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Preface

Self-organization is one of the most important and most general features of nature,

being practically omnipresent in our world, viz., in physical and inorganic systems,

in organic and living systems, and even in social systems. Already 200 years ago,

self-organization phenomena have been observed in electrochemical experiments

and much later a vast number of carefully designed electrochemical experiments

have been described where self-organization plays a role. Electrochemistry lends

itself for such studies in a very special way, as it allows easy control and measure-

ment of the electrode potential and current. Therefore, it is no surprise that the

quantitative data of electrochemical experiments have given a very sound basis for

mathematical modeling of self-organization. Professor Dr. Marek Orlik is an

experienced electrochemist who now specializes in the physical chemistry of

self-organization. His profound knowledge of mathematics, physics, and chemistry,

together with his clear-cut thinking and his experimental abilities, enables him to

present the theoretical background and the experimental details of self-organization

in electrochemistry in a very lucid and appealing way. Professor Orlik is a disciple

of the Warsaw electrochemical school. He did his Ph.D. with Zbigniew Galus, and

worked as postdoc with Gerhard Gritzner (Linz), and he was an Alexander von
Humboldt Fellow with Karl Doblhofer and Gerhard Ertl in Berlin.

The publishing house Springer and the editor of the series Monographs in
Electrochemistry regard it as a big fortune that Marek Orlik accepted the invitation

to write this monograph because it is the first comprehensive description of that

topic, and it is clearly a very seriously needed monograph. When starting to write

this monograph, the author quickly realized that the topic cannot be adequately

covered in one volume because the mathematical and physical background needs

careful and extended explanations. We are thankful to Springer for agreeing to

publish this monograph in two volumes, allowing the author to present both the

theoretical and the experimental side in detail. Writing such 2-volume monograph

is a task which absorbs all energy for several years, and it is not only an intellectual
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achievement, but also physically very demanding, especially when considering that

the author has all the duties of a professor at a chemistry department of a major

university! I am sure that the appreciation of the readers will give Marek Orlik the

deserved reward and I hope that the monograph will stimulate further studies of this

important branch of physical chemistry.

Greifswald, May 2012 Fritz Scholz

University of Greifswald, Germany
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Introduction

The world is a dynamical system and this system is generally nonlinear. This
simple sentence describes the fundamental feature of phenomena described in these

books. Although most of them belong to the world of electrochemistry, it is

extremely important to note that their dynamics exhibit striking analogies, when

compared with other types of dynamical systems, like chemical, physical, and

biological ones, and even with some social processes or phenomena occurring in

the capital market. Since each of these categories deals with its specific language,

the universalities in the dynamic behaviors manifest themselves clearly only at the

level of mathematical description, which in turn is based on the behavior of

solutions of nonlinear differential equations. Therefore, nonlinear dynamics is

really an interdisciplinary science. Electrochemical processes described in these

books are thus only specific examples of more general features of nonlinear

dynamic processes.

Many phenomena which we experience in everyday life, not only in the scien-

tific laboratory, are nonlinear in their dynamics, but at the elementary level of

education their mathematical description is often linearized, like in the case of

diffusion transport or heat conduction processes. The advantage of such simplifica-

tion is the relative simplicity of the mathematical form of respective equations and

of the way in which the solutions of them can be obtained. When the differential

equation (or the set of them) is nonlinear, the analytical solution is often unknown

and one has to use the computer to solve the problem numerically. That is why the

invention and development of digital computers assisted the progress in nonlinear

dynamics. In course of computer calculations not only numerical solutions of

various problems were obtained, but also completely unexpected phenomena

were discovered. A seminal example is the observation made in 1963 by Lorenz,

who discovered the unpredictable long-term evolution of the solutions of only three

differential equations. This invention led to the idea of deterministic chaos, which
means complex, aperiodic dynamics generated by entirely deterministic dynamical

system, without any assumed stochasticity. One should remember that such unpre-

dictability was treated already at the end of nineteenth century by Poincaré who

analyzed qualitatively the chaotic dynamics of a three-body system, the problem of
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not having explicit solution in terms of Newton’s analytical methods. In fact,

Poincaré was the pioneer of a modern approach to complex systems in which the

emphasis is on the qualitative type of dynamics rather than on strict quantitative

solutions, frequently not existing.

Deterministic chaos is however an extremely complex example of dynamic

phenomena, which manifests itself as aperiodic oscillatory variations of the

system’s state. But the oscillations can be also periodic, like pulsating of our

heart. In chemistry, the best known examples are the periodic variations of the

color of the solution in which the Belousov–Zhabotinsky redox reaction is running.

In electrochemistry, the oldest examples of analogous phenomena include

oscillations of electric current upon anodic electrodissolution of some metals.

Periodic dissolution of metals was described as early as in 1828 by Fechner, who

reported repetitive bursts of effervescence (gas bubbles evolution) during the

dissolution of iron in nitric acid.

One should note an extremely important, common feature of those oscillations:

they can set in absolutely spontaneously, i.e., without any external periodic perturba-

tion of the system. Therefore, we consider such behavior a dynamic self-organization,
i.e., the spontaneous, coherent dynamic behavior of the system’s components,

leading, e.g., to periodic (or more complex) variations of its entire characteristics.

Furthermore, under appropriate conditions also the spatial symmetry of the

dynamical system can be broken and then various types of spatial or spatiotemporal

patterns can also spontaneously develop. A famous example of stationary patterns

of that type was theoretically predicted by A. Turing in his seminal work published

in the year 1952. The experimental confirmation of his ideas happened only

in 1990s for chemical systems and at the beginning of twenty-first century for

electrochemical processes. Thus, self-organization may occur both in time and in

space.

One should emphasize that such self-organization phenomena can occur only

beyond the state of equilibrium. This is justified by the second law of thermody-

namics which forbids the decrease of entropy of Universe. Since creation of any

order, including dynamic self-organization, decreases the entropy, there must occur

simultaneously an irreversible, dissipative process, in which the production of

entropy at least compensates its decrease. This is the thermodynamic condition.

In turn, the important kinetic requirement is that the differential equations defining

the dynamical systems must be nonlinear. However, it is still not a sufficient

condition for the occurrence of self-organization. Analysis of the origin of such

phenomena clearly indicates also the necessity of positive and negative feedback
loops in the steps composing the entire mechanism of a given process. Therefore,

understanding of given manifestation of self-organization requires, among others,

identification of appropriate feedback loops. In fact, even the simplest case of

temporal oscillatory behavior can be understood as the interplay of such feedback

loops: during the operation of the positive feedback, the concentration of given

species increases quickly in time until the negative feedback loop takes over the

control and leads to a decrease in this concentration, creating the conditions for

which positive feedback eventually sets in again, etc. In other words, the oscillatory
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behavior requires a presence of a fast positive and a slow negative feedback loops in

the system’s dynamics.

A typical sequence of events is that even relatively uncomplicated system,

described in terms of deterministic evolution equations, may exhibit sudden change

to a completely new, qualitatively different behavior upon smooth variations of the

control parameter. A (too) simple deterministic approach, assuming the smooth

response of the system’s behavior upon increasing distance from equilibrium, must

be replaced by a far more sophisticated view, accepting the existence of sudden

transitions, mathematically called the bifurcations. It is like for the tourist who left

the flatlands and entered the mountain area—he has to consider the presence of

chasms which can suddenly and dramatically change his situation. This is more

than just a simple conclusion; this is a new view of the way in which dynamic

processes may develop in nature.

Now it is high time to define the place of electrochemistry in the area of such

phenomena. Chemical reactions can exhibit linear or non-linear dynamics, but

electrochemical processes are always inherently nonlinear. This is clearly

evidenced even in the simplest case of electric current dependent exponentially

on the voltage applied between the electrodes. Furthermore, compared to chemical

systems, in electrochemical practice it is extremely easy to drive the system

smoothly away from the equilibrium state, by appropriate increase of the voltage

applied or the current density imposed. Thus, two fundamental conditions for

dynamic self-organization are met, but of course not in every process the appropri-

ate, destabilizing feedback loops can operate, so not every electrochemical process

is automatically a source of self-organization under any conditions. Such additional

conditions will be shown in these books, based on both numerous experimental

examples and theoretical considerations.

In these books thus various kinds of temporal, spatial, and spatiotemporal self-
organization in electrochemical systems are described. In spite of specific features

of such systems, like the presence and the structure of the electrode–electrolyte

interface, the reader will notice analogies in the bifurcation schemes between

electrochemical and chemical systems, i.e., those universalities that are so striking

at the level of mathematical description. The reader will also be able to notice the

evolution of explanations of such phenomena which took place over recent decades.

While early works were usually purely electrochemical, i.e., the authors looked for

the source of instabilities only in the properties of the electrode–electrolyte inter-

face, later works reflect increasing interest in a treatment based on the concepts of

nonlinear dynamics. In particular, as the source of dynamic instabilities the

characteristics of not only the single interface, but of the entire electric circuit

could be considered. The books contain numerous examples of both approaches and

the reader will be able to choose which of them appears to him/her more convinc-

ing. The books’ content is organized so that the description of particular electro-

chemical systems is preceded by an introduction to the basic concepts of nonlinear

dynamics, in order to help the reader unfamiliar with this discipline to understand at

least the fundamental concepts and methods of stability analysis. Also for this

purpose this introductory part utilizes selected chemical processes for illustration
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of self-organization and extends their description for basic stability analysis of

electrochemical systems. The next chapters include the description of electrochem-

ical dynamical systems, according to the author’s personal selection of papers,

including also very recent works. Noteworthy, the presentation of the systems is not

always limited to their laboratory construction, but indicates, if possible, their

relevance to realistic objects and processes, including systems of biological impor-

tance, like neurons in living matter. In fact, in order to understand better the

conduction of nerve impulse, it is necessary to update earlier knowledge and

models of this process for the recently made progress in self-organization in

electrochemical, spatially extended systems.

It is the author’s hope that these monographs will trigger and increase the interest

of electrochemists, and hopefully also of the students and researchers working in

other areas of science, in the modern, interdisciplinary and fascinating subject of

dynamic self-organization.

Warsaw, May 2012 Marek Orlik
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Chapter 1

Basic Principles of Nonlinear Dynamics

1.1 Concise Vocabulary of Nonlinear Dynamics

In this section, we shall briefly explain the most fundamental terms necessary

to understand the concepts of nonlinear dynamics. As stated in Introduction, the

term “dynamic self-organization” means generally the spontaneous formation of

order in the domain of time and/or space, when the system is maintained sufficiently

far from equilibrium. There are two reasons for this condition: the thermodynamic

and kinetic one. The first one is justified by the second law of thermodynamics:

since the creation of any order, including dynamical self-organization phenomena,

is associated with the decrease in entropy, there must exist, in the same system,

a dissipative process characterized with entropy production at least compensating

this decrease. This condition was the basis for the new term, introduced by the

Nobel prize winner, I. Prigogine: dissipative structures [1]. In fact, all the

manifestations of self-organization under nonequilibrium conditions, like the for-

mation of temporal or spatiotemporal patterns, are dissipative structures, i.e., they

emerge only as long as the sufficient dissipation of energy occurs. The formation of

the dissipative structures is thus a dynamic phenomenon. In order to exhibit self-

organization, the kinetic characteristics of this process must however meet also the

following additional conditions: (1) the (usually) nonlinear dependence between

the driving forces and the resulting flows1; (2) the presence of feedback loops, i.e.,
of autocatalysis and/or autoinhibition in the kinetic mechanism. Mathematically,

the dynamical systems are defined in terms of differential equations which can be

1 In spite of nonlinear nature of dynamics of vast majority of processes leading to self-

organization, in rare cases it can occur also due to linear nonequilibrium phenomena; an example

is the concentration gradient appearing in the multicomponent system in the presence of imposed

temperature gradient, due to thermal diffusion which is a process of linear characteristics. In the

following, we shall however avoid these rare cases and focus on nonlinear phenomena.

M. Orlik, Self-Organization in Electrochemical Systems I,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-27673-6_1,
# Springer-Verlag Berlin Heidelberg 2012
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ordinary ones (abbreviated as ODE), if the dynamic variables depend solely on

time, or partial ones (PDE) if the variables depend also on the spatial coordinates. In

this chapter we shall focus on the ODEs properties, while the systems requiring

analysis in terms of PDEs will be described in Chap. 1 of volume II.

Let us now repeat those three fundamental conditions of self-organization: the

irreversible course of the process, the (usually) nonlinearity of its dynamic

characteristics, and the presence of appropriate feedback loops in its mechanism.

Let us assume that the differential equations meeting all these conditions were

formulated in terms of appropriate dynamic variables, e.g., the intermediate

concentrations, electrode potential, etc. The occurrence of self-organization, e.g.,

of spontaneous oscillations of these variables depends now on the values of

parameters that are included in these equations. We shall call them control
parameters (this may be, e.g., the flow rate through the reactor for the homogeneous

chemical reactions or the applied electrode potential/the imposed electric current

for electrochemical processes). It may happen that for some control parameters

which we choose initially, the solutions of those equations will be quite trivial, i.e.,

they will predict the existence of only a single steady state. However, for another set

of those parameters the same equations may generate, e.g., spontaneous temporal

oscillations of the variables. It is now important to find the critical value of one

(or more) parameter at which such qualitative (see the Poincaré idea, mentioned in

the Introduction) change in the system’s behavior occurs. This is the bifurcation
point (following the Latin word “bifurcus”—forked). This topological, essentially
mathematical term, refers strictly to the theory of differential equations, as they

describe the dynamics of any system.

In fact, mathematical background of self-organization is the bifurcation theory
and in terms of such an approach those striking universalities in the dynamics of

various systems manifest themselves. Completely different, physically or chemi-

cally, processes can exhibit the same types of bifurcations, i.e., the same types of
qualitative changes of dynamics upon variation of appropriate control parameters.

In the example earlier, the bifurcation involved the loss of stability of the

steady state and the birth of the stable oscillatory regime, instead. Such a change

of stability of the states can be an example of the Hopf bifurcation, one of the most

frequent mechanisms in which the oscillations are born from the trivial,

nonoscillatory steady state.

At the bifurcation point the system may be particularly sensitive to the

fluctuations. In fact, it is the amplification of the small fluctuations to macroscopic

scale which manifests itself as the qualitatively new system’s behavior. This also

means that in the trivial, linear range of the system’s behavior the fluctuations are

damped, but in a nonlinear region, due to the feedback loops, they are quickly

(exponentially) enhanced. Furthermore, at the bifurcation point several possibilities

for the further system’s evolution may be opened and which of them will be chosen,

depends on the actual random fluctuation; in this way in the essentially determin-

istic system, as defined by the respective differential equations, the stochastic

element appears.
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What is further important, if we now try to go back to the equilibrium state, we

should not expect that always all the events observed will repeat in the reverse order

at the same critical values of the bifurcation parameter. In some cases, the hysteresis

may happen when the system switches to a new state upon increasing the control

parameter, and the return to the original state may occur for the decreasing value of

the control parameter lower than that observed before. The same may be the case

for two different regimes of oscillations, the switch between which depends on the

direction of the variation of the bifurcation parameters. Such hysteresis is a mani-

festation of an important phenomenon, called bistability, which means the possibil-

ity of existence of the system in one of two stable steady states, for certain range of

control parameter. If more than two stable states are involved in the hysteresis loop,

we call this phenomenon multistability. If two oscillatory regimes are involved in

the hysteresis loop, like in the example earlier, this specific case of bistability is

called birhythmicity. Such hysteresis can be associated with the fact that upon

cyclic variation of control parameters the system experiences either the same type

of bifurcation or two different types of bifurcations on a way forth and back.

All phenomena of this type are strictly related to the stability of the states. When

in the initially homogeneous system, a dynamical temporal or spatiotemporal order

emerges, it means that the initial state lost its stability and a new behavior acquired

it. If one type of self-organized phenomena turns into another one, it also means the

exchange of their stability. It is very important to distinguish between the terms

“steady state” and “stable state.” The term “steady state” (or stationary state) means

the state, the characteristics of which do not change as a function of time. In

mathematics, the steady state is termed also the fixed point or the equilibrium
point, although the latter term may seem a bit controversial for the chemists, if

one considers the nonequilibrium steady state. It is further important to note that the

steady state can be stable or unstable. We shall give here the simplest interpretation

of these terms, which will be developed in more detail later. The stable steady state
is resistant to external or internal perturbations in this way that if they happen, they

are eventually damped and the system returns to its original state. The unstable
steady states will not survive any fluctuation, as the system driven out of it goes then

to the closest stable state. This is the reason for which the states which are

observable must also be stable, since real systems are always a subject of

fluctuations. Unstable steady states are not observable, unless they are stabilized

by special procedures, but their existence can be indicated in theoretical models.

One may additionally test the stability of the given state by introducing external

fluctuations of increasing amplitude. If the system returns always exactly to the

original state, one calls its stability as the asymptotic one, as all the fluctuations

decay to zero asymptotically as a function of time. If the system characteristics

survive in this way even relatively large fluctuations, covering the entire possible

range of the dynamic variables considered, it is called “globally stable.” Otherwise,

if sufficiently large perturbations cause the switching of the system to another,

concurrent stable state, the original one is called only “locally stable.”

It appears useful to introduce one more type of stability. If the system perturbed

by relatively small fluctuations leaves the original state, but remains close to its

characteristics (instead of escape towards a concurrent distant state), it is called

1.1 Concise Vocabulary of Nonlinear Dynamics 3



stable in a Lyapunov (or Liapunov) sense. In other words, the Lyapunov stability

means that perturbations applied in the vicinity of the steady state cause that the

system still remains in the neighborhood of this state, meaning accepting certain

tolerance for this deviation. Of course, if this neighborhood shrinks eventually to

zero, the (thus more general) Lyapunov stability turns into its special case of

asymptotic stability.

The evolution of dynamical systems, defined by respective differential

equations, can be very conveniently visualized using the trajectories defined in

the respective phase space. For homogeneous chemical reactions, involving the

concentrations of species X and Y as the dynamical variables, the phase space may

be defined as the [Y]–[X] coordinate system, or, alternatively through derivatives:

[X] � (d[X]/dt) or [Y] � (d[Y]/dt). Of course, the phase space may be generally

constructed in N dimensions. In electrochemistry, one of the convenient definitions

of the phase space involves the E � c(0) coordinate system, where E is the

electrode potential (interfacial potential drop) and c(0) is the concentration of the

electroactive species at the reaction site (less precisely called as the “surface

concentration” at the electrode).

We shall consider here only the case of solutions of autonomous differential
equations, which do not contain an explicit dependence on time. In consequence,

the phase portraits obtained from the solutions of such equations are also indepen-

dent of time. Note that the N-dimensional nonautonomous systems can be

transformed to autonomous ones by definition of time as an additional dynamical

variable: xN+1 ¼ t which allows to add the (N + 1)th differential equation, making

the new system autonomous [2]:

dxi
dt

¼ fiðx1; x2; :::; xN; tÞ; i ¼ 1; :::;N (1.1)

dxNþ1

dt
¼ 1 (i.e:; xNþ1 ¼ tÞ (1.2)

Removing of the time dependence is thus done at the cost of adding an extra

dimension to the system. One can also say that an Nth order time-dependent
equation can be considered a special case of (N + 1)-dimensional system.

In the phase space of the autonomous system, the single steady state is

represented by a point. If this state is stable, trajectories from the surroundings

lead to this point, otherwise leave it and develop into the phase space. It is thus

natural to call the single stable steady state the point attractor, while the (asymp-

totically) unstable steady state is named a point repeller, respectively. There can be
more than one steady state (point) in the phase space. It may happen that each of

them is stable, but it is only a local stability, as there is always a concurrent attractor
in the phase space. In such a case we say that every such stable steady state has its

own basin of attraction in the phase space. This means the existence of respective

ranges of values of dynamical variables, for which the trajectories still tend to the

given steady state.
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The oscillations of the damped amplitude are represented in the phase space by

the snail-like trajectory, tending asymptotically to the final point—stable steady

state which is the point attractor. This type of trajectory is called also the stable
focus, indicating that focus may be also unstable, and then the trajectory starts in the

point repeller (or source) and develops to its vicinity. Oscillations of the constant

amplitude are represented in a phase space by a closed curve. This trajectory may be

either stable or unstable depending on its response to perturbations. Similarly as for

the point attractors one can distinguish between “asymptotically stable” or “asymp-

totically unstable” trajectories—limit cycles, stable or unstable, respectively. Also,
trajectories of cyclic shapes may be stable in the Lyapunov sense.

A particularly complex phase trajectory corresponds to the chaotic oscillations.

If this is not really a stochastic disorder, but only complex order of great sensitivity

to initial conditions and further fluctuations, the chaos is called “deterministic” and

the respective complicated phase trajectory is named strange attractor. The above
terms will be now discussed in more detail.

1.2 Types of Stability

The simplest schematic illustration of stability and instability of single steady states

(fixed points), mentioned in the previous section, is given by Fig. 1.1, which shows

the evolution of the ball placed initially either in the valley or at the top of the

idealized, smooth mountain. The first of these states, corresponding to the minimum

potential energy in the gravitational field, is stable, while the second one,

corresponding to maximum potential energy, is unstable with respect to any

fluctuation.

For the purposes of the analysis of dynamical systems, it is however necessary to

treat the definitions of stability more strictly and in more detail, according to [2].

1. Attracting properties of the state (of an attractor) manifest themselves in this way

that every perturbation of this state is eventually (i.e., for t ! 1) damped. In

more strict notation, if x is a dynamical variable (or, more generally, a vector of

variables) with a steady-state value xss, its attracting character means meeting

the condition lim
t!1 xðtÞ ¼ xss for various initial values x(0) (see Fig. 1.2). Note

that reaching the steady state must occur only when t ! 1, so it may happen

that for 0 < t < 1 the trajectory temporarily escapes for quite a long distance

from the steady state, but eventually it must reach it [2].

2. If this attractive property concerns with all phase trajectories in the phase space,

we say that the steady state considered is globally attractive, otherwise it is only
locally attractive. In the latter case, this part of the phase space which includes

trajectories tending asymptotically to the given steady state is called its basin of
attraction.
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3. Lyapunov stability—if upon the perturbation the system state moves to its neigh-

borhood in the phase space and remains there for all time, not only for time tending

to infinity. In other words, for every initial condition x(0) and for every time t � 0,

the trajectories do not diverge over distance e > 0, i.e., jjxðtÞ � xssjj<e (Fig. 1.3).
Note that compared to above-mentioned stability this behavior occurs for both

t ! 1 and t ! �1.

Fig. 1.1 Stable (a) and unstable (b) steady states of the model ball. Stability means that

perturbations of the position (and thus of potential energy) of the ball are damped; the state of

minimum potential energy is an attractor for other states. The instability means that perturbations

are amplified, the perturbed ball inevitably leaves (to the left or to the right) the steady state of

maximum potential energy which then appears to be a repeller (named also a source)

Fig. 1.2 Geometric interpretation of an asymptotically stable solution x of a single differential

equation, leading asymptotically to the same point attractor xss for different initial conditions a1
and b1. Any trajectory that starts within a distance of �d of xss converges eventually to xss [3]
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Noteworthy, the attractive properties and Lyapunov stability may occur simul-

taneously or not. One can consider the following cases:

(a) If the fixed point is Lyapunov stable, but not attracting, it is called neutrally

stable. Theoretically such type of stability could be ascribed to, e.g.,

mechanical systems without friction (without dissipation of energy and

thus without tending of the system towards equilibrium). In other words,

this is a feature of systems conserving the energy. The neutral stability

feature is also characteristic of both the steady state and the oscillations in

the classical Lotka–Volterra model.

(b) If the fixed point is both Lyapunov stable and attractive, the perturbations

simply decay as function of time tending to infinity; the steady state is then

called asymptotically stable (sometimes only attractive properties are

identified as asymptotical stability, but the present definition is more strict).

In practice, the system driven away from the steady state comes back to this

state asymptotically with the perturbation decaying as a function of time; the

classical Lotka model, exhibiting damped oscillations, is a good example.

(c) It is also possible that the fixed point is attracting, but not Lyapunov stable:

the trajectories may begin in close vicinity to the fixed point, but before

returning to it they go to distant area of the phase space.

4. Instability—this generally means that the fixed point is neither attractive nor

Lyapunov stable, and we can call it the repeller (or source). In this case, all

perturbations are exponentially enhanced and the system’s state evolves through

the phase space to the competing stable state (if it exists). Quite formally one can

say that the unstable steady state is reached when t ! �1. As an example of

such a transformation of an attractor into a repeller, upon changing the control

(bifurcation) parameter, may serve the characteristics of the classical Brusselator

model in which the single steady state loses its original asymptotic stability and

the stable limit cycle evolves around it in the phase space.

Fig. 1.3 The principle of Lyapunov stability for the one-dimensional system in x � t coordinates:
there is such a d > 0 that if the trajectory starts within a distance of�d from steady-state value xss,
it remains within 2e for all positive times [3]

1.2 Types of Stability 7



1.3 Linear Stability Analysis

Let us pose a fundamental question for the stability analysis: is it possible to learn

which type of stability does represent the given system of differential equations, for

given parameters? In particular, is it possible to obtain this qualitative information

without getting solutions of these equations which can be even nonexisting in the

explicit, analytical form?

In the case of nonlinear equations, which are here of our particular interest, in

a general case it is difficult to get full information on possible types of solutions.
The problem can be solved unambiguously only for the linear systems. However,

also for nonlinear systems it is possible to obtain at least fragmentary, but often

quite valuable information on the stability of the solutions. The method to do that is

called linear stability analysis. The basis for the application of this approach to

nonlinear systems is the Lyapunov theorem which says that the course (type) of the

phase trajectories in the close neighborhood of the given steady state is the same for

the nonlinear equations and for the equations, obtained by their linearization.

Mathematically it is done by the expansion of the nonlinear expressions in the

Taylor series around the given steady state of the stability under consideration, with

quadratic and higher terms neglected. The neighborhood of the steady state must

then be small enough to satisfy such linearization. In spite of this simplification,

linear stability analysis is a very powerful approach which yields valuable informa-

tion on bifurcations occurring in the system analyzed.

The principles of the linear stability analysis will be first given for the simplest

case when only one dynamical variable is involved and the system’s evolution

occurs only in time, i.e., the breaking of spatial symmetry is here not considered

(for the latter case, see Chap. 1, volume II). The best realistic example of such

system is the chemical reaction running in the flow reactor with intensive, by

assumption perfect mixing.

1.3.1 Stability of One-Dimensional Homogeneous System

Let x be a single dynamical variable identical with, e.g., concentration of species X
or with the electrode potential E. The dynamics of the system is described by the

kinetic equation, the right-hand side of which is in general a nonlinear function of

the variable x and parameters a, b, c. . . which may be the factors dependent on the

rate constants of (electro)chemical reactions, transport coefficients, etc.:

dx

dt
¼ Fðx; a; b; c:::Þ (1.3)
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The aim of the linear stability analysis is to find out, without getting an explicit

solution x(t), the stability of all possible steady states (fixed points), as their number

may be greater than one. Every steady state is defined by the condition dx/dt ¼ 0.

For example, in the case of the Schl€ogl model of bistability [4], F(x) is a polynomial

of the third degree, so up to three different steady states are possible.

In our analysis we shall limit our considerations to one exemplary steady state

xss, for which the algebraic equation is met:

Fðxss; a; b; c:::Þ ¼ 0 (1.4)

For convenience, in further derivations we define a new variable g which

measures the distance of the actual value of x(t) from the steady-state value xss:

g ¼ x� xss (1.5)

Since xss is a constant, dg/dt ¼ dx/dt and Eq. (1.3) may be transformed to an

equivalent form:

dg
dt

¼ Fðg; a; b; c:::Þ (1.6)

the right-hand side of which is now expanded in the Taylor series around xss:

dg
dt

¼ Fðgss; a; b; c . . .Þ þ
dF

dg

� �
ss

gþ 1

2

d2F

dg2

� �
ss

g2 þ . . . (1.7)

Since Fðgss; a; b; c . . .Þis equal to zero by definition of a steady state (1.4), and

the quadratic (and higher order nonlinear) terms in the expansion have to be omitted

as a condition for linearization, the equation for the linear stability analysis takes a
final form:

dg
dt

¼ dF

dg

� �
ss

g � l � g (1.8)

with l ¼ ½dF=dg�ssbeing a slope of the dependence of the rate of the process (F) on
the variable x, calculated in the vicinity of a given steady state xss. The differential
equation (1.8) shows in fact that, upon linearization, the initial nonzero perturbation

of the steady state [g(0)] evolves further exponentially on time:

gðtÞ ¼ gð0Þ exp½l � t� (1.9)

One can consider the following three cases of this evolution:

1. If l < 0, the perturbation decays exponentially as a function of time, so the

steady state is asymptotically stable.
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2. If l > 0, the steady state is unstable, since the perturbation exponentially

increases.

3. The case l ¼ 0 requires more detailed discussion. Apparently, it might suggest

the Lyapunov stability, as the perturbation remains constant at the initial value

g(0) but this would be completely true only for originally linear (and not

linearized nonlinear) system. However, since Eq. (1.8) was derived through

the linearization of the original nonlinear dependence (1.3), the limitations of
the linear stability analysis become now obvious. In this case the real dynamics

of perturbations is determined by the omitted nonlinear terms of the Taylor

expansion which thus cannot be neglected any more.

It is very instructive to compare Eq. (1.3) with its (exemplary) graphical inter-

pretation, for the case when three steady states are possible, and all three cases of

stability are considered [5]. One should emphasize again that the plot in Fig. 1.4 is

based on the original, nonlinear form of the right-hand side of Eq. (1.3), so it

conveys full nonlinear, not simplified information on the system’s dynamics which

will now be confronted with the results of linear stability analysis.

Let us identify the dynamical variable x with the concentration of species X:

x � [X]. The steady state xss,1 � [X]ss,1 is asymptotically stable, since the slope

l ¼ dF/dx (equal to dF/dg), around this steady state, is negative. The physical

sense of this purely mathematical conclusion is better understandable if we analyze

the way in which our dynamical systems react with respect to perturbations of xss,1.
For x < xss,1, the dx/dt is positive, so the local increase in x results in restoration of

the steady-state value xss,1. If another local perturbation makes x higher than the

steady-state value: x > xss,1, the resulting negative production of x (dx/dt < 0) also

restores xss,1. So, irrespectively of the direction of perturbations, they are damped

and the steady state xss,1 is asymptotically stable, indeed. Analogy with the ball

returning always to the valley in Fig. 1.1 is clear. The steady state characterizing

with xss,1 is thus an attractor and the range of x, for which its attractive properties

remain, defines the corresponding basin of attraction.

Fig. 1.4 The exemplary course of the F([X]) function (1.3) showing three steady states. The

stability of these states is given by the direction of arrows indicating the temporal evolution of [X]

variable in the vicinity of every steady state: stable [X]ss,1, unstable [X]ss,2, half-stable [X]ss,3.

After [5]

10 1 Basic Principles of Nonlinear Dynamics



Quite analogous line of thought leads to the conclusion that the xss,2 steady state

must be unstable. The positive slope l corresponds to the situation that the x values
perturbed to values lower than xss,2 decrease further, while for x > xss,2 a further

increase of x occurs.
The stability of the third steady state xss,3 cannot be diagnosed from the linear

analysis and this is the above-mentioned case (l ¼ 0), in which omitted nonlinear

terms of the Taylor expansion have now to be taken into account. The plot in

Fig. 1.4 reveals now that if perturbation causes x < xss,3, the dx/dt > 0, so the

system’s dynamics restores the steady-state value. However, if another perturbation

causes that the steady-state value is exceeded: x > xss,3, the dx/dt is also positive, so
x now continues to move away from the steady-state value. As a consequence,

taking into account the local nonlinear characteristics of the system’s dynamics, we

come to the conclusion that the xss,3 steady state is half-stable (effectively unstable,
since it is difficult to expect only negative fluctuations in a real system), contrary to

the linear analysis that would predict the local Lyapunov stability for xss,3.

1.3.1.1 Saddle–Node Bifurcations in One-Dimensional System

Figure 1.4 corresponds to the exemplary dynamical system characterized with

certain values of control parameters. If those parameters are changed, the presented

curve can move and/or change its shape, indicating that the stability of a given state

may change and even the steady states may appear or disappear. This means the

respective bifurcations. Let us consider the model, described with the differential

equation in which F(x) defines the parabolic dependence of the system’s dynamics

on the actual value of x [2]:

dx

dt
¼ mþ x2 (1.10)

Fig. 1.5 The creation/annihilation of the pair of stable and unstable steady states through the

saddle–node bifurcation in the one-dimensional dynamical system (1.10) (after [2])
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The bifurcation parameter m determines the position of the parabola on the

ordinate axis of the dx/dt vs. x dependence. As long as m > 0, no steady states

(fixed points) exist since dx/dt ¼ 0 cannot be attained for any m (Fig. 1.5a). For

m ¼ 0 (Fig. 1.5b), a half-stable steady state (cf. the properties of xss,3 in Fig. 1.4)

appears which upon further decrease in m splits into two steady states: one called a

stable node, and the other one—a saddle which is always an unstable state

(Fig. 1.5c). The names of these steady states are not obvious in this one-dimensional

case, since they come from analogous analysis for the two-dimensional system (see

next section). Since the vector fields change qualitatively for m ¼ 0, to this value

we ascribe the occurrence of a saddle–node bifurcation, also called a fold bifurca-
tion, a turning point bifurcation, or even a blue sky bifurcation (meaning that a pair

of the steady states appears as “out of the clear blue sky”) [2].

The term “fold bifurcation” becomes clear in view of the bifurcation diagram
constructed in the x–m coordinate system, usually oriented as shown in Fig. 1.6.

This diagram shows in an alternative way the sequence of events upon continu-

ous decrease in parameter m. Starting from positive values, where no any steady

states exist (“clear blue sky”), at m ¼ 0 “from nowhere” two coexisting steady

states are born—the stable one (a stable node) and the unstable one (a saddle). Upon

further decrease in the control parameter, the stable node (solid line) and the saddle

(dotted line) become more and more separated, and the nodes are globally attracting

as the only attractors in the phase space.

However, if we add a second fold, sharing with the first one the medium unstable

steady states, the typical characteristics of bistable regime are formed (see Fig. 1.7).

This bistable region is thus limited by two saddle–node bifurcations occurring at

both edges of the fold (this is the so-called degenerate case of the saddle–node

bifurcations). The middle set of unstable steady states separates the basins of

attraction for the upper and the lower sets of the stable steady states. Such connection

of two folds guarantees that there are always steady states in the phase space

Fig. 1.6 Bifurcation diagram

for the saddle–node (fold,

blue sky) bifurcation
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considered: either a single one (meaning monostability) or two stable and one

unstable (meaning bistability). As only stable states can be directly observed, the

bistable system exhibits hysteresis in its behavior upon cycling changes of the

control parameter (Fig. 1.7b).

For one-dimensional continuous systems (i.e., defined by differential equations),

one can expect only the stable or unstable steady states, but no oscillations. The

latter ones are possible only if dynamical system involves minimum two variables.

In turn, in the two-dimensional case only simple periodic oscillations in homoge-

neous systems are possible. The reproduction of more complex oscillatory regimes,

including, e.g., the alternating low- and high-amplitude courses, called the mixed-
mode oscillations (MMO) and of course chaotic oscillations, requires at least three
dynamical variables.

As an important comment to latter conclusion one should note that oscillations

are possible for one-dimensional systems, but defined by delay-differential
equations of a general form dN/dt ¼ f[N(t), N(t � t)] where parameter t is a

delay. Such definition of dynamical systems, introduced by Mackey and Glass [6]

means that the rate of change of quantity N depends not only on its actual value

(at time t), but also on its value at certain past time t which effects thus manifests

itself with this delay. Such delay models are quite popular in description of, e.g.,

population dynamics affected by a delay due to, e.g., pregnancy period. For

appropriate range of control parameters, the single delay-differential equation can

generate not only stable steady state, but also oscillations, i.e., stable limit cycle. In

case of oscillations, even chaotic dynamics is then possible. From the mathematical

point of view, this complexity occurs due to the fact that the state of delay-

differential equation is infinite-dimensional, since at time t0 this state is given by

a function x(t0�s), for s in the range from 0 to t. For one-dimensional, nondelay

differential equation this state is defined by a single value x(t0) [7]. The case of

delay equations is not considered here in more detail, so more information the

reader can find, among others, in [8, 9]. Furthermore, oscillations can occur in

Fig. 1.7 (a) The bifurcation diagram for the degenerate case of the saddle–node bifurcation,

corresponding to the bistable behavior; (b) the associated hysteresis observed upon cyclic change

of the control parameter
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difference equations, i.e., discrete maps which correspond to the case when the

assumptions of continuity and coexistence of populations are not true. Also such

maps can include delays which appropriately complicate the bifurcation scenario

[9, 10]. Although such discrete models are less useful for the description of real

chemical or electrochemical systems, their dynamics exhibit certain universalities

observed also in real processes (cf. Feigenbaum scenario). We shall devote some

attention to such maps in further part of this book (cf. Sect. 1.9.2), but now we stay

with continuous systems and extend our considerations to two dimensions.

1.3.2 Stability of Two-Dimensional Homogeneous System

For more than one dynamical variable, the diagnosis of stability of the steady states

is based also on the parameter l, which definition and interpretation is however

more complicated, compared to one-dimensional case. Let us consider the model

system of two autonomous differential equations:

dx

dt
¼ f ðx; yÞ (1.11)

dy

dt
¼ gðx; yÞ (1.12)

As above, the stability analysis is applied to the steady states (fixed points)

determined by simultaneous meeting of two conditions: dx/dt ¼ dy/dt ¼ 0. Let us

denote the parameters of the ith steady state as (xss, i, yss, i). We shall choose one of

these states, denote its parameters as (xss, yss), and investigate its properties using

linear stability analysis, according to the following procedure.

Both functions f(x, y) and g(x, y) are expanded in the Taylor series, with only

linear terms left:

dx

dt
¼ @f

@x

� �
ss

ðx� xssÞ þ @f

@y

� �
ss

ðy� yssÞ (1.13)

dy

dt
¼ @g

@x

� �
ss

ðx� xssÞ þ @g

@y

� �
ss

ðy� yssÞ (1.14)

In terms of new variables measuring the distance of the actual state (x, y) from
the steady-state characteristics (xss, yss):

d ¼ x� xss (1.15)

g ¼ y� yss (1.16)
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Equations (1.13) and (1.14) can be expressed in the equivalent forms:

dd
dt

¼ a � dþ b � g (1.17)

dg
dt

¼ c � dþ d � g (1.18)

The respective partial derivatives form a Jacobian matrix J:

J ¼
@f
@x

� �
ss

@f
@y

� �
ss

@g
@x

� �
ss

@g
@y

� �
ss

2
4

3
5 � a b

c d

� �
(1.19)

If the determinant Det(J) 6¼ 0, the only solution of Eqs. (1.17) and (1.18) for

dd/dt = dg/dt = 0 is the steady-state (0, 0). The properties of that matrix are further of

crucial importance for diagnosis of stability of this steady state. This diagnosis is

based on the sign of the trace [Tr(J)] and of the determinant [Det(J)] of the matrix

and allows to determine the shape of trajectories in the phase space, i.e., to classify

the type of the steady state (fixed point)without obtaining the explicit solutions of the
differential equations.

In order to diagnose the stability of the steady state considered we substitute the

trial solutions to Eqs. (1.17) and (1.18):

d ¼ A expðltÞ (1.20)

g ¼ B expðltÞ (1.21)

and obtain the system of algebraic equations:

Aða� lÞ þ Bb ¼ 0 (1.22)

Acþ Bðd � lÞ ¼ 0 (1.23)

The trivial solution A ¼ B ¼ 0 is meaningless, so we look for the solution with

coefficients A and B having nonzero values. This is the case only if the determinant

of the matrix (1.24) is equal to zero [3]:

Det
a� l b
c d � l

� �
¼ 0 (1.24)

The condition (1.24) is equivalent to the trinomial square, called characteristic
(or eigenvalue) equation:

1.3 Linear Stability Analysis 15



l2 � TrðJÞ � lþ DetðJÞ ¼ 0 (1.25)

with the trace and Tr(J) and Det(J) of the Jacobian matrix (1.19) defined as,

respectively:

TrðJÞ ¼ aþ d (1.26)

DetðJÞ ¼ ad � bc (1.27)

Equation (1.25) has generally two solutions:

l1;2 ¼
TrðJÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TrðJÞ�2 � 4 � DetðJÞ

q
2

(1.28)

which are called the characteristic values (or eigenvalues). This terminology will

be explained later. These two values l1,2 are of course the solutions of equation

system (1.17, 1.18), but in fact there is an infinity of solutions (due to infinite

number of initial conditions) of a general form:

d ¼ C1 expðl1tÞ þ C2 exp ðl2tÞ (1.29)

g ¼ C3 exp ðl1tÞ þ C4 exp ðl2tÞ (1.30)

where coefficients C1. . .C4 depend on those initial conditions. Alternatively, by

invoking definitions (1.15, 1.16), one can express these solutions in terms of

evolution of original variables x(t), y(t), with respect to the stationary values xss, yss:

x ¼ xss þ C1 exp ðl1tÞ þ C2 exp ðl2tÞ (1.31)

y ¼ yss þ C3 exp ðl1tÞ þ C4 exp ðl2tÞ (1.32)

The latter expressions describe thus the trajectories x(t) and y(t) around the

steady state (xss, yss), starting from initial conditions (x0, y0).
The general thinking leading to diagnosis of stability of given state is essentially

analogous to that for one-dimensional system: if both roots l1and l2 are negative

real numbers, all perturbations are exponentially damped and the considered steady

state is stable. If though only one of these roots is positive, the respective

perturbations grow exponentially, giving rise to the instability of the steady state.

However, in the two-dimensional case, there are more variants of the dynamic

evolution of the system’s state, than in one-dimensional case: e.g., the oscillatory

ones, which were previously absent and now are possible based on the following

mathematical reasoning. Note that if in Eq. (1.28), ½TrðJÞ�2 � 4 � DetðJÞ<0, then

l1 and l2 are a pair of complex conjugated numbers:
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l1;2 ¼ p� io (1.33)

where:

p ¼ ReðlÞ ¼ TrðJÞ
2

(1.34)

o ¼ ImðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DetðJÞ � ½TrðJÞ�2

q
2

(1.35)

and i ¼ ffiffiffiffiffiffiffi�1
p

. Based on the Euler’s formula eio ¼ cos(o) þ isin(o), one can

present solutions (1.31, 1.32) in an equivalent periodic form:

x ¼ xss þ C
0
1 exp ½pt� cos½otþ f1� (1.36)

y ¼ yss þ C
0
2 exp ½pt� cos½otþ f2� (1.37)

where f1 and f2 are arbitrary phase angles.

In terms of this representation of the evolution of x(t) and y(t) trajectories, the
exponential terms are responsible for the general decay (p < 0) or amplification

(p > 0) of the perturbations, while cosine term determines that this happens in an

oscillatory manner, with o meaning the angular frequency of these oscillations. In

other words, depending on a sign of p ¼ Re(l), one obtains oscillatory damping or

growth of perturbations.

A special case occurs when Re(l) ¼ 0, since then l is a purely imaginary

number, so the oscillations neither decay nor grow, having thus a constant ampli-

tude and frequency o. The steady state surrounded by such closed phase trajectory

is called the center which is only Lyapunov stable, but not asymptotically stable

(i.e., perturbations do not exponentially decay, but also do not diverge to infinite

size). In terms of Eq. (1.34), this case clearly occurs when the trace of the Jacobian

matrix is equal to zero.

Note that in analogous case for the one-dimensional system (then only real

l ¼ 0) it was necessary to consider nonlinear terms of the Taylor expansion to

diagnose properly the stability of the steady state, for which, in terms of linear

approximations, perturbations neither grew nor decayed. A similar situation will

occur now—the existence of a center in a linearized system will mean, for the

original nonlinear system, a transition to a closed, asymptotically stable trajectory,

called stable limit cycle which means stable oscillations in nonlinear systems. The

transition to this limit cycle from the point attractor which occurs through the center

is called the Hopf bifurcation and is undoubtedly the most typical way in which

oscillations are born in many dynamical systems. This case will be therefore

discussed later in more detail (Sect. 1.3.3).
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For the readers who will perform the linear stability analysis for practical

conclusions, the most important point is to correlate the properties of the Jacobian

matrix for the given steady-steady state with the dynamical behavior of the system

in the close vicinity of this state. Only local surroundings can be considered in this

analysis, since otherwise, for the nonlinear system, the linearization of the problem

would not be valid. Therefore, we can call this analysis a classification of local
stability, similarly as it could have been done for one-dimensional systems. How-

ever, in the case of two-dimensional systems this classification means also qualita-
tive conclusion about the detailed way in which this state is being attained or left. In
other words, we can diagnose the local shape of phase trajectories, which are most

conveniently constructed in the x–y phase space. Figure 1.8 shows all possible

trajectories for the linearized system depending on the relation between the trace Tr (J)

and the determinant Det(J) of the Jacobian matrix (1.19). Note that the vertical line,

corresponding to Tr(J) ¼ 0 and Det(J) > 0, is a set of centers which was here

indicated as a set of Hopf (bifurcation) points, according to the above remark that

centers in linear systems correspond to this way of the birth of oscillations in

nonlinear systems. For future diagnosis of bifurcations, one should also note

another important case of Det(J) ¼ 0, corresponding to the change of sign of the

determinant of Jacobian matrix (irrespective of the sign of trace); this situation

usually corresponds to the saddle–node bifurcation in two-dimensional systems.

The shape of particular trajectories is shown in Fig. 1.9. Note that the “spiral,”

called also a “focus” can be associated either with stable or unstable steady states

depending on the direction of development of such trajectory in time. Similarly,

stability or instability can be associated with the nodes, and the difference is that the
corresponding steady state is attained or left in a monotonic (nonoscillatory)

manner. In contrast, saddle point (see also Fig. 1.10) is always unstable.

Fig. 1.8 Variation in local stability and character of stationary-state solutions with the values of

the trace and determinant of the corresponding Jacobian matrix (see also Table 1.1). Reproduced

from [11] by permission of Oxford University Press, Inc.
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Fig. 1.9 Graphical illustration of various possible phase trajectories associated with the steady

state of system of two linear ordinary differential equations: (a) stable node, (b) unstable node,

(c) saddle, (d) stable degenerated nodes, (e) unstable degenerated nodes, (f) stable spiral (focus),

(g) unstable spiral (focus), (h) center. After [3]

A

A

0

0

Fig. 1.10 The phase trajectories of the saddle point (top), with illustration justifying its nomen-

clature (bottom). Reproduced from [12] with permission from John Wiley and Sons, Inc. # 1986

1.3 Linear Stability Analysis 19



It is further useful to correlate the shape of these trajectories with the l1 and

l2 roots derived from the following equivalent form of Eq. (1.25) [2]:

ðl� l1Þðl� l2Þ ¼ l2 � lðl1 þ l2Þ þ l1l2 ¼ 0 (1.38)

which leads to the alternative expressions for the trace and the determinant of the

Jacobi matrix:

TrðJÞ ¼ l1 þ l2 (1.39)

DetðJÞ ¼ l1l2 (1.40)

Obviously, as long as Tr(J) < 0 and Det(J) > 0, the system is stable, since in this

case both roots have to have the same sign, which must also be negative. It is further

clear that the trace is negative if both roots l, controlling the time evolution of

perturbations, are negative, or if only one of them, e.g., l1, is negative, with

|l1| > l2. The first case corresponds to the stable nodes or spirals, if Det(J) > 0, the

second one—to the saddles, if Det(J) < 0. Condition Det(J) < 0 generally

corresponds to the saddle points, since this means l1 and l2 of opposite signs. Then
the tracemay be either positive or negative, in dependence on thatwhether |l1| > l2 or
|l1| < l2. Analysis of expression for l1,2 (1.28) proves that if Det(J) < 0, then both

these roots are real numbers, so the steady state is reached/left in nonoscillatory

manner. The detailed dependences between the value of eigenvalues l1 and l2 and
the type of local stability of steady states are given in Table 1.1 [11].

Table 1.1 Classification of local stability and character in terms of Jacobian matrix and its

eigenvalues

Tr(J) Det(J) [Tr(J)]2 � 4Det(J) l1,2 Character and stability

� + + Real, both –ve Stable node (monotonic

approach)

� + � Complex real parts, �ve Stable focus (damped

oscillatory approach)

0 + � Imaginary (real

parts ¼ 0)

Hopf bifurcation point or center

+ + � Complex real parts +ve Unstable focus (oscillatory

divergence)

+ + + Real, both +ve Unstable node (monotonic

divergence)

� 0 + One zero, one –ve, or one

+ve

Saddle–node bifurcation point

� � + Real, one –ve, one +ve Saddle point (unstable)

0 0 0 Both zero Double-zero eigenvalue

bifurcation point

Reproduced from [11] by permission of Oxford University Press, Inc.
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We shall illustrate the above theoretical considerations with the stability analysis

of an exemplary linear (i.e., already linearized nonlinear) system, defined by the

following equations:

dx

dt
¼ 3xþ 5y (1.41)

dy

dt
¼ �2x� 8y (1.42)

The steady state (fixed point) of this dynamical system is (xss, yss) ¼ (0,0). Our

aim is to study the type of this state, according to principles of linear stability

analysis. For that purpose we have to consider the properties of Jacobian matrix:

J ¼ 3 5

�2 �8

� �
(1.43)

Since its determinant is negative, Det(J) ¼ �14, we immediately come to the

conclusion that the (0,0) steady state is the saddle, irrespective of the trace which is

here Tr(J) ¼ �5. The corresponding eigenvalues are l1 ¼ 2, l2 ¼ �7, which

quantitatively describe the variation of perturbed variables x and y in time. In

practice one usually computes numerically the phase portrait which reveals the

course of the phase trajectories, tending both to the steady state and in the opposite

direction (see Fig. 1.11a, prepared under Mathematica® v.7).

1.3.2.1 Vector Representation of Phase Trajectories

Based on the above example, it is instructive to show the correlation between the

phase portrait and the computed values of eigenvalues. For this purpose we shall

explicitly indicate the position of straight line trajectories (Fig. 1.11b),

corresponding to Dy(t)/Dx(t) ¼ const at any time t.
Intuitively, for these trajectories to be linear, the exponential evolution of x(t)

should be ruled by the same exponential term as that of y(t), involving only a single
value of l for given trajectory, i.e., x(t) ¼ Aexp(lt) and y(t) ¼ Bexp(lt), so that

Dy(t)/Dx(t) ¼ B/A ¼ const. This exponential motion of the system’s state along

these trajectories either veers towards the fixed point (0,0) (see the line

corresponding to l2 ¼ �7) or veers away from it (for l1 ¼ 2), when time tends

to infinity. In the former case, the trajectory is a stable manifold, i.e., a set of initial
conditions (x0, y0) such that lim

t!1 ½xðtÞ; yðtÞ� ¼ ðxss; yssÞ. In the latter case, the

trajectory corresponds to unstable manifold, meaning the set of initial conditions

(x0, y0) such that lim
t!�1 ½xðtÞ; yðtÞ� ¼ ðxss; yssÞ. The trajectories placed between these

lines exhibit apparently paradoxical feature: for t ! 1 asymptotically reached

there is unstable manifold is, while the stable manifold would be approached for
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Fig. 1.11 (a) Trajectories of the linear dynamical system (1.41, 1.42) in the x(abscissa)–y
(ordinate) coordinates, indicating the steady state (0, 0) of saddle type; (b) phase portrait from

(a) with indicated two straight-line trajectories, determined by eigenvalues l1 ¼ 2 and l2 ¼ �7,

respectively
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t ! �1. So, both straight-line manifolds determine the direction of trajectories for

t�1. The position of these straight line manifolds in the Cartesian coordinate

system [x, y] is determined by the direction of certain fixed vectors, which we

denote here as v1 ¼ v1;x; v1;y
	 


and v2 ¼ v2;x; v2;y
	 


, respectively. Although in

typical practical application of the stability analysis usually we do not need to

determine these vectors, it is useful to realize (at least once in life) how this

determination can be done [2].

The exponential evolution (decay or growth) of the system’s state [x(t), y(t)]
along every of these straight lines is generally described in the following way:

x
y

� �
¼ exp ðltÞ vx

vy

� �
(1.44)

We substitute this equation into the system of linear (or linearized) differential

equations (analogous to Eqs. (1.13, 1.14), for the (0,0) steady state):

dx

dt
dy

dt

2
64

3
75 ¼ J

x

y

� �
(1.45)

and after comparison with the time derivative of (1.44) we obtain a dependence

showing that v is the eigenvector of Jacobian matrix J, with the eigenvalue l:

J
vx
vy

� �
¼ l

vx
vy

� �
(1.46)

Now it becomes clear why l1 and l2 were called the eigenvalues. Alternatively,
one can write:

a� l b
c d � l

� �
vx
vy

� �
¼ 0 (1.47)

Based on the known every value of l we can now compute vx and vy as the

solutions of this system of equations. Since there are two different eigenvalues l1,2,
the corresponding two different eigenvectors v1 and v2 are found which determine

the positions of the straight-line trajectories in the (x, y) phase space. In other words,
every value of l determines the corresponding manifold. For Eqs. (1.41) and (1.42),

we obtain the following nontrivial solutions:

for l1 ¼ 2:

v1 ¼
5
9� 1
9

� �
ðor any scalar multiple of itÞ (1.48)
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for l2 ¼ �7:

v2 ¼ 1

�2

� �
ðor any scalar multiple of itÞ (1.49)

In terms of these values, the general solution of the system (1.41, 1.42) is given

by the explicit formulas:

xðtÞ ¼ C0
1

5

9

� �
expð2tÞ þ C0

2 expð�7tÞ (1.50)

yðtÞ ¼ �C0
1

1

9

� �
expð2tÞ � 2C0

2 expð�7tÞ (1.51)

For the exemplary initial condition (x0, y0) ¼ (1, 2), the corresponding constants

are C0
1 ¼ 4 and C0

2 ¼ �11=9. In turn, if the initial state belongs exactly either to

unstable or stable manifold, one of the constants C0
1 or C0

2 must be zero, since the

system’s evolution is then entirely controlled by eigenvalue either l1 or l2. For
example, if (x0, y0) ¼ (5, �1) lies on the unstable manifold with l1 ¼ 2 then C0

1 ¼
9 and C0

2 ¼ 0, i.e., the system veers away from the initial state according to x(t) ¼ 5

exp(2t) and y(t) ¼ �exp(2t). In turn, for (x0, y0) ¼ (2, �4) lying on the stable

manifold with l2 ¼ �7, C0
1 ¼ 0; and C0

2 ¼ 2, this time the system tends to the

fixed point (0,0) according to the equations x(t) ¼ 2exp(�7t) and y(t) ¼ �4exp(�7t).
This analysis is of course valid not only for the saddle point which was here used

as an example. Also other types of fixed points and associated trajectories can be

found in this way. If eigenvalues become complex numbers: l1,2 ¼ p � io, the
evolution equations remain valid with that generalization that the coefficientsC0

1 and

C0
2 must also be complex numbers. In a particular case of equal eigenvalues l1 ¼

l2 ¼ l one obtains special trajectories, named either as star nodes (if there are two
independent eigenvectors corresponding to single value of l) or named degenerate
nodes (if there is only one eigenvector) [2] (cf. Fig. 1.9).

1.3.2.2 Two First Order ODEs vs. a Single Second-Order ODE

At the end of this section, we shall briefly confront the reliability of the description

of the physicochemical system with the mathematical equivalence between the

system of two ODEs of the first order:

dx

dt
¼ axþ by (1.52)

dy

dt
¼ cxþ dy (1.53)
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and a single, second-order differential equation [7]:

d2x

dt2
� ðaþ dÞ dx

dt
þ ðad � bcÞx ¼ 0 (1.54)

In order to perform this transformation one first calculates d2x/dt2 from Eq. (1.52),

in the obtained expression substitutes the dy/dt derivative with Eq. (1.53) and finally

substitutes the resulting term by with the expression derived from Eq. (1.52).

Now, assuming the trial solution of (1.54) in an exponential form: x ¼ Celt one
calculates its first and second derivatives and substitutes them to (1.54), obtaining

the equation:

exp ðltÞ½l2 � lðaþ dÞ þ ðad � bcÞ� ¼ 0 (1.55)

which is true for any finite l and t, if:

l2 � lðaþ dÞ þ ðad � bcÞ ¼ 0 (1.56)

or, equivalently, in terms of Jacobian matrix J (1.19):

l2 � TrðJÞlþ DetðJÞ ¼ 0 (1.57)

Thus, one obtains exactly the same form of solutions for l1 and l2, as earlier, and
the dynamics of x as a function in time is described as:

xðtÞ ¼ C1 exp ½l1t� þ C2 exp ½l2t� (1.58)

In spite of this mathematical equivalence, for the chemical systems, the repre-

sentation of the system’s dynamics in terms of two explicitly defined variables may

be more useful and illustrative than reduction of the problem to a single variable.

The single variable is sufficient to describe, e.g., the motion of pendulum, but if

various chemical species are involved in the reaction, then it is more natural to

describe the dynamics of each of them with a separate first-order ODE. Concluding,

not always the mathematical equivalence of equations means realistic treatment of

a given (electro)chemical problem.

1.3.3 The Hopf Bifurcation

Typical linear stability analysis of the two-dimensional dynamical system aims to

find the conditions for the Hopf and the saddle–node bifurcations. According to

analysis described in previous section, as long as the properties of the Jacobian

matrix for the analyzed steady state are the following: Tr(J) < 0 and Det(J) > 0,

this state system is stable, but when the trace and/or the determinant change their
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signs, respective bifurcations take place. If the bifurcation involves only a close

neighborhood of a fixed point, is called a local bifurcation. If the representation of

the bifurcations requires considerations of larger regions of the phase space, such

bifurcations will be called global (they will be described later in this chapter).

TheHopf bifurcation, which can be diagnosed from the linear stability analysis,

is a local bifurcation. As said earlier, this bifurcation will indicate the possibility of
oscillations arising through the loss of stability of the single steady state for the

dynamical system that is at least two-dimensional. According to Fig. 1.8, the

occurrence of such bifurcation in nonlinear system is detected in the linearized

system as the condition of the formation of the center, i.e., when the trace of

Jacobian matrix J changes its sign from the negative to the positive one, with the

determinant having positive sign. Thus, the condition for the Hopf bifurcation is:

TrðJÞ ¼ 0 with DetðJÞ > 0 (1.59)

In terms of eigenvalues l1 and l2 (1.28) which then change the signs of their real
part, one can illustrate this bifurcation with the scheme shown in Fig. 1.12.

For the linear system these conditions mean only the loss of stability of the

steady state, for which, after this bifurcation, the trajectories evolve in a spiral way

“into the unknown.” For nonlinear systems this trip will, however, end with the

closed trajectory—limit cycle. This is the essential content of the Hopf theorem
which justifies the application of linear stability analysis to the diagnosis of

oscillatory cycles in nonlinear systems.

One should note that criterion (1.59) shows only the possibility of the Hopf

bifurcation, but will not indicate whether it is supercritical or subcritical. In order

to distinguish between these two cases, a deeper analysis of the oscillations

characteristics as a function of varying bifurcation parameter is necessary.

1.3.3.1 Supercritical Hopf Bifurcation

Let us consider a model two-dimensional system involving the dynamic variables

r and y which may be placed in the Cartesian (x, y) coordinates: then y is the angle

between the radius r and the x axis, with: x ¼ r cosy and y ¼ r siny [2].

Im λ

Re λ

Fig. 1.12 The scheme of

Hopf bifurcation in the two-

dimensional system,

indicating the change of sign

of real parts of eigenvalues l1
and l2, with nonzero

imaginary parts, guaranteeing

the oscillations
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dr

dt
¼ mr � r3 (1.60)

dy
dt

¼ oþ br2 (1.61)

For this equations’ system, the linear stability analysis indicates the occurrence

of Hopf bifurcation for the critical value of the bifurcation parameter mc ¼ 0. For

m < 0, the single stable steady state is the only attractor (stable focus) in the phase

space, while for m > 0 the only attractor is the stable limit cycle, surrounding (the

now unstable) central steady state (Fig. 1.13).

The Hopf bifurcation, occurring in the model system (1.60, 1.61) is supercriti-
cal. For this type of bifurcation, at the critical value of the bifurcation parameter mc,
the size (radius) of the limit cycle, or the amplitude of oscillations, grows continu-
ously from zero at this point, and proportionally to the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� mcÞ
p

factor, as long as

m remains close to the critical value. Thus, in practice, in order to confirm the

supercritical nature of the Hopf bifurcation, one verifies that the plot of the oscilla-

tion amplitude is, near the bifurcation point, a linear function of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� mcÞ

p
,

with zero intercept.

The frequency of the limit cycle oscillations is approximately equal to o ¼ Im(l)
(or the period of oscillations approximately equals to 2p/Im(l)), where l is the

eigenvalue of the characteristic equation. In fact, inspection of Eq. (1.61) shows that

the angular frequency dy/dt tends too, when the limit cycle radius r tends to zero. It
is here also noteworthy to invoke Eq. (1.35) from which it follows that at the point
of a Hopf bifurcation [i.e., when Tr(J) ¼ 0], the frequency of the oscillations is

generally equal to o0 ¼ Im(l) ¼ [Det(J)]1/2.

With m being more and more distant from mc toward positive values, these

dependences become more approximate, with the phase trajectories becoming

more complicated, losing its initial circular shape, and this is a general phenomenon

for the nonlinear systems. The reader interested in another example of this type of

Fig. 1.13 The phase portraits of dynamical system (1.60, 1.61) before (for m < 0) and after (for

m > 0) the point of supercritical Hopf bifurcation
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bifurcation and the shape of trajectories is advised to analyze the classical

Brusselator model (see e.g., [12]).

In order to complete the characteristics of the supercritical Hopf bifurcation one

should note that upon decreasing bifurcation parameter the oscillations decay at

exactly the same value of the bifurcation parameter (mc ¼ 0), i.e., no hysteresis in
the system’s dynamics upon cyclic variation of m would be observed.

1.3.3.2 Subcritical Hopf Bifurcation

The manifestation of the subcritical Hopf bifurcation is markedly different from the

supercritical case. The system which experiences this type of bifurcation does not

start to oscillate with the amplitude rising gradually from zero at the critical point,

but the oscillations set in with at once remarkable amplitude. In terms of the phase

space representation, it means that when at the bifurcation point the steady state

loses its stability, the system jumps to the limit cycle of nonzero radius. Sometimes

such a type of bifurcation is called a “hard transition,” compared to the “soft”

supercritical case and this terminology can be generalized also for other

bifurcations.

The model system for the subcritical Hopf bifurcation is [2]:

dr

dt
¼ mr þ r3 � r5 (1.62)

dy
dt

¼ oþ br2 (1.63)

When increasing the bifurcation parameter m from negative towards positive

values (this direction is now important), the onset of high-amplitude oscillations is

again observed at a critical value mc ¼ 0. What exactly happens upon variation of m
from the negative to positive values is shown on the respective phase portraits

(Fig. 1.14). The phase representation is evidently more complex than in supercriti-

cal case.

For m < 0 there are two attractors, both only locally stable, i.e., having their own

basins of attraction: the central point and the outer limit cycle, separated with the

unstable limit cycle, i.e., repeller (dashed middle circle). Thus, in dependence on

the initial conditions, corresponding to one or another basin of attraction, the system

may exhibit either damped oscillations to the steady state or sustained (stable)

oscillations. In other words, the system is then bistable, involving in this case the

coexistence of the steady state and the oscillatory state for certain range of (nega-

tive) values of the bifurcation parameter m.
Let us assume that our system is initially in the single steady state (central point)

before the bifurcation. With increasing m up to a critical value of mc ¼ 0, the radius

of the unstable limit cycle shrinks to zero, engulfing more and more of this point

attractor and eventually making it a repeller. The only attractor is then the stable
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limit cycle, to which the system jumps, i.e., the system attains the oscillatory regime

of at once large amplitude. Also after this bifurcation, i.e., for m > 0 there exists

only this single attractor, so the system continues to oscillate.

The dynamic behavior of the system is thus indeed more complex that in the case

of the supercritical Hopf bifurcation, but it is not the end of complication. The next

important feature is that if we want to bring system from the actual large amplitude

oscillations back to the situation corresponding to m < 0, we shall observe the

hysteresis: oscillations will decay not at m ¼ 0, but only at m ¼ �1/4, and through

another type bifurcation which is called the saddle–node bifurcation of cycles (one
of the global bifurcations, discussed later in this chapter). For comparison of the

supercritical and subcritical Hopf bifurcation, it is very instructive to inspect their

alternative schematic diagrams shown in Fig. 1.15.

bifurcation parameter

a

bFig. 1.15 Typical bifurcation

diagrams of a supercritical

(a) and a subcritical (b) Hopf

bifurcation. For the

oscillatory regimes, the

distance between the upper

and lower branches indicates

the amplitude of oscillations

Fig. 1.14 The phase portraits of dynamical system (1.62, 1.63) before (for m < 0) and after

(for m > 0) the point of subcritical Hopf bifurcation, observed upon increasing value of bifurcation

parameter m. After [2]
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In the subcritical case, clearly visible is the hysteresis upon variation of parame-

ter m. Also the destructive role of the middle unstable limit cycle (dashed arc) for

either attractors is indicated—its collision with either the central point attractor or

with the external stable limit cycles either destroys its stability (in the former case)

or causes mutual annihilation of cycles (in the latter case).

Thus, the practical detection of the subcritical Hopf bifurcation involves both the

sudden onset of large amplitude of oscillations and hysteresis in also abrupt decay

of oscillations when the variation of the bifurcation parameter is reversed.

1.3.3.3 The Degenerate Case of Two Hopf Bifurcations

According to the principles of the linear stability analysis, the diagnosis of the Hopf

bifurcation requires the condition Tr(J) ¼ 0, with Det(J) > 0. In this section, we

shall discuss a particular case showing the necessity of careful interpretation of this

condition. Let us first consider a system, for which upon tuning the system’s

parameter in search of the oscillations through the supercritical Hopf bifurcation,

the sequence of the onset (from zero amplitude), stepwise growth of the amplitude,

and decay of oscillations back to zero amplitude are observed (Fig. 1.16).

For each of these two bifurcations, the above discussed condition Tr(J) ¼ 0

must be met, i.e., for the neighboring values of the control parameter m, the trace of
J must be positive (when trajectories tend to limit cycle) and negative (when

trajectories converge to the point attractor), respectively. In other words, at the

critical (bifurcation) points m�1and m
�
2 shown in Fig. 1.16, the derivatives at m

�
1and at

m�2: dTr(J)/dm 6¼ 0. There is however possible a particular situation, when for the

critical value of m, not only Tr(J) ¼ 0, but also dTr(J)/dm ¼ 0. Thus, the real part of

the eigenvalues Re(l) does not change a sign at this point, so does not become

positive, as required for the oscillatory region. The Hopf bifurcation is then named

to be “degenerate.” This degeneration usually means that at this point two Hopf

bifurcations merge and cancel each other out, so the oscillations cannot emerge.

This case shows that it is necessary to check whether the trace (hence also real parts

of eigenvalues) attains positive values and not only zero value [11].

Fig. 1.16 Schematic

representation of the onset,

growth, and death of

oscillations in the isothermal

autocatalytic model reaction

system, showing emergence

of the stable limit cycle at m�1
and its disappearance at m�2.
Reproduced from [11] by

permission of Oxford

University Press, Inc.
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1.3.4 The Saddle–Node Bifurcation

This bifurcation is often related to the phenomenon of bistability which for many

systems is closely related to the oscillatory behavior. According to linear stability

analysis, in two-dimensional system the saddle–node bifurcation occurs when:

DetðJÞ ¼ 0 (1.64)

since then (cf. Fig. 1.8) a node [stable or unstable, depending on the sign of Tr(J)]

transforms to a saddle point (or vice versa). Of great practical importance is that this

condition involves frequently (thus, not always! [11]) the coming together and

mutual destruction of two different steady states and we shall deal further with this

typical case. This is illustrated by bifurcation scenario in the following model

system [2]:

dx

dt
¼ m� x2 (1.65)

dy

dt
¼ �y (1.66)

For m > 0, there are two steady states possible: a stable node at ðxss; yssÞ ¼
ð ffiffiffi

m
p

; 0Þ and a saddle at ðxss; yssÞ ¼ ð� ffiffiffi
m

p
; 0Þ. The determinant of the Jacobian

matrix of the linearized system (1.65, 1.66) is equal to Det(J) ¼ 2xss, thus the

condition of the saddle–node bifurcation is met for m ¼ 0. Figure 1.17 illustrates

what happens upon decreasing parameter m from positive, through the critical zero

value, up to negative values.

As parameter m decreases, the saddle (o) and the node (•) approach each other

and eventually collide at the bifurcation point. One can say that at this point the

Fig. 1.17 Typical scenario of saddle–node bifurcation in two-dimensional system, involving

mutual annihilation of the stable node and a saddle, with an appearance of a region in the phase

space in which the run on phase trajectories is delayed. Based on [2]
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characteristics of the saddle become identical with those of the node. After the

bifurcation these states do not exist anymore, so they annihilated each other. There,

however, remains in the system’s dynamics a trace of this annihilation, shown in

Fig. 1.17, as the region in which the motion on the phase trajectories is delayed. In

his impressive handbook of nonlinear dynamics, Strogatz [2] uses the vivid terms of

“ghost” or the “bottleneck region” which sucks all trajectories in and delays them

before allowing passage out to the other side. In other words, although steady states

already annihilated each other, the system still “remembers” that they existed.

The correlation of this scheme with the folded representation of states in the

bistable region was shown in Fig. 1.7. The upper and lower branches of the fold are

the sets of stable nodes, while the middle unstable branch consists of saddle points.

Every edge of the fold is the place in which a pair of saddle and node is born or

disappears, respectively. Of course, in order to confirm such a diagram of steady

states, the stability analysis should be performed for each of steady states present

for the given value of the bifurcation parameter. For monostable regions, only one

stable steady state will be found and this will be a stable node (for this state (1) Tr(J)

should be negative, guaranteeing the asymptotic stability and (2) Tr2(J) � 4Det(J)

should be positive, ensuring that these stable states are the nodes). For the bistable

region, three such states will exist: one saddle and two nodes and upon variation of

the bifurcation parameter in one direction a saddle and one of the nodes will be

involved in the annihilating saddle–node bifurcation, while the stability of the other

node will not be affected, and it remains then the only attractor in the phase space.
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Fig. 1.18 A schematic diagram of the “cross-shaped” bifurcation borders separating areas where

monostability, bistability, or oscillations appear in a CSTR experiment as experimental variables

(bifurcation parameters) such as flow rate, k0, or the concentrations of reactants in the feedstreams

are varied. Such a relationship is expected whenever a chemical reaction oscillates by a switching

mechanism. Reprinted with permission from [14]. Copyright 1999 American Chemical Society
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1.3.5 The Cross-Shaped Bifurcation Diagram

Based on the criteria of the Hopf and saddle–node bifurcations one can easily

construct the stability diagram for the given system. For quite many oscillators,

both chemical and electrochemical ones, it has a characteristic cross-shaped from

which is schematically depicted in Fig. 1.18 [13, 14].

This shape reveals a close correspondence between oscillations and bistability

that may be observed for the same system, depending on the control parameters. In

fact, the occurrence of the oscillations means that in this case the system switches

between the upper and lower branches of steady states due to spontaneously

occurring cyclic variation of, e.g., the concentration of a species that acts as a

bifurcation parameter (Fig. 1.19) [14]. Theoretical description of such correlation

and conditions for its occurrence is known as the Boissonade–De Kepper model

[13, 15].

The bifurcation diagram like that presented in Fig. 1.18 is usually both deter-

mined experimentally and constructed theoretically, in terms of respective models.
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Fig. 1.19 Principle of the occurrence of oscillations related to the bistability region. Schematic

plot of steady state X vs. Z calculated from equations corresponding to OREGONATOR model of

the Belousov–Zhabotinsky reaction (see Sect. 1.6) under conditions of a flow stirred reactor, for

appropriate set of parameters. The curve is folded so that the system may be monostable, bistable,

or oscillatory, depending on the exact parameter values. The bold lines show evolution to steady

states while the dotted line show an oscillatory trajectory. The inset shows the same plot using

parameters for which the curve is not folded and only one steady state is possible. SSI is a high X

steady state and SSII is a low steady state. Reprinted with permission from [14]. Copyright 1999

American Chemical Society
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The similarity of both diagrams is one of the methods of verification of the validity

of the model assumed for the description of a real system. One can only remember

that only stable steady states are experimentally observable (if no special stabiliza-

tion procedures are involved), so theoretical model may unravel additional, unob-

servable states and their bifurcations. Following the Boissonade and De Kepper

seminal works [13, 15], Guckenheimer [16] showed an extended and improved

mathematical (bifurcation) structure of the cross-shaped diagram for the model

chemical reactors. Some of these bifurcations will be described in the next section

and their concise description is also given in the original Guckenheimer paper.

1.4 Global Bifurcations Leading to Oscillations

In the previous sections, we learned about a Hopf bifurcation that is undoubtedly

the most popular route to the oscillations, but not the only one. At least three other

bifurcations that lead to the oscillatory behavior in the two-dimensional system can

be diagnosed. Their common feature is that they, contrary to the local nature of a

Hopf bifurcation, are global, i.e., not only the close vicinity of the steady state, but

larger region of the phase space is engaged in this instability. Such bifurcations are

indicated in the Guckenheimer scheme (Fig. 1.20).

Fig. 1.20 Corrected tableau for Boissonade–De Kepper cross-shaped diagram model. Lower case
letters correspond to phase portraits on Fig. 3.3 in original reference [14]. Labels: C cusp, DH
degenerate Hopf bifurcation, DL double saddle–loop bifurcation, H Hopf bifurcation, SL
saddle–loop bifurcation, SN saddle–node bifurcation, SNL saddle–node loop bifurcation, SNP
saddle–node for periodic orbits, TB Takens–Bogdanov bifurcation. Reprinted from [16], Copy-

right 1986, with permission from Elsevier
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1.4.1 Saddle–Node Bifurcation of Cycles

This type of global bifurcations was implicitly mentioned (but not explicitly

named) in Sect. 1.3.3 as occurring in the system in its return trip after the subcritical

Hopf bifurcation. The oscillations then decayed with a hysteresis at a new critical

point, just via the saddle–node bifurcation of cycles.
In a way the essential nature of this bifurcation is a generalization of scheme of

the saddle–node bifurcation involving the fixed points (cf. Fig. 1.17): then, one

stable node and the (always unstable) saddle annihilated each other at the bifurca-

tion point. If we replace fixed points with two limit cycles: one stable and one

unstable, we obtain the bifurcation discussed in this section. Its scheme is illustrated

in Fig. 1.21.

If we start from the system’s dynamics after a subcritical Hopf bifurcation and

go back with the bifurcation parameter, we first enter the region in which the

actually observed limit cycle is not the only attractor, since there is also a central

point attractor separated by the unstable limit cycle (see Figs. 1.14 and 1.15). The

left picture in Fig. 1.14 is the same as the most left one in Fig. 1.21. Again we can

say that this region is bistable. When m decreases, exactly at m ¼ mc in Fig. 1.21

both cycles coalesce, yielding the half-stable cycle, from outside of which the states

are attracted to, but from inside they tend to the central point attractor. This is the

situation when sustained, large-amplitude oscillations, born earlier through the

subcritical Hopf bifurcation, now decay. At m < mc only the single point attractor

survives. Noteworthy, as follows from the schematic Fig. 1.21, the stability of this

central point attractor remained intact during the discussed bifurcation.

Fig. 1.21 The scheme of the saddle–node bifurcation of limit cycles. Based on [2]
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It can be useful to compare the occurrence of the global saddle–node bifurcation

of cycles and of local subcritical Hopf bifurcation, separated by hysteresis region, in

terms of the equivalent diagram shown in Fig. 1.22.

This diagram clearly shows how “aggressive” the middle, unstable limit cycle is

for his locally stable dynamical partners: the central point attractor and the external

limit cycle. When the unstable limit cycle, by changing its radius, collides with one

or the other attractor, either the stability of the central attractor decays at the Hopf

point or both cycles annihilate each other at the saddle–node point, when only the

(now globally stable) point attractor remains. Such bifurcation schemes were found,

among others, in the OREGONATOR model of the Belousov–Zhabotinsky process

[14] (see Sect. 1.6).

1.4.2 Saddle–Node Infinite Period (SNIPER) Bifurcation

This another example of global bifurcation is called also shortly the Infinite Period

bifurcation. It is however better to use the full name, or the abbreviation SNIPER,

as it is not the only infinite period bifurcation possible in nonlinear systems. The

SNIPER bifurcation occurs in the model system [2]:

dr

dt
¼ rð1� r2Þ (1.67)

dy
dt

¼ m� sin y (1.68)

Fig. 1.22 The relationship between the local subcritical Hopf bifurcation [H(sub)] and the global

saddle–node bifurcation of the unstable and stable limit cycles [SN(c)]
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for the critical value of bifurcation parameter mc ¼ 1. Figure 1.23 shows the

difference in the system’s dynamics before and after this bifurcation.

For m > 1 there exists a stable limit cycle, but the system moves along this

trajectory with varying velocity—it slows down in a region, which is particularly

important for the bifurcation scheme. When the bifurcation parameter decreases

from the initial values of m > 1, the motion becomes slower and slower, and at the

point of bifurcation mc ¼ 1 the velocity drops to zero for y ¼ p/2 (since then

dy/dt ¼ 1 � sin(p/2) ¼ 0). It means that upon decreasing m, the period of the

oscillations lengthens and at mc ¼ 1 becomes infinitely large, so the oscillations

effectively cease—this is a source of the main part of the name of this bifurcation.

Quantitatively, the period of the oscillations increases like (m � mc)
�1/2. After the

bifurcation, for m < 1 the pair of two steady states is born: one stable node and one

saddle—and this explains the rest of the name of this bifurcation. Obviously, there

is now only a single attractor in the phase space. One should note that unchanged

radii of the cycles in Fig. 1.23 indicate that the amplitude of decaying oscillations

remains constant. The above features of the SNIPER bifurcation suggest that its

existence in real experimental systems or in numerical calculations can be supposed

if, upon variation of the bifurcation parameter, the oscillations decay through

lengthening of their period, with almost constant amplitude. On the other hand,

the dynamical system with SNIPER bifurcation can find potential applications as a

device with a tunable period of oscillations, for which purpose the Hopf bifurcation

is not suitable.

1.4.3 Saddle–Loop (Homoclinic) Bifurcation

This is another type of the infinite period bifurcation of a global nature, alternative

name of which is homoclinic bifurcation, as it involves the so-called homoclinic

Fig. 1.23 The dynamics of the model system (1.67, 1.68) before and after the SNIPER bifurca-

tion. Based on [2]
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orbit in the phase space. Such homoclinic (“from the same bed”) trajectory has this

specific feature that it starts and ends at the same fixed point. The model system in

which this type of bifurcation occurs is [2]:

dx

dt
¼ y (1.69)

dy

dt
¼ myþ x� x2 þ xy (1.70)

Numerical computations showed that the respective bifurcation occurs at mc 	
�0.8645. Figure 1.24 shows the variation of the system’s dynamics associated with

this type of bifurcation.

This scheme shows that this global bifurcation requires that in the phase space

there are present the stable limit cycle and the saddle point. Picture (a) corresponds

to sustained oscillations, occurring due to this stable limit cycle, which is slightly

deformed, but still separated enough from the saddle point. Upon approaching the

bifurcation point, the period of the oscillations lengthens. Picture (b) corresponds to

dynamics very close to the saddle–loop bifurcation point which is schematically

shown in the right column: the sufficiently deformed limit cycle touches the saddle

point and as a consequence the homoclinic orbit is formed. By definition, the

homoclinic orbit is a trajectory that connects a saddle fixed point with itself.

Beyond the bifurcation point (picture c) the periodic loop is completely destroyed,

i.e., the period of oscillations grows to infinity.

1.5 Nullcline Representation of Dynamical Systems

In this section, we shall describe a particularly convenient way to represent the

dynamics around the steady states of the two-dimensional system, defined with

general equations (1.11) and (1.12). This problem is particularly important if the

equations are nonlinear, since then it is frequently impossible to obtain their solutions

analytically. Of course, one can always perform numerical integration of Eqs. (1.11)

and (1.12). For this purpose, one should first determine the characteristics of the steady

state(s), (xss, yss) from the conditions: f(x, y) ¼ 0 and g(x, y) ¼ 0 met simultaneously.

Having these steady states determined we further generate numerically the discrete

sequences of [x(Dt), y(Dt)], [x(2Dt), y(2Dt)],. . ., [x(nDt), y(nDt)], starting in each series
from different initial values (x0, y0), corresponding to various distances from the

steady-state values. Obtained phase trajectories consist of discrete sets of points

[x(t), y(t)] which we plot in the y–x coordinate system. If such calculations were

made for sufficiently large number of different initial values of x and y, covering a

wide region of phase space with reasonable density, one can reconstruct the reliable

phase portrait of the system (1.11, 1.12).
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Fig. 1.24 Phase portraits of the dynamical system (1.69), (1.70) in which homoclinic bifurcation

occurs upon variation of the control parameter: (a) m ¼ �1 < mc; (b) m ¼ �0.8645 	 mc and

(c) m ¼ �0.5 > mc. Phase portraits in left column are generated by Mathematica® v. 7, while in

right column the corresponding schematic trajectories show the essence of homoclinic bifurcation
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We shall here describe in more detail an alternative and very informative

approach that does not need numerical integration of Eqs. (1.11) and (1.12). This

very convenient way to inspect the trajectories around the steady states involves

nullclines. These are defined as curves y ¼ f1(x) and y ¼ f2(x) obtained from the

right-hand sides of Eqs. (1.11) and (1.12), i.e., after applying the dx/dt ¼ 0 and

dy/dt ¼ 0 condition separately to each respective equation. The nullclines derived

from applying the dx/dt ¼ 0 and dy/dt ¼ 0 conditions are called the x-nullcline and
y-nullcline, respectively. For example, if dx/dt ¼ y � x2 and dy/dt ¼ x � y, the
x-nullcline is defined with y ¼ x2 and the y-nullcline with y ¼ x. In conventional

Cartesian coordination system (x–y phase space), the x-nullcline shows where the

flow is vertical (due to variations of y only), and the y-isocline indicates the points
for which the flow is purely horizontal, i.e., parallel to the x axis. Beyond the

nullclines the dx/dt and dy/dt derivatives are both nonzero, with the signs crucial for
the determination of local dynamics. Furthermore, the intersection of both

nullclines means mutual meeting of the dx/dt ¼ 0 and dy/dt ¼ 0 conditions, i.e.,

determines the position of the steady state in the phase space. Of course, if more

than one steady state is possible, nullclines intersect in appropriate number of

points. To summarize, the nullclines partition the xy plane around the steady state

into four regions of various signs of dx/dt and dy/dt, composed of the following

variants: (+, +), (+, �), (�, +), (�, �). Equivalently, one can represent the local

direction of flows of x and y with the appropriately oriented arrows (see Fig. 1.25).

It is undoubtedly useful to become familiar with the representation of the

system’s dynamics in terms of nullclines, as it is quite a popular approach in

nonlinear dynamics. As an example we shall now apply the nullclines approach

to the dynamical system corresponding to the classical Lotka model of damped

oscillations:

Fig. 1.25 Principle of

correlation between the signs

of dx/dt and dy/dt derivatives
beyond the nullclines and the

direction of arrows indicating

the local flows around the

intersection of x-nullcline and
y-nullcline, determining the

steady-state parameters

(xss, yss). According to

definition of nullclines, at the

x-nullcline dx/dt ¼ 0 (motion

is vertical only) and at

y-nullcline dy/dt ¼ 0 (motion

is horizontal only)
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Fig. 1.26 (a) Nullclines of the dynamical system (1.71, 1.72), the Lotka model for a ¼ b ¼ c ¼ 1;

(b) the corresponding phase portrait with a (1,1) stable focus, generated by Mathematica® v.7
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dx

dt
¼ a� bxy (1.71)

dy

dt
¼ bxy� cy (1.72)

where x and y can be identified with the concentrations of oscillating intermediate

chemical species and parameters a–c depend on the rate constants of particular

reaction steps and the constant concentration of a reactant. Based on linear stability

analysis one obtains the condition for damped oscillations (steady state of stable

focus type): ab < 4c2, so we can choose here, e.g.: a ¼ b ¼ c ¼ 1. The steady

state of the system (1.71), (1.72) is then (xss, yss) ¼ (1, 1) and the corresponding

nullclines are defined with equations:

x - nullcline : y ¼ a

bx
¼ 1

x
(1.73)

y - nullcline : x ¼ c

b
¼ 1 (1.74)

Figure 1.26a shows the course of the nullclines intersecting at the steady state as

well as the signs of derivatives dx/dt and dy/dt determining the direction of the flows

in each of four parts of the x–y space created by those nullclines. For comparison,

Fig. 1.26b shows the corresponding phase portrait generated by Mathematica® v.7.

Applications of nullclines will be described in further sections of this chapter.

1.6 Fast and Slow Dynamical Variables

The conclusion from the previous sections is that the continuous dynamical system

may exhibit oscillatory instabilities if it is defined by at least two ordinary differen-

tial equations (at this step we do not yet discuss the role of spatial coordinates).

If the oscillations occur under given conditions, as a result of respective bifurcation,

it is further important to analyze the shape and the period of oscillations, since this

can reveal important quantitative characteristics of the system’s dynamics. Many

real systems, including the electrochemical ones, exhibit oscillations which are not

sinusoidal, but often consist of relatively slow and fast changes of the system’s

state. Such oscillations are called “relaxation” ones, meaning that the system’s

behavior reflects sudden release of a kind of “tension” accumulated during the slow

course. For a two-dimensional system such relaxation behavior means that the time
scales of the two dynamical variables x, y are markedly different, and therefore we

can identify in this case the fast (e.g., x) and the slow (then y) variable.
It is useful to demonstrate this problem first in terms of the simple model, like

the well-established van der Pol equation, used mainly in physical sciences.
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This single, second-order differential equation may be written in an equivalent,

more convenient form of two ordinary differential equations of the first order [7]:

dx

dt
¼ 1

e
y� x3

3
þ x

� �
(1.75)

dy

dt
¼ �ex (1.76)

where e > 0 is a parameter of crucial importance for the indication of the fast and

the slow variables, since it quantitatively describes the difference in their time
scales. In fact, we shall see later (Chap. 2) in the description of model electrochem-

ical systems that the differential equations will be often transformed to dimension-

less forms, allowing for the convenient definition of parameter analogous to e.
An inspection of Eqs. (1.75) and (1.76) immediately shows that if e is close to 1,

the dynamics of x(t) and y(t) are comparable, or—in other words—the time scales

of the variation of x and y are similar. However, upon decreasing e these time scales

become more and more separated. This is clearly shown by the results of numerical

integration of Eqs. (1.75) and (1.76), for various parameters, shown in the caption

of Fig. 1.27. For sufficiently small parameter, like, e.g., for the case of e ¼ 0.01

shown in this figure, the x variable evidently becomes a fast variable (compared

to y), the dynamics of which corresponds then to typical relaxation oscillations.

It is instructive to correlate the shape of these oscillations and phase trajectories

with the nullclines (Fig. 1.28), the course of which is independent of e:

x - nullcline : y ¼ x3

3
� x (1.77)

y - nullcline : x ¼ 0 (1.78)

The only steady state, indicated by the intersection of these nullclines is (xss,
yss) ¼ (0, 0) and is unstable. It is surrounded by a limit cycle of a smooth or angular

shape, depending on parameter e, so the slopes of arrows indicating the directions of
motion will adapt to this shape, respectively.

Of our particular interest is now the case of small e, when the oscillations attain

strongly relaxation shape. The corresponding superposition of the nullclines and the

limit cycle is shown in Fig. 1.29. This is a very important and representative picture

which shows the close course of the slow trajectory and the x-nullcline, interrupted
by fast switches of x between the two branches of this nullcline (with y remaining

then practically constant).

Now let us trace in more detail the dynamics of the fast and slow change of

x variable. For that purpose we shall use a generalized form of a two-dimensional

dynamical system with different time scales of both variables:
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dx

dt
¼ 1

e
Pðx; yÞ (1.79)

dy

dt
¼ eQðx; yÞ (1.80)

In terms of these equations, the relation between the simultaneous changes of y
and x variables is given by:
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Fig. 1.27 Oscillatory solutions x (solid line) and y (dashed line) of the van der Pol equations (1.75,
1.76) (left column) and corresponding phase portraits (right column), for the parameter values

(from top to bottom): e ¼ 1, e ¼ 0.6, e ¼ 0.01
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dy

dx
¼ e2

Qðx; yÞ
Pðx; yÞ (1.81)

For the state lying exactly on the x-nullcline [i.e., when P(x, y) ¼ 0], the dx ¼ 0

and the dy/dx ratio tends to infinity. On the other hand, if the initial state is not close
to the x-nullcline, and especially if e 
 1, the dy/dx ratio is very small, meaning that

dx is much larger than dy, so the move of the system’s state is almost horizontal,

like in Fig. 1.29. One can say that |dx/dt| is then of the order of 1/e [we use also the

notation O(1/e)], while |dy/dt| is O(e). The direction of motion along the x-direction,

Fig. 1.28 Nullclines of the

van der Pol equations (1.75)

and (1.76)

Fig. 1.29 Superposition of nullclines of the van der Pol oscillator from Fig. 1.28 and of the limit

cycle for relaxation oscillations (small e)
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i.e., towards the x-nullcline is diagnosed from Fig. 1.28, when the signs of dx/dt and
dy/dt for all four sections of the phase space were indicated. Now, when the

system’s state approaches the x-nullcline, the motion along x-direction (according

to the definition of this nullcline) slows down, with values of |dx/dt| and |dy/dt| being
now comparable, both O(e). When x-nullcline is reached, dx/dt ¼ 0, so the only

motion possible is now along y-coordinate. Based on Fig. 1.28 one concludes that in
this section dy/dt < 0, so the system crosses the x-nullcline vertically, going a bit

down. Since in this way the x-nullcline was crossed, the dx/dt changed sign to

negative, with |dx/dt| becoming however a small value due to close position to

x-nullcline. Thus, x decreases relatively slowly, with |dx/dt| and |dy/dt| being again

comparable. Note that due to decrease in x, the system remains close to the

x-nullcline until point B is reached. Then the continued decrease in x makes the

system’s state more and more apart from the x-nullcline: it cannot go up, since y can
only decrease in this section. At this point, due to increasing P(x, y) the motion of x is
again strongly accelerated, compared to y, so the system moves quickly to point C,

when it slows down and slowly covers the path C–D, according to the same

reasoning as above for the initial stages of the trip. Finally, at point D the fast trip

to point A occurs, the oscillatory cycle is closed and further repeats along the ABCD

path.

Analogously to the above model considerations based on van der Pol equation,

in real chemical and electrochemical systems one can find dynamical variables of

significantly separated time scales. In homogeneous chemical kinetics [17], it

becomes then useful, if possible, to write the full system of kinetic equations:

dxi
dt

¼ Fiðx1; x2; :::; xnÞ; i ¼ 1; 2; :::; n (1.82)

in the sequence arranged according to decreasing powers of the small parameter e
(e 
 1):

e2
dxi
dt

¼ Fiðx1; x2; :::; xnÞ; i ¼ 1; 2; :::; l (1.83)

e
dxj
dt

¼ Fjðx1; x2; :::; xnÞ; j ¼ lþ 1; :::; lþ m (1.84)

dxk
dt

¼ Fkðx1; x2; :::; xnÞ; k ¼ lþ mþ 1; :::; n (1.85)

or, equivalently in the form:

dxi
dt

¼ 1

T1
Fi (1.86)
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dxj
dt

¼ 1

T2
Fj (1.87)

dxk
dt

¼ 1

T3
Fk (1.88)

where T1 ¼ e2, T2 ¼ e, T3 ¼ 1.

If we wish to analyze exactly the dynamics of all variables both in short and long

time scales, the integration of all equations is of course necessary. However, if we

are interested in the time courses of the order of T2 ¼ e, then the processes

described by Eq. (1.86) are relatively fast, whereas processes of the dynamics

defined by Eq. (1.88) are relatively slow. In other words, during time T2 all the

concentrations xk can be considered practically constant, e.g., equal to initial ones.

As a consequence, the system of n differential equations is reduced for Eq. (1.88),

i.e., its order decreases for [n � (l + m)].
Next, due to T1 
 T2, before xj values undergo significant changes, all xi

concentrations [Eq. (1.86)] will attain their final (steady-state) concentrations,

which can be inserted as constant values in Eq.(1.87). Thus, finally only m differ-

ential equations (1.87), characterized with similar time scale of the concentration

dynamics, survive the reduction process. This can seriously simplify numerical

calculations and also reduce eventual problems with their numerical stability,

possible for the systems of many differential equations.

Based on analogous considerations, also complicated mechanisms of oscillatory

chemical reactions, like, e.g., of the Belousov–Zhabotinsky process, could have been

simplified to the “core” reaction scheme responsible for the generation of the

oscillations. One of the most famous mechanisms of that type is the OREGONATOR

(“OREGON oscillATOR”) [18], being a simplified, model version of the FKN

mechanism, named so after its authors: Field et al. [19, 20]:

Process A:

Aþ Y ! Xþ P (1.89)

Xþ Y ! 2P (1.90)

Process B:

Aþ X ! 2Xþ Z (1.91)

2X ! Aþ P (1.92)

Process C:

Bþ Z ! fY (1.93)
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where A ¼ BrO3
� and B ¼ bromomalonic acid are the reactants of the BZ-type

process, P ¼ HOBr is the final product in this model, while the key (oscillating)

intermediates are X ¼ HBrO2, Y ¼ Br�, and Z ¼ Ce(IV). The factor f is a stoi-

chiometric coefficient, which in the model can vary between 0.5 and 2.5, having a

strong effect on the system’s stability and thus possible bifurcation scenario. The

oscillatory course involves two steady-state concentrations of HBrO2: one defined

by reactions of group A which require Y concentrations above certain critical value,

and the other one defined by reactions (B) which predominate when [Y] drops

below this critical value. The oscillations occur in this way that when Y species,

consumed in reactions of group (A) drop below the critical value, the system

switches to reactions (B) which produces species Z that, in turn, through a relatively

slow Process C, i.e., with certain delay, regenerates Y to a supercritical level and

then Processes A temporarily take over the control on the system’s characteristics.

The reader particularly interested in chemical oscillations should consult also, e.g.,

the monographs [11, 21, 22]. Also, the concise characteristics of OREGONATOR,

including animation of its phase portrait can be found on the Internet Scholarpedia.

org page [23].

The original kinetic equations corresponding to mechanism (1.89)–(1.93) can be

transformed to the form involving dimensionless variables, indicating simulta-

neously the different time scales for each of the three dynamical variables (x, y, z):

e
dx

dt
¼ qy� xyþ xð1� xÞ (1.94)

e0
dy

dt
¼ �qy� xyþ fz (1.95)

dz

dt
¼ x� z (1.96)

with e0 
 e 
 1; typically: e0 ¼ 4 � 10�4, e ¼ 4 � 10�2 and q ¼ 7.6 � 10�5. In

view of a very low value of e0, y appears to be the fastest variable. So, when slower
variables tend to their steady-state values, y-variable should already attain the

corresponding steady-state value. Or, in other words, the value of y adjusts imme-

diately to the given actual values of x and z variables. Thus, it is reasonable to

consider only the dynamics of x and z, while for given (x, z) the condition dy/dt ¼ 0

should be practically met. Hence the actual steady state yss concentration is [24]:

yss ¼ fz

qþ x
(1.97)

After inserting this expression in Eqs. (1.95) and (1.96) one obtains the descrip-

tion of the OREGONATOR dynamics, reduced to two dynamical variables:
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e
dx

dt
¼ xð1� xÞ þ f ðq� xÞz

qþ x
(1.98)

dz

dt
¼ x� z (1.99)

Since e 
 1, one can expect that solution of this equation system will exhibit

relaxation oscillations which should be represented in the phase space by the

trajectory of the features similar to those for the van der Pol equation (Fig. 1.29).

The nullclines of system (1.98) and (1.99) are defined as:

x - nullcline : z ¼ ��qxþ ð1� qÞx2 � x3

f ðq� xÞ (1.100)

z - nullcline : z ¼ x (1.101)

Figure 1.30 shows schematically the course of these nullclines for such

parameters q and f that they intersect at the point being the unstable steady state

around which the limit cycle ABCD develops [25]. Note the replacement of the

symbols of variables: x ! U, z ! V, in order to avoid the confusion with later

description of spatiotemporal patterns when x becomes a symbol of a spatial

coordinate.

Depending on q and f parameters, also other nullcline characteristics are possible

in this model:

1. The intersection of nullclines occurs only within the AD section, corresponding

to the single stable steady state of relatively low x value (monostability).

Fig. 1.30 Nullclines of two-variable model of the Belousov–Zhabotinsky reaction (1.98) and

(1.99). Reprinted from [25] with kind permission from Springer Science+Business Media.

Coordinates: U � x, V � z (in order to avoid confusion with spatial coordinates when analyzing

later the spatiotemporal patterns)
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2. The intersection of nullclines occurs only within the BC section, corresponding

to the stable steady state of relatively high x value (monostability).

3. Nullclines intersect in three points; the steady states lying within the AD and BC

sections are stable, while the middle state belonging to AC section is unstable;

these characteristics correspond to bistability.

Regarding case (1), particularly interesting is the system’s response when the

single stable steady state is perturbed to the right somuch that theU value crosses the

middle AC section of theU-nullcline. Then the sign of dU/dt changes from negative

to positive one and the perturbation ofU is no longer damped, but grows towards the

right branch of the U-nullcline and makes further an extensive trip in the phase

space, until it returns to the original stable steady state. In other words, the system

enters (here only once) the high-amplitude limit cycle. Such a dynamical feature of

the system that only large enough perturbation of the steady state causes the single

oscillation, instead of its trivial fast damping, is called excitability. This phenome-

non plays an important role in the explanation of the origin of travelling fronts in

dynamical systems (see also Sect. 1.1.2, volume II), both model and real ones: e.g.,

the response of neurons to external stimulus exhibits excitable characteristics.

1.7 Canard Explosion

Following the section about fast and slow variables in dynamical systems, we shall

briefly discuss the related subject of canard explosion [26]. The classical canard

phenomenon means the very fast transition from small amplitude oscillations (small

amplitude limit cycle) to a large amplitude relaxation oscillations (large amplitude

relaxation limit cycle) upon such a small variation of a control parameter that it can

even be difficult to confirm experimentally a precise canard mechanism in real

chemical systems (taking also into account the presence of natural, inherent system’s

noise). The name of this phenomenon refers to the appearance of a canard, so simply

a lie, in a newspaper. Canards were first discovered and analyzed byBenoı̂t et al. [27]

during the studies of, among others, the van der Pol oscillator. Thus, the prototypical

example of the canard explosion is given by the van der Pol oscillator with external

forcing, expressed by the parameter a:

e
dx

dt
¼ z� x3

3
þ x (1.102)

dz

dt
¼ a� x (1.103)

For e 
 1, i.e., for the case of fast (x) and slow (z) variables, considered above,

the sequence of events leading to canard explosion is schematically shown in

Fig. 1.31.
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In chemical literature such canard explosion is classified as “hard transition,”

because large amplitude change occurs practically immediately. Due to difficulties

in experimental diagnosis, the supercritical Hopf bifurcation followed soon by the

canard explosion can be easily mistaken with the subcritical Hopf bifurcation.

Furthermore, according to Peng et al. [28] the canard explosion should be consid-

ered a false bifurcation, since it causes only quantitative, not qualitative changes in
the system’s dynamics. That is why canard explosion is not a true, but a “lie”

regarding the bifurcation.

The existence of canard explosion was discovered in the two-variable

OREGONATOR by Brøns and Bar-Eli [29], and discussed for the two-variable

OREGONATOR and AUTOCALATOR [28]. It was also applied to the analysis of

diffusion-induced instabilities of phase waves in one spatial dimension for a two-

variable model of the BZ reaction [30], indicating that this reaction–diffusion

system may provide a means of differentiating between a subcritical Hopf bifurca-

tion and a supercritical Hopf bifurcation with a closely associated canard explosion,

when appropriate relations hold between the diffusion coefficients. Furthermore,

the canard explosion was found by Xie et al. [31] in the Hodgkin–Huxley model of

the initiation and propagation of action potential in neurons and in the model of the

platinum-catalyzed oxidation of carbon monoxide [32]. Epstein et al. [33] have

used the canard phenomenon to the localization of oscillations in the BZ reaction

with globally coupled oscillators (localization means in this context the occurrence

of spatial domains of large amplitude oscillation on a background of small ampli-

tude oscillation in a reaction–diffusion system). These studies were later extended

for the theoretical study of a discrete system of relaxation oscillators globally

coupled via inhibition [34].

Noteworthy is also the possible relation of the canard phenomena with the

important class of oscillations that are composed of small and large amplitude

Fig. 1.31 Canard explosion of the van der Pol oscillator (for e ¼ 0.01) within an exponentially

small neighborhood of a ¼ 0.998740451245 where the transition from relaxation oscillations to

small amplitude limit cycles happens via canard cycles. The small amplitude limit cycles then

terminate at a ¼ 1 via a Hopf bifurcation. Based on [26]
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(relaxation) oscillations, and are therefore calledMMO (MixedMode Oscillatoons).

It is thus not surprising that discovery of canards was followed by the suggestion that

they could be involved in the mechanism of formation of MMOs [26]. This mecha-

nism would be alternative to other routes to such dynamics, e.g., proposing the

formation ofMMO through the break-up/loss of stability of a homoclinic orbit in the

three-variable autonomous van der Pol–Duffingmodel [35], suggesting the break-up

of an invariant torus [36] or considering a congruence of a saddle–node bifurcation

and Hopf bifurcation [37].

1.8 The Activator–Inhibitor Systems

1.8.1 The Concept of the Activator and the Inhibitor

In the discussion of the mechanisms underlying the formation of temporal, spatio-

temporal, and spatial patterns, in both homogeneous and heterogeneous dissipative

systems, it is sometimes useful to invoke the concept of an activator–inhibitor
system [8]. Let us consider the model chemical system in which X species produces

Y species, with various feedback loops involved in this process. The dynamics of

[X] � x and [Y] � y are described in terms of general equations (1.11) and (1.12).

Let us invoke again the principles of linear stability analysis, in which the Jacobian

matrix J is calculated, in the notation explicitly illustrating the effect of x or y on the
temporal dynamics: _x � dx=dt and _y � dy=dt around the steady state (ss):

J ¼ a11 a12
a21 a22

� �
¼

@f

@x

� �
ss

@f

@y

� �
ss

@g

@x

� �
ss

@g

@y

� �
ss

2
664

3
775 �

@ _x

@x

� �
ss

@ _x

@y

� �
ss

@ _y

@x

� �
ss

@ _y

@y

� �
ss

2
664

3
775 (1.104)

In terms of this notation, the definitions of activators and inhibitors are related to

the particular cases of the feedbacks in the following way:

1. x (or y) is a self-activator, i.e., an autocatalytic variable, if an increase in x (or y)
results in an increase in dx/dt (or dy/dt); mathematically this means that,

respectively:

a11 ¼ @f

@x

� �
ss

> 0 (1.105 )

or

a22 ¼ @g

@y

� �
ss

> 0 (1.106)
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2. x (or y) is a self-inhibitor, if an increase in x (or y) causes a decrease in dx/dt
(or dy/dt); mathematically:

a11 ¼ @f

@x

� �
ss

< 0 (1.107 )

or

a22 ¼ @g

@y

� �
ss

< 0 (1.108)

3. x activates (or inhibits) y if an increase in x causes an increase (or decrease) in

dy/dt, i.e

x activates y : a21 ¼ @g

@x

� �
ss

> 0 (1.109)

x inhibits y : a21 ¼ @g

@x

� �
ss

< 0 (1.110)

4. x is an activator (or inhibitor) if it activates (or inhibits) both itself and y:

Activation through x : a11 ¼ @f

@x

� �
ss

> 0 and a21 ¼ @g

@x

� �
ss

> 0 (1.111)

Inhibition through x : a11 ¼ @f

@x

� �
ss

< 0 and a21 ¼ @g

@x

� �
ss

< 0 (1.112)

In terms of the above-given definitions, the Jacobian matrix with the elements

characterized with the following signs:

J ¼ þ �
þ �

� �
(1.113)

corresponds to the so-called pure activator–inhibitor system (or simply an

activator–inhibitor system), with x being an activator and y, the inhibitor. The

corresponding scheme of feedback loops is shown in Fig. 1.32 [8].

In turn, the Jacobian matrix of the form:

J ¼ þ þ
� �

� �
(1.114)

corresponds to the cross-activator–inhibitor system, shown schematically in

Fig. 1.33 [8].
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Both types of the activator–inhibitor system play an important role in the

interpretation of the oscillatory dynamics, including the formation of the Turing

patterns (see Sects. 1.1.3 and 1.1.4, volume II). In the OREGONATOR model

(1.89)–(1.93) one can identify an activator and an inhibitor, since it contains both an

autocatalytic step and a (delayed) negative feedback loop. The activator species is

X and the inhibitor species is Z. The inhibition process (negative feedback loop)

occurs via the sequence: Step (1.91) ! Step (1.93) ! Step (1.90) which inhibits

autocatalytic production of X in Step (1.91) [23].

1.8.2 Correlation Between the Nullclines and the Properties
of the Jacobian Matrix

Since for the detection of the activator and the inhibitor it is sufficient to know only

the signs of particular elements of the Jacobian matrix of the given steady state, it is

useful to note that these signs can be easily diagnosed from the course of nullclines

around this state. Let us consider again schematic, exemplary course of nullclines

(Fig. 1.34).

Fig. 1.32 The (pure) activator–inhibitor system: x activates both itself and y; y inhibits both itself
and x. Reproduced from [8] with kind permission from Springer Science+Business Media B.V.

Fig. 1.33 The cross-activator–inhibitor system: x activates itself but inhibits y; y inhibits itself but
activates x. Reproduced from [8] with kind permission from Springer Science+BusinessMedia B.V.

Fig. 1.34 Principle of

determination of the signs

of the elements of Jacobian

matrix for the steady state

from the course of the x- and
y-nullclines
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Then, one can realize that the small increment Dx > 0, realized from point (1) to

point (2), is associated with the increase of both dx/dt and dy/dt, since the

corresponding pair of signs of dx/dt and dy/dt changes from (�, �) to (+, +).

Hence a11 � [(d/dx)(dx/dt)]ss > 0 and a21 � [(d/dx)(dy/dt)]ss > 0. Analogously,

for the small increase Dy, realized from point (3) to point (4), the signs change

from (+, +) to (�, �), i.e., a12 � [(d/dy)(dx/dt)]ss < 0 and a22 � [(d/dy)(dy/dt)]ss
< 0. So, the distribution of signs is the same as in matrix (1.113), corresponding to

the pure activator–inhibitor system.

1.9 The Existence of Closed Trajectories—The

Poincaré–Bendixson Theorem

Remaining still with the two-dimensional dynamical system, one can pose an

important problem of the theoretical conditions for existence and features of cyclic

(closed) trajectories in the phase space. For that purpose it is first useful to invoke

the existence and uniqueness theorem for the solutions of (generally N differential

equations) which says, that such solutions exist and are unique if continuous

functions f(x) (in the general vector notation of the dynamical system

dx=dt ¼ fðxÞ) are continuously differentiable, i.e., if all partial derivates ∂fi/∂xj
(i, j ¼ 1,. . ., N) of functions f are continuous [2].

A particularly important consequence of the existence and uniqueness theorem

is that different trajectories never intersect. If such situation occurred, the system

could start its evolution from the crossing point along two trajectories at once,

which case is forbidden, since it would violate the condition for uniqueness.

Keeping in mind the existence and uniqueness theorem one can particularly easily

predict the following situation in the two-dimensional system. Let us imagine that

there is a closed orbit on the phase plane. Then any trajectory starting inside this

orbit remains imprisoned there forever, otherwise it would eventually cross the

orbit, which event is just forbidden.

This conclusion implies the next one. If this imprisoned trajectory cannot leave

the region surrounded by an external closed orbit, what can eventually happen to it?
If there is (are) a fixed point(s) there, it (one of them) can be attained by this

trajectory, finishing the system’s evolution. However, if there are no any fixed

points, the answer is given by the Poincaré–Bendixson theorem, but only for a two-
dimensional case (i.e., planar vector field): if a trajectory is confined to a closed

bounded region, in which there are no fixed points (steady states), then the trajec-

tory either already is, or must eventually approach the closed orbit, i.e., limit cycle

in a nonlinear system. In other words, in such a case the system’s behavior must end

with the sustained oscillations. These oscillations have to be simple periodic, since

a simple closed trajectory means just that. Thus, the Poincaré–Bendixson theorem

excludes, in the two-dimensional system, more complex trajectories, including

chaotic courses. For the systems with more than two dimensions, when complex
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and chaotic oscillations can be generated, the Poincaré–Bendixson theorem is not

applicable. One can summarize the Poincaré–Bendixson theorem also in this way

that in the phase space of the two-dimensional system of nonlinear differential

equations there may exist only single fixed points or closed orbits (cycles).

Practical application of the Poincaré–Bendixson theorem for the diagnosis of

existence of limit cycle on the phase plane is, however, not always simple. The

region of the phase plane, investigated for the presence of closed orbits, has to be

constructed in this way that it must not contain any fixed points. Thus, if the cyclic

trajectory would surround the fixed point, it is necessary to construct the ring-

shaped R domain, so that the fixed points do not fall in this region (Fig. 1.35a).

Now, if it is possible to find in practice such a “trapping region” R which does

not contain any fixed points, and all trajectories from its internal and external

surroundings enter the area of R (Fig. 1.35b), we prove the existence of a closed

orbit inside R. The application of the Poincaré–Bendixson theorem to the diagnosis

of limit cycle was described [2] for the CIMA (i.e., chlorine dioxide–iodi-

ne–malonic acid) homogeneous oscillator [38].

Fig. 1.35 Principle of

application of the

Poincaré–Bendixson theorem

to the diagnosis of cyclic

trajectory. (a) Construction

of the ring-shaped region R of

the phase plane, which does

not contain fixed point P;

(b) construction of the

“trapping region” inside

which there must exist a

closed orbit in the absence of

fixed points. Based on [2]
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1.10 The Stability of the N-Dimensional Dynamical System

1.10.1 Linear Stability Analysis of N-Dimensional Dynamical
System

The linear stability analysis described in Sect. 1.3 for one-dimensional and two-

dimensional systems may be generalized for the N-dimensions (i.e., N dynamical

variables) [11]. The diagnosis of stability of a given steady state is in principle the

same as above: it is determined by the sum of N exponential terms of the form

exp(lit):

xi ¼ Ci1 exp ðl1tÞ þ Ci2 expðl2tÞ þ Ci3 expðl3tÞ (1.115)

with i ¼ 1,. . .N, and eigenvalues li (real or complex numbers), determined based

on the Jacobian N � N matrix (1.116):

J ¼
a11 a12 ::: a1n
a21 a22 :::
::: ::: ::: :::
an1 an2 ::: ann

2
664

3
775 (1.116)

In particular, the direct diagnosis of stability is based on the signs of the

eigenvalues li. If all eigenvalues li are negative real numbers or have negative

real parts of complex numbers, all perturbations will asymptotically decrease to

zero as a function of time, so the steady state considered is asymptotically stable.

Let us consider the case when one of the eigenvalues is a real negative number,

while the other ones are either also negative real numbers or complex numbers with

negative real parts. If, upon variation of a control parameter, any of the real

eigenvalues changes its sign to a positive one, while for all other (N � 1)

eigenvalues their real parts remain negative, a saddle–node bifurcation in

N-dimensional system occurs, leading to the (always unstable) saddle point in the

phase space. This eigenvalue which first changed the sign is called a principal one.
In turn, if upon changing the control parameter, the real parts of a complex

conjugated pair of eigenvalues (called then the principal pair) are passing through

zero from negative to positive values (making then both eigenvalues purely imagi-

nary), a Hopf bifurcation in N-dimensional system occurs; again, for all other

(N � 2) eigenvalues their real parts should remain negative. One should note that

eventual further changes of signs of these other eigenvalues do not change the

principal property of the system, since the system already moves away from the

unstable steady state [11].

