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Preface

This book is an introduction to the theories of Special and General Relativity. The
target audience are physicists, engineers and applied scientists who are looking for
an understandable introduction to the topic—without too much new mathematics.

All necessary mathematical tools are provided either directly in the text or in
the appendices. Also the appendices contain an introduction to vector or matrices:
first, as a refresher of known fundamental algebra, and second, to gain new experi-
ences, e.g. with the Kronecker-product of matrices and differentiation with respect
to vectors and matrices.

The fundamental equations of Einstein’s theory of Special and General Relativity
are derived using matrix calculus without the help of tensors. This feature makes the
book special and a valuable tool for scientists and engineers with no experience in
the field of tensor calculus. But physicists are also discovering that Einstein’s vac-
uum field equations can be expressed as a system of first-order differential-matrix
equations, wherein the unknown quantity is a matrix. These matrix equations are
also easy to handle when implementing numerical algorithms using standard soft-
ware as, e.g. MATHEMATICA or MAPLE.

In Chap. 1, the foundations of Special Relativity are developed. Chapter 2 de-
scribes the structure and principles of General Relativity. Chapter 3 explains the
Schwarzschild solution of spherical body gravity and examines the “Black Hole”
phenomenon. Furthermore, two appendices summarize the basics of the matrix the-
ory and differential geometry.

After completion of the book, I discovered the paper [37], where Einstein’s equa-
tions of a similar shape are derived.

I would like to thank Claus Ascheron (Springer) who has made great effort to-
wards the publication of this book. Finally, I would like to thank my wife Renate,
without her this book would have never been published!

Günter LudykBremen
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Notation

Important definitions, facts and theorems are framed, and important intermediate
results are double-underlined.

Scalars are written in normal typeface:

a, b, c,α,β, γ, . . . ;
Vectors in the 3-dimensional space (R3) are written in small bold typeface:

x,v,u,a, . . . ;
Vectors in the 4-dimensional spacetime (R4) are written in small bold typeface with

an arrow:

�x, �v, �u, �a, . . . ;
Matrices are written in big bold typeface:

M,G,R, I , . . . .

The identity matrix In of size n× n is the matrix in which all the elements on the
main diagonal are equal to 1 and all other elements are equal to 0, e.g.,

I 4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

The Derivative Operator ∇ is the 3-dimensional column vector

∇ =
⎛
⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎠ ,

xiii



xiv Notation

and ∇ᵀ is the 3-dimensional row-vector

∇ᵀ =
(

∂

∂x

∣∣∣∣
∂

∂y

∣∣∣∣
∂

∂z

)
.

The Derivative Operator �∇ is the 4-dimensional column vector

�∇ = γ

⎛
⎜⎜⎜⎜⎝

− 1
c

∂
∂t

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎟⎟⎟⎠

with

γ = 1√
1− v2

c2

.

Remark The derivative operators ∇ and �∇ are column vector operators and can
act both on the right and on the left! Example:

�∇ᵀ�a = �aᵀ �∇ = γ

(
−1

c

∂a0

∂t
+ ∂a1

∂x
+ ∂a2

∂y
+ ∂a3

∂z

)
.



Chapter 1
Special Relativity

This chapter begins with the classical theorems of Galilei and Newton and the
Galilei transformation. The special theory of relativity, developed by Einstein in
1905, leads to the four-dimensional spacetime of Minkowski and the Lorentz trans-
formation. After that the relativity of simultaneity of events, the length contrac-
tion of moving bodies and the time dilation are discussed. This is followed by the
velocity-addition formula and relativistic mechanics. The next topic is the mass–
energy equivalence formula E = mc2, where c is the speed of light in a vacuum.
Then relativistic electromagnetism is treated and the invariance of special forms
of the equations of dynamics and Maxwell’s electrodynamic with respect to the
Lorentz transformation is shown. The energy–momentum matrix is introduced and
discussed.

1.1 Galilei Transformation

1.1.1 Relativity Principle of Galilei

An event is anything that can happen in space and time, e.g. the emission of a flash
of light in a room corner. Events happen at a single point. We assign to each event a
set of four coordinates t , x1, x2 and x3, or with t and the three-dimensional vector

x
def=
⎛
⎝

x1
x2
x3

⎞
⎠ ∈R

3.

The position vector x and the time t form a reference frame X . In this frame, New-
ton’s fundamental law of mechanics has the form

dp

dt
= f

G. Ludyk, Einstein in Matrix Form, Graduate Texts in Physics,
DOI 10.1007/978-3-642-35798-5_1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Special Relativity

Fig. 1.1 Two against each
other shifted reference
systems

or, if the mass m in the momentum

p =m
dx

dt

is constant,

m
d2x

dt2
= f . (1.1)

An observer may now execute any motion, for example, he makes an experiment in
a moving train. We want to find the equation that takes the place of

dp

dt
= f

for the moving observer. A coordinate system X ′ is connected firmly with the mov-
ing observer; it should be axis-parallel to the original coordinate system X . xo is
the location of the origin of X ′ measured in X (Fig. 1.1). Then

x = xo + x′,

or

x′ = x − xo. (1.2)

Here x is the position vector of the event measured by an observer at rest in the
reference system X , and x′ is what an observer measures in the moving reference
system X ′. Equation (1.2) differentiated with respect to time t ,

dx′

dt
= dx

dt
− dxo

dt
, (1.3)

results in the speed addition theorem of classical mechanics:

v′(t)= v(t)− v0(t).
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Fig. 1.2 Two reference
systems moving against each
other

For the acceleration one obtains

d2x′

dt2
= d2x

dt2
− d2xo

dt2
. (1.4)

The force f acting on the mass m is independent of the chosen coordinate system,
so f ′ = f . This and (1.1) used in (1.4) result in

f ′ −m
d2xo

dt2
=m

d2x′

dt2
. (1.5)

The fundamental law of mechanics has lost its validity! If the moving observer
knows the external force f ′, he can determine with measurements in X ′ his ac-
celeration with respect to the rest system X . However, if the motion of X ′ with
respect to X is uniform and rectilinear, i.e. xo = vot with a constant vo, then from
(1.5)

f ′ =m
d2x′

dt2
(1.6)

and the fundamental laws of mechanics have in X ′ the same form as in X . Such
a uniform and rectilinear moving coordinate system is called an inertial system.
The moving observer has no possibility to determine his own motion with respect
to the coordinate system X by a mechanical experiment. Any free particle moves
in a straight line with constant speed. For example, Galilei considered a uniformly
moving ship in a port, whose occupants cannot decide whether the ship moves with
respect to the port or whether the port moves with respect to the ship. Today as an
example one would take a train in a railway station. This is the Relativity Principle
of Galilei:

Axiom: All natural laws are the same at every moment in all inertial
systems.
All coordinate systems moving uniformly linearly with respect
to an inertial system are themselves inertial systems.
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If two reference systems X and X ′ move with a constant velocity v against each
other (Fig. 1.2), then

x′ = x − vt and t ′ = t. (1.7)

With the four-dimensional column vector

�x def=
(

t

x

)
∈R

4

the two equations (1.7) can be summarized in one equation, and we get the Galilei
transformation in a matrix form

�x′ =
(

1 oT

−v I

)
�x = T Galilei�x. (1.8)

Looking at the inverse transformation of X ′ to X , one gets

t = t ′ and x = vt + x′,

or

�x =
(

1 oT

v I

)
�x′ = T ′

Galilei�x′.

If both transformations are applied in series, the result is

T GalileiT
′
Galilei�x′ =

(
1 oT

−v I

)(
1 oT

v I

)
�x′ =

(
1 oT

o I

)
�x′ = �x′,

i.e. the matrix T ′
Galilei is the inverse of the matrix T Galilei.

For the time derivatives of the four-vector �x we obtain

d�x
dt
=
(

1
dx
dt

)
and

d2�x
dt2

=
(

0
d2x
dt2

)
.

With �f def= ( 0
f

)
we can write the fundamental equation of mechanics

�f =m
d2�x
dt2

. (1.9)

This equation multiplied from the left with the transformation matrix T Galilei, in
fact, gives back the same form:

T Galilei �f︸ ︷︷ ︸
def= �f ′

=mT Galilei
d2�x
dt2︸ ︷︷ ︸

def= d2 �x′
dt ′2

,

�f ′ =m
d2�x′
dt ′2

.

(1.10)
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The fundamental equation of dynamics is thus invariant with respect to this Galilei
transformation, i.e. it retains its shape regardless of the reference system.

1.1.2 General Galilei Transformation

Up to this point, the Galilei transformation was considered only under the uniform
motion with the speed v of the two inertial systems against each other and a fixed
initial time to = 0, a fixed initial point x0 = 0 of the new coordinate system X ′ and
with no rotation of the coordinate system.

It is now generally assumed that all laws of nature remain constant, therefore, are
invariant with respect to time shifting. If x(t) is a solution of mẍ = f , then for all
to ∈R is x(t + to) also a solution.

Next, it is assumed that the considered spaces are homogeneous, thus the same
features are available at all points. So, if x(t) is again a solution of mẍ = f , then
x(t)+ b is also a solution, but now for the starting point x0 + b.

Moreover, it is assumed that the considered spaces are isotropic, i.e. there is no
directional dependence of properties. So again, if x(t) is a solution of mẍ = f , then
also Dx(t) is a solution for the initial state Dx0. Here, however, also the equality
of the distances

ρ(x1,x2)= ρ(Dx1,Dx2)

must be true. For the rotation matrix D this means that it must be orthogonal be-
cause

ρ(Dx1,Dx2)=
√

(Dx2 −Dx1)ᵀ(Dx2 −Dx1)

=√(x2 − x1)ᵀDᵀD(x2 − x1)
!= ρ(x1,x2)

=√(x2 − x1)ᵀ(x2 − x1),

so

DᵀD
!= I .

The time invariance, homogeneity and isotropy can be summarized in one trans-
formation, the general Galilei transformation, as follows:

If t ′ is shifted versus t by t0, i.e. one has

t ′ = t0 + t, (1.11)

furthermore, the new coordinate system relative to the old is moved by x0 and ro-
tated by the rotation matrix D, so for v = 0 one gets

x′ =Dx + x0, (1.12)
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and so (
t ′
x′
)
=
(

1 oᵀ
o D

)(
t

x

)
+
(

to
xo

)
. (1.13)

By moving the origin of the new coordinate system with the velocity v as mentioned
above, one finally gets the general Galilei transformation:

�x′ =
(

1 oᵀ
−v D

)
�x + �xo, (1.14)

with

�x def=
(

t

x

)
and �xo

def=
(

to
xo

)
.

This is an affine mapping, or an affine transformation.
One gets a linear transformation by introducing the extended vector:

⎛
⎝

t

x

1

⎞
⎠ ∈R

5, (1.15)

namely
⎛
⎝

t ′
x′
1

⎞
⎠=

⎛
⎝

1 oᵀ t0
−v D x0
0 oᵀ 1

⎞
⎠
⎛
⎝

t

x

1

⎞
⎠ . (1.16)

Newton’s fundamental laws are invariant also with respect to such a transforma-
tion. A general Galilei transformation is determined by 10 parameters: to, xo ∈R

3,
v ∈R

3 and D ∈ R
3×3. The rotation matrix D, in fact, has only three main param-

eters since any general rotation consists of successive rotations performed around
the x1-, x2- and x3-axis, so the whole rotation is characterized by the three angles
ϕ1, ϕ2 and ϕ3, where, for example, the rotation around the x1-axis is achieved by
the matrix ⎛

⎝
1 0 0
0 cosϕ1 sinϕ1
0 − sinϕ1 cosϕ1

⎞
⎠ .

1.1.3 Maxwell’s Equations and Galilei Transformation

The situation is completely different with Maxwell’s equations of electromagnetic
dynamics. They are not invariant with respect to a Galilei transformation! Indeed,
in an inertial system X , a static charge q generates only a static electric field; in an
inertial frame, moving with the speed v, qv is an electric current which generates
there a magnetic field!



1.2 Lorentz Transformation 7

In the nineteenth century, it was believed that all physical phenomena are me-
chanical and electromagnetic forces could be traced to the stress states of a world-
aether, the Maxwell’s tensions. It was assumed that even a vacuum must be filled
with aether. This aether then is the carrier of the electromagnetic phenomena.

Suppose an inertial frame is a reference system in which Galilei’s principle of
inertia is valid. Then Einstein in his general relativity principle claims:

The laws of nature take on the same form in all inertial
systems.

For the fundamental law of mechanics, this is derived above. The principle of rela-
tivity applies neither to electrodynamics nor to optics. How should the basic equa-
tions of electrodynamics be modified so that the relativity principle is valid? This is
the content of Einstein’s Theory of Special Relativity. He expanded it in the Theory
of General Relativity. This theory treats how the natural laws must be modified so
that they are also valid in accelerating or not uniformly against each other moving
reference systems.

1.2 Lorentz Transformation

1.2.1 Introduction

At the end of the nineteenth century, experiments were conceived which should
determine the velocity of the Earth with respect to the resting cosmic aether. This
speed relative to the aether can only be measured by an electromagnetic effect, e.g.
the light wave propagation. But in the Michelson–Morley experiment in 1881 and
1887 no drift velocity was found. Einstein concluded:1

The speed of light c is always constant.

Independently of the movement of the light source and the observer, light has the
same speed value in every inertial frame.

Assume a light pulse is produced at time t = t ′ = 0 in the two axis-parallel refer-
ence systems X and X ′ with a common origin. If the light spreads with the speed of
light c in the reference system X ′, then, for example, it is true that x′1 = c · t . From
(1.7) it follows for the x1-direction that if v has the x1-directional component, then

x1 = x′1 + vt = (c+ v)t,

yielding, contrary to the Michelson–Morley experiment, a propagation velocity for
light of c + v > c. Therefore, a transformation must be valid, different from the
Galilei transformation. We try a linear transformation:

t = f t ′ + eᵀx′, (1.17)

1c from Latin celeritas: speed.
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Fig. 1.3 Different ways of
light: (a) seen by an observer
in X ′, (b) seen by an observer
in X

x = bt ′ +Ax′, (1.18)

i.e.

�x = L̂
′ �x′ ∈R

4,

with

L̂
′ def=

(
f eᵀ
b A

)
∈R

4×4.

1.2.2 Determining the Components of the Transformation Matrix

That t ′ is different from t (according to Galilei this was not the case, he took t ′ = t)
is shown by the following reasoning. We consider two observers; observer A moves
relative to the observer B in a spaceship with velocity v (Fig. 1.3). The spaceship
with observer A has the inertial system X ′, and the observer B on Earth has the
inertial system X . A beam of light moves from the origin x = x′ = o of the reference
systems X and X ′ at time t = t ′ = 0 perpendicular to the velocity v and reaches
after t ′ seconds for the observer A in the moving reference system X ′ a mirror
moving also with the reference system X ′. For the observer B in the stationary
reference system X , the light beam reaches the mirror, which has been moved in
the v direction a distance of v · t after t seconds. Since in all initial systems the
speed of light is constant and equal to c, by Pythagorean theorem, one has

(ct)2 = (vt)2 + (L)2 = (vt)2 + (ct ′)2,
or, after solving for t ,

t = γ t ′ (1.19)
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with

γ
def= 1√

1− v2

c2

. (1.20)

A comparison of (1.19) with (1.17) provides for x′ = o

f = γ . (1.21)

For x′ = o one has x = vt , and from (1.18) it follows that x = bt ′. Thus, bt ′ = vt ,
i.e. b= v t

t ′ . From (1.19) it follows, on the other hand, that t
t ′ = γ , so

b= γ v. (1.22)

Up to now, the following transformation equations were determined:

t = γ t ′ + eᵀx′, (1.23)

x = γ vt ′ +Ax′. (1.24)

Equations (1.23) and (1.24) deliver a transformation of X ′ to X . If one wants to
invert this transformation, one must replace v by −v, x by x′, and vice versa, and t

by t ′ and vice versa (as A and e may depend on v, in the following we first write Ã
and ẽ):

t ′ = γ t + ẽᵀx,

x′ = −γ vt + Ãx,

which can be combined to

�x′ =
(

γ ẽᵀ

−γ v Ã

)
�x def= L̂�x. (1.25)

Both transformations performed one after another must result in the identity matrix:

L̂
′
L̂

!= I . (1.26)

For the top left (1,1)-element of the matrix product L̂
′
L̂ one gets:

(
γ, eᵀ)

(
γ

−γ v

)
= γ 2 − γ eᵀv

!= 1.

Hence,

γ eᵀv = γ 2 − 1. (1.27)

Taking for e

eᵀ = αvᵀ (1.28)
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and using (1.27) yields

γ αv2 = γ 2 − 1,

and moreover,

γ α = 1

v2

(
c2

c2 − v2
− 1

)
= 1

c2 − v2
= γ 2

c2
,

i.e.

α = γ

c2
. (1.29)

Equation (1.29) used in (1.28) finally yields

eᵀ = γ

c2
vᵀ. (1.30)

Thus, till now we have calculated:

L̂
′ =
(

γ
γ

c2 vᵀ

γ v A

)
.

Obviously,

ẽᵀ =− γ

c2
vᵀ.

Suppose now that in (1.25) we have Ã = A. Then for the matrix element in the
lower right corner of the matrix product L̂

′
L̂ in (1.26) we obtain

(γ v,A)

(− γ

c2 vᵀ

A

)
=−γ 2

c2
vvᵀ +A2 != I ,

i.e.

A2 = I + γ 2

c2
vvᵀ. (1.31)

From (1.27), by inserting (1.30), follows

γ 2

c2
v2 = γ 2 − 1.

Plugging this into (1.31) provides

A2 = I + (γ 2 − 1
)vvᵀ

v2
. (1.32)

Since (γ − 1)2 = γ 2 − 2(γ − 1)− 1, for γ 2 − 1 one can write

γ 2 − 1= (γ − 1)2 + 2(γ − 1). (1.33)
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Equation (1.33) inserted into (1.32) yields

A2 = I + 2(γ − 1)
vvᵀ

v2
+ (γ − 1)2 vvᵀ

v2
=
(

I + (γ − 1)
vvᵀ

v2

)2

,

where

vvᵀvvᵀ

v4
= v(vᵀv)vᵀ

v4
= vvᵀ

v2

was used. Therefore,

A= I + (γ − 1)
vvᵀ

v2
. (1.34)

It is, in fact, true that A(−v)=A(v), i.e. the above assumption that Ã=A is cor-
rect.

Thus, the matrix L̂ of the Lorentz transformation is determined completely as

L̂=
(

γ − γ

c2 vᵀ

−γ v I + (γ − 1) vvᵀ
v2

)
. (1.35)

For c →∞ we get γ = 1 and the Lorentz transformation turns into the Galilei
transformation with T Galilei.

In the often in the textbooks treated special case when the velocity v is towards
the x1-axis, i.e.

v =
⎛
⎝

v

0
0

⎞
⎠ ,

one obtains

L̂=

⎛
⎜⎜⎝

γ − γ

c2 (v,0,0)

−γ

⎛
⎝

v

0
0

⎞
⎠ I + (γ−1)

v2

⎛
⎝

v2 0 0
0 0 0
0 0 0

⎞
⎠

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

γ − γ v

c2 0 0
−γ v γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

so

t ′ = γ t − γ

c2 vx1,

x′1 =−γ vt + γ x1,

x′2 = x2,

x′3 = x3.

(1.36)
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Introducing as the time component in the vector �x the time multiplied with the speed
of light c, i.e. x0 = ct , we obtain from (1.35) the transformation

�x′ def=
(

ct ′
x′
)
=
(

γ − γ
c
vᵀ

− γ
c
v I + (γ − 1) vvᵀ

v2

)(
ct

x

)
, (1.37)

i.e. the new transformation matrix

L(v)
def=
(

γ − γ
c
vᵀ

− γ
c
v I + (γ − 1) vvᵀ

v2

)
(1.38)

is now a symmetric matrix, and so

ct ′ = γ ct − γ

c
vᵀx,

x′ = x + (γ − 1)
vᵀx

v2
v − γ vt .

(1.39)

1.2.3 Simultaneity at Different Places

It will be seen that events at different places which are simultaneous for an observer
in X are not in general simultaneous for a moving observer in X ′. This is caused by
the finite speed of light. The reference system X ′ may move towards the stationary
reference system X with velocity v. If the two events E1 and E2 in X have the
coordinates �x1 and �x2, then they are simultaneous if t1 = t2. Do these two events
then happen also at the same time for an observer in the reference system X ′? Due
to (1.37),

ct ′1 = γ ct1 − γ

c
vᵀx1

and

ct ′2 = γ ct2 − γ

c
vᵀx2.

Dividing both equations by c and subtracting one from another yields

t ′1 − t ′2 = γ (t1 − t2)− γ

c2
vᵀ(x1 − x2),

so

t ′2 − t ′1 =
γ

c2
vᵀ(x1 − x2).

The events �x′1 and �x′2 are also simultaneous only if the velocity v is perpendicular
to the local difference x1 − x2. Conclusion:
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Fig. 1.4 Simultaneity

Events at different locations, which in the reference system X are simulta-
neous, need not be simultaneous when seen from the reference system X ′.

Example For the special case v = [v,0,0]ᵀ one only needs to consider the ct- and
the x-coordinate (Minkowski diagram, Fig. 1.4). The Lorentz transformation does
not change the x2- and x3-component. It is therefore possible to restrict the consid-
eration to the two-dimensional transformations:

(
ct ′
x′
)
=
(

γ − γ
c
v

− γ
c
v γ

)(
ct

x

)
.

The event
( 0

x1

)
is transformed to

(
ct ′1
x′1

)
=
(

γ − γ
c
v

− γ
c
v γ

)(
0
x1

)
=
(− γ

c
vx1

γ x1

)

and accordingly the event
( 0

x2

)
, simultaneous in X , is transformed to

(− γ
c
vx2

γ x2

)
in

X ′. In Fig. 1.4, the difference on the ct ′-axis is then

ct ′2 − ct ′1 =
γ

c
v(x1 − x2) �= 0,

if v �= 0 and x1 �= x2, i.e. in the moving reference system X ′ the two events E1 and
E2 are no longer simultaneous.

1.2.4 Length Contraction of Moving Bodies

Einstein (1905) was the first who completely demonstrated that length contrac-
tion is an effect due to the change in the notions of space, time and simultaneity
brought about by special relativity. Length contraction can simply be derived from
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the Lorentz transformation. Let the reference system X be stationary and the refer-
ence system X ′ moving towards it with the speed v. A yardstick has in the stationary
system the two endpoints x1 and x2. Its resting length is

l0 = x2 − x1, (1.40)

i.e.

l2
0 = (x2 − x1)

ᵀ(x2 − x1). (1.41)

At time t ′, the endpoints of the yardstick in the moving reference system X ′ have
the coordinates x′1 and x′2. With (1.38) we obtain

l0 = x2 − x1 =A
(
x′2 − x′1

) def= Al′. (1.42)

It follows that

l2
0 = l

ᵀ
0 l0 = l′ᵀA2l′. (1.43)

With (1.32) one gets

l2
0 = l′ᵀ

(
I + (γ 2 − 1

)vvᵀ

v2

)
l′ = l′ᵀl′ + (γ 2 − 1

) (vᵀl′)2

v2
. (1.44)

In the product vᵀl′, only the component l′‖ of l′ parallel to the velocity v comes into
effect, i.e. it is true that vᵀl′ = vᵀl′‖. Thus,

l2
0 = l′2 + (γ 2 − 1

) (vᵀl′‖)2

v2
= l′2 + (γ 2 − 1

)
l′‖

2
,

so

l′2 = l2
0 −

(
γ 2 − 1

)
l′2‖ . (1.45)

Since always γ 2 − 1≥ 0, it follows from (1.45) that

l′ ≤ l0. (1.46)

The result of the yardstick length measurement therefore depends on the reference
system in which the length measurement was made.

If the yardstick is parallel to the velocity v, then l′ = l′‖ and (1.45) becomes
γ l′ = l0, or

l′ = l0

γ
= l0

√
1− v2

c2
, (1.47)

i.e. as v → c one gets l′ → 0. For example, if the velocity is v = 0.8c (i.e. 80 % of
the speed of light), then the length is l′ = 0.6lo.
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1.2.5 Time Dilation

Time dilation is an actual difference of elapsed time between two events as measured
by observers moving relative to each other. Using (1.19), it is

�t = γ�t ′, (1.48)

where

γ = 1√
1− v2

c2

≥ 1.

Let t ′ be the time of a light clock, measured by an observer in the moving inertial
frame X ′ after covering the distance between the mirrors. Then t is the time required
for the light to cover the distance between the two mirrors of the moving clock,
which is measured by an observer at rest in X . The faster the clock moves, i.e. the
greater v is, the longer this time. If, for example, for the moving observer t ′ = 1
second is elapsed, for the stationary observer t = γ ≥ 1 seconds have passed. If v so
large that γ = 20, then, for example, for the stationary observer t = 20 years have
passed, and for the moving observer only t ′ = 1 year is gone!

Twin Paradox There are two twins A and B on Earth. A starts in a rocket and flies
away with high speed, while B stays on Earth. During the flight, A is aging more
slowly than B. After some time the rocket is slowed down and returns with A at high
speed back to Earth. During the flight A has aged less than B, which remained at rest
on Earth, Fig. 1.5. Now comes the paradox: The velocities are relative! One could
take also the twin A in its entrained coordinate system as stationary and consider B
as moving with large speeds. That’s right; but one key difference is that the twin A
is not always in the same uniformly moving inertial frame since, at the turning point
where the return begins, the inertial system changes! This is not the case for B. He
always stays in the same inertial frame. Therefore, there is no paradox.

1.3 Invariance of the Quadratic Form

The Michelson–Morley experiment says that in any reference system the light prop-
agates in all directions at the same speed c. If at the origin x = o of X a flash of
light is ignited, it propagates with the speed of light c spherically. After the time t ,
the light signal reaches all points of the sphere of radius ct . To points on the sphere
applies:

x2
1 + x2

2 + x2
3 = (ct)2, i.e. (ct)2 − x2

1 − x2
2 − x2

3 = 0. (1.49)

If the origins of the two reference systems X and X ′ at the ignition time t = t ′ = 0
of the light flash are at the same space point x(t = 0)=X′(t ′ = 0)= o, the light in
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Fig. 1.5 Twin paradox

the reference system X ′ is also spreading according to the following law:

(
ct ′
)2 − x′21 − x′22 − x′23 = 0. (1.50)

So this quantity is invariant.
One can imagine (1.49) generated by the quadratic form

�xᵀM �x = 0, (1.51)

with the Minkowski matrix

M
def=

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

and the four-dimensional vector

�x def=

⎛
⎜⎜⎝

ct

x1
x2
x3

⎞
⎟⎟⎠ .

Minkowski was the first who represented Einstein’s Special Theory of Relativity
using four-dimensional spacetime vectors.
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1.3.1 Invariance with Respect to Lorentz Transformation

Now the invariance of the quadratic form (1.51) to a Lorentz transformation is ex-
amined. If �x′ =L�x, then

�x′ᵀM �x′ = �xᵀLᵀML�x. (1.52)

Then for the matrix product LᵀML with the help of (1.31) and (1.34) one obtains

LᵀML=
(

γ − γ
c
vᵀ

− γ
c
v A

)(
γ − γ

c
vᵀ

γ
c
v −A

)

=
⎛
⎝γ 2 − γ 2

c2 vᵀv γ
c
vᵀA− γ 2

c
vᵀ

γ
c
Av− γ 2

c
v γ 2

c2 vvᵀ −A2

⎞
⎠=

(
1 oᵀ
o −I

)
=M.

So for the quadratic forms, in fact, the following is valid:

�x′ᵀM �x′ = �xᵀM �x,

i.e. they are invariant with respect to a Lorentz transformation!
When dealing with the quadratic form, the propagation of light was considered

till now. For this the quadratic form �xᵀM �x is equal to zero. Considering, however,
the movement of a particle, the light will spread faster than the particle, i.e. it will
always be true that

(ct)2 > xᵀx

or

(ct)2 − xᵀx = �xᵀM �x > 0.

If we denote by �x the travelled way between two events and the elapsed time by
�t , we will obtain the four-dimensional spacetime interval �s from

�s2 =��xᵀM��x. (1.53)

The “distance” �s between the two events is an invariant interval in the four-
dimensional spacetime. Since the right-hand side of (1.53) is invariant with respect
to a Lorentz transformation, �s is independent of the chosen inertial frame, it has
always the same length. So the theory of relativity does not relativise everything!
�s2 is negative when the distance ��x is so big that no light signal can traverse the
distance in finite time. This possibility will be examined in the following section.

1.3.2 Light Cone

A flash of light at time t0 = 0 is spreading spherically in the three-dimensional space
with the speed of light c. At the time t1 > t0, the light has reached the surface of a
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Fig. 1.6 Light propagation

sphere of radius r1 = ct1. At time t2 > t1, a spherical surface with a larger radius
r2 = ct2 is reached, and so forth as shown in Fig. 1.6. In this two-dimensional image,
the light wave through space is illustrated by a circle that expands with the speed
of light. One can implement this movement of light waves in a space–time diagram
in which the time coordinate ct is vertical and two of the three spatial coordinates,
e.g. x1 and x2, are displayed horizontally (Fig. 1.7). Due to the fact that the time
coordinate is represented by the time t multiplied by the speed of light c, the photons
move in straight lines on this diagram, which are sloped at 45◦. For photons the
possible paths are in an open top cone whose walls have a slope of 45◦. The speed
of a moving particle is always less than the speed of light, therefore the path must
always be run within the light cone with a slope which is always less than 45◦ to the
time axis.

Fig. 1.7 Light cone
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The photons which reach the point E at a time before t0 = 0, e.g. in the time
interval of t−1 < t0, all come from a ball of radius ct−1 = r−1, etc. Altogether we
obtain again a cone as in Fig. 1.7, the cone of the events which can reach the event
E, i.e. these events are observable from E.

In the Minkowski spacetime of special relativity, in any event the light cones are
aligned in parallel; the central axes of all light cones are parallel to the time axis. In
the general theory of relativity, this is no longer always the case due to the curvature
of space, i.e. the central axes of the light cones are not always parallel to the time
axis.

1.3.3 Proper Time

If one looks at a completely arbitrarily moving clock from any inertial frame, then
one can interpret this movement as uniform at any instant of time. If we introduce
a coordinate system which is permanently connected to the clock, then this is again
an inertial frame. In the infinitesimal time interval dt , measured with the clock of
the observer in the inertial system X , the moving clock covers a distance of (dx2

1 +
dx2

2 + dx2
3)1/2. In the inertial system X ′, permanently connected to the clock, the

clock does not move, so dx′1 = dx′2 = dx′3 = 0, but the elapsed displayed time is dt ′.
The invariant quadratic form

ds2 = d�xᵀM d�x = d�x′ᵀM d�x′

computed for

d�xᵀ = [c dt,dx1,dx2,dx3] and d�x′ᵀ = [c dt ′,0,0,0
]

gives

ds2 = c2 dt2 − dx2
1 − dx2

2 − dx2
3 = c2 dt ′2, (1.54)

so

dt ′ = 1

c
ds = 1

c

√
c2 dt2 − dx2

1 − dx2
2 − dx2

3

= dt

√
1− dx2

1 + dx2
2 + dx2

3

c2 dt2
,

and taking

v2 = dx2
1 + dx2

2 + dx2
3

dt2
,
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Fig. 1.8 Relativistic velocity
addition

where v is the velocity of the moving clock relative to the observer, finally yields
the relationship (1.19)

dt ′ = dt

√
1− v2

c2
. (1.55)

So, if the stationary clock of the observer shows the time interval t2 − t1, then the
moving clock shows the interval t ′2 − t ′1 of the proper time,

t ′2 − t ′1 =
∫ t2

t1

√
1− v(t)2

c2
dt. (1.56)

The proper time interval of a moving mass is due to (1.55) and (1.56) always smaller
than the time interval in the stationary system. In general, the proper time of a mov-
ing mass is called τ instead of t ′. Due to (1.54), the proper time is thus

dτ = ds/c. (1.57)

1.4 Relativistic Velocity Addition

1.4.1 Galilean Addition of Velocities

Galilei observed that if a ship is moving relative to the shore at velocity v, and a
sailor is moving with velocity u measured on the ship, calculating the velocity of
the sailor measured on the shore is what is meant by the addition of the velocities v

and u. When both the sailor and the ship are moving slowly compared to light, it is
accurate enough to use the vector sum

w = v + u

where w is the velocity of the sailor relative to the shore.
Consider the two inertial systems X and X ′ in Fig. 1.8. The reference system X ′

is moving with respect to the other reference system X with the velocity v. Suppose
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that the vector x′ describes the motion of a point P in the inertial system X ′, and this
point is moving with respect to the reference system X ′ with the velocity u= dx′

dt ′ .

What is the speed w
def= dx

dt
of the point P relative to the reference system X ?

It is

w = dx

dt
= dx

dt ′

(
dt

dt ′

)−1

. (1.58)

Between �x and �x′ the relationship �x′ =L(v)�x holds, or, solving for �x,

�x =L−1(v)�x′. (1.59)

In detail,

t = γvt
′ + γv

c2
vᵀx′, (1.60)

x = x′ + (γv − 1)
vᵀx′

v2
v+ γvvt ′. (1.61)

From (1.60) follows

dt

dt ′
= γv + γv

c2
vᵀ dx′

dt ′
= γv

(
1+ vᵀu

c2

)
, (1.62)

and from (1.61)

dx

dt ′
= dx′

dt ′
+ (γv − 1)

vvᵀ

v2

dx′

dt ′
+ γvv

= u+ (γv − 1)
vᵀu

v2
v+ γvv. (1.63)

Equations (1.62) and (1.63) used in (1.58) provide

w = v + 1
γv

u+ (1− 1
γv

) vᵀu
v2 v

1+ vᵀu
c2

, (1.64)

or, after addition of u− u= o in the numerator,

w = v+ u+ ( 1
γv
− 1)(u− vᵀu

v2 v)

1+ vᵀu
c2

. (1.65)

So this is the speed of the point P with respect to the reference system X . For a
double vectorial product one has

a × (b× c)= (aᵀc
)
b− (aᵀb

)
c. (1.66)
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This allows one to transform the last parenthesis in the numerator of (1.65) as fol-
lows:

u− vᵀu

v2
v = vᵀv

v2
u− vᵀu

v2
v = 1

v2

(
v× (u× v)

)
,

i.e. instead of (1.65) one can also write

w = v+ u+ 1
v2 ( 1

γv
− 1)(v × (u× v))

1+ vᵀu
c2

. (1.67)

If the two velocities v and u are parallel, then v × u= o and from (1.67) it is clear
that the sum of the two velocities is

w = v + u

1+ vᵀu
c2

. (1.68)

If, in contrast, the two velocities v and u are perpendicular to each other, then
vᵀu= o and from (1.65) it follows that the sum of the two velocities is

w = v + 1

γv

u. (1.69)

In a further special case which is almost exclusively treated in textbooks and
in which both the vector u and the vector v have only one component in the
x1-direction, i.e.

u=
⎛
⎝

u1
0
0

⎞
⎠ and v =

⎛
⎝

v1
0
0

⎞
⎠ ,

one has w2 =w3 = 0 and

w1 = v1 + u1

1+ u1v1
c2

. (1.70)

1.5 Lorentz Transformation of the Velocity

How does one write the basic laws of mechanics so that they remain invariant under
a Lorentz transformation? We start from the transformation equation

�x′ =L�x (1.71)

with the four-dimensional spacetime vector �x def= ( ct
x

)
and the transformation matrix

(1.38)

L=
(

γ − γ
c
v

− γ
c
vᵀ I + (γ − 1) vvᵀ

v2

)
.
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Differentiating (1.71) with respect to time t ′, we obtain

d�x′
dt ′

=
(

c
dx′
dt ′

)
=L

d�x
dt

dt

dt ′
.

Using (1.35) with u
def= dx

dt
(which now has a different u than in the previous section),

dt ′

dt
= d

dt

(
− γ

c2
vᵀx + γ t

)
=− γ

c2
vᵀu+ γ. (1.72)

Thus we obtain (
c

u′
)
=L

(
c

u

)
1

γ

1

1− vᵀu
c2

. (1.73)

In (1.73), we see that the velocity vector
( c

u

)
is not transformed into the velocity

vector
( c

u′
)

using a Lorentz transformation matrix! For this to be the case, the defi-
nition of the velocity has to be modified. For this purpose, a short interim statement:

The second block row of (1.73) provides

u′ = 1

γ (1− vᵀu
c2 )

(Au− γ v).

Taking the scalar product of this vector with itself, we obtain

u′2 def= u′ᵀu′ =
(

1

γ (1− vᵀu
c2 )

)2(
uᵀAᵀ − γ vᵀ)(Au− γ v).

Since A=Aᵀ and A2 = I + γ 2

c2 vvᵀ, the above is

u′2 = 1

γ 2(1− vᵀu
c2 )2

(
u2 − γ 2

c2

(
uᵀv

)2 − 2γ 2(uᵀv
)2 + γ 2v2

)

= 1

(1− vᵀu
c2 )2

(
1

γ 2
u2 − 1

c2

(
uᵀv

)2 − 2
(
uᵀv

)2 + v2
)

. (1.74)

With

u2

γ 2
=
(

1− v2

c2

)
u2 = u2 − v2u2

c2

from (1.74) (without γ ) one gets

u′2 = 1

(1− vᵀu
c2 )2

(
u2 + −(uᵀv)2 − v2u2

c2
− 2

(
uᵀv

)2 + v2
)

. (1.75)
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With the help of (1.75) one obtains

1− u′2

c2
= 1

(1− vᵀu
c2 )2

(
1− u2

c2
− v2

c2
+ v2u2

c4

)

= 1

(1− vᵀu
c2 )2

(
1− u2

c2

)(
1− v2

c2

)
,

and this implies
√

1− u′2
c2
=
√

1− u2

c2

√
1− v2

c2

/(
1− vᵀu

c2

)
,

or with

γu
def= 1√

1− u2

c2

and

γu′
def= 1√

1− u′2
c2

,

we finally get

γ

(
1− vᵀu

c2

)
= γu′

γu

. (1.76)

Inserting (1.76) into (1.73), we obtain
(

c

u′
)
=L

(
c

u

)
γu

γu′
, (1.77)

or
(

γu′c
γu′u′

)
=L

(
γuc

γuu

)
. (1.78)

The thus modified new velocity vector

�u def= γu

(
c

u

)
(1.79)

now is transformed by a Lorentz transformation L into the velocity vector �u′:

�u′ =L�u. (1.80)

The so-defined velocity �u is much better suited for the formulation of physics laws,
as they have the same shape in every inertial frame. With u this would not be the
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case. For clarification we re-emphasize that a particle or a focal point moves with
the velocity u in an inertial system X ′, which itself moves or can move at the speed
v with respect to another reference system. That is the difference between u and v!

By the way, the quadratic form for the velocity

�uᵀM �u= γ 2
u c2 − γ 2

u uᵀu= c4

c2 − u2
− c2u2

c2 − u2
= c2 (1.81)

is, of course, invariant with respect to a Lorentz transformation because—as one can
easily show—even �u′ᵀM �u′ = c2 holds.

