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Preface

In the late twentieth and the early twenty-first centuries, the most intensive progress
was observed in the sciences, that develop at the junction of two sciences. The most
interesting among them, seem to be those that combine the branches most distant
from each other. If so, then it is easy to identify the leader of such sciences. It is one
that connects the smallest objects available for research, elementary particles, and
these giant objects like stars, and has the name of Particle Astrophysics. It is not
difficult to identify the major milestones in the life of this relatively young, but very
rapidly developing science. The birth is most likely to be dated to the beginning of
the 1930s. Just then, after the discovery of a neutron by J. Chadwick in 1932, the
concept of a neutron star was proposed by L. D. Landau, and independently by
W. Baade and F. Zwicky. The start of the maturation of this science can be more or
less confidently dated to 1987 when extragalactic neutrinos were registered for the
first time from the supernova SN1987A explosion in the Large Magellanic Cloud, a
satellite galaxy of our Milky Way. For the date of the endpoint of the maturation
period for particle astrophysics, one can propose 2001 when the solar-neutrino
puzzle was solved in a unique experiment at the heavy-water detector installed at
the Sudbury Neutrino Observatory. This experiment confirmed B. Pontecorvo’s key
idea concerning neutrino oscillations and, along with experiments that studied
atmospheric and reactor neutrinos, thereby proved the existence of a nonzero
neutrino mass and the existence of mixing in the lepton sector. The Sun appeared in
this case as a natural laboratory for investigations of neutrino properties.

There exist some books on the topic where the basics of this new science can be
studied. However, new facts and ideas appear so fast that it is necessary for
specialists to follow not only journal papers but also electronic preprints, in order
to keep abreast of the latest developments.

A page of this new science, which on the one hand is rather difficult and on the
other hand is not covered enough by books or reviews, deals with the particle
processes under the extreme conditions of the stellar interior—hot dense plasma
and strong electromagnetic fields. This discipline, which can be called Quantum
Field Theory in an External Active Media, was founded in the 1970s, and now it
continues in motion. As an attempt to set some milestone, the objective of our
previous monograph [1] was to give a systematic description of the methods of
calculation of the quantum processes, both at the tree and loop levels, in external
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electromagnetic fields. The aim of the present monograph is to consider the
quantum processes under an influence of, along with a magnetic field, one more
external active media which is hot dense plasma.

The review is based in part on the special lecture course given to the second-
year master-course students studying at the Theoretical Physics Department of the
Yaroslavl State University, Yaroslavl, Russia. It can be used by graduate and
postgraduate students specializing in theoretical physics and being familiar with
the basics of the Quantum Field Theory and the Standard Model of the Electro-
weak Interactions. The authors make a great effort to give all the details that will
make this book a valuable text for students. The monograph can be also useful for
specialists in the Quantum Field Theory and particle physics, who are interested in
the problems of physics of quantum phenomena in external active media.

We have obtained a part of the results presented in this monograph in
co-authorship with our colleagues and with our graduate and postgraduate students
at the Department of Theoretical Physics of Yaroslavl State University. We thank
L. A. Vassilevskaya, A. A. Gvozdev, A. Ya. Parkhomenko, M. V. Chistyakov,
L. S. Ognev, E. N. Narynskaya, D. A. Rumyantsev, A. A. Okrugin, R. A. Anikin,
A. M. Shitova, and M. S. Radchenko for collaboration and helpful discussions.

We are grateful to S.I. Blinnikov, V.A. Rubakov, V.B. Semikoz, and M.L
Vysotsky for many fruitful discussions and to G.G. Raffelt for collaboration in
obtaining the results, concerning the self-energy neutrino operator in a magnetic
field. We are thankful to H.-T. Janka and B. Miiller for providing us with detailed
data on radial distributions and time evolution of physical parameters in the
supernova core, obtained in their model of the SN explosion. With a warm feeling
we want to mention the many lively discussions with K.A. Ter-Martirosian, whose
strong support in the 1990s proved to be crucial for our research group.

A part of the results presented in this monograph was obtained in the study
performed within the State Assignment for Yaroslavl University (Project #
2.7508.2013), and supported by the Russian Foundation for Basic Research (Project
# 11-02-00394-a).

Yaroslavl, March 2013 Alexander Kuznetsov
Nickolay Mikheev
Reference

1. A.V. Kuznetsov, N.V. Mikheev, Electroweak Processes in External Electro-
magnetic Fields (Springer, New York, 2003)
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Chapter 1
Introduction

Astroparticle physics has manifested itself in recent decades as a vigorously growing
and prospective line of investigation at the junction of particle physics, astrophysics,
and cosmology; see e.g. [1-3]. An important stimulus of its development is an under-
standing of the essential role of quantum processes in the dynamics of astrophysical
objects and of the early Universe. On the other hand, extreme physical conditions
existing inside such objects, namely, the presence of hot dense plasma and strong
electromagnetic fields, make an active influence on the run of quantum processes,
thus allowing or enhancing the transitions that are forbidden or strongly suppressed
in a vacuum. In this connection, there exists a stable interest in investigations of
particle interactions in external active media.

This line of research is relevant to at least three from the list of the 30 top problems
of physics and astrophysics for the beginning of the twenty-first century, formulated
by Prof. V.L. Ginzburg in 1999 [4]. They are:

e the behavior of matter in superstrong magnetic fields;
e neutron stars and pulsars, supernova stars;
e neutrino physics and astronomy, neutrino oscillations.

It is known, that matter on the Earth in a natural form is rarely in the plasma
state, or it exists during a very short time. In contrast, most of the baryonic matter
in the Universe as a whole is a plasma in any form. Theoretical and experimental
study of this state of matter has a long history and is still relevant. Nowadays, one
of the priority areas of research is the study of plasma in extreme conditions. Such
states, usually occur either at high temperature or density, or in ultrahigh external
fields. In these conditions, plasma often has a completely new and unusual proper-
ties. The study of them is necessary to describe the behavior of the plasma as well
as objects in which it is present. Appropriate conditions for the emergence of this
plasma could occur in the early stages of the evolution of the Universe when it was
very hot. A similar situation can also be realized in high-power stellar cataclysms
and in compact astrophysical objects having very high density. Extreme values of
physical parameters: temperature, density, magnetic field intensity, component com-
position, arising in Supernova explosions [5, 6], allow to characterize these objects
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2 1 Introduction

as a unique natural laboratories to study the physical properties of the plasma under
conditions that are currently (and may be ever) can not be implemented in terrestrial
experiments [7-9].

The close relationship of the laws of microcosm and macrocosm, which is realized
in the core collapse supernovae [10], where the laws are simultaneously valid both of
the general relativity and nuclear and particle physics, allows to analyze the physical
properties of the plasma in these unique environment, and also to investigate the
effects of hot, dense plasma on the quantum processes, and to determine the funda-
mental characteristics of particles on the basis of astrophysical data, and finally, to
study the impact of microphysics on astrodynamics [2, 3].

The study of plasma at extreme physical parameters which exist in a supernova
explosion is one of the best examples of an interaction of branches of physical science
which seem to be far from each other. The fact is that for a short time, such a plasma
can be obtained in collisions of elementary particles and nuclei in accelerators.

In the recent years, the most significant progress has been made in the experimental
study of the plasma. This is primarily due to the discovery at CERN of a new state
of matter called quark-gluon plasma, which was obtained in collisions of heavy
nuclei [11]. Today, the investigation continues actively at the accelerator of heavy
ions RHIC [12], and the studies have been started at the Large Hadron Collider
(LHCO) [13, 14]. It is well-known that the quarks, by reason of the strong interaction,
are associated into colorless objects, hadrons, and can not be observed in the free state.
This phenomenon called quark confinement is sufficiently well studied. However,
at high collision energies plasma can be formed, in which quarks and gluons are
unconnected, then there is a deconfinement. The duration of the quark-gluon stage
is only a small fraction of the evolution time of a system of colliding particles,
though its influence is very essential and can be observed by an increased output
of strange mesons, the decrease in the output of heavy J/¢ mesons, and by an
increased output of photons and lepton-antilepton pairs with high energy [15]. It
should be noted that, despite the fact that the properties of the quark-gluon plasma
significantly different from all known states of matter, it has a lot of similarity with
conventional electromagnetic plasmas [16].

A separate chapter in the physics of hot dense plasma is the research of its impact
on quantum processes, which have a critical influence on the macroscopic char-
acteristics of some astrophysical objects like supernovae and young neutron stars.
The influence of the plasma on the quantum processes is twofold. On the one hand,
under its influence the matrix elements may be modified, which means the change
in the dynamics of the processes. On the other hand, the plasma influence changes
the dispersion properties of particles, i.e., the process kinematics. As the result, the
reactions can be opened or significantly enhanced which are kinematically forbidden
or strongly suppressed in a vacuum. Among the best known processes, the photon
decay into a pair of neutrino and antineutrino, v — v, can be indicated. This
process, being forbidden in vacuum, is possible due to the plasma influence on the
dispersion properties of a photon which acquires an effective mass. As a result, the
decay v — vv is kinematically allowed and may occur in stars [17, 18]. In fact, this
so-called plasma process is the primary mechanism of the neutrino emission by stars
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in a wide range of temperatures and densities, including, for example, the physical
conditions inside the white dwarfs and red giants.

Along with the hot dense plasma, a significant effect on the quantum processes
can be provided by another component of active astrophysical environments, which
are strong magnetic fields. However, the magnetic field significantly influences the
quantum processes only in the case when it is strong enough. There exists a natural
scale for the field strength which is the so-called critical value B, = mg Je = 4.41 x
1083 G (we use natural units in which ¢ = A = 1).

The fields of such strength are unattainable in a laboratory. However, the astro-
physical objects and processes inside them give us unique possibilities for inves-
tigations of the particle physics, and of the neutrino physics especially under the
extreme conditions of a strong magnetic field. The concept of the astrophysically
strong magnetic field has changed over the years (see Fig. 1.1).

Whereas magnetic fields with strength 10°-10'' G were considered as “very
strong” nearly forty years ago [19], the fields observed at the surface of pulsars
have appeared to be much stronger, of the order of 10'2~10'3 G. The physics of pul-
sars, i.e. neutron stars, is described in detail in monographs, see e.g. [20-23]. Now the
fields ~10'2-10'3 G are treated as the so-called “old” magnetic fields [21]. There are
grounds to expect that fields on even larger scale can arise in astrophysical objects.
For example, there exist two classes of stars, the so-called soft gamma-ray repeaters
(SGR) [24, 25] and anomalous X-ray pulsars (AXP) [26, 27] which are believed
to be magnetars [28], neutron stars with magnetic field strength ~10'4-10'> G. To
the date (March, 2013), the McGill SGR/AXP Online Catalog contains the current
information available on 23 magnetars: 11 SGRs, and 12 AXPs [29].

The fields at the moment of a cataclysm like a supernova explosion, when a neutron
star is born, or a coalescence of neutron stars, could be much greater, ~ 1015-1017 G.

Bocquet et al. (1995), Cardall et al. (2001)
Bisnovatyi-Kogan (1970) V

Duncan, Thompson (1992) //

-

SGR T,'nn!ir ”Ifl
o applicability
pulsars, “old” fields of the
— Sl«mrlfud
\1:::!: 1
Zel'dovich, Novikov (1971)
@i ~44.108G |Ma _m”
- [
10° 102 1018 1018 102! }“
B (Gauss)

Fig. 1.1 Evolution of the notion “strong magnetic field” in astrophysics



4 1 Introduction

The possible existence of such fields, both of toroidal and poloidal types, is the
subject of wide discussions [30-38].

Inthe early Universe, in the interval between the stages of the QCD phase transition
(~107> s) and nucleosynthesis (~1072-=107s), very strong magnetic fields, the so
called “primary” fields, in principle, could exist, with an initial strength of the order
1023 G [39] and even more (~1033 G [40]). Their evolution during the expansion of
the Universe could determine the existence at the present stage of coherent large-scale
(~100kpc) magnetic fields with an intensity ~10~2! G. These fields, in turn, could
be enhanced by the galactic dynamo mechanism to the observed values of galactic
magnetic fields ~107% G. Possible origins of primary strong magnetic fields and
dynamics of their evolution in the expanding Universe are the subject of intense
research (see, for example, the surveys [41, 42] and references cited therein).

Note that, in contrast to the magnetic field, the electric field corresponding to the
critical value mg /e is the maximal one, since the generation of an electric field of the
order of the critical value in a macroscopic space region lead to intensive production
of electron—positron pairs from the vacuum, which is equivalent to a short circuit
of a “machine” generating the electric field. On the contrary, the magnetic field
can exceed the critical value B, due to the stability of a vacuum. Furthermore, the
magnetic field plays a stabilizing role, if directed perpendicular to the electric one.
In this configuration, the electric field £ can exceed the critical value of B,. The
vacuum stability condition can be written in the invariant form as

FIME,, =2 (32 — 52) >0.

So far, essentially one-dimensional problems have been solved in astrophysical
calculations of processes such as supernova explosions, and analyses of the influ-
ence of the active medium on quantum processes have only contained the plasma
contribution. However, serious arguments have been put forward to suggest that the
physics of supernovas is considerably more complex. In particular, we need to allow
for rotation of the shell and also for the possible existence of a strong magnetic field,
with these two phenomena being interrelated. In fact, the magnetic field generated
during the collapse of a supernova nucleus may reach the critical value ~10'3 G.
The presence of rotation can lead to generation of a toroidal magnetic field with
increasing the field strength by an additional factor of 103-10* [30, 31].

In astrophysical phenomena such as stellar collapse, the absence of strong mag-
netic fields is an exotic rather than a typical case. It is appropriate to discuss the
following set of questions.

(i) Which can be considered to be the more exotic object: a star possessing a
magnetic field or a star without such a field? As far as we know from astrody-
namics, a star without a magnetic field should be taken as an exotic rather than
a typical case. In exactly the same way the presence of a primary magnetic field
may be considered natural for a presupernova. As we know, a primary magnetic
field of 100 G leads to the generation of a field on the scale of 10'>-1013 G
during the collapse process as a result of the conservation of magnetic flux.
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(i) Which can be considered to be the more typical case: a star possessing rotation
or a star without rotation? Evidently a star without rotation appears to be the
more exotic object.

(iii) Which type of collapse looks more exotic: compression without or with an
angular velocity gradient? Since the velocities at the edge of a compressible
astrophysical object may reach relativistic scales, compression with differential
rotation, i.e., with an angular velocity gradient, seems more probable.

All these factors are required to achieve the Bisnovatyi-Kogan scenario for the
rotational explosion of a supernova [30, 31]. The main component of this scenario
is that the initially poloidal magnetic field lines of a field of 10'2-10'3 G are twisted
and compacted as a result of the angular velocity gradient to form an almost toroidal
field of ~10'9-10'7 G. It should be emphasized that a field of the order of 10'¢ G is
really a rather dense medium with mass density

B oaxion(_B_ ) & (1.1)
= — >~ 04X e .
P~ % 1016G ) cm3’

which is comparable with the plasma mass density 10'°-10'% g/cm?, typical for
the envelope of an exploding supernova. Thus, in detailed studies of astrophysical
processes such as supernova collapse it is absolutely essential to take into account
the influence of the complex active medium including the plasma and the magnetic
field.

A dramatic possibility exists [43, 44], that the topic of an asymmetric supernova
explosion or merger of neutron stars in our galaxy may appear vitally important for
humankind, because of the possible production of a highly beamed gamma ray jet
pointed in our direction, which could devastate life on Earth. The strong magnetic
field is one typical characteristic of the asymmetry in such an astrophysical cataclysm.

Thus, the problem of particle interactions with external active media is of con-
siderable interest for modern physics. At the same time, this problem is not covered
comprehensively in the textbooks on Quantum Field Theory. There are a few clas-
sical books, e.g. [45-48], where the technique of calculations of quantum processes
in external media is partially concerned. A more detailed presentation of this topic
is made in the book [49], and in the reviews [50-53].

It is well known that processes forbidden in a vacuum become possible in
intense external fields (such as the photon decay into an electron—positron pair
~ — e~eT [54], the photon splitting into two photons y — 77y [55-65], the neutrino
production of an electron—positron pair, v — ve~e™ [66-74], the radiative transition
of massless neutrinos, the so-called neutrino Cherenkov process v — v~y [75-78],
the photon decay into neutrino pair v — vv [75, 76, 79], and the axion decay
a — ff [80]). Apart from this, intense external electromagnetic fields catalyze
some processes allowed in a vacuum, for example, the radiative decay of a massive
neutrino v — v/ [81, 82], and the double-radiative decay of an axion, a — ~yy
[83, 84].



6 1 Introduction

The method in which the external field effect is taken into account on the basis
of exact solutions of the field theory equations for a charged particle in an external
electromagnetic field rather than on the basis of perturbation theory, has become an
important tool for studying some fundamental problems of particle interactions with
an electromagnetic field. The extent to which the motion of a particle is influenced
by the field depends on its specific charge, i.e. the ratio of the particle charge to its
mass. The hierarchy of masses of elementary particles existing in Nature leads to the
inverse hierarchy of specific charges. Thus, particles that are the most sensitive to the
external field influence are the lightest charged fermions: the electron is the first one,
and then the muon and the u and d quarks follow. All these particles are described by
the Dirac equation, and its solutions in the presence of an external electromagnetic
field should be used.

In the Quantum Field Theory, the number of cases in which the Dirac equation
can be solved analytically is relatively small. These are the problem of electron
motion in a Coulomb field (hydrogen atom) and the problems of electron motion in
a uniform magnetic field, in the field of a plane electromagnetic wave, and in some
particular combinations of uniform electric and magnetic fields. Specific physical
phenomena are usually calculated on the basis of a diagram technique (which is
in fact the Feynman technique) where the initial and final states feature charged
fermions in an external field, which are described by solutions of the Dirac equation
in this field, and where internal lines for charged fermions represent their propagators
constructed on the basis of the above solutions. This method is advantageous in that it
enables us to analyze processes in high-strength fields—that is, in the case where it is
impossible to treat field effects within perturbation theory. Since the vacuum is stable
in superstrong magnetic fields, one can consider processes in magnetic fields with
the strength significantly exceeding the critical value B,. Thus, these problems form
a separate line of investigation in the Quantum Field Theory having an independent
conceptual interest. On the other hand, as was mentioned above, such fields can exist
near young pulsars; they can also arise in mergers of neutron stars and in supernova
explosions.

The above method has proved to be highly efficient in studying some processes in
intense electromagnetic fields that are important for various applications (among oth-
ers, we mean here beta decay in the field of intense laser radiation and quantum effects
accompanying the propagation of ultrarelativistic particles through monocrystals).

The objective of the present review is to give a systematic description of the
methods of calculation of the quantum processes, both at the tree and loop lev-
els, in external electromagnetic fields. The consideration is accented on the two
limiting cases: (i) the case of a very strong magnetic field when the charged
fermions occupy the ground Landau level; (ii) the case of a crossed field when
all the pure field invariants are equal to zero. These are the cases that allow us
to make the analytical calculations in great detail. The review is based for the
most part on the original results obtained by the authors with their collaborators
[64, 65, 70, 71, 73, 74, 78, 82, 85-113].

The monograph is constructed as follows. In Chap. 2, the solutions of the Dirac
equation for a fermion in an external electromagnetic field are presented for the cases


http://dx.doi.org/10.1007/978-3-642-36226-2_2
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of apure magnetic field of arbitrary strength, of a strong magnetic field when fermions
occupy the ground Landau level, and of a crossed field. Propagators of charged
particles in an external electromagnetic field for the same cases are presented in
Chap. 3. Chapter 4 is devoted to an analysis of the dispersion properties of photons and
neutrinos in external active media: magnetic field, plasma, and magnetized plasma.
In Chap. 5, electromagnetic interactions in external active media are analysed. They
are the processes of the photon decay into an electron—positron pair, and of the
photon emission by an electron in magnetic fields, and also the electromagnetic
interactions of the Dirac neutrino with a magnetic moment. Chapters6 and 7 are
devoted to the analyses of neutrino—electron and neutrino—photon interactions in
external active media. Astrophysical manifestations of the most physical processes
are also analyzed.

Notations

The 4-metrics with the signature (+ — ——) and the natural units in whichi = 1, ¢ =
1, are used.

e = |e| is the elementary charge.
m, is the electron mass, m 7 is the fermion mass.

(4 1s the neutrino magnetic moment, /i, is the chemical potential of the neutrino
gas.

F,p is the tensor of the external constant uniform electromagnetic field, Fop
%aaﬁle“” is the dual tensor (71?3 = —g¢103 = +1).

©Yas = Fap/B is the dimensionless tensor of the external magnetic field, ¢,g =
%sa[ng@”" is the dual dimensionless tensor.

The tensor indices of four-vectors and tensors standing inside the parentheses are
contracted consecutively, for example:

(pFFp) = p®FopF™ ps;
(FFp)o = FoagF™ p;
(FF) = F,3F".

The dimensionless tensors Aap = (pP)ag, Aap = (PP)ap are connected by the
relation Ayp — A = gag-

In the frame where the magnetic field B is only presented, directed along the
3d axis, the four-vectors with the indices L and || belong to the Euclidean {1, 2}-
subspace and the Minkowski {0, 3}-subspace, correspondingly. Then

Agp = diag(0,1,1,0),  Anp = diag(1,0,0, —1). (1.2)


http://dx.doi.org/10.1007/978-3-642-36226-2_3
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For arbitrary four-vectors p,,, g,, one has
P =10.p1.p2.0),  p|=(p0.0.0, p3), (1.3)

(Pq) 1 = (pAQ) = pig1 + p2g2,  (pq)) = (PAQ) = pogo — p3gs.  (1.4)

The Dirac gamma matrices are used in the standard representation [114]:

_ ]0 _ 0 o - 0.1.2.3 OI
70—(0_1),7—(_00),"y5—wvwv— 70 (1.5)

o are the Pauli matrices.
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Chapter 2
Solutions of the Dirac Equation in an External
Electromagnetic Field

In this chapter, the solutions of the Dirac equation for a fermion in an external
electromagnetic field are presented for the cases of a pure magnetic field of arbitrary
strength, of a strong magnetic field when fermions occupy the ground Landau level,
and of a crossed field. The density matrix of the plasma electron in a magnetic field
with the fixed number of a Landau level is calculated. In this chapter, we use the
notation for the 4-vectors and their components: X" = (¢, x, y, 2).

2.1 Magnetic Field

For calculation of the S matrix elements of quantum processes in external fields, the
standard procedure is applied, which is based on the Feynman diagram technique
using the field operators of charged fermions expanded over the solutions of the Dirac
equation in an external magnetic field

GX) = D (p.e s 00 + B 93 00). 2.1)
p.s

where a is the destruction operator for fermions, b' is the creation operator for
antifermions, and ¥ V) (X) and ¥ (7 (X) are the normalized solutions of the Dirac
equation in a magnetic field with positive and negative energy, correspondingly.

There exist several methods of solving the Dirac equation in a magnetic field
which are basically the similar but have some variations in details, see e.g.[1-5].
Here we present the basic points of the procedure which is the most simple and
clear, in our opinion. The description is similar to the one of Ref. [5]. As a charged
fermion, we consider an electron being the particle having the largest specific charge,
i.e. being the most sensitive to the external field influence. More general case for an
arbitrary charged fermion can be found e.g. in [1].

A. Kuznetsov and N. Mikheev, Electroweak Processes in External Active Media, 13
Springer Tracts in Modern Physics 252, DOI: 10.1007/978-3-642-36226-2_2,
© Springer-Verlag Berlin Heidelberg 2013



14 2 Solutions of the Dirac Equation in an External Electromagnetic Field

The Dirac equation for an electron with the mass m, and the charge (—e) in an
external electromagnetic field with the four-potential A, = A, (X) has the form

(1(87) +e(Av) — m) ¥ (X) =0, (2.2)

where () = 9,7" and (A7) = A, ~". For solving the Eq. (2.2) in a pure magnetic
field B, we take the frame where the field is directed along the z axis, and the Landau
gauge where the four-potential is: A* = (0, 0, xB, 0).

To solve the Eq. (2.2), let us rewrite it in the Schrodinger form:

0 N
i—¥(X)=HY(X), (2.3)
ot
with the Hamiltonian: .
H = [v (p+eA)] + meo. (2.4)
Here, p = —iV is the momentum operator.

Since the Hamiltonian does not depend explicitly on time, the problem reduces to
finding the eigenvalues and eigenfunctions of the Schrodinger stationary equation:

W(X) =e PY(x, y,2), Hi(x,y,2) = pod(x, v, 2). (2.5)
Consider the auxiliary operator, called the longitudinal polarization operator:

N
T° = —[Z(B+eA)], (2.6)

e

where X is the 3-dimensional double spin operator:

0
Z = 0775 = (g ) 2.7)

and o are the Pauli matrices. It is easy to verify by direct calculation that the operator
7° commutes with the Hamiltonian (2.4).
First, we find the eigenvalues and the eigenfunctions of the operator 79,

%7 (x, y,2) = T%%r(x, y, 2). (2.8)

The functions 7 (x, y, z) are also the eigenfunctions of the Hamiltonian (2.4), due
to commutativity of H and 7°.
It is convenient to represent the operator 7° in the form

R ~0
70 = (8 90), (2.9)

7
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where {
= —[o(p+eA)] (2.10)

e

By the structure of the operator 79, the system (2.8) of 4 equations splits into two
exactly coinciding equations for the upper and lower spinors forming the bispinor

Yr(x,y,2).
In the chosen gauge, the operator 70 has the form:

2 () () on ()
T = [ox( lax +oy 1ay+ﬁx + o, 182 , (2.11)

where the notation is used: 3 = e B. Given the operator 79 not depending explicitly
on the coordinates of y and z, one can write the bispinor ¥ 7 (x, y, z) in the form:

_ iyt [ FX) _{ itx)
Yr(x,y,z) =PIt (%F(x))’ F(X)—(fz(x)), (2.12)

where s is an arbitrary number. Introducing a new variable

fzﬁ(wr%), (2.13)

one can transform the equation for the spinor F(x) to the form:

1 p.  —iv2Ba\ (1O _ o(fl(f))
me (imcﬁ —p: )(fz(f))_T HO) 219

where the raising and lowering operators of the problem of the quantum harmonic
oscillator arise:

1 d 1 d
“:ﬁ(ﬁ‘ﬁ)f “7(“&) @15

The expression (2.14) is a system of differential equations for the functions fi(§)
and f2(&). We obtain:

fO = 0 pe,
meT" — p,
2(70V2 _ 2
(a+a_ - %ﬁpz) £2(6) = 0. (2.16)

Multiplying the operators (2.15), one can see that the equation for the function f> ()
is reduced to an equation for eigenfunctions of the quantum harmonic oscillator:
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d2 2 TO 2 2
(@ N %)ﬁ(g) —0. (2.17)

Hence, we find the eigenvalues 79 of the operator 70
1
70 = :i:— p2+2np. (2.18)

Here, n = 0, 1,2, .... These numbers, as we shall see below, will determine the
electron energy, i.e., will number the Landau levels. It should be noted that the
eigenvalues 7 are gauge invariant, being the eigenvalues of the Hermitian operator,
i.e. the physically observable quantities.

The functions f1(&) and f,(&) are

«/_

1) = T ——

Vn 19, f2) =CVu(&), (2.19)

where C is the normalization coefficient, and V, () (n = 0, 1,2, ...) are the nor-
malized harmonic oscillator functions, which are expressed in terms of Hermite
polynomials H, (£):

V<£)=Le—fz/2H(5> Ho(&) = (—1)" &
! 2l 7 e den ©

52

)

/ V(O dx = 1, (2.20)

and for negative values of the index n the function V,,(§) is assumed to be zero.

Returning to the stationary Schrodinger equation (2.5), let us substitute into it
the found function 97 (x, y, z) as an eigenfunction. The Hamiltonian (2.4) can be
expressed in terms of the operator 70:

R ~0
H:me({o 11) 2.21)

7

In view of (2.14), we obtain the equation:

10N, o0 N F@ Y_, ( F®
Me[(o —1)+T (1 0)i|(%F(x))_p0(%F(x))’ (2.22)

which is transformed to a system of algebraic equations for py and »¢ having two
solutions. Two eigenvalues of the stationary Schrodinger equation (2.5) are:

(po)1,2 = L£Ey, (2.23)
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where

E,=m./(T92 +1= p% +m2 + 2nf. (2.24)

The values of s corresponding to the two eigenvalues pg are:

[E, - [E
»1 = sign(T°) E”Tme 02 = —sign(T?) # (2.25)
n T Me n — Mg

Thus, given the ambiguity of 79 (2.18), there exist four independent solutions of
the Eq. (2.2).
(i) The eigenvalue py = +E,.

The solutions corresponding to the positive eigenvalue pg = +E,, called the
solutions with positive energy, which differ in sign of 77, can be written as:

w () (X) = AGE) o=i(Ent=pyy=pz2) |, (+5) ©). (2.26)

Here, the first of two signs in the superscript refers to pg, while the second one refers
to T°. For the bispinors 1™ (£) we obtain the expressions:

e NETER TART(S)

me| T~ p;
V()

u(++)(f) = E,—m, —iv20B v , 2.27)
Entme me\T0|*Pz n—l(&)

Lt v, (6)

_—iv2nB Vo1 ()

_me|T0|_pz

- Va(©)
wE) = [Ev—me  —iy/2nB . (2.28)
“V Evtme “mo T0—p, Vi—1(6)

— ) B Vo (&)

The functions (2.26)—(2.28), as well as any of their linear combinations, are the

solutions of the Dirac equation (2.2), corresponding to the eigenvalue py = +E,,.
As in the analysis of solutions of the Dirac equation in vacuum, the solutions in a

magnetic field are typically used in the form of linear combinations of the functions

(2.26)—(2.28), in which the upper two components of the bispinor correspond to the

states of the electron with the spin projections 1/2 and —1/2 on some direction, in

this case, on the direction of the magnetic field.
Given the normalization

/|II!(X)|2dx dydz =1, (2.29)
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we obtain the final form of the exact solutions of the Dirac equation for an electron
in an external magnetic field on the n-th Landau level:

i (Eat—pyy-p:2)
go o (X) = 2 o

n, Py, pzy S

- Uiy , 230
\/2 E, (E, +m,) Ly L, n, py, pz,‘?(g) ( )

where L and L, are the normalizing sizes along the axes of y and z; the number s =
=+ 1 is the eigenvalue of the double spin operator o, acting on the spinor composed
of the upper two components of the bispinor.

The bispinor U™ has different forms for the cases s = +1 and s = —1:

(Ep +me) Vi—1(§)

(+) _ 0
Al IR ARTC R @31)
i4/2n8 Vy(§)
0

(Ep +me) V()
—iy/2nBV,—1(§)
— Pz Vn(g)

U O = (2.32)

n, Py,

One can see that in each of the bispinors (2.31) and (2.32), the upper two components
form a spinor being the eigenfunction of the operator 0. For the ground Landau level,
n = 0, the solution exists only at s = —1.

Note that the value p, in above expressions is a conserved component of the
electron momentum along the z axis, i.e. along the field, while the value p, is the
generalized momentum, which determines the position of a center of the Gaussian
packet along the x axis by the relation xo = —p, /3 (see (2.13)).

(ii) The eigenvalue py = —E,,.

The solutions ¥ (~%) (X) corresponding to this eigenvalue describe the states of an
electron with negative energy in the Dirac sea. To obtain the functions corresponding
to the states of a positron as a physical particle with the energy E, and the momentum
components p, and p;, one should construct the solutions ¢ (X) which are
similar to the functions (2.26)—(2.28), in view of (2.25), and then change the signs
of py and p,. One should also remember that the projection of the spin of a positron,
i.e. of a hole in the sea of negative energies, on any special direction is opposite to
the spin projection of the electron, described by a bispinor.

There are two main variants of constructing the solutions with a negative energy,
with using of different linear combinations of the functions ¥ EH(X)and v (X)),
which, of course, lead to identical results in calculations of observable quantities. In
the first case, one can simply use the solutions (2.30)—(2.32) and change there the
signs of E,, py, and p,. The second way is perhaps more physically justified. As
in the analysis of the Dirac equation in vacuum, one can consider the solutions in
which the upper two components of a bispinor are small, if the nonrelativistic limit,
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pg < mg, and the case of a weak field, § <« mf, are taken. In this case, the linear
combinations of the functions ¥ 1) (X) and ¥~ (X) should be used, in which
the spinor composed of the two lower components of a bispinor, describes the states
of the electron with the spin projections 1/2 and —1/2 on some direction, in this case,
on the direction of the magnetic field.

The exact solutions of the Dirac equation corresponding to the positron states in
an external magnetic field, on the nth Landau level have the form:

ei (En t—pyy—pz z)

\/2 Ey(Ey+me)Ly L,

lp(*) s(X) —

) )
0 Py . Ui, s €, (2.33)

where the number s = &+ 1 is the eigenvalue of the double electron spin operator o,
acting on the spinor composed of the two lower components of the bispinor,

¢ =8 (x -~ %’) : (2.34)

Pz Vn—l(f(i))
i BV (e
U(_) ) ( (_)) _ 1 Zrlﬁ Vn(g ) , (235)
n.py pes=+1(8 (En +me) Vy_1(§7))
0

i\/ 2"6 Vn—l(f(_))

— _ — .V, (65
U’E,;y,p;,S:—l(g( )) — Pz (r)z(f ) . (2.36)

(Ep +mg) Vn(g(_))

For the ground Landau level, n = 0, the solution exists only for the value of the
double spin s = —1 of an electron with negative energy. This corresponds to the
positron state with a value of the double spin s = +1.

2.2 The Ground Landau Level

If some physical process with electrons/positrons, with a typical energy E is realised
in a strong magnetic field, where the field induction B determines the maximum
energy scale of a problem, namely, ¢eB > EZ, mg, electrons/positrons can occupy
only the states that correspond to the ground Landau level, n = 0. Contrary to other
Landau levels with n > 1, which are doubly degenerate with respect to spin, the
ground level is not degenerate, i.e. the electron/positron spin is fixed, s = —1/ + 1.
The solution of the Dirac equation for the electron with energy £ and momentum
components py and p, can be presented in this case in the following form
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B1/4 e —i(Et=pyy=p:2)

_2
GRREETmoL Lo S M0 23D

(+) _
Y0, py. pers=—1(X) =

where p| is the energy-momentum vector of an electron in the Minkowski {0,3}
plane. Here, E = \/p;?> + m2, and ¢ is defined by (2.13) and describes the motion
along the x axis.

The bispinor amplitude is given by

0
u(py) = EJBme . (2.38)

—Pz

It is interesting to note that the bispinor amplitude (2.38) is exactly the same as the
solution of the free Dirac equation for an electron having a momentum directed along
the z axis. This separation of a bispinor amplitude that does not depend on the spatial
coordinate x is typical for the ground Landau level only.

The calculation technique of electroweak processes in a strong magnetic field,
where electrons occupy the ground Landau level, the so-called two-dimensional
electrodynamics, was developed by Loskutov and Skobelev [6, 7]; for details and
a complete list of references see e.g. [8]. That technique was essentially improved,
with a covariant extension, in our papers; see e.g. [9—14]. For example, the antisym-
metric tensor €, (€30 = —eo3 = 1) in the subspace {0, 3}, used in that technique,
appears to be not a mathematical abstraction, but has a clear physical meaning of the
dimensionless dual magnetic field tensor, 43 = —@o3. Similarly, all the formulae
can be written in a covariant form with obvious rules of transformation to any frame.

2.3 Crossed Field

There exists a special case of external electromagnetic field, in which the analysis of
quantum processes is essentially simplified. It is the case of a crossed field, where
the vectors of the electric field £ and the magnetic field B are orthogonal and their
values are equal, £ 1L B, £& = B. The calculation technique of electromagnetic
processes in the crossed field was developed by Nikishov and Ritus; for details and
the list of references see e.g. [15, 16].

The particular case of a crossed field is in fact more general than it may seem at first
glance. Really, the situation is possible when the so-called field dynamical parameter
x of the relativistic particle propagating in a relatively weak electromagnetic field,
F < B, (F = & and/or B), could appear rather high. The definition of the dynamical
parameter y is

e(pFFp)'/?

3 ’
me

(2.39)
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where p® is the particle four-momentum, and F*” is the electromagnetic field tensor.
In this case the field in the particle rest frame can exceed essentially the critical
value and is very close to the crossed field. Even in a magnetic field whose strength
is much greater than the critical value, the result obtained in a crossed field will
correctly describe the leading contribution to the probability of a process in a pure
magnetic field, provided that y > B/B,.If, in addition, the invariant |e>(p F Fp)|'/3
for a particle moving in an arbitrary electromagnetic field considerably exceeds the
pure field invariants |ez(F )Y 2 and |€2(I‘: )Y 2 the problem is reducible to a
still simpler calculation, that in a crossed field for which one has (FF) = 0 and
(FF) = 0. Thus, the calculation in a constant crossed field is the relativistic limit of
the calculation in an arbitrary relatively weak smooth field. Consequently, the results
obtained in a crossed field possess a great extent of generality, and acquire interest
by itself.

The crossed field is described by the 4-vector potential A* = af'¢, where ¢ =
(kX), and a* and k* are the constant 4-vectors, (kk) = 0, (ak) = 0.

The field tensor in this case is F* = k*ka” — k¥a", and the contraction of the
two tensors over one index is (F F)*Y = —k"k" (aa).

The solution of the Dirac equation for an electron in the crossed field can be
found as a particular case of the Dirac equation solution in the field of a plane
electromagnetic wave obtained by Volkov [17, 18], where the above-mentioned linear
dependence of the field vector potential on the phase ¢, A* = a*, should be taken.
The solution has the form

ek u(p)
()= (1 2(kp) ) V2EV
2
P [_i ((” X- ;Z; @ = 66((/?;)) *”3)] ' (240

where u(p) is the bispinor amplitude of a free electron with the 4-momentum p#* =
(E, p).
The solution with negative energy corresponding to an antiparticle can be obtained
from (2.40) by the change of sign of all the components of the 4-momentum p#*.
The directions of the coordinate frame axes can be taken as follows, without loss
of generality:
k" = (ko, ko, 0, 0), a* = (0,0, —a, 0). (2.41)

In this case
p=*kX)=ko(t —x), £€=(0,£&,0), B=1(0,0,B), £ =B = koa.
It is worthwhile to introduce also the vector b* = (0, 0, 0, —a), which can be used

for representing the dual tensor FH = %5’”’/’" F,, by the following form FH =
ktpY — kVhH.
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2.4 Density Matrix of the Plasma Electron in a Magnetic Field
with the Fixed Number of a Landau Level

When quantum processes in a magnetized plasma are investigated, it is occasionally
necessary to calculate the plasma electron density matrix in the coordinate space,
summed over all quantum states, except the Landau level number. In this Section,
we present the calculations of this matrix which can be defined by the formula:

dpydp 7
Ry(X, X") = Z/ (zyﬁ)zzLy L f(E) W, ;O L (X)), (242)
N

Here, Ll/,,(+,3y .. s(X) are the solutions (2.30)—~(2.32) of the Dirac equation for an

electron in an external magnetic field, E, = ,/p? + m?2 + 2n/3 is the energy of the
electron at the nth Landau level, 3 = eB, and f(E),) is the electron distribution

function that allows for the presence of a plasma. In the plasma rest frame, it is
FE) =[eFT 417,
where £ is the chemical potential of plasma and T is its temperature.

Substituting the explicit form of the electron wave functions (2.30)—(2.32) into
Eq.(2.42) for the density matrix, we can reduce it to the form

Ry(X. X") = XX " Ryy((X — X)) Rus 1 (X — X)) 1), (2.43)

Here, the following functions are introduced:

P(X, X') = —g(x +x) (v =y, (2.44)
+00 d
R0 = [ g S B 245

400
Rusi (X)) = 8—?2 / A€ Uy (&) Uy (€ — /Bx) e WINI2=60 (2 46)

where we changed the integration variable from p, to &, see (2.13). In Eq. (2.46),

we have omitted all the indexes except s of the bispinors U,ﬁf;‘,’ ., s- However, one
should keep in mind that there is not a simple product of the functions Ry and Ry
stands in Eq. (2.43), because R,s ] depends on p,.

The function R, (X ) as a function of two variables x and y can be expanded
into a Fourier integral:
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d? .
Ryl (X)) = #elw’m Rus 1 (p1), (2.47)
Rusi(p1) = / d?x, e POLR, (X)), (2.48)

Integrating the function R, (p1) over the coordinates x and y and substituting
the result into (2.43) yields

io(X, X 3
P (X.X") d’p f(Ey) eI (P(X=X") 2ipxpy/B

Rn(X,X): (27_‘_)3\/3 En(En+me)
+00
/ dge2nt/Vi Z Us () Us(€)), (2.49)

where &' = 2p,//B — &.

After simple but slightly cuambersome calculations, including the summation over
the spin states of the initial and final electrons that occupy the same Landau level ,
the product of the bispinor amplitudes can be reduced to

D U@ Ug(€) = (Ey +my)

X {((P’Y)n + me) [H+Vn71(§)Vn71(§/) + van(f)vn(g)]
— V218 [T Va1 () Vi (€) + TT_A? Vy (©) Vi1 (ED1). (2.50)

Here, the projection operators are introduced:
1
Hizz(lii’Ylvz), MiMy =T, iz =0. (2.51)

The integral over the variable £ in Eq. (2.49) can be calculated using the formula

elab2 17° e
Jn,n’ = = df e Vn(g)vn’(b - f)
VB )
= (=" e E, ), nx=n, (2.52)
where
a _a +b2
tanp = —

Fp(u) = \/ (2 )=/ g 1 oy,
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and the associated Laguerre polynomials Lj (x) are defined as

1
)= —e"x7* X ksy (2.53)

k
Kl o ©

Finally, the electron density matrix can be reduced to a triple integral convenient
for the subsequent use:

. / d3 E . ,
R, (X, X') = d®XX) (_pyn / 5 1)73 f(E n) et e—iP(X=X) (2.54)
™ n

< ApN) +m) Ly QT — Ly 1 Q)T ]+ 2(py) L,y Qu)},

where u = pf_ /3. Equation (2.54) can be used to investigate quantum processes in
a plasma in the presence of a magnetic field with an arbitrary strength.
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Chapter 3
Propagators of Charged Particles in External
Active Media

In this chapter, we give different representations of the charged particle propagators
in an external active environment that will be needed for the analysis of quantum
processes. The transformation from one representation to another are provided which
can be useful from a methodological point of view. The exact propagator for an
electron in a constant uniform magnetic field as the sum over Landau levels is obtained
by the direct derivation by standard methods of quantum field theory from exact
solutions of the Dirac equation in the magnetic field. In this chapter, we use the
notation for the 4-vectors and their components: X* = (¢, x, y, z); digital indices
are used to enumerate the various 4-vectors. Throughout the chapter, all the masses
squared are assumed to have small negative imaginary parts, m?> — m? — ie.

3.1 Propagators of Charged Particles in a Magnetic Field

The magnetic field influence on the particle properties is determined by the specific
charge, i.e. by the particle charge and mass ratio. Hence, the charged fermion which
is the most sensitive to the external field influence is the electron. The calculations
of specific physical phenomena in strong external field are based on the application
of Feynman diagram technique generalization. It consists in the following proce-
dure: in initial and final states the electron is described by the exact solution of the
Dirac equation in the external field, and internal electron lines in quantum processes
correspond to exact propagators that are constructed on the basis of these solutions.

The expression for the exact electron propagator in the constant uniform magnetic
field was obtained by J. Schwinger [1] in the Fock proper-time formalism [2]; see
e.g. [3]. There are another propagator representations given in a number of works.
Thus, in Refs. [4, 5] the case was considered of superstrong field and the contribution
of the ground Landau level to the electron propagator was obtained. In Ref. [6], see
also Ref. [7], the propagator was transformed from the form of Ref. [1] into the sum
over Landau levels. Also in Ref. [7] the electron propagator decomposition over the
power series of the magnetic field strength was given.

A. Kuznetsov and N. Mikheev, Electroweak Processes in External Active Media, 25
Springer Tracts in Modern Physics 252, DOI: 10.1007/978-3-642-36226-2_3,
© Springer-Verlag Berlin Heidelberg 2013
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In our opinion, it is quite important to know different representations of the
electron propagator in the external magnetic field and the conditions of their
applicability. There were some examples where misunderstanding of such condi-
tions has led to erroneous papers. Thus, in Refs. [8, 9] the self-energy operator of a
neutrino in the magnetic field was calculated by the analysis of the one-loop diagram
v — e~ WT — v. The authors of the paper restricted themselves by consideration
of the ground Landau level contribution to the electron propagator. As was shown in
Ref. [10], because of large virtuality of an electron, g2 ~ m%‘, the ground Landau
level contribution was not dominant and the next levels gave the contributions of
the same order of magnitude. Ignoring that fact led the authors[8, 9] to erroneous
results. Another example of this kind was an attempt to re-analyse the probability
of the ultrahigh-energy neutrino decay v — e~ W™ in the external magnetic field,
which was calculated through the imaginary part of the one-loop amplitude of the
above-mentioned transition v — e~ WT — . Initially, this probability was calcu-
lated in Ref. [11]. Another authors [12] performed a new calculation, insisting on
a different result. The third calculation, we carried out [13], confirmed the result of
Ref. [11]. The most likely reason for the error in the calculation [12] was that the
authors used the propagator of the W-boson in an external field in the decomposition
over the tensor F/¥, and they limited themselves with only linear terms, while the
quadratic terms were also significant in that case.

Among papers devoted to the study of the particle propagators in an external
field, an article [14] should be highlighted, where the computation carried out of
the neutrino self-energy operator in a magnetic field in an arbitrary £-gauge. It was
demonstrated that, although the self-energy operator depended on the gauge para-
meter £, the neutrino observable characteristics arising from its dispersion law, as
expected, were gauge-invariant.

3.1.1 Propagators in the Fock Proper-Time Presentation

The electron propagator in the constant uniform magnetic field in the Fock proper-
time formalism can be presented in the form

S©O(X|, Xp) = ?E XD g(x, — X5). (3.1)

Here, S(X) is the translational and gauge invariant part of the propagator

s [ ds (1 . ;
S(X) = —z(ﬁ v / Ssmfﬂs)[;[cosws)(ww) —lslnws)(xwﬂ
0

- = b (Xppy) + me [2cos(f3s) —sin(ﬂsxwv)]]
sin((s)

oo (XeeX) B
X exp [—1 |:mes + " — Ztan(0s) (XgagaX)iH , 3.2)
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where 3 = eB, e being the elementary charge, m, is the electron mass, X, =
(X1 — X2),, the s variable is the Fock proper time, ¢, being the dimensionless
strength tensor of the external field, p.g = Fug/B; and ¢n5 = %sa‘@,,acp/”’ is the
dual tensor.

Integration over the variable s in (3.2) should be correctly defined because the
integrand has the poles in the points s = 7k /3, wherek = 0, 1, 2. ... The integration
is supposed to be performed in the complex plane s along a contour starting from
the point s = 0 and underlying the real axis. The contour can be also turned down
to the negative imaginary axis; see Sect.3.1.5 below.

The phase @ (X1, X7) is the translational and gauge noninvariant value, and can
be defined in terms of an integral along an arbitrary contour as

X

D (X1, Xo) = —e/qu K*(X), 3.3)
X1

KH*(X) = AM(X) + %F’“’(X - X2)u. (3.4)

The integration path from X to X» in (3.3) is arbitrary due to the relation O K" —
0¥ K" = 0. For more details on the noninvariant phase see below, Sect.3.1.2.
Similarly to Eq.(3.1), one can define the propagators of the W boson and the
charged scalar ® boson in a magnetic field (we consider negative charged W~ and
@~ bosons as particles):
G (X1, Xp) =0 X6, (X1 — Xy), (3.5)

v

D® (X1, X)) = XX DX — X»), (3.6)

where the phase @ (X1, X») is defined by the same Egs. (3.3), (3.4).
It can be convenient to use the Fourier transforms of the translational invariant
parts of the propagators:

d* .
S(X) = / #S(q)e_‘qx , (3.7)
d* .
G (X) = / o Gl e, (3.8)
d* .
D(X):/ (27:;4 D(g)e X (3.9)

From Egs. (3.2) and (3.7), one can obtain the Fourier transform of the electron
propagator in the form
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T ds . tan(f3s)
S(g) = /cos(ﬁs) exp |:—1s ( qﬁ + qz o )]
0

(wv) (gL
(s )} cos(f3s)

x [[(cmh +me] [cos(ﬁs) ] (3.10)

The Fourier transforms of the W boson propagator (3.5), (3.8) and of the charged
scalar @ boson propagator (3.6), (3.9) are gauge dependent. In an arbitrary £-gauge
they have the forms [14]:

T t
i e R U O]
0

X [e—ismw |:g;w + (p@) v (1 — cos(205)) — o Sin(255)1|
[( + (e tan(ﬁS)) (qy + @)y tan(ﬁs))

ﬁ

E Oy — (PP v tan(/3s)

Lz (e—ism%v _ e—isﬁm%v)]’ (311)

T ds . tan(s)
=]ty (o= o
0

In the Feynman gauge, when £ = 1, the Fourier transform of the W boson prop-
agator is essentially simplified [15]:

i d . tan(0s)
G;Ll/(q) = _/ COS(SﬁS) exp |:—1S (m%V — qﬁ‘ + qJZ_ Ts):|
0

X [g;w + (@) (1 — cos(205)) — puv Sin(25S)]- (3.13)

Finally, the Fourier transform of the charged scalar @ boson in the Feynman gauge
has the form

e¢]

ds ) tan(Os)
D(q) = / oo &P |:—1s (m%V at +41 5 )} (3.14)
0
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3.1.2 A Note on the Noninvariant Phase

At first glance, the expression for the translational and gauge noninvariant phase
@ (X1, Xp) written in the covariant form (3.3), (3.4) is rather cumbersome. Some
authors prefer to fix the gauge by the choice of the 4-potential of an external field as
AM(X) = (0,0, x B, 0), to write the phase in a more compact form:

/ eB / /
¢(X,X):—7(x+x)(y—y). (3.15)

However, just the covariant form (3.3), (3.4) of a phase is much more convenient in
the analysis of closed loops containing multiple propagators of charged particles.
In a case of the two-vertex loop, the sum of the phases, arising in the amplitude,
is zero:
(X1, X2) +@(X2, X1) =0. (3.16)

In the case of three or more vertices in the loop, the total phase of all propaga-
tors is translational- and gauge-invariant. It can be easily shown by presenting the
4-potential of the constant uniform external field in an arbitrary gauge in the form:

AR(X) = % X, F"" 4 9'y(X), (3.17)

where x(X) is an arbitrary function. With (3.17), one automatically has 0*A” —
0" AF = FM Integrating (3.3) with (3.17) one obtains:

D(X1, X2) :_g(XlFX2)_e[X(X2)_X(Xl)]- (3.18)

It is seen from Eq. (3.18) that the terms with the function x(X) totally cancel each
other in the sum of phases inside a closed loop, providing the gauge invariance. It
is easy to check that the sum of phases (3.18) inside a closed loop is translational
invariant also. For example, the total phases of three and four propagators of charged
particles in the loop are the following:

D(X1, X2) + P(X2, X3) + P(X3, X)) = _g(Xl — X0)u F'™ (X2 — X3)u, (3.19)
D (X1, X2) + (X2, X3) + @ (X3, Xg) + P (X4, X1) = —g(Xl — X3)uF" (X2 — X4)u.
(3.20)

In a general case of the sum of n phases one has:

n—11-1

=32 > @Fz). (2D

Xn+1=X1 1=2 k=1

n
e
Doy = _E .El(XiFXi—&-l)
iI=
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where
Zi = Xi — Xiy1.

3.1.3 Propagators in the Weak-Field Expansion

Manipulations with the exact expressions (3.10) and (3.13) are extremely cumber-
some. On the other hand, magnetic fields existing in Nature, except the early Universe,
are always weak compared with the critical field for the W boson, m%,[, /e ~ 10**G.
Therefore, the propagators of the W boson and the charged scalar ® boson can be
expanded in powers of § = eB as a small parameter. We find up to second order,
using the Feynman gauge:

. Guv 2‘Puy
G w(q) = —1 -
/ g2 —m3, (g% — m3,)?
. 1 247
+1ﬂ2[g ” +
N @2 —-m23)3 T (@2 —md)?
1
+ 4 () —} +0(3). (3.22)
" (g2 —m3)3

It is not difficult to find the similar expansion for the propagator of the W boson in an
arbitrary £-gauge, however the resulting expression appear to be rather cumbersome,
and we do not present it here.

Comparing Eqgs. (3.13) and (3.14), one can easily see that the ® boson propagator
D(q) differs only in sign from the coefficient at the term g,,,, in the expansion of the
propagator G, (q) over the three independent tensor structures. One obtains

i 1 2¢%
D(q)=ﬁ—iﬁz( + U )+0(53). (3.23)

q* —my, (@2 —m})? (g2 —m3)*

Likewise, the asymptotic expression for the electron propagator S(g) is realised
when the field strength is the smallest dimensional parameter, § < mz < m%,v
In this “weak field approximation” the charged-lepton propagator can be expanded
as [7]

(qv) +m, (gy)) +me
S(g) =1 7 —m2 + 52(q2 — 2y (ve7)

2 2i [(qﬁ —m2) (@)L — g7 gV + me)]

) +O@Y. (B24)
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One can see from this expansion that the contribution of the region of small virtual
momenta g2 ~ mg < m%v is enhanced in each succeeding term. If the propagator
is used for a moderate field, mf LK m%[,, the expansion (3.24) is not applicable
and the exact propagator Eq. (3.10) must be used.

3.1.4 Propagators in an Expansion over Landau Levels

3.1.4.1 Electron Propagator

If a magnetic field is sufficiently large, B = B, = mz/ e, it is convenient to use the
expression for the electron propagator in an expansion over the Landau levels. We
present here the procedure for obtaining such an expression, following to Ref. [6] (see
also [7]). It should be noted, that there was an error in expression for the propagator
in Ref. [6], namely, the term in the second line of Eq. (4.33) should contain the extra
factor (—i). This error was corrected in Ref. [7], Egs.(39) and (40), and also in
Ref. [16], Egs. (13) and (14), but without any comments.

Let us rewrite the Fourier transform of the translationally and gauge invariant part
of the electron propagator (3.10) by introducing a new integration variable v = s,
to obtain:

0

1
S(q) = B/dv CXP(—ipv)[[(qvh +me] fi1(v)
0

(e

27) AW = @AW, (3.25)

— @y +me]
where the following notations are used:

f1(v) = exp(—iatan v),
f2(v) = tanvexp(—iatanv),

) =

5 exp(—iatanv), (3.26)
cos” v

and p = (mg - qﬁ)/ﬁ, a = qi/ﬁ. Since the functions f;(v) (j = 1,2,3) are
periodic, fj(v) = f;j(v + nm), let us divide the integration domain (0, 00) into

intervals (0, 7), (m, 27), ... (nm, (n+ 1)m) . ... Making in each segment the change
of variable, v — v + nm, we can write:

o0

/dv exp(—ipv) fj(v) = Zexp(—ipmr) / dv exp(—ipv) fj(v)
0

0 n=0
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1
where i
Aj = /dv exp(—ipv) f (v). (3.28)

0

It suffices to compute the integral A, because the other two integrals can then be
found by the formulas:

9
Az = I%A],
Ay = —— (1 —_ e*if’”) _La,. (3.29)
(6] [0

The validity of the last relation is easily seen by representing the integral A3 in the

form:
s

i d
Az = i/dv exp(—i pv)—(exp(—iatan v)) (3.30)
« dv
0

and integrating by parts.
To calculate A, we write f](v) in the form

) _672iv +]
fi1(v) = exp(—iatanv) = exp am . (3.31)

The right-hand side of this equation can be expressed through the Laguerre polyno-
mials:
L,(x) = ie" @ (x”e_x) (3.32)
T dxn ' '

The generating function for Laguerre polynomials is determined by:

1 Xt e n
X (—:) = r;)Ln(x)t (3.33)

for |t| < 1, where you can get

w (-5 ) = 2 [Lat) = Lo o] (334
n=0

with a completion of L _1(x) = 0. Denoting —e 2"

side of Eq. (3.31) and using the identity

= tand 2av = x in the right-hand
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xt+1 Xt (x) (3.35)
xpl=—— ) =exp{ —— Jexp(—= .
P\2r PATT ) 3 )

we transform the expression for Aj to the form:

™

Al = /dv e*“Z[L,,(za) — Lu—1(20)] (=1)" exp(—2inv) exp(—ipv)
0 n=0

™

e @ Z(—l)" [Ln(2a) — L, (2a)] / dv exp[—i(p + 2n)v]

n=0 0

s« —ipm ( l)n
—ie™ (1 -7 )Z‘)Hz [La(20) = L, 1Q2a)]. (3.36)

Finally, using Eqgs. (3.25), (3.26), (3.28), (3.29) and (3.36), we write the Fourier trans-
form of the translationally and gauge invariant part of the electron propagator in the
form:

S(q) = Z pan 2nﬁ[[(q“y)|+me] [dn(oz)—%(wv)d,ﬁ(a)}

—(g7)12n "( ) ] (3.37)
«

where o = qJZ_ /3, and the functions are introduced:

dn(a) = (=1)"e"“[Ln(20) — Ly—1 )] (3.38)

3.1.4.2 Propagators of the W and ® Bosons

Similarly to the electron propagator, the propagators of the W and & bosons can
also be represented as an expansions over the Landau levels. As it was noted in
the Introduction, magnetic fields could exist in the early Universe of the scale of
the critical field value for a W-boson, By = m%v /e =~ 10%* gauss. In this case, a
knowledge of the vector-boson propagator expanded over the Landau levels can be
helpful for investigations of processes in the early Universe.

