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Preface

The merging of the concept of introduction of asymmetry of the wave vector space
of the charge carriers in semiconductors with the modern techniques of fabricating
nanostructured materials such as MBE, MOCVD, and FLL in one, two, and three
dimensions (such as UFs, nipi structures, inversion, and accumulation layers,
quantum wire superlattices, carbon nanotubes, nanowires, quantum dots, magneto
inversion and accumulation layers, quantum dot superlattices, etc.) spawns not
only useful quantum effect devices but also unearths new concepts in the realm of
low-dimensional materials science and related disciplines. It is worth remarking
that these semiconductor nanostructures occupy a paramount position in the entire
arena of nanoscience and technology by their own right and find extensive
applications in quantum registers, resonant tunneling diodes and transistors,
quantum switches, quantum sensors, quantum logic gates, hetero-junction field-
effect transistors, quantum well and nanowire transistors, high-speed digital
networks, high-frequency microwave circuits, quantum cascade lasers, high-res-
olution terahertz spectroscopy, superlattice photo-oscillator, advanced integrated
circuits, superlattice photocathodes, thermoelectric devices, superlattice coolers,
intermediate-band solar cells, micro-optical systems, high performance infrared
imaging systems, band-pass filters, thermal sensors, optical modulators, optical
switching systems, single electron/molecule electronics, nanotube-based diodes,
and other nano-electronic devices. Knowledge regarding these quantized structures
may be gained from original research contributions in scientific journals, pro-
ceedings of various international conferences, and different review articles
respectively. Mathematician Simmons rightfully tells us [1] that the mathematical
knowledge is said to be doubling in every 10 years and in this context we can also
envision the extrapolation of the Moore’s law by projecting it in the perspective of
the advancement of new research and analyses, in turn, generating novel concepts
particularly in the area of nanoscience and technology [2]. In this context, it may
be noted that the available books on solid-state and allied sciences cannot afford to
cover even an entire chapter excluding few pages on the Effective Electron Mass
(EEM) in Low-Dimensional Semiconductors.
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The effective mass of the carriers in semiconductors, being connected with the
mobility, is known to be one of the most important physical quantities, used for the
analysis of electron devices under different operating conditions [3]. The carrier
degeneracy in semiconductors influences the effective mass when it is energy
dependent. Under degenerate conditions, only the electrons at the Fermi surface of
n-type semiconductors participate in the conduction process and hence, the
effective mass of the electrons corresponding to the Fermi level would be of
interest in electron transport under such conditions. The Fermi energy is again
determined by the electron energy spectrum and the carrier statistics and therefore,
these two features would determine the dependence of the EEM in degenerate
n-type semiconductors under the degree of carrier degeneracy. In recent years,
various energy wave vector dispersion relations have been proposed [4–10] which
have created the interest in studying the effective mass in such materials under
external conditions. It has, therefore, different values in different materials and
varies with electron concentration, with the magnitude of the reciprocal quantising
magnetic field under magnetic quantization, with the quantizing electric field as in
inversion layers, with the nano-thickness as in UFs and nanowires and with
superlattice period as in the quantum confined superlattices of small gap semi-
conductors with graded interfaces having various carrier energy spectra [11–57].

This book, divided into three parts which contain nine chapters and three
Appendices, is partially based on our ongoing researches on the effective mass
from 1980 and an attempt has been made to present a cross section of the effective
mass for a wide range of low-dimensional semiconductors with varying carrier
energy spectra under various physical conditions. The first part deals with the
influence of quantum confinement on the EEM in non-parabolic semiconductors.
Chapter 1 investigates the EEM in UFs of nonlinear optical materials on the basis
of a generalized electron dispersion law introducing the anisotropies of the
effective electron masses and the spin orbit splitting constants respectively toge-
ther with the inclusion of the crystal field splitting within the framework of the k.p
formalism. The results of III–V (e.g. InAs, InSb, GaAs, etc.), ternary (e.g.
Hg1-xCdxTe), quaternary (e.g. In1-xGaxAs1-yPy lattice matched to InP) com-
pounds form a special case of our generalized analysis under certain limiting
conditions. The EEM in UFs of II–VI, Bi, IV–VI, stressed Kane-type semicon-
ductors, Te, GaP, PtSb2, Bi2Te3, Ge and GaSb compounds have also been
investigated by using the appropriate energy band structures for these materials.
The importance of the aforementioned semiconductors has also been described in
the same chapter. It is well known that the semiconductor superlattices find
extensive applications in avalanche photodiodes, photo-detectors, electro-optic
modulators, etc. In Chap. 2 the EEM in nipi structures of nonlinear optical, III–V,
II–VI, IV–VI, and stressed Kane-type semiconductors has been studied.

In recent years, there has been considerable interest in the study of the inversion
layers which are formed at the surfaces of semiconductors in metal–oxide–semi-
conductor field-effect transistors (MOSFET) under the influence of a sufficiently
strong electric field applied perpendicular to the surface by means of a large gate
bias. In such layers, the carriers form a two-dimensional gas and are free to move
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parallel to the surface while their motion is quantized perpendicular to it leading to
the formation of electric subbands [58]. In Chap. 3, the EEM in n-channel
inversion layers of nonlinear optical, III–V, II–VI, IV–VI stressed Kane-type
semiconductors, Ge and GaSb has been investigated.

The effects of quantizing magnetic field on the band structures of compound
semiconductors are more striking than that of the parabolic one and are easily
observed in experiments. A number of interesting physical features originate from
the significant changes in the basic energy wave vector relation of the carriers
caused by the magnetic field. The valuable information could also be obtained
from experiments under magnetic quantization regarding the important physical
properties such as Fermi energy and effective masses of the carriers, which affect
almost all the transport properties of the electron devices [59–63] of various
materials having different carrier dispersion relations [64]. In Chap. 4, the EEM in
nonlinear optical, III–V. II–VI, Bi. IV–VI, stressed Kane-type semiconductors, Te,
GaP, PtSb2, Bi2Te3, Ge, GaSb and II–V compounds have also been studied under
magnetic quantization. Since Iijima’s discovery [65], carbon nanotubes (CNTs)
have been recognized as fascinating materials with nanometer dimensions
uncovering new phenomena in different areas of nanoscience and technology. The
remarkable physical properties of these quantum materials make them ideal can-
didates to reveal new phenomena in nano-electronics. Chapter 5 contains the study
of the EEM in nanowires of the nonlinear optical, III–V, II–VI, Bi, IV–VI, stressed
Kane-type semiconductors, Te, GaP, PtSb2, Bi2Te3, Ge, GaSb and II–V semi-
conductors together with CNTs respectively.

With the advent of nanophotonics, there has been considerable interest in
studying the optical processes in semiconductors and their nanostructures [66–67].
It appears from the literature that investigations have been carried out on the
assumption that the carrier energy spectra are invariant quantities in the presence
of intense light waves, which is not fundamentally true. The physical properties of
semiconductors in the presence of light waves which change the basic dispersion
relation have been relatively less investigated in the literature [68, 69]. The second
part of this book studies the influence of light waves of the EEM in opto-electronic
semiconductors and Chap. 6 investigates the influence of light waves on the EEM
in quantum confined III–V, ternary, and quaternary semiconductors. Under
external photo excitation the electron dispersion relation changes profoundly and
the EEM has been studied by formulating a new electron dispersion law on the
basis of k.p formalism. In the same chapter the influence of magnetic quantization
on the EEM has been investigated. The same chapter also explores the effect of
light waves on the EEM for 2D systems (e.g. UFs, nipi structures, and inversion
layers), 1D systems (such as quantum wire effective mass superlattices, and
quantum wire superlattices with graded interfaces) and the influence of quantizing
magnetic field on the EEM for effective mass superlattices, and superlattices with
graded interfaces respectively.

With the advent of nanodevices, the inbuilt electric field becomes so large that the
electron energy spectrum changes fundamentally and the single Chap. 7 of the third
part investigates the influence of intense electric field on the EEM in II–V, ternary
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and quaternary semiconductors. The same chapter also explores the influence of
electric field on the 2D systems (e.g. UFs, nipi structures and inversion layers) and 1D
systems (such as, nano wire effective mass superlattices, and nano wire superlattices
with graded interfaces) in this context. Chapter 8 contains the applications and brief
review of experimental results. Chapter 9 contains the conclusion and the scope for
future research.

It may be noted that the influence of crossed electric and quantizing magnetic
fields on the transport properties of semiconductors having various band structures
are relatively less investigated as compared with the corresponding magnetic
quantization, although, the cross-fields are fundamental with respect to the addi-
tion of new physics and the related experimental findings. It is well known that in
the presence of electric field ðEoÞ along x-axis and the quantizing magnetic field
ðBÞ along z-axis, the dispersion relations of the conduction electrons in semi-
conductors become modified and for which the electron moves in both the z and y
directions. The motion along y-direction is purely due to the presence of E0 along
x-axis and in the absence of electric field, the EEM along y-axis tends to infinity
which indicates the fact that the electron motion along y-axis is forbidden. The
EEM of the isotropic, bulk semiconductors having parabolic energy bands exhibits
mass anisotropy in the presence of cross fields and this anisotropy depends on the
electron energy, the magnetic quantum number, the electric and the magnetic
fields respectively, although, the EEM along z-axis is a constant quantity. In 1966,
Zawadzki and Lax [70] formulated the electron dispersion law for III-V semi-
conductors in accordance with the two-band model of Kane under cross fields
configuration which generates the interest to study this particular topic of solid
state science in general [71–77].

Appendix A investigates the EEM under cross field configuration in nonlinear
optical, III–V, II–VI, Bi, IV–VI, and stressed Kane-type semiconductors and ultra
thin films of the aforementioned materials. It is an amazing fact that though
heavily doped semiconductors have been deeply studied in the literature but the
study of the carrier transport in heavily doped materials through proper formula-
tion of the Boltzmann transport equation which needs in turn, the corresponding
heavily doped carrier energy spectra is still one of the open research problems
[78–81]. Appendix B attempts to touch the enormous field of active research with
respect to EEM of heavily doped compound semiconductors in a nutshell.
Appendix C deals with the EEM in III–V, II–VI, IV–VI, HgTe/CdTe, and strained
layer heavily doped superlattices with graded interfaces and effective mass
superlattices of the said constituent materials. In these appendices no graphs
together with results and discussions are being presented since we feel that the
readers will enjoy the complex computer algorithm to investigate the EEM in the
respective case generating new physics and thereby transforming each appendix
into a short monograph by considering various materials having different
dispersion relations. Since there is no existing book devoted totally to the EEM in
low-dimensional semiconductors to the best of our knowledge, we hope that this
book will be a useful reference source for the present and the next generation of
readers and researchers of materials and allied sciences in general. In spite of our
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joint efforts, the production of error-free first edition of any book from every point
of view enjoys permanently the domain of impossibility theorems and the same
stands very true for this monograph also. Various expressions of this book have
been appearing for the first time in printed form. The suggestions of the readers for
the development of this book will be highly appreciated for the purpose of future
edition, if any.

In this book, from Chap. 1 till the end, we have presented 250 open research
problems in this particular topic. The problems presented here are the integral part
of this book and will be useful for the readers to initiate their own contributions on
the effective mass. This aspect is also important for Ph.D. aspirants and
researchers. Each chapter ends with a table containing the main results excluding
the last two and the Appendices.

In this monograph, we have investigated various dispersion relations of
different quantized structures and the corresponding electron statistics to study
effective mass. Our theoretical formulation of the density-of-states effective mass
of tetragonal materials based on our generalized electron dispersion relation agrees
well with the available experimental data as given elsewhere [82]. Thus, in this
book, the readers will get a lot of information regarding quantum confined low-
dimensional materials having different band structures. Although the name of the
book is extremely specific, from the content, one can infer that it should be useful
in graduate courses on materials science, nanoscience and technology, solid-state
science, semiconductor physics, and nanostructured devices in many universities
and institutes. Last but not the least, we do hope that our humble effort will kindle
the desire to delve deeper into this fascinating topic by anyone engaged in
materials research and device development either in academics or in industries.
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Part I
Influence of Quantum Confinement on the

Effective Electron Mass (EEM) in
Non-Parabolic Semiconductors



Chapter 1
The EEM in Ultrathin Films (UFs)
of Nonparabolic Semiconductors

1.1 Introduction

The concept of the effective mass of the carriers in semiconductors is one of the basic
pillars in the realm of solid state and related sciences [1]. It must be noted that among
the various definitions of the effective electron mass (e.g effective acceleration mass,
density-of-state effective mass, concentration effective mass, conductivity effective
mass, Faraday rotation effective mass, etc) [2], it is the effective momentum mass that
should be regarded as the basic quantity [3]. This is due to the fact that it is this mass
which appears in the description of transport phenomena and all other properties
of the conduction electrons in a semiconductor with arbitrary band nonparabolicity
[3]. It can be shown that it is the effective momentum mass which enters in various
transport coefficients and plays the most dominant role in explaining the experimental
results of different scattering mechanisms through Boltzmann’s transport equation
[4, 5]. The carrier degeneracy in semiconductors influences the effective mass when
it is energy dependent. Under degenerate conditions, only the electrons at the Fermi
surface of n-type semiconductors participate in the conduction process and hence,
the effective momentum mass of the electrons (EEM) corresponding to the Fermi
level would be of interest in electron transport under such conditions. The Fermi
energy is again determined by the carrier energy spectrum and the electron statistics
and therefore, these two features would determine the dependence of the EEM in
degenerate n-type semiconductors under the degree of carrier degeneracy. In recent
years, various energy wave vector dispersion relations have been proposed [6–38]
which have created the interest in studying the EEM in such materials under external
conditions. The nature of these variations has been investigated in the literature
[39–85]. Some of the significant features, which have emerged from these studies,
are:

(a) The EEM increases monotonically with electron concentration.
(b) The EEM increases with doping in heavily doped materials in the presence of

band tails.
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(c) The nature of variations is significantly influenced by the energy band constants
of various materials having different band structures.

(d) The EEM oscillates with inverse quantizing magnetic field due to SdH effect. The
EEM in Bismuth under magnetic quantization depends both on the Fermi energy
and on the magnetic quantum number due to the presence of band nonparabolicity
only.

(e) The EEM increases with the magnitude of the quantizing electric field in n-
channel inversion layers of III-V semiconductors and depend on the subband
index for both low and high electric field limits.

(f) The EEM in ultrathin films of nonlinear optical materials depends on the Fermi
energy and size quantum numbers due to the specific dispersion relations.

(g) The EEM has significantly different values in superlattices and also in the pres-
ence of quantum confined superlattices of small gap semiconductors with graded
interfaces.

In recent years, with the advent of fine lithographical methods [86, 87] molecular
beam epitaxy [88], organometallic vapor-phase epitaxy [89], and other experimental
techniques, the restriction of the motion of the carriers of bulk materials in one (ultra-
thin films, NIPI structures, inversion, and accumulation layers), two (nanowires) and
three (quantum dots, magnetosize quantized systems, magneto accumulation lay-
ers, magneto inversion layers, quantum dot superlattices, magneto ultrathin film
superlattices, and magneto NIPI structures) dimensions have in the last few years,
attracted much attention not only for their potential in uncovering new phenomena
in nanoscience but also for their interesting quantum device applications [90–93].
In ultrathin films (UFs), the restriction of the motion of the carriers in the direction
normal to the film (say, the z direction) may be viewed as carrier confinement in
an infinitely deep 1D rectangular potential well, leading to quantization [known as
quantum size effect (QSE)] of the wave vector of the carrier along the direction of
the potential well, allowing 2D carrier transport parallel to the surface of the film
representing new physical features not exhibited in bulk semiconductors [94–98].
The low-dimensional heterostructures based on various materials are widely inves-
tigated because of the enhancement of carrier mobility [99].These properties make
such structures suitable for applications in ultrathin film lasers [100], heterojunction
FETs [101, 102], high-speed digital networks [103–106], high-frequency microwave
circuits [107], optical modulators [108], optical switching systems [109], and other
devices. The constant energy 3D wave-vector space of bulk semiconductors becomes
2D wave-vector surface in UFs due to dimensional quantization. Thus, the concept
of reduction of symmetry of the wave-vector space and its consequence can unlock
the physics of low-dimensional structures.

In this chapter, we study the EEM in UFs of nonparabolic semiconductors having
different band structures. At first we shall investigate the EEM in UFs of nonlinear
optical compounds which are being used in nonlinear optics and light emitting diodes
[110]. The quasi-cubic model can be used to investigate the symmetric properties
of both the bands at the zone center of wave vector space of the same compound.
Including the anisotropic crystal potential in the Hamiltonian, and special features
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of the nonlinear optical compounds, Kildal [111] formulated the electron dispersion
law under the assumptions of isotropic momentum matrix element and the isotropic
spin-orbit splitting constant, respectively, although the anisotropies in the two afore-
mentioned band constants are the significant physical features of the said materials
[112–114]. In Sect. 1.2.1, the EEM in UFs of nonlinear optical semiconductors has
been investigated by considering the combined influence of the anisotropies of the
said energy band constants together with the inclusion of the crystal field splitting
respectively within the framework of k.p formalism. The III-V compounds find appli-
cations in infrared detectors [115], quantum dot light emitting diodes [116], quantum
cascade lasers [117], ultrathin film wires [118], optoelectronic sensors [119], high
electron mobility transistors [120], etc. The electron energy spectrum of III-V semi-
conductors can be described by the three- and two-band models of Kane [121, 122],
together with the models of Stillman et al. [123], Newson and Kurobe [124] and, Palik
et al. [125] respectively. In this context it may be noted that the ternary and quaternary
compounds enjoy the singular position in the entire spectrum of optoelectronic mate-
rials. The ternary alloy Hg1−x Cdx Te is a classic narrow gap compound. The band
gap of this ternary alloy can be varied to cover the spectral range from 0.8 to over
30µm [126] by adjusting the alloy composition. Hg1−x Cdx Te finds extensive appli-
cations in infrared detector materials and photovoltaic detector arrays in the 8–12µm
wave bands [127]. The above uses have generated the Hg1−x Cdx Te technology for
the experimental realization of high mobility single crystal with specially prepared
surfaces. The same compound has emerged to be the optimum choice for illuminat-
ing the narrow subband physics because the relevant material constants can easily
be experimentally measured [128]. Besides, the quaternary alloy In1−x Gax AsyP1−y

lattice matched to InP, also finds wide use in the fabrication of avalanche photode-
tectors [129], hetero-junction lasers [130], light emitting diodes [131] and avalanche
photodiodes[132], field effect transistors, detectors, switches, modulators, solar cells,
filters, and new types of integrated optical devices are made from the quaternary sys-
tems [133]. It may be noted that all types of band models as discussed for III-V semi-
conductors are also applicable for ternary and quaternary compounds. In Sect. 1.2.2,
the EEM in UFs of III-V, ternary and quaternary semiconductors has been studied in
accordance with the said band models and the simplified results for wide gap mate-
rials having parabolic energy bands under certain limiting conditions have further
been demonstrated as a special case and thus confirming the compatibility test.

The II-VI semiconductors are being used in nanoribbons, blue green diode lasers,
photosensitive thin films, infrared detectors, ultra high-speed bipolar transistors, fiber
optic communications, microwave devices, solar cells, semiconductor gamma-ray
detector arrays, semiconductor detector gamma camera and allow for a greater den-
sity of data storage on optically addressed compact discs [134–141]. The carrier
energy spectra in II-VI compounds are defined by the Hopfield model [142] where
the splitting of the two-spin states by the spin-orbit coupling and the crystalline field
has been taken into account. The Sect. 1.2.3 contains the investigation of the EEM
in UFs of II-VI compounds.

In recent years, Bismuth (Bi) nanolines have been fabricated and Bi also finds
use in array of antennas which leads to the interaction of electromagnetic waves
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with such Bi-nanowires [143, 144]. Several dispersion relations of the carriers have
been proposed for Bi. Shoenberg [145, 146] experimentally verified that the de Haas-
Van Alphen and cyclotron resonance experiments supported the ellipsoidal parabolic
model of Bi, although, the magnetic field dependence of many physical properties
of Bi supports the two-band model [147].The experimental investigations on the
magneto-optical and the ultrasonic quantum oscillations support the Lax ellipsoidal
nonparabolic model [147]. Kao [148], Dinger and Lawson [149] and Koch and Jensen
[150] demonstrated that the Cohen model [151] is in conformity with the experimen-
tal results in a better way. Besides, the hybrid model of bismuth, as developed by
Takoka et al., also finds use in the literature [152]. McClure and Choi [153] derived
a new model of Bi and they showed that it can explain the data for a large number
of magneto-oscillatory and resonance experiments.

In Sect. 1.2.4, the EEM in UFs of Bi has been formulated in accordance with the
aforementioned energy band models for the purpose of relative assessment. Besides,
under certain limiting conditions all the results for all the models of 2D systems are
reduced to the well-known result of the EEM in UFs of wide gap materials. This
above statement exhibits the compatibility test of our theoretical analysis.

Lead chalcogenides (PbTe, PbSe, and PbS) are IV-VI nonparabolic semiconduc-
tors whose studies over several decades have been motivated by their importance in
infrared IR detectors, lasers, light-emitting devices, photovoltaics, and high temper-
ature thermoelectrics [154–158]. PbTe, in particular, is the end compound of several
ternary and quaternary high performance high temperature thermoelectric materials
[159–163]. It has been used not only as bulk but also as films [164–167], ultrathin
films [168] superlattices [169, 170] nanowires [171] and colloidal and embedded
nanocrystals [172–175], and PbTe films doped with various impurities have also
been investigated [176–183] These studies revealed some of the interesting features
that had been seen in bulk PbTe, such as Fermi level pinning and, in the case of
superconductivity [184]. In Sect. 1.2.5, the EEM in UFs of IV-VI semiconductors
has been studied taking PbTe, PbSe, and PbS as examples.

The stressed semiconductors are being investigated for strained silicon transistors,
quantum cascade lasers, semiconductor strain gages, thermal detectors, and strained-
layer structures [185–188]. The EEM in UFs of stressed compounds (taking stressed
n-InSb as an example) has been investigated in Sect. 1.2.6 The vacuum deposited
Tellurium (Te) has been used as the semiconductor layer in thin-body transistors
(TFT) [189] which is being used in CO2 laser detectors [190], electronic imaging,
strain sensitive devices [191, 192], and multichannel Bragg cell [193]. Section 1.2.7
contains the investigation of EEM in UFs of Tellurium.

The n-Gallium Phosphide (n-GaP) is being used in quantum dot light emitting
diode [194], high efficiency yellow solid state lamps, light sources, high peak cur-
rent pulse for high gain tubes. The green and yellow light emitting diodes made of
nitrogen-doped n-GaP possess a longer device life at high drive currents [195–197].
In Sect. 1.2.8, the EEM in UFs of n-GaP has been studied. The Platinum Anti-
monide (PtSb2) finds application in device miniaturization, colloidal nanoparticle
synthesis, sensors and detector materials and thermo-photovoltaic devices
[198–200]. Section 1.2.9 explores the EEM in UFs of PtSb2.Bismuth telluride
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(Bi2Te3) was first identified as a material for thermoelectric refrigeration in 1954
[201] and its physical properties were later improved by the addition of bismuth
selenide and antimony telluride to form solid solutions [202–206]. The alloys of
Bi2Te3 are useful compounds for the thermoelectric industry and have been inves-
tigated in the literature [202–206]. In Sect. 1.2.10, the EEM in UFs of Bi2Te3 has
been considered.

The usefulness of elemental semiconductor Germanium is already well known
since the inception of transistor technology and, it is also being used in memory
circuits, single photon detectors, single photon avalanche diode, ultrafast optical
switch, THz lasers and THz spectrometers [207–210]. In Sect. 1.2.11, the EEM has
been studied in UFs of Ge. Gallium Antimonide (GaSb) finds applications in the fiber
optic transmission window, heterojunctions, and ultrathin films. A complementary
heterojunction field effect transistor in which the channels for the p-FET device
and the n-FET device forming the complementary FET are formed from GaSb. The
band gap energy of GaSb makes it suitable for low power operation [211–216]. In
Sect. 1.2.12, the EEM in UFs of GaSb has been studied. Section 1.3 contains the result
and discussions pertaining to this chapter. The last Sect. 1.4 contains open research
problems.

1.2 Theoretical Background

1.2.1 The EEM in UFs of Nonlinear Optical Semiconductors

The form of k.p matrix for nonlinear optical compounds can be expressed extending
Bodnar [112] as

H =
[

H1 H2

H+
2 H1

]
(1.1)

where,

H1 ≡

⎡
⎢⎢⎢⎢⎣

Eg0 0 P‖kz 0

0
(−2�‖/3

) (√
2�⊥/3

)
0

P‖kz

(√
2�⊥/3

)
− (
δ + 1

3�‖
)

0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

H2 ≡

⎡
⎢⎢⎣

0 − f,+ 0 f,−
f,+ 0 0 0
0 0 0 0
f,+ 0 0 0

⎤
⎥⎥⎦

in which Eg0 is the band gap in the absence of any field, P‖ and P⊥ are the momentum
matrix elements parallel and perpendicular to the direction of crystal axis respectively,
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δ is the crystal-field splitting constant,�‖ and�⊥ are the spin-orbit splitting constants

parallel and perpendicular to the C-axis respectively, f,± ≡
(

P⊥/
√

2
) (

kx ± iky
)

and i = √−1. Thus, neglecting the contribution of the higher bands and the free
electron term, the diagonalization of the above matrix leads to the dispersion relation
of the conduction electrons in bulk specimens of nonlinear optical semiconductors
as

γ (E) = f1(E)k
2
s + f2(E)k

2
z (1.2)

where,

γ (E) ≡ E(E + Eg0)

[
(E + Eg0)(E + Eg0 +�‖)+ δ

(
E + Ego + 2

3
�‖
)

+2

9
(�2‖ −�2⊥)

]
,

E is the total energy of the electron as measured from the edge of the conduction band
in the vertically upward direction in the absence of any quantization, k2

s = k2
x + k2

y ,

f1(E) ≡ �
2 Eg0

(
Eg0 +�⊥

)
[
2m∗⊥

(
Eg0 + 2

3�‖
)]

×
[
δ

(
E + Eg0 + 1

3
�‖

)
+ (E + Eg0 )

(
E + Eg0 + 2

3
�‖

)
+ 1

9
(�2‖ −�2‖)

]

f2(E) ≡ �
2 Eg0

(
Eg0 +�‖

)
[
2m∗‖

(
Eg0 + 2

3�‖
)]
[
(E + Eg0)

(
E + Eg0 + 2

3
�‖
)]
, � = h/2π,

h is Planck’s constant and m∗‖ and m∗⊥ are the longitudinal and transverse effective
electron masses at the edge of the conduction band respectively.

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in this case can be written following (1.2) as

ψ1(E) = ψ2(E)k
2
s + ψ3(E)(nzπ/dz)

2 (1.3)

where ψ1(E) = γ (E), ψ2(E) = f1(E), ψ3(E) = f2(E), nz(= 1, 2, 3, . . .) and dz

are the size quantum number and the nano-thickness along the z-direction respec-
tively.

The EEM is defined as the ratio of the electron momentum to the group velocity.
The EEM at the Fermi level in the xy-plane can be written as

m∗(EF , nz) = �
2ks

∂ks

∂E

∣∣∣∣
E=EFs

(1.4)
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where EFs is the Fermi energy in the presence of size quantization as measured from
the edge of the conduction band in the vertically upward direction in the absence of
any quantization. From (1.3) and (1.4), the EEM in this case can be written as

m∗(EFs , nz) =
(

�
2

2

)
[ψ2(EFs)]−2

[
ψ2(EFs)

{
{ψ1(EFs)}′ − {ψ3(EFs)}′

(
nzπ

dz

)2
}

−
{
ψ1(EFs)− ψ3(EFs)

(
nzπ

dz

)2
}

{ψ2(EFs)}′
]

(1.5)

where, the primes denote the differentiation of the differentiable functions with
respect to Fermi energy. Thus, we observe that the EEM is the function of size
quantum number and the Fermi energy due to the combined influence of the crystal-
field splitting constant and the anisotropic spin-orbit splitting constants respectively.
To study the dependence of the EEM as a function of electron concentration per unit
area we have to formulate the corresponding density-of-states function (DOS).

The general expression of the total 2D DOS (N2DT (E))in this case is given by

N2DT (E) = 2gv

(2π)2

nzmax∑
nz=1

∂A(E, nz)

∂E
H
(
E − Enz

)
(1.6)

where, gv is the valley degeneracy, A(E, nz) is the area of the constant energy 2D
wave vector space for UFs, H(E − Enz )is the Heaviside step function and (Enz )

is the corresponding subband energy. Using (1.3) and (1.6), the expression of the
N2DT (E) for UFs of nonlinear optical semiconductors can be written as

N2DT (E) =
( gv

2π

) nzmax∑
nz=1

[ψ2(E)]
−2

[
ψ2(E)

{
{ψ1(E)}′ − {ψ3(E)}′

(
nzπ

dz

)2
}

−
{
ψ1(E)− ψ3(E)

(
nzπ

dz

)2
}

{ψ2(E)}′
]

H(E − Enz1
) (1.7)

where, the subband energies (Enz1
) in this case is given by

ψ1(Enz1
) = ψ2(Enz1

)(nzπ/dz)
2 (1.8)

Combining (1.7) with the Fermi-Dirac occupation probability factor, integrating
between Enz1

to infinity and applying the generalized Somerfeld’s lemma, the 2D
carrier statistics in this case assumes the form

n2D = gv

2π

nxmax∑
nx =1

[
T51 (EFs, nz)+ T52 (EFs, nz)

]
(1.9)
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where,

T51 (EFs, nz) ≡
[
ψ1(EFs)− ψ3(EFs)(nzπ/dz)

2

ψ2(EFs)

]
,

T52 (EFs, nz) ≡
s∑

r=1

L(r)[T51 (EFs, nz)],

L(r) = 2(kB T )2r (1 − 21−2r )ξ(2r) ∂
2r

∂E2r
f
, kB is the Boltzmann constant, T is the

temperature, r is the set of real positive integers whose upper limit is s, ξ(2r) is the
Zeta function of order 2r [217].

1.2.2 The EEM in UFs of III–V Semiconductors

The dispersion relation of the conduction electrons of III-V compounds are described
by the models of Kane (both three and two bands) [121, 122], Stillman et al. [123],
Newson and Kurobe [124] and Palik et al. [125] respectively. For the purpose of
complete and coherent presentation, the EEM in UFs of III-V semiconductors have
also been investigated in accordance with the aforementioned different dispersion
relations for the purpose of relative comparison as follows:

(a) The three-band model of Kane
Under the conditions, δ = 0,�‖ = �⊥ = � (isotropic spin orbit splitting
constant) and m∗⊥ = m∗⊥ = mc (isotropic effective electron mass at the edge of
the conduction band), (1.2) gets simplified into the form

�
2k2

2mc
= I11(E), I11(E) ≡ E(E + Eg0)(E + Eg0 +�)(Eg0 + 2

3�)

Eg0(Eg0 +�)(E + Eg0 + 2
3�)

(1.10)

which is known as the three-band model of Kane [121, 122] and is often used
to study the electronic properties of III-V materials.
Thus, under the conditions δ = 0,�‖ = �⊥ = � and m∗‖ = m∗⊥ = mc, (1.3)
assumes the form

�
2k2

s

2mc
+ �

2

2mc
(nzπ/dz)

2 = I11(E) (1.11)

Using (1.11) and (1.4), the EEM in x–y plane for this case can be written as

m∗(EFs) = mc{I11(EFs)}′ (1.12)

It is worth noting that the EEM in this case is a function of Fermi energy alone
and is independent of size quantum number.
The total 2D DOS function can be written as
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N2DT (E) =
(mcgv

π�2

) nzmax∑
nz=1

{
[I11(E)]′ H

(
E − Enz2

)}
(1.13)

where, the subband energies Enz2
can be expressed as

I11(Enz2
) = �

2

2mc
(nzπ/dz)

2 (1.14)

The 2D carrier concentration assumes the form

n2D = mcgv

π�2

nzmax∑
nz=1

[T53(EFs, nz)+ T54(EFs, nz)] (1.15)

where

T53(EFs, nz) ≡
[

I11(EFs)− �
2

2mc

(
nzπ

dz

)2
]

and

T54(EFs, nz) ≡
s∑

r=1

L(r)T53(EFs, nz).

Under the inequalities � � Eg0 or � 	 Eg0 (1.10) can be expressed as

E(1 + αE) = �
2k2

2mc
(1.16)

where, α ≡ 1/Eg0 and is known as band nonparabolicity.
It may be noted that (1.16) is the well-known two-band model of Kane and is used
in the literature to study the physical properties of those III-V and optoelectronic
materials whose energy band structures obey the aforementioned inequalities.
Under the said inequalities (1.11) assumes the form

E(1 + αE) = �
2k2

s

2mc
+ �

2

2mc

(
nzπ

dz

)2

(1.17)

The EEM in this case can be written as

m∗(EFs) = mc(1 + 2αEFs) (1.18)

Thus, we observe that the EEM in the present case is a function of Fermi energy
only due to the presence of band nonparabolicity.
The total 2D DOS function assumes the form
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N2DT (E) = mcgv

π�2

nzmax∑
nz=1

(1 + 2αE)H
(

E − Enz3

)
(1.19)

where, the subband energy (Enz3
) can be expressed as

�
2

2mc
(nzπ/dz)

2 = Enz3

(
1 + αEnz3

)
(1.20)

The 2D electron statistics can be written as

n2D = mcgv

π�2

nzmax∑
nz=1

∞∫
Enz3

(1 + 2αE)d E

1 + exp
(

E−EFs
kB T

)

= mckB T gv

π�2

nzmax∑
nz=1

[
(1 + 2αEnz3

)F0(ηn1)+ 2αkB T F1(ηn1)
]

(1.21)

where, ηn1 ≡ (EFs − Enz3
)/kB T and Fj (η) is the one-parameter Fermi-Dirac

integral of order j which can be written [218, 219] as

Fj (η) =
(

1

�( j + 1)

) ∞∫
0

x j dx

1 + exp(x − η)
, j > −1 (1.22)

or for all j, analytically continued as a complex contour integral around the
negative x-axis

Fj (η) =
(
�(− j)

2π
√−1

) +0∫
−∞

x j dx

1 + exp(−x − η)
(1.23)

where η is the dimensionless x independent variable.
Under the condition α → 0, the expressions of total 2D DOS, for UFs whose
bulk electrons are defined by the isotropic parabolic energy bands can, be written
as

N2DT (E) = mcgv

π�2

nzmax∑
nz=1

H
(

E − Enz p

)
(1.24)

The subband energy (Enz p
), the EEM, and the n2D can respectively be expressed

as

Enz p
= �

2

2mc

(
nzπ

dz

)2

(1.25)
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m∗(EFs) = mc (1.26)
and

n2D = mckbT gv

π�2

nzmax∑
nz=1

F0(ηn2) (1.27)

where, ηn2 ≡ 1
kB T

[
EFs − �2

2mc

(
nzπ
dz

)2
]

It may be noted that the results of this section are already well known in the
literature [220].

(b) The model of Stillman et al.
In accordance with the model of Stillman et al. [123], the electron dispersion
law of III-V materials assumes the form

E = t11k2 − t12k4 (1.28)
where,

t̄11 ≡ �
2

2mc
; t̄12 ≡

(
1 − mc

m0

)2 (
�

2

2mc

)2

×
[(

3Eg0 + 4�+ 2�2

Eg0

)
.{(Eg0 +�)(2�+ 3Eg0)}−1

]

and m0 is the free electron mass.
Equation (1.28) can be expressed as

�
2k2

2mc
= I12(E) (1.29)

where, I12(E) ≡ a11
[
1 − (1 − a12 E)1/2

]
, a11 ≡

(
�

2 t̄11

4mct̄12

)
and a12 ≡ 4t̄12

t̄2
11

.

The 2D electron dispersion relation in this case assumes the form

�
2k2

s

2mc
+ �

2

2mc
(nzπ/dz)

2 = I12(E) (1.30)

Using (1.30) and (1.4), the EEM in x–y plane for this case can be written as

m∗(EFs) = mc{I12(EFs)}′ (1.31)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as
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N2DT (E) =
(mcgv

π�2

) nzmax∑
nz=1

{
[I12(E)]′H(E − Enz3

)
}

(1.32)

where, the subband energies Enz3
can be expressed as

I12(Enz3
) = �

2mc
(nzπ/dz)

2 (1.33)

The 2D carrier concentration assumes the form

n2D = mcgv

π�2

nzmax∑
nz=1

[
T55(EFs, nz)+ T56(EFs, nz)

]
(1.34)

where

T55(EFs, nz) ≡
[

I12(EFs)− �
2

2mc

(
nzπ

dz

)2
]

and

T56(EFs, nz) ≡
s∑

r=1

L(r)T55(EFs, nz)

(c) Model of Palik et al.
The energy spectrum of the conduction electrons in III-V semiconductors up to
the fourth order in effective mass theory, taking into account the interactions of
heavy hole, light hole and the split-off holes can be expressed in accordance with
the model of Palik et al. [125] as

E = �
2k2

2mc
− B̄11k4 (1.35)

where

B̄11 =
[

�
4

4Eg0(mc)2

]⎡⎣1 + x2
11
2

1 + x11
2

⎤
⎦ (1 − y11)

2,

x11 =
[

1 +
(
�

Eg0

)]−1

and y11 = mc

mo

The (1.35) gets simplified as

�
2k2

2mc
= I13(E) (1.36)
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where

I13(E) = b̄12

[
ā12 − ((ā12)

2 − 4E B̄11)
1/2
]
,

ā12 =
(

�
2

2mc

)
and b̄12 =

[
ā12

2B̄11

]

The 2D electron dispersion relation in this case assumes the form

�
2k2

s

2mc
+ �

2

2mc
(nzπ/dz)

2 = I13(E) (1.37)

Using (1.37) and (1.4), the EEM in x–y plane for this case can be written as

m∗(EFs) = mc{I13(EFs)}′ (1.38)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as

N2DT (E) =
(mcgv

π�2

) nzmax∑
nz=1

{
[I13(E)]′H(E − Enz4

)
}

(1.39)

where, the subband energiesEnz4
can be expressed as

I13(Enz4
) = �

2mc
(nzπ/dz)

2 (1.40)

The 2D carrier concentration assumes the form

n2D = mcgv

π�2

nzmax∑
nz=1

[
T57(EFs, nz)+ T58(EFs, nz)

]
(1.41)

where

T57(EFs, nz) ≡
[

I13(EFs)− �
2

2mc

(
nzπ

dz

)2
]

and

T58(EFs, nz) ≡
s∑

r=1

L(r)T57(EFs, nz)
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1.2.3 The EEM in UFs of II–VI Semiconductors

The carrier energy spectra in bulk specimens of II-VI compounds in accordance with
Hopfield model [142] can be written as

E = a′
ok2

s + b′
ok2

z ± λ̄oks (1.42)

where a′
o ≡ �

2/2m∗⊥, b′
o ≡ �

2/2m∗⊥, and λ̄o represents the splitting of the two-spin
states by the spin-orbit coupling and the crystalline field.

The dispersion relation of the conduction electrons of UFs of II-VI materials for
dimensional quantization along z-direction can be written following (1.42) as

E = a′
ok2

s + b′
o

(
nzπ

dz

)2

± λ̄oks (1.43)

Using (1.43), the EEM in this case can be written as

m∗(EFs, nz) = m∗⊥

⎡
⎢⎢⎢⎣1∓ (λ̄o)[

(λ̄o)2 − 4a′
ob′

o

(
nzπ
dz

)2 + 4a′
o EFs

]1/2

⎤
⎥⎥⎥⎦ (1.44)

Thus, we can infer that the EEM in the UFs of II-VI compounds is a function
of both the size quantum number and the Fermi energy due to the presence of the
term λ̄o.

The subband energy Enz5
assumes the form

Enz5
= b′

o(nzπ/dz)
2 (1.45)

The area of constant energy 2D quantized surface in this case is given by

A± (E, nz) =
[

π

2
(
a′

0

)2
[(
λ0
)2 + 2a′

0

(
E − Enz5

)
± λ0

[(
λ0
)2 + 4a′

0
(
E − Enz5

)]1/2
]]

(1.46)

The surface electron concentration under the condition of extreme carrier degen-
eracy can be expressed in this case as

n2D = 2gv

2 (2π)2

nz max∑
nz=1

[
A+

(
EFs,nz

)+ A−
(
EFs,nz

)]
(1.47)
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Using (1.46) and (1.47) we get

n2D = gvm∗⊥
π�2

nz max∑
nz=1

(
EFs − Enz5

+ (
λ
)2

m∗⊥�
−2
)

(1.48)

1.2.4 The EEM in UFs of Bismuth

(a) The McClure and Choi model
The dispersion relation of the carriers in Bi can be written, following the McClure
and Choi [153], as

E(1 + αE) = p2
x

2m1
+ p2

y

2m2
+ p2

z

2m3
+ p2

y

2m2
αE

{
1 −

(
m2

m′
2

)}

+ p4
yα

4m2m′
2

− αp2
x p2

y

4m1m2
− αp2

y p2
z

4m2m3
(1.49)

where pi ≡ �ki , i = x, y, z,m1,m2 and m3 are the effective carrier masses at
the band-edge along x, y and z directions respectively and m′

2 is the effective-
mass tensor component at the top of the valence band (for electrons) or at the
bottom of the conduction band (for holes).
The dispersion relation of the conduction electrons in UFs of Bi for dimensional
quantization along kz direction can be written following (1.49) for this model as

E(1 + αE) = p2
x

2m1
+ p2

y

2m2
+ �

2

2m3

(
nzπ

dz

)2

+ p2
y

2m2
αE

{
1 −

(
m2

m′
2

)}

+ p4
yα

4m2m′
2

− αp2
x p2

y

4m1m2
− αp2

y�
2

4m2m3

(
nzπ

dz

)2

(1.50)

Equation (1.50) can, approximately, be expressed as

γ1(E, nz) = p1k2
x + q1(E)k

2
y + R1(E, nz)k

4
y (1.51)

where,

γ1(E, nz) ≡
[

E(1 + αE)− �
2

2m3

(
nzπ

dz

)2
]
, p1 ≡ �

2

2m1
,

q1(E) ≡ �
2

2m2

[
1 + αE

(
1 − m2

m′
2

)
− αE(1 + αE)

]
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and

R1(E, nz) ≡
[

α�
4

4m2m′
2

+ α

(
�

2

2m2

)2
{

1 + αE

(
1 − m2

m′
2

)
− α�

2

2m3

(
nzπ

dz

)2
}]

The area enclosed by (1.51) is defined by the following integral:

A (E, nz) = 4

[
R1 (E, nz)

p1

]1/2

· J1 (E, nz) (1.52)

where,

J1(E, nz) ≡
uo(E,nz)∫

0

[
γ1(E, nz)

R1(E, nz)
− q1(E)k2

y

R1(E, nz)
− k4

y

]1/2

dky

and

u0(E, nz) ≡
[√

q2
1 (E)

4R2
1(E, nz)

+ γ1(E, nz)

R1(E, nz)
− q1(E)

]1/2

Thus, the area enclosed can be written as

A(E, nz) = 4

3

[
R1(E, nz)

p1

]1/2 [
a2(E, nz)+ b2(E, nz)

]1/2

[
a2(E, nz)F

[π
2
, l(E, nz)

]
−
[
a2(E, nz)− b2(E, nz)

]
E
[π

2
, l(E, nz)

]]
(1.53)

where,

a2(E, nz) ≡ q1(E)

2R1(E, nz)
+ 1

2

[
q2

1 (E)

R2
1(E, nz)

+ 4γ1(E, nz)

R1(E, nz)

]1/2

,

b2(E, nz) ≡ 1

2

[
q2

1 (E)

R2
1(E, nz)

+ 4γ1(E, nz)

R1(E, nz)

]1/2

−
(

q1(E)

2R1(E, nz)

)
,

l(E, nz) ≡ b(E, nz)√
a2(E, nz)+ b2(E, nz)

, F
[π

2
, l(E, nz)

]
and E

[π
2
, l(E, nz)

]

are the complete elliptic integral of the first and second kinds respectively [217]
Using (1.53), the EEM can be written as
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m∗(EFs, nz) =
(

2�
2

3π
√

p1

)
[R3(E, nz)]|E=EFs (1.54)

where,

R3(EFs, nz)

≡ 1

2

[
R1(EFs, nz)

]−1/2 [R1(EFs, nz)]′[a2(EFs, nz)+ p2(EFs, nz)]1/2

×
[
a2(EFs, nz)F

(π
2
, l(EFs, nz)

)
− [a2(EFs, nz)

− b2(EFs, nz)]E
(π

2
, l(EFs, nz)

)]

+√
R1(EFs, nz)

[
a2(EFs, nz)+ b2(EFs, nz)

]−1/2

× [
a(EFs, nz)(a(EFs, nz))

′ + b(EFs, nz)(b(EFs, nz))
′]

×
[
a2(EFs, nz)F

(π
2
, l(EFs, nz)

)
− [a2(EFs, nz)

−b2(EFs, nz)]E
(π

2
, l(EFs, nz)

)]

+√
R1(EFs, nz)[a2(EFs, nz)+ b2(EFs, nz)]1/2

×
[
2a(EFs, nz)(a(EFs, nz))

′F
(π

2
, l(EFs, nz)

)

+a2(EFs, nz)
{

F
(π

2
, l(EFs, nz)

)}′ − [2a(EFs, nz)[a(EFs, nz)]′

−2b(EFs, nz)(b(EFs, nz))
′]E

(π
2
, l(EFs, nz)

)

−
[
a2(EFs, nz)− b2(EFs, nz)

] (
E
(π

2
, l(EFs, nz)

))′]

Thus, the EEM in this case is a function of both the Fermi energy and the size
quantum number due to the presence of band nonparabolicity only.
The total 2D DOS function can be written following (1.53), as

N2DT (E) =
(

2gv

3π2√p1

) nzmax∑
nz=1

R3(E, nz)H(E − Enz6) (1.55)

where, the subband energies Enz6 assume the form

Enz6(1 + αEnz6) = �
2

2m3

(
n2π

dz

)′
(1.56)

Combining (1.55) with the Fermi-Dirac occupation probability factor, the 2D
electron statistics in UFs of Bi in accordance with the McClure and Choi model
can be expressed as
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n2D =
(

2gv

3π2√p1

) nzmax∑
nz=1

[θ1(EFs, nz)+ θ2(EFs, nz) (1.57)

where,

θ1(EFs, nz) ≡
{√

R1(EFs, nz)[a2(EFs, nz)+ b2(EFs, nz)]1/2

×
[
a2(EFs, nz)F

(π
2
, l(EFs, nz)

)
− [a2(EFs, nz)

− b2(EFs, nz)]F
(π

2
, l(EFs, nz)

)]}

and θ2(EFs, nz) ≡
s∑

r=1
L(r)[θ1(EFs, nz)].

(b) The Hybrid Model
The dispersion relation of the carriers in bulk specimens of Bi in accordance
with the Hybrid model can be represented as [152]

E(1 + αE) = θ0(E)(�k2
y)

2M2
+ αγ0�

4k4
y

4M2
2

+ �
2k2

x

2m1
+ �

2k2
z

2m3
(1.58)

in which θ0(E) ≡ [1 + αE(1 − γ0) + δ0], γ0 ≡ M2
m2
, δ0 ≡ M2

M ′
2

and the other

notations are defined in [152].
In the presence of size quantization along y-direction, the 2D electron dispersion
relation can be written as

�
2k2

x

2m1
+ �

2k2
z

2m3
= E(1 + αE)− θ0(E)�2

2M2

(
πny

dy

)2

− αγ0�
4

4M2
2

(
πny

dy

)4

(1.59)

The 2D area is given by

A(E, ny) = 2π
√

m1m3

�2
t29(E, ny) (1.60)

t29(E, ny) =
[

E(1 + αE)− θ0(E)�2

2M2

(
πny

dy

)2

− αγ0�
4

4M4
2

(
πny

dy

)4
]

The effective mass in the X–Z plane can be written as

m∗(EFs, ny) = [√m1m3]t ′29(EFs, ny) (1.61)

Therefore, the effective mass in UFs of Bi in accordance with Hybrid model is
a function of Fermi energy and the size quantum number due to the presence of
band nonparabolicity only.
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The subband energy are given as

Eny (1 + αE)− θ0(Eny )�
2

2M2

(
πny

dy

)2

− αγ0�
4

4M2
2

(
πny

dy

)4

= 0 (1.62)

The total DOS function in this case can be written as

N2DT (E) = gv
√

m1m3

π�2

nymax∑
ny=1

{
t29(E, ny)

}′
H(E − Eny ) (1.63)

The use of (1.63) leads to the 2D electron statistics in UFs of Bi in this case as

N2D = gv
√

m1m3

π�2

nymax∑
ny=1

[
t29(EFs, ny)+ t30(EFs, ny)

]
(1.64)

in which t30(EFs, ny) =
so∑

r=1
L(r)[t29(EFs, ny)]

(c) The Cohen model
In accordance with the Cohen model [151], the dispersion law of the carriers in
Bi is given by

E(1 + αE) = p2
x

2m1
+ p2

z

2m3
− αEp2

y

2m
′
2

+ p2
y(1 + αE)

2m2
+ αp4

y

4m2m′
2

(1.65)

The 2D electron dispersion law in UFs of Bi in accordance with this model can
be written following (1.65) as

E(1+αE) = p2
x

2m1
+ �

2

2m3

(
nzπ

dz

)2

− αEp2
y

2m
′
2

+
(

αp4
y

4m2m′
2

)
+ p2

y

2m2
(1+αE) (1.66)

The (1.66) can be written as

γ1(E, nz) = p1kz
x + q2(E)k

2
y + R2k4

y (1.67)

where, q2(E) ≡
[

�2

2m2
(1 + αE)− αE�2

2m′
2

]
and R2 ≡

(
α�4

4m2m
′
2

)
.

The EEM in this case can be written as

m∗(EFs, nz) =
(

2�
2

3π
√

p1

) [
R4(E, nz)

] |E=EFs (1.68)

in which,
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R4(EFs , nz)

≡ √
R2[a2

1(EFs , nz)+ b2(EFs , nz)]−1/2[a1(EFs , nz)(a1(EFs , nz))
′

+ b1(EFs , nz)(b1(EFs , nz))
′]
[
a2

1(EFs , nz)F
(π

2
, l(EFs , nz)

)

− [a2
1(EFs , nz)− b2

1(EFs , nz)]E
(π

2
, l1(EFs , nz)

)]

+√
R2

[
a2

1(EFs , nz)+ b2
1(EFs , nz)

]1/2 [
2a1(EFs , nz)(a1(EFs , nz))

′

×F
(π

2
, l1(EFs , nz)

)
+ a2

1(EFs , nz)
{

F
(π

2
, l1(EFs , nz)

)} ′

× [
2a1(EFs , nz)(a1(EFs , nz))

′ − 2b1(EFs , nz)(b1(EFs , nz))
′] E

(π
2
, l1(EFs , nz)

)

−
[
a2

1(EFs , nz)− b2
1(EFs , nz)

] (
E
(π

2
, l1(EFs , nz)

))′]]
,

a2
1(EFs, nz) ≡ q2(EFs)

2R2
+ 1

2

[
q2

2 (EFs)

R2
2

+ 4γ1(EF S, nz)

R2

]1/2

,

b2
1(EFs, nz ≡ 1

2

[
q2

2 (EFs)

R2
2

+ 4γ1(EFs, nz)

R2

]1/2

−
(

q2(EFs)

2R2

)

and l1(EFs, nz) ≡ b1(EFs, nz)√
a2

1(EFs, nz)+ b2
1(EFs, nz)

.

which shows that the EEM in this present case is again a function of both the
size quantum number and the Fermi energy due to the presence of the band
nonparabolicity only.
The total DOS is given by

N2DT (E) =
(

2gv

3π2√p1

) nzmax∑
nz=1

R4(E, nz)H(E − Enz7) (1.69a)

where, Enz7
is the lowest positive root of the equation

γ1

(
Enz7

, nz

)
= 0 (1.69b)

Combining (1.69a) with the Fermi-Dirac occupation probability factor, the 2D
electron statistics in UFs of Bi in accordance with the Cohen model can be
written as

n2D =
(

2gv

3π2√p1

) nzmax∑
nz=1

[
θ3(EFs, nz)+ θ4(EFs, nz)

]
(1.70)
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where,

θ3(EFs , nz) ≡
{√

R2

[
a2

1(EFs , nz)− b2
1(EFs , nz)

]1/2 [
a2

1(EFs , nz)F
(π

2
, l1(EFs , nz)

)

−
[
a2

1(EFs , nz)− b2
1(EFs , nz)

]
F
(π

2
, l1(EFs , nz)

)]
,

and θ4(EFs, nz) ≡
s∑

r=1
L(r)

[
θ3(EFs, nz)

]
.

(d) The Lax model
The electron energy spectra in bulk specimens of Bi in accordance with the Lax
model can be written as [147]

E(1 + αE) = p2
x

2m1
+ p2

y

2m2
+ p2

z

2m3
(1.71)

The 2D electron dispersion law in this case can be written as

E(1 + αE) = �
2k2

x

2m1
+ �

2ky

2m2
+ �

2

2m3

(
nzπ

dz

)2

(1.72)

The EEM in this case assumes the form

m∗(EFs) = √
m1m2(1 + 2αEFs) (1.73)

Thus, we see that the EEM for the Lax model is a function of the Fermi energy
alone due to the band nonparabolicity.
The subband energy, the total DOS function and the 2D electron statistics for
this model can, respectively, be expressed as

Enz8(1 + αEnz8) = �
2

2m3
(nzπ/dz)

2 (1.74)

N2DT (E) = gv
√

m1m2

π�2

nzmax∑
nz=1

(1 + 2αE)H(E − Enz8) (1.75)

n2D = gv
√

m1m2kB T

π�2

nzmax∑
nz=1

[
(1 + 2αEnz8)F0(ηy2)+ 2αkB T F1(ηy2)

]
(1.76)

where, ηy2 = EFs − Enz8

kB T
.