In (1.57), the proper time dτ = 1
c

ds was introduced. We have

ds2 = �xᵀM �x = c2 dt2 − xᵀx = c2 dt2
(

1− 1

c2

dxᵀ

dt
· dx

dt

)
,

so with dx
dt
= u

dτ = dt

(
1− 1

c2
uᵀu

) 1
2 = dt

(
1− u2

c2

) 1
2

,

or with γu = (1− u2

c2 )− 1
2

dt = γu dτ . (1.82)

This is the same relationship as in the time dilation in (1.73). τ is therefore the time
that a comoving clock displays, while t is the time that an observer at rest measures.
However, the moving clock must no longer move rectilinearly and uniformly!

In (1.79), one has u= dx
dt

. Replacing dt by (1.82) in it gives u= 1
γu

dx
dτ

, or equiv-

alently, γuu= dx
dτ

. Furthermore,

d�x =
(

c dt

dx

)
=
(

cγu dτ

dx

)
,

so

d�x
dτ

=
(

γuc

γu
dx
dτ

)
=
(

γuc

γuu

)
= �u. (1.83)

When the trajectory in spacetime is parameterized by the proper time τ , �x = �x(τ ),
then �u= d�x

dτ
is the four-velocity along the trajectory.

1.6 Momentum and Its Lorentz Transformation

Multiplying the equation �u′ =L�u with the rest mass m0, we obtain
(

m0γu′c
m0γu′u′

)
=L

(
m0γuc

m0γuu

)
. (1.84)
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Herein we define as usual the momentum

p
def= m0γuu=muu=mu

dx

dt
(1.85)

by

mu
def= m0γu = m0√

1− u2

c2

.

The momentum vector

�p def=
(

muc

p

)
=m0�u=m0γu

(
c

u

)
(1.86)

is due to (1.84) transformed as

�p′ =L�p. (1.87)

Also, the quadratic form associated with the momentum vector

�pᵀM �p =m2
0�uᵀM �u=m2

0c
2 (1.88)

is invariant with respect to a Lorentz transformation because also �p′ᵀM �p′ =m2
0c

2.

1.7 Acceleration and Force

1.7.1 Acceleration

The acceleration is generally defined as the time derivative of speed. Differentiating
the modified velocity vector �u= ( γuc

γuu

) ∈R
4 with respect to time t , one receives as

the derivative of the second component in this vector

d

dt
(γuu)= dγu

dt
u+ γu

du

dt
. (1.89)

In particular, for dγu

dt
we obtain with

a
def= du

dt
∈R

3

and

du2

dt
= duᵀu

dt
= duᵀ

dt
u+ uᵀ du

dt
= 2uᵀa
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the result

dγu

dt
= d

dt

(
1− u2

c2

)−1/2

=−1

2

(
1− u2

c2

)−3/2

· d

dt

(
1− u2

c2

)

=−1

2
γ 3
u ·
−2uᵀ

c2
· a, (1.90)

i.e.

dγu

dt
= γ 3

u

c2
· uᵀa. (1.91)

With (1.91) one obtains for (1.89)

d

dt
(γuu)= γ 3

u

c2
· uᵀa · u+ γu · a. (1.92)

Differentiating the velocity transformation equation (1.78),

(
γu′c
γu′u′

)
=L

(
γuc

γuu

)
,

with respect to time t ′, we obtain

d

dt ′

(
γu′c
γu′u′

)
=L · d

dt

(
γuc

γuu

)
· dt

dt ′
. (1.93)

From (1.72) and (1.76) follows

dt

dt ′
= γu

γu′
. (1.94)

This, used in (1.93), results for the newly defined four-dimensional acceleration
vector

�a def= γu · d

dt
�u ∈R

4 (1.95)

in the Lorentz transformation of the acceleration vector �a

�a′ =L�a. (1.96)

The acceleration vector defined in (1.95),

�a = γu · d

dt

(
γuc

γuu

)
, (1.97)
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is therefore suitable to formulate physical laws in relativistic form! With dt = γu dτ

and �u= d�x/dτ one can write for (1.97)

�a = d�u
dτ

= d2�x
dτ 2

. (1.98)

The vector �a is also obtained using (1.91) and (1.92) as

�a =
(

γ 4
u

c
· uᵀa

γ 4
u

c2 · uᵀa · u+ γ 2
u · a

)
. (1.99)

If �uᵀM �u= c2 is differentiated with respect to the proper time τ , we obtain

d�uᵀ

dτ
M �u+ �uᵀM

d�u
dτ

= 2�uᵀM
d�u
dτ

= 2�uᵀM �a = 0,

i.e. the two four-dimensional vectors �u and M �a are orthogonal in R
4!

For each point of time of an arbitrarily accelerated motion, one can always spec-
ify a reference system X ′ which is an inertial system, named “local inertial system”.
We obtain the corresponding Lorentz transformation by selecting L(u) as the trans-
formation matrix. Then, with

A(u)
def= I + (γu − 1)

uuᵀ

u2
,

it is indeed true that

�a′ =L(u)�a =
(

γu − γu

c
uᵀ

− γu

c
u A(u)

)(
γ 4
u

c
· uᵀa

γ 2
u · a + γ 4

u

c2 · uᵀa · u

)

=
(

−γ 3
u

uᵀa
c
− γ 5

u
(uᵀa)(uᵀu)

c3 + γ 5
u

uᵀa
c

γ 2
u A(u)a + γ 4

u
u(uᵀa)

c2 + (γu − 1)γ 4
u

u(uᵀu)(uᵀa)

c2u2 − γ 5
u

(uᵀa)u
c2

)

=
(

0
γ 2
u A(u)a

)
=
(

0
γ 2
u a + γ 2

u (γu − 1)uᵀa
u2 u

)
=
(

0
a′
)

.

1.7.2 Equation of Motion and Force

The relativistic equation of motion for a particle has to be Lorentz-invariant, and, in
the inertial system of the considered particle, Newton’s equation of motion has to
be true:

m0
du

dt
= f ∈R

3. (1.100)
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Let the accompanying inertial system be X . Furthermore, suppose X ′ is the inertial
system which moves relative to X with the constant speed u(t0). The particle rests
momentarily at time t = t0 in X ′. The equation of motion (1.100) refers to a point
of time and its neighbourhood. For this neighbourhood, t = t0 ± dt is the desired
arbitrary small speed in X ′. For speeds v
 c we have (1.100). Hence in X ′

m0
du′

dt ′
= f ′ ∈R

3 (1.101)

also holds exactly. From (1.101), the relativistic equations of motion in an arbitrary
reference system may be derived. In (1.101), m0 is the rest mass and f ′ the three-
dimensional force in X ′. Expand the vector f ′ in (1.101) to a four-vector and call
the result �f ′

:

m0
d

dt ′

(
c

u′
)
=
(

0
f ′
)

def= �f ′
. (1.102)

Thus �f ′
is specified in the resting system X ′. In the inertial system X , in which the

mass particle moves with the velocity u, �f is obtained by a Lorentz transformation
with L(−u):

�f =L(−u)

(
0
f ′
)
=
( γu

c
uᵀf ′

A(u)f ′
)

def=
(

f0
f

)
. (1.103)

The equation

m0γ
d

dt

(
γ c

γu

)
= �f =

(
f0
f

)
,

i.e.

m0�a = �f (1.104)

possesses all the desired properties! The four-vectors �a and �f are Lorentz-invariant
and, in the inertial frame of the particle, this equation is reduced to Newton’s equa-
tion of motion

m0

(
0

du′
dt ′

)
=
(

0
f ′
)

.

For the last three components of the equation of motion (1.104),

d(muu)

dt
= 1

γu

f (1.105)

with the velocity-dependent mass

mu
def= γum0. (1.106)

In the theory of relativity, the time derivative of the momentum muu is also inter-
preted as force. The components fi of the relativistic equation of motion are thus,
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according to (1.103) and (1.104),

f0 = γu

d

dt
(muc)= γu

c
uᵀf ′ (1.107)

and

f = γu

d

dt
(muu)=A(u)f ′. (1.108)

1.7.3 Energy and Rest Mass

Equation (1.107) multiplied with c/γu provides

d

dt

(
muc

2)= uᵀf . (1.109)

In (1.109), uᵀf is the instantaneous power. This is the work per unit of time, done
by the force f . So the left-hand side of (1.109) must be the temporal change of
energy, i.e. muc

2 = γum0c
2 is energy. We obtain for the relativistic energy the most

renowned formula of the theory of relativity:

E =muc
2. (1.110)

When u= o, i.e. when the particle is at rest, γu = 1, and

E0 =m0c
2 (1.111)

is the “rest energy”, Einstein’s famous formula. Weinberg says in [36] about the
content of this formula: “If some mass is destroyed (as in radioactive decay or fu-
sion, or fission), then very large quantities of kinetic energy will be liberated, with
consequences of well-known importance.”

The four-dimensional momentum vector �p is then recognised as the combination
of energy and momentum:

�p =
(

E/c

p

)
. (1.112)

For the quadratic form in (1.88)

�pᵀM �p =m2
0c

2

we now obtain

�pᵀM �p = (E/c,pᵀ)
(

E/c

−p

)
=E2/c2 − p2 =m2

0c
2,
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i.e.

E =
√(

m0c2
)2 + p2c2. (1.113)

For high velocities the momentum term p2c2 dominates here: E = pc as for neutri-
nos and particles in accelerators (CERN). For small velocities u
 c, we may use
the approximation

E ≈m0c
2 + 1

2
m0u

2.

The first term is the rest energy E0. The second term is the classical kinetic energy
Ekin. The relativistic kinetic energy is

Ekin =E −m0c
2 = (γu − 1)m0c

2. (1.114)

If v→ c, then Ekin →∞. Equation (1.114) gives a reason why mass particles can-
not be accelerated up to the velocity of light!

1.7.4 Emission of Energy

A body, at rest in X ′ with the rest mass m0,before, radiates at a certain time the energy
E′

Emission in form of light or heat radiation. This radiation is emitted symmetrically
so that the total momentum of the radiated energy in X ′ is zero, i.e. the body remains
at rest during the radiation process. The energy–momentum vector of the radiation
in X ′ is therefore

⎛
⎜⎜⎝

1
c
E′

Emission
0
0
0

⎞
⎟⎟⎠ . (1.115)

Compared with the inertial system X , the body is moving with the velocity v. In this
inertial system, the total momentum is equal to the momentum of the body pbefore =
γum0,beforeu. After radiation, the body has the momentum pafter = γum0,afteru, and
the momentum of radiation is calculated using (1.115) with the Lorentz transforma-
tion L(−u) from X ′ to X :

�p =L(−u)

⎛
⎜⎜⎝

1
c
E′

Emission
0
0
0

⎞
⎟⎟⎠=

(
γu

1
c
E′

Emission
γuu

1
c2 E′

Emission

)
.

During the emission of radiation, the body has given away the momentum
γuu

1
c2 E′

Emission, without changing its speed. This is only possible because the body
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has changed its rest mass! Because of the momentum conservation law, one has

γum0,beforeu= γum0,afteru+ γuu
1

c2
E′

Emission.

It follows that

m0,after =m0,before − 1

c2
E′

Emission. (1.116)

In Einstein’s words: “If a body emits the energy E′ in the form of radiation, its mass
is reduced by E′/c2.”

1.8 Relativistic Electrodynamics

1.8.1 Maxwell’s Equations

The magnetic field associated with the induction b and the electric field with the
field strength2 e, the sources of the charge q and the current j satisfy the Maxwell’s
equations:3

∇ × b= 1

c

(
∂e

∂t
+ j

)
, (1.117)

∇ᵀe= ρ, (1.118)

∇ × e=−1

c

∂b

∂t
, (1.119)

∇ᵀb= 0. (1.120)

The Derivative Operator ∇ is the 3-dimensional column vector

∇ =
⎛
⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎠

and ∇ᵀ is the 3-dimensional row-vector

∇ᵀ =
(

∂

∂x

∣∣∣∣
∂

∂y

∣∣∣∣
∂

∂z

)
,

2Since the magnetic induction and the electric field strength are vectors, they are marked by bold
small letters b and e.
3In other symbols, ∇ × b= curl b and ∇ᵀe= div e.
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so that

∇ᵀe= ∂ex

∂x
+ ∂ey

∂y
+ ∂ez

∂z
, (1.121)

and

∇ × b=−B×∇ def=
⎛
⎜⎝

∂bz

∂y
− ∂by

∂z

− ∂bz

∂x
+ ∂bx

∂z
∂by

∂x
− ∂bx

∂y

⎞
⎟⎠ , (1.122)

with4

B×
def=
⎛
⎝

0 −bz by

bz 0 −bx

−by bx 0

⎞
⎠ . (1.123)

Equations (1.117) and (1.118) can be summed up after minor changes in the follow-
ing four equations:

∂ex

∂x
+∂ey

∂y
+∂ez

∂z
= ρ,

−1

c

∂ex

∂t
−∂bz

∂y
+∂by

∂z
= 1

c
j1,

−1

c

∂ey

∂t
+∂bz

∂x
−∂bx

∂z
= 1

c
j2,

−1

c

∂ez

∂t
−∂by

∂x
+∂bx

∂y
= 1

c
j3,

(1.124)

or in matrix form,5

(
0 eᵀ
−e B×

)

︸ ︷︷ ︸
def=FB,e

γ

(− 1
c

∂
∂t∇
)

︸ ︷︷ ︸
def= �∇

= 1

c
γ

(
cρ

−j

)

︸ ︷︷ ︸
def= �j

∈R
4. (1.125)

The skew-symmetric matrix FB,e, composed of B× and e, is called Faraday’s ma-
trix. A similarly structured field strength matrix is obtained if (1.119) and (1.120)

4An equation c= a × b cannot in this form be linearly transformed with an invertible transforma-

tion matrix T . But with A×
def=
( 0 −az ay

az 0 −ax

−ay ax 0

)
this is possible in the form of the equation c=A×b:

(T c)= (T A×T −1)(T b).
5The factor γ has been added on both sides, so that no difficulties arise later in the invariance of
this equation with respect to a Lorentz transformation.
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are gathered and summarized in the following equations:

−∂bx

∂x
−∂by

∂y
−∂bz

∂z
= 0,

+1

c

∂bx

∂t
−∂ez

∂y
+∂ey

∂z
= 0,

+1

c

∂by

∂t
+∂ez

∂x
−∂ex

∂z
= 0,

+1

c

∂bz

∂t
−∂ey

∂x
+∂ex

∂y
= 0,

(1.126)

or in matrix form,
(

0 −bᵀ

b E×

)

︸ ︷︷ ︸
def=FE,b

γ

(− 1
c

∂
∂t∇
)

︸ ︷︷ ︸
�∇

= o ∈R
4. (1.127)

The matrix FE,b is called the Maxwell’s matrix.
So (1.125) and (1.127) contain the Maxwell’s equations in a new four-dimensional

form:

FB,e
�∇ = 1

c
�j and FE,b

�∇ = o. (1.128)

This form has a great advantage of being invariant when transitioning to another
reference system by a Lorentz transformation, i.e. in every inertial system its keeps
the same external form. But the quantities appearing in it take different values in
each reference system. This is shown in the following.

1.8.2 Lorentz Transformation of the Maxwell’s Equations

Multiplying (1.125) from the left with L−1 and inserting L−1L= I , we obtain

L−1FB,eL
−1

︸ ︷︷ ︸
F ′

B′,e′

L �∇ = 1

c
L−1�j︸ ︷︷ ︸
�j ′

. (1.129)

For the new Faraday’s matrix F ′
B ′,e′ we get

F ′
B ′,e′ =

(
0 e′ᵀ
−e′ B ′×

)

=
(

γv
γv

c
vᵀ

γv

c
v A(v)

)(
0 eᵀ
−e B×

)(
γv

γv

c
vᵀ

γv

c
v A(v)

)
. (1.130)
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After multiplying the three matrices, we obtain for the bottom left corner vector e′
with A=A(v) and γ = γv :

−e′ = γ

c
AB×v+ γ 2

c2
veᵀv− γAe

= γ

c

(
B×v+ (γ − 1)

v

0︷ ︸︸ ︷
vᵀB×v

v2

)
+ γ 2

c2
veᵀv − γ e− γ (γ − 1)

v2
vvᵀe

= γ

c
B×v−

(
−γ 2

c2
+ γ 2

v2︸ ︷︷ ︸
1
v2

− γ

v2

)
vᵀev− γ e,

e′ = γ

(
e− 1

c
B×v

)
+ (1− γ )

v2

(
v eT
)
v, (1.131)

i.e.

e′ = γ

(
e+ 1

c
v× b

)
+ (1− γ )

vᵀe

v2
v. (1.132)

In the matrix F ′
B ′,e′ in (1.130), for the right bottom 3 × 3 sub-matrix B ′× after

performing the matrix multiplication we obtain

B ′× =B× + (γ − 1)

v2

(
B×vvᵀ + vvᵀB×

)+ γ

c

(
veᵀ − evᵀ). (1.133)

From this matrix equation, the components of the magnetic induction vector b′ can
be filtered out with the help of the row or column vectors of the unit matrix (ij is
the j th column of the 3× 3 identity matrix I 3) as follows:

B ′×
def=
⎛
⎝

0 −b′z b′y
b′z 0 −b′x
−b′y b′x 0

⎞
⎠ . (1.134)

We thus obtain

b′x = i
ᵀ
3 B ′×i2, (1.135)

b′y = i
ᵀ
1 B ′×i3, (1.136)

b′z = i
ᵀ
2 B ′×i1. (1.137)

Using (1.135) for (1.133) results in

b′x = i
ᵀ
3 B ′×i2 = bx + (γ − 1)

v2

[
(−byv1 + bxv2)v2 + v3(−bzv1 + bxv3)

]

+ γ

c
(v3ey − ezv2). (1.138)
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Accordingly, one obtains for the two remaining components

b′y = i
ᵀ
1 B ′×i3 = by + (γ − 1)

v2

[
(−bzv2 + byv3)v3 + v1(byv1 − bxv2)

]

+ γ

c
(v1ez − exv3) (1.139)

and

b′z = i
ᵀ
2 B ′×i1 = bz+ (γ − 1)

v2

[
(bzv1−bxv3)v1+v2(bzv2−byv3)

]+ γ

c
(v2ex−eyv1).

(1.140)
Summarizing the last terms in (1.138), (1.139) and (1.140) results in the vector
product

γ

c
e× v. (1.141)

For the second to last summands one obtains the vector

(γ − 1)

v2

⎛
⎝

(−byv1 + bxv2)v2 + v3(−bzv1 + bxv3)

(−bzv2 + byv3)v3 + v1(byv1 − bxv2)

(bzv1 − bxv3)v1 + v2(bzv2 − byv3)

⎞
⎠ ,

and using 0= bxv
2
1 − bxv

2
1 in the first component, 0= byv

2
2 − byv

2
2 in the second,

and 0= bzv
2
3 − bzv

2
3 in the third,

(γ − 1)

v2

⎛
⎝

(−bxv
2
1 − byv1v2 − bzv1v3)+ (bxv

2
1 + bxv

2
2 + bxv

2
3)

(−bxv1v2 − byv
2
2 − bzv2v3)+ (byv

2
1 + byv

2
2 + byv

2
3)

(−bxv1v3 − byv2v3 − bzv
2
3)+ (bzv

2
1 + bzv

2
2 + bzv

2
3)

⎞
⎠

= (γ − 1)

v2

(−(bᵀv
)
v+ v2b

)
. (1.142)

Equations (1.141) and (1.142), together with (1.138), (1.139) and (1.140), yield the
final result

b′ = γ

(
b− 1

c
v× e

)
+ (1− γ )

vᵀb

v2
v. (1.143)

One gets the same result for e′ and b′ by a Lorentz transformation of FE,b!
The formulas (1.132) and (1.143) are simplified considerably for small velocities

v
 c because then γ ≈ 1 and one obtains

e′ = e+ 1

c
v × b
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and

b′ = b− 1

c
v × e.

The decomposition of the electromagnetic field in an electric and magnetic field
has no absolute significance. If there exists, for example, in a reference system X
a purely electrostatic field with b = o, then, due to (1.143), a magnetic field b′ =
γ
c
v × e �= o exists in a reference system X ′ that moves with the speed v relative to

the reference system X . Physically this means that all charges rest in X . But these
charges move relative to X ′ with the velocity v. So there exists a current in X ′ which
generates a magnetic field in X ′.

The equations (1.132) and (1.143) can be summarized in one equation:

(
b′
e′
)
=
(

γ I + (1− γ ) vvᵀ
v2 − γ

c
V×

γ
c
V × γ I + (1− γ ) vvᵀ

v2

)

︸ ︷︷ ︸
P (v)

(
b

e

)
∈R

6, (1.144)

with

V ×
def=
⎛
⎝

0 −v3 v2
v3 0 −v1
−v2 v1 0

⎞
⎠ .

The symmetric 6× 6-matrix P (v) occurring in (1.144) has a formal similarity with
the Lorentz matrix L!

It is, of course, true that P (−v)= P−1(v), for, with

V 2× = vvᵀ − v2I , (1.145)

one obtains easily P (v)P (−v)= I .
In the special case when only one component of the velocity vector in the x-

direction is nonzero, i.e. v = [v,0,0]ᵀ, one obtains the matrix

P (v)=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 γ 0 0 0 γ v

c

0 0 γ 0 − γ v
c

0

0 0 0 1 0 0
0 0 − γ v

c
0 γ 0

0 γ v
c

0 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.146)

This special symmetric 6× 6-matrix can also be found in [33].

1.8.3 Electromagnetic Invariants

For the electromagnetic field quantities e and b one can form invariants which do
not change during the transition to another inertial system. For the scalar product of
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the electric field strength e and the magnetic induction b we obtain

e′ᵀb′ =
(

γ

(
eᵀ − 1

c
(v× b)ᵀ

)
+ (1− γ )

vᵀe

v2
vᵀ
)(

γ

(
b+ 1

c
v× e

)

+ (1− γ )
vᵀb

v2
v

)

= γ 2eᵀb+ [2γ (1− γ )+ (1− γ 2)]eᵀvvᵀb

v2
− γ 2

c2
(v × b)ᵀ(v × e)︸ ︷︷ ︸

bᵀV
ᵀ
×V×e

.

With V
ᵀ
× =−V × one obtains due to (1.145)

V
ᵀ
×V × =−V 2× = v2I − vvᵀ.

This gives

e′ᵀb′ = γ 2eᵀb− γ 2

c2

(
vᵀevᵀb+ v2bᵀe− bᵀvvᵀe

)=
(

γ 2 − γ 2v2

c2

)
eᵀb= eᵀb,

so the scalar product of the electric field intensity e and the magnetic induction b is
invariant with respect to a Lorentz transformation!

Using a slightly long calculation, one can show that the difference of the squares
of the field intensities is also invariant:

b′2 − e′2 = b2 − e2. (1.147)

You can also arrive at electromagnetic invariants in another way, namely with the
help of the invariant Faraday’s matrix

FB,e =
(

0 eᵀ
−e B×

)

and the invariant Maxwell’s matrix

FE,b =
(

0 −bᵀ

b E×

)
.

With

F ∗
B,e

def= MFB,eM =
(

0 −eᵀ
e B×

)
,

one gets, e.g.

F ∗
B,eFB,e =

(
0 −eᵀ
e B×

)(
0 eᵀ
−e B×

)
=
(

eᵀe −eᵀB×
−B×e eeᵀ +B×B×

)
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=

⎛
⎜⎜⎝

e2 sᵀ

s

⎛
⎝

e2
x − b2

z − b2
y · · · · · ·

· · · e2
y − b2

z − b2
x · · ·

· · · · · · e2
z − b2

y − b2
x

⎞
⎠

⎞
⎟⎟⎠ ,

with the Poynting vector s
def= e× b. By forming the trace of this matrix product, i.e.

taking the sum of the matrix elements on the main diagonal, one obtains

trace
(
F ∗

B,eFB,e

)= 2e2 − 2b2,

i.e. the above invariant in the form

−1

2
trace

(
F ∗

B,eFB,e

)= b2 − e2. (1.148)

One obtains the second invariant eᵀb above by taking the trace of the product of the
modified Faraday’s matrix F ∗

B,e and the Maxwell’s matrix FE,b:

−1

4
trace

(
F ∗

B,eFE,e

)= eᵀb. (1.149)

Making invariants of this type later plays a role in the consideration of the singular-
ities of the Schwarzkopf’s solution of General Relativity equations.

1.8.4 Electromagnetic Forces

We want to determine the force acting on a charged particle with the charge q , which
is in an electromagnetic field moving with the velocity u relative to an inertial frame
X . Let X ′ be the inertial frame in which the particle rests at the moment. In this
system, due to u′ = o and u′ × b′ = o,

m0
du′

dt ′
= qe′ ∈R

3. (1.150)

Generally, due to the relativity principle, the Lorentz force in X is

f = q

(
e+ 1

c
u× b

)
= q

c
[e | −B×]

(
c

u

)
∈R

3. (1.151)

The following law expresses how an electromagnetic field acts on a stationary
charge q and current j :

f = qe+ 1

c
j × b= 1

c
[e | −B×]

(
cq

j

)
∈R

3. (1.152)
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f is completed to a four-vector �f as in (1.108)

�f def= γu

(
uᵀf /c

f

)
∈R

4. (1.153)

Equation (1.151) applied to (1.153) yields (with uᵀ(u× b)= 0)

�f = qγu

(
uᵀe/c

e+ 1
c
u× b

)
= q

γu

c

(
0 eᵀ
e −B×

)

︸ ︷︷ ︸
MFB,e

(
c

u

)

= q

c
MFB,e γu

(
c

u

)

︸ ︷︷ ︸
�u

, (1.154)

so

�f = q

c
MFB,e �u. (1.155)

With (1.152) one can write instead of (1.155)

�f = 1

c
F ∗

B,e
�j , (1.156)

in which again

�j = γ

(
cq

−j

)
∈R

4.

Subjecting (1.155) to a linear transformation using the Lorentz matrix L(v), one
obtains

�f ′ =L(v) �f = q

c
L(v)MFB,e

L(−v)︷ ︸︸ ︷
L−1(v)︸ ︷︷ ︸

MF ′
B′,e′

L(v)�u︸ ︷︷ ︸
�u′

, (1.157)

i.e.

�f ′ = q

c
MF ′

B ′,e′ �u′. (1.158)

The power equation is also invariant with respect to a Lorentz transformation!
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1.9 The Energy–Momentum Matrix

1.9.1 The Electromagnetic Energy–Momentum Matrix

We want to derive one equation which contains the fundamental dynamic equations
of the theory of electricity. This equation should also include the energy theorem
and the momentum theorems of electrodynamics. We will find again the therein
contained energy–momentum matrix in the main equation of the theory of general
relativity.

Due to (1.128), one has

FB,e
�∇ = 1

c
�j

and because of (1.156)

�f = 1

c
F ∗

B,e
�j .

Is there a matrix such that

�f = T b,e
�∇? (1.159)

We try T b,e = F ∗
B,eFB,e . Then

T b,e
�∇ = (F ∗

B,eFB,e

) �∇ =
(

eᵀe −eᵀB×
−B×e eeᵀ +B2×

)
�∇

=
(

e2 sᵀ

s eeᵀ + bbᵀ − b2I 3

)
�∇ != �f , (1.160)

by considering the Poynting vector

s
def= e× b (1.161)

and the relation B2× = bbᵀ−b2I in conformance with (1.145). The Poynting vector
gives the magnitude and direction of the energy transport in electromagnetic fields.
What is the result when differentiating the first line of (1.160)? It is

−1

c

∂(e2)

∂t
+∇ᵀs

!= ρuᵀf

c
.

1
c

∂(e2)
∂t

is proportional to the temporal change of the energy density of the electro-
magnetic field when no magnetic field is present. But then also b = o, i.e. s = o,
and thus the whole equation is without a statement. The matter would be different
if instead of e2 in top left corner of the matrix T b,e , one would have the expression
(e2 + b2)/2, as then

1

2c

∂(e2 + b2)

∂t
= 1

c

∂w

∂t
,
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namely, the temporal change of the energy density w = (e2 + b2)/2 of the elec-
tromagnetic field. By adding (b2 − e2)/2 to the upper left, there arises, in fact,
(e2 + b2)/2! Therefore, now the

Definition: The electromagnetic energy–momentum matrix T b,e has the form

T b,e
def= F ∗

B,eFB,e + 1

2

(
b2 − e2)I 4 =

(
w sᵀ
s (eeᵀ + bbᵀ −wI 3)

)
,

(1.162)

with

w
def= 1

2

(
e2 + b2) (1.163)

and

T b,e · �∇ = 1

γv

�f . (1.164)

While doing this, �∇ again has the form

�∇ = γu

(− 1
c

∂
∂t∇
)

and

�f = γu

( ρ
c
uᵀf

f

)
.

For the first row of (1.164) now one obtains

−1

c

∂w

∂t
+ sᵀ∇ = ρ

c
uᵀf ,

i.e.

c div s = ∂w

∂t
+ ρuᵀf . (1.165)

On the left is the infinitely small volume unit of the entering or exiting energy flow,
and it consists of the temporal change of the energy density ∂w

∂t
and the conversion of

the electromagnetic energy into mechanical energy per unit time and volume ρuᵀf .
So the whole is the Energy Theorem of Electrodynamics.

Next we get for the second to fourth components of (1.164):

−1

c

∂s

∂t
+ (eeᵀ)∇+ (bbᵀ)∇− (wI 3)∇ = f . (1.166)

With the help of Maxwell’s equations, we obtain for the first term on the left-hand
side:

−1

c

∂s

∂t
= 1

c

∂e× b

∂t
= 1

c

∂e

∂t
× b+ 1

c
e× ∂b

∂t



1.9 The Energy–Momentum Matrix 43

=
(

curlb− 1

c
j

)
× b+ e× (−curl e)

=−1

c
j × b− b× curlb− e× curl e. (1.167)

For the first component, the x-component of the three-dimensional vector (eeᵀ)∇−
1
c
(e2I 3)∇ on the left-hand side, one obtains
[
e2
x −

1

2
e2|exey |exez

]
∇

= 2ex

∂ex

∂x
−
(

ex

∂ex

∂x
+ ey

∂ey

∂y
+ ez

∂ez

∂z

)
+ ∂ex

∂y
ey + ex

∂ey

∂y
+ ∂ex

∂z
ez + ex

∂ez

∂z

= ex

(
∂ex

∂x
+ ∂ey

∂y
+ ∂ez

∂z

)
+ ez

∂ex

∂z
+ ey

∂ex

∂y
− ez

∂ez

∂x
− ey

∂ey

∂x

= exdiv e− (e× curl e)x = ex · ρ − (e× curl e)x. (1.168)

Accordingly, one receives for the y- and z-component together

(
eeᵀ)∇− 1

2

(
e2I 3

)∇ = e · ρ − e× curl e. (1.169)

Also we obtain with divb= 0:

(
bbᵀ)∇− 1

2

(
b2I 3

)∇ =−b× curl b. (1.170)

Overall, (1.165), (1.168) and (1.170) result for the second to fourth rows of (1.164)
in

e · ρ + 1

c
j × b= f . (1.171)

But this is the Momentum Theorem of Lorentz! Thus the above assertion (1.164) is
completely proved.

1.9.2 The Mechanical Energy–Momentum Matrix

A particle at rest at the point x0 has the speed

�u= d�x
dτ

= d

dτ

(
cτ

x0

)
=
(

c

o

)

and the momentum �p =m0
( c

o

)
. The zeroth component of �p is the rest energy of the

particle divided by c. For a moving particle, with E = γum0c
2, one gets

�p = γvm0

(
c

v

)
=
(

E/c

γvp

)
.
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This equation expresses the fact that in the theory of relativity energy and momen-
tum are the temporal and spatial components of the four-vector �p. They preserve this
distinction even after a Lorentz transformation just like the four-vector �x = ( ct

x

)
: its

zeroth component is always the time component and the rest represents the space
components.

We now go over to a distributed matter, such as that in a perfect fluid, i.e. a liq-
uid without internal friction, but of quite variable density. It is described by the two
scalar fields, density ρ and pressure p, and the velocity vector field �u. The aim of
this derivation of the energy–momentum matrix is that this matrix somehow repre-
sents the energy content of the liquid and the transition to the curved world of the
theory of general relativity, which can serve as a source of the field of gravity. The
continuity equation describes the conservation of mass. The conservation of mass
requires that the change of mass dV δρ/δt in the unit of time, associated with the
local compression δρ/δt , must be equal to the difference between the entering and
exiting masses per unit of time. In the x-direction, for this difference the following
is valid:

ρux(x) · dy · dz−
(

ρux + ∂ρux

∂x
dx

)
dy dz=−∂ρux

∂x
dV.

One gets similar expressions for the y- and z-direction, making a total for the con-
servation of mass

∂ρ

∂t
dV =−

(
∂ρux

∂x
+ ∂ρuy

∂y
+ ∂ρuz

∂z

)
dV.

So this is the final continuity equation in differential form:

∂ρ

∂t
+ ∂ρux

∂x
+ ∂ρuy

∂y
+ ∂ρuz

∂z
= ∂ρ

∂t
+ div(ρu)= 0. (1.172)

The dynamic behaviour is described by the Euler’s equation. By using Newton’s
law on the mass contained in a volume element of a perfect fluid, we obtain the
Euler equation of motion, initially only in the x-direction:

dm
dux

dt
= ρ dx dy dz

dux

dt
= dx dy dzfD,x −

(
∂p

∂x
dx

)
dy dz,

which implies

ρ
dux

dt
= fD,x − ∂p

∂x
, (1.173)

where fD,x is the x-component of the force per unit volume (power density), f D ,
e.g. the gravitational force. Using the total differential of �ux ,

�ux = ∂ux

∂t
�t + ∂ux

∂x
�x + ∂ux

∂y
�y + ∂ux

∂z
�z,
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dividing by �t and passing to the limit �t → 0, we obtain

dux

dt
= ∂ux

∂t
+ ∂ux

∂x
ux + ∂ux

∂y
uy + ∂ux

∂z
uz. (1.174)

With the corresponding equations for the y- and z-direction, we obtain in total

ρ

(
∂ux

∂t
+ ∂ux

∂x
ux + ∂ux

∂y
uy + ∂x

∂z
uz

)
= fD,x − ∂p

∂x
,

ρ

(
∂uy

∂t
+ ∂uy

∂x
ux + ∂uy

∂y
uy + ∂uy

∂z
uz

)
= fD,y − ∂p

∂y
,

ρ

(
∂uz

∂t
+ ∂uz

∂x
ux + ∂uz

∂y
uy + ∂uz

∂z
uz

)
= fD,z − ∂p

∂z
,

summarized in

ρ

(
∂u

∂t
+ ∂u

∂xᵀ u

)
+ gradp = f D. (1.175)

This is the Euler’s equation in modern form. The first term in the parentheses is
called the local and the second the convective change.

The relativistic generalization of the hydrodynamic equations (1.172) and (1.175)
will now be established. ρ0 is the rest density, defined as the rest mass per rest
volume. With �xᵀ = [ct |xᵀ] and �uᵀ = γu[c|uᵀ], the Euler’s equation (1.175) can
also be written as

ρ
∂u

∂ �xᵀ �u= f D − gradp. (1.176)

With regard to the subsequent application of the operator �∇, we now start for the
energy–momentum matrix with

T mech,1
def= ρ0�u�uᵀ. (1.177)

This matrix is symmetric and built up from the two values ρ0 and �u, which describe
completely the dynamics of a perfect fluid with the pressure p and the acting ex-
ternal forces f D . For the use of the operator �∇ and the further investigation of the
result, it is advantageous to first divide the matrix T mech,1 similarly as the matrix
T b,e:

T mech,1 = ρ0γ
2
u

(
c2 cuᵀ
cu uuᵀ

)
. (1.178)

In a liquid moving with the velocity u, the volume decreases with γu while the mass
increases with γu, thus one obtains the total density ρ = γ 2

u ρ0. With this we now
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define

T mech,1
def=
(

ρc2 ρcuᵀ
ρcu ρuuᵀ

)
. (1.179)

Multiplying the first line in (1.179) from the right with the operator �∇ yields

−c
∂ρ

∂t
+ c
(
ρuᵀ)∇.

By setting this expression equal to zero, we obtain with (ρuᵀ)∇ = div(ρu) the
classical continuity equation (1.172)!

Multiplying now the second row of the matrix in (1.179) from the right with the
operator �∇, one obtains

−∂ρu

∂t
+ (ρuuᵀ)∇ =−ρ

∂u

∂t
− ∂ρ

∂t
u+ ρ

∂u

∂xᵀ u+ udiv(ρu)

=
(
−∂ρ

∂t
u+ div(ρu)

)
u+ ρ

(
−∂u

∂t
+ ∂u

∂xᵀ u

)
. (1.180)

The term inside the first parentheses is equal to zero, due to the continuity equation
in the non-relativistic case, and the term in the second parentheses contains the
force- and pressure-free Euler’s equation!

The pressure p must now be incorporated. Presuppose an isotropic liquid, then
the pressure p is direction-independent. In the Euler’s equation, the pressure appears
in the form of gradp which can be written as

grad p =
⎛
⎝

p 0 0
0 p 0
0 0 p

⎞
⎠∇. (1.181)

If this is taken into account in the matrix T mech, it must be remembered that (1.181)
holds for a reference system X ′ moving with the liquid; therefore, this approach
makes sense:

T ′
mech,2

def=

⎛
⎜⎜⎝

0 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎠ . (1.182)

This matrix can now with the help of the Lorentz matrix

L(−u)=
(

γu
γu

c
uᵀ

γu

c
u I 3 + (γu − 1)uuᵀ

u2

)

be transformed back into the resting inertial system X :

T mech,2 =L(−u)T ′
mech,2L

ᵀ(−u)= p

⎛
⎝

γ 2
u u2

c2
γ 2
u

c
uᵀ

γ 2
u

c
u I 3 + γ 2

u

c2 uuᵀ

⎞
⎠ .
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Considering that pγ 2u2/c2 = p(γ 2 − 1), this can also be written as

T mech,2 = p

c2
�u�uᵀ + p

(−1 oᵀ
o I 3

)
.

For the sum of the two matrices T mech,1 and T mech,2, we finally obtain with the
Minkowski matrix M

T mech
def=
(

ρ0 + p

c2

)
�u�uᵀ − pM. (1.183)

We now summarize everything together to the relativistic generalization of the hy-
drodynamic equations

T mech �∇ = �f D . (1.184)

By the way, one obtains, when the energy–momentum matrix T mech from the right
is multiplied with M �u, the four-vector momentum density ρ0�u multiplied by c2:

T mechM �u=
(

ρ0 + p

c2

)
�uγ 2(c2 − v2)
︸ ︷︷ ︸

c2

−p�u= c2ρ0�u. (1.185)

1.9.3 The Total Energy–Momentum Matrix

The derived energy–momentum matrices include the conservation laws of energy
and momentum of a closed system. For example, if a force density f D acts from the
outside on the fluid, so that an electromagnetic field acts on the electrically charged
liquid, then

f D =−T b,e
�∇ = T mech �∇, (1.186)

or combined,

T total
def= (T mech + T b,e), (1.187)

so

T total �∇ = f total. (1.188)

The conservation laws now apply to the whole system, which is fluid plus the
electromagnetic field. Since the individual matrices are symmetric, the total energy–
momentum matrix T total is symmetric. If there are other components in the con-
sidered system, they can be incorporated in the symmetric total energy–momentum
matrix T total in a similar way as described above, and one obtains (1.188). This form
of mathematical representation of the dynamic behaviour of physical systems will
play a major role in the main equations of Einstein’s theory of General Relativity!
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1.10 The Most Important Definitions and Formulas in Special
Relativity

For inertial systems, i.e. reference systems that are uniformly moving against each
other, the fundamental physical laws are linked with the Lorentz transformation and
are invariant. In the Theory of Special Relativity, we derived (see (1.20))

γ
def= 1√

1− v2

c2

and the Lorentz transformation matrix (see (1.38))

L(v)
def=
(

γ − γ
c
vᵀ

− γ
c
v I + (γ − 1) vvᵀ

v2

)

with the following (see (1.39)) equations:

ct ′ = γ ct − γ

c
vᵀx, x′ = x + (γ − 1)

vᵀx

v2
v − γ vt .