The Fourier transform of the translationally invariant part of the W boson propa-
gator (3.8) in the £-gauge is presented in Eq. (3.11). Similarly to the transformations
of the electron propagator, let us rewrite (3.11) in a more convenient form:



34 3 Propagators of Charged Particles in External Active Media

1 7 .
GHV(C]) = _E/dv e |:(95§5)/wf4(v) - (@@)HVfS(U) - %wf6(v):|
0

o]

1 . .
+ Gl /dv (e—lpv — e—lﬂév) [(QMCIV + ig‘PW) Ja(v) (3.39)

"0

+ ((@q)uqy +4qu(gV)y — ig(soso)w) fiw) + (wq)ﬂ(qw)ufs(v)},

where the functions are introduced:

1
faw) =
COs v

exp(—iatanv),

fs(v) = cos(2v) exp(—iatanv),
cosv
in(2
Je(v) = sin(2v) exp(—ia tan v),
cosv
f1v) = anv exp(—iatanv) = iif4(u),
CcoSs v O
2 2
fs) = Y exp(—iatanv) = — 2 fy(w), (3.40)
cos v 0a2

and p = (m3, —q{)/B, pe = Emy, —q1)/B, o =4q1/8.
Through the same procedure as in the case of the fermion propagator and noting
that fj(v+7n) = (=D" f;(v) (j =4,5,6,7,8), we can write

/dv exp(—ipv) fj(v) = Aj, (3.41)
0

1 4+ exp(—ipm)

where the integrals similar to Eq. (3.28) are introduced:

™

Aj = /dv exp(—ipv) fj(v) (j =4,5,6,7,8). (3.42)
0

It is worthwhile to introduce the auxiliary integrals:

™

C(a) :/dv exp(—ipv) exp(—ia tan v) cos v, (3.43)
0
™

S(a) = /dv exp(—ipv) exp(—iatan v) sin v, (3.44)

0
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E® (a) = C(a) £iS(a)

™

= /dv exp[—i(p F Dv] exp(—ia tanv). (3.45)
0

The integral A4 can be represented in a form

™

i d
Ay = 1 / dv exp(—ipv) cos v—(exp(—ia tan v)) (3.46)
o dv
0

and further, integrating by parts, we write:
Ag= [—1 — exp(—ipm) +ipCla) + S(a)i|. (3.47)
@

The integrals As and Ag are expressed in terms of A4, C(«) and S(«):

As = 2C(a) — Aa, (3.48)
Ag = 2S(a). (3.49)

To find the integrals C(«v) and S(«), let us compute E® (a) and apply the relations:

Cla) = % [E(+)(a) +EO) (a)] , (3.50)

S(a) = 21 [E<+) (a) — E<—>(a)] . (3.51)

i

The integral E® () is computed similarly to the integral A; for the fermion prop-
agator and is

. . —  dn(@)
() —
E™® (a) = —i[1 + exp(—ipm)] nE:O TTanEl (3.52)

Here, as before, the functions d,,(v) are defined by the expression (3.38). We obtain
the integrals C(«) and S(«) as

_ i . - dy (@) +dp—1(a)

C(O[) = —E [1 + exp(—lpﬂ)] n:EO m, (353)
R e dn(@) —dyi (@)

S(@) =—3 [1+ exp(—ipm)] > PNy (3.54)

n=0
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To obtain the final expressions for A4, As, Ag, the relation should be used
> o2 »dn () = 1. The result can be written in a more compact form, being expressed
in terms of the functions:

n+ 1) dy1 (@) +ndy(c)

L) = 5 = (=1)"e"“L,a). (3.55)
«
One obtains:
o0
. _ Lh—1()
Ag = =2i(1+erm Z et (3.56)
( ) s +2n—1
o0
. - Ln(a) +£y—2()
As = —i(1 47" Z RS iy (3.57)
( ) = ot 2n—1
o n(a) — £y _2(a)
_ —1p7r — tn—
As = - ( )Z p+2n—1 (3-58)
n=0
I A ()
A =2(1+e7r" 7 3.59
7 ( ) ’é) p+2n—1 ( )
) o0 g// (Oé)

Ag =2i(14+e7rm el B 3.60
8 ( ) HZ:(:) p+2n—1 (3.60)

Substituting the integrals (3.56)—(3.60) into the expression for the propagator
(3.39), we find:

Gul/(Q) Z 2 5(2 [2(3595);11/ Lh—1(a)

g —miy —

— (PP v (En () +4£y2 (Oz)) +ipuw (Zn (o) — EnZ(OZ))

£-1 '
af —Emi, —B2n—1) [(2‘“%’ o s0"'”)5”‘1(‘”

+ i(2(<pq)#qy + 2‘]u(q50)1/ - iﬁ(@ﬁp)uu)e;_l (o)
= 2(¢q) (gl ez_l(a)iH- (3.61)

It is worth noting a singularity that the contribution of the ground level, n = 0,
into the W boson propagator contains, in contrast to the contribution of the ground
Landau level into the electron propagator (3.37). For the W boson, this contribution
has the gauge independent form
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) P — ) IS | (3.62)
e e i

that is, it contains a pole at qﬁ = m%, — f3. Thus, if the magnetic field approaches
the critical value of the field for the W boson, By = m%,v /e ~ 10%* G, the so-called
instability arises of the perturbation theory for a W boson vacuum (see, e.g., [17]).

The propagator of the ® boson in the ¢ gauge, D(q), as in the case of a weak
field, is reconstructed from (3.61) in the form

o0

_ 2i6,1(0)
DW)_Z%ﬁ—Em@—ﬁQn—D' (3.63)

It should be noted, that the summation over n in Eq.(3.61) formally starts from
n = 0, butin fact it starts from n = 1, because £_ (o) = 0 by definition. This means
that the propagator of the ® boson, as one could expect, does not contain a pole at

qj = Emiy — 6.

3.1.5 Electron Propagator in a Strong Magnetic Field

Translationally invariant part of the electron propagator S(X) has also other repre-
sentations. For example, to analyze the processes in a strong magnetic field, it is
worthwhile to use the asymptotic expression for the propagator. To obtain this, let us
perform the rotation of the contour of integration in the complex plane of the variable
s in the integral (3.2) onto the negative imaginary axis, s = —i7, and perform a par-
tial decomposition into the Fourier integral over the coordinates 7 = X% and z = X3
(the magnetic field is directed along the third axis):

S(X) = __/tanhT n )2[[(61’}/)” + m]I1_(1 + tanh 7)

+ [(gV)) + me]ll (1 — tanh 7) — (X)L b (1 — tanh® 7)
2tanh 7

8x2  T(mi—gqp)
X eXp(_4tanh7- — 3 —i(g X)), (3.64)

Here, 7, are the Dirac matrices in the standard representation, [T are the projection
operators (2.51),
d*q) = dqodgs.  [Mx. (ay))] =0.
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The asymptotic expression for the propagator in a strong magnetic field can be
obtained from Eq.(3.64) by an approximate estimate of the integral over 7 in the
limit 5/ |m§ - qﬁl >> 1. In this case, the main contribution into the integral over
T comes from the region 7 ~ (3 /|m£ — qﬂ Considering that tanh 7 ~ 1 — 2e727
for 7 > 1, we obtain the following asymptotic expressions for the translationally
invariant part of the electron propagator in a strong magnetic field:

SX) ~ ig exp _ﬁXi dqy (q)y +me 0 e i@y (3.65)
27 4 (2m)? qﬁ — mg

which was first obtained in Refs. [4, 5]. It is easy to see that the expression (3.65)

coincides with the contribution of the ground Landau level. Indeed, substituting the

term with n = 0 from (3.37) into (3.7) and integrating over d%q, = dqidgs, we

reproduce the formula (3.65).

3.2 Propagators of Charged Particles in a Crossed Field

In the case of a crossed field, the electron propagator in the Fock proper-time for-
malism has the same form of (3.1), where the translational and gauge invariant part
S(X) can be obtained from (3.2) by the limiting transition when the field invari-
ant § ~ [—(FF)]"/? is made to tend to zero in such a way that the field tensor
Fo ~ B¢ap remains finite. Thus one obtains

o0
S(X) = i/d U ) — € x i sez(XFF)+
T T ler2 | 2| Y T T V)T e
0

=]

N

SMmee se

X2 2
(’nyy):| exp [—i [mgs +—+ E(XFFX):“ , (3.66)

4s

where F},;, and F v are the strength tensor and the dual strength tensor for the external
crossed field.

The Fourier transforms of the translational invariant parts of the propagators has
the form:

o]

S(q) = /ds e % [(qv) +ise(gFy)ys — s?e*(qFFr)

1
+me — Esmee(vFv):|, (3.67)
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o
GW(g) = — / dse 1w [guy + 252 (FF) — 25@Fuu], (3.68)
o0
D® () = / ds e 19w (3.69)

0

where the Feynman gauge is taken for the W and ®-bosons, and the notation is used

(J=e W)
3

L 2 2y, % 2
Q]_s(mj q)+3e(qFFq). (3.70)

3.3 Direct Derivation of the Electron Propagator in a Magnetic
Field as the Sum over Landau Levels on a Basis of the Dirac
Equation Exact Solutions

In this section, we explore such a methodologically important issue as a direct deriva-
tion by the standard quantum field theory methods of the exact electron propagator
in the external magnetic field in the form of the sum over Landau levels from the
exact solutions of the Dirac equation in a magnetic field. The presentation is based
on the paper [18].

To calculate the electron propagator, the standard method is applied based on
using the field operators which include the Dirac equation solutions in a magnetic
field:

X = D (s s XD BE ) (0). BT
nsPy>PZsS

Here, a is the destruction operator of the electron, b T is the creation operator of the
positron, ¥ and ¥ () are the normalized solutions of the Dirac equation (2.2)
in a magnetic field with positive and negative energy correspondingly, presented in
Sect.2.1.

The propagator is defined as the difference of time-ordered and normal-ordered
productions of the field operators (3.71):

SOX X)=T (@(X)E(X/)) N (@(X)E(X’)) . 3.72)

Using anticommutation relations for the creation and destruction operators, we
obtain, that the propagator at r > ' and at r < ¢’ is expressed in terms of the
solutions with positive energy (2.30)—(2.32) and negative energy correspondingly:


http://dx.doi.org/10.1007/978-3-642-36226-2_2
http://dx.doi.org/10.1007/978-3-642-36226-2_2
http://dx.doi.org/10.1007/978-3-642-36226-2_2
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s©Ox, X

+ 76
L= D25 NG oI 5 NN O (3.73)
< n, py, Pz, S

Thus, the propagator is divided into the sum over Landau levels:
o
SOX. X)) =D 59X, X). (3.74)
n=0

Further we will find the nth Landau level contribution into the propagator (3.73).
It is convenient to come from the summation over the momenta py and p;, to the
integration, by the substitution

! > - / dpydp:. (3.75)
Ly LZ Py, Pz (27T)2

For the nth level contribution we found:

S@Ox, X"

_ / dpydp;
1> (2722 Ep(£Ey +m)
x exp {i[FE.(t — 1) £ py(y —y) £ p.(z — 2]}

+ +)\ 77(H) +
x Z U,g,;y,pz,x(s ) Un,pyﬁpzys(é . (3.76)
s==+1

After simple but quite cumbersome transformations one can reduce the matrices in
Eq.(3.76), which are constructed from the bispinors (2.31), (2.32) and the corre-
sponding bispinors of the solution with negative energy, to:

1 —
- (%) (B T ()
5 2 Ui s €D T, o€
s==%1
1 /3 1 1
— ~ _Ce@N2 D e(EB)N2 3
= 2nm\/wexp[ S -2 )”(imem +m)
x [T Ha(€9) Hy€®) + M 20 Humy €% By €90] - 377)

+i20y/By" [ Hoo1(€9) Hy(€9) = Ty Hy(€9) Hy1 (6991 ]

where 14 are the projection operators(2.51). One can see, that after changing the
signs of integration variables p, — —p, and p, — —p, in the expression (3.76)
att < t/, the £ signatt > ¢/ and ¢ < ¢’ still remains just in the sign at E,,. It is
appropriate to use the following relation, where the expression for energy (2.24) is
taken into account:


http://dx.doi.org/10.1007/978-3-642-36226-2_2
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FCEED i)
2E,

i [tod —ipo(r—1")
i / po f(po)e (3.78)

t%t’_ﬁ 0 pﬁ—m2—25n~|—i€’

where pﬁ = p% — pzz.

Using the relation (3.78) we add to the expression (3.76) an integration over the
zero momentum component. As a result the propagator can be written at # > ¢’ and
att < t' identically. Renaming the variables ¢ = ¢, ¢ = ¢’ we reduce (3.76)
with taking into account (3.77) and (3.78) to the form

: 2 12
© N B 1) Xt dpodpydp,
S (X, X) = 5 WCXP( — )/ an)

i 2
x expl ——= —py[x+x —i(y =y
2T py [ (v =]

B

x [ [(py)y +m] [=H, (&) Hy (&) + T 2nHy—1 () Hu—1(£))]

+i2n /By [TI- Hye1 (€) Hu(€)) — Ty Hy(§) Hy—1 (€] ]
(3.79)

It is worthwhile to note that the expression(3.74) with (3.79) for the electron
propagator in a constant uniform magnetic field as the sum over Landau levels in the
x-space has its own significance. In some cases, this form of the propagator can be
more convenient than other representations.

One can make an integration over p, in the propagator (3.79) by introducing a

new variable Y
py 6 / . /
u=-—7—+—|x+x —ily—y)|,
VAN !

and using the well-known integrals being expressed via the Laguerre polynomi-
als [19]:

o0
/ e’ H,(u+a)H,(u+b)du =2"n! /7T L,(—2ab),
—00

o0 2
/ e " Hy(u+a) Hy_1(u+b)du

—00

=2"""n! ﬁ% [L,(—2ab) — L,—1(—2ab)]. (3.80)

As a result, the nth Landau level contribution into the electron propagator in a
magnetic field can be presented in the form:

SOX, X' = ®X X5, (x — X, (3.81)
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where ®(X, X) is the translational and gauge non-invariant phase, which is equal
for all Landau levels:

B
XX = =2 (XD =y,
For more details about properties of the phase, see, e.g., Sect.3.1.2. S,(Z) is the

gauge and translational invariant part of the propagator (Z = X — X), represented
in the form of the double integral over pj:

1 d2 7i(p Z)H
502) = 7 exp (—@Zi)/ A :
2 4 2m)?2 P — m? —203n + ie

x [[(m)n +m] [nLn (gﬁ) + T4 Ly (§Zi)]

+2in% [Ln (§ zi) — Ly (gzi)ﬂ . (3.82)

L

Let us compare the obtained expression (3.82) with the electron propagator (3.7)
expanded over Landau levels (3.37). To ensure that the expressions for the propagator
are consistent, it is enough to perform in Eqs. (3.7), (3.37) the integration over the
momentum components py, py, which are transverse to the field. Thus, the nth
Landau level contribution to the propagator is expressed via three different integrals
I1,2,3(Z) in the Euclidean plane (pyx, py):

s I
n(@) = / (2m)? pﬁ —m? —20n +ie

X [[(pv)” +m] I:Il(ZJ_) - %(’790'7)12(ZJ_)i| - 2n13(Z¢)I - (3.83)

An integration over the polar angle leads to the Bessel integral:

2T
/ el (8P o = 2 i 1, (), (3.84)
0

where J,,(§) is the Bessel function. As a result, the integrals 11 2, 3(Z ) take the
form:

2

nzy = [ LPL 4 )y @021 = % /dv Jo (VBZL0) datw),
0

(2m)?
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L(Z)) = o )2d '’ (v) ‘(”Z)i=4£/vao fZl\/_)d(v)
0
&py dy(v)
(Z1) = (27’: ; #e POL(py)L
B (Zy)y d (v)
=i, /d n(VBzovo) =,

where Z| = /2% = /(x —x/)2 + (y — y/)2. Calculating the integrals [19]:

1(Z)) = 4% exp (— g Zi) [Ln (g Zi) + Ly (g Zi)] :

L(Z)) = - 4ﬁ exp (— § Zi) [Ln (g Zi) — Ly (g Zi)] :
Bz s 3 3

bz =iy Gt ee (- 071) [ (52) -1 (522) |

and substituting them into (3.83), one finally obtains the expression, which coincides
with (3.82).
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Chapter 4
Particle Dispersion in External Active
Media

This chapter is devoted to an analysis of the dispersion properties of photons and
neutrinos in external active media: magnetic field, plasma, and magnetized plasma.
Possible astrophysical manifestations of particle processes influenced by external
active media are also considered.

4.1 Dispersion in Media: Main Definitions

Dispersion effects in the medium significantly affect the propagation of particles with
small masses (photons, neutrinos), while other particles remain almost insensitive to
the influence of the environment (e.g., axions and other Nambu—Goldstone bosons).
The direct way to investigate the dispersion relations of photons and neutrinos is to
analyze the link between forward scattering and refractive index.

In accordance with the general concepts of quantum field theory, particles are
quantized excitations of the corresponding fields: the electromagnetic field produces
photons, the electron-positron field produces the electrons, and so on. Usually, it
is convenient to describe these fields by means of plane waves, characterized by a
frequency w and wavevector K. Then the excitations of these modes have the time and
spatial dependence, which is described by a factor exp [—i (wt — kx)]. With a wave
vector given, the frequency is determined by the dispersion relation. Since (w, K) isa
4-vector, basing on Lorentz invariance we find that in vacuum the value wr—Kk?% = m?
is the same for all frequencies and m is the particle mass. One consequence of the
covariant dispersion relation is that the decay of the form 1 — 2 4 3 is possible
only if m; > my 4 m3, so that the particle 1 in its rest frame had enough energy for
production of the final state.

In amedium, dispersion relations are changed, as arule, by the coherent interaction
with the background. In the simplest case, a particle acquires an effective mass
caused by the presence of a medium. For example, dispersion relation for photons
in a nonrelativistic plasma is of the form W= w%, + k2, where wp is the so-called
plasma frequency, defined by the expression
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4w a N,
w%:&, 4.1)

ne

where N, is the electron density. For a process in an environment which induces
effective masses of particles, the kinematic condition for the process realization
should be considered more carefully. For example, the kinematic condition for the
decay 1 — 2 + 3, instead of the simplified vacuum relation m; > my + mg3, is
expressed in its original form through the squares of masses:

2
m? - Zm% (m% + m%) + (m% - m%) >0. 4.2)

In this form, the kinematic condition for the possibility of the process is applicable
for the case of the negative effective mass squared. The appearance of the photon
effective mass in a medium leads to the fact that if wf, > 4m,2,, the decay v — vv
becomes kinematically allowed, which can occur in stars. In fact, this so-called
plasma process is the main mechanism of the neutrino emission in a wide range of
temperatures and densities, including, for example, the physical conditions inside
the white dwarfs and red giants.

Note that the dispersion relation can be such that the 4-momentum P* = (E, p) be
a space-like, P> = E> — p? < 0. This means an appearance of the negative effective
mass squared, P? = mgff < 0. No physical problems with such a “tachyon” would
arise, because the speed of propagation is determined by the group velocity, which
is always less than the speed of light. The dispersion relation in a homogeneous
medium is often written in terms of the refractive index n as k = |k| = nw. Space-
like excitations correspond to the condition n > 1; an example of such kind is a
photon in water or in air. In this case, the well-known process of the Cherenkov
radiation which can be treated as the “decay” e — e, is kinematically allowed
for a sufficiently fast moving electrons. Similarly, the neutrino Cherenkov process
v — v7y is possible for a massless neutrino in an external magnetic field, where the
photon 4-momentum can be space-like.

Neutrinos can participate in non-standard electromagnetic processes, for example,
due to the intrinsic magnetic moments. This can lead to plasma processes of the
creation of sterile neutrinos, and thus, to the cooling of stars. Limits on an anomalous
cooling rate derived from the observations of white dwarfs and stars of the globular
star clusters, have allowed to establish the most stringent limits on the electromagnetic
interactions of neutrinos.

In the standard model, all fermions are initially massless. They acquire effective
masses due to interaction with the Higgs scalar field. Its vacuum expectation value
@ is the main factor determining the values of the masses. Therefore, even the
vacuum masses can be interpreted as a phenomenon of refraction. Since the scalar
@ is a Lorentz-invariant, the dispersion relation is thus derived from the standard
formula E2 — p2 =m?. In general, the active medium changes this relation, and the
dependence E(p) is usually more complicated function than (m? + p?)!/2.
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The dispersion relation may also depend on the polarization of the radiation.
In the optically active medium, the left- and right-polarized photons have different
refractive indices. In this sense, the entire medium is optically active for neutrinos,
since only left-handed neutrinos are involved in interactions, and the right-handed
neutrinos are sterile.

The interaction of the muon and tau neutrinos, v, and v, with an ordinary
astrophysical environments, that is, containing no thermal muons and tau leptons
is different from the interaction of the electron neutrinos v, due to the contribution
of the charged current (v.e™) to the scattering amplitude. Therefore, this environ-
ment is a birefringent medium with respect to the flavor of neutrino, in the sense that
the environment induces a variety of dispersion relations for neutrinos of different
flavors. The importance of this effect for neutrino oscillations, which are actually
determined by the relation of phases in the propagation of neutrinos of different
flavors, is extremely high.

Considering different quantum processes in active media, one should take into
account that all the particles have non-trivial dispersion properties, while it depends
on the circumstances, whether an effect of refraction is significant or not. For example,
the statement appeared in the literature that in a sufficiently dense plasma, where
wp > 2m,, photons decay with a pair creation, v — eTe™. However, this is not
true, because the effective masses induced by plasma, which the charged leptons
also acquire, are so large that such decays do not occur [1], see also the discussion
below in Sect. 4.5.3.

In addition to the modification of the particle dispersion relations, the presence
of medium can lead to an appearance of entirely new excitations. The well-known
example is the longitudinally polarized state of the electromagnetic field that exists
in plasma in addition to the normal state with transverse polarization. These objects,
usually called the longitudinal plasmons, were first discussed in 1926 by Langmuir. In
many cases these quantized collective excitations play arole similar to that of ordinary
particles. For example, both the usual states with the transverse polarization, called
the transverse plasmons or simply photons, and longitudinal plasmons can decay
into neutrino pairs and thus contribute to the plasma neutrino emission processes.

While the dispersion relations and particle interactions in a plasma are formally
best described in terms of field theory at finite temperatures and densities, most of the
important results of elementary particle physics in stars have been obtained before
the development of this formalism by using simpler tools of kinetic theory. Indeed,
for many problems in describing the dispersion properties of particles and collective
effects, the kinetic approach often seems more physically transparent, leading to
identical results. Further discussion is entirely based on the kinetic theory.

To obtain the dispersion relation in a plasma for a given particle with known
properties, it is usually sufficient to use the simplest approximation, calculating
the forward scattering amplitude off the corresponding field excitations, being the
components of the plasma.

Along with the hot dense plasma, another component of active astrophysical
environment, a strong magnetic field could have a significant influence on the dis-
persion properties of particles. However, this effect of the field is significant only in a
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case of the sufficiently high field intensity. There exists a natural scale of the magnetic
field, the so-called critical value B, = mg Je ~ 4.41 x 10'3 gauss. A detailed analysis
of the magnetic field influence on the photon and neutrino dispersion properties is
presented below in Sects. 4.2 and 4.6.

4.2 Photon Polarization Operator in an External
Magnetic Field

The dispersion properties of photons in a magnetic field are determined by the
polarization operator, which can be obtained from the amplitude of the photon to
photon transition, M, :

Moy =—ei Ipes, 4.3)

described by the Feynman diagram shown in Fig. 4.1. In this case, the dominant role
is played by the electron as a particle with a maximal specific charge, e/m,., which
is the most sensitive to the influence of an external field. The photon polarization
operator in an external field was studied in a number of papers, see, e.g., [2-6]. It is
convenient to represent the polarization operator in the form:

3 béf)bf?)
f A
A=1

where IT™ are the eigenvalues of the polarization operator, bf{\) are the eigenvectors
of the orthogonal basis:

bV = (qp)a,  BP = (qP)as
b = (qep)a — qa (appq),  BP =qa. (4.5)

The functions 17V (g) obtained in Ref. [6] can be written as

Fig. 4.1 Photon polarization operator in a strong magnetic field: the double line in the loop
corresponds to the exact propagator of a charged fermion in a magnetic field
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1 00
dr 1—u?
H(/\)(q) — _g/du/_[ (/\) 719 qz u CIQO] +H(vac)(q2)’
T t smﬂt 2
0 0

‘I u sin Btu cos Jtu — cos St
oV = ?” (cosﬁtu - b ) _p P g

tan 3t + sin? 3t '
1 —u? q> u sin Btu
@ = >~ cos Bt — —+ | cos fru — ———
¢ 717 p 2 fru tan 3t )’
2 .
® = L (cos gy — L8RP 46
0 > ( B g ) (4.6)
where

-2 +qL(cosﬁtu—cosﬂt B 1 —u? t),

2 0 sin Gt 2

(r8-5)
Qo—tm—q 1 .

In Eq. (4.6), the subtraction is made of the vacuum polarization operator, resulting in
a convergence of the integral over #, and then the renormalized vacuum polarization
operator was added. The function I702 (¢?) describes the vacuum polarization in
the absence of a field and has the form, see, e.g., [7]:

M09 () = == g2 v(g?) @.7)
21
1
v(g?) = /du(l —u?) ln( g (1 —u )) (4.8)
0

The dispersion equations for a real photon in a magnetic field has the form:
P -IVg=0 \A=1,2,3). (4.9)

An analysis of Eq. (4.9) shows that only two transverse polarizations, A = 1, 2, are
physical, while the third photon polarization, A = 3, is unphysical. Indeed, substi-
tuting the expression for IT®)(g) into Eq. (4.9), we see that it has a unique solution
g% = 0. As it follows from (4.5), in this case the basis vector bS ) is proportional to
the photon four-momentum g, i.e., the corresponding operator of the electromag-
netic field is proportional to the total divergence and can be removed by a gauge
transformation.

The polarization vectors of photons with the certain dispersion laws are

proportional to the eigenvectors b((ll’z):
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e = /Z, (qso)za, 0 - 2z, (cm);_ 4.10)

Vi i

The factors v/ Z) are caused by renormalization of the photon wave function

@.11)

These renormalizations are especially significant near the values of qﬁ corresponding
to the so-called cyclotron resonances:

2
qﬁ = (\/mg + 2neB + \/mf + 2n/eB) ) (4.12)

where the functions 7™ (¢) have the square-root singularity.
There exists some discordance of terms for these polarization vectors (4.10). In

the classical paper by S. Adler [8] they were called as “longitudinal” || and the

“transversal” L photon modes, s&l) = 6,(1”), 5((12) = sg‘). These notations were based

on the position of the magnetic field vector of the photon electromagnetic wave with
respect to the plane formed by the vectors of external magnetic field, B, and of the
photon momentum, q. Later on, some authors decided that it was more natural to
consider the position of the electric field vector of the photon wave with respect to that
plane, and they used the opposite notations; see e.g. [9], and [10]. As a result, some
authors—see e.g. [11]-confused these notations, using the ones of [9] while referring
to [8]. Sometimes attempts were also made to introduce another notations for these
two photon polarizations, B and C, I and II-see e.g. [12]—or ¢ and 7 polarizations (to
the gauge transformation); see e.g. [13]. In our previous book [14] we used the terms
“ordinary” and “extraordinary” for the photon 1 and 2 polarizations in a magnetic
field (4.10): 58 ) = 5&0 ) and 5&2) = E&E ), Introducing such notations, we based on
the properties of these modes with respect to the CP transformation. Here, we use
the notation 58 2) (see (4.10)).

In the limit of strong fields, in the kinematic region qﬁ < eB, the expressions for

the functions 17TV (g) are simplified and can be written as

o o B 3
H(l)(q):—gqi—i—gqz(lnB——C—yE—i—Ev(qz))
e
1
o\—), 4.13
+ eB) (4.13)

2
2a q « B 3
n%q=-""eBH{ —L )+ = A (n——c-— =N a
(@ —e (4m§ t3.4 " e+ 5 V()
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+0 (eiB) , (4.14)

o B 3 1
n®g* = o 7 (ln 5 C—7+ > v(qz)) +0 (E) . (4.15)
e

where yg = 0.577... is the Euler constant, C >~ 1.2147 is the numerical value of

the integral
1 fde(14 k3 3
/ = ( - ) . (4.16)
z 14z z tanhz  tanh”z
0

The function H(z) introduced in Eq. (4.14) is

1

H(Z):/l_ du _ 1. (4.17)
0

2(1 —u?) —i0

In different areas of the argument the function takes the form:

1 Vi—z4+ /-2
H(z) = In -1, 0,
@ 2¢—z<1 s S gy °=
H(z) = \/7 arctan %Z 1, 0<z<1, (4.18)

1 In f+«/z— 1 1T

H(z) = — +—, z>1.
2Vzz—=1) Jz—+z— 24/z(z—1)
The function has the asymptotics:
H()~2+8 2 08 < (4.19)
4 < 15 Z 35 T, 2 , .

1

H(z):—l——ln4|z|+—(~)(z), lz| > 1, (4.20)
2z 2z

where @ (z) is the step function.

It should be noted that in real calculations, the terms with ¢> contained in
Egs. (4.13) and (4.14) are inessential, because they determine the corrections of
the av order, in accordance with the dispersion Eq. (4.9).

The solutions of the dispersion Eq. (4.9) for photons of the 1st and 2nd modes
defined by Eqs. (4.13) and (4.14) are shown in Fig. 4.2. The dotted line corresponds to
the vacuum dispersion g> = 0. In the region above this line, the square of the “photon
mass” Re IT® has the positive sign, while below the line the sign is negative. The
vertical distance from the given point of the dispersion curve to the line g> = 0 is



52 4 Particle Dispersion in External Active Media

4m?

mode 2

at

Fig. 4.2 The dispersion in a strong magnetic field of the first and second photon modes; the
dispersion curve for the mode 2 photon above the line qﬁ = 4m§ is a real part of the function /7®

(see Eq. (4.14)); the dotted line corresponds to the vacuum dispersion at q2 =0

|¢?|. The line ¢> = 0 and the horizontal line ¢° = 4m£ divide the plane into regions
corresponding to the physical processes with essentially different kinematics.

The solution of Eq. (4.9) for a photon of the 1st mode, as seen from the expression
for the function (4.13), in the considered kinematic area is a straight line, slightly
deviating from the vacuum line ¢> = 0 into the region of negative ¢.

4.3 Generalized Two-Point Loop Amplitude j — f f —j
in an External Electromagnetic Field

The result obtained for the photon polarization operator in external magnetic field,
can be easily generalized by performing the one-loop calculation of the two-point
amplitude of the transition j — ff — j’ in a constant uniform magnetic field for
various combinations of scalar, pseudoscalar, vector and pseudovector currents j and
J' interacting with charged fermions. By the currents j and j/, we mean generalized



4.3 Generalized Two-Point Loop Amplitude 53

local quantum-field objects that can be currents, as such, or the wave functions of the
corresponding particles. In this section, we present the basic points of such calculation
in a magnetic field and in a crossed field, and give the results in the cases of the vector
and pseudovector currents j and j/. As a charged fermion, we consider an electron
as a particle with a maximal specific charge, e/m,, which is the most sensitive to
the influence of an external field. Both a more detailed calculation procedure and the
results for the other combinations of currents are presented in Refs. [14, 15].

The field-induced one-loop contributions to the amplitude for the transition j —
ff — Jj', presented here, can be used in the investigations of both tree-level and
loop-level quantum processes in external electromagnetic fields. The field effects
are taken into account exactly, because exact solutions of the Dirac equation are
used. Owing to this, the expression obtained here for the amplitude is quite general.
The amplitude AMyy defines, for example, the field-induced part of the photon
polarization operator. Upon the substitutions

) Gr . . ) Gr . . )
Jva = Ecng”k JAa — TZCAA{), Jva = €an 4.21)

the sum of AMyy and AMyy describes the process amplitude for the radiative
transition of massless neutrino v — v+. In (4.21), Cy and C4 are, respectively, the
vector and axial-vector coupling constants in the effective Lagrangian for neutrino
interaction with electrons in the Standard Model; j((yy) is the neutrino current; and
€q 18 the photon polarization vector. Similarly, combining the amplitudes AMyy,
AM s and A My, where the neutrino currents (4.21) are substituted, one can also

analyze the process viv — e~ e™ by using the imaginary parts of the amplitudes.

4.3.1 Magnetic Field

The generalized amplitude of the transition j — ff — j' will be analyzed by using
the effective Lagrangian for the interaction of the current j with electrons in the form

L0 = X a0 ($OOLE ), (4.22)

where ¥ (X) is the field operator (2.1), the generic index n = S, P, V, A numbers the
matrices

I =1,7, %, V5% (4.23)

while j, (X) is the generalized current including the coupling constant.
The one-loop amplitude for the transition j — ;" is described by the Feynman
diagram in the Fig. 4.3, and has the form


http://dx.doi.org/10.1007/978-3-642-36226-2_2
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Fig. 4.3 Feynman diagram for the transition j — j’. Double lines indicate that the effect of an
external electromagnetic field is taken exactly into account in the propagators of virtual fermions

M = —ijnjw / d*Z Tr [S(—Z)[L,S(Z) Tyl e 9%, (4.24)

Here, S(Z) is the translational invariant part of the fermion propagator in a magnetic
field (3.2), Z = X — X', j, and j,; are the Fourier transforms of the corresponding
currents, while ¢ is the momentum transfer. From expression (3.2) for the propagator,
it can be seen that the amplitude in (4.24) diverges at the lower limit of integration
with respect to the proper time. This divergence, an ultraviolet one, as a matter of fact,
is due the use of a local limit in the Lagrangian (4.22). Below, only the field-induced
part of the amplitude will be analyzed,

AMyy = My — My . (4.25)
B=0

As can be deduced from the corresponding analysis, the difference in (4.25) is free
from ultraviolet divergences.

Given the bilinear dependence of the phase of the translational invariant part
S(Z) (3.2) of the fermion propagator on the Z variable, the integration with respect
to Z in the expression for the amplitude (4.24) is reduced to the calculation of the
generalized Gaussian integrals of the scalar, vector, and tensor types. The scalar
integral has the form

@ = / d*Z exp |:—i ((Zp) + %(ZGZ))] , (4.26)
where )
G — v+s i sin(B(v +s)) N
s sin(Bv) sin(f3s) '

Here, 0 = eB, the variables v and s are the Fock proper-times in electron propagators.
The matrices A, and A v are defined in (1.2). The vector and tensor integrals can
be defined from the scalar one by taking the derivatives of @ with respect to the
momentum p:


http://dx.doi.org/10.1007/978-3-642-36226-2_3
http://dx.doi.org/10.1007/978-3-642-36226-2_3
http://dx.doi.org/10.1007/978-3-642-36226-2_3
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\ _ o
Q, = /d ZZ, exp |:—1 ((Zp) + - (ZGZ))i| = 18—, (4.27)

P

o / d*z7,7, ¢ i ((Z )+ 1(ZGZ) v (4.28)
y = v €X — - = - . .
a " P P 4 OpuOpy

Performing integrations over the spacetime variable Z one obtains

® = —(4m>2(det G)~/2 exp (l(pG p))
@, =-20G",, (4.29)
P =2 206,067, ~ G| @,

where the inverse matrix G~ ! is

Gl Vs i sin((3v) sin((s)
Wy s M Bsin(Bv +5) M

and the determinant of the G matrix is

(4.30)

det G = — |(V+S)6 Sin(ﬁ(v_‘_s))]Z‘

sv sin((v) sin(0s)

After performing integrations over Z, the generalized amplitude can be expressed in
the form of a double integral.

Here, we present a complete set of expressions for the amplitudes AM,,, in the
magnetic field (n, n’ =V, A).

If one of the currents is a vector one (j, = jva, I, = 7a), it can be shown
by a direct calculation that this currents appears in the amplitude only through the
combination f,5 = gajvs — ggjve- If, in addition, the current jy appears to be the
photon polarization vector, the tensor f,, 3 has the meaning of the strength tensor of
the photon electromagnetic field. This corresponds to the gauge invariance of the
amplitude for the processes being considered.

Thus, the vector—vector amplitude (1, n’ = V) is described in terms of the tensors
fop andf(;ﬁ; that is,

AMyy =

L T ) sy . FDE*P) e
472 |: 4q 1 Yo + 4qﬁ v
(qwfq)(qwf *q) Y(3>]

q q”%_

+

(4.31)
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where

1 00 d ﬂ | 2
(@) I _pt W emi _ 21 T W g
Yoo = [ du | — Fyy p—e N
W / ! / t [sm T4 77 i|
0o 0

2 .
q usin Otu cos Btu — cos [t
S — (cos Btu — b ) -4 b p

Yy = 2 tan 3t 1L sin® 3t

2 2 .
2 1—u q usin Btu
y‘(w), = qﬁ —5 cos Bt — _ZJ_ (cos Otu — —) ,

tan 3t
2 .
3 4 u sin Gtu
=—\|cosftu— ————J),
w =5 ( h tan (3¢

faB = qovs — qaivas fog = odvs — 9Aiva-

)

In the above expressions, the as-yet-undefined quantities are given by

1 —u?

2 2

90=f(mg—61 T)’

Q=2 +qJ_ cosb’tu.—cosﬁt_ 1—u2t ’
2 [ sin Gt 2

& = (q09q) = 4u" oupd’
qi = @¢%9). 4} — a1 =q"-

The amplitude for transitions between axial-vector currents (n, n”’ = A) has the
form

1 [ Gapd) (5 eq) (aPq) Gy ¢q)
AMpp = —2[ 2A YISA) + 2A Y(z)
4 q1 q
'S 3
+ 55 Gavp@) (i PP Y 44 (4.32)
991
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In the above expressions, the following notations are used:

2
— 2m;, cos f[tu,

6] u sin Btu cos Btu — cos Ot
w _ 9 (Cosﬁ B )_ > cos B g

L) tan St + sin® 3t

yfﬁ _ CIﬁ 1 —2 cos Bt — % (cos Btu — %) - 2m5 cos ft,
ysz = q; (cos Btu — %) + 2;;5 (qﬁ_ cos (3t — qﬁ cos ﬂtu) ,
yXX = q; (cos Btu — %) — 2m§ cos (it,

yf/z qzi (COS Btu — %) + 2m§ cos ft.

In the case of the vector and axial-vector vertices (I, = Vo, Iy = 7573). the
field-induced part of the amplitude is given by

1 R Gxeed) )y Gappaf oeq)
aMu = ~3259] 2 Rt qE ™
n —Wz) O;‘q) Y(3)} (4.33)

where

It should be emphasized that, in using our results to calculate the amplitudes of
processes featuring axial-vector currents, care should be taken in dealing with terms
linear in an external field in diagrams of the type shown in Fig. 4.3. The point is
that such terms may prove incorrect because of the Adler triangle anomaly. Strictly
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speaking, it is therefore necessary to specify a procedure for subtracting terms linear
in the field, which must then be recovered. Thus, the correct expression for the
field-induced part of the amplitude must have the form

_ M

AM = (M - M
B=0 aB

) + MWD, (4.34)
B=0

where the expression in parentheses is free from the Adler anomaly. A scheme for
recovering the correct form of the term M(D linear in the field is determined by
a specific type of process and by the origin of the triangle anomaly. An example
of recovering the linear term for the vector—axial-vector part of the amplitude of
the neutrino Cherenkov process in a strong magnetic field, v — v + ~ [10, 16],
is presented below in Sect. 7.1.1. In this case, the origin of the triangle anomaly is
connected with the transition to the local limit of weak interaction.

4.3.2 Crossed Field

The amplitude for the transition j— ' in a crossed field can be derived by performing
once again the calculations outlined in the previous section, but the fermion propa-
gator in a crossed field (3.66) should be used now.

The field-induced parts of the amplitudes AM,,; (n,n’ = V, A) can be written
as follows.

The vector—vector amplitude is:

_ L TEOEP) ay | (O o)
AMw = 4772[ 4qFFg W T agrrg) W
(gFFfq)(gFFf™q) Y(3)}

¢*(qFFg?

(4.35)
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Here, the notations are used:

2 € (qFFq)
2=

A I
4 2/3 2
() 0-),
Xq(1 —u*) 4ms
< 3
f) =i / dt e 105, (4.36)
0
o0
fikx) = / % (e_i(”‘+§) - e_i”‘)
0
[ 1 2
1
=—/f(z)dz+lnx+§ln3+§’m+§, (4.37)
0

f(x) being the Hardy—Stokes function, yg = 0.577 ... being the Euler constant.
The axial vector—axial vector amplitude is:

_ UAFQ G Fq) 1y GaFq) (i Fq) @
AMan = 4w2[ @FFq) M T T GFRg M
2 GAFFj) ) 4
—_— 38
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1
1 —
(5)
Yoo=1[d
0

The vector—axial vector amplitude is:

2
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where
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It should be noted that, in general, the expression for the amplitude A My, in-
volves indefinite forms associated with the Adler anomaly. The procedure for re-
moving them is described above in (4.34).

The expressions obtained for the amplitudes in a crossed field can be used to test
the correctness of a more cumbersome calculation in the presence of a magnetic
field. If, in the amplitudes calculated in the previous section, the field invariant
B~ [—(FF )Y 2 is made to tend to zero in such a way that the field tensor eF 3 =
B remains finite, the required amplitudes in a crossed field can be obtained from
the resulting expressions.

4.4 Photon Polarization Operator in Plasma

In describing the electromagnetic processes with virtual photons in plasma, the
principal point is to use the photon propagator G,3(Q) with the plasma polariza-
tion effects taken into account. We use the straightforward way of taking account of
these effects by summation of the Feynman diagrams of the forward photon scatter-
ing off plasma particles. Similarly to the vacuum case, this summation leads to the
Dyson equation which provides a correct result for the photon propagator in plasma
in the region where the photon polarization operator is real, in the form:
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07—, + -1, (4.40)

Gap(Q) =

where I1; ¢ are the eigenvalues of the photon polarization tensor 1,3 for the trans-
verse and longitudinal plasmon,

14
Mg =—I0,p%) — Iy ) 4.41)

and pg;) are the corresponding density matrices

o _ 0,03 LaoLg
pa[j - (gaﬁ - Q2 - 12 s (442)
LoLp
Pay =77 (4.43)
Ly = Qu Q) — uy 0%, (4.44)

u is the four-vector of the plasma velocity. The density matrices pg\g with A =1,/
have properties of the projection operators:

(N A
P o) = = 08 - (4.45)

In the region where the eigenvalues I1; ¢ of the photon polarization tensor develop
imaginary parts, they can be written as:

ITy =R\ +1il), (4.46)

where R) and 7 are the real and imaginary parts, containing the contributions of
all components of the active medium. For extracting the imaginary parts /; ¢, it will
suffice to make an analytical extension gy — go + i€ corresponding to the retarded
polarization operator.

The eigenvalues I1; , of the photon polarization tensor are presented below both
in the general form and in some particular cases.

The expressions for the contributions of a charged fermion into the polarization
functions I1; , in the hard thermal loop approximation can be found e.g. in [17] and
have the form

o0
H_4a/d7>7>2
—— &

0

2 2 _ 2
(% _ 9094 40, 90Fv ) (4.47)
q - 2vq¢ qo—vq

[fr (&) +fr(©)]
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o0

4a g4 —q> [ dPP? .
m=2 91 | [ (©) +7(E)]
T q &
0
q ., q+vq g — 4>
x| —1In — 20 -1, (4.48)
Vg qo—vq  qf—v2q?

where £ = /P2 + m2,v="P/E, my is the effective fermion mass in plasma, and
the Fermi—Dirac distribution functions for the fermions and anti-fermions are

. fr&) = (4.49)

fr&) = ET 1

1 e(g+ll)/T +1 ’

L is the fermion chemical potential.
For the supernova core conditions, the main contribution comes from the plasma
electrons and protons:

Rie =R +RY),  I,~=1C+17). (4.50)

In these conditions, there is a good approximation to consider the electron fraction
as the relativistic plasma (e, T > m,).

The real and imaginary parts (4.50) of the electron contributions into the photon
polarization functions take the following form:

x(1—=x2 1+x
R§e>=m§(x2+ ( 5 )ln 1_x), 4.51)
0 T
1= Zmix(1-2). (4.52)
© _ 5.2 2 x 14X
RS —2m7(1—x)(1—§ln‘1_x), (4.53)
Iée) =7rm3,x<1 —xz), (4.54)

where x = qo/q, |x| < 1, m, is the so-called photon thermal mass,

2 272
m == (uﬁ +Z ) . (4.55)
'/T

3

For the proton contributions, the situation appears to be more complicated. For
the real and imaginary parts of the proton contribution into the polarization func-
tions (4.47), (4.48), for the conditions i, >> T, where 1, is the proton chemical
potential, one obtains:
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where m,, is the effective proton mass in plasma [18]. For example, at the nuclear
density 3 x 10'* g/cm?, one has my >~ 700MeV.
The proton chemical potential 1, is defined from the equation

1 7 dpp?
—7/ (4.60)
0

Np—Ne— - (g /Lp)/T_’_l

As the analysis of Eq. (4.60) shows, the difference p, — m, (the so-called non-
relativistic proton chemical potential) appears to be of the positive sign at the
temperatures 7 ~ 30 — 60 MeV, and of the same order of magnitude, as the tempera-
ture. Thus, in the supernova core conditions both the approximations of the degenerate
Fermi gas and of the classical Boltzmann gas should be, in general, hardly applicable
for protons. However, as it will be shown later in Sect. 5.4, the observables such as
the neutrino luminosity appear to be rather stable with respect to the choice of the
approximation for the proton distribution function.

Inthe Figs. 4.4,4.5,4.6,and 4.7, we present for the sake of illustration the electron
and proton contributions into the eigenvalues 1y ; for the longitudinal and transverse
plasmon. It is seen that the electron and proton contributions are of the same order
of magnitude.

Together with electrons and protons, in general, a small fraction Y; of the free ions
could also present in plasma, Y; = N;/Np, Np is the barion density. This fraction
can be considered with a good accuracy as the classical Boltzmann gas. The real and
imaginary parts of the corresponding polarization functions have the form:
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where xo = /2 T /m;, and the function is introduced:
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As is seen from Eq. (4.61), the function /, é’) differs from zero only in the narrow area
of the variable x = ¢o/q, namely, x < xo ~ /T /m; < 1.

The functions R,(i) and It(i> for the transversal plasmon are of the order o Zl.2 N;/m;
and thus are suppressed by the large mass of the ion in the denominator. Thus, the
contribution of the neutrino scattering off free ions via the longitudinal plasmon
(A = £) is only essential.

The ion contribution (4.61) comes with the factor Zi2 Y;, and it is negligibly small
in the supernova core conditions, because of the smallness of Y;. However, it could
be essential in the upper layers of the supernova envelope, which are believed to be
rich in elements of the iron group.

4.5 Neutrino Self-energy Operator in Plasma

The most important event in neutrino physics of the last decades was the solving
of the Solar neutrino problem, made in the unique experiment on the heavy-water
detector at the Sudbury Neutrino Observatory [19-21]. This experiment, together
with the atmospheric and the reactor neutrino experiments [22-25] has confirmed
the key idea by B. Pontecorvo on neutrino oscillations [26, 27]. The existence of
non-zero neutrino mass and lepton mixing is thereby established. On the one hand,
the Sun appeared in this case as a natural laboratory for investigations of neutrino
properties. On the other hand, the process of solving of the Solar neutrino problem
significantly stimulated the progress of the Solar physics in different aspects [28] and
of several sciences investigating microscopic matter properties: physics of nuclear
reactions, radiochemistry, etc.

Another direction of neutrino astrophysics, which also interact with several
branches of physical science, is the registration of neutrinos from a supernova explo-
sion. At the moment, there is only one registered neutrino signal from the supernova
SN1987A in the Large Magellanic Cloud, where four underground neutrino detec-
tors, Kamiokande 2, IMB, LSD and Baksan scintillation telescope, for the first time
registered electron antineutrinos in the reaction 7, +p — n + e*.
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Supernova explosions can be called unique natural laboratories for studying the
fundamental properties of matter under extreme physical conditions. At the same
time, one of the most important factors almost completely determining the energetics
of the process is the presence of giant neutrino fluxes. This means that the presence
of microscopic characteristics of the neutrino, determined by its dispersion in the
active medium, could have a critical impact on macroscopic properties of these
astrophysical events.

In real astrophysical conditions, the external active medium is usually represented
by two components: a strong magnetic field and the hot dense plasma. Therefore,
the investigation of the neutrino dispersion properties in a medium containing both
plasma and field is of the most interest. However, due to the large computational com-
plexity of such studies, the analyses were initially carried out, where the dominance
of one of the two indicated components of the active medium, or strong magnetic
field, or the hot dense plasma was supposed.

The calculation of the neutrino self-energy operator in a hot dense plasma without
a magnetic field was carried out in Refs. [29-31]. The contribution of the external
magnetic field into the neutrino self-energy operator, without taking into account the
plasma has been studied in a series of papers [32-37]. The series of papers [38—41]
has been devoted to the analysis of the operator X (p) with taking into account both
components of the environment, both field and plasma, with the dominance of the
influence of the latter, that is, the contribution of the field has been taken into account
in the form of small corrections. Finally, in the papers [42, 43] the calculation of the
operator X' (p) in a magnetized plasma is carried out over a wide range of magnetic
field intensity.

The early Universe can be treated as another natural laboratory for fundamental
physics, where the role of neutrinos is also high. Thus, there has been a steady growth
of interest in neutrino physics in the external active media.

Investigation of the active media influence on the neutrino dispersion is based
on the analysis of the neutrino self-energy operator X' (p). Knowing of the operator
X (p) can solve at least three important tasks:

(1) From the neutrino self-energy operator, an additional energy can be easily
determined acquired by neutrinos in a medium. The astrophysical medium is
asymmetric with respect to lepton flavors: it contains electrons and positrons,
but no muons and tau leptons. Due to this, neutrinos of different flavors acquire
a variety of additional energy, which is the determining factor in the influence
of environment on the neutrino flavor oscillation.

(i) The importance of calculating the self-energy operator is supported by the fact
that you can extract from it the neutrino anomalous magnetic moment.

(iii)) The imaginary part of the neutrino self-energy in the medium determines the
probability of the neutrino decay into the W*-boson and the charged lepton,
v — LW,

Further we discuss each of these tasks.
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4.5.1 Definition of the Operator X (p) in Plasma

The neutrino self-energy operator X' (p) can be defined from the invariant amplitude
of the transition v — v by the relation

My = v)==[0p) E)vp)] = -Te[EE) p@)].  (4.63)

where p® = (E, p) is the neutrino 4-momentum, p(p) = v(p)v(p) is the density
matrix of neutrinos. An additional energy AFE, acquired by neutrinos in the external
active medium is determined by the invariant amplitude (4.63) as follows:

1 1
AE = 5% My — v) = 3E Tr[Z () p(p)] .- (4.64)

It is convenient to represent the operator X (p) in plasma in a general form of an
expansion over the linearly independent covariant structures:

Z(p) = [AL (py) + BL ()] e
+ [Ar () + Br )] & + Kim, . (4.65)

Here, vz = (1 —75)/2 and yg = (1+15)/2 are, respectively, the left-handed and the
right-handed chiral projection operators, u® is the 4-velocity vector of the medium.

Note that the coefficients Ay, Ag and K; in Eq. (4.65) contain an ultraviolet
divergence. But it does not have an independent meaning, since it does not contribute
into the real energy of neutrinos in the external media at the one-loop level, taking
into account the renormalization of the vacuum wave function and the mass of a
neutrino.

4.5.2 Neutrino Additional Energy in Hot Dense Plasma

As was first shown by L. Wolfenstein [44], studying the propagation of neutrinos
in a medium one must take into account the effect of coherent forward scattering.
In astrophysical conditions, the influence of a medium on the neutrino properties
is primarily due to the additional energy, which only a left-handed neutrino (with
the spin oriented opposite to the direction of motion) acquires. For illustration, we
present here a detailed calculation of the contribution into the neutrino additional
energy from the electron-positron plasma component in accordance with Eq. (4.64).
Note that in the approximation of the massless left-handed neutrino, there are only
two linearly independent covariant structures present in the expression (4.65) for the
operator X' (p) with the coefficients Ay and By.

Let us consider the process of a coherent neutrino forward scattering on electrons
and positrons of the plasma. To begin with, we consider the local limit of the weak
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Fig. 4.8 Feynman diagrams illustrating the transition to an effective v — e interaction in the local
limit

interaction of the left-handed neutrinos with electrons, when the propagators of the
intermediate W and Z bosons “shrink” to the point, as shown in Fig. 4.8. The effects
of non-locality of the weak interaction which must be taken into account in a case
of high neutrino energies, will be considered below in Sect. 4.5.4.

The effective local Lagrangian of the neutrino—electron interaction can be written
in the form'

L= —%[émcé‘” — Cy)e] [ (1 = s)], (4.66)

where the constants C‘(,Z ) and CXZ) are different in two cases:

e if the neutrinos in the Lagrangian (4.66) are of the electron type, v = v,, a
contribution from the exchange of Z and W boson appears, and we have:

1 1
C‘(/g) = +§ +2 sin? Ow , C[(f) = +§ s (4.67)

where 6w is the Weinberg angle, sin? Ow >~ 0.231;
e if we consider the muon and tau neutrinos, v = v, v, only the Z boson contributes
in this case, and we have:

1 1
e = -5+ 2sin’fy, CV = -5 (4.68)

Let us start with the scattering by electrons. We write the S matrix element of the
process in the standard form:

iQRm*oD @ +k —p—k)
V2EV 2eV2E'V2e'V

St — M{v(p)+e (k) — v(p)+e (K)}. (4.69)

! Note that the sign of the effective Lagrangian is significant in this case, since the additional
neutrino energy is the linear in G effect. In the calculation of probabilities and cross sections of
weak processes, which are proportional to GIZ:, the sign of the effective Lagrangian does not appear.
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Here, p® = (E, p) and k“ = (¢, k) are, respectively, the 4-momenta of the initial
neutrino and electron, p’ and k’ are the 4-momenta of the final neutrino and electron,
M is the invariant amplitude:

G
wmw»+fw»»u@%ﬁfW»=—;%pradﬁ—c9%k@ﬂ

x [P (1 =ys)vp)].  (4.70)

Given the process is a forward scattering, we need to put p’ = p and k¥’ = k in the S
matrix element (4.69). At the same time

@m*@0) = / d*xe = vT, 4.71)

where V is the total volume of the interaction region, 7 is the total time of interaction.
The S matrix element of the forward neutrino scattering off the electrons takes the
form .

S(e_) N 1V T

forw m M{V(p) + €_(k) — l/(p) +e (k)}. 4.72)

Since this is a coherent process, the total scattering amplitude is obtained by summing
the scattering amplitudes for all electrons of the medium:

3
©) =3 s 4 (e-)
Sr;t = Sf,,erw =2 )3 Je(k) Sfjrw ) 4.73)
Kk,s

where the coefficient 2 takes into account two electronic spin states s, f. (k) is the
distribution function of the electrons of medium. We assume this distribution to be
in an equilibrium and consider the reference frame where the medium moves as a
whole with the 4-velocity vector u. The Fermi—Dirac distribution function is written
as

_ -1
£k = (exp (k”)—T“e + 1) , (4.74)

where (i, is the chemical potential of the electron-positron plasma, 7 is the plasma
temperature.

We can now determine the contribution to the invariant transition amplitude
M) (v — v) caused by the coherent forward scattering on the electron fraction
of plasma, from the expression

ivT

(e—)
2BV M — ). (4.75)

S = 8w ) =

From Egs. (4.70)—(4.75), we obtain
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3 fe(k) . (4.76)

The arising integral is a relativistic covariant and can be easily calculated:

d’k
on )3fe( ) S =ugN,, 4.77)

where N, is the electron density.

The contribution from the coherent forward scattering on the positron fraction of
plasma can be calculated quite similarly. As a result, taking into account Eq. (4.63),
we finally obtain the neutrino self-energy operator in the electron-positron plasma
in the form

2(p) = V2Ge ) wy)yyr (Ne = Ne) (4.78)

where N, and N, are the densities of electrons and positrons. Comparing (4.78)
with (4.65), one can see that only one structure with a coefficient B, = V2GgC €f )
( e — Ne) presents in the operator X (p) in this case.

According to Eq. (4.64), for the additional neutrino energy in electron-positron
plasma we obtain

AE = V2Gg CY % (Ne — Ne) (4.79)

In the transition from an arbitrary reference frame to the plasma rest frame one should
put (pu) =E

In the analysis of the neutrino dispersion properties in the active astrophysical
media one should generally take into account, along with the electron-positron
plasma, the presence of other components. The contribution of protons and neu-
trons can be found similarly to the previous analysis, with the effective Lagrangian
caused only by the exchange of Z boson (see Fig. 4.8). In a dense plasma of the
supernova core, the contribution of the neutrino gas which can be regarded to be in
approximate equilibrium, could also be significant. The general expression for the
additional energy of the electron, muon and tau neutrinos, i = e, u, T, is given by

AE; = «/EGF[(éie - % +2 sin? ew) (Ne — N)
+ (% — 2 sin® ew) (Ny — Np) (4.80)
1 _ _
= S N =Na) + D> (A +0i0) (Noy = Noy) |
l=e,u,T

where Ne, Np, Ny, and N, are the densitis of electrons, protons, neutrons and

neutrinos, N, Np, N, and NW are the densitis of the corresponding antiparticles.
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To find the additional energy of an antineutrino in plasma, one should change the
overall sign in the right-hand side of Eq. (4.80).

The formula (4.80) obtained in the local limit of weak interaction, is not sufficient
for the case when the plasma is nearly charge-symmetric, for example, in the early
Universe. In this case the value of AE; in Eq. (4.80) tends to zero, and the contribution
into the neutrino energy becomes significant caused by the nonlocality of the weak
interaction. This non-local contribution was investigated in Refs. [29, 39, 45] in the
form of the next terms in the expansion of the W— and Z-boson propagators by the
inverse powers of their masses m;VZZ The result can be presented as follows:

oloo) g __ 16GEE (<EW>NW, + (Es )Ny,

32 2

my
E,)N, + (E3)N,
L, (B t<e> )

My

(4.81)

Here, (Ey, ), (Ep,), (E.), (E;) are the average energies of plasma neutrinos, antineu-
trinos, electrons and positrons respectively. In a particular case of a charge symmetric
hot plasma, the expression (4.81) reproduces the result of Refs. [29, 39]:

T2 GeTH (1 26
A(nloc)Ew — _\/_T;—SF (_2 + ;e)E . (4.82)
mZ mW

However, the correction of the type of Eq. (4.81) can be insufficient in the case of
ultra-high neutrino or antineutrino energies. The neutrino self-energy operator with
using the exact dependence of the propagators of gauge bosons on the momentum
transferred was investigated in Ref. [46], see Sect. 4.5.4 below.