We shall consider in more detail the three-dimensional autonomous system [11]:
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dx1
dt

¼ f1ðx1; x2; x3Þ (1.117)

dx2
dt

¼ f2ðx1; x2; x3Þ (1.118)

dx3
dt

¼ f3ðx1; x2; x3Þ (1.119)

with the corresponding 3 � 3 Jacobian matrix:

J ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 (1.120)

where aij ¼ ð@fi=@xjÞss.
The matrix form of the characteristic equation:

Det

a11 � l a12 a13
a21 a22 � l a23
a31 a32 a33 � l

2
4

3
5 ¼ 0 (1.121)

is equivalent to the cubic equation:

l3 þ bl2 þ clþ d ¼ 0 (1.122)

with real coefficients b, c [sum of minors of (1.120)] and d defined as2:

b ¼ �TrðJÞ ¼ �ða11 þ a22 þ a33Þ (1.123)

c ¼ Det
a11 a12
a21 a22

� �
þ Det

a22 a23
a32 a33

� �
þ Det

a11 a13
a31 a33

� �

¼ a11a22 þ a11a33 þ a22a33 � a12a21 � a13a31 � a23a32 (1.124)

d ¼ �DetðJÞ
¼ �ða11a22a33 þ a21a13a32 þ a31a12a23 � a11a23a32 � a22a31a13

� a33a12a21Þ (1.125)

Generally, the solutions of Eq. (1.122) include either three real roots or one real

and two complex conjugate roots li.
As indicated earlier, for the Hopf bifurcation to occur in three-dimensional

system, the real part of the principal pair of eigenvalues must pass through zero,

2 In practice it is possible that some of the aij elements of Jacobian matrix are equal to zero, so

expressions (1.124) and (1.125) undergo appropriate simplification [11].
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with the third eigenvalue real and negative, which means that Eq. (1.122) must be

factorizable in the form [11]:

ðl2 þ o2
0Þðlþ aÞ ¼ 0 with a> 0 (1.126)

since then the eigenvalues meet the above conditions:

l1;2 ¼ �io0 (1.127)

and

l3 ¼ �a (1.128)

Comparison of Eq. (1.122) and Eqs. (1.127) and (1.128) allows to derive the

criteria for a Hopf bifurcation in three-dimensional system, involving a zero

discriminant (bc � d) of Eq. (1.122):

bc� d ¼ 0 with b > 0 (1.129)

with the dependences defining the frequency of oscillations at a Hopf point:

ao2
0 ¼ d o0 ¼ c1=2 (1.130)

Note that since b ¼ �Tr(J), the trace of Jacobian matrix must be negative at the
Hopf bifurcation point, not zero, as in two-dimensional case. Furthermore, since d
must be positive, the determinant Det(J) has to be also negative. Finally, coefficient
c must be positive. Thus, the conditions for a Hopf bifurcation in the three-

dimensional system are:

DetðJÞ � c� TrðJÞ ¼ 0 with : TrðJÞ < 0;DetðJÞ < 0; c > 0 (1.131)

For further discussion of these conditions, see Ref. [11].

We have discussed in detail the conditions for a Hopf bifurcation. Systematic

classification of types of fixed points in three-dimensional system, done based on

linear stability analysis, can be conveniently performed based on the signs of two

discriminants of characteristic polynomial (1.121) [39]:

d ¼ bc� d (1.132)

D ¼ �b2c2 þ 4b3d þ 4c3 � 18bcd þ 27d2 (1.133)

and possible cases are given in Table 1.2

The pictorial representations of those trajectories are depicted in Table 1.3.
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1.10.2 Complex Periodic Behavior and Routes to Chaos in
N-Dimensional Systems

With increasing dimension of the dynamical system the complexity of possible

behaviors increases. For example, upon variation of the bifurcation parameter of the

N-dimensional system the trivial birth of the stable limit cycle from the stable

steady state can be followed by the period-doubling sequence or transition to quasi-

periodicity [11]. The latter transitions are the bifurcations of the oscillatory

solutions, so in order to predict them, one has to analyze the local stability of the
limit cycle, in a way in principle analogous to that applied for the single steady state.
The practical difference is that such analysis usually must be performed by numeri-

cal computations, since nonlinear differential equations do not offer analytical

solutions for the limit cycles.

Already for three-dimensional systems quite complex dynamics can be observed.

This includes, for example, so-called MMO that are composed of large (L) ampli-

tude peaks followed by a series of small (S) amplitude spikes, with the notation LmSn

showing the number of corresponding peaks in a periodically repeating sequence.

If such periodic MMO’s patterns are observed, often it is sufficient to tune a

bifurcation parameter to observe transition to aperiodic, i.e., chaotic behavior.

Such regime can be interpreted as a motion involving aperiodic succession of

unstable stages removing the trajectory from the fixed point, followed by a reinjec-

tion back to the vicinity of the fixed point (in this context cf. the saddle focus type of

the fixed point, discussed in the previous section, which combines in a single

Table 1.2 Types of fixed points in three-dimensional phase space and conditions for the occur-

rence, referred to characteristic Eq. (1.122)

Parameter range D Type of fixed point

in three-dimensional

phase space

Roots of

characteristic

polynomials (1.118)

Case no.

d > 0, d > 0, c > 0 D < 0 Stable node Im li ¼ 0

li < 0, i ¼ 1, 2, 3

A-1

D > 0 Stable focus Re l1,2 < 0

l3 < 0

A-2

d < 0, d < 0, c > 0 D < 0 Unstable node Im li ¼ 0

li > 0, i ¼ 1, 2, 3

B-1

D > 0 Unstable focus Re l1,2 > 0

l3 > 0

B-2

d > 0, d < 0, c � 0

or

d < 0, c > 0

D < 0 Saddle node Im li ¼ 0

l1,2 < 0, l3 > 0

C-1

D > 0 Saddle focus Re l1,2 < 0

l3 > 0

C-2

d < 0, d > 0; c � 0

or

d > 0, c > 0

D < 0 Saddle node Im li ¼ 0

l1,2 > 0, l3 < 0

D-1

D > 0 Saddle focus Re l1,2 > 0

l3 < 0

D-2

Reproduced from [39] with kind permission of Verlag Harri Deutsch
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dynamics a stabilizing trend coexisting with a destabilizing one [40]). For a

nonlinear system, such a scenario is related to the concept of homoclinic orbits
(see Sect. 1.4.3). Shil’nikov [41] in his works showed how the homoclinic orbits can

form and undergo destruction, leading to complicated phase trajectory called

strange attractor. Such strange attractors are the phase portraits of deterministic
chaos which term means aperiodic oscillations, of a course determined by

nonstochastic equations, but with complexity making the system’s dynamics prac-

tically unpredictable on the long run. In particular, the term “strange” means

particularly high, not observed for the “usual” attractor of the periodic motion,

sensitivity of the course of the trajectories to initial conditions which makes it

impossible to obtain reproducible chaotic courses in real systems, always subject

to stochastic noise.

One should emphasize here again that deterministic chaos requires at least three-

dimensional dynamical system. Historically, such chaos was first observed in

numerical calculations performed by Lorenz [42]. With intention to understand

the difficulties in the forecasting of weather, Lorenz constructed a set of three ODEs

simplifying the convective motions in the atmosphere. For certain parameters, this

purely deterministic system generated aperiodic oscillations, very sensitive to input

data, so the predicted model “weather” depended strongly on the day of calculations

when new, updated information about atmospheric conditions was introduced. In

the chaotic courses of the Lorenz model, the homoclinic trajectories were found

during later analyses [40]. Another famous model, related more to chemical

kinetics than the Lorenz system, and also involving homoclinic trajectories, was

introduced by R€ossler [43]:

dx

dt
¼ �ðyþ zÞ (1.134)

dy

dt
¼ xþ ay (1.135)

dz

dt
¼ bþ zðx� cÞ (1.136)

The fixed point of Eqs. (1.134)–(1.136) is (xss, yss, zss) ¼ (0, 0, 0). Linear

stability analysis around this point leads to the characteristic equation [40]:

l3 þ ðc� aÞl2 þ ð1þ b� acÞlþ c� ab ¼ 0 (1.137)

For a ¼ 0.38, b ¼ 0.30, and c ¼ 4.82, the dynamical system (1.134)–(1.136)

exhibits the homoclinic orbit (see Fig. 1.36a). In turn, for a ¼ 0.32, b ¼ 0.30, and

c ¼ 4.50, the chaotic trajectory is generated (Fig. 1.36b).
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Routes to Chaos

The Shil’nikov (homoclinic) chaos is a specific case of deterministic aperiodicity.

Analysis of chaotic regime in various systems allowed to indicate the following

main routes to chaotic behavior, which are best recognized:

1. Scenario of Ruelle, Takens, and Newhouse, involving successive Hopf

bifurcations, leading from a stable steady state (point attractor) through a stable

limit cycle (sustained oscillations) and a two-dimensional torus (quasi-periodic

oscillations), characterized by two incommensurable characteristic frequencies

of motion to a strange attractor (Fig. 1.37). Even three successive Hopf

bifurcations can be sufficient to cause chaotic regime. Note that if the character-

istic frequencies are a rational number, the quasi-periodicity reduces to a

frequency-locking phenomenon [44].

2. The Feigenbaum scenario, involving successive period-doubling bifurcations

which eventually form a cascade of intriguing universal quantitative

characteristics (Feigenbaum costants) derived from the analysis of the famous

logistic map:

xnþ1 ¼ axnð1� xnÞ (1.138)

Fig. 1.36 (a) Homoclinic orbit associated with the fixed point (0,0,0) of R€ossler model

(1.136)–(1.138), for parameter values: a ¼ 0.38, b ¼ 0.30, c ¼ 4.82; (b) Chaotic attractor

obtained from numerical integration of R€ossler model for a ¼ 0.32, b ¼ 0.30, c ¼ 4.50. The

trajectories are injected on the same side of the unstable fixed point, a situation referred to as spiral
chaos. Reproduced from [40] with kind permission of Cambridge University Press
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with a being a bifurcation parameter [46, 47]. The period-doubling routes to

chaos in various systems satisfy the scaling relations predicted by the

Feigenbaum constants d and a with d asymptotically converging to the value

4.6692016. . . and a asymptotically converging to 2.50290787. . . [48–50]. The
quantity d is defined through the successive values of parameter a, at which
bifurcations occur:

Fig. 1.37 (a) A schematic picture of the route to chaos (strange attractor) through quasiperiodicity

(torus) (after [42]); (b, c) experimental time series (b) and corresponding power spectrum (c) of a

chaotic regime involving two characteristic frequencies for the Belousov–Zhabotinsky process.

Reprinted with permission from [45]. Copyright 1987 American Institute of Physics

Fig. 1.38 The scheme of period doubling bifurcations in the Feigenbaum scenario, indicating the

symbols used in the scaling laws (1.139, 1.140). Reproduced with permission from [44], Copyright

Wiley-VCH Verlag GmbH & Co. KGaA
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lim
n!1

an � an�1

anþ1 � an
¼ lim

n!1
An � An�1

Anþ1 � An
¼ d (1.139 )

and thus allows to predict the parameter values for each of these bifurcations. In

turn, another quantity a allows to predict the size of the system’s response with

each bifurcation:

lim
n!1

dn
dnþ1

¼ �a (1.140 )

with dn meaning the distance between x ¼ ½ and the closest point of the period-

2n cycle. The particular role of x ¼ ½ comes from the fact that the highest

stability (i.e., the strongest attractive effect on the neighboring points) is

exhibited by those cycles, for which one of the fixed points is equal just to ½.

These cycles are called supercycles. The meaning of the above symbols is also

explained in Fig. 1.38. The bifurcation diagrams illustrating such route to chaos

in different model and real systems are shown in Fig.1.39. One should note the

regions of “order inside chaos”—the period-3 windows emerging in chaotic

areas of the diagram. In addition to those well-established characteristics of the

Feigenbaum scenario, one should note that recently Showalter, Parmananda

et al. [55] have described how the Fibonacci sequence appears within the

Feigenbaum scaling of the period-doubling cascade to chaos. An important

consequence of this discovery is that the ratio of successive Fibonacci numbers

converges to the golden mean f in every period-doubling sequence and there-

fore the convergence to f, the most irrational number, occurs in concert with the

onset of deterministic chaos. The authors emphasize that the Fibonacci sequence

will be found in all dynamical systems exhibiting period-doubling route to

chaos, as it is directly linked to the Feigenbaum scaling constant a (Fig. 1.40,

Table 1.4).

3. Scenario of Pomeau and Manneville, involving successive occasional bursts of

noise (intermittencies) in periodic behavior which upon change in bifurcation

parameter occur more and more often, leading eventually to completely chaotic

behavior. The intermittences are divided into three types: I, II, and III, but

apparently only types I and III were observed in real experiments (Fig. 1.41).

Crises

There are also possible several other scenarios involving chaos, e.g., the route

through the crises, i.e., sudden qualitative change in chaotic dynamics which

occur due to collisions between a chaotic attractor and, e.g., coexisting unstable

fixed points or periodic orbits. Of various possible detailed scenarios of such events

(cf. e.g., [58–60]) we shall choose here as an example the interior crisis, named also

an explosion, which is a kind of global bifurcation which manifests itself as the
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sudden qualitative change in the chaotic attractor size and shape. This kind of crisis

is caused by the tangent collision of strange attractor with an unstable periodic orbit

that is contained within the interior of the basin of attraction of this attractor, so the
new attractor contains a locus of the former attractor [58, 61]. In more detail, one

can describe such a crisis as an event in which a small-amplitude chaotic attractor

becomes tangent to the separatrix associated with a saddle-type fixed point

(or orbit). When the chaotic attractors reach the other side of the separatrix, this

will lead to a large excursion (i.e., large amplitude oscillation). As a result of

reinjection, the system goes back onto the chaotic attractor, until it reaches the

other side of separatrix again and another large excursion occurs [62]. Noteworthy,

crises of various types can induce intermittencies in the system’s dynamics.

Fig. 1.39 A comparison of bifurcation diagrams exhibiting a route to chaos through a period-

doubling cascade (and reverse bifurcations leading to order) for different model systems [51]:

(a) logistic map, (b) Gy€orgyi and Field model of the BZ reaction; notations: SSO small amplitude

sinusoidal oscillations, PD sequence of period-doubling bifurcations, P3 period-3 oscillations, P5
period-5 oscillations, CH a chaotic regime, 1n a cycle consisting of one large amplitude and n
small-amplitude oscillations. Reprinted by permission from Macmillan Publishers Ltd: [52],

Copyright 1992, (c) AUTOCALATOR model. Reprinted with permission from [53]. Copyright

1990 American Chemical Society, (d) Olsen model of enzyme peroxidase-oxidase oscillator.

Reprinted with permission from [54] Copyright 1993 American Chemical Society
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1.10.3 Control of Chaos

The concept of deterministic chaos has been one of the most intriguing ideas in

nonlinear dynamics since the 1970s of the twentieth century. For last two decades of

particular importance there became also the problem of the control of chaos,
meaning in particular selection and stabilization of the desired single closed trajec-

tory of the strange attractor. One of the most efficient algorithms of control of chaos

is the OGY-algorithm (named after its inventors: Ott, Grebogi and Yorke) [63].

In order to present the principle of this algorithm, it is useful to introduce first a

convenient way of presentation of periodic and chaotic trajectories in terms of the

so-called Poincaré sections. Their construction is shown in Fig. 1.42.

Fig. 1.40 Typical period-doubling bifurcation diagram for the logistic map, in which, after the

normalization of width of the period-2 branch to unity (1/a0), the widths of the branches

corresponding to higher periods are written as inverse powers of a. Reprinted from [55], Copyright

2006 with permission from Elsevier

Table 1.4 Development of the Fibonacci series in the period-doubling cascade—distribution of

powers of 1/a in successive period-doubling bifurcations

P2 (n ¼ 0) P4 (n ¼ 1) P8 (n ¼ 2) P16 (n ¼ 3) P32 (n ¼ 4) P64 (n ¼ 5) F.N.

1/a0 1 1

1/a1 1 1

1/a2 1 1 2

1/a3 2 1 3

1/a4 1 3 1 5

1/a5 3 4 1 . . . 8

1/a6 1 6 5 . . . 13

1/a7 4 10 . . . 21

1/a8 1 10 . . . 34

Reprinted from [55], Copyright 2006 with permission from Elsevier
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If the phase trajectory is intersected with the plane and every transition of

trajectory going in one direction through this plane is reported, then the period-1

motion is represented by a single point in this Poincaré section, the period-n
motion—by n such points, while deterministic chaos is represented by a rich set

of points, forming an appropriate pattern. Let us denote the x-coordinate of nth
point of the section as xn. Then, one can plot the dependence between the next (xn+1)
and actual (xn) values and in this way obtain a one-dimensional map. Having
defined such type of maps, we shall briefly describe themap-based control of chaos.

Let us consider the small vicinity of typical one-dimensional map and draw the

straight line (1) of unit slope (Fig. 1.43a). The intersection of the two lines, denoted

as x*, is a very important point—it corresponds to equality between the actual and

the next values of x belonging to this map: xn+1 ¼ xn. If this situation could be

maintained for the sequence of events, this would mean the stabilization of the

respective cycle. But in order to achieve that, one has to introduce a specially

designed feedback which continuously modifies the system’s characteristics

through the change of the control parameter p, and in this way maintains the

value of x at least very close to x*. In practice, it can be done by appropriate
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Fig. 1.41 Intermittent route to chaos in: (a) logistic map for a ¼ 3.826 [44] and (b) real process—

Belousov–Zhabotisky reaction [56, 57]. (b) Reproduced from [57], Copyright 1983, with permis-

sion from Elsevier
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variation of the flow rate of reactants through the reactor or by the variation of the

electrode potential. The idea of such control of chaos is schematically depicted in

Fig. 1.43b. Let us assume that the actual value of x variable is equal to xn which is

Fig. 1.42 Principle of the construction of Poincaré sections, illustrated for: (a) damped

oscillations (stable focus), (b) period-1 oscillation, (c) period-2 oscillation, and (d) chaotic

oscillation (based on [44, 64])

Fig. 1.43 (a) Fragment of the one-dimensional map for chaotic system; (b) the principle of the

map-based algorithm of control of chaos, involving appropriate feedback ([64], based on [65])
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different from x* in terms of the original map (denoted as t1). Therefore, in order to
obtain xn+1 ¼ x*, one has to move the map to new position denoted as t2, i.e.,
horizontally, for the appropriate Dx value. This move, if realized through the

appropriate, small enough perturbation of the control parameter p, can be expressed
by a linearized dependence:

Dx
Dp

¼ g 	 const (1.141)

Hence the desired, actual control parameter perturbation can be determined as:
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Fig. 1.44 Control of chaos in the AUTOCALATOR model. (a) phase portrait (chaotic attractor)

with the Poincaré section indicated, (b) one-dimensional return map constructed from this

Poincaré section, (c) values of variable b on Poincaré section shown in (a) vs. time, indicating

successive stabilizations of period-1, period-2, period-4, and period-1 unstable limit cycles as

controlling begins and changes accordingly. See [65] for details. Reprinted with permission from

[65] Copyright 1991 American Chemical Society
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Dp ¼ Dx
g

¼ xn � x�

g
(1.142)

The magnitude of this perturbation has to be calculated every time when the

trajectory that should be stabilized intersects the Poincaré section in the vicinity of

x* value. The striking feature of this map-based control of chaos is its conceptual

simplicity. For the case of chemical dynamical systems, this algorithm was suc-

cessfully applied by Showalter et al. [65, 66] to stabilize various period-n orbits in

the three-variable AUTOCALATOR model (Fig. 1.44) and to experimental control

of chaos in the Belousov–Zhabotinsky process (Fig. 1.45) [67]. Examples of control

of chaos in electrochemical systems are described in Chap. 7 of volume II.
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38. Lengyel I, Rábai G, Epstein IR (1990) Experimental and modeling study of oscillations in the

chlorine dioxide-iodine-malonic acid reaction. J Am Chem Soc 112:9104–9110

39. Bronstein IN, Semendjajev KA, Musiol G, M€uhlig H (2001) Taschenbuch der Mathematik.

Verlag Harri Deutsch, Thun/Frankurft am Main

40. Nicolis G (1995) Introduction to nonlinear science. Cambridge University Press, New York

41. Shil’nikov LP (1965) A case of the existence of a denumerable set of periodic motions. Sov

Math Dokl 6:163–166

42. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

43. R€ossler OE (1976) Chaotic behavior in simple reaction systems. Z Naturforsch 31A:259–264

44. Schuster HG (1988) Deterministic chaos. An Introduction. VCH Verlagsgesellschaft,

Weinheim
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Chapter 2

Stability of Electrochemical Systems

2.1 The Role of Negative Differential Resistance in the Stability

of Electrochemical Systems

2.1.1 The Load Line and the Simplest Electrochemical Circuit

The subject of the present analysis is the stability of the entire electric circuit in

which the electrochemical cell is only one of the components. We shall look for

such characteristics (I–E dependence) of the electrode process that gives rise to

instability of the whole circuit which, in general, consists of the power source and
of a load. This way of analysis was described already in 1958 by Gerischer [1], who
also invoked the ideas of Franck.

We shall consider first a simple electrochemical cell consisting of two

electrodes: the polarizable working electrode and an ideally non-polarizable refer-

ence electrode. All the resistances exhibited by this system will be summarized to a

single value of an equivalent resistance Rs, connected in series with the cell. We

apply sufficiently high external voltage which will compensate the own

electromotive force of the cell and polarize the working electrode to the value at

which the faradaic current flows at the working electrode and, in consequence,

electric current flows through the entire circuit. In order to simplify thinking, we

can represent this situation in terms of the equivalent circuit shown in Fig. 2.1,

which consists of resistor Rs (linear element) and the electrolytic cell (nonlinear

element), symbolized by a box with cross. The nonlinear current–potential depen-

dence of the electrode process in this cell is denoted further as with I2(E).
It is obvious that in the steady-state both currents are equal: I1 ¼ I2, so there is

no increasing accumulation of the electric charge at the working electrode–solution

interface, i.e., dE/dt ¼ 0. Beyond the steady-state, the electrode potential E changes

according to the dependence:

M. Orlik, Self-Organization in Electrochemical Systems I,
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dE

dt
/ ðI1 � I2Þ (2.1)

Irrespective of that, whether the system is actually in steady-state or not, current

I1 is given by:

I1 ¼ U � E

Rs

¼ U

Rs

� E

Rs

(2.2)

where E means the potential drop at the working electrode/solution interface

(interfacial potential drop). The dependence [Eq. (2.2)] is known as the equation

of the load line, representing the response of a linear circuit connected to the

nonlinear device. It is thus a straight line in the I–E coordinates, with the intercept

U/Rs and the slope �1/Rs. In terms of such representation it is clear that the steady-

state(s) of the circuit from Fig. 2.1 (Ess, Iss) is (are) determined by the intersection(s)

of a load line with the I2(E) characteristics of the electrode process: i.e., when

I1 (Ess) ¼ I2(Ess). The analysis of stability/instability of these steady-states, crucial

for diagnosis of possible dynamic regimes under different conditions, is described

in the next sections.

2.1.2 Stability of the N-NDR System Under Potentiostatic Control

Let us assume that external voltage U is constant, which means here the

potentiostatic conditions applied to the whole circuit. Note that here this term has

a different sense that in classical electrochemistry, where the term “potentiostatic”

usually means constant working electrode potential E, due to minimization (com-

pensation) of the serial resistance, and thus of the ohmic drops. From the point of

view of possible dynamic instabilities these two cases are fundamentally different.

In order to distinguish between them, the case of E ¼ const will be called through-

out the whole book as the “truly potentiostatic condition,” according to typical

convention accepted in the literature about electrochemical instabilities.

Coming back to our potentiostatic conditions U ¼ const, we notice that,

according to Eq. (2.2), any change in I1 (e.g., due to fluctuation) will cause the

appropriate change in E, the higher the greater the serial resistance: dE ¼ �Rs(dI1).
The response of the electrode potential E on this perturbation (its evolution in time)

Fig. 2.1 Simplified equivalent circuit of the electrochemical system consisting of electrolytic cell

and power source, with all resistances summarized into an equivalent ohmic resistance Rs
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will indicate whether the perturbed steady-state is stable or not. This depends on the

kinetic characteristics I2(E) of the electrode process. Based on Eq. (2.1), the

stability of the steady-state is given by the sign of the derivative d(dE/dt)/dE
which is proportional to the difference in the slopes of dI1(E)/dE and dI2(E)/dE:

d

dE

dE

dt

� �
/ dI1

dE
� dI2

dE

� �
(2.3)

This means that the direction of the temporal variation of the electrode potential

depends on the relation between the charging and discharging of the electrode.

The considered electrochemical system is unstable with respect to perturbation

dE, if:

d

dE

dE

dt

� �
> 0 (2.4)

In view of Eq. (2.2), the slope dI1/dE is always negative:

dI1
dE

¼ � 1

Rs

(2.5)

so, in view of Eq. (2.3), the instability condition (2.4) requires that:

dI2
dE

<� 1

Rs

(2.6)

Since serial resistance Rs cannot be negative (it is a simple linear element), the

slope dI2/dE must be negative. This derivation leads us to the first important

instability condition: simple electrochemical system, characterized with one

dynamical variable—the electrode potential E, will be unstable provided that

there is a region of a negative differential resistance (NDR) in its current–potential
characteristics. The second condition is that the serial resistance must be suffi-

ciently high, as the condition (2.6) is equivalent to:

Rs >� dE

dI2
� �NDR (2.7)

It is instructive to compare this condition of instability with its graphical

illustration, constructed in terms of realistic I2(E) dependence (Fig. 2.2). The

N-shaped I2–E curve (meaning the N-NDR type of characteristics), which is

recorded under truly potentiostatic conditions, is typical of, e.g., electrodes which
undergo passivation in the vicinity of the Flade potential, giving thus rise to the

region of the negative dI2/dE slope. The I2–E dependence is intersected by two
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exemplary linear load lines, of different slopes, corresponding to two serial

resistances Rs,1 and Rs,2, with Rs,1 > Rs,2.

Let us summarize the main conclusions that can be drawn from this picture.

1. If serial resistance Rs is zero, then the load lines 1 and 10 with finite slopes and

intercepts are not existing. The electrode potential E is then equal to external

voltage U and the entire N-shaped, steady-state dependence I2–E can be experi-

mentally recorded, point by point, under then truly potentiostatic conditions. In
other words, all the states composing the I2–E dependence are stable under truly
potentiostatic conditions, otherwise they would not be directly detectable. Fur-

thermore, to every value of E, only a single value of steady-state current

corresponds. Mathematically, the I2–E dependence is single-valued.
2. When non-zero (positive) serial resistance Rs is inserted in the circuit from

Fig. 2.1, the electrode potential E and external voltage U become different in

the presence of current. Load line appears on this diagram, with the intercept

equal to U/Rs and the slope equal to �1/Rs. The number and stability of steady-

states possible for given (U, Rs) parameters is now indicated by the intersections

of load line I1–E with the I2–E characteristics of the electrochemical system.

3. If serial resistance is sufficiently low (Rs,2), there is only one intersection (C) of

these two characteristics, for given external voltage U there is only one steady-

state possible, which is stable against perturbations, in spite of lying on the NDR
branch of the system’s characteristics. The system is thus monostable.

Fig. 2.2 Graphical illustration of the principle of determination of stability of the steady-states for the

electrode process characterized with the N-shaped negative differential (N-NDR) region (curve 2),
for the load lines corresponding to serial resistance: Rs,1 (line 1) and Rs2 (line 10), with

Rs,1 > Rs2. For Rs,1 three intersections with curve 2 determine three steady-states: two stable

ones (A and B) and the unstable middle one (C). For Rs,2 only one steady-state C exists

which is stable due to appropriate relation between the local slopes of I1(E) and I2(E) dependences
(after [1])

78 2 Stability of Electrochemical Systems



4. If serial resistance is so high that the condition (2.7) is met, for the corresponding

(U, Rs) parameters three steady-states (A, B, C) are possible, of which external

ones (A, B) are stable, while the middle one (C)—the only one lying on the NDR

branch, is now unstable. This case corresponds of course to bistability, i.e., for

given U the system can exist either in state A or B, belonging to the upper (A)

and lower (B) branch of the folded diagram of states (cf. Fig. 1.7). Furthermore,

in view of general principles of nonlinear dynamics one concludes that this

transition between the monostable and bistable behaviors is associated with the

saddle-node bifurcations, occurring twice when the condition: Rs ¼ �dE=dI2 is
met: once when the system enters the bistable region and second time when it

leaves it upon continuous variation of external voltage U.
5. One can generalize the above conclusion in this way that all steady-states, belong-

ing to the N-NDR region of the truly potentiostatic I2–E dependence can become

unstable under potentiostatic (U ¼ const) conditions, provided sufficiently high

resistance Rs is present in the circuit. This resistance cannot be, however, too high

(for given voltageU) since then the load linemay not penetrate theNDR region and

the system returns to monostable behavior. In consequence, typical bifurcation

diagrams of such systems contain the region of bistability defined between certain

lower and upper limits of serial resistance, for given U (see below, Fig. 2.8).

2.1.3 Stability of N-NDR System Under Galvanostatic Control

Let us stay with the steady-state I2–E characteristics shown in Fig. 2.2 and change

the operation mode to the galvanostatic one. In practice we shall connect the

galvanostat, with external resistance Rs being then not necessary. Note, however,

that galvanostatic mode does not mean the absence of serial resistance: the

switching from potentiostatic to galvanostatic mode can be interpreted as

Fig. 2.3 Schematic relation between (a) the relative position of the load line and I–E
characteristics of the N-NDR type and (b) the bistable characteristics observed on the I–U
dependence, for appropriate fixed resistance Rs, with U ¼ E + IRs. Upon increasing voltage U,
the system enters the bistable region at U1 where the first saddle-node bifurcation (sn) occurs and

becomes again monostable at U ¼ U2, when the second saddle-node bifurcation takes place.

In terms of (a), and Eq. (2.2), increasing voltage U means vertical motion up of the load line
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the insertion of the (theoretically) infinitely high serial resistance Rs, to which

(theoretically) infinitely high voltage U is applied, with U/Rs ratio defining the

imposed current. Then, even if the resistance of the electrochemical cell r (with

r << Rs) varies as a function of, e.g., changing electrode potential, the current

which flows through the circuit remains practically the same: U/(Rs + r) � U/
Rs ¼ I. This aspect of galvanostatic control will be very important for further

description (including impedance characteristics) of electrochemical instabilities

observed under such conditions.

Under galvanostatic conditions one observes an important difference in the

system’s response, i.e., the electrode potential E, upon varying imposed current.

Upon cyclic variation of this current a sudden horizontal potential jump occurs

which omits the region of negative resistance, with hysteresis indicating bistability

(Fig. 2.4). This means that the states belonging to the N-NDR region, which were

stable (directly observable) under truly potentiostatic conditions, are unstable under
galvanostatic conditions. In other words, only potentiostatic control, in the absence

of ohmic drops, allows to track the entire I–E dependence. Figure 2.4 shows this

difference schematically.

Concluding, due to the presence of NDR region, the I–E dependences are

different, depending on the choice of the control variable, a case which is not

common in classical electrochemistry, when processes meeting the Butler–Volmer

kinetics are usually considered and the choice of the control variable is free.

2.1.4 Origins of NDR in Electrochemical Systems

The NDR of the faradaic process, meaning the negative slope of the dE/dIf
dependence, can be caused by various factors. When, for simplicity, the electron

transfer is assumed to occur only in one direction (irreversible reduction or oxida-

tion), the faradaic current is generally described with the dependence:

Fig. 2.4 The dependence of the stability of the steady-states belonging to the negative differential

resistance (NDR) region of the N-shaped I–E characteristics, on the operation mode: in the

potentiostatic mode (filled circle) the entire curve I–E is directly recordable for negligible

(vanishing) serial resistance Rs, while in the galvanostatic mode (open circle) these states are

unstable and thus directly inaccessible. For Rs ¼ 0 the N-NDR system is thus monostable under

potentiostatic conditions and bistable under galvanostatic conditions
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If ¼ nFAkðEÞcð0Þ (2.8)

where F is the Faraday constant, A is the electrode surface area, k is the potential-
dependent, heterogeneous rate constant of the electron transfer, and c(0) � c
(x ¼ 0) means the concentration of the reducible species Ox or oxidizable species

Red at the reaction site within the electric double layer at the interface (often, but

not precisely termed the “surface concentration”). One should remember that

according to the present convention, the cathodic currents are negative, so the

minus sign should be added to Eq. (2.8) in such a case. The following derivation

is strictly (algebraically) valid for anodic processes.

In terms of expression (2.8), the charge-transfer resistance Rct is defined as:

R�1
ct ¼ dIf

dE
¼ nF

d

dE
½AkðEÞcð0Þ� (2.9)

Formally, and also in conjunction with experimental studies, one can name three

principal sources of the NDR region (negative Rct) [2]:

i. A negative dA/dE slope, caused by a decrease of the available electrode surface

with increasing polarization. Typical examples of such situation include pas-

sivation of a metal surface with a perfectly insulating oxide layer or potential-

dependent, increasing adsorption of ideal inhibitor.
ii. A negative dk(E)/dE slope, caused by: (a) the potential-dependent adsorption of

an non-ideal inhibitor which causes certain decrease in the rate constant of the

electron transfer, but, opposite to case (i), does not completely hinders it; (b) the

potential-dependent desorption of a catalyst, like, e.g., of SCN� ions specifi-

cally adsorbed on Hg surface and in this state enhancing the rate of polaro-

graphic In(III) electroreduction (cf. Chap. 4).

iii. A negative dc(0)/dE slope, caused by the electrostatic effect of the double layer,

which is usually termed the Frumkin effect in the electrochemical literature

[3, 4]. The source of this effect is that the electric potential at the reaction site

(often denoted as f2) is different from the electric potential in the bulk, and this

difference is particularly strongly pronounced at low ionic strength of the

electrolyte solutions. Then the concentration of the reactant particles of charge

ze at the reaction site is modified by a Boltzmann factor: exp(�zFf2/RT). In the
case of anions undergoing reduction at negatively charged electrode, or cations

undergoing oxidation at positively charged surface it may happen that dc(0)/dE
becomes negative in certain range of potentials, giving thus rise to NDR region

(the static double layer effect). Also, the effective driving force for the electrode

process is not the entire interfacial potential drop E, but E � f2 (dynamic

double layer effect). Both effects are expressed, in the simplest way, in terms

of the so-called Frumkin correction of the rate constant (see Sect. 4.1).

The fact that the above derivations are valid for Eq. (2.8), the exact form of

which corresponds to anodic processes, for which the sign of the current is positive,

requires further comment. Analogous criteria can be derived for cathodic process,
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with only minus sign ascribed to the current in formula (2.8). Note that for the

cathodic process, the NDR means formally positive dkf/dE slope, since the rate

constant kf decreases with increasing negative electrode potential. One should

remember this algebraic nuance when considering condition (ii) above: the signs

of dIf/dE are always negative in the NDR region, unambiguously defining the NDR

irrespective of the direction of the process, while the sign of dk/dE is negative for

anodic process, and positive for the cathodic one. In fact, the current can be positive

or negative, depending on the direction of electron flow, while the rate constant

cannot be negative.

A more detailed analysis of each type of the above collected sources of NDR

regions will be given in the following chapters, devoted to description of particular

electrochemical dynamical systems.

2.1.5 Comparison of N-NDR and S-NDR Characteristics

The presence of the NDR is evidently one of the most important sources of

instabilities in electrochemical systems and in close analogy to purely electronic

circuits. As far as only such simple behavior, like bistability, is concerned, the

electrochemical cell with the N-NDR characteristics can be replaced by the respec-

tive electronic element of analogous characteristics, e.g., by tunnel diode.

The N-shaped NDR characteristics were found for majority of electrochemical

systems exhibiting dynamical instabilities. But there exist also such processes which

exhibit another type of NDR, namely S-NDR characteristics, where the shape of I–E
dependence resembles the shape of letter S. Systems with S-NDR region have also

different dynamical features, compared to N-NDR systems, and therefore they will

require separate analysis. There are also electronic elements of such S-NDR type, so

the analogies with electrochemical cells remain. One can easily see the fundamental

differences between the N-NDR and S-NDR systems by direct comparison of the

I–E dependences for the corresponding two circuits, shown in Fig. 2.5 [5].

One notices immediately that for the S-NDR systems, bistability can be

observed under potentiostatic control also without any serial resistance (we remove

the load line), while under galvanostatic conditions the entire I–E dependence can

be tracked, thus quite opposite to N-NDR systems (cf. Fig. 2.4). Furthermore, the

effect of increasing serial resistance is also reversed: under potentiostatic

conditions, in the presence of serial resistance, bistability persists only until the

S-fold is so deformed (stretched along U axis) that the system becomes eventually

monostable, or, in other words, the I–U dependence becomes single-valued.

The above analysis introduces only basic ideas of instability of electrochemical

systems by indication of the role of NDR of the N-NDR and S-NDR types, in

analogy to stability of simple electronic circuits. As far as only bistability is

concerned, this analysis can be considered acceptable, but when oscillations are

to be explained, the equivalent circuit from Fig. 2.1 appears to be severely

oversimplified. First of all it does not include any explicit capacitive element,
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related to the double layer properties which would determine the time scale of the

dynamical system’s evolution (although the charging of the electrode was men-

tioned above). Also, the simple electronic NDR element is not able to reproduce the

role of transport of electroactive species between the solution bulk and the electrode

surface where the electron transfer occurs. Therefore, the above introductory

stability analysis is now followed by a treatment of electrochemical systems in

terms of a more reliable equivalent electric circuit.

2.2 Stability of a Realistic Electrochemical N-NDR System

Analogously to Chap. 1, we shall apply the linear stability analysis to electrochem-

ical systems, first for one-dimensional, and then for two-dimensional one. In this

section we shall analyze only temporal instabilities, assuming thus the homoge-

neous state of the working electrode surface, while the spatiotemporal and spatial

instabilities will be described in Sect. 1.2 of volume II.

2.2.1 Linear Stability Analysis of 1D Electrochemical System

As indicated in Fig. 2.4, the stability of the states in the NDR region depends on that

whether the electrochemical experiment is performed under potentiostatic or

galvanostatic conditions. Therefore, the stability analysis should be applied sepa-

rately to each of these modes of operation.

2.2.1.1 Potentiostatic Control

The electrochemical system, the stability of which is now to be analyzed, is

represented by the equivalent circuit, containing an electrolytic cell, composed of

the parallel connection of the double layer capacitance Cd and the impedance of the

faradaic process; in the case of dc measurement, considered now, it is often termed

Fig. 2.5 Comparison of the

I–E dependences for two

bistable systems, consisting

of the serial connection of

linear resistor Rs and the

nonlinear element of the

N-NDR type (top) or of the
S-NDR type (bottom) (after
[5], reproduced with

permission)
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“zero-frequency impedance” (Fig. 2.6). As the serial resistance Rs we shall under-

stand the sum of all contributions: the solution resistance, electrode resistance,

cables resistance, and the eventual intentionally inserted external ohmic resistance.

The following derivations correspond to potentiostatic conditions, meaning

U ¼ const. When the electrochemical circuit from Fig. 2.6 attains steady-state,

the working electrode potential E is constant and the steady-state current, consisting

then of only the faradaic contribution at the electrode–solution interface, is flowing

through it. One of typical methods of attaining such situation is the use of the disk

electrode rotating with constant speed and thus ensuring the steady-state thickness

of the diffusion layer under such convective diffusion conditions. Our aim is to

derive the criteria of (in)stability of such a steady-state when it is subjected to

perturbations small enough to justify the linearization of the problem.

The fundamental equation for such analysis, which we invoke many times also

in further parts of this book, is the expression for charge conservation:

U � E

Rs

¼ I ¼ IfðEÞ þ IcðEÞ ¼ IfðEÞ þ CdA
dE

dt
(2.10)

rearranged to the form most suitable for considerations of stability:

f ðEÞ � dE

dt
¼ U � E

CdARs

� IfðEÞ
CdA

(2.11)

where A is a surface area of the electrode and Cd is the differential double layer

capacity for the working electrode/solution interface, expressed per unit area of the

electrode surface. Although Cd is generally dependent on the electrode potential E,
it will be here, for the sake of mathematical simplicity, assumed to be a constant

(average) value.

Fig. 2.6 Typical equivalent circuit of the electrochemical system in which external voltage U is

applied between the working and reference electrodes through the serial resistor Rs. The interfacial

potential drop at the working electrode/solution interface is different from external voltage for the

value of ohmic drops: E ¼ U � ðIf þ IcÞRs, with Ic and If meaning the capacitive and faradaic

currents, respectively
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The condition for the steady-state:

dE

dt

� �
ss

¼ 0 (2.12)

implies that the capacitive current is zero and then the faradaic current attains the

steady-state, non-zero value:

If;ss ¼ U � Ess

Rs

(2.13)

According to the principles of linear stability analysis, the right-hand-side of

Eq. (2.11) is expanded into the Taylor series around the steady-state potential, with

non-linear terms neglected:

dE

dt
¼ f ðEÞ � df

dE

� �
ss

ðE� EssÞ ¼ �1

CdA

1

Rs

þ dIf
dE

� �
ss

� �
ðE� EssÞ (2.14)

By introducing the convenient new variable d measuring the extent of perturba-

tion of the steady-state:

d ¼ E� Ess (2.15)

one transforms Eq. (2.14) to a form analogous to that used before [cf. Eq. (1.8)] in

the analogous abstract mathematical analysis:

dd
dt

¼ l � d (2.16)

with l defined as:

l ¼ �1

CdA

1

Rs

þ dIf
dE

� �
ss

� �
(2.17)

Obviously the steady-state of the electrochemical system is asymptotically

stable, if l < 0 which condition is met for every trivial electrode process, of

kinetics described by Butler–Volmer dependence. Instability, corresponding to

l > 0, may occur only if:

dE

dIf

� �
ss

< 0 (2.18)

2.2 Stability of a Realistic Electrochemical N-NDR System 85



and with serial resistance meeting the condition:

Rs >� dE

dIf

� �
ss

(2.19)

The reader will notice clear analogies with derivations made already in

Sect. 2.1.2. The negative slope ðdE=dIfÞss< 0 means the NDR of the faradaic

process in its steady-state. Note that in the instability condition (2.19) the double

layer capacitance Cd is not existing, as for one-dimensional system, when

oscillations cannot occur, this parameter does not decide the system’s dynamics

in the steady-state, it only determines the time scale of transient approaching the

stable steady-state (or of leaving the unstable steady-state). At the critical point,

when the tuned serial resistance meets the condition:

Rs ¼ � dE

dIf

� �
ss

(2.20)

the 1D variant of the saddle-node bifurcation occurs, i.e., the pair of stable and

unstable steady-states is born from “nowhere” (see Sect. 1.3.1). For the I–E
characteristics with the N-NDR region (Figs. 2.2 and 2.3), when the steady-state

dependence of I on E is unique (single-valued) under true potentiostatic conditions,

inserting the ohmic resistance higher than this critical value means the transition

from the monostable to bistable behavior, meaning the appearance of hysteresis in

the system’s behavior, measured as steady-state If, versus the cyclically changing

external voltage U (Fig. 2.4). This scheme also shows that saddle-node bifurcations

occur in pairs, forming thus a so-called degenerate case, in which there is always at

least one steady-state possible.

2.2.1.2 Galvanostatic Control

It is useful to compare immediately the above derivations with those for the

galvanostatic control of the electrochemical system. Physically it means that at

any moment, even if both faradaic and capacitive currents are flowing, their sum

must be equal to the externally imposed total current I:

I ¼ IfðEÞ þ IcðEÞ ¼ IfðEÞ þ CdA
dE

dt
(2.21)

Furthermore, in view of equivalent circuit shown in Fig. 2.6, the term (U � E)/Rs

in Eq. (2.10) must be replaced with this fixed current:

U � E

Rs

! I ¼ const (2.22)
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In consequence, the equation for the temporal dynamics of the electrode poten-

tial takes now the form:

f ðEÞ � dE

dt
¼ I

CdA
� IfðEÞ

CdA
¼ 1

CdA
½I � IfðEÞ� (2.23)

meaning that the variation of the electrode potential E is due solely to the capacitive

current Ic, which is the difference between the fixed total current I and the potential-
dependent faradaic current If. This is of course a mathematical illustration of the

obvious characteristics of the galvanostatic experiments in which, if at the actual

electrode potential, the electrode process does not support the current equal to

externally imposed one, the accumulation of charge at the working electrode causes

its charging to more positive (or negative) potentials, in search of additional

possibility for the transfer of electrons across the interface.

Note also that Eq. (2.23) does not include explicitly the value of serial resistance

Rs, but one should note that a (theoretically infinite) resistance is a feature of a

galvanostat—see above. The fact that the working electrode potential is a dynamic

variable that may vary as a function of time, while the total current is not, is an

important feature of the galvanostatic circuit, which dynamic characteristics are

essentially different from the potentiostatic case, when both E and I can vary. This

is one more illustration of the fact that for NDR systems the galvanostatic response

cannot be considered equivalent to the potentiostatic (U ¼ const) response; this

conclusion has important consequences for the types and conditions of occurrence

of dynamic instabilities observed in both types of the systems.

The linear stability analysis leads now to the following Taylor series, limited to

linear terms:

dE

dt
� df

dE

� �
ss

ðE� EssÞ ¼ �1

CdA

dIf
dE

� �
ss

ðE� EssÞ (2.24)

or, equivalently, in the form of Eq. (2.16), where l is now defined as:

l ¼ �1

CdA

dIf
dE

� �
ss

(2.25)

In Eq. (2.25), the differential charge-transfer resistance ðdE=dIfÞss is calculated
at a given electrode potential E, for a steady-state If–E characteristics. Obviously, as

long as the slope of these characteristics is positive, the electrochemical system is

stable (l < 0), but if the electrode potential enters the region of any (i.e., not related

this time to any serial resistance) NDR, the system becomes unstable. In view of a

typical I–E characteristics this means that for the galvanostatic operation of the

electrochemical circuit, the condition:

dE

dIf

� �
ss

< 0 (2.26)
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means that the monostable dynamics of the 1D electrochemical system changed

to bistable, with the galvanostatic saddle-node bifurcation occurring for

ðdE=dIfÞss ¼ 0. This condition is concordant with the transition between the

monostable and bistable behaviors shown in Fig. 2.4 for galvanostatic conditions,

in the absence of any extra serial resistance.

To conclude, electrochemical systems characterized with the negative resistance

of the N-NDR type exhibit bistability under both potentiostatic (U ¼ const) and

galvanostatic (I ¼ 0) conditions, with that difference that in the former case the

onset of this behavior requires sufficiently large serial ohmic resistance.

In both these one-dimensional cases the electrode potential E was the only

dynamical variable considered. In the bistable regime, where three different

steady-states can be realized, every steady-state potential is associated with the

corresponding current, and with the respective, obviously also steady-state surface

concentration(s) of the electroactive species, c(0). Those concentrations adjust thus
instantaneously to the given electrode potential, so the dc(0)/dt dynamics is not

important for the global dynamics of the system. However, if upon (then relatively

fast) change of the electrode potential the change of c(0) appears to be relatively

slow, the system may destabilize in a way giving rise to the oscillations of current

under potentiostatic conditions. Therefore, it is useful to consider now the stability

of an electrochemical system, involving two dynamical variables.

2.2.2 Linear Stability Analysis of 2D Electrochemical System

2.2.2.1 Potentiostatic Control

Two variables involved in the dynamics of electrochemical systems are: the

working electrode potential (interfacial potential drop) E and the surface concen-

tration of the reducible or oxidizable species c(0). Since this time we expect the

oscillations of both potential and current, and thus the periodical variation of

surface concentration in time, we shall introduce the time variable to equation for

the faradaic current [Eq. (2.8)]. For simplicity we shall also keep the assumption

that the electroreduction or electroxidation process is practically irreversible within

the potential region, when the N-NDR region develops. In further representative

derivations we shall invoke this time the cathodic process of Ox electroreduction to

Red species, thus the relevant faradaic current is negative:

IfðtÞ ¼ �nFAkfcoxð0; tÞ (2.27)

where kf is the potential-dependent rate constant of the electroreduction process of a
general scheme:

Oxþ ne���!kfðEÞ
Red (2.28)

and cox(0, t) means the concentration of Ox at the reaction site (x ¼ 0), at time t.
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Now it is necessary to introduce equations defining the 2D electrochemical

system. The first of these equations is, in principle, identical with Eq. (2.11), with

the difference that the time-dependent surface concentration variable appears in it,

due to substitution of expression (2.27) for the faradaic current If(E).

f ðE; tÞ � dE

dt
¼ U � E

CdARs

� IfðEÞ
CdA

¼ U � E

CdARs

þ nFkfðEÞcoxð0; tÞ
Cd

(2.29)

The equation describing the temporal dynamics of cox, requires separate deriva-
tion. The actual value of cox(0, t) is a result of a competition between the consump-

tion of the Ox species at the electrode surface and the diffusion inflow of Ox from

the solution bulk to this site. The precise description of the diffusion transport, in

terms of the Fick’s laws, involves the calculation of the full concentration profile

c(x, t) in the solution, where coordinate x is normal to the electrode surface, and a

strict approach to this problem requires partial differential equations (PDEs). In

classical electrochemistry, including digital simulation of electrode processes

[6–8], such an approach is obligatory, if the reliable values of kinetic parameters

of electrode process are to be determined. However, in nonlinear dynamics we are

interested more in qualitative types of possible dynamic behaviors, than in exact

values of all system’s parameters (which however cannot become unreliable). It is

thus possible to make a mathematically useful compromise which results in a

presentation of the dynamics of the surface concentration in terms of ordinary

differential equation (ODE). In conjunction with Eq. (2.29), this significantly

simplifies the stability analysis for the electrochemical systems that are considered

spatially homogeneous along the coordinate parallel to the electrode surface. This

approach, suggested by Koper and Sluyters [9], is based on the linear approxima-

tion of the concentration profile, leading to the definition of the (effective) thickness

d of the Nernst diffusion layer [4]. The time derivative of the surface concentration

cox(0, t) was derived there according to principle illustrated by Fig. 2.7.

The triangular shaded area in Fig. 2.7 equals to the difference between the

amount of Ox species that diffuses toward the electrode and the amount that

undergoes electroreduction at the reaction site close to the electrode surface:

1

2
coxð0; tþ dtÞ � coxð0; tÞ½ �d � 1

2
dcoxð0; tÞd

¼ Dox

c0ox � coxð0; tÞ
d

� �
dt� kfcoxð0; tÞdt (2.30)

By appropriate rearrangement of this equation, one obtains the expression for the

dcox(0, t)/dt dynamics:

gðE; tÞ � dcoxð0; tÞ
dt

¼ 2Dox

d2
c0ox � coxð0; tÞ
� �� 2kfcoxð0; tÞ

d
(2.31)

Thus, finally, the dynamics of the 2D N-NDR system under potentiostatic

conditions is defined by Eqs. (2.29) and (2.31).
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Before performing the stability analysis of the dynamical system (2.29, 2.31) it is

useful to note that the right-hand-side of Eq. (2.31) is composed of two terms, the

first (the “transport” one) is proportional to (1/d2), while the second (the “kinetic”

one) one is proportional to (1/d). Thus, upon decreasing the Nernst layer thickness

(e.g., by increasing the rotation rate of the disk electrode) one increases the relative

role of the transport of the fresh portions of Ox from the bulk, compared to the rate

of the Ox to Red transformation at the interface [10].

The Jacobian matrix J of Eqs. (2.29) and (2.31) has a form (in which, for

simplification of the notation, cs � cox(0, t)):

J ¼
@f

@E

� �
ss

@f

@cs

� �
ss

@g

@E

� �
ss

@g

@cs

� �
ss

2
6664

3
7775 ¼

� 1

CdA

1

Rs

þ @If
@E

� �
ss

� �
nFkfðEssÞ

Cd

2

nFAd
@If
@E

� �
ss

�2 Dox

d2
þ kfðEssÞ

d

h i

2
6664

3
7775

¼
� 1

CdA

1

Rs

� nFAcs;ss
dkf
dE

� �
ss

� �
nFkfðEssÞ

Cd

�2cs;ss
d

dkf
dE

� �
ss

�2
Dox

d2
þ kfðEssÞ

d

� �
2
6664

3
7775

(2.32)

Fig. 2.7 Principle of derivation of the equation (2.31) for the dcox(0, t)/dt dynamics: the change in

the concentration profile near the electrode in the time interval dt, assuming at all times a linear

concentration gradient with fixed diffusion layer thickness d. Based on [9]
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with the differential charge-transfer resistance given by ð@If=@EÞ�1
ss . The

bifurcations are diagnosed based on the trace and the determinant (cf. Sect.

1.3.2), given by expressions:

TrðJÞ ¼ � 1

CdA

1

Rs

þ @If
@E

� �
ss

� �
� 2

d
Dox

d
þ kfðEssÞ

� �
(2.33)

DetðJÞ ¼ 1

CdA

1

Rs

þ @If
@E

� �
ss

� �� 	
� 2

d
Dox

d
þ kfðEssÞ

� �� 	
� 2kfðEssÞ

CdAd
@If
@E

� �
ss

¼ 2

CdAd
2

Dox

Rs

þ kfðEssÞd
Rs

þ Dox

@If
@E

� �
ss

� �

(2.34)

As long as Tr(J) < 0 and Det(J) > 0, the system is stable. Equations (2.33) and

(2.34) prove that if the If–E curve has a positive slope ð@If=@EÞss > 0, the trace will

always be negative, and the determinant always positive. So, the NDR of

the faradaic process, obviously just like for 1D system, is required to destabilize

the system. Then, if Det(J) ¼ 0, the saddle-node bifurcation occurs and further

in the bistable regime Det(J) < 0. Furthermore, for Tr(J) ¼ 0 (provided that Det

(J) > 0) the nonlinear system experiences the onset of oscillations via the Hopf

bifurcation, and further in the oscillatory regime Tr(J) > 0 (cf. Fig. 1.8).

Typical cross-shaped bifurcation diagram for the simple electrochemical system

with the single N-NDR region in its I–E characteristics, constructed based on the

above criteria, is shown in Fig. 2.8.

2.2.2.2 Galvanostatic Control

The imposed constant current I is at any moment equal to the sum of the faradaic

and (if any) capacitive currents, which individually can vary:

Fig. 2.8 Two-parameter

skeleton bifurcation diagram

of the N-NDR oscillator in the

U/Rs parameter plane. Solid:
location of saddle-node

bifurcations; dashed line:
location of Hopf bifurcation.

After [10]
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I ¼ If þ Ic ¼ �nFAkfcoxð0; tÞ þ CdA
dE

dt
¼ const (2.35)

According to reasoning developed for the 1D system, one derives an analogous

equation for the electrode potential dynamics under such condition:

f ðE; tÞ � dE

dt
¼ I

CdA
� If
CdA

¼ I

CdA
þ nFkfðEÞcoxð0; tÞ

Cd

(2.36)

The equation for the cox(0, t) dynamics remains the same as for the potentiostatic

system (2.31). The present dynamical system is thus defined with Eqs. (2.31) and

(2.36). Its Jacobian matrix has a form:

J ¼

@f

@E

� �
ss

@f

@cs

� �
ss

@g

@E

� �
ss

@g

@cs

� �
ss

2
66664

3
77775 ¼

� 1

CdA

@If
@E

� �
ss

nFkfðEssÞ
Cd

2

nFAd
@If
@E

� �
ss

�2
Dox

d2
þ kfðEssÞ

d

� �

2
66664

3
77775

¼

nFcs;ss
Cd

dkf
dE

� �
ss

� �
nFkfðEssÞ

Cd

�2cs;ss
d

dkf
dE

� �
ss

�2
Dox

d2
þ kfðEssÞ

d

� �

2
66664

3
77775 (2.37)

with the trace and the determinant, respectively:

TrðJÞ ¼ � 1

CdA

@If
@E

� �
ss

� 2
Dox

d2
þ kfðEssÞ

d

� �
(2.38)

DetðJÞ ¼ 1

CdA

@If
@E

� �
ss

� �
� 2

Dox

d2
þ kfðEssÞ

d

� �
� nFkfðEssÞ

Cd

� �
� 2

nFAd
@If
@E

� �
ss

� �

¼ 2Dox

CdAd
2

@If
@E

� �
ss

ð2:39Þ

The condition for the saddle node bifurcation, Det(J) ¼ 0 is now met for the

ð@If=@EÞss ¼ 0, i.e., for the extremum of the If(E) (or kf(E)) dependence(s), i.e., for
the points at which a transition from the positive to the negative slope of the I–E
characteristics takes place. This is clearly illustrated in Fig. 2.4, where the horizon-

tal jumps between the one and other branch of stable steady-states occur at such two

points. For Det(J) < 0, i.e., for the region of negative resistance, ð@If=@EÞss < 0,

the saddle points emerge, composing, together with the stable states, the bistable

fold of states.

In turn, the condition for the Hopf bifurcation would require Tr(J) ¼ 0 with Det

(J) > 0 but inspection of Eqs. (2.38) and (2.39) clearly shows that these conditions

cannot be met simultaneously: the zero trace would occur only for the negative
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slope of the I–E curve, but then Det(J) would be also negative. A very important

conclusion of this analysis is that for the 2D dynamical system with the electrode

process having the N-NDR region, under galvanostatic conditions one can observe

bistability, but oscillations of the electrode potential are not possible.
To summarize the analyses of the 2D case, the N-NDR system, that can be either

bistable or oscillatory under potentiostatic conditions, depending on the external

voltage and serial resistance, can only be bistable under galvanostatic conditions

[11]. Since, however, galvanostatic oscillations are observed experimentally for

some systems, it is clear that the mechanisms of such processes would have to be

appropriately complicated, compared to Eq. (2.28). Such processes have to exhibit

a region of a negative resistance, hidden under dc conditions by another process.

Such HN-NDR oscillators will be described in Chap. 3.

2.2.3 The Advantage of Dimensionless Representation

In Sect. 1.6 it was shown that using dimensionless variables allowed to describe the

dynamical system, defined by the van der Pol equations, in a way conveniently

showing the difference in the time scale of particular variables by a single para-

meter e. Upon decreasing e, the oscillations were changing from sinusoidal to

typical relaxation ones (Fig. 1.27). Analogous procedure will now be applied, as

an example, to Eqs. (2.29) and (2.31), defining the N-NDR system under

potentiostatic conditions. The following definitions of new dimensionless variables

are introduced:

1. Dimensionless concentration (through normalization to the bulk value):

c ¼ coxð0; tÞ
c0ox

(2.40)

2. Dimensionless electrode potential:

e ¼ nF

RT
E (2.41)

3. Dimensionless external voltage:

u ¼ nF

RT
U (2.42)

4. Dimensionless time:

t ¼ 2Dox

d2
t (2.43)

5. Dimensionless heterogeneous rate constant of electroreduction:
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k ¼ d
Dox

kf (2.44)

Using these definitions, one transforms Eqs. (2.29) and (2.31) into their dimen-

sionless forms:

e
de

dt
¼ u� e

r
þ kc (2.45)

dc

dt
¼ �kcþ 1� c (2.46)

which contains two dimensionless parameters r and e. Quantity r, defined as:

r ¼ c0oxDoxn
2F2RsA

RTd
(2.47)

is proportional to serial resistance and thus can be considered a “dimensionless

serial resistance”; it is also a measure of a maximum contribution to the ohmic

potential drops from the limiting, steady-state faradaic current which is given by:

Ilim ¼ nFADoxc
0
ox

d
(2.48)

In turn, the e parameter, defined as:

e ¼ 2CdRT

c0oxn
2F2d

(2.49)

expresses, analogously to the example with the van der Pol equation, the time scale

of the electrode potential dynamics, compared to the dynamics of the surface

concentration of the reacting species. For the conventional electrodes and other

typical experimental parameters e is usually of the order of 10�4 to 10�5, so the

electrode potential can be qualified as a relatively fast variable. This means that

upon perturbation of the steady-state, the electrode potential response is faster than

that of the surface concentration being then a relatively slow variable [10].

The significance of parameter e for the description of the dynamics of electro-

chemical systems is further revealed in the linear stability analysis [10]. The

Jacobian matrix of Eqs. (2.45) and (2.46) has a form:
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J ¼

1

e
css

dk

de

� �
ss

� 1

r

� �
kðessÞ
e

�css
dk

de

� �
ss

�kðessÞ � 1

2
66664

3
77775 (2.50)

with the trace and the determinant, respectively:

TrðJÞ ¼ 1

e
css

dk

de

� �
ss

� 1

r

� �
� kðessÞ � 1 (2.51)

DetðJÞ ¼ � 1

e
css

dk

de

� �
ss

� 1

r

� �
� kðessÞ þ 1½ � þ kðessÞ

e
� css

dk

de

� �
ss

¼ 1

e
�css

dk

de

� �
ss

þ 1

r
kðessÞ þ 1½ �

� �
(2.52)

Again, the onset of instability of the steady-state through the saddle-node

bifurcation requires the condition Det(J) ¼ 0 which can be met only if

ðdk=deÞssis positive (for the cathodic process considered), i.e., within the region

of the negative differential resistance dIf/dE (N-NDR). Saddle points will persist

further for Det(J) < 0, i.e., when the dimensionless serial resistance is sufficiently

large:

r � kðessÞ þ 1½ �
css

de

dk

� �
ss

(2.53)

From mathematical form of Eq. (2.52) it follows also that the parameter e does
not affect the onset of bistability. However, its significance manifests itself in the

oscillatory regime that requires Tr(J) ¼ 0, meaning again the NDR region (positive

dk/de slope for the cathodic process). The oscillations set in and persist if:

dk

de

� �
ss

� 1

css

1

r
þ ½kðessÞ þ 1�e

� �
(2.54)

which condition requires that e is not too large. On the other hand, serial resistance

included in parameter r cannot also be too high, in order to meet the second

condition for the Hopf bifurcation, Det(J) > 0, i.e.:

r<
kðessÞ þ 1½ �

css

de

dk

� �
ss

(2.55)

otherwise Det(J) will become negative and the oscillatory instability will be

replaced by bistability.
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Let us try to understand the physical sense of this conclusion [10]. If e is small, as

for the relatively slowly rotating disk electrode (high Nernst layer thickness d), the
surface concentration of the reactant responds relatively slowly to the perturbation

of the electrode potential. This means that the diffusion of the reactant from the bulk

replenishes the surface concentration slower than it is transformed to Red species

through the electron transfer at the interface. The consumption and the inflow of the

reactant to the reaction site are not balanced and this is the situation which may give

rise to the oscillations of the surface concentration. On the contrary, when the disk

electrode rotates much faster, the thickness of the Nernst diffusion layer d is

decreased, current increases, so both r (ohmic drops) and e become appropriately

large. This means that the rate of the transport increases and surface concentration

of a reactant becomes a faster variable than before, relative to the electrode

potential. This concentration is thus more forced by the transport rate, approaching

in the limit the bulk concentration of reactant. One can expect that the oscillations

of the electrode potential (and of the total current) will be continuously losing

the relaxation shape, like in the van der Pol model. Finally the oscillations will

cease completely, since the only instability which may be observed in such a case

will be bistability in the electrochemical model (2.45, 2.46).

2.2.4 The Electrode Potential as an Autocatalytic Variable
in the N-NDR Systems

The content of this section indicates an important dynamic characteristics of the

electrode potential in the N-NDR-type systems which is related to the concept of

the activator and the inhibitor (Sect. 1.8), represented by appropriate signs of the

elements of the Jacobian matrix. In order to apply this idea to the present N-NDR

system, the Jacobian matrix (2.50) will be rewritten with the indication of the

definition of particular derivatives, in which _e � de=dt and _c � dc=dt:

J ¼

@ _e

@e

� �
ss

@ _e

@c

� �
ss

@ _c

@e

� �
ss

@ _c

@c

� �
ss

2
6664

3
7775 ¼

1

e
css

dk

de

� �
ss

� 1

r

� �
kðessÞ
e

�css
dk

de

� �
ss

�kðessÞ � 1

2
6664

3
7775 (2.56)

Of course, the same procedure can be performed for the anodic process, with

the faradaic current then always positive: If ¼ nFAkb(E)cred(0, t), where kb is the
potential-dependent heterogeneous rate constant of the oxidation process.

The change of the sign of the current, together with the change of the sign of the

dkb/dE derivative (now negative in the NDR region), leads then to the dimension-

less equations:
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e
de

dt
¼ u� e

r
� kc (2.57)

dc

dt
¼ �kcþ 1� c (2.58)

and the corresponding Jacobian matrix:

J ¼

@ _e

@e

� �
ss

@ _e

@c

� �
ss

@ _c

@e

� �
ss

@ _c

@c

� �
ss

2
6664

3
7775 ¼

� 1

e
css

dk

de

� �
ss

þ 1

r

� �
� kðessÞ

e

�css
dk

de

� �
ss

�kðessÞ � 1

2
6664

3
7775 (2.59)

The signs of the elements of these matrices can be determined from the course

of the e and c nullclines in the vicinity of their intersection, corresponding to

the steady-state, in a way explained schematically in Fig. 1.34. Essential

conclusions drawn from such procedure are of course the same for both cathodic

and anodic processes, but opposite signs of current are the causes for opposite

signs of some elements of these matrices. We shall consider in more detail, as

an example, only the anodic process, for which the mathematical form of the

expression corresponds directly to the intuitive relation: more positive potential

means increasing driving force and more positive current means increasing rate of

the electrochemical process. For the system (2.57, 2.58), a typical course of

nullclines, intersecting in the unstable steady-state lying within the N-NDR

region, is shown in Fig. 2.9.

Fig. 2.9 Typical course of

E-nullcline (solid line) and
c-nullcline (dashed line) of
the electrochemical system

(2.57, 2.58) for control

parameters ensuring the

unstable steady-state lying

within the N-NDR region.

After [12]
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From the signs of derivatives in this plot one obtains the following signs of the

elements of matrix (2.59) which should be compared with analogous case (1.113),

named before the “pure activator–inhibitor system”1:

J ¼ þ �
þ �

� �
(2.60)

In fact, the dimensionless electrode potential e is a self-activator, since

@ _e=@e> 0, i.e., an enhancement of e causes its further increase. This is why the

electrode potential in the N-NDR systems is the autocatalytic variable or positive
feedback variable. Furthermore, the concentration of chemical species is a self-

inhibitor, or negative feedback variable, since @ _c=@c< 0. Based on previous

conclusions about the different time scales of variables e and c for the oscillatory

regime one can further specify that the electrode potential is a fast autocatalytic
variable, while the concentration of chemical species is a slow self-inhibiting variable.

Physically, the autocatalytic nature of electrode potential is explained in the

following way, taking again the anodic process as an example [12]. Within the

NDR region, if the electrode potential is increased for the value de, the current

decreases for di. As a consequence, the ohmic potential drops also for Rsdi, and the
electrode potential increases further for that value. This causes further decrease of

the current and thus the increase of the electrode potential e. Thus, the increase of
the electrode potential is a self-enhancing process. Analogously, the negative

perturbation �de will result in self-enhancing decrease of the electrode potential.

These alternating processes of self-enhanced increase and decrease in e occur

during its oscillatory variations. One should emphasize the role of NDR in this

positive feedback, since none of the electrochemical reaction steps is autocatalytic

in this sense which we know from the classical homogeneous chemical kinetics.

Furthermore, @ _c=@e> 0 means that the increasing electrode potential enhances

the surface concentration of the reactant, i.e., the electrode potential is an activator
for the surface concentration of the oxidized species. In fact, in the NDR region, when

the electrode potential increases, the rate of the electrode process decreases and then

the transport of the reactant from the bulk can more efficiently replenish the diffusion

layer. On the contrary, @ _e=@c< 0, so the chemical species act as an inhibitor for the
electrode potential. Again, in the NDR region, if the surface concentration of the

reactant increases, the faradaic current appropriately increases, and so the ohmic

potential drop. This in turn means that the absolute value of the electrode potential

decreases (E ¼ U � IRs) which causes further increase of current and ohmic drops.

To summarize the above interpretation, a single oscillation related to the N-NDR

region is considered a result of the positive feedback involving fast variable: elec-

trode potential, which increases until the slow chemical, negative feedback variable

takes control over the system’s dynamics. One should note that the electrode potential

1 For the irreversible cathodic process the elements a11 and a22 would have the same signs, while

a21 and a12 will have opposite signs, since the dcox/dE and dkf/dE derivates have the signs opposite

to those of dcred/dE and dkb/dE derivates in anodic process.
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remains the autocatalytic variable also for the HN-NDR systems, where the N-NDR

region is partly or entirely hidden by another process. This will be no longer true for

the systems with the S-shaped NDR regions (S-NDR), for which the chemical species

becomes an activator, while the electrode potential takes a role of an inhibitor

(negative feedback variable). This case is analyzed in the next section.

2.2.5 The Electrode Potential as a Negative Feedback
Variable in S-NDR Systems

Figure 2.10a (top row) shows schematically typical I–E dependence corresponding to

the S-shaped region of the negative differential resistance (S-NDR characteristics)

which is multivalued for zero (or, alternatively speaking, vanishing) serial resistance

Rs. As indicated earlier in this chapter, the systems with such characteristics exhibit

bistability even under true potentiostatic conditions. It is of course fundamentally

different from the N-NDR systems which for zero resistance are bistable only under

galvanostatic conditions. Furthermore, the role of ohmic drops is in the case of S-

NDR systems reversed, compared to N-NDR systems, as Fig. 2.10b (top row)

illustrates. Upon increasing serial resistance Rs, the multivalued S-NDR dependence

Fig. 2.10 Comparison of I–E, I–U dependences and bifurcation diagrams for the S-shaped (top)
and N-shaped (bottom) NDR characteristics of the electrode processes. Top: (a) S-shaped

current–potential curve (I–E), meaning the S-NDR characteristics of the electrode process for

zero (vanishing) serial resistance Rs. (b) The characteristics from (a), deformed by appropriately

high serial resistance Rs so that bistability vanishes on the I–U dependence. (c) Typical bifurcation

diagram corresponding to the S-NDR system, indicating the region of bistability (limited by the

saddle-node, sn, bifurcation points) and the region of oscillations inside the lines of the Hopf (h)

bifurcations. The dependence on the sequence of these dynamical behaviors upon increasing Rs is

reversed, compared to N-NDR systems. Bottom: analogous plots for the N-NDR (a) system,

indicating bistability occurring only at non-zero resistances Rs (b, c). After [12]
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deforms and expands along the external voltage U axis, eventually transforming to

single-valued I–E dependence, when bistability is not existing any more. In conse-

quence, the bifurcation diagram shown in Fig. 2.10c indicates this reversed effect of

Rs: the Hopf bifurcation leading to oscillations appears only at sufficiently high

resistances. Thus, the bifurcation diagrams for the N-NDR and S-NDR systems can

be considered complementary. For comparison, analogous characteristics for the N-

NDR systems are collected in bottom row of Fig. 2.10 [12].

The shape of the I–E dependence from Fig. 2.10a can correspond, e.g., to the

case when the electrode process is inhibited by adsorbed neutral molecules which

exhibit sufficiently high attractive intermolecular interactions in the adsorption

layer. Formally, this case is often described in terms of the Frumkin isotherm

with appropriately large interaction parameter. Experimentally one observes then

the hysteresis in the I–E response upon cyclic variations of electrode potential,

since the current reflects the actual electrode coverage of an inhibitor: the current is

high when the electrode coverage is low and vice versa.

Below we shall present only the basic dynamic properties of the S-NDR systems

which will be deepened in Sect. 1.2.4 of volume II devoted to Turing patterns in

electrochemical systems. Theoretical analysis performed by Krischer et al. [12, 13],

allowed to illustrate the dynamics of S-NDR systems in terms of the nullclines

drawn in Fig. 2.11. The reader interested in mathematical construction of the model

is advised to consult Refs. [12, 14] and outline considerations included in Sect. 1.2

of volume II. Let us assume that E is an electrode potential, while c means the

electrode coverage with an inhibitor, the adsorption of which is an S-shaped

function of the electrode potential.

The crucial conclusions (which could also be drawn from the signs of the

corresponding Jacobian matrix at the steady-state) come from the analysis of the

vicinity of the intersections of both nullclines. For given E, upon adsorbate coverage
c increasing around the steady-state, the derivative dc/dt changes its sign from the

negative to positive value, so [∂/∂c(dc/dt)]ss > 0 (a22 element of Jacobian matrix

Fig. 2.11 E-nullcline (solid line) and c-nullcline (dashed line) for an S-NDR system. After [12]
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is positive), i.e., the chemical species is now the activator (or more precisely—

the self-activator), and the perturbations in c are amplified. On the other hand, if for

given c, around the steady-state E increases, dE/dt changes its sign from positive to

negative, so [∂/∂E(dE/dt)]ss < 0 (a11 < 0) and the electrode potential is now an

inhibitor (self-inhibitor), i.e., it is the negative feedback variable: its perturbations

are damped, opposite to the N-NDR systems.

It is further instructive to establish the physical sense of the autocatalysis in the

variable c: the attractive lateral interactions in the adsorption layer cause the self-

acceleration of its build-up above certain critical coverage, and also self-accelerated

damage of this layer below certain critical coverage, both separated for the region

of hysteresis. In turn, with respect to electrode potential E, under potentiostatic
conditions (U ¼ const), with ohmic drops IRs present, we figure out that if, at

constant electrode coverage c, the electrode potential E increases, this causes

the larger faradaic current, but this means also an increase in ohmic drops, so the

increase in the electrode potential E is counteracted. Thus, also in terms of this

analysis an electrode potential is a self-inhibitor.

The signs of the remaining two mixed derivatives in the Jacobian matrix are the

following. When the electrode potential increases above the steady-state value, for

c ¼ const, the derivative dc/dt becomes negative, i.e., [∂/∂E(dc/dt)]ss < 0, so

the potential E “consumes” c (reflecting the desorption of the inhibitor molecules

with increasing interfacial potential drop, i.e., at high electric charges of the

electrode surface). Finally, if c increases, for E ¼ const, the sign of the derivative

∂/∂c[dE/dt] is positive, so the electrode coverage is an activator for E; physically,
the increase in c lowers the faradaic current and thus the ohmic drops, hence the

effective electrode potential then increases. Concluding, the signs of the elements

of the Jacobian matrix for the S-NDR system considered are distributed in the

following way [12], corresponding again to the activator–inhibitor system in which

now the chemical variable is an activator and the electrode potential is an inhibitor:

J ¼ � þ
� þ

� �
(2.61)

Concerning the attractive interactions in the adsorption layer of an inhibitor as a

possible cause for the S-NDR characteristics, one should note that in this case

the dependence of the electrode coverage on the electrode potential can become

both S-shaped and Z-shaped, at the potential regions of adsorption and desorption

of an inhibitor, respectively (cf. Fig. 1.23 in Vol. II). Another example of the

electrochemical system with the S-shaped dependence of current on electrode

potential is the Zn electrodeposition, where the origin of such characteristics was

ascribed to the chemical autocatalytic step [15].

At this step of analysis of stability of electrochemical systems it is useful to note

that by identifying quantities, engaged in fast or slow, positive or negative feedback

loops, one also discovers the variables essential for the oscillations. The important

problem of distinguishing between the variables essential and non-essential for

dynamical instabilities in electrochemical systems is outlined in the next section.
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2.3 Essential and Non-essential Variables in Electrochemical

Instabilities

In relation to the problem of essential dynamical variables, Kiss et al. [16] have

elaborated the experimental strategy for characterization of such variables in

electrochemical oscillatory systems. The essential species create destabilizing

(fast autocatalytic or self-inhibitory) and stabilizing (slow inhibitory) feedback

loops, as identified by the stoichiometric network analysis [17]. In electrochemical

systems, the electrode potential is an essential variable for the N-NDR systems

(an activator) and for the S-NDR systems (an inhibitor). Another essential variable

can be a surface concentration of the electroactive species.

The experimental strategy proposed in [16] involved the “differential control-

ler”, allowing for the fine-tuning of the time scale, over which the concentration of

chemical species or the value of other dynamical variables can vary. If the

oscillations are suppressed by changing the time scale of a given variable, its

essential role for such instabilities becomes confirmed. In an unperturbed electro-

chemical system, the time scale of the variation of the electrode potential can be

changed by variation of the capacitance of the electrode.

The idea of differential controller, taken from engineering practice [18], is the

following. According to previous considerations (Sect. 1.6), the n-dimensional

dynamical system can be defined in terms of a set of ODEs:

ek
dxk
dt

¼ fk x1; x2; :::; xnð Þ; k ¼ 1;:::;n (2.62)

in which ek defines the time scale for the variation of the k-th variable. Then,

introducing a differential controller with the feedback strength ak means the

following extension of the above ODE:

ek
dxk
dt

¼ fk x1; x2; :::; xnð Þ þ ak
dxk
dt

(2.63)

or, equivalently:

ðek � akÞ dxk
dt

¼ fkðx1; x2; :::; xnÞ (2.64)

The latter equation means that, compared to Eq. (2.62), the time scale of variable

xk can be modified by varying ak, keeping ek constant. In other words, the time scale

of xk variable is now defined by ek0 ¼ ek � ak. The parameters of the steady-states

are the same, since they remain determined by the same condition: f(x1, x2, . . .,
xn) ¼ 0, only their stability may change. Application of this strategy to an electro-

chemical system will be described for the prototypical case of the NDR system,
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defined by the charge conservation principle [Eq. (2.10)], expressed here in the

equivalent form:

Cd

dE

dt
¼ �jf c; y;E; :::ð Þ þ U � E

ARs

(2.65)

where the faradaic current density jf is generally dependent on the concentration c,
electrode coverage y, and electrode potential E.

In order to achieve the appropriate differential control of the electrode potential

E, the external voltage U treated as the control parameter was varied around the

value U0 according to the following dependence:

U ¼ U0 þ g
dU

dt
� gRs

di

dt
¼ U0 þ g

dU

dt
� gRs

d

dt

U � E

Rs

� �
¼ U0 þ g

dE

dt
(2.66)

where g is the control gain. Substitution of U in Eq. (2.65) with Eq. (2.66) leads to

the following dependence:

Cd � g
ARs

� �
dE

dt
¼ �jfðc; y;E; :::Þ þ U � E

ARs

(2.67)

where the term in bracket: � g=ðARsÞ ¼ C	
d acts as a specific pseudo-capacitance.

Then, Cd + Cd* plays the same role as the new time scale ek0 ¼ ek � ak in

Eq. (2.64).

The procedure designed according to this philosophy was tested for the three

well-known electrochemical oscillators: (1) the electrodissolution of Cu in H3PO4

solution, (2) the electrodissolution of Ni in H2SO4 solution, and (3) the electrode-

position of Zn in acidic electrolyte, both by simulation based on theoretical models

and in experimental studies. Since Cu/H3PO4 and Ni/H2SO4 systems are described

in Chap. 6, here we use Zn electrodeposition, characterized with S-shaped NDR

region, as an example demonstrating the successful application of the above

differential control. In the simulations, the model of Lee and Jorné [19], extended

for the implementation of IRs drops through the electrolyte and a serial external

resistance, was used. The existence of oscillations required sufficiently high Cd

values (of the order of 1 F cm�2) and then, upon decreasing cathodic overpotential,

the oscillations were born through a supercritical Hopf bifurcation and ceased via a

saddle-node bifurcation of cycles (following a subcritical Hopf bifurcation). All

these features of the model are collected in Fig. 2.12.

In the experiment, current oscillations during Zn electrodeposition were induced

by using the differential control algorithm such that pseudo-capacitance of the order

of few Farads was generated, in good concordance with the simulations (Fig. 2.13).

For the original, non-driven system the electrode potential is too a fast variable, to

ensure the oscillations. One should slow down this variable to induce the instability.
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Of course, if applying the differential controller on particular variable did not

affect the oscillations, this variable would be termed the non-essential one. The
same way of diagnosis could be applied for the controller that would affect the time

scale of the variation of surface concentration of the species, or the electrode

coverage, for another experimental system.
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Fig. 2.12 Simulations: effect of changing the time scale associated with the electrode potential on

current oscillations in Zn electrodeposition (S-NDR system). (a) Inducing oscillations at U ¼
�55 mV by increasing the value of Cd from 2.5 mF cm�2 to 2.5 F cm�2 at t ¼ 300 s (shown by an

arrow). (b) Bifurcation diagram at Cd ¼ 2.5 mF cm�2 as a function of U. (c) Bifurcation diagram

at Cd ¼ 2.5 F cm�2 as a function of U. LP: saddle-node bifurcation of a periodic orbit. (d)

Bifurcation diagram at U ¼ �55 mV as a function of Cd. (e) Two-parameter bifurcation diagram

showing the locus of Hopf bifurcations. Reprinted with permission from [16]. Copyright 2005

American Chemical Society
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The application of the above diagnostic procedure to the classification of the

electrochemical oscillators is described in Sect. 3.5.

2.4 Frequency of Oscillations in the N-NDR Systems

In Sect. 1.3.3 the abstract model of the supercritical Hopf bifurcation [Eqs. (1.60)

and (1.61)] allowed to find the frequency of oscillations in the vicinity of the point

of that bifurcation. The problem of frequency of the oscillations is important for the

timing processes in biological systems, in particular with respect to the temperature
compensation effect, meaning the mechanism which ensures the functioning of

physiological clocks independently of environmental temperature changes, i.e.,

opposite to Arrhenius-type, exponential rise on rate constants with temperature.

The relevant studies were published both for chemical [20–22] and electrochemical

[23–25] oscillators (see also Sect. 5.4).

Recently, Kiss et al. [26] have derived an approximate formula for the frequency

of oscillations in electrochemical systems, close to the supercritical Hopf bifurca-

tion point. Both N-NDR and HN-NDR type systems were considered. For the

N-NDR case, the typical skeleton model of Koper and Sluyters (2.29, 2.31) [9]

was used for theoretical considerations. The oscillation frequency at the point

of supercritical Hopf bifurcation, where Tr(J) ¼ 0 and Det(J) > 0, is generally

equal to square root of the determinant of the corresponding Jacobian matrix [27]

(cf. Sect. 1.3.3):

o	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðJÞ

p
(2.68)
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Fig. 2.13 Experiments: effect of changing the time scale associated with the electrode potential

on current oscillations in Zn electrodeposition (S-NDR system). (a) One-parameter bifurcation

diagram at U0 ¼ �1,100 mV and Rs ¼ 9.7 O showing the minima and maxima of current

oscillations as a function of the pseudo-capacitance Cd
*. (b) One-parameter bifurcation diagrams

at Rs ¼ 9.7 O with respect to the circuit potential (external voltage) U: dashed line, Cd
* ¼ 0 F,

solid line, Cd
* ¼ 20.0 F. Reprinted with permission from [16]. Copyright 2005 American

Chemical Society
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In the case of the model electrochemical process considered here one substitutes

for Det(J) the expression (2.34). A particularly convenient equivalent expression is

obtained after combination of expressions for Det(J) and Tr(J) [Eqs. (2.33) and

(2.34)]:

DetðJÞ ¼ 2kðEssÞ
dCdRsA

� 4kðEssÞ
d3

� 4D2
o

d4
(2.69)

where k is the potential-dependent heterogeneous rate constant of the electron

transfer at the working electrode–solution interface. If one recognizes that particu-

lar terms in Eq. (2.69) reflect three major important time scales, the frequency o*

may be expressed as a combination of frequencies corresponding to inverse time

scales of the chemical, electrical, and diffusional processes, oc, oe and oD:

o	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðEssÞ
dCdRsA

� 4kðEssÞDo

d3
� 4D2

o

d4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ocoe � oDðoc þ oDÞ

p
(2.70)

where:

oc ¼ 2

d
kðEssÞ (2.71)

oe ¼ 1

CdRsA
(2.72)

oD ¼ 2D

d2
(2.73)

Since for the N-NDR systems the electrode potential is a fast variable (cf. Sect.

2.2.4), this means that oe 
 oc;oD and the dependence [Eq. (2.70)] can be

simplified to the following form:

o	 � ffiffiffiffiffiffiffiffiffiffiffi
ocoe

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðEssÞ
dCdRsA

s
(2.74)

which predicts the frequency of the electrochemical oscillations as the geometric

mean of the inverse electrical and chemical time scales. For strict interpretation one

should note that in these final dependences the frequency o is expressed in Hz

(usually denoted rather by f), and not in rad s�1 [26]. Numerical calculations

performed for the three-variable, dimensionless Koper–Gaspard model [28], used

here to simulate the copper electrodissolution in phosphoric acid, confirmed the

validity of the above derivations and simplifications. Similar results were obtained

for experimental studies of the potentiostatic, oscillatory electrodissolution of Cu in

phosphoric acid, at least in majority of the range of serial resistance studied.
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Analogous analysis was performed for the appropriate skeleton model of the

HN-NDR oscillator and theoretical predictions on the oscillations were success-

fully verified through comparison with the experimental characteristics of Ni

Fig. 2.14 Experiments: frequency dependence on temperature in an HN-NDR system of nickel

dissolution. (a) Time series of current oscillations at T ¼ 10 �C, Rs ¼ 600 O, U ¼ 1075 mV,

o ¼ 0.505 Hz. (b) Time series of current oscillations at T ¼ 30 �C, Rs ¼ 600 O, U ¼ 1,210 mV,

o ¼ 1.960 Hz. (c) The dependence of frequency of current oscillation (at the onset of oscillations)

on temperature, Rs ¼ 600 O. (d) Arrhenius plot of frequency of current oscillations vs. tempera-

ture, Eact ¼ 49 kJ mol�1. (e) The dependence of mean current (at the onset of oscillations) on

temperature, Rs ¼ 600 O. (f) Arrhenius plot of mean current vs. temperature, Eact ¼ 46 kJ mol�1

[26]. Reproduced by permission of the PCCP Owner Societies
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electrooxidation in aqueous sulfuric acid medium. For details of this approach and

the discussion of the above-given result the reader is advised to consult the original

reference [26].

Concerning the effect of temperature on the oscillation frequency, which could

be interpreted in terms of Eq. (2.70), one should note that the double layer

capacitances and the Nernst diffusion layer thickness are relatively weakly depen-

dent on temperature, compared to variations of the rate constant of the electron-

transfer process, for which the Arrhenius-type kinetic law should hold. This predic-

tion was quantitatively confirmed by the experimental studies of the effect of

temperature on the oscillatory electrodissolution of Ni in H2SO4 medium (see

Fig. 2.14). The apparent Arrhenius activation energy determined from frequency

variations (46 kJ mol�1) was very close to the activation energy 49 kJ mol�1

calculated from the mean oscillating current (approximately equal to the mean

current at the Hopf bifurcation point).

In conclusion, the Arrhenius-type dependence of oscillation frequency on tem-

perature is a direct consequence of the o / (k(E)/Rs)
1/2 relationship. It should be

noted that in spite of complexity of real oscillatory systems, all the above derived

dependences are quite simple. This is because close to the bifurcation point the

mathematical structure of the oscillatory system’s dynamics is greatly simplified.

This is the manifestation of the so-called Principle of critical simplification (PCS)

which was also applied in the interpretation of temperature effects in the oscillatory

catalytic oxidation of CO [29]. Finally, one can also suggest that the dependence

[Eq. (2.70)] can be applied in an opposite way—as the source of approximate

values of rate constants, determined from the oscillation frequency measurements

at different resistances. It can be a useful approach, since within the oscillatory

(instability) region, classical electrochemical methods are not able to provide direct

kinetic parameters. Of course, they have then a physical sense of rather apparent

(effective) rate constants of the usually multistep reaction mechanism [26]. The

problem of frequency of HN-NDR oscillator is developed further in recent work by

Kiss et al [30].
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5. Śledziewski R (1978) Electronics for the physics students. PWN, Warsaw (in Polish), p 170

6. Feldberg SW (1969) Digital simulation: a general method for solving electrochemical

diffusion-kinetic problems. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry,

vol 3. Dekker, New York, pp 199–296

108 2 Stability of Electrochemical Systems



7. Speiser B (1996) Numerical simulation of electroanalytical experiments: recent advances in

methodology. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Dekker,

New York, pp 1–108

8. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

9. Koper MTM, Sluyters JH (1991) Electrochemical oscillators: their description through

a mathematical model. J Electroanal Chem 303:73–94

10. Krischer K (1999) Principles of temporal and spatial pattern formation in electrochemical

systems. In: Conway BE et al (eds) Modern aspects of electrochemistry, vol 32. Kluwer,

New York

11. Koper MTM (1992) The theory of electrochemical instabilities. Electrochim Acta

37:1771–1778

12. Krischer K (2001) Spontaneous formation of spatiotemporal patterns at the electrode|electro-

lyte interface. J Electroanal Chem 501:1–21

13. Krischer K, Mazouz N, Fl€atgen G (2000) Pattern formation in globally coupled electrochemi-

cal systems with an S-shaped current–potential curve. J Phys Chem B 104:7545–7553

14. Mazouz N, Krischer K (2000) A theoretical study on turing patterns in electrochemical

systems. J Phys Chem 104:6081–6090

15. Epelboin I, Ksouri M, Lejay E, Wiart R (1975) A study of the elementary steps of electron-

transfer during the electrocrystallization of zinc. Electrochim Acta 20:603–605
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Chapter 3

Application of Impedance Spectroscopy

to Electrochemical Instabilities

3.1 Outline Concept of Impedance of Electrochemical Systems

3.1.1 Basic Definitions

Electrochemical impedance spectroscopy (EIS), a well-established technique in

classical electrochemistry [1], can also be very useful for the analysis of stability

of electrochemical systems, including diagnosis of selected bifurcations. Imped-

ance spectra of such dynamical systems allow also classify electrochemical

oscillators into respective types. In fact, due to linearization involved in the concept

of impedance, this way of the stability analysis of electric (electrochemical) circuits

is a specific variant of linear stability analysis described in Sect. 1.3.

In this section a short presentation of the principle of impedance measurements

is described, in order to make the reader familiar with the notation used further in

this chapter. The basis for this summary will be typical (Randles-type) equivalent

circuit from Fig. 2.6, in which Zf will henceforth mean generally the ac impedance,

measured for ac frequency f [Hz] (or angular frequency o ¼ 2pf [rad s�1]). The
idea of such equivalent circuits, coming from the seminal work of Randles [2], was

concordant with the experimental equipment used in early times of impedance

measurements. It involved the ac bridge, in which one branch contained the

experimental system, the impedance characteristics of which had to be balanced,

in the other branch, by the impedance of the electric (equivalent) circuit, possibly

closely reflecting the properties of the experimental one.

Typically the electrochemical cell is first brought into steady-state, or at least

quasi-steady-state (Ess, Iss) which is further perturbed with the externally applied

small amplitude, sinusoidal ac voltage (typically) or ac current. As a consequence,

the electrode potential E and the current I will oscillate around their steady-state

values with the same frequency o, but in general case exhibiting (frequency

dependent) phase difference. In general notation one can denote the phase shifts

for both the electrode potential and the current as ’1 and ’2, respectively, and then:

M. Orlik, Self-Organization in Electrochemical Systems I,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-27673-6_3,
# Springer-Verlag Berlin Heidelberg 2012

111

http://dx.doi.org/10.1007/978-3-642-27673-6_1#Sec3_1
http://dx.doi.org/10.1007/978-3-642-27673-6_2#Fig6_2


E ¼ Ess þ DEmaxexp½jðotþ ’1Þ� ¼ Ess þ DEmaxexpðj’1ÞexpðjotÞ (3.1)

I ¼ Iss þ DImaxexp jðotþ ’2Þ½ � ¼ Iss þ DImaxexpðj’2Þexp jðotÞ½ � (3.2)

where j ¼ ffiffiffiffiffiffiffi�1p
. The geometrical interpretation of these relationships, in terms of

the coordinate system, consisting of real axis x and imaginary axis y, involves the
phasors of the potential ~Eand of current ~I, respectively [3]:

~E ¼ DEmax expðj’1Þ (3.3)

~I ¼ DImax expðj’2Þ (3.4)

while the term exp[j(ot)] describes the rotation of these vectors with angular

frequency o. Dependences (3.1)–(3.4) describe thus vectors of the length DEmax

and DImax, which rotate with the same rate o and a constant phase difference

’2 � ’1. If phase shift ’1 is assumed as the reference value, then the above

formulas simplify by involving explicitly only phase difference ’ ¼ ’2 � ’1

between the current and the potential responses (see Fig. 3.1).

It is here useful to invoke the concept of a transfer function that is a mathemati-

cal representation of the relation between the input and output of a linear, time-

invariant system. Simply speaking, transfer function transfers one signal into

another. Thus, when the current is the stimulus and the potential is the response

signal, this is the impedance which is the transfer function. In other words,

impedance is the direct information obtained from the ac experiment under

galvanostatic conditions. In turn, the transfer function for the potentiostatic experi-

ment is admittance Y (which mean generalized conductivity), i.e., when the poten-

tial is the stimulus and the current is the response signal.

The impedance Z is defined as the ratio of phasors:

Z ¼
~E
~I
¼ DEmax

DImax

exp �jð’2 � ’1Þ½ � ¼ DEmax

DImax

expð�j’Þ ¼ Zj j expð�j’Þ (3.5)

where ’ ¼ ’2 � ’1. In view of Euler’s formula: expðj’Þ ¼ cos ð’Þ+j sinð’Þ,
expression (3.5) is equivalent to Z ¼ Zj jcosð’Þ � j Zj jsinð’Þ ¼ Z0 � jZ00. One

should note that in many cases the definition of impedance is taken as

Fig. 3.1 Representation of

phasors ~E and ~I on the

complex plane plot, with the

phase difference ’2 � ’1

between them (based on [3])

112 3 Application of Impedance Spectroscopy to Electrochemical Instabilities



Z ¼ Zj j cosð’Þ þ j Zj jsinð’Þ ¼ Z0 þ jZ00 (3.6)

and we shall use this notation onwards, keeping in mind that the change of

convention reverses the sign of the imaginary part of impedance (cf. e.g., [23]).

In terms of Eq. (3.6), one separates the total impedance Z into the real part Z0 �
ReðZÞ ¼ Zj jcosð’Þ and the imaginary part Z00 � Im(ZÞ ¼ Zj jsinð’Þ, with

’ ¼ arctanðZ00=Z0Þ. Of course, the term “imaginary” refers only to the mathemati-

cal notation of the complex number, because both components of impedance are

measurable. The impedance spectrum is often constructed in a coordinate system

Z0–Z00, called a complex plane (known also as Nyquist, or complex plane plot).

In classical electrochemistry, when the imaginary impedance is often related to the

capacitive contribution and therefore attains negative values (Z00 ¼ �1/oC), it is
plotted on the imaginary axis as positive �Z00 values. Then, if Z0 is only positive

[i.e., the system does not exhibit the negative differential resistance (NDR)], the

typical Nyquist diagram is located in the first quadrant of the Z0 vs. (�Z00) complex

plane. It is thus clear that the systems of our interest, with NDR, will exhibit

qualitatively different spectra, which will penetrate also other quadrants of the

Z0 vs. (�Z00) complex plane.

In terms of Eq. (3.5), the admittance Y is defined as

Y ¼ 1

Zj j expðj’Þ (3.7)

So the vector of admittance has a magnitude 1/|Z| and the phase shift the same as

for |Z|, but with the opposite sign. In terms of the complex notation, the real and

imaginary components of admittances can be explicitly calculated from the respec-

tive components of the impedance:

Y0 ¼ Z0

ðZ0Þ2 þ ðZ00Þ2 (3.8)

Y 00 ¼ Z00

ðZ0Þ2 þ ðZ00Þ2 (3.9)

Admittance Y is also useful if the equivalent circuit includes parallel connection
of impedances Z1, Z2, etc., as the total admittance of the parallel components is

simply a sum of their individual admittances.

Modern electrochemical equipment allows to determine both admittance and

impedance from the same measurement, but, as will be shown below in the

discussion of the Kramers–Kronig transformation, in the analysis of nonlinear

electric circuits one has to make an appropriate choice between the admittance

and impedance data.

The interfacial impedance Z consists of contributions from the double layer

capacitance and the faradaic impedance Zf. In turn, the faradaic impedance consists

of the (purely real) charge-transfer resistanceRct (closely related to the rate constant of

the electron-transfer at the interface) and of the (complex) Warburg impedance ZW,
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expressing the limited rate of the reactant transport (e.g., diffusion) toward the

electrode–solution interface. For the Ox þ ne ! Red process the charge-transfer

(or activation) resistance Rct is defined as

R�1ct ¼
@If
@E

� �
coxð0Þ;credð0Þ

¼ nFA credð0Þ dkb
dE
� coxð0Þ dkf

dE

� �
(3.10)

where cox(0) and cred(0) mean the steady-state (time-independent) “surface”

concentrations of Ox and Red species, which undergo reduction with the rate

constant kf(E) and oxidation with the rate constant kb(E), respectively. Figure 3.2

illustrates the physical sense of the above quantities, for the case when the serial

resistance Rs of the circuit is here due only to the electrolyte resistance RE.

For the case of highly irreversible electrode process, when the limitation from

the mass-transfer rate do not manifest themselves (which is the case also for high

reagents concentration), the Nyquist plot for the wide range ofo attains a shape of a

semicircle. This shape is justified by the following reasoning, in view of the circuit

shown in Fig. 3.2. For infinite o, the double layer capacitance has zero impedance,

so the cell impedance is entirely reduced to the real electrolyte resistance RE. On the

contrary, when o ! 0, the impedance of the double layer increases to infinity, so

the current can flow only through the serial connection of RE þ Rct þ ZW,

constituting then the entirely real (in this irreversible case) cell impedance. For

the region of intermediate frequencies o, the current flows through both Rct and

double layer capacitance, the latter one exhibiting then finite imaginary impedance

which passes through a maximum for o ¼ (RctCd)
�1.

When the electrode process is fast or the concentration of electroactive species is

finite, the limitations from the mass-transport rate also manifest themselves. The

presence of the mass-transport impedance Zmt (called theWarburg impedance ZW in

the case of diffusion) comes from the variation of the concentration profiles in the

diffusion layer adjacent to the electrode. The periodically changing electrode

Fig. 3.2 Equivalent ac

circuit for a half-cell. Rct

is the electron-transfer

resistance, Zw ¼ Rw + 1/

joCW is the Warburg

impedance, RE is the

electrolyte resistance and Cd

is the double layer

capacitance [4]. Copyright

Wiley-VCH Verlag GmbH &

Co. KGaA. Reproduced with

permission
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potential induces the oscillations of the surface concentrations of Ox and Red

around the steady-state values. If the electrode process is fast and reversible, then

these concentration changes are relatively significant and propagate into the diffu-

sion layer, with the amplitude decaying as a function of the distance from the

electrode surface. Just this concentration polarization is a source of the Warburg

impedance which is generally a complex function, i.e., the periodic variations of

concentrations can exhibit phase shift with respect to the periodic variation of

imposed ac perturbation. The extent of the propagation of the perturbation of the

diffusion layer depends also on the frequency o of the applied ac voltage: with

increasing o the propagation of [Ox] and [Red] perturbations into the bulk of the

solution becomes more and more limited. The concentration polarization is then less

advanced, and thus the Warburg impedance in the limit o ! 1 becomes insignifi-

cant, compared to the charge-transfer resistance Rct. On the contrary, wheno attains

low values, the Warburg impedance can become so high that it can take over the

dependence of the total impedance on the ac frequencyo. The particular expression
for the Warburg impedance, and thus the shape of the Nyquist plot, depends on

particular characteristics of a given system, i.e., whether the diffusion can penetrate

the solution infinitely (so-called semi-infinite diffusion) or only to certain limit, as in

the case of the thin-layer electrolytic systems or for convective diffusion, when the

rate of convection determines the steady-state diffusion layer thickness.

The examples of unstable dynamical systems, described in this book, include

processes studied at the rotating solid disk or at the streaming liquid (mercury)

electrodes, where the thickness of the diffusion layer attains a constant value,

dependent on the rotation rate of the disk, or on the velocity of flowing mercury

stream, respectively. Furthermore, for the systems exhibiting NDR, the expressions

for the impedance of electrode processes obeying the simple Butler–Volmer expo-

nential dependence (cf. e.g., [3, 5]) are not applicable. More general, even if

somewhat abstract, relationships between the rate constants of the electron transfer

(kf or kb) and the electrode potential, implementing the NDR region, have to be

invoked. Without invoking now particular mathematical expressions for kf(E) and
kb(E) one can derive the following general expression for the Warburg impedance:

ZW ¼ Rctffiffiffiffiffi
jo
p kfffiffiffiffiffiffiffiffi

Dox

p tanh

ffiffiffiffiffiffiffiffi
jo
Dox

r
dþ kbffiffiffiffiffiffiffiffi

Dred

p tanh

ffiffiffiffiffiffiffiffi
jo
Dred

r
d

� �
(3.11)

where Dox and Dred are respective diffusion coefficients and d is the thickness

of the Nernst diffusion layer. Relationship (3.11) is meaningful for stability

considerations because it indicates that the positive or negative (in the case of

NDR region) sign of charge-transfer resistance Rct determines the same sign of ZW.
In other words, it is the illustration of a remarkable conclusion formulated already

by de Levie et al. [6, 7] (see also Sect. 3.3.2): if the charge-transfer resistance Rct is

negative in certain region of potentials, then the Warburg impedance also becomes

negative. This means introducing negative capacitance into the equivalent circuit

[8]. Of course, if in Eq. (3.11) one assumes the Butler–Volmer dependences for
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kf(E) and kb(E) relationships, this expression reduces to the typical definition of

Warburg impedance for the simple electrode process.

3.1.2 Kramers–Kronig Transforms and Electrochemical
Instabilities

Prior to the numerical analysis, experimentally obtained impedance data should be

verified, whether they meet the following conditions:

1. Linearity—requiring small enough amplitude of ac perturbations

2. Causality—meaning that the obtained response is entirely determined by the

applied perturbation

3. Stability—understood as asymptotic stability, i.e., the return of the system to the

initial steady-state state when the perturbation is removed

4. Finiteness—meaning that both real and imaginary components of the impedance

or admittance must be finite-valued over the entire range 0 < o < 1; in

particular, the impedance must tend to a constant real value for o ! 0 and

o ! 1, and also the impedance function must be continuous [3, 9]

Whether all these conditions are met for a given system can be verified using the

application of Kramers–Kronig transform [10, 11]. Kramers and Kronig first have

noticed that if the given system meets the above conditions, there exist strict

relationships between the real Z0 and imaginary Z00 components of the total imped-

ance, or between the module of impedance vector |Z| and the phase angle. In other

words, one can measure, e.g., only Z0, while the imaginary component Z00 can be

calculated based on this transform. This has further important consequences, since

if the calculated values of Z00 (or Z0) overlap with experimentally measured values

of Z00 (or Z0), then one can judge that impedance data are reliable, i.e., they meet all

the above-given four conditions. The mathematical expressions for the

Kramers–Kronig transforms are given by [10–12]

Z0ðoÞ ¼ Z0ð1Þ þ 2

p

ð1

0

xZ00ðxÞ � oZ00ðoÞ
x2 � o2

dx (3.12)

Z0ðoÞ ¼ Z0ð0Þ þ 2o
p

ð1

0

o
x Z
00ðxÞ � Z00ðoÞ
x2 � o2

dx (3.13)

Z00ðoÞ ¼ � 2o
p

ð1

0

Z0ðxÞ � Z0ðoÞ
x2 � o2

dx (3.14)

’ðoÞ ¼ 2o
p

ð1

0

log ZðxÞj j
x2 � o2

dx (3.15)
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RP ¼ Z0ð0Þ � Z0ð1Þ ¼ 2

p

ð1

0

Z00ðxÞ
x

dx (3.16)

Concerning dependence (3.16), let us note that the difference Z0ð0Þ � Z0ð1Þ can
be identified with the zero-frequency differential resistance dE/dI (polarization

resistance Rp) of the faradaic process; in fact, it is the zero-frequency total imped-

ance decreased for serial (electrolyte) resistance Rs ¼ Z0(1). The Z0ð0Þ � Z0ð1Þ
resistance can thus be determined either directly from the real components of the

impedance at extreme ac frequencies or from only its imaginary component [12].

The valuable commercial software for the analysis of impedance data usually

contains built-in procedures for the Kramers–Kronig (KK) transform.

At this point one has to realize an important problem with the application of the

Kramers–Kronig (KK) transform to the analysis of impedance data for the nonlin-

ear electric circuits. As indicated by Sadkowski et al. [13], Tyagai and Kolbasov in

their work published in Soviet journal Elektrokhimiya in 1972 (vol. 8, p. 59) have

suggested that KK transform might appear inapplicable to unstable systems, includ-

ing the oscillatory ones. This problem caused a long-year discussion, including the

work by Gabrielli et al. [14], whether the impedance data for the systems with a

NDR can at all be validated in terms of the KK transformation. For concise review

of various proposals, cf. paper by Sadkowski et al. [13]. In this and also in more

recent work by Sadkowski [15] the principal conclusion was formulated: if the

parameters of ac measurements of such systems, performed under potentiostatic

conditions, approach the region in which, under galvanostatic conditions, the Hopf

bifurcation would occur, the Kramers–Kronig transform can be successfully

applied, if not the impedance, but the admittance data are taken to such analysis.

This is because the impedance data correspond directly to the galvanostatic mode of

operation (the impedance is then the transfer function), for which the system is

unstable due to the Hopf bifurcation occurring under these conditions. As a

consequence of this instability, the impedance data are not suitable for the KK

analysis.

3.2 The Impedance of the Streaming Mercury Electrode

In the previous section it was mentioned that if the process occurs at the mercury

electrode, the true-steady state can be achieved under conditions of the streaming

version of such electrode. While the impedance characteristics of the rotating solid

disk electrodes have been extensively described in several works (cf. e.g., [3] and

references cited therein), for the streaming mercury electrode only introductory

studies were published by Ijzermans et al. [16–18]. The subject has been only

recently undertaken by Jurczakowski and Orlik [19], in relation to impedance

studies of in the Ni(II)–SCN� [20] and Ni(II)–N3
� [21] electroreduction at such

electrodes. The detailed construction and application of the streaming electrode to
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study electrochemical instabilities in these processes is described in Chap. 4, while

here only its unique impedance characteristics will be described. The idealized

geometry of such an electrode is sketched in Fig. 3.3.

The unique impedance response of the streaming electrode is clearly visible on

the Nyquist diagram for the pure solution of the electrochemically inert (in the

studied potential region) electrolyte, as, e.g., 0.1 M NaF, the ions of which do not

adsorb specifically on the mercury surface (Fig. 3.4).

Evidently, although the semicircular Nyquist plot looks like the one of the slow

faradaic process, such interpretation is not possible due to the lack of any

electroactive species in the studied sample. The source for such an “apparent

faradaic” impedance response of the streaming electrode must be a capacitive

current. More precisely, this is that part of a total capacitive current which flows

permanently even at steady-state potential, since new portions of mercury

appearing at the orifice of glass capillary (cf. Fig. 3.3) have to be charged to this

imposed potential. Under dc conditions, the steady-state capacitive current is

described, according to Delahay [22] with the following dependence:

Ic;1 ¼ Ic;ssðEÞ ¼ 2prKðEÞ � ðE� EpzcÞv (3.17)

Fig. 3.3 The schematic picture of the geometry of the idealized streaming electrode directed

upward toward the solution surface. The mercury stream of a diameter f ¼ 2r leaves the orifice of
the glass capillary at y ¼ 0 and flows along the y direction with the velocity v ¼ m/pr2rHg, where
m is the capillary flow and the density of mercury rHg ¼ 13.6 g cm�3. In the absence of the

electroactive species (the case studied in this paper) only the capacitive current flows which

charges the entire electrode surface A ¼ 2prlmax to the imposed potential E. In the presence of

the electroactive species the electrolysis time of the solution (and the corresponding thickness of

the diffusion layer) would rise from zero (at y ¼ 0) to tmax at the geometrical maximum length

(y ¼ lmax) of the mercury stream. Reprinted from [19], Copyright 2004, with permission from

Elsevier

118 3 Application of Impedance Spectroscopy to Electrochemical Instabilities

http://dx.doi.org/10.1007/978-3-642-27673-6_4


Fig. 3.4 Exemplary experimental (a) Nyquist and (b) phase angle Bode plots determined for

0.1 mol dm�3 NaF at the streaming mercury electrode, for different potentials: (1,filled triangle)
0 V, (2, filled circle) �0.4 V, (3, open circle) �0.9 V applied vs. SCE as the reference electrode.

The corresponding continuous lines (1, 2, 3) were obtained from fitting, to these points, of the

resistances Rs, Rd and the double layer capacitance Cd
* of the equivalent circuit from Fig. 3.5.

Parameters of the streaming electrode: r ¼ 4.75 � 10�3 cm, lmax ¼ 1.8 mm, m ¼ 195 mg s�1

(see also Fig. 3.3 for the explanation of symbols). Reprinted from [19], Copyright 2004, with

permission from Elsevier
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In Eq. (3.17) K(E) is the integral double layer capacitance, expressing the

charging of the electrode surface from the potential of zero charge Epzc to the

given potential E:

KðEÞ ¼ 1

E� Epzc

ðE
Epzc

CdðEÞdE (3.18)

with Cd meaning the differential double layer capacitance (per unit area) at a given

potential. The second component of the total capacitive current is the current

associated with the perturbation of the electrode potential:

Ic;2 ¼ ACd

dE

dt
(3.19)

For the formal description of the permanent flow of the capacitive current

[Eq. (3.30)], there was introduced the concept of the virtual ohmic resistance Rd

which in the equivalent circuit is parallel to the capacitor of the differential double

layer capacitance Cd [19]. In Chap. 4 this idea is described for dc conditions of the

electrochemical experiment (cf. Fig. 4.47). For ac conditions, discussed here,

the relevant equivalent circuit is appropriately simplified, since the virtual cell

of the electromotive force Epzc is not necessary (the constant Epzc term vanishes

during the differentiation leading to the impedance). If only the inert electrolyte is

present in the sample, the flow of only capacitive current can be represented by the

circuit shown in Fig. 3.5.

Fig. 3.5 The equivalent circuit for the impedance representation of the flow of the ac capacitive

current Ic at the streaming mercury electrode, in the absence of the faradaic process; U—external

voltage, Rs—uncompensated ohmic resistance of the solution, Cd* and Rd—capacity and virtual

ohmic resistance associated with the charging of the double layer (see text for further explanation).
The total capacitive current Ic is divided into the component IRd that flows through element Rd even

at the steady-state potential Ess, and the component ICd that flows only when the steady-state is

perturbed. Cd* means the actual double layer capacitance of the streaming electrode having the

surface area A, i.e., Cd* [F] ¼ Cd � A. Reprinted from [19], Copyright 2004, with permission

from Elsevier
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Under ac conditions, the virtual resistor Rd is actually defined in terms of the

differential Cd (not the integral K), double layer capacitance, since this resistance is
now related to small potential perturbations around the steady-state potential. The

expression for Rd is then [19]:

Rd
�1 ¼ dIc

dE

� �
E

¼ 2prv
d[KðEÞ � ðE� EpzcÞ�

dE
¼ 2prvCdðEÞ (3.20)

Based on typical, exemplary characteristics of the streaming Hg electrode:

r ¼ 4.75 � 10�3 cm, v ¼ 2.023 m s�1 and double layer capacity in contact with

0.1 M NaF: Cd ¼ 21.1 mF cm�2 (at E ¼ �0.4 V) one calculates the corresponding

value of Rd as equal to 7813 O.
Using definition of virtual resistance Rd and equivalent circuit from Fig. 3.5, one

derives the expression for the complex impedance at given potential E:

Z ¼ Rs þ 1

Rd

þ 1

Xc

� ��1
¼ Rs þ ½2prCdvþ j2prlmaxoCd��1 (3.21)

where Xc ¼ (joCd)
�1 is the capacitive reactance of the double layer. Equation

(3.21) leads further to the explicit expressions for the real (Z0) and imaginary (Z00)
parts of the total impedance of the circuit from Fig. 3.5:

Z0 ¼ Rs þ Rd

1þ 4p2r2l2maxo2C2
dR

2
d

¼ Rs þ v

2prCdðv2 þ o2l2maxÞ
(3.22)

Z00 ¼ �j2prlmaxoCdR
2
d

1þ 4p2r2l2maxo2C2
dR

2
d

¼ �jolmax

2prCdðv2 þ o2l2maxÞ
(3.23)

which also allow to determine the phase angles ’ between Z0 and Z00 vectors.
Theoretical Nyquist and Bode plots, calculated based on these dependences, reveal

essentially the same shapes as the corresponding plots of experimental data. Certain

quantitative differences were reported for the Nyquist plot, while quite a good

concordance was found for the Bode plot (Fig. 3.6). These discrepancies may

originate from, larger than theoretical, effective length, and thus also effective

surface area of the streaming electrode, since the directed upward mercury streams

drags certain portion of the solution above its geometrical surface. Anyway, the

semicircular shape of the theoretical Nyquist plot and the dependence of the radius

of this semicircle on the electrode potential, caused by the potential dependence of

the double layer capacitance, confirms the concept of the purely capacitive origin of

the experimental dependences. Analogous shapes of the Nyquist and Bode plots

were found for the pure NaClO4 and NaSCN solutions [19].

Based on Eqs. (3.22, 3.23) one can calculate also the following parameters of the

Nyquist semicircle in the complex plane:
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– The radius of the semicircle, equal to Rd/2 ¼ 1/(4prCdv) which is also the

maximum possible imaginary part of impedance;

– The angular frequency o*, at which a maximum of Z00 occurs, equal to:

Fig. 3.6 Theoretical (a) Nyquist and (b) phase angle Bode plots for the capacitive current at the
streaming electrode, in the absence of the faradaic process, constructed from Eq. (3.22, 3.23) for

the parameters of the electrode from Fig. 3.3, average solution resistance Rs ¼ 389 O and double
layer capacitances for 0.1 mol dm�3 NaF at different potentials (filled triangle, curve 1) E ¼ 0 V;

Cd ¼ 27.6 mF cm�2; (filled circle, curve 2) E ¼ �0.4 V; Cd ¼ 21.1 mF cm�2 (open circle, curve
3) E ¼ �0.9 V; Cd ¼ 16.6 mF cm�2 (cf. experimental diagrams in Fig. 3.4). Reprinted from [19],

Copyright 2004, with permission from Elsevier
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o� ¼ 1

RdCdA
¼ 1

tmax

(3.24)

i.e., to the reciprocal value of tmax ¼ lmax/v, being a maximum electrolysis time

of the solution attained at the maximum length lmax of the streaming electrode

(cf. Fig. 3.3); A is the electrode surface area. For example, if lmax ¼ 1.8 mm and

v ¼ 2.023 m s�1, as for Fig. 3.4, then o* � 1124 rad s�1.