In (1.65), we derived the relativistic velocity addition:

w = v+ u+ ( 1
γv
− 1)(u− vᵀu

v2 v)

1+ vᵀu
c2

.

If the two velocities v and u are parallel, then (see (1.68))

w = v+ u

1+ vᵀu
c2

.

The modified velocity vector in (1.79)

u
def= dx

dt
∈R

3, γu
def= 1√

1− u2

c2

, �u def= γu

(
c

u

)
∈R

4

is transformed by a Lorentz transformation L into the velocity vector �u′ (see (1.80))

�u′ =L�u.

With (1.95),

�a def= γu · d

dt
�u ∈R

4
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is the Lorentz transformation of the acceleration vector �a (see (1.96)):

�a′ =L�a.

Einstein’s famous formula (1.111) reads

E0 =m0c
2.

The invariance of the fundamental equation of mechanics (m0 is the rest mass) is
documented in

mo�a = �f L⇒ ⇐L−1
mo�a′ = �f ′

and in electrodynamics

FB,e
�∇ = 1

c
�j

FE,b
�∇ = o

L⇒ ⇐L−1 F ′
B ′,e′ �∇′ = 1

c
�j ′

F ′
E′,b′ �∇′ = o

and

�f = q

c
MFB,e �u L⇒ ⇐L−1 �f ′ = q

c
MF ′

B ′,e′ �u′

with

FB,e
def=
(

0 eᵀ
−e B×

)
,FE,b

def=
(

0 −bᵀ

b E×

)
and �∇ def=

(− 1
c

∂
∂t∇
)

.

With the electromagnetic energy–momentum matrix

T b,e
def=
(

w sᵀ
s (eeᵀ + bbᵀ −wI 3)

)

where

w
def= 1/2

(
e2 + b2),

one gets

T b,e · �∇ = 1

γv

�f ,

and with the mechanical energy–momentum matrix

T mech
def=
(

ρ0 + p

c2

)
�u�uᵀ − pM ,
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we obtain the relativistic generalization of the hydrodynamic equations

T mech �∇ = �f D .

Remark The operator �∇ was somewhat unusual in the above formulas—it was writ-
ten to the right to the approaching object, e.g. in T mech �∇. This was done so that
column vectors appear on both sides of the equation. The usual order would be if
one transposes the eligible equations. Then there would be row vectors on the left-
and on the right-hand side, and the operators, though provided with a transpose sign,
would have their usual place as, e.g. in

�∇ᵀ
T mech = �f ᵀ

D.

(Since the matrix T mech is symmetric, it need not be transposed.)



Chapter 2
Theory of General Relativity

The chapter begins with the introduction of the metric matrix G and the effect of a
homogeneous field of gravitation on a mass particle. Then the motion on geodesic
lines in a gravitational field is considered. The general transformation of coordi-
nates leads to the Christoffel matrix and the Riemannian curvature matrix. With the
help of the Ricci matrix, the Theory of General Relativity of Einstein can then be
formulated.

2.1 General Relativity and Riemannian Geometry

In the theory of general relativity, the invariance of the equations with respect to
any coordinate transformation is required. Especially the theorems of physics are to
remain unchanged if one transforms them from one coordinate system in another
coordinate system by the general transformation equations

xi = xi

(
x′0, x′1, x′2, x′3

)
for i = 0,1,2 and 3. (2.1)

Consider an arbitrary coordinate system K on the infinitely small neighbourhood of
the point P , in which also a field of gravity may be present. In an infinitely small
space and an infinitely small time interval, or in other words, in an infinitely small
spacetime interval, the coordinate system K can be replaced by a coordinate system
K′ which is accelerated to it and in which no field of gravitation is present. K′ is
the local spacetime coordinate system in the neighbourhood of a point, and K the
general coordinate system. It is now assumed that

For all local coordinate systems K′ the Special Relativity is valid in any in-
finitely small four-dimensional neighbourhood.

The point P ′ may be infinitely close to the point P , and have the real coordinates
dx0,dx1,dx2 and dx3 in the Cartesian (rectangular) coordinate system. For a line
element, one has

ds2 = dx2
0 −

(
dx2

1 + dx2
2 + dx2

3

)
(2.2)
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where x0 is the time coordinate ct . If ds2 is positive, then P ′ is reached from P by
a movement with a velocity smaller than the velocity of light. Equation (2.2) can be
written using the matrix

M =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

as a quadratic form

ds2 = d�xᵀ M d�x. (2.3)

Going on to the coordinate system K′, one gets with

dxi = ∂xi

∂x′0
dx′0 +

∂xi

∂x′1
dx′1 +

∂xi

∂x′2
dx′2 +

∂xi

∂x′3
dx′3

and the Jacobi matrix

J
def=

⎛
⎜⎜⎝

∂x0
∂x′0

. . .
∂x0
∂x′3

...
. . .

...
∂x3
∂x′0

. . .
∂x3
∂x′3

⎞
⎟⎟⎠=

∂ �x
∂ �x′ᵀ (2.4)

the connection

d�x = J d�x′. (2.5)

This is used in (2.3), yielding

ds2 = d�x′ᵀ JᵀMJ d�x′ = d�x′ᵀ Gd�x′. (2.6)

So the metric matrix G is defined as

G
def= JᵀMJ ∈R

4×4. (2.7)

The matrix elements gik are functions of the parameters x′i . They may change their
values from point to point. In Special Relativity, G =M in any finite region. An
unforced particle moves in such a region straightforwardly and uniformly.

But if the particle is in a gravitational field, the motion is curvilinear and nonuni-
form. Depending on the nature of the gravitational field, the gik are functions of
other parameters. At most ten different elements gik of the symmetric 4× 4-matrix
G describe the field of gravitation at every point in the coordinate system. In every
local coordinate system the gik are constant and can be transformed by a similar-
ity transformation into the form M . Because if G= JᵀMJ , then one immediately
obtains with the transformation d�x′ = J−1 d�ξ

d�x′ᵀ Gd�x′ = d�ξᵀ
J−1ᵀJᵀMJJ−1 d�ξ = d�ξᵀ

M d�ξ .
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But this is true only for a point because the matrices J are different from point to
point. There is no transformation matrix J which is valid globally.

2.2 Motion in a Gravitational Field

What influence does a gravitational field have on a mass particle? Following the
relativity principle, in the local inertial system, which means in a coordinate system
moving with the particle, the laws of special relativity are valid. For the movement
of a particle with no external forces acting on it,

d2�ξ
dτ 2

= 0. (2.8)

The proper time τ follows from

ds2 = c2 dτ 2 = d�ξᵀ
M d�ξ . (2.9)

By integrating (2.8), one gets with the initial position �ξ(0) and the initial velocity
�̇ξ(0)

�ξ(τ )= �ξ(0)+ �̇ξ(0)τ.

A photon also moves in a straight line in the local inertial system. But τ is then
not the proper time of the photon. A photon has no proper time because for light
ds = 0= c dτ . Therefore, we introduce the parameter λ such that

d2�ξ
dλ2

= 0

is the equation of motion of the photon in the local inertial system. Now we move
from the local inertial system with the spacetime vector �ξ to the global inertial
system with the spacetime vector �x. With

J
def= ∂�ξ

∂ �xᵀ

one gets for (2.9)

ds2 = c2 dτ 2 = d�xᵀ JᵀMJ d�x = d�xᵀ Gd�x. (2.10)

For light this becomes

d�xᵀ Gd�x = 0. (2.11)
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2.2.1 First Solution

From (2.8) one obtains for the motion of a particle with

�̇x def= d�x
dτ

,

d

dτ

(
∂�ξ
∂ �xᵀ

d�x
dτ

)
= d

dτ
(J �̇x)= d

dτ
(J )�̇x + J �̈x = 0, (2.12)

and with (A.90)

d

dτ

(
J
(�x(τ )

))= (�̇xᵀ ⊗ I 4
)∂J

∂ �x
from (2.12)

�̈x =−J−1(�̇xᵀ ⊗ I 4
)∂J

∂ �x �̇x, (2.13)

or

�̈x =−(�̇xᵀ ⊗ J−1)∂J

∂ �x �̇x =−
(�̇xᵀ ⊗ I 4

)(
I 4 ⊗ J−1)∂J

∂ �x �̇x,

that is,

�̈x =−(I 4 ⊗ �̇xᵀ)U4×4
(
I 4 ⊗ J−1)∂J

∂ �x �̇x. (2.14)

With J k
def= ∂J

∂xk
∈R

4×4 and

Γ̂ =
⎛
⎜⎝

Γ̂ 0
...

Γ̂ 3

⎞
⎟⎠ def= U4×4

(
I 4 ⊗ J−1)∂J

∂ �x =U4×4

⎛
⎜⎝

J−1J 0
...

J−1J 3

⎞
⎟⎠ ∈R

16×4 (2.15)

one can write in place of (2.14) the compact equation

�̈x =−(I 4 ⊗ �̇xᵀ)Γ̂ �̇x. (2.16)

With (2.15) and (2.16) one gets for the individual vector components ẍk according
to the form of the permutation matrix U4×4 in the appendix (j−ᵀ

k ∈ R
4 is row k of

J−1)

ẍk =−�̇xᵀ(I 4 ⊗ j
−ᵀ
k

)∂J

∂ �x �̇x. (2.17)

From (2.15) and (2.17) we can read directly

Γ̂ k =
(
I 4 ⊗ j

−ᵀ
k

)∂J

∂ �x . (2.18)
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The so-called Christoffel matrices Γ̂ can be calculated directly from the Jacobi ma-
trix J , that is, from the transformation matrix for the transition from the local in-
ertial system to the accelerated non-inertial system (the coordinate system with a
gravitational field). For the motion of a photon, we obtain in the same manner

d2�x
dλ2

=−
(

I 4 ⊗ d�x
dλ

ᵀ)
Γ̂

d�x
dλ

. (2.19)

2.2.2 Second Solution

An alternative solution is obtained from the second form in (A.90), namely

d

dτ
(J )= ∂J

∂ �xᵀ (�̇x ⊗ I 4). (2.20)

Thus we obtain from (2.12)

�̈x =−J−1 ∂J

∂ �xᵀ (�̇x ⊗ I 4)�̇x =−J−1 ∂J

∂ �xᵀ (�̇x ⊗ �̇x), (2.21)

that is, with

Γ̃
def= J−1 ∂J

∂ �xᵀ (2.22)

written completely as

Γ̃ = J−1
[

∂J

∂x0

∣∣∣∣
∂J

∂x1

∣∣∣∣
∂J

∂x2

∣∣∣∣
∂J

∂x3

]
∈R

4×16, (2.23)

so with �̇x ⊗ �̇x ∈R
16,

�̈x =−Γ̃ (�̇x ⊗ �̇x). (2.24)

This is an alternative representation of the relation (2.16)!
If one defines

γ̃
ᵀ
k

def= j
−ᵀ
k

∂J

∂ �xᵀ ∈R
16, (2.25)

then for each vector component the following scalar vector product is obtained:

ẍk =−γ̃
ᵀ
k · (�̇x ⊗ �̇x). (2.26)
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2.2.3 Relation Between Γ̃ and G

Since G= JᵀMJ and Γ̃ = J−1 ∂J
∂xᵀ , the matrix Γ̃ must depend on ∂G

∂x . This indeed
is the case.

On the one hand,

GΓ̃ = JᵀM
∂J

∂xᵀ , (2.27)

and, on the other hand, gμν = j
ᵀ
μMj ν , so

∂gμν

∂xλ

= ∂j
ᵀ
μ

∂xλ

Mj ν + jᵀ
μM

∂j ν

∂xλ

. (2.28)

Furthermore,

∂gλν

∂xμ

= ∂j
ᵀ
λ

∂xμ

Mj ν + j
ᵀ
λM

∂j ν

∂xμ

(2.29)

and

∂gμλ

∂xν

= ∂j
ᵀ
μ

∂xν

Mjλ + jᵀ
μM

∂jλ

∂xν

. (2.30)

If we add (2.28) and (2.29) and then subtract (2.30), we obtain

∂gμν

∂xλ

+ ∂gλν

∂xμ

− ∂gμλ

∂xν

= 2
∂j

ᵀ
μ

∂xλ

Mj ν = 2jᵀ
ν M

∂jμ

∂xλ

. (2.31)

Calling GΓ̃
def= ˇ̃Γ , then we obtain with (2.27) and (2.31) as the element ˇ̃Γ λ

νμ in the

νth row and the μth column of ˇ̃Γ λ

ˇ̃
Γ λ

νμ =
1

2

(
∂gμν

∂xλ

+ ∂gλν

∂xμ

− ∂gμλ

∂xν

)
. (2.32)

Since Γ̃ =G−1GΓ̃ =G−1 ˇ̃Γ ,

Γ̃ λ =G−1 ˇ̃Γ λ =G−1JᵀM
∂J

∂xλ

,

and one finally obtains with the αth row g
[−T ]
α of the matrix G−1 and the νth ele-

ment g
[−1]
αν of this row vector the following relation between the elements in the αth

row and the μth column of Γ̃ λ and the elements of G

Γ̃ λ
αμ = g[−T ]

α JᵀM
∂jμ

∂xλ

=
3∑

ν=0

g
[−1]
αν

2

(
∂gμν

∂xλ

+ ∂gλν

∂xμ

− ∂gμλ

∂xν

)
. (2.33)

This is the desired relationship between the matrix elements of Γ̃ and G!
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2.3 Geodesic Lines and Equations of Motion

The motion of photons and particles in a gravitational field will again be considered,
but now using the calculus of variations. The same results as in (2.16) are expected.
This is to be seen by using the same Christoffel matrix Γ in the results. In special
relativity, the motion of a photon is given by c2t2 = xᵀx, that means s2 = c2t2 −
xᵀx = 0, or ds2 = dx2

0 − dxᵀ dx = d�xᵀ M d�x = 0 for any small distance dx. If
paths were straight lines, that would mean the shortest possible connection between
the points P1 and P2. Also the theory of general relativity demands that light and
particles move on straightest possible paths. These paths are the so-called geodesic
curves for which the length has an extreme value:

δ

∫ P2

P1

ds = 0. (2.34)

This produces a system of four differential equations. For the variation of ds2 we
obtain

δ
(
ds2)= δ

(
d�xᵀ Gd�x),

2(δ ds)ds = (δ d�xᵀ)Gd�x + d�xᵀ(δG)d�x + d�xᵀG(δ d�x),
(2.35)

but since G is symmetric, G=Gᵀ, we get

2(δ ds)ds = 2 d�xᵀG(δ d�x)+ d�xᵀ(δG)d�x. (2.36)

Equation (2.36) divided by 2 ds results, with d(δ�x)= δ d�x and d�x
ds

def= �̇x, in

δ ds = �̇xᵀGd(δ�x)+ 1

2
�̇xᵀ(δG)d�x. (2.37)

Multiplying the right-hand side by ds provides

δ ds =
[
�̇xᵀG

d(δ�x)

ds
+ 1

2
�̇xᵀ(δG)�̇x

]
ds. (2.38)

For the variation of the matrix G we set

δG= ∂G

∂x0
δx0 + ∂G

∂x1
δx1 + ∂G

∂x2
δx2 + ∂G

∂x3
δx3. (2.39)

This is extended to a quadratic form:

�̇xᵀδG�̇x = �̇xᵀ ∂G

∂x0
�̇xδx0 + �̇xᵀ ∂G

∂x1
�̇xδx1 + �̇xᵀ ∂G

∂x2
�̇xδx2 + �̇xᵀ ∂G

∂x3
�̇xδx3 (2.40)

and the right-hand side is collected to a vector product, leading to the result

�̇xᵀδG�̇x =
[
�̇xᵀ ∂G

∂x0
�̇x, �̇xᵀ ∂G

∂x1
�̇x, �̇xᵀ ∂G

∂x2
�̇x, �̇xᵀ ∂G

∂x3
�̇x
]
δ�x. (2.41)
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The row vector on the right-hand side with
(

∂G

∂ �xᵀ

)
def=
[

∂G

∂x0
,
∂G

∂x1
,
∂G

∂x2
,
∂G

∂x3

]

and the Kronecker product can be written as
[
�̇xᵀ ∂G

∂x0
�̇x, �̇xᵀ ∂G

∂x1
�̇x, �̇xᵀ ∂G

∂x2
�̇x, �̇xᵀ ∂G

∂x3
�̇x
]
= �̇xᵀ

(
∂G

∂ �xᵀ

)
(I 4 ⊗ �̇x). (2.42)

With this relationship we obtain now for the variated integral (2.34)

δ

∫ P2

P1

ds =
∫ P2

P1

[
�̇xᵀG

d(δ�x)

ds
+ 1

2
�̇xᵀ
(

∂G

∂ �xᵀ

)
(I 4 ⊗ �̇x)δ�x

]
ds. (2.43)

Taking in consideration δ�x(P1)= δ�x(P2)= o, and performing integration by parts
to the left summand in the integral, gives

δ

∫ P2

P1

ds =
∫ P2

P1

[
− d

ds

(�̇xᵀG
)
δ�x + 1

2
�̇xᵀ
(

∂G

∂ �xᵀ

)
(I 4 ⊗ �̇x)δ�x

]
ds

=
∫ P2

P1

[
− d

ds

(�̇xᵀG
)+ 1

2
�̇xᵀ
(

∂G

∂ �xᵀ

)
(I 4 ⊗ �̇x)

]
δ�x ds = 0. (2.44)

To make the variation of the integral for every arbitrary vector function δ�x(·) dis-
appear, in spite of the fundamental theorem of the calculus of variations, the vector
function in the brackets must be identically zero:

− d

ds

(�̇xᵀG
)+ 1

2
�̇xᵀ
(

∂G

∂ �xᵀ

)
(I 4 ⊗ �̇x)= oᵀ, (2.45)

or transposed, where (A⊗B)ᵀ = (Aᵀ ⊗Bᵀ) is used,

1

2

(
I 4 ⊗ �̇xᵀ)∂G

∂ �x �̇x −
d

ds
(G�̇x)= o. (2.46)

For the second term on the left-hand side one gets

d

ds
(G�̇x)=G�̈x + d

ds
(G)�̇x. (2.47)

And this is

d

ds
(G)= (�̇xᵀ ⊗ I 4

)∂G

∂ �x .

Inserted into (2.47) this finally yields

G�̈x = 1

2

(
I 4 ⊗ �̇xᵀ)∂G

∂ �x �̇x −
(�̇xᵀ ⊗ I 4

)∂G

∂ �x �̇x (2.48)
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or, putting �̈x to the left-hand side,

�̈x =G−1
[

1

2

(
I 4 ⊗ �̇xᵀ)− (�̇xᵀ ⊗ I 4

)]∂G

∂ �x �̇x. (2.49)

Taking into account the lemma in the Appendix “Vectors and Matrices”:

B ⊗A=U s×p(A⊗B)Uq×t , A ∈R
p×q,B ∈R

s×t , (2.50)

(2.49) can be converted, with the help of �̇xᵀ ⊗ I 4 = (I 4 ⊗ �̇xᵀ)U4×4, into

�̈x =G−1(I 4 ⊗ �̇xᵀ)
[

1

2
I 16 −U4×4

]
∂G

∂ �x �̇x. (2.51)

With

G−1(I 4 ⊗ �̇xᵀ)= (G−1 ⊗ 1
)(

I 4 ⊗ �̇xᵀ)= (G−1 ⊗ �̇xᵀ)= (I 4 ⊗ �̇xᵀ)(G−1 ⊗ I 4
)

we finally obtain a form in which �̇x is pulled out to the left and to the right:

�̈x = (I 4 ⊗ �̇xᵀ)(G−1 ⊗ I 4
)[1

2
I 16 −U4×4

]
∂G

∂ �x �̇x. (2.52)

Summarizing

Γ̂
def= (G−1 ⊗ I 4

)[
U4×4 − 1

2
I 16

]
∂G

∂ �x (2.53)

=U4×4
(
I 4 ⊗G−1)

[
1

2
I 16 −U4×4

]
∂G

∂ �x , (2.54)

one gets the compact equation

�̈x =−(I 4 ⊗ �̇xᵀ)Γ̂ �̇x (2.55)

which agrees with the equation of motion (2.16), that is, in the language of the
calculus of variations, this equation yields an extremal.

In (2.53) with the kth row g
ᵀ
k of the matrix G is

U4×4
∂G

∂ �x =

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠ .
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For the four components ẍk , k = 0,1,2 and 3, one obtains with the kth row g−T
k of

the matrix G−1,

ẍk = �̇xᵀ(g−T
k ⊗ I 4

)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠−

1

2

∂G

∂ �x

⎤
⎥⎥⎦ �̇x. (2.56)

With

Γ̂ k
def= (g−T

k ⊗ I 4
)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠−

1

2

∂G

∂ �x

⎤
⎥⎥⎦ (2.57)

one can also write for (2.56)

ẍk =−�̇xᵀΓ̂ k �̇x. (2.58)

The so-obtained matrix Γ̂ k need not be symmetric. But the value of the quadratic
form (2.58) is unchanged, if the matrix Γ̂ k in (2.58) is replaced by the symmetric
4× 4-matrix

Γ k
def= 1

2

(
Γ̂ k + Γ̂

ᵀ
k

)
. (2.59)

In this way, the matrix is said to be symmetrised. Expanding (2.57) yields

Γ̂ k =
3∑

i=0

g
[−1]
k,i

(
∂g

ᵀ
i

∂ �x − 1

2

∂G

∂xi

)
,

and transposed

Γ̂
ᵀ
k =

3∑
i=0

g
[−1]
k,i

(
∂gi

∂ �xᵀ −
1

2

∂G

∂xi

)
.

For this one can also write

Γ̂
ᵀ
k =

(
g−T

k ⊗ I 4
)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠−

1

2

∂G

∂ �x

⎤
⎥⎥⎦ . (2.60)
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Inserting (2.60) into (2.59), we obtain

Γ k = 1

2

(
Γ̂ k + Γ̂

ᵀ
k

)= 1

2

(
g−T

k ⊗ I 4
)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠−

∂G

∂ �x

⎤
⎥⎥⎦ . (2.61)

Multiplying out yields the results for the components of the Christoffel matrix Γ k ,
namely the above already derived relationship

Γ k
αβ =

3∑
i=0

g
[−1]
ki

2

(
∂gβi

∂xα

+ ∂gαi

∂xβ

− ∂gαβ

∂xi

)
. (2.62)

This can with

Γ̌ i
αβ

def= 1

2

(
∂gβi

∂xα

+ ∂gαi

∂xβ

− ∂gαβ

∂xi

)
(2.63)

also be written as

Γ k
αβ =

3∑
i=0

g
[−1]
ki Γ̌ i

αβ . (2.64)

In addition, from (2.63) the interesting connection follows:

∂gαi

∂xβ

= Γ̌ i
αβ + Γ̌ α

iβ . (2.65)

Assembling the four components ẍk of the vector �̈x with the matrix Γ k into one
vector yields

�̈x =−
⎛
⎜⎝
�̇xᵀΓ 0 �̇x

...

�xᵀΓ 3 �̇x

⎞
⎟⎠ , (2.66)

respectively,

�̈x =−(I 4 ⊗ �̇xᵀ)Γ �̇x, (2.67)

with

Γ
def=
⎛
⎜⎝

Γ 0
...

Γ 3

⎞
⎟⎠= 1

2

(
G−1 ⊗ I 4

)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠−

∂G

∂ �x

⎤
⎥⎥⎦. (2.68)
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This can also be written as

Γ = 1

2

(
G−1 ⊗ I 4

)
⎡
⎢⎢⎣(U4×4 − I 16)

∂G

∂ �x +

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (2.69)

Introducing the matrix

Γ̌
def= 1

2

⎡
⎢⎢⎣(U4×4 − I 16)

∂G

∂ �x +

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠

⎤
⎥⎥⎦ , (2.70)

it can also be written as

Γ = (G−1 ⊗ I 4
)
Γ̌ . (2.71)

The matrix difference U4×4 − I 16, appearing in the matrix Γ̌ , has the remarkable
property that the first, (4 + 2)th, (8 + 3)th and the 16th row (resp., column) are
equal to a zero-row (resp., zero-column)! For the matrix Γ̌ this has the consequence
that the corresponding rows consist of ∂g00

∂xᵀ , ∂g11
∂xᵀ , ∂g22

∂xᵀ and ∂g33
∂xᵀ . Furthermore, from

(2.71) it follows that

Γ̌ = (G⊗ I 4)Γ , (2.72)

that is,

Γ̌ k =
(
g

ᵀ
k ⊗ I 4

)
Γ = gkoΓ 0 + · · · + gk3Γ 3,

therefore,

Γ̌ k
αβ =

3∑
i=0

gkiΓ
i
αβ . (2.73)

2.3.1 Alternative Geodesic Equation of Motion

Again the equations of motion can be modified as follows: Firstly,

(�̇xᵀ ⊗ I 4
)∂G

∂ �x = ∂G

∂ �xᵀ (�̇x ⊗ I 4), (2.74)

and secondly,

(
I 4 ⊗ �̇xᵀ)∂G

∂ �x �̇x =
⎛
⎜⎝
�̇xᵀG0 �̇x

...

�̇xᵀG3 �̇x

⎞
⎟⎠ .
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Using the vec-operator from the Appendix (A.51) to the scalar component �̇xᵀGk �̇x
yields

vec
(�̇xᵀGk �̇x

)= (�̇xᵀ ⊗ �̇xᵀ)vec(Gk)=
(
vec(Gk)

)ᵀ
(�̇x ⊗ �̇x),

so

(
I 4 ⊗ �̇xᵀ)∂G

∂ �x �̇x =
∂G

∂ �xᵀ (�̇x ⊗ �̇x), (2.75)

with

∂G

∂ �xᵀ
def=
⎛
⎜⎝

(vec(G0))
ᵀ

...

(vec(G3))
ᵀ

⎞
⎟⎠=

⎛
⎜⎜⎜⎝

g
ᵀ
0,0 g

ᵀ
0,3

g
ᵀ
1,0 . . . g

ᵀ
1,3

g
ᵀ
2,0 g

ᵀ
2,3

g
ᵀ
3,0 g

ᵀ
3,3

⎞
⎟⎟⎟⎠ ∈R

4×16, (2.76)

where g
ᵀ
i,j is the j th row of Gi .

By the “method of careful examination”, one can write

∂G

∂ �xᵀ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g
ᵀ
0,0

g
ᵀ
1,0

g
ᵀ
2,0

g
ᵀ
3,0
...

g
ᵀ
0,3

g
ᵀ
1,3

g
ᵀ
2,3

g
ᵀ
3,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B

=
(

U4×4
∂G

∂ �x
)B

, (2.77)

where the superscript “B” means the block-transposition of the corresponding ma-
trix. The block-transposition of a block matrix is defined as

AB def=
⎛
⎜⎝

A1
...

An

⎞
⎟⎠

B

= (A1 . . . An

)
.

Equation (2.75) used in (2.48) yields

�̈x =−G−1
[

∂G

∂ �xᵀ −
1

2

∂G

∂ �xᵀ

]
(�̇x ⊗ �̇x). (2.78)

With

Γ̃
def= G−1

[
∂G

∂ �xᵀ −
1

2

∂G

∂ �xᵀ

]
∈R

4×16, (2.79)
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one finally obtains

�̈x =−Γ̃ (�̇x ⊗ �̇x). (2.80)

One can also reach the form (2.80) as follows: It is ẍk = ẋᵀΓ kẋ. Applying to this
the vec-operator (see Appendix), one obtains

−ẍk = vec
(�̇xᵀΓ k �̇x

)= (�̇xᵀ ⊗ �̇xᵀ)vec(Γ k)=
(
vec(Γ k)

)ᵀ
(�̇x ⊗ �̇x).

With

Γ̃
def=
⎛
⎜⎝

(vec(Γ 0))
ᵀ

...

(vec(Γ 3))
ᵀ

⎞
⎟⎠ (2.81)

(2.80) is obtained again. Once again, we can write

Γ̃ =
(

U4×4
∂Γ

∂ �x
)B

. (2.82)

Just a word regarding the derivatives with respect to s. If s2 and ds2 are positive,
then it is a so-called time-like event. Then

(ds)2 = c2 dt2 − dxᵀ dx = c2 dt2 − ẋᵀẋ dt2,

ds =
√

c2 − v2 dt,

so

γ ds = c dt.

Substituting ds = c dτ , one obtains

γ dτ = dt.

A comparison with the results of special relativity theory provides dτ = dt ′, i.e. the
time that elapses in the moving coordinate system X ′. One calls in this context τ as
proper time.

2.4 Example: Uniformly Rotating Systems

We will consider a fixed inertial frame X with the coordinates t, x, y and z and
a uniformly around the z-axis rotating coordinate system K with the coordinates
τ, r, ϕ and z. Then the transformation equations are

t = τ,

x = r cos(ϕ +ωt),

y = r sin(ϕ +ωt),

z = z.

(2.83)
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As Jacobi matrix J one obtains

J =

⎛
⎜⎜⎝

1 0 0 0
−r ω

c
sin(ϕ +ωt) cos(ϕ +ωt) −r sin(ϕ +ωt) 0

r ω
c

cos(ϕ +ωt) sin(ϕ +ωt) r cos(ϕ +ωt) 0
0 0 0 1

⎞
⎟⎟⎠ (2.84)

and as the metric matrix

G= JᵀMJ =

⎛
⎜⎜⎝

1− r2 ω2

c2 0 −r2 ω
c

0
0 −1 0 0

−r2 ω
c

0 −r2 0
0 0 0 −1

⎞
⎟⎟⎠ , (2.85)

and from this

G−1 =

⎛
⎜⎜⎝

1 0 −ω
c

0
0 −1 0 0

−ω
c

0 ω2

c2 − 1
r2 0

0 0 0 −1

⎞
⎟⎟⎠ . (2.86)

In this case, ds2 has the value

ds2 =
(

1− r2 ω2

c2

)
dτ 2 − dr2 − r dϕ2 − 2r2 ω

c
dϕ dτ − dz2. (2.87)

If a clock is in the rotating system at the position (r, θ, z) and one considers two
temporally directly adjacent events with dr = dϕ = dz= 0, then one obtains for the
proper time ds in this case the relationship (with v = rω)

ds = dτ

√
1− r2ω2/c2 = dτ

√
1− v2/c2 = dτ/γ.

This is the relationship known from the theory of special relativity! For the calcula-
tion of the acceleration, the derivatives of the metric matrix are needed. In this case,
G0 =G2 =G3 = 0, but

G1 = ∂G

∂r
=

⎛
⎜⎜⎝
−2r ω2

c2 0 −2r ω
c

0
0 0 0 0

−2r ω
c

0 −2r 0
0 0 0 0

⎞
⎟⎟⎠ .

Since only the matrix G1 �= 0, in this case (2.56) is simplified to

ẍk =
[

1

2

(
gk1 �̇xᵀ)− (ẋ1g

−ᵀ
k

)]
G1 �̇x.
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In particular, with �̇xᵀ = [c|ṙ|ϕ̇|ż] we obtain

r̈ =−1

2
�̇xᵀG1 �̇x

=−1

2

[−2rω2/c− ϕ̇2rω/c | 0 | −2rω− 2rϕ̇ | 0
]
ẋ = r(ω+ ϕ̇)2 (2.88)

and

ϕ̈ =−ṙ
[−ω/c | 0 | ω2/c2 − 1/r2 | 0

]
G1 �̇x =−2ṙω/r − 2ṙ ϕ̇/r, (2.89)

or

rϕ̈ =−2ṙ(ϕ̇ +ω). (2.90)

Equation (2.88) multiplied by the mass m represents the centrifugal force, and
(2.90) multiplied by the mass m is the so-called Coriolis force! The accelerations
occurring in this rotating system are determined by the elements gij = gij (�x) of
the coordinate-dependent metric matrix G(�x). For a local reference system, one
can always specify a coordinate transformation (with J−1(�x)), so that the trans-
formed system is obviously an inertial frame. In general, for an accelerated or non-
uniformly moving (e.g. rotating) system no globally valid transformation matrix J

can be specified. The given space is curved!
It should now be shown that the Christoffel matrices are the same for the rotating

system by applying the formula (2.18). According to (2.84),

J =

⎛
⎜⎜⎝

1 0 0 0
−r ω

c
sin(ϕ +ωt) cos(ϕ +ωt) −r sin(ϕ +ωt) 0

r ω
c

cos(ϕ +ωt) sin(ϕ +ωt) r cos(ϕ +ωt) 0
0 0 0 1

⎞
⎟⎟⎠ , (2.91)

i.e.

J−1 =

⎛
⎜⎜⎝

1 0 0 0
0 cos(ϕ +ωt) sin(ϕ +ωt) 0
−ω

c
1
r

sin(ϕ +ωt) 1
r

cos(ϕ +ωt) 0
0 0 0 1

⎞
⎟⎟⎠ . (2.92)

Equations (2.88) and (2.89) can be used for the Christoffel matrices. The non-zero
matrix elements are:

Γ 1
00 =−r

ω2

c2
, Γ 1

02 =−r
ω

c
, Γ 1

03 =−r
ω

c
, Γ 1

22 =−1,

Γ 2
01 =

4ω

rc
, and Γ 2

12 =
4

r
.
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Accordingly, we obtain with (2.18), e.g.

Γ 1
00 =

[
0 | cos(ϕ +ωt) | sin(ϕ +ωt) | 0

]
⎛
⎜⎜⎜⎝

0

−r ω2

c2 cos(ϕ +ωt)

−r ω2

c2 sin(ϕ +ωt)

0

⎞
⎟⎟⎟⎠

=−r
ω2

c2
.

2.5 General Coordinate Transformations

In the theory of general relativity, the invariance of the mathematical descriptions
is demanded for the general laws of nature with respect to each other arbitrarily
moving coordinate systems. Even more generally:

The invariance of the mathematical descriptions with respect to arbitrary coordi-
nate transformations is required.

2.5.1 Absolute Derivatives

First, we must clarify how the derivatives eventually have to be modified so that the
derived expressions are invariant under coordinate transformations.

Suppose a vector field a(λ) is defined along a curve whose parametric represen-
tation is given by �x(λ). Going on to another coordinate system K′ with a′, for the
mathematical description of dynamic processes one is especially interested in how
the derivative da/dλ is transformed into da′/dλ. Because T = T (�x(λ)), it follows
that

da′

dλ
= d(T a)

dλ
= T

da

dλ
+
(

d�xᵀ

dλ
⊗ I 4

)
∂T

∂ �x a, (2.93)

i.e. da/dλ is not transformed into da′/dλ as was a by a simple multiplication with
the transformation matrix T . For this the reason, the definition of the derivative is

da

dλ
= lim

δλ→0

a(λ+ δλ)− a(λ)

δλ
,

where the difference of the vectors is formed at different places on the curve γ , to
which transformation matrices T (λ) �= T (λ+ δλ) generally belong.

Thus in order to be always able to take the same transformation matrix, the dif-
ference of two vectors must be taken at the same place of the curve. It is true that

δa ≈ da

dλ
δλ (2.94)
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and, if the shift of a is taken along a geodesic line,

da

dλ
+ (I 4 ⊗ aᵀ)Γ d�x

dλ
= 0,

so

da

dλ
=−(I 4 ⊗ aᵀ)Γ d�x

dλ
. (2.95)

Here d�x
dλ

is the tangent vector to the geodesic curve γ , and �x(λ) is the parametric
representation of γ . Multiplying (2.95) with δλ, we obtain

δa =−(I 4 ⊗ aᵀ)Γ δ�x. (2.96)

Moving the vector a(λ) from the position �x(λ) parallel to the position �x(λ+ δλ),
the vector

a
def= a(λ)+ δa

is obtained, or by (2.96),

a ≈ a(λ)− (I 4 ⊗ aᵀ)Γ δ�x. (2.97)

On the other hand, a(λ + δλ) − a is a vector at the position γ (λ + δλ), as is
(a(λ+ δλ)− a)/δλ. As δλ→ 0 the quotient is always a vector at the same location
that varies, however.

The limit of this ratio is called absolute derivative Da
dλ

of a(λ) along the curve γ :

lim
δλ→0

a(λ+ δλ)− a

δλ
≈ da

dλ
+ lim

δλ→0

(
I 4 ⊗ aᵀ)Γ δ�x

δλ

which is obtained with (2.97), and therefore one defines the absolute derivative as

Da

dλ

def= da

dλ
+ (I 4 ⊗ aᵀ)Γ d�x

dλ
= ȧ + (I 4 ⊗ aᵀ)Γ �̇x. (2.98)

The differentiated vector can be decomposed into

ȧ = ∂a

∂ �xᵀ �̇x, (2.99)

so that in (2.98) one can extract �̇x to the right:

Da

dλ
=
[

∂a

∂ �xᵀ +
(
I 4 ⊗ aᵀ)Γ

]
�̇x. (2.100)
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The expression appearing in brackets is called the covariant derivative of a and
written a||�xᵀ (∈R

4×4):

a‖�xᵀ def= ∂a

∂ �xᵀ +
(
I 4 ⊗ aᵀ)Γ . (2.101)

This covariant derivative a‖�xᵀ becomes the normal partial derivative a
�xᵀ , if Γ = 0,

that means, there is no gravitational field.

2.5.2 Transformation of the Christoffel Matrix Γ̃

In (2.22), the Christoffel matrix is defined:

Γ̃
def= J−1 ∂J

∂ �xᵀ =
∂ �x
∂�ξᵀ ·

∂2�ξ
∂ �xᵀ∂ �xᵀ . (2.102)

If one changes over from the coordinate system with �x to the coordinate system
with �x′, one obtains with the transformation matrices

T
def= ∂ �x′

∂ �xᵀ (2.103)

and

T̄
def= ∂ �x

∂ �x′ᵀ , (2.104)

the Christoffel matrix Γ̃
′

in the coordinate system with �x′

Γ̃
′ def= ∂ �x′

∂�ξᵀ ·
∂2�ξ

∂ �x ′ᵀ∂ �x ′ᵀ =
∂ �x ′
∂ �xᵀ

∂ �x
∂�ξᵀ

∂

∂ �x′ᵀ
(

∂�ξ
∂ �x ′ᵀ

)

= T · ∂ �x
∂�ξᵀ
︸︷︷︸
J−1

∂

∂ �x ′ᵀ
(

∂�ξ
∂ �xᵀ︸︷︷︸

J

· ∂ �x
∂ �x′ᵀ︸ ︷︷ ︸

T̄

)
. (2.105)

According to the product and chain rules, one obtains

∂

∂ �x ′ᵀ (J · T̄ )= ∂J

∂ �x′ᵀ (I 4 ⊗ T̄ )+ J
∂T̄

∂ �x ′ᵀ

= ∂J

∂ �xᵀ (T̄ ⊗ I 4)(I 4 ⊗ T̄ )+ J
∂T̄

∂ �xᵀ (T̄ ⊗ I 4)

= ∂J

∂ �xᵀ (T̄ ⊗ T̄ )+ J
∂T̄

∂ �xᵀ (T̄ ⊗ I 4). (2.106)



70 2 Theory of General Relativity

Inserting (2.106) in (2.105) reveals

Γ̃
′ = T Γ̃ (T̄ ⊗ T̄ )+ T

∂T̄

∂ �xᵀ (T̄ ⊗ I 4). (2.107)

The second term on the right-hand side shows the coordinate dependence of the
transformation matrix T .

