux
79~88% yield 12 examples

ð6Þ

3 Alkene Formation Through Transition Metal-Catalyzed

Reactions of N-Tosylhydrazones

3.1 Introduction

Diazo compounds can be dediazonized by transition metal complexes to generate

metallocarbenes, which are important intermediates in various transformations

[45–48]. Since tosylhydrazones have been found to be readily available

precursors of diazo compounds through the Bamford–Stevens reaction, a series

of transition metal-catalyzed reactions of aldehyde tosylhydrazone salts in the

presence of base and phase transfer catalyst (PTC) have been reported since 2000

[49–53]. It has been considered that metal carbenes generated from the in situ

generated diazo compounds are involved in the catalytic cycle of these reactions –

see (7).

R R'

NNHTs

R R'

N2base

thermal condition

[M]

R R'

[M] ð7Þ

Alkene formation through homocoupling or 1,2-shift of diazo compounds is

a very common process for metal carbene intermediates [54, 55]. These reactions

can be used for alkene synthesis from tosylhydrazones. In this context, Jung

and co-workers investigated the Cu-promoted intramolecular coupling of bis

(tosylhydrazone) in 1991 [41]. Addition of catalytic amounts of CuBr has been

found to increase the yield of phenanthrene products – see (8). Scott and coworkers

reported another Cu-catalyzed olefination through an efficient one-pot dimerization

of tosylhydrazones – see (9) [56]. Low yields of olefin products through Cu- or Rh-

catalyzed dimerization of tosylhydrazones have also been reported by Doyle’s

group [53]. However, the dimerization of tosylhydrazones is reported as undesired

side-products in most of the transition metal-catalyzed reactions. Their potential in

organic synthesis has not been explored.
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NNHTsTsHNN
CuI.P(OEt)3 1 equiv

THF,
R = H, 80% yield;

R = MeO, 21% yield
R R

R R

NaH

D ð8Þ

NNHTs
Br

Br Br
NaOCH3
1.4 equiv

CuBr
3 mol%

67% yield, two steps

pyridine CH2Cl2
ð9Þ

3.2 Wittig-Type Reaction

With the advancement of catalytic transformation, it was of great interest to find

practically useful catalytic olefination inWittig-type reactions. Catalytic olefination

of diazo compounds could be achieved by using transition metal catalysts as

reported by Schwartz et al. [57]. A series of catalytic olefination reactions have

been developed by treating diazo compounds with aldehydes in the presence of

phosphine reagents and metal complexes of Mo, Re, Ru, Rh, Co, Fe, or Cu under

mild conditions – see (10) [58–65]. Different pathways involving metalloazines,

phosphazines, phosphorus ylides, or metal carbene intermediates have been pro-

posed based on the experimental or computational results. In these reactions the key

role of metal carbene intermediates and phosphorus ylides have been confirmed for

Fe, Ru, Co, and Re-catalyzed procedures [62–65]. These reactions can be consid-

ered as organometallic variation of Wittig reactions.

R1

N2

R2
+ R3CHO C CHR3

R1

R2
[Mo, Re, Ru, Rh, Co, Fe, Cu, etc.]

P-Ligands
ð10Þ

Aggarwal and coworkers have reported that E-olefins can be obtained with high

selectivity by the reaction of aldehyde tosylhydrazones with aldehydes catalyzed by

an iron complex (mesotetraphenylporphyrin iron chloride, ClFeTPP) in the presence
of (MeO)3P. BnEt3Cl is utilized as PTC (Fig. 2) [66, 67]. The reaction mechanism is

proposed to be a Wittig-type reaction by 31P NMR measurement. Phosphorus ylides

are assumed to be generated through metal carbene transfer to phosphate. The ratio of

E/Z olefins has been achieved up to 98:2 with high yields. Furthermore, the potassium

salts of hydrazones are found to bemore suitable for the reaction. Besides, changing of

substituents on phosphorus from carbon to oxygen led to better E selectivity. The

efficiency of this reaction has been demonstrated by the highly stereoselective synthe-

sis of trans-stilbene derivative, which a potential anticancer compound [66, 67].

Zhu and coworkers have reported an alternative preparation of trans alkenes

through an Rh(II)-catalyzed reaction of aldehydes with pentafluorobenzaldehyde
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tosylhydrazones in the presence of triphenyl arsine – see (11) [68]. During the

reaction, arsonium ylide is assumed to be generated in situ through similar carbene

transfer with subsequent Wittig-type reaction.

C6F5 N

H
N

Ts + ArCHO
1) NaH, 1,4-dioxane

2) Rh2(OAc)4 1 mol%
AsPh3 1.5 equiv
PTC 5 mol%

C6F5
Ar

1.5 equiv. 35~70% yield
100% trans

ð11Þ

Compared with the typicalWittig reaction, theWittig-type reaction under catalytic

conditions provides a way to couple aldehydes with tosylhydrazones for the prepara-

tion of substituted stilbenes with good trans-selectivity. The method also avoids the

separate preparation of phosphorus ylide. Thus, this method provides an alternative

pathway of C¼C bond formation and extends the scope of substrates from alkyl

halides to various aldehydes. However, more than 1 equiv. of phosphorus reagent is

still needed. This method has not been well applied to ketone olefination.

3.3 Pd-Catalyzed Cross Coupling Reactions

Palladium complexes have been widely utilized as catalysts in various coupling

reactions for the construction of C–C and C–X bonds [69–71]. Although not as

common as Rh(II) and Cu(I) catalysts, Pd complexes have also been used as catalysts

in the reaction with diazo compounds. Over the last few decades, some Pd-catalyzed

reactions of diazo compounds, such as cyclopropanations and polymerizations,

have been reported [72]. In 2001, Van Vranken and coworkers reported the first

Pd-catalyzed coupling reaction of diazo compounds with benzyl halides (Fig. 3)

[73]. Through the reaction of trimethylsilyl diazomethane and benzyl halides, C¼C

bonds can be constructed and substituted styrenes are obtained in good yield.

The reaction was suggested to be initiated by oxidative addition of benzyl

halides to Pd(0) complex. The generated Pd(II) complex then decomposes diazo

R N

H
N

Ts

Ar

N2

H

N2

cat

M=CHR P(OMe)3

(OMe)3P=CHAr

R'CHO

1) KOtBu 1.2 equiv, toluene, 0 oC to rt 1h

2) R'CHO 1 equiv, ClFeTPP 1 mol%
PTC 10 mol%, P(OMe)3 1.2 equiv
40 oC, 48 h

R
R' 8 examples

79-95% yield
E/Z up to 97:3

KOBut

R N
N

Ts
K+

PTC

- R3P=O

R = aryl, alkyl, vinyl;
R' = aryl

Fig. 2 Synthesis of disubstituted alkenes by Fe-catalyzed reaction of tosylhydrazones with

aldehydes
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compound to produce Pd carbene intermediate. Subsequent carbene migratory

insertion into the palladium–carbon s bond was assumed to be the key step in the

procedure (Fig. 3) [73–76]. Although mechanistically interesting, this reaction

hasn’t attracted much attention until very recently. In the past few years, this type

of cross-coupling reaction has been revisited and a series of Pd-catalyzed coupling

reactions of diazo compounds have been developed by the groups of Van Vranken,

Yu, Wang and coworkers [72, 77–86]. Various substituted alkenes can be accessed

through these reactions. However, the studies on the unstable diazo compounds

without an electron-withdrawing group in the a-position are limited because of

their inconvenient preparation and handling of diazo substituents. To overcome

such difficulty, the in situ generation of diazo compounds is expected to play the

role. The studies in the past decades have demonstrated that tosylhydrazones can

be used as precursors for diazo substrates in transition metal-catalyzed reactions

[67, 75, 76]. In this section, recent progress on alkene preparation from palladium-

catalyzed reaction of tosylhydrazones will be discussed in detail. These reactions

are classified through different palladium carbene migratory insertion processes.

3.3.1 Carbene Insertion into the Palladium–Aryl Bond

Cross Coupling with Aryl Halides

Barluenga and coworkers first employed tosylhydrazones for Pd-catalyzed coupling

reaction of aryl halides in the presence of bases (Fig. 4) [87]. The reaction is catalyzed

by Pd2(dba)3 with Xphos as ligand. The tosylhydrazones can be those derived from

cyclic ketones, aryl ketones, or alky carboxyaldehydes. Aryl chlorides or bromides

X
R

N2

SiMe3
H

R

Ar X

Ar PdX

Ar
Pd

SiMe3

X

H

Pd

XH

SiMe3

Ar

Pd

SiMe3

H

Ar

X

Ar

Me3SiCH=N2Pd

SiMe3

X
Ar

[Pd2(dba)3] 2.5 mol%

AsPh3 15 mol%

DCE, reflux, 1 h

iPr2NEt 2.0 equiv

+

X = Cl, Br; R = 4-MeO2C, 4-NO2, 3-OMe

Pd0

4 examples
54-60% yield

Fig. 3 Pd-catalyzed cross-coupling of trimethylsilyldiazomethane with benzyl halides
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can undergo the transformation smoothly under the optimized reaction condition.

