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To my parents,
it could not have been anybody else



Inspect every piece of pseudoscience and
you will find a security blanket, a thumb
to suck, a skirt to hold. What does the
scientist have to offer in exchange?
Uncertainty! Insecurity!

Isaac Asimov

Nature is a merciless and harsh judge of
the theorist’s work. In judging a theory, it
never rules ‘‘Yes’’ in best case says
‘‘Maybe’’, but mostly ‘‘No’’. In the end,
every theory will see a ‘‘No’’

Albert Einstein

All our science, measured against reality,
is primitive and childlike—and yet it is
the most precious thing we have

Albert Einstein



Supervisor’s Foreword

The growing field of organic electronics relies on the use of organic conjugated
molecules as components of multilayer devices, whose performance depends
critically on the energy barriers controlling the carrier transport between layers.
Those barriers are determined by the relative alignment of the molecular levels
between the materials forming the contacts, either a Metal/Organic or an Organic–
Organic interface. This thesis work is focused on analyzing theoretically the
energy level alignment of different Metal/Organic interfaces.

The organic molecule/metal interaction is, in principle, amenable to density
functional theory (DFT) calculations; however, using local density approximation
(LDA) or generalized gradient approximation (GGA) for the exchange-correlation
potential tends to yield for the organic molecule transport energy gaps that are too
small by several eVs. This problem is related to the fact that Kohn–Sham eigen-
values (as calculated in those approximations) are not a proper representation of
the quasiparticle excitation energy: in conjugated organic molecules the difference
between the HOMO and LUMO Kohn–Sham eigenvalues is significantly smaller
than the transport energy gap measured experimentally due to the self-interaction
correction that arises because the Kohn–Sham LDA–DFT (or GGA–DFT) gap
refers to a N-electron calculation, while the experimental transport gap is related to
the total energy differences of the molecule ground states with N + 1, N and N - 1
electrons.

Another problem limiting the application of DFT to Metal/Organic interfaces is
related to the importance in these systems of van der Waals interactions which are,
in many cases, necessary to get an accurate description of the organic molecule
adsorption distance and energy. The reason is that van der Waals is a non-local and
long-range interaction, while exchange-correlation functionals in standard DFT
methods are local and short range, with a typical exponential decay. Therefore, in
many Organic/Metal interfaces one has to introduce corrections to standard DFT
methods in order to get an accurate description of the Metal/Organic interaction.

In this thesis work, these two problems have been addressed introducing in the
standard LDA approach corrections in the direction of increasing the organic
molecule energy gap and of including an appropriate van der Waals interaction.
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Regarding the energy gap problem, it has been shown how the Kohn–Sham energy
gap of the molecule has to be corrected by its charging energy: this quantity is
calculated from the charge transfer between the metal and the molecule, and the
energy level shift of the LUMO and HOMO levels as obtained from a consistent
LDA calculation; in this consistent approach, the molecule energy gap is finally
calculated by means of a scissor operator that introduces the appropriate charging
energy in those levels. Regarding the van der Waals interaction, a kind of corrected-
LDA calculation has been introduced which combines a weak chemical interaction
between the metal and the organic molecule with a semiempirical van der Waals
attraction. The way of calculating the weak chemical interaction tries to avoid the
double counting that would appear including both the exchange correlation energy
provided by a conventional LDA approach and the correlation energy associated
with the long-range van der Waals potential introduced independently.

All these ideas have been combined in this thesis work in a full calculation of
different Metal/Organic interfaces; in particular the following systems have been
considered: C60/Au(111), benzene/Au(111), pentacene/Au(111), TTF/Au(111) and
TCNQ/Au(111), at the molecular level and for an organic monolayer.

All these results have also been interpreted within the Unified-Induced Density
of Interface States (IDIS) model, whereby the Metal/Organic level alignment is
controlled by the potentials created by the charge transfer between the two
materials and by the ‘‘pillow’’ effect associated with the Pauli principle applied to
the overlap between the charges of both materials. It has been found that the
Unified-IDIS model is valid not only for the Metal/Organic interface but also in the
molecular limit, with a lonely molecule adsorbed on a metal.

Madrid, Spain, March 2012 Prof. Dr. Fernando Flores Sintas
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Chapter 1
General Introduction

1.1 Limitations of Conventional Electronics

In the second half of the 20th century, the field of electronics has suffered an
outstanding progress. Since the invention of the transistor, in 1947, the speed and
power of electronic devices has increased exponentially, while its size has decreased
in the same proportion. The initially slightly idealistic Moore’s law, which states that
the number of transistors that can be placed inexpensively on an integrated circuit is
doubled approximately every two years, remains true 45 years later (see Fig. 1.1).

However, limits of conventional silicon based electronics are close to be reached.
In around 10 years transistors will reach the nanometer scale. At this size, standard
semiconductor transistors theory, based on statistical physics and band structure
theory [1] are no longer good approximations, and physics will be substantially
changed. Pure quantum effects will appear or even govern electronics at that scale.
A lot of effort is being made in understanding physics at the nanoscale [2–9] in order
to be able to domain and build mechanic, optical and electronic devices of that size.

Electronic devices at the molecular scale, such as diodes [10], electronic mixers
[11], and switches [12] have been extensively investigated. This branch of electronics
at this scale is called molecular electronics, and a lot of experimental and theoretical
groups are trying hard to understand the physics and obtain devices with tailored
properties that can be manufactured industrially [13–15].

On the other hand, in the field of “macroscopic” electronics, new materials with
semiconducting properties have been introduced as a part of electronic devices. Both
fundamental research and industry have aimed to organic semiconductors. They
have the advantage of the high tunability of their properties (as well as being much
cheaper and environment friendly than their inorganic counterparts). However, their
electron mobility is lower than standard inorganic semiconductors. Besides, this kind
of materials are very different than standard inorganic semiconductors, so a lot of
effort needs to be made in order to understand their properties [16–20]. In particular,
metal-organic interfaces, that appear in every connection of a semiconductor with
the metallic circuit, have become difficult to understand. Due to the weak interaction

E. Abad, Energy Level Alignment and Electron Transport Through 1
Metal/Organic Contacts, Springer Theses, DOI: 10.1007/978-3-642-30907-6_1,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1.1 Plot of CPU transistor counts against dates of introduction. Note the logarithmic scale;
the fitted line corresponds to exponential growth, with transistor count doubling every two years.
Copyright by Wgsimon. Taken from [21]

between molecules, it was thought that these kind of interfaces were intrinsically
inert. However, dipole formation in these barriers and gap reduction have made
these interfaces very complicated (and very rich, from a research point of view).
Most of this thesis is aimed to understand these interfaces.

1.2 Nanotechnology

As stated before, the field of nanotechnology can lead to a new scale of miniaturization
of electronic circuits. However, there is not too much possibility that this will happen
in the near future. There are still some problems that we have to deal with: long-term
stability at room temperature, and with air exposure; and scalable fabrication, in
order to be able to fabricate massively circuits of millions of components.

However, this doesn’t mean that there is no use in studying systems at the
nanoscale. As stated before, the well known macroscopic physics fails to predict their
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(a) (b)

Fig. 1.2 Schematic view of a nanowire, illustrating the channel ballistic transport trough
nanoobjects. a A nanowire with a non-perturbed geometry, with two channels contributing to the
wire conductance. b After a geometric relaxation (for example, during an stretching process), the
channel structure has changed and only one contributes to the conductance. Note that this is just an
oversimplified picture, so the fact that we have one or two atoms in a realistic chain does not mean
that we have one or two channel (Color figure online)

behavior at that scale, since quantum phenomena govern these systems. In order to
use circuits at the nanoscale, first we need to have an accurate vision of their mechan-
ical, chemical and electrical properties. In the last two decades, with the invention
of the scanning tunneling microscope (see Sect. 1.4.2) a great progress on this field
has occurred both in theoretical and experimental research [2, 3, 22, 23].

One surprise of nanoscale physics is that metals, that are a homogeneous group
in their macroscopic mechanical and electrical properties, behave very differently
when they are of molecular size. For instance, when they are stretched in order to
obtain nanowires, their conductance can change by more than 300 %, and they can
form long chains before they break [24] or just dimers [25]. At this scale, chemistry
matters. Related to that, their chemical properties can be very different from their
macroscopic ones. For instance, Au is a noble metal that barely reacts with other
elements and compounds; however, gold at the nanoscale has an enhanced chemical
reactivity [24, 26, 27].

However, there is still some universal behavior. Conductance of clean nanowires
is usually a multiple of the quantum of conductance (G0 = 2e2/h), and there is a
direct link between mechanical and electrical properties [25, 28].

The explanation for this fact is that the conductance is essentially ballistic for
metallic nanowires. The seminal paper of Landauer [29] made people consider trans-
port through nanoobjects as a transmission-reflection channel problem. Channels
are just eigenvectors of the transmission matrix in a certain basis, and their physical
meaning is that for this channel, the electrons move through the path given by the
relative weight of the basis wavefunctions with a transmission t [30]. A complete
transmission (t = 1) channel contributes with a quantum of conductance G0 to the
global conductance of the system. So in this particular case, the electron-electron
and electron-phonon inelastic processes are not the source of finite conductance, but
the limited number of transmissive channels (with t �= 0). See Fig. 1.2.

This introduction is just a first glance to this enormous science, and aimed
to the topics studied in this thesis. There are quite a lot of other fields within
nanoscience; like photonics and metamaterials, graphene and carbon nanotubes,
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Fig. 1.3 Left A wide range of electronic devices that use organic semiconductors are already being
commercialized by technological corporations, like this LG®15EL9500 television with OLED
technology. Copyright LG. Taken from [32]. Right Flexible organic display of 2.5 inch, 160 × 120
pixels manufactured by Sony®. It is able to reproduce 16.7 million colors (24 bits). Copyright Sony
(2007). Taken from [33] (Color figure online)

coulomb blockade, shot noise and one electron transistors, self-assembling mole-
cules, cluster physics. . . Just a brief abstract of all the physics at the nanoscale will
need more than a chapter and will not be given.

1.3 Organic Electronics

We have already mentioned another discipline that has acquired much importance
recently: organic electronics, i. e. the use of organic semiconductors in electronic
devices. We stress here that the use of organic materials has important advantages with
respect to conventional inorganic semiconducting materials. First of all, they are more
environmental friendly, both in the fabrication and elimination processes. Moreover
they consume less power and they are cheaper; so they are perfect candidates for
relatively inexpensive and portable devices like mobile phones, displays and digital
photo cameras. Organic displays have also improved brightness and contrast and a
wider angle view.

The huge variety of organic molecules, and the possibility to add different
functional groups, allows us to completely taylorize our semiconductors proper-
ties; for instance, tuning the emitting wavelength of organic light emitting diodes
(OLEDs), or using them as highly specific sensors (chemical, pressure, photons).
This technology, although not completely revolutionary (it is based in macroscopic
physics), is more mature industrially and organic electronic devices are not rare in
the market (Fig. 1.3).
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However, the industrial production of these devices does not imply that the physics
of organic semiconductors is well understood. They are very different from their
inorganic counterparts. They are molecular solids, with molecules bonded by weak
Van der Waals forces; while conventional semiconductors are covalent solids, with
atoms strongly tied by covalent (sometimes partially ionic) bonds. This makes that
band theory used in inorganic semiconductors fail (see Sect. 3.1). A key aspect of
these devices is the energy level alignment at metal/organic and organic/organic
interfaces. It is closely related to the electron and hole injection barriers, and is
critical in order to get good performance in these devices (see Sect. 3.1). Unfortu-
nately, it is very complicated to be obtained theoretically with standard techniques
because of intrinsic failures of density functional theory (see Sect. 2.7 and [19, 34]).
However, our understanding of organic semiconductors and metal/organic interfaces
have improved a lot in the last decade [16–20, 35], but some questions are still open.
A more complete description of theoretical problems of organic semiconductors will
be given in Sects. 3.1 and 3.3.

Finally, we point out that organic semiconductors are not only interesting in
devices, but also as electricity generators. As conventional semiconductors are also
used as solar cells, organic semiconductor solar cells are now being extensively
researched [36]. The problem nowadays is that their performance is very low (they
have a record on laboratory of around 8 %, compared with the laboratory record of
around 45 % on standard GaAs inorganic semiconductor), but it is improving fast.

1.4 Experimental Setup

In this section we are going to give a brief summary of the main experimental
techniques used to investigate metal/organic (MO) interfaces, as well as techniques to
get atomic-size contacts or circuits. Most of these techniques are carefully explained
at [18].

1.4.1 Photo-Electron Spectroscopy

This is the main experimental technique to obtain information of energy align-
ment at MO interfaces. The underlying physical idea is very simple. A sample is
irradiated with a source of monochromatic photons, and the energy of these pho-
tons is employed in extracting electrons from the sample. These electrons arrive at
a kinetic energy detector. Energy measurements allow us to extract a lot of informa-
tion. Moreover, since the radiation penetration is around 5–30 Å, this technique is
very surface sensitive.

The energy balance can be calculated as:

E0 + hν = E (∗)+ + Ek (1.1)

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 1.4 Scheme of the physics of a photoemission spectrum, including some effects like electronic
relaxation.

where E0 is the initial energy of the molecule that absorbs the photon and hν the
energy of that photon. Ek is the energy of the collected electron and E (∗)+ the energy of
the positive molecular ion (usually in an excited state). One can measure the binding
energy Evb of that electron as:

Evb = E (∗)+ − E0 = hν − Ek (1.2)

As Fig. 1.4 suggests, we can suppose that there is a one-to-one correspondence
between the peaks in a photoelectron spectrum and the quasiparticle molecular levels
in the neutral molecule. However there are some effects that break this simple picture.
First of all, we need to take into account secondary electrons: the photoemitted
electron can excite other electron and extract it from the sample; these two electrons
are secondary electrons, and in this case, the picture is not that simple as the one
shown in Fig. 1.4. Moreover, when an electron is emitted, there is an electronic
intramolecular and intermolecular relaxation, that increases the electron energy. This
energy is around 1–3 eV for valence electrons, but can be much larger in core levels
[37, 38].

Depending on whether we are looking at the core or valence levels of molecules,
we need to use X-ray or ultraviolet (UV) photons. The properties that can be obtained
differ significantly between both so a brief summary of both techniques will be given.

X-ray Photoelectron Spectroscopy

In X-ray photoelectron spectroscopy (XPS) qualitative and even semiquantitative
analysis of chemical composition in surface region is possible. Although core levels
are not involved in chemical bonds, changes in the valence electron density will be
reflected as small but detectable shifts in the core electron binding energies (chemical
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Fig. 1.5 Scheme of a typical UPS spectrum, illustrating the procedure to calculate the surface work
function

shifts). XPS can also be used to study valence levels, but the cross section is lower
than for UV photons. The photoemission spectroscopy is performed with reference
to the Fermi level of the photoelectron spectrometer. So, when the Fermi level is
shifted, it is necessary to take into account this change. This can be done combining
XPS with ultraviolet spectroscopy (UPS) spectra as described in next paragraph.

Ultraviolet Photoelectron Spectroscopy

As stated before, this is the standard technique for the study of the valence band.
UV photons have a greater cross section than X-ray ones, and the photon energy
resolution is much higher. However, the natural linewidths in samples at room tem-
perature can reach 1 eV, so a large part of the photon energy resolution is not fully
appreciated [39].

Although photoelectron measurements are performed relative to the Fermi level,
in some cases, it is important to obtain binding energies from the vacuum level (for
example to interpret XPS chemical shifts or to measure change in vacuum level of
the sample due to the appearance of dipoles). This energy is easy to find out just by
looking at the cutoff of secondary electrons. The difference between the position of
the Fermi energy and the vacuum level determines the work function of our system,
as can be seen in Fig. 1.5.

Angle Resolved Photoelectron Spectroscopy

This technique does not only take into account the energy of the extracted electrons
but also the direction in which these electrons are emitted (it gives us both the
bond energy εn of the electrons and their momentum k). This way we can obtain the
complete band structure εn(k) of the system. Like other photoelectron spectroscopies
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Fig. 1.6 Schematic view of an STM. The tunnel current between the tip and the sample is amplified,
and used as a feedback for the tip-sample distance (in the constant current regime). In order to scan
a finite region of the sample the tip is placed over a piezoelectric material, to move the tip via
electronic control. Finally all data is sent to a computer, that creates the STM image and allows data
processing (Color figure online)

techniques, some caution has to be taken when interpreting these results (secondary
electrons, intraatomic relaxations, etc.)

Inverse Photoelectron Spectroscopy

Inverse photoelectron spectroscopy (IPES) is closely related to the direct one. The
sample is irradiated with low energy electrons (5–20 eV). The incident electrons
decay into the empty molecular states, emitting a photon, that is detected. The
energy of that state is the difference between the energy of the incident electron and
the detected photon. By this way the conduction band can be studied. However, the
resolution of this technique is lower than standard UPS. Anyway, combined UPS/IPES
spectra can give us a reliable study of valence and conduction bands, crucial in MO
interfaces.

1.4.2 Scanning Tunneling Microscope

As photoemission spectroscopy, the scanning tunneling microscope (STM) relies on
a simple physical idea. When two conductors are separated by a vacuum gap, no
current flows between them. But when the distance between them is reduced to a few
angstroms, some electrons can flow by tunnel effect. If one of the conductors has a
tip shape, this technique is extremely sensitive to the distance between the tip and
the sample atoms, and resolutions lower than 1 Å (that is, atomic resolution) can be
achieved. This is the basis of the STM [40, 41]. A simple scheme of the experimental
setup is shown in Fig. 1.6, and an atomic resolution image is shown in Fig. 1.7.
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Fig. 1.7 STM image with
atomic resolution of a
SiC(0001)−3 × 3−6H
surface. Image has been
taken at a constant current of
2 nA (height is the source of
contrast), the bias applied is
−3 V. The size shown in the
figure is 10 × 10 nm. Courtesy
of Pablo Merino (Color figure
online)

This technique is suitable for studying topography at the atomic scale. However,
interpretation of STM images is not trivial, because the current between tip and
sample not only depends on distance but also on local density of states of tip and
sample (sometimes a sudden change in current contrast is related to an abrupt change
of the local density of states, while the topography remains constant). Moreover, not
only topography can be measured. Different STM related techniques will be briefly
explained.

Scanning Tunneling Spectroscopy

Scanning tunneling spectroscopy (STS) relies on the use of a STM to probe the local
density of electronic states and band gap of surfaces and molecules deposited on
surfaces at the atomic scale. As stated before, STM current also depends on the local
density of states, so we can use it to measure this density. In a first approach the local
density of states at point r is LDOS(r) = d I

dV (r). So if we measure the current at a
certain point at several voltages, we can have a reasonable estimation of the density
of states at that point (Fig. 1.8).

Atomic Force Microscope and Kelvin Probe Microscope

Atomic force microscope (AFM) is another high-resolution scanning probe micro-
scope. It consist on a cantilever (usually made of silicon) that is placed close enough
to the surface sample that its dynamic has an measurable change due to the atomic
forces between the surface and the cantilever.

There are two main modes: contact, and non-contact. In the contact mode forces
are obtained by cantilever deflection measurement. There is usually an electronic
feedback loop in order to have the height constant. In the non-contact mode, the
cantilever is maintained oscillating at a given frequency ω by an electro-mechanical
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Fig. 1.8 d I (V )/dV STS spectra of filled and empty states recorded for a monolayer (bottom) and
a 2–3 molecular layer (top) film of PTCDA deposited on Au. The corresponding STM images of
the films are shown. The curves were recorded at the same tunneling setpoints as the corresponding
area scans. Reprinted from [42], Copyright (2002) with permission from Elsevier

circuit. When it is placed near the surface, the forces change the frequency or the
phase shift between the input and the output signal; this change is used as the source
of contrast.

The kelvin probe microscope [43] is a variant of the AFM, capable of measuring
the work function of the surface locally. It is based on the macroscopic Kelvin
Probe technique (see [44] and references therein). The AFM cantilever is a reference
electrode that forms a capacitor with the surface. An AC+DC voltage is applied to
the cantilever. Then an electrostatic force appears between the cantilever and the
surface.

For a certain DC voltage, the vibration is minimal. A map of this minimal vibration
voltage is used for imaging the work function of the surface. This technique is
very important in order to study locally the work function change on metal-organic
interfaces [18, 45].

1.4.3 Mechanically Controlled Break Junction

This technique allows to obtain very narrow metallic wires [3] so it is suitable for
fabrication of metallic nanowires or molecular electronic devices [4, 46]. In this
method, a metallic suspended bridge is fabricated by using electron beam lithography
and shadow mask techniques. Using a pushing rod, the insulator platform is deformed
and the wire is stretched (see Fig. 1.9) until it finally breaks. In the last stages of the
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Fig. 1.9 Left (a) Electron microscopy image of two microfabricated bridges suspended above a
triangular pit of silicon substrate. The close-up in (b) shows the two SiO2 cantilevers, which are
about 700 nm apart. The cantilevers are covered by a gold layer from which the final conducting
bridge of about 100 nm wide is formed, and which is broken by bending of the silicon substrate.
Reprinted with permission from [48] Copyright 1995 American Institute of Physics. Right Con-
ductance (A) and conductance histogram (B) of a gold STM tip at contact regime (C), showing
typical plateaus of conductance at integer multiples of G0 that appear as peaks in the conductance
histogram. When the experiment is conducted in a solution of benzenethiol, the conductance VS
distance curve changes (D) and new peaks appear at 1×, 2×, and 3× 0.011 G0 in the conductance
histogram (E); that suggest that a molecular contact has been formed (F). When benzenethiol is
substituted by benzenedimethanethiol, conductance (G) and conductance histogram (H) changes
again; that confirms the idea that the molecule in solution attaches to the gold electrodes. Adapted
with permission from [49]. Copyright (2004) American Chemical Society (Color figure online)

stretching process an atomic wire can be formed whose size varies from a dimer [25,
47] to several atoms [24].

During the last stages of stretching the wire can be exposed to gas phase molecules
that are able to attach to the wire just after breaking, as shown in Fig. 1.9. Or, a self
assembled monolayer can be formed in the metal surface and then the wire is stretched
and broken, after that tips are brought together (see Fig. 1.10).

Molecular conductance can also be achieved using STM, placing the molecule
between the tip and the surface [50, 51]. This method can also be used to obtain
clean metallic nanowires [52, 53].

1.5 This Thesis

In this thesis we have analyzed several metal/organic interfaces form first principles
in order to obtain realistic energy level alignment. Our results are interpreted in terms
of the induced density of interface states (IDIS) model, that was developed in this
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Fig. 1.10 Left Experimental setup for measuring conductance through a single molecule between
two electrodes. (1) A gold wire is placed in a solution of the desired molecule. (2) Then, a self
assembled monolayer of this molecule (SAM) is created over the gold surface. (3) The wires are
stretched until breakage. (4) Tips are put back together, and sometimes, a molecule is anchored to
both electrodes. Right Application of mechanically controlled break junction for study of molecular
conductance. The stretched part of the wire is placed under a molecule solution. It is possible that,
during the stretching and breaking process, one molecule is placed between electrodes. (Color figure
online)

group in the late 1970s for inorganic semiconductors [54, 55] and extended in the
last decade for organic semiconductors [35].

Our calculations employ density functional theory (DFT) techniques to simulate
the whole system (the organic layer and the metal surface). In this thesis we show that
the IDIS model is not useful only to understand the dipole formation at MO interfaces
(for various coverages and different screening) but also at molecular contacts at the
molecular level (that can be seen as the limit of MO interfaces with extremely low
coverage). This allows us to use the IDIS model in a very different field: the field of
molecular electronics.

Moreover, we have demonstrated on this thesis that within the theoretical
framework of the IDIS model we can use DFT results in order to obtain the charging
energy of the organic molecules, and predict an accurate gap of the molecule. Stan-
dard DFT techniques give underestimated energy gaps compared to real ones as the
self-interaction correction (SIC) and the image potential are not taken into account.
The value of this gaps is critical in order to obtain reliable values for the electron and
hole injection barrier, that determine the performance of electronic devices both for
macroscopic electronic devices and for molecular electronics.
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This thesis is organized as follows:
In Chap. 2 we will introduce the main theoretical background: the general hamil-

tonian for condensed matter systems and the most common chemical and physical
approximations, focusing on DFT. A small introduction to transport calculations is
also given. After that we will show the deficiencies of DFT we have to deal with when
working with metal/organic interfaces: the underestimation of the transport gap and
the lack of van der Waals interaction; and how we can correct these deficiencies in
order to have accurately characterized these kind of systems.

In the first part of Chap. 3 a small introduction to metal/semiconductor interfaces
(both inorganic and organic) will be given. After that we present, with full detail, the
IDIS model, necessary to interpret the results obtained in our thesis. In the second
part, we will employ this model to characterize C60/Au(111) and benzene/Au(111)
interfaces using standard DFT techniques, and we will show how the results are not
good enough to obtain realistic interface potentials and electron and hole injection
barriers. A brief discussion about the main problem (the underestimation of the DFT
gap) will be given at the end of this section.

In Chap. 4 we will extend the IDIS model to molecular metal/organic contacts.
Some proofs of the validity of the model at this level will be given (in Sect. 5.2 we
will show that molecular organic contacts can be seen as the limit of low coverages of
metal/organic interfaces). After that we will show that using IDIS parameters we can
obtain an accurate estimation of the charging energy of a molecule interacting with a
metal (including both self-interaction correction and image potential), and a reliable
transport energy gap. Finally, we apply all these ideas to two nanosize systems: a
C60 molecule between two gold tips and a C60 molecule between a tip and a gold
surface (mimicking the experimental geometry of STM experiments).

In Chap. 5 we will apply all the techniques of Chap. 4 to the study of metal/organic
interfaces. C60/Au(111) and benzene/Au(111) interfaces are revisited, with a realistic
gap obtained using the ideas of Chap. 4 and the importance of vdW interaction will
be discussed. TTF/Au, TCNQ/Au and pentacene/Au are also studied.

Finally in Chap. 6 we present the main conclusions of this thesis and suggest the
future work inspired by this research work.
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Chapter 2
Theoretical Foundation

2.1 Introduction

Ab initio calculation of the electronic structure of molecules and solids have became
one of the most important tools in solid state physics. These methods allow us to
predict some properties (crystal structure, density, molecular geometry, adsorption
and cohesive energies, among others) of condensed matter systems without need of
any empirical parameters. By this way we can understand and calculate some prop-
erties of the systems that are very difficult or even impossible to measure experimen-
tally. We can also gain insight in the origin of some effects that cannot be explained
only with experimental data (such as conductance quantization in nanowires, or the
origin of the dipole at metal/organic junctions). However, the price to pay is that a lot
of computational effort is needed, compared with empirical or semi-empirical mod-
els. In order to reduce the computational time, a lot of approximations have been done
in order to get the best accuracy/resources ratio. This chapter will guide through the
state-of-the-art ab initio techniques necessary (some of them developed during this
work) to successfully simulate the systems that have been studied during this thesis.

2.2 Statement of the Problem

Let us consider a system of n nuclei and N electrons. In order to calculate the
properties of this system we should solve the following Schrödinger equation.
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ψ(Rα, sα, ri , si ) = Eψ(Rα, sα, ri , si ) (2.1)
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18 2 Theoretical Foundation

where Rα = (Rα,x , Rα,y, Rα,z) are the spatial and sα the spin coordinates of the
nucleus α and ri are the spatial and si the spin coordinates of the electron i . This
is a partial differential equation with 3N + 3n variables, clearly impossible to solve
analytically or even numerically for the simplest system of interest. The first approx-
imation to be done is the Born-Oppenheimer approximation. Due to the big mass
difference between the heavy nuclei and the light electrons, we can decouple both
equations of motion. The electronic structure relaxation is much faster than nuclei
dynamics so we can consider that electrons “see” the ions as if they were frozen.
The nuclei dynamics can be treated classically, considering that they are affected
by a potential created by the electronic structure (V (Rα) = −∇Egs[{Rα}]). So the
equation we need to solve now is:
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ψ(ri , si ) = Eψ(ri , si ) (2.2)

that has “only” 3N variables. Although this equation seems very similar to (2.1), it is
necessary to point out that in this case {Rα} are parameters instead of variables, so for
example, the nucleus-nucleus interaction is just a number. However, this equation
is still impossible to solve. The main problem is the electron-electron interaction
potential (V̂ee = 1

2

∑
i, j

1
4πε0

e2

|ri −r j | ) that mix the position operators of the different
electrons. Without this potential, the equation is separable in N equations of 3 vari-
ables. Most of the approximations made in order to solve this equation are aimed to
transform this term and get separability of the problem. These approximations can
be classified in two types: approximations based on the wave function (often used by
chemists) or approximations based on the electron density (the most used, where the
DFT is the most common). We are going to give the main ideas of the wave function
methods on this section and we will explain in detail the DFT in the next one (for
extensive monographes see [1–3]).

2.2.1 Hartree Approximation

Hartree approximation is the most simple one. It consists on treating the electron-
electron interaction semiclassically, considering that each electron “see” a cloud of
negative charge that is the square modulus of the electronic wavefunction.

The deduction of the equation for this approximation is very simple. First it’s
necessary to realize that (2.2) can be derived [4] as the equation that makes stationary
the following expression:

〈Ĥ〉ψ = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 (2.3)
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The Hartree approximation relies in considering a fully separable solution for the
Schrödinger equation ψ({ri }) = ∏

i φi (r). Introducing this ansatz on (2.3) we get:

(
−

∑
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�
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i

2m
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ee + V̂ext

)
φ(r) = εiφ(r) (2.4)
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|Rα−Rβ | is the nucleus-nucleus interaction (just a num-

ber) and V̂ext = ∑
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|Rα−ri | is the interaction of the electrons with the electro-

static field created by the nuclei, and V̂ H
ee is the so-called Hartree potential that has

the form of an electronic density cloud interacting with the electron:

V̂ H
ee = e2

4πε0

∫
d3r′

∑
i |φi (r′)|2
|r − r′| (2.5)

where the sum is extended over the occupied orbitals. As we need {φi } to build
V̂ H

ee , but only knowing the latter, the former can be obtained, we can only solve this
equation in a selfconsistent manner: we choose some initial {φin

i } that seem not to be
too different than the actual ones (for example, if we are calculating the electronic
structure of a molecule, the wavefunctions of the free atoms that belong to it, is a
good initial set). Then we calculate the Hartree potential and solve the Schrödinger
equation, and we get {φout

i }. Then we use this output as a new input (in fact, we use
a combination of the {φin

i } and {φout
i }, to avoid numerical instabilities), and obtain

a new output. Use this output again as a new input, and so on. When the input and
the output one-electron wave functions are very close to each other, we have found
a selfconsistent solution, and we can use it to calculate the electronic properties of
the system.

This simple approximation neglects completely any many-body effect (exchange
and correlation), and does not give good numerical results even for systems where
exchange and correlation are not very important. Moreover, it is very easy to see
that the electronic wavefunction is not anti-symmetric, and we have to introduce the
Pauli exclusion principle as an ad-hoc hypothesis. Despite the lack of accuracy of
this approximation, it is very pedagogical as it introduces the idea of selfconsistency,
and in the more sophisticated approximations the electron-electron interaction is of
the form: V̂ee = V̂ H

ee + other terms.

2.2.2 Hartree-Fock Approximation

The Hartree-Fock (HF) equation can be derived from Eq. (2.3), taking as an ansatz
the simplest anti-symmetric wave-function: the Slater determinant:
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ψ(r1, . . . , rn) = 1√
n!

∣∣∣∣∣∣∣
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...

. . .
...
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∣∣∣∣∣∣∣
(2.6)

If we introduce this expression into (2.3) we get the following integro-differential
equation:
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∇2φi (r)+Vext (r)φi (r)+V H

ee (r)φi (r)−
∑

j

∫
d3r′ δsi ,s j

|r − r′|φ
∗
j (r

′)φ j (r)φi (r
′) = εiφi (r)

(2.7)
This equation is considerably more complex than the Hartree one-electron

Schrödinger-like equation (and more computationally “expensive” to solve). It is
important to remark that it contains a non-local term (the last one), with the advan-
tage of taking into account exactly the exchange, but no correlation effects at all, so
the electronic repulsion will be overestimated. In order to introduce these effects, we
have two choices: introduce them using a perturbative treatment (the Møller-Plesset
(MPn) methods) or using a more general ansatz (a linear combination of Slater-like
wave-functions) that is the basis of configuration interaction method.

2.2.3 Configuration Interaction

This method allow us to improve the HF results in a systematic (but expensive) way.
It is based on the fact that the exact solution to the Schrödinger equation is a linear
combination of Slater determinants.

|ψ〉 =
∑

i

ai |φ〉

where {|φ〉} is the infinite set of N -electron Slater determinants. Considering a subset
of {|φ〉} we obtain better results than using Hartree-Fock (the bigger the subset, the
closer to the exact energy). In order to obtain the eigen-energies and eigen-values
we calculate the matrix equation:

∑
j

Hi j a j = Eai ; where Hi j = 〈φi |Ĥ |φ j 〉 (2.8)

This method is very expensive computationally, but the main problem is the scal-
ability, because the time spent solving the equations grows as N ! with the number of
electrons N , that limits this method for very small systems. It is also not suitable for
extended systems (like solids) since for large N , the energy of the system E ∝ N 1/2,
violating the thermodynamic limit (unless we take the full—infinite—set of Slater
determinants).
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2.2.4 Møller-Plesset Perturbation Theory

It is based on time-independent perturbation theory.1 We consider that we have a
hamiltonian of the form Ĥ = Ĥ0 + V̂ where V̂ = Ĥ − ĤH F − 〈ψ0|Ĥ − ĤH F |ψ0〉
(ψ0 is the ground state wave function of Ĥ0), and solutions of Ĥ0 = ĤH F +〈ψ0|Ĥ −
ĤH F |ψ0〉 are well known. It can be easily shown [5, 6] that corrections to the
eigenvalues and energy at first order of perturbation theory are:

|ψ(1)i 〉 =
∑

j ( j 	=i)

〈ψ(0)j |V̂ |ψ(0)i 〉
E (0)i − E (0)j

|ψ(0)i 〉

E (1)i = 〈ψ(0)i |V̂ |ψ(0)i 〉

E (2)i =
∑

j ( j 	=i)

〈ψ(0)i |V̂ |ψ(0)j 〉〈ψ(0)j |V̂ |ψ(0)i 〉
E (0)i − E (0)j

(2.9)

The Møller-Plesset methods [7] (MPn) calculate the energy at n-th order of per-
turbation theory. MP0 (no perturbation) is just Hartree-Fock, MP1 correction is
Hartree-Fock also (the first order correction is zero), MP2 uses this second order
equation for the energy, MP3 uses the third order and so on.

2.2.5 Pseudopotential

In most of the chemical or solid state physical systems only the valence electrons (i.e.
the electrons in the outer shells) contribute to the bonding or band formation. The
core electrons are so deep inside the atom, and so strongly bonded by the nucleus
that they barely feel other atoms. So it is a waste of time to take into account a huge
number of electrons that aren’t important for obtaining the electronic properties of
the system.

Pseudopotentials [8, 9] are used to avoid the use of core electrons in the calcu-
lation. They have the same scattering properties than the system formed by nucleus
plus core electrons; and the wave functions of the valence electrons and the potential
strength are the same as the all-electron system for a distance greater than some
certain radius (rc). At distances smaller than rc, the pseudopotential is weaker than
the bare nucleus potential (it doesn’t diverge at r = 0 too), and the valence wave-
functions are smoother (they don’t need to have any nodes to be orthogonal to the
core electrons).

So, not only pseudopotential simplify a N electron system by a N − Ncore one, it
also allow us to work with well behaved and weaker potentials and smoother wave

1 An excellent introduction of this theory, with some practical examples can be found in [5],
Chap. XI.
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functions, that numerical methods can handle much more efficiently. Moreover, some
methods like plain wave-density functional theory methods (PW-DFT) will need a
much smaller basis set in order to describe properly the systems under consideration.

Good pseudopotentials need to have some properties. The most important one is
the transferability. That means that they have to reproduce the scattering properties
of the nucleus plus core electrons in a lot of different chemical environments (isolated
atom, molecules, crystals, etc.). It can be achieved just imposing norm conserving
(that means that the pseudo-wavefunction integrals need to be the same as the actual
ones) [10]. More sophisticated pseudopotentials are non-local (like the ones used in
this thesis) and a different potential is used for each angular momentum [11–15].
Recently a new generation of ultra soft pseudopotentials have appeared in the liter-
ature. They are not norm-conserving; but they compensate this including different
projectors in each angular moment [16, 17].

2.3 Density Functional Theory

The huge amount of theoretical ab initio research of very different materials (metal,
semiconductors, organic molecules) in the second half of 20th century relies on the
great simplification of the many-body Schrödinger equation due to the DFT and the
Kohn–Sham equations [18, 19].

Despite of its known deficiencies (most of them related with the difficulty of
finding a suitable exchange and correlation potential, see Sect. 2.3.2), the DFT has
better computational resources/accuracy ratio than the other wave-function based
methods (Hartree-Fock, configuration interaction, MP2...), so it is the suitable choice
for the study of large systems (of more than one hundred, or even one thousand
electrons). Although wave-function methods can be systematically improved (unlike
DFT), usually don’t work on extended systems (HF does not work well in metals,
CI does not recover the thermodynamic limit, MP2 diverges for the homogeneous
electron gas). That is another reason that encourage to use DFT in condensed matter
systems, instead of other methods.

This theory is based on the Hohenberg-Kohn theorem [18]: The energy (and
every observable) of a system of interacting electrons in a external potential (V̂ext )
is a functional only of the electronic density of the system E = E[ρ(r)]. Moreover,
the minimum of this functional occurs when the electronic density is the electronic
density of the ground state of the system (ρ(r) = ρgs(r)). The proof is very simple.

Let Ĥ be the following hamiltonian:

Ĥ = T̂ + V̂ext + V̂ee (2.10)

where T̂ is the kinetic energy of the electrons, V̂ext the external potential, and V̂ee

the coulomb electron-electron interaction [20]. And let V = {V̂ext } be the set of
all possible external potentials with the property that the solution of the many-body
Schrödinger equation has a non degenerate ground state. If 
 = {|ψ〉} is the set of
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all the possible ground states of Ĥ , then we can define the following application:

A : V → 


And if N = {ρ(r)} is the set of the electronic densities of {|ψ〉}ρ(r) = ∫
d3r2 . . .

d3rN |ψ(r, r2, . . . , rN )|2 then we can define another application:

B : 
 → N

The Hohenberg–Kohn theorem shows us that both applications are bijective. So
let’s show that A is suprajective: If we have V̂ext , and V̂ ′

ext with V̂ext 	= V̂ ′
ext + C ,

and we assume that both have the same ground state

(T̂ + V̂ee + V̂ext )|ψ〉 = E |ψ〉
(T̂ + V̂ee + V̂ ′

ext )|ψ〉 = E ′|ψ〉 (2.11)

subtracting both expressions:

(V̂ext − V̂ ′
ext )|ψ〉 = (E − E ′)|ψ〉 ⇒ (V̂ext − V̂ ′

ext ) = (E − E ′) ⇒ V̂ext = V̂ ′
ext + C

(2.12)
that is against original assumption.

The proof of the suprayectivity of the second application is the following. Let |ψ〉
and |ψ ′〉 be two ground states of Ĥ and Ĥ ′ with densities ρ(r) and ρ′(r), that we
consider to be the same. Due to both are ground states it is easy to see that:

E = 〈ψ |Ĥ |ψ〉 < 〈ψ ′|Ĥ |ψ ′〉 = 〈ψ ′|Ĥ ′ + V̂ext − V̂ ′
ext |ψ ′〉 ⇒

E < E ′ +
∫

d3rρ′(r)(Vext (r)− V ′
ext (r)) (2.13)

If we repeat this for E ′ we find an analogous equation with primed and unprimed
variables changed. Adding both expressions and taking into account that
ρ(r) = ρ′(r) then:

E + E ′ < E ′ + E (2.14)

that is impossible, so necessarily ρ(r) 	= ρ′(r).
The consequence of this theorem (as mentioned before) is that every observable,

like the energy, is a functional of the density of the system. The definition of the
ground state is the state that makes the energy of the hamiltonian a minimum. In the
variational analysis language, the ground state is an extremal of the energy functional.
This will allow us to deduce the Kohn–Sham equations.
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2.3.1 Kohn–Sham Equations

We are going to separate from the energy functional the term due to the external
potential:

E = E[ρ(r)] = F[ρ(r)] +
∫

d3rVext (r)ρ(r) (2.15)

where F is an universal functional that does not depend on the external potential.
Kohn and Sham wrote, without loss of generality, the density as a sum of some
orthonormal functions, ψi (r), so that, ρ(r) = 2

∑N/2
i=1 |ψi (r)|2 and divided this F

functional in three terms with very easy physical interpretations.

F[ρ(r)] = Ts[ρ(r)] + EH [ρ(r)] + Exc[ρ(r)] where

Ts[ρ(r)] =
N/2∑
i=1

∫
d3rψ∗

i (r)(−
�

2

2m
∇2)ψi (r)

EH [ρ(r)] =
∫

d3rd3r′ ρ(r)ρ(r′)
|r − r′|

Exc[ρ(r)] = F[ρ(r)] − Ts[ρ(r)] + EH [ρ(r)] (2.16)

It’s clear that the Ts term can be considered as the kinetic energy of some hypothetical
non-interacting particles, whose wavefunctions are ψi (r), the EH term is Hartree
energy, and Exc is the part of energy functional that we don’t know. This equation
means that we can consider this hypothetical non interacting particles as the electrons
of the system, and the energy functional is the one-electron functional Eoe = Ts +
EH + ∫

d3rVext (r)ρ(r), plus a term Exc that contains all the many-body terms that
we don’t consider in the one-electron functional.