Another important characteristic is obtained as follows. Differentiating I 4 = T T̄
with respect to �xᵀ yields

O = ∂T

∂ �xᵀ (I 4 ⊗ T̄ )+ T
∂T̄

∂ �xᵀ ,

i.e.

T
∂T̄

∂xᵀ =−
∂T

∂ �xᵀ (I 4 ⊗ T̄ ). (2.108)

Putting this in (2.107), one gets another form of the transformed Christoffel matrix,
namely

Γ̃
′ = T Γ̃ (T̄ ⊗ T̄ )− ∂T

∂ �xᵀ (T̄ ⊗ T̄ ). (2.109)

Moreover,

d2�x′
dτ 2

= d

dτ

(
∂ �x′
∂ �xᵀ︸︷︷︸

T

·d�x
dτ

)
= T

d2�x
dτ 2

+ ∂T

∂ �xᵀ

(
d�x
dτ
⊗ I 4

)
d�x
dτ︸ ︷︷ ︸

( d�x
dτ
⊗ d�x

dτ
)

. (2.110)

Multiplying (2.109) by the vector ( d�x′
dτ
⊗ d�x′

dτ
) from the right yields

Γ̃
′
(

d�x′
dτ

⊗ d�x′
dτ

)
= T Γ̃ (T̄ ⊗ T̄ )

(
d�x′
dτ

⊗ d�x′
dτ

)

︸ ︷︷ ︸
( d�x

dτ
⊗ d�x

dτ
)

− ∂T

∂ �xᵀ (T̄ ⊗ T̄ )

(
d�x′
dτ

⊗ d�x′
dτ

)

︸ ︷︷ ︸
( d�x

dτ
⊗ d�x

dτ
)

. (2.111)

Adding the two equations (2.110) and (2.111), we finally obtain

d2�x′
dτ 2

+ Γ̃
′
(

d�x′
dτ

⊗ d�x′
dτ

)
= T

[
d2�x
dτ 2

+ Γ̃

(
d�x
dτ
⊗ d�x

dτ

)]
. (2.112)

The vector in the brackets in (2.112) is transformed as a vector in general! The
equation of motion is invariant.
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2.5.3 Transformation of the Christoffel Matrix Γ̂

By (2.15),

Γ̂ =U4×4

⎛
⎜⎝

J−1J 0
...

J−1J 3

⎞
⎟⎠=U4×4

(
I 4 ⊗ J−1)∂J

∂ �x , (2.113)

where

J = ∂�ξ
∂ �xᵀ .

Defining furthermore

J ′ = ∂�ξ
∂ �x′ᵀ , (2.114)

we obtain with the transformation matrices T and T̄ the relation

J = ∂�ξ
∂ �xᵀ =

∂�ξ
∂ �x′ᵀ

∂ �x′
∂ �xᵀ =

∂�ξ
∂ �x′ᵀ T , (2.115)

i.e. with (2.114)

J = J ′T , (2.116)

or

J ′ = J T̄ . (2.117)

Hence

Γ̂
′ =U4×4

(
I 4 ⊗ J ′−1)∂J ′

∂ �x ′ . (2.118)

With

J ′−1 = T J−1

and

∂J ′

∂ �x ′ =
∂J T̄

∂ �x ′ =
∂J

∂ �x′ T̄ + (I 4 ⊗ J )
∂T̄

∂x ′
,

we then obtain

Γ̂
′ =U4×4(I 4 ⊗ T )

(
I 4 ⊗ J−1)

(
∂J

∂ �x′ T̄ + (I 4 ⊗ J )
∂T̄

∂x ′

)

=U4×4(I 4 ⊗ T )

((
I 4 ⊗ J−1) ∂J

∂ �x′ T̄ +
∂T̄

∂x′

)
. (2.119)
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Furthermore,

∂J

∂ �x′ =
(

∂ �xᵀ

∂ �x ′ ⊗ I 4

)
∂J

∂ �x = (T̄ ᵀ ⊗ I 4
)∂J

∂ �x , (2.120)

so

Γ̂
′ =U4×4

[(
T̄

ᵀ ⊗ T J−1)∂J

∂ �x T̄ + (I 4 ⊗ T )
∂T̄

∂ �x ′
]

=U4×4
(
T̄

ᵀ ⊗ T
)
U4×4︸ ︷︷ ︸

T⊗T̄
ᵀ

U4×4
(
I 4 ⊗ J−1)∂J

∂ �x︸ ︷︷ ︸
Γ̂

T̄ +U4×4(I 4 ⊗ T )
∂T̄

∂ �x ′ ,

and with (2.113)

Γ̂
′ = (T ⊗ T̄

ᵀ)
Γ̂ T̄ +U4×4(I 4 ⊗ T )

∂T̄

∂ �x ′ . (2.121)

The second term on the right-hand side expresses again the dependence on the trans-
formation matrix T .

2.5.4 Coordinate Transformation and Covariant Derivative

It is true that

T T̄ = I ,

so

∂

∂ �x′ (T T̄ )= 0= ∂T

∂ �x ′ T̄ + (I 4 ⊗ T )
∂T̄

∂ �x ′ ,
or

(I 4 ⊗ T )
∂T̄

∂ �x ′ = −
∂T

∂ �x′ T̄ . (2.122)

Look now at the coordinate transformation

a′ = T a (2.123)

and its partial derivative with respect to �x′:
∂a′

∂ �x′ =
∂

∂ �x′ (T a)= ∂T

∂ �x′ a + (I 4 ⊗ T )
∂a

∂ �x ′ . (2.124)

On the other hand,

∂a

∂ �x′ =
(

∂ �xᵀ

∂ �x′ ⊗ I 4

)
∂a

∂ �x =
(
T̄

ᵀ ⊗ I 4
) ∂a

∂ �x .
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Inserting this into (2.124) yields

∂a′

∂ �x′ =
(
T̄

ᵀ ⊗ T
) ∂a

∂ �x +
∂T

∂ �x′ a. (2.125)

How does the product of the matrix Γ and the vector a transform? We have

Γ ′a′ = (T ⊗ T̄
ᵀ)

Γ T̄ T a +U4×4(I 4 ⊗ T )
∂T −1

∂ �x ′ T a, (2.126)

and hence obtain

∂T −1

∂ �x′ = −(I 4 ⊗ T −1) ∂T

∂ �x′ T
−1.

This in (2.126) yields

Γ ′a′ = (T ⊗ T̄
ᵀ)

Γ a −U4×4
∂T

∂ �x′ a. (2.127)

After adding (2.125) and (2.127), multiplied from the left by U4×4, we get

∂a′

∂ �x′ +U4×4Γ
′a′ = (T̄ ᵀ ⊗ T

) ∂a

∂ �x +U4×4
(
T ⊗ T̄

ᵀ)
U4×4U4×4Γ a,

so

∂a′

∂ �x′ +U4×4Γ
′a′ = (T̄ ᵀ ⊗ T

)[ ∂a

∂ �x +U4×4Γ a

]
. (2.128)

With the definition

Γ ∗ def= U4×4Γ = 1

2

(
I ⊗G−1)

⎡
⎢⎢⎣(I 16 −U4×4)

∂G

∂ �x +U4×4

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (2.129)

the following compact relation is obtained:

∂a′

∂ �x ′ + Γ ∗′a′ = (T̄ ᵀ ⊗ T
)[ ∂a

∂ �x + Γ ∗a
]

. (2.130)

On the right-hand side of this equation, a vector from R
16 is multiplied by a 16×16-

matrix! We introduce the abbreviations

a|�x
def= ∂a

∂ �x (2.131)

and

a‖�x
def= a|�x + Γ ∗a, (2.132)
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and call a‖�x the covariant derivative of a with respect to �x. Now (2.130) is written
as

a′‖�x′ =
(
T̄

ᵀ ⊗ T
)
a‖�x . (2.133)

The form on the right-hand side of (2.130) reminds us of the right-hand side of
the expression used in the vec-operator (see Appendix), that is,

vec(ABC)= (Cᵀ ⊗A
)
vec(B). (2.134)

To use this lemma, (2.130) is first written in some detail. With the new matrix

Γ ∗
k

def= (iᵀ
k ⊗G−1)

[
1

2
I 16 −U4×4

]
∂G

∂ �x , (2.135)

where i
ᵀ
k is the kth row of the unit matrix I 4, one obtains for (2.130)

⎛
⎜⎜⎝

∂a′
∂x′0
...

∂a′
∂x′3

⎞
⎟⎟⎠+

⎛
⎜⎝

Γ ∗′
0 a′
...

Γ ∗′
3 a′

⎞
⎟⎠= (Iᵀ

4 ⊗ I 4
)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂a′
∂x′0
...

∂a′
∂x′3

⎞
⎟⎟⎠+

⎛
⎜⎝

Γ ∗′
0 a′
...

Γ ∗′
3 a′

⎞
⎟⎠

⎤
⎥⎥⎦

= (T̄ ᵀ ⊗ T
)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂a
∂x0
...

∂a
∂x3

⎞
⎟⎟⎠+

⎛
⎜⎝

Γ ∗
0a
...

Γ ∗
3a

⎞
⎟⎠

⎤
⎥⎥⎦ . (2.136)

Now Lemma (2.134) applied to this equation shows that
[

∂a′

∂x′0

∣∣∣∣ . . .
∣∣∣∣
∂a′

∂x′3

]
+ [Γ ∗′

0 a′
∣∣ . . . ∣∣Γ ∗′

3 a′
]

= T

{[
∂a

∂x0

∣∣∣∣ . . .
∣∣∣∣
∂a

∂x3

]
+ [Γ ∗

0a
∣∣ . . . ∣∣Γ ∗

3a
]}

T −1. (2.137)

With

∂a

∂ �xᵀ
def=
[

∂a

∂x0

∣∣∣∣ . . .
∣∣∣∣
∂a

∂x3

]
∈R

4×4 and Γ̄
def= [Γ ∗

0

∣∣ . . . ∣∣Γ ∗
3

] ∈R
4×16

one obtains

∂a′

∂ �x ′ᵀ + Γ̄
′(
I 4 ⊗ a′

)= T

[
∂a

∂ �xᵀ + Γ̄ (I 4 ⊗ a)

]
T −1. (2.138)

The sum of matrices
∂a

∂ �xᵀ + Γ̄ (I 4 ⊗ a)
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is therefore transformed by a normal similarity transformation in to the following
sum of matrices

∂a′

∂ �x′ᵀ + Γ̄
′(
I 4 ⊗ a′

)
.

And again some abbreviations are introduced (now the vector �x is transposed!):

a|�xᵀ def= ∂a

∂ �xᵀ (2.139)

and

a‖�xᵀ def= a|�xᵀ + Γ̄ (I 4 ⊗ a) ∈R
4×4. (2.140)

a‖�xᵀ is called again the covariant derivative of a and it is

a′‖�x′ᵀ = T a‖�xᵀT −1. (2.141)

Important conclusion:

The formulas in the theory of general relativity are invariant with respect
to coordinate transformations if in formulas of special relativity ordinary
derivatives ∂a

∂xᵀ are replaced by covariant derivatives a‖xᵀ !

The covariant derivative defined in (2.140) differs from the derivative defined in
(2.100) by the summand Γ̄ (I 4 ⊗ a); there one has instead (I 4 ⊗ aᵀ)Γ . But it is
indeed true that

Γ̄ (I 4 ⊗ a)= (I 4 ⊗ aᵀ)Γ . (2.142)

In fact, if we rename the j th row of the sub-matrix Γ i by γ i
j

ᵀ
, then the matrix Γ ∗

is composed as

Γ ∗ =U4×4Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0
0
ᵀ

γ 1
0
ᵀ

γ 2
0
ᵀ

γ 3
0
ᵀ

...

γ 0
3
ᵀ

γ 1
3
ᵀ

γ 2
3
ᵀ

γ 3
3
ᵀ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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i.e.

Γ̄ =

⎛
⎜⎜⎜⎜⎝

γ 0
0
ᵀ

γ 0
3
ᵀ

γ 1
0
ᵀ

γ 1
3
ᵀ

γ 2
0
ᵀ

. . . γ 2
3
ᵀ

γ 3
0
ᵀ

γ 3
3
ᵀ

⎞
⎟⎟⎟⎟⎠

. (2.143)

With Γ i = Γ
ᵀ
i one obtains:

Γ̄ (I 4 ⊗ a)=

⎛
⎜⎜⎜⎜⎝

γ 0
0
ᵀ
a γ 0

3
ᵀ
a

γ 1
0
ᵀ
a γ 1

3
ᵀ
a

γ 2
0
ᵀ
a . . . γ 2

3
ᵀ
a

γ 3
0
ᵀ
a γ 3

3
ᵀ
a

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

aᵀγ 0
0 aᵀγ 0

3

aᵀγ 1
0 aᵀγ 1

3

aᵀγ 2
0 . . . aᵀγ 2

3

aᵀγ 3
0 aᵀγ 3

3

⎞
⎟⎟⎟⎠

=
⎛
⎜⎝

aᵀΓ
ᵀ
0

...

aᵀΓ
ᵀ
3

⎞
⎟⎠=

⎛
⎜⎝

aᵀΓ 0
...

aᵀΓ 3

⎞
⎟⎠= (I 4 ⊗ aᵀ)Γ , (2.144)

so we can instead of (2.140) finally write the same as in (2.100)

a‖�xᵀ = a|�xᵀ + (I 4 ⊗ aᵀ)Γ ∈R
4×4. (2.145)

2.6 Incidental Remark

If one starts with an equation which is valid in the presence of gravity in general
relativity, then this equation must for v2 
 c2 pass over to Newton’s equation. The
force of interaction of two discrete masses m and m1 is proportional to the product
of the two known masses and inversely proportional to the square of the distance of
the two centres of gravity:

f =G
mm1

|x − x1|2
x − x1

|x − x1| ,
or

f =m ·G m1

|x − x1|3 (x − x1).

For several discrete masses mi , this attraction is obtained as

f =m ·G
∑

i

mi

|x − xi |3 (x − xi ),

and for a distributed mass with the mass density ρ

f =m ·G
∫

V

ρ(xi )
x − xi

|x − xi |3 dV.
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In an electric field of strength e, which together with a charge q produces the force
f = qe, we define the gravitational field strength eG, producing the force f =meG

acting on the mass m. For several discrete masses, the gravitational field strength is

eG =G
∑

i

mi

|x − xi |3 (x − xi ).

So we can divide the analysis of the problem into two steps. In the first step, the
gravitational field generated by several masses mi at the point x is determined, and
in the second step, the force acting on the mass m at the point x is determined.

The potential energy is the integral of force times distance, so

U =−
∫

f ᵀ ds =−m

∫
e
ᵀ
G ds

def= mφ.

If a mass m is displaced by a small distance �x, the work done is equal to the
change in potential energy

�W =−�U = fx�x.

Dividing this equation by �x, this force in the x-direction is given as

fx =−�U

�x
.

Dividing by the mass m, one gets the x-component of the strength of the gravita-
tional field

ex =−�φ

�x
.

Whence it follows generally with �x → 0, that

e=−∇φ,

so

f =−m∇φ,

or

d2x

dt2
=−∇φ(x), (2.146)

where the gravitational potential φ, which is a scalar function of the position x,
is obtained from the second-order linear partial differential equation, the Poisson
equation

�φ(x)= 4πGρ(x), (2.147)

with the gravitational constant G and the mass density ρ(x). This equation
shows the relationship between gravitational potential and matter in the Newtonian
Physics. The above two steps are thus:
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Step 1. Find the solution φ(x) of the Poisson equation (2.147).
Step 2. Use the solution of (2.147) to find x(t).

This is the approach in the classical Newtonian Physics. How must we do or
modify the two steps in the theory of general relativity, i.e. how does one generally
get the gik’s and how does one establish the dynamic equations? In the case when
only the element g00 depends on x, i.e. only the 00-element of the sub-matrix Γ i is
different from zero, then

Γ i =

⎛
⎜⎜⎝

∂g00
∂xi

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

According to (2.146), the acceleration is proportional to the partial derivative of the
gravitational potential φ with respect to the coordinates xi . Looking at the equation

�̈x =−(I 4 ⊗ �̇xᵀ)Γ �̇x, (2.148)

on the left-hand side of the equation one has acceleration and on the right-hand side
there is the matrix Γ comprising partial derivatives of the gij ’s with respect to the
coordinates x�. The gij ’s apparently play in General Relativity the same role as the
gravitational potential φ does in classical Physics. There the gravitational potential
φ was determined by the Poisson equation whose form is, for the most part, given
by the Laplace operator �:

�φ = ∂2φ

∂x2
1

+ ∂2φ

∂x2
2

+ ∂2φ

∂x2
3

= 4πGρ(x).

So one is now looking for a mathematical expression involving the second deriva-
tives of the gij ’s with respect to the four spacetime coordinates xi . Such a term
appears, in fact, in the differential geometry of Gauss and Riemann, to be precise,
in the investigation of the curvature of surfaces or hyper-surfaces in three- or n-
dimensional spaces, where the surfaces are described by quadratic forms with the
gij ’s as the corresponding matrix elements. Therefore, the appendix “Some Dif-
ferential Geometry” deals with the theory of curvature of surfaces in three- and
n-dimensional spaces.

2.7 Parallel Transport

For further considerations, we need the definition of parallel transport:

1. The parallel displacement of a vector a, which is tangential to the curved surface
and runs along a geodesic of this surface, is defined as follows: The origin point
of the vector moves along the geodesic and the vector itself moves continuously
so that its angle with the geodesic and its length remains constant. It then changes
by a parallel transport along δx according to (2.96) with δa =−(I 4 ⊗ aᵀ)Γ δx.
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Fig. 2.1 Parallel transport

2. The parallel displacement of a vector on a surface along a broken line, consisting
of some geodesic pieces, is done so that from the first corner to the second corner
the vector is moved along the first geodesic arc, then along the second arc, etc.

3. Finally, the parallel translation of a vector along a smooth curve is described by
the limiting process, in which the curve is approximated by broken lines consist-
ing of geodesic pieces.

If a vector a in a flat space, where Γ = 0, moves in parallel along a closed loop, it
comes back to the starting point with the same length and direction. But if a modified
vector comes back, so it must be true that Γ �= 0—there exists curvature.

Example If you move a vector a on a sphere (Fig. 2.1), beginning at the equator at
a point A, along a meridian to the north pole N, then along another meridian back to
the equator at a point B, and finally back along the equator to the starting point A,
then the incoming vector a′ has a direction other than the initial vector a. Calling
the difference between the starting and end vector

�a
def= a′ − a,

the question is: What happens to �a when the circulated area is smaller and smaller?
Of course, �a approaches the zero vector, but not the ratio �a/(circulated area).

We now replace the spherical triangle of the example by a differentially small
square and consider not the difference vector �a of a complete circulation. Instead,
the initial vector a is moved the half way around the square in one direction. Then
the same vector a is shifted half way in the other direction. At the meeting point
the difference �a arises. This difference vector is deduced and considered more
precisely in the following section.
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2.8 Riemannian Curvature Matrix

If one moves a vector a(p0) ∈R
4 from a point p0 by δx ∈R

4 to the point p1, then
it changes according to (2.96) by

δa =−(I 4 ⊗ a(p0)
ᵀ)Γ (p0)δx. (2.149)

Therefore,

a(p1)= a(p0)+ δa = a(p0)−
(
I 4 ⊗ a(p0)

ᵀ)Γ (p0)δx. (2.150)

A further displacement of p1 in the direction δx̄ to p2 gives the change

δā =−(I 4 ⊗ a(p1)
ᵀ)Γ (p1)δx̄. (2.151)

For Γ (p1) as a first approximation one can write

Γ (p1)≈ Γ (p0)+
3∑

ν=0

∂Γ

∂xν

δxν = Γ (p0)+ ∂Γ

∂xᵀ (δx ⊗ I 4). (2.152)

Equations (2.150) and (2.152) used in (2.151) yield

δā =−(I 4 ⊗
[
a(p0)−

(
I 4 ⊗ a(p0)

ᵀ)Γ (p0)δx
]ᵀ)(

Γ (p0)+ ∂Γ

∂xᵀ (δx ⊗ I 4)

)
δx̄

=−(I 4 ⊗ a(p0)
ᵀ)Γ (p0)δx̄ −

(
I 4 ⊗ a(p0)

ᵀ) ∂Γ

∂xᵀ (δx ⊗ I 4)δx̄

+ (I 4 ⊗
[(

I 4 ⊗ a(p0)
ᵀ)Γ δx

]ᵀ)
Γ δx̄ +O

(
δx̄ · (dx2))

=
[
−(I 4 ⊗ aᵀ)Γ − (I 4 ⊗ aᵀ) ∂Γ

∂xᵀ (δx ⊗ I 4)

+ (I 4 ⊗
[(

I 4 ⊗ a(p0)
ᵀ)Γ δx

]ᵀ)
Γ

]
δx̄. (2.153)

The third term in the brackets can be transformed into the following form:
(
I 4 ⊗

[(
I 4 ⊗ aᵀ)Γ δx

]ᵀ)
Γ = Γ

(
I 4 ⊗

(
I 4 ⊗ aᵀ)Γ δx

)

= Γ
(
I 16 ⊗ aᵀ)(I 4 ⊗ Γ δx)

= (Γ ⊗ aᵀ)(I 4 ⊗ Γ )(I 4 ⊗ δx)

= (I 4 ⊗ aᵀ)(Γ ⊗ I 4)(I 4 ⊗ Γ )(I 4 ⊗ δx). (2.154)

Using this in (2.153) results in

δā =−(I 4⊗aᵀ)
[
Γ + ∂Γ

∂xᵀ (δx⊗ I 4)− (Γ ⊗ I 4)(I 4⊗Γ )(I 4⊗ δx)

]
δx̄. (2.155)
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If we now first go in the direction δx̄ and then in the direction δx, we obtain accord-
ingly

δ ¯̄a =−(I 4⊗aᵀ)
[
Γ + ∂Γ

∂xᵀ (δx̄⊗ I 4)− (Γ ⊗ I 4)(I 4⊗Γ )(I 4⊗ δx̄)

]
δx. (2.156)

For the final product in the third summand of (2.155) we can also write

(I 4 ⊗ δx)δx̄ = (I 4 ⊗ δx)(δx̄ ⊗ 1)= (δx̄ ⊗ δx)=U4×4(δx ⊗ δx̄). (2.157)

It is true that

�a = (a + δā)− (a + δ ¯̄a)= δā − δ ¯̄a, (2.158)

so with (2.155), (2.156) and (2.157),

�a = (I 4 ⊗ aᵀ)
(

Γ (δx − δx̄)

+
[

∂Γ

∂xᵀ + (Γ ⊗ I 4)(I 4 ⊗ Γ )

]
(U4×4 − I 16)(δx ⊗ δx̄)

)
. (2.159)

With the 16× 16 Riemannian curvature matrix

R
def=
[

∂Γ

∂xᵀ + (Γ ⊗ I 4)(I 4 ⊗ Γ )

]
(U4×4 − I 16) ∈R

16×16, (2.160)

we have

�a = (I 4 ⊗ aᵀ)[Γ (δx − δx̄)+R(δx ⊗ δx̄)
] ∈R

4. (2.161)

We also define a slightly modified curvature matrix:

Ř
def= (G⊗ I 4)R. (2.162)

2.9 Properties of the Riemannian Curvature Matrix

2.9.1 Composition of R and Ř

Which form do the elements of the Riemannian curvature matrix

R =
[

∂Γ

∂xᵀ + (Γ ⊗ I 4)(I 4 ⊗ Γ )

]
(U4×4 − I 16) ∈R

16×16

have? The property, already mentioned earlier, that in the occurring matrix differ-
ence U4×4 − I 16 the first, (4+ 2)th, (8+ 3)th and the 16-th row/column are equal
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to the zero row/column, has for the Riemannian curvature matrix the consequence
that its corresponding columns are zero columns!

Next we obtain with (2.143)

Γ̄ =

⎛
⎜⎜⎜⎝

γ 0
0
ᵀ

γ 0
3
ᵀ

γ 1
0
ᵀ

γ 1
3
ᵀ

γ 2
0
ᵀ

. . . γ 2
3
ᵀ

γ 3
0
ᵀ

γ 3
3
ᵀ

⎞
⎟⎟⎟⎠= [Γ̄ 0, . . . , Γ̄ 3]

for

(Γ ⊗ I 4)(I 4 ⊗ Γ )= [(Γ 0 ⊗ I 4), . . . , (Γ 3 ⊗ I 4)
]
⎛
⎜⎜⎝

Γ 0 0 0
0 Γ 0 0
0 0 Γ 0
0 0 0 Γ

⎞
⎟⎟⎠

= [(Γ 0 ⊗ I 4)Γ , . . . , (Γ 3 ⊗ I 4)Γ
]
.

This matrix product contributes to the matrix element R
γδ
αβ the sum

[(
γ

γ
δ

ᵀ ⊗ I 4
)
Γ
]
αβ
= [Γ γ

δ0Γ 0 + · · · + Γ
γ

δ3Γ 3
]
αβ
=
∑
ν

Γ
γ
δνΓ

ν
αβ, (2.163)

where γ
γ
δ

ᵀ ∈ R
4 is the γ th row of the sub-matrix Γ δ , i.e. the δth row of the sub-

matrix Γ γ .
Furthermore,

(Γ ⊗ I 4)(I 4 ⊗ Γ )U4×4

= (Γ ⊗ I 4)

⎛
⎜⎜⎝

Γ 0 0 0
0 Γ 0 0
0 0 Γ 0
0 0 0 Γ

⎞
⎟⎟⎠U4×4

= (Γ ⊗ I 4)

⎛
⎜⎝

γ 0 | γ 1 | γ 2 | γ 3
. . . | . . . | . . . | . . .

γ 0 | γ 1 | γ 2 | γ 3

⎞
⎟⎠ .

This matrix product (γ δ ∈R
16 is the δth column of Γ ) contributes to the matrix

element R
γδ
αβ the sum

⎡
⎢⎣(γ γ ᵀ ⊗ I 4

)
⎛
⎜⎝

γ δ

. . .

γ δ

⎞
⎟⎠

⎤
⎥⎦

αβ
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=
⎡
⎢⎣[γ γ

0
ᵀ ⊗ I 4, . . . ,γ

γ

0
ᵀ ⊗ I 4

]
⎛
⎜⎝

γ δ

. . .

γ δ

⎞
⎟⎠

⎤
⎥⎦

αβ

= [(γ γ

0
ᵀ ⊗ I 4

)
γ δ, . . . ,

(
γ

γ

3
ᵀ ⊗ I 4

)
γ δ

]
αβ
= [(γ γ

β

ᵀ ⊗ I 4
)
γ δ

]
α

= [Γ γ

β0γ
0
δ + · · · + Γ

γ

β3γ
3
δ

]
α
=
∑
ν

Γ
γ
βνΓ

ν
δα. (2.164)

In accordance with (2.160), one gets finally with (2.163) and (2.164)

R
γδ
αβ =

∂

∂xβ

Γ
γ
αδ −

∂

∂xδ

Γ
γ
αβ +

∑
ν

Γ
γ
βνΓ

ν
δα −

∑
ν

Γ
γ
δνΓ

ν
αβ . (2.165)

From this form, one can immediately read off the property

R
γδ
αβ =−R

γβ
αδ . (2.166)

With the help of (2.165) one can also verify the so-called cyclic identity:

R
γδ
αβ +R

γα
βδ +R

γβ
δα = 0. (2.167)

From (2.165), using (2.63), (2.73) and (2.65), one can also derive a closed form
for Ř

γ δ
αβ in (2.160) as follows:

Ř
γ δ
αβ =

∑
i

gγ iR
iδ
αβ =

∑
i

gγ i

(
∂

∂xβ

Γ i
αδ −

∂

∂xδ

Γ i
αβ +

∑
ν

Γ i
βνΓ

ν
δα −

∑
ν

Γ i
δνΓ

ν
αβ

)

=
(

∂

∂xβ

Γ̌
γ
αδ −

∑
i

Γ i
αδ

∂gγ i

∂xβ

)
−
(

∂

∂xδ

Γ̌
γ
αβ −

∑
i

Γ i
αβ

∂gγ i

∂xδ

)

+
∑
ν

Γ̌
γ
βνΓ

ν
δα −

∑
ν

Γ̌
γ
δνΓ

ν
αβ

=
(

∂

∂xβ

Γ̌
γ
αδ −

∑
i

Γ i
αδ

(
Γ̌ i

γβ + Γ̌
γ

iβ

))−
(

∂

∂xδ

Γ̌
γ
αβ

−
∑

i

Γ i
αβ

(
Γ̌ i

γ δ + Γ̌
γ

iδ

))+
∑
ν

Γ̌
γ
βνΓ

ν
δα −

∑
ν

Γ̌
γ
δνΓ

ν
αβ

= 1

2

(
∂

∂xβ

(
∂gδγ

∂xα

+ ∂gαγ

∂xδ

− ∂gαδ

∂xγ

)
− ∂

∂xδ

(
∂gβγ

∂xα

+ ∂gαγ

∂xβ

− ∂gαβ

∂xγ

))
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−
∑

i

Γ i
αδΓ̌

i
γβ −

∑
i

Γ i
αδΓ̌

γ

iβ +
∑

i

Γ i
αβΓ̌ i

γ δ +
∑

i

Γ i
αβΓ̌

γ

iδ

+
∑
ν

Γ̌
γ
βνΓ

ν
δα −

∑
ν

Γ̌
γ
δνΓ

ν
αβ.

After cancelling out some of the terms, we finally get the closed form

Ř
γ δ
αβ =

∂

∂xβ

Γ̌
γ
αδ −

∂

∂xδ

Γ̌
γ
αβ +

∑
i

Γ i
αβΓ̌ i

γ δ −
∑

i

Γ i
αδΓ̌

i
γβ (2.168)

= 1

2

(
∂2gδγ

∂xα∂xβ

− ∂2gαδ

∂xγ ∂xβ

− ∂2gβγ

∂xα∂xδ

+ ∂2gαβ

∂xγ ∂xδ

)

+
∑

i

Γ i
αβΓ̌ i

γ δ −
∑

i

Γ i
αδΓ̌

i
γβ,

(2.169)

or

Ř
γ δ
αβ =

1

2

(
∂2gδγ

∂xα∂xβ

− ∂2gαδ

∂xγ ∂xβ

− ∂2gβγ

∂xα∂xδ

+ ∂2gαβ

∂xγ ∂xδ

)

+
∑

i

Γ̌ i
γ δ

∑
ν

g
(−1)
iν Γ̌ ν

αβ −
∑

i

Γ̌ i
γβ

∑
ν

g
(−1)
iν Γ̌ ν

αδ.

(2.170)

From (2.170) the following identities are obtained directly by comparing the corre-
sponding forms:

Ř
γ δ
αβ =−Řαδ

γβ, (2.171)

Ř
γ δ
αβ =−Ř

γβ
αδ , (2.172)

Ř
γ δ
αβ = Ř

αβ
γ δ . (2.173)

Also in this case, a cyclic identity is valid:

Ř
γ δ
αβ + Ř

γ α
βδ + Ř

γβ
δα = 0. (2.174)

If the two vectors dx and dx̄ are perpendicular to each other, then the area of the
formed rectangle is equal to |dx| · |dx̄|. In the differential geometry, the limit of the
ratio of �a to the area is now called the curvature κ :

κ
def= lim|dx|,|dx̄|→0

|�a(dx,dx̄)|
|dx| · |dx̄|
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or with n
def= dx

|dx| and n̄
def= dx̄

|dx̄| ,

κ
def= lim

ε→0

|�a(εn, εn̄)|
ε2

.

With the help of (2.161) we then obtain

κ = ∣∣(I 4 ⊗ aᵀ)R(n⊗ n̄)
∣∣. (2.175)

Riemannian Coordinate System For the study of the properties of the Rieman-
nian curvature matrix, it is advantageous to first perform a coordinate transforma-
tion, so that in the new coordinate system, the Christoffel matrices have the property
Γ = 0. Such a coordinate transformation is in the case of a curved spacetime, where
G depends on �x, only locally possible, but then for each �x! By the inverse trans-
formation of the obtained statements, they are again globally valid. So, we look for
a local coordinate transformation such that in the new coordinate system Γ = 0 is
valid. For geodesic lines the following applies to the four coordinates:

d2xk

ds2
+
(

d�x
ds

)ᵀ
Γ k

d�x
ds
= 0. (2.176)

The xk’s belong to an arbitrary coordinate system in which the geodesic is described
by xk = xk(s) and s is the arc length along the curve. At a fixed point P with the
coordinate �x(0), any coordinate can be developed in a power series:

xk = x
(0)
k + ζks + 1

2

(
d2xk

ds2

)

P
s2 + 1

3!
(

d3xk

ds3

)

P
s3 + · · · , (2.177)

where ζk is the kth component of the tangent vector

ζ
def=
(

d�x
ds

)

P

to the geodesic at the point P . Then, however, according to (2.176),

d2xk

ds2
=−ζᵀ(Γ k)Pζ . (2.178)

Plugging this into (2.177), considering a small neighbourhood of P , a small xk −
x

(0)
k , and neglecting powers higher than two gives

xk = x
(0)
k + ζks − 1

2
ζᵀ(Γ k)Pζ s2. (2.179)

Now, calling ζ s = �x′, the following is obtained from (2.179):

xk = x
(0)
k + x′k −

1

2
�x′ᵀ(Γ k)P �x′.
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This relation suggests the following coordinate transformation from �x to �x′:

x′k = xk − x
(0)
k + 1

2

(�x − �x(0)
)ᵀ

(Γ k)P
(�x − �x(0)

)
. (2.180)

What is the corresponding metric matrix G′ in

ds2 = �x′ᵀG′ �x′? (2.181)

In this coordinate system, the geodesic has the equation

d2�x′
ds2

+
(

I 4 ⊗
(

d�x′
ds

)ᵀ)
Γ ′(�x′)

(
d�x′
ds

)
= 0. (2.182)

But since in the new coordinate system the geodesics are straight lines of the form
�x′ = ζ s, in (2.182) the expression (I 4 ⊗ ζᵀ)Γ ′(ζ s)ζ must be equal to the zero
vector. Since ζ are arbitrary vectors, the following must be valid for s = 0:

Γ ′(0)= 0. (2.183)

Implications for the Riemannian Curvature Matrix If at a point P for a special
coordinate system one has Γ P = 0, then naturally any Γ̌

γ
αβ defined in (2.63) is equal

to zero. But since

Γ̌ i
k� + Γ̌ �

ki =
1

2

(
∂g�i

∂xk

+ ∂gki

∂x�

− ∂gk�

∂xi

)
+ 1

2

(
∂gi�

∂xk

+ ∂gk�

∂xi

− ∂gki

∂x�

)
= ∂gi�

∂xk

(2.184)

also all first partial derivatives of the elements of the metric matrix are zero, i.e.

∂G

∂ �x
∣∣∣∣
P
= 0. (2.185)

In the local coordinate system with Γ P = 0, the Riemannian curvature matrix
has the form

RP = ∂Γ

∂ �xᵀ

∣∣∣∣
P

(U4×4 − I 16). (2.186)

The structure is

R =

⎛
⎜⎜⎝

R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

⎞
⎟⎟⎠ . (2.187)
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Each sub-matrix Rγ δ has the form

Rγ δ =

⎛
⎜⎜⎜⎜⎝

R
γδ

00 R
γδ

01 R
γδ

02 R
γδ

03

R
γδ

10 R
γδ

11 R
γδ

12 R
γδ

13

R
γδ

20 R
γδ

21 R
γδ

22 R
γδ

23

R
γδ

30 R
γδ

31 R
γδ

32 R
γδ

33

⎞
⎟⎟⎟⎟⎠

. (2.188)

Rγ δ is thus the sub-matrix of R at the intersection of the γ th row and δth column.
Furthermore, R

γδ
αβ is the matrix element of the sub-matrix Rγ δ at the intersection of

the αth row and βth column.
With (2.68) and (2.185) one has

∂Γ

∂ �xᵀ

∣∣∣∣
P
= 1

2

∂

∂ �xᵀ

⎛
⎜⎜⎝
(
G−1 ⊗ I 4

)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠−

∂G

∂ �x

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= 1

2

∂

∂ �xᵀ
(
G−1 ⊗ I 4

)[0+ 0− 0]

+ 1

2

(
G−1 ⊗ I 4

)
⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

∂2g
ᵀ
0

∂ �xᵀ∂ �x
...

∂2g
ᵀ
3

∂ �xᵀ∂ �x

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

∂2g0
∂ �xᵀ∂ �xᵀ

...
∂2g3

∂ �xᵀ∂ �xᵀ

⎞
⎟⎟⎠−

∂2G

∂ �xᵀ∂ �x

⎤
⎥⎥⎥⎦ . (2.189)

For

Ř = (G⊗ I 4)R (2.190)

with

Γ̌
def= (G⊗ I 4)Γ (2.191)

one finally obtains

ŘP
def= ∂Γ̌

∂ �xᵀ (U4×4 − I 16). (2.192)

Naturally, because of the in R occurring matrix difference U4×4 − I 16, the first,
(4 + 2)th, (8 + 3)th and the 16th column of Ř and of ŘP are equal to the zero
column. In

Γ̌ =

⎛
⎜⎜⎝

Γ̌ 0

Γ̌ 1

Γ̌ 2

Γ̌ 3

⎞
⎟⎟⎠ ,
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Γ̌ ν has the form

Γ̌ ν = 1

2

(
∂g

ᵀ
ν

∂x
+ ∂gν

∂xᵀ −
∂G

∂xν

)
,

i.e. the elements of Γ̌ ν are (see also (2.63))

Γ̌ ν
αβ =

1

2

(
∂gβν

∂xα

+ ∂gαν

∂xβ

− ∂gαβ

∂xν

)
. (2.193)

For (Ř
γ δ
αβ)P from (2.165) one obtains

(
Ř

γ δ
αβ

)
P =

1

2

(
∂2gγ δ

∂xα∂xβ

− ∂2gαδ

∂xγ ∂xβ

− ∂2gβγ

∂xα∂xδ

+ ∂2gαβ

∂xγ ∂xδ

)
. (2.194)

From (2.194), by comparing the corresponding forms, follows

(
Ř

γ δ
αβ

)
P =

(
Ř

δγ
αβ

)
P , (2.195)

and the so-called cyclic identity

(
Ř

γ δ
αβ

)
P +

(
Řδβ

αγ

)
P +

(
Ř

βγ
αδ

)
P = 0. (2.196)

From (2.165), at a point P , we get

(
R

γδ
αβ

)
P =

(
∂

∂xβ

Γ
γ
αδ −

∂

∂xδ

Γ
γ
αβ

)

P
. (2.197)

Partially differentiating (2.197) yields
(

∂

∂xκ

R
γ δ
αβ

)

P
=
(

∂2

∂xκ∂xβ

Γ
γ
αδ −

∂2

∂xκ∂xδ

Γ
γ
αβ

)

P
. (2.198)

With the help of (2.198), by substituting the corresponding terms, the so-called
Bianchi identity is obtained:

∂

∂xκ

R
γ δ
αβ +

∂

∂xβ

R
γκ
αδ +

∂

∂xδ

Rγβ
ακ = 0. (2.199)

Since this is valid in any event P , it is valid anywhere.