Electron-withdrawing or -donating groups on the aromatic ring of aryl halides are all

compatible in the reactions. Thus, the coupling reaction provides a convenientmethod

to synthesize di/tri-substituted olefins from tosylhydrazones.

Similar to the Pd-catalyzed reaction of diazo compounds with benzyl halides

[73], the reaction was proposed to be initiated by oxidative addition of aryl halide to

Pd(0) species to form aryl palladium(II) complexA. Then Pd carbene B is produced

by decomposition of the in situ generated diazo compound from N-tosylhydrazone
through Bamford–Stevens reaction with the aid of base under heating. Migratory

insertion of Pd carbene to Pd–aryl bond leads to Pd(II) intermediate C. The

compound then undergoes b-hydride elimination to yield complex D with the

formation of di- or trisubstituted olefins (Fig. 5).

With this coupling reaction, excellent trans-selectivity could be obtained in

the preparation of disubstituted alkenes. In the case of trisubstituted olefins,

the mixture of E/Z isomers was commonly isolated with much higher ratios of

E olefins. The stereoselectivity can be interpreted as follows – see (12). The

configuration of final olefin is determined by the syn b-hydride elimination in the

transition state. The R group is favorable to eclipse with the smaller substituent (Rs)

of the vicinal carbon atom to minimize the steric interactions. Thus trans-alkenes or
trisubstituted E-olefins were formed selectively.

H[Pd]

RS R
HRL

H

RS R

RL
+ [Pd]-H

syn b-H elimination
H

R

H
RS

RL

[Pd]

ð12Þ
Applying this method, Alami and coworkers prepared a series of 1,1-

diarylethylenes containing polyoxygen substituents on the aromatic ring (Fig. 6)

R1 R3

NNHTs

R2

+ ArX

Pd2(dba)3 1 mol%
Xphos 2 mol%

LiOtBu 2.2 equiv
, dioxane

R1 R3

Ar

R2

R1 = H, alkyl or aryl;
R2, R3 = H, alkyl; X = Cl, Br

XPhos:

Php-Tol

Ph

tBu

p-TolNC p-Tol

98% 74% 98% 75% 99%

N

Bn
p-Tol

52% 80% (1:1 E:Z) 67% (82 : 18)

16 examples
52-98% yield

iPr iPr

iPr

PCy2

Me

Bn
p -Tol

Bn
p-Tol

D

Fig. 4 Synthesis of alkenes through Pd-catalyzed coupling of tosylhydrazones with aryl halides
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[88]. The reactions under the conditions (Pd2(dba)3-Xphos-LiO
tBu), as developed

by Barluenga’s group, proceed well to afford the olefins in good yields [87]. The

olefin products obtained are isomers of natural Z-combretastatins (isoCA), a novel
class of potent antitubulin agents.

Based on the results of coupling reaction of tosylhydrazones and aryl halides,

Barluenga et al. further achieved a one-pot process directly from linear or cyclic

carbonyl compounds in the presence of 1.1 equiv. of tosylhydrazide with catalyst

Pd2(dba)3-Xphos (Fig. 7) [89]. In this reaction, tosylhydrazone is produced in situ

and subjected to the subsequent reaction without separation. Compared with the

reaction starting from pre-formed tosylhydrazones, the scope of ketone substrates

and stereoselectivity of products do not exhibit any obvious difference. Moreover,

R1 R3

N

R2
LiOtBu

H
N Ts

R1 R3
N

R2

N Ts

R1 R3

N2

R2

L-Pd
Ar-X

PdL X

PdL X

R1 R3

R2

Pd

L

X

R1 R3

R2

Ar H

PdL X

H Ar

Ar

base

base.HX

R1 R3

Ar

R2

A

BC

D

Fig. 5 Mechanism of Pd-catalyzed cross coupling

Ar1

NNHTs

+ Ar2X

[Pd2(dba)3 ] 1 mol%

Xphos 2 mol%

X = I, Br
LiOtBu 2.5 equiv
70 oC, dioxane

Ar2Ar1

MeO

OMe

MeO
OH

OH

OMe

OMe

OH

OMe

MeO

OMe

MeO OH

OMeMeO

OMe

HO OH

OMe MeO

OMe

HO OMe

OMe

O

O

53% 62%

50% 69% 59%

5 examples
50-69% yield

Fig. 6 Synthesis of isoCA
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the reactions proceed well even in solvent grade dioxane in open air. Experimental

results show that the H2O in situ generated in the first step may be advantageous to

the reaction. Interestingly, the reaction of aldehydes also led to good results. No

aldol reaction of linear aldehydes was observed and trans-olefins were isolated in

the reactions exclusively.

In 2008, Barluenga’s group further employed the tosylhydrazones from

saturated heterocyclic carbonyl compounds for the Pd-catalyzed cross-coupling

reaction with aryl halides [89]. In the presence of LiOtBu, the reaction of N-ethyl
protected 4-piperidone tosylhydrazone and p-bromotoluene was assayed with cata-

lytic system Pd2(dba)3-Xphos. The reaction shows interesting chemoselectivity

depending upon the electronic property of N-protected group (N-PG). Electron-

withdrawing groups, such as tert-butyloxycarbonyl (Boc), led mainly to thermal

degradation of tosylhydrazone. However, N-ethyl protected tosylhydrazone

resulted in the expected coupling reaction with p-bromotoluene (Fig. 8a). A similar

reaction system has been successfully extended to the coupling of aryl halides with

R1 R3
O

R2

+ ArX

TsNHNH2 1 equiv
[Pd2(dba)3] 1 mol%

Xphos 2 mol%

LiOtBu 2.5 equiv
110 oC, dioxane

R1 R3

Ar

R2

9 examples
72-98% yield(R3 = H or alkyl; X = Cl, Br)

CN
tBu

p-Tol p-Tol N

Bn
p-Tol

96% 98% 76% 92% 60%

Fig. 7 Synthesis of alkenes by one-pot reaction of carbonyl compounds and aryl halides

N
PG

NNHTs Pd2(dba)3 1 mol%
Xphos 4 mol%

LiOtBu 2.3 equiv
110 oC, dioxane

TsNHNH 2 1 equiv
Pd2(dba)3 1 mol%

Xphos 4 mol%
LiOtBu 2.3 equiv
110 oC, dioxane

+

Br

CH3

N
PG

O

+ ArX

N
PG

Tol-p

N
PG

Ar

PG = Boc, 15 : 85
PG = Et, 98 : 2

PG = Et, Bn or H; X = Cl, Br 16 examples
81-99% yield

+
N
PG

a

b

Fig. 8 Synthesis of alkenes through coupling of heterocyclic tosylhydrazones with aryl halides.

(a) reaction from hydrazone; (b) reaction from ketone
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corresponding 4-piperidones. Heterocyclic olefins can be obtained in good yields

no matter whether the nitrogen atom is unprotected or protected by ethyl and benzyl

groups (Fig. 8b).

Previous work has indicated the possibility of cross-coupling reaction of aryl

bromide with sterically hindered tosylhydrazones [87, 89]. Alami and coworkers

have reported the PdCl2(MeCN)2-catalyzed reaction of aryl halides with a series of

sterically hindered tosylhydrazones containing bulky groups in the a-position. Less
sterically demanding phosphine ligand 1,3-bis(diphenylphosphino)propane (dppp)

and less basic Cs2CO3 were utilized in this reaction (Fig. 9) [90]. Notably, fluoride

and chloride substituents on aromatic rings remain intact after the reaction and

various 1,1-diarylalkylidenes can be prepared with good yields.

In addition, the optimized reaction conditions (PdCl2(MeCN)2-dppp-Cs2CO3)

have been further applied for the coupling of less hindered tosylhydrazones with

aryl halides or pseudohalides – see (13). Six 1,1-diarylethylenes with polyoxygen

substituents on the aromatic rings were prepared. More reactions of tosylhydrazone

with pseudohalides will be introduced later.