(e) The ellipsoidal parabolic model
The 2D dispersion relation, the EEM, the subband energy (Enz9), the total DOS,



24 1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

and the 2D electron statistics for this model can respectively be written as

E =
(

�
2k2

x

2m1

)
+
(

�
2k2

y

2m2

)
+
(

�
2

2m3

)(
nzπ

dz

)2

(1.77)

m∗(EFs) = (√
m1m2

)
(1.78)

N2DT (E) = gv
√

m1m2

π�2

nzmax∑
nz=1

H(E − Enz9) (1.79)

Enz9 =
(

�
2

2m3

)(
nzπ

dz

)2

(1.80)

N2D =
[

kB T gv
√

m1m2

π�2

] nzmax∑
nz=1

F0(ηy3) (1.81)

where, ηy3 ≡ (kB T )−1
[
EFs − Enz9

]

1.2.5 The EEM in UFs of IV–VI Semiconductors

The dispersion relation of the conduction electrons in IV-VI semiconductors can be
expressed in accordance with Dimmock [221] as

[
ε − Eg0

2
− �

2k2
s

2m−
t

− �
2k2

z

2m−
l

][
ε + Eg0

2
+ �

2k2
s

2m−
t

+ �
2k2

z

2m−
l

]
= P2⊥k2

s + P2‖ k2
z

(1.82)
where ε is the energy as measured from the center of the band gap Eg0,m±

t and
m±

l represent the contributions to the transverse and longitudinal effective masses
of the external L+

6 and L−
6 bands arising from the k. p perturbations with the other

bands taken to the second order. Using ε = E + (
Eg0/2

)
, P2⊥ = �2 Eg0

2m∗
t
, P2‖ = �2 Eg0

2m∗
l

(m∗
t and m∗

l are the transverse and longitudinal effective electron masses at k = 0)
in (1.82), we can write

[
E − �

2k2
s

2m−
t

− �
2k2

z

2m−
l

][
1 + αE + α + �

2k2
s

2m+
t

+ α + �
2k2

z

2m+
l

]
= �

2k2
s

2m∗
t

+ �
2k2

z

2m∗
l

(1.83)
The 2D dispersion relation of the conduction electrons in IV-VI materials in UFs for
the dimensional quantization along z direction can be expressed as
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E(1 + αE)+ αE

(
�

2k2
x

2x4
+ �

2k2
y

2x5

)
+ αE

�
2

2x6

(
nzπ

dz

)2

− (1 + αE)

(
�

2k2
x

2x1
+ �

2k2
y

2x2

)

− α

(
�

2k2
x

2x1
+ �

2k2
y

2x2

)(
�

2k2
x

2x4
+ �

2k2
y

2x5

)
− α

(
�

2k2
x

2x1
+ �

2k2
y

2x2

)
�

2

2x6

(
nzπ

dz

)2

− (1 + αE)
�

2

2x3

(
nzπ

dz

)2

− α
�

2

2x3

(
nzπ

dz

)2
(

�
2k2

x

2x4
+ �

2k2
y

2x5

)
− α

�
2

2x3

(
nzπ

dz

)2
�

2

2x6

(
nzπ

dz

)2

= �
2k2

x

2m1
+ �

2k2
y

2m2
+ �

2

2m3

(
nzπ

dz

)2

(1.84)

where

x4 = m+
t , x5 = m+

t + 2m+
l

3
, x6 = 3m+

t m+
l

2m+
l + m+

t
, x1 = m−

t , x2 = m−
t + 2m−

l

3
,

x3 = 3m−
t m−

l

2m−
l + m−

t
,m1 = m∗

t ,m2 = m+
t + 2m∗

l

3
and m3 = 3m∗

l m∗
t

m∗
t + 2m∗

l
.

Substituting kx = rCosθ and ky = rSinθ (where r and θ are 2D polar coordinates
in 2D wave vector space) in (1.84), we can write

r4

[
α

1

4

(
�

2Cos2θ

x1
+ �

2 Sin2θ

x2

)(
�

2Cos2θ

x4
+ �

2 Sin2θ

x5

)]
+ r2 1

2

[(
�

2Cos2θ

m1
+ �

2 Sin2θ

m2

)

+ α
�

2

2x3

(
nzπ

dz

)2 (
�

2Cos2θ

x4
+ �

2 Sin2θ

x5

)
+ α

(
�

2Cos2θ

x1
+ �

2 Sin2θ

x2

)
�

2

2x6

(
nzπ

dz

)2

+�
2(1 + αE)

(
Cos2θ

x1
+ Sin2θ

x2

)
− �

2αE

(
Cos2θ

x4
+ Sin2θ

x5

)]
− [E(1 + αE)

+αE
�

2

2x6

(
nzπ

dz

)2

− (1 + αE)
�

2

2x3

(
nzπ

dz

)2

− α

(
�

4

4x3x6

(
nzπ

dz

4
))]

= 0 (1.85)

The area A(E, nz) of the 2D wave vector space can be expressed as

A(E, nz) = J 1 − J 2 (1.86)

where

J 1 ≡ 2

π/2∫
0

c

b
dθ (1.87)

and

J 2 ≡ 2

π/2∫
0

ac2

b3 dθ (1.88)

in which



26 1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

α ≡
[
α

(
�

4

4

)(
Cos2θ

x1
+ Sin2θ

x2

)(
Cos2θ

x4
+ Sin2θ

x3

)]
,

b ≡
(

�
2

2

)[(
Cos2θ

m1
+ Sin2θ

m2

)
+ α

(
�

2

2x3

)(
n2π

dz

)2 (Cos2θ

x4
+ Sin2θ

x5

)

+α
(

�
2

2x6

)(
n2π

dz

)2 (Cos2θ

m1
+ Sin2θ

m2

)
+ (1 + αE)

(
Cos2θ

x1
+ Sin2θ

x2

)

− αE

(
Cos2θ

x4
+ Sin2θ

x5

)]

and

c ≡
[

E(1 + αE)+ αE

(
�

2

2x6

)(
nzπ

dz

)2

− (1 + αE)

(
�

2

2x3

)(
nzπ

dz

)2

−α
(

�
4

4x3x6

)(
nzπ

dz

4
)]

(1.87) can be expressed as J 1 = 2
π/2∫
0

t3(E,nz)dθ
A1(E,nz)Cos2θ+B1(E,nz)Sin2θ

where, t3(E, nz) ≡
c, A1(E, nz) ≡ �2

2m1
t1(E, nz),

t1(E, nz) ≡
[

1 + m1

[
1

x4

α�
2

2x3

(
nzπ

dz

)2

+ α�
2

2x1x6

(
nzπ

dz

)2

+ 1 + αE

x1
− αE

x4

]]

B1(E, nz) ≡ �
2

2m2
t2(E, nz) and

t2(E, nz) ≡
[

1 + m2

[
α�

2

2x3x5

(
nzπ

dz

)2

+ α�
2

2x2x6

(
nzπ

dz

)2

+ 1 + αE

dz
− αE

x5

]]
.

Performing the integration, we get

J 1 = π t3(E, nz)[A1(E, nz)B1(E, nz)]−1/2 (1.89)

From (1.88) we can write

J 2 = αt2
3 (E, nz)�

4

2B3
1 (E, nz)

I (1.90)

where
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I ≡
∞∫

0

(a1 + a2z2)(a3 + a4z2)dz

[(a)2 + z2]3 (1.91)

in which a1 ≡ 1
x1
, a2 ≡ 1

x2
, z = tanθ, θ is a new variable, a3 ≡ 1

x4
, a4 ≡

1
x5

and (a)2 ≡
(

A1(E,nz)
B1(E,nz)

)
. The use of the Residue theorem leads to the evalua-

tion of the integral in (1.91) as

I ≡ π

4a
[a1a4 + 3a2a4] (1.92)

Therefore, the 2D area of the 2D wave vector space can be written as

A(E, nz) = π t3(E, nz)√
A1(E, nz)B1(E, nz)

[
1 − 1

x5

(
1

x1
+ 3

x2

)
αt3(E, nz)�

4

8B2
1 (E, nz)

]
(1.93)

The EEM for the UFs of IV-VI materials can thus be written as

m∗(E, nz) = �
2

2
[θ5(E, nz)]

∣∣∣∣
E=EFs

(1.94)

where,

θ5(E, nz) ≡
[

1 − 1

x5

(
1

x1
+ 3

x2

)
αt3(E, nz)�

4

8[B1(E, nz)]2
]

[A1(E, nz)B1(E, nz)]−1

×
[√

A1(E, nz)B1(E, nz){t3(E, nz)}′ − t3(E, nz)

×
{

1

2
{A1(E, nz)}′

[
B1(E, nz)

A1(E, nz)

]−1/2
+ 1

2
{B1(E, nz)}′

[
A1(E, nz)

B1(E, nz)

]−1/2
}]

− 1

8

t3(E, nz)α�
4√

A1(E, nz)B1(E, nz)

1

x5

(
1

x1
+ 3

x2

)
[B1(E, nz)]−4

×
[
{B1(E, nz)}2{t3(E, nz)}′ − 2B1(E, nz){B1(E, nz)}′t3(E, nz)

]

Thus, the EEM is a function of Fermi energy and the quantum number due to the
band nonparabolicity.

The total DOS function can be written as

N2DT (E) =
( gv

2π

) nzmax∑
nz=1

θ5(E, nz)H(E − Enz10) (1.95)

where the subband energy (Enz10) in this case can be written as
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Enz10

(
1 + αEnz10

)+ αEnz10

�
2

2x6

(
nzπ

dz

)2

− (1 + αEnz10)
�

2

2x3

(
nzπ

dz

)2

− α
�

2

2x3

(
nzπ

dz

)2
�

2

2x6

(
nzπ

dz

)2

−
[

�
2

2m3

(
nzπ

dz

)2
]

= 0 (1.96)

The use of (1.95) leads to the expression of 2D electron statistics as

n2D = gv

2π

nzmax∑
nz=1

[T59(EFs, nz)+ T60(EFs, nz)] (1.97)

where T59(EFs, nz) ≡ A(EFs ,nz)
π

and T60(EFs, nz) ≡
s∑

r=1
L(r)T59(EFs, nz).

1.2.6 The EEM in UFs of Stressed Semiconductors

The electron energy spectrum in stressed Kane-type semiconductors can be written
[222–225] as (

kx

a0(E)

)2

+
(

ky

b0(E)

)2

+
(

kz

c0(E)

)2

= 1 (1.98)

where

[a0(E)]2 ≡ K 0(E)

A0(E)+ 1
2 D0(E)

, K 0(E) ≡
[

E − C1ε − 2C2
2ε

2
xy

3E ′
g

](
3E ′

g

2B2
2

)
,

C1 is the conduction band deformation potential, ε is the trace of the strain tensor ε̂

which can be written as ε̂ =
⎡
⎣ εxx εxy 0
εxy εyy 0
0 0 εzz

⎤
⎦, C2 is a constant which describes the

strain interaction between the conduction and valance bands, E ′
g ≡ Eg + E − C1ε,

B2 is the momentum matrix element,

A0(E) ≡
[

1 − (a0 + C1)

E ′
g

+ 3b0εxx

2E ′
g

− b0ε

2E ′
g

]
,

a0 ≡ −1

3
(b0 + 2m), b0 ≡ 1

3
(l − m), d0 ≡ 2n√

3
,

l,m, n are the matrix elements of the strain perturbation operator, D0(E) ≡
(d0

√
3) εxy

E ′
g
,
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[b̄0(E)]2 ≡ K 0(E)

A0(E)− 1
2 D0(E)

, [c̄0(E)]2 ≡ K 0(E)

L0(E)
,

and L0(E) ≡
[

1 − (ā0 + C1)

E ′
g

+ 3b̄0εzz

E ′
g

− b̄0ε

2E ′
g

]

The 2D electron energy spectrum in UFs of stressed materials assumes the form

K 2
x

[ā0(E)]2 + K 2
y

[b̄0(E)]2
+ 1

[c̄0(E)]2 (nzπ/dz) = 1 (1.99)

The area of 2D wave vector space enclosed by (1.99) can be written as

A(E, nz) = π P2(E, nz)ā0(E)b̄0(E) (1.100)

where P2(E, nz) = [1 − [nzπ/dzc̄0(E)]2].
The expression of the surface EEM in this case can be written as

m∗(EFs, nz) = �
2

2
[θ6(E, nz)]

∣∣∣∣
E=EFs

(1.101)

in which,

θ6(E, nz) = [
2P(E, nz){P(E, nz)}′ā0(E)b̄0(E) + {P(E, nz)}2{ā0(E)}′b̄0(E)

+{P(E, nz)}2{b̄0(E)}′ā0(E)
]

The EEM in this case is the function of Fermi energy and the size quantization
number due to the presence of stress only.

Thus, the total 2D DOS function can be expressed as

N2DT (E) =
( gv

2π

) nzmax∑
nz=1

θ6(E, nz)H(E − Enz11) (1.102)

The subband energies (Enz11) are given by

c̄0(Enz11) = nzπ/dz (1.103)

The 2D surface electron concentration per unit area for UFs of stressed Kane-type
compounds can be written as

n2D = gv

2π

nzmax∑
nz=1

[T61(EFs, nz)+ T62(EFs, nz)] (1.104)
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where

T61(EFs, nz) ≡ [P2(EFs, nz)ā0(EFs)b̄0(EFs)]

and T62(EFs, nz) ≡
s∑

r=1

L(r)T61(EFs, nz).

In the absence of stress together with the substitution, B2
2 ≡ 3�

2(Eg/4mc), (1.98)
assumes the same form as given by (1.16).

1.2.7 The EEM in UFs of Tellurium

The dispersion relation of the conduction electrons in Te can be expressed as [226]

E = ψ1k2
z + ψ2k2

s ± [ψ2
3 k2

s + ψ4
2 k2

s ]1/2 (1.105)

where,ψ1 = 6.7×10−16 mev.m2, ψ2 = 4.2×10−16 mev.m2, ψ3 = 6×10−8,mev.m
and ψ4 = 3.6 × 10−8 mev.m

The 2D electron energy spectrum in ultrathin films of Te assumes the form

k2
s = ψ5(E)− ψ6

(
πnz

dz

)2

± ψ7

[
ψ2

8 (E)−
(
πnz

dz

)2
] 1

2

(1.106)

where, ψ5(E)=
[

E
ψ2

+ ψ2
4

2ψ2
2

]
, ψ6 = ψ1

ψ2
, ψ7 = ψ4

√
ψ1

ψ
3
2

2

, ψ2
8 (E)= ψ4

4 +4Eψ2ψ
2
4 +4ψ2

2ψ
2
3

4ψ1ψ2ψ
2
4

The EEM in this case is given by

m∗(EFs, nz) = �
2

2

[
t ′40(E, nz)

]∣∣∣∣
E=EFs

(1.107)

where, t40(E, nz) =
[
ψ5(E)− ψ6

(
πnz
dz

)2 ± ψ7

[
ψ2

8 (E)−
(
πnz
dz

)2
]1/2

]1/2

It appears that the EEM in UFs of Te is a function of Fermi energy and size
quantum number which are the characteristics of such systems.

Thus, the total 2D DOS function can be expressed as

N2DT (E) =
(gv

π

) nzmax∑
nz=1

t ′40(E, n2)H(E − Enz12) (1.108)

The subband energies (Enz12) are given by
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Enz12 = ψ1(nzπ/dz)
2 ± ψ3(nzπ/dz) (1.109)

The 2D surface electron concentration per unit area for UFs of Te can be written
as

n2D = gv

π

nzmax∑
nz=1

[t40(EFs, n2)+ t41(EFs, n2)] (1.110)

where t41(EFs, n2) ≡
s∑

r=1
L(r)t40(EFs, nz).

1.2.8 The EEM in UFs of Gallium Phosphide

The energy spectrum of the conduction electrons in n-GaP can be written as [227]

E = �
2k2

s

2m∗⊥
+ �

2

2m∗||
[A

′
k2

s + k2
z ] −

[
�

4k2
0

m∗2||
(k2

s + k2
z )+ |VG |2

]1/2

+ |VG | (1.111)

where, K0 and |VG | are constants of the energy spectrum and A
′ = 1.

The 2D electron dispersion relation in size quantized n-GaP can be expressed as

E = ak2
s + C(nzπ/dz)

2 + |VG | −
[

Dk2
s + |VG |2 + D(nzπ/dz)

2
]1/2

(1.112)

in which, a ≡ �2

2m∗⊥
+ �2

2m∗‖
,C ≡ �2

2m∗‖
and D ≡ (�2k0/m∗‖)2

The subband energy (Enz13) are given by

Enz13 = C(πnz/dz)
2 + |VG | −

[
|VG |2 + D(πnz/dz)

2
]1/2

(1.113)

Equation (1.112) can be expressed as

k2
s = t42(E, nz) (1.114)

in which, t42(E, nz) ≡ [{2a(E − t1)+ D} − {[2a(E − t1)+ D]2 − 4a2[(E − t1)2

− t2]}1/2], t1 ≡ |VG | + C(πnz/dz)
2 and t2 ≡ |VG |2 + D(πnz/dz)

2

The EEM can be expressed from (1.114) as

m∗(EFs, nz) = �
2

2
t ′42(EFs, nz) (1.115)
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It appears that the EEM in UFs of GaP is a function of Fermi energy and size
quantum number due to the presence of the system constant k0 .

The total DOS function is given by

N2DT (E) = gv

4πa2

nzmax∑
nz=1

[
t ′42(E, nz)

]
H(E − Enz13) (1.116)

The electron statistics in UFs in n-GaP assumes the form

n2D = gv

4πa2

nzmax∑
nz=1

[
t42(EFs, nz)+ t43(EFs, nz)

]
(1.117)

where, t43(EFs, nz) ≡
s∑

r=1
L(r)

[
t42(EFs, nz)

]

1.2.9 The EEM in UFs of Platinum Antimonide

The dispersion relation for the n-type PtSb2 can be written as [228]

(
E + λ0

( ¯̄a)2
4

k2 − lk2
s
( ¯̄a)2

4

)(
E + δ0 − ν

( ¯̄a)2
4

k2 − ¯̄n ( ¯̄a)
2

4
k2

s

)
= I

( ¯̄a)4
16

k4

(1.118)

where ω1 ≡
(
λ0

( ¯̄a)2
4 − l (

¯̄a)2
4

)
, ω2 ≡ λ0

( ¯̄a)2
4 , ω3 ≡

(
( ¯̄n) ( ¯̄a)24 + ν

( ¯̄a)2
4

)
, ω4 ≡

ν
( ¯̄a)2

4 , I1 ≡ I
(
( ¯̄a)2

4

)2
, λ0, l, δ0, v and ¯̄n are the band constants and ¯̄a is the lattice

constant.
The (1.118) can be expressed as

[
E + ω1k2

s + ω2k2
z

] [
E + δ0 − ω3k2

s − ω4k2
z

]
= I1(k

2
z + k2

s )
2 (1.119)

The use of (1.119) leads to the expression of the 2D dispersion law in UFs of
n-PtSb2 as

k2
s = t44(E, nz) (1.120)

where,

t44(E, nz) = [2A9]−1
[
−A10(E, nz)+

√
A2

10(E, nz)+ 4A9 A11(E, nz)

]
(1.121)

A9 = [I1 + ω1ω3], A10(E, nz)
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=
[
ω3 E + ω1

{
E + δ0 − ω4

(
πnz

dz

)2
}

+ ω2ω3

(
πnz

dz

)2

+ 2I1

(
πnz

dz

)2
]

and

A11(E, nz) ≡
[

E

[
E + δ0 − ω4

(
πnz

dz

)2
]

+ ω2

(
πnz

dz

)2
[

E + δ0 − ω4

(
πnz

dz

)2
]

− I1

(
πnz

dz

)4
]

The area of ks space can be expressed as

A(E, nz) = π

2A9
t44(E, nz) (1.122)

The EEM can be written as

m∗(EFs, nz) = �
2

4A9
t ′44(EFs, nz) (1.123)

It appears that the EEM in UFs of Pt Sb2 is a function of Fermi energy and size
quantum number which is the characteristic features of such systems.

The total DOS function assumes the form

N2DT (E) = gv

4π A9

nzmax∑
nz=1

[t ′44(E, nz)]H(E − Enz14) (1.124)

where the quantized levels Enz14 can be expressed through the equation

Enz14 = (2)−1

[
−
[
ω2

(
πnz

dz

)2

+ δ0 − ω4

(
πnz

dz

)2
]

+
⎧⎨
⎩
[
ω2

(
πnz

dz

)2

+ δ0 − ω4

(
πnz

dz

)2
]2

+4

[
I1

(
πnz

dz

)4

+ ω2ω4

(
πnz

dz

)4

− ω2δ0

(
πnz

dz

)2
]}1/2

⎤
⎦ (1.125)

The electron statistics can be written as
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n2D = 2gv

(2π)2
π

2A9

nzmax∑
nz=1

∞∫
Enz

∂

∂E
[t44(E, nz)] f (E)d E

n2D = gv

4π A9

nzmax∑
nz=1

[t44(EFs, nz)+ t45(EFs, nz)] (1.126)

where t45(EFs, nz) ≡
s∑

r=1
L(r)[t44(EFs, nz)]

1.2.10 The EEM in UFs of Bismuth Telluride

The dispersion relation of the conduction electron Bi2T e3 can be written as
[229–231]

E(1 + αE) = ω1k2
x + ω2k2

y + ω3k2
z + 2ω4kzky (1.127)

where

ω1 = �
2

2m0
α11, ω2 = �2

2m0
α22, ω3 = �

2

2m0
α33, ω4 = �

2

2m0
α23

in which α11, α22, α33 and α23 are system constants.
The 2D electron dispersion law in UFs of Bi2 Te3 assumes the form

E(1 + αE) = ω1(
nxπ

dx
)2 + ω2k2

y + ω3k2
z + 2ω4kzky (1.128)

The area of the ellipse is given by

An(E, nz) = π√
α22α33 − 4α2

23

[
2m0 E(1 + αE)

�2 − α11(
nxπ

dx
)2
]

(1.129)

The EEM can be expressed as

m∗(EFs) = m0(1 + 2αEFs)√
α22α33 − 4α2

23

(1.130)

It appears that the EEM in UFs of Bi2Te3 is a function of Fermi energy due to the
presence of the band nonparabolicity.

The total DOS function assumes the form
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N2DT (E) = gvm0

π�2
√
α22α33 − 4α23

2

nx max∑
nz=1

(1 + 2αE)H(E − Enz15) (1.131)

where, (Enz15) can be expressed through the equation

Enz15(1 + αEnz15) = ω1

(
nxπ

dx

)2

(1.132)

The electron concentration can be written as

n2D = kB T gv

π�2

(
m0√

α22α33 − 4α23
2

) nzmax∑
nz=1

[(1 + 2αEnz15)F0(ηn15)+ 2αkB T F1(ηn15)]
(1.133)

where, ηn15 = EFs−Enz15
kB T .

1.2.11 The EEM in UFs of Germanium

It is well known that the conduction electrons n−Ge obey two different types of
dispersion laws since band nonparabolicity has been included in two different ways
as given in the literature [232, 234].

a. The energy spectrum of the conduction electrons in bulk specimens of n−Ge
can be expressed in accordance with Cardona et al. [232, 233] as

E = − Eg0

2
+ �

2k2
z

2m∗‖
+
[

E2
g0

4
+ Eg0k2

s

(
�

2

2m∗⊥

)] 1
2

(1.134)

where in this case m∗‖ and m∗⊥ are the longitudinal and transverse effective masses
along <111> direction at the edge of the conduction band respectively.
Equation (1.134) can be written as

�
2k2

s

2m∗⊥
= E(1 + αE)+ α

(
�

2k2
z

2m∗‖

)
− (1 + 2αE)

(
�

2k2
z

2m∗‖

)
(1.135)

In the presence of size quantization along kz direction, the 2D dispersion relation
of the conduction relations in UFs of n-Ge can be written by extending the
method as given in [235] as

�
2k2

x

2m∗
1

+ �
2k2

y

2m∗
2

= γ (E, nz) (1.136)
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where, m∗
1 ≡ m∗⊥, m∗

2 = m∗⊥+2m∗‖
3 ,

γ (E, nz) ≡
⎡
⎣E(1 + αE)− (1 + 2αE)

�
2

2m∗
3

(
nzπ

dz

)2

+ α

[
�

2

2m∗
3

(
nzπ

dz

)2
]2
⎤
⎦

and m∗
3 = 3m∗‖m∗‖

2m∗‖+m∗⊥
The area of ellipse of the 2D surface as given by (1.136) can be written as

A(E, nz) = 2π
√

m∗
1m∗

2

�2 γ (E, nz) (1.137)

The EEM can be expressed using (1.137) as

m∗(EFs, nz) ≡
√

m∗
1m∗

2

[
(1 + 2αEFs)− (2α)

�
2

2m∗
3

(
nzπ

dz

)2
]

(1.138)

Therefore, the EEM is a function of Fermi energy and size quantum number due
to the presence of band nonparabolicity only.
The DOS function per subband can be expressed as

N2D(E) = 4
√

m∗
1m∗

2

π�2

[
1 + 2αE − 2α

(
�

2

2m∗
3

(
πnz

dz
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)]

(1.139)

The total DOS function is given by

N2DT (E) = 4

π�2

√
m∗

1m∗
2

nzmax∑
nz=1

×
[

1 + 2αE − 2α

(
�

2

2m∗
3

(
πnz

dz

)2
)]

H(E − Enz16) (1.140)

where, Enz16 is the positive root of the following equation

Enz16(1+αEnz16)−(1+2αEnz16)

(
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2m∗
3

(
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dz

)2
)

+α
(

�
2

2m∗
3

(
πnz

dz

)2
)2

= 0

(1.141)
Thus combining (1.140) with the Fermi Dirac occupation probability factor, the
electron statistics in this case can be written as
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n2D = 4
√

m∗
1m∗

2kB T

π�2

nzmax∑
nz=1

[
(A1(nz)+ 2αEnz16)F0(Enz16)+ 2αkB T F1(Enz16)

]

(1.142)
where A1(nz) ≡ [

1 + 2α(�2/2m∗
3)(πnz/dz)

2
]

and ηnz16 ≡ 1
K B T [EF2D − Enz16 ]

b. The dispersion relation of the conduction electron in bulk specimens of n−Ge
can be expressed in accordance with the model of Wang and Ressier [234] and
can be written as

E = �
2k2
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(1.143)

where c1 = C(2m∗⊥/�2)2,C = 1.4A, A = 1
4 (�

4/Eg0m∗2⊥ )
(

1 − m∗⊥
m0

)2
, d1 =

d

(
4m∗⊥m∗‖

�4

)
, d = 0.8A, e1 = e0(2m∗‖/�2)2 and e0 = 0.005A.

Therefore the 2D dispersion law can be expressed as

E = A5(nz)+ A6(nz)β − c1β
2 (1.144)

where A5(nz) ≡ �
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Equation (1.144) can be written as

�
2k2

x

2m∗
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+ �
2k2

y

2m∗
2

= I1(E, nz) (1.145)

where I1(E, nz) ≡ (2c̄1)
−1
[

A6(nz)− [
A2

6(nz)− 4c̄1 E + 4c̄1 A5(nz)
]1/2

]
From (1.145), the area of the 2D ks -space is given by

A(E, nz) = 2π
√

m∗
1m∗

2

�2 I1(E, nz) (1.146)

The EEm can be expressed using (1.146) as

m∗(EFs, nz) ≡
√

m∗
1m∗

2[I1(EFs, nz)]′ (1.147)

where {I1(E, nz)}′ ≡ ∂
∂E [I1(E, nz)]

Therefore, the EEM according to this model is a function of Fermi energy and
size quantum number due to the presence of band nonparabolicity only
The DOS function per subband can be written as
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N2D(E) = 4

π
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2

�2 {I1(E, nz)}′ (1.148)

The total DOS function assumes the form

N2DT (E) = 4
√
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where, the subband energy Enz17 are given by

Enz17 = �
2

2m∗
3

(
πnz

dz

)2
[

1 − ē1
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(1.150)

The electron statistics can be written as

n2D = 4
√

m∗
1m∗

2

π�2

nzmax∑
nz=1

[t46(EFs, nz)+ t47(EFs, nz)] (1.151)

where t46(EFs, nz) ≡ I1(EFs, nz), t47(EFs, nz) ≡
S∑

r=1
L(r)(t46(EFs, nz)).

1.2.12 The EEM in UFs of Gallium Antimonide

The dispersion relation of the conduction electrons in n-GaSb can be written as [236]

E = �
2k2

2m0
− Ē ′
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where E
′
g0 =

[
Eg0 + 5.10−5T 2

2(112 + T )

]
eV

Equation (1.152) can be expressed as

�
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The 2D electron dispersion relation in this case assumes the form

�
2k2

s

2mc
+ �

2

2mc
(nzπ/dz)

2 = I36(E) (1.154)

Using (1.154) , the EEM in x–y plane for this case can be written as

m∗(EFs) = mc{I36(EFs)}′ (1.155)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.

The total 2D DOS function can be written as

N2DT (E) =
(mcgv

π�2

) nzmax∑
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)
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(1.156)

where, the subband energies Enz17
can be expressed as

◦
u
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The 2D carrier concentration assumes the form

n2D =
(mcgv

π�2

) nzmax∑
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and t56(EFs, nz) ≡
s∑

r=1
L(r)t55(EFs, nz)

1.3 Results and Discussions

Using (1.5) and (1.9) and taking the energy band constants as given in Table 1.1, we
have plotted Fig. 1.1. The EEM in UFs of Cd3As2 as a function of film thickness
and have been shown in Fig 1.1. For comparison, we have also plotted the EEM in
the absence of the crystal-field splitting for the three- and the two-band models of
Kane. Figure 1.1 exhibits the effect of size quantization on the EEM in general, and
bears a good amount of discussion. It appears that the effect of van Hove singularity
makes the EEM to suffer severe discontinuities. Assuming a carrier degeneracy
of 1015 m−2, Fig. 1.1a shows that the EEM can reach upto about 10% of its free
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Fig. 1.1 a Plot of the EEM as function of film thickness for UFs of n-Cd3As2 considering (1.5). The
plots for three-and two-band models of Kane have also been exhibited in which, m∗⊥ = 0.0139m0

and mc = 1
2 (m

∗
11 + m∗⊥)m0 = 0.0105m0 are the corresponding bulk values. b Plot of the EEM as

function of film thickness for UFs of n-Cd3As2 for all cases of Fig. 1.1a at different three subband
levels

mass at a film thickness of 5 nm, which is quite high from its bulk value and may
degrade the carrier mobility to a great extent. In the same figure, we have also
demonstrated the effect of assuming only the lowest level subband. It appears that
with this approximation, the EEM approaches to the bulk value m∗⊥ = 0.0139m0
more quickly than that by considering the subbands. With this, it is now more obvious
to note that the assumption of a single subband occupancy throughout leads to the
practical approach to the determination of EEM. All the models of the single subband
occupied curves tend to merge with the bulk value near 50 nm thickness. The increase
in the EEM with the reduction of film thickness is due to the increased Fermi energy
of the material. It must be noted that with such a highly doped system, the Fermi
energy is determined by the carrier statistics equation. It is this Fermi energy which
should be used in the determination of the EEM. This is not the case in an intrinsic
material. In such a case, the Fermi energy coincides with the intrinsic energy level,
which is very near to the energy band gap of the material and thus the variation of
the energy band gap with the film thickness needs great concern. The variation of
the energy band gap however is significant at extremely narrow film thickness, more
in the region below sub-4 nm, a context which shall be highlighted in Chap. 8, where
Applications and brief review of experimental results have been discussed. Thus, all
the curves below such thickness are expected to suffer deviation with our existing
theoretical model, if plotted. In all the subsequent geometry dependent curves, we
have restricted ourselves above sub-4 nm regime. Since Cd3As2 crystals are usually
grown as degenerate n-type specimens, the Fermi level mass will be the effective

http://dx.doi.org/10.1007/978-3-642-31248-9_8
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mass of consideration for transport in Cd3As2. Hence in the quantum limit, the
effective mass at the Fermi level corresponding to the lowest electric sub-band will
be the effective conductivity mass for electron transport in Cd3As2. It appears from
these figures that the Fermi level mass is significantly influenced by the effects of
size quantization particularly in tetragonal semiconductors like n- Cd3As2 having
crystalline field effects and energy-dependent anisotropy of the effective mass. It has
been found that the effective mass at the Fermi level depends on the size quantum
number due to the combined influence of crystal-field splitting and the anisotropic
spin-orbit splitting constant, resulting in different effective masses at the Fermi level
corresponding to different electric subbands (the different effective masses being the
same in the absence of field splitting as can be seen from Fig. 1.1a and b). It has further
been observed that the different effective masses corresponding to different electric
subbands closely approach each other, for a given film thickness, with increasing
electron concentration and for a given electron concentration, with increasing film
thickness. These are in conformity with expectations since both with increasing
electron concentration at a given film thickness and with increasing film thickness
for a given electron concentration, the effects of size quantization gradually become
less and less significant. As in bulk specimens, the Fermi level mass increases with
increasing carrier concentration at a given value of the film thickness. Besides, for
particular values of the film thickness and electron concentration, the combined effect
of δ �= 0 and�11 �= �⊥effect of crystal-field splitting is to reduce the effective mass
corresponding to any particular subband. It may further be noted that if the direction
normal to the film is taken as one of the transverse directions of the single ellipsoid
at the zone center and not as the longitudinal direction as assumed in the present
chapter, the effective mass at the Fermi level corresponding to any given subband
would be somewhat different. Nevertheless, since the mass anisotropy in Cd3As2is
indeed small as can be seen from the values of P11and P⊥ which are very close to each
other, the arbitrary choice of the direction normal to the film with respect to the major
axis of the ellipsoid would not result in a significant change in the effective mass at
the Fermi level corresponding to a particular subband. The Fermi level mass should
gradually become closer to that of bulk specimens with increasing film thickness
since, for such thicknesses, the effects of size quantization are greatly diminished.
This has also been confirmed in our present work. Furthermore, the general features
of the effects of size quantization on the effective mass as discussed here would also
be valid with the only exception that the effective mass at the Fermi level will be
independent of the size quantum number in the absence of crystal-field splitting and
anisotropic spin-orbit splitting constant for the III-V small-gap semiconductors since
these semiconductors have nonparabolic energy bands obeying Kane’s dispersion
relation and the present chapter is based on the generalized Kane’s model.

Figure 1.2 exhibits the plot EEM in UFs of n-CdGeAs2 as a function of film thick-
ness in accordance with the three- and two-band models of Kane together with the
incorporation of the crystal-field parameter. It appears that the effect of the crystal-
field splitting increases the EEM sharply below sub-20 nm. The EEM also increases
about 7 % at 5 nm and converges to its bulk value beyond 20 nm at the same value of
electron degeneracy. The effect of film thickness on the EEM of III-V semiconduc-



42 1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

Fig. 1.2 Plot of the EEM
as function of film thickness
for UFs of n-CdGeAs2 for
all the cases of Fig. 1.1 in
which, m∗⊥ = 0.039m0 and
mc = 1

2

(
m∗

11 + m∗⊥
)

m0 =
0.0105m0 are the correspond-
ing bulk values

Fig. 1.3 Plot of the EEM as
function of film thickness for
UFs of n-InAs in accordance
with the three- and the two-
band model of Kane

tors, most important with respect to extremely low field high mobility of which are
n-InAs, n-InSb, and n-GaAs has been exhibited in Figs. 1.3,1.4 and 1.5, respectively.

The effect of nonlinearity of the energy band structure on the respective EEMs
has been clearly indicated. It appears that in the determination of the EEM, it is
sufficient to take the two band model of Kane to explain the variation of the EEM
over a wide range of thickness. The deviation from the three-band model of Kane is
much less indicating that the complexity in the energy band model can be reduced
to a large extent by considering only the two-band model of Kane. This is extremely
important with respect to the numerical computation in device analyses performance
where sufficient longer computation time affects the efficiency in characterizing the
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Fig. 1.4 Plot of EEM as
function of film thickness for
UFs of n-InSb for all the cases
of Fig. 1.3

Fig. 1.5 Plot of the EEM as
function of film thickness for
UFs of n-GaAs for all the
cases of Fig. 1.3

compact model with respect to the said materials. In all the Figs. 1.3, 1.4, 1.5, we have
demonstrated the effect of two widely known models viz. the three and the two band
models. Figures 1.6 and 1.7 exhibits the variation of the EEM with respect to the film
thickness for the ternary and quaternary materials at same carrier degeneracy level.
It appears that at an alloy composition x = 0.3, the EEM in both the cases tends
to about 0.1 times the rest mass at film thickness of 5 nm. The effect of variation of
EEM on the alloy composition for these two materials has been exhibited in Fig. 1.8.

The effect of increasing the alloy composition increases the EEM for the said
two materials. For the purpose of comparison, we have also plotted the variation of
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Fig. 1.6 Plot of the EEM as
function of film thickness for
UFs of n-Hg0.3Cd0.7Te for all
the cases of Fig. 1.3

Fig. 1.7 Plot of the EEM as
function of film thickness for
UFs of n-In1−x Gax AsyP1−y
for all the cases of Fig. 1.3

the bulk effective mass with the alloy composition. For the quaternary material, the
difference between the two energy band models is not much, as can also be seen from
Figs. 1.6 and 1.7. The increment in EEM is rather linear in case of InGaAsP than that
of HgCdTe. This also exhibits the variation of the electron mobility in these systems
as the alloy composition changes. It appears that with increase in x, the mobility falls
down assuming a constant relaxation rate.

The effect of carrier degeneracy on the EEM in nonlinear optical, III-V, ternary
and quaternary materials have been exhibited in Figs. 1.9, 1.10, 1.11, 1.12, 1.13,
1.14, 1.15. It appears that the EEM for all the aforementioned materials at 10 nm
film thickness are almost invariant below sub 1015 m−2. The effect of inclusion of
both the higher order subbands and the lowest subband has been exhibited. From
all the curves, it appears that the EEM bears almost exponential relation with the
carrier degeneracy. This notion comes straightforward from the carrier concentration
relation (1.27).
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Fig. 1.8 Plot of the EEM at the lowest subband as function of alloy composition in UFs of n-
Hg1−x Cdx Te and n-In1−x Gax AsyP1−y for the three and the two band models of Kane respectively

Fig. 1.9 a Plot of the EEM as function of surface electron concentration in UFs of n-Cd3As2. The
plots for three- and two-band models of Kane have also been exhibited in which, m∗⊥ = 0.0139m0

and mc = 1
2

(
m∗

11 + m∗⊥
)

m0 = 0.0105m0 are the corresponding bulk values. b Plot of the EEM
as function of surface electron concentration in UFs of n-Cd3As2 at different subband levels for all
cases of Fig. 1.9

The variation of the EEM in II-VI materials like p-CdS has been exhibited in
Figs. 1.16 and 1.17 as functions of film thickness and Fermi energy respectively.
In these two figures, instead of obtaining the Fermi energy from the corresponding
carrier statistics, we have followed the opposite route, i.e., what values of the Fermi
energy makes the EEM to be very low or very high. A corresponding concentration
of that order can then be evaluated. A decision of this kind aids a good amount of
estimation in the optimization. Using this approach, we estimate that the EEM can
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Fig. 1.10 Plot of the EEM
as function of surface elec-
tron concentration in UFs of
n-CdGeAs2 for all the cases
of Fig. 1.9

Fig. 1.11 Plot of the EEM
as function of surface elec-
tron concentration in UFs of
n-InAs

soar up to 0.77 times rest mass in the higher valley, while for the lower valley, it may
plunge upto about 0.55 times rest mass.

The effect of valley degeneracy as we see from these two curves expresses much
in understanding the electron transport direction.

It appears from the two curves that the channel oriented along the lower valley
direction will most probably result in an increased value of current due to the low
EEM. It would have been of much interest to figure out how the energy band gap at
the two valleys changes with respect to the thickness and is left as an exercise to the
reader.

Figures 1.18 and 1.19 exhibit the effect of film thickness and the carrier concentra-
tion on the EEM of UFs of Bismuth. The effect of increasing the carrier degeneracy
has also been exhibited in Fig. 1.18. It appears that the EEM increases from its cor-
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Fig. 1.12 Plot of the EEM
as function of surface elec-
tron concentration in UFs of
n-InSb

Fig. 1.13 Plot of the EEM
as function of surface elec-
tron concentration in UFs of
n-GaAs

responding bulk value sharply at the 5 nm film thickness implying a tremendous
decrease in the carrier mobility.

Figure 1.19 exhibits the effect of different energy band model of Bi on EEM for a
varying surface electron concentration. It appears that at the lowest subband energy
level, there is almost no difference between the Mc Clure and Cohen model extracted
EEM, however there is a significant change in the Hybrid and Lax ellipsoidal model.
Figures 1.20, 1.21, and 1.22 exhibit the variation of the EEM at the lowest subband
level for QWs of IV-VI, strained InSb and Ge. The effective mass in IV-VI materials
exhibits strong variation for PbTe, an excellent thermoelectric material, whereas
least for PbSnSe. It also appears that the EEM of PbTe is higher than that of PbSnSe
and PbSnTe. With the advent of strained quantum effect devices, the analysis of
EEM in strained quantum wells becomes very much important. It appears that the
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Fig. 1.14 Plot of the EEM
as function of surface elec-
tron concentration in UFs of
n-HgCdT

Fig. 1.15 Plot of the EEM
as function of surface elec-
tron concentration in UFs of
n-InGaAsP

compressive and tensile strain does not tend to modify the respective magnitude of the
EEM in strained quantum wells of InSb. It should be noted that the EEM in Fig. 1.21
has been evaluated by considering the momentum matrix element B2 = 0.9 eVnm.
This is a bulk value. However, an arbitrary increase in this geometry dependent
parameter sufficiently reduces the EEM and thus finds extensive use in strained film
transitors. In Chap. 8, we shall be presenting a much detailed explanation of the
effect of uniaxial and biaxial strain on Si nanowires and the effect on energy band
gap. The variation of the EEM in Ge has been exhibited in Fig. 1.22 as function of
film thickness for the model of Cardona et al. The general trend of increase in the
EEM has also been exhibited here at least 6 times the bulk value

√
m∗

1m∗
2 for three

different carrier concentration levels.

http://dx.doi.org/10.1007/978-3-642-31248-9_8
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Fig. 1.16 Plot of the EEM as
function of film thicknesss in
UFs of p-CdS in two different
conduction band valleys

Fig. 1.17 Plot of the EEM as
function of Fermi energy for
all the cases of Fig. 1.16

We observe that considering the various subband levels, the EEM exhibits a step-
functional decreasing dependence with increase in film thickness for UFs of all the
single valley materials. The combined influence of the anisotropies of the energy
band constants and the crystal-field splitting is to enhance the EEM as compared
with the corresponding which is based on two band model of Kane in the whole
range of thicknesses as considered in Fig. 1.1. The periodicity with respect to the
film thickness is the same in both the cases and is invariant of the energy band
constants.

The influence of quantum confinement is immediately apparent from Figs. 1.1,
1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.16, 1.18, 1.20, 1.21, 1.22 since the EEM depends
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Fig. 1.18 Plot of the EEM as
function of film thicknesss in
UFs of Bismuth for different
carrier concentration values
using the Hybrid model

Fig. 1.19 Plot of the EEM
at the lowest subband as
function of surface electron
coencentration in UFs of
Bismuth using the Mc Clure,
Cohen, Hybrid, and Lax
energy band models

strongly on the thickness of the quantum-confined materials in contrast with the
corresponding bulk specimens. The EEM changes with increasing carrier concentra-
tion suffering discontinuities with different numerical magnitudes. It appears from
the aforementioned figures that the EEM exhibits spikes for particular values of
film thickness which, in turn, depends on the particular band structure of the spe-
cific semiconductor. Moreover, the EEM from QWs of different compounds can be
smaller than bulk specimens of the same materials having multi valley conduction
band like in case of p-CdS, which is also a direct signature of quantum confinement.
This effect of the discontinuity on the EEM will be less and less prominent with
increasing film thickness. For bulk specimens of the same material, the EEM will
be found to increase continuously with increasing electron degeneracy in a non-



1.3 Results and Discussions 51

Fig. 1.20 Plot of the EEM at
the lowest subband as function
of film thickness in UFs of
IV-VI materials

Fig. 1.21 Plot of the EEM at
the lowest subband as function
of film thickness in UFs of
uniaxial strained InSb

oscillatory manner. The appearance of the discrete jumps in the respective figures
is due to the redistribution of the electrons among the quantized energy levels when
the size quantum number corresponding to the highest occupied level changes from
one fixed value to the others.

With varying electron degeneracy, a change is reflected in the EEM through the
redistribution of the electrons among the size-quantized levels. It may be noted that at
the transition zone from one subband to another, the height of the peaks between any
two subbands decreases with the increasing in the degree of quantum confinement
and is clearly shown in the respective figures. It should be noted that although the
EEM changes in various manners with all the variables as is evident from all the
figures, the rates of variations are totally band-structure dependent.

It is imperative to state that the present investigation excludes the many-body, hot
electron, broadening and the allied effects in the simplified theoretical formalism
due to the absence of proper analytical techniques for including them for generalized
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Fig. 1.22 Plot of the EEM at
the lowest subband as function
of film thickness in UFs of Ge

systems as considered here. We have also approximated the variation of value of the
work function from its bulk value in the present system. Our simplified approach
will be appropriate for the purpose of comparison when the methods of tackling the
formidable problems after inclusion of the said effects for the generalized systems
emerge. The results of this simplified approach get transformed to the well-known
formulation of the EEM for wide gap materials having parabolic energy bands. This
indirect test not only exhibits the mathematical compatibility of the formulation but
also shows the fact that this simple analysis is a more generalized one, since one can
obtain the corresponding results for materials having parabolic energy bands under
certain limiting conditions from the present derivation. For the purpose of computer
simulations for obtaining the plots of EEM versus various external variables, we
have taken very low temperatures since the quantization effects are basically low
temperature phenomena together with the fact that the temperature dependence of
all the energy band constants of all the semiconductors and their nanostructures as
considered in this chapter are not available in the literature. Our results as formulated
in this chapter are valid for finite temperatures and are useful in comparing the
results for temperature variations of EEM after the availability of the temperature
dependences of such constants of various dispersion relations in this context. It is
worth noting that the nature of the curves of EEM with various physical variables
based on our simplified formulations as presented here would be useful to analyze
the experimental results when they materialize. The inclusion of the said effects
would certainly increase the accuracy of the results although the qualitative features
of EEM would not change in the presence of the aforementioned effects.

It can be noted that on the basis of the dispersion relations of the various quantized
structures as discussed above the low field carrier mobility, drive currents in field
effect transistors, Fowler Nordhiem field current, the Debye screening length, the
plasma frequency, the activity coefficient, the carrier contribution to the elastic con-
stants, the diffusion coefficient of minority carriers, the third-order nonlinear optical
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susceptibility, the heat capacity, the dia and paramagnetic susceptibilities and the
various important DC/AC transport coefficients can be probed for all types of UFs as
considered here. Thus, our theoretical formulation comprises the dispersion relation-
dependent properties of various technologically important quantum-confined semi-
conductors having different band structures. We have not considered other types of
compounds in order to keep the presentation concise and succinct. With different
sets of energy band parameters, one gets different numerical values of the EEM. The
nature of variations of the EEM as shown here would be similar for the other types of
materials and the simplified analysis of this chapter exhibits the basic qualitative fea-
tures of the EEM. The reader can also explore the EEM for the leftover 2D materials
to enjoy the intricate computer programming and the 2D physics in this context. It
may be noted that the basic aim of this chapter is not solely to demonstrate the influ-
ence of quantum confinement on the EEM for a wide class of quantized materials
but also to formulate the appropriate carrier statistics in the most generalized form,
since the transport and other phenomena in modern nano-structured devices having
different band structures and the derivation of the expressions of many important
carrier properties are based on the temperature-dependent carrier statistics in such
systems.

For the purpose of condensed presentation, the carrier statistics and the EEM in
different materials as considered in this chapter have been presented in Table 1.2.

1.4 Open Research Problems

The problems under these sections of this monograph are by far the most impor-
tant part and a few open research problems from this chapter till the end are being
presented. The numerical values of the energy band constants for various semicon-
ductors are given in Table 1.1 for the related computer simulations.

R.1.1. Investigate the effective acceleration mass (EAM), density-of-state effec-
tive mass (DEM), concentration effective mass (CEM), conductivity effec-
tive mass (CoEM), Faraday rotation effective mass (FREM), and Optical
effective mass (OEM) from all the bulk semiconductors whose respective
dispersion relations of the carriers are given in this chapter.

R.1.2. Repeat R.1.1 for the bulk semiconductors whose respective dispersion rela-
tions of the carriers in the absence of any field are given below:

(a) The electron dispersion law in n-GaP can be written as [237]
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+ �
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where, � = 335 meV, P1 = 2 × 10−10eVm, D1 = p1a1 and a1 = 5.4 ×
10−10m.

(b) In addition to the Cohen model, the dispersion relation for the conduction
electrons for IV-VI semiconductors can also be described by the models of
Bangert et al. [238] and Foley et al. [239], respectively.
(i) In accordance with Bangert et al. [238], the dispersion relation is given

by
�(E) = F1(E)k

2
s + F2(E)k

2
z (R1.2)

where, �(E) = 2E, F1(E) = R2
1

E+Eg
+ S2

1
E+�′

c
+ Q2

1
E+Eg

, F2(E) =
2C2

5
E+Eg

+ (S1+Q1)
2

E+�′′
c

R2
1 = 2.3×10−19(eVm)2,C2

5 = 0.83×10−19(eVm)2,

Q2
1 = 1.3R2

1, S2
1 = 4.6R2

1,�
′
c = 3.07 eV,�′′

c = 3.28 eV and gv = 4.
It may be noted that under the substitution S1 = 0, Q1 = 0, R2

1 ≡
�2 Eg
m∗⊥

,C2
5 ≡ �2 Eg

m∗
�

, (R1.2) assumes the form E(1 + αE) = �2k2
s

2m∗⊥
+ �2k2

z
2m∗‖

which is the simplified Lax model.
(ii) The carrier energy spectrum of IV-VI semiconductors in accordance

with Foley et al. [239] can be written as

E + Eg

2
= E_(k)+

[[
E+(k)+ Eg

2

]2

+ P2⊥k2
s + P2‖ k2

z

]1/2

(R1.3)

where, E+(k) = �2k2
s

2m+
⊥

+ �2k2
z

2m+
‖
, E−(k) = �2k2

s

2m−
⊥

+ �2k2
z

2m−
‖

represents the

contribution from the interaction of the conduction and the valance
band edge states with the more distant bands and the free electron term,

1
m±

⊥
= 1

2

[
1

mtc
± 1

mtc

]
, 1

m±
‖

= 1
2

[
1

mlc
± 1

mlv

]
, For n-PbTe, P⊥ = 4.61 ×

10−10 eVm, P‖ = 1.48×10−10 eVm, m0
mtv

= 10.36, m0
mtv

= 0.75, m0
mtv

=
11.36, m0

mlv
= 1.20 and gv = 4.

(c) The hole energy spectrum of p-type zero-gap semiconductors (e.g. HgTe) is
given by [240]

E = �
2k2

2m∗
v

+ 3e2

128ε∞
k −

(
2EB

π

)
ln

∣∣∣∣ k

k0

∣∣∣∣ (R1.4)

where m∗
v is the effective mass of the hole at the top of the valence band,

ε∞ is the semiconductor permittivity in the high frequency limit, EB ≡
m0e2

2�2ε2∞
and k0 ≡ m0e2

�2ε∞ .

(d) The conduction electrons of n-GaSb obey the following two dispersion rela-
tions:
(i) In accordance with the model of Seiler et al. [253]
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E =
[
− Eg

2
+ Eg

2
[1 + α4k2]1/2 + ς̄0�

2k2

2m0
+ v̄0 f1(k)�

2

2m0
± ω̄0 f2(k)�

2

2m0

]

(R1.5)
where α4 ≡ 4p2(Eg + 2

3�)[E2
g(Eg +�)]−1, P is the isotropic momen-

tum matrix element, f1(k) ≡ k−2[k2
x k2

y + k2
yk2

z + k2
z k2

x ] represents the
warping of the Fermi surface, f2(k) ≡ [{k2(k2

x k2
y + k2

yk2
z + k2

z k2
x ) −

9k2
x k2

yk2
z }1/2k−1] represents the inversion asymmetry splitting of the

conduction band, and ς̄0, v̄0, and ω̄0 represent the constants of the elec-
tron spectrum in this case.

(ii) In accordance with the model of Zhang et al. [241]

E = [E (1)2 + E (2)2 K4,1]k2 +[E (1)4 + E (2)4 K4,1]k4 + k6[E (1)6 + E (2)6 K4,1 + E (3)6 K6,1]
(R1.6)

where K4,1 ≡ 5
4

√
21

[
k4

x +k4
y+k4

z

k4 − 3
5

]
,

K6,1≡
√

639639
32

[
k2

x k2
yk2

z

k6 + 1
22

(
k4

x +k4
y+k4

z

k4 − 3
5

)
− 1

105

]
, the coefficients are

in eV, the values of k are 10
( a

2π

)
times those of k in atomic units

(α is the lattice constant), E (1)2 = 1.0239620, E (2)2 = 0, E (1)4 =
−1.1320772, E (2)4 = 0.05658, E (1)6 = 1.1072073, E (2)6 =−0.1134024
and
E (3)6 = −0.0072275.

(e) In addition to the well-known band models as discussed in this monograph,
the conduction electrons of III-V semiconductors obey the following three
dispersion relations:
(i) In accordance with the model of Rossler [242]

E =�
2k2

2m∗ + ᾱ10k4 + β̄10

[
k2

x k2
y + k2

yk2
z + k2

z k2
x

]

± γ̄10

[
k2(k2

x k2
y + k2

yk2
z + k2

z k2
x )− 9k2

x k2
yk2

z

]1/2
(R1.7)

where ᾱ10 = ᾱ11 + ᾱ12k, β̄10 = β̄11 + β̄12k and γ̄10 = γ̄11 + γ̄12k, in
which, ᾱ11 = −2132×10−40 eVm4, ᾱ12 = 9030×10−50 eVm5, β̄11 =
−2493 × 10−40 eVm4, β̄12 = 12594 × 10−50 eVm5, γ̄11 = 30 ×
10−30 eVm3 and γ̄12 = −154 × 10−42 eVm4.