For a typical astrophysical plasma, with the exception of the early Universe and
supernova core, we have N, ~ N, ~ N, ~ N,, ~ N,, ~ 0 and N, =~ N, =
Y, Np, N, ~ (1 —Y,) Np, where N is the density of baryons. If the neutrino energy
is not extremely high, for the additional energy of neutrinos of different flavors, we
obtain

AE, = OFNB (3Y,—1) (4.83)
e \/E e P .
Gr Np

V2

Since Y, < 1, the additional energy of the left-handed muon and tau neutrinos is
always negative. At the same time, the additional energy of the left-handed electron
neutrinos is positive for ¥, > 1/3. Conversely, the additional energy of the electron
antineutrinos is positive for ¥, < 1/3, while it is always positive for the muon
and tau antineutrinos. In turn, the right-handed neutrino, with the spin oriented in

AE,, =

(1-Y,). (4.84)
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the direction of movement, and its antiparticle, the left-handed antineutrino, being
sterile with respect to weak interaction, do not acquire the additional energy.

4.5.3 On the Neutrino Radiative Decay in Plasma

It should be noted that the history of studies of the neutrino dispersion modifications
by plasma has not been without its oddities. In this section, we illustrate how a consid-
eration of the plasma influence on the neutrino dispersion, with ignoring the photon
dispersion in plasma, has led the authors [47], for a comprehensive list of references
see [48], to a detailed discussion of an effect, which is physically impossible, strictly
speaking.

It is known that the effect of plasma on the particle properties may open new
possibilities for the realization of processes, forbidden in vacuum by conservation
laws. However, it is necessary to consider the plasma impact on all components of
the process, and it can complicate the kinematics essentially.

The additional energy AE, defined by the expression (4.83), results in the appear-
ance of the effective mass square mz for the left-handed electron neutrinos:

m; =P? = (E + AE)* —p*, (4.85)

where P is the 4-momentum of the neutrino in a plasma in its rest frame, while the
4-vector (E, p) would be a 4-momentum of the neutrino in vacuum, E = /p? + m2.
Given the neutrino magnetic moment interaction with a photon, which leads to
the neutrino helicity-flip, the appearance of an additional energy for left-handed
neutrinos in plasma would open new kinematic possibilities for the neutrino radiative

transition:
vp —> VR+ 7. (4.86)

It can be considered as the radiative decay of the left-handed neutrino which becomes
heavier in plasma, into lighter right-handed neutrino.

At the same time it should be obvious that it is necessary to take into account the
influence of plasma on the dispersion of the photon w = |k|/n, where n # 1 is the
index of refraction.

First of all, the plasma influence can provide the condition n > 1 to be satisfied
(the square of the effective photon mass is negative, m? = ¢* = w? — k* < 0),
which corresponds to a well-known effect of the neutrino Cherenkov radiation
[10, 49, 50]. In this situation, a change of the neutrino dispersion properties under
the plasma influence could be neglected at all. Really, while the neutrino dispersion
is defined by a weak interaction, the change of the photon dispersion depends on its
much more intense electromagnetic interaction with plasma.
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Theoretically, one can consider another situation: if the photon dispersion in
plasma was the same as in vacuum,? the process would occur of the neutrino radiative
transition ¥ — vy, caused only by the neutrino dispersion. Since the effect of the
plasma changes the dispersion properties of the only left-handed neutrino, the tran-
sitions (4.86) would be possible due to the photon interaction with the neutrino
magnetic moment. Such an imaginary effect, called “neutrino spin light” (SLv),
has been proposed and studied in detail in an extensive series of papers, see [48].
However, in analyzing this effect the authors have not considered such an important
phenomenon as the above-mentioned plasma influence on the photon dispersion. As
was shown in [51, 52], this phenomenon makes the SLv effect forbidden for all real
astrophysical situations.

Following the papers [51, 52], we analyze here the process vy, — g7y, taking into
account the dispersion properties of both the neutrino and photon in astrophysical
plasmas.

To analyze the kinematics of the process, it is worthwhile to estimate the scales
of the values of additional neutrino energy AE and the effective mass of the photon
(plasmon) m,.

From the expression (4.83) for the electron antineutrino, we obtain

Np

AE~6eV (b
¢ (1038cm—3

) (1-3Y,), (4.87)

where the scale of the baryon density is taken, which is typical e.g. for the interior
of a neutron star.

In turn, a plasmon acquires in medium an effective mass m., which is approx-
imately constant at high energies. For the transverse plasmon, the value of m% is
always positive and is determined by the so-called plasma frequency wp. For a non-
relativistic classical plasma (e.g. in the Sun), we obtain

amaNe |4y q02ev (e " (4.88)
my=wp=_ |———>4x eV| ———— . .
! P My 1026 cm—3
For the ultra-relativistic dense matter one has:
2 72
m? = — (ug +3 T2) , (4.89)

where i, is the chemical potential of plasma electrons. For the case of cold degenerate
plasma one obtains from Eq. (4.89):

2 Strictly speaking, a particle that interacts with the magnetic moment of neutrinos, and at the same
time, is sterile with respect to the interactions with electrically charged plasma particles, should not
be called a photon.
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3 2a\'? 1/3 N, 13
my = \/;wpl = (7) (3 7T2 Ne) ~ 107 eV (1037—(;;1_3) . (4.90)

In the case of hot plasma, where its temperature is the largest physical parameter,
the effective mass of the plasmon is

2 T
my= T 12%x 107 eV (— ). 4.91)
3 100 MeV

Comparison of the scales of m, (4.88)—(4.91) with the scale of AE (4.87) should
indicate that neglecting the mass of the plasmon, made in the consideration of the SLv
effect [48], was obviously incorrect. At the same time another physical parameter, a
great attention was paid to in the SLv analysis, was the neutrino vacuum mass m,,. As
the scale of neutrino vacuum mass could not exceed essentially a few electron-volts,
which is much less than typical plasmon mass scales for real astrophysical situations,
see Eqgs. (4.88)—(4.91), it is reasonable to neglect m,, in our analysis.

Thus, in accordance with (4.85), a simple condition for the kinematic opening of
the process v;, — Vg is:

mj ~2E AE > m? . (4.92)

This means that the process becomes kinematically opened when the neutrino energy
exceeds the threshold value,

2
E>Ey= TAE" (4.93)

The appearance of the threshold energy of neutrinos can be demonstrated by
considering the range of integration over the energies and momenta of the photon
(plasmon) in the v;, — v~y process, taking into account the dispersion properties
of both neutrinos and photons in astrophysical plasmas. In Fig. 4.9, the line of the
photon dispersion in vacuum, go = k, lies inside the allowed kinematical region
(left panel), whereas the line of the photon dispersion, modified by plasma, may be
outside this area if the neutrino energy is not large enough (right panel). In this case
the phase volume, and hence the process probability is zero.

For fixed plasma parameters, the value wp remains constant. The value AE remains
constant also, if we disregard the contribution to the neutrino energy from the non-
locality of the weak interaction. Therefore, in order to obtain the non-zero phase
volume and the process probability or, in other words, in order to put a part of the
plasmon dispersion curve into the integration region, it is necessary to increase the
neutrino energy E, i.e., the width of the oblique rectangle in Fig. 4.9. It should be
clear, that there is the minimum energy Ey for the integration region to exist. This is
just the threshold energy (4.93).

Let us estimate these threshold energies for various astrophysical situations.

In the approximation of nonrelativistic classical plasma, one obtains from Eqgs.
(4.87) and (4.88) that the threshold neutrino energy does not depend on density, and
do depend on the chemical composition only:
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Fig. 4.9 The integration region for the calculation of the probability of the process v, — vg7y at
fixed energy E of the initial neutrino (inside the oblique rectangle drawn by dashed lines) and the
line of the photon dispersion (thick line) in a vacuum (left panel) and in plasma (right)

Y, ) m%v
Ep~ —°— 4sin? fyy V.| 4.94
T3 =1 Y e (49%)

For the solar interior Y, >~ 0.6, and the threshold neutrino energy is
Eg~10""MeV, (4.95)

to be compared with the upper bound ~20MeV for the solar neutrino energies.

For the interior of a neutron star, where Y, < 1, the additional energy for neutri-
nos (4.83), (4.84) is negative, and the process v; — vg + -y is closed. On the other
hand, there exists a possibility for opening the antineutrino decay. Taking for the
estimation Y, >~ 0.1, one obtains from (4.87) and (4.89) the threshold value

Eo~ 10" MeV, (4.96)

to be compared with the typical energy ~1—0.1 MeV of neutrinos emitted via the
direct or modified Urca processes [53].

For the conditions of a supernova core, the additional energy of left-handed elec-
tron neutrinos can be obtained from Eq. (4.80) in the form:

_ GgNp

2

where Y,, describes the fraction of the trapped electron neutrinos in the supernova
core, N, = Y,, Np. Using the typical parameters of a supernova core, we obtain

AE,

(3Y.+4v, —1), (4.97)

Ey >~ 10’ MeV, (4.98)

to be compared with the averaged energy ~10> MeV of trapped neutrinos.
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In the early Universe, when the plasma was almost charge symmetric, the
formula (4.80), which gives a null result must be supplemented by the non-local
contribution (4.82), which is the same for neutrinos and antineutrinos. The minus
sign in (4.82) unambiguously shows that in the early Universe, in contrast to the
neutron star interior, the process of the radiative spin-flip transition is forbidden both
for neutrinos and antineutrinos regardless of their energy.

An analysis of the sum of the local and non-local weak contributions (4.80)
and (4.81) in a case if the neutrino energy is not ultra-high, shows that adding of the
non-local term leads in general to the decreasing of the additional neutrino energy in
plasma, i.e. to the increasing of the threshold energy (4.93). Strictly speaking, one
has to perform an analysis of the kinematical inequality (4.92), which leads to the
solving of the quadratic equation. As a result, there arises the window in the neutrino
energies for the process to be kinematically opened, Eg <E <Emax, Where Eg and Epyax
are the lower and the upper limits connected with the roots of the above-mentioned
quadratic equation, if they exist. For example, in the solar interior there is no window
for the process with electron neutrinos at all, i.e. the transition v,;, — Veg + 7 is
forbidden kinematically.

Thus, the above analysis shows that the nice effect of the “spin light of neutrino”,
unfortunately, has no place in real astrophysical conditions if the dispersion properties
of neutrinos and photons are properly taken into account. The sole possibility for
the discussed process v;, — vg + 7y to be theoretically possible, could be connected
only with the situation when an ultra-high energy neutrino threads a star. Obviously,
this task can only have a purely methodological sense. In the papers [51, 52], the
mean free path L of the ultra-high energy neutrino with respect to the radiative decay
process was correctly calculated in the situation where a neutrino arrived from outside
penetrates a neutron star.

Based on the typical neutron star parameters Ng ~ 103 cm™3, ¥, ~ 0.05, the
mean free path was obtained:

—12
L>10Ycm x (10—“‘3) , (4.99)
11y

where 1, is the neutrino magnetic moment, up is the Bohr magneton. This mean free
path should be compared with the radius of the neutron star ~10° c¢m, to illustrate
the extremely low probability of the process.

It is interesting to note that it was not the first case when the plasma influence was
taken into account for one participant of the physical process while it was not taken
for other participant. As E. Braaten wrote in Ref. [1]:

“In Ref. [54], it was argued that their calculation for the emissivities from photon
and plasmon decay would break down at temperatures large enough that m, > 2m,,
since the decay v — eTe™ is then kinematically allowed. This statement, which has
been repeated in subsequent papers, [55-58] is simply untrue. The plasma effects
which generate the photon mass m. also generate corrections to the electron mass
such that the decay v — eTe™ is always kinematically forbidden.”



78 4 Particle Dispersion in External Active Media

Thus, a history repeated itself. The authors [48] made the same mistake when they
considered the plasma-induced additional neutrino energy and ignored the effective
photon mass m. arising by the same reason.

The only question remained open whether this effect was possible in the case of
ultra-high neutrino energies [59]. This gap was eliminated in Ref. [46]. In the next
section, we reproduce that analysis.

4.5.4 Ultra-High Energy Neutrino Dispersion in Plazma

As it was already mentioned, the accounting of the non-local contribution to the
neutrino additional energy made by the retention of the next term in the expan-
sion of the W— and Z-boson propagators in the inverse powers of their masses
[29, 39, 45, 52] would be irrelevant in the limit of the ultra-high neutrino energies.
Therefore, it is necessary to use the exact expressions for the W—and Z—boson propa-
gators. Analysis of the neutrino additional energy in a plasma in the limit of ultra-high
energies, with taking account of the nonlocality of the weak interaction was made
in a series of papers, Refs. [60-62], with respect to the neutrino oscillations. In this
section, we consider the neutrino self-energy operator in medium similarly to the
procedure described in Sect. 4.5.2 but with taking into account the dependence of
the W and Z-boson propagators on the momentum transferred, and we reanalyse its
effects on the neutrino radiative conversion (4.86). The presentation is based mainly
on Ref. [46].

We first consider the electron neutrino scattering on the electron-positron compo-
nent of plasma. For the channel of the v,e scattering through the W—boson exchange,
the Lagrangian of the interaction is:

g - g _ n
L=—+—(e 1 —v5)ve) Wo + —= (7 1 —5)e) W/!. 4.100
2\/5( Ya ( V5) Ve ) Wa 2\/5(87(!( Ys5)e) a ( )
It leads to the invariant amplitude of the process:
GF .
Ml/eefﬁl/ee* = _ﬁ [e(k/)’}/w(l - 75)6(]()]
my
X [2.()* (0 = v)ve(P)] 57— » (4.101)
My — 4

where we use the notation g = k' —p for the W~ —boson momentum (see Fig. 4.10a).
Here, the Fiertz transformation is performed, and the term in the W—boson propagator
leading to the small term of the order of (i, /mw)2 is neglected.

The amplitude of the neutrino-positron scattering process can be written in the
similar form (see Fig. 4.10b):
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Fig. 4.10 The Feynman

ei(k,) ve(p) Ve(pl)

diagrams for the neutrino ve(p) W(q,)
scattering through W-boson: (_qz
a on plasma electrons; b on W
plasma positrons (a0
e (k) ve(p') e'k) e*(k")
(a) (b)
Gr [
1‘41/(,e+—>z/,,,e4r = E [e(_k)’)/a(l - '75)6(_k/)]
iy
X [2e(P) (A = 19)ve)] —5 (4.102)
My —¢g
w 2
where W™ —boson momentum is go = —p — k. Note that the amplitudes (4.101)

and (4.102), described by the diagrams in Figs. 4.10a,b differ essentially. Namely,
in the s-channel process of the neutrino scattering off positrons, Fig. 4.10b, we have
q% > 0, i.e. aresonance behavior of the W—boson propagator manifests itself. On the
contrary, in the u-channel process of the neutrino scattering off electrons, Fig. 4.10a,
we have q% < 0, and no resonance arises. Taking account of this type of resonance
is made by introducing a complex mass of W-boson, mj, = my — % i 'y, where
I'w is the total decay width of W-boson, I'iy ~ 2.1 GeV, see e.g.[63].

Because of the # —channel behavior of the neutrino-electron and neutrino-positron
scattering diagrams for neutrinos of all flavors through Z-boson, see Fig. 4.11, and
keeping in mind that the forward scattering is considered, i.e. the scattering with
zero-momentum transfer, one concludes that the contribution to the energy from
these subprocesses is described by the local limit of the weak interaction.

The total contribution to the £ —flavor neutrino self-energy operator from the scat-
tering processes on plasma electrons and positrons can be found by the same way as
Eq. (4.78) and be represented in the form:

ZUL oy @) = V26 [CF @i Ne = No)

+ deer iy Gz —if)] (4.103)

where N,, N, = 2(27r)_3fd3k (exp ((e F pe)/T) + 1)_1 are the electron and
positron densities respectively, and we use the notation

—1 _
+1> (m%V:I:Z(kp)) " (4.104)

_— a3k ka( €F e
.]a_

Qn)3 ¢ T

The constant C{,“ ) in Eq. (4.103) comes from the electron Z—current and is the same
for £ = e, u, 7, see Eq. (4.68). For taking account of the resonance behavior in the
denominator of the integral j.*, my should be replaced by my,.
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Fig. 4.11 The Feynman
diagrams for the neutrino ve(p) ve(ph ve(p) ve(p"
scattering on plasma elec-
trons and positrons through
Z-boson

e (k) e (k" et (k) etk

(a) (b)

In accordance with Eq. (4.64), the neutrino v, additional energy in the electron
and positron medium takes the form:

Ve
AE(e*e*)

= V2Ge [ C N, — No)
+ Ote (F1 (e, mw) — Fa(—pie, mip)) ], (4.105)

where we introduce the functions

om? [ &3k e—p L k)

In order to obtain the antineutrino additional energy in the same medium, one has
to make the replacement y, — —p, in the right-hand side of Eq. (4.105). In the
first term with the difference of the electron and positron densities it simply means
a change of sign.

In the analysis of the neutrino dispersion in active astrophysical medium in a
general case, the presence of the other plasma components, protons and neutrons,
must be considered. In a dense plasma of the supernova core the donation from
thermal neutrinos that can be considered to be approximately in equilibrium, can
also be significant. The corresponding Feynman diagrams are shown in Fig. 4.12.
The two Feynman diagrams, Fig. 4.12c,d contain a contribution from the non-locality
of weak interaction.

A complete formula for the vy neutrino and 7, antineutrino additional energy can
be written in the following way:

; 1 ; N
AE"T = V2GR F 5 (N = No) & (N, = i)

+ Ny, —Ny,) £ (N, —Ny,)
+ dge [Fl (Epte, mw) — Fo(F e, m*W)]

1 - -
+ 3 [FiGfivg.mz) = Fa G m] | (4107)
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Fig. 4.12 The Feynman
diagrams for the neutrino
scattering on neutrinos and
antineutrinos of the supernova
core dense plasma

vi(p) vi(p")

vy(k) vo(k’)

(c) (d)

In this expression, N,, N,, are the neutron and neutrino densities and Nn,NW
are the densities of the corresponding antiparticles. The proton contribution in
Eq. (4.107) is cancelled by the electron contribution, because of plasma electroneu-
trality. Note that in both functions F, there exists the mentioned above resonance
behavior, which is accounted by the introduction of complex masses of W and Z
bosons, m";‘,’z =myz — % i 'y z, where the total decay width of the Z— boson is
I’z ~2.5GeV.

Tending formally my and mz in Eq. (4.107) to infinity, one obtains the neutrino
additional energy in the local limit of weak interaction, the so-called Wolfenstein
energy [44]. Taking the next terms in the expansion of the W— and Z-boson prop-
agators by the inverse powers of their masses, mv_vz,p i.e. retaining the first term in
the expansion of the functions Fj » by m~2, one obtains the first non-local correc-
tion (4.81) to the Wolfenstein energy.

Further we consider the kinematical possibilities of the ultra-high-energy neutrino
radiative conversion (4.86) for different astrophysical situations.

4.5.4.1 Nonrelativistic Cold Plasma: The Sun and Red Giants

Let us consider first the limit of “cold” plasma, 7 — 0. In this case, the electron
gas is completely degenerate, and there are no positrons in a medium. Calculation
of the additional neutrino energy reduces in this case to a simplified calculation of
the function F (i, my ), taking the form in the limit 7 — 0O:
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e

2 2 2
m m my, +2Ec(1 +v

Fi(pte, my) = ;V/vede<1— Y In —F ( )), (4.108)
2m*E 4Eve  my, +2Ee(1 —v)

me

where ¢ is the energy of a plasma electron, and v = /1 — m2/? is its velocity.
Similarly, calculation of the additional antineutrino energy reduces to the calcu-
lation of the integral:

m‘z}v He
Fa(pe, m*W) = —m/l&‘:dé‘
Mme
my | mly —2Ee =] 4 1 o100
T 8Eve .2 2, .2 (4.109)
[my, — 2Ee(1 +W)|" +my, I
2 2 2
im ms, —2E (1 —v ms, —2E (1 +v
— Lid arctan Lid ( ) — arctan Lid ( ) .
4Eve mw I'w mw I'w

Here, we have neglected the terms of order I'yy/my compared to unity wherever
it does not cause problems. Thus, the imaginary part of the additional antineutrino
energy, in general, differs from zero. The presence of the imaginary part in the self-
energy of a particle indicates its instability, that is, an electron antineutrino is unstable
with respect to the process v, + ¢~ — W™ on the plasma electrons. The width of
this process can be found, using the formula:

w=—-2ImAE. (4.110)

In the case of non-relativistic cold plasma, the integral (4.108), with taking account
of the smallness of the Fermi momentum, pp = / MZ — mg <« m,, can be obtained
in the form:

P Y.Np

(1)
F Lmy) = - ’
F e ) = S s dm By 2) 1+ 2m )2

4.111)

where Np is the baryon density, Y, = N,/Np is the fraction of electrons.

Let us consider the high-energy neutrino propagation through the “cold” plasma
of the Sun or of red giants, where the temperature is 7'~ (107 = 103) K~ (1073 —
10~2) m,, and the electron density is N, ~ 1026 cm—3. The effective plasmon mass in
these conditions takes the form: m, = /4waN,/m,. The stellar substance is trans-
parent for the neutrino radiation, thus the contribution into the neutrino additional
energy from thermal neutrinos can be neglected.

As aresult, the additional energy of a neutrino v, in the nonrelativistic cold plasma
becomes:



4.5 Neutrino Self-energy Operator in Plasma 83

OpeYe 1
AE" = V2GgN, ——(1-Y). 4112
F B(1+2ng(mW)2 2( e) ( )

Accordingly, the additional energy of an antineutrino 7y in the same conditions can
be written as:

- 6[6 Y,
1 —2m,E(mw)~2 — il (mw)~!

AE” = /2GgNg ( + % (1- Ye)) . (4.113)

The analysis of the threshold inequality (4.92) for the electron neutrino reduces,
in view of (4.112), to the investigation of the positiveness of the square trinomial
with respect to the energy E. Assuming that Y, 2~ 0.6 inside the Sun, we conclude
that the inequality (4.92) is not satisfied for any neutrino energies. One can see
that taking account of the non-locality of the weak interaction dramatically changes
the conclusion on a possibility of the electron neutrino radiative conversion in the
nonrelativistic cold plasma. Really, in the earlier papers [51, 52] where the local
limit of the weak interaction was used, it was concluded that the neutrino radiative
conversion in the considered conditions was possible for neutrino energies E greater
than threshold energy Ey ~ 107 GeV. However, in reality the effect for v, is totally
closed.

Consider now the possibilities for a trueness of the inequality (4.92) in the same
conditions for other neutrino flavors. Note that the question on any observational
realization of this process remains open.

The analysis of the inequality (4.92) for the electron antineutrino, in view
of (4.113), where a real part of AE should be taken, shows that the radiative neutrino
conversion is possible for antineutrino energies greater than the threshold energy
value, E > Ey ~ 0.6 x 10" GeV.

As it was already mentioned, the imaginary part of AE” causes the instability
of the electron antineutrino with respect to the process v, + ¢~ — W™ on plasma
electrons. Using the formula (4.110) one obtains from Eq. (4.113) the width of the
process:

TI'wEy/mwy
(E — Eo)> + (I'wEo/mw)*’

w(ie + e~ — W) = 2v/2GeN,Eo (4.114)

where Ep = m%,[, /(2m,). Evaluation of a mean free path with respect to this process,
A = 1/w, for N, ~ 10%°cm™3, E~ 107 GeV provides A ~ 100 km, while the mini-
mum value is reached at E = Ey, to be: A ~200m. It is obvious, that the process
Ve + e~ — W™ dominates the radiative neutrino conversion, see e.g. Eq. (4.99). If
one formally takes the limit Iy — 0 in Eq. (4.114) to obtain:

w(ie + e~ — W) = 24/271 GpN.Eg 6(E — Ep). (4.115)
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It coinsides with the result of a direct calculation of the W—boson production by v,
scattered off nonrelativistic electron gas, without taking account of the instability of
the W—-boson.

The interaction of the p- and 7-neutrinos with medium occurs only through the
Z-boson exchange with the zero momentum transfer and, as it was pointed above, it
is completely described by the local limit of the weak interaction. As it can be seen
from Eq. (4.112), the additional energy of v, and v is negative, consequently, the
neutrino radiative conversion process is closed for these neutrino flavors.

In turn, the additional energy (4.113) of antineutrinos 7, and v, is positive. To
estimate the border of the kinematically possible region for the SLv process in this
case one can use a simple inequality:

Y, m2
E > Ey =4 sin® Oy —— WX,
— Y, me

(4.116)

For Y, =~ 0.6, the process is kinematically opened for ;4 —and 7 —antineutrino energies
greater than Ey ~ 2 x 107 GeV.

4.5.4.2 Relativistic Cold Plasma: Neutron Stars

The substance of a neutron star is transparent for the neutrino radiation, as in the
previous case. Electrons in extremely dense neutron stars are ultra-relativistic, there-
fore p >~ pr >~ 120 (N,/(0.05 No))l/ 3 MeV, where pr s the electron Fermi mo-
mentum, and Ng = 0.16 Fm™3 is the typical nuclear density [64]. Due to the modern
estimations, the temperature inside neutron stars does not exceed a part of MeV, so
the electron gas can be considered to be degenerate and the approximation of the
zero temperature can be used. In this case the electron density is N, = u;:’ /(37?)
and the square effective plasmon mass is m% = ZCWE /.

The functions Fj2(u, m) for ultrarelativistic electrons can be obtained from
Eqgs. (4.108) and (4.109) by taking the limit m, — 0.

The additional energy for a neutrino v, under conditions being considered takes
the following form:

1 5
AE” = V2Gg (—5 (1—Y,)Np+ 2‘3

2

A(E, ue)) , 4.117)

1
A(E, 1) = @[4Em%‘,,ue(m%v + 2E1,)

4E
— (m, + 4Epom) ln(l + mfe)] (4.118)
w
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The analysis of the threshold inequality (4.92) with taking account of Eqgs. (4.117),
(4.118) indicates that the SLv process for the electron neutrino is forbidden in the
conditions of a neutron star.

The similar analysis can be held for an antineutrino vy. The additional energy in
this case is

AE™ = J2Gg (% (1 =Y Np — ;fTZA(E, ue)) , (4.119)

AE, j10) = Mkzdk 1 (1 = x)dx 4.120

(E, pe) ‘/ / 1 —2E(1 — x)k(my)~2 — ilw(my)~ 1" (120
0 —1

This integral can be easily calculated analytically but the final expression is too
cumbersome. From the analysis of the kinematically possible region (4.92), where
a real part of AE should be taken, we can conclude that the radiative conversion
process (4.86) is permitted for the electron antineutrino for energies greater than the
threshold value Eg ~ 8 x 10* GeV, for ¥, ~ 0.1 and N ~ 1037 cm—3.

A comparison of these conclusions with the results of Refs. [S1, 52] shows that tak-
ing account of the non-locality of the weak interaction does not lead to any qualitative
changes of the conclusions on kinematical possibilities of the radiative conversion
for the electron neutrino and antineutrino in the conditions of a neutron star.

Again, as in the considered case of nonrelativistic cold plasma, the imaginary part
of AE” means an instability of the electron antineutrino with respect to the process
Ve + e~ — W™ on plasma electrons. A width of the process can be obtained from
Egs. (4.110), (4.119), and (4.120), but in a general case the expression is rather cum-
bersome. It is esssentially simplified for high neutrino energies, E > mw I'w/ ie,
taking the form:

_ GFmévue m%v m%v
wWe+e — W)= 1— O\ E - . (4.121)
‘ 232 1 E2 4pE 4t

Evaluation of a mean free path with respect to this process for p, ~ 120 MeV,
E ~ 5x 10* GeV provides A ~ 10~> cm. Domination of the process 7, +-¢~ — W~
over the radiative neutrino conversion in the neutron star conditions is undoubted,
see Eq. (4.99).

For 1 —, 7 —neutrino and antineutrino, as well as in the case of nonrelativistic cold
plasma, it is correct to use the local limit of the weak interaction. Substituting the
additional energy for £ = pu, 7

_ G
AEVe7 = ;7‘% (1-Y,)Ng, (4.122)

and the plasmon mass in the case of a cold degenerate plasma
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2o\ /2 13
mv=(?°‘) (37r2YeNB) (4.123)

into the threshold inequality (4.92), we come to the conclusion that for v, v; the
radiative conversion process (4.86) is forbidden. For ,,, 17 the process is kinemati-
cally permitted for the energies greater than

E>Ey=

. 2/3 2
2 sin? O (ﬁ) P myy (4.124)

1-Y, \n N

Using for estimation the values Y, >~ 0.1, Np =~ 1037 cm™3, we obtain Ey ~ 2 x 10*
GeV.

4.5.4.3 Hot Plasma of a Supernova Core

In this case one needs to use the general expression for the additional energy (4.107)
of the neutrino v, and antineutrino v, with taking account of the scattering on all
plasma components. The additional energy can be written as:

_ 1 N y
AEVEVE = \/EGF’ + E(Nn _Nn) + (NVe _Nye)

Ny, — Ny £ (N, —N,,)
3

T
+ﬁ [5€€(B(i/j/€s mwy, T) - B(:l:,uev m*Wv _T))

1 3 3
+§(B(iuw,mz, T) — B(fiy,. m}, —T))} ] (4.125)

where we use the notation

o
m? dy y
B(p,m,T) = —— | Lip (—e*/T b/ In(14=) |
(. m. 1) ET|:12( ¢ )+ exp(y—u/T)+ln( +b)
0

(4.126)
Here, Liz(z) is the Euler dilogarithm, and b is the dimensionless parameter, b =
m?/4ET. The complex masses are introduced in the functions B(Zz, my,, =T)
and B(&fi,,, m}, —T) of Eq. (4.125) for proper taking account of imaginary parts,
similarly to Egs. (4.109) and (4.120).
In the limit m%v > 4ET, that is b > 1, assuming that plasma is not degenerate
(pe ~ T), the integral in Eq. (4.126) can be represented as the series expansion that
can be calculated analytically:
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o]

dy y
/e—#/TeV+lln (1+E)
0

o0 o0
_ 1/ ydy 1 / y2dy
T b)) e mTey 41 202 ) e~mTey 41

0
o0

/ “/Te)—i—l (4.127)
0

Taking into account that the arising Fermi integrals are expressed in terms of
polylogarithms:

oo
ndy
_re | _ u/T)
/e o= L1n+1( T, (4.128)
0

and using the recurrent connections between the polylogarithms Li, (x) and Li, (x~!)
[65], one obtains the following expression:

AE" = \2G [C(e) 3”8 ( +7T2T2)
7T

2 E 4 2 292 77t 4
—_ 2 T —T
377211’! (:u’e+ 7TM€ + 15

2
w
8 EZ 1072 Tt
e (uﬂ + kT + TT4)
m
w
64 E3

5 (ue + 5w usT? + T2t T + %wﬁﬁ) + - } (4.129)

Asitisillustrated in Fig. 4.13, taking account of only few terms in the series (4.129)
for the additional electron neutrino energy AE as a function of the initial neutrino
energy E, leads to an overestimation or understatement of the additional energy.

For a numerical estimation of the borders of the kinemetically possible region for
the SLv process in a general case with using of Eq. (4.125), let us take p, >~ 160 MeV,
fy > pe/4 >~ 40MeV, and T ~ 30 MeV, see e.g. Refs. [66] and [67]. The analysis
displays that the process is forbidden for neutrinos of all flavors. For all types of
antineutrinos the effect becomes possible for energies greater than 2 x 10* GeV.

As in the considered cases of nonrelativistic cold plasma and of the neutron
star interior, for electron neutrinos and antineutrinos the processes of the W—boson
production on plasma electrons and positrons, v, + et — Wt and 7, +e~ — W,
are dominating. Using Eqgs. (4.107), (4.110), one obtains the width of the process
in the conditions of a hot dense plasma, p, ~ T > m,, for high neutrino energies,
E > mw I'w/te:
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Fig. 4.13 Additional electron neutrino energy in the electron-positron medium (., ~ 160MeV,
T ~ 30MeV) as an expansion into the series by initial neutrino energy: 0 is the local contribution;
1, 2 and 3—with consecutive adding of non-local terms ~ E, ~ E? and ~ E3: 41s the exact function
(Figure reprinted from [46] with the World Scientific Publishing Company’s permission.)

) Gpmy, T 4p.E — m3,
e > W)= —" 1|1 W 4.130
wlete > W) 221 E? n[ +eXp( 4ET (4.139)

Taking here the limit of cold plasma, 7 — 0, one readily comes to Eq. (4.121). The
width of the W+ production by v, on positrons can be obtained from Eq. (4.130) by
the replacement p, — —ple.

Since in a dense plasma of the supernova core thermal neutrinos and antineutri-
nos of all flavors present, the processes of the Z—boson production should be also
considered for the sake of completeness. Using Egs. (4.107), (4.110), one obtains
the width of the process where a high-energy antineutrino of the flavor ¢ scatters off
a thermal vy:

3 Gpm) T 4fiy, E — m2
wwg+vy —>2Z)=——=—In|l+exp{ —= . (4.131)
o 427 E? [ p(

The width of the process with a high-energy neutrino and a thermal antineutrino can
be obtained from Eq. (4.131) by the replacement fi,, — —/i,,. It should be noted
that in the supernova core conditions, fi,, >~ 0 for £ = p, 7.

Thus, the analysis of a possibility of the neutrino radiative conversion effect vy, —
vg + v (“spin light of neutrino”, SLv) based on the additional neutrino energy in
plasma in the case of ultra-high neutrino energies [59] should be performed only
with taking into account the dependence of the W and Z—boson propagators on the
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momentum transferred. It should be noted that the question about any observational
realization of the studied process requires a separate consideration. For high energy
neutrinos and antineutrinos, the processes of the W— and Z-boson production on
plasma, v, + et — WT, 7, + e~ — W~ and iy + vy — Z, are dominating.

4.6 Neutrino Self-energy Operator in an External
Magnetic Field

4.6.1 Definition of the Operator X (p) in a Magnetic Field

As it was noted above, the analysis of the influence, along with plasma, of another
component of external active astrophysical environment, which is strong magnetic
field, onto the properties of neutrinos, in particular onto the neutrino oscillation
mechanism, is of considerable interest. However, this effect of the field could be
significant only in a case of its sufficiently high intensity. As already noted, there is a
natural scale of the magnetic field, called the critical value, B, = mg Je ~ 4.41x1013
gauss. There are arguments in favor of the field of such and larger scales to be
generated in astrophysical processes, such as supernova explosions and mergings of
neutron stars, which are characterized also by giant neutrino fluxes.

It should be noted that the study of the self-energy operator of a neutrino in a
magnetic field has a 30-year-old history [32-34, 36, 37, 68].

A general Lorentz structure of the self-energy neutrino operator X' (p) in a mag-
netic field can be presented in a form similar to the expression (4.65), in terms of
linearly independent covariant structures:

X(p) = [-AL (py) + By & (pﬁv) +Cpe (PFW)] o7
+ [AR (py) + Bg & (pﬁv) +C_Re(pf”7)]w
+my K1 +i1Kye(vFy)] . (4.132)

Similarly to Eq. (4.65), if the approximation is used of the massless left-handed
neutrino, only three terms with the coefficients .4y, BL, and C, 1, present in the operator
X(p). B

The analysis shows that the results of calculations of the invariant coefficients By,
and C_L in Eq. (4.132), obtained by different authors, are not consistent. In Table 4.1,
we give the values of these coefficients obtained in previous studies, and the results
of our calculations, which are discussed in detail below. The field B is called “weak”
at eB <K m% and “moderate” at m% <K eB K m‘zy

Below, it will be demonstrated in detail that for massive neutrino the coefficient
Cy defines its anomalous magnetic moment. As a validation of the calculations of
the coefficient C_L, it should be its agreement with the known result for the neutrino
anomalous magnetic moment [69, 70]:
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Table 4.1 The coefficients in the formula (4.132) for the self-energy neutrino operator X (p) in an
external magnetic field. *)

_ 2 2 B P 2
Authors Field By x V2n G x V2n
Gg G
McKeon [32] - 0 +3
1 m} 3
Erdas et al. [34] Mod. - In — + = 0
3r]nW my 4 |
Elizalde et al. [35] Mod. +— ——
2¢eB 2
1 1
Elizalde et al. [41] Mod. +ﬁ eP1/2eB) _Zepi/eB)
e
1 mi, 3 3
Our result [36] Weak —— In —2’ + - +—
3my, my 4 4
1 m3, 3
Our result [36] Mod. —— In — +2.542 +—
3my, eB 4

*) It is indicated in Ref. [41] that their result is valid in the region of the neutrino momenta 0 <
pf_ < eB. Our result is valid in the region 0 < pi < m“‘)v /0.

emy C_L 3e Gpmy,
~ = . (4.133)
Ho 2 8122

The comparison shows that in Ref. [32] the coefficient C; was overstated by 4 times,
while in Refs. [35] and [41] it contains the extra factors: —2/3 and —1/3, respectively.
In addition, in Ref. [32], anon-zero value is declared for the coefficient at the structure
of the form (pFy), defining the electric dipole moment of the neutrino. However,
this contribution to the neutrino self-energy operator can differ from zero only in
the presence of the electromagnetic field with a nonzero CP-odd field invariant
(FF) = 4(EB). But even in this case, it is strongly suppressed (see [33]). One
should conclude that the result for the neutrino electric dipole moment obtained in
Ref. [32], where a purely magnetic field was considered, was erroneous.

The differences in the results for the coefficient of B, are the most significant. In
Ref. [32], it was not calculated as negligible. Computation of the By, carried out in
Ref. [34], led to the magnitude scale Gg/ m%,v If compared with this value, the result
for By, obtained in Refs. [35, 41], has a huge amplification factor of m‘zy /eB. Being
correct, that result would lead to important consequences for the physics of neutrinos
in medium (see [71]) because the field contribution to the additional neutrino energy
would exceed the plasma contribution.

Earlier calculations of the plasma contribution to the operator X' (p) both excluding
and including the magnetic field, were performed in a number of papers (see, e.g., [30,
38, 39)).

In Ref. [39], the neutrino dispersion properties were studied in the approximations
m, < T < my and B < T? for the sake of applying the results to the early Universe.
In particular, for a charge-symmetric plasma it is possible to extract from Ref. [39]
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the difference of the neutrino self-energies which is the same for neutrinos and
antineutrinos,> AE = E, —E,, (i = p, 7), in the form:

Gp T* Gr T?
AETE) ~ 6.0 " |p| + 047 ——e(Bp)., (4.134)
m m
w w

where p is the momentum of a neutrino or antineutrino. The first term is the domi-
nating contribution of pure plasma, and the second term is caused by the collective
influence of the plasma and magnetic field.

The pure field contribution to the neutrino self-energy was not considered by the
authors [39] as insignificant. In contrast, the authors [35, 41] argue that just the
field contribution is dominant. The result of Ref. [41] for the pure field contribution
to the difference of the neutrino self-energies, which is the same for neutrinos and
antineutrinos, can be written as

4272

where ¢ is the angle between B and p. A comparison of the formulas (4.134)
and (4.135) shows that the pure field contribution obtained by the authors [35, 41]
may significantly exceed the plasma contribution (4.134). Indeed, for the ratio of the
contributions one obtains

Ip| sin ¢, (4.135)

AE® | _y eB mj,

where an averaging over the angle ¢ is performed in the value AE®, and only
the leading term is taken in the value AE-®)_ Since the temperature during the
considered stage of the evolution of the Universe T < myy, the ratio R can appear
significantly greater than one due to a large factor (my /T)>.

Thus, since the question was of fundamental importance, whether the contribution
of the external magnetic field into the neutrino energy was negligible or dominant, the
necessity of its independent calculation was obvious. This calculation was performed
in Ref. [36]. Here we reproduce the calculation of the neutrino self-energy operator
in a constant uniform magnetic field which is weaker than the critical field for a W
boson, eB < m%,

The S-matrix element for the transition »— v corresponds to the Feynman dia-
grams in Fig. 4.14.

Similarly to the procedure described in Sect. 4.5.2, the self-energy operator of a
neutrino in a magnetic field can be found to be

3 The sign + at the linear in the field term in Eq. (13) of Ref. [39] came from poorly chosen
notations: the neutrino momentum in this article was k, while the antineutrino momentum was —k
(G. Raffelt, private communication).
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Fig.4.14 The Feynman diagrams describing the magnetic field-induced contribution to the neutrino
self-energy operator in the Feynman gauge: the double lines correspond to the exact propagators of
the charged lepton, W-boson and the unphysical charged scalar @-boson in an external magnetic
field

)
) =2 [’v I 02 (4.137)

1
s (mer = ) TP ) (mey — mm)],
w

where g is the constant of the electroweak standard model. The integrals introduced
in Eq. (4.137), have the form

I ) = / (2 )4 S(q)Gﬁu)(q P, (4.138)

TP (p) = / ary S(q) D (g —p). (4.139)

where S(q), G;, a) (g—p) and D'®) (g—p) are the Fourier transforms of the translation-

ally invariant parts of the propagators for a charged lepton, W~ -boson and charged
scalar @-boson respectively, see Egs. (3.10), (3.13) and (3.14). We emphasize that
m, in Eq. (4.137) is generally a non-diagonal Dirac neutrino mass matrix caused by
the mixing in the lepton sector.

It should be noted that the coefficients Ag, BR, éR, and K in Eq. (4.132)
originated from the Feynman diagram with a scalar @-boson and are suppressed by
the square of the ratio of the lepton mass to the mass of the W-boson, while the
coefficients Az, Bz, and C;, contain the contributions from both diagrams.

Further, we calculate the contribution to the neutrino self-energy operator from
the nth Landau level in the propagator of the charged lepton in combination with the
exact W-propagator. It is shown that the contribution of the ground Landau level is
not dominant and the higher levels give contributions of the same order, contrary to
the assumption used in Refs. [35, 41]. Then we present a detailed calculation of the
neutrino self-energy operator in a magnetic field in two limiting cases, of a relatively
weak field, eB < m?, and moderately strong field, m% K eBK m%v The additional
energy acquired by a neutrino in an external magnetic field is calculated, and possible
cosmological and astrophysical implications are analyzed.
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4.6.2 Low Landau Level Contribution into the Operator X (p)

As we have already mentioned, our results for the coefficients of the neutrino
self-energy operator (4.132) strongly disagree with that of Refs. [35, 41]. We think
that the disagreement arises because these authors used only one lowest Landau level
contribution in the charged-lepton propagator in the case of moderate field strengths
which they call “strong fields.” However, the contributions of the next Landau levels
can be of the same order as the ground-level contribution because in the integration
over the virtual lepton four-momentum in the loop the region qﬁ ~ m%[, >> (3 appears
to be essential.

To substantiate this point we calculate the contribution to the neutrino self-energy
operator from the nth charged-lepton Landau level in conjunction with the exact
W-propagator in the limit pf_ /m‘%v < m%v /0. Substituting the exact W-propagator
(3.13) and the nth Landau level contribution to the charged-lepton propagator from
Eq. (3.37) into Eq. (4.138) we find

0 = [ L4 [(qw [d W) — L () d. (v)]
Q@m* gqi —mi —2nf3 " 2 n
dy
— (gy).2n (V)]
%
© ds . 5 5  tan(fs) 2
“Jy exp[_“ (’"W TPt Ty )L)}
X [(@@m — () po c0s(2058) — Ypo sin(ZBs)} (4.140)

The terms with even numbers of v matrices were omitted because they are removed
by the chiral structure of the operator Eq. (4.132). Next we perform a clockwise
rotation in the complex plane s = —i7 and use the identity

1 oo
== [ a e[~ (m+ 25— g})]. 4.141
qj —mi =23 /0 b P+ —ai) (D

These manipulations allow us to rewrite the integral Eq. (4.140) as

I (p) = / an) [(qv)n [d ) — —(wv)d (V)} (7)1 2n "(V)]

© 4rd . . .
X /0 #(;T) |:(§0§0)p0 — (@@)pa cosh(267’) +1 Ppo Slnh(zﬁT)]
x exp|:—T/ (m% +2n3 — Qﬁ) -7 (m%V —(q —p)ﬁ)

B tanhﬁ(ﬂﬂ @-p) L] (4.142)
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In the integration over d*q = dqu d?q, the integrals over dzq” can be easily
calculated because they are of Gaussian form. As a result we find

3 o0
(n) i dxdy _ xy ) \
s (p) = 1omn /0 ) cosh(mm) exp |: x+ fx_+ y y(@2an+X)

X [(@@)po — (@) po cosh(2nx) +1¢ps sinh@m)}

X / d%q1 exp [—% (q —p)ﬂ

X [(m) I )%y |:dn(V) - % (v d, (V)} —(gv)12n

dn(v) } (4.143)
Vv

where the dimensionless variables x = m%VT andy = m‘Z,VT’ have been introduced

as well as the parameters n = ﬁ/m%v, = pﬁ/m%v o~ pi/m%v and A\ = m%/m%v.
It follows from Eq. (4.143) that the essential region of the x variable is x ~ 1 due
to the exponential e™*. Given the condition 7 < 1, the argument of the hyperbolic
functions is small, 7x < 1, leading to an obvious simplification. One should also take
into account the condition qi ~ [ caused by the functions d,(v), see Eq. (3.38),
containing the exponential e™". For a wide range of the numbers n the exponential
in the integral over d?¢ is simplified, with the only restriction n < 1/n = m‘%v /B:

2
exp |:_—tanl/16(77x) (q —p)i] ~ exp (—x %)
w

2 _
X exp (—x %) : (4.144)

myy

Here, the first exponentlal is equal to e ~¢*. We consider the value p? ‘ tovary in a very
wide range, 0 < p? L < mW /3. The second exponentlal is equal to unity with a good
accuracy, because g7 1~ 8L mW and (¢gp) 1 K mW. With these approximations, the
integration over d%¢ | can be easily performed,

/ g1 dy(v) =762 = 60) / d>qrdy'(v) = =7 B0,  (4.145)
/ d%q1 (g7)1 "v(v) 0. (4.146)

Let us return to the expression (4.144) and make additional comments, to prevent
possible misunderstanding. At first glance it might seem that the replacement of the
value (p—q)f_ by pﬁ_, which actually occurred in the expression (4.144), meant that an
additional condition had been taken: pi > qi ~ eB, which significantly narrowed
the area of the values of p| under consideration. We show by direct calculation that
this is not so and that the result is valid in the entire range 0 < pﬁ_ < mé‘, /0.
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Let us save the second exponential term in Eq. (4.144) and substitute it into the
first integral (4.146) denoting it as j":

2 2 )
j™ = / g dy [ ) exp —x L= 9L 2(qp L) (4.147)
B my,

Consider first the case n = 0, with dg(v) = exp(—v). Making a transition in the plane
g1 to polar coordinates {q , ¢}, while (gp)1 = q.1p. cos ¢, and using the known

integral
2

/ dp e’ ? = 27 Iy (b), (4.148)
0

where Iy (b) is the modified Bessel function of zero order, we obtain

oo
1 X 2x
j(O)ZZﬂ'/CILdC]L oo |-l 5+ )| T ). @149)
B my My,
0

We emphasize that no approximation has not been done yet. Using another well-
known integral

o
/ dye ™ Ip(2z/y) = & | (4.150)
0
we finally obtain

.(0) _ 73 xzpiﬁ
= l—l—xﬁ/m‘z,v eXp(m‘v‘v(l +xﬁ/m%[,) ’ “-151)

Recalling that x < 1, S K m%v and 172l < m‘v‘v /3, we exactly reproduce from (4.151)
the first integral of Eq. (4.145) withn = O:

JjO ~7p. (4.152)

The similar calculation for n = 1, when dj (v) = 2vexp(—v), leads to one more
well-known integral:

/ vdye ™V Io(22/5) = (1 + %) e . (4.153)
0
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In the approximation used, this gives

jP ~2r3. (4.154)
The similar analysis can be performed for any n. Thus, the approximation used in

the calculation of the integrals (4.145)—(4.146), is justified.
Given the relations (4.145)—(4.146), the integral (4.143) acquires the form

. ig i
I8 (p) = m PV Ypo [2 - |:1 —3 (%07)] 5n0]
© xdxdy x?
X/O mexp[—x—fx_’_y—y(Znn—i—)\)} (4.155)

Taking into account the smallness of the parameters 1 and A, one finally obtains for
n < my, /B

i

(n) —
Top ) = 1672 p%

2 .
ln(l - Z—é) PV 9po [2 - [1 -5 (wv)} 5no} . (4.156)

w

Substituting Eq. (4.156) into Eq. (4.137) we finally find the contribution of the nth
Landau level of the lepton propagator to the neutrino self-energy operator

GgeB m? p2 -
ZW@p) = - Vo 14+ = )@ = 6:0) @) — Fuo PN] -
A " s [ 0) (PN — 60 PPV ] 1
(4.157)

We conclude from Eq. (4.157) that, contrary to the treatment of Refs. [35, 41], the
lowest Landau level does not dominate.

For higher Landau levels, n 2 m%v /3, the calculation is more cumbersome. There-
fore, using the lepton propagator expanded in terms of the Landau levels, with a
further summation, is extremely inconvenient. It is much simpler to take the exact
lepton propagator in the form of Eq. (3.10). This approach is used in Sect. 4.6.4
below.

4.6.3 Calculation of the Operator X (p) in a “Weak” Field

Because of the discrepancy of our results with the results of Refs. [35, 41], we
present here our calculations of the operator X (p) in detail. We start the analysis
with the simpler case of a relatively weak field, when the field strength is the smallest
dimensional parameter of the problem, eB < m? < m%v In this case, for the Fourier
transforms of the propagators both the W-boson and lepton one can use the field
decompositions (3.22) and (3.24) and evaluate the integral (4.138) as a series in
powers of 3 /m‘zy:
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a4
1o = [ 5 [V +5V@ + 5P @ + -]

x[6@-p +GRa—p+Gha—p+-- ]
=AOJO‘ﬂ(p)—i_A]Ja[}(p)“‘AzJaﬁ(p)—}— (4158)

It is easy to show that the fieldless term AoJ,g(p) containing an ultraviolet diver-
gence, has the structure of g, 3 (py) and contributes only to the coefficient Ay of the
operator X (p), see (4.132), which is absorbed to the renormalization of the neutrino
wave function.

The first-order term consists of two parts:

Al-’aﬁ(p) =18 ) + 75" ) (4.159)
/ i 9504 6P g-p + / Gy sV@) G —p).

The part containing the zero-order term of the lepton propagator and the first-order
term of the W-propagator has the form

d*q (q7) +mye 1

J(fowl) ) )
O =208 | et @ fiq—pr -, P

(4.160)

Due to the chiral structure of the operator (4.137), only the terms with an odd number
of v-matrices should be taken. Using the expansion

1 1 2
~ L2t (4.161)

[(g—p)?—myl" (¢ —my)" (g — my)"+!

where we have neglected the neutrino mass p> = m%

2 2.
my <<mW.

, we obtain in the approximation

1
I8 (p) ~ 52 as () - (4.162)
W

The part containing the first-order term of the lepton propagator and the zero-order
term of the W-propagator is calculated similarly:

(€1 Wo) *q (qv)n + my 1
J = ——
af ®) 690‘[3 (’YCP’Y) / (277)4 6] — I’)’l(i)2 (g — p)2 — mW
i 3
~— , 4.163
2.2 %V Jas (PPY) Vs ( )

where we use the identity
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(P (vey) = 2i (ppy) s - (4.164)

Contribution of the second order into the integral J,4(p) consists of three parts:
{4 £ 4
AZJ(yﬂ(p) _ Jéé)wz)(l?) —|—J( IWI)(p) +J( 2W0)(p)

d4
=/ #S(O)(q) G (q - p)+/ ant sV (g) G4 (g —p)

+/ T s2¢) 6 —p). (4.165)
27 '

In the approximation considered, as well as for pi o~ pﬁ < m%v, using the expan-
sion (4.161), one can obtain the part containing the zero-order term of the lepton
propagator and the second-order term of the W-propagator in the form

d*q (gv) +me 1
Jew 2 / q [u (
D=0 Gop @ —m " \q=pr—m P

2(q-p)3
[(g—p)?— ;@14) +4(pp)ap

1
(g —p)? — m%v]3:|
i AYE!
= Ter? (m_z) [ﬁ 9ap PN~ (PP)ag (I”Y)} o, (4.166)
w

where dots mean the term of the form g, (py), which contributes only to the coef-
ficient A; .

The part containing the first-order term of the lepton propagator and the first-order
term of the W-propagator is found to be

“ Wi *q (g7 +my 1
U (p) = ﬂ ap (Y¢Y) / Qm)* (2 — m%)z (G—p)2— m‘z/v]z
1 8Y )
T 1672 % ©ap (PLY) Y5 - (4.167)

The combination of the second-order term of the lepton propagator and the zero-order
term of the W-propagator is

d*q (af —m)) @1 — a7 @)y + me]
@m)?* (q* —mp)*

U W,
I ) =26 gug

1
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As it was already noted, this part contains the increased contribution of the region of
the relatively small virtual momenta, g> ~ me < mW Making the Wick rotation in
the complex plane g, go = g4, qH = ‘10 —(q3 + q4) and after the standard
transformations we rewrite the integral (4. 168) as

2
B
My
Here, the following integrals are introduced, using the notations x = —qﬁ /m%,[,,
y= ‘]i/m%w = mg/mw <
o0
xdx ydy
h= 4 2’
G+y+ND)*@x+y+1)
T dx yd
L= )\/ fhe - (4.170)
x+y+MD)*&x+y+D

which, due to the smallness of the parameter A, can be easily calculated:

I ST ULUE (4.171)
~——InA— —, ~ . .
1= 7% 36 276

Finally, for the contribution (4.168), we obtain

2
i B my, 7
2472 (_%V) Jap V)] ( n m_z - g) 4.172)

Collecting the calculated contributions to the expression (4.158), we find the
integral J,3(p) as the following expansion in powers of the field strength:

(@2W0)
Jog ) =

eB i 5
Jop(P) = 13 [ [— 5 9ap PENYs + Paps (m)} (4.173)
W
2 2
[ eB 2 my 3 . N
H| — ) | 9@V 310 — = 5 )+ ivapPeNY5 — (©P)apPy)
my, 3 m; 2

Here, the terms are omitted which have the structure of g,z (py) and are totally
absorbed by the renormalization of the neutrino wave function, as well as the terms
of the even- number of v matrices, which are removed due to the chiral structure of
the operator (4.137).
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Substituting the result (4.173) to Eq. (4.137), we finally obtain the neutrino
self-energy operator in a relatively weak field in the form:

_ GreB | o B (4 my
2= [3@@ = (31n m%+1)<m)“] W (@174)

Comparing (4.174) with Eqgs. (4.132) and (4.133), one can conclude that the
coefficient Cy is in agreement with the well-known results for the neutrino anom-
alous magnetic moment [69, 70], and with the results of Refs. [72, 73], where the
non-diagonal transitions v; <> 5 (i # j) in an external electromagnetic field were
investigated.

In turn, the coefficient BL coincides with the result of Ref. [34], but not in the
case of a moderately strong field eB < m%‘, as stated in that paper, but only in the
considered weak field limit.

There is another criterion for the correctness of the presented calculation of the
coefficient By . Really, an effective Lagrangian of the v~ interaction constructed on
the basis of the corresponding term of the amplitude (4.63) with (4.132) and (4.174),
and with the replacement of the external field by the photon field operators, is in
agreement, to the definitions, with the result of Ref. [74].