NNHTs

+

X

R1 R2

[PdCl2(MeCN)2] 5 mol%
dppp 10 mol%

Cs2CO3 3 equiv

dioxane, 90 °C
X = I, Br, OTf, OSO2Im

R2

6 examples, 71-95 % yield

R1 ð13Þ

Pd-catalyzed coupling reaction of diazoesters with aryl halides has been proven

to be an efficient approach for the preparation of 2-arylacrylates by Wang and

coworkers [86]. Accordingly, the Pd-catalyzed cross-coupling of p-bromotoluene

NNHTs

n

+

X

R1 R2

[PdCl2(MeCN)2] 5 mol%
dppp 10 mol%

Cs2CO3 3 equiv

DME or dioxane, 90 oC
X = I, Br

n

R1 R2

MeO

MeO

OMe

OMe
82%

MeO

MeO

OMe

OMe

78%

NO2 MeO

MeO

OMe

OMe

80%

F OMe
70%

MeO

MeO

OMe

OMe

70%

NO2

21 examples, 62-90 % yield

N
Cl

90%

Fig. 9 Synthesis of 1,1-diarylcycloalkylidenes by coupling of sterically hindered tosylhydrazones

with aryl halides
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with tosylhydrazone of ethyl pyruvate was completed in quantitative yields

utilizing catalytic Pd2(dba)3-Xphos (Fig. 10) [91]. It is notable that the potentially

sensitive ester functionality remains intact under the basic reaction conditions.

The scope of the reaction can be extended to several tosylhydrazones derived

from a-alkyl 2-oxoesters. The reaction of linear 2-oxoesters leads to a mixture of

Z/E isomers and the ratio is affected by the size of groups on the double bond. The

bulky E-mesitylene in the mixture undergoes isomerization and finally affords

exclusively E isomers if the reaction is carried out for longer time.

Attempts have also been made to develop a more practical procedure by carrying

out the reaction directly from ethyl pyruvate through a one-pot process (Fig. 11).

The crude tosylhydrazones, freshly formed by stirring the mixture of ethyl pyruvate

and tosylhydrazide for 2 h at 70 �C, was employed for the coupling reaction in a

one-pot protocol. A series of 2-arylacylates was synthesized through this reaction.

Thus a-functionalized alkenes can be conveniently prepared through the reac-

tion of a-functionalized tosylhydrazones with aryl halides. More related reactions

of corresponding a-substituted tosylhydrazones with aryl bromides have been

reported by Barluenga and co-workers (Fig. 12) [92]. With Pd2(dba)3-Xphos, the

reaction was carried out from tosylhydrazones (method A) or directly from ketones

in one-pot fashion (method B). The coupling reaction of aryl bromides bearing a

variety of substituents on the aromatic ring leads to expected enol ethers or

enamines in good yields. Less reactive chloride on the aromatic ring of aryl

bromide is tolerable in the reaction with exclusive chemoselectivity. In the reaction

of 1,2-dibromobenzene, one of the bromo substituents undergoes coupling reaction

and another remains intact to give o-bromo-substituted enol ether. It has been

observed that ketone substrates lead to the mixture of E/Z isomers in approximately

1:1 ratio and the aldehyde substrates mainly give trans olefins. As previously

CO2Et

NNHTs

+

[Pd2(dba)3] 2.5 mol%

Xphos 10 mol%

LiOtBu 2.4 equiv
110 °C, dioxaneR2

R1

Ar

CO2Et
R2

R1
ArBr

CO2Et CO2Et

CO2EtPh CO2EtPh

MeO

99% (by 2 mol% Pd) 51% 60% 51%

CO2Et

Cl

CO2Et

H3C

52% 60% 70% 65%
(E isomer after 12h )

8 examples, 51-70% yield

CO2Et

CO2EtPh

ClMeO

OMe

Fig. 10 Synthesis of substituted 2-arylacylates by cross-coupling of a-carbonyl tosylhydrazones
with aryl halides
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discussed, the stereochemistry is determined in the step of b-hydride elimination. In

this reaction, good stereoselectivity can be obtained when there is significant steric

interaction between R and Ar groups – see (12). Enol ethers, which can also be

obtained in this reaction, are commonly used intermediates in organic synthesis.

These compounds can be further hydrolyzed to generate corresponding carbonyl

compounds by treating with acid [92].

The reaction of tosylhydrazone derived from 1-methyl-2-hexanone ketone

containing hydrogen atoms on both a-carbon atoms has also been mentioned in

the same paper. A mixture of enol ether and allylic ether in 1:1 ratio without Z/E
selectivity is produced because of the lack of regioselectivity in the step of syn

CO2Et
NC

CO2Et

N
H

CO2Et

Cl

CO2Et

Me2N99 % 90% 98%

O

[Pd2(dba)3] 2.5 mol%
Xphos 4 mol%
LiOtBu, 110 °C, dioxane

Ar
1. TsNHNH2, dioxane, 70 °C

2. Ar-BrOEt

O

OEt

O

CO2Et

H3C

N

CO2Et

89 % 98% 86%

12 examples
60-99% yield

Fig. 11 Synthesis of 2-arylacylates by one-pot reaction of a-carbonyl esters with aryl halides

1. TsNHNH2, dioxane
70 oC, 2h

R

NNHTs
Y 2. Ar-X

[Pd2(dba)3], Xphos

LiOtBu, dioxane
method B

R

O
Y

[Pd2(dba)3], Xphos

LiOtBu, dioxane
method A

Ar-X

R

Ar
Y

Ph p-Tol

OCH3

Ph

OCH3

CN
Ph

OCH3

Br

Ph

H3CO
N

Ph

Ph

H3CO N Boc

R = H or aryl, Y = OMe, OBn or morphiline

Ph p-Tol-Ph

N

O
BnO BnO

99/92 % (1:1)a 99/98 % (1:1) 80/79 (1:1) 80/- (1:1)

84/- % (1:1) 88/- % (1:1) 77/65 (7:1) 75/69 (7:1)

[a]: yield from method A/B (ratio of E/Z isomers)

15 examples

Fig. 12 Synthesis of enol ethers and enamines by reaction of a-substituted tosylhydrazones with

aryl halides
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b-hydrogen elimination (Fig. 13). The heteroatom on the a-carbon of hydrazone

does not have any obvious influence on the regioselectivity.

In addition, the coupling reaction of 2-methoxyacetophenone with o-bromo-N-
methylaniline has been applied to prepare indole derivatives, by combining the

coupling reaction with acid promoted C–N bond formation – see (14).

Ph
OCH3

+
Br

NHMe

NNHTs

1) [Pd2(dba)3], XPhos

LiOtBu, dioxane, 2h, 110 °C

2) Toluene, Aq HCl
MW, 180 °C, 1 min N

Ph

Me94% yield

ð14Þ

Alami and coworkers reported the Pd-catalyzed cross-coupling reaction of ortho
substituted aryl halides with tosylhydrazones bearing ethoxy group on b- or remoter

positions (Fig. 14) [93]. Tosylhydrazones were freshly prepared by a one-pot two-

step process including alkynes hydration and tosylhydrazones formation. It is

notable that high yield of Z-trisubstituted olefins can be isolated as main product.

As already mentioned, the stereoselectivity is determined in the step of syn b-
hydride elimination of the palladium intermediate. Experimental results suggest

that an ortho substituted aryl group and adjacent substituent are required for a cis
arrangement in the transition state for b-hydride (Fig. 14). The intriguing ortho-
directing effect has been confirmed with DFT calculation by Barluenga and

coworkers [75, 94]. The details will be discussed in Sect. 3.3.1.2.

The allylic ethers obtained can be further used to prepare 4-arylchromenes,

thiochromenes, and other related heterocycles through acid promoted C–O bond

formation – see (15).

EtOH, reflux, 1 h

OEt

OMOM

MeO

O

MeO

PTSA 3 equiv

98% yield

ð15Þ

Metal carbene transformations of a,b-unsaturated diazo compounds or their

precursors are generally complicated because of the possible competing intramo-

lecular cyclization of diazo substrates [95–97]. This side reaction can be partially

restrained by protecting the terminal olefin or placing the a,b-unsaturated moiety in

Pr OCH3

NNHTs

[Pd2(dba)3], Xphos

LiOtBu, dioxane
99 %

p-Tol-Br
Pr OCH3

p-Tol
Pr OCH3

p-Tol
+

1 : 1

Pr OCH3

p-Tol

H H

Pd
L

Fig. 13 Studies on regioselectivity of syn b-hydride elimination

Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling 253



a cycle. Barluenga and coworkers have recently reported the Pd-catalyzed cross-

coupling of stable a,b-unsaturated tosylhydrazones with aryl halides, directly

starting from a,b-unsaturated ketones (enones) (Fig. 15) [98]. The catalytic system

condition Pd2(dba)3-Xphos-LiO
tBu was applied to various substrates and conju-

gated dienes could be obtained in good yields. No products through competing

intramolecular cyclization were detected in the reactions. The formation of dienes

proceeds smoothly.