2.10 The Ricci Matrix and Its Properties

The reason for considering the Riemannian curvature theory is to find with its help
a way to determine the components of the Christoffel matrix Γ , which are needed
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to calculate the solution of the equations

�̈x =−(I 4 ⊗ �̇xᵀ)Γ �̇x,

describing the dynamic behaviour of particles in a gravitational field. But the Rie-
mannian curvature matrix has, being a 16×16-matrix, 256 components, so, it would
provide 256 equations in extreme cases. Considering, however, that there are 4 rows
and 4 columns of R with all zeros, only 12 · 12= 144 equations remain—still too
many. The number of equations can be reduced significantly, however, by reduc-
ing, using clever addition of matrix elements, the number of components of the
newly formed matrix. Setting up in this way a symmetric 4× 4-matrix, we would
get exactly 10 independent equations for the determination of the 10 independent
components of G. Such a matrix is called the Ricci matrix, which can be obtained
in two ways. One way is through the sum of sub-matrices on the diagonal of R; it is
described in the Appendix. The second way is as follows:

The Ricci matrix RRic consists of the traces of sub-matrices Rγ δ of R

RRic,γ δ
def= trace

(
Rγ δ

)=
3∑

ν=0

Rγδ
νν . (2.200)

Accordingly, the components of the new matrix ŘRic are defined as

ŘRic,γ δ
def=

3∑
ν=0

Řγ δ
νν . (2.201)

From (2.194) one may read immediately that the Ricci matrix ŘRic is symmetric
because Ř

γ δ
νν = Ř

δγ
νν .

Moreover, because of (2.162),

R = (G−1 ⊗ I 4
)
Ř, (2.202)

so

Rγ δ = (g−T
γ ⊗ I 4

)
Ř

δ =
3∑

μ=0

g[−1]
γμ Ř

μδ
, (2.203)

where g−T
γ is the γ th row of G−1 and Ř

δ
the 16× 4-matrix consisting of the four

sub-matrices in the δth block column of Ř, i.e. for the matrix elements one has

R
γδ
αβ =

3∑
μ=0

g[−1]
γμ Ř

μδ
αβ . (2.204)

With the help of (2.200), for the Ricci matrix components one gets

RRic,γ δ =
∑
ν

Rγ δ
νν =

∑
ν

∑
μ

g[−1]
γμ Řμδ

νν , (2.205)
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or, due to (2.173),

RRic,γ δ =
∑
ν

∑
μ

g[−1]
γμ Řνν

μδ. (2.206)

The curvature scalar R is obtained by taking the trace of the Ricci matrix:

R
def= trace(RRic)=

∑
α

∑
ν

Rαα
νν

=
∑
α

∑
ν

∑
μ

g[−1]
αμ Řμα

νν =
∑
α

∑
μ

g[−1]
αμ ŘRic,μα. (2.207)

Conversely, one obtains

Ř
γ δ
αβ =

3∑
μ=0

gγμR
μδ
αβ . (2.208)

Because of (2.165) it follows directly that

RRic,γ δ =
3∑

ν=0

(
∂

∂xδ

Γ ν
γ ν −

∂

∂xν

Γ ν
γ δ +

3∑
μ=0

Γ ν
δμΓ μ

νγ −
3∑

μ=0

Γ μ
νμΓ

μ
γ δ

)
(2.209)

and from (2.168)

ŘRic,γ δ =
3∑

ν=0

(
∂

∂xδ

Γ̌ ν
γ ν −

∂

∂xν

Γ̌ ν
γ δ +

3∑
μ=0

Γ
μ
γ δΓ̌

μ
νν −

3∑
μ=0

Γ μ
γνΓ̌

μ
νδ

)
. (2.210)

2.10.1 Symmetry of the Ricci Matrix RRic

Even if the Riemannian matrix R itself is not symmetric, the derived Ricci matrix
RRic is nevertheless symmetric; and that will be shown below. The symmetry will
follow from the component equations (2.209) of the Ricci matrix. One sees imme-
diately that the second and fourth summand are symmetric in γ and δ. Looking at∑3

ν=0
∂

∂xδ
Γ ν

γ ν , it is not directly seen that this term is symmetric in γ and δ. This

can be seen using the Laplace expansion theorem for determinants.1 Developing the
determinant of G along the νth row, one gets

g
def= det(G)= gν1Aν1 + · · · + gνδAνδ + · · · + gνnAνn,

1The sum of the products of all elements of a row (or column) with its adjuncts is equal to the
determinant’s value: detA=∑n

j=1(−1)i+j · aij · detAij (development along the ith row)
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where Aνδ is the element in the νth row and δth column of the adjoint of G. If g
[−1]
δν

is the (δν)-element of the inverse matrix G−1, then g
[−1]
δν = 1

g
Aνδ , so Aνδ = gg

[−1]
δν .

Thus we obtain
∂g

∂gνδ

=Aνδ = gg
[−1]
δν ,

or

δg = gg
[−1]
δν δgνδ,

and
∂g

∂xγ

= gg
[−1]
δν

∂gνδ

∂xγ

,

i.e.
1

g

∂g

∂xγ

= g
[−1]
δν

∂gνδ

∂xγ

. (2.211)

Due to (2.62), on the other hand, one has

3∑
ν=0

Γ ν
γ ν =

3∑
ν=0

3∑
δ=0

g
[−1]
δν

2

(
∂gνδ

∂xγ

+ ∂gγ δ

∂xν

− ∂gγ ν

∂xδ

)
,

i.e. the last two summands cancel out, and the following remains:

3∑
ν=0

Γ ν
γ ν =

3∑
ν=0

3∑
δ=0

g
[−1]
δν

2

∂gνδ

∂xγ

.

Then it follows by (2.211) that

3∑
ν=0

∂

∂xδ

Γ ν
γ ν =

3∑
ν=0

3∑
δ=0

1√|g|
∂2√|g|
∂xγ ∂xδ

. (2.212)

From this form the symmetry in γ and δ can immediately be observed.
Now remains to show that the third term

3∑
ν=0

3∑
μ=0

Γ ν
δμΓ μ

νγ

in (2.209) is symmetric. But this can spotted from the following equalities:

3∑
ν,μ=0

Γ ν
δμΓ μ

νγ =
3∑

ν,μ=0

Γ ν
μδΓ

μ
γν =

3∑
ν,μ=0

Γ
μ
νδΓ

ν
γμ.

Combining everything together demonstrates that the Ricci matrix RRic is, in fact,
symmetric!
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2.10.2 The Divergence of the Ricci Matrix

Multiplying the Bianchi identities (2.199) in the form

∂

∂xκ

Rνδ
αβ +

∂

∂xβ

Rνκ
αδ +

∂

∂xδ

Rνβ
ακ = 0

with gγν and summing over ν, we obtain at a point P , where ∂G
∂x = 0,

∂

∂xκ

3∑
ν=0

gγνR
νδ
αβ +

∂

∂xβ

3∑
ν=0

gγνR
νκ
αδ +

∂

∂xδ

3∑
ν=0

gγνR
νβ
ακ = 0.

With (2.208) we obtain the following modified Bianchi identity:

∂

∂xκ

Ř
γ δ
αβ +

∂

∂xβ

Ř
γ κ
αδ +

∂

∂xδ

Řγβ
ακ = 0. (2.213)

For the third term we can, with respect to (2.172), also write

− ∂

∂xδ

Ř
γ κ
αβ .

Substituting now α = β and summing over α, we obtain

∂

∂xκ

ŘRic,γ δ +
3∑

α=0

∂

∂xα

Ř
γ κ
αδ −

∂

∂xδ

ŘRic,γ κ = 0. (2.214)

In the second term, one can, based on (2.171), replace Ř
γ κ
αδ by −Řακ

γ δ . If we set

γ = δ and sum over γ , we obtain from (2.214) with the “curvature scalar” Ř
def=∑3

γ=0 ŘRic,γ γ , the trace of the Ricci matrix ŘRic:

∂

∂xκ

Ř −
3∑

α=0

∂

∂xα

ŘRic,ακ −
3∑

γ=0

∂

∂xγ

ŘRic,γ κ = 0. (2.215)

If in the last sum the summation index γ is replaced by α, we can finally summarize

∂

∂xκ

Ř− 2
3∑

α=0

∂

∂xα

ŘRic,ακ = 0. (2.216)

We would get the same result, when this equation was assumed:

∂

∂xκ

Ř
αβ
γ δ − 2

∂

∂xβ

Řακ
γ δ = 0. (2.217)
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Indeed, setting δ = γ and summing over γ , we receive first:

∂

∂xκ

ŘRic,αβ − 2
∂

∂xβ

ŘRic,ακ = 0.

Substituting now α = β and summing over α, we receive again (2.216).
A different result is obtained when starting at first from (2.217) (with ν instead

of α), multiplying this equation by g
[−1]
αν ,

∂

∂xκ

g[−1]
αν Ř

νβ
γ δ − 2

∂

∂xβ

g[−1]
αν Řνκ

γ δ = 0,

then setting γ = δ, summing over γ and ν, and using (2.214):

∑
γ

∑
ν

∂

∂xκ

g[−1]
αν Ř

νβ
γ δ − 2

∑
γ

∑
ν

∂

∂xβ

g[−1]
αν Řνκ

γ δ

= ∂

∂xκ

RRic,αβ − 2
∂

∂xβ

RRic,ακ = 0.

If we now set α = β and sum over α, we finally obtain the important relationship

∂

∂xκ

R − 2
∑
α

∂

∂xα

RRic,ακ = 0. (2.218)

These are the four equations for the four spacetime coordinates x0, . . . , x3. Finally,
the overall result can be represented as

�∇ᵀ
(

RRic − 1

2
RI 4

)
= 0ᵀ. (2.219)

2.11 General Theory of Gravitation

2.11.1 The Einstein’s Matrix G

With the Einstein’s matrix

G
def= RRic − 1

2
RI 4, (2.220)

taking into account that the matrix G is symmetric, (2.219) can be restated as

�∇ᵀ
G= 0ᵀ. (2.221)

The following is a very important property of the Einstein’s matrix:

The divergence of the Einstein’s matrix G vanishes!
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2.11.2 Newton’s Theory of Gravity

According to Newton, for the acceleration the following is valid:

d2x

dt2
=−∇φ(x), (2.222)

where φ(x) is the gravitational potential and x ∈R
3. One can also write

d2x

dt2
+∇φ(x)= 0. (2.223)

The Newtonian universal time is a parameter which has two degrees of freedom,
namely the time origin t0 and a, the unit of time, both can be chosen arbitrarily:
t = t0 + aτ . Thus we obtain

d2t

dτ 2
= 0,

d2x

dτ 2
+ ∂φ

∂x

(
dt

dτ

)2

= 0. (2.224)

This can also be written with the spacetime vector �x = ( ct
x

) ∈R
4:

d2�x
dτ 2

+ (I 4 ⊗ �̇xᵀ)Γ �̇x = 0. (2.225)

Here Γ ∈R
16×4 has the form

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
∂φ
∂x1

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
∂φ
∂x2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
∂φ
∂x3

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, how can one get the expression of the Poisson equation

�φ(x)= ∂2φ

∂x2
1

+ ∂2φ

∂x2
2

+ ∂2φ

∂x2
3

= 4πGρ(x)? (2.226)
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For the curvature matrix R one needs the matrix

∂Γ

∂xᵀ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ∂2φ

∂x2
1

0 0 0 ∂2φ
∂x1∂x2

0 0 0 ∂2φ
∂x1∂x3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ∂2φ
∂x2∂x1

0 0 0 ∂2φ

∂x2
2

0 0 0 ∂2φ
∂x2∂x3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ∂2φ
∂x3∂x1

0 0 0 ∂2φ
∂x3∂x2

0 0 0 ∂2φ

∂x2
3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the matrix

Γ ∗ =U4×4Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
∂φ
∂x1

0 0 0
∂φ
∂x2

0 0 0
∂φ
∂x3

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in order to determine the following matrix

Γ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∂φ
∂x1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∂φ
∂x2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∂φ
∂x3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.
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However, for the product (Γ ⊗ I 4)(I 4 ⊗ Γ ) we get the zero matrix, so that the
curvature matrix is only composed as

R = ∂Γ

∂xᵀ (U4×4 − I 16).

It is true that

∂Γ

∂xᵀ U4×4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2φ

∂x2
1

∂2φ
∂x1∂x2

∂2φ
∂x1∂x3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2φ
∂x2∂x1

∂2φ

∂x2
2

∂2φ
∂x2∂x3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2φ
∂x3∂x1

∂2φ
∂x3∂x2

∂2φ

∂x2
3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

finally resulting in

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2φ

∂x2
1

∂2φ
∂x1∂x2

∂2φ
∂x1∂x3

− ∂2φ

∂x2
1

0 0 0 − ∂2φ
∂x1∂x2

0 0 0 − ∂2φ
∂x1∂x3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2φ
∂x2∂x1

∂2φ

∂x2
2

∂2φ
∂x2∂x3

− ∂2φ
∂x2∂x1

0 0 0 − ∂2φ

∂x2
2

0 0 0 − ∂2φ
∂x2∂x3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂2φ
∂x3∂x1

∂2φ
∂x3∂x2

∂2φ

∂x2
3

− ∂2φ
∂x3∂x1

0 0 0 − ∂2φ
∂x3∂x2

0 0 0 − ∂2φ

∂x2
3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.227)
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The 4× 4-sub-matrices on the main diagonal of the curvature matrix R contain
exactly the components of the left-hand side of the Poisson equation. This subse-
quently provides the motivation for the introduction of the Ricci matrix. Here it is
specifically equal to

RRic =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 − ∂2φ

∂x2
1

− ∂2φ
∂x1∂x2

− ∂2φ
∂x1∂x3

0 − ∂2φ
∂x2∂x1

− ∂2φ

∂x2
2

− ∂2φ
∂x2∂x3

0 − ∂2φ
∂x3∂x1

− ∂2φ
∂x3∂x2

− ∂2φ

∂x2
3

⎞
⎟⎟⎟⎟⎟⎠

. (2.228)

If we form the trace of the Ricci matrix, then

R = trace(RRic)=−
(

∂2φ

∂x2
1

+ ∂2φ

∂x2
2

+ ∂2φ

∂x2
3

)
, (2.229)

so that finally the Poisson equation can also be succinctly written as

−R = 4πGρ. (2.230)

The relationship in Newtonian mechanics between the gravitational potential φ and
matter is the Poisson equation

�φ = 4πGρ,

where ρ is the mass density and G the Newtonian Gravitational Constant. In the
theory of General Relativity, it is now required to set up general invariant equations
of gravitation between the gik’s and matter. It is useful to characterise the matter by
the energy–momentum matrix T = T total.

For the rotating system in Sect. 2.5, we had r̈ = r(ω+ ϕ̇)2 so that there the poten-

tial was φ =−ω2r2

2 and g00 = 1− r2ω2

c2 = 1+ 2φ

c2 . On the other hand, in Newtonian

non-relativistic limit v2

c2 � 1, we obtained for the energy–momentum matrix (see

Sect. 1.9.2) T00 = c2ρ0 and for the remaining Tij ≈ 0.

With φ = c2

2 (g00 − 1) we obtain �φ = c2

2 �g00. So one can write for the above
Poisson equation

�g00 = 8πG

c4
T00. (2.231)

2.11.3 The Einstein’s Equation with G

If one assumes that in the general case, i.e. in the presence of gravitational fields on
the right-hand side of (2.231), the symmetric energy–momentum matrix is T , a ma-
trix containing the second partial derivatives of the elements of the metric matrix G
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must appear on the left-hand side of the equation. If therefore the Einstein’s matrix
G is taken, one obtains the Einstein’s Field Equation

G=−8πG

c4
T . (2.232)

Because the matrix T ∈R
4×4 is symmetric, also the Einstein’s matrix

G=RRic − 1

2
RI 4 (2.233)

must be symmetric. This is indeed the case because both the Ricci matrix RRic and
the diagonal matrix RI 4 are symmetric. RRic is extracted, according to (2.200),
from the Riemannian curvature matrix

R =
(

∂Γ

∂xᵀ + (Γ ⊗ I 4)(I 4 ⊗ Γ )

)
(U4×4 − I 16). (2.234)

Final Form of the Einstein’s Equation The energy–momentum matrix T on the
right-hand side of the Einstein’s field equation (2.232) has the property that T �∇ = 0,
if one considers a closed system, i.e. if there are no external forces acting. The same
must apply on the left: G �∇ = 0. But that is, due to (2.221), true for the symmetric
matrix G!

Overall, the final Einstein’s Field Equation is fixed as an axiom as

G=RRic − R

2
I 4 =−8πG

c4
T . (2.235)

This is a matrix differential equation for determining the metric matrix G. This is
no longer an “action-at-a-distance-equation” as Newton’s, but describes the relation-
ships at a spacetime point �x! RRic depends linearly on the second order derivatives
of gik , and depends nonlinearly on the gik directly. So the Einstein’s equation is a
coupled system of second-order nonlinear partial differential equations for the de-
termination of the components gik of the metric matrix G as a function of the given
distribution of matter, i.e. the matrix T , the source of the gravitational field.

By taking the trace, from (2.235) it follows that

R − R

2
· 4=−8πG

c4
T ,

so

R = 8πG

c4
T , (2.236)

where

T
def= trace(T ).
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Substituting (2.236) into (2.235), one obtains the following form of the Einstein’s
Field Equation:

RRic = 8πG

c4

(
T

2
I 4 − T

)
. (2.237)

By the way, the constant factor 8πG

c4 has the numerical value

8πG

c4
= 1.86 · 10−27cm/g. (2.238)

2.12 Summary

2.12.1 Covariance Principle

Einstein postulated the Equivalence Principle:

Gravitational forces are equivalent to inertial forces.

Gravitational fields can be eliminated by transitioning to an accelerated coordinate
system. In this new local inertial frame, the laws of the theory of special relativity
are valid.

Directly from the equivalence principle follows the Covariance Principle:

The equations of physics must be invariant under
general coordinate transformations.

In particular, this means that even in a local inertial frame the equations must be
valid, so the transition from a metric matrix G to a Minkowski matrix M results in
the laws of special relativity.

The connection is G= JᵀMJ and M = J−1ᵀ
GJ−1, i.e. using the special trans-

formation matrix T (�x) = J−1(�x) leads for a particular event �x to a local inertial
frame in which the laws of special relativity apply. Conversely, one passes from
the special local inertial frame with the event �ξ to the same event in the general
coordinate system �x by the transformation �x = J−1�ξ .

The physical equations in the theory of general relativity must be formulated so
that they are invariant (covariant) with respect to general coordinate transformations.

Above we derived: The formulas in the theory of general relativity are invariant
under coordinate transformations if one replaces in the formulas of special relativity
the ordinary derivatives ∂a

∂xᵀ by the covariant derivatives a‖xᵀ . Then we’re done!
The law applies generally.
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For a particle on which no force acts, for example, in an inertial system with
�̇ξ def= d�ξ

dτ
, applies

d�̇ξ
dτ
= 0. (2.239)

Herein the ordinary differential d�̇ξ must be replaced by the covariant differential

D�u, with �u= �̇x def= J−1 �̇ξ . According to (2.145), we first obtain

Du= �u‖�xᵀd�x = ∂ �u
∂ �xᵀ d�x + (I 4 ⊗ �uᵀ)Γ d�x, (2.240)

so

D�u
dτ

= �u‖�xᵀ
d�x
dτ

= d�u
dτ
+ (I 4 ⊗ �uᵀ)Γ d�x

dτ
.

This used in (2.239) instead of d�u
dτ

generally yields

D�u
dτ

= 0, (2.241)

or

d�u
dτ

=−(I 4 ⊗ �uᵀ)Γ �u. (2.242)

Through the Christoffel matrix Γ , the effect of the gravitational field is expressed.
If no gravitational field is present, then Γ = 0 and (2.239) is again obtained. A com-
parison of (2.242) with the equation of a geodesic shows that a material particle
moves on a geodesic, so to speak, “on the shortest path in curved space”.

If, in addition to gravitational forces, other forces appear, e.g. exerted by electric
fields, then for an inertial frame one has the equation

m
d�̇ξ
dτ
= �f . (2.243)

This equation multiplied from the left with J−1 and again used with the covariant
derivative leads with

�f x
def= J−1 �f

to

m
D�u
dτ

= �f x , (2.244)

or

m
d�u
dτ

= �f x −m
(
I 4 ⊗ �uᵀ)Γ �u, (2.245)
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where on the right-hand side, next to the other forces �f x , the gravitational forces
are written.

2.12.2 Einstein’s Field Equation and Momentum

The Einstein’s field equation expresses that each form of matter and energy is a
source of the gravitational field. The gravitational field is described by the metric
matrix G, the components of which must be determined by using Einstein’s Field
Equation

RRic − R

2
I 4 =−8πG

c4
T . (2.246)

So one basically has to perform the same procedure as in Newton’s dynamics:

1. Solve the Poisson equation �φ(x)= 4πGρ(x), to determine the potential func-
tion φ.

2. Establish the solution of the equation d2x
dt2 =−∇φ(x).

In the theory of general relativity, we now arrive at the following procedure:

1. Solve Einstein’s Field Equation (2.246) RRic − R
2 I 4 = − 8πG

c4 T , to determine
the metric matrix G.

2. Establish the solution of (2.245)

m
d�u
dτ

= �f x −m
(
I 4 ⊗ �uᵀ)Γ �u.

2.13 Hilbert’s Action Functional

Above, the Einstein’s equation was postulated as an axiom. Einstein has found this
equation through years of hard work. As a supplement, we will now shown that
one can obtain the Einstein’s equation with the help of the calculus of variations.
Following Hilbert, this is derived from a variational principle, but initially only for
the free gravitational field, i.e. when T = 0.

The gravitational field is determined primarily by the metric matrix G, i.e. the
curvature of space caused by this field. All curvature parameters are concentrated in
the curvature scalar R which is formed through the trace of the Ricci matrix RRic.
Now a variational functional, the Hilbert’s action functional, is formed so that the
space curvature is minimal:

WGrav =
∫

R dV. (2.247)
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However, this integral is not invariant under coordinate transformations Θ . There-
fore, we need the following considerations: Let

Θᵀ(�x)G(�x)Θ(�x)=M, (2.248)

i.e. Θ(�x) is the matrix which at the point �x transforms the metric matrix G into
the Minkowski matrix M . Computing the determinants on both sides of (2.248), we
obtain

det(G)︸ ︷︷ ︸
g

det(Θ)2
︸ ︷︷ ︸

Θ2

= det(M)=−1, (2.249)

i.e.

√−g = 1

Θ
.

In a Cartesian coordinate system, the integral of a scalar with respect to the scalar
dV = dx0 · dx1 · dx2 · dx3 is also a scalar. When passing to curvilinear coordinates
�x′, the integration element dV is

1

Θ
dV ′ =√−g′ dV ′.

In curvilinear coordinates,
√−g dV behaves as an invariant when integrated over

any area of the four-dimensional space. If f is a scalar, then f
√−g, which is in-

variant when integrated over dV , is named the scalar density. This quantity provides
a scalar for its multiplication with the four-dimensional volume element dV .

For this reason, we now consider only the effect

WGrav =
∫

R

(
Γ (x),

∂Γ

∂xᵀ

)√−g d4�x. (2.250)

Under d4�x the four-dimensional volume element dx0 · dx1 · dx2 · dx3 is understood.
The Einstein’s equation will follow from (2.250) and the condition δWGrav = 0 for
any variation δgik . R

√−g is a Lagrange density which is integrated over the vol-
ume. The elements of Γ k

αβ of the Christoffel matrix Γ are (2.62)

Γ k
αβ =

3∑
i=0

g
[−1]
ki

2

(
∂gβi

∂xα

+ ∂gαi

∂xβ

− ∂gαβ

∂xi

)
(2.251)

and the elements of the Riemannian curvature matrix R are, according to (2.165),

R
γδ
αβ =

∂

∂xβ

Γ
γ
αδ −

∂

∂xδ

Γ
γ
αβ +

∑
ν

Γ
γ
βνΓ

ν
δα −

∑
ν

Γ
γ
δνΓ

ν
αβ. (2.252)
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The curvature scalar R, due to (2.207), is obtained from the Ricci matrix by

R = trace(RRic)=
∑
α

∑
ν

Rαα
νν

=
∑
α

∑
ν

∑
μ

g[−1]
αμ Řμα

νν =
∑
α

∑
μ

g[−1]
αμ ŘRic,μα, (2.253)

which, in accordance with (2.210), is

ŘRic,γ δ =
3∑

ν=0

(
∂

∂xδ

Γ̌ ν
γ ν −

∂

∂xν

Γ̌ ν
γ δ +

3∑
μ=0

Γ
μ
γ δΓ̌

μ
νν −

3∑
μ=0

Γ μ
γνΓ̌

μ
νδ

)
. (2.254)

The Lagrange/Hamilton theory applied to the action integral (2.250) provides
the Euler/Lagrange equations for the variational problem associated to (2.250). We
consider the elements of g

[−1]
ki and Γ k

αβ as independent functions fi(�x). The integral
therefore is a functional of the form

∫
L

(
fi(�x),

∂fi

∂xk

(�x)

)
d4�x. (2.255)

This yields the Euler/Lagrange equations

∂L

∂fi

=
3∑

k=0

∂

∂xk

∂L

∂(
∂fi

∂xk
)
. (2.256)

The Euler/Lagrange equations for (2.250) are

∂

∂g
[−1]
αβ

(√−g
∑

δ

∑
μ

g
[−1]
μδ ŘRic,μδ

)
= 0, (2.257)

∂

∂Γ
γ
αβ

(√−g
∑

δ

∑
μ

g
[−1]
μδ ŘRic,μδ

)
=

3∑
δ=0

∂

∂xδ

(√−g
∑

δ

∑
μ

g
[−1]
μδ

∂ŘRic,μδ

∂(
∂Γ

γ
αβ

∂xδ
)

)
.

(2.258)

The first equation (2.257) provides the Einstein’s field equation. Indeed, one can
first write this compactly:

∂L

∂G−1
= ∂(

√−gR)

∂G−1
= ∂

√−g

∂G−1
R+√−g

∂R

∂G−1
= 0. (2.259)

For ∂
√−g

∂G−1 , one then obtains

∂
√−g

∂G−1
= −1

2
√−g

· ∂g

∂G−1
. (2.260)
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In addition,

∂

∂G−1

(
1

g
· g
)
= 0= 1

g

∂g

∂G−1
+ g

∂(1/g)

∂G−1
. (2.261)

According to the Laplace expansion theorem for determinants (“The sum of the
products of all elements of a row with their cofactors is equal to the value of the
determinant”), we obtain by developing the determinant of G−1 along the γ th row:

det
(
G−1)= 1

g
= g

[−1]
γ 0 A

[−1]
γ 0 + · · · + g

[−1]
γβ A

[−1]
γβ + · · · + g

[−1]
γ 3 A

[−1]
γ 3 , (2.262)

where A
[−1]
γβ is the element in the γ th row and βth column of the adjoint of G−1;

g
[−1]
γβ is the (γβ)-element of G−1. It is, of course, true that

G= adj(G−1)

det(G−1)

so element-wise gβγ = g ·A[−1]
γβ , or A

[−1]
γβ = 1

g
gβγ . Thus, we obtain by partial dif-

ferentiation of (2.262) with respect to g
[−1]
γβ

∂(1/g)

∂g
[−1]
γβ

=A
[−1]
γβ = 1

g
gβγ ,

so

∂(1/g)

∂G−1
= 1

g
G. (2.263)

Using this in (2.261) provides

∂g

∂G−1
=−gG, (2.264)

and, together with (2.260), finally yields

∂
√−g

∂G−1
= −1

2

√−g ·G. (2.265)

All what is missing in (2.259) is ∂R

∂G−1 . Using R =∑α

∑
μ g

[−1]
αμ ŘRic,μα ,

∂R

∂G−1
=

⎛
⎜⎜⎜⎝

∂R

∂g
[−1]
00

· · · ∂R

∂g
[−1]
03

...
. . .

...
∂R

∂g
[−1]
30

· · · ∂R

∂g
[−1]
33

⎞
⎟⎟⎟⎠=

⎛
⎜⎝

ŘRic,00 · · · ŘRic,03
...

. . .
...

ŘRic,30 · · · ŘRic,33

⎞
⎟⎠= ŘRic. (2.266)
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Multiplying this matrix with G−1, by the way, yields

RRic =G−1ŘRic. (2.267)

Inserting (2.265) and (2.266) into (2.259) yields first

√−g

(−1

2
·GR + ŘRic

)
= 0, (2.268)

i.e. the following particular form of the Einstein’s field equation

ŘRic − R

2
·G= 0. (2.269)

Multiplying this equation from the left with the inverse metric matrix G−1, we fi-
nally obtain the Einstein’s field equation for a source-free gravitational field (T = 0)
as in (2.235)

RRic − R

2
I 4 = 0. (2.270)

2.13.1 Effects of Matter

So far, only the gravitational field in vacuum has been treated. To account for the
sources of the gravitational field, e.g. matter, the action functional must include an
additive term WM that describes the source:

W
def= WGrav +WM =

∫
(kR +LM)

√−g d4�x. (2.271)

The Lagrange equation with respect to G−1 is

∂(
√−g(kR +LM))

∂G−1
= 0

= k

(
∂
√−g

∂G−1
R +√−g

∂R

∂G−1

)
+ ∂(

√−gLM)

∂G−1
. (2.272)

The term inside the large parentheses gives the left-hand side of (2.268), i.e. together
we first get for (2.272)

0= k
√−g

(−1

2
·GR + ŘRic

)
+√−g

(
∂LM

∂G−1
+ LM√−g

∂
√−g

∂G−1︸ ︷︷ ︸
− 1

2
√−gG

)
.
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Now, if we define the energy–momentum matrix as

−1

2
Ť

def= ∂LM

∂G−1
− 1

2
LMG, (2.273)

then we finally obtain with k = c4/(16πG) by left multiplication of (2.273) by G−1

and with T
def= G−1Ť the Einstein’s field equation

RRic − R

2
I 4 = 8πG

c4
T . (2.274)

2.14 Most Important Definitions and Formulas

Christoffel Matrix (2.68):

Γ
def=
⎛
⎜⎝

Γ 0
...

Γ 3

⎞
⎟⎠= 1

2

(
G−1 ⊗ I 4

)
⎡
⎢⎢⎣

⎛
⎜⎜⎝

∂g
ᵀ
0

∂ �x
...

∂g
ᵀ
3

∂ �x

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

∂g0
∂ �xᵀ
...

∂g3
∂ �xᵀ

⎞
⎟⎟⎠−

∂G

∂ �x

⎤
⎥⎥⎦ ∈R

16×4

with the components given, in accordance with (2.63) and (2.64), as

Γ k
αβ =

3∑
i=0

g
[−1]
ki

1

2

(
∂gβi

∂xα

+ ∂gαi

∂xβ

− ∂gαβ

∂xi

)
.

Motion in a Gravitational Field (2.67):

�̈x =−(I 4 ⊗ �̇xᵀ)Γ �̇x.

Riemannian Curvature Matrix (2.160):

R
def=
[

∂Γ

∂xᵀ + (Γ ⊗ I 4)(I 4 ⊗ Γ )

]
(U4×4 − I 16) ∈R

16×16,

with the components (2.165)

R
γδ
αβ =

∂

∂xβ

Γ
γ
αδ −

∂

∂xδ

Γ
γ
αβ +

∑
ν

Γ
γ
βνΓ

ν
δα −

∑
ν

Γ
γ
δνΓ

ν
αβ.
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Ricci Matrix RRic ∈R
4×4 (2.200):

RRic,γ δ
def= trace

(
Rγ δ

)=
3∑

ν=0

Rγδ
νν ,

consisting of the traces of the sub-matrices Rγ δ of R with the components in accor-
dance with (2.209):

RRic,γ δ =
3∑

ν=0

(
∂

∂xδ

Γ ν
γ ν −

∂

∂xν

Γ ν
γ δ +

3∑
μ=0

Γ ν
δμΓ μ

νγ −
3∑

μ=0

Γ μ
νμΓ

μ
γ δ

)
.

Curvature Scalar R (2.200):

R
def= trace(RRic)=

∑
α

∑
ν

Rαα
νν ,

which is obtained by taking the trace of the Ricci matrix.

Einstein’s Field Equation (2.235) (fixed as an axiom):

RRic − R

2
I 4 =−8πG

c4
T ,

or with T
def= traceT , see (2.237):

RRic = 8πG

c4

(
T

2
I 4 − T

)
.



Chapter 3
Gravitation of a Spherical Mass

The chapter begins with the first solution of Einstein’s equations obtained in 1916
by Schwarzschild for a spherical mass. From these results, the influence of a mass
in time and space and the redshift of the spectral lines are given. This gives also a
first indication of the existence of “black holes”. Finally, a brief look at the effect of
rotating masses and on the Lense–Thirring effect is taken.

3.1 Schwarzschild’s Solution

Because of its simplicity, the solution of Einstein’s field equation will now be de-
termined for the outside of a spherically symmetric, uniform, time-invariant mass
distribution. This first exact solution of Einstein’s field equation was given in 1916
by Schwarzschild.

As r →∞, the desired metric should be the Minkowski metric, i.e.

ds2 = c2 dt2 − dr2 − r2(dθ2 + sin2 θ dϕ2). (3.1)

where r, θ and ϕ are the spherical coordinates. For a gravitational field, we now start
with

ds2 =A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θ dϕ2). (3.2)

Since the field must be spherically symmetric, the factors A and B may depend only
on r and not on θ or ϕ. Due to (3.1), the factor A(r) must tend to c2 as r →∞, and
the factor B(r)→ 1. The metric matrix thus has the form

G=

⎛
⎜⎜⎝

A(r) 0 0 0
0 −B(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎠ . (3.3)
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3.1.1 Christoffel Matrix Γ

Due to (2.57)

Γ̂ k
def= (I 4 ⊗ g−T

k

)[
I 16 − 1

2
U4×4

]
∂G

∂ �x
and

G−1 =

⎛
⎜⎜⎜⎝

1
A(r)

0 0 0

0 −1
B(r)

0 0

0 0 −1
r2 0

0 0 0 −1
r2 sin2 θ

⎞
⎟⎟⎟⎠ , (3.4)

with

∂G

∂ �x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

04

A′(r) 0 0 0
0 −B ′(r) 0 0
0 0 −2r 0
0 0 0 −2r sin2 θ

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2r2 sin θ cos θ

04

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

in which A′ def= ∂A
∂r

and 04 is a 4× 4-zero-matrix, and

[
I 16 − 1

2
U4×4

]
∂G

∂ �x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
−A′

2 0 0 0
0 0 0 0
0 0 0 0

A′ 0 0 0
0 −B ′

2 0 0
0 0 −2r 0
0 0 0 −2r sin2 θ

0 0 0 0
0 0 r 0
0 0 0 0
0 0 0 −2r2 sin θ cos θ

0 0 0 0
0 0 0 r sin2 θ

0 0 0 r2 sin θ cos θ

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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one obtains

Γ̂ 0 =
(
I 4 ⊗

[
1/A(r)|0 |0 |0])

[
I 16 − 1

2
U4×4

]
⎛
⎜⎜⎜⎝

∂G
∂t
∂G
∂r
∂G
∂θ
∂G
∂ϕ

⎞
⎟⎟⎟⎠

=
⎛
⎜⎝

0 0 0 0
A′
A

0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ . (3.5)

Accordingly, we obtain

Γ̂ 1 =

⎛
⎜⎜⎝

A′
2B

0 0 0
0 B ′

2B
0 0

0 0 − r
B

0
0 0 0 − r

B
sin2 θ

⎞
⎟⎟⎠ ,

Γ̂ 2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 2

r
0

0 0 0 0
0 0 0 − sin θ cos θ

⎞
⎟⎟⎠

and

Γ̂ 3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 2

r
0 0 0 2 cot θ
0 0 0 0

⎞
⎟⎟⎠ .

Symmetrizing according to

Γ k = 1

2

(
Γ̂ k + Γ̂

ᵀ
k

)

yields the symmetric matrices

Γ 0 =

⎛
⎜⎜⎜⎝

0 A′
(2A)

0 0
A′

(2A)
0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ ,

Γ 1 = Γ̂ 1,

Γ 2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 1

r
0

0 1
r

0 0
0 0 0 − sin θ cos θ

⎞
⎟⎟⎠
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and

Γ 3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1

r
0 0 0 cot θ
0 1

r
cot θ 0

⎞
⎟⎟⎠ ,

which put altogether give

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A′
2A

0 0
A′
2A

0 0 0
0 0 0 0
0 0 0 0
A′
2B

0 0 0
0 B ′

2B
0 0

0 0 − r
B

0
0 0 0 − r

B
sin2 θ

0 0 0 0
0 0 1

r
0

0 1
r

0 0
0 0 0 − sin θ cos θ

0 0 0 0
0 0 0 1

r
0 0 0 cot θ
0 1

r
cot θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

The nonzero Christoffel elements can be read from the matrices as:

Γ 0
10 = Γ 0

01 =
A′

2A
, Γ 1

00 =
A′

2B
, Γ 1

11 =
B ′

2B
, Γ 1

22 =−
r

B
,

Γ 1
33 =−

r

B
sin2 θ, Γ 2

12 = Γ 2
21 =

1

r
, Γ 2

33 =− sin θ cos θ,

Γ 3
13 = Γ 3

31 =
1

r
and Γ 3

23 = Γ 3
32 = cot θ.

3.1.2 Ricci Matrix RRic

The Ricci matrix RRic is obtained from the Riemannian curvature matrix

R =
[

∂Γ

∂xᵀ + (Γ ⊗ I 4)(I 4 ⊗ Γ )

]
(U4×4 − I 16)
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by summing the 4× 4-sub-matrices on the main diagonal. For the calculation of R,
in addition to Γ , we need

∂Γ

∂ �xᵀ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A′′A−A′2
2A2 0 0

04
A′′A−A′2

2A2 0 0 0 04 04
0 0 0 0
0 0 0 0

A′′B−A′B ′
2B2 0 0 0

04 0 B ′′B−B ′2
2B2 0 0 03×4 04

0 0 −B−rB ′
B2 0

0 0 0 − sin2 θ B−rB ′
B2 0 0 0 − 2r

b
sin θ cos θ

0 0 0 0
04 0 0 − 1

r2 0 03×4 04

0 − 1
r2 0 0

0 0 0 0 0 0 0 − cos2 θ + sin2 θ

0 0 0 0 0 0 0 0
04 0 0 0 −1

r2 0 0 0 0 04

0 0 0 0 0 0 0 −1
sin2 θ

0 −1
r2 0 0 0 0 −1

sin2 θ
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Γ =

⎛
⎜⎜⎝

0 A′
2A

0 0 A′
2A

0 0 0 0 0 0 0 0 0 0 0
A′
2B

0 0 0 0 B ′
2B

0 0 0 0 − r
B

0 0 0 0 − r
B

sin2 θ

0 0 0 0 0 0 1
r

0 0 1
r

0 0 0 0 0 − sin θ cos θ

0 0 0 0 0 0 0 1
r

0 0 0 cot θ 0 1
r

cot θ 0

⎞
⎟⎟⎠ .