4.6.4 The Case of a Moderately Strong Field

In the case of a moderately strong field, m% K eB« m‘%v, as was noted above, the
expansion of the lepton propagator in powers of the field (3.24) is inapplicable.
Using the exact expression (3.10) and the expansion (3.22) for the propagator of the
W-boson, we represent the integral J,5(p) as

d*q
I = [ 5450 [60a = + 6@ -p) + GRg—p + -]

=1 @)+ IE ) + I ) + - (4.175)
For the first of the integrals (4.175) we get

4
(£ Wo) : d*gq 1
TR (o) = i g /

aff af (27T)4 (q _p)2 _ m‘Z}V

[ ds .2 5 tan(Bs) ,
X / osG5) exp[ is (m( qj +—5S q L)} (4.176)
0

(gL ]
cos(fs) |

1
X I[(cm)n + my] [COS(BS) —3 (ven) sin(ﬁs)] -
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Given the decomposition of the W-propagator (4.161), making a rotation in the
complex plane s, s = —ir, and omitting the terms with an even number of the v
matrices, we obtain

B

(gL ] (gp) — (gp) L
cosh?(B7) | (g2 — m3)?

oo
d4
J(E%"WO)(p) = _Zgaﬁ/ #/dr exp |:—7'(m% — qﬁ) qL tanh(ﬁr):|
0

X [(cn)n [1 + % () tanh(ﬂT)} - .(4.177)

Making the Wick rotation in the complex plane qg, g9 = iqa, integrating over the
angles in the Euclidean planes {q1, g2} and {g3, g4}, passing to the dimensionless
variables u = —qﬁ /m%,, v = qi /08, x = m%VT and introducing the dimensionless
small parameter n = 3/ m%v <« 1, we can rewrite the integral (4.177) in the form

%® o o e ux— v tanh(nx)
TV () 19‘)‘" Iy /dx /du /dv (4.178)
i 14+ u+ 17v)2
0 0 0
X [(P’Y)I” |:1 + 5 (vey) tanh(nx)] PvL osT(nx)]

The integral over x requires a careful handling both at the lower and upper limits.
Using the smallness of the parameter 7, it is advisable to choose the intermediate
scale A for the x variable, such that A > 1, but nA < 1. The region of integration
over x is then divided into two parts, 0 < x < Aand A < x < o0:

In the region 0 < x < A, the argument of the hyperbolic functions is small, nx < 1,
and the first of the integrals (4.179) is essentially simplified with the change of the
variable nv = w:

A 00
1), _igap / / dudw 1 53 —x(utw)
J dx 1+ =
af W)= Jer2 Otutwz U T3Trw)e
o0

[(Pv)n u [1 + 5 (ve) nx} —(YLw (1 - n2x2)] . (4.180)

Passing from the variables {u, w} to the new variables {z, {}:

| | [ee] 00 1
U=z —;f’ w=z ;f’ /dud /Zdz/df, (4.181)
0 0 -1

NI~
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we can integrate over . Omitting as before the terms of the form g,z (p), let us
rewrite the integral (4.180) with the identity (4.164) in account, as

7(04)

a@ Qﬂ

gaﬁ

1
o2 [— PEN Y50l + PV (14 -3 Is)] . (4.182)

Here, the following integrals are introduced:

00 2d A [e'e) 2d
xdx/ < 22 - I4=/x2dx/ < Zze_xz,
1+2) 1+2)
0 0 0

3 dx / L e, (4.183)
0

St~ T

(1+2)?
Given that A is the large parameter, we obtain up to the terms of O(1/A):
L=1, 4Lb=2InA—-54+2v, I5=6MA—-17+6"¢, (4.184)

where v = 0.577... is the Euler constant. As a result, we have for the integral
T @)

lgaﬂ

(OA) 7
Jos () = [ (IMW)%U-F (m)nn (lnA—ngE)] (4.185)

The second of the integrals (4.179) can also be simplified. As one can see from
Eq. (4.178), the exponential in the numerator provides for A < x < oo that the region
of integration is only significant where the terms u and 7v in the denominator are
small if compared with unity. It is worthwhile to move to the new variables z = nx,
y = u/n to obtain

o0 o0 00
1 )
J((;ZOO)(p) Yap 772 /dZ /dy /dve’” g~ vtanhz
0 0

1672
nA

i
X [(m)w [1 3 (vev) tanhz] Py Cosh2 }

1

_— 4.186
Uty + ) (4.186)

Replacing the last fraction by 1, we see that the integrals over y and v are easily
calculated. Neglecting the term O(1/A), we get
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00 o0
J(A0) 190 5 dz / dz 4.18
- — 1. 187
Jag P = Ton2 ! el / 72 tanhz Ll z sinh? z ( )
nA nA

Here, the first integral can be converted to the second one using the integration by
parts:

oo oo

/ e _ / & L1 S+ 0(ma?). (4.188)
72 tanhz z sinh? z (771‘\)2 i .
nA nA

Given that nA < 1, the remaining integral can be rewritten as
7od Tdz( 2 3 7 od
z Z z Z
—— = s\ 5 +3/—. 4.189

/ z sinh?z / 2 (sinhzz 3 +12) BB +72) ( )

1A nA nA
Here, the added and subtracted term is chosen in such a way that, on the one hand, it
provided a convergence of the first integral at both the lower and upper limits, and on

the other hand, it was easily calculable. So, the first of the integrals (4.189) is finite,
if we tend the lower limit to zero. Its numerical value is

o0
dz (22 3 )
C = — - ~ —0.055. 4.190
/ 3 (sinhzz 3422 ( )
0

For the integral (4.189) we obtain

e¢]

/ dz ! 11A+11 L matc (4.191)
n nn——1n .
Zsinh?z  2mAR T 37776

nA

up to terms of higher order. Collecting the calculated contributions and omitting, as
before, the terms of the form g, (py), for the integral in the region A < x < 0o we
have

gaﬂ

J4) (p) = o) 7 Cmat+mt 1t s oac). (4.192)
Yo 2472 no2 02
The final expression for the integral (4.179), as expected, does not contain the

intermediate scale A:
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W, 1gap .
IS () = 32(:2 [— PEN Y51
4 111
+3 eV n? (ln— — — 4+ -3+ —SC)] (4.193)
n 6 2

The presence of the term 7% Inn (n = 3/ m%v) shows again that the expansion of the
lepton propagator over ( as the small parameter is impossible in this case.

The similar analysis of the second and the third terms of the expansion (4.175)
shows that the “dangerous” contribution with the logarithm of (3 appears here in the
next orders of the 1 parameter, so it is possible to use the field expansion of the lepton
propagator, writing the integrals as

LW LoW, (0.4
Jéf 1)(17)2‘]((}[;) I)(p)+‘]((xﬁ] |)(p)’
I o =I5 @) (4.194)

Summing (4.193), (4.162), (4.166), and (4.167) we find

1 eB i -
Jop(p) = [ [— = Jap PLYY5 + Pap (P7)|]

1672 % 2

2
Y oo (2™~ 7 L2, ac
il — ~-In— ——-+-1In —VE —
2 Gap DY) 3 B 6 3 3'7E

w

+Hiwag PEVYs — (©P)as (pv)] ] . (4.195)

For the neutrino self-energy operator in the case of a moderately strong field,
mz KLeBK m%v, we finally obtain

() = Gr ¢B 3(pp )—2 ﬂln@—i—3389 ) (4.196)
- V24r2 7 m%v 3 eB ' P '

At first glance, the second terms in Eqgs. (4.174) and (4.196), which contain the
small extra factor eB/ m%v can be neglected. However, as we will show below, just
these terms give the dominant contribution to the neutrino additional energy in an
external magnetic field.

In Ref. [35], the authors made an attempt to test the correctness of their analytical
calculations by producing a numerical evaluation of the coefficients B, and C; of the
operator X' (p), being written in the form of a double integrals (see Egs. (89) and (90)
of Ref. [35]). As we show below, this numerical calculation is also incorrect. The main
reason for the error is, probably, in the attempt of the authors to calculate numerically
the integral of the difference between the two, in fact, infinite quantities. The analysis
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shows that the integral is finite and has an order of the value eB/ m%v < 107 for the
corresponding field strength, but not of the order of unity, as the authors [35] claim.

Similarly to Ref. [35], let us represent the expressions for the coefficients of the
operator X' (p) in the form of double integrals. We substitute the exact expressions
for the propagators (3.10) and (3.13), where it is convenient to make a turn in the
complex plane s, s = —ir, in the integral (4.138). In this case, the integrals over
the 4-momentum d*q = dqu d?g, can be rather easily calculated. Substituting the
resultinto Eq. (4.137) and comparing it with the definition of the self-energy operator,
Eq. (4.132), one can present the coefficients 4, , BL, and éL as follows:

o0
2 .
g-n dx dy sinh(nx)
A= exp[—=@(x, y, A, p, , 4.197
L= 62 | Gty skl 4] SR Py Apmwl, - (@197)
0

5 9277 ]’O dxdy [ Sinh(nx) X COSh[T](Zx+y)]i|

" Ter2 | (x+y) sinh[n(x +y)] | sinh[n(x + y)] Xty
0

x exp[—®@ (x,y, A\, p, mw)], (4.198)
o
2 .

5 9 n xdxdy sinh[n(2x + y)]

= =P,y A pomw)], (4199

L= 0672 ) oty sinhlnGotyy) OPC PR APl (G 199)
0

where

@(xvya A,p, mW) =x+)\y
xy p? ( xy  sinh(nx) Sinh(le)) P

—, 4.200
P e ) DA

x4y m3,

and the notation are also introduced: n = /m‘zy, A= m% /m‘zy.

It is easy to see that the integral for the coefficient Ay is divergent. As has been
noted, this coefficient is absorbed by the renormalization of the neutrino wave func-
tion.

We note that the expressions for the coefficients of Bz and Cy are in agreement
with Eqgs. (89) and (90) of Ref. [35] up to an obvious error in the sign of Eq. (90).
However, as one can see from Eq. (4.198), the coefficient /3; is an even function of
the n parameter, therefore, the linear dependence of BL on 7 declared in Ref. [35] is
an obvious error.

To verify the correctness of our analytical calculations let us consider the limiting
case: m? < m3, and pﬁ ~ p? < m3,. Moving to a new variable z = x + y, we can
simplify the integrals (4.198) and (4.199) as:


http://dx.doi.org/10.1007/978-3-642-36226-2_3
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o0 Z
- g*n dz _, [sinh(nx)  x cosh[n(z + x)]
BL = " dxe " - 5
1672 J z sinh(nz) sinh(nz) z
0

0
(4.201)
2 o d Z
5 g-n Z .
= dxe™ sinh . 4.202
Cr 16772/z2 Sinh(72) /x e " sinh[n(z + x)] ( )
0 0

The results of numerical calculation of BL and éL as the functions of the 7 pa-
rameter demonstrate a good agreement with the previous approximate formulas,
especially for small values of 7.

4.6.5 The Neutrino Operator X (p) in a Crossed Field

In addition to the limiting cases of a weak (eB <« m%) and a moderately strong
(m% KLeBK m%‘,) field, which were considered in Ref. [36], there is yet another
region of values of the physical parameters that requires a dedicated analysis. We
mean here the situation where the neutrino transverse momentum p with respect to
the magnetic field is rather high — for example, p; = mw or p >> my. This region
of parameter values is of importance in connection with problems of the physics
of ultrahigh-energy cosmic rays. In particular, the possibility of detecting cosmic
neutrinos of ultrahigh energy (E, ~ 107717GeV) is widely discussed (see, for ex-
ample, Ref. [75] and references therein). Apparently, the propagation of neutrinos
having such energies cannot be described adequately without taking into account
their interaction with magnetic fields of astrophysical nature.

The above region of parameter values corresponds to the crossed-field approxima-
tion, where the Fourier transforms of the translation-invariant parts of the propagators
from expressions (4.138) and (4.139), are presented in Egs. (3.67), (3.68), and (3.69).

The general Lorentz structure of the operator X' (p) in the presence of a magnetic
field is represented in Eq. (4.132).

In the crossed field approximation, the coefficients in Eq. (4.132) we are interested
in, are expressed in terms of the integrals containing the Hardy—Stokes function f (),
see Eq. (4.36), and its derivative:

- GF /ldvv[Z(l +v)C+v)+ A0 —=—v)(2 —v)]

B =
- 12V27m, J b+ A0 = WP

2df(u)
X U —-,
du

(4.203)
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- Gr /ldvv[Z(l—l—v)—)\(l—v)]

CL= s TR wf (), (4.204)
Cr = 4;%2 n"zgv 0/1 % wf (), (4.206)
e 2 / EELE )

where A\ = m; /mW The argument of the function f'(«) in Eqgs. (4.203)—(4.207) has
the form (1
_vtrxd-» (4.208)
Dxv(l —w)?/3

where  is the dynamical field parameter, x> = ¢*> (pFFp)/ mgv.

For the dynamical parameter Y, there are three regions of values where one can
obtain simple approximate analytic expressions for the integrals in Egs. (4.203)—
(4.207).

(i) Regionwhere y is the smallest parameter in the problem, x= < A, oreBp1 <K my my,.
In this region, we have

_ G 13 V&) N
Br~——"F% |-+ >1in expl =222 )|, @209
2 X X

32 72 m? A4
C_L::/_%[l—%)\(lni—i)+;‘xz(ln%—3)
+ i? exp (—g)} , (4.210)
2
BR:_JTZ%Z_‘Z;(I%_%)’ 4.211)
. 8 j;wz nnf (4.212)

Ky ~ iz |:>\ (m% - 1) + Exz} . (4.213)
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(ii) Region of intermediate values of the dynamical parameter, A < x> < 1. This
region is likely to be of greatest interest. We recall that A = mz /m%v ~ 4 x
10!, Representing the parameter y in the form

2n3w10-3 (2 ’ E_Y (4.214)
= B.) \100ev) - '

we can see that, over very broad ranges of magnetic-field strengths and neutrino
energies, the parameter x falls within this intermediate region. Here, we have

B Gr (21 L S 3420 +i ) (4.215)
e n——— n i), .
L Wi, L1 E
_ 3Gg 4 117
C 14 - 2(2m--—+1ns+2 +i7r)] (4.216)
L= 4272 |: 3X X 3 T
_ Gr m2 ( 117 . )
Bg ~ — 2In— — — +1In3 42 +ir), (4.217)
R T evamm,my, U x4 e
= GF m2
Co ~ 7R (4.218)
K 12ﬁ7‘4‘2 m2
G 1
& F m‘f (21n——1+1n3+2’yE+i7r). (4.219)
8\/§7r mW X
(iii) Region of large values of the dynamical parameter x >> 1. Our results in this
region are:
. G
By~ —i " V3 G (4.220)
Zﬁw mW X
_ 7 Gg (1 + 1\/§)
L~ , (4.221)
5ﬁ31/6 F4(2/3) X2/3
37/6 14(2/3) G (1 —iﬁ) 2
Bg ~ —-+, (4.222)
32273 473 My
) G (1+iV3) 2
Cr ~ v (4.223)
90+/231/6 14(2/3) x2/3 m3,
G (1+iV3) 2
Ko~ -t (4.224)

36+/231/6 14(2/3) x2/3 m3,

where I"(x) is a gamma function, I"(2/3) = 1.354...
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4.6.6 Field-Induced Neutrino Magnetic Moment

The field-induced correction to the magnetic moment 1, of the neutrino v is yet
another quantity that can be extracted from the neutrino self-energy operator. The
anomalous neutrino magnetic moment is expressed in terms of the coefficients in the
self-energy operator (4.132), for the details see Sect. 4.7.4 below, as

eny
Py =
¢ 2

[CL — Cr — (BL — Bg) e(Bv) +4 K] . (4.225)

where v = p/E is the neutrino velocity.
In the limiting case of x> < \ = m% / m‘z,v, the neutrino magnetic moment becomes

1 4 1 1
g = ) [1 ELE L (‘“X‘3 + 3)] (4.226)
,LL(O) _ 3e GFm,,
ve 812./2 '

where M&? is the neutrino magnetic moment in a vacuum [69, 70]. In the field-induced
corrections in Eq. (4.226), the leading term of order ~?, which involves a large
logarithm, coincides with the result presented in Ref. [33], where the postlogarithmic
terms were disregarded. The last term in the field-induced correction in Eq. (4.226)
originates from the @—boson contribution. One can see that it is relatively small but
does not involve a parametric suppression.

4.7 Neutrino Self-energy Operator in Magnetized Plasma

One of the topical questions of the physics of elementary particles in an external
medium is the question of how the external active medium influences the neutrino
dispersion properties.

An analysis of the neutrino self-energy operator X (p) in a magnetized plasma,
defining, in particular, the neutrino dispersion law, was performed in a number of
papers (see, e.g., [29, 39—41]).

In Refs. [29, 39, 40], the neutrino dispersion was investigated in a charge-
symmetric, weakly magnetized plasma under physical conditions

my > T? > eB > m?. (4.227)

The additional energy of electron neutrinos was written in the form
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AE 7ﬁGFW2T4( 1 2 )

7+

p| 45 m2 ' md

2GrT?eB 2 Gk (eB)? T
+ “/_F—ze cos ¢ + L(ez) In (—) sin? g, (4228)
3my, 372 myy m,

Here, E and p are the neutrino energy and momentum, respectively; 7 is the plasma
temperature; and ¢ is the angle between the direction of the magnetic field B and the
momentum vector p. The first term in Eq. (4.228) describes the additional neutrino
energy in a plasma without a magnetic field [29], while the second [39] and the
third [40] terms are attributable to the simultaneous presence of a plasma and a
magnetic field. As we see from Eq. (4.228), the term proportional to the square of the
magnetic field strength contains amplification by the logarithmic factor In(7'/m,),
which, in general, raises doubts under the indicated physical conditions (4.227).
Indeed, under such conditions the contribution to the neutrino energy is determined
by the plasma electrons and positrons that populate the highest Landau levels. The
energy of these electrons and positrons at the nth Landau level is given by the formula

wy =/m2+k3 +2eBn, n> 1. (4.229)

Since the electron mass under the presumed conditions is the smallest parameter of
the problem, it can be neglected in Eq. (4.229) for the energy. Therefore, it is unlikely
that the electron mass could present in the final result in the principal approximation.
Thus, an independent calculation of the neutrino dispersion in a magnetized plasma
was of considerable interest.

In this section, we present, following the papers [76, 77], the results of our analysis
of the charge-symmetric magnetized plasma influence on the neutrino dispersion in
the presence of an external magnetic field. A general expression for the neutrino
self-energy operator X (p) is derived. The neutrino dispersion under the physical
conditions of weakly, moderately, and strongly magnetized plasmas is analyzed in
detail.

4.7.1 Neutrino Scattering on Magnetized Plasma

Similarly to consideration performed in Sect. 4.5.1, an expression for the neutrino
self-energy operator X (p) is defined via the amplitude of the neutrino forward scat-
tering (4.63). The additional neutrino energy due to the neutrino forward scattering
in the medium is expressed in terms of the amplitude of this process,

1 1
AE = -2 MV > v) = ETI{((P’Y) +my) (1 —(s7)75) Z(p)},  (4.230)
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where E = /p? + m2 is the neutrino energy in a vacuum, m, is the neutrino
mass, and s* is the neutrino doubled spin 4-vector.

A detailed description of calculation of the neutrino self-energy operator X (p)
in a magnetized plasma can be found, for example, in Ref. [77]. The operator X (p)
is represented there in a general form of an expansion over the linearly independent
covariant structures:

Z(p) = [ A () + BL () + Cre Py

+ [Ar ) + Br ) + Cre 0F) |
+my, [K1+i1K2e (vFy)], (4.231)

where u,, is the four-vector of the plasma velocity. Comparing this formula with
Eq. (4.132) for X' (p) in a magnetic field, one can see that a replacement is made here
of the structure (pF F ) to the structure (uy). Such a replacement is possible, due to
the relation

(pu)(pFFy) = (pFFp)(wy) + (pFu) (pF7). (4.232)

This equality holds if the spatial part of the plasma velocity four-vector u,,
is directed along the magnetic field. It should be kept in mind that under the
term “magnetized plasma” we mean a situation where in the plasma rest frame,
u® = (1, 0), the electromagnetic field is reduced to a purely magnetic. The covari-
ance of the operator X' (p) means in this case that there are many reference frames
moving parallel to the magnetic field in which the operator (4.231) retains its shape.

Given the relation (4.232), one can connect the coefficients of Eqs. (4.132)
and (4.231) as follows:

- ¢2(pFFp) - - e(pFu)
BL=B,—, C.=C.+B ,
L L (1) L L+ 0r, (i)

and similarly for Bg, Cg coefficients.
Using Egs. (4.231) and (4.230), one can represent the additional neutrino energy
AE in a magnetized plasma in the form

(4.233)

1 1
AE = 5 By [1 = (sv)] + 5 Br 1+ (sv)]

e’"” € - Cr+ 4/@) [(sB) + 22 (sBo)]
2
+ ﬁ (AL + Ar +2K1) , (4.234)

where v = p/E is the neutrino velocity vector, s is the average neutrino doubled spin
vector, B; ¢ are the transversal and longitudinal components of a magnetic field B
with respect to the neutrino momentum, B = B; + By.
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As it was mentioned above, the coefficients Ag, Bg, Cr, K1 2 are supressed by the
square of the lepton and W boson mass ratio, and can be neglected. For ultrarelativistic
neutrinos, we obtain from (4.234):

(1—@ms)  em,

AE ~ By —— CL—" (B n x [s x nl)). (4.235)

where n is a unit vector in the direction of the neutrino momentum. The terms
proportional to the square of the neutrino mass were omitted in Eq. (4.235).

Thus, finding the additional energy acquired by the neutrinos during their forward
scattering in a magnetized plasma is reduced to calculating the parameters Bz and Cy..

The term in Eq. (4.235) proportional to the first power of the neutrino mass
corresponds to the additional neutrino energy attributable to the neutrino magnetic
moment and will be further analysed in detail. The additional neutrino energy in the
medium for left-handed massless neutrinos is defined only by the parameter By :

AE = By

Since the additional neutrino energy, being a physical quantity, is gauge-invariant,
we will perform our calculations in a unitary gauge, which is convenient in that it
contains no contribution from scalar bosons. In this gauge, the amplitude of thev — v
scattering in a magnetized plasma can be represented as the sum of two terms:

(v—v)°

Moy =M{)_,, + M, (4.236)

where the first term corresponds to the amplitude of the neutrino forward scattering
by plasma electrons and positrons of the medium via a W boson (see Fig. 4.15) and the
second term is attributable to the ¥ — v transition via a Z boson (see Fig. 4.12 (c,d)
where the forward scattering case p’ = p and k' = k should be taken). The neutrino
scattering by plasma neutrinos shown in Fig. 4.12 is insensitive to the presence of
an external magnetic field; its contribution to the additional neutrino energy was
investigated previously and was calculated in Ref. [29], see Eq. (4.82):

AEZ 72 Gp w2 T*

Il 45m2

(4.237)

Note that we do not consider the diagrams of Figs. 4.11 and 4.12a,b where the
4-momentum of the intermediate Z boson is zero in the forward scattering. This is
because such diagrams give only a local contribution, which is zero in a charge-
symmetric plasma. Thus, our problem is reduced to calculating the contribution of a
magnetized plasma to the additional neutrino energy from the W boson exchange.

The scattering process that corresponds to the diagrams in Fig. 4.15 is described by
the Lagrangian (4.100). The corresponding S-matrix element of the neutrino forward
scattering by plasma electrons is:
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ve(p) e (k) v.(p) ve(p)
w

e (k) v.(p) é(k) e*(k)

Fig. 4.15 The Feynman diagrams for the neutrino forward scattering on plasma electrons and
positrons through W-boson. Double lines correspond to charged particles influenced by an external
magnetic field

2 4 34 s
g d*xd*x oy
sW_ == E / S|y 0 (4.238)
ve —re 2 ~ /2EV /2E/V

_ w
X D) Yo LR, X)L (p)GYY (6, %),

where V = L1L,L3 is the normalization volume, p* = (E, p) and p’* = (E', p’)
are the 4-momenta of the initial and final neutrinos, v(p) is the bispinor neutrino
amplitude, v, = (1 — v5)/2, GgVX) (x’, x) is the W boson propagator in a magnetic
field (3.5), R, (x, x’) is the density matrix of the plasma electron with a fixed Landau
level number n:

dkrdk -
Rar) =3 [ TR Laf@) v i, 3239)

Here, 1, (x) are the solutions (2.30) of the Dirac equation in the external magnetic

field,* w, = , /k% + 2eBn + m? is the energy of the electron at the nth Landau level,
k3 is the kinetic momentum along the third axis, k; is a generalized momentum that
defines the position xo = —k» /eB of the Gaussian packet center on the first axis, and
f(wp) is the electron distribution function, which describes the presence of plasma.
In the plasma rest frame, it is

f(UJ) — [e(wn_lte)/T + 1]_1’

where 1, is the chemical potential of the plasma and 7 is its temperature.
A detailed calculation of the function R, (x,x") is presented in Sect. 2.4. In a
constant uniform magnetic field, it can be reduced to the form

&k fwn)

Ry(x,x) = e 71000 (yr / o o e ek (4.240)
n

S ALY + mel[LnQu) T — Ly 1 Q) T ]+ 2(ky) 1Ly )},

4 We perform our calculations in the gauge A* = (0, 0, Bx, 0); the magnetic field is directed along
the third axis B = (0, 0, B).
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/ eB / /
P, x) = — (1 +x)) (2 — X)), (4.241)

where u = ki /eB. The associated Laguerre polynomials are defined as follows:

dl’l
dx}’l

1
Li(x) = o e xt (" e). (4.242)

Equation (4.240) can be used to investigate quantum processes in a plasma in the
presence of a magnetic field with an arbitrary strength.

4.7.2 Neutrino Additional Energy in Magnetized Plasma

After the substitution of the function R, (x, x’) in the form (4.240) and the W boson
propagator (3.5) into Eq. (4.238) and the integration over the 4-coordinates, the
S-matrix element of the ve™ — ve™ process can be reduced to the form

2 44 ’ 3
g-2m)* 0% (p — p) a [ Tk flw) _,
S =5 vy 2=V @ep wy © Gk P

X U(p) Yo { k) [Ln(Qu) - — Ly—1 (2u) 11, ]
+2(ky)L L,i,l(zu)} VL v (p) - (4.243)

The four-dimensional § function corresponding to the energy and momentum
conservation law has been separated out in the S-matrix element. Therefore, we can
use the standard relation between the S-matrix element and the invariant transition
amplitude,

(A D (g — o
iem707a—=4q) My (4.244)
2wV ’

Sif =

and separate out the invariant amplitude of the neutrino scattering by plasma electrons
in the form

. 2 3
ig &k flwn) .y w
MY == (=" “GY (k —
Ve sve S ;< o e AU
X V(D) Ya {(k’7)|| [LnQu)IT- — Ly—1 Qu)I14]
+ 2 (k)1 Ly 20} 7 v(p). (4.245)
Calculating the amplitude MX‘L;%W+ of the neutrino scattering by plasma
positrons is identical to calculating the amplitude M’Z,_we,. The result for the

transition amplitude M, in a charge-symmetric plasma turned out to differ
ver—vre
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from (4.245) by the general sign and by the substitution k;, — —k,, in the argument
of the W boson propagator. The amplitude of the coherent ve — ve scattering by all
plasma electrons and positrons is

s 2
19
A i DI (4.246)
n
Er f@D) y
* / (27’()3 Wy e (Gﬁa(k —P) — Gﬂo/(_k _P))

X V(p) Ya {(k’)/)\l (L, Qu) [T — Ly, 2u) I14]
+ 206 1 Ly o)y v(p)

Using Eq. (4.63) for the amplitude, we find the contribution of plasma electrons
and positrons to the neutrino self-energy operator

i g2 &k fwn
Vo) =5 S0 [ S G G- p) - Gk -]

(4.247)

X Yo | ) (L Qu) T = Ly Qu) 1]+ 26k 1 Ly 20) | 5

The Fourier transform of the W boson propagator in a unitary gauge is fairly
cumbersome. For the physical conditions under consideration, where the W boson
mass is the largest physical parameter of the problem, the Fourier transform of the
propagator can be represented as an expansion in terms of inverse powers of the W
boson mass:

1g¢ 3eF iq, ig? 1
Gg;(q) ~ 9o _ fo _ 195 9o + 9 9B +0{ — ). (4.248)
: m2 2m m m m?
w W W W w

Here, the first and the second momentum-independent terms give a contribution in
the local limit that is zero in a charge-symmetric plasma [29], as is clearly seen from
Eq. (4.246). The third and the fourth terms allow for the nonlocality of the interaction.
As our analysis shows, the third term in (4.248) contributes only to the parameter
AL g and, hence, does not contribute to the additional neutrino energy.

Substituting the W boson propagator in the form (4.248) into Eq. (4.247) and
discarding the terms that do not contribute to the additional neutrino energy,
we obtain

W 200905~ o [ Pk flwn) »
Fo =TT 2O s, 70

X Yo { (k) (L2 = = Ly 2u) [4] 4+ 266 1 Ly G0} 5.
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Passing to integration over the variable u = ki /eB in this expression,

+o0o +o0 00
/d3k=7reB/dk3/du
—00 —00 0

and performing the integration over the variable u using the relations
(0.¢]
/du e “L,2u) = (—1)",
0

2L, () =n[L,1Qu) — L,Q2u)],

we finally obtain

)= 5 g eB Z / ds f @)

(kop)

[(m)eBn — (pPy )( (k3 — eBn) — now,i) (4.249)

— (uy) (E (W2 + eBn + (k3 — eBn)) — 6uo p3 (k3 + w,zl))] YL

Here, 0,0 is the Kronecker symbol, which is nonzero only for the ground Landau
level; the sum over the Landau levels (with a prime) is defined as

> Fn) = % F(n=0)+ > F).
n=0

n=1

Finally we find the contribution to the additional neutrino energy from the neutrino
forward scattering by electrons and positrons of a magnetized plasma:

BY = —

2[ GFeBE Z / dks f (wn) (4.250)

X [wn + eBn + cos> 1) (k3 — eBn) — ;0 cos ¢ (k% + wﬁ)],

where ¢ is the angle between the magnetic field direction and the neutrino
momentum vector.
Below, we will consider some limiting cases that can be of interest from the
standpoint of possible astrophysical applications.
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4.7.3 Asymptotic Expressions for the Neutrino Additional
Energy in Magnetized Plasma

A general expression for the additional neutrino energy in a charge-symmetric
magnetized plasma can be obtained by summing the contributions from the processes
attributable to the Z boson and W boson exchange and can be represented in the form:

AE _ T2Gen*T! 2«/_GF eB Z / dks f (wn) 4251)

pl 45m2
X [wg + eBn + cos> 10) (k% — eBn) — ;0 cos ¢ (k% + wﬁ)] .

It should be noted that Eq. (4.251) describes the partial contribution of a
magnetized plasma to the additional neutrino energy. To obtain a complete expres-
sion for the neutrino energy in a magnetized plasma, the purely field contribution
calculated in Ref. [36] must be added to the result (4.251).

The integral in Eq. (4.251) can be calculated in some limiting cases considered
below.

(i) The limit of a weak magnetic field, when the magnetic field strength is the
smallest physical parameter of the problem,

T? > m> > eB. (4.252)

The additional neutrino energy in such a weakly magnetized plasma can be
reduced to the form

AE 2G 77274 m3
——\/_ F[— 7r15 (2+—2’ + T2 eB cos ¢ +

- 2
Pl 3my mz
B)? T2
G )2 [sin2 p (m —+ 0.635) - 1] ] . (4.253)
2m mg

Equation (4.253) contains a logarithmic factor with the electron mass m,. How-
ever, the electron mass is not the smallest parameter for the physical conditions
(4.252) under consideration and, hence, the additional neutrino energy (4.253)
cannot be investigated in the limit m, — 0.

(i1) The limit of a moderate magnetic field, when the field strength is small on the
scale of physical parameters of the medium, but, at the same time, it is much
larger than the critical field strength for the electron:

T2 > eB > m?. (4.254)



118

(iii)
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Such a physical situation could take place, for example, in a supernova core
after its collapse, where the plasma temperature 7 ~ 70 m,. Substituting this
value into the conditions (4.254) yields

72 s _ B
5~ Sx 107> = (4.255)
e 4

Thus, we see that even the magnetic fields with strengths up to B ~ 101> — 1016
G satisfy the conditions (4.254) and, hence, may be considered as ‘relatively
weak’.

A large number of Landau levels are excited under the physical conditions
(4.254). In this limit, we find the additional neutrino energy to be

AE 2G 7T m?
—:\/— F[— 7T15 (2-{——2/ + T2 eB cos ¢

Pl 3my, m3
(eB)? 5 T2
3 |:sin ¢ (ln—B + 2.93) — 1} ] . (4.256)
T e

As one can see from Eq. (4.256), in contrast to the result of Ref. [40], the
additional neutrino energy under the physical conditions (4.254) contains no
infrared divergence in the limit m, — 0.

The limit of a strong magnetic field, which corresponds to a physical situation
where the magnetic field strength is the largest of all the physical parameters
that characterize a magnetized plasma:

eB > T?, m?. (4.257)
Under the conditions (4.257), the plasma electrons and positrons occupy mostly

the ground Landau level.
In the limit of a strongly magnetized plasma, the additional neutrino energy is

AE V2Ge | 172 T*m%, T2 eB
— == [ 7+ (1= cosg)’ (4.258)
p | 3my, 15m;
N2 /72 1/4
+3(eB)? (;) (ﬁ) (3 — cos® p) e V2BIT |

Here, the second term is attributable to the contribution from the ground Landau
level, and the third term containing the exponential suppression is caused by
the first Landau level.
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4.7.4 Induced Neutrino Magnetic Moment in Magnetized
Plasma

As already noted, the additional interest in calculating the neutrino self-energy
operator stems from the possibility of obtaining the data on the anomalous mag-
netic moment of a neutrino. However, there is some doubt concerning the validity
of the data presented in the literature so far on the magnetic moment of the neutrino
in a magnetized plasma, since the results imply that the magnetic moment of the
neutrino is either independent of its mass m,, [78] or exhibits a giant enhancement
by a factor of 1/m,. As was reasonably pointed out [39], these results confuse the
situation with the magnetic moment of the neutrino, instead of elucidating it. An
independent calculation of the neutrino magnetic moment in a magnetized plasma
was carried out in Ref. [77]. Here we reproduce a general scheme of the analysis.

Let us find a contribution to the energy of a neutrino, which is related to the
presence of its magnetic moment p,,. This energy correction can be determined
using the Lagrangian expressed as

ifty
2

ALjy = ——= (W 0, W) F', (4.259)
where ¥ is the fermion field and o, = (v, v — Y0 ) /2.
Substituting this formula into an expression for the additional energy defined as

AEW = — / dV (ALin) (4.260)
we eventually obtain the following formula:
() my
AEW = _y, [(sB,) + = (ng)] , (4.261)

where s is the average twice spin vector of a fermion, B; ¢ are the transverse and
longitudinal components of the magnetic field B with respect to the momentum of a
fermion, introduced in Eq. (4.234).

Thus, in expression (4.234) for the additional energy of the neutrino in a mag-
netized plasma, the magnetic moment only enters into the structure, which is
proportional to the following sum:

(sB,) + '% (sBy).

We should conclude that determination of the magnetic moment of the neutrino in
Ref. [78] was incorrect because it was assumed that the entire additional energy of the
neutrino (related to its dependence on the spin and magnetic field) in a magnetized
plasma contributes to the induced magnetic moment. However, as was shown above,
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Fig. 4.16 The Feynman
diagrams for the neutrino ve(p) e (k) ve(p) v,(p)
scattering on plasma electrons ) @

and positrons through the " @ =
charged scalar @—boson I

e*W(p) (k) e*(k)

only one term in the expression for the additional energy of the neutrino refers to its
magnetic moment.

A comparison of expression (4.234) to formula (4.261) for the additional energy
of a neutrino shows that, in order to determine the magnetic moment of the neutrino
in a magnetized plasma, it is sufficient to find the coefficients Cr, Cg and 5, see
Eq. (4.231), by which the magnetic moment is expressed as follows:

enmy

2

fo, = —2 (CL— Cr+4K2) . (4.262)

Further we calculate the terms of the neutrino self-energy operator X' (p), which
contribute to the magnetic moment of a neutrino. For variety, the calculation will be
given in the Feynman gauge.

In a magnetized plasma, this magnetic moment consists of two parts: the purely
field contribution and the plasma contribution. The field contribution to the mag-
netic moment of the neutrino was calculated in a number of papers (see, e.g., Refs.
[33, 37, 43]). An expression for the magnetic moment of the neutrino in a broad
range of its energies and of magnetic fields strengths, such that

mg /my, < (eB)?pl /mfy, < 1,

can be written as follows [37]:

0 42 (1 17 ,
Hoy = fy, 1+T ln;—?+ln3+2'yE+17T . (4.263)

Here, ug 3 is the neutrino magnetic moment in vacuum [69, 70]:

MO _ 3eGgmy,
v 8272

my, is the neutrino mass, p | is the neutrino transverse momentum with respect to the
magnetic field direction, x? = (eB)2p2L /m%,, A= m% /m%,, v = 0,577... is the
Euler constant. The imaginary part of the magnetic moment (4.263) corresponds to
the neutrino instability in the external electromagnetic field with respect to the decay
vp —> LW.

(4.264)
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Then, in order to calculate the self-energy operator X' (p), it is sufficient to deter-
mine the amplitude (4.63) of the forward scattering of the neutrino in a magnetized
plasma. Under real astrophysical conditions, the main contribution to the ampli-
tude that accounts for the magnetic moment of the neutrino is due to scattering on
plasma electrons and positrons. The amplitude of the v — v scattering process in a
magnetized plasma (and, hence, the neutrino self-energy operator) can be represented
as the sum of three terms that correspond to the diagrams depicted in Figs. 4.11
and 4.15 and also the diagrams with the charged scalar @—boson, Fig. 4.16, which
appear in the Feynman gauge:

zp)=2VP) + 2@ + Z(p). (4.265)

The calculation of X'(p) is similar to the one performed in Sect. 4.7.1. The
contribution to ¥ (p) due to the scattering with W-boson exchange is:

22 X 3 —u
w, . 1g o d’k e
27 =—- n§=o( ) / o (4.266)

x (£ @n) Gl — ) —Fwn) G (0 + )
X Yo [ (k) (L (2u) TT— — Ly—y Qo) IT4) + 2(ky) 1 Ly Qu) 19571,

where g is the electroweak interaction constant in the standard model, I7 are the
projection operators (2.51), Gg,(q) is the Fourier transform of the translationally
invariant part of the W-boson propagator (3.13), f (w,) and f (wy,) are the distribution
functions of electrons and positrons, respectively. In the plasma rest frame, the latter
functions have the following form:

flwy) = [ /T L 1171 Fwy,) = [e@rTr/T 17!

where p, and T are the chemical potential and temperature of the plasma, respectively,
and wj, is the electron (positron) energy on the nth Landau level.

Similarly, the contribution from the process of neutrino scattering with scalar
@-boson exchange is as follows:

d3k e -
— (f(w)D(p — k) — f(wn)D(p + k))

(27T)3 Wn

3] _ igz — n
2Py =-—- 2 (=1
n=0
mgml,
X | =i (Ln(2u0) T = Ly Q) T4) (k) (L u) 1T = Ly (20) T1)
W

1 m% m2
+ 2k Ly COI L= 5 W) (- (4.267)
my My
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Here, D(q) is the Fourier transform of the translationally invariant part of the @-
boson propagator (3.14).

Note that the contributions considered above refer only to the electron neutrino,
since contributions with exchange by charged bosons for neutrinos of other types
(v, v7) vanish (ZW (p) = T (p) = 0).

Below, we consider a realistic physical situation where the W-boson mass (1)
is the largest parameter of the problem. This implies that parameters characterizing
a magnetized plasma obey the following condition:

mg, ,uz, T2, eB « m%v (4.268)

If the plasma is charge-asymmetric, it suffices to retain only the main contributions
in the W and @ boson propagators expanded in inverse powers of m%v, that is,

igﬂa

Goal@) = 2%, D(g)~— — (4.269)
w My

Having accomplished simple calculations, we can write the two contributions to
the neutrino self-energy as follows:

n0 — 70 -
=Y (p) ~ V2 Gr (— R @Fv)+---)n, (4.270)
oy OF [me—ig o fmg om
z (p)_ﬁ[ = 0 FD m%VvL+m%VvR (4.271)
i 2 T dk _
— M e ( FY) /—(f(wo) —Fwo) +- |
e myy 2 wo

where the dots corresponds to the terms not contributing to the magnetic moment
of the neutrino; wy is the electron (positron) energy on the ground (n = 0) Landau
level; and ng and ﬁg are the electron and positron densities, respectively, on this level.
The difference of these densities is given by the following integral:

W= B oodk (f(wo) — F(wo)) (4.272)
e e 27T2 0 0))- :
0

Comparing expressions (4.270) and (4.271) to the parametrization in Eq. (4.231),
we obtain the following formulas for the coefficients Cy,, Cg, and K5
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o0
e Gg -
CZV =—— /dk (f (wo) — f(wo)), (4.273)
212 E
V2r "
Yy =Ky =o, (4.274)
2 2
e = _Me ow o __ "y oW 4275
L Zm%‘, L R Zm%‘, L ( )
kg «Gr_ mg 7 I o) = Fwo) (4.276)
=— — [ — (f(wo) —f(wo)). .
2 4272 ma, / wo 0 0

Note that, as could be expected, the contributions from charged scalar exchange
are suppressed by the small factors mg / m%v and mz / m%v

The third term, £<, in the neutrino self-energy operator (4.265), which accounts
for the contribution from neutrino scattering on charged fermions with Z-boson
exchange, is readily calculated as follows:

T .
7 =V2Ge (—é(f;?—ﬁ?)(va)+~-~)7L. (4.277)

where n?, and r'z}g are the densities of charged fermions and antifermions, respectively,

on the ground Landau level; Tg is the third component of the weak isospin of a
charged fermion; and the dots correspond to terms not contributing to the magnetic
moment of neutrino. Taking into account that the maximum density of particles
on the ground Landau level corresponds to electron and positrons, we obtain from
expression (4.277) the following formulas for the coefficients Cy, Cg and KCp:

Gr [ _
cZ=-_°7F / dk - , 4278
L A E J (f (wo) = f(wo)) (4.278)
C&=K%=0. (4.279)

Thus, the neutrino magnetic moment induced by a charge-asymmetric plasma is
expressed in terms of the coefficients Cf and C XV , with an addition of the purely field
contribution (4.263). The final formula for Cy, is:

oo

3eGg 2 -
422 '¥37 0/ dk (f (wo) = f(wo)) | (4.280)

CL=CV +Cf ~
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where the upper sign refers to the electron neutrino (v,) and the lower sign, to the
muon and tau neutrinos (v, v;). Contributions proportional to 1/ mé’v, 1 /m%,, etc.,
were neglected.

The integral in expression (4.280) is easily calculated for an ultrarelativistic
plasma. In this case, the magnetic moment of the neutrino is given by the following
simple formula:

_Gmy  3eGemy (1 2 ”6). (4.281)

M= = A 3E

where . is the chemical potential of electrons in the ultrarelativistic plasma. For
weakly magnetized plasma, it reduces to

fe = (3% (ne — 1)) '/3, (4.282)

For strongly magnetized plasma, in which case magnetic field rather than the plasma
is the dominant component of the active medium and plasma electrons occupy the
ground Landau level, the chemical potential of electrons is

e —, (4.283)

where n, and 7, are the total electron and positron densities, respectively.

Another situation for which analytical calculation of the neutrino magnetic
moment can be performed refers to physical conditions of a charge-symmetric
electron-positron plasma. In this case, the contribution from the diagram of neu-
trino scattering with Z-boson exchange vanishes and, hence, the v, and v;-type
neutrinos possess no additional magnetic moment induced by a magnetized plasma.

For the electron neutrino in a charge-symmetric e~ e™ plasma, the magnetic mo-
ment is determined by the following expression:

3e Ggmy 472 T2
~—— 1+ ——. 4.284
e 84/2 72 ( 9 my, ( )

As one can see, under real astrophysical conditions, where T < my, the plasma
contribution to the neutrino magnetic moment is suppressed.

Thus, we have shown that the presence of a plasma does not lead to an enhancement
of the neutrino magnetic moment, in contrast to the statement of Ref. [78]. The
plasma-induced part of the magnetic moment is suppressed by the neutrino mass
m,; in a charge-symmetric plasma, it is also suppressed by a factor of T /m%v < 1.
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Chapter 5
Electromagnetic Interactions in External

Active Media

In this chapter, we present in great detail the technique of calculations of the
electromagnetic processes in external active media. We consider mainly the two
processes. The first one, which is forbidden in a vacuum but is possible in an intense
external electromagnetic field, is the photon decay into the electron—positron pair
~ — e~et. We calculate the probability of this process in an external field, in the
two limiting cases where the detailed analytical calculations are possible. These are:
(i) the case of a very strong magnetic field when electrons and positrons occupy the
ground Landau level; (ii) the case of a relatively weak external field when the energy
of the initial particle is the main physical parameter of a problem; this case can be
analyzed in the crossed field approximation. Calculations are performed by the two
methods: (i) using the exact solutions of the Dirac equation; (ii) via the imaginary
part of the loop amplitude. We analyse also the process of the photon emission by
an electron in magnetic fields which is the crossed process to the ¥ — e~ e™ decay.
The second process considered is the electromagnetic interaction of the Dirac neu-
trino having a magnetic moment, with plasma. The plasma influence on the virtual
photon, and contributions of plasma components into the neutrino scattering process
are taken into account. The upper bound on the neutrino magnetic moment using the
data on supernova SN 1987 A is established. Possible effects of the neutrino magnetic
moment: shock-wave revival in a supernova explosion and the time evolution of the
neutrino signal (neutrino pulsar) are analysed.

5.1 Photon Decay into an Electron—Positron Pair in a Strong
Magnetic Field

The v — eTe™ process is kinematically forbidden in a vacuum. The magnetic field

changes the kinematics of charged particles, electrons, and positrons, allowing the
production of an electron—positron pair in the kinematic region qﬁ = qg — q? > 4m£,
where g is the photon energy (the z axis is directed along the magnetic field).

A. Kuznetsov and N. Mikheev, Electroweak Processes in External Active Media, 127
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128 5 Electromagnetic Interactions in External Active Media

In 1954, Klepikov [1] examined the production of an electron—positron pair by a
photon in a magnetic field and obtained the amplitude and width of the v — eTe™
decay in the semiclassical approximation. Later, the authors of Refs. [2—7] considered
this process in the context of its astrophysical applications. It was pointed out in
Ref. [6, 7] that the use of the expression derived in Ref. [1] for the width considerably
overestimates the result in the strong magnetic field limit. In this case, one should use
an exact expression for the width of one-photon production of a pair when electrons
and positrons occupy only the ground Landau level. This calculation is demonstrated
in the following section.

5.1.1 Direct Calculation Based on the Solutions of the Dirac
Equation

Photon decay into the electron—positron pair v(g) — e~ (p’) +e™(p) in a magnetic
field is described by the Lagrangian of the electromagnetic interaction

Lom =€ (E(x)A(x)u/(x)) (5.1)

and is depicted by the Feynman diagram presented in Fig.5.1.
In the first order of the perturbation theory with the interaction (5.1), one obtains
the following expression for the matrix element S; ¢

Sip=ie(f | N/(EAW)d‘*x | i), (5.2)

where A, is the electromagnetic field operator,

1 . .
A .0\
Aq = E v (cAsfy)e 4 4 ctel) )*e“”),
q.\

¥ is the operator of the electron—positron field,

Fig.5.1 The Feynman diagram for the processy — e~ e™ in a magnetic field. Double lines indicate
that the effect of an external field is taken exactly into account in the wave functions of the electron
and the positron
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¥ = z (ap,slp(+) + b;’slp(*)) ,

p.s.n

@) is the normalized solution of the Dirac equation in a magnetic field, with
positive energy (2.30)—(2.32), and ¥ (7 is the corresponding solution with negative
energy (2.33)—(2.36). In a strong magnetic field, the electron and the positron can be
produced only in the states that correspond to the ground Landau level (2.37), (2.38),
which are described by the wave functions:

1/4
MH=<j%;%;ﬂﬁ SHET PPy (53)
m yL;
1/4
lp(,) _ W_EZBL‘—)LW ei(El*PyyfpzZ)e*fz/z U_p, (54)
s yliz
where
Py / P;
§=VeB(x—22), ¢ =VeB(x+-2).
eB eB
0 0
wpm= e | e | oL Eome| s
TOVEFm | 0 ) T VE-me |0 '
—p. —Pz

Substituting the wave functions of the final state(5.3) and (5.4) into the expres-
sion (5.2) and integrating over d¢ dy dz, one obtains

ieQ@m)*P(p+p —9) - igexg—6/2o—€7/2
Sif = (it EMu_ )/e“b'xe §/2e= 24x,
Y L, LNWVEE " !

where 6% (p + p' — q) = 6(E + E' —w) 8(py + pl, — 4y) 0(pz + p, — q2). Itis
convenient to perform the integration over x in the frame where the initial photon
momentum has a form q = (¢x, 0, ¢;), and therefore py = —p',, £ = £'. As u(p’)
and u(—p) do not depend on x, the integral of the Gaussian type with respect to x
can be easily calculated. Taking the strong field limit into account, we assume that
exp(—q)% /2eB) ~ 1. The S matrix element squared can be written as follows

2 3
E2em’T . .
1Sil? = o i

= Ny
8L,L.VWEE'

PP+ p - ), (5.6)
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where T is the total interaction time. The expression |u p/é(A)u, » |2 can be rewritten
in terms of the trace calculation

ity €N u—p? = Telp(p)EN p(=p)E™],
where the density matrix of polarized electrons is

p(p) = (p| +me)l_, (5.7)
and for polarized positrons
p(=p) = (p| —me)I_. (5.8)

I1_ is the projecting operator (2.51) corresponding to the electron or positron state on
the ground Landau level, where the electron spin direction is opposite to the external
field direction, while the positron spin is directed along the field.

To simplify further calculations, we make the Lorentz transformation along the
field direction, as ¢/ is the timelike vector,

g =w?—q> =(E+E)* = (p. + pl)* > 0,

to the frame where g, = 0. In this frame p, = —p., E = E’. Further we perform
separate calculations for the definite photon polarizations, using the explicit form of
the polarization vectors €V (A = 1, 2). The vectors describing the physical states
of a photon in a magnetic field (for details see Sect.4.2) are

() — G¥)a 2 _ GP)a

« ’ «

2 2
q1 g

(5.9)

Substituting the polarization vector of the 1st mode photon, one obtains
Tr[p(p)a" p(—p)eP] = 0.

By this means the 1st mode photon cannot decay into the electron—positron pair with
both electron and positron being produced in the ground Landau level. Performing
the similar calculation for the 2nd mode photon one obtains

Tr[p(p")é® p(—p)a@] = 4m;.

The resulting S matrix element squared for the decay of the 2-mode photon takes the

form s .
e“2my’m;T 4
SifP=— " § "—q), 5.10
i = 3 LoveEE® PP 0 (5.10)


http://dx.doi.org/10.1007/978-3-642-36226-2_2
http://dx.doi.org/10.1007/978-3-642-36226-2_4

5.1 Photon Decay into an Electron—Positron Pair in a Strong Magnetic Field 131

where 0*(p + p' — q) = 6QE — w) §(py + Py — q,) 6(pz + pl).
To find the decay probability, one should perform the integration over the phase
space of final electrons and positrons:

2
dny, 5.11)

where

dpydpzdp/ydpé N

The § function for energies can be transformed into the following form

SQE—w) 1

= ——[6(p: — P*) + 0(p- + P OW* — 4m)),
w 4| p*|

where p* = :I:% Vw? —4m2, @ (x) is the step function.

The integration over dp’y dpldp, removes the ¢ functions. It can easily be
seen that the integrand is independent on py; hence, integration with respect to
py actually determines the degeneracy multiplicity of the electron state at a given
energy:

L./2
L eBL eBL,L
Ng == [ dp, = J / dxg = —2, 5.13
E 27r/ Py 27 0 2T ( )
—L,/2

where xg = py/eB determines the center of the Gaussian packet on the x axis;
see(5.5). As a result, for the decay probability of the 2-mode photon one obtains

4aeBmg

w?/w? — 4m?

The © function is seen to define the threshold of the photon decay into the e~ e™ pair.
Making the inverse Lorentz transformation, in view of the invariance of the product
wW, one can rewrite the probability (5.14) in an arbitrary frame

W = OW?* — 4m?). (5.14)

4oe Bm?
w?sin 0,/ w? sin? 6 — 4m?2

where 6 is the angle between the photon momentum and the magnetic field direction.
The formula obtained shows that the photon decay process has a resonant
character. Itis enhanced essentially when the angle 6 is close to fes = arcsin(2m, /w).

wo — O (W?sin® 0 — 4m?), (5.15)
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5.1.2 Calculation Based on the Imaginary Part of the Loop
Amplitude

There exists another way to calculate the probability of the photon decay in a magneic
field, which is based on an application of the unitarity relation (see e.g.[8])

Wy —eeh) = é Im M(y = v), (5.16)

where w is the photon energy. The amplitude of the transition M(y — <) in a
magnetic field can be obtained from (4.31), where the vector currents should be
replaced as follows, jy, — ecq ), here 5()‘) (A = 1, 2) are the polarization vectors

(4.10); the condition ¢ = 0 should be set also. By this means, we obtain from (4.31)
AMD =AM (3O - W) =Sy} a=1.2. (5.17)
7T

To take the strong field limit in the functions Y‘(,’\&, it is worthwhile to make the Wick

rotation of the integration contour in the complex plane ¢ (see Chap.3), replacing
it on the negative imaginary axis, f = —i7, where 7 is a real variable. In this case
sin Bt = —i sinh #7 and cos 8t = cosh G7. Let us analyze first the amplitude (5.17)
for the 2nd mode photon. We obtain:

1 00
« dr 2 — 02 (1 —y2 1 —u?
AMP = —/du/— e Tlme—gj (1—ut)/4l qﬁ—coshﬂr
m T smhﬁT 2
0 0

(5.18)

2 . 2
_ 91 (cosh Bru — u sinh Sruy | q21__u o~ Tlmi—q> (1-u?)/4]
2 tanh G7 2

Taking the strong field limit we assume that the field parameter 5 = e B is the maximal
dimensional parameter of our problem ﬁ > qﬁ qf_, m2 Itis seen from the integrand
in (5.18) that the region 7 ~ 1/ m , 1/ qH >> 1/[3 gives the main contribution. In this
region one can assume

1
cosh 87 >~ sinh B7 =~ zeﬂT.

In the strong field limit, the field-induced part of the amplitude dominates and actually
it defines the total amplitude of the transition v® — ~@ M® ~ AM®P | The
integral with respect to 7 in (5.18) can be easily calculated to give

2
M@ ~ 208 H( 9i ) (5.19)

2
s 4m;
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where the function H (z) is defined in (4.17). Using (4.18), one obtains the following
expression for the imaginary part of the amplitude,

4aﬁmg
Jartaj —4m2)

Substituting (5.20) into (5.16), in view of 3 = ¢B and qﬁ =w?— q32 = w?sin? 6,
we obtain the result for the probability that coincides with (5.15).
The similar analysis of the amplitude for the transition v — ~() shows that in

ImM®P = O(qf —4m3). (5.20)

the strong field limit, the integral Y‘(,l‘), does not have an interval where the enhancing

factor /3 could arise, as it was for Y‘(,z‘),. But it is more essential that the amplitude
MWD does not have an imaginary part in the strong magnetic field limit 5 > qﬁ.

Thus, only the 2nd mode photon can decay into the e~ e™ pair in the strong field
limit.

5.2 The v = e~e™ Decay in a Crossed Field

As was already mentioned, the case of a relatively weak external field when the
photon energy is the largest physical parameter, corresponds to the crossed field
approximation. We perform the calculations by the two ways, first by using the exact
solution of the Dirac equation (2.40), and second via the imaginary part of the loop
amplitude My y (4.35) for the transition v — e~ et — 7.

5.2.1 Direct Calculation Based on the Solutions of the Dirac
Equation

Substituting the solutions in a crossed field (2.40) for the electron and the positron
into the S matrix element (5.2), one obtains

ie 1
Sif = —————== [ d'xex [—i( x) =353 24 - 3)]
g 2wV2EV2E’V/ P (Qx) (po¢’ + 3¢°)

< a1 - ek ). 1+ eké u(=p)) (5.21)
b 26kp)” 207 ) '

where the following notations are used: Q = g — p — p’, and
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_ ( )”* oo Claa)  eqFp)
2X1X2 ’ mg ’ mﬁ%x’
_ ( 2(qFFq)) _ x(gk)
- =iz
me
B ( 2(pFFp)) _ x(pk)
- =2
me

2 1/2 /
X2 = (M) _ =k (5.22)

6 2
me me

Taking the frame (2.41) and keeping in mind that ¢ = (kx) = ko(t — x), we can
write

(Qx) = (Qo— Qx)t = Qyy — Q:2+ 590, §=——

The integrals with respect to y and z give the two-dimensional § function:

/ dy dz (@729 = 2m)252(Q ).

Changing the variables 7, x to ¢,

1
/dtdx:—/dtd(p
ko

and integrating with respect to ¢:

. x
/ dr e Q=29 — 275(Qp — Q) = 27kod(kQ) = 2mko—50(0¢ = X1 — X2),

e

we transform the S matrix element(5.21) to the form

ie(2m)36%(Q1)0(kQ) [_ /
o dol| a(p)v, LM e, u(—p)
Y AWVIEV2EY L
—00
X exp|: (scp —r %3(90090 + - <p ))] (5.23)
where
~ 62%2
LMW = g" 4 k_F" o —ikynsF'" o — 24—(FF)W¢2, (5.24)
mgx1X2
1 1
hi = (— + —) . (5.25)
2me X1 X2
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It is worthwhile to perform further calculations for a photon of the definite
polarization. The polarization vectors (4.10) in a crossed field can be presented in
the form

T JgFFg Y T JGFFg (5.26)
We obtain
(Lg(l)) _ 1 [(Fq) +k_(FFq),(p — 900)],
o (qFFq) : !
1 3
@) _ . -
(L6 )ﬂ - m[”‘”u ik175(FFq) (o 900)]- (5.27)

Making a shift in the integral with respect to the variable ¢, @ — @ — ¢, we
can remove the terms in the exponent which are proportional to (2, to obtain

1 o
sp—r (<p0<p2+ §<P3) —Fp— 30 + 4,

where
s=s—+ r3%3<p%.

The value A not depending on ¢ is inessential; it leads to the appearance of a constant

phase factor in the S matrix element. Given the symmetry of the integral limits, this
shift on ¢ allows to express the result in terms of the Airy function

oo
1 3
Ai(y) = — /dz cos (yz + Z—) , (5.28)
m 3
0
satisfying the equation

Ai"(y) — yAi(y) = 0. (5.29)

Thus, the integrals over  can be rewritten as follows:

+0o0

1 2
/ dy exp (—i(§<p - —r3%3<p3)) — T Ai(y), (5.30)
3 rx
+o00 | -
- oo
/ dp ¢ exp (—1(s<p — §r3%3<p3)) =-33 Ai'(y), (5.31)
400
L 1 2 .
/ dy ©? exp (—1(s<p — §r3%3<p3)) =-33 Ai’(y), (5.32)

—0o0
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where

y=—= (5.33)
rx
The S matrix elements for the decays of photons with definite polarizations have
the form

G _ ;i oia €CM*2QIKQ) [#(p)yuu(—p"]
if V2wV2EV2E'V  rxJ(@FFq)
x [(Fq)u Ai(y) + k- (FFq),, (—i{ Ai'(y) — o Ai(y)) ] (5.34)
42
(O _ i ia QD Q1IKQ) 1 [ _ o Eer A
S AVAEVaE Y e qFEg | PPN A)

+i[a(p)ysyuu(—pH)]k+ (FFq),, (—%{ A'(y) = ¢o Ai(y)) ] (5.35)

The photon decay probability is defined as

1 dpv &Bpv
W=— [ |8 . 5.36

Substituting the matrix element, one should take into account, that, as usual,

L,L T
L2 5(kQ=0)= —,

2000 — Oy —
rQL=0= Q)2 2rko

where Ly, Ly, L, are the typical scales along the axes OX, OY, and OZ, and T is
the total interaction time.
Integration over the positron momenta with the § functions yields

d*p/
/T’,’#(Qué(kQ){...}: W > q-p—sk xa— x—x1}
m X2

e

For the integration over the electron momenta it is convenient to insert the variables
7 and u as follows

In this case

X: X2 = X (5.38)
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and we can write

d3p 1 _ 2mlx
— dr [ deo.
E X2 1—u2

However, as the calculation shows, the integrand does not depend on . If the
connection between ¢ and x is recalled, we can conclude that the integral with respect
to o represents an arbitrariness of the choice of the zero point for the x coordinate.
Analyzing a problem within the finite quantization volume V = L, L L., we should
obviously take the integration region over ¢ to be finite and equal to koL, i.e.