If the faradaic process also occurs at the streaming electrode, the corresponding

equivalent circuit has a general construction shown in Fig. 3.7, and, accordingly,

the total impedance is given by

Z ¼ Rs þ ðZ�1f þ X�1c þ R�1d Þ�1 (3.25)

The mathematical form of the expressions for the Warburg impedance, for both

Ox and Red species, is essentially identical with that for the rotating disk electrode

[Eq. (3.11)]. Only the thickness of the stationary diffusion layer and surface

concentrations of reagents, which were then considered constant along the elec-

trode surface, have now to be replaced with their mean values, averaged along the

electrode stream length. In terms of the expression for the instantaneous thickness

of the Nernst diffusion layer:d ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
pDoxt
p

, its mean thickness is given by

�d ¼ 1

tmax

� �ðtmax

0

dðtÞdt ¼ ðpDoxÞ1=2
tmax

" # ðtmax

0

t1=2dt ¼ 2

3

� �
ðpDoxtmaxÞ1=2 (3.26)

Let us consider the electrode process of a general scheme: Ox þ ne ! Red. The

instantaneous surface concentrations of reagents, at given time t, in the

potentiostatic experiment starting from Ox species of bulk concentration c0ox, are
given by [23]

coxð0; tÞ ¼ c0ox 1� kf

w
ffiffiffiffiffiffiffiffi
Dox

p ½1� exp ðw2t)erfcðw ffiffi
t
p Þ�

� �
(3.27)

Fig. 3.7 The equivalent

circuit from Fig. 3.5,

extended for the complex

faradaic impedance Zf
associated with the charge-

transfer process of the

electroactive species at the

streaming mercury electrode.

Reprinted from [19],

Copyright 2004, with

permission from Elsevier
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credð0; tÞ ¼ c0oxkf

w
ffiffiffiffiffiffiffiffi
Dred

p ½1� exp(w2t)erfcðw ffiffi
t
p Þ� (3.28)

in which parameter w expresses the ratio between the electron-transfer kinetics and

the rate of diffusion:

w ¼ kfðEÞ
D

1=2
ox

þ kbðEÞ
D

1=2
red

(3.29)

Accordingly, the average surface Ox and Red concentrations are given by the

following formulas:

�coxð0Þ ¼ 1

tmax

ðtmax

0

coxð0; tÞdt ¼ c0ox 1� kf

w
ffiffiffiffiffiffiffiffi
Dox

p
� �

þ c0oxkf

tmaxw
ffiffiffiffiffiffiffiffi
Dox

p 2

w

ffiffiffiffiffiffiffiffi
tmax

p

r
þ exp ðw2tmax)erfcðw

ffiffi
t
p

maxÞ � 1

w2

" #
(3.30)

�credð0Þ ¼ 1

tmax

ðtmax

0

credð0; tÞdt ¼ c0oxkf

w
ffiffiffiffiffiffiffiffi
Dred

p

� c0oxkf

tmaxw
ffiffiffiffiffiffiffiffi
Dred

p 2

w

ffiffiffiffiffiffiffiffi
tmax

p

r
þ exp ðw2tmax)erfcðw

ffiffi
t
p

maxÞ � 1

w2

" #
(3.31)

These concentrations are used for the calculation of the corresponding charge-

transfer resistance [Eq. (3.10)]:

Rct
�1 ¼ @If

@E

� �
�coxð0Þ;�credð0Þ

¼ �nFA dkf
dE

�coxð0Þ � dkb
dE

�credð0Þ
� �

(3.32)

Finally, the total impedance [Eq. (3.25)] is given by the formula:

Z ¼ Rs

þ ½Rct þ Gox þ Gred þ jðHox þ HredÞ��1 þ 1

joACd

� ��1
þ 2prCdv

( )�1

(3.33)

in which G and H quantities denote the real and imaginary components, respec-

tively, for the Ox and Red species:
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composing the expression for the Warburg impedance for the Ox and Red species:

ZWðox; redÞ ¼ Gðox; redÞ þ jHðox;redÞ (3.36)

The expression for the Warburg impedance is equivalent to Eq. (3.11), obtained

by invoking the equalities:
ffiffi
j
p ¼ ð1+jÞ= ffiffiffi

2
p

and
ffiffi
j
pð Þ�1 ¼ ð1� jÞ= ffiffiffi

2
p

.

Of course, by removing Rd
�1 ¼ 2prCdv from Eq. (3.33) and by replacing the

average values of cox(0), cred(0) and d back by their single values, corresponding to
the surface of the (idealized) rotating disk electrode, one obtains expression for the

impedance of the process at the rotating disk electrode.

To conclude this section, streaming liquid (mercury) electrode has unique

impedance characteristics which is caused by a permanent flow of the capacitive

current at the steady-state potential. Thus, for the electrochemically inert electro-

lyte, the Nyquist plot of impedance data has a semicircular shape which, for all

types of the non-streaming electrodes, would indicate the slow faradaic process.

More details of the above concept and the comparison of experiment and theory can

be found in the original references [19, 20].

3.3 Application of Impedance to the Diagnosis of Stability

of Electrochemical Systems

3.3.1 Positive and Negative Elements in Impedance
Characteristics

As an introduction to impedance studies of unstable electrochemical systems it is

useful to review basic concepts of oscillatory electronic circuits containing positive

and negative elements. Figure 3.8 compares responses of such elements upon small

ac perturbation, i.e., under linear assumption of impedance response [24].

The corresponding impedance in the Z00–Z0 coordination system is plotted in

Fig. 3.9 (note that Z00-axis is oriented in direction opposite to convention usually

applied in electrochemistry).
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It is also instructive to divide this impedance diagrams into halves, depending on

the range of phase angle. In this way positive (passive) and negative (active)

elements can be ascribed to particular halves (Fig. 3.10).

One of the most important features of those diagrams which determines the

classification of unstable electrochemical systems, described in Sect. 3.5, is that the

variation of the phase angle between �90� and þ90� (through zero) is typical of

passive circuit elements (positive resistance, capacitance and inductance), while the

Applied voltage

Resistor current

Capacitor current

Negative resistor
current

Inductor current

Time

Fig. 3.8 Voltage and current waveforms for linear response of respective circuit elements

(after [24])

Fig. 3.9 Polar impedance at a specific frequency (reproduced from [24])
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phase angle belonging to the range �90� to 90� (through �180�) are specific of

active elements (negative resistance, capacitance and inductance). Negative and

positive elements of the same type and the same modulus of impedance are

characterized with the phase angle different for 180�. This also means that, e.g.,

negative inductor is, in terms of impedance response at a single frequency, indis-

tinguishable from a positive capacitor, but behaves like a capacitor whose imped-

ance increases with increasing frequency [24].

Let us now present the circuit as composed of source and load, each having its

own impedance (Fig. 3.11). The load uses power and the source impedance heats up

the source.

Now, if at given frequency the combined impedance of the load and the source

equals zero even a very little source voltage applied at this frequency will cause a

very large oscillating current. This will happen if the modulus of the source

Fig. 3.10 Half planes of

polar impedance (reproduced

from [24])

Fig. 3.11 Simplified view of

source and load (reproduced

from [24])
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impedance is equal to that of load impedance, and the phase angles differ for 180�,
which case requires both positive and negative elements (Fig. 3.12)

This situation of zero total impedance for non-zero ac frequency of the power

source can be often considered a nuisance in electronic practice, as the circuit with

negative resistance loses then its desired stability, but for our purposes will be of

fundamental significance, because we are interested in just such phenomena.

3.3.2 Diagnosis of Bifurcations from Impedance Spectra

3.3.2.1 Principles and Limitations of the Method

The analysis of stability of electrochemical system, understood as the property of

the entire electric circuit is in many aspects analogous to the methodology of

analysis of stability of the electronic circuits, with the fundamental contribution

to this area made, among others, by Nyquist [25] and Bode [26]. In turn, application

of the impedance-based stability criteria to electrochemical oscillators was devel-

oped, in the pioneers’ works, by de Levie et al. [6, 7, 27], with respect to the In

(III)–SCN� polarographic oscillator, a typical N-NDR system (see Chap. 4). For

the oscillatory systems involving passivation/depassivation of solid electrodes,

significant original contribution to the impedance characteristics of such NDR

systems was made by Lorenz et al. [28] and Keddam et al. [29–31] (see also

classical review of electrochemical oscillators by Wojtowicz [8]). More recently,

significant further contribution to this field was made by Koper and Sluyters

[32–35]. These works prove that EIS is a powerful tool for diagnosis of stability

of electrochemical systems. The methodology of such diagnosis, being a simplified

version of the Nyquist criteria for the stability of electric circuit, is described below.

The presence of bifurcations (instabilities) in the dynamics of electrochemical

systems is a source of specific problems in the impedance studies. Koper [32] has

formulated the general difficulties concerning such measurements. The impedance

studies should be performed for the stable steady-state characteristics of an electro-

chemical system. Let us assume that at the bifurcation point the steady-state, so far

stable, loses its stability and the system switches to another attractor (concurrent

steady-state or limit cycle). The impedance measurement on this side of the

bifurcation point is thus not possible. Moreover, the situation is not much better

Fig. 3.12 Polar plot of

oscillation criteria

(reproduced from [24])
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just before this bifurcation. Although theoretically the stable steady-state is still

existing, the measurement is practically impossible due to (typical for bifurcation)

critical slow-down of the system’s dynamics. Thus, the impedance analysis of

the potentially unstable system should rather be limited to the conditions where

the steady-state is yet stable and the interpretation of the spectra should predict the

conditions for respective bifurcations.

As the NDR in the circuit characteristics and the presence of appropriate positive

serial resistance are important for large class of electrochemical oscillators, the

elementary question is: How do the NDR and this serial resistance manifest

themselves in the impedance spectrum, e.g., on a Nyquist diagram? Obviously,

for any system, increasing ohmic (positive) serial resistance will cause the shift of

the entire Nyquist diagram along the direction of positive Z0-axis. The answer to the
former question is more sophisticated. We expect that the NDR of the charge-

transfer process, observed under dc conditions, will cause that for o ! 0, the

Nyquist diagram will penetrate the second quarter of the Z0 – Z00 space, i.e., the
region corresponding to real negative impedance. As indicated above, the sign of

the charge-transfer resistance, Rct, determines also the sign of the associated mass-

transfer (Warburg) impedance [cf. Eq. (3.11)]. According to de Levie [27], who

followed a more general idea of Bode: “if we postulate ideal negative elements, if

follows immediately that negative elements of other types are also available” [8]. In

other words, since the negative charge-transfer impedance implies also the negative

Warburg impedance, and since the Warburg impedance is composed of resistance

and capacitance, the negative ZW value implies the occurrence of a negative

(diffusion) capacitance, contrary to usual positive double layer capacitance. Thus,

within the potential region corresponding to electrochemical instabilities, the

equivalent circuit (for the non-streaming electrode) consists of the NDR element,

associated with the charge-transfer process characteristics, the differential double

layer capacitance at a given potential (Cd) and the negative Warburg impedance.

The positive capacitance Cd and the negative capacitance of the Warburg imped-

ance can be understood as two reservoirs, between which during the oscillations the

energy is periodically exchanged.

The principle of diagnosis of bifurcation from the course of impedance spectra

corresponds to theoretical linear stability analysis. This is because the definition

of impedance is based on the linearization of the I vs. E ac response around the

steady-state which requires appropriately small amplitude of ac perturbations

(usually 	 8 mV). One can say that EIS is a variant of linear stability analysis

applied to electrochemical systems and is therefore able to detect only local

bifurcations, like the Hopf and saddle-node ones (cf. Chap. 1). Nevertheless, as

will be shown below, EIS measurements (i.e., studies made in frequency domaino)
can supply more information about the existence of such bifurcations than the dc

measurements (i.e., studies in time domain).

Let us remember that at the bifurcation point the perturbations neither decay nor

grow, so the initial magnitude of perturbation remains constant [34]. This is true for

both Hopf and saddle-node bifurcations. In the case of 2D nonlinear system, the

Hopf bifurcation occurs for such parameters, for which the linear stability analysis
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predicts the occurrence of the steady-state called center, i.e., the Lyapunov-stable

steady-state surrounded by elliptic trajectories of a radii determined by the initial

value of perturbation imposed on that steady-state and by the phase shift ’.
Mathematically, the non-zero perturbations of dynamical variables x, y oscillate

then with constant amplitude as a function of time, proportionally to sin(oHt) and
sin(oHt þ ’), with the characteristic frequency oH corresponding exactly to the

bifurcation point. In the point of saddle-node bifurcation the perturbation remains

constant as a function of time, what one can describe quite formally as the also

sinusoidal variation with time, but with zero frequency. The diagnosis of both types

of bifurcation by impedance spectroscopy will now be described separately for

potentiostatic and galvanostatic conditions.

3.3.2.2 Potentiostatic Conditions

The general principle of application of EIS to stability analysis of electrochemical

systems refers to the phenomenon of resonance between the own dynamic

characteristics of the electric circuit and the characteristics of the sinusoidal ac,

small-amplitude perturbation. When the resonance is reached, the impedance of the

electric circuit against the externally applied perturbation drops to zero and

perturbing signal is amplified without any phase shift [34]. In particular, if the ac

perturbing voltage has a non-zero frequency oH, equal to the own frequency of the

circuit at the Hopf bifurcation, then the total impedance should be equal to zero:

Z ¼ 0 (i.e., Z0 ¼ 0 and Z00 ¼ 0). In turn, if the condition of resonance is reached for

zero frequency: o ¼ 0 (in experimental practice, this means a rather limiting

situation for o ! 0), the saddle-node bifurcation is diagnosed from impedance

data. Of course, the caseo ¼ 0 is identical with dc condition of the electrochemical

experiment, so the saddle-node bifurcation requires the NDR, explicitly visible on

the steady-state dc I–E dependence, which NDR is also required for the oscillations.

Thus, the conditions for the respective bifurcations in the potentiostatic (U ¼
const) experiment are [34, 35]:

A Hopf bifurcation:

ZðoÞ ¼ 0 for o ¼ oH 6¼ 0 (3.37)

A saddle-node bifurcation:

ZðoÞ ¼ 0 for o ¼ 0 (3.38)

These criteria mean that the Nyquist diagram should cross the origin (Z0 ¼ 0,

Z00 ¼ 0) of the complex plane for either Eq. (3.37) or Eq. (3.38) condition for ac

frequency. Figure 3.13 illustrates schematically these cases for increasing serial

resistances Rs.

Note, however, that situations (b) and (c) are rather theoretical since, from

practical point of view, the occurrence of the respective bifurcations would mean

destabilization of the steady-state, so the measurements of impedance would then
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appear impossible, as indicated above. In order to solve this problem, we perform

impedance measurement only for the serial ohmic resistance so small (e.g., being only

the solution resistance or compensated by the potentiostat) that it is not yet sufficient
to destabilize the system, i.e., we get the spectrum like those from Fig. 3.13a. The

experimental example of such a spectrum is shown in Fig. 3.14a. From the shape of

this spectrum we further determine the serial resistance which would cause the shift
corresponding to the zero total impedance (i.e., the cases analogous to those shown in

Fig. 3.13b or c). For the spectrum in Fig. 3.14a, the condition of resonance can be

achieved for Rs ¼ 4.2 kO, and then Z ¼ 0 for non-zero ac frequency (this means the

Hopf bifurcation which would occur at Rs ¼ 4.2 kO). Reasonable extrapolation of

this diagram to o ! 0 indicates that for Rs ¼ ca. 13 kO the saddle-node bifurcation

should be observed, i.e., the system will then enter the bistable regime.

As this impedance spectrumwas recorded for the imposed steady-state potentialE,
in the absence of sufficient ohmic drops that would destabilize the system, one

now has to calculate the external voltage U at which, in the presence of such ohmic

drops IRs, the system will exhibit respective bifurcation: U ¼ E þ IRs. This means

that one has to record also the dc steady-state I–E dependence for the same sample,

in order to find the steady-state current I corresponding to potential E for which the

impedance spectrum was recorded. In this way one point of the stability diagram in

the (U, Rs) phase space is determined. Repeating this procedure for impedance

spectra recorded for various potentials E allows one to construct the bifurcation

diagram in the appropriate range of U and Rs as control parameters. Figure 3.14b

shows results of such a procedure for the In(III)–SCN� polarographic oscillator.

Note that one point of the Hopf bifurcation is placed beyond the “head of the fish,”

Fig. 3.13 Theoretical

schematic illustration of the

role of increasing serial

resistance Rs on the

impedance spectra of the

N-NDR system: (a) spectrum

for low Rs, insufficient for

both Hopf (h) and saddle-

node (sn) bifurcations; (b)

spectrum for Rs high enough

to cause a Hopf bifurcation;

(c) spectrum for even higher

Rs, corresponding to the

saddle-node bifurcation
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which means that the points of this bifurcation exist also inside the “fish tail,” where

however only bistability is observed under dc conditions.

The last sentence is a good premise to discuss the problem, whether impedance

measurements supply exactly the same information on the possible bifurcations as

the dc measurements. If both methods were strictly equivalent, one could freely

choose either one or another for that purpose. However, it is not a case. Both dc and

ac methods have their specific advantages and limitations. As mentioned above, the

source of limitation of impedance method is that it is based on the linearized

system’s response, so it can yield limited information about the local bifurcations.

On the contrary, direct dc measurements can detect the results of also global

bifurcations, including those which lead to, e.g., mixed-mode oscillations and

chaos. But the virtue of the impedance diagnosis is that it can detect also those

Hopf bifurcations that do not manifest themselves explicitly in the dc

measurements. The diagram in Fig. 3.14b is the representative example of such

situation which should be compared with the better developed, theoretically calcu-

lated fish-like, cross-shaped stability diagram for the N-NDR system, like that

shown in Fig. 2.8. This theoretical diagram reveals the Hopf bifurcation lines also

inside the bistability (fish-tail) region, but only hysteresis (bistability), and not the

oscillations are there directly observed under dc conditions. The lack of the

oscillations is caused by the subcritical character of the Hopf bifurcation in this

region, i.e., due to this bifurcation only the unstable limit cycle is born, and the only

attractors in the phase space are the stable nodes responsible for the bistable

behavior [34]. All Hopf bifurcations, irrespective of their supercritical or subcritical

nature, are, however, indicated by the experimental impedance spectrum.

Fig. 3.14 (a) Impedance diagram for a 9 mM In3+ solution in 5.0 MNaSCN at E ¼ �1.075 V at the

HMDE. This particular steady-state exhibits a Hopf bifurcation for Rs ¼ 4.2 kO and a corresponding

applied potential U ¼ E + IRs ¼ �1.15 V vs. SCE, with I ¼ �17.8 mA the steady-state current.

Indicated frequencies in Hz. (b) Line of Hopf bifurcations determined by the impedance method as

explained under (a). Dots represent the onset of oscillations as observed by insertion of an external

resistor. Hatched area shows the parameter region where sustained oscillations are observed. Refer-

ence electrode: SCE. Reproduced from [34] by permission of The Royal Society of Chemistry
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3.3.2.3 Galvanostatic Conditions

The idea of resonance between the oscillatory characteristics of the electrochemical

circuit and external ac source, used above for diagnosis of a Hopf and saddle-node

bifurcations under potentiostatic conditions, can be applied also to the galvanostatic

mode of the electrochemical experiment, when the electrode potential E can exhibit

oscillations or bistability. At this moment it is again useful to realize that the

galvanostat can be considered a potentiostat, to the output of which a very large

(infinite) resistance Rs, in series with the electrochemical cell, was connected and

very large (infinite) voltageUwas applied, with the ratioU/Rs ¼ I ratio defining the
imposed current. Since this serial resistance is so large, any change of the resistance

(impedance) of the electrochemical cell, caused by the course of electrochemical

process, is relatively so low that Rs þ Re(Zf) � Rs and the imposed current remains

practically constant. This also means that in the galvanostatic mode, contrary to the

potentiostatic one, we cannot adjust Rs from zero to any desirable value, since Rs is

already present and is always very high. As a consequence, the condition of

resonance requires compensation of very high positive resistance with equally

high real negative impedance of the electrochemical cell: Z0 ! � 1, which

means equivalently zero real faradaic admittance Y0 ¼ 0.

Thus, the conditions for the respective bifurcations for the galvanostatic (I ¼
const) experiment are [34, 35]:

A Hopf bifurcation:

YðoÞ ¼ 0 for o ¼ oH 6¼ 0 (3.39)

A saddle-node bifurcation:

YðoÞ ¼ 0 for o ¼ 0 (3.40)

Although under galvanostatic conditions, the insertion of additional serial resis-

tance is not necessary for these bifurcations to occur, the presence of such resistance

would be required again under potentiostatic conditions, when the ohmic drops

have to be coupled with the NDR. Thus, one concludes that electrochemical

systems that exhibit potential oscillations under galvanostatic conditions, should

also exhibit current oscillations under potentiostatic conditions, provided that in the

latter case appropriate serial resistance is present in the circuit.

3.4 Impedance Characteristics of N-NDR and HN-NDR

Systems

3.4.1 The Hidden Negative Impedance

Following criteria (3.47)–(3.50) for the local bifurcations, it is instructive to

compare typical impedance spectra of the systems that can exhibit oscillations
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under potentiostatic and galvanostatic conditions, respectively. Figure 3.11 shows

schematically typical Nyquist spectra for the processes that will exhibit oscillations

and bistability under potentiostatic and galvanostatic conditions, respectively.

Let us consider first the case from Fig. 3.15a, identical with that in Fig. 3.13a,

and corresponding to experimental spectrum in Fig. 3.14a. In order to understand

why this spectrum guarantees that the galvanostatic oscillations are not possible, let
us analyze the sequence of bifurcations that will occur under potentiostatic control,

upon increasing serial resistance Rs from low value (as corresponding to the picture)

to the appropriately large values. The entire spectrum shifts then to the right and

when Rs compensates the negative real impedance Z0 and Z00 ¼ 0 at o ¼ oH, the

total impedance of the circuit becomes zero for the first time during the increase in

Rs. Then the Hopf bifurcation, i.e., the onset of oscillations, takes place. Upon

further increase of Rs the system still exhibit oscillations, until the compensation of

the negative real impedance for o ¼ 0 takes place again. The system undergoes

then the saddle-node bifurcation and the appearing stable node takes control over

the system’s dynamics, i.e., the oscillations cease to exist. Upon further increase in

Rs no other bifurcations occur, so the system does not return to the oscillatory

regime.

For comparison, let us now consider the galvanostatic regime, remembering

again that it means measurement involving the potentiostat with very large serial

resistance already present. In terms of Fig. 3.15a it means that for such a high

(theoretically infinite) resistance we are always far beyond the second, saddle-node

bifurcation, when no oscillations exist. Therefore the system characterized with the

Fig. 3.15 Schematic shape

of the Nyquist diagrams for

the systems with (a) explicit

(observable at o ¼ 0) NDR

region and (b) hidden NDR

region (observable only at

intermediate

0 < o < 1 frequencies),

typical of HN-NDR systems
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spectrum from Fig. 3.15a, i.e., with explicit NDR in the dc I–E characteristics, can

exhibit only bistability under galvanostatic conditions.

Thus, it becomes obvious that the system in which the electrode potential

oscillates under galvanostatic conditions must be characterized with qualitatively

different impedance spectrum, excluding the above sequence of the Hopf bifurca-

tion followed by any saddle-node bifurcation upon increasing Rs. In order to avoid

such saddle-node bifurcation, for low (tending to zero) ac frequencies the spectrum

must return to positive real impedance, as in Fig. 3.15b.

Since o ¼ 0 means de facto dc conditions, the corresponding limiting positive

real resistance is equivalent to the positive slope of the steady-state dc I–E
characteristics. But it also means that although the negative resistance is present

in the system’s characteristics, it does not manifest itself explicitly on dc I–E
dependence, at the potential E for which the spectrum in Fig. 3.15b was collected.

This negative impedance can only be revealed in impedance measurements for the

non-zero, intermediate values of o and therefore remains “hidden” under dc

conditions. The oscillatory systems of this type, mentioned already in Chap. 2,

belong to the so-called hidden N-NDR or HN-NDR type, the idea of which was

introduced by Koper and Sluyters [33]. Obviously, the negative impedance can

remain hidden if at least two processes overlap: one, relatively fast, with the NDR

characteristics and the other one, relatively slow, with the positive slope. The slow

process manifests itself in the spectrum only at low frequencies, while the faster

process characterized with the negative impedance reveals itself for intermediate

frequencies. The spectrum from Fig. 3.15b, transformed to the admittance coordi-

nation system, should intersect the real axis close to the origin of the complex plane,

at its negative side, in concordance with condition (3.39) predicting a Hopf bifur-

cation for Y(o) ¼ 0, in an ideal, limiting case.

Typical examples of the galvanostatic oscillators include electrocatalytic oxida-

tion of small organic molecules (metanol, formaldehyde, formic acid) at transition

metal electrodes (for more detailed description, cf Chap. 5). Following Koper [34],

we shall invoke here the mechanism for the formic acid oxidation at Pt, elaborated

by Strasser et al. [36], and compare it with the impedance spectrum of this process

occurring at Rh electrode [37, 38] (Fig. 3.16).

Figure 3.16a shows the results of dc experiments: for zero serial resistance (i.e.,

for only the solution resistance, insufficient for the destabilization of the system) the

potentiodynamic experiment yields steady-state I–E dependence with the distinct

region of the NDR. This suggests that oscillations should occur for sufficiently high

external resistance and in fact, in the presence of, e.g., 1,000 O or 1,500 O, the
oscillations of the anodic current appear during the anodic potential scan, with

the I–U dependence appropriately extended along the U-axis. Let us remember that

the simple (not hidden) N-NDR system should not exhibit oscillations under

galvanostatic conditions. However, under galvanostatic conditions the oscillations

of the electrode potential set in without any external resistor inserted, and more-

over—these oscillations occur largely around the dc I–E branch with positive slope.

According to the above developed theory, these dc measurements should now be

compared with the impedance spectra, recorded under potentiostatic conditions at
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three different potentials (Fig. 3.16b). The semicircle constructed of points (D), for
E ¼ �0.35 V, confirms the existence of the NDR region under dc conditions and a

possibility of a Hopf bifurcation, since the plot tends to intersect the Z0-axis, at a
negative value, for non-zero frequency. In turn, the amplitude of potential

oscillations under galvanostatic conditions includes the potential E ¼ �0.45 V,

for which the impedance spectrum is constructed from points (o) and which

corresponds to the positive slope of the dc I–E dependence. The shape of this

spectrum, concordant with the schematic one in Fig. 3.15b, indicates the HN-NDR

nature of the galvanostatic oscillator considered. For low ac frequencies (o ! 0)

the Nyquist plot tends to the positive real impedance which corresponds to the

positive slope of the steady-state dc I–E curve from Fig. 3.16a. When the ac

frequency increases, the plot enters the third and the second quarter of the Nyquist

diagram, indicating thus the presence of the negative real and imaginary impedance

which was hidden for lower frequencies, and thus obviously also for dc curve. In

particular, for zero imaginary impedance, the real negative impedance is rather high

and can be compensated with the high resistance of the galvanostatic circuit,

yielding oscillations.

Fig. 3.16 (a) Voltammogram

of 0.1 M HCHO in 0.1 M

NaOH on a rhodium RDE for

a 0, 1,000 and 1,500 O
external resistance (internal

cell resistance ca 95 O). Scan
rate 10 mV s�1,
3,000 rev min�1.
Amperogram taken at

0.01 mA s�1. (b) Impedance

diagrams taken at �0.50 V

(filled square),�0.45 V (open
circle), �0.35 V (open
triangle). Indicated
frequencies in Hz. Reference

electrode: SCE. Reproduced

from [34] by permission of

the Royal Society of

Chemistry
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Note one more important dynamic event that Fig. 3.16a also shows: the bifurca-

tion scenario according to which the galvanostatic oscillations decay when the

maximum potential of the oscillations amplitude just “touches” the NDR branch on

the dc curve (analogous “death” of oscillations was reported, e.g., for the Ni/H2SO4

system, described in Chap. 6). The oscillations cease in this case due to the

destructive collision of the stable limit cycle with the saddle point (under

galvanostatic conditions the NDR branch is a collection of saddle-points, cf.

Fig. 2.4). This means the homoclinic (saddle-loop) bifurcation (cf. Fig. 1.24).

This homoclinic scenario is quite typical of HN-NDR oscillators and does not

occur for the “potentiostatic” oscillators with the explicit NDR region.

3.4.2 Mechanisms Underlying the HN-NDR Oscillator

Above it was said that HN-NDR system is composed of at least two overlapping

processes: the fast one with the negative impedance and the slow one, with the

positive I–E slope. It is instructive to analyze this situation in more detail based on

two model mechanisms.

3.4.2.1 Model Mechanism 1

Let us first consider Fig. 3.17which shows schematically the dc I–E course for the fast

process (dashed line) exhibiting the negative impedance. This course overlaps partly

with the characteristics of another, slow process (solid line), that is the potential-

dependent adsorption of an inhibitor which suppresses the current of the first process

in certain potential range (y is the electrode coverage of an inhibitor). Only when the
desorption of an inhibitor begins, the current of the first process can rise until it

decreases due to entering the NDR region at the electrode largely free of an inhibitor.

The destabilization of the system’s state can be intuitively imagined in the follow-

ingway [40]. Let us assume that the steady-state electrode potential lies on theN-NDR

branch of the I–E dependence of the anodic electrode process, and for that potential the

steady-state value of the electrode coverage of the inhibitor lies between 0 and 1. This

steady-state is now perturbed through the fluctuation of the electrode potential to a

higher value, for which the current is lower. Since the electrode coverage responds, by

assumption,much slower, initially it does not play any significant role, so the electrode

potential autocatalytically increases and current decreases further, as typically for the

N-NDR region, in the presence of ohmic drops. Eventually, with a certain delay the

desorption of an inhibitor will manifest itself which will cause the increase of current,

thus counteracting a further increase of the electrode potential. In thisway the negative

feedback loop takes control over the system dynamics. Such interplay of the positive

and negative feedback loops generally gives rise to the oscillations.

This source of instabilities will now be expressed in terms of appropriate model

equations [39], in which symbol E is identical with fdl symbol used in the caption to
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Fig. 3.17 (as in original reference).1The (anodic) faradaic current of the electrode process

can flow only on this part of the electrode surface that is not covered by the inhibitor:

If ¼ nFAkbðEÞ � ð1� yÞ (3.41)

where rate constant kb is expressed in mol m�2 s�1. Accordingly, the temporal

dynamics of E are described with the following dependence:

CdA
dE

dt
¼ U � E

Rs

� nFAkbðEÞ � ð1� yÞ (3.42)

In the NDR region of the electrode process, the electrode coverage with an

inhibitor (y) decreases with increasing potential E and the desorption of the
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Fig. 3.17 (a) Example of a

combination of electrode

process current density

nFk(fdl) (dashed curve) in
the absence of an inhibiting

species and an equilibrium

coverage of an inhibitor

y(fdl) that admits a Hopf

bifurcation (solid curve).
(b) Stationary polarization

curve. The dashed
line indicates where the
stationary state becomes

unstable under galvanostatic

conditions. The horizontal
bars display the amplitudes of

the oscillations. sn: saddle

node bifurcation; sl: saddle-

loop bifurcation; h: Hopf

bifurcation; fdl � E [39, 40].

Reproduced from [39] with

kind permission from

Springer Science + Business

Media B.V.

1note that for working electrode potential expressed vs. the reference electrode potential: E ¼
fdl � fdlðREÞ; dE=dt ¼ dfdl=dt since fdlðREÞ ¼ const.
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inhibitor must be slow, compared to the rate of the electrode process. This means

appropriate value of the rate constant of the surface (adsorption) process kads [s
�1]

in the equation for the dynamics of the electrode coverage:

dy
dt
¼ kads½yeqðEÞ � y� (3.43)

where yeqðEÞmeans the equilibriumvalue of y at a given potentialE. As said above, the
crucial quantitative point is that yeqðEÞ is not immediately reached, but the system tends

to this equilibrium value with the relatively low rate controlled by the value of kads.
It is further useful to perform the stability analysis of the above model in terms of

appropriate dimensionless variables [39], defined as

e ¼ nFE

RT
(3.44)

u ¼ nFU

RT
(3.45)

t ¼ kadst (3.46)

since this allows to introduce dimensionless quantities, one of which (e) expresses
the difference in time scales of e and y dynamics (cf. Sects. 1.6 and 2.2.3):

e ¼ CdRTkads
n2F2k0

(3.47)

r ¼ An2F2Rsk0
RT

(3.48)

where, in turn, the potential-dependent rate constant of the anodic electrode process

kb(E) was expressed as the product of the dimensionless part k(E) and the part k0 in
which the dimension of kb was incorporated: kb(E) ¼ k0k(E). Note that the

dynamical system (3.42, 3.43) can be analyzed for both potentiostatic and

galvanostatic conditions, with r ! 1 in the latter case. The HN-NDR dynamical

system is then defined as

e
de

dt
¼ �kðeÞ � ð1� yÞ þ u� e

r
(3.49)

dy
dt
¼ yeqðeÞ � y (3.50)

According to the principles of linear stability analysis (Sect. 1.3), the diagnosis

of oscillations requires calculations of the elements of Jacobian matrix J for the

steady-state (ess, yss):
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� 1

e
ð1� yssÞ dk

de

� �
ss

� 1

er
1

e
kðessÞ

dy
de

� �
ss

�1

2
6664

3
7775 (3.51)

The Hopf bifurcation occurs if Tr(J) ¼ 0 and Det(J) > 0, whose conditions are

equivalent to, respectively:

� dkðeÞ
de

� �
ss

¼ eþ 1

r

� �
1

1� yss

� �
(3.52)

and

dkðeÞ
de

� �
ss

ð1� yssÞ þ 1

r
>

dy
de

� �
ss

kðessÞ (3.53)

Condition (3.52) is met only if the NDR region is present in the I–E characteristics

of the electrode process (dk/de < 0), so the genesis of a Hopf bifurcation is essentially

the same as for the typical N-NDR oscillator. Furthermore, according to Fig. 3.17, the

electrode coverage of the inhibitor decreases with increasing positive potential: i.e.,

(dy/de)ss < 0, so the condition (3.53) can be met, depending only on other parameter

values. In particular, when r ! 1, i.e., in the galvanostatic limit, the negative value

of (dy/de)ss is obligatory for theHopf bifurcation to occur.Nowone should analyze the

role of parameter e in Eq. (3.52). After a Hopf bifurcation at the condition (3.52),

oscillations persist if Tr(J) > 0, i.e., if:

� dkðeÞ
de

� �
ss

> eþ 1

r

� �
1

1� yss

� �
(3.54)

and hence it is clear that parameter e has to be sufficiently small. In view of

Eq. (3.49) this means that the electrode potential is a relatively fast variable

(as also for the N-NDR systems), compared to the electrode coverage y. In other

words, the adjustment of the electrode coverage of an inhibitor to an equilibrium

value at a given potential should occur on a slower time scale, compared to the

change in the electrode potential e. This is of course the illustration of the discussed
above principles of the HN-NDR oscillator, for which the NDR region

characterizes the faster process. Also, conditions (3.52) and (3.54) show that

oscillatory instabilities will persist for infinitely large values of resistance r
which means galvanostatic conditions. Note that for the N-NDR systems the

oscillations existed only between the lower and upper threshold values of serial

resistance. Figure 3.18 shows the typical bifurcation diagram of the HN-NDR

system which is useful to compare with typical diagram for the N-NDR system,

shown in Fig. 2.8.
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3.4.2.2 Model Mechanism 2

The present mechanism was suggested by Koper and Sluyters [33], and since it was

later discussed by other authors, it is worth of detailed presentation here. Instead of

introducing the potential-dependent adsorption of the inhibitor, it is assumed that

the electron-transfer reaction occurs exclusively from the adsorbed state of the

reactant, with both the electron-transfer rate and the electrode coverage y dependent
on the electrode potential:

Xbulk��!D=d Xsurf
�!ka �
kd

Xads�!ke Pþ ne (3.55)

where D means the diffusion coefficient, d—the thickness of the Nernst diffusion

layer, ka and kd—the rate constants of the adsorption and desorption of X, respec-

tively. The X species arrives by diffusion at the surface of the electrode when it

undergoes adsorption, followed by irreversible oxidation to the product that is not

adsorbed and thus diffuses away from the electrode surface. Thus, in other words,

this mechanism postulates an exclusively electrocatalytic electrode process of X. In

the most general version, where ohmic potential drops occur in the electric circuit

and therefore the temporal dynamics of the electrode potential change (dE/dt) is
considered, the following three ordinary differential equations can be derived [33]:

Cd

dE

dt
¼ U � E

ARs

� nFkeðE;GXÞGX (3.56)

dc0
dt
¼ 2

d
�kaðE;GXÞc0 1� GX

Gmax

� �
þ kdðE;GXÞGX þ D

d
ðcbulk � c0Þ

� �
(3.57)

dGX

dt
¼ kaðE;GXÞc0 1� GX

Gmax

� �
� kdðE;GXÞGX � keðE;GXÞGX (3.58)

Fig. 3.18 Skeleton

bifurcation diagram in the

U/RO parameter plane (with

RO � Rs) of an HN-NDR

system of the “reaction-

inhibition” class [such as

model Eqs. (3.49, 3.50)]. The

solid, dashed and dotted-
dashed lines denote the

location of saddle-node, Hopf

and saddle-loop bifurcations,

respectively. Reproduced

with permission from [40].

Copyright Wiley-VCH

Verlag GmbH & Co. KGaA
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In these equations, Cd is the differential double layer capacitance per unit area

(for simplification, assumed to be potential-independent), A—the electrode surface

area, GX and Gmax—the actual and maximum surface concentrations of adsorbed

species X, cbulk—the bulk concentration of X, c0—the concentration of X in the
solution just outside the double layer; the adsorption process establishes thus

directly between the amount GX on the surface and the amount of X in the solution

in which the concentration equals to c0. As usual, U means the externally applied

voltage, which is different from the interfacial potential drop E due to ohmic drops,

caused by the serial resistance Rs. This system of equations can undergo appropriate

modifications, depending on particular assumed conditions. For example, for the

galvanostatic operation, the first term on the right-hand-side of Eq. (3.56) will be

replaced by the imposed constant current density (cf. Sect. 2.2.2). In turn, in the

absence of ohmic drops, i.e., when Rs ¼ 0, U ¼ E and entire Eq. (3.56) is left out

from consideration. Using following substitutions:

u ¼ c0=cbulk (3.59)

y ¼ GX=Gmax (3.60)

t ¼ 2Dt=d2 (3.61)

it is convenient to transform Eqs. (3.66)–(3.68) into the forms:

e
dE

dt
¼ U � E

r
� keðE; yÞy (3.62)

du

dt
¼ �kaðE; yÞuð1� yÞ þ kdðE; yÞyþ 1� u (3.63)

b
dy
dt
¼ kaðE; yÞuð1� yÞ � kdðE; yÞy� keðE; yÞy (3.64)

in which

e ¼ 2Cd

dnFcbulk
(3.65)

b ¼ 2 Gmax

dcbulk
(3.66)

r ¼ DcbulknFARs

d
(3.67)

e0 ¼ e
b

(3.68)

142 3 Application of Impedance Spectroscopy to Electrochemical Instabilities

http://dx.doi.org/10.1007/978-3-642-27673-6_2#Sec11_2


and some original quantities changed their definitions:

kad
D
! ka (3.69)

kd
Gmaxd
cbulkD

! kd (3.70)

ke
Gmaxd
cbulkD

! ke (3.71)

For typical values of the model parameters, the time scales of the potential and

electrode coverage dynamics differ for one order of magnitude, according to the

following values: e � 10�3 V�1, b � 10�2, and thus their ratio e0 � 10�1. This
model mechanism was used to discuss the possible bifurcations under true

potentiostatic (E ¼ const), potentiostatic control with ohmic drops (U ¼ const)

and galvanostatic control (I ¼ const). We shall briefly discuss here the latter case.

First the general definition of dynamical system (3.62)–(3.64) will be reduced to

two ODEs, describing the dynamics of the electrode potential E and of the electrode

coverage y. Thus, the variations of surface concentration of the species in the

solution are assumed negligible due to sufficiently fast mass transport, so the

concentration is everywhere equal to the bulk value. Assuming the galvanostatic

control, one obtains the following system of ODEs:

e0
dE

dt
¼ J � keðEÞy (3.72)

dy
dt
¼ kað1� yÞ � kdy� keðEÞy (3.73)

where J is the imposed, constant current density. By performing linear stability

analysis in a way analogous to that described in Sect. 2.2.2, one concludes that the

galvanostatic Hopf bifurcation is not possible for this system, because it is impos-

sible to meet simultaneously the conditions of zero trace and positive value of the

determinant of the respective Jacobian matrix:

TrðJÞ ¼ 0 if
dkeðEÞ
dE

¼ �e0 ka þ kd þ keðEÞ
y

ðalways < 0Þ (3.74)

DetðJÞ > 0 if
kaðka þ kdÞ

ka þ kd þ keðEÞ
dkeðEÞ
dE

> 0 (3.75)

which would require the slope dkeðEÞ=dE being simultaneously negative and

positive. In order to obtain galvanostatic oscillations of the electrode potential,

Koper and Sluyters [33] have modified the above model by looking for the physical
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situation that would keep the condition for zero trace but would allow the determi-

nant to become positive for the same parameters. This was done by invoking the

dependence of the rate constant of adsorption on the electrode potential (i.e., by

introducing the ka(E) relationship), with the desorption process neglected for

simplicity (kd ¼ 0). In other words, the extended version of the model involves

two potential-dependent processes, with only one being the charge-transfer step.

The relevant ODEs take then the following form:

e0
dE

dt
¼ J � keðEÞy (3.76)

dy
dt
¼ kaðEÞð1� yÞ � keðEÞy (3.77)

From the condition dE=dt ¼ dy=dt ¼ 0 one finds the parameters of the steady-

states for this model:

yss ¼ ka
ka þ ke

(3.78)

keðEssÞ ¼ Jss
yss

(3.79)

Jss ¼ kaðEssÞkeðEssÞ
kaðEssÞ þ keðEssÞ (3.80)

and the trace and the determinant of the Jacobian matrix are given by

TrðJÞ ¼ 1

e0
dkeðEÞ
dE

kaðEÞ
kaðEÞ þ keðEÞ þ kaðEÞ þ keðEÞ (3.81)

DetðJÞ ¼ 1

e0
k2aðEÞ

dkeðEÞ
dE

þ k2eðEÞ
dkaðEÞ
dE

� �
� kaðEÞ þ keðEÞf g�1

� �
(3.82)

Hence one derives the conditions of a Hopf bifurcation:

dkeðEÞ
dE

¼ �e0 kaðEÞ þ keðEÞ½ �2
kaðEÞ � k0eðEÞcrit (3.83)

with

k2eðEÞk0aðEÞ>� k2aðEÞk0eðEÞcrit (3.84)

where the prime denotes differentiation with respect to E. These dependences are

equivalent to the following conclusions of quite a general importance for the
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prediction of galvanostatic oscillations: the charge-transfer step should exhibit the

negative slope (dkeðEÞ=dE<0), the potential dependence of the adsorption rate

constant on the electrode potential should exhibit a positive slope dkaðEÞ=dE > 0

and, last not least, the rate constant for the electron transfer is higher than the

rate constant of adsorption. Thus, of two potential-dependent processes, the

(destabilizing) electron-transfer process has to be faster than the stabilizing (adsorp-

tion) process, which does not involve electron-transfer. This conclusion in fact

explains again the formation of hidden negative impedance, being a source of

galvanostatic oscillations on the J–E branch of the positive slope under dc

conditions. In fact, one can confirm that in terms of the model discussed, the

dJ/dE slope is positive at the critical point of a Hopf bifurcation:

dJss
dE

� �
crit

¼ k2ak
0
e

crit þ k2ek
0
a

ðka þ keÞ2
(3.85)

The following exemplary relationships were chosen for the dependences of the

charge-transfer and adsorption rate constants on the electrode potential:

keðEÞ ¼ k0e1 expðafEÞ
1þ kdexp½b2f ðE� EdÞ� þ k0e2expðafEÞ (3.86)

kaðEÞ ¼ 1

f1=k0a exp½b1f ðE� EaÞ�g þ ð1=kmÞ (3.87)

The bifurcation structure of the model discussed is collected in Fig. 3.19, for the

parameter values specified in the caption.

In turn, Fig. 3.20a presents the nullclines of Eqs. (3.76) and (3.77), for a

particular set of parameters, whereas parts (b) and (c) show courses of the electrode

potential for two sets of parameters. Note that parts (a) and (b) were constructed for

the same parameters. Regarding the attractors, the cross-sections of nullclines in

Fig. 3.20a indicate one stable steady-state and one stable limit cycle which are both

only locally stable, i.e., in order to reach one of them, one has to choose the initial

state closely enough to the desired attractor (i.e., to start from the respective basin of

attraction). Therefore part b includes two E(t) courses, differing with initial values

and therefore tending asymptotically either to a stable steady-state (upper curve) or

to a stable limit cycle (lower, oscillatory course).

Finally, Fig. 3.21 shows the schematic comparison of the dc I–E curve of the

HN-NDR system with the impedance spectra corresponding to appropriate

potentials.

One can reconstruct these impedance spectra, based on the expressions for the

real and imaginary parts of the total impedance, derived by Koper and Sluyters [33]:
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Z0ðoÞ ¼ Y0F
Y002F þ ðe0o� Y

00
FÞ2

(3.88)

Z00ðoÞ ¼ e0o� Y
00
F

Y002F þ ðe0o� Y
00
FÞ2

(3.89)

where the real and imaginary parts of the faradaic admittance are given by

Y0FðoÞ ¼
kak
0
e

ka þ ke
þ ke

kek
0
a � kak

0
e

ðka þ keÞ2 þ o2
(3.90)

Fig. 3.19 Illustration of the solution behavior of Eqs. (3.76) and (3.77). (a) Bifurcation map
showing the different regions of monostability, bistability, oscillations and bistability of steady-

state and oscillations in the J � k0e2plane; (b) section of (a) at k0e2 ¼ 0:001; (c) section of (a) at

k0e2 ¼ 0:002; (d) section of (a) at k0e2 ¼ 0:01. H Hopf bifurcation, SN saddle-node bifurcation, TB
Takens–Bogdanov bifurcation (merging of H and SN). SL saddle-loop (homoclinic) bifurcation.

Other parameter values are: k0e ¼ 1, a ¼ 0.5, f ¼ 38.7, kd ¼ 250, b2 ¼ 1, k0a ¼ 0:015, b1 ¼ 0.5,

km ¼ 10, e0 ¼ 0.25, Ea ¼ 0 and Ed ¼ 0.35. Reprinted from [33], Copyright 1994, with permission

from Elsevier
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Y00FðoÞ ¼ o
kek
0
a � kak

0
e

ðke þ kaÞ ðke þ kaÞ2 þ o2
h i2 (3.91)

and the primed symbols k0 mean the derivatives dk/dE of the respective rate

constant.

Finally, Fig. 3.22 summarizes all typical dc and ac characteristics of HN-NDR

systems.

Fig. 3.20 (a) Phase plane

representation of the solution

behavior of Eqs. (3.76) and

(3.77) for k0e2 ¼ 0:0001 and

J ¼ 1.136. The thin lines are
the E and y nullclines, i.e.,

dE/dt ¼ 0 and dy/dt ¼ 0; the

thicker lines are the
trajectories from two different

initial conditions, one ending

on a stable steady-state

(nullcline intersection) and

the other settling on a limit

cycle (closed curve) (filled
circle stable steady-state;
open circle unstable steady-
state). (b) Potential–time

transients for the same

parameter values and initial

conditions as in (a).

(c) Potential oscillations for

k0e2 ¼ 0:0002 and J ¼ 1.2.

Other parameter values as in

Fig. 3.19. Reprinted from

[33], Copyright 1994, with

permission from Elsevier
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3.5 Classification of Electrochemical Oscillators Based

on Impedance Characteristics

Quite a large number of presently known electrochemical oscillators implied several

attempts to categorize them into respective groups. In search of possible

generalizations of that problem, Eiswirth et al. [41] have proposed its relation to

the classification of chemical oscillators. Here we shall focus on the electrochemical

systems only. Based on the characteristics of unstable electrochemical systems,

presented in so far in this chapter and in Chap. 2, it is possible to propose a useful

impedance-based classification. Just like mathematical linear stability analysis

allows to find the qualitative type of the phase trajectories of the system of linear

(ized) differential equations without obtaining their explicit solutions, the imped-

ance spectroscopy, being the electrochemical variant of linear stability analysis,

allows one to categorize electrochemical oscillators without studying the detailed
mechanism of the given process, but looking only at the shape of the impedance

spectrum. In other words, based on the impedance spectrum one can predict which

bifurcations, under which particular conditions are possible for the system of a given

impedance characteristics. Pioneer work in this area was published in 1996 byKoper

[32] who divided electrochemical into four groups (classes): Class I—truly

potentiostatic (E ¼ const) oscillators, Class II—potentiostatic (U ¼ const) oscilla-

tor, Class III—galvanostatic oscillators. Later, Strasser et al. [42] have included also

S-NDR type oscillators, extending thus the classification systems to four classes

Fig. 3.21 The five qualitatively different impedance plots obtained at different parts of the J–E
curve (parameter values as in Fig. 3.19b). The arrows indicate the direction of decreasing

frequency and H indicates the current value for which a Hopf bifurcation is observed under

galvanostatic conditions. The negative impedance at high frequencies in diagrams (b) and

(c) should be noted. Reprinted from [33], Copyright 1994, with permission from Elsevier
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which are briefly characterized below. This classification indicated also the non-

essential and essential (for the oscillations) dynamic variables (cf. Sect. 2.3).

Class I. Strictly potentiostatic oscillators, for which thus the electrode potential
E is a non-essential dynamic variable, and which are purely chemical oscillators

involving at least one electrochemical step, allowing to reveal the chemical

oscillations by means of the electrochemical element. The existence of the NDR

region is thus not necessary for the oscillations, as well as non-zero serial resis-

tance. However, if such resistance is present, the oscillating current causes, through

the ohmic drops, also the oscillatory variation of the electrode potential and the

electrochemical process can affect the concentration of the involved species,

interacting in this way with the chemical oscillatory process. The model approach

can involve classical Brusselator as a source of chemical oscillations, with one of

the reaction steps assumed to be the electrode process. The reader interested in

more detailed characteristics of the kinetic and impedance representation of such

model process is advised to consult the original reference [42]. Rather rare experi-

mental examples of Class I oscillators include the Belousov–Zhabotinsky-type

process. In this case, e.g., the oscillatory variation of the catalyst [Ce(IV)]/

[Ce(III)] ratio and the recovery of Br� ions was achieved by the electrochemical

process of bromate anions, occurring in the absence of oxidized organic species, in

Fig. 3.22 (a–c) Characteristic I–U curves of HN-NDR systems: (a) under potential control for

zero (vanishing) ohmic series resistance, RO; (b) under potential control for intermediate values of

RO and (c) under current control. (d) Typical impedance spectrum of an HN-NDR system in the

complex impedance plane at the point indicated in (a). Reproduced with permission from [40].

Copyright Wiley-VCH Verlag GmbH & Co. KGaA
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contact with hydrogen electrode (hydrogen/platinum/oxyhalogen system [43]). It is

also possible that to this class belongs the electrodissolution of iron in nitric acid,

with the source of instability being presumably an autocatalytic reduction of nitric

acid [44, 45]. Finally, the recently described oscillatory oxidation of CO on

platinum electrodes occurs for such high solution conductivity, that this system is

considered a potential candidate for truly potentiostatic oscillator (see Sect. 5.2).

Class II. Oscillatorswith the S-shapedNDR. Similarly as for Class I, concentrations

of chemical species are dynamic variables involved, but now the electrode potential

appears to be an essential system variable. The electrode potential supplies the slow,
negative feedback (a condition difficult to meet in practice, cf. section 2.3 for possible

solution). Typical model examples of such Class II oscillators include potential-

dependent, fast phase transitions of the adsorbate with strong lateral attractive

interactions of particles (the case which can be described in terms of the Frumkin

isotherm). Clearly, it cannot be the case of truly potentiostatic oscillator of Class I.

Potentiostatic experiments, in the absence of ohmic drops, will only reveal the bistable

behavior. Oscillations will occur in the presence of sufficiently large ohmic potential

drops, when the externally applied voltage differs from the interfacial potential drop of

the working electrode. Furthermore, under galvanostatic conditions, either the full

S-shape will be revealed or the potential oscillations set in, in dependence of the

system’s dynamics. Experimental example of the system that exhibits S-shaped polari-

zation curve (but not oscillatory instability) is presumably the electrocrystallization of

zinc in the Leclanché cell [46]. Figure 3.23 shows schematically the theoretically

possible behaviors for S-NDR systems, including also more complex case and the

impedance diagram measured under galvanostatic conditions.

Class III—N-NDR oscillators. Evidently the most numerous class of electrochem-

ical oscillators in which the explicit N-shaped NDR region in the I–E characteristics

is crucial for the onset of oscillations. The electrode potential E is an essential
variable, more strictly, an autocatalytic (positive feedback) variable. Purely chemical

instabilities can be completely absent. Various sources of the formation of the

N-NDR region were listed in Chap. 2. The system of such characteristics, for given

externally applied voltage U, exhibit current oscillations in the presence of appropri-
ate ohmic potential drops, caused by the serial resistance Rs, but under galvanostatic

conditions only bistability is observed, since then the NDR region is a collection of

unstable (saddle-type), and thus directly inaccessible steady-states (cf. Fig. 2.4).

Typical examples of such systems include, e.g., polarographic In(III)–SCN� oscilla-

tor (see Chap. 4). Due to ohmic drops, the oscillations of the current are associated

with the simultaneous oscillations of the electrode potential E ¼ U � IRs. The

bifurcation diagram constructed in the U � Rs space is characteristically cross-

shaped (cf. e.g., Fig. 2.8). The impedance Nyquist spectrum for vanishing serial

resistance, as discussed above (Figs. 3.13 and 3.14) intersects the real impedance axis

on a negative side for oH > 0, indicating the Hopf bifurcation and wheno ! 0, the

negative zero real impedance is again reached, indicating the saddle-node bifurca-

tion. The simplest prototype model of the N-NDR oscillator can be defined as [33]

dE

dt
¼ gðyÞ � f ðy;EÞ (3.92)
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dy
dt
¼ U � E

Rs

� f ðy;EÞ (3.93)

where f(y,E) is a “current-function,” i.e., the Butler–Volmer expression modified so

that it exhibits the N-NDR region, and g(y) describes the (relatively) slow dynamics

of the species that is formed or transported by the potential-independent process

(remark important also for comparison with class IV, see below).

Class IV—HN-NDR (galvanostatic) oscillators. In terms of this classification,

Class IV exhibits partly similar characteristics as Class III, in that sense, that the

electrode potential remains the fast autocatalytic variable. However, systems of Class

Fig. 3.23 Current/potential characteristics as well as characteristic impedance behavior for Class

II (Kodera-type) oscillators. (a) Potentiostatic I–E behavior with IR compensation (strictly

potentiostatic case), (b) potentiostatic I–U behavior for sufficiently large values of the uncompen-

sated ohmic resistance; (c) and (d) galvanostatic I–E behavior in the case of a simple S-shaped
polarization curve for a subcritical and supercritical value of time scale parameter e of the

electrode potential, respectively, (e) and (f) galvanostatic I–E behavior in the case of a complex

S-shaped polarization curve for a subcritical and supercritical value of time scale parameter e of
the electrode potential, respectively, (g) characteristic impedance diagram of Class II oscillators as

obtained at the points of the current/potential curves indicated by the black solid circles. Reprinted
from [42], Copyright 1999, with permission from Elsevier
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IV exhibit oscillations under galvanostatic conditions (without ohmic drop) and under

potentiostatic conditions (with sufficiently large ohmic drop). These systems are

characterized with the hidden negative impedance (HN-NDR type), which manifests

itself as the negative impedance for a range of non-zero ac frequencies, with the

positive zero frequency impedance (corresponding to the positive slope of the dc I–E
curve). For such impedance characteristics to occur, two coupled, potential-dependent

processes have to be present: a relatively fast process giving rise to negative imped-

ance and a slower process of a positive impedance which dominates the steady-state

dc I–E characteristics. The presence of sufficient external resistance is not necessary

for the galvanostatic oscillations, but is required for the onset of potentiostatic (U ¼
const) oscillations of the current for this class of unstable systems (see Fig. 3.22). The

bifurcation diagram for HN-NDR oscillators, remarkably different from that for

N-NDR systems, was shown in Fig. 3.18. Besides the reversed role of increasing

serial resistance which does not suppress oscillations, the bifurcation diagram for the

Class IV oscillators always involves the homoclinic bifurcation, corresponding to

decay of the oscillations due to collision of the limit cycle with the (galvanostatically

unstable) saddle points from the NDR branch (Fig. 3.18).

Furthermore, Strasser et al. [42] have suggested to divide further Class IV

oscillators into the following subcategories:

Class IV.1. Potential-dependent source of inhibitor (so far, only theoretical case)
Class IV.2. The H2/formic acid group, meaning the oxidation of H2 in the presence

of electrosorbing metal cations and anions, the oxidation of formic acid on Pt, of

formaldehyde on Rh, the dissolution of nickel in the transpassive region. This

subcategory typically involves an independent current carrier, i.e., the species engaged

in a faradaic process consuming non-essential species only. Model calculations

showed that this faradaic current can be potential-dependent (Butler–Volmer relation)

or even potential-independent (i.e., in a plateau region). At themodel level, description

of dynamical systems of this type requires three variables: electrode potential E, an
essential “fast” chemical species and an essential “slow” chemical species, producing

the negative feedback. The dynamics of the slow species may completely cover up the

N-shaped potential profile of the fast subsystem.

Class IV.3. This category, named the “IO3
� group,” includes the systems which

are born from typical NDR system by adding an appropriate independent current
carrier exhibiting usual Butler–Volmer kinetic characteristics. In this case the

independent current carrier does not consume slow chemical variable. Instead,

this additional current providing reaction may proceed on free (not blocked) surface

sites. This additional current overlaps with the N-NDR region, hiding it under dc

conditions and in this way transforming the N-NDR into HN-NDR oscillator.

Examples of such oscillators include, among others, the electrocatalytic

galvanostatic reduction of IO3
� on Ag, the model of which was elaborated by

Strasser et al. [47] (see Chap. 4). These authors suggested further that Fe(CN)6
3�

reduction or the Fe(CN)6
4�oxidation on Pt might occur due to analogous mecha-

nism, contrary to original view of other authors, Li et al. [48, 49] who postulated the

significant role of convection caused by evolving gaseous hydrogen or oxygen,

respectively (see also Chap. 5, volume II). In more detail, it became a matter of

152 3 Application of Impedance Spectroscopy to Electrochemical Instabilities

http://dx.doi.org/10.1007/978-3-642-27673-6_4


controversy whether the hydrogen or oxygen evolution at extreme negative or

positive potentials played only a role of an independent current carrier or was a

source of convective motion, causing the replenishment of the diffusion layer with

the essential electroactive species.

Based on the above categorization, Strasser et al. [42] have suggested further a

systematic experimental strategy for the classification of electrochemical

oscillators, illustrated in Fig. 3.24.

Obviously, the above classification does not include all types of electrochemical

dynamical systems—it does not cover the spatiotemporal and spatial pattern forma-

tion, as well as it omits instabilities caused by electrochemically generated convec-

tion (see Chap. 5, volume II). But even with respect to temporal instabilities, this

categorization of electrochemical oscillators became later subject of discussions and

several modifications or extensions were proposed, when new types of such systems

were discovered. Some of these suggestions will be given later in this book, in the

discussion of selected experimental oscillatory systems. Here we shall mention that

Kiss et al. [50] have suggested the application of the method of changing the time

scale associated with dynamical variables (see Sect. 2.3) to the classification of

Fig. 3.24 Overview of an

operational method for the

experimental classification of

an unknown electrochemical

oscillator (CC ¼ current

carrier). See original

reference [42] for details.

Reprinted from [42],

Copyright 1999, with

permission from Elsevier
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oscillating electrochemical systems, complementary to that suggested by Strasser

et al. The basis for Kiss’s et al. idea is the fact that recursive feedback controller can

be applied to add (positive or negative) pseudocapacitance to the inherent double

layer capacitance of the electrochemical system. For the N-NDR and HN-NDR type

systems, when the electrode potential plays the role of a fast activator species, the

added pseudocapacitance destroys the oscillations through the Hopf bifurcation. On

the contrary, for the S-NDR systems, when the electrode potential is a slow inhibitor,

the onset of current oscillations requires sufficiently high pseudocapacitances. This

shows a striking, qualitative difference in the fundamental kinetic features of those

two types of electrochemical oscillators. In view of that, it is interesting to note also

the possibility of generation of chemically generated pseudocapacitance which can

arise at an electrode when the extent of faradaically admitted charge depends (quasi)

linearly on the applied voltage, as in the case of conducting polymers and RuO2 [51].

For galvanostatic oscillations during formic acid oxidation, Inzelt and Kertész [52]

have reported effects of changing the capacitance of an electrode by polyaniline

film. However, the variations of this pseudocapacitance did not exceed a few

mF cm�2, so might be insufficient to change significantly enough the time scale of

a given variable. On the contrary, the differential control by Kiss et al. can cause

effects of the order of even a few F cm�2. An analogous approach is potentially

applicable to CSTR systems, where the inlet concentrations of chemicals could be

changed proportional to the concurrently determined time derivative of

concentrations [50]. In this way also chemical species essential for the oscillations

could be explicitly detected.

Finally, as a complement of the above classification of the oscillators, let us pose

a seemingly strange question: Does the existence of the N-NDR region always

guarantee the oscillatory behavior, depending only a serial resistance Rs? In order to

consider this problem, we shall invoke again the model by Koper and Sluyters [33],

simplified to two dynamical variables, but adapted now to potentiostatic (U ¼
const) conditions. The adsorption and desorption rate constants will first be

assumed independent of the electrode potential. After dividing both Equations by

the b factor, which operation allows to express the difference of the time scales in

terms of only one parameter e0, one obtains

e0
dE

dt
¼ U � E

r
� keðEÞy (3.94)

dy
dt
¼ kað1� yÞ � kdy� keðEÞy (3.95)

Linear stability analysis of the steady-state of this system indicates the possibil-

ity of both saddle-node bifurcation (bistability) and a Hopf bifurcation

(oscillations). For the latter case, based on the condition for zero trace and positive

determinant of the Jacobian matrix one derives the following condition for a Hopf

bifurcation in this system:

dkeðEÞ
dE

¼ � ka þ kd þ keðEÞ
rka

� e0
½ka þ kd þ keðEÞ�2

ka
(3.96)
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provided that

keðEÞ
r
� e0½ka þ kd þ keðEÞ�ðka þ kdÞ > 0 (3.97)

These conditions summarize that what we already know from the analysis of

simpler models (see Chap. 2): (1) oscillations set in provided the serial resistance r
is sufficiently large and (2) the e0 parameter is sufficiently small, meaning that the

dynamics of the electrode potential should be sufficiently fast (the oscillations

becoming increasingly relaxation like for decreasing e0). The bifurcation diagram

of this system is also typical of other systems, exhibiting the N-shaped NDR

(N-NDR) region (cf. Fig. 2.8).

Now let us go back to the question posed at the beginning of this section: Does

the N-NDR region always give rise to oscillations, if the above conditions are met?

Following Koper and Sluyters [33] we shall prove that it is not always the case. For

that purpose let us introduce to the model (3.94, 3.95) the second surface species, of

coverage yp, which poisons the electrode surface. The surface equilibrium of this

poison establishes quickly, so it is dependent only on the potential E and the

coverage y of the electroactive species, i.e., yp ¼ f(E, y). In other words, the poison
competes with the electroactive species for the free adsorption sites at the electrode

surface. If so, at any moment the number of sites still available for electroactive

species is decreased from (1 � y) to [(1 � y) – yp] which factor affects its adsorp-
tion rate:

e0
dE

dt
¼ U � E

r
� keðEÞy (3.98)

dy
dt
¼ ka½1� y� ypðE; yÞ� � kdy� keðEÞy (3.99)

Fundamental conclusions are drawn from the trace and the determinant of the

Jacobian matrix of this system:

TrðJÞ ¼ � 1

e0
1

r
þ y

dkeðEÞ
dE

� �
þ keðEÞ þ kd þ ka 1þ @yp

@y

� �� �
(3.100)

DetðJÞ ¼ 1

e0
1

r
þ y

dkeðEÞ
dE

� �
kd þ ka 1þ @yp

@y

� �� �
þ keðEÞ

r
� keðEÞka @yp

@E

� �

(3.101)

Let us consider first the occurrence of bistability, requiring Det(J) ¼ 0 which

case can happen only for either appropriate negative slope dkeðEÞ=dE or appropri-
ate positive slope @yp=@E. The former case is well known from the simpler models,
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while the latter conclusion means that even if there is no NDR of the charge-transfer

step, the I–E curve can exhibit negative slope, giving rise to the saddle-node

bifurcation, if the poisoning of the electrode increases with increasing potential.

Turning now to a Hopf bifurcation, one concludes that the condition Tr(J) ¼ 0

can be met only if dkeðEÞ=dE is negative, since the last term in the trace must be

positive, due to � 1 < @yp=@y < 0 (because the particles of the electroactive

species and the poison compete, by assumption, for the same site at the electrode

surface). Thus, if only the competitive adsorption of the poison, without affecting

the ke(E) dependence, causes the negative slope of the I–E curve, the oscillations

will not set in. The oscillations will appear, however, if the poison causes the

decrease of ke(E) with increasing potential. Passivation of the electrode surface is a
good example, provided that the electrode process occurs through an adsorbed

intermediate, as in the model.

3.6 Instabilities Involving Adsorption on Electrodes

3.6.1 The Frumkin Isotherm

It is evident that electrode processes involving adsorption state of reagents are

numerous. Note that also the electrocatalytic model suggested by Koper and

Sluyters [33] involved adsorbed reactant. In particular, the formation of adsorption

layer associated with strong attractive lateral interactions of particles can be a

source of various kinds of instabilities, caused by the formation of an S-NDR

region (cf. Sect. 2.2.5). A series of theoretical papers was devoted to this problem

which is thus worth of brief presentation here.

The role of adsorption in destabilization of electrochemical systems will be

discussed in terms of the well-established Frumkin isotherm:

y
1� y

¼ K
c0
c0

	 

exp ð � gyÞ (3.102)

with c0 and c
0 meaning the actual and standard concentration of the adsorbate in the

solution, while the parameter g describes lateral, inter-particle interactions in the

adsorption layer. From the thermodynamic point of view, the non-zero interaction

parameter means the dependence of the free Gibbs energy of adsorption on the

coverage:

DGads ¼ DG0
ads þ gRTy (3.103)

In notation (3.103), attractive lateral interactions are described by negative value

of parameter g¸with its critical value gcrit ¼ �4, below which the Frumkin isotherm

becomes S-shaped. Note that in the literature also exist notations with the reversed

signs of g [i.e., with minus sign in Eq. (3.103)], so then the hysteresis between the

upper and lower branches of the isotherm is observed for g higher than þ4.
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From the kinetic point of view, the non-zero interaction parameter means that

the activation energy for desorption is increased by an amount rgRTy, and the

activation energy for adsorption is decreased by an amount ð1� rÞgRTy, where r is
the symmetry factor of the activation barrier, lying between 0 and 1. Accordingly,

the rate constant for adsorption and desorption are given by the following

relationships, respectively:

ka ¼ k0aexp[�ð1� rÞgy� (3.104)

kd ¼ k0d exp ðrgyÞ (3.105)

If the adsorption and desorption are single-step processes, then according to the

first postulate of formal chemical kinetics, the equilibrium constant K can be

expressed as the K ¼ k0a=k
0
d ratio. Then, by taking equal rates of adsorption and

desorption: kað1� yÞðc0=c0Þ ¼ kdy, one derives the isotherm Eq. (3.102) on the

kinetic basis. In the following considerations the symbol of the standard concentra-

tion c0 ¼ 1 M will be omitted for simplification of mathematical notation.

In the case of strong attractive interactions, expressed by overcritical (�4) value
of interaction parameter g, the variation of the bulk concentration or the electrode

potential causes the sudden phase transitions of adsorbed species. Nikitas et al.

[53–56] have devoted several theoretical papers to this case, called a “polarization

catastrophe,” in analogy to the abrupt phase transitions considered in Thom [57–61]

catastrophe theory. Also Laviron [62] has analyzed theoretically the ac polaro-

graphic and impedance response of strongly adsorbed electroactive species obeying

the Frumkin isotherm which undergoes quasi-reversible electron-transfer.

From the point of view of nonlinear dynamics, since the sudden phase transition

occurs at the borders of the bistable region, it is associated with saddle-node bifurca-

tion. Not particularly problematic for dc conditions, the situation becomes more

complicated for impedance measurements, since close to these bifurcation

parameters the condition of linearity, fundamental for impedance, cannot be satisfied,

as Armstrong [63], who discussed the results of Wandlowski and de Levie [64], has

pointed out. Inspired by this discussion, Berthier et al. have analyzed theoretically the

case of adsorption phenomena obeying the Frumkin isotherm which, for the overcrit-

ical value of the parameter of the lateral interaction of adsorbed particles, attains the

S-shaped course. Their analysis of the effects of saddle-node bifurcations on imped-

ance response is briefly presented in the following section.

3.6.2 Model Mechanisms Involving Strong Adsorption

3.6.2.1 The Simplest Electrosorption Mechanism

In [65, 66] the following electrosorption mechanism involving an anion A� and its

surface-active oxidation product engaged in the reversible electrode process was

assumed:
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A� þ s ! A; sþ e (3.106)

where “s” means the adsorption site. Since this is the only reaction path assumed,

the faradaic current is related to the temporal variation of the electrode coverage (y)
of species A which interfacial concentration in the solution is taken as constant and

equal to standard concentration 1 M. Then the dimensionless current C, involving

the mathematical form of the Frumkin isotherm, is expressed as

C ¼ dy
dt
¼ ð1� yÞ expðaoxÞ exp½�aogðy� 1

2
Þ� � y exp½argðy� 1

2
Þ� exp½�arx�

(3.107)

where x ¼ ðF=RTÞðE� E0Þ, ao and ar are the oxidation (anodic) and reduction

(cathodic) transfer coefficient, respectively (the sum is equal to unity for the one-

electron process: ao þ ar ¼ 1), g is the lateral interaction parameter in the Frumkin

isotherm, and other symbols have their usual meaning. If the steady-state (dy/
dt ¼ 0) is achieved from Eq. (3.107) one derives the potential-dependent surface

coverage y described by the Frumkin isotherm:

y
1� y

exp½gðy� 1

2
Þ� ¼ exp ðxÞ (3.108)

In the case considered here the interaction parameter g ¼ �6, i.e., lower than the
critical value �4, so the isotherm is S-shaped, as illustrated by Fig. 3.25a for the

electrode coverage determined by the externally imposed, varying electrode poten-

tial E.
This picture visualizes the saddle-node bifurcations that occur at points denoted

by D1 and D2 in Fig. 3.25a. The corresponding coverages yD1 and yD2 are given by

the roots of the second degree equation:

y2 � y� 1

g
¼ 0 (3.109)

i.e.,

yD1; 2 ¼
1
 1þ 4

g

	 
1=2

2
(3.110)

The dimensionless potentials, at which the switching between the upper and

lower branches of the stable steady-states occurs, are given by the equations:
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xD1; 2 ¼ 

½gð4þ gÞ�1=2

n o
2

� log
1þ ð1þ 4

gÞ
1=2

h i

1� ð1þ 4
gÞ

1=2
h i

0
@

1
A (3.111)

Based on this dependence, for g ¼ �6 one calculates the corresponding

potentials which are: xD1 ¼ �0.415 and xD2 ¼ 0.415.

If the linearity condition is met, the faradaic impedance can be calculated from

the linear terms of the Taylor series expansion of Eq. (3.107), as corresponding to

the equivalent circuit consisting of the serial connection of the charge-transfer

resistance Rct and the adsorption capacitance Cads:

Z�f ¼ R�ct þ
1

j OC�ads
(3.112)

where the dimensionless quantities are defined as:O ¼ o/k0, f ¼ F=RT; Z�f ¼ fFGk0Zf ,
R�ct ¼ fFGk0Rct and C�ads ¼ Cads=ðfFGÞ; k0—standard kinetic rate constant, G—the

number of electrosorption sites per unit of electrode area. If the nonlinearity condition

is not met, the impedance has to be computed as the numerical solution of the

appropriately modified equation (3.107), in which the periodic perturbation of the

steady-state potential was described as a sinusoidal dependence x ¼ xi + dxsinð OtÞ.

Fig. 3.25 (a) Frumkin isotherm (solid lines: stable steady-states; dashed lines: unstable steady-

states, bold lines: dynamic y vs. x curves) and (b, c) vector field, dy/dt vs. y phase plane calculated
for a ! g steady-state electrode potential. Parameter g ¼ �6. Reprinted from [66], Copyright

1998, with permission from Elsevier
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C ¼ dy
dt
¼ ð1� yÞexp[aoðxi þ dxsin OtÞ]exp �aog y� 1

2

� �� �

� y exp arg y� 1

2

� �� �
exp½�arðxi þ dxsin OtÞ� (3.113)

Using these dependences, the effects of the potential modulation amplitude and

frequency on the impedance response were theoretically analyzed. Intuitively, one

can understand that if, for given steady-state potential, the ac amplitude (dx) is so
high that reaches the edge of the fold of the Frumkin isotherm, the current (and thus

the impedance) response should undergo significant change. Systematic analysis of

those effects involved the role of varying potential amplitude, and ac frequency O.
These results can be summarized as follows.

Influence of ac Amplitude

For relatively low ac frequency O ¼ 10�1, if the initial steady-state xi < 0 lies on

the lower isotherm branch and the ac amplitude is sufficiently small to keep the

system at this branch, the response is almost linear, i.e., temporal oscillations of y
are nearly sinusoidal. With increasing amplitude, the nonlinearity of the variations

of y becomes more significant, and when the ac amplitude allows to pass the saddle-

node bifurcation point, the variations of y cover both lower and upper branches of

the adsorption isotherm, in the form of high amplitude relaxation oscillations.

For the same low ac frequencyO and the initial steady-state lying also on a lower

branch, but closer to the bifurcation point, for small amplitude of the potential

variation the response is of course similar to that described above, but exhibits more

nonlinearity. For intermediate (overcritical) amplitudes, when the bifurcation point

is crossed, the impedance spectrum looks, however, completely differently, since

the system switches to the upper branch of the isotherm and, due to hysteresis in the

bistable region, is now not able to return to the lower branch. In consequence, after

the first perturbation the system’s response includes only the small variations of y in
the upper branch. Finally, when the amplitude of the oscillations becomes so high,

that the entire bistable region of the isotherm is spanned, both branches are involved

in the oscillatory cycle and the power spectrum becomes appropriately complex.

Influence of Ac Frequency

Let us consider again the steady-state xi < 0 belonging to the lower branch of the

adsorption isotherm, i.e., far from the bifurcation point. Then, if the amplitude of

the potential modulation is so low that the varying potential never attains the

bifurcation value, the impedance diagram always characterizes the lower states,

irrespective of ac frequency. However, if the amplitude allows to reach the bifurca-

tion point, the response significantly depends on the ac frequency, since the system
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has, or has not enough time to respond with its electrode coverage. Thus, for

sufficiently high o, the system’s response is practically limited to the lower branch

of the states, while for sufficiently low values—it visualizes the variations of y over
the entire bistable region.

Figure 3.26 illustrates the case when the initial steady-state is closer to the

bifurcation point, with the amplitude of potential perturbation spanning the

bistability area (see caption for parameter values). The system’s response is then

strongly dependent on the ac frequency, covering three cases: (1) when O is

sufficiently high, the system remains in the area of a lower branch of the isotherm

(Fig. 3.26a), (2) for intermediate values of O, after the initial perturbation, the

system switches permanently to the upper branch and remains there (Fig. 3.26b),

(3) for appropriately low O, the system’s response includes the switching between

the lower and upper branches of the isotherm (Fig. 3.26c).

In terms of the above analysis it becomes understandable that the impedance

spectra recorded for such conditions that saddle-node bifurcations occur, should

Fig. 3.26 Influence of the potential modulation frequency: y vs. x trajectory (bold lines), variation
with dimensionless time and power spectrum of the dimensionless current densityC calculated for

xi ¼ 0.2, dx ¼ 0.7, O ¼ 10 (a), 1 (b), 10�1 (c). Reprinted from [66], Copyright 1998, with

permission from Elsevier

3.6 Instabilities Involving Adsorption on Electrodes 161



exhibit discontinuities, i.e., sudden jumps in the system’s response when the ac

frequency is varied. Let us consider a few cases of such phenomena.

First, let us assume again that the initial steady-state is xi < 0 and far from the

bifurcation point. In a trivial case, when the ac amplitude is small enough, the

impedance response reflects the characteristics of this steady-state, being practi-

cally the linear response of the system toward ac perturbations, the same one,

irrespective of the direction of frequency changes (Fig. 3.27a).

In the second, more intriguing case, the ac amplitude is chosen so large, that the

bifurcation point is reached. Then, when the impedance measurement is performed

so that the ac frequency decreases, starting from relatively high values, the imped-

ance spectrum switches from the response corresponding to the initial steady-state

to the response illustrating oscillations around the two isotherm branches. Note-

worthy, also in this case the same Nyquist diagram are obtained for the increasing

and decreasing ac frequency (Fig. 3.27b).

Next, when the steady-state potential xi > 0 is close to the bifurcation point,

there are more possible shapes of impedance diagram, depending on whether the ac

amplitude reaches the bifurcation value. Again, if ac amplitude is sufficiently small,

a single spectrum is obtained, as in Fig. 3.28a, which shows two spectra, depending

on that whether the initial steady-state belonged to the lower (M) or upper (M0)
branch of the adsorption isotherm. When the ac amplitude is slightly higher, so that

Fig. 3.27 Simulated immittance diagrams: nonlinear immittance diagrams (dots) and linear

immittance diagrams (solid lines) calculated for xi ¼ �0.45, dx ¼ 0.2 (a), 0.95 (b) using the

Nyquist representation for the admittance diagrams and the Bode plot (modulus) for the imped-

ance diagrams. The frequency sweep direction is indicated by the arrows. Reproduced from [66],

Copyright 1998, with permission from Elsevier
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Fig. 3.28 Simulated immittance diagrams: nonlinear immittance diagrams (dots) and linear

immittance diagrams (solid lines) calculated for xi ¼ 0.2, dx ¼ 0.2 (a), 0.4 (b), 0.7 (c) using the

Nyquist representation for the admittance diagrams and the Bode plot (modulus) for the imped-

ance diagrams. The frequency sweep direction is indicated by the arrows. Reprinted from [66],

Copyright 1998, with permission from Elsevier
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one of the bifurcation point is crossed, the impedance spectrum depends on the
frequency sweep direction. Upon decreasing frequency, one obtains two discontin-

uous parts, the high-frequency part corresponding to the starting lower branch of the

isotherm, and the low-frequency part—to its upper branch (Fig. 3.28b1). On the

other hand, upon increasing frequency, the switch between the branches of the

isotherm occurs already for the first measurement frequency and one obtains a

single, continuous spectrum, characterizing the steady-state belonging to the upper

branch of the isotherm (Fig. 3.28b2).

Finally, ac potential amplitude can be so high that starting from the initial

steady-state value, the potential crosses both bifurcation points. Upon decreasing
the ac frequency, one obtains the impedance spectrum consisting of three discon-

tinuous parts (Fig. 3.28c1). The high-frequency (HF) part corresponds to lower

branch of the isotherm (when the initial steady-state was chosen, cf. Fig. 3.26a).

The intermediate-frequency part corresponds to the system’s behavior at the upper

branch of the isotherm (cf. Fig. 3.28b). Finally, the low-frequency (LF) part

corresponds to the large-amplitude switching of the system’s state between the

upper and the lower branches of the isotherm (cf. Fig. 3.28c). In turn, when

frequency sweep is reversed: LF ! HF, one obtains a different, two-part nonlinear
impedance diagram, corresponding to the switching from the large-amplitude,

relaxation oscillations of the system’s state at low frequencies to the small ampli-

tude, harmonic oscillations of the system’s state on the upper branch of the isotherm

(Fig. 3.28c2).

In order to complete the description of the above transitions, let us note that the

system could switch between the lower and the upper branches of the adsorption

isotherm at certain critical angular frequency o (or its dimensionless value O)
which therefore can be actually considered the bifurcation parameter for the electric

circuit. Detailed theoretical studies of the mechanism associated with this switching

indicated also the presence of a kind of saddle-node bifurcation that is called the

tangent bifurcation2 and thus is also related to the creation/annihilation of three

steady-states [67]. In order to illustrate this transition and understand the bifurcation

name, it is convenient to interpret the respective system’s evolution in terms of the

Poincaré (or first return) maps (see Chap. 1). These maps reveal that between

situations described by parts (c) and (d) a straight line of a unit slope becomes

tangent to the Poincaré map at a critical point (Fig. 3.29) when the pair of stable and

unstable fixed points comes together and disappears. Following this bifurcation, for

even lower frequencies, the trajectory tends toward the upper part of the isotherm,

whatever the value of the initial coverage ratio. In view of Fig. 3.29 this tangent

bifurcation is a second one, since the first one occurs at a bit higher frequency

Obif ¼ 0.77246, below which the switching between the isotherm branches occurs,

but provided that initial coverage value yi is greater than fixed point yf1 indicated
in Fig. 3.29a.

2 Tangent bifurcation is described also in Section 6.1.3.3.
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Fig. 3.29 Simulation of impedance measurements near the bifurcation frequency. First return

maps plotted for xi ¼ 0.4; dx ¼ 0.1; O ¼ 0.8 (a), O ¼ Obif ¼ 0.77246 (b), O ¼ 0.75 (c) and

O ¼ 0.73 (d). The third fixed point (yk � 1) is not shown. Reprinted from [67], Copyright 1999,

with permission from Elsevier

3.6 Instabilities Involving Adsorption on Electrodes 165



The transition from the harmonic oscillations to large-amplitude relaxation

oscillations was studied as a function of increasing ac perturbation amplitude.

Figure 3.30 shows that this transition was characterized with steep but continuous
increase of the oscillation amplitude, which resembles the so-called canard explo-

sion (see also Sects. 1.6 and 4.1), i.e., not a true, but only an apparent bifurcation.

Thus, sometimes it is necessary to distinguish between the terms “bifurcations” and

“transitions.”

Finally, one should report another important feature of the presented model—the

critical slowdown of the system’s dynamics which is due to the tangent bifurcation

[67]. In practice it means that when the impedance measurement frequency

approaches the tangent bifurcation frequency, the transient conditions become

very long and thus require appropriate delay before impedance data are collected.

Figure 3.31 shows this effect in terms of the model considered above.

3.6.2.2 The Volmer–Heyrovský Mechanism

Among other applications of impedance to the stability analysis of electrochemical

systems, one should note theoretical paper by Berthier et al. [68] who described the

multisteady I–E curves for the Volmer–Heyrovsky mechanism, which in classical

electrochemistry has been used to explain the evolution of hydrogen [69] and

chlorine [70], including the hydrogen evolution associated with iron electrodeposi-

tion [71]. For the oxidation reaction this mechanism consists of the following steps:

X! Xads þ e (3.114)

Xþ Xads ! Productþ e (3.115)

Fig. 3.30 Transition between low-amplitude harmonic oscillations and high-amplitude relaxation

oscillations. x1 ¼ �0.45, O ¼ 0.1, dx ¼ 0.9164 (a), 0.9168 (b), 0.916803 (c), 0.91681 (d).

Reprinted from [67], Copyright 1999, with permission from Elsevier
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The analysis was performed for the assumed irreversibility of both charge-

transfer steps and the adsorption of surface active species was described in terms

of the Frumkin isotherm, with strong, lateral attractive interactions between

adsorbed particles, expressed with the overcritical (g ¼ �5) interaction parameter.

The faradaic impedance diagrams were calculated and the system’s stability was

analyzed in terms of zeros and poles (see next section). Also linear sweep

voltammograms for the above mechanism were calculated, which showed the

hysteresis in the I–E dependence upon cyclic variation of E, in a manner similar

to the experimental characteristics of the pitting corrosion of metals, in the presence

of depassivating species. The reader interested in particular detailed results of this

analysis is advised to consult an original reference [68].

3.6.2.3 Two-Step Electrode Mechanism with Adsorbed Intermediate

Electrocatalytic mechanisms with the adsorption of the intermediate obeying the

Frumkin isotherm with the strong lateral interactions, can potentially offer quite

complicated dependences between the steady-state electrode coverage y and the

electrode potential. Such a case was analyzed by Sadkowski [72, 73] for the two-

step electrochemical mechanism:

Fig. 3.31 Critical slow down near the bifurcation angular frequency: xi ¼ 0.4; dx ¼ 0.1,O ¼ 0.7

(a); 0.75 (b); 0.77 (c); 0.771 (d); 0.7725 (e), 0.7726 (f). Reprinted from [67], Copyright 1999, with

permission from Elsevier
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A ! Bads þ n1e (3.116)

Bads
! Cþ n2e (3.117)

which summarize into the overall reaction:

A ! Cþ ne (3.118)

where n ¼ n1 + n2
From the studies of the role of variation of different parameters of the model, we

shall choose the case of varying lateral interaction parameter g, increasing from

zero (as for the Langmuir isotherm) toward eight, i.e., crossing the critical value

of 4, above which the hysteresis in the Frumkin response is observed (note that,

contrary to earlier dependences, in this case the parameter g was defined so that its

positive value means attractive interactions). Figure 3.32 shows that y–e (with e
meaning the dimensionless potential) dependences transform then from rather

trivial shapes to the “mushroom” ones, exhibiting double hysteresis (for g > 4),

finally splitting (at g ¼ 6) into the “isolas.” One should note that isotherms of such

complex shapes can contribute to the formation of surface patterns on the electrodes

(cf. Chap. 1, volume II).

3.6.2.4 The Electrocatalytic Koper–Sluyters Model

The original, most general electrocatalytic Koper–Sluyters model was defined by

Eqs. (3.56)–(3.58). It will be now analyzed for the case of strong attractive

interactions of adsorbed particles, for a true potentiostatic case, i.e., at a given

fixed potential E. Accordingly, Eq. (3.56) vanishes. One can further extend this

model by introducing the linear change of the imposed electric potential, and

observe the occurrence of appropriate bifurcations at respective critical potentials.

The potential-independent kinetics of adsorption and desorption is involved in

the model, with the rate constants defined by Eqs. (3.104) and (3.105), respectively.

Note, however, that below, compared to Eq. (3.102): (1) the coefficient g of lateral

interactions in the adsorbed layer is replaced by symbol g and (2) this coefficient is

positive for attractive interactions. The symmetry factor for the activation barrier of

the adsorption/desorption processes is equal to 0.5 (symmetrical barrier).

It is further assumed that the rate constant for the charge-transfer step, ke, does
not depend on y, so ke(E,y) will reduce to ke(E). The only dynamic variables are

thus: the surface concentration u of a reactant in the solution and the electrode

coverage with this adsorbed species:

f ðu; yÞ ¼ du

dt
¼ �k0a expð0:5gyÞuð1� yÞ þ k0d expð�0:5gyÞyþ 1� u (3.119)

gðu; yÞ ¼ b
dy
dt
¼ k0a expð0:5gyÞuð1� yÞ � k0d expð�0:5gyÞy� keðEÞy (3.120)
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From the condition du/dt ¼ dy/dt ¼ 0 one determines the parameters of the

steady-state (uss, yss) and their stability can be found from the properties of the

respective Jacobian matrix:

J ¼

@f

@u

� �
ss

@f

@y

� �
ss

b�1
@g

@u

� �
ss

b�1
@g

@y

� �
ss

2
6664

3
7775 (3.121)

Fig. 3.32 Steady-state y vs. e relations for various values of the interaction parameter g (hetero-

geneity factor) shown in plots’ panes. Other parameters: standard electron-transfer rate constants

k1 ¼ 1, k2 ¼ 10, numbers of electrons exchanged n1 ¼ n2 ¼ 1, transfer coefficients

a1 ¼ 0.37922, a2 ¼ 0.5, dimensionless formal potentials of [Eqs. (3.116) (3.117)]: e1 ¼ 1,

e2 ¼ �1. Value of a1 ¼ 0.37922 represents the transition from “mushroom” to “isola” shape of

the steady-state isotherm for g ¼ 6 (in this case positive g corresponds to attractive lateral

interactions in the adsorption layer). Reprinted from [73], Copyright 2004, with permission from

Elsevier
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The saddle-node bifurcation (Det (J) ¼ 0) occurs if:

uk0a expð0:5gyÞ½1� 0:5gð1� yÞ�
þ k0d expð�0:5gyÞ½1� 0:5gy� þ ke þ kek

0
a expð0:5gyÞð1� yÞ ¼ 0 (3.122)

and a Hopf bifurcation (Tr(J) ¼ 0) takes place if:

uk0a expð0:5gyÞ½1� 0:5gð1� yÞ� þ k0d expð�0:5gyÞ½1� 0:5gy�
þ ke ¼ �b½1þ k0að1� yÞ expð0:5gyÞ� ¼ 0 (3.123)

provided that Det(J) > 0. Analysis of this condition shows that oscillations are

possible, as of course one should expect, only for positive values of parameter g,
i.e., for attractive lateral interactions in the adsorption layer. Figure 3.33 shows

exemplary y–E and J–E dependences for the bistable and oscillatory regimes,

including the bifurcation diagram, showing the borderlines of these regimes in

the E–g coordinate system.

Fig. 3.33 Illustration of the solution behavior of [Eqs. (3.119) (3.120)]; (a) steady-state solutions

of y and current density J for g ¼ 5; (b) as in (a) but for g ¼ 8; (c) potential sweep at 0.016 mV s�1

for g ¼ 8, showing the regions of spontaneous oscillations; (d) bifurcation map showing the

different regions of monostability, bistability and oscillations in the g–E plane. Triangles and

squares in (a) and (b) indicate Hopf and saddle-node bifurcations, respectively. Other parameter

values are ka ¼ 10, kd ¼ 100, b ¼ 0.01, k0e ¼ 0:02.and f ¼ 38.7. Reprinted from [33], Copyright

1994, with permission from Elsevier
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This variant of the Koper–Sluyters electrocatalytic mechanism was later analyzed

also by Berthier et al. with respect to the Hopf bifurcations. In the work [74] they have

shown that, depending on the increasing distance between the actual electrode poten-

tial and the potential corresponding to the Hopf bifurcation (dE ¼ Es � EHb1), two

different types of behavior can be observed: (1) when the potential exceeds only

slightly the bifurcation value (e.g., Es ¼ 0.2075673, dE ¼ Es � EHb1 ¼ 3 � 10�6),
the limit cycle is born via the supercritical Hopf bifurcation and (2) when the potential

is only slightly higher than the previous value (e.g., Es ¼ 0.2076), the oscillations are

initially sinusoidal, with the amplitude quickly increasing and at certain time there is a

fast transition from small harmonic oscillations to large amplitude, stable relaxation

oscillations (Fig. 3.34).

Such sequence of events, as the authors indicate [74] resembles the “canard

explosion” (mentioned also above and in Sects. 1.6 and 4.1) and considered only

apparent bifurcation. Finally, when the electrode potential is even higher, only the

relaxation oscillations are observed, which set in as high-amplitude ones
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Fig. 3.34 (a, b) Phase plane portraits and (c, d) changes of current J with time. Es ¼ 0.2076;

harmonic oscillations for short times (upper row) and relaxation oscillations for long times (lower
row). dy ¼ du ¼ 10�5. Dashed curve: slow manifold. Reprinted from [74], Copyright 1997, with

permission from Elsevier
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immediately. These behaviors are collected in the respective bifurcation diagrams,

shown in Fig. 3.35.

In addition to the analysis under true potentiostatic conditions, there was also

considered a case of linear sweep voltammetry, when the dynamics of the imposed

potential variations interacts with the inherent dynamics of the electrochemical

systems (with ohmic potential drops also neglected). The general phenomenon of

delay in occurrence of the Hopf bifurcation, i.e., in this case the delay in the value of

the electrode potential where oscillations set in, was reported, in accordance with

theoretical earlier reports by Erneaux et al. [75, 76] and more recent experimental

studies, by Koper and Abuda, of Ni dissolution in aqueous H2SO4 medium [77].

Also, in view of the above characteristics of the model system considered it is

intuitively understandable that transient harmonic oscillations could be observed

only for sufficiently slow scan rates, while for faster scans only the onset of

relaxation oscillations was reported.

Later, Berthier et al. [78, 79] have reanalyzed the conditions for the Hopf

bifurcation in the Koper and Sluyters model. This approach involved their own

derivation of the impedance response which led them to the conclusion that the

negative faradaic impedance (Zf(s) < 0, where s ¼ jo), so important for diagnosis

of the electrochemical system’s stability, does not necessarily mean the negative

charge-transfer resistance (Rct), contrary to earlier suggestions, also described in the

present work. The key relationship is expressing the faradaic impedance, Zf(s), as
the product of Rct and the function F(s):

ZfðsÞ ¼ Rct � FðsÞ (3.124)
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Fig. 3.35 Bifurcation map showing the different regions of oscillations in the g, y and g, E planes.

EVr: real eigenvalues, shaded area: complex eigenvalues. H Hopf bifurcation, SN saddle-node

bifurcation. Reproduced from [74], Copyright 1997, with permission from Elsevier
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In terms of such a definition, quite formally, the negative impedance requires

only different signs of Rct and F(s). Berthier et al. [79] claim that the charge-transfer

resistance Rct in the Koper and Sluyters model is always positive even when the

steady-state point corresponds to a Hopf bifurcation, so the negative impedance Zf
must be caused by the negative sign of F(s). In a generalized case of a multistep

electrode process, consisting of R steps:

XN
i¼1

rijXi
�!koj �
krj

XN
i¼1

pijXi þ nje j ¼ 1; . . . ;R (3.125)

the rate of each step is expressed as

vjðtÞ ¼ koj
YN
i¼1

XiðtÞrij � krj
YN
i¼1

XiðtÞpij j ¼ 1; . . . ;R (3.126)

and, accordingly, the total faradaic current density is given by

jfðtÞ ¼ F
XR
j¼1

njvjðtÞ (3.127)

The perturbation of the current density, Djf(t), resulting from the perturbation of

the input potential, DE(t), is given by

DjfðtÞ ¼ jfðtÞ � jf ¼ @jf
@E

� �
DEðtÞ þ

XN
i¼1

@jf
@Xi

� �
DXiðtÞ (3.128)

and after applying the Laplace transformation (where s ¼ jo):

DjfðsÞ ¼ @jf
@E

� �
DEðsÞ þ

XN
i¼1

@jf
@Xi

� �
DXiðsÞ (3.129)

Accordingly, the complex faradaic impedance Zf(s) is defined as

ZfðsÞ ¼ DEðsÞ
DjfðsÞ ¼ Rct þ

XN
i¼1

ZXi
ðsÞ (3.130)

where the charge-transfer resistance:

Rct ¼ @jf
@E

� ��1
¼ F

XR
j¼1

nj
@vj
@E

� �" #�1

¼ F
XR
j¼1

nj
@koj
@E

� �YN
i¼1

XiðtÞrij� @krj
@E

� �YN
i¼1

XiðtÞpij
" #( )�1

(3.131)
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and

ZXi
ðsÞ ¼ � ð@jf=@XiÞ

ð@jf=@EÞ �
DXiðsÞ
DjfðsÞ ¼ �Rct

@jf
@X

� �
� DXiðsÞ

DjfðsÞ (3.132)

The function F(s) in the product (3.124) is thus defined by

FðsÞ ¼ 1�
XN
i¼1

@jf
@Xi

� DXiðsÞ
Djf ðsÞ

� �
(3.133)

In fact, the contribution from Berthier et al. expresses the reservation against,

otherwise quite popular for its mathematical usefulness, but physically unclear

decrease of the rate constant of the charge-transfer process with increasing poten-

tial, i.e., against the classical Butler–Volmer model. The general conclusion is that

in view of the above analysis, the presence of a Hopf bifurcation is not always

related to a negative sign of the charge-transfer resistance Rct [79].

3.7 The Advantages of Zero–Pole Representation of Impedance

for the Stability Analysis

For a more general treatment of the stability of electric circuits it is convenient to

define the impedance in a complex frequency domain, as the ratio of the Laplace

transforms of the perturbations DE(t) and DI(t):

ZðsÞ ¼ DEðsÞ
DIðsÞ (3.134)

where

DEðsÞ ¼
ð1
0

DEðtÞ expð�stÞdt (3.135)

DIðsÞ ¼
ð1
0

DIðtÞ expð�stÞdt (3.136)

and s ¼ s þ jo. The perturbation DE(t) and DI(t) are not necessarily a periodic

(sine) function, but can be also a step function (or of any other Laplace transform-

able form). This approach appears particularly useful, when it is not possible to find

a unique relevant equivalent circuit or the numerical fitting of the values of

parameters of actual circuit appears to be unsuccessful. It is then convenient to

represent the impedance of the circuit in terms of zeros (i.e., the complex angular
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frequencies, for which the total impedance is zero) and poles (i.e., the complex

angular frequencies for which impedance is infinite, or equivalently the admittance

is zero).3 In their important analysis, Naito et al. [80], continuing Koper’s intuitive,

graphical diagnosis of bifurcations from impedance data, have performed analytical

derivations showing that the complex impedance Z(s), expressed as a function of a

complex variable s ¼ s þ jo, can be represented as the ratio of characteristic

polynomials of the Jacobian matrices of linearized system under potentiostatic

control and under galvanostatic control. It was thus shown that the zeros of the

impedance are equal to the eigenvalues of the Jacobian matrix of the system under

potentiostatic control, while the poles of the impedance are equal to the eigenvalues

of the Jacobian matrix for the galvanostatic control. Those zeros or poles of the

impedance function Z(s) correspond thus to the solutions of the (linearized) differ-

ential equations governing the potentials and the current in the circuit, which are

expressed in terms of the exponential form expðstÞ ¼ exp ðs
 joÞt½ �. Analogies
with the predictions of the mathematical linear stability analysis are evident: the

electric circuit will exhibit sustained oscillations, initially of frequency o, when
s � 0 and o > 0 (see also, de Levie [27]). Figure 3.36 illustrates schematically,

how the current response, following the perturbation of the potential of the

linearized electric circuit, depends on s and jo components of s. Of course, e.g.,
zero of impedance Z(s) means that the resonance of the circuit characteristics with

the externally applied ac perturbation occurred, and in this way we come back to the

same principle of bifurcation diagnosis from impedance spectra, as given in

Sect. 3.3.2.

The advantage of expressing impedance in terms of zeros and poles for stability

analysis was more recently recommended by Sadkowski et al. in several papers [13,

15, 81, 82] which will be briefly summarized below. In such representation, the

Fig. 3.36 The various

transient solutions of DI(t) in
Laplace’s plane. Reprinted

from [35] with permission of

John Wiley & Sons, Inc.

Copyright 1996

3A pole of the complex function f(z) is the point c meeting the condition that f(z) approaches
infinity, when z approaches c; complex zero of f(z) means the point at which f(z) ¼ 0.
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impedance is expressed as the ratio of two polynomials of the nth order, where the

minimum value of n corresponds to the minimum number of capacitances Ci (hence

also of the time constants RiCi) in the equivalent circuit and can be increased for

enhancement of the goodness of fit.4 Equivalent representation of these

polynomials are possible:

ZðsÞ ¼ Zð1Þ s
n þ an�1sn�1 þ . . .þ a1sþ a0
sn þ bn�1sn�1 þ . . .þ b1sþ b0

¼ Zð1Þ ðs� z1Þðs� z2Þ � . . . ðs� znÞ
ðs� p1Þðs� p2Þ � . . . ðs� pnÞ (3.137)

where Z(1) � Rs, while zi are zeros, and pi the poles of the impedance, in the units

of angular frequency (rad s�1). An important advantage is that in terms of

Eq. (3.137) one can represent the impedance response of the circuit generated not

only with a periodic (ac) perturbation, but also the response generated by the pulse

(potential or current) response.

In order to illustrate the application of the poles and zeros representation to the

diagnosis of system’s stability, let us refer to exemplary experimental data of Cu

electrodissolution in CuSO4 þ H2SO4 medium, reported by Sadkowski [81, 82].

The impedance spectrum shown in Fig. 3.37, obtained for Cu electrode before

anodic pre-polarization, is typical for the hidden real negative resistance,

manifesting itself for the range of intermediate frequencies, with the zero-frequency

impedance (dc slope) remaining positive [82]. In turn, Fig. 3.38 shows the spectrum

after anodic pre-polarization in which negative real impedance does not manifest

itself.

At this place it is useful to become familiar with the following notation for both

types of the electrochemical systems. For the “trivial” systems (like type II), i.e.,

with only positive resistance (and positive capacitances and inductances),

guaranteeing unconditional stability, the phase angle is confined to the (�90�,
90�) range, and this is a definition for the so-called minimum-phase (mp) systems.

In other words, their impedance spectra must be confined to the right-half of the

�Z00 vs. Z0 coordinate system. For the systems, like system I above, the phase angle

exceeds the range of (�90�, 90�) and such systems are therefore classified as non-
minimum phase (nmp) ones (see Fig. 3.39). Since the phase angle can then attain

any value, the impedance spectrum of such system can penetrate all quadrants of

the �Z00 vs. Z0 coordinate system.

The polynomial function for Z(s) was fitted to both impedance spectra from

Figs. 3.37 and 3.38, and the resulting zeros and poles are collected in Table 3.1.

In the absence of the additional (Rad) ohmic resistance (rows I and II), when the

serial resistance Rs means only the inherent resistance of the electrolytic cell, all

4 The orders of the polynomials in the numerator (n) and in the denominator (m) meet the

conditions: m ¼ n, for typical case of dc conducting electrodes or m ¼ n þ 1 for “blocking

electrodes” of capacitive character [15]. Here we always assume case: n ¼ m.
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zeros are real and negative, so the system is stable under potentiostatic conditions,

with all perturbations of the steady-state decaying exponentially. For system II it

should be obvious a priori, since no real negative resistance was detected. If the

serial resistance of system I is increased to ca. 2,010 Ω, then two zeros become

complex numbers, with the real positive parts indicating the instability, and with the

non-zero imaginary parts, indicating that this instability is of the oscillatory nature,

Fig. 3.37 Cu electrodissolution in CuSO4 + H2SO4 medium, type I system. Impedance plots at

E ¼ 400 mV before anodic pre-polarization. Circles—experimental data; solid line—fitted Z(s)
function recalculated to zero pole representation according to Eq. (3.137) with parameters for set I

in Table 3.1. Data showing NDR. Top: complex impedance coordinates: �Im(Z) vs. Re(Z);
bottom: Bode amplitude coordinates: log (|Z|/Ohm) vs. log (f/Hz). Reprinted with permission

from [82]
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under potentiostatic conditions (in the sense of constant external voltage U). On the
other hand, for rows I and I þ Rad, complex poles with real positive and non-zero

imaginary part indicate oscillatory instability under galvanostatic conditions, as it

could be expected for the system with a hidden negative resistance. Note that upon

addition of extra serial resistance, the poles of system I remained unchanged, so the
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Fig. 3.38 Cu electrodissolution in CuSO4 + H2SO4 medium, type II system. Impedance plots at

E ¼ 400 mV after anodic pre-polarization. Dots—experimental data, solid line—fitted function

with parameters for set II in Table 3.1. Data showing only positive differential resistances. Top:
Complex impedance coordinates:�Im(Z) vs. Re(Z). Bottom: Bode amplitude coordinates: log (|Z|/
Ohm) vs. log (f/Hz). Reprinted with permission from [82]
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oscillatory instability under galvanostatic conditions remained intact due to this

change in the systems characteristics.

If the above analysis of the system’s stability seems to be a bit implicit, more

convincing can be a direct presentation of the current (or potential) course as a

function of time, occurring upon applying the potential step Estep or current step

Istep, for the impedance parameters collected in Table 3.1:

IðtÞ ¼ L�1
Estep

sZðsÞ
� �

(3.138)

EðtÞ ¼ L�1
IstepZðsÞ

s

� �
(3.139)

where L�1 means the inverse Laplace transformation (from the complex frequency

domain to time domain), Istep ¼ 10�5 A, Estep ¼ 1 V. Results of such calculations

are shown in Fig. 3.40.

The above results for Cu–CuSO4, H2SO4 system were used for practical verifi-

cation of the suggestion [13, 83] that for the systems of type under study
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Fig. 3.39 Bode plots |Z| ohm and phase angle (theta, argument) for the type I system, illustrated

by impedance spectrum in Fig. 3.37. Reproduced from [13] by permission of The Electrochemical

Society
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Table 3.1 Zero–pole representation according to Eq. (3.137) of the electrochemical impedance

data shown in Fig. 3.37 (set I) and in Fig. 3.38 (set II)

Dataset/
parameter

Rs/O z1 z2 z3 p1 p2 p3

I 9.8 �2645 �193 �8.77 �225.4 7.92 � 34.8j 7.92 + 34.8j
II 12.8 �2618 �182 �6.98 �255.1 -3.47 � 28.5j �3.47 + 28.5j

I + Rad 2009.8 �227.4 2.26 + 36.7j 2.26 � 36.7j �225.4 7.92 � 34.8j 7.92 + 34.8j

Dataset I + Rad is for dataset I with resistance Rad ¼ 2,000Ω added in series. Dimensions of zi and
pi: rad s�1 [82]

Fig. 3.40 Potential-step (DE ¼ 1 V) current responses (a, c, e) and current-step (DI ¼ 10�5 A)
potential responses (b, d, f) calculated for impedances in zero–pole representation as in

Eq. (3.137). (a, b)—dataset I in Table 3.1; (c, d)—dataset II in Table 3.1. (e, f)—dataset I with

additional resistance Rad ¼ 2,000 O added in series. Reprinted with permission from [82]
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Fig. 3.41 (Thin solid lines) raw and (dots) KK-transformed immittance data for the electrode at

E ¼ 400 mV without previous exposure to higher potentials. Raw data as in Fig. 3.37. (a) Data

KK-transformed as impedance compared with raw data in impedance form: Re(Z) plots with
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(nmp-type), i.e., stable under potentiostatic conditions, but exhibiting instability

under galvanostatic conditions, not the impedance, but the admittance data should

be involved in the Kramers–Kronig transformation, if this transformation is to be

used for their validation. Figure 3.41 is an illustration of that verification.

Finally, according to Sadkowski [15], the stability analysis in terms of zeros and

poles of impedance can be developed into certain generalized classification of

electrochemical dynamic systems which can be compared with the one proposed

earlier by Strasser et al. and summarized in Sect. 3.5. The systems stable under

potential (voltage) control were taken into account, for which the impedance

spectra were calculated in terms of the second order polynomials:

ZðsÞ ¼ Zð1Þ s
2 þ a1sþ a0
s2 þ b1sþ b0

¼ Zð1Þ ðs� z1Þðs� z2Þ
ðs� p1Þðs� p2Þ (3.140)

The following cases have been proposed:

Case 1. All zeros and poles of impedance negative, meaning unconditional stability

of the mp-type system.

Case 2. Positive higher frequency pole, negative lower frequency pole, and two

zeros, meaning the nmp-type system with explicit NDR region foro ! 0, stable

under potentiostatic conditions, but unstable under galvanostatic conditions.

Case 3. Positive lower frequency pole, negative higher frequency pole and all zeros,

meaning the nmp system, stable under potentiostatic conditions, unstable under

galvanostatic conditions (of the impedance characteristics typical of active–passive

transition in some passivating systems)

Case 4. Two poles positive, all zeros negative, meaning the system of nmp type

with the hidden negative resistance, i.e., recorded only for intermediate range

of frequencies; the system stable under potentiostatic and unstable under

galvanostatic conditions.

In accordance with the previously mentioned applicability of the K–K transfor-

mation, one should add that for case I (unconditionally stable mp system) for the

validation of impedance data either the impedance or admittance data could be

successfully taken. For cases 2, 3 and 4 (i.e., various nmp-type systems) the K–K

transformation was successful only if applied to admittance data.

The reader interested in more advanced treatment of stability of electric circuits

in electrochemistry is advised to consult the work of Koper [35], the pioneer work

of de Levie [27], and references cited there.

Fig. 3.41 (continued) single maximum (dots, KK transformed) or single minimum (solid line, raw
data): Im(Z) plots switching from + to �. (b) KK transformed as admittance compared with raw

admittance data: Re(Y) monotonically rising plots at high frequency; Im(Y) peaked plots. (c) KK

transformed as admittance and recalculated to (dots) impedance to compare with (solid line) raw
impedance data. Note clear deviation of raw and KK-transformed as impedance data in (a) (as

expected for the non-minimum phase system), but quite good agreement of raw and admittance

KK-transformed data in (c). Reproduced from [13] by permission of The Electrochemical Society
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3.8 Application of the Dynamic Electrochemical Impedance

Spectroscopy to Electrochemical Instabilities

Typical methodology of EIS usually involves, as a strong requirement, perturbation

of the stable steady-state, so direct impedance studies of the system being in the

oscillatory regime seem to be not possible. An eventual attempt to make such

measurements would have to shorten considerably the duration of the sampling

time, in order to measure the instantaneous impedance. However, this seems to

remain in conflict with the requirements of low-frequency conditions, in the typical

experimental approach which is the Frequency Response Analysis (FRA). There-

fore it is noteworthy to describe several methodologies of the analysis of the

oscillating response that have been recently proposed by Darowicki et al. (for

introduction, see, e.g., [84]). The theoretical background of the principles of this

analysis is not limited to electrochemical systems, and can be applied to any non-

stationary response (EEG, electrocardiogram, or the Belousov–Zhabotinsky

process).

Historically, the reduction of measurement time to a few seconds could be

attained by application of the Fast Fourier Transform (FFT), as suggested by

Popkirov et al. [85, 86], but the requirement of attaining the steady-state prior to

the ac perturbation is maintained. Hazi et al. [87] have suggested to use frequency

compositions as the perturbation signals with various frequency components

applied one by other, while Park et al. [88, 89] have proposed to apply the potential

step as the perturbation signal followed by dedicated postprocessing. Barsoukov

et al. [90] have suggested to apply the current pulse or interrupt, followed by the

processing of the response in terms of Laplace transform. In turn, Ragoisha and

Bondarenko [91] have proposed to use the stream of wavelets in a limited frequency

range. Recently, Sacci and Harrington have described the hardware and software

for the relevant technique, named dynamic electrochemical impedance spectros-
copy (DEIS) [92].

The variant of DEIS technique briefly described here [93–95] combines the

pseudowhite noise and short time Fourier transform (STFT) analysis to obtain

impedance spectra of potentiodynamic electrochemical processes. Accordingly,

the perturbation signal is a package of a sinusoidal voltage signals:

U ¼ U0

exp½�jðo1tþ ’1Þ�
exp½�jðo2tþ ’2Þ�
exp½�jðontþ ’nÞ�

2
4

3
5 (3.141)

with the amplitude U0 equal for all components, but the frequencies oi and phase

angles ’i chosen randomly, with oi meeting the condition that the investigated

process undergoes relaxation in the frequency range considered. The resulting

current response can be represented in the form

I ¼
I1 exp½�jðo1tþ ’1 þ f1Þ�
I2 exp½�jðo2tþ ’2 þ f2Þ�
In exp½�jðontþ ’n þ fnÞ�

2
4

3
5 (3.142)
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indicating that the amplitudes of the individual components of the current, as well

as the phase angles are not identical, as dependent on the investigated process.

Generally, the decomposition of these current components and their comparison

with the components of the voltage signal allows one to calculate the impedance.

However, if the electrode process is not stationary (e.g., in a simplest case if it is

driven by a potential linearly changing in time), the decomposition of the current

response package by means of the regular Fourier transformation leads to an

averaged result. The decomposition closer to an instantaneous response requires

thus another approach—the short time Fourier transform. Without going into

mathematical details which can be found in the literature [96] we shall briefly say

here that this variant of Fourier transformation involves the analysis of the non-

stationary signal, at time t of its development, in the Gaussian window s(t):

sðtÞ ¼ exp � l
2
ðt� tÞ2

� �
(3.143)

where l is an appropriate parameter and t denotes time. The choice of the

appropriate Gaussian window for given signal is a separate problem. The STFT

approach involves cutting off a signal portion at time t by this window (determined

by value of l) and performing for this portion the regular Fourier transformation.

The width of the window is defined as: < t � s(t), t þ s(t) >, with s meaning the

standard deviation of the Gaussian peak in the domain of time:

l ¼ 1

2s2ðtÞ (3.144)

In other words, within the (narrow enough) Gaussian window the signal is

assumed to be stationary and thus appropriate for the regular Fourier analysis.

The next window is placed at t þ s(t). Repeating this procedure for subsequent

windows on the time axis produces the dependence of not only the frequency, but

also of the amplitude as a function of time. The successful application of the STFT

approach to the impedance analysis of the non-stationary electroreduction of Cd(II)

was later described by Darowicki and Ślepski for the dropping mercury electrode

[95] and the hanging mercury electrode [97]. DEIS method was also applied to the

studies of the cracking of the passive layer on the stainless steel surface [98].

In practice, application of the above procedure reveals several limitations, so for

the analysis of the non-stationary electrochemical oscillations a more sophisticated

approach, involving the joint time–frequency distribution—the Wigner–Ville dis-

tribution (WVD), was later developed by the same group [99]. One of the

advantages of applying the WVD is the absence of the analyzing window (replaced

by the autocorrelation function of the signal) and the higher time–frequency

resolution, compared to the SFFT approach. However, there are also some

disadvantages of the WVD approach, like, e.g., generation of artificial cross-

terms, which makes the signal analysis rather difficult. Additional procedures
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involve application of various filtering kernels (e.g., Choi–Williams distribution).

Figure 3.42 shows the experimentally obtained oscillatory course of the dissolution

of Cu electrode in NaCl þ H2SO4 medium, while Figs. 3.43 and 3.44 compare the

results of the analysis of those oscillations in terms of the STFT approach and

Choi–Williams distribution, respectively.

More recently Darowicki and Ślepski [100] have developed a method, in which

the perturbation is caused by the non-stationary “chirp-type” voltage signal of a

frequency depending exponentially on time (see Fig. 3.45).