For the Ricci matrix RRic the 16× 16-matrix ∂Γ
∂xᵀ (U4×4− I 16) contributes the term

⎛
⎜⎜⎜⎜⎝

A′B ′−A′′B
2B2 0 0 0

0 A′′A−A′2
2A2 − 2

r2 0 0

0 0 B−rB ′
B2 − 1

sin2 θ
0

0 0 0 sin2 θ B−rB ′
B2 + cos2 θ − sin2 θ

⎞
⎟⎟⎟⎟⎠

and the matrix (Γ ⊗ I 4)(I 4 ⊗ Γ )(U4×4 − I 16) the term

⎛
⎜⎜⎜⎝

A′2
4AB

− A′B ′
4B2 − A′

rB
0 0 0

0 A′2
4A2 − A′B ′

4AB
− B ′

rB
+ 2

r2 0 0

0 0 rB ′
B2 + rA′

2AB
+ cot2 θ 0

0 0 0 rB ′
B2 sin2 θ + rA′

2AB
sin2 θ − cos2 θ

⎞
⎟⎟⎟⎠.
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Finally, we obtain for the four elements on the main diagonal of the Ricci matrix
RRic:

RRic,00 =−A′′

2B
+ A′

4B

(
A′

A
+ B ′

B

)
− A′

rB
, (3.7)

RRic,11 = A′′

2A
− A′

4A

(
A′

A
+ B ′

B

)
− B ′

rB
, (3.8)

RRic,22 = 1

B
+ r

2B

(
A′

A
− B ′

B

)
− 1 (3.9)

and

RRic,33 = sin2 θRRic,22. (3.10)

The other matrix elements are equal to zero: RRic,νμ = 0 for ν �= μ.

3.1.3 The Factors A(r) and B(r)

To finally write down the metric matrix G, the two factors A(r) and B(r) are re-
quired. Since we search for the solution of Einstein’s field equation outside the
sphere containing the mass and having the energy–momentum matrix T equal to
the zero matrix, the Ansatz RRic = 0 thus yields

−A′′

2B
+ A′

4B

(
A′

A
+ B ′

B

)
− A′

rB
= 0, (3.11)

A′′

2A
− A′

4A

(
A′

A
+ B ′

B

)
− B ′

rB
= 0, (3.12)

and

1

B
+ r

2B

(
A′

A
− B ′

B

)
− 1= 0. (3.13)

Adding to (3.11) divided by A (3.12) divided by B , we obtain the condition

A′B +AB ′ = 0, (3.14)

which means nothing else than that

AB = constant. (3.15)
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However, since A(∞) = c2 and B(∞) = 1 as r →∞, the constant must be equal
to c2, so

A(r)B(r)= c2 and B(r)= c2

A(r)
.

Substituting this into (3.13), we obtain A+ rA′ = c2, which we also can write

d(rA)

dr
= c2. (3.16)

Integrating this equation yields

rA= c2(r +K), (3.17)

so

A(r)= c2
(

1+ K

r

)
and B(r)=

(
1+ K

r

)−1

. (3.18)

K still remains to be determined. In Sect. 2.8, a uniform rotating system was treated.
In (2.85), we obtained the element g00 of the metric matrix G as

g00 = 1− r2ω2

c2
(3.19)

and in (2.88) the centrifugal force mrω2. According to Sect. 2.8, the centrifugal
force f depends, on the other hand, on the centrifugal potential ϕ, so together

f =−m∇ϕ. (3.20)

Taking

ϕ =− r2ω2

2
(3.21)

(3.20) provides just the above centrifugal force. Equation (3.21) inserted into (3.19)
provides the general connection

g00 = 1+ 2ϕ

c2
. (3.22)

Outside of our spherical mass M , as Newton’s approximation the gravitational po-
tential

ϕ =−GM

r
(3.23)

is obtained. This used in (3.22) and compared with (3.18) yields

K =−2GM

c2
, (3.24)
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so that we finally obtain the Schwarzschild’s metric in matrix form:

ds2 = d�xᵀ Gd�x = d�xᵀ

⎛
⎜⎜⎝

1− 2GM

c2r
0 0 0

0 −(1− 2GM

c2r
)−1 0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎠d�x,

(3.25)

with

d�x def=

⎛
⎜⎜⎝

c dt

dr

dθ

dϕ

⎞
⎟⎟⎠ ,

and the calculated Schwarzschild’s metric is then

ds2 =
(

1− 2GM

c2r

)
c2 dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2). (3.26)

For the so-called Schwarzschild’s radius

rS
def= 2GM

c2
, (3.27)

the Schwarzschild’s metric shows a singularity as for r = 0. Of these, however,
only the singularity at r = 0 is a real singularity. This is suggested even by the fact
that, when r = rS , the determinant of G, namely g =−r4 sin2 θ , has no singularity.
The singularity at r = rS is not a physical singularity but a coordinate singularity,
which depends entirely on the choice of the coordinate system, i.e. there would exist
no singularity at this place if a different coordinate system were chosen! More about
this in the next section on black holes.

3.2 Influence of a Massive Body on the Environment

3.2.1 Introduction

The Schwarzschild’s solution (3.26) is valid only outside the solid sphere of
radius rM generating the gravity, so only for rM < r < ∞. Because for the
Schwarzschild’s radius rS the element g11 = (1− rS

r
)−1 goes to infinity, rS is also a

limit. In general, rS 
 rM , but for the so-called Black Holes one has rM < rS , and
in this case the solution is limited to rS < r <∞.
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3.2.2 Changes to Length and Time

How does a length change in the environment of a massive body? For a constant
time, i.e. for dt = 0 one receives, due to (3.26),

d�2 =
(

1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2). (3.28)

On the surface of a sphere of radius r > rM with the centre being the centre of mass,
as also for dr = 0, the tangential infinitely small distances are given by

dL= r
(
dθ2 + sin2 θ dϕ2)1/2

. (3.29)

This is a result that is valid on every sphere, whether with or without gravity. But
what happens with a distance in the radial direction? In this case, dθ and dϕ are
equal to zero, thus for infinitely small distances in the radial direction, according to
(3.28), one obtains

dR =
(

1− 2GM

c2r

)−1/2

dr , (3.30)

so dR > dr , and so the length is much longer, the larger the mass M and the smaller
the distance r from the mass! dr is through the mass ‘elongated’, caused by a cur-
vature of space.

Let us now turn to the time. For a clock at the point, where r, θ , and ϕ are con-
stant, we obtain from the Schwarzschild’s metric (3.26)

ds2 = c2 dτ 2 = c2
(

1− 2GM

c2r

)
dt2,

so

dτ =
(

1− 2GM

c2r

)1/2

dt . (3.31)

If dτ < dt , the closer one is located to the mass, the shorter are the time intervals, i.e.
the slower the time passes! For an observer the time goes slower the closer he is to
the mass. Particularly large is the time dilation near a Black Hole in which the mass
is so concentrated that the body radius is smaller than its own Schwarzschild’s ra-
dius. For a black hole with a mass of ten solar masses, the Schwarzschild’s radius is
rS = 30 km. At a distance of 1 cm from the so-called horizon, which is the spherical
shell around the centre of mass with radius rS , γ = (1− 2GM

c2r
)1/2 = 1.826 ·10−5, so

the time goes by about 55000 times slower than far away: after a year near the hori-
zon of the black hole, in a place far away, e.g. on the home planet of an astronaut,
55000 years would have gone by! All is summed up into a popular statement:
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If you climb a mountain, you are smaller and age faster!

The relations (3.30) and (3.31) are very similar to the relationships of space and
time contractions for the relatively to each other moving reference frames in special
relativity; see Chap. 1. There with

γ
def=
(

1− v2

c2

)−1/2

for the length contraction we had

d�= 1

γ
d�0

and for the time dilation

dt = γ dτ.

If we introduce the pseudo-velocity

v2
G(r)

def= 2GM

r

then with

γG(r)
def=
(

1− v2
G(r)

c2

)−1/2

the above gravitational relationships can be written as follows:

dr = 1

γG(r)
dR and dt = γG(r)dτ.

By the way, vG(r) is the escape velocity of a planet with the diameter 2r and
mass M .

3.2.3 Redshift of Spectral Lines

Suppose in the gravitational field of a mass a light signal is sent from a transmitter
at a fixed point xT = [rT , θT ,ϕT ]ᵀ and it drifts along a geodesic line to a fixed
receiver at the point xR = [rR, θR,ϕR]ᵀ. Let, furthermore, λ be any parameter along
the geodesic line, with λ= λT for the sent event and λ= λR for the received event.
Then for a photon, by (2.11), the following is valid:

d�xᵀ

dλ
G

d�x
dλ

= 0,
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so here

c2
(

1− 2GM

c2r

)(
dt

dλ

)2

−
(

1− 2GM

c2r

)−1( dr

dλ

)2

−r2
((

dθ

dλ

)2

+sin2
(

dϕ

dλ

)2)
=0,

i.e.

dt

dλ
= 1

c

[(
1− 2GM

c2r

)−2( dr

dλ

)2

+
(

1− 2GM

c2r

)−1

r2
((

dθ

dλ

)2

+sin2
(

dϕ

dλ

)2)]1/2

.

From this we obtain the signal transmission time

tR − tT = 1

c

∫ λR

λT

[(
1− 2GM

c2r

)−2( dr

dλ

)2

+
(

1− 2GM

c2r

)−1

r2
((

dθ

dλ

)2

+ sin2
(

dϕ

dλ

)2)]1/2

dλ.

This time depends only on the path that the light takes between the spatially fixed
transmitter and the spatially fixed receiver. So for two consecutive transmitted sig-
nals 1 and 2 the duration is equal:

tE,1 − tS,1 = tE,2 − tS,2,

and also

�tR
def= tE,2 − tE,1 = tS,2 − tS,1

def= �tT ,

so the Schwarzschild’s time difference at the transmitter is equal to the Schwarzs-
child’s time difference at the receiver, though the clock of an observer at the trans-
mitter location would show the proper time difference to

�τT =
(

1− 2GM

c2rT

)1/2

�tT

and accordingly at the receiving location the proper time difference would be

�τR =
(

1− 2GM

c2rR

)1/2

�tR.

Since �tR =�tT , one obtains the ratio

�τR

�τT

=
(1− 2GM

c2rR

1− 2GM

c2rT

)1/2

.

If the transmitter is a pulsating atom, emitting N pulses in the proper time interval
�τT , an observer at the transmitter would assign to the signal a proper frequency
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νT
def= N

�τT
. An observer at the receiver will see the N pulses arriving in the proper

time �τR , thus at the frequency νR = N
�τR

. Then the frequency ratio is obtained as

νR

νT

=
(1− 2GM

c2rT

1− 2GM

c2rR

)1/2

. (3.32)

If the transmitter is closer to the mass compared to the receiver (rT < rR), then a
shift to the red in the “colour” of the signal takes place. Conversely, if the transmit-
ter is further away than the receiver, one gets a blueshift. For rS, rE � 2GM one
obtains the approximation

νR

νT

≈ 1+ GM

c2

(
1

rR
− 1

rT

)

and the relative frequency change

�ν

νT

def= νR − νT

νT

≈ GM

c2

(
1

rR
− 1

rT

)
.

If the transmitter (e.g. a radiating atom) is on the solar surface and the observing
receiver on the surface of the Earth, then

�ν

νT

≈ 2 · 10−6.

This effect is indeed poorly measurable due to a variety of disturbances by the at-
mosphere. However, this redshift is measurable using the Mössbauer’s effect (see
the relevant Physics literature).

3.2.4 Deflection of Light

According to (2.11), for light one has

�xᵀG�x = 0. (3.33)

Differentiating (3.33) with respect to the orbital parameter λ, one obtains

∂ �xᵀ

∂λ
G

∂ �x
∂λ

= 0. (3.34)

Setting for G the Schwarzschild’s metric, we obtain

c2
(

1− rS

r

)(
∂t

∂λ

)2

−
(

1− rS

r

)−1(
∂r

∂λ

)2

− r2
(

∂θ

∂λ

2

+ sin2 θ

(
∂ϕ

∂λ

)2)
= 0.

(3.35)
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Without loss of generality, especially in the present centrally symmetric solution,
we can assume that θ = π/2 and ∂θ

∂λ
= 0, and that the solution is in a plane through

the centre of mass, then (3.35) simplifies to

c2
(

1− rS

r

)(
∂t

∂λ

)2

−
(

1− rS

r

)−1(
∂r

∂λ

)2

− r2
(

∂ϕ

∂λ

)2

= 0. (3.36)

For a light ray in the gravitational field the following holds:

∂2�x
∂λ2

=−
(

I 4 ⊗ ∂ �x
∂λ

ᵀ)
Γ

∂ �x
∂λ

. (3.37)

With the Christoffel elements from Sect. 3.1.1 and �xᵀ = [x0|r|θ |ϕ] expanding
(3.37) yields

d2x0

dλ2
=−A′

A

dx0

dλ

dr

dλ
, (3.38)

d2r

dλ2
=−A′

B

(
dx0

dλ

)2

− B ′

2B

(
dr

dλ

)2

+ r

B

(
dθ

dλ

)2

+ r sin2 θ

B

(
dϕ

dλ

)2

, (3.39)

d2θ

dλ2
=−2

r

dθ

dλ

dr

dλ
+ sin θ cos θ

(
dϕ

dλ

)2

, (3.40)

d2ϕ

dλ2
=−2

r

dϕ

dλ

dr

dλ
− cot θ

dθ

dλ

dϕ

dλ
. (3.41)

If the coordinate system is selected so that for the start time λ0 one has

θ = π/2 and
∂θ

∂λ
= 0, (3.42)

then from (3.40) d2θ

dλ2 = 0, so θ(λ) ≡ π/2, i.e. the entire path remains in the plane
through the centre of mass. With this θ value from (3.41) one obtains

d2ϕ

dλ2
+ 2

r

dϕ

dλ

dr

dλ
= 0,

which can be summarized as follows:

1

r2

d

dλ

(
r2 dϕ

dλ

)
= 0. (3.43)

It is therefore true that

r2 dϕ

dλ
= const.= h. (3.44)
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Equation (3.38) can be converted to

d

dλ

(
ln

dx0

dλ
+ lnA

)
= 0 (3.45)

and integrated to yield

A
dx0

dλ
= const.= k. (3.46)

Equations (3.42), (3.44) and (3.46) used in (3.39) provide

d2r

dλ2
+ k2A′

2A2B
+ B ′

2B

(
dr

dλ

)2

− h2

Br3
= 0. (3.47)

Multiplying this equation by 2B dr
dλ

, we obtain first

d

dλ

(
B

dr

dλ
+ h2

r2
− k2

A

)
= 0 (3.48)

and after integration

B

(
dr

dλ

)2

+ h2

r2
− k2

A
= const.= 0, (3.49)

or

dr

dλ
=
√

k2

A
− h2

r2

B
. (3.50)

But we don’t look for r(λ), we want ϕ(r). Since

dϕ

dr
= dϕ

dλ

dλ

dr
,

it follows by (3.44) and (3.50) that

dϕ

dr
= h

r2

√
B

k2

A
− h2

r2

(3.51)

and integrated

ϕ(r)= ϕ(r0)+
∫ r

r0

√
B(ψ)

ψ2
√

k2

A(ψ)h2 − 1
ψ2

dψ. (3.52)

Let r0 be the smallest distance from the centre of mass, having a passing fly-
ing photon. It moves in the plane through the centre of mass with θ = π/2. The
coordinate system is still placed such that φ(r0) = 0. If gravity is not present, the
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photon will continue to fly straight and as r →∞ we will have ϕ(∞) = π/2. It
comes from ϕ(−∞) = −π/2. Overall, therefore, the photon has covered an angle
of �ϕ = ϕ(∞) − ϕ(−∞) = π . Considering the gravity, the photon is “bent” to
the mass. It passes from (r0, ϕ(r0)) to ϕ(∞)= π/2+ α/2 as r →∞. For reasons
of symmetry, it is then ϕ(−∞) = π/2− α/2 as r →−∞, so that the photon has
covered an overall angle of �ϕ = ϕ(∞)− ϕ(−∞) = π + α. This angle α is now
calculated for the solar mass M� = 1.9891× 1033 g.

Since r0 should be the minimum distance, it is true that

dr

dϕ

∣∣∣∣
r0

= 0. (3.53)

On the other hand, dϕ
dr

is precisely the integrand of (3.52), whence it follows

k2

h2
= A(r0)

r2
0

. (3.54)

The integral used in (3.52) yields

ϕ(∞)=
∫ ∞

r0

√
B(r)

r

√
r2A(r0)

r2
0 A(r)

− 1
dr. (3.55)

For this integral no simple antiderivative exists so that it should be calculated by
approximations. One has

A(r)= 1− 2GM�
c2r

(3.56)

and

B(r)=
(

1− 2GM�
c2r

)−1

≈ 1+ 2GM�
c2r

. (3.57)

Furthermore,

A(r0)

A(r)
=
(

1− 2GM�
c2r0

)(
1− 2GM�

c2r

)−1

≈

(
1− 2GM�

c2r0

)(
1+ 2GM�

c2r

)
= 1+ 2GM�

c2

(
1

r
− 1

r0

)

and

r2A(r0)

r2
0A(r)

− 1 ≈

(
r2

r2
0

− 1

)(
1− 2GM�r

c2r0(r + r0)

)
. (3.58)
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Therefore, the integral (3.55) becomes

ϕ(∞)=
∫ ∞

r0

r0√
r2 − r2

0

(
1

r
+ GM�

c2r2
+ GM�

c2(r + r0)

)
dr

=
[

arccos
r0

r
+ GM�

c2r0

√
r2 − r2

0

r
+ GM�

c2r0

√
r − r0

r + r0

]∞
r0

, (3.59)

so

ϕ(∞)= π

2
+ 2GM�

c2r0
, (3.60)

from which one can read off

α = 4GM�
c2r0

. (3.61)

If r0 is precisely the solar radius R� = 6.957× 108 m, we obtain

α = 1.75′′. (3.62)

This prediction was one of the first confirmations of the Theory of General Relativity
in 1919 at a solar eclipse measured by Eddington.

3.3 Schwarzschild’s Inner Solution

For the determination of the metric inside a symmetric sphere, the right-hand side of
Einstein’s field equation with the energy–momentum matrix is needed. The hydro-
mechanical energy–momentum matrix was deduced in Chap. 1 in (1.183) as

T mech =
(

ρ0 + p

c2

)
�u�uᵀ − p M.

This was done in the Lorentz basis of an inertial frame. It can thus also be the local
inertial system of a general coordinate system. If for the relationship between the
local coordinates d�x and the global coordinates d�x′ the transformation equation is
d�x = J d�x′, then for the velocities one has �u= J �u′. If used above this yields

T mech =
(

ρ0 + p

c2

)
J �u′ �u′ᵀJᵀ − p M. (3.63)

Now multiplying this equation from the left with the matrix product JᵀM and
from the right with the matrix product MJ , we finally obtain with MM = I and
JᵀMJ =G

T mech,Riemann =
(

�0 + p

c2

)
G�u′ �u′ᵀG− p G. (3.64)
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Now the metric matrix G appears globally.
The Einstein’s field equation is used in the form (2.237)

RRic = 8π G

c4

(
T

2
I 4 − T

)
. (3.65)

It is assumed that the masses inside the sphere do not move, the velocity components
are zero: u′i = 0, for i = 1,2,3. Therefore, from the condition

c2 = �u′ᵀG�u′

there remains

c2 = g00u
2
0.

If the metric matrix is chosen again as in (3.2), namely

ds2 =A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θ dϕ2), (3.66)

then

u0 = c√
A(r)

.

Thus we get for T the diagonal matrix

T = diag
(
�c2A(r),pB(r),pr2,pr2 sin2 θ

)
. (3.67)

With the trace T = c2�− 3p of the local energy–momentum matrix, we obtain for
the right-hand side of the Einstein’s field equation

8πG

c4

(
T

2
I 4 − T

)

= 4πG

c4
diag

((
�c2 + 3p

)
A,
(
�c2 − p

)
B,
(
�c2 − p

)
r2,
(
�c2 − p

)
r2 sin2 θ

)
.

(3.68)

This with the elements (3.7), (3.8), (3.9) and (3.10) on the main diagonal of the
Ricci matrix RRic gives

RRic,00 =−A′′

2B
+ A′

4B

(
A′

A
+ B ′

B

)
− A′

rB
,

RRic,11 = A′′

2A
− A′

4A

(
A′

A
+ B ′

B

)
− B ′

rB
,

RRic,22 = 1

B
+ r

2B

(
A′

A
− B ′

B

)
− 1
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and

RRic,33 = sin2 θRRic,22

(the remaining matrix elements are equal to zero: RRic,νμ = 0 for ν �= μ), com-
bined with Einstein’s field equation yielding the three determining equations for the
factors A(r) and B(r):

A′′

2B
− A′

4B

(
A′

A
+ B ′

B

)
+ A′

rB
= 4πG

c4

(
�c2 + 3p

)
A, (3.69)

−A′′

2A
+ A′

4A

(
A′

A
+ B ′

B

)
+ B ′

rB
= 4πG

c4

(
�c2 − p

)
B (3.70)

and

− 1

B
− r

2B

(
A′

A
− B ′

B

)
+ 1= 4πG

c4

(
�c2 − p

)
r2. (3.71)

Adding together (3.69) multiplied by r2/(2A), (3.70) multiplied by r2/(2B) and
(3.71), we obtain

B ′r
B2

+ 1− 1

B
= 8πG

c2
�r2. (3.72)

This can also be rewritten as

d

dr

r

B(r)
= 1− 8πG

c2
�r2. (3.73)

Integrating this equation provides

r

B(r)
=
∫ r

0

(
1− 8πG

c2
�(α)α2

)
dα = r − 2G

c2
M(r), (3.74)

with

M(r)
def= 4π

∫ r

0
�(α)α2 dα. (3.75)

Solving (3.74) for B(r) finally yields

B(r)=
(

1− 2GM(r)

c2r

)−1

. (3.76)

The density function �(r) is zero for r > R, i.e. outside the spherical mass, so
M(r)=M(R)=M for r > R. We thus obtain the same coefficient B(r) for r > R

as for the Schwarzschild’s outer solution.
Now A(r) is still to be determined. For that, B(r) and

B ′(r)= B2(r)

(
8πG

c2
�(r)r − 2GM(r)

c2r2

)
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is used in (3.71), which gives

−A′(r)r
2A(r)

(
1− 2GM(r)

c2r

)
+ 4πG

c2
�(r)r2 + GM(r)

c2r
= 4πG

c4

(
�c2 − p

)
r2,

i.e.

A′(r)
A(r)

= d

dr

(
lnA(r)+ const.

)=
(

8πG

c4
p(r)r + 2GM(r)

c2r2

)(
1− 2GM(r)

c2r

)−1

def= f (r).

The sum lnA(r)+ const. is thus the antiderivative for the right-hand side f (r) of
this equation. Therefore, lnA(r) equals the integral of f (r). If we use as integration
limits r and ∞ and A(∞)= 1, we finally obtain

A(r)= exp

[
−2G

c2

∫ ∞

r

1

α2

(
M(α)+ 4πα3p(α)/c2)

(
1− 2GM

c2α

)−1

dα

]
. (3.77)

For r > R, this solution is equal to the Schwarzschild’s outer solution because for
r > R one has �(r)= p(r)= 0 and M(r)=M(R)=M , so

A(r)= exp

[
−2G

c2

∫ ∞

r

M

α2

(
1− rS

α

)−1

dα

]
. (3.78)

With the new integration variable ξ = 1− rS
r

we obtain for r > R

A(r)= exp

[∫ 1−ξ

1

1

ξ ′
dξ ′
]
= 1− rS

r
, (3.79)

i.e. the same solution as the Schwarzschild’s outer solution. The calculated fac-
tors A(r) and B(r) therefore apply both inside and outside the spherical mass of
radius R.

3.4 Black Holes

3.4.1 Astrophysics

The three most interesting celestial objects are white dwarfs, neutron stars and black
holes. Stars like the Sun are built up by compression of interstellar clouds, caused
by gravity. The contraction process comes to a standstill when the temperature in-
side becomes so great that nuclear fusion starts. By the nuclear fusion, hydrogen
is converted into helium. The further fate of a star depends on its initial mass: The
initial mass equal to
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• ≈0.05 solar mass ends up as a brown dwarf ;
• ≈1 solar mass and of volume comparable to that of the Earth grows into a red

giant and ends after an explosion (supernova) as a white dwarf ;
• ≈3 solar masses, with a corresponding radius of about 12 km, grows into a su-

pergiant and ends after explosion (supernova) as a neutron star;
• ≈30 solar masses grows into a supergiant and ends after explosion (supernova)

as a black hole.

A white dwarf is composed mostly of carbon and oxygen, produced by nuclear
fusion, that are left over when the nuclear solar fuel is consumed. A white dwarf
has a mass about that of our Sun and the diameter of the Earth, so a fairly compact
structure. However, a neutron star is much more compact, i.e. it has a factor of 109

higher density. It has roughly the mass of a white dwarf but a diameter of only
24 km! A black hole, on the other hand, has different masses, sizes, and densities,
as is further explained below.

The Schwarzschild’s solution (3.26)

ds2 =
(

1− rS

r

)
c2 dt2 −

(
1− rS

r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2)

applies only outside the considered spherical mass. This formula gives the tiny
spacetime interval ds which mass elements cover, moving from an event A to a
closely adjacent event B. The Schwarzschild’s radius is therefore only interesting
for very large masses or masses with sufficient density, where rS > R is the radius
of the spherical mass.

However, for the solar mass M� ≈ 2 · 1030 kg the Schwarzschild’s radius is

rS� ≈ 3 km,

i.e. it is much smaller than the solar radius r� ≈ 7 · 105 km, so our solution is valid
only outside the mass of the Sun! For the Earth with a mass of M⊕ ≈ 6 · 1024 kg we
even obtain a Schwarzschild’s radius of

rS⊕ ≈ 9 mm!
It seems that the Schwarzschild’s radius only plays a role for highly concentrated
matter. But that is not the case. Indeed, consider just the radius of a spherical mass
R = rS , that is, R = 2GM

c2 . The so-called Schwarzschild’s density ρS would in this
case be

ρS
def= M

4
3πr3

S

= M

4
3π( 2GM

c2 )3

= 3c6

32πG3M2
= 2.33 · 1071 ·M−2

[kg]
[

kg

cm3

]
.

The required density decreases inversely proportionally with the square of the mass!
If one wants to do a black hole from Earth’s mass, i.e. shrink the Earth to a radius
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of 9 mm, then the resulting body would have a density of 8.58 · 1022 kg/cm3. For
the Sun a density of approximately 8.6 · 1010 kg/cm3 would be necessary; that is,
86 million tons per cubic centimetre! So still the enormous density of the neutron
liquid1 is in a neutron star. In the centre of the Milky Way, there is a black hole with
a mass of 5.2 · 1036 kg, or 2.6 million solar masses, and in the centre of the Virgo
galaxy cluster, a black hole with the mass of 6 · 1039 kg (3 billion solar masses).

3.4.2 Further Details about “Black Holes”

A spherical mass of radius less than the Schwarzschild’s radius, R < rS , is called a
black hole. The name is explained as follows. The Schwarzschild’s solution (3.26)
for constant angles θ and ϕ, i.e. for dθ = dϕ = 0, with rS = 2GM

c2 , is

ds2 =
(

1− rS

r

)
c2 dt2 −

(
1− rS

r

)−1

dr2. (3.80)

For light, i.e. photons, one has ds2 = 0, so from (3.80) follows

c2 dt2 =
(

1− rS

r

)−2

dr2,

giving

c dt =±
(

1− rS

r

)−1

dr =± r

r − rS
dr,

which integrated yields

c

∫ t

t0

dt = ct − ct0 =
∫ r

r0

r

r − rS
dr =±

[
r + rS ln

r − rS

r0 − rS
− r0

]

and with c0
def= ct0 − r0 − rS ln(r0 − rS) finally

ct =±(r + rS ln(r − rS)+ c0
)
, (3.81)

where the constant c0 depends on the start time t0 and on the starting location R0,
and ct has the dimension of a length. The substance of this formula can be pictured
in the (ct − r)-half-plane, as shown in Fig. 3.1.

The light cones are to the right of the dividing line at r = rS upward open towards
the time axis, i.e. particles (including photons) in the picture fly only upwards. In
particular, even photons on the minus-sign trajectories seemingly not exceed the

1Neutron liquid consists predominantly of neutrons, and their average density is approximately
equal to that of atomic nuclei.
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Fig. 3.1 Schwarzschild’s
solution

dividing line r = rS , so can never arrive at the field with r < rS . This is particu-
larly recognised at the speed of the particles or photons, resulting from the above
equations in

dr

dt
=±

(
1− rS

r

)
c.

This velocity goes to zero as r goes to rS . For r < rS the light cone shows the future
in the direction r = 0. No particle or photon can escape from the field r < rS ! No
light can overstep the limit of rS ; the “black hole” is, in fact, “black”! For a particle
at rS as is in Fig. 3.1, the time t decreases, so runs backwards! It is obvious that for
this region, the time t is not very suitable. On the other hand, it is a fallacy that the
boundary r = rS cannot be exceeded from the outside because the formulas report
only the behaviour which would be seen by an observer. An observer, flying with
the particle, would normally exceed the limit r = rS because for him the speed in
the vicinity r = rS would not tend to zero, he would fly continuously through this
sphere with finite speed. This can be shown as follows:

Due to Newton’s theory, we arrive at the following context. Integrating the equa-
tion

m0a(t)=m0
dv

dt
=G

Mm0

r2

with respect to

a = dv

dt
= dv

dr

dr

dt
= v

dv

dr
,

one obtains
∫ v

0
ṽ dṽ = v2

2
=
∫ r

∞
a dr̃ =

∫ r

∞
GM

r̃2
dr̃ = GM

r
,
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or solving for the velocity

v =−
√

2GM

r
=−c

√
rS

r
. (3.82)

The mass m0 would pass the Schwarzschild’s spherical shell for r = rS and accord-
ing to (3.82) with the speed of light c, which is not possible according to the special
theory of relativity! For r < rS the velocity would even be greater than light’s! The
velocity equations have to be modified. What happens then? If one passes through
the Schwarzschild’s spherical shell in the direction r → 0, we will never be able to
learn from him what he experienced because neither he nor a signal from him to us
outside the Schwarzschild’s spherical shell will ever reach us. We only can analyse
theoretically what happens.

Within the Schwarzschild’s Radius From (3.82) for the proper time we have

dτ =−1

c

(
r

rS

)1/2

dr. (3.83)

From this we get the time τ needed when flying through the Schwarzschild’s spher-
ical shell to reach the singularity r = 0. It is

τS
def= −1

c

∫ 0

rS

(
r

rS

)1/2

dr = 2

3

rS

c
, (3.84)

therefore, a finite time.
If a particle is located to the left of the parting line r = rS , then the particle

flies left in the direction r → 0. Photons, starting left of the parting line cannot also
exceed this border. Therefore, no light (photon) is coming outward from inside the
sphere of radius rS , a “black hole” is given there. Further, it is interesting that an
ensemble of boundary trajectories (each characterized with a minus sign) proceeds
in the negative direction of time, thus decreasing time. If one starts, for instance, at
the point (t0 = 0, r = r0 < rS ) on a ‘minus-trajectory”, then one travels to the past!
The result, however, contains no logical contradiction because one cannot act from
the inside of the sphere with the radius rS on the outside: one only passively receives
signals, i.e. one can “look into the past”.

3.4.3 Singularities

The solution (3.26) has two singularities: a real singularity at r = 0 and an apparent
one at r = rS . The apparent singularity is a so-called coordinate singularity which
could have been avoided by a better coordinate choice. Such a favourable coordinate
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system would have been obtained, for example, if we had introduced a different
radial coordinate r∗ as follows:

r =
(

1+ rS

4r∗

)2

r∗.

Then

dr

dr∗
=
(

1− rS

4r∗

)(
1+ rS

4r∗

)
,

so

dr =
(

1− rS

4r∗

)(
1+ rS

4r∗

)
dr∗.

Used in (3.26) this yields

ds2 =
(

1− rS
4r∗

1+ rS
4r∗

)2

c2 dt2 −
(

1+ rS

4r∗

)4(
dr∗2 + r∗2(dθ2 + sin2 θ dϕ2)).

In these coordinates, in fact, only a singularity at r∗ = 0 exists!
The authenticity of the singularity at r = 0 can be seen by examining the invari-

ants. A function of coordinates is invariant under a transformation if it remains un-
changed applying the transformation to the coordinates. This is precisely the mark
of a true singularity, which does not depend on the randomly selected coordinate
system. Such invariants were already encountered in the investigation of electro-
magnetic fields and the Lorentz transformation, e.g.

−1

2
trace

(
F ∗

B,eFB,e

)= b2 − e2 = b′2 − e′2

and

−1

4
trace

(
F ∗

B,eFE,b

)= eᵀb= e′ᵀb′.

Such an invariant for our problem now is the so-called Kretschmann’s invariant,
which is defined with the aid of the modified symmetric Riemannian curvature ma-
trix

R∗ def= (I 4 ⊗G−1)R
as follows:

IK
def= trace

(
R∗R∗). (3.85)

Because the Ricci matrix RRic equals the zero matrix, it is unsuitable for an in-
variant. The newly defined matrix R∗ will now be derived step by step for the
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Schwarzschild’s metric. First, we have

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 m

r2h
0 0

m

r2h
0 0 0

0 0 0 0
0 0 0 0

mh

r2 0 0 0
0 − m

r2h
0 0

0 0 −rh 0
0 0 0 −rh sin2 θ

0 0 0 0
0 0 1

r
0

0 1
r

0 0
0 0 0 − sin θ cos θ

0 0 0 0
0 0 0 1

r
0 0 0 cot θ
0 1

r
cot θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

m
def= GM

c2
and h

def= 1− 2m

r
.

With the help of (2.165) R can be calculated. The result is

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 − 2m

r3h
0 0 2m

r3h
0 0 0

0 0 m
r

0 0 0 0 0

0 0 0 m sin2 θ
r

0 0 0 0

0 − 2mh

r3 0 0 2mh

r3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 m

r
0

0 0 0 0 0 0 0 m sin2 θ
r

0 0 mh

r3 0 0 0 0 0
0 0 0 0 0 0 − m

r3h
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 mh

r3 0 0 0 0
0 0 0 0 0 0 0 − m

r3h

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−m

r
0 0 0 0 0 0 0

0 0 0 0 −m sin2 θ
r

0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −m

r
0 0 0 0 0 0

0 0 0 0 0 −m sin2 θ
r

0 0

−mh

r3 0 0 0 0 0 0 0
0 m

r3h
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 − 2m sin2 θ
r

0 0 2m sin2 θ
r

0

0 0 0 0 −mh

r3 0 0 0
0 0 0 0 0 m

r3h
0 0

0 0 0 2m
r

0 0 − 2m
r

0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first, (4 + 2)th, (8 + 3)th and 16th row/column are zero rows/columns, as it

must always be in the matrix R. With R the following symmetric matrix is obtained

(
I 4 ⊗G−1)R

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 2m

r3 0 0 − 2m

r3 0 0 0
0 0 −m

r3 0 0 0 0 0
0 0 0 −m

r3 0 0 0 0

0 − 2m

r3 0 0 2m

r3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −m

r3 0
0 0 0 0 0 0 0 −m

r3

0 0 m

r3 0 0 0 0 0
0 0 0 0 0 0 m

r3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 m

r3 0 0 0 0
0 0 0 0 0 0 0 m

r3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
m

r3 0 0 0 0 0 0 0
0 0 0 0 m

r3 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 m

r3 0 0 0 0 0 0
0 0 0 0 0 m

r3 0 0

−m

r3 0 0 0 0 0 0 0
0 −m

r3 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2m

r3 0 0 − 2m

r3 0

0 0 0 0 −m

r3 0 0 0
0 0 0 0 0 −m

r3 0 0
0 0 0 − 2m

r3 0 0 2m

r3 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and finally the Kretschmann’s invariant is

IK = trace
(
R∗R∗)= 48

m2

r6
= 12

r2
S

r6
.

Hence, it is now quite apparent that the only real singularity occurs at r = 0!

Event Horizon Detector In [13], a possibility is given, how to determine if one
approaches the event horizon (the spherical shell of radius rS ) of a black hole or
even exceeds it. To this end, the authors give the invariant

I1 =−720M2(2M − r)

r9
,

which for r = 2M = rS is zero and outside the horizon is positive with a maximum
at r = 9M/4. An observer falling to the black hole can detect the presence of a
horizon by observation of I1. If the event horizon is crossed, it is too late for the
observer. But he may, if the maximum is exceeded, use it as a warning and quickly
initiate the trajectory reversal.

3.4.4 Eddington’s Coordinates

The coordinate singularity at r = rS of the Schwarzschild’s metric can be elimi-
nated, for example, by using the following coordinate transformation.

In (3.81), from the Schwarzschild’s solution we derived

ct =±(r + rS ln |r − rS | + c0
)
.
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If we define

r∗ def= rS ln(r − rS), (3.86)

we get from

dr∗

dr
= rS

r − rS

the differential

dr∗ = rS

r

r

r − rS
dr = rS

r

(
1

1− rS
r

)−1

dr. (3.87)

It looks like the term

−
(

1

1− rS
r

)−1

dr2

in the Schwarzschild’s metric, which was the reason for the coordinate singularity!
If (3.87) were squared, indeed dr2 would appear, but the parenthesis would have
too much negative power. If one installs, however, the term r∗ into a new time
coordinate t∗, then within the Schwarzschild’s metric it would again be multiplied
by r

r−rS
, i.e. have the “right” power! Now the new time coordinate is set as

ct∗ def= ct + r∗ = ct + rS ln |r − rS |. (3.88)

Differentiation with respect to r gives

c
dt∗

dr
= c

dt

dr
+ dr∗

dr
, (3.89)

so

c dt∗ = c dt + dr∗ = c dt + rS

r − rS
dr,

i.e.

c dt = c dt∗ − rS

r − rS
dr,

and squared

c2 dt2 = c2 dt∗2 − 2
rS

r − rS
c dt∗ dr +

(
rS

r − rS

)2

dr2.

Used in the Schwarzschild’s metric this yields

ds2 =
(

1− rS

r

)
c2 dt∗2 − 2

rS

r
c dt∗ dr + r − rS

r

(
rS

r − rS

)2

dr2 −
(

r

r − rS

)
dr2,
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Fig. 3.2 Eddington’s
solution

so finally,

ds2 = r − rS

r
c2 dt∗2 − 2

rS

r
c dt∗ dr − r + rS

r
dr2. (3.90)

When we remove the restriction dθ = dϕ = 0, we finally get the full Schwarzschild’s
metric in Eddington’s coordinates

ds2 = r − rS

r
c2 dt∗2 − 2

rS

r
c dt∗ dr − r + rS

r
dr2 − r2(dθ2 + sin2 θ dϕ2). (3.91)

This metric has, in fact, a singularity only at r = 0!
How will we see movements in the new (ct∗, r)-plane? For photons one has

ds2 = 0; so, if we divide (3.90) by c2 dt∗2, we receive

0= r − rS

r
− 2

rS

r

dr

c dt∗
− r + rS

r

(
dr

c dt∗

)2

.