/d(p():ko/dxo:koLx.

The argument (5.33) of the Airy function in the notations (5.37) has the form

2,2 2 13
y=r(t"+1), r= (m) . (5.39)

The result of calculation of the decay probabilities for the photons of both polar-
izations (5.26) can be represented in the form

oo
2.1/3 142 1-u2
(1,2) _ e*m?x +u u 12
Wi = 23 /(1_u2)2/3 /dT[( 5 T3 [A' (1]

—00

2 NPT o2 (L 1=\ 540
*'(wl—u%) [ o ( 2 2 )}[1@” l (40

This result coincides, to the notations, with the result of [9], where the polarizations
|| and L correspond to our 1 and 2.

To calculate the integrals with respect to the 7 variable, which are involved in
(5.40),

o0 o o
h=/mww%h=/wﬁmm%h=/mwmﬁ
—00 —00 —0o0
(5.41)
we use the known relations for the Airy function; see [9]:
5 2
y AT + [AT ()] = 24,2 [Ai(»)]*, (5.42)
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o0 o0
/ 9 AiG+ o) = / dyAi(y) (5.43)
— a)l” =< , .
7 5 yAi(y
0 22/34
o0 o0
/dn” At +a)) = —2 L /dzt”—l [Ai(t + @), 0> 0
220 + 1) \da? ’ '
0
(5.44)
For the integrals (5.41) we obtain
1 21/3 ., .
I = ZBI(Z), L= o7 [—Ai'(z) — zBi(2)],
21/3
=" [-3Ai'(2) — zBi(2)]. (5.45)

where

w° 2/3
Bi(z) = / dyAi(y), z=2*3?2= (ﬁ) ) (5.46)
X1 —u

Z

Inserting the integrals (5.45) and turning to a new variable v = 1/(1 —u?), we present
the probability (5.40) in the form

am? [ dv 4v—-2F1
w2 _ e / iB' - = T Af ] , 5.47
2w J1 viv(v—1) 1) z @) ( )

where z = (4v/x)*/3. The expression (5.47) can be further simplified by using the
Eq. (5.29) for the Airy function. We obtain

) o0 3/2
m dz 8v+1F3 . Xz
w2 — _AMeX / 2T TR AN, v= 5.48
16w N/NSICES)) @ 4 (5.48)

/023

The formulae for the probability are simplified significantly in the two limiting cases:
for small values of the dynamical parameter x

2
§(3 F Dam; X678/3X,

w2 (y) = SRRET X< 1, (5.49)
and for large dynamical parameter
365 F DI*2/3)am?
W(l’z)(X) _ ( + ) ( / ) e (3X)2/3’ x> 1. (550)

2812w
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Here I'(z) is the gamma function, I"(2/3) = 1.354 .. .. The presented expressions
for the probabilities coincide, to the notations, with corresponding formulas of [9].

5.2.2 Calculation Based on the Imaginary Part of the Loop
Amplitude

Similarly to Sect.5.1.2, the decay probability in a crossed field can be calculated via
the unitarity relation. For this purpose the expression (4.35) should be substituted as
the amplitude M(y — =) into (5.16), replacing the vector current by the photon

polarization vectors (5.26), jyo — ee((y,l’z), and setting q2 = 0. We obtain

a
MOV — A0y = — vy

1
2.2/3 1/3
_amgy /du( 4 ) G4+ ury @ f(Z)
dz
0

- 67 1 —u?

2
MO =) == ¥

1
2.2/3 1/3
= -2X /du(ljuz) (3—u2)%f), (5.51)
0
4 2/3
() o

Keeping in mind that the imaginary part of the Hardy—Stokes function is expressed
via the Airy function,
Im f(z) = 7 Ai(z), (5.53)

and changing the variable u to z in the integral

roo3 Fod
/du T4 / _Z—’
4 Z Jv(v—1)
0 (4023

where v = xz3/? /4, we readily obtain the formula (5.48).
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5.3 Photon Emission by Electron in a Strong
Magnetic Field

Photon emission by an electron in an external electromagnetic field, e — e + 7, is
the crossed process to the photon decay into the pair e~e™. Therefore, it is described
by the same diagram, Fig.5.1, with the replacement p — —p, g — —q.

The S matrix element (5.2) for this process can be written in the form

ie
V2wV

where ¥ and ¥ correspond to the solutions of the Dirac equation in a magnetic field
with positive energy (2.30)—(2.32), w is the photon energy.

It should be noted that the photon emission process is impossible when the initial
electron occupy the ground Landau level. To see this, it is enough to make the Lorentz
transformation to the rest frame of the initial electron (p, = 0) where its energy is
equal to its mass. In another case, when both initial and final electrons occupy the
first Landau level, and in the same frame, where p, = 0, the energy conservation
law taking the form \/2eB +m2 = ,/2eB + m2 + p/> + w, obviously cannot be
valid for the nonzero energy of the photon. Only the process is possible where the
electron emitting the photon, passes from the first Landau level into the ground one.
In a general case, only the processes could be realized where the electron passes into
a lower Landau level.

Let us consider the case when the field is strong enough and the electrons, which
are relativistic, can occupy only the ground and the first Landau levels. It is just the
case when the electron emitting the photon passes from the first Landau level into the
ground one. The energy of the relativistic electron in a magnetic field is (see (2.24)):

E, 2,/p§+2nﬁ.

The first Landau level (n = 1) is doubly degenerate because two spin states exist,
s =—lands = +1.

It is convenient for further calculations to take the frame where the p, component
of the initial electron momentum is equal to zero. In this frame p, = 0, E >~ +/2¢B,
and the wave functions describing the state of relativistic electrons that occupy the
first Landau level, takes the following form, according to (2.30)—(2.32):

Sif = / WEN)eldx gy, (5.54)

1/4
x(=+)+l — (é) Ups=+1 e—ﬁz/Ze—i(Et—pyy). (5.55)
m V2L,L,
1/4
q/x(_*)_l — (ﬁ) Ups=—1 6—52/2e—i(EI—PyVV). (5.56)
- 7T V2L,L,
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1 0
0 2

Ups=+1 = 0 s Ups=—1 = \/__f
iv2¢ 0

Substituting the wave functions of the initial state (5.55) and (5.56) and of the final
state (5.53) into the expression (5.54), we obtain the matrix elements S; s correspond-
ing to the two projections of the initial electron spin on the field direction,

ie(eB/m)'/? / . rn e
Sifsmtt = —————— [ (i yEVup —s1)e™* 2/
" 2L, L2V ) T

x el0X eI B py )l (E =Py y=pi) gy (5.57)

where

§=x/e_B(x+&),€/=x/e_B(x+%).

eB

By choosing the coordinate axes in such a manner that the vector of the photon
momentum would have the form q = (¢y, 0, ¢;), the integration with respect to x
in the expression S;; can be easily performed. In this frame we have p, = p; and
& = ¢, and the matrix element S; is transformed to the form

ie(eB/m)'/? 33 ,
Sifset] = ——————2m) 0 (q + p' — p)
o= 2LyLZ«/m( e
* /(ﬁp/é%p,s:ﬂ)e—i%xe—ﬁzdx, (5.58)

where 6°(q + p' — p) = 6(w + E' — E) 6(py — py) 6(q; + p;) and the integration
over dz dy dz is taken.

Calculating the values (u p/é(/\)u p) for the initial electron with s = +1 and for
the photon 1- and 2-modes (4.10), we obtain

. ing . iv2¢
up’f‘:(l)up,s:+l = al , up’g(z)up,s:—ﬁ—l = —(776]z —w),

2 2

Vil VY

where 17 = p!/|p.|. Note that in this frame g7 = 2. For the initial electron with the
spin projection s = —1, we obtain

(5.59)

. q _ . §
N, o = — "2 o iyEPuy g = ——2(qZ —nw).  (5.60)
q1 g
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The remaining integration with respect to x in(5.58) is reduced to the Gaussian
integral, and the calculation of the S matrix elements yields

s _ ie(21)?0%(q + p' — p) ingx o—03/4eB eidxPy/eB
if,s=+1 — 2L I \/— \/>

S(2) i 13(277)353(‘] +p' —p) (g, — W) (= 1‘]x) —q2/4eB lq,\p)/eB
if,s=+1 2L L / / /2
(1,2) (1,2)

Sifis=—1 =S Z - (5.61)

Returning into a more general frame where q = (gx, gy, q;), let us write the
matrix elements squared

2 2 200m3T
1) e _ e @m)T 4 —q2 J2¢B
Siﬁszﬂ’ - (Sff,s? ‘ = 8L, L.V’ (q+p —peil?E (562
@ ‘2 _ ‘S@ ‘2 _ C@n)’T(g: —w)’ qf
ifs=+1 ifis=-1 8LyL,wV 2B qﬁ
x 63(g + p' — p)e 91/%B, (5.63)

where 63(q + p' — p) = 8(E — E' — w)S(p. + q:)é(qy + Py — py)- Thus, the
probability of the photon emission is seen to be independent on the polarization of
the initial electron. To find the total probability of the photon emission, the integration
over the phase space of final particles should be performed:

1S;¢1> d3qV dpydp.LyL,
T @m)3 (272

(5.64)

Upon integrating (5.64) over d p’y dp, with (5.62) and (5.63) taken into account
we obtain that the emission probabilities of the photons of the two modes, A = 1, 2,
coincide at g% = 0:

d%q.d
wh — w® = w = 8_/ CILCz =42 2B 5 _ 1| — w). (5.65)
™ w

The § function for energies can be presented as follows

OE — gzl —w) _ 0(qz +¢) +0(qz —q7)
w v/ 2eB ’

where ¢* = (2¢eB — qﬁ) /(2+/2eB) defines the absolute value of g,. From the
condition ¢* > 0O we find the integration limits over the qJ2_ variable,
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0 2
< q] <2eB.

Finally, we obtain

2eB

(6% 2 (0%
W= e 11/%Bdg? = —V2eB(1 —e 1. (5.66)
4/2¢B / 4
¢ 0

The total probability of the process
e —e +v

averaged over the polarizations of the initial electron and summarized over polariza-
tions of the final photon, in the frame where p, = 0, is

W= %\/ZeB(l —e ). (5.67)

Taking account of the Lorentz invariance of the product of the probability by the
initial electron energy, we can rewrite the expression (5.67) to the arbitrary frame,

to obtain
aeB

\/p?+2eB

W= 1—eh. (5.68)

5.4 Electromagnetic Interactions of the Dirac Neutrino
with a Magnetic Moment

Throughout this section, we use the notation i, for the magnetic moment of a neu-
trino, and the notation fi,, for a chemical potential of the neutrino gas.

5.4.1 Magnetic Moment of the Dirac Neutrino
and its Astrophysical Manifestations

Nonvanishing neutrino magnetic moment leads to various chirality-flipping processes
where the left-handed neutrinos produced in the stellar interior become the right-
handed ones, i.e. sterile with respect to the weak interaction, and this can be impor-
tant e.g. for the stellar energy-loss. In the standard model extended to include the
neutrino mass m,, the well-known result for the neutrino magnetic moment is
[10, 11]:

(SM) _ 3e GF nty,

( gy =320 1071 (m—) " (5.69)

leV
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where up = e/2m, is the Bohr magneton. Thus, it is unobservably small given the
known limits on neutrino masses. On the other hand, nontrivial extensions of the
standard model such as left-right symmetry [12—19] can lead to more significant
values for the neutrino magnetic moment [20-22].

First attempts of exploiting the mechanism of the neutrino chirality flipping were
connected with the solar neutrino problem, and two different scenarios were analysed.
The first one, based on the neutrino magnetic moment rotation in a stellar magnetic
field, was investigated in the papers [23-25]. In the second scenario, a neutrino
changed the chirality due to the electromagnetic interaction of its magnetic moment
with plasma [26, 27]. For a more extended list of references see, e.g., [28]. In all
these cases the effect appeared to be small to have an essential impact on the solar
neutrino problem, if i, < 10719 up.

More stringent constraints on i, are provided by other stars. For example, the
cores of low-mass red giants are about 10* times denser than the Sun, and nonstandard
neutrino losses would have a more essential effect there, delaying the ignition of
heluim. Thus, the limit was obtained [29, 30]:

ty <03 x 107 g . (5.70)

An independent constraint on the magnetic moment of a neutrino was also
obtained from the Early Universe [31, 32]:

py <62 x 1071 ug (5.71)

where spin-flip collisions would populate the sterile Dirac components in the era
before the decoupling of the neutrinos. Thus, it doubles the effective number of
thermally excited neutrino degrees of freedom and increases the expansion rate of
the Universe, causing the overabundance of helium.

Interest in possible astrophysical and cosmological manifestations of the neu-
trino magnetic moment stimulated experiments on its measurement in laboratory
conditions. The best constraint was obtained in the GEMMA experiment to study
the scattering of antineutrinos by electrons carried out at the Kalinin nuclear power
station by the collaboration of the Institute of Theoretical and Experimental Physics
(Moscow) and the Joint Institute for Nuclear Research (Dubna). The upper bound
for the neutrino magnetic moment was [33]:

fy <32 x 1071 g . (5.72)

A considerable interest to the neutrino magnetic moment arised after the great
event of SN1987A, in connection with the modelling of a supernova explosion,
where gigantic neutrino fluxes define in fact the process energetics. It means that
such a microscopic neutrino characteristic, as the neutrino magnetic moment, would
have a critical influence on macroscopic properties of these astrophysical events.
Namely, the left-handed neutrinos produced inside the supernova core during the
collapse, could convert into the right-handed neutrinos due to the magnetic moment
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interaction with a virtual plasmon ~* that can be both produced and absorbed:
vp —> vr+°5, v+ — vr. (5.73)

These sterile neutrinos would escape from the core leaving no energy to explain
the observed neutrino luminosity of the supernova. Thus, the upper bound on the
neutrino magnetic moment can be established.

This matter was investigated by many authors in different aspects [34-38]. The
authors [36] considered the neutrino spin-flip via both vy e~ — vge™ and v p —
VR p scattering processes in the inner core of a supernova immediately after the
collapse. Imposing for the vg luminosity Q,, the upper limit of 103 ergs/s, the
authors obtained the upper bound on the neutrino magnetic moment:

< (0.2 —0.8) x 1071 1. (5.74)

However, the essential plasma polarization effects in the photon propagator were
not considered in Ref. [36], and the photon dispersion was taken in a phenomenolical
way, by inserting an ad hoc thermal mass into the vacuum photon propagator. A
detailed investigation of this question was performed in Refs. [39, 40], where the
formalism was used of the thermal field theory to take into account the influence of
hot dense astrophysical plasma on the photon propagator. The upper bound on the
neutrino magnetic moment compared with the result of the paper [36] was improved
in Refs. [39, 40] by the factor of 2:

< (0.1 —0.4) x 1071 1 . (5.75)

However, looking at the intermediate analytical results of the authors [39, 40], one
can see that only the contribution of plasma electrons was taken into account there,
while the proton fraction was omitted. This is despite the fact that the electron and
proton contributions to the neutrino spin flip process were evaluated in Ref.[36]
to be of the same order. It should be mentioned also that the improvement of the
bound (5.75) with respect to the bound (5.74) was based in part on the enhancement
by the factor of 2 of the supernova core volume made in Refs. [39, 40] if compared
with Ref. [36], while the density was taken to be the same, p. ~ 8 x 104 gecm™3.
This means that the core mass appeared to be in Ref. [39, 40] of the order of 3 M,
which is nearly twice the mass of the supernova remnant believed to be typical.

The neutrino spin flip processes in the supernova core was reconsider more atten-
tively in Refs. [41-43]. It was shown in part, that the proton contribution into the pho-
ton propagator was not less essential, than the electron contribution. In this section,
we reproduce that analysis. We consider the Dirac neutrinos only, because in this
case the neutrino magnetic moment interaction (both diagonal and non-diagonal)
with a photon transforms the active left-handed neutrinos into the right-handed neu-
trinos which are sterile with respect to the weak interaction. We do not consider the
Majorana neutrinos, because the produced right-handed antineutrino states are not
sterile in this case.
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The amplitude of the helicity flip through the scattering by plasma components
is calculated. A general expression for the creation probability of right-handed neu-
trinos with a fixed energy is derived. We estimate the core luminosity with respect
to the emission of neutrinos vg and obtain an upper limit on the neutrino magnetic
moment by taking into account the radial distributions and time evolution of physical
parameters.

5.4.2 Neutrino Interaction with Background

The neutrino chirality flip is caused by the scattering via the intermediate photon
(plasmon) off the plasma electromagnetic current presented by electrons, v e~ —
vRe™ , protons, vy p — Vg p, etc. The total process Lagrangian consists of two parts,
the first one is the interaction of a neutrino having a magnetic moment 1,/ (both
diagonal and transition) with photons, while the second part describes the plasma
interaction with photons:

i . .
L=—3 Zu;j (Djoapvi) FOP — e Jo A, (5.76)
i, ]

where 0,3 = (1/2) (Va8 — V87a), F a8 is the tensor of the photon electromag-
netic field, J, = — (eyq€) + (pyap) + -+ is an electromagnetic current in the
general sense, formed by different components of the medium, i.e. free electrons and
positrons, protons, free ions, etc.

The neutrino magnetic moment is generally a matrix fi;,; = p;) that contains
both diagonal and transition magnetic moments, where v; and v; are the states of a
neutrino with a specific mass. The neutrino states v, with specific flavors £ = e, u, 7
being produced in weak processes are superpositions of states v;:

ve= > Uhvi, (5.77)
i

where Uy; is the unitary Pontecorvo—Maki—Nakagawa—Sakata leptonic mixing matrix
[44—47]. Below, for simplicity, we will consider the diagonal neutrino magnetic
moment j,,. The extension to the general case of the matrix of magnetic moments
1] presents no difficulty and consists in the following: the magnetic moment in all of
the succeeding expressions should be considered as an effective value. For example,
for the processes with initial electron neutrinos, by 1, we should mean

o 172

A DIV AL : (5.78)
7

i
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Fig. 5.2 The Feynman dia- 148 VR
gram for the neutrino spin-flip

scattering via the intermediate

plasmon ~* on the plasma

electromagnetic current J

and a similar quantity for initial muon and tau neutrinos.

With the Lagrangian (5.76), the process is described by the Feynman diagram
shown in Fig.5.2.

The technics of calculations of the neutrino spin-flip rate is rather standard. The
invariant amplitude for the process of the neutrino scattering off the k-th plasma
component can be written in the form

MO = —iep, ) Gas(Q) I, (5.79)

where jg/) is the Fourier transform of the neutrino magnetic moment current,
ity = [7r(P) " vL(p)] Qs

J(i) is the Fourier transform of the k-th plasma component electromagnetic current,
and Q = (qo, q) is the four-momentum transferred. The only principal point is to
use the photon propagator G,5(Q) with the plasma polarization effects taken into
account, see Sect.4.4.

5.4.3 The Rate of Creation of the Right-Handed Neutrino

The value of physical interest is the rate of creation of the right-handed neutrino vg,
I, (E"), with the fixed energy E’ by all the left-handed neutrinos. This function
can be obtained by integration of the amplitude (5.79) squared over the states of
the initial left-handed neutrinos and over the states of the initial and final plasma

particles forming the electromagnetic current J, ([,i)
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v (E) = Z rY(E", (5.80)
(k) k)2 54 /
(E') = 16(2)5E//Z|M 269 +P — p—P)
d’P 3P
x —fk(€> — [1F fuce )]—fV(E) (5.81)

Here, p® = (E,p) and p'® = (E’,p’) are the four-momenta of the initial and
final neutrinos, P% = (£, P) and P'® = (£, P’) are the four-momenta of the ini-
tial and final plasma particles; > , means the summation over the spins of these
particles, the index k = e, p,i,... corresponds to the type of the plasma parti-
cles (electrons, protons, free ions, etc.) with the distribution function f(£), which
can be both fermions (the upper sign in [l F fi(& )]) and bosons (the lower sign);

fu(E) = (e(E —m)/T 4 1) - is the Fermi—Dirac distribution function for the initial
left-handed neutrinos in the plasma restframe.

It is convenient to pass in Eq.(5.81) from integration over the initial neutrino
momentum p to the integration over the virtual plasmon momentum p — p’ = Q =
(90, 9), |q| = g, using the relation:

d3
—fy(E) —qdqdqo9( 0HO0QE +q0 — q) f(E' +q0).

Substituting the amplitude (5.79) squared into Eq. (5.81), one obtains

2E'+qo
FIJR(E,) = 8 2E/2 / dqo / qdq fl/(E +CIO) J(;/) J(}/)
—E Iqol
()\)
Pl B’
X T, (5.82)
§ &= (0= )

where the following tensor integral is introduced:

@ e’ a pO*
T = 2 z/ JayJay 49 (5.83)
ks,
d*P dP’ o
4® = ——=— i) [1 F i (P)] VP ~ P~ 0).

Further, we present the detailed calculation of the tensor 7. To use the covariant
properties of this tensor, one should write the distribution functions f;(P) in the
arbitrary frame



5.4 Electromagnetic Interactions of the Dirac Neutrino with a Magnetic Moment 149

- -1
Jk(P) = [exp (PM)TM + 1} , (5.84)

where u,, is the four-vector of the plasma velocity. This vector and the four-vector
Q. are the building bricks for constructing the tensor 7%7. This tensor is symmet-
ric because the electromagnetic current J((,’(') is real. The tensor is also orthogonal
to the four-vector Q, because of the electromagnetic current conservation. There
exist only two independent structures having these properties, which are the density
matrices (4.42) and (4.43), and thus one can write:

T = AD pog® + A© pog® . (5.85)

Because of orthogonality of the tensors pag(l) and paﬂ“), see Eq.(4.45), one
obtains

1 Je 62 , 3
AD — 3 ToB Paﬂ(l) — a2 ,Oaﬁ(t) ZZ/ J&)Jﬁkt do, (5.86)
k s,s
2
e
A — 7oB paﬁ“) — oy p(w“) Zz/ J((]Z)ch;k do . (5.87)
k s,

As we show below, just these integrals (5.86) and (5.87) define the widths of
absorption (at gg > 0) and creation (at gg < 0) of a plasmon by the plasma particles.
Really, let us consider for definiteness the width of absorption of the transversal
plasmon by plasma particles forming the electromagnetic current J ([Z). The amplitude
of the process has the form

MBO = e, © o (5.88)

where ¢, ") is the unit polarization four-vector. Performing standard calculations, one
obtains for the width of the plasmon absorption by all the components of plasma:

1 1
bs _ =~ k()2
T = g3 e 22 /IM Pdeo, (5.89)
T k s,

where the summation is made both over the kth types of the plasma particles and
over the polarizations of all particles participating in the process, 7 for a plasmon
and s, s’ for plasma particles.

Substituting the amplitude (5.88) into (5.89),

2
bs _ _© ) P
rg)*_647rzq0 pap” D> / Ty g 4@, (5.90)
k s
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2
where paﬂ(t) = > egm 5;3(1), and comparing it with Eq.(5.86), one can find the
=1

value
AD = qo gy (5.91)

Using the known relation [48] between the width of absorption of the transversal
plasmon and the imaginary part I, of the eigenvalue I1; of the photon polarization
tensor I3,

Ii(go) = —qo0 (1 —e=®/T) g, (5.92)

we express the value A®) in terms of I;:

Iy
1 —e—9/T

AD = _ =-1 [1 + fw(‘]O)] ) (5.93)

where f.(q0) = (er/ T _ 1) ! is the BoseEinstein distribution function for a pho-
ton. This relation obtained in the case go > 0 is also correct for the case gg < 0,
which corresponds to the transversal plasmon creation with the energy w = —qq > 0.
The connection should be used here between the imaginary part /; and the width of
creation of the transversal plasmon:

L(w) = —w (e“/ T_ 1) re . (5.94)

It is essential also that the function I, is odd:

I (—q0) = —1:(q0) , (5.95)

and this is the feature of the retarded polarization operator.

Performing the similar calculations, one can see that the relation of the form (5.93)
is valid for the longitudinal plasmon also. It is necessary to remember that p, s © =
—eo® g‘g(@, and

Ie(q0) = g0 (1 —e %/ T) g (5.96)

Finally, we obtain the tensor 7" in the form of decomposition over the density
matrices (4.42), (4.43):

790 = (=1 o™ — 1 O] [1+ £,(q0)] (5.97)

where I;  are the imaginary parts of the eigenvalues I1;, ¢ of the photon polarization
tensor; f-(qo) is the Bose-Einstein distribution function for a photon.

Substituting (5.97) into (5.82), using the orthogonality of the tensors p®?®) and
p*P O see Eq. (4.45), and taking into account the expressions for the contractions of
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the neutrino current with these tensors:

2
.a .fB 4| QE "+ q0)
iy Juy s = @ [ 2
o B (E + g0)*

Jy iy pas? = —0* £

one finally obtains for the rate of creation of the right-handed neutrino:

2E'+q0

FI/R(E/)_W / dqo / ¢ dq f,(E' + q0) QE' + q0)*
—E' lqol

q ? 6]2
O s B

Here, the plasmon spectral densities are introduced:

=21,

e B— 5.99
(Q% = R)? + I} 02

OX

which are defined by the eigenvalues (4.46) of the photon polarization tensor (4.41).

The formula (5.98) is in agreement, to the notations, with the rate obtained in
Ref. [32] from the retarded self-energy operator of the right-handed neutrino. How-
ever, extracting from our general expression the electron contribution only, we obtain
the result which is larger by the factor of 2 than the corresponding formula in the
papers [39, 40]. It can be seen that an error was made there just in the first formula
defining the production rate I" of a right-handed neutrino.

The formula (5.98) being obtained for the process of the neutrino interaction with
virtual photons, has in fact a more general sense, and can be used for neutrino-photon
processes in any optically active medium. We only need to identify the photon spectral
density functions o). For example, in the medium where /; — 0 in the space-like
region Q2 < 0 corresponding to the refractive index values n > 1, the spectral
density function is transformed to J-function, and we can reproduce the result of the
paper [49] devoted to the study of the Cherenkov radiation of transversal photons by
neutrinos.

If one formally takes the limit /, — 0, the result obtained in Ref.[50] can be
reproduced, namely, as the authors believed, it would be the width of the Cherenkov
radiation and absorption of longitudinal photons by neutrinos in the space-like region
Q2 < 0. However, the limit I, — O itself is irrelevant for Q2 < 0 in the real
astrophysical plasma conditions considered by those authors. As it was mentioned
in Refs. [39, 40], see also Fig.4.5, the space-like branch of the longitudinal photon
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mode developped a large imaginary part in the supernova core conditions. Thus,
taking the limit 7, — O leads to the strong overestimation of a result.

5.4.4 Contributions of Plasma Components into the Neutrino
Scattering Process

As it was mentioned above, an analysis of the neutrino chirality flip process has
to be performed with taking account of the neutrino scattering off various plasma
components: electrons, protons, free ions, etc. For the first step we consider the
contribution of the neutrino scattering off electrons into the right-handed neutrino
production rate. This means that we take into account the electron contribution only
into the function /) in the numerator of Eq. (5.99). It should be stressed however, that
the functions R) and /) in the denominator of Eq.(5.99) contain the contributions
of all plasma components. At this point our result for the neutrino scattering off
electrons differs from the result of Ref.[39, 40], where the electron contribution
only was taken both in the numerator and in the denominator of the plasmon spectral
densities.

As the analysis shows, see Sect.4.4, the electron and proton contributions into
the imaginary parts /) of the eigenvalues IT) of the photon polarization tensor are of
the same order of magnitude and have the same sign both for A = ¢ and for A = ¢,
see Figs.4.5 and 4.7. This fact itself should lead to a decreasing of the electron
contribution into the function I, (E). On the other hand, it is seen from Fig.4.4,
that the electron and proton contributions into the real part R, of the eigenvalue I,
are of the same order of magnitude but have the opposite signs in the region where
the imaginary part of the electron contribution into the numerator of Eq.(5.99) is
relatively large. As a result, the contribution of the neutrino scattering off electrons
into the right-handed neutrino production rate, obtained by us, appears to be close to
the result of Ref. [39, 40], besides the above-mentioned factor of 2.

It is possible to consider similarly the contribution of the neutrino scattering off
protons into the right-handed neutrino production rate. In this case, we take the proton
contribution into the functions /) (4.57),(4.59) in the numerator of Eq. (5.99).

The results of our numerical analysis of the separate contributions of the neutrino
scattering off electrons and protons, as well as the total vg production rate in the
typical conditions of the supernova core are presented in Fig.5.3.

The plotted dimensionless creation width R(E ) is defined by the expression

LB =12 i T3 R(E) . (5.100)

For comparison, the result of Ref. [40] is also shown in Fig. 5.3, illustrating a strong
underestimation of the neutrino chirality flip rate made by those authors.

We consider also the contribution of the neutrino scattering off free ions into
the vg production rate. While the ions are believed to be absent in the supernova
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Fig. 5.3 Contributions from electrons (dashed line) and protons (dashdotted line) to the
dimensionless creation width R(E’) of a right-handed neutrino and total width (solid line) for
plasma temperature 7 = 25MeV and chemical potentials of electrons . =250 MeV and neutrinos
[y, = 100 MeV. The dotted line indicates the result of Ref. [40]

core, a significant fraction of them could be presented e.g. in the upper layers of
the supernova envelope. It should be mentioned that longitudinal virtual plasmons
give the main contribution into the vg production rate in this case. As is seen from
Eq.(4.61), the function [ é') differs from zero only in the narrow area Ax of the
variable x = qo/q, namely, Ax ~ /T/m; < 1, where m; is the ion mass. This
allows to perform calculations of the ion contribution into the vg production rate
analitically, to obtain:

4E"? + m} 4E"
mlz:) 4E7 + m2D

ATS(E" = i a ZE ni f(EN| In . (5.101)

where « is the fine structure constant, e Z; and n; are the charge and the density of ions,
mp has a meaning of the Debye screening radius inversed, mZD =>4 ng) (go =0).
We remind that the summation is performed over all plasma components.

It is interesting to note that Eq.(5.101) obtained in the approximation of heavy
ions, describes rather satisfactory the proton contribution.

Given the function I, (E’), one can calculate the total number of right-handed
neutrinos emitted per 1 MeV per unit time from the unit volume, i.e. the right-handed
neutrino energy spectrum:

dn E”?
dE”f =33 T (E). (5.102)
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One can see from Eq.(5.102), that very narrow peak of the function I, (E’) at
small neutrino energy, which was analysed in detail in Ref. [40], does not provide
a huge number of soft right-handed neutrino production, as it was declared in [40],
because of the factor E’2.

The right-handed neutrino energy spectrum (5.102) can be useful for investi-
gations of possible mechanisms of the energy transfer from these neutrinos to the
outer layers of the supernova envelope. For example, a process is possible of the
inverse conversion of a part of right-handed neutrinos into left-handed ones, with
their subsequent absorption. Just these processes were proposed [51] and then inves-
tigated [52-54] as a possible mechanism for the stalled shock wave revival in the
supernova explosion. A consistent analysis of such scenario would be doubtful with-
out knowing the vg energy spectrum (5.102). We discuss this question below in
Sect.5.4.8.

The function I, (E’) provides also the calculation of the spectral density of the
supernova core luminosity via right-handed neutrinos as follows:

3

dL dn E
dE”f =V dgf E' =V 33 I (E). (5.103)

Here, V is the volume of the neutrino-emitting region, V ~ 4 x 10'3 cm? [55]. The
value dL,,, /dE’ is presented in Fig. 5.4 for several values of the plasma temperature.

5.4.5 Illustration: Completely Degenerate Plasma at T = (

In this section, we give a clear illustration of the fact that neutrino scattering by
protons dominates over their scattering by plasma electrons, basing on an analysis
of a simplified case of the completely degenerate plasma, T = 0.

The comparison of the typical parameters of the supernova core, where the tem-
perature is believed to be of order T ~~ 15-30MeV, while the electron and neutrino
chemical potentials are . ~ 200-250MeV and /i, > 100 MeV, respectively, shows
that the temperature is the smallest physical parameter.! Thus, the limiting case of
the completely degenerate plasma, 7 = 0, seems to give a reasonable estimate. It is
remarkable that for the zero temperature limit the contributions from neutrino scat-
tering by protons and electrons to the neutrino creation probability can be evaluated
analytically using Eqgs. (5.98) and (5.99) and the corresponding formulas of Sect.4.4.

It is appropriate to analyse the function I, (E) defining the energy spectrum of
right-handed neutrinos (5.102).

The contribution of ultrarelativistic electrons to the function I, (E) in the case
T = 0 can be obtained from Eqgs. (5.98) and (5.99) in the simple form:

! Hereafter we consider neutrinos as a quasiequilibrium gas described by the distribution functions:
Sfu(T, [u,) for the electron neutrinos, and f,, (7', 0) for the muon and tau neutrinos. This is believed
to be a rather good approximation inside the SN core during a few seconds after the collapse.
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Fig. 5.4 Energy distributions of the right-handed neutrino luminosity for plasma temperatures
T = 35MeV (solid line), T = 25MeV (dashed line), T = 15MeV (dashdotted line), T = 5MeV
(dotted line) and for neutrino magnetic moment z, = 3 x 1071 ug

(e o m% - -
FVR (E) = ?(,uye -E)O(, —E), (5.104)

where E is the right-handed neutrino energy, 1, is the effective electron neutrino
magnetic moment (5.78), fi,, is the electron neutrino chemical potential, m% =
2« uz /7 is the squared mass of a transverse plasmon at 7 = 0, and © (x) is the step
function.

The analytical expression describing the proton contribution turns out to be more
complicated since it depends also on the proton mass. The plasma charge neu-
trality condition for 7 = 0 takes the form n, = n,- and ensures that the elec-

tron and proton Fermi momenta are equal: kl(f) = k}(:p ). Then, the proton chem-
ical potential coinciding with the Fermi energy is p, = El(:p ) = Jm2 + 2
and the proton contribution is expressed in terms of the proton Fermi velocity
VF = k](:p Y E](:p D= ey = pie/ /m% + pi2. As a result, the proton contribution

can be expressed in the form:

2 2~
v, Mo My, E
HoeMotve oy, y= 2. 0<y<l1. (5.105)

L (E) = =1 :
Ve

Here, the function ¢, (y) has different forms in two intervals: it is

1+ vp/3

y, (5.106)
1-— UF

@p()’) =

for0 <y < (1 —vp)/(1+ vp), and
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Fig. 5.5 Plots of the function ¢, (y) for various v values. The dependence ¢, (y) = (1 — y) for
the electron contribution is reproduced for vp = 1 (dashed line). The value vp = 0.394 (solid
curve) corresponds to the effective proton mass m;, >~ 700 MeV. The case vr = 0 (dotted line)
corresponds to the limit of infinitely large proton mass (Figs.5.5-5.12 reprinted from [42] with the
World Scientific Publishing Company’s permission.)

_ -y (1 —wp)?
ep(y) = o [1— 1272 0r (l—y)(1+2y):|, (5.107)

for (1 —vp)/(1 +vp) <y < 1.

Note that the formal turn to the limit m, — 0, i.e. vg — 1, in Egs.(5.105)—
(5.107) yields ¢, (y) = @e(y) = (1 —y) 0(1 — y), where the function ¢, (y) can be
introduced in Eq.(5.104) in complete analogy with Eq.(5.105). Thus, as expected,
Eq. (5.104) for the electron contribution is reproduced.

In Fig.5.5, the plots are shown of the function ¢, (y) for vr = 1, vg = 0.394, and
vg = 0. The value vg = 0.394 corresponds to the effective proton mass m, >~ 700
MeV in a plasma with a nuclear density 3 x 10'* g cm ™3 (see Ref. [55], p. 152). The
value vr = 0 corresponds to the formal limit m,, — oo for which this function is
also significantly simplified: ¢, (y) = Yoo(y) =y 0(1 — ).

The function I',, (E) defined in Eq. (5.102) determines as well the right-handed
neutrino emissivity of a supernova core, i.e. the energy passed away by right-handed
neutrinos per 1 MeV of the neutrino energy spectrum per unit time from unit volume:

dn,, E3
O, =E iE 302 I, (E). (5.108)

According to Egs.(5.102) and (5.108), the right-handed neutrino emissivity is
given by the formula
~4

2 .2
Hig, M5 [y,
Qup = =53 [ +0p] - (5.109)
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Fig. 5.6 The function y> (y) defining the contributions from electrons (dashed line) and protons
withm, ~ 700 MeV (solid line) and m , — oo (dotted line) to the right-handed neutrino emissivity
atT =0

The difference between the electron and proton contributions to the quantity given
by Eq. (5.109) is illustrated in Fig. 5.6. It is clearly seen that the factor y> causes the
increasing of the proton contribution to the emissivity.

5.4.6 Uniform Ball Model for the Supernova Core

The spectral density of the supernova core luminosity via right-handed neutrinos is
defined as follows, see Eq. (5.103):

dLuR dnz/R :uzzj mfzy :&ﬁ 3
=V E=V = e (numy ey, Ty . 5.110
T 1E i3 Y . 7) ( )

Here, m., is the mass of a transverse plasmon,

2 272
m%:—a(ﬂe%7T ) (5.111)
Vs

3

The function ™™ (y, T) introduced in Eq.(5.110) similarly to Egs.(5.105) and
(5.109) can be extracted from Ref.[41]. The function y> ™™ (y, T) is plotted in
Fig.5.7 for two values of the averaged temperature and for the electron and electron-
neutrino chemical potentials p, 2~ 300 MeV and f1,, >~ 160 MeV. We neglected
in our analysis [41] the contributions of the processes with the initial muon and
tau neutrinos. However, as will be shown below, these contributions appear to be
essential.
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Fig. 5.7 The function y3 ™™ (y T representing the result of the numerical calculation of the
right-handed neutrino emissivity at 7 = 30 MeV (dashed line) and T = 60 MeV (solid line)

A comparison of Figs.5.6 and5.7 shows that taking of a nonzero temperature
leads to a shift of the maximum of the energy distribution of the luminosity towards
higher energies of right-handed neutrinos. This additionally enhances the proton
contribution.

As aresult, using the data on supernova SN 1987A, a new astrophysical limit was
imposed [41] on the electron-neutrino magnetic moment:

fy < (0.7—1.5) x 1072 g . (5.112)

This is a factor of two better than the previous constraint [39, 40]. We have to remind,
however, that both the previous and this improved bound on the electron-neutrino
magnetic moment were based on a very simplified model of the supernova core as
the uniform ball with some averaged values of physical parameters. In addition, the
parameter values were set too high. For example, the upper limit 1.5 x 107! up in
Eq.(5.112) corresponds to the SN core temperature 30 MeV, while the limit 0.7 x
10~ '2 up corresponds to the temperature 60 MeV. As is seen from Fig. 5.7, the right-
handed neutrino emissivity grows with temperature very rapidly. However, according
to recent simulations of the SN explosion, the temperature values inside the SN core
are believed not to exceed 40 MeV, see e.g. Fig.5.8. Anyway, taking account of the
radial distribution of physical parameters inside the SN core would give more solid
results.
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Fig. 5.8 The radial distribution for the temperature within the SN core at the moment = 1.0s
after the bounce, Ref. [56]

5.4.7 Models of the Supernova Core with Radial Distributions
of Physical Parameters: Limits on the Neutrino
Magnetic Moment

In this section we make the estimation of the upper bound on the Dirac neutrino
magnetic moment by a more reliable way, with taking account of radial distributions
and time dependences of physical parameters from realistic models of the SN core.
Here we consider the models in the inverse chronology.

5.4.7.1 The Model of the O-Ne-Mg Core Collapse SN

This model was developed by H.-Th. Janka with collaborators who presented us the
results of their simulations [56] of the O-Ne-Mg core collapse supernovae which
were a continuation of their model simulations [57, 58]. The successful explosion
results for this case were independently confirmed by the Arizona/Princeton SN
modelling group [59, 60], which found very similar results. So we were provided
with a model whose explosion behavior was comparatively well understood and
generally accepted.

We should stress that this O-Ne-Mg core collapse model (for the initial stellar
mass of 8.8 M) is not applicable directly to SN1987A which was 15 — 20 Mg
prior to collapse and according to the evolution theory it had a collapsing core which
consisted of iron-peak elements.

We redefine Eq.(5.103), where, instead of multiplying by the volume of the
neutrino-emitting region V, we integrate over this volume to obtain the spectral
density of the energy luminosity of a supernova core via right-handed neutrinos:
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Fig. 5.9 The radial distributions for the chemical potentials of electrons (solid line) and electron
neutrinos (dashed line) within the SN core at the moment r = 1.0 after the bounce

dL,, E3
5 =] W ln®. (5.113)

Here, taking the values defined in Eqgs. (5.98) and (5.99) and the corresponding
formulas of Sect. 4.4, we take account of their dependence on the radius R and time ¢.
A comprehensive set of parameter distributions used in our estimation includes the
profiles [56] of the density p, the temperature 7', the electron fraction Y,, the fractions
of electron neutrinos Y,,, electron anti-neutrinos Yj,, and the fractions Y, for one
kind of heavy-lepton neutrino or antineutrino (vx = vy, r, ¥y r), Which are treated
identically. The time evolution of the parameter distributions is calculated [56] within
the interval until ~ 2s after the bounce. For the sake of illustration, we present
in Figs.5.8, 5.9 and 5.10 the radial distributions within the SN core, from 0 to
20 km, at the moment ¢ = 1.0s after the bounce. The plots are presented for the
temperature [56], for the chemical potentials of electrons y, and electron neutrinos
fty, (calculated on the base of the data of Ref. [56]), and for the proton nonrelativistic
chemical potential u; = pip — m}y, defining the degeneracy of protons (calculated
on the base of the data of Ref. [56] and the effective nucleon mass m*N in plasma, see
Ref.[55], p. 152).

To analyse the influence of the right-handed neutrino emission on the SN energy
loss, we also used the time evolution of the total luminosity of all species of
left-handed neutrinos [56], presented in Fig.5.11.

Integrating Eq. (5.113) over the neutrino energy, one obtains the time evolution
of the right-handed neutrino luminosity:

o
1
Lug() = 5— / dV/dE E3T,,.(E). (5.114)
0
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Fig. 5.10 The radial distribution for the proton nonrelativistic chemical potential 11}, = p1, —m}y
within the SN core at the moment r = 1.0s after the bounce
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Fig. 5.11 The time evolution of the total luminosity of all active neutrino species, Ref. [56]

The right-handed neutrino is a novel cooling agent which would have to compete
with the energy-loss via active neutrino species in order to affect the total cooling
time scale significantly. Therefore, the observed SN 1987 A signal duration indicates
that a novel energy-loss via right-handed neutrinos is bounded by

Ly <Ly, (5.115)

and we believe this estimation to be applicable also to the considered O-Ne-Mg core
collapse model. Within the considered time interval until 2s after the bounce, one
obtains from Egs.(5.114), (5.115) the time-dependent upper bound on the combi-
nation of the effective magnetic moments of the electron, muon and tau neutrinos.
Assuming for simplicity that these effective magnetic moments are equal, one obtains
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Fig. 5.12 The time evolution of the upper bound on the neutrino magnetic moment within the time
interval until 2s after the bounce (in assumption that the effective magnetic moments of electron,
muon and tau neutrinos are equal)

the time evolution of the upper bound on some flavor-averaged neutrino magnetic
moment /i, shown in Fig.5.12, where ji12 = ji,,/(107'% up).
Asis seen from Fig. 5.12, the averaged upper bound tends to some value, providing
the limit
fy <24 x 10712 ug . (5.116)

In a general case the combined limit on the effective magnetic moments of the
electron, muon and tau neutrinos is

12
(2, +071 (2, + 12 )| <37 x 1072 g, (5.117)

where the effective magnetic moments are defined according to Eq. (5.78). This limit
is less stringent than the bound (5.112) obtained in the frame of the uniform ball
model for the SN core, but it is surely more reliable. Additionally, the upper bound
on the effective magnetic moments of muon and tau neutrinos is established.

5.4.7.2 Earlier Models of the SN Explosion

The similar procedure of evaluation was performed with using of the data of the
model [61] of the two-dimensional hydrodynamic core-collapse supernova simula-
tion for a 15 M, star. Namely, the radial distributions of parameters at the moments
t =0.2,0.4,0.6, 0.8s after the bounce in the model s/5Gio_32.a were taken from
Fig.40 of Ref. [61]. Additionally, the fraction of electron neutrinos was evaluated as
Y,, >~ (1/5) Y.. Calculating the right-handed neutrino luminosity with those para-
meters and putting the limit (5.115), where the total luminosity via active neutrino
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species L,, in that model can be taken from Fig.42 of Ref.[61], one obtains that
the upper bound on the flavor-averaged neutrino magnetic moment /i, also varies in
time as in the previous case. The time-averaged upper bound on i, corresponding
to the interval 0.4—-0.8s, is:

f <27 x 10712 g, (5.118)

to be compared with the limit (5.116).

Using the results of Ref.[62] where the thermal and chemical evolution during
the Kelvin-Helmbholtz phase of the birth of a neutron star was studied, taking the data
from Figs. 9 and 14, we have obtained the time-averaged upper bound on f,, for the
time interval 1-10s of the post-bounce evolution in the form:

fy < 1.2 x 10712 ug . (5.119)

We also used the results of Ref. [63] where the numerical simulations were per-
formed of the neutrino-driven deleptonization and cooling of newly formed, hot,
lepton-rich neutron star. Using the data presented in Figs. 3-9 on the SBH model
(of the hot star with a “small” baryonic mass), we have evaluated the time-averaged
upper bound on i, for the time interval 0.5-5 s after the bounce in the form:

fy < 1.1 x 10712 pg. (5.120)

One can summarize that the upper bound on the flavor- and time-averaged neutrino
magnetic moment at the Kelvin-Helmholtz phase of the supernova explosion occurs
to be

fy < (1.1 =2.7) x 1072 g, (5.121)

depending on the explosion model.

5.4.8 Possible Effect of the Neutrino Magnetic Moment:
Shock-Wave Revival in a Supernova Explosion

Two basic problems arise in numerical simulation of a supernova explosion
[55, 61, 64—66]. First, the mechanism of damped-shock-wave stimulation has not yet
been developed conclusively, but, without this mechanism, an explosion can hardly
occur. We recall that the damping of a shock wave is due largely to the loss of energy
spent on the dissociation of nuclei. Second, the energy deposition even in the case of
a “successful” theoretical supernova explosion proves to be substantially less than
the observed envelope kinetic energy of about ~ 10°! erg [so-called FOE (ten to the
Fifty-One Ergs) problem]. In order to describe self-consistently explosion dynamics,
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it is therefore necessary that, via some mechanism, the neutrino flux going from a
supernova central part transfer an energy on the order ~ 103! erg to the envelope.

The mechanism proposed by Dar [51] and based on the assumption that the neu-
trino magnetic moment is not overly small is one of the possible means for solving
the above problems. We note that this mechanism is operative only for Dirac but not
for Majorana neutrinos. Left-handed electron neutrinos produced abundantly in the
collapsing supernova core form a degenerate neutrino gas such that typical values
of its chemical potential fall within the range f,, ~ 150-200MeV [55]. Since the
values of [, are much higher than typical temperature values of 7' ~ 30 MeV, the
density of electron neutrinos in the supernova core exceeds substantially the densities
of neutrinos belonging to any other flavor. Part of left-handed electron neutrinos are
converted into right-handed neutrinos via magnetic-moment interaction with plasma
electrons and protons. In turn, right-handed neutrinos, which are sterile with respect
to weak interaction, escape freely from the supernova central part if the neutrino mag-
netic moment lies in the range p,, < 107! 5. Some of these neutrinos may again
transform into left-handed neutrinos owing to magnetic-moment interaction with a
magnetic field in the envelope of the supernova core. According to currently preva-
lent ideas, the magnetic-field strength there may reach high values, on the scale of the
critical value of B, = mz Je ~ 4.41 x 10'3 G, or even higher [67—69]. Newly pro-
duced left-handed neutrinos can transfer additional energy to the supernova envelope
upon undergoing absorption in the course of v,n — e~ p beta processes.

A sufficient motivation for reconsidering the Dar mechanism has appeared after
publication of the papers [41, 42] where it was shown that the flux and luminosity of
right-handed neutrinos from the supernova central part were strongly underestimated
in previous studies. In this section, we analyze the v, — vg — v double conversion
of the neutrino helicity under supernova conditions and consider the possibility of
stimulating a damped shock wave via this process.

Attypical values of the supernova-core parameters (a temperature of 7 >~ 30 MeV;
electron and electron- neutrino chemical potentials of 1., 2~ 300 MeV and ji,, >~ 160
MeV, respectively; and a volume of V >~ 4 x 10'8 cm? [55]), the integrated luminosity
of right-handed neutrinos is

2
_ 51 €18 17

The energies of right-handed neutrinos that escaped from the core are on the same
order of magnitude as the chemical potential of left-handed neutrinos captured in the
core, E, ~ 100-200 MeV.

For the sake of definiteness, we henceforth set the neutrino magnetic moment to
iy =3 x 10713 5. On one hand, this value is sufficiently small for the dynamics of
the supernova core to remain undistorted; on the other hand, it ensures the required
level of luminosity in (5.122).

If it were possible to convert the energy of right- handed neutrinos into the energy
of left-handed neutrinos, for example, via the well-known mechanism of spin oscil-
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lations, then, within the typical shock-wave-stagnation time of about a few tenths of
asecond, an additional energy of about 10°! erg would be injected into the supernova
envelope. We recall that we deal here with electron neutrinos, whose absorption in
the envelope is due to beta processes.

We consider the part of the supernova envelope between the neutrinosphere
(of radius R, ) and the shock-wave-stagnation region (of radius R;). According to
currently prevalent ideas, typical values of R, and R, change only slightly within
the stagnation time, amounting to R, ~ 20-50km and R; ~ 100-200km (see, for
example, [61]). If a rather strong magnetic field is present in this region, neutrino
spin oscillations, which, under certain conditions, may have a resonance character,
occur.

The effect of a magnetic field on a neutrino that has a magnetic moment can be
the most conveniently illustrated in terms of the equation that describes neutrino-
spin evolution in a uniform external magnetic field. With allowance for the addi-
tional energy AE I(f) that a left-handed electron neutrino acquires in a medium, see
Egs. (4.80) and (4.83), the spin-evolution equation can be represented in the form
[24, 25, 53, 70, 71]

.0 (vg - 0 By VR
- = | E , 5.123
Yo (VL) [ 0+(u,,BL AEY VL ( )
where G 4 .
(e) F P
AE; = —— — | Y, -Y, —=1, 5.124
L2 my ( et 3 3) (5.124)

Here, p/my = np is the nucleon density; Y, = n./ng = np/ng; Y,, = ny,,/ng,
with n p ,, standing for the electron, proton, and neutrino densities; and B is the
transverse component of the magnetic field with respect to the direction of neutrino
motion.

It should be explained why use is made here of expression (5.124) for the additional
energy of left-handed electron neutrinos in an unpolarized medium, even though, in
general, electrons must at least be partly polarized in a field on the scale of B,. The
following considerations prove the validity of the unpolarized-medium approxima-
tion in this case. As is well known, electron states in a magnetic field that correspond
to all Landau levels, with the exception of the ground one, are doubly degenerate in
the spin projection onto the magnetic-field direction and, hence, do not contribute
to medium polarization. In order to assess the degree of polarization, it is therefore
necessary to estimate the fraction of electrons that populate the ground Landau level
and whose spins are not compensated. Under conditions typical of the supernova-
envelope region being considered, we have p, >~ 5-10MeV (see, for example, [61]);
taking the ratio of the concentration of electrons populating the ground Landau
level, ng >~ eB e/ (27r2) (see, for example, [72]), to the total electron concentration,
n~ ,ug /(37%), we estimate the degree of medium polarization at


http://dx.doi.org/10.1007/978-3-642-36226-2_4
http://dx.doi.org/10.1007/978-3-642-36226-2_4

166 5 Electromagnetic Interactions in External Active Media

B B
P~ <102 (5.125)
n He B,
Thus, the use of the unpolarized-medium approximation is legitimate at magnetic-
field strengths around B ~ B,, which are used here. A more rigorous condition of
weak plasma magnetization under which the influence of the magnetic field on the
polarization of the medium can be neglected is formulated as
3 2 2/3
B« (37" ne)

Ne )2/3
e

~06x10'°G (—
x 1033 cm—3

(5.126)

Expression (5.124) for the additional energy AE(Le) of left-handed electron neu-
trinos deserves a more detailed analysis. It is noteworthy that the discussed energy
can appear to be exactly zero in the supernova-envelope region of our interest, and
this is in turn the condition of the vg — v resonance transition. Since the neutrino
density is rather low in the supernova envelope, the quantity Y, in expression (5.124)
can be disregarded, in which case the resonance condition is written as Y, = 1/3.
We note that, in the supernova envelope, Y, takes values characteristic of collaps-
ing matter, Y, ~ 0.4-0.5. However, a shock wave causing the dissociation of heavy
nuclei renders matter more transparent to neutrinos, thus leading to a so-called short
neutrino burst and, hence, to a considerable deleptonization of matter in this region.
According to existing estimates, the radial distribution of Y, develops a characteristic
dip, where Y, may decrease to values of about 0.1 (see, for example, [61, 65]). Thus,
a point where Y, acquires a value of 1/3 does inevitably exist. It is noteworthy that
there is only one such point where dY, /dr > O (see [61, 65]).

We emphasize that expression (5.124) refers only to the electron neutrino, in
which case the amplitude for its scattering on medium electrons features channels of
exchange of both a neutral Z boson and a charged W boson. For the muon neutrino
and for the tau neutrino, which are scattered on electrons only via the exchange of a
neutral Z boson, the additional energy has the form (4.84), or:

GF P 1_y,. (5.127)

V2 my

that is, it does not vanish anywhere, so that the above resonance transition is
impossible.

A qualitative character of the dependence Y, (r) according to [61] is depicted in
Fig.5.13.

We note that the condition Y, = 1/3 is necessary for the resonance conversion
of right-handed neutrinos into left-handed ones, but it is not sufficient. In addition,
fulfillment of the so-called adiabaticity condition is required. Its meaning is the
following: upon moving off the resonance point by a distance of about one oscillation
wavelength, the diagonal element AE (Le) in Eq. (5.123) at least must not exceed the
off-diagonal element p,, B . This leads to the condition [52]

AEPT = -
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e\ 1/2 12
dAE 3G p dY,
1Bl > (—er ) ~ (_ﬁ _mpN —d;) . (5.128)

In the region being considered, typical parameter values are the following (see

[61, 65]):
dav,

dr

~108%em™!, p~10"0gem™3. (5.129)

For the magnetic-field strength ensuring fulfillment of the resonance condition, we

obtain
1013 12
Bl >26x103G s P
Ly 1019g cm—3

dy, 172
X (d_e x 108 cm) . (5.130)

r

Thus, our analysis has revealed that, if the neutrino has a magnetic moment in the
range
10783 ug < p < 10712 g (5.131)

and if a magnetic field of strength about 10'3 G exists in the region R, < R < R;,
the mechanism of the double conversion of the neutrino helicity, v;, — vgp — v,
according to Dar’s scenario is operative. Atenergies estimated at £;,, ~ 100-200MeV,
the neutrino mean free path with respect to beta processes is

1 150 MeV \ >
A~ 800m ) (5.132)
1—7, E,

Fig. 5.13 Qualitative charac-

ter of the radial distribution

of Y, (r) approximately after
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burst (see, for example [61]).
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Therefore, the additional energy
AE ~ Ly, At ~ 10°" erg (5.133)

is injected into the supernova-envelope region within the time of shock-wave
stagnation, At ~ 0.2-0.4s. This solves the FOE problem.

5.4.9 Possible Effect of the Neutrino Magnetic Moment:
Neutrino Pulsar

If the neutrino magnetic moment is less than the values of the range (5.131), the
conversion of sterile neutrinos produced in the supernova core into active ones
through the scattering mechanism of the Dirac neutrino magnetic moment with the
microscopic electromagnetic field of a virtual plasmon (5.73), did not influence
the supernova explosion dynamics. In this case, the process of the neutrino helic-
ity flip in a strong magnetic field of the supernova envelope can lead to interesting
observational consequences when the expected neutrino signal from an imminent
supernova explosion is studied in detail [73, 74].

According to existing views, during the explosion of a Galactic supernova at
a distance up to 10 kpc, the expected number of neutrino events in the Super-
Kamiokande detector will be ~10*. This will allow the time evolution of the neutrino
flux to be recorded with a good accuracy.

In the presence of a sufficiently strong magnetic field in the supernova envelope,
not only the above-mentioned conversion of right-handed neutrinos into left-handed
ones, vg — v [51, 52], but also the conversion of active electron neutrinos and
antineutrinos of the main neutrino flux into a form sterile with respect to weak
interactions, vy — Vg, VR — I/, is possible.

Numerical analysis of Eq.(5.123) shows that after its passage through the
resonance region (¥, = 1/3), the flux of left-handed neutrinos is attenuated as a
result of the above conversion by the factor Wy, which has the meaning of the
survival probability of left-handed neutrinos, v, — VL, Or, in other words, the
transparency. Figure5.14 shows the characteristic variation in Wy when passing
through the resonance point (placed here at the coordinate origin) for various mag-
netic field strengths. We see that the supernova envelope in the presence of a suf-
ficiently strong magnetic field is virtually opaque to active electron neutrinos and
antineutrinos, which can cause the expected neutrino signal from the supernova to
be attenuated.

A more detailed analysis of the numerical solution of Eq.(5.123) allows us to
establish a relationship between the magnetic field strength and parameters of the
medium in the supernova envelope, on the one hand, and the survival probability of
active neutrinos Wz, on the other hand. Using typical scales of parameters in the
region under consideration [61, 65]
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Fig. 5.14 Pattern of variations in Wy, the survival probability of left-handed neutrinos, v, —
VeL, (transparency), with distance x (in arbitrary units) when passing through the resonance point
placed at the coordinate origin for several magnetic field strengths: B = 0.2 B, (a), B = 0.5 B,
(b), B = B, (c). To be specific, the neutrino magnetic moment is assumed to be 10-13 1B, the
density is 100 g cm™3, and the gradient of the electron fraction is d¥, /dr ~ 10~7 cm™!

ay,
d—e ~107em™, p~10°gem3, (5.134)
;

we find an approximation formula,

o ()
x (m]opg(%)l/z (%(t) x 107 cm)l/2. (5.135)
Here, the factor o
PV =088 C LT (5.136)

characterizes the degree of adiabaticity of the conversion process. The literal adi-
abaticity corresponds to the limit f — oo when Wy — 0; in this case, the
left-handed neutrinos are completely converted into right-handed ones, Wy r =
1—-—Wrrp) — 1.