If the ground state is an extremal of the energy functional (the state where the
energy is minimum), we can use variational analysis. We have a constraint on the
total number of electrons

∫
d3rρ(r) = N , so we need to use a Lagrange parameter

μ, that will be renamed as εi . Using the Euler-Lagrange equation:

δ

δρ(r)

[
Ts [ρ(r)] + EH [ρ(r)] + Exc[ρ(r)] +

∫
d3rVext (r)ρ(r)+ εi

(
N −

∫
d3rρ(r)

)]
= 0

(2.17)

it is not difficult to get that:

δTs[ρ(r)]
δρ(r)

= −�
2∇2

2m
δ

δρ(r)

[∫
d3rVext (r)ρ(r)

]
= Vext (r)

δEH [ρ(r)]
δρ(r)

=
∫

d3r
ρ(r)

|r − r′| = VHartree(r)
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δExc[ρ(r)]
δρ(r)

= Vxc(r) (2.18)

Putting all together we get [19]:

(
−�

2∇2

2m
+ Vext (r)+ VHartree(r)+ Vxc(r)− εi

)
ψi (r) = 0 (2.19)

We need to remember that these equations are exact. We haven’t made any approx-
imation up to this point. We have decoupled a partial differential equation with 3N
variables to N partial differential Schrödinger-like equations of 3 variables. We need
to remember here, that neither εi nor ψi (r) have any physical meaning. They don’t
correspond to the electronic energy levels and considering them as that could result
in misinterpretation of the calculation results.

However, this non-physical spectrum (eigen-energies and eigen-wavefunctions)
compares reasonably well with the physical one and it is often treated as a reasonable
approximation to the exact spectrum. Why these non-physical quantities turn out to
be a good approximation for the physical ones?

Quasiparticles

This can be well understood if we introduce the idea of quasiparticles. Imagine that
you have a jellium solid: that means, an homogeneous electron gas with an homoge-
neous positive background to neutralize the system. Then you add an electron to the
system at a point r. What will be the form of the potential created by this electron at a
point r′?

If the electron does not interact with the electron gas, the potential will be simply
Vcoulomb = e2/(4πε0)|r − r′|.

This is considered in one-electron approaches like Hartree or Hartree-Fock. How-
ever, if the electron interact with the gas, things are not so simple. Physically, this
interaction will repel other electrons on the surroundings (due to Coulomb repulsion
and due to the Pauli exclusion principle). That means that the electron will be sur-
rounded by a “lack” of negative charge (that implies a net positive charge due to the
positive background, see Fig. 2.1). This is the so-called “exchange-correlation hole”
(see Sect. 2.5.1). Now the potential created by the electron will be smaller, due to this
exchange-correlation hole will screen the negative charge (see Fig. 2.1). So what will
be the potential now? In simple dielectric theory, the potential is calculated using a
dielectric constant ε = εrε0. A more accurate form of the potential can be written in
a similar way:

W (r, r′, ω) =
∫

dr′′ε−1(r, r′′, ω)Vcoulomb(r′, r′′) (2.20)
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(a)

(b)

Fig. 2.1 Schematic figure of quasiparticles. In case a, there is no interaction of e1 and e2 with
the surrounding electron gas. In case b, interaction between the electrons and the gas is working,
creating a charge hole around them, so the effective coulomb interaction of the quasiparticle is lower.
This allow to consider quasi-electrons as independent particles, explaining the good agreement of
using KS orbitals as quasiparticle orbitals

where ε−1(r, r′′, ω) is the dielectric function. Its properties and different approxima-
tions for its calculation belong to the linear response theory in many-body physics.
An extensive discussion about it can be found in [21, 22].

So instead of working with bare electrons (and holes), that are the ones that exists
physically, we can take the electron and its positive charge cloud and treat it as a
whole. This is not an actual particle but a quasiparticle. These quasiparticles can be
considered, in good approximation, as nearly independent particles. That is the reason
why the one-electron picture works pretty well. That is also the reason why, although
they don’t have in principle any physical meaning, Kohn–Sham eigenfunctions are
treated as reliable eigenfunctions of the interacting system. They are the quasiparticle
eigenvalues.

Despite this quasiparticle interpretation of the DFT spectra, in order to calcu-
late the energy of the electrons at ground state we need to realize that it is not just
E = 2

∑N/2
i=1 εi (factor 2 is due to spin multiplicity). There are terms that are not

correctly included in this sum. For example, the electron-electron Hartree contribu-
tion is counted twice: in Hartree potential for atom i we include the i- j interaction
term, and in Hartree potential for atom j we include i- j interaction too. This fact is
commonly called ’double counting’. Also, the exchange and correlation energy EXC

is not correctly evaluated, because it is considered as EXC = ∫
d3rρ(r)Vxc(r) that

is not true in general. So, the actual total energy is given by:
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E[ρ(r)] = 2
N/2∑
i=1

εi − 1

2

∫
d3rd3r′ ρ(r)ρ(r′)

|r − r′| + E xc[ρ(r)] −
∫

d3rρ(r)Vxc(r)

(2.21)

2.3.2 Exchange and Correlation Functional Approximations

When we want to put DFT in practice, we find a very important problem. We don’t
know the exact form of E xc and Vxc(r). So we need to do approximations, and our
results will no longer be exact. There are several approximations to calculate the
exchange-correlation energy (potential). The most common are:

Local Density Approximation (LDA)

It is the most simple one and it was proposed by Kohn and Sham in [19]. It relies on
the approximation that the exchange and correlation interactions are entirely local;
that means that exchange and correlation energy at the point r only depends on the
density at r. Under this consideration, we can use the exchange-correlation energy for
an homogeneous electron gas of density ρ (that is not, however, a trivial calculation
[23, 24]) to calculate the Exc functional:

Exc[ρ(r)] =
∫

d3rρ(r)εxc(ρ = ρ(r)) (2.22)

where ε(ρ = ρ(r)) = f (ρ), (the exchange-correlation energy depends only on the
density at each point).

Surprisingly this naive approximation works pretty well. However LDA has some
deficiencies that cause systematic failures when computing some properties of the
systems, such as:

• Bond lengths in LDA are systematically smaller than the ones found experimen-
tally, i.e. LDA overestimates the attraction between atoms.

• Cohesive energies in LDA are systematically bigger that the ones found experi-
mentally. This is related with the previous failure.

• It does not describe well the magnetic properties of some systems (for example
LDA predicts for the iron a paramagnetic FCC structure, instead of the ferromag-
netic BCC structure found experimentally.

• It does not describe well weak interactions (hydrogen bonds, Van der Waals inter-
actions, etc.) so it is not suitable for calculations involving water, ice, biological
molecules (proteins, DNA…), physisorbed molecules on metals, etc.

• V L D A
xc decreases as −ρ1/3 for atoms and clusters, instead of −1/r . Some anions

are not stable in LDA.
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Generalized Gradient Approximation (GGA)

This approximation corrects some of the deficiencies of the LDA, because it takes
into account not only the density at some point, but also the gradient of the density.
So the functional can be expressed as:

EGG A
xc [ρ(r)] =

∫
d3rρ(r)εxc[ρ(r),∇ρ(r)] (2.23)

The exact form of the functional is found imposing several limits and scale and
normalization rules. There are two types of GGA functionals: semiempirical [25,
26] (adjusted to reproduce good results in a big variety of molecules, but fail on
non-localized systems) and non-empirical [27] (based on physical arguments, can
handle a full variety of systems).

GGA correct some of the problems of LDA but not systematically.

• Reduces the error in formation energies, but not in bond length in molecules.
• It describes better hydrogen bonds.
• Tend (but not systematically) to reduce the error in energies and bond length in

solids.
• It stabilizes the BCC magnetic iron.
• It still has some deficiencies: small bulk modulus in semiconductors, open gaps in

transition metal oxides, etc.

Other Functionals

There are a full variety of other functionals apart from LDA and GGA. They can
include exact exchange or second order derivatives [28], for example Meta-GGA.
There are also hybrid methods that mix exact exchange (using Hartree-Fock) with
Exc. A new hybrid method is presented in this thesis (in the context of LCAO-OO)
and will be carefully explained later (see 2.7.3).

There is an special family of functionals that uses the Kohn–Sham non-physical
orbitals as an input, instead of charge density (Exc = Exc[{φi (r)}]). For a extensive
monograph of these functionals see [29].

2.4 The fireball Method

The fireball method is based on the work of Sankey and Niklewski [30]. It is an ab
initio local orbital tight-binding method, using a self-consistent version [31] of the
Harris-Foulkes functional [32, 33]. It has been implemented in a DFT code called
fireball [34, 35].
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Fig. 2.2 Differences in the radial part of a 3p silicon fireball, free and confined orbitals. Reprinted
from [36], Copyright (1998) with permission from Elsevier

2.4.1 Fireball Orbitals

The basis set used in the fireball code are constructed using ‘fireball’ orbitals. They
are atomic-like orbitals {φiα(ri )} (α = nlm) that are strictly zero beyond a certain
cut-off radius (RC ) (Fig. 2.2). So the orbitals used in the code are slightly excited
(this is the reason why they are called ‘fireball’ orbitals) but they reproduce better the
shape of the orbitals inside a molecule or a lattice (due to orthonormalization they are
more confined than free atomic ones). They also have the advantage of being strictly
zero beyond RC , so there are a finite number of interactions between the atoms in
our system (even if they are extended systems like solids or surfaces). Although all
electron calculations are possible in fireball, usually calculations are carried out
using only valence electrons: separable Kleinman–Bylander pseudopotentials [14]
are used to take into account the effect of the nucleus and the core electrons.

Before any calculation is done we need to calculate the ‘fireball’ orbitals basis
set. We have several degrees of freedom that give us a lot of flexibility in this choice:

• We can choose different RC for each shell of each atomic species.
• We can choose a minimal basis (only (2l + 1) orbitals for each l quantum number

shell): an sp3 basis or an sp3d5 basis.
• We can choose double basis set (2(2l + 1) orbitals for l quantum number); the

ground and the first excited wavefunction of the atomic hamiltonian (with the RC

condition) are used. There is no need to use both wavefunctions for all l, so it is
possible to use double basis for some l and simple for the others (the use of a
sp3d5d∗5 is common [37]).

• We can introduce an confinement potential, so the electronic tails would go
smoothly to zero.
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• We can mix ground state and excited state orbitals in order to construct an optimized
minimal basis set [38]. Or we can even use ground state and excited orbitals from
different calculations (such as ground state basis and ground state confined basis
or even basis of different atoms).

In order to know if our basis is a good one for the element (or elements) under
consideration, some tests are usually carried out: calculation of the lattice parameter
of the crystal, bulk modulus, the volume band structure (comparing it with PW-LDA
calculations [39]), surface properties, bond lengths, etc.

2.4.2 The Harris Functional

In Sect. 2.3 energy has been calculated using the Kohn–Sham functional, consid-
ering the output charge density ρout (r), obtained after the diagonalization of the
hamiltonian. Harris and Foulkes [32, 33] proved that the energy can be calculated
approximately without self-consistent process. The Harris functional is formally the
same as the Kohn–Sham functional, but using ρin(r) instead of ρout (r). The energy
difference between the results obtained with the Kohn–Sham and the Harris function-
als scale as the second order in the difference between the input and the self-consistent
density.

E Harris = E K ohn–Sham + O2(ρin − ρsc) (2.24)

By this way we can choose an arbitrary input density to do our calculations. In
fireball, for computational convenience it has the form:

ρin(r) =
∑
iα

nin
iα|φiα(r − Ri )|2 (2.25)

With this form of the input density, and the fact that the orbitals are confined, the
hamiltonian matrix elements involve (at most) three center interactions (on the form
〈φ(r − Ri )|V (r − R j )|φ(r − Rk)〉) and can be tabulated for several distances and
angles [30] and interpolated for the distances and angles of our calculations. That
means that no matrix elements’ integral calculations are made during the simulations.
That is one of the reasons why fireball is so fast.

This combination of fireball orbitals and Harris functional works well in dimers
and some solids but it fails in surfaces or in systems with big charge transfer between
the atoms. In reference [31] a self-consistent version of the Harris functional is
presented. In order to maintain the form of the input density in (2.25) to tabulate the
interactions, an output nout

iα are defined as:

nout
iα =

occ.∑
n

|〈ψn|ϕiα〉|2 (2.26)
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where ψn are the hamiltonian eigenvalues and ϕiα are the Löwdin orbitals [40].
These orbitals form an orthonormal basis set (the basis set of fireball orbitals is not
orthonormal), that is the most similar to the fireball one [41]. These orbitals are
calculated via:

ϕiα =
∑

jβ

(S−1/2)iα, jβφ jβ; where (S)iα, jβ = 〈φiα|φ jβ〉 (2.27)

The (S−1/2)matrix can be calculated by diagonalizing S and then taking the square
root of the main diagonal elements [6]. So, we can calculate the niα numbers in a self
consistent way nin

iα = nout
iα . These niα can be seen as the occupation numbers of the

orbitals of our system, linking this approach to the LCAO-OO method, explained in
Sect. 2.5.

We need to say here that the use of nout
iα has an implicit approximation, due to the

actual output density has the form:

ρout (r) =
∑

iα, jβ

nout
iα, jβϕ

∗
iαϕ jβ; where nout

iα, jβ =
occ.∑

n

〈ψn|ϕiα〉〈ϕ jβ |ψn〉 (2.28)

and taking into account only nout
iα means that we are considering that the non diagonal

elements (nout
iα jβ ; jβ 	= iα) are zero, that in general is not true. Moreover, note that

in Eq. 2.28 the wavefunctions are the Löwdin ϕ instead of the non-diagonal φ that
we use in (2.25). This is another approximation, motivated by the fact that ϕ are the
orthonormal wavefunctions more similar to φ. Other choices for nout

iα are available,
but this is the one that gives better results.

In practice, for a calculation in fireball there are always three steps. In the first
step we calculate the atomic orbitals of the elements that are present at our system.
In the second step we calculate and tabulate the two and three center integrals for
different hamiltonian matrix elements. In the third step we use the tabulated elements
to construct and diagonalize our hamiltonian until we find self-consistent occupation
numbers. Then we calculate the energy using the Harris functional and the forces
suffered by each atom, that allows us to do molecular dynamics (MD).

2.4.3 Exchange and Correlation

We want to tabulate the exchange-correlation potential as we have done for the
Hartree and kinetic energy term. The problem is that this potential is not linear in the
density (so if the density has the form ρ = ∑

i ρi , the potential cannot be written in
the form V xc(ρ) = ∑

i V xc
i (ρi )). Some approximations are done in order to tabulate

these interactions. Although LDA and GGA exchange-correlation functionals can be
implemented in these approximations, only LDA is available for all approximations
at the present version of the code.



32 2 Theoretical Foundation

The first one, Sankey-Niklewski (SN) approximation [30], is based on a Taylor
expansion of exchange-correlation energy and potential. This approximation has
been improved adding terms beyond first order Taylor expansion [42, 43].

Sankey–Niklewski

We want to calculate the matrix elements 〈φiα|Exc|φiα〉, 〈φiα|Vxc|φ jβ〉. In the
Sankey–Niklewski approximation we just perform a Taylor expansion around an
average density ρiα, jβ .

〈φiα|Exc|φiα〉 � Exc(ρiα,iα)+ d Exc

dρ
(ρiα,iα)(〈φiα|ρ|φiα〉 − ρiα,iα) (2.29)

〈φiα|Vxc|φ jβ〉 � Vxc(ρiα, jβ)Siα, jβ + dVxc

dρ
(ρiα, jβ)(〈φiα|ρ|φ jβ〉 − ρiα, jβ Siα, jβ)

(2.30)
In this approximation, the average density is defined as:

ρiα, jβ = 〈φiα|ρ|φ jβ〉
〈φiα|φ jβ〉 = ρiα, jβ

Siα, jβ
(2.31)

Choosing ρiα, jβ this way, the second term of the Taylor expansion (that depends
on d2 Exc/dρ2) is identically zero, and the third term is minimized. Physically it
means that the effective density is calculated using importance sampling, because
the density is weighted more where the bond charge is high.

However this average density lacks for some deficiencies. First of all, it is not
defined when the overlap is zero. Moreover, there is no reason why ρiα, jβ and Siα, jβ

need to have the same sign, giving unphysical ρiα, jβ < 0. New methods, that correct
these deficiencies (that are fatal for transition metals) are needed. We will describe
them in the next paragraphs.

Horsfield

An attempt to improve the deficiencies of SN approximation was made by Horsfield
[42]. It calculate exchange and correlation using a multi center expansion of density
(an idea that will be used in McWEDA also). Different expansions will be made in
〈φiα|Vxc|φ jβ〉 depending whether i = j or not.

〈φiα |Vxc[ρ]|φiβ 〉 � 〈φiα |Vxc[ρi ]|φiβ 〉 +
∑
j 	=i

〈φiα |Vxc[ρi + ρ j ] − Vxc[ρi ]|φiβ 〉 (on-site term)

(2.32)
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〈φiα|Vxc[ρ]|φ jβ〉 � 〈φiα|Vxc[ρi + ρ j ]|φ jβ〉
+

∑
k 	=i, j

〈φiα|Vxc[ρi + ρ j + ρk] − Vxc[ρi + ρ j ]|φ jβ〉 (off-site term: i 	= j)

(2.33)

These integrals can be stored in data tables, just like in the SN approach. Although
this approximation is good in many cases, the on-site terms (i = j) are not accurate
enough for some systems (such as transition metals) and an additional term must be
included:

〈φiα|
(

Vxc[ρ] − Vxc[ρi ] −
∑
j 	=i

Vxc[ρi + ρ j ] − Vxc[ρi ]
)
|φiβ〉 (2.34)

Unfortunately these integrals cannot be stored in data tables. Moreover, most of the
computational time is spent in calculation of exchange-correlation terms, reducing
the efficiency.

McWEDA

A more sophisticated way to improve the SN approximation is the Multi-center
Weighted Exchange-correlation Density Approximation (McWEDA), developed by
Jelínek and coworkers [43]. This method has been used for all the systems studied
in this thesis.

First of all, a new average density is used, using the weighting functions wiα

associated with the wavefunctions φiα defined this way:

φnlm = Rnl(r)ϒ
m
l (Ω)

wnl = |Rnl(r)|ϒ0
0 (Ω) (2.35)

so the average density is now:

ρiα, jβ = 〈wiα|ρ|w jβ〉
〈wiα|w jβ〉 (2.36)

that does not have the deficiencies of definition (2.31).
We can define a Generalized SN (GSN) approximation where this new ρiα, jβ

is used in the same scheme. However we can go beyond GSN approximation,
using the one center matrix element 〈φiα|Exc[ρi ]|φ jβ〉 (〈φiα|Vxc[ρi ]|φ jβ〉) where
ρi = ∑

α nin
iα|φiα(r−Ri )|2. This element will be the most important term in the total

exchange-correlation matrix elements so we can write the total exchange-correlation
potential as 〈φiα|Vxc[ρi ]|φ jβ〉 plus a correction.
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〈φiα|Exc[ρ]|φiβ〉 = 〈φiα|Exc[ρi ]|φiβ〉 + (〈φiα|Exc[ρ]|φiβ〉 − 〈φiα|Exc[ρi ]|φiβ〉)
(2.37)

〈φiα |Vxc[ρ]|φ jβ 〉 = 〈φiα |Vxc[ρi ]|φ jβ 〉+(〈φiα |Vxc[ρ]|φ jβ 〉−〈φiα |Vxc[ρi ]|φ jβ 〉) if i = j
(2.38)

〈φiα|Vxc[ρ]|φ jβ〉 = 〈φiα|Vxc[ρi + ρ j ]|φ jβ〉
+ (〈φiα|Vxc[ρ]|φ jβ〉 − 〈φiα|Vxc[ρi + ρ j ]|φ jβ〉) if i 	= j

(2.39)

From now on we will consider only the potential term (the same ideas hold for the
energy one). We will explain now the i = j case (on-site term). 〈φiα|Vxc[ρi ]|φiβ〉 is
a one-center integral and can be very easily calculated and tabulated. The correction
part (the term between parentheses) is calculated using the GSN approximation (due
to this term is a correction of the main one, the GSN correction should be good
enough). So the on-site term is written in McWEDA approximation as:

〈φiα|Vxc[ρ]|φiβ〉 = 〈φiα|Vxc[ρi ]|φiβ〉+ Vxc(ρiα,iβ)Siα,iβ + V ′
xc(ρiα,iβ)(〈φiα|ρ|φiβ〉

− ρiα,iβ Siα,iβ)− Vxc(ρ
i
iα,iβ)Siα,iβ − V ′

xc(ρ
i
iα,iβ)(〈φiα|ρi |φiβ〉

− ρi
iα,iβ Siα,iβ) (2.40)

where ρi
iα, jβ = 〈wiα|ρi |w jβ〉/〈wiα|w jβ〉. In the off-site case (i 	= j) the evaluation

of correction part is also done in the GSN approximation so:

〈φiα|Vxc[ρ]|φ jβ〉 = 〈φiα|Vxc[ρi + ρ j ]|φ jβ〉 + Vxc(ρiα, jβ)Siα, jβ

+ V ′
xc(ρiα, jβ)(〈φiα|ρ|φ jβ〉 − ρiα, jβ Siα, jβ)− Vxc(ρ

i j
iα, jβ)Siα, jβ

− V ′
xc(ρ

i j
iα, jβ)(〈φiα|ρi + ρ j |φ jβ〉 − ρ

i j
iα, jβ Siα, jβ) (2.41)

where ρi j
iα, jβ = 〈wiα|ρi + ρ j |w jβ〉/〈wiα|w jβ〉. Recently McWEDA approximation

has been improved [44], introducing the effect of charge transfer in 〈φiα|Vxc[ρi ]|φiβ〉
and 〈φiα|Vxc[ρi +ρ j ]|φ jβ〉, where ρi and ρ j in practice were considered the neutral
density (that makes the atom electrically neutral) instead of the selfconsistent ones. A
Taylor expansion is performed around the neutral density ρ0

i and ρ0
j , and we obtain:

〈φiα|Vxc[ρi ]|φiβ〉 � 〈φiα|Vxc[ρ0
i ]|φiβ〉 + dVxc

dρ
[ρ0

i ]〈φiα|ρi − ρ0
i |φiβ〉

〈φiα|Vxc[ρi + ρ j ]|φ jβ〉 � 〈φiα|Vxc[ρ0
i + ρ0

j ]|φ jβ〉 + dVxc

dρ
[ρ0

i + ρ0
j ]

〈φiα|ρi − ρ0
i + ρ j − ρ0

j |φ jβ〉 (2.42)
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This has corrected some deficiencies in the energy using extended basis sets, but
work on this direction is still in progress. In this thesis there is also some progress in
extending McWEDA to the local spin density approximation (LSDA), see Appendix
C for details.

2.4.4 Molecular Dynamics and Structure Relaxation

fireball can calculate the energy and the atomic forces acting on our system, so it
can be employed as a MD code. Moreover, because of the storage of integrals in data
tables make the code very fast, MD simulations can be performed in a reasonable
amount of time.

The forces can be calculated as the derivative of the total energy given by the
Harris functional:

Fi = − ∂Etot

∂Ri
= − ∂

∂Ri
(2

occ∑
i

εi )− ∂

∂Ri

⎛
⎝ 1

2

∑
j,k

Z j Zke2

|R j − Rk | − 1

2

∫
d3rd3r′ ρin(r)ρin(r′)

|r − r′|

⎞
⎠

− ∂

∂Ri
(Exc[ρin(r)] −

∫
d3rρin(r)Vxc[ρin(r)]) = − ∂EBS

∂Ri
− ∂(Eion−ion − Eee)

∂Ri
− ∂(δUxc)

∂Ri
(2.43)

A variation of the Hellman-Feynman theorem [45–47] is used to compute the
band structure force. This way, the derivatives with respect to the atomic positions
of the matrix elements ∂

∂Ri
〈iα|H | jβ〉 can be easily calculated using the tabulated

interactions and taking the derivative of the interpolation polynomials.
Using forces, not only we can do MD, but also we can relax the systems and find

the minimum energy positions of the atoms. There are two main ways of calculating
them in fireball: dynamical quenching and conjugate gradients.

Dynamical Quenching

This is a pure MD method for relaxing atomic positions of our system. It is based on
energy conservation. When the nuclei are in a minimum of potential energy they have
a maximum of kinetic energy. So, if we calculate the kinetic energy of the system
we can use it to know when we are in a potential energy minimum.

The mechanism of dynamical quenching is the following one: we have some
initial guess of the atomic positions of our system. Then we do MD, taking care
of the kinetic energy of the nuclei. Usually it increases (that means that the atomic
positions are moving towards a potential energy minimum), but when we find a MD
step where the kinetic energy is smaller than the previous one; then potential energy
has increased, that means that we have passed through a potential energy minimum.
If we don’t do anything, the system will go by, or at best, it will begin to oscillate
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around the energy minimum. In order to avoid that, a quenching is done, that means
that all atomic positions are frozen. In the following MD step, we allow the atoms
to move, and the kinetic energy begin to increase again, when it begins to decrease,
we freeze the atoms again, and then allow to move again, and then freeze, and so
on. When the forces (and the difference of potential energy between one step and
the previous one) are lower than a tolerance value, we consider that the system is
relaxed.

There is a more sophisticated variant of dynamical quenching. It consist on com-
paring the sign of the components of the velocity of each atom (vi,x , vi,y, vi,z) and
the analog components of the forces (Fi,x , Fi,y, Fi,z). If they are different, the com-
ponent of this atom is frozen (that means that the velocity component is set to zero).
By this way, we gain specificness. Instead of frozen all atoms at a time, we can freeze
only the velocity atom components that are moving each atom away from the energy
minimum.

Conjugate Gradients

This method is not so based on physical arguments, but in functional analysis of
several variables. We should consider the energy E as a function of several variables
(that can be treated as a vector X) E = E(X). In our case, the variables will be the
atomic positions (X = {Rα}). If we want to reach a minimum, we want to go through
the fastest direction (i. e. the direction where the function varies more quickly). This
direction is given by the gradient. If the initial positions of the system are given by
X = X1 then:

g1 = −
(
∂E

∂X

)

X=X1

= {Fα} (2.44)

So, the gradient can be calculated using the forces given by fireball. The
subindex 1 means that is the first iteration. Now that we know the direction we
want to move, we want to find the minimum along this direction. The equation of
the line along this direction is:

X2 = X1 + b1g1 (2.45)

Calculating the energy for several values of X2 (b1) we can interpolate the minimum
position.

Now that we have X2, we can calculate the gradient g2 and find the minimum
of X3 = X2 + b2g2 and get X3, g3 and continue until we get the minimum of our
system.

The problem of this method is that each line is orthogonal to the line of the
previous step, so we will need a lot of steps to find the minimum. We can use
conjugate gradients. In this case the new direction is not orthogonal to the previous
one, but a direction given by a linear combination of the old and new gradient. This
way there will not be sudden changes of direction, and each step will have some
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‘memory’ of the previous steps. A more in depth discussion of conjugate gradients
can be found on [48, 49].

This technique has the advantage of being really fast to relax the system. However,
it has two handicaps. The first one is that, by construction, it will find the local
minimum of our system closer to the original atomic positions, even if a more deeper
minimum (or even the absolute one) is also close to the original atomic positions.
However, the dynamical quenching explores better the phase space of the system and
is able to find deeper minima.

The other problem is that due to the inherent approximations in fireball, the
minimum of the forces and of the energy sometimes does not coincide (but the
difference is very small for the systems studied in this work). So sometimes, the
gradient of the energy does not point to the energy minimum, and the program can
go crazy because internal checks of the code. That is the reason why, we have used
dynamical quenching in this thesis.

2.5 LCAO-OO Method

The Linear Combination of Atomic Orbitals - Orbital Occupancies (LCAO-OO)
method is a variation of DFT based on second quantization Hubbard-like hamiltoni-
ans (see appendix A, B and [50]) that relies on the orbital occupancies niσ instead
of the charge density [51–53]. It is extensively analyzed in [52], including the proof
of Hohenberg–Kohn theorem in terms of orbital occupancies. It combines the sim-
plicity of DFT-like techniques with the power of a second quantized hamiltonian. By
this way, sophisticated exchange-correlation functionals, or many-body calculations
can be made in a intuitive way.

Equation 2.2 can be written in second quantization and atomic units as:

Ĥ =
∑
iσ

(εiσ + V psp
ii )n̂iσ +

∑
i, j 	=i,σ

(ti j + V psp
i j )ĉ†

iσ ĉ jσ +
∑

i jkl,σσ ′
Oi j

lk ĉ†
iσ ĉ†

jσ ′ ĉkσ ′ ĉlσ

(2.46)
where V psp

i j is the pseudopotential of the core electrons and the nuclei and:

εi =
∫

d3rφ∗
i (r)

(
−1

2
∇2 +

∑
α

Zα
|Rα − r|

)
φi (r)

ti j =
∫

d3rφ∗
i (r)

(
−1

2
∇2 +

∑
α

Zα
|Rα − r|

)
φ j (r)

Oi j
lk =

∫
d3rd3r′φ∗

i (r)φ
∗
j (r

′) 1

|r − r′|φk(r′)φl(r) (2.47)

This is the complete many-body hamiltonian of the system. The first two parts cor-
respond to one-electron terms while the last one contains the many-body terms of
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the system. We can rewrite the hamiltonian in a more physically meaningful manner,
and retain only important terms. The hamiltonian is written now as:

Ĥ =
∑
iασ

(εiασ + V psp
iα,iα)n̂iασ +

∑
iασ,iβ
iα 	=iβ

(tiα, jβ + V psp
iα, jβ)ĉ

†
iασ ĉ jβσ+

+ 1

2

∑
iασ,iβσ ′

iασ 	=iβσ ′

Uiα,iβ n̂iασ n̂iβσ ′ − 1

2

∑
iασ,iβ
iα 	=iβ

U x
iα,iβ n̂iασ n̂iβσ+

+ 1

2

∑
iασ, jβσ ′

i 	= j

Jiα, jβ n̂iασ n̂ jβσ ′ − 1

2

∑
iασ, jβ

i 	= j

J x
iα, jβ n̂iασ n̂ jβσ

+
∑

iασ, jβ,kγ σ ′
iα 	= jβ

kγ σ ′ 	=iασ, jβσ

hkγ,iα jβ n̂kγ σ ′ ĉ†
iασ ĉ jβσ −

∑
iασ, jβ,kγ

iα 	= jβ
kγ 	=iα, jβ

hx
kγ,iα jβ n̂kγ σ ĉ†

iασ ĉ jβσ

+ 1

2

∑
iασ, jβσ
kγ σ ′lδσ ′
all different

Oiα, jβ
lγ,kδ ĉ†

iασ ĉ†
jβσ ′ ĉkγ σ ′ ĉlδσ (2.48)

where the Latin indexes run in all the atoms of the system, and the Greek ones in
the orbitals of each atom, and

Uiα,iβ =
∫

d3rd3r′|φiα(r)|2 1

|r − r′| |φiβ(r′)|2

U x
iα,iβ =

∫
d3rd3r′φ∗

iα(r)φ
∗
iβ(r

′) 1

|r − r′|φiα(r′)φiβ(r)

Jiα, jβ =
∫

d3rd3r′|φiα(r)|2 1

|r − r′| |φ jβ(r′)|2

J x
iα, jβ =

∫
d3rd3r′φ∗

iα(r)φ
∗
jβ(r

′) 1

|r − r′|φiα(r′)φ jβ(r)

hkγ,iα jβ =
∫

d3rd3r′|φkγ (r)|2 1

|r − r′|φ
∗
iα(r

′)φ jβ(r′)

hx
kγ,iα jβ =

∫
d3rd3r′φ∗

kγ (r)φ
∗
iα(r)

1

|r − r′|φ jβ(r′)φkγ (r) (2.49)

Despite of the formidable form of this hamiltonian, we can give an easy physical
interpretation to all of this terms, taking into account the form of the integrals in (2.49).
Jiα, jβ (Uiα,iβ ) is just the electrostatic interaction of the charge cloud in orbital α of
atom i with the cloud in orbital β of atom j (i). Note that Uiα,iα is the interaction
of two electrons in the same orbital with spin up and down (that is usually not well
considered in DFT). The term hkγ,iα jβ takes into account how the hopping between
iα and jβ varies due to the interaction with an electron placed in kγ . Finally, the last



2.5 LCAO-OO Method 39

Oiα, jβ
lγ,kδ term takes into account the effect on the hopping between iασ and lδσ due

to a transition of an electron going from kγ σ ′ to jβσ ′
For further discussion we are going to ignore terms of order greater than two

(h(x)kγ,iα jβ , Oiα, jβ
lγ,kδ ) and the exchange terms (U x

iα,iβ , J x
iα, jβ ), since they are not critical

neither for theoretical nor for numerical reasons. This way we will be able to see the
main physics of this model avoiding large formulas that obscure what we are really
doing. For calculations taking into account all the terms see [52, 54].

2.5.1 Local Density LCAO-OO

We can make a local density (LD) approach to our LCAO-OO hamiltonian. We
only need to write the energy of the system in terms of the occupation numbers
niασ : E = E[{niασ }]. We can split this functional in one-electron and many body
terms E = E[{niασ }] = E O E [{niασ }] + E M B[{niασ }]. Then, using a variation
of the Kohn–Sham theorem [51, 52, 55] we can introduce the following effective
hamiltonian.

Ĥ e f f =
∑
iασ

(εiασ + V psp
iα,iα + V M B

iασ )n̂iασ +
∑

iα, jβ 	=iασ

(tiα, jβ + V psp
iα, jβ)ĉ

†
iασ ĉ jβσ

(2.50)
where

V M B
iασ = ∂E M B[{niασ }]

∂niασ
(2.51)

Hartree and Exchange Functionals

The problem now is to find a many-body energy functional that depends on orbital
occupancies E M B[{niασ }] instead of charge density. The case of the Hartree term
can be easily derived just noting that the charge density can be written in function
of occupation numbers ρ(r) = ∑

iασ, jβσ niασ, jβσ φ
∗
iα(r)φ jβ(r), where niασ, jβσ =

〈ĉ†
iασ ĉ jβσ 〉, and that the Hartree energy is given by:

EH = 1

2

∫
d3rd3r′ ρ(r)ρ(r′)

|r − r′| (2.52)

Introducing the density in terms of the occupation numbers we get:
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EH = 1

2

∑
iασ, jβ
kγ σ ′,lδ

Oiα, jβ
kγ,lδ niασ, jβσnkγ σ ′,lδσ ′ � 1

2

∑
iασ,iβσ ′

iασ 	=iβσ ′

Uiα,iβniασniβσ ′

+ 1

2

∑
iασ, jβ,σ ′

i 	= j

Jiα, jβniασn jβσ ′ (2.53)

and the exchange energy can be written as2

EX = −1

2

∑
iασ, jβ
kγ σ,lδ

Oiα, jβ
kγ,lδ niασ,lδσnkγ σ, jβσ � −1

2

∑
iασ,iβ
α 	=β

Uiα,iβniασ,iβσniβσ,iασ

− 1

2

∑
iασ, jβ

i 	= j

Jiα, jβniασ, jβσn jβσ,iασ (2.54)

we need to note here that this is the exact exchange (considering U x
iα,iβ = J x

iα, jβ =
hkγ,iα jβ = hx

kγ,iα jβ = 0), not the LD exchange approximation (the functional (2.54)
does not depend on {niασ } but on {niασ, jβσ }). In order to get a LD-like exchange
approximation we use the following sum rule:

∑
jβ

niασ, jβσn jβσ,iασ = niασ

∑
jβ 	=iα

niασ, jβσn jβσ,iασ = niασ (1 − niασ ) (2.55)

Using the sum rule (2.55) we can write the exchange energy as:

EX [{niασ }] = −1

2

∑
iασ

J e f f
iασ niασ (1 − niασ ) (2.56)

where the effective interaction J e f f
iασ can be calculated as:

J e f f
iασ =

∑
jβ

j 	=i
Jiα, jβ |niασ, jβσ |2 + ∑

β 	=α Uiα,iβ |niασ,iβσ |2
∑

jβ
j 	=i

|niασ, jβσ |2 + ∑
β 	=α |niασ,iβσ |2 (2.57)

The physical meaning of this equation is very simple: is just the interaction between
the electron density at site i niασ , and its exchange hole (1−niασ ) (see the discussion
about quasiparticles in Sect. 2.3.1 for the physical origin of this hole).

This form of the exchange energy depends explicitly on the occupation numbers,
and can be used as an LD exchange energy. Later in this text (see Sect. 2.7.3) we

2 See, for example, [56], Sect. 4.7.
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discuss how to use this result to create local orbital hybrid functionals within the
fireball code.

Correlation Functional

We can assume correlation effects modify the exchange hole in such a way that it is
not localized outside the orbital iασ , but a fraction fiασ (0 < fiασ < 1) of the hole
is transferred back to the site iασ . This fiασ is related to the fact that Hartree-Fock
approximation (exact exchange and no correlation) does not take into account the
screening of the potential (see Sect. 2.3.1). Correlation energy can thus be written as:

EC = −1

2

∑
iασ

fiασ (Uiα,iα − J e f f
iασ )niασ (1 − niασ ) (2.58)

so the exchange-correlation functional reads as:

EXC [{niασ }] = −1

2

∑
iασ

fiασUiα,iαniασ (1 − niασ )−
∑
iασ

(1 − fiασ )J
e f f
iασ niασ (1 − niασ )

(2.59)

We have now all the terms of the many-body functional, and can write the effective
hamiltonian (2.50) as:

Ĥ e f f =
∑
iασ

(εiασ + V psp
iα,iα + V H

iασ + V xc
iασ )n̂iασ +

∑
iα, jβ 	=iα

σ

(tiα, jβ + V psp
iα, jβ)ĉ

†
iασ ĉ jβσ

(2.60)
where

V H
iασ = ∂EH [{niασ }]

∂niασ

V XC
iασ = ∂EXC [{niασ }]

∂niασ
(2.61)

and the ground state energy:

E =
occupied∑

n

εn + EH [{niασ }] + Exc[{niασ }] −
∑
iασ

(V H
iασ + V xc

iασ )n̂iασ

=
occupied∑

n

εn − EH [{niασ }] + Exc[{niασ }] −
∑
iασ

V xc
iασ n̂iασ (2.62)
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Fig. 2.3 Scheme of a system
partitioned in order to calcu-
late the electrical conductance
from 1 to 2

2.6 Calculation of Transport Properties

In this thesis we have analyzed the transport properties of molecular electronic
devices at the nanoscale (see Sect. 4.3). A brief introduction to the theory used to
calculate these properties will be given in this section.

2.6.1 Current Equation

From a theoretical point of view, let’s start with a system that can be divided in
two interacting subsystems like the one shown in Fig. 2.3 (this can be the case of an
STM, where the tip and sample are the respective subsystems). The Hamiltonian can
be written in second quantization as:

Ĥ = Ĥ1 + Ĥ2 + Ĥ1,2 (2.63)

where

Ĥ1 =
∑

i j

εi n̂i + ti j (ĉ
†
i ĉ j + ĉ†

j ĉi )

Ĥ2 =
∑
αβ

εα n̂α + tαβ(ĉ
†
α ĉβ + ĉ†

β ĉα)

Ĥ1,2 =
∑
iα

tiα(ĉ
†
i ĉα + ĉ†

j ĉα) (2.64)

(Latin indexes run over the orbitals in system 1 and Greek ones over orbitals in
system 2).

Now consider that we apply an external potential V to one of the electrodes. Now
an irreversible current will flow from one system to the other. In order to calculate the

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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current through the system we will need non-equilibrium techniques. We are going
to use Keldysh formalism, that is explained in appendix Sect. A.2.4, to get the current
through the system. The interaction hamiltonian Ĥ1,2 will be treated as a perturbation
of Ĥ0 = Ĥ1 + Ĥ2 + external potential. One may think that is more “physical” to
consider the perturbation as the external potential, but calculations from this point
of view will be more complex, and no current will flow neither there is not external
potential nor interaction between subsystems.

When we add the perturbation Ĥ1,2, we can calculate the current that appears
using the Keldysh formalism. First of all, we are going to deduce the form of the
current operator Ĵ in second quantization. A good guess is that it will be proportional
to a product of an operator that creates one electron in subsystem 2 and annihilates
it on subsystem 1, that is Ĵαi ∝ ĉ†

α ĉi . We need to consider inverse current from
subsystem 2 to 1, so the form of the current operator in second quantization will be:

Ĵαi = lim
τ→0

Aαi ĉ
†
α(t + τ)ĉi (t)− Aiα ĉ†

i (t + τ)ĉα(t) (2.65)

In order to know the value of Aiα we will use the continuity equation:

∂ρ̂i i

∂t
=

∑
α

Ĵαi ; where ρ̂i i = ĉ†
i (t)ĉi (t) = lim

τ→0
ĉ†

i (t + τ)ĉi (t) (2.66)

on the other hand, making use of the equation of motion of the operator ρ̂i i (Eq. A.10)
we can find that:

∂ρ̂i i

∂t
= −i/�[ρ̂i i , Ĥ ] = lim

τ→0

∑
α

−i/�(tαi ĉ
†
α(t + τ)ĉi (t)− tiα ĉ†

i (t + τ)ĉα(t))

(2.67)
So comparing equations (2.65) and (2.67), we deduce that Aαi = −i tαi/�. Now,

in order to know the value of the current from system 1 to system 2 at the ground (non-
equilibrium) perturbed state |
0,H 〉 we need to calculate the following sandwich:

I (t) = e
∑
iα

〈
0,H | Ĵαi |
0,H 〉

= e lim
τ→0

∑
iα

−i/�(tαi 〈
0,H |ĉ†
α(t + τ)ĉi (t)|
0,H 〉 − tiα〈
0,H |ĉ†

i (t + τ)ĉα(t))|
0,H 〉)

= e lim
τ→0

∑
iα

tαi G
+−(i, t + τ, α, t)− tiαG+−(α, t + τ, i, t)

= e lim
τ→0

Tr[T21G
+−
12 (t + τ, t)− G

+−
21 (t + τ, t)T12] (2.68)

where we have used the matrix form of the Green-Keldysh function (see
Appendix A.2.4).
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2.6.2 Stationary Current

Usually we are interested in the stationary regime. In that case, G+− only depends
on time difference τ so we can work with the Fourier transform:

lim
τ→0

G+−(i, α, τ ) = 1

h
lim
τ→0

∞∫

−∞
d EG+−(i, α, E)ei Eτ/� = 1

h

∞∫

−∞
G+−(i, α, E)d E

(2.69)
If we rewrite (2.68) in the energy space, and we consider that there is no spin

dependence on the hamiltonian we can just add a factor 2 and we get [57]:

I = 2e

h

∞∫

−∞
d ETr[T21G

+−
12 (E)− G

+−
21 (E)T12] (2.70)

In our case, we are interested in rewrite (2.70) as a function of the unperturbed green
functions of the subsystems (G0

1,2). Using Dyson equation (A.48) it can be done
easily getting [58, 59]:

I = 4πe2

�

∞∫

−∞
d ETr[ρ 22(E)D

r
22(E)T21 ρ 11(E − eV )Da

11(E − eV )T12]( f1(E − eV )− f2(E))

(2.71)

where

ρ 22(E) = − 1

π
I m[G0,r

22 (E)], ρ 11(E − eV ) = − 1

π
I m[G0,r

11 (E − eV )]
D

a
11(E − eV ) = [I − T12G

0,a
22 (E)T21G

0,a
11 (E − eV )]−1

D
r
22(E) = [I − T21G

0,r
11 (E − eV )T12G

0,r
22 (E)]−1

f1(E − eV ) = 1/

(
exp

(
E − eV

kB T

)
+ 1

)
, f2(E) = 1/

(
exp

(
E

kB T

)
+ 1

)

(2.72)

We remember here that the voltage was included in the unperturbed subsystems; as
it is shown explicitly in (2.71).