It is notable that two different types of dienes have been produced depending on

the structure of a,b-unsaturated substrates. Similar reaction mechanisms can be

proposed: oxidative addition-Pd carbene formation-migratory insertion affords

intermediate E. Diene A is released with subsequent b-H elimination for the cyclic

or linear substrates without hydrogen at the d-position. Otherwise, complex E

prefers to undergo Z1–Z3 rearrangement to give intermediate G for cyclic

substrates. Diene B is then generated from F. Experimental results show that dienes

B will be produced dominantly when enone moiety locates in a ring (Fig. 16).

Minor A-type diene would be generated if the original C¼C bond located

outside the ring of the cyclic ketone – see (16). Therefore the regioselectivity of

this reaction is also influenced by the relative position of C¼C and C¼O bonds. In

this case, the chiral center in the b-position remains intact.

MeO

MeO

OH
n

1.PTSA,EtOH
2.TsNHNH2

3.PdCl2(MeCN)2/Xphos

LiOtBu, dioxane
o-R-ArX

OEt

R

MeO

n
10 examples

up to 100:0 Z/E ratio

OEt

OMOM

MeO

OEt

SMe

MeO

OEt

NO2

MeO

OEt

OMOM

MeO

68% (9:1) 93% (100:0) 80% (100:0)

OEt

OMe

MeO

OEt

SMe

MeO
77% (>9:1) 71% (19:1) 55% (100:0)

2 2

nOEt

NHNHTs

nOEt

MeO
PdX

R

Fig. 14 Pd-catalyzed reaction of tosylhydrazones with ortho substituted aryl halides
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A-type B-type (major)

O Ar2 Ar2

+

1. TsNHNH2, dioxane, 70 °C, 2h

2. Ar2-X
[Pd2(dba)3] 2.5 mol% / Xphos 10 mol%

LiOtBu 2.4 equiv, 110 °C dioxane

ð16Þ
The handling of chirality is an important topic in current synthetic chemistry. In

this context, the synthesis of alkenes containing chiral moiety has attracted great

interest. No chirality is introduced in the formation of C¼C bonds through

Pd-catalyzed cross-coupling. However, the existent chirality of substrates may be

retained if the proton in chiral carbon is not involved in the step of b-hydride

O TsNHNH2 1.1 equiv
[Pd2(dba)3] 2.5 mol% / Xphos

R3R4

R1

R2

+ Ar-X
LiOtBu 2.4 equiv

100 oC dioxane

Ar

R3R4

R1

R2

or

Ar

R4

R1

R2

R3'

Cl SMe

Ph

Ph

Ph

Ph

OMe

OMe

A-type: 94%a 95%a 99%a

C6H4OMe-p C6H4Cl-p
NH

A-type: 70%a 98%b 88%b

B-type: 80%a 91%a 55%bCN

Cl

aone-step process, hydrazones are generated in situ;
bone-pot, two steps; hydrazones are freshly prepared without seperation.

.

A B
22 examples, 51-99% yield

Fig. 15 Synthesis of dienes by reaction of enones with aryl halides

[Pd(0)]

Ar X

[Pd]Ar
X N2

R3R4

R1

R2

NNHTs

R3R4

R1

R2

[Pd]

R3R4

R1

R2

Ar

[Pd]

R3R4

R1

R2

Ar

R3 R4

R1

R2

Ar

[Pd]

R3R4

R1

R2

Ar

[Pd]

[Pd] H

Ar

R3R4

R1

R2

Ar

R4

R1

R2

R3'

with d-H without
d-H

A

B

CE

F

DG

Fig. 16 Proposed reaction mechanism
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elimination. In 2010, Barluenga and co-workers reported the Pd-catalyzed coupling

reaction of a-chiral methyl ketones with aryl halides through a one-pot procedure.

Efficiently catalyzed by the Pd2(dba)3-Xphos combination,a-chiral alkenes have been
prepared with complete retention of configuration of chirality at the a-position
(Fig. 17) [99].

It is obvious that the chirality will be eroded if the b-hydride elimination occurs

at the chiral a-position of tosylhydrazones. The selectivity of b-hydride elimination

in this reaction can be interpreted as follows. Alkylpalladium complex, the inter-

mediate generated after migratory insertion of palladium carbene, is favorable to

afford 1,1-disubstituted chiral olefin (Fig. 18, path a) because of the less steric

interactions in the transition state at b-hydride elimination. Apparently the alterna-

tive syn b-hydride elimination will lead to the erosion of chiral center. However, the

latter pathway is not preferred because it leads to the eclipse of the bulky substituent

with the methyl group of the substrate (Fig. 17, path b).
Nevertheless, the regioselectivity will be a problem for the substrates containing

hydrogen on two unsymmetric a-carbon atoms (Figs. 4, 13, 15, and 19) [87, 92, 99].

Comparing the results of limited cases, it seems to indicate a tendency of preferen-

tial b-H elimination in secondary C–H over primary C–H and primary C–H over

tertiary C–H (Figs. 16, 17, and 18). This tendency partially illustrates the retention

of configuration in Fig. 17 [99]. Therefore the stereoselectivity of the olefins is

determined by both thermodynamic stability of the olefin product and configuration

of palladium intermediate in transition state.

For the reaction of N-tosylhydrazones derived from chiral cyclic ketones, the

regioselectivity is also well controlled by the substrate structures. Barluenga and

coworkers reported the synthesis of several enantiomerically enriched allylic ethers

without chirality erosion through the coupling of aryl halides with a-chiral cyclic
N-tosylhydrazones under the similar reaction conditions (Fig. 20) [99].

N

O

Boc

TsNNH2

dioxane
N

NNHTs

Boc

Ar1-X
[Pd2(dba)3], Xphos

LiOtBu, dioxane
N

Ar1

Boc

Br

O

Br Br Br BrBrO

O

Ar1-X:

Product yield: 70% 62% 88% 85% 64% 69%

Boc

NNHTs

+ Ar2-Br
LiOtBu, 110 °C, dioxane

Pd(OAc)2, Xphos
H2O 5 equiv Boc

Ar2

Ar2-X:
N

Br Br Br

OMe Cl

Br

Ph
Product yield: 77% 64% 51% 52% 71% 69% 58%

Br Br

CN

Br

OTBS

6 examples, 62-88% yield

7 examples, 51-77% yield

MeO

Fig. 17 Synthesis of a-chiral alkenes by reaction of a-chiral ketones with aryl halides

256 Y. Zhang and J. Wang



Moreover, a series of enantiomerically pure cyclic dienes has been synthesized

through Pd-catalyzed coupling of aryl halides with b-chiral N-tosylhydrazones
(Fig. 21) [98]. The reaction is carried out under the catalytic system Pd2(dba)3-

Xphos with complete retention of the chirality. The mechanism of the diene

construction has been illustrated in Fig. 16. Thus, it is predictable that only one

type of diene can be produced starting from the cyclic enone (Fig. 21a). On the

other hand, enones processing double bonds outside of the ring lead to two types of

dienes (Fig. 21b) – see (16).

Cross-Coupling with Aryl Sulfonates

Aryl triflates have proved to possess approximately the same reactivity as aryl

halides in various Pd-catalyzed cross-coupling reactions [100, 101]. In 2009,

Alami’s group employed aryl triflates for Pd-catalyzed coupling reaction of

polyoxygenated aryl N-tosylhydrazones (Fig. 22) [102]. The catalytic system

Pd(OAc)2/Xphos with LiOtBu as base in dioxane was found to be suitable for the

reaction. The reaction is initiated by the oxidative addition of aryl triflate to Pd(0)

species. Then similar migratory insertion and b-hydride elimination subsequently

take place to afford a series of 1,1-diarylethylenes which are of biological interest.

H3C
R2

[Pd] Ar

R3
H3C

R2
[Pd]

R3

Ar

path a

H3C

[Pd]

Ar

H

R3R2

H

H

H

[Pd]

Ar

R2

R3

Ar

R2

R3

H3C

R2

R3

Ar

H3C

[Pd]

Ar

H

R2R3

path b

or

H

H

H

Ar

[Pd]

R2

R3

or

favored

disfavored

Fig. 18 Rationalization at the regioselectivity of the reaction

Bn
NNHTs

LiOtBu, 90 °C, dioxane

67% yield

Bn
p-Tol

p-Tol-Br
[Pd2(dba)3], Xphos

Bn
p-Tol

+

82 : 18

NNHTs

LiOtBu, 90 °C, dioxane
96% yield

C6H4OMe-mm-MeOC6H4-Br
[Pd2(dba)3], Xphos

C6H4OMe-m

+

66 : 34

NNHTs

X

LiOtBu, 110 °C, dioxane

p-Tol-Br
[Pd2(dba)3], Xphos

p-Tol

X

X = Me, 80%;
X =MeO, 88%

Fig. 19 Regioselectivity in the Pd-catalyzed reaction of tosylhydrazones with aryl halides
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Moreover, the tendency of aryl triflate to be more reactive than nonaflate and

imidazolylsulfonate in the reaction has been illustrated. Aryl tosylate has been

observed to be inactive under this reaction condition.