The conservative value of 1013 pp introduced in Eq. (5.135) as the scale for the
neutrino magnetic moment was chosen in order not to distort the supernova explosion
dynamics. Thus, we can use the parameters of the explosion model without allowance
for the influence of the neutrino magnetic moment.
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Our analysis based on detailed data on the radial distributions and time evolution of
physical properties in a supernova core obtained in the specific model of a successful
explosion [56] showed that the gradient of the electron fraction dY, /dr in Eq. (5.135)
grows fairly rapidly with time at point Y, = 1/3 and, thus, the envelope becomes
more transparent to active neutrinos at a fixed magnetic field strength. This means
that the neutrino signal from the supernova can be attenuated within some limited
time interval after its explosion.

Thus, if the Dirac neutrino had a magnetic moment and if the magnetic field
in the supernova envelope were sufficiently strong, then the characteristic effect of
a significant attenuation of the initial neutrino signal intensity peak predicted by
supernova models could take place. For example, there would be a tenfold reduction
in the neutrino signal (W, = 0.1) for typical parameters of the medium at a magnetic
field strength

10—13
B, =49 x 103G (—“B)
11y

ol — P 2 (are % 107 cm 1/2. (5.137)
1010 g cm—3 dr

Note that the possible strengths of a magnetic field generated in a supernova envelope
are believed to reach 10'¢ G [67, 68, 75-78].

Note another possible interesting manifestation of the neutrino magnetic moment.
If a magnetar with a poloidal magnetic field of 104 — 10'> G is formed during a
supernova explosion, then, given that Eqs. (5.123) and (5.135) contain the transverse
magnetic field component B , the neutrinos can avoid the conversion of their helicity
only in a narrow region near the poles. When the nascent magnetar rotates around

dN/dt

t

Fig. 5.15 Illustration of the pulsating behavior of the neutrino signal from a nascent magnetar
rotating around an axis that does not coincide with its magnetic moment, a neutrino pulsar
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an axis that does not coincide with its magnetic moment and if we are lucky with the
orientation of the rotation axis, the neutrino signal will have a pulsating behavior, as
is illustrated in Fig.5.15, i.e., a kind of a neutrino pulsar can be observed.

It should be noted that, strictly speaking, the described influence of a strong
magnetic field when the neutrino has a magnetic moment on the time evolution of
the neutrino signal is incomplete without allowance for the effects of neutrino flavor
oscillations (see, e.g., [79]). The combined action of these effects on the neutrino
flux requires a special study.
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Chapter 6
Neutrino-Electron Interactions in External

Active Media

As it was mentioned above, an intense electromagnetic field makes possible the
processes which are forbidden in a vacuum such as the neutrino decay into the W+
boson and a charged lepton, v — £~ W™ (£ = e, u, ) and the production of a lepton
pair by neutrino, v — v£~¢*. In this chapter, we present in details the technique of
calculations of the neutrino-electron processes in external active media. We consider
mainly the two processes. The first one, which is possible in an intense external
electromagnetic field and in the case of sufficiently high neutrino energy, is the
decay v — e~ W™, The second process is the electron—positron pair production by
aneutrino v — v+ e~ +eT. We present the procedure of calculation of the process
probability in the case of a strong magnetic field, when an electron and a positron
are created in the ground Landau level, and in the crossed field limit. We calculate
also the four-vector of the mean values of the neutrino energy and momentum losses
due to the process ¥ — v + e~ + e, which could be essential in astrophysical
applications. The process of the electron—positron pair production by neutrino in a
strong magnetic field, if one more component of the external active medium which
is dense plasma is taken into account, should be suppressed by the Fermi—Dirac
statistical factors. In this chapter, we also consider the electron—positron plasma
influence on the process v — v + e~ + e™, and take into consideration the crossed
neutrino-electron processes. We also try to apply the results obtained to the well-
known problem of large kick velocities of pulsars born in supernova explosions.

6.1 The v — e~ W™ Process in a Strong Magnetic Field

The probability of the neutrino decay v — e~ W™ in an external electromagnetic
field is one of the most interesting results that can be extracted from the neutrino
self-energy operator. This probability can be expressed in terms of the imaginary
part of the amplitude (4.63) with the neutrino self-energy operator (4.132).
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For simplicity, hereafter we neglect the neutrino mass m,,, taking the density
matrix of the left-handed neutrino as p(p) = 71 (p7y). One obtains:

w — e WhH) = %Im./\/l(ye — )
1 pi _
=z ImTr [X(p)yL (pV)] = -2 ¥ Im By, . (6.1)

An analysis of the neutrino decay ¥ — e~ W in an external field is of interest
only at ultrahigh neutrino energies.

In the papers [1-4], the neutrino decay width in an external electromagnetic
field was calculated in the crossed field approximation, in which case the width
is expressed in terms of the dynamical field parameter y and the lepton mass para-
meter \:

FF 1/2 2
= M’ A\ = mze . (6.2)
my my

In the frame where the field is pure magnetic one, the dynamical field parameter

takes the form:

eB
=21 6.3)
My

The decay width is expressed via the parameters (6.2) as follows, see Egs. (4.203)
and (5.53):

2G 4 2/3
(o o> ey = Y2GEmy X
127 E
1
dvv2(1+v)2+v)+ A1 —v)2 —v)] dAi(u)
X — , (6.4)
[v(1l —v)]4/3 du
0
where Ai(u) is the Airy function (5.28) with the argument:
Al —
v+ A( v) 6.5)

T v —wpA

The derivative of the Airy function is expressed via the modified Bessel function

K, (x)
B dAi(w)  u z 3/2)
du  3r Ko (3 ! . (00

Taking in Eq.(6.4) the limit x, A < 1, one obtains the result which can be written
in terms of the only modified dynamical field parameter
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e= X _<BpL
VA mem%V

6.7)

The range for the ¢ parameter appears to be rather large, 0 < £ < 1/ VA, while
1/¥/X > 1. Taking account of the exponential decrease of the modified Bessel
function K, (x) at large argument value, one can see that the region of small v gives
the main contribution into the integral Eq.(6.4) at small x. Changing the variable
v = A x, one can transform the decay width to the form

V2Gr (eB p1)*

— + _
wyv—e WhH = o m%/v £ F(), (6.8)
where -
- L+ 2 (1+x)3%2
F(f) = ﬁﬂfz O/dx X K2/3 (§ f—x) . (69)

We remind that these formulas are valid in the approximation ¢ < my /m,. The
range being very wide for the electron, ¢ <« 1.6 x 10°, is not too wide for the 7
lepton, £ « 45.

The integration in Eq. (6.9) can be performed exactly to give

F(¢) = (1 + \/?g)exp(—\/?g) . (6.10)

The formulas (6.8)—(6.10) should be compared with the results of Refs. [1, 2, 4]. It
should be mentioned that the decay width w defined in Refs. [1, 3] is the same, in the
natural system of units, than the absorption coefficient « [2] and the damping rate of
the neutrino v [4]. One can see that the absorption coefficient o presented in Eq. (25)
of Ref.[2] looks very similar to our Egs.(6.8) and (6.10). However, the angular
dependence in our formulas is quite different: instead of the factor pf_ JE = Esin* 6
standing in our Eq. (6.8), there is the factor p; = E sin 6 in Eq.(25) of Ref. [2].

On the other hand, one can see that our result (6.8)—(6.10) surely contradicts the
Eq. (58) of Ref.[4], where an attempt was made of reinvestigation of the process
v — e~ W in the crossed field approximation. The difference is the most essential
at small values of ¢, where the result of Ref. [4] appears to be strongly underestimated.

In the earlier paper by Borisov et al. [1] the calculations of the process v — e~ W™
width were performed in the two limiting cases of the small and large values of the
parameter Y. In the limit x> < \ their result can be presented in the form

2G 2
o Y20r me eBsinfexp( —v/3 W) 6.11)
3 eB py

and can be reproduced from the general formulas (6.8)—(6.10).
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On the other hand, in the limit xy > 1 (£ > 1/ /) the result of [1] can be written

as
V3 GF
w =
\/57‘(

and can be reproduced from our more general formula (6.4), or by an easier way
from Eqgs. (6.1) and (4.220).

A problem of the decay ¥ — e~ W™ has a physical meaning only in the fields of
the pulsar type, where the field strength is of order of the critical value ~10'3 G. The
above formulas for the probability except for Eq. (6.12) are applicable for relatively
weak fields only, B <« 10'3 G. It is interesting to consider the process v — e~ W™
in strong magnetic fields of magnetars, of the order of ~10'4 — 105 G, where the
crossed-field approximation is inapplicable.

Thus, we will use the following hierarchy of the physical parameters: pi >
m%v > eB > mZ A general expression for the process v — ¢~ W probability can
be obtained by the substitution of Eq.(4.137) into Eq. (6.1) with taking account of
Egs. (3.10)—(3.14). After calculations which are not difficult but rather cumbersome,
the process width can be presented in the form

mwy eBsinf, (6.12)

Gr (eB)*? p,
/27 E

where @ (n) is the function depending on the one parameter 7 only:

wy — e WhH =

D), (6.13)

4 eBp?
n=—=. (6.14)

My,
o0

1 [ dy (tanhy)'/? (sinh y)?> — y tanh y

QD= | 5 )2 — tanh 1372
nJ y'/* (sinhy) (y —tanh y)
tanh
X exp [—&] . (6.15)
n(y — tanh y)

We stress that we have obtained this formula neglecting the electron mass as the
smallest parameter in the hierarchy used.

The formulas (6.13), (6.15) are valid in a wide region of the parameter 7 values,
0<nk m%,v /(eB). The function @ (n) is essentially simplified at large and small
values of the argument.

In the limit  >> 1, one obtains:

1
D> 1):5\/71'(77—0.3), (6.16)

and the error is less than 1 % for > 10.
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The formulas (6.13), (6.16) reproduce the probability (6.8), (6.10), where the limit
&€ > 1 should be taken, and F (£ > 1) >~ 1.
In the other limit 1 < 1 one obtains

1 1
Dy < 1)~ exp (——) (1——17+§772) 6.17)
n 2 4

and the error is less than 1 % for n < 0.5.

The formulas obtained allow to establish an upper limit on the energy spectrum
of neutrinos propagating in a strong magnetic field. Let us take the typical size R of
the region with the strong magnetic field as R ~ 10km. If the neutrino mean free
path A = 1/w is much less than the field size, A < R, all the neutrinos are decaying
inside such the field. For A = 1km « R, we can find the cutoff energies E. for the
neutrino spectrum, depending on the magnetic field strength, as follows:

(i) for relatively weak field, B ~ 0.1B, ~ 4 x 10'2 G, the neutrino mean free path
can be obtained from Eq. (6.11):

A\ 4.9m 219 6.18)
~ (8 . .
By sinf P Bo.1 Ei5 sinf

where By, = B/(0.1B,), E;s = E/(10eV), and the cutoff energy corre-
sponding to A = lkm, at By = 1,0 = w/2, is

E.~0.4 x 10"7eV; (6.19)

(i1) for relatively strong field, B >~ 10B, >~ 4 x 104 G, the neutrino mean free path
can be obtained from Egs. (6.13), (6.17):

\ 3.2cm 4.0 6.20)
~ exp - , .
B%z sin 6 Bio E35 sin® 0

where Bijgp = B/(10B,), and the cutoff energy corresponding to A = 1km, at
Bio=1,0=m/2,is

E.~ 0.6 x 105eV. 6.21)

The results obtained show an essential influence of the intense magnetic field on
the process v — e~ W™ width. Despite the exponential character of suppression
of the width in a strong field, Egs.(6.13), (6.17), as well as in a weak field,
Eq.(6.11), the decay width in a strong field is greater in orders of magnitude
than the one in a weak field, for the same neutrino energy.
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6.2 The v — ve~e™ Process in a Strong Magnetic Field

The process of the electron—positron pair production by a neutrino
v(P) = v(P") + e (p) + et (p)

for the relatively small momentum transfers % < m%v , where my is the W
boson mass, is described by the effective local Lagrangian of the neutrino-electron
interaction (4.66), when the propagators of intermediate W and Z bosons are shrunk
into a point, as is shown in Fig.4.8.

6.2.1 Calculation of the Differential Probability Based
on the Solutions of the Dirac Equation

The total amplitude for neutrino-electron processes is obtained directly from the
Lagrangian (4.66) where known solutions of the Dirac equation in a magnetic
field (2.1) must be used. As was already mentioned in Chap. 2, in a strong mag-
netic field, eB > EZ, the electron and the positron can be produced only in the
states that correspond to the ground Landau level (2.37).

Using the Lagrangian (4.66) and the wave functions (2.37), we write the S matrix
element of the process v — ve~e* in the following form

_, Gy @m78+ < —q0) 0py + Py —4y) 3(p: + P — q)
V2 2EV2E'V2e(e + mo)LyL, 2/ (€ —my)L, L,
_ 2 s _p — N
« o1 /4¢B—iq:(py py)/263[u(p”) J(Cy — Ca~s) u(—pﬁ)], (6.22)

S

where ¢ = P — P’ = p + p’ is the change of the four-vector of the neutrino
momentum equal to the four-momentum of the e~e™ pair, € and &’ are the electron
and positron energies, ¢ is the projection of the vector q on the plane perpendicular
to the vector B = (0,0, B), g1 = ¢} + g}, and jo = (P")ya(l — v5)v(P)
is the Fourier transform of the current of the left-handed neutrinos. Note that in
this approximation where the field strength is the largest physical parameter of the
problem, the exponential factor e=91/4B in the amplitude (6.22) slightly differs from
unity and may be omitted. Direct calculations taking into account the conservation

laws in (6.22) give
Me /qﬁ — 4m? 4

[u(p)) j(Cy — CA’YS)M(_Pﬁ)] =75 m [Cv(jeq) + Caljepg)l.
qj ‘

(6.23)


http://dx.doi.org/10.1007/978-3-642-36226-2_4
http://dx.doi.org/10.1007/978-3-642-36226-2_4
http://dx.doi.org/10.1007/978-3-642-36226-2_4
http://dx.doi.org/10.1007/978-3-642-36226-2_2
http://dx.doi.org/10.1007/978-3-642-36226-2_2
http://dx.doi.org/10.1007/978-3-642-36226-2_2
http://dx.doi.org/10.1007/978-3-642-36226-2_4
http://dx.doi.org/10.1007/978-3-642-36226-2_2

6.2 The v — ve~e™ Process in a Strong Magnetic Field 181

The further calculations will be performed for the case when the electron mass
is the smallest parameter of the problem, i.e. for the following hierarchy: eB >
E? > m% In this case the expression (6.23) and thus the total amplitude (6.22)
contain the suppression associated with the relative smallness of the electron mass.
This suppression is not random and reflects the angular momentum conservation
law. For example, in the crossed process viv — e~ e™ being described by the same
amplitude (6.22), the total spin of a neutrino—antineutrino pair in the center-of-inertia
system is one, whereas the total spin of an electron—positron pair in the ground Landau
level is zero. Consequently, the amplitude of the process would be zero for massless
particles and contain the suppression in the relativistic limit under study. However, an
analysis shows that when integration is performed over the phase volume, the main

contribution arises from the kinematic region where /qﬁ ~ m,, and this suppression

disappears.
For the probability of the process per unit time we obtain

w Lo[&ry 1S dn,- d (6.24)
= — n,— dn,+, .
T ) @3 e et

where 7 is the total interaction time, and the elements of the phase volume are
introduced for the electron and the positron occupying the ground Landau level:

_dpLyL; _d*p'LyL;

dn,- , =
e ()2 et T T )2

(6.25)

Substituting (6.22) into (6.24) and integrating using ¢ functions with respect to d”p’
[where, as is usually the case 6°(0) = T'L yLz/ (27)3], we obtain for the total prob-
ability per unit time

G2 1 d3p’ dp,d
W=t —/ PyCPz d(e+¢< —qo0)
32Q2m)*E L, E' e(e+me)e' (e —m,)
x |ii(py) j (Cy — Cavs) u(—pI%, (6.26)

where we need to substitute ¢’ = /m2 + (¢. — p.)? and p, = g. — p.. The inte-
grand in (6.26) does not depend on py, and the integration should be performed

in accordance with (5.13). Upon integrating in (6.26) with respect to the electron
momentum we obtain the probability of the v — ve~e™ process in the form of the
following integral over the final neutrino momentum:

GgeBm; [ d*P' 5. ICv(j$q) + Calid@a)
W = E ¢ / ® _ 2 4 2 .
32m4E E’ (G0 gz +4mg) (qﬁ)3/2(‘1ﬁ — 4m2)1/2

(6.27)
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6.2.2 Calculation Based on the Imaginary Part of the Loop
Amplitude

As for the photon decay, we present here another method of calculation of the
probability (6.27) based on the unitarity relation. The crossed process for the pair
production by a neutrino v — ve~e™ is the reaction of the conversion of the
neutrino—antineutrino pair into the electron—positron pair v — e~e™. It is well
known that the cross section for this reaction is related to the imaginary part of the
transition v — v via the electron loop (see Fig. 6.1) by the unitarity condition

1
o(wp — e et) = — Im M(r — vo), (6.28)
q

where ¢ is the four-momentum of the neutrino—antineutrino pair. It can easily be
seen that the relation (6.28) makes it possible to find the probability of the process
v — ve~e™T, if we integrate this relation over the phase volume of the final neutrino.
We have

( “eMHE ! /d3p/1 M(vv V) (6.29)
v— v = —— [ — ImM@wv — vi). .
v ¢ ¢ 1673 E’

Remember that P = (E, P) and P'“ = (E’, P') are the four-momenta of the initial
and final neutrinos, andg = P — P’.

The magnetic-field-induced part of the process amplitude, Fig. 6.1, can be easily
constructed from the generalized amplitude (4.24) of the vector—vector type (4.31),
the axial-vector—axial-vector type (4.32), and the vector—axial-vector type (4.33),
with the corresponding substitutions of the generalized currents:

GF

. . . Gr
JVa = ﬁCV]aa JAa =™ —=

Caja, 6.30
7 AJ (6.30)

where j,, is the neutrino current. It should be noted also that (jg) = 0 and 3 = e¢B.
We obtain

v v

Fig. 6.1 The Feynman diagram for the process v — vv. The double line corresponds to the exact
propagator of an electron in a magnetic field
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Gt 2o, 2 uM) laeil?
AMjj = @I (CVYVV + CAYAA) e
1
2 v(2) s o\ lg@il? 2u3) 5 oo\ 4Claveil?
+(ciriy +carid) > +(ciriy +card)) S
I L7

¢’ (2)) Re[(qgéj)(qgogoj*)]]. 63D

+2CyCypeB (Y‘(/lf)‘-i-—zYVA 3
q1 q

Turning to the strong field limit, as was done in Sect.5.1.2, one can show that
only the following functions have the imaginary parts, of all the functions Y included
in (6.31)

2 2
) q 3) an o, 4 (2)
ImYyy = = ImY,, =eBIm| Yy, + = Yy,
q71 q1

4me Bm?
= (g} —4mD). (6.32)

Vi ap —4m?)

Substituting (6.31) into (6.29) and taking account of (6.32), we immediately obtain
the expression (6.27) for the probability of the process v — ve e™.

6.2.3 The Total Process Probability

It is convenient to perform the further integration over the final neutrino momentum,
without loss of generality, not in the arbitrary frame (referred to as K), but in the
special frame K, where the initial neutrino momentum is perpendicular to the mag-
netic field direction, P, = 0. In the case of a pure magnetic field we can then return
from the frame K to K by the Lorentz transformation along the field direction (we
recall that the field is invariant with respect to this transformation). Really, the value
EW defined by (6.27) is seen to contain the invariants only, including the sign of the
©® function argument.

It is worthwhile to introduce in (6.27) the dimensionless cylindrical coordinates
in the space of the final neutrino momentum vector P’,

p=/P2+P2/EL, tan = P}/P, (= PlJE].

Here, E | is the initial neutrino energy in the K¢ frame, connected with its energy E
in the arbitrary frame K by the relation £ = FE sin 6, where 6 is the angle between
the initial neutrino momentum and the field direction in the K frame.

Representing the expression (6.27) in the form of the integral over the p, ¢ and ¢
variables one obtains:
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G2m2eBE2 7 do o 2
EW = F L/ _/dppefs(172pcos®+p )/2
0 0

Cm

3

d¢
oAV a2+ P+ )
x [(cé + cﬁ)[(l + WP+ - 2&] —2CyCa(l = p*)¢
—(Cy = CR p(1 =2V + % + p*) cos ¢], (6.33)

where

\/1 4mg \/1 A2
")/: _—— = — .
aj 1—=2yp? + ¢+ p?

2m 1 2
ELe, szi\/(l—i-pz—/\z) —4p2

A=

Note that the integrand in (6.33) has an enhancement that completely compensates
for the suppression by the smallness of the electron mass. The main contribution
then comes from the region near the upper limit of the integral over p corresponding

to the relation /qﬁ ~ M.

The term in (6.33) with the Cy C4 product is caused by the interference of the
vector and axial-vector electron currents. It determines the asymmetry of the electron
emission with respect to the magnetic field, and obviously this term does not con-
tribute to the probability. However, it could be important in calculating the asymmetry
of the averaged neutrino momentum loss, see Sect.6.4.1.

Neutrino energies in the region E > m, are typical for the above-mentioned
astrophysical processes. It should be noted that expressions (6.27) and (6.33), which
were obtained for the ground Landau level, have the physical meaning of the total
probability of the process only for eB > E2/2, in which case the contribution of
other Landau levels is completely suppressed. For the sake of completeness, we nev-
ertheless present here the asymptotic expressions for both strong (eB > mz) and
relatively weak (eB < E?) fields in order to estimate below the relative contribu-
tion of the ground Landau level to the probability of the process. The cumbersome
expression (6.33) is then replaced by simple formulas whose applicability ranges
partially overlap.

(i) ForeB > mg, we have

GE(CE +C)

W=
1673

eBE’*sin* 0 fi(e), (6.34)
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where

1
2
fie) =4 / dpp(l = ) eI+ [y ep)

7
- —c 4+, (6.35)

€= Ei/ eB, and Iy(x) is the modified Bessel function of the zeroth order. For
eB > Ei, the formula (6.34) takes the simple form

_ GAC+CY)

e eBE?sin* 0. (6.36)
T

w
In this region, the result determines precisely the total probability of the process.
It can be seen that the probability grows with neutrino energy in proportion to
E3, but it will be shown below that, at higher neutrino energies, higher Landau
levels come into play. As aresult, this type of behavior changes to a linear growth,
which persists up to energies corresponding to the boundary of the applicability
range of the effective local Lagrangian (4.66).
In the case of relatively weak fields (mg <K eB K Ei), it follows from (6.34)
that the contribution of the ground Landau level is given by

3 G(C} +C%)

Sia - (eB)? sind. (6.37)

(i1) ForeB < E 2 the general expression (6.33) yields

212G2m2 (e B)3? ®° I
W= anz(e ) |:(C\2/ + C,%\)/du we 2e/m E(u—)
™ u
1
o0
d 21
e / 2 K(”—)] sinf, (6.38)
u u
1

where n = eB/ mg = B/B, is the field intensity parameter and K(k) and E(k)
are the complete elliptic integrals of the first and second type, respectively [5].
It should be noted that the applicability ranges of formulas (6.34) and (6.38)
partially overlap, and the region of overlap is mg <L eB K Ei Indeed, if we
go over to the extreme case of  >> 1 in (6.38), formula (6.37) is recovered, as
might have been expected. In weak fields, e B < m%, the result is exponentially
small, as is usually the case; specifically, we have

GiCh
W=3 F) 55 (eB)2 e sinf. (6.39)
us
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6.3 The v — ve~e™ Process in a Crossed Field

6.3.1 A Historical Overview

Theoretical study of the process of the electron—positron pair production by a neu-
trino in the crossed field limit has a rather long history [6—14]. The correct type of
dependence of the probability on the dynamical parameter :

, €e*(PFFP)
X =——F—

6
ne

in the leading log approximation, namely, ~x? In , was found in the paper [6], where
the numerical coefficient was incorrect, however. In succeeding papers, attempts were
made to adjust this coefficient and to find the next postlogarithm terms, which could
appear quite essential when In x is not very large.

According to the definition of the problem in the crossed field approximation, one
should consider the ultrarelativistic neutrino only, which exists as the left-handed
one due to the chiral type of its interaction in the frame of the Standard Model,
even if the neutrino mass is nonzero. This remains true if we admit the existence
of exotic properties of the neutrino, which could lead in certain physical conditions
to the depolarizing effects, which were not observed yet. Lack of understanding
that unpolarized ultrarelativistic neutrino fluxes do not exist in Nature, often caused
erroneous extra factors of 1/2 in formulas for the process probabilities with a neutrino
in the initial state because of the non-physical averaging on its polarizations (see,
e.g., [12, 15]).

There are significant differences in the results for the probability of the process
v — ve~e™ in the crossed field, obtained in the listed papers. In Ref. [12], dedicated
to the study of the decay of a massive neutrino v; — I/je_e+ (m; > mj+2m,) in
an external field, the different formulas for the probability of the process were also
compared, and a conclusion on the mutual agreement of the results was made. In our
opinion, such an agreement is absent.

Indeed, the probability of the process in the limit y >> 1 can be presented as
follows:

1
W — veeh) = KW, X2 (lnx —3 In3 —~g + A) , (6.40)
where

W — G (CL +CHym?
0= 2103E :

(6.41)

ve = 0.577... is the Euler constant, E is the energy of the initial neutrino. The
constants K and A entering the expression (6.40), which were obtained by different
authors are given in Table6.1. It should be noted that in Refs. [6, 12], calculations
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Table 6.1 The constants K and A of the expression (6.40), obtained in different studies
Authors K A
29
10247 389 9 Cy-C?
7 Ly A

Borisov e a. (1983) [7] 1 —2In2 — ET + 123 7(:%/ n Ci

Choban and Ivanov (1969) [6]

9 FE
Knizhnikov e a. (1984) [8] e — _
0 me 5
Boris .(1993) [9 — et
orisov e a. ( ) [9] 5 +4
29
Our result (1997) [10] 1 51
. . 1 29
Borisov and Zamorin (1999) [12] - -
2 24

were performed with taking account of the neutrino-electron interaction through the
W boson only. For comparison of the result (6.40) with these studies, one should put
in Eq. (6.40), respectively, Cy = C4 = 1 [6] and Cy = Cy4 = |U,;U3| [12]. The
loss of the factor m,/E in formulas of [8] for the probability is not a numerical but
a physical errors, since it leads to a loss of relativistic invariance of the value E W.

As it was already noted, the formula (6.40) for the probability describes rather
special case of In y > 1. There exist a number of physical tasks where the situation is
realized when the dynamical parameter takes moderately high values, so that x > 1,
but Iny ~ 1. In this case, the crossed field approximation is applicable, but the
above condition In x > 1 is not satisfied, so that the formula (6.40) is not enough.
For example, one would wish to consider the next terms in the expansion in inverse
powers of the large parameter x. On the other hand, the formulas for the probability
for arbitrary values of the y parameter presented in some of the listed papers, have a
very cumbersome form of multiple integrals, and are inconvenient for the analysis.

The final point in the analysis of the process ¥ — ve~e™ in the crossed field
approximation was put, as we believe, in our papers [13, 14]. Here we present the
calculation in some detail.

6.3.2 Calculation of the Differential Probability Based
on the Imaginary Part of the Loop Amplitude

Because of differences in the results for the probability of the process v — ve~e™

in the crossed field, see Table 6.1, a reliable analysis was necessary. For this sake,
we performed the calculation of the differential probability of the process using the
two different methods. The first one was based on the exact solutions of the Dirac
equation in the crossed field (2.40). In the second method, the imaginary part of the
loop amplitude of the transition v2 — e~"et — v, see Fig.6.1, was used. The
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calculation based on the solutions of the Dirac equation is similar in many details to
the one performed in Sect.5.2.1 for the photon decay v — e~ e™ in a crossed field.
We do not present here this analysis and refer the reader to Sect. 5.6.1 of our previous
book [16]. In this section, we focus on exploiting the loop amplitude which allows
to find the probability via the unitarity relation.

Note that the results for the process v — ve~e™ are trivially generalized to other
neutrino-lepton processes. For example, the probability of the process v, — vee~e™
with replacing m, — m, and the corresponding change of the constants Cy, Ca
gives the probability of the process v, — v, u~ pu', etc.

As in Sect.6.2.2, we use the relation (6.29) where the field-induced amplitude is
constructed from the amplitudes of the vector—yvector type (4.35), the axial-vector—
axial-vector type (4.38), and the vector—axial-vector type (4.39), with the corre-
sponding substitutions of the generalized currents (6.30). Similarly to Eq. (6.31) we
obtain:
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where the functions Y for the crossed field from Eqgs. (4.35), (4.38), and (4.39) should
be substituted. We remind that the imaginary part of the Hardy—Stokes function is
expressed via the Airy function, Im f(z) = 7 Ai(z).

The resulting probability of the process takes the form of the following integral
over the final neutrino momentum
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where the invariants are introduced that are constructed of the neutrino current and
the field tensor:

. E(jFFj*) = e?(qF j)(qF j*)

C ek
io=(jJj"), 1= P p; ,
3Re[(gF j)(qFFj*
PR el(q 1)8(q J )], (6.44)
me
Ai(U) is the Airy function (5.28) while Bi(U) is the integral:
o0
Bi(U) =/dy Ai(y), (6.45)
U

and the argument of the Airy function is

4 23 q>(1 — u?)
U:(xq<1—u2>) (1_ 4m? ) (040

q = P — P’ is the four-momentum lost by a neutrino. Hereafter, we denote the
dynamical parameter constructed of the initial neutrino momentum P as Y, and the
dynamical parameter constructed of the ¢ momentum as x:

2 172 2 1/2
‘= (e (PFFP)) 7 B (e (qFFq)) ' (6.47)

6 Xq = 6
me me

6.3.3 The Total Process Probability

To integrate the expression (6.43) with respect to the final neutrino momentum, let us
introduce new variables s, &, and ¢, which are the relativistic invariants, as follows

L q> c— |@FFg)
" [4€2(PFFP)|V/3’ "\ (PFFP)’

(PFP)

cos p = (6.48)

\/(PFP/)2 + (PFP’)2.

In the frame where the initial neutrino momentum P is perpendicular to the mag-
netic field vector B, the angle ¢ has a meaning of the azimuthal angle in the plane
perpendicular to the vector P, between the magnetic field and the projection of the
vector P’ on this plane. With these variables, the invariants (6.44) take the form
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The integral over the final neutrino momentum can be written as
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As was already mentioned, the interference term in (6.43), which is proportional to
the product Cy C 4, does not contribute to the probability, but it could be important
in calculating the averaged neutrino momentum loss.

Upon integrating over ¢ the expression (6.43) takes the form

(6.50)
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Performing integration over the variable x, one obtains
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Finally, performing one more cumbersome integration, we present the result for
the probability in a form of the single integral containing the Airy function:
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In the case y < 1, one obtains from Eq. (6.53) the formula for the probability which
demonstrates the well-known exponential suppression, in agreement with Ref. [9]:
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In the case x > 1 (more exactly, in the case In x >> 1) we obtain from Eq. (6.53)
the formula (6.40) where K = 1 and A = —29/24, in agreement with [10, 11]:
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As the dynamical parameter y is proportional to the neutrino energy, the probabil-
ity (6.56) is seen to grow with energy as E In E instead of the growth W ~ E3 in the
strong field limit, cf. (6.36). Comparing also (6.56) with (6.37), one can see that
the contribution of the ground Landau level into the probability is relatively small in
the limit E2 > ¢B (~ /eB/E < 1).

It is not difficult to find from (6.53) the next term of expansion over the inversed
powers of the parameter Y, to obtain
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where I"(x) is the gamma function, I"(2/3) = 1.354....

Asis seen from (6.57), the correcting term ~ /3 is not universal with respect to
the neutrino flavor. It is relatively small and negative for the process v, — v.e~et,
while for the process 1, — v e~ e™ the correction term is positive and rather large.

The dependence of the probability of the process v, — v.e~e™ on the dynamical
parameter  in the region where its value is moderately large, was analysed numeri-
cally in [13], see also [16]. It appears that the correction term ~ x ~2/3 is more likely
to worsen than to improve the presentation of the probability in this region. A possi-
ble explanation of this could be that the next term of expansion over the parameter
x inversed has the form ~ x~*3In y to be rather large. However, it appears to be a
difficult problem to extract this term. On the other hand, it is unnecessary because
the exact formula (6.53) can be used in a detailed analysis of the probability of the
e~ e pair production by a neutrino propagating in an external electromagnetic field,
when the value of the dynamical parameter x is moderately large.

6.4 Possible Astrophysical Manifestations of the v — ve~et
Process in an External Magnetic Field

6.4.1 Mean Losses of the Neutrino Energy and Momentum

The probability of the v — ve~e™ process defines its partial contribution into the
neutrino opacity of the medium. The estimation, e.g. of the electron neutrino mean
free path with respect to this process, obtained from the probability (6.36) yields:

1 10°B 10MeV*
A — ve~eT) = — ~ 4400 km ¢ Y. (6.58)
W B E

Itis too large compared with the typical size of a compact astrophysical object, e.g. the
supernova remnant, where a strong magnetic field could exist. However, a mean free
path does not exhaust the neutrino physics in a medium. In astrophysical applications,
we could consider the values that probably are more essential, namely, the mean
values of the neutrino energy and momentum loss and especially the asymmetry of
the momentum loss, caused by the influence of an external magnetic field. These
values can be described by the four-vector of losses Q¢,

0° = E/q”dW = —E(L.F). (6.59)

where g is the difference of the momenta of the initial and final neutrinos, g = P— P’,
dW is the total differential probability of the process. The zeroth component of Q¢
is connected with the mean energy lost by a neutrino per unit time due to the process
considered, Z = dE /dt. The space components of the four-vector (6.59) are similarly
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connected with the mean neutrino momentum loss per unit time, F = dP/ds. We
present here the results of our calculation of the four-vector O in the two limiting
cases considered above.

(i) Inthe case eB = Ef_ one obtains:
GEeB(PppP)*(CE +C3)
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where ¢ = Ei /eB, Ip(x) and I{(x) are the modified Bessel functions. In the
strong field limit,eB > E i, one obtains for the neutrino energy and momentum

loss,
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where the O Z axis is directed along the field, the vector F orthogonal to the
field direction belongs to the plane of the vectors B and p. The probability W
should be taken from (6.36).

(i) In the limiting case ¢ B < EZ sin? # corresponding to the crossed field limit we
have obtained the following result for the four-vector Q¢ of the neutrino energy
and momentum losses due to the process v — ve e™ :

TGE(Cy + CmX?
43273
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We recall that n = eB/ m% = B/ B, is the field intensity parameter.
In the limiting case of very large dynamical parameter In x > 1, the expression
for the four-vector is simplified significantly:

7
Q" = EW P, (6.64)

where the probability W should be taken from (6.56).

6.4.2 Applicability of the Results Obtained in a Pure Magnetic
Field for the Plasma Environment

Note that the formulas obtained are valid also in the presence of dense plasma with
an electron density of about 1033 cm™3. This is due to the specificity of the ultrarela-
tivistic electron gas statistics in a magnetic field, see Ref. [17]. Given the degeneracy
with respect to the transverse momentum, see Eq. (5.13), the connection of the den-
sity of the ultrarelativistic electron—positron gas with the chemical potential w, and
the temperature 7 is described by the sum over the Landau levels:

BT -1
Neg =Np— — N+ = %/dp[(exp(p T'ue)+l)
0
-1
00 2
+ 2keB —
+2Z(exp( P Te “8)+1) — (e — —ue)]- (6.65)

In a strong field, under the condition veB — ji, > T, when practically the main
Landau level is only occupied, the temperature dependence in Eq. (6.65) disappears
and the chemical potential depends only on the plasma density and the field intensity:

272 10'° G
e = e 2.6Mev( e )( ) (6.66)

e 1033 cm—3 B

Thus, the chemical potential can be significantly less than in the absence of the field,
fe =~ (37r2ne)1/ 3 for the same values of the density. However, it is clear that the
chemical potential increases with the density much faster than in the absence of the
field. For the density values

3/2
n>35x10¥cm™ L /
1016 G

the next Landau levels become to be occupied and the connection between the chem-
ical potential and the density is given by
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Fig. 6.2 The dependence of the chemical potential on the density of the relativistic electron gas: /
in the absence of the field; 2,3,4 in a strong magnetic field (see Eq. (6.67)) for the values of the field
strength 1013, 1016, 107 G, respectively; breaks of the curves correspond to successive opening of
the Landau levels

Kkmax
_ eBu, ey 2e¢B NZ
ne = —— 1+2; -k ). kmax=[2€B : (6.67)

where [x] is the integer part of x. The dependence of the chemical potential on the
density of the relativistic electron gas is shown in Fig.6.2.

It can be seen that the chemical potential almost coincides with its value in the
absence of the field, when several lower Landau levels are excited. Thus, for the
typical energies of the electrons and positrons produced by neutrinos with ener-
gies ~20MeV, when the plasma parameters correspond to the supernova envelope
conditions, n ~ 1033 cm™3 and T ~ 1MeV, the suppressing statistical factors are
unimportant.

In the other limiting case of very high temperatures 7 > +/eB, fi., taking account
of the medium influence leads to the appearance of the constant statistical factors
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equal to 1/2 both for electrons and positrons. It reduces the process probability in
4 times.

6.4.3 Possible Astrophysical Manifestations

To illustrate the formulae obtained we consider the astrophysical process of the birth
of a magnetized neutron star (i.e. pulsar) in a supernova explosion. Let us suppose
that a very strong magnetic field of the order of 10'°-10'8 G [18-22] arises in the
cataclysm in the vicinity of a neutrinosphere. The electron density in this region will
be considered to be not too high, so a creation of the e~ e™ pairs is not suppressed
by statistical factors. In this case the neutrino propagating through the magnetic field
would lose energy and momentum in accordance with the above formulae. A part of
the total energy lost by neutrinos in the strong magnetic field due to the process of
the e~ e™ pair creation could be estimated from Eq. (6.61):

-, 3
AE B E AL

= ~06x1072 ) (6.68)
Erot 1017 G 10 MeV 10 km

Here, A{ is the characteristic size of the region where the field strength varies insignif-
icantly, & is the total energy carried off by neutrinos in a supernova explosion, and
E is the neutrino energy averaged over the neutrino spectrum. Here we take the
energy scales that are believed to be typical for supernova explosions [23, 24]. One
can see from (6.68) that the effect could manifest itself at a level of about one per-
cent. In principle, it could be essential in a detailed theoretical description of the
process of a supernova explosion. Namely, if the magnetic field is strong enough, the
well-known FOE problem could be solved due to the process of the production of
electron—positron pairs by neutrinos, v — ve~e™. The meaning of the FOE prob-
lem is the following: for the self-consisted description of a supernova explosion, it
is necessary to find any mechanism of transferring the energy ~10°! erg (ten to the
Fifty One Erg) from the neutrino outflow to the supernova envelope i.e. near 1 % of
the total energy ~10°3 erg produced in the explosion.
One more interesting effect is an asymmetry of outgoing neutrinos:

Zpi

A= ——.
2. Ipil
1

(6.69)

In the same limit of the strong field we obtain

= 3
A~3x1073 B E Ay (6.70)
106G/ \ 20MeV 20km
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Let us note that an origin of the asymmetry of the neutrino momentum loss with
respect to the magnetic field direction is a manifestation of the parity violation in weak
interaction, because the F, value contains the term proportional to the product of the
constants Cy and C 4. This asymmetry could result in the recoil “kick” velocity of the
rest of the cataclysm. The long-standing problem of the observed high space velocities
of pulsars is discussed in more detail below in Sect. 6.5.8. For the parameters used,
the asymmetry due to the process v — ve~e™ (6.70) would provide a “kick” velocity
on the order of 150km/s for a pulsar with a mass on the order of the solar mass.

It is important for astrophysical manifestations that all expressions obtained for
the process v — ve~e™ are also applicable for the process with antineutrino 7 —
ve~e™ due to the C P-invariance of the weak interaction.

In the limiting case ¢B < EZsin? 6 corresponding to the crossed field limit,
for the total energy loss via the production of electron—positron pairs by neutrinos
v — ve~e™T one obtains from (6.64):

AE oo (B *( E Al
Er 1056) \20Mev) \10km
B E
474 e =), 6.71
x [ + n(1015G 20MeV)] ©71)

which is much less than (6.68). The asymmetry is suppressed in this case and has no
practical interest.

6.5 Neutrino in Strongly Magnetized Electron-Positron Plasma

The process of the electron—positron pair production by neutrino in a strong magnetic
field, if one more component of the external active medium which is dense plasma is
taken into account, should be suppressed by the Fermi—Dirac statistical factors. In
Sect. 6.4.2, the conditions are defined when such a suppression is inessential. These
conditions could be realized, for example, in the process of the neutron star merging.
For higher plasma densities corresponding to the conditions of a supernova explosion,
the effect of plasma must be considered. At the same time, along with the above-
mentioned suppression of the e™e™ pair birth, new channels of the neutrino-electron
interaction arise.

In this section, the full set of the neutrino-electron processes in a magnetized
plasma is considered according to Refs. [25, 26]. Besides the canonical scattering
and annihilation reactions veT — veT and v — e~ e™, which are possible in the
absence of the field, the processes are also analysed of “synchrotron” emission and
absorption of a neutrino pair e <> evv and of the electron—positron pair production by
neutrino v — ve~e*, which are possible only in a magnetic field. Finally, an “exotic”
process of the plasma electron—positron pair capture by a neutrino, ve~e™ — v, is
also considered. This process is allowed only in the presence of both a magnetic field
and hot plasma.
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6.5.1 What Do We Mean Under Strongly Magnetized e~ et Plasma

Here we discuss the conditions where, among all the physical parameters character-
izing an electron—positron plasma, the field parameter is the dominant one. These
conditions can be characterized simply by the relationship: e B > ,ug, T2, where /i,
is the chemical potential and T is the temperature of the electron—positron plasma.
In order to find a better substantiated relationship we compare the energy densities
of the magnetic field B?/8 and the electron—positron plasma.

As we know, a magnetic field changes the statistical properties of an electron—
positron gas [17]. Taking into account degeneracy of the transverse momentum, the
dependencies of the concentration and energy density of an electron—positron gas
on the chemical potential and temperature are described by the following sums over
Landau levels:

o
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n= ne‘ - ne+ = ﬁ dp [¢(p7 /J’e’ T) - ¢(p’ _Ue, T)] ’ (672)
0
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pc+2keB — i
2 e 1 . 6.74
+ é(exp( T + ( )

Here we used the approximation of an ultrarelativistic electron—positron gas since
astrophysical processes are characterized by fairly high neutrino and plasma electron
energies E > m,. Thus, we shall neglect the electron mass wherever this causes no
misunderstandings.

In a strong field and specifically, when the condition v/eB — i, > T is satisfied,
in practice only the ground Landau level is occupied. From (6.72) and (6.73) we then
obtain

B

5= % (6.75)
eBpg eBT?

£=2h+ —. (6.76)

Thus, a more exact condition that the electron—positron plasma is strongly magnetized
may be written in the form

B? S m2n? N eBT?
8T eB 12

6.77)
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Selecting values of the physical parameters typical for a supernova envelope as scales
in the relationship (6.77), we rewrite this in the form

2 2
Y
0.8 x 10282 > 1.7 x 10% 212200 4 1 1 5 1077 gy 72 (3%) . (678)
B; cm

where

__B _ p
T10%8, PP T 102g em 3

T

= —, 6.79
5MeV ( )

B Y, Yo p

3 01= 570 15
p is the total plasma mass density in the envelope, and Y, is the ratio of the number
of electrons to the number of baryons. It can be seen that the plasma magnetization

condition is definitely satisfied.

6.5.2 Neutrino-Electron Processes in Strongly Magnetized
Plasma: A Kinematic Analysis

In this section, calculations are similar to the ones performed in Sect. 6.2. When the
processes in strongly magnetized plasma are studied, the additional conditions of
applicability of the Lagrangian (4.66) should be taken: e BT, e B, < m%v

All neutrino-electron processes determined by the Lagrangian (4.66) can be
divided into two groups.

(i) Processes in which a neutrino presents in both the initial and final states: vet —
veT,v — ve et, ve et — v, and the similar antineutrino processes.

(i) Processes involving creation or absorption of a neutrino-antineutrino pair:
eet > v, v — e"et, e — evi, ev — e.

It can be seen from Eq. (6.23) that the square of the amplitude of each neutrino-
electron process contains the factor mg /qﬁ. However, the value of qﬁ = qg - q?
differs fundamentally for processes of the first and second types. For processes with
a neutrino-antineutrino pair we have ¢ = P + P’ (P and P’ are the four-momenta of
a neutrino and an antineutrino, respectively), and consequently ¢ > 0. Since qﬁ =

q*+ qi, where both terms are positive, the value of c]ﬁ can only be small when both
g%, and qf_ are small which is only possible in a small region of a phase space. This

implies that almost everywhere in the phase space one has /qﬁ ~E~T > me.

This leads to reduction of the probability by a factor mf /T? « 1.

At the same time, we have ¢ = P — P’ for processes involving neutrinos in the
initial and final states and consequently g> < 0 and the value of qﬁ may be small over
afairly wide region of phase space. Calculations confirm that kinematic amplification
is achieved for these processes, leading to the disappearance of the factor mz /T?in
the probabilities.
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P/E

! PL/E

Fig. 6.3 Kinematic regions in the momentum space of a final neutrino: / for the pair creation
process v — ve~e™; II for the scattering channels ve™ — ve™, vet — ve™; Il for the pair
capture process ve e — v; the lines correspond to the condition qﬁ =0

Hence, neutrino interaction with a strongly magnetized electron—positron plasma
is determined by the processes ve™ — ve™,vet — vet,v — ve~eT,ve"eT
In Fig. 6.3, kinematic region in the momentum space of a finite neutrino is shown
for the processes listed above in a convenient reference frame where the momentum
of the initial neutrino is perpendicular to the magnetic field. The main contribution
to the probability comes from regions near the parabola qﬁ = 0 where this kinematic
amplification takes place.

Itis interesting to analyze the kinematics of the processes v — ve~et,ve"e™ —
v in the Minkowski plane {0, 3}. The energies of the electron and positron (see

Eq.(2.24)) on the ground Landau level are ¢ = \/pZ +m?2 and ¢’ = |/ p?? + m2.

Under the condition € ~ ¢/ ~ T > m,, electrons and positrons can be treated as
almost massless particles. In turn, in the energies of the initial and final neutrinos,

—> V.

+
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E=,/ Pz2 + Pf and £’ =,/ PZ’2 + P’ 2, the transverse momentum components can

play the role of effective masses in the plane {0, 3}, namely, Pi = (my)gff and Pf =
(m:,)gff. Thus, the process v — ve~e™ is open at the condition (m, )er > (1),)eft-
In the plane {0, 3}, it looks as the decay of “heavier” neutrino into the “lighter”” one
plus the “massless” electron and positron. Accordingly, the process of the capture of
a pair, ve"eT — v, is open at (m,)efr < (m),)ef

6.5.3 The Probability of the Process v — ve et

The S matrix element of the process
v(P) = v(P") + e (p) + et (p)

has the form (6.22), and the amplitudes of the other neutrino-electron processes are
then obtained by crossing transformations.

We express the probability of the creation of an e~e™ pair by neutrino per unit
time in the following form:

W — ve et) = %/ IS2 Al (1= f,-) dlps (1—f,+) dIT. (1—f1), (6.80)

where T is the total interaction time, and dI” is an element of the particle phase
volume,

d’pL,L d’p’ L,L dpr'v
dr,- = — 22272 = 2= 4l = ——. 6.81
¢ (22 et (27)2 v ©:81)

The electron and positron distribution functions

1 1

= e(g—p,e)/T +1 ’ fe+ = m (682)

Je-

allow for the presence of a plasma; here p, and T are the chemical potential and
temperature of the electron—positron gas. To be general, we also allowed for the
possible presence of a quasiequilibrium neutrino gas described by the distribution
function f;. In general, the question of the accuracy of the description of the state of
a neutrino gas under conditions of stellar collapse or another astrophysical process
using an equilibrium distribution function and also the determination of this function
is a complex astrophysical problem (see, e.g., [27]). Quite clearly, the approximation
of an equilibrium neutrino Fermi gas using the distribution function

(eq) _ !

v - e(Ef,au)/Tu + 1 ’ (683)
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where /i, and T), are the chemical potential and the temperature of the neutrino gas,
should give satisfactory results inside the neutrinosphere. Outside the neutrinosphere,
where an outgoing neutrino flux is formed and the neutrino momenta become asym-
metric, a factorization of the local distribution is usually assumed

@, R)

I =TT, 1 (6.84)

where the energy distribution is assumed to be approximately equilibrium, the func-
tion @ (¥, R) determines the neutrino angular distribution, 1 = cos «, « is the angle
between the neutrino momentum and the radial direction in the star, and R is the
distance from the center of the star. An analysis shows [27], that in the vicinity
of the neutrinosphere the function @ (¢, R) differs negligibly from unity. In order
to calculate the probability we shall use the neutrino distribution function in the
form (6.83), neglecting the asymmetry. Later in Sect. 6.5.6 when analyzing possible
astrophysical manifestations of these neutrino-electron processes, we shall also allow
for asymmetry in the distribution function (6.84) for the initial and final neutrinos.

Substituting the $ matrix element (6.22) into (6.80) and integrating using J-
functions over d2p’ [where, as is usually the case B0 =T Ly L./(27)3], we
obtain

_ G123 1 ap , dpydpZ )
V= %00E L, / T 00 e —my SEFE
x (1= fo) (1= fer) la(p) J(Cv = Cans) u(=pP, 655

where we need to substitute £’ = /m?2 + (q. — p.)>, p. = q. — p.. It is easy
to see that the expression in the integrand in Eq. (6.85) does not depend on ky and

consequently integration over k, essentially determines the degree of degeneracy of
an electron having a given energy.

Integrating over the electron momentum in Eq.(6.85) with taking account of
Eq.(5.13) we obtain the probability of the v — ve~e™ process in the form of the
following integral over the final neutrino momentum:

W GieBm? / d3p’ o >+ amd) 1
= 9(qo0 — /g +4m
644 E E’ z “(@)2gt — 4m2)1/2

X Cy(j@q) + CaGGEp)* (1 — £ [(1 — fo) (1 — for) + (gz = —q2)].
(6.86)

In this expression the electron and positron energies € and ¢’ appearing in the distri-
bution functions f,+ are determined by the conservation law € + &' — gp = 0 and
are given by
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1 n ! 4mg , 1 ] 4mg 6.87)
= a0 +a: 1~ c o =s(a0—q. [1- : :
2 ) at 2 ) at

Expression (6.86) is a generalization of the formula (6.27), where we investigated
the neutrino-electron process ¥ — ve~e™ in a high-intensity purely magnetic field,
to the case where electron—positron and neutrino gases are present.

Further integration over the final neutrino momentum can be conveniently per-
formed as in Sect. 6.2 in a reference frame where the initial neutrino momentum is
perpendicular to the magnetic field, P, = 0. For the case of a purely magnetic field
we could convert to this frame without any loss of generality by performing a Lorentz
transformation parallel to the field. In fact, we can see that in addition to statistical
Fermi factors the value of EW determined from Eq.(6.86) only contains invariants
with respect to this transformation (including the sign of the argument of the &
function). However, we now have a special reference frame, namely, the plasma rest
frame, in which the distribution functions (6.82) and (6.83) are formulated. In order
to convert to a frame where P, = 0 we express these functions in the invariant form:

1 1

(o) —p)/T 1 1° Jer = PV /T {17
1

e((P/U)fﬁl/)/TI/ —|— 1 ’

S =

f, = (6.88)

Here we introduce the four-vector of the plasma velocity v®, (v> = 1) which in its
rest frame is v = (1, 0) and the distribution functions (6.88) are exactly the same
as the functions (6.82) and (6.83). In the frame P, = 0 we have

= (v9,0,0,v;), wvo=1/sinf, v, =—cosf/sinb,

where 6 is the angle between the vectors of the initial neutrino momentum and the
magnetic field in the plasma rest frame.

In formula (6.86) it is convenient to use the dimensionless cylindrical coordinates
in the space of the final neutrino momentum vector P’:

p=./P2+P2/EL, tan = P}/P, (= PlJE|.

Here E is the energy of the initial neutrino in the frame P, = 0 which is related
to its energy E in the plasma rest frame by £; = E sin 6. In terms of the variables
p, C, Eq.(6.86) is rewritten in the form

1-

Gl%mzeBE / /m d¢
" JBVP G A =2+ P pP)?

EW =
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x [(Cé - ci)[a + WP+ (- 2p2] —2CyCa(l — p2)<]

1 1 1
x 1+ e (Pv)/Tv—ny (1 + e~ Pv)/T+n | 4 e—(P'V)/T—n

1 1
+ 1+e=w0/T+n | 4 e—P'v)/T—

o=

), (6.89)
o=—1

where we need to substitute in the distribution functions (6.88)

55 (1= V) (1 4 aBeost) — Ceost+ 0]

E
(p'v) = 5 - [(1—x/p2+C2)(l—aﬂcosﬂ)—é(cosﬂ—crﬂ)],
sin 6

(P'v) = g (\/,Oz-i-Cz—i-CcosG),
sin 6

(pv) =

and also introduce the notations n = /T, 1, = fiv/ Ty,

ﬁ=\/1—%=\/1— s
aj 1=2p?++p?

1
A= = L) .
1

2

Note that the expression in the integrand in (6.89) exhibits an enhancement which
completely compensates for the suppression by the smallness of the electron mass.
The main contribution then comes from the region near the upper limits of the
integrals over p, ¢ corresponding to the values \/47 ~ m,. Converting to the new
integration variables 3 and x = E| (1 — p*)/4T sin@ in Eq.(6.89) and extracting
the leading contribution ~ Ei / mg, we transform the expression for the probability
to the form

eT/4

1
G2eBE?T?sin%0 Cy + Cy)?
Ew = JE¢22L Y rdy [apl—(Cv T CD
27‘(3 1+e—e+2x(1+u)/'r+77,,

0 0
X [f(/@, u, 77) f(_/@» u, —7]) + f(ﬁ? u, —77) f(_ﬁv u, 77)]

(Cy = Ca)?
1+efe+2x(17u)/7'+7/,,

|:f(/61 —u, 77) f(_ﬁ» —Uu, _77)
+ (8, —u, —n) £(=F, —u, Tl)]], (6.90)

where e = E /(T sinf),u =cos0,7=T,/T,
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1
1 4+ e—x(U+BU+w)+n "

(B, u,n) =

Integrating (6.90) over the variable 3 with using the relation

1

/dﬁf(ﬁv u, 77) f(_ﬁ’ u, _77)

0

1 1 672a+'r/ 1 eatn
( + + ), (6.91)

Tal—c2) "\ Txer Tteat

where a = x(1 4+ u) and converting to the plasma rest frame, we finally obtain

GzeBT?E
W — ve et) = Fi—g[(cv +Ca) (1 —u)?
i
ETI%
/ d¢ cosh & + coshn
X In +
(1 —e=&(1 +e—ct&/m+m) 1+ coshn
0
+(Ca = —Ca; u—> —u) } (6.92)

where ¢ = E/T,. The dependence of the probability (6.92) on the electron—
positron gas density n = n,- — n.+ is defined in terms of its chemical potential
[see (6.75)]. Note that the formula for the probability (6.92) holds for hot (p, < T)
and cold (u, > T) plasmas. For low-density electron—positron and neutrino gases
(T, pe, T,y 1y — 0) formula (6.92) reproduces the result (6.36) for the probability
of the process v — ve~ et in the strong magnetic field limit, eB > EZsin” 6,
without a plasma.

In the absence of a neutrino gas, 7, u,, — 0, the expression for the probabil-
ity (6.92) for a hot electron—positron plasma (7" — o0) becomes equal to 1/4 of the
probability in a pure magnetic field (6.36) as we indicated in Sect.6.4.2 since the
statistical factors for an electron and positron in this limit are 1/2.

6.5.4 The Total Probability of the Neutrino Interaction
with Magnetized Electron—Positron Plasma

A correct analysis of the neutrino propagation process in a hot dense plasma in
the presence of a strong magnetic field requires to consider the complete set of
neutrino-electron processes. Specifically, in addition to the veT — veT scattering
reactions which also take place in the absence of a field, and the v — ve~e™ pair
creation process which is only possible in a magnetic field, we also need to take
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into account the “exotic” process when a neutrino captures an electron—positron pair
from the plasma: ve~e™ — v. This process is only allowed when both a magnetic
field and a plasma are present. Then only the probability of the process summed over
all initial states of the plasma electrons and positrons is physically meaningful. The
probability of the veT — wveT scattering channels is defined similarly as the sum
overall e~ or e initial states. The total probability of the neutrino interaction with an
electron—positron plasma in a magnetic field is made up of the probabilities of these
processes. Thus, the probabilities of the scattering processes should be defined as

1
W(vet — vet) = ?/|3|2 Al fr dls (1= fl)dl, (1 — f),  (6.93)

where d/" and f functions are defined in Eqs. (6.81)—(6.83). Similarly, the probability
for the pair capture process is:

1
Wwe et — )=~ / ISP Al fo dls for AT, (1= f).  (6.94)

It can be seen from Fig. 6.3 that the scattering and pair capture processes correspond
to infinite kinematic regions since the initial electrons and positrons can formally have
any energy. Convergence of the integrals is provided by the distribution functions.

The expressions (6.93) and (6.94) are integrated by the same scheme as that
described above for the v — ve~e™ pair creation process. An important factor
for the integration will be that the energy imparted from the neutrino to the active
medium gg = E — E’ is not positive-definite. For the probability (per unit time) of
the neutrino scattering on magnetized plasma electrons we have

GieBT?E

473

er I+u

Wwe  — ve ) =

2
d¢ 14¢e"
20 2
X [(Cv +Ca) (1 —u) / (1 —e &) (1 4+ e—ct&/m+m) In 1 +e¢+n
0

1—u
€T —

0

(1 —e~&)(1 +e—et&/m+m) In 1 4+e—¢+n

+[(Cy + C)*(1 —w)? + (Cy — CA) (1 +u)?]