The denominators D
r
22(E) and D

a
11(E − eV ) can be seen as renormalizators of

the hopping matrices: T
′
12 = D

a
11(E − eV )T12, and they take into account the

backscattering that tends to saturate the current. This interpretation is clear if we
make the series expansion of the denominator:

T
′
12 = D

a
11T12 = T12 + T12G

a
22T21G

a
11T12 + . . . (2.73)
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Fig. 2.4 Scheme of a system
divided in three parts in order
to calculate the electrical
conductance from 1 to 2
(Color figure online)

However, in this work we are interested on differential conductance g = d I/dV ,
in particular when V → 0. We will consider the electronic temperature as zero (that
is a good approximation in metals at room temperature). Using (2.71) we get for that
particular case.

g =
(

d I

dV

)

V →0
= 4πe2

�
Tr[ρ 22(EF )T

′
21 ρ 11(EF )T

′
12] (2.74)

This conductance can be interpreted as a coherent sum of conductance channels.
The analogy with Landauer formalism, based on conductance channels [60] is clear
if we write (2.74) in the form

g = 4πe2

�
Tr[tt+] (2.75)

where t = 2π ρ 1/2
11 (EF )T

′
12

ρ 1/2
22 (EF ) is the transmission matrix of the system. In

order to know the character of different channel and the contribution of orbitals to
that channel we can just diagonalize tt+.

2.6.3 Conductance with Two Electrodes

However, for some systems (like a C60 molecule between two gold tips, studied
in Sect. 4.3), it is more natural to divide the system in three subsystems instead of
only two. This option, that was not available in the standard conductance module of
fireball has been implemented during this thesis. In Fig. 2.4 we can see the division
of such that system.

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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In that case we can use previous results, if we consider the system (α + 2) as
the previous system 2. In order to do that, we need first to calculate ρ and G of the
(α + 2) system. The density of states (DOS) is [20]:

ρ 0
αα = G

r,0
ααTα2 ρ 0

22T2αG
a,0
αα (2.76)

with (2.76) and (2.74) and taking into account that T
′
12 = [I − T12G

0,a
22 T21G

0,a
11 ]−1

× T12 = T12[I − G
0,a
22 T21G

0,a
11 T12]−1 we get:

g = 4πe2

�
Tr[Tα1 ρ 0

11T1α[I − G
r,0
ααTα1G

r,0
11 T1α]−1 ρ 0

αα[I − Tα1G
a,0
11 T1αG

a,0
αα ]−1]

(2.77)
and realizing that

G
r
αα = [I − G

r,0
ααTα1G

r,0
11 T1α]−1

G
r,0
αα = [(Gr,0

αα)
−1 − Tα1G

r,0
11 T1α]−1 (2.78)

we can rewrite (2.77) as:

g = 4πe2

�
Tr[Tα1 ρ 0

11T1αG
r
ααTα2 ρ 0

22T2αG
a
αα] (2.79)

Let’s see the physics of this equation. First of all, if we define �(i)
αα = Tαi ρ 0

i i Tiα

we get:

g = 4πe2

�
Tr[�(1)

ααG
r
αα�

(2)
ααG

a
αα] (2.80)

that is just the Fisher-Lee equation for the electrical conductance [61]. We can also
define a effective hopping T

′
12 = T1αG

r
ααTα2, and introduce it in (2.79). Using the

cyclic property of the trace we recover (2.74). Finally, we can connect this with the
Landauer formalism [60] defining:

t = 2π ρ 1/2
11 T

′
12 ρ 1/2

22 = 2π ρ 1/2
11 T1αG

r
ααTα2 ρ 1/2

22 (2.81)

We have checked that the conductance does not depend too much on the division
of the system (in two or three) as it should be, because the physical conductance
should not depend on how we calculate it.

2.7 Corrections of DFT Deficiencies

Although DFT in its LDA and GGA approximation is usually reliable enough for
most applications, its well known failures make its application meaningless for some
systems unless we correct these problems. Here we have focused in metal/organic
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interfaces; so the significant deficiencies of DFT-LDA (and GGA) we have to over-
come are the absence of Van der Waals (vdW) interaction in these functionals and
the underestimation of the gap (the last one is a failure of DFT itself, because it is
only a ground state theory). In this section we are going to describe the techniques
developed in this thesis to deal with these deficiencies.

2.7.1 Weak Chemical and Van der Waals Interaction

Here we adapt the discussion about long-range forces in [62] (Copyright 2011 Amer-
ican Institute of Physics).

Weakly interacting systems, such as some metal/organic interfaces like ben-
zene/Au(111) and TTF/Au(111), cannot be characterized accurately in a standard
DFT formalism. The reason is that the vdW interaction is nonlocal and long-range,
while exchange-correlation functionals in standard DFT methods are (semi)local and
short range, with a typical exponential decay (as stated in Sect. 2.3.2). Due to the
importance of this interaction (not only for interfaces but also for carbon nanotubes
or biological systems, for instance), a lot of effort has been directed in recent years to
develop a practical DFT approach that properly takes into account vdW interactions
for these systems (see, e.g. references [63–68]).

In order to accurately determine the vdW interaction between two subsystems (the
metal and the adsorbed molecules, in our thesis) we have used here an extension of
the LCAO-S2+vdW formalism, previously developed for noble gases and graphitic
materials [69–71]. We consider that the exchange and correlation is correctly taken
into account within each subsystem (metal and organic molecule) but the LDA-like
exchange and correlation between subsystems is not well considered, so we take it
away, and introduce later with a better approximation. That means, in a first step we
consider:

Vxc[ρM + ρO ] = Vxc[ρM ] + Vxc[ρO ] (2.82)

where ρM and ρO are the electron density of the metal and organic molecule respec-
tively. So we define an electron density for each subsystem and approximate the LDA
exchange-correlation energy as the sum of the exchange-correlation energies for the
different subsystems. This can be done easily within McWEDA scheme.

After that we introduce the exchange correlation between subsystems in a way
that takes into account the dispersive forces. In order to reproduce Van der Waals
energy we have used the following simple but correct atom-atom form:

EvdW (R) = − fD(R)C6/R6 (2.83)

where R is the distance between atoms, and the factor fD(R) eliminates the vdW
contribution for short distances [65, 66, 72]. We are going to use two different
damping factors common in literature. The first one has the form fD(R) = 1 −
exp(−α(R/Rc)

8) [65], where Rc is the sum of covalent radii and α = 7.5 × 10−4 is
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Table 2.1 LDA and exact gaps for organic molecules studied in this thesis and some inorganic
semiconductors

Gap/molecule Benzene C60 TTF PTCDA Si Ge

LDA gap 4.7 1.6 2.6 1.6 0.55 0
Exact 10.39 4.95 6.3 4.7 1.17 0.74

chosen to reproduce the c lattice constant of graphite. The second one has the form
fD(R) = 1/(1 + exp(−d(R/RvdW )− 1)) [66] where d = 20 and RvdW is the sum
of Van der Waals radii of the elements under consideration [66]. A similar approach
although with different radii can be found in [72]. The choice of the damping factor
fD(R) changes less than 0.2 Å the value of the adsorption distance of molecules [62,
73]. However the adsorption energy is clearly affected (changes of around 100 %
are found). But as we are interested in electronic structure properties in this thesis
(where only distance between both subsystems is important) and as we have used
simple basis for our calculations (so adsorption energies are not very reliable), we
consider that this method has a good balance between accuracy and computational
cost for our needs.

2.7.2 Underestimation of the Gap

The obtention of an accurate semiconductor gap is critical to understand the
metal/organic interfaces as will be shown in Chap. 3. As stated before, DFT is unable
to give a correct gap, even if we know the exact exchange-correlation functional,
because it is a ground state theory. However, in systems where electrons are not
strongly correlated, the quasiparticle image is still valid and we can consider that the
distance between the eigenvalue of the highest occupied molecular orbital (HOMO)
and the eigenvalue of the lowest unoccupied molecular orbital (LUMO) are a first
approximation for the real transport gap.

Unfortunately, this approximation is not good even for systems with low corre-
lation. In Table 2.1 we can see the difference between the LDA gaps and the experi-
mental ones. In molecules, the transport gap is considered as the difference between
ionization (I E) and affinity (A) energies Et

g = I E − A for the experimental case
and as Eg = εLU M O − εH O M O for LDA.

Table 2.1 shows that the difference between LDA and experimental gap can be
more than 100 % (and even predict that some well known semiconductors are metals).
The main reason for this underestimation is the fact that this naive approximation
does not take into account the SIC, due to the interaction of the new electron (hole) in
the LUMO (HOMO) and the pre-existing charge (Fig. 2.5). In the next subsection we
present some corrections developed during this thesis. They rely on a parameter (β in
hybrid functionals, U in scissor operator) that cannot be calculated in a straightfor-
ward manner. Moreover, in metal/organic interfaces there is an additional effect that

http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 2.5 Up Scheme of the different effects that determine the actual gap of an organic molecule
over a surface. The LDA gap gives an underestimated and surface distance independent gap. At large
distances, SIC opens the gap and gives the measured gas phase gap. However, when the molecule
approaches to a metallic surface, the effect of the image potential tends to reduce the organic gap.
Down Dependence of the benzene gap with distance when it is approaching different surfaces.
Reprinted from [74] Copyright (2009) by the American Physical Society (Color figure online)

does not appear in bulk semiconductors or gas phase molecules: the image potential.
This can be understood classically considering that the introduction of a charge in
a molecule over a metal (creating an ion) will have, as a response, an image charge
inside the metal in order to get a constant potential in the metal surface, disturbing
the molecular spectra (Fig. 2.5). In Chaps. 3 and 4, we will show an easy but reliable
way to calculate the gap taking into account these effects, and then getting a value
for these unknown parameters (β and U ).

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_4
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2.7.3 Hybrid HF-LDA Functional

In this thesis we have developed and introduced in fireball an hybrid HF-LDA
functional (see Sect. 5.6 and [75] for a practical use of it) based on the LCAO-OO
approach. Hybrid functionals have been mentioned at the end of Sect. 2.3.2, but here
we present a large discussion.

Standard hybrid hamiltonians are based on the adiabatic connection [76, 77].
The derivation of these kind of functionals is based on “turning on” adiabatically
the electron-electron interaction. Let’s consider the following many-electron hamil-
tonian:

Ĥλ = T̂ + V̂ext,λ + λV̂ee (2.84)

where 0 � λ � 1 and V̂ext,λ is an external potential that depends on λ. When λ = 1
we obtain the physical system, so V̂ext,1 = V̂ion . For every 0 � λ < 1, Ĥλ gives the
exact ground state electronic density of the physical system (but not the exact physical
wave function). If we denote |ψλ〉 as the normalized antisymmetric wavefunction that
minimizes the expectation value of T̂ +λV̂ee, the exchange-correlation energy of the
physical system is given by:

Exc[ρ(r)] =
1∫

0

Exc,λ[ρ(r)]dλwhere Exc,λ[ρ(r)] = 〈ψλ|V̂ee|ψλ〉 − EH [ρ(r)]

(2.85)
Becke [78] considered that integral (2.85) can be calculated using trapezoidal

rule, and he took the following energies for the edge points: The HF exact exchange
energy when λ = 0 and the LDA exchange correlation energy when λ = 1. So in a
first approximation:

EXC � 1

2
Eexact

X + 1

2
E L D A

XC (2.86)

Better results can be obtained if we consider other values of the fraction of HF
exchange and LDA exchange-correlation. By the mean value theorem, there exists a
value β that makes the following equation exact:

EXC = βEexact
X + (1 − β)Eλ=1

XC (2.87)

Our approach, although leads to very similar results is based on a different assump-
tion. In the LCAO-OO method, the local density-like E L D

X [{niασ }] and exact-like

E H F
X [{niασ, jβσ }] form of the exchange functional are the same, as long as J e f f

iασ have
been calculated using the formula (2.57), so EXC = βE H F

X + (1 − β)E L D
XC is exact

for all β. But this is no longer true for the functional derivatives (i.e. potentials),
so the exchange potential VX = βV H F

X + (1 − β)V L D
X does depend on the value

of β. In appendix B is pointed out that the size of the gap depends critically on the
exchange potential, so the value of β can be used to determine it.

http://dx.doi.org/10.1007/978-3-642-30907-6_5
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In our case β has been tuned to obtain Eg = E L D A
g + U where U is calculated

following the ideas of Sect. 4.2.1. The exchange-correlation potential is derived using
Eqs. (2.54), (2.56) and (2.61). We obtain:

(V L D−O O
X )iασ, jβσ = −J e f f

iασ (
1

2
− niασ )δiα, jβ

(V H F−O O
X )iασ, jβσ = −Uiα,iβniασ,iβσ δi, j − Jiα, jβniασ, jβσ (2.88)

Implementation in FIREBALL

The fireball method does not calculate exchange and correlation using LCAO-OO
but using McWEDA, that is an approximation to the LDA exchange and correlation.
So in order to take the LDA exchange away we have just subtracted to V McW E D A

XC

the V L D−O O
X part (Eq. 2.88). Then we add V H F−O O

X , so the exchange-correlation
matrix elements are:

(V hybrid
XC )iασ, jβσ = (V McW E D A

XC )iασ, jβσ −β(V L D−O O
X )iασ, jβσ +β(V H F−O O

X )iασ, jβσ
(2.89)

The values of Uiα,iβ and Jiα, jβ have been calculated using the program gcluster
[52].

Molecule Interacting with a Metal

The Hartree-Fock approximation does not usually work properly on metals, so in
the case of a molecule interacting with a metal, the former will be treated via hybrid
functional, while the latter via standard DFT (that means that the matrix elements
V XC

iα, jβ , where i or j (or both) are index of metallic atoms, will be calculated with
standard McWEDA LDA approximation).

It is necessary to take into account that, for a molecule interacting with a surface,
the sum rule (2.55) is no longer true, because only a fraction α of the exchange-
correlation hole is inside the molecule, so the sum rule needs to be written now
as: ∑

jβ;i 	= j
i, j∈molecule

niασ, jβσ n jβσ,iασ = αiασniασ (1 − niασ ) (2.90)

So E L D−O O
X and V L D−O O

X reads now as:

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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E L D−O O
X [{niασ }] = −1

2

∑
iασ

J e f f
iασ αiασniασ (1 − niασ )

(V L D−O O
X )iασ, jβσ = −αiασ J e f f

iασ (
1

2
− niασ )δiα, jβ (2.91)

The V H F−O O
X part remains unchanged (we didn’t use the sum rule (2.55) to

deduce it).
As we will see in Chap. 5 the value of α is very high in the case of aromatic

compounds adsorbed on metals. For pentacene/Au(111) this value is greater than
0.9, while in first tests in benzene/Au(111) α ∼ 0.7–0.9. These values depends on
the σ or π character of the orbitals (the π orbitals have a lower α due to its greater
interaction with the metal surface.

2.7.4 Koopmans’ Shift

In this section we present another method to correct the underestimation to the LDA
gap. This method relies on Koopmans’ theorem [79] and estimates the SIC error.

The actual transport energy gap (Et
g) is the difference between the ionization (I E)

and affinity (A) energies:

I E = E[N − 1] − E[N ]
A = E[N ] − E[N + 1]

Et
g = I E − A = E[N + 1] + E[N − 1] − 2E[N ] (2.92)

If we consider −εH O M O (the energy of the HOMO) as I E and −εLU M O (the
energy of the LUMO) as A following the spirit of Koopmans’ theorem [79], we
obtain the underestimated DFT gap. In order to correct it we have to take into
account somehow the SIC. Here we consider that this electron (hole) is described
by the Kohn–Sham LUMO (HOMO) eigen-wavefunction, neglecting the electron
relaxation effects. This self-interaction is introduced as a correction for the LUMO
(HOMO) eigen-energy δA (δ I E).

In the LCAO-OO scheme, the orbital occupancies of the N + 1 (N − 1) system
can be computed from the N occupancies, neglecting electron relaxation, as:

nN+1
iασ = nN

iασ + δn′
iασ ; nN−1

iασ = nN
iασ − δniασ where

δn′
iασ = |〈φiα|LU M ON 〉|2; δniασ = |〈φiα|H O M ON 〉|2 (2.93)

For the sake of simplicity we are going to focus on the change of electron affinity
due to the extra electron, and consider its spin is upwards. It is just [80]:

http://dx.doi.org/10.1007/978-3-642-30907-6_5
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A = E[N ] − E[N + 1] = εo.e.
N+1 + 1

2

∑
iα,β
α 	=β

Uiα,iβ(n
N
iα↑ + δn′

iα↑)(nN
iβ↑ + δn′
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+ 1

2
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N
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N
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N
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iα↑)(1 − nN
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iα↑)

− 1

2
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iα↑

fiα↑(Uiα,iα − J e f f
iα↑ )(n

N
iα + δn′

iα↑)(1 − nN
iα↑ − δn′

iα↑)

−
[

− 1

2

∑
iα,βσ

iα↑	=iβσ

Uiα,iβnN
iα↑nN

iβσ + 1

2

∑
iασ, jβ

i 	= j

Jiα, jβnN
iα↑nN

jβσ

+ 1

2

∑
iα

J e f f
iα↑ nN

iα↑(1 − nN
iα↑)+ 1

2

∑
iα

fiα↑(Uiα,iα − J e f f
iα↑ )n

N
iα↑(1 − nN

iα↑)
]

(2.94)

we can group terms that, that are linear in δn′
iα↑, and quadratic in δn′

iα↑. With
some math we obtain:

A = E[N ] − E[N + 1] = εo.e.
N+1 + ∂(EH + EX )

∂niα↑
δn′

iα↑ + δA[O(δn′2
iα↑)] (2.95)

It is obvious that the terms linear in δn′
iα↑ are already taken into account

on εDFT
LU M O . So the first non-vanishing correction terms are of second order in

δniα↑. These values for the ionization (I E = −εH O M O + δ I E) and affinity
(A = −εLU M O + δA) can be written as [80]:

δ I E = 1

2

∑
i 	= j

Jiα, jβδniα↑δn jβ↑ + 1

2

∑
α 	=β

Uiα,iβδniα↑δniβ↑

+ 1

2

∑
iα

J e f f
iα δn2

iα↑ + 1

2

∑
iα

fiα(Uiα,iα − J e f f
iα )δn2

iα↑

δA = −1

2

∑
i 	= j

Jiα, jβδn
′
iα↑δn′

jβ↑ − 1

2

∑
α 	=β

Uiα,iβδn
′
iα↑δn′

iβ↑

− 1

2

∑
iα

J e f f
iα δn′2

iα↑ − 1

2

∑
iα

fiα(Uiα,iα − J e f f
iα )δn′2

iα↑ (2.96)
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It has been found that this approximation gives good results [80, 81] for the gaps
of a variety of π -conjugated organic molecules, in particular, the results are better
for larger molecules, due to electron relaxation effects become less important.

This Koopmans’ shift can be used not only for the HOMO and LUMO but for all
the molecular levels, we only need to change in (2.93) δniασ = |〈φiα|H O M ON 〉|2
by δniασ = |〈φiα|L EV E L N 〉|2 where |L EV E L N 〉 is the eigen-wavefunction of the
level we want to correct.

So the Koopmans’ shift is a good way to improve the underestimation of DFT
gap. In particular we can combine it with the scissor operator (see next section) in
order to get an improved hamiltonian to calculate, among other things, transport or
density of states.

2.7.5 Scissor Operator

We have shown how the Koopmans’ shift can deal with the underestimation of the
DFT gap, including self energy terms. In Sects. 3.6 and 4.2.1 we will see a method to
estimate the gap of our molecules interacting with a metal surface. In this thesis, in
order to obtain this corrected HOMO-LUMO gap in our hamiltonian (and play with
the relative alignment between organic molecules and metals, as in Chap. 5) we have
used the scissor operator. If |μi 〉 (|νi 〉) are the empty (occupied) molecular orbitals
of the isolated, but deformed, molecule (with the actual geometry of the molecule
on the surface) then the scissor operator read as:

Ôscissor =
∑
μi

(ε +Δ)|μi 〉〈μi | +
∑
νi

(ε −Δ)|νi 〉〈νi | (2.97)

where Δ acts on a different way on the occupied (empty) molecular states, and
therefore changes the value of the energy gap, and ε move all molecular orbitals in
the same direction. This scissor operator allow us not only to include SIC in the gas
phase molecule, but also to tune the gap and the relative alignment between metal
and molecular levels in the case of a molecule interacting with a surface.

The case of a molecule over a surface deserves some comments. Although |μi 〉
(|νi 〉) are defined for the isolated molecule and we shouldn’t use them when it is
interacting with the metal, we obtain that this approximation works very well (see
Chaps. 4 and 5) as long as the deformed molecule geometry (instead of the gas phase
one) is used.

We can rewrite it in the fireball atomic basis, in order to introduce it in our
hamiltonian. Equation (2.97) reads then:

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_5
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Oscissor
i j =

∑
k

Δk〈i |
k〉〈
k | j〉 =
∑

k

Δk〈i |
(∑

l

ckl |l〉
)( ∑

m

c∗
km〈m|)| j〉

=
∑
k,l,m

Δkcklc
∗
km〈i |l〉〈m| j〉

Oscissor
i j =

∑
k,l,m

Δkcklc
∗
km Sil Smj (2.98)

where Δk = ε − Δ for k ∈ occupied levels and �k = ε + Δ for k ∈ empty levels
and 
k are the eigenvectors of the energy eigenvalues.

2.8 Other Methods for Correcting the Gap

As we have said, the underestimation of the DFT gap is the most important prob-
lem for the systems that we are studying on this thesis. In the previous section, we
explained the methods used here to deal with this failure. For the sake of complete-
ness, a couple of state-of-the-art methods will be shown. Moreover, they can be
inspiring later for some approximations

2.8.1 GW Method

GW Form of Selfenergy

The GW method relies on many-body green functions and self-energy formalism
(Sect. A.2). It provides a way to calculate the self-energy in a reasonably amount of
time with good accuracy. The deduction of the form of the selfenergy can be found
on [82]. The form in time space and energy space is just.

�GW (r, r′, τ ) = i�G0(r, r′, τ )W (r, r′, τ )

�GW (r, r′, ω) = i�

2π

∞∫

−∞
dω′G0(r, r′, ω + ω′)W (r, r′, ω′)eiω′τ (2.99)

where W (r, r′, ω) is the screened coulomb interaction, in (2.20). The reason for the
name of the method is now clear. It is important to say that this is an improvement
with respect to the HF form of the self-energy�H F (r, r′) = i�G0(r, r′, 0−)Vcoulomb

(r, r′), because the screened potential W (r, r′, ω) is considerably smaller than the
coulomb potential. Besides it introduces dynamic effects since it is energy dependent.
To sum up GW selfenergy takes into account exchange and a part of the correlation
trough the screening potential.
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Fig. 2.6 Comparison of characteristic direct and indirect LDA, GW and experimental gap for a
big variety of semiconductors. The numbers after the chemical symbols are the references for those
values in [83]. Reprinted from [83], Copyright (2000) with permission from Elsevier (Color figure
online)

Practical Implementation

It can be demonstrated [83] that the quasiparticles energy in the GW approximation
can be calculated using formula:

εGW
i = εK S

i + 1

Zi
〈φK S

i |�GW (ωK S
i )− Vxc|φK S

i 〉 where

Zi = 1 − 〈φK S
i |1

�

∂�GW (ωK S
i )

∂ω
|φK S

i 〉 (2.100)

where we have assumed that the self-energy correction to the Kohn–Sham potential
�GW (r, r′, ω) − VXC (r)δ(r − r′) is small and we can use first-order perturbation
theory. Moreover, we have considered that ωGW

i −ωK S
i = εGW

i /�− εK S
i /� is small

so we can perform a Taylor expansion around ωK S
i . This approximation means that

we don’t need to compute explicitly the temporal dependence of �GW .
So in practice, we first have to know the dielectric function ε−1(r, r′′, ω). We can

calculate it using polarization matrix and random phase approximation (RPA) [84,
85], that is accurate but very expensive computationally, or calculate is using plasmon
models [83, 86, 87]. Moreover, the exchange and correlation parts of �GW are
separated (the screened potential W is rewritten as W = Vcoulomb +(W −Vcoulomb)),
because the exchange part can be calculated analytically.
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As can be seen in Fig. 2.6, GW approximation leads to really good results if we
compare gap energies calculated using this method with the experimental results, or,
at least it gives better results than LDA. The main problem of this method is that
it is much more costly computationally than DFT, even if approximations for the
dielectric function are used.

2.8.2 LDA+U Method

The origin of this method is to try to improve standard LDA functional for band sys-
tems where coulomb repulsion on localized orbitals introduces an important source
of correlation, such as transition metal oxides, where we have delocalized electrons
in s and p bands (where LDA works pretty well) and electrons localized in metal d
bands, where the electron-electron repulsion U is important.

The LDA+U method is introduced as a functional that treats delocalized electrons
correlation in a LDA fashion, and localized ones in a Hubbard-like way. If we take
the standard Hubbard hamiltonian (A.8), the underlying idea of LDA+U is simple.

Ĥ =
∑

i

ε0n̂iσ −
∑

i

t (ĉ†
i+1σ ĉiσ + ĉ†

iσ ĉi+1σ )

︸ ︷︷ ︸
delocalized, one electron

+
∑

i

U n̂i↑n̂i↓
︸ ︷︷ ︸

localized,correlation

E[ρ(r)] = E L D A[ρ(r)] + EU [{niασ,iβσ }] (2.101)

Note that EU is a functional of the occupation numbers instead of density. This is
because this is the natural language in a Hubbard-like approach to localized electrons.
We also need to include a double counting term that takes out the electron correlation
already taken into account in LDA.

We are going to summarize here the basic formulas of the method. For a complete
description of the method see references [88, 89]. Consider a transition metal with d
orbitals where we have imposed spherical symmetry, then the simplest EU repulsive
term one can write is EU = 1

2U ef f ∑
m 	=m′ nmnm′ , where m,m′ are the magnetic

numbers of the d electrons, U ef f is calculated as in (2.49), but using the screened
coulomb potential W (2.20) instead of the unscreened one. The double counting
term Edc, that takes out the interaction taken into account in LDA can be written as
Edc = 1

2U ef f N (N −1)/2 (where N = ∑
i ni . So this simplified LDA+U functional

can be written as:

E = E L D A + EU − Edc = E L D A + 1

2
U ef f

∑
m 	=m′

nmnm′ − 1

2
U ef f N (N − 1)/2

(2.102)
The atomic energies are now (using Janak’s theorem [90]):
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εL D A+U
m = ∂E

∂nm
= εL D A

m + U ef f (
1

2
− nm) (2.103)

This means that the LDA eigenvalues are shifted by −U ef f /2 if the level is filled
(nm = 1) and by +U ef f /2 if the level is empty (nm = 0).

This method is closely related to our LCAO-OO approach. First of all, a more
complete description of the method includes not only Hartree-like corrections but
also exchange-like ones, as well as non-diagonal occupations nm,m′ [89]. The
simplified model explained here correspond to the particular case of [89] where
nσm,m′ = nσmδm,m′ , U = 〈m,m′|Vee|m,m′〉 and the other 〈m,m′′|Vee|m′,m′′′〉 terms

are zero. Moreover, the matrix elements involved in EU calculation in [89] are noth-
ing but the ones in (2.49), and the form of the functional can be derived using a
mean-field approximation of the LCAO-OO Hamiltonian (2.50) (approximating all
the operators n̂iασ by its mean values niασ ).

A point of caution with the LCAO-OO method analogy has to be taken. In this
case the electron-electron potential Vee is not the bare one but the screened one (so
fiασ is not needed anymore to take into account correlation). This converts LDA+U
in a post-HF theory. This screened potential relates the LDA+U method with the
GW one. The relationship between this method and GW and HF ones is extensively
studied in [91].

In Sect. 3.6 the ideas of Cococcioni et al. [92] are used to extend this method from
metal transition oxides to organic molecules over metal surfaces.
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Chapter 3
Further Developments in IDIS Model

3.1 Introduction

All electronic circuits that rely on the use of semiconductors (the vast majority in the
last 50 years) need to deal with a physical challenging system: metal/semiconductor
interfaces. Its technological importance led to an extensive research and nowadays,
the properties of interfaces between metal and inorganic semiconductors are well
understood (band bending, interface states, Bardeen model, IDIS model...). A small
review of inorganic interfaces will be given in Sect. 3.2.

In the last decade, organic semiconductors have received a lot of attention both
from pure research and industry. As shown in Sect. 1.3, electronic gadgets based on
organic semiconductors have already appeared in the market. On the other side, a lot
of research papers, reviews and books have been written about this topic [1–5].

The challenge of organic semiconductors is because of their different nature from
their inorganic counterparts (the former are molecular solids while the latter are
covalent/partial ionic solids). Inorganic semiconductor theoretical tools does not
work properly for them (Fig. 3.1).

To get a good performance in semiconductor electronic devices (both in organic
and inorganic) the so called electron injection barrier (see Fig. 3.2) must be as small as
possible. This means that level alignment at the interface is very important. This align-
ment appeared simple, but in fact is a complex problem. It has been found to be much
more complex than it was thought. The naive Schottky–Mott rule has been widely
disproved [2, 6, 7] since some effects that invalidate this rule appear at interfaces:
chemical reactions, creation of interface states [7–9], metal-organic charge transfer
leading to an interface dipole, orientation of intrinsic molecular dipoles [10, 11],
induced Pauli exclusion (pillow) dipoles [12–15], etc. These effects will be briefly
introduced in Sect. 3.3.

After the introduction of metal/organic and inorganic semiconductor interfaces,
we will present in Sect. 3.4 an extensive description of the IDIS model for metal
organic interfaces [4, 15–18]. Then, we will focus on two metal organic interfaces
with very different screening: C60/Au(111) and C6H6/Au(111). We will show how

E. Abad, Energy Level Alignment and Electron Transport Through 63
Metal/Organic Contacts, Springer Theses, DOI: 10.1007/978-3-642-30907-6_3,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1 (Color online) a Geometry (unit cell is highlighted) and density of states of silicon as an
example of a prototypical inorganic semiconductor. b Geometry (upper and side view, unit cell is
highlighted) and density of states of PTCDA as an example of a prototypical organic semiconductor

the deficiencies of standard DFT–LDA lead to quantitative disagreement with exper-
imental evidence. A method for correcting this will be highlighted at the end of the
chapter.

Fig. 3.2 Schematic view of
an (organic) light emitting
diode. In order to get a good
performance, the electron and
hole injection barriers have to
be as small as possible. The
band alignment at interfaces
is critical for this reason



3.2 Brief Introduction to Metal/Inorganic Semiconductor Interfaces 65

3.2 Brief Introduction to Metal/Inorganic Semiconductor
Interfaces

The series of physical changes that take place when a metal/inorganic semiconductor
(M/IS) interface is created have been one of the main topics of surface physics, due to
its great interest both for science and industry [21]. The first studies of this interfaces
come back from late nineteenth century [19].

As stated before, the most important quantity at the interface is the barrier
heightΦb. It is the minimum energy needed for an electron on the metal to penetrate
in the conduction band of the semiconductor (or for a hole to penetrate in the valence
band, see Figs. 3.2 and 3.3).

3.2.1 Schottky–Mott Limit

Before the statement of the Schottky–Mott rule, it is necessary to say a few words
about the concept of work function. It is the energy necessary for an electron at the
Fermi Level to reach vacuum at rest. It has two contributions, the bulk contribution
(due to the periodic potential inside the solid) and the surface contribution (because
of the presence of dipole layer due to the asymmetric electron distribution at the
surface [20], as shown in Fig. 3.4).

The work function is well defined in metals, where Fermi Level lies within con-
duction band, and is uniquely determined. However, semiconductor work function
seems ill defined because the Fermi Level can be located at any value within the
gap, but it must be remembered that the work function is a statistical concept: the
weighted average of the energies necessary to remove an electron from the valence
and conduction bands, respectively [21].

Now, consider a metal and a semiconductor with different work functions (usual
case). When they are connected electrically, both Fermi levels have to be the same.
That implies a charge transfer from the semiconductor to the metal (or the other way
around). A net charge will appear in both systems (equal but of opposite sign). This
charge will be placed at the surface in the case of a metal (it is a good conductor)
but in the case of the semiconductor, since the charge carriers density is orders of
magnitude lower, it will be in an extensive zone, of the order of nanometers, called
the depletion area. This is the origin of band bending. Also an electric field appears
at the region between metal and semiconductors whose value is E = V/δ. When
the distance between both materials goes to zero (i.e. the contact is formed), that
potential tends to zero in order to keep E finite, so the barrier height is:

Φb = ΦM − χS (3.1)

(see Fig. 3.3). This equation is the naive Schottky–Mott rule [22]. It consider implic-
itly three important assumptions: that the surface contributions toΦM and χS remain



66 3 Further Developments in IDIS Model

(a)

(c) (d)

(b)

Fig. 3.3 Different stages on the formation of a Schottky M/IS barrier. a Isolated materials. b Con-
nection of both systems. A potential Vi is established between both. c As both materials approach,
band bending in the depletion region appears. d When the contact is established the barrier height
is Φb = ΦM − χS , as stated in Eq. 3.1

unchanged when both materials are brought into contact, that there are no surface
states at the semiconductor and perfect contact between the metal and the semicon-
ductor is established. However, it implies a dipole at the surface, contrary to what
sometimes is stated. Since Schottky–Mott rule does not work in practice, it is clear
that one or more of the assumptions is wrong.
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Fig. 3.4 (Color online) Scheme of the charge distribution around a surface in a jellium model. The
uncompensated charges creates a dipole pointing to the surface that enlarge the work function (i.e.
make it more negative)

Fig. 3.5 Schematic view of
the filling of surface states on
Bardeen limit

3.2.2 Bardeen Limit

This model can be consider as the opposite limit of the Schottky–Mott model. It was
stated by Bardeen [23], based on the fact that the barrier height, Φb, is not too much
sensitive to the metal work function, ΦM .

Suppose that there is a continuous distribution of surface states within the gap
at the interface filled up to Φ0 (see Fig. 3.5), if the density of surface states is high
enough Φ0 � EF , and the barrier height will be given by:

Φb = Eg −Φ0 (3.2)

In this case the barrier height is insensitive of the metal work function.

3.2.3 Intermediate Case

Real M/IS interfaces are between both Schottky–Mott and Bardeen limits. We are
going to consider here the Bardeen model when surface states DOS is not very high.
Figure 3.6 shows an schematic view of the interface under study (usually, between
metal and semiconductor an insulator layer is placed, instead of vacuum, but this
does not change the conclusions of the model).

There are three sources of charge in that system, Qm , the charge on the metal,
that is on the surface, Qd is the charge in the depletion region, that induces band
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(a) (b)

Fig. 3.6 a Metal-semiconductor interface with an arbitrary bias. b Flat band case

bending; and the third one, Qss , is the charge in the semiconductor surface due to
surface (or interface) states. Due to charge neutrality: Qm + Qd + Qss = 0.

Although a complete analysis of the problem will involve a lot of tedious algebra,
it can be greatly simplified assuming flat band situation (and the main physics is
retained).1 In that case Qd = 0. We will also assume zero temperature on electrons
(that is a good approximation as long as the DOS does not change too much over an
interval of kT/e). In that case:

Qss = −eDs(Eg −Φb −Φ0) (3.3)

where e is the electron charge, Ds is the surface DOS (per unit area, per unit energy),
assumed constant andΦb,Φ0, Eg are the quantities defined in Fig. 3.6b. There is not
electric field neither on the metal (it is a good conductor) nor in the semiconductor
(we are assuming flat band) so the electric field ε0E = Qss = −Qm (if we have an
insulator instead of vacuum between surfaces we should change ε0 by εi = εrε0 the
permittivity of the insulator). The potential drop across the layer is:

V = Eδ = Qssδ

ε0
(3.4)

Is clear from Fig. 3.6b that:

ΦM = V + χS +Φb ⇒ Φb = ΦM − χS − Qssδ

ε0
(3.5)

and using Eq. (3.3) we get

Φb = ΦM −χS + eDsδ

ε0
(Eg −Φb −Φ0) ⇒ Φb = S(ΦM −χS)+ (1− S)(Eg −Φ0)

(3.6)

1 Flat band can be achieved applying enough bias to the semiconductor so that the depletion region
disappear. An study of the barrier height without considering band flat situation can be found in
([21], Sects. 1.4.3 and 1.4.4).
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where

S = 1

1 + eDsδ/ε0
(3.7)

is the screening parameter and measures the strength of the pinning at the interface,
and is a key parameter of the IDIS model of MO interfaces. Equation (3.6) was first
derived by Cowley and Sze [24]. It can be observed thatΦb tends to the Schottky–Mott
limit when Ds → 0 (no interface states) and to the Bardeen limit when Ds → ∞
(high density of surface states). Also note that Schottky–Mott and Bardeen limit
corresponds to values of S = 1 and S = 0 respectively.

We have to note that here, as in the Schottky–Mott rule, we have assumed that
the surface contributions to ΦM and χS remain unchanged when both materials are
brought into contact.

3.2.4 Origin of Interface States

In all these models, the role of interface states is very important for the energy level
alignment, so here we will say a few words about them.

Induced Density of Interface States (IDIS)

Heine [25] was the first one to notice that intrinsic semiconductor surface states
within the gap resonate with metallic Bloch waves when M/IS interface is formed,
leading to resonant gap surface states that is the source of the gap states that appears
in Bardeen model and intermediate case by Cowley and Sze. These states are metal
conduction band wavefunctions on the metallic side of the interface and penetrate
into the semiconductor with an attenuation length of the order of a few angstroms.
Based on that assumption, other groups tried to characterize this induced density of
interface states [26, 27]

Although the ideas of Heine turned out to be correct, Tejedor and Flores [28] were
the ones that obtained quantitative values from theoretical calculations of semicon-
ductors from highly covalent (Si) to the highly ionic limit (ZnS), and Cohen and
Louie [29–31] obtained DFT values for those interfaces.

However, as pointed out by Tejedor and Flores [28]; the states induced in the
bottom (top) of the gap are accompanied with a reduction of the DOS in the valence
(conduction) bands. Since no new states can be created when the interface is formed,
we can conclude that the semiconductor (and not the metal) DOS is rearranged at
interface formation, so interface states come from valence and conduction semicon-
ductor bands.
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Unified Defect Model

This model was proposed by Spicer et al. [32]. They consider that interface states,
instead of coming from metal wavefunctions that decay into the semiconductor come
from defects in semiconductor surface. Defects, such as vacancies, steps or anti-site
defects (change of cation on anion sites, in III–V or II–VI semiconductors) lead
to localized states that can lie in the semiconductor band gap. This is validated by
experiments, that have shown that intimate metal-semiconductor interfaces are not
perfect, and chemical reactions and interdiffusion are common occurrences [21].

However, for high metallic coverages, the screening of these defects implies that
the density of defects needed for pinning the Fermi level should be very high. Nowa-
days, it is considered that the unified defect model explains the Fermi level pinning
in low metallic coverage interfaces (∼1 ML, where very small DOS is induced in the
semiconductor due to metal interaction), and the IDIS model in higher coverages.

3.3 Brief Introduction to Metal/Organic Interfaces

As stated before, organic semiconductors are very different from inorganic ones.
Due to such small interactions between molecules (compared with the strong
covalent interactions in inorganic semiconductors), it was initially thought that
Schottky–Mott rule was valid for these semiconductors, since weak vdW interac-
tion between metal and molecules could be excepted, which is unable to induce
DOS in the organic gap. However, it has been shown that this rule is disproved for
most metal/organic interfaces [2, 6, 7]: a dipole layer appears at the interface. How-
ever, although in M/IS interfaces the junction effect is extended over the depletion
area, in organic semiconductors this effect is reduced mainly to the first organic layer
(see Fig. 3.7 and [33]).

It is worth commenting that this disapproval of the Schottky–Mott rule has been
found even for organic insulators (where the HOMO–LUMO gap is very wide).
We can expect here very small chemical interaction; however studies of a 9 eV gap
long-chain alkane n-C44H90 (TTC) on various interfaces have shown work function
changes between −0.3 and −0.7 eV [34, 35].

Several effects have been proposed as the origin of this dipole, and some of them
can be acting at the same time (Fig. 3.9). This is a brief summary of these effects.

3.3.1 Charge Transfer and Chemical Reactions

Some molecules that form organic semiconductors are chemisorbed on metals
(i.e. strong chemical interaction and bond formation is established between surface
metallic atoms and molecules). This effect is restricted to the first organic layer, so
it is enough to study a monolayer of molecules on metals.
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Fig. 3.7 Change of the energy of the vacuum level relative to the Fermi level of the metal substrate
(εF
vac, analogous toΦM −V on inorganic semiconductors (see Fig. 3.6b) at the deposition of TPD on

five metals of various work functionsΦM . The two abscissas correspond to the TPD film thickness
and the work function of the metal substrate, while the ordinate denotes εF

vac. It can be seen clearly
how the potential drop relies in the first layer of organic molecules, and there is no depletion region,
as in M/IS interfaces. Reprinted from [33] Copyright (2001) from Elsevier

Table 3.1 Abbreviations and actual names of the organic molecules mentioned in this thesis (the
chemical structure is in Fig. 3.8)

Abbreviation Name

TPD N,N′ -diphenil-N,N′-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine
Alq3 tris(8-hydroxiquinolino)aluminium
DP-NTCI N,N′-diphenyl-1,4,5,8-naphthyltetracarboxylimide
TTC tetratetracontane
α-NPD N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine
PTCDA 3,4:9,10-Perylenetetracarboxylic dianhydryde
TTF tetrathiofulvalene
TCNQ tetracyanoquinodimethane
PFO poly(9,9-dioctylfluorene)
P3HT poly(3-hexylthiophene)

Work function change has been reported for a lot of chemisorbed molecules
on metals. Two electrostatic effects contribute to that: First of all, charge transfer
between metal and molecule, that creates a dipole layer between both systems, leading
to a work function change (the work function is smaller, in absolute value, when



72 3 Further Developments in IDIS Model

(a) (b)

(d)

(c)

(e)
(f)

(g)
(h)

(i) (j)

Fig. 3.8 Chemical structures of the compounds mentioned in Table 3.1. a TPD, b Alq3, c DP-NTCI,
d TTC, e α-NPD, f PTCDA, g TTF, h TCNQ, i PFO, j P3HT

charge transfer is from chemisorbed molecule to metal and greater in the opposite
case). The other effect is charge redistribution due to bond formation.