In 2010 the same group reported another similar coupling reaction of

tosylhydrazone with aryl triflate or aryl imidazolylsulfonate, catalyzed by

PdCl2(MeCN)2-dppp-Cs2CO3 – see (13) [90].

Very recently, Barluenga and coworkers have reported that aryl nonaflates can

be employed in the coupling with tosylhydrazones under the catalytic system

Pd2(dba)3-Xphos-LiO
tBu, with an additional 5 equiv. of H2O in dioxane (Fig. 23) [94].

Halide salt has been commonly utilized to accelerate the Pd-catalyzed coupling

reaction of aryl sulfonates [100, 101]. This is also the case for the coupling reaction

O
OMe TsNHNH2

Ar-X
[Pd2(dba)3], Xphos

LiOtBu, dioxane, 110 °C

NNHTs

OMe
Ar

OMe

98 % ee 97 % ee

Ar-X:

Product yield %:

Br O

O

Br Br

Me2N

Br

MeO

F97 98 86 83

[Pd]

OMe
Ar

H

H

H

Fig. 20 Synthesis of chiral allyl ethers by reaction of a-chiral cyclic tosylhydrazones with aryl

halides

O
1. TsNHNH2, dioxane, 70 °C, 2h

2. Ar1-X

[Pd2(dba)3] 2.5 mol% / Xphos 10 mol%
LiOtBu 2.4 equiv, 110 °C dioxane

Ar1

O Ar2 Ar2

+

1. TsNHNH
2
, dioxane, 70 °C, 2h

2. Ar2-X

[Pd2(dba)
3
] 2.5 mol% / Xphos 10 mol%

LiOtBu 2.4 equiv, 110 °C dioxane

a

b

Ar1-X: Ar2-X:
Br

OMe

Br

Cl

Br

NMe2

Br Br

OMe

Br

NMe2

Br

Ph

Product yield: 85% 51% 85% 70% 71% 71% 64
Product ratio: 20:80 10:90 33:66 10:90

Fig. 21 Synthesis of chiral dienes by reaction of chiral N-tosylhydrazones with aryl halides.

(a) reaction with cyclic enone; (b) reaction with enone
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with tosylhydrazone. The experimental results indicate that 1 equiv. of LiCl is

necessary to increase the reaction efficiency of alkyl tosylhydrazones. Moreover,

2 equiv. of tosylhydrazones have been used to avoid the Heck reaction of newly

produced olefins. However, for the reaction of aryl tosylhydrazones with nonaflates,

the coupling proceeds smoothly without LiCl.

The stereochemistry observed in this reaction provides useful insights into

the reaction mechanism. trans-Disubstituted ethylenes have been isolated from the

reaction of aldehyde tosylhydrazones with aryl nonaflates. The reaction of

aryl nonaflates with tosylhydrazones derived from dialkyl ketones mainly leads to

RO

NNHTs

+ Ar-OTf

[Pd(OAc)
2
] 5 mol%

Xphos 10 mol%

LiOtBu 2 equiv, dioxane
90 °C, 3h

RO
Ar

MeO

MeO

OMe

OMe

MeO

MeO

OMe

MeO

MeO

OMe

Cl

OMe
91% 75% 69%

MeO

OTBDMS

OMe

MeO

MeO

OMe O

O

N
MeO

MeO

OMe
97% 75% 52%

11 examples, 66-97% yield

Fig. 22 Synthesis of 1,1-diarylethylene by reaction of tosylhydrazones with aryl triflates

R1 R3

NNHTs

R2

+ Ar-ONf

Pd2(dba)3 1~5 mol%
Xphos 1~5 mol%)

LiOtBu 2.8 equiv
H2O 5 equiv, LiCl 1 equiv

Dioxane, 110 °C

R1 R3

Ar

R2

27 examples
70-99% yield

Bn
OMe O OMe OMe

OMe

Cl

OMe

MeO

OMe

MeO

Cl

Ph Ph

Ph

Ph

Ph

OMe
Ph

OMe

99% 89% 76%

94% 75% 92% 98%

90% 92%

Me

Cl

OMe

98%

Nf = n-C4F9OSO2

Fig. 23 Alkene synthesis by reaction of tosylhydrazones with aryl nonaflates
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E-alkene. These results are not consistent with the commonly proposed mechanism –

see (12). However, the stereochemistry of the reaction with tosylhydrazones derived

from alkyl aryl ketones is different. The reactionwith ortho-substituted aryl nonaflates
exclusively leads to trisubstituted Z-olefins. The results appear abnormal because that

will need a cis arrangement between the ortho-substituted aryl and adjacent alkyl

groups. Thus, the steric hindrance between ortho-substituted aryl and adjacent alkyl

groups seems to be disadvantageous in the transition state for b-hydride elimination

(Fig. 14). The authors have noticed this phenomenon and have carried out a DFT

computational study to gain detailed insight into the reaction mechanism. The calcu-

lation on transition state indicates that the ortho-substituted aryl is almost orthogonal

with the plane defined by the incipient double bond, placing the ortho-substituent anti
with the palladium complex – see (17) [75, 93, 94]. This kind of outcome is termed an

ortho-directing effect. Thus it is reasonable that similar reaction of aryl nonaflates

possessing a meta or para-substituent leads to the mixture of Z/E 1:1 isomers without

the ortho-directing effect.

OEt

MeO

PdI
H

R

OEt

MeO

R

L
IPd

L

ð17Þ

Cross-Coupling with Aryl Boronic Acids

Wang and coworkers have reported the Pd-catalyzed coupling reaction of arylboronic

acids with diazo compounds [84]. In 2010, oxidative Pd-catalyzed coupling of

N-tosylhydrazones with arylboronic acids was reported by the same group (Fig. 24)

[103]. Under the optimized conditions the reaction of a series of arylboronic acids

with substituted acetophenone N-tosylhydrazones proceeds well to afford substituted
olefins in acceptable yields. Experimental results indicate that no significant elec-

tronic effect and Z/E selectivity have been observed in the reaction.

In this reaction a combination of CuCl and O2 is used as oxidant. The reaction is

initiated by the oxidation of CuCl to Cu(II) species by oxygen, which then oxidizes

Pd(0) to Pd(II) species (Fig. 25). Subsequently, similar Pd carbene formation and

b-hydride elimination take place to afford the olefin products.

3.3.2 Carbene Insertion into the Palladium–Vinyl Bond

Pd-catalyzed coupling reaction of vinyl halideswith diazo compounds has been proven

to be an efficient process to synthesize substituted olefins with good stereoselectivity

[78–80]. In 2010, Barluenga’s group reported the Pd-catalyzed coupling reaction of

vinyl halides with N-tosylhydrazones for the preparation of dienes in moderate yields

(Fig. 26) [98]. The reaction follows a similar mechanism: oxidative addition and the
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migratory insertion take place to generate the palladium intermediate. Subsequently, a

Z1–Z3 rearrangement occurs. Then b-hydride elimination takes place which finally

leads to conjugated diene. The important feature of this type of coupling reaction is that

p-allylic Pd complex is generated through Pd carbene migratory insertion.

3.3.3 Carbene Insertion into the Palladium–Alkynyl Bond

In 2011, Wang and coworkers reported the oxidative Pd-catalyzed reaction

of tosylhydrazones with terminal alkynes (Fig. 27) [104]. Catalytic system

Pd(OAc)2-P(2-furyl)3 was successfully utilized for the reaction in the presence of

LiOtBu and benzoquinone (BQ).