(ii) In accordance with Johnson and Dickey [243], the electron energy spec-
trum assumes the form

E = − Eg

2
+ �

2k2

2

[
1

m0
+ 1

mγ b

]
+ Eg

2

[
1 + 4

�
2k2

2m′
c

f̄1(E)

Eg

]1/2

(R1.8)
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where, m0
m′

c
≡ P2

[ (
Eg+ 2�

3

)
Eg(Eg+�)

]
, f̄1(E) ≡ (Eg)+�)

(
E+Eg+ 2�

3

)
(

Eg+ 2�
3

)
(E+Eg+�) ,m′

c =

0.139m0 and mγ b =
[

1
m′

c
− 2

m0

]−1
.

(iii) In accordance with Agafonov et al. [244], the electron energy spectrum
can be written as

E = η̄ − Eg

2

⎡
⎣1 − �

2k2

2η̄m∗

⎧⎨
⎩

D
√

3 − 3B̄

2
(

�2

2m∗
)

⎫⎬
⎭
[

k4
x + k4

y + k4
z

k4

]⎤
⎦
(R1.9)

where, η̄ ≡
(

E2
g + 8

3 P2k2
)

and B̄ ≡ −21 h̄2

2m0
and D ≡ −40

(
h̄2

2m0

)
.

(f) The dispersion relation of the carriers in n-type Pb1−x Gax Te with x=0.01
can be written [246] as

[
E − 0.606k2

s − 0.0722k2
z

] [
E + Ēg + 0.411k2

s + 0.0377k2
z

]

= 0.23k2
s + 0.02k2

z ±
[
0.06Ēg + 0.061k2

s + 0.0066k2
z

]
ks (R1.10)

where, Ēg(= 0.21 eV) is the energy gap for the transition point, the zero
of the energy E is at the edge of the conduction band of the � point of the
Brillouin zone and is measured positively upwards, kx , ky, and kz are in
the units of 109 m−1.

(g) The energy spectrum of the carriers in the two higher valence bands and the
single lower valence band of Te can, respectively, be expressed as [245]

Ē = A10k2
z + B10k2

s ±
[
�2

10 + (β10kz)
2
]1/2

and Ē = �‖ + A10k2
z + B10k2

s ± β10kz (R1.11)

where Ē is the energy of the hole as measured from the top of the valence and
within it, A10 = 3.77 × 10−19 eVm2, B10 = 3.57 × 10−19 eVm2,�10 =
0.628 eV, (β10)

2 = 6 × 10−20(eVm)2 and �‖ = 1004 × 10−5 eV are the
spectrum constants.

(h) The dispersion relation for the electrons in graphite can be written following
Brandt [252] as

E = 1

2
[E2 + E3] ±

[
1

4
(E2 − E3)

2 + η2
2k2

]1/2

(R1.12)

where, E2 ≡ �̄ − 2γ̄1 cosφ0 + 2γ̄5 cos2 φ0, φ0 ≡ c6kz
2 , E3 ≡ 2γ̄2 cos2 φ0

and η2 ≡
(√

3
2

)
a6(γ̄0 + 2γ̄4 cosφ0) in which the band constants are

�̄, γ̄0, γ̄1, γ̄2, γ̄4, γ̄5, a6 and c6 respectively.
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(i) The dispersion relation of the conduction electrons in Antimony (Sb)
in accordance with Ketterson [251] can be written as

2m0 E = α11 P2
x + α22 P2

y + α33 P2
z + 2α23 Py Pz (R1.13)

and

2m0 E = a1 P2
x +a2 P2

y +a3 P2
z +a4 Py Pz ±a5 Px Pz ±a6 Px Py (R1.14)

where, a1 = 1
4 (α11 + 3α22), a2 = 1

4 (α22 + 3α11), a3 = α33, a4 =
α33, a5 = √

3 and a6 = √
3(α22 −α11) in which α11, α22, α33 and α23

are the system constants.
(j) The dispersion relation of the holes in p-InSb can be written in accordance

with Cunningham [247] as

Ē = c4(1 + γ4 f4)k
2 ± 1

3
[2√

2
√

c4
√

16 + 5γ4

√
E4g4k] (R1.15)

where c4 ≡ �2

2m0
+ θ4, θ4 ≡ 4.7 �2

2m0
, γ4 ≡ b4

c4
, b4 ≡ 3

2 b5 + 2θ4, b5 ≡
2.4 �2

2m0
, f4 ≡ 1

4 [sin2 2θ + sin4 θ sin2 2φ], θ is measured from the positive

z-axis, φ is measured from positive x-axis, g4 ≡ sin θ
[

cos2 θ +
1
4 sin4θ sin2 2φ

]
and E4 = 5 × 10−4 eV.

(k) The energy spectrum of the valence bands of CuCl in accordance with
Yekimov et al. [248] can be written as

Eh = (γ6 − 2γ7)
�

2k2

2m0
(R1.16)

and

El,s = (γ6 + γ7)
�

2k2

2m0
− �1

2
±
[
�2

1

4
+ γ7�1

�
2k2

2m0
+ 9

(
γ7�

2k2

2m0

)2
]1/2

(R1.17)
where, γ6 = 0.53, γ7 = 0.07,�1 = 70 meV.

(l) In the presence of stress,χ6 along<001> and<111> directions, the energy
spectra of the holes in semiconductors having diamond structure valence
bands can be respectively expressed following Roman [249] et al. as

E = A6k2 ±
[

B̄2
7 k4 + δ2

6 + B7δ6(2k2
z − k2

s )
]1/2

(R1.18)

and
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E = A6k2 ±
[

B̄2
7 k4 + δ2

7 + D6√
3
δ7(2k2

z − k2
s )

]1/2

(R1.19)

where A6, B7, D6, and C6 are inverse mass band parameters in which
δ6 ≡ l7(S̄11 − S̄12)χ6, S̄i j are the usual elastic compliance constants,

B̄2
7 ≡

(
B2

7 + c2
6
5

)
and δ7 ≡

(
dg S44

2
√

3

)
χ6. For gray tin, dg = −4.1 eV, l7 =

−2.3 eV,
A6 = 19.2 �2

2mo
, B7 = 26.3 �2

2mo
, D6 = 31 �2

2mo
and c2

6 = −1112 �2

2mo
.

(m) The dispersion relation of the carriers of cadmium and zinc diphosphides
are given by [250]

E =
[
β1 + β2β3(k)

8β4

]
k2 ±

{[
β4β3(k)x

(
β5 − β2β3(k)

8β4

)
k2
]

+8β2
4

(
1 − β2

3 (k)

4

)
− β2

(
1 − β2

3 (k)

4

)
k2

}1/2

(R1.20)

where β1, β2, β4 and β5 are system constants, and β3(k) = k2
x +k2

y−2k2
z

k2

R1.3. Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for ultra-
thin films, wires and dots of all the semiconductors as considered in R1.1
and R1.2, respectively.

R1.4. Investigate the same set of masses as defined in (R1.3) for bulk specimens of
the heavily–doped semiconductors in the presences of Gaussian, exponential,
Kane, Halperian, Lax and Bonch-Burevich types of Band tails [121, 121] for
all systems whose unperturbed carrier energy spectra are defined in R1.1 and
R1.2, respectively.

R1.5. Investigate the same set of masses as defined in (R1.3) for ultrathin films,
wires, and dot of all the heavily doped semiconductors as considered in R1.4.

R1.6. Investigate the same set of masses as defined in (R1.3) for bulk specimens of
the negative refractive index, organic, magnetic, and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.

R1.7. Investigate the same set of masses as defined in (R1.3) for ultrathin films,
wires and dot of the negative refractive index, organic, magnetic and other
advanced optical materials in the presence of an arbitrarily oriented alternat-
ing electric field.

R1.8. Investigate the same set of masses as defined in (R1.3) for the multiple
ultrathin films, wires, and dots of semiconductors whose unperturbed carrier
energy spectra are defined in R1.1, R1.2 and heavily doped semiconductors
in the presences of Gaussian, exponential, Kane, Halperian, Lax, and Bonch-
Burevich types of Band tails [121, 122] for all systems whose unperturbed
carrier energy spectra are defined in the same problems respectively.
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R1.9. Investigate the same set of masses as defined in (R1.3) for all the appropriate
low-dimensional systems of this chapter in the presence of finite potential
wells.

R1.10. Investigate the same set of masses as defined in (R1.3) for all the appropriate
low-dimensional systems of this chapter in the presence of parabolic potential
wells.

R1.11. Investigate the same set of masses as defined in (R1.3) for all the appropriate
systems of this chapter forming quantum rings.

R1.12. Investigate the same set of masses as defined in (R1.3) for all the above
appropriate problems in the presence of elliptical Hill and quantum square
rings.

R1.13. Investigate the same set of masses as defined in (R1.3) for the appropriate
accumulation layres for all the materials whose unperturbed carrier energy
spectra are defined in R1.1 and R1.2, respectively.

R1.14. Investigate the same set of masses as defined in (R1.3) for parabolic cylin-
drical quantum dots in the presence of an arbitrarily oriented alternating
electric field for all the materials whose unperturbed carrier energy spectra
are defined in R1.1 and R1.2, respectively.

R1.15. Investigate the same set of masses as defined in (R1.3) for wedge shaped,
cylindrical quantum dots of the negative refractive index, and other advanced
optical materials in the presence of an arbitrarily oriented alternating electric
field and non-uniform lightwaves.

R1.16. Investigate the same set of masses as defined in (R1.3) for triangular, cylin-
drical quantum dots of the negative refractive index, organic, magnetic and
other advanced optical materials in the presence of an arbitrarily oriented
alternating electric field in the presence of strain.

R1.17. Investigate the same set of masses as defined in (R1.3) for conical quantum
dots of the negative refractive index, organic, magnetic, and other advanced
optical materials in the presence of an arbitrarily oriented alternating electric
field.

R1.18. (a) Investigate the same set of masses as defined in (R1.3) for conical quan-
tum dots of the negative refractive index, organic, magnetic, and other
advanced optical materials in the presence of an arbitrarily oriented alter-
nating electric field considering many-body effects.

(b) Investigate all the appropriate problems of this chapter for a Dirac elec-
tron.

(c) Investigate all the appropriate problems of this chapter by including the
many-body, image force, broadening and hot carrier effects respectively.

R1.19. Investigate all the appropriate problems of this chapter by removing all the
mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 2
The EEM in Nipi Structures of Nonparabolic
Semiconductors

2.1 Introduction

The concept of doping superlattices (SLs) was introduced by Esaki and Tsu [1] and
extensive work in this subject was initiated by Dohler [2–15]. In the compositional
SL the periodic potential is due to a change in the band gap of two materials. In
doping SLs, the periodicity is space-charge induced and in addition a homogeneous
material is used. With the advent of modern experimental techniques of fabricating
nanomaterials, it is possible to grow semiconductor SLs composed of alternative
layers of two different degenerate layers with controlled thickness. These structures
have found wide applications in many new devices such as photodiodes, photore-
sistors [16], transistors [17], light emitters [18], tunneling devices [19], etc [20–33].
The investigations of the physical properties of narrow gap SLs have increased exten-
sively, since they are important for optoelectronic devices and also since the quality
of heterostructures involving narrow gap materials has been greatly improved. It may
be noted that the nipi structures, also called the doping superlattices as mentioned
above, are crystals with a periodic sequence of ultrathin film layers [19, 20] of the
same semiconductor with the intrinsic layer in between together with the opposite
sign of doping. All the donors will be positively charged and all the acceptors neg-
atively. This periodic space charge causes a periodic space charge potential which
quantizes the motions of the carriers in the z-direction together with the formation
of the subband energies.

In Fig. 2.1a, the layers and the impurity types in different layers are shown. Elec-
trons from neutral donors recombine with neutral acceptors, leaving behind a net
space charge associated with ionized impurities. The concentration of the impurities
is shown in Fig. 2.1b. The periodic potential is due to three terms:

V (z) = Vimp(z)+ VH(z)+ Vxc(z),

where, VH(z)is the Hartree potential of electrons and holes and Vxc(z)is the exchange
potential. The potential due to ionized impurities, Vimp(z)is obtained from Poisson’s
equation:

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 73
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_2, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 Periodic band edge modulation in an NIPI SL: a structure; b doping profile; and c spa-
tial variation of conduction and valence band edges showing the development of the 1D periodic
potential

The Poisson’s equation in this case is given by, [34]

d2Vimp

dz2 = e2

εsc
[ND(z)− NA(z)] (2.1a)

where, εsc is the semiconductor permittivity,ND(z)is the donor concentration along
z-axis and NA(z)is the acceptor concentration along z-axis.

Energy levels for the z quantized motion for electrons are to be calculated self-
consistently from Schrodinger equation

[
− �

2

2me

∂2

∂z2 + V (z)

]
φ(z) = Eφ(z) (2.1b)

where me is the effective electron mass, φ(z)is the electron wave function, and E is
the energy eigenvalue. The envelope function φ(z) is given by

φ(z) =
∑

m

exp(iqmd) f (z − md) (2.1c)
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where d is the period.
Some special features of this SL are stated below [34]:

1. When there are equal numbers of donors and acceptors in a period, i.e.,

d/2∫
−d/2

ND(z)dz =
d/2∫

−d/2

NA(z)dz (2.1d)

there are no free carriers in the unexcited sample at low temperatures.
2. Assume that the thickness of the doping layers are equal: dn = dp, the doping

levels are uniform: ND = NA, and also there is no undoped layer: di = 0. The
periodic space charge layer is then due to impurity ions only. Vimp(z) is parabolic
in nature and has amplitude

V0 = e2

εs
NDd2

n/8. (2.1e)

The potential variation is sketched in Fig 2.1c. The effective energy gap becomes

Eg(eff) = Eg − 2V0 + Ee0 + Eh0 (2.1f)

where, Ee0 and Eh0 are the energies of the first subbands. The envelope functions
φ(z)in the tight binding approximation are harmonic oscillator functions and the
eigenvalues are expressed as

Een = �

(
e2 ND

εscme

)1/2 [
n + 1/2

]
. (2.1g)

One may therefore conclude from (2.1g) and calculated values that the effective
gap may be reduced from that in bulk material.

3. If the thickness of and/or the doping concentration in the n-layer is increased,
there will be a finite, two-dimensional electron concentration in the n-layers.
Therefore, it appears that the electronic structures of the nipi’s differ radically
from the corresponding bulk semiconductors as stated below:

(a) Each band is split into mini bands.
(b) The magnitude and spacing of these mini bands may be designed by the

choice of the superlattices parameters and
(c) The electron energy spectrum of the nipi crystal becomes two-dimensional

leading to the step functional dependence of the density-of-states function.

In Sect. 2.2.1, of the theoretical background, the EEM in nipi structures of non-
linear optical materials has been investigated. Section 2.2.2 contains the results
for nipi structures of III–V, ternary and quaternary compounds in accordance
with the three- and two-band models of Kane together with parabolic energy
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bands and they form the special cases of Sect. 2.2.1. Sections 2.2.3–2.2.5 con-
tain the study of the EEM for nipi’s of II–VI, IV–VI, and stressed Kane-type
semiconductors respectively. The Sect. 2.3 contains the results and discussion of
this chapter. The last Sect. 2.4 presents the open research problems pertaining
to this chapter.

2.2 Theoretical Background

2.2.1 Formulation of the EEM in Nipi Structures of Nonlinear
Optical Materials

The dispersion relation of the conduction electrons in nipi structures of nonlinear
optical materials can be expressed using (1.2) and following the method as given in
[34, 35] as

ψ1(E) = ψ2(E)k
2
s + ψ3(E)

(
ni + 1

2

) 2m∗||
�
ω8(E) (2.1h)

where

ω8(E) ≡
(

n0 |e|2
εsc [θ1(E)]

)1/2

and θ1(E) ≡ �
2

2

{
ψ3(E) [ψ1(E)]′ − ψ1(E) [ψ3(E)]′

[ψ3(E)]2

}

and ni (= 0, 1, 2. . .) is the miniband index for nipi structures.
The EEM in this case assumes the form

m∗(EFn, ni ) =
(

�
2

2

)
R81(E, ni )

∣∣∣∣
E=ĒFn

(2.2)

where,

R81(E, ni ) ≡ [ψ2(E)]
−2

[
ψ2(E)

{
[ψ1(E)]

′ −
(

2m∗||
�

)
[ψ3(E)]

′
(

ni + 1

2

)
[ω8(E)]

−
(

2m∗||
�

)
[ψ3(E)]

(
ni + 1

2

)
[ω8(E)]

′
}

−
{

[ψ1(E)] −
(

2m∗||
�

)
[ψ3(E)]

(
ni + 1

2

)
[ω8(E)]

}
[ψ2(E)]

′
]

and ĒFn is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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From (2.2), we observe that the EEM is a function of the Fermi energy, nipi
subband index, and the other material constants which is the characteristic feature
of nipi structures of nonlinear optical materials.

The subband energy (E1ni) can be written as

ψ1(E1ni) = ψ3(E1ni)

(
ni + 1

2

) 2m∗||
�
ω8(E1ni) (2.3)

The density-of-states function for nipi structures of non-linear optical materials
can be expressed as

Nnipi(E) = gv

2πd0

ni max∑
ni =0

R81(E, ni )H(E − E1ni) (2.4)

in which d0 is the superlattice period.
The electron concentration, can be written as

n0 = gv

2πd0

ni max∑
ni =0

[
T81(ĒFn, ni )+ T82(ĒFn, ni )

]
(2.5)

where, T81(ĒFn, ni ) ≡
[
ψ1(ĒFn)− ψ3(ĒFn)

(
ni + 1

2

) 2m∗||
�
ω8(ĒFn)

] [
ψ2(ĒFn)

]−1

and T82(ĒFn, ni ) ≡
s∑

r=1
L(r)T81(ĒFn, ni ).

2.2.2 EEM in the Nipi Structures of III–V, Ternary
and Quaternary Semiconductors

(a) The electron energy spectrum in nipi structures of III–V, ternary and quaternary
materials can be expressed from (2.1) under the conditions 	|| = 	⊥ = 	,
δ = 0 and m∗|| = m∗⊥ = mc, as

I11(E) =
(

ni + 1

2

)
�ω9(E)+ �

2k2
s

2mc
(2.6)

where ω9(E) ≡
(

n0 |e|2
εsc I ′(E)mc

)1/2

.

The EEM in this case can be written as

m∗(EFn, ni ) = mc R82(E, ni )|E=EFn (2.7)
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in which, R82(E, ni ) ≡ {
[I11(E)]′ −

(
ni + 1

2

)
� [ω9(E)]′

}
.

From (2.7) we observe that the EEM in this case is a function of the Fermi energy,
nipi subband index and the other material constants which is the characteristic
feature of nipi structures of III–V, ternary and quaternary compounds whose bulk
dispersion relations is defined by the three-band model of Kane.
The subband energies (E2ni)can be written as

I11(E2ni) =
(

ni + 1

2

)
�ω9(E2ni). (2.8)

The density-of-states function in this case can be expressed as

Nnipi(E) = mcgv

π�2d0

ni max∑
ni =0

R82(E, ni )H(E − E2ni). (2.9)

The use of (2.9) leads to the expression of the electron concentration as

n0 = mcgv

π�2d0

ni max∑
ni =0

[
T83(ĒFn, ni )+ T84(ĒFn, ni )

]
(2.10)

where T83(ĒFn, ni ) ≡ [
I11(ĒFn)− (

ni + 1
2

)
�ω9(ĒFn)

]
and T84(ĒFn, ni ) ≡

s∑
r=1

L(r)T83(ĒFn, ni ).

(b) For the two-band model of Kane, the expressions of the dispersion relation, the
EEM, the subband energies, the density-of-states function, and n0 remain the
same where

I11(E) = E(1 + αE), {I11(E)}′ = (1 + 2αE) and {I11(E)}′′ = 2α.

The EEM in this case can be written as

m∗(EFn, ni ) = mc

{
(1 + 2αEFn)+

(
ni + 1

2

)
� [ω9(EFn)]

α

(1 + 2αEFn)

}

(2.11)
From 2.11 we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants due to the band
nonparabolicity only.

(c) For parabolic energy bands, the forms of the expressions of dispersion relation,
the EEM, the subband energies, the density-of-states function ,and n0 remain
the same, where I11(E) = E ,

{I11(E)}′ = 1 and {I11(E)}′′ = 0.
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The EEM can be written as

m∗(EFn, ni ) = mc. (2.12)

From (2.12) we observe that the EEM in this case is a constant quantity.

2.2.3 EEM in the Nipi Structures of II–VI Semiconductors

The carrier dispersion law in nipi structures of II–VI compounds can be
expressed as

E = a′
0k2

s +
(

ni + 1

2

)
�ω10 ± λ̄0ks, ω10 ≡

(
n0 |e|2
εscm∗||

)1/2

. (2.13)

Using (2.13), the EEM in this case can be written as

m∗(EFn, ni ) = m∗⊥

{
1 − λ̄0

[
(λ̄0)

2 + 4a′
0 EFn − 4a′

0

(
ni + 1

2

)
�ω10

]−1/2
}
.

(2.14)
Thus, the EEM in this case is a function of the Fermi energy, the nipi subband

index number and the energy spectrum constants due to the presence of only λ̄0.
The subband energies (E3ni)can be written as

E3ni =
(

ni + 1

2

)
�ω10 (2.15)

The density-of-states function in this case can be expressed as

Nnipi(E) = m∗⊥gv

π�2d0

ni max∑
ni =0

[
1 − a81√

E + b81(ni )

]
H(E − E3ni) (2.16)

in which, a81 ≡ λ̄0

2
√

a′
0

and b81(ni ) ≡
[

1
4a′

0

[
(λ̄0)

2 − 4a′
0

(
ni + 1

2

)
�ω10

]]
.

The use of the (2.16) leads to the electron concentration under the condition of
extreme degeneracy as

n0 = gvm∗⊥
π�2

nimax∑
ni=0

(
EFn − E3ni + (λ0)

2m∗⊥�
−2
)

(2.17)
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2.2.4 EEM in the Nipi Structures of IV–VI Semiconductors

The carrier energy spectrum in nipi structures of IV–VI compounds can be
written as

k2
s = (�2S19)

−1
[
−S20(E, ni )+

√
S2

20(E, ni )+ 4S19S21(E, ni )

]
(2.18)

in which,

S19 ≡ (
α

m+
t m−

t
), S20(E, ni ) ≡

{
1

m∗
t

−
(
αE

m+
t

)
+ 1 + αE

m−
t

+ α�
2

2m+
l m−

t

(
ni + 1

2

)

T (E)+ α�
2

2m−
l m+

t

(
ni + 1

2

)
T (E)

}

T (E) ≡ 2m∗(0)
�

ω11(E), m∗(0) ≡
(

m∗
l m−

l

m∗
l + m−

l

)
, ω11(E) ≡

(
n0 |e|2
εscm∗(E)

)1/2

,

m∗(E) ≡ 1

4t1

⎡
⎣−(t2(E))′ + t2(E)(t2(E))′ + 2t1(1 + 2αE)√

t2
2 (E)+ 4Et1(1 + αE)

⎤
⎦ ,

t1 ≡
(

α

4m+
l m−

l

)
, t2(E) ≡ 1

2

[(
1

m∗
l

)
−
(
αE

m+
l

)
+
(

1 + αE

m−
l

)]
,

(t2(E))
′ ≡ α

2

(
1

m−
l

−
(

1

m+
l

))
and

S21(E, ni ) ≡
[

E(1 + αE)+ αE�
2

2m+
l

(
ni + 1

2

)
T (E)+ �

2

2m−
l

(
ni + 1

2

)
T (E)(1 + αE)

+ �
4

4m−
l m+

l

(
ni + 1

2

)
T (E)−

(
�

2

2m∗
l

)
T (E)

(
ni + 1

2

)]
.

Using (2.18), the EEM in this case can be written as

m∗(EFn, ni ) = R84(E, ni )|E=EFn (2.19)
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where,

R84(E, ni ) ≡ (2S19)
−1

×

⎡
⎢⎢⎢⎣−(S20(E, ni ))

′ + S20(E, ni )
[
S20(E, ni )

]′ + 2S19
[
S21(E, ni )

]′
[{[

S20(E, ni )
]′}2 + 4S19S21(E, ni )

]1/2

⎤
⎥⎥⎥⎦ .

Thus, one can observe that the EEM in this case is a function of both the Fermi
energy and the nipi subband index number together with the spectrum constants of
the system due to the presence of band nonparabolicity.

The subband energies (E4ni) can be written as

[
E4ni − �

2

2m−
l

T (E4ni)

(
ni + 1

2

)]

×
[

1 + αE4ni + +α �
2

2m+
l

T (E4ni)

(
ni + 1

2

)]
=
[

�
2

2m∗
l

T (E4ni)

(
ni + 1

2

)]
.

(2.20)

The density-of-states function in this case assumes the form as

Nnipi(E) = gv

π�2d0

ni max∑
ni =0

R84(E, ni )H(E − E4ni) (2.21)

The use of (2.21) leads to the expression of the electron concentration as

n0 = gv

2π�2S19d0

ni max∑
ni =0

[
T85(ĒFn, ni )+ T86(ĒFn, ni )

]
(2.22)

where, T85(ĒFn, ni ) ≡
[
−S20(EFn, ni )+

√
[S20(EFn, ni )]2 + 4S19S21(EFn, ni )

]

and T86(ĒFn, ni ) ≡
s∑

r=1
L(r)T85(ĒFn, ni ).

2.2.5 EEM in the Nipi Structures of Stressed Semiconductors

The electron dispersion law in the nipi structures of stressed semiconductors can be
written as
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k2
x

[ā0(E)]2 + k2
y

[b̄0(E)]2
+ 1

[c̄0(E)]2

2m∗
z (0)

�

(
ni + 1

2

)
ω12(E) = 1 (2.23)

where ω12(E) ≡
(

n0 |e|2
εscm∗

z (E)

)1/2

and m∗
z (E) ≡ �

2c̄0(E)
∂

∂E
[c̄0(E)].

The use of (2.23) leads to the expression of the EEM as

m∗(EFn, ni ) =
(

�
2

2

)
R85(E, ni )

∣∣∣∣
E=EFn

(2.24)

where,

R85(E, ni ) ≡ [[
(ā0(E))

′b0(E)+ (b̄0(E))
′ā0(E)

]

×
[

1 − 1

[c̄0(E)]2

2m∗
z (0)

�

(
ni + 1

2

)
ω12(E)

]

−
[

ā0(E)b̄0(E)

[c̄0(E)]2

2m∗
z (0)

�

(
ni + 1

2

)
[ω12(E)]

′
]

+
[

ā0(E)b̄0(E) [c̄0(E)]′

[c̄0(E)]3

4m∗
z (0)

�

(
ni + 1

2

)
[ω12(E)]

]]
.

Thus, the EEM is a function of the Fermi energy and the nipi subband index due
to the presence of stress and band nonparabolicity only.

The subband energies (E5ni )can be written as

1

[c̄0(E4ni)]2

2m∗
z (0)

�

(
ni + 1

2

)
ω12(E4ni) = 1. (2.25)

The density-of-states function can be expressed as

Nnipi(E) = gv

π�2d0

ni max∑
ni =0

R85(E, ni )H(E − E5ni). (2.26)

Thus, using (2.26), the electron concentration in nipi structures of stressed com-
pounds can be written as

n0 = gv

2πd0

ni max∑
ni =0

[
C3(ĒFn, ni )+ C4(ĒFn, ni )

]
. (2.27)
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Fig. 2.2 Plot of the EEM as function of superlattice period for n-Cd3As2 considering Eq. (2.2) The
plots for three- and two-band models of Kane have also been exhibited with their corresponding
bulk values

where

C3(ĒFn, ni ) ≡ ā0(ĒFn)b̄0(EFn)

[
1 − 2m∗

z (0)

�

(
ni + 1

2

)
ω12(ĒFn)

(c̄0(ĒFn))2

]

and

C4(ĒFn, ni ) ≡
s∑

r=1

L(r)C3(ĒFn, ni ).

2.3 Results and Discussion

The effect of nipi superlattice period on the EEM has been exhibited in Figs. 2.2, 2.3,
2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 for different materials. Using (2.2) and (2.5) together
with the energy band constants as given in Table 1.1, we have plotted the EEM in nipi
structures of nonlinear optical materials taking Cd3As2 and CdGeAs2 as examples
in Figs. 2.2 and 2.3

From both Figs. 2.2 and 2.3, it appears that the effect of increment of the superlat-
tice period increases the EEM in the presence of extreme carrier degeneracy of the
order of 1023 m−3. For comparison with the bulk anisotropic effective masses, we
have also exhibited the same in the said figures. It appears that the EEM can be much
less than that of the corresponding bulk values below 10 nm period for Cd3As2. Thus
in such condition, one can expect an increase in the carrier mobility to a great extent,

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 2.3 Plot of the EEM as function of superlattice period for n-CdGeAs2 for all cases of Fig. 2.2

Fig. 2.4 Plot of the EEM as function of superlattice period for n-InAs considering the three- and
two-band model of Kane with the corresponding bulk value

in fact almost double. The effect of crystal field splitting has also been exhibited in
the same Figs. 2.2 and 2.3.

It appears that the effect of δ on the EEM is the largest in case of Cd3As2. The
approximation in the energy band structure also makes a significant deviation of the
EEM in case of Cd3As2. However, for CdGeAs2, the EEM exhibits a slow variation
over the superlattice period as compared with Fig. 2.2 At this point it should be noted
that with the increase in the superlattice period, the EEM in Cd3As2 by considering
the energy dispersion relation with the absence of the crystal field splitting and the
three-band model of Kane actually tends to the anisotropic bulk value 0.01393m0.
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Fig. 2.5 Plot of the EEM as function of superlattice period for n-InSb considering the three- and
two-band model of Kane with the corresponding bulk value

Fig. 2.6 Plot of the EEM as function of superlattice period for n-GaAs considering the three- and
two-band model of Kane with the corresponding bulk value

This is not with the case when the effect of crystal field splitting and the two-band
equivalent model is considered. In these two cases, the EEM is overestimated against
the bulk value. This is not with the case of Fig. 2.3 of CdGeAs2, where the EEM
converges to the bulk anisotropic value at larger superlattice period.

The effect of superlattice period on the EEM in the ground state subband in III–V
materials has been evaluated using the three- and the two-band model of Kane in
Figs. 2.4, 2.5, 2.6 for InAs, InSb and GaAs respectively.
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Fig. 2.7 Plot of the EEM as function of superlattice period for n-Hg1−x Cdx Te considering the
three- and two-band model of Kane with the corresponding bulk value at x = 0.3

Fig. 2.8 Plot of the EEM as function of superlattice period for n-In1−x Gax As1−yPy considering
the three- and two-band model of Kane with the corresponding bulk value at x = 0.3

It appears from these figures that the effect of the variation of the energy dispersion
relation model on EEM is almost insignificant for GaAs nipi structures, whereas for
InSb, the EEM exhibits a significant deviation. In almost all the cases of about 1 nm
period, the EEM approximately becomes half of the respective isotropic effective
bulk masses indicating the mobility rise of up to 200 %.

In Figs. 2.7 and 2.8, the EEM as function of the periods has been further evaluated
for the ternary and quaternary materials like Hg1−x Cdx Te and In1−x Gax As1−yPy ,
where the energy band gap in these materials can be modulated by changing the
alloy fraction x . We see that the EEM in case of In1−x Gax As1−yPy almost exhibits
no significant variation and approaches quickly its bulk normalized value 0.0287 at
x = 0.3 as compared to Hg1−x Cdx Te.



2.3 Results and Discussion 87

Fig. 2.9 Plot of the EEM as function of superlattice period for p-CdS

Figures 2.9 and 2.10 exhibit the EEM at the lowest subband in II–VI and IV–VI
nipi structures of CdS and PbTe respectively.

The effect of increasing the doping concentration from 4×1025 to 6×1025 m−3 on
EEM in CdS has been also exhibited in Fig. 2.9 for a period bandwidth of 50−100 µm.
It appears that with the increase in the doping concentration, the EEM in CdS
increases and approaches the bulk longitudinal normalized value 1.5. However, in
case of PbTe, we see that the EEM saturates above superlattice period of about 20 µm.

The effect of doping concentration on the EEM in the lowest subband level in all
the aforementioned materials has been exhibited in Figs. 2.11, 2.12, 2.13, 2.14, 2.15,
2.16, 2.17, 2.18. It appears that the EEM increases with the increases in carrier degen-
eracy for all the cases and may become even larger than that of their corresponding
bulk value along the proper transport direction. From Fig. 2.12 we see that the EEM
is almost constant below the degeneracy of about 1023 m−3. The effect of different
models of energy band structures has been exhibited to present the dependency of
the EEM on the same. It appears from Figs. 2.15 and 2.17 that the second and third
order Kane model almost exhibits no differences of the EEM from the two. The
respective saturation of the EEM with the decrease in the degeneracy is different for
the materials as this depends on the Fermi energy which is a function of the energy
band parameters.
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Fig. 2.10 Plot of the EEM as function of superlattice period for PbTe

Fig. 2.11 Plot of the EEM as function of doping concentration for n-Cd3As2 considering all cases
of Fig. 2.2

Figure 2.18 exhibits the variation of the EEM with increasing degeneracy for PbTe
nipi. Anomalous behavior in the variation of the EEM has been exhibited as one
increases the degeneracy. It appears that above 2 × 1022 m−3, the EEM decreases.
This should not be in general confused with other plots since an increase in the
degeneracy increases the Fermi energy which increases the EEM. However, in this
case, the effect of the different spectrum constants defines the variation of the EEM.

The variation of the EEM with alloy composition for the ternary and quaternary
materials has been exhibited in Fig. 2.19 for the three- and two-energy band model of
Kane. Almost no difference in the two-energy band model in this case is exhibited.
The variation of the EEM for the quaternary is slower than that of the ternary which
is due to the variation of the energy band gap through the alloy composition. The
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Fig. 2.12 Plot of the EEM as function of doping concentration for n-CdGeAs2 considering all
cases of Fig. 2.3

Fig. 2.13 Plot of the EEM as function of doping concentration for n-InAs considering all cases of
Fig. 2.4

joy of executing the intricate computer programming for the variation of EEM in
case of stressed InSb nipi structure whose energy band parameters have been given
in Table 1.1 of Chap. 1 has been left to the reader. The summary of this chapter is
presented in Table 2.1.

2.4 Open Research Problems

R.2.1 Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM in the
presence of an arbitrarily oriented nonquantizing magnetic field for nipi

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 2.14 Plot of the EEM as function of doping concentration for n-InSb considering all cases of
Fig. 2.5

Fig. 2.15 Plot of the EEM as function of doping concentration for n-GaAs considering all cases
of Fig. 2.6

structures of nonlinear optical semiconductors by including the electron spin.
Study all the special cases for III–V, ternary and quaternary materials in this
context.

R.2.2 Investigate the same set of masses as defined in (R 2.1) in nipi structures
of IV–VI, II–VI and stressed Kane-type compounds in the presence of an
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Fig. 2.16 Plot of the EEM as function of doping concentration for n-Hg1−x Cdx Te considering all
cases of Fig. 2.7

Fig. 2.17 Plot of the effective electron mass as function of doping concentration for
n-In1−x Gax As1−yPy

arbitrarily oriented nonquantizing magnetic field by including the electron
spin.

R.2.3 Investigate the same set of masses as defined in (R 2.1) for nipi structures of
all the materials as stated in R.1.1 of chapter 1.
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Fig. 2.18 Plot of the effective electron mass as function of doping concentration for PbTe

Fig. 2.19 Plot of the EEM as function of alloy composition for Hg1−x Cdx Te and
n-In1−x Gax As1−yPy considering the three- and two-band model of Kane with the corresponding
bulk value at different x

R.2.4 Investigate the same set of masses as defined in (R 2.1) for all the problems
from R.2.1 to R.2.3 in the presence of an additional arbitrarily oriented
electric field.

R.2.5 Investigate the same set of masses as defined in (R 2.1) for all the problems
from R.2.1 to R.2.3 in the presence of arbitrarily oriented crossed electric
and magnetic fields.

R 2.6 Investigate the same set of masses as defined in (R 2.1) for nipi structures of
the heavily doped semiconductors in the presences of Gaussian, exponen-
tial, Kane, Halperian, Lax, and Bonch-Burevich types of Band tails for all
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systems whose unperturbed carrier energy spectra are defined in R1.1 and
R1.2 respectively.

R 2.7 Investigate the same set of masses as defined in (R 2.1) for nipi structures of
the negative refractive index, organic, magnetic, and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.

R 2.8 Investigate the same set of masses as defined in (R 2.1) for all the nipi systems
of this chapter in the presence of finite potential wells.

R 2.9 Investigate the same set of masses as defined in (R 2.1) for all the nipi systems
of this chapter in the presence of parabolic potential wells.

R 2.10 Investigate all the appropriate problems of this chapter by including the many
body, image force, broadening, and hot carrier effects respectively.

R 2.11 Investigate all the appropriate problems of this chapter by removing all the
mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 3
The EEM in Inversion Layers of Non-Parabolic
Semiconductors

3.1 Introduction

It is well known that the electrons in bulk semiconductors in general, have three
dimensional freedom of motion. When, these electrons are confined in a one
dimensional potential well whose width is of the order of the carrier wavelength,
the motion in that particular direction gets quantized while that along the other two
directions remains as free. Thus, the energy spectrum appears in the shape of dis-
crete levels for the one dimensional quantization, each of which has a continuum
for the two dimensional free motion. The transport phenomena of such one dimen-
sional confined carriers have recently studied [1–22] with great interest. For the
metal-oxide-semiconductor (MOS) structures, the work functions of the metal and
the semiconductor substrate are different and the application of an external voltage
at the metal-gate causes the change in the charge density at the oxide semiconductor
interface leading to a bending of the energy bands of the semiconductor near the
surface. As a result, a one dimensional potential well is formed at the semiconductor
interface. The spatial variation of the potential profile is so sharp that for consid-
erable large values of the electric field, the width of the potential well becomes of
the order of the de Broglie wavelength of the carriers. The Fermi energy, which is
near the edge of the conduction band in the bulk, becomes nearer to the edge of the
valance band at the surface creating inversion layers. The energy levels of the carriers
bound with in the potential well get quantized and form electric subbands. Each of
the subband corresponds to a quantized level in a plane perpendicular to the surface
leading to a quasi two dimensional electron gas. Thus, the extreme band bending at
low temperature allows us to observe the quantum effects at the surface.

In Sect. 3.2.1, of the theoretical background, the EEM in n-channel inversion lay-
ers of tetragonal materials has been investigated for both weak and strong electric
field limits. The Sect. 3.2.2 contains the results for n-channel inversion layers of
III–V, ternary and quaternary compounds for both the electric field limits whose
bulk electrons obey the three and the two band models of Kane together with par-
abolic energy bands and they form the special cases of Sect. 3.2.1. The Sect. 3.2.3

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 97
Semiconductors, Springer Series in Materials Science 167,
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contains the study of the EEM for n-channel inversion layers of II–VI materials. The
Sects. 3.2.4 and 3.2.5 contains the study of the EEM in n-channel inversion layers of
IV–VI and stressed semiconductors for both the limits respectively. The Sects. 3.2.6
and 3.2.7 contains the study of the EEM in n-channel inversion layers of Ge and GaSb
for both the limits respectively. The Sect. 3.3 contains the results and discussion of
this chapter. The last Sect. 3.4 presents the open research problems for this chapter.

3.2 Theoretical Background

3.2.1 Formulation of the EEM in n-Channel Inversion Layers
of Non-Linear Optical Semiconductors

In the presence of a surface electric field Fs along z direction and perpendicular to
the surface, (1.2) assumes the form

ψ1(E − |e| Fs z) = ψ2(E − |e| Fs z)k2
s + ψ3(E − |e| Fs z)k2

z (3.1)

where, for this chapter, E represents the electron energy as measured from the edge
of the conduction band at the surface in the vertically upward direction.

The quantization rule for inversion layers is given by [5]

zt∫
0

kzdz = 2

3
(Si )

3/2 (3.2)

where, zt is the classical turning point and Si is the zeros of the Airy function
(Ai(−Si ) = 0).

Using (3.1) and (3.2), under the weak electric field limit, one can write,

zt∫
0

√
A7(E)− |e| Fs zD7(E)dz = 2

3
(Si )

3/2 (3.3)

in which, zt ≡ A7(E)

[|e| Fs D7(E)]
, A7(E) ≡

[
ψ1(E)− ψ2(E)k2

s

ψ3(E)

]
, D7(E) ≡ [B7(E)−

A7(E)C7(E)], B7(E) ≡
[
(ψ1(E))′ − (ψ2(E))′k2

s

ψ3(E)

]
and C7(E) ≡

[
(ψ3(E))′

ψ3(E)

]
.

Thus, the 2D electron dispersion law in n-channel inversion layers of tetragonal
materials under the weak electric field limit can approximately be written as

ψ1(E) = P7(E, i)k2
s + Q7(E, i) (3.4)

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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where,

P7(E, i) ≡
[
ψ2(E)−

(
2t2(E)

3 [t1(E)]1/3

)
ψ3(E)Si (|e| Fs)

2/3
]
,

t2(E) ≡
[

[ψ2(E)]′

ψ3(E)
−
(
ψ2(E) [ψ3(E)]′

[ψ3(E)]2

)]
,

t1(E) ≡
[

[ψ1(E)]′

ψ3(E)
−
(
ψ1(E) [ψ3(E)]′

[ψ3(E)]2

)]

and Q7(E, i) ≡ Siψ3(E) [|e| Fst1(E)]2/3.
The EEM in the x − y plane can be expressed as

m∗(EFiw, i) =
(

�
2

2

)
G7(E, i)

∣∣∣∣
E=EFiw

(3.5)

where, G7(E, i) ≡ [P7(E, i)]−2 [P7(E, i)
{
(ψ1(E))′ − (Q7(E, i))′

}− {ψ1(E)−
(Q7(E, i))} (P7(E, i))′

]
and EFiw is the Fermi energy under the weak electric field

limit as measured from the edge of the conduction band at the surface in the vertically
upward direction. Thus, we observe that the EEM is the function of subband index, the
Fermi energy and other band constants due to the combined influence of the crystal
filed splitting constant and the anisotropic spin-orbit splitting constants respectively.

The subband energy (Eniw1) in this case can be obtained from (3.4) as

ψ1
(
Eniw1

) = Q7
(
Eniw1, i

)
(3.6)

The general expression of the 2D total density-of-states function in this case can be
written as

N2Di (E) = 2gv

(2π)2

imax∑
i=0

∂

∂E

[
A(E, i)H(E − Eni )

]
(3.7)

where, A(E, i) is the area of the constant energy 2D wave vector space for inversion
layers and Eni is the corresponding subband energy.

Using (3.4) and (3.7), the total 2D density-of-states function under the weak
electric field limit can be expressed as

N2Di (E) = gv

(2π)

imax∑
i=0

[
G7(E, i)H(E − Eniw1)

]
(3.8)

where, Eniw1 is the subband energy for the weak electric field limit in this case.
Using (3.8) and the Fermi-Dirac occupation probability factor, the 2D surface

electron concentration in n-channel inversion of tetragonal materials under the weak
electric field limit (n2Dw) can be written as

http://dx.doi.org/10.1007/978-3-642-31248-9_3
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n2Dw = gv(2π)
−1

imax∑
i=0

[P7w(EFiw, i)+ Q7w(EFiw, i)] (3.9)

where, P7w(EFiw, i) ≡ [ψ1(EFiw, i)− Q7(EFiw, i)] {P7(EFiw, i)}−1, Q7w(EFiw, i)

≡
s∑

r=1
{L(r) [P7(EFiw, i)]} and Fs ≡

(
(|e| n2Dw)

εsc

)
.

Using (3.1) and (3.2), the 2D electron dispersion law in n-channel inversion layers
of tetragonal materials under the strong electric field limit can be written as

k2
s = P2(E, i) (3.10)

P2(E, i) ≡ [F7(E)]
−1 [F6(E)− F8(E, i)] , F6(E)

≡
[
ψ1(E)

ψ3(E)

] [
1 + [ψ1(E)]′ [ψ3(E)]′

ψ3(E) [ψ1(E)]′′
+ ψ1(E) [ψ3(E)]′′

2 [ψ1(E)]′′ [ψ3(E)]

]
,

F7(E) ≡
[(
ψ2(E)

ψ3(E)

)
−
(

ψ1(E) [ψ2(E)]′′

2 [ψ1(E)]′′ [ψ3(E)]

)
+
(
ψ2(E)

ψ3(E)

)

[
[ψ1(E)]′ [ψ3(E)]′

ψ3(E) [ψ1(E)]′′
+ ψ1(E) [ψ3(E)]′′

2 [ψ1(E)]′′ [ψ3(E)]

]

+
(
ψ1(E)

ψ3(E)

)[
[ψ2(E)]′ [ψ3(E)]′

ψ3(E) [ψ1(E)]′′
+ ψ2(E) [ψ3(E)]′′

2 [ψ1(E)]′′ [ψ3(E)]

]]

and F8(E, i) ≡
[

2
√

2

3
(Si )

3/2(|e| Fs)

√
[ψ1(E)]′′

]
.

The EEM in the x − y plane can be written in this case as

m∗(EFis, i) =
(

�
2

2

)
[P2(E, i)]′

∣∣∣∣
E=EFis

(3.11)

where, EFis is the Fermi energy under the strong electric field limit as measured from
the edge of the conduction band at the surface. Thus, we note that the EEM is the
function of subband index and the Fermi energy due to the combined influence of
the crystal filed splitting constant and the anisotropic spin-orbit splitting constants
respectively.

The subband energy (Enis1) in this case can be obtained from the (3.10) as



3.2 Theoretical Background 101

P2(Enis1 , i) = 0 (3.12)

The total 2D density-of-states function under the strong electric field limit can be
written as

N2Di (E) = gv

(2π)

imax∑
i=0

[
(P2(E, i))′H(E − Enis1)

]
(3.13)

Using (3.13) and the Fermi-Dirac occupation probability factor, the 2D surface elec-
tron concentration (n2Ds) in this case can be expressed as

n2Ds = gv(2π)
−1

imax∑
i=0

[P2(EFis, i)+ Q2(EFis, i)] (3.14)

where, Q2(EFis, i) ≡
s∑

r=1
{L(r) [P2(EFis, i)]}.

3.2.2 Formulation of the EEM in n-Channel Inversion Layers
of III–V, Ternary and Quaternary Semiconductors

Using the substitutions δ = 0,�‖ = �⊥ = � and m∗‖ = m∗⊥ = mc, (3.4) under the
condition of weak electric field limit, assumes the form

I11(E) = �
2k2

s

2mc
+ Si

[
� |e| Fs [I11(E)]′√

2mc

]2/3

(3.15)

(3.15) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III–V, ternary and quaternary materials under the weak electric field limit
whose bulk electrons obey the three band model of Kane.

The EEM can be expressed as

m∗(EFiw, i) = mc [P3(E, i)]|E=EFiw (3.16)

where, P3(E, i) ≡
{

[I11(E)]′ −
{

2
3 Si

[
�|e|Fs√

2m∗

]2/3 {
[I11(E)]′

}−1/3
[I11(E)]′′

}}
.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg and �.

The subband energy (Eniw2) in this case can be obtained from (3.15) as
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I11
(
Eniw2

) = Si

[
� |e| Fs

[
I11
(
Eniw2

)]′
√

2mc

]2/3

(3.17)

Using (3.15) and (3.7), the 2D total density-of-states function in weak electric field
limit can be expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P3(E, i)H(E − Eniw2)

]
(3.18)

Using (3.18) and the occupation probability, the n2Dw in the present case can be
written as

n2Dw = gvmc

π�2

imax∑
i=0

[P4w(EFiw, i)+ Q4w(EFiw, i)] (3.19)

where, P4w(EFiw, i) ≡
{

I11(EFiw)− Si

[
�eFs [I11(EFiw)]′√

2mc

]2/3
}

and Q4(EFiw, i)

≡
s∑

r=1
{L(r) [P4(EFiw, i)]}.

Using the substitutions δ = 0,�|| = �⊥ = � and m∗|| = m∗⊥ = mc, (3.10) under
the condition of strong electric field limit, assumes the form

[
I11(E)−

{
|e| Fs�√

2mc

(
2
√

2(Si )
3/2

3

)√
[I11(E)]′′

}]
= �

2k2
s

2mc
(3.20)

(3.20) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III–V, ternary and quaternary materials under the strong electric field limit
whose bulk conduction electrons are defined by the three band model of Kane.

The EEM can be expressed as

m∗(EFis, i) = mc [P5(E, i)]|E=EFis (3.21)

where, P5(E, i)≡
{

{I11(E)}′ −
{

|e| Fs�√
2mc

(√
2(Si )

3/2

3

)
([I11(E)]′′)−1/2 [I11(E)]′′′

}}
.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg and �.

The subband energy (Enis2) in this case can be obtained from (3.20) as

I11(Enis2)−
{

|e| Fs�√
2mc

(
2
√

2(Si )
3/2

3

)√[
I11(Enis2)

]′′} = 0 (3.22)

http://dx.doi.org/10.1007/978-3-642-31248-9_3
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Using (3.20) and (3.7), the total 2D density-of-states function under the strong electric
field limit can be expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P5(E, i)H(E − Enis2)

]
(3.23)

Using (3.23) and the Fermi-Dirac occupation probability factor, the n2Ds in the
present case under the strong electric field can be written as

n2Ds = gvmc

π�2

imax∑
i=0

[P6s(EFis, i)+ Q6s(EFis, i)] (3.24)

where, P6s(EFis, i)≡
{

I11(EFis)−
[

2
√

2

3
(Si )

3/2 � |e| Fs [I11(EFis)]′′√
2mc

]}
and

Q6s(EFis, i) ≡
s∑

r=1
{L(r) [P6(EFis, i)]}

Using the constraints � � Eg0 or � 	 Eg0 , (3.15) under the low electric field
limit assumes the form

E(1 + αE) = �
2k2

s

2mc
+ Si

[
� |e| Fs(1 + 2αE)√

2mc

]2/3

(3.25)

For large values of i , Si → [ 3π
2

(
i + 3

4

)]2/3
[5], and (3.25) gets simplified as

E(1 + αE) = �
2k2

s

2mc
+
[

3π� |e| Fs

2

(
i + 3

4

)
(1 + 2αE)√

2mc

]2/3

(3.26)

(3.26) was derived for the first time by Antcliffe et al. [3].
The EEM in this case is given by

m∗(EFiw, i) = mc [P6(E, i)]|E=EFiw (3.27)

where, P6(E, i) ≡
{

1 + 2αE − 4α
3 Si

[
� |e| Fs√

2mc

]2/3

{1 + 2αE}−1/3

}
.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field and the Fermi energy due to the presence of band nonparabolicity only.

The subband energies (Eniw3) are given by

Eniw3(1 + αEniw3) = Si

[
� |e| Fs(1 + 2αEniw3)√

2mc

]2/3

(3.28)
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The total 2D density-of-states function can be written as

N2D(E) = mcgv

π�2

imax∑
i=0

{[
1 + 2αE − 4α

3
Si

[
� |e| Fs√

2mc

]2/3
(1 + 2αE)−1/3

]
H(E − Eniw3)

}

(3.29)
Under the condition αE 	 1, the use of (3.29) and the Fermi-Dirac integral leads
to the expression of n2Dw as

n2Dw =
(

gvmckB T

π�2

) imax∑
i=0

{[
1 + Di + 2αEniw3

]
F0(ηiw)+ 2αkB T F1(ηiw)

}
(3.30)

where, Di ≡ 4αSi
3

(
�|e|Fs√

2mc

)2/3
and ηiw ≡

[
EFiw−Eniw3

kB T

]
.

For all values of αEFiw, the n2Dw can be written as

n2Dw =
(gvmc

π�2

) imax∑
i=0

[P5w(EFiw, i)+ Q5w(EFiw, i)] (3.31)

where, P5w(EFiw, i) ≡
[

EFiw(1 + αEFiw)− Si

[
�|e|Fs√

2mc
(1 + 2αEFiw)

]2/3
]

and

Q5w(EFiw, i) ≡
s∑

r=1
L(r)P5w(EFiw, i).

For α → 0, as for inversion layers, whose bulk electrons are defined by the
parabolic energy bands, we can write,

E = �
2k2

s

2mc
+ Si

[
� |e| Fs√

2mc

]2/3

(3.32)

The (3.32) is valid for all values of the surface electric field [1].
The electric subband energy (Eni4) assumes the form, from (3.32) as

Eni4 = Si

[
� |e| Fs√

2mc

]2/3

(3.33)

The total density-of-states function can be written using (3.33) as

N2D(E) = mcgv

π�2

imax∑
i=0

H(E − Eni4) (3.34)

The use of (3.34) leads to the expression of n2Di as [1]
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n2Di = gvmckB T

π�2

imax∑
i=0

F0(ηi ) (3.35)

where, ηi ≡ (kB T )−1

[
EFi − Si

[
� |e| Fs√

2mc

]2/3
]

, EFi is the Fermi energy as mea-

sured from the edge of the conduction band at the surface.
Using the constraints � � Eg or � 	 Eg , the (3.20) under the strong electric

field limit assumes the form

E(1 + αE) = �
2k2

s

2mc
+ 2

√
2

3
(Si )

3/2

[
� |e| Fs√
2mc Eg

]
(3.36)

For large values of i , Si →
[

3π

2

(
i + 3

4

)]2/3

[5] and (3.36) gets simplified as

E(1 + αE) = �
2k2

s

2mc
+
[
π� |e| Fs

√
2√

mc Eg

(
i + 3

4

)]
(3.37)

The (3.37) was derived for the first time by Antcliffe et al. [3].
From (3.36), we observe that under the condition Eg → 0, one cannot obtain the

corresponding parabolic case, since under high electric field limit, the band becomes
permanently nonparabolic.

The EEM is given by

m∗(EFis, i) = mc (1 + 2αEFis)|i=0 (3.38)

Thus, in the high electric field limit, the EEM is a function of Fermi energy due to
the presence of band nonparabolicity only and is independent of the subband index.