The STFT was again applied to the voltage perturbation and current response,

which analysis allowed the determination of impedance spectrum from the follow-

ing relation (for the given window determined by g function):

ZðjoÞ ¼ STFTfuðt)g
STFTfiðt)g

� �
g
¼ STFTfuðt)g STFT*fiðt)g

STFTfiðt)g STFT*fiðt)g
� �

g

¼ Zg
0ðoÞ þ jZg

00ðoÞ (3.145)

where Z(jo) is the impedance value, STFT{u(t)} is the STFT transform of voltage

perturbation signal, STFT{i(t)} is the STFT transform of the current response

Fig. 3.42 Exemplary records of current oscillations accompanying the anodic dissolution of

copper in the 0.3 M NaCl + 0.5 M H2SO4 solution: full record (a) and enlarged record in time

window 445–545s (b). Anodic polarization 380 mV vs. Hg/Hg2Cl2 reference electrode. Sampling

frequency 30 Hz. Reprinted from [99], Copyright 2003, with permission from Elsevier

3.8 Application of the Dynamic Electrochemical Impedance Spectroscopy 185



signal, STFT*{i(t)} is the coupled transform of current response signal. The

method was later optimized by the same researchers [101]. All techniques of this

kind form a basis for future analysis of non-stationary oscillatory signals, including

the determination of time-dependent impedance spectra.
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Fig. 3.44 Choi–Williams distribution of the signal presented in Fig. 3.42. Kernel width parameter

a ¼ 1. Reprinted from [99], Copyright 2003, with permission from Elsevier

Fig. 3.43 Normalized STFT spectrogram of the signal presented in Fig. 3.42. Hanning window of

length 128 samples applied. Reprinted from [99], Copyright 2003, with permission from Elsevier
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3.9 Impedance Spectroscopy and Electrochemical Pattern

Formation

In the previous sections, analysis of electrochemical instabilities did not take into

account the effect of pattern formation on the shape of impedance spectra. The ac

response was then interpreted in terms of ideally homogeneous electrode surfaces.

In fact, only very recently Bonnefont, Krischer et al. [102] have outlined the

application of EIS to studies of pattern formation in electrochemical systems. The

model calculations refer to real experimental system: CO bulk electrooxidation on

Pt electrodes which exhibits an S-shaped current–potential characteristics (S-NDR

region) (see Chap. 2). Under galvanostatic control, due to interaction of an S-NDR

characteristics with the global coupling induced by galvanostatic conditions, self-

organized stationary patterns emerge on the Pt surface (cf. Sect. 2.7, volume II).

These patterns consist of two stationary domains with low and high CO coverages,

corresponding to high and low electrochemical reaction rates, respectively (the

electrode areas with high reaction rate will be further called “active” ones)

(Fig. 3.46).

Using the model for the CO electrooxidation, elaborated earlier by Koper et al.

for the homogeneous electrode surface [103] and extended now for the inhomoge-

neous case, Bonnefont et al. [102] have calculated the respective impedance spectra

under conditions of current modulation. Their comparison for the homogeneous and

patterned states is shown in Fig. 3.47.

The spectrum for the homogeneous case covers a relatively wide range of

frequencies of the modulated current, while the plot for the heterogeneous (spatially

Fig. 3.45 Example of “chirp” signal of exponential characteristic. Reprinted from [100], Copy-

right 2004, with permission from Elsevier
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extended) model is limited to very low frequencies. The comparison of both spectra

shows that the zero frequency negative impedance is observed only in a homoge-

neous case. Upon increasing ac frequency, at f � 1.4 Hz, the impedance curve in

Fig. 3.47a intersects the imaginary axis and further course, typical of inductive-

capacitive loop, indicates only positive values of real part of impedance. The

disappearance of the NDR at 1.4 Hz means that at this frequency at least one

process involved in the autocatalytic feedback loop is drastically affected, i.e., it

does not have sufficient time to take place. In turn, and it was a surprising result, for

the spatially extended case (Fig. 3.47b), the negative real impedance was not

observed for the frequencies, for which the homogeneous model exhibited a

negative impedance real part. Instead, the impedance modulus |Z(o)| tended to

zero at very low frequencies.

In order to explain this discrepancy in impedance spectra, the model spatiotem-

poral evolution of CO coverage, like that shown in Fig. 3.48 was examined.

This figure, corresponding to a very low frequency f � 0.03 Hz shows that

synchronously with the applied current the relative sizes of the CO domains are

modulated, the size of the active domain following linearly the applied current

modulation, at nearly constant electrode potential (<1 mV amplitude). Hence, one

concludes that the impedance response at such low frequency is essentially through

a change of the relative areas of the CO domains and, consequently, the modulus of

the interfacial impedance tends to zero at very low frequencies, with no negative

real part of the impedance observed in the simulated impedance spectra. This

conclusion is concordant with experimental observation that the electrode potential

is nearly independent of the applied current when stationary CO patterns form on

the electrode surface [104]. A closer inspection of data from Fig. 3.48 shows a slight

modulation of yCO which is approximately in anti-phase with the electrode potential

and p/2-phase shifted with respect to the imposed current (or the active size

modulation).

x / cm

Time

0 0.97

0.34

θCO

1

Fig. 3.46 Position–time plot of the CO coverage for I0 ¼ 2.0 mA simulated with the spatially

extended model of CO electrooxidation. Reprinted from [102], Copyright 2009, with permission

from Elsevier
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For intermediate modulation frequencies (0.03 Hz < f < 1.4 Hz), the current

affects domain size expansion and contraction, leading to an increase of the

electrode potential response amplitude and the dependence of the phase shift on

this frequency, causing an increase in modulus of the interface impedance. The

phase shift between electrode potential and imposed current becomes lower than

p/2, giving rise to an “inductive loop” in the Nyquist plot.
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Fig. 3.47 Nyquist diagrams representing the interface impedance calculated with the homoge-

neous model (a) and with the spatially extended model (b) of CO electrooxidation, for f ¼ 0.0078,

0.025, 0.031, 0.078, 0.157, 0.314, 0.629, 0.786 and 1.259 Hz at an applied current value of

I0 ¼ 2.0 mA. Reprinted from [102], Copyright 2009, with permission from Elsevier
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Finally, for frequencies higher than 1.4 Hz, the current modulation period

becomes shorter than the characteristic time of the slowest process involved in

the positive feedback (autocatalytic) process. In the spectrum for the homogeneous

case the real part of impedance becomes then positive, while for heterogeneous case

the detailed interpretation of the course of the impedance spectrum is more complex

and requires further studies [102].

Concluding, the work described here is a valuable introductory contribution to the

impedance studies of electrochemical spatiotemporal patterns (including Turing

structures) which, in terms of the respective model, shows how the dynamics of

pattern formation may affect the impedance spectrum. One may expect further

development of the application of EIS to the analysis of electrochemical temporal

and spatiotemporal dissipative patterns in the near future. The reader interested in

mechanistic details of the model of CO electrooxidation used for the modeling of

impedance spectra is advised to consult the work discussed [102]. Spatial and spatio-

temporal patterns in electrochemical systems are treated in detail in Volume II.
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Chapter 4

Temporal Instabilities in Cathodic Processes

at Liquid and Solid Electrodes

4.1 Electroreduction of Peroxodisulfate Ions

4.1.1 The N-NDR Region as a Double Layer Effect

In this chapter, examples of temporal instabilities (oscillations and multistability)

reported for cathodic processes carried out at both liquid and solid electrodes are

described. With respect to liquid ones, the oscillations of the current associated with

the electrode processes occurring at mercury have been quite intensively studied for

several decades, especially when classical polarography was still the most popular

experimental technique in electrochemistry. Therefore, studies of polarographic

oscillations greatly contributed to the understanding of the mechanisms of electro-

chemical oscillations. A big advantage of mercury electrode is its smooth, uniform,

and easily renewable surface and a high overvoltage for hydrogen evolution at

negative potentials. The structure of the mercury–liquid electrolyte solution is

thus much easier to define than, e.g., the structure of the passive layer on corroding

solid electrodes. Hence, not only the general source of instability, but also a

more detailed (electro)chemical mechanism of oscillations or multistability can be

suggested. Based on the characteristics of the polarographic systems one can excel-

lently show the different origins of the negative differential resistance in electrode

processes: the potential-dependent repulsion of charged reactant particles from the

reaction site in the double layer, the adsorption of an inhibitor of a charge-transfer

process, or the desorption of a catalyst of this process (see Sect. 2.1.4). Such studieswere

later extended for solid electrodes, provided that the region of potential corresponding to

instabilities was positive enough to avoid hydrogen evolution. One of the model

electrode reactions that served for numerous studies of mechanisms and bifurcation

scenarios of dynamic instabilities was the electroreduction of S2O8
2� ions in which the

negative differential resistance (N-NDR region) was caused by repulsive interaction of

these anions with negatively charged electrode surface. This Frumkin effect was first
reported as early as 1933 [1]. In order to understand the detailed origin of this effect, one

has to take into account the spatial distribution of the electric potential in the double

M. Orlik, Self-Organization in Electrochemical Systems I,
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layer, varying fromfM at themetal electrode surface up tofs—the potential in the bulk

of the solution. The bulk potential fs is usually considered a reference potential, with

respect to which other potentials are expressed, or in other words,fs is then assumed to

be of zero value. The distance at which the potential profile develops in the solution

depends on the concentration of ionic salt which can be introduced intentionally as the

so-called supporting electrolyte. Considering the electroactive particles, if they are not

specifically adsorbed on the electrode surface, they undergo reduction or oxidation close

to the physical metal–solution interface, at the distance of closest approach, usually

denoted as x2, where the electric potential attains the f2 value. In the classical

Gouy–Chapman–Stern model of the double layer, x2 means the position of the so-

called outer Helmholtz plane and is determined by the properties (solvated ion radii) of

the supporting electrolyte, often present in excess compared to the electroactive species.

Note that for typical concentrations of the supporting electrolyte and conditions of the

electrochemical measurements, the x2 value is much smaller than the thickness of the

diffusion layer that develops during concentration polarization.

Here we shall consider the case of such a relatively low concentration of

supporting electrolyte that the electric potential profile enters relatively deeply in

the solution and the f2 value substantially differs from its bulk value (Fig. 4.1) [2].

Let us further assume that the reactant Ox undergoes practically irreversible

electroreduction with the rate constant kf(E), so the reoxidation of the Red species at
the potentials considered can be neglected:

Oxþ ne��!kf Red (4.1)

This assumption which simplifies mathematical considerations is also quite

realistic, considering the case of the N-NDR formation due to the double layer

effect. In terms of this assumption, one considers thus two important effects of the

spatial distribution of the electric potential across the double layer:

1. If the reactant particle (here Ox) possesses a charge zoxe, then its local concen-

tration at the reaction site is different than immediately outside the diffuse part of
the double layer1 cbox (static double layer effect):

coxðx2; tÞ ¼ cox
b expð�zoxFf2=RTÞ (4.2)

2. The rate constant kf of the electron-transfer process at x ¼ x2 is determined

not by the E ¼ fM � fs interfacial potential drop, but by the effective drop

E � f2 ¼ fM � fs � f2 (dynamic double layer effect):

kfðE;f2Þ ¼ ks expð�anFðE� f2 � E00 Þ=RTÞ (4.3)

1 Since x2 is usually much smaller than the thickness of the diffusion layer, cox
b is considered a

“surface concentration”, generally dependent on time t, and in diffusion-oriented problems is

usually presented in the notation: coxð0; tÞ. Thus, here coxb � coxð0; tÞ ½2�.
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where ks is the standard rate constant of heterogeneous electron transfer, an is a

generalized cathodic transfer coefficient for the n-electron process, and E00 is the

formal potential of the Ox/Red redox couple.

Due to those double layer effects the directly determined standard rate constant,

dependent on the concentration of inert supporting electrolyte, is however only an

“apparent” value kapps . The “true” value ktrues can be obtained by taking into account

Fig. 4.1 (a) A view of the differential capacitance in the Gouy–Chapman–Stern (GCS) model of a

series network of Helmholtz-layer and diffuse-layer capacitances. (b) Potential profile through the

solution side of the double layer, according to GCS theory. Calculated for 0.01 M 1:1 electrolyte in

water. Reprinted from [2] with permission of John Wiley & Sons, Inc. Copyright 2001 John Wiley

& Sons, Inc.
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both corrections for the static and dynamic effects of the double layer which lead to the

following dependence for the (cathodic negative) faradaic current of reaction (4.1):

If ¼ �nFA½ktrues expð�anFðE� f2 � E0
0 Þ=RTÞ�

� ½cbox exp ð�zoxFf2=RTÞ�
(4.4)

from which, for cox
b ¼ coxð0; tÞ; the following relationship between the “apparent”

and “true” standard rate constants, known as the “Frumkin correction” follows [2]:

kapps ¼ ktrues exp
ðan� zoxÞFf2

RT

� �
(4.5)

Since ktrues is constant for given temperature, Eq. (4.5) describes how the

apparent or “observed” rate constant (and in this way also the faradaic current)

vary depending on the concentration of supporting electrolyte which affects f2.

Furthermore, since f2 increases nonlinearly with imposed potential (crossing zero

at the potential of zero charge, cf. Fig. 4.2), kapps calculated from Eq. (4.5), may

show a minimum at a given imposed electrode potential, producing thus before it

the negative dIf/dE slope, i.e., the NDR region.

This I–E shape can happen for the negatively charged ions undergoing an electron

transfer at negatively charged electrode surface or for positively charged ions reacting

Fig. 4.2 Dependence of f2 on electrode potential referred to the zero-charge potential Ez.

Mercury electrode at 25 �C in NaF solutions: (1) 1.0 M, (2) 0.1 M, (3) 0.01 M, and (4) 0.001 M

[3, 4]. Reprinted from [3] with permission of John Wiley & Sons, Inc. Copyright 1961 John Wiley

& Sons, Inc.
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at positively charged electrodes. For example, for the electroreduction of ions of

particle charge zox ¼ �2, when the transfer coefficient an ¼ 0.5, then (an � zox)
> 0. Equation (4.4) indicates then that in certain region of electrode potential, when

f2 < 0, there exists region of a negative slope of the I–E dependence. At more

negative potentials the rate of the electrode process passes through a minimum and

increases due to predominating effect of the rising expð�anFðE� E0Þ=RTÞ term
over the decrease of the apparent standard rate constant. This is the simplest explana-

tion of the shape of the I–E dependence observed for the electroreduction of several

anions, such as S2O8
2�, S4O6

2�, PtCl4
2�, CrO4

2�, or Fe(CN)6
3�, at the Hg, Pt, or Cu

electrode, provided that supporting electrolyte concentration is sufficiently low, since

only then the f2 potential differs significantly from that in the region outside the

double layer (for results on Hg electrode, cf. e.g., [5]). Also the presence of surface

active ions modifies the electric potential distribution in the double layer and appro-

priately affects the shape of the N-NDR region in the S2O8
2� electroreduction; such

studies for Hg electrodewere described byFrumkin et al. [6]. Of course, the concept of

the Frumkin correction is very simple among others because it neglects the discrete-

ness of charge distribution in the double layer which were later discussed in electro-

chemical literature by Fawcett et al. (cf. e.g. [7]).

From the point of view of dynamic instabilities, it is also important that low

concentration of supporting electrolyte means also the relatively high solution resis-

tance, so it may happen that for the destabilization of the electric circuit toward the

oscillatory behavior it may be not necessary to insert any additional, external resistor

in series with the working electrode. In fact, spontaneous current oscillations were

observed under such conditions for S2O8
2� electroreduction without any additional

resistance applied, i.e., for 0.02MK2S2O8 [8]. Nevertheless, in the same pioneer paper

of the year 1960, Gokhstein and Frumkin [8] have also indicated the role of additional

external resistance in the onset of sustained oscillations, implying the necessity of the

electrode potential oscillations, associated with the current oscillations. If the elec-

tronic circuit was changed into the three-electrode potentiostatic arrangement, com-

pensating the ohmic drops, when the variations of the Hg electrode potential became

negligible, the oscillations ceased. The entire picture corresponds closely to the

conditions of the onset of the oscillations caused by coupling of the NDR

characteristics of the electrode process with the ohmic drops in the circuit, with the

participation of the reactant transport dynamics between the electrode surface and the

bulk of the solution (see Chap. 2). Further studies of the same group indicated current

oscillations also during the polarographic electroreduction of Fe(CN)6
3�, PtCl4

2�,
CrO4

2�, when appropriate composition of the diluted supporting electrolyte and serial

resistance was applied [5].

4.1.2 Bifurcation Analysis

In line with increasing incorporation of methods of nonlinear dynamics in chemistry,

Wolf et al. [9] have performed an extensivemodel study of the oscillatory reduction of

S2O8
2� on different electrodes by combining the electrochemical mechanism of the
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double layer effects with the formalism of nonlinear dynamics. The work involved

also experimental studies of S2O8
2� electroreduction at rotating disk electrodes of Cu

and Pt, with the SCE as a reference electrode and Pt counterelectrode. Of course, in

this potentiostaticmode the external serial resistance had to be inserted in the circuit of

the working electrode, in order to cause appropriate ohmic potential drops. The

solution studied was 1–10 mM Na2S2O8 in the presence of diluted, 1 mM Na2SO4

as the supporting electrolyte.

The dynamical system considered involved two dynamical variables: the con-

centration of S2O8
2� at the electrode surface (c), and the potential drop across the

double layer denoted below as f, according to original reference. The reader is

asked to accept these multiple notations for the same quantity in various papers. For

the sake of mathematical simplicity of stability analysis, the model involved further

not partial, but ordinary differential equations derived based on the concept of the

Nernst diffusion layer (Sect. 2.2.2). In terms of this formalism, the temporal

dynamics of the surface concentration of S2O8
2� was expressed as proportional to

the difference between its charge-transfer controlled current Ired expressed by

Butler–Volmer relationship with the Frumkin correction term [i.e., analogously to

(4.4)] and its diffusion-controlled current (in A) defined as:

Idif ¼ � nFAD

d
ðc0 � cÞ (4.6)

where c0 [mol cm�3] means the bulk concentration of S2O8
2� ions, while d [cm] is

the Nernst diffusion layer thickness determined by the Levich equation for the

rotating disk electrode [2, 10]:

d ¼ 1:61D1=3v1=6o�1=2 (4.7)

with D being the diffusion coefficient of S2O8
2� ions [cm2 s�1]; n, the kinematic

viscosity of the solution [cm2 s�1]; and o is the angular velocity of disk rotation

(rad s�1). As in Chap. 2, the expression for the dynamics of the electrode potential

was derived from the charge conservation principle. The final forms of both

equations defining the actual dynamical system are:

dc

dt
¼ 2

nFAd
� �nFAkredc exp �anFf

RT

� �
exp

an� zð ÞFf2

RT

� �
þnFAD

d
ðc0� cÞ

� �� �

(4.8)

df
dt
¼ 1

ACd

U � f
Rs

þ nFAkredc exp � anFf
RT

� �
exp

an� zð ÞFf2

RT

� �� �� �
(4.9)

with U being the externally applied voltage and Cd is the double layer capacitance

of the working electrode (per unit area) assumed here independent of the electrode

potential; kred is analogous to the true standard rate constant (cf. Eq. 4.4) of S2O8
2�

electroreduction. Although the model seems to be physically very simple, the
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implicit mathematical relation between the potentials ’ and ’2 requires application

of numerical techniques to its stability analysis. The calculated dependence of the

steady-state currents on the electrode potential, exhibiting N-NDR region, is shown

in Fig. 4.3.

The linear stability analysis of those states indicated the stable/unstable nodes/

foci or saddles, including the localization of the Hopf and saddle–node bifurcations.

The corresponding bifurcation diagrams are shown in Fig. 4.4.

Since linear stability analysis supplies only limited information on the local

dynamics, the numerical integration of original nonlinear ODEs was necessary to

obtain a more complete picture of possible bifurcations. This allowed to detect a

rich variety of dynamic behaviors depending not only on the control parameters,

but also on the initial values of the surface concentration and electrode potential.

The corresponding bifurcation portrait is shown in Fig. 4.5.

However, even numerically it was not possible to locate all of the different phase

portraits predicted by this diagram. Table 4.1 collects the theoretically possible

phase portraits with the indication of those ones which were detected or not in the

model studied.

Analysis of bifurcations occurring in dependence on varying external voltage,

for the following other parameters fixed: c0 ¼ 1 mM, a ¼ 0.2, f ¼ o/2p ¼ 10 Hz,

Rs ¼ 900 O, Cd ¼ 25 mF cm�2, A ¼ 0.28 cm2, D ¼ 1 � 10�5 cm2 s�1, and

kred ¼ 384.7 cm s�1, allowed to detect a supercritical Hopf bifurcation at about

�0.390 V, followed by a canard explosion, described also in Sects. 1.6 and 3.6.2.

This apparent bifurcation manifested itself here as the sudden rise of the oscillation

amplitude (as well as of the oscillation frequency) located in a very narrow range of

voltage between �0.3904576 and �0.3904577 V vs. SCE (see Table 4.2).

Fig. 4.3 Stationary states as

a function of the externally

applied potential E (vs. SCE)

at f ¼ o/2p ¼ 25 Hz,

Rs ¼ 100 O, a ¼ 0.2,

kred ¼ 384.7 cm s�1,
A ¼ 0.28 cm2. Reprinted

from [9] with kind permission

of Deutsche Bunsen-

Gesellschaft f€ur
Physikalische Chemie
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Exemplary, representative shapes of the simulated oscillations are shown in

Fig. 4.6a–c. At U � �0.539 V a subcritical Hopf bifurcation occurs which leads

to the formation of an unstable limit cycle that could be found by integrating in

negative time direction (Fig. 4.6d). Finally, the stable and unstable limit cycles

annihilate themselves in a saddle–node bifurcation of cycles (cf. Sect. 1.4.1)

(or saddle–node of periodic orbits, denoted above as snp bifurcation).

Fig. 4.4 Local bifurcations

[Hopf (dashed line) and
saddle–node (solid line)] in
the a–U parameter plane with

Rs ¼ 900 O, f ¼ o/
2p ¼ 10 Hz, c0 ¼ 1 mM

(a) and in the Rs–U parameter

plane for a ¼ 0.1,

f ¼ o/2p ¼ 25 Hz and

c0 ¼ 1 mM (b) (U vs. SCE).

Reprinted from [9] with kind

permission of Deutsche

Bunsen-Gesellschaft f€ur
Physikalische Chemie
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One should emphasize that experimental studies of S2O8
2� reduction at a Cu

disk electrode performed by the same authors [9] confirmed the existence of all

dynamic behaviors predicted by the theoretical analysis, including the sequence

of bifurcations observed upon increasing external voltage. Even the hysteresis,

indicating the coexistence of a stable stationary state and stable limit cycle,

separated by unstable limit cycle (cf. Fig. 1.14), was observed. The coexistence

of these states was also directly detectable: when the external voltage was varied

slowly to the subcritical Hopf bifurcation from the cathodic side, the steady-state

behavior was reported that upon a perturbation (applied by a short temporary

increase of the rotation speed) led to sustained oscillations (Fig. 4.7).

Also, the transition resembling the canard explosion was observed, but due to

limited resolution of the potentiostatic system it was not possible to quantitatively

confirm such behavior. It was also difficult to record experimentally the bistable

behavior, but model calculations showed that the saddle–node bifurcations occur

only for rather low values of transfer coefficient a (cf. Fig. 4.4a) which do not

characterize the real electroreduction of S2O8
2�.

Concluding, a physically simple model, involving the Frumkin correction,

appeared to reproduce successfully the complex dynamics of the S2O8
2�

electroreduction at the rotating disk electrode. It is, however, an extremely simple

approach that does not involve any mechanistic details of this electrode process.

That is why in recent years studies of the oscillatory electroreduction of S2O8
2�

ions at the solid electrodes, including single-crystal ones, were continued.

Fig. 4.5 Schematic drawing of the complete bifurcation diagram in the a–E parameter plane.

(Codimension-1-bifurcations: h (supercritical-) Hopf, h0 (subcritical-) Hopf, sn saddle–node, sl
saddle–loop, snp saddle–node of periodic orbits; Codimension-2-points: TB Takens-Bogdanov,

SNL saddle–node loop, DH degenerate Hopf, DSL double saddle loop. Reprinted from [9] with

kind permission of Deutsche Bunsen-Gesellschaft f€ur Physikalische Chemie
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Table 4.1 Collection of possible dynamical phase portraits with the indication of those found for

the model (4.8), (4.9)

No. Phase portrait Found No. Phase portrait Found

1 þ 2 þ

3 þ 4 þ

5 � 6 �

7 � 8 þ

9 þ 10 �

11 � 12 �

13 � 14 �

15 þ 16 �

(continued)
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Oscillations were then reported also under high ionic strength conditions, when the

source of the oscillations could not be caused by the Frumkin effect. The essential

points of those investigations are briefly described below.

Table 4.1 (continued)

No. Phase portrait Found No. Phase portrait Found

17 � 18 �

19 � 20 �

21 þ 22 þ

23 � 24 þ

25 � 26 þ

Full points (•): stable steady states; empty points (o): unstable steady states; half-filled points:

saddles. Full circles stand for stable limit cycles and dashed circles for unstable limit cycles.

Numbers of rows correspond to locations indicated in Fig. 4.5. Reprinted from [9] with kind

permission of Deutsche Bunsen-Gesellschaft f€ur Physikalische Chemie

Table 4.2 Manifestation of

the canard explosion in the

model of S2O8
2�

electroreduction

U (mV) Current amplitude (mA)

�390.0 0.21

�390.4 0.47

�390.45 0.64

�390.457 0.90

�390.4576 1.30

�390.4577 6.8

�390.458 7.0

�390.46 7.5

�390.5 7.6

�391.0 8.0

Reprinted from [9] with kind permission of Deutsche Bunsen-

Gesellschaft f€ur Physikalische Chemie
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4.1.3 Mechanistic Aspects of S2O8
2� Electroreduction

In the course of mechanistic electrochemical studies, it was established that the

electroreduction of S2O8
2� at polycrystalline gold electrode [11, 12] and platinum

electrode [13, 14] proceeds via two parallel pathways. In particular, Samec and

Doblhofer [12] have shown that the first pathway has an electrocatalytic character,

involving relatively strong interaction of S2O8
2� with the electrode surface and

giving rise to a current at positively charged electrodes. The second pathway,

predominating at more negative potentials, is represented by the outer sphere,

direct reduction of S2O8
2� from solution and for this pathway the repulsive inter-

action between the anion and the negatively charged electrode can cause a double

layer effect of the Frumkin type. Further analysis [15] has shown that the rate of the

Fig. 4.6 Integrated time series at U ¼ �0.3901 V (a), �0.391 V (b), and �0.530 V (c), phase

portrait at U ¼ �0.532 V (d); U expressed vs. SCE; (dashed line) unstable limit cycle, (solid line)
stable limit cycle, (filled circle) stable focus. Other parameters: c0 ¼ 1 mM, Rs ¼ 900 O, a ¼ 0.2.

Reprinted from [9] with kind permission of Deutsche Bunsen-Gesellschaft f€ur Physikalische

Chemie
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electrocatalytic pathway is, on Au(111) electrode, for about two orders of magni-

tude higher than at Au(poly), presumably due to enhanced adsorption of S2O8
2� on

Au(111), caused in turn by better matching of the anion structure with trigonal

structure of the Au(111) surface. In contrast, the direct reduction of S2O8
2� at

Au(111) proceeds with approximately the same rate as at Au(poly). These

suggestions were corroborated by measurements involving combination of station-

ary and rotating disk electrode measurements with ex situ STM and electrochemical

impedance spectroscopy, for both Au(111) and Au(110) electrodes [16]. The

stronger electrocatalytic effect of Au(111), compared with Au(110), was explained

in terms of more effective overlap of the electronic wave functions of Au(111) and

the adsorbed peroxodisulfate. Both parallel pathways are shown in Fig. 4.8.

From mechanistic point of view, the electrocatalytic effect in the case of

pathway (1a) is presumably caused by the fact that adsorption of S2O8
2� causes

its reduction with the intervening or following O–O bond breakage. The scheme

indicates also the experimentally found catalytic effect of Hþ ions on this route

(although the detailed mechanism of this particular process was not clarified). If

HClO4 is used as a source of protons, the inhibition of this pathway by ClO4
� ions is

also observed. This was explained by coadsorption of ClO4
� ions, although rela-

tively weak, but significant enough due to high excess of HClO4 (10–1,000 times

more than concentration of S2O8
2�) as a supporting electrolyte. In complement to

Fig. 4.7 Coexistence of stationary behavior and oscillations in the experiment (Pt electrode,

c0 ¼ 5 mM, U ¼ 0.9429 V vs. SCE): before (a) and after (b) the rotating speed of the electrode

was f ¼ o/2p ¼ 20 Hz, the stationary state before (a) was reached varying the externally applied

voltage to more cathodic values just to leave the oscillatory region, and then slightly shifting U
back in the anodic direction. At point (a) the rotating frequency was raised for a short time, so that

between (a) and (b) f ¼ o/2p � 150 Hz. After (b) the same conditions as before (a) are valid, and

the system is now in an oscillating state. Reprinted from [9] with kind permission of Deutsche

Bunsen-Gesellschaft f€ur Physikalische Chemie
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this reaction scheme, one should add that besides the adsorption of S2O8
2�, also the

(not indicated there) adsorption of SO4
2� can play a certain role in the reduction

mechanism of S2O8
2�. Adsorption studies of SO4

2� at the single crystal Au

electrodes have been reported by Cahan et al. [17] and Lipkowski et al. [18, 19].

Coming back to nonlinear dynamic phenomena, one should note that Koper [20]

has reported mixed-mode oscillations (MMO) during the peroxodisulfate reduction

on polycrystalline Pt and Au electrodes, in addition to previously found mono-

periodic, relaxation oscillations. Furthermore, bistability and transient oscillations

of current of S2O8
2� electroreduction were reported by Treindl et al. [21] for the Au

(110) electrode in dilute solutions of NaF (Fig. 4.9).

The concentration of NaF (supporting electrolyte) was relatively low (5mM), only

a bit higher than the concentration of electroactive S2O8
2� ions (2 mM). The potential

was stepped from0V to a desired value. Following the induction time and the transient

oscillations, the current eventually dropped to a final, negligible value, indicating the

complete passivation of the electrode. Figure 4.9 shows that the oscillations occurred

around the I–E branch with a positive charge-transfer resistance and it was found that

this potential region is positive to the point of zero charge (PZC) of the bare gold

electrode, equal to�0.45 V (all potentials referred to mercurosulfate electrode of the

potential þ0.65 V vs. SHE). Note that both above-mentioned reduction pathways

(Fig. 4.8) have a maximum rate close to the pzc, so they overlap in this region.

Although apparently the above facts could qualify the studied oscillator at once as

of the hidden negative resistance (HN-NDR) type, the true mechanism of the

oscillations seems to be more sophisticated. Even the detection of galvanostatic

oscillations did not confirm the HN-NDR character of the system studied, since the

amplitude of the oscillating electrode potential was reaching the far negative region of

hydrogen evolution, i.e., not correlating with the potential region of the oscillations

shown in Fig. 4.9. In the opinion of Treindl et al. [21], the asymptotic passivation of the

electrode surface is premise for identification of the process responsible also for the

oscillations. As Cahan et al. reported [17], sulfate ions may be chemically

incorporated into the surface oxide layer on cycling the electrode potential, while

Desilvestro and Weaver [11] using SERS technique have detected the stronger

adsorption of oxygen species on Au in the presence of S2O8
2�. Taking into account

the above findings, it is now assumed that the highly oxidizing SO4
•� radical, as the

intermediate in S2O8
2� reduction, causes a strong passivation of Au surface by

(S2O8
2–) ads (SO4˙–) ads + SO4

2– 2 SO4
2–

2 SO4
2–

S2O8
2–

+e–

+e–

+e– + H+

+e–

(1a)

(1b)
SO4˙–  + SO4

2–

Fig. 4.8 Mechanism of S2O8
2� electroreduction on Au(111) and Au(poly) electrodes, involving

the electrocatalytic (1a) and direct (1b) pathways. Reprinted from [16], Copyright 1997, with

permission from Elsevier
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transforming it into a state which either binds the SO4
2� or OH� ions more strongly

than in regular adsorption experiments. The following reaction is proposed:

SO4
�� þ H2O! SO4

2� þ ðOHÞads þ Hþ (4.10)

with the chemisorbed (OH)ads species considered responsible for the inhibition of

S2O8
2� reduction and further—for the oscillations. In order to explain their exis-

tence at a positive slope of I–E characteristics, the outline mechanism involving the

variation of ’2 potential (double layer effect) was proposed [21] which also

postulated the variation of pzc during the oscillations. The S2O8
2�/Au(110) oscil-

lator remains probably one of these mysterious dynamic electrochemical systems

which await further mechanistic studies.

One of the detailed problems which can be important for the mechanism of S2O8
2�

reduction on gold electrodes is the eventual role of surface oxides which, under appropri-

ate conditions (in alkaline, neutral, ormoderately acidic solutions) can undergo reduction

at the potentials more negative than S2O8
2�. In [11], the reaction mechanism involving

chemical oxidation of Au(poly) electrode by S2O8
2� in an alkaline solution, followed by

electrochemical reduction of surface oxides, was proposed. More recently, Samec et al.

[22] have analyzed the electroreduction of S2O8
2� onAu(111) covered by surface oxides

and found the nontrivial characteristics of this system. First, the strong inhibition of

the reduction process was observed but the extent of this effect did not correlate with the

oxide surface coverage through a simple geometric blocking factor (1 � yT), where yT

Fig. 4.9 Current transients and oscillations observed during potentiostatic S2O8
2� (2 mM) reduc-

tion on the Au(110) electrode rotated at 1,000 rpm. [NaF] ¼ 5 mM. The following electrode

potentials were applied: (a) �0.38 V; (b) �0.37 V; (c) �0.36 V; (d) �0.35 V. IT is the inflection

time. Note that the current density is negative, i.e., the current decreases with time. In all four

cases, the transients are shown up to a current of �10 mA. Reprinted from [21], Copyright 1999,

with permission from Elsevier
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denotes the total oxide coverage. Instead, it was necessary to consider the relative role of

two main oxide species, the more stable of which presumably blocked the reaction sites

for the S2O8
2� reduction and was located probably on the surface step edges. Further-

more, the difference between the kinetics of the reduction of two oxide species suggested

a coupling between these two processes, involving the diffusion-controlled proton

catalysis. If dynamic instabilities are found for such systems, in the diagnosis of their

origin it will be necessary to take into account those electrochemical processes.

4.1.4 Studies at High Ionic Strength

Recent developments in the area of dynamic instabilities in the reduction of S2O8
2�

on solid electrodes have been published by Nakanishi et al. [23] who have reported

oscillatory S2O8
2� reduction on Pt(poly) and Au(poly) electrodes, but under such

high ionic strength conditions, that the Frumkin double-layer effects could not

operate. The mechanistic aspects of these oscillations are related to the mechanism

of the dissociative adsorption of H2O2 through the concept of the autocatalytic

effect of adsorbed OH [24] (cf. Sect. 4.7). Actual studies involved both dc and ac

(impedance) techniques. For both electrodes, four types of electrochemical

oscillations, named a, b, g, and d, were found (see Figs. 4.10 and 4.11); note that

not all types of oscillations are existing for each electrode.

The fact that the oscillations were observed for galvanostatic (for Pt—also for

potentiostatic) conditions suggests that the reported dynamics can correspond to a

HN-NDR-type oscillator. The oscillations of type g which appear upon cathodic

current scan first (i.e., exhibiting the amplitude involving the most positive potentials)

were further studied inmore detail. Impedance measurements for S2O8
2� reduction at

Au(poly) electrode (Fig. 4.12) clearly proved the existence of the hidden negative real

impedance for the potential located within the amplitude of the oscillations.

In dc studies, the NDR regions were found in the potentiodynamic I–E
characteristics, for sufficiently high scan rates (100 mV/s), only for atomically flat

Au(111), and not for Au(100) and Au(110). Analogous phenomena were observed

for the H2O2 reduction at atomically flat Pt(111), but not for Pt(100) and Pt(110),

which is the premise for similarities in the reduction of both compounds.

Due to relatively positive potentials of their occurrence, the mechanism of

oscillations g was assumed to occur according to a catalytic pathway, in which

S2O8
2� reduction proceeds via its dissociative adsorption:

S2O8
2� ! 2SO4

��ðadsÞ (4.11)

2SO4
��ðadsÞ þ 2e! SO4

2�ðadsÞ (4.12)

It is further suggested that NDR region arises from a catalytic effect of adsorbed

OH on the dissociative adsorption of S2O8
2� [Eq. (4.11)] (see below for more

detailed description). Finally, the NDR-hiding species is most probably adsorbed

SO4
2� ions produced in the above electroreduction step (4.12).
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Fig. 4.10 Current-density (j) vs. potential (U) curves for poly-Au under (a, b) potential-controlled
and (c, d) current-controlled conditions. Electrolyte: (a) 0.5 M HClO4; (b–d) 0.5 M HClO4 + 0.5

M Na2S2O8. Scan rate: (a) 100 mV s�1; (b) 10 mV s�1; (c) 1 mA s�1; (d) 10 mA s�1. Reprinted
with permission from [23] Copyright 2002 American Chemical Society
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Analogously to H2O2 electroreduction (cf. Section 4.7), the role of adsorbed OH

was explained in the following way. First, the surface coverage of adsorbed OH,

acting as a catalyst for reaction (4.11), decreases with increasing negative potential,

causing the decrease in the S2O8
2� reduction current and thus the appearance of

NDR region. If we assume a slow desorption of produced SO4
2�(ads) ions, we can

understand why the NDR region manifests itself on the dc curves only at fast scan

rates. If the scan rate is low, the decrease in the amount of adsorbed OH is

compensated by an increase in empty surface sites by desorption of SO4
2� and

then NDR region does not form. SO4
2� ions are thus a “slow species.” Furthermore,

the formation of NDR on only Au(111) surface is explained in terms of high

effectiveness of the catalytic role of adsorbed OH on this surface, in terms of the

partial charges induced on the surface metal atoms (Fig. 4.13).

In order to confirm this outline mechanism in a quantitative way, the mathemat-

ical simulation of galvanostatic oscillations g was performed. This required addi-

tion of two more reaction steps to Eqs. (4.11) and (4.12):

SO4
2�ðadsÞ ! SO4

2�ðaqÞ (4.13)

OH(ads)þ Hþ þ e! H2O (in the presence of S2O8
2�Þ (4.14)

Fig. 4.11 j–U curves for poly-Pt under (a), (b), and (d) potential-controlled and (c) current-

controlled conditions. Electrolyte: (a) 0.5 M HClO4; (b) 0.5 M HClO4 + 0.7 M Na2S2O8; (c, d)

0.5 M HClO4 + 0.5 M Na2S2O8. Scan rate: (a) 100 mV s�1; (b, d) 10 mV s�1; (c) 1 mA s�1. An
external resistance of 120 O is added for (d). Reprinted with permission from [23] Copyright 2002

American Chemical Society
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Fig. 4.12 Impedance diagram for poly-Au at�0.16 V vs SCE in 0.5 M HClO4 + 0.7 M Na2S2O8.

Reprinted with permission from [23] Copyright 2002 American Chemical Society
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Also, in some simulations the hydrogen evolution reaction was added: Hþ þ e ⇄
H(ads); 2H(ads) ! H2, which improved the shape of modeled oscillations. The

detailed construction of the model, including the kinetic equations, the reader can

find in the original reference [23]. Here we shall only summarize the qualitative

description of the oscillation mechanism, invoking the ideas summarized earlier.

Under galvanostatic regime, at relatively positive potentials, the surface coverage of

adsorbedOH (yOH) is large and therefore the S2O8
2� reduction occurs efficiently. This

leads to an increase in the coverage of adsorbed SO4
2� ions (y2), since their desorption

is relatively slow. The increase in y2 leads to a decrease in vacant surface sites atwhich
the dissociative adsorption of S2O8

2� ions occurs, thus leading to a shift of the

electrode potential toward more negative values to promote the SO4
2� desorption

and keep constant imposed current density. This, in turn, leads to a decrease in yOH and
hence a decrease in the rate of catalyzed dissociative adsorption of S2O8

2� and due to
this positive feedback the potential moves to even more negative values, in order to

keep a constant current density. In this way, the maximum negative potential is

eventually reached. At this state the rate of desorption of SO4
2� is significantly

enhanced, which leads to an increase in vacant surface sites for S2O8
2� reduction

and to a shift of the electrode potential back to positive values. This leads to an

increase in yOH, and thus in the rate of the catalyzed dissociative adsorption of S2O8
2�,

causing, by this positive feedback, further positive shift of the electrode potential

which eventually reaches the maximum value.

Concerning oscillations of type a, b, and d, the following characteristics can be

outlined: oscillations a resemble those named oscillations A in the H2O2

electroreduction (Sect. 4.7), and the formation of NDR is therefore supposed to

occur based on the same mechanism: from the suppression of the S2O8
2� reduction

by the underpotential deposition of hydrogen. For oscillations of type b and d,
impedance measurements revealed their HN-NDR characteristics. These

instabilities need, however, further studies.

positively polarized Pt or Au atoms

adsorbed OH

δ+

δ+

δ+
δ+

–O O–

O O O

OO

O S S

surface Pt or Au atoms

Fig. 4.13 Schematic illustration of a catalytic effect of adsorbed OH for the dissociative adsorp-

tion of S2O8
2�. Reprinted with permission from [23] Copyright 2002 American Chemical Society
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In this section, only temporal instabilities involving S2O8
2� electroreduction

were described. It is noteworthy that this process was used also for the studies of

conditions for the electrochemical pattern formation, as described in Sect. 2.2 of

volume II.

4.2 Electroreduction of Iodate(V) Ions

4.2.1 The Role of Additional Current Carrier in the Onset
of Instabilities

Following the instabilities in S2O8
2� electroreduction, it is now useful to consider

potential oscillations in the galvanostatic reduction of IO3
� ions in alkaline solution

at Ag electrode. This process appears to be an interesting dynamical system, the

features of which definitely extend our understanding of electrochemical

oscillators. In particular, for this system one can achieve the ability of the continu-

ous transition between the N-NDR and HN-NDR oscillator. Note that the

characteristics of IO3
� electroreduction were mentioned in the classification of

electrochemical oscillators suggested by Strasser et al. [25] (Sect. 3.5), in a sub-

group IV.3, involving the so-called additional current carrier. This idea will be now

developed in more detail. The content of this section is based largely on another

work by Strasser et al. [26] which includes both dc and ac experimental studies as

well as extensive numerical modeling. The presented results refer to 0.15 M or

0.05MNaIO3 in the medium of 1 MNaOH as supporting electrolyte, with Ag(poly)

wire, the Pt-wire, and Hg–Hg2SO4–K2SO4 electrode employed as the working,

counter, and the reference electrode, respectively.

The set of typical I–U curves, recorded for different scan rates, is shown in

Fig. 4.14. In this case, since potentiostatic control was employed and no external

resistor was inserted, the external voltage U, used in original notation, should be

considered close to the interfacial potential drop E at the working electrode.

Figure 4.14 shows that only for relatively low scan rates (2mV s�1) a quasi-stationary,
diffusion limited plateau was observed, followed by the steep current increase due to

hydrogen evolution process, confirmed by the observation of gas bubbles. At higher

scan rates, the N-shaped voltammogram forms during the cathodic scan, indicating the

sharp decrease of the iodate reduction rate in the respective potential region, presum-

ably due to the decrease in surface concentration of iodate ions. On the reverse scan,

this NDR region is not observed which effect can be understood in terms of recovery

of iodate ions at the electrode due to convection caused by evolving hydrogen bubbles.

This also suggests that intentional stirring of the solution should affect the

voltammetric response of the process studied.

Figure 4.15 shows respective oscillatory courses recorded upon current scans,

and the caption informs also that the onset of mechanical (magnetic) stirring

completely suppressed the oscillations. Furthermore, upon increasing current

density (j), the onset of potential oscillations occurs in a subcritical way
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(the oscillations start from significant amplitude), while their gradual decay at high j
resembles the supercritical Hopf bifurcation. The potentials observed at currents

right above and below the oscillatory region correspond to reduction of iodate and

hydrogen evolution, respectively.

Under potentiostatic conditions, when the system is stable (nonoscillatory) it is

possible to perform impedance analysis and the representative impedance spectra,

arranged in sequence of increasing negative potentials, are shown in Fig. 4.16.

Figure 4.16a (U ¼ �1.06 V) shows two capacitive loops indicating a stable

electrochemical system with two processes on different time scales. Figure 4.16b

(U ¼ �1.26 V) represents drastically different characteristics: the low-frequency

capacitive loop disappears in favor of an inductive one; furthermore, the extrapola-

tion of the spectrum to o ¼ 0 would yield negative real impedance, meaning also

the negative slope (NDR) of the dc I–U (I–E) curve. At even more negative

potential (Fig. 4.16c, U ¼ �1.56 V), the spectrum typical of negative impedance

hidden in the dc I–U response (HN-NDR) is visualized, since the negative real

impedance occurs on this spectrum only for intermediate region of o. Finally, at
U ¼ �1.66 V (Fig. 4.16d), the spectrum does not reveal any negative real imped-

ance; instead, the high-frequency capacitive loop dominates and is followed by a

small inductive one.

These results of dc and ac experiments should now be confronted with the

electrochemical mechanism of IO3
� reduction. Generally, in strongly alkaline

Fig. 4.14 Experimental cyclic voltammetric profiles of iodate reduction on Ag in alkaline

solution (0.15 M NaIO3 + 1 M NaOH) at various scan rates. Solid: 2 mV s�1, dashed:
10 mV s�1, dot-dashed: 50 mV s�1, dotted: 200 mV s�1. Reprinted from [26], Copyright 1999,

with permission from Elsevier
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media, iodate(V) ions undergo a stepwise electrocatalytic reduction to IO� via

the reactive intermediate IO2
�, followed by a disproportionation reaction yielding

I� and IO3
� [27]. Thus, essentially IO3

� is reduced to the final product which is I�.
In terms of this general scheme, two models (A and B) were proposed in order

to explain the reported dynamic instabilities.

The simplest model A consists of the following steps:

1. Diffusion of IO3
� ions from the solution bulk to the reaction place (just outside

the double layer):

IO3
�ðbulkÞ ! IO3

�ðreaction siteÞ (4.15)

2. Potential-dependent reduction of IO3
� at the reaction site:

IO3
�ðreaction siteÞ þ 3H2Oþ 6e! I� þ 6OH� (4.16)

the rate of which is modified by the coulomb repulsion of the IO3
� ions from the

reaction site within certain potential range [i.e., due to the Frumkin effect,

analogous to described for S2O8
2� reduction in Eq. (4.4)].

Fig. 4.15 Experimental I/U behavior during current scans (0.05 mA s�1) in the absence of

stirring. 1 M NaOH, (a) 0.15 M NaIO3, (b) 0.05 M NaIO3, (c) stationary potential oscillations at

I ¼ �17 mA without stirring (0.15 M NaIO3 + 1 M NaOH). Upon (magnetic) stirring, the

potential stabilizes at high values (arrow). Reprinted from [26], Copyright 1999, with permission

from Elsevier
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3. Potential-dependent electrocatalytic reduction of protons as an additional current-
providing process:

� þ H2Oþ e! Had þ OH� (4.17)

Had þ H2Oþ e! H2 þ OH�ðrdsÞ (4.18)

where * denotes the bare Ag surface site and Had represents atomically adsorbed

hydrogen. Based on the steady-state approximation (Bodenstein principle), the

concentration of Had can be eliminated, leaving only the simple dependence of

hydrogen evolution on the electrode potential [28]. It will be shown that adding step

(3), (i.e., additional current providing process) contributes to interesting new

dynamics, compared to the system composed of only steps 1 and 2.

The model B is made a bit more complicated by considering the simultaneous

transfer of six electrons in step (2) as arguable and therefore the single reduction

step (4.16) is replaced with the model sequence involving the intermediate species

X (being, e.g., the IO2
� or IO�):

IO3
�ðreaction siteÞ þ ne! X (4.19)

Xþme! I� (4.20)

Fig. 4.16 Impedance behavior of the experimental iodate system illustrated in terms of Nyquist

diagrams at various potentials, frequency range 10 kHz to 0.01 Hz, (a) U ¼ �1.06 V; (b) U ¼
�1.26 V; (c) U ¼ �1.56 V; (d) U ¼ �1.66 V. Reprinted from [26], Copyright 1999, with

permission from Elsevier
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Again, if step (4.20) is relatively fast, compared to (4.19), application of

the Bodenstein principle adiabatically eliminates the species X from kinetic

considerations and the above mechanism becomes essentially equivalent to

model A.

Coming back to mechanism A, the corresponding two-variable mathematical

model was formulated in terms of the linear approximation of the Nernst diffusion

layer of the thickness d. As the two dynamic variables essential for the oscillatory

and bistable dynamics, the concentration of IO3
� at the reaction site (“surface

concentration”, c) and the interfacial potential drop (electrode potential E, denoted
here in terms of an alternative symbol ’, as it often happens in the papers on

electrochemical instabilities) were chosen and the following ordinary differential

equations were derived:

dc

dt
¼ 2D

d2
ðcb � cÞ � 2

d
ck0r krð’; k01Þ (4.21)

Cd

d’

dt
¼ Jtot þ n1Fck

0
r krð’; k01Þ þ n2k

00
icc
~kiccð’Þ (4.22)

where subscript “icc” means “iodate-independent current carrier,” i.e., the species

yielding the hydrogen evolution current. Furthermore, Jtot is the total current

density, composed of the n1—electron iodate reduction and n2—electron hydrogen

ion reduction. For every of these electrode processes, its rate constant is represented

as the product of the potential-independent part (k0r and k00icc, respectively) and the

potential-dependent (Butler–Volmer type) part (krð’; k01Þ and ~kiccð’Þ, respectively).
Finally, cb, D, and Cd denote bulk concentration of iodate, its diffusion coefficient,

and double layer capacitance, respectively. It was convenient to transform these

equations into the dimensionless form indicating the difference in time scales of

the c and ’ dynamics through the value of parameter e:

dc0

dt
¼ a 1� c0ð Þ � c0krð’0; k01Þ (4.23)

e
d’0

dt
¼ I þ c0krð’0; k01Þ þ k0icc

~kiccð’0Þ (4.24)

where:

I ¼ Jtot
n1Fcbk0r

(4.25)

e ¼ 2CdRT

dn1Fcb
(4.26)

’0 ¼ ’0

1V
(4.27)
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c0 ¼ c

cb
(4.28)

a ¼ D

dk0r
(4.29)

k0icc ¼
n2k

00
icc

n1Fcbk0r
(4.30)

t ¼ 2

d
k0r t (4.31)

Of five system parameters involved in this model, three of them: the total current

I and the rate constants k0icc and k01 are treated as the bifurcation parameters. While
~kiccð’Þ dependence was described in terms of classical Butler–Volmer dependence,

the repulsive interaction of IO3
� anion with the reaction site was expressed in

terms of formal mathematical dependence:

krð’; k01Þ ¼ k01 exp½�af’� þ exp½�af’�
1þ 250 exp½�f ’� ’0ð Þ� (4.32)

Linear stability analysis of the steady state (css, ’ss) led to the Jacobian matrix:

J ¼
�a� krð’0; k01Þ �c0 @krð’

0; k01Þ
@’0

krð’0; k01Þ
e

c0

e
@krð’0; k01Þ

@’0
þ k0icc

e
@ ~kiccð’0Þ

@’0

2
664

3
775
ss

(4.33)

In view of conditions for the Hopf bifurcation [Tr(J) ¼ 0 with Det(J) > 0], one

concludes that they can be met simultaneously owing to positive and negative terms

in the determinant:

TrðJÞ ¼ �a� krð’0; k01Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
<0

þ c0

e
@krð’0; k01Þ

@’0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
>0

þ k0icc
e

@ ~kiccð’0Þ
@’0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

<0

(4.34)

DetðJÞ ¼ �a c
0

e
@krð’0; k01Þ

@’0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
<0

�a k
0
icc

e
@ ~kiccð’0Þ

@’0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
>0

�krð’0; k01Þ
k0icc
e

@ ~kiccð’0Þ
@’0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

>0

(4.35)

Note that both positive terms in the determinant (4.35) are related to the icc

process, i.e., to the additional hydrogen evolution which crucial role in the system’s

dynamics is in this way confirmed. For this process, the derivative @ ~kiccð’0Þ=@’0is
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negative, since the rate constant of Hþ electroreduction rises with increasing

negative electrode potential. In turn, Tr(J) can change sign only if for iodate

electroreduction, the derivative @krð’0; k01Þ=@’0> 0 which is true for the NDR

region. As in Chap. 2, the galvanostatic conditions considered here can be easily

transformed to potentiostatic ones by replacing the imposed current with the

expression (U0 � ’0)/r, with U0 and r meaning the dimensionless external voltage

and a dimensionless serial resistance, respectively.

For appropriate constant parameters, by variation of the rate constant of hydro-

gen evolution reaction k0icc one can show, how the voltammetric I–U response

smoothly switches from the explicit N-NDR characteristics of the iodate reduction

to the HN-NDR characteristics, when the hydrogen current becomes predominant

in the NDR region. This is the illustration of the above-mentioned idea of smooth

transformation of the N-NDR to the HN-NDR system. For the parameters ensuring

the HN-NDR characteristics, it is further possible to obtain numerically the

oscillations of the electrode potential upon current scan (Fig. 4.17).

In view of these model calculations, one can imagine the sequence of events

composing the single oscillation of the electrode potential under galvanostatic

conditions. If initially the electrode potential is less negative than the N-NDR

region, the surface concentration of IO3
� drops due to their fast consumption in

the reduction process until it reaches the zero value and then the current of IO3
�

reduction (jIO3
�) attains limiting value. If the imposed current I exceeds this

limiting value, the electrode is further charged to more negative potential values,

first slowly, but when it enters the N-NDR region, its further decrease undergoes

autocatalytic acceleration. In the N-NDR region the reduction of iodate drops,

while the rate of the electrode process of hydrogen evolution (jH2
) increases until

the condition I ¼ jIO3
�+jH2

¼ const is met. Further decrease of negative potential

is then stopped, and now the diffusion can gradually replenish the preelectrode

layer with consumed IO3
� ions. Their reduction current increases and when it

exceeds the imposed total current, the electrode potential moves back toward

more positive values, i.e., the initial state is restored and the whole cycle can

repeat. It is clear that without the independent current carrier the mechanism of

recovery of surface IO3
� concentrations would not exist and the system would

then be bistable.

The above model of galvanostatic IO3
� oscillations is further corroborated by

the calculated impedance spectra which, for appropriate potentials, exhibited the

shape typical of the HN-NDR systems. In order to obtain optimum concordance

between the experimental and calculated Nyquist plots, it appeared necessary to

invoke model B, i.e., to introduce the intermediate species X, which fast transfor-

mation (4.20) to the final product constitutes the additional fast chemical process

explaining the additional capacitive loop observed at high ac frequencies in the

impedance experiments.

The model allows further for the systematic bifurcation analysis, both for

galvanostatic and potentiostatic conditions. As mentioned earlier, the increase in

the hydrogen evolution current switches the system from the N-NDR to the

HN-NDR oscillator and hence, under galvanostatic conditions, upon increasing
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Fig. 4.17 (a) I/’ profiles of Eqs. (4.23) and (4.24) upon galvanostatic current scanning, scan

rate ¼ 0.001, k01 ¼ 0:01, k0icc ¼ 0:3 (upper graph) and 0.8 (lower graph), Iinitial ¼ �0.4, Ifinal ¼
�1.4. (b) Stationary I/’ profiles and local stability of steady states under galvanostatic conditions,

k01 ¼ 0:01, k0icc ¼ 0:3 (lower graph) and 0.8 (upper graph), solid (dashed) lines indicate stable

(unstable) steady states. Labels 1–4 indicate the steady states on the I/’ curves where impedance

spectra (see [26]) were calculated. Reprinted from [26], Copyright 1999, with permission from

Elsevier
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model rate constant of hydrogen evolution, first only the bistability and then also

potential oscillations should be obtained. Accordingly, for low values of k0icc only
the saddle–node bifurcations should be possible, while for sufficiently high k0icc also
bifurcations leading to limit cycle are expected. For model A, the corresponding

two-parameter bifurcation diagrams reveal the high sensitivity of the oscillatory

region to the k01 values which must be included in a small region of values (from

10�1.2 to 10�1.7). Thus, the existence and the location of galvanostatic oscillations

are strongly contingent upon the balance of reaction rates of both the dependent and

independent current carriers.

In turn, for k0icc ¼ 0, the cross-shaped phase diagram (XPD), typical of N-NDR

oscillators, is obtained. When nonzero value of k0icc is assumed, the corresponding

bifurcation diagram is no longer of an XPD type, as should be expected for the HN-

NDR system. The corresponding diagrams, as well as a more detailed analysis of

the bifurcation scenarios in this model, including the Takens–Bogdanov (TB)

bifurcation, the reader can find in the original work [26].

The occurrence of galvanostatic oscillations in the course of iodate(V)

electroreduction emphasizes thus the destabilizing role of the second current

carrying process—the hydrogen evolution. One should note that the suggested

mechanism of instabilities would operate regardless the NDR region is visible or

not (HN-NDR case) in the stationary I–E characteristics of the process [26]. In a

more general sense, the importance of the model by Strasser et al. consists in an

extension of a number of mechanisms in which galvanostatic oscillations can occur.

Earlier, Koper and Sluyters [29] have described a purely theoretical mechanism in

which, instead of an additional current carrier, a potential dependent ad- and

desorption of the slow chemical species was assumed (see Sect. 3.4). In that case

the current could be provided only by single current carrier at all times, and the

recovery of its concentration was possible due to potential-dependent adsorption of

chemical species which would act as the inhibitor of the electrode process. Coming

back to experimental systems, besides the IO3
� oscillatory reduction, the model by

Strasser et al. could explain the fact that the electrocatalytic reduction of S2O8
2�

(also exhibiting the Frumkin-type effect of the double layer, cf. Sect. 4.1), if

performed under galvanostatic conditions, exhibits only bistability in an alkaline

medium, but in acidified solution also the oscillations of the electrode potential

set in. The explanation is that in alkaline solutions the hydrogen evolution can be

shifted too far negatively to overlap with the S2O8
2� reduction current, whereas at

low pH it approaches the appropriate, less negative potential range [26].

4.2.2 The NDR-Based vs. the Electrochemical Reactions
and Diffusion–Convection Approach

One should note that the model based on the concept of additional current carrier

triggered an interesting discussion in the literature on the role of convection in the
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onset of electrochemical instabilities. Alternative explanation also recalls hydrogen

evolution as a process crucial for the onset of instabilities, but as a source of

convection, as Li et al. have suggested, e.g., for the electroreduction of

Fe(CN)6
3� on a Pt electrode [30]. Strasser et al. [26] did not invoke the convection

as the process essential for the oscillations in the electroreduction of iodate(V), on

the contrary, they have shown that increasing rate of transport, caused by stirring,

eventually canceled the oscillations. Li et al. [30] have elaborated the mechanism of

galvanostatic oscillations which should operate in the region of diffusion-limited

current plateau, according to the following sequence (a more detailed description is

given in Sect. 5.8 of volume II). As long as the current originating from primary

electrode process equals the imposed current, the electrode potential is stable.

However, continuous depletion of the diffusion layer, caused by electrode process

and relatively slow diffusion, causes a continuous decrease of a faradaic current

which causes charging the electrode to more (in this case) negative potentials, at

which the additional process (hydrogen evolution) sets in. The resulting bubbles of

hydrogen cause the sudden convection which replenishes the surface concentration

of the primary reactant, and the current again rises above diffusion-limited plateau,

causing the return of the electrode potential to less negative values. This mechanism

has an important quantitative aspect: if the convective force associated with gas

bubbling is on the same or on smaller timescale as the variation of E, sustained
periodic behavior is impossible, since then the stationary (intermediate) potential,

at moderate bubbling rate, would be reached in a damped oscillatory transient. In

the opinion of Strasser et al. [26], the very fast detachment of bubbles, necessary for

sustained oscillatory regime as causing almost instantaneous increase of the diffu-

sion limited current from an undercritical to an overcritical value, seems to be

unrealistic. Furthermore, also unlikely seems to be high reproducibility of the

nucleation and detachment of bubbles, necessary to assume in view of reproduc-

ibility of the oscillations. Last but not least, it is difficult to find a source of negative

impedance in the case of the superposition of the diffusion-controlled current of one

species and of the current exponentially rising with the potential (Butler–Volmer

kinetics) originating from another species. In conclusion, Strasser et al. [26] claim

that their nonconvective model can explain oscillations in the electroreduction of

Fet(CN)6
3� in the presence of hydrogen evolution, as well as the oscillatory

electrocatalytic oxidation of Fe(CN)6
4� in the presence of O2 evolution on a Pt

electrode [31], where the Frumkin effect has to be excluded. Instead, the NDR (and

thus the negative real impedance in the Nyquist spectrum) could result from the

adsorption of oxygen species on Pt, causing certain inhibition of Fe(CN)6
4� oxida-

tion, compared to bare Pt surface. Then the combination of this effect with the

oxygen evolution current could create conditions for the galvanostatic oscillations,

analogously as for the reduction of iodates or Fe(CN)6
3�.

Different points of view of these two groups of researchers on the role of

convection, associated with the faradaic contribution from the additional current

carrier, hiding the NDR region, led to the more recent response of Li et al. [32].

A new experimental evidence was presented for the decisive role of convection in

triggering the oscillations during the galvanostatic reduction of Fe(CN)6
3� in
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alkaline solution which is accompanied by hydrogen evolution when the oscillating

Pt electrode potential reaches sufficiently negative value. The experimental strategy

involved simply a replacement of the hydrogen evolution with IO3
� reduction as

additional current carrier and then the oscillations vanished. This replacement did

not remove the electrostatic repulsion of Fe(CN)6
3� ions from the reaction site

within the double layer, i.e., the principal source of NDR characteristics survived,

but only the hydrogen bubbling did not occur. If the sample contained both

Fe(CN)6
3� and IO3

�, the hydrogen evolution was also observed at sufficiently

negative potentials (see Fig. 4.18), so it could be considered then a third current

carrier, the only one which can be associated with convection. If the oscillating

electrode potential reached the IO3
� reduction region, but did not enter yet the

hydrogen evolution process, the IO3
� took over the role of second current carrier

from the water molecules.

Li et al. have presented the following experimental facts as the proof for the role

of convection caused by H2 bubbles in the galvanostatic oscillations (see Fig. 4.19).

Upon the current scan, these oscillations appear only above the limiting current

containing either Fe(CN)6
3� (a) or IO3

� (b), or above the second limiting current

for the mixed system containing both reactants (c and d). In all these cases, the

oscillations are accompanied with hydrogen evolution, when the potential reaches

the most negative values, corresponding to the plateau of all of the systems. No

oscillations were found between the first and the second limiting current plateaus

(Fig. 4.19c, d), where the hydrogen evolution did not occur yet, but was replaced by

the IO3
� reduction as the second current carrier. Finally, oscillations for the system

containing both Fe(CN)6
3� and IO3

� (Fig. 4.19d) were observed if the second

limiting current was lower than the upper current limit for the potential oscillation

in the reduction of Fe(CN)6
3� (Fig. 4.19a), otherwise only potential oscillations

from IO3
� remained (Fig. 4.19c) with a much larger second limiting current [30].

In consequence, the oscillations mechanism involving the negative feedback

supported by convection induced by H2, called ERDC (Electrochemical Reactions

Fig. 4.18 Voltammograms

of 1 M NaOH solutions

containing 0.6 M Fe(CN)6
3�

(dashed line) or 0.15 M

IO3
� + 0.6 M Fe(CN)6

3�

(solid line). The inset is a
portion of the figure below the

second limiting current.

Reprinted from [32],

Copyright 2001, with

permission from Elsevier
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and Diffusion–Convection), was suggested for both separate reduction of

Fe(CN)6
3� and IO3

�. In the latter case, when due to the double layer effect of the

Frumkin type, the rate of electroreduction of IO3
� drops (in the N-NDR region),

reduction of H2O supplies the additional current necessary to meet the conditions of

the galvanostatic experiment, and IO3
� surface concentration gets a chance to be

replenished by diffusion from the bulk. Several arguments are presented to support

the suggestion that the mechanism proposed by Strasser et al. [26] is mathemati-

cally correct, but of limited validity with respect to real physical properties of the

systems considered.

In conclusion, there arises an important final question: If either the ERDC or

NDR-based mechanisms can be assumed for the given oscillator, how to distinguish

between them? Li et al. [32] suggest a simple criterion based on the course of cyclic

voltammograms of the studied system. In the simplest case of the interplay of

charge-transfer and diffusion processes, the I–E courses in the forward scan (when

the depletion of the diffusion layer from the reactant occurs) and in the backward

scan (when the replenishment takes place) do not cross. However, if during the

backward scan such a crossing point is observed, i.e., if the current is anomalously

enhanced, this means the existence of an extra transport, i.e., indicates the convec-

tion switched only in the final region of forward scan by hydrogen (or oxygen

for anodic processes) evolution. So, the existence of the crossing point is a criterion
for the ERDC mechanism. Such characteristics are observed for the cyclic

voltammogram of Fe(CN)6
3� or both Fe(CN)6

3� and IO3
�, but only if the negative

scan reached the far enough cathodic region of hydrogen evolution (Fig. 4.20).

Li et al. [32] considered the presence of this crossing point as the criterion even

more convincing than the presence of negative impedance for this category of

oscillators. In other words, the presence of negative real impedance, evidently

detectable in the whole potential range of the limiting current plateau, is not directly

connected with the galvanostatic oscillations in the case of the systems considered.

Fig. 4.19 Potential

oscillations by current scan at

0.01 mA s�1 in 1 M NaOH

solutions containing: (a)

0.6 M Fe(CN)6
3�, (b) 0.15 M

IO3
�, (c) 0.15 M

IO3
� + 0.6 M Fe(CN)6

3�,
and (d) 0.03 M IO3

� + 0.6 M

Fe(CN)6
3�. Reprinted from

[32], Copyright 2001, with

permission from Elsevier
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Amore general consequence of this interesting discussion of various mechanisms is

the suggestion that not all galvanostatic oscillations can be explained in terms of the

hidden negative impedance or, alternatively, the mechanistic classification of the

oscillators, based on impedance spectra, may not cover all possible mechanisms of

such instabilities. This problem is evidently worth of further analysis, particularly

when the mechanisms of newly discovered electrochemical oscillators will be

analyzed and classified into respective categories.

4.3 The Indium–Thiocyanate Polarographic Oscillator

4.3.1 Basic Experimental Characteristics of In(III)–SCN�

Oscillator

The polarographic reduction of In(III) to indium(0) amalgam in thiocyanate media

constitutes one of classical electrochemical oscillators, characterized with the

N-NDR region on the I–E curve. In order to understand the origin of this NDR

region, one has to recognize first the mechanism of the electrode process. The

electroreduction of In(III) aquo-ions is characterized with such a high cathodic

overpotential that it can occur only at very negative potentials close to the cathodic

limit of polarography in aqueous media. Considerably lower overpotential

characterizes the electroreduction of In(SCN)2
þ species adsorbed on the mercury

surface, with the SCN� ions bound to In(III) ion via the nitrogen atom and to Hg

surface via the sulfur atom. The adsorbed SCN� ions act thus as a catalyst for the In
(III) reduction. This and other examples of such anion bridging and anion

electrocatalysis on mercury were reviewed by de Levie [33] and Turowska [34]

based also on personal contribution of those researchers to this area.

Fig. 4.20 Cyclic

voltammograms of 1 M

NaOH solutions containing

0.6 M Fe(CN)6
3� (dashed

line) or 0.15 M IO3
� + 0.6 M

Fe(CN)6
3� (solid lines).

Reprinted from [32],

Copyright 2001, with

permission from Elsevier
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Pospı́šil and de Levie [35] have diagnosed the following mechanism of the

electrocatalytic In(III) electroreduction in thiocyanate media:

In3þ þ 2SCN�ads����!
slow;k1

In(SCN)þ2;ads (4.36)

In(SCN)þ2;ads þ 3e���!fast
In0 þ 2SCN�ads (4.37)

Since in this reaction sequence the first chemical step is the rate-determining one,

the potential-dependent surface concentration of adsorbed SCN� ions controls the

rate of the overall process. The catalytic SCN� ions, liberated after reduction of In

(III) to indium amalgam, can bind next In(III) ions from the solution and facilitate

their reduction. The N-NDR region forms when, upon scan of the electrode potential

toward negative direction, the point of zero charge is passed. Then, upon further

potential scan, due to increasing negative charge of the mercury surface, the electro-

static repulsion causes desorption of SCN� ions. This means also the gradual

decrease in surface concentration of electroactive In(SCN)2
þ species, leading to

decrease in current of the In(III) electroreduction (Fig. 4.21) [36]. Such a mechanism

of the N-NDR formation was used by Jakuszewski and Turowska [37] in their

discussion of various possible mechanisms of polarographic oscillations.

The explanation of the increase in the In(III) reduction current observed at high

negative potentials, following the NDR region, is more sophisticated. The simplest

explanation, which is being made in some theoretical models of the oscillations in this

process, can assume the noncatalytic electroreduction of In(III) ions, characterized

with large cathodic overpotential, as suggested earlier. However, as de Levie et al.

indicate [38], in the absence of SCN� ions (or, more generally, in noncomplexing

solutions), and in acidic solution at pH 	 3.5, In(III) is not polarographically reduced,

until the potential is reached where hydrogen ions are reduced and, in consequence,

Fig. 4.21 Polarogram of the solution 1.2 mM In(NO3)3 + 5 M NaSCN, pH adjusted to 3.6 with

HNO3. Two-electrode system was employed, with dropping mercury electrode as the working one,

and Ag–AgSCN as the reference electrode. The adjustable serial resistance was inserted in the

circuit. Vertical bars indicate the potentials from the N-NDR region for which oscillatory courses

were reported. Reprinted from [36] Copyright 1970, with permission from Elsevier
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the local pH of the solution increases. Therefore, it is reasonable to postulate that in

such medium, a reducible form of In(III) is its hydroxy complex [39].

Coming back to In(III)–SCN� electroreduction, as for other N-NDR systems,

the onset of the current oscillations under potentiostatic conditions required the

presence of sufficient ohmic resistance in the circuit of the working electrode.

Tamamushi [40] was probably the first researcher who built up an electronic-

electrochemical circuit, consisting of the connection of the electrolytic cell, in

which the polarographic reduction of In(III)–SCN� occurred in a two-electrode

system, with appropriate serial inductance and ohmic resistance. Under dc polari-

zation sustained sinusoidal oscillations of current were generated, like in purely

electronic equivalent circuit in which the electrolytic cell was replaced by the

tunnel diode or tetrode, the element with the NDR characteristics.

Further systematic studies in this area have been undertaken by de Levie and

coworkers. At those times, when stationary Hg electrodes were not yet in common

use, the dropping mercury electrodes of long lifetime were employed, as in the case

of oscillations shown in Fig. 4.22, recorded for given value of the external voltage

U and various serial resistances [36].

Even before application of the formalism of nonlinear dynamics to such

processes it was possible to understand the sequence of processes engaged in

the oscillation cycle. Starting, e.g., from the plateau of the I–E polarographic

curve just before the NDR region one considers a relatively large faradaic current

of In(III) electroreduction, which causes relatively large ohmic potential drops IRs

in the circuit. When the effective potential of Hg electrode (E) enters the region

of the negative resistance, the current drops due to lower rate constant of the

electron transfer and the decreasing ohmic drops shift the electrode potential

toward even more negative values. Since the current is then lower, from the

kinetic point of view this is a typical autocatalytic decrease in the faradaic current

(or an increase in the negative electrode potential) which occurs up to the

minimum of the I–E polarographic curve. At this potential the electroreduction

Fig. 4.22 Current–time

curves observed at �0.900 V

and with decade box

resistances of 10, 11.3, 15, 20,

30, and 50 kO, respectively,
for curves (1)–(6). Reprinted
from [36] Copyright 1970,

with permission from

Elsevier
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of In(III) ions is already so slow that their renewal at the electrode surface

through the diffusion from bulk of the solution becomes possible. Thus, with a

certain delay, because diffusion is relatively slow, the surface concentration of In

(III) increases and their electroreduction current rises again. But this means that

the ohmic drops also rise, so the effective electrode potential shifts toward less

negative values. In the NDR region, this means the enhancement of the rate

constant of the electron transfer, so the current rises again autocatalytically until it

reaches the maximum value, when the initial situation repeats again, due to the

increasing concentration polarization. This mechanism is just a clear example of

how the coupling of the NDR characteristics and of the ohmic potential drops,

with the participation of (relatively slow) variations of the surface concentration

of In(III) gives rise to the oscillations. The In(III)–SCN� system became also a

subject of pioneer impedance analysis described by de Levie et al. In [41], de

Levie and Husovsky have analyzed theoretically the impedance characteristics of

this process and derived the expression for the faradaic admittance, indicating the

negative value in the region of polarographic minimum. In turn, in [42] de Levie

and Pospı́šil have discussed the coupling of interfacial and diffusional impedance

in the equivalent circuits (see also Chap. 3). Evidently those works remained

for two decades the classical papers on the polarographic In(III)–SCN� oscillator

and on impedance characteristics of potentially unstable electrochemical systems

of that type.

The recent progress in understanding of the In(III)–SCN� oscillator, particularly
in terms of its nonlinear dynamical characteristics, was made due to experimental

and theoretical studies, published in a series of papers by Koper, Sluyters, and

Gaspard. Experimental characteristics, collected also with the use of the stationary

Hg electrode (Fig. 4.23), included the discovery of mixed-mode (MMO) and

chaotic oscillations (Fig. 4.24) [43].

Simultaneously, various bifurcations were identified. The stepwise increase of

amplitude of oscillations starting from zero and increasing further proportionally

to the square root of the external voltage treated as a bifurcation parameter

indicated the presence of a supercritical Hopf bifurcation. Under other conditions,

the decay of oscillations through the increase of their frequency up to infinity,

with the oscillation amplitude practically constant, suggesting either the

saddle–loop (homoclinic) bifurcation of cycles or the saddle–node infinite period

(SNIPER) bifurcation. In turn, MMO suggest the dynamics involving the

homoclinic orbits in the phase space, i.e., the trajectories associated with the

steady state of the saddle-focus type, from which the unstable spiraling trajectory

develops, jumps into a third dimension and after an extensive trip is reinjected

to the same steady state (cf. Sect. 1.4.3). The reader of other chapters of this book

will note that this type of oscillations/orbits was found also for other electro-

chemical systems as well as for the homogeneous Belousov–Zhabotinsky oscilla-

tor. Extensive studies of the In(III)–SCN� oscillators allowed Koper et al. to

formulate several theoretical models of this system which have revealed how the

instabilities in this system can be described in terms of general concepts of

nonlinear dynamics.
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4.3.2 Models of the In(III)–SCN� Polarographic Oscillator

We shall describe the models in a sequence corresponding to its rising mathema-

tical complexity, allowing thus to reproduce oscillations of also increasing

complexity.

4.3.2.1 The Simplest 2D Model of In(III)–SCN� Polarographic Oscillator

Koper and Sluyters model [44] have proposed the 2D model, the construction of

which aims to be of quite general importance for the NDR “cathodic” oscillators, at

least as long the modeling of only periodic oscillations is requested. Reducing the

Fig. 4.23 Some typical oscillation profiles observed at the HMDE for 1.2 mM In3+ in 5 MNaSCN

solution. The HMDE was polarized with respect to a large mercury pool in a two-electrode circuit,

containing adjustable ohmic resistor. (a) U ¼ �0.95 V, Rs ¼ 35 kO; (b) U ¼ �1.05 V, Rs ¼ 50

kO; (c) U ¼ �1.10 V, Rs ¼ 60 kO; (d) U ¼ �1.15 V, Rs ¼ 90 kO. Reprinted from [43],

Copyright 1991, with permission from Elsevier
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number of dynamical variables to two, and thus expressing the dynamics in terms of

two ordinary differential equations (ODEs), makes the stability analysis particu-

larly simple. In this simplified approach, the authors neglected the effects of the

double layer relaxation, i.e., contrary to the model developed earlier by Keizer and

Scherson [45]; instead, the role of double layer (of assumed potential-independent

average capacity) was now limited to the generation of the charging current flowing

when the electrode potential underwent variation.

The principle of derivation of the equation for the dynamics of the electrode

potential (dE/dt), coming from the charge conservation principle to the circuit from

Fig. 2.6, was already presented in Sect. 2.2 [cf. Eq. (2.29)]. Similarly, derivation of

equation for the dynamics of surface concentration of the reactant was described in

the same section [cf. Fig. 2.7 and Eq. (2.31)]. Thus, Eqs. (2.29) and (2.31) define the

actual dynamical systems with the In(III)–SCN� polarographic reduction. Also

analogously to Sect. 2.2, those equations were transformed into nondimensional

forms, using now the following substitutions:

Fig. 4.24 Multiperiodic and aperiodic oscillations observed at the HMDE for 1.2 mM In3+ in 5 M

NaSCN solution. (a) U ¼ �0.95 V, Rs ¼ 25 kO; (b) U ¼ �0.95 V, Rs ¼ 30 kO; (c) U ¼
�0.90 V, Rs ¼ 25 kO; (d) U ¼ �0.92 V, Rs ¼ 25 kO. Reprinted from [43], Copyright 1991,

with permission from Elsevier
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Dimensionless external voltage : v ¼ ðF=RTÞU (4.38)

Dimensionless electrode potential: e ¼ ðF=RTÞE (4.39)

Dimensionless surface reactant concentration : x ¼ cð0; tÞ=cbulk (4.40)

Dimensionless time : t ¼ ðk0t=dÞ (4.41)

where k0 means the dimensioned (cm s�1) part of the electron-transfer rate constant
kf, expressed formally as the product kf ¼ ðkk0Þ=2, with k being the dimensionless,

but potential-dependent part of kf. Then the system of dimensionless ODEs takes a

form:

de

dt
¼ v� e

r
� cx (4.42)

dx

dt
¼ �kxþ dð1� xÞ (4.43)

where:

r ¼ ACdk
0Rs

d
(4.44)

c ¼ nF2cbulkdk
2RTCd

(4.45)

d ¼ 2D

dk0
(4.46)

The dimensionless current is calculated from the dependence:

i ¼ v� e

r
(4.47)

Note that in above derivation the dimensioned form of the faradaic current was

expressed as If ¼ nFAkfcox(0,t), meaning positive current in spite of cathodic

reduction of In(III)–SCN� complex. Hence E and U will have further positive

values. The model formulated in this way of course produces correct bifurcation

scenarios, as they do not depend on the direction of the electron flow, so it can be

considered a certain generalized construction. Its adaptation to the In(III)–SCN�

electrochemical oscillator, in view of Pospı́šil and de Levie mechanism (4.36, 4.37),

involves the following dependences:

dcð0; tÞ
dt

¼ �k1cð0; tÞ½SCN�ads�2 ¼ �kfcð0; tÞy2 (4.48)
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where c(0,t) is the actual surface concentration of indium(III) ions and y is the

electrode coverage of the adsorbed SCN� ions:

y ¼ ½SCN�ads�=½SCN�ads�max (4.49)

and

kf ¼ k1½SCN�ads�2max (4.50)

Although Koper and Sluyters [44] discuss several versions of theirmodel, differing

with degree of complexity, we shall focus here on its most realistic formulation. This

includes not only the SCN�–catalyzed, but also noncatalyzed (at high overpotentials)
reduction of indium(III), described with a Butler–Volmer-type exponential depen-

dence of the electroreduction rate constant on the dimensionless electrode potential,

with e0 meaning the dimensionless formal potential of the In(III)/In(amalgam) couple

and an being the electrochemical transfer coefficient, assumed further as being equal

to 0.5. The following dimensionless ODEs were then obtained:

de

dt
¼ v� e

r
� c1xy

2 � c2x exp½anðe� e0Þ� (4.51)

dx

dt
¼ �k1xy2 � k2x exp½anðe� e0Þ� þ dð1� xÞ (4.52)

with obvious relation: k2<<k1. The model y(E) dependence was chosen so that it

generates the region of the negative differential resistance in the appropriate

potential range:

y ¼ 1 e 	 ed
exp½�bðe� edÞ2� e> ed

�
(4.53)

with ed parameter being a kind of “transition potential” for the coulostatic repulsion

of SCN� ions from the electrode surface and parameter b controlling the steepness

of that dependence. Numerical integration of ODEs system (4.51, 4.52), using

classical Runge–Kutta algorithm, showed either oscillations or steady state,

depending on the parameters values. Exemplary oscillatory shapes and the stability

diagram in the v–r space are shown in Figs. 4.25 and 4.26, respectively.

A deeper insight into the bifurcation scenario is revealed by analysis of the i–u
dependences, for various fixed values of r, which is the model representation of the

voltammetric experiments, each performed for different serial resistance in the

circuit (Fig. 4.27a–c). Figure 4.27a shows the steady-state current (of a global

stability) for the entire range of voltage applied, so no bifurcation occurs for such

a low value of r ¼ 0.4. Figure 4.27b, corresponding to higher resistance r ¼ 0.5,

shows the onset of oscillations through a supercritical Hopf bifurcation, followed
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by abrupt decay of oscillations due to subcritical bifurcation. In Fig. 4.27c,

corresponding to even higher r ¼ 1.0, the oscillations set in according to the

subcritical Hopf bifurcation, followed by SNIPER bifurcation, according to which

the oscillations cease due to increasing their period to infinity. Finally, Fig. 4.27d

Fig. 4.25 Computed oscillation profiles of i(t) dependence, for model dimensionless

Eqs. (4.51)–(4.53) with parameter values c1 ¼ 12, c2 ¼ 0.48, k1 ¼ 0.1, k2 ¼ 0.004, d ¼ 0.02,

e0 ¼ 34, ed ¼ 35, b ¼ 0.5 and (from top to bottom): v ¼ 37/r ¼ 0.5, v ¼ 38/r ¼ 1.1, v ¼ 38/

r ¼ 1.3. Reprinted from [44], Copyright 1991, with permission from Elsevier

Fig. 4.26 Stability diagram

of model equations

(4.51)–(4.53) with parameter

values as in Fig. 4.25.

Reprinted from [44],

Copyright 1991, with

permission from Elsevier
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shows the effect of increasing r as a bifurcation parameter, for fixed voltage v ¼ 38:

a SNIPER bifurcation occurs at low r, while a subcritical Hopf bifurcation takes

place at higher r.
Extension of this 2D model to polarographic conditions (rising Hg drop) and

inclusion of the dependence of double layer capacitance on the electrode potential

produced oscillatory shapes i–t resembling better those observed experimentally by

de Levie [36], but the changes were of rather quantitative than qualitative nature,

so no new bifurcations were discovered. In order to reproduce more complex

oscillations, the distribution of the concentration in the diffusion layer no longer

can be assumed linear, and the thickness of this layer should also vary during the

oscillations. This suggests the development of the present model, if still defined in

terms of ODE, toward engaging more than two dynamical variables.

4.3.2.2 The 3D Model with Spherical Geometry of Diffusion

The constant thickness of the Nernst diffusion layer (d) was one of the most serious

simplifications of the previous 2Dmodel assuming linear diffusion to planar station-

ary electrode, since under such conditions d should constantly increase with the

electrolysis time. In other words, the true steady-state current could not be observed

and also the oscillations should exhibit certain drift in their characteristics.

Fig. 4.27 Bifurcation diagrams for model equations (4.51)–(4.53). (a) r ¼ 0.4; (b) r ¼ 0.5;

(c) r ¼ 1.0; (d) v ¼ 38 (all other parameters as in Fig. 4.25). Reprinted from [44], Copyright

1991, with permission from Elsevier
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However, if the planar electrode is replaced with the spherical one, in the case of

semi-infinite diffusion to such an electrode, the current will asymptotically tend to a

constant, nonzero value [2, 4]:

I ¼ lim
t!1 nFADc0

1ffiffiffiffiffiffiffiffi
pDt
p þ 1

a

� �� �
¼ nFADc0

a
(4.54)

where a is the radius of the spherical electrode. Accordingly, also the periodic

oscillations recorded with the use of such an electrode should asymptotically attain

the steady-state characteristics, but the problem remains how much time this will

take (furthermore, oscillations can also exist only in transient regime). For that

reason, and in order to make the description of the reactant transport more realistic,

Koper et al. [46–48] have introduced the spherical geometry to the previous model.

The first equation is again the charge conservation principle, but now involving the

surface concentration of a reactant at the surface of the electrode of radius a:

Cd

dE

dt
¼ U � E

Rs

� nFAkfðEÞcr¼aðtÞ (4.55)

The second equation describes the spherical diffusion transport:

@c

@t
¼ D

@2c

@r2
þ 2

r

@c

@r

� �
(4.56)

with the boundary conditions for (4.56):

D
@c

@r

� �
r¼a
ðtÞ ¼ kfðEÞcr¼aðtÞ; cr!1 ¼ cbulk (4.57)

There is no doubt that in classical electrochemistry the partial differential

equation (PDE) (4.56) would be numerically integrated in time and space, which

approach is usually termed “digital simulation of electrode processes” [49, 50] and

allows to calculate the realistic concentration profiles of the species involved in the

electrochemical and transport processes (see below for the description of such

model). Koper and Gaspard have chosen however an approach based on ODE, in

order to construct the model that could be relatively easy subjected to stability

analysis. This was done by approximation of the realistic diffusion profile with the

two fictive spherical diffusion layers, each of thickness a/2 [justified by Eq. (4.54)

indicating that the thickness of the diffusion layer adjacent to the spherical elec-

trode can be estimated by the drop radius]—see Fig. 4.28. The third, external layer

extends from r ¼ 2a to (formally) infinity, when the reactant concentration is equal

to its bulk value (cbulk). In turn, in the (a, 3a/2) layer adjacent to the electrode this

concentration is equal to c1 ¼ u � cbulk and in the (3a/2, 2a) layer—equal to

c2 ¼ w � cbulk, where u and w are appropriate fractions of the bulk concentration.

Physically, introducing the concentration of the reactant halfway in the diffusion
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layer may cause deviation of the diffusion concentration profile from the linear one,

a situation being a rather crude approximation of the curved profile in real systems.

Further derivations, the details of which can be found in [48], and which include

among others the balance of matter diffusing through the surfaces of these virtual

spheres, led to the following equations of the c1 and c2 concentrations evolution [51]:

dc1
dt
¼ � 24kfðEÞ

19a
c1 þ 108D

19a2
ðc2 � c1Þ (4.58)

dc2
dt
¼ 12D

37a2
ð16cbulk � 25c2 þ 9c1Þ (4.59)

The above two ODEs, together with the charge conservation principle (4.55)

form a set of three ordinary differential equations, i.e., from mathematical point of

view such a system may offer more complex than only simple periodic oscillations.

After introducing dimensionless variables:

e ¼ ðF=RTÞE (4.60)

u ¼ c1=cbulk (4.61)

w ¼ c2=cbulk (4.62)

t ¼ 108Dt=19a2 (4.63)

equations (4.55), (4.58), and (4.59) were transformed into their dimensionless

forms:

de

dt
¼ v� e

r
� mkðeÞu (4.64)

Fig. 4.28 The two-diffusion-

layer model geometry for the

hanging mercury drop

electrode. Jch—chemical flux

at the interface, Jdif—
diffusion flux in the solution

phase. Reprinted with

permission from [48].

Copyright 1992, American

Institute of Physics
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du

dt
¼ �kðeÞuþ ðw� uÞ (4.65)

dw

dt
¼ 19

333
ð16� 25wþ 9uÞ (4.66)

with:

v ¼ ðF=RTÞU (4.67)

r ¼ 432

19
pRsCdD (4.68)

kðeÞ ¼ 2a

9D
kfðEÞ (4.69)

m ¼ 19nF2cbulka

24RTCd

(4.70)

As above, the dimensionless current can be calculated from i ¼ (v � e)/r.
Application of this model to the In(III)–SCN� oscillator involved further the

appropriate definition of the rate constant of the electron transfer, expressing both

the SCN� catalyzed and uncatalyzed reduction pathways:

kðeÞ ¼ k1y
2 þ k2 exp½anðe� e0Þ� (4.71)

In Eq. (4.71), the electrode coverage with adsorbed SCN� ions (y) depended
on the electrode potential in a way defined by Eq. (4.53), generating thus the region

of an N-shaped negative differential resistance.

Numerical integration of Eqs. (4.64)–(4.66) yielded a variety of dynamic

behaviors, observed upon increasing model ohmic resistance (r value): from

small-amplitude oscillations, resulting from the supercritical Hopf bifurcation, the

low-resistance and high-resistance MMO, incomplete Farey sequences (resembling

very much those for the copper dissolution in phosphoric acid, cf. Sect. 6.1.3), large

amplitude relaxation oscillations, and aperiodic (chaotic) oscillations. Selected

examples of these model oscillatory courses are shown in Fig. 4.29 [46]. The

notation Lm means number of m small amplitude oscillations separated by

L large-amplitude oscillations in the mixed mode.

In spite of simplifications of the model, analogous transitions were reported by

Koper et al. [47] in the experimental realization of the same methodology of

bifurcation analysis, i.e., by varying the external resistance for the In(III)–SCN�

electroreduction at the static mercury drop electrode. Figure 4.30 is the

corresponding experimental bifurcation diagram, constructed as the dependence

of the maximum oscillation amplitude vs. the serial resistance. Note that the
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supercritical Hopf bifurcation, leading to small amplitude oscillations, is soon

followed by an explosion of large amplitude oscillations, being a part of MMO

which mode is followed by simple relaxation oscillations. This region is, in turn,

closed by high-resistance MMOs, and then oscillations cease due to the reverse of

the period-doubling bifurcation.

The “low-resistance” and “high-resistance” MMO were identified as dynamically
fundamentally different regimes. The representative time series, showing their mor-

phological differences are shown in Fig. 4.31, while the interpretation of these courses

in terms of the corresponding phase space trajectories is shown in Fig. 4.32, respec-

tively [52]. As in the case of other systems, MMO of type 1 suggest the occurrence of

canard explosion (cf. Sects. 1.6, 3.6.2, 4.1). Furthermore, “type 1” MMOs are related

to the so-called incomplete homoclinic scenario, and “type 2” to the so-called

Shil’nikov behavior of homoclinic trajectories [53].While it can be a rather advanced,

specialized problem for the regular (electro)chemists, it is noteworthy that analogous

characteristics can be detected also for other heterogeneous and homogeneous

Fig. 4.29 Typical oscillatory time series for the current i obtained for Eqs. (4.64)–(4.66).

Depicted are, for the indicated values of r, a small-amplitude oscillation, a MMO state 119, a

MMO state 13, and a typical “Farey” state 1112. Note the small r domain in which these transitions

take place. All other parameter values were fixed at v ¼ 37, d ¼ 1,m ¼ 120, k1 ¼ 2.5, k2 ¼ 0.01,

ed ¼ 35, b ¼ 0.5, an ¼ 0.5, and e0 ¼ 30. Reprinted with permission from [46]. Copyright 1991

American Chemical Society.
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oscillators, so the readers interested in universalities in the nonlinear systems’ dynam-

ics are encouraged to study this problem in more detail. The model (4.64)–(4.66)

reveals in fact quite complex bifurcation scheme, in which besides the Hopf and

saddle–node bifurcations loci, also the Shil’nikov saddle focus, and SUN—the

saddle–unstable node bifurcation, not mentioned before, were detected; the interested

reader is thus advised to consult the original reference [48].

For typical electrochemists, it will be probably of primary importance to learn

that systematic experimental measurements of the dynamics observed for the In

(III)–SCN� reduction at the static mercury electrode, together with additional

analysis and transformation of experimental data, allowed Koper et al. to construct

a bifurcation diagram shown in Fig. 4.33 [52].

Finally, the 3D model (4.64)–(4.66) was also adapted to hydrodynamic

conditions of the rotating disk electrode [48]. It is, however, clear that for compari-

son of obtained theoretical predictions with the real system, not the In(III)/SCN�

polarographic oscillator, but rather anodic dissolution of rotating metal disk in

appropriate medium system should be used. We shall only mention here that

quite a good concordance was found between theory and dynamical instabilities

observed for the Cu/H3PO4 system, including the existence of MMOs and Farey

sequences, extensively studied earlier by Albahadily and Schell, whose works are

described in Sect. 6.1.3.3.

Fig. 4.30 Schematic bifurcation diagram of the minimum and maximum of the oscillating or

stationary current as a function of the external resistance Rs. Reprinted with permission from [47].

Copyright 1992 American Chemical Society
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Fig. 4.31 Time series illustrating the different behaviors of the reinjection variable for (a) type 1

and (b) type 2 mixed-mode oscillations (cf. Fig. 4.32). Reprinted with permission from [52].

Copyright 1992, American Institute of Physics

Fig. 4.32 Phase-space trajectories corresponding to type 1 and type 2 mixed-mode oscillations.

Reprinted with permission from [52]. Copyright 1992, American Institute of Physics
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4.3.2.3 Digital Simulation of the In(III)–SCN� Polarographic Oscillator

At the end of this section devoted to model representations of the In(III)–SCN�

oscillator, it is useful to confront the above approaches with recent comments by de

Levie et al, included in the paper of intriguing title “Demystifying an Electrochem-

ical Oscillator” [38]. In this work, the oscillations during polarographic reduction of

In(III)–SCN� were carefully reproduced using the digital simulation technique.

Accordingly, discretization was applied to both the time and spatial coordinates and

numerical integration of partial differential equation for the transport of this species
was performed, with appropriate initial and boundary conditions. In the crucial

Fig. 4.33 Bifurcation phase diagram for the In/SCN system where regions of stationary,

oscillatory, or complex behavior are mapped onto the U–Rs plane. Reprinted with permission

from [52]. Copyright 1992, American Institute of Physics
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Fig. 4.34 First and third rows: oscillatory transients obtained on a hanging mercury drop

electrode (HMDE) at the potentials indicated with the data, in V vs. SCE, when a 20 kO resistance

was inserted in series with the working electrode. Second and fourth rows: oscillatory transients
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region of negative differential resistance, the dependence of the electroreduction

rate constant (kf) on the applied potential was found from experimental polaro-

graphic data (in the absence of external ohmic resistance), using the classical

Koutecký formalism [2, 4, 54, 55] combined with an extension of the Oldham–

Parry algorithm [56]. In order to achieve possibly good concordance with experi-

mental courses, the dependence of the double layer capacitance on the electrode

potential in the NDR region was experimentally determined. Furthermore, the

simulations were performed for the spherical geometry of HMDE using fast implicit

finite differences algorithm [50]. The procedure applied was just like for the

simulation of any classical, nonoscillatory system: first the kinetic (ks, a) and

thermodynamic (E0) parameters of a given electrochemical system were determined

as accurately as possible and then they were incorporated into the numerical model

in which other parameters can be added or varied, in order to optimally reproduce an

experimentally observed behavior. The oscillatory behavior appears then so natu-

rally, as any other nonoscillatory behavior in digital simulation approach that in a

realistic manner reproduces both the kinetics of the electron transfer and the

transport of reagents in solution. The reader interested in such approach is advised

to consult also similar approach employed for the oscillatory electroreduction of Ni

(II)–SCN� complexes (see Sect. 4.4).

Figures 4.34 and 4.35 show comparisons of the experimental and simulated

oscillatory variations of current, corresponding to potentiostatic (U ¼ const) reduc-

tion of In(III)–SCN� at HMDE.

Quite a good concordance between the experimental and simulated oscillations

shows the advantages of such an approach (long ago established in classical

electrochemistry) which in this case also minimizes the number of simplifications

of the models involving ODEs, if applied to nonstationary conditions. Furthermore,

to cite de Levie et al. [38]: “there is nothing strange, mysterious, or unexpected in

such oscillations: they simply follow the generally accepted formalism given these

particular rate parameters.” And further: “To understand oscillatory processes, each

system must be understood in terms of its individual chemistry and physics and

preferably be amenable to reconstitution from its independently determined rate

parameters.” In his more recent paper, de Levie [57] has clarified his point of view:

models based on the assumption of the steady state (like those promoted by Koper)

are useful for experiments enforcing stationary mass transport conditions, as with

rotating disk electrodes, but do not apply to measurements on hanging or dropping

mercury electrodes; in the latter case digital simulations are recommendable,

among others because they do not require steady-state approximation. In this

paper also conditions for the oscillations are summarized and several polarographic

Fig. 4.34 (continued) simulated using the independently obtained rate parameters plus the applied

potential. Experimental data rates: 100 points s�1; simulation: 1,000 points s�1. Reprinted with

permission from [38]. Copyright 1998 American Chemical Society

�
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Fig. 4.35 First and third rows: oscillatory transients obtained on a hanging mercury drop

electrode (HMDE) at �1.25 V vs. SCE upon insertion of a resistance of indicated value (in kO)
in series with the working electrode. Second and fourth rows: the corresponding simulated
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oscillators are re-analyzed. Concerning In(III)–SCN� system, the author

emphasizes that its oscillatory behavior was understood, in terms of its principles,
three decades before recent digital simulations were made, which only confirmed

the early mechanism. What can the author of the present monograph add, having

some experience with both types of the models? The advantages of digital simula-

tion should obviously be appreciated, but one can pose a question, whether this

approach is sufficient to discover and understand the universalities typical of

dynamic instabilities in various systems. Let us try the compromise solution:

simplification toward the core of the dynamics of the process, expressed in terms

of ODEs for temporal instabilities, is useful for recognizing the universalities in

nature, but every such simplification must be preceded with the deep understanding

of the physical and chemical mechanism of a given process.

At the end of this section we shall mention that polarographic current

oscillations were reported also for reduction of In(III), as well as of Ga(III), in

other media (0.02 M chloride and nitrate solutions), as Kariuki et al. have recently

reported [58, 59]. However, those instabilities occurred at potentials around the

polarographic maximum, so they most probably are of completely different, hydro-

dynamic origin.

4.4 Oscillations and Bistability in the Nickel(II)–SCN�

Electroreduction

4.4.1 Origin of the N-NDR Region in the Ni(II)–SCN�

Electroreduction

Following the previous section about the In(III)–SCN� oscillator, we will

describe dynamic instabilities in the electroreduction of thiocyanate complexes

of nickel(II) at mercury electrodes. Nickel(II) forms with SCN� ions a series of

complexes, with the number of SCN� ligands changing (as the mean value) from

1 to 3.8, for SCN� concentration varying from 0.1 to 4.8 M, at constant [Ni

(II)] ¼ 0.001 M [60]. The polarographic wave of Ni(II) in the presence of excess

of thiocyanates has a shape similar to that for the electroreduction of In

(III)–SCN� complexes, including the N-NDR region in the similar potential

range (Fig. 4.36) [61]. This suggests a similar mechanism of the NDR formation:

Fig. 4.35 (continued) oscillatory transients for the same series resistances. Experimental data rates:

100 points s�1; simulation: 1,000 points s�1. Reprinted with permission from [38]. Copyright 1998

American Chemical Society

�
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the electrostatic repulsion of adsorbed, electrocatalytically acting SCN� anions

from negatively charged electrode surface.

Early report on the oscillations of the polarographic current of reduction of Ni

(II)–SCN� complexes, suggesting such an origin of NDR, has been published by

Tamamushi and Matsuda [62] and the phenomenon was confirmed later by Koper

and Sluyters [63]. More recent classical electrochemical works, performed by

Krogulec et al. [60, 64, 65], have indicated however that the mechanism of the Ni

(II)–SCN� electroreduction is more complex than that of In(III)–SCN�, since it

includes, besides relatively simple reduction of Ni(II) to Ni(0)(Hg), also a parallel

reduction of SCN� ions: 5Ni2þ þ 4SCN� þ 8e ! 4NiS þ Ni(CN)4
2�. The solid

NiS phase was found to adsorb strongly on Hg electrode surface and, with increas-

ing electrolysis time, it could even (auto)inhibit the entire electrode process. More

recent experiments and model calculations [61] have shown that NiS is not a main

(if any) source of the N-NDR region which is thus presumably due to the same

mechanism, as for the In(III)–SCN� electroreduction. Thus, the side formation of

NiS should be considered a factor disturbing rather than causing the oscillations,

with this effect increasing with time, when NiS accumulates on the mercury

surface. In order to complete the electrochemical characteristics of the Ni

(II)–SCN� electroreduction, it was further suggested that the increase of the

cathodic current, following the minimum at ca. �1.3 V is caused by the

noncatalytic outer sphere electroreduction of Ni(II) ions in their complexes with

SCN� ions [61].

Fig. 4.36 Normal pulse chronocoulometric (voltocoulometric) waves of solutions of

1 � 10�3 mol dm�3 Ni(ClO4)2 with constant ionic strength: (1) [NaSCN] ¼ 2 mol dm�3, (2)
[NaSCN] ¼ [NaClO4] ¼ 1 mol dm�3. For comparison curve (3) for [NaSCN] ¼ 1 mol dm�3;
[NaClO4] ¼ 0, was also included. Current sampling time t2 ¼ 100 ms. The NDR region occurs

within potential range (�0.95 V, �1.3 V). Reprinted from [61] Copyright 1999, with permission

from Elsevier
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4.4.2 Oscillations at the HMDE

As for the N-NDR systems, the insertion of appropriate serial ohmic resistance in

the circuit of the working hanging (or static) mercury electrode causes the sponta-

neous current oscillations which are however transient, not only because they occur

when the system still tends to the steady state determined by the characteristics of

the spherical diffusion. Also continuous side formation of NiS gradually blocks the

electrode surface and eventually accelerates the decay of the oscillations by

suppressing effect on the flowing current. Exemplary experimentally obtained

oscillatory I–t courses of the Ni(II)–SCN� electroreduction, reported by

Jurczakowski and Orlik [66], are shown in Fig. 4.37a.

Clearly, since these oscillations occur in a nonsteady state regime, the only

model approach which at least semiquantitatively can match the experimental I–t
courses has to invoke partial differential equations, i.e., engage the digital simula-

tion technique [49, 50]. Exemplary principles of implementation of such approach

to model electrochemical instabilities, which allows to generate realistic variations

of the concentration profiles during the oscillations, were outlined in [67] and

applied to the discussed Ni(II)–SCN� oscillator at HMDE [66]. Below they are

briefly summarized. The Ni(II)–SCN� electroreduction was schematically

expressed in the form of a model process:

Ox þ ne �!
kf

 �
kb

Red (4.72)

where Ox 
 electroactive Ni(II)–SCN� species and Red 
 nickel(0) amalgam.

The dependence of the rate constants kf and kb on the electrode potential was

assumed in a way explaining the full Q–E shape, like that in Fig. 4.36. The rise

of the current prior to the NDR region and the formation of this region (i.e., the

current of the SCN�–catalyzed process) is generated by term with the Ks,1

preexponential factor, while the term with Ks,2 factor explains the re-increase of

current at far negative potentials, due to noncatalyzed reduction of Ni(II):

kf ¼ Ks;1 exp½�ðanÞ1f ðE� E0
f Þ� þ Ks;2 exp½�ðanÞ2f ðE� E0

f Þ� (4.73)

where

Ks;1 ¼ kapps;1

exp½�kNiS;1At�
1þ exp½P1ðE� P2Þ�
� 	

(4.74)

Ks;2 ¼ kapps;2 exp½�kNiS;2At� (4.75)

and with the rate constant of the reverse process described by the thermodynamic

relationship:

kb ¼ kf exp½nf ðE� E0
f Þ� (4.76)
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Fig. 4.37 Experimental (a) and simulated (b, c) courses of the chronoamperometric

electroreduction of 2.1 � 10�3 mol dm�3 Ni(ClO4)2 + 2.0 mol dm�3 NaSCN. External voltage
U ¼ �1.6 V, serial resistance Rs ¼ 250 kO, A ¼ 1.17 � 10�2 cm2; the formation of inhibitory
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In Eqs. (4.73)–(4.76) f ¼ F/RT, A is the electrode surface, P1 is a parameter

which determines the I–E (or Q–E) slope in the region of the negative resistance,

while P2, having some correspondence to the potential of zero charge of mercury in

contact with SCN� ions, decides from what potential the negative slope of the I–E
(or Q–E) curve starts to manifest itself. The rate constants kNiS,1 and kNiS,2 deter-
mine the rate with which the electrode kinetics is being affected (slowed down) by

the inhibitory layer of NiS. The numerical values of most parameters were deter-

mined from the short-pulse (100 ms) normal pulse chronocoulometric studies of the

Ni(II)–SCN� electroreduction [61], assuming that for such short sampling times the

generation of NiS could be considered negligible (i.e. then kNiS,1 ¼ kNiS,2 ¼ 0).

The latter values were modified when simulating the oscillations for given

conditions.

The electrode potential E differs from the externally applied voltage U for the

ohmic drops, caused by the serial resistor Rs in the circuit (the solution resistance

was assumed negligible due to high concentration of NaSCN):

E ¼ U � RsðIf þ IcÞ (4.77)

with the faradaic and capacitive currents defined, respectively, as:

If ¼ nFAfoxð0; tÞ (4.78)

and

Ic ¼ CdðEÞ dE
dt
¼ CdðEÞ d½U � ðIf þ IcÞRs�

dt
(4.79)

fox(0,t) being the flux of Ox species at the electrode surface (x ¼ 0), at time t.
Finally, the spherical geometry of the HMDE implies the relevant equations of

transport:

@cox
@t
¼ Dox

@2cox
@r2

þ 2

r

@cox
@r

� �
(4.80)

@cred
@t
¼ Dred

@2cred
@r2

þ 2

r

@cred
@r

� �
(4.81)

Fig. 4.37 (continued) layer of NiS was neglected in (b) (kNiS,1 ¼ kNiS,2 ¼ 0) and taken into account

in (c) (kNiS,1 ¼ 0.9 cm�2 s�1, kNiS,2 ¼ 4.5 cm�2 s�1). T ¼ 298 K. Other parameters of the model:

[NaSCN] ¼ 2.0 mol dm�3, T ¼ 298 K, Dox ¼ 5.3 � 10�6 cm2 s�1, A ¼ 0.0150 cm2,

kapps;2 ¼ 1:6� 10�5 cm s�1, (an)2 ¼ 0.176, E0
f ¼ �0:564V, P1 ¼ �70.6 V�1, P2¼ �0.703 V;Dred

¼ 6.5 � 10-6 cm2 s�1, kapps;1 ¼ 10�3 cm s�1, n ¼ 2, (an)1 ¼ 1.5, (bn)1 ¼ 0.5. Reprinted from [66],

Copyright 2000, with permission from Elsevier

�
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with the following initial boundary conditions (r0 meaning here the radius of

HMDE and coox the bulk concentrations of the Ni(II)–SCN� reactant):

t ¼ 0 r � ro coxðr; tÞ ¼ coox credðr; tÞ ¼ 0 (4.82)

These equations were solved numerically by means of the explicit finite

differences method. The general form of finite difference equations, describing

the discrete progress of diffusion in the solution, within every time step Dt and the

spatial step Dx can be found in the relevant literature [49, 50]. We shall give here

only specific form of equations that allow to calculate the total current as a function

of time, i.e., to reproduce the oscillatory courses. If the model time of duration of

the electrochemical experiment is denoted by jDt, with j ¼ 1, . . ., N, then the

capacitive current (4.79) is expressed in the form:

IcðjÞ ¼ Cd½Eðj� 1Þ� EðjÞ � Eðj� 1Þ
Dt

� �

¼ Cd½Eðj� 1Þ� U � IcðjÞ þ IfðjÞ½ �Rs � Eðj� 1Þ
Dt

� �
(4.83)

where indices (j) and (j � 1) indicate the values of the current calculated for

the actual time step and the preceding time step, respectively. The double layer

capacitance is determined based on preceding E. Taking into account Eq. (4.77) one
derives then the final expression for the actual capacitive current Ic(j):

Icð jÞ ¼ Cd Eðj� 1Þ½ � U � RsIfðjÞ � Eðj� 1Þ
Dtþ RsCd ½Eðj� 1Þ�

� �
(4.84)

The dependence of Cd on the electrode potential was realized through the spline

interpolation of available Cd–E data [66], for given E(j � 1) potential. In turn, the

faradaic current If was calculated from the following nonlinear equation, the

general mathematical form of which comes from the combination of the expression

for the faradaic current (4.78) with the condition of the net zero surface fluxes of Ox

and Red: fox(0,t) þ fred(0,t) ¼ 0, valid for the absent or negligible adsorption of Ox

and/or Red species at the electrode surface:

IfðjÞ ¼ �nFA
kf ½IfðjÞ; IcðjÞ;U�coxð1; jÞ � kb½IfðjÞ; IcðjÞ;U�credð1; jÞ

1þ ðkf ½IfðjÞ; IcðjÞ;U�=2DoxÞ þ ðkb½IfðjÞ; IcðjÞ;U�=2DredÞ

 �

Dx

(4.85)

In this particular case the equation for If is implicit, since the faradaic current

depends on the actual electrode potential which, due to ohmic drops, is dependent

also on that current. Thus, for every jth time stepDt of the simulation, Eq. (4.85) was

solved with respect to If as a root by the M€uller method (a highly recommended,

quickly convergent, optimized classical bisection procedure followed by inverse

254 4 Temporal Instabilities in Cathodic Processes at Liquid and Solid Electrodes



parabolic interpolation [68]); in this way also Ic was simultaneously calculated. The

calculation of current was coupled with the calculation of the diffusion progress of

Ox in the solution and Red in the amalgam phase, distinguished by different

(experimentally determined) diffusion coefficients of both species.

Representative results of calculations are shown in Fig. 4.37b, c. One should note

that oscillatory solution appeared spontaneouslywhen the decreasing current reached a
value similar to that, forwhich the onset of oscillationswas observed in the experiment.

This confirms the realistic nature of the simulations. The shapes of the oscillatory

courses in part (b) of Fig. 4.37 differ, however, from those shown in part (a), since the

side formation of NiS was not yet taken into account in the model [i.e., for part (b),

kNiS, 1 ¼ kNiS, 2 ¼ 0], while due to prolonged duration time of the oscillatory experi-

ment one should expect detectable accumulation of NiS. It is thus not surprising that

much better concordance is reached if appropriate nonzero values of kNiS, 1 and kNiS, 2,
treated then as adjustable model parameters, are assumed in the simulations. This

effect is clearly illustrated by the improvedmodel oscillatory courses shown in part (c)

of Fig. 4.37. Of course, the implementation of NiS in the form of the exponential term

is a very simplified tool which can only express the net effect of this solid species

which nucleates and grows probably inhomogeneously on the Hg electrode surface.

More experimental and model data can be found in original reference [66].

The presented model seems to be a useful introduction into a subject of possibly

precise modeling of the electrochemical oscillations under nonstationary

conditions, which involves even the dependence of the double layer capacitance

on the electrode potential. As de Levie has indicated [57], introducing this depen-

dence may be quite significant in modeling of the oscillations for the diluted

solutions of the supporting electrolyte, when the oscillating electrode potential

can traverse the region of substantial Cd(E) dependence.
Finally, in spite of certain criticism, recommending that mathematically strict

would be the use of implicit, instead of explicit numerical integration of PDE [69],

one should note that the approach presented earlier yields satisfactory results not

only for the dynamically unstable systems. The same algorithm applied to simula-

tion of cyclic voltammetric curves affected by significant ohmic drops (as for

nonaqueous solutions) produces I–E shapes perfectly matching the experimentally

recorded patterns, if the Cd–E dependence is invoked [70, 71].

4.4.3 Oscillations and Bistability at the Streaming Mercury
Electrode

4.4.3.1 Construction of the Streaming Electrode. Experimental Results

The transient regime of diffusion transport and continuous production of NiS

disturbing the oscillatory course made the steady-state behaviors impossible to

obtain using the HMDE. Using such an electrode type it is also difficult to unambig-

uously detect the bistability upon cyclic variation of the external voltage, as the
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system in transient regime never returns to the same situation. In fact, up to the year

2002, apparently no reports on the true stable oscillations at mercury electrodes have

been published. The problem was recently solved by Jurczakowski and Orlik [72]

who first have applied the streaming mercury electrode for the studies of electro-

chemical instabilities in the Ni(II)–SCN� electroreduction. Such an electrode was in
use rather in 1950s with the hope that it will allow to make short-time experiments in

electrode kinetics, but later it lost competition with the pulse techniques. Up to

middle of sixties (1960’s) it was used for the precise determination of the potential of

zero charge of Hg electrode by Paschen, Erdey-Gruz, Grahame, Damaskin, Payne

et al., and it is interesting to know that this method was introduced already by

Helmholtz and Ostwald at the end of nineteenth century [73].

The advantage of application of the streaming Hg electrode to the studies of the

oscillations in theNi(II)–SCN� electroreduction is not limited to the fact that it ensures

the constant convective-diffusion transport of electroactive species from the solution

bulk to the electrode surface, which allows one to obtain both true steady states and

sustained oscillations of constant amplitude and period. Also, the constantly refreshing

itself stream of mercury means permanent and fast removing of reaction products:

nickel amalgam and irreversibly adsorbing NiS. For both these reasons the streaming

Hg electrode seems to be the ideal, if not the only electrode type for the studies of

stable steady states and stable oscillations in the Ni(II)–SCN� electroreduction.

Furthermore, it allows one to report bistability in this process that was not described

before, but obviously has to manifest itself due to its N-NDR characteristics.

The core of the streaming electrode is a glass capillary through which the stream

of mercury is flowing, in this case vertically. The construction of the streaming

electrode used in [72] was specially adapted to the studies of dynamic instabilities:

the pressure of mercury was maintained constant over prolonged time, and the

droplets of mercury formed at the end of the stream were collected and directed

toward the peripheral area of the solution, in order to avoid fluctuations of the

electrode surroundings, caused by the falling mercury drops. Details of that con-

struction are shown in Fig. 4.38 in which the region of the streaming electrode being

in contact with the solution is denoted as section B.