The reaction is initiated by the insertion of Pd(II) complex into the C–H bond of

the terminal alkyne to give palladium alkynyl intermediate. Then complexation

with in situ generated diazo compound occurs to form a palladium carbene inter-

mediate. Subsequently, Pd carbene migratory insertion into the Pd–alkynyl bond

Ar
R1

NNHTs

R2

Pd(PPh3)4 5 mol%
CuCl 10 mol%, O2

LiOtBu 5 equiv
Dioxane, 70 °C

Ar
R1

Ar'

R2

25examples
30-84% yield

+ Ar'B(OH)2

71%
MeO

Cl

47%

Me

71%
NC

51%

75%

Et Ph
O

Ph

Et

OMeO
O 84% (E:Z = 1:1)30%

MeO
61%

Fig. 24 Oxidative cross-coupling of N-tosylhydrazones with aryl boronic acids

CuCl

Cu(II)

Pd(II)

Pd(0)
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Pd Ar

Pd Ar

Ph

X

X

ArB(OH)2 Ph

N2

Ph

NNHTs

Pd

Ph

X

Ar

Ph Ar

Pd

X

H

LiOtBu

tBuOH

Fig. 25 Proposed reaction mechanism
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occurs, followed by b-hydride elimination to afford conjugated enynes in good

yield with regeneration of Pd(0). BQ is employed to oxidize the regenerated Pd(0)

into Pd(II) for another cycle (Fig. 28). The configuration of conjugated enynes has

been determined by 1H NMR and the ratio of Z/E has been found to be up to 20:1 in

most cases. The Z-enynes stereoselectivity is also determined in the step of syn
b-hydride elimination. The linear alkyne is favored to eclipse with the R2 group that

avoids the steric interactions between R1 and R2 (Fig. 28).

NNHTs

Ar R
Br R1

R2

R1

R2

Ar

Br[Pd] R1

R2

[Pd]

R1

R2

Br
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Ar[Pd]
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R
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[Pd]

R1
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R

Ar H

MeO N Me2N

Me2N
Ph

Ph

Me2N

+

Pd2(dba)3 4 mol%

Sphos or Xphos 16 mol%

LiOtBu or NaOtBu 2.4 equiv
dioxane, 110 °C

[Pd](0)

h1-h3

8 examples, 40-61% yield

58% 47% 61% 55%

57% 56% 40% 51%

[Pd](0)

Fig. 26 Synthesis of liner dienes by reaction of tosylhydrazones with vinyl bromides

R1

NNHTs
+

[Pd(OAc)2] 5 mol%
P(2-furyl)3 20 mol%

LiOtBu 3.5 equiv
BQ 2 equiv, dioxane, 90 °C

R3R2 R1

R2

R3
18 examples

42~83 % yield
Z/E > 20:1
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O OH
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CF3

Ph
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O
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65% 68% 76% 65%

70% 72% 66%

CPh

Fig. 27 Synthesis of conjugated enynes by oxidative coupling of tosylhydrazones with terminal

alkynes
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3.3.4 Carbene Insertion into the Palladium–Allenyl Bond

Liang and coworkers recently reported the Pd-catalyzed cross coupling between

propargylic carbonates and aryl ketone tosylhydrazone salts (Fig. 29) [105]. The

reaction with secondary or tertiary carbonates was catalyzed by Pd2(dba)3 in the

presence of PTC and led to corresponding vinylallenes. However, the scope of

reaction could not be extended to primary carbonates. Moreover, trace product was

isolated from the reaction of propargylic carbonates possessing an electron-

withdrawing group on the aromatic ring. Moderate to good yields were achieved

for the substrates containing electron-donating group on the aromatic ring.

Weak base such as cesium carbonate has been utilized in this reaction to generate

diazo compounds in situ from tosylhydrazones through the Bamford–Stevens reaction.

The reaction is initiated by palladium-promoted decarboxylation of propargylic carbon-

ate to form propargylpalladium complex A, which then tautomerizes to afford

allenylpalladium intermediate B. Subsequently, the common carbene formation-

migratory insertion-b-hydride elimination occurs to afford various vinylallenes (Fig. 30).

However, by-products were also observed in this reaction, which was due to the

direct reaction of tosylhydrazone with palladium intermediate A. The reaction of

propargylic carbonates and aryl ketone tosylhydrazones leads to substituted propargylic

N-sulfonylhydrazones when catalyzed by the different catalyst combination

PdCl2(CH3CN)2-dppp in the presence of Cs2CO3. This side reaction might be caused

by the use of weak base Cs2CO3. Under such conditions, Pd-catalyzed amination of

[Pd](0)

BQ

hydroquinone

[Pd](II)
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R3[Pd]
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Fig. 28 Mechanistic rationale
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tosylhydrazones becomes more competitive than Pd carbene formation because of the

low concentration of the in situ generated diazo compounds – see (18) [4, 5].

Ar2

NNHTs
[Pd2(CH3CN)2] 5 mol%

dppp 10 mol%

Cs2CO3 2.2 equiv
Dioxane, 80 °C

R2

R1
+Ar1

CO2Me

R2
R1

Ar1
N Ts

N
Ar2

12 examples
0~85 % yield

ð18Þ

3.3.5 Carbene Insertion into the Palladium–Benzyl Bond

The coupling reaction of a-diazocarbonyl compounds and benzyl bromide developed

byVanVranken’s group provides a convenient method for the synthesis of substituted

olefins [73, 82]. The corresponding coupling reaction of N-tosylhydrazones with

Ar2

NNTs

[Pd2(dba)3] 10 mol%

Cs2CO3 2.2 equiv

BnEt3NCl 1 equiv

Dioxane, 110 °C 16 examples
up to 68% yield

R2

R1

+Ar1
CO2Me

Na

R2

R1

Ar1

Ar2

H

Et

Ph

Ph
56% 64% 54% 44%

H

iPr

Ph

Ph

H

Et

o-ClC6H4Cl

Ph

H

iPr

Ph

C
6
H

4
Ph-p

Ph H

Pri
Ph

Ph

Ph

Ph

Ph

Ph
H

H

68% 40% 45% trace

Fig. 29 Synthesis of vinylallenes by reaction of tosylhydrazones salts with propargylic carbonates
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Fig. 30 Proposed reaction mechanism for vinylallene formation
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benzyl halides has also been developed. A series of substituted olefins has been

obtained with excellent stereoselectivities and yields by using the Pd(OAc)2-P(2-

furyl)3 system as the catalyst (Fig. 31) [106]. It is notable that the reaction goes through

smoothly no matter whether the N-tosylhydrazones are derived from alkyl aldehydes,

aryl aldehydes or ketones. A chloro-substituent on the aromatic ring of either

N-tosylhydrazones or benzyl halides is compatible under the reaction conditions.

A similar mechanism is also proposed. The reaction is initiated by oxidative addition

of palladium(0) complex to benzyl bromide.b-Hydride elimination is then followed by

the migratory insertion of palladium carbene into the palladium–benzyl bond. The

stereochemistry of the products is also determined in the b-hydride elimination step.

trans-Olefins can be obtained by the reaction of tosylhydrazones deriving from

aldehydes. In addition, trans, trans-dienes can be synthesized by the reaction of a,b-
unsaturated aldehyde tosylhydrazones. Moreover, E-selective olefines are exclusively
formed when the sizes of the two groups on the carbon of ketone hydrazone are

distinguishable. Otherwise, the E, Z-selectivity will be diminished.

3.3.6 Carbene Insertion into the Palladium–Acyl Bond

In 2010 Wang’s group reported a three component reaction of ketone

tosylhydrazones, aryl iodides, and carbon monoxide [107]. At the beginning of

the investigation the mixture of enones and carbonyl compounds was formed.

Further examination found that the chemoselectivity of the reaction could be

controlled by the catalyst (Fig. 32). Catalyst system Pd2(dba)3-[HPCy3]BF4 led to

the enone derivatives exclusively. In contrast, carbonyl compounds were obtained

in the presence of Pd(PPh3)4 and Et3SiH. Under either of the two sets of reaction

conditions, high chemoselectivity was achieved.

+
LiOtBu 3 equiv

toluene, 3 h, 80 °C

[Pd2(dba)3] 2.5 mol%
P(2-furyl)3 20 mol% 21 examples

67-96% yield
E:Z > 20:1

Ar X
R1 R2

Ar

R1 R2

NNHTs

(X = Cl, Br)

R1 R2

PdXAr

Ph
O2N

Ph
Cl

Cl

Ph

Ph
Cl Ph

Ph
Ph

O2N

Ph

Ph

Ph
Ph

Ph
Ph

83% 96% 87% 87%

78% 82% (E/Z = 1:1) 67% (E/Z = 2:1) 69% 87%

Fig. 31 Synthesis of olefins by reaction of N-tosylhydrazones with benzyl halides
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A possible mechanism involving common oxidative addition, CO insertion,

and decomposition of diazo compounds was proposed. The generated complex A

undergoes a carbene migratory insertion into the palladium–acyl bond to form

C-bound enolate B. Subsequently, b-hydride elimination of complex B releases

enone. For the equilibration between intermediate B with O-bond enolate C, the

latter is favored with the aid of strong electron-donating ligand PCy3. Therefore, the

transmetallation with Et3SiH and reductive elimination consequently take place to

afford carbonyl compounds (Fig. 33).