This quadratic equation has the solutions

dr

c dt∗
= −rS ± r

r + rS
= r − rS

r + rS
and − 1, (3.92)

or

dr

dt∗
= −rS ± r

r + rS
c= r − rS

r + rS
c and − c. (3.93)

The first solution provides for r = rS the zero slope, i.e. a vertical line; for r < rS the
slope is negative, and it is positive for r > rS . The second solution in the (ct∗, r)-
plane is an inclined at 45◦ straight line. It shows that the velocity of an ingoing
photon is constant and equal to c. Overall, one obtains Fig. 3.2.
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3.5 Rotating Masses

3.5.1 Ansatz for the Metric Matrix G

From a non-rotating mass of radius R generated gravitation effect on the outside,
i.e. for r > R, is described by the Schwarzschild’s metric. A non-rigid rotating mass
bulges out along its equator, so it cannot be described by a Schwarzschild’s metric,
which assumes a symmetric spherical mass. A rotating mass has in addition to the
mass M also an angular momentum J , which is directly proportional to the angular
velocity ω. M and J are the only physical quantities for a rotating black hole that
are required for the physical description of the gravitational field and how powerful
the rotating mass is (there are possibly millions of solar masses in a black hole in
the centre of a galaxy)! The Nobel-prize laureate Chandrasekhar has expressed it as:

Rotating black holes are the most perfect macroscopic objects in the uni-
verse. And as the theory of general relativity provides a single, unique, two-
parameter solution for their description, they are also the simplest objects.

For the mathematical description, spatial polar coordinates r, θ and ϕ are se-
lected. The polar axis is the axis of rotation around which the body rotates with
constant angular velocity ω. The elements of the metric matrix G are allowed to
depend neither on the angle θ nor on time t . One can also use a priori, for reasons of
symmetry, some matrix elements equal to zero. Because if one takes a time reflection
t →−t , this also changes the direction of rotation ω = dϕ

dt
→−ω =− dϕ

dt
= d(−ϕ)

dt
.

But if we introduce two transformations t →−t and ϕ →−ϕ simultaneously, then
the gravitational field is not allowed to change at all, also the metric matrix G is
not changed. So that being the case, the matrix elements gtθ and gtr must be zero
because in the calculation of the metric here—with the indicated transformations—
dt dθ →−dt dθ and dt dr →−dt dr . And so one can start from the following the
metric matrix which must always be symmetric:

G=

⎛
⎜⎜⎝

gtt 0 0 gtϕ

0 grr grθ 0
0 grθ gθθ 0

gtϕ 0 0 gϕϕ

⎞
⎟⎟⎠ .

The symmetric 2×2-matrix in the centre of the matrix G can be brought to diagonal
form with the help of a similarity transformation so that, without loss of generality,
one may start with the symmetric matrix:

G=

⎛
⎜⎜⎝

gtt 0 0 gtϕ

0 grr 0 0
0 0 gθθ 0

gtϕ 0 0 gϕϕ

⎞
⎟⎟⎠ .
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3.5.2 Kerr’s Solution in Boyer–Lindquist Coordinates

Without derivation we here directly give as solution the so-called Kerr’s metric in
Boyer–Lindquist coordinates:

ds2 =
(

1− 2mr

ρ2

)
c2 dt2 + 4ma

r sin2 θ

ρ2
c dt dϕ − ρ2

�
dr2

−ρ2 dθ2 −
(

r2 + a2 + 2mr

r2
a2 sin2 θ

)
sin2 θ dϕ2, (3.94)

with

�
def= r2 − 2mr + a2,

ρ2 def= r2 + a2 cos2 θ,

m
def= MG

c2

and the angular momentum (spin) J per unit mass

a
def= J

m
.

As system parameters, in fact, only the two physical parameters occur: the modified
mass, m, and the angular momentum per unit mass, a! For J = 0, i.e. for a non-
rotating mass, one obtains, of course, the Schwarzschild’s solution.

A simpler form of the solution is obtained for M/r 
 1 and a/r 
 1, i.e. for
weak fields and slow rotation, namely

ds2 ∼=
(

1− 2m

r

)
c2 dt2 + 4J

r
sin2 θc dt dϕ −

(
1+ 2m

r

)
dr2

− r2(dθ2 + sin2 θ dϕ2).

3.5.3 The Lense–Thirring Effect

Two electric charges q1 and q2 of opposite polarity attract according to the
Coulomb’s law with the force

f electr =
1

4πε0

q1q2

r2
12

r12

r12
.
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Here the vector r12 ∈ R
3 shows from q1 to q2. Newton’s law of attraction between

two masses m1 and m2 has almost the same shape, namely

f mech =G
m1m2

r2
12

r12

r12
.

Going over in both laws from the action at a distance theory to the theory of con-
tiguous action, i.e. the field theory, with the electric field strength vector

ee
def= 1

4πε0

q1

r2
12

r12

r12

one can also write the electric force as

f electr = eeq2.

With the appropriate nomenclature for the mechanical parameters and the field
strength

em
def= G

m1

r2
12

r12

r12
,

one finally obtains

f mech = emm2.

If an electric charge is moving, then there is in addition a magnetic field b, which
depends on the speed and the load of the charge. The magnetic field b acts on the
moving charge q having speed v, generating, together with the electric field e, the
force:

f = q

(
e+ 1

c
v× b

)
.

The question now is: Does a moving mass have a similar additional effect to
another moving mass? This is indeed the case, for example, the precession of gyro-
scopes in the vicinity of large rotating masses like the Earth. This first was treated
by Föppl [11]. The Austrian physicists Lense and Thirring calculated exactly this
effect from the gravitational equations of Einstein in 1918.

One speaks in this context of a so-called gravitomagnetic field in analogy with
classical electromagnetism. To this end, we first define with the help of the angular
momentum J of a spherical rotating mass the field

h(r)
def= −2

J × r

r3
=−4GMR2

5c3

ω× r

r3
, (3.95)

where ω is the angular velocity of the rotating mass M with the radius R, and r > R

is the distance from the centre of mass. Next we define the gravitomagnetic field:

h̄
def= ∇× h= 2

J − 3(rᵀJ )r

r3
= 2GMR2

5c2

3(ωᵀr)r −ωr2

r5
. (3.96)
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The angular momentum here thus plays the same role as the magnetic dipole mo-
ment in electrodynamics, and the vector h plays the same role as the vector potential.
In summary, we obtain an analogue of the Lorentz force, namely

m
d2x

dt2
=m

(
emech + dx

dt
× h̄

)
. (3.97)

In the case of stars orbiting close to a spinning, supermassive black hole, the
Lense–Thirring effect should cause the star’s orbital plane to precess about the black
hole’s spin axis. This effect should be detectable within the next few years via as-
trometric monitoring of stars at the centre of the Milky Way galaxy.

3.6 Summary of Results for the Gravitation of a Spherical Mass

The solution of Einstein’s field equation for the outside of a spherically symmetric,
uniform, time-invariant mass distribution is this Schwarzschild’s metric (3.26):

ds2 =
(

1− 2GM

c2r

)
c2 dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2),

and the so-called Schwarzschild’s radius is (3.28):

rS
def= 2GM

c2
.

The Schwarzschild’s metric in matrix form is (3.25):

ds2 = d�xᵀ Gd�x = d�xᵀ

⎛
⎜⎜⎝

1− rS
r

0 0 0
0 −(1− rS

r
)−1 0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎠d�x,

with

d�x def=

⎛
⎜⎜⎝

c dt

dr

dθ

dϕ

⎞
⎟⎟⎠.

This changes the length (3.30) and time (3.31) according to:

dR =
(

1− 2GM

c2r

)−1/2

dr ,
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and

dτ =
(

1− 2GM

c2r

)1/2

dt .

For the redshift of spectral lines the frequency ratio is obtained (3.32):

νR

νT

=
(1− 2GM

c2rT

1− 2GM

c2rR

)1/2

.

The necessary Schwarzschild’s density ρS for the existence of a black hole is

ρS
def= M

4
3πr3

S

= M

4
3π( 2GM

c2 )3

= 3c6

32πG3M2
= 2.33 · 1071 ·M−2

[kg]
[

kg

cm3

]
.

The Eddington’s coordinates for a black hole are given with the new time coordinate
(3.88)

ct∗ def= ct + rS ln |r − rS |,
so

c dt∗ = c dt + rS

r − rS
dr .

The Schwarzschild’s metric in Eddington’s coordinates is (3.91):

ds2 = r − rS

r
c2 dt∗2−2

rS

r
c dt∗ dr− r + rS

r
dr2−r2(dθ2+sin2 θ dϕ2).

The Lense–Thirring effect for a rotating mass generates a gravitomagnetic field in
analogy with classical electromagnetism. With the help of the angular momentum
J of a spherical rotating mass, the field is (3.95):

h(r)
def= −2

J × r

r3
=−4GMR2

5c3

ω× r

r3
,

where ω is the angular velocity of the rotating mass M with the radius R, and r > R

is the distance from the centre of mass. Then the gravitomagnetic field is defined as
(3.96):

h̄
def= ∇× h= 2

J − 3(rᵀJ )r

r3
= 2GMR2

5c2

3(ωᵀr)r −ωr2

r5
.
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An analogue of the Lorentz force is obtained (3.97):

m
d2x

dt2
=m

(
emech + dx

dt
× h̄

)
.

3.7 Concluding Remark

In the theory of Special Relativity, the effects are most clearly visible when the
masses move quickly; however, in the theory of General Relativity, the effects are
the greatest when the mass densities are very large and thus the spatial curvature
is very pronounced.



Appendix A
Vectors and Matrices

A.1 Vectors and Matrices

If the speed of a body is given, then its size and the direction need to be identified.
For the description of such a directional quantity, vectors are used. These vectors
in the three dimensional space require three components which, e.g. in a column
vector, are summarized as follows:

v =
⎛
⎝

v1
v2
v3

⎞
⎠ . (A.1)

A second possibility is to present a transposed column vector

vᵀ = (v1 v2 v3
)
, (A.2)

a row vector.
In another way, we get the concept of the vector when the following purely math-

ematical problem is considered: Find the solutions of the three coupled equations
with four unknowns x1, x2, x3 and x4:

a11x1 + a12x2 + a13x3 + a14x4 = y1, (A.3)

a21x1 + a22x2 + a23x3 + a24x4 = y2, (A.4)

a31x1 + a32x2 + a33x3 + a34x4 = y3. (A.5)

The four unknowns are summarized in the vector

x
def=

⎛
⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎠ , (A.6)
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the variables y1, y2 and y3 form the vector

y
def=
⎛
⎝

y1
y2
y3

⎞
⎠ , (A.7)

and the coefficients aij are included into the matrix

A
def=
⎛
⎝

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎞
⎠ . (A.8)

With the two vectors x and y and the matrix A, the system of equations can com-
pactly be written as

Ax = y. (A.9)

If the two systems of equations

a11x1 + a12x2 = y1, (A.10)

a21x1 + a22x2 = y2 (A.11)

and

a11z1 + a12z2 = v1, (A.12)

a21z1 + a22z2 = v2 (A.13)

are added, one obtains

a11(x1 + z1)+ a12(x2 + z2)= (y1 + v1), (A.14)

a21(x1 + z1)+ a22(x2 + z2)= (y2 + v2). (A.15)

With the aid of vectors and matrices, the two systems of equations can be written as

Ax = y and Az= v. (A.16)

Adding the two equations in (A.16) is formally accomplished as

Ax +Az=A(x + z)= y + v. (A.17)

A comparison of (A.17) with (A.14) and (A.15) suggests the following definition of
the addition of vectors:
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Definition:

y + v =

⎛
⎜⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

v1
v2
...

vn

⎞
⎟⎟⎟⎠

def=

⎛
⎜⎜⎜⎝

y1 + v1
y2 + v2

...

yn + vn

⎞
⎟⎟⎟⎠ . (A.18)

Accordingly, the product of a vector and a real or complex number c is defined by

Definition:

c · x def=
⎛
⎜⎝

c · x1
...

c · xn

⎞
⎟⎠ . (A.19)

A.2 Matrices

A.2.1 Types of Matrices

In the first section, the concept of the matrix has been introduced.

Definition: If a matrix A has n rows and m columns, it is called an n×m matrix
and denoted A ∈R

n×m.

Definition: If A (with the elements aij ) is an n×m matrix, then the transpose of
A, denoted by Aᵀ, is the m× n matrix with the elements a

ᵀ
ij = aji .

So the matrix (A.8) has the matrix transpose

Aᵀ =

⎛
⎜⎜⎝

a11 a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 a34

⎞
⎟⎟⎠ . (A.20)

In a square matrix, one has n=m; and in an n×n diagonal matrix, all the elements
aij , i �= j , outside the main diagonal are equal to zero. An identity matrix I is a
diagonal matrix where all elements on the main diagonal are equal to one. An r × r

identity matrix is denoted by I r . If a transposed matrix Aᵀ is equal to the original
matrix A, such a matrix is called symmetric. In this case, aij = aji .
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A.2.2 Matrix Operations

If the two systems of equations

a11x1 + a12x2 + · · · + a1mxm = y1,

a21x1 + a22x2 + · · · + a2mxm = y2,

...

an1x1 + an2x2 + · · · + anmxm = yn

and

b11x1 + b12x2 + · · · + b1mxm = z1,

b21x1 + b22x2 + · · · + b2mxm = z2,

...

bn1x1 + bn2x2 + · · · + bnmxm = zn

are added, one obtains

(a11 + b11)x1 + (a12 + b12)x2 + · · · + (a1m + b1m)xm = (y1 + z1),

(a21 + b21)x1 + (a22 + b22)x2 + · · · + (a2m + b2m)xm = (y2 + z2),

...

(an1 + bn1)x1 + (an2 + bn2)x2 + · · · + (anm + bnm)xm = (yn + zn),

or, in vector–matrix notation, with

Ax = y and Bx = z,

the same can also be written symbolically as

(A+B)x = y + z. (A.21)

A comparison of the last equations suggests the following definition:

Definition: The sum of two n×m matrices A and B is defined by

A+B =
⎛
⎜⎝

a11 · · · a1m

...
...

an1 · · · anm

⎞
⎟⎠+

⎛
⎜⎝

b11 · · · b1m

...
...

bn1 · · · bnm

⎞
⎟⎠

def=
⎛
⎜⎝

(a11 + b11) · · · (a1m + b1m)
...

...

(an1 + bn1) · · · (anm + bnm)

⎞
⎟⎠ . (A.22)
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The sum of two matrices can only be formed when both matrices have the same
number of rows and the same number of columns.

If the relations

y =Ax and x =Bz (A.23)

are given, what is the connection between the two vectors y and z? One may write

a11x1 + a12x2 + · · · + a1mxm = y1,

a21x1 + a22x2 + · · · + a2mxm = y2,

...

an1x1 + an2x2 + · · · + anmxm = yn

and

b11z1 + b12z2 + · · · + b1�z� = x1,

b21z1 + b22z2 + · · · + b2�z� = x2,

...

bm1z1 + bm2z2 + · · · + bm�z� = xm,

then one obtains, by inserting the xi ’s from the latter system of equations into the
former system,

a11(b11z1 + · · · + b1�z�)+ · · · + a1m(bm1z1 + · · · + bm�z�) = y1,

a21(b11z1 + · · · + b1�z�)+ · · · + a2m(bm1z1 + · · · + bm�z�) = y2,

...

an1(b11z1 + · · · + b1�z�)+ · · · + anm(bm1z1 + · · · + bm�z�) = yn.

Combining the terms with zi , we obtain

(a11b11 + · · · + a1mbm1)z1 + · · · + (a11b1� + · · · + a1mbm�)z� = y1,

(a21b11 + · · · + a2mbm1)z1 + · · · + (a21b1� + · · · + a2mbm�)z� = y2,

...

(an1b11 + · · · + anmbm1)z1 + · · · + (an1b1� + · · · + anmbm�)z� = yn.

If, on the other hand, we formally insert the right-hand side of (A.23) into the left
equation, we obtain

y =ABz
def= Cz. (A.24)
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Definition: The product of an n×m matrix A with an m× � matrix B is the
n× � matrix C with the matrix elements

cij =
m∑

k=1

aikbkj , (A.25)

for i = 1,2, . . . , n and j = 1,2, . . . , �.

The element cij of the product matrix C is obtained by multiplying the elements of
the ith row of the first matrix A with the elements of the j th column of the second
matrix B and adding these products. It follows that the number of columns of the
first matrix must be equal to the number of rows of the second matrix, so that the
matrix multiplication can be executed at all. The product matrix has as many rows
as the first matrix and as many columns as the second matrix. It follows that, in
general, AB �=BA.

We get another matrix operation through the following problem. In

Ax = b, (A.26)

the 3× 3 matrix A and the 3× 1 vector b shall be given. Wanted is the 3× 1 vector
x that satisfies the system of equations (A.26). Written out this is the linear system
of equations:

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3.

Denoting the determinant of the square matrix A by det(A), the solutions are ob-
tained by using Cramer’s rule

x1 = 1

det(A)
det

⎛
⎝

b1 a12 a13
b2 a22 a23
b3 a32 a33

⎞
⎠ , (A.27)

x2 = 1

det(A)
det

⎛
⎝

a11 b1 a13
a21 b2 a23
a31 b3 a33

⎞
⎠ , (A.28)

x3 = 1

det(A)
det

⎛
⎝

a11 a12 b1
a21 a22 b2
a31 a32 b3

⎞
⎠ . (A.29)
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If we develop in (A.27) the determinant in the numerator with respect to the first
column, we obtain

x1 = 1

det(A)

(
b1 det

(
a22 a23
a32 a33

)
− b2 det

(
a12 a13
a32 a33

)
+ b3 det

(
a12 a13
a22 a23

))

= 1

det(A)
(b1A11 + b2A21 + b3A31)

= 1

det(A)

(
A11 A21 A31

)
b. (A.30)

Accordingly, we obtain from (A.28) and (A.29)

x2 = 1

det(A)

(
A12 A22 A32

)
b (A.31)

and

x3 = 1

det(A)

(
A13 A23 A33

)
b. (A.32)

Here the adjuncts Aij are the determinants which are obtained when the ith row
and the j th column of the matrix A are removed, and from the remaining matrix the
determinant is computed and this is multiplied by the factor (−1)i+j .

Definition: The adjuncts are summarized in the adjoint matrix

adj(A)
def=
⎛
⎝

A11 A21 A31
A12 A22 A32
A13 A23 A33

⎞
⎠ . (A.33)

With this matrix, the three equations (A.30) to (A.32) can be written as one equation

x = adj(A)

det(A)
b. (A.34)

Definition: The n× n matrix (whenever det(A) �= 0)

A−1 def= adj(A)

det(A)
(A.35)

is called the inverse matrix of the square n× n matrix A.

For a matrix product, the inverse matrix is obtained as

(AB)−1 =B−1A−1 (A.36)

because

(AB)
(
B−1A−1)=A

(
BB−1)A−1 =AA−1 = I .
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A.2.3 Block Matrices

Often large matrices have a certain structure, e.g. when one or more sub-arrays are
zero matrices. On the other hand, one can make a block matrix from each matrix
by drawing vertical and horizontal lines. For a system of equations, one then, for
example, obtains

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

y1

y2

...

ym

⎞
⎟⎟⎟⎟⎟⎠

. (A.37)

The Aij ’s are called sub-matrices and the vectors xi and yi sub-vectors. For two
appropriately partitioned block matrices, the product may be obtained by simply
carrying out the multiplication as if the sub-matrices were themselves elements:

(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)
=
(

A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

)
.

In particular, the subdivision into blocks of matrices is of benefit for the calcula-
tion of the inverse matrix. Looking at the system of equations

Ax1 +Bx2 = y1, (A.38)

Cx1 +Dx2 = y2, (A.39)

or combined into the form
(

A B

C D

)(
x1

x2

)
=
(

y1

y2

)
, (A.40)

the inverse of the matrix

M =
(

A B

C D

)
(A.41)

can be expressed by more easily calculated inverse sub-matrices. When the matrix
A is invertible, one gets from (A.38)

x1 =A−1y1 −A−1Bx2. (A.42)

This, used in (A.39), yields

y2 =CA−1y1 −
(
CA−1B −D

)
x2 (A.43)

and, solving for x2,

x2 =
(
CA−1B −D

)−1(
CA−1y1 − y2

)
. (A.44)
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Equation (A.44) used in (A.42) yields

x1 =
[
A−1 −A−1B

(
CA−1B −D

)−1
CA−1]y1 +A−1B

(
CA−1B −D

)−1
y2.

(A.45)

Thus, the solution of the system of equations (A.40) is obtained, namely

(
x1

x2

)
=M−1

(
y1

y2

)
(A.46)

with

M−1 =
(

A−1 −A−1B(CA−1B −D)−1CA−1 A−1B(CA−1B −D)−1

(CA−1B −D)−1CA−1 −(CA−1B −D)−1

)
,

(A.47)

and the inverse matrix of M can be calculated by using the inverse matrices of the

smaller sub-matrices A and (CA−1B−D). If the sub-matrix D is invertible, (A.39)

can be solved for x2, and then, in a similar way, also the inverse matrix of M can

be calculated. One then obtains a different form of the inverted matrix, namely

M−1 =
( −(BD−1C −A)−1 (BD−1C −A)−1BD−1

D−1C(BD−1C −A)−1 D−1 −D−1C(BD−1C −A)−1BD−1

)
.

(A.48)

So there are two different results available for the same matrix. It follows that the

corresponding sub-matrices must be equal. From the comparison of the northwest-

ern blocks, if D is replaced by −D, the known matrix-inversion lemma follows:

(
A+BD−1C

)−1 =A−1 −A−1B
(
CA−1B +D

)−1
CA−1. (A.49)

A special case occurs when we have a block-triangular matrix, for example, if

C =O . Then we obtain

(
A B

O D

)−1

=
(

A−1 −A−1BD−1

O D−1

)
. (A.50)



154 A Vectors and Matrices

A.3 The Kronecker-Product

A.3.1 Definitions

Definition: The Kronecker-product of two matrices A ∈ R
n×m and B ∈ R

p×q

is a matrix C ∈R
np×mq , denoted as

A⊗B =C.

Here, the sub-matrix Cij ∈ R
p×q , for i = 1 to n and j = 1 to m, is

defined by

Cij
def= aijB,

so that, overall, the matrix C has the form

C =

⎛
⎜⎜⎜⎝

a11B a12B . . . a1mB

a21B a22B . . . a2mB
...

...
. . .

...

an1B an2B . . . anmB

⎞
⎟⎟⎟⎠ .

The matrix elements of the product matrix C can be directly calculated using the
following formula

ci,j = a� i−1
p
�+1,� j−1

q
�+1 · bi−� i−1

p
�p,j−� j−1

q
�q,

where �x� is the integer part of x.

Definition: If a matrix A is composed of the m columns ai ∈C
n,

A= (a1 a2 . . . am

)
,

the vec-operator is defined as follows:

vec(A)
def=

⎛
⎜⎜⎜⎝

a1
a2
...

am

⎞
⎟⎟⎟⎠ ∈C

nm.

A.3.2 Some Theorems

The following is very interesting:

Lemma: vec(AXB)= (Bᵀ ⊗A
)
vec(X). (A.51)
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Proof Let B ∈C
n×m, then one has

AXB = (Ax1 Ax2 . . . Axn

)
B

= (Ax1 Ax2 . . . Axn

) (
b1 b2 . . . bm

)

=
(

(b11Ax1 + b21Ax2 + · · · + bn1Axn) . . .

(b1mAx1 + b2mAx2 + · · · + bnmAxn)

)
.

Applying the vec-operator to the last equation, we obtain

vec(AXB) =
⎛
⎜⎝

(b11Ax1 + b21Ax2 + · · · + bn1Axn)
...

(b1mAx1 + b2mAx2 + · · · + bnmAxn)

⎞
⎟⎠

=
⎛
⎜⎝

b11A . . . bn1A
...

. . .
...

b1mA . . . bnmA

⎞
⎟⎠vec(X)

= (Bᵀ ⊗A
)
vec(X). �

As corollaries of this lemma, we get the following results:

vec(AX)= (I ⊗A)vec(X). (A.52)

Proof Set B = I in the lemma. �

vec(XB)= (Bᵀ ⊗ I
)
vec(X). (A.53)

Proof Set A= I in the lemma. �

vec
(
baᵀ)= (a⊗ b). (A.54)

Proof Simply write vec(baᵀ)= vec(b1aᵀ)= (a⊗ b)vec(1)= a⊗ b. �
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A.3.3 The Permutation Matrix Up×q

Definition: The permutation matrix

Up×q
def=

p∑
i

q∑
k

E
p×q
ik ⊗E

q×p
ki ∈R

pq×qp (A.55)

has just one 1 in each column and each row. In the formation of
matrix

E
p×q
ik

def= eie
ᵀ
k , (A.56)

ei is the ith column of Ip and ek is the kth column of I q . How-
ever, only the matrix element Eik = 1; the other matrix elements are
zeros.

For example, the permutation matrix U4×4 ∈R
16×16—often used in this book—

has the form

U4×4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.57)

Permutation matrices have the following characteristics [4]:

U
ᵀ
p×q =Uq×p, (A.58)

U−1
p×q =Uq×p, (A.59)

Up×1 =U1×p = Ip, (A.60)

Un×n =U
ᵀ
n×n =U−1

n×n. (A.61)
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Permutation matrices are mainly used to change the order of the factors in a
Kronecker-product because

U s×p(B ⊗A)Uq×t =A⊗B if A ∈R
p×q and B ∈R

s×t . (A.62)

A.3.4 More Properties of the Kronecker-Product

The following important properties are listed also without proof (see [4]):

(A⊗B)⊗C =A⊗ (B ⊗C), (A.63)

(A⊗B)ᵀ =Aᵀ ⊗Bᵀ, (A.64)

(A⊗B)(C ⊗D)=AC ⊗BD. (A.65)

A.4 Derivatives of Vectors/Matrices with Respect to
Vectors/Matrices

A.4.1 Definitions

Definition: The derivative of a matrix A ∈ R
n×m with respect to a matrix M ∈

R
r×s is defined as follows:

∂A

∂M

def=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂A
∂M11

∂A
∂M12

· · · ∂A
∂M1s

∂A
∂M21

∂A
∂M22

· · · ∂A
∂M2s

...
...

. . .
...

∂A
∂Mr1

∂A
∂Mr2

· · · ∂A
∂Mrs

⎞
⎟⎟⎟⎟⎟⎟⎠
∈R

nr×ms. (A.66)

With the r × s-operator

∂

∂M

def=

⎛
⎜⎜⎜⎜⎝

∂
∂M11

∂
∂M12

· · · ∂
∂M1s

∂
∂M21

∂
∂M22

· · · ∂
∂M2s

...
...

. . .
...

∂
∂Mr1

∂
∂Mr2

· · · ∂
∂Mrs

⎞
⎟⎟⎟⎟⎠

(A.67)

the definition of the derivative (A.66) is also written as

∂A

∂M

def= ∂

∂M
⊗A. (A.68)
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Thus one can show that

(
∂A

∂M

)ᵀ
=
(

∂

∂M
⊗A

)ᵀ
=
((

∂

∂M

)ᵀ
⊗Aᵀ

)
= ∂Aᵀ

∂Mᵀ . (A.69)

For the derivatives of vectors with respect to vectors one has:

∂f ᵀ

∂p

def= ∂

∂p
⊗ f ᵀ =

⎛
⎜⎜⎜⎜⎜⎝

∂f ᵀ
∂p1
∂f ᵀ
∂p2
...

∂f ᵀ
∂pr

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

∂f1
∂p1

∂f2
∂p1

· · · ∂fn

∂p1
∂f1
∂p2

∂f2
∂p2

· · · ∂fn

∂M2
...

...
. . .

...
∂f1
∂pr

∂f2
∂pr

· · · ∂fn

∂ps

⎞
⎟⎟⎟⎟⎟⎠
∈R

r×n (A.70)

and

∂f

∂pᵀ
def= ∂

∂pᵀ ⊗ f =
(

∂

∂p
⊗ f ᵀ

)ᵀ
=
(

∂f ᵀ

∂p

)ᵀ
∈R

n×r . (A.71)

A.4.2 Product Rule

Let A=A(α) and B =B(α). Then we obviously have

∂(AB)

∂α
= ∂A

∂α
B +A

∂B

∂α
. (A.72)

In addition, (A.66) can be rewritten as:

∂A

∂M
=
∑
i,k

Es×t
ik ⊗ ∂A

∂mik

, M ∈R
s×t . (A.73)

Using (A.72) and (A.73), this product rule can be derived:

∂(AB)

∂M
=
∑
i,k

Es×t
ik ⊗ ∂(AB)

∂mik

=
∑
i,k

Es×t
ik ⊗

(
∂A

∂mik

B +A
∂B

∂mik

)

=
(

∂

∂M
⊗A

)
(I t ⊗B)+ (I s ⊗A)

(
∂

∂M
⊗B

)

= ∂A

∂M
(I t ⊗B)+ (I s ⊗A)

∂B

∂M
. (A.74)
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A.4.3 Chain Rule

When a matrix A ∈ R
n×m is a function of a matrix B ∈ R

k×� which is again a
function of a matrix M ∈R

r×s , then the chain rule is valid [4]:

∂

∂M
A
(
B(M)

)=
(

I r ⊗ ∂A

∂(vec(Bᵀ))ᵀ

)(
∂vec(Bᵀ)

∂M
⊗ Im

)

=
(

∂(vec(B))ᵀ

∂M
⊗ In

)(
I s ⊗ ∂A

∂vec(B)

)
. (A.75)

A special case of this is

dA(x(t))

dt
= ∂A

∂xᵀ

(
dx

dt
⊗ Im

)
=
(

dxᵀ

dt
⊗ In

)
∂A

∂x
∈R

n×m. (A.76)

A.5 Differentiation with Respect to Time

A.5.1 Differentiation of a Function with Respect to Time

Suppose a function a that depends on the three space variables x1, x2 and x3 is given.
The local space variables themselves are, in turn, dependent on the time parameter t .
So it is

a = a
(
x(t)

)
, (A.77)

if the three space variables are summarized in the vector x.
We want to find the velocity

ȧ = da

dt
. (A.78)

To determine this velocity, we first define the total difference

�a
def= ∂a

∂x1
�x1 + ∂a

∂x2
�x2 + ∂a

∂x3
�x3. (A.79)

After division by �t , in the limit �t → 0, one has

ȧ = da

dt
= lim�t→0

�a

�t
= ∂a

∂x1
ẋ1 + ∂a

∂x2
ẋ2 + ∂a

∂x3
ẋ3. (A.80)

The right-hand side of this equation can be presented by the scalar product of the
column vectors ẋ and ∂a

∂x in two ways, namely

ȧ = ẋᵀ ∂a

∂x
= ∂a

∂xᵀ ẋ. (A.81)
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A.5.2 Differentiation of a Vector with Respect to Time

If two functions a1 and a2 are given, they have the same dependence on time t as
a(t) in (A.77), and are summarized in the column vector

a
def=
(

a1(x(t))

a2(x(t))

)
, (A.82)

we obtain initially for the derivative with respect to time using (A.81)

ȧ =
(

ȧ1
ȧ2

)
=
(

ẋᵀ ∂a1
∂x

ẋᵀ ∂a2
∂x

)
=
(

∂a1
∂xᵀ ẋ
∂a2
∂xᵀ ẋ

)
. (A.83)

The next-to-last vector in (A.83) can be decomposed as follows:

ȧ =
(

ẋᵀ ∂a1
∂x

ẋᵀ ∂a2
∂x

)
=
(

ẋᵀ o
ᵀ
3

o
ᵀ
3 ẋᵀ

)(
∂a1
∂x
∂a2
∂x

)
= (I 2 ⊗ ẋᵀ)

(
a⊗ ∂

∂x

)
. (A.84)

Computing the last Kronecker-product, we would formally get ai
∂
∂x which, of

course, should be understood as ∂ai

∂x . With the help of the permutation matrix Uα×β

and the exchange rule (A.62)

(A⊗B)=U s×p(B ⊗A)Uq×t if A ∈R
p×q and B ∈R

s×t ,

in the appendix, the last product in (A.84) can be written

ȧ = [U1×2︸ ︷︷ ︸
I 2

(
ẋᵀ ⊗ I 2

)
U2×r

][
U r×2

︸ ︷︷ ︸
I 2r

(
∂

∂x
⊗ a

)

︸ ︷︷ ︸
∂a
∂x

U1×1︸ ︷︷ ︸
1

]
= (ẋᵀ ⊗ I 2

) ∂a

∂x
. (A.85)

For the second form in (A.83), one obtains

ȧ =
(

∂a1
∂xᵀ ẋ
∂a2
∂xᵀ ẋ

)
=
(

a⊗ ∂

∂x

)
ẋ =

[
U1×2︸ ︷︷ ︸

I 2

(
∂

∂xᵀ ⊗ a

)
U1×r︸ ︷︷ ︸

I r

]
ẋ = ∂a

∂xᵀ ẋ, (A.86)

so that combined, these two possible representations are written as

ȧ = (ẋᵀ ⊗ I 2
) ∂a

∂x
= ∂a

∂xᵀ ẋ. (A.87)
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A.5.3 Differentiation of a 2 × 3-Matrix with Respect to Time

For the derivative of a 2× 3-matrix with respect to time, with the above results, one
obtains

Ȧ=
(

ȧ11 ȧ12 ȧ13
ȧ21 ȧ22 ȧ23

)
=
(

ẋᵀ ∂a11
∂x ẋᵀ ∂a12

∂x ẋᵀ ∂a13
∂x

ẋᵀ ∂a21
∂x ẋᵀ ∂a22

∂x ẋᵀ ∂a23
∂x

)

=
(

ẋᵀ o
ᵀ
3

o
ᵀ
3 ẋᵀ

)(
A⊗ ∂

∂x

)
= (I 2 ⊗ ẋᵀ)

(
A⊗ ∂

∂x

)

= [U1×2︸ ︷︷ ︸
I 2

(
ẋᵀ ⊗ I 2

)
U2×r

][
U r×2

︸ ︷︷ ︸
I 2r

(
∂

∂x
⊗A

)

︸ ︷︷ ︸
∂A
∂x

U3×1︸ ︷︷ ︸
I 3

]
= (ẋᵀ ⊗ I 2

)∂A

∂x
, (A.88)

or, with the second representation in (A.81) for the ȧij ,

Ȧ=
(

∂a11
∂xᵀ ẋ ∂a12

∂xᵀ ẋ ∂a13
∂xᵀ ẋ

∂a21
∂xᵀ ẋ ∂a22

∂xᵀ ẋ ∂a23
∂xᵀ ẋ

)
=
(

A⊗ ∂

∂xᵀ

)⎛
⎝

ẋ o o

o ẋ o

o o ẋ

⎞
⎠

=
[
U1×2︸ ︷︷ ︸

I 2

(
∂

∂xᵀ ⊗A

)

︸ ︷︷ ︸
∂A
∂xᵀ

U3×r

][
U r×3

︸ ︷︷ ︸
I 3r

(ẋ ⊗ I 3)U3×1︸ ︷︷ ︸
I 3

]= ∂A

∂xᵀ (ẋ ⊗ I 3). (A.89)

Here the Kronecker-product is also present.

A.5.4 Differentiation of an n × m-Matrix with Respect to Time

In general, one gets for a matrix A ∈R
n×m and a vector x ∈R

r

Ȧ= (ẋᵀ ⊗ In

)∂A

∂x

and= ∂A

∂xᵀ (ẋ ⊗ Im) ∈R
n×m. (A.90)

The derivation is given below without any comment.

Ȧ=
⎛
⎜⎝

ẋᵀ . . . O
...

. . .
...

O . . . ẋᵀ

⎞
⎟⎠
(

A⊗ ∂

∂x

)
= (In ⊗ ẋᵀ)

(
A⊗ ∂

∂x

)

= [U1×n︸ ︷︷ ︸
In

(
ẋᵀ ⊗ In

)
Un×r

][
U r×n

︸ ︷︷ ︸
Inr

(
∂

∂x
⊗A

)

︸ ︷︷ ︸
∂A
∂x

Um×1︸ ︷︷ ︸
Im

]
= (ẋᵀ ⊗ In

)∂A

∂x
.
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Ȧ=
(

A⊗ ∂

∂xᵀ

)⎛⎜⎝
ẋ . . . O
...

. . .
...

O . . . ẋ

⎞
⎟⎠=

(
A⊗ ∂

∂xᵀ

)
(In ⊗ ẋ)

=
[
U1×n︸ ︷︷ ︸

In

(
∂

∂xᵀ ⊗A

)

︸ ︷︷ ︸
∂A
∂xᵀ

Um×r

][
U r×m

︸ ︷︷ ︸
Imr

(ẋ ⊗ Im)Um×1
]= ∂A

∂xᵀ (ẋ ⊗ In).

A.6 Supplements to Differentiation with Respect to a Matrix

For the derivative of a 4× 4 matrix with respect to itself, one has

∂M

∂M
= Ū4×4, (A.91)

where Ū4×4 is defined by

Ū4×4
def=

4∑
i

4∑
k

Eik ⊗Eik

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.92)

This fact can be easily made clear just by the definition of the differentiation of a ma-
trix with respect to a matrix. The result is more complex when the matrix M =Mᵀ
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is symmetric because then

∂M

∂M
= Ū4×4 +U4×4 −

4∑
i

Eii ⊗Eii

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.93)



Appendix B
Some Differential Geometry

From a sheet of letter paper, one can form a cylinder or a cone, but it is impossible
to obtain a surface element of a sphere without folding, stretching or cutting. The
reason lies in the geometry of the spherical surface: No part of such a surface can
be isometrically mapped onto the plane.

B.1 Curvature of a Curved Line in Three Dimensions

In a plane, the tangent vector remains constant when one moves on it: the plane has
no curvature. The same is true for a straight line when the tangent vector coincides
with the line. If a line in a neighbourhood of one of its points is not a straight line, it
is called a curved line. The same is valid for a curved surface. We consider curves in
the three-dimensional space with the position vector x(q) of points parametrized by
the length q . The direction of a curve C at the point x(q) is given by the normalized
tangent vector

t(q)
def= x′(q)

‖x′(q)‖ ,

with x′(q)
def= ∂x(q)

∂q
. Passing through a curve from a starting point x(q0) to an end-

point x(q) does not change the tangent vector t in a straight line, the tip of the
tangent vector does not move, thus describing a curve of length 0. If the curve is
curved, then the tip of the tangent vector describes an arc of length not equal to
zero. As arc length we call the integral over a curved arc with endpoints q0 and q

(q > q0):
∫ q

q0

+
√

x′21 + x′22 + x′23 dq =
∫ q

q0

+√
x′ᵀx′ dq =

∫ q

q0

∥∥x′∥∥dq. (B.1)

This formula arises as follows: Suppose the interval [q0, q] is divided by the points
q0 < q1 < · · · < qn = q , then the length σn of the inscribed polygon in the curve
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arch is

σn =
n∑

k=0

√[
x1(qk)− x1(qk+1)

]2 + [x2(qk)− x2(qk+1)
]2 + [x3(qk)− x3(qk+1)

]2
.