Charge transfer from the metal to the molecule has been reported on TCNQ/Au,
DP-NTCI/Al [8] and PTCDA/Mg,In,Sn [7]. And from the molecule to the metal,
TPD/Au [8] and α-NPD/Au [7] are good examples. An example of possible charge
rearrangement by bond formation is the case of Alq3/Al system, where a mid-gap
state, due to strong chemical interaction at the interface has been reported [9].
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3.9 Possible origins of the formation of dipole on M/O interfaces. Chemical effects a, b dipole
formation due to a net charge transfer from the molecule (metal) to the metal (molecule); c charge
rearrangement due to bond formation. d Formation of an interface state. Physical effects e “Pillow”
effect due to Pauli exclusion principle between metal and organic electrons. f Redistribution of the
electron cloud due to image effect. g Permanent dipole

3.3.2 Image Effect and Surface Charge Rearrangement: “Pillow”
Dipole

These effects are present always in organic deposition on metals, but are more
important in physisorption with no charge transfer of non-polar molecules, due to it
is the unique effect that leads to work function change.

The image effect is closely related to the origin of Van der Waals forces. When
we have a non-polar molecule (or a noble gas atom); although it does not have an
intrinsic dipole, at a certain moment, a net dipole on the molecule can appear because
of quantum fluctuations. The metal react to this dipole creating an image dipole. The
interaction of these dipoles gives rise to Van der Waals forces.

However, this interaction of the net dipole with the screening charge can give
rise to a net displacement of the electron distribution in the adsorbate and create a
potential drop at the interface. This effect has been studied (at the DFT–LDA level)
in a Xe/jellium system [36, 37], showing that its contribution to the dipole at the
interface is not negligible.

Other source of dipole is the “pillow” dipole (sometimes called “cushion” dipole,
push-back dipole or exchange dipole). It is due to a pure quantum mechanical effect
(as the image effect dipole): the Pauli exclusion principle.

When a molecule is placed on a metallic surface, wave functions of both the metal
and the molecular atoms overlap. When we orthogonalize both wave functions, the
electron metal tails are pushed back into the metal. This charge rearrangement reduce
the surface dipole (as can be deduced from Figs. 3.4 and 3.9). This reduction of the
surface dipole means that work function will be reduced whenever a molecule is
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(a) (b)

Fig. 3.10 a Image of overlap between metal and organic wave functions when both systems are
brought together. b After orthogonalization, a charge rearrangement appears that creates a net dipole
D pillow that lower the metal work function

placed on a metal surface, no matter if the molecule is an electron donor or acceptor,
so in the case of an electron acceptor the “pillow” dipole and the charge transfer
dipole compete with each other. This effect should be more important in cases where
the surface contribution to work function dipole is more important (i.e. transition
metals), as has been shown experimentally [38].

3.3.3 Intrinsic Molecular Dipole

Some molecules have a net dipole (for example, Alq3, benzene-thiol). When they
are adsorbed on a metallic surface, sometimes they have a non negligible component
on the direction perpendicular to the surface. This dipole orientation gives rise to a
potential drop at the interface (see Fig. 3.9) [10, 11].

3.3.4 Effects on Real Devices

In the case of production of real devices, a few things has to be taken into account
that can change the energy level alignment [3]. A few words of these effects will be
given.

The first one is the effect of air exposure of the interfaces. The oxygen present in the
atmosphere can penetrate into the interface and oxidize the metal surface, changing
the work function of the metal and the energy level alignment [6]. This tend to reduce
the dipole at the interface, probably due to reduction of the interaction between
the metal and the organic molecule due to the surface oxidation or contamination
(Fig. 3.11) [33].

Other effect is the order of deposition. In most of the experimental works on MO
interfaces, the organic layer is deposited over the metal surfaces, but in real devices
is necessary also to deposit metal atoms over organic surfaces. It has been shown
that the order of deposition can be important because metal atoms tend to penetrate



3.3 Brief Introduction to Metal/Organic Interfaces 75

2 3 4 5 6
rs

-1

0

1

2

3

4

5

Φ
M 

(e
V

)

ΦB
ΦS
ΦM

Al
Mg

LiCa Na

K Rb Cs

Fig. 3.11 Left Relationship between ΦM and rs derived from the jellium model, including the
observed values of the work functions of typical metals. With decreasing rs the surface contribu-
tion (ΦS) becomes dominant. Right Reported work function changes for monolayer or saturation
coverage of Xe on various metals. For low rs metals (the surface contribution to the work function
increase) the change on ΦM becomes more important. Reprinted from [38] Copyright (1984) by
the American Physical Society

and diffuse on organic surfaces, forming diffuse interfaces, where reaction between
organic material and metal is enhanced [39, 40].

3.3.5 The Integer Charge Transfer Model

Finally, before a complete study of the IDIS model is presented, we are going to com-
ment briefly another model, designed for weakly interacting MO interfaces involving
luminescent polymers [41–45].

This materials have the characteristic that they are very soft (with a very strong
electron-phonon interaction), and creating an electron (or a hole) in the molecule
will induce a geometric relaxation that leads to the formation of polaronic states. An
example of these polymers are PFO and P3HT.

This model relies on the fact that energy level alignment is governed by these
states. If the work function lies between polaronic levels (EP+ < −|ΦM | < EP−)
no charge transfer and no dipole formation is shown, so vacuum level alignment is
observed; but when the work function reaches one of these levels (−|ΦM | > EP− or
−|ΦM | < EP+) then a full electron is transferred and the Fermi Level is completely
pinned to these levels—see Fig. 3.12—(although the interaction of these molecules
with the metal surface is weak). That means that the organic DOS has sharp peaks
at the polaronic states and is practically zero between them.
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LUMO

HOMO

E F-

E F+

Polaronic states

Fig. 3.12 Left HOMO and LUMO levels, as well as the polaronic states EP+ and EP−, of an electro-
luminescent polymer. Right Dependence of work function of polymer coated substrate ΦE P L/SU B
with the work function of bare substrate, ΦSU B , for four materials studied in [41], namely P3HT,
TFB, P10AF and PFO. Reprinted with permission from [41] Copyright IOP publishing 2007

As we will see later, this is complementary to the IDIS model, with a screening
parameter S = 1 between EP+ and EP− and S = 0 at EP+, EP− levels.

3.4 IDIS Model for Metal/Organic Semiconductor Interfaces

The IDIS model, originally created for metal/inorganic semiconductor interfaces
[28, 46], was extended for metal/organic ones in the thesis of Hector Vázquez
[16–18]. It has been extended to include pillow dipole and intrinsic molecular dipoles
[15] in the Unified-IDIS model. In this section we are going to carefully explain the
ideas it is based on.

Before that, we will say some words about our notation. First of all, we will use
atomic units (� = e = 1/4πε0 = 1) in all formulas. Second, we are going to avoid
the usage of terms like work functions of the interface and “clean” work functions,
that is common in literature and can be sometimes confusing. Instead, here we use
the following terms: initial Fermi level (that will be designated by ΦM ), that is the
metal Fermi level before the contact is established, and coincides (apart from a minus
sign) with the “clean” metal work function, as long as the origin of energies is placed
at the vacuum level; and the final Fermi level of the interface (designated by EF )
that is the Fermi level of the interacting metal and organic system.

3.4.1 Interface States and the Charge Neutrality Level

The main idea of this model is that the physical/chemical interaction between the first
layers of the organic material and the last layers of the metal, induces a non-negligible
DOS at the semiconducting gap. This DOS can appear because of the formation of
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Fig. 3.13 Metal/organic
interface before charge trans-
fer. HOMO and LUMO peaks
have been broadened due to
interaction between with the
metallic surface. The molecu-
lar DOS is filled up to CNL

CNL

M

hybrid metal/organic states at the gap due to strong chemical interaction between
both materials at the interface (connecting with the ideas at [12, 47]); or due to the
broadening of HOMO and LUMO levels due to interaction with the metal. Zangwill
[48] and Newns [49] provide a way to estimate this broadening [16], although in
this thesis it has been computed from first principles. This induced DOS allow us to
define the main parameter of this model, the Charge Neutrality Level (CNL).

The CNL can be seen as a kind of effective Fermi level of the organic molecule.
It can be calculated as the integral of the DOS projected on the interacting organic
molecule up to charge neutrality conditions. As explained above, due to the interac-
tion with the metal substrate, the peak-like DOS of the molecule is transformed in a
continuum DOS, allowing us to integrate it (as shown in Fig. 3.13).

N =
CNL∫

−∞
ρinteracting(E)d E (3.8)

The CNL can be seen as some kind of effective electronegativity of the molecule
in the sense that the relative position of the metal work function (ΦM ) with respect to
the organic CNL determines the direction of charge transfer (neglecting the effect of
pillow dipole and intrinsic molecular dipole). If CNL > ΦM then the electrons will
flow from the organic layer to the metal, on the contrary, when CNL< ΦM electron
transfer from the metal to the molecule will take place.

It needs to be taken into account that although intuitively the CNL should be at the
middle of the HOMO and LUMO levels [12, 50], this is not true. Usually the DOS is
higher around the HOMO than around the LUMO [17, 51–53]. This is obvious for
the C60 since the HOMO is five times degenerated while the LUMO is three times,
(without including spin). This pushes the CNL upwards in the gap, but is also true
(although less intuitive) for molecules like benzene, PTCDA and TTF (where the
HOMO degeneration is not greater than the LUMO one).
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Fig. 3.14 (Color online) Metal/organic interface when charge transfer is allowed. It creates a dipole
at the interface that tends to align the metal work-function with the charge neutrality level

3.4.2 Level Alignment and Screening Parameter

Now that we have the induced interface states characterized, and the position of CNL
andΦM ; let us allow charge transfer between the metal and organic material. As said
before, the direction of charge transfer depends on the relative position of CNL with
respect to ΦM . These charge transfer creates a dipole as shown in Fig. 3.14. This
dipole induces a potential drop at the interface, as can be seen using pure classical
electrostatic arguments.2 The effect of this dipole is to move the final Fermi level
and tends to pin it to the CNL (Fig. 3.14). This pinning of the Fermi level to the CNL
has been observed experimentally in PTCDA [7] and is also strong in C60 [54] and
DP-NTCI [55]. The potential drop that changes the interface Fermi level from ΦM

to EF can be related with the electrostatic dipole through the formula:

Δ = 4πD

A
(3.9)

where D is the electrostatic dipole,Δ the potential drop at the interface and A is the
surface area that belongs to each molecule (i.e. A = total area covered/total number
of molecules).

This pinning of the Fermi level is governed by the screening parameter, S, that has
appeared in the study of M/IS interfaces between the Schottky–Mott and Bardeen
limits [Eq. (3.7)], and its meaning is just the same. If we consider that the CNL is
always fixed with respect to the vacuum, and the level movement due to the dipole
is only on metallic levels, the screening parameter can be written as:

S = CNL − EF

CNL −ΦM
(3.10)

or equivalently:

(CNL − EF ) = S(CNL −ΦM ) (3.11)

2 See for example J. D. Jackson Classical Electrodynamics (3rd Ed.), Sect. 1.6
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So the S parameter can be seen as the value that controls the reduction of the
(CNL −ΦM ) distance to (CNL − EF ). So the lower the S parameter is, the greater
the pinning of the final Fermi level to the CNL. This implies a higher screening. Note
that, as we consider CNL a fixed level, we can also consider S as:

S = δEF

δΦM
(3.12)

That is, S control the changes in EF when we change the metal work function.
Now we can write the potential due to charge transfer (from now on it will be

called IDIS potential ΔI DI S) as a function of IDIS parameters:

ΔI DI S = EF −ΦM = (1 − S)(CNL −ΦM ) (3.13)

3.4.3 Pillow Dipole

In previous section, charge transfer as the unique source of interface dipole has
been considered. However there are more sources, although smaller than the charge
transfer dipole, and not important for self-consistently results of the calculations,
that have to be considered as a second order effect. They are the pillow dipole and
the surface dipole.

The first one was explained in Sect. 3.3.2. As said there this effect raises the metal
work function. It can be taken into account in our model if we define an effective
metal work-function:

Φ̃M = ΦM +ΔP
0

(
ΔP

0 = 4πD pillow

A

)
(3.14)

And the equivalence of (3.11) is:

(CNL − EF ) = S(CNL − Φ̃M ) = S(CNL −ΦM )− SΔP
0 (3.15)

And the total potential at the interface:

Δtotal = EF −ΦM = EF − Φ̃M +ΔP
0 = (1 − S)(CNL − Φ̃M )+ΔP

0 (3.16)

This can be seen in two different ways. From one side, you can argue that the
net potential is the sum of the pillow potential (the second term) and the potential
due to the charge transfer (the first term), that can be considered as some kind of
pseudo-IDIS potential for the effective work function Φ̃M . On the other hand it can
be seen as:
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Fig. 3.15 Metal (left) and organic (right) orbitals separated by a distance d. The probe electronic
density λ is considered a point charge, eliminating the integration over r, and we expand the distance
|r−r′|, placing the origin of integration in r′ at the midpoint between orbitalsμ andμ′, as discussed
in the text

Δtotal=(1 − S)(CNL −ΦM−ΔP
0 )+ΔP

0 =(1−S)(CNL−ΦM )+SΔP
0 =ΔI DI S+ΔP

(3.17)
In this case, the total potential is the sum of the IDIS potential due to charge

transfer neglecting the pillow effect plus a screened pillow potential ΔP = SΔP
0 .

In fireball, the “pillow” dipole is not explicitly included. When we calculate
Hartree potential, we use a density of the form (2.25). As we said in Sect. 2.4.2,
this is an approximation, and, since the Hartree potential is calculated using fireball
(non-orthogonal) orbitals, the effect of orthogonalization of both organic and metal
orbitals are not correctly taken into account. One can ask if we can trust in charge
selfconsistency if this effect is not taken into account, but as we will see later in this
thesis this dipole is a small second order correction, so we should not be worried
about this. On the other hand, this allow us to separate contributions of the pure
charge transfer and “pillow” part from the interface potential.

In order to calculate numerically the pillow dipole, we are going to follow the
ideas of Vázquez and coworkers [15]. Consider the “probe orbital” φλ, that is located
far away from a couple of metal φμ and organic φμ′ orbitals. We consider that in
both subsystems (metallic and organic) orbitals are orthogonal, but there is an overlap
between orbitals of both subsystems. We want to know how the intersite coulomb
interaction Jλ,μ [see Eq. (2.49)] changes when metal and organic orbitals overlap.
First of all the value of Jλ,μ when no overlap is taken into account is:

Jλ,μ =
∫

d3rd3r′φ2
λ(r)

1

|r − r′|φ
2
μ(r

′) (3.18)

where orbitals are considered to be real, as fireball orbitals are real.
Now we are going to orthogonalize the orbitals. Following the Löwdin scheme

ϕμ = (S−1/2)μ,iφi . Since Sμ,μ′ is small we can expand it up to second order in S:

ϕμ � φμ − 1

2

∑
μ′

Sμ,μ′φμ′ + 3

8

∑
μ′,ν

Sμ,μ′ Sμ′,νφν (3.19)

http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
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where μ, ν runs over metallic orbitals and μ′ over organic ones. We can introduce
this expansion in (3.18) and, after that, expand |r−r′| around |r−r0| (see Fig. 3.15).
Taking into account that potential created in λ is Jλ,μnμσ we conclude that the
overlaps between orbitals give rise to a dipole D pillow. The value of this dipole is:

Dμμ′σ = (nμσ+nμ′σ )Sμ,μ′
∫

d3r′Δr′φμ(r′)φμ′(r′)+(nμ′σ−nμσ )S
2
μ,μ′

d
4

(3.20)

where Dμμ′σ can be seen as a “bond” dipole between the metal orbital φμ(r) and
the organic orbital φμ′(r) (see Fig. 3.15), d is the distance between both atoms and
Δr′ = r′ −r0 connects the integration variable r′ with the midpoint between organic
and metal atom r0 (reference [15] has the detailed mathematical calculations).

This result would be correct if no effect of selfconsistency was included in the
occupations {nμσ }. However, this is not true, because, as stated in Sect. 2.4.2, the
occupations in fireball are obtained by projecting the wavefunction in the ortho-
normal Löwdin orbitals nμ = ∑occ.

n |〈ψn|ϕμ〉|2. This makes that the second term
in (3.20) is already included in our calculations. So we only need to consider the
following off-diagonal contribution.

Dμμ′σ = (nμσ + nμ′σ )Sμ,μ′
∫

d3r′Δr′φμ(r′)φμ′(r′) (3.21)

Finally the total dipole is calculated as D pillow = ∑
μ,μ′,σ Dμμ′σ . The interface

potential is ΔP
0 = 4πD pillow/A.

3.4.4 Intrinsic Molecular Dipole

This case can be treated just like the previous case, considering that this dipole create
a potential dropΔM

0 that can be added toΦM (it should be subtracted from the organic
part, but this is indifferent, due to we care only on relative alignment of levels of both
interfaces). Like the previous case it can be seen in two different ways:

Δtotal = EF −ΦM = EF − Φ̃M +ΔM
0 = (1 − S)(CNL − Φ̃M )+ΔM

0

Δtotal = (1 − S)(CNL −ΦM )+ SΔM
0 = ΔI DI S +ΔM

(3.22)

3.4.5 Surface Dipole

The “surface dipole” is the other source of dipole at the interface that is not considered
by our fireball code. It is a part of the IDIS dipole that needs to be added explicitly.

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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The form of the input density in (2.25), the form of the output charges (2.26),
together with the fact that we are using Harris functional, neglects off-diagonal
dipole terms (as said in 2.4.2). They are of the form.

Dof f −diag =
∑

iα, jβ

Diα, jβ =
∑

iα, jβ

niα, jβ

∫
d3rφ∗

iα(r)φ jβ(r)r (3.23)

where niασ, jβσ = 〈ĉ†
iασ ĉ jβσ 〉 as defined in Sect. 2.5.1. Due to surface symmetry,

only Dof f −diag
z �= 0. Although the effect of this dipole is small (the change inΔI DI S

is less than 0.1 eV) it is important due to it varies linearly with charge transfer (due
to it is part of the IDIS dipole) and need to be taken into account when calculating
U (see Sect. 4.2.2). In our calculations we only have taken into account the most
important contribution i = j (i.e. the intraatomic dipole).

3.5 Mind the Gap: C60/Au(111) and Benzene/Au(111) Interfaces

In this section we are going to apply the ideas of the IDIS model to analyze the
electronic structure of two interfaces: C60/Au(111) and benzene/Au(111). They were
chosen because significant difference of screening should appear between them. We
start studying these interfaces within the LDA approximation. At the end of this
section, we will show how calculations change when a realistic gap, obtained from
experimental values, is used. The results have been published in Applied Physics A
[53] (Copyright 2009, Springer) and Journal of Vacuum Science and Technology B
[56] (Copyright 2009, AVS), and here we present some excerpts from them. Other
authors have studied these systems theoretically. In the case of C60, a complete study
of geometry, energy and dipole formation at the interface has been made by Wang
and coworkers [57] (they also studied the C60/Cu(111) interface in [58]). Sau and
coworkers [59] have focused on the calculation of the transport energy gap using
Janak’s theorem and a simple energy functional for non-integer number of electrons.
Later in this thesis, we have also taken care of the transport gap: our results will be
presented in Chap. 5. Regarding the benzene/Au(111) interface, Bagus and coworkers
[14] have used the constrained space orbital variation method, while Morikawa and
coworkers [60] have followed a DFT–GGA approach.

3.5.1 Geometry

The relaxed geometry of these interfaces has been calculated with the fireball code
(Sect. 2.4). For the C60/Au(111) interface, we use the experimental 2

√
3×2

√
3R30◦

structure that a monolayer of C60 takes when deposited on the Au(111) surface
[61] (see Fig. 3.16). For the sake of simplicity, we have used, for benzene/Au(111),

http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_2


3.5 Mind the Gap: C60/Au(111) and Benzene/Au(111) Interfaces 83

Fig. 3.16 (Color online) C60/Au(111)-2
√

3 × 2
√

3 structure used in our calculations (unit cell is
highlighted). Upper and side view. For clarity reason, in the side view we only represent the first
molecular row. Reprinted from [53] (Copyright 2009, Springer). This and other images of atomic
geometries have been created with Jmol [62]

a 5 × 5 periodicity, with 4 molecules per unit cell (Fig. 3.17); in this geometry,
the adsorbate hexagonal lattice is the same and the distance between molecules is
similar to the one found experimentally in the

√
52 × √

52 structure [63] (7.3 Å
versus experimental value of 6.95 Å), so that the main difference is that our coverage
is slightly smaller (∼10 %) than the experimental monolayer. Regarding the Au
surface, we have used in both cases a film of six layers. Since vdW interaction
is very important in the benzene/Au interface, we cannot trust in molecule/metal
distances provided by LDA calculations, so it has been deduced indirectly from
the available experimental information. In particular, Koch et al. [64] have found
for pentacene/Cu(111) a molecule surface distance of 2.34 Å; on the other hand,
Duhm et al. [65] have found that for PTCDA/Au(111) the molecule/metal distance
is 0.61 Å larger than the one for PTCDA/Cu(111). Since the benzene/Au distance
should be similar to the pentacene/Au distance, these results suggest that a reasonable
benzene/Au(111) distance is 2.95 Å, extrapolations for C60 gives a MO distance of
2.25 Å.

In order to calculate the electronic structure we have used Au double basis set
of numerical atomic orbitals (NAOs) for Au sp3d5s∗d∗5, with the following cutoff
radii (in a.u.): s = 6, s∗ = 6, p = 7 and d = 5, d∗ = 5; optimized s = 4.5,
p = 4.5 (C); and s = 4.1 (H) [66]. These basis gives the following bond distances:
C–C nearest neighbors distance in benzene of 1.40 Å (to be compared with the
experimental value of 1.392 Å [67]) and C–C distance of 1.40 and 1.47 of C60 (to
be compared with 1.39 and 1.44 obtained in DFT in a plane wave basis [57] and
experimental values 1.40, 1.45 Å [68]), and a bulk gold lattice parameter of 4.16 Å
(versus an experimental value of 4.07 Å [69]). Some deficiencies appear because we
are not using a converged basis set; mainly, the molecular and metal levels are not
correctly aligned at the experimental value (the experimental Au work function is
5.1 eV, and the C60 and benzene midgaps are 5.4 and 4.05 eV below the vacuum
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Fig. 3.17 (Color online) Model structure used for the benzene/Au(111)-interface (unit cell is high-
lighted). Upper and side view. Reprinted from [53] (Copyright 2009, Springer)

level respectively. Moreover, our HOMO–LUMO gap is 2.2 eV in C60 and 6.2 eV in
benzene (instead of the plane wave converged values of 1.6 eV [59] and 4.7 eV [60]
respectively). In order to have these levels correctly aligned and the correct LDA
gap, we use the scissor operator (shown in Sect. 2.7.5) that allow us to shift by ε the
molecular levels, and close the gap 2Δ where Δ is a (negative) quantity that closes
the gap to the converged LDA gap. This way, direct comparison with plane wave DFT
results is possible [57] It has been considered that the C60 mid gap coincides initially
with the metal work function [61], while in benzene the mid gap is around 0.4 eV
above ΦM [14, 70]; in both cases, the initial HOMO-level is located with respect to
the metal work function by correcting its experimental position at the interface by
the measured interface potential). This has been achieved using the scissor operator.

3.5.2 Interface Potential with LDA Gap Calculations

IDIS Potential

Figure 3.18 shows our calculated DOS for the C60/Au(111) interface, projected
onto the atomic orbitals of C60. It has been calculated using the one electron Green
function of our hamiltonian, together with Eq. (A.24). In order to avoid numerical
instabilities we have chosen a finite η of 0.01 eV in order to calculate the Green
function [see (A.21)] In this figure we show the HOMO and LUMO levels, yielding

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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Fig. 3.18 (Color online) DOS per spin projected onto the C60 molecule for the C60/Au(111)
interface. HOMO, LUMO, CNL, ΦM and EF are explicitly shown
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Fig. 3.19 (Color online) Averaged DOS per spin projected onto the benzene molecule for the
benzene/Au(111) interface. HOMO, LUMO, CNL, ΦM and EF are explicitly shown

an energy gap of 1.8 eV; the initial Fermi level,ΦM , which is located at the midgap;
the final interface Fermi level, which is 0.50 eV above ΦM , because of the induced
interface potential ΔI DI S = 0.50 eV; and the CNL, which is calculated using (3.8).
This CNL for C60 is found to be located 0.3 eV below the LUMO-level.

As the IDIS-potential,ΔI DI S , is related to the screening parameter, S, by the Eq.
(3.10) we deduce that S = 0.08, which represents a case with a rather large screening
(consistent with the experimental results [54]).

In Fig. 3.19, we present our results for benzene/Au(111); the molecule DOS is
an average upon the four molecules of the unit cell. The energy gap is 4.5 eV, and
the initial Fermi level, ΦM , is located 0.4 eV below the midgap [14, 70]. In our
calculations, the CNL is located 0.4 eV below the LUMO level, and the interface
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Fermi level is 2.0 eV aboveΦM . Notice that the HOMO level is much more broadened
by the metal than the LUMO. From Eq. (3.10), we obtain the following screening
parameter for benzene/Au(111), S = 0.10, which represents an interface with smaller
screening than C60/Au(111) but still important.

Total Dipole

The Pauli repulsion, not included in the previous calculations, is going to be described
by the “pillow” potential, ΔP

0 , as mentioned in Sect. 3.4.3. We have obtained the
following values for these interfaces:

ΔP
0 (C60/Au(111)) = 3.3 eV and ΔP

0 (benzene/Au(111)) = 1.0 eV.

Using these values and the results given above we get the following total potentials:

ΔT (C60/Au(111)) = SΔP
0 +ΔI DI S = 0.26 eV + 0.50 eV = 0.76 eV.

ΔT(benzene/Au(111)) = SΔP
0 + ΔI DI S = 0.1 eV + 2.0 eV = 2.1 eV. which

should be compared with the experimental evidence. In the case of the C60/Au(111),
ΔT (C60/Au(111) experimental) = 0.6 eV [61] in good agreement with our theoretical
analysis; for benzene/Au(111), ΔT(benzene/Au(111) experimental) = 1.1 eV [14].
So our calculations give an overestimated value of the interface dipole.

We should comment that it is very satisfactory that the case C60/Au(111) presents
such good agreement: for this interface the LDA gap approximation is not such bad.
The benzene/Au(111) is different: first of all, the molecule/metal distance we have
used in our calculations was an educated guess. We have explored how the total
potential changes with the benzene/metal distance. For instance, for 3.25 Å (the
distance we obtain with an accurate ab-initio calculation, see 5.3), our results yield,
S = 0.29, the CNL at the same position (a very robust level), and ΔP = 0.4 eV, so
that ΔT = 1.50 eV (IDIS) + 0.12 eV (pillow) = 1.62 eV, closer to the experimental
evidence [14], but still too large. The main point here is the great underestimation of
the actual gap, that accurate calculations indicate that it is between 7.0–7.7 eV [52, 71]
(that means, an underestimation of more than 3 eV), that reduces the potential Δt

around 50 %.

3.5.3 C60/Au(111) Interface with a Larger Gap

As it has been previously addressed, the HOMO–LUMO gap obtained in LDA is a
poor approximation to the actual one, since it is systematically underestimated.

A deep look at the literature confirm us this fact. Direct measurement of the
transport gap in C60 by STS made by Lu et al. [72] (see Fig. 3.20) show us that
the actual gap is 2.7 ± 0.3 eV, in agreement with theoretical calculations [59]. We

http://dx.doi.org/10.1007/978-3-642-30907-6_5
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Fig. 3.20 d I/dV spectra of a single C60 molecule on Au(111) at T = 7 K. Spectra 1–9 were taken
at indicated spots on the inset image and are shifted vertically for clarity. Tunneling parameters
were V = 2.0 V, I = 1.0 nA before taking the spectra. The dashed spectrum was obtained from
the bare Au(111) surface. (Image scale is ∼20 × 20 Å). Reprinted from [72] Copyright (2004) by
the American Physical Society

have repeated the calculations of the DOS and IDIS potential for a gap Eg = 2.5 eV
(using the scissor operator to tune it). The C60-metal distance is taken to be 2.5 Å
[57] and the work function is located 0.15 eV above the midgap.

Figure 3.21 shows our calculated DOS for the C60/Au(111) interface, projected
onto the atomic orbitals of the organic molecule. In this figure we show the HOMO
and LUMO levels, the initial (ΦM ) and the final Fermi levels (EF ). The IDIS potential
(the difference between ΦM and EF ) is ΔI DI S = 0.61 eV; and the organic CNL is
located 0.45 eV from the LUMO-level so that, CNL − EF = 0.04 eV.

The screening parameter S can be obtained changing fictitiously the initial Fermi
level and calculating the corresponding change in the interface Fermi energy using
(3.12), which is found to be 0.07, very similar to the case obtained using Eq. (3.10).
Regarding the “pillow” potential, it yields ΔP

0 = 1.9 eV; so we get ΔP = SΔP
0 =

0.14 eV and ΔT = 0.75 eV. Note that these values are a different from the values
obtained for the LDA gap.



88 3 Further Developments in IDIS Model

-7 -6 -5 -4 -3

Energy (eV)

0

5

10

15

20

25

D
O

S
 (

eV
-1

)

HOMO

LUMO
CNL

Φ
M

0.61

0.45

0.04

E
F

Fig. 3.21 (Color online) DOS per spin projected onto the C60 molecule for the C60/Au(111)
interface with a gap of 2.5 eV. HOMO, LUMO, CNL, ΦM and EF are explicitly shown

3.5.4 Discussion

Despite our results are in reasonable agreement with experiments (at least for C60),
some details of the calculation can be improved. There is a list of some of them.

1. First of all, in previous section we showed that the correct value of the gap is
critical to have a realistic interface potential. If we compare results for a C60
molecule with a gap of 1.8 and 2.5 (only 0.7 eV increment) we see that the IDIS
potential changes from 0.50 to 0.61 (despite the C60/metal distance is larger),
and the LUMO–CNL distance also increases from 0.25 to 0.45 eV. As we will
see in Sect. 5.3, for the benzene case, the difference is dramatic. The potential
reduces from 1.50 to 0.85 eV, and the LUMO–CNL distance is increased from
0.40 to 1.25 eV, showing that a LDA calculation in this case does not give correct
quantitative results.

2. We have used an extended gold basis set in order to obtain a realistic pillow dipole.
However, it is in the frontier of the valid basis for the fireball method, the form
of the output charge (2.26) relies on the assumption that the overlap is small
enough to use the approximation (ϕLöwdin

iα = φ
f ireball

iα ) in the Hartree potential.
This is the reason why the basis is not suitable for geometry calculations, due to
forces are more sensitive to this fact. However, electronic structure calculations
with more simple sp3d5 basis of cut-off radii (in a.u.) s = 4.5, p = 4.9, d = 4.3,
show us that the difference in the total dipole is around 10 % , within the error bar
of our calculations and we can be sure that fireball approximations work well
for a basis set of this size. However, the screening parameter is greater, due to a
smaller interaction between the metal and the molecule (because metal orbitals
have smaller cutoff radius).

http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_2
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3. Calculation of the screening parameter S using (3.10) although gives good
results, can be calculated more accurately using the definition in (3.12), as done
in 3.5.3

4. Reliable distances have been obtained extrapolating other experimental or
theoretical results. A fully ab-initio calculation of the distance is desirable.

The most important of this list is the first one. All along this thesis we will try to
correct the deficiencies explained here.

3.6 The Gap Problem

Although in the previous section we have addressed the importance of a reliable
gap for the C60/Au(111) interface, we still do not have a systematic way to obtain
realistic values for it without using techniques really expensive computationally. In
this section we are going to point out the main ideas we have followed in order to
correct it. In next chapter we will apply these ideas in the framework of the IDIS
model in order to obtain in practice a realistic gap.

We can see the underestimation of the LDA gap using two complementary points
of view. The first one is more physical, and has been introduced in the thesis in Sect.
2.7.2, the other one is based on mathematical properties of the energy functional in
DFT. As explained in Sect. 2.7.4, in LDA, selfinteraction correction, due to interaction
of an extra electron with the others, is not taken into account and the ionization
potential and electron affinity are under and overestimated respectively. This allow
us to write the gap in terms of the charging energy U 0 that arises from Coulomb
repulsion between two electrons in the molecule.

Et
g = E L D A

g + U 0 (3.24)

In this case we have not only SIC, but also image potential: our molecules are
deposited over a metal, so the charging energy of the molecule is reduced (because
of the interaction of the image charge, that weakens the interaction of the “real”
charge). This can be taken into account by substituting U 0 by an effective image
charge U < U 0.

Mathematically, the underestimation of the LDA gap is related with the derivative
discontinuities in non-integer DFT. The exact value of the ground state energy should
be piecewise linear with respect to the number of electrons [73], however, in standard
local approximations it is not the case. So the derivative discontinuityΔxc defined as:

Et
g = E K S,L D A

g +
{(

∂Exc

∂N

)

N=N+0+
−

(
∂Exc

∂N

)

N=N−0+

}
= E K S,L D A

g +Δxc

(3.25)
is zero in LDA [74]. Sau et al., within the spirit of the LDA+U method, suggested
the following correction to the LDA functional.

http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2


90 3 Further Developments in IDIS Model

E[N + δn] � E L D A[N + δn] + U±
2

|δn|(1 − |δn|) (3.26)

where δn is the fractional charge of the system (0 < δn < 1) and U+ for δn > 0 and
U− for δn < 0 (that are closely related to the charging energy U ). The quadratic term
corrects the piecewise linearity of LDA, and allow us to obtain for integer values
E[N + 0, 1] � E L D A[N + 0, 1]. If we apply Janak’s theorem to this functional for
the HOMO and LUMO levels of a molecule we get:

(
∂E

∂(δn)

)

δn<0
� εL D A

H O M O − UH O M O

2(
∂E

∂(δn)

)

δn>0
� εL D A

LU M O + ULU M O

2
(3.27)

We can relate UH O M O,LU M O (equivalent to U−,+ respectively) with the charging
energy U as U = 1/2(UH O M O + ULU M O). Note that these results are equivalent
to the Eq. (2.103) obtained at Sect. 2.8.2, but for the molecular levels instead of the
atomic ones.

Taking the second derivative ∂2 E
∂(δn)2

when δn → 0, and realizing that it is zero
(since the total energy is piecewise linear with respect to the occupancy) we get:

Ui = ∂εL D A
i

∂(δn)
(3.28)

for i =HOMO, LUMO and δn < 0,> 0 respectively.
If we find an easy way to calculate the change on the molecular spectra due to the

molecule charging, we will get U using this equation and we will be able to correct
the LDA gap. As we will see in the next chapter this is straightforward within the
IDIS model.
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Chapter 4
The IDIS Model at the Molecular Limit

4.1 Introduction

In the previous chapter we have shown that the IDIS model is a simple yet accurate
model for predicting and studying energy level alignment at metal-organic inter-
faces, that appear in new organic electronic devices like OLEDs. However there are
other systems where metal-organic interaction takes place, but are not an infinite
metal-organic interface. This is the case of molecular electronics devices (where an
organic molecule is attached to two metallic electrodes) [1–5], or individual mole-
cules deposited over surfaces at extremely low coverage [6]. It should be desirable
to extend our model to those kind of systems.

This extension is only valid if the physical interactions governing these systems
have the same physical origin than in MO interfaces. This means that the induced
interface states can occur locally, that is, there can be non extended states inside
the organic gap. This is true if we consider them as states coming mainly from
hybridization of metallic and organic states (an effect that can take place at the
molecular limit). We will show that the lack of extended surface states does not
affect our model.

When going from monolayer to molecular limit, a word of caution should be
said. At molecular limit, the change on work function (the potential drop at the
surface, considering it as a macroscopic quantity) is different than the potential that
the molecule suffers due to MO interaction. Figure 4.1 shows schematically the
difference between both. In the case of the IDIS model, the IDIS potential is the
potential that a molecule suffers. The “macroscopic” work function is just the value
given by formula (3.9) where the dipole is the total one (charge transfer + pillow +
surface + intrinsic). The difference between both is clearly seen at extremely low
coverage. The change of the macroscopic work function of the surface is negligible
(we only have a few molecules over the metal surface); however, the molecule does
suffer a potential drop due to the local dipole that appears between the metal and
the molecule. In order to distinguish both quantities, from now on, we are going to
consider Δ the change in macroscopic work function and V the local potential drop

E. Abad, Energy Level Alignment and Electron Transport Through 95
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Fig. 4.1 Left Scheme of the difference between the rise in metal work function and the potential
that the molecule suffers. The former is the measurement of the potential far away from the surface
(when it is essentially flat, and makes sense talk about work function rise), while the latter is the
potential that the molecule sees, that is not flat and can be very different from the former. At high
coverages, potential curves tend to flatten very quickly and both quantities are essentially the same.
Right Dependence on the average potential over a plane for different coverages. At high coverages,
the potential does not depend on distance to the surface, and the origin of V is the interface dipole
layer. For lower coverages, V > � and there is a distance dependence of the potential. At the limit
of low coverages � = 0 (since there is no dipole layer over the whole surface)

at the molecule. At high coverages, as the cases studied in previous chapter, both
quantities are almost the same (Δ � V ).

In the next section we are going to focus on a C60 molecule over Au(111) surface
(where experimental results are available) and show that the IDIS model remains
valid even if only one molecule is involved. In Sect. 5.2 we will see that this case can
be considered as a limit of the IDIS model for low coverages. These results are an
extended version of the work published in Physica Status Solidi A [16] (Copyright
2012 by WILEY-VCH Verlag).

4.2 C60 Molecule Over a Au(111) Surface

The adsorption of a C60 molecule over a Au(111) surface has been simulated with a
8 × 8 Au cluster with no periodicity and 4 layers. The cluster size has been checked
to be high enough to avoid border effects. All C60 atoms and surface atoms (apart
from the boundary gold atoms, and the last layer) have been allowed to relax. The
adsorption distance has found to be 2.4 Å (a complete discussion about the role of
vdW interaction in this interface will be given in Sect. 5.2.1). In this case, we have
used both for the geometric relaxation and for the electronic structure calculations
an Au sp3d5 basis with the following cut-off radii (in a.u.): s = 4.5, p = 4.9,
d = 4.3, that gives a lattice parameter of 4.12 Å (compared with experimental value
of 4.07 Å [7]). The reason for this choice is to improve the accuracy/speed ratio of
our calculations (not so important here, but critical for comparison with other results
in Sect. 5.2.3). We have checked that our results are independent of basis choice

http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_5
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Fig. 4.2 Geometry of the
8×8 cluster without periodic-
ity used for simulating a single
molecule adsorbed over a gold
surface (upper and side view)

Fig. 4.3 DOS projected on
the C60 orbitals for the case of
an isolated C60 over a Au(111)
surface. Molecular levels of
the isolated (but deformed)
molecule are indicated by red
lines. Right inset enlarged
image for the area around
the Fermi level, showing
HOMO, LUMO and CNL
of the molecule, ΦM and the
Fermi level (EF ) of the system
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changing the Au, C basis (see Sect. 5.3.5). The C basis set is the same as in previous
calculations in Sect. 3.5. Regarding the gap, we have calculated an accurate value
taking into account SIC and image potential, using the ideas presented in 4.2.1,
obtaining Et

g = 3.1 eV. This will be carefully explained in next section. Geometry
has been shown in Fig. 4.2 and DOS in Fig. 4.3.

In this case, although the same formulas as in 3.5.2, (A.20) and (A.21), are used
in order to calculate the DOS, a η = 0.1 eV for Au orbitals is introduced in order to
correctly mimic the continuous DOS of the surface; and a η = 0.001 for C orbitals
in order to get the peak-like DOS of the molecules. That is:

G−1
j j (E) = Hj j − E + iη j

{
η j = 0.1 if j ∈ Au

η j = 0.001 if j ∈ C
(4.1)

by this way, we obtain a more realistic DOS, and we avoid artifacts that appear when
we take a η too high.

We are tempted to interpret the DOS in terms of the IDIS model, placing the
CNL, ΦM and IDIS potential (V I DI S , remember the difference between V and

http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 4.4 Values of CNL−EF V I DI S and δn versus the initial Fermi level for the C60 molecule over
Au surface. Linear behavior support our assumption that the IDIS model is valid at the molecular
limit

Δ), and calculating the screening parameter, obtaining S = 0.53. However, is this
interpretation valid? We can check the validity of the IDIS model calculating S
using not only Eq. (3.10) but also (3.12). If the movement of the Fermi level with
respect to the work function behaves linearly, and the value of S coincides with the
one calculated previously, the suitability of the IDIS model to describe this kind of
metal/organic contact will be strongly validated.

Figure 4.4 shows perfect linearity, and the slope value is S = 0.53 too. So, IDIS
model for low coverages can be considered valid. In Sect. 5.2 we will see a few more
facts that strength the validity of the IDIS model at the molecular limit).

4.2.1 IDIS Based Calculation of Charging Energy

In Sect. 3.6 we presented the formula:

Ui = ∂εL D A
i

∂(�n)
(4.2)

obtained by Sau and coworkers [8] based on a LDA + U correction of the linearity of
energy functional in DFT for non-integer numbers. It allows to calculate the charging
energy if we calculate the movement of the HOMO and LUMO levels when we add
or subtract some charge δn to the molecule. How can we do it when the molecule is
not isolated but placed over a surface?