The idealized geometric and dynamic properties of the mercury stream were

already shown in Fig. 3.3. Typical characteristics of such electrode, used in the

measurements, described in this section, are: stream diameter f ¼ 0.11 mm, stream

length lmax ¼ 2.85 mm, stream velocity v ¼ 1.64 ms�1, meaning that the electrolysis

time varies from zero at the orifice of the glass capillary to tmax ¼ lmax/v¼ 1.74ms at

the solution surface. For the typical diffusion coefficient D ¼ 6 � 10�6 cm2 s�1,
the corresponding maximum thickness of the Nernst diffusion layer dmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDtmax

p
reaches then only 1.7 � 10�4 cm. Practice shows that in order to obtain reliable,

reproducible results of measurements, the streaming electrode has to exhibit

characteristics close to the above, exemplary values, but this also means that the

sampling time has to be as short as a few milliseconds only.

Before switching to nonlinear dynamic phenomena it is useful to recognize in

more detail the basic features of the transport of reactant particles from the bulk of

the solution toward the surface of such streaming electrode. The basic analytical

mathematical theory of the streaming mercury electrodes was published by Koryta
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[74] and by Weaver and Parry [75, 76]. The idealized description of the streaming

electrode (like that shown in Fig. 3.3) is based on the following assumptions [72]:

(1) the layer of the electrolyte solution in the close vicinity of the electrode, set to

Fig. 4.38 Schematic construction of the experimental setup with the streaming mercury electrode

for studying dynamic instabilities in the electroreduction of the Ni(II)–SCN� complexes. I—

system of maintaining the constant mercury pressure in the flowing stream, II—the electrolytic

cell, III—system of mercury collection, maintaining the constant level of the solution in the

electrolytic cell; A—glass capillary tip, at which the thin mercury jet is formed, B—the proper

streaming electrode, i.e., the range of mercury jet of a length lmax being in contact with studied

solution, C—solution surface. The stream of the used mercury is further captured by the fixed

element D and directed to the bottom part of the cell. Reprinted with permission from [72],

Copyright 2002 American Chemical Society
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motion by the stream of mercury, follows exactly its surface speed, (2) the thickness

of this hydrodynamic layer of the dragged solution is greater than that of the

diffusion layer; (3) due to a short contact of the electrolyzed solution with the

electrode surface the diffusion layer is so thin, that the strict cylindrical geometry of

diffusion may be well approximated by a linear one, i.e., @c=@t ¼ Dð@2c=@x2Þ;
(4) all concentration gradients in the solution, other than those perpendicular to the

electrode surface, are negligible.

The next crucial step is the expressions for a faradaic and the capacitive currents.

Since the electrolysis time increases along the stream length (l), the local faradaic
current varies accordingly. For a given element of the cylindrical surface area

dA ¼ 2prdl, located at the distance l from the capillary outlet, the local faradaic
current is thus generally given by:

dIfðlÞ ¼ nFDðdAÞ @cox
@x

� �
0;l

(4.86)

while the total faradaic current is an integral of this expression along the entire

electrode length:

If ¼ 2prnFD
Zlmax

0

@cox
@x

� �
0;l

dl (4.87)

The general solution for the current controlled by the charge-transfer step at time t,
under linear diffusion conditions, is known [4]:

If ¼ �nFAc0oxkf expðk2tÞerfc(kt1=2Þ (4.88)

where k ¼ kf=D
1=2
ox +kb=D

1=2
red and cox

0 is the bulk concentration of the reducible

reactant. As Weaver and Parry [76] have shown, the integration of

dIf ¼ �nFðdAÞc0oxkf expðk2tÞerfc(kt1=2Þwith dA ¼ 2prdl and t ¼ l/v, over l vary-
ing from 0 to lmax yields the following expression for the steady-state faradaic

current at the streaming mercury electrode:

If;ss ¼ �2prnFc0oxkfv
2

k

ffiffiffiffiffiffiffiffi
tmax

p

r
þ expðk2tmaxÞerfc(kt1=2max Þ � 1

k2

" #
(4.89)

which for the case of diffusion-limited value simplifies to [74]:

If; lim ¼ � 4nFD
1=2
ox m1=2l

1=2
maxc

0
ox

r1=2Hg

(4.90)
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In turn, the steady-state capacitive current, which—contrary to the electrodes of

constant and not renewing itself surface—flows even at constant potential, due to

permanent charging of the new portions of flowing mercury to an externally

imposed potential, is given by Eq. (3.17) [77]. For exemplary data:K ¼ 25 mF cm�2,
(E � Epzc) ¼ 1 V and typical parameters of the streaming electrode one gets

IC ¼ 0.14 mA, i.e., quite significant baseline of the capacitive current, compared

to the faradaic current for typical reactant concentrations.

Using the streaming electrode from Fig. 4.38, it was obtained the steady-state

I–E characteristics for the Ni(II)–SCN� electroreduction, exhibiting the NDR

region, with in fact significant baseline contribution from the capacitive current

(Fig. 4.39). This figure represent the steady states which are stable, since the small

solution resistance appears to be insufficient to induce any instabilities.

When appropriate serial resistance Rs is inserted in the circuit, it is possible to

record both sustained oscillations (Fig. 4.40) and bistability (Fig. 4.41).

In Fig. 4.41 only stable steady states, as the only observable ones, are visualized,

but one can easily find the missing unstable steady states by the translation of the

original I–E characteristics from Fig. 4.39 along the potential axis, point by point,

for the actual ohmic potential drops and presentation of the results in the I–U
coordinate system. The resulting diagram of all steady states attains the character-

istic shape of a double fold (Fig. 4.42).

Systematic studies of the occurrence of oscillations, mono- and bistable behavior

as a function of varying voltage U and serial resistance Rs led to the experimental

stability (bifurcation) diagram shown in Fig. 4.43. This diagram indicates that

oscillations occur in a very tiny region of the parameter space.

For reproduction of the above experimental results in terms of appropriate

theoretical models, both digital simulation and linear stability analysis of steady

states were performed. Based on the experimental steady-state I–E characteristics

from Fig. 4.39, the following parameters of the dependence kf(E), producing the

N-NDR region:

kf ¼ kapps;1

1

1þ exp½P1ðE� P2Þ�
� 	

exp½�ðanÞ1f ðE� E0
f Þ�

þ kapps;2 exp½�ðanÞ2f ðE� E0
f Þ� (4.91)

were found: kapps;1 ¼ 1� 10�3cm s�1, kapps;2 ¼ 4� 10�4 cm s�1, (an)1 ¼ 1.50,

(an)2 ¼ 0.12, E0
f ¼ �0:662V, P1 ¼ �67.4 V�1, P2 ¼ �0.798 V, and f ¼ F/RT

(with T ¼ 298.15 K).

4.4.3.2 Digital Simulation of Bistability in the Ni(II)–SCN� Electroreduction

For the numerical integration of partial differential equations of reagents transport

to the model streaming electrode (Fig. 4.44a), the space discretization scheme,

shown in Fig. 4.44b, was used. Accordingly, there is the spatial current distribution
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Fig. 4.39 Exemplary steady-state I–E dependence for the sample: 5.0 mmol dm�3 Ni(ClO4)2 +

2.0 mol dm�3 NaSCN, recorded at the streaming mercury electrode. Serial resistance Rs ¼ 0. The

region of a negative differential resistance (NDR) is observed within the potential range: ca. �1.0
and �1.5 V. Parameters of the streaming electrode: capillary flow m ¼ 210 mg s�1, internal glass
capillary (¼mercury electrode) diameter f ¼ 0.11 mm, length of mercury jet (directed upwards)

lmax ¼ 2.5 mm. Temperature 298.0 K. Reprinted with permission from [72], Copyright 2002

American Chemical Society

Fig. 4.40 Exemplary sustained oscillations reported for the electroreduction of Ni(II)–SCN�

complexes at a streaming mercury electrode, for U ¼ �1.47 V, Rs ¼ 0.82 kO. Other parameters

as in the caption to Fig. 4.39. Reprinted in part with permission from [72], Copyright 2002

American Chemical Society
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Fig. 4.41 Bistable behavior in the electroreduction of the thiocyanate complexes of nickel(II) at a

streaming mercury electrode, manifesting itself as the hysteresis in attaining the sets of “high-

current” (SS I) or “low-current” steady states (SS II) as a function of the direction of the linear

voltage (U) scan. Within the interval [UC,1 UC,2] the system is bistable, whereas outside this region

remains monostable. Serial ohmic resistance Rs ¼ 5.5 kO in the electric circuit of the streaming

electrode. Other parameters as in the caption to Fig. 4.39. Reprinted with permission from [72],

Copyright 2002, American Chemical Society

Fig. 4.42 Full diagram of the stable (SS I, SS II) and unstable (USS) steady states for the

electroreduction of 5.0 mmol dm�3 Ni(ClO4)2 + 2.0 mol dm�3 NaSCN at the streaming mercury

electrode: (filled circle) points obtained by the translation, on the voltage axis, of the I–E curve

from Fig. 4.39, for ohmic drops IRs (with Rs ¼ 5.5 kO); (solid line) experimental curve from

Fig. 4.41. Reprinted with permission from [72], Copyright 2002 American Chemical Society
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along the electrode which is due to the increasing electrolysis time, calculated for

every electrode segment according to the formula:

tres;j ¼ ½0:5� Dlþ ðj� 1ÞDl� � prHgr
2=m (4.92)

with j ¼ 1,. . .,N and assuming that the faradaic current is calculated in the middle

of every discrete Dl ¼ lmax/N segment.

The total faradaic current is a sum of those partial currents. The ohmic drops are

assumed to be due only to the serial resistance Rs in the external electric circuit, so

for all segments of the streaming electrode the interfacial potential drop E is the

same, at given time. The essential point of the simulation is the calculation of the

total faradaic and capacitive currents [72]. As for HMDE (Sect. 4.4.2), due to IRs

drops, the actual interfacial potential drop E for the Hg electrode is dependent on

both the faradaic If and the capactive Ic currents which are also interrelated because
the electrode has to be charged to that potential. The combination of expression

(4.77) with the formula for the capacitive current (3.17) yields the following

dependence for the latter current:

Ic ¼ 2prKvðU � IfRs � EpzcÞ
1þ 2prKvRs

(4.93)

Fig. 4.43 Stability diagram of the dynamic nonequilibrium states (filled circle) observed for the

electroreduction of the thiocyanate complexes of nickel(II) at a streamingmercury electrode. The lines,
led through these points, for Rs > 1 kO correspond to the position of the saddle–node bifurcations

between the monostable and bistable behavior. SS I—“high current” steady state, SS II—“low

current” steady state, osc—tiny region of oscillations. In the inset, the enlarged region of the

occurrence of sustained oscillations, encircled by the curve corresponding to the Hopf bifurcation, is

shown. Composition of the sample and parameters of the streaming electrode—the same as for

Fig. 4.39. Reprinted with permission from [72], Copyright 2002 American Chemical Society
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where If is a sum of all partial faradaic currents flowing through discrete electrode

segments:

If ¼
XN
j¼1

If;j (4.94)

Fig. 4.44 (a) Model geometry of the idealized streaming electrode. The mercury jet appears at the

end of glass capillary at y ¼ 0 and moves upward along the y coordinate, whereas the diffusion

layer in the dragged electrolyte solution develops only along the x-coordinate; (b) the

corresponding scheme of the space discretization for the mercury surface and the adjacent aqueous

solution, where the distances along the x and y coordinates are divided into i ¼ 1,. . .,M and

j ¼ 1,. . .,N spatial elements, respectively. The total faradaic current If consists of partial faradaic
currents If,j flowing through discrete segments of a surface area DA ¼ 2prDl. The permanent

renewal of the electrode surface is associated with the flow of the capacitive current Ic. The
potential drop E ¼ U � (If + Ic)Rs at the mercury–solution interface is common for all spatial

elements. Reprinted with permission from [72], Copyright 2002 American Chemical Society
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In turn, every partial faradaic current If,j, as being dependent on the actual E
value, is simultaneously dependent on the sum of all partial faradaic currents and

the capacitive current:

If;j ¼ f E ¼ U � Rs Ic þ
XN
m¼1

If;m

 !" #
(4.95)

where function f relates the faradaic current with the potential-dependent diffusion

jth flux fox,j of the reactant Ox at the electrode surface:

If;j ¼ nFðDAÞfox;jðEÞ (4.96)

In Eq. (4.96), the surface area of the electrode segment DA ¼ 2prDl and the

partial flux of Ox species, fox,j is given by:

fox;j ¼ � kfcox;jð1; tÞ � kbcred;jð1; tÞ
1þ

h
kf

2Dox
þ kb

2Dred

i
Dx

(4.97)

where cox,j(1,t) and cred,j(1,t) denote the concentrations of the respective reagents in
the jth discrete spatial cell of the solution, adjacent (i.e., for i ¼ 1) to the electrode

surface (cf. Fig. 4.44b), for a model time t ¼ kDt of the development of the

diffusion profile. Equation (4.95) means that calculation of all the partial faradaic

currents requires solving of the set of N nonlinear equations. For nonzero Rs it is an

iterative (e.g., Newton’s) procedure. Simultaneously with If, one calculates the

actual capacitive current Ic.
Calculations begin from the initial value of externally applied voltage U, low

enough to correspond to the monostable regime of corresponding low current,

composed of reasonable first approximations of all partial faradaic currents. The

iteratively found partial currents become further the first approximations in the

calculations for the next external voltage U þ DU, etc. The system thus always

“remembers” the preceding solution, like the real system remembers its history

upon voltage scan. The course of calculations, when the direction of U is eventually

reversed, is shown in Fig. 4.45. When the upper (1) branch of the stable steady

states (SS I) ends, further steady-state solutions automatically switch (2) to a lower

(3) branch of steady states, just like in the real experiment (cf. Fig. 4.45). When the

direction of U variations is then reversed, the numerical system exhibits hysteresis

due to the fact that the preceding solution is used as the first approximation for the

present one: in this way the numerical system exhibits its “memory” typical of

bistability. In the course of further calculations, the stable steady-states SS II are

being revealed until this branch also finishes (5) and the only steady-state solutions

possible are again those belonging to the upper branch. In this way, the realism of

this numerical modeling manifests itself, as the course of calculations matches

exactly the course of experimental observation of hysteresis associated with

bistable behavior.
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The realistic concentration profiles, corresponding to the “high current” steady-

states SS I and “low current” steady-states SS II, calculated for the first and the last

segment of the model electrode, are shown in Fig. 4.46.

4.4.3.3 Linear Stability Analysis of Processes at Streaming Electrode

Following the theoretical description of instabilities in the Ni(II)–SCN�

electroreduction in terms of purely electrochemical terms, one can extend the

analysis for application of such standard technique of nonlinear dynamics, as the

linear stability analysis [78]. Such an analysis is an extension of the approach

elaborated earlier for the nonstreaming electrodes, since it takes into account the

specific feature of the streaming electrode: the permanently flowing steady-state

capacitive current, the impedance characteristics of which, involving the virtual

resistor Rd (3.20), the definition of which will now be expressed in term of integral

double layer capacitance, suitable for discussed here dc conditions:

Rd ¼ 1

2prKðEÞu (4.98)

Fig. 4.45 Hysteresis loop (bistability) in the simulated potentiodynamic behavior of the Ni

(II)–SCN� electroreduction at a streaming mercury electrode in the presence of serial ohmic

resistance (Rs ¼ 5.5 kO) in the electric circuit. The numbers at the respective arrows show the

sequence in which the points, corresponding to stable steady states, appear during the forward and

the reverse voltage scan during model calculations. Characteristics of the model solution and of the

streaming electrode correspond to experimental data specified in the caption to Fig. 4.39. The

potential-dependent double-layer capacitances [66] were used for calculations of the capacitive

currents. Reprinted with permission from [72], Copyright 2002 American Chemical Society
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In the presence of the faradaic process, the equivalent circuit from Fig. 3.5 must

be extended for the corresponding branch with the faradaic impedance Zf, as shown
in Fig. 4.47.

Fig. 4.46 Exemplary simulated realistic concentration profiles for the electroreduction of Ox (Ni

(II)–SCN� complex) in the bistable region (U ¼ �3.5 V, Rs ¼ 5.5 kO ) for: (a) the first and (b) the

last discrete segment of a model streaming mercury electrode, shown schematically in the insets. For

the full discretization scheme and other mathematical details of the simulation procedure—see Section

4.4.3.1 and [72]. Reprinted with permission from [72], Copyright 2002 American Chemical Society
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Stability analysis of the steady state requires its perturbation, so for this purpose

the total capacitive current is expressed by the sum of steady-state value

[Eq. (3.17)] and the term associated with the small perturbation of this steady

state, characterized with the differential double layer capacity:

Ic;ss ¼ 2prKðEÞ � ðE� EpzcÞvþ 2prlmaxCdðEÞ dE
dt

(4.99)

In practice, for 2 M NaSCN, within the potential range of NDR formation for the

Ni(II)–SCN� electroreduction, the K/Cd ratio varies from ca. 1.1 to 1.4 [79] and in

calculations (especially if other simplifications are also used in the model) can be

assumed as equal to 1.

Fig. 4.47 (a) General equivalent circuit for the electrode process occurring at the streaming

mercury electrode, represented by the parallel connection of the elements of the (zero-frequency

for dc conditions) impedance Zf and Zc, associated with the flow of the faradaic If and capacitive Ic
currents, respectively. The capacitive current Ic flows through the element of impedance Zc even at
the steady-state potential Ess and in the absence of the faradaic process; (b) the equivalent circuit

from figure A extended for the exemplary equivalent subcircuit (in dotted rectangle) for the

complex element of an impedance Zc: in the steady state the capacitive current flows through

the resistor Rd ¼ (2prKv)�1 to which the electrode potential E, decreased for the electromotive

force Epzc, is applied; r radius of the mercury stream, flowing with the velocity v. Reprinted with

permission from [78], Copyright 2002 American Chemical Society
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As before, for two dynamic variables defining the system: electrode potential

E and surface concentration of the reactant cox(0,t) 
 cs, one derives the following
equations for their dynamics [78, 79]:

F½EðtÞ;coxð0; tÞ� 
 dE

dt
¼ U�E

2prRslmax

1

Cd

� �
�ðE�EpzcÞv

lmax

K

Cd

� �
þ nFkfcoxð0; tÞ 1

Cd

� �

(4.100)

G½EðtÞ; coxð0; tÞ� 
 dcoxð0; tÞ
dt

¼ � 2kfcoxð0; tÞ
dN

þ 2Dox½c0ox � coxð0; tÞ�
d
2

N

(4.101)

In Eq. (4.101), due to the variation of the diffusion-layer thickness along

the mercury stream (see Fig. 4.48), its average value [cf. Eq. (3.26)] was used:

dN ¼ ð1=tmaxÞ
Z tmax

0

dðtÞdt ¼ ð2=3Þ � ðpDoxtmaxÞ1=2 ¼ 1:21 mm (4.102)

It is instructive to consider the stability of both 1D and 2D models of the

present dynamical systems, remembering that 1D case can offer at most bistability

(saddle–node bifurcation), and not the oscillations (Hopf bifurcation).

In 1-D case the only dynamic variable is the electrode potential E. Then

the following equation for the temporal evolution of perturbation dE was derived

[78, 79]:

dðdEÞ
dt
¼ � dE

2prCdlmax

1

Rs

þ 1

Zf
þ 2prKv

� �
(4.103)

Fig. 4.48 Principle of

replacing the realistic

streaming electrode, sketched

in Part a, with its simplified

model construction (Part b) of

a constant (average) diffusion

layer thickness [cf.

Eq. (4.102)]. The diffusion

transport is assumed to occur

only along x direction.
Reprinted from [80],

Copyright 2007, with

permission from Elsevier
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in which Zf means now the slope of the If–E dependence under dc conditions, i.e.,

the so-called zero frequency impedance or the polarization resistance of the fara-

daic process. From Eq. (4.103) the following condition for the instability of the

steady state through the saddle–node bifurcation was found:

1

Rs

þ 1

Zf
þ 2prKv< 0 (4.104)

or, equivalently, in terms of definition of virtual Rd resistor (4.98):

1

Rs

þ 1

Zf
þ 1

Rd

< 0 (4.105)

One should note that if the electrode is nonstreaming, then v ¼ 0 (or Rd ¼ 1),

and conditions (4.104) or (4.105) reduce to the condition of the consequence of the

saddle–node bifurcation, defined by Eq. (2.19). For the streaming electrode, the

presence of 2prKv term means that the destabilization of the steady state, for given

negative slope of the If–E characteristics, requires higher serial resistance Rs than

for the nonstreaming electrode:

Rs >
1

ð�1=ZfÞ � 2prKv
¼ 1

ð�1=ZfÞ � ð1=RdÞ > 0 (4.106)

This is because the entire I–E characteristics of the process at the streaming

electrode include also the capacitive baseline, i.e., the contribution from the perma-

nently flowing capacitive current. The net negative dE/dI slope is then appropri-

ately enhanced (in the sense of its absolute value) and therefore higher serial

resistance is necessary for the onset of instability. In view of that, one concludes,

based on Eq. (4.104), that in the region of negative Zf the instability of the steady

states will be switched off, if the stream velocity exceeds the critical value:

v>
�1

2prKZf
(4.107)

since then the negative slope of the I–E characteristics will be (over)compensated

by the positive slope dE/dIc ¼ (2prKv)�1. In other words, the net dI/dE slope

becomes then positive and the NDR region effectively ceases to exist.

Switching now to more realistic 2D case, involving both Eqs. (4.100) and

(4.101), one calculates the parameters of possible steady states from the condition

dE/dt ¼ dcox/dt ¼ 0 in the following way. Combination of both obtained alge-

braic equations leads to the following nonlinear dependence:

U � Ess

2prRsCdlmax

� ðEss � EpzcÞv
lmax

K

Cd

� �
þ nFkfðEssÞc0oxDox

Cd½Dox þ kfðEssÞdN�
¼ 0 (4.108)
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from which one can determine (as a root) the numerical value of the steady-state

potential Ess, and hence the corresponding steady-state concentration css, for given
values of the control parameters U and Rs. These values are then used to calculate

the numerical values of the elements of the Jacobian matrix:

J ¼ a11

a21

a12

a22

" #
¼

@F

@E

� �
ss

@F

@cs

� �
ss

@G

@E

� �
ss

@G

@cs

� �
ss

2
6664

3
7775

¼

�1
2prRsCdlmax

� v

lmax

K

Cd

� �
þ nFcss

Cd

dkf
dE

� �
ss

nFkfðEssÞ
Cd

� 2css

dN

dkf
dE

� �
ss

� 2kfðEssÞ
dN

� 2Dox

dN
2

2
66664

3
77775 (4.109)

The trace Tr and the determinant Det of matrix J are given by:

TrðJÞ ¼ �1
2prRsCdlmax

� v

lmax

K

Cd

� �
þ nFcss

Cd

dkf
dE

� �
ss

� 2kfðEssÞ
dN

� 2Dox

d
2

N

(4.110)

DetðJÞ ¼ �1
2prRsCdlmax

� v

lmax

K

Cd

� �
þ nFcss

Cd

dkf
dE

� �
ss

� �
� 2kf

dN
� 2Dox

d
2

N

" #

þ nFkfðEssÞ
Cd

� �
2css

dN

dkf
dE

� �
ss

� �
(4.111)

Systematic studies of the range U and Rs parameters, for which the conditions for

the saddle–node bifurcation: Det(J) ¼ 0 and for the Hopf bifurcation: Tr(J) ¼ 0 with

Det(J) > 0 were found, allowed one to construct the theoretical bifurcation diagram.

Its comparisonwith the experimental one (Fig. 4.43), visualized for convenience again

in Fig. 4.49, shows close similarities. In these calculations, the simplification K ¼ Cd

was applied.

Such a quite satisfactory concordance confirms both the understanding of the

electrochemical source of instabilities in the Ni(II)–SCN� electroreduction and the

construction of the linear stability model of processes at the streaming electrode.

Since no more complex dynamic behaviors were reported in the experiment, the

linear stability model is sufficient to their description.

Furthermore, one can illustrate the system’s dynamics through the nullclines dE/
dt ¼ 0 and dcs/dt ¼ 0 derived from Eqs. (4.100) and (4.101):

dE/dt nullcline:

cs ¼ 1

nFkfðEÞlmax

CdvðE� EpzcÞ � U � E

2prRs

� �
(4.112)
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dcs/dt nullcline:

cs ¼ c0ox

1þ kfðEÞdN
Dox

(4.113)

The exemplary, representative courses of these nullclines, for the four

combinations of control parameters: U and Rs, are shown in Fig. 4.50.

Fig. 4.49 (a) Theoretical bifurcation diagram for the Ni(II)–SCN� electroreduction,

corresponding to the system of differential equations (4.100) and (4.101), with kf(E) dependence
given by Eq. (4.91): (solid line) points of the saddle–node bifurcation (Det(J) ¼ 0), (open circle)
points of the Hopf bifurcation (Tr(J) ¼ 0 with Det(J) > 0); (b) the corresponding experimental

bifurcation diagram from Fig. 4.43. Reprinted with permission from [78]. Copyright 2002 Ameri-

can Chemical Society
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Finally, as for the models described in Chaps. 1 and 2, in order to reveal the

difference in time scales of both dynamical variables through the parameter e, it is
useful to represent the Eqs. (4.100) and (4.101) in dimensionless representation [78]:

e
de

dt

� �
¼ u� e

r
� e� epzc

s
þ k0w (4.114)

dw
dt
¼ ð1� wÞ � k0w (4.115)

The dimensionless variables are defined as:

Electrode potential : e ¼ nF

RT
E (4.116)

External voltage : u ¼ nF

RT
U (4.117)

Fig. 4.50 (continued)
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Time : t ¼ 2Dox

d
2

N

t (4.118)

Surface concentration : w ¼ coxð0; tÞ
c0ox

(4.119)

In turn, dimensionless parameters, the values of which correspond to the experi-

mental characteristics of the Ni(II)–SCN� electroreduction (assuming again K ¼
Cd) are defined as:

Fig. 4.50 Analysis of steady states (fixed points) of the differential equations (4.100) and (4.101) in

terms of the dE/dt nullcline [Eq. (4.112), curve 1] and dcs/dt nullcline [Eq. (4.113), curve 2]; (a) stable
steady state SS I (filled circle, Ess ¼ �0.728 V; css ¼ 2.727 mol m�3) for U ¼ �2 V, Rs ¼ 6.0 kO,
(b) stable steady state SS II (filled circle, Ess ¼ �1.930 V; css ¼ 1.381 mol m�3) for U ¼ �3.5 V,
Rs ¼ 3.0 kO, (c) bistability SS I (filled circle, Ess ¼ �0.776 V; css ¼ 0.410 mol m�3)/SS II (filled
circle,Ess ¼ �1.578 V; css ¼ 3.216mol m�3) withmediumunstable steady state SS III (open circle,
Ess ¼ �1.172V; css ¼ 1.795mol m�3) forU ¼ �3.2 V,Rs ¼ 5.5 kO, (d) unstable steady state USS
(open circle, Ess ¼ �1.162 V; css ¼ 1.694 mol m�3) for U ¼ �1.425 V, Rs ¼ 0.7 kO, surrounded
by the stable limit cycle, corresponding to sustained oscillations. The symbols in brackets, e.g., (+,�)
denote the signs of the dE/dt and dcs/dt derivatives in the appropriate regions of the plots, indicating
the stability or instability of the steady state considered. Reprinted with permission from [78].

Copyright 2002 American Chemical Society
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e ¼ 2RTCd

n2F2c0oxdN
ffi 6� 10�3 (4.120)

r ¼ 2pn2F2Doxc
0
oxrlmax

RTdN
� Rs ffi 0:0368� Rs½O� (4.121)

s ¼ n2F2Doxc
0
oxlmax

RTvdN
� 1

Cd

ffi 65:49=Cd[F m�2� ¼ 245:28

¼ 2prn2F2Doxc
0
oxlmax

RTdN
� Rd

(4.122)

k0 ¼ dN
Dox

kf ffi 1764:71� kf ½m s�1� (4.123)

The e parameter equal here to 0.006 shows that e (potential) is a fast variable

compared to w (surface concentration), but e appears to be for 1–2 orders of

magnitude higher than that for the instabilities studied at the nonstreaming

electrodes. This is because of a very short electrolysis time at the streaming

electrode which determines the appropriately small (average) Nernst diffusion

layer thickness dN and thus an appropriately enhanced transport. Accordingly, the

stable limit cycle trajectory (cf. Fig. 4.50d) is a rather smooth curve, without

straight-line sections, typical of relaxation oscillations. In fact, also in the experi-

ment only quasi-sinusoidal oscillations of the current were reported (Fig. 4.40). The

tiny region of the oscillations in the bifurcation diagram suggests that they are

almost at the limit of existence. If the rate of the electrode process were only a bit

lower, the (then relatively faster) transport could suppress the oscillations. Such a

case will be described in the next section devoted to the electroreduction of azide

complexes of nickel(II).

4.4.3.4 Impedance Studies of Ni(II)–SCN� Electroreduction

In order to complete the experimental characteristics of instabilities in the

electroreduction of Ni(II)–SCN� complexes at the streaming mercury electrode,

we shall briefly review its impedance studies, performed by Jurczakowski and Orlik

[80]. Theoretical description of the impedance response of such an electrode type

was given in Sect. 3.2. Figure 4.51 shows representative impedance spectra of the Ni

(II)–SCN� system, recorded for four dc potentials that correspond to various regions

of the dc steady-state I–E characteristics from Fig. 4.39, including the NDR region.

The spectrum in Fig. 4.51a, corresponding to the electrode potential, at which

the slope of the I–E characteristics is still positive, exhibits a shape typical of the

Butler–Volmer kinetics at the streaming electrode. In figures (b) and (c), the region

of negative real impedance manifests themselves in line with the potential region of

the occurrence of NDR on the dc curve. Thus, for both E ¼ �1.05 V and �1.1 V
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Fig. 4.51 Exemplary

experimental impedance

spectra (Nyquist diagrams)

(filled circle) and their

Kramers–Kronig transforms

(+) of the Ni(II)–SCN�

electroreduction at the

streaming mercury electrode,

for zero serial external

resistance Rs and various dc

potentials: (a) �0.80 V,

(b) �1.05 V, (c) �1.10 V,

(d) �1.30 V. Applied

frequency range: f ¼ o/
2p ¼ 50 Hz to 100 kHz.

Open symbols represent
impedances for the

frequencies differing for the

decade. Reprinted from [80],

Copyright 2007, with

permission from Elsevier
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the real impedance axis is crossed, at its negative side, for nonzero frequency (oH)

which means, according to Sect. 3.3.2, a Hopf bifurcation which will occur, if we

insert in the circuit the serial resistance of the magnitude compensating the negative

real impedance indicated by the cross-section. Furthermore, for frequencies lower

than oH and tending to zero, the plot aims to cross the real impedance axis at more

negative values which case, in turn, indicates the saddle–node bifurcation, leading

to bistability. Finally, Fig. 4.51d shows the possibility of only saddle–node bifurca-

tion, as the zero imaginary impedance occurs only for o ! 0.

Based on these impedance diagrams, one can thus determine the serial resistances

Rs necessary to destabilize the system through the Hopf and saddle–node bifurcations.

From the steady-state dc I–E curve one finds the steady-state current Iss corresponding
to each potential E, for which the given impedance spectrum was collected. The

product of Iss andRs, added toE, yields the external voltageU that should be applied in

order to achieve the bifurcation point, and the pair of (U, Rs) values determines its

position on the stability diagram. In this way, one can reconstruct the full stability

diagram that should be concordant with the one obtained from dc measurements.

Figure 4.52 shows partial reproduction of this diagram in the region of oscillations and

adjacent region of bistability compared with the analogous diagrams determined from

dc measurements and theoretical calculations (cf. Figs. 4.43 and 4.49).

In terms of the model of the impedance response of the streaming electrodes,

described in Sect. 3.2, one can calculate the theoretical shapes of the impedance

spectra for the Ni(II)–SCN� electrochemical system, based on the equivalent

circuit shown in Fig. 3.7, the expressions (3.33)–(3.36), and the dependence of

the rate constant kf on the electrode potential, defined by Eq. (4.91). The

concentrations of Ox and Red were calculated as the single values averaged over

the entire streaming electrode, according to Eqs. (3.27) and (3.28). The calculated

Nyquist diagrams appeared to be reasonably well concordant with the theoretical

ones. A better concordance between the theoretical and experimental dependences

was observed for the phase angle Bode plots [80]. Anyhow, the theoretical model of

the impedance of processes at the streaming electrodes is in this way at least

semiquantitatively confirmed. Further details of the experimental procedure and

theoretical calculations can be found in the original paper [80].

4.5 Tristability in the Ni(II)–N3
� System

4.5.1 Two N–NDR Regions as a Source of Tristability

It seems natural to compare the electroreduction of the Ni(II)–SCN� complexes with

the electroreduction of Ni(II) complexes with other pseudohalogenide ligand—the

azide anion. Such studies were performed by Jurczakowski and Orlik [81] using

again the streaming Hg electrode which was earlier successfully applied to the

Ni(II)–SCN� system. First, one has to recognize the form in which Ni(II) exists in
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the presence of excess azides. Based on literature studies [82–84] one concludes that

in the solution of a few mM Ni(ClO4)2 and 2 M NaN3 most of nickel(II) ions are

present in the form of anionic [Ni(N3)4]
2� complex, while for 1 M NaN3 some

amounts of Ni(N3)2 and Ni(N3)
þ also coexist. A simple mixing of Ni(ClO4)2 and

NaN3 solutions yields, however, a slightly turbid solution which also produces

Fig. 4.52 (a) Comparison of the course of the experimental bifurcation diagram for theNi(II)–SCN�

electroreduction obtained from dcmeasurements ( points “open circle” were connectedwith solid line
for better visualization of the diagram shape) with the selected points of the Hopf (filled circle, H) and
saddle–node bifurcations (filled circle, sn) determined from the experimental impedance spectra

shown in Fig. 4.51b–d. SSI and SSII stand for the stable steady states coexisting in bistable regime;

(b) the respective enlarged fragment of the theoretical bifurcation diagram showing the cusp of the

saddle–node bifurcation points (filled circle), partially overlapping with the loop of a Hopf bifurcation
points (open circle). Slight discrepancies in the loop size and the cusp position in (a) and (b) are caused
by the simplification of the model, but their relative position is similar. Reprinted from [80], Copyright

2007, with permission from Elsevier
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irregular and irreproducible electrochemical response. An addition of small amount

of HClO4 is necessary to make the sample transparent. This obvious procedure

produces a solution, the electrochemical characteristics of which appear to be

particularly interesting, depending on the composition of the sample. One should

only note that the exact concentrations of azide species are difficult to control since

during the prolonged deaeration of the sample with nitrogen or argon, some amount

of volatile HN3, formed upon acidification with HClO4, leaves the solution. It is

however possible to find such conditions in which either only single or even two

sequential N-NDR regions form on the steady-state I–E curve recorded at a stream-

ing mercury electrode. The latter case is shown in Fig. 4.53.

Figure 4.53 immediately implies the possibility of not only bistability, but also

of rather rarely experimentally reported phenomenon of tristability. The conditions

of occurrence of mono-, bi-, and tristability, depending on the external voltage, for

given fixed serial resistance Rs, are clearly explained by the schematic Fig. 4.54, in

which the moving load line crosses such I–E characteristics with two successive

region of the negative differential resistance.

Accordingly, insertion of the appropriate serial resistance to the circuit with the

I–E characteristics from Fig. 4.53 allowed to record both the bistable and tristable

behavior (see Fig. 4.55).

Fig. 4.53 Current–potential (I–E) dependence for the sample of an initial composition:

4.0 mmol dm�3 Ni(ClO4)2 + 2.0 mol dm�3 NaN3 + 12 mmol dm�3 HClO4, recorded at the stream-

ing mercury electrode for zero serial resistance (Rs ¼ 0) in the circuit of the working electrode. The

regions of the negative differential resistance (NDR, dE/dI < 0) starting from ca. �0.85 V are

distorted by the extra faradaic current which leads to the formation of two (NDR-1, NDR-2)

sequential regions of negative resistance. Parameters of the streaming electrode: capillary flow

m ¼ 212 mg s�1, internal glass capillary (¼ cylindrical mercury electrode) diameter f ¼ 0.11 mm,

length ofmercury jet (directed upward) lmax ¼ 2.85mm. Reprinted partly with permission from [81].

Copyright 2003 American Chemical Society. Due to volatility of HN3 the given concentrations are

the initial ones; the true concentration of N3
� , as well as of H+ can therefore be slightly lower
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Systematic studies for varying U and Rs led to the experimental bifurcation

diagram shown in Fig. 4.56 which also does not contain any oscillatory region. In

fact, the oscillations were not found for the Ni(II)–N3
� electroreduction for any

experimental conditions, also even if only single N-NDR region was formed on the

steady-state I–E characteristics.

4.5.2 The Source of Two N-NDR Regions in the Ni(II)–N3
�

Electroreduction

For the understanding of the origin of tristability, one has to establish the electrochem-

ical mechanism underlying the formation of the steady-state characteristics in

Fig. 4.53. The formation of the first region of the negative differential resistance

(NDR-1) can be understood in terms of the mechanism analogous to that operating for

both Ni(II)–SCN� and In(III)–SCN� electroreduction. This means that this part of the

curve visualizes the electroreduction of Ni(II) to nickel amalgam, electrocatalyzed by

adsorbed N3
� ions, the surface concentration of which decreases with increasing

negative charge of the mercury electrode. The formation of the second NDR region

(NDR-2) is more sophisticated. Jurczakowski and Orlik [85] have shown that in the

complex particle [Ni(N3)p]
(2-p)þ not only the central ion is electroactive, but also, at

more negative potentials, the coordinated azide ligands, provided that excess Hþ ions

Fig. 4.54 The intersections of the enlarged part of the experimental N-shaped characteristics from
Fig. 4.53 [denoted here as I1 ¼ f(E)] with the load line I2 ¼ (U–E)/Rs, explaining the occurrence

of tristability and bistability, for the exemplary constant serial Rs ¼ 14 kO and different externally

applied voltagesU: (1)�5.130 V, (2)�5.340 V, (3)�5.400 V, (4)�5.531 V, (5)�5.646 V. As an
example, for the load line (3) the associated stable (filled circle) and unstable (open circle) steady
states were indicated. Reprinted with permission from [81]. Copyright 2003 American Chemical

Society
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Fig. 4.55 (a) Bistable and tristable behaviors for the electroreduction of the azide complexes of

nickel(II) at a streaming mercury electrode. Tristability manifests itself as the complex scheme of

hysteresis, indicating the coexistence of sets of SS I, SS II, and SS III stable steady states for the

same control parameter (U), for the exemplary constant serial resistance Rs ¼ 14 kO; (b) the
corresponding full diagram of stable (SS I, SS II, SS III) and unstable (USS I, USS II) steady states

obtained by translation, along the voltage axis, of the I–E curve from Fig. 4.53 for the actual ohmic

drops IRs; symbols (a, b, c, d) denote the edges of the folds at which the monostable/bistable and

bistable/tristable transitions occur, for comparison with the experimental stability (bifurcation)

diagram in Fig. 4.56. Reprinted with permission from [81]. Copyright 2003 American Chemical

Society
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are present in the sample which are required to form ammonia as one of the products.

In other words, the azide ligands linked to Ni(II) ions become reducible (although in

the unbound state they are hardly reducible on mercury), with the formation of

(experimentally detectable) NH3 (or NH4
þ ions) (see Fig. 4.57).

Fig. 4.56 The experimental stability (bifurcation) diagram of the monostable, bistable (B I/II,

B I/III, B II/III), and tristable (T) regions involving stable steady states SS I, SS II, SS III for the

electroreduction of azide complexes of nickel(II), represented by I–E characteristics from

Fig. 4.53. The (a, b, c, d) symbols at the corresponding lines refer to edges of folds in

Fig. 4.55b, the positions of which on the voltage axis determine the borderlines of the

monostable/bistable and bistable/tristable transitions (saddle–node bifurcations). The vertical
dotted line at Rs ¼ 14 kO indicates such transitions as shown in Fig. 4.55. Reprinted with

permission from [81]. Copyright 2003 American Chemical Society

Fig. 4.57 Possible molecular mechanism of [NiN3]
+ electroreduction explaining the formation of

ammonium cations (ammonia) and molecular nitrogen N2 in the presence of a sufficient amount of

H+ ions. Reprinted from [85], Copyright 2005, with permission from Elsevier
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For the explanation of the shape of I–E curve from Fig. 4.53 it is crucial to note that

the amount of Hþ (as HClO4) added to the sample was relatively small, so the

electroreduction of only small fraction of coordinated azide ligands was possible.

Therefore, this electroreductionmanifested itself as only a small postwaveoverlapping

with the NDR-1 region. This deformation of the NDR-1 region resulted in the

formation of two regions of negative differential resistance. The schematic decompo-

sition of the full I–E curve into the respective components is shown in Fig. 4.58.

Finally, the rise of the current following both NDR regions is presumably caused

by the noncatalyzed electroreduction of Ni(II) to nickel amalgam which in this case

occurs with lower overpotential than for the Ni(II)–SCN�, so the current minimum

is not as deep as in the latter case. One concludes that the electrochemical mecha-

nism responsible for the steady-state I–E characteristics, leading further to

tristability is largely recognized. It is quite interesting that a single complex
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Fig. 4.58 Schematic representation of the I–E curve from Fig. 4.53 (top) as the superposition of

the electroreduction of Ni(II) catalyzed by adsorbed N3
� ions (bottom left) and of the

electroreduction of a small fraction of coordinated N3
� ligands (bottom right), controlled by the

amount of HClO4 added. The two consecutive N-NDR regions are thus formed by the single

N-NDR region of the first process, disturbed by a small postwave of the second process
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molecule offers a possibility of two electrochemical processes, the overlapping of

which leads to two regions of negative differential resistance.

Accordingly, one can construct the theoretical model [81] of the [Ni(N3)p]
(2-p)þ

electroreduction as involving two parallel processes engaging complex species [Ox1
þ Ox2], consisting of Ox1 
 Ni(II) and Ox2 
 coordinated protonated N3

� ligand:

Ox1 þ n1e
k
 

b;1

!kf;1

Red1 (4.124)

Ox2 þ n2e
k
 

b;2

!kf;2

Red2 (4.125)

The total steady-state faradaic current at given potential is thus generally a

potential-dependent sum of contributions from the Ox1 and Ox2 electroreductions:

If;ss ¼ �2prnFv� c0ox;1kf;1
2

k1

ffiffiffiffiffiffiffiffi
tmax

p

r
þ expðk21tmaxÞerfc(k1t1=2max Þ � 1

k21

" #(

þ c0ox;2kf;2
2

k2

ffiffiffiffiffiffiffiffi
tmax

p

r
þ expðk22tmaxÞerfc(k2t1=2max Þ � 1

k22

" #

(4.126)

with n ¼ n1 ¼ n2 ¼ 2, and the kinetic parameters k1, k2 expressing the ratio of the
charge-transfer rate to the diffusion transport rate:

k1 ¼ kf;1

D
1=2
ox;1

þ kb;1

D
1=2
red;1

(4.127)

k2 ¼ kf;2

D
1=2
ox;2

(4.128)

Of course, since Ox1 and Ox2 are the components of the same molecule, Dox,1 ¼
Dox,2. In order to generate the first and, in consequence, the secondNDR region on the

I–E curve, the following dependence of the charge-transfer rate constants on the

electrode potential was assumed:

kf;1 ¼ kapps;I

1

1þ exp½P1ðE� P2Þ�
� 	

exp½�ðanÞI f ðE� E0
f;1Þ�

þ kapps;II exp½�ðanÞII f ðE� E0
f;1Þ�

(4.129)

kb;1 ¼ kf;1 exp½nf ðE� E0
f;1Þ� (4.130)

kf;2 ¼ kapps;2 exp½�ðanÞ2 f ðE� E0
f;2Þ� (4.131)
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and, for simplification: kb,2 ¼ 0 (meaning neglected reversed anodic process of

azide reduction products at high negative overpotential). Numerical values of all

the parameters were found by fitting the theoretical I–E dependence to the respec-

tive experimental I–E curve from Fig. 4.53. Then, by introducing the appropriate

ohmic resistance and constructing the diagram in the coordinate system I–U, one
can obtain theoretical folded diagrams of steady states, exhibiting bistability and

tristability, quite well concordant with experimentally determined shapes

(Fig. 4.59). This concordance confirms the validity of the model description of

the Ni(II)–N3
� electroreduction at the streaming mercury electrode.

In terms of this model electrochemical mechanism, one can now perform the

stability analysis which should confirm the existence of bistable and tristable

behavior. Also, this analysis should answer the question, whether for the studied

system the oscillatory behavior is possible but was only not found in the experiment

or it is completely excluded for fundamental dynamic reasons.

4.5.3 Linear Stability Analysis of the Ni(II)–N3
� Electroreduction

Compared to analogous approach presented in Sect. 4.4.3 for the Ni(II)–SCN�

electroreduction, now, in addition to the dynamics of the electrode potential, the

surface dynamics of the concentrations of two reactants: cox,1 and cox,2 have to be

considered. Although Ox1 and Ox2 are the components of the same complex

species, which diffuse in the solution together with the same diffusion coefficient,

they react electrochemically with different rates at given potential, and this is the

reason for which their surface concentrations vary differently. In this way,

Fig. 4.59 Theoretically calculated folded diagrams of stable and unstable multiple steady states

for the model (4.124, 4.125) electrochemical system: bistable and tristable behavior for the I–E
characteristics from Fig. 4.53, with serial resistance Rs ¼ 14 kO (cf. Fig. 4.55b). Reprinted in part

with permission from [81]. Copyright 2003 American Chemical Society
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the dynamical system acquires the third dimension which theoretically opens

a possibility of complex dynamical behaviors, but in the experiments only saddle–

node bifurcations were detected.

According to the above electrochemical reaction mechanism, the following

three ordinary differential equations, defining the present dynamic system, were

derived [81]:

F½E; cox;1ð0; tÞ; cox;2ð0; tÞ� 
 dE

dt
¼ U � E

2prRsKlmax

� ðE� EpzcÞv
lmax

þ nFkf;1cox;1ð0; tÞ
K

þ nFkf;2cox;2ð0; tÞ
K

(4.132)

G½E; cox;1ð0; tÞ� 
 dcox;1ð0; tÞ
dt

¼� 2kf;1cox;1ð0; tÞ
dN

þ 2Dox;1½c0ox;1 � cox;1ð0; tÞ�
dN

2

(4.133)

H½E; cox;2ð0; tÞ� 
 dcox;2ð0; tÞ
dt

¼� 2kf;2cox;2ð0; tÞ
dN

þ 2Dox;2½c0ox;2 � cox;2ð0; tÞ�
dN

2

(4.134)

In these equations, for further simplification, the differential double layer

capacity Cd was assumed constant and equal to the integral double layer capaci-

tance K (25.7 mF cm�2) at certain potential within the first NDR region. The

corresponding (3 � 3) Jacobian matrix was determined, in which, in order to

enhance legibility, any surface concentrations of Ox1 and Ox2 (variables) were

denoted as cs,1 and cs,2, whereas these concentrations at the steady state—as css,1
and css,2, respectively:
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Based on criteria of the saddle–node and Hopf bifurcation for the 3D system, the

theoretical bifurcation diagrams for various experimental I–E courses (composition

of the samples) were calculated. Figure 4.60 shows the diagram corresponding to

the experimental diagram from Fig. 4.56.

The striking similarity between this and the experimental diagrams manifests itself

in the position of the points of saddle–node bifurcations, determining the regions of

mono-, bi-, and tristability. Also, it is remarkable that the theoretical bifurcation

diagrams do not contain the points of the Hopf bifurcations, so they exclude the birth

of oscillations, at least according to this scenario. One can judge that under conditions

of themeasurement at the streamingmercury electrode, the rate of transport of reactant

is too fast, compared to the charge-transfer rate of the Ni(II)–N3
� system, so the latter

process is thus too slow to be able to drive the system away from the steady state in an

oscillatory manner. Already for the Ni(II)–SCN� electroreduction, characterized with
the standard rate constant of electron transfer ks ¼ 10�3 cm s�1 [60], oscillations

occurred in a very tiny region of (U, Rs) control parameters. Since for Ni(II)–N3
� the

standard rate constant ks,1 was found to be much lower: 5.6 � 10�5 cm s�1 [82], the
above argumentation is at least semiquantitatively confirmed.

4.5.4 Impedance Studies of the Ni(II)–N3
� Electroreduction

Similarly as for the Ni(II)–SCN� system, one can complement dc studies of

instabilities in the Ni(II)–N3
� electroreduction at the streaming Hg electrode with

the relevant impedance characteristics, studied by Orlik and Jurczakowski [86].

Fig. 4.60 Theoretical bifurcation diagram corresponding to the I–E characteristics from Fig. 4.53,

showing the regions of bi- and tristability, denoted with letters B and T, respectively. The lines
separating different regions correspond to the saddle–node bifurcations The Hopf bifurcations

were not detected what confirms the experimentally observed lack of oscillations. Reprinted with

permission from [81]. Copyright 2003 American Chemical Society
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Figure 4.61 shows a set of typical impedance spectra recorded for this process

which should be confronted with Fig. 4.53, showing the dc steady-state I–E
dependence measured under identical conditions.

Evidently curves 2 and 4, corresponding to NDR regions on the dc I–E curves,

exhibit negative real impedance. However, compared to analogous spectra for the

Ni(II)–SCN� system, the real negative impedance axis is attained only at ac fre-

quency o ! 0 which fact means that only the saddle node, and not the Hopf

bifurcation, can occur in this system under appropriate conditions (i.e., upon inser-

tion of appropriate serial resistance Rs). This conclusion, drawn here from imped-

ance spectra, is of course fully consistent with the experimentally observed lack of

oscillations for this system, confirmed also by theoretical linear stability analysis of

the dc characteristics.

Theoretical model of these Nyquist plots was constructed based on the

assumptions which were partly invoked already when discussing the dc conditions

[cf. Eqs. (4.124)–(4.128)]. In view of the concept of the effective mean diffusion

layer thickness (cf. Fig. 4.48), the surface concentrations of Ox1, Red1, Ox2, and

Red2 species, averaged over the entire length of the streaming electrode, were

calculated according to Eqs. (3.30) and (3.31). In the equivalent circuit (Fig. 3.7),

the sum of faradaic currents, originating from the central ion and the ligand

electroreductions, was expressed in terms of parallel connection of two faradaic

impedances: one related to Ni(II) electroreduction: Z1 
 Zf (Ni) ¼ Rct(Ni) þ
ZW(Ni) and the other one—to the N3

� electroreduction: Z2 
 Zf (N3
�) ¼ Rct(N3

�) þ
ZW(N3

�) (Fig. 4.62).
Accordingly, for every redox couple Ox1/Red1 and Ox2/Red2, the individual

charge-transfer resistances Rct,1 and Rct,2 were calculated using Eq. (3.32), and

Warburg impedances using Eqs. (3.34)–(3.36). The total impedance of the

Ni(II)–N3
� system was expressed by the following dependence (for notation of

particular quantities, see Sect. 3.2):

Fig. 4.61 Exemplary impedance spectra for the Ni(II)–N3
� electrode processes at the streaming

Hg electrode at various electrode potentials: (1) �0.8 V; (2) �0.95 V, (3) �1.20 V, (4) �1.40 V.

Points represented by full symbols correspond to impedances for the frequencies differing for the

decade. Reprinted from [86]. Copyright 2008, with permission from Elsevier
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Z ¼ Rs þ½Zf (Ni)�1þ ZfðN3Þ�1þ Xc
�1þ Rd

�1��1

¼ Rs þ Rct;1 þ Gox;1 þ Gred;1 þ jðHox;1 þ Hred;1Þ

 ��1n

þ Rct;2 þ Gox;2 þ Gred;2 þ jðHox;2 þ Hred;2Þ

 ��1

þ 1

joACd

� ��1
þ 2prCdv

)�1
(4.136)

Theoretical spectra, calculated from Eq. (4.136) indicated the possibility of only

saddle–node bifurcations, but excluded Hopf bifurcations, as Fig. 4.63 illustrates.

These spectra show reasonable concordance with experimental ones from Fig. 4.61

and, what is most important, predict the same type of bifurcation.

Besides the diagnosis of nonlinear dynamic behaviors, the combination of dc

and ac techniques, supported by the above model calculations, allowed also to

determine the following characteristics of the redox process of the coordinated

azide ligand: formal potential Ef
0 ¼ �1.113  0.004 V (vs. SCE), standard het-

erogeneous rate constant ks ¼ (3.51  0.38) � 10�2 cm s�1, cathodic transfer

coefficient (an) ¼ 0.513  0.040. For the multistep n-electron transfer, with a

single ith rate determining step characterized with a transfer coefficient aI (equal
to 0.5 for symmetrical activation barrier in the adiabatic process), the experimen-

tally available generalized cathodic transfer coefficient (an) is defined as [4]:

an ¼ i � 1 þ ai. Hence one concludes that i ¼ 1, i.e., the transfer of the first

electron is the rate determining step, and the following mechanism of the

Fig. 4.62 Equivalent circuit for the impedance response in the Ni(II)–N3 electroreduction.

Rs serial solution resistance, Rct charge-transfer resistance, ZW mass-transfer (Warburg) imped-

ance, Cd differential double layer capacity per unit area, Rd ¼ (2prCdv)
�1—the virtual resistance,

where r is the mercury stream radius and v is the mercury flow velocity. Reprinted from [86],

Copyright 2008, with permission from Elsevier
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electroreduction of coordinated N3
� ligand, involving hydrazine as a intermediate,

was suggested:

N3
�ðligandÞ þ 2Hþ þ e! 1=2N2H4ðligandÞ þ N2ðrdsÞ (4.137)

1=2N2H4ðligandÞ þ eþ Hþ ! NH3 (4.138)

N3
�ðligandÞ þ 3Hþ þ 2e! NH3 þ N2 (4.139)

This mechanism should be considered as an expansion of reaction sequences

shown in Fig. (4.57) for the nature of the intermediates in the coordinated azide

electroreduction. More details of both the experimental procedure and theoretical

analysis of the Ni(II)–N3
� electroreduction the reader can find in the original

reference [86].

4.6 Oscillations in Polarographic Processes Inhibited

by Surfactans

4.6.1 The Cu2þ–Tribenzylamine Oscillator

In this section we briefly describe the dynamic instabilities, in which the negative

differential resistance of the faradaic process is caused by the potential-dependent

adsorption of an organic inhibitor on the mercury electrode surface. The

electroneutral molecules of such an inhibitor adsorb around the potential of zero

charge (pzc) and at more extreme charges they are replaced by dipole water

molecules. Thus, taking into account that pzc of mercury in contact with aqueous

Fig. 4.63 Theoretical Nyquist plots for the electroreduction of Ni(II)–N3
� at the streaming

electrode, calculated using Eq. (4.136) at different potentials: (1) �0.80 V; (2) �0.95 V;

(3) �1.20 V; and (4) �1.40 V. Open symbols correspond to impedances for the frequencies

differing for the decade. Reprinted from [86], Copyright 2008, with permission from Elsevier
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solutions not containing specifically adsorbing ions is close to �0.45 V (vs. SCE),

the electroreduction process has to begin at more positive potentials, in order to

produce the NDR region that will be able to manifest itself. Oscillations can

therefore occur within the potential region of the diffusion-controlled limiting

current in the absence of the inhibitor. Under potentiostatic (U ¼ const) conditions,

where ohmic drops IRs are present, during the current I and electrode potential E
oscillations, the surface concentration of reactant particles also varies periodically

due to alternating adsorption/desorption of the inhibitor molecules, modifying the

rate of the faradaic process. We shall describe here the typical system of that type

which is characterized with the explicit (i.e., not hidden) N-NDR region: polaro-

graphic reduction of Cu2þ or Bi3þ ions in acidic medium (H2SO4), in the presence of

tribenzylamine (TBA) as an inhibitor, as reported by Jehring andK€urschner [87–89].
These authors also mentioned other similar systems with the reported NDR region,

but not exhibiting oscillations: Cu2þ/triethylphosphate and Cu2þ/Triton X-100.

Figure 4.64 compares the dc polarograms of Cu2þ ions in the absence and in the

presence of TBA with the potential dependence of the differential double layer

capacitance Cd. The formation of the NDR region within the limiting current of

Cu2þ electroreduction correlates well with the potential region in which the signifi-

cant depression of Cd, due to specific adsorption of TBA molecules, is observed. In

the acidic medium, TBA molecules are largely protonated and therefore electro-

static forces favor the extension of the adsorption region of TBA molecules toward

negative surface electrode charges. The measurements were made in the conven-

tional two-electrode system consisting of the dropping mercury electrode (of a

prolonged lifetime) and the calomel reference electrode.

When the appropriate serial resistance was inserted in the electric circuit, the

spontaneous relaxation oscillations of the current and of the Hg electrode potential,

of a frequency ca. 3 Hz, set in, as Fig. 4.65 illustrates.

Fig. 4.64 (a) Dc

polarograms of (1) 1 mM

CuSO4 + 0.1 M H2SO4

without TBA and (2) with

addition of 0.2 mM TBA;

(b) Ac polarograms rescaled

into differential double layer

capacitance for the solutions:

(1) 0.1 M H2SO4 and (2)

0.1 M H2SO4 + 0.2 mM

TBA. Reprinted from [89],

Copyright 1977, with

permission from Elsevier
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The sequence of processes occurring during the oscillations is pictorially shown

in Fig. 4.66 [89].

Fig. 4.65 Oscillations of the current (a) and (b) the voltage measured between the working and

the reference electrode, for the 1 mM CuSO4 + 0.1 M H2SO4 + 0.2 mM TBA. The externally

applied voltage U ¼ �0.24 V, serial resistance Rs ¼ 30 kO. Reprinted from [89], Copyright 1977,

with permission from Elsevier

Fig. 4.66 Schematic representation of the oscillations in the polarographic reduction of Cu2+

cations (filled circle) inhibited by surface active tribenzylamine cations (open circle); the direction
and number of arrows symbolize the sign and the slope of appropriate changes (based on [89]).

Reprinted partly from [89], Copyright 1977, with permission from Elsevier
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Picture 1 corresponds to the arbitrarily chosen starting point of the oscillatory

cycle, for the electrode potential at which the electrode surface is largely

covered with the inhibitor particles and the faradaic current is therefore rela-

tively low. Therefore, the actually low concentration of Cu2þ ions, formed

earlier in high-current state, can be replenished by their diffusion inflow from

the solution bulk. Accordingly, the current slowly rises, and the electrode

potential, due to increasing ohmic drops, shifts to the more positive values, at

which fast desorption of TBAþ ions occurs, associated with abrupt (autocata-

lytic) increase of the current (Picture 2). Then, when the electrode surface

becomes largely free of inhibitor particles, the surface concentration of Cu2þ

strongly decreases due to their fast electroreduction, but its reduction current

decreases relatively slowly, proportionally to t�1/2 (according to the increase of

the diffusion layer thickness) (Picture 3). At certain moment simultaneously

decreasing ohmic potential drops become so low, that the electrode potential

attains again the sufficiently negative value, at which fast adsorption of an

inhibitor occurs and the current drop becomes faster due to this kind of an

autoinhibition mechanism (Picture 4). Now the diffusion recovers the chance to

replenish the diffusion layer in Cu2þ ions, i.e., the situation goes back to Picture

1 and the single oscillatory cycle is closed. One should emphasize that in this

mechanism the adsorption/desorption of an inhibitor is a relatively fast process

(practically immediately responding to the variations of the electrode potential)

compared to the slower time scale of diffusion of Cu2þ ions.

Oscillatory phenomena of that type were later analyzed also by D€orfler and
M€uller who studied the polarographic reduction of Cu2þ, Cd2þ, and Tlþ ions in

the presence of different surfactants: alcohols, phosphonium perchlorates, phos-

phonium bromides, phosphine oxides, phospholipids, and various alcohols,

using the dropping Hg electrode exhibiting the drop time longer than 80 s or

hanging mercury drop electrode (HMDE) [90, 91]. In some cases of the

adsorbates, for the interpretation of dynamic instabilities it can be necessary

to take into account the reorientation of the adsorbed molecules with varying

electrode potential, the phenomenon which also can give rise to polarographic

maxima of the third kind.

Another experimental system of the analogous source of oscillations is the

polarographic reduction of Cu2þ ions in the presence of thymol as a surface-active

inhibitor, described by Jakuszewski and Turowska (sample composition: 6 mM

CuSO4 þ 1 M H2SO4 þ 3 mM thymol) [37].

4.6.2 The Mathematical Model of the “Inhibitor Oscillator”

For the quantitative description of the Cu(II)–TBA polarographic oscillator, or the

“inhibitor oscillator,” Koper and Slutyers [44] have elaborated the model approach,

involving two dynamical variables which is the variation of the model of the

In(III)–SCN� system described in Sect. 4.3. Now, if the inhibition at the electrode
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surface covered by the organic species is very efficient, the faradaic current of

copper(II) ions can be regarded as proportional to the fraction of the uncovered part

of the surface, i.e., (1 � y), with the rate constant of the electron transfer obeying

there the Butler–Volmer dependence. Accordingly, the respective ODEs attain the

form [44]:

de

dt
¼ v� e

r
� cxð1� yÞ exp½anðe� e0Þ� (4.140)

dx

dt
¼ �k1xð1� yÞ exp½anðe� e0Þ� þ dð1� xÞ (4.141)

in which the electrode coverage with an inhibitor, y, depends on the electrode

potential in a way ensuring the formation of the negative differential resistance on

the i–e curve of the electrode reaction of the metal ions:

y ¼ ymax e � ed
ymax exp½�bðe� edÞ2� e < ed

�
(4.142)

The value of ymax was chosen as equal to 0.95, instead of 1, in order to account

for the fact that even at a saturation of the electrode surface with the inhibitor

molecules, there is still some faradaic current flowing. The shape of y(e) depen-
dence and current oscillations calculated for the exemplary set of parameters are

shown in Figs. 4.67 and 4.68, respectively.

Besides the systems described in Sects. 4.3–4.6, other electrochemical

oscillators involving mercury electrode include, among others, the current

oscillations at the Hg electrode in the H2SO4 solution, in the presence of NaBrO3

and phenol [92], as well as in the absence of phenol [93], within the appropriate

range of electrode potentials (e.g., from 0.06 to 0.01 V against Hg–1.5 M Hg2SO4

electrode). The probable mechanism assumed simultaneous electroreduction of

bromate ions and the electrooxidation of mercury to Hg2SO4 and Hg2Br2. Forma-

tion of these surface films affected also the surface tension at the Hg/solution

interface. In the next example, the open circuit potential of a HMDE in an aqueous

Fig. 4.67 Model dependence

of the electrode coverage y of

the inhibitor on the electrode

potential e, calculated from

Eq. (4.142)
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solution containing a complex cobalt ion: Co(NH3)5Cl
2þ was reported. These

phenomena were interpreted in terms of response of Hg electrode to cyclic changes

of pH near the electrode [94].

4.7 Oscillatory Reduction of Hydrogen Peroxide

Oscillatory reduction of H2O2 has been quite intensively studied by several groups of

researchers at both noble metal and semiconductor electrodes. The works, which

appeared up to mid-1990s, were reviewed by Hudson and Tsotsis [95] and Koper

[51]. Here we shall briefly summarize the main points of those investigations and

describe in more detail selected recent studies in this area.

4.7.1 Oscillations on Metal Electrodes

4.7.1.1 Ag electrodes

The oscillatory reduction of H2O2 in O2-free solutions at polycrystalline Ag

electrode was studied by Honda et al. [96]. The large-period and large-amplitude

oscillations of the electrode potential were explained in terms of the following

electrochemical reaction sequence involving both H2O2 reduction and oxidation of

Ag surface:

H2O2 þ e! OHðadsÞ þ OH�ðrdsÞ (4.143)

Fig. 4.68 Computed

oscillation profile of

dimensionless current i for
model equations (4.140) and

(4.141) with parameter values

c ¼ 0.12, k ¼ 0.1, d ¼ 0.02,

e0 ¼ 15, ed ¼ 20, b ¼ 0.5,

v ¼ 21, and r ¼ 0.8.

Reprinted from [44],

Copyright 1991, with

permission from Elsevier
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OHðadsÞ þ e! OH� (4.144)

2OH� þ 2Hþ ! 2H2O (4.145)

Ag sð Þ ! Agþ surfð Þ þ e (4.146)

AgþðsurfÞ ! Ag(bulk) (4.147)

Also chemical oxidation of Ag by H2O2 was assumed to occur:

2Agþ 2HþðsurfÞ þ H2O2ðsurfÞ ! 2H2Oþ 2AgþðsurfÞ ðfastÞ (4.148)

In terms of the above reaction scheme, the following mechanism of the electrode

potential oscillations was suggested. When the electrode potential moves toward

negative values, the electroreduction of H2O2 [Eqs. (4.143)–(4.145)] occurs at the

Ag surface, the state of which simultaneously changes, enhancing its reactivity

toward reaction (4.148) which eventually commences. The fast formation of

Agþ(surf) abruptly moves the Ag electrode potential toward more positive values,

where the electrode processes (4.146) and (4.147) take place. The Ag electrode

surface becomes then again deactivated (presumably due to the adsorbed O and OH

species) with respect to reaction (4.148) which eventually stops to occur. The

presented mechanism is of course rather introductory and required deeper insight

to the (not necessarily oscillatory) mechanism of H2O2 reduction on Ag electrodes,

in particular with respect to the existence of above-mentioned adsorbed species.

Such studies were performed later by Fl€atgen et al. [97]. Using cyclic voltammetry

and electrochemical quartz crystal microbalance (EQCM) technique, it was shown

that the cathodic reduction of H2O2 on polycrystalline Ag electrodes in acidic

electrolyte can proceed by two parallel mechanism: in addition to the well-known

“normal” one, occurring at an overvoltage of about �1.5 V, a second, novel

pathway was discovered, that occurs at significantly more positive potentials.

This second mechanism involves the activating adsorbate (OH)ads that forms as

an unstable intermediate in the course of the H2O2 reduction. The process of

formation of (OH)ads is autocatalytic. At more negative potentials its coverage

decreases as the rate of adsorbate reduction/desorption rises. This effect leads to

the NDR region, and thus to dynamic instabilities, e.g., the oscillations under

appropriate conditions. The representative cyclic voltammograms showing the

two reduction pathways of H2O2, are given in Fig. 4.69.

In turn, Fig. 4.70 shows the effect of the rotation rate of the Ag disk electrode in

contact with 0.02 M H2O2 þ 0.1 M HClO4 solution; for the intermediate

(1,000 rpm) rotation rate potentiostatic current oscillations were observed.

The formation of the activating adsorbate (OH)ads occurs in the process:

H2O2 þ Hþ þ e! ðOHÞads þ H2O (4.149)
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In its presence the “activated” H2O2 reduction proceeds at an enhanced rate:

H2O2 þ Hþ þ ðOHÞads þ e! 2(OHÞads þ H2O (4.150)

[autocatalytic formation of (OH)ads]

In the following electrochemical reaction step, (OH)ads is reduced to H2O:

ðOHÞads þ Hþ þ e! H2O (4.151)

For a quantitative description of the electrode coverage with (OH)ads, its tempo-

ral dynamics were expressed in terms of the following dependence, taking into

account both reaction pathways of H2O2 electroreduction:

Fig. 4.69 Cyclic voltammograms of a stationary Ag electrode in an electrolyte containing 0.1 M

HClO4 + 0.02 M H2O2. Sweep rate 100 mV/s. Electrode area 0.28 cm2 (a) First sweep, beginning

at “start” in positive direction; (b) subsequent sweeps. Reprinted from [97], Copyright 1999, with

permission from Elsevier
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dy
dt
¼ j1ðH2O2 ! OHÞ � j2ðOH! OH�Þ þ jaðH2O2��!OH OH)

¼ k1cð1� y)exp
�a1FE
RT

� �
� k2yexp

�a2FE
RT

� �
þ kacyð1� yÞ exp �aaFE

RT

� �
(4.152)

where ji denotes the fluxes of (OH)ads associated with the respective process

indicated in the brackets: subscript (1) corresponds to (4.149), (2) to (4.151), and

(a) to (4.150). By setting dy=dt ¼ 0 one calculates the steady-state values of y and

the corresponding current density:

iH2O2
¼ �2� qmonoðj1 þ jaÞ

¼ �2� qmono � c k1ð1� y)exp
�a1FE
RT

� �
þ kayð1� yÞ exp �aaFE

RT

� �� �
(4.153)

where qmono is the charge of one monolayer of the (OH) adsorbate on the electrode

surface. The course of iH2O2
¼f ðEÞ dependence exhibits is N-shaped as a result of

superposition of the two pathways of H2O2 electroreduction.

In order to verify the existence of dynamic instabilities in this mechanism, the

numerical model was constructed which involved two dynamic (essential)

variables: the interfacial potential drop E, different from the external voltage U
due to ohmic drops in the electrolyte of a resistance Rel and the concentration of

H2O2 at the electrode surface (c). The mathematical form of the respective ordinary

differential equations is [97]:

Fig. 4.70 Effect of the electrode rotation (in rpm) on the cyclic voltammograms of a stationary

silver electrode in 0.1 M HClO4 + 0.02 M H2O2 at 50 mV/s, no Ag+ added. Electrode area

0.28 cm2. (Dashed line) 200 rpm; (solid line) 1,000 rpm; (dot dashed line) 5,000 rpm. Reprinted

from [97], Copyright 1999, with permission from Elsevier
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Cd

dE

dt
¼ U � E

Rel

� iH2O2
� iAg (4.154)

dc

dt
¼ � 1

d
iH2O2

F
þ D

cb � c

d2
(4.155)

where cb is the bulk concentration of H2O2, d is the thickness of Nernst diffusion

layer, and other symbols have their usual significance. Equation (4.154) takes into

account both pathways of H2O2 electroreduction, as well as anodic Ag dissolution

as sufficiently positive potentials. In the derivation of Eq. (4.155), the typical

assumption of Nernst diffusion layer of thickness d, dependent on the disk rotation

rate, was used (cf. Sect. 2.2.1). Further details of the model can be found in the

original paper [97], while here we shall show only representative results of

modeling, revealing current oscillations for the same disk rotation rate as in the

experiment (Fig. 4.71).

4.7.1.2 Au Electrodes

Štrbac and Adžić [98] have reported the oscillatory behavior in oxygen and

hydrogen peroxide solution on a rotating Au(100) electrode in alkaline solutions.

For electrodes with other crystallographic orientations, oscillations were not

observed, and the specific role of (100) surface was related to its best catalytic

properties for the O2 reduction in alkaline solutions, even better than the polycrys-

talline Pt electrodes. In the potential range of formation of the partly discharged

Au(OH)�(1�l) layer, O2 reduction takes place with the exchange of four electrons to

OH�, but at more negative potentials, at which Au(OH)�(1�l) is not present at the

Fig. 4.71 Numerical

simulations of cyclic

voltammograms at different

rotation rates: (a) 1,000 rpm;

(b) 50,000 rpm; cb ¼ 0.02 M

H2O2. Reprinted from [97],

Copyright 1999, with

permission from Elsevier
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surface, the two-electron reduction, leading to HO2
�, occurs. It was found that this

was the oscillatory reduction of HO2
� which caused the oscillations also during O2

reduction. Furthermore, the state of electrode surface was a crucial factor responsi-

ble for the oscillations. It was suggested that the following reaction sequence:

HO2
� þ H2Oþ e! 2OH� þ OH (4.156)

OHþ HO2
� ! HO2 þ OH� (4.157)

initiated a straight chain mechanism forming the HO2 radical. Note that HO2 radical

was shown also by Tributsch [99] to be a direct participant in oscillatory reduction

of H2O2 on Cu5FeS4, occurring through two autocatalytic chemical reactions

between metal atoms and surface-bound reactants (see next section). The first

autocatalytic mechanism involves metal and metal-hydroxide sites as reaction

pairs and leads to removal of OH� from the electrode surface. The additional

metal sites released in this way undergo oxidation by hydrogen peroxide. This

activates the other autocatalytic reaction which involves metal-oxide sites and

metal-hydroxide sites and produces the increase of the OH coverage of the Au

(100) surface. As the principal reason for the oscillations a periodical covering and

depletion of the electrode surface with OH groups was considered.

4.7.1.3 Pt Electrodes

It seems that the majority of studies of oscillatory reduction of H2O2 was carried out

for Pt electrodes, including, among others, the works by Fetner and Hudson [100]

and van Venrooij and Koper [101] who described bursting andMMO in this system.

More recently, intensive studies of the H2O2 electroreduction on Pt electrodes,

including single-crystal ones, were performed by the group of Japanese researchers

(Nakanishi, Nakato et al.), the selected works of whose [24, 102–105] will be

briefly described below. In these studies, the reduction of H2O2 in acidic aqueous

H2SO4 medium was investigated, with an emphasis on surface chemistry and

effects of microscopic structures of the electrode surfaces on the oscillations, and

vice versa. It turned out that the oscillatory reduction of H2O2 at Pt electrodes of

various crystallographic orientation is a particularly interesting process, revealing

the dynamics of several types of oscillators, some of them classified as their new

types. Based on [105], the results of these studies can be summarized in the

following way. Five types of oscillations, named A, B, C, D, and E, were found

for the H2O2 reduction, with their shapes and conditions of occurrence concisely

shown in Fig. 4.72 [104].

The complicated dynamics of H2O2 reduction on Pt is caused, among others, by

the fact that this process exhibits two types of NDR regions: (1) the one (named

below the NDR-1) arising from decrease in the coverage of adsorbed OH, when the

potential moves into negative direction and (2) the other one (named below the
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Fig. 4.72 General view of oscillations A, B, C, D, and E observed under potential-controlled

conditions for H2O2 reduction on Pt in an acidic solution. Electrode: poly-Pt, except (c) for which

single-crystal Pt(111) was used. The solution: 0.3 M H2SO4 containing (a) 0.1 M H2O2, (b) 0.7 M

H2O2, (c) 1.0 MH2O2, (d) 1.2 MH2O2 + 1.0 � 10�3 MKCl, and (e) 0.7 MH2O2 + 1.0 � 10�4 M
KBr. Reprinted with permission from [104]. Copyright 2001 American Chemical Society
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NDR-2) occurring at more negative potentials and caused by the suppression of the

H2O2 reduction by formation of the underpotential deposited hydrogen (upd-H) in a

potential region just before hydrogen evolution. Adsorbed OH species, being the

intermediate of the first step of the H2O2 reduction, act as an autocatalyst in

the dissociative adsorption of H2O2, according to mechanism shown in Fig. 4.73,

with efficiency of this autocatalysis assumed to vary in the following series:

Pt(111) > (100) � (110) � poly-Pt [102].

The essential mechanism of the autocatalytic effect of OH species can be

imagined in the following way: if adsorbed OH is present at hollow sites of surface

Pt atoms and H2O2 is adsorbed with negatively polarized oxygen atoms of H2O2

directed to surface Pt atoms, the H2O2 adsorption should be accelerated in the

neighborhood of adsorbed OH, because these Pt atoms are more or less positively

polarized by an electronegative difference between the Pt atom and OH group

[102]. The electrochemical mechanism of H2O2 reduction involves thus the follow-

ing reaction sequence:

2Ptþ H2O2 ! 2Pt� OH (rds) (4.158)

Pt� OH þ Hþ þ e! Ptþ H2O (4.159)

ad-OH

H

H

a

b
Pt(111) Pt(100)

δ+
δ+δ–

δ+

Pt(110)

O
O surface Pt atom

Fig. 4.73 Schematic illustration of an autocatalytic mechanism in which the dissociative adsorp-

tion of H2O2 is accelerated on surface Pt atoms in the neighborhood of adsorbed OH. Reprinted

with permission from [24]. Copyright 2000 American Chemical Society
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in terms of which the NDR-2 region originates from suppression of step (4.158) by

the formation of upd-H of nearly full coverage.

Below we shall describe the nature of particular A–E oscillations. Oscillations of

type A are due to NDR-2, oscillations of type E—due to NDR-1, but the latter ones

were observed only for atomically flat Pt(111) electrodes (see Fig. 4.72c).

Thus, both A and E oscillations are caused by explicit NDR regions (Class III of

the oscillators in Sect. 3.5). Here it is also useful to note that oscillations E are

strongly enhanced by the iodine atoms, adsorbed on atomically flat Pt(111) surface

in a submonolayer amount; then the region of the oscillations E extends toward

positive potentials [103]. Furthermore, in the presence of adsorbed iodine, the

oscillations E were observed even for atomically flat Pt(100), for which they

never occurred in the absence of iodine. Such a role of adsorbed iodine was

explained in terms of the catalytic role of I2 on the dissociative adsorption of

H2O2, in addition to the site-blocking effect (cf. Fig. 4.73). It is suggested that

within the potential range from 0.2 V to 0.4 V there occurs a cooperation between

the catalytic effect of adsorbed iodine and the autocatalytic effect of adsorbed OH,

originating from similar phenomena: since iodine atoms, as O atoms from OH

groups, exhibit higher electronegativity than Pt atoms, the induced positive charge

on Pt atoms favors the dissociative adsorption of H2O2 through its oxygen atoms

and thus the autocatalytic formation of OH species. The catalytic effect of adsorbed

iodine decreases in the order: Ptð111Þ>>Ptð100Þ>>Ptð110Þ [103].
Oscillations of types C and D were observed only in the presence of small

amount of halide ions in the solution and were both classified into HNDR oscillators

[104]. In the case of oscillation type C, the NDR-1 region is hidden by the

adsorption of halides, the electrode coverage of which (yx) decreases with increas-

ing negative potential. However, for oscillations type D, the NDR-2 region is

hidden by both the decreasing adsorption of halide ions and the transient cathodic

current flowing due to the upd-H formation. This relatively complex scheme of

hiding the NDR justifies, in the opinion of the authors, the nature of oscillation D as

corresponding to a new type of the HN-NDR oscillator, suggesting thus the exten-

sion of their classification scheme, given is Sect. 3.5.

In order to get more systematic view into the characteristics of these oscillations,

let us note that under galvanostatic conditions only potential oscillations of types B, C,

and D were observed, while oscillations A and E were not, confirming that the latter

two ones are typical N-NDR oscillators (Fig. 4.74).

A comparison of dc dependences with the corresponding impedance spectra

confirms those diagnostic conclusions. In particular, the spectra recorded for

parameters corresponding to oscillations C and D are typical of the HN-NDR

oscillator: the negative resistance is observed only in a region of intermediate

frequencies [104]. Further information on the system’s dynamics was supported

by the light reflectance changes which had revealed that variation of the electrode

coverage with the bromide ions was slower than the variation of the electrode

potential (i.e., that yBr� is a slow variable). Taking into account the basic features

of the system: the site-blocking effect of adsorbed halide ions, autocatalytic effect of

adsorbed OH, and the site-blocking effect of upd-H, the numerical model was
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constructed and results of such calculations allowed one to distinguish between the

essential features of the source of oscillations C andD. Themathematical details of this

model are described in the original reference [104].Herewe shallmention that although

the construction of the model was common for oscillations C and D, that which of

those oscillation types was reproduced in the calculations, depended essentially on the

equilibrium potential (parameter E70) of the halide adsorption reaction:

Fig. 4.74 Oscillations B, C, and D under current-controlled conditions: (a) and (b) j–U curves and

(c)–(f) time courses (U–t courses) where (c) is for oscillation C at j ¼ �0.32 A cm�2 in (a), and

(d) and (e) are for oscillation D at j ¼ �0.25 and�0.38 A cm�2, respectively, in (b). Curve (f) is a
simple expansion of curve (e). Electrode: poly-Pt. The solution: 0.3 M H2SO4 containing (a) 0.7 M

H2O2 + 1.0 � 10�3 M KCl and (b) 0.7 M H2O2 + 1.0 � 10�4 M KBr. Reprinted with permission

from [104]. Copyright 2001 American Chemical Society
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Ptþ X� �!
k7

 �
k�7

Pt� Xþ e (4.160)

which in turn was determined by its relation to the NDR-1 or NDR-2 potential

regions. If E70 is near (or within) the potential region of the NDR-1 (due to

autocatalytic effect of adsorbed OH), oscillations C are reproduced. Accordingly,

if E70 is close to the potential region of NDR-2 (due to upd-H), oscillations of type

D are reproduced, but only if additional important condition was met, namely if the

transient current due to the upd-H formation was included. This is the above-

mentioned mechanistic detail that suggests the essential difference between C and

D oscillations, even if both are considered to originate from HN-NDR oscillators.

More precisely, oscillations C are considered to belong to the Class IV-2, according

to Strasser’s et al. classification (see Sect. 3.5). For oscillations D, it was concluded

that the mechanism of their formation was more complex and, moreover,

oscillations D did not fall within any of the existing categories, so they have to

belong to a new Class IV-4 of HN-NDR oscillators. A very detailed analysis of

these problems, justifying such conclusions, is given in the original reference [104].

Here we only show the schematic waveforms of type C and D oscillations,

revealing the variations of main factors, affecting their shapes (Fig. 4.75). The

symbols used have the following meaning: HP—high-potential state, LP—low-

potential state, IP—intermediate potential state.

Finally, oscillations of type B require more detailed explanation since they are

suggested to represent a new type of electrochemical oscillator [105]. For that it

will be useful to compare oscillations of type B with those of type A. Oscillations of

type A occur in the region of the NDR-1, i.e., within �0.25 V to �0.30 V, while

oscillations B appear at more negative potential, where the hydrogen evolution

occurs and is characterized with the positive slope of the I–E dependence. Upon

addition of trace amounts of halides, the oscillations B were quenched, with

oscillations A almost intact. The significant effect of surface roughening of Pt

electrodes has been noticed: oscillations of both A and B types were reported for

the atomically roughened polycrystalline Pt electrode, while for atomically flat

poly-Pt electrodes only oscillations A remained. Analogous observations were

made for atomic flat and roughened single-crystal Pt (111), (110), and (100)

electrodes. Next, when the solution was stirred with magnetic stirrer, oscillation

A disappeared completely, whereas oscillation B remains practically unaffected.

Finally, impedance measurements, made for the potential corresponding to

oscillations B indicated neither explicit NDR, nor hidden NDR. In conclusion,

although both potentiostatic and galvanostatic oscillations of type B were observed

in the studied system, they could not be classified as the HN-NDR type oscillator.

Based on these findings, the following reasoning has been suggested for the origin

of oscillations B. Since they appear only for atomically roughened Pt surface, one

can assume that certain specific “active” areas of such surface play a crucial role in

their formation and that these places are “deactivated” by the strong, preferential

adsorption of halide anions from the solution. Thus, one has to consider two types
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of sites at the electrode surface: one type (I) is involved in oscillations A and the

second type (II)—in oscillations B. The number of sites of type II is much smaller

than the number of sites I. In the absence of halides, and for sufficiently negative

potentials, where the oscillations B occur, practically all sites of type I are fully
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HP-state
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Fig. 4.75 Schematic waveforms of observed oscillations C and D under constant current densities

(j) together with main factors affecting the waveforms. Reprinted with permission from [104].

Copyright 2001 American Chemical Society
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covered by hydrogen atoms, generated during their underpotential deposition, so

oscillations A are then not possible. However, at the active places of type II, both

the hydrogen evolution and the H2O2 reduction occur. The occurrence of the

oscillations can then be qualitatively understood in the following way, involving

the “high-current” and “low-current” states of the system and the occurrence of

ohmic drops which affect the effective electrode potential E ¼ U � IRs. In the

“high-current” state, owing to large ohmic drops, the electrode potential E is

enough positive to remove upd-H and therefore the reduction of H2O2 occurs at

the whole electrode surface. This extensive reduction, faster than the rate of H2O2

diffusion from the bulk of the solution, leads however to the gradual decrease of

surface H2O2 concentration and thus to the decrease in the faradaic current. This

means the decrease in ohmic drops and thus the shift of the electrode potential E
toward more negative values, at which underpotential of H sets in and the sites

active for H2O2 reduction become gradually blocked; the process of upd-H is

autocatalytic, since the decrease of current caused by adsorption of H shifts the

potential toward more negative values, at which the upd-H is more advanced and

this moves further the potential into the same direction. As soon as a full coverage

of upd-H is formed, the Pt electrode moves to a low-current state. Since in this state

the H2O2 reduction occurs only for small fraction of active states, the diffusion is

now able to replenish gradually the surface concentration of H2O2 and therefore the

local current density at the active sites increases, causing an increase of ohmic

drops. The electrode potential moves to more positive values, at which the

underdeposited H is removed and the oscillatory cycle is completed. This mecha-

nism explains also why stirring of the solution affects and even quenches the

oscillations B, since the slow diffusion transport, required for the oscillations, is

then superposed with the more intensive convective transport, setting the system

into the stable state. Also, it becomes understandable why appearance of

oscillations B requires higher H2O2 concentrations than oscillations A—simply

large enough ohmic drops, i.e., high enough currents are necessary. The mechanism

outlined earlier is schematically shown in Fig. 4.76. In a more general sense, it

indicates that in some cases the temporal oscillations of current or potential requires

invoking the inhomogeneous, patterned state of the electrode surface (note that the

formation of spatiotemporal patterns in two coupled H2O2/Pt oscillators is

described in Sect. 3.1.2 of volume II).

In a more detailed description of the above mechanism, one should also take into

account the electrical coupling between the active area and the surrounding

nonactive area of the electrode surface (see [105] for details). Based on the above

mechanism for the formation of oscillations B, their mathematical model was

constructed based on reactions (4.158) and (4.159) and the following additional

steps:

Ptþ Hþ þ e ! Pt� H (upd - H) (4.161)

2Pt� OH! 2Ptþ O2 þ 2Hþ þ 2e (4.162)
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Ptþ Hþ þ e ! Pt� H (on - top H) (4.163)

Pt� H(on - top H)þ Pt� H(on - top H)! H2 (4.164)

Further mathematical details of the model can be found in the original reference

[105]. Here we shall only mention that numerical calculations reproduced

oscillations A and B under both potentiostatic and galvanostatic conditions,

provided that both the stirring of the solution by hydrogen evolution and the

presence of active areas with electric coupling with the surroundings were assumed.

In the opinion of the authors, their mechanism justifies the conclusion that

oscillations of type B originate from a new type of electrochemical oscillator,

which was called “coupled NDR” or CNDR oscillator, since it appears in a potential

region of positive differential resistance by coupling with an NDR existing in

another potential region. Accordingly, Mukouyama et al. [104] have suggested

the update of the classification of electrochemical oscillators being the extension of

earlier scheme proposed by Strasser et al. [25] (cf. Fig. 3.24). The present scheme,

shown in Fig. 4.77, includes both the (discussed earlier) subclass IV-4 (oscillations C)

and the presently introduced Class V (oscillations B). One can suppose that with the

Fig. 4.76 Schematic illustration of an inhomogeneous structure of the electrode surface to explain

the appearance of oscillation B, together with reactions in (a) high- and (b) low-current states.

Reprinted with permission from [105]. Copyright 2001 American Chemical Society
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progress in mechanistic studies of other electrochemical oscillators, this classifica-

tion may undergo further extension.

4.7.2 Oscillatory Reduction of H2O2 on Semiconductor Electrodes

4.7.2.1 Reduction on Cu-Containing Semiconductors

The oscillatory reduction of H2O2 under potentiodynamic, potentiostatic, and

galvanostatic conditions, occurring on various Cu-containing semiconductors:

CuS, Cu2S, Cu5FeS4, CuFeS2, CuInS2, CuInSe2 have been a subject of intensive

studies, led by the Berlin group of Tributsch (cf. e.g. [99, 106–112]). For the

diagnosis of the oscillatory mechanism of this process, it is important that they

were not reported for such copper-free electrode materials, as FeS, FeS2, PbS,

MoS2, and CdS. In consequence, the presence of Cu(I) ions was suggested as

crucial for the oscillatory mechanism. This view was corroborated by the cathodic

photoeffect found for all copper-containing sulfides (particularly Cu2S): the irradi-

ation of the electrode surface with visible light affected the amplitude and fre-

quency of the oscillations, in certain cases causing even their decay. This effect was

explained in terms of the role of Cu(I)-oxide species in the mechanism of

oscillations. The crucial role of Cu(I) ions was discussed in spite of the fact that

oscillatory reduction of H2O2 was not observed on metallic Cu and semiconducting

Cu2O electrode. The exemplary oscillations are shown in Fig. 4.78, for the H2O2

Electrochemical Oscillations

Potential: autocatalysisChemicals: autocatalysis

Class I Class II Class III
(NDR)

Osc. C

IV-1 IV-2 IV-3 IV-4

Osc. D Osc. B

Osc. E
Examples

Osc. A

Class IV
(HNDR)

Class V
(CNDR)

Fig. 4.77 Improved classification of electrochemical oscillations on the basis of mechanisms,

with newly added categories indicated by enclosure with rectangles. Reprinted with permission

from [104]. Copyright 2001 American Chemical Society
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reduction on CuFeS2 (composed of Cuþ, Fe3þ and S2� ions) [108]. In turn, Fig. 4.79

shows the photosensitivity of the H2O2 reduction on Cu2S, interpreted in terms of

photosensitivity of Cu2O as the reactant in the oscillation mechanism [108].

We shall here briefly summarize the main features of the proposed oscillatory

mechanism [95, 108]. This requires first the description of two possible paths of

decomposition of H2O2 in contact with Cu(I) containing heterogeneous catalyst, the

one which is “trivial,” i.e., nonoscillatory and the other one, which occurs in an

oscillatory manner. Obviously, the electrochemical oscillations should be related to

the oscillatory catalytic pathway. It is thus crucial to understand under which

conditions and why this oscillatory catalytic pathway prevails. We shall consider the

semiconducting Cu2S electrode a crystal set of Cu(I) ions being in electronic contact

with a well-conducting sulfide matrix. The formation of Cu(I) ion from Cu atom

occurred through the transfer of a single 4s electron onto the sulfur atom, and in this

way the ionic bond was created. But Cu(I) ions have further bonding capabilities—

they can participate also in the covalent bond, engaging their remaining 3d electrons. It

is further considered that upon cathodic polarization of Cu2S electrode the positive

charge of Cu(I) ions is reduced, i.e., the electrons are transferred back from sulfur ions,

when a Fermi level in the sulfide is sufficiently raised to fill electrons into antibonding

4s orbitals of Cuþ surface atoms. Thus, the strength of ionic bonding will be signifi-

cantly affected, whereas the contribution from the covalent bond is expected to remain

Fig. 4.78 Dynamical reduction curves of H2O2 on CuFeS2 electrodes (10 mV/s sweep into

opposite potential directions). Electrode rotation: 10 rps; pH ¼ 9; 0.4 M H2O2, 0.1 M KCl.

Reprinted from [108] with kind permission of Deutsche Bunsen-Gesellschaft f€ur Physikalische
Chemie
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rather independent of the electrode potential. It is important to note that the oscillations

set in when the extent of Cu(I) ions reduction exceeds certain critical level, i.e., when

the electrode potential reaches a sufficiently negative value. In turn, at relatively

positive electrode potentials, in contact with the copper-containing electrode surface,

the ordinary (i.e., nonoscillatory) catalytic decomposition of H2O2 occurs, which

involves the electron exchange with the surface bond copper catalyst, i.e., the copper

ions will then alternatively be reduced and oxidized. However, when a positive

character of surface bonded copper ions becomes gradually reduced through the

increase of the negative electrode potential, a point is reached at which electron

transfer to the copper ions ceases to be energetically favorable and therefore the

ordinary heterogeneous catalytic decomposition of H2O2 stops to proceed. Instead, a

less efficient, but energetically possible oscillatory catalytic reaction path canmanifest

Fig. 4.79 Qualitative example of light-induced frequency changes on Cu2S electrodes in contact

with a hydrogen peroxide solution. Electrode rotation: 10 rps; pH ¼ 9; 0.2 M H2O2; 0.1 M KCl.

Reprinted from [108] with kind permission of Deutsche Bunsen-Gesellschaft f€ur Physikalische
Chemie
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itself. At this point it is useful to indicate that the absence of electrochemical

oscillations in the case of reduction of H2O2 at FeS, FeS2, MoS2, CdS, and PbS was

explained by the fact that for these compounds the ordinary, nonoscillatory catalytic

activity could not be stopped and transformed into a periodical one through a cathodic

potential. This was presumably because of too high energy level of metal ions, which

would have to be filled up by electrons coming from the Fermi level, during cathodic

polarization. In a particular case of CdS, the space charge layer was too large to permit

an adequate shift of the Fermi level in the surface, similarly as for Cu2O.

With respect to catalytic decomposition of H2O2, experimental evidences were

found for the following reaction steps (with M ¼ Cuþ ions) [99, 107, 108]:

H2O2 þM! MOþ H2O (4.165)

(the copper sites on the Cu2S are oxidized by H2O2)

MOþM� OHþ HO2 ! 2M� OHþ O2 (4.166)

(autocatalytic covering of the surface with OH groups, involving HO2 radical)

MþM� OHþ HO2 ! 2Mþ O2 þ H2O (4.167)

(autocatalytic cleaning of the electrode surface of OH groups, making possible
reaction (4.165) again)

This mechanism, in which a special attention should be given to the HO2 and OH

species, shows that during the oscillations an oxide layer is periodically formed and

destroyed. This process is, however, not considered essential for the oscillations.

Rather, the presence of surface hydroxyl groups that are formed and cathodically

reduced is a source of instabilities. From the point of view of nonlinear dynamics, it

is also interesting that the reaction steps found constitute the oscillatory system of

the Lotka–Volterra type [99].

The above reaction scheme should be complemented with the microscopic view

of the processes at the semiconductor solution surface. Let us take into account the

autocatalytic process (4.167). Figure 4.80a shows then schematically that the HO2

radical forms a ring complex, within which the cyclic electron transfer occurs and

molecular oxygen is liberated. In other words, there are two neighboring copper

centers involved in this autocatalytic process associated with the oscillatory cata-

lytic pathway. An increase of the positive charge of the electrode (at the copper

ions) inhibits this pathway, according to the above considerations. At sufficiently

positive potential, the electron transfer to copper ions takes place (Fig. 4.80b) and

then the HO2 radical dissociates into molecular oxygen and proton; then the

neighboring Cu ions stop to cooperate in electron transfer and only the ordinary

catalytic decomposition of O2H radical takes place.

Now, one should show how the periodical catalysis in H2O2 decomposition is

related to the observed electrochemical oscillations. This point is schematically

explained in Fig. 4.81, which refers to Cu(I) containing sulfides.
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According to the above discussed reaction sequence (4.165)–(4.167), the copper

sites on a copper sulfide are first oxidized through reaction (4.165). Then the

autocatalytic reaction (4.166) involving the HO2 radicals leads to the covering of

the surface with OH groups. Reaction (4.167), also involving HO2 radicals, is then

cleaning the surface from OH groups and the oxidation of the copper by H2O2 can

again occur. As indicated earlier, in this reaction sequence the oxide layer is

periodically destroyed and formed, but the oscillations of current are caused by

the periodical presence of surface-bonded hydroxide groups which can be cathodi-

cally reduced [108].

In the course of further studies, the above electrochemical mechanism was found

to be too simple. By means of combination of cyclic voltammetry with ex situ XPS

and EDX analysis of the corrosion products, it was established for CuFeS2 electrode

[95, 110] that to the list of species important for H2O2 decomposition, also certain

“active” species Cu(II), or active copper site (denoted as Cu(II)*) should be added,

formed in the following process:

CuSþ 4H2O2 ! Cu(IIÞ� þ 4H2Oþ SO4 (4.168)

Fig. 4.80 Reaction scheme for the catalytic decomposition of HO2 radical: (a) in an autocatalytic

reaction leading to oscillations; (b) in a simple catalytic reaction, not leading to oscillations.

Reprinted from [108] with kind permission of Deutsche Bunsen-Gesellschaft f€ur Physikalische
Chemie
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The importance of Cu(II)* species lies in the assumption that H2O2 reduction

requires less overpotential if occurs on this site and the process continues until its

conversion into inert CuO oxide. It is thus clear that further, more advanced studies

of this oscillatory mechanism are required, particularly in view of significant

progress in understanding of electrochemical instabilities.

In order to understand better the oscillatory reactions on the semiconductor

surface, it is useful to monitor its electronic structure which can be diagnosed

from electroreflectance spectra. In this way, Cattarin et al. [113] have investigated

the effect of the electrode potential on the band bending in the semiconducting

phase, at the CuInSe2–H2O2 interface. The correlation of the negative differential

resistance with the negative slope of relative reflectivity DR/R indicated the possi-

ble band bending anomaly (see below for analogous effect for reduction of H2O2

on GaAs [51]). Furthermore, in this NDR region also intriguing, rather unique and

not completely understood phenomena were observed: nonproportionality of the

Fig. 4.81 Scheme for the explanation of the periodicity of catalysis and proposed relation

between partial reactions and current oscillations. Reprinted from [108] with kind permission of

Deutsche Bunsen-Gesellschaft f€ur Physikalische Chemie
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photocurrent response to photon flux and even a change in its sign (inverted

photoeffect), occurring in the potential region from�0.9 to�0.75 V (see Fig. 4.82).

Further significant progress in understanding of the potentiostatic and

galvanostatic oscillatory reduction of H2O2 on p-CuInSe2 electrode was made by

Pohlmann et al. [114] who have elaborated a model for oscillating hydrogen

liberation in this process. Thus, the parallel existence of two electrode processes

was considered. The hydrogen mass signal was experimentally recorded via differ-

ential electrochemical mass spectrometry (DEMS) and it was shown that, under

galvanostatic conditions, the hydrogen mass oscillated in phase with the electrode

potential. Evidently, the oscillatory mechanism of H2O2 reduction required taking

into account also the process of hydrogen evolution. The particular task was to

derive such a dependence of the rate constant of the electrode process on the

potential which would express the essential combination of the oscillatory H2O2

reduction and hydrogen evolution. The proposed mechanism, leading to the expres-

sion for k(E), involved the following steps (with the rate constants k1–k5 of the

processes used for model calculations indicated in the brackets):

(i) The direct reduction of H2O2:

Mþ H2O2 þ 2Hþ þ 2e! Mþ 2H2O (4.169)

(ii) The catalytic decomposition of H2O2, with the evolution of oxygen:

H2O2 þM! H2Oþ 1=2O2 þM (4.170)

(iii) The reduction of dissolved oxygen through the rate-determining step of

adsorption

Fig. 4.82 Cyclic voltammograms (20 mV/s) of H2O2 reduction at p-CuInSe2 electrode, station-

ary, under white light (solid line). Fifth cycle after polishing and etching. Dashed line: curve
recorded during positive sweep in the dark, after polarization for 20 s under light at negative limit.

Reproduced from [111] by permission of The Electrochemical Society
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Mþ O2 ! M� O2 ðrds; k4Þ (4.171)

M� O2 þ e! M� O2
� (4.172)

M� O2
� þMþ H2O! Mþ HO2

� þM� OH (4.173)

M� OH þ e! Mþ OH� ðk5Þ (4.174)

(iv) Hydrogen evolution reaction:

Mþ Hþ þ e! M� H ðk1Þ (4.175)

M� Hþ Hþ þ e! Mþ H2 ðk2Þ (4.176)

(v) Recombination of adsorbed hydrogen and hydroxyl radicals:

M� OH þM� H! 2Mþ H2O ðk3Þ (4.177)

The role of hydrogen evolution can be summarized in the following points: (1) it

ensures the relatively high current density and introduces the diffusional time delay

required for the relaxation oscillations (slow variable), (2) it leads to adsorbed

hydrogen which acts as an inhibitor for the H2O2 reduction due to blocking of

available surface areas. Due to assumed competitive adsorption of OH radicals

(which is strongly potential dependent) it is possible to understand the effect of

potential on the electrode coverage with H. Finally, summarizing of reactions (iv)

and (v) reveals an additional feedback loop: an autocatalytic generation of free

surface area sites. As the essential dynamic variables of the model there were

considered the electrode coverages with M-OH and M-H, denoted as x and y,
respectively. The corresponding ordinary differential equations attain then the

following form:

dx

dt
¼ k1ðEÞð1� x� yÞ � k2ðEÞx� k3xy (4.178)

dy

dt
¼ k4ð1� x� yÞ � k5ðEÞy� k3xy (4.179)

where every potential-dependent rate constant follows the Butler–Volmer

dependence:

kiðEÞ ¼ ki;0 exp � aFE
RT

� �
(4.180)
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To these two differential equations, two other ones, describing the dynamics of

the electrode potential (E) and surface concentration (c) of H2O2, analogous to

those used by Koper and Sluyters [Eqs. (2.29) and (2.31)], were added, forming thus

a system of four differential equations. In the expression for the faradaic current of

the direct hydrogen peroxide reduction, the crucial k(E) dependence was expressed
in the following way:

kðE; tÞ ¼ k0 exp � anFE
RT

� �
1� xðt;EÞ � yðt;EÞ½ � (4.181)

After some simplifications, the presented model was used to simulate the current

oscillations during the potentiostatic H2O2 electroreduction. In conclusion, specific

semiconducting properties of the CuInSe2 electrode appeared to be not crucial for
the oscillations, since they were not incorporated in the model. The same is

probably true for other Cu-containing semiconductors described earlier.

At the end of this subsection, in relation to the content of Chaps. 1–4 of volume

II, describing the pattern formation phenomena, it is useful to come back to the

work by Tributsch [99]. In this work it was also reported that the onset of

oscillations (occurring on a millisecond time scale) was limited by the velocity of

propagation of the electrochemical signal across the electrode surface which

became eventually entirely engaged in this process. This propagation velocity

was found to be as high as ca. 10 m s�1, thus not possible to explain in terms of

purely diffusion transport. The possible variants of coupling, which include the

migration contribution, and leading, e.g., to propagating fronts, were described

theoretically in Chap. 1 of volume II and illustrated with experimental examples in

Chap. 2 of volume II.

4.7.2.2 Reduction on GaAs Electrode

An important point is that, contrary to copper(I)-containing semiconductors, for the

electroreduction of H2O2 on GaAs electrode, its semiconducting properties are

crucial for the dynamic instabilities. The relevant experiments were performed

using both n-type and p-type GaAs semiconductors, for which different dynamical

regimes were discovered. Typical cyclic voltammogram of H2O2 reduction on

n-GaAs is shown in Fig. 4.83 [115]. Starting from �0.2 V (vs. SCE), one observes,

specific for the semiconductor electrode, a steady increase in the cathodic current in

the cathodic scan, which is associated with a decrease in the semiconductor band

bending and a resulting increase of conduction band electrons at the surface [51].

In turn, a current plateau observed from �0.6 to �1.0 V, proportional to bulk

H2O2 concentration, appears to be independent of the electrode rotation rate, so its

value is controlled by the charge-transfer kinetics. Oscillations of the current are

observed on the return scan, also if potential scan is stopped, and are also

accompanied with oscillating light emission. Detailed analysis of the oscillation
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regimes indicated that they were born in a Hopf bifurcation, exhibit period-

doubling route to chaotic oscillations, followed by sudden transition to MMO

[51]. Figure 4.84 shows the corresponding bifurcation diagram.

Furthermore, it was found that insertion of the external resistor could also cause

oscillations in a way typical of the systems with the negative faradaic resistance.

Accordingly, under galvanostatic conditions, the electroreduction of H2O2 on

n-GaAs electrode exhibited bistability. In the bistable region there were also

detected oscillations of the electrode potential, when the imposed current was

slowly increased toward more negative values; then, an oscillatory escape occurred

toward the opposite potential branch.

Regarding now the p-GaAs, the oscillations of the current were observed only
under intensive illumination, when the light intensity was so high that the cathodic

photocurrent equaled the (limiting) cathodic current observed at n-type electrodes.
Such photocurrent oscillations occurred over a large potential range, in both the

forward and reverse scans (see Fig. 4.85).

The mechanism of these processes takes into account both the well established

role of the OH• intermediate in the H2O2 reduction at both metal and semiconduct-

ing electrodes, as well as the specific properties of the semiconducting phase.

According to Memming [116] who studied the H2O2 electroreduction at p-GaP
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Fig. 4.83 Cathodic current–potential scan for an n-GaAs electrode in 1.0 M H2O2, 1 M H2SO4

solution at 40 �C. Scan rate 2 mV/s. Also shown is the light emission of the electrode detected as a

photodiode current. Reprinted with permission from [115]. Copyright 1993 American Chemical

Society
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semiconductors one can conclude that (since at p-type semiconductors H2O2 is

reduced only under illumination) at least one step of this process involves the

photoexcited conduction band electron:

H2O2 þ eCB ! OH� þ OH� (4.182)

OH� ! OH� þ hVB
þ (4.183)

Furthermore, in parallel to processes (4.182, 4.183), the chemical etching of

GaAs occurs:

3H2O2 þ GaAsþ 6Hþ ! 6H2Oþ Ga3þ þ As3þ (4.184)
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U / V (SCE)

Fig. 4.84 Schematic bifurcation diagram giving the minima and maxima of the oscillatory or

stationary current as a function of the applied cell potential U (n-GaAs, 1 M H2O2 + 1 M H2SO4,

40 �C). Reprinted with permission from [115]. Copyright 1993 American Chemical Society
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Further works (e.g., [117]) led to the conclusion that in order to explain the

experimentally observed correlation between both above processes, one had to

assume the existence of their common precursor, i.e., the chemisorbed H2O2

intermediate. Then the complete mechanism is composed of the following steps,

starting from adsorption of H2O2 on n-GaAs surface [51]:

H2O2 þ X0��!k1 Xþ1
OH�

OH� (4.185)

Xþ1
OH�

OH� þ eCB��!k2 X0 �OH� þ OH� (4.186)

X0 � OH� ���!fast
X0 þ OH� þ hvþVB (4.187)

hvþVB þ eCB ! hv; heat (4.188)

where X0 is a free GaAs surface site and Xþ1 is an electron-deficient GaAs surface

bond. Also, surface state Xþ1 corresponds to the postulated precursor of chemical

etching of GaAs. The rate constant k1 is relatively small, i.e., kinetic limitations

arise in the corresponding adsorption step and the electrode coverage with the X1

surface complex becomes one of the dynamic variables in this system. The other

dynamic variable is the electrode potential E, but in the case of the semiconductors,
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U / V (SCE)

Fig. 4.85 Current–potential scan for p-GaAs in 1 M H2O2 + 1 M H2SO4 solution in the dark and

under illumination (maximum incident light intensity). Scan rate 1 mV/s, T ¼ 40 �C. In the inset,
some typical oscillatory photocurrent time series are shown for the indicated values of the applied

cell potential. Reprinted with permission from [115]. Copyright 1993 American Chemical Society
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contrary to the metal phase, one has to take into account the spatial, diffuse

distribution of charge in the semiconducting phase. Typically, the Debye length

of this region is larger than the analogous length for the electrolyte phase, so the

specific capacitance of the semiconductor depletion layer (Csc) is much smaller than

that of the electrolyte layer. In consequence, a change in the interfacial potential E
is realized almost entirely across the semiconductor depletion layer. Furthermore,

the product of the electrical potential difference between the surface and the bulk

(fsc) and the elementary charge (band bending) decides, through the Boltzmann

distribution, the concentration of free conduction band electrons at the surface (ns)
of n-type semiconductor (available for electrochemical reactions), in relation to the

concentration of conduction band electrons in the bulk (nb):

ns ¼ nb expð�efsc=kTÞ (4.189)

The two ordinary differential equations, that define the present dynamical

system, have the following form [51]:

Csc

dE

dt
¼ U � E

ARO
þ eGmv2 (4.190)

dy
dt
¼ v1 � v2 (4.191)

where Gm is the total number of sites per unit area of GaAs, E ¼ fsc þ fH (with

the latter term meaning the potential drop in the electrolyte, across the Helmholtz

layer) and v1 and v2 denote the rates of kinetically crucial steps (4.185) and (4.186).
In search of the oscillatory mechanism, another key point is the understanding

the origin of the negative differential resistance. Its existence in the studied process,

as well as decisive role for the oscillations, in conjunction with the serial resistance,

was unambiguously confirmed in the impedance measurements, complemented

with the appropriate model construction and its linear stability analysis [118]. It

was also shown that the source of this negative impedance was the anomalous
dependence of the band bending on the electrode potential. This anomaly means

that in a certain range of the voltammogram, a shift in the applied potential to the

negative values does not lead to a decrease in the semiconductor band bending (as

expected for n-type semiconductor/electrolyte interface [119]), but to its increase
which causes a decrease in the reduction current. Chemically, this effect is believed

to be caused by the intermediate hydride layer formed electrochemically during the

concomitant proton reduction, occurring through the Volmer reaction:

Hþ þ eþ X0
! X0 � H (4.192)

In other words, the hydride intermediate changes the charge distribution such as

to increase the depletion layer band bending.
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Although the presented approach is a significant step toward understanding of the

oscillatory reduction of H2O2 at GaAs electrode, it requires further development,

since it does not explain all its dynamic features, as, e.g., the experimentally

observed galvanostatic oscillations. Therefore, in search of further mechanistic

details of the process, Koper et al. [120] have performed later the electroreflectance

(EER) study of the oscillatory hydrogen peroxide reduction on n-GaAs from aque-

ous sulfuric acid solutions. In the experiment, the normalized field-induced change

in reflectivity DR/R is measured by application of a periodic modulation of the

interfacial potential DE ¼ DEmaxsin(ot) and studied as a function of the light

wavelength, the modulation frequency and the dc electrode potential E. The authors
showed how this technique was useful to follow electrochemical oscillations at

semiconductor electrodes indicating that the reflectivity and electroreflectance

oscillated with qualitatively different patterns. By measuring the electroreflectance

at varying frequency of the potential modulation, at least two contributions to the

EER signal were detected: one stemming from the semiconductor space charge layer

and one stemming from surface compounds. Based on comparison of experimen-

tally measured photocurrent, total current, and reflectivity, supported by numerical

calculations invoking the principles of the above model, it was possible to determine

the quantitative characteristics of the relaxation oscillations, i.e., to identify the

electrode potential as a fast dynamical variable (reflecting the fast variations of the

surface states presumably due to hydride formation) and the electrode coverage with

H2O2 surface intermediate (y) as a slow variable.
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54. Koutecký J (1953) Theorie langsamer elektrodenreaktionen in der polarographie und

polarographisches verhalten eines systems, bei welchem der depolarisator durch eine

schnelle chemische reaktion aus einem elektroinaktiven stoff entsteht 18:597–610
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92. Treindl L’, Olexová A (1983) Electrochemical oscillations of the system Hg|HSO4
-|BrO3

- and

phenol. Electrochim Acta 28:1495–1499
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98. Štrbac S, Adžić RR (1992) Oscillatory phenomena in oxygen and hydrogen peroxide

reduction on the Au(100) electrode surface in alkaline solutions. J Electroanal Chem

337:355–364

99. Tributsch H (1975) Sustained oscillations during catalytic reduction of hydrogen peroxide on

copper-iron-sulfide electrodes I. Ber Bunsenges Phys Chem 79:570–579

100. Fetner N, Hudson JL (1990) Oscillations during the electrocatalytic reduction of hydrogen

peroxide on a platinum electrode. J Phys Chem 94:6506–6509

References 325



101. van Venrooij TGJ, Koper MTM (1995) Bursting and mixed-mode oscillations during the

hydrogen peroxide reduction on a platinum electrode. Electrochim Acta 40:1689–1696

102. Mukouyama Y, Nishimura T, Nakanishi S, Nakato Y (2000) Roles of local deviations and

fluctuations of the Helmholtz-layer potential in transitions from stationary to oscillatory

current in an “H2O2 – acid – Pt” electrochemical system. J Phys Chem B 104:11186–11194

103. Nakanishi S, Mukouyama Y, Nakato Y (2001) Catalytic effect of adsorbed iodine atoms on

hydrogen peroxide reduction at single-crystal Pt electrodes, causing enhanced current

oscillations. J Phys Chem B 105:5751–5756

104. Mukouyama Y, Nakanishi S, Chiba T, Murakoshi K, Nakato Y (2001) Mechanisms of two

electrochemical oscillations of different types, observed for H2O2 reduction on a Pt electrode

in the presence of a small amount of halide ions. J Phys Chem B 105:7246–6253

105. Mukouyama Y, Nakanishi S, Konishi H, Ikeshima Y, Nakato Y (2001) New-type electro-

chemical oscillation caused by electrode-surface inhomogeneity and electrical coupling as

well as solution stirring through electrochemical gas evolution reaction. J Phys Chem B

105:10905–10911

106. Cattarin S, Tributsch H (1988) Light-sustained cooperative mechanisms observed at liquid

junctions of chalcopyrite semiconductors. Chem Phys Lett 148:221–225

107. Tributsch H (1975) Sustained oscillations during catalytic reduction of hydrogen peroxide on

copper-iron-sulfide electrodes II. Ber Bunsenges Phys Chem 79:580–587

108. Tributsch H, Bennett JC (1976) Hydrogen peroxide induced periodical catalysis on copper-

containing sulfides. Ber Bunsenges phys Chem 80:321–327

109. Cattarin TH (1990) Interfacial reactivity and oscillating behavior of chalcopyrite cathodes

during H2O2 reduction I. Electrochemical phenomena. J Electrochem Soc 137:3475–3483

110. Cattarin S, Fletcher S, Pettenkofer C, Tributsch H (1990) Interfacial reactivity and oscillating

behavior of chalcopyrite cathodes during H2O2 reduction. II. Characterization of electrode

corrosion. J Electrochem Soc 137:3484–3493

111. Cattarin S, Tributsch H (1992) Reduction of H2O2 at CuInSe2 (photo)cathodes II. Sustained

and triggered oscillations. J Electrochem Soc 139:1328–1332

112. Cattarin S, Tributsch H (1993) Non-linear and pulse phenomena during H2O2 reduction at

chalcopyrite (photo)cathodes. Electrochim Acta 38:115–122

113. Cattarin S, Tributsch H, Stimming U (1992) Reduction of H2O2 at CuInSe2 (photo)cathodes I.

Characterization of the electrode-electrolyte interface. J Electrochem Soc 139:1320–1328

114. Pohlmann L, Neher G, Tributsch H (1994) A model for oscillating hydrogen liberation at

CuInSe2 in the presence of H2O2. J Phys Chem 98:11007–11010

115. Koper MTM, Meulenkamp EA, Vanmaekelbergh D (1993) Oscillatory behavior of the H2O2

reduction at GaAs semiconductor electrodes. J Phys Chem 97:7337–7341

116. Memming R (1969) Mechanism of the electrochemical reduction of persulfates and hydrogen

peroxide. J Electrochem Soc 116:785–790

117. Minks BP, Vanmaekelbergh D, Kelly JJ (1989) Current-doubling, chemical etching and the

mechanism of two-electron reduction reactions at GaAs: Part 2. A unified model.