4 Closing Remarks

As discussed in this chapter, various methodologies for C¼C bond formation have

been developed based on the reaction of N-tosylhydrazones. Traditional base

promoted reactions such as the Bamford–Stevens reaction, the Shapiro reaction,

the Barton–Kellogg reaction, and Julia-type condensation–fragmentation have

already been widely applied for organic synthesis in the past few decades. The

palladium catalyzed reaction of N-tosylhydrazones through metal carbene

intermediates has attracted increasing attention in recent years. N-Tosylhydrazones
are readily available substrates and are stable. They have been proven to be reliable

ArI + + COAr'
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Ar

O

R
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O

R
2 equiv.

Et3N 2 equiv.,

LiOtBu 2.4 equiv.
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86% 54% 71% 72% (E/Z = 2:3)

Fig. 32 Synthesis of enones by reaction of three-component reaction of ketone tosylhydrazones,

aryl iodides and CO
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reagents as diazo precursors. Since palladium is the most versatile metal in cross-

coupling reactions, various approaches for the generation of palladium species have

been developed. It is thus expected that more reactions of Pd-catalyzed cross-

coupling of tosylhydrazones will emerge [108, 109]. With rapid development of

palladium catalyzed cross-coupling of N-tosylhydrazones with various substrates,

this type of reaction has the potential to become practically useful methodology for

the formation of functionalized C¼C bonds.
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28. Seyfrieda MS, Lindena A, Mlostoń G, Heimgartner H (2009) Helv Chim Acta 92:1800–1816

29. Plunkett KN, Godula K, Nuckolls C, Tremblay N, Whalley AC, Xiao S (2009) Org Lett

11:2225–2228

30. Pijper TC, Pijper D, Pollard MM, Dumur F, Davey SG, Meetsma A, Feringa BL (2010) J Org

Chem 75:825–838

31. Ciscato LFML, Bastos EL, Bartoloni FH, Gunther W, Weiss D, Beckert R, Baader WJ (2010)

J Braz Chem Soc 21:1896–1904

32. Katritzky AR, Tymoshenko DO, Belyakov SA (1999) J Org Chem 64:3332–3334

33. Katritzky AR, Wang J, Karodia N, Li J (1997) J Org Chem 62:4142–4147

Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling 267



34. Kurek-Tyrlik A, Marczak S, Michalak K, Wicha J, Zarecki A (2001) J Org Chem

66:6994–7001

35. Chandrasekhar S, Takhi M, Yadav JS (1995) Tetrahedron Lett 36:307–310

36. Chandrasekhar S, Takhi M, Yadav JS (1995) Tetrahedron Lett 36:5071–5074

37. Chandrasekhar S, Reddy MV, Rajaiah G (2000) Tetrahedron Lett 41:10131–10134

38. Yadav JS, Chandrasekhar S, Sasmal PK (1997) Tetrahedron Lett 38:8765–8768

39. Chandrasekhar S, Reddy MV, Takhi M (1999) Tetrahedron Lett 39:6535–6538

40. Wicha J, Zarecki A (2004) J Org Chem 69:5810–5812

41. Jung ME, Hagiwara A (1991) Tetrahedron Lett 32:3025–3028

42. Frimer AA, Weiss J, Rosental Z (1994) J Org Chem 59:2516–2522

43. Kabalka GW, Wu Z, Ju YH (2001) Tetrahedron Lett 42:4759–4760

44. Feng X-W, Wang J, Zhang J, Yang J, Wang N, Yu X-Q (2010) Org Lett 12:4408–4410

45. Doyle MP, Forbes DC (1998) Chem Rev 98:911–935

46. Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Chem Rev 110:704–724

47. Maas G (2004) Chem Soc Rev 33:183–190

48. Zhang Z, Wang JB (2008) Tetrahedron 64:6577–6605

49. Aggarwal VK, de Vicente J, Bonnert RV (2001) Org Lett 3:2785–2788

50. Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR (2001)

Angew Chem Int Ed 41:1430–1433

51. Aggarwal VK, Patel M, Studley J (2002) Chem Commun 38:1514–1515

52. Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M,

Richardson J, Stenson RA, Studley JR, Vasse J-L, Winn CL (2003) J Am Chem Soc

125:10926–10940

53. Doyle MP, Yan M (2002) J Org Chem 67:602–604

54. Doyle MP, Hu W, Phillips IM (2002) Org Lett 2:1777–1779

55. Xiao F, Wang J (2006) J Org Chem 71:5789–5791

56. Bronstein HE, Choi N, Scott LT (2002) J Am Chem Soc 124:8870–8875

57. Smegal JA, Meier IK, Schwartz J (1986) J Am Chem Soc 108:1322–1323

58. Lu X, Fang H, Ni Z (1989) J Organomet Chem 373:77–84

59. Lee M-Y, Chen Y, Zhang XP (2003) Organometallics 22:4905–4909

60. K€uhn FE, Santos AM (2004) Mini-Rev Org Chem 1:55–64

61. Herrmann WA, Wang M (1991) Angew Chem Int Ed 30:1641–1643

62. Fujimura O, Honma T (1998) Tetrahedron Lett 39:625–626

63. Mirafzal GA, Cheng G, Woo LK (2002) J Am Chem Soc 124:176–177

64. Cheng G, Mirafzal GA, Woo LK (2003) Organometallics 22:1468–1474

65. Lebel H, Davi M (2008) Adv Synth Catal 350:2352–2358

66. Aggarwal VK, Fulton JR, Sheldon CG, de Vicente J (2003) J Am Chem Soc 125:6034–6035

67. Fulton JR, Aggarwal VK, de Vicente J (2005) Eur J Org Chem 1479–1492

68. Zhu S, Liao Y, Zhu S (2004) Org Lett 6:377–380

69. Reiser O (2006) Angew Chem Int Ed 45:2838–2840

70. Torborg C, Beller M (2009) Adv Synth Catal 351:3027–3043

71. Wu X-F, Anbarasan P, Neumann H, Beller M (2010) Angew Chem Int Ed 49:9047–9050

72. Zhang Y, Wang J (2011) Eur J Org Chem 1015–1026

73. Greenman KL, Carter DS, Van Vranken DL (2001) Tetrahedron 57:5219–5225

74. Franssen NMG, Walters AJC, Reek JNH, de Bruin B (2011) Catal Sci Technol 1:153–165

75. Barluenga J, Valdés C (2011) Angew Chem Int Ed 50:7486–7500

76. Shao Z, Zhang H (2011) Chem Soc Rev 41:560–572

77. Greenman KL, Van Vranken DL (2005) Tetrahedron 61:6438–6441

78. Devine SK, Van Vranken DL (2007) Org Lett 9:2047–2049

79. Kudirka R, Devine SKJ, Adams CS, Van Vranken DL (2009) Angew Chem Int Ed

48:3677–3680

80. Devine SKJ, Van Vranken DL (2008) Org Lett 10:1909–1911

81. Kudirka R, Van Vranken DL (2008) J Org Chem 73:3585–3588

268 Y. Zhang and J. Wang



82. Yu W-Y, Tsoi Y, Zhou Z, Chan ASC (2009) Org Lett 11:469–472

83. Tsoi Y-T, Zhou Z, Chan ASC, Yu W-Y (2010) Org Lett 12:4506–4509

84. Peng C, Wang Y, Wang J (2008) J Am Chem Soc 130:1566–1567

85. Chen S, Wang J (2008) Chem Commun 44:4198–4200

86. Peng C, Yan G, Wang Y, Jiang Y, Zhang Y, Wang J (2010) Synthesis 24:4154–4168

87. Barluenga J, Moriel P, Valdés C, Aznar F (2007) Angew Chem Int Ed 46:5587–5590

88. Messaoudi S, Tréguier B, Hamze A, Morvan E, Brion J-D, Alami M (2009) J Med Chem

52:4538–4542

89. Barluenga J, Tomás-Gamasa M, Moriel P (2008) Chem Eur J 14:4792–4795

90. Brachet E, Hamze A, Peyrat J-F, Brion J-D, Alami M (2010) Org Lett 12:4042–4045

91. Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C (2010) Chem Eur J 16:12801–12803