The electric subband energy (Eniw5) in the high electric field limit is given by

Eniw5(1 + αEniw5) =
[
π� |e| Fs

√
2√

mc Eg

(
i + 3

4

)]
(3.39)

The 2D total density-of-states function in this case can be written as

N2Di (E) = mcgv

π�2

imax∑
i=0

{
[1 + 2αE] H

(
E − Eniw5

)}
(3.40)

The surface electron concentration for all values of αEFis in this case assumes the
form
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n2Dw =
(

gvmckB T

π�2

) imax∑
i=0

{
[1 + 2αkB T ] F0(ηis)+ 2αkB T Eniw5 F1(ηis)

}
(3.41)

where, ηis ≡
[

EFis−Eniw5
kB T

]
.

3.2.3 Formulation of the EEM in n-Channel Inversion Layers
of II–VI Semiconductors

The use of (1.42) and (3.2) leads to the quantization integral as

√
2m∗||
�

zt∫
0

[
E − |e| Fs z − a′

0k2
s ∓ (λ̄0)ks

]1/2
dz = 2

3
(Si )

3/2 (3.42)

where, zt ≡ (|e| Fs)
−1
[
E − a′

0k2
s ∓ (λ̄0)ks

]
.

Therefore, the 2D electron dispersion law for n-channel inversion layers of II–VI
semiconductors can be expressed for all values of Fs as

E = a′
0k2

s ± (λ̄0) ks + Si

⎛
⎝� |e| Fs√

2m∗‖

⎞
⎠

2/3

(3.43)

The area of the 2D surface as enclosed by (3.43) can be expressed as

A(E, i) = π(m∗⊥)2

�4

⎡
⎢⎣
⎧⎪⎨
⎪⎩2(λ̄0)

2 − 2�
2

m∗⊥
Si

⎛
⎝� |e| Fs√

2m∗||

⎞
⎠

2/3

+ 2�
2 E

m∗⊥

⎫⎪⎬
⎪⎭

−2(λ̄0)

⎡
⎢⎣(λ̄0)

2 − 2�
2

m∗⊥
Si

⎛
⎝� |e| Fs√

2m∗||

⎞
⎠

2/3

+ 2�
2 E

m∗⊥

⎤
⎥⎦

1/2⎤
⎥⎦ (3.44)

The EEM is given by

m∗(EFi, i) = m∗⊥
[

1 − ρ71√
EFi + ρ72

]
(3.45)

where, EFi is the Fermi energy in this case,

ρ71 ≡ λ̄0

2
√

a′
0

and ρ72 ≡
⎡
⎣(ρ71)

2 −
(

�|e|Fs√
2m∗||

)2/3
⎤
⎦ .

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Thus, the EEM depends on both the Fermi energy and the subband index due to
the presence of the term λ̄0.

The subband energy (Eni6) can be written as

Eni6 = Si

⎛
⎝� |e| Fs√

2m∗||

⎞
⎠

2/3

(3.46)

The total 2D density-of-states function can be written as

N2Di (E) = m∗⊥gv

π�2

imax∑
i=0

{[
1 − ρ71√

E + ρ72

]
H(E − Eni6)

}
(3.47)

The surface electron concentration under the condition of extreme degeneracy as-
sumes the form

n2D = gvm∗⊥
π�2

ni max∑
ni =1

(
EFi − Eni6 + (λ)2m∗⊥�

−2
)

(3.48)

3.2.4 Formulation of the EEM in n-Channel Inversion
Layers of IV–VI Semiconductors

In the low electric field limit (1.83) assumes the form

E(1 + αE)− |e| Fs z(1 + 2αE)

= p2
x

2M1
+ p2

z

2M3
+
(

αp4
y

4M2 M ′
2

)
+ p2

y

2M2
+ p2

y

2M2
α(E − |e| Fs z)

(
1 − M2

M ′
2

)

(3.49)

where, M1 = m⊥c, m⊥c is the transverse effective electron mass at the edge of the

conduction band at k = 0, M2 =
(

m⊥c + 2m||c
3

)
, m||c is the longitudinal effective

electron mass at the edge of the conduction band at k = 0, M3 =
(

3m⊥cm||c
2m||c + m⊥c

)
,

M ′
2 =

(
m⊥v + 2m||v

3

)
, m⊥v and m||v are the effective transverse and longitudinal

hole masses at the edge of the valance band at k = 0.
The use of (3.49) and (3.2) leads to the simplified expression of the 2D electron

dispersion law in n-channel inversion layers of IV–VI materials under the weak
electric field limit as

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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γ71(E, i) = p71k2
x + q71(E, i)k2

y + r71k4
y (3.50)

where,

γ71(E, i) ≡
[

E(1 + αE)− Si

(
� |e| Fs√

2M3

)2/3 (
1 + 4

3
αE

)]
,

p71 ≡ �
2

2M1
,

q71(E, i) ≡
(

�
2

2M2

)[
1 + αE

(
1 − M2

M ′
2

)
− 2αSi

3

(
� |e| Fs√

2M3

)2/3 (
1 − M2

M ′
2

)]

and r71 ≡
(

α�
4

4M2 M ′
2

)
.

The area enclosed by (3.50) is given by

A(E, i) = 4

3

(
r71

p71

)1/2 [
{a71w(E, i)}2 + {b71w(E, i)}2

]1/2

[
{a71w(E, i)}2 F

[π
2
, 71w(E, i)

]
− ({a71w(E, i)}2 − {b71w(E, i)}2)E

[π
2
, 71w(E, i)

]]
(3.51)

in which, {a71w(E, i)}2 ≡
⎡
⎣q71(E, i)

2r71
+ 1

2

[
{q71(E, i)}2

(r71)2
+ 4γ71(E, i)

r71

]1/2
⎤
⎦,

{b71w(E, i)}2 ≡
⎡
⎣1

2

[
{q71(E, i)}2

(r71)2
+ 4γ71(E, i)

r71

]1/2

−
(

q1(E, i)

2r71

)⎤⎦ ,

71w(E, i) ≡ b71w(E, i)√
{a71w(E, i)}2 + {b71w(E, i)}2

, F
[π

2
, 71w(E, i)

]
and E

[
π
2 ,

71w(E, i)

]
are the complete elliptic integral of the first and second kinds respec-

tively.
Using (3.51), the EEM in this case can be expressed as

m∗ (EFiw, i) = �
2

2π
R71 (E, i)|E=EFiw

(3.52)

where,
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R71(E, i) ≡
[

4

3

(
r71

p71

)1/2 [{a71w(E, i){a71w(E, i)}′ + b71w(E, i){b71w(E, i)}′}

× [{a71w(E, i)}2+{b71w(E, i)}2]−1/2
[
{a71w(E, i)}2 F

[π
2
, 71w(E, i)

]

−({a71w(E, i)}2 − {b71w(E, i)}2)E
[π

2
, 71w(E, i)

]]
+ 4

3

(
r71

p71

)1/2

× ({a71w(E, i)}2 + {b71w(E, i)}2)1/22a71w(E, i) {a71w(E, i)}′

F
[π

2
, 71w(E, i)

]
+ {a71w(E, i)}2

{
F
[π

2
, 71w(E, i)

]}′

−
{

E
[π

2
, 71w(E, i)

]}′
({a71w(E, i)}2 − {b71w(E, i)}2)

E

[
π

2
, 71w(E, i)

]
[2a71w(E, i) {a71w(E, i)}′

−2b71w(E, i) {a71w(E, i)}′]] .
Thus, the EEM is a function of the subband index number and the Fermi energy due
to the presence of band nonparabolicity only.

The subband energies (Eniw7) are given by

[
Eniw7

(
1 + αEniw7

)− Si

(
� |e| Fs√

2M3

)2/3 (
1 + 4

3
αEniw7

)]
= 0 (3.53)

The total 2D density-of-states function can be written as

N2Di (E) = gv

2π2

imax∑
i=0

{
R71 (E, i) H

(
E − Eniw7

)}
(3.54)

The surface electron concentration assumes the form

n2Dw = 2gv

3π2

(
r71

p71

)1/2
{

imax∑
i=0

[P7w(EFwi, i)+ Q7w(EFwi, i)]

}
(3.55)

where, P7w(EFwi, i) ≡ [{a71w(EFwi, i)}2 + {b71w(EFwi, i)}2]1/2
[
{a71w(E, i)}2 F

[π
2
, 71w(EFwi, i)

]

−({a71w(EFwi, i)}2 − {b71w(EFwi, i)}2)E
[π

2
, 71w(EFwi, i)

]]

and Q7w(EFiw, i) ≡
s∑

r=1
L(r)P7w(EFiw, i).

Under the strong electric field limit, the dispersion relation assumes the form
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γ72(E, i) = p72 p2
x + q72(E)k

2
y + r72k4

y (3.56)

where,

γ72(E, i) ≡
[

E(1 + αE)− 2
√

2α

3

� |e| Fs√
2M3

(Si )
3/2

]
,

p72 ≡
(

�
2

2M1

)
,

q72(E) ≡
(

�
2

2M2

)[
1 + αE

(
1 − M2

M ′
2

)]

and r72 ≡
[

α�
4

4M2 M ′
2

]
.

Comparing (3.56) with (3.50), we observe that the forms of the (3.52) and (3.55)
remain unchanged provided, γ71(E, i), p71, q71(E, i) and r71 are being replaced by
the corresponding quantities γ72(E, i), p72, q72(E) and r72 respectively.

3.2.5 Formulation of the EEM in n-Channel Inversion Layers of
Stressed Semiconductors

The use of (1.98) and (3.2) leads to the expression of the dispersion relation of the
2D electrons in n-channel inversion layers of stressed III–V materials under the low
electric field limit as

[T57(E, i)] k2
x + [T67(E, i)] k2

y = T77(E, i) (3.57)

where,

T57(E, i) ≡
⎡
⎣E − α1 + 2

3
Si

(
|e|2
εsc

)2/3

(n2Dw)
2/3L17(E)

⎤
⎦ ,

L17(E) ≡
[

(E − α1)

(E − α3)2/3
[
T̄47(E)

]1/3 − (E − α3)
1/3 [T̄47(E)

]−1/3

]
,

[
T̄47(E)

] ≡
[
{ρ5(E)}′ −

(
ρ5(E)

E − α3

)]
,

T67(E, i) ≡
⎡
⎣E − T2 + 2

3
Si

(
|e|2
εsc

)2/3

(n2Dw)
2/3L27(E)

⎤
⎦ ,
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L27(E) ≡
[

(E − α2)

(E − α3)2/3
[
T̄47(E)

]1/3 −
(
(E − α3)

1/3

[
T̄47(E)

]1/3
)]

,

T77(E, i) ≡
⎡
⎣ρ5(E)− Si

(
|e|2
εsc

)2/3

(n2Dw)
2/3L37(E)

⎤
⎦

and L37(E) ≡ (E − α3)
1/3
[
T̄47(E)

]2/3
.

The area of the 2D surface under the weak electric field limit can be written as

A(E, i) = πT77(E, i)√
T57(E, i)T67(E, i)

(3.58)

The subband energies (Eniw8) in this case are defined by

T47(Eniw8) = Si

(
|e|2
εsc

)2/3

(n2Dw)
2/3L37(Eniw8) (3.59)

The expression of the EEM in this case can be written as

m∗(EFiw, i) = �
2

2
L47(E, i)|E=EFiw (3.60)

where,

L47(E, i)

≡
[

1

T57(E, i)T67(E, i)

] [
{T77(E, i)}′ [T57(E, i)T67(E, i)]1/2 −

(
T77(E, i)

2

)

×
{

{T57(E, i)}′
[

T67(E, i)

T57(E, i)

]1/2

+ {T67(E, i)}′
[

T57(E, i)

T67(E, i)

]1/2
}]

.

The total 2D density-of-states function can be expressed as

N2D(E) = gv

2π

imax∑
i=0

{
L47(E, i)H

(
E − Eniw8

)}
(3.61a)

The surface electron concentration under the weak electric field limit assumes the
form

n2Dw = gv

(2π)

{
imax∑
i=0

[P8w(EFwi , i)+ Q8w(EFwi, i)]

}
(3.61b)
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where, P8w(EFwi, i) ≡ T77(EFwi, i)√
T57(EFwi, i)T67(EFwi, i)

and Q8w(EFiw, i) ≡
s∑

r=1
L(r)P8w

(EFiw, i).

The use of (1.98) and (3.2) leads to the simplified dispersion relation of the 2D
electrons in n-channel inversion layers of stressed III–V materials under the high
electric field limit can be expressed as

[T117(E, i)] k2
x + [T127(E, i)] k2

y = T137(E, i) (3.62)

where,

T117(E, i) ≡
[

E − α1 + 4

3
|e| Fs(Si )

2/3a77(E)

]
,

a77(E) ≡ 1

2

[
1√

(E − α3) [T97(E)]
−
{

(E − α1)
2

√
T97(E)(E − α3)3/2

}]
,

[T97(E)] ≡
[ {ρ5(E)}′′

2
−
(
(ρ5(E))′

E − α3

)
+
(

ρ5(E)

(E − α3)2

)]
,

T127(E, i) ≡
[

E − α2 + 4

3
|e| Fs(Si )

2/3a87(E)

]
,

a87(E) ≡ 1

2

[
1√

(E − a3)T97(E)
−
(

(E − α2)
1/3

√
T97(E)(E − T3)3/2

)]
,

T137(E, i) ≡
[
ρ5(E)− (Si )

3/2 Fsa97(E)
]

and a97(E) ≡ 4
3

√
T97(E)(E − α3).

The area of the 2D surface in this case is given by

A(E, i) = πT137(E, i)√
T117(E, i)T127(E, i)

(3.63)

The subband energies (Enis8) in this case can be written as

T137(Enis8 , i) = 0 (3.64)

The EEM in this case assumes the form

m∗(EFis, i) = �
2

2
T147(E, i)|E=EFis (3.65)

where,
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T147(E, i) ≡
[

1

T117(E, i)T127(E, i)

] [
{T137(E, i)}′ [T117(E, i)T127(E, i)]1/2

−
(

T137(E, i)

2

)
.

{
{T117(E, i)}′

[
T127(E, i)

T117(E, i)

]1/2

+ {T127(E, i)}′
[

T117(E, i)

T127(E, i)

]1/2
}]

.

The expression of the total 2D density-of-states function is given by

N2D(E) = gv

2π

imax∑
i=0

{
T147(E, i)H(E − Enis8)

}
(3.66)

The surface electron concentration in the strong electric field limit can be expressed as

n2Ds = gv

(2π)

{
imax∑
i=0

[P9s(EFis, i)+ Q9s(EFis, i)]

}
(3.67)

where, P9s(EFis, i)≡ T137(EFis, i)√
T117(EFis, i)T127(EFis, i)

and Q9s(EFis, i) ≡
s∑

r=1
L(r)P9s

(EFis, i).

3.2.6 Formulation of the EEM in n-Channel Inversion
Layers of Germanium

Using (3.2) and (1.134), the 2D electron dispersion law in n-channel inversion layers
of Ge can be expressed as

�
2k2

x

2m∗
1

+ �
2k2

y

2m∗
2

=
[

E(1 + αE)+ αE2
i2 − Ei2(1 + 2αE)

]
(3.68)

where, Ei2 = Si

(
�eFs√

2m∗
3

)2/3

The area of 2D space is

A = 2π
√

m∗
1m∗

2

�2

[
E(1 + αE)+ αE2

i2 − Ei2(1 + 2αE)
]

(3.69)

The EEM assumes the form
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m∗(EFiw, i) =
√

m∗
1m∗

2 [1 + 2αEFiw − Ei22α] (3.70)

Thus the EEM is the function of both Fermi energy and quantum number due to
band nonparabolicity.

The density-of-states function is given by

N2D(E) = 2gv

(2π)2
· 2π

√
m∗

1m∗
2

�2

imax∑
i=0

[1 + 2αE − 2αEi2]H(E − Ei2) (3.71)

The surface electron concentration is given by

nDs = gvkB T

π
·
√

m∗
1m∗

2

�2

imax∑
i=0

[τ71 F0(η4)+ 2αkB T F1(η4)] (3.72)

where, η4 = (kB T )−1[EFw − Ei2] and, τ71 = [1 − 2αEi2]

3.2.7 Formulation of the EEM in n-Channel Inversion
Layers of GaSb

Using (3.2) and (1.153), the 2D electron dispersion law in n-channel inversion layers
of GaSb under weak electric field limit can be expressed as

I36(E) = �
2k2

s

2mc
+ Si

[
� |e| Fs [I36(E)]′√

2mc

]2/3

(3.73)

(3.73) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III–V, ternary and quaternary materials under the weak electric field limit
whose bulk electrons obey the three band model of Kane.

The EEM can be expressed as

m∗(EFiw, i) = mc [P36(E, i)]|E=EFiw (3.74)

where, P36 (E, i) ≡
{

[I36(E)]′ −
{

2

3
Si

[
� |e| Fs√

2m∗

]2/3 {
[I36(E)]

′}−1/3
[I36(E)]

′′
}}

.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg and �.

The subband energy (Eniw2) in this case can be obtained from (3.73) as

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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I36(Eniw2) = Si

[
� |e| Fs

[
I36(Eniw2)

]′
√

2mc

]2/3

(3.75)

The 2D total density-of-states function in weak electric field limit can be expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P36(E, i)H(E36 − Eniw2)

]
(3.76)

Using (3.76) and the occupation probability, the n2Dw in the present case can be
written as

n2Dw = gvmc

π�2

imax∑
i=0

[P46w(EFiw, i)+ Q46w(EFiw, i)] (3.77)

where, P46w(EFiw, i) ≡
{

I36(EFiw)− Si

[
�eFs [I36(EFiw)]′√

2mc

]2/3
}

and

Q46(EFiw, i) ≡
s∑

r=1
{L(r) [P46(EFiw, i)]}.

Under the condition of strong electric field limit, assumes the form

[
I36(E)−

{
|e| Fs�√

2mc

(
2
√

2(Si )
3/2

3

)√
[I36(E)]′′

}]
= �

2k2
s

2mc
(3.78)

(3.78) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III–V, ternary and quaternary materials under the strong electric field limit
whose bulk conduction electrons are defined by the three band model of Kane.

The EEM can be expressed as

m∗(EFis, i) = mc [P56(E, i)]|E=EFis (3.79)

where,

P56(E, i) ≡
{

{I36(E)}′ −
{

|e| Fs�√
2mc

(√
2(Si )

3/2

3

)
([I36(E)]

′′)−1/2 [I36(E)]
′′′
}}

.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg and �.

The subband energy (Enis2) in this case can be obtained from (3.78) as

I36(Enis2)−
{

|e| Fs�√
2mc

(
2
√

2(Si )
3/2

3

)√[
I36(Enis2)

]′′} = 0 (3.80)
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The total 2D density-of-states function under the strong electric field limit can be
expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P56(E, i)H(E − Enis2)

]
(3.81)

The n2Ds in the present case under the strong electric field can be written as

n2Ds = gvmc

π�2

imax∑
i=0

[P65s(EFis, i)+ Q65s(EFis, i)] (3.82)

where, P65s(EFis, i) ≡
{

I36(EFis)−
[

2
√

2
3 (Si )

3/2 �|e|Fs [I36(EFis)]′′√
2mc

]}

and Q56s(EFis, i) ≡
s∑

r=1
{L(r) [P56s(EFis, i)]}

3.3 Results and Discussion

The effect of surface electric field on the EEM at the quantum limit in n-channel
inversion layers of Cd3As2 and CdGeAs2 has been exhibited in Figs. 3.1, 3.2, 3.3
and 3.4. In Figs. 3.1 and 3.2, we have demonstrated the variation of the EEM with
electric field in the weak inversion regime which was extended upto 105 Vm−1. It
appears that with the increase in the electric field, the EEM in Fig. 3.1 increases
considering the generalized energy band model (3.5) and the three and the two band
models of Kane which are the special cases of our generalized analysis. It appears
that in the weak field regime, the deviation between the three and two band models
of Kane is less however significant difference is with the consideration of the crystal
field. It should be noted that it is these two models which tends to the isotropic bulk
effective mass value 0.0105m0, rather than the generalized model. In the high field
regime, Fig. 3.2, the difference in the three and two band models of Kane appears
which marks a significant variation in the value of the EEM. The effect of crystal
field splitting tends to decrease the EEM considering the generalized energy band
model.

A closer look at the two figures reveal more interesting features of the continuity
of the weak inversion energy band model in the strong field and strong inversion
energy band model in the weak field. It is due to this non-convergence there is a
slight mismatch of the EEM at the boundary of 105 Vm−1 in both the Figs. 3.1 and
3.2 and needs more attention towards the development of the generalized theory valid
for all values of electric field is still a formidable problem in this case.

Figure 3.3 and 3.4 exhibits the EEM in n-CdGeAs2 for all the cases of Figs. 3.1
and 3.2 respectively. It appears that in the weak inversion regime the EEM is almost
invariant of the electric field; however with the increase in the field, the EMM sharply
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Fig. 3.1 Plot of the EEM
at weak inversion as the
function of surface electric
field for n-channel inversion
layers of Cd3As2 considering
(3.5) in accordance with
the generalized theory. The
simplified results for three and
two band models of Kane have
also been exhibited in which,
m∗⊥ = 0.0139m0 and mc =
1
2 (m

∗⊥ + m∗‖) = 0.0105m0 are
the corresponding bulk values

Fig. 3.2 Plot of the EEM at
strong inversion as function
of surface electric field for
n-channel inversion layers
of Cd3As2 for all cases of
Fig. 3.1

decreases and tends to take negative values which challenge the applicability of the
quantization condition (3.2) at strong electric field for n-channel CdGeAs2.

The effect of electric field on the EEM of n-channel InAs has been exhibited in
Figs. 3.5 and 3.6. Almost no variation of the EEM in weak field appears for n-InAs
channel while for higher fields, the EEM tends to decrease. The effect of surface
electric field on n-channel GaAs and InSb at weak and strong electric field has been
exhibited in Fig. 3.7. Same trend as InAs in weak field again follows for GaAs, where
the difference in the energy band model in determining the EEM is vanishing small.
With the increase in the electric field at high value, the EEM in n-channel InSb tends
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Fig. 3.3 Plot of the EEM at
weak inversion as function
of surface electric field for
n-channel inversion layers
of CdGeAs2 considering
(3.5) in accordance with
the generalized theory. The
simplified results for three and
two band models of Kane have
also been exhibited in which,
m∗⊥ = 0.039m0 and mc =
1
2 (m

∗⊥ + m∗‖) = 0.03365m0
are the corresponding bulk
values

Fig. 3.4 Plot of the EEM at
strong inversion as function
of surface electric field for
n-channel inversion layers
of CdGeAs2 for all cases
of Fig. 3.3

to fall down. This is not with the case of CdS in Fig. 3.8 where the effect of increasing
the electric field increases the EEM monotonically presenting a significant change.

Finally, in Fig. 3.9, we present the variation of the EEM in n-channel inversion
layers of Ge following Cardona model under weak inversion regime and n-channel
inversion layers of GaSb under strong inversion regime. It appears that the EEM
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Fig. 3.5 Plot of the EEM
at low electric field limit as
function of surface electric
field for n-InAs

in case of GaSb increases within the regime of 108 Vm−1, while the EEM in Ge
stays almost constant. The study of the effect of surface electric field on the EEM in
n-channel inversion layers of IV–VI and stressed InSb materials has been left as an
exercise to the reader. For the purpose of condensed presentation, the carrier statistics
and the EEM in different materials as considered in this chapter have been presented
in Table 3.1.

3.4 Open Research Problems

R.3.1 Investigate the EEM, EAM, DEM, CEM, CoEM, FREM and OEM in the
presence of an arbitrarily oriented electric quantization for n-channel inver-
sion layers of non-linear optical materials. Study all the special cases for
III–V, ternary and quaternary compounds in this context.

R.3.2 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of IV–VI, II–VI and stressed Kane type compounds in the presence
of an arbitrarily oriented quantizing electric field.

R.3.3 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of all the materials as stated in R.1.1 of Chap. 1 in the presence of an
arbitrarily oriented quantizing electric field.

R.3.4 Investigate the same set of masses as defined in (R.3.1) in the presence of
an arbitrarily oriented non-quantizing magnetic field in n-channel inversion
layers of non-linear optical semiconductors by including the electron spin.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 3.6 Plot of the EEM
at high electric field limit as
function of surface electric
field for n-InAs

Fig. 3.7 Plot of the EEM at
low and high electric field
limits as function of surface
electric field for n-channel
inversion layers of GaAs
and InSb respectively

Study all the special cases for III–V, ternary and quaternary materials in this
context.

R.3.5 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of IV–VI, II–VI and stressed Kane type compounds in the presence
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Fig. 3.8 Plot of the EEM as
function of surface electric
field for p-channel inversion
layers of CdS

Fig. 3.9 Plot of the EEM at
weak and strong electric field
limits as function of surface
electric field for n-channel
inversion layers of Ge and
GaSb respectively

of an arbitrarily oriented non-quantizing magnetic field by including the
electron spin.

R.3.6 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of all the materials as stated in R.1.1 of Chap. 1 in the presence of
an arbitrarily oriented non-quantizing magnetic field by including electron
spin.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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R.3.7 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers for all the problems from R.3.1 to R.3.6 in the presence of an additional
arbitrarily oriented electric field.

R.3.8 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers for all the problems from R.3.1 to R.3.3 in the presence of arbitrarily
oriented crossed electric and magnetic fields.

R.3.9 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers for all the problems from R.3.1 to R.3.8 in the presence of surface
states.

R.3.10 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers for all the problems from R.3.1 to R.3.8 in the presence of hot electron
effects.

R.3.11 Investigate the problems from R.3.1 to R.3.10 for the appropriate p-channel
inversion layers.

R.3.12 Investigate all the appropriate problems of this chapter by including the many
body, image force, broadening and hot carrier effects respectively.

R.3.13 Investigate all the appropriate problems of this chapter by removing all the
mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 4
The EEM in Nonparabolic Semiconductors
Under Magnetic Quantization

4.1 Introduction

It is well known that the band structure of semiconductors can be dramatically
changed by applying the external fields [1–68]. The effects of the quantizing
magnetic field on the band structure of compound semiconductors are more striking
and can be observed easily in experiments. Under magnetic quantization, the motion
of the electron parallel to the magnetic field remains unaltered while the area of the
wave vector space perpendicular to the direction of the magnetic field gets quantized
in accordance with the Landau’s rule of area quantization in the wave vector space
[40–68].The energy levels of the carriers in a magnetic field(with the component of
the wave-vector parallel to the direction of magnetic field be equated with zero) are
termed as the Landau levels and the quantized energies are known as the Landau
subbands. It is important to note that the same conclusion may be arrived either by
solving the single-particle time-independent Schrödinger differential equation in the
presence of a quantizing magnetic field or by using the operator method. The quan-
tizing magnetic field tends to remove the degeneracy and increases the band gap.
A semiconductor, placed in a magnetic field B, can absorb radiative energy with the
frequency (ω0 = (|e| B

/
mc)). This phenomenon is known as cyclotron or diamag-

netic resonance. The effect of energy quantization is experimentally noticeable when
the separation between any two consecutive Landau levels is greater than kB T .
A number of interesting transport phenomena originate from the change in the basic
band structure of the semiconductor in the presence of quantizing magnetic field.
These have been widely been investigated and also served as diagnostic tools for char-
acterizing the different materials having various band structures. The discreteness in
the Landau levels leads to a whole crop of magneto-oscillatory phenomena, important
among which are (i) Shubnikov-de Haas oscillations in magneto-resistance; (ii) de
Haas-Van Alphen oscillations in magnetic susceptibility; (iii) magneto-phonon oscil-
lations in thermoelectric power, etc.

In this chapter in Sect. 4.2.1, of the theoretical background, the EEM has been
investigated in nonlinear optical semiconductors in the presence of an arbitrarily
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oriented quantizing magnetic field. The Sect. 4.2.2 contains the results of III–V,
ternary and quaternary compounds in accordance with the three- and the two-band
models of Kane and forms the special case of Sect. 4.2.1. In the same section the well-
known result of EEM from semiconductors having parabolic energy bands has been
presented. In the same section the EEM in accordance with the models of Stillman
et al. and Palik et al. have also been investigated for the purpose of relative compar-
ison. The Sect. 4.2.3 contains the study of the EEM for the II–VI semiconductors
under magnetic quantization. In Sect. 4.2.4, the magneto-EEM for Bismuth has been
investigated in accordance with the models of the McClure and Choi, the Cohen
and the Lax nonparabolic ellipsoidal respectively. In Sect. 4.2.5, the EEM in IV–VI
materials has been discussed in accordance with the model of Dimmock, Bangert and
Kastner and Foley and Landenberg respectively. In Sect. 4.2.6, the magneto-EEM
for the stressed Kane type semiconductors has been investigated. In Sect. 4.2.7,
the EEM in Te has been studied under magnetic quantization. In Sect. 4.2.8, the
magneto-EEM in n-GaP has been studied. In Sect. 4.2.9, the EEM in PtSb2 has
been investigated under magnetic quantization. In Sect. 4.2.10, the magneto-EEM
in Bi2Te3 has been studied. In Sect. 4.2.11, the EEM in Ge has been studied under
magnetic quantization in accordance with the models of Cardona et al. and Wang
and Ressler respectively. In Sects. 4.2.12 and 4.2.13, the magneto-EEM in n-GaSb
and II–V compounds has respectively been studied. In Sect. 4.3 contains the result
and discussions in this context. The last Sect. 3.4 contains open research problems
for this chapter.

4.2 Theoritical Background

4.2.1 The EEM in Non-Linear Optical Semiconductors Under
Magnetic Quantization

In the presence of an arbitrarily oriented quantizing magnetic field B along kz1
direction which makes an angle θ with kz axis and lies in the kx − kz plane, the
magneto-dispersion law of the conduction electrons in nonlinear optical semicon-
ductors can be expressed extending the method as given by Wallace [69] as

ψ1(E) = Ā±(n, E, θ)+ a0(E, θ)(kz1)
2, (4.1a)

where

Ā±(n, E, θ) ≡ 2 |e| B

�

(
n + 1

2

)[
ψ2(E)

{
ψ2(E) cos2 θ + ψ3(E) sin2 θ

}] 1
2

±
⎡
⎣ |e| B�Eg

6

{
(Eg +�⊥)

m∗⊥
(
Eg + 2

3�⊥
)
} 1

2
⎤
⎦

http://dx.doi.org/10.1007/978-3-642-31248-9_3
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×
⎡
⎣
(

E + Eg + δ +
[
�2|| −�2⊥

3�||

])2 {
�2||(Eg +�⊥) cos2 θ

m∗⊥
(
Eg + 2

3�⊥
)
}

+
{
(E + Eg)

2(Eg +�||)�2⊥ sin2 θ

m∗||
(
Eg + 2

3�||
)

}] 1
2

,

n(= 0, 1, 2, 3, . . .) Is the Landau quantum number and

a0(E, θ) ≡ (ψ2(E)ψ3(E))

(ψ2(E) cos2 θ + ψ3(E) sin2 θ)
.

The EEM at the Fermi level along the direction of the quantizing magnetic field,
can be expressed as

m∗
kz1
(EFB,n,θ ) = �

2kz1
∂kz1

∂E

∣∣∣∣
E=EFB

, (4.1b)

where EFB is the Fermi energy in the presence of magnetic quantization as measured
from the edge of the conduction band in the vertically upward direction in the absence
of any field. Using (4.1a) and (4.1b) we can write

m∗
kz1
(EFB, n, θ) =

(
�

2

2

){[
[ψ1(EFB)]′ −

[
Ā±(n, EFB, θ)

]′
a0(EFB, θ)

]

−
[

[a0(EFB, θ)]′

a2
0(EFB, θ)

] [
ψ1(EFB)− Ā±(n, EFB, θ)

]}
. (4.2)

From (4.2), it appears that EEM is a function of the Fermi energy, the angle of
orientation of the quantizing magnetic field, the magnetic quantum number, and the
electron spin for tetragonal materials due to the combined influence of the crystal
field splitting and the anisotropic spin orbit splitting constant. The dependence of
the oscillatory mobility on the spin-dependent EEM in addition to Fermi energy is
an important physical feature of tetragonal compounds.

To investigate the dependence of EEM on the electron concentration we have to
determine the density of state function in the present case (DB(E)) which can be
written, including spin and extending the method as given in Nag [70] as

DB(E) = gv |e| B

2 π2 �

(
nmax∑
n=0

∂kz1

∂E
H(E − En)

)
, (4.3)

where En is the Landau energy. Using (4.1a) and (4.3), one obtains,
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DB(E) =
(

gv |e| B

4 π2 �

) nmax∑
n=0

[
ψ1(E)− Ā±(n, E, θ)

a0(E, θ)

]−1
2

[a0(E, θ)]
−2

×
[
a0(E, θ)

{
{ψ1(E)}′ −

[
Ā±(n, E, θ)

]′}

− {
ψ1(E)− Ā±(n, E, θ)

} {a0(E, θ)}′
]

H(E − En). (4.4)

Thus, combining (4.4) with the Fermi–Dirac occupation probability factor and using
the generalized Sommerfeld’s lemma [71], the electron concentration assumes the
form

n0 = gv |e| B

2 π2 �

nmax∑
n=0

[T33(n, EFB)+ T34(n, EFB)], (4.5)

where

T33(n, EFB) =
[
ψ1(EFB)− Ā±(n, EFB, θ)

a0(EFB, θ)

] 1
2

,

T34(n, EFB) ≡
s∑

r=1
L B(r) [T33(n, EFB)] and L B(r) = 2(kB T )2r (1 − 21−2r )

ξ(2r) ∂
2r

∂E2r
FB

4.2.2 The EEM in Kane type III–V Semiconductors Under
Magnetic Quantization

(a) Three band model of Kane:

Under the conditions δ = 0, �|| = �⊥ = � and m∗|| = m∗⊥ = mc (4.1a) assumes
the form

I11(E) =
(

n + 1

2

)
�ω0 + �

2k2
z

2mc
± |e| B��

[
6mc

(
E + Eg + 2

3
�

)]−1

. (4.6)

Equation (4.6) is the dispersion relation of the conduction electrons of III–V, ternary
and quaternary materials in the presence of a quantizing magnetic field B along
z-direction [70].

From (4.6), the EEM along the direction of magnetic quantization can be written as

m∗
kz
(EFB) = mc

[
{I11(EFB)}′ ± |e| B��

6mc

[(
EFB + Eg + 2

3
�

)]−2
]
. (4.7)
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Thus, the EEM is a function of the Fermi energy and the electron spin under magnetic
quantization. The dependence of the EEM on the electron spin is due to the presence
of the spin orbit splitting constant, excluding the dependence on {I11(EFB)}′, is a
special property of the three-band model of Kane.

Using (4.6) and (4.3), the density-of-states function in this case can be expressed
as

DB(E) = gv |e| B
√

2mc

4 π2 �2

nmax∑
n=0

[
I11(E)−

(
n+1

2

)
�ω0 ∓ |e| B��

6mc
(
E+Eg+ 2

3�
)
]−1/2

×
[
{I11(EFB)}′± |e| B��

6mc
(
E + Eg + 2

3�
)2
]

H(E − En1). (4.8)

Thus, the electron concentration assumes the form

n0 = gv |e| B
√

2mc

2 π2 �2

nmax∑
n=0

[T35(n, EFB)+ T36(n, EFB)], (4.9)

where

T35(n, EFB) ≡
[

I11(EFB)−
(

n + 1

2

)
�ω0 ∓ |e| B��

6mc
(
EFB + Eg + 2

3�
)
] 1

2

and T36(n, EFB) ≡
s∑

r=1
L B(r)T35(n, EFB).

In the absence of spin, the electron concentration assumes the form

n0 = gv |e| B
√

2mc

π2 �2

nmax∑
n=0

[T37(n, EFB)+ T38(n, EFB)], (4.10)

where

T37(n, EFB) ≡
[

I11(EFB)−
(

n + 1

2

)
�ω0

] 1
2

and

T38(n, EFB) ≡
s∑

r=1

L B(r)T37(n, EFB).

(b) Two band model of Kane:

Under the condition � � Eg0, (4.6) can be expressed as
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E(1 + αE) =
(

n + 1

2

)
�ω0 + (�2k2

z /2mc)± 1

2
μ0g∗B, (4.11)

where μ0 = (|e| �/2m0) is known as the Bohr magnetron, g∗ is the magnitude of the
band edge g-factor and is equal to (m0/mc) in accordance with the two-band model
of Kane.

From (4.11), the EEM along the direction of magnetic quantization can be
expressed as

m∗
kz
(EFB) = mc [1 + 2αEFB] . (4.12)

Thus, the EEM is a function of Fermi energy only due to the presence of band
nonparabolicity factor α and is independent of the electron spin under magnetic
quantization.

In accordance with the two-band model of Kane, the density-of-states function
assumes the form

DB(E) = gv |e| B
√

2mc

4 π2 �2

nmax∑
n=0

[1 + 2αE]

[
E(1 + αE)−

(
n + 1

2

)
�ω0

∓1

2
g∗μ0 B

]− 1
2

H(E − En2). (4.13)

Thus, the electron concentration can be written as

n0 = gv |e| B
√

2mc

2 π2 �2

nmax∑
n=0

[T39(n, EFB)+ T310(n, EFB)], (4.14)

where

T39(n, EFB) ≡
[

EFB(1 + αEFB)−
(

n + 1

2

)
�ω0 ± 1

2
g∗μ0 B

] 1
2

and T310(n, EFB) ≡
s∑

r=1
L B(r)T39(n, EFB).

In the absence of spin, the electron concentration assumes the form

n0 = gv |e| B
√

2mc

π2 �2

nmax∑
n=0

[T311(n, EFB)+ T312(n, EFB)], (4.15)

where

T311(n, EFB) ≡
[

EFB(1 + αEFB)−
(

n + 1

2

)
�ω0

] 1
2
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and T312(n, EFB) ≡
s∑

r=1
L B(r)T311(n, EFB).

From (4.13), under the condition αE 	 1, the density-of-states function can be
written as

DB(E) = gv |e| B
√

2mc

4 π2 �2

nmax∑
n=0

⎡
⎣(1 + 3

2
αE

)

×
[

E −
{(

n + 1
2

)
�ω0 ∓ 1

2 g∗μ0 B

1 + αE

}]− 1
2
⎤
⎦ H(E − En2). (4.16)

Therefore, the electron concentration is given by

n0 = gv |e| B
√

2mc

4 π2 �2

nmax∑
n=0

∞∫
En2

⎡
⎣E −

⎧⎨
⎩
(

n + 1
2

)
�ω0 ∓ 1

2 g∗μ0 B

1 + αE

⎫⎬
⎭
⎤
⎦

− 1
2 (

1 + 3

2
αE

)
f0dE .

(4.17)

Let us substitute,

y = E −
{[(

n + 1

2

)
�ω0 ∓ 1

2
g∗μ0 B

]
(1 + αE)−1

}
, (4.18)

where y is a new variable.
Since, En2 is the root of (4.18), we can write y(1+αEn2)= 0, since, (1+αEn2) �=0,

therefore, y = 0. Again when, E → ∞, y → ∞. Therefore, from (4.18), after
binomial expansion and neglecting the terms in the order of (αE)2, we can write

E = y

a01
+ b01, (4.19)

where

a01 ≡
[

1 + α

(
n + 1

2

)
�ω0 ± 1

2
g∗μ0 B

]

and

b01 ≡ (a01)
−1
[(

n + 1

2

)
�ω0 ± 1

2
g∗μ0 B

]

Therefore, combining (4.17) and (4.19) we get,

http://dx.doi.org/10.1007/978-3-642-31248-9_3
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n0 = gv |e| B
√

2mc

4 π2 �2

nmax∑
n=0

1

a01

∞∫
0

(y)−1/2
[

1 + 3

2
α

(
y

a01
+ b01

)]

×
[

1 + e

y
a01

+b01−EFB
kB T

]−1

dy. (4.20)

Let us substitute, β01 = y

a01kB T
and ηB = EFB − b01

kB T
.

Thus, using (4.20) and the Fermi–Dirac integrals, the electron concentration in
this case assumes the form

n0 = gv NCθB1

2

[
nmax∑
n=0

1√
a01

[(
1 + 3

2
αb01

)
F−1

2
(ηB)+ 3

4
αkB T F1

2
(ηB)

]]
,

(4.21)

where

θB1 ≡ �ω0

kB T
, and Nc = 2

(
2πmckB T

h2

) 3
2

.

In the absence of spin (4.21) assume the form [71],

n0 = gv NCθB1

[
nmax∑
n=0

1√
a∗

01

[(
1 + 3

2
αb∗

01

)
F−1

2
( ¯ηB1)+ 3

4
αkB T F1

2
( ¯ηB1)

]]
,

(4.22)

where

a∗
01 ≡ 1 + α

(
n + 1

2

)
�ω0, b∗

01 ≡
[(

n + 1

2

)
�ω0

]
(a∗

01)
−1

and

η̄B1 ≡ EFB − b∗
01

kB T
.

(c) Parabolic energy bands:

Under the condition α → 0 (4.11) becomes

E =
(

n + 1

2

)
�ω0 + (�2k2

z /2mc)± 1

2
g∗μ0 B. (4.23)

From (4.12), the EEM along the direction of quantizing magnetic field can be
expressed as

m∗
kz
(EFB) = mc. (4.24a)
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The electron concentration in this case assumes the form

n0 = gv NCθB1

nmax∑
n=0

F−1
2
(ηB1), (4.24b)

where

ηB1 ≡ (kB T )−1
[

EFB −
(

n + 1

2

)
�ω0

]
.

Thus, the quantizing magnetic field cannot influence the EEM in relatively wide gap
semiconductors having parabolic energy bands.

(d) The model of Stillman, et al.

In accordance with the model, the electron energy spectrum in III–V semiconductors
in the presence of the quantizing magnetic field B along z-direction can be written
following (1.29) as

k2
z = 2mc

�2

[
I12(E)−

(
n + 1

2

)
�ω0

]
. (4.25)

Therefore,

k2
z = 2mc

�2 A33(E, n), (4.26)

where

A33(E, n) = I12(E)− (n + 1

2
)�ω0.

The EEM for this model can be expressed as

m∗
kz
(EFB) = mc[I ′

11(EFB)]. (4.27)

The electron concentration is given by

n0 =
√

2mceBgv

π2 �2

nmax∑
n=0

[Y33(EFB, n)+ Z33(EFB, n)], (4.28)

where
Y33(EFB, n) = [√A33(EFB, n)]

and

Z33(EFB, n) =
s∑

r=1

L B(r)[Y33(EFB, n)].

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(e) The model of Palik et al.

To the fourth order in effective mass theory and taking into account the interactions of
the conduction, light hole, heavy-hole, and split-off hole bands, the electron energy
spectrum in III–V semiconductors in the presence of a quantizing magnetic field B
can be written in accordance with the present model extending (1.35) as

E = J31 +
(

n + 1

2

)
�ω0 + �

2k2
z

2mc
± 1

4

(
mc

m0

)
�ω0g∗

0 ± k30α

(
n + 1

2

)
(�ω0)

2

± k31α�ω0

(
�

2k2
z

2mc

)
+ k32α

[
�ω0

(
n + 1

2

)
+ �

2k2
z

2mc

]2

, (4.29)

where

J31 = −1

2
α�ω0

[
(1 − y11)/(2 + x11)

2
]
.J32,

J32 =
{[

1

3
(1 − x11)

2 − (2 + x2
11)

]
(2 + x11).y11 + 1

2
(1 − x2

11)(1 + x11)(1 + y11)

}
,

g∗
0 = 2

{
1 −

[
(1 − x11)

(2 + x11)

] [
(1 − y11)

y11

]}
,

k30 = (1 − y11)(1 − x11)

{[(
2 + 3

2
x11 + x2

11

)
· (1 − y11)

(2 + x11)
2

]
− 2

3
y11

}
,

k31 = (1−y11)

[
(1 − x11)

(2 + x11)

]
·
{[(

2 + 3

2
x11 + x2

11

)
· (1 − y11)

(2 + x11)

]
− 2

3
(1 − x11)y11

}

and

k32 = −
[(

1 + 1

2
x2

11

)/(
1 + 1

2
x11

)]
(1 − y11)

2.

The (4.29) assumes the form

J34k4
z + J35,±(n)k2

z + J36,±(n)− E = 0, (4.30)

where

J34 = αk32
(
�

2/2mc
)2
, J35,±(n) =

[
�2

2mc
± αk31�ω0.

�2

2mc
+ αk32�ω0.

�2

2mc

(
n + 1

2

)]
,

J36,±(n) =
[

J31 ± 1

4

(
mc

m0

)
�ω0g∗

0 ± k30α(�ω0)
2
(

n + 1

2

)
+ k32α[(�ω0)

(
n + 1

2

)
]2
]

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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from (4.30) we get
k2

z = A35,±(E, n), (4.31)

where

A35,±(E, n) = (2J34)
−1
[
−J35,±(n)+

√(
J35,±(n)

)2 − 4J34
[
J36,±(n)− E

]]

The EEM for this model can be expressed as

m∗
kz
(EFB) = (�2

/
2)[A′

35,±(EFB, n)]. (4.32)

Thus, EEM in accordance with this model is a function of Fermi energy, Landau
quantum number, and the electron spin due to the presence of band nonparabolicity
only.

The electron concentration is given by

n0 = eBgv

2 π2 h

nmax∑
n=0

[Y34(EFB, n)+ Z34(EFB, n)], (4.33)

where
Y34(EFB, n) = [√A35,+(EFB, n)+√A35,−(EFB, n)]

and

Z34(EFB, n) =
s0∑

r=1

L B(r)[Y34(EFB, n)]

4.2.3 The EEM in II–VI Semiconductors Under Magnetic
Quantization

The Hamiltonian of the conduction electron of II–VI semiconductors in the presence
of a quantizing magnetic field B along z-direction assumes the form

ĤB = ( p̂x )
2

2m∗⊥
+ ( p̂y − |e| Bx̂)2

2m∗⊥
± λ̄0

�

[
( p̂x )

2 + ( p̂y − |e| Bx̂)2
]1/2 + ( p̂z)

2

2m∗||
,

(4.34)

where the “hats” denote the respective operators. The application of the operator
method leads to the magneto-dispersion relation of the carriers of II–VI semicon-
ductors, including spin, as
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E = � |e| B

m∗⊥

(
n + 1

2

)
+ �

2k2
z

2m∗||
± λ̄0

[
2 |e| B

�

(
n + 1

2

)]1/2

± 1

2
g∗μ0 B. (4.35)

From (4.35), the EEM along the direction of the magnetic quantization can be
expressed as

m∗
kz
(EFB) = m∗||. (4.36)

Thus, the EEM in this case is a constants quantity and is not affected by magnetic
field.

4.2.4 The EEM in Bismuth Under Magnetic Quantization

(a) The McClure and Choi Model

The Hamiltonian in the presence of a quantizing magnetic field B along the
z-direction in accordance with this model can be written as

ĤB =
(

p̂x
)2

2m1
+
(

p̂y − |e| Bx̂
)2

2m2

[
1 + αE

(
1 − m2

m′
2

)]
+ ( p̂z)

2

2m3

+ α
(

p̂y − |e| Bx̂
)4

4m2m′
2

− α
(

p̂y − |e| Bx̂
)2 [ ( p̂x

)2
4m1m2

]

+ α
(

p̂y − |e| Bx̂
)4

4m2m3
− α

(
p̂y − |e| Bx̂

)2 [ ( p̂x )
2

4m1m2
+ ( p̂z)

2

4m2m3

]
. (4.37)

Thus, the modified carrier energy spectrum in accordance with McClure and Choi
model up to the first order by including spin effects can be expressed as [72, 73]

E(1 + αE) =
(

n + 1

2

)
�ω(E)+ (n2 + 1 + n)

α�
2ω2(E)

4

+ �
2k2

z

2m3

[
1 − α

(
n + 1

2

)
�ω(E)

2

]
± 1

2
|g∗|μ0 B, (4.38)

where

ω(E) ≡ |e| B√
m1m2

[
1 + αE

(
1 − m2

m′
2

)]1/2

.

From (4.38), the EEM along the direction of magnetic quantization assumes the
form as
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m∗
kz
(n, EFB) = m3

[[
1 − α

2

(
n + 1

2

)
�ω(EFB)

]−1 [
1 + 2αEFB −

(
n + 1

2

)
�ω′(EFB)

−1

2
(n2 + n + 1)α�

2ω(EFB)ω
′(EFB)

]
+ α

(
n + 1

2

)
�ω′(EFB)

2

×
[

1 − α
(
n + 1

2

)
�ω(EFB)

2

]−2 [
EFB (1 + αEFB)−

(
n + 1

2

)
�ω(EFB)

−α�2ω2(EFB)

4
(n2 + 1 + n)± 1

2
g∗μ0 B

]]
. (4.39)

In the absence of band nonparabolicity, from (4.39) we get

m∗
kz
(n, EFB) = m3. (4.40)

It is interesting to note that for the two-band model of Kane, the band nonparabolicity
alone explains the dependence of the EEM on Fermi energy, and the EEM is inde-
pendent of magnetic quantum number and the electron spin. In the case of McClure
and Choi model of Bi under magnetic quantization, the same band nonparabolicity
again alone explains the dependence of the EEM on the magnetic quantum number,
electron spin, and the Fermi energy respectively. The density-of-states function for
this model under magnetic quantization is given by

DB(E) = gv |e| B
√

2m3

4 π2 �2

nmax∑
n=0

⎡
⎣
[

1 − α
(
n + 1

2

)
�ω(E)

2

]−3/2 (
1

2

)
α

(
n + 1

2

)
� [ω(E)]′

×
[

E(1 + αE)−
(

n + 1

2

)
�ω(E)− (n2 + 1 + n)

α�
2ω2(E)

4
∓ 1

2
g∗μ0 B

]1/2

+
[

E(1+αE)−
(

n + 1

2

)
�ω(E)− (n2 + 1 + n)

α�
2ω2(E)

4
± 1

2
|g∗|μ0 B

]−1/2

×
[

1 + 2αE −
(

n + 1

2

)
� {ω(E)}′ − (n2 + 1 + n)

α�
2ω(E) {ω(E)}′

2

]

×
[

1 − α
(
n + 1

2

)
�ω(E)

2

]−1/2
⎤
⎦ H(E − En5 ). (4.41)

Combining (4.41) with the Fermi–Dirac occupation probability and using the gen-
eralized Sommerfeld’s lemma [71], the electron concentration in this case assumes
the form

n0 = gv |e| B
√

2m3

2 π2 �2

nmax∑
n=0

[T313(n, EFB)+ T314(n, EFB)], (4.42)
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where

T313(n, EFB) ≡
[

1 − α
(
n + 1

2

)
�ω(EFB)

2

]−1/2

×
[

EFB(1 + αEFB)−
(

n + 1

2

)
�ω(EFB)

− (n2 + n + 1)
α�

2ω2(EFB)

4
∓ 1

2
g∗μ0 B

]1/2

and

T314(n, EFB) ≡
s∑

r=1

L B(r) [T313(n, EFB)].

Under the condition α → 0, (4.42) get simplified as

n0 = gv NC2θB3

2

nmax∑
n=0

F−1
2
(ηB3), (4.43)

where

NC2 ≡ 2

(
2 π m∗

D3kB T

h2

)3/2

, m∗
D3 ≡ (m1m2m3)

1/3,

θB3 ≡ �ω03

kB T
, ω03 ≡ (|e| B)/

√
m1m2

and

ηB3 ≡ (kB T )−1
[

EFB −
(

n + 1

2

)
�ω03 ∓ 1

2
g∗μ0 B

]
.

In the absence of the spin, the electron concentration for McClure and Choi model
can be written as

n0 = gv |e| B
√

2m3

π2 �2

nmax∑
n=0

[T315(n, EFB)+ T316(n, EFB)], (4.44)

where

T315(n, EFB) ≡
[

1 − α(n + 1
2 )�ω(EFB)

2

]−1/2 [
EFB(1 + αEFB)−

(
n + 1

2

)
�ω(EFB)

− (n2 + n + 1)
α�

2ω2(EFB)

4

]1/2
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and

T316(n, EF B) ≡
s∑

r=1

L B(r) [T315(n, EFB)].

It should be noted that in the presence of a quantizing magnetic field B along y
direction, the dispersion relation of the conduction electrons of Bi in accordance with
the McClure and Choi model can be expressed, neglecting spin and using operator
method as,

E(1 + αE) =
(

n + 1

2

)
�ω4 + p2

y

2m2

(
1 + αE

(
1 − m2

m′
2

))

+ αp4
y

4m2m′
2

− αp2
y

2m2

(
n + 1

2

)
�ω4, (4.45)

where

ω4 ≡ |e| B√
m1m3

.

The electron concentration in this case can be written as

n0 = gv |e| B√
2 π2 �2

nmax∑
n=0

[T317(n, EFB)+ T318(n, EFB)], (4.46)

where

T317(n, EFB) ≡
[
−q1(n, EFB)+

√
[q1(n, EFB)]2 + 4q2(n, EFB)

]1/2

,

q1(n, EFB) ≡
(

2m′
2

α

)[
1 + αEFB

(
1 − m2

m′
2

)
− α

(
n + 1

2

)
�ω4

]
,

q2(n, EFB) ≡
(

4m2m′
2

α

)[
EFB (1 + αEFB)− (n + 1

2
)�ω4

]

and

T318(n, EFB) ≡
s∑

r=1

L B(r) [T317(n, EFB)].

(b) The Cohen Model

The application of the above method in Cohen model leads to the electron energy
spectrum in Bi in the presence of quantizing magnetic field B along z-direction as
[72, 73]
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E(1 + αE) =
(

n + 1

2

)
�ω(E)± 1

2
g∗μ0 B + 3

8
α

(
n2 + n + 1

2

)
�

2ω2(E)+ �2k2
z

2m3
.