J Electroanal Chem 273:133–145

118. Koper MTM, Vanmaekelbergh D (1995) The origin of oscillations during hydrogen peroxide

reduction on GaAs semiconductor electrodes. J Phys Chem 99:3687–3696

119. Morrison SR (1990) Electrochemistry at semiconductors and oxidized metal electrodes.

Plenum, New York

120. Koper MTM, Chaparro AM, Tributsch H, Vanmaekelbergh D (1998) Langmuir

14:3926–3931

326 4 Temporal Instabilities in Cathodic Processes at Liquid and Solid Electrodes



Chapter 5

Temporal Instabilities in Anodic Oxidation

of Small Molecules/Ions at Solid Electrodes

5.1 Oscillations in Anodic Oxidation of Molecular Hydrogen

5.1.1 Experimental Results and Oscillation Mechanism

Oscillations and multistability in oxidation processes at solid electrodes are important

for several reasons. First, they were reported for species that are (or can appear)

important in chemical engineering of fuels, including the fuel cells: hydrogen, carbon

monoxide, formaldehyde, formic acid/formate ions, 2-propanol, 1-butanol, hydra-

zine, or ethylene glycol. It can be useful to know how to avoid instabilities involving

these species or, on the contrary, to profit from them. Second, electrooxidation of

these molecules exhibits rich variety of nonlinear dynamic behaviors which can be

treated in a model way for the sake of generalization. Third, some of these processes,

under appropriate conditions, can become a source of spatial or spatiotemporal

patterns on electrodes which phenomena only recently gained satisfactory explana-

tion and description. In this chapter, we shall summarize the temporal phenomena

associated with the oxidation of the above-mentioned molecules, while pattern

formation will be discussed in separate Chap. 2 of volume II.

Current research data indicate that such processes should be qualified as

electrocatalytic, i.e., the electrode surface is actively engaged in the kinetics of the

electron transfer reaction, usually involving the process taking place via the adsorbed

intermediate. As in the case of other types of electrochemical oscillators, one can

observe the evolution of the understanding of the source of chemical instabilities—

from early, sometimes oversimplified explanations oriented exclusively on the

properties of the electrode/electrolyte interface toward more recent concepts, involv-

ing the analysis of the system’s stability in terms of nonlinear dynamics. In particular,

oscillations under galvanostatic conditions could be understood only recently in

terms of the concept of the HN-NDR oscillator [1] (cf. Chap. 3).

The anodic oxidation of H2 on Pt electrode is an electrocatalytic process, in

which the electron transfer is preceded by the adsorption of H2 molecule on the

active surface site. Hence, the oscillatory course of this process can be associated
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with the periodic blocking and freeing of these adsorption sites, as a common

mechanism for all electrocatalytic processes. If the electrode surface is activated

and there are no adsorbed impurities, then the rate of oxidation of hydrogen at Pt

electrode is diffusion controlled. It is instructive to review the development of

understanding the mechanism of oscillations in this important process.

The first report on the oscillations of current during the oxidation of H2 on

polycrystalline Pt electrode, under potentiostatic conditions and in the presence of

sufficient serial ohmic resistance, was published by Thalinger and Volmer in 1930

in Zeitschrift f€ur physikalische Chemie [2]. In turn, oscillations of the electrode

potential during the galvanostatic oxidation of H2 were first reported by Armstrong

and Butler in 1947 [3]. Noteworthy, these authors mentioned the possible role, in

the onset of oscillations, of adsorption and deposition of dissolved metal ion

impurities, which was in fact confirmed in more recent studies. But before it had

happened, Sawyer and Seo [4] have attributed these galvanostatic oscillations to the

temporal formation, at sufficiently positive potentials, of the surface oxides which

are then reduced by the gaseous hydrogen. On such activated electrode surface the

hydrogen oxidation proceeds at nearly the equilibrium potential of H2/H
+ redox

couple, but the continuous exposure to hydrogen deactivates the electrode and

hence its potential again shifts to positive values. In search of the role of surface

oxide layer, Conway and Novak [5] performed later a series of studies of H2

oxidation from the “almost anhydrous solvent”—the trifluoroacetic acid (TFA)

containing controlled traces of water. Under such conditions only the small fraction

of Pt electrode, controlled by the amount of water, could be anodically oxidized, as

TFA is an electrochemically very inactive solvent. It was found that the periodic

oxidation of H2 begins when the potential, scanned from the range of existence of

the Pt oxide layer toward cathodic direction, reaches a value at which the oxide

layer can begin to reduce and readsorption of trifluoroacetate anion can occur. The

role of the surface oxide was thus confirmed and anion adsorption/desorption was

inferred from the observations of periodic changes of relative reflectance—in phase

with the current oscillations (Fig. 5.1).

Based on these studies, an important mechanistic conclusion was drawn:

although oscillations in H2 oxidation arise from periodic inhibition and reactivation

of the Pt surface, coupled with diffusion transport of H2 from the solution bulk, it is

unlikely that only oxide layer formation/destruction can cause such instabilities,

simply because the electrode coverage with this oxide would then be too small to

cause substantial inhibition of the H2 oxidation. More significant for the inhibition/

reactivation cycle, involved in the oscillatory behavior, appeared to be the process

of the anion adsorption. Altogether, the following factors were considered for the

formulation of kinetic equations, representing the oxidation of H2 under such

conditions: (a) diffusion of H2 proved by the effect of the stirring of the solution;

(b) the reactivity of an incomplete oxide film at Pt; (c) the electrode potential;

(d) the free surface area (1 � y) available for direct electrocatalytic oxidation

of H2; (e) the inhibition of catalytic activity by anion adsorption; and (f) reversibil-

ity and irreversibility (hysteresis) in the formation and reduction of the oxide

film on Pt.

328 5 Temporal Instabilities in Anodic Oxidation of Small Molecules/Ions



Evidently the above results inspired Horányi and Visy [6] to study the problem,

whether the oscillations (in their case—under galvanostatic conditions) can be

caused by coupling of hydrogen oxidation with the electrosorption or

underpotential deposition of metal ions, according to the following assumed mech-

anism: the electrosorbed cations inhibit the oxidation of hydrogen by blocking the

surface sites which in this way become unavailable for the adsorption and oxidation

of hydrogen; as a result of this inhibition, under galvanostatic conditions, the

electrode potential shifts to more positive values at which desorption of cations

takes place; consequently, the rising numbers of free adsorption sites allow the flow

Fig. 5.1 Current oscillations in H2 oxidation on the cathodic sweep in two potentiodynamic

experiments on H2 oxidation at Pt in almost dry TFA + 0.6 M KTFA (s ¼ 8 � 10�2 V s�1,
T ¼ 298 K). Note: potential scale of series 1 is half the sensitivity of that for series 2 to

accommodate the results on a single graph. Upper curve: relative reflectance changes (DR/R)||
measured simultaneously with the oscillations. Reprinted with permission from [5]. Copyright

1977 American Chemical Society
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of higher hydrogen current, the electrode potential becomes less positive when the

metal cations readsorb and the oscillatory cycle is closed. Note that this explanation

cannot be alternative to the mechanism of potentiostatic oscillations given by

Conway and Novak, since in the latter case the electrode potential was always so

positive that the significant adsorption of cations could be excluded. In the present

work, Horányi and Visy have investigated the effect of Cd2+, Cu2+, Sn2+, Bi3+, and

Ag+ ions, using different base electrolytes (H2SO4, HCl, HClO4) on the

potentiostatic oscillations under galvanostatic conditions. Generally, an addition

of the metal ions lowered the current of hydrogen oxidation and upon cycling

variation of the electrode potential a hysteresis in the current response was

observed, reflecting the limited rate of establishing the potential-dependent adsorp-

tion/desorption equilibria of metal cations. Considering the amplitude of the varia-

tion of the electrode potential during the oscillations, one concludes that Cd2+ ions

undergo only adsorption with partial charge transfer, whereas, e.g., Cu2+ ions, due

to much more positive standard potential E0(Cu/Cu2+), undergo also periodic

underpotential deposition, enhancing the surface concentration of copper species.

Therefore, the bulk concentration of Cu(II) ions can be significantly lower (e.g.,

10�6–10�5 M) than that of Cd(II) ions (e.g., 10�2 M). Similar approach was

developed by Kodera et al. [7–10] who also have proposed a mathematical model

involving two dynamical variables: the electrode potential E and electrode cover-

age y with deposited metal, under assumption that the oscillations in the oxidation

of H2 are caused by the attractive forces between the underpotential deposited metal

atoms. Like in other approaches of that type (cf. Chap. 3), the attractive lateral

interactions in the adsorption layer, leading to the bistable isotherm of the Frumkin

type, constitute the autocatalytic step, necessary for the onset of instabilities. In

fact, in the absence of autocatalysis, the oxidation of H2 would not oscillate

between the activated and poisoned states, but would establish at the steady-state,

intermediate potential.

In later works, Krischer, Eiswirth, Ertl, Hudson et al. [11–13] have revealed

further complexity in the galvanostatic H2 oxidation, interpreting it as the periodic

poisoning and activation transitions of the Pt electrode by underpotential deposition

and dissolution of a passivating Cu monolayer, in the presence of chloride ions.

Thus, both cations and anions added are involved in this instability. Upon increase

in current density there was observed the transition from steady state to harmonic

oscillations via the supercritical Hopf bifurcation, followed by a series of period

doublings (Feigenbaum scenario, cf. Sect. 1.9.2) leading eventually to chaos.

Figure 5.2 shows the respective bifurcation diagram.

Moreover, further increase of current density caused an emergence of another,

qualitatively different chaotic regime through the interior crisis and finally, before

the end of the oscillatory behavior, the latter chaos broke down to the periodic

mixed-mode oscillations (MMO). Such a sequence of events was found also for

some other oscillators, not only chemical ones [11], but also for the logistic map

analyzed by Feigenbaum or for the forced Duffing oscillator with a dc bias [14].

Thus, it is an example of universalities observed in various dynamical systems. It is

useful to mention here that the interior crisis (cf. also Sect. 1.9.2), named also an
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explosion, is a kind of global bifurcation which manifests itself as the sudden

qualitative change in the chaotic attractor size and shape. This is usually caused

by its collision with unstable periodic orbit. The interior crisis is caused by the

tangent collision of strange attractor with an unstable periodic orbit that is

contained within the interior of the basin of attraction of this attractor, so the new

attractor contains a locus of the former attractor [11, 15, 16]. In more detail, upon

variation of the control parameter (here: increasing the current density) first the

strange attractor is formed which does not contain the unstable periodic orbit; the

latter one is created only for a critical value of the control parameter.

Studies described earlier suggest strongly that, besides underpotential deposition

of Cu, also the presence of halide anions is significant for the occurrence of

galvanostatic oxidation of H2 on Pt electrodes. The fact, that specifically adsorbing

Cl� and Br� ions can lead to splitting of the Cu-upd peaks in cyclic voltammetry

[17, 18] is a strong premise that one can expect such an influence. This point was

elaborated in detail by Krischer et al. [19]. Experiments with the single-crystal Pt

electrodes showed that regardless of the orientation of the single crystal or the shape

(wire, plate) of the polycrystalline Pt electrodes no oscillations were detectable in

suprapure H2SO4 solution. One had to add at least a small amount of chlorides or

bromides, so one could suppose that at the times when such suprapure reagents

Fig. 5.2 Experimental

bifurcation diagram of the

existence regions of different

oscillation forms during the

galvanostatic H2 oxidation on

Pt as a function of the Cu2+

concentration; pN means

period-N oscillations.

Reprinted from [13],

Copyright 1993, with

permission from Elsevier
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were not yet available, at least in some experiments the unknown amounts of Cl� or
Br� impurities could take part in the oscillatory oxidation of H2. On the other hand,

in the presence of appropriate amount of Cl� ions, the oscillatory course of H2

oxidation was strongly dependent on the crystallographic orientation of the elec-

trode: for Pt(110) oscillations were not detected, for Pt(111)—simple, single-

periodic oscillations were reported, whereas for Pt(100) a large variety of

oscillatory courses was found: single-periodic, undergoing further period-doubling

bifurcations to chaos and followed eventually by the periodic MMO (similarly to

the sequence described earlier for the polycrystalline Pt electrode). Compared to

Cl� ions, Br� ions were able to induce complex oscillations at much lower

concentration level, and for all three low-index surface orientations of Pt electrode.

Additional experiments, involving two different ring-disk polycrystalline

electrodes: Pt-disk/Au-ring and Pt-disk/Pt-ring, allowed to trace the variations of

the electrode coverage with Cu atoms and of the current of H2 oxidation, as well as

their phases relative to the electrode potential. The crucial result of these studies is

the finding that during the oscillations, the coverage of copper lags about ca. 90�

behind the hydrogen oxidation current, and this phase shift was interpreted as

caused by the specific adsorption of halide ions, which together with Cu atoms

block the H2 oxidation on Pt electrode (Fig. 5.3) [19].

In this way, the essential role of strongly adsorbed halide anions in the onset of

the oscillatory course of H2 oxidation was clearly confirmed. The interaction of

0 0 10.2 0.4 0.6 0.8 1.0 2 3 4 5

t / st / s

0.
00

2
M

L

0.
3

M
L

30
m

V

60
0

m
V

–0
.5

μA –7
μA

uD

iR

qCu

a b

Fig. 5.3 Oscillations at the Pt-disk electrode with two different amplitudes at different current

densities (upper curves). Middle: corresponding ring currents proportional to Cu2+ concentration

at the ring. Lower: the integrated ring currents corresponding to the relative Cu coverage (Dy) at
the disk. Electrolyte: 0.5 H2SO4; (a) 1 � 10�4 M Cu2+; 2 � 10�3 M HCl; (b) 5 � 10�5 M Cu2+;

3 � 10�2 M HCl; disk current densities: (a) 1,120 mA cm�2; (b) 1,440 mA cm�2. Reprinted from

[19], Copyright 1995, with permission from Elsevier
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both Cl� and Br� is strongest for Pt(100), less pronounced for Pt(111), and weakest
for Pt(110)—so weak that the oscillations were not detected. This sequence

correlates with the oscillations which are only observed if anions adsorb so strongly

that they lead to a decrease of the H2-oxidation current in the Cu-upd region in the

Cu-free solutions. Thus, the oscillations of current of H2 oxidation are associated

with the formation of anion/Cu coadsorbate structures, and not with Cu layer alone.

The full oscillatory cycle is schematically depicted in Fig. 5.4 [19–21].

Let us start the analysis of the oscillatory cycle from the picture (a), corresponding

to negative potential, with a relatively high (too high) surface concentration of metal

atoms which inhibit the hydrogen oxidation. The actual value of the H2 oxidation

current is thus too low to equal the preset galvanostatic current, so this difference is

compensated by the flow of capacitive current associated with charging of the

electrode to more positive potential during the step (I). During this increase of the

potential, the Cu atoms gradually (but relatively slowly) desorb from the electrode

Fig. 5.4 Schematic drawing

of an oscillation cycle: the

upper diagram is the time

series of the experimentally

observed variables p, jH2
and

m; the lower diagram is a

qualitative view of the

electrode surface where the

open circles represent free
adsorption sites, and the full
and shaded circles represent
metals and anions,

respectively (see text for

explanation). Reprinted from

[20], Copyright 1995, with

permission from Elsevier
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surface, while the Cl� ions adsorb then quickly. Due to this difference in time scale of
both surface processes, the effective number of free surface sites decreases and

therefore the hydrogen current also decreases. This even accelerates further increase

in the electrode potential which overshoots the value, for which the actual current of

H2 oxidation under potentiostatic conditions equals the imposed current. Starting from

this point (b), through step (II), the system will tend to stationary electrode coverage,

ensuring this enhanced hydrogen current. The higher current causes the shift of the

electrode potential back to less anodic values. Upon decrease of the potential within

step (II) the electrode charge is still positive enough to cause slow desorption ofmetal,

but starting from state (c), when step (III) begins, upon further decrease in electrode

potential, the slow deposition of Cu returns and the fast desorption of halide anions

begins. The effective number of free adsorption sites then increases and the potential

now overshoots in the negative direction, leading to situation (d) where too many

free adsorption sites are available. The continued slow adsorption of Cu returns the

system to state (a) with too few adsorption sites (because the potential is below the

stationary state).

In a more concise way, the above mechanism can be summarized as follows

[20]: the oscillations occur due to the coupling of two processes which inhibit the

hydrogen oxidation: the slow underpotential deposition of copper (favored at low

potentials) and the fast specific adsorption of chloride (occurring at more positive

potentials). For low surface coverage, maintaining of the preset current through the

hydrogen oxidation is possible at relatively low potentials, at which however

the slow underpotential deposition of Cu occurs. With increasing Cu coverage the

galvanostat forces the shift of the electrode potential toward more positive values,

at which Cu desorbs slowly but Cl� ions adsorb quickly, and due to this difference

in time scale the potential overshoots the steady-state value. The same reasoning

applies for the, following this step, decreasing potential.

It is important to compare this mechanism with the impedance characteristics.

The elementary process of H2 oxidation is characterized with the positive differen-

tial resistance, since its rate increases exponentially with electrode potential.

Simultaneously, on a comparable time scale (fast variables), an increase in the

electrode coverage with halide ions, which inhibit the H2 oxidation, occurs and this

is the source of the negative differential resistance developing at sufficiently

positive potential. There is also a third potential-dependent process, overlapping
with the two previous ones: the dissolution of the metal (Cu) monolayer, also

inhibiting the H2 oxidation; this process thus does not give rise to the negative

resistance, but delays the manifestation of the rise of current in the region in which

it would already exhibit negative resistance. Consequently, the NDR region

remains hidden in this region of the I–E dependence which exhibits the net positive

slope. Since the experiments, performed under galvanostatic conditions, showed

that the oscillations of the electrode potential occur in the region of this positive

slope, it becomes clear that the H2 oxidation on Pt electrode, in the presence of Cu
2+

and Cl� ions, is an example of the HN-NDR oscillator (cf. Chap. 3). One also

concludes that early explanations of these phenomena were too simple.
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The above mechanism was further mathematically described in terms of

three ordinary differential equations, involving the following dynamical variables:

electrode coverage with Cu (yCu � m), competing with the electrode coverage with

Cl� (yCl
� � x), and the electrode potential (E � p). Calculations showed that this

model sufficed to generate oscillations under both galvanostatic [20] and (in the

presence of ohmic potential drops) potentiostatic conditions [21].

5.1.2 Modeling the Galvanostatic Oscillations

The model of the galvanostatic conditions derived byWolf et al. [20] consists of the

following ODEs:

dm

dt
¼ vmads � vmdes (5.1)

dx

dt
¼ vxads � vxdes (5.2)

dp

dt
¼ 1

Cd

ðjtot � jm � jH2
Þ (5.3)

expressing the temporal variation of the surface coverage with the metal atoms

[Eq. (5.1)] and halide ions [Eq. (5.2)], respectively, as due to the difference between

the rate of adsorption (vads) and desorption (vdes) of these species. Furthermore, the

temporal variation of the electrode potential p [Eq. (5.3)], characterized with the

double layer capacitance Cd is due to charging current, given by the expression in

the bracket, which was obtained from the following dependence:

jtot ¼ jcap þ jct ¼ jcap þ jH2
þ jm (5.4)

In Eq. (5.4), j means the densities of the following currents: jtot is the the total

current; jcap, the capacitive current; jct, the charge-transfer (faradaic) current; the

latter one consisting of jH2
, the hydrogen oxidation current; and jm is the current of

the underpotential deposition of metal, assuming almost complete discharge of

metal ions during this process. The flow of any current associated with the partial

discharge of specifically adsorbed halogen anions was neglected.

Detailed forms of particular equations are given below. The faradaic current of

hydrogen oxidation was assumed to be in the diffusion-controlled region and

proportional to the square of the free adsorption sites, assuming dissociative

adsorption (cf. e.g., [22–24]):
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jH2
¼ kH2

adscH2
ð1� m� xÞ2

1þ ðkH2

ads=k
H2

diffÞð1� m� xÞ2 (5.5)

where kH2

ads is the rate constant of the hydrogen adsorption process and kH2

diff is the

effective diffusion constant defined as the ratio of the diffusion coefficient DH2 to

the assumed width of the assumed diffusion layer d.
The current of underpotential deposition of Cu monolayer is given by (note the

minus sign indicating the electroreduction process):

jm ¼ �qmonokmfcmð1� m� xÞ exp½�amðp� pm0 Þ� þ m exp½amðp� pm0 Þ�g (5.6)

The adsorption and desorption rates (normalized to maximum coverage) of

underpotential deposited metal and of the halide ions, respectively, are given by

the following dependences:

vmads ¼ kmfcmð1� m� xÞ exp½�amðp� pm0 Þ�g (5.7)

vmdes ¼ kmm exp½amðp� pm0 Þ� (5.8)

vxads ¼ kxcxð1� m� xÞ exp½axðp� px0Þ� (5.9)

vxdes ¼ kxx exp½�axðp� px0Þ� (5.10)

where cm and cX denote the (normalized to standard value of 1 M) bulk

concentrations of the metal ions and of halide ions, respectively, in the solution,

am—the (Tafel) slope for the electrode process of Cu2+, including the transfer

coefficient a: am ¼ anmF=RT, with a set here to 0.5 (symmetrical activation

barrier). Analogous equations hold for the halide species X. Furthermore, qmono

means the electric charge flowing during the formation of adsorbed monolayer of

metal under conditions of underpotential deposition. pm0 and px0 denote the electrode
potentials, at which, in the absence of other species, and at unit bulk concentrations,

the electrode coverage with the deposited metal or adsorbed halide ions, respec-

tively, becomes 0.5 (which assumption means the equality of rate constants for both

species: km ¼ kx). The values of other parameters, used in the actual calculations,

the reader can find in the original references (see Table 1 in [20]).

The above equations allowed to calculate the potentiostatic (or potentiodynamic)

characteristics of the system, as well as its oscillatory response under galvanostatic

conditions. By setting dm/dt ¼ 0 and dx/dt ¼ 0 separately and introducing the linear

variation of the electrode potential with time one obtains the isolated isotherms of

metal (m–p dependences) and of halide ions (x–p dependences), respectively. It

appears that under potentiodynamic conditions (v ¼ 20 mV s�1), both the metal

and halide ions isotherms exhibit hysteresis upon cycling variation of the electrode

potential which is however much more remarkable for the Cu isotherm, as it should

be, due to assumed, fundamental for this system’s dynamics, lower adsorption rate of
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metal, compared to halide anions. In turn, taking both zeros of dm/dt and dx/dt
simultaneously, one obtains the individual and summary coverages of both species

competing for the same set of adsorption sites on the electrode surface which clearly

show, how upon increasing potential the total number of available adsorption sites

passes through the minimum (Fig. 5.5).

Thus, it becomes understandable that the hydrogen oxidation current in the

cyclic voltammogram passes through a maximum, located, under steady-state

conditions, at the potential of minimum total (m + x) coverage from Fig. 5.5, and

that the whole voltammogram exhibits hysteresis if recorded under

potentiodynamic conditions. Figure 5.6 shows cyclic voltammograms, calculated

for both steady-state and potentiodynamic conditions, with v ¼ 20 mV s�1 [20].
Let us also note an important detail of this j–p dependence—the hysteresis is

pronounced much more in the region 0.25–0.50 V, when the electrooxidation of

current is governed mainly by the (slowly establishing) metal coverage, than above

0.7 V, when the metal monolayer does not exist and the rate of H2 oxidation is

determined largely by the (quickly establishing) surface coverage with halide

anions. Concluding, the model representation of electrochemical H2 oxidation is

coherent with the experimental characteristics, and the dynamical system, defined

by Eqs. (5.1)–(5.3) can become a subject of bifurcation analysis. The bifurcation

diagrams were constructed in various coordinate systems, e.g., p–jtot, jtot–cm, jtot–cx,
indicating the Hopf, saddle–node, saddle–loop, and the Takens–Bogdanov

bifurcations. For example, Fig. 5.7 shows the bifurcation sequence, when the

system’s behavior is represented by the electrode potential. With increasing current

density as a control parameter in the galvanostatic experiment, the stable steady

state loses its stability via the Hopf bifurcation. The amplitude of oscillations born

out of this transition increases with increasing current density. The middle steady

state which is now unstable eventually collides with the limit cycle in the region of

high amplitude oscillations and as a result of that collision, leading to the

saddle–loop bifurcation, the oscillations disappear.

Numerical integration of Eqs. (5.1)–(5.3) shows that upon increasing total

current density, the increase in the oscillation amplitude is accompanied with the

Fig. 5.5 Calculated

coverages for a solution with

cm ¼ 10�4 and cx ¼ 10�3;
solid line m, dashed line x;
dot-dashed line m + x.
Reprinted from [20],

Copyright 1995, with

permission from Elsevier
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decrease in their frequency and the gradual change of the shape of the peaks from

harmonic to relaxation ones. These trends are quite well concordant with the

experimental findings. Furthermore, for certain set of parameters various MMO,

involving period-doubling bifurcations and meeting the Farey sequence (see Sect.

6.1.3), were also obtained. Such MMOs were found also in the experimental

studies. Concordant with the experimental findings (at least for not too low metal

concentrations in the solution) are also the phase shifts between the theoretical

courses of coverages m, x, and electrode potential p.
Since the reliability of the model was in this way confirmed, one can further vary

the parameter values, in order to check which of (reasonable) changes or

simplifications do not kill the oscillations. One of the most important conclusions,

Fig. 5.6 Calculated hydrogen oxidation current density as a function of potential in a solution

with cm ¼ 10�4 and cx ¼ 10�3; dashed line stationary state; solid line calculated cyclic

voltammogram at a scan rate of 20 mV s�1. Reprinted from [20], Copyright 1995, with permission

from Elsevier

Fig. 5.7 Single-parameter continuation of the system (5.1)–(5.3) with cm ¼ 10�4 and cx ¼ 10�3

as a function of the applied current density jtot: solid line stable stationary state; dashed line
unstable stationary state; dotted line saddle point; dot-dashed line maximum and minimum of the

potential oscillations. Reprinted from [20], Copyright 1995, with permission from Elsevier
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also concordant with the above extensively described experimental characteristics,

was that the oscillations can occur only when (1) the anions adsorb and desorb

faster than metal cations and (2) there is at least a minimal overlap between the

electrode coverage with the metal phase and halide ions, i.e., during the positive

potential scan the anions should start to desorb when there is still some metal

deposited.

In spite of these concordances, in order to make the model more realistic, one

can enrich the ODE’s system (5.1)–(5.3) with the fourth equation, describing the

dynamics of the concentration of metal ions in the solution at the electrode surface:

cm,0. This new variable may exhibit dynamics on a different time scale as being

determined by the rate of diffusion which, under appropriate conditions can become

a rate-determining step.

dcm;0

dt
¼ k0mðvmdes � vmadsÞ þ kmdiffðcm � cm;0Þ (5.11)

In Eq. (5.11) k0m describes the change in the cm concentration upon dissolution of

one monolayer of metal, kmdiff is a ratio of diffusion coefficient of metal ions in the

solution to the thickness of the Nernst diffusion layer in which the m concentration

gradient is assumed linear, cm is, as before, the metal ions concentration in the

solution bulk. Contrary to Eq. (5.7), the rate of adsorption vmads is now dependent on

the local, surface concentration cm,0, and not on bulk value cm. When the bulk metal

concentration is so low that the rate of diffusion of metal ions becomes a rate-

determining step, the amplitude of the oscillations extends in negative direction so

that it is necessary to include the dependence of the hydrogen oxidation current on

the electrode potential:

jH2
¼ kH2

½expðaH2
pÞ � 1�cH2

ð1� m� xÞ2
1þ ðkH2

½expðaH2
pÞ � 1�=kH2

diffÞð1� m� xÞ2 (5.12)

The fourth-variable model, constructed in this way, is able to reproduce almost

quantitatively the experimental oscillation courses, as well as the experimentally

reported dependence of the periods on the current densities at low metal ion

concentration. The open problem is which mechanistic nuances should be yet

implemented in the model in order to reproduce chaotic oscillations, exhibiting

interior crisis. As always in the case of models assuming homogeneous distribution

of concentration and current distribution along the electrode surface, one can pose a

question whether taking into account the spatial distribution of variables could

generate more complex dynamical phenomena.
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5.1.3 Experimental Observation and Modeling the Potentiostatic
Oscillations

According to the characteristics of the systems with the hidden negative resistance,

the oscillations of current are possible under potentiostatic conditions provided the

appropriately high serial resistance is present in the circuit (see Sect. 3.4). Repre-

sentative experimental illustration of such oscillations in the H2 oxidation on the

rotating disk Pt electrode, in the presence of both Cu2+ and Cl� ions, and under

condition of the slow scan cyclic voltammetric experiment, are shown in Fig. 5.8

[21]. In the first anodic cycle, the oscillations begin after the initial region of quasi-

linear rise of the current, controlled largely by the circuit ohmic resistance and

finish at about 1.83 V, when the current drops abruptly due to the oxide layer

formation on Pt surface. During the return scan the hysteresis is observed—the

current returns to higher values only at ca. 930 mV. Thus, the system exhibits a

special kind of bistability, in which the oscillatory (high-current) and steady-state

Fig. 5.8 (a) Experimental

cyclic voltammogram; scan

rate v ¼ 1 mV s�1,
RsA ¼ 375 O cm2,

cCu2þ ¼ 10�6 M,

cCl� ¼ 3 � 10�4 M. (b) The

same measurement plotted

against p ¼ E � IR together

with an experimental cyclic

voltammogram without

additional resistance (scan

rate v ¼ 2 mV s�1,
cCu2þ ¼ 3 � 10�6 M) (dotted
line) and without copper (dot-
dashed line)
(cCl� ¼ 3 � 10�4 M) [21].

Note that symbols p and E are

here equivalent to electrode

potential (usually denoted as

E) and external voltage

(usually denoted as U),
respectively. Reprinted from

[21], Copyright 1995, with

permission from Elsevier
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Fig. 5.9 Regions of different dynamic behavior (a) at cCu2þ ¼ 10�5 M and cCl� ¼ 3� 10�4 M as

a function of externally applied potential E (for the present notation, see remark in caption to

Fig. 5.8) and RsA (b) at cCl� ¼ 3� 10�4 M, RsA ¼ 312 O cm2 as a function of E and cCu2þand
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(low-current) regimes coexist for the same range of control parameters. Obviously,

the high current states correspond to the Pt surface not covered with the oxide layer,

whereas the low current states begin from the formation of oxide layer and end with

the reduction of this layer. Due to ohmic potential drops the high-current states

correspond to relatively low interfacial potential drops, whereas for the low-

currents state the interfacial potential drop is quite high and therefore the oxide

layer persists until, upon decreasing the externally applied voltage, it is reduced at

U equal to ca. 930 mV.

Systematic studies of these oscillations revealed the four basic parameters that

affect their dynamical features: besides the serial resistance Rs (which will be

further multiplied by the electrode surface area A, in order to obtain the resistance

parameter independent of electrode geometry) and the externally applied voltage U
the other two ones are: the copper ions concentration cCu2þand the chloride ions

concentration cCl� in the solution. The bifurcation diagrams, constructed in the

coordinate systems: U–RsA; U � cCu2þand U � cCl� ; are shown in Fig. 5.9. These

diagrams not only indicate, for which parameter values the oscillations exist, but

also separate the regions of the small-amplitude and large-amplitude oscillations.

It is useful to correlate the observed instabilities with the impedance

measurements for the same system which also indicate the possibility of the

galvanostatic instability. The impedance spectra, shown in Fig. 5.10 for three

different potentials (indicated on the enclosed dc j–E dependence), clearly prove

the negative impedance at the potential indicated by (c), visible at intermediate ac

frequencies, but hidden at the dc steady-state response which exhibits a positive

slope at this potential. This of course means the existence of potential oscillations

under galvanostatic conditions. In turn, the explicit negative slope of the dc

response at potential (d) turns into the negative real impedance for ac frequency

tending to zero, giving rise to bistability in the presence of appropriate serial

resistance.

In order to obtain potentiostatic instabilities in terms of the model described

earlier, one can use essentially the system of equations (5.1)–(5.3). The difference

is the expression for the total current density which is not imposed constant, but

may vary together with the applied external voltage (in the present notation

jtot ¼ (E � p)/ARs). Also, the formation of the oxide layer on Pt surface was

neglected, since it has qualitatively similar characteristics to the specific adsorp-

tion of chlorides. Based on these equations, the cyclic voltammograms, the

bifurcation diagrams, and impedance spectra were calculated, yielding results

similar to essential experimental observations. In particular, the bifurcation

Fig. 5.9 (continued) (c) cCu2þ ¼ 10�5 M, RsA ¼ 625 O cm2 as a function of E and cCl� . (A) One
stable stationary state; (B) coexistence between a stable stationary state at high currents and one

at low currents; (C) coexistence between small oscillations at high currents and a stationary state at

low currents; (D) coexistence between large oscillations at high currents and a stationary state at

low currents; (E) small oscillations; (F) large oscillations. Reprinted from [21], Copyright 1995,

with permission from Elsevier
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mechanism for the onset and decay of the oscillations was found, depending on

Cl� concentration: for 3 � 10�3 M, the oscillations are born via the Hopf

bifurcation, but decay due to a saddle–loop bifurcation; for 10�3 M Cl�, the
oscillations develop from small amplitude ones, and cease in a similar, but

reversed manner, indicating in both cases the Hopf bifurcation. All these findings

are also concordant with experimental observations. The collection of possible

bifurcations is collected in the theoretical diagrams shown in Fig. 5.11.

The bifurcation scheme on Fig. 5.11a is quite well concordant with that in

Fig. 5.9a. In particular, the point of Takens–Bogdanov (TB) bifurcation is also

concordant with the earlier suggestion on the saddle–loop bifurcation which is born

when TB takes place. Figure 5.11b shows that the concentration of Cu2+ ions affects

the position of the borders of the Hopf bifurcation, but does not have any influence

on the occurrence of the saddle–node bifurcations which in this way never meet

(again similarly to experimental results shown in Fig. 5.9b). On the contrary,

Fig. 5.11c shows that two borderlines of the saddle–node bifurcations are almost

parallel only for relatively low Cl� concentrations but upon its increase, they

converge and eventually end in a cusp point (being a codimension-2 bifurcation).

In this case, the experiment shows that for low concentrations of Cl� the position of

Fig. 5.10 (a) Experimental positive potential scan with a scan rate v ¼ 2 mV s�1,
cCu2þ ¼ 1� 10�4 M, cCl� ¼ 1� 10�4 M, no additional resistance. (b)–(d) refer to the potentials

where the impedance spectra were recorded. Impedance Z plotted in the complex plane as a

function of the frequency f. E ¼ (b) 447, (c) 522 and (d) 697 mV. Reprinted from [21], Copyright

1995, with permission from Elsevier
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Fig. 5.11 Calculated bifurcation diagram (a) in the E–RsA plane (note again that E means here

external voltage, denoted in most other cases byU) at cCu2þ ¼ 10�4 M and cCl� ¼ 10�3 M, (b) in the

E� cCu2þplane at cCl� ¼ 10�3M and RsA ¼ 1,250 O cm2 and (c) in the E� cCl� plane at cCu2þ ¼
10�4 M and RsA ¼ 1,250 O cm2; h Hopf bifurcation, sn saddle–node bifurcation, TB
Takens–Bogdanov bifurcation point. Reprinted from [21], Copyright 1995, with permission from

Elsevier
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saddle–node bifurcation lines should be rather horizontal (cf. Fig. 5.9c), but this

discrepancy is due to neglecting of the formation of surface oxide layer at positive

potential which would cause the poisoning of the electrode independent of Cl�

concentration.

In turn, impedance spectra were calculated for assumed Rs ¼ 0, so the equiva-

lent circuit consisted of only parallel connection of the double layer capacitance Cd

and the faradaic impedance Zf, yielding the total impedance given by the expression

Z ¼ (joCd + Zf
�1)�1. Details of these calculations the interested reader can find in

original paper [21], while here we shall only mention a good concordance of

theoretical and experimental impedance spectra. Evidently in this way the validity

of the model mechanism of oscillatory H2 oxidation was additionally confirmed.

As a final comment of the above analysis of the oscillatory H2 electrooxidation

one concludes that oscillations occurring under both galvanostatic and

potentiostatic conditions originate from the same mechanism. If the oscillations

are born in the Hopf bifurcations, like in this process, the system which oscillates

under galvanostatic conditions (i.e., for the infinite serial resistance characterizing

the ideal galvanostat) will oscillate also under potentiostatic conditions, in the

presence of appropriate finite serial resistance. The H2 oxidation on Pt, in the

presence of Cu2+ and Cl� ions, is thus a typical example of a HN-NDR type

oscillator.

At the end of this section devoted to hydrogen oxidation we shall only briefly

mention another, special case of the oscillatory process in which hydrogen and

oxygen, dissolved in a stirred solution of dilute sulfuric acid, combine to form water

on the surface of a submerged Pt catalyst. The electrochemical aspect of this

process exists through the polarization of this Pt electrode (vs. the smooth Pt

counterelectrode) with the cathodic or anodic current. While cathodic polarization

of the catalytic Pt electrode was ineffective in changing the reaction rate between

hydrogen and oxygen, the anodic polarization caused a periodic change of the

current, under appropriate conditions. Furthermore, the reaction rate was increased

by ac polarization at frequencies <10 Hz. Such periodic behavior was observed

also for palladium, but not for rhodium and iridium. The origin of these oscillations

was ascribed to periodic buildup and decomposition of oxide on the catalyst

surface [25].

5.2 Oscillations in Anodic Oxidation of Carbon Monoxide

Although studies of the electrooxidation of CO on Pt electrodes have been a subject

of very intensive studies, dynamic nonlinear self-organization in electrochemical

processes involving CO as a reactant is rather modestly represented in the literature.

However, electrochemistry of CO plays an important role in the oxidation of formic

acid or formaldehyde on Pt electrodes since CO is then an intermediate species,

poisoning the electrode surface and in this way involved in the so-called indirect
pathways of the reaction mechanism. For this reason, CO oxidation will constitute
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an important subsystem in the oscillatory reaction mechanisms of both formalde-

hyde and formic acid (see Sects. 5.3 and 5.4). Strasser et al. [26] have elaborated the

reaction scheme of this subsystem (Fig. 5.12), being a part of their mechanism for

the oxidation of formic acid on single-crystal platinum electrode (see again

Sect. 5.4 for the explanation of its construction). Note that this scheme includes a

well-established, potential-dependent recombination of adsorbed CO and OH spe-

cies which leads to unblocking of the adsorption sites (*), according to Eq. (5.16).

In the following, we shall briefly describe selected studies of temporal self-

organization in the oxidation of CO being not an intermediate of any process, but a

principal reactant. Ross et al. [27, 28] have reported bistability in the electrode

reactions of CO under cyclic voltammetric conditions. More recently, the origin of

S-shaped polarization curve in the continuous electrooxidation of CO on Pt single-

crystal electrodes was analyzed, both theoretically and experimentally, by Koper

et al. [29], who continued the work by Strasser et al. [26]. The model involved the

following reaction steps, with the symbols of their rate constants included in the

brackets:

Fig. 5.12 (a) Network diagram of the CO oxidation mechanism. COdl, asterisk, CO and OH

denote CO at the double layer, the vacant surface sites, adsorbed CO and adsorbed OH, respec-

tively. The arrows indicate the chemical (pseudo)reactions. The total number of barbs and arrows
encodes the stoichiometric coefficient of the respective species. (b) Diagram of unstable steady

state subnetwork which is contained in the CO model. This unstable network leads to bistability in

some region of parameter space. Since no electrical quantity is involved, the instability is purely

chemical and thus numerically observable under truly potentiostatic conditions, i.e., for constant

electrode potential (denoted as f or E). Reprinted with permission from [26]. Copyright 1997

American Institute of Physics
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1. Slow transport of CO toward the electrode surface:

CObulk ! COsurf (5.13)

2. Irreversible (as assumed here) adsorption of CO (kCO,ads):

COsurf þ � ! COads (5.14)

3. Reversible oxidative adsorption of OH (kOH,ads, kOH,des):

H2Oþ� ! OHads þ Hþ þ e (5.15)

4. Mutual removal of COads and OHads with the release of two adsorption sites (kr):

COads þ OHads ! CO2 þ 2� þ e� þ Hþ (5.16)

The mathematical model involved three dynamical variables: yCO, yOH, and
cCO,s—the CO concentration in the solution at (close to) the electrode surface,

i.e., at the place, from which molecules of CO adsorb. Without discussing the

details of further assumptions and the mathematical form of differential

equations, which the reader can find in the original paper [29] (see also Section

2.10 of vol. II), we shall focus on the most important results. The numerically

generated cyclic voltammetric curves are shown in Fig. 5.13. The potential region

of hysteresis (bistability) increases either if the electrode rotation rate is low

(thick Nernst diffusion layer) or if the bulk CO concentration is low. Both cases

correspond to significant limitations from the rate of transport of CO from the

solution bulk toward the electrode surface. On the other hand, when the mass

transport of CO is sufficiently efficient, the bistability completely disappears, so it

appears to be due to only transport limitations, and not of chemical origin. Similar

dependences were observed in the experimental studies.

Figure 5.14 shows the full S-shaped steady-state I–E polarization curve which

was computed for the parameters listed in the caption. The arrows indicate the

potentials at which the saddle–node bifurcations occur.

In terms of these model calculations, indicating the role of the (slow) CO

transport in the creation of the bistable region, the search for the positive feedback

loop, responsible for this instability, cannot be limited to chemical reaction mecha-

nism. The fact that it involves interaction of adsorbed intermediates: COads and

OHads, qualifies it as a Langmuir–Hinshelwood (LH) mechanism. This scheme,

together with the condition of a slow mass transport of CO from the bulk of the

solution, creates a positive feedback in the number of free surface sites (see below

for more detailed explanation). Experimentally it is not possible to record full,

S-shaped I–E dependence due to the instability of the middle states under such

pontentiostatic conditions, but it is possible to do that under galvanostatic

conditions (see Chap. 2). Such experiments were also performed, additionally
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confirming the validity of the described model. Noteworthy, also recent studies by

Samjeské et al. [30] of the dynamics of CO oxidation on polycrystalline Pt

electrode, made with the fast time-resolved, surface-enhanced infrared absorption

spectroscopy, confirmed the LH mechanism for the interaction of the adsorbed CO

and (most likely) OH species. Coming back to nonlinear dynamic phenomena,

Koper et al. [29] have reported also potential oscillations for the oxidation of CO

from H2SO4 medium, at the Pt(111) RDE, which instabilities were presumably

caused by the adsorption of sulfate ions on Pt surface, competing with H2O and CO

molecules for the adsorption sites. In fact, such a role of anions can be a source of

the negative feedback loop, meaning the inhibition of the CO electrooxidation

occurring from adsorbed state [31]. Interestingly, if BF4
� are these anions, the
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Fig. 5.13 Cyclic voltammetry of CO electrooxidation in the model. (a) Influence of voltage scan

rate; (b) influence of disk rotation rate. The following values for the model parameters were used:

kOH, ads ¼ 10�4 s�1, kOH, des ¼ 105 s�1, kr ¼ 10�5 s�1, kCO, ads ¼ 108 cm3 mol�1 s�1, cCO,
bulk ¼ 10�6 mol cm�3, DCO ¼ 5 � 10�5 cm2 s�1, yCO

max ¼ 0.333, Stot ¼ 2.2 � 10�9 cm�2

(total number of adsorption sites per cm2), the Nerst diffusion layer thickness d ¼ 1.34 � 10�3 cm
(at 2,500 rpm), d ¼ 2.23 � 10�3 cm (at 900 rpm), d ¼ 6.7 � 10�3 cm (at 100 rpm). Reprinted

with permission from [29]. Copyright 2001 American Chemical Society
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relation between time scales of dynamic variables is modified so that one can report

the current oscillations for such a low (vanishing) ohmic resistance of the solution

that this system can be qualified as a rare example of a truly potentiostatic oscillator
(Class I oscillator). Analogous phenomena are observed if BF4

� ions are replaced

with Cl� ions, both for the polycrystalline and single-crystal Pt electrodes. This

case will be analyzed below in more detail.

Typical cyclic voltammogram of CO bulk oxidation on a rotating disk polycrys-

talline Pt electrode is shown in Fig. 5.15, as reported by Krischer et al [32].

Fig. 5.15 Cyclic voltammogram of a rotating polycrystalline Pt disk electrode in CO saturated

0.1 M HClO4 solution. Scan rate: 50 mV/s; rotation rate 1,200 rpm. Reprinted from [32],

Copyright 2009, with permission from Elsevier
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Fig. 5.14 S-shaped polarization curve observed for d ¼ 6.7 � 10�3 cm (at 100 rpm), other

parameter values as in Fig. 5.13. The thin line shows the cyclic voltammetry observed at low

scan rate of 2 mV/s. Reprinted with permission from [29]. Copyright 2001 American Chemical

Society
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Starting from less positive potentials, at which the electrode surface is poisoned

with COads, during the anodic sweep one observes the steep rise of current density

that occurs only after the so-called ignition potential, at which one of the

saddle–node bifurcations (SN1) occurs. Around this potential the sudden oxidative

removal of COads begins and the released adsorption sites become now available for

OHads. The rising current visualizes the progress of oxidation of CO molecules

arriving at the electrode surface from the solution bulk. The current density reaches

the maximum value rather soon and then drops to lower (but still high) value which

is almost independent of the rising anodic potential. When the potential sweep is

reversed in this region, the hysteresis is observed: the current density is almost

constant in spite of crossing the ignition potential and drops to negligible values at

much less anodic potentials, at which the electrode becomes again entirely covered

with adsorbed CO, as prior to the experiment (saddle–node bifurcation point SN2).

The mechanistic basis for this bistability is the above-mentioned competitive

Langmuir–Hinshelwood mechanism between COads and OHads which, together

with mass transport limitation of CO, induces a positive feedback in the number

of free surface sites. Close to the ignition potential, a fluctuation to a larger number

of free adsorption sites allows for some OH formation, and consecutive reaction

with COads. The incipient continuous oxidation reaction causes a decrease of the

CO concentration in front of the electrode, which favors OH formation over CO

adsorption, promoting further CO oxidation and thereby creating more free surface

sites. In turn, close to the second critical potential, the decrease in the OH formation

rate with decreasing potential causes an autocatalytic built-up of the CO adsorbate

layer [32]. One should add that SN2 potential appeared to be sensitive to the value

of the positive turning potential of the cyclic voltammogram, to the bulk CO

concentration in the solution, determined by the partial pressure of CO in the

purging gas, and (relatively slightly) to the change of supporting electrolyte from

H2SO4 to HClO4.

Noteworthy, oscillations set in this system after addition of small amounts of

chloride ions. The relevant cyclic voltammogram, collecting the voltage and cur-

rent density changes as a function of time, is shown in Fig. 5.16.

During the anodic sweep, the onset of oscillations occurs just when the adsorbed

CO begins to react and is followed by their decay to the quasi-stationary state. Upon

reversed scan the return of the oscillations takes place with certain, small hysteresis,

and finally, the nonoscillatory low current re-establishes when the electrode

becomes covered with nonreacting CO. When the electrode potential is fixed in

the interval corresponding to the oscillations, they exhibit the sustained nature, but

of degree of complexity dependent on the acid: in H2SO4 medium oscillations are

regular, while in HClO4 always irregular ones were reported. This shows certain

role of anions of these acids in the qualitative characteristics of the oscillations,

although they are not able to induce them, since for that Cl� ions are necessary.

Since the oscillations mean generally the interplay of the positive and negative

feedback loops, it remains to identify the latter one. In the opinion of the authors

[32] this negative feedback comes from the reversible, potential-dependent adsorp-

tion of Cl� anions: when the system is on reactive branch, the adsorption of Cl�
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ions reduces the number of free surface sites and thus slows down the faradaic

process. Conversely, Cl� ions are displaced if the surface becomes more and more

covered with CO. Hence, on both branches Cl� adsorption counteracts the positive

feedback in the free surface sites.

Since it is well known that adsorption of CO and various anions depend on the

crystallographic orientation of the Pt (and other metal) electrode, analogous com-

parative experiments were performed for the electrodes of the Pt(110), Pt(100), and

Pt(111) plane surfaces [32]. For all these electrodes, the bistable region in the

absence of Cl� ions was recorded. For H2SO4 medium, upon addition of ca. 10�6 M
Cl� the strongest modification (shrinking) of this region, being a change toward the

onset of oscillations, was observed for Pt(110); the oscillations were found for

[Cl�] ¼ ca. 10�5 M, when the bistable region disappeared completely. The other

extreme case is Pt(111) electrode for which the CV response is almost unaffected

by this amount of Cl�. One accepts that sulfate ions adsorb most strongly (through

three oxygen atoms) on Pt(111) surface, and then the OHads formation, as well as

Cl� adsorption, become hindered. Figure 5.17 compares the shape of sustained

current oscillations (or only current fluctuations) recorded for all three Pt plane

orientations, under fixed potential conditions.

The courses shown in Fig. 5.17 are representative since they illustrate the

following experimental facts: for single-crystal Pt electrodes one does not report

regular oscillations, contrary to the polycrystalline Pt. Next, the frequency of the

oscillations, for the cases where they occur [Pt(110), Pt(100)], significantly depends

on the crystallographic orientation of the electrode plane, presumably due to

difference in the rate constant of adsorption of Cl� ions [larger on Pt(110) than

on Pt(100)]. Evidently not all aspects of the oscillatory mechanism in the studied

Fig. 5.16 Current and voltage time trace of a rotating polycrystalline Pt electrode in CO saturated

0.5 M H2SO4 + 10�6 M Cl�. The voltage was scanned with 1 mV/s. Reprinted from [32],

Copyright 2009, with permission from Elsevier
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system are clear and there remains open the question whether this temporal

dynamics translates into spatial or spatiotemporal patterns—regular or irregular,

like the oscillations reported earlier. In the opinion of the authors [32], if such

patterns can form, it would be particularly interesting to find out whether their

variety is as rich, as for chemical CO oxidation under UHV conditions and whether

the surface reconstruction of Pt electrode is also involved in these phenomena under

conditions of electrochemical experiment.

For better understanding of the latter sentence it is useful to invoke at least basic

aspects of the self-organized, chemical catalytic oxidation of CO with oxygen. Such

chemical oxidation of CO with O2 on the surfaces of heterogeneous catalysts has

been one of the most intensively studied catalytic processes. The source of the

positive feedback in the kinetics of this process is, as in electrochemical systems,

the type of the Langmuir–Hinshelwood (LH) mechanism, meaning that the

Fig. 5.17 Time series of rotating single crystalline Pt electrodes in CO-saturated 0.5 M H2SO4

solution containing small amounts of HCl at a constant applied voltage U. From top to bottom:
U ¼ 840, 920, 900, 910 mV. Reprinted from [32], Copyright 2009, with permission from Elsevier
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chemical transformation of reactants occurs between the reactant particles only in

their adsorbed state (a situation prevailing in heterogeneous catalysis). In the case

considered, the LH mechanism involves the following steps:

CO þ � ! COads (5.17)

O2 þ 2� ! 2Oads (5.18)

COads þ Oads ! CO2 (5.19)

Not only temporal oscillations in the course of this process were observed (cf. e.

g., [33, 34]). Impressive studies of CO oxidation on Pt(110) for ultrahigh vacuum

(UHV) conditions, performed by the Berlin’s group of Ertl (cf. e.g., [35–39]), have

revealed the formation of various surface patterns, including spiral waves, target

patterns, standing waves, and turbulent behavior. In brief, the oscillations are

associated with the structural reorganization of the Pt(110) surface between the

(1 � 1) structure (stabilized by CO adsorption) and (1 � 2) reconstructed structure

(developing under UHV conditions) (the 1 � 2 symbol means that the unit cell is in

the latter case twice as large in one direction). Thus, the reconstruction of the

surface is CO dependent or CO induced.

An important difference is that on the reconstructed (1 � 2) surface the O2

molecule hardly dissociates, compared to (1 � 1) structure, so then the oxidation

of CO is slowed down. When the Pt surface is in the (1 � 1) state, the molecules of

O2 readily dissociate to atoms of oxygen which react with adsorbed CO. This

process causes the decrease of CO surface concentration below the critical value,

at which the Pt surface undergoes reconstruction to less reactive (1 � 2) state.

Now, due to weak adsorption of O2, CO can accumulate on the surface, even

removing the O atoms, so the oxidation rate drops. When the surface concentration

of CO rises up to a critical value, the surface switches back to (1 � 1) state, in

which O2 adsorbs, dissociates into atomic oxygen and oxidizes adsorbed CO

(Fig. 5.18) [40].

Since the surface dynamics is affected also by the transport rate of reactants from

the system’s bulk, the existence and degree of complexity of these oscillations

depend on the feed rate of the reacting species. More detailed and advanced

description of the oscillations in this system can be found in [35, 36] and references

cited therein. One should also note that Eiswirth, Ertl et al. have formulated

sufficient and necessary conditions for the oscillating Langmuir–Hinshelwood

mechanism, i.e., for occurrence of a Hopf bifurcation in such reaction mechanism

[41]. Krischer et al. have shown also that the electrooxidation of CO on polycrys-

talline Pt electrodes leads to the formation of Turing patterns and domain patterns

under galvanostatic conditions [42–44]. These experimental results confirmed

earlier theoretical predictions about the conditions of formation of such patterns

(cf. Sect. 1.2, volume II). These phenomena are also additionally described in Chap.

2 of volume II.
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Another important process, studied in the Berlin group, was the catalytic oxida-

tion of CO with NO, yielding CO2 and N2 and exhibiting the oscillatory course, as

well as spatiotemporal patterns on the surface of the catalyst, but detailed descrip-

tion of this process is beyond the scope of this monograph [37, 45, 46].

5.3 Bistability and Oscillations in Anodic Oxidation

of H2 + CO Mixture

Following the instabilities in separately carried out processes of H2 and CO anodic

oxidation, in this section we describe the bistability and oscillations reported by

Krischer et al. [47] for both these processes occurring simultaneously on polycrys-

talline Pt electrodes. Thus, the oxidation of the (H2 + CO) mixture on Pt electrodes

is considered as composed of two dynamically unstable subsystems: the CO

system, belonging to S-NDR class and the H2 system which (in the presence of

Cl� and Cu2+ ions) belongs to HN-NDR class. For the S-NDR systems, the

electrode potential is a negative feedback variable, and the destabilizing autocata-

lytic loop is of chemical origin (see Chap. 2). For HN-NDR systems, the situation is

opposite: the electrode potential is a positive feedback variable and negative

feedback comes from chemical reaction steps. The connection of such two systems

Fig. 5.18 Reaction mechanisms for the oxidation of CO on the (110) surface of platinum (left) and
on the reconstructed surface (right). Reproduced with permission from [40]. Copyright Wiley-

VCH GmbH & Co. KGaA

354 5 Temporal Instabilities in Anodic Oxidation of Small Molecules/Ions

http://dx.doi.org/10.1007/978-3-642-27673-6_2


should thus give rise to interestingly complex dynamic instabilities. Also, under-

standing of the interaction of H2 and CO oxidation has tremendous practical

significance for the efficiency of fuel cells based on the oxidation of hydrogen.

When hydrogen stream, feeding the low-temperature fuel cell, is contaminated with

only traces of CO (which are usually present if hydrogen is produced from

hydrocarbons), the efficiency of such a cell drastically decreases [47]. Of course,

this nuisance triggered numerous studies how to avoid it, but most of works were

not oriented for the associated dynamic instabilities; only a few papers discussed

the voltage or current oscillations. The first one, noteworthy, appeared as early as in

1969 [48] and was later followed by a few others reports [49–55]. Interestingly, in

[52] Zhang and Datta have reported that time-averaged cell voltage, cell efficiency,

and power density of the proton exchange membrane fuel cell (PEMFC) operating

in the presence of CO in the anode feed reformate gas were, in an autonomous

oscillatory state, higher (up to twice) than that in stable steady state. The explana-

tion of that gain was explained in terms of the decrease of the time-averaged anode

overpotential in the oscillatory state. In later work, Zhang et al. [54] have performed

mechanistic and bifurcation analysis of anode potential oscillations in PEMFC with

CO in anode feed, concluding that the oscillator belongs to the HN-NDR type, and

the oscillations were born via a supercritical Hopf bifurcation. In the latter work,

Kiss et al. [55] have studied the spatial nonuniformity during CO and CO/H2

oxidation on coupled Pt electrodes which analysis will be briefly described in

Chap. 2 of volume II. Below we shall concentrate on recent work by Krischer

et al. [47] in which the modeling and the theoretical bifurcation analysis of

bistability and oscillations during H2–CO mixtures were described. The presented

approach is based on the Koper model for CO electrooxidation [29], described in

the previous section, extended for the implementation of the hydrogen oxidation

current. Thus, to Eqs. (5.13)–(5.16) the following surface process was added:

H2 þ 2� ! 2Hþ þ 2eþ 2� (5.20)

meaning that the oxidation of hydrogen molecule requires two adsorption sites

which are released after that process. Further assumption and mathematical con-

struction of the model the reader can find in the original paper, while here we shall

summarize most representative results of calculations. The following four

dynamical variables were taken into account: yCO, yOH, surface concentration of

CO in the solution (cCO) and electrode potential (fDL), so the surface

concentrations and electrode coverage with hydrogen were not considered. The

dynamic properties of the system were studied as a function of the following

parameters: external voltage U, the specific electrolyte resistance r, the diffusion

layer thickness d, the specific double layer capacitance C, and the percentage of CO
in the H2–CO gas mixture. The representative bifurcation diagram in the U–r
coordinate system is shown in Fig. 5.19. In this diagram, the “reduced system”

means the system simplified by considering only the contribution from H2 oxidation

to the faradaic current, whereas the dot line refers to even more simplified system,
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from which the variables—surface concentration of CO and the electrode poten-

tial—were adiabatically eliminated.

The striking feature of this diagram is the large area of oscillations (region II),

determined by the lines of the Hopf bifurcations, compared to relatively small area

of bistability, determined by the lines of the saddle–node bifurcations terminated by

cusp point (region I), disconnected from the oscillations region. Furthermore, the

effect of increasing resistance is opposite in both these regions: upon increasing

resistance the bistable region narrows, while the oscillation region widens. Further

analysis of these regions led to the following conclusions. For the bistable region,

the underlying feedback mechanism is the same as in the pure CO system (the

autocatalysis stemming from the Langmuir–Hinshelwood mechanism, coupled to

the limitations of the slow mass transfer); in other words, the bistability is generated

by the S-NDR mechanism. For the oscillatory region, three types of the oscillations

(A, B, C) were found, and the regions of their existence were collected on the U–C
diagram (Fig. 5.20).

Region A, corresponding to relatively low double layer capacitances, includes

the oscillations typical of the HN-NDR systems. Region B, for which double layer

capacitance attains relatively high values, includes the S-NDR type oscillations

(chemical autocatalysis) assisted by a positive feedback in the electrode potential

(electrical autocatalysis). Finally, Region C covers the hybrid oscillations resulting

from two positive feedback loops (i.e., being the hybrids between those in Region

A and those in Region B). In conclusion, as expected, the system possesses the

characteristic features of both S-NDR and HN-NDR systems, with the relative

contribution to the observed dynamics dependent on the parameters. In other

Fig. 5.19 Location of saddle–node (region I) and Hopf bifurcations (region II) in the r–U
parameter plane for the full model (dashed line), the reduced model (solid line), and a two-

variable model in which cCO and fdl (interfacial potential drop) were adiabatically eliminated

(dotted line). See [47] for other parameters. Reprinted with permission from [47]. Copyright 2007

American Chemical Society
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words, the system contains two different pairs of activator–inhibitor loops. These

theoretical predictions require experimental validation. Also, it would be interest-

ing to check whether the system under study can give rise to spatial or spatiotem-

poral patterns, through, e.g., the Turing bifurcation or the interaction of Hopf and

Turing bifurcations. And, hopefully, based on such considerations the conditions

can be found, under which the negative role of CO contaminations in the hydrogen

stream feeding the low-temperature fuel cell will be diminished, so the anodes of

such cell become more CO tolerant [47].

5.4 Instabilities in the Anodic Oxidation of Formate Ions

5.4.1 Experimental Results and Outline Oscillation Mechanism

Let us cite first Beden and Bewick [56] who remind us: “since the early work of

Morgan [57] it has been known that formic or formate species can produce

oscillations during their decomposition, either chemically [58, 59], or electrochem-

ically on Pt, Pd or Pt–Rh electrodes [60, 61].” Beden et al. also have described the

experimental [56] and mechanistic [62] studies of high-amplitude oscillations of

the current reported for the formate oxidation in neutral aqueous medium, at or

above 60 �C, under potentiostatic conditions, during the deposition of rhodium on a

gold substrate electrode. These oscillations were found to occur in the oxide region
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Fig. 5.20 Regions with oscillations of different phenotype in the C–U parameter plane. a1–a2:
voltage interval, in which the steady state lies on the autocatalytic branch of the polarization curve

(r ¼ 100O cm). Reprinted with permission from [47]. Copyright 2007 American Chemical Society
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and thus attributed to the rapid changes in the oxide coverage of their layer

thickness. At sufficiently high positive potentials the formed compact oxide layer

completely inhibited the oxidation of formate ions, thus also the oscillations. So, it

is one more of early works in which decisive role of the oxide layer formation/

destruction in the oscillatory course of formate oxidation was postulated.

The first report on the oscillations of the electrode potential in this system, under

galvanostatic conditions, comes from above cited paper from the year 1928 [60].

Later studies of the oscillations and bistability on solid electrodes were reported by

Wojtowicz et al. [61], Bockris et al. [63], and Schell et al. [64–67]. In addition to

classical electrochemical methods, Inzelt and Kertész [68] have employed electro-

chemical quartz crystal microbalance (EQCM) technique to show that the potential

oscillations in the course of galvanostatic oscillations of formic acid at Pt electrode

are associated with accumulation and consumption of strongly bound species. In

later work, these authors [69] have used the same technique to study the effect of

added Cu2+ ions on that process by choosing the experimental conditions in

such a way that the region of the oscillatory potential variations overlaps the

underpotential deposition (upd) of copper. In consequence, the deposition of Cu2+

ions and dissolution of Cu adatoms followed the potential changes related to the

formation and removal of species engaged in the electrode processes of formic acid.

One should note that deposition/dissolution of metal adatoms caused relatively

substantial frequency (mass) changes, detected by EQCM, compared to more subtle

mass variations caused by the formation/destruction of chemisorbed layer of

organic species. It appeared that addition of Cu2+ caused the modification of the

oscillations, including the transition to the mixed-mode regime (Fig. 5.21), as well

as the occurrence of bistability. The explanation of the complication in the system’s

dynamics, caused by addition of Cu2+ ions, was based on the idea of the presence of

an additional feedback loop in which Cu adatoms and Cu2+ ions participate.

Oscillatory oxidation of formic acid can occur also in the presence of conducting

polymer. Inzelt and Kertész [70] have monitored the simultaneous periodic changes

of the potential and of the electrochemical quartz crystal frequency response in the

course of this process under galvanostatic conditions, when the platinized platinum

electrode was partially covered with poly(aniline) film. The layer of this conducting

polymer acted as a pseudocapacitance which increased the period of the oscillations.

This way of regulation the oscillation period indicates the role of capacitance in the

generation of the oscillatory instabilities (note the paper by Kiss et al. discussed in

Sect. 2.3, where an analogous effect was considered in terms of application of the

differential controller to detect the essential dynamical variables in the oscillatory

systems). Besides these capacitance effects, due to electrochromic nature of the poly

(aniline) redox reaction, periodical changes of the color of the electrode were

observed, constituting thus the studied system also the electrochromic oscillator.
Simultaneous mass changes, detected by EQCM, were enhanced due to sorption/

desorption of counterions accompanying these redox transformations.

Systematic experimental studies of oscillatory formic acid oxidation on Pt (and

Pt-group) rotating disk electrodes have revealed their complicated dynamics. In the

above cited work, Xu and Schell [65] have reported the period-doubling phenomena,
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Fig. 5.21 Effect of Cu2+ ions on the potential (continuous line) and frequency (points) changes in
the course of the galvanostatic oxidation of formic acid at Pt/Pt. Current 0.5 mA. Solution:

0.6 mol dm�3 HCOOH. CuSO4 stock solution was added to the solution phase at the moments

5.4 Instabilities in the Anodic Oxidation of Formate Ions 359



with the sequence of periodic states obeying the Farey sequence (cf. Sect. 6.1.3).

In more recent studies, the single-crystal, low-index Pt electrodes were employed,

for which the oscillatory instabilities were reported under potentiostatic conditions

and discussed in terms of several possible mechanisms [26, 71–76]. In these papers

a very rich set of experimental data was collected, including the role of concen-

tration of formic acid, the magnitude of ohmic drops, and of the solution stirring

intensity. All these experimental facts contributed to the explanation of the

oscillatory instabilities in the process considered. As Markovic and Ross concluded

in 1993 [75] based on their thorough studies for Pt(100) electrode: “the current

oscillations in this reaction are certainly more complex than was thought earlier,

particularly in the number of variables contributing to the periodic behavior.”

Certainly this sentence inspired other researchers to further studies. Figure 5.22

Fig. 5.21 (continued) indicated by the arrows. Final concentrations of Cu2+ ions were: (a) 0, (b)
10�3, (c) 3 � 10�3, (d) 5 � 10�3, (e)–(h) 7 � 10�3 and (i) 10�2 mol dm�3. Reprinted from [69],

Copyright 1995, with permission from Elsevier
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the anodic scan, the remaining two ones when stopping on the cathodic scan. Reprinted with

permission from [76]. Copyright 1997 American Institute of Physics
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shows the exemplary oscillatory courses of current, under potentiostatic

conditions—for both the linear potential scan and the steady-state dynamics for

the stopped electrode potential [76]. Note that appropriate serial resistance was

necessary to induce oscillations under such conditions.

Obviously the understanding of the source of the oscillations requires first the

understanding of the electrochemical mechanism of the oxidation of formic acid on

Pt-group electrodes. Since this process involves carbon monoxide as the intermedi-

ate, it is also useful to recognize the mechanism of the oxidation of CO, taken as the

reactant of the separate studies (see Sect. 5.2). The inspection of the above-given

references reveals that over the years several mechanisms of HCOOH oxidation on

Pt electrode were proposed. Some points of these mechanisms could have been

resolved only recently, due to the progress in the techniques of surface studies,

complementing the purely electrochemical investigations. Therefore, we shall not

review all proposed mechanisms, but focus on the description on most recent

achievements in this area which seem to be consistent with available experimental

data [26, 76], cf. also [77]. Since the oscillations were reported for both

galvanostatic and potentiostatic conditions (in the latter case with appropriate serial

resistance), this clearly suggests that the electrooxidation of formic acid on Pt,

either polycrystalline or single-crystal electrode, is an example of the process

characterized with the hidden negative resistance (HN-NDR system). If so, the

amplitude of the potential oscillations should cover the I–E region with a positive

slope, while the negative resistance at these potentials should be detected in the

impedance measurements, for intermediate ac frequencies (cf. Chap. 3).

The source of instabilities in the electrooxidation of formic acid, proposed by

Strasser et al. [26, 76], is based on the earlier, well-established electrochemical

mechanism of this process, involving the “direct” and “indirect” paths [78, 79],

similarly as proposed by Wojtowicz et al. [61] and Schell et al. [64–67].

The direct path involves oxidation of the formic acid via a reactive intermediate

which is presumably the .COOH radical:

1. The HCOOH molecule arrives from the bulk to the electrode surface:

HCOOHðaqÞ ! HCOOHsurf (5.21)

2. Fast, equilibrium adsorption of FA:

HCOOHsurf þ � ! HCOOHads (5.22)

3. Oxidation of adsorbed FA:

HCOOHads !�COOHads þ Hþ þ e (5.23)

�COOHads ! CO2 þ Hþ þ eþ � (5.24)
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where * denotes the free adsorption site at the electrode surface. Summarizing of

the above steps leads to the overall reaction of oxidation which, in the notation

useful for illustrating the kinetic mechanism, includes those adsorption sites:

HCOOHðaqÞ þ � ! CO2 þ 2Hþ þ 2eþ � (5.25)

Reaction (5.23) is considered relatively slow compared to reaction (5.24), but

can be of similar rate than the adsorption process [Eq. (5.22)]. It also important that

this direct reaction path provides the necessary current density to account for

the measured current of the formic acid oxidation (cf. Fig. 5.23). This is important

for the later form of the expression for the faradaic current.

30

20

10

0

12

10

8

6

4

2

0
0

–20

–40

0 0.2 0.4 0.6 0.8 1.0

USCE/ V

Pt (110)

Pt (100)

u1 u2
u3

u1

u1

u2
u3

u2 u3

j/
m

A
·c

m
–2

j/
μA

·c
m

–2
j/

m
A

·c
m

–2

a

b

c

Fig. 5.23 I/U curves of the

formic acid oxidation (a) and

(b), and OH desorption (c) at

Pt(110) and Pt(100).

Electrolyte: 1 M

HCOONa + 0.5 M H2SO4,

pH 2.6 (a) and (b), 1 M

Na2SO4, pH 2.6. The scan

(20 mV/s) was reversed at

different anodic potentials as

indicated by the arrows.
Reprinted with permission

from [76]. Copyright 1997

American Institute of Physics

362 5 Temporal Instabilities in Anodic Oxidation of Small Molecules/Ions



The parallel indirect path involves first the surface chemical decomposition of

adsorbed HCOOH molecule into H2O and CO, the latter one adsorbing on the

electrode:

HCOOHadsþ � ! COads þ H2O (5.26)

The formation of CO, confirmed by in situ IR spectrometry [78–80], is of

particular importance since it is a molecule poisoning the Pt surface, and thus

inhibiting the direct oxidation through the occupation of the active reaction sites,

at which this direct oxidation would occur. Furthermore, it is also very important

for the system’s dynamics that the CO adsorption is a relatively slow process.

The adsorbed CO is assumed to be removed from the surface at sufficiently positive

potentials through its oxidation, involving the OHads species, stemming from

oxidation of water molecule, according to Eqs. (5.15) and (5.16). Note that adsorp-

tion of OH also means the poisoning of the Pt surface, if it occupies (as it is assumed

in the model) the same adsorption sites, as CO and HCOOH. The OH poisoning

(5.15) is a relatively fast process, compared to above-mentioned slow CO poison-

ing. Reaction (5.16) means the release of two adsorption sites, and the sum of both

equations indicates the autocatalytic recovery of adsorption sites:

H2Oþ COadsþ � ! CO2 þ 2Hþ þ 2eþ 2� (5.27)

Therefore in some earlier concepts, this process, being a source of positive

feedback loop, was considered a principal source of dynamic instabilities which

would then be of purely chemical, not electrochemical origin. However, in view of

recent experimental results this idea found no confirmation.

5.4.2 The Model of Oscillations Under Potentiostatic Conditions

The mechanism elaborated by Strasser et al. [26, 76] explained the current

oscillations under potentiostatic conditions, in the presence of appropriate ohmic

drops. In particular, this model involves a separate study of the CO oxidation

subsystem prior to the analysis of the oxidation of formic acid (cf. Sect. 5.2). On

the other hand, this approach is based on some simplifications, e.g., it is assumed

that the electrode potential does not attain such positive values (i.e., >ca 1.0 V vs.

SCE), at which surface oxygen species, such as PtO, PtO2, or PtO(O), subsurface

hydroxide and oxygen can be formed, and in consequence, all these species are not

considered in the model. This is, however, a reasonable assumption since under the

experimental conditions the electrode potential remains within only 0.1–0.7 V. The

reader interested in all details (including the differences in the characteristics of

the process occurring at various crystallographic planes of Pt) is advised to consult

the original references, while below we shall summarize the most important points
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which will clarify the basic source of the oscillations under considered conditions,

generally on Pt or Pt-group metals.

Typical simplification of the kinetic law for the direct pathway, taking into

account the role of OHads from the indirect pathway, assumes that step (5.24) is

so fast, that one can apply steady-state approximation to the •COOHads species. The

faradaic current, stemming mainly from the direct path of HCOOH oxidation, can

then be expressed by the simple expression which takes into account the poisoning

of the electrode surface by both the COads and OHads species [77]:

Jdirect ¼ nFKðE; cHCOOHÞð1� yCO � yOHÞ (5.28)

with K(E, cHCOOH) being the factor dependent on both the electrode potential E and

formic acid concentration, cHCOOH. When, for given HCOOH concentration, E is

increased, K(E) also increases, so the direct path, in the absence of surface poison-

ing, would produce only the positive dJ/dE slope. Thus, the explanation of the

negative resistance lies in the variation of yCO and yOH with the electrode potential.

Let us analyze what happens if the Pt electrode is immersed into the HCOOH

solution and the potential is first scanned from small values (e.g., 0 V vs. SCE)

toward anodic direction, and compare the description of processes with the course

of curves shown in Fig. 5.23.

The electrode is initially significantly covered with the adsorbed CO poison, so

only a residual number of vacant adsorption sites allows the oxidation of HCOOH

via the direct path. At ca. 0.5 V the formation and electrode coverage of OH

radicals becomes so advanced that due to oxidative interaction of COads and

OHads certain number of adsorption sites is regenerated, giving rise to an increase

in the current of direct oxidation of HCOOH. However, upon further increase of

the potential, the surface concentration of OHads becomes so high that all

adsorbed CO molecules are removed. Upon further increase of E, the increasing

amounts of OHads lack the reactant for removal, so they now in turn increasingly

poison the electrode surface—thus the increase of uOH with E is believed to

cause the region of the negative differential resistance. One should note that

Fig. 5.23 illustrates the differences in the shapes of the peaks recorded for Pt(110)

and Pt(100) electrodes which are explained by faster course of the direct path of

HCOOH oxidation on the Pt(100) surface. At potentials following the NDR

region, i.e., up to 0.8–0.9 V, the current does not drop to zero which fact

means that, in spite of high electrode coverage with adsorbed OH, the inhibition

is not total. Since the inhibitive effect of COads and OHads is thus not equally

strong, this phenomenon is called the “asymmetric inhibition.” Upon reversed

(negative) scan of the electrode potential, one observes certain hysteresis which is

however of purely kinetic nature, caused by interaction of the time scale of the

potential sweep with the slow CO adsorption process. In other words, for the

steady-state experiments, for each value of the electrode potential there exists

only one value of the current, so under such conditions—potentiostatic, with

negligible (vanishing) ohmic drops there are no any electrochemical dynamic

instabilities present. Such monostability is true for all three single-crystal Pt
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Fig. 5.24 (a) Calculated cyclic voltammograms and stationary I/U curve for the FA oxidation

model [Eqs. (5.29)–(5.36)]. The anodic and cathodic scans are indicated by arrows. Sharp current
spikes are seen during both scan directions. Furthermore, a hysteresis between a low-current

steady state and an oscillatory high-current state is observed. Model parameters (see also [26]):

T ¼ 298 K, pH ¼ 1, d ¼ 3 � 10�2 cm, Rs ¼ 300 O, kpoison ¼ 60 dm3/mol s, scan rate 10 mV/s.

The stationary curve corresponds to an infinitely slow scan rate. The transition between stable

current behavior and oscillatory current behavior was found to be a Hopf bifurcation point (solid
triangle, U ¼ 0.6 V) at low values of U. The stationary curve further shows the experimentally

unaccessible unstable steady state branch (dashed line) which undergoes two saddle–node

bifurcations (U ¼ 0.74 V, U ¼ 0.64 V) before regaining stability on the low-current branch.

(b) Calculated one-parameter bifurcation diagram of the FA model for the model parameters as
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electrodes considered. In other words, this is why no chemical source of

instabilities is confirmed, and the oscillator studied cannot be qualified as truly
potentiostatic, or Class-1 oscillator [76], although such suggestions were made

earlier in the literature.

Accordingly, only in the presence of sufficiently high ohmic resistance either

the bistability or oscillations were reported under potentiostatic conditions. The

mathematical model of Strasser et al. [26] was elaborated in stepwise manner,

starting from the mechanism of the CO oxidation as a crucial subsystem

(cf. Fig. 5.12). Here we shall focus on the final results for the HCOOH oxida-

tion. In order to replace the partial differential equations (PDEs) with the

ordinary ones (ODEs), the linear Nernst layer approximation was applied for

the transport of HCOOH from the solution bulk toward the electrode surface

(the approach being one more application of the Koper’s approach, cf. Sect.

2.2.2). The following dynamical variables were chosen: [FA]dl: the concentra-

tion of formic acid in the solution at the electrode surface (i.e., at the reaction

site in the double layer on the solution side), yCO (the electrode coverage with

CO), yOH (the electrode coverage with OH) and E: the electrode potential,

differing from externally applied voltage U for ohmic drops IRs (for all other

details see the original reference [26]). The 4D dynamical system was defined

with the following equations. The first one is Eq. (5.29):

d½FA�dl
dt

¼ 2DFA

d2
f½FA�bulk � ½FA�dlg �

2� 1;000� Stot
d

ðvdirect þ vpoisonÞ (5.29)

where DFA is the diffusion coefficient of FA, d is the thickness of the Nernst

diffusion layer, and the factor 1,000 in the numerator comes from the differences

in the units: the total number adsorption sites Stot was given in mol cm�2, while
[FA]dl was expressed in mol dm�3. The rates of two reactions of HCOOH decay,

through the direct oxidation vdir [cf. Eq. (5.25)] and through the surface decompo-

sition leading to CO poison, vpoison [cf. Eq. (5.26)], are defined as, respectively:

vdirect ¼ wðE; kads; kd; ½FA�dlÞ � ð1� yCO � fyOHÞ (5.30)

vpoison ¼ kpoison½FA�dl � ð1� yCO � yOHÞ (5.31)

Fig. 5.24 (continued) given in (a). The steady-state coverage of OH, yOH is plotted against the

applied potential U. The solid and dashed lines indicate stability and instability, respectively. The
dotted-dashed line shows the amplitude of the stable periodic orbits born in the Hopf bifurcation.

At the value of U where the dotted-dashed line disappears the limit cycle collides with the saddle

in a saddle–loop bifurcation. Beyond the potential value there is no stable state other than the low

current, OH-covered steady state. Reprinted with permission from [26]. Copyright 1997 American

Institute of Physics
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where

wðE; kads; kd; ½FA�dlÞ ¼
kd exp½a3FE=RT� � kads; FA½FA�dl
kd exp½a3FE=RT� þ kads; FA½FA�dl

(5.32)

with kd and a3 being the (standard) rate constant and the transfer coefficient of

reaction (5.23), and kads,FA is the adsorption constant of formic acid on the Pt

surface [26]. In turn, kpoison is the rate constant of reaction (5.26). Finally, the

empirical factor f in Eq. (5.30) reflects the above-mentioned asymmetry in the

inhibition of the formic acid oxidation by CO (complete) and OH (incomplete),

manifesting itself by assumption only in the direct path.

The second equation of the model is (5.33):

dyOH
dt
¼ kads;OHð1� yCO � yOHÞ exp½a1ðFE=RTÞ�
� krStotyCOyOH exp½a2ðFE=RTÞ� � kdes;OHyOH exp½�ð1� a1Þ
� ðFE=RTÞ� (5.33)

where kads,OH, kdes,OH, and kr are the rate constants of OH adsorption, OH desorp-

tion and of reaction between OHads and COads [Eq. (5.16)].

The third equation is (5.34):

dyCO
dt
¼ vpoison � krStotyCOyOH exp½a2ðFE=RTÞ� � kdes;COyCO (5.34)

Finally, the fourth equation (5.35) comes from the charge conservation principle

applied to the faradaic and capacitive currents:

dE

dt
¼ 1

Cd

ðjtot � jdirect � jads;OH � jr þ jdes;OHÞ (5.35)

where Cd is the double layer capacity, ji ¼ nFStotvi are the partial current densities
for the particular electrochemical processes and the total current density flowing

through the cell is given by:

jtot ¼ U � E

ARs

(5.36)

Of course, some of the parameters were a priori unknown and had to be adjusted in
the course of the simulation procedures. Table III in [26] collects values of parameters

used in the simulations. Figure 5.24 shows exemplary results of simulations

corresponding to the characteristics of the Pt(100) electrode, with Rs ¼ 300 O: the
cyclic voltammetric and steady-state I–U responses for the model system, as well as

the respective bifurcation diagram. Let us note that relatively high value of the rate
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constant for the poisoning of the electrode (kpoison ¼ 6–60 dm3 mol�1 s�1) was

assumed, in agreement with experimental findings.

In the bifurcation diagram (Fig. 5.24b), the oscillations are born in a Hopf

bifurcation at U ¼ 0.6 V and decay when their amplitude collides with the branch

of unstable steady states (of saddle type) which situation corresponds to the

saddle–loop infinite period bifurcation.

If one wants to model the dynamics resembling the experimental observations

for other single crystal electrodes, it is possible through assuming different rate

constant for the poisoning of electrode surface with CO (5.26), since this value was

found to be a crucial structure-sensitive parameter, largely determining the shape

of the calculated voltammograms and the wave forms of the current oscillations.

Thus, for Pt(111) the rate constant kpoison ¼ 6 dm3 mol�1 s�1 was assumed.

Respective simulations (corresponding to Rs ¼ 600 O) have shown that in this

case the sequence of the Hopf and saddle–loop bifurcation on the voltage axis was

reversed, compared to Pt(100) [26]. Taking further the model Pt(111) system as an

example, it is further very informative to compare the temporal variations of all four

dynamical variables involved in the model: yOH, yCO, surface concentration of

formic acid [FA]dl and electrode potential E (Fig. 5.25).
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Fig. 5.25 Calculated time series of the four model variables at constant outer potential

(U ¼ 0.9 V) and for other parameters: T ¼ 298 K, pH ¼ 1, d ¼ 3 � 10�2 cm, Rs ¼ 700 O,
kpoison ¼ 6 dm3/mol s. (a) dashed line: yOH, dotted dashed line: yCO, (b) [FA]dl, (c) fdl � E.
Reprinted with permission from [26]. Copyright 1997 American Institute of Physics

368 5 Temporal Instabilities in Anodic Oxidation of Small Molecules/Ions



The dynamical variables yOH and E appear to be nearly in phase, suggesting that

yOH is, as the electrode potential, the fast variable, which almost without a delay

matches the variation of E. On the contrary, the electrode coverage of CO, yCO,
formed in the potential-independent reaction (5.26) appears to be a relatively slow

variable, exhibiting also a significant phase shift with respect to yOH variations.

This is concordant with the above qualitative description of the CO and OH surface

dynamics. At certain threshold value of E, a sudden increase of both yOH and E
takes place, since the high degree of poisoning of the electrode causes the decrease

in the oxidation current and thus in the ohmic potential drops. Then also the surface

concentration of formic acid in the solution increases, as its consumption in the

oxidation reaction slows down.

It is further customary and useful to construct the bifurcation diagram in the

U–Rs coordination system, for other parameters fixed at appropriately chosen

values. Such an exemplary diagram is shown in Fig. 5.26.

Note that a relatively large value of the Nernst diffusion layer (d ¼ 3 � 10�2 cm)

models the condition of the (practically) unstirred solution. The corresponding

substantial development of the diffusion profile of the formic acid in the solution

means that its surface concentration undergoes significant changes during the

oscillations, so [FA]dl is one of the essential dynamic variables under such conditions.

If d was assumed as small as, e.g., 2 � 10�4 cm, this would model the conditions of

strong stirring through the generation of an intensive flux of formic acid toward the

electrode surface; the [FA]dl will be in this case nearly constant, close to the bulk
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Fig. 5.26 Two-parameter bifurcation diagram of the complete FA model using d ¼ 3 � 10�2 cm,

kpoison ¼ 10 dm3/mol s, pH ¼ 3. All other parameters as before. The solid line, dashed line, and the
dotted-dashed line indicate the location of the saddle–node bifurcations, the Hopf bifurcations, and

the saddle–loop bifurcations, respectively. All three curvesmeet in a Takens–Bogdanov point close

to the cusp. Reprinted with permission from [26]. Copyright 1997 American Institute of Physics
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value ([FA]bulk). Obviously in the latter case, the [FA]dl is no longer an essential

dynamical variable for our model system. These conclusions constitute a useful

introduction to the next paragraph.

5.4.3 The Oxidation of Formic Acid as the System
of Two Suboscillators

Before it was said that the oxidation of CO forms a subsystem for the HCOOH

oxidation at Pt electrode, Strasser et al. [26] have elaborated this problem in terms

of the stoichiometric network analysis (SNA) [81, 82] in which, based on the

stoichiometric and kinetic coefficients of a chemical reaction mechanism expressed

in the relevant network diagram, one can diagnose the system’s ability to exhibit

dynamical instability. On such diagrams, the arrows connecting the chemical

species symbolize the chemical (pseudo)reactions, while the number of feathers

and barbs corresponds to the stoichiometric coefficients in relevant chemical

reactions (for the stoichiometric coefficient of the consumed species equal to 1,

no feather is drawn at the corresponding reaction arrow). In the case considered

here, the full mechanism of formic acid electrooxidation was decomposed into two

suboscillators (subnetworks of reactions) which consist of the same source of

instability (autocatalysis) but exhibit different negative feedback loops. These

networks diagrams are shown in Fig. 5.27, where the essential species and reactions

are indicated as black symbols and arrows, while the nonessential elements are

shown in gray. These suboscillators can be considered as two “minimal oscillators.”

The suboscillator 1 (Fig. 5.27a) corresponds to the thin diffusion layer, when the

[FA]dl, as practically equal to the constant bulk value, is no longer an essential

dynamical variable. The system dynamics is then reduced to the subsystem

Fig. 5.27 (a) Network diagram of suboscillator 1. Only the black species and reactions are

essential for the model dynamics. The gray species and reactions, i.e., the variable [FA]dl, as

well as the diffusional transport reactions, have become nonessential by setting d to a very small

value thereby keeping [FA]dl at its bulk concentration. (b) Network diagram of suboscillator 2.

Similar to (a), only the black species and reactions are essential for the dynamics and are

responsible for the observed dynamics. The rate of poisoning reaction has been set to zero.

Consequently, yCO as well as the rate of the removal reaction is zero. Reprinted with permission

from [26]. Copyright 1997 American Institute of Physics
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involving CO, OH, and available adsorption sites (*). The fact that these species

constitute the oscillatory surface subsystem means also that suboscillator 1 is

independent of stirring. Essential for the oscillations is the fast reversible adsorption

of OH species.

The suboscillator 2 corresponds to the situation when the poisoning of the

electrode with CO is completely neglected. This condition, in terms of the model

mechanism, means setting both of the rate constant of poisoning reaction and

electrode coverage yCO to zero. Obviously it also means that yCO becomes now a

nonessential variable. In turn, the essential role of [FA]dl is now recovered by

setting the diffusion layer thickness back to a large value: d ¼ 3 � 10�2 cm. As for

suboscillator 1, the essential for the oscillations remains the fast reversible adsorp-

tion of OH species, but now, due to [FA]dl role which is dependent on the rate of

formic acid transport, the dynamics of suboscillator 2 is sensitive to stirring.

It is instructive to compare bifurcation diagrams of both suboscillators, shown in

Fig. 5.28.

The diagram for suboscillator 1 is evidently similar to that for the full FA

oscillator, shown in Fig. 5.26. In turn, the diagram for the suboscillator 2 reveals

the cross-shaped morphology, typical of systems in which oscillations and bistability

are interrelated, with the oscillatory region being now very tiny. Further analysis

shows the following important facts. In both cases, the Hopf bifurcations appear to

occur for such parameters which correspond to the positive slope of the I–E curve of

the formic acid oxidation. In the case of suboscillator (2), if the thickness of the

diffusion layer is changed to an intermediate value d ¼ 2 � 10�4 cm, only the

saddle–node bifurcations are detected, with the [FA]dl concentration kept at nearly

constant bulk value. Thus, the bistability is caused only by the fast, potential-

dependent ad/desorption of OH, in the presence of ohmic resistance, and the oxida-

tion of formic acid is only a current providing process. When the conditions are

chosen so that [FA]dl can vary, the system can become oscillatory (in the sense of

minimal oscillator).

In terms of this approach, let us consider the full dynamics of the formic acid

electrooxidation, under unstirred conditions, as the result of interaction of both

suboscillators. Let us note again the similarity of the full bifurcation diagram

(Fig. 5.26) and the diagram for suboscillator 1 (Fig. 5.28a) which suggests that

for U and Rs far from the cusp bifurcation, the system’s dynamics should be

determined largely by the suboscillator 1. In turn, near the cusp point, the interac-

tion of both suboscillators, exhibiting in these (U, Rs) regions stable limit cycles,

leads to complex: mixed-mode (MMO) and aperiodic oscillations (Fig. 5.29). The

analysis of oscillations generated by either of two minimal oscillators shows that in

the MMO sequence, the small-amplitude (quasi-sinuoidal) oscillations stem from

suboscillator 2, where the large-amplitude ones (relaxation spikes) are generated by

the dynamics of the suboscillator 1.

Finally, the positive and feedback loops in both suboscillators are schematically

depicted in Fig. 5.30.

These diagrams help to understand the experimentally observed effect of stirring

on the oscillatory oxidation of formic acid. Since in the dynamics of the
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suboscillator 1, [FA]dl is not an essential variable, this submodel produces simple,

period-1 oscillations, insensitive to stirring, as reported experimentally. In turn,

under such conditions, where MMOs were experimentally reported, stirring was
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Fig. 5.28 (a) Two-parameter bifurcation diagram of suboscillator 1 using d ¼ 2 � 10�4 cm,

kpoison ¼ 10 dm3/mol s, pH ¼ 3. All other parameters and linestyles as in Fig. 5.26. (b)

Two-parameter bifurcation diagram of suboscillator 2 using d ¼ 3 � 10�2 cm, kpoison ¼ 10

dm3/mol s, pH ¼ 3. All other parameters and linestyles as in Fig. 5.26. Reprinted with permission

from [26]. Copyright 1997 American Institute of Physics
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found to switch MMOs into period-1 oscillations. It easy to understand this in terms

of the above considerations: in the absence of stirring MMOs are caused by the

interplay of suboscillators 1 and 2; when stirring is switched on, the negative

feedback in suboscillator 2 is suppressed, as discussed earlier, and the dynamics

of only suboscillator 1 dominates the oscillatory behavior of the entire process.

3.0

2.5

2.0

1.5

1.0

2.5

2.0

1.5

1.0

3.0

I/
m

A
 c

m
–2

I/
m

A
 c

m
–2

2.5

2.0

1.5

200 400

c

b

a

1000
t / s

800600
1.0

3.0

I/
m

A
 c

m
–2

Fig. 5.29 Time series for Rs ¼ 50 O at different values of U. All other parameters as in Fig. 5.26.

(a) Mixed-mode oscillations (MMOs) characterized by one large-amplitude and two small-

amplitude oscillations (12 state) at U ¼ 432.1 mV, (b) mixed-mode oscillations characterized

by one large-amplitude and three small-amplitude oscillations (13 state) at U ¼ 432.1155 mV, (c)

aperiodic oscillations at U ¼ 432.118 mV. Reprinted with permission from [26]. Copyright 1997

American Institute of Physics
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5.4.4 Mechanism of Oscillations Under Galvanostatic Conditions

Since it was experimentally found that the oxidation of formic acid on Pt electrodes

proceeds in an oscillatory manner also under galvanostatic conditions, one should

check that the model of Strasser et al. is able to provide a hidden negative

impedance, revealed in the experimentally obtained spectra. As stated earlier, the

full mechanism of the oscillatory oxidation of the formic acid on Pt electrodes can

be decomposed into the suboscillators 1 and 2 which are characterized with

common positive feedback loop, but different negative feedback loops. Analysis

shows that the hidden negative impedance is provided by the suboscillator 1 and

this view is supported by appropriate numerical simulations which show that the

oscillations of the electrode potential, under galvanostatic conditions, occur on

branches of positive dI/dE slope of the I–E dependence recorded under dc

conditions [26]. According to the theory of HN-NDR oscillators (Sect. 3.4), the

system considered involves: (1) the current-carrying process, i.e., the direct path of

the oxidation of formic acid to CO2 and H2O, (2) a process on a time scale

comparable to that of (relatively fast) variations of the electrode potential, which

is responsible for the generation of the NDR region and which will be visualized as

the negative real impedance for the intermediate ac frequencies, i.e., a fast

potential-dependent adsorption/desorption of OH species, and (3) a relatively

slow potential-dependent process exhibiting a positive I–E characteristic, hiding

the NDR region under dc conditions, i.e., the adsorption and reactive removal of

CO poison. Therefore, for low ac frequencies, when both CO and OH respond to ac

perturbation, the dI/dE is positive, like under dc conditions. In turn, for sufficiently

Fig. 5.30 (a) Positive feedback loop of both suboscillators. Solid arrows represent a positive,

whereas dashed arrows indicate negative effect. The regulations can be viewed as matrix elements

of a jacobian. Free surface sites affect the total current via the direct oxidation path. I effects the
electrode potential fdl � E via the ohmic resistance and fdl feeds inversely back to the free

surface sites due to negative differential resistance. (b) Negative feedback loop of suboscillators 1.

The loop contains the slow chemical species COads. (c) Negative feedback loop of suboscillator 2.

The loop includes the slow chemical species [FA]dl. Reprinted with permission from [26].

Copyright 1997 American Institute of Physics
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high ac frequencies, the CO stops to respond, but OH still does, and hence only the

increase of yOH with increasing potential determines the negative dJ/dE slope [77].

It is also instructive to find a mechanistic correlation between the galvanostatic

formate and hydrogen oxidation: fast OH ad/desorption plays analogous role like

Cl� ad/desorption in the latter case, slow poisoning and reactive removal of CO

corresponds to the potential-dependent ad/desorption of the metal cations, and

direct oxidation path of formic acid constitutes the current carrying process,

analogously to the diffusion-limited H2 oxidation current [26].

In order to complete the above description, one should indicate that suboscillator

2 does provide only an explicit, not-hidden NDR region. In this case there is

involved the faradaic process (direct electrooxidation of formic acid) involving

the slow variable (concentration of the reactant), dependent on the electrode

potential as a fast variable and coupled with the potential-dependent, comparably

fast adsorption/desorption of an inhibitor: OH species. Numerical simulations,

performed for the suboscillator 2, confirmed that the current oscillations occur

only around the negative dI/dE slope, at sufficiently low stirring rates, when

[FA]dl can become an essential variable, and in the presence of appropriate serial

resistance. Under galvanostatic conditions, as should be expected for this type of

the oscillator, no oscillations of the electrode potential could be generated.

One can conclude that the mechanism of Strasser et al. [26], in spite of some

simplifications, represents the realistic model of dynamic instabilities reported for

this process. In spite of apparent stoichiometric simplicity of this process, its

dynamics is interestingly complicated through the coexistence of two

suboscillators, the relative contribution to the overall mechanism depends on

experimental conditions, with the important role of the rate of transport, controlled

by the intensity of stirring of the solution.

5.4.5 Recent Suggestions for the Formic Acid Oxidation
Mechanism

All the above phenomena described in this chapter were interpreted in terms of

well-established dual-path of the formic acid oxidation. One should note that in

some very recent papers, in which the modern spectroscopic methods were

employed to study the reaction intermediates, this mechanism is questioned. For

example, Osawa et al. [83–85] have conducted measurements with the Surface
Enhanced Infrared Absorption Spectroscopy (SEIRAS). Contrary to earlier views,

they have suggested that formic acid was oxidized to CO2 on Pt electrodes via

adsorbed formate (utilizing both oxygen atoms to take two surface sites). Thus, the

formate is the main active intermediate during the electrooxidation of formic acid

on Pt, with the rate of this process being a nonlinear function of coverages of

formate and carbon monoxide. The decomposition of formate to CO2 is the rate

determining step. Furthermore, in terms of this concept COads is not only a surface
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poison competing with formate form adsorption sites, but it also suppresses the

decomposition of formate to CO2. The latter effect, decreasing the imposed current,

causes the shift of the electrode potential toward positive values. At sufficiently

high potentials the oxidative removal of CO takes place, and then more surface sites

become available for formate species. Occurring in this way acceleration of formate

oxidation causes the return of the potential toward less positive values, when CO is

formed again. The mechanism qualitatively expressed in this way was then suc-

cessfully mathematically modeled by Osawa et al. [86]. In turn, in another recent

work, Behm et al. [87], based on their IR in situ measurements of the formic acid

oxidation on a Pt film/Si electrode, have stated that adsorbed bridge-bonded

formates could not play a role of a main intermediate in this process. In the opinion

of Behm et al., actual studies have confirmed their earlier triple pathway mecha-

nism, consisting of: the direct pathway, the indirect pathway, and the formate
pathway (Fig. 5.31) [88]

In the latter route, adsorbed formate act as the “reaction spectator” which blocks

the Pt surface in the predominant, direct reaction pathway. These concepts are

applicable both to the formic acid and methanol oxidation, since in the latter case

the formic acid and formates were found also among the oxidation products

(besides CO and CO2), and formate were detected as the intermediates during the

oxidation on Pt [89].

Concluding, application of modern spectroscopic methods has revealed but did

not resolve yet all the mechanistic details of HCOOH oxidation on Pt electrodes.

This may have further consequences also for the revision of the oscillatory mecha-

nism of this process.

5.4.6 Temperature Overcompensation Effect in Formic Acid
Oxidation

The electrooxidation of formic acid on a polycrystalline Pt electrode was used by

Epstein, Varela et al. [90] to study the effect of temperature on the oscillatory

Fig. 5.31 Tentative reaction scheme for the oxidation of formic acid on Pt which includes three

different reaction pathways: the “indirect” pathway, the “formate pathway,” and the “direct”

pathway. The formate pathway relates to the formate species detected by IR. Reprinted from

[88] with permission of JohnWiley & Sons, Inc. Copyright 2006Wiley-VCHVerlag GmbH&Co.

KGaA, Weinheim
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characteristics of this process. As mentioned in Sect. 2.4, the independence of

biological rhythms of variation of the environmental temperature is an important

feature of physiological clocks. It is thus interesting to study the influence of

temperature on the oscillations in laboratory systems which usually do not exhibit

such “model homeostasis.” For the electrooxidation of formic acid, galvanostatic

studies of oscillations were performed within the temperature range from 5 to 25�C.
A particularly interesting and novel (for the surface oscillatory reactions) observa-

tion was made: in the oscillatory region, the temperature effect on the rate constant

was not concordant with the Arrhenius law; in most cases the temperature coeffi-

cient q10 ¼ k(T + 10o)/k(T) was less than 1, meaning the decrease of rate constant
with temperature (or, equivalently, negative temperature coefficient in the logarith-

mic scale). Only at high imposed current this coefficient was close to 1. Let us

remember that for most chemical and biochemical reactions the van’t Hoff predic-

tion: q10 ¼ 2–4, was confirmed. The non-Arrhenius behavior with q10 	 1 is

termed the temperature compensation, and thus even stronger anomaly, i.e.,

q10 < 1 means temperature overcompensation.
For the purposes of intercomparison of different oscillatory courses at different

temperatures, for a given applied current, the following normalization procedure

was performed:

ITN ¼
jTosc � jTosc;i
jTosc;f � jTosc;i

(5.37)

where jTosc is the applied current density, and jTosc;i and jTosc;f are the initial and final

current densities that define the oscillatory potential region (determined from

galvanodynamic sweep experiments). Figure 5.32 shows such exemplary compari-

son of oscillations for ITN ¼ 0:33.
The temperature coefficient q10 was defined as:

q10 ¼ pT1
pT2

� �10=ðT2�T1Þ
(5.38)

where p means period of the oscillations at a given temperature. The overall

activation energy of the oscillatory system was defined in terms of the oscillation

frequency f ¼ 1/p:

f ¼ A exp
�Ea

RT

� �
(5.39)

Table 5.1 shows the experimentally determined variations of the coefficient q10
with temperature.

In turn, under conditions of typical voltammetric conditions, when the elect-

rode process is nonoscillatory, the trivial Arrhenius behavior was observed, i.e.,

high, positive apparent activation energies were determined from temperature
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Table 5.1 q10 values obtained for different temperature intervals and applied currents

DT (�C) ITN ¼ 0:17 ITN ¼ 0:33 ITN ¼ 0:50 ITN ¼ 0:67 ITN ¼ 0:83

20–25 0.13 0.25 0.43 0.76

15–20 0.22 0.53 0.13 0.18 0.78

10–15 0.26 0.34 0.41 0.35 1.16

5–10 0.16 0.18 0.40 0.50 0.92

5–25 0.22 0.25 0.24 0.33 0.96

Reprinted with permission from [90]. Copyright 2008 American Chemical Society
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dependences of the reaction kinetics. Thus, temperature overcompensation (or at

least compensation) was directly related only to oscillatory instabilities. This

indicates that in the oscillatory regime there occurs a complicated interplay

between reaction steps, leading to apparent negative (or zero) activation energy.

Mechanistically, the effect of increase in the rate of every elementary step with

temperature must there be compensated or even overcompensated by other effects

of the opposite direction. For the formic acid oxidation process it has been

suggested [90] that the temperature (over)compensation resulted from the interplay

between the opposing effects of temperature on (1) the positive feedback loop,

which includes the steps of (Hx)O adsorption, (bi)sulfate adsorption, COad oxida-

tion by (Hx)Oad species, and formate adsorption and desorption/oxidation, and on

(2) the negative feedback loop composed of the (nonfaradaic) step of formic acid

dehydration to COad. The above notation refers to the indirect pathway of HCOOH

oxidation, written in the form: COad + (Hx)Oad ! CO2 + xH+ + xe + 2Pt. Analy-

sis of the oscillatory courses shows that the system spends most of its time in the

active, low potential state and only a short time in the passive, high potential state.

It was further found that changing the temperature affected only the transition from

the active (low-potential) to the passive (high-potential) state, whereas the steeper

passive to active transition remained nearly unaffected by temperature. This can be

understood as a consequence of either a weak influence of temperature on the

surface poisoning step (i.e., when COad is formed from adsorbed HCOOH

molecules) or in terms of the buildup of the carbon monoxide layer in the

oscillatory regime and within the studied temperature range: from 5 to 25�C.
For comparison, analogous studies of temperature coefficient of the oscillatory

oxidation of methanol on polycrystalline platinum under similar conditions [91]

exhibited only conventional, Arrhenius-type dynamics (q10 	 2.3), with the acti-

vation energy ranging between 50 and 70 kJ mol�1.

5.4.7 Oxidation of Formic Acid as an Analog of the
Stimulus–Response of Neuronal Cells

Although electrochemical models of neural transmissions are more often associated

with the active/passive transitions of iron (or other metals) in acidic media, it

appears that the galvanostatic oxidation of formic acid on the polycrystalline Pt

electrode (A ¼ 2.4 cm2) also may exhibit characteristics analogous to those of a

nerve cell. To these characteristics there belong: a threshold for amplified excita-

tion, a refractory period, and presumably for the first time reported directly for an

electrochemical system—a dependence of the response on the slope of ramp

stimulation [92]. The latter effect is important since in the real neuron, a rapid

stimulation activates the ion-selective Na+ channels faster than it does the K+

channels, whereas a slow stimulation allows the inactivation of the Na+ channels

and the activation of the K+ channels [92, 93]; these dependences are considered
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important in the recognition of taste and smell, when e.g. the taste stimulus is

rapidly applied (for other models of such sensors, see also Sect. 6.2 of volume II).

Experiments were performed in a three-electrode configuration, for 1 M HClO4 as a

supporting electrolyte and concentration of formic acid as high as 1 M, while the

temperature was enhanced to 43 �C. Figures 5.33–5.35 show the above-mentioned

three characteristics, analogous to the response of a nerve cell. The threshold

visualized in Fig. 5.33a, b manifests itself in this way that the large potential

jump occurred only if the current, initially fixed at 1 mA, was increased for more

than 0.05 mA.
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If the current increment was even higher, the electrochemical system responded

with a series of impulses (Fig. 5.33d–f) and this also can mean analogy with neural

behavior; the authors indicated analogous effect in the course of numerical simula-

tion of a single neuron’s behavior [94].

In turn, the refractory period, meaning the time during which the system

temporarily does not respond, or responds differently to the next stimulus, is

illustrated in Fig. 5.34. Only if the interval between two subsequent current

increments was sufficiently high (at least 15 s), the second potential response was

as large as the first one, otherwise it could be almost completely damped.

Finally, Fig. 5.35a–f shows the effect of the rate of current increase covering the

amplitude of 0.2 mA. With decreasing rate (r) the response in the form of a single

pulse eventually decayed. However, even for the slowest current ramp, if the

current was allowed to increase further than for 0.2 mA, a series of potential

impulses were observed, but only as long as the current was increasing with time.

The above effects were interpreted in terms of the potential-dependent activation

and deactivation of the Pt electrode surface with adsorbed CO intermediate, in line

with earlier mechanistic suggestions.
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5.5 Oscillatory Oxidation of Formaldehyde

Obviously the oxidation of formaldehyde to CO2 and H2O includes the elements of

mechanism of oxidation of formic acid, discussed in detail in Sect. 5.4. Schell et al.

[65, 66] have studied this process under galvanostatic conditions, at a rotating disk
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Pt electrode. The reported phenomena included simple oscillations which exhibited

period-doubling bifurcation, small- and large-amplitude oscillations (MMO) and

chaos, as well as bistability (Fig. 5.36).

Chaos in the oxidation of formaldehyde (and also of methanol and of

methanol–formaldehyde mixtures), at Pt electrode under galvanostatic conditions,

at temperature enhanced to 43 �C was also extensively analyzed by Okamoto et al.

in a series of works [95–97]. The rich set of reported chaotic (and periodic)

courses, caused by the cascade of period-doubling bifurcations, as well as

intermittencies of type I and III, were found and analyzed in terms of return

maps and calculations of the Lyapunov exponents. Intermittency, a term and its

classification into types, introduced in a classical work by Pomeau andManneville

(cf. Chap. 1) [98, 99] means generally a way of generation of chaos through

apparently random irregularities appearing in the periodic behavior. The phenom-

enon is typical of the systems in which the transition from periodic to chaotic

behavior takes place by the saddle–node bifurcation of cycles (see e.g., p. 364 in

[100], for an elegant illustration of this inherently deterministic phenomenon).

Also noteworthy, the oscillation patterns were time dependent, presumably due

to the variation of the electrode state as a function of time. The regions of chaotic

and periodic behavior are shown in Fig. 5.37.

Fig. 5.36 The response of the potential (vs. SCE) plotted against the applied current. Open
squares (closed squares) represent data collected when the applied current was changed in the

forward (reverse) direction. Between B1 and B2 the system exhibited oscillations on the lower

branch. The absolute minimal and maximal values of the potential are plotted for each oscillatory

state. The point labeled with a T represents one case where the system had not relaxed. In separate

experiments, it was found that a long relaxation, following the perturbation of the system in the

vicinity of the low current end of the upper branch, was a common event. Typically, after the

current was decreased, the system would immediately exhibit a rapid decrease in potential.

However, the rate of change in the potential would slow and eventually the potential would

begin to increase, and the system would finally return to a state on the upper branch. The working

electrode disk used in the experiment was 5.0 mm diameter in platinum. Reprinted with permission

from [65]. Copyright 1990 American Chemical Society
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The electrochemical mechanism of oxidation of formaldehyde under studied

conditions (aqueous acidic medium) takes into account its almost complete exis-

tence in the hydrated form—the methylene glycol CH2(OH)2. The following

mechanism was suggested to explain the oscillations in the oxidation of formalde-

hyde at polycrystalline Pt electrodes. It is postulated that the overall oxidation

process of methylene glycol:

CH2ðOHÞ2 ! CO2 þ 4Hþ þ 4e (5.40)

occurs via (at least) two paths: direct and indirect one. The direct path presumably

involves short-lived intermediates that, according to one of the concepts, are

involved in the following reaction sequence [101, 102]:

CH2ðOHÞ2 ! HC(OHÞ2 þ Hþ þ e (5.41)

HC(OHÞ2 ! HCOOHþ Hþ þ e (5.42)

HCOOH! COOHads þ Hþ þ e (5.43)

COOHads ! CO2 þ Hþ þ e (5.44)

Fig. 5.37 Chaos-yielding region in the plane of formaldehyde concentration and current at 43 �C.
Open and closed circles are, respectively, the maximal currents for the occurrence of chaos in the

ascending-order sequence and in the descending-order sequence. Open squares are the maximal

currents for the occurrence of periodic oscillations. The dark and light gray zones, respectively,
stand for regions of chaos in the ascending-order sequence and in the descending-order sequence.

[HCHO] stands for a formaldehyde concentration. Reprinted with permission from [96]. Copy-

right 1998 American Chemical Society
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The second path involves the intermediate formation of the poisoning species

which inhibits the electrode process; at the times of these studies there were several

candidates for this species, but based on recent findings one can postulate that this is

COads, which, at sufficiently high potentials, when the water molecules are oxidized

to OHads and H+, is removed from the electrode surface through the oxidative

recombination with OHads [Eq. (5.16)]. Since this part of the mechanism is essen-

tially the same as for the oxidation of CO or formic acid, discussed in previous

sections (only the detailed nature of oxygen species on Pt may be different, e.g., PtO

could be assumed), we shall not develop this point again in detail here. We shall

only shortly say that in terms of the above mechanism the oscillations of Pt

electrode potential under galvanostatic conditions were interpreted as the following

sequence of processes: due to increasing electrode coverage of Pt surface with CO

poison, the electrode potential moves to so high positive values, that eventually the

PtOH (or PtO) species appear, which depassivate the electrode surface via reaction

(5.16). The electrode potential returns then to less positive values and the

oscillatory cycle repeats. In view of mechanism elaborated more recently for the

HCOOH oxidation, one can consider the above explanation as introductory and

requiring more quantitative characteristics of the system’s dynamics, like the one

be presented in Sect. 5.4.

In more recent studies of the formaldehyde oxidation, performed at polycrystal-

line Pt and Rh electrodes, both in acidic and alkaline media, Koper et al. [103] have

combined cyclic voltammetry with impedance spectroscopy and EQCM. For all

these combinations both the galvanostatic and potentiostatic (in the presence of

sufficient ohmic drops) oscillations were found, except in alkaline solution on Pt,

where only potentiostatic oscillations were found. From practical point of view, the

system: HCHO, NaOH, NaClO4/Rh disk electrode was found particularly suitable

for experimental studies due to high reproducibility and stability of reported

dynamical behaviors. As expected, the onset of the oscillations under galvanostatic

conditions, with the amplitude of the potential covering the positive slope of the I–E
dependence, suggested the existence of the hidden negative resistance and this was

confirmed by impedance measurements (see Fig. 3.16) [77, 103, 104]. In turn,

potentiostatic oscillations of the current exhibited various bifurcation scenarios: for

the relatively low serial resistances both the birth and the death of the oscillations

occurred through the supercritical Hopf bifurcation, while for the relatively high

resistance the oscillations ceased at more anodic limit of the potential abruptly, and

the current dropped to a low value corresponding to a passivated electrode state.

From the point of view of nonlinear dynamics such the situation is described in

terms of the homoclinic bifurcation, when the limit cycle collides with the saddle

point in the phase space (Sect. 1.4.3).

In turn, monitoring of mass changes during the oscillations, using EQCM

method, has demonstrated the important role of oxide layer formation in the

oscillations. The correlation of the oscillatory changes of the current and the mass

changes of the platinized platinum electrode, obtained for HCHO in acidic (HClO4)

solution, is shown in Fig. 5.38.
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These results, compared also with other studies of the oxidation of HCHO at Pt

electrodes, involving both voltammetry and IR spectroelectrochemistry [105, 106]

have suggested that the formaldehyde oxidation was a more complex process than

supposed earlier and should be supplemented with more mechanistic details. In an

alkaline medium, in which the catalytic effect of hydroxide on the formaldehyde

oxidation was proved, the product of its hydration, methylene glycol is expected to

be ionized:

CH2 OHð Þ2! CH2ðOHÞO� þ Hþ (5.45)

with pKa of this reaction equal to ca. 12.75. Furthermore, the nonhydrated, original

form of formaldehyde, at the electrode potentials preceding the onset of its oxida-

tion, appeared to be involved in the surface chemical decomposition, leading to the

formation of adsorbed COads:

HCHO! COads þ 2Hads (5.46)

Also the adsorption of methylene glycol and of a carboxylic acid was detected,

suggesting thus the reaction pathway of the following scheme:

CH2ðOHÞ2;ads ! HCOOHads þ 2Hþ þ 2e (5.47)

Irrespective of these (and probably also further, still unknown) mechanistic

details the following main points remained unchanged: the negative differential

Fig. 5.38 (a) Cyclic

voltammogram and (b)

EQCM mass response

obtained for the oxidation of

1 M HCHO in 0.1 M HClO4

solution at a platinized

platinum electrode,

50 mV s�1; (c) oscillatory
parts of (a) and (b).