92. Barluenga J, Escribano M, Moriel P, Aznar F, Valdés C (2009) Chem Eur J 15:13291–13294
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Dienoic esters, 160
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Fluoroalkenes, [3.3] sigmatropic

rearrangement, 83

stereoselective synthesis, 59

(2-Fluoro-1-alkenyl)iodonium salts, 75

Fluoroalkenylmetal, 59

(1-Fluoro-1-alkenyl)metal reagents, 74

(2-Fluoro-1,2-dialkylethenyl)boronates, 82

(Fluorodienyl)boronate, 78

Fluorohaloalkenes, 59, 71, 75, 79

1-Fluoro-1-iodo-4-phenyl-1-butene, 72

Fluoro–Julia olefination, 63

(Z)-1-Fluoro-2-(p-tolyl)vinyl benzoate, 70
Fluoro-α,β-unsaturated carboxylic acids, 220

(E)-α-Fluoro-α,β-unsaturated ester, 62

2-Fluorovinyl tosylate, 71

F4t-neuroprostane, 42

G

Germalactones, 20

Germanes, hypervalent, 20

Gigantecin, 185

Globostellatic acid, 9

Gramine, one-pot Wittig reaction, 214, 216

Grob fragmentation, trisubstituted Z-alkene, 54
Grubbs catalysts, 164

H

Halichlorine, 119

Harveynone, 183

Heck–Mizoroki coupling, 110

Hell–Volhardt–Zelinski reaction, 4

N-Heterocyclic carbene (NHC), 52, 67, 189
Hexaisopropyltriphenoxide (HIPTO), 49

Horner–Wadsworth–Emmons reactions, 3, 6,

36, 62, 197, 219

Still–Gennari modification, 36

Horner–Wittig reaction, 224

Hoveyda-Grubbs’s catalyst, 165

Hydrazones, one-pot oxidation, 242

Hydroboration, 44, 90, 135

Hydrofluorinations, 59

Hydrophosphination, 136

Hydrosilylation, 44, 89, 95, 134

I

Iejimalide B, 169

Imines, 197

olefination, 227

Iodoxybenzoic acid (IBX), 209

Iridium catalysis, 160

Iron(II)meso-tetra(p-tolyl)porphyrin (TTP), 151
Iron(II) porphyrin, 148

Isoclavukerin A, 181

Isodomic acid G, 2

Isolaureatin, 177

Isolysergol, 171

Isomerization, 87

Isoxazolyllithium, 3

J

Julia olefination, 4, 7, 63, 137, 233, 242, 266

K

Kainoid amino acids, 2

Kempenes, 182

Kendomycin, 167

Ketenes, 4

asymmetric olefination, 155

Ketones, 197

MTO-catalyzed olefination, 150

olefination, 7

Rh-catalyzed methylenation, 158

KRN7000, 50, 190

L

γ-Lactams, 15

γ-Lactones, 14
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Laulimalide, 40

Lepadins, 181

Lindlar reduction, 33

Lindlar’s catalyst, 40

Lithium diisopropylamide (LDA), 201

Lycoflexine, 186

Lycopodium alkaloids, 186

M

Macrocycles, Lindlar reduction, 40

Meloscine, 173

Mesotetraphenylporphyrin iron chloride

(ClFeTPP), 154, 216, 244

Metal carbenes, 239

3-(Methoxycarbonyl)-1,2-allen-4-ol, 139

N-o-Methoxyphenyl aldimines, 28

α-Methoxy phosphonium salts, olefination, 206

4-Methyldienoates, 119

α-Methylene cyclopentenoids, 26

Methyltrioxorhenium (MTO), 148

Molybdenum adamantylimido complexes, 190

Molybdenum catalysis, 148

MOM ester, 6

Monofluoroalkenes, 59

Morita–Baylis–Hillman reaction, 121

Mo-/W-alkylidene monoaryloxide pyrrolide

complexes, 48

Mucocin, 175

Mycale hentscheli, 175

N

Nakadomarin A, 191

Nazarov reaction, 25

p-Nitroacetophenone, 10
Norbornadiene, ROMP, 49

Norfuorocurarine, 120

Norhalichondrin B, 179, 180

O

Olefination, 1

selective, 147, 197

Olefins, metathesis, 33, 118

Z-selective, 45
tetrasubstituted, 7

Organocatalysis, 87

Oxacyclononene, 170

Oxaphosphetane, 38

Oxarhodacycloheptadiene, 100

Oxarhodacyclopentene, 93

Oxetenes, electrocyclic ring-opening, 11, 30

Oximidine III, 175

Oxopolyene macrolide, 179

P

Palladium–vinyl bond, 260

Peloruside A, 175

2-Phenylthiocycloalkanones, 15

α-Phenylthioketones, 15
Phosphine oxides, 36

removal, 216

Phosphines, E-selectivity, 156
tertiary, 147

1-Phosphinyl-1,3-dienes, 136

Phosphonium ylides, 197, 227

Phosphorane, 151

Phosphorus-stabilized carbon nucleophiles, 197

Phosphorus ylides, 34

Photochromism, 2

Photoswitches, 2

Pinnaic acid, 119

Pinnatoxin, 168

Plasmalogen phospholipid, 50

Polyanthellin A, 171

Polyenes, Still–Gennari modified HWE

olefination, 37

Poly-halo compounds, 67

Polyketide, 174

Porothramycins, 120

Propargyl carbonates, 101

Propargylic esters, 127

Pseudotabersonine, 173

Psilostachyin C, 170

Pyridinium chlorochromate (PCC), 209

Q

Quebrachamine, 187

R

Relay ring-closing metathesis (RRCM), 174

Rhodium catalysis, 156

Ring-closing alkyne metathesis (RCAM), 41

Ring-closing metathesis (RCM), 45, 164, 165

Ring-opening/cross-metathesis (ROCM), 45

oxabicycle, 190

Ring-opening metathesis (ROM), 183

RK-397, 179, 180

Rollinia mucosa, 175
Ru(TPP)(CO), 152

Ru–carbene, 52

Ruthenium catalysis, 157
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S

Schrock–Hoveyda catalyst, 172

Schrock’s catalyst, 165

Secondary orbital interaction, 1

Selective relay alkene metathesis, 174

α-Selenoketones, olefination, 14, 16
Silalactones, 20

Silicones, hypervalent, 20

α-Siloxy ketones, 13

Silylcyclobutenes, 18

Silyloxetenes, 18

Sodium hexamethyldisilylamide

(NaHMDS), 201

Spirophosphoranes, pentacoordinated,

olefination, 227

Stelletta globostellata, 9
Stemona alkaloids, 2

Still modification, HWE reaction, 221

N-Sulfonyl aldimine, olefination, 29

Sulfonyl imines, 36, 228

T

Takai olefination, 138

Tamoxifen, 2, 22, 23

Tandem Wacker-type oxidation, 159

Tebbe reagents, 23

Tetra(p-chlorophenyl)porphyrin iron

chloride (Fe(TCP)Cl), 154,

216, 244

Thiochromenes, 253

Thio esters, homologation, 24

α-Thioketones, 14
Torquoselectivity, 1, 10

N-Tosylhydrazones,
cross-coupling/olefinations, 239

Transition metals, 87

Transition metals, catalysis, 147

α-Trialkylsiloxy cyclic ketones, olefination, 14
Tricholomenyn A, 183

Triethyl 2-acyl-2-fluoro-2-phophonoacetate, 62

Triethyl 2-fluorophosponoacetate,

HWE reaction, 62

Trifluoroacetophenone, 151

Trifluoromethyl ketones, 153

Trimethylsilyldiazomethane, 152

Trimethylsilylynolate, 3

Triphenylphosphine, 109, 117, 147, 213, 215

Triphenylphosphonium ylides, 201, 205,

227, 230

Tris(2-methoxymethoxyphenyl)phosphonium

ylides, 203

V

Vedejs model, 201, 242

Vigularia juncea, 170
Vigulariol, 170

Vinyl ethers, 50

Vinylzinc, 73, 90, 98

W

Wittig reaction, 34, 136, 199, 244

catalytic, 218

one-pot, 209

Schlosser modification, 206

X

Xanthocidin, 26, 27

Y

Ynamides, carbozincation, 134

Yne–yne coupling, 87, 132

Ynolates, 1, 3

Ynol tosylates, 3

Z

Zincke salt/aldehydes, 118, 119

Index 275


	Stereoselective Alkene Synthesis
	Preface
	Contents
	Stereoselective Synthesis of Tetrasubstituted Alkenes via Torquoselectivity-Controlled Olefination of Carbonyl Compounds with Ynolates

	Stereoselective Synthesis of Z-Alkenes
	Stereoselective Synthesis of Mono-fluoroalkenes
	Recent Advances in Stereoselective Synthesis of 1,3-Dienes
	Selective Olefination of Carbonyl Compounds via Metal-Catalyzed Carbene Transfer from Diazo Reagents
	Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product
	Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles
	Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones
	Index