(B.2)
By the mean value theorem of differential calculus, for every smooth curve between
qk and qk+1 there exists a point q

(i)
k such that

xi(qk)− xi(qk+1)= x′i
(
q

(i)
k

)
(qk+1 − qk) (B.3)

for i = 1,2 and 3. Inserting (B.3) into (B.2) yields

σn =
n∑

k=0

[qk+1 − qk]
√[

x′1
(
q

(1)
k

)]2 + [x′2
(
q

(2)
k

)]2 + [x′3
(
q

(3)
k

)]2
. (B.4)

From (B.4) one gets, as qk+1 − qk → 0, (B.1).
A measure of the curvature of a curve is the rate of change of the direction. The

curvature is larger when the change of direction of the tangent vector t is greater.
Generally, we therefore define as a curvature of a curve C at a point x(q0)

κ(q0)
def= lim

q→q0

length of t

length of x
= ‖t ′(q0)‖
‖x′(q0)‖ , (B.5)

where

length of t
def=
∫ q

q0

∥∥t ′∥∥dq

and

length of x
def=
∫ q

q0

∥∥x′∥∥dq.

A straight line has zero curvature. In the case of a circle, the curvature is con-
stant; the curvature is greater, the smaller the radius. The reciprocal value 1/κ of the
curvature is called the curvature radius.

B.2 Curvature of a Surface in Three Dimensions

B.2.1 Vectors in the Tangent Plane

Already in the nineteenth century, Gauss investigated how from the measurements
on a surface one can make conclusions about its spatial form. He then came to his
main result, the Theorema Egregium, which states that the Gaussian curvature of a



B.2 Curvature of a Surface in Three Dimensions 167

surface depends only on the internal variables gij and their derivatives. This result
is deduced in the following.

Suppose an area is defined as a function x(q1, q2) ∈ R
3 of the two coordinates

q1 and q2. At a point P of the surface, the tangent plane is, for example, spanned by

the two tangent vectors x1
def= ∂x

∂q1
and x2

def= ∂x
∂q2

. If the two tangent vectors x1 and
x2 are linearly independent, any vector in the tangent plane can be decomposed in
a linear combination of the two vectors, e.g. as

v1x1 + v2x2.

The scalar product of two vectors from the tangent plane is then defined as

(v ·w)
def= (v1x

ᵀ
1 + v2x

ᵀ
2

)(
w1x1 +w2x2

)

= vᵀ

⎛
⎝

x
ᵀ
1

x
ᵀ
2

⎞
⎠ [x1,x2]w = vᵀ

⎛
⎝

x
ᵀ
1 x1 x

ᵀ
1 x2

x
ᵀ
2 x1 x

ᵀ
2 x2

⎞
⎠w = vᵀGw.

As x
ᵀ
1 x2 = x

ᵀ
2 x1, the matrix Gᵀ =G is symmetric. In addition, one has

‖v‖ =√(v · v)=√vᵀGv.

Now we want to define the curvature by oriented parallelograms. Let v ∧w be the
oriented parallelogram defined by the vectors v and w in that order. w∧v =−v∧w
is then the parallelogram with the opposite orientation, area(w∧v)=−area(v∧w).
The determinant of the matrix G is then obtained as

g
def= detG= ‖x1‖2 · ‖x2‖2 − (x1 · x2)

2

= ‖x1‖2 · ‖x2‖2 − ‖x1‖2 · ‖x2‖2 cos2 Θ

= ‖x1‖2 · ‖x2‖2(1− cos2 Θ
)= ‖x1‖2 · ‖x2‖2 sin2 Θ.

On the other hand, one has ‖x1 × x2‖ = ‖x1‖ · ‖x2‖ · sinΘ , and so

‖x1 × x2‖ =√g = area(x1 ∧ x2). (B.6)

For the vector product of two vectors v and w from the tangent plane, one gets, on
the other hand,

(
v1x1 + v2x2

)× (w1x1 +w2x2
)

= v1w1 (x1 × x1)︸ ︷︷ ︸
0

+v1w2(x1 × x2)+ v2w1 (x2 × x1)︸ ︷︷ ︸
−(x1×x2)

+v2w2 (x2 × x2)︸ ︷︷ ︸
0

= (v1w2 − v2w1)
︸ ︷︷ ︸

def=detR

(x1 × x2),
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or

area(v ∧w)= detR · area(x1 ∧ x2),

so

area(v ∧w)= detR
√

g. (B.7)

The area of the parallelogram spanned by two vectors in the tangential surface is
thus determined by the vector components and the surface defining the matrix G.

B.2.2 Curvature and Normal Vectors

For two-dimensional surfaces, one should define the curvature at a point without
using the tangent vectors directly because there are infinitely many of them in the
tangent plane. However, any smooth surface in R

3 has at each point a unique normal
direction, which is one-dimensional, so it can be described by the unit normal vector.
A normal vector at x(q) is defined as the normalized vector perpendicular to the
tangent plane:

n(q)
def= x1 × x2

‖x1 × x2‖ .

If the surface is curved, the normal vector changes with displacement according to

ni (q)
def= ∂n(q)

∂qi
.

These change vectors ni lie in the tangent plane because

∂(n · n)

∂qi
= 0=

(
∂n

∂qi
· n
)
+
(

n · ∂n

∂qi

)
= 2(ni · n).

The bigger the area spanned by the two change vectors n1 and n2 lying in the tangent
plane, the bigger the curvature at the considered point. If Ω is an area of the tangent
surface which contains the point under consideration, then the following curvature
definition is obvious:

κ(q)
def= lim

Ω→q

area of n(Ω)

area of Ω
= lim

Ω→q

∫∫
Ω
‖n1(q̃)× n2(q̃)‖dq̃1 dq̃2

∫∫
Ω
‖x1(q̃)× x2(q̃)‖dq̃1 dq̃2

= ‖n1(q)× n2(q)‖
‖x1(q)× x2(q)‖ =

area of n1(q)∧ n2(q)

area of x1(q)∧ x2(q)
. (B.8)

Since both n1 and n2 lie in the tangent plane, they can be displayed as linear com-
binations of the vectors x1 and x2:

n1 =−b1
1x1 − b2

1x2 and n2 =−b1
2x1 − b2

2x2. (B.9)
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Combining together the coefficients −b
j
i in the matrix B , this corresponds to the

matrix R in (B.7), and (B.6) then yields the Gauss-curvature

κ(q)= detB. (B.10)

To confirm the Theorema Egregium of Gauss, one must now shown that B depends
only on the inner values gij and their derivatives!

B.2.3 Theorema Egregium and the Inner Values gij

First, we examine the changes of the tangent vectors xk by looking at their deriva-
tives

xjk
def= ∂xk

∂qj
= ∂2x

∂qj ∂qk
, (B.11)

which implies that

xjk = xkj . (B.12)

Since the two vectors x1 and x2 are a basis for the tangent plane and the vector n is
orthonormal to this plane, any vector in R

3, including the vector xjk , can assembled
as a linear combination of these three vectors:

xjk = Γ 1
jkx1 + Γ 2

jkx2 + bjkn. (B.13)

The vectors xjk can be summarized in a 4× 2-matrix as follows:

∂2x

∂q∂qᵀ =
(

x11 x12
x21 x22

)
= Γ 1 ⊗ x1 + Γ 2 ⊗ x2 +B ⊗ n, (B.14)

where

Γ i
def=
(

Γ i
11 Γ i

12
Γ i

21 Γ i
22

)

and

B
def=
(

b11 b12
b21 b22

)
.

Multiplying (B.14) from the left by the matrix (I 2 ⊗ nᵀ), due to nᵀxi = 0 and
(I 2 ⊗ nᵀ)(B ⊗ n)=B ⊗ (nᵀn)=B ⊗ 1=B , one finally obtains

B = (I 2 ⊗ nᵀ) ∂2x

∂q∂qᵀ =
(

nᵀx11 nᵀx12
nᵀx21 nᵀx22

)
, (B.15)
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i.e. the 2× 2-matrix B is symmetric. This matrix is called the Second Fundamen-
tal Form of the surface. The First Quadratic Fundamental Form is given by the
connection

G= ∂xᵀ

∂q
· ∂x

∂qᵀ , (B.16)

or more precisely, by the right-hand side of the equation for the squared line element
ds of the surface:

ds2 = dqᵀ Gdq.

Gauss designates, as is still in elementary geometry today, the elements of the matrix
G in this way:

G=
(

E F

F G

)
.

While G therefore plays a critical role in determining the length of a curve in an area,
B is, as we will see later, decisively involved in the determination of the curvature
of a surface. A further representation of the matrix B is obtained from the derivative
of the scalar product of the mutually orthogonal vectors n and xi :

nᵀ ∂x

∂qᵀ = 0ᵀ;

because this derivative is, according to (A.73),

∂

∂q

(
nᵀ ∂x

∂qᵀ

)
= ∂nᵀ

∂q
· ∂x

∂qᵀ +
(
I 2 ⊗ nᵀ) ∂2x

∂q∂qᵀ = 02×2.

With (B.15) we obtain

B =−∂nᵀ

∂q
· ∂x

∂qᵀ , (B.17)

i.e. a further interesting form for the matrix B

B =−
(

n
ᵀ
1 x1 n

ᵀ
1 x2

n
ᵀ
2 x1 n

ᵀ
2 x2

)
. (B.18)

The two equations (B.9) can be summarized to a matrix equation as follows:

[n1|n2] = ∂n

∂qᵀ =
∂x

∂qᵀ

(
−b1

1 −b1
2

−b2
1 −b2

2

)
= ∂x

∂qᵀ ·B. (B.19)

This used in (B.18) together with (B.16) yields

B =−B
ᵀ · ∂xᵀ

∂q
· ∂x

∂qᵀ =−B
ᵀ
G,
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or transposed

B =−GB, (B.20)

since B and G are both symmetric matrices. Our goal remains to show that the
Gaussian curvature depends only on the gij ’s and their derivatives with respect to
qk , i.e., according to (B.10), one must show that for the matrix B

κ(q)= detB

is valid. We first examine the matrix G. For this purpose, its elements are differen-
tiated:

∂gij

∂qk

= x
ᵀ
ikxj + x

ᵀ
jkxi .

With (B.13) we obtain

x
ᵀ
j xik = Γ 1

ikx
ᵀ
j x1 + Γ 2

ikx
ᵀ
j x2 + bikx

ᵀ
j n

= Γ 1
ikgj1 + Γ 2

ikgj2.

If we define

Γ̌
j
ik

def= Γ 1
ikgj1 + Γ 2

ikgj2

and assemble all four components into a matrix Γ̌ j , we obtain

(
Γ̌ 1

j1 Γ̌ 2
j1

Γ̌ 1
j2 Γ̌ 2

j2

)
=
(

Γ 1
j1 Γ 2

j1

Γ 1
j2 Γ 2

j2

)(
g11 g12
g21 g22

)
= Γ jG

ᵀ (B.21)

or, because of Gᵀ =G,

Γ̌ j = Γ jG. (B.22)

It is therefore true that

∂gij

∂qk

= Γ̌
j
ik + Γ̌ i

jk. (B.23)

With the following expression of three different derivatives, one obtains

∂gij

∂qk

+ ∂gik

∂qj

− ∂gjk

∂qi

= Γ̌
j
ik + Γ̌ i

jk + Γ̌ k
ij + Γ̌ i

jk − Γ̌
j
ik − Γ̌ k

ji , (B.24)

so

Γ̌ i
jk =

1

2

(
∂gij

∂qk

+ ∂gik

∂qj

− ∂gjk

∂qi

)
. (B.25)
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Multiplying (B.22) from the right with

G−1 def=
(

g
[−1]
11 g

[−1]
12

g
[−1]
21 g

[−1]
22

)
,

one gets the relation

Γ j = Γ̌ jG
−1, (B.26)

i.e. element by element

Γ �
jk =

1

2

∑
i

g
[−1]
i� Γ̌ i

jk, (B.27)

so with (B.25)

Γ �
jk =

1

2

∑
i

g
[−1]
i�

(
∂gij

∂qk

+ ∂gik

∂qj

− ∂gjk

∂qi

)
. (B.28)

This clarifies the relationship of the Christoffel-symbols Γ �
jk with the gij and their

derivatives. Now the direct relationship of these variables with the Gaussian curva-
ture κ has to be made. One gets this finally by repeated differentiation of xjk with
respect to q�:

xjk�
def= ∂xjk

∂q�
=
∑

i

∂Γ i
jk

∂q�
xi +

∑
i

Γ i
j�xi� + ∂bjk

∂q�
n+ bjkn�

=
∑

i

(
∂Γ i

jk

∂q�
+ Γ i

j�Γ
i
p� − bjkb

i
�

)
xi +

(
∂bjk

∂q�
+
∑
p

Γ
p
jkbp�

)
n. (B.29)

Interchanging in (B.29) k and �, we obtain

xj�k =
∑

i

(
∂Γ i

j�

∂qk
+ Γ i

jkΓ
i
pk − bj�b

i
k

)
xi +

(
∂bj�

∂qk
+
∑
p

Γ
p
j�bpk

)
n. (B.30)

Subtracting the two third-order derivatives, we obtain

0= xj�k − xjk� =
∑

i

[
Ri�

jk −
(
bj�b

i
k − bjkb

i
�

)]
xi + (· · · )n, (B.31)

with

Ri�
jk

def= ∂Γ i
j�

∂qk
− ∂Γ i

jk

∂q�
+
∑
p

Γ
p

j�Γ
i
p� −

∑
p

Γ
p
jkΓ

i
pk. (B.32)
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Since the vectors x1,x2 and n are linearly independent, the square bracket in (B.31)
must be zero, which implies

Ri�
jk = bj�b

i
k − bjkb

i
�. (B.33)

Defining

Ři�
jk =

∑
i

gihR
i�
jk, (B.34)

one gets

Ři�
jk = g1hbj�b

1
k − g1hbjkb

1
� + g2hbj�b

2
k − g2hbjkb

2
� = bj�bkh − bjkb�h. (B.35)

In particular,

Ř12
12 = b22b11 − b21b21 = detB. (B.36)

It is therefore true that

κ(q)= det B̄ = detB

detG
= Ř12

12

g
,

κ(q)= Ř12
12

g
, (B.37)

which has finally proved the Theorema Egregium because, due to (B.34), Ři�
jk de-

pends on Ri�
jk ; according to (B.32), Ri�

jk only depends on Γ k
ij and their derivatives

and, in accordance with (B.25), the Γ k
ij ’s depend only on the gik’s and their deriva-

tives. In the form

κ(q)= detB

detG
, (B.38)

the paramount importance of the two fundamental forms is expressed.

Remarks

1. Euclidean geometry of is based on a number of Axioms that require no proofs.
One is the parallel postulate stating that to every line one can draw through a
point not belonging to it one and only one other line which lies in the same plane
and does not intersect the former line. This axiom is replaced in the hyperbolic
geometry in that it admits infinitely many parallels. An example is the surface
of a hyperboloid. In the elliptical geometry, for example, on the surface of an
ellipsoid and, as a special case, on a spherical surface, there are absolutely no
parallels because all great circles, which are here the “straight lines”, meet in
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two points. In Euclidean geometry, the distance between two points with the
Cartesian coordinates x1, x2, x3 and x1 + dx1, x2 + dx2, x3 + dx3 is simply

ds =
√

dx2
1 + dx2

2 + dx2
3 ,

and in the other two geometries this formula is replaced by

ds2 = a1 dx2
1 + a2 dx2

2 + a3 dx2
3 ,

where the coefficients ai are certain simple functions of xi , in the hyperbolic
case, of course, different than in the elliptic case. A convenient analytical repre-
sentation of curved surfaces is the above used Gaussian parameter representation
x = x(q1, q2), where Gauss attaches as curved element:

ds2 =E dq2
1 + 2F dq1 dq2 +Gdq2

2 .

As an example, we introduce the Gauss-specific parameter representation of the
unit sphere, with θ = q1 and ϕ = q2:

x1 = sin θ cosϕ, x2 = sin θ sinϕ, x3 = cosϕ.

For the arc element of the unit sphere, we obtain

ds2 = dθ2 + sin2 θ(dϕ)2.

Riemann generalized the Gaussian theory of surfaces, which is valid for
two-dimensional surfaces in three-dimensional spaces, to p-dimensional hyper-
surfaces in n-dimensional spaces, i.e. where

x = x(q1, . . . , qp) ∈R
n

is a point on the hypersurface. He made in addition the fundamentally important
step, to set up a homogeneous quadratic function of dqi with arbitrary functions
of the qi as coefficients, as the square of the line elements (quadratic form)

ds2 =
∑
ik

gik dqi dqk = dqᵀGdq.

.
2. The above-occurring Ri�

jk can be used as matrix elements of the 4× 4-matrix R,
the Riemannian Curvature Matrix, to be constructed as a block matrix as follows:

R =
(

R11 R12

R21 R22

)
,

where the 2× 2 sub-matrices have the form:

Ri� =
(

Ri�
11 Ri�

12

Ri�
21 Ri�

22

)
.



B.2 Curvature of a Surface in Three Dimensions 175

In particular, Ř12
12 is the element in the top right corner of the matrix Ř =GR.

3. Expanding the representation of x(q +�q) in a Taylor series, one obtains

x(q +�q)= x(q)+
∑

i

xi�qi + 1

2

∑
i,k

xik�qi�qk + σ(3).

Subtracting x(q) on both sides of this equation and multiplying the result from
the left with the transposed normal vector nᵀ, we obtain

nᵀ[x(q +�q)− x(q)
]=

∑
i

nᵀxi︸︷︷︸
0

�qi + 1

2

∑
i,k

nᵀxik︸ ︷︷ ︸
bik

�qi�qk + σ(3)

= nᵀ�x(q)
def= ��.

Thus

d�≈
1

2

∑
i,k

bik dqi dqk.

The coefficients of the second fundamental form, i.e. the elements of the ma-
trix B , Gauss denotes by L,M and N . Then the distance d� of the point
x(q1 + dq1, q2 + dq2) to the tangent surface at the point x(q1, q2) is

d�≈
1

2

(
Ldq2

1 + 2M dq1 dq2 +N dq2
2

)
.

The normal curvature κ of a surface at a given point P and in a given direction q

is defined as

κ
def= Ldq2

1 + 2M dq1 dq2 +N dq2
2

E dq2
1 + 2F dq1 dq2 +Gdq2

2

. (B.39)

The so-defined normal curvature depends, in general, on the chosen direc-
tion dq . Those directions, in which the normal curvatures at a given point as-
sume an extreme value, are named the main directions of the surface at this
point. As long as we examine real surfaces, the quadratic differential form
E dq2

1 + 2F dq1 dq2 + Gdq2
2 is positive definite, i.e. it is always positive for

dq �= 0. Thus the sign of the curvature depends only on the quadratic differential
form Ldq2

1 + 2M dq1 dq2 + N dq2
2 in the numerator of (B.39). There are three

cases:

(a) LN −M2 > 0, i.e. B is positive definite, and the numerator retains the same
sign, in each direction one is looking. Such a point is called an elliptical
point. An example is any point on an ellipsoid, in particular, of course, on a
sphere.

(b) LN −M2 = 0, i.e. B is semi-definite. The surface behaves at this point as at
an elliptical point except in one direction where is κ = 0. This point is called
parabolic. An example is any point on a cylinder.
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(c) LN −M2 < 0, i.e. B is indefinite. The numerator does not keep the same
sign for all directions. Such a point is called hyperbolic, or a saddle point.
An example is a point on a hyperbolic paraboloid.

Dividing the numerator and the denominator in (B.39) by dq2 and introducing

dq1/dq2
def= λ, we obtain

κ(λ)= L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
(B.40)

and from this the extreme values from

dκ

dλ
= 0

as those satisfying
(
E + 2Fλ+Gλ2)(M +Nλ)− (L+ 2Mλ+Nλ2)(F +Gλ)= 0. (B.41)

In this case, the resulting expression for κ is

κ = L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
= M +Nλ

F +Gλ
. (B.42)

Since furthermore

E + 2Fλ+Gλ2 = (E + Fλ)+ λ(F +Gλ)

and

L+ 2Mλ+Nλ2 = (L+Mλ)+ λ(M +Nλ),

(B.40) can be transformed into the simpler form

κ = L+Mλ

E + Fλ
. (B.43)

From this the two equations for κ follow:

(κE −L)+ (κF −M)λ= 0,

(κF −M)+ (κG−N)λ= 0.

These equations are simultaneously satisfied if and only if

det

(
κE −L κF −M

κF −M κG−N

)
= 0. (B.44)

This can also be written as

det(κG−B)= 0. (B.45)
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This is the solvability condition for the eigenvalue equation

κG−B = 0,

which can be transformed into

κI −G−1B = 0. (B.46)

This results in a quadratic equation for κ . The two solutions are called the principal
curvatures and are denoted as κ1 and κ2. The Gaussian curvature κ of a surface at a
given point is the product of the principal curvatures κ1 and κ2 of the surface in this
point. According to Vieta’s root theorem, the product of the solutions is equal to the
determinant of the matrix G−1B , so finally,

κ = κ1κ2 = det
(
G−1B

)= detB

detG
= LN −M2

EG− F 2
.



Appendix C
Geodesic Deviation

Geodesics are the lines of general manifolds along which, for example, free particles
move. In a flat space the relative velocity of each pair of particles is constant, so that
their relative acceleration is always equal to zero. Generally, due to the curvature of
space, the relative acceleration is not equal to zero.

The curvature of a surface can be illustrated as follows [21]. Suppose there are
two ants on an apple which leave a starting line at the same time and follow with
the same speed geodesics which are initially perpendicular to the start line. Initially,
their paths are parallel, but, due to the curvature of the apple, they are approaching
each other from the beginning. Their distance ξ from one another is not constant,
i.e., in general, the relative acceleration of the ants moving on geodesics with con-
stant velocity is not equal zero if the area over which they move is curved. So the
curvature can be indirectly perceived through the so-called geodesic deviation ξ .

The two neighboring geodesics x(u) and x̌(u) have the distance

ξ(u)
def= x̌(u)− x(u), (C.1)

where u is the proper time or distance.
The mathematical descriptions of these geodesics are

¨̌x + (I 4 ⊗ ˙̌xᵀ)Γ̌ ˙̌x = 0, (C.2)

ẍ + (I 4 ⊗ ẋᵀ)Γ ẋ = 0. (C.3)

The Christoffel-matrix Γ̌ is approximated by

Γ̌ ≈ Γ + ∂Γ

∂xᵀ (ξ ⊗ I 4). (C.4)

Subtracting (C.3) from (C.2) and considering (C.1) and (C.4), one obtains

ξ̈ + (I 4 ⊗ ˙̌xᵀ)Γ ˙̌x − (I 4 ⊗ ẋᵀ)Γ ẋ + (I 4 ⊗ ˙̌xᵀ) ∂Γ

∂xᵀ (ξ ⊗ I 4) ˙̌x = 0. (C.5)
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With ˙̌x = ξ̇ + ẋ and neglecting quadratic and higher powers of ξ and ξ̇ , one obtains
from (C.5)

ξ̈ + (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗ ẋᵀ)Γ ξ̇ + (I 4 ⊗ ẋᵀ) ∂Γ

∂xᵀ (ξ ⊗ I 4)ẋ = 0. (C.6)

Hence

Dξ

du
= ξ̇ + (I 4 ⊗ ξᵀ)Γ ẋ (C.7)

and

D2ξ

du2
= D

du

(
ξ̇ + (I 4 ⊗ ξᵀ)Γ ẋ

)

= ξ̈ + d

du

{(
I 4 ⊗ ξᵀ)Γ ẋ

}+ (I 4 ⊗
[
ξ̇ + (I 4 ⊗ ξᵀ)Γ ẋ

]ᵀ)
Γ ẋ

= ξ̈ + d

du

{(
I 4 ⊗ ξᵀ)Γ ẋ

}+ (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗
[(

I 4 ⊗ ξᵀ)Γ ẋ
]ᵀ)

Γ ẋ.

(C.8)

For the second term, by (C.3), one gets

d

du

{(
I 4 ⊗ ξᵀ)Γ ẋ

}= (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ (ẋ ⊗ I 4)ẋ +
(
I 4 ⊗ ξᵀ)Γ ẍ

= (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ (ẋ ⊗ I 4)ẋ

− (I 4 ⊗ ξᵀ)Γ (I 4 ⊗ ẋᵀ)Γ ẋ. (C.9)

Equation (C.9) used in (C.8) yields

D2ξ

du2
= ξ̈ + (I 4 ⊗ ξ̇

ᵀ)
Γ ẋ + (I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ (ẋ ⊗ I 4)ẋ −
(
I 4 ⊗ ξᵀ)Γ (I 4 ⊗ ẋᵀ)Γ ẋ

+ (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗
[(

I 4 ⊗ ξᵀ)Γ ẋ
]ᵀ)

Γ ẋ. (C.10)

Remark Since the sub-matrices Γ i are symmetric, it is generally true that
(
I 4 ⊗ aᵀ)Γ b= (I 4 ⊗ bᵀ)Γ a. (C.11)

In addition, one has (I 4 ⊗ aᵀ)Γ b = Γ (I 4 ⊗ a)b = Γ (b⊗ a) and (I 4 ⊗ bᵀ)Γ a =
Γ (I 4 ⊗ b)a = Γ (a⊗ b), thus, due to (C.11),

Γ (b⊗ a)= Γ (a ⊗ b). (C.12)

With (C.11), one has from (C.10)

ξ̈ + (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗ ẋᵀ)Γ ξ̇
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= D2ξ

du2
− (I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ (ẋ ⊗ I 4)ẋ

+ (I 4 ⊗ ξᵀ)Γ (I 4 ⊗ ẋᵀ)Γ ẋ − (I 4 ⊗
[(

I 4 ⊗ ξᵀ)Γ ẋ
]ᵀ)

Γ ẋ. (C.13)

For (I 4 ⊗ ξᵀ)Γ (I 4 ⊗ ẋᵀ)Γ ẋ one can write

(
I 4 ⊗ ξᵀ)Γ (I 4 ⊗ ẋᵀ)Γ ẋ = (I 4 ⊗ ξᵀ)Γ Γ (I 4 ⊗ ẋ)ẋ, (C.14)

and the expression (I 4 ⊗ [(I 4 ⊗ ξᵀ)Γ ẋ]ᵀ)Γ ẋ can be rewritten as

(
I 4 ⊗

[(
I 4 ⊗ ξᵀ)Γ ẋ

]ᵀ)
Γ ẋ

= Γ
(
I 4 ⊗

(
I 4 ⊗ ξᵀ)Γ ẋ

)
ẋ

= Γ
(
I 16 ⊗ ξᵀ)(I 4 ⊗ Γ ẋ)ẋ = (I 4 ⊗ ξᵀ)(Γ ⊗ I 4)(I 4 ⊗ Γ )(I 4 ⊗ ẋ)ẋ. (C.15)

With (C.14) (in somewhat modified form) and (C.15) one obtains for (C.13)

ξ̈ + (I 4 ⊗ ξ̇
ᵀ)

Γ ẋ + (I 4 ⊗ ẋᵀ)Γ ξ̇

= D2ξ

du2
− (I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ (ẋ ⊗ I 4)ẋ

+ (I 4 ⊗ ξᵀ)[Γ Γ − (Γ ⊗ I 4)(I 4 ⊗ Γ )
]
(ẋ ⊗ ẋ). (C.16)

Equation (C.16) used in (C.6) provides

D2ξ

du2
=−(I 4 ⊗ ẋᵀ) ∂Γ

∂xᵀ (ξ ⊗ I 4)ẋ +
(
I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ (ẋ ⊗ I 4)ẋ

+ (I 4 ⊗ ξᵀ)[Γ Γ − (Γ ⊗ I 4)(I 4 ⊗ Γ )
]
(ẋ ⊗ ẋ). (C.17)

As the 16× 16-matrix ∂Γ
∂xᵀ is symmetric, the first term of the right-hand side can

transformed as follows:

(
I 4 ⊗ ẋᵀ) ∂Γ

∂xᵀ (ξ ⊗ I 4)ẋ =
(
I 4 ⊗ ẋᵀ) ∂Γ

∂xᵀ U4×4(I 4 ⊗ ξ)ẋ

= (I 4 ⊗ ξᵀ) ∂Γ

∂xᵀ U4×4(I 4 ⊗ ẋ)ẋ.

This in (C.17) provides

D2ξ

du2
= (I 4 ⊗ ξᵀ)

[
∂Γ

∂xᵀ −
∂Γ

∂xᵀ U4×4

]
(ẋ ⊗ I 4)ẋ

+ (I 4 ⊗ ξᵀ)[Γ Γ − (Γ ⊗ I 4)(I 4 ⊗ Γ )
]
(ẋ ⊗ ẋ), (C.18)
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and finally,

D2ξ

du2
= (I 4 ⊗ ξᵀ)

[
∂Γ

∂xᵀ (I 16 −U4×4)+
(
Γ Γ − (Γ ⊗ I 4)(I 4 ⊗ Γ )

)]

︸ ︷︷ ︸
−R

(ẋ ⊗ ẋ).

(C.19)
Using a slightly modified Riemannian curvature matrix R, we finally obtain for the
dynamic behavior of the geodesic deviation

D2ξ

du2
+ (I 4 ⊗ ξᵀ)R(ẋ ⊗ ẋ)= 0. (C.20)

In a flat manifold, i.e. in a gravity-free space one has R ≡ 0 and in Cartesian co-
ordinates D/du= d/du so that (C.20) reduces to the equation d2ξ/du2 = 0 whose
solution is the linear relationship ξ(u)= ξ̇0 ·u+ ξ0. If R �= 0, gravity exists and the
solution of (C.20) is nonlinear, curved.



Appendix D
Another Ricci-Matrix

The Ricci-matrix RRic is now defined as the sum of the sub-matrices on the main
diagonal of R

RRic
def=

3∑
ν=0

Rνν . (D.1)

Analogously, we define

ŘRic
def=

3∑
ν=0

Ř
νν

. (D.2)

From (2.194) it can immediately be read that the Ricci-matrix ŘRic is symmetric
because Ř

γ γ
αβ = Ř

γ γ
βα . It is also true that

R = (G−1 ⊗ I 4
)
Ř,

so

Rγ δ = (g−T
γ ⊗ I 4

)
Ř

δ =
3∑

ν=0

g[−1]
γ ν Ř

νδ
, (D.3)

where g−T
γ is the γ th row of G−1 and Ř

δ
is the matrix consisting of the sub-matrices

in the δth block column of Ř, i.e. the matrix elements are

R
γδ
αβ =

3∑
ν=0

g[−1]
γ ν Řνδ

αβ . (D.4)

With the help of (D.3), the Ricci-matrix is obtained as

RRic =
∑
γ

Rγ γ =
∑
γ

∑
ν

g[−1]
γ ν Ř

νν
, (D.5)
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i.e. for the components one has

RRic,αβ =
∑
γ

∑
ν

g[−1]
γ ν Ř

νγ
αβ , (D.6)

or with (2.173)

RRic,αβ =
∑
γ

∑
ν

g[−1]
γ ν Řαβ

νγ . (D.7)

The curvature scalar R is obtained from the Ricci-matrix by taking the trace

R
def=
∑
α

RRic,αα =
∑
α

∑
γ

∑
ν

g[−1]
γ ν Řαα

νγ =
∑
γ

∑
ν

g[−1]
γ ν ŘRic,νγ . (D.8)

Conversely, we obtain a corresponding relationship

Ř
γ δ
αβ =

3∑
ν=0

gγνR
νδ
αβ . (D.9)

From (2.165) it directly follows that

RRic,αβ =
3∑

γ=0

(
∂

∂xβ

Γ γ
αγ −

∂

∂xγ

Γ
γ
αβ +

3∑
ν=0

Γ
γ
βνΓ

ν
γα −

3∑
ν=0

Γ γ
γ νΓ

ν
αβ

)
(D.10)

and from (2.168)

ŘRic,αβ =
3∑

γ=0

(
∂

∂xβ

Γ̌ γ
αγ −

∂

∂xγ

Γ̌
γ
αβ +

3∑
ν=0

Γ ν
αβΓ̌ ν

γ γ −
3∑

ν=0

Γ ν
αγ Γ̌ ν

γβ

)
. (D.11)

Symmetry of the Ricci-Matrix RRic Even if R itself is not symmetric, the from
R derived Ricci-matrix RRic is symmetric; this will be shown in the following. The
symmetry will follow from the components equation (D.10) of the Ricci-matrix.
One sees immediately that the second and fourth summands are symmetric in α

and β .
The symmetry of the term

∑3
γ=0

∂
∂xβ

Γ
γ
αγ in α and β is not seen directly. This can

be checked using the Laplace-expansion theorem for determinants.1 Developing the
determinant of G along the γ th row yields

g
def= det(G)= gγ 1Aγ 1 + · · · + gγβAγβ + · · · + gγnAγn,

1The sum of the products of all elements of a row (or column) with their adjuncts is equal to the
determinant’s value.
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where Aγβ is the element in the γ th row and βth column of the adjoint of G. If g
[−1]
βγ

is the (βγ )th element of the inverse of G, then g
[−1]
βγ = 1

g
Aγβ , so Aγβ = g g

[−1]
βγ .

Thus we obtain
∂g

∂gγβ

=Aγβ = g g
[−1]
βγ ,

or

δg = g g
[−1]
βγ δgγβ,

or

∂g

∂xα

= g g
[−1]
βγ

∂gγβ

∂xα

,

i.e.

1

g

∂g

∂xα

= g
[−1]
βγ

∂gγβ

∂xα

. (D.12)

Using (2.62), on the other hand, one has

3∑
γ=0

Γ γ
αγ =

3∑
γ=0

3∑
β=0

g
[−1]
βγ

2

(
∂gγβ

∂xα

+ ∂gαβ

∂xγ

− ∂gαγ

∂xβ

)
,

i.e. the last two summands cancel out and it remains to deal with

3∑
γ=0

Γ γ
αγ =

3∑
γ=0

3∑
β=0

1

2
g
[−1]
βγ

∂gγβ

∂xα

.

It follows from (D.12) that

3∑
γ=0

∂

∂xβ

Γ γ
αγ =

3∑
γ=0

3∑
β=0

1√|g|
∂2√|g|
∂xα∂xβ

. (D.13)

But this form is immediately seen symmetric in α and β .
Now it remains to shown that the third term in (D.10) is symmetric. Its expression

is
3∑

γ=0

3∑
ν=0

Γ
γ
βνΓ

ν
γα.

Now one can see that this term is symmetric because

3∑
γ,ν=0

Γ
γ
βνΓ

ν
γα =

3∑
γ,ν=0

Γ
γ
νβΓ ν

αγ =
3∑

ν,γ=0

Γ ν
γβΓ γ

αν.

All this shows that the Ricci-matrix RRic is symmetric.
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Divergence of the Ricci-Matrix RRic Multiplying the Bianchi-identities (2.199)
in the form of

∂

∂xκ

Rνδ
αβ +

∂

∂xβ

Rνκ
αδ +

∂

∂xδ

Rνβ
ακ = 0

with gγν and summing over ν, we obtain in P , since there ∂G
∂x = 0,

∂

∂xκ

3∑
ν=0

gγνR
νδ
αβ +

∂

∂xβ

3∑
ν=0

gγνR
νκ
αδ +

∂

∂xδ

3∑
ν=0

gγνR
νβ
ακ = 0.

Combined with (D.9) this becomes

∂

∂xκ

Ř
γ δ
αβ +

∂

∂xβ

Ř
γ κ
αδ +

∂

∂xδ

Řγβ
ακ = 0. (D.14)

The second term, according to (2.172), may be written as

− ∂

∂xβ

Řγ δ
ακ .

Substituting now γ = δ and summing over γ , one obtains

∂

∂xκ

ŘRic,αβ − ∂

∂xβ

ŘRic,ακ +
3∑

γ=0

∂

∂xγ

Řγβ
ακ = 0. (D.15)

In the third summand, one can, according to (2.171), replace Ř
γβ
ακ by −Ř

αβ
γ κ . If we

set α = β and sum over α, we obtain for (D.15) with the trace Ř
def= ∑3

α=0 ŘRic,αα

of the Riccati-matrix ŘRic

∂

∂xκ

Ř −
3∑

α=0

∂

∂xα

ŘRic,ακ −
3∑

γ=0

∂

∂xγ

ŘRic,γ κ = 0. (D.16)

If in the last sum the summation index γ is replaced by α, we can finally summarize:

∂

∂xκ

Ř− 2
3∑

α=0

∂

∂xα

ŘRic,ακ = 0. (D.17)

One would get the same result, if one were to start with the equation:

∂

∂xκ

Ř
γ δ
αβ − 2

∂

∂xβ

Řγ δ
ακ = 0. (D.18)
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Indeed, if we set δ = γ and sum over γ , we get first

∂

∂xκ

ŘRic,αβ − 2
∂

∂xβ

ŘRic,ακ = 0.

If we now set α = β and sum over α, we will again arrive at (D.17).
A different result is obtained when starting from (D.18) (with ν instead of γ )

first, multiplying this equation by g
[−1]
γ ν to get

∂

∂xκ

g[−1]
γ ν Řνδ

αβ − 2
∂

∂xβ

g[−1]
γ ν Řνδ

ακ = 0,

then again setting γ = δ and summing over γ and ν and noting (D.6):

∑
γ

∑
ν

∂

∂xκ

g[−1]
γ ν Ř

νγ
αβ − 2

∑
γ

∑
ν

∂

∂xβ

g[−1]
γ ν Řνγ

ακ

= ∂

∂xκ

RRic,αβ − 2
∂

∂xβ

RRic,ακ = 0.

If we now take α = η and sum over α, we finally obtain the important relationship

∂

∂xκ

R − 2
∑
α

∂

∂xα

RRic,ακ = 0. (D.19)

These are the four equations for the four spacetime coordinates x0, . . . , x3.
Finally, this overall result can be represented as

�∇ᵀ
(

RRic − 1

2
RI 4

)
= 0ᵀ. (D.20)
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Eddington, 124
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Einstein, 7, 93, 101
Einsteins field equation, 98
Electric field, 6, 32
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Energy, 30
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Equation

Einstein’s, 102
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Maxwell’s, 32
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Equation of motion
relativistic, 29

Equivalence principle, 99
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Experiment
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Field

gravitomagnetic, 140
Field equation

Einstein’s, 101
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Force

Lorentz-, 141
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Light wave propagation, 7
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Operator

Laplace, 78
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Oxygen, 128
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Paraboloid
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Paradox

twin, 15
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Phenomena

electromagnetic, 7
Photon, 19, 53
Plane

tangent, 166, 168
Point

elliptical, 175
hyperbolic, 176
parabolic, 175
saddle, 176

Polygon
inscribed, 165

Position
initial, 53

Position vector, 1
Postulate

parallel, 173
Potential

gravitational, 77, 97, 115
Principle

covariance, 99
relativity, 53

Product
Kronecker-, 154

Proper time, 20

Q
Quadratic form, 57

R
Radiation, 31
Radius

curvature, 166
Schwarzschild’s, 116, 128, 141

Rate of change, 166
Rectilinear, 3
Redshift, 120
Reference frame, 1
Reference system, 2
Relativity principle

Galilei, 3
Rest mass, 30
Riemann, 78, 174
Rotation, 6

S
Scalar

curvature, 90, 101, 107
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color, 120
Ship

moving, 3
Simultaneity, 12
Singularity, 116, 131

coordinate, 131, 136
Solution

Schwarzschild’s, 116, 128
Space

curved, 66
homogeneous, 5
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n-dimensional, 78
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Spacetime, 19
Spacetime-interval, 51
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Time
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Time dilation, 15
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calculus of, 57
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