The answer is very simple if we think on the IDIS model. In this model naturally
occurs an addition or subtraction of charge δn to the molecule (due to the charge

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 4.5 Value of SIC using Koopmans’ theorem, see Eq. (2.96), to the DFT level of isolated C60
as a function to the molecular level. It can be seen that all values are around ±1.4 eV

transfer). On the other hand, there is also a natural movement of the HOMO and
LUMO levels (the potential drop due to the IDIS dipole), so in our case we can
define:

U = δV I DI S

δn
(4.3)

So using only IDIS parameters we can deal with the underestimation of the LDA
gap and give a good approximation to the exact one without expensive methods
like GW (that for long molecules such as PTCDA/Au(111) with 208 atoms or low
coverage interfaces, such as C60/Au(111) 5

√
3 × 5

√
3R30◦, with 360 atoms) would

be completely prohibitive.
Some words of caution need to be addressed here. First of all, in actual geometries

there is no charge transfer from/to the HOMO/LUMO, but to the interface states
that are around the CNL. That means that we are neither calculating U H O M O , nor
U LU M O but a mixture of both. However, these charging energies should be very
similar. Calculations of Koopmans’ correction, using (2.96) show that this correction
(that is actually the charging energy U 0) for free molecule in C60 and benzene is
more or less the same for all levels (other molecules, such as PTCDA were calculated
in [9, 10]). That means that although we are taking interface states, that are mainly
a mixture of HOMO and LUMO levels, we will obtain good results.

4.2.2 Practical Implementation

The formula can be written in a more practical way. If we consider that the density
of states is more or less constant between the Fermi level and the CNL, that is what

http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
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actually happens (see Fig. 4.3); we can consider that δn = D̃(CNL − EF ); where
D̃ is the average DOS. With this and (3.11) and (3.13) we obtain:

S = 1

1 + U D̃
(4.4)

In this equation, U D̃ plays the same role that the term 4πe2d D̃/A does in the
elementary theory of Schottky barriers (d is the effective distance between the pos-
itive and negative charge transferred between the metal and the molecule, and A
the area per molecule). So, with the screening parameter and the average DOS at
the Fermi Level we can obtain easily the charging energy. This formula is better for
practical use in systems with small S and large broadening of the HOMO/LUMO
levels because we can calculate S and D̃ more exactly than V I DI S . Note that S and
D̃ should change with the size of the gap: the larger the gap, the smaller the DOS
at the Fermi Level (HOMO and LUMO broadened levels are farther to the Fermi
level), and the larger the value of S (the screening is lower because the insulator
character is higher). In our calculations, we have opened the gap with the scissor
operator (Eq. 2.97) and recalculated S, D̃ and U until we get a selfconsistent U .

Up to now we did not care about the metal “U” since it should be zero. However,
the surface has been simulated using a cluster (so it is not longer a true metal but
a very narrow gap semiconductor; so a small spurious “U metal” will appear. In
the 8 × 8 cluster, U metal ∼0.2 eV. This has to be taken into account. For example
“V I DI S

metal ”= U metalδn is around 0.04 eV, so in order to calculate S or U this small
spurious contribution has to be neglected (otherwise S will be 0.49, too small and
U = 1.8 too high).

We have considered this by calculating (CNL − EF ) for different initial Fermi
levels, let’s say ΦM and ΦM + Δ. By virtue of Eq. (3.12) the screening parameter
should be:

S = (CNL − EF )ΦM +Δ − (CNL − EF )ΦM

(ΦM +Δ)−ΦM

= (CNL − EF )ΦM +Δ − (CNL − EF )ΦM

Δ
(4.5)

but as U metal �= 0 there is an spurious “IDIS potential” in the metal V I DI S
metal =

δnU metal that has to be subtracted. The corrected screening parameter S is then
calculated via:

S = (CNL − EF )ΦM +Δ − (CNL − EF )ΦM

Δ− V I DI S
metal

(4.6)

Last but not least, the surface potential (mentioned in Sect. 3.4.5) tends to reduce
the gap, and this effect is not taken into account in our fireball code. So we need to
calculate it using formula (3.23) and see how it changes with charge transfer. The
actual value of U is U = U f ireball − |U of f −diag| where U of f −diag is:

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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U of f −diag = δV of f −diag

δn
(4.7)

When all this considerations are taken into account, we get for the isolated C60
molecule over a gold “surface” (actually a cluster, as stated before) a value of 1.5 eV.

The discussion of the calculation of U for a finite coverage will be given in
Sect. 5.2.

4.2.3 Calculation of Pillow and Surface Potential at Low Coverages

In previous sections we have seen that the interaction of a C60 molecule with a gold
surface can be understood in terms of the IDIS model, obtaining an IDIS potential
V I DI S = (1−S)(CNL−ΦM ). However, to obtain a good picture of the interface not
only the IDIS potential but also the pillow and the surface ones need to be calculated.
There is no problem in calculating Dpillow and Dof f −diag but, what is the potential
drop induced in the molecule due to these dipoles? In order to calculate that, we
will guide us by the behavior of the IDIS potential. The difference on the pillow
and surface potential (ΔP,of f −diag) for high coverages and molecular limit can be
calculated by taking into account that 1/S−1

D is the induced potential drop at the
interface by one electron transferred from the molecule to the surface (see Eq. 3.7).
So the difference between potential drops for high coverages and the molecular limit,
is, in a first approximation:

V P,of f −diag
mol

�
P,of f −diag
M L

= (1/Smol − 1)DM L

(1/SM L − 1)Dmol
(4.8)

(D is the DOS at the Fermi Level). Applying this to the pillow potential we have
obtained V P

0 0.07 eV for the isolated molecule. The surface potential acts on the
opposite way (tends to reduce ΦM − EF ) and is 0.03 eV for the molecule. Although
these values are very small, V of f −diag

mol play a significant role in calculating the actual
gap of the system (see previous subsection).

4.2.4 C60/Au(111) Gap Calculation: Summary and Conclusions

We are going to give a brief review of the contents of this section and how we have
applied it to our system.

1. First of all we take the isolated molecule over the surface and calculate S cor-
recting the effect of U metal , and D̃ as D̃ = δn/(CNL − EF ).

2. With S and D̃ we obtain U using (4.4).

http://dx.doi.org/10.1007/978-3-642-30907-6_5
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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3. We use the scissor operator to open the gap from E L D A
g to Et

g = E L D A
g + U .

After that we recalculate S, D̃ and U
4. We repeat steps 2 and 3 several times until we get an selfconsistent gap (i. e. we

have a gap Et
g = E L D A

g + U1 and with formula (4.4) we obtain U2 = U1

5. We calculate the surface-potential V of f −diag and U of f −diag via Eqs. (3.23),
(4.7) and (4.8). The final U is U = U f ireball − |U of f −diag|.

If we compare our predicted gap (3.1 eV) with other theoretical and experimental
results, we get good agreement. Lu et al. [6] found an experimental value of 2.7 eV
using STS (see Fig. 3.20); and Sau et al. [8] calculated a gap of 2.5 eV obtained using
a similar approach as the one exposed here combined with a GW-like self-energy.

The advantage of this method is the much lower computational cost, as compared
with standard approaches based on GW or other beyond-HF techniques. It has some
details (the spurious V I DI S

metal , the fact that we are not calculating U of f −diag) but we
obtain reasonably good gaps (slightly overestimated). We need to say that, as we
will see in Sect. 5.6, the use of an hybrid potential reduces the obtained gap due to
exchange hole delocalization.

4.3 Application of the IDIS Model at the Molecular Level: C60
Between Two Tips

In this section we are going to apply our IDIS model to a C60 molecule between two
gold tips. This section is adapted from the article published in Organic Electronics
(Copyright 2010 by Elsevier). This work has been made with help and advice from
César González [11].

Some work has also been addressed to understand the quantum dot formed by
an isolated C60-molecule located between two metallic tips [12–14], but in these
references many-body corrections have been neglected. In our case we combine a
DFT calculation at the LDA level of the geometry during the approach the two tips
to the C60 molecule, with an electronic structure analysis in terms of the IDIS model.
Also, an study of the charging energy of the molecule U and its changes during the
tips-C60 approach have been done, applying the ideas presented in Sect. 4.2.1.

4.3.1 Mechanical Study

In our DFT simulations, the Au-tips consist of pyramidal-shape clusters of 46 Au
atoms in a (111) geometry, with 3, 6, 10 and 27 atoms in the first, second, third and last
layer respectively [15] (see Fig. 4.6). The basis set used is the same as in previous
calculations of Sect. 4.2. The contact formation is analyzed by approaching each
Au-tip in steps of 0.1 Å; after each step the atoms are relaxed to their corresponding
minimum energy positions, except the atoms in the last Au-layer of both tips, which

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_5
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(a) (b)

(c) (d)

Fig. 4.6 Geometry of the tip/C60/tip system for different values of the distance d between the fixed
Au-layers. The arrow in case (b) suggests how the molecule rotates. Reprinted from [11]. Copyright
(2010) from Elsevier

are fixed. We have also calculated electrical conductance of the system at each step
of the deformation process using the Keldysh–Green’s function formalism explained
in Sect. 2.6, for a molecule between two electrodes, together with the first-principles
hamiltonian obtained after the relaxation.

Figure 4.6 shows the calculated geometry of the tip/C60/tip contact as a function
of the distance, d, measured between the fixed Au-layers of both tips. Initially (Fig.
4.6a), C60 is attracted by the tips, its diameter increasing along the tip-tip direction
(see Fig. 4.7b). The buckyball suffers, however, a slight rotation (Fig. 4.6b) in the
attractive region between distances d = 23.7 and 26.4 Å where the molecule jumps
between different minima in such a way that the force cannot be calculated as the
derivative of the energy (in Fig. 4.7a this is represented by a dashed line for the force
which is only a guide to the eye, calculated smoothing the energy curve). When the
force is ∼0, the C60 returns to its original orientation, and after that, the molecule
starts to be compressed (Fig. 4.6c), shortening its diameter along the tip-tip direction.
Eventually, the tips starts to break (Fig. 4.6d). Notice also that the maximum attractive
energy for one interface is 2.2 eV, and that the maximum attractive force is (probably)
in the order of 3.8 nN; as expected, this force is around twice the one calculated for

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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Fig. 4.7 a Energy, forces and
b conductance at the Fermi
level and the diameter of C60
along the contact direction, for
the system shown in Fig. 4.6
as a function of the distance d
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a tip/nanotube contact of the same diameter [15]. Van der Waals forces are found to
be small (see discussion in [16] and Sect. 5.2.1).

The conductance at the Fermi level of the tip/C60/tip contact (Fig. 4.7b) shows a
maximum of 1.8G0 in the compressive region, while it is ∼0.8G0 for the equilib-
rium position. For long distances, d > 25.7 Å, 3 channels contribute equally to the
conductance, as corresponds to the three orbitals of the LUMO level while, due to
the symmetry breaking of that level, only two channels contribute at short distances.
At intermediate distances only one channel dominates the conductance due to the
rotation of the molecule.

We should comment here that the conductance has been calculated with the cor-
rected hamiltonian (with the scissor operator) so the molecular gap is the realistic one:
calculations without this correction lead to a maximum value of 2G0 (the difference
ratio is larger when the distance between tips increase).

http://dx.doi.org/10.1007/978-3-642-30907-6_5
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Fig. 4.8 (a–c) DOS (per
spin) as a function of energy
for geometries (a–c) in Fig.
4.6. Each case shows: HOMO,
LUMO and CNL levels, as
well as the initial (ΦM ) and
final (EF ) Fermi levels
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4.3.2 Electronic Analysis: Unified IDIS Model
and Self-Interaction Correction

Figure 4.8 shows the density of states projected on the C60 orbitals for the cases a, b
and c of Fig. 4.6. For each case, the HOMO and LUMO levels, the molecule CNL,
the initial (ΦM ) and final (EF ) Fermi levels are shown. As in the case of a single
C60 molecule adsorbed on a gold surface, the tip/C60/tip contact reacts creating a
mean potential, V t , between the tips and the molecule that tries to align the organic
CNL and the metal work-function. In case a, since the “pillow” dipole is negligible,
that potential is created only by the charge transfer between the two materials that
is, V t = V I DI S .
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In Fig. 4.8a, C N L − 
M = 1.1 eV and V I DI S = 0.34 eV, so that S = 0.7.
As in other cases, we have checked that the screening parameter is the same using
Eqs. (3.10) and (3.12). We have calculated the transport energy gap by means of
the method exposed in Sect. 4.2.1, using Eq. (4.4). In this case U = 2.0 eV, so
the transport energy gap has been fitted to 3.6 eV by means of the scissor operator
presented on 2.7.5. Moreover, using this scissor operator, the Au work function has
been placed 0.3 eV above the midgap.

Note that this gap differs from the gap of 3.1 eV found for a molecule over a metal
surface. This means that the gap of the molecule depends on the geometric details
of the structure; the gap over a metal surface is different than the gap between two
metal tips.

In cases b and c the distance (CNL−ΦM ) = 0.82 (b), 0.75 (c) eV has been reduced
to (CNL − EF ) = 0.21 (b) and 0.18 (c) eV, so the IDIS potential is 0.61 (b) and 0.57
(c) eV and the screening parameter S = 0.26 (b) and 0.24 (c), indicating that in these
two cases, for small tip-C60 distances the interface screening is much more effective
than in case a, saturating around the energy minimum. Moreover our selfconsistent
calculations yield the following values of U : 1.6 (b) and 1.3 (c) eV, and the following
transport energy gaps: 3.2 eV (b) and 2.9 eV (c), as can be approximately appreciated
from the strongly broadened HOMO and LUMO levels of those figures.

Regarding the pillow potential, in these cases it is not so small, so the total potential
has pillow contribution too. The corresponding values of V P

0 for cases b and c are 0.45
and 0.96 eV respectively, that are screened to SV P

0 = V P = 0.12 eV (b), 0.23 eV
(c). Note that in this last case, the pillow potential is able to change the charge
transfer direction (in Sect. 5.2.6 we suggest that this mechanism can be present also
in C60/Au(111) monolayer).

Finally, a word of caution about U of f −diag should be addressed here. We are
now dealing with a tip instead of with a complete surface so the change in U due
to the off-diagonal surface potential will be smaller. Since we know that in the
whole surface case the change in U is not bigger than 10 %, we can expect here that
U of f −diag < 0.1 eV and and we did not include it.

4.3.3 Conclusions

We have applied the IDIS model, that was originally applied to metal/semiconductor
interfaces (organic and inorganic) to a complete different field: molecular electronics.
We have shown that the IDIS model help to interpret the electronic structure of the
system, and allow us to calculate a realistic gap where both the SIC and the image
potential are taken into account. Note that here, a semi-classical calculation of the
image potential1 is not an easy task. Also is important to note that, the gap of the
molecule depends on the tip-molecule distance. Moreover, the Au geometry also
influences the gap size. This will be explicitly pointed out in next section but these

1 As for example in [17], Sect. 5.8.2.

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_5
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results suggest the same: note that we obtain the same U for a C60/tip distance of
∼2 Å than for a C60/surface distance of ∼2.4 Å, that suggests that the image potential
in the surface case is higher for the same C60/Au distance.

In conclusion, our method allow us to correct the gap in molecular electronic
systems (very important, for example, to calculate a realistic conductance of the
device) without too much computational cost (our system has 152 atoms; a number
of atoms that makes other methods, like GW, prohibitively expensive).

4.4 Barrier Formation for a Tip/C60/Au(111) Configuration

In this section we will study another nanogap organic molecular junction formed
by a C60 molecule in-between a Au-tip and a Au(111)-surface. As in the previous
case, we first calculate the atomic geometry of the tip/C60/Au(111) nanocontact as a
function of the tip-surface distance, but for different molecule adsorption sites. The
electronic structure, barrier height formation and charging energy are analyzed using
the IDIS model. Our results are shown to be in good agreement with the experimental
evidence. This work has been published in Journal of Physics: Condensed Matter
in collaboration with Dr. José Ignacio Martínez [18]; and this section is an adapted
version of it (Copyright 2010 by IOP publishing).

4.4.1 Geometry Calculations

The Au tip is the same as considered in Sect. 4.3 and the surface is simulated using
the 8 × 8 cluster mentioned before. The basis set is the same as the one used from 2
tips/C60 and C60/surface calculations. As in previous sections, all atoms are free to
relax apart from the cluster boundaries and the first tip layer.

Figs. 4.9 and 4.10 show the calculated geometries of the tip/C60/Au(111) contact
for different tip/metal distances. Figure 4.9 shows three cases (a, b and c) for a long
tip/metal distance (26.2 Å), with the molecule adsorbed on the tip, on the Au surface,
or located in the mid-point between the tip and the surface. In our calculations, the
adsorption on the tip is the most favorable one with an adsorption energy of around
1.3 eV, while on the surface the molecule is only bound by 0.3 eV, and in case (c)
by 1.0 eV. These values for the adsorption energies cannot be expected to be very
accurate, because of the minimal basis used in the calculations; moreover, for an
accurate calculation of the adsorption energies, one should include vdW energy that
have not been analyzed in this paper [15, 16]. However, vdW forces will not change
the geometries very much as will be shown in 5.2.1.

Figure 4.10 shows cases (d–f): two of them (d and e) correspond to an intermediate
tip/metal distance (25.4 Å) and the last one (f) to the shortest distance (24.6 Å). For
the intermediate distance, the molecule has been assumed to be adsorbed either on the
tip or the surface, the adsorption on the tip being again energetically more favorable,

http://dx.doi.org/10.1007/978-3-642-30907-6_5
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(a) (b) (c)

Fig. 4.9 Relaxed geometries, and adsorption energies, for a C60 molecule in-between a Au-tip and
a Au(111)-surface: configurations (a–c). In these three cases the distance between the Au-tip upper
layer and the Au(111) lower layer is 26.16 Å. Reprinted with permission from [18]. Copyright IOP
publishing 2010

(d) (e) (f)

Fig. 4.10 Relaxed geometries, and absorption energies, for a C60 molecule in-between a Au tip
and a Au(111) surface: configurations (d–f). In configurations (d, e) the distance between the Au-tip
upper layer and the Au(111) lower layer is 25.36 Å while it is 24.56 Å for case (f). Reprinted with
permission from [18]. Copyright IOP publishing 2010

while for the shortest distance only one case is possible with the molecule touching
simultaneously the tip and the surface. After obtaining the desired geometries, we
analyze the barrier height formation and the charging energy for the cases a–f. As in
the tip/C60/tip configuration, the work function is placed 0.3 eV above the gas-phase
C60 midgap (both for the tip and for the surface).
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Fig. 4.11 DOS (per spin) projected on the C60 orbitals for the geometry b of Fig. 4.9 (left inset).
Molecular levels of the isolated (but deformed) molecule are indicated by green shaded region.
Right inset: enlarged image for the area around the Fermi level, showing HOMO, LUMO and CNL
of the molecule, 
M of non-interacting gold electrodes, and Fermi level (EF ) of the system
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Fig. 4.12 As Fig. 4.11 for the geometry (d) of Fig. 4.10 (left inset)

4.4.2 Barrier Formation and Charging Energy

Figures 4.11, 4.12 and 4.13 show the DOS projected on the C60 orbitals for the
cases b, d and f of Figs. 4.9 and 4.10, for the molecule adsorbed either on the surface or
on the tip (DOS of cases a and e are similar to d and b). At this stage we have neglected
the “pillow” potential. In a further step (to be discussed later), we have analyzed how
this “pillow” potential changes the interface Fermi level and the junction barrier
height.
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Fig. 4.13 As Fig. 4.11 for the geometry (f) of Fig. 4.10 (left inset)

Table 4.1 Screening parameter, S (dimensionless), difference between the charge neutrality level
and the Fermi energy, CNL−EF (in eV), and U (in eV) for all the configurations analyzed in this
study (cases a–f)

Quantity / case (a) (b) (c) (d) (e) (f)

S 0.36 0.43 0.56 0.30 0.33 0.26
C N L − EF (eV) 0.28 0.32 0.54 0.25 0.26 0.21
U (eV) 1.66 1.47 1.67 1.61 1.46 1.39

The right insets of Figs. 4.11, 4.12 and 4.13 show for each case the DOS around
the energy gap, the initial Fermi level,
M (which is taken to be the same for the tip
and the surface), the LUMO and HOMO levels, as well as the CNL, and the Fermi
energy EF (dashed lines) as obtained from our DFT-calculations (with the corrected
gap Et

g = E L D A
g + U ).

As in previous cases, we are going to deal with this system using the IDIS model,
that has been proved to be valid at the molecular limit. Table 4.1 shows our results
for S and (C N L − EF ), for the different structures of Figs. 4.9 and 4.10. In our
calculations, the strongest screening (S = 0.26) appears for case f, when the molecule
is encapsulated between the tip and the surface. This is expected: in this case the
interaction is the highest one. S increases for larger tip-metal distances (smaller
screening) and, for the same tip-metal distance, the smallest screening appears with
the molecule on the surface (case b versus case a), or in between the tip and the
metal (case c versus cases a and b). The values of CNL−EF follow a similar trend,
with CNL−EF smaller for larger screening (S smaller); in all these calculations,
CNL−
M is around 0.8 eV, except for case c where CNL−
M = 0.95 eV a little
larger, probably because of a slight molecule stretching. Notice also that in all the
DOS the LUMO level is about 0.6 eV above the CNL.
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Table 4.2 α parameter (dimensionless), V pillow
0 (in eV), SV pillow

0 and C N L − EF (in eV) for all
the configurations analyzed in this study (cases a-f)

Quantity / case (a) (b) (c) (d) (e) (f)

α 0.51 0.27 0.95 0.43 0.51 0.36

V pillow
0 (eV) 0.83 0.43 0.05 0.61 0.49 0.94

SV pillow
0 (eV) 0.30 0.18 0.03 0.18 0.16 0.25

C N L − EF (eV) −0.01 0.14 0.51 0.07 0.09 −0.04

We should stress that, in these calculations, the transport energy gap (the HOMO-
LUMO energy difference) has been fitted selfconsistently with theory presented
in 4.2.1.

4.4.3 Pillow Potential

Up to this point, we have neglected the “pillow” potential. For a symmetric case,
with similar interfaces on both sides of the molecule (like the case of C60 between
two symmetrical tips), the analysis of the “pillow” effect is simple, tending to move
upwards by the same amount the initial Fermi levels of both tips.

In a non-symmetric junction, the “pillow” potentials of both interfaces, say
V pillow−ti p

0 and V pillow−sur f
0 , tend to shift differently the tip and metal Fermi levels.

In a DFT-calculation, we have to move the Fermi levels accordingly and recalcu-
late how the barrier height has changed. Our results can be interpreted in terms of
V pillow−ti p

0 and V pillow−sur f
0 , introducing an “average” pillow potential, V pillow

0 ,
which we define by:

V pillow
0 = (αV pillow−ti p

0 + (1 − α)V pillow−sur f
0 ). (4.9)

Using this effective pillow potential, we can use the standard Eq. (3.17) to calculate
how the pillow effect changes the barrier height, or equivalently, CNL−EF . We stress
that the parameter α can only be obtained by means of a first-principles calculation.

In Table 4.2 we include the values of SV pillow
0 for the different geometries of

Figs. 4.9 and 4.10. CNL−EF are reduced to the values indicated in Table 4.2 Notice
that in our case (b), the LUMO level is located around 0.75 eV above the corrected
EF ; in Lu et al. [6] (the experimental realization of this case) LUMO−EF is about
0.95 ± 0.2 eV in reasonable agreement with our results.

4.4.4 Conclusions

We have presented here DFT calculations of a tip/C60/Au(111) system that simulates
the STM/STS measurement of a buckyball molecule on a Au surface. This system

http://dx.doi.org/10.1007/978-3-642-30907-6_3
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can also be considered as a particular representation of a quantum dot, whereby an
organic molecule is encapsulated between two electrodes. We have calculated the
absorption geometries and energies of the system, finding that the C60 molecule
prefers to attach to the tip rather than to the surface. We have also analyzed in detail
the metal/organic barrier formation, the molecule charging energy and the DOS of
the molecule at the interface. In particular, using the IDIS model, we have calculated
the screening parameter, S, the induced potential V I DI S , the “pillow” potential and
the charging energy, U , as a function of the distance between the C60 molecule and
the tip and/or surface, and of the absorption site. This charging energy allow us to
correctly calculate the molecule transport energy gap and its DOS. Note that for
the same distance, the gap is smaller when molecule is attached to the surface than
when it is attached to the tip. Our results are shown to be in good agreement with the
experimental evidence.

4.5 Conclusions

In the first part of this chapter we have shown that the IDIS model for metal/organic
interfaces is valid not only at the monolayer limit but also at the molecular limit.

Moreover, the IDIS model allow us to correct the underestimation of the LDA gap.
We consider that the actual transport energy gap is Et

g = E L D A
g +U , where U is the

charging energy of our system. We can obtain the charging energy as the change on
the molecular levels position due to the change in the molecular charge. In the IDIS
model, this change on molecular levels position is because of the IDIS potential
V I DI S and the charge change is the charge transfer, so in a first approximation
U = δV I DI S/δn.

Finally we show some examples of the use of the IDIS model at the molecular
level. The first one, a C60 molecule over a Au(111) surface, illustrates the validity
of the IDIS model at this limit and its usefulness to obtain reliable values of the
charging energy. In the second one we study two Au tips approaching to a C60
molecule, calculating the relaxed geometry and the change on the IDIS parameters
when the C60/tips distance changes. We see, as expected, that the IDIS and pillow
potentials increase when we decrease the distance. Also the gap decrease when we
decrease the distance, due to the image potential is stronger for shorter distances.
In the last one, we present a tip/C60/surface, and calculate the IDIS parameters for
different tip/surface distances and for different adsorption sites (the C60 adsorbed on
the tip or on the surface). We see that the molecule prefers to be attached at the tip,
and that the screening and the molecular gap are higher when it is attached to it.
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Chapter 5
Results for Various Interfaces: C60, Benzene,
TTF, TCNQ and Pentacene over Au(111)

5.1 Introduction

In the previous chapter, we have extended the IDIS model to the molecular limit:
we have shown how, applying the ideas exposed in Sect. 3.6 to the IDIS model we
can correct the underestimation of the LDA gap and get a realistic value for an
organic molecule over a metal surface, where both the SIC and the image potential
contribute to the size of the gap. We have also employed all these ideas for two
systems of technological and scientific interest: a C60 molecule between two gold
tips (as an example of the application of this method to molecular electronics) and a
tip/C60/surface (as a typical STM-like configuration).

Now we want to extend these ideas and correct the molecular gap in MO inter-
faces in order to obtain realistic values for the electron and hole injection barriers.
Moreover, the correction of the LDA hamiltonian will allow us to obtain realistic
STM images (like the TTF over gold surface one in Sect. 5.4).

In the following section we will revisit the C60/Au(111) interface for various
coverages, and show the variation of the IDIS parameters when going from the
monolayer to the molecular limit, strongly supporting the validity of this model for
all coverages. Then, these findings will be applied to other interfaces: benzene, TTF,
TCNQ and pentacene over Au(111).

5.2 C60/Au(111) Interface at Various Coverages

The C60/Au(111) interface has been studied both at the monolayer limit (with a
LDA gap) in Sect. 3.5.2 and at the molecular limit in Sect. 4.2. Now we are going to
recalculate the monolayer with the gap obtained in Sect. 4.2. We will study not only
the 2

√
3 × 2

√
3R30◦ monolayer, but also lower coverages. This will allow us to see

how the IDIS parameters (screening parameter and IDIS potential) behaves when we
change the interface coverage, and compare the molecular case with the limit of low

E. Abad, Energy Level Alignment and Electron Transport Through 115
Metal/Organic Contacts, Springer Theses, DOI: 10.1007/978-3-642-30907-6_5,
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coverages. This section is an adapted and extended version of the article published
in Physica Status Solidi A [1] (Copyright 2012 WILEY-VCH Verlag).

5.2.1 Geometry

Regarding the C60/Au geometry we are going to consider the effect of vdW interac-
tions that were neglected in the systems of Chap. 4. Definitely it plays an important
role in adsorption energy calculations: the C60 molecule is very big, and the interac-
tion energy from the carbon atoms located far away the gold surface is not accurately
obtained in standard LDA. However, the forces that govern the C60/Au distance are
not supposed to be too much affected by the inclusion of vdW forces (the Au–C cova-
lent distance is 2.1 Å, and the adsorption distance is 2.4 Å). In order to measure the
effect of the vdW forces we have calculated the relaxed geometries and the C60/Au
distance using both the standard LDA approach and the weak chemical interaction
(WCI) energy described in Sect. 2.7.1.

Figure 5.1 shows our results for the adsorption energy of a C60 ML on Au(111):
the black line represents our DFT-LDA energy, while the blue line corresponds to
the WCI result. These two curves can be considered as two limiting cases for the
short-range C60–Au interaction (basically the interaction of Au and the six nearest
C atoms of C60): the WCI corresponds to weakly interacting systems, and the LDA
to covalently bonded systems. In order to obtain the total adsorption energy we must
add the long-range vdW interactions to this short-range energy. The C60–Au vdW
interaction [calculated via Eq. (2.83)] is the result of many distant C–Au atom–atom
interactions (the damping function fD(R) eliminates the contributions for C–Au
atom pairs at closer distances). The purple and red curves in Fig. 5.1 show the energies
calculated adding the vdW energy to both short-range curves. The C6 coefficients
for the C–Au pair of atoms have been calculated using London theory as a guide to
extrapolate the coefficient as calculated for the C–C interaction on graphitic materials
[2]. This approximation for the C6 coefficient has already been used successfully in
other systems [3] where a value C6 = 36 eV ·Å6 is obtained. The damping factor is
chosen as fD(R) = 1/(1 + exp(−d(R/RvdW )− 1)) and RvdW (Au–C) = 4.1 Å and
RvdW (C–C) = 3.8 Å following the ideas of [4]. The minimum energy for the LDA
+ vdW result (purple curve) is located at a distance z (between the upper Au-layer
and lower C-atoms of C60) of ∼2.3 Å, and at ∼2.6 Å for the WCI + vdW one (red
curve). The adsorption energy is 2.2 eV and 1.9 eV, respectively; for comparison, the
experimental value is 1.87 eV [5]. This good agreement is probably fortuitous because
of the minimal basis set used in our calculations; in particular, our LDA-adsorption
energy is around 0.8 eV smaller than the one calculated using a LDA plane-wave
converged basis [6], while a LDA-approach yields adsorption energies typically a
few tenths of eVs larger than a GGA-calculation. Moreover, taking RvdW (Au–C) =
3.3 Å and RvdW (Au–C) = 2.9 Å [7] in the long range vdW damping factor yields
z ∼ 2.2 Å (LDA + vdW) and ∼2.4 Å (WCI + vdW), with adsorption energies of
2.9 and 2.5 eV, respectively. Notice that the adsorption energies change significantly

http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
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Fig. 5.1 Adsorption energy for a C60 monolayer on Au(111) as a function of the distance between
both subsystems, for several approximations. Black line standard LDA-fireball. Blue line WCI-
fireball calculation. Green line vdW correction. Purple line LDA Fireball + vdW correction
(good approximation at small distances). Red line WCI + vdW correction (good approximation at
large distances) (Color figure online)

when changing the value of RvdW , while the equilibrium distance is much less
affected. This suggests that the actual C60–Au(111) equilibrium distance should be
in between the z values obtained in the LDA + vdW and WCI + vdW calculations. We
conclude that 2.4 Å (the initial LDA guess) is a good guess to the distance between
C60 and Au(111).

The C60–C60 interaction is a constant that we calculate from reference [8], includ-
ing the damping factor fD(R) (with RvdW (C–C) = 2.9 Å [7] or 3.8 Å [4], and d = 20).

5.2.2 The 2
√

3 × 2
√

3R30◦ Monolayer

Figure 5.2 shows the molecular local DOS for the 2
√

3 × 2
√

3R30◦ geometry and
the location ofΦM , EF , CNL and the HOMO and LUMO levels. The basis set is the
same as Sect. 4.2 and the gap is also 3.1 eV, since C60–C60 interaction (the difference
between both cases) does not change the gap size. Notice that the few peaks below
the HOMO level are in good agreement with the ones observed in angle-resolved
valence-band photoemission spectroscopy for a monolayer of C60 on Au(111) [5].

It is important to notice that the quantity (CNL−ΦM ) is the same for the molecular
and monolayer limit (0.8 eV). However (CNL−EF ) is different, because S changes
(S = 0.19). It is significantly smaller than in the case of the single molecule on
the surface. This is related to the interaction between C60 molecules, that enhances
screening. Another point of view is that, as CNL and ΦM are “fixed” parameters,
and as CNL–EF increases, charge transfer increases (since charge transfer δn =

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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Fig. 5.2 DOS projected on the C60 orbitals for the case of the 2
√

3 × 2
√

3R30◦ C60/Au(111)
monolayer. Molecular levels of the isolated (but deformed) molecule are indicated by red lines.
Right inset enlarged image for the area around the Fermi level, showing HOMO, LUMO and CNL
of the molecule,ΦM and the Fermi level (EF ) of the system. Left inset Experimental angle-resolved
valence-band photoemission spectra from a Au(111), b annealed 1 ML of C60 on Au(111) and c 3
ML of C60 on Au(111), from [5] (Copyright 2000 by the American Physical Society). Features 1
and 2 stand for HOMO and HOMO−1, respectively, for the 3 ML film

D̃(CNL−EF )), that means that for molecular case, where we don’t have depolarizing
effect (whose origin is parallel dipole–dipole interaction), dipoles are higher, that
implies greater charge transfer, and bigger CNL–EF distance, so S is greater, by
virtue of Eq. (3.10). Then, IDIS potential also decreases. Moreover, if we compare
this S with the one obtained in Sect. 3.5.3 we realize that it is bigger. It can be
explained by three differences between both calculations. The first one is that the
gap is higher in this case (3.1 compared with 2.5), the second one is the use of a
different basis (in Sect. 3.5.3 the gold basis was an extended sp3d5s∗d∗5 one), and
finally, the way of calculating DOS is different: instead of using a global η = 0.01,
we use different η for the molecule and the surface Eq. (4.1) and the CNL position
slightly changes.

5.2.3 IDIS Parameters for Various Coverages

In C60/Au(111) we have calculated not only the IDIS parameters for a monolayer,
but also for other lower coverages. In this section we are going to study the m

√
3 ×

m
√

3R30◦ interfaces for m = 3, 4, 5 (for the sake of comparison we include m = 2
case, studied above). We want to see how the IDIS parameters change when we
change the coverage. We can expect that S will increase monotonically, and the IDIS
potential decreases, linking the monolayer and molecular cases.

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_4
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Fig. 5.3 Geometry of different coverages used in this work (Color figure online)

In Fig. 5.4 we show the DOS projected on C60 around Fermi level for this cover-
ages. As we expect, the value of CNL–EF increases monotonically with decreasing
coverage. The same occurs with S (increases as coverage decreases, that means, the
screening is lower) that has values of 0.19, 0.23, 0.29 and 0.31 for m = 2, 3, 4, 5. In
Fig. 5.5 we can see the tendency of S with C60–C60 distance (i.e. with coverage). It
is worth to mention that, the CNL position is practically the same, 0.8 eV, above the
initial metal Fermi level (−5.2 eV), in all coverages, with an error bar of ±0.02 eV.

From Fig. 5.5 we can expect a S = 0.39 for the limit of extremely low coverage
(that means, an isolated molecule). Direct calculations gave us S = 0.53, not too far.
Moreover, a look insight in our prediction model (explained in Sect. 5.2.4) show that
a better extrapolation gives S = 0.50, much similar to the computed S = 0.53, that
enhances the idea that the molecular MO interaction can be seen as a limit for low
coverages of the IDIS model.

As we did on the molecular limit, we have calculated S using Eq. (3.12) to check
that the change of CNL–EF with respect to CNL−ΦM is linear and compares well
with calculations using Eq. (3.10). Figure 5.6 shows perfect linearity, and the slope
values are the same as obtained in the other way. Moreover, in all cases CNL= EF

at approximately −ΦM = 4.4 eV (that is, shifting the initial Fermi level 0.8 eV with

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 5.5 Screening parameter versus distance between centers of nearest C60 for different cover-
ages. The straight line corresponds to a theoretical fitting (see Sect. 5.2.4 and Fig. 5.8). S for a 6×6
interface has also been calculated to obtain a better fitting
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Fig. 5.6 Values of (CNL–EF ), V I DI S and δn versus the initial Fermi level, for the different
interfaces analyzed. The values of CNL–EF and V I DI S have an error bar of ±0.03 eV; for δn the
error bar is ±0.003

respect to the gold one). This agrees very good with the CNL−ΦM distance of 0.8 eV
that appears in Fig. 5.4. This shows the validity of the IDIS models for all coverages,
including the molecular limit.

5.2.4 Charging Energy for High Coverages

When we want to calculate the charging energy in a periodic system we need to be
cautious. In the case of a layer of molecules, the formula Eq. (4.3) does not give
the real charging energy of the molecule, but an effective one (U ef f ) that cannot
be used to correct the gap. The physical meaning of U ef f is how the HOMO and
LUMO levels change due to charge transfer from the Au to the C60 monolayer. The
difference is that, while the correct U of a molecule on a periodic system should be
calculated by transferring charge from (to) the metal to (from) one molecule, what
we have when we use Eq. (4.3) is that the transfer of charge is from (to) the metal to
(from) the whole layer. That means that other effects, like dipole–dipole interaction
between different molecules, are included (although they shouldn’t). Somehow, in
a OO (Hubbard) language U ef f = U + ∑

i Ji where Ji is the coulomb interaction
between different molecules. An scheme is shown in Fig. 5.7. The value of U ef f for
different m

√
3×m

√
3R30◦ structures with m = 2, 3, 4 and 5 is U ef f = 4.8, 3.3, 2.7

and 2.35 eV, (U of f −diag is not taken into account). After the introduction of this effect
they are reduced to U ef f = 4.4, 3.0, 2.4 and 2.1 eV.

We can also calculate U ef f as a function of C60–C60 distance. We expect U ef f =
U + C/d3 (due to Ji is mainly a dipole–dipole interaction), or U ef f = U + A/d3 +
B/d4 if we want to include more multipole terms. In Fig. 5.8 we represent this
dependence of U ef f .

http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_4


122 5 Results for Various Interfaces

Fig. 5.7 Scheme of the difference between U , the change in molecular levels due to the charge
transfer from one molecule (the one in the left side), and U ef f . The latter includes change in
molecular levels due to the interaction with the dipole formed in adjacent molecules created by the
charge transfer to those molecules (Color figure online)
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Fig. 5.8 Corrected U ef f values versus distance between centers of nearest C60 for different cover-
ages. The values have been adjusted to a A/d3+B/d4 curve suggested by the multipole electrostatic
interaction between molecules; a fitting including only a d−3 term has also been shown. A 6 × 6
geometry has been added in order to get a better fitting of the curve

We have made some internal checks to our model. First of all, we have plotted
U ef f versus C60–C60 distance, and adjust it to a U ef f = U + A/d3 + B/d4 curve,
obtaining good agreement (we have checked that the B/d4 term is more critical if the
molecule–metal and molecule–molecule distance is smaller). Comparing the value
of charging energy calculated for an isolated molecule over the surface in Sect. 4.2.2
(U = 1.5 eV) and the value obtained by U ef f versus distance fitting (U = 1.6 eV)
we check that the calculation of U ef f is consistent with our assumptions. In practice,
for the other molecules studied in the thesis, we obtain U at the molecular level,
since a complete study of U ef f at different coverages in order to fit the value of U
demands too much time and computational resources.

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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From this behavior of U ef f we can predict also the value of the screening para-
meter for different coverages. As stated before, we can calculate it from Eq. (4.3)
so:

U ef f = δV I DI S

δn
⇒ S = 1

1 + U ef f D̃
(5.1)

and, as shown in Fig. 5.8, U ef f � U + A/d3 + B/d4. Using U = 1.6 eV, A =
1.1 × 104 eV ·Å3, B = −8.1 × 104 eV ·Å4, obtained by least square fitting, we
obtain the curve predicted by this model, shown in Fig. 5.5, also with actual values.
We can see that the fitting is quite good.

However, the molecular limit is underestimated. Direct calculation gives S = 0.53
while curve prediction is S = 0.39. Both results can reconcile if we realize that D̃
is more than 30 % lower in the isolated molecule (probably because we only use Γ
point for this calculation). If we take this into account we obtain a value of S = 0.50,
much closer to the direct calculation.

To sum up, the IDIS model is valid at all big and small coverages limits. Moreover,
our calculation of the behavior U ef f and its relationship with U agrees with some
simple physical arguments.

5.2.5 Extrapolation to the C60/Ag(111) and C60/Cu(111) Interfaces

We can extrapolate the results of this work to C60/Ag(111) and C60/Cu(111) inter-
faces. Taking into account that ΦM (Ag) = 4.46 eV and ΦM (Cu) = 4.9 eV, Fig. 5.6
suggests that ΔI DI S(Ag) = 0.03 eV and ΔI DI S(Cu) = 0.23 eV, far from the experi-
mental values −0.13 eV for Ag [6] and 0.10 eV for Cu [9]. Moreover, if we include
the pillow potential, the calculated potentials deviate even more from experiments.

In order to get a good extrapolation, once again, we have to mind the gap. In Ag
and Cu, the metal, molecule distance is smaller (0.1 Å smaller for Ag [6] and 0.5 Å
for Cu [10]) We can estimate the gap semiclassically taking into account that the
image plane position increases for Ag and Cu (see [11]). This give us a gap around
2.5 eV for Ag and 1.9 eV for Cu.