[e ¢
d¢ 1+e”
X / == In = ] (6.95)
0

Taking into account the distribution functions (6.88), the probability of scattering on
positrons is obtained from Eq. (6.95) by substituting  — —n. For the pair capture
channel we have
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G%eBT*E
We et — v) = 1:e—[(cv +Ca)(1 —u)?
473
(6.96)
7 d¢ h € + cosh
+ coshn
Cy — Cx)?(1 2 / 8
+( \%4 A) ( +M) ] (eg o 1)(1 _i_efeff/‘f“H]y) n 1+COSh'I7
0

As we have already noted, only the total probability of neutrino interaction with
an electron—positron plasma is physically meaningful:

W —>v)=Ww—vee") +Wre et — v)

+Wwe — ve )+ Wet — veh). (6.97)

It was found that this quantity had a substantially simpler form:

GieBT?E 5 5
Wy —>v)=——F—1(Cy +Ca)"(1—u)
473
(6.98)
1
X |:F1 (67-(2—+u)) - Fl(—OO)} +(Ca —> —Cya; u — —u) }
where F(z) is one of the set of functions defined as
Z
ghde
F = . 6.99
k@ / (1 — eI + e—tm+&/m) (6.99)
0

It is interesting that the dependence on the chemical potential of the electron—
positron gas p which was present in the probabilities of the various processes, was
cancelled in the total probability.

At first glance, this result seems unusual. Indeed, the chemical potential of a
strongly magnetized plasma according to Eq.(6.75) is proportional to its density,
while the total probability of the neutrino interaction with the plasma appears to
be independent on the density. Turning to individual channels, one can see that for
the process of the pair production v — ve~e™, the increase of the plasma density
should lead to a decrease of the probability by reducing the number of free energy
levels for electrons and positrons. In the process of the pair capture, ve~"e™ — v,
the probability, respectively, increases with the density. Both of these mechanisms
are important for the scattering channels. However, the found effect of the exact
cancellation of these mechanisms in the total probability, apparently, could not be
predicted in advance, without specific calculations.
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For ararefied neutrino gas the probability (6.98) is expressed in terms of the Euler
dilogarithm Lis (x):

E2sin* 0

G2eBT’E
4T2

W(U — V) = 43

[(C% +CD)
+ (CV + CA)2 (1 — Cos 0)2 L12(1 _ e—E(1+C059)/2T)

1 (Cy — C)? (1 + cos 0)? Li2(1 — e—EU—COS")/ZT)

2
+ % [(Cé + C3)(1 +cos? B) — 4 CyCy cos 9] ] (6.100)

We remind that the nth-order polylogarithm Li,, (x) is defined as

Xk
Lin(0) = > - (6.101)

k=1

The relative contributions of the plasma and the magnetic field to the process of
neutrino interaction with the active medium are illustrated in Fig. 6.4 which gives the
ratio of the probabilities of neutrino interaction with a magnetized plasma and a pure
magnetic field, Ry, = Wg 1/ Wp, for the angle 6 = /2 as a function of the ratio
of the neutrino energy to the plasma temperature. It can be seen that the interaction
probability increases with the temperature increase.

The probability (6.98) determines the partial contribution of these processes to
the opacity for neutrino propagation in a medium. An estimate of the mean free path
associated with neutrino-electron processes gives

1 103B,\ [5MeV\’
A\ = — ~ 170km . (6.102)
w B T

This should be compared with the neutrino mean free path as a result of interaction
with nucleons, which is of the order of a kilometer at the density p ~ 10'2 gecm™3,
At first glance the influence of the neutrino-electron reactions on the neutrino prop-
agation process is negligible. However, the mean free path does not exhaust the
neutrino physics in a medium. Other important quantities in astrophysical appli-
cations are the neutrino energy and momentum losses. Of particular importance
is the asymmetry of the neutrino momentum loss caused by the influence of an
external magnetic field. Many attempts have been made to calculate these asym-
metries caused by neutrino-nucleon processes associated with the problem of the
high proper velocities of pulsars (see Sect.6.5.8). As we shall show, despite the
relatively low probability of the neutrino-electron processes, their contribution to
the asymmetry may be comparable to the contributions of the neutrino-nucleon
processes.
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Fig. 6.4 Ratio of the probabilities of neutrino interaction with a magnetized plasma and a pure
magnetic field, Ry, = Wp, 1/ W, for § = /2 as a function of the ratio of the neutrino energy to
the plasma temperature

6.5.5 Mean Losses of the Neutrino Energy and Momentum

In studies of these neutrino-electron interactions in a magnetic field and/or plasma
[6-9, 28], the analysis has usually been confined to calculation of the probabilities
and cross sections of processes. As we have noted, not only the probabilities of the
processes are of practical interest for astrophysics but also the average loss of neutrino
energy and momentum in the medium! which can be determined by the four-vector
0%, see Eq.(6.59). The zeroth component Qy is associated with the average energy

! In general a neutrino can lose and acquire energy and momentum so that we shall subsequently
understand “loss” of energy and momentum in the algebraic sense.
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lost by a single neutrino per unit time and the spatial components Q are associated
with the loss of the neutrino momentum per unit time.

For a purely magnetic field the four-vector of the losses Q“ was calculated in
Sect.6.4.1. In that case, the losses were caused by the only possible process in the
absence of plasma, the pair creation during the motion of a neutrino in a strong
magnetic field v — ve~e™. In the strong magnetic field limit for the zeroth and
z-components of the vector Q¢ we obtained (the field is directed along z)

Q(B) . GI%-eBE5 sin* 0
0.z ™ 4873

x {C‘Z, 4+ C3 +2CyCacosb, (CH+C3)cosh+ ZCVCA} .

(6.103)

It can be seen from Eq.(6.103) in particular that even for an isotropic neutrino
momentum distribution the average momentum loss will be nonzero (proportional
to Cy C4) because of parity nonconservation in weak interaction. As it was shown in
6.4.3, in fields of ~10° B, the integral asymmetry of the neutrino emission caused by
the component Q. and determined by the expression A = | >_P|/ > |P| could only
reach the scale of ~1 % required to explain the observed pulsar proper velocities as
aresult of the v — ve~e™ process only.

In the presence of a magnetized plasma our calculations yield the following result
for the same components of the loss four-vector:

G%eBT3E?
Qo = 1:64—3 I(Cv +C (1 —u)?
T
(6.104)
er(1 4+ u)
X |:F2 (T) — Fz(—oo)i| + (Cgp — —Ca; u— —u) ],

where the function F>(z) was determined in Eq.(6.99), and the upper or lower
signs correspond to the zeroth and z components. Our result for the loss four-vector
obtained for the case of a purely magnetic field (6.103) is reproduced from Eq. (6.104)
in the low-density plasma limit (7', T, p, — 0).

In order to illustrate the relationship between the contributions of the plasma and
the magnetic field to the four-vector of the neutrino energy and momentum losses in
an active medium we shall consider the simpler situation of a low-density neutrino
gas and rewrite Eq. (6.104) for the angle § = /2 in the following form:

GieBES

Q0.0 =m/2) = TE

2 2 E
(CV +CA,2CVCA)]-'(?), (6.105)
where

Fx)=1+ g In (1 — e—xﬂ) — i—jLiz (e—xﬂ) — i—f Lis (e"‘/z) . (6.106)
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Fig. 6.5 The function F(E/T) introduced in Eq.(6.105) and determining the dependence of the
components of the four-vector of the neutrino energy and momentum losses in a magnetized plasma
on the ratio of the neutrino energy to the plasma temperature

It can be seen from a comparison of (6.105) with Eq.(6.103) for § = m/2 that
the function F(E/T) is the ratio of the components of the loss vector in a magne-
tized plasma and in a purely magnetic field. Figure 6.5 gives a graph of the function
F(E/T). It can be seen that at E = Ey >~ 3.4 T there is a unique “window of
transparency” when a neutrino does not exchange energy and momentum with a
magnetized plasma. The negative values of the function F(E/T) at lower energies
imply that the neutrino captures energy from the plasma and acquires momentum in
the opposite direction to the magnetic field. At energies higher than E( the neutrino
imparts energy to the plasma and also momentum in the direction of the field. This
may have extremely interesting astrophysical consequences.
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6.5.6 Integral Action of Neutrinos on a Magnetized Plasma

As an illustration of the application of our results to astrophysical conditions we
estimate the volume density of the energy lost by a neutrino per unit time £ and the
component F, (parallel to the field) of the volume density of the force acting on the
plasma from neutrinos

; 1
&, F) = / dn, = Q0,25 (6.107)
where dn,, is the initial neutrino density:

_d&p & (9, R)
- (271')3 e(E—w)/Ty +1 ’

dn, (6.108)

Here, the angular distribution of the initial neutrinos is taken into account in the
function @ (¥, R), ¥ = cos a, « is the angle between the neutrino momentum and
the radial direction in the star, and R is the distance from the center of the star. At the
same time, the similar function @ (¢, R) should be introduced in the statistical factor
(1— f}) when integrating over the momenta of the final neutrino. In a supernova shell,
the neutrino angular distribution is close to isotropic [27] so that in the expansion
of the function @ in terms of ¢, we can confine ourselves to the lowest Legendre
polynomials Py (1)) and this function can be expressed in terms of the average values
() and (92 (which depend on R) as follows:

D, R) = 14+ 3(P1(0)P1(¥) + 5(P2(0)) P2(9). (6.109)

Neutrinos leaving the central region of a star at high temperature enter the periph-
eral region where a strong magnetic field is generated and the temperature of the
electron—positron gas is lower. In this case the spectral temperatures for different
types of neutrino differ [23, 27]:

T,, ~4MeV, T; =5MeV, T, =T

(TR Vu,r

~ 8MeV. (6.110)

The action of a neutrino on a plasma leads to the establishment of thermal equilib-
rium, &y = 0. When analyzing this equilibrium we need to take into account the
contributions to 5’,0, made by all processes of neutrino interaction with the medium.
As we have noted, the probability of the 3 processes v, +n <> e~ + p is substantially
higher than that for neutrino-electron processes so that these dominate in the energy
balance. The energy transferred per unit time per unit plasma volume as a result of
these processes involving only electron neutrinos may be expressed in the form

1)) :B%. 6.111)
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From this it follows that as a result of neutrino heating the plasma temperature
should be very close to the spectral temperature of the electron neutrinos (T 2= T,,,).
However, the contribution to €& made by other types of neutrino whose spectral
temperatures exceed 7,,, has the result that the plasma temperature is slightly higher
(T 2 T,,). It is therefore meaningful to make separate estimates of the contributions
to (€, JF_) made by neutrino-electron processes involving v, and all other neutrinos
and antineutrinos.

We stress that the appearance of the force density JF; in Eq.(6.107) is caused
by interference between the vector and axial-vector couplings in the effective
Lagrangian (4.66) and is a macroscopic manifestation of parity nonconservation
in weak interactions. At first glance, the main contribution to JF, should be made
by electron neutrinos since Cy (v.) > Cy (v, r). However, as we shall show below,
the main contributions are made by p and 7 neutrinos and antineutrinos (as a result
of the conservation of C P parity neutrinos and antineutrinos push the plasma in the
same direction). This is because in the vicinity of the 1, neutrinosphere the spec-
tral temperatures of the other types of neutrinos differ substantially from the plasma
temperature T >~ T,,.

6.5.6.1 Processes Involving Electron Neutrinos

We obtained the following expression for the volume density of the neutrino energy
losses and the force density (6.107):

GreBT’
3715

/ x3dx / y3dy
(Te — 1)
e’ — (1 4+ e *=ytm)(1 +e¥—"w)

27 7 T 33y —x)d
+ 192 L / .x -x / y ( y_x) yy , (6112)
8 e —1J) (x+ 21 +evmw)
0 0

where 7, = T,, /T . This formula is written assuming a small deviation from thermal
equilibrium between the neutrino gas and the electron—positron plasma (7, — 1) < 1,
and relatively weak asymmetry of the neutrino distribution, ((9%) — 1/3) < 1, is
also assumed.

A numerical estimate gives

7
; erg 50 dyne B T
E Fu, = (2.0x 10 —-, 0.57 x 10
(& T ( x cm3s . cm3 ) (1016G) (4 MeV

x e [(n 1) 40.53 (w% - 1)} . 6.113)

E Fou, = (cé +c2, 2CVCA)

3
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6.5.6.2 Processes Involving v,, vy, Uy +

In this case (7,/T — 1) cannot be considered as a small parameter. However, the
relative contribution of the asymmetry of the neutrino distribution is small [27] and
can be neglected.

For numerical estimates we can conveniently express the values £ and F, (6.107)
in the following form:

(&, F)uy = A(Cy + C3,2Cy Cp) o) Y (71), (6.114)
where
A 12GeBT (B T\ [Tex 10% 2%
N m —\10'°G 4 MeV 0.55 x 1020 dy_ﬂf .
cm-
npoowp et Tt
i) = T 1 T + Lig(—e™"), ¢(0) = 720 = 0.947,
7 % 2d
g = &[ =1y _ ]
w(ﬂ)_6/e77y—le L,
0
4
Ti 1= on Ti — . .
V] Ly =5 i =D (6.115)

Formulas (6.112)—(6.115) demonstrate in particular that the action of each indi-
vidual neutrino fraction on an electron—positron plasma would go to zero when
thermodynamic equilibrium is established between this fraction and the plasma
=1, (¥)=0, (¥?)=1/3.

We show that the main contribution to the neutrino action on the plasma is made
by p and 7 neutrinos and antineutrinos. In fact the function ¢ (7;) (6.115) increases
rapidly as the difference between the spectral temperature of the neutrinos and
the plasma temperature increases. For example, at temperatures (6.110) we have
1 (1.25) >~ 0.824 for electron antineutrinos and 1/(2) =~ 38.47 for p and 7 neutrinos
and antineutrinos. This factor leads to compensation for the smallness of the con-
stant Cy (v,,7) and makes the v, -, v, ; contribution not only comparable with the
contribution of the electron neutrinos and antineutrinos but even dominant.

As we have noted, the contribution of neutrino-electron processes to the energy
action of a neutrino on the plasma is small compared with the contribution of 3
processes and leads to a small departure from equilibrium between electron neutrinos
and the plasma so that the total contribution of (3 processes and all ve processes to
the value of & is zero.

For the force action of a neutrino on the plasma parallel to the magnetic field
described by F, in formulas (6.112)—(6.115) the total contribution of all types of
neutrinos is given by
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dyne B T !
~ 20
F,~3.6x10 = (1016G> (4 MeV) . (6.116)

Here we assumed for estimates that the chemical potentials of the neutrinos are
zero [23]. Note that the value (6.116) was independent of the chemical potential of
an electron—positron plasma.

The force density (6.116) should be compared with the result for a similar force
caused by (-processes [29, 30]. Under the same physical conditions our value of the
force as a result of neutrino-electron processes is of the same order of magnitude
and, which is particularly important, of the same sign as the result of [29, 30]. Thus,
the role of neutrino-electron processes in a high-intensity magnetic field may be
significant in addition to the contribution of 3 processes.

The force density (6.116) could lead to a very interesting consequences if a strong
toroidal magnetic field [18, 19] is generated in the supernova envelope. This possi-
bility is analyzed in detail below in Sect.6.5.8.

As we know, in existing systems for numerical modeling of astrophysical cat-
aclysms such as supernova explosions and coalescing of neutron stars, where the
physical conditions being studied can be achieved in principle, the neutrino-electron
interaction effects studied by us were neglected. However, in detailed analyses of
these astrophysical processes it may be important to take into account the influence
of an active medium such as a magnetized e~ e plasma, on quantum processes
involving neutrinos.

6.5.7 Neutrino-Electron Processes Involving the Contributions
of the Excited Landau Levels

In the case when an active medium consists of a magnetic field and very dense plasma,
such that the condition is valid: ;> >> 2¢B, the plasma electrons could occupy the
excited Landau levels. The full set of neutrino-electron processes in such physical
conditions of dense magnetized plasma was analyzed in Refs. [31, 32]. In these
papers, in contrast to the above-considered situation, the physical conditions were
analyzed when the magnetic field was not so strong, whereas the density of plasma
was large. Thus, the chemical potential of electrons p, was the dominant parameter:

12>2eB > (Tz, E2) > m?. 6.117)

Here, T is the plasma temperature, E is the typical neutrino energy. Under the con-
ditions (6.117), plasma electrons occupy the excited Landau levels. At the same time
it is assumed that the magnetic field strength being relatively weak, see Eq. (6.117),
is strong enough, so that the following condition is satisfied:

eB > p.E. (6.118)
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In the present astrophysical context, the conditions (6.117) and (6.118) could be
realized, for example, in a supernova envelope, where the electron chemical potential
isassumed to be iz, ~ 15 MeV, and the plasma temperature 7 ~ 3 MeV. The magnetic
field could be as high as B ~ 1015 — 101° G. Under the conditions considered,
the approximation of ultrarelativistic plasma is a good one, so we shall neglect the
electron mass wherever this causes no complications.

As it was shown in [31], the total set of neutrino-electron processes reduces under
the conditions (6.117) and (6.118) to the process of neutrino scattering on plasma
electrons. Moreover, both initial and final electrons occupy the same Landau level.

The neutrino-electron scattering in dense magnetized plasma was investigated in
[28]. Numerical calculations of the differential cross-section of this process in the
limit of a weak magnetic field (e B < u, E) were performed. The purpose of this study
based on [32], is to calculate analytically not only the probability of the neutrino-
electron scattering process, but also the volume density of the neutrino energy and
momentum losses under the conditions (6.117) and (6.118).

6.5.7.1 Neutrino-Electron Scattering Probability

The probability of the neutrino-electron scattering per unit time can be obtain by
integration over the final and the initial electron states:

Nmax

Wve —wve )= %/Z IS dl,- fo-(e0) ATy [1 = fu-(e})]
n=0 s,s’
x dI[1 — fI(EN]. (6.119)

Here, 7,4, corresponds to the maximal possible Landau level number, which is

defined as the integer part of the ratio ,ug /2eB) > 1,¢, ~ ./ pg + 2eBn is the

energy of an ultrarelativistic plasma electron occupying the nth Landau level, E’
is the final neutrino energy, fi,, and 7, are the effective chemical potential and the
spectral temperature of the neutrino gas respectively. In a general case the neutrino
spectral temperature 7), can differ from the plasma temperature 7' (we do not assume
an equilibrium between neutrino gas and plasma).

The details of integration over the phase space of particles can be found in [31].
The result of the calculation of the probability (6.119) can be presented in a relatively
simple form:

G2 C2 + C2 eB T2 E Nmax 1
Wwe  — ve ) = F(Cy A) —
473 s z?

b
x [((1 + 221 +u?) —4uz)/®(£)d§ (6.120)
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+—G@ -DE—uw [ {POdE [+ w— —u),
rT

where z = /1 —2eBn/u2, ®(€) = €[’ — D(E™ "+ D)7 a = rrz(l +
w/(1+z)and b = rrz(l —u)/(1 —z2),r = E/T,, 7 = T,/T, ny = ji,/ Ty,
u = cos 6, 0 is the angle between the initial neutrino momentum k and the magnetic
field direction. The variable £ defines the spectrum of the probability (6.120) in terms
of the final neutrino energy, £ = (E' — E)/T.

In the limit of a very dense plasma (ug > eB), when a great number of Landau
levels are occupied by plasma electrons, one can transform the summation over n to
an integration over z:

12/2eB)] 1
Z F(z(n)) ~ &/F(z) 2dz. (6.121)

0

In this case, the contribution from the lowest Landau levels turns out to be negligi-
bly small, so the main contribution to the probability arises from the highest Landau
levels. In this limit, the probability (6.120) can be rewritten in the following form:

Wwe  — ve ) =

1
G&(Cy +CYH 2 T*E /d
473 z

0

x [((1 + 220 +u?) —4uz)/¢(§)d§ (6.122)

b
+i(z2—1>(z—u>/fa>(§>d§ ]+ (u — —u).
IrT

As one can see, the probability (6.120) does not depend on the value of the
magnetic field strength, but is not isotropic. The dependence on the angle § manifests
this anisotropy of the neutrino-electron process in the presence of a magnetic field.
In the limit of a rare neutrino gas when f(E’) < 1, the result has a more simple
form:

GE(Cy + CR) 2 E3
1273

Wwe — ve )~

I(u), (6.123)

I(w) = /(1+ o (3Z2+2z+1)—12u2z+z2+2z+3).
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For purposes of comparison, we present here the probability of the neutrino-
electron scattering in the absence of field in the same limit of the rare neutrino gas:

GHCY+ C 2

5.3 (6.124)

Wyae =

The numerical estimate of the ratio of the probabilities (6.123) and (6.124) is
presented in Fig. 6.6. It is seen that the probability in a magnetized plasma exceeds
the vacuum probability in the vicinity of the point § = 7/2 only.

6.5.7.2 Integral Neutrino Action on a Magnetized Plasma
In this section, we calculate the volume density of the neutrino energy and momentum

losses per unit time in a medium. According to Egs. (6.59), (6.107), and (6.108), we
can write:

s (90, Q) d* P
& F) = PSE / e(Efﬁl»/T,,HdW’ (6.125)

where ¢, is the difference between the momenta of the initial and final neutrinos,
go = Py — PJ,. The zeroth component, &, determines the neutrino energy loss from
unit volume per unit time. In general, a neutrino propagating through plasma can both
lose and capture energy. So, we mean the “loss” of energy in the algebraic sense.

For the neutrino energy loss from unit volume per unit time due to the scattering
ve~ — ve~ in the limit of a very dense plasma we obtain the following result:

0.8

W/ Waae

0.6

0.4

0.2

-1 -0.5 0 0.5 1
cos

Fig. 6.6 The relative probability of the neutrino-electron scattering in a magnetized plasma as a
function of the angle between the initial neutrino momentum and the magnetic field direction. Wy,
is the probability in a non-magnetized plasma
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GH(C +C) 2
3

&= 27%n, Jp(7), (6.126)

4 %)
JB(T)=% /(zi—;/dyyz[y(l—zz)—l- 4z(1+29)]
0 0

|_ey-n
S e e (/2 (6.127)

where n,, is the density of initial neutrinos, the parameter 7 has a meaning of a relative
neutrino spectral temperature, 7 = 7,/ T. It is interesting to compare this result with
the one in a non-magnetized plasma which can be presented in a similar form:

G:(C3 +C) 2

Epeo = —— 5 4 T ny Jp=o(7), (6.128)
T et

Jp—o(T) =4 / de¢ = (6.129)
0

The functions Jp(7) and Jp—o(7) define the dependence of the neutrino energy
losses on the relative neutrino spectral temperature in a magnetized plasma and in a
plasma without field respectively. In the limit of a sufficiently large neutrino spectral
temperature 7 > 1 (7, > T') the functions take the form:

Jp(T) ~ 435 7%, Jg_o(r) ~ 8 7.

The graphs of the functions Jp(7) and Jp—o(7) are presented in Fig.6.7.

As one would expect, at neutrino spectral temperature smaller than the plasma
temperature 7, < T (7 < 1) the functions Jp(7) and Jp—o(7) are negative. It
implies that a neutrino propagating in a medium picks up energy from the plasma.
When 7, > T (1 > 1), the neutrino gives energy to the plasma. When 7 = 1
there is a thermal equilibrium when there is no energy exchange between neutrino
and electron—positron plasma. It can be seen that the neutrino energy loss in a mag-
netized plasma is less than the one in a non-magnetized plasma. Hence, under the
conditions (6.117) and (6.118), the magnetized plasma becomes more transparent
for neutrinos than in the case of plasma without field.

As for the vector F in Eq. (6.125), it is associated with the volume density of the
neutrino momentum loss per unit time, and therefore it defines the neutrino force
acting on plasma. Because of the isotropy of plasma in the absence of a magnetic field,
one would expect that in the presence of a magnetic field the neutrino force action
would be directed along the magnetic field only. However, as it was shown before, the
probability of the neutrino-electron scattering (6.122) is symmetric with respect to
the substitution u — —u (or @ — 7w — 0). This means that the neutrino scattering on
excited electrons does not give a contribution to the neutrino force acting on plasma
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Fig. 6.7 The functions Jp(7) (solid line) and Jp—o(7) (dashed line) versus the relative spectral
neutrino temperature

along the magnetic field. Thus, under the conditions (6.117) and (6.118), there is
no neutrino force on plasma at all. Therefore, this force is caused by a contribution
of neutrino interactions with ground Landau level electrons only, and the results
presented in Egs. (6.112)—(6.116) have in fact a more general applicability. It may
be used even in the limit of dense plasma when chemical potential is considerably
greater than the magnetic field strength (,uZ > eB).

6.5.8 Pulsar Natal Kick Via Neutrino-Triggered
Magnetorotational Asymmetry

In this subsection, we will try to apply the results presented above to the well-known
problem of large kick velocities of pulsars born in supernova explosions.

6.5.8.1 Pulsar Natal Kick

This problem has been discussed for more than 40 years. The total list of publications
with observational data is fairly long. Here, we will point out only the first papers [33,
34], where this problem was formulated and the papers where the data on a sample
of 99 pulsars [35] and a sample of 233 pulsars [36] were summarized. In the latter
paper, the mean velocity for the sample of 233 pulsars was estimated to be 400 km/s,
with more than 15 % of the pulsars having velocities greater than 1000 km/s. The
velocities of the two fastest pulsars PSRs B20114-38 and B2224 4 64 were estimated
to be ~1600km/s.
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Itis important that a correlation was established between the pulsar velocity direc-
tions and rotation axes. Initially, having analyzed a sample of 29 pulsars, Deshpande
et al. [37] concluded that the mechanisms predicting a correlation between the pulsar
velocity and rotation axis were ruled out. Subsequently, however, Johnston et al. [38]
presented strong observational evidence for a relationship between the direction of a
pulsar’s motion and its rotation axis. A sample of 25 pulsars younger than those used
in [37] was analyzed. In particular, for 10 pulsars detected in [38] an offset between
the velocity vector and the rotation axis, which is either less than 10° or more than
80°, a fraction that is very unlikely by random chance.

Obviously, an asymmetry in a supernova explosion is responsible for the initial
kick, but its nature has not yet been revealed. Various explanations of this asymmetry
have been offered in a number of papers.

The attempts to describe the effect only by the hydrodynamics of a supernova
explosion without invoking other physical factors could not explain the large veloci-
ties. Three-dimensional simulations of the explosion with the assumption of an initial
asymmetry in the supernova core before its collapse, which increases during its col-
lapse, lead to a pulsar velocity of no more than 200km/s [39]. Multidimensional
simulations by H.-T. Janka et al. [40], where the explosion anisotropy develops chaot-
ically, yielded a possible pulsar velocity of 10% km/s. However, the established cor-
relation between the pulsar velocity direction and rotation axis [38] is not explained
in this approach.

In addition to the hydrodynamic approach, there are also other ideas of explain-
ing the pulsar velocities. For example, the pulsar escape was considered during the
decay of a close binary system [41]. Another example was the pulsar acceleration
within several months after the explosion due to asymmetric electromagnetic radia-
tion caused by the inclination of the magnetic moment with respect to the rotation
axis and its displacement relative to the stellar center [42]. However, both of these
scenario lead to velocities of the scale of 100 km/s.

In our view, the mechanisms involving neutrinos appear most interesting. Neu-
trinos are known to carry away about 99 % of the total emitted supernova energy
E ~ 3 x 1073 erg. If there is an asymmetry in the neutrino escape of ~3 %, then
they would carry away a momentum of ~ 0.03 E/c. The compact explosion rem-
nant, i.e., a neutron star with a mass of ~ 1.4My, would get the same momentum.
In this case, its velocity can be easily estimated to be ~1000km/s.

An asymmetric neutrino (antineutrino) radiation during a collapse via Urca
processes in a strong magnetic field of 10'*—10'3 G in a supernova core was consid-
ered [43-48] as a reactive force expelling the neutron star. However, as was subse-
quently shown [49-52], the neutrinos produced in electroweak processes have small
mean free paths in the matter of the central part of a supernova and cannot provide
high pulsar velocities.

An interesting mechanism of asymmetry in neutrino radiation during a supernova
explosion was considered in Refs. [53-55]. Here, the neutrino flux asymmetry results
not from parity violation [43—48], but from an asymmetry in the distribution of the
toroidal magnetic field developing during the collapse.
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A lively debate was generated by the idea [56], according to which the asymmetry
in the neutrino flux from a protoneutron star appears due to neutrino oscillations
in matter and an intense magnetic field. The neutrinosphere for v lies within the
neutrinosphere for v,, and the resonance transition v, — v is possible under certain
conditions in the region between the neutrinospheres, where v, are ‘entangled’ in
the medium, while v, are ‘free’ to escape. Therefore, the surface of the resonance
transition becomes an effective neutrinosphere for v;. In the presence of a magnetic
field, this sphere is deformed along the field. Since the temperature depends on the
radius, the neutrinosphere deformation results in an anisotropy of the energy flux
carried away by neutrinos. This should impart a kick to the nascent neutron star.

However, the idea of an initial pulsar kick due to a deformed neutrinosphere [56]
came under serious criticism [57]: after the neutrinosphere deformation, the sur-
faces of constant temperature will also be deformed, because precisely the neutrinos
provide a thermal equilibrium. However, the main problem of this model was soon
revealed: it required the existence of neutrinos with a mass of ~100eV. The estab-
lished constraint on the neutrino mass, m, < 2 eV, ‘closed’ the model.

Attempts were also made to explain the large space velocities of young pulsars
using some possible nonstandard properties of neutrinos. For example, a mechanism
was proposed [58] based on the resonant spin-flavor precession of neutrinos with a
transition magnetic moment in the magnetic field of a supernova. It was assumed
that the asymmetric neutrino radiation could be caused by a distortion of the res-
onance surface due to matter polarization effects in the supernova magnetic field.
The authors [58] argued that the necessary field strength should be 10'6 G, with the
neutrino parameters at the level of existing experimental bounds. However, as was
pointed out in [57], the magnetic fields required in the model [58] should actually
be more than an order of magnitude stronger.

6.5.8.2 The Initial Pulsar Kick and Sterile Neutrinos

Sterile neutrinos appeared on stage in the paper [59] (see also the review [60] for
details). Here, as in [56], the deformation of the neutrinosphere by a magnetic field
was discussed, but instead of the oscillations v, - <> v, the transitions into ‘heavy’
sterile neutrinos v, » <> vy were considered. The model was attractive in that the
heavy sterile neutrinos (with a mass scale of a few keV) could simultaneously solve
two problems: providing an initial velocity of pulsars, they could also play the role
of dark matter.

However, when we reproduced the calculations performed in Refs. [59, 60], we
found that the asymmetry was overestimated in [60] by a factor of 15. In other words,
the necessary magnetic field strength for the declared asymmetry should be a factor
of 15 larger: not ~3 x 10'® but ~4.6 x 10'7 G.

Another scenario for using sterile neutrinos to explain the pulsar kick, based on
off-resonance transitions was developed in [61]. In this scenario, the fact was used that
sterile neutrinos could be produced in beta processes through neutrino mixing, with
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this process being suppressed due to the smallness of the mixing angle. Nevertheless,
they could carry away a significant amount of energy due to two factors:

(1) the neutrinos in the supernova core had energies, ~150 MeV, much greater than
those of the active neutrinos, ~20MeV, emitted from the neutrinosphere;
(2) the emission here originated from the volume, not from the surface.

In the presence of a magnetic field, the neutrinos were emitted asymmetrically
and this asymmetry was retained, because the sterile neutrinos were not absorbed but
escaped freely, as distinct from the situation considered in Refs. [43—47]. However, as
our analysis shows, the authors [61] overestimated the asymmetry at least by a factor
of 40. In other words, the magnetic field strengths should be a factor of 40 larger to
achieve the asymmetry declared by these authors: not ~10'® but ~4 x 10!” G. In our
view, a mistake was made in calculating ko defined in Eq. (9) and presented in Fig.
2 of [61]. Note that the authors call kg the fraction of electrons in the lowest Landau
level, while actually this is the fraction of the electron energy squared in the lowest
Landau level. It is this quantity that defines the asymmetry of the neutrino-electron
interaction in beta processes. It can be shown that the result [61] is erroneous, both
by direct numerical calculations and analytically. Indeed, using Egs. (9) and (10)
from the paper under consideration, the expression for kg can be transformed with a
good accuracy to

ko~ 28 22/ D) (6.130)
272 Jy(pte/ T)
where B is the magnetic field strength, p, and T are the chemical potential and
temperature of the electrons, and J, (1)) are the Fermi integrals:

o0 nd
X X
Jn () =/—ex_n+1. (6.131)
0

Depending on the electron chemical potential and the magnetic field strength, kg was
overestimated in Fig. 2 of [61] by a factor from 40 to 90.

In the paper [62], a detailed numerical analysis presented of the transformation
of active neutrinos to sterile ones through an MSW-like resonance in a protoneutron
star to explain the initial pulsar kick. However, the magnetic field strength needed to
achieve the desirable effect should be 107~ 18 G.

6.5.8.3 Back to Standard Neutrinos?

The following question arises: if we actually need such strong magnetic fields to
provide a natal neutron star kick from sterile neutrinos, is it possible to manage with
standard neutrinos?
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As has already been noted, see Egs. (6.69) and (6.70), the asymmetry in the emis-
sion of standard neutrinos in a strong poloidal magnetic field at the scale of 10'® G
was not enough to provide the observable neutron star kick.

Note that the mechanism of a significant enhancement in the magnetic field
strength during a supernova explosion is known. This is the magnetorotational model
for the generation of a toroidal magnetic field in a supernova explosion [18, 19, 63].
A poloidal magnetic field being enhanced during supernova core collapse and frozen
in plasma produces a strong toroidal magnetic field due to the differential rotation,
which can be greater than the poloidal field by an order of magnitude.

A possible integral effect of neutrinos on a magnetized plasma was evaluated in
Sect.6.5.6, and the combined force action of all types of neutrinos interacting with
an electron—positron plasma was obtained, see Eq.(6.116).

The contribution from the neutrino-nucleon processes was estimated in Refs. [29,
30]. For supernova envelope parameters Y, ~ 0.2 and p ~ 101712 g cm~3, one can
obtain (‘v N’ means both Urca processes and v N scattering)

B )dyn

(6.132)

WN) 20
Fp ~24x10 (10166 el

It is important that the contributions from both neutrino-electron and neutrino-
nucleon processes have the same sign. The total neutrino force density is

B dyn
101G ) cm3

Fyorh ~ 0.6 x 107! ( (6.133)

Note that the force density (6.133) is approximately five orders of magnitude
lower than the gravitational force density in the same part of the supernova and, con-
sequently, its influence on the radial dynamics of the supernova envelope is negligible.
However, when a toroidal magnetic field is generated in the envelope [18, 19, 63],
the force (6.133) directed along the field is in no way compensated. It can fairly
rapidly (in a time of the order of a second?) lead to a significant redistribution of the
tangential plasma velocity. In two toroids in which the magnetic fields have opposite
directions, the tangential plasma acceleration under the neutrino flux will then have
different signs with respect to the direction of rotational plasma motion. This effect
can lead to a significant redistribution of the magnetic field lines, concentrating them
predominantly in one of the toroids. A similar field configuration was considered in
the papers cited above [53-55], where the presence of an initial toroidal field was
needed for its appearance. The resulting considerable asymmetry of the magnetic
field energy in the two hemispheres can lead to an asymmetry of the supernova
explosion and, in particular, can explain the phenomenon of high intrinsic pulsar
velocities being discussed. In our view, it would be very interesting to model the

2 The cooling of a supernova envelope, the so-called Kelvin—-Helmholz stage, is known to last for
about 10s.
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toroidal magnetic field generation mechanism by taking into account the neutrino
force action on plasma via both neutrino-nucleon and neutrino-electron processes.

6.5.8.4 Neutrino-Triggered Magnetorotational Pulsar Natal Kick

The neutrino processes in a toroidal magnetic field frozen in plasma under consid-
eration impart an angular acceleration to a plasma element at distance R from the
rotation axis:

. F s B \ 1

This means that the increase in angular velocity in a time of ~1s will be

AQ~103( B )l (6.135)
101G ) s '
In one hemisphere the angular acceleration coincides with the direction of initial
rotation, while in the other hemisphere they are opposite. Pushing the plasma, the
neutrino flux curls the toroids in different directions.

Thus, three stages of a pulsar kick can be identified:

(i) the presupernova core collapses with rotation during 0.1 s with the generation
of a strong toroidal magnetic field due to the differential rotation;

(ii) pushing the plasma by the tangential force directed along the toroidal magnetic
field frozen in plasma, the neutrino outburst leads to a magnetic field asymmetry:
the field strength increases in one hemisphere and decreases in the other one,
during ~1s;

(iii) the pressure difference arising in the two hemispheres pushes the core.

According to the momentum conservation law, an energetic plasma jet can be
formed in a direction opposite to the pulsar velocity. Such plasma jets being formed
in supernova explosions could be gamma-ray burst sources [64]. Of course, a detailed
multidimensional numerical simulation of the process is needed. Let us make an
order-of-magnitude estimate of the effect that may be expected.

The pressure difference arising in the two hemispheres can be estimated as

_ B* _(eB)?

Ap >~ — = ,
P 8 8o

(6.136)

where o = 1/137 is the fine-structure constant. The magnetic field pressure causes
the compact supernova core, a protoneutron star of mass M, to accelerate:

Vi B \°( R Y 1.4 Mg\ k
Hk 1.6 % 10° (= ) (57— ) sin26 46 °) 3. (6.137)
dr 101G ) \20km M)
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Fig. 6.8 The region of a ‘
strong toroidal magnetic field / N AB
in section by a meridional Som—a N
7 N\
half-plane. The symbols ® / ®\\ \
and © denote the magnetic ./ (®®®l N
field directed away from and 0 AL \\® /////
toward us, respectively. If the VAP A0
magnetic field in the upper / // 7 \\
hemisphere exceeds that in the /// ST i
lower one by a factor of ~2.3, - !
as is shown in the figure, then \\\\\ ,’R
the magnetic field pressure in N T //
the upper hemisphere will be \\ ::; /
a factor of ~5.4 larger than N/ G NG
. \ N
that in the lower one N Vo
N ]
o
\\\<//
\\
A\,
A\,
\

where R, 6 and Af are the parameters that characterize the region of a strong toroidal
magnetic field (see Fig.6.8).
Taking A0 ~ 15° ~ % and 6 ~ 45° for our estimation, we obtain

dVi; B \>( R \?(14My\ km
—Tkick 4 % 104 °) ==, (6.138)
dr 106G 20 km M s2

Actually the acceleration is not constant, because the expansion of the magnetic field
volume, which reduces the field strength, should be taken into account. From the
magnetic flux conservation we have p V2 = const.

In the same geometry, for the initial pulsar kick velocity we obtain

v 00 [P0 R Az \Y? (1.4Mx\"? km 6.139)
kick = 106G ) \20km ) \ 5km M s '

where By is the maximum toroidal field strength, and A z is the distance traveled
by the compact explosion remnant during the acceleration. It is natural to expect
that the field remained after the explosion will be much smaller than the maximum
strength By.

We emphasize that in our analysis we use the toroidal magnetic fields, which can
be greater than the poloidal fields used in other approaches by an order of magnitude.

In our view, a detailed multidimensional numerical simulation of the described
mechanism is needed. We hope that it will confirm this effect.
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Chapter 7
Neutrino-Photon Interactions
in External Active Media

A strong magnetic field influences essentially on the properties of particles. Firstly,
it can induce new interactions between particles—for example, an interaction arising
at the one-loop level between electrically neutral neutrinos and photons. Secondly,
magnetic fields dramatically change particle kinematics, opening new channels that
are forbidden in a vacuum by conservation laws. Among these processes, the radiative
transition of a massless neutrino v — v-y, which s also called the neutrino Cherenkov
process, has been of great interest for a long time. In this chapter, we analyse this
process in external active media: in a magnetic field, and in magnetized plasma.
We also consider other neutrino-photon processes, when neutrino interacts with two
photons (Compton-like process) and with three photons, under an influence of a
magnetic field.

7.1 vv~ Interaction in External Active Media

7.1.1 The Effective Lagrangian of the vv~y Interaction

In this section, we present a calculation of the amplitude of the neutrino—photon
process due to the vvy interaction induced by a magnetic field, for a case when the
particles involved are, in general, off mass-shell. In other words it means that the
effective Lagrangian for the vv+y interaction in a momentum space will be obtained.
The calculation is performed within the Standard Model with a possible mixing in
the lepton sector. The result is applicable for a magnetic field of any strength when
the local limit of the weak interaction is valid.

The effective local Lagrangian of the neutrino—electron interaction (4.66) with a
possible lepton mixing taken into account can be rewritten to the form

Gr_ _
Lye = —ﬁ[e%c(cv — Caysle] [ (1 —v5)mi], (7.1)
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Fig. 7.1 The Feynman v(p')
diagram describing the vertex

vy in the local limit of the

weak interaction

v(p)

where Cy, Cy4 are the vector and axial-vector electroweak constants:

1
Cy = U,‘eU;e 3 (5,'1'(1 — 4 sin? Ow),
1

= 0ij.

Ca=UpU, — 3

Here, the subscripts i and j label neutrino mass eigenstates, and the matrix elements
Ui, describe the mixing in the lepton sector. The Feynman diagram describing the
vertex vvy is presented in Fig.7.1.

It should be recalled that a subtraction procedure is required in calculating the
effective Lagrangian of vv+y interaction induced by an external magnetic field. This
is because the use of the local limit of weak interaction causes two problems: the
amplitude acquires both the ultraviolet divergence and the triangle axial anomaly.
It can be readily seen by the expansion of the amplitude of the process v — v+ in
terms of the external magnetic field, as is shown in Fig.7.2.

The zero term in this expansion,

£O =B =0),
involves an ultraviolet divergence, while the term linear in the field,

e

M= B
dB|p_y’

ext
>§A
\

Fig. 7.2 The expansion of the amplitude of the process ¥ — 1y in terms of the external magnetic
field. The double line corresponds to the exact propagator of an electron in a magnetic field; the
dashed lines correspond to the external field
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involves the well-known Adler anomaly, because of the presence of the axial-vector
interaction in the effective weak Lagrangian. Strictly speaking, both these terms
cannot be properly calculated in the local limit, and the correct expression for the
effective Lagrangian AL, induced by an external field can be defined as follows

ALyyy = (Lt -0 - U”) + LD, (7.2)

where the correct term £ linear in the field should be calculated in the electroweak
theory without going to the local limit, and with taking into account the contri-
bution from all virtual charged fermions. The expression for LD can be deduced,
for example, from the amplitude for the Compton-like process v(p1) + v*(q1) —
v(p2) + 7v*(¢q2) [1, 2] (in general, the photons v*(q;) and v*(g2) are off the mass
shell, and the amplitude has the meaning of an effective Lagrangian in the momentum
space) by replacing the field-strength tensor for one of the photons by the strength
tensor for a constant uniform magnetic field; that is,

dla — 0, flaﬁ - iFa,ﬁv Q20 = 4a, fZOzﬂ - faﬁv

where f,3 = ga€g—qpeq is the Fourier transform of the photon field-strength tensor,
while F,g is the strength tensor for an external field. Upon some transformations,
the expression for £ can be recast into the form

Fn _ ¢GF . eB [(f@)(qwj) _ (geefa)qe))

vz tan 291 ajq?
(Fiq) q|2+q2] 2
A .
M (), (7.3)

where j = v;y“(1 — v5); is the neutrino current,

2 w° )
I(Q)=II du (1 —u”) [ dtexp|—it{m. —gq T i) |-
0 0

The effective Lagrangian £ associated with the diagram in Fig. 7.1 is calculated
on the basis of conventional Feynman rules, with using the electron propagator in an
external constant magnetic field (3.1). We have

. eGF . * o —i
L=—i"F o 5@ / EZTe[S(=2077 $(Z) 7* (Cy = Cars) | e 42(7 )

Thus the field-induced part of this Lagrangian can be constructed as the sum of the
vector—vector and the vector—axial-vector amplitudes (4.24), AMyy and AMy 4,
with the following substitutions of the currents
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. « y Gg . . Gr ., .
Jvp = e3(q), jyo = ECVM’ Jaa = ECAJCM

and with the further subtraction and restoration of the term linear in the field, as is
described above, see (7.2).

The resulting expression for the field-induced effective Lagrangian of the vvy
interaction takes the form

e Gf (fo) (aei) a) , (fP) (qp))
_ Ccv| YR IYI NASACLTN
812y/2 [ V[ a1 v aj

(geofa) [ (qee))  (jq) <3>]
+2 — Y
Fo( -5
(fo) ( )
fe ZWJ (Y&_l)
g
(qpefq) (o)) o | 41
gl Ay 4 2L
q? qf ( AT g2

+ —(f(pq)z(jQ) () = 1+427(4) ” (7.5)
[

(2)
ALyyy = Yyy

+CAeB[

where the functions Y‘(} 2, and Y‘% are defined in (4.31) and (4.33).

The effective Lagrangian (7.5) obtained is manifestly gauge invariant, and is valid
for photon and neutrino off-shell. Consequently, it can be used in an analysis of the
neutrino electroweak processes in a magnetic field, as the external-field-induced
vertex of the v+ interaction.

However, the kinematics of the processes with photons in a strong magnetic field
essentially depends on the photon dispersion properties which were analyzed in
Sect.4.2. A big difference of the 2nd mode photon dispersion properties below and
above the threshold qﬁ = 4m3, which is seen in Fig.4.2, leads to different neutrino

processes being possible in the regions of the plot (qi, qﬁ), as is shown in Fig.7.3.
A small region depicted by the rectangle where the photon dispersion slightly deviates
from the vacuum one, corresponds to the radiative decay of the massive neutrino
Vi —> V7.

7.1.2 Photon Production by the Massless Neutrino v — v~y

The process v — v+ in a magnetic field was investigated in the cases of a relatively
weak field [3], a strong field [4], and an arbitrary field [5]. In these papers, only
the region of relatively small neutrino energies, £ < 2m,, was considered. For
the case of larger neutrino energies, E 2 2m,, which is interesting in the light of
possible astrophysical applications, large radiative corrections become significant,
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(fﬁ

4m?

v — vy

vi|— vy

0
a3

Fig.7.3 The set of the neutrino processes being kinematically allowed, depending on the 2nd mode
photon dispersion properties in a strong magnetic field

which are reduced to the photon wave function renormalization (4.10). One more
essential factor is the significant deviation of the 2nd mode photon dispersion from
the vacuum one; see Fig.4.2. Both these factors were taken into account in [6].

The general expression for the effective vy vertex is represented in (7.5). We note
that the vertex is enhanced substantially in the vicinity of the cyclotron resonances
(4.12) as it took place for the photon dispersion operator in a field. The amplitude of
the transition v(p) — v/ (p’)+~(q) is simplified essentially in a case of high neutrino
energies, £ > m,, and in the strong field limit where the strength is the maximum
physical parameter, ¢ B > EZ. The field-induced amplitudes of the processes of vy
interactions where real photons participate with the polarization vectors defined in
(4.10), take the form

M) =-S5 Y2 ey o),
N ﬁ
G V2 - .
Mwn@) = =5 X2 ey q@ iy + Ca eBlape) (Vi) = 1) .

472/2 2
w\/'m

where Z1, 2, are the renormalization factors defined in (4.11), and j, is the neutrino
current. The amplitudes (7.6) describe both the photon emission in the neutrino

(7.6)
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process v — v/ (it can be either the radiative decay of massive neutrino or the
radiative transition of massless neutrino), and the photon decay into a neutrino pair
vy — V.

As was mentioned above, the dispersion of the 1st mode photon slightly deviates
from the vacuum law even in a strong field. It means that the collinear kinematics is
realized in the process v — vy(1:

Ja ™~ qa ™~ Pa ™~ P;- (7.7)

Consequently, the amplitude M (vvy(") has an additional suppression because
(qej) = (gpq) = 0. On the other hand, the kinematics is far from collinearity in
the transition where the 2nd mode photon participates, especially near the cyclotron
resonance where qﬁ tends to 4m? from below.

We note, that the amplitude M (vv®)) would have the square root singularity in
the point qﬁ = 4m£ without taking the renormalization of the photon wave function

into account. With the renormalization accounted (the factor 4/ Z,) the amplitude
becomes finite:

G B
M@y = =5 2 [Cv(q@)) + Calaped)]. (7.8)

4 Iy
s qi

The calculation of the process probability is performed in the conventional way for a
two-particle decay. In the integration over the phase volume of the final photon, one
should keep in mind its dispersion law: w >~ |g3].

The result for the probability of the process v — vy is rather simple in the
case eB > EZsin% 0,

G2
W — vy ®) ~ %(c\% + C2)e? B2E sin2 0, (7.9)
T

where E is the energy of the initial neutrino, and 6 is the angle between the momentum
of the initial neutrino and the magnetic field direction.

The probability of the process v — v is also nonzero in the region of Fig. 4.2
which is above the threshold of the e~e™ pair creation, qﬁ > 4m§. This is due
to an existence of the imaginary part of the polarization operator which causes an
uncertainty of the photon dispersion in a magnetic field in this kinematic region.
However, the tree-level channel v — ve e considered earlier dominates in this
region.

For the four-vector Q¢ (6.59) of the neutrino energy and momentum loss in the
considered strong field limit, ¢ B >> E? sin” 6, one obtains for the process v — vv:

1 20y C
T=-Ew(1+ Y2 coso), (7.10)
4 Cy +C;
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1 2CyCax 1 .
]:ZZZEW (cos@—i—m), FL = EEW sin 6, (7.11)
where the probability W should be taken from (7.9).

The asymmetry (6.69) due to the process v — vy differs from its value (6.70)
obtained for the process v — ve~e™ by the factor ~ a(eB/E?), or more exactly:

B
AD ~ 2meE—2A<“>, (7.12)

where A©® is the value defined in (6.70). It is seen that the contributions of the
processes v — v and v — ve~e™ into the asymmetry could be comparable in the
strong magnetic field despite the suppressing factor « in (7.12).

7.1.3 Photon Decay into the Neutrino Pair v — vv

The process v — v is kinematically allowed (¢ > 0) in a magnetic field owing
to specific features of photon dispersion. This is so in the region qﬁ > 4m§ for the

photon polarization 6((12) and in the region qﬁ > (me++/m? + 2¢B)? for the photon

polarization s,(ll ),

An analysis reveals that, in the considered region (g2 > 0), the photon “mass”
induced by a magnetic field is much less than the photon energy w: ¢> < w?.
This implies that the photon decay v — v occurs under the condition of collinear

kinematics (7.7), so that the neutrino current can be represented as
Ja =4/ x(1 = X) qa, (7.13)

where x = E/wand | —x = E’/w are the energy fractions carried by the antineutrino
and the neutrino, respectively.

From this and from (7.6), it follows that, in the collinear limit, the amplitude for
the decay of the 1st mode photon vanishes and that the expression for the amplitude
describing the decay of the 2nd mode photon becomes considerably simpler; that is,

M(l/l/’}/(l)) ~ 0,

My @) = 2"2% Va(l =x) [EqFF]'? T gp). (7.14)

where we took into account that Z, ~ 1. The dimensionless field form factor J (qﬁ)
has the form
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1 1
Jah =5 (1-1h)

Clﬁ cos Sut — cos 3t
23 sin 3t “

The process under consideration involves three particles, but its amplitude is not a
constant, in contrast to one that occurs in a vacuum. The reason is that the amplitude
now depends not only on the 4-momenta of the particles involved but also on the
strength tensor of the external field. Therefore, the probability of this process is not
merely the product of the amplitude squared and the phase-space volume, butis given
by

X2

1 2
W(fy(z) — Vi) =—— [ dx ‘M(VV’YQ))‘ . (7.16)
167w
X1

The limits of the integration in (7.16), x| and xj, are defined by the ratios of the
neutrino masses to the photon “mass”, /l,-z = m%/qz, i =1, 2, and can be represented
as

Ma= (et =1+u— 2
12=5Exp). e=1ld4p—puj

p =1 = G + )L = G — )2

Here, € and p are, respectively, the energy and the momentum of the ith antineutrino
in the ratio to v/¢?/2 defined in the reference frame comoving with the decaying
photon. Substituting expression (7.14) for the amplitude M (vv+®)) into (7.16), we
arrive at

2 2
a Gg Cy

W@ 1) =
(7 - le/l) 1271'4(,()

PGFFq) 17D [1 +? k=20 - M?ﬂ

x JU = (i 4 )20 = (i = )], (7.17)

The integral J depends on the variable qﬁ. The physical meaning of qﬁ is seen from
the relation

2 sin% 0, (7.18)

q; ~ g ~w
where 6 is the angle between the momentum q of the decaying photon and the
direction of the magnetic field B.

The expression (7.17) for the probability describes only one channel, the decay of a
photon into a neutrino of the type j and an antineutrino of the type i, but only the total
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decay probability representing the sum over all allowed modes (y1; + pj < 1) is the

quantity of physical interest. Assuming a hierarchy in the neutrino mass spectrum—
2

that is, m; K q2 fori < Ny and ml2 > q2 for i > Ny, (thus, N is the number of
the “light” neutrino species)—we obtain the total probability of the photon decay in
the form

aGLc?
SZEZA 2qFFg) 1T @I (7.19)

Np
W=> Wu? - v = i

ij=1
where

Np

— 1

ci=>ck= VL= U1 -U?,
ij=1

N
Ur=> Uil <1
i=1

If all three neutrino species are “light”, m,2 < q2 (N = 3, U? = 1), we have

= 3/4, and the probability of the decay v» — wvi is independent of the
parameters of mixing in the lepton sector.
The function J (qﬁ) is simplified in the two limiting cases.

(i) If the magnetic field is the largest parameter in the problem (eB > qﬁ), we
obtain

1—v? 1+v .
J(gp) ~ i (ln T m) +1, (7.20)

where v = /1 — 4mg/qﬁ.

(i1) In the opposite case of eB K qﬁ, we arrive at
J(g) ~ 1. (7.21)
At first glance, it may seem that, in view of relation (7.20), the decay probability
(7.19) in a strong field has a pole singularity at qﬁ — 4m3. However, a more accurate
solution of the dispersion equation for a photon in this limit shows that
laf = 4mZlmin = W Iyt (7.22)
An apparent singularity like this, but of the square-root type, is known [7] to be

encountered in dealing with the photon decay into an electron—positron pair in a
magnetic field, v — eTe~. By taking into account the dispersion of the photon in
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the process v — eTe™, it was shown in [8] that the decay width is everywhere finite
and that, at qﬁ ~ 4mg, it reaches a maximum value of

(7.23)

W—>€7€+)max - 2

- R (2aes)2/3 e
w

2
me

By virtue of relations (7.22) and (7.23), the probability of the decay process
~ — v is also finite, and its maximum is

1 2aeB\'3 — eB
2 _ 2,2
Winax(Y? — viv) = W (m—%> (Grpmy) Ci - (7.24)

The probability (7.24) of the electroweak process v — vv is much less than
the probability (7.23) of the process ¥ — e™e™ by the factor (Gg mg)2 ~ 10723,
However, the former may play the role of an additional source of neutrino cooling
in astrophysics.

Let us estimate the energy carried away by neutrinos from a unit volume of the
photon gas per unit time. This quantity, referred to as neutrino emissivity, is given

by
3
Q0= /dN wW = /(dk 1 TwW. (7.25)

27T)3 ew/T

Here, we considered that only the 2nd mode photons in (4.10) contribute to the
emissivity. In our estimate, we assume that all neutrino species are light: m,2 < q%,
C2 =3/4.

Substituting the probability given by (7.19) into (7.25), we can recast the expres-
sion for the emissivity into the form

2 2
0=0FB) s rry ~006x 108 2 (BY £y, (26
8t ¢ scm3 \ B,
where
F(T) = / du (1 —u?) / -1 @hP (1.27)

Here, 7 = T /2m,, the variables of integration are given by u = cos 6, x = w/2m,,
and the argument of the function J is qﬁ = 4m§ x2(1—=u?), x is defined from (7.22).

As the analysis shows, the function F(7T') slightly depends on the field strength
and has the following form in a wide temperatire region, with the only restriction
T Z me:

F(T) ~

ne

4<(5) (—) : (7.28)
7T
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where ((5) >~ 1.037 (¢ is the Riemann zeta function).

At low temperatures, T < 2m,, the function F(T') is exponentially small,
F(T) ~ exp(—2m,/T).

Finally, we estimate the contribution of the field-induced photon-decay process
v — v to the neutrino emissivity under the conditions of a supernova explosion.
We assume that, in the central region of the explosion of a size of a few hundred
kilometers, a strong magnetic field of toroidal type is generated [9, 10]. We then

have
dE. sere( B \f{ T \( R Y\
— ~ 10" = — : (7.29)
dr s \105G) \2Mev) \100km

Recall that the estimated value for the total neutrino emissivity of a supernova is about
102 erg/s. We note that the contribution of the process ¥ — v is independent of
the neutrino flavors. It can be significant in the low-energy region of the neutrino
spectrum.

7.1.4 Radiative Neutrino Transition v — v~y in Strongly
Magnetized Plasma

The process of the radiative massless neutrino transition ¥ — v7 (neutrino
Cherenkov process) is forbidden in vacuum, and it becomes allowed in the presence
of plasma and/or magnetic field. There exist several papers where this transition was
studied in plasma or magnetic field separately. In plasma the process v — v~ was
firstly investigated in Ref. [11] and later in Refs. [12, 13]. In a pure magnetic field
the radiative neutrino transition v — v~y was studied in the papers [3—6]. In the
framework of four-fermion theory the amplitude and the probability of the process
were calculated in Refs. [3] and [4] in the crossed field and strong magnetic field
respectively. In the Standard Model the amplitude of the neutrino transition v — v~y
was found in [5, 6] for the arbitrary magnetic field strength. In the paper [5] the case
of the moderate neutrino energies, E < 2m, was studied in the kinematical region
where the final photon dispersion law was closed to the vacuum one, g2 = 0. The
limit of the large neutrino energies and strong magnetic field was investigated in
Ref. [6]. There is that case which could be realized at the Kelvin-Helmholz stage of
supernova remnant cooling, when the energies of the neutrino are £ >~ 10—20 MeV
and the magnetic field strength could be as high as 10'°—10'7 G [14, 15]. It was
shown in [6] that the main contribution into the probability of the neutrino transition
v — v7y was determined from the vicinity of the lowest cyclotron resonance, when
the amplitude of the process and photon polarization operator contained simultane-
ously the square-root singularity.