Reproduced from [103] by

permission of The Royal

Society of Chemistry
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resistance is due to the, rising with the positive electrode potential, fast process of

covering the electrode surface with the passivating layer of OHads. Under dc

conditions, this negative resistance is hidden within a broad potential range due

to an additional, relatively slow process of poisoning the electrode with CO being a

traditional candidate for that effect, but in view of more recent findings, also other

surface-active species (like methylene glycol or glycolate) can be involved in that

process. The reaction of formation of adsorbed OH species (5.15) is treated now as

an introductory step of the electrode surface oxidation, as the significant mass

increase, observed in EQCM experiments, could be explained rather in terms of

more advanced process: insertion of O and OH in the Pt lattice. Of course, adsorbed

CO and OH remove each other in the important step (5.16). Regarding this step, one

can add that in view of above-mentioned studies of Okamoto et al. [95, 96], not only

OHads but also H2Oads can be an important reactant for the interaction with CO,

since the oscillations were found already at such small anodic potentials, at which

OHads is probably not yet formed.

In a recent theoretical study, Karantonis et al. [107] have built up the model of

HCHO oxidation, essentially based on the above dual-path mechanism of

oscillations, but containing additional steps, in order to produce also the bistable

behavior. This is thus the “extended dual-path mechanism.” Its “oscillatory part”

consists of the following steps:

1. Transport of HCHO from the solution bulk and adsorption on Pt surface:

HCHObulk ! HCHOsurf (5.48)

HCHOsurf þ� �!
k1 �
k
0
1

HCHOads (5.49)

2. Direct oxidation path:

HCHOads
�!k2 �
k
0
2

Rads þ ne (5.50)

Rads
�!k3 CO2 þ � þ mHþ þ me (5.51)

(this step and R species were ignored due to the high reaction rate)

3. Indirect oxidation path:

HCHOads
�!k4 COads þ 2Hþ þ 2e (5.52)

with CO assumed to bound linearly to the surface and act as a poison.

4. The oxidative removal of COads, involving steps identical with Eqs. (5.15) and

(5.16):
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H2Oþ � �!k5 �
k
0
5

OHads þ Hþ þ e (5.53)

COads þ OHads
�!k6 CO2 þ Hþ þ 2� þ e (5.54)

Additional, above-mentioned steps introducing bistability are the following:

5. Desorption of COads (under assumption: k7 
 k07 	 0):

COads
�!k7 �
k
0
7

COsurf þ � (5.55)

6. Irreversible formation of higher valent oxides of Pt (abbreviated as O):

OHads
�!k8 Oþ Hþ þ e (5.56)

Further assumption included the following points: (1) the concentration profile

of HCHO is linear within the Nernst diffusion layer of a constant thickness d; (2) the
double layer capacitance Cd is constant; (3) the electron transfer processes follow

the Butler–Volmer kinetics; and (4) the adsorption–desorption processes follow the

Frumkin equations. The latter assumption means introducing the coefficient of

lateral interactions in the adsorbed layer. This also means that the shape of the

adsorption isotherms will be a source of bistability. The bifurcation diagrams were

constructed as the dependences of electrode potential E, electrode coverages of CO,
OH, HCHO, and surface concentration of HCHO in the solution, on the applied

current iapp. As an example, Fig. 5.39 shows the bifurcation diagram in the E–iapp
coordinates which reveals the occurrence of the supercritical Hopf and saddle–node

bifurcations.

In search of further details of the mechanism of formaldehyde oxidation,

recently the modern spectroscopic methods were combined with electrochemical

techniques. Karantonis, Nakabayashi et al. [108] have studied the oscillatory

formaldehyde oxidation on Pt(111) electrodes, under potentiostatic and

galvanostatic conditions, using also the optical second harmonic generation

(SHG) method. The choice of SHG technique was justified by its sensitivity to

the adsorption of CO, known from the studies at the polycrystalline Pt electrode.

The present use of a single crystal Pt(111) gave a chance to deepen those studies for

the elucidation of the variation of the surface structure during the oscillations.

Under potentiostatic conditions, two surface phase transitions were observed:

order–disorder and order–order (similarly as for the transitions observed at Pt

(111) for CO-saturated electrolyte [109]). Under galvanostatic conditions,

oscillations of the SHG field were concordant with the oscillations of the electrode

potential, but only the order–disorder transition was reported in SHG spectra,

occurring during the spontaneous transition from low to high potentials.
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Nevertheless, even if not all surface transitions were detected, these studies are

evidently a pioneer work in evidencing the occurrence of structural transitions

under both potentiostatic and galvanostatic conditions of the oscillatory oxidation

of formaldehyde.

More recently, another application of combined electrochemical and spectro-

scopic methods to this process was published by Samjeské, Osawa et al. [110] for

the studies of the oxidation of formaldehyde on Pt (under both galvanostatic and

potential sweep conditions) who employed Time-Resolved Surface-Enhanced
Infrared Spectroscopy (SEIRAS). Based on their investigations the dual reaction

path was established: the direct path via adsorbed formate, and the indirect path via

COads. (cf. analogous suggestion for the oxidation of formic acid). Both pathways

are kinetically coupled through the reaction involving formic acid, as indicated in

the scheme later (Fig. 5.40).

In terms of this proposal, an alternative mechanism of the formation of the NDR

region is suggested as being due to the kinetic coupling of the direct and indirect

paths [110]. The mechanism of the potential oscillations can be briefly presented in

the following way: at the beginning, the electrode surface is almost fully covered by

Fig. 5.39 (a) Bifurcation

diagram of the electrode

potential E versus the applied

current iapp. (b) Electrode
potential E temporal

evolution for iapp ¼ 1.27.

Reprinted from [107],

Copyright 2006, with

permission from Elsevier
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CO and the formaldehyde oxidation is practically entirely suppressed. Under

galvanostatic conditions, the increase in the electrode potential takes place.

Initially, when the potential is not yet positive enough, the CO oxidation is slow,

so the contribution from the direct pathway, involving formate, on such passivated

electrode, is still small. The two-electron formation of CO from CH2(OH)2 would

allow the electrode to discharge itself but since CO adsorbs and passivates the

surface, the current decreases and the electrode potential effectively moves toward

positive values. Upon increasing potential, CO starts to oxidize and in this way the

direct path becomes unblocked. It can occur, however, on so small number of sites

that the electrode potential rises even further, up to the values at which the rate of

the direct path satisfies the imposed current. Then the potential decreases and the

oscillatory cycle is closed. This basic explanation accounts for simple, sinusoidal

oscillations, observed for relatively low imposed current densities, while more

quantitative analysis of this mechanism is necessary in order to understand the

relaxation oscillations observed for high current densities [110]. One should note

that OHads is not explicitly shown in the reaction scheme; in fact, it can be another

intermediate exhibiting fast adsorption, but slow further oxidation in the considered

potential range. The reader interested in details of this recent model is advised to

consult the original reference [110].

In very recent studies of the formaldehyde oxidation, Seidel, Krischer et al. [111]

have applied the nanostructured Pt/glassy carbon model electrode. In other words,

the electrode consisted of catalytically active Pt nanodisks supported onto a planar

glassy carbon substrate (Fig. 5.41).

Systematic measurements were performed on structurally well-defined model

electrodes of different Pt surface coverages, under different applied current

densities. The conditions of the constant electrolyte transport were established

through the application of the thin-layer flow cell connected to a differential

O

OO

C C

–H2O – 2H+ – 2e– +H2O – 2H+ – 2e–

–H2O+H2O
H2C(OH)2HCHO

methylene glycol
HCOOH

O
C

H

–H+ – e–

–H+– e–

+H+ +e–

–3H+ – 3e–

formate

Direct path

Indirect path

CO2

CO2

linear and bridge-bonded CO

Kinetically coupled

Fig. 5.40 Proposed reaction scheme for formaldehyde oxidation of Pt in acid. The direct path via

adsorbed formate and indirect path via adsorbed CO are kinetically coupled (see [110] for details).

Reprinted with permission from [110]. Copyright 2007 American Chemical Society
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electrochemical mass spectrometry (for monitoring of CO2 formation). Using such

experimental setup it was possible to show the important role of transport processes,

since the oscillation frequency of the electrode potential and the rate of CO2

formation were lower for such nanostructured Pt/GC electrode, compared to con-

tinuous Pt film (at similar current density). In fact, over a discontinued Pt surface,

the probability for formic acid intermediate to readsorb and to be further oxidized to

CO2 should be lower than for continuous surface. The considered reaction mecha-

nism is shown in Fig. 5.42.

These studies have indicated also that all individual Pt disks, i.e., individual Pt

oscillators oscillated in synchrony. In other words, in spite of its nanostructured

nature, the whole electrode can be considered a single oscillator. In the interpreta-

tion of this synchronization a reasonable assumption was done that all the

Fig. 5.41 SEM images of the nanostructured model catalysts: (a) Pristine Pt film, (b) high-density

(~40% coverage) nanostructures Pt/GC electrode prepared by colloidal lithography; CL-40; (c)

medium-density (~20% coverage) nanostructured Pt/GC electrode prepared by colloidal lithogra-

phy; CL-20; (d) base cyclic voltammograms (scan rate 100 mV s�1) of Pt film (black squares),
CL-40 (gray circles) and CL-20 (light gray triangles) in 0.5 M H2SO4 base electrolyte; (e) base

cyclic voltammograms normalized vs. the corresponding active surface area. Reprinted with

permission from [111]
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oscillators face the same (bulk) concentration of formaldehyde, while the concen-

tration of the formic acid at the electrode surface (and not present in the bulk)

oscillates. It is considered that the coupling between different “nanooscillators”

is not of transport (diffusional), but of electrical nature, which can include, e.g.,

migration effects. Note that coupled oscillators are described in Chap. 3 of

volume II.

5.6 Instabilities in the Anodic Oxidation of Alcohols

In this section, we shall briefly describe dynamic instabilities associated with the

oxidation of methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol. One should

note that in these processes, besides the oscillations and bistability, a rarely

experimentally observed phenomenon of tristability was reported.

5.6.1 Oscillations in Alcohols Oxidation

5.6.1.1 Methanol

Galvanostatic Conditions

Early studies of oscillatory electrooxidation of methanol at Pt electrodes were

rather rare [112, 113] and only in the second half of 1990s this subject attracted

again the interest of researches [114], most probably due to the significance of

methanol (and formic acid) for the application in the fuel cells. In more recent

galvanostatic studies, Okamoto et al. [95] have reported, at temperature enhanced

to 43 �C, the chaotic temporal course of the electrode potential, being a result of a

cascade of period-doubling bifurcations (Fig. 5.43).

H2C(OH)2, bulk H2C(OH)2, surf
H2C(OH)2, ad

HCOOHbulk

HCOOHsurf

HCOOHad

H2CObulk
H2COsurf

H2COad –2H
+
 –2e

–

H2O –H2O

H2ObulkCO2, surf

CO2, bulk

–2H
+
 –2e

–
–2H

+
 –2e
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–H
+
 –e

–

–H
+
 –e

– H2OadOHadCOad
+

–H2OH2O–H2O

Fig. 5.42 Simplified reaction scheme for formaldehyde oxidation to formic acid (incomplete

oxidation product) and CO2 (final product). The upper and the lower sequences direct and indirect
pathways, respectively [111]

392 5 Temporal Instabilities in Anodic Oxidation of Small Molecules/Ions



According to the general theory of oscillations under galvanostatic conditions,

one should expect that the methanol oxidation belongs to the class IV, i.e., to the

oscillators exhibiting hidden negative resistance (HN-NDR type oscillator). The

existence of this kind of NDR region was confirmed by the impedance

measurements made by Lee et al. only in 2001 [115]. An experimental system

involved optimized, concentric arrangement of electrodes and the solution

consisted of 0.03 M CH3OH in 0.1 M HClO4. Figure 5.44 shows the impedance

spectra typical of HN-NDR oscillators—the maximum negative real impedance

was detected for E ¼ +65 mV, when the (nonzero) ac frequency was close to 1 Hz,

being thus the inherent frequency of the oscillatory system in the state close to the

Hopf bifurcation point (well concordant with direct observation of potential

oscillations under galvanostatic conditions).

The electrochemical mechanism underlying such impedance characteristics

should be concordant with earlier, well-established findings [116] that the anodic

oxidation of CH3OH proceeds via gradual, four-step electrochemical dehydrogena-

tion, leading to adsorbed CO that poisons the electrode surface, but is removed at

more anodic potentials through the reaction with adsorbed OH radicals, formed as

Fig. 5.43 Periodic and chaotic oscillation patterns in the oxidation of 1 mol dm�3 of methanol

alone at 5 mA. The hatched line shows a duration of pattern change: (a) a pattern shift from the

period-1 to the period-2 oscillation; (b) a pattern shift from the period-2 to the period-3 oscillation;

(c) a pattern shift from the period-3 to the period-4 oscillation; (d) a pattern shift from the period-4

to the period-5 oscillation; and (e) a disordered periodic pattern observed after (d) Reprinted with

permission from [95]. Copyright 1997 American Chemical Society
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the product of the oxidation of H2O molecules. In the simplified notation, involving

summarizing of all dehydrogenation steps into one process, the following essential

reaction sequence holds [note similarities with the mechanism of formate oxidation:

Eqs. (5.26) and (5.15) or (5.16)]:

CH3OH ! fCH2OHads; CHOHads; COHadsg ! COads þ 4Hþ þ 4e (5.57)

H2O! OHads þ Hþ þ e (5.58)

COads þ OHads ! CO2 þ Hþ þ e (5.59)

According to Eq. (5.57), by imposing an appropriate anodic current one initiates

the dehydrogenation reactions, as a result of which the electrode surface becomes

covered with various adsorbed intermediates: CH2OHads, CHOHads, COHads, and

COads. If these dehydrogenation reactions are relatively slow, only few vacant Pt

sites remain and thus further dehydrogenation or oxidation of CH3OH residues is

slowed down further [115]. Under galvanostatic conditions, in order to satisfy the

imposed current, the electrode potential moves to more positive values, at which

step (5.58) can set in with the formation of adsorbed OH radicals. However, since

this reaction also requires free Pt sites, the electrode potential increases until so

many OHads are produced that the autocatalytic interaction of COads and OHads

(5.59) become efficient enough to cause the increase in the number of free sites.

This effect enhances the rate of oxidation reactions, and, accordingly, the imposed

current can be satisfied at lower electrode potentials. At sufficiently low potentials

the OH radicals stop to form and the poisoning of the electrode surface with CO

(and other intermediates) returns, closing the oscillatory cycle. More details of this

mechanism and its quantitative treatment will be given below, when discussing the

multistability in the methanol oxidation.

Fig. 5.44 Electrochemical impedance behavior of methanol oxidation at a Pt electrode measured

at three outer potentials of: (a) +45; (b) +65; and (c) +85 mV. Reprinted from [115], Copyright

2002, with permission from Elsevier
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Potentiostatic Conditions

The oscillations of the current during methanol oxidation under potentiostatic
conditions were so far only rarely studied. Hachkar et al. [117] observed such

dynamics in the studies of methanol oxidation, performed at a rough (f ¼ 100)

rhodium electrode, in an alkaline medium and temperature enhanced to 55�C. In
turn, Vielstich et al. [118] have observed such oscillations at a platinum-based gas-

diffusion electrodes, polarized to relatively high potentials (>1.0 V vs. RHE); the

instabilities were associated with the characteristics of a nonelectrochemical step of

diffusion occurring inside the electrode pores. These two systems had thus a rather

complex microscopic characteristics. One can pose a question, whether it is possi-

ble to find such oscillations in the simpler system. Let us remember that according

to the theory of HN-NDR oscillators, the system which oscillates under

galvanostatic conditions should exhibit the oscillations also under potentiostatic

conditions (U ¼ const), provided that the appropriately large serial resistance,

causing ohmic potential drops, is inserted into the electric circuit of the working

electrode (cf. Chap. 3). A very recent study of the oscillations in the methanol

oxidation, occurring under such conditions on Pt electrode, in aqueous H2SO4

solution, was described by Varela et al. [119]. Figure 5.45 shows the representative

oscillatory courses of the current, recorded for fixed serial resistance Rs ¼ 1.75 kO
and various externally applied voltages. The oscillations are born, starting from the

small amplitude ones, through the supercritical Hopf bifurcation and their ampli-

tude rises with increasing voltage. Simultaneously, their harmonic shape turns into

more relaxation one, single peaks split into large- and small-amplitude ones, and

eventually the regular MMO become aperiodic.

The corresponding bifurcation diagram is shown in Fig. 5.46.

From the mechanistic point of view, this work emphasizes also the striking

difference between the oscillatory behavior of methanol electrooxidation, com-

pared to other C1 molecules: the significantly smaller oscillation amplitude and

generally the simpler dynamics for methanol. Usually, this simplicity of methanol

reaction was explained in terms of its postulated relatively simple mechanism,

involving practically only one, indirect pathway (involving COads), with the direct

oxidation pathway considered negligible. Then the complexity in dynamical behav-

ior during the oxidation of other C1 compound was understood as caused by several

parallel reaction pathways. The idea of predominating indirect path in CH3OH

oxidation was invoked, e.g., by Schell in his model mechanism of multistability in

this process (see below). However, more recent studies of the mechanism of the

methanol oxidation on Pt in HClO4 and H2SO4 media (cf. e.g., [120, 121]) indicate

the existence of even three parallel routes, differing with the nature of the interme-

diate: COads, HCHO, and HCOOH. The products of methanol oxidation include not

only CO2 since the intermediates HCHO and HCOOH can diffuse away from the

electrode. In turn, formaldehyde forms probably in a pathway involving adsorbed

methoxide (CH3O) as the intermediate. The relative efficiency of these routes is

strongly dependent on the composition of a supporting electrolyte: in H2SO4

medium the oxidation current is significantly lower than in HClO4 due to adsorption

5.6 Instabilities in the Anodic Oxidation of Alcohols 395

http://dx.doi.org/10.1007/978-3-642-27673-6_3


Fig. 5.46 Bifurcation diagram in the Rs vs. U plane, electrolyte: [CH3OH] ¼ 0.68 mol dm�3 and
[H2SO4] ¼ 0.49 mol dm�3. Reprinted with permission from [119]. Copyright Sociedade

Brasileira de Quı́mica 2008

Fig. 5.45 Current time series under potentiostatic control with Rs ¼ 1.75 kO. Electrolyte:

[CH3OH] ¼ 0.99 mol dm�3 and [H2SO4] ¼ 0.48 mol dm�3. Reprinted with permission from

[119]. Copyright Sociedade Brasileira de Quı́mica 2008
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of sulfate ions which compete with COads engaged in the reaction pathway requir-

ing several neighboring Pt sites. It is thus understandable that in view of this

complexity of the methanol oxidation process, Varela et al. [119] complemented

electrochemical measurements of the oscillations with in situ Fourier Transform

Infrared (FTIR) spectroscopy, in order to trace simultaneously the (eventual)

temporal changes of adsorbed intermediates. The maximum coverage of CO

which could be attained under given experimental condition was equal to 0.85

monolayer (ML) which means that the entire CO population consisted of linearly

adsorbed CO, forming ca. 0.70 ML and bridge coordinated CO, occupying ca.

0.15 ML (i.e., 0.30 reaction sites, since every CO molecule requires then

two adsorption sites). The most striking results of those studies are the following:

(1) during the induction period preceding the oscillations the distinct increase in CO

coverage is observed and (2) during the galvanostatic oscillations the electrode

coverage with CO only slightly and monotonously increases, remaining close to

yCO 	 0.7 ML. The latter value is rather high, so only a small part of the electrode,
uncovered with CO, has its population changing during the oscillation. This can

be considered an explanation for the small amplitude and simple oscillatory

dynamics of methanol oxidation under given conditions. Analogous comparative

measurements were made for the oscillatory oxidation of formaldehyde and

revealed a remarkably smaller mean CO coverage (ca. 0.25–0.30 ML), similar

to values found for the same system by Osawa et al. [83, 84] who employed Surface
Enhanced Infrared Absorption Spectroscopy (SEIRAS) (cf. Sect. 5.4). This differ-
ence of CO coverage for methanol and formaldehyde is of kinetic origin, i.e., is

caused by the differences in the rate constants of the reaction steps involved in the

oscillatory cycle of these organic molecules [119].

5.6.1.2 Oscillations in Oxidation of Other Alcohols

We shall briefly summarize oscillatory oxidation of other alcohols. For ethanol,

Novak and Visy [122] have reported the galvanostatic oscillation that included one

signal of period ca. 5 s and a peak potential of ca. 700 mV (RHE), i.e., a bit less than

the value corresponding to significant coverage of Pt with OH radicals, in acidic

solution. Higher potential values, even beyond the onset of the production of the Pt

oxide layer, were mentioned by Rao and Roy [123]. More recently, oscillations in

the galvanostatic oxidation of ethanol were studied by Chen and Schell [124] who

focused their research on the correlation between their characteristics and the length

of time the system was allowed to relax and made relevant mechanistic suggestions.

In turn, Inzelt et al. [125] have studied the oscillations in the galvanostatic

electrooxidation of 2-propanol at the platinized Pt electrode with a roughness factor

of ca. 400, employing the EQCM technique. This experimental approach allowed to

formulate the first experimental evidence that the oscillations arising in the course

of this process are associated with the (usually postulated in mechanistic

considerations) accumulation and consumption of the chemisorbed species. One

should realize that following of the mass changes of the electrode using EQCM was
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difficult: the minimum ac frequency ensuring accurate measurements was 1 Hz, and

this frequency could be measured only once every second, so the period of

electrochemical oscillations should be appropriately long. This was achieved by

adjusting the current density, concentration of 2-propanol in the solution, and

enhancing the roughness of the electrode surface area by its above-mentioned

platinization. The choice of 2-propanol (instead of, e.g., more intensively studied

formic acid) was supported by the fact that it oxidizes into acetone, and not to any

gaseous product which could make the frequency response of EQCM noisy. A

representative comparison of the oscillatory variations of the electrode potential

and EQCM frequency response is shown in Fig. 5.47.

From this comparison it follows that the rapid decrease in the electrode potential

is accompanied by a fast decrease in frequency, meaning the increase in mass on the

surface. In turn, the increase in the potential is matched by the corresponding

increase in frequency (decrease in mass). Also, the dynamics of the system is not

a steady state: one observes gradual increase of the oscillation amplitude, mass

changes amplitude, and the period of the oscillations. Finally, the oscillations cease

at high positive potential, presumably due to, parallel to the oxidation of

chemisorbed organic species, formation of oxygen species (PtO, PtOH) on the

electrode surface. At more positive potentials (ca. 0.9 V vs. SCE), the rapid

frequency decrease was observed and explained as due to the formation of PtO

phase on the electrode surface. The authors give the following explanations for

the reported dependences, which emphasizes the role of chemisorbed species [125].

At least three processes that simultaneously occur at the electrode surface are

considered: chemisorption, oxidation of the chemisorbed species, and oxidation

of 2-propanol on the free sites (not occupied by chemisorbed species). The chemi-

sorption involves dehydrogenation which causes a decrease in electrode potential,

Fig. 5.47 A part of the oscillation pattern for the galvanostatic oxidation of 2-propanol in

1 mol dm�3 HClO4 at platinized platinum electrode: potential vs. SCE (continuous line), fre-
quency (dots). Current density is 7 � 10�4 A cm�2, and concentration of 2-propanol is 1mol dm�3.
Reprinted with permission from [125]. Copyright 1993 American Chemical Society
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the rupture of bonds, possibly the splitting of molecule of 2-propanol, and consid-

erable charge transfer. This means the oxidation process leading to the respective

chemisorbed product of high degree of oxidation. The oxidation of the products of

chemisorption starts only above ca. 400 mV and the chemisorbed species can be

completely removed by oxidation in the potential interval 800–1,000 mV. Then the

number of free sites increases and, accordingly, the rate of oxidation of 2-propanol

to acetone as a final product increases.

Also for 1-butanol oscillations of the electrode potential under galvanostatic

conditions were reported by Chen and Schell [126].

5.6.2 Multistability and Excitability in Alcohols Oxidation

5.6.2.1 Experimental Results

Besides oscillations, electrochemical oxidation of low molar mass alcohols, as

methanol, ethanol, 1-propanol, and 1-butanol, can exhibit also excitability,

bistability, and tristability under appropriate conditions, as discovered and

described by Schell et al. in a series of papers [124, 126–128]. One should

emphasize that tristability is a rarely observed phenomenon in real systems—

another electrochemical system (and probably the only other one) of such behavior

was described in Sect. 4.5. Also for homogeneous systems only a few examples of

tristability were reported [129–131]. This phenomenon is interesting not only

because of its rare occurrence, but also because it may have substantial practical

significance for the work of, e.g., fuel cells: the coexistence of different state can

cause a sudden large increase in the electrode potential in the methanol half-cell

(anode), causing then the large drop of the fuel cell potential.

For the sake of systematization of the nonoscillatory dynamical instabilities in

the electrooxidation of alcohols, one should summarize that under galvanostatic

conditions, Schell et al. have reported bistable and tristable behavior in the case

of methanol, ethanol, and 1-butanol, while excitability in the case of ethanol and

1-butanol. It was also shown that the occurrence of these behaviors depended on

pH, controlled by addition of either HClO4 or NaOH. Bistable and tristable

characteristics in the methanol oxidation at a stationary Pt electrode [127] are

shown in Fig. 5.48a [124]. Noteworthy, the tristable behavior was reported only

for the intermediate (0.5 M) concentration of HClO4, while in alkaline (NaOH)

medium tristability generally vanished and only bistable behavior persisted. Quite

analogous role of HClO4 and NaOH was found for tristability and bistability

occurring in galvanostatic ethanol oxidation [128] (Fig. 5.48b).

Figure 5.48b shows that for ethanol oxidation also a narrow region of current

exists, for which potentials oscillations in HClO4 medium set in. Furthermore,

careful inspection of Fig. 5.48b indicates the interplay of these oscillations with

tristability. In fact, two types of tristability are observed in this case: for a substan-

tial current range it involves coexistence of three branches of stable steady states,

5.6 Instabilities in the Anodic Oxidation of Alcohols 399

http://dx.doi.org/10.1007/978-3-642-27673-6_4#Sec17_4


but there is a narrow current range in which tristability consists of an oscillatory

state coexisting with two steady states.

Furthermore, it was ethanol oxidation which exhibited also excitability [124].

The experiments started from open circuit conditions and the current was gradually

increased in increments of 0.25 mA. Various combinations of current increases and

decreases realized in various time scales allowed to detect the response of the

electrode potential vs. time typical of excitability (Fig. 5.49).

After a sequence of small current increases, the electrode potential relaxed

quickly to the steady-state value of the same branch. However, when the current,

from the appropriately high value, was quickly decreased for a sufficiently high

interval, the potential exhibited an abrupt decrease followed by a long relaxation to

the steady state. For later discussion of origin of these instabilities, it is useful to

note that studies of the electrochemical oxidation of ethanol at a Pt electrode

showed that its mechanism is more complicated than that of methanol. Oxidation

of ethanol at Pt electrode can proceed via different pathways, including the direct

one, yielding various products, not only carbon dioxide, but also acetaldehyde,

acetic acid, methane, or ethane. For certain range of electrode potentials, the

Fig. 5.48 Electrode potential

plotted against applied

current. Closed circles were
obtained on increasing the

current, triangles were
obtained on decreasing the

current. 0.50 M HClO4

(a) 0.2 M methanol, (b) 0.2 M

ethanol. Open circles
represent maxima of

oscillations and open
rectangles represent minima.

Reprinted from [128],

Copyright 1999, with

permission from Elsevier
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production of acetic acid can be even five times faster than of CO2 [132]. Carbon

dioxide is the final product of one or more pathways in which adsorbed CO is an

intermediate. Nevertheless, one can refer to the reaction mechanism elaborated for

the methanol oxidation and apply its essential steps to the introductory explanation

of instabilities in ethanol oxidation.

Finally, regarding 1-butanol, in the course of its galvanostatic oxidation on a Pt

electrode, Chen and Schell [126] reported all discussed above dynamic phenomena:

oscillations, bistability, tristability, and excitability, depending on acidic or alkaline

medium. As in the case of ethanol, the bistable and tristable behavior involved the

coexistence of not only stable steady states, but also of the oscillations in the limited

current range. The main difference is of quantitative nature: the parameter range for

occurrence of oscillations in acid solutions is substantially larger for 1-butanol than

for ethanol.

Fig. 5.49 Electrode potential plotted against time. The numbers correspond to different values

of the applied current. (a) [CH3CH2OH] ¼ 0.05 M, 1: I ¼ 7.0 mA, 2: I ¼ 6.25 mA. The point

at which the current was changed corresponds to the point at which the potential first decreases.

(b) [CH3CH2OH] ¼ 0.15 M, 1: I ¼ 2.75 mA; 2: I ¼ 3.00 mA, 3: I ¼ 3.25 mA, 4: I ¼ 3.50 mA,
5: I ¼ 3.75 mA, 6: I ¼ 3.50 mA. This change was implemented at a slow rate. 7: I ¼ 3.25 mA. The
final current change corresponds to the point where the potential begins a large sharp increase.

Reprinted from [124], Copyright 1999, with permission from Elsevier
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5.6.2.2 The Common Electrochemical Mechanism of Dynamic

Instabilities in Alcohols Oxidation

Since different alcohols exhibit similar dynamical nonlinear behaviors, it is natural

to search for their common mechanistic origin. First the bistability involving the

lowest and the middle potential branches will be analyzed. When CO2 is the final

oxidation product, the crucial intermediate is adsorbed CO. Then bistability is

considered as caused by the dual reactivity of surface bonded CO which reacts with

both adsorbed H2O (at relatively low potentials) and OH radicals, formed at higher

potentials [124, 126]. For the low-potential branch, the potentials are too low to

cause the formation of OH radicals. Thus, under both open-circuit conditions and

subsequent application of small currents in the galvanostatic mode, CO reacts only

with adsorbed water molecules. Upon increase of the imposed current, in order to

satisfy its actual value, the electrode is charged to more positive potentials, at which

the rate of oxidation processes is appropriately higher. Eventually the electrode

potential becomes so positive that the electrochemical production of adsorbed OH

sets in, and since that moment the adsorbed CO can react with both H2Oads and

OHads. With further increase of the potential, the surface concentration of OHads

becomes so high that the rate of their interaction with CO becomes higher than that

of H2Oads. Eventually the production of OHads radicals becomes faster than their

consumption in the reaction with CO. Since sites occupied by OH are inactivated,

this situation means of course the progressing inhibition of the oxidation process,

causing even further increase of the electrode potential, forcing acceleration of the

oxidation at still vacant sites. This sequence of processes initializes the positive

feedback, since the increase of electrode potential enhances the production of OHads

which cause further increase of the potential. The system then jumps to a higher

potential state, at which the anodic reactions occur with enhanced rate, satisfying

the imposed current. In fact, experimental studies confirm that the transition to

higher potential state takes place at the potentials corresponding to strong chemi-

sorption of OH radicals. The above mechanism is applicable for the methanol

oxidation, in which indirect CO pathway is dominant. For other alcohols, if there

are more reaction pathways involving COads, the extension of the above model

allows one to understand multistability.

For the onset of oscillations, the existence of more than one reaction path is

necessary. This statement already explains, why for methanol, oxidizing practically

along one reaction path, oscillations are not detected or are difficult to observe (i.e.,

they require either large concentration or a sudden application of a large current),

contrary to other two, higher alcohols. Let us consider two reaction pathways—a

direct one and an indirect one—involving adsorbed CO. Upon increasing imposed

current, as described earlier, the rate of both direct oxidation and formation of

COads will increase, in order to satisfy the electrochemical reaction rate with this

current. The system enters the oscillatory regime if such conditions are attained

that, for certain time, the rate of formation of COads is greater than its removal. Then

the effective number of vacant adsorption sites decreases and the electrode potential
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moves toward more positive values, in order to enhance the direct oxidation rate at

these vacant sites. When eventually the electrode potential attains the values at

which adsorbed hydroxyl radicals form and quickly react with adsorbed CO

molecules, a large number of vacant sites is recovered and the electrode potential

returns to lower values, at which remaining OH radicals are reduced and due to

these both effects the direct oxidation proceeds with the rate satisfying the imposed

current. However, slow building up of COads sets in again and the oscillatory cycle

repeats. Based on that thinking, one can further judge that different parameter

ranges for the oscillatory behavior in the ethanol and 1-butanol oxidation are caused

by different relative efficiency of the direct and indirect pathways of this process.

For methanol, in order to induce oscillations, one has to use more extreme

conditions, under which the pathways other than the usually predominating, indi-

rect one, get a chance to manifest themselves.

For the sake of generalization, the following universal aspects of the oscillatory

electrooxidation (more generally: instabilities) of small organic molecules can be

formulated: (1) the build up of the adsorbed poison layer (like COads) along the

indirect pathway; (2) the replenishing of the surface by reaction between the

adsorbed poison intermediates (mainly COads) and adsorbed oxygenated species

(OHads), and (3) the feedback between the total surface coverage and the electrode

potential [133].

In turn, the detailed mechanism of the excitable response is currently not well

recognized. One can suppose that in the onset of this regime not only various

intermediates of alcohols oxidation are involved, but certain role is played also by

the formation of oxide at Pt surface, at sufficiently positive potentials. Chen and

Schell [126] have suggested that excitability, manifesting itself when the imposed

current is made less anodic, occurs due to the reduction processes, which however

cannot be associated with the electrode reactions of alcohols, due to their significant

irreversibility. Instead, the reduction of PtO to PtOH species (equivalent to OHads)

was proposed. The OHads formed in this way reacts with COads, increasing the

number of vacant adsorption sites. This enhances the rate of direct oxidation of

alcohol, allows the potential to shift to even lower values, at which further portion

of PtO is reduced, etc.—in this way there realizes the positive feedback, explaining

the fast decrease of the potential from the initial middle branch. A more detailed

discussion of the assumptions underlying these suggestions the reader can find in

original reference [126].

In turn, the differences of the systems’ dynamics for the NaOH and HClO4

media was explained in terms of the crucial role of adsorbed OH radicals: they take

place in the oxidation of alcohols, in removing of CO and possibly are a source of

oxygen atoms in the production of carboxylic ions. The point is that the (predomi-

nant) source of those radicals is different in the two of these electrolytes [126, 128]:

in HClO4 medium it is water, while in NaOH medium—the hydroxide ions present

in the solution as the dissociation products. This causes different kinetic
characteristics of OHads deposition from both media. In NaOH, this deposition

occurs at lower potentials and proceeds with potential more gradually than for

acidic solution. In other words, there is a considerable potential range between the
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onset of OH deposition and the building up of their monolayer. In turn, in acidic

solution, the OHads formation on the polycrystalline Pt surface occurs more

abruptly. In consequence, and in accordance with experimental observations, for

NaOH solutions, the imposed current density can be increased to relatively high

values before the transition of the state to the higher potentials branch, since the

point at which OHads formation exceeds their consumption and starts to inhibit the

oxidation process, occurs with a delay, compared to acidic solutions. In other

words, the OHads to COads ratio favoring the alcohol oxidation is maintained for

higher imposed currents, if the basic solution is used.

As a complement of the above mechanistic aspects of dynamic instabilities one

can also mention earlier works by Schell et al. [134, 135] who observed for the

oxidation of methanol, ethanol, and 1-propanol, studied under cyclic voltammetric

conditions, a bifurcation upon increasing alcohol concentration in which a period-

one cyclic voltammogram was replaced by a period-two cyclic voltammogram, the

latter term meaning the limiting case of CV in which the current–potential curve

required two potential cycles to retrace itself. The electrochemical mechanism

involved the dual role of adsorbed OH radicals which can either react with COads,

as the intermediate of alcohol oxidation or undergo transformation to the oxide PtO.

Upon increasing alcohol concentration in the solution, more OHads reacts with

COads, and less OHads is transformed into PtO. However, the system does not

exhibit the monotonous trip toward the decrease of PtO production, but enters a

two-period regime: during one cycle essentially no oxides form and during the next

cycle the oxide production and reduction take place.

5.6.2.3 The Model of Multistable Oxidation of Alcohols

The above mechanistic considerations are included in the model reaction scheme,

elaborated by Schell [127] for the oxidation of methanol, but the essential steps of

this model can be used for discussion of the anodic behavior of ethanol and butanol.

The model refers to earlier numerous classical studies of the electrochemical

oxidation of methanol and introduces the steps responsible for the multistable

behavior. In more detail, the Schell’s approach explains the coexistence of the

middle and the lowest branches, but did not account for the high-potential states

shown in Fig. 5.48 which most probably involve both oxygen evolution and high-

potential oxidation pathways of organic compounds.

The model, based on the assumption that oxidation of methanol occurs practi-

cally only along the indirect path, involves three dynamical variables: the electrode

coverage of CO (yCO), OH radical (yOH), and the electrode potential (E). The
formation of COads (together with oxidation of adsorbed hydrogen) was presented

as a reaction sequence (with explicit indication of engaged reaction sites at Pt):

CH3OH þ uPt ! Ptu½CH3OHads� (5.60)

Ptu½CH3OHads� ! Ptv½PtCH2OH� þ PtH þ ðu� v� 2ÞPt (5.61)
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Ptv½PtCH2OH� þ n2 Pt! Ptw½PtCHOH� þ Hþ þ ðvþ n2� wÞPtþ e (5.62)

Ptw½PtCHOH� þ n3 Pt! Pty½PtCHO� þ Hþ þ ðwþ n3� yÞPt þ e (5.63)

Pty½PtCHO� þ n4 Pt! PtCOþ Hþ þ ðyþ n4ÞPtþ e (5.64)

PtH! Hþ þ Ptþ e (5.65)

In a simplified version of the mechanism, sufficient for modeling of

multistability, the above reaction steps were summarized into a single one:

CH3OHþ uPt�!
k1

PtCOþ 4Hþ þ ðu� 1)Ptþ 4e (5.66)

In the model, CO is assumed to adsorb only linearly on Pt surface and therefore u
decreases for one in (5.66). The adsorbed CO reacts both with adsorbed H2O and

adsorbed radical, in the potential-dependent processes characterized with the rate

constants k2 and k3, respectively [cf. Eq. (5.16)]:

PtCOþ PtH2O�!
k2

CO2 þ 2Hþ þ 2Ptþ 2e (5.67)

PtCOþ PtOH�!
k3

CO2 þ Hþ þ 2Ptþ e (5.68)

as a result of which in each case two adsorption sites on Pt surface become vacant.

Finally, the electroadsorption of OH radicals is described as:

H2Oþ Pt�!
k4 �
k�4

Hþ þ PtOHþ e (5.69)

One assumes further that the rate determining step in the reaction (5.66) uses

only one surface site, and taking into account steps (5.67) and (5.68), one derives

the kinetic equation for the rate of change of the surface concentration of carbon

monoxide:

dyCO
dt
¼ k1S� k2yCOywu � k3yCOyOH (5.70)

where S means the concentration of vacant adsorption sites (assuming that each

molecule occupies one site), and ywu is surface concentration of water. The rate

constants k1 to k3, scaled so that all concentrations are dimensionless and vary from

0 to 1, are exponentially dependent on the electrode potential:

ki ¼ k0i exp½niFðE� EiÞ=ð2RTÞ� (5.71)
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where ni is the number of electrons for the particular process and factor ½ means

that such value was assumed for the electron transfer coefficient (symmetrical

activation barrier).

The model assumes further that not all water molecules on or near the Pt surface

will be the reactants for reaction (5.67), but only those which exist in the “up-state,”

i.e., for which the oxygen atoms point toward the electrode surface and the

hydrogen end of the molecule points toward the solution (cf. the three-surface-

state theory of Bockris et al. [136–138]). Thus, ywu in Eq. (5.70) means the surface

coverage of only those “up-state,” reactive water molecules which are further

assumed to remain in quasi-equilibrium state, described by the thermodynamic

relationship:

ywu ¼ S exp½�DG=ðkBTÞ� (5.72)

From three contributions to free Gibbs energy DG: (1) chemical interaction

energy of the water dipole with the metal surface, (2) the electrical interaction,

and (3) the energy of lateral interaction of a water molecule in the up-state with

other molecules, only the third effect was taken into account, under additional

simplifying assumption that only interactions with other water molecules in the

same state are considered. Since the assumption on the quickly establishing equi-

librium (5.69) is not valid at high positive potentials, at which the oxidation of

water to adsorbed hydroxyl radicals occurs, the model took into account also this

effect through introducing the following reaction scheme:

H2Oþ Pt�!
kf

 �
kr

PtH2O (5.73)

PtH2Ou
�!k5 �
k�5

Hþ þ PtOHþ e (5.74)

For other details of the relevant derivations, the reader is advised to consult the

original reference [127] while below only the final expression for ywuwill be given:

ywu ¼ SKwu þ yOHKa

1þ Kb þ UcSKwu=ðkBTÞ (5.75)

where U is the lateral interaction energy; c, average coordination number of

interacting particles; and d is the thickness of the double layer.

Ka ¼ k�5
kr
¼ exp½�FðE� EaÞ=ð2RTÞ� (5.76)
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Kb ¼ k5
kr
¼ exp½FðE� EbÞ=ð2RTÞ� (5.77)

Kwu ¼ exp½gðE� E0Þ� (5.78)

g ¼ m
dkBT

(5.79)

with m meaning the dipole moment of water, d is the thickness of the double layer,

and kB is Boltzmann’s constant.

The remaining two ODEs were defined in the following way. The surface

dynamics of the electrode coverage with OH radical was given by:

dyOH
dt
¼ k4S� k�4yOH þ k5ywu � k�5yOH � k3yCOyOH (5.80)

The equation for the dynamics of the electrode potential follows from the charge

conservation principle applied to the sum of the capacitive and the faradaic

currents:

Cd

dE

dt
¼ �Q0

X
j

njrj þ j (5.81)

where Cd is the (assumed constant) double layer capacitance; Q0, the charge

corresponding to the charge transferred on depositing a monolayer of hydrogen

atoms (220 mC cm�2); j is the imposed current density and the sum is composed of

kinetic terms:

X
j

njrj ¼ 4k1Sþ 2k2yCOywu þ k3yCOyOH þ k4S� k�4yOH þ k5ywu � k�5yOH

(5.82)

Figure 5.50 shows results of the modeling for parameters listed in the caption.

Let us analyze the variation of yOH (or Pt-OH) with current density (dashed

curve in Fig. 5.50c), showing the way in which the feedback, leading to instability,

realizes. When current density increases, the electrode becomes charged to more

positive potentials at which more OH radicals are produced and adsorbed on the Pt

surface. Eventually, occupation of adsorption sites with OH species becomes so

high that the interaction of CO with H2O becomes severely inhibited. At this point,

in order to satisfy the imposed current, the electrode potential must move to more

positive values, at which other reactions can set in. This explanation refers only to

two lowest branches of the steady states, according to the above-mentioned

assumptions of the model.
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At the end of this section we mention that the oscillatory oxidation of methanol

under galvanostatic conditions was also observed at the nanostructured nickel

hydroxide film (NNHF) electrode, where not the COads species is the crucial

intermediate, but the Ni(OH)2/NiOOH redox couple acts as mediator for the

electron transfer, making the NNHF electrode a better electrocatalyst than Pt

[139, 140]. Since the postulated oscillatory mechanism is also essentially different

from the previously discussed and involves the role of convection, a more detailed

description of this process was included in Sect. 5.8 of volume II.

5.7 Oscillatory Oxidation of Sulfur Compounds

Oxidation of sulfur compounds is important for both industrial applications and the

research, hence also dynamic instabilities in their redox processes are worth of

studying. For example, Jansen et al. [141] have described the potential and current

Fig. 5.50 Calculations from model, Eqs. (5.70), (5.75), (5.80), and (5.81). For all quantities, the

number 1 refers to the bottom branch of states, the number 2 refers to the intermediate branch, and
the number 3 refers to the top branch. (a) Potential is plotted against current. Solid branches
represent stable steady states, dashed branch represents unstable steady states. (b) Concentration

of surface bonded CO (solid curve) and concentration of surface sites (dashed curve) are plotted
against current. (c) Concentration of water in the up state (solid curve) and concentration of PtOH
(dashed curve) are plotted against current. (d) Rate of the reaction between water in the up state

and PtCO (solid curve) and rate of the reaction between PtOH and PtCO (dashed curve) are plotted
against current. Parameters: k01 ¼ 2 � 10�5 s�1, all other k0i ¼ 0.10 s�1, F/(2RT) ¼ 19.5,

E1 ¼ 0.45 V, E2 ¼ 0.68 V, E3 ¼ 0.822 V,E4 ¼ 0.887 V, E5 ¼ Ea ¼ Eb ¼ 0.580 V, g ¼ 5.1 V�1,
E0 ¼ 0.44 V and Uc/(kBT) ¼ 2.5. Reprinted from [127], Copyright 1998, with permission from

Elsevier
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oscillations during the anodic oxidation of pyrite in solutions of NaF, ascribed to the

formation of a surface layer of iron(III) sulfide, decomposing into iron(II) sulfide

and disulfide ions. More recently, Xu et al. [142] have described the oscillatory

oxidation of thiourea on a polycrystalline Pt electrode. Both simple oscillations and

their period-doubling bifurcations were found. Electrochemical impedance spec-

troscopy indicated the presence of the hidden negative resistance, suggesting thus

the classification of this oscillatory system to the HN–NDR one. Also, the same

group of researchers has described the current and potential oscillations, as well as

bistability in the electrochemical oxidation of thiocyanate ions on a Pt electrode

[143].

Also simpler species, as sulfide ions, can undergo oscillatory oxidation at

different electrodes. The first paper about the oscillatory oxidation of sulfide ions

on Pt electrode was published as early as in 1905 [144] and was followed by

analyses by Bohnholzer and Heinrich [145] and Gerischer [146]. Later, apparently

only in 1998 Jansen et al. [147] have described potentiostatic current oscillations at

Pt electrodes and have elaborated mechanism which involved periodic formation

and removal of sulfur. At low anodic potentials a surface layer of platinum sulfide,

passivating the electrode surface, forms. This causes the inhibition of the oxidation

of sulfide ions and the deposition of elementary sulfur. The resulting increase of the

electrode potential causes the removal of the sulfide film by oxidation leading to

platinum oxide and now the sulfur formation is possible on the oxide surface layer.

Also other electrode types were involved for such studies. Recently, Chen and

Miller [148, 149] have reported galvanostatic potential oscillations in the

electrocatalytic oxidation of S2� ions on a microstructured Ti/Ta2O5–IrO2 elec-

trode. Two distinct galvanostatic potential oscillations (oscillations A and B) were

identified. Type A oscillations occurred for low current region and had relatively

large amplitudes and very low frequencies, compared to type B oscillations which

set in for the high current conditions. Furthermore, electrochemical impedance

studies proved that both oscillation A and B were caused by the hidden negative

resistance (HN–NDR). It was also found that periodic oxygen evolution was

involved in the oscillatory mechanism. In the authors’ interpretation, the source

of oscillations A is the periodic variation of the S2�/HS� concentration, caused by

the alternate depletion of the preelectrode layer of sulfide species due to its slow

diffusion from the bulk, and its replenishment due to convection that sets in when

the potential moves to sufficiently positive potentials, in search of the process that

would satisfy the imposed current. Again, it is clear that this mechanism is

analogous to the one suggested by Li et al. [150], or, in view of the work by

Strasser et al. [151] one can also consider the formation of HN–NDR region due to

the overlap of the sulfide ions and water oxidation currents. In turn, oscillations B

were ascribed to the synergetic effect of sulfur formation/removal under constant

oxygen evolution condition.

Also Miller and Chen, in more recent studies [152] have described the anodic

oxidation of sulfide ions at the Pt electrode. Besides the type A and B (or / and b)
galvanostatic oscillations (analogously to Ti/Ta2O5–IrO2 electrode), current

oscillations, as well as bistability were reported. The dependence of oscillations
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A and B on the current density was analogous to those found for the described

above oxide electrode. Also, the existence of hidden negative resistance was found

for both oscillations A and B, classifying them as belonging to HN-NDR

oscillators.

Apparently independently of these studies, Feng, Wang et al. [153] have

described the anodic oxidation of sulfide ions at the polycrystalline Pt electrode

which process appeared to constitute both the N-NDR and HN-NDR oscillator.

These studies are described below in more detail. Under galvanostatic conditions,

upon varying imposed current, six distinct oscillations windows (Fig. 5.51), with

very different oscillation morphology (Fig. 5.52), were observed (see e.g., “bursting

oscillations” in Fig 5.52a).

Fig. 5.51 (a) Linear galvanic

voltammogram of S2�

electrooxidation at a Pt(poly)

electrode, collected at a scan

rate of 0.01 mA s�1; (b) linear
galvanic voltammogram

collected at a scan rate of

0.02 mA s�1; and (c) linear

voltammogram obtained

under the scan rate of

0.05 mV s�1. Temperature

was maintained at 20.0 � 0.1
�C. Reprinted from [153],

Copyright 2005, with

permission from Elsevier
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Fig. 5.52 Time series of

galvanostatic potential

oscillations during the

electrochemical oxidation of

sulfide. The applied currents

are (a) 2.86 mA cm�2,
(b) 7.27 mA cm�2, (c)
31.83 mA cm�2,
(d) 63.66 mA cm�2,
(e) 95.49 mA cm�2,
and (f) 127.32 mA cm�2.
Other reaction conditions are

[Na2S] ¼ 1.0 M and

T ¼ 20.0 � 0.1 �C.
Reprinted from [153],

Copyright 2005, with

permission from Elsevier
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In turn, Fig. 5.53 shows the existence of also potentiostatic oscillations, shown

for three exemplary voltages. Although a bit irregular, the course in Fig. 5.53b

resembles quasi-periodic behavior. Then the chaotic course in Fig. 5.53c could be

considered a consequence of the so-called Ruelle–Takens–Newhouse (RTN) route

to chaos (cf. Sect. 1.9).

Of course, the galvanostatic and potentiostatic oscillations are related to the

positive and negative slopes of the voltammograms shown in Fig. 5.51c. The

presence of an explicit N-NDR region at the potential around ca. 0.57 V (vs.

Hg–Hg2SO4–K2SO4 reference electrode) is consistent with the impedance spec-

trum recorded for the same potential, where the negative real impedance was found

for nonzero frequency. Oscillations observed in Fig. 5.51c around the potential of

ca. 1.7 V occur at the I–E branch with positive slope and, accordingly, the

electrochemical impedance spectroscopy indicated for this potential the loop char-

acteristic of HN-NDR oscillator: real impedance was found negative for intermedi-

ate frequencies and returned to positive values for o decreasing to zero, in line with

positive slope of the I–E curve (Fig. 5.54).

It is perhaps somewhat surprising that electrooxidation of such simple species,

as S2� ions, offers such a variety of oscillatory instabilities. In search of the

interpretation of these phenomena, it was also noted certain effect of the tempera-

ture on the oscillation morphology, as well as the fact that the oscillations persisted

Fig. 5.53 Time series of

anodic current oscillations

during the electrochemical

oxidation of Na2S. The

applied potential values are:

(a) 0.50 V, (b) 0.525 V, and

(c) 0.55 V. Other reaction

conditions are

[Na2S] ¼ 1.0 M and

T ¼ 20.0 � 0.1 �C.
Reprinted from [153],

Copyright 2005, with

permission from Elsevier
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also in the absence of convection induced by oxygen evolution at high positive

potentials. Under conditions of the experiments, the sulfide ions exist predomi-

nantly in the HS� form, the oxidation of which causes alternate formation and

removal of elementary sulfur layer.

At external voltage of ca. 0.5 V the occurrence of the following processes was

suggested:

Ptþ HS� þ OH� ! PtSþ H2Oþ 2e (5.83)

PtSþ HSx
� ! Ptþ HSxþ1� (5.84)

PtSþ 8OH� ! Ptþ 4H2Oþ SO4
2� þ 6e (5.85)

The sulfur layer, formed in process (5.83) is supposed to block partly the Pt

surface, leading thus to the first (explicit) NDR region at around 0.5 V.

At potentials as high as ca. 1.5 V, the sulfur precipitate is not observed and the

suggested reaction pathway is the following:

Ptþ 2OH� ! PtOþ H2Oþ 2e (5.86)

PtOþ 2OH� þ H2O! Pt(OHÞ4 þ 2e (5.87)

Fig. 5.54 Electrochemical

impedance spectrum

measured at different

potential values: (a) 0.52 V

and (b) 1.7 V. The frequency

was varied from 250 kHz to

25 mHz. Other reaction

conditions were:

[Na2S] ¼ 1.0 M and

T ¼ 20.0 � 0.1 �C.
Reprinted from [153],

Copyright 2005, with

permission from Elsevier

5.7 Oscillatory Oxidation of Sulfur Compounds 413



ðHS�Þads þ 9OH� ! SO4
2� þ 5H2Oþ 8e (5.88)

The formation of gaseous of oxygen was omitted, since it was not observed

within the potential range from �0.8 V to +1.8 V. In this case, the competition for

the adsorption sites between the OH� and HS/S2� species was assumed to be

responsible for the second NDR region. Although this work is of introductory

character, its further development is expected, also with respect to the eventual

pattern formation phenomena [153]. Very recently, Gao et al. have reported the

formation of such sulfur patterns, recorded by CCD camera. For wide range of

sulfide concentrations, the HN-NDR characteristics were found and the

corresponding types of patterns included pulses, fronts, labyrinths, twinkling

eyes, and spirals. The N-NDR oscillations occurred only at relatively high

concentrations of sulfides, and under such conditions pulses and synchronization

phenomena were reported [154].

5.8 Other Oscillatory Oxidation Reactions

In this section, we briefly review the oxidation of other molecules at solid

electrodes.

Oscillatory anodic oxidation of hydrazine in acidic medium, at polycrystalline

Pt electrode, under chronopotentiometric conditions, was reported by Bard in 1963

[155]. A significant role in the onset of these instabilities was ascribed to an

appropriate pretreatment of the electrode. The oxidation of hydrazine follows the

following overall scheme: N2H5
+ � 4e ! N2 + 5 H+, but the overpotentials at

which it occurs can be separated for as much as 0.5 V, depending on the initial Pt

state. The Pt surface can attain two different states: either the activated one, in

which it contains a layer of finely divided platinum (after, e.g., reduction of Pt oxide

layer, platinization or ac activation), or the deactivated one (presumably with

missing fine Pt particles, partly poisoned, etc., obtained after, e.g., prolonged

contact with the acidic hydrazine solution or the treatment with aqua regia). At
the activated Pt surface, direct electrooxidation of hydrazine occurs at E ¼ �0.1 to
�0.2 V (vs. the saturated mercury–mercurous sulfate electrode, with a potential of

0.4 V vs. SCE).

If the experiment involved Pt in the deactivated state, the oxidation of hydrazine

occurred at more positive potentials, corresponding to the formation of oxide layer,

of a composition simplified here to PtO. An important, experimentally confirmed

fact was that this oxide layer was readily and quickly reduced by hydrazine. Thus,

the sequence of reactions occurring at such positive potentials can be suggested as:

2(Ptþ H2O� 2e! PtOþ 2HþÞ (5.89)

2PtOþ N2H5
þ ! 2Pt� þ N2 þ 2H2Oþ Hþ (5.90)
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where the activated sites of platinum surface are symbolized by Pt*. It is of course

also possible that the redox interaction of hydrazine with PtO occurs along two

parallel pathways: direct chemical and electrochemical ones.

Finally, the oscillations set in sometimes, when the platinum electrode surface

was first preoxidized by treatment with aqua regia. Upon polarization, the electrode
potential moved first to high anodic values at which, together with the formation of

PtO, also hydrazine undergoes oxidation. Since then [cf. Eq. (5.90)], the free active

sites Pt* appear, the electrode potential moves toward less positive values,

corresponding to the electrooxidation of hydrazine at the active Pt surface. How-

ever, when these sites become poisoned with, e.g., adsorbed intermediates, the

electrode becomes deactivated, the potential moves again toward more positive

values, and the oscillatory cycle repeats.

Wojtowicz et al. [61] have performed kinetic studies of the oxidation of ethylene

at stationary and rotating platinized platinum disk electrodes, from its saturated

solution in 1 M HClO4, at 80
�C. Current oscillations were observed in certain

ranges of potential and rotation rate. Contrary to the formic acid oxidation, the

oscillations could be suppressed by exceeding certain critical rotation speed which

fact indicated the more, in this case, pronounced role of transport in developing the

instabilities. The mechanism proposed by Wojtowicz et al. included the following

steps: (1) arrival of C2H4 at the electrode vicinity, (2) fast (faster than that transport)

equilibrium chemisorption of C2H4, according to the specific isotherm, (3) elec-

trode surface oxidation: co-deposition of oxygen-containing species (O, OH)

on free sites, (4) reaction between adsorbed C2H4 and surface oxide species.

The respective kinetic model was elaborated.

Schell et al. [156] have studied the electrocatalyzed oxidation of glycerol in

alkaline solution upon cyclic variation of the polycrystalline Pt electrode potential

and compared it with the oxidations of ethylene glycol and methanol. Based on

analysis of behaviors caused by chemical instabilities, the conclusion was drawn

that the elementary reactions that dominate the oxidation of glycerol are the same as

those that dominate the oxidation of methanol, including the formation of surface

bonded CO and its reaction with surface bonded hydroxyl radicals.

In this section, we shall only briefly mention selected works on the anodic

oxidation of various species occurring at semiconductor electrodes [157].

An example of such processes is the oxidation of iodide ions at the illuminated

n-type MoSe2 electrode, described by Tributsch et al. [158]. Oscillations of

the current and of the electrode reflectivity, as well as surface propagating waves

were observed. For the p-type MoSe2, metallic NbSe2, and Pt electrodes similar

phenomena were observed, but with that difference that they did not require

illumination. For the semiconductor CdS electrode immersed in the aqueous solu-

tion of 0.1 M K3Fe(CN)6 + 0.1 M K4Fe(CN)6, Vainas [159] has reported the

current oscillations, attributed to the formation and detachment of gas bubbles

formed on metallic patches found on the CdS.

Very recently, Hammer et al. [160] have reported oscillatory oxygen evolution

originating from oxidation of water molecules during anodization of Ta electrodes.

In general, valve metals like also Al or Nb cover with oxide films either in a humid
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environment or during anodic oxidation. The resulting oxide Ta2O5 has properties

similar to ceramics due to their large band gap of 3–6 eV. In spite of insulating

properties of Ta2O5 which should prevent water oxidation, under industrial

conditions of Ta anodization for electrolytic capacitor fabrication, large amounts

of oxygen are evolved. Hammer et al. have reported that upon anodic polarization

of sintered, porous Ti anode to the potentials exceeding ca. 10 V, the current

is oscillating, and accompanied by alternating strong oxygen evolution. Quantita-

tively, the current efficiency of the Ta2O5 formation was ca. 96%, so ca. 4% of the

anodic charge was consumed for oxygen evolution. Its oscillatory course was

explained in terms of a cyclic formation of gas bubbles, blockage of the inner

electrode surface, removal of gas, further oxide growth, the whole sequence

repeating cyclically. The fact that the amount of oxygen was proportional to the

oxide amount formed in parallel was explained in terms of the model where mobile

ions during oxide growth form interband states which allow electron tunneling.

Finally, although oxidation of graphite does not correspond to the electrode

process of small molecules, we shall mention it here because of some analogies

with the composition of chemical bonds involved in such processes with the

structure of organic species, described earlier in this chapter. Beck et al. [161]

have described potential oscillations during galvanostatic overoxidation of graphite

electrode in aqueous solution of sulfuric acid to yield electrochemical graphite

oxide (EGO). The period of these oscillations was as long as about one hour.

Particularly interesting is that these oscillations were associated with the processes

occurring not at the surface, but in the bulk of the solid state. The proposed

oscillatory mechanism involves the novel “zone-model,” meaning the zone-like

progress of the intercalation of graphite. The increasing part of the electrode

potential is caused by the buildup of a transport overvoltage due to the formation

of C–OH groups and their linkage through hydrogen bonds. In the decreasing part

of the wave, further oxidation occurs, such as �C–OH ! ¼C¼O, the OH groups

disappear and the transport overvoltage decreases. Water molecules can be

transported to the next zone. A more detailed description of this mechanism is

given in the original reference [161]. Also, Harrach et al. [162] have described

potential oscillations during the galvanostatic oxidation of highly oriented

pyrographite (HOPG) intercalated with H2SO4. The complex mechanism of

this process involves overcharging stage (increase in the charge of graphene layers

with simultaneous expulsion of H+). At high potentials this step is followed by

the irreversible, autocatalytic overooxidation of graphite:

>C ¼ Cþ 2H2O! >C(OH)� ðOHÞC<þ 2Hþ þ 2e (5.91)

which results in a rapid decrease of water molecules at the reaction front, which

then slows down the reaction: near the front, graphene layers collapse, preventing

the further arrival of new H2O molecules and preventing the overoxidation reaction

from occurring [157, 162].
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Chapter 6

Temporal Instabilities in Corrosion Processes

6.1 Oscillations in Anodic Dissolution of Metal Electrodes

6.1.1 General Characteristics of Passivation/Dissolution
Processes

Oscillatory dissolution of metal electrodes belongs to the earliest known examples

of the nonlinear dynamic phenomena, reported already in the first half of nineteenth

century, as it follows from work of Fechner, dated 1828 [1]. In this section,

representative examples of such corrosion systems are briefly described. Currently

known examples of the corrosion processes that can exhibit oscillatory dynamics

include, among others, the following experimental systems: Fe/H2SO4; Fe/NaClO3;

Fe/HNO3, Fe/NaCl; Cu/H3PO4; Cu/HCl; Cu/NaCl, Cu/NaClO3, Ni/H2SO4;

Ag/KCN þ K2CO3; Ag/HClO4, Ag/HCl; Al (including alloys)/KOH; Au/H2SO4 þ
Cl�, Co/HCl þ CrO3, Co/H3PO4, Co/H2SO4 þ HNO3; Pb/LiAlCl4; Pb/H2SO4,

Pb/NaOH; Sn/NaOH; Zn/NaOH; Ti/H2SO4; Bi/NaCl; Cd/KOH; Nb/HBF4; and

W/NaOH, V/H3PO4. Reviews of these phenomena published up to 1994 include,

among others, papers by Wojtowicz [2], Hudson and Bassett [3], and Tsotsis and

Hudson [4]. Figure 6.1, taken from [2], collects some representative experimentally

recorded current or potential oscillations for such systems, as well as, for compari-

son, examples of oscillations disscussed in Chapter 5.

Early discoveries of oscillatory corrosion processes were made during the simple

measurements of the I–U polarization curves, measured in a two-electrode arrange-

ment, so the ohmic potential drops in the electric circuit were not compensated.

Typical polarization curves for such systems are characterized with the abrupt

decrease of the anodic current, caused by the passivation effect, at the potentials

close to the Flade potential (EF). In the simplest description of those processes,

a dissolution of metal electrode to ions in the solution is represented by reaction:

M ! MnþðaqÞ þ ne (6.1)

M. Orlik, Self-Organization in Electrochemical Systems I,
Monographs in Electrochemistry, DOI 10.1007/978-3-642-27673-6_6,
# Springer-Verlag Berlin Heidelberg 2012
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characterized with the formal potential E1
0, while the process of the formation of

the passive oxide layer can be described with the reaction scheme:

Mþ ðn=2ÞH2O! MOn=2 þ nHþ þ ne (6.2)

which is characterized with the respective value of E2
0, more positive than E1

0. In

terms of this notation, the thermodynamically determined Flade potential can be

considered as equal to equilibrium potential of the reaction (6.2), and at 298.15 K:

EF ¼ E2 ¼ E0
2 þ

RT

nF
ln ½Hþ�n ¼ E0

2 � 0:059pH (6.3)

The Flade potential is thus a linear function of pH of the solution, with a negative

slope being independent of the stoichiometry of the metal oxide (n). The Flade

potential depends on pH in the same way, as the potential of the hydrogen or any

pH-sensitive oxide electrode.

Fig. 6.1 Examples of electrochemical oscillations: (a) Fe/1 N H2SO4, EH ¼ þ0.49 V, (b) Au/4 N

HCl, EH ¼ þ1.8 V, (c) Zn/4 N NaOH, EH ¼ �1.1 V, (d) Fe/14 N HNO3, I ¼ �40 mA/cm2, (e) Cu/

0.4 N CrO3 þ 1 N HCl (rest potential), (f) Pt–Pt/1 M CH2O þ 3.75 M H2SO4, I ¼ �30 mA/cm2,

(g) Pt/0.1MN2H4 þ 1MKOH (rest potential), (h) Pd/1MHCOOK þ 1MKOH, I ¼ þ0.2mA/cm2

(after [2] and references cited therein). Reprinted from [2] with kind permission fromSpringer Science

+Business Media B.V.
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In turn, the passive oxide layer MOn may dissolve also chemically, according to
the equation:

MOn=2 þ nHþ ! MnþðaqÞ þ ðn=2ÞH2O (6.4)

The sum of Eqs. (6.2) and (6.4) is identical with the overall metal dissolution

reaction (6.1) in which the passive layer is an intermediate species. In the steady-

state, the oxide layer is continuously regenerating itself, with the rate of its

dissolution in the electrolyte equal to the corrosion rate of the metal [5].

According to Chap. 2, the passivation of the electrode surface is one of the

causes of a region of a negative differential resistance (NDR) which can be a source

of instabilities if coupled to ohmic potential drops, with contribution from the

reagents transport phenomena. Thus, one can expect the bistability and oscillations

of current in the NDR region, under appropriate conditions. Exemplary polarization

curves of several metal electrodes are collected in Fig. 6.2 [5]. In turn, Fig. 6.3

indicates schematically their three distinct sections [6]: the active region in which

oxidation of metal to respective ions occurs with the rate increasing with the

(positive) electrode potential; the passive region, following the Flade potential,

when the current drops to negligible values; and the transpassive region at suffi-

ciently positive potentials, where the oxygen evolution due to oxidation of water

occurs and in which also often the destruction of passive layer, unblocking the

electrode surface, takes place.

These schematic dependences and underlying chemical equations are relatively

simple, but the behavior of real metal electrodes is more complicated.

6.1.1.1 Hysteresis and Bistability in the Active/Passive Transition

First, the Flade potential determined by Eq. (6.3), as a thermodynamic value, should

not depend on the direction of cyclic potential changes toward negative or positive

values. However, in typical experiments one often observes the hysteresis in the

Fig. 6.2 Schematic anodic

polarization curves of Fe, Ni,

and Cr in 0.5 M H2SO4 [5];

(after experimental data given

in: Okamoto G (1973) Passive

film of 18-8 stainless steel

structure and its function.

Corrosion Sci 13:471–489,

Fig. 10). Reproduced from [5]

with permission of Taylor &

Francis Group LLC.

Copyright 2007
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current–voltage response—thus also the dependence of the potential, at which the

active–passive transition occurs, on the scan direction. This effect can result from

trivial kinetic limitations on the way of the system toward its thermodynamic

characteristics. It is also possible that in the presence of uncompensated ohmic

drops, the region of the I–E characteristics with a negative dE/dI slope transforms

into the set of unstable steady-states, separating the upper and lower branches of the

stable steady-states; hysteresis is then a manifestation of bistability. If this is the

case, the appropriate correction of the I–U curve for the ohmic drops should lead to

the I–E curve without hysteresis. Such successful correction was reported, e.g., by

Russell and Newman [7] for Fe dissolution in 1 M H2SO4. However, Epelboin et al.

[8] have observed certain hysteresis leaving even after appropriate IR correction

applied to I–U curve recorded for the ring Fe electrode in the same medium. This

discrepancy was explained by pointing out that that such simple IR correction is

a simplification since it is referred to the total current which however can be

inhomogeneously distributed at the electrode surface. Even earlier, the inhomoge-

neity of the dynamics developing on the circular Fe electrode was indicated by

Pigeau and Kirkpatrick [9] who have shown experimentally that the current

oscillations were accompanied by the growth of a zone with higher reflectance,

emerging from the outer rim of the electrode and propagating toward its center.

These facts are strong premises for considering of the process of metal dissolution

at a microscopic level, i.e., in terms of the dissipative pattern formation due to local

and global dynamics of the process (see Sect. 1.2, volume II). In other words,

a really solid explanation of reported dynamic instabilities in the passivation/

dissolution systems should invoke the spatial inhomogeneity of the electrode–

solution interface and such approach will be discussed in Chaps. 1–3 of volume

II. Here we shall only mention, as an example, that Hudson et al. [10] have proved

that the period-doubling bifurcation, observed in the oscillatory current–time series

for the ring-shaped Fe electrode, originated from a spatiotemporal bifurcation from
a ring of activity into two half-rings of alternating activity.

Fig. 6.3 Voltammetric curve for a metal that forms a passive film, e.g., nickel. Reprinted from [6]

by permission of Oxford University Press
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6.1.1.2 Porous Salt Layer as a Precursor of the Oxide Film

The next source of complexity of real passivating systems is that between the active

state of metal electrode and its passive state, caused by the compact layer, often a

porous layer is formed, of the composition dependent both on the metal and

components of the electrolyte solution. For example, for the Fe/H2SO4 system

this porous layer can be simplified as hydrated FeSO4 [with possible participation

of, e.g., hydroxo forms of Fe(II)]. Formally, it means that the surface concentration

of Fe2þ ions becomes so high that the solubility product of FeSO4 is locally

exceeded and crystals of FeSO4 precipitate on the surface. The thickness of such

porous layer may increase up to 1 mm [5]. FeSO4 is thus considered a precursor of

the oxide layer that forms at more positive potentials. It is usually accepted that

solid FeSO4 is poorly conducting and the oxidation current flows largely in the

pores of these species when the solution is in direct contact with the active metal

surface.

Upon increasing positive potential, for given concentration of H2SO4, the total

current can stabilize at the relatively high, limiting value, forming thus an anodic

current plateau under steady-state conditions. Quite formally, one can say that

although the resistance of FeSO4 species is high, the net resistance of the salt

layer, caused by the presence of pores, is relatively low. Significant premises for

the mechanism underlying the formation of this plateau were supplied by the

experiments with rotating disk electrode, which showed the increase of this plateau

with increasing rotation rate (Fig. 6.4, [5]). Thus, the limiting current can be

considered as determined by the rate of mass transport—in this case by the

potential-independent convective diffusion of the dissolved FeSO4 species from

the solid layer at the electrode toward the bulk of the solution. The detailed picture

of phenomena occurring at the interface can be even more complex. In the pores

local current density may attain such high values, that increasing anodic polariza-

tion of the electrode may cause local formation of oxide layer which later dissolves,

when Hþ ions can diffuse back to the pores. Such alternate formation and dissolu-

tion of the oxide layer was observed experimentally.

Further studies show however that the origin of limiting anodic current is not

always completely understood. Keddam [12], based on analysis of electrohy-

drodynamic (EHD) impedance data, has suggested the existence of the viscosity

gradient in the boundary layer and thus that the only species that limits the

dissolution rate is water. Since it is difficult to analyze the conventional ac imped-

ance spectrum measured on the diffusion plateau of the anodic dissolution of metal,

it therefore appears useful to complement such measurements with the EHD

impedance data. The latter method involves perturbing the rotation speed of

electrode and measuring the current; the results reveal directly the influence of

mass transport on surface phenomena. The reader interested in the principles and

applications of EHD impedance method, introduced by Bruckenstein at the begin-

ning of 1970s, is advised to consult the appropriate references, e.g., [13, 14].
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6.1.1.3 The Nature and Properties of Passive Film

The relatively small current density flowing in the passive region is called the

passivation current density (ip) which can be dependent on various factors including
pH of the solution. For example, for the Fe/H3PO4 system, the passivation current

density decreases with increasing pH, due to decreasing solubility of Fe(OH)2 that

precipitates at the Fe surface. Thus, pH can affect not only the Flade potential, but

also the magnitude of ip.
Typically the passive oxide layer is very thin (1–3 nm), and then the electron

conductivity realizes through the tunneling across it. If the thickness of such layers

increases, the probability of tunneling decreases and then they reveal the (usually)

semiconducting properties, characterized with forbidden band of 2–3 eV. This is

the case, e.g., for Fe oxides (n-type semiconductor) and Cu or Ni oxides (p-type
semiconductors). For comparison, PbO2 can be considered a metallic conductor,

while Al2O3 is an insulator.

The composition and structure of passive layers (films) on metal surfaces are

usually very complex and difficult to unambiguous determination, also because

they may vary with experimental conditions. For example, although typically

the oxidation state of the metal in the passive oxide film corresponds to the

thermodynamically most stable oxide (e.g., oxides of Ni2þ, Al3þ, Fe3þ, Cr3þ), it

Fig. 6.4 Potentiodynamic sweep curves for an Fe rotating disk electrode, with radius ¼ 0.149 cm,

in a 1 M H2SO4 electrolyte. Regions in which oscillations are observed are indicated. Electrode

rotation speeds are given in rad s�1. Reproduced from [11] by permission of The Electrochemical

Society
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may happen that the most stable oxidation state varies with the electrode potential.

Thus, at sufficiently high positive potentials, nickel in an alkaline medium forms

passive oxide of Ni3þ; for chromium, the rise of anodic current at the onset of the

transpassive region is caused by the transformation of the passive layer of Cr2O3

into well soluble CrO3 species [5]. Moreover, Eq. (6.1) and (formally identical) sum

of Eqs. (6.2) and (6.4) may differ with the number of electrons involved, e.g., active

dissolution of Fe leads to Fe2þ ions, while passive dissolution leads at least mainly

to Fe2O3 as the most stable oxide under typical conditions [5].

Another chemical detail is the presence of hydroxyl groups at the surface of the

oxide film which contacts with the electrolyte solution. This may be caused either

by hydration of the oxide surface, or by the precipitation on it, of the thin metal

hydroxide layer. Furthermore, the oxide layer can be doped with small amounts of

foreign ions from the electrolyte (e.g., SO4
2� or Cl�) which enter the oxide layer

during its growth and either occupy the crystal lattice sites of O2� ions or are

located at the defects of that lattice [5].

The growth and the dissolution of the passive oxide films involve ion-transfer

reactions at the metal–film and the film–electrolyte interfaces, with the electric

potential distribution sketched in Fig. 6.5.

At the metal–film interface, the produced metal ions occupy the cationic sites of

the oxide:

M! MnþðoxÞ þ ne (6.5)

The strong (108 V/cm) electric field present in the film causes the migration of

cations toward the solution phase, whereas the anions migrate in the opposite

direction. At the film–solution interface, the metal ions move into the solution:

MnþðoxÞ ! MnþðaqÞ (6.6)

Fig. 6.5 Variation of

potential across a passive film

(schematic). Reproduced

from [5] with permission of

Taylor & Francis Group LLC.

Copyright 2007
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while the O2� ions are involved in the reversible dissolution or deposition process [5]:

O2�ðoxideÞ þ 2HþðaqÞ ! H2OðlÞ (6.7)

Reaction (6.7) controls whether the oxide film grows or thins. Since both

reactions (6.6) and (6.7) involve charged particles, their rate depends exponentially

on the potential difference at the film–electrolyte interface (DF23 in Fig. 6.5). In

turn, the current corresponding to ionic conduction through the film is exponentially

dependent on the average electric field in the film, given by the DF2/L ratio, where

L means the thickness of the film.

6.1.1.4 Transpassive Region and Pitting Corrosion

In transpassive region (cf. Figs. 6.2 and 6.3), the substantial rise of current

density observed at the potential denoted further as Eb can be due to the following

processes [5]:

1. Transpassive dissolution (oxidation) of the passive film (then Eb is the film
breakdown potential).

2. Dissolution by pitting resulting from local film breakdown (if this process is

predominating, Eb means the (critical) pitting potential).
3. Oxygen evolution due to water oxidation, if the latter process begins at potentials

less positive than the passive film breakdown; if passive oxide film is very stable,

the current in transpassive region is caused exclusively by oxygen formation.

The composition of the solution can decide which of these processes causes the

initial rise of current. Cl� ions are particularly well recognized as the species

causing the pitting corrosion of the passive layer—above the critical (pitting)

potential the film breakdown occurs at certain sites and enhanced localized disso-

lution leads to the formation of deep pits on an otherwise passive surface. The

diameter and the depth of the single pit usually reach several tens of micrometers

[5]. In such a case, the pitting corrosion of the passive layer can precede the oxygen

evolution. On the other hand, if the aggressive anions are absent (as, e.g., for

NaNO3 solution) the transpassive potential of, e.g., Fe and Ni appears to be higher

than the reversible potential of the oxygen evolution, which is then responsible for

the rise of anodic current in the transpassive region. At more anodic potential the film

dissolution begins, which is also facilitated by the earlier oxygen evolution, since the

solution at the anode becomes locally acidified: H2O! 2Hþ + 1=2O2 + 2e.

The corrosive interaction of Cl� ions with the passive layer can occur according

to three mechanisms, depicted in Fig. 6.6.

In terms of mechanism (a) the Cl� ions, driven by electric field, penetrate the

film layer, changing its properties and facilitating the dissolution after certain

induction time, which is required for the migration of the anion from the

film–solution interface to the metal surface. Mechanism (b) occurs when due to
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the defects, the electrolyte is in direct contact with the metal surface and a local

rapid dissolution occurs with the formation of a pit. Finally, according to mecha-

nism (c), the anodic depassivation is caused by an accelerated dissolution of the

passive film as a result of adsorption of aggressive anions at the outer film surface,

replacing hydroxyl groups (as was experimentally proved for the iron electrode);

the intensive rise of current occurs after some time, necessary for pit initiation [5].

Of course, pitting corrosion is a localized corrosion, so it is characterized with

increasing heterogeneity of the metal/solution interfaces—this aspect of such

processes and their consequences for nonlinear dynamic behavior will be analyzed

also in Sect. 3.1.10 of volume II.

High-rate transpassive dissolution of passivated metals is used in practice for

electrochemical machining and micromachining: in this case the appropriately

shaped cathode is moved over the surface over the anode, with the interelectrode

distance of the fraction of millimeter kept constant. Datta and Romankiw [15] have

described the anodic dissolution of metals through the patterned photoresist.

Another example of micromachining of Cu substrate, but based on different

principle, is described in Sect. 6.2.

In order to complete these brief outline characteristics of the corrosion process,

one should note that also the rate determining step can depend on the electrolyte

composition. When steel corrodes in contact with acids, the bottleneck is the

kinetics of the electron-transfer reaction at the metal/electrolyte interface. If the

steel is contacted with the neutral, aerated solution, the rate of mass transfer of

the oxidizing agent of anodic reaction products takes over the control on the

reaction rate. Finally, for the stainless steel in aqueous solution, the small rate of

corrosion rate is determined by the properties of the passive film [5].

The reader interested in more detailed characteristics of corrosion processes is

advised to consult, e.g., the recently published monograph by Landolt [5] or earlier

books by Keddam [12] and Kiss [16] and references cited there.

Fig. 6.6 Proposed anodic depassivation mechanisms in presence of chloride ions: (a) anion

penetration into the film by exchange with O2�; (b) electrolyte penetration at the metal surface

through film defects; (c) film dissolution caused by local anion adsorption. Reproduced from [5]

with permission of Taylor & Francis Group LLC. Copyright 2007
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6.1.2 The Fe/H2SO4 Oscillatory System

6.1.2.1 Experimental Characteristics

Simple experiment, described in 1941 by Bonhoeffer and Rennenberg [17], has

proved that the active or passive states of iron are only stable. If a piece of

passivated iron is touched with Fe wire in active state, the activation of passive

piece occurs, provided that the surface area of the active iron wire is large enough

(usually the surface as small as 0.1% of the passive surface suffices to active it)

[18]. Later, Franck and Meunier [19] have reported that if a completely passivated

electrode (alone stable in this state) is coupled with the active one (also alone stable

in this state), the state of either one of them, or of both begins to oscillate. It was

thus another experimental proof that the mixed electrode with a two-phase structure

of the surface is unstable. Moreover, it is a premise to consider the source of

instabilities in coupled oscillators (Chap. 3, volume II).

According to Hudson et al. [10], based on studies to date, one can distinguish

between two distinct regimes of Fe dissolution in aqueous H2SO4 electrolyte. The

first type of the oscillations is observed on the mass-transferred controlled plateau

of anodic current, just before the active–passive transition, and is presumably

connected with the formation and removal of a porous salt film (cf. Fig. 6.4).

These oscillations exhibit relatively small amplitude, but high frequency

(0.1–1 kHz) [11, 20, 21] and the degree of their complexity is dependent on the

electrode size [22]: with electrode diameter increasing from 2.0 mm to 6.35 mm

regular oscillations turned into low-order chaos, followed by high-order chaos. In

the authors’ opinion, these transitions were due to increasing coupling between the

various sites on the electrode surface, so the full explanation of these phenomena

should involve the concept of coupled oscillators, as mentioned already above.

Regarding chaos, quantitative analysis of respective I–t courses (correlation dimen-

sion ranging from 2.4 up to 6) suggested its deterministic nature. More recently,

studies of this type of oscillations have been undertaken by Sazou and Pagitsas [23]

who have elaborated the mechanism indicating the role of IR drop and appropriate

hydrodynamic conditions in their onset.

The second type of oscillations, observed in most reported experiments [24], is

characterized with typical relaxation shape. These instabilities, ascribed to the

transitions between the active and passive states of Fe electrode, reveal the oscilla-

tion periods of the order of seconds to minutes and constitute the main type of

instabilities described below in this section.

Bursting Oscillations as a Model of Neural Excitation

Complex oscillations in the Fe/H2SO4 system can be observed upon addition of

halides which cause pitting corrosion of the passive anodic film. In particularly

interesting case, described by Sazou et al. [25], the pitting corrosion causes the
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complex oscillatory behavior in which trains of relaxation oscillations are separated

by the periods of steady-state passivity. According to Koper [24], such bursting
oscillations (Fig. 6.7) can be explained in such a way that a relatively slow pitting

corrosion process acts as a switch of the system’s state between the passive and the

oscillatory state.

The bursting dynamics, as occurring in neurons activity [26], is worth of

theoretical and experimental studies. Mathematically, the bursting dynamics can

be described as involving fast and slow essential variables, depending on the

timescales over which they vary [27, 28]. The fast subsystem, described by a

minimum of two variables, is responsible for the fast spiking. The slow subsystem

is responsible for the slow modulation causing the periodic appearance of the fast

spiking behavior (in the simplest case it involves one slow variable). More recently,

Kiss et al. [29] have analyzed the bursting oscillations in the electrodissolution of

iron in sulfuric acid solution. Under conditions of those experiments, this system

exhibited such oscillations in which fast periodic spiking was superimposed on

chaotic, slow oscillations. The role of external potential, external resistance, and

electrode diameter in the transition from the chaotic to bursting oscillations was

studied and the bifurcation scenarios, involving the Hopf and homoclinic

bifurcations, were indicated.

Electrochemical Model of Unidirectional Synaptic Transmission

Analogies between the neural excitation and instabilities in the Fe/H2SO4 system

are not limited to bursting oscillations. Karantonis et al. [30] have described the

system, imitating the neural synaptic transmission, corresponding to unidirectional

chemical signaling. The experimental setup consisted of an Fe/H2SO4 electrochem-

ical oscillator stimulated by the chemical interaction achieved via the flow of

chloride ions toward the electrode surface, controlled by peristaltic pump

Fig. 6.7 Bursting oscillations during the dissolution of a Fe disk in 2 M H2SO4 þ 0.04 M Cl�;
rotation rate 1,000 rpm. U ¼ 440 mV vs. SCE. Reprinted from [25], Copyright 1992, with

permission from Elsevier
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(Fig. 6.8). The microtube through which this solution was being introduced to the

electrochemical cell was placed in a distance 2 mm away from the surface of an iron

disk.

In this experimental setup, the Fe/H2SO4 interface mimicked the postsynaptic

neuron that could occur in electrodissolving (active) state, passive state or exhibit

oscillations between the former two extreme states, depending on the external

voltage applied. In turn, the presynaptic terminal was imitated by a controlled

source of chloride ions which, as interacting with the active/passive transitions of

the iron electrode through the pitting corrosion, acted as chemical transmitters.

Since the inflow of chloride ions is controlled externally from its source by the

peristaltic pump, the purely chemical connection of the source of chemical trans-

mitter with the Fe/H2SO4 interface was unidirectional.

The nonlinear dynamical characteristics of the electrochemical system, under

given conditions, are visualized by the I–U dependence, obtained upon cyclic

variation of the external potential U. This diagram shows the regions of existence

of the passive, active and oscillatory states of the iron electrode, including their

coexistence, revealed by the hysteresis in the system’s response (Fig. 6.9).

The effect of the inflow of Cl� ions depends on the applied (fixed) voltage and in
which of the states (if more than one are possible) the system initially remained. For

U ¼ 215 mV and the electrode in bistable region, in the active steady-state (I equal
to ca. 2.5 mA), this state loses its stability and the oscillations set in (Fig. 6.10). One

can say that the chemical signal in the form of Cl� ions has been noticed by the

Fe/H2SO4 interface which changed its trivial, steady-state dynamics into the

oscillatory one.

In another experiment, at the same voltage U ¼ 215 mV, the electrode was set

initially in the oscillatory state and the same chemical signal of Cl� ions was

applied—then the dynamics of the electrochemical system returned to the trivial,

active steady-state (Fig. 6.11). Thus the transition to the oscillatory regime appears

to be reversible with that reservation that in the sequence: steady-state !
oscillations ! steady-state, the final steady-state current is a bit higher than the

Fig. 6.8 Schematic representation of the experimental setup. A chloride containing solution:

15 mM NaCl + 0.75 M H2SO4 (A) is injected via a peristaltic pump (B) to the surface of an iron

electrode (1 mm diameter disk) (C) immersed in 0.75 M sulfuric acid solution. The distance

between the outlet of NaCl solution and the Fe electrode surface was 2 mm. SCE and a carbon rod

were employed as the reference and auxiliary electrodes, respectively. Based on [30]
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initial one, presumably due to the progress of the pitting corrosion of iron under

influence of Cl� ions, causing the increase of the roughness, and thus the surface

area of the electrode.

In turn, when the applied potential was close to the bifurcation value of ca.

290 mV, the dynamic response depended on that, how positive was the applied

voltage vs. this critical value. In any case, the electrode remained initially in the

passive state. For U ¼ 320 mV, a single, narrow high-amplitude current peak is

formed following a prolonged (10 s) single chemical pulse. When the voltage is

very close to the bifurcation value, i.e.,U ¼ 295 mV, every chemical signal of even

short duration time (1 s) causes an almost immediate, sharp response of the current,

so the sequence of such signals, produced by peristaltic pump is matched with the

corresponding series of current peaks, as long as the chemical signal is produced.

Finally, if the voltage is placed in the oscillatory region (e.g., U ¼ 265 mV), the

perturbation of this regime with periodic chemical signal causes the significant

decrease of the oscillatory period and the emergence of current bursts (Fig. 6.12a)
or, for higher amplitude of perturbation, the temporal decay of the oscillations,

followed by their return with gradually increasing amplitude (Fig. 6.12b).

As the chemical mechanism underlying the above phenomena, the destruction of

adsorbed Fe(OH)2 layer was proposed as occurring through the formation of the

[Fe(OH)þ]Cl� salt exhibiting higher solubility:

½Fe(OHÞ2�ads þ Cl� �!
k1

 �
k�1

[Fe(OHÞ]þCl� þ OH� (6.8)

[FeðOHÞ]þCl� �!k2 ½FeðOHÞ�þ þ Cl� (6.9)

Fig. 6.9 Experimental bifurcation diagram (potentiostatic curve) of the Fe/0.75 M H2SO4 system.

Squares represent steady-states. Black and white circles represent the minimum and maximum of

stable oscillations for increasing and decreasing values of external voltage V, respectively.

Reprinted from [30], Copyright 2008, with permission from Elsevier
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One should also note that the Fe/H2SO4 active/passive system was also used

long ago by Franck [31] as the electrochemical model of the nerve transmission

along the neuron, since both phenomena exhibit striking analogies in their dynam-

ics. This instructive experiment is outlined in Sect. 2.1 of volume II.

The pitting (as well as the general) corrosion of iron in the H2SO4 medium, in the

presence of halides, in the context of nonlinear dynamical phenomena still remains

a subject of experimental studies, reported by Pagitsas et al. [32–36]. In these

studies, the microscopic nature of processes leading to corrosion was deepened

and described in terms of the point defect model. Among others, based on the

Fig. 6.10 (a) Current response of an active iron interface under the influence of a single chemical

pulse. Applied potential V ¼ 215 mV, pulse amplitude J ¼ 0.6948 g/min, pulse durationDt ¼ 3 s.

(b) Projection of the trajectories for embedding dimension m ¼ 3 and time delay t ¼ 0.01 s.

Reprinted from [30], Copyright 2008, with permission from Elsevier
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nonlinear dynamic response of passive iron surfaces, perturbed chemically by

halides, it was possible to distinguish between the general and pitting corrosion.

Finally, Lou and Ogura [37] have described current oscillations observed on

a stainless steel electrode in sulfuric acid solution with and without chromic acid,

and attributed them to the periodic sequence of dissolution and reformation of

M(OH)3 film, which was formed by the reaction of divalent metal ions dissolved

in the earlier stage of polarization of the stainless steel.

6.1.2.2 Theoretical Models

In this section, the most important models of the oscillatory dissolution of iron

electrode in aqueous sulfuric acid media, both outlining the early historical

proposals and discussing in more detail the most recent achievements, are briefly

described. The analysis of the evolution of these concepts is very instructive, not

only because it shows increasing understanding in the mechanism of such pro-

cesses. One can note that completely different mechanisms of the same electro-

chemical process can mathematically generate oscillations, so the choice of the

Fig. 6.11 (a) Current

response of an oscillatory iron

interface under the influence

of a single chemical pulse.

Applied potential

V¼ 215 mV, pulse amplitude

J ¼ 0.6948 g/min, pulse

duration Dt ¼ 3 s.

(b) Projection of the

trajectories for embedding

dimension m ¼ 3 and time

delay t ¼ 0.01 s. Reprinted

from [30], Copyright 2008,

with permission from

Elsevier
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most reliable model requires deepened knowledge on the detailed electrochemical

properties of the system.

Generally, the models explaining the oscillations in the Fe/acid solution system

are based on the idea of switching between the active and passive states. As

mentioned above, only one of these extreme states is stable under given conditions,

with the intermediate state being unstable: if two iron electrodes, one completely

passivated and the other in active state, are brought into contact, either the active

undergoes passivation, or the passive one becomes active, depending on the relation

of the mixed potential of these two electrodes to the Flade potential [2].

Fig. 6.12 (a) Current response of an oscillatory iron interface under the influence of a chemical

pulse train. Applied potential V ¼ 265 mV, pulse amplitude J ¼ 0.3559 g/min, pulse duration

Dt ¼ 3 s. (b) Current response of an oscillatory iron interface under the influence of a chemical

pulse for V ¼ 274 mV and pulse amplitude J ¼ 0.6948 g/min. Pulse duration Dt ¼ 1 s. Reprinted

from [30], Copyright 2008, with permission from Elsevier
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The Franck–FitzHugh Model and Related Approaches

In 1961, Franck and FitzHugh [38] have published the first significant explanation

of the oscillatory dissolution of Fe electrode in sulfuric media, under potentiostatic

(U ¼ const) conditions, based on the dependence of the Flade potential on the

(periodically varying) pH of the solution in contact with the Fe surface. The

mechanism of oscillations involves the following steps:

1. Initially the electrode is in its active state (E < EF), meaning the flow of current

of high density (reaching even tenths of A cm�2), associated with the intensive

dissolution of Fe surface. Since in the solution this current is conducted largely

by Hþ ions which migrate toward the counter-electrode, their local concentra-

tion at Fe electrode decreases; that means that migration caused certain concen-

tration gradient of [Hþ] in the solution.

2. Induced in this way local increase of pH of the solution in contact with Fe

surface means progressing shift of its Flade potential toward more negative

values [cf. Eq. (6.3)], and when EF becomes more negative than the actual

Fe potential E (i.e., E > EF), the electrode undergoes abrupt passivation—the

anodic current drops to mA cm�2.
3. Due to actually low current, the migration of Hþ ions toward the cathode is

significantly slowed down and the diffusion of Hþ ions from the solution bulk

restores now their concentration in the vicinity of the Fe electrode.

4. The stepwise decrease of solution pH at the electrode causes chemical dissolu-

tion of the passive layer and the reactivation of the Fe electrode when its Flade

potential returns to more positive values: E < EF; the oxidation current then

rises. The oscillation loop is completed and the whole cycle repeats. The

oscillation period is thus related to the time scale of the transport of Hþ ions

in the solution.

The mathematical representation of this model involves two ordinary differential

equations:

de
dt
¼ K1 � K2e� K3yþ K4eWðe; yÞ (6.10)

dy
dt
¼ K5eWðe; yÞ (6.11)

in which e ¼ E � EF measures the distance between the imposed (constant) elec-

trode potential E and the pH-dependent Flade potential EF, while y is the electrode

coverage with the passive film layer. Ki values (i ¼ 1,. . .,5) are the kinetic

constants which include various parameters of the current–voltage dependence

for Fe dissolution and both diffusion and migration characteristics of Hþ ions.

The detailed form of these equations is determined by further detailed assumptions.

First, the passive oxide film forms if e > 0 and dissolves for e < 0; the kinetics of

these processes are described with different dependences:
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Wðe; yÞ ¼ y for e<0

1� y for e>0

�
(6.12)

or, in an equivalent form:

Wðe; yÞ ¼ yþ ð1� 2yÞUðeÞ (6.13)

where U(e) is a Heaviside staircase function, taking only two values, depending on

the sign of the argument e: U(e) ¼ 0 for e < 0 and U(e) ¼ 1 for e > 0. Thus,

different equations describe the system’s dynamics, when the electrode potential is

lower and when it is higher than the actual Flade potential. For e < 0 the rate of the

oxide layer dissolution is proportional to the electrode coverage y with this passive

layer, while for e > 0 the rate of formation of the passive layer is proportional to the

fraction of the electrode surface, uncovered with oxide (1 � y). This discontinuous
change of the reaction kinetics at the Flade potential is a key feature of the FFH

model, but become later a main reason for its certain criticism.

Further assumptions introduce the following simplifications: the I�E depen-

dence is considered linear, the Flade potential is linearly dependent on pH, the

concentration profile of Hþ ions at the Fe electrode is linear, and the Hþ ions are

considered the only charge carriers of the electric current in the solution. Finally,

the rate of formation of Hþ ions during the interaction of Fe2þ ions and water

molecules, leading to the passive oxide layer, is negligible compared to the rates of

migration and diffusion transport of these ions.

Wang et al. [39] have shown that the nonphysical discontinuity of the model can

be overcome by replacing the Heaviside function with the smooth dependence:

wðeÞ ¼ 1� 1

1þ expðaeÞ (6.14)

which becomes sufficiently steep for a � 500. This is however more a mathemati-

cal transformation than the enhancement of the physical sense of the model. It is

further convenient to transform the dimensioned variables to their dimensionless

equivalents: the potential V ¼ K5e/K2 and the time t ¼ K2t, in terms of which

Eqs. (6.10)–(6.11) take a form:

dV

dt
¼ bh� V � byþ ðV=cÞGðV; yÞ (6.15)

dy
dt
¼ VGðV; yÞ (6.16)

where:

GðV; yÞ ¼ yþ ð1� 2yÞwðVÞ (6.17)
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b ¼ K3K5/K2
2, h ¼ K1/K4 (with 0 � h � 1) and c ¼ K2/K4, the latter quantity c

being the bifurcation parameter which determines the qualitative dynamics of the

system in a following way. For c > 0.5 only a single stable steady-state exists,

defined with (Vss, yss) ¼ (0, h). At c ¼ 0.5 the supercritical Hopf bifurcation

occurs, i.e., upon c decreasing further below 0.5 the oscillations are born, with

the amplitude rising from zero at a bifurcation point. Figure 6.13 shows exemplary

oscillations obtained from numerical integration of Eqs. (6.15) and (6.16) for

c ¼ 0.25 and other parameters specified in the caption.

This simple, only two-variable model allows to reproduce only regular, high-

amplitude oscillations for the potentials close to EF, and is not able to explain

formation of low amplitude oscillations, observed also for E < EF and of aperiodic

(chaotic) oscillations. Also, in contrast to more modern approaches, the

Franck–FitzHugh and related models assume the oscillations between the passive

and active electrode states as a truly potentiostatic phenomena, since the electrode

potential is assumed constant, whereas only the pH-dependent Flade potential

oscillates. In consequence, the model does not involve the capacitive (double

layer recharging) current. The source of oscillations is limited to the characteristics

of the Fe–solution interface and of the transport of Hþ ions, and thus the origin of

this instability is not considered the feature of the entire electric circuit containing

N-NDR element, with ohmic potential drops present. Also the chemical description

of the electrode interface seems to be simplified, as in the passive state the Fe

electrode surface is covered not only by the compact oxide, but also by the porous

FeSO4 layer, and the proportions between the amount of oxide and sulfate may

depend on both the electrode potential and the concentration of sulfuric acid.

Furthermore, the model assumes only a homogeneous dissolution of the entire

Fe surface. Nevertheless, the Franck–FitzHugh model remains the first important

step toward understanding of oscillations related to the active–passive transitions of

the electrode surface and became the subject of further modifications.

The Adsorption Models

It is known that adsorption of species with strong attractive lateral interactions in

the adsorption layer, which can be described in terms of, e.g., the Frumkin isotherm,

may give rise to bistability (see Sect. 3.6). In 1984, Griffin [40] has proposed the

simple, minimal parameter kinetic model of corrosion/passivation of metals, in

which as a result of the oxidation of metal atoms, the produced cations adsorb on the

surface as oxides and then dissolve into the solution. The interaction between the

cations was expressed in terms of the linear dependence between the average

desorption energy associated with cation dissolution and the cation coverage y or,

equivalently, as the exponential dependence of the dissolution rate constant on y.
Depending on the parameter value describing these interactions either single-

valued or multi-valued (bistable) dependence between the theoretical anodic cur-

rent and the electrode potential was obtained, resembling the experimental I–U
dependences in the active–passive transition region.
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Fig. 6.13 Oscillations of (a) dimensionless potential and (b) electrode coverage, obtained from

numerical integration of Eqs. (6.15) and (6.16) for b ¼ 1, h ¼ 0.4, c ¼ 0.28 and a ¼ 500.

Reproduced from [39] by permission of The Electrochemical Society
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Later, Talbot and Oriani [41, 42] and Kado and Kunitomi [43] have developed

the models which postulated that the decisive role in oscillatory instabilities

accompanying the transitions between the active and passive states was played by

adsorption of various sparingly soluble species of iron at the Fe electrode surface. In

the latter approach, three of adsorbed species were suggested as crucial for the onset

of instabilities: FeI(OH)ads � X; [Fe(OH)2]ads � Y and {Fe[Fe(OH)2]}ads � Z,

involved in the following model reaction scheme:

Xþ H2O�!k1 Yþ Hþ þ e (6.18)

Feþ Y�!k2 Z (6.19)

Z�!k3 Xþ Uþ e (6.20)

which itself can generate only steady-state and damped oscillations. In order to

obtain sustained oscillations, one has to (and this is the crucial assumption for those

models) introduce sufficiently strong lateral attractive interactions between the

particles X, Y, and Z. Accordingly, the rate constant k2 was replaced by k2
0 by

introducing the exponential factor exp[A/kBT], in which A was a parameter describ-

ing the lateral (here: attractive) interactions X–X, Y–Y, Z–Z, X–Y, X–Z, Y–Z in

the adsorption layer:

k02 ¼ k2 exp½Aðx; y; zÞ=ðkBTÞ� (6.21)

Expression (6.21), in which x, y, z denote electrode coverages with species

X, Y, Z, respectively, introduces to the model the additional nonlinearity which

appeared to be a mathematically sufficient condition for the onset of sustained

oscillations (for appropriate values of other parameters). As we see, in this type of

models the Flade potential and its dependence on pH of the solution at the electrode

surface, as well as the ohmic drops in the circuit, are not invoked. If we want to find

something common with the Franck–FitzHugh model, it is the assumption that the

oscillatory regime can be explained in terms of the properties of the Fe–solution

interface, without considering the instability as a feature of the entire electric

circuit.

The Electrical–Electrochemical Models

To this group of models there belong those mechanisms which take into account

both the characteristics of the Fe–electrolyte interface and the ohmic drops in the

electric circuit. Early model construction meeting both assumptions has been

described by Degn already in 1968 [44]. The mathematical construction involved

the coupling of the concentration polarization at the Fe electrode and the ohmic
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drops in a following way. Let us assume that initially the external voltage U is a bit

larger than the value sufficient to cause the anode passivation, but due to ohmic

drops the effective electrode potential E is still too negative to cause this process.

Thus, initially there flows a relatively high current which gradually decreases due to

increasing concentration polarization of species A in the solution. Below certain

critical value of the current, the electrode potential E becomes positive enough to

initiate passivation. The current then significantly drops and now the diffusion of

species A can replenish its decreased concentration in the pre-electrode layer. The

gradual increase in [A], i.e., the decrease in its concentration polarization, enhances

the current which again rises to values, for which, due to increasing ohmic drops,

the electrode potential becomes so negative that the passive layer stops to form and

undergoes only dissolution. The whole cycle repeats again. Oscillations generated

by this approach revealed relaxation shape. Although the Degn’s model did not

include explicitly the flow of capacitive current during the periodic recharging of

the working electrode, it remains a valuable historical contribution to understanding

of electrochemical oscillations.

In 1987, Russell and Newman [11] have suggested the approach that also

included the ohmic potential drops in the electric circuit, constructing the model

in which they combined the properties of the passive layer, the transport phenom-

ena of metal and Hþ ions, and variations of the solution pH. Initially, when the Fe

electrode is still in its active state, associated with the flow of current of relatively

high density, the concentration of Fe2þ ions in the pre-electrode layer increases and
the first portions of the porous FeSO4 layer are formed. A high electric field

associated with this high current accelerates migration of Hþ ions toward the

cathode; accordingly, the pH of the solution at the anode increases. Increasing

Fe2þ concentration makes the FeSO4 layer less porous and eventually it becomes so

compact that blocks the electrode surface. The current density abruptly drops,

in consequence the electric field in pores of FeSO4 also decreases, Hþ ions get

a chance to diffuse back to the Fe electrode and dissolve the passive layer. Although

the general scheme of phenomena may seem very similar to the Franck–FitzHugh

model, due to taking into account the role of varying ohmic potential drops, the

electrode potential and the distribution of the electric field vary periodically.

Thereby, in this approach the oscillations occur under more realistic conditions

that are no longer truly potentiostatic. The mathematical construction of the present

model was also more complicated than the Franck–FitzHugh model, since it was

based on partial differential equations. But even in spite of that more realistic

description, the model oscillations did not exhibit satisfactory concordance with

the experimental results and it was clear that the better understanding of the

oscillations associated with the passive/active transition requires further work.

Finally, in 1993, Koper and Sluyters [45] have developed their models which is

now quite widely used also by other researchers to simulate oscillations in passiv-

ation/dissolution systems. Its construction can be understood as substantial exten-

sion of earlier approaches: those by Franck and FitzHugh, the Russell and Newman,

and Degn, including the role of NDR. The chemical side of the Koper and Sluyters

model includes the formation of porous layer, analogous to FeSO4 in real system.
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The transport of ions in the solution includes the metal ions formed due to oxidation

of the electrode and the ions of the electrolyte. The instabilities are due to a negative

differential resistance (N-NDR type), coupled with ohmic potential drops. Koper

and Sluyters have shown the steps of development of the models, aiming to

reproduce possibly well the experimental current–time courses. Thus, introducing

in the first step only ohmic potential drops to the traditional Franck and FitzHugh

model allowed to generate oscillations, but of shapes distinctly different from the

experimentally reported dependences; moreover, the concentration of Hþ ions in

the solution might attain physically unreliable values. The main reason for that

seemed to be one of the crucial assumptions of the FFH model, namely that that

practically only Hþ ions participate in the conduction of current in the solution.

Under such crude assumption, the variations of Hþ concentration appeared to be

simply too large.

Before presentation of the mathematical side of the most sophisticated version of

these models it is useful to indicate the principles of its construction in terms of the

phase portrait that involves fast and slow dynamic variables, explaining in this way

the relaxation oscillations reported typically for the electrooxidation processes

involving active/passive transitions (Fig. 6.14) [24].

The phase diagram identifies the electrode potential E as a fast variable, and pH

(or [Hþ]) as a slow variable. Furthermore, the solid straight line in this diagram

indicates the Flade potential which is linearly dependent on pH, according to

Eq. (6.3). Let us start the oscillation cycle at point A of the diagram, when the

potential of the electrode is not too positive, and pH is sufficiently low to keep the

electrode in its active state, associated with the flow of a relatively high current.

The flow of current, carried out partly by Hþ ions, causes the local decrease of these
ions, so pH slowly increases along the A! B direction. Simultaneously, due to the

increase of the Fe2þ concentration in the solution, the precipitation of FeSO4 occurs

which causes the current to decrease. This means the stepwise decrease of the

ohmic potential drops and, in consequence, the shift of the potential of the

anodically polarized electrode to more positive values—hence the positive slope

of the AB section comes from. At point B the actual Flade potential is reached and

then the electrode undergoes passivation, the current abruptly drops which means

Fig. 6.14 The schematic

phase portrait of the

oscillatory dissolution of Fe

in H2SO4, explaining the

formation of relaxation

oscillations. The interfacial

potential drop of the anode

(E ¼ U � IRs) is plotted

against the pH of the solution

near the anode surface.

Reprinted from [24] with

permission of John Wiley &

Sons, Inc. Copyright 1996

John Wiley & Sons, Inc.
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also, due to ohmic drops, the abrupt increase of the electrode potential to even more

positive values (higher than EF), at which passivation is even stronger. This means

autocatalysis in the passivation rate, or, equivalently, autoinhibition in the sense of

the variations of the current, anyway this is a feedback loop that has to exist in the

oscillatory process. In other words, the electrode potential manifests itself here as

the autocatalytic variable. The time scale of the system’s trip along the BC section

in Fig. 6.14 is determined by the time constant of the entire circuit which is

dependent on the capacity of the double layer. The vertical course of the BC section

means that the formation of the passive layer [cf. Eq. (6.2)] practically does not

affect the local pH which assumption is quite realistic if only the monolayer of the

oxide is formed. Now, continuing at point C, the oxidation current is so low that the

(relatively slow) diffusion of Hþ ions from the solution bulk can overcome its

migration in the opposite direction. The pH of the pre-electrode layer slowly

decreases along the CD section, while the current, and hence the potential remain

roughly constant since the electrode remains passivated (note however that due to

pH changes the Flade potential becomes more positive). At point D, when the

electrode potential touches the EF value, the electrode undergoes sudden depassi-

vation: the rising current, due to ohmic drops, again autocatalytically shifts the

potential E toward less positive values, i.e., the increase of current is autocatalytic.

The cycle closes at point A from which it starts again.

The mathematical construction of the model [45] was developed for the

electrooxidation processes:

M�!k1 Mþ þ e (6.22)

Mþ 1

2
H2O�!

k2

 �
k�2

[MO1=2�ads þ Hþ þ e (6.23)

which are in fact Eqs. (6.1) and (6.2) for n ¼ 1. The individual electron transfer rate

constants k1, k2, and k�2 were assumed to follow the Tafel dependence:

k1 ¼ k01 exp½ðe� e01Þ=2� (6.24)

k2 ¼ k02 exp½ðe� e02Þ=2� (6.25)

k�2 ¼ k0�2 exp½�ðe� e02Þ=2� (6.26)

where e ¼ FE=RT and 1=2 factor indicates the value of the transfer coefficient for the
activation barrier. The electrodissolution reaction (6.22) occurs to a solution of

a strong HA electrolyte. This oxidation is assumed to occur homogeneously at the

electrode surface, so all the gradients (i.e., of the concentrations and electric

potential) develop only along the direction normal to that surface, denoted as the

x axis. In every portion of the solution (excluding the region of the electrical double

448 6 Temporal Instabilities in Corrosion Processes



layer which is not explicitly considered in the model), the electroneutrality condi-

tion is met:

½Hþ�x þ ½Mþ�x ¼ ½A��x (6.27)

These ions participate in the conduction of current proportionally to their

transference numbers, which can be defined according to Eq. (6.28), with the use

of the electroneutrality condition (6.27) for elimination of [A�]x as a variable:

tjðxÞ ¼ ½j�xli
½Hþ�xlHþ þ ½Mþ�xlMþ þ ½A��xlA�

¼ ½j�xli
½Hþ�xðlHþ þ lA�Þ þ ½Mþ�xðlMþ þ lA�Þ (6.28)

where [j] denotes themolar concentration of a given, jth ion of amolar conductivity li.
An important feature of the model is further the implementation of the formation

of MA porous salt precipitated on the electrode surface, which takes place when the

concentration of Mþ ions appearing in the solution reaches a critical value [Mþ]crit
determined by the solubility product Ks0:

½Mþ�crit½A��0 ¼ Ks0 (6.29)

where [A�]0 denotes the concentration of A� at the electrode/electrolyte interface.

Then the rate at which the salt layer dissolves into the neighboring solution

determines the rate of metal electrodissolution. Using electroneutrality condition

(6.27), one can express [Mþ]crit in an equivalent form:

½Mþ�crit ¼ �
1

2
½Hþ�0 þ

1

4
½Hþ�20 þ Ks0

� �1=2

(6.30)

In the model, it is further introduced a crude approximation that the porous layer

has the same conductivity as the solution. The Mþ ions which appeared due to

Eq. (6.22) travel through the porous layer and reach the salt film–solution interface,

but the thickness of MA layer is not considered in the model. If the resulting local

concentration of Mþ exceeds the solubility product of Ks0, M
þ ions remain there as

the component of the precipitating MA salt, otherwise, if [Mþ] ¼ 0, they dissolve

further into the bulk of the solution with unit probability. The intermediate situation

is described through the linear dependence between the rate constant of the oxida-

tion process (6.22) and the concentration ratio ½Mþ�0=½Mþ�crit, meaning that the k1
constant in Eq. (6.22) is replaced with the corrected one k�1:

k�1 ¼ k1 1� ½M
þ�0

½Mþ�crit

� �
(6.31)
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where 0 � [Mþ]0 � [Mþ]crit.
Another simplifying assumption is that for the dynamics of the electrode cover-

age y during the oscillations:

dy
dt
¼ k2ð1� yÞ � k�2y½Hþ� (6.32)

the quasi steady-state approximation dy/dt ¼ 0 can be applied, based on which the

actual, instantaneously adjustable steady-state values yss were determined.

Due to ohmic potential drops, during the oscillations the electrode undergoes

recharging to the actual potential E, associated with the flow of capacitive current.

In terms of the equivalent circuit shown in Fig. 2.6, the total current meets the charge

conservation principle, given earlier as Eq. (2.10) and for clarity repeated here:

I ¼ U � E

Rs

¼ Ic þ If ¼ ACd

dE

dt
þ If (6.33)

where Rs is the serial resistance, Cd is the differential double layer capacitance per

unit area, If and Ic are the faradaic and capacitive currents, respectively, and A is the

electrode surface. In the following, Cd will be considered potential-independent.

Finally, the concentration profiles of Mþ and Hþ ions in the diffusion layer are

linearized, so they correspond to the idea of the Nernst diffusion layer of the

assumed thickness d (cf. Fig. 2.7). Derivation of equations describing the dynamics

of surface concentrations of respective species, in terms of the Nernst layer, was

also described in Sect. 2.2.2.

Mathematical definition of the present dynamical system involves three ordinary

differential equations, given by expressions (6.34)–(6.36). They describe the

dynamics of (1) the dimensionless potential (e) of the anode; (2) the concentration
(u) of Mþ ions in the solution at the phase boundary with the porous MA layer,

and (3) the concentration of Hþ ions (h) in the same region:

de

dt
¼ v� e

r
� qk�1ð1� yÞ (6.34)

dh

dt
¼ dðhb � hÞ � thd

1=2 v� e

rq

� �
(6.35)

du

dt
¼ �aduþ d1=2ð1� yÞk�1 � tud

1=2 v� e

rq

� �
(6.36)

where: d ¼ A/d2, t ¼ 2Dt/A, v ¼ FU/RT, r ¼ 2DCdRs, q ¼ F2A1/2/2RTCd, hb ¼
[Hþ]bulk, the concentration of Hþ in the bulk of the solution, and:

a ¼ DMþ

DHþ
¼ lMþ

lHþ
¼ lA�

lHþ
(6.37)

450 6 Temporal Instabilities in Corrosion Processes

http://dx.doi.org/10.1007/978-3-642-27673-6_2#fig6_2
http://dx.doi.org/10.1007/978-3-642-27673-6_2#fig7_2
http://dx.doi.org/10.1007/978-3-642-27673-6_2#Sec11_2


th ¼ h

hð1þ aÞ þ 2au
(6.38a)

tu ¼ au
hð1þ aÞ þ 2au

(6.38b)

k�1 ¼ k1 1� u

uc

� �
(6.39)

uc ¼ � 1

2
hþ 1

4
h2 þ Ks0

� �1=2

(6.40)

In line with the above assumption, the electrode coverage y follows the assump-

tion of the steady-state, and is equal to:

yss ¼ 1

1þ k�2
k2
Þh

� (6.41)

Note that the mathematical form of Eq. (6.34) comes from the assumption that

the contribution to the faradaic current from process (6.23) is negligible. For

readers, other details of these derivations can be found in the original paper [45].

In terms of this three-variable model it is possible to obtain not only simple periodic

(Fig. 6.15), but also mixed-mode (low- and high-amplitude, MMO) and aperiodic

(chaotic) oscillations (Fig. 6.16). In these figures the current was determined

as equal to (v � e)/r quantity, based on actually calculated values of electrode

potential e(t), for external voltage v and serial resistance r treated as parameters.

In turn, Fig. 6.17 shows respective stability diagrams of the studied model,

diagnosed from the linear stability analysis, which indicated the regions of the

single stable steady-state, oscillations, and multiple steady-states.