(4.47)

From (4.47), the EEM along the direction of the quantizing magnetic field can be
expressed as

m∗
kz
(n, EFB) = m3

[
2αEFB + 1 −

(
n + 1

2

)
�ω′(EFB)

−3

4
α�

2ω(EFB)ω
′(EFB)

(
n2 + n + 1

2

)]
. (4.48)

In the absence of band nonparabolicity, the (4.48) gets transformed into the well-
known (4.40) and the mass becomes independent of Fermi energy and magnetic
quantum number.

By comparing (4.48) and (4.39), it is important to note that the band nonpar-
abolicity has been introduced between the McClure and Choi model and the Cohen
model in two different ways so that in the first case, the band nonparabolicity alone
explains the dependence of the EEM on the Fermi energy, magnetic quantum number
and the electron spin, whereas for the Cohen model, the same band nonparabolicity
alone explains the independence of the EEM on the electron spin excluding the other
two dependences. In the absence of band nonparabolicity for both the models of Bi,
the mass along the direction of the magnetic field is not perturbed by the magnetic
quantization.

The density-of-states function under magnetic quantization in accordance with
the Cohen model is given by

DB(E) = gv |e| B
√

2m3

4 π2 �2

nmax∑
n=0

[[
E(1 + αE)−

(
n + 1

2

)
�ω(E)

−
(

n2 + 1

2
+ n

)
3α�

2ω2(E)

8
∓ 1

2
g∗μ0 B

]−1/2

×
[

1 + 2αE −
(

n + 1

2

)
� {ω(E)}′

−
(

n2 + 1

2
+ n

)
3α�

2ω(E) {ω(E)}′
4

]]
H(E −En6).

(4.49)

Thus, the electron concentration assumes the form

n0 = gv |e| B
√

2m3

2 π2 �2

nmax∑
n=0

[T319(n, EFB)+ T320(n, EFB)], (4.50)
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where

T319(n, EFB) ≡
[

EFB(1 + αEFB)−
(

n + 1

2

)
�ω(EFB)∓ 1

2
g∗μ0 B

−3

8
α

(
n2 + n + 1

2

)
�

2ω2(EFB)

]1/2

,

ω(EFB) ≡ |e| B√
m1m2

[
1 + αEFB

(
1 − m2

m′
2

)]1/2

and

T320(n, EFB) ≡
s∑

r=1

L B(r) [T319(n, EFB)].

In the presence of a quantizing magnetic field B along y direction, the magneto-
Cohen model can be expressed by neglecting spin as

E(1 + αE) =
(

n + 1

2

)
�ω4 − αEp2

y

2m′
2

+ p2
y

2m2
(1 + αE)+ αp4

y

4m2m′
2
. (4.51)

The electron concentration in this case can be expressed as

n0 = gv |e| B√
2 π2 �2

nmax∑
n=0

[T319(n, EFB)+ T320(n, EFB)], (4.52)

where

T321(n, EFB) ≡
[
−q3(n, EFB)+

√
[q3(n, EFB)]2 + 4q4(n, EFB)

]1/2

and

T321(n, EFB) ≡
s∑

r=1

L B(r) [T320(n, EFB)]

in which,

q3(n, EFB) ≡
(

4m2m′
2

α

)[−αEFB

2m′
2

+ 1

2m2
(1 + αEFB)

]

and

q4(n, EFB) ≡
(

4m2m′
2

α

)[
EFB(1 + αEFB)−

(
n + 1

2

)
�ω4

]
.
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(c) The Lax Model

In accordance with this model, the magneto dispersion relation assumes the form
[72, 73]

E(1 + αE) =
(

n + 1

2

)
�ω03 + �

2k2
z

2m3
± 1

2
μ0g∗B, (4.53)

where

ω03 = eB√
m1m2

Therefore, k2
z = 2m3

�2 [A40,±(E, n)], (4.54)

where

A40,±(E, n) = E(1 + αE)−
(

n + 1

2

)
�ω03 ∓ 1

2
μ0g∗B

The EEM assumes the form

m∗(EFB) = m3(1 + 2αEFB). (4.55)

The electron concentration is given by

n0 = eBgv
√

2m3

2 π2 �2

nmax∑
n=0

[Y40(EFB, n)+ Z40(EFB, n)], (4.56)

where
Y40(EFB, n) = [√A40,+(EFB, n)+√A40,−(EFB, n)]

and

Z40(EFB, n) =
s∑

r=1

L B(r)[Y40(EFB, n)].

(d) Ellipsoidal parabolic energy bands

For this model, the magneto-dispersion relation can be written as

E =
(

n + 1

2

)
�ω03 + (�2k2

z /2m3)± 1

2
g∗μ0 B. (4.57)

The expressions of the electron concentration for this model are the special cases of
the models of the McClure and Choi, the Cohen and the Lax respectively.
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4.2.5 The EEM in IV–VI Semiconductors Under Magnetic
Quantization

(a) The Dimmock Model

In accordance with Dimmock model, the electron energy spectrum in IV–VI semi-
conductors in the presence of a quantizing magnetic field B along z-direction can be
written following (1.83) as

[
E − �

2

2m−
t

· 2eB

�

(
n + 1

2

)
− �

2k2
z

2m−
l

][
1 + αE + α

�
2

2m+
t

· 2eB

�

(
n + 1

2

)
+ α�

2k2
z

2m+
l

]

= �eB

m∗
t

(
n + 1

2

)
+ �

2k2
z

2m∗
l
, (4.58)

Thus, (4.58) assumes the form

k2
z = A42(E, n), (4.59)

where

A42(E, n) = [2C31]−1
[
−C32(E, n)+

[
C2

32(E, n)− 4C31 {C33(E, n)− E(1 + αE)}
] 1

2
]

C31 = α�
4

4m+
l m−

l

, C32(E, n) =
[

−αE�
2

2m+
l

+ α�
3eB

2m+
l m−

t

(
n + 1

2

)
+ (1 + αE)�2

2m−
l

+ α�
3eB

2m−
l m+

t

(
n + 1

2

)
+ �

2

2m∗
l

]
,

C33(E, n) =
[

�eB

m∗
t

(
n + 1

2

)
− αE�eB

m+
t

(
n + 1

2

)
+ (1 + αE)�eB

m−
t

(
n + 1

2

)

+ α(�eB)2

m+
t m−

t

(
n + 1

2

)2
]
.

The EEM for this model can be expressed as

m∗(EFB, n) = �
2

2
A′

42(EFB, n), (4.60)

Therefore, the EEM is a function of Fermi energy and Landau quantum number due
to the presence of band nonparabolicity only.

The electron concentration can be written as

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y41(EFB, n)+ Z41(EFB, n)], (4.61)

where
Y41(EFB, n) = [√A42(EFB, n)]

and

Z41(EFB, n) =
s0∑

r=1

L B(r)[Y41(EFB, n)].

(b) The Model of Bangert and Kastner

The electron energy spectrum of IV–VI materials in accordance with the model of
Bangert and Kastner can be written as [74]

�(E) = F̄1(E)k
2
s + F̄2(E)k

2
z , (4.62)

where

�(E) = 2E, F̄1(E) =
[

(R̄)2

E + Eg0
+ (S̄)

2

E +�′
l
+ (Q̄)

2

E +�′′
l

]
,

F̄2(E) =
[

2( Ā)
2

E + Eg0
+ (S̄ + Q̄)2

E +�′′
l

]

and R̄, S̄, Q̄, Ā,�′
l ,�

′′
l are the electron energy spectrum constants.

In the presence of a quantizing magnetic field B along z-direction, (4.62) assumes
the form

�(E) = F̄1(E)
2eB

�

(
n + 1

2

)
+ F̄2(E)k

2
z (4.63)

Therefore, k2
z = A44(E, n), (4.64)

where

A44(E, n) = �(E)− F̄1(E)
( 2eB

�

)
(n + 1

2 )

F̄2(E)
.

The EEM for this model can be expressed as

m∗(EFB, n) = �
2

2
A′

44(EFB, n). (4.65)

Therefore, the EEM is a function of Fermi energy and Landau quantum number
which is the characteristic feature of this model.
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The electron concentration can be expressed as

n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y42(EFB, n)+ Z42(EFB, n)], (4.66)

where
Y42(EFB, n) = [√A44(EFB, n)]

and

Z42(EFB, n) =
s0∑

r=1

L B(r)[Y42(EFB, n)].

(c) The Model of Foley and Landenberg

In accordance with the model of Foley and Landenberg, the electron energy spectrum
in IV–VI semiconductors assumes the form [75]

E + Eg0

2
= �

2k2
s

2m−
⊥

+ �
2k2

z

2m−
‖

+
⎡
⎣
[

�
2k2

s

2m+
⊥

+ �
2k2

z

2m+
‖

+ Eg0

2

]2

+ P2‖ k2
z + P2⊥k2

s

⎤
⎦

1
2

,

(4.67)

where 1
m±

⊥
= 1

2

[
1

mtc
± 1

mt2

]
, 1

m±
‖

= 1
2

[
1

mlc
± 1

ml2

]
, mtc and mlc are the transverse

and longitudinal effective electron masses of the conduction electrons at the edge of
the conduction band and mt2 and ml2 are the transverse and longitudinal effective
hole masses at the edge of the valence band. In the presence of magnetic quantization
B along z-direction (4.67) assumes the form

∴ k2
z = A46(E, n), (4.68)

where

A46(E, n) = (2D31)
−1
[
−D32(E, n)+ [D2

32(E, n)+ 4[E(E + Eg0)− D33(E, n)]D31] 1
2

]
,

D31 =
[

�
4

4(m+
‖ )2

− �
4

4(m−
‖ )2

]
,

D32(E, n) =
[

�
2

2m+
‖

{
Eg0 + 2�eB

m+
⊥

(
n + 1

2

)}
+ P2‖

− �
3eB

m−
⊥m−

‖

(
n + 1

2

)
+ (Eg0 + 2E)

�
2

2m−
‖

]
,
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D33(E, n) =
⎡
⎣−

{
�eB

m−
⊥
(n + 1

2
)

}2

+ (Eg0+2E )
�eB

m−
⊥

(
n + 1

2

)
+
{

�eB

m+
⊥

(
n + 1

2

)}2

+Eg0
�eB

m+
⊥

(
n + 1

2

)
+ P2⊥

2eB

�

(
n + 1

2

)]
.

The EEM for this model can be expressed as

m∗(EFB, n) = �
2

2
A′

46(EFB, n), (4.69)

Therefore, the EEM is a function of Fermi energy and Landau quantum number
which is the characteristic feature of this model.

The electron concentration can be expressed as

n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y43(EFB, n)+ Z43(EFB, n)], (4.70)

where
Y43(EFB, n) = [√A46(EFB, n)]

and

Z43(EFB, n) =
s0∑

r=1

L B(r)[Y43(EFB, n)]

4.2.6 The EEM in Stressed Semiconductors Under
Magnetic Quantization

The simplified expression of the electron energy spectrum in stressed Kane -type
semiconductors in the presence of an arbitrarily oriented quantizing magnetic field
B, which makes angles α1, β1 and γ1 with kx , ky and kz axes respectively can be
written following (1.99) as

1 − [k′
z

]2
[I2(E)]

−1 = I3(n, E), (4.71)

where

I2(E) ≡ [ā0(E)]
2 cos2 α1 + [b̄0(E)

]2
cos2 β1 + [c̄0(E)]

2 cos2 γ1

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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and

I3(n, E) ≡
(

2 |e| B

�

)(
n + 1

2

) [
[ā0(E)]

[
b̄0(E)

]
[c̄0(E)]

]−1
[I2(E)]

1/2 .

The use of (3.71) leads to the expression of the EEM as

m∗
k′

z
(n, EFB) = �

2

2

[−{I3(n, EFB)}′ I2(n, EFB)+ (1 − I3(n, EFB)) {I2(n, EFB)}′
]
.

(4.72)

In the absence of stress, together with the substitution B2
2 ≡ 3�

2 Eg

4mc
, the (4.72) gets

simplified into (4.12).
By comparing (4.72) and (4.12), one can observe that the stress makes the EEM

quantum number dependent in stressed Kane-type compounds under magnetic quan-
tization, in addition to Fermi energy.

The density-of-states function in this case is given by

DB(E) = gv |e| B

2 π2 �

nmax∑
n=0

{ {I2(E)}′√
I2(E)

[1 − I3(n, E)]1/2 − [1 − I3(n, E)]−1/2

× {I3(n, E)}′√I2(E)
}

H(E − En8). (4.73)

The use of (4.73) leads to the expression of electron concentration as

n0 = gv |e| B

π2 �

nmax∑
n=0

[T327(n, EFB)+ T328(n, EFB)], (4.74)

where
T327 (n, EFB) ≡ √I2(EFB)

[√
1 − [I3(n, EFB)]

]

and

T328 (n, EFB) ≡
s∑

r=1

L(r)T327 (n, EFB) .

4.2.7 The EEM in Tellurium Under Magnetic Quantization

The dispersion under magnetic quantization can be written following (1.105) as

E = �1k2
z +�2

2eB

�

(
n + 1

2

)
±
[
�2

3 k2
z +�2

4
2eB

�

(
n + 1

2

)] 1
2

(4.75)

Therefore, k2
z = A50,±(E, n), (4.76)

http://dx.doi.org/10.1007/978-3-642-31248-9_3
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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where

A50,±(E, n) = (2�2
1 )

−1
[
�5(E, n)±

[
�2

5 (E, n)− 4�2
1�6(E, n)

] 1
2
]
,

�5(E, n) =
[

2�1

[
E −�2

2eB

�

(
n + 1

2

)]
+�2

3

]
,

�6(E, n) =
[[

E −�2
2eB

�

(
n + 1

2

)]2

−�2
4

2eB

�

(
n + 1

2

)]
.

The expression for EEM can be written as

m∗(EFB, n) = �
2

2
A′

50,±(EFB, n). (4.77)

The presence of the term�3 in (4.75) makes the mass both quantum number and the
Fermi energy dependent in this case.

The electron concentration can be expressed as

n0 =
(

eBgv

2 π2 �

) nmax∑
n=0

[Y45(EFB, n)+ Z45(EFB, n)], (4.78)

where
Y45(EFB, n) = [√A50,+(EFB, n)+√A50,−(EFB, n)]

and

Z45(EFB, n) =
s0∑

r=1

L B(r)[Y45(EFB, n)]

4.2.8 The EEM in n-Gallium Phosphide Under Magnetic
Quantization

The magneto electron energy spectrum can be written following (1.111) as

E = a0
2eB

�

(
n + 1

2

)
+ b0k2

z −
[[

C
2eB

�

(
n + 1

2

)
+ |VG |2 Ck2

z

] 1
2
]

+ |VG | ,
(4.79)

where a0 = �2

2m∗⊥
+ A�2

2m∗‖
, b0 = �2

2m∗‖
, C = �4k2

0
(m∗‖)2

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Therefore, k2
z = A52,±(E, n), (4.80)

where

A52,±(E, n) = (2b2
0)

−1
[
�11(E, n)±

[
�2

11(E, n)− 4b2
0�12(E, n)

] 1
2
]
,

�11(E, n) = [2b0 [E −�9(n)] + C] ,

�12(E, n) =
[
[E −�9(n)]

2 −�10(n)
]
,

�9(n) = |VG | + a0
2eB

�

(
n + 1

2

)

and

�10(n) = C
2eB

�

(
n + 1

2

)
+ |VG |2

The expression for EEM can be written as

m∗(EFB, n) = �
2

2
A′

52,±(EFB, n). (4.81)

The presence of the term |VG | in (4.79) makes the mass both quantum number and
the Fermi energy dependent in this case.

The electron concentration can be expressed as

n0 =
(

eBgv

2 π2 �

) nmax∑
n=0

[Y46(EFB, n)+ Z46(EFB, n)], (4.82)

where
Y46(EFB, n) = [√A52,+(EFB, n)+√A52,−(EFB, n)]

and

Z46(EFB, n) =
s0∑

r=1

L B(r)[Y46(EFB, n)].

4.2.9 The EEM in Platinum Antimonide Under
Magnetic Quantization

The magneto-dispersion relation can be written following (1.118) as

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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[
E + λ̄0(ā)2eB

2�

(
n + 1

2

)
+ λ̄0(ā)2

4
k2

z − l̄(ā)2eB

2�

(
n + 1

2

)]

×
[

E + δ̄0 − ῡ(ā)2eB

2�

(
n + 1

2

)
− ῡ(ā)2

4
k2

z − n̄(ā)2eB

2�

(
n + 1

2

)]

= I (ā)4

16

[
k2

z + 2eB

�

(
n + 1

2

)]2

(4.83)

Therefore, k2
z = A55,±(E, n), (4.84)

where

A55(E, n) = (2�17)
−1
[
−�18(E, n)+

[
�2

18(E, n)− 4�17�19(E, n)
] 1

2
]
,

�17 =
[

I (ā)4

16
+ λ̄0ῡ(ā)4

16

]
,

�18(E, n) =
[

I (ā)4eB

4�

(
n + 1

2

)
+�15(E, n)

ῡ(ā)2

4
−�16(E, n)

λ̄0(ā)2

4

]
,

�20 = ῡ(ā)2

4
, �21(E, n) = [�16(E, n)+�15(E, n)]

�19(E, n) =
(
�15(E, n)�16(E, n)− I (ā)4e2 B2

(
n + 1

2

)2
4�2

)

�15(E, n) =
[

E + λ̄0(ā)2eB

2�

(
n + 1

2

)
− l̄(ā)2eB

2�

(
n + 1

2

)]

and

�16(E, n) =
[

E + δ̄0 − ῡ(ā)2eB

2�

(
n + 1

2

)
− n̄(ā)2eB

2�

(
n + 1

2

)]

The EEM for this case can be written as

m∗(EFB, n) = �
2

2
A′

55,±(EFB, n). (4.85)

The electron concentration can be expressed as
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n0 =
(

eBgv

2 π2 �

) nmax∑
n=0

[Y47(EFB, n)+ Z47(EFB, n)], (4.86)

where
Y47(EFB, n) = [√A55,+(EFB, n)+√A55,−(EFB, n)]

and

Z47(EFB, n) =
s0∑

r=1

L B(r)[Y47(EFB, n)]

4.2.10 The EEM in Bismuth Telluride Under
Magnetic Quantization

In the presence of a quantizing magnetic field B along kx direction, the magneto-
dispersion relation of the carriers in Bi2T e3 can be written following (1.128) as

E(1 + αE) = ω̄1k2
x + �ω31

(
n + 1

2

)
, (4.87)

where

ω31 = eB

M31
, M31 = m0[

ᾱ22ᾱ23 − (ᾱ23)2

4

] 1
2

Therefore, k2
x = E(1 + αE)− �ω31

(
n + 1

2

)
ω̄1

.

The EEM can be expressed as

m∗(EFB) = �
2

2

[
1 + 2αEFB

ω̄1

]
. (4.88)

The electron concentration can be expressed as

n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y48(EFB, n)+ Z48(EFB, n)], (4.89)

where

Y48(EFB, n) =
{

1

ω̄1

[
EFB(1 + αEFB)−

(
n + 1

2

)
�ω31

]}1/2

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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and

Z48(EFB, n) =
s0∑

r=1

Z B(r)[Y48(EFB, n)].

4.2.11 The EEM in Germanium Under Magnetic Quantization

(a) The model of Cardona et al.

The dispersion relation of the conduction electrons in n − Ge in accordance with
the model of Cardona et al. in the presence of quantizing magnetic field B along
z-direction can be written following (1.135) as

E(1 + αE) = �ω⊥
(

n + 1

2

)
+ �

2k2
z

2m∗||
+ 2αE

(
�

2k2
z

2m∗||

)
− α

(
�

2k2
z

2m∗||

)2

, (4.90)

where ω⊥ = eB
m∗⊥

, m∗|| and m∗⊥ are the longitudinal and transverse effective masses

along <111> direction at the edge of the conduction band respectively.

Therefore, k2
z = 2m∗‖

�2 A69(E, n), (4.91)

where

A69(E, n) = (2α)−1

[
1 + 2αE −

[
1 + 4α

(
n + 1

2

)
�ω⊥

] 1
2
]
.

The EEM can be written as

m∗(EFB, n) = m∗‖ A′
69(EFB, n). (4.92)

The electron concentration can be expressed as

n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y49(EFB, n)+ Z49(EFB, n)], (4.93)

where

Y49(EFB, n) =
√

2m∗‖
�

[√A69(EFB, n)]

and

Z49(EFB, n) =
s0∑

r=1

L B(r)[Y49(EFB, n)].

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(b) The model of Wang and Ressler

The magneto-dispersion law in n − Ge in accordance with the model of Wang and
Ressler can be written following (1.143) as

k2
z = 2m∗‖

�2 [A71(E, n)], (4.94)

where

A71(E, n) =
[
�24(n)− 1

2ē1
[�25(n)− 4ē1 E]

1
2

]
,

�24(n) = (2ē1)
−1
[

1 − d̄1

(
n + 1

2

)
�ω⊥

]

and

�25(n) =
[{

1 − d̄1

(
n + 1

2

)
�ω⊥

}2

+ ē1

{(
n + 1

2

)
�ω⊥ − c̄1

{(
n + 1

2

)
�ω⊥

}2
}]

.

The EEM is given by
m∗(EFB, n) = m∗‖ A′

71(EFB, n). (4.95)

The electron concentration can be expressed as

n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y50(EFB, n)+ Z50(EFB, n)], (4.96)

where

Y50(EFB, n) =
√

2m∗‖
�

[√A71(EFB, n)]

and

Z50(EFB, n) =
s0∑

r=1

L B(r)[Y50(EFB, n)].

4.2.12 The EEM in Gallium Antimonide Under
Magnetic Quantization

The magneto-dispersion relation is given by

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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k2
z = 2mc

�2

[
I16(E)−

(
n + 1

2

)
�ωc

]
, (4.97a)

where I16(E) has been defined in (1.153),
(4.97a) can be expressed as

k2
z = 2mc

�2 [A73(EFB, n)] , (4.97b)

where [A73(EFB, n)] = [I16(E)− (n + 1
2 )�ωc

]
The EEM can be expressed as

m∗(EFB) = mc I ′
16(EFB). (4.98)

The electron concentration can be expressed as

n0 =
(

eBgv

π2 �

) nmax∑
n=0

[Y501(EFB, n)+ Z501(EFB, n)], (4.99)

where

Y501(EFB, n) =
√

2mc

�
[√A73(EFB, n)]

and

Z501(EFB, n) =
s0∑

r=1

L B(r)[Y501(EFB, n)]

4.2.13 The EEM in II–V Semiconductors Under
Magnetic Quantization

The dispersion relation of the holes are given by [76–78]

E = θ1k2
x +θ2k2

y +θ3k2
z +δ4kx ∓[{θ5k2

x +θ6k2
y +θ7k2

z +δ5kx }2+G2
3k2

y +�2
3]

1
2 ±�3,

(4.100a)
where kx , ky and kz are expressed in the units of 1010 m−1,

θ1 = 1

2
(a1 + b1), θ2 = 1

2
(a2 + b2), θ3 = 1

2
(a3 + b3), δ4 = 1

2
(A + B),

θ5 = 1

2
(a1 − b1), θ6 = 1

2
(a2 − b2), θ7 = 1

2
(a3 − b3), δ5 = 1

2
(A − B),

ai (i = 1, 2, 3, 4), bi , A, B,G3 and �3 are system cons tan ts

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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The magneto-dispersion law in II–V semiconductors in the presence of a magnetic
field B along ky direction can be written as

k2
y = A75,±(E, n), (4.100b)

where

A75,±(E, n) =
[

I35 E + I36,±(n)±
√

E2 + E I38,±(n)+ I39,±(n)
]
, I35 = θ2

(θ2
2 − θ2

5 )
,

I36,±(n) = I33,±(n)
2(θ2

2 − θ2
5 )
, I38,±(n) = (4θ2

5 )
−1 [4θ2 I33,±(n)+ 8θ2

2 I31,±(n)− θ2
5 I31,±(n)

]
,

I39,±(n) = (4θ2
5 )

−1
[

I 2
33,±(n)+ 4θ2

2 I34,±(n)− 4θ2
5 I34,±(n)

]
,

I33,±(n) =
[
G2

3 + 2θ5 I32(n)− 2θ2 I31,±(n)
]
,

I34,±(n) = [I 2
32(n)+�2

3 − I31,±(n)
]
, I31,±(n) =

[(
n + 1

2

)
�ω31 − δ2

4

4θ1
±�3

]
,

I32(n) =
[(

n + 1

2

)
�ω32 − δ2

5

4θ5

]
, ω31 = eB√

M31 M32
, ω32 = eB√

M33 M34
,

M31 = �
2

2θ1
, M32 = �

2

2θ3
, M33 = �

2

2θ5
and M34 = �

2

2θ7
.

The EEM is given by

m∗(EFB, n) = �
2

2
A′

75,±(EFB, n). (4.101)

The electron concentration can be expressed as

n0 =
(

eBgv

2 π2 �

) nmax∑
n=0

[Y51(EFB, n)+ Z51(EFB, n)], (4.102)

where
Y51(EFB, n) = [√A75,+(EFB, n)+√A75,−(EFB, n)]

and

Z51(EFB, n) =
s0∑

r=1

L B(r)[Y51(EFB, n)]
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Fig. 4.1 Plot of the magnetic
quantum number-dependent
EEM as function of inverse
magnetic field for n-Cd3As2
considering (4.2) both in
the presence and absence of
crystal field-splitting constant.
The magnetic field has been
oriented at 45◦ to the kz axis.
The graphs for the three- and
two-band models of Kane
have also been exhibited

4.3 Results and Discussion

Using (4.2) and (4.5) together with the energy band constants as given in Table 1.1 we
have plotted the EEM in n-Cd3As2 and CdGeAs2 as functions of inverse magnetic
field for the first two magnetic subbands in Figs. 4.1 and 4.2 respectively. For the
purpose of self-assessment, in the same figures, we have also plotted the effect of
absence of the crystal field splitting together with the simplified three- and two-band
models of Kane. From these figures, it appears that the EEM is an oscillatory function
of the inverse quantizing magnetic field. The magnetic field has been tilted to an angle
of 45◦ to the kz direction in both the figures. The oscillatory dependence is due to
the crossing over of the Fermi level by the Landau subbands in steps resulting in
successive reduction the number of occupied Landau levels as the magnetic field is
increased. For each coincidence of a Landau level, with the Fermi level, there would
be a discontinuity in the density-of-states function resulting in a peak of oscillation.

Thus the peaks should occur whenever the Fermi energy is a multiple of energy
separation between the two consecutive Landau levels and it may be noted that
the origin of oscillations in the EEM is the same as that of the Subhnikov-de Hass
oscillations. With increase in magnetic field, the amplitude of the oscillation increases
and, ultimately, at very large values of the magnetic field, the conditions for the
quantum limit is reached when the EEM is found to decrease monotonically with
increase in magnetic field. Further, in this case we see that the EEM is a strong
function of the subband quantum number n.

For this reason, we has also plotted the EEM for the next higher subband n = 1.
It thus appears that the increasing the index decreases the EEM for lower values of

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 4.2 Plot of the magnetic
quantum number-dependent
EEM as function of inverse
magnetic field for n-CdGeAs2
considering (4.2). The mag-
netic field has been oriented
at 45◦ to the kz axis. The plots
for the three- and two-band
models of Kane have also been
exhibited

Fig. 4.3 Plot of the magnetic
quantum number-dependent
EEM as function of carrier
degeneracy for n-Cd3As2.
The magnetic field has been
oriented at 45◦ to the kz axis.
The plots for the three- and
two-band models of Kane
have also been exhibited

the field. However at higher field, the difference between them diminishes and all
the respective band models tend to coincide with each other which stand out to be
a remarkable mathematical simplicity in deriving the analytical expressions of the
EEM. The presence of the isotropic spin orbit splitting constant in the three-band
model of Kane changes the value of the EEM as compared with the corresponding
two-band model.

Figures 4.3 and 4.4 exhibit the variation of the EEM on the carrier degeneracy
in both the aforementioned materials. Oscillatory dependences are exhibited in the
case of the equivalent three- and the two-band model of Kane, the deviation among
which for both the materials are almost zero. Further, we also see that there is almost
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Fig. 4.4 Plot of the magnetic
quantum number-dependent
EEM as function of carrier
degeneracy for n-CdGeAs2.
The magnetic field has been
oriented at 45◦ to the kz axis.
The plots for three- and two-
band models of Kane have
also been exhibited

no significant change in the variation of the subband index from n = 1 to n = 2 in
both the cases. An exponential rise in the EEM can be observed beyond 1023 m−3 for
both the materials. In case of Cd3As2, we see that decreasing the carrier degeneracy
converges the EEM from all the band models to a unique value. Incidentally, this is not
the case of CdGeAs2. There is a crossing over of the EEM near to the concentration
zone of 1023 m−3 which overestimates the numerical result. In addition, the EEM
exhibits different numerical values for both the materials, the rate of variations of
which are different due to the influence of the energy band constants in accordance
with all the types of band models and follow the same trend as shown in Figs. 4.3
and 4.4.

The dependency of the EEM on the angular orientation of the quantizing magnetic
field has been exhibited in Figs. 4.5 and 4.6 in both n-Cd3As2 and n-CdGeAs2
respectively. It appears that the EEM exhibits a periodic variation increasing θ from
0◦ up to 120◦.

The effect of the crystal field splitting constant in both the cases has been exhibited
for relative assessment. It appears that the influence of the crystal field splitting
constant on the EEM for Cd3As2 is relatively insignificant, while there appears a
cross-over regime in the EEM in CdGeAs2 around 50◦. In the later case, the crystal
field constant tends to reduce the EEM beyond 50◦ which exhibits the influence
of δ.

For the three- and the two-band models of Kane, the EEM becomes independent of
θ , since the dispersion relation of the bulk materials in accordance with the said band
models is spherical in constant energy wave vector space, whereas the generalized
band model represents the ellipsoid of revolution in the same space.

Figures 4.7, 4.8, 4.9, 4.10, and 4.11 exhibit the variation of the EEM on
the quantizing magnetic field for n-InAs, n-GaAs, n-InSb, n-Hg1−x Cdx Te and
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Fig. 4.5 Plot of the lowest
magnetic quantum number-
dependent EEM as function
of orientation of the magnetic
field in n-Cd3As2 both in the
presence and absence of the
crystal field-splitting constant

Fig. 4.6 Plot of the lowest
magnetic quantum number-
dependent EEM as function
of angular dependency of the
magnetic field in n-CdGeAs2
both in the presence and
absence of the of crystal field-
splitting constant

In1−x Gax AsyP1−y lattice matched to InP in accordance with the three- and two-band
models of Kane respectively. The variations of the EEM are periodic and independent
of the subband index number with the quantizing magnetic field and the influence
of the energy band constants on the EEM in accordance with all the band models is
apparent from the said figures.

Figures 4.12, 4.13, 4.14, 4.15 and 4.16 exhibit the concentration dependence of
the periodic EEM for all the respective aforementioned materials.

It appears from Figs. 4.12, 4.13, 4.14, 4.15, and 4.16 that the periodic oscillatory
numerical values of the EEM is greatest for the quaternary materials while the least



160 4 The EEM in Nonparabolic Semiconductors Under Magnetic Quantization

Fig. 4.7 Plot of the EEM as
function of inverse magnetic
field for n-InAs considering
the three and two band models
of Kane

Fig. 4.8 Plot of the EEM as
function of inverse magnetic
field for n-GaAs considering
the three- and two-band
models of Kane

Fig. 4.9 Plot of the EEM as
function of inverse magnetic
field for n-InSb considering
the three- and two-band
models of Kane

for InSb for all types of variables in accordance with all types of band models of
III–V, ternary and quaternary materials. In Fig. 4.17, we have plotted the variation of
the EEM as function of alloy composition in HgCdTe and InGaAsP lattice matched
to InP. It appears that the EEM increases with the alloy fraction in an almost linear
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Fig. 4.10 Plot of the EEM
as function of inverse mag-
netic field for n-Hg0.3Cd0.7
Te considering the three- and
two-band models of Kane

Fig. 4.11 Plot of the EEM as
function of inverse magnetic
field for n-In1−x Gax AsyP1−y
lattice matched to InP consid-
ering the three- and two-band
models of Kane

way. The result of the EEM arising due to the difference in the band structure also
appears to be extremely less.

The numerical computations for the models according to Stillman (Eq. (4.27)) and
Palik (Eq. (4.32)) have been left as an exercise for the reader. Also, from Eq. (4.36),
we see that the EEM in II–VI material like CdS remains invariant with the magnetic
field, hence we have not exhibited this.

Using Eqs. (4.39) and (4.42) for McClure–Choi model, (4.48) and (4.50) for the
model of Cohen and (4.55) and (4.56) for the model of Lax, we have plotted the
EEM for Bi as functions of inverse quantizing magnetic field and carrier degeneracy
as shown in Figs. 4.18 and 4.19 respectively considering the first two magnetic
subbands for models of McClure–Choi.

From Fig. 4.18, it appears that the effect of the energy band structure namely
due to the model of Cohen and the Lax on the EEM almost coincides with each
other. However, the quadratic nonlinear energy dispersion relation of McClure and
Choi tends to increase the EEM. It appears that the increase in the magnetic subband
index increases the EEM in this case as compared with that of Figs. 4.1 and 4.2 for
nonlinear tetragonal materials. This increase of the EEM for the present case results
due to the presence of the respective dominant energy spectrum parameters. As the
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Fig. 4.12 Plot of the EEM as
function of carrier degeneracy
for n-InAs considering the
three- and two-band models
of Kane

Fig. 4.13 Plot of the EEM as
function of carrier degeneracy
for n-GaAs considering the
three- and two-band models
of Kane

magnetic field increases, we see that with increase in the subband index the EEM
exhibits a sharp discontinuity and can become a negative quantity, thus questioning
the validity of the McClure and Choi model in the beyond-10 tesla zone.

The variation of the EEM on the carrier degeneracy for Bi in Fig. 4.19 is rather
slow over 0.1–0.5 × 1023 m−3 zone.

Figure 4.20 exhibits the variation of the EEM against the quantizing magnetic field
for IV–VI materials considering PbTe as an example using the dispersion relation
provided by the Dimmock model at the lowest quantizing subband. In the same figure
we have demonstrated the variation of the EEM for stressed InSb for the first two
lowest subbands. Large oscillations are exhibited for PbTe case as compared with
that of the stressed case, where we have considered the stress to be composed of all
the diagonal and off-diagonal strain components as given in Table 1.1. It appears the
deviation of the EEM from its ground state value is almost zero when the angular
dependency is 45◦. To exhibit this difference, we have further plotted the EEM at the

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 4.14 Plot of the EEM as
function of carrier degeneracy
for n-InSb considering the
three- and two-band models
of Kane

Fig. 4.15 Plot of the EEM as
function of carrier degeneracy
for n-Hg0.3Cd0.7Te consider-
ing the three- and two-band
models of Kane

Fig. 4.16 Plot of the EEM as
function of carrier degener-
acy for n-In1−x Gax AsyP1−y
lattice matched to InP consid-
ering the three- and two-band
models of Kane

lowest two subbands as function of the angle of orientation of the field in Fig. 4.21.
It appears that the EEM exhibits periodical variation over the entire angular range as
shown in the same figure with the deviation between the subband values at the two
minima and the mid angular zone (Fig. 4.21).

Figure 4.22 exhibits the EEM in Te, GaP, PtSb2, Bi2Te3, GaSb and as function of
quantizing magnetic field at the lowest subband level. The usual periodical oscillatory
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Fig. 4.17 Plot of the EEM
as function of alloy composi-
tion for n-Hgx Cd1−x Te and
n-In1−x Gax AsyP1−y lattice
matched to InP considering
the three- and two-band mod-
els of Kane at a quantizing
magnetic field of 2 Tesla and
carrier degeneracy of 5 × 1023

m−3

Fig. 4.18 Plot of the EEM
as function of inverse
magnetic field for Bi con-
sidering the energy band
models of McClure and Choi,
Cohen and Lax respectively

nature is exhibited for all the said materials with Bi2Te3 to exhibit the highest EEM
numerical values. In case of Ge, we see from (4.92) that the Cardona et al. model and
Wang et al. register a subband index-dependent EEM. We leave the reader to carry
out investigation of the EEM using both the models for Ge, other allied models for
IV–VI, together with that for II–VI materials.

We wish to note that the effect of electron spin has not been considered in obtain-
ing the oscillatory plots. The peaks in all the figures would increase in number with
decrease in amplitude if spin splitting term is included in the respective numerical
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Fig. 4.19 Plot of the EEM as
function of carrier degeneracy
for Bi considering the energy
band models of McClure
and Choi, Cohen and Lax
respectively

Fig. 4.20 Plot of the EEM
as function of quantizing
magnetic field for PbTe and
stressed InSb at the two lowest
magnetic subbands

computations. Though the effects of collisions are usually small at low temperatures,
the sharpness of the amplitude of the oscillatory plots would somewhat be reduced
by collision broadening. Nevertheless, the present analysis would remain valid since
the effects of collision broadening can usually be taken into account by an effec-
tive increase in temperature. Although in a more rigorous statement the many-body
effects should be considered along with the self-consistent procedure, the simplified
analysis as presented exhibits the basic qualitative features of the EEM in this under
the magnetic quantization with reasonable accuracy. For the purpose of condensed
presentation, the carrier statistics and the EEM in different materials as considered
in this chapter have been presented in Table 4.1.
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Fig. 4.21 Plot of the EEM as
function of angular orientation
of the magnetic field for
stressed InSb at the two lowest
magnetic subbands

Fig. 4.22 Plot of the EEM as
function quantizing magnetic
field for Bi2Te3, GaSb, Te,
GaP and PtSb2 at the lowest
magnetic subband

4.4 Open Research Problems

R.4.1

(a) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM and OEM in all the
bulk semiconductors as considered in this chapter in the absence of any field.

(b) Investigate the same set of masses as defined in (R 4.1) in the presence of
an arbitrarily oriented quantizing magnetic field including broadening and the
electron spin (applicable under magnetic quantization) for all the bulk semi-
conductors whose unperturbed carrier energy spectra are defined in Chap. 1.

R.4.2 Investigate the same set of masses as defined in (R 1.1) in the presence
of quantizing magnetic field under an arbitrarily oriented (a) non-uniform electric
field and (b) alternating electric field respectively for all the semiconductors whose
unperturbed carrier energy spectra are defined in Chap. 1 by including spin and
broadening respectively.
R.4.3 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field by including broadening and the
electron spin for all the semiconductors whose unperturbed carrier energy spectra
as defined in Chap. 1.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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R.4.4 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field and crossed alternating electric field
by including broadening and the electron spin for all the semiconductors whose
unperturbed carrier energy spectra as defined in Chap. 1.
R.4.5 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field and crossed alternating non-uniform
electric field by including broadening and the electron spin whose for all the
semiconductors unperturbed carrier energy spectra as defined in Chap. 1.
R.4.6 Investigate the same set of masses as defined in (R 1.1) in the presence and
absence of an arbitrarily oriented quantizing magnetic field under exponential,
Kane, Halperin, Lax and Bonch-Bruevich band tails [70] for all the semiconductors
whose unperturbed carrier energy spectra as defined in Chap. 1 by including spin
and broadening (applicable under magnetic quantization).
R.4.7 Investigate the same set of masses as defined in (R 1.1) in the presence
of an arbitrarily oriented quantizing magnetic field for all the semiconductors as
defined in (R 4.6) under an arbitrarily oriented (a) non-uniform electric field and
(b) alternating electric field respectively whose unperturbed carrier energy spectra
as defined in Chap. 1.
R.4.8 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field by including broadening and the
electron spin for all semiconductors whose unperturbed carrier energy spectra as
defined in Chap. 1.
R.4.9 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field and crossed alternating electric field
by including broadening and the electron spin for all the semiconductors whose
unperturbed carrier energy spectra as defined in Chap. 1.
R.4.10 Investigate all the appropriate problems of this chapter after proper modifi-
cations introducing new theoretical formalisms for functional, negative refractive
index, macro molecular, organic, and magnetic materials.
R.4.11 Investigate all the appropriate problems of this chapter for p-InSb, p-CuCl
and stressed semiconductors having diamond structure valence bands whose dis-
persion relations of the carriers in bulk semiconductors are given by Cunning-
ham [79], Yekimov et al. [80] and Roman et al. [81] respectively.
R.4.12 Investigate all the problems of this chapter by removing all the mathematical
approximations and establishing the respective appropriate uniqueness conditions.
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Chapter 5
The EEM in Nanowires of Non-Parabolic
Semiconductors

5.1 Introduction

It is well known that in nanowires (NWs), the restriction of the motion of the carriers
along two directions may be viewed as carrier confinement by two infinitely deep one
dimensional (1D) rectangular potential wells, along any two orthogonal directions
leading to quantization of the wave vectors along the said directions, allowing 1D
carrier transport [1–3]. With the help of modern fabrication techniques, such one
dimensional quantized structures have been experimentally realized and enjoy an
enormous range of important applications in the realm of nanoscience. They have
generated much interest in the analysis of nanostructured devices for investigating
their electronic, optical, and allied properties [4–11]. Examples of such new applica-
tions are based on the different transport properties of ballistic charge carriers which
include nanoresistors [12–14], resonant tunneling diodes and band filters [15, 16],
nanoswitches [17], nanosensors [18, 19], nanologic gates [20, 21], nanotransistors
and subtuners [22, 23], heterojunction [24], high-speed digital networks [25–27],
high-frequency microwave circuits [28], optical modulators [29], optical switching
systems [30], and other nanoscale devices. In this chapter, we shall study the EEM
in NWs of non-parabolic semiconductors having different band structures.

In Sect. 5.2.1, the EEM in NWs of nonlinear optical semiconductors has been
investigated. In Sect. 5.2.2, the EEM in NWs of III–V, ternary and quaternary semi-
conductors has been studied in accordance with the said band models and the sim-
plified results for wide-gap materials having parabolic energy bands under certain
limiting conditions have further been demonstrated as a special case and thus con-
firming the compatibility test. The Sect. 5.2.3 contains the investigation of the EEM
in NWs of II–VI compounds. In Sect. 5.2.4, the EEM in NWs of Bi has been for-
mulated in accordance with the aforementioned energy band models for the purpose
of relative assessment. Besides, under certain limiting conditions all the results for
all the models of 1D systems are reduced to the well-known result of the EEM in

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 175
Semiconductors, Springer Series in Materials Science 167,
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NWs of wide-gap materials. This above statement exhibits the compatibility test of
our theoretical analysis. In Sect. 5.2.5, the EEM in NWs of IV–VI semiconductors
has been studied taking PbTe, PbSe, and PbS as examples. The EEM in NWs of
stressed compounds (taking stressed n-InSb as an example) has been investigated in
Sect. 5.2.6. The Sect. 5.2.7 contains the investigation of EEM in NWs of Tellurium.
In Sect. 5.2.8, the EEM in NWs of n-GaP has been studied. The Sect. 5.2.9 explores
the EEM in NWs of PtSb2. In Sect. 5.2.10, the EEM in NWs of Bi2Te3 has been
considered. In Sect. 5.2.11, the EEM has been studied in NWs of Ge. In Sect. 5.2.12,
the EEM in NWs of GaSb has been studied. In Sect. 5.2.13, we shall study the EEM
in NWs of II–V semiconductors. The Sect. 5.2.14 explores the EEM in carbon nan-
otubes, a very important quantum material in nanotechnology. The Sect. 5.3 contains
the result and discussions pertaining to this chapter. The last Sect. 5.4 contains open
research problems.

5.2 Theoretical Background

5.2.1 The EEM in Nanowires of Nonlinear
Optical Semiconductors

For two-dimensional (2D) quantizations along x and y directions, (1.2) assumes the
form

k2
z = A11(E, nx , ny) (5.1)

where

A11(E, nx , ny) = [ f2(E)]−1[γ (E)− φ1(nx , ny) f1(E)],

φ1(nx , ny) ≡
(

nxπ

dx

)2

+
(

nyπ

dy

)2

,

nx = (1, 2, 3, . . .), ny = (1, 2, 3, . . .) are the size quantum numbers along x and y
directions, respectively and dx and dy are the nanothickness along x and y directions,
respectively.

The quantized sub-band energy (E11) is given by

γ (E11) = f1(E11)φ1(nx , ny). (5.2)

The EEM can be expressed as

m∗(EF1D, nx , ny) = �
2

2
A′

11(EF1D, nx , ny) (5.3)

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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where EF1D is the Fermi energy in the presence of 2D quantization as measured from
the edge of the conduction band in the vertically upward direction in the absence of
any quantization.

A′
11(EF1D, nx , ny) =

[−A11(EF1D, nx , ny) f ′
2(EF1D)

f2(EF1D)

+[ f2(EF1D)]−1[γ ′(EF1D)− f ′
1(EF1D)φ1(nx , ny)]

]
,

f ′
2(EF1D) =

[
[�2 Eg0(Eg0 +�‖)]

[
2m∗‖

(
Eg0 + 2

3
�‖
)]−1

×
[

2EF1D + 2Eg0 + 2

3
�‖
] ]
,

f ′
1(EF1D) =

[[
�

2 Eg0(Eg0 +�⊥)
] [

2m∗⊥
(

Eg0 + 2

3
�⊥
)]−1

×
[

2EF1D + 2Eg0 + 2

3
�‖ + δ

]]

and

γ ′(EF1D) =
[
γ (EF1D)(2EF1D + Eg0)

EF1D(EF1D + Eg0)

+[EF1D(EF1D + Eg0)][2EF1D + 2Eg0 +�‖ + δ]
]
.

Thus, we observe that the EMM is the function of both the size quantum numbers
(nx and ny) and the Fermi energy due to the combined influence of the crystal
filed splitting constant and the anisotropic spin–orbit splitting constants, respectively.
The density-of-states function per sub-band (N1D(E)) is given by,

N1D(E) = gv

π

[{
ψ1(E)− ψ2(E)φ(nx , ny)

}
ψ3(E)

]−1/2

[ψ3(E)]−2[ψ3(E){{ψ1(E)}′ − {ψ2(E)}′φ(nx , ny)}
− {ψ1(E)− ψ2(E)φ(nx , ny)}{ψ3(E)}′]. (5.4)

The electron concentration per unit length can be expressed as

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[B11(EF1D, nx , ny)+ B12(EF1D, nx , ny)] (5.5)
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where

B11(EF1D, nx , ny) = [A11(EF1D, nx , ny)]1/2,

B12(EF1D, nx , ny) =
r0∑

r=1

Z1D(r)
[
B11(EF1D, nx , ny)

]
,

and

Z1D(r) = 2(kB T )2r (1 − 21−2r )ξ(2r)
∂2r

∂E2r
F1D

.

5.2.2 The EEM in Nanowires of III–V Semiconductors

The dispersion relation of the conduction electrons of III–V compounds are described
by the models of Kane (both three and two bands) [31, 32], Stillman et al. [33],
Newson and Kurobe [34] and Palik et al. [35] respectively. For the purpose of com-
plete and coherent presentation, the EEM in NWs of III–V semiconductors have
also been investigated in accordance with the aforementioned different dispersion
relations for the purpose of relative comparison as follows:

(a) Under the substitutions δ = 0,�‖ = �⊥ = � and m∗|| = m∗⊥ = mc (5.1)
assumes the form

�
2k2

z

2mc
= I11(E)− �

2

2mc
φ(nx , ny) (5.6)

Using (5.6), the EMM along kz direction for this case can be written as

m∗(EF1D) = mc {I11(EF1D)}′ (5.7)

where

I ′
11(EF1D) =

[
I11(EF1D)

[
1

EF1D
+ 1

EF1D + Eg0
+ 1

EF1D + Eg0 +�

− 1

EF1D + Eg0 + (2/3)�

]]
.

It is worth noting that the EMM in this case is a function of Fermi energy alone and
is independent of size quantum number.

The sub-band energy (Enxy2
) can be written as

I11(Enxy2
) = �

2

2mc
φ(nx , ny). (5.8)
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The 1D carrier concentration can thus be written as

n1D = 2gv

π

(
2mc

�2

)1/2 nxmax∑
nx =1

nymax∑
ny=1

[
T63(EF1D, nx , ny)+ T64(EF1D, nx , ny)

]

(5.9)
where

T63(EF1D, nx , ny) ≡
[

I11(EF1D)− �
2

2mc
φ(nx , ny)

]1/2

and

T64(EF1D, nx , ny) ≡
s∑

r=1

Z1D(r)T63(EF1D, nx , ny).

(b) Under the inequalities � � Eg0 or � � Eg0, (5.6) assumes the form

E(1 + αE) = �
2

2mc
φ(nx , ny)+ �

2k2
z

2mc
. (5.10)

The EMM along kz direction can be written as

m∗(EF1D) = mc(1 + 2αEF1D). (5.11)

Thus, we observe that the EMM in the present case is a function of Fermi energy
only due to the presence of band non-parabolicity.

For NWs, whose energy band structures for the corresponding bulk semiconduc-
tors obey the two-band model of Kane, the density-of-states function per sub-band
assumes the form

N1D(E) = gv

π

(
2mc

�2

)1/2
(1 + 2αE)[

E(1 + αE)− �
2

2mc
φ(nx , ny)

]1/2 . (5.12)

In this case the sub-band energy (Enxy3
) can be expressed as

�
2

2mc
φ(nx , ny) = Enxy3

(1 + αEnxy3
). (5.13)

The use of (5.12) leads to the expression of the 1D electron statistics as
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n1D = 2gv

π

(
2mc

�2

)1/2 nxmax∑
nx =1

nymax∑
ny=1

[
T65(EF1D, nx , ny)+ T66(EF1D, nx , ny)

]

(5.14)
where

T65(EF1D, nx , ny) ≡
[

EF1D(1 + αEF1D)− �
2

2mc
φ(nx , ny)

]1/2

and

T66(EF1D, nx , ny) ≡
s∑

r=1

Z1D(r)T65(EF1D, nx , ny).

Under the condition, αEF1D � 1, the expressions of the 1D electron statistics can
be written as

n1D = 2gv
√

2mcπkB T

h

nxmax∑
nx =1

nymax∑
ny=1

1√
i1

×
[(

1 + 3

2
αi2

)
F−1/2(η6)+ 3

4
αkB T F1/2(η6)

]
(5.15)

where

i1 ≡
[

1 + α
�

2

2mc
φ(nx , ny)

]
, i2 ≡

(
�

2

2mc

)
φ(nx , ny)(i1)

−1

and

η6 ≡ (EF1 − i2)/kB T .

(c) Under the condition α → 0, the expression of n1D for NWs of isotropic parabolic
energy bands can be written from (5.15) as

n1D = 2gv
√

2πmckB T

h

nxmax∑
nx =1

nymax∑
ny=1

[
F−1/2(η7)

]
,

η7 ≡
(

1

kB T

)
[EF1D − {(�2/2mc)φ(nx , ny)}] (5.16)

(d) The model of Stillman et al.
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In accordance with the model of Stillman et al. [33], the electron dispersion law
of NWs of 1D III–V materials assumes the form

k2
z = A14(E, nx , ny) (5.17)

where

A14(E, nx , ny) =
[

2mc

�2 {I12(E)} − φ1(nx , ny)

]
.

The EEM in this case assume the from

m∗(EF1D) = mc I ′
12(EF1D) (5.18)

where
I ′
12(EF1D) =

(a11a12

2

)
(1 − a12 EF1D)

−1/2.

The quantized sub-band energy (E14) is given by

I12(E14) =
[

�
2

2mc

]
φ1(nx , ny). (5.19)

The electron concentration per unit length can be expressed as

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B17(EF1D, nx , ny)+ B18(EF1D, nx , ny)

]
(5.20)

where

B17(EF1D, nx , ny) = [
A14(EF1D, nx , ny)

]1/2
and

B18(EF1D, nx , ny) =
r0∑

r=1

Z1D(r)[B17(EF1D, nx , ny)].

(e) The model of Newson and Kurobe
(f) In accordance with the model of Newson and Kurobe [34], the electron dispersion
law in this case assumes the form

E = a13k4
z +

[
�

2

2mc
+ a14k2

s

]
k2

z + �
2

2mc
k2

s + a14k2
x k2

y + a13

(
k4

x + k4
y

)
(5.21)

where a13 is the non-parabolicity constant, a14(≡ 2a13 + a15) and a15 is known as
the warping constant.
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The 1D E-kz relation can be expressed as

k2
z = A15(E, nx , ny) (5.22)

where

A15(E, nx , ny) = (2a13)
−1[−L1(nx , ny)+ [{L1(nx , ny)}2

− 4a13[L2(nx , ny)− E]1/2],

L1(nx , ny) = �
2

2mc
+ a14

[(
nxπ

dx

)2

+
(

nyπ

dy

)2
]

and

L2(nx , ny) =
[

�
2

2mc
φ1(nx , ny)+ a14

(
nxπ

dx
· nyπ

dy

)2

+ a13

[(
nxπ

dx

)4

+
(

nyπ

dy

)4
]]

.

The EEM can be written from (5.22) as

m∗(EF1D, nx , ny) = �
2

2
A′

15(EF1D, nx , ny) (5.23)

where

A′
15(EF1D, nx , ny) = [{L1(nx , ny)}2 − 4a13[L2(nx , ny)− EF1D]−1/2].

The mass is a function of quantum numbers in addition to Fermi energy due to
band non-parabolicity.

The quantized sub-band energy (E16) is given by

E16 = L2(nx , ny). (5.24)

The electron concentration per unit length can be written as

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B19(EF1D, nx , ny)+ B20(EF1D, nx , ny)

]
(5.25)

where

B19(EF1D, nx , ny) = [A15(EF1D, nx , ny)]1/2

and

B20(EF1D, nx , ny) =
r0∑

r=1

Z1D(r)[B19(EF1D, nx , ny)].
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(g) Model of Palik et al.
The energy spectrum of the conduction electrons in NWs of III–V semiconductors

up to the fourth order in effective mass theory, taking into account the interactions
of heavy hole, light hole, and the split-off holes can be expressed in accordance with
the model of Palik et al. [35] and following (1.36) as

The 1D E-kz relation can be written as

k2
z = A16(E, nx , ny) (5.26)

where

A16(E, nx , ny) =
[

2mc

�2 {I13(E)} − φ1(nx , ny)

]
.