The change in the gap implies a change in S. If we assume that S change with
the energy gap as S = 1/[1 + (a/Eg)

2], we get that for Ag S = 0.13 and for Cu
S = 0.08. Regarding the pillow potential, with values calculated along this thesis
we can assume an exponential dependence e−αd where d is the metal/molecule
distance and α � 3.4 Å−1. This gives an estimation of ΔP

0 = 0.60 eV for Ag and
ΔP

0 = 2.15 eV for Cu.
All these values yield the following results:

Ag/C60

For this interface, (CNL−ΦM ) = −0.14 eV and ΔI DI S = −0.12 eV (0.15 eV
smaller than estimation based on Fig. 5.6), so that this potential brings the Fermi

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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Fig. 5.9 Schematic view of the different parameters in the C60/Ag(111) and C60/Cu(111) interfaces
(Color figure online)

level to 0.02 eV above the CNL. On the other hand: ΔP = 0.07 eV. Combining
these two dipoles we find that EF is 0.09 eV above the CNL, and the total dipole
is −0.12 eV + 0.07 eV = −0.05 eV, in good agreement with other independent
DFT-calculations [6].

Notice the change in the dipole sign, which is mainly the result of having the
initial metal work-function 0.14 eV above the CNL. This is due to the small metal
workfunction of Ag (4.46 eV) and to the reduction of C60 energy gap.

Cu/C60

In this case, (CNL−ΦM ) = +0.13 eV and (1−S)(CNL−ΦM ) = 0.11 eV. Moreover,
ΔP = 0.16 eV; then, the total potential is +0.27 eV (closer to the experimental
evidence, 0.08 eV [9], than the previous value: 0.23 + 0.16 = 0.39 eV) and the
interface Fermi level is 0.04 eV above the CNL (see Fig. 5.9). Notice that in this
case, the combination of the metal workfunction (4.9 eV) and the molecule energy
gap (1.9 eV) yields a metal workfunction very close to the organic CNL. In this case
the pillow contribution is larger than the IDIS one.
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5.2.6 Conclusions

In this section we have studied the C60/Au(111) metal/organic interface formation
for different coverages: m

√
3 × m

√
3R30◦ where m = 2 (experimental monolayer),

3, 4, 5, that corresponds to coverages θ = 1, 4/9, 1/4 and 4/25. We have taken care
of the dependence of the IDIS parameters with coverage, including the molecular
case, seen as the low coverage limit.

As excepted we obtain that the IDIS potential monotonically decreases, and the
screening parameter increases when the coverage decreases. Regarding the molecular
gap, we have used Eg = 3.1 eV, calculated in Sect. 4.2. We point out that for finite
coverage S and U are related through: S = 1/(1+U ef f D̃)where U ef f accounts not
only for molecule charging energy but also for C60–C60 dipolar interaction U ef f =
U +∑

i Ji . Where Ji ∝ 1/d3+multipolar terms. The values obtained for U ef f (4.4,
3.0, 2.4 and 2.1 eV for m

√
3 × m

√
3R30◦, m = 2, 3, 4, 5) can be used to calculate

Ji and thus obtain an effective many-body Hamiltonian for the adlayers [12].
Finally, we have extrapolated our results to a C60 monolayer over Ag(111) and

Cu(111) surfaces. The prediction for the IDIS potential given by Fig. 5.6 are in
disagreement with experimental evidence. The reason for this is the different C60/
surface distances for these metals, that change the size of the gap (and the value of
S). When we consider this, we obtain results in better agreement with experiments.

We make a final comment about the atomic orbital basis set used in our cal-
culations. The point to stress is that our basis set is not a converged one; this is
reflected in two deficiencies of our calculations: one is about the initial alignment of
the metal/organic levels (that was pointed out in Sect. 3.5, early in this thesis); the
second one is related to our calculated energy gap which is a little too large (2.1 eV
instead of 1.6 eV). Both have been corrected using the scissor operator. We have still
explored the corrections introduced in our calculations by a more extended basis set,
by using for C a basis set of sp3d5 atomic orbitals with cutoff radii: 4.0 (s), 4.5 (p),
5.4 (d) (in atomic units). Obviously, using this basis set, the molecular levels are
significantly shifted, but the scissor operator allow us to fit the molecular energy gap
and its energy position to the experimental values. These corrections finally make our
new calculation of the interface potential and the value of U reasonably insensitive to
the details of the new basis set (larger V I DI S when larger cutoff radii are employed);
however, our pillow potentials are increased in the new basis set by about 20 %, so
that S eV P

0 takes now the values: 0.08 eV for the molecule, 0.10 eV for the m = 2
adlayer case, and 0.08 eV for m = 3, 4 and 5. Results with the extended sp3d5s∗d∗5

basis set for Au used in Sect. 3.5 suggest that the pillow potential can increase up
to 0.2 for the monolayer case, and 0.16 for the isolated molecule. Notice that for
the full monolayer case (m = 2), this potential can reverse the sign of (C N L−EF ),
changing the direction in which charge is flowing between C60 and Au. This, how-
ever does not affect to our main conclusions: here we have consider the point of view
suggested by Eq. (3.17), and the IDIS potential sign does not depend on the final
charge transfer direction when the pillow potential is taken into account. If we would
have considered the point of view of Eq. (3.16), the term (1 − S)(CNL−Φ̃M ) had

http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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changed its sign with charge transfer direction, but at the end we will have get the
same result for V t (since in this case, the total potential remains positive due to the
large positive value of the bare pillow part).

5.3 Benzene/Au(111) Revisited: Realistic Gap and Benzene/Au
Distance

We have improved the previous calculations of the benzene/Au(111) interface, cor-
recting the main deficiencies discussed in Sect. 3.5.4. First of all, using the WCI +
vdW technique we have obtained a realistic first principles benzene/Au distance.
Then, the ab initio gap has been calculated at the molecular limit. After that, the gap
is applied to the full monolayer, and the IDIS potential and the screening parameter
are calculated. We have used the sp3d5 basis for Au (as in previous section) and the
C, H basis are the same as in first benzene/Au calculations in Sect. 3.5. This inter-
face can be considered as a typical interface with small screening (opposite to the
C60/Au(111) case). These results have been published in Journal of Chemical Physics
[13], in collaboration with Dr. Yannick Dappe and Dr. José Ignacio Martínez. This
section is an adapted and extended version of this article (Copyright 2011 American
Institute of Physics).

5.3.1 Interaction Energy and Van der Waals Forces

We have calculated both the standard LDA and WCI energy versus distance curves.
Due to the Au–C covalent distance is 2.1 Å and the LDA adsorption one is around
3.0 Å we can expect that the LDA does not work properly at this distance. So we
are going to add to the WCI (that has no exchange–correlation interaction between
metal and molecule) the vdW interaction.

We have used the standard Eq. (2.83) for the vdW interaction, with C6 =
36 eV ·Å6 for the Au–C interaction and no Au–H interaction has been included
(the C6 coefficient is much lower than the Au–C one). The factor fD(R) elim-
inates the vdW contribution for short distances [2, 7]. We are going to use two
different damping factors in order to check the reliability of our results. The
first one has the form fD(R) = 1 − exp(−α(R/Rc)

8) Following references
[2, 3], we take α = 7.5 × 10−4, and Rc = 2.3 Å. The second one has the form
fD(R) = 1/(1 + exp(−d(R/RV dW )− 1)) [7] where d = 20 and RV dW is the sum
of vdW radii of the elements under consideration, that is around 3.3 Å [7]. The last
one was also employed in C60/Au(111).

The results of these calculations for a benzene monolayer on Au(111) are pre-
sented in Fig. 5.10. We have plotted the benzene/Au(111) interaction energy versus
the benzene–surface distance for standard LDA (black curve, FB-LDA) and WCI cal-
culations (blue curve, WCI). The fireball LDA calculation gives a binding energy
of around 0.20 eV, too small. In a second step, we have added to the WCI energy the

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_2
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Fig. 5.10 Energy versus distance for the benzene/Au(111) interaction. Black line standard LDA-
fireball calculation. Thin blue line WCI-fireball calculation. Thin green and red lines two
different parameterizations of the vdW interaction (vdW1 [2] and vdW2 [7]). Thick green and red
lines total benzene–Au interaction (WCI + vdW1, WCI + vdW2). Reprinted from [13] Copyright
2011 American Institute of Physics (Color figure online)

vdW interaction (the thin green and red curves) with Ortmann et al. [2] and Grimme
[7] parameterizations for the damping factor fD(R), obtaining the thick green and
red lines: the binding energy of the system for both parameterizations. In this way, we
obtain an equilibrium distance of around 3.25 Å. The binding energy per molecule
for this distance, which depends on the damping factor fD(R) used, is 0.30 eV using
the parameterization by Ortmann et al. [2] and 0.60 eV for the parameterization by
Grimme [7]. The second energy is in good agreement with the experimental evidence
[14], and the Au/benzene distance is similar to the one found in other calculations
[15]. We should point out that, although different parameterizations gives different
energy adsorptions, the critical factor for the study of the interface dipole is the ben-
zene/Au distance, which is independent of the choice of fD(R). Now, considering
this equilibrium geometry, we analyze in the next sections the charging energy, the
interface dipole potentials and the charge transfer at this interface.

5.3.2 Molecular Limit: U and δU

In order to obtain an accurate gap value of benzene over Au(111), we have calculated
the adsorption of a benzene molecule over the 8 × 8 cluster with 4 layers. The
benzene–Au distance is the same as in the monolayer case (see Fig. 5.11).
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Fig. 5.11 Geometry of the 8 × 8 cluster without periodicity used to simulate a single molecule
adsorbed over a gold surface (upper and side view) (Color figure online)

In this case, we get U = 4.8 eV. Instead of calculating the transport gap as
Et

g = E L D A
g +U , we make here a different approach. First of all, we have calculated

in our basis set the transport gap of the gas phase molecule using Et
g = E[N +

1] + E[N − 1] − 2E[N ], that gives a value of 13.2 eV, larger than the experimental
10.3 eV [16, 17]. The theoretical gap overestimation is because of the minimal basis
set used. The LDA gap is also overestimated (6.1 as compared to converged plane
wave calculations, that yield 4.7 eV [15]). So in the gas phase molecule we get
with fireball U 0 = Et

g − E L D A
g = 7.1 eV instead of the value of U 0 = 5.6 eV

(taking the experimental gap and the plane wave LDA gap). So, instead of adding
our U = 4.8 eV to our gap of 6.1 eV (that would give Et = 10.9 larger than the
gas phase molecule gap), we have considered the reduction δU of the gap between
the gas phase molecule and the molecule over the surface. In this case we obtain
δU = 2.3 eV so we get a gap of Et = 8.0 eV. After insertion of U of f −diag , it is
finally reduced to Et = 7.7 eV. This reduction δU is the effect of the image potential
on the molecular gap.

It is important to mention that this also happened in C60 molecule. Accurate values
of the transport gap of the gas phase molecule and the LDA gap are 4.9 and 1.6 eV
respectively [18], so U = 3.3 eV for the gas phase molecule. However, results of Et

g
for the gas phase molecule and the LDA gap with our basis set give a value of 5.4
and 2.1 eV respectively, so U = 3.3 eV for the gas phase molecule (the same as the
more accurate one). That is the reason why the calculation of δU was not necessary
in C60.

We have checked that the benzene gap calculation is independent of the basis set.
For this reason, we have used a sp3d5 basis set for C. For this basis, the LDA and the
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Fig. 5.12 DOS for a single benzene molecule on Au(111); the initial molecular levels are shown
by the blue lines (with a broadening of η = 0.1 eV). The right inset shows an energy window
around the HOMO and LUMO levels indicating the initial work-function, ΦM , and the CNL. The
left inset shows an energy diagram of the benzene/Au interface. Reprinted from [13] Copyright
2011 American Institute of Physics (Color figure online)

transport gap are 4.8 and 11.0 eV respectively so U 0 = 6.2 eV (closer to the accurate
U 0 than the previous basis set). The reduction of the gap δU is 1.8 eV if we don’t
include U of f −diag and 2.6 if we do so. The final gap for this basis is 7.8 eV, 0.1 eV
larger, and within the error of our calculations (that are estimated to be around 10 %).

Finally, a full study of electronic structure of a single benzene molecule over a
gold surface has been done (see Fig. 5.12). The total induced potential has been found
to be V I DI S = 0.32, associated with a charge transfer of ∼0.07 electrons from the
molecule to the surface and its corresponding dipole of 1.19 D. This induced interface
potential is the one on the molecule due to the charge transfer. As in C60, it is smaller
than the monolayer limit (see next section), and also the screening (that is S = 0.91
in this case, a case of rather low screening). We have also checked that the screening
parameter calculated as Eq. (3.10) and as Eq. (3.12) coincide, showing also that for a
benzene molecule the Fermi level, and the IDIS potential, change linearly when we
change the initial metal Fermi level, using the scissor operator. However, due to the
low DOS within the gap, the calculation of CNL is not accurate enough for obtaining
a reliable screening parameter value (let alone U ) so in this case we have considered
the LUMO level (a level that is well defined in this case, not as in C60: Fig. 5.12 vs.
Fig. 4.3) as the reference level, and we have studied variation of LUMO–EF as a
function of the fictitious changes on the initial metal Fermi level (shown in Fig. 4.3).

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_4
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Fig. 5.13 As Fig. 5.12 for a benzene monolayer on Au(111). Reprinted from [13] Copyright 2011
American Institute of Physics (Color figure online)

5.3.3 Benzene Monolayer Interface Dipole

Density of States and IDIS Potential

Figure 5.13 shows our calculated DOS for the monolayer relaxed geometry obtained
in previous section. The final Fermi level position in this case is located 0.85 eV above
the initial one. For this particular case we find, S = 0.79. Figure 5.14 shows also
linearity in LUMO–EF and IDIS potential versus initial Fermi level (as in molecular
case) with slopes S and (1 − S) respectively. The gap is 7.7 eV as calculated in
previous section.

Figure 5.14 shows also that for a monolayer the interface Fermi level, the interface
dipole potential V I DI S and the charge transfer, change linearly with the initial Fermi
level. Regarding the charge transfer from the benzene monolayer to the metal surface,
it is now ∼0.06 electrons per molecule (a dipole D of 0.99 D per molecule). This
charge transfer is smaller than in the case of a single benzene molecule on Au(111),
reflecting the depolarizing effect due to the other benzene molecules. This charge
transfer can be used to obtain an average interface dipole potential of Δ =0.81 eV,
using the relation Eq. (3.9). Notice that Δ is quite close the value V I DI S = 0.85 eV,
that corresponds to the potential on each benzene molecule. The relation Eq. (3.9) has
been used to extrapolate the results of cluster calculations to e.g. the monolayer case,
assuming that the dipole per molecule D is the same in both cases (i.e. neglecting the
depolarizing effect for the monolayer). Using the D values obtained in our cluster
calculation we obtainΔ = 0.97 eV for our 5×5 monolayer, andΔ = 1.05 eV for the√

52×√
52 experimental monolayer, values that are very different from the induced

interface potential V I DI S = 0.32 eV obtained for the cluster calculation. Finally,
assuming that the dipole per molecule is the same in the 5 × 5 and

√
52 × √

52
structures, yields a dipole potential Δ = 0.88 eV for the

√
52 × √

52 case. This

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 5.14 (LU M O−EF ) (upper panel), V I DI S (center panel) and transfer of charge (lower panel)
as a function of the initial metal Fermi level. The fictitious change in the initial metal Fermi level
tries to simulate how the interface properties depend on the different metals: this issue is shown in
the figure by superimposing the initial metal Fermi levels of Al, Ag, Cu and Au for comparison.
Reprinted from [13] Copyright 2011 American Institute of Physics (Color figure online)

reinforces the ideas of Sect. 4.1 that at the monolayer limit V � Δ. The higher
difference has been found when using the cluster dipole for calculate the monolayer
Δ; showing the importance of the depolarizing effect (that is a physical phenomena
completely unrelated with the difference between V and Δ).

Pillow and “Surface Metal” Dipole Corrections

The pillow potential ΔP = SΔP
0 is 0.04 eV (very small due to the long absorption

distance, that makes this effect a minor correction).
In an opposite way, EF −ΦM is reduced by 0.1 eV due to the off-diagonal surface

potential, so the net effect of those potentials is a reduction of the total potential of
0.06 eV (appreciable, but very small). However, as we have seen, the contribution
of this effect to the gap size calculation is not such small (it reduces the gap around
0.3 eV, and the gap without taking into account this effect is 8.0 eV, definitely too
large). This effect is higher in a more complete sp3d5 C basis (the gap is reduced by
0.8 eV).

5.3.4 Extrapolation to Benzene/Ag, Cu Interfaces

We are going to use these results to estimate the energy level alignment in ben-
zene/Ag (Bz/Ag) and benzene/Cu (Bz/Cu) interfaces. If we use Fig. 5.14 in order to

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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estimate the IDIS potential we obtain the following interface potentials: 0.85 eV for
Bz/Au(111); 0.69 eV for Bz/Ag(111) and 0.78 eV for Bz/Cu(111). Morikawa and
coworkers [15] have calculated 1.14 eV for Bz/Au(111); 0.76 eV for Bz/Ag(111)
and 1.06 eV for Bz/Cu(111). The experimental values [19] are the following:
Bz/Au(111)= 1.10 eV; Bz/Ag(111)= 0.70 eV and Bz/Cu(111)= 1.05 eV. Morikawa
et al.’s results are in excellent agreement with the experiments but the equilibrium
Bz/metal distances (3.1 Å(Au); 3.3 Å(Ag) and 2.9 Å(Cu)) were basically fitted to
reproduce these potentials. Our interface potentials show the same trend than the
experimental data, with a minimum value for the Ag case and a maximum one for
Au, although our absolute values seem to be a little too small: as commented above
this can be due to the “pillow” potentials that are underestimated in our calculations,
and also to the different molecule–metal distances for Ag and Cu (and its effect on
gap size, see Sect. 5.2.5). Comparing the experimental evidence and our theoretical
results we can consider that: V P (Au)=0.25 eV; V P (Ag)=0.01 eV and V P (Cu)=0.27
eV, in agreement with the Bz/metal distances found by Morikawa et al.: larger for
Ag and smaller for Cu. The benzene/metal distance, and the size of the gap (should
be larger in the benzene/Ag than in benzene/Au because of its larger distance to the
image plane) can also play a role (as they played in C60/noble metals interface).

5.3.5 Discussion

We have presented fully abinitio corrected DFT calculations for benzene on Au(111)
in two limits: an isolated molecule and a full monolayer. A first principles gap of
7.7 eV has been used, calculated in Sect. 5.3.2. A correct value of this energy gap is
important in order to analyze the interface potential induced between benzene and
Au(111). In particular, this effect partially explains the big differences found between
the results presented now and the ones presented in Sect. 3.5, where we assumed the
transport energy gap to be much smaller, around 4.8 eV. Moreover, we assumed the
metal/benzene distance to be smaller too, 2.95 Å, an effect that tends to decrease S
and enhances the amount of charge transfer between the molecule and the metal. In
this case, the benzene/Au distance has been computed properly taking into account
vdW interactions.

Using these energy gap and distance, we have calculated the case of a benzene-
monolayer and have found that the final Fermi level is 0.85 eV above its initial
position. This value compares well with the experimental one of 1.1 eV, as given
by Bagus and coworkers [19], although part of the discrepancy might come from
some overestimation of the energy gap. To check this point, we have also calculated
the monolayer case taking an energy gap of 7.0 eV for the benzene molecule. This
value still can be considered compatible with our previous calculation for Eg , taking
into account the error bar of 10 % appearing in the calculations due to numerical
uncertainties, related to the small induced DOS at the gap. This value is also suggested
by extrapolating the data in [20] and by semiclassical image potential calculations.
Figure 5.15 shows for this case our calculated DOS projected onto the molecule and

http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 5.15 DOS for a benzene monolayer on Au(111), with a molecule transport energy gap of
7.0 eV; the initial molecular levels are shown by the blue lines . The right inset shows an energy
window around the HOMO and LUMO levels, indicating the initial work-function, ΦM , and the
CNL. The left inset shows an energy diagram of the Au/benzene interface. Reprinted from [13]
Copyright 2011 American Institute of Physics (Color figure online)

the interface barrier; the point to realize is that with this transport energy gap, the
interface potential has slightly increased to 0.9 eV.

It is also important to discuss the issue of the convergence of our calculations with
the basis set. We have studied this convergence by analyzing how our results depend
on a more extended basis set; in particular, we have used sp3d5s∗d∗5 numerical
atomic orbitals for Au, sp3d5 for C and ss∗ for H. These Au and C basis have
been used in Sects. 3.5 and 5.2.2 respectively. If we fit the molecule energy gap and
position, our new calculation is reasonably insensitive to the details of the new basis
set.

As in the C60/Au interface, an exception is the calculation of the “pillow” poten-
tial: using this more extended basis increases this potential to 0.15 eV (similar to the
value obtained in Sect. 3.5 with the same basis set). We conclude that the small differ-
ence between our calculated interface potential (for a full monolayer), 0.85 eV, and
the experimental one, 1.1 eV, is probably due to this underestimation of the “pillow”
potential and the confinement of orbitals.

The estimation of the IDIS potential for other noble metals lead to the following
values: 0.85 eV for Bz/Au(111); 0.69 eV for Bz/Ag(111) and 0.78 eV for Bz/Cu(111).
Independently, Bagus and coworkers [19] using a wave-function-based ab initio
method and a cluster model have obtained 0.87 eV for Bz/Au(111); 0.77 eV for
Bz/Ag(111) and 1.08 eV for Bz/Cu(111), in good agreement with our results. It is
worth commenting that, based on a Constrained Space Orbital Variation (CSOV)
analysis of these calculations, these authors conclude that the observed interface
dipole is largely due to the exchange (or Pauli) repulsion between electrons in the
metal and in the organic [19], an observation that seems to be in contradiction with

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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the findings of our work, that indicate that the main mechanism behind the interface
dipole formation is the charge transfer between the metal and the organic. A deeper
analysis shows, however, that there is no contradiction between these two points of
view. Firstly, notice that in a DFT calculation the different wavefunctions are orthog-
onalized to each other, including in this way the effect of the Pauli repulsion in the
interface barrier formation, an effect that automatically leads to a significant charge
transfer at the interface; consequently, our DFT Fireball calculation includes the
“exchange repulsion” effect discussed by Bagus et al., except for the small con-
tribution analyzed above in the “pillow effect” section. Secondly, notice that in the
frozen-orbital step in the COSV analysis, the (Pauli exclusion principle) requirement
of orthogonalization of the wavefunctions in the metal and in the molecule already
leads to a “major net motion of charge from the adsorbate toward the substrate” [21],
which will appear in our analysis as a charge transfer between the two media.

5.3.6 Conclusions

To sum up, we have corrected the DFT calculation of the interface properties of
the benzene/Au(111) interface presented in Sect. 3.5, introducing a self-consistent
analysis of the molecule charging energy and its transport energy gap. From our
calculations we have also analyzed other noble metals by changing fictitiously the
initial Fermi level while keeping the Au electronic properties. This allows to mimic
other metals with different workfunction, because the value of the initial Fermi level
coincides in absolute value with the metal workfunction when the vacuum level is the
origin of energies. Our results have been favorably compared with other theoretical
and experimental data, lending strong support to our interpretation of the formation
of bz/noble metal interfaces as due to the charge transfer between the metal and the
molecule, as described in the IDIS-model.

5.4 TTF/Au(111) Interface

Another interesting MO interface is the tetrathiofulvalene (TTF) over Au(111). TTF
is a prototypical electron donor, and a potential material for molecular electronics
[22, 23]. As in previous sections, we calculate the interface barrier evolution when
going from the isolated molecule to the full monolayer case, and calculate the charg-
ing energy, and consequently, the molecule energy gap.

As in benzene, vdW forces are important; not only for energy calculations but also
to obtain a reliable TTF/Au distance (very important, as we saw in Sect. 3.5.4). More-
over, a reliable description of the TTF geometry at the interface cannot be accurately
achieved neither using conventional DFT-calculations nor other techniques involving
semiempirically vdW forces. For this reason, we have analyzed the TTF geometry
by combining experimental STM-images [24] with a detailed calculation of the

http://dx.doi.org/10.1007/978-3-642-30907-6_3
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(a) (b)

(c) (d)

Fig. 5.16 TTF coverages on the Au(111) surface: a cluster model; b dilute structure (a = b =
17.56 Å, âb = 60◦); c herringbone structure (a = 17.56 Å and b = 8.78 Å âb = 60◦); and d side
view of a TTF molecule on the Au(111) surface. For b and c, the solid lines denote the surface
unit cells used in the calculations. Reprinted from [25], Copyright 2012 by Elsevier (Color figure
online)

tunneling currents using the formalism explained in Sect. 2.6; in this approach we
obtain the TTF geometry by fitting the theoretical calculations to the experimental
image. Once we obtain the molecule geometry we analyze the molecule DOS, the
charge transfer, the interface dipole and other properties related to the TTF/Au inter-
face. This work has been done in close collaboration with Dr. José Ignacio Martínez
and Dr. César González. This section is adapted from the paper published in Organic
Electronics [25] (Copyright 2012 by Elsevier).

5.4.1 Calculation Details

Figure 5.16 shows the systems and geometries we are interested in: an isolated TTF
molecule deposited on a 7 × 7 Au(111) cluster (Fig. 5.16a); and two different TTF
coverages on a Au(111) surface. We have considered the 6 × 6 [22] (Fig. 5.16b) and
the herringbone (HB) 6 × 3 geometries [23] (Fig. 5.16c); this approach will allow us
to analyze how the interface properties depend on the layer coverage.

The basis set used in our calculations consist on the sp3d5 Au basis used in
previous calculations; sp3d5 C basis used in C60 and benzene to check basis con-
vergence; s H basis used in benzene/Au, and sp3d5 for S with cut-off radii s = 4.2,
p = 4.7, d = 5.5 (in a. u.). For the TTF molecule this calculational approach yields
C–C nearest neighbors distances of 1.40 and 1.47 Å—to be compared with 1.39 and
1.44 obtained in DFT in a plane wave basis [22], and experimental values of 1.40,

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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1.45 Å [26]—(no available data for the C–H and S–C experimental bond lengths),
and a LDA gap of 3.3 eV, to be compared with 2.6 eV for converged basis set LDA
or GGA calculations [22]. It is also worth mentioning that a calculation of the affin-
ity/ionization gap for TTF yields a value of 6.3 eV carried out by the real-space
octopus code [27] (by using an accurate hybrid GGA–PBE0 exchange-correlation
functional [28]); using fireball Eg = E[N + 1] + E[N − 1] − 2E[N ] is found to
be 8.19 eV.

In order to accurately determine the equilibrium distance of TTF adsorbed on a
gold surface, we have used here the WCI + vdW method used for C60 and benzene on
Au(111) and explained in Sect. 2.7.1. The C6 parameter in vdW Eq. (2.83) has been
taken C6 = 36 eV ·Å6 in for Au–C, C6 = 0 for Au–H (as in previous calculations)
and C6 = 57 eV ·Å6 for Au–S. We have used both Ortmann et al. [2] and Grimme [7]
parametrization for fD(R). In both cases, the TTF/Au distance obtained is 3.10±0.05
Å. Using only LDA we obtain a distance of 3.2 Å (larger than the vdW one).

5.4.2 STM Images and TTF Geometry

As mentioned above, we have determined the TTF molecule geometry by analyzing
the STM-image and looking for the configuration yielding the best agreement with
the available experimental evidence [24]. In our calculations we have assumed to
have a W-(100) tip formed by 5 atoms, one of them in the apex, joined to a W crystal.
Tunneling currents and STM images are calculated using the ideas of Sect. 2.6 and
reference [29].

Figure 5.17 shows our calculated STM-images for three different TTF geome-
tries calculated with different approximations: configurations I, II and III have been
obtained using different codes; I: vasp(LDA) [30, 31]; II: dacapo(GGA) [32] and
III: vasp(GGA) [24], respectively. W-tip height from TTF monolayer and surface
voltage, Vs , take the typical values of 4.5 Å and −1 V (below the EF ), respectively, in
order to mimic experimental STM signal [24]. It is worth to stress that the variation
of the W-tip height between 4 and 4.5 Å does not reveal any significant change in
the STM signal. These images do not seem to agree with the experimental image
shown on the top-right part of the figure. Then we have explored more than 200
different geometries and Fig. 5.17 (bottom-right) shows the one found yielding the
best agreement with the experimental image (see top-right image). In this geometry,
the molecule is rather flat, being located 3.05 Å from the surface. A side view of the
theoretically STM-engineered structure is also shown in Fig. 5.17.

In order to calculate the TTF/Au for various coverages, we deposit the TTF geom-
etry from our previous STM engineering and vdW considerations over different
Au(111) surfaces. In the isolated molecule case, a 7 × 7 cluster arrangement (see
Fig. 5.16a) with no periodicity has been used. It has been checked that this cluster
size is enough to avoid border effects. The dilute geometry (see Fig. 5.16b) was taken
as a low coverage case with 6 × 6 periodicity. The geometry used in our calculations
for the herringbone monolayer case (see Fig. 5.16c) has been constructed in base to

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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(a) (b)

Fig. 5.17 a Theoretical STM images of TTF on Au(111) surface for three different configurations
(explained in the text); and b comparison between experimental [24] and theoretical STM images. A
side view of the optimized TTF on Au (111) surface is also shown. Reprinted from [25], Copyright
2012 by Elsevier (Color figure online)

a recent STM experiment by HuiJuan and coworkers [23], and it has been modeled
as a 6 × 3 periodicity lattice with two TTF molecules (as obtained in our STM cal-
culations) per unit cell. After that, we have relaxed our system with no significant
variations on the final structure with respect to the starting one. All the calculations
were performed for slabs of 4 and 6 Au layers where the last 2 and 3 layers were
fixed; in particular we found that 4 Au-layers are enough to obtain converged results
for the electronic structure. We have used 8 special k-points for the Brillouin zone
sampling. The TTF/Au(111) geometries were first relaxed at the LDA level keeping
the 2(3) lower Au layers fixed, while the first 2(3) layers were allowed to relax,
respectively for the cases with 4(6) slabs considered.

5.4.3 Interface Properties

Once we have obtained the interface geometry, we calculate the interface electronic
properties of: (a) the single molecule; and (b) the other TTF-layers, as well as the
corresponding charging energy effects.
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Fig. 5.18 DOS profile for
a single TTF molecule on
Au(111) (cluster model); the
initial molecular levels are
shown by the red shaded
region (with a broadening
of η= 0.05 eV). The metal
work-function, and the Fermi,
HOMO and LUMO levels
are also indicated on the
figure. The left inset shows
an energy diagram for the
system. Reprinted from [25],
Copyright 2012 by Elsevier
(Color figure online)

TTF Molecule on Au(111)

Figure 5.18 shows the electron density of states (DOS) projected on the TTF orbitals
for the case of a single molecule adsorbed on Au(111) (Fig. 5.16a). In the same figure
we also show the molecule energy levels of the isolated (but deformed) molecule;
the energy window around the energy gap is enlarged in the inset. The initial Fermi
level,ΦM , the interface Fermi energy, EF , the HOMO and LUMO levels, as well as
the CNL, are shown.

We have calculated the screening parameter S by changing in our calculations
ΦM fictitiously (see Fig. 5.19), just like in Sects. 4.2 and 5.3.2, obtaining S = 0.70.
We have calculated also a charge transfer of 0.43 electrons, a surface dipole of 6.3
debyes, and a charging energy U = 3.2 eV (if we include the off-diagonal surface
dipole we obtain U = 2.95 eV). Regarding the pillow potential, we obtain a value
of V P

0 = 0.03 eV for the isolated molecule that is reduced to 0.02 eV when it is
screened to SV P

0 .

Monolayer (HB) and Fraction of Monolayer Cases

Figure 5.21 shows the molecule local DOS for the HB-geometry (the monolayer
case). As in previous cases we obtain a higher IDIS potential (i.e. an smaller screening
parameter) than in the molecular case. In the case of the HB structure S = 0.47. This
case is also analyzed in Fig. 5.19. For the 6 × 6 geometry (see Fig. 5.20) we find
an interface behavior similar to the single molecule case, indicating that for this
second adlayer the molecule–molecule interaction is very small. Notice also that in
our results we find that the TTF–CNL is located around 0.1 eV from the LUMO
level of the interacting molecule, namely, 0.8 eV from vacuum, which corresponds
(as expected) to a case having a strong donor character.

In Figs. 5.20 and 5.21 we have also shown the IDIS potential, V I DI S , induced
in the molecule by the charge transfer; in our calculations, this charge transfer per

http://dx.doi.org/10.1007/978-3-642-30907-6_4
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Fig. 5.19 (LUMO-EF ) and transfer of charge (upper panel), and V I DI S (lower panel) as a function
of the initial Fermi level (that can be seen as a “fictitious” metal work-function). The fictitious change
in the metal work-function tries to simulate how the interface properties depend on the different
metals: this issue is shown in the figure by superimposing the clean metal work-functions of Al, Ag,
Cu and Au for comparison. Reprinted from [25], Copyright 2012 by Elsevier (Color figure online)

Fig. 5.20 As in Fig. 5.18 for the dilute geometry (see Fig. 5.16). Reprinted from [25], Copyright
2012 by Elsevier (Color figure online)

molecule is 0.37 and 0.31 electrons for the 6 × 6-geometry and the HB-structure,
respectively, with the corresponding surface dipoles: 5.4 (6×6) and 4.5 (HB) debyes,
and V I DI S = 1.61 (6 × 6) and 2.63 (HB) eV. From our calculations we obtain
the following value of U ef f for the HB-case: U ef f =6.7 eV. Regarding the pillow
potential, we obtain V P

0 = 0.1 eV for the HB monolayer and 0.03 for the 6 × 6
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Fig. 5.21 As in Fig. 5.18 for the herringbone geometry (see Fig. 5.16). Reprinted from [25], Copy-
right 2012 by Elsevier (Color figure online)

structure, that are screened to 0.05 and 0.02 eV via V P
0 . These “pillow” potentials

tend to increase slightly the interface dipoles calculated above.

5.4.4 Discussion and Conclusions

Other theoretical calculations for the TTF/Au(111) interface have already been
reported by Fernández-Torrente et al. [24] and Hofmann et al. [22]. In Refs. [24]
and [22], 6 × 4 and 6 × 5 unit cells have been considered, respectively. In both stud-
ies a DFT–GGA code has been used, although it has been agreed that probably “the
actual equilibrium distance between the organic adsorbate and the metal surface lies
in between the two extreme cases provided by GGA and LDA formalisms” [22].

In our approach we took advantage of looking for the best TTF geometry, by
comparing the STM images reported by reference [24] with the theoretical ones
calculated for more than 200 geometries. The geometry obtained in this way is shown
in Fig. 5.17; the calculated STM-image for the best candidate fits considerably well
with the experimental one and improves a lot the images calculated for the geometries
provided by conventional LDA or GGA calculations. That new geometry is rather
flat, parallel to the Au-surface, and located at 3.05 Å from it.

This adsorption distance has been calculated using the WCI + vdW method
explained in Sect. 2.7.1. This calculation yields a minimum energy for a distance
of 3.05 Å between the molecule and Au. The adsorption energy seems to depend,
however, on the approximations introduced in the damping factor for the vdW energy
as in benzene and C60, with difference around 100 % for Grimme’s and Ortmann’s
parametrization for fD(R).

TTF has a strong donor character, which is shown in the present study by the
position of the CNL for all the considered system models, located at 0.8 below

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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the vacuum, and by the electron charge transfer from TTF to Au, which for the
isolated molecule is 0.43 electrons, and 0.37 and 0.31 electrons for the 6 × 6 and
HB structures, respectively. Our calculations yield induced dipoles per molecule
of 6.3 (isolated cluster), 5.4 (6 × 6 geometry) and 4.5 (HB structure) debyes. It is
interesting to remark that these values do not differ significantly from those found
by Fernández-Torrente et al. [24]: 5 debyes for a 6 × 4 unit cell, and Hofmann et al.:
4.5 debyes for a 5 × 3

√
3 unit cell, showing that the charge transfer mechanism is

not altered too much by the molecule geometries.
Regarding the organic energy gap and charging energy, we have obtained U =

2.9 eV, and Eg = 4.4 eV; notice that the TTF “exact” transport energy gap is 6.3 eV,
indicating that image potential effects has reduced this gap by around δU = 1.9 eV.
This value corresponds to an effective distance of 3.8 Å between the TTF induced
charge and its image (notice that the molecule size is around 7 Å). DFT–GGA cal-
culations [24] yield and energy gap of 2.2 eV, one half of the one obtained self
consistently within our formalism; although the HOMO and LUMO level positions
(as determined by the transport energy gap) change dramatically the barrier heights
for electrons or holes, our calculations indicate, in this particular interface, that the
amount of charge transferred from TTF to Au does not seem to vary to much for
having either Eg = 4.4 or 2.2 eV.

We have obtained, as usual, that our results are rather insensitive to a basis set
change. However, as in previous cases, the pillow dipole is substantially increased
using a more extended basis. In particular, the “pillow” dipole, SV p

0 , of 0.05 eV
found (for the HB structure) with the minimal basis set is increased to 0.30 eV for
the extended basis; for the isolated molecule and the 6×6 structure the new value of
SV p

0 is set in 0.12 eV. We conclude that in the calculations presented in Figs. 5.18,
5.20 and 5.21, because of the minimum basis set used in the calculations, Fermi level
should be shifted towards the CNL by 0.10, 0.10 and 0.25, respectively.

5.5 TCNQ/Au(111) Interface: Molecular Dipole

In previous section we have studied the adsorption of TTF over Au, an electron
donor molecule. Now we are going to focus in a prototype electron acceptor, that has
attracted a lot of attention: tetracyanoquinodimethane (TCNQ). A strong tendency to
bond to transition metal atoms, mainly due to its strong electrophilic character [33],
makes the TCNQ a perfect candidate to be used in the formation of charge transfer
compounds, as a p-dopant in organic semiconductors [34], and in novel nanoelec-
tronic metal/organic devices. Additionally, an unpaired electron added to TCNQ via
metal/organic interaction reveals an interesting magnetic behavior with promising
applications in the synthesis of organic magnetic materials [35, 36]. Recently, STM
and STS experiments [37] have demonstrated isolated TCNQ molecules absorbed
on Au(111) surface to form highly ordered molecular assemblies due to strong ten-
dency of the TCNQ molecules to form N· · · H intermolecular bonds. This work has
been done in close collaboration with Dr. José Ignacio Martínez. This section is an
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(a) (b)

(c)

Fig. 5.22 TCNQ/Au(111) systems analyzed: a dilute structure (a = b = 20.49 Å, âb = 60.0◦);
b self-assembled structure [37] (a = 16.21 Å, b = 15.70 Å, âb = 93.0◦); c single molecule on
Au(111) (cluster model); for all the three geometries a side view of a TCNQ molecule on the
Au(111) surfaces is shown. For a and b the dashed lines denote the surface unit cells used in the
calculations. Adapted from Physica Status Solidi B [38] Copyright 2011 Wiley-VCH (Color figure
online)

adapted version of the article published in Physica Status Solidi B (Copyright 2011
WILEY-VCH Verlag) [38].

5.5.1 Calculation Details and Geometry

The adsorption geometry has been calculated using the fireball code with the
standard sp3d5 Au and s H basis set, the C sp3d5 basis set used in TTF/Au(111)
calculations. For N an sp3d5 with the following cutoff radii has been chosen: s = 3.6,
p = 4.1 and d = 5.2 (a.u.).

As for TTF, we analyze an isolated molecule over the Au(111) surface, a dilute
periodic geometry and a monolayer similar to the self-assembled geometry observed
experimentally [37] (see Fig. 5.22). As starting geometries for the dynamical relax-
ations we have taken TCNQ molecules perfectly flat, for different parallel positions
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lying on the Au(111) surface. Case a represents a dilute geometry, using a (7 × 7)
periodic unit cell with 49 metal atoms per layer, and containing one TCNQ mole-
cule per unit cell. The final optimized structure reveals the TCNQ lying bent on the
Au surface with the center of the molecule on a surface “hollow” site, the higher
atoms located at around 3 Å, and the lower ones (the edge nitrogens) at around 2.4 Å
above the gold surface. Case b represents the experimental self-assembled geometry
[37], where the TCNQ molecules form a close-packed monolayer. In this case, the
final geometrical distortions of the molecule are slightly different than in the dilute
geometry, with a rather flat profile of the central part of the molecules on the metal
(located at 2.9 Å above the gold), and with the edge N atoms in closer positions with
respect to the surface, showing a covalent-like bonding. The unit cell for this case
has (5 × 5)-like periodicity, with 34 metal atoms per layer in the Au substrate, and
containing two TCNQ molecules per unit cell. The center of one of the molecules
is located on a surface “bridge” site and the other on a “top” site, which make the
molecules slightly non-equivalent electronically. Since the N atoms form bonds with
the surface, we can neglect vdW forces: the driving adsorption force is the chemical
force on the Au–N bond.

Although the distance between neighboring TCNQ molecules in case a is large
(>10 Å), some depolarization effects may appear due to long-range electrostatic
interactions. (In 5

√
3 × 5

√
3R30◦ C60/Au(111) layer this interaction was important,

although the distance between molecules was more than 15 Å). In order to eliminate
this effect, we also analyze a single molecule adsorption simulating the interface
via a (9 × 9) cluster with 81 metal atoms per layer (large enough to avoid border
effects), with no periodicity and the same final adsorption geometry than case a
(see Fig. 5.22c). This configuration allow us to properly calculate U , as in the other
interfaces. In all cases, the Au(111) surface is simulated with 4 layers. We have
checked that 6 layers yield results very similar to the 4 layers case.

Regarding the LDA gap, for TCNQ with this basis set it has a value of 1.65 eV,
to be compared with 2.14 eV for converged LDA basis set or GGA calculations. The
transport gap between ionization and affinity levels of the gas-phase TCNQ molecule
is around 5.3 eV (see below). As in TTF/Au, we have calculated the exact value of the
transport gap calculating ionization and affinity levels using the octopus simulation
package [27] and the GGA–PBE0 hybrid functional [28]. From this calculation we
obtain that U for the gas-phase TCNQ is U = 3.7 eV.

5.5.2 Theoretical STM Images

Theoretical STM calculations have been performed for the TCNQ/Au(111) self-
assembled structure (Fig. 5.22b) in order to make a detailed comparison with the
experimental evidence [37]. The STM images are obtained using the Green-Keldysh
function approach mentioned in Sect. 2.6, as in the TTF/Au interface. We have
assumed to have the same W tip as in TTF/Au.