Since parameter d is inversely proportional to the thickness of the Nernst diffusion
layer d, the diagram in Fig. 6.17a shows different dynamic modes that can be obtained

by varying the rotation rate of the disk electrode and the voltage applied. In turn,

Fig. 6.17b illustrates the conditions for respective dynamic regimes if the rotation rate

is fixed, with [Hþ] and the external voltage as the bifurcation parameters.

Another way of illustration of the dynamic instabilities is to present the depen-

dence of the current on a selected bifurcation parameter, for all other parameters

fixed (i.e., to construct the respective section of the bifurcation diagrams from

Fig. 6.17). Such diagrams, shown in Fig. 6.18, indicate either the abrupt or smooth

transition to oscillations, with their amplitude found from numerical integration of

differential equations (6.34)–(6.36).

In the opinion of Koper and Sluyters [45], their model which does not require

any discontinuity in the kinetics of the passivation/activation process, is a quite

general way of description of fundamental properties of the dynamic systems with

the electrodes undergoing electrooxidation, with the surface formation of the

inhibiting salt layer. Some simplifications, discussed above, cause of course that

6.1 Oscillations in Anodic Dissolution of Metal Electrodes 451



one should not expect a detailed concordance between the shapes of the simulated

and experimental I–t oscillatory courses; the model reproduces rather types of the
dynamic changes. Also the bistability (hysteresis) in the current–voltage response,

observed for the Fe electrode under conditions of cyclic voltage variations in the

Fig. 6.16 Complex oscillations in model (6.34)–(6.36): (a) mixed-mode oscillations (MMO) for

v ¼ 30.52, r ¼ 0.1, d ¼ 1; (b) chaotic oscillations for v ¼ 24, r ¼ 0.032505, d ¼ 0.5 and other

parameters as for Fig. 6.15. Reprinted from [45], Copyright 1993, with permission from Elsevier

Fig. 6.15 Typical oscillatory time series for limit cycle solution of model (6.34)–(6.36) with

v ¼ 30, r ¼ 0.1, hb ¼ 1.2 and other parameters q ¼ 100; k1
0 ¼ 0:01; k2

0 ¼ 0:01; k�20 ¼ 0:001;

d ¼ 1; hb ¼ 1; e1
0 ¼ 0; e2

0 ¼ 20;Ks0 ¼ 16 and a ¼ 0:2; (a) I–t behavior, (b) h–t behavior,

(c) u–t behavior and (d) y–t behavior. Reprinted from [45], Copyright 1993, with permission

from Elsevier
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Fig. 6.18 Bifurcation diagrams for model (6.34)–(6.36): full curves, stable steady-states or

minimum and maximum of stable oscillations; broken curves, unstable steady-states; Hopf Hopf
bifurcations, SN saddle-node bifurcation; shaded region MMO, region when mixed-mode

oscillations are obtained. (a) I–hb diagram, v ¼ 30, d ¼ 1; (b) I–v diagram, hb ¼ 1, d ¼ 1;

(c) I–d diagram, v ¼ 30, hb ¼ 1. Reprinted from [45], Copyright 1993, with permission from

Elsevier

Fig. 6.17 Linear stability diagrams of the Koper and Sluyters model (6.34)–(6.36) which indicate

regions of unique stable steady-state, oscillations and multiple steady-states, and associated

bifurcations (r ¼ 0.1): (a) d - v diagram for hb ¼ 1; (b) hb - v diagram for d ¼ 1. Other parameters:

Ksol ¼ 16; a ¼ 0:2; q ¼ 100; k1
0 ¼ 0:01; k2

0 ¼ 0:01; k�20 ¼ 0:001; e1
0 ¼ 0; e2

0 ¼ 20. Reprinted

from [45], Copyright 1993, with permission from Elsevier
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area of the NDR could not be obtained with the present model. Finally, as all

models described earlier, this one also assumes only the homogeneous dissolution

of the anode surface, and thus also the use of single value for the ohmic drops IRs.

In spite of all these simplifications, the usefulness of the Koper–Sluyters model lies

in its relative simplicity.

It is thus evident that more sophisticated approach to the oscillatory electrodis-

solution of iron in H2SO4 media (and other processes of that type) should involve

the role of spatial distribution of corrosion/passivation areas, with the identification

of associated local and global couplings (cf. Sect. 1.2, volume II). It is remarkable

that spatial inhomogeneities of the oscillating Fe electrode potential have been

shown already by Franck and Meunier [19]: for the anodically polarized iron

electrode, immersed in the H2SO4 þ HCl solution, there was measured not only

the electrode potential (E1), but also, using additional reference electrodes with

capillary tips, the local potentials in two different places (E2, E3). The oscillatory

variations of E1 were then associated with the nonzero differences E2 � E3, taking

a form of oscillations of different shapes than those of E1. Also the recent, above-

mentioned works of Pagitsas et al. describe the corrosion of iron in terms of the

point defect model [32–36].

Finally, Nechiporuk and Petrenko [46], using an electrochemical model of

anodic dissolution of metals in acidic media, have analyzed bifurcation properties

of steady-state solutions in relation to transport properties of the ionic species. In

particular, it was shown how an increase in migration nonequilibrium (caused, e.g.,

by the change of solution conductivity, transference numbers, etc.) may give rise to

oscillatory instability and complex bifurcation points.

6.1.3 The Oscillatory Electrodissolution of Copper

6.1.3.1 The Cu/SO4
2� System

Besides iron, copper was another electrode material, the oscillatory electrooxidation

of which was quite intensively studied in various media. Mechanisms of those

phenomena involved periodic formation and destruction of the passive layer at

the copper surface. Kawczyński, Baranowski et al. [47, 48] have reported stud-

ies for the Cu(s)–CuSO4 þ H2SO4(aq)–Cu(s) system, consisting of thin layer

(0.15–0.30 cm) solution of 0.80 M CuSO4 þ 0.46 M H2SO4 solution placed

between two horizontal flat and polished copper electrodes (Fig. 6.19). Under such

conditions, both periodic and chaotic current oscillations are observed.

Since chaos was observed for both upper and lower copper anode, the density-

driven convection, which could be present only in the former case, could not

account for that aperiodicity. Instead, the complex character of nucleation phenom-

ena in the passive (salt layer) film formation/dissolution is presumably responsible

for the chaos observed. The formation of such passive layers was later confirmed by

Inzelt [49] who has reported the oscillatory mass changes during the Cu dissolution

454 6 Temporal Instabilities in Corrosion Processes



in H2SO4 þ CuSO4 medium, manifesting itself by oscillating electrochemical

quartz crystal microbalance response. The chaotic courses were analyzed in terms

of one-dimensional Poincaré maps (Fig. 6.20) [48].

6.1.3.2 The Cu/Cl� System

The oscillatory electrooxidation of Cu anode in HCl or NaCl solutions has been

studied since 1920s of the twentieth century [50–53] and some attempts to explain

the mechanisms of these oscillations were made by Cooper et al. [54]. Here we shall

focus on more recent studies of these oscillations in various acidic chloride

solutions, performed by Lee et al. [55, 56], using rotating disk copper electrode.

Fig. 6.19 The

electrochemical cell and

electrical circuit. 1—Cu

anode; 2—Cu cathode;

3—reference electrode;

4—CuSO4 + H2SO4 solution;

5—thermostat;

6—potentiostat; 7—recorder.

Reprinted from [48] with kind

permission of Oldenbourg

Verlag
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Fig. 6.20 One-dimensional

Poincaré map for chaotic

oscillations at U ¼ 0.155 V;

An+1 and An denote the

consecutive and previous

current amplitudes,

respectively. Reprinted from

[48] with kind permission of

Oldenbourg Verlag
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Typical dynamic I–E characteristics of the studied system, indicating the region of

oscillations, are collected in Fig. 6.21 [55].

Concerning the chemical mechanism of these oscillations, it is well-known that

interaction with chloride ions significantly stabilizes the first oxidation state of

copper. Accordingly, two Cu(I) species were initially considered as the main

components of this layer: Cu2O and CuCl. Results obtained for the rotating disk

copper electrode have suggested that formation of CuCl was thermodynamically

favorable, compared to Cu2O, and hence CuCl should be considered a crucial

compound forming during Cu anodic oxidation under such conditions. For the

oscillations, it is also necessary that CuCl film on the Cu surface is sufficiently thick.

Analogously to Fe–H2SO4 system, for which the formation of porous FeSO4

layer was considered, now the formation–dissolution mechanism of the porous

CuCl film was suggested as the source of the oscillations. In the presence of this

film, the transport of Cuþ ions into the solution and of Cl� ions from the solution to

the interface has to occur. The difference in the chemical mechanism is that CuCl

can undergo dissolution due to complexation with excess Cl� ions. Thus, the

CURRENT DENSITY (mA / cm2)

P
O

T
E

N
T

IA
L 

(m
V

 v
s 

S
C

E
)

500

400

300

200

100

0

 –100

–200
0.1 1 10 100

1000 rpm

0.1 M Cl–

0.2 M Cl–

0.5 M Cl–

1 M Cl–

Fig. 6.21 Anodic polarization of Cu in 0.1 M NaCl + 1 N H2SO4, 0.2 M NaCl + 1 N H2SO4,

0.5 M NaCl + 1 N H2SO4, and 1 M HCl. Sweep rate: 0.5 mV/s. Reproduced from [55] by

permission of The Electrochemical Society
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following main processes are considered the basis for the electrochemical

oscillations in the Cu–Cl� system (for [Cl�] < 1 mol/dm3):

1. Formation of the CuCl surface film.

CuðsÞ þ Cl�ðaqÞ ! CuClðsÞ þ e (6.42)

2. Dissolution of CuCl through transformation to soluble complex species.

CuClðsÞ þ Cl�ðaqÞ ! ½CuCl2��ðsÞ (6.43)

½CuCl2��ðsÞ ! ½CuCl2��ðaqÞ (6.44)

At Cl� concentrations higher than 1 mol dm�3 the formation of higher Cu(I)

complexes, like [CuCl3]
2�, should be also taken into account. Also, at relatively

high electrode potentials the oxidation process: CuCl! Cu2
þ
ðaqÞ +Cl�ðaqÞ + e should

be considered.

Noteworthy, the rate of formation of CuCl(s) [Eq. (6.42)] is dependent on the

transport of Cl� toward the Cu surface and thus it is dependent on the thickness of

CuCl film, while the rate of CuCl dissolution [Eqs. (6.42) and (6.43)], as occurring

at the film/solution interface, is independent of the film thickness. Since reaction

(6.43) is much faster than the desorption step (6.44), hence the summary process

(6.43) þ (6.44) constitutes a mass transfer-limited nonelectrochemical reaction.

Oscillations mean of course that the exact balance between the CuCl film forma-

tion and dissolution does not exist. Then thickness of the CuCl film changes periodi-

cally, which causes the analogous variation of the rate of transport of Cl� ions

through this film. When its thickness is relatively high, the flow of Cl� ions toward

the electrode surface is slowed down and, accordingly, the Cu oxidation current is

then low. But low anodic current means so slow formation of CuCl, that its dissolu-

tion, both direct and through complexation with Cl� ions, may become

predominating. After some time, when the CuCl film becomes thin enough, the

transport of Cl� ions through it becomes so efficient that the current significantly

increases. This in turn means the increased production of CuCl which after some time

causes the decrease of the current, etc. Pearlstein et al. [56] have built up the

respective mathematical model of this mechanism for the simplified geometry of

the electrochemical system, studied at the rotating disk electrode. Partial differential

equation, i.e., the Fick’s law was used for calculating the diffusion of Cl� ions along a
single coordinate, normal to the electrode surface. The “steady film solution” was

obtained, i.e., the conditions under which a CuCl film of constant thickness exists on

the Cu surface. Furthermore, using linear stability analysis, the conditions were

found, under which the film thickness and current density will be oscillatory functions

of time. Details of this procedure can be found in the original paper [56].

From the point of view of nonlinear dynamics, the electrodissolution of copper

in acidic chloride solutions is a process exhibiting a variety of complex behaviors,

as Bassett and Hudson have reported [57–59]. These complex regimes include,
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besides simple oscillations, also: type III intermittency, period doubling to chaos,

Shil’nikov chaos, and quasi-periodicity.

Later, Gu et al. [60, 61] have published the studies of the oscillatory

electrooxidation of copper electrode in contact with aqueous solution of NaCl

and KSCN. The system is chemically more complicated through the possible

formation of the mixed CuCl and CuSCN film.

6.1.3.3 The Cu/H3PO4 System

The Cu/H3PO4 system became one of the most systematically studied examples of

the oscillatory anodic dissolution of metals, starting from the first report by Jacquet

in 1936 [62]. Among more recent reports, works by Glarum and Marshall [63, 64],

systematic investigations performed by Albahadily and Schell [65–67], and

selected works of other researchers deserve a brief description here. In contrast to

the Fe/H2SO4 system, the anodic potentiodynamic voltammograms of Cu dissolu-

tion in 85% phosphoric acid, studied at the rotating Cu disk electrode, do not exhibit

clear transition from the active to passive region, and in spite of that the current

oscillations occur at the quasi-plateau of the anodic current (Fig. 6.22) [63].

In turn, Fig. 6.23 shows typical oscillatory I–t courses, recorded under

potentiostatic conditions.

Furthermore, the anodic current plateau, although proportional to the square root

of the disk rotation rate, according to Levich equation [68]:

ilim ¼ 0:62nFAD2=3o1=2n�1=6c0 (6.45)

[cf. also Eq. (4.7)] appears to be only apparently dependent on bulk Cu2þ concen-

tration. In fact, after correction for the solution viscosity (v) this anodic plateau

becomes no longer dependent on bulk [Cu2þ] (cf. also earlier experiments by

Edwards [69]). In the opinion of Glarum and Marshall [63], this points on the

role of depletion of water, consumed in the boundary layer, when the Cu2þ ions,

appearing due to Cu disk oxidation, undergo hydration and in this way bind

significant amount of water molecules.

In their mechanistic interpretation, Glarum and Marshall clearly associate the

oscillations with the NDR characterizing the studied system. Although this negative

resistance is not directly visible (i.e., it is hidden) at the dc I–E curves of the anodic

copper dissolution, it manifests itself in the impedance measurements, made for the

potential region III in Fig. 6.24 [64]. Exemplary admittance spectrum is shown in

Fig. 6.25. The axis of real negative admittance is intersected for low, but nonzero

frequency of the ac voltage, which is a criterion for the oscillations that would set in

if sufficiently high ohmic serial resistance moves the plot to the right, so that the

intersection point overlaps with the origin of the coordinate system (see Sects. 3.3

and 3.4).
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In consequence, the coupling of this negative resistance with ohmic potential

drops in the electrolyte is a cause of oscillatory instability under potentiostatic

(U ¼ const) conditions [63]. If the ohmic potential drops are too small to cause this

instability, i.e., for the Cu disks of a small diameter or for low disk rotation speeds,

the oscillations are not observed. Under these conditions they however can be

recovered if sufficiently large, external serial ohmic resistor is inserted in the circuit

of the Cu electrode. This clearly confirms the crucial role of ohmic potential drops

in generation of the oscillations discussed.

This negative resistance is caused most probably by the formation of film

passivating the copper surface, with the current oscillations reflecting the periodic

formation/destruction of this film. This view is strongly corroborated by the in situ

ellipsometric measurements, made by Tsitsopoulos et al. [70] who have found strict

correlation between the period of current oscillations and the variation of the

thickness and composition of the surface film. Furthermore [71], using X-ray

photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) they

Fig. 6.22 (a) Anodic sweep voltammograms at 24 mV/s of a 1/4 in. diam. rotating copper disk

electrode in 85% phosphoric acid. For plots a–c, the disk rotation speeds are 100, 225, 400 rad/s.

The shaded regions indicate areas swept by oscillations. (b) Cathodic sweep voltammograms

complementing the anodic sweeps. Reproduced from [63] by permission of The Electrochemical

Society
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Fig. 6.23 Oscillation waveforms seen for a ¼ in. diameter copper electrode in 70% phosphoric

acid. For curves a–f, the disk rotation speed is 300 rad/s and mean IR-corrected potentials are 0.36,
0.38, 0.40, 0.42, 0.54, and 0.56 V. Waveform g was found when the rotation speed was raised to

400 rad/s for the potentiometer setting giving waveform f. The corrected mean potential is 0.49 V.

Reproduced from [63] by permission of The Electrochemical Society

Fig. 6.24 Voltammetric behavior of the Cu/H3PO4 interface measured at 20 mV/s sweep rate and

100 rad/s disk rotation. Reproduced from [64] by permission of The Electrochemical Society
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established the chemical composition of the layer occurring at the copper surface

during the oscillations as essentially Cu2O. The porous nature of the Cu2O film was

postulated as the explanation for the absence of complete passivation, with the

pores filled with the hydroxide species Cu(OH)2. It was found that during the

oscillations, when the current drops to relatively low values (corresponding to

the passive state of the electrode), the amount of Cu(OH)2 increases, compared to

that of Cu2O. On that basis it was suggested that Cu(OH)2, as the poorly conducting

phase, is the species blocking the electrode surface. In consequence, the oscillatory

cycle is associated with the periodical formation and dissolution of Cu(OH)2,

caused by periodical changes of pH of the boundary layer which, in turn, are caused

by the changes in the migration current, carried largely by hydrogen ions. This

explanation of oscillations, limited to the chemical processes at the interfaces, does

not however include the instability of the entire electric circuit, in which ohmic

potential drops should also be considered.

In spite of certain chemical complexity of the system considered, Albahadily and

Schell [65–67] have performed both experimental and theoretical, extensive sys-

tematic studies of oscillations for the Cu/H3PO4 system, leading to the elaboration

of the bifurcation structure of reported instabilities. The bifurcation diagrams were

constructed in the coordinate system: applied external voltage–disk rotation speed,

the latter parameter determining the thickness of the diffusion layer.

Nonlinear Dynamic Features of the Cu/H3PO4 System [65]

It appeared that in order to obtain satisfactorily reproducible results, it was necessary

to decrease the sample temperature to ca. �24�C, presumably due to the lower

amplitude of oscillations which at such temperatures decreases for about order of

magnitude, compared to typical room temperature [67]. Then the copper electrode is

Fig. 6.25 Admittance plots for the low frequency dispersion in region III. Curves a–f correspond
to potentials 0.30–0.55 V in 0.05 V increments. The plotted frequency range is 1–1,000 Hz with

1 Hz (triangles), 10 Hz (squares), and 100 Hz (circles) point shown. Disk rotation: 100 rad/s.

Reproduced from [64] by permission of The Electrochemical Society
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expected to dissolve rather smoothly, compared to the large amplitude oscillations,

when the current may reach such high values that it causes too extensive etching of

the copper surface. Figure 6.26 shows a simple bifurcation diagram, obtained for

�17.5 �C [65] in which however complex dynamics are included.

One should note different bifurcation scenarios if the solid and the dashed lines

are crossed in this diagram. If the left solid line is crossed from the left (SS states) to

the right (SO states), first the small amplitude, sinusoidal oscillations are observed

(like those visualized at the bottom of the inset in Fig. 6.26) which only further

develop into large-amplitude oscillations. This indicates the supercritical Hopf

bifurcation. In turn, if the system is moved away from the steady-state SS toward

SO region from the right to the left, crossing the right dashed line in Fig. 6.26, large

amplitude oscillations are observed, but the detailed scenario of their appearance is

complex: (1) close to the regions boundary, the oscillations are of the mixed-mode

type (see upper course in the inset of Fig. 6.26), (2) upon moving inside the

oscillatory region, different periodic behaviors were observed, each consisting of

a mixture of both large and small amplitude (i.e., MMO) oscillations, and (3)

finally, oscillations consisting of only single peaks persist. One should add that

bistable behavior was not observed, either due to its nonexistence or inability to

detect under given conditions.

A sequence of dynamic events occurring upon moving from the point A to B was

analyzed in detail. Upon increasing voltage, the initial single-peak, large amplitude

Fig. 6.26 Measured boundaries in the parameter plane, rotation speed vs. the potential set for the

working electrode that separate the region for which sustained oscillations (labeled SO) were observed

from the region for which only stable stationary states were found (labeled SS). Solid lines consist of
points at which Hopf bifurcation occurred; dashed lines consist of points at which the mixed-mode

(MMO) oscillations appear. Temperature ¼ �17.5 �C. The small amplitude oscillations shown in the

insetwere observed just inside the solid portion of the boundary: rotation speed ¼ 2,200 rpm, potential

¼ 427 mV, maximum absolute value of the current ¼ 1.4 mA, minimum value ¼ 1.2 mA. The

waveform consisting of large and small amplitude oscillations was measured just inside the dashed
portion of the boundary: rotation speed ¼ 7,000 rpm, potential ¼ 567 mV, maximum absolute value

of the current ¼ 5.8 A, minimum value ¼ 1.4 mA. The dynamics of the system, studied along the

section A–B, are described further in the text. Reprinted with permission from [65]. Copyright 1988

American Institute of Physics
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oscillations at point A turned into various, both periodic and aperiodic, mixed-mode

oscillations, with the average number of small amplitude oscillations increasing

until only periodic small amplitude oscillations remained. Upon further movement

toward point B, the amplitude of these oscillations gradually decreased up to the

point of the Hopf bifurcation where only the stable steady-states survived.

Figure 6.27a shows the exemplary course of mixed-mode oscillations and the

corresponding phase trajectory (Fig. 6.27b, c), just before reaching the bifurcation

point between A and B points in Fig. 6.26. In turn, the horizontal dashed line in

Fig. 6.27a, following the oscillatory course, indicates the steady-state current that

stabilizes just after crossing this bifurcation point; one can suppose that this current

is close to the unstable steady-state around which the current oscillates just before

the Hopf bifurcation.

This portrait shows clearly how the phase trajectory, after making an extensive

trip in the phase space, is injected into a small neighborhood of the unstable steady-

state (fixed point, the parameters of which are close to the value of the current

indicated by the dashed line in Fig. 6.27a) and then spirals away which motion

corresponds to oscillations of increasing amplitude. The enlarged crucial portion of

such trajectory is shown in Fig. 6.27c. It is illustrative to look at this type of

dynamics also in terms of the trip of the system’s state between the two surfaces

of the folded manifold, like that shown in Fig. 6.28.

Such a dynamic behavior is strictly related to the existence of the so-called

homoclinic orbit (i.e., literally “the orbit from the same bed”) which means an orbit

of infinite period that begins at the fixed point and returns to it after the trip in the

phase space (cf. Chap. 1). Strictly speaking, the phase portrait in Fig. 6.27b, c

Fig. 6.27 (a) Measured current I plotted as a function of time. Rotation speed ¼ 2,425 rpm,

U ¼ 488.05 mV. Dashed curve represents the unstable stationary state value of the current.

(b) Phase trajectory constructed from time series in (a). Axes are labeled: 1 ¼ I(t + 2T),
2 ¼ I(t), 3 ¼ I(t + T); T ¼ 0.75 s. (c) An enlargement of the surface [labeled A in (b)] on

which the orbit spirals away from the fixed point (the position of the fixed point is a the center

of the spirals). Reprinted with permission from [65]. Copyright 1988 American Institute of Physics
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corresponds to nearly homoclinic conditions, since the trajectory is reinjected not

exactly to the fixed point, but to its close neighborhood. This injection is faster than

the slow local spiraling motion away from this unstable fixed point (unstable focus).

Thus, the mixed-mode oscillations are related to the phase trajectories of a

homoclinic type. Furthermore, such dynamic characteristics are close to the condi-

tion of generation of the so-called Shil’nikov chaos or homoclinic chaos (see also

Sect. 1.9.2).

Similar MMO sequences, as for the electrochemical Cu/H3PO4 system, were

found in both homogeneous and other heterogeneous oscillators: in the former ones

the flow rate in the flow reactors (CSTR) plays a role of a bifurcation parameter

analogous to, e.g., to the voltage applied between the electrodes in electrochemical

systems. The formal similarity of MMO sequences does not necessarily mean

exactly the same mechanism underlying their creation. Nevertheless, analysis of

MMO reported for various systems allows one to categorize them as belonging to

two classes [66]: (1) “periodic–chaotic sequences” meaning alternate occurrence of

periodic and chaotic patterns and (2) periodic “Farey sequences.” Both these

scenarios were reported for the homogeneous Belousov–Zhabotinsky reaction:

the periodic–chaotic sequence was reported by Hudson et al. [73] while the Farey

one by Swinney and Maselko [74–76]. Here, we shall briefly characterize attaining

the chaotic regimes for the copper electrodissolution in H3PO4 solution.

Route to Chaos Through Period-Doubling Bifurcations

One of the dynamic scenarios found in the SO region of Fig. 6.26 was the transition to

chaos through the sequence (“cascade”) of period-doubling bifurcations upon increas-
ing voltage, analogously to those observed in the logistic map upon increasing

parameter r (Sect. 1.9). The corresponding phase portraits were constructed using

the time-delay (T) method in the three-dimensional space: [I(t), I(t þ T), I(t þ 2T)].
Figure 6.29 shows the obtained images projected onto the [I(t þ T), I(t)] plane.

The deterministic nature of chaotic courses was confirmed in the following way.

The three-dimensional phase portraits were found to cross the plane, I(t þ 2T) ¼
�1.40 mA. The current at (n þ 1)th intersection, I(n þ 1), was plotted against I(n)
at nth intersection: I(n þ 1) ¼ F[I(n)] and a one-dimensional maps were obtained,

the course of which, possessing an extremum, was typical of deterministic chaotic

dynamics (Fig. 6.30) (cf. similar map in Fig. 6.20).

Systematic studies led to constructing the phase diagram showing the sequence

of period-doubling bifurcations upon increasing voltage (Fig. 6.31).

Fig. 6.28 The schematic

representation of the system’s

dynamics corresponding to

the homoclinic trajectory

(after [72], reprinted with

permission, Copyright 1993

American Chemical Society)
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A Periodic–Chaotic Sequence and the Tangent Bifurcation

The analysis of experimental data collected by Schell and Albahadily [67] led them

to the diagnosis of the bifurcation scenario in the periodic–chaotic sequence: its

periodic regimes are entered by way of tangent bifurcations and disappeared

through period-doubling bifurcations. In order to understand those phenomena

and, by the way, notice again their universalities in nonlinear systems, one can

refer to the famous logistic map (1.138): xnþ1 ¼ axn(1 � xn). One of the most
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t +

 T
)

I(
t +

 T
)

I(
t +

 T
)

a

b

c

Fig. 6.29 Phase trajectories

constructed from the time

series data, shown projected

into the [I(t), I(t + T)] plane;
T ¼ 0.73 s. (a) A period-2

orbit for U ¼ 487.05 mV,

(b) a period-4 orbit for

U ¼ 487.65 mV; (c) an

aperiodic orbit for

U ¼ 487.90 mV. Rotation

speed ¼ 4,600 rpm.

Reprinted with permission

from [65]. Copyright 1988

American Institute of Physics

Fig. 6.30 One-dimensional

maps (a) U0 ¼ 445.1 mV,

(b) U0 ¼ 445.0 mV, rotation

rate ¼ 4,600 rpm. The maps

demonstrate that the apparent

random behavior is

deterministic: for any I(N),
the maps give I(N + 1). The

presence of the extremum

implies that the deterministic

dynamics is chaos. Reprinted

with permission from [65].

Copyright 1988 American

Institute of Physics
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intriguing features of this map, which exhibits route to chaos through the cascade of

period-doubling bifurcations is the existence (temporal revival) of periodic behav-

ior (i.e., periodic windows) within the chaotic regime, when the bifurcation param-

eter is changed (see Fig. 1.39a). The most intriguing is the window with period-3

cycle, existing for 3.8284. . . < r < 3.8415. . . The period-3 cycle means that any

point p in this cycle repeats every three iterates: p ¼ f(f(f(p))) � f3(p) and is

therefore a fixed point on the third-iterate map. Figure 6.32 shows such third-

iterate map xnþ3 ¼ f3(xn) which corresponds to a ¼ 3.835 [77].

The intersections of this map with the straight line indicate eight points, of which

six, indicated by dots in the figure correspond to period-3 cycle (other two are period-1

points). Stable period-3 cycles are denoted by (•), while unstable by (o). Now, if a is
slightly decreased from 3.835 toward chaotic regime, the maxima become lower and

the minima become less deep, so the curve pulls away from the diagonal. For a ¼ 3.8

all its six intersections with a diagonal will already not exist. So, somewhere between

a ¼ 3.835 and a ¼ 3.8, and exactly for a ¼ 1 þ √8 ¼ 3.8284. . ., the f3(x) mapmust

have become tangent to the diagonal, meaning therefore the occurrence of tangent
bifurcation in which stable and unstable period-3 cycles coalesced and annihilated

[77]. In fact, the tangent bifurcation is a kind of a saddle-node bifurcation.

Coming back to specific characteristics of the Cu/H3PO4 system, the transition

between various dynamic modes, involving periodic and chaotic MMOs, are

visualized in the phase diagram shown in Fig. 6.33 [67]. The notation Ls means

the number of large amplitude oscillations (L) followed by a number (S) of small

amplitude oscillations. An inspection of this diagram reveals, among others, the

periodic–chaotic sequences. Further details of these transitions can be found in the

original paper [78].
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The Farey Sequence [79]

John Farey, a British geologist, has published his concept in 1816, in the Philo-
sophical Magazine. The Farey sequence is a term from the number theory, which

orders all rational numbers between 0 and 1 according to a specific rule. The Farey

sequence of order n is a sequence of fractions between 0 and 1, arranged in order of
(usually) increasing size, in which the denominator does not exceed n.

For example, the Farey sequence of orders 1–5 are, respectively:

F1 ¼ 0

1
;
1

1

� �

F2 ¼ 0

1
;
1

2
;
1

1

� �

F3 ¼ 0

1
;
1

3
;
1

2
;
2

3
;
1

1

� �
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1
;
1
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;
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;
2

3
;
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;
1

5
;
1

4
;
1

3
;
2
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;
1

2
;
3

5
;
2

3
;
3

4
;
4

5
;
1

1

� �
ð6:46Þ

The construction of Farey sequence of order n is very simple and begins from the

list consisting of {0/0} and {1/1} fractions. Then, between every two fractions one

inserts the fraction, the numerator of which is a sum of their numerators, and

Fig. 6.32 Principle of the tangent bifurcation illustrated by the third-iterate logistic map (1.138)

for a ¼ 3.835
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the denominator is the sum of the denominators. One continues this procedure until

the set of fractions of sufficiently small denominators is exhausted, bearing in mind

that for the sequence of order n the maximum value of a denominator must not

exceed n.
Let us learn some terminology related to Farey sequences. The neighboring

fractions in the Farey sequence are named a Farey pair. One of important properties

of such a pair is the Farey sum: ðp1=q1Þ 	 ðp2=q2Þ ¼ ðp1+p2Þ=ðq1+q2Þ which is the
fraction which will first appear between p1=q1and p2=q2 in the Farey sequence of the
order (q1 þ q2). The ðp1+p2Þ=ðq1+q2Þfraction is therefore called the Farey mediant
of p1/q1 and p2/q2. In other words, the new term in the Farey sequence is a mediant

Fig. 6.33 (a) Phase diagram depicting the regions in the parameter plane, rotation speed at the

working electrode vs. the potential set at the working electrode, for which different behaviors were

observed. (b) An enlargement of a region in (a). LS ¼ periodic mixed-mode state, L ¼ 1, S ¼ 1, 2,

. . .,6; (LS)2 ¼ subharmonic of a mixed-mode state, wM ¼ chaotic mixed-mode state; SS ¼ station-

ary state; P1 ¼ small amplitude periodic oscillations; P2 ¼ subharmonic of P1; P4 ¼ second

subharmonic of P1; w ¼ chaotic state with small-amplitude oscillations; TC ¼ approximate loca-

tion of the curve at which the transition from small amplitude chaos to chaotic MMOs occurred.

Mesh size: rotation speed, 50–100 rpm through large windows and 1–10 rpm near boundaries;

potential, 1.0-2.0 mV through large windows and 2.5 
 10�2 mV near boundaries. Boundaries

should only be considered to represent general trends; themesh size is too large to capture the small-

scale turns. Reprinted with permission from [67]. Copyright 1989 American Institute of Physics
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of its neighbors. In fact, if p1/q1 ¼ 1/3 and p2/q2 ¼ 1/2, then in the Farey sequence

of order 5 we find the term 2/5 in the predicted place [cf. Eqs. (6.46)].

Which is the connection of the Farey scheme with the mixed mode oscillations?

Under appropriate experimental conditions, it was found that the change in the

applied voltage (the bifurcation parameter) results in increasing complexity of

oscillations in a way following the Farey arithmetics. These dependences can be

visualized in a form of a Farey tree shown in Fig. 6.34 where the pattern of each

state is the concatenation of the patterns of a pair of states above it, one on either

side. As above, the notation L1
S1L2

S2 ::: means the state consisting of L1 large

oscillations, followed by S1 small oscillations, followed by L2 large oscillations,

followed by S2 small oscillations, etc.

A correspondence between the mixed mode oscillations and the rational num-

bers forming the Farey sequence is established as follows: if one period of a state

consists of a total of L large amplitude oscillations and S amplitude oscillations,

then one assigns to that state Ls the firing number p/q:

p

q
¼ S

Lþ S
(6.47)

having a sense of the fraction of the small oscillations. Since both the number of

small oscillations per period and the total number of oscillations are additive under

concatenation of patterns, the firing number of the Farey mediant of two states in

Fig. 6.34 is the Farey sum of the firing numbers of its parents [66].
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Fig. 6.34 A portion of the Farey tree constructed of observed states. States marked with a star
were observed for only four to six cycles. Most other states were observed for many more cycles.

The working electrode potential increases to the right (not to scale), while the vertical dimension is
used only for diagrammic convenience. Reprinted with permission from [66]. Copyright 1989

American Institute of Physics

6.1 Oscillations in Anodic Dissolution of Metal Electrodes 469



For the sake of generalization of nonlinear dynamic characteristics, one should note

that, similarly as in the case of the periodic–chaotic sequences, described above, the

Farey sequencewas found byMaselko and Swinney [75, 76] also in the characteristics

of the mixed-mode oscillations of the homogeneous Belousov–Zhabotinsky (BZ)

reaction, from which works the interpretation of MMOs in terms of Farey concept

originates. However, there are also differences in the detailed dynamics underlying the

Farey sequences. For the BZ reaction, Maselko and Swinney have proposed the

explanation based on the phase locking on a torus, involving two intrinsic frequencies

of the system. The torus, corresponding to quasiperiodic oscillations, evolves from the

single steady-state through two successive Hopf bifurcations. For Cu/H3PO4 system,

themixed-mode oscillations characterizedwith the Farey sequencewere not related to

the torus trajectory. Experimentally, it was proved by the separation between the

quasi-periodic regime andMMOs through the small-amplitude chaos. In other words,

before the onset of MMOs, the torus trajectory disappeared.

The above studies of Albahadily et al. were based on dc studies of the oscillatory

Cu/H3PO4 system. Later developments in its stability analysis (including the

acetate buffer medium) involved also impedance spectroscopy, as Kiss et al. have

reported [80]. The Nyquist (complex plane) spectra were recorded for different

electrode potentials, including the values close to the points of the Hopf

bifurcations, also in the absence of external serial resistance. The critical

frequencies, by which oscillations emerged at the bifurcation points, were deter-

mined. In this work, the nontraditional construction of phase diagrams was

suggested, in which typically used external voltage U was replaced by the true

electrode potential (E) which is a dynamic variable, and not a bifurcation parame-

ter. The other parameter was the external resistance. In the opinion of the authors,

the advantage of such novel construction of phase diagrams lies in their indepen-

dence of cell geometry, so the experiments made in different laboratories can be

more easily compared. For the Cu–H3PO4 system, the corresponding diagram

between E and the (reciprocal) value of critical resistance at which Hopf bifurcation

occurs (leading to or canceling the oscillations, respectively) is shown in Fig. 6.35a.

In turn, Fig. 6.35b shows the diagram involving angular frequencies at the bifurca-

tion points.

Following the above concept, Kiss et al. [81] have used the Cu–H3PO4 system to

test numerical simulations aiming to investigate how this type of phase diagrams

changes with the surface area (electrode radius) and the rotation rate of an elec-

trode. Based on linear stability analysis of a general, two-variable model for NDR-

type electrochemical oscillators, the scaling relationship was proposed. This scal-

ing law predicted that all scaled data points derived from the critical values of

parameters (resistance and electrode potential) characterizing the onset of

oscillations should fall—independently of the size of the electrode and the rotation

rate—on a single plot. Strictly speaking, this analysis refers to the NDR-type

oscillatory systems exhibiting supercritical Hopf bifurcation. The reader interested

in the details of this analysis is advised to consult the original reference, while here

we shall limit our considerations to most important conclusions. Mathematical

derivations referred to the skeleton model of the N-NDR oscillator, suggested by

Koper and Sluyters [cf. Eqs. (2.29) and (2.31)] [82], combined with the conditions
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for the range of mass transfer region in the steady-state, reached at the rotating disk

electrode. Then, linear stability analysis predicts that the locus of a Hopf bifurcation

varies with the electrode rotation rate v according to the dependence:

RHA� CðEssÞ ¼ DðEssÞ
v1=2

(6.48)

where A is the electrode surface, v is the rotation rate of the disk electrode, RH is the

solution resistance at the Hopf point and:

CðEssÞ ¼ � 1

nFc0
dkðEÞ
dE

h i
ss

(6.49)

DðEssÞ ¼ � kðEssÞb
nFc0Do

dkðEÞ
dE

h i
ss

(6.50)

with b being the appropriate constant. The essential scaling relationship [Eq. (6.48)]

was verified by both numerical calculations involving the three-variable

Koper–Gaspard [83] model and the electrochemical dynamical system experimen-

tal studies of Cu–H3PO4 system.

At the end of section devoted to oscillatory Cu dissolution, we shall mention a

recent paper by Karantonis et al. [84] who studied oscillatory electrodissolution of

copper in trifluoroacetic acid (TFA), by means of dc voltammetry and impedance

spectroscopy. In the dc experiments, involving the copper disk electrode, the

potentiodynamic I–E studies have indicated the oscillations which set in upon

increasing anodic potential via a supercritical Hopf bifurcation. In impedance

measurements, finding the specific frequency at which this process resonated with

the input signal was correlated with the characteristics of neural resonators as

natural band-pass filters. The Bode and the Nyquist plots, constructed for the

electrode potentials close to the supercritical Hopf bifurcation point, have indicated

that the minimum values of the total impedance (meaning the situation close to

resonance) was observed for the ac frequency range o ¼ 0.8–3 Hz. Also,

Potkonjak et al. [85] have reported for this system, occurring in a part of limiting

current region, a rich variety of dynamical responses, depending on temperature

and applied potential, including mixed-mode oscillations. Changes of the electrode

surface structure and morphology were investigated by X-ray diffraction spectros-

copy, atomic forced microscopy, and optical microscopy.

Finally, electrochemical oscillations were reported also for the copper-based

alloys. For example, Hurtado et al. [86] have described open circuit potential

oscillations for some Cu–Al and Cu–Ag–Al alloys in contact with NaOH solutions.

The oscillations were explained in terms of fast Al dissolution, altering the main Cu

dissolution/passivation process, and the slow transportation of produced aluminate

to the solution bulk, meaning thus their temporal accumulation at the interface.
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6.1.4 Oscillatory Dissolution of Nickel in H2SO4 Medium

6.1.4.1 Experimental Studies

The electrodissolution of nickel in aqueous solutions of sulfuric acid is an interest-

ing and important example of the process exhibiting complex dynamics. This

process has been quite intensively studied, starting from Hoar and Mowat in 1950

[87], through papers by Osterwald from 1960 and 1962 [88, 89], up to more recent

studies, published by Lev et al. in 1988 and 1989 [90–92].

For the Ni/H2SO4 system, the instabilities described in this section were reported

for the transpassive region, denoted as D in Fig. 6.36, i.e., for the potential region

between the region of a passivated electrode surface (C) and the region of oxygen

evolution (E).

According to Fig. 6.36, the destruction of the passive layer precedes the oxygen

evolution and, furthermore, between regions D and E there occurs a secondary

passivation, leading to the second region of a negative resistance there. Inves-

tigations of Osterwald were based on parallel connection of a potentiostat and a

galvanostat, with the possibility of a rapid switch of the operation modes between

these devices. The advantage of such experimental methodology will be explained

in view of Fig. 6.37, which shows the polarization curve recorded by Osterwald and

Feller [88] under potentiostatic conditions [90].

First the I–E characteristics of the transpassive region, visualized in Fig. 6.37,

were determined. Next, using the potentiostat, the electrode potential was

established at a value corresponding to the positive slope of I–E curve. Then the

Fig. 6.36 Typical polarization curve of the anodic Ni dissolution in H2SO4. Region A:

potential region of active dissolution; Region B: primary passivation; Region C: passivated

electrode; Region D: transpassive dissolution; Region E: oxygen evolution. Reprinted

from [24] with permission of John Wiley & Sons, Inc. Copyright 1996 John Wiley &

Sons, Inc.
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system’s control was switched to galvanostatic, with the galvanostat set previously

at a value of current identical with that measured in the potentiostatic mode.

Depending on the choice of the potential, three major dynamical behaviors were

observed by Osterwald [88]:

1. If the potential was chosen between the points A and B, or between A0 and B0 in
Fig. 6.37, in the galvanostatic mode the sustained electrode potential oscillations

set in (see Fig. 6.38a).

2. If the potential was lower than at point A or higher than at point A0, damped

oscillations set in, in course of which the system asymptotically returned to the

originally chosen electrode potential (Fig. 6.38b).

3. If the potential was placed between points B and B0, no oscillations in the

galvanostatic mode were observed, but the potential jumped onto the right-

hand ascending branch. As Koper indicates in his review [24], this behavior,

reported by Osterwald in 1960, was probably the first clear manifestation of a

homoclinic bifurcation in an electrochemical system, although that time such

terminology, specific for nonlinear dynamics, was not yet being in use in

chemistry. In fact, one can interpret this potential jump as the beginning of the

oscillation leading however to the collision of a limit cycle trajectory with the
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saddle point on a negative branch of the I–E curve, unstable under galvanostatic

conditions. In consequence, the limit cycle is destroyed, and the system moves to

another stable steady-state, placed on the stable, ascending branch of the I–E
characteristics. Such a decay of oscillations is qualified as a saddle-loop

(or homoclinic) bifurcation, described in Sect. 1.4.3 (Fig. 1.24). Here, we shall

illustrate this sequence of events in terms of another schematic diagram which

shows first the birth of oscillations via a supercritical Hopf bifurcation and then

their decay due to a homoclinic bifurcation (Fig. 6.39).

Note that the homoclinic bifurcation is one of the infinite-period global

bifurcations, meaning that the oscillation period increases to infinity upon

approaching the bifurcation point. Figure 6.40 shows the elongation of the oscilla-

tion period for the Ni/H2SO4 system, when the external voltage is increasing up to

critical value. The additionally reported hysteresis in the system’s dynamics will be

explained later in this section.

Based on Figs. 6.38 and 6.40 one immediately concludes that anodic oxidation

of Ni electrode in H2SO4 medium exhibits oscillations of the electrode potential

under galvanostatic conditions, as well as the oscillations of current under

potentiostatic conditions, in the latter case in the presence of appropriate serial

ohmic resistance. This qualifies the system considered as the HN-NDR type

oscillator (i.e., with hidden N-shaped negative resistance). Thus, one can expect

that impedance studies will reveal the existence of its negative real part at interme-

diate frequencies, according to properties of such systems described in Sect. 3.4.

Systematic studies led Lev et al. [91] to the bifurcation diagram of the Ni electro-

dissolution in H2SO4, constructed in the coordinate system: acid concentration–

current density as the control parameters (Fig. 6.41). This diagram shows that,

besides simplest oscillations, there were observed also complex periodic and

chaotic oscillations, exhibiting period doubling bifurcations and torus bifurcations.

Also the region of birhythmicity was indicated; this phenomenon, knows also from

the area of homogeneous oscillators [78] can be considered a generalization of

bistability and means the existence of the system in different oscillatory states for

the same range of control parameters, depending on the system’s “history.”

Fig. 6.38 Oscillations of

potential under galvanostatic

conditions of a nickel

electrode in 1 N H2SO4.

(a) sustained oscillations for a

current density of

2.87 mA cm�2; (b) Damped

oscillations for a current

density of 2.26 mA cm�2.
Reproduced from [88] by

permission of The

Electrochemical Society
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Obviously, as for the bistability, this means the hysteresis in the system’s

oscillatory response upon cyclic variation of the control parameter(s) (cf. also

Fig. 6.40).

As for other passivation/depassivation processes, chemical and structural

complexity of the passive/porous layer at the electrode makes it difficult to elabo-

rate an in-depth satisfactory, unambiguous electrochemical mechanism of the Ni/

H2SO4 oscillator. According to the development of trends in explanation of

Fig. 6.39 (a) Phase plane

representation of a limit cycle

bifurcating in a homoclinic

orbit and disappearing for the

critical value of bifurcaton

parameter mc. (b) Typical
bifurcation diagram

belonging to the situation

illustrated in (a). Reproduced

from [93] by permission of

The Royal Society of

Chemistry

Fig. 6.40 Cyclic

voltammogram of the

dissolution of nickel wire in

1 M sulfuric acid. Scan rate

10 mV/s. Inset shows the
period of the oscillation as the

voltage approaches the

critical value V2. In series

with the nickel working

electrode there was a 12 kO
ohmic resistor. Reference

electrode: SCE. Reproduced

from [93] by permission of

The Royal Society of

Chemistry
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electrochemical instabilities, the apparently first mechanism, focusing on the

properties of the Ni/H2SO4 interface, was published in 1969 by Indira et al. [94].

Later, another mechanism, invoking impedance characteristics, was elaborated by

Keddam et al. [95]. It was followed by the model by Haim, Lev et al. [92], as the

continuation of their earlier experimental research. All these models are briefly

described below.

6.1.4.2 The Indira and Ross Model

The approach by Indira et al. [94], developed later also by Doss and Deshmukh

[96], can be called the SR (“Stoichiometric Region”) mechanism. This concept

refers generally to the conductivity of the crystalline phases, like the solid nickel

oxide film at the nickel electrode. Stoichiometric NiO phase is expected to be an

insulator (exhibiting bad both ionic and electronic conductivity), but can acquire

certain conductivity through defects of the crystalline structure. Let us consider the

state of anodically polarized metallic nickel already passivated with the compact

film of nickel oxide. According to the SR model, at the film/solution interface the

interaction of O2� ions from the oxide with hydrogen ions in the solution causes the

formation of O2� vacancies (vO
2�) in the oxide film. The effectively positively

charged vacancies vO
2�, by coulombic repulsion cause the transfer of close Ni2þ

Fig. 6.41 Grand bifurcation map of the Ni dissolution: typical phase planes are unique (U),

globally stable states (U3) and oscillatory (O) states, multiplicity of oscillatory and stable states

(OS), bistability (near cusp) and birhythmicity (MO). The Hopf, saddle-node, and saddle-loop

bifurcations are identified in the figure; the generalized Hopf is denoted by the dotted line.
Reprinted with permission from [91]. Copyright 1989 American Chemical Society
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ions also to the solution phase. Also complex formation of Ni2þ ions with SO4
2�

ions may cause spontaneous transfer of Ni2þ ions into the solution. Under the

influence of the electric field, the effectively negatively charged vNi2þ vacancies

migrate through the oxide film toward the metal, where the transfer of Ni2þ ions to

the arriving vacancies occurs. Under high electric field (high anodic overpotentials)

also the energy-demanding transfer of Ni2þ ions from the metal to the interstitial

position (iNi
2þ) in the oxide phase occurs, with the interstitials migrating through

the oxide film toward the solution. As a consequence of these processes, the oxide

film close to the metal surface has enhanced concentration of iNi2þ and that near the
solution a relatively high concentration of vNi2þ. Since these defects migrate in

opposite directions, somewhere in the middle of the film the Ni2þ interstitials and

vacancies meet and annihilate each other, forming a “stoichiometric region” (SR),

the thickness of which increases in time, as recombination of charge carriers

progresses (see Fig. 6.42).

The formation of this poorly conducting middle region, associated with decay of

charge carriers, causes the increase of the local potential drop which is experimen-

tally reported as the increase of the electrode potential. The intensity of the electric

field cannot however increase continuously, since at its certain critical value the

internal field emission takes place which means the flow of a small electronic

current through the stoichiometric region. This in fact means its damage, due to

the formation of Frenkel defects: interstitials and vacancies. Accordingly, the

potential drop across this region decreases and this is reported as the decrease in

the measured Ni electrode potential. However, the enhanced conductivity means

now the possibility of migration of the interstitials and vacancies toward each other,

eventually their recombination and thus regeneration of the stoichiometric region.

To summarize, galvanostatic oscillations of the Ni electrode potential are consid-

ered a result of the periodic formation and destruction of the stoichiometric region

inside the passive oxide layer at the Ni electrode. In other words, the explanation of

the oscillations in terms of SR mechanism ascribes the crucial role to the nature of

the solid-state effects.

Fig. 6.42 Principle of the (SR) mechanism. Schematic structure of the NiO film layer at the

surface of the anodically polarized nickel electrode in H2SO4 solution, indicating regions of

defected, conducting phase and the middle stoichiometric region, the periodical formation and

breakdown of which is considered crucial for the galvanostatically recorded oscillations of the Ni

electrode potential. Arrows indicate the directions of migration of Ni2+ vacancies and interstitials

in the electric field (after [94])
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6.1.4.3 The Keddam et al. Model

For Keddam et al. [95], the results of impedance measurements were the basis for

the electrochemical characteristics of the Ni/H2SO4 system. The representative

complex plane spectra, collected in Fig. 6.43, correspond to respective electrode

potentials located in the transpassive region, indicated in Fig. 6.44.

Two spectra c and d are crucial for the diagnosis of instabilities. They both

correspond to the positive I–E slope in Fig. 6.44, but spectrum d reveals the

negative real impedance, hidden on the dc dependence (similarly as spectrum e).

Evidently, the shape of this spectrum confirms that the Ni/H2SO4 system belongs to

Fig. 6.43 Complex plane

impedance plots of the anodic

dissolution of single crystal

Ni(111) electrode in 1 M

H2SO4, at 25
�C, at potentials

A–F indicated in the dc I–E
curve, in Fig. 6.44 [24, 95].

Reproduced from [95] by

permission of The

Electrochemical Society

Fig. 6.44 Steady-state

polarization curve of the

transpassive dissolution of

single-crystal Ni(111)

electrode in 1 M H2SO4 at

25 �C. A–F correspond to the

impedance diagrams (a-f) in

Fig. 6.43 [24, 95]. SSE -

Hg/Hg2SO4/sat. K2SO4 ref.

electrode. Reproduced from

[95] by permission of The

Electrochemical Society
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the HN-NDR oscillators (Class IV). This transition indicates the presence of a Hopf

bifurcation under galvanostatic conditions, confirming thus the origin of experi-

mentally observed oscillations. Also, in concordance with the theory of HN-NDR

oscillators, the transition from plot c to plot d must be accompanied by a plot for

which the real impedance Z0 becomes infinitely negative for some nonzero fre-

quency. In turn, the negative real impedance observed for o ! 0, at potential F is

concordant with the explicit negative slope of the dc (zero frequency) I–E
characteristics. From Sect. 3.4 we know that in the HN-NDR system a Hopf

bifurcation should occur also under potentiostatic conditions (U ¼ const), provided

that sufficient serial ohmic resistance is inserted in the circuit of the Ni working

electrode, and this was also confirmed experimentally [97] (cf. Fig. 6.40).

Concerning the chemical source of instabilities in the Ni/H2SO4 system,

Keddam et al. have postulated NiO as the species that initially completely

passivates the electrode surface, as a result of the processes:

Niþ H2O! NiOHþ Hþ þ e (6.51)

NiOH! NiOþ Hþ þ e (6.52)

Based on experimental observation that the dissolution rate of a passive layer

increased with H2SO4 concentration, at constant pH, it was further suggested that

dissolution of NiO layer in the transpassive region was accelerated by SO4
2� and

HSO4
� ions. The formation of the second region of a negative resistance was

explained in terms of repassivation with the species like Ni(OH)3.

In complement to above analysis one should note a recent impedance analysis of

the dissolution/passive transition in the Ni/H2SO4 system, reported by Keddam,

Vicente et al. [98]. The research was inspired by the conclusion that this transition is

a complex electrode process which strongly depends on the composition of the

solution and presumably other factors which determine the course of ionic reactions,

electron transfer process, mass transport phenomena, phase formation, precipitation

and dissolution of various intermediates. As an illustration of possible controversies,

there were recalled the recently published results of spectroscopic measurements

that Ni(OH)2 was a component of passive layer [99, 100] in contradiction with the

proposed oscillation mechanisms. One can suppose that Ni(OH)2 was indeed formed

under conditions of spectroscopic measurements, but in the oscillatory experiments

the detailed conditions, and thus the composition of the passive layer, could be

different. The problem was approached with the analysis of electrochemical imped-

ance spectra recorded in the active/passive transition potential range, for a polycrys-

talline nickel electrode in an acid sulfate medium of pH 2.7, in the absence of

chloride ions, which could strongly interact with the nickel surface or participate

in the formation of nickel salt layers. The experimental impedance spectra were

interpreted in terms of the reaction sequence, involving two irreversible electron-

transfer steps, followed by chemical dissociation and solubilization of Ni(II) spe-

cies, and the transport of a solvated Ni2þ throughout a solvated media [98, 101, 102]:
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Ni(0)(G0Þ��!k1 Ni(I)(G1Þ þ e��!k2 Ni(II)(G2Þ þ e (6.53)

Ni(II)(G2Þ��!k3 Ni2þaq (6.54)

Theoretical impedance spectra, constructed for the assumption that passivating

species [Ni(OH)2] progressively covers the electrode surface, predicted the appear-

ance of negative time constants for coverage of the passive species greater than 0.5.

It is approximately concordant with experimental impedance spectra showing a

negative constant at low frequencies, concordant in turn with the negative slope of

the polarization curve, occurring for y � 0.7. These results are one more illustra-

tion of the difficulties in exact determination of the composition of the passive

layers formed during anodic oxidation of metals.

6.1.4.4 The Haim et al. Model

Haim et al. [92] have used some ideas from the Keddam model, but their mecha-

nism ascribes different role to various species. In the initial passive state, the Ni

surface is entirely covered by the oxide layer. Three species: NiO, NiIOH and

NiHSO4
�, the latter one meaning adsorbed bisulfate ions, contribute to the total

coverage of the electrode surface denoted further as
P

i yi. The active electrodis-

solution of nickel: Ni ! Ni2þ þ 2e occurs only through the surface fraction

uncovered with oxide species, with a rate v1:

v1 ¼ kbcH 1�
X
i

yi

 !
exp

bFE

RT

� �
(6.55)

in which cH means the concentration of Hþ ions in the solution. The formation of

NiO and NiOH species occurs according to Eqs. (6.51) and (6.52), with NiOH

dissolving chemically:

NiOþ 2Hþ ! Ni2þ þ H2O (6.56)

Haim et al. assume a priori that the rate of Eq. (6.56), although being purely

chemical, is strongly dependent on the electrode potential in a Tafel-like way. This

(disputable) dependence appeared however to be crucial for the onset of

oscillations.

Furthermore, the region of secondary passivation, observed only for Ni electrode

in contact with H2SO4 solution is caused by adsorption of HSO4
�, according to

equation:

Niþ HSO4
� ! NiHSO4

�
;ads (6.57)
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It is important to note that HSO4
� ions exhibit greater affinity to Ni surface than

SO4
2� ions. The surface coverage of HSO4

�, yh, follows a potential-dependent

isotherm:

yh ¼ Kach
1þ Kach

ð1� yÞ (6.58)

where ymeans the sum of the oxide and hydroxide coverage and Ka is the potential-

dependent equilibrium constant: Ka ¼ K0
a exp½aE� which reflects the increasing

adsorption of HSO4
� with increasing positive surface charge (potential) of the

electrode.

Finally, the increase of current at most positive potential is explained, as

mentioned above, with the oxygen evolution reaction:

H2O! 2Hþ þ 1=2O2 þ 2e (6.59)

which is assumed to occur only at the electrode surface not covered with the

passivating oxide layer.

Mathematical construction of the model, based on the above assumptions,

involves two ordinary differential equations with the electrode potential E and the

total oxide–hydroxide coverage yh as the dynamical variables. They could be

transformed to the following forms [24]:

e
dE

dt
¼ J � rnd (6.60)

dy
dt
¼ rof � rod (6.61)

where parameter e ¼ CdGm=nF � 0:1, with Cd—differential double layer capaci-

tance and Gm—the total number of Ni surface sites. J is the current density, applied
in the galvanostatic experiment, rnd—the rate of nickel dissolution, rof—the rate of

oxide formation, and rod—the rate of oxide dissolution. This model neglects the

oxygen evolution reaction (6.59) in the region of the potential oscillations. Linear

stability analysis of this system shows indeed that oscillations are possible only

under assumption that the oxide layer dissolution [Eq. (6.56)] is potential-

dependent, more precisely, if @rod=@E is sufficiently positive.

The theoretical bifurcation diagram, determined by Haim et al. for their model,

is shown in Fig. 6.45.

To summarize, in terms of the Haim et al. model, the negative impedance arises

from the potential-dependent bisulfate adsorption on Ni surface which blocks the

nickel electrodissolution. The source of positive impedance is the chemical, but

potential-dependent dissolution of oxide layer [Eq. (6.56)].
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The formation of spatiotemporal patterns in Ni/H2SO4 system is described in

Sect. 2.4 of volume II.

6.1.4.5 Delay of Bifurcations in a Potentiodynamic I–E Characteristics

of the Ni/H2SO4 Oscillator

In 1996, Koper and Aguda [103] have analyzed the effect of the scan rate (v) in
potentiodynamic studies of the oscillatory nickel electrodissolution. It was an

experimental illustration of a more general theoretical problem of the change of

the value of bifurcation parameter, compared to the static problem (i.e., for

potentiostatic conditions in this case). In general, the parameter value mv (v 6¼ 0,

dynamic case), where the transition due to the bifurcation occurs, is delayed with

respect to the critical parameter value ms of the static problem. This delay mv � ms
follows a power-law dependence:

mv � ms ¼ cvp (6.62)

where c is a constant and p is an exponent characteristic of the type of bifurcation,

equal to 2/3 for a saddle-node bifurcation [104, 105], and to zero for the Hopf

bifurcation in the direction from the steady-state to the oscillatory regime [106].

This means that the delay in a Hopf bifurcation is insensitive to v. In turn, for the

reverse Hopf bifurcation (from the oscillatory to steady-state), the amplitude of the

oscillations decreases with decreasing v, and in the limit of small v, is proportional
to O(v1/4) quantity [107]. An additional prediction is the memory effect [106]

meaning the dependence of the delay for the Hopf bifurcation on the initial value

mi of the control parameter: mv � ms ¼ ms � mi. These predictions were compared

by Koper and Aguda with the characteristics of the Ni/H2SO4 system, exhibiting

Fig. 6.45 Theoretical bifurcation diagram predicted by the model proposed by Haim et al. [92], to

be compared with Fig. 6.41 [24]. Hopf Hopf bifurcation, SN saddle-node bifurcaton, SL saddle-

loop bifurcation, C cusp and DZ double-zero singularities. Reprinted with permission from [92]

Copyright 1992 American Chemical Society

6.1 Oscillations in Anodic Dissolution of Metal Electrodes 483



both supercritical Hopf and saddle-node bifurcations. Figure 6.46 shows that the

oscillations in the anodic current are significantly delayed at the higher scan rate.

The analysis of the delay vs. scan rate in the log–log coordinates yields the slope

p ¼ 0.94, in clear contradiction with earlier predictions of p ¼ 0 [106], presumably

due to effect of the internal noise of the system. An analysis of the amplitude of

oscillations during the reverse scan indicated its (expected) decrease with a

decrease in scan rate. In turn, studies of the memory effect showed the decrease

of the potential for the onset of the oscillations, with the increase of the initial

potential, i.e., the negative slope of this dependence. This was also interpreted in the

following way: since noise erases memory effect [106], high scan rates are needed

to minimize the integrated effect of noise.

In turn, with respect to saddle-node bifurcation, the p value close to 2/3 was

obtained, as Fig. 6.47 proves.

In conclusion, the deviations between the theoretical (p ¼ 0) and experimental

(p � 1) parameter of the power dependence were explained in terms of the role of

Fig. 6.46 Current–voltage scans for Ni dissolution in 1 N H2SO4 illustrating the effect of varying

scan rate on the oscillatory behavior: (a) scan rate ¼ 3 mV/s, (b) 10 mV/s. The Hopf bifurcation

under consideration is at 1,750 mV. Note the presence of a second Hopf bifurcation near the upper

potential limit of the scan. External resistance is 10 kO. Reprinted with permission from [103]

http://link.aps.org/abstract/PRE/v54/p960, Copyright 1996 by the American Physical Society
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internal noise. An alternative possible explanation, based on the concept of a

continuous drift of the system’s characteristics, was not considered applicable for

the system studied.

6.1.5 Oscillatory Oxidation of Cobalt Electrodes

6.1.5.1 The Co/HCl þ CrO3 System

The early studies of the oscillatory dissolution of Co wires immersed in

hydrochloric acid/chromic acid electrolyte were conducted by Franck and Meunier

[19]. More recently, Hudson et al. [108] continued investigations of this system

Fig. 6.47 (a) Current–voltage scan for Ni dissolution in 1NH2SO4 in the presence of a 20 kO external

resistance and scan rate of 10 mV/s. Note the presence of two Hopf bifurcations on the forward

scan (thick curve) and two jump transitions due to saddle-node bifurcations, one on the forward

and one on the reverse scan (thin line). (b) The potential of the jump transition during the reverse

scan as a function of (scan rate)2/3. Theoretically, this plot should give a straight line in the limit

of small scan rates. Reprinted with permission from [103] http://link.aps.org/abstract/PRE/v54/p960,

Copyright 1996 by the American Physical Society

6.1 Oscillations in Anodic Dissolution of Metal Electrodes 485

http://link.aps.org/abstract/PRE/v54/p960


under potentiostatic conditions, using rotating Co electrode, the potential of which

was controlled with respect to the conventional saturated calomel electrode (SCE).

The experimental characteristics of the Co/HCl þ CrO3 system are complicated by

the fact that it consists of the anodic current of Co dissolution and of the cathodic

current of CrO3 electroreduction, with relative proportion dependent on the elec-

trode potential. The I–E characteristics exhibit the regions of the NDR and the

oscillations set in via a subcritical Hopf bifurcation. It was also found that the lower

the HCl concentration, the higher the potential of the onset of oscillations.

Figure 6.48 proves also that oscillations are related to the predominating cathodic

(negative) current of CrO3 electroreduction. The mechanism of these phenomena

involves formation of the chromic dichromate film on the metal surface which

undergoes destruction through the pitting corrosion, with the participation of

aggressive Cl� ions, adsorbed on this film (hence the effect of HCl concentration

on the onset of the oscillations). In other words, the oscillations are due to cyclic

deposition and removal of a protective film on the Co surface. The dynamics of

coupled oscillators of that type is described in Sect. 3.1.5 of volume II.

6.1.5.2 The Co/H2SO4 þ NO3
�, Cl� System

Sazou, Pagitsas et al., in the series of papers have described current oscillations

occurring during Co electrodissolution in sulfuric acid solutions, with additions of
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Fig. 6.48 Potentiodynamic sweep curves for a rotating disc Co electrode in 1.58 M H2SO4

aqueous solution at two different rotation speeds. dE/dt ¼ 20 mV s�1. Reprinted from [109],

Copyright 1990, with permission from Elsevier
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nitrate ions [109], chloride ions [110, 111], and iodide ions [112]. In all cases

studied, the presence of only sulfuric acid appeared to be insufficient for the onset

of oscillations which observation immediately suggests that nitrate or halide ions

were involved in the pitting corrosion of the passivated Co surface, leading to the

oscillations. Typical potentiodynamic curve of anodic Co polarization in H2SO4

media is shown in Fig. 6.48 and includes the following sections: (a–b) active

dissolution region, (b–c) transition to a passive-like state due to the formation of

the CoO film, characterized with the NDR; (c–c0, c0–d) reactivation of the

surface due to aggressive sulfate ions, with the limiting current determined by the

dissolution–precipitation mechanism; (d–e) partial repassivation of Co surface,

presumably due to the formation of Co2O3 and Co3O4 film; (e–e0) complete

passivation, and (beyond e0) the oxygen evolution current.

Contrary to Fe/H2SO4 system, the passivation of Co is not complete, which

means that the chemical properties of surface film are in both systems different.

Major processes associated with the respective region can be summarized as

follows [109]:

1. Activation processes:

Coþ H2O! CoOHþ þ Hþ þ 2e (6.63)

or

Co(H2OÞads ! CoOHþ þ Hþ þ 2e (6.64)

CoOHþ þ Hþ ! Co2þ þ H2O (6.65)

2. Passivation processes:

Co(H2OÞads ! CoOH þ Hþ þ e (6.66)

CoOH þ H2O ! Co(OHÞ2 þ Hþ þ e (6.67)

Co(OHÞ2 ! CoOþ H2O (6.68)

or (assuming the adsorption competition between water and sulfuric acid):

Co(H2OÞads þ H2SO4
! Co(H2SO4Þads þ H2O (6.69)

Co(H2SO4Þads ! Co(HSO4Þads þ Hþ þ e (6.70)
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Co(HSO4Þads ! CoSO4 þ Hþ þ e (6.71)

3. Reactivation processes:

CoOþ 2Hþ ! Co2þ þ H2O (6.72)

CoOþ SO4
2� þ H2O! CoSO4 þ 2OH� (6.73)

As noted above, the onset of oscillations required addition of foreign ions.

Typical potentiodynamic curves, showing the oscillations upon addition of nitrate

ions, are shown in Fig. 6.49. Comparison of a negative (upper picture) and positive

(lower picture) potential scan reveals certain hysteresis.

Longer period of run of the potentiostatic experiments indicated the gradual

change in the oscillatory modes, leading from the simple periodic behavior, through

the period-doubling bifurcation, up to chaotic oscillations. One should emphasize

also the significant effect of temperature on the oscillatory characteristics.

The proposed reaction mechanism was based on the deposition/dissolution mech-

anism of a porous film by intervention of nitrate ions. In the absence of nitrate ions,

there establishes the steady-state balance between the formation and dissolution of

passive film, corresponding to the formation of (quasi-)limiting anodic current within

certain potential region. Let us choose, e.g., the potential 0.7 V. In the presence of

sufficient concentration of nitrate ions, the passive layer undergoes pitting corrosion,

i.e., the fraction of active Co surface increases. The number and size of the pits tend to

increase due to the oxidizing action of NO3
� and the autocatalytic increase of NO3

�

ions caused by the electrochemical oxidation of HNO2 [109]:

Coþ 3NO3
� þ 3Hþ ! Co(NO3)2 þ HNO2 þ H2O (6.74)

HNO2 þ H2O ! NO3
� þ 3Hþ þ 2e (6.75)

These processes are associated with the increase of current, until local accumu-

lation of corrosion products inhibits further dissolution of metal and then current

decreases. But in other places of the porous film, the concentration of nitrate ions

may become high enough to induce growing corrosion of the passive layer. This

mechanism invokes thus also the role of spatial inhomogeneity of the electrode

surface in the passive state. The onset of the oscillatory regime requires appropriate

combination of nitrate ion concentrations, electrode potential range, and the rota-

tion rate of the disk electrode. Explanations of qualitatively similar potentiostatic

oscillations occurring during electrooxidation for H2SO4 solution in the presence of

Cl� and I� ions also involved the idea of pitting corrosion [110–112].

The oscillatory dissolution of Co electrodes was also studied in phosphoric acid

solution, including pioneer investigations of the role of periodic (sinusoidal) per-

turbation of Co – 1M H3PO4 system, i.e., creating the forced oscillator, as

described also by Pagitsas and Sazou [113, 114].
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6.1.6 Oscillatory Oxidation of Vanadium Electrodes

Current oscillations for anodically polarized vanadium electrode were reported

only recently by Alonzo et al. [115, 116], for phosphate media. These studies

were later continued by Gorzkowski et al. [117] for both H3PO4 and other acidic

media, including H2SO4, HNO3, HClO4, and CF3COOH. Application of rotating

Fig. 6.49 (Top) Positive

potentiodynamic sweep

curves for a Co rotating disc

electrode in 1.58 M

H2SO4 + 0.1 M NO3
�.

(Bottom) Negative

potentiodynamic sweep

curves, complementing the

I–E curves of (a). dE/
dt ¼ 20 mV s�1. Reprinted
from [109], Copyright 1990,

with permission from

Elsevier
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disk vanadium electrode allowed for recording oscillations of different degrees of

complexity and also of bistability. Since the passivation of the vanadium electrode

was not complete, the consumption of electrode material was relatively fast and

observed dynamic regimes were of transient nature. Experimental studies of the

V/H3PO4 system were supported by numerical simulations of observed instabilities

and by stability analysis of its model [118]. The model was based on Koper and

Sluyters approach [45], described in Sect. 6.1.2.2. Its adaptation to V/H3PO4

included acid–base equilibria of H3PO4 which were not included in the original

construction, involving the fully dissociating strong HA acid. The simplified reac-

tion mechanism of vanadium oxidation at high positive potentials (>1 V vs. the

Hg–Hg2SO4–0.1 MH2SO4 reference electrode) was assumed in the following form:

(6.76)

Thus, parallel electrooxidation of the metallic vanadium to VO2
þ cations (which

formed a porous salt layer with H2PO4
� ions, characterized with the solubility

product Ks0) and to a passive layer of V2O5, was assumed. In terms of this reaction

mechanism, a system of two ordinary differential equations, describing the temporal

dynamics of the electrode potential (E) and of the surface concentration of VO2
þ ions

in the solution (CVOþ
2
) was derived:

dE

dt
¼ U � E

fRACdRS

�
nFk1ðEÞð1� yÞ 
 ð1� ðCVOþ

2
=CmaxÞÞ

Cd

(6.77)

dCVOþ
2

dt
¼

2fRk1ðEÞ 
 ð1� yÞ 
 ð1� ðCVOþ
2
=CmaxÞÞ

d
�
2DCVOþ

2

d2

� tVOþ
2

2nfRk1ðEÞ 
 ð1� yÞ 
 ð1� ðCVOþ
2
=CmaxÞÞ

zd
(6.78)

where U—external voltage, A—the vanadium electrode surface area, fR—its rough-

ness factor (assumed as equal to 5), k1(E)—the rate constant of V oxidation to

VO2
þ, Cmax—critical concentration of VO2

þ, at which the [VO2
þ][H2PO4

�] pre-
cipitation starts at the solution/electrode interface, D—diffusion coefficient of

VO2
þ, z ¼ þ1 is electric charge of VO2

þ ion, d—the thickness of diffusion
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layer, controlled by the rotation speed of vanadium disk [calculated from Levich

equation (4.7)], n ¼ 5: number of electrons involved in V(0) ! V(V)

electrooxidation. The transference number for VO2
þ ions tVOþ

2
(with the current

carried altogether by VO2
þ, Hþ and H2PO4

� ions) is given by:

tVOþ
2
¼

lVOþ
2
CVOþ

2

lVOþ
2
CVOþ

2
þ lHþ ½Hþ� þ lH2PO

�
4
½H2PO

�
4 �

(6.79)

where li are the molar conductivities of respective ions. In turn, y, the electrode

coverage with passive layer of V2O5 was calculated from the steady-state approxi-

mation (dy/dt ¼ 0) applied to the equation for its temporal dynamics, concordant

with scheme (6.76):

dy
dt
¼ k2ðEÞð1� yÞ � k�2ðEÞy½Hþ�10 (6.80)

Finally, due to a large excess of H3PO4, its equilibrium concentration [H3PO4] at

the electrode surface was considered practically constant, and the local dynamics of

[Hþ] was found negligible, as [Hþ] was quickly regulated by fast dissociation/

protonation equilibria of H3PO4. The local concentration of H2PO4
� ions, neces-

sary to calculate the actual transference number of VO2
þ ions [Eq. (6.79)], was

found from the combination of the dissociation constant of H3PO4 (Ka) with the

electroneutrality condition CVOþ
2
+ ½Hþ� ¼ ½H2PO4

��:

½H2PO
�
4 � ¼

CVOþ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCVOþ

2
Þ2 þ 4Ka½H3PO4�

q
2

(6.81)

Numerical integration of Eqs. (6.77) and (6.78), performed for potentiodynamic

conditions, yielded oscillatory and bistable behaviors, which exhibited satisfactory

concordance with experimental data (Figs. 6.50 and 6.51).

Furthermore, analysis of the E and CVOþ
2

nullclines, derived from model

equations (6.77, 6.78), performed for different external voltages U and disk rotation

speeds allowed for determination of stable and unstable steady-states, as shown in

exemplary Fig. 6.52.

Based on that analysis a bifurcation diagram in the coordinate system U–E,
given in Fig. 6.53, was constructed.

Analogous studies for other acidic media revealed similar dynamic behaviors, of

various degrees of complexity. For the reader, further details can be found in

[117, 118]. One should emphasize that the present studies reproduce only the

essential sources of basic instabilities in the V/H3PO4 and other acidic systems.

For example, the V/H3PO4 system is evidently of an N-NDR type, but some

experimental data suggest that under appropriate conditions it may also exhibit

hidden negative impedance [117]. The more comprehensive experimental and

theoretical characteristics of the vanadium electrodissolution in various media

evidently require further investigations.
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6.1.7 Oscillatory Dissolution of Other Metals

In this section, we shall briefly summarize other examples of the oscillatory

dissolution of some other metals. Common points with the above discussed

mechanisms can be found, and therefore it is not necessary to discuss every case

in great detail. The reader interested in the dissolution mechanism of particular

metal is thus advised to consult the appropriate original reference.

6.1.7.1 Silver

Oscillatory dissolution of silver was reported as early as in 1942 by Gilbertson and

Fertner [4, 119]. Also later Francis and Colner [120] have described oscillations

during the anodization of a silver electrode in a plating bath, containing AgCN

Fig. 6.50 Comparison of the experimental (a) and corresponding simulated (b) oscillatory modes

of the vanadium electrooxidation in phosphate media. Experimental conditions: vanadium elec-

trode (1 mm diameter vanadium wire, embedded in Teflon), temperature T ¼ 0 �C, scan rate

v ¼ 10 mV s�1. Parameters of the model: C(H3PO4) ¼ 2 
 103 mol m�3, fR ¼ 5, T ¼ 273 K,

double layer capacitance Cd ¼ 0.2 Fm�2, A ¼ 7.86 
 10�7 m2, serial resistance Rs ¼ 180 O,
formal potentials and rate constants of oxidations of V(0) to VO2

+ and V2O5, respectively:

E1
0 ¼ 0.768 V, k1 ¼ 8 
 10�5 mol m�2 s�1; E2

0 ¼ 1.168 V, k-2
0/k2

0 ¼ 1 
 10�20 mol�10 m30,

Kso ¼ 5.5 
 104 mol�2 m6 , scan rate v ¼ 2 mV s�1. Reproduced from [118] with kind permis-

sion from Springer Science+Business Media B.V.
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dissolved in excess KCN and with addition of K2CO3. The mechanism of these

oscillations assumed that the high density current, setting at the beginning of

electrolysis, caused significant concentration polarization, meaning the decrease

in [CN�] and the increase in [Agþ] in the pre-electrode layer. As a consequence, the
current decreases and at certain moment the film of AgCN forms at the electrode

surface which later dissolves, enabling the rise of current. The oscillations are thus

caused by cyclic precipitation and dissolution of the AgCN film, with possible

contribution also from Ag2O.

Oscillations were also reported during anodic dissolution of Ag in chloride

media [5, 121, 122], under galvanostatic conditions. The role of formation/dissolu-

tion of AgCl films in these dynamics seems to be obvious, but also the role of

rearrangement and recrystallization of various forms of this solid was considered.

Also, the role of Ag2O was discussed. It is also interesting to learn that Indira et al.,

who proposed also the Stoichiometric Region (SR) mechanism for the galvanostatic

Fig. 6.51 Comparison of the experimental (a) and simulated (b) bistable modes of the vanadium

electrooxidation in phosphate media. Experimental conditions: vanadium electrode (1 mm diame-

ter vanadium wire, embedded in Teflon), temperature T ¼ 0 �C, scan rate v ¼ 10 mV s�1.
Parameters of the model (see also caption to Fig. 6.50): C(H3PO4) ¼ 2,000 mol m�3, fR ¼ 5,

T ¼ 273 K, Cd ¼ 0.2 F m�2, A ¼ 7.86 
 10�7 m2, Rs ¼ 180 O, E1
0 ¼ 0.768 V, k1 ¼ 8 
 10�5

mol m�2 s�1, E2
0 ¼ 1.168 V, k-2

0/k2
0 ¼ 1 
 10�20 mol�10 m30, Kso ¼ 5.5 
 104 mol�2 m6, scan

rate v ¼ 2 mV s�1. Reproduced from [118] with kind permission from Springer Science+Business

Media B.V.
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oxidation of nickel (see Sect. 6.1.4), have developed similar ideas for the case of Ag

dissolution in dense HCl media [94]. As before, the AgCl film consists of three

layers, only the middle one of which forms a stoichiometric phase, responsible for

the relatively large potential drop across it. The periodic buildup and damage of SR

Fig. 6.52 Exemplary nullclines for the dynamical system (6.77, 6.78), constructed for two

rotation speeds and two external voltages U. Direction of arrows denotes the sign of appropriate

derivatives dE/dt and dC/dt. Reproduced from [118] with kind permission from Springer Science

+Business Media B.V.

Fig. 6.53 Theoretical bifurcation diagram of Eqs. (6.77) and (6.78) with U as bifurcation

parameter for rotation speed 500 rpm, constructed based on the course of nullclines. The imposed

external voltage U is denoted by line (1). Steady-states (2) are stable while steady-states (3), lying

between the maximum (4) and minimum (5) of E-nullcline, are unstable. Oscillations, of the

amplitude defined by the distance between the lines (4) and (5), occur when no steady-state is

stable for a given external voltage U. Reproduced from [118] with kind permission from Springer

Science+Business Media B.V.
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is considered to be a reason for the oscillations of the Ag electrode potential under

galvanostatic conditions. Finally, the chaotic course of the oscillatory oxidation of

Ag in a 1 M HClO4 solution was reported by Corcoran and Sieradzki [123].

6.1.7.2 Gold

Franck [124] and Vetter [125] were probably the first researchers who reported the

oscillatory electrodissolution of Au electrode in acidic electrolytes. More recent

studies, mainly by Arvia et al. (e.g., [126]) cover oscillatory dissolution of Au in

contact with H2SO4 solution, containing chloride ions, both in the absence and in

the presence of stirring (in the latter case, when the limiting anodic current was

developed, the oscillations were observed in this potential region). The mechanism

postulated the localized corrosion, with the passivity potential (Ep), dependent on

the hydrochloric acid concentration in a following way:

Ep ¼ 1:630þ 2:303
RT

F
log cHCl (6.82)

Thus, the local HCl concentration at the Au–solution interface affected the onset

of oscillations. The fast anodic Au dissolution (which thus can easily enter the

diffusion-controlled regime) occurs according to the equation:

Auþ 2Cl� ! AuCl2
� þ e ðfastÞ (6.83)

with the equilibrium potential of the Au/AuCl2
� couple equal to 1.154 V (at 25�C).

The above electrodissolution reaction, occurring thus at relatively positive

potentials, is followed by reversible, heterogeneous disproportionation of Au(I) to

Au(III) and Au(0):

3AuCl2
� ! AuCl4

� þ 2Auþ 2Cl� (6.84)

In the course of diffusion-controlled reaction (6.83) the pre-electrode layer

becomes depleted with Cl� ions (i.e., with HCl) and then the formation of complex

AuCl2
� species is replaced with the formation of the oxide layer, through discharge of

water molecules, at the Au surface. The surface becomes then passivated and the

current decreases. The relatively slow diffusion of HCl from the bulk restores then the

acidity of the solution at the interface, the oxide layer dissolves and current rises again.

Later, Diard et al. [127] have shown the multiplicity of steady-states across the

Au passive–active region, ascribing the oscillations to the periodic gold oxide film

formation and dissolution. More recently, in situ Raman spectroscopic studies were

combined with electrochemical studies of the oscillatory dissolution of Au in 2 M

HCl [128]. The following data have been measured during the current oscillations:

the vibrations bands for Au–Cl�, AuCl4
� and Au-O(H) as a function of the

potential, the spatial profile of AuCl4
� concentration in the diffusion layer, and
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the temporal evolution of AuCl4
�. These results indicated a very narrow potential

range of potential within which the active/passive transition of gold occurs and

allowed to suggest an (provisional) oscillatory mechanism:

(6.85)

Regarding the Au–HCl oscillatory system, Mao et al. [129] have also reported its

studies under a scanning electrochemical microscopic (SECM) configuration. In

this arrangement, if a Pt substrate was positioned close enough to the small Au

electrode in the oscillatory regime, the amplitude of current oscillations increased

significantly, with a slight decrease in oscillation frequency. Under such conditions,

oscillations could be induced also at the potentials when nonoscillatory electrodis-

solution of Au occurred.

Finally, in 2006 Zheng et al. [130] have described new oscillatory phenomena in

the electrodissolution of gold in sulfuric acid solutions containing Br� ions or in

concentrated HCl, thus extending traditionally performing studies to new media.

Also in this case typical electrochemical measurements were supported with

recording in situ Raman spectra. For the Au–1 M Br� þ 1 M H2SO4 system, the

oscillations were observed both in the electrode potential and in current. For

Au–8 M HCl system, also both the potential oscillations and current oscillations

were reported, the latter ones belonging to two kinds. In the interpretation of these

experimental results, the earlier literature results on the role of gold oxide were now

extended for the role of gas (oxygen) evolution and/or liquid (bromine) film. For

Br� containing system, the periodical depletion and replenishment of Br� surface

concentration by reactions involving diffusion and convection (caused by periodic

oxygen evolution) were considered decisive for the oscillations. Similar explana-

tion was proposed for Cl� containing systems. The occurrence of galvanostatic

oscillations suggest however that the studied systems could be of HN-NDR type.

6.1.7.3 Aluminum

Studies of oscillatory anodic dissolution of aluminum involved both pure metal and

its various alloys. Regarding alloys, the interested reader can refer original

references, e.g., in review [4]. Many of these phenomena are usually associated

with the formation/destruction of aluminum oxide/hydroxide layer, the detailed
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composition of which can be dependent on the solution composition, as this layer

can incorporate, e.g., WO4
2�, MoO4

2� and CrO4
2� ions, chosen here as the

examples. Bargeron and Givens [131] have reported oscillations in the anode

current, related to the potentiostatic pitting of aluminum. In the case of In

containing Al alloys, Wilhelmsen et al. [132] have found both oscillations of the

current under potentiostatic conditions and of the potential under galvanostatic

conditions. The mechanism of these phenomena assumes that in active sites of

the electrode, Al undergoes oxidation: Al + 4OH� ! Al(OHÞ4�+ 3e until, at the

critical current density, Al(OH)3 or Al2O3 deposit on these active sites, damping in

this way the flow of current. Then OH� ions, through their diffusion from the

solution bulk, enhance pH in the pre-electrode layer, the aluminum oxide/hydroxide

layer dissolves, current rises again, etc.

Regarding pure metallic Al, more recent studies indicate the possible correlation

between its oscillatory electrodissolution and porous structure of formed Al2O3. For

example, Lee et al. [133] have reported the relation between the modulated

nanoporous structure of aluminum oxide and the spontaneous current oscillations

during the potentiostatic hard anodization of aluminum in 0.3 M H2C2O4 medium;

also, the respective oscillatory mechanism is proposed. Such correlations were

found also for anodization of various semiconductors (cf. Chap. 4, volume II).

Note also that pattern formation during Al electrodissolution under appropriate

conditions can be interpreted as a phenomenon of convective origin, as described in

Sect. 5.4.3 of volume II.

6.1.7.4 Lead

Oscillatory lead electrodissolution was observed under both potentiostatic and

galvanostatic conditions. Oscillations of the current were reported for the Pb

electrodissolution, in contact with hot concentrated H2SO4 solutions, at the elec-

trode potentials prior to passivation region, as described by Grauer et al. [134]. In

turn, in basic media of NaOH solutions containing various concentrations of ClO3
�

or ClO4
� ions, galvanostatic oscillations of the Pb electrode potential were reported

by Abd El Aal [135]. In the latter case the oscillations were found to occur within

the oxygen evolution region, indicating an effect of the aggressive ClO3
� or ClO4

�

ions on the oxygen formation/evolution process [4].

One should mention also oscillatory electrodissolution of Pb (or its alloys) in

contact with nonaqueous media, not so frequently used in the studies of electro-

chemical instabilities. Bhaskara [136] has reported potential oscillations during the

dissolution of Pb and (Pb, Ag) or (Pn, Sn) alloys in contact with the solutions of

LiAlCl4 in propylene carbonate and explained these instabilities in terms of forma-

tion and dissolution of PbCl2 film, the existence of which was confirmed by X-ray

studies of Pb anode, performed under the same conditions.
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6.1.7.5 Zinc

For anodic dissolution of Zn in KOH, Hull et al. [137, 138] have constructed the

diagram, which relates the I–E characteristics of the Zn wire in 5 M KOH (obtained

in forward and backward slow-scan potentiodynamic experiments) with visual

observation of the Zn surface (Fig. 6.54).

The oscillations were attributed to the formation of ZnO film, the dissolution of

which is strongly dependent on the solution pH and the actual structure of the metal/

solution interface. The role of the formation/destruction of surface films in these

oscillations was further confirmed by Podesta et al. [139], who used SEM for the

comparative studies of the Zn, Au, and Fe electrode surfaces in different regions of

potentiostatic E/I behavior.
A more detailed insight into the mechanism of these processes was proposed by

McKubre and Macdonald [140], in view of the I–E characteristics shown in

Fig. 6.55.

The initial increase of current with the electrode potential is associated with the

simple metal dissolution:

Znþ 4OH� ! Zn(OHÞ42� þ 2e (6.86)

which further, in the range of a linear I–E dependence, turns into two-step process,

involving intermediate formation and dissolution of ZnO:

H F A

O

J
I

G

BLACK

BLACK FILM

LIGHT GRAY

BRIGHTLY
ETCHED

MILKY FILM

THICK SILVER
COLORED FILM

FILM DARKENS

FILM BECOMES
BRIGHT

K

L N

D C B

SCAN RATE = 1.1 mV SEC–1

5N KOH [USTIRRED]

–1.16–1.04–0.92 –1.28

ELECTRODE POTENTIAL vs Hg –HgO (VOLTS)

–1.40
800.0

400.0
(mA cm–2)E

M
i

Fig. 6.54 Current–voltage curve of a zinc wire electrode in unstirred 5 N KOH recorded at a scan

rate of 1.1 mV/s. Reproduced from [137] by permission of The Electrochemical Society
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Znþ 2OH� ! ZnOþ H2Oþ 2e (6.87)

ZnOþ H2Oþ 2OH� ! Zn(OHÞ42� (6.88)

At sufficiently anodic potentials, when solubility of Zn(OH)4
2� reaches a satu-

ration limit, a porous film of Zn(OH)2 starts to precipitate at the electrode surface

and this process continues until local pH of the solution becomes so low, that ZnO,

forming in the course of above reactions, becomes insoluble and thus forms a

compact passivating-type film. This of course causes a decrease in the anodic

current, so the production and the local concentration of Zn(OH)4
2� decreases,

the diffusion of OH� from the bulk enhances back the pH, so the hydroxide and

oxide film undergo dissolution and a new portion of Zn(OH)2 can be formed,

completing the oscillatory cycle. Finally, oscillatory electrodissolution of rotating

zinc disk electrode in concentrated KOH solutions containing polyethylene glycol

was studied by Frackowiak and Kiciak [141].

6.1.7.6 Tin

Typically, anodic oscillations reported by various authors [4] for the Sn/NaOH

system were explained in terms of formation/destruction of the films of various tin

oxides and hydroxides. For example, Shams El Din et al. [142, 143] have reported,

under galvanostatic conditions of the anodization of Sn and Sn amalgams in NaOH

solutions, the oscillations of the electrode potential, changing between the values

characterizing the Sn/Sn(OH)2 and Sn(OH)2/Sn(OH)4 redox couples.
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Fig. 6.55 Current oscillations of zinc during anodic potentiodynamic sweep at 5 mV/s; 28 w/o

NaOH. 80 �C. 600 rpm. Reproduced from [140] by permission of The Electrochemical Society
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Mechanistically, these oscillations have been attributed to the competition between

the anodic formation and dissolution of Sn(OH)4. More recent studies, like that by

Strirrup and Hampson [144], involving rotating disk tin electrodes in contact with

NaOH solutions, allowed to recognize the primary and secondary passivity, the

former one caused by the deposition of SnO or Sn(OH)2 film, and the latter one due

to the formation of SnO2, the permanent existence of which causes the oscillations

to cease. In terms of this mechanism the current oscillations occur in the region of

potentials corresponding to the transition between the primary and secondary

passivity, i.e., between the electrodes surface states switching between Sn/SnO

[Sn(OH)2] and SnO[Sn(OH)2]/SnO2.

Finally, Drogowska et al. [145] have reported current oscillations at the

preoxidized Sn electrodes immersed in bicarbonate or phosphate solutions in the

presence of chloride ions. The mechanism of these oscillations involved alternating

corrosion of the passive layer with the participation of chloride ions, followed by

the repassivation of the electrode surface.

6.1.7.7 Other Metals

For titanium, the oscillatory electrooxidation was reported for H2SO4 solutions

[146] and for bromide solutions [147]. Very recently, studies of the current

oscillations accompanying the Ti anodization in H2SO4 medium under similar

conditions were described by Warczak and Sadkowski [148]. Since for under-

standing of these phenomena the porosity of the forming layer of TiO2 is signifi-

cant, their characteristics will be described in more detail in Sect. 4.4 of volume

II. For bismuth, the electrode potential oscillations have been found by Petrov

et al. for both poly-Bi and single crystal electrodes (cited after [4]) and by Ammar

and Khalil [149] in different media, including phosphate, borate, benzoate, and

tartrate solutions. For cadmium, potential oscillations in KOH solutions,

explained by formation/destruction of a passive surface film: either Cd(OH)2 or

CdO finely dispersed in Cd(OH)2, have been published by Galushko et al. [150].

In turn, Kadaner et al. [151] have described low-frequency (0.01–0.3 Hz) poten-

tial oscillations during niobium electrochemical dissolution in HBF4 electrolyte,

by imposing a 50 Hz ac current equal to or larger than the passivation current of

the metal under these conditions. A mechanistically interesting case appeared to

be galvanostatic electrodissolution of tungsten in NaOH solutions, accompanied

with the potential oscillations [152] which were explained as thermokinetic
instabilities caused by the electrochemical reaction heat released on the electrode

surface and the resulting large temperature gradients between the electrode

surface and the electrolyte bulk. Experimental data were supported with theoreti-

cal analysis.
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6.2 Application of Metal Electrodissolution Processes

in Micromachining

The controlled electrodissolution of solid phases can be used in electrochemical

micromachining. Schuster, Ertl et al. [153] have described such procedure for the

3D machining of conducting materials with submicronic precision. This approach

seems to overcome the limitations of the commonly used lithographic techniques in

the production of 3D structures. The machining system consists of an appropriately

shaped tool electrode, directly molded on the workpiece in which the pattern is

created. The tool electrode can move in three dimensions. The high resolution of

pattern production is achieved through the application of ultrashort potential pulse,

lasting for only nanoseconds. For the understanding of this method, it is necessary

to invoke the basic characteristics of the electrode processes. When the voltage

pulse is applied between the tool electrode and the workpiece, the capacitive

current, associated with charging of both interfaces, begins to flow, decaying in

time exponentially, according to the time constant being the product of (largely) the

double layer capacitance and (largely) the electrolyte solution resistance. Of course,

the smaller the time constant, the faster the charging of the electrode to the imposed

potential. When the electrode attains the potential sufficient to induce the faradaic

current of the given redox process, this current rises further exponentially with

increasing potential. Taking into account these characteristics, it now becomes

clear, how smart and simple was the idea of the inventors of this version of

electromicromachining. The key feature of the setup sketched in Fig. 6.56 is that

the time constant, deciding the rate of electrode charging is not the same for

all electrode regions, i.e., it is spatially varying. The smallest time constant

characterizes the region of the minimum solution resistance, i.e., the region

when the very tip of the tool electrode approaches the surface of the workpiece,

with the interelectrode distance ranging from nanometers to micrometers only

(see Fig. 6.56a).

Now, if one chooses the duration of ultrashort voltage pulse so that it will be

comparable (at best smaller) to this local, smallest time constant, only this tiny

region of both electrodes will be charged, while other regions will remain practi-

cally unpolarized, as they would require much longer time for attaining the same

potential. In other words, if the electrode potentials are chosen properly, during the

ultrashort voltage pulse only this part of the workpiece will undergo electrodis-

solution which is placed in front of a very tip of the tool electrode. Figure 6.56b

shows details of the experimental setup, involving bipotentiostat that controls the

potentials of both the tool and the workpiece electrode, with respect to the common

reference electrode. The pulse generator in the circuit of the tool electrode is a

source of ultrashort potential jump. In the experiment, the copper substrate was

used as a workpiece for micromachining, the cylindrical Pt wire (10 mm or 50 mm in
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diameter) was applied as a tool electrode, and also a Pt wire worked as a pseudo-

reference electrode. The electrolyte was an aqueous, acidified solution of CuSO4

(e.g., 0.1 M CuSO4 and 0.01 M HClO4). In contact with such solution the copper

substrate attained the well-defined equilibrium potential of the Cu/Cu2þ couple, at

which the electrode was kept, in order to minimize the global Cu corrosion during

the whole experiment and to avoid the redeposition of dissolved Cu. The average

potential of the tool electrode was adjusted to 200 mV vs. the equilibrium potential

of Cu/Cu2þ. The local etching of Cu workpiece was caused by a sequence of 50 ns,
�1.6 V pulses of the voltage applied to the tool electrode, with a pulse-to-pause

ratio of 1/10. Monitoring of the current–time dependence, compared to simulta-

neous voltage–time dependence, indicated that only at sufficiently small interelec-

trode distances (i.e., smaller than 1 mm) the shape of the current response indicates

characteristic contribution from the exponentially decaying capacitive current,

otherwise only its minor contribution is visible. Thus, only at sufficiently small
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Fig. 6.56 (a) Scheme of an

electrochemical cell. Upon

application of a voltage pulse,

the double layer capacity CDL

is charged via the electrolyte

resistance. Because the

electrolyte resistance along

the current path depends on

the electrode separation

(Rclose and Rwide), the time

constants for charging the

double layer become spatially

varying. (b) Experimental

setup for electrochemical

micromachining with

ultrashort voltage pulses.

From [153]. Reprinted with

permission of AAAS
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distances the local capacitive current is high enough, compared to other regions of

the electrodes, to cause the electrolysis in the place precisely determined by the

very tip of the tool electrode.

These experimental results are concordant with theoretical estimations: for

typical specific resistance r ¼ 30 O cm (0.1 M HClO4), double layer capacity of

metal electrodes Cd (or CDL) � 10 mF cm�2 and potential pulse duration of 30 ns,

the maximum distance, for which a significant double layer charging is achieved,

equals to ca. 1 mm. In other words, pulses of 30 ns duration should allow one to

achieve a machining resolution of 1 mm [153].

Figure 6.57 shows the representative scanning electron micrograph of the Cu

substrate treated with the micromachining method, with the appropriately

programmed sequence of potential pulses and position of the tool electrode.

As the introduction to the next section, we shall note that the electrochemical

micromachining described in this chapter can be applied also to etching of
semiconductors. In this way a hole was etched in the p-Si semiconductor with a

cylindrical 50-mm tool, contacting through 1% HF solution [153]. Furthermore, as

the polarization of the pulse can be reversed, not only etching but also a deposition
in a micrometer scale can be achieved with this method. In this way, a series of

copper dots was deposited on a Au substrate from the acidified solution of CuSO4,

with an elliptical, anodically polarized, Pt tool, 50 mm in diameter [153].

Fig. 6.57 (a) Cu structure

(small prism, 5 mm by 10 mm
by 12 mm) machined into the

Cu sheet of an electronic

circuit board upon application

of 2 MHz sequence of 50-ns,

�1.6-V pulses to the tool

electrode (a cylindrical Pt

wire 10 mm in diameter) in

0.01 M HClO4 and

0.1 M CuSO4. The tool was

first etched vertically into the

surface and was then moved

along a rectangular path like a

miniature milling cutter.

(b) Cu tongue with a

thickness of 2.5 mm, etched as

in (a). From [153]. Reprinted

with permission of AAAS
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In conclusion, the presented approach may provide new abilities for modern

micromachining technologies, due to its spatial resolution down to nanometer

range, fully 3D capabilities, and the versatility of chemical reactions that can be

used to produce desired patterns.

6.3 Anodic Oscillatory Dissolution of Semiconductor Electrodes

The nonlinear self-organization processes in semiconductors have been extensively

described, e.g., in recent monograph by Sch€oll [154] which includes also the

references to the original papers by this author. The book, addressed mainly to

physicists, is also a concise handbook of principles of nonlinear dynamics, while its

title emphasizes the importance of spatiotemporal aspects of such dynamics in the

etching of semiconductors. Therefore, in this section, we only briefly discuss the

examples of temporal self-organization in anodic dissolution of semiconductors,

while spatiotemporal phenomena will be more extensively treated in Chap. 4 of

volume II.

6.3.1 Cadmium-Based Semiconductors

One of the simplest systems of that type consists of CdS electrode immersed in the

alkaline aqueous solution. For such systems Josseaux et al. [155] have reported

damped photocurrent oscillations, which were explained in terms of the formation

and dissolution of Cd(OH)2 film.

Photocurrent oscillations were described also by Marcu and Tenne [156] for

single-crystal n-CdTe semiconductor immersed in an alkaline cesium sulfide

solutions (1 M CsOH þ 1 M Cs2S). The current oscillations were characterized

with a frequency of ca. 1 Hz, with the shape changing as a function of time, for

constant electrode potential; among others, the transition from simple periodic

course to the one resembling the consequence of the period-doubling bifurcation,

was reported. In turn, the practical insensitivity of the current toward stirring rate of

the solution excludes the principal role of diffusion (or more generally—transport)

rate in the solution. The morphology and the amplitude of the oscillations depended

strongly also on the electrode potential. In the interpretation of these phenomena it

was considered, as the crucial step, the thermodynamic instability of CdTe in

sulfide solutions, with respect to S/Te exchange:

CdTe þ 2hþ ���!hv;k1
Cd2þ þ Te0 (6.89)
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The released Cd2þ ion diffuses into the solution, where it precipitates as CdS:

Cd2þ þ S2� ! CdS (6.90)

Also elementary tellurium, appearing in the semiconducting phase, is easily

oxidized:

Te0 þ 3OH� þ hþ�!k2 TeO2�
3 þ

3

2
H2 (6.91)

Note that the role of Te layer is by no means trivial, since it can affect the

kinetics of reaction (6.89) in several ways: as the gray filter reducing the amount of

light reaching the semiconductor surface or as the factor modifying the height of the

semiconductor–solution Schottky barrier. Marcu and Tenne consider the changing

width of the Te layer on the surface of CdTe as the possible source of the

oscillations of the photocurrent. In order to justify this hypothesis, both experimen-

tal and theoretical (kinetic model) arguments were presented. Among others, the

fact that analogous photocurrent oscillations were not observed with CdS and CdSe

semiconductors was explained in terms of their higher stability in sulfide solutions,

compared to CdTe.

The following, more detailed mechanism of the oscillations of the photocurrent

was proposed for CdTe/S2� system. First, the decisive role of Te layer as the gray

filter for the illumination was excluded and the oscillatory mechanism was based on

electrochemical properties of semiconductor. In this explanation the idea of the flat

band potential will be invoked, i.e., the potential at which the potential drop

associated with the space charge in the semiconductor vanishes (the concept

analogous to the potential of zero charge for metals). This flat band potential of

CdTe depends on local pH which varies due to reaction (6.91). Initially, the fresh

crystal of CdTe has its specific flat band potential. Upon illumination, the

corresponding photocurrent will produce an initial Te layer, which is responsible

for the decrease of the photocurrent. The following dissolution of Te causes a local

decrease in pH, associated with a decrease in the flat band potential. This in turn

causes a decrease in the photocurrent of reaction (6.89) which means also the

slower production of Te that is, on the other hand, continuously dissolving with

relatively high rate. The consumption of OH� slows down then and, accordingly,

the local pH increases, shifting the flat band potential back to previous value. The

rate of reaction (6.89) increases again.

If the term “flat band potential” is replaced with the “Flade potential,” the above

mechanism is in principle analogous to the Franck–FitzHugh oscillatory mecha-

nism for the dissolution/precipitation systems (Sect. 6.1.2.2). However, the

discussed semiconductor system has an additional, striking specific feature which

is its nonlinear response to the light intensity (contrary to more classical models in

which linear response is usually assumed). This system was mathematically defined

in terms of two ordinary differential equations, the one describing the temporal

variations of the amount of Te formed on the surface and the other one the dynamics

6.3 Anodic Oscillatory Dissolution of Semiconductor Electrodes 505



of either the photocurrent or the local concentrations of OH� ions, both approaches

producing oscillations. It is also noteworthy that the oscillatory behavior is in this

work from 1988 was already, although briefly discussed in terms of linear stability

analysis. Later, Marcu and Strehblow [157] have reported current oscillations

observed during anodization of CdxHg1�xTe in alkaline solutions containing Csþ

and S2� ions; the explanation of those instabilities was essentially similar to that for

CdSe, i.e., assumed the formation and dissolution of Te monolayer as the key

process.

6.3.2 Silicon in Fluoride Media

Undoubtedly, electrodissolution of silicon in F�-containing media has been one of

the most intensively studied processes in semiconductor electrochemistry. A part of

these studies concerns with the oscillatory course of this process in the

electropolishing region (E > 2.5 V vs. SCE [24]). We shall first briefly summarize

the early works on this subject [4].

The oscillatory electrooxidation of Si in fluoride medium, occurring under

galvanostatic conditions, was first reported by Turner in 1958 [158] who also first

suggested the role of SiO2 layer in the oscillations. The next important step in this

area was the paper published by Gerischer and L€ubke [159] who have described and
analyzed the current oscillations at p-Si, and the photocurrent oscillations at

illuminated n-Si, in contact with NH4F solutions. An important point of this work,

which will be invoked in some later elaboratedmechanism (see Sect. 4.1, volume II),

is the postulated existence of a “sub-oxide” SiO2�x between the Si surface and SiO2

layer. With increasing thickness of the oxide layer, its composition becomes closer

to SiO2. This “improvement” of the stoichiometry of the silicon oxide and its growth

requires the electric field-assisted transport of oxygen ions through the oxide toward

the SiO2–SiO2�x/Si interface. In fact, transport of these ions through the oxide layer
was suggested as a key process for the occurrence of the oscillations. The model of

current oscillations thus involved nonlinear relation between oxide formation and its

dissolution.

The above work triggered an increasing interest in the oscillatory dissolution of

Si in HF media. In the following years, in a series of papers, Chazalviel et al., based

on voltammetric and impedance measurements [160–163] have performed further

studies of Si dissolution in NH4F media, indicating their occurrence under

potentiodynamic conditions, but ceasing for the constant electrode potential. Also

small sinusoidal perturbations of the constant electrode potential were able to

trigger the oscillations which were therefore considered the resonant oscillations.
Other studies include the works by Peter et al. [164, 165] who studied Si dissolution

using ring disc voltammetry and ellipsometry. They have suggested that the

oscillations could not be ascribed to periodical buildup and destruction of surface

oxide layers (since the fluctuations in the oxide layer thickness were not detected),

but rather to periodic changes in the electrical field in the interfacial region. This, in
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turn, could be associated with the periodic buildup and decay of space charge within

the superficial oxide layer. At that stage of studies, as the authors conclude, the

behavior of Si electrode in the region of oscillation “remains a challenging puzzle.”

As the reader will learn from the analysis below and in Chap. 4 of volume II, the

role of surface oxides will appear important for the oscillations.

Studies of the role of oxides have been undertaken also by Lewerenz and

Schlichth€orl [166] who have analyzed the light-induced oscillatory n-Si(111)
dissolution in 0.2 M NH4F media performing, among others, excess microwave

reflectivity measurements, simultaneously with photocurrent measurements. In

other studies Lewerenz et al. [167, 168] have used ellipsometry and ex situ XPS

measurements to monitor the surface of n-Si(111) electrodes immersed in NH4F

solutions, after prior oxidation of Si surface up to a thickness of 35–40 Å. It was

found that during the oscillations the oxide layer changed its thickness, but for less

than 10% only. On the other hand, Ozanam and Chazalviel [169] using internal IR

multiple-reflection spectroscopy observed 60% modulation of the oxide layer

during the oscillations, but it is possible that the magnitude of these variations

depends on particular experimental conditions.

Figure 6.58 shows typical voltammogram of a (111) p-Si electrode in fluoride

media, taken from the work by Chazalviel et al. [161] (the curve is very similar to

the one obtained for n-Si under intensive illumination [159]).

One should note that current oscillations are observed in the potential region

corresponding to J4 plateau. Let us first analyze the sequence of interfacial phe-

nomena occurring along this J–E dependence. Upon anodic polarization first the

abrupt increase of current (J1) is observed which was associated with the formation

of porous silicon. At the p-Si, according to Turner [158] and Peter et al. [165] in this
potential region there occurs the oxidation of Si to Si(II) and further to Si(IV),

accompanied by hydrogen evolution [24]:

Siþ 2F� þ 2hþ ! SiF2 (6.92)

SiF2 þ 2HF! SiF4 þ H2 (6.93)

Fig. 6.58 Typical

voltammogram of a (111)

p-Si electrode. Electrolyte is
0.025 M HF + 0.025

NH4F + 0.95 M NH4Cl

(cF- ¼ 0.05 M, pH 3).

Rotation rate 300 rpm; sweep

rate 5 mV s�1. Note the small

current oscillations in the J4
plateau. Reprinted from [161]

with kind permission of

Deutsche Bunsen-

Gesellschaft f€ur
Physikalische Chemie
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with SiF4 complexed further to SiF6
2�. However, at the n-Si electrode, holes have

to be generated upon illumination, due to optical excitation [24]:

hv! hþVB þ e�CB (6.94)

A sharp decrease in anodic current following peak J1, based on the works by

Chazelviel et al., is ascribed to the formation, on the Si surface, of the passivating

film. Its composition varies, upon increasing anodic potential, from silicon hydrox-

ide finally to SiO2 at potentials in the J4 region, where the oxidation occurs

according to the following equation [165]:

Siþ 2H2Oþ nhþ ! SiO2 þ 4Hþ þ ð4� nÞe (6.95)

In turn, the SiO2 is chemically dissolved by HF and HF2
� in the solution:

SiO2 þ 6HF! SiF6
2� þ 2H2Oþ 2Hþ (6.96)

SiO2 þ 3HF2
� ! SiF6

2� þ H2Oþ OH� (6.97)

Thus, the plateau of current density in the J4 region is controlled predominantly

by the rate of SiO2 dissolution, according to the kinetic equation [160]:

J4 ¼ k4½HF�2 �½Hþ�1=2 (6.98)

The J4 current was later found to depend on the rotation rate of the disk electrode
in a way indicating combined kinetic and mass-transfer control, involving the

transport of fluoride ions from the solution bulk to the Si electrode surface [170].

At this point, one can make an introductory suggestion that the oscillations during

Si anodization are due to a competition between electrochemical formation of SiO2

layer [Eq. (6.95)] and its chemical (currentless) dissolution (etching) by fluoride

ions [Eqs. (6.96), (6.97)]. In order to collect possibly direct and reliable experimen-

tal data supporting this assumption, Nast et al. [171] have monitored the surface

morphology changes of silicon oxide on p-Si(111), during the oscillations, by in

situ atomic force microscopy (AFM). Also, in separate in situ fast Fourier transform

infrared spectroscopy (FTIR), the photoelectrochemically induced oxide coverage

variations on n-Si(111) were found. A strong correlation between the photocurrents,

the surface roughness, and the silicon oxide coverage was observed, as illustrated

by Fig. 6.59.

Analysis of the positive and negative slopes of the Si–O signals clearly indicates

a faster reaction rate for the electrochemical oxide formation than the rate of its

chemical dissolution. Furthermore, since the oxide formation always takes place as

long as a measurable current is observed, the oxide has to be porous to allow a

conductive contact between the silicon and electrolyte. The qualitative properties of

the oxide layer must also change during the oscillations: based on the comparison of
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Fig. 6.59 Temporal change of (a) the roughness parameter (0.1 M NH4F, pH 4.2, U ¼ 5.2 V vs.

SCE) and (b) the Si–O absorption signal (0.1 M NaF, pH 4.0, U ¼ 6 V vs. SCE). The roughness

parameter and the Si–O absorption signal with respect to the corresponding current density peaks

are given in (c). Reprinted from [171], Copyright 1998, with permission from Elsevier
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the current density and Si–O signal, one concludes that the oxide is less passivating

in the increasing part of the oxide coverage transient than in its decreasing part. In

the detailed explanation of the observed dependences, there was also invoked the

possible role of pH of the electrolyte inside of the porous oxide layer and immedi-

ately adjacent to the oxide–electrolyte interface. Description of detailed models of

the oscillations will be continued in Sect. 4.1 of volume II, due to correlation

between temporal instabilities and spatial patterns of oxide on the Si surface.

Here, we shall only mention that the origin of the above-mentioned oscillations

occurring after small potential perturbation was diagnosed by Chazalviel et al.

based on impedance measurements [162, 172] and appropriate theoretical

considerations. The resonant behavior of the system subject to external sinusoidal

perturbation was ascribed exclusively to the characteristics of the Si/solution

interface, i.e., they were not considered as the manifestation of the instability of

the whole circuit, like in the case of interaction of the NDR with ohmic potential

drops. Without going here into mathematical details of the model, we shall briefly

say that Chazalviel et al. have proposed the model of the oscillations in which the

electrode was considered a set of small domains exhibiting individually autono-

mous current oscillations. According to this model, each anodic current pulse

results in the creation of a SiO2 film in the small domain, and for repeating

the pulse, there must pass the time necessary to chemical dissolution of this film.

Since these domains are uncorrelated (unsynchronized), the macroscopically

reported current is practically constant, but upon small external periodic perturba-

tion of the potential, they become synchronized, oscillate all with the same phase,

and consequently, macroscopic current oscillates, as well. The idea of complete

lack of coupling between the individual domains was somewhat questioned by

Koper [24], but the concept of synchronized and nonsynchronized individual

oscillators was later repeated also in more recently elaborated mechanism of

electrodissolution of Si, and also for some other semiconductors. Concerning the

Si/fluoride system, it is noteworthy that this problem has been undertaken very

recently again by Chazalviel and Ozanam [173]. In this work, the main point is that

the damped current oscillations are attributed to a sustained current oscillation on a
local scale. Using a combined simulation/analytical probabilistic analysis, it was

examined whether an interaction between the various locations on the electrode

surface may lead to such macroscopic oscillation of the total current. The main

conclusion is that a short-range interaction cannot lead to a synchronization of the

oscillation over the surface of a large electrode, but such a synchronization might be

obtained on small electrodes, or with appropriate values of the system parameters.

Thus, if the coupling occurs, it has a rather global nature and realizes due to the

external resistance in series with the electrode (see Sect. 1.2, volume II). But it also

means that the microscopic nature of the oscillations in the Si/fluoride system still

remains an open question. The detailed studies of pore formation on Si surface

under various conditions, mainly upon anodization in fluoride-containing solutions,

with the emphasis on self-organization, remains the subject of intensive studies

(cf. e.g., [174–180]). Various mechanisms of pore formation in electrochemical

anodization of semiconductors were discussed by Chazalviel et al. [181] who have
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recommended linear stability analysis of the semiconductor/solution interface as

the promising approach for the initial stages of pore growth, taking into account

both physical and chemical aspects of the process. Selected models related to the

pore formation on Si and other semiconductor surfaces will be described in more

detail in Sect. 4.1 of volume II.

As the last example of the oscillatory process involving Si dissolution, we shall

mention here the chaotic oscillations of the open-circuit potential (OCP) observed
during the immersion plating of p-Si with copper in electrolyte containing CuSO4

and HF, reported and analyzed further by Parkhutik et al. [182, 183]. The processes

which occur at the Si/solution interface include: the deposition of Cu film on the

surface of Si: Cu2þ þ 2e! Cu and simultaneous dissolution of Si wafer beneath

the Cu film, supplying the electrons for Cu2þ reduction and causing local acidifica-

tion of the solution: Si þ 2H2O! SiO2 þ 4Hþ þ 4e. These processes summa-

rize into the overall reaction not requiring an external electron source:

Siþ 2Cu2þ þ 2H2O! SiO2 þ 2Cuþ 4Hþ (6.99)

The presence and stability of Cu film seems to play an essential role in the

reported OCP oscillations. It is supposed that the Cu deposition in the form of

clusters is associated with simultaneous growth of very thin layer of SiO2 which, on

the other hand, dissolves chemically in HF. This results in lifting off of the

deposited Cu layer. The surface of silicon is autorenewed and the deposition

cycle repeats [183]. The complicated interplay of copper film formation and

destruction, silicon oxidation, silicon oxide dissolution, and electrolyte properties

causes the irregular course of the oscillations. Finally, one should mention that

currentless deposition of Cu on Si is important due to practical implications in

microelectronics, e.g., in deposition of metallization lines [183].

The reader interested in various aspects of electrochemistry of silicon, including

brief description of electrochemical oscillations, is advised to consult also, e.g., the

specialized monograph by Lehmann [184] which covers the state of knowledge up

to the year 2002.
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