The EEM can be written from (5.26) as

m∗(EF1D) = mc I ′
13(EF1D) (5.27)

where

I ′
13(EF1D) = 2b̄12 B̄11

[
(ā12)

2 − 4EF1D B̄11

]−1/2
.

The electron concentration per unit length can be expressed as

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B21(EF1D, nx , ny)+ B22(EF1D, nx , ny)

]
(5.28)

where
B21(EF1D, nx , ny) = [A16(EF1D, nx , ny)]1/2

and

B22(EF1D, nx , ny) =
r0∑

r=1

Z1D(r)
[
B21(EF1D, nx , ny)

]
.

5.2.3 The EEM in Nanowires of II–VI Semiconductors

The 1D dispersion relation for NWs of II–VI semiconductors can be expressed fol-
lowing (1.42) as

E = b′
0k2

z + G3,±(nx , ny) (5.29)

where

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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G3,±(nx , ny) ≡
⎡
⎣a′

0

{(
πnx

dx

)2

+
(
πny

dy

)2
}

± −
λ0

{(
πnx

dx

)2

+
(
πny

dy

)2
}1/2

⎤
⎦ .

The EEM can be written from (5.29) as

m∗(EF1D) = m∗‖. (5.30)

From (5.30), it appears that the EEM is constant in this case.
The 1D electron statistics can be written as

n1D = gv

π

√
b′

0

nxmax∑
nx =1

nymax∑
ny=1

[
t7(EF1D, nx , ny)+ t8(EF1D, nx , ny)

]
(5.31)

where

t7(EF1D, nx , ny) ≡ [EF1D − [G3,+(nx , ny)]]1/2

+[EF1D − [G3,−(nx , ny)]]1/2 and

t8(EF1D, nx , ny) =
r0∑

r=1

Z1D(r)
[
t7(EF1D, nx , ny)

]

5.2.4 The EEM in Nanowires of Bismuth

(a) The McClure and Choi model
The dispersion relation of the carriers in NWs of Bi can be written in accordance

with the McClure and Choi and following (1.49) as

E(1 + αE) =
{

�
2k2

x

2m1

[
1 − α�

2

2m2

(
πny

dy

)2
]

+ G12 + �
2

2m2
αE

{
1 −

(
m2

m′
2

)}(
πny

dy

)2
}

(5.32)

where

G12 ≡
{

�
2

2m2

(
πny

dy

)2

+ �
2

2m3

(
πnz

dz

)2

+ α�
4

4m2m′
2

(
πny

dy

)4

− α

4m2m3

(
�

2nynzπ
2

dydz

)2}
.

http://dx.doi.org/10.1007/978-3-642-31248-9_1


5.2 Theoretical Background 185

Following (5.32), the EEM in this case assumes the from

m∗(EF1D, ny) = m1

⎧⎨
⎩
[

1 − α�
2

2m2

(
πny

dy

)2
]−1

×
[

1 + 2αEF1D − �
2

2m2
α

{
1 −

(
m2

m′
2

)}(
πny

dy

)2
]⎫⎬
⎭ .

(5.33)

Thus, EEM in this case is a function of Fermi energy and the size quantum number
ny due to the presence of band non-parabolicity only.

Using (5.32), the 1D electron statistics can be expressed as

n1D = 2gv

π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t27(EF1D, ny, nz)+ t28(EF1D, ny, nz)

]
(5.34)

where

t27(EF1D, ny, nz) ≡
⎧⎨
⎩
[

1 − α�
2

2m2

(
πny

dy

)2
]−1/2 [

EF1D(1 + αEF1D)

− G12 − �
2

2m2
αEF1D

{
1 −

(
m2

m′
2

)}(
π�ny

dy

)2
]1/2

⎫⎬
⎭

and

t28(EF1D, ny, nz) ≡
so∑

r=1

Z1D(r)
[
t27(EF1D, ny, nz)

]
.

(b) The Hybrid Model
Following (1.58), the 1D dispersion relation in this case assumes the form

E(1 + αE) = �
2k2

x

2m1
+ G14 + �

2

2M2

(
πny

dy

)2

αE(1 − γ0) (5.35)

where

G14 =
[

�
2

2m3

(
πnz

dz

)2

+ �
2

2M2

(
πny

dy

)2

(1 + δ0)+ αγ0�
4

4M2
2

(
πny

dy

)4
]
.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Using this (5.35), the EEM can be expressed as

m∗(EF1D, ny) = m1

{[
1 + 2αEF1D − �

2

2M2
α {1 − (γ0)}

(
πny

dy

)2
]}

. (5.36)

Thus, EEM in this case is a function of Fermi energy and the size quantum number
ny due to the presence of band non-parabolicity only.

The use of (5.35) leads to the expression for the electron concentration per unit
length as

n1D = 2gv

π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t31(EF1D, ny, nz)+ t32(EF1D, ny, nz)

]
(5.37)

where

t31(EF1D, ny, nz)

≡
[

EF1D(1 + αEF1D)− G14 − �
2

2M2

(
πny

dy

)2

αEF1D(1 − γ0)

]1/2

,

and

t32(EF1D, ny, nz) ≡
so∑

r=1

Z1D(r)
[
t31(EF1D, ny, nz)

]
.

(c) The Cohen model
The 1D carrier dispersion law in this case can be written following (1.65) as

αE2 + El7 − G15 = �
2k2

x

2m1
(5.38)

where

l7 =
[

1 − α�
2

2m2

(
πny

dy

)2

+ α�
2

2m′
2

(
πny

dy

)2
]

and

G15 =
[

�
2

2m3

(
πnz

dz

)2

+ �
2

2m2

(
πny

dy

)2

+ α�
4

4m2m′
2

(
πny

dy

)4
]
.

Using this (5.38), the EEM can be expressed as

m∗(EF1D, ny) = m1 {[1 + 2αEF1D + l7]} . (5.39)

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Thus, EEM in this case is a function of Fermi energy and the size quantum number
ny due to the presence of band non-parabolicity only.

The 1D electron concentration per unit length assumes the form

n1D = 2gv

π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t35(EF1D, ny, nz)+ t36(EF1D, ny, nz)

]
(5.40)

where

t35(EF1D, ny, nz) = [αE2
F1D + EF1Dl7 − G15]1/2

and

t36(EF1D, ny, nz) =
so∑

r=1

Z1D(r)
[
t35(EF1D, ny, nz)

]
.

(d) The Lax model
The 1D dispersion relation in this case can be expressed following (1.71) as

E(1 + αE) = �
2k2

x

2m1
+ G16. (5.41)

Using (5.41), the EEM can be expressed as

m∗(EF1D) = m1 {[1 + 2αEF1D]} . (5.42)

Thus, EEM in this case is a function of Fermi energy and is independent of the
size quantum number ny due to the presence of band non-parabolicity only.

The 1D electron statistics is given by

n1D = 2gv

π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t37(EF1D, ny, nz)+ t38(EF1D, ny, nz)

]
(5.43)

where
t37(EF1D, ny, nz) = [EF1D(1 + αEF1D)− G16]1/2

and

t38(EF1D, ny, nz) =
so∑

r=1

Z1D(r)[t37(EF1D, ny, nz)].

It may be noted that under the conditionsα → 0,M ′
2 → ∞ and isotropic effective

electron mass at the edge of the conduction band, m all models of Bismuth convert
into isotropic parabolic energy bands leading to the confirmatory test.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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5.2.5 The EEM in Nanowires of IV–VI Semiconductors

The 1D dispersion relation in this case in accordance with Dimmock model can be
expressed from (1.83) as

k2
z = A23(E, nx , ny) (5.44)

where

A23(E, nx , ny) = (2h4)
−1[h6(E, nx , ny)− [h2

6(E, nx , ny)

+ 4h4h7(E, nx , ny)]1/2], h4 =
[
α�

4

4x3x6

]
,

x3 = 3m−
t m−

l

2m−
l + m−

t
, x6 = 3m+

t m+
l

2m+
l + m+

t
,

h6(E, nx , ny) =
[
αE�

2

2x6
− α�

2

2x6

[(
πnx

dx

)2
�

2

2x1
+
(
πny

dy

)2
�

2

2x2

]

− α�
2

2x3

[(
πnx

dx

)2
�

2

2x4
+
(
πny

dy

)2
�

2

2x5

]
− �

2

2m3
− (1 + αE)�2

2x3

]
,

x1 = m−
t , x2 = m−

t + 2m−
l

3
, x4 = m+

t , x5 = m+
t + 2m+

l

3
,

m3 = 3m∗
t m∗

l

m∗
t + 2m∗

l
,

h7(E, nx , ny) =
[

E(1 + αE)+ αE

[(
πnx

dx

)2
�

2

2x4
+
(
πny

dy

)2
�

2

2x5

]

− (1 + αE)

[(
πnx

dx

)2
�

2

2x1
+
(
πny

dy

)2
�

2

2x2

]

−α
[(

πnx

dx

)2
�

2

2x1
+
(
πny

dy

)2
�

2

2x2

]

×
[(

πnx

dx

)2
�

2

2x4
+
(
πny

dy

)2
�

2

2x5

]
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−
[(

πnx

dx

)2
�

2

2m1
+
(
πny

dy

)2
�

2

2m2

]]
,

m1 = m∗
t and m2 = m∗

t + 2m∗
l

3
.

The EEM can be written from (5.44) as

m∗(EF1D, nx , ny) = �
2

2
A′

23(EF1D, nx , ny) (5.45)

where

A′
23(EF1D, nx , ny)

= (2h4)
−1

[
h′

6 − h6(EF1D, nx , ny)h′
6 + 2h4h′

7(EF1D, nx , ny)[
h2

6(EF1D, nx , ny)+ 4h4h7(EF1D, nx , ny)
]1/2

]

h′
6 = α�

2

2

(
1

x6
− 1

x3

)

and

h′
7(EF1D, nx , ny) =

[
1 + 2αEF1D + α

[
�

2

2x4

(
πnx

dx

)2

+
(
πny

dy

)2
�

2

2x5

]

−α
[

�
2

2x1

(
πnx

dx

)
2 +

(
πny

dy

)2
�

2

2x2

]]
.

The mass is a function of quantum numbers in addition to Fermi energy due to band
non-parabolicity.

The electron concentration is given by

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B32(EF1D, nx , ny)+ B33(EF1D, nx , ny)

]
(5.46)

where

B32(EF1D, nx , ny) = [
A23(EF1D, nx , ny)

]1/2
and

B33(EF1D, nx , ny) =
r0∑

r=1

Z1D(r)
[
B32(EF1D, nx , ny)

]
.
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5.2.6 The EEM in Nanowires of Stressed Semiconductors

The 1D dispersion relation of the carriers in stressed materials in this case can be
written following (1.98) as

k2
z = A24(E, nx , ny) (5.47)

where

A24(E, nx , ny) = [
c∗(E)

]2 [1 −
(
πnx

dx

)2 [
a∗(E)

]−2 −
(
πny

dy

)2 [
b∗(E)

]−2

]
.

The EEM can be written from (5.47) as

m∗(EF1D, nx , ny) = �
2

2
A′

24(EF1D, nx , ny) (5.48)

where

A′
24(EF1D, nx , ny)

=
[

K ′
0(EF1D)

L0(EF1D)
− K0(EF1D)L ′

0(EF1D)

L2
0(EF1D)

−
(

nxπ

dx

)2 [
M ′

0(EF1D)+ 1
2 N ′

0(EF1D)
]

L0(EF1D)

+
(

nxπ

dx

)2

· L ′
0(EF1D)

L2
0(EF1D)

[
M0(EF1D)+ 1

2
N0(EF1D)

]

+
(

nyπ

dy

)2

· L ′
0(EF1D)

L2
0(EF1D)

[
M0(EF1D)− 1

2
N0(EF1D)

]

−
(

nyπ

dy

)2

· 1

L0(EF1D)

[
M ′

0(EF1D)− 1

2
N ′

0(EF1D)

]]
,

K ′
0(EF1D) =

⎡
⎢⎣
⎡
⎢⎣1 + 2C2

2ε
2
xy

3
{

E ′
g0
(EF1D)

}2

⎤
⎥⎦
(

3E ′
g0
(EF1D)

2B2
2

)

+
[

EF1D − C1ε − 2C2
2ε

2
xy

3E ′
g0
(EF1D)

](
3

2B2
2

)]
,
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M ′
0(EF1D) =

[
(ā0 + C1)ε

(E ′
g0
(EF1D))2

− 3b̄0εxx

2(E ′
g0
(EF1D))2

+ b̄0ε

2(E ′
g0
(EF1D))2

]
and

N ′
0(EF1D) = −

(
d̄0

√
3
) εxy

(E ′
g0
(EF1D))2

.

The mass is a function of quantum numbers in addition to Fermi energy due to
stress. The sub-band energy E23 assumes the form

[(
πnx

dx

)2 [
a∗(E23)

]−2 +
(
πny

dy

)2 [
b∗(E23)

]−2

]
= 1. (5.49)

Using (5.47), the 1D electron statistics can be expressed as

n1D = 2gv

π

nymax∑
ny=1

nzmax∑
nz=1

[
B34(EF1D, ny, nz)+ B35(EF1D, ny, nz)

]
(5.50)

where

B34(EF1D, ny, nz) =
√

A24(EF1D, nx , ny)

and

B35(EF1D, nx , ny) =
so∑

r=1

Z1D(r)
[
B35(EF1D, nx , ny)

]
.

5.2.7 The EEM in Nanowires of Tellurium

From (1.105), the 1D dispersion relation can be written in accordance with the model
of Bouat et al. as

k2
z = A25,±(E, nx , ny) (5.51)

where

A25,±(E, nx , ny) = [(ψ5(E)− ψ6k2
s ± ψ7[ψ8(E)− k2

s ]1/2)],

k2
s = φ1(nx , ny), ψ5(E) =

[
E

ψ1
+ E

2ψ2
1

]
, ψ6 = ψ2

ψ1
,

ψ7 = (2ψ2
1 )

−1[4ψ2
3ψ1ψ2 − 4ψ2

1ψ
2
4 ]1/2
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and

ψ8(E) =
[

ψ4
4 + 4Eψ2

3ψ1

4ψ2
3ψ1ψ2 − 4ψ2

1ψ
2
4

]
.

The EEM can be written from (5.47) as

m∗(EF1D, nx , ny) = �
2

2
A′

25,±(EF1D, nx , ny) (5.52)

where

A′
25,±(EF1D, nx , ny) =

[
1

ψ1
± ψ7

2
[ψ8(EF1D)− φ1(nx , ny)]−1/2ψ ′

8(EF1D)

]

and

ψ ′
8(EF1D) =

[
4ψ2

3ψ1

4ψ2
3ψ1ψ2 − 4ψ2

1ψ
2
4

]
.

Thus, the EEM is the function of the Fermi energy and the size quantum numbers
which is the characteristic feature of such model.

The sub-band energies are given by

E26,± = ψ2φ1(nx , ny)± ψ4
(
φ1(nx , ny)

)1/2
. (5.53)

The electron concentration per unit length can be expressed as

n0 = gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B36,±(EF1D, nx , ny)+ θ5,±

]
(5.54)

where

B36,±(EF1D, nx , ny) =
√

A25,+(EF1D, nx , ny)+
√

A25,−(EF1D, nx , ny)

and

θ5,± =
so∑

r=1

Z1D(r)
[
B36,+(EF1D, nx , ny)+ B36,−(EF1D, nx , ny)

]
.
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5.2.8 The EEM in Nanowires of Gallium Phosphide

The 1D dispersion relation in this case following (1.111) can be written in accordance
with the model of Rees et al. as

k2
x = A26(E, ny, nz) (5.55)

where

A26(E, ny, nz)

=
[
(2a2)−1{2a(E − t1)+ D

−
√

[2a(E − t1)+ D]2 − 4a2[(E − t1)2 − t2]} −
(

nyπ

dy

)2
]
,

t1, D and t2 have already been defined in connection with (1.112).
The EEM can be written from (5.55) as

m∗(EF1D, ny, nz) = �
2

2
A′

26(EF1D, ny, nz) (5.56)

where

A′
26(EF1D, ny, nz) = 1

a2

⎡
⎣a − 2a(EF1D − t1)+ D − 4a2(EF1D − t1)√

[2a(EF1D − t1)+ D]2 − 4a2
[
(EF1D − t1)2 − t2

]
⎤
⎦ .

Thus, the mass is a function of Fermi energy and the size quantum numbers which
are the characteristic features of such model.

The sub-band energy E27 can be written as

A26(E27, ny, nz) = 0. (5.57)

The electron concentration per unit length can be expressed as

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B38(EF1D, ny, nz)+ B39(EF1D, ny, nz)

]
(5.58)

where

B38(EF1D, ny, nz) =
√

A26(EF1D, ny, nz)
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and

B39(EF1D, ny, nz) =
so∑

r=1

Z1D(r)
[
B38(EF1D, ny, nz)

]
.

5.2.9 The EEM in Nanowires of Platinum Antimonide

The 1D dispersion relation in this case can be written following (1.118) as

k2
x = [

2A9
]−1

[
−A10(E, nz)+

[
A10

2
(E, nz)+ 4(A9)A11(E, nz)

]] 1
2 −

(
nyπ

dY

)2

(5.59)
where

A9 = (I1 + ω1ω3), I1 = I
(a)4

16
,

A10(E, nz) =
[
ω3 E + ω1

[
E + δ0 − ω4

(
nzπ

dz

)2
]

+ω2ω3

(
nzπ

dz

)2

+ 2I1

(
nzπ

dz

)2
]
,

ω1 = (a)2

4

[
(λ0)− l

]
, ω2 =

(
λ0
(a)2

4

)
, ω3 = (a)2

4
(n + ν), ω4 = (a)2

4
ν

and

A11(E, nz) =
[

E

[
E + δ0 − ω4

(
nzπ

dz

)2
]

+ω2

(
nzπ

dz

)2
[

E + δ0 − ω4

(
nzπ

dz

)2
]

− I1

(
nzπ

dz

)4
]
.

The (1.92) can be expressed as

k2
x = A27(E, ny, nz) (5.60)

where

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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A27(E, ny, nz) = [
2A9

]−1
[
−A10(E, nz)+

[
A10

2
(E, nz)+ 4(A9)A11(E, nz)

]] 1
2

−
(

nyπ

dY

)2

.

The EEM in this case can be written following (5.60) as

m∗(EF1D, nx , ny) = �
2

2
A′

27(EF1D, nx , ny) (5.61)

where

A′
27(EF1D, ny, nz) = [

2A9
]−1

[
− (A10)

′ + [A10
2
(EF1D, nz)

+ 4(A9)A11(EF1D, nz)]−1/2[A10(EF1D, nz)(A10)
′

+ 2(A9)(A11(EF1D, nz))
′]
]
, A′

10 = (ω1 + ω3)

and

(
A11(EF1D, nz)

)′ =
[

2EF1D + δ0 − ω4

(
nzπ

dz

)2

+ ω2

(
nzπ

dz

)2
]
. (5.62)

Thus, the mass is a function of Fermi energy and the size quantum numbers which
are the characteristic features of such model.

The electron concentration per unit length can be written as

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B40(EF1D, nx , ny)+ B41(EF1D, nx , ny)

]
(5.63)

where

B40(EF1D, nx , ny) =
√

A27(EF1D, nx , ny)

and

B41(EF1D, nx , ny) =
so∑

r=1

Z1D(r)
[
B40(EF1D, nx , ny)

]
.
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5.2.10 The EEM in Nanowires of Bismuth Telluride

The 1D electron energy spectrum following (1.127) assumes the form

k2
x = A28(E, ny, nz) (5.64)

where

A28(E, ny, nz) =
[

E(1 + αE)− ω̄2

(
nyπ

dy

)2

− ω̄3

(
nzπ

dz

)2

−ω̄4

(
nyπ

dy

)(
nzπ

dz

)]
(ω̄1)

−1.

The subband energy (E30) can be expressed as

E30 = (2α)−1
[
−1 +

√
1 + 4αθ32(ny, nz)

]
(5.65)

where

θ32(ny, nz) =
[
ω̄2

(
nyπ

dy

)2

+ ω̄3

(
nzπ

dz

)2

+ ω̄4

(
nyπ

dy

)(
nzπ

dz

)]
.

The EEM in this case can be written following (5.64) as

m∗(EF1D, nx , ny) = �
2

2ω̄1
(1 + 2αEF1D) (5.66)

The electron concentration per unit length is given by

n0 = 2gv

π

nzmax∑
nz=1

nymax∑
ny=1

[
B42(EF1D, nz, ny)+ B43(EF1D, nz, ny)

]
(5.67)

where

B42(EF1D, nz, ny) =
√

A28(EF1D, ny, nz)

and

B43(EF1D, nz, ny) =
so∑

r=1

Z1D(r)
[
B42(EF1D, nz, ny)

]
.
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5.2.11 The EEM in Nanowires of Germanium

(a) The 1D electron energy spectrum for NWs of Ge in this case can be expressed
following (1.134) as

k2
y = A29(E, nx , nz) (5.68)

where

A29(E, nx , nz) =
[[
γ15(E, nz)−

(
�

2

2m∗
1

)(
nxπ

dx

)2
](

2m∗
2/�

2
)]
,

γ15(E, nz) =
⎡
⎣E(1 + αE)− (1 + 2αE)

(
�

2

2m∗
3

)(
nzπ

dz

)2

+α
[(

�
2

2m∗
3

)(
nzπ

dz

)2
]2
⎤
⎦ ,

m∗
1 = m∗⊥,m∗

2 = m∗⊥+2m∗‖
3 and m∗

3 = 3m∗⊥m∗‖
m∗⊥+2m∗‖

.

The quantized energy levels (E31) can be expressed through the equation

E31 = (2α)−1
[
−ρ91(nz)+

√
ρ91(nz)2 − 4αρ92(nz)

]
(5.69)

where

ρ91(nz) =
[

1 − 2α
�

2

2m∗
3

(
nzπ

dz

)2
]

and

ρ92(nz) =
⎡
⎣ �

2

2m∗
3

(
nzπ

dz

)2

− α

[
�

2

2m∗
3

(
nzπ

dz

)2
]2
⎤
⎦ .

The EEM in this case can be written following (5.68) as

m∗(EF1D, nx , ny) = �
2

2
A′

29(EF1D, nx , ny) (5.70)
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where

A′
29(EF1D, nx , nz) =

[[
1 + 2αEF1D −

(
α

�
2

m∗
3

)(
nzπ

dz

)2
](

2m∗
2/�

2
)]
.

For (5.70), we observe that the EEM is a function of the Fermi energy and the size
quantum number due to the presence of band non-parabolicity only. The electron
concentration per unit length is given by

n0 = 2gv

π

nxmax∑
nx =1

nzmax∑
nz=1

[
B44(EF1D, nx , nz)+ B45(EF1D, nx , nz)

]
(5.71)

where

B44(EF1D, nx , nz) = √
A29(EF1D, nx , nz) and

B45(EF1D, nx , nz) =
so∑

r=1

Z1D(r)
[
B44(EF1D, nx , nz)

]
.

(b) The 1D electron energy spectrum for NWs of Ge in this case can be expressed
following (1.143) as

k2
y = A30(E, nx , nz) (5.72)

where

A30(E, nx , nz) =
[[

I29(E, nz)−
(

�
2

2m∗
1

)(
nxπ

dx

)2
](

2m∗
2/�

2
)]
,

I29(E, nz) = [
2C1

]−1
[

A6(nz)+
[

A6
2
(nz)− 4C̄1 E + 4(C1)A5(nz)

] 1
2
]

A5(nz) =
(

�
2

2m∗
3

)(
nzπ

dz

)2
[

1 − ē1

(
�

2

2m∗
3

)(
nzπ

dz

)2
]

and

A6(nz) =
[

1 − d̄1

(
�

2

2m∗
3

)(
nzπ

dz

)2
]

.
The quantized energy levels (E32) can be expressed through the equation

E32 = Ā5(nz)+
(

1

4C̄1

)⎡⎣
[

C̄1�
2

m∗
1

(
nxπ

dx

)2
]2

− 2 Ā6(nz)
C̄1�

2

m∗
1

(
nxπ

dx

)2
⎤
⎦ .
(5.73)
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The EEM in this case can be written following (5.72) as

m∗(EF1D, nx , ny) = �
2

2
A′

30(EF1D, nx , ny) (5.74)

where

A′
30(EF1D, nx , nz) = (2m∗

2/�
2)I ′

29(EF1D, nz) and

I ′
29 EF1D(, nz) =

[[
A6

2
(nz)− 4C̄1 EF1D + 4(C1)A5(nz)

]−1/2
]
.

Thus, the mass is a function of Fermi energy and the size quantum numbers due to
the presence of band non-parabolicity only.

The electron concentration per unit length is given by

n0 = 2gv

π

nxmax∑
nx =1

nzmax∑
nz=1

[
B46(EF1D, nx , nz)+ B47(EF1D, nx , nz)

]
(5.75)

where

B46(EF1D, nx , nz) = √
A30(EF1D, nx , nz) and

B47(EF1D, nx , nz) =
so∑

r=1

Z1D(r)
[
B46(EF1D, nx , nz)

]
.

5.2.12 The EEM in Nanowires of Gallium Antimonide

The 1D electron energy spectrum for NWs of GaSb can be expressed following
(1.153) as

k2
z = A31(E, nx , ny) (5.76)

where A31(E, nx , ny) = [[
I36(E)− φ1(nx , ny)

] (
2mc/�

2
)]
.

The quantized energy levels (E33) can be expressed through the equation

I36(E33) =
(

�
2

2mc

)
φ1(nx , ny). (5.77)

The EEM in this case can be written following (5.76) as

m∗(EF1D) = �
2

2
A′

31(EF1D) (5.78)
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where

A′
31(EF1D) = [1 − (mc/m0)(Ē

′
g0/2)[(Ē ′

g0/2)
2 + [((Ē ′

g0)
2/2)(1 − (mc/m0))]

+ [(Ē ′
g0/2)(1 − (mc/m0))]2

+[EF1D Ē ′
g0(1 − (mc/m0))]−1/2](2mc/�

2)].

The electron concentration per unit length is given by

n0 = 2gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B48(EF1D, nx , ny)+ B49(EF1D, nx , ny)

]
(5.79)

where
B48(EF1D, nx , ny) =

√
A31(EF1D, nx , ny)

and

B49(EF1D, nx , ny) =
so∑

r=1

Z1D(r)
[
B48(EF1D, nx , ny)

]
.

5.2.13 The EEM in Nanowires of II–V Materials

The 1D electron energy spectrum for NWs of II–V materials can be expressed
following (4.100a) as

k2
z = A32,±(E, nx , ny) (5.80)

where

A32,±(E, nx , ny)=α4,±(nx , ny)+β4 E ±
[
β5 E2+Eβ6,±(nx , ny)+β7,±(nx , ny)

] 1
2
,

α4,±(nx , ny) =
[
2(θ2

3 − θ2
7 )
]−1 [

2θ7α2(nx , ny)− 2α1,∓(nx , ny)θ3
]
,

α1,∓(nx , ny) = θ1

(
nxπ

dx

)2

+ θ2

(
nyπ

dy

)2

+ δ4

(
nxπ

dx

)
∓�3,

α2(nx , ny) =
[
θ5

(
nxπ

dx

)2

+ θ6

(
nyπ

dy

)2

+ δ5

(
nxπ

dx

)]
,

β4 = 2θ3

[
2(θ2

3 − θ2
7 )
]−1

, β5 =
[
2(θ2

3 − θ2
7 )
]−2 [

4θ2
7

]
,

β6,±(nx , ny) =
[
8θ3θ7α2(nx , ny)− 8θ2

7α1,∓(nx , ny)
] [

2
(
θ2

3 − θ2
7

)]−1
,
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β7,±(nx , ny) =
[
2
(
θ2

3 − θ2
7

)]−2 [
4θ2

7α
2
2(nx , ny)− 8θ7θ3α2(nx , ny)α1,∓(nx , ny)

+4θ2
3α3(ny)+ 4θ2

7α1,∓(nx , ny)− 4α3(ny)θ
2
7

]

and
α3(ny) = G2

3(
nyπ

dy
)2 +�2

3.

The quantized energy levels (E34,±) can be expressed through the equation

E34,± = α1,∓(nx , ny)±
[
α2

2(nx , ny)+ α3(ny)
] 1

2
. (5.81)

The EEM in this case can be written following (5.80) as

m∗(EF1D, nx , ny) = �
2

2
A′

32±(EF1D, nx , ny) (5.82)

where

A′
32,±(EF1D, nx , ny) =

[
β4 ± 1

2

[
2β5 EF1D + β6,±(nx , ny)

]
.

×
[
β5 E2

F1D +β6,±(nx , ny)EF1D + β7,±(nx , ny)
]− 1

2

]
.

Thus, the mass is a function of Fermi energy and the size quantum numbers which
are the characteristic features of such model.

The electron concentration per unit length is given by

n0 = gv

π

nxmax∑
nx =1

nymax∑
ny=1

[
B49(EF1D, nx , ny)+ B50(EF1D, nx , ny)

]
(5.83)

where

B49(EF1D, nx , ny) = [
√

A32,+(EF1D, nx , ny)+
√

A32, (EF1D, nx , ny)]

and

B50(EF1D, nx , ny) =
so∑

r=1

Z1D(r)
[
B49(EF1D, nx , ny)

]
.
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5.2.14 Carbon Nanotubes

With the discovery of carbon nanotubes (CNs) in 1991 by Iijima [36], the CNs have
been recognized as fascinating materials with nanometer dimensions uncovering new
phenomena in the sphere of low dimensional science and technology. The significant
physical properties of these nanomaterials make them ideal candidates to reveal new
phenomena in nanoelectronics. The CNs find wide applications in conductive [37,
38] and high strength composites [39], chemical sensors [40], field emission displays
[41, 42], hydrogen storage media [43, 44], nanotweezeres [45], nanogears [46],
nanocantilever devices [47], nanomotors [48, 49], and nanoelectronic devices [50,
51]. Single walled carbon nanotubes (SWCNs) emerge to be excellent materials for
single molecule electronics [52–56] such as nanotube based diodes [57, 58], single
electron transistors [51, 59], random access memory cells [60], logic circuits [61],
gigahertz oscillators [62–67], data storage nanodevices [68–73], nanorelay [47, 74–
78], and in other low-dimensional devices. The CNs can be bespoke into a metal or
a semiconductor based on the diameter and the chiral index numbers (m, n), where
the integers m and n denote the number of unit vectors along two directions in the
honeycomb crystal lattice of graphene [79, 80]. For armchair and zigzag nanotubes,
the chiral indices are given as m = n and m = 0, respectively [79, 80]. Another
class of CN called as chiral CN has distinct integers m and n. Besides, a CN can be
a metallic if m − n = 3q; where q = 1, 2, 3, . . . otherwise it is a semiconductor.
Metallic SWCNs have received substantial attention as potential substitutions for
traditional interconnect materials like Cu due to their excellent inherent electrical and
thermal properties. Since the carriers are confined, in a metallic SWCN, the inclusion
of the sub-band energy owing to Born–Von Karman (BVK) boundary conditions [81]
for their unique band structure becomes prominent. The quantization of the motion
of the carriers in such structures leads to the discontinuity in the DOS function due
to van Hove singularity (VHS) [82] of the wave vectors. In this section, we shall
explore the EEM in carbon nanotubes.

For (n, n) and (n, 0) tubes, the energy dispersion relations are given by [79, 80]

Em(ky) = ±tc

√
1 + 4 cos

mπ

n
cos

kyac

2
+ 4 cos2

kyac

2
,

− π

ac
< ky <

π

ac
and m(= 1, 2, . . . , 2n) (5.84a)

Em(kx ) = ±tc

√
1 + 4 cos

√
3kx ac

n
cos

mπ

n
+ 4 cos2 mπ

n
,

− π√
3ac

< kx <
π√
3ac

and m(= 1, 2, . . . , 2n) (5.84b)

where tc [60] is the C–C bonding energy and m and n are the chiral indices [79,
80]. The Eqs. (5.84a) and (5.84b) are the analytic expressions throughout the entire
Brillouin zone [79, 80].
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Near Fermi energy the 1D E−ky relation can approximately written as [83]

E2 − E2
i = Ak2

y, (5.84c)

where Ei = |3i−m+n|
2 |tc| ac

r , i = 1, 2, 3, . . . , imax,

ac is the nearest neighbor C–C bonding distance, r is the nano tube radius and
A = (9t2

c d2
/

4π2 ). From (5.84c), it appears that when ky → 0, E → Ei .
Using this idea from (5.84a), we can write

4 cos
(mπ

n

)
= E2

i

t2
c

− 5. (5.84d)

By Eliminating cos(mπ
n ) between (5.84a) and (5.84d), we can write

4z2 +
(

E2
i

t2
c

− 5

)
z + 1 − E2

i

t2
c

= 0 (5.84e)

where z = cos

(
ky

√
3ac

2

)
.

From (5.84e), we can write that the E−ky relation for arm chair nanotube is given by

ky = 2√
3ac

f1(E,m, n) (5.84f)

where

f1(E,m, n) = cos−1[θ1(E,m, n)]

and

θ1(E,m, n) = 1

8

⎡
⎢⎣−

(
E2

i

t2
c

− 5

)
+
⎡
⎣
(

E2
i

t2
c

− 5

)2

+ 16

(
E2

t2
c

− 1

)⎤⎦
1/2
⎤
⎥⎦ .

The EEM in this case is given by

m∗(EF1 ,m, n) = 4�
2

3a2
c

f1(EF1,m, n)
θ ′

1(EF1 ,m, n)√
1 − θ2

1 (EF1,m, n)
(5.84g)

where EF1 is the Fermi energy in this case and
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θ ′
1(EF1 ,m, n) = 4EF1

t2
c

⎡
⎣
(

E2
i

t2
c

− 5

)2

+ 16

(
E2

F1

t2
c

− 1

)⎤
⎦

−1/2

.

The electron concentration in this case can be expressed as
It appears from (5.86) and (5.87) that the effective mass in CNTs is a function

of m and n in addition to Fermi energy which is the characteristic feature of such
nanomaterials.

Using (5.84f), the electron statistics in this case, can be written as,

n1D = 8

acπ
√

3

imax∑
i=0

[
f1(EF1,m, n)+ Bc2(EF1 ,m, n)

]
(5.85)

where

Bc2(EF1 ,m, n) ≡
s∑

r=1

Zr f1(EF1,m, n).

Similarly, the E−ky relation of zigzag nanotube is given by

ky = 2

3ac
f2(E,m, n) (5.86)

where
f2(E,m, n) = cos−1[θ2(E,m, n)]

and

θ2(E,m, n) =
[[(

E2

t2
c

− 1

)
−
(

Ei

tc
− 1

)2
][

2Ei

tc
− 1

]−1
]
.

The EEM and electron concentration for this case can respectively be expressed as

m∗(EF2 ,m, n) = 4�
2

9a2
c

f2(EF2 ,m, n)
θ ′

2(EF2 ,m, n)√
1 − θ2

2 (EF2 ,m, n)
(5.87)

and

n1D = 8

3acπ

imax∑
i=0

[
f2(EF2 ,m, n)+ Bc3(EF2 ,m, n)

]
(5.88)

θ ′
2(EF2 ,m, n) =

[(
2EF2

t2
c

)][
2Ei

tc
− 1

]−1

,
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EF2 is the Fermi energy in this case, where

Bc3(EF2 ,m, n) ≡
s∑

r=1

Zr f2(EF2 ,m, n).

5.3 Results and Discussion

The variation of the EEM in NWs of different materials along the transport direction
has been exhibited in the figures below at various conditions. Throughout our formal-
ism, we have assumed the NWs to be of rectangular cross-sectional dimensions so
that the usual “particle-in-a-box” concept can be applied along the quantized direc-
tions. The NWs are assumed to be degenerately doped with a carrier density starting
from 108 m−1. While deriving the closed form analytical solutions of EEM in all
the materials, we have also assumed that the constants of the energy band structures
of the materials are independent of thickness in the range beyond 5 nm. Generally
speaking, as also will be shown in Chap. 8, that the “band-gap” is a strong function of
cross-sectional dimension and its geometry, i.e., whether the cross-section is circular
or triangular. For example in Si NW, we will observe in Chap. 8, that the band gap
is very high and even becomes direct rather than its usual indirect nature in the zone
1–4 nm cross-sectional dimensions and beyond this, the band gap is nearly equal to
its bulk value. Keeping this trend in view, we have assumed the invariant property of
the material energy spectrum constants and evaluated the EEM in NWs of Cd3As2
and CdGeAs2 as function of wire thickness along their respective transport directions
in Figs. 5.1 and 5.2.

It appears from Figs. 5.1 and 5.2 that the EEM at the lowest subband in both the
cases are strong cross-sectional functions of the dimensions which converge to their
corresponding bulk values at larger dimensions. The effect of crystal field splitting in
case of dispersion relation of Cd3As2 lets the asymptotic fall to be closer to the bulk
value. It should be noted that all the curves have been evaluated at T = 4 K where the
average thermal energy i.e., EF + kBT is very less than that of the difference of the
adjacent sub-band energies. This leads the carrier to reside in the lowest sub-bands
only.

Figures 5.3, 5.4 and 5.5 exhibit the variation of the EEM with the wire thickness
for III–V materials namely InAs, InSb, and GaAs in accordance with the well-known
standard non-parabolic dispersion relation of Kane. The reader is expected to evaluate
the EEM for other models as derived in this chapter for III–V materials.

It appears from these figures that the difference in the energy band models in
predicting the EEM is almost insignificant. Hence for all practical purposes for
determination of EEM, the second-order model of Kane can fit well. It should be
noted that the EEM for these materials as presented here can be compared with that
of the EEM in 2D systems as given in Chap. 1.

http://dx.doi.org/10.1007/978-3-642-31248-9_8
http://dx.doi.org/10.1007/978-3-642-31248-9_8
http://dx.doi.org/10.1007/978-3-642-31248-9_3
http://dx.doi.org/10.1007/978-3-642-31248-9_3
http://dx.doi.org/10.1007/978-3-642-31248-9_3
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 5.1 Plot of the EEM as
function of wire thickness for
QWs of Cd3As2 considering
(5.3). The plots for three- and
two-band models of Kane have
also been exhibited with their
corresponding anisotropic
bulk values as presented in
Fig. 1.1

Fig. 5.2 Plot of the EEM as a
function of wire thickness for
QWs of CdGeAs2 for all the
cases of Fig. 5.1

A quick view can lead to interpret that the EEM for both the case are same.
However, it should also be kept in mind about the difference in the wire thickness
and carrier concentration. All the curves in this chapter have been evaluated at those
concentrations for which the EEM stand close to that of their corresponding 2D
systems. Further in deriving the results, we have assumed that the conduction band
valley does not splits along the channel transport direction, which is a usual case
with Silicon NW along [110] and [111] valleys (Chap. 8).

Figures 5.6 and 5.7 exhibit the variation of the EEM for Hg1−x Cdx Te and
In1−x Gax As1−yPy considering all the aforementioned cases at x = 0.3. In Figs. 5.8,

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_8
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Fig. 5.3 Plot of the EEM as
function of wire thickness for
NWs of InAs considering the
three- and two-band models of
Kane with the corresponding
isotropic bulk value

Fig. 5.4 Plot of the EEM as
function of wire thickness for
NWs of InSb considering the
three- and two-band models of
Kane with the corresponding
isotropic bulk value

5.9, 5.10, 5.11, 5.12, 5.13, 5.14, we have exhibited the variation of the EEM as func-
tion of carrier degeneracy. It appears from the said figures that the EEM increases
with the increase in the degeneracy. The EEM rises sharply above 107 m−1 for all the
materials in an exponential way due to the presence of the Fermi–Dirac probability
factor in the respective carrier concentration equation.
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Fig. 5.5 Plot of the EEM as
function of wire thickness for
NWs of GaAs considering the
three- and two-band models of
Kane with the corresponding
isotropic bulk value

Fig. 5.6 Plot of the EEM
as function of wire thickness
for NWs of Hg1−x Cdx Te
considering the three- and
two-band models of Kane with
the corresponding isotropic
bulk value at x = 0.3
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Fig. 5.7 Plot of the EEM as
function of wire thickness for
NWs of In1−x Gax As1−yPy
considering the three- and two-
band models of Kane with the
corresponding isotropic bulk
value at x = 0.3

Fig. 5.8 Plot of the EEM as
function of carrier degeneracy
for n-Cd3As2 nanowire for all
cases of Fig. 5.1

Figure 5.15 exhibits the variation of the EEM as function of the alloy composition
in ternary and quaternary systems. It appears that as in the previous cases of quantum
confinements, the EEM in this case also exhibits an increasing variation with x .

We have also plotted the variation of the bulk effective mass as x varies to present
a comparative view. The influence of band non-parabolicity on the EEM in these
two materials can easily be seen. In both the cases, we see that the EEM is a slow
variation function of x due to the change in band gap.
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Fig. 5.9 Plot of the EEM as
function of carrier degeneracy
for NWs of CdGeAs2 for all
cases of Fig. 5.2

Fig. 5.10 Plot of the EEM as
function of carrier degeneracy
for n-InAs nanowire for all
cases of Fig. 5.3

The effect of dimensionality on NW of Bismuth has been exhibited in Figs. 5.16
and 5.17 for the energy band models of McClure and Choi, Hybrid, Cohen, and
Lax. It appears that as the dimension reduces in Fig. 5.16, the EEM increases which
is generally accepted. However, using McClure and Choi model the EEM tends to
decrease in the sub-5 nm regime there by unfolding the validity of the model in this
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Fig. 5.11 Plot of the EEM as
function of carrier degeneracy
for n-InSb nanowire for all
cases of Fig. 5.4

Fig. 5.12 Plot of the EEM as
function of carrier degeneracy
for n-GaAs nanowire for all
cases of Fig. 5.5
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Fig. 5.13 Plot of the EEM as
function of carrier degeneracy
for n-Hg1−x Cdx Te nanowire
for all cases of Fig. 5.6

Fig. 5.14 Plot of the EEM as
function of carrier degener-
acy for n-In1−x Gax As1−yPy
nanowire for all cases of
Fig. 5.8
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Fig. 5.15 Plot of the EEM
as function of alloy compo-
sition for n-Hg1−x Cdx Te and
n-In1−x Gax As1−yPy
nanowires

Fig. 5.16 Plot of the EEM as
function of wire thickness for
Bismuth nanowire

zone. However at large thicknesses, the entire model tends to their corresponding
bulk value 0.00194 m0.

The variation of the EEM as function of carrier degeneracy has further been plotted
using the aforementioned band structure models. It appears from the two figures that
the effect of different band structure models has significantly less deviation from one
another except for model of McClure and Choi.

The EEM is found to increase almost linear with degeneracy 2 × 108 m−1 and
beyond using the all the models. In case of PbTe, the EEM rises sharply with
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Fig. 5.17 Plot of the EEM as
function of carrier degeneracy
for Bismuth nanowire

Fig. 5.18 Plot of the EEM as
function of carrier degeneracy
for PbTe nanowire

decreasing wire thickness below sub-15 nm from the bulk value 0.098 m0 at carrier
degeneracy of 109 m−1, which can affect the carrier mobility strongly (Fig. 5.18).

The effect of strain on stressed InSb NWs has been exhibited in Fig. 5.19 for two
different momentum matrix elements to signify its importance as dimension reduces.
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Fig. 5.19 Plot of the EEM as
function of wire thickness for
stressed InSb nanowire

Fig. 5.20 Plot of the EEM
as function of wire thickness
for Ge, GaSb, and Bi2Te3
nanowires

A compressive strain of 3 % has been applied along x and z directions to predict the
variation of the EEM along the transport direction. At this point, we could not provide
the influence of strain on the energy band structure of InSb NW due to the lack in
both experimental and simulation investigations. It is also not very clear about the
exact value of how the momentum matrix element B2 will change in the definition of
the strain. All the parameters together with the factor a + C1, as given in the Chap. 1 is
expected to modulate with the applied strain orientation. However, to correlate with
our strain model on InSb, we have discussed with the existing investigation of strain
effects on silicon NWs in Chap. 8.

Figure 5.20 exhibits the effect of cross-sectional dimension on the EEM in n-Ge,
n-GaSb, and topological insulators like n-Bi2Te3. We have used the Cardona model

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_8
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to evaluate the EEM in Ge NWs. The reader is left with the corresponding evaluation
of the EEM for Wang et al. model of the same. It appears that the EEM in n-Ge and
Bi2Te3 evolve from its corresponding bulk value significantly from below 15 nm.
However in case of GaSb, the EEM is almost invariant. The summary of this chapter
has been presented in Table 5.1.

5.4 Open Research Problems

(R5.1) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for
NWs of all the semiconductors whose unperturbed carrier energy spectra are
defined in Chap. 1 by considering the presence of finite, symmetric infinite,
asymmetric infinite, parabolic, finite circular, infinite circular, and annular
infinite potential wells applied separately in the two different orthogonal
directions.

(R5.2) Investigate the same set of masses as defined in (R5.1) when all the po-
tentials of (R5.1) are being applied in the two different non-orthogonal
directions.

(R5.3) Investigate the same set of masses as defined in (R5.1) in the presence of
arbitrarily oriented non-uniform electric field.

(R5.4) Investigate the same set of masses as defined in (R5.1) to (R5.3) under an
arbitrarily oriented alternating electric field.

(R5.5) Investigate the same set of masses as defined in (R5.4) all the appropriate
problems of this chapter under an arbitrarily oriented alternating magnetic
field by including broadening and the electron spin.

(R5.6) Investigate the same set of masses as defined in (R5.1) for the appropriate
problems of this chapter under an arbitrarily oriented alternating magnetic
field and crossed alternating electric field by including broadening and the
electron spin for all the materials whose unperturbed carrier energy spectra
are defined Chap. 1.

(R5.7) Investigate the same set of masses as defined in (R5.1) for the appropriate
problems of this chapter under an arbitrarily oriented alternating magnetic
field and crossed alternating non-uniform electric field by including broad-
ening and the electron spin whose for all the materials unperturbed carrier
energy spectra are defined Chap. 1.

(R5.8) Investigate the same set of masses as defined in (R5.1) in the absence of
magnetic field for all the appropriate problems of this chapter under expo-
nential, Kane, Halperin, Lax, and Bonch-Bruevich band tails [84] for all
the materials whose unperturbed carrier energy spectra are defined Chap. 1.

(R5.9) Investigate the same set of masses as defined in (R5.1) in the absence
of magnetic field for all the appropriate problems of this chapter for all
the materials whose unperturbed carrier energy spectra are defined in
Chap. 1 under an arbitrarily oriented non-uniform alternating electric field,
respectively.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R5.10) Investigate the same set of masses as defined in (R5.1) under an arbitrarily
oriented alternating magnetic field by including broadening and the electron
spin whose unperturbed carrier energy spectra are defined in Chap. 1.

(R5.11) Investigate the same set of masses as defined in (R5.1) for all the appro-
priate problems of this chapter for all the materials whose unperturbed
carrier energy spectra are defined in Chap. 1 under an arbitrarily oriented
alternating magnetic field and crossed alternating electric field by including
broadening and the electron spin.

(R5.12) Investigate the same set of masses as defined in (R5.1) all the appropriate
problems for all types of systems as discussed in this chapter for p-InSb,
p-CuCl, and stressed semiconductors having diamond structure valence
bands whose dispersion relations of the carriers in bulk materials are given
by Cunningham [84], Yekimov et al. [85] and Roman et al. [86], respec-
tively.

(R5.12) Investigate the same set of masses as defined in (R5.1) the influence of deep
traps and surface states separately for all the appropriate problems of this
chapter after proper modifications.

(R5.13) Investigate the same set of masses as defined in (R5.1) for all the appropriate
problems of this chapter for multiple NWs of all the heavily doped materials
as described in (R5.8).

(R5.14) Investigate the same set of masses as defined in (R5.1) all the problems of
this chapter by removing all the mathematical approximations and estab-
lishing the respective appropriate uniqueness conditions.
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Part II
Influence of Light Waves on the EEM in

Optoelectronic Semiconductors



Chapter 6
The EEM in Quantum Confined
Optoelectronic Semiconductors in
the Presence of Light Waves

6.1 Introduction

With the advent of nanophotonics, there has been a considerable interest in studying
the optical processes in semiconductors and their nanostructures [1]. It appears from
the literature that the investigations have been carried out on the assumption that the
carrier energy spectra are invariant quantities in the presence of intense light waves,
which is not fundamentally true. The physical properties of semiconductors in the
presence of light waves which change the basic dispersion relation are relatively less
investigated in the literature [2–4]. In this chapter, we shall study the EEM in III–V,
ternary, and quaternary semiconductors and their nanostructure on the basis of newly
formulated electron dispersion law under external photo excitation under different
physical conditions.

In Sect. 6.2.1 of the theoretical background (Sect. 6.2), we have formulated the
dispersion relation of the conduction electrons of III–V, ternary, and quaternary
materials in the presence of light waves whose unperturbed electron energy spectrum
is described by the three-band model of Kane. In the same section, we have studied the
dispersion relations for the said materials in the presence of external photo-excitation
when the unperturbed energy spectra are defined by the two band model of Kane and
that of parabolic energy bands, respectively, for the purpose of relative comparison.
In Sect. 6.2.2, we have derived the expressions of the electron statistics and the
EEM for all the aforementioned cases. We have also investigated the EEM for the
aforementioned band models in the absence of light waves consequently. In Sect. 6.3,
the EEM has been numerically investigated by taking n-InAs and n-InSb as examples
of III–V semiconductors, n-Hg1−x Cdx Te as an example of ternary compounds and
n-In1−x Gax AsyP1−y lattice matched to InP as an example of quaternary materials
in accordance with the three- and two-band models of Kane together with model of
parabolic energy bands, respectively, for the purpose of relative assessment.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 227
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_6, © Springer-Verlag Berlin Heidelberg 2013



228 6 The EEM in Quantum Confined Optoelectronic Semiconductors

6.2 Theoretical Background

6.2.1 The Formulation of the Electron Dispersion Relation in
the Presence of Light Waves in III–V, Ternary
and Quaternary Semiconductors

The Hamiltonian (Ĥ) of an electron in the presence of light wave characterized by
the vector potential �A can be written following [5] as

Ĥ =
[∣∣∣( p̂ + |e| �A)

∣∣∣2
/

2m

]
+ V (�r) (6.1)

in which, p̂ is the momentum operator, V (�r)is the crystal potential and m is the free
electron mass. Equation (6.1) can be expressed as

Ĥ = Ĥ0 + Ĥ ′ (6.2)

where, Ĥ0 = p̂2

2m + V (�r) and

Ĥ ′ = |e|
2m

�A · p̂ (6.3)

The perturbed Hamiltonian Ĥ ′ can be written as

Ĥ ′ =
(−i� |e|

2m

)
( �A · ∇) (6.4)

where i = √−1 and p̂ = −i�∇.
The vector potential ( �A) of the monochromatic light of plane wave can be

expressed as
�A = A0�εs cos(�s0 · �r − ωt) (6.5)

where A0 is the amplitude of the light wave, �εs is the polarization vector, �s0 is
the momentum vector of the incident photon, �r is the position vector, ω is the
angular frequency of light wave, and t is the time scale. The matrix element of
Ĥ ′

nl between initial state, ψl(�q, �r) and final state ψn(�k, �r) in different bands can be
written as

Ĥ ′
nl = |e|

2m

〈
n�k
∣∣∣ �A · p̂

∣∣∣ l �q
〉

(6.6)
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Using (6.4) and (6.5), we can rewrite (6.6) as

Ĥ ′
nl =

(−i� |e| A0

4m

)
�εs ·

[{〈
n�k
∣∣∣e(i�s0·�r)∇

∣∣∣ l �q
〉

e−iωt
}

+
{〈

n�k
∣∣∣e(−i�s0·�r)∇

∣∣∣ l �q
〉

eiωt
}]

(6.7)
The first matrix element of (6.7) can be written as

〈
n�k
∣∣∣e(i�s0·�r)∇

∣∣∣ l �q
〉
=
∫

e

(
i
[
�q+�s0−�k

]
·�r
)
i �qu∗

n(
�k, �r)ul(�q, �r)d3r

+
∫

e

(
i
[
�q+�s0−�k

]
·�r
)
u∗

n(
�k, �r)∇ul(�q, �r)d3r (6.8)

The functions u∗
nul and u∗

n∇ul are periodic. The integral over all space can be
separated into a sum over unit cells times an integral over a single unit cell. It is
assumed that the wavelength of the electromagnetic wave is sufficiently large so that
if �k and �q are within the Brillouin zone, (�q + �s0 − �k) is not a reciprocal lattice vector.

Therefore, we can write (6.8) as

〈
n�k|e(i�s0·�r)∇|l �q

〉
=
[
(2π)3

�

]⎧⎨
⎩iqδ(�q + �s0 − �k)δnl

+ δ(�q + �s0 − �k)
∫

cell

u∗
n(

�k, �r)∇ul(�q, �r)d3r

⎫⎬
⎭

=
[
(2π)3

�

]⎧⎨
⎩δ(�q + �s0 − �k)

∫
cell

u∗
n(

�k, �r)∇ul(�q, �r)d3r

⎫⎬
⎭ (6.9)

where� is the volume of the unit cell and
∫

u∗
n(

�k, �r)ul(�q, �r)d3r = δ(�q − �k)δnl = 0,
since n �= l.

The delta function expresses the conservation of wave vector in the absorption of
light wave and �s0 is small compared to the dimension of a typical Brillouin zone and
we set �q = �k.

From (6.8) and (6.9), we can write,

Ĥ ′
nl = |e| A0

2m
�εs · p̂nl(�k)δ(�q − �k) cos(ωt) (6.10)

where, p̂nl(�k) = −i�
∫

u∗
n∇uld3r = ∫

u∗
n(

�k, �r) p̂ul(�k, �r)d3r
Therefore, we can write

Ĥ ′
nl = |e| A0

2m
�ε · p̂nl(�k) (6.11)

where, �ε = �εs cosωt.
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When a photon interacts with a semiconductor, the carriers (i.e., electrons) are
generated in the bands which are followed by the interband transitions. For example,
when the carriers are generated in the valence band, the carriers then make interband
transition to the conduction band. The transition of the electrons within the same band,
i.e., Ĥ ′

nn =
〈
n�k
∣∣∣Ĥ ′

∣∣∣ n�k
〉

is neglected. Because, in such a case, i.e., when the carriers

are generated within the same bands by photons, they are lost by recombination
within the aforementioned band resulting in zero carriers.