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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(a) (b)

Fig. 5.23 a Experimental STM image of the self-organized TCNQ on Au(111) structure [37]
(constant tip-height, Vs = 0.3 V). Experimental image from Fernandez-Torrente and coworkers
[37]; and b theoretical STM image for the geometry of Fig. 5.22b (constant tip-height, Vs = 0.5
V). Reprinted from Physica Status Solidi B [38] Copyright 2011 Wiley-VCH (Color figure online)

Figure 5.23b shows our calculated STM images for the TCNQ/Au(111) self-
assembled structure (Fig. 5.23b). W-tip height from TCNQ monolayer and surface
voltage, Vs , take the typical values of 4.5 Å and 0.5 V (above the Fermi level), in order
to mimic experimental STM signal [37]. It is worth to stress that the variation of the
W-tip height between 4 and 5 Å does not reveal any significant change in the STM
image. Experimentally it is observed that TCNQ molecules absorbed on Au(111)
surface form highly ordered molecular assemblies [37]. As shown in Fig. 5.23, our
theoretical STM image for the relaxed structure of Fig. 5.22b is in very good agree-
ment with the experimental STM image for the self-assembled structure. The theoret-
ical STM images also show some N· · · H intermolecular bonding between adjacent
molecules; this bonding has been proposed to be responsible for the self-assembling
of the TCNQ molecules [37]. Also, due to the slight non-equivalence between TCNQ
molecules in the same unit cell of our calculations, small differences can be appreci-
ated for alternating TCNQ molecules. Note that, although at first glance experimental
STM images suggest that the organic molecule lies flat on the gold surface, our results
with a bent geometry reproduce quite well the experimental STM image. Finally we
also mention that theoretical STM images for a flat adsorption geometry (not shown)
do not agree so well with experimental evidence.

5.5.3 Electronic Structure and Interface Potential

We analyze in this section the interface barrier formation. Upon adsorption of TCNQ,
the relative position of the Fermi level with respect to the molecular levels changes
due to the total potential induced on the molecule V tot = V I DI S + V M

0 . Note
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Fig. 5.24 (LUMO-EF ), transfer of charge δn and total potential, V t = V I DI S +V M
0 , as a function

of the initial Fermi level. The initial Fermi levels of Al, Ag, Cu and Au are shown for comparison.
Reprinted from Physica Status Solidi B [38] Copyright 2011 Wiley-VCH (Color figure online)

that now we have a new term that adds to the standard IDIS potential. It is the
“intrinsic” molecular dipole. It was introduced in Sect. 3.4, but it is the first case
where it appears in practice in our thesis. The fact that a symmetric molecule like
TCNQ can have an “intrinsic” dipole can be shocking; but as we said previously, the
molecule is substantially deformed upon adsorption. The N atoms are closer to the
Au surface, and they are negatively charged. On the contrary, the aromatic C ring,
that is above the N atoms is positively charged, giving rise to a nonzero dipole along
the z direction (that comes purely from charge reorganization in the TCNQ, not from
charge transfer with surface), that certainly affects the interface potential. The value
of V M

0 can be easily obtained as the total potential just for zero charge transfer. From
Fig. 5.24, V M

0 = 1.37 eV. Note that in this case δn = 0 implies V I DI S = 0 but
V tot = V M

0 	= 0 as opposed to the other interfaces of this work where zero charge
transfer implied zero potential (if we neglect the pillow potential). The value of V M

0
for the single molecule case and the dilute geometry is 0.20 and 0.53 eV, respectively
(see Fig. 5.24).

Note that also, in Fig. 5.24, whenΦM = −5.2 eV (the initial Fermi level of gold),
δn = 0. This is in good agreement with the experimental evidence [37], where TCNQ
is detected to be neutral on the Au(111) surface. Also, a very good linear scaling is
observed for all the cases as ΦM varies.

Figure 5.25c shows the DOS projected onto the molecular orbitals for the case
of a single TCNQ on Au(111) (levels of a non-interacting molecule are also shown
for comparison). For this case we obtain S = 0.16. Notice the visible level broad-
ening associated with the TCNQ/metal interaction. Regarding the charging energy
calculation for this molecular case, we obtain that δU = 2.2 eV and the transport
gap is Et

g = 3.1 eV (the effect of the “metal surface” dipole has been taken into

http://dx.doi.org/10.1007/978-3-642-30907-6_3
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Fig. 5.25 DOS projected on
the TCNQ orbitals for the
geometries of Fig. 5.22 (case a
dilute geometry; case b mono-
layer self-assembled structure;
and case c single molecule on
the surface). CNL, HOMO,
LUMO and final Fermi (EF )
levels of the system are also
shown. Molecular levels of
the isolated TCNQ molecule
are indicated by a red-shaded
profile (y-scaled ×1/3). Right
inset enlarged image for the
area around EF . Left inset
interface levels scheme for
each case, showing V tot .
The vacuum level defines the
energy zero. Reprinted from
Physica Status Solidi B [38]
Copyright 2011 Wiley-VCH
(Color figure online)

account). The potential induced in the molecule is V tot = 0.97 eV. Figure 5.25a
shows our calculated DOS for the geometry of Fig. 5.22a; these results are similar to
those presented for the single molecule, except for the Fermi level position, which in
this case is located 1.09 eV above the initial metal Fermi level. This reflects a larger
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surface screening due to the interaction between different molecules: for this partic-
ular case we find a value for the screening parameter of S = 0.14. The results for the
monolayer geometry (Fig. 5.22b) are shown in Fig. 5.25b. The DOS profile for this
case is similar to the ones found in previous cases, but in this case the Fermi level
coincides with CNL. As previously mentioned, we find a large interface potential
of 1.37 eV, and a really small screening parameter of S = 0.05. This small value of
S reflects the large screening associated with this compact geometry; more tightly
packed geometries increase the molecule–molecule interaction, an effect that also
increases V tot and the interface surface screening. Notice that in the left insets of
Fig. 5.25a and b we have also shown the Helmholtz dipole potential layer Δ using
the Eq. (3.9), with values of 0.31 and 0.61 eV for the dilute and monolayer structures,
respectively (Δ = 0 for the molecule over Au surface).

Regarding the pillow and “metal-surface” dipole, we find that both effects tend to
cancel each other; nevertheless, the “metal-surface” dipole still slightly affects the
value of U reducing it 0.2 eV, which reduces the transport energy gap by the same
amount to the final value of 3.1 eV.

5.5.4 Conclusions

In summary, we have analyzed the organic-molecule/metal interface TCNQ/Au(111)
using the formalism developed in this thesis. We find that the N atoms of the molecule
bond to the surface, resulting in a bent geometry for the adsorbed TCNQ molecules,
and practically no charge transfer between the metal and the molecules. Our the-
oretical STM images for the monolayer case are in very good agreement with the
experimental STM images for the self-assembled geometry. Finally, we have ana-
lyzed the interface barrier formation and energy level alignment in terms of the
IDIS model, showing the importance in this case of the “intrinsic” molecular dipole
appearing on the TCNQ molecules on the Au(111) surface due to its bent geometry,
that in this case leads the main contribution to the interface dipole.

5.6 Pentacene/Au(111) Interface: Hybrid Method in Practice

Finally we are going to consider the pentacene/Au interaction. Pentacene is one of
the most widely used organic semiconductors both in research and industry, because
of its high field-effect mobility. In this case, the molecular gap has been calculated
using the standard scissor technique used in the previous interfaces and the hybrid
HF-LDA functional explained in Sect. 2.7.3. As mentioned there, the β parameter,
that controls the amount of exact and LDA exchange is chosen in order to obtain
Eg = E L D A

g + U ; where U has been calculated using formula Eq. (4.3), as in
previous interfaces. This work has been done in close collaboration with Dr. Barbara
Pieczyrak, and has been published in Journal of Chemical Physics [39]. This section
is an adapted version of that paper (Copyright 2011 American Institute of Physics).

http://dx.doi.org/10.1007/978-3-642-30907-6_3
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_4
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(a) (b)

(c) (d)

Fig. 5.26 Pentacene on the Au(111) surface: a 2 × √
39 structure; b 6 × √

7 structure; c cluster
model; and d side view of a pentacene molecule on the Au(111) surface (ZC = 3.2 Å). For a and b
the dashed lines denote the surface unit cells used in the calculations. Reprinted from [39] Copyright
2011 American Institute of Physics (Color figure online)

This interface has also been analyzed theoretically by Toyoda et al. [40]; but at the
DFT–GGA (+semiempirical vdW) level of theory. We have reconsider the interface
in order to accurately describe the barrier height formation, with a realistic organic
transport energy gap.

5.6.1 Geometry

As in the other cases, we are going to analyze the pentacene/Au(111) barrier height
for a single molecule and a full monolayer (see Fig. 5.26); in our calculations, we have
assumed to have one of four predominant experimental unit cells: 2 ×√

39 structure
(Fig. 5.26a); we use this one because at lower coverages pentacene molecules tend
to have larger spacings between the rows of molecules such as in the chosen type
[41]. For the sake of comparison with the work of Toyoda et al., we also have taken
into account the 6 × √

7 geometry they used in their research [40] (Fig. 5.26b).
The basis set used in our calculations is the same as in the benzene/Au interface.

This yields a range of values between 1.36 and 1.47 Å for the C–C nearest neighbors
distance in pentacene, to be compared with the experimental values of 1.35–1.45 Å
[42] (in GGA–DFT these distances are 1.38–1.46 Å) [43].

In order to accurately determine the equilibrium distance of pentacene adsorbed on
a gold surface, we have used here the WCI + vdW method used for C60 and benzene
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Fig. 5.27 Energy versus distance for the pentacene/Au(111) interaction. Black line standard LDA-
FIREBALL (FB-LDA) calculation. Red line WCI calculated as discussed in the text. Thin green line
Grimme parametrization of the vdW interaction. Thick green line total pentacene–Au interactions
(WCI + vdW). Reprinted from [39] Copyright 2011 American Institute of Physics (Color figure
online)

on Au(111) and explained in Sect. 2.7.1. The C6 parameter in vdW Eq. (2.83) has been
taken C6 = 36 eV ·Å6 in for Au–C, C6 = 0 for Au–H (as in previous calculations).

Regarding fD(R) we have used Grimme [7] parametrization obtaining a pen-
tacene/Au distance of 3.2 Å, to be compared with LDA distance (3.1 Å), the WCI
(without vdW) distance (3.3 Å) and the distance obtained by Toyoda et al. (3.2 Å),
see Fig. 5.27.

5.6.2 Density of States, Interface Dipole and Charging Energy

Hybrid Potential Results

First of all we are going to present calculations for pentacene/Au(111) using the
hybrid potential. Figure 5.28 shows our calculated DOS projected on the molecu-
lar orbitals for the three cases we have considered: a single molecule (c); the 6 ×√

7—adlayer (b); and the 2 × √
39—monolayer (a) (see Fig. 5.26).

In these figures we also represent the molecular levels of the isolated molecule
(in green). The energy gap has been calculated selfconsistently using the standard
method explained in Sect. 4.2. This time, however, is the parameter β the one that
has been fitted in order to have a selfconsistent gap. The transport gap obtained is
Et = 3.1 eV, for a value of β = 0.31. The metal surface dipole effect in the gap
(a reduction of 0.2 eV) has already been included.

Notice that this energy gap is a little larger than the peak-to-peak gap obtained
from the calculated DOS; in particular, Et = 2.65, 2.8 and 2.9 eV for cases a, b,
and c, respectively. The usual levels, HOMO, LUMO, CNL and EF , are shown. The

http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_2
http://dx.doi.org/10.1007/978-3-642-30907-6_4
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Fig. 5.28 DOS (obtained with the hybrid potential) projected on the pentacene orbitals for the
geometries of Fig. 5.26 (case a 2 × √

39 structure; case b 6 × √
7 structure; and case c cluster

model). C N L of the molecule, metal work-function and Fermi level of the system are also shown.
Molecular levels of the isolated molecule, calculated with the same hybrid potential, are indicated
in green. Right inset enlarged image for the area around the HOMO and LUMO levels. Left inset
interface levels scheme. All values are given in eV. Reprinted from [39] Copyright 2011 American
Institute of Physics (Color figure online)
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Fig. 5.29 V I DI S and δn-charge transfer from the molecule to the metal (obtained with the hybrid
potential) as a function of the initial Fermi Level (that can be seen as the absolute value of the
metal work function). This change in the initial Fermi level. Reprinted from [39] Copyright 2011
American Institute of Physics (Color figure online)

CNL is located around ∼0.2 eV from the LUMO peak (fluctuations around this value
are probably related to the precision of our calculations). The IDIS potential takes
the values: V I DI S = 1.15 eV (a); 1.09 eV (b); and 0.79 eV (c). As in other interfaces,
it decreases from the compact monolayer to the single molecule interfaces.

Figure 5.29 shows, for the cases a, b and c, V I DI S and the charge transfer, δn, as
a function of the initial Fermi level, that can be seen as a “fictitious” metal work-
function, which is introduced by means of the scissor operator with Δ = 0 (see
Eq. 2.97). As the cases when we use the scissor operator, V I DI S and δn depend
linearly on ΦM , and V I DI S � 0 when δn = 0. This shows that our IDIS model is
valid when using a hybrid functional to correct the gap, and confirms that the general
behavior predicted by the IDIS model does not depend on the method used to obtain
an accurate value of the gap.

From Fig. 5.29 we find: S = 0.52 (a); 0.57 (b) and 0.69 (c), indicating that in the
compact structure screening effects are the largest, and in the single molecule the
smallest, like in the other interfaces studied previously.

Regarding the “pillow” dipole, we find it negligible in the minimal basis set used
in our calculations. We have found, however, that using the more extended basis
set (sp3d5s∗d∗5 for Au, sp3d5 for C and ss∗ for H; used in previous interfaces)
yields a bare pillow dipole potential, V P

0 , of 0.5 eV for the 2 × √
39 monolayer.

Screening effects reduce this potential to V P = SV P
0 = 0.25 eV. Regarding the

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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metal surface dipole correction, we find that in the tight-packed 2×√
39 monolayer,

(EF − ΦM ) is reduced by 0.15 eV, this effect compensating to a large extent the
potential, V P , created by the “pillow” effect. For the single molecule case, we find
that this compensation is even better; this metal surface dipole correction reduces,
however, U and the transport energy gap by 0.2 eV, as stated before.

LDA with a Scissor Operator

We have also calculated the pentacene/Au(111) interface using the scissor operator to
correct the transport gap, in order to compare both approaches and see the difference
that this simpler approximation introduces in the band alignment and in the molecule
energy gap. Figure 5.30 shows the DOS projected on the molecular orbitals for the
same cases shown in Fig. 5.28; notice that the calculated DOS using the scissor
operator is very similar to the one obtained with the hybrid potential. There are,
however, some relevant differences, because although V I DI S is the same in both
cases for all geometries, we find an important change in the molecule energy gap:
while for the hybrid potential case we find for the isolated molecule Et = 3.1 eV,
using the scissor operator yields Et = 3.4 eV, so that the peak-to-peak energy gap
is: Et = 3.05 (a), 3.2 (b) and 3.15 eV (c). The important point to realize about these
results is that the calculated energy gap for the molecule, using the hybrid potential,
is 0.3 eV smaller than the one calculated using the scissor operator.

We believe this difference is due to the delocalization of the intra-molecular
exchange hole over the metal: for the isolated molecule, one can think of the SIC
(or the charging energy, U0) as being created by the exchange hole that eliminates
the interaction of the molecular charge with itself (see Sect. 2.7.2); the metal–organic
interaction delocalizes that hole and reduces, in our Hartree–Fock calculation, the
SIC. We have found that, due to this pentacene/Au interaction, around 8 % of the
molecular exchange hole is delocalized into the metal.

Figure 5.31 shows V I DI S and δn as a function of the fictitious metal work-
function. The behavior is very similar, but the slopes (i.e. the screening parameter)
are different. The values for the screening parameter are S = 0.52, 0.57, 0.69 for the
geometries a, b, c, respectively.

Regarding the “pillow” dipole and the metal-surface dipole corrections, we find
that our results are very similar to the ones calculated using the hybrid potential
approach.

5.6.3 Discussion and Conclusions

We have applied the hybrid-DFT calculation for pentacene on Au(111) considering
the following cases: a single molecule, a 6×√

7—adlayer and a 2×√
39—monolayer.

The hybrid potential is introduced to fix the transport energy gap, Et , instead of
the scissor operator used in previous interfaces. The accurate value of Et and U ,

http://dx.doi.org/10.1007/978-3-642-30907-6_2
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Fig. 5.30 DOS (obtained with the scissor operator) projected on the pentacene orbitals for the
geometries of Fig. 5.26 (case a 2 × √

39 structure; case b 6 × √
7 structure; and case c cluster

model). C N L of the molecule, metal work-function and Fermi level of the system are also shown.
Molecular levels of the isolated molecule are indicated in green. Right inset enlarged image for the
area around the HOMO and LUMO levels. Left inset interface levels scheme. All values are given
in eV. Reprinted from [39] Copyright 2011 American Institute of Physics (Color figure online)
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Fig. 5.31 V I DI S and δn-charge transfer from the molecule to the metal (obtained with the scissor
operator) as a function of the initial Fermi Level (that can be seen as the absolute value of the metal
work function). Reprinted from [39] Copyright 2011 American Institute of Physics (Color figure
online)

has been obtained as in previous cases using Eq. (4.3). We have also analyzed the
pentacene/Au interface using the “scissor” operator. It is interesting to stress that the
results of both approaches, the hybrid potential and the “scissor” operator, are similar,
showing that the interface barrier height is basically controlled by the charge transfer
between the two materials; the only significant difference is found for transport
energy gap, Et , that is around 0.35 eV smaller in the case of the hybrid potential. We
interpret that result as due to the delocalization in the metal of the exchange-hole
associated with the SIC. [44] The values found for Et in the 2 × √

39 structure
are 2.65 eV (hybrid potential) and 3.05 eV (scissor operator); these quantities can be
compared with the experimental data of Amy et al. [45], who have measured Et =
2.88 eV for a pentacene thickness of 20 Å, in good agreement with our hybrid-DFT
calculations (one can expect Et to be slightly smaller than 2.88 eV for a pentacene
monolayer). [45].

Regarding the metal work-function change due to the pentacene deposition, we
have found in our calculations that the 6 × √

7 and the 2 × √
39 structures yield

very similar results. In both cases, the interface electrostatic dipole Δ = 4π dδn
A

Eq. (3.9), where d is the effective distance between the charges of the molecule,
coincides practically with V I DI S : 1.09 and 1.15 eV for the b and a structures, respec-
tively. The experimental evidence [41, 46, 47] indicates that this interface dipole
is 0.95 eV, in good agreement with our results. Toyoda and coworkers [40] have

http://dx.doi.org/10.1007/978-3-642-30907-6_4
http://dx.doi.org/10.1007/978-3-642-30907-6_3
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calculated an interface dipole of 1.19 eV for a 6 × √
7 pentacene/Au(111) structure

and a pentacene–Au distance of 3.2 Å; the interface dipole and the metal/organic
distance are both in good agreement with our calculations.

As in previous cases, apart from the pillow dipole, our results does not depend
significantly on the basis set, provided that the initial molecular levels are correctly
aligned and the transport energy gap is set to the accurate value. This is also checked
independently by the good agreement found with the calculations of Toyoda et al.
[40].
In the case of the “pillow’ dipole; that we find to depend largely on the atomic
basis set; as discussed in other interfaces: for an extended basis set V P

0 for a full
monolayer is 0.25 eV, a value that is largely compensated by the surface dipole cor-
rection. This suggests that our calculated change of the metal work-function for the
6 × √

7 and the 2 × √
39 structures has an error bar of 0.1 eV.

In conclusion, both our hybrid HF and LDA + scissors results show a good
agreement with the experimental data for the transport energy gap and the metal
work-function change for a monolayer coverage, and with an independent theoreti-
cal calculation. This lends strong support to our interpretation of this metal/organic
level alignment as due to the charge transfer between the metal and pentacene, as
described in the IDIS-model.

5.7 Conclusions

In this chapter we have employed the ideas presented in previous chapter to
obtain a realistic gap and calculate the interface properties of a variety of MO
interfaces: C60/Au(111), benzene/Au(111), TTF/Au(111), TCNQ/Au(111) and pen-
tacene/Au(111). We see that obtaining an accurate gap size is usually critical in order
to obtain realistic interface dipoles (the paradigmatic case is benzene), although in
some cases is not that important (TTF). However, the electron and hole injection
barriers depends explicitly on the HOMO/LUMO position so a correction to the
Kohn–Sham levels is completely necessary for that case.

We have employed two different methods to address the gap correction: in both
we rely on the calculation of the charging energy (U ) for an isolated molecule over
a metal surface. The formula Eq. (5.1) is not suitable to obtain the charging energy
in the case of high coverages, since intermolecular electrostatic dipole-dipole terms
are included. After that we open the gap both using a scissor operator or a hybrid HF
functional (whereΔorβ parameters are chosen to reproduce the gap Et

g = E K S
g +U ).

We have also included in the calculations the effect of vdW interactions, in order
to calculate a reliable molecule/metal distance. We have seen that they are necessary
to get a realistic distance in most of the interfaces (apart from the C60 case). Although
our WCI + vdW approach does not give reliable energies, the distances are in good
agreement with independent calculations for benzene and pentacene [15, 40].
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Chapter 6
General Conclusions and Future Work

6.1 Conclusions

This thesis has been focused mainly on metal/organic interactions. Layers of organic
molecules over metal surfaces (of technological importance in organic electronic
devices); and molecules between metal electrodes (like the ones present molecular
electronic devices) have been analyzed using DFT (and introducing the appropriate
corrections). For these systems it is very important to have correctly characterized
the electron and hole injection barriers, in order to get realistic electrical conductance
through these devices.

The study of these interfaces is challenging from a theoretical point of view. First
of all, the vacuum level rule is disproved for most of them, indicating that a dipole
layer is created. This fact has led to an extensive study, and some effects have been
proposed to understand the origin of the dipole layer. These effects were summa-
rized in Sect. 3.3. Special emphasis has been made on the IDIS model in Sect. 3.4.
This model explains the origin of the dipole layer on metal/inorganic semiconductor
interfaces [1, 2], and metal-organic interfaces [3–5]. Also an extension to include
pillow dipole and intrinsic molecular dipoles has been made [6], called Unified-IDIS
model. We interpret the results of our ab initio DFT calculations in terms of the IDIS
model.

However, there is a fundamental problem when we make a theoretical ab ini-
tio approach to these interfaces. Standard DFT based techniques do not take into
account some effects critical to describe these systems. The first one is the long
range dispersive (vdW) forces, due to the locality (or semilocality) of the exchange-
correlation functionals used. These forces are necessary to obtain reliable molecule-
metal adsorption distances and energies. In this work an extension of the ideas of
the LCAO-S2+vdW formalism, previously developed for noble gases and graphitic
materials [7–9] has been applied, correcting the overbinding introduced in LDA.
After that we include the vdW forces by introducing the standard correction with
the form of Eq. (2.83). The idea of adding a semi-empirical vdW interaction to a
“corrected” DFT energy is similar to the one developed by Pernal et al. [10]. We
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have checked that this method gives reliable molecule-metal distances as compared
with other calculations [11, 12].

The other problem with DFT for these interfaces, is that it does not take into
account the SIC and the image potential effects. These effects are critical in order to
have a correct description of the gap of the molecule over the metal surface. Ignoring
these effects can lead to gaps underestimated by more than 50 % and an interface
dipole overestimation of the same amount. In order to correctly characterize these
effects the scientific community have focused on more accurate ab initio methods,
like GW or MP2 that have the disadvantage that the computational cost is orders of
magnitude larger than standard DFT. This forces to use very small clusters to simu-
late the surface, and some important effects, like the molecule-molecule interaction
will be missing (the importance of this interaction has been showed in Sect. 5.2.3
and [13]).

In this thesis a method for correctly estimate the change on the gap size by the SIC
and the image potential effects has been developed. This method obtains gaps that
compare well with other theoretical and experimental results (within an error bar of
around 10 %); and it has the advantage that the correct gap can be calculated using
only the IDIS parameters obtained from an standard DFT calculation, as explained
in Sect. 4.2.1, so no need of extensive computational resources are needed. Once the
correct gap is obtained, it is introduced in the hamiltonian in two different ways:
The first one is a scissor operator, whose implementation has been explained in
Sect. 2.7.5. The other method is an hybrid DFT-HF method, also developed in this
thesis (see Sect. 2.7.3 for details). Both approaches have been shown to give very
similar results. The first principles code where these corrections are implemented is
the fireball code [14, 15].

In order to strength the importance of these effects to the calculation of the level
alignment on MO interfaces, we have compared the results of C60/Au(111) interfaces
and benzene/Au(111) interfaces using standard DFT-LDA techniques (Sect. 3.5)
and using accurate molecule-metal distance and gap size (Sects. 5.2 and 5.3). In
C60/Au(111) interface we clearly see how the increment of the energy gap from 1.8
to 3.1 also enlarge the interface barrier due to the IDIS dipole. However, the inclusion
of vdW energy does not change very much the molecule-metal distance, indicating
that the LDA geometry in this case is accurate enough for interface potential calcula-
tions. In benzene, both the vdW forces and the correction of the gap underestimation
are critical to obtain a reliable interface potential (otherwise errors of more than
100 % appear).

However, our method can be applied not only to MO interfaces but also to other
kind of MO contact: the molecule-electrode contact that appear in molecular elec-
tronic devices. In this thesis, in Sects. 4.2 and 5.2.3, we have also shown how the
IDIS model can be applied at the molecular level. This allows us to interpret the
interface barriers that appear in molecular devices in terms of the IDIS model, and
to obtain reliable values of the organic gap (critical for obtaining a quantitative value
of the electrical conductance through the organic molecule). We have applied this to
the approach of two gold tips to a C60 molecule (Sect. 4.3) and to a C60 molecule
between a gold tip and a Au(111) surface, with different adsorption sites (Sect. 4.4).
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To sum up, in this thesis we have found a practical way to deal with vdW interac-
tions and the underestimation of the LDA gap in MO interfaces, in the framework of
DFT, and using the IDIS parameters, allowing realistic calculations with a computa-
tional effort of the order of magnitude of standard DFT calculations. We have applied
this method to MO interfaces (C60, benzene, TTF, TCNQ, pentacene on Au(111)). In
this work, we have shown that the main ideas of the IDIS model remains valid at the
molecular level; so we have employed this method in molecular electronic devices
(a C60 molecule between two gold tips, and between a gold tip and a Au(111)
surface).

6.2 Future work

In this work, there are still some details that can be refined. First of all, the
“off-diagonal” and “pillow” potentials can be more accurately calculated. There is
an new option on the fireball code still under testing process that allow us to solve
the Kohn-Sham equations in a real-space grid, introducing naturally the effect of
these dipoles. Second, the extreme dependence with the basis set of “pillow” dipole
is still not correctly understood, and although the dipole has been shown to be small,
it is desirable to have it correctly described.

Regarding the vdW forces, we are working on new efficient methods to obtain a
dispersionless exchange and correlation interaction, and its numerical implementa-
tion in fireball. Moreover, we are working on more sophisticated calculations of
the vdW energy (beyond formula (2.83)), following the ideas of [7, 8].

We also want to extend these ideas to organic/organic interfaces. A semiquanti-
tative approach was developed in Hector Vázquez thesis [3]. However, we want to
calculate the interface properties using first principles fireball code, and with a
realistic value for the organic gap. Nowadays, our research group is working on
typical organic/organic interfaces such as pentacene/C60 and TTF/TCNQ.

Finally, our model allow us to calculate a full variety of metal/organic interfaces of
technological interest, that are being calculated or will be calculated in the following
months (TTF-TCNQ/Au, C60/Ag, C60/Cu…). This model, combined with a Green-
Keldysh calculation of transport properties [16] also allow us to calculate realistic
conductances and currents through organic molecules between two electrodes. Some
molecules of scientific interest (such as benzene-dithiol) can be calculated with this
method.
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Appendix A
Introduction to Second Quantization

A.1 Second Quantization

The so-called first quantization (quantum mechanics based on the idea of
wavefunctions), has the advantage of being reasonably intuitive and can take
advantage of all the mathematical tools of calculus and partial and ordinary
differential equations. However, it lacks of a natural way of introducing
symmetrization or antisymmetrization of wavefunctions when we are dealing
with many identical particles.

Second quantization offers a natural framework to take this into account, being
the appropriate tool for the study of many-body systems. It is inspired in the
algebraic resolution of a one dimensional particle in an harmonic potential, and
relies on the use of creation and annihilation operators.

A.1.1 Creation and Annihilation Operators

Let’s consider j0i as the vacuum state (a quantum state with no particles in it),

different from the zero vector. The bosonic (fermionic) creation operator âyi (ĉyi )
acts in the vacuum state creating a boson (fermion) in the state i, jii (the i index
can include spin variables). In an analog way the bosonic (fermionic) annihilation
operator âi (ĉi) destroys a boson (fermion) in the state i. That is:

jii ¼ âyi j0i(for bosons)jii ¼ ĉyi j0i(for fermions)

j0i ¼ âijii(for bosons)j0i ¼ ĉijii(for fermions)
ðA:1Þ

The action of the annihilation operator in the vacuum state is the zero vector:
âij0i ¼ ĉij0i ¼ 0 (they are not the same!). The bosonic (fermionic) creation and
annihilation operators are mutually hermitian conjugate, and they have specific
commutation (anticommutation) properties:
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½âi; âj� ¼ 0 ½âyi ; â
y
j � ¼ 0 ½âi; â

y
j � ¼ dij

fĉi; ĉjg ¼ 0 fĉyi ; ĉ
y
j g ¼ 0 fĉi; ĉ

y
j g ¼ dij

ðA:2Þ

where the standard commutator (anticommutator) definitions ½A;B� ¼ AB� BA

(fA;Bg ¼ ABþ BA) are used. An important operator is the number operator n̂i ¼
âyi âi (the same for fermions). It can be easily proved [1] that this operator gives the
number of particles of state i.

If we want to rewrite an operator âyi in terms of other quantum indexes a, we
need only to notice that:

âyaj0i ¼ jai ¼
X

i

hijaijii ¼
X

i

hijaiâyi j0i ) âya ¼
X

i

hijaiâyi ðA:3Þ

and the same for fermions.
From now on we are going to focus on fermionic operators (since electrons are

fermions). An important fact deduced from (A.2) is that: ĉyi ĉyi ¼ 0, that means that
there cannot be two fermions in the same quantum state i: the Pauli exclusion
principle. Note that in second quantization this principle appears naturally, instead
of being an ad-hoc assumption, showing the strength of this formalism.

Operators in Second Quantization

It is not difficult to rewrite the first quantization operators in second quantization

form. Let’s consider a one particle operator bO (like the kinetic energy) that

operates in all particles (bO ¼
P

I
bOðIÞ). The result is:

bO ¼
X

i;j

hijbOð1Þjjiĉyi ĉj ðA:4Þ

For a two particle operator bV ¼
P

I;J
bV ðI; JÞ (like the electron-electron

interaction) we obtain:

bV ¼
X

ijkl

Vijklĉ
y
i ĉ
y
j ĉlĉk where

Vijkl ¼
Z

d3rd3r0w�i ðrÞw�j ðr0ÞVðr; r0ÞwkðrÞwlðr0Þ
ðA:5Þ

note the positions of ĉl and ĉk in the second quantized form of the operator.1

1 A derivation of the one particle and two particle operator formula can be found in [2], Chap. 1
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A.1.3 Examples: Tight Binding and Hubbard Hamiltonians

We will show now a practical usage of second quantization formalism. Consider
the following one-dimensional tight-binding hamiltonian:

bH ¼
X

j

e0n̂j �
X

j

tðĉyjþ1ĉj þ ĉyj ĉjþ1Þ ðA:6Þ

Its physical interpretation is very easy. The first sum gives the energy of an
electron in the atomic orbital of site j (we are considering only one orbital per site),
and the second term annihilates an electron in site j and move it to the neighbor (or
annihilates a neighbor electron and create it in site j), that is, the hopping term.
Introducing ĉj ¼

P

k eikxj ĉk (where xj ¼ aj, the position of site j) we get:
X

j

n̂j ¼
X

j

ĉyj ĉj ¼
X

j;k;k0
eiðk�k0Þxj ĉyk0 ĉk ¼

X

k;k0
dk;k0 ĉ

y
k0 ĉk ¼

X

k

ĉykĉk ¼
X

k

n̂k;

X

j

ĉyjþ1ĉj ¼
X

j;k;k0
eiðk�k0Þxj e�ik0ðxjþ1�xjÞĉyk0 ĉk ¼

X

k

e�ikan̂k;

bH ¼
X

k

ðe0 � tðe�ika þ eikaÞÞn̂k ¼
X

k

ðe0 � 2t cosðkaÞÞn̂k

ðA:7Þ

that is, with this variable change we obtain a diagonal hamiltonian, where the
eigenvectors are plan waves and eigenenergies E ¼ e0 � 2t cosðkaÞ that is the
typical band dispersion in tight binding hamiltonian.

But this hamiltonian is one-electron (the electron-electron interaction is not
taken into account). A simple hamiltonian that includes electron-electron
interaction is the Hubbard hamiltonian.

bH ¼
X

i;r

e0n̂ir �
X

i;r

tðĉyiþ1rĉir þ ĉyirĉiþ1rÞ þ
X

i

Un̂i"n̂i# ðA:8Þ

where the explicit spin dependence has been shown. The extra term accounts for
the coulomb repulsion of two electrons on the same site. Although this seems a
very simple hamiltonian, trying to diagonalize it is far from simple. It has been
done only for a certain number of dimensions, and new mathematical tools (like
the renormalization group and quantum simulators) are necessary for
diagonalizing it (when it is possible). On the other hand, the physics of this
model is incredibly rich. The parameters governing this hamiltonian are U=t and
the mean occupation n ¼ 1=2h

P

r n̂iri (we can get rid of e0 with a redefinition of
the origin of energies). Ferromagnetism, antiferromagnetism and super-
conductivity appears depending on the values of U=t and n. More realist
hamiltonians include the coulomb interaction between sites

P

ijrr0 Jijn̂irn̂ir0 . This is
the basis of the LCAO-OO hamiltonian shown in Sect. 2.5.
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A.1.4 Schrödinger and Heisenberg Pictures

In second quantization is usual to use the Heisenberg picture instead of the
Schrödinger one (more usual in first quantization). The main difference between
both is that in the Heisenberg picture the temporal evolution of the system lie on

the operators, instead of the states of the system (bOH ¼ bOHðtÞ;
jWðtÞiH ¼ jWð0ÞiH). It is easy to change between both pictures using the

evolution operator bUðtÞ ¼ e�ibHt=�h:

jWðtÞiS ¼ bUðtÞjWiH ; bOHðtÞ ¼ bU yðtÞbOS bUðtÞ ðA:9Þ

And the equation of motion for the operators:

i�h
d

dt
bOHðtÞ ¼ ½bOHðtÞ;H� ðA:10Þ

A.2 Green Functions

The (causal) Green function of a system is defined (in the Heisenberg picture) as:

Gr;r0 ðr; t; r0; t0Þ ¼ �
i

�h
hW0jT½ĉr;rðtÞĉyr0;r0 ðt0Þ�jW0i ðA:11Þ

where jW0i is the ground state of the system and T is the time ordering operator,
that ensures that the operators are placed in chronological order. That means:

Gr;r0 ðr; t; r0; t0Þ ¼
�i=�hhW0jĉr;rðtÞ ĉyr0;r0 ðt0ÞjW0i if t [ t0

þi=�hhW0jĉyr0;r0 ðt0Þĉr;rðtÞjW0i if t\t0

(

ðA:12Þ

Green functions can be expressed not only in terms of the position r but also in
terms of a general quantum state i. In this case its definition will be:

Gði; t; j; t0Þ ¼ � i

�h
hW0jT ½ĉiðtÞĉyj ðt0Þ�jW0i ðA:13Þ

We can define also retarded and advanced Green functions:

Grði; t; j; t0Þ ¼ � i

�h
hðt � t0ÞhW0jfĉiðtÞĉyj ðt0ÞgjW0i

Gaði; t; j; t0Þ ¼ þ i

�h
hðt0 � tÞhW0jfĉiðtÞĉyj ðt0ÞgjW0i

ðA:14Þ

Rewriting the green function Gði; t; j; t0Þ using the quantum states a; b
(Gða; t; b; t0Þ) is easy if we use the formula (A.3). From now on, in order to
simplify the notation we are going to work in units where �h ¼ 1
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A.2.1 One Electron Green Functions

In order to understand better the physical meaning of the Green function, we are
going to consider that we are dealing with a simple one-electron time-independent
hamiltonian. If we take the index j to run over the eigenstates of the Hamiltonian,
we can calculate easily the sandwiches of retarded green function (remember we
are on the Heisenberg picture). This way we get, for the first part of
anticommutator:

hW0jeiHtĉje
iHðt0�tÞĉyj e�iHt0 jW0i ¼ eiE0shW0jĉje

iHðt0�tÞĉyj jW0i ¼ eiE0se�iðejþE0Þs ¼ e�iejs

ðA:15Þ

where s ¼ t � t0 and we have supposed that level j is occupied (otherwise the
sandwich is zero). For the other part of the anticommutator, we get the same result
e�iejs if the level j is empty (otherwise is zero), so the retarded green function is:

Grðj; sÞ ¼ �ihðsÞe�iejs ðA:16Þ

no matter if state j is occupied or empty. If we make the time Fourier transform:

Grðj;xÞ ¼
Z

1

�1

dseixsð�ihðsÞe�iejsÞ ¼ lim
g!0þ

Z

1

0

dsð�ieiðx�ejþigÞsÞ ¼ lim
g!0þ

1
x� ej þ ig

ðA:17Þ

where g is a positive infinitesimal quantity necessary for the convergence of the
integral. In an analog way, the advanced green function in energy space:

Gaðj;xÞ ¼ lim
g!0þ

1
x� ej � ig

ðA:18Þ

or in other basis:

Gr;aða; b;xÞ ¼ lim
g!0þ

X

j

hajjihjjbi
x� ej � ig ðA:19Þ

The green function can be rewritten as a matrix operator, using this definition

Gr;aða; b;xÞ ¼ hajGr;aðxÞjbi; where G
r;aðxÞ ¼

X

j

jjihjj
x� ej � ig ðA:20Þ

This is known as the spectral representation of the green function. The meaning of
Green function, and the connection with Green functions in classical physics can
be made just noting that Gr;aðxÞ can be written as:

G
r;aðxÞ ¼ ½ðx� igÞI�H��1 ðA:21Þ
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This is the usual definition of Green functions in classical theory: the ‘‘inverse’’ of
a differential operator, (in this case ðx� igÞI�H). This is the reason of the name
and definition of this function. Moreover, this definition can be useful for one-
electron problems. For instance, in the FIREBALL code, this is the way the green
function is defined.

Coming back to formula (A.20), we can use the Green matrix to calculate the
local density of states (very important in our MO interfaces). It is defined as:

qaðEÞ ¼
X

j

jhajjij2dðE � ejÞ ðA:22Þ

And introducing in (A.20) the mathematical relation:

lim
g!0þ

1
E � ej � ig

¼ P 1
E � ej

� �

� ipdðE � ejÞ ðA:23Þ

we get the following equality (P is the Cauchy principal value of the integral):

qaðEÞ ¼ �
1
p

Im½Gr;a
aa ðEÞ� ðA:24Þ

A.2.2 Many-Body Green Functions

If we are dealing with many-body electron interacting systems, properties of Green
functions are not as straightforward as the one-electron ones. However, we can
deduce some properties about them (that of course, apply for one-electron green
functions too). Let’s consider the energy space representation of Green functions.
For the retarded green function, the first part of the anticommutator is:

hW0jeiHtĉie
iHðt0�tÞĉyj e�iHt0 jW0i ¼

X

m

eiEN
0 shW0jĉie

iHðt0�tÞjWNþ1
m ihWNþ1

m jĉyj jW0i

¼
X

m

e�iðENþ1
m �EN

0 ÞshW0jĉijWNþ1
m ihWNþ1

m jĉyj jW0i

ðA:25Þ

where we have used the property I ¼
P

m jWNþ1
m ihWNþ1

m j. This equation is not as
simple as (A.15), but some information can be taken from it. If we repeat a similar

argument for the second part of the anticommutator we get
P

m e�iðEN
0 �EN�1

m Þs

hW0jĉyj jWN�1
m ihWN�1

m jĉijW0i. The temporal dependence of both equations is the
same as one-electron green function, so the Fourier transform is analog to (A.17)
and we get:
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Gr;aði; j;xÞ ¼
X

m

hW0jĉijWNþ1
m ihWNþ1

m jĉyj jW0i
x� ðENþ1

m � EN
0 Þ � ig

þ
X

m

hW0jĉyj jWN�1
m ihWN�1

m jĉijW0i
x� ðEN�1

m � EN
0 Þ � ig

ðA:26Þ

and the causal Green function is:

Gcði; j;xÞ ¼
X

m

hW0jĉijWNþ1
m ihWNþ1

m jĉyj jW0i
x� ðENþ1

m � EN
0 Þ þ ig

þ
X

m

hW0jĉyj jWN�1
m ihWN�1

m jĉijW0i
x� ðEN�1

m � EN
0 Þ � ig

ðA:27Þ

This is know as Lehmann representation (or spectral representation). We can see
that the green function has not only information of our system, but also of the
system with N � 1 electrons. If we consider the thermodynamic limit N !1,
then ENþ1

0 � EN
0 ! l (chemical potential), and xN�1

m ¼ EN�1
m � EN�1

0 are the
excited states of the system with an extra electron (hole). This way the Green
functions can be written as:

Gr;aði; j;xÞ ¼
X

m

hW0jĉijWNþ1
m ihWNþ1

m jĉyj jW0i
x� l� xNþ1

m � ig
þ
X

m

hW0jĉyj jWN�1
m ihWN�1

m jĉijW0i
x� lþ xN�1

m � ig

ðA:28Þ

With this expression, there are some properties about Green Functions that can be
deduced easily. First of all, the pole structure: they have poles at quasiparticle
energies. Due to �g, the poles does not lie at real axis, but slightly displaced in
complex plane. Also the relationships between the Green matrices:

G
aðxÞ ¼ G

r;yðxÞ

G
cðxÞ ¼

G
rðxÞ if x[ l

G
aðxÞ if x\l

� ðA:29Þ

Another important property of diagonal Green functions, is the Hilbert transform
relationship between real and imaginary part of green functions, due to their pole
structure

Re Gr;a
ii ðxÞ ¼ �

1
p
P
Z

1

�1

dx0
Im Gr;a

ii ðx0Þ
x� x0

Re Gc
iiðxÞ ¼ �

1
p
P
Z

1

�1

dx0
Im Gc

iiðx0Þ sgnðx0 � lÞ
x� x0

ðA:30Þ
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A.2.3 Equilibrium Perturbation Theory and Interaction Picture

Apart from historical Schrödinger and Heisenberg pictures (defined in A.1.4),
there is a third picture of quantum mechanics, very useful in perturbation theory:
the interaction picture. Consider that we have a hamiltonian of the form:

bH ¼ bH0 þ bV ðA:31Þ

where bH0 is a exactly solvable hamiltonian, and bV a small perturbation of the

hamiltonian (that can depend on t, bV ¼ bV ðtÞ). In this case we can use perturbation

theory, in order to have a series expansion whose terms are of the order bV n (see
below). The states and operators are defined in interaction picture as:

jWðtÞiI ¼ eibH0t=�hjWðtÞiS ¼ eibH0t=�he�ibHt=�hjWiH
bOIðtÞ ¼ eibH0t=�h

bOSe�ibH0t=�h
ðA:32Þ

Note that eibH0t=�he�ibH t=�h 6¼ e�ibV t=�h due to ½bH0; bH � 6¼ 0 in general. The equations of
motion of the states and operators are on the form:

i�h
d

dt
jWðtÞiI ¼ bV ðtÞjWðtÞiI ; i�h

d

dt
bOIðtÞ ¼ ½bOI ; bH0� ðA:33Þ

In the interaction picture the temporal evolution operator is defined as

jWðtÞiI ¼ bSðt; t0ÞjWðt0ÞiI , and has the following properties:

i
d

dt
bSðt; t0Þ ¼ bVbSðt; t0Þ

bSðt; t0Þ ¼ eibH0t=�he�ibH ðt�t0Þ=�he�ibH0t0=�h

jWiH ¼ bSð0; tÞjWðtÞiI ; bOHðtÞ ¼ bSð0; tÞbOIðtÞbSðt; 0Þ

ðA:34Þ

As said before, we can perform a series expansion of bSðt; t0Þ using the first

equation in (A.34). If we start with bSðt; t0Þ ¼ I and solve iteratively the first
equation on (A.34); we get:

bSðt; t0Þ ¼ Iþ
X

1

n¼1

ð�iÞn

n!