The purpose of this section is to study the influence of the electron-positron plasma
on the process of the radiative massless neutrino transition v — v7y in a strong
magnetic field. The presentation is based on Ref. [16]. This process is considered
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in the framework of the Standard Model using the effective local Lagrangian of
the neutrino-electron interaction (4.66). We investigate the limit of ultrarelativistic
strongly magnetized plasma, when the magnetic field strength is the largest physical
parameter

eB > E%, 1, T? > m?. (7.30)

Here, E is the initial neutrino energy, . is the electron chemical potential, T is the
temperature of plasma. Under these conditions electrons and positrons in plasma
occupy dominantly the lowest Landau level.

Notice that the amplitude and the probability of the process v — v+ depend
essentially on the polarization of the final photon. In a general case there exist three
eigenmodes of the photon polarization operator. The corresponding eigenvectors can
be written in the following form:

) (CISO);:,. L0 _ (5195)/1,. RON ‘12(‘]9090);:, - CI/L(QSDSDQ) ‘
a 2 # 2k 222
q1 q 97941

Only two of these modes, s/(,,l) and 6/(?) are the physical one in the pure magnetic field.

As the analysis shows, the presence of the strongly magnetized plasma doesn’t modify
the eigenvectors (7.31) but modifies the eigenvalue corresponding to the vector 5&2)
only. This is due to the fact that the interaction of the two other eigenmodes with the
electrons and positrons which occupy the lowest Landau level is strongly suppressed
under the condition (7.30). Hence, only the photon with eigenvector 5&2) can be
created in the process under consideration, as it takes place in the pure magnetic
field, see Sect.7.1.2.

The process of the radiative neutrino transition is depicted by the Feynman dia-
gram, see Fig. 7.1, where the double line corresponds to the propagator of an electron
in the presence of a magnetic field and plasma. Several methods are known in liter-
ature describing the process in the background plasma. Here, we use the real-time
formalism. The general expression of the real-time propagator in an external field
can be found in the paper [17]. In the limit of a strong magnetic field the electron
propagator in plasma can be presented in the form:

(7.31)

4
St v) = 6@ [ 9P o ipey) 732
(x,y)=e 2 (p)e ; (7.32)

where

— — 2im fr(po) 8(pf —m?)),

_ .2
S(p) = 2((yp)| +me)M-e WB(—Z 5
Py —mg +1ie€

(7.33)

1
Sr(po) = f—(p0)O(po) + f+(=po)O(—po), [I-= 5(1 —imy2).
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Here, f+(po) are the distribution functions of electrons and positrons in plasma

f+(po) = e(PoFue)/T 4 1°

As it was noticed, in the case of two-point function the noninvariant phase factors
@ (x, y) were cancelled: @ (x, y) + @(y, x) = 0. With using the propagator (7.33),
the amplitude of the process can be presented in the form:

M= Mg +./\/lp1, (7.34)

where Mp is the amplitude of the process v — v+ corresponding to the pure
magnetic field contribution (T = u, = 0). Following Ref. [6], it can be expressed
in the form

eGg eB
M
YN f

where the function H(z) is defined in Eq. (4.18). It should be noted that M B is the
amplitude with the definite photon polarization corresponding to the mode ¢, @ from
Eq.(7.31).

The second term in Eq. (7.34), M, is induced by the coherent neutrino scattering
on plasma electrons and positrons with photon radiation. For M ,; we find

2
qj
{Cv(jea) + Cali)} H (4 2) (7.35)

My = - feBm 2 Jat (cviiga) + Catin)

d _(e) + €
x/ﬁ—f ©) f+§>2. (7.36)
€ 4(]”1)” - (q”)
As was mentioned above, the amplitude M p contains the square-root singularity
which is connected with the cyclotron resonance on the lowest Landau level. In the
vicinity of the resonance point qﬁ = 4m§ it becomes:

N eGg eB
Mp >~
477\/_ /4 m —q”

It is particularly remarkable that the amplitude M ,; contains the singularity of the
same type. In the limit qﬁ — 4mz the total amplitude (7.34) can be presented in the
following form:

{Cv(jpqg) +Caljq)y). (7.37)

lg0|
M~ My F(zT) (738)
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where inh
sinh x Lhe
Fx)= ———, =—.
*) coshx + coshn =

It should be stressed that not only the amplitude M has the singular behaviour
but the photon polarization I7® as well. It can be obtained from Eq. (7.38) by the
following replacements

G
) F . 2
H()z—/\/l(ECV—>€,CA—>O,]Q—>5&))'

For 17 one has:
o ~ _ 20¢Bme . (@) . (7.39)

/4mg — qﬁ 2T

A large value of 17 near the resonance requires taking account of large radiative
corrections which reduce to a renormalization of the photon wave function:

81‘[(2)
e? 5 Dz, zZ7'l=1- (7.40)
.
Using the formula (7.40) for the amplitude we find
eGg eB l90]
M= VHM~ =L (Cy(jgg) + cA(quf( L ) . (4

477\/2

Thus, the photon wave-function renormalization corrects the singular behaviour of
the amplitude.

The probability of the process ¥ — v7y can be obtained by integration of
the amplitude over the phase space with taking account of the photon dispersion
af —q1 =1?.

1 dp’
—e—49/T E’qo ’

EW = - 2/‘/\4\/27‘ 8(E = E' = qo) - (7.42)

where the non-trivial photon dispersion law go = ¢o(q) should be taken into account.
We assume that the neutrino distribution is closed to the Boltzmann one, so one can
neglect the deviation of the neutrino statistical factor from the unity. The probability
(7.42) is rather complicated in the general case. Here we present the results of our
calculation in two limiting cases of the cold plasma, p, > T, and hot plasma,
T > pe. Notice that in the vicinity of the cyclotron resonance, which gives the
main contribution to the probability, the photon dispersion has a rather simple form

qo ,/q32 +4mg.
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In the limit of the low temperature, i, > T, for the probability we obtain:

a(GreB)* E 5 5 A, 4y,
Wr ~ SOFEB) B Lm0 1 — = 1 o(1-—u-—
LT = [( v —Ca) u g +w u——
4 4
+ (Cy + Cy)? [1—#— Ze(l—u)j|(~)(l+u— Z)] (7.43)

Here, u = cos @, 0 is the angle between the initial neutrino momentum P and the
magnetic field direction.

In the opposite limit of high temperature, 7 > ., the result for the probability
of the process v — vy is:

GgreB)* T E(l —
Whr ~ %[(Cv — C*( +u) Fy (%)
+(Cv 4+ C2(1 =) F (%) ] (7.44)

1
Fi(x) = x 4+ In(cosh x) — 1 tanh”® x — tanh x .

In the limit of the rarefied plasma both expressions (7.43) and (7.44) provide:

a(GpeB)?

Wp >~
B 82

(C2+CHEN—u?). (7.45)
This result reproduces the formula (7.9) for the radiative neutrino transition proba-
bility in the pure strong magnetic field.

Keeping in mind possible applications of our results in astrophysics we calculate
the mean values of the neutrino energy and momentum losses. These values were
defined earlier by the four-vector Q¢, see Eq.(6.59):

For the zero and third components of Q“ we obtain the following expression in
the limit of cold plasma, T < fi:

v ———FE7(1 -
Q a2 L)
1642 4u
2 e e
lbu——Fe To(1+u—
: [(CV+CA) [ i E2<1+u)} ( i E)
164 Ay
£ (Cy—C)? |1—u——Fe |of(1-u- . (146
(v A)[ ! E2<1—u>} ( ! E)] (740

In the opposite case, when p, < T we find

a(GpeB)?
272

0,3 ~
0 ~

ETZ[(CV O =) Fy (M)

4T
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(Cy+Ca)y(d+uF, —ar ) (7.47)

1 X (1 4 2e*
F>(x) =  tanh r_ w
2 T T r e
2
4 Liy(—e*) — In4 + —
12°

+ @2+ x)In(l + &)

where Li; (x) is the polylogarythm function. Notice thatin the limit 7 — 0, g, — O,
both expressions (7.46) and (7.47) reproduce the formula for the four-vector of losses
via the process ¥ — vy in the pure strong magnetic field, see Egs. (7.10) and (7.11):

03 _ a(GreB)? 342
OV =—gn El-uw)
x [(cv +C*A4u) £ (Cy — Ca)*(1 — u)]. (7.48)

We note that electron-positron plasma and photon gas make an opposite influence
on the process under consideration. On one hand, the electron-positron background
decreases the amplitude of the process (F(gp) < 1). On the other hand, the prob-
ability and the mean value of the neutrino energy and momentum loss increases
due to the effect of the stimulated photon emission. The numerical analysis, for de-
tails see Ref. [16], shows that the combined effect of electron-positron plasma and
photon gas leads to the decreasing of the probability in comparison to the result in
the strong magnetic field, see Eq. (7.45). The similar supressing plasma influence
on four-vector of neutrino energy and momentum losses takes place. Therefore the
complex medium plasma + strong magnetic field is more transparent to neutrino
with regard to the process v — vy, than the pure magnetic field.

7.2 Compton-Like Interaction of Neutrinos with Photons

7.2.1 The Amplitude of the Process v~y — vv in Vacuum

7.2.1.1 Standard Weak Interaction

Historically the reaction vy — v was one of the first photon—neutrino processes
considered in the context of its astrophysical application. In 1959, Pontecorvo sug-
gested that (ev)(ev) coupling could induce reactions leading to energy loss in
stars [18]. One of these processes, vy — v, caused by this coupling was compared
in [19] with other neutrino reactions and a rough estimation of the neutrino energy
loss rate was obtained. In both papers the authors used the four-fermion (V —A) Fermi
model. The process of conversion of the photon pair into the neutrino-antineutrino
pair is described by the two Feynman diagrams with a virtual fermion in the loop
and with the photon interchange, see Fig. 7.4.
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Fig. 7.4 Feynman diagram n.-( kl )

for the process vy — vv; / v(p1)
a large circle represents the
effective weak interaction of 4 (Tl “ 7 )
a fermion with a neutrino, see -
Fig.4.8
v p2
-'}*(k;g) (p2)

Given the gauge invariance of the electromagnetic interaction, the amplitude of
the process can be written in the most general form:

@] G _ « v
M== 7; [7¢(p1) Toppw ve(—p2)] 127 1", (7.49)

where the index ¢ defines the neutrino flavors, ¢ = e, p, 7,1 f af — gagh — kBe is
the tensor of the photon electromagnetic field in the momentum space. The tensor
T3,y which is the Dirac matrix, has the dimension of an inverse mass and must be
built from the available covariants.

Apparently, the very first correct conclusion about the amplitude was done in
Ref. [20]. It is the Gell-Mann theorem: in the case of massless neutrinos, real photons,
and in the local limit of the standard weak interaction, the amplitude is exactly zero.
Qualitatively, this can be seen from the following argument. In the center-of-mass
frame, the left-handed neutrino and the right-handed antineutrino carry the total
angular momentum equal to a unit. However, as it was shown by Landau [21] and
Yang [22], the system of two photons can not exist in a state with a unit angular
momentum (Landau—Yang theorem). In terms of the tensor analysis, this means that
with chirality of massless neutrinos and Bose symmetry of photons, there are no
covariants to construct the tensor 7,3, .

The nonzero amplitude (7.49) arises if any of the Gell-Mann theorem conditions
is broken. It may be non-zero neutrino mass, non-locality of the standard weak
interaction, non-standard neutrino interaction, or off-shell photons. In the case of
massive neutrinos, the process becomes allowed [23, 24] due to the change of a
neutrino chirality, with the amplitude being proportional to a neutrino mass. To
illustrate the Lorentz structure, we present here an expression for the tensor 75,3,
in the case of low-energy photons (w < m,), where the electron loop gives the
maximal contribution to the amplitude:

i I\ m
Topuw = E (5136 - E) m_l;[ V5 Eapuv- (7.50)

When the non-locality of the weak interaction via the W boson is taken into account,
the momenta of a neutrino and an antineutrino can enter the amplitude not just as

! The expression (7.49) can be easily generalized to take into account the lepton mixing.
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a sum but separately, providing the following structure [25-27]:
16i my 3\ 1

=8 (24 2) L

3 Me 8) my,

% [Ya 981 (Pt — P2v + Y gra(P1 — P2)g] (1 —75) . (7.51)

We see that in both cases, the amplitude has a strong suppression either through the
small neutrino mass in the numerator or the large W boson mass in the denominator.

7.2.1.2 Model with a Broken Left-Right Symmetry

Another deviation from the conditions of the Gell-Mann theorem, in which the
process vy — v is also possible, is realized when the neutrino changes its chirality
in the effective Lagrangian of the lepton-neutrino interaction. When writing the
Lagrangian in the form of the neutral current coupling, the neutrino chirality change
is provided if currents are scalar or pseudoscalar. This case considered in Ref. [28]
takes place in a model with a broken left-right symmetry [29-36] and with the mixing
of vector bosons interacting with the left-handed and right-handed charged weak cur-
rents [33]. In this model, the Lagrangian of the ve W interaction can be represented
as

L= 2% [[é%(l —5) vel (Wi' cos ¢ + Wy'sin ()

+ [eVa (1 4+ 75) vel (=W{'sin ¢ + W5 cos () + h.c.{, (7.52)

where W) are the charged vector W bosons with a definite mass, and ( is the
mixing angle. The existing restrictions on the parameters of the model are obtained
in low-energy accelerator experiments, and have the form [37]

My, > 715GeV, ¢ <0.013. (7.53)

Due to the smallness of the mixing angle, the state W, almost coincides with the
right-handed boson Wg.

There also exists a stronger limit on the model parameters, obtained from as-
trophysical data, namely, from the analysis of neutrino events from the supernova
SN1987A. In combination with accelerator data, the limits were obtained [38]:

My, >23TeV, (<107, (7.54)
For realization of the process 7y — v, a part of the effective vvee interaction

Lagrangian is important, providing a non-standard neutrino or antineutrino chirality.
This is possible due to the mixing of the gauge bosons, when the left-handed and
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right-handed currents from Eq. (7.52) are multiplied in the effective Lagrangian.
Given the smallness of the mixing angle and the mass ratio My, /M, , we can write
the Lagrangian of the vvee interaction in the form

G
Let >~ —4 ¢ \/_g [(ee) (Weve) — (ey5€) (Veysve)] . (7.55)

There exist two new channels for the conversion of the photon pair into the neutrino-
antineutrino pair, if compared with the standard model, namely:

vy = WL (W)L, 7Y = We)R(Ve)R - (7.56)

Here, (v.)r and (7)1 are the states which are sterile with respect to the standard
weak interaction. The total spin of a neutrino pair in both processes (7.56) in the
center of mass is zero, and the process vy — vv is open.

Representing the amplitude of the process caused by the effective Lagrangian
(7.55) in the form of (7.49), we have the following expression for the tensor T3,

4¢m, 1
Ta/jm/ = m 1+ 5(1 —471)I(T) Gav9Bu-

i

+ Z[(T)’YSEaﬁ/W] , (7.57)
where ' |
—Xx
L /dx / dy — (7.58)
2(kik2) ) ) T —Xxy —ie

Note that our result (7.57), coinciding in terms of the tensor structure with the one,
which can be extracted from Ref. [28], differs from it in numerical coefficients.

The amplitude of the process vy — v in this model has also the suppression
due to the smallness of the mixing angle (.

7.2.1.3 The Case of Virtual Photons

Another case of a non-zero amplitude is realized if one of the photons [39] or both
photons [40] are off-shell. In this case, k., f/** # 0 and the photon momenta can
participate in the construction of the tensor 75,3,

Let us calculate the total amplitude of the process vv* — v~* in the standard
model in the case of virtual photons, with non-zero neutrino mass, and with a possible
mixing in the lepton sector [1, 2].

As the analysis shows, the neutrino (V — A) current is factorized in this amplitude
which can be presented in the following general form:
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« GF ~(I/)

M=2 "2 e10€35 Lagp(ki. ko), (7.59)

where jy) = vj(p2)7y (1 — ¥5)v;(p1), the indices i and j (generally, i # j) label

the neutrino states with definite masses; e 2 are the 4-vectors of polarization and
k1,2 are the 4-momenta of the photons. As it follows from the above, the tensor L3,
could contain only two independent momenta k; and k.

Let us consider in more detail the contribution to the amplitude from the Z boson
exchange. For its obtaining, it is necessary to summarize over all fundamental charged
fermions f, both leptons and quarks, in the loop. The L3, tensor takes the form:

2 ()
Lagp = Z T3y Q% Lyg, (7.60)
f

where Q  is the electric charge of a fermion in units of the elementary charge e, T3 ¢
is the third component of the weak isospin. For the contribution of a single fermion
we obtain the following expression:

1 1—x
. dy
ngpzle,\ugp/dx/;’g)\akm[klzx(l—2x)+k§y(1—2y)
0 0
— 4(kika) xy] 4 2 gaa kop kT x (7.61)

+ 4 kiykoy xlkoay — kia(1 —x)]] +(ky < —k2, a < P),

where the notation is used:
ap =my +2(kik)xy — ki x(1 —x) — k3 y(1 = y). (7.62)

In the formula (7.61), the terms are omitted that do not depend on the mass of a
fermion, since, due to the known relation D ¥ T3¢ Q%C = 0 (for each generation),
they do not contribute to the amplitude. The expression (7.61) can be rewritten in
such form that the amplitude becomes manifestly gauge invariant. For this, we use
the photon electromagnetic field tensor in the momentum space

f:u,l/ = ky,eu - kl/e/u (7.63)
and also the dual tensor |

fuu = 5 5u1/aﬁfaﬁ- (7.64)
Introducing the notation .

R =erae3sLll) (7.65)
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we find the expression for the vector Rf)f ) representing the amplitude in an explicitly
gauge invariant form:

1 1—
oz d
R:)f) = 4l[f2p/¢ fl/w/de / _ij k1, (1 = x) — k2, ¥]

 Fipnfo / d / [kx — kw(l—y)]}. (7.66)

In the transition from Eq. (7.61) to (7.66), the following identity was used:

1
/dx
0

An analysis shows that the contribution to the amplitude of the diagram with a
virtual W boson is also expressed through the vector (7.66), where a charged lepton
only appears as a virtual fermion. The total amplitude of the process v;v* — v;v*
can be represented as

d—y K2x(1 - 2x) — K2yl —zy)] =0. (7.67)
f

oY~

a Gg
MZW\/'/EV) ZU,g VR +6; > Tip QR | (7.68)
f

where Usjy is a unitary matrix of the lepton mixing, £ = e, u, 7. The amplitude must
satisfy the requirements of the Gell-Mann theorem [20], but in the expression (7.66)
it is not obvious yet. Using the following relation for the tensors (7.63) and (7.64):

~ ~ 1 ~
fl/)u f2uo + f2pu flua = 5 fl;w f21/u 9pos (769)

R

we write the vector in the final form:

1 -
RY) = —4i [E(fl )y — k1) Almyg, ki, ko) (7.70)

— (fafik1)p Bmy, ki, k2) + (fi fak2)p B(m s, ko, kl)i|,
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where the functions are introduced:

1 1—x
ydy
A(m ,k],kg):/xdx/ )
! ) m  2aky — ke —x) — (=)
(7.71)
1 1—x ! d
B(mf,kl,kz)z/xdx/ (4 —x—y)dy 5 .
’ ! / m + 2(k1k)xy — k2 (I =x) —kyy(1 —y)

Thus, for the amplitude in the form of (7.68) and (7.70), the Gell-Mann theorem is
satisfied obviously.

The obtained amplitude in special cases coincides with the known results [23, 24,
39, 40]. Thus, the first term in Eq. (7.70) being substituted into Eq. (7.68), gives the
divergence of the neutrino current, i.e. it is proportional to the neutrino mass. For
photons on mass shell at low energies, w < m,, imposing £ = f = e and excluding
the lepton mixing, i = j = ¢/, Ug = &gk, one reproduces from the amplitude of
Egs. (7.68), (7.70) and (7.71) the expression for the tensor (7.50). In another case,
when both photons are virtual, k1 » # 0, the amplitude can be transformed in the case
of massless neutrinos to the form which coincides with the result of Ref. [40]. We
emphasize that the authors [40] introduced an artificial dependence of the amplitude
on the neutrino momenta. It is clear, however, that in this approximation (in fact in
the local limit of the weak interaction), the amplitude of the process vv* — v~* can
explicitly depend only on the photon momenta.

In this case at low photon energies, w < m,, the tensor T3, introduced in
Eq. (7.49) has the form:

i 1
Top Buv = 12m 2 (UleU - 5 6ij) ’Yp(l - 75) (Epuuuklﬁ + EppaﬁkZV)- (7.72)

It should be noted that the total amplitude (7.68), (7.70) allows in particular to
obtain the first terms of the expansion over the external field of the amplitudes of
the radiative neutrino decay v; — v;< and of the non-radiative transition v; — v;
in the electromagnetic field of an arbitrary configuration. It is enough to replace in
Eq. (7.70) the electromagnetic field tensor of the one or both photons to the external
electromagnetic field tensor.

Let us apply the obtained amplitude of the process vy* — v~* to calculate
the probability of the massive neutrino radiative decay v; — v+ in an external
field [41, 42], in the case of relatively weak field. The field tensor of one of the
photons is replaced to the tensor of the constant uniform magnetic field:

gia =~ 0, filap —> iFa[}a Q0 = qa> J208 = fap - (7.73)
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Taking into account that the main contribution comes from the electron loop, and that
the photon dispersion in a weak field does not differ from the dispersion in vacuum
(q% = 0), we obtain the amplitude of the process v; — v Y

eGgCys B ~
= ﬁ = @GV, (7.74)

where C4 = U, ,-eU]’.*e — % 0;j. The expression (7.74) coincides with the linear in the
field term of the amplitude presented in Eq. (4) of Ref. [41].

Assuming for simplicity the finite neutrino to be massless, we find the probability
of the decay v; — v~ in the rest frame of the initial neutrino:

Gic? B\’
W= ZEZA,S (—) . (1.75)

T 187 19273 TV \ B,

The probability (7.75) agrees with Eq. (5) of Ref. [41], but it is 4 times less than the
probability obtained from Eq. (32) of Ref. [42] in the weak field limit.

7.2.2 Neutrino Scattering in the Coulomb Field of a Nucleus

As one more illustration of the application of the formula (7.68), we consider the
scattering of a high-energy neutrino on a nucleus with the photon radiation. In the
cited papers [23, 24, 39], only astrophysical manifestations of the process vy —
vy were studied . Our aim is to explore the possibility to detect this reaction in
the laboratory experiment with high-energy neutrinos from the accelerator. From
the observational point of view, this process would appear as a bremsstrahlung in the
neutrino scattering in the Coulomb field of a nucleus

v; 4+ nucleus — v; + v + nucleus. (7.76)

The experimental evidence of the reaction should be the detection of a single hard
photon without any escort.

The reaction (7.76) amplitude can be obtained from Eqs. (7.68) and (7.70) taking
one of the photons (e.g. 72) to be real. In this case one has f2,,k2, = 0. We shall
regard m,, = 0 and neglect the lepton mixing. Then the amplitude will be defined
by the second term in Eq. (7.70). Inserting (Ze/ k%)JN instead of ej,,, where J,, and
Ze are the electromagnetic current and the charge of the nucleus, k1, and ey, are the
momentum and the polarization vector of the virtual photon, one obtains
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. Zea GF )
M =4i = A Eppat 3y Iy kaa 63/3[3(77% ki, k)
+ > T3y Q% B(my. ki, k2>] : (1.77)
f

Here, m is the mass of the charged lepton which is the partner of the neutrino taking
part in the reaction. Let us examine the case of small transmitted momenta when the
nucleus is still nearly motionless. The momentum modulo |k | is restricted then by
the value of k,, which can be estimated as the inverted nucleus radius 1/r ~ k;, >~
200 x A~!/3 MeV. As the analysis shows, at high energies of the neutrino all the
charged fermions contribute to the amplitude (7.77) except z-quark (we still presume
(pk1) < m%,v < m,z). In the leading log approximation, the mass of a fermion in the
integral B(m ¢, k1, k2) defined by Eq. (7.71) can be neglected. We get the following
expression for the spectrum of radiated photons:

Za\? G2k2 d 1 2 2
do = & (22) CEfm AW 1_£+_(£) m (). (7.78)
54w T T w E 2\E ki

where w is the photon energy, E is the initial neutrino energy, k,, is the maximal
momentum of the nucleus recoil. For the high energy neutrinos, within the leading
log approximation the total cross-section of the process is

a3 2> Gik% ., (2E
~ (=) S IRt (22) 7.7
7 (277) 7 x (km) 7.79)

For example, for a neutrino energy £ = 100 GeV we have

o~ —-10"%cm?. (7.80)

This small value of the cross-section makes it difficult to observe the
bremsstrahlung in the neutrino scattering by the coulombian field of the nucleus.
This is true even if one takes into account the distinctive signature of the reaction
as the production of a high energy photon without any accompanying particles. It
must be noted that the same signature in the neutrino reaction may correspond to
the coherent production of photons by nucleons of the nucleus [43, 44]. However,
the process we consider has a narrower angular distribution of photons, § < k;,,/E
instead of § < /k,,/E [43, 44]. Moreover, it is necessary to distinguish in the neu-
trino experiment between the electromagnetic showers produced by photons and by
recoiled electrons in the process ve — ve which has a cross-section 10* times larger
than (7.79).

Nevertheless, we hope that the experimental difficulties we have pointed out can
be overcome in the future. Then the process vy* — v+ we have discussed could
be accessible to observation. This process (one-loop at the minimum) could be one
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of the few tests for the validity of higher-order perturbation theory in the standard
model of electroweak interaction.

7.2.3 The External Field Influence on the Process vy — vv

As it was mentioned already, a strong magnetic field could enhance this process.
Since the electromagnetic tensor field F),, arises, it opens up a new opportunity to
build a tensor 7,,3,,,, in the amplitude (7.49). In fact, the field comes into the amplitude
in the form of the dimensionless tensor e F),, / mg, providing an extra enhancement
if the value of the field exceeds a critical value B, = m2/e.

The process vy — vv was investigated in Ref. [45] in the framework of the
standard model in a relatively weak magnetic field B <« B,, in the lowest-order
expansion over B/ B,, and for the case of low photon energies, w < m,. Just in this
approximation it is appropriate to use the effective Lagrangian obtained in Ref. [46]
from the amplitude of the process 7y — v and used in Ref. [45]. It follows from
Ref. [45], that the amplitude of the process depends linearly on the field. As we show
below, this growth takes place only at B < B,, but in a strong field B > B,, the
amplitude becomes a constant in the case of the standard weak interaction.

The process 7y — vv and the crossed channels were also studied in Refs.
[47, 48] in a weak magnetic field, and in a wide region of the photon energy, namely,
for w < my. In the limit w < m,, the amplitude obtained in Ref. [48] is consistent
with the result of Ref. [45]. Unfortunately, the amplitude is written in Ref. [48] in
a very cumbersome form, and just the gauge invariance test is extremely difficult to
conduct.

In an earlier paper [49], the process vy — vv was investigated in a strong
magnetic field B > B,, for low-energy photons, w < m,, and without taking into
account the contribution of the Z boson.

A general analysis of the three-vertex loop process vy — v in a strong magnetic
field, based on the asymptotic form of the electron propagator in the field, for arbitrary
kinematic conditions was first performed in Ref. [50].

Consider the general case of a three-vertex loop process in a strong magnetic field,
which is described by the Feynman diagram shown in Fig. 7.5.

In the process of transformation of the photon pair into a pair of neutrino and
antineutrino yy — v, two vertices are vectors, e.g. I'1 = I3 = V, and the third
one can be of the vector and axial-vector type in the standard model, I3 = V| A,
and can also be of the scalar and pseudoscalar type when going beyond the standard
model, I3 = §, P. In the case I3 = V, the diagram of Fig. 7.5 describes also the
photon splitting v — 7.

We will use the propagator of the electron in a magnetic field (see Sect.3.1). The
invariant amplitude of the process described by the Feynman diagram in Fig. 7.5,
with Egs. (3.1) and (3.19) in account, has the form
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M = egs / d*X d*Y Tr{(j33)S(Y) (227)S(— X — V) (e17)S(X)}

X e—ie(XFY)/2 ei(k]X—sz) _|_ (,yl AN ,)/2)’ (781)

where X = z—x,Y = x —y, I'3 is the matrix corresponding to S, P, V or A vertex,
g3 is the coupling constant, j3 is the corresponding part of the neutrino current in a
momentum space, €1, ki and €2, k» are the polarization vectors and the 4-momenta
of the initial photons.

Using the propagator of the form (3.1) and (3.2) in the three-vertex loop leads, in
general, to very cumbersome expressions. The relatively simple results were obtained
only for the process of photon splitting in two cases: in the weak field limit [51] and
in a strong field in the approximation of collinear kinematics [52, 53].

To analyze the amplitude of the process (7.81) in a strong field it is advisable
to use the asymptotic expression for the electron propagator (3.65). Substituting the
propagator into the amplitude, one obtains that two parts of it which differ by the
photon interchange, are proportional to the field strength B:

iagzeB ki %+ k2 kik k1 ok
M~ _lage exp(— 1L+ k5 + (k Q)L)exp(—i( 1 2))

(472 2¢B 2¢B

X /dzp Tr{(j313)S)(p + k2) (278 (P) (€1 S (p — k1)}

+ (< 7)), (7.82)

where S (p) = 2I1_((py) + me)/(pﬁ — mg). It should be noted that the projection
operator [1_ selects in the amplitude (7.82) only photons of the one polarization
from the two possible, namely, the second mode (see Eq. (4.10)),

e — Fapkp @ ﬁaﬁkﬂ

o ) a . (7.83)
J(kFFk) /(kﬁfk)
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Using the standard procedure, we can transform the trace in the second term of
Eq. (7.82) with the interchanged photons to the trace in the first term. This proceeds
with the change of sign for I3 = P, V, A (and the factor sin[(k|vk>)/2eB] arises
in the resulting amplitude) and without change of sign for /3 = S (and the factor
cos[(k1pka)/2eB] appears after summation).

So, when the magnetic field strength is the maximal physical parameter,
eB > ki, kﬁ, only the amplitude with the scalar vertex grows linearly with the
field.

7.2.4 A Conversion v~y — vv in the Left-Right Symmetric
Extension of the Standard Model

Using the effective Lagrangian of the vvee interaction with the scalar coupling
(7.55), substituting I3 = 1, g3 = —4 ¢ Gr/~/2 and j3 = [7.(p1)ve(—p2)] into the
amplitude (7.82) and integrating over the virtual momenta in the strong field limit,
we obtain

1—x

1 _
8 G B d
@ Gr ¢ = P ve—p2)] <D /dx/

0 0

<

[N}

wfmee a

X I [kf”x(l —2x) + k%”y(l —2y) — (kik2) (1 — 4xy)] Ao

— (1= 20)(1 = 2y) k§jk5) + (1 — dxy) kS kY

3
— 2x(1 - 20) k§ykyy = 2y(1 —2y) kzlkgll (7.84)
2 2
qj k? k
a=1-"Lxy—a-x—y( Lcs2y), (7.85)
me me e

where g = ki) + k2. The amplitude (7.84) can be rewritten in the explicitly gauge
invariant form (7.49):

a G w
M= — il [Ve(pl) Toppuy Ve(— pZ)] (2)(13]((2)” ) (7.86)

T V2

where the photon field tensors of the 2nd polarization only enter:

2
£ = ke — kgjel?.
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The tensor T3, in this case takes the form

1 1—x
dy -~ ~
dx a_ (I —4xy) AavApu
0 0

1 ~
+4(1 —x —y)(1 —2x —2y)q—2k1”(y Aﬁﬂkznyl. (7.87)
I

§|A
U:|cg

Taﬁ’uy =

To transform the amplitude to the form (7.86), the following non-trivial integral
identities were used:

1 1—x
Sx(1 —2x) — Ty(1 —2y)

/dx/dy =0, (7.88)

0 0
oz — 2y 4sa | —2x—2
/dx/dy yd=2y)+8S0—-x—y)1—-2x— y)E(), (7.89)

AN

0 0

A=1—-Zxy— (0 —x—y)Sx+Ty), (7.90)

where Z, S, T are the arbitrary parameters, N is an arbitrary integer; in this case,
N = 2. The identity (7.88) has been already used earlier for the case of N = 1 (see
Eq. (4.105)).

The expression for the amplitude can be simplified for the two limiting cases

(here, the polarization vectors 5( ) > are substituted already, see Eq. (7.83)):

(i) at low photon energies, w < m,:

__ 8a Gr § B )
377 \/zme B [Ze(p1) ve(—p2)] k%”k%”a (7.91)

(i1) for high-energy photons, w >> m,, in the leading log approximation:

2 1.2
16 G B 1 ki ks
~ 20 OF m Y2 g 00

¢ —m; [7e(p1) ve(—p2)] 5
V2B NG e

Calculating the cross-sections of the two processes, vy — (V)1 (V.)r and
vy — (Vo) r (Vo) R, by the standard way, we find that they are equal, 077, = opp = 0.
In the two limiting cases, the expression for the cross-section takes the form



http://dx.doi.org/10.1007/978-3-642-36226-2_4

7.2 Compton-Like Interaction of Neutrinos with Photons 257

212
207 G ¢? (B)2k1|k2|

< me) = , 7.93
owgm) = =i () S (7.93)
202GE¢* (B\? mS k3 k3
ow>me) ~ ——F> (—) —— I —— (7.94)

i BeJ kiyky o ome

7.2.5 Possible Manifestations of the v~ — vv Process in
Astrophysics

As the observable value in astrophysics, it is considered the stellar energy-loss from
unit volume per unit time due to the neutrino escape (neutrino emissivity). For the
process 7y — vv enhanced by a magnetic field, considered in the previous section
it can be written in the form

o=l / &>k 1 / d3ky 1
) 2m)3 ewl/T — ] 2m)3 ew2/T — ]
kik
(kik2) o (vy = vi), (7.95)
w2

X (w1 + w2)

where 7 is the temperature of the photon gas. Itis taken into account in Eq. (7.95) that
photons of only one polarization are involved in this process. Since only “sterile”
(anti) neutrino of a pair (see Eq. (7.56)) freely departs from hot and dense stellar
medium (other neutrino participating in the standard interaction, has a small free
path and is trapped) the cross-section should be written as (o1 + ogg)/2 = 0.

(i) The case of low temperatures, T < m,
In this case, substituting Eq. (7.93) into Eq. (7.95), we obtain

2 2 11
B T
~as5x108 T (LS ) (BY () 7.96
e s \oo3) \B,) U, (7.96)

Let us compare this value with the contributions to the neutrino emissivity
through other mechanisms in the vy — vv process, discussed in this chapter.
For example, for the contribution due to the non-zero mass of neutrinos, it was
obtained in Ref.[24]:

11
erg my\2 (T
~ 0.4 x 10° ( ) ) . 7.97
Qom) x scm3 \leV Me (7.97)

Substituting the cross-section calculated with taking account of the non-locality
of the weak interaction [26] into the expression (7.95), one obtains
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T 13
Otnioe) ~ 10 2 (—) . (7.98)

scm® \m,

It is seen that for B 2 B,, and for mixing at the level of { ~ 1073, the field-
induced mechanism of the reaction vy — v strongly dominates all the other
indicated mechanisms.

The case of high temperatures, 7 > m,

In the case of high temperatures, substituting Eq. (7.94) into Eq. (7.95), we obtain

2 2 3 5
erg ¢ B T T
~04x107 —= (—==) (=) (=) (n—) . 79
Q@) scm? (0.013) (Be) (mg e (7.99)
In order to make a numerical estimation, let us consider the Supernova explosion
with generation of very strong magnetic field B ~ 103 B,, see e.g. [9, 54-56],
with the temperature 7 ~ 35 MeV which is believed to be typical for the

Supernova core [57], and V ~ 10'8 cm3. For the contribution of the considered
field-enhanced process 7y — vv into the neutrino luminosity we obtain

2
L~ 10% % (ﬁ) . (7.100)

It is too small if compared with the typical Supernova neutrino luminosity
102 erg/sec. Nevertheless, for the field strength B > B, this mechanism could
dominate other discussed in the literature mechanisms of the process yy — vv
in the neutrino emissivity of magnetized stars.

As it was noted above, the amplitude (7.82) with the vector and axial-vector
vertices, I3 = V, A, does not contain in the strong field limit, eB >> k>, kﬁ,
a part linearly increasing with the field growth. This means that the amplitudes
both for the process 7y — vr with the standard vree interaction, and for the
photon splitting v — ~y do not depend on the field in this limit. It should be also
noted that neutrinos produced in the standard interaction, do intensely absorbed
by hot and dense stellar environment due to the same interaction. Thus, they can
not provide any significant contribution to the cooling of the central region of
the exploding supernova.

7.3 Neutrino Photoproduction on a Nuclei in a Strong

Magnetic Field

As it was mentioned above, the loop quantum processes whose initial and final
states involve only electrically neutral particles such as neutrinos and photons are of
special interest. The action of an external field on these processes is caused, first, by
the sensitivity of charged virtual fermions to the field. In this case, an electron as a
particle with the maximum specific charge e/m, plays the dominant role. Second,
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Fig. 7.6 Feynman diagram
forthey +~v+~v > v+rv
process

a strong magnetic field gives rise to a considerable change in the dispersion properties
of photons and, therefore, in their kinematics.
The contribution of the loop process of neutrino-pair photoproduction on a nucleus

N+ Ze—> Ze+~y+v+i (7.101)

in a strong external magnetic field to the cooling of stars was studied in the paper [58]
and it was stated that this contribution can compete with the contribution from Urca
processes. Therefore, the process (7.101), as one more channel of neutrino energy
loss, would be taken into account when describing the cooling of strongly magnetized
neutron stars. However, the photon dispersion in the field was ignored in Ref. [58].

In this section, the process of photoproduction of a neutrino pair on a nu-
cleus (7.101) is investigated in a strong magnetic field, with taking account of the
photon dispersion in a strong field. The presentation is based on Ref. [59].

The amplitude of neutrino pair photoproduction on a nucleus, Eq. (7.101), can be
derived from the amplitude of the interaction between three photons and a neutrino
pair, e.g.,

yt+y+y—>rv+D, (7.102)

whose Feynman diagram is shown in Fig. 7.6. As is known (see, e.g., [60]), three-
photon processes (7.102) in a strong magnetic field are more intense than the corre-
sponding two-photon processes, because the amplitude of processes (7.102) with the
vector-axial neutrino current increases linearly with the field, whereas the amplitude
of the vy — vv processes with such a neutrino current is independent of the field.

The amplitude of the process (7.102) in a strong magnetic field can be represented
in the covariant form [60]

8¢3Gre Bm? - - - L~ o
M = == ZET¢ (1 6ky) (e2pka) (e33k3) [Cy (jBka) + CajPka)]
22
x I (ky, k2, k3), (7.103)

Here, Cy and C4 are the vector and axial-vector constants of the effective vvee
Lagrangian (4.66); €123 and kj 23 are the polarization 4-vectors and photon
4-momenta, respectively; jo, = [P(q1)Va(1 — v5)v(—¢g2)] is the Fourier transform
of the neutrino current; k4 = g1 + g2 is the 4-momentum of a neutrino pair.

The form factor I (ki, k2, k3) has the form of the following triple integral with
respect to the Feynman variables:
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1 X y
1 a(ky, kz, k3)
ik k) =75 /dx/dy/dz[[mz—b(kl,kz,ks)ﬁ
0 0 0
+ k) < k) + {ky < k3}}. (7.104)
Here,
D = k3 (kaks) + k3 (k1k3) + k3 (kika) + 2(kika) (k1 k3)
+ 2(k1k2) (kaks) + 2(k1k3) (kaks), (7.105)
aky, ky, k3) = ki (1 —x)> = k3 y(1 — y) + k3 2> + (kika) (1 = 2x)(1 — y)
+ (k1k3) [1 — x — z(1 — 2x)] — (kak3z) y(1 — 2z), (7.106)
bk, ko, k3) =k} x(1 —x) + k3 y(1 — y) + k3 z2(1 — 2) + 2(k1k2) (1 — x)y
+ 2(kiks) (1 — x)z + 2(kaks) (1 — y)z. (7.107)

where the scalar products (k;k ;) are the contractions (k; pQk ;).
For low photon energies, i.e., for w23 <K m,, the integral (7.104) is easily
calculated to give

I(ky, kp, k3) ~

. 7.108
60m? ( )

e

In this case, the amplitude (7.103), in view of Eq. (7.108), corresponds to the effective
local yyyvv Lagrangian

. 3 GpeB (aAa 3 )3
eff 25 antms \ P

0
X W[D'Vp(l —75)v] [Cy @pcf +Ca (9595),00]- (7.109)

The yy~yvv interaction at low energies was previously studied in Ref. [60], where
the Lagrangian was overestimated by a factor of two.

An analysis of the dimensionality of the amplitude (7.103) for the limiting val-
ues of the characteristic photon energy |k1| ~ |ka| ~ |k3| ~ w indicates that the
amplitude increases as ~ w> at low energies and decreases as ~ w™> at high energies.

When calculating the amplitude of the process (7.101) on a nucleus in the local
limit of the effective yyyv v interaction (7.109), it is necessary to take into account
the effect of a strong magnetic field on the dispersion properties of real and virtual
photons. We will demonstrate that this effect is of crucial importance. We recall
that the process (7.101) in a strong magnetic field involves photons of only the 2nd
polarizations.

For a virtual photon, it is necessary to use, instead of the vacuum propagator
~ ¢~2, the propagator including the photon polarization tensor eigenvalue /7 (qﬁ)
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in a magnetic field:
1

S 5 (7.110)
2 2 2
q —I1¢ )(61”)

D®(q}.q7) =

where, qﬁ = qg - q?, qi = qf + q%, q* = qﬁ - qi (the magnetic field is directed
along the z axis). For the strong field B >> B, and in the approximation |qﬁ| < mz,
this operator takes the simple form [8]

a B
n<2>(qﬁ):—§ B—qﬁ. (7.111)
e

It is convenient to introduce the following dimensionless parameter that specifies the
field effect in all subsequent expressions:

B = (7.112)

&=

e’
3m
The parameter (3 is equal to 0.77 and 7.7 for fields 103 B, and 10* B,, respectively;
i.e., it is not small. Taking into account Egs. (7.111) and (7.112) and that go = 0 for

the virtual photon connected with a fixed nucleus, we can represent the propagator

(7.110) in the form
1

DB ~  —
g% + (1 + Bg?

(7.113)

At the same time, the strong magnetic field also acts on the real photons involved
in process (7.101) and, hence, renormalizes the wave functions:

Ea — vV 226, (7.114)

In view of Eq. (7.111), the renormalization factor Z, takes the form

-1
Zy=(1- 817(qﬁ) = ! . (7.115)
aqﬁ 1+

In addition, the kinematic properties of photons change substantially. Taking into
account Egs. (7.111) and (7.112), one can represent the photon dispersion relation
K2— I'[(kﬁ) = 0asw? = k(1 + 3 cos? 0)/(14 () and the element of the momentum
space in the form

&k = (1+ B)w’dwdydyp, y=cosdy/1+B/V1+ Bcos?o,

where 6 and ¢ are the polar and azimuthal angles, respectively.
Using effective Lagrangian (7.109), taking into account the effect of the magnetic
field on photon properties (7.110)—(7.115), and substituting the polarization vectors
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of real photons
ok
E((Xz) — (¢ )a’
g

(7.116)

we represent the amplitude of the process (7.101) in the form

2 1.2
NraZGr B 2N /KKy

M= Cv (j@ka) + Ca(jpPka)], (7117
5V2m 1+5fﬁ+(1+ﬂ)q§[ v (joka) + Ca(jopka)], (1.117)

where m y is the nuclear mass, g = (0, q) is the momentum transfer to the nucleus.
This expression for the amplitude differs considerably from that obtained in Ref. [58],
where the effect of a strong magnetic field on the dispersion properties of photons
was not considered.

The energy carried away by neutrinos from the stellar unit volume per unit time
is an important quantity in astrophysical applications. It is defined in terms of the
amplitude of the process (7.101) as

3

n )32 f(wr)

2 4
Qy=(”)—”N/|M|2 (c14e) 8k —kr— g1 — @ — @) ———
a3k, Bg P d’q
X G2 T @ S Gas, Gryamn

(7.118)

where ny is the nuclear density, €1 and e are the energies of neutrino and antineu-
trino, respectively, and f(w) = [exp(w/T) — 117! is the distribution function for
the equilibrium photon gas at the temperature 7.

Substitution of the amplitude (7.117) into Eq. (7.118) leads to the following
expression for the neutrino emissivity:

8 (2m)°

Qv = "5

T\ 4
7% o GgmCny (m—) J (). (7.119)
e

The dependence on the field parameter (7.112) is determined by the integral

1 1

J(B) = ﬂz/du(l—uz)/dv(l—vz)/dss (1—s)8/drr

-1 0
1

x /dx[u —sv— (1 —s)rx2(1 = r2x2) [C_‘z,(l — )4 C2P2(1 - xz)]

-1

dey /d<P2
7.120
/ 2r [F(B)I*’ ( )
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Fig.7.7 1 Function J () [Eq. (7.120)] versus field parameter (3; 2 asymptotic behavior of J (5) —
8 x 107 at large 3; 3 dependence ~ (3% obtained disregarding the magnetic field effect on the
photon dispersion

where

FB) = +ﬂ){l —u? 4571 —v?) = 25V 1 — V1 — v2cos ¢
+[u —sv—(1— s)rx]Z] —2J1 480 =s)rv1 —x2 (7.121)
X [\/1 —u?cos py — svV'1 — v2cos(py — gm)] +(1=sHr2(1 —x?),

and the constants C‘z, = 0.93 and Ci = 0.75 are obtained by summing over all
neutrino production channels for the v,, v, and v; neutrinos.

The numerically calculated integral (7.120) is shown in Fig.7.7. It is seen that
taking account of the effect of a strong magnetic field on the photon dispersion
changes fundamentally the dependence of the neutrino energy loss on the field mag-
nitude: the quadratic dependence turns into a constant. Taking this behavior into
account, we obtain an upper limit for Q,, in the asymptotically strong field:

14 2
0, <23 x 107 (1) <Z—> (p) i (7.122)

M, A po) cm3s’

where Z and A are the charge and mass numbers of the nucleus, the averaging goes
over all nuclei, pg = 2.8 x 10'* g/cm? is the characteristic nuclear mass density,
and p is the average mass density of the star.
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The result (7.122) should be compared with the power of neutrino energy loss
through the standard channel of the modified Urca process [61, 62]:

8 2/3
0, (Urca) ~ 107 (l) (p) -2 (7.123)
ne

00 cm3 s

At first glance, the values (7.122) and (7.123) are of the same order of magnitude.
However, a more careful analysis of Eq. (7.122) indicates that the conclusion made
in Ref. [58] about the competition of the process (7.101) with the Urca processes
at magnetic fields B ~ 10°B, — 10*B, is erroneous. The cause is that the large
numerical factor arising in Eq. (7.119) and similar formulas in Ref. [58] originates
from the integral over the energy wi (x = w;/T) of the initial photon:

IRE! 14
x° dx (2m) 9
= 131¢((14) = ——— ~ 6.2 x10°. 7.124
/e,c_1 ¢(14) o x (7.124)
0

The main contribution to the integral (7.124) comes from x ~ 10 = 20 (w; ~
(10 = 20) T). Therefore, since the amplitude (7.117) of the process is obtained in
the approximationw < m,, the corresponding expression for the neutrino energy loss
power is valid for the photon gas temperatures 7 < (1/10) m, and is inapplicable at
temperatures 7' ~ m,. Thus, the assumption made in [58] that the factor (7'/ me)14
can be taken to be on the order of unity is erroneous. Taking into account the above
applicability range, we obtain (7/m,)'* < 10714,

Thus, the catalyzing effect of a strong magnetic field on the process of the neutrino
pair photoproduction on a nucleus decreases considerably if the photon dispersion
in the field is taken into account. Therefore, at any field magnitude, neutrino photo-
production cannot compete with the Urca processes.

References

1. A.V. Kuznetsov, N.V. Mikheev, Phys. Lett. B 299, 367 (1993)
2. A.V. Kuznetsov, N.V. Mikheev, Yad. Fiz. 56(6), 108 (1993). [Phys. At. Nucl. 56, 773 (1993)]
3. D.V. Galtsov, N.S. Nikitina, Zh. Eksp. Teor. Fiz. 62, 2008 (1972). [Sov. Phys. JETP 35, 1047
(1972)]
4. V.V. Skobelev, Zh. Eksp. Teor. Fiz. 71, 1263 (1976). [Sov. Phys. JETP 44, 660 (1976)]
5. A.N. loannisian, G.G. Raffelt, Phys. Rev. D 55, 7038 (1997)
6. A.A. Gvozdev, N.V. Mikheev, L.A. Vassilevskaya, Phys. Lett. B 410, 211 (1997)
7. N.P. Klepikov, Zh. Eksp. Teor. Fiz. 26, 19 (1954)
8. A.E. Shabad, in Polarization of the Vacuum and a Quantum Relativistic Gas in an External
Field, ed. by V.L. Ginzburg (Nova Science Publishers, New York, 1992)
9. G.S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970). [Sov. Astron. 14, 652 (1971)]
10. G.S. Bisnovatyi-Kogan, in Stellar Physics 2: Stellar Evolution and Stability (Nauka, Moscow
1989; Springer, New York 2001)
11. V.N. Tsytovich, Zh. Eksp. Teor. Fiz. 45, 1183 (1963). [Sov. Phys. JETP 18, 816 (1964)]



References 265

12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44.

45.
46.
47.

48.

49.
50.
51.
52.
53.

54.
55.
56.
57.

J.C. D’Olivo, J.F. Nieves, P.B. Pal, Phys. Lett. B 365, 178 (1996)

S.J. Hardy, D.B. Melrose, Publ. Astron. Soc. Aus. 13, 144 (1996)

G.S. Bisnovatyi-Kogan, S.G. Moiseenko, Astron. Zh. 69, 563 (1992). [Sov. Astron. 36, 285
(1992)]

G. S. Bisnovatyi-Kogan, Astron. Astrophys. Trans. 3, 287 (1993)

M.V. Chistyakov, N.V. Mikheev, Phys. Lett. B 467, 232 (1999)

P. Elmfors, D. Persson, B. Skagerstam, Nucl. Phys. B 464, 153 (1996)

B. Pontecorvo, Zh. Eksp. Teor. Fiz. 9, 1615 (1959). [Sov. Phys. JETP 9, 1148 (1959)]

H.-E. Chiu, P. Morrison, Phys. Rev. Lett. 5, 573 (1960)

M. Gell-Mann, Phys. Rev. Lett. 6, 70 (1961)

L.D. Landau, Dokl. Akad. Nauk SSSR 60, 207 (1948)

C.N. Yang, Phys. Rev. 77, 242 (1950)

R.J. Crewther, J. Finjord, P. Minkowski, Nucl. Phys. B 207, 269 (1982)

S. Dodelson, G. Feinberg, Phys. Rev. D 43, 913 (1991)

M.J. Levine, Nuovo Cim. A 48, 67 (1967)

D.A. Dicus, W.W. Repko, Phys. Rev. D 48, 5106 (1993)

D.A. Dicus, K. Kovner, W.W. Repko, Phys. Rev. D 62, 053013 (2000)

J. Liu, Phys. Rev. D 44, 2879 (1991)

E.M. Lipmanov, Yad. Fiz. 6, 541 (1967). [Sov. J. Nucl. Phys. 6, 395 (1968)]

E.M. Lipmanov, N.V. Mikheev, Pis’ma Zh. Eksp. Teor. Fiz. 7, 139 (1968). [JETP Lett. 7, 107
(1968)]

E.M. Lipmanov, Zh. Eksp. Teor. Fiz. 55, 2245 (1968). [Sov. Phys. JETP 28, 1191 (1969)]
J.C. Pati, A. Salam, Phys. Rev. D 10, 275 (1974)

M.A.B. Bég, R. Budny, R.N. Mohapatra, A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977)

R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566 (1975)

R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 2558 (1975)

G. Senjanovi¢, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975)

M. Czakon, J. Gluza, M. Zralek, Phys. Lett. B 458, 355 (1999)

R. Barbieri, R.N. Mohapatra, Phys. Rev. D 39, 1229 (1989)

L. Rosenberg, Phys. Rev. 129, 2786 (1963)

V.K. Cung, M. Yoshimura, Nuovo Cim. 29 A, 557 (1975)

L.A. Vassilevskaya, A.A. Gvozdev, N.V. Mikheev, Yad. Fiz. 57, 124 (1994). [Phys. At. Nucl.
57,117 (1994)]

V.Ch. Zhukovsky, P.A. Eminov, A.E. Grigoruk, Mod. Phys. Lett. A 11, 3119 (1996)

D. Rein, L.M. Sehgal, Phys. Lett. B 104, 394 (1981). [Erratum: ibid. B 106, 513 (1981)]

S.S. Gershtein, Yu.Ya. Komachenko, M. Yu. Khlopov, Yad. Fiz. 33, 1597 (1981). [Sov. J. Nucl.
Phys. 33, 860 (1981)]

R. Shaisultanov, Phys. Rev. Lett. 80, 1586 (1998)

D.A. Dicus, W.W. Repko, Phys. Rev. Lett. 79, 569 (1997)

T.-K. Chyi, C.-W. Hwang, W.FE. Kao, G.-L. Lin, K.-W. Ng, J.-J. Tseng, Phys. Lett. B 466, 274
(1999)

T.-K. Chyi, C.-W. Hwang, W.F. Kao, G.-L. Lin, K.-W. Ng, J.-J. Tseng, Phys. Rev. D 62, 105014
(2000)

Yu.M. Loskutov, V.V. Skobelev, Vestn. Mosk. Univ. Fiz. Astron. 22, 10 (1981)

A.V. Kuznetsov, N.V. Mikheev, Mod. Phys. Lett. A 16, 1659 (2001)

S.L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971)

V.N. Baier, A.I. Milstein, R.Zh. Shaisultanov, Phys. Rev. Lett. 77, 1691 (1996)

V.N. Baier, A.I. Milstein, R.Zh. Shaisultanov, Zh. Eksp. Teor. Fiz. 111, 52 (1997). [JETP 8 4,
29 (1997)]

R.C. Duncan, C. Thompson, Astrophys. J. 392, L 9 (1992)

P. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995)
C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001)

G.G. Raffelt, in Stars as Laboratories for Fundamental Physics (University Chicago Press,
Chicago 1996)



266 7 Neutrino-Photon Interactions in External Active Media

58. V.V. Skobelev, Zh. Eksp. Teor. Fiz. 120, 786 (2001). [JETP 93, 685 (2001)]

59. A.V. Kuznetsov, N.V. Mikheev, Pis’ma Zh. Eksp. Teor. Fiz. 75, 531 (2002). [JETP Lett. 75,
441 (2002)]

60. Yu.M. Loskutov, V.V. Skobelev, Teor. Mat. Fiz. 70, 303 (1987). [Theor. Math. Phys. 70, 215
(1987)]

61. B.L. Friman, O.V. Maxwell, Astrophys. J. 232, 541 (1979)

62. D.G. Yakovlev, K.P. Levenfish, Astron. Astrophys. 297, 717 (1995)



Chapter 8
Conclusion

The questions raised in this book, refer to the actual scientific direction, lying at
the junction of plasma physics, high magnetic fields, quantum field theory, particle
physics and astrophysics. Analysis of problems in the physics of hot dense mag-
netized plasma, resulting in a detailed quantitative description of the core collapse
supernova, definitely points to the need for development of new physics that may
be associated with the equation of state of nuclear and subnuclear plasma and weak
interactions in the subnuclear regime, as well as the need for further research on
the fundamental properties of neutrinos and mechanisms of neutrino interactions in
hot dense strongly magnetized plasma, or on the need for the consideration of other,
hypothetical, weakly interacting elementary particles.

This branch of science intensively developing for about 40 years, is, of course, far
from being complete. There are high expectations both in the further development
of a theory, and for new experimental results.

As for the development of a theory, it is impossible to predict an emergence of new
productive ideas. However, in the framework of the already developed theoretical
apparatus, comprehensive studies surely will continue of hot dense plasma consisting
of electron—positron, proton and nucleon components at extreme physical parameters.
These are the physical conditions which are realized in the central part of massive
stars. At the same time, these conditions are relevant to the characteristics of nuclear
and subnuclear matter. Among the factors affecting the astrophysical plasma, which
need to be considered, an important role is played by a strong magnetic field and an
intensive neutrino flux. In particular, the following questions should be examined:

1. Effect of plasma and magnetic field on the physical characteristics of a neutrino.

2. Neutrino absorption and emission by plasma in a magnetic field.

3. The joint effect of the plasma, magnetic field and the neutrino flux on electro-
magnetic radiation and its inverse effect on the plasma.

4. Mechanisms of generation of electron-positron plasma by a flux of high-energy
photons and electrons.

As for the experimental studies related to the field, they could be divided into two
directions. The first group is formed by the ground-based experiments, in particular,
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268 8 Conclusion

neutrino beam experiments. The principal expectations are apparently associated
with long-baseline neutrino oscillation experiments, aimed at clarifying the mixing
parameters and other physical characteristics of a neutrino.

The second area is a group of experiments that can be described as cosmic-
terrestrial. It is connected with observations of astrophysical objects, primarily, the
remnants of supernova explosions, in a wide range of electromagnetic and other types
of radiation. A special class of experiments is formed by neutrino telescopes with the
underground, underwater and under the Antarctic ice location, which are focused on
the expected explosion of a galactic supernova. An interesting possibility also exists
of registration the neutrino signal from the core collapse of a massive star that occurs
without disruption of an envelope, that is, without formation of a supernova. Finally,
high expectations are associated with gravitational wave detectors, which, according
to experts, are very close to the level of sensitivity to the optimistic outlook for the
border of the astrophysical intensity and probable frequency of gravitational wave
signals expected from the collapse of massive stars.

We still expect a lot of discoveries.
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