Therefore, 〈
n�k
∣∣∣Ĥ ′

∣∣∣n�k
〉

= 0 (6.12)

With n = c stands for conduction band and l = v stand for valance band, the energy
equation for the conduction electron can approximately be written as

I11(E) =
(

�
2k2

2mc

)
+
( |e|A0

2m

)2 〈∣∣∣�ε · p̂cv(�k)
∣∣2 〉

av

Ec(�k)− Ev(�k)
(6.13)

where, I11(E) ≡ E(aE +1)(bE +1)/(cE +1), a ≡ 1/Eg0 , Eg0 is the un-perturbed

band-gap, b ≡ 1/(Eg0 +�), c ≡ 1/(Eg0 + 2�/3), and
〈∣∣∣�ε · p̂cv(�k)

∣∣2 〉
av

represents

the average of the square of the optical matrix element (OME).
For the three-band model of Kane, we can write,

ξ1k = Ec(�k)− Ev(�k) = (E2
g0

+ Eg0�
2k2/mr )

1/2 (6.14)

where, mr is the reduced mass and is given by m−1
r = (mc)

−1 + m−1
v , and mv is the

effective mass of the heavy hole at the top of the valance band in the absence of any
field.

The doubly degenerate wave functions u1(�k, �r) and u2(�k, �r) can be expressed as
[6, 7]

u1(�k, �r) = ak+
[
(is)↓′]+ bk+

[
X ′ − iY ′

√
2

↑′
]

+ ck+
[
Z ′ ↓′] (6.15)

and

u2(�k, �r) = ak−
[
(is)↑′]− bk−

[
X ′ + iY ′

√
2

↓′
]

+ ck−
[
Z ′↑′] (6.16)

s is the s-type atomic orbital in both unprimed and primed coordinates, ↓′ indicates
the spin down function in the primed coordinates,

ak± ≡ β[Eg0 − (γ0k±)2(Eg0 − δ′)1/2(Eg0 + δ′)−1/2],
β ≡ [(6(Eg0 + 2�/3)(Eg0 +�))/χ ]1/2,
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χ ≡ (6E2
g0

+ 9Eg0�+ 4�2), γ0k± ≡
[
(ξ1k ∓ Eg0)

2(ξ1k + δ′)

]1/2

,

ξ1k ≡ Ec(�k)− Ev(�k) = Eg0

[
1 + 2

(
1 + mc

mv

)
I11(E)

Eg0

]1/2

,

δ′ ≡ (E2
g0
�)(χ)−1, X ′,Y ′, and Z ′ are the p-type atomic orbitals in the primed

coordinates, ↑′ indicates the spin-up function in the primed coordinates, bk± ≡
ργ0k±, ρ ≡ (4�2/3χ)1/2, ck± ≡ tγ0k± and t ≡ [

6(Eg0 + 2�/3)2/χ
]1/2

.
We can, therefore, write the expression for the OME as

OME = p̂cv(�k) = 〈u1(�k, �r)| p̂|u2(�k, �r)〉 (6.17)

Since the photon vector has no interaction in the same band for the study of interband
optical transition, we can therefore write

〈S| p̂|S〉 = 〈X | p̂|X〉 = 〈Y | p̂|Y 〉 = 〈Z | p̂|Z〉 = 0

and 〈X | p̂|Y 〉 = 〈Y | p̂|Z〉 = 〈Z | p̂|X〉 = 0.
There are finite interactions between the conduction band (CB) and the valance

band (VB) and we can obtain

〈S|P̂|X〉 = î · P̂ = î · P̂x

〈S|P̂|Y 〉 = ĵ · P̂ = ĵ · P̂y

〈S|P̂|Z〉 = k̂ · P̂ = k̂ · P̂z

where, î, ĵ , and k̂ are the unit vectors along x, y, and z axes, respectively.
It is well known that

[↑′
↓′
]

=
[

e−iφ/2 cos(θ/2) eiφ/2 sin(θ/2)
−e−iφ/2 sin(θ/2) eiφ/2 cos(θ/2)

] [↑
↓
]

and ⎡
⎣ X ′

Y ′
Z ′

⎤
⎦ =

⎡
⎣ cosθcosφ cosθsinφ −sinθ

−sinφ cosφ 0
sinθcosφ sinθsinφ cosθ

⎤
⎦
⎡
⎣ X

Y
Z

⎤
⎦

Besides, the spin vector can be written as

�S = �

2
�σ , where, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
.
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From above, we can write

p̂CV (
�k) =

〈
u1(�k, �r)

∣∣∣P̂
∣∣∣ u2(�k, �r)

〉

=
〈{

ak+
[
(i S)↓′]+ bk+

[(
X ′ − iY ′

√
2

)
↑′
]

+ ck+
[
Z ′↓′]} ∣∣∣P̂∣∣∣

×
{

ak−
[
(i S)↑′] −bk−

[(
X ′ + iY ′

√
2

)
↓′ + ck−

[
Z ′↑′]]}〉 .

Using above relations, we get

p̂CV (
�k) =

〈
u1(�k, �r)

∣∣∣P̂∣∣∣ u2(�k, �r)
〉

= bk+ak−√
2

{〈(X ′ − iY ′)|P̂|i S〉〈↑′|↑′〉} + ck+ak−{〈Z ′|P̂|i S〉〈↓′|↑′〉} (6.18)

− ak+bk−√
2

{〈i S|P̂|(X ′ + iY ′)〉〈↓′|↓′〉} + ak+ck−{〈i S|P̂|Z ′〉〈↓′|↑′〉}

From (6.18), we can write

〈
(X ′ − iY ′)

∣∣∣P̂
∣∣∣ i S

〉
=
〈
(X ′)

∣∣∣P̂
∣∣∣ i S

〉
−
〈
(iY ′)

∣∣∣P̂
∣∣∣ i S

〉

= i
∫

u∗
X ′ P̂ S−

∫
−iu∗

Y ′ P̂iu X = i
〈
X ′
∣∣∣P̂
∣∣∣ S
〉
−
〈
Y ′
∣∣∣P̂
∣∣∣ S
〉

From the above relations, for X ′,Y ′ and Z ′, we get

∣∣X ′〉 = cosθcosφ |X〉 + cosθsinφ |Y 〉 − sinθ |Z〉

Thus,

〈
X ′
∣∣∣P̂∣∣∣ S

〉
= cosθcosφ

〈
X
∣∣∣P̂∣∣∣ S

〉
+ cosθsinφ

〈
Y
∣∣∣P̂∣∣∣ S

〉
− sinθ

〈
Z
∣∣∣P̂∣∣∣ S

〉
= P̂r̂1

where r̂1 = îcosθcosφ + ĵcosθsinφ − k̂sinθ

∣∣Y ′〉 = −sinφ |X〉 + cosφ |Y 〉 + 0 |Z〉

Thus,

〈
Y ′
∣∣∣P̂∣∣∣ S

〉
= −sinφ

〈
X
∣∣∣P̂∣∣∣ S

〉
+ cosφ

〈
Y
∣∣∣P̂∣∣∣ S

〉
+ 0

〈
Z
∣∣∣P̂∣∣∣ S

〉
= P̂r̂2

where r̂2 = −îsinφ + ĵcosφ,

so that
〈
(X ′ − iY ′)

∣∣∣P̂
∣∣∣ S
〉
= P̂(i r̂1 − r̂2).
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Thus,

ak−bk+√
2

〈
(X ′ − iY ′)

∣∣∣P̂
∣∣∣ S
〉 〈↑′ ∣∣↑′ 〉 = ak−bk+√

2
P̂(i r̂1 − r̂2)

〈↑′ ∣∣↑′ 〉 (6.19)

Now since,

〈
i S
∣∣∣P̂∣∣∣ (X ′ + iY ′)

〉
= i

〈
S
∣∣∣P̂∣∣∣ X ′〉− 〈

S
∣∣∣P̂∣∣∣ Y ′〉 = P̂(i r̂1 − r̂2)

We can write,

−
[

ak+bk−√
2

{〈
i S
∣∣∣P̂
∣∣∣ (X ′ + iY ′)

〉 〈↓′ ∣∣↓′ 〉}] = −
[

ak+bk−√
2

P̂(i r̂1 − r̂2)
〈↓′ ∣∣↓′ 〉]

(6.20)
Similarly, we get

∣∣Z ′〉 = sinθcosφ |X〉 + sinθsinφ |Y 〉 + cosθ |Z〉

so that,
〈
Z ′
∣∣∣P̂∣∣∣ i S

〉
= i

〈
Z ′
∣∣∣P̂∣∣∣ S

〉
= i P̂

{
sinθcosφ î + sinθsinφ ĵ + cosθ k̂

}
= i P̂r̂3

where r̂3 = îsinθcosφ + ĵsinθsinφ + k̂cosθ.
Thus,

ck+ak−
〈
Z ′
∣∣∣P̂∣∣∣ i S

〉 〈↓′ ∣∣↑′ 〉 = ck+ak− i P̂r̂3
〈↓′ ∣∣↑′ 〉 (6.21)

Similarly, we can write,

ck−ak+
〈
i S
∣∣∣P̂
∣∣∣ Z ′〉 〈↓′ ∣∣↑′ 〉 = ck−ak+ i P̂r̂3

〈↓′ ∣∣↑′ 〉 (6.22)

Therefore, we obtain

ak−bk+√
2

{〈
(X ′ − iY ′)

∣∣∣P̂∣∣∣ S
〉 〈↑′ ∣∣↑′ 〉}− ak+bk−√

2

{〈
i S
∣∣∣P̂∣∣∣ (X ′ + iY ′)

〉 〈↓′ ∣∣↓′ 〉}

= P̂√
2
(−ak+bk−

〈↓′ ∣∣↓′ 〉+ ak−bk+
〈↑ ∣∣↑′ 〉)(i r̂1 − r̂2) (6.23)

Also, we can write,

ck+ak−
〈
Z ′
∣∣∣P̂∣∣∣ i S

〉 〈↓′ ∣∣↑′ 〉+ ck−ak+
〈
i S
∣∣∣P̂∣∣∣ Z ′〉 〈↓′ ∣∣↑′ 〉

= i P̂(ck+ak− + ck−ak+)r̂3
[〈↓′ ∣∣↓′ 〉] (6.24)
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Combining (6.23) and (6.24), we find

p̂CV (
�k) = P̂√

2
(i r̂1 − r̂2)

{
(bk+ak−)

〈↑′ ∣∣↑′ 〉− (bk−ak+)
〈↓′ ∣∣↓′ 〉}

+ i P̂r̂3(ck+ak− − ck−ak+)
〈↓′ ∣∣↑′ 〉 (6.25)

From the above relations, we obtain,

↑′ = e−iφ/2cos(θ/2) ↑ +eiφ/2sin(θ/2) ↓
↓′ = −e−iφ/2sin(θ/2) ↑ +eiφ/2cos(θ/2) ↓

}
(6.26)

Therefore,

〈↓′ ∣∣↑′ 〉
x = − sin(θ/2)cos(θ/2) 〈↑ |↑〉x + e−iφcos2(θ/2) 〈↓ |↑〉x

− eiφsin2(θ/2) 〈↑ |↓〉x + sin(θ/2)cos(θ/2) 〈↓ |↓〉x (6.27)

But we know from above that

〈↑ |↑〉x = 0, 〈↓ |↑〉 = 1

2
, 〈↓ |↑〉x = 1

2
and 〈↓ |↓〉x = 0

Thus, from Eq. (6.27), we get

〈↓′ ∣∣↑′ 〉
x = 1

2

[
e−iφcos2(θ/2)− eiφsin2(θ/2)

]

= 1

2

[
(cosφ − isinφ)cos2(θ/2)− (cosφ + isinφ)sin2(θ/2)

]

= 1

2
[cosφcosθ − isinφ] (6.28)

Similarly, we obtain

〈↓′ ∣∣↑′ 〉
y = 1

2
[icosφ + sinφcosθ] and

〈↓′ ∣∣↑′ 〉
z = 1

2
[−sinθ ]

Therefore,

〈↓′ ∣∣↑′ 〉 = î
〈↓′ ∣∣↑′ 〉

x + ĵ
〈↓′ ∣∣↑′ 〉

y + k̂
〈↓′ ∣∣↑′ 〉

z

= 1

2

{
(cosθcosφ − isinφ)î + (icosφ + sinφcosθ) ĵ − sinθ k̂

}

= 1

2

[{
(cosθcosφ)î + (sinφcosθ) ĵ − sinθ k̂

}
+ i

{
−îsinφ + ĵcosφ

}]

= 1

2

[
r̂1 + i r̂2

] = −1

2
i
[
i r̂1 − r̂2

]
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Similarly, we can write

〈↑′ ∣∣↑′ 〉 = 1

2

[
îsinθcosφ + ĵsinθsinφ + k̂cosθ

]
= 1

2
r̂3 and

〈↓′ ∣∣↓′ 〉 = −1

2
r̂3

Using the above results and following (6.25) we can write

p̂CV (
�k) = P̂√

2
(i r̂1 − r̂2)

{
(ak−bk+)

〈↑′ ∣∣↑′ 〉− (bk−ak+)
〈↓′ ∣∣↓′ 〉}

+ i P̂r̂3
{
(ck+ak− − ck−ak+)

〈↓′ ∣∣↑′ 〉}

= P̂

2
r̂3(i r̂1 − r̂2)

{(
ak−bk+√

2
+ bk−ak+√

2

)}

+ P̂

2
r̂3(i r̂1 − r̂2)

{
(ck+ak− + ck−ak+)

}

Thus,

p̂CV (
�k) = P̂

2
r̂3(i r̂1 − r̂2)

{
ak+

(
bk−√

2
+ ck−

)
+ ak−

(
bk+√

2
+ ck+

)}
(6.29)

We can write that,

∣∣r̂1
∣∣ = ∣∣r̂2

∣∣ = ∣∣r̂3
∣∣ = 1, also, P̂r̂3 = P̂x sinθcosφ î + P̂ysinθsinφ ĵ + P̂zcosθ k̂

where, P̂ =
〈
S
∣∣∣P̂∣∣∣ X

〉
=
〈
S
∣∣∣P̂∣∣∣ Y

〉
=
〈
S
∣∣∣P̂∣∣∣ Z

〉
,

〈
S
∣∣∣P̂∣∣∣ X

〉
=
∫

u∗
C (0, �r)P̂uV X (0, �r)d3r = P̂CV X (0) and

〈
S
∣∣∣P̂∣∣∣ Z

〉
= P̂CV Z (0)

Thus,
P̂ = P̂CV X (0) = P̂CV Y (0) = P̂CV Z (0) = P̂CV (0)

where, P̂CV (0) ≡ ∫
u∗

c(0, �r)P̂uV (0, �r)d3r ≡ P̂.
For a plane polarized light wave, we have the polarization vector �εs = k̂, when

the light wave vector is traveling along the z-axis. Therefore, for a plane polarized
light wave, we have considered �εs = k̂.

Then, from (6.29) we get

(�ε · p̂CV (�k)) = �k · P̂

2
r̂3(i r̂1 − r̂2)

[
A(�k)+ B(�k)

]
cosωt (6.30)
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and

A(�k) = ak−

(
bk+√

2
+ ck+

)

B(�k) = ak+
(

bk−√
2

+ ck−
)
⎫⎪⎪⎬
⎪⎪⎭

(6.31)

Thus,

∣∣∣�ε · p̂cv(�k)
∣∣∣2 =

∣∣∣∣∣k̂ · P̂

2
r̂3

∣∣∣∣∣
2 ∣∣i r̂1 − r̂2

∣∣2 [A(�k)+ B(�k)
]2

cos2 ωt

= 1

4

∣∣∣P̂zcosθ
∣∣∣2 [A(�k)+ B(�k)

]2
cos2ωt (6.32)

So, the average value of
∣∣∣�ε · p̂cv(�k)

∣∣∣2 for a plane polarized light wave is given by

〈∣∣∣�ε · p̂cv

(�k
)∣∣∣2

〉
av

= 2

4

∣∣∣P̂z

∣∣∣2 [A(�k)+ B(�k)
]2

⎛
⎝

2π∫
0

dφ

π∫
0

cos2 θ sin θdθ

⎞
⎠
(

1

2

)

= 2π

3

∣∣∣P̂z

∣∣∣2 [A(�k)+ B(�k)
]2

(6.33)

where
∣∣∣P̂z

∣∣∣2 = ( 1
2 )

∣∣∣�k · p̂cv(0)
∣∣∣2 and

∣∣∣�k · p̂cv(0)
∣∣∣2 = m2

4mr

Eg0

(
Eg0 +�

)
(
Eg0 + 2

3�
) (6.34)

We shall express A(�k) and B(�k) in terms of constants of the energy spectra in the
following way:

Substituting ak± , bk± , ck± and γ0k± in A(�k) and B(�k) in (6.31) we get

A(�k) = β

(
t + ρ√

2

){(
Eg0

Eg0 + δ′

)
γ 2

0k+ − γ 2
0k+γ

2
0k−

(
Eg0 − δ′

Eg0 + δ′

)}1/2

(6.35)

B(�k) = β

(
t + ρ√

2

){(
Eg0

Eg0 + δ′

)
γ 2

0k− − γ 2
0k+γ

2
0k−

(
Eg0 − δ′

Eg0 + δ′

)}1/2

(6.36)

in which,

γ 2
0k+ ≡ ξ1k − Eg0

2 (ξ1k + δ′)
≡ 1

2

[
1 −

(
Eg0 + δ′

ξ1k + δ′

)]

and
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γ 2
0k− ≡ ξ1k + Eg0

2 (ξ1k + δ′)
≡ 1

2

[
1 +

(
Eg0 − δ′

ξ1k + δ′

)]

Substituting x ≡ ξ1k + δ′ in γ 2
0k± , we can write,

A(�k) = β

(
t + ρ√

2

){(
Eg0

Eg0 + δ′

)
1

2

(
1 − Eg0

+ δ′

x

)

−1

4

(
Eg0 − δ′

Eg0 + δ′

)(
1 − Eg0 + δ′

x

)(
1 + Eg0 − δ′

x

)}1/2

Thus,

A(�k) = β

2

(
t + ρ√

2

){
1 − 2a0

x
+ a1

x2

}1/2

where a0 ≡ (E2
g0

+ δ′2)(Eg0 + δ′)−1 and a1 ≡ (Eg0 − δ′)2.
After tedious algebra, one can show that

A(�k) = β

2

(
t + ρ√

2

)
(Eg0 − δ′)

[
1

ξ1k + δ′
− 1

Eg0 + δ′

]1/2

×
[

1

ξ1k + δ′
− (Eg0 + δ′)
(Eg0 − δ′)2

]1/2

(6.37)

Similarly, from (6.36), we can write,

B(�k) = β

(
t + ρ√

2

){(
Eg0

Eg0 + δ′

)
1

2

(
1 + Eg0 − δ′

x

)

−1

4

(
Eg0 − δ′

Eg0 + δ′

)(
1 − Eg0 + δ′

x

)(
1 + Eg0 − δ′

x

)}1/2

so that, finally we get,

B(�k) = β

2

(
t + ρ√

2

)(
1 + Eg0 − δ′

ξ1k + δ′

)
(6.38)

Using (6.33), (6.34), (6.37), and (6.38), we can write

( |e| A0

2m

)2

〈∣∣∣�ε · p̂cv(�k)
∣∣2 〉

av

Ec(�k)− Ev(�k)
=
( |e| A0

2m

)2 2π

3

∣∣∣�k · p̂cv(0)
∣∣∣2 β2

4

(
t + ρ√

2

)2
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1

ξ1k

{(
1 + Eg0 − δ′

ξ1k + δ′

)
+ (

Eg0 − δ′
) [ 1

ξ1k + δ′
− 1

Eg0 + δ′

]1/2

×
[

1

ξ1k + δ′
− Eg0 + δ′

(Eg0 − δ′)2

]1/2
}2

(6.39)

Following Nag [8], it can be shown that

A2
0 = Iλ2

2π2c3√εscε0
(6.40)

where I is the light intensity of wavelength λ, ε0 is the permittivity of free space,
and c is the velocity of light. Thus, the simplified electron energy spectrum in III–V,
ternary, and quaternary materials in the presence of light waves can approximately
be written as

�
2k2

2m∗ = β0(E, λ) (6.41)

where β0(E, λ) ≡ [I11(E)− θ0(E, λ)],

θ0(E, λ) ≡ |e|2
96mrπc3

Iλ2

√
εscε0

Eg0(Eg0 +�)(
Eg0 + 2

3�
) β2

4

(
t + ρ√

2

)2 1

φ0(E){(
1 + Eg0 − δ′

φ0(E)+ δ′

)
+ (Eg0 − δ′)

[
1

φ0(E)+ δ′
− 1

Eg0 + δ′

]1/2

[
1

φ0(E)+ δ′
− Eg0 + δ′

(Eg0 − δ′)2

]1/2
}2

and φ0(E) ≡ Eg0

(
1 + 2

(
1 + mc

mv

)
I11(E)

Eg0

)1/2
.

Thus, under the limiting condition �k → 0, from (6.41), we observe that E �= 0
and is positive. Therefore, in the presence of external light waves, the energy of
the electron does not tend to zero when �k → 0, whereas for the unperturbed three-
band model of Kane, I11(E) = [

�
2k2/(2mc)

]
in which E → 0 for �k → 0. As the

conduction band is taken as the reference level of energy, therefore, the lowest positive
value of E for �k → 0 provides the increased bandgap (�Eg) of the semiconductor
due to photon excitation. The values of the increased bandgap can be obtained by
computer iteration processes for various values of I and λ, respectively.

Special Cases:

(1) For the two-band model of Kane, we have � → 0. Under this condition,
I11(E) → E(1 + aE) = �2k2

2mc
. Since, β → 1, t → 1, ρ → 0, δ′ → 0 for

� → 0, from Eq. (6.41), we can write the energy spectrum of III–V, ternary
and quaternary materials in the presence of external photo-excitation whose
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unperturbed conduction electrons obey the two-band model of Kane as

�
2k2

2mc
= τ0(E, λ) (6.42)

where τ0(E, λ) ≡ E(1 + aE)− B0(E, λ),

B0(E, λ) ≡ |e|2 Iλ2 Eg0

384πc3mr
√
εscε0

1

φ1(E)

{(
1 + Eg0

φ1(E)

)

+ Eg0

[
1

φ1(E)
− 1

Eg0

]}2

,

φ1(E) ≡ Eg0

{
1 + 2mc

mr
aE(1 + aE)

}1/2

.

(2) For relatively wide bandgap semiconductors, one can write, a → 0, b → 0,
c → 0 and I11(E) → E .
Thus, from (6.42), we get,

�
2k2

2mc
= ρ0(E, λ) (6.43)

ρ0(E, λ) ≡ E − |e|2 Iλ2

96πc3mr
√
εscε0

[
1 +

(
2mc

mr

)
aE

]−3/2

(6.44)

6.2.2 The Formulation of the EEM in the Presence of Light
Waves in III–V, Ternary, and Quaternary Semiconductors

The EEM can, in general [6, 7], be written as

mc(EF ) =
[
(�k)

/(
1

�

∂E

∂k

)]∣∣∣∣
E=EF

= �
2k

∂k

∂E

∣∣∣∣
E=EF

(6.45)

where EF is the Fermi energy in the present case.
Using (6.41) and (6.45) we get,

mc(EF ) = mc
[
I ′
11(EF )− θ ′

0(EF , λ)
]

(6.46)

where the primes indicate the differentiation of the differentiable functions with
respect to EF . It appears then that the formulation of the EEM requires an expres-
sion of electron statistics, which, in turn, is determined by the density-of-states func-
tion. Using (6.41), the density-of-states function for III–V, ternary, and quaternary
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materials in the presence of light waves whose unperturbed conduction electrons
obey the three-band model of Kane can be expressed as

D0(E) = 4π

(
2mc

h2

)3/2

gv

√
β0(E, λ)β

′
0(E, λ) (6.47)

where β ′
0(E, λ) = ∂

∂E [β0(E, λ)].
Combining (6.47) with the Fermi-Dirac occupation probability factor and using

the generalized Sommerfeld’s lemma [9], the electron concentration can be
written as

n0 = (3π2)−1
(

2mc

�2

)3/2

gv [M1(EF , λ)+ N1(EF , λ)] (6.48)

where M1(EF , λ) ≡ [β0(EF , λ)]3/2, N1(EF , λ) = ∑s
r=1 L(r)M1(EF , λ) and

L(r) ≡ [
2(kB T )2r (1 − 21−2r )ξ(2r)

] (
∂2r

∂E2r

)∣∣∣
E=EF

.

The expressions of EEM and n0, for III–V, ternary, and quaternary materials in the
presence of light waves whose unperturbed conduction electrons obey the two-band
model of Kane can be expressed as

m∗(EF ) = mc
[
(1 + 2αEF )− B ′

0(EF , λ)
]

(6.49)

n0 = (3π2)−1
(

2mc

�2

)3/2

gv [M2(EF , λ)+ N2(EF , λ)] (6.50a)

where M2(EF , λ) ≡ [ω0(EF , λ)]3/2 and N2(EF , λ) = ∑s
r=1 L(r)M2(EF , λ).

The expression of EEM for III–V, ternary, and quaternary materials in the presence
of light waves whose unperturbed conduction electrons obey the parabolic energy
bands can be expressed as

m∗(EF ) = mc
[
ρ′

0(EF , λ)
]

(6.50b)

n0 = (3π2)−1
(

2mc

�2

)3/2

gv [M3(EF , λ)+ N3(EF , λ)] (6.50c)

where M3(EF , λ) ≡ [ρ0(EF , λ)]3/2 and N3(EF , λ) = ∑s
r=1 L(r)M3(EF , λ).

In the absence of external photo-excitations, the expressions of the EEM and n0
in accordance with the three band model of Kane assume the forms

m∗(EF0) = mc
[
I ′
11(EF0)

]
(6.51)

n0 = gv(3π
2)−1

(
2mc

�2

)3/2 [
M4(EF0)+ N4(EF0)

]
(6.52)
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where EF0 is the Fermi energy in the absence of photo-excitation, M4(EF0) ≡[
I11(EF0)

]3/2 and N4(EF0) = ∑s
r=1 L(r)M4(EF0).

In accordance with the two-band model of Kane, the corresponding expressions
of the EEM and n0 are given by

m∗(EF0) = mc
[
(1 + 2αEF0)

]
(6.53)

n0 = (3π2)−1
(

2mc

�2

)3/2

gv
[
M5(EF0)+ N5(EF0)

]
(6.54)

where M5(EF0) ≡ [
EF0(1 + αEF0)

]3/2 and N5(EF0) = ∑s
r=1 L(r)M5(EF0).

Under the constraints � � Eg0 or � � Eg0 together with the condition
αEF0 � 1, the (6.54) assumes the form

n0 = Ncgv

[
F1/2(η)+

(
15αkB T

4

)
F3/2(η)

]
(6.55)

where η = EF0
kB T for relatively wide gap materials Eg0 → ∞ and the (6.53) and (6.55)

get simplified as to the well-known results [8] as

m∗(EF ) = mc (6.56)

and
n0 = Ncgv F1/2(η) (6.57)

6.3 Results and Discussion

Using the appropriate equations and the values of the energy band constants from
Table 1.1, we have plotted in Figs. 6.1, 6.2, 6.3 and 6.4, the EEM as functions of
electron concentration at T = 4.2 K by taking n-InAs, n-InSb, n-Hg1−x Cdx Te
and n-In1−x Gax AsyP1−y lattice matched to InP as examples of III–V, ternary, and
quaternary materials which are used for the purpose of numerical computations
in accordance with the perturbed three- and two-band models of Kane and that of
perturbed parabolic energy bands, respectively. In Figs. 6.5, 6.6, 6.7, and 6.8 we have
plotted the EEM as a function of intensity. In Figs. 6.9, 6.10, 6.11, and 6.12 we have
plotted the EEM as a function of wavelength. In Figs. 6.13 and 6.14, we have plotted
the EEM as function of the alloy composition for ternary and quaternary materials,
respectively.

From Fig. 6.1 it appears that the EEM increases with the increasing electron con-
centration for n-InAs and the numerical values of the EEM in the presence of light
waves in accordance with all the band models are relatively larger than that of the

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.1 Plot of the normalized EEM as a function of electron concentration for n-InAs in the
presence of light waves in which the curves (a) and (c) represent the three and two band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

same in the absence of the external photo-excitation excluding curve (e), where
for parabolic energy band the EEM is numerically concentration invariant due to
large bandgap. The reason behind such behavior is the fact that the Fermi energy is
the monotonic increasing function of electron concentration and the EEM increases
monotonically with increasing Fermi energy both in the presence and absence of
light waves. By comparing the plot (a) with plot (c) in Fig. 6.1 we observe that the
presence of spin–orbit splitting in curve (a) decreases the value of the EEM as com-
pared with curve (c) in the whole range of carrier degeneracy as considered here.
For relatively low values of n0, the curves (a), (b), (c), and (d) exhibit converging
tendency whereas they differ with each other for relatively higher values of carrier
degeneracy. The curve (e) of Fig. 6.1 represents the EEM both in the presence and
absence of external light waves for the relatively wide bandgap model which is inde-
pendent of doping. Plots (a) and (c) of Fig. 6.2 diverge for relatively low values of
n0, intersect each other for a particular zone of concentration, and then exhibit small
difference although both of them increase with increasing degeneracy. The numerical
values of the EEM for the curves (a), (b), (c), and (d) of n-InSb as given in Fig. 1.1b
are greater as compared with the same for n-InAs as given in Fig. 6.1, although the
nature of the curve(e) is same for both Figs. 6.1 and 6.2, respectively.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.2 Plot of the normalized EEM as a function of electron concentration for n-InSb in the
presence of light waves in which the curves (a) and (c) represent the three- and two-band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

The curves (a) and (c) explore the fact that the influence of the spin–orbit splitting
on the EEM for n-Hg1−x Cdx Te in the presence of light waves decreases significantly
the same mass as compared with the perturbed two-band model of Kane and the two
curves exhibit wide difference with each other for relatively low values of doping.
In the absence of light wave, the effect of � on the EEM is much less. It appears by
comparing the Figs. 6.1, 6.2 and 6.3 that the EEM for n-Hg1−x Cdx Te in the presence
of external photo-excitation is much more as that of n-InSb and n-InAs, respectively.
From plots (a) and (c) of Fig. 6.4, it appears for In1−x Gax AsyP1−y lattice matched
to InP that both the curves maintain constant wide difference under photo-excitation
with respect to electron concentration in the whole range of electron degeneracy as
considered here. The influence of � on the EEM in the absence of external light
waves for three- and two-band models of Kane is very small as evident from the
curves (b) and (d), although the EEM increases with n0 as usual. The influence of
the energy band constants on the EEM is apparent from all the plots of Figs. 6.1,
6.2, 6.3 and 6.4 and the numerical values of the EEM is greatest for ternary alloys
and the least for quaternary systems under light waves. The curves (a) and (c) of
Fig. 6.5 explore that the EEM increases with increasing light intensity for n-InAs
in the presence of light waves for both perturbed three- and two-band models of
Kane, whereas for perturbed parabolic energy bands the EEM is intensity invariant.
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Fig. 6.3 Plot of the normalized EEM as a function of electron concentration for n-Hg1−x Cd x Te
in the presence of light waves in which the curves (a) and (c) represent the three- and two-band
models of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of
external photo-excitation. The curve (e) represents the parabolic energy band model both in the
presence and in the absence of the external photo-excitation

Fig. 6.4 Plot of the normalized EEM as a function of electron concentration for In1−x Gax AsyP1−y
lattice matched to InP in the presence of light waves in which the curves (a) and (c) represent the
three- and two-band models of Kane, respectively. The curves (b) and (d) exhibit the same variation
in the absence of external photo-excitation. The curve (e) represents the parabolic energy band
model both in the presence and in the absence of the external photo-excitation
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Fig. 6.5 Plot of the normalized EEM as a function of light intensity for n-InAs in the presence
of light waves in which the curves (a) and (c) represent the three- and two-band models of Kane,
respectively. The curves (b) and (d) exhibit the same variation in the absence of external photo-
excitation. The curve (e) represents the parabolic energy band model both in the presence and in
the absence of the external photo-excitation

The reason behind such behavior is that the Fermi energy increases with increasing
light intensity and the EEM is the function of Fermi energy. For perturbed parabolic
energy bands, due to very large bandgap the EEM is numerically independent of light
intensity. In the absence of light waves, the EEM is naturally independent of I which
is apparent from the curves (b) and (d) of Fig. 6.5. The curves (a) and (c) of Fig. 6.6
for n-InSb reflects the fact that the influence of spin–orbit splitting increases rapidly
with increasing intensity and for low values of light intensity the EEM decreases for
both perturbed three- and two-band models of Kane, whereas for higher values of I
the EEM increases significantly.

From the plot (a) of Fig. 6.7 one can infer that the EEM for n-Hg1−x Cdx Te in the
presence of light waves increases with increasing I, in a more or less linear fashion
in accordance with the perturbed three-band model of Kane whereas from plot (c),
one observes that the EEM on the basis of the perturbed two-band model of Kane
is greater as compared with plot (a) in the whole range of I. For low values of I,
the curves (a) and (c) exhibit converging tendency. It is important to note that with
respect to light intensity, the numerical values of the EEM in the absence of light
waves, in the case of n-Hg1−x Cdx Te are greater for both types of band models (curves
(b) and (d)) as compared with that of (a) and (c) when I �= 0. It appears from the
plots (a) and (c) of Fig. 6.8 that the EEM increases with I for both types of perturbed
band models with different small curvatures and the difference in numerical values
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Fig. 6.6 Plot of the normalized EEM as a function of light intensity for n-InSb in the presence
of light waves in which the curves (a) and (c) represent the three- and two-band models of Kane,
respectively. The curves (b) and (d) exhibit the same variation in the absence of external photo-
excitation. The curve (e) represents the parabolic energy band model both in the presence and in
the absence of the external photo-excitation

of EEM increases with increasing in I, although they converge to a particular value
for I = 10−6 nWm−2.

The curves (a) and (c) of Fig. 6.9 exhibit the fact that the EEM for n-InAs increases
with increasing wavelength in the presence of light waves for both perturbed three-
and two-band models of Kane since the Fermi energy increases with increasing wave
length and the EEM is the function of Fermi energy. For perturbed parabolic energy
bands, the EEM is numerically independent of wave length due to large bandgap.
The curves (a) and (c) maintain wide difference with increasing wave length and the
spin–orbit splitting decreases the EEM in the whole range of λ. The curves (b) and
(d) exhibit the same variation in the absence of photo excitation and is independent
of wave length of the incident light.

From the plots (a) and (c) of Fig. 6.10 for n-InAs, one can infer that the EEM
increases with increasing wavelength in the presence of light waves for both the
cases and they exhibit the diverging tendency for relatively low values of λ whereas
for higher values of the wavelength exhibit the converging nature. From plots (b) and
(d), we observe that the numerical values of the EEM for both three and two band
model of Kane are much larger as compared with the same under photo-excitation for
relatively low values of λ. The influence of � on the EEM for perturbed three-band
model as observed in Fig. 6.10 is less as compared with the same as given in plot (a)
of Fig. 6.9.



6.3 Results and Discussion 247

Fig. 6.7 Plot of the normalized EEM as a function of light intensity for n-Hg1−x Cdx Te in the
presence of light waves in which the curves (a) and (c) represent the three- and two-band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

The curves (b) and (c) for n-Hg1−x Cdx Te of Fig. 1.3c increase with increasing λ
and after intersection they exhibit the wide difference with each other. The spin–orbit
splitting decreases the EEM remarkably for relatively higher values of λ.

From Fig. 6.12 we can write that the EEM in this case is much less when compared
with the same as given I, the Figs. 6.9, 6.10 and 6.11 in the presence of external photo-
excitation. From plots (a) and (c) of Fig. 6.12, it appears for In1−x Gax AsyP1−y lattice
matched to InP that both the curves maintain wide difference under photo-excitation
with respect to λ in the whole range of wave length as considered here. As the wave
length increases, from plots (a) and (c) of Fig. 6.12 we infer that the difference also
increases. The influence of � on the EEM in the absence of external light waves
for three and two band models of Kane is very small as evident from the curves
(b) and (d).

It appears that the EEM increases as the wavelength shifts from violet to red.
The influence of light is immediately apparent from the plots in the Figs. 6.5, 6.6,
6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 since the EEM depends strongly on I and λ
for the three- and the two-band model of Kane which is in direct contrast with
that for the bulk specimens of the said compounds in the absence of external
photo-excitation. The variations of the EEM in the Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10,
6.11, and 6.12 reflect the direct signature of the light wave on the band structure-
dependent physical properties of semiconductors in general in the presence of
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Fig. 6.8 Plot of the normalized EEM as a function of light intensity for In1−x Gax AsyP1−y lattice
matched to InP in the presence of light waves in which the curves (a) and (c) represent the three-
and two-band models of Kane, respectively. The curves (b) and (d) exhibit the same variation in
the absence of external photo-excitation. The curve (e) represents the parabolic energy band model
both in the presence and in the absence of the external photo-excitation

Fig. 6.9 Plot of the normalized EEM as a function of wavelength for n-InAs in the presence of
light waves in which the curves (a) and (c) represent the three- and two-band models of Kane,
respectively. The curves (b) and (d) exhibit the same variation in the absence of external photo-
excitation. The curve (e) represents the parabolic energy band model both in the presence and in
the absence of the external photo-excitation
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Fig. 6.10 Plot of the normalized EEM as a function of wavelength for n-InSb in the presence of light
waves in which the curves (a) and (c) represent the three and two band models of Kane, respectively.
The curves (b) and (d) exhibit the same variation in the absence of external photo-excitation. The
curve (e) represents the parabolic energy band model both in the presence and in the absence of the
external photo-excitation

external photo-excitation and the photon-assisted transport for the corresponding
photonic devices. The numerical values of the EEM in the presence of the light
waves are larger than that of the same in the absence of light wave for both the
three- and the two-band model of Kane. Although, the EEM tends to increase with
the intensity and the wavelength but the rate of increase is totally band structure
dependent. It appears that the numerical values of the EEM are greatest for ternary
materials and least for quaternary compounds.

In Figs. 6.13 and 6.14, the EEM has been plotted as a function of alloy composition
for n-Hg1−x Cdx Te and n-In1−x Gax AsyP1−y lattice matched to InP respectively in
which all the cases of Figs. 6.1, 6.2, 6.3 and 6.4 have further been plotted for the
purpose of relative comparison. The Fermi energy decreases with increasing alloy
composition and the EEM is a function of Fermi energy. From Fig. 6.13, we can write
that the EEM in ternary compounds decreases with increasing alloy composition.
The numerical values of EEM in the presence of light waves are greater for both
the models as appears from the plots (a), (b), (c) and (d). As alloy composition
increases, the EEM for all the cases exhibit the converging tendency. The plots of the
Fig. 6.13 are valid for x > 0.17, since for x < 0.17, the bandgap becomes negative in
n-Hg1−x Cdx Te leading to semi-metallic state. The plots of the Fig. 6.14 exhibit the
variation of the EEM with y for n-In1−x Gax AsyP1−y lattice matched to InP. As the
Fermi energy increases with the y, from the curves (a), (b), (c) and (d) of Fig. 6.14
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Fig. 6.11 Plot of the normalized EEM as a function of wavelength for n-Hg1−x Cdx Te in the
presence of light waves in which the curves (a) and (c) represent the three and two band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

we observe that the EEM increases with increasing y. These four plots also exhibit
the fact that the influence of the spin–orbit splitting constant in the presence of light
waves is much greater as compared with the same in the absence of photo excitation.

The theoretical results as presented here will be useful in determining the mobil-
ity even for relatively wide gap compounds whose energy band structures can be
approximated by the parabolic energy bands both in the presence and absence of
light waves. It is worth remarking that our basic Eq. (6.41) covers various materials
having different energy band structures. In this section, the concentration, alloy com-
position, light intensity, and the wavelength dependencies of EEM in bulk specimens
of n-InAs, n-InSb, n-Hg1−x Cdx Te and n-In1−x Gax AsyP1−y lattice matched to InP
have been studied. Thus, we have covered a wide class of optoelectronic and allied
compounds whose energy band structures are defined by the three- and two-band
models of Kane in the absence of photon field. Under certain limiting conditions, all
the results of the EEM for different materials having various band structures lead to
the well-known expression of the EEM for degenerate compounds having parabolic
energy band. This indirect test not only exhibits the mathematical compatibility of
our formulation but also shows the fact that our simple analysis is a more general-
ized one, since one can obtain the corresponding results for the relatively wide gap
materials having parabolic energy bands under certain limiting conditions from our
present derivation.
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Fig. 6.12 Plot of the normalized EEM as a function of wavelength for In1−x Gax AsyP1−y lattice
matched to InP in the presence of light waves in which the curves (a) and (c) represent the three
and two band models of Kane, respectively. The curves (b) and (d) exhibit the same variation in
the absence of external photo-excitation. The curve (e) represents the parabolic energy band model
both in the presence and in the absence of the external photo-excitation

It is worth remarking that the influence of an external photo-excitation is to change
radically the original band structure of the material. Because of this change, the
photon field causes to increase the bandgap of semiconductor. Our method is not at
all related to the DOS technique as used in the literature [10]. From the E-k dispersion
relation, we can obtain the DOS, but the DOS technique as used in the literature [10]
cannot provide the E-k dispersion relation. Therefore, our study is more fundamental
than those of the existing literature because the Boltzman transport equation, which
controls the study of the charge transport properties of semiconductor devices, can
be solved if and only if the E-k dispersion relation is known. We wish to note that we
have not considered the many body effects in this simplified theoretical formalism
due to the lack of availability in the literature of proper analytical techniques for
including them for the generalized systems as considered in this book. Our simplified
approach will be useful for the purpose of comparison when methods of tackling
the formidable problem after inclusion of the many body effects for the present
generalized systems appear. The inclusion of the said effects would certainly increase
the accuracy of the results, although the qualitative features of the EEM discussed
in this book would not change in the presence of the aforementioned effects. Since
the experimental results in the present case are not available in the literature to the
best of our knowledge, we cannot compare our generalized theoretical analysis with
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Fig. 6.13 Plot of the normalized EEM as a function of alloy composition for Hg1−x Cdx Te in the
presence of light waves in which the curves (a) and (c) represent the three- and two-band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and absence of the external photo-excitation

the corresponding experimental data. Our formalism will be useful in probing the
band structure when the experimental results for our generalized systems would
appear. It is worth remarking in this context that from our simplified theory, under
certain limiting conditions, gets transformed to the well-known result of the EEM
for wide gap materials having parabolic energy bands. We have not considered other
types of optoelectronic materials and other external variables in order to keep the
presentation brief. Besides, the influence of energy band models and the various
band constants on the EEM for different materials can also be studied from all the
figures of this book. The numerical results presented in this book would be different
for other materials but the nature of variation would be unaltered. The theoretical
results as given here would be useful in analyzing various other experimental data
related to this phenomenon. Finally, we can write that this theory can be used to
investigate the gate capacitance of nanoscale transistors, the carrier contribution to
the elastic constants, the Debye screening length, the magnetic susceptibilities, the
Burstien Moss shift, plasma frequency, the Hall coefficient, the specific heat, and
other different transport coefficients of modern semiconductor devices operated in
the presence of light waves.
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Fig. 6.14 Plot of the normalized EEM as a function of alloy composition for In1−x Gax As1−yPy
lattice matched to InP in the presence of light waves in which the curves (a) and (c) represent the
three and two band models of Kane, respectively. The curves (b) and (d) exhibit the same variation
in the absence of external photo-excitation. The curve (e) represents the parabolic energy band
model both in the presence and in the absence of the external photo-excitation

6.4 The Formulation of the EEM in the Presence of Quantizing
Magnetic Field Under External Photo Excitation in III–V,
Ternary, and Quaternary Materials

6.4.1 Introduction

It is well known that the band structure of electronic materials can be dramatically
changed by applying the external fields [11]. The effects of the quantizing magnetic
field on the band structure of compound semiconductors have already been discussed
in Chap. 4. In Sect. 6.4.2 of theoretical background, we study the effective electron
mass in III–V, ternary, and quaternary semiconductors under magnetic quantization
both in the presence and absence of external light waves. The Sect. 6.5 explores
results and discussions in this context.

http://dx.doi.org/10.1007/978-3-642-31248-9_4
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6.4.2 Theoretical Background

The magneto-dispersion law, in the absence of spin, for III–V, ternary, and quaternary
semiconductors, in the presence of photo-excitation, whose unperturbed conduction
electrons obey the three-band model of Kane, is given by

β0(E, λ) =
(

n + 1

2

)
�ω0 + �

2k2
z

2mc
(6.58)

where n is the Landau quantum number and ω0 = eB/mc.
Using (6.58), the density-of-states function in the present case can be

expressed as

DB(E, λ) = gv|e|√2mc

2π2�2

nmax∑
n=0

[
{β0(E, λ)}′ {β0(E, λ)

−
(

n + 1

2

)
�ω0

}−1/2

H(E − Enl1)

]
(6.59)

in which Enl1 is the positive lowest root of the equation.

β0(Enl1, λ) =
(

n + 1

2

)
�ω0 (6.60)

The EEM in this case assumes the form

m∗(EFBL , λ) = �
2kz

∂kz

∂E

∣∣∣∣
E=EFBL

= mc
{
β0(EFBL , λ)

}′ (6.61)

where EFBL is the Fermi energy under quantizing magnetic field in the presence
of light waves as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization. Combining Eq. (6.59) with the
Fermi-Dirac occupation probability factor and using the generalized Sommerfeld’s
lemma, the electron concentration can be written as

n0 = gv |e| B
√

2mc

π2�2

nmax∑
n=0

[
M13(EFBL , B, λ)+ N13(EFBL , B, λ)

]
(6.62)

where

M13(E, B, λ) ≡
[
β0(E, λ)−

(
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2

)
�ω0

]1/2
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and

N13(EFBL , B, λ) ≡
s∑

r=1

L(r)M13(EFBL , B, λ).

The magneto-dispersion law in the absence of spin, for III–V, ternary, and quater-
nary semiconductors, in the presence of photo-excitation, whose unperturbed con-
duction electrons obey the two-band model of Kane, is given by

τ0(E, λ) =
(

n + 1

2

)
�ω0 + �

2k2
z

2mc
(6.63)

Using (6.63), the density-of-states function in this case can be written as

DB(E, λ) = gv |e| √2mc

2π2�2

nmax∑
n=0

[
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{
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)
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× H(E − Enl2)

]
(6.64)

where Enl2 is the Landau subband energies and can be expressed as

τ0(Enl2 , λ) =
(

n + 1

2

)
�ω0 (6.65)

The EEM assumes the form

m∗(EFBL , λ) = mc
{
τ0(EFBLλ)

}′ (6.66)

Thus, the electron concentration can be written as

n0 = gv |e| B
√

2mc

π2�2

nmax∑
n=0

[
M14(EFBL , B, λ)+ N14(EFBL , B, λ)

]
(6.67)

where

M14(EFBL , B, λ) ≡
[
τ0(EFBL , λ)−

(
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2

)
�ω0

]1/2

and

N14(EFBL , B, λ) ≡
∑s

r=1
L(r)M14(EFBL , B, λ).
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The magneto-dispersion law in the absence of spin, for III–V, ternary, and quater-
nary semiconductors, in the presence of photo-excitation, whose unperturbed con-
duction electrons obey the parabolic energy bands, is given by

ρ0(E, λ) =
(

n + 1

2

)
�ω0 + �

2k2
z

2mc
(6.68)

Using (6.68), the density-of-states function in this case can be written as

DB(E, λ) = gv |e| √2mc
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{
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]

where Enl3 is the Landau subband energies and is given by

ρ0(Enl3, λ) =
(

n + 1

2

)
�ω0 (6.69)

The EEM assumes the form

m∗(EFBL , λ) = mc
{
ρ0(EFBL , λ)

}′ (6.70)

Thus, the electron concentration in this case can be written as

n0 = gv |e| B
√

2mc

π2�2

nmax∑
n=0

[
M15(EFBL , B, λ)+ N15(EFBL , B, λ)

]
(6.71)

where

M15(EFBL , B, λ) ≡
[
ρ0(EFBL , λ)−

(
n + 1

2

)
�ω0

]1/2

and

N15(EFBL , B, λ) ≡
∑s

r=1
L(r)M15(EFBL , B, λ).

6.5 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM along the direction of z as functions of 1/B, electron concentration, intensity
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and wave length (as shown in Figs. 6.15, 6.16, 6.17 and 6.18) at T = 4.2 K by
taking n-InSb and n-InAs which are used for the purpose of numerical computations
in accordance with the perturbed three [using (6.61) and (6.62)] and two [using
(6.66) and (6.67)]-band models of Kane and that of perturbed parabolic [using (6.70)
and (6.71)] energy bands respectively. It appears from Fig. 6.15 that the EEM is an
oscillatory function of inverse quantizing magnetic field. The oscillatory dependence
is due to the crossing over of the Fermi level by the Landau subbands in steps resulting
in successive reduction the number of occupied Landau levels as the magnetic field is
increased. For each coincidence of a Landau level, with the Fermi level, there would
be a discontinuity in the density-of-states function resulting in a peak of oscillation.
Thus the peaks should occur whenever the Fermi energy is a multiple of energy
separation between the two consecutive Landau levels and it may be noted that the
origin of oscillations in the EEM is the same as that of the Shubnikov–de Haas (SdH)
oscillations. With increase in magnetic field, the amplitude of the oscillation will
increase and, ultimately, at very large values of the magnetic field, the conditions
for the quantum limit will be reached (neglecting magnetic freeze out) when the
EEM will be found to decrease monotonically with increase in magnetic field. In
Fig. 6.16, the concentration dependence of the magneto-EEM has been plotted for all
the cases of Fig. 6.15 for both n-InSb and n-InAs. The EEM again shows oscillatory
dependence with different numerical values exhibiting the signature of the SdH
effect. Although the rate of variations are different, the influence of the energy band
constants in accordance with all the type of the band models is apparent from the Figs.
One can observe from Fig. 6.17 that the EEM has a steady increase with the increase
of the light intensity although the same EEM increases sharply with the increase
in wavelength in different ways, as appears from Figs. 6.17 and 6.18, respectively.
The nature of variations in all the cases depends strongly on the energy spectrum
constants of the respective materials and the external physical conditions. It should be
noted that the numerical value of the EEM in the presence of light waves is relatively
much higher even at smaller value of the magnetic field, than that in the absence
of the magnetic field. Such a high value in the EEM can cause a drastic effect by
reducing the electron mobility under the application of a quantized magnetic field
and the contribution of the oscillatory mass or the oscillatory mobility would be is
more important.

6.6 The Formulation of the EEM for the Ultrathin Films
of III–IV, Ternary and Quaternary Semiconductors
Under External Photo-Excitation

6.6.1 Introduction

It is well known that the concept of reduction of symmetry of the wave-vector
space and its consequence can unlock the physics of low dimensional structures.
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Fig. 6.15 Plot of the nor-
malized EEM as a function
of inverse magnetic field for
n-InSb and n-InAs in the
presence of light waves in
accordance with the three,
the two band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation

Fig. 6.16 Plot of the nor-
malized EEM as a function
of carrier concentration for
n-InSb and n-InAs in the
presence of light waves in
accordance with the three,
the two band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation

In Sect. 6.6.2 of theoretical background, we shall study the EEM in ultrathin films
of III–V, ternary and quaternary semiconductors both in the presence and absence of
external light waves. The Sect. 6.7 contains result and discussions in this context.

6.6.2 Theoretical Background

The 2D electron energy spectrum in ultra-thin films of III–V, ternary and quaternary
materials, whose unperturbed band structure is defined by the three-band model of
Kane, in the presence of light waves can be expressed following (1.41)

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.17 Plot of the normal-
ized EEM as a function of
light intensity for n-InSb and
n-InAs in the presence of light
waves in accordance with the
three, the two band models of
Kane and the parabolic energy
band model in the presence of
external photo-excitation

Fig. 6.18 Plot of the normal-
ized EEM as a function of light
wavelength for n-InSb and
n-InAs in the presence of light
waves in accordance with the
three, the two-band models of
Kane and the parabolic energy
band model in the presence of
external photo-excitation

�
2k2

s

2mc
+ �

2

2mc

(
nzπ

dz

)2

= β0(E, λ) (6.72)

The subband energies (Enl7) can be written as

β0(Enl7, λ) = �
2

2mc
(nzπ/dz)

2 (6.73)
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The expression of the EEM in this case is given by

m∗(EF2DL , nz, λ) = �
2ks

∂ks

∂E

∣∣∣∣
E=EF2DL

= mc {β0(EF2DL , λ)}′ (6.74)

where EF2DL is the Fermi energy in the present case as measured from the edge of
the conduction band in the vertically upward direction in absence of any quantization.

The density-of-states function can be written as

N2D(E, λ) =
(

m∗gv

π�2

) nzmax∑
nz=1

[β0(E, λ)]
′H(E − Enl7) (6.75)

Combining (6.75), with the Fermi-Dirac occupation probability factor, the two-
dimensional electron concentration can be expressed as

n2D = mcgv

π�2

nzmax∑
nz=1

[
M18(nz, EF2DL , λ)+ N18(nz, EF2DL , λ)

]
(6.76)

where

M18(nz, EF2DL , λ) ≡
[
β0(EF2DL , λ)− �

2

2mc

(
nzπ

dz

)2
]
,

and

N18(nz, EF2DL , λ) ≡
s∑

r=1

L(r)M18(nz, EF2DL , λ).