Z

t

t0

dt1. . .

Z

t

t0

dtnT ½bV ðt1Þ. . .bV ðtnÞ�

¼ T exp �i

Z

t

t0

dt1 bV ðt1Þ

0

@

1

A

2

4

3

5 ðA:35Þ

where T is the time ordering operator.
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Adiabatic hypothesis
Usually, in quantum mechanics, what we want to calculate is the mean value of an
observable O in the ground state, that is what can be measured experimentally. It
can be calculated (in Heisenberg picture) as:

hOiðtÞ ¼ hW0;H jbOHðtÞjW0;Hi
hW0;H jW0;Hi

ðA:36Þ

that can be rewritten in interaction picture as:

hOiðtÞ ¼ hW0;H jbSð0; tÞbOIðtÞbSðt; 0ÞjW0;Hi
hW0;H jW0;Hi

ðA:37Þ

Now we are going to make use of the adiabatic hypothesis. It consist on switching
on (and off) the perturbation very slowly, so the perturbation is practically constant
(and equal to the actual perturbation) during the time scale of the problem, but this
interaction does not exist in t ¼ �1;þ1. Mathematically, we introduce a time

dependence bV ðtÞ ¼ bV e�gjtj, where g! 0þ. With this hypothesis we ensure that
the at t ¼ �1 the ground state is the ground state of the unperturbed hamiltonian

(bH0): jW0
0;Hi. On the other hand, jW0;Hi, the ground state of the perturbed one is

(apart from a phase factor):

jW0;Hi ¼ bSð0;�1ÞjW0
0;Hi ðA:38Þ

Introducing this back in Eq. (A.37) we get:

hOiðtÞ ¼
hW0

0;H jbSð1; tÞbOIðtÞbSðt;�1ÞjW0
0;Hi

hW0
0;H jbSð1;�1ÞjW0

0;Hi
¼
hW0

0;H jT½bOIðtÞbSð1;�1Þ�jW0
0;Hi

hW0
0;H jbSð1;�1ÞjW0

0;Hi
ðA:39Þ

where, due to temporal symmetry, the ground state at t ¼ �1 and t ¼ 1 is the
same except for a phase factor, that is exactly canceled with the denominator. We

can introduce here the explicit value of bS (A.35), and what we get is sandwiches of

the form hW0
0;H jT ½bOIðtÞbV ðt1Þ. . .bV ðtnÞ�jW0;Hi. And if we write bOIðtÞ and bV ðt1Þ in

terms of creation and annihilation operators (using (A.4),(A.5) and remembering

that bOIðtÞ ¼ eibH0t
bOSe�ibH0t does not depend on the perturbed hamiltonian), we get

sandwiches of the form:

hW0
0;H jT ½ĉiðt1Þĉyi ðt2Þ. . .ĉiðtn�1Þĉyi ðtnÞ�jW0

0;Hi
¼
X

ð�1ÞchW0
0;H jT ½ĉiðt1Þĉyi ðt2Þ�jW0

0;Hi. . .hW0
0;H jT ½ĉiðtn�1Þĉyi ðtnÞ�jW0

0;Hi ðA:40Þ

where the sum is extended to all possible permutations of the operators, and c is
the number of permutations. The previous equation is called Wick theorem and is
very important in many-body theory.
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It is necessary to note that, due to Wick theorem, we get terms of the form

hW0
0;H jT ½ĉiðtÞĉyi ðt0Þ�jW0

0;Hi, that are precisely (apart from a factor) the causal green
function of the unperturbed system. Here relies one of the most important uses of
Green functions.

Dyson equation

If we take bOHðtÞ ¼ ĉiðtÞĉyj ðt0Þ in (A.37), and realize that hOiðtÞ ¼ Gcði; t; j; t0Þ we
can use the work of previous section to obtain a perturbative expansion of the
green function.

Gði; t; j; t0Þ ¼ 1

hW0
0;H jbSð1;�1ÞjW0

0;Hi

� G0ði; t; j; t0Þ þ
X

1

n¼1

ð�iÞnþ1

n!

Z

1

�1

dt1. . .

Z

1

�1

dtnhW0
0;H jT ½ĉiðtÞbV ðt1Þ. . .bV ðtnÞĉyj ðt0Þ�jW0

0;Hi

2

4

3

5

ðA:41Þ

Applying Wick theorem to Eq. (A.41) leads to a sum of terms that can be easily
understood in terms of Feynman diagrams (see for example [3] for a complete
discussion about Feynman diagrams). However we are not interested now about
diagrams. Just realize that in that expansion we will have always terms on the form

hW0
0;H jT ½ĉiðtÞĉyj ðt0Þ�jW0

0;Hi (there are other terms, but they are zero, or are canceled
by the denominator). It can be proved [2] that expansion can be written in the
following form:

Gði; t; j; t0Þ ¼ G0ði; t; j; t0Þ þ
X

k;l

Z

1

�1

dt1

Z

1

�1

dt2G0ði; t; k; t1ÞRIðk; t1; l; t2ÞG0ðl; t2; j; t
0Þ

ðA:42Þ

or in energy space

Gði; j;xÞ ¼ G0ði; j;xÞ þ
X

k;l

G0ði; k;xÞRIðk; l;xÞG0ðl; j;xÞ ðA:43Þ

or in matrix notation.

GðxÞ ¼ G
0ðxÞ þG

0ðxÞRj IðxÞG0ðxÞ ðA:44Þ

where RI is the improper selfenergy. It can be used to describe the effect of an
external potential or the electron-electron interaction. It is necessary to realize the
compactness of this equation, if it is compared with (A.41), due to all the effect of
the perturbation is included in RI .

In the case of an external potential, the meaning of RI can be easily understood
as the bare electron scattering an arbitrary number of times with the potential (the
series expansion term of order n of RI contains n scattering events). It can be
written in a different form, considering that the self energy contains only one
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scattering processes, but with the dressed electron instead of the bare one.
Mathematically that means:

Rj IðxÞG0ðxÞ ¼ Rj ðxÞGðxÞ ðA:45Þ

where R is the proper selfenergy (or just selfenergy). So we arrive to the important
Dyson equation

GðxÞ ¼ G
0ðxÞ þG

0ðxÞRj ðxÞGðxÞ ðA:46Þ

We can easily solve the equation for GðxÞ:

GðxÞ ¼ ½xI�H0 � Rj ðxÞ��1 ðA:47Þ

This equation shows that the effect of selfinteraction is to renormalize dynamically
(it depends on x) the unperturbed hamiltonian.

In the case that the external potential bV is a one-electron one we get:

GðxÞ ¼ G
0ðxÞ þG

0ðxÞVGðxÞ ðA:48Þ

This can be derived without this complex many-body perturbation theory

formalism, just taking into account that GðxÞ ¼ ½xI�H0 � V��1 and G
0ðxÞ ¼

½xI�H0��1 (Eq. (A.21)).

A.2.4 Non Equilibrium Perturbation Theory
and Keldysh Formalism

The formalism developed in previous section can be used for a full variety of
different situations as long as processes during adiabatic perturbation switching on
and off are reversible. The problem is that many processes of physical interest are
irreversible, so the hypothesis that the ground state at t ¼ �1 only differs in a
phase factor is no longer true. A very important irreversible processes that has
been investigated during this thesis is the electron transport (current through
molecules or STM simulations). In this case, the perturbation generates an electron
flow form one electrode to the other that changes irreversibly the system.

Keldysh [4] considered the following argument. If we don’t know what the state
of the system at t ¼ þ1 will be, let’s evolve our system back to t ¼ �1 again,
so:

hOiðtÞ ¼ hW0
0;H jbSð�1; tÞbOIðtÞbSðt;�1ÞjW0

0;Hi ðA:49Þ

The denominator is not needed, because we evolve our state back to t ¼ �1. We

can use the property bSð�1; tÞ ¼ bSð�1;þ1ÞbSðþ1; tÞ.
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hOiðtÞ ¼ hW0
0;H jbSð�1;þ1ÞbSðþ1; tÞbOIðtÞbSðt;�1ÞjW0

0;Hi
¼ hW0

0;H jbSð�1;þ1ÞT ½bOIðtÞbSðþ1;�1Þ�jW0
0;Hi ðA:50Þ

In order to have a more compact expression the idea of temporal Keldysh
contour is introduced (see Fig. A.1). We go from �1 to þ1 following the
‘‘positive’’ chronological branch (denoted by the subindex þ), and then come back
to �1 following the ‘‘negative’’ antichronological branch (denoted by the

subindex �), so the contour evolution operator bSc follows bScð�1�;�1þÞ ¼
bSð�1;þ1ÞbSðþ1;�1Þ, and Eq. (A.50) can be rewritten as:

hOiðtÞ ¼ hW0
0;H jTc½bOIðtÞbScð�1�;�1þÞ�jW0

0;Hi ðA:51Þ

This is the analog to (A.39) for the non-equilibrium case. And, like in (A.39) we
can use Wick theorem to rewrite the expression in terms of Green functions.
However, now we have to realize that we have four different Green functions,
depending on which branch are times t and t0. These are:

Gþþði; t; j; t0Þ ¼ �ihW0jTc½ĉiðtþÞĉyj ðt0þÞ�jW0i ¼ �ihW0jT ½ĉiðtÞĉyj ðt0Þ�jW0i
G��ði; t; j; t0Þ ¼ �ihW0jTc½ĉiðt�Þĉyj ðt0�Þ�jW0i ¼ �ihW0j�T ½ĉiðtÞĉyj ðt0Þ�jW0i
Gþ�ði; t; j; t0Þ ¼ �ihW0jTc½ĉiðtþÞĉyj ðt0�Þ�jW0i ¼ �ihW0jĉyj ðt0ÞĉiðtÞjW0i
G�þði; t; j; t0Þ ¼ �ihW0jTc½ĉiðt�Þĉyj ðt0þÞ�jW0i ¼ �ihW0jĉiðtÞĉyj ðt0ÞjW0i

ðA:52Þ

where �T orders anti-chronologically the operators (in the negative branch). Further
details about this formalism and its relationship with conductance calculation can
be found in [5, 6].
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Appendix B
Different Approximations for a Simple
Benzene Model: Hybrid Functionals

B.1 Simple Hydrogen and Benzene Toy-Model

In Sect. 2.7, we presented some methods that allow us to correct the underesti-
mation of the LDA gap. In this section we will apply these approximations to
simple Hubbard-like benzene and hydrogen models, where we only consider one
electron per site. The simplicity of these models allow us to gain some insight on
the physical meaning of the different approximation used in this thesis, and try
more sophisticated ones. Moreover, as these hamiltonian are exactly solvable we
can compare the validity of the different approximations.

In benzene model we are going to consider only 6 p orbitals (that are the
orbitals that contribute to the HOMO and LUMO) and a Stotal

z ¼ 0 configuration.
First neighbors interact via a hopping t ¼ 2:54 eV. Electrons at the same site
experiment a coulomb repulsion characterized by U ¼ 19:2 eV (see Sect. 2.5 and
A.1.3) that has been calculated using gcluster [1] for pz orbitals; and electrons at
different sites experiment a coulomb repulsion J that behaves with distance as
J / 1=d. In our case the proportionality constant is 12:56 eV�Å. Simpler benzene
models also have been studied. The mathematical form of the hamiltonian is:

bH ¼
X

i;r

e0n̂ir �
X

i;r

tðĉyiþ1rĉir þ ĉyirĉiþ1rÞ þ
X

i

Un̂i"n̂i# þ
1
2

X

i;j;r;r0
Jijn̂irn̂jr0

ðB:1Þ
Using the finite basis set fjn1;"; n1;#; . . .n6;"; n6;#ignir¼0;1 we can write the

hamiltonian in a matrix form and diagonalize it. It is not very demanding because

of the matrix size is
6
3

� �2

� 6
3

� �2

¼ 400� 400; however, it is interesting to note

that this number increases as n! so, for instance, a 8 atom aromatic hydrocarbon

matrix size will be
8
4

� �2

� 8
4

� �2

¼ 4900� 4900, or if we want to take into
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account all the valence electrons in benzene (including hydrogen s), we will need a

30
15

� �2

� 30
15

� �2

¼ ð2:4� 1016Þ � ð2:4� 1016Þ matrix, that means, that if we

want to store it we will need 2 sextillion TB of RAM in single precision (let alone
diagonalize it!). That is the reason why we need approximations in any realistic
system, and only idealized systems can be analyzed exactly.

The hydrogen toy model is much simpler, because we only have a 4� 4 matrix,
since we are going to consider only 1 s orbitals for each hydrogen, with a hopping
t between orbitals. Intraatomic (U) and interatomic (J) interaction are also
included. This model (without the J parameter) was solved analytically in the
thesis of Alvaro Martín-Rodero [2]. The hamiltonian is just:

bH ¼ e0

X

r

ðn̂1r þ n̂2rÞ � t
X

r

ðĉy1rĉ2r þ ĉy2rĉ1rÞ

þ Uðn̂1"n̂1# þ n̂2"n̂2#Þ þ J
X

r;r0
n̂1rn̂2r0 ðB:2Þ

B.2 ‘‘DFT’’ spectra

Let’s begin with the simplest approximation: the DFT-like approach. It is clear that
in such a mean-field like model, the ground state will have one electron at each
site, so nir ¼ 1=2. In this kind of approach the Hartree, exchange and correlation
potential will be (see Sect. 2.5.1).

ðVLD�OO
H Þir;jr ¼

X

r0
Uni;r0 þ

X

j; r0

j 6¼ i

Jini;r0

ðVLD�OO
X Þir;jr ¼ �Jeff

i
1
2
� nir0

� �

di;j

ðVLD�OO
C Þir;jr ¼ �firðU � Jeff

i Þ
1
2
� nir0

� �

di;j

ðB:3Þ

Note that, exchange and correlation potentials are just zero (because nir ¼ 1=2), so
what we get is that the Hartree and DFT quasiparticle spectra coincide (note that

the energies are different: EX ¼ �1=2
P

ir Jeff
i nirð1� nirÞ 6¼ 0. The DFT solution

is analytical both for the benzene and hydrogen cases.

Fig. B.1 Schematic figure of
the idealized benzene that we
are considering in our
calculations
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B.2.1 Hydrogen

In the case of hydrogen the hamiltonian is just a two level system, whose
eigenvalues are e ¼ e0 þ U

2 þ J � t, and the gap is Eg ¼ 2t.

B.2.2 Benzene

The benzene solution is:

wm ¼
1
ffiffiffi

6
p
X

6

j¼1

eiumj/j where um ¼ m
2p
6

m ¼ 1; . . .; 6 ðB:4Þ

Em ¼ e0 þ 2t cos um þ
U

2
þ 2J1;2 þ 2J1;3 þ J1;4

¼
e0 � 2t þ U

2 þ 2J1;2 þ 2J1;3 þ J1;4

e0 � t þ U
2 þ 2J1;2 þ 2J1;3 þ J1;4

(

ðB:5Þ

So the gap in this simple model is just Eg ¼ 2t ¼ 5:08 eV. As we have said before,
due to the exchange and correlation potentials are zero in this approximation, the
DFT solution is the same as the Hartree one.

B.3 Hartree-Fock Versus Exact Results

In this section we will compare the Hartree-Fock solution with the exact one. For
the benzene case, several approximations to the hamiltonian presented in B.1 will
be introduced in order to gain some insight in the comparison between Hartree-
Fock and exact results.

As stated in Sect. 2.7.3 the hamiltonian can be rewritten with a non-diagonal
potential of the form (Eq. 2.88):

ðVHF�OO
X Þir;jr ¼ �Jijnir;jr ðB:6Þ
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B.3.1 Hydrogen

Exact solution
The hamiltonian eigenvalues of the full 4� 4 matrix are (see [8]):

e4 ¼ 2e0 þ
U þ J

2
þ 1

2
c

e3 ¼ 2e0 þ U

e2 ¼ 2e0 þ J

e1 ¼ 2e0 þ
U þ J

2
� 1

2
c

ðB:7Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU � JÞ2 þ 16t2
q

. However, the gap is not Eg ¼ e2 � e1 ¼ J�U
2 þ 1

2 c,

because we need to calculate the ground state of the system with �1 electrons.
When we do so we get:

For N � 1
e2 ¼ e0 þ t

e1 ¼ e0 � t

�

For N þ 1
e2 ¼ 3e0 þ U þ 2J þ t

e1 ¼ 3e0 þ U þ 2J � t

�
ðB:8Þ

The actual transport energy gap Eg ¼ E½N þ 1� þ E½N � 1� � 2E½N� ¼ J þ c� 2t.
Note that c[ 4t so this gap is always greater than the DFT gap, no matter the
value of J is. The same holds for benzene, as we will see.

Hartree-Fock approximation
For hydrogen we get that n1;2 ¼

P

n2occ: c
n
1cn

2 ¼ 1=2 and ðVHF�OO
X Þ1;2 ¼ �J=2, and

the Hartree-Fock hamiltonian is just the DFT one with an effective hopping �t!
�t � J=2 that gives the following spectra:

e2 ¼ e0 þ
U

2
þ 3J

2
þ t

e1 ¼ e0 þ
U

2
þ J

2
� t

ðB:9Þ

The gap in this case is Eg ¼ 2t þ J that is greater than the DFT gap EDFT
g ¼ 2t.

However, it is still smaller than the exact gap Eexact
g ¼ c� 2t þ J (remember that

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU � JÞ2 þ 16t2
q

[ 4t), so the gap is underestimated. Note that, when U ¼
J the Hartree-Fock and the exact gap coincide. This is because the correlation
depends on U � J (see Eq. 2.58, and the form of self-energy in (B.11)). In benzene
we also obtain this result.
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B.3.2 Benzene: J ¼ 0 Case

For the shake of simplicity first we are going to consider a benzene hamiltonian
where J ¼ 0 and the effect of J is taken into account in Ueff , that has the value
Ueff ¼ U � Jeff ¼ 10:73 eV. The Hartree-Fock and the DFT hamiltonian coincide
(since J ¼ 0) and we get the following Hartree-Fock spectra:

e0 � 2t þ Ueff

2

e0 � t þ Ueff

2

ðB:10Þ

The exact gap for this case is 7.12 eV, larger than the DFT (HF) one (5.08 eV).
However, the difference between the DFT and the exact gap is smaller, compared
with cases where J 6¼ 0. In Fig. B.2 we show the DOS for both the HF and the
exact hamiltonian. The DOS for the HF case has been calculated using the one-
electron green function formulas (A.21) and (A.24), and the exact DOS has been
calculated with the spectral representation of the many-body green function
(A.26). It can bee seen than the exact spectra contains much more features than the
approximate ones due to many-body interactions. This also makes the weight of
the HOMO and LUMO peaks smaller.

B.3.3 Benzene: All J Equal, But J 6¼ 0

Although this is not very physical, this system is simpler than the realistic case
where J / 1=d, because Ji;j ¼ Jeff for all i; j. It allow us to compare its results
directly with the more sophisticated approach including second order self-energy
where Ueff ¼ U � J.
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Fig. B.2 DOS of the exact
hamiltonian of the benzene
molecule (with J ¼ 0) and of
the HF approximation for the
same parameter values. The
origin of energies has been
chosen to be the mid-gap to
see the electron-hole symme-
try of the problem
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In the case of the benzene molecule, we obtain the values n1;2 ¼ 1=3, n1;3 ¼ 0,
and n1;4 ¼ �1=6 that can be calculated using the eigenfunctions of (B.4). Note
that, although the HF hamiltonian is not the same as the DFT one (it has the non-
diagonal elements ðVHF�OO

X Þi;j ¼ �Jni;j) the eigenfunctions remain the same, due
to the symmetry of the hamiltonian. The value for all J is 8.47 eV, obtained
through Eq. (2.57). The obtained gap is 13.55 eV, not far from the Hartree-Fock
gap calculated using all J different (see next section). On the other hand, the exact
gap, calculated with this set of parameters is 15.40, so Hartree-Fock give us an
underestimation of 1.85 eV, instead of the usual Hartree-Fock overestimation [3].

As in hydrogen, we analyze the special case J ¼ U, that makes
Ueff ¼ U � J ¼ 0, and the second order selfenergy is zero. In this particular
case, as in hydrogen, the Hartree-Fock approximation gives the exact solution of
the system. Both gives the same DOS, with a gap of 24.28 eV.

B.3.4 Benzene: All J Different

This is the most physical case. The exact gap that we get is 14.59 eV, larger than
the previous case. Note that this gap is far from the 10.38 eV experimental gap.
This is due to the extremely minimal basis set used. In Fig. B.4 there is a figure of
the DOS for the exact case.

In this case the HF gap is 12.55 eV, again smaller than the exact case, but much
closer to the exact gap than the DFT functional. In the next section we will go
beyond the Hartree-Fock approximation and try to get better results by including
self-energy terms.
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Fig. B.3 DOS of the exact
hamiltonian of the benzene
molecule (with the same
coulomb interaction J) and of
the HF approximation for the
same set of parameters
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B.4 Beyond Hartree-Fock: Including Self Energy Terms

As stated in [2], a relatively simple Feynman diagram expansion of self energy, up
to second order gives us the following formula:

Rð2Þi;j ðxÞ ¼ ðU
eff
i;j Þ

2
Z

EF

�1

dE2

Z

1

EF

dE3

Z

1

EF

dE4
qð0Þi;j;�rðE2Þqð0Þi;j;�rðE3Þqð0Þi;j;þrðE4Þ

xþ E2 � E3 � E4 þ ig

þ ðUeff
i;j Þ

2
Z

1

EF

dE2

Z

EF

�1

dE3

Z

EF

�1

dE4
qð0Þi;j;�rðE2Þqð0Þi;j;�rðE3Þqð0Þi;j;þrðE4Þ

xþ E2 � E3 � E4 þ ig

ðB:11Þ

where qð0Þi;j;�r is the local, non-diagonal density of states for DFT and

Ueff
i;j ¼ U � Ji;j. Despite of the complicated structure of the selfenergy, all

integrals are analytical (both for benzene and hydrogen) because the non-diagonal
density of states consist on a sum of delta functions. By this way we can write an
effective hamiltonian (in the matrix form):

H
eff ðxÞ ¼ H

HF þ Rj ð2ÞðxÞ ) G
ð2Þ ¼ GðxÞ ¼ ½xI�H

eff ��1 ðB:12Þ
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Fig. B.4 DOS of the exact
hamiltonian of the benzene
molecule (with all J different)
and of the HF approximation
for the same set of parameters
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B.4.1 Hydrogen

For the hydrogen, there is an analytical solution at this level. Using (B.11) and
q11ðxÞ ¼ q22ðxÞ ¼ 1=2dðx� e0 � U=2� J þ tÞ þ 1=2dðx� e0 � U=2� J � tÞ,
q12ðxÞ ¼ q21ðxÞ ¼ 1=2dðx� e0 � U=2� J þ tÞ � 1=2dðx� e0 � U=2� J � tÞ
we obtain that:

R11ðxÞ ¼ R22ðxÞ ¼
ðU � JÞ2

8
1

x� e0 � U=2� J � 3t
þ 1

x� e0 � U=2� J þ 3t

� �

¼ ðU � JÞ2

4
x� e0 � U=2� J

ðx� e0 � U=2� JÞ2 � 9t2

ðB:13Þ

and for the non-diagonal self-energy:

R12ðxÞ ¼ R21ðxÞ ¼
ðU � JÞ2

8
1

x� e0 � U=2� J � 3t
� 1

x� e0 � U=2� J þ 3t

� �

¼ 3ðU � JÞ2

4
t

ðx� e0 � U=2� JÞ2 � 9t2

ðB:14Þ

Now we can construct the green function using (B.12) and calculate its poles; they
are the peaks at the density of states, and consequently, the quasiparticle spectra.
These values are:

xi ¼ e0 þ
U

2
þ J � t � J

4

� �

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU � JÞ2 þ 4t þ J

2

� �2
s

ðB:15Þ

The gap at this level is Eg ¼ J=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU � JÞ2 þ ð4t þ J=2Þ2
q

� 2t (for J\4t).

Note that apart from the cases J ¼ 0, or U � J ¼ 0 and J\4t second order R is
not able to get the exact gap; however it is a better approximation than HF alone
(it can be shown that the difference between the exact gap and the approximate gap
is always greater in HF than at this level). However for systems with big J

(J [ 4t), the gap is Eg ¼ 2t � J=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU � JÞ2 þ ð4t þ J=2Þ2
q

, that is smaller

than the HF gap, so the value of the gap is worst in this case including the second
order self-energy than if we do not include it.

So, in strongly correlated systems (with large J), the second order selfenergy is
not able to improve the HF gap (actually it worsens it).
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B.4.2 Benzene

For the benzene, we are going to analyze the three different approximations made
in last section. First the case with U ¼ Ueff and J ¼ 0, then the case where all
Ji;j ¼ Jeff , and then all J different. Regarding the value of Ueff in (B.11), we have
chosen in all cases Ueff ¼ U � Jeff .

In Fig. B.5 we have plotted the exact, HF and HFþRð2Þ DOS for the first case
(J ¼ 0). We can see that this last approximation reproduces better the features of
the small peaks around the gap, and the gap is closer to the exact one (5.57 eV
versus 5.08 for the HF approximation and 7.12 of exact gap). Moreover, we have
tested the importance of off-diagonal elements of self-energy, by calculating the
DOS taking into account diagonal terms only (Rii). Although the difference is not
that high (both reproduce the features of the DOS far from the gap due to
correlation, the gap itself is worse than the HF gap). The fact that the second order
selfenergy does not reproduce as well as hydrogen (with J ¼ 0) second order
selfenergy can be related to the fact that Rð2Þ does not reproduce well the large U
limit.

Figure B.6 shows also the exact, HF, and HFþRð2Þ results for all J equal to
each other. With the inclusion of Rð2Þ we obtain a gap of 7.69 eV, that compares
worse with the exact gap (15.40 eV) than HF (13.55). Although it is able to
reproduce qualitatively the small features in the DOS due to the correlation. Due to
J ¼ 3:3t we are dealing with a strong correlated system (for hydrogen, the second
order selfenergy failed to improve the gap for systems with J	 4t). In order to
improve these poor results we have considered HF density in formula (B.11)

(qðHFÞ
i;j;r ðEiÞ instead of qð0Þi;j;rðEiÞ). This implies that Dirac deltas are placed at the HF

eigenvalues. This slightly improves the pure HF case (the gap is 13.66 eV,
compared with pure HF 13.55 eV). We can consider this sigma as a dressed sigma
with the HF results.
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Fig. B.5 DOS of the exact
hamiltonian of the benzene
molecule (with J ¼ 0), the
HF hamiltonian and the
beyond-HF case. Black line:
Exact results; red line: HF
results; green line: HF with
second order self-energy;
blue line: HF with only
diagonal self-energy
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Finally, we have calculated the same as the previous case for all J different, that
is shown in Fig. B.7. We see again that HFþRð2Þ worsens the gap (7.12 eV
compared with exact 14.59 and HF 12.55), and again, if we calculate a dressed
selfenergy, the gap is slightly improved (12.73 eV) compared with the HF case.

So, the inclusion of the second order selfenergy is a better approximation for the
HF gap for systems without strong correlation, but fails to reproduce systems with
strong correlation. In that case we can calculate a dressed selfenergy using the HF
non-diagonal density of states, instead of the DFT one.

B.5 Koopmans’ Correction

Finally, we are going to calculate the energy spectra using the Koopmans’
correction exposed in Sect. 2.7.4 and comparing it to the exact values for the
benzene and hydrogen cases.
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Fig. B.7 DOS of the exact
hamiltonian of the benzene
molecule (J / 1=d), the HF
hamiltonian and the HFþRð2Þ

case. Black line: Exact
results; red line: HF results;
green line: HF with second
order self-energy; blue line:
HF with dressed selfenergy
(see text)
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B.5.1 Hydrogen

Using formula 2.96 and taking into account that for hydrogen Jeff ¼ J and dni ¼
dn0i ¼ 1=2 we get that the Koopmans’ gap is:

EKoop:
g ¼ 2t þ J þ 1

2
f ðU � JÞ ðB:16Þ

where f is the fraction of the exchange hole that is taken back to the atomic level
due to correlation. We can obtain the value of f by just comparing the Koopmans’
gap with the exact one. Then we get:

f ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t

U � J

� �2
s

� 8t

U � J
ðB:17Þ

Note that f ! 0 when U � J ! 0 (as should be excepted) but f ! 2 when U �
J !1 that makes no sense (0\f \1). That show us that the Koopmans’
correction has only physical meaning in systems where correlation is not very
high.

B.5.2 Benzene

For benzene, the simplest case (J ¼ 0) enlarges the gap in 1
4 fU. The value of f that

makes the Koopmans’ and the exact gap coincide is f ¼ 0:76, that show us that
correlation effects are not negligible in benzene.

If J 6¼ 0 but all J ¼ Jeff then the gap ranges from 13.55 to 16.22 (depending on
the value of f chosen), the Koopmans’ shift and the exact gap coincide when
f ¼ 0:69. If U ¼ J, the gap coincides with the HF one so f ¼ 0 (again, there is no
correlation when U ¼ J).

If all J are different, the gap ranges from 11.85 to 14.53, so f ’ 1. Note that in
all cases, correlation is important (f is not far from unity), and that the Koopmans’
shift allow us to improve our results (compared with the second-order selfenergy)
as long as a suitable choice of f is obtained, or, if we cannot estimate the value, a
relatively narrow window (as long as we are not dealing with high correlated
systems, where this approximation fails. For example, in benzene, very good
results are obtained if we consider f 
 0:75 in all cases.

Appendix B: Different Approximations for a Simple Benzene Model 187

http://dx.doi.org/10.1007/978-3-642-30907-6_2


References

1. P. Pou, Energía de canje y correlación como función de los números de
ocupación orbitales: cálculos de energías totales y cuasiparticulas. Ph.D. thesis,
Universidad Autónoma de Madrid, 2001

2. A. Martín-Rodero, Correlación en sistemas descritos por hamiltonianos LCAO:
quimisorción en metales de transición y hamiltoniano de Hubbard. Ph.D. thesis,
Universidad Autónoma de Madrid, 1983

3. K. Kaasbjerg, K.S. Thygesen, Benchmarking GW against exact diagonalization
for semiempirical models. Phys. Rev. B 81(8), 085102 (2010)

188 Appendix B: Different Approximations for a Simple Benzene Model



Appendix C
Spin Dependent Extension of McWEDA
and Hybrid Functionals

C.1 Generalization of McWEDA for LSDA Functionals

C.1.1 Introduction

Density functional theory consider implicitly that there is no spin polarization and
q"ðrÞ ¼ q#ðrÞ ¼ 1=2qðrÞ. However, there is an extension of density functional
theory that allows to handle spin polarized density (see [1–4] and references
therein). There are also functionals that takes into account this polarization [1, 5].
The analogue for the widely used LDA is the local spin density approximation
(LSDA), that is the one that we will consider for McWEDA extension to spin
polarized density.

We are going to work in the ðq"; q#Þ scheme. However, in literature is also
common the ðq; qsÞ one. The relationship between both is:

q ¼ q" þ q#

qs ¼ q" � q#

�

ðC:1Þ

q" ¼ 1
2 ðqþ qsÞ

q# ¼ 1
2 ðq� qsÞ

(

ðC:2Þ

We need to calculate the following matrix elements:

ha; " jexcðq"; q#Þja; "i; ha; # jexcðq"; q#Þja; #i; ha; " jV"xcðq"; q#Þjb; "i;
ha; # jV"xcðq"; q#Þjb; #i; ha; " jV#xcðq"; q#Þjb; "i; ha; # jV#xcðq"; q#Þjb; #i

(

ðC:3Þ

From now on, we will simplify the notation using r ¼"; #.

E. Abad, Energy Level Alignment and Electron Transport Through
Metal/Organic Contacts, Springer Theses, DOI: 10.1007/978-3-642-30907-6,
� Springer-Verlag Berlin Heidelberg 2013
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C.1.2 Energy Matrix Elements

We will begin with the energy matrix elements ha; rjexcðq"; q#Þja; ri using the
same ideas as the McWEDA approximation:

ha; rjexcðq"; q#Þja; ri ¼ ha; rjexcðq";q#Þja; riGSN

þ ðha; rjexcðq"I ; q
#
I Þja; ri � ha; rjexcðq"I ; q

#
I Þja; riGSNÞ

ðC:4Þ

where the GSN matrix element:

ha; rjexcðq"; q#Þja; riGSN ¼ excðqa;"; qa;#Þ

þ
oexcðqa;"; qa;#Þ

oq"
ðha; rjq"ja; ri � qa;"Þ

þ
oexcðqa;#; qa;#Þ

oq#
ðha; rjq#ja; ri � qa;#Þ ðC:5Þ

and the term ha; rjexcðq"I ; q
#
I Þja; ri is calculated as:

ha; rjexcðq"I ; q
#
I Þja; ri ¼ ha; rjexcðq"0I ; q

#0
I Þja; ri

þ ha; rj oexcðq"0I ; q
#0
I Þ

oq"
ðq"I � q"0I Þja; ri

þ ha; rj oexcðq"0I ; q
#0
I Þ

oq#
ðq#I � q#0I Þja; ri ðC:6Þ

Since in literature, it is common to calculate the exchange-correlation energy as a
function of q; qs, we need to calculate the derivatives oexc=oqr instead of
oexc=oqðsÞ. We can overcome this problem easily using the chain rule:

oexc

oq"
¼ oexc

oq
oq
oq"
þ oexc

oqs

oqs

oq"
¼ oexc

oq
þ oexc

oqs

oexc

oq#
¼ oexc

oq
� oexc

oqs

8

>

>

<

>

>

:

ðC:7Þ

And if we take q"0I ¼ q#0I ¼ qI=2 (i.e. neutral charges has no spin polarization),
then oexcðq0

I ; q
0
I;s ¼ 0Þ=oqs ¼ 0 (since exc is an even function of qs). Note that, in

that case there is not spin dependence in the formula (since oexc=oq" ¼ oexc=oq#).
So if we want to have spin dependence we have to choose different qr0

I for r ¼"; #
(i.e. consider a small initial polarization).
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C.1.3 Potential Matrix Elements

Now we take care of the potentials:

V"xcðq"; q#Þ ¼
oðqðrÞexcðq"; q#ÞÞ

oq"
;V#xcðq"; q#Þ ¼

oðqðrÞexcðq"; q#ÞÞ
oq#

ðC:8Þ

That are easily related with the chain rule to Vxcðq; qsÞ;Vs
xcðq; qsÞ:

V"xcðq"; q#Þ ¼ Vxcðq; qsÞ þ Vs
xcðq; qsÞ

V#xcðq"; q#Þ ¼ Vxcðq; qsÞ � Vs
xcðq; qsÞ

(

ðC:9Þ

Now we calculate the general Vr
xc term

ha; rjVr
xcðq"; q#Þjb; ri ¼ ha; rjVr

xcðq"; q#Þjb; riGSN

þ ðha; rjVr
xcðq

"
I ; q
#
I Þjb; ri � ha; rjVr

xcðq
"
I ; q
#
I Þjb; riGSNÞ

ðC:10Þ

The GSN approximation for the potential is:

ha; rjVr
xcðq"; q#Þjb; riGSN ¼ Vr

xcðqa;b;"; qa;b;#ÞSa;b

þ
oVr

xcðqa;b;"; qa;b;#Þ
oq"

ðha; rjq"jb; ri � qa;b;"Sa;bÞ

þ
oVr

xcðqa;b;"; qa;b;#Þ
oq#

ðha; rjq#jb; ri � qa;b;#Sa;bÞ

ðC:11Þ

As in standard McWEDA, the correction to the GSN term varies if a; b are orbitals
of the same atom or not.

The on-site term (a; b are in the same atom):

ha; rjVr
xcðq"; q#Þjb; ri ¼ ha; rjVr

xcðq
"
I ; q
#
I Þjb; ri

þ ha; rj oVr
xcðq

"0
I ; q

#0
I Þ

oq"
ðq"I � q"0I Þjb; ri

þ ha; rj oVr
xcðq

"0
I ; q

#0
I Þ

oq#
ðq#I � q#0I Þjb; ri ðC:12Þ
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The off-site term (a; b are in different atoms):

ha; rjVr
xcðq

"
I þ q"J ; q

#
I þ q#JÞjb; ri ¼ ha; rjVr

xcðq
"0
I þ q"0J ; q

#0
I þ q#0J ÞÞjbri

þ ha; rj oVr
xcðq

"0
I þ q"0J ; q

#0
I þ q#0J Þ

oq"

ðq"I � q"0I þ q"J � q"0J Þjb; ri

þ ha; rj oVr
xcðq

"0
I þ q"0J ; q

#0
I þ q#0J Þ

oq#

ðq#I � q#0I þ q#J � q#0J Þjb; ri ðC:13Þ

C.2 Notes on HF-Like Spin-Dependent Case

C.2.1 The Molecular Case

In the LCAO-OO Hartree-Fock approximation nij is given by:

nij ¼ 2
X

occ:

l¼1

C�li Cl
j ¼ 2

X

N

l¼1

FðlÞC�li Cl
j ðC:14Þ

where the factor 2 is due to the spin degeneracy, N is the number of eigenvalues,
Cl

j is the coefficient j of the eigenstate l (jli ¼
PN

j¼1 Cl
j j/ii) and FðiÞ is the

occupation function. In an even electron molecule

FðlÞ ¼
1 if l� HOMO

0 if l	 LUMO

�

ðC:15Þ

Now, what happens when we have a molecule with an odd number of electrons?
There will be a level half occupied, the Single Occupied Molecular Orbital

(SOMO). So now we need now n"ij and n#ij that can be defined this way:

n"ij ¼
X

occ:"

l¼1

C�li Cl
j ¼

X

N

l¼1

F"ðlÞC�li Cl
j

n#ij ¼
X

occ:#

l¼1

C�li Cl
j ¼

X

N

l¼1

F#ðlÞC�li Cl
j

ðC:16Þ

In this case, let’s suppose that F"ðlÞ ¼ F#ðlÞ if l 6¼ SOMO and F"ðSOMOÞ ¼ 1;
F#ðSOMOÞ ¼ 0. The equation can be rewritten in this way:
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n"ij ¼
1
2

X

N

l¼1

F0ðlÞC�li Cl
j þ

1
2

C�SOMO
i CSOMO

j

n#ij ¼
1
2

X

N

l¼1

F0ðlÞC�li Cl
j �

1
2

C�SOMO
i CSOMO

j

ðC:17Þ

In this case F0ðiÞ is defined as:

F0ðlÞ ¼
2 if l� HOMO

1 if l ¼ SOMO

0 if l	 LUMO

8

>

<

>

:

ðC:18Þ

Is very easy to see that the summation in (C.17) is the non-spin dependent
definition of nij. If we do the following definition:

dnr
ij ¼

1
2

C�SOMO
i CSOMO

j ðC:19Þ

This way Eq. (C.16) can be easily written as:

n"ij ¼
1
2

nij þ dnr
ij

n#ij ¼
1
2

nij � dnr
ij

ðC:20Þ

C.2.2 Failures of this Model

This model offers an easy way to introduce spin-dependent properties in our
system. However, it has several important drawbacks that limit its reliability. First
of all, it is not true that the coefficients Cl

j are not spin independent (electrons with
spin up and down suffer different potentials on the LSDA approximation). Second,
the occupations ni (that are used by standard FIREBALL) are not changed at this

moment, so the sum rule only works in nij ¼ n"ij þ n#ij. Moreover n"ii 6¼ n#ii 6¼ ni.

C.2.3 Molecule Over a Surface

In the case of a molecule over a surface, we don’t have pure molecular states, so
this approach is not suitable a priori. We can, however, consider in a first
approximation that dnr

ij does not change when the molecule is deposited over the

surface, and introduce the dnr
ij calculated for the isolated molecule and obtain n";#ij

using (C.20). This method has the advantage that we will obtain a good value for

nij ¼ n"ij þ n#ij since the contribution of dnr
ij in n"ij and n#ij cancel each other.
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