Using (1.42), the expressions for the 2D dispersion relation, the subband energies,
the EEM, the density of states function and the electron concentration for ultra-
thin films of III–V, ternary and quaternary semiconductors whose unperturbed band
structure is defined by the two band model of Kane, can respectively be written in
the presence of photo-excitation as

�
2k2

s

2mc
+ �

2

2mc

(
nzπ

dz

)2

= τ0(E, λ) (6.77)

τ0(Enl8, λ) = �
2

2mc
(nzπ/dz)

2 (6.78)

m∗(EF2DL , nz, λ) = mc {τ0(EF2DL , λ)}′ (6.79)
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N2D(E, λ) =
(mcgv

π�2

) nzmax∑
nz=1

[τ0(E, λ)]
′ H(E − Enl8) (6.80)

n2D = mcgv

π�2

nzmax∑
nz=1

[
M19(nz, EF2DL , λ)+ N19(nz, EF2DL , λ)

]
(6.81)

where

M19(nz, EF2DL , λ) ≡
[
τ0(EF2DL , λ)− �

2

2m∗

(
nzπ

dz

)2
]
,

and

N19(nz, EF2DL , λ) ≡
s∑

r=1

L(r)M18(nz, EF2DL , λ).

Using (1.43), the expressions for the 2D dispersion relation, the subband energies,
the EEM, the density of states function and the electron concentration for ultra-thin
films of III–V, ternary, and quaternary semiconductors, whose unperturbed band
structure is defined by the parabolic energy bands, can respectively be written in the
presence of photo-excitation as

�
2k2

s

2mc
+ �

2

2mc

(
nzπ

dz

)2

= ρ0(E, λ) (6.82)

ρ0(Enl9, λ) = �
2

2mc
(nzπ/dz)

2 (6.83)

m∗(EF2DL , nz, λ) = mc {ρ0(EF2DL , λ)}′ (6.84)

N2D(E, λ) =
(mcgv

π�2

) nzmax∑
nz=1

[ρ0(E, λ)]′ H(E − Enl9) (6.85)

n2D = mcgv

π�2

nzmax∑
nz=1

[
M20(nz, EF2DL , λ)+ N20(nz, EF2DL , λ)

]
(6.86)

where

M20(nz, EF2DL , λ) ≡
[
ρ0(EF2DL , λ)− �

2

2mc

(
nzπ

dz

)2
]
,

N20(nz, EF2DL , λ) ≡
s∑

r=1

L(r)M20(nz, EF2DL , λ).
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Fig. 6.19 Plot of the normal-
ized EEM as a function of
film thickness for n-InSb and
n-InAs in the presence of light
waves in accordance with the
three- and the two-band mod-
els of Kane together with the
parabolic energy band model
in the presence of external
photo-excitation

6.7 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM in the ks plane as functions of film thickness, surface electron concentration,
intensity and wavelength at T = 4.2 K by taking ultra-thin films of ternary materials
which are used for the purpose of numerical computations in accordance with the
perturbed three [using (6.74) and (6.76)], two [using (6.79) and (6.81)], band mod-
els of Kane and that of perturbed parabolic energy bands [using (6.84) and (6.86)],
as shown in Figs. 6.19, 6.20, 6.21 and 6.22, respectively. The influence of carrier
confinement in 2D under the presence of an external photo-excitation on the behav-
ior of EEM can be understood from the Figs. 6.19, 6.20, 6.21 and 6.22. The effect
of quantum confinement is immediately apparent from all the curves of Fig. 6.19,
since, the 2D EEM depend strongly on the nano-thickness, which is in direct con-
trast with the corresponding bulk specimens which is also the direct signature of
quantum confinement. It appears from the said figures that the EEM in this case
decreases with the increasing film thickness in a step-like manner as considered
here although the numerical values vary widely and determined by the constants of
the energy spectra. The oscillatory dependence is due to the crossing over of the
Fermi level by the size quantized levels. For each coincidence of a size quantized
level with the Fermi level, there would be a discontinuity in the density-of-states
function resulting in a peak of oscillations. With large values of film thickness, the
height of the steps decreases and the EEM decreases with increasing film thick-
ness in non-oscillatory manner and exhibit monotonic decreasing dependence. The
height of step size and the rate of decrement are totally dependent on the band
structure. The influence of energy band nonparabolicity is immediately apparent by
the comparing the curves of the said figures. The energy band non-parabolicity and
the spin orbit splitting constant significantly enhances the numerical values of the

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.20 Plot of the normal-
ized EEM as a function of
surface electron concentration
for n-InSb and n-InAs in the
presence of light waves in
accordance with the three-
and the two-band models of
Kane together with the par-
abolic energy band model
in the presence of external
photo-excitation

Fig. 6.21 Plot of the normal-
ized EEM as a function of
light intensity for n-InSb and
n-InAs in the presence of light
waves in accordance with the
three- and the two-band mod-
els of Kane together with the
parabolic energy band model
in the presence of external
photo-excitation

EEM both the cases of the materials. The numerical values of the EEM in accor-
dance with the three band model of Kane are different as compared with the cor-
responding two-band model, which reflects that fact that the presence of the spin
orbit splitting constant changes the magnitude of the EEM. It may be noted that
the presence of the band nonparabolicity in accordance with the two-band model
of Kane further changes the peaks of the oscillatory EEM for all cases of quantum
confinements.

In Fig. 6.20, we have plotted the EEM as a function of surface electron concen-
tration per unit area for all cases of Fig. 6.19. It appears that the EEM increases with
increasing carrier degeneracy and also reflects the signature of the 1D confinement
through the non-linear dependence with the 2D electron statistics. Since, most of
the electrons at low temperatures occupies the lowest subband level, we have plotted
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Fig. 6.22 Plot of the nor-
malized EEM as a function
of wavelength for n-InSb and
n-InAs in the presence of light
waves in accordance with the
three- and the two-band mod-
els of Kane together with the
parabolic energy band model
in the presence of external
photo-excitation

the EEM by considering the lowest subband energy in Figs. 6.20, 6.21 and 6.22. If
more subbands were considered, the oscillatory dependence will be less and less
prominent with increasing carrier concentration and ultimately, for bulk specimens
of the same material, the EEM will be found to increase continuously with increasing
electron concentration in a non-oscillatory manner. The effects of the light intensity
and wavelength on the EEM has been exhibited in Figs. 6.21 and 6.22, respectively
in the regime of very low temperatures. The EEM increases with both the variables
with different slopes. It appears that the EEM in the case of parabolic energy band
varies extremely slowly both with the light intensity and wavelength, although the
sharp and significant variations are exhibited for both three- and the two-band energy
models.

6.8 Investigation of the EEM in n-Channel Inversion Layers
of III–V, Ternary and Quaternary Semiconductors
Under External Photo-Excitation

6.8.1 Introduction

In Sect. 6.8.2 of theoretical background, we shall study the EEM for both weak
and strong electric field limits in n-channel inversion layers of III–V, ternary and
quaternary semiconductors both in the presence and absence of external light waves.
The Sect. 6.9 contains result and discussions in this context.
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6.8.2 Theoretical Background

In the presence of a surface electric field Fs along z direction and perpendicular to
the surface, the (1.41) assumes the form

�
2k2

2mc
= β0(E − |e| Fs z, λ) (6.87)

where, for this chapter, E represents the electron energy as measured from the edge
of the conduction band at the surface in the vertically upward direction.

Using (6.87) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III–V, ternary and quaternary semiconductors (whose unperturbed electrons
obey the three band model of Kane) in the presence of light waves under the condition
of weak electric field limit, assumes the form

β0(E, λ) = �
2k2

s

2mc
+ Si

[
� |e| Fs [β0(E, λ)]′√

2mc

]2/3

(6.88)

The EEM can be expressed as

m∗(EFiwL , i) = �
2ks

∂ks

∂E

∣∣∣∣
E=EFiwL

= mc [P3L(EFiwL , i)]| (6.89)

where EFiwL is the Fermi energy under the weak electric field limit as measured from
the edge of the conduction band at the surface in the vertically upward direction in
the presence of light waves and

P3L(E, i) ≡
{
[β0(E, λ)]′ −

{
2

3
Si

[
� |e| Fs√

2mc

]2/3 {
[β0(E, λ)]

′}−1/3
[β0(E, λ)]

′′
}}
.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg , � and λ.

The subband energy (Eniw2L ) in this case can be obtained from (6.88) as

β0(Eniw2L , λ) = Si

[
� |e| Fs

[
β0(Eniw2L , λ)

]′
√

2mc

]2/3

(6.90)

The 2D total density-of-states function in weak electric field limit can be
expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P3L(E, i)H(E − Eniw2L )

]
(6.91)
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Using (6.91) and the occupation probability, the n2Dw in the present case can be
written as

n2Dw = gvmc

π�2

imax∑
i=0

[P4wL(EFiwL , i)+ Q4wL(EFiwL , i)] (6.92)

where

P4wL(EFiwL , i) ≡
{
β0(EFiwL , λ)− Si

[
�eFs [β0(EFiwL , λ)]′√

2mc

]2/3
}

and

Q4L(EFiwL , i) ≡
s∑

r=1

{L(r) [P4L(EFiwL , i)]}.

Using (6.87) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III–V, ternary, and quaternary semiconductors in the presence of light waves
under the condition of strong electric field limit, assumes the form

[
β0(E, λ)−

{
|e| Fs�√

2mc

(
2
√

2(Si )
3/2

3

)√
[β0(E, λ)]′′

}]
= �

2k2
s

2mc
(6.93)

The EEM can be expressed as

m∗(EFisL , i) = �
2ks

∂ks

∂E

∣∣∣∣
E=EFisL

= mc [P5L(E, i)]|E=EFisL
(6.94)

where EFisL is the Fermi energy under the strong electric field limit as measured
from the edge of the conduction band at the surface in the presence of light waves
and

P5L(E, i)≡
{
{β0(E, λ)}′−

{
|e|Fs�√

2mc

(√
2(Si )

3/2

3

)
([β0(E, λ)]′′)−1/2[β0(E, λ)]′′′

}}
.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg , � and λ.

The subband energy (Enis2L ) in this case can be obtained from (6.93) as

β0(Enis2L , λ)−
{

|e| Fs�√
2mc

(
2
√

2(Si )
3/2

3

)√[
β0(Enis2L , λ)

]′′} = 0 (6.95)
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The total 2D density-of-states function under the strong electric field limit can be
expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P5L(E, i)H(E − Enis2L )

]
(6.96)

Using (6.96) and the Fermi-Dirac occupation probability factor, the n2Ds in the
present case under the strong electric field can be written as

n2Ds = gvm∗

π�2

imax∑
i=0

[P6sL(EFisL , i)+ Q6sL(EFisL , i)] (6.97)

where

P6sL(EFisL , i) ≡
{
β0(EFisL , λ)−

[
2
√

2

3
(Si )

3/2 � |e| Fs

√
[β0(EFisL , λ)]′′√

2mc

]}
,

Q6sL(EFisL , i) ≡
s∑

r=1

{L(r) [P6sL(EFisL , i)]}.

Again for this section the (1.42) assumes the form

�
2k2

2mc
= τ0(E − |e| Fs z, λ) (6.98)

Using (6.97) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III–V, ternary, and quaternary semiconductors (whose unperturbed electrons
obey the two-band model of Kane) in the presence of light waves under the condition
of weak electric field limit, assumes the form

τ0(E, λ) = �
2k2

s

2mc
+ Si

[
� |e| Fs [τ0(E, λ)]′√

2mc

]2/3

(6.99)

The EEM can be expressed as

m∗(EFiwL2, i) = mc [P3L2(EFiwL2, i)]| (6.100)

EFiwL2 is the Fermi energy under the weak electric field limit as measured from the
edge of the conduction band at the surface in the vertically upward direction in the
presence of light waves in this case and

P3L2(E, i) ≡
{
[τ0(E, λ)]′ −

{
2

3
Si

[
� |e| Fs√

2mc

]2/3 {
[τ0(E, λ)]

′}−1/3 [τ0(E, λ)]′′
}}
.
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Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy, and the other spectrum constants due to the combined
influence of Eg and λ.

The subband energy (Eniw2L2) in this case can be obtained from (6.99) as

τ0(Eniw2L2 , λ) = Si

[
� |e| Fs

[
τ0(Eniw2L2 , λ)

]′
√

2mc

]2/3

(6.101)

The 2D total density-of-states function in weak electric field limit can be
expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P3L2(E, i)H(E − Eniw2L2)

]
(6.102)

Using (6.102) and the occupation probability, the n2Dw in the present case can be
written as

n2Dw = gvmc

π�2

imax∑
i=0

[P4wL2(EFiwL2, i)+ Q4wL2(EFiwL2, i)] (6.103)

where

P4wL2(EFiwL2, i) ≡
{
τ0(EFiwL2, λ)− Si

[
�eFs [τ0(EFiwL2, λ)]′√

2mc

]2/3
}

and

Q4L2(EFiwL2, i) ≡
s∑

r=1

{L(r) [P4L2(EFiwL2, i)]}.

Using the appropriate equations, the 2D electron dispersion relation in n-channel
inversion layers of III–V, ternary, and quaternary semiconductors (whose unperturbed
electrons obey the two-band model of Kane) in the presence of light waves under
the condition of strong electric field limit, assumes the form

[
τ0(E, λ)−

{
|e| Fs�√

2mc

(
2
√

2(Si )
3/2

3

)√
[τ0(E, λ)]′′

}]
= �

2k2
s

2mc
(6.104)

The EEM can be expressed as

m∗(EFisL2, i) = mc [P5L2(E, i)]|E=EFisL2
(6.105)
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where EFisL2 is the Fermi energy under the strong electric field limit as measured
from the edge of the conduction band at the surface in the presence of light waves in
the present case and

P5L2(E, i) ≡
{

{τ0(E, λ)}′ −
{ |e| Fs�√

2mc

×
(√

2(Si )
3/2

3

) (
[τ0(E, λ)]

′′)−1/2
[τ0(E, λ)]

′′′
}}

.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg and λ.

The subband energy (Enis2L2) in this case can be obtained from (6.104) as

τ0(Enis2L2 , λ)−
{

|e| Fs�√
2mc

(
2
√

2(Si )
3/2

3

)√[
τ0(Enis2L2 , λ)

]′′} = 0 (6.106)

The total 2D density-of-states function under the strong electric field limit can be
expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P5L2(E, i)H(E − Enis2L2)

]
(6.107)

Using (6.107) and the Fermi-Dirac occupation probability factor, the n2Ds in the
present case under the strong electric field can be written as

n2Ds = gvmc

π�2

imax∑
i=0

[P6sL2(EFisL2, i)+ Q6sL2(EFisL2, i)] (6.108)

where

P6sL2(EFisL2, i) ≡
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and

Q6sL2(EFisL2, i) ≡
s∑

r=1

{L(r) [P6sL2(EFisL2, i)]}.

Besides for this section the (1.43) assumes the form
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�
2k2

2mc
= ρ0(E − |e| Fs z, λ) (6.109)

Using (6.109) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III–V, ternary and quaternary semiconductors (whose unperturbed electrons
obey the parabolic energy bands) in the presence of light waves under the condition
of weak electric field limit, assumes the form

ρ0(E, λ) = �
2k2

s

2mc
+ Si

[
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2m∗

]2/3

(6.110)

The EEM can be expressed as

m∗(EFiwL1, i) = mc [P3L1(EFiwL1, i)] (6.111)

EFiwL1 is the Fermi energy under the weak electric field limit as measured from the
edge of the conduction band at the surface in the vertically upward direction in the
presence of light waves in this case and

P3L1(E, i) ≡
{
[ρ0(E, λ)]′ −

{
2

3
Si

[
� |e| Fs√

2mc

]2/3 {
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′}−1/3
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′′
}}
.

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of Eg and λ.

The subband energy (Eniw2L1) in this case can be obtained from (1.135) as

ρ0(Eniw2L1 , λ) = Si

[
� |e| Fs

[
ρ0(Eniw2L1 , λ)

]′
√

2mc

]2/3

(6.112)

The 2D total density-of-states function in weak electric field limit can be
expressed as

N2Di (E) = mcgv

π�2

imax∑
i=0

[
P3L1(E, i)H(E − Eniw2L1)

]
(6.113)

Using (6.113) and the occupation probability, the n2Dw in the present case can be
written as

n2Dw = gvmc

π�2

imax∑
i=0

[P4wL1(EFiwL1, i)+ Q4wL1(EFiwL1, i)] (6.114)
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Fig. 6.23 Plot of the nor-
malized EEM as a function
of surface electric field for
n-channel inversion layers
of n-InSb and n-InAs in the
presence of light waves in
accordance with the three,
the two band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation

where

P4wL1(EFiwL1, i) ≡
{
ρ0(EFiwL1, λ)− Si

[
�eFs [ρ0(EFiwL1, λ)]′√

2mc

]2/3
}

and

Q4wL1(EFiwL1, i) ≡
s∑

r=1

{L(r) [P4wL1(EFiwL1, i)]}.

6.9 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM in the ks plane for the first two subbands as functions of surface electric field,
surface concentration and wavelength at T = 4.2 K by taking n-channel inversion
layers of n-InSb and n-InAs semiconductors which are used for the purpose of numer-
ical computations in accordance with the perturbed three [using (6.89) and (6.92)] and
two [using (6.100) and (6.103)] band models of Kane and that of perturbed parabolic
energy bands [using (6.111) and (6.114)] for weak electric field limit respectively.
In Fig. 6.23, we have presented the variation of the EEM in the n-channel inversion
layers of n-InSb and n-InAs as function of surface electric field in accordance with
the three-band model of Kane, the two-band model of Kane and the parabolic energy
bands respectively under weak electric field by considering the effect of electric
subbands.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.24 Plot of the normal-
ized EEM as a function of
surface electron concentration
for n-channel inversion layers
of n-InSb and n-InAs in the
presence of light waves in
accordance with the three,
the two-band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation

Fig. 6.25 Plot of the nor-
malized EEM as a function
of wavelength of the incident
light for n-channel inversion
layers of n-InSb and n-InAs
in the presence of light waves
in accordance with the three,
the two-band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation

It appears from Fig. 6.23 that the EEM in the n-channel inversion layers increases
with increase in surface electric field for weak electric field in a step-like manner
with different numerical values and the influence of the energy band constants can
also be assessed from the said figures. The EEM depends on the electric subband
index, surface electric field, the Fermi energy and the other spectrum constants due
to the combined influence of Eg ,� and λ which is the characteristic feature of such
2D systems under radiation. In Figs. 6.24 and 6.25, the effect of surface concentra-
tion and wavelength on the EEM for all the cases of Fig. 6.23 has been considered
under the quantum limit approximation. It appears from the Figs. 6.24 and 6.25 that
the EEM increases with both the variables in the straight lines segmentation fashion
with different increasing slopes at particular values of surface electron concentration
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and light wave length. The values of EEM for InSb are greater than that of InAs. The
slopes are entirely determined by the spectra constants of n channel InSb and InAs
respectively. It may be noted that if the direction of application of the surface electric
field applied perpendicular to the surface be taken in an arbitrary direction and not as
kz as assumed in the present work, the EEM would be different analytically for both
the limits. Nevertheless, the arbitrary choice of the direction normal to the surface
would not result in a change of the basic qualitative feature of the EEM in n-channel
inversion layers of semiconductors in the presence of photo excitation. The approxi-
mation of the potential well at the surface by a triangular well introduces some errors,
as for instance the omission of the free charge contribution to the potential. This kind
of approach is reasonable if there are only few charge carriers in the inversion layer,
but is responsible for an overestimation of the splitting when the inversion carrier
density exceeds that of the depletion layer. It has been observed that the maximum
error due to the triangular potential well is tolerable in the practical sense because
for actual calculations, one need a self consistent solution which is a formidable
problem, for the present generalized systems due to the non availability of the proper
analytical techniques, without exhibiting a widely different qualitative behavior. The
second assumption of using only two subbands in the numerical calculations is valid
in the range of low temperatures, where the quantum effects become prominent. The
errors which are being introduced for these assumptions are found not to be serious
enough at low temperatures. We wish to note that the many body effects, the hot
electron effects, the formation of band tails, arbitrary orientation of the direction of
the electric quantization and the effects of surface of states have been neglected in
our simplified theoretical formalism due to the lack of availability in the literature of
the proper analytical techniques for including them for the generalized systems as
considered in this section. The numerical computation for the corresponding cases
of EEM under the strong electric field has been leftover for the readers so that they
can enjoy the intricate internal computer analysis behind plots in this context. Our
simplified approach will be useful for the purpose of comparison, when, the methods
of tackling of the aforementioned formidable problems for the present generalized
system appear and we admit the fact that the inclusion of the said effects would
certainly increase the accuracy of our results.

6.10 Investigation of the EEM in nipi Structures of III–V,
Ternary and Quaternary Semiconductors Under External
Photo-Excitation

6.10.1 Introduction

In Sect. 6.10.2 of theoretical background, we shall study the EEM in nipi structures
of III–V, ternary, and quaternary semiconductors both in the presence and absence of
external light waves. The Sect. 6.11 contains result and discussions in this context.
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6.10.2 Theoretical Background

The 2D electron dispersion relation in nipi structures of III–V, ternary, and quaternary
semiconductors (whose unperturbed electrons obey the three band model of Kane)
in the presence of light waves can be written as

β0(E, λ) =
(

ni + 1

2

)
�ω9L(E, λ)+ �

2k2
s

2mc
(6.115)

where ni (= 0, 1, 2, . . .) is the mini-band index for nipi structures, εsc is the semi-
conductor permittivity and

ω9L(E, λ) ≡
(

n0 |e|2
εscβ

′
0(E, λ)mc

)1/2

.

The EEM in this case can be written as

m∗(EFnL , ni ) = mc R82L(E, ni )|E=EFnL
(6.116)

in which, E FnL is the Fermi energy in the present case as measured from the
edge of the conduction band in vertically upward direction in the absence of any
quantization and

R82L(E, ni ) ≡
{

[β0(E, λ)]
′ −

(
ni + 1

2

)
� [ω9L(E, λ)]

′
}
.

From (6.116), we observe that the EEM in this case is a function of the Fermi
energy, wavelength, nipi subband index and the other material constants which is the
characteristic feature of nipi structures of III–V, ternary, and quaternary compounds
in the presence of light waves whose bulk dispersion relation in the absence of any
field is defined by the three band model of Kane.

The subband energies (E2ni L) can be written as

β0(E2ni L , λ) =
(

ni + 1

2

)
�ω9L(E2ni L , λ). (6.117)

The density-of-states function in this case can be expressed as

Nnipi L(E) = mcgv

π�2d0

nimax∑
ni =0

R82L(E, ni )H(E − E2ni L) (6.118)

in which d0 is the superlattice period.
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The use of (6.118) leads to the expression of the electron concentration as

n0 = mcgv

π�2d0

nimax∑
ni =0

[
T83L(E FnL , ni )+ T84L(E FnL , ni )

]
(6.119)

where

T83L(E FnL , ni ) ≡
[
β0(E FnL , λ)−

(
ni + 1

2

)
�ω9L(E FnL , λ)

]

and

T84L(E FnL , ni ) ≡
∑s

r=1
L(r)T83L(E FnL , ni ).

Again, the 2D electron dispersion relation in nipi structures of III–V, ternary, and
quaternary semiconductors (whose unperturbed electrons obey the two band model
of Kane) in the presence of light waves can be written as

τ0(E, λ) =
(

ni + 1

2

)
�ω9L2(E, λ)+ �

2k2
s

2mc
(6.120)

where ω9L2(E, λ) ≡
(

n0|e|2
εscτ

′
0(E,λ)mc

)1/2
.

The EEM in this case can be written as

m∗(EFnL2, ni ) = mc R82L2(E, ni )|E=EFnL2
(6.121)

in which, R82L2(E, ni ) ≡ {
[τ0(E, λ)]′ −

(
ni + 1

2

)
� [ω9L2(E, λ)]′

}
. The subband

energies (E2ni L2) can be written as

τ0(E2ni L2, λ) =
(

ni + 1

2

)
�ω9L2(E2ni L2, λ) (6.122)

The density-of-states function in this case can be expressed as

Nnipi L2(E) = mcgv

π�2d0

nimax∑
ni =0

R82L2(E, ni )H(E − E2ni L2) (6.123)

The use of (6.123) leads to the expression of the electron concentration as

n0 = mcgv

π�2d0

nimax∑
ni =0

[
T83L2(E FnL2, ni )+ T84L2(E FnL2, ni )

]
(6.124)

where T83L2(E FnL2, ni ) ≡ [
τ0(E FnL2, λ)− (

ni + 1
2

)
�ω9L2(E FnL2, λ)

]
.
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E FnL2 is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization and

T84L2(E FnL2, ni ) ≡
s∑

r=1

L(r)T83L2(E FnL2, ni ).

Besides, the 2D electron dispersion relation in nipi structures of III–V, ternary and
quaternary semiconductors (whose unperturbed electrons obey the parabolic energy
bands) in the presence of light waves can be written as

ρ0(E, λ) =
(

ni + 1

2

)
�ω9L1(E, λ)+ �

2k2
s

2mc
(6.125)

where ω9L1(E, λ) ≡
(

n0|e|2
εscρ

′
0(E,λ)mc

)1/2
.

The EEM in this case can be written as

m∗(EFnL1, ni ) = mc R82L1(E, ni )|E=EFnL1
(6.126)

in which E FnL1 is the Fermi energy in the present case as measured from the
edge of the conduction band in vertically upward direction in the absence of any
quantization and

R82L2(E, ni ) ≡
{

[ρ0(E, λ)]
′ −

(
ni + 1

2

)
� [ω9L2(E, λ)]

′
}
.

The subband energies (E2ni L1) can be written as

ρ0(E2ni L1, λ) =
(

ni + 1

2

)
�ω9L1(E2ni L1, λ) (6.127)

The density-of-states function in this case can be expressed as

Nnipi L1(E) = mcgv

π�2d0

nimax∑
ni =0

R82L1(E, ni )H(E − E2ni L1) (6.128)

The use of (6.128) leads to the expression of the electron concentration as

n0 = mcgv

π�2d0

nimax∑
ni =0

[
T83L1(E FnL1, ni )+ T84L1(E FnL1, ni )

]
(6.129)
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Fig. 6.26 Plot of the nor-
malized EEM as a function
of electron concentration for
nipi structures of n-InSb and
n-InAs in the presence of light
waves in accordance with the
three- and the two-band mod-
els of Kane in the presence of
external photo-excitation

where

T83L1(E FnL1, ni ) ≡
[
ρ0(E FnL1, λ)−

(
ni + 1

2

)
�ω9L1(E FnL1, λ)

]

and

T84L1(E FnL1, ni ) ≡
∑s

r=1
L(r)T83L1(E FnL1, ni ).

6.11 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for the first two subbands as functions of wave length, intensity, thickness, and
electron concentration at T = 4.2 K by taking nipi structures of ternary materials
which are used for the purpose of numerical computations in accordance with the
perturbed three [using (6.116) and (6.119)], two [using (6.121) and (6.124)] band
models of Kane and that of perturbed parabolic energy bands [using (6.126) and
(6.129)] respectively.

Using the multiple subbands, one can numerically evaluate the EEM as a function
of electron concentration and wavelength in nipi structures of III–V compounds by
using the nipi structures of InSb and InAs as shown in Figs. 6.26 and 6.27, respec-
tively, in accordance with three- and two-band models of Kane. The occurrence of
the humps in Fig. 6.26 has been explained earlier in the context of ultrathin films.
The effect of nipi structure tailoring increases the EEM to an extremely high value
which severely affects the electron mobility in such structures.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.27 Plot of the nor-
malized EEM as a function
of wavelength for nipi struc-
tures of n-InSb and n-InAs in
the presence of light waves in
accordance with the three- and
the two-band models of Kane
in the presence of external
photo-excitation

The effect of increasing wavelength aids to increase the EEM in a linearly way,
however, in case of increasing the light intensity, the tendency of increase in EEM
is extremely slow. We have not considered the effect of the light intensity and wave-
length on the EEM governed by the parabolic energy band due to its slow variation
from the value 1.

6.12 Investigation of the EEM in Nano Wires of III–V, Ternary,
and Quaternary Semiconductors Under External
Photo-Excitation

6.12.1 Introduction

In Sect. 6.12.2 of theoretical background, we shall study the EEM in nano wires
of III–V, ternary and quaternary semiconductors both in the presence and absence
of external light waves. The Sect. 6.13 contains result and discussions in this
context.

6.12.2 Theoretical Background

The 1D electron energy spectrum in nano wires of III–V, ternary and quaternary semi-
conductors, whose unperturbed band structure is defined by the three-band model of
Kane, in the presence of light waves can be expressed from (1.41) as

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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�
2k2

x

2mc
= β0(E, λ)−

[
�

2

2mc

(
nyπ

dy

)2

+ �
2

2mc

(
nzπ

dz

)2
]

(6.130)

The subband energies (Enl10) can be expressed as

β0(Enl10 , λ) =
[

�
2

2mc
(nyπ/dy)

2 + �
2

2mc
(nzπ/dz)

2
]

(6.131)

The EEM in the free direction kx in this case can be written from (6.130) as

m∗(EF1DL , ny, nz, λ) = mc {β0(EF1DL , λ)}′ (6.132)

where EF1DL is the Fermi energy in the present case as measured from the edge of
the conduction band in the vertically upward direction in absence of any quantization.

The one-dimensional density-of-states function (N1D(E, λ)) is given by

N1D(E, λ) =
(

gv
√

2mc

π�

) nymax∑
ny=1

nzmax∑
nz=1

{β0(E, λ)}′

×[β0(E, λ)− φ(ny, nz)]−1/2 H(E − Enl10) (6.133)

where φ(ny, nz) = �2π2

2mc

[(
ny
dy

)2 +
(

nz
dz

)2
]

.

Combining (6.133), with the Fermi-Dirac occupation probability factor, the one-
dimensional electron concentration (n1D) can thus be written as

n1D = 2gv

π

√
2mc

�

nymax∑
ny=1

nzmax∑
nz=1

[
M21(ny, nz, EF1DL , λ)+ N21(ny, nz, EF1DL , λ)

]

(6.134)
where

M21(ny, nz, EF1DL , λ) ≡ [
β0(EF1DL , λ)− φ(ny, nz)

]1/2

and

N21(ny, nz, EF1DL , λ) ≡
∑s

r=1
L(r)M21(ny, nz, EF1DL , λ).

Using (1.42), the expressions for the 1D dispersion relation, the subband energies,
the EEM, the density-of-states function and the electron concentration for nano wires
of III–V, ternary, and quaternary materials, whose unperturbed band structure is
defined by the two-band model of Kane, can, respectively, be written in the presence

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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of photo-excitation as

�
2k2

x

2mc
= {

τ0(E, λ)− φ(ny, nz)
}

(6.135)

τ0(Enl11, λ) = φ(ny, nz) (6.136)

m∗(EF1DL , ny, nz, λ) = mc {τ0(EF1DL , λ)}′ (6.137)

N1D(E, λ) =
(

gv
√

2mc

π�

) nymax∑
ny=1

nzmax∑
nz=1

{τ0(E, λ)}′

× [
τ0(E, λ)− φ(ny, nz)

]−1/2
H(E − Enl11) (6.138)

n1D = 2gv

π

√
2mc

�

nymax∑
ny=1

nzmax∑
nz=1

[
M22(ny, nz, EF1DL , λ)+ N22(ny, nz, EF1DL , λ)

]

(6.139)
where

M22(ny, nz, EF1DL , λ) ≡ [
τ0(EF1DL , λ)− φ(ny, nz)

]1/2

and

N22(ny, nz, EF1DL , λ) ≡
∑s

r=1
L(r)M22(ny, nz, EF1DL , λ).

Using (1.43), the expressions for the 1D dispersion relation, the subband energies,
the EEM, the density of states function and the electron concentration for nano
wires of III–V, ternary and quaternary materials, whose unperturbed band structure
is defined by the parabolic energy bands, can, respectively, be written in the presence
of photo-excitation as

�
2k2

x

2mc
= [

ρ0(E, λ)− φ(ny, nz)
]

(6.140)

ρ0(Enl11, λ) = φ(ny, nz) (6.141)

m∗(EF1DL , ny, nz, λ) = mc {ρ0(EF1DL , λ)}′ (6.142)

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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N1D(E, λ) =
(

gv
√

2mc

π�

) nymax∑
ny=1

nzmax∑
nz=1

{ρ0(E, λ)}′

× [
ρ0(E, λ)− φ(ny, nz)

]−1/2
H(E − Enl11) (6.143)

n1D = 2gv
√

2mc

π�

nymax∑
ny=1

nzmax∑
nz=1

[
M23(ny, nz, EF1DL , λ)+ N23(ny, nz, EF1DL , λ)

]

(6.144)
where

M23(ny, nz, EF1DL , λ) ≡ [
ρ0(EF1DL , λ)− φ(ny, nz)

]1/2
,

N23(ny, nz, EF1DL , λ) ≡
s∑

r=1

L(r)M23(ny, nz, EF1DL , λ)

6.13 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM as functions of thickness and electron concentration per unit length at T = 4.2 K
by taking nano wires of ternary materials which are used for the purpose of numerical
computations in accordance with the perturbed three- [using (6.132) and (6.134)] and
two- [using (6.137) and (6.139)] band models of Kane, respectively. In Figs. 6.28
and 6.29, we have plotted the EEM in nano wires of III–V materials as function
of lateral dimension and electron concentration respectively. The effect of external
photo-excitation increases the EEM significantly.

The influence of quantum confinement is immediately apparent from all the curves
of Fig. 6.28 since, the 1D EEM depends strongly on the nano-thickness, which is in
direct contrast with the corresponding bulk specimens. It appears from the said figures
that the 1D EEM decreases with the increasing film thickness in a step-like manner
as considered here although the numerical values vary widely and determined by the
constants of the energy spectra. The oscillatory dependence is due to the crossing
over of the Fermi level by the quantized levels. For each coincidence of a quantized
level with the Fermi level, there would be a discontinuity in the density-of-states
function resulting in a peak of oscillations. With large values of film thickness, the
height of the steps decreases and the EEM decreases with increasing film thickness
in non-oscillatory manner and exhibit monotonic decreasing dependence. The height
of step size and the rate of decrement are totally dependent on the band structure. In
Fig. 6.29, we have exhibited the effect of the lowest subband on the EEM when the
electron concentration is varied. A direct assessment of the effect of light intensity
and electron wavelength can be procured form the said figures.

http://dx.doi.org/10.1007/978-3-642-31248-9_1


282 6 The EEM in Quantum Confined Optoelectronic Semiconductors

Fig. 6.28 Plot of the nor-
malized EEM as a function
of lateral film thickness field
for nano wires of n-InSb and
n-InAs in the presence of light
waves in accordance with the
three and the two band models
of Kane in the presence of
external photo-excitation

Fig. 6.29 Plot of the normal-
ized EEM as a function of
linear electron concentration
for nano wires of n-InSb and
n-InAs in the presence of light
waves in accordance with the
three- and the two-band mod-
els of Kane in the presence of
external photo-excitation

6.14 The EEM in Effective Mass Superlattices of Optoelectronic
Semiconductors Under Magnetic Quantization Under
External Photo-Excitation

6.14.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new
dimension in the arena of quantum effect devices through the experimental real-
ization of an important artificial structure known as semiconductor superlattice (SL)
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by growing two similar but different semiconducting materials in alternate layers with
finite thicknesses. The materials forming the alternate layers have the same kind of
band structure but different energy gaps. The concept of SL was developed for the
first time by Keldysh [24] and was successfully fabricated by Esaki and Tsu [25–28].
The SLs are being extensively used in thermal sensors [29, 30], quantum cascade
lasers [31–33], photo-detectors [34, 35], light emitting diodes [36–39], multiplica-
tion [40], frequency multiplication [41], photo-cathodes [42, 43], thin film transistor
[44], solar cells [45, 46], infrared imaging [47], thermal imaging [48, 49], infrared
sensing [50], and also in other microelectronic devices.

The most extensively studied III–V SL is the one consisting of alternate layers of
GaAs and Ga1−x Alx As owing to the relative easiness of fabrication. The GaAs and
Ga1−x Alx As layers form the quantum wells and the potential barriers, respectively.
The III–V SL’s are attractive for the realization of high speed electronic and opto-
electronic devices [51]. In addition to SLs with usual structure, other types of SLs
such as II–VI [52], IV–VI [53] and HgTe/CdTe [54] SL’s have also been investigated
in the literature. The IV–VI SLs exhibit quite different properties as compared to
the III–V SL due to the specific band structure of the constituent materials [55].
The epitaxial growth of II–VI SL is a relatively recent development and the primary
motivation for studying the mentioned SLs made of materials with the large bandgap
is in their potential for optoelectronic operation in the blue [56]. HgTe/CdTe SL’s
have raised a great deal of attention since 1979, when as a promising new materials
for long wavelength infrared detectors and other electro-optical applications [57].
Interest in Hg-based SL’s has been further increased as new properties with potential
device applications were revealed. These features arise from the unique zero bandgap
material HgTe and the direct bandgap semiconductor CdTe which can be described
by the three band mode of Kane. The combination of the aforementioned materials
with specified dispersion relation makes HgTe/CdTe SL very attractive, especially
because of the tailoring of the material properties for various applications by varying
the energy band constants of the SLs. In addition to it, for effective mass SLs, the
electronic subbands appear continually in real space [58, 59].

In Sect. 6.14 of theoretical background, we shall study the EEM in effective mass
superlattices of optoelectronic semiconductors under magnetic quantization in the
presence of light waves. The Sect. 6.15 explores result and discussion for this section.

6.14.2 Theoretical Background

The dispersion relation of the conduction electrons in effective mass superlattices
of III–V semiconductors (whose constituent materials obey the three band mod-
els of Kane) in the presence of external light waves can be expressed following
Sasaki [58, 59] as
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a1 · cos[c15(E, λ, Eg1,�1)a0 + c25(E, λ, Eg2,�2)b0]
− a2 · cos[c15(E, λ, Eg1,�1)a0

−c25(E, λ, Eg2,�2)b0] = cos(L0k) (6.145)

where L0(≡ a0 + b0) is the period length, a0 and b0 are the widths of the barrier and
the well respectively,
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Egoi (Egoi +�i )(E + Egoi + 2
3�i )

,

θi50(E, λ, Egoi ,�i ) = Ci50(λ, Egoi ,�i )

φi50(E)
ψ2

i50(E),

Ci50(λ, Egoi ,�i ) = e2

96mriπc3

I0λ
2

√
εsciε0

Eg0i (Eg0i
+�i )

(Eg0i + 2
3�i )

β
2
i50

4

(
ti50 + ρi50√

2

)2

,

mri is the reduced mass and is given by m−1
ri = (mci )

−1 + m−1
vi , mvi is the effective

mass of the heavy hole at the top of the valance band in the absence of any field,

β i50 ≡
[
(6(Eg0i

+ 2�i/3)(Eg0i
+�i ))/χi50

]1/2
,

χi50 = (6E2
g0i

+ 9Eg0i
�i + 4�2

i ), ti50 =
[
6(Eg0i

+ 2�i/3)
2/χi50

]1/2
,

ρi50 = (4�2
i /3χi50)

1/2,

φi50(E) = Eg0i

(
1 + 2

(
1 + mci

mvi

)
Ii50(E)

Eg0i

)1/2

,
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ψi50(E) =
[(

1 + Egoi − δ′i50

φi50(E)+ δ′i50

)
+ (Egoi − δ′i50)

×
[

1

φi50(E)+ δ′i50
− 1

Egoi + δ′i50

]1/2

×
[

1

φi50(E)+ δ′i50
− Egoi + δ′i50

(Egoi − δ′i50)
2

]1/2
]

δ′i50 = (E2
g0i�i )(χi50)

−1.

In the presence of a quantizing magnetic field B, along x-direction the magneto-
energy spectrum assumes the form

k2
x = ω15(E, λ, n) (6.146)

where

ω15(E, λ, n) = 1

L2
o

[
[cos−1{ f 15(E, λ, n)}]2 − 2eB

�

(
n + 1

2

)
L2

o

]
,

f 15(E, λ, n) = [a1 cos[c15(E, λ, Ego1,�1, n)ao + boc25(E, λ, Ego2,�2, n)]
−a2 cos[c15(E, λ, Ego1,�1, n)ao − boc25(E, λ, Ego2,�2, n)]],

c15(E, λ, Ego1,�1, n) =
[(

2mc1

�2

)
[β150(E, λ, Ego1,�1)] − 2eB

�

(
n + 1

2

)]1/2

,

c25(E, λ, Ego2,�2, n) =
[(

2mc2

�2

)
[β250(E, λ, Ego2,�2)] − 2eB

�

(
n + 1

2

)]1/2

.

The EEM along x-direction in this case can be expressed as

m∗(V0, λ, n) = (�2/2) [ω15(V0, λ, n)]′ (6.147)

where V0 is the Fermi energy in this case and

{ω15(V0, λ, n)}′ = 2{ f 15(V0, λ, n)}′L−2
0 · [cos−1[ f 15(V0, λ, n)]

× [1 − f 15(V0, λ, n)]−1/2],

f 15(V0, λ, n) = [−a1 sin[c15(V0, λ, Ego1,�1, n)ao + boc25(V0, λ, Ego2,�2, n)]
×[[c15(V0, λ, Ego1,�1, n)]′ao + bo[c25(V0, λ, Ego2,�2, n)]′]
+ a2 sin[c15(V0, λ, Ego1,�1, n)ao + boc25(V0, λ, Ego2,�2, n)]
× [[c15(V0, λ, Ego1,�1, n)]′ao − bo[c25(V0, λ, Ego2,�2, n)]′]],
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{c15(V0, λ, Ego1,�1, n)}′
= mc1

�2 [β ′
150(V0, λ, Ego1,�1)/{c15(V0, λ, Ego1,�1, n)}],

{c25(V0, λ, n)}′ = mc2

�2 [β ′
250(V0, λ, Ego2,�2)/{c25(V0, λ, Ego2,�2, n)}],

β ′
i50(V0, λ, Egoi ,�i ) = [

I ′
i50(V0, Egoi ,�i )− θ ′

i50(V0, λ, Egoi ,�i )
]
,

I ′
i50(V0, Egoi ,�i ) = Ii50(V0, Egoi ,�i )

×
[

1

V0
+ 1

V0 + Egoi
+ 1

V0 + Egoi +�i
− 1

V0 + Egoi + 2
3�i

]
, i = 1, 2,

θ ′
i50(V0, λ, Egoi ,�i )

= θi50(V0, λ, Egoi ,�i )

[−θ ′
i50(V0, λ, Egoi ,�i )

θi50(V0, λ, Egoi ,�i )
+ 2ψ ′

i50(V0)

ψi50(V0)

]
,

φ′
i50(V0) = Eg0i

((
1 + mci

mvi

)
I ′
i50(V0, Egoi ,�i )

φi50(V0)

)1/2

,

ψ ′
i50(V0) = −(Egoi − δ′i50)φ

′
i50(V0)

(φi50(V0)+ δ′i50)
2

[
1 + 1

2

[
1

φi50(V0)+ δ′i50
− 1

Egoi + δ′i50

]− 1
2

×
[

1

φi50(V0)+ δ′i50
− (Egoi + δ′i50)

(Egoi − δ′i50)
2

]1/2

+ 1

2

[
1

φi50(V0)+ δ′i50

− Egoi + δ′i50

(Egoi − δ′i50)
2

]− 1
2

·
[

1

φi50(V0)+ δ′i50
− 1

Egoi + δ′i50

]1/2
⎤
⎦

The electron concentration in this case assumes the form

no = gveB

π2�Lo

nmax∑
n=0

[S54(V0, λ, n)+ T54(V0, λ, n)] (6.148)

where

S54(V0, λ, n) =
[[

cos−1 f 15(V0, λ, n)
]2 − 2eB

�

(
n + 1

2

)
L2

0

]1/2

T54(V0, λ, n) =
S0∑

r=1

L(r) [S54(V0, λ, n)] .
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The electron concentration in this particular case when the dispersion relations of
the constituent materials are defined by the perturbed two-band model of Kane can
be expressed as

no = gveB

π2�Lo

nmax∑
n=0

[S55(V0, λ, n)+ T55(V0, λ, n)] (6.149)

where

S55(V0, λ, n) =
[[

cos−1 f 151(V0, λ, n)
]2 − 2eB

�

(
n + 1

2

)
L2

0

]1/2

,

f 151(E, λ, n) = [a1 cos[c151(E, λ, Ego1, n)ao + boc251(E, λ, Ego2, n)]
− a2 cos[c151(E, λ, Ego1, n)ao − boc251(E, λ, Ego2, n)]],

c151(E, λ, n) =
[(

2mc1

�2

)
[ω150(E, λ, Ego1)] − 2eB

�

(
n + 1

2

)]1/2

,

c251(E, λ, n) =
[(

2mc2

�2

)
[ω250(E, λ, Ego2)] − 2eB

�

(
n + 1

2

)]1/2

ωi50(E, λ, Egoi ) ≡ E(1 + αi E)− Bi50(E, λ), Bi50(E, λ)=Ci51(λ, Egoi )ψ
2
i51(E)

φi51(E)
,

Ci51(λ, Egoi ) ≡ e2 I0λ
2 Eg0i

384πc3mri
√
εsciε0

, φi51(E)≡Eg0i

{
1 + 2mci

mri

E(1 + αi E)

Eg0i

}1/2

,

αi = 1/Egoi , ψi51(E) = 2Egoi

φi51(E)
, T55(EF B, λ, n) =

S0∑
r=1

Z B(r) [S55(EF B, λ, n)] .

The EEM in this case can be expressed as

m∗(V0, λ, n) = (�2/2) [ω16(V0, λ, n)]′ (6.150)

where

ω16(V0, λ, n) = 1

L2
o

[
[cos−1{ f 151(V0, λ, n)}]2 − 2eB

�

(
n + 1

2

)
L2

o

]
,

{ω16(V0, λ, n)}′ = 2{ f 151(V0, λ, n)}′L−2
0 · [cos−1[[ f 151(V0, λ, n)]

[1 − f 151(V0, λ, n)]−1/2]],
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f 151(V0, λ, n) = [−a1 sin[c151(V0, λ, Ego1, n)ao + boc251(V0, λ, Ego2, n)]
× [[c151(V0, λ, Ego1, n)]′ao + bo[c251(V0, λ, Ego2, n)]′]
+ a2 sin[c151(V0, λ, Ego1, n)ao + boc251(V0, λ, Ego2, n)]
× [[c151(V0, λ, Ego1, n)]′ao − bo[c251(V0, λ, Ego2, n)]′]],

{c151(V0, λ, Ego1, n)}′ = mc1
�2 [ω150(V0, λ, Ego1)]′/{c151(V0, λ, Ego1, n)},

{c251(V0, λ, Ego2, n)}′ = mc2
�2 [ω250(V0, λ, Ego1)]′/{c251(V0, λ, Ego2, n)},

ω′
i50(V0, λ, Egoi ) = [

1 + 2αi V0 − B ′
i50(V0, λ)

]
,

B ′
i50(V0, λ) =

[−Bi50(V0,λ)φ
′
i51(V0)

φi51(V0)
+ 2Bi50(V0,λ)ψ

′
i51(V0)

ψi51(V0)

]
,

ψ ′
i51(V0) =

[−ψi51(V0)
φi51(V0)

φ′
i51(V0)

]
, φ′

i51(V0) = mci
mri

· Egoi (1+2αi V0)

φi51(V0)
.

The electron concentration when the dispersion relations of the constituent materials
are defined by the perturbed parabolic energy bands can be expressed as

no = gveB

π2�Lo

nmax∑
n=0

[S56(V0, λ, n)+ T56(V0, λ, n)] (6.151)

where

S56(V0, λ, n) =
[[

cos−1 f 152(V0, λ, n)
]2 − 2eB

�

(
n + 1

2

)
L2

0

]1/2

f 152(E, λ, n) = [a1 cos[c152(E, λ, Eg1, n)ao + boc252(E, λ, Eg2, n)]
− a2 cos[c152(E, λ, Eg1, n)ao − boc252(E, λ, Eg2, n)]]

c152(E, λ, Eg1, n) =
[(

2mc1

�2

)
[ρ150(E, λ, Ego1)] − 2eB

�

(
n + 1

2

)]1/2

,

c252(E, λ, Eg2, n) =
[(

2mc2

�2

)
[ρ250(E, λ, Ego2)] − 2eB

�

(
n + 1

2

)]1/2

,

ρi50(E, Egoi , λ) = E − Ci52(λ)

[
1 +

(
2mci

mri

)(
E

Egoi

)]−3/2

,

Ci52(λ) ≡ e2 I0λ
2

96πc3mri
√
εsciε0

, αi = 1

Egoi
,

T56(EF B, λ, n) =
S0∑

r=1

Z B(r) [S56(EF B, λ, n)] .
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The EEM in this case can be written as

m∗(V0, λ, n) = (�2/2) [ω17(V0, λ, n)]′ (6.152)

where

ω17(V0, λ, n)′ = 2{ f 152(V0, λ, n)}′L−2
0 · [cos−1[ f 152(V0, λ, n)]

× [1 − [ f152(V0, λ, n)]−1/2]],
f 152(V0, λ, n) = [−a1 sin[c152(V0, λ, Eg1, n)ao + boc252(V0, λ, Eg2, n)]

×[[c152(V0, λ, Eg1, n)]′ao + bo[c252(V0, λ, Eg2, n)]′]
+ a2 sin[c152(V0, λ, Eg1, n)ao + boc252(V0, λ, Eg2, n)]
×[[c152(V0, λ, Eg1, n)]′ao − bo[c252(V0, λ, Eg2, n)]′]],

{c152(V0, λ, Eg1, n)}′ = mc1
�2 [ρ150(V0, λ)]′/{c152(V0, λ, Eg1, n)}

{c252(V0, λ, Eg2, n)}′ = mc2
�2 [ρ250(V0, λ)]′/{c252(V0, λ, Eg2, n)},

ρ′
i50(E, Egoi , λ) = 1 + Ci52(λ) ·

(
3mci
mri

) [
1 +

(
2mci
mri

) (
E

Egoi

)]−5
2

6.15 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM as functions of 1/B and electron concentration at T = 4.2 K by taking effective
mass super lattices of optoelectronic materials under magnetic quantization in accor-
dance with the perturbed three [using (6.147) and (6.148)], two [using (6.149) and
(6.150)] band models of Kane and that of perturbed parabolic energy bands [using
(6.151) and (6.152)], respectively. In Figs. 6.30 and 6.31, we have plotted the effect
of magnetic field and carrier concentration on the EEM of effective mass superlat-
tices in GaAs/AlGaAs structures. The effect of SdH oscillations has been exhibited
in this case for multi sub-band generation. In this case, the EEM is a subband index
dependent and we have plotted the EEM by considering the lowest subband index.
In both the figures we see that the effect of the external photo-excitation on the EEM
dominated by the parabolic energy law does not tend to modulate with either of the
variable compared to the bulk value of the EEM for InAs and InSb, we find that
the EEM in GaAs/AlGaAs structures are extremely low and therefore the mobility
in superlattices are very large as compared with the value of the mobility of the
constituent materials which is very important from the application point of view for
modern devices made of superlattices.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.30 Plot of the nor-
malized EEM for the lowest
subband index as a function
of inverse magnetic field of
effective mass superlattices of
GaAs/AlGaAs in the presence
of light waves in accordance
with the three, the two-band
models of Kane and parabolic
energy band model in the
presence of external photo-
excitation

Fig. 6.31 Plot of the nor-
malized EEM for the lowest
subband index as a function
of carrier concentration of
effective mass superlattices of
GaAs/AlGaAs in the presence
of light waves in accordance
with the three, the two-band
models of Kane and parabolic
energy band model in the
presence of external photo-
excitation

6.16 The EEM in Nanowire Effective Mass Superlattices
of Optoelectronic Semiconductors in the Presence
of External Photo-Excitation

6.16.1 Introduction

We shall study the EEM in nano wire effective mass superlattices of optoelec-
tronic semiconductors in the presence of photo excitation in Sect. 6.16.2 of theo-
retical background and the Sect. 6.17 explores the result and discussions pertaining
to Sect. 6.16.2.
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6.16.2 Theoretical Background

The dispersion relation of the conduction electrons for nano wire effective mass
superlattices in accordance with the perturbed three-band model of Kane in the
presence of light waves is given by

k2
x = ω19(E, λ, ny, nz) (6.153)

where

ω19(E, λ, ny, nz) =
[

1

L2
0

[
cos−1{ f 3(E, λ, ny, nz)}

]2 − H(ny, nz)

]

f 3(E, λ, ny, nz) = [a1 cos[e1(E, λ, Eg1 ,�1, ny, nz)ao

+ boe2(E, λ, Eg2 ,�2, ny, nz)]
− a2 cos[e1(E, λ, Eg1 ,�1, ny, nz)ao

− boe2(E, λ, Eg2 ,�2, ny, nz)]],
e2

i (E, λ, Egoi ,�i , ny, nz) =
[(

2mci

�2

)
[βi50(E, λ, Egoi ,�i )] − H(ny, nz)

]

and

H(ny, nz) =
[(

nyπ

dy

)2

+
(

nzπ

dz

)2
]
.

The expression of the electron concentration in this case can be written as

n0 = 2gv

π

nymax∑
ny=1

nzmax∑
nz=1

[Q23(V1, λ, ny, nz)+ Q24(V1, λ, ny, nz)] (6.154)

where V1 is the Fermi energy in this case,

Q23(V1, λ, ny, nz) =
√
ω19(V1, λ, ny, nz),

Q24(V1, λ, ny, nz) =
R=R0∑
R=1

L(R)Q23(V1, λ, ny, nz) and

L(R) = 2(kB T )2R(1 − 21−2R)ξ(2R)
∂

2R

∂V
2R

1

.

The EEM along the x-direction in this case can be expressed as

m∗(V1, λ, ny, nz) = (�2/2)
[
ω19(V1, λ, ny, nz)

]′ (6.155)
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where

[ω19(V1, λ, ny, nz)]′ =
[
1 − f

2
3(V1, λ, ny, nz)

]−1/2 [
2[ f 3(V1, λ, ny, nz)]′

]
[
cos−1 { f 3(V1, λ, ny, nz)

}]
,

[ f 3(V1, λ, ny, nz)]′ = −a1 sin
[
a0e1(V1, λ, Eg1 ,�1, ny, nz)

+ boe2(V1, λ, Eg2 ,�2, ny, nz)
] · [a0[e1(V1, λ, Eg1 ,�1, ny, nz)]′

+ bo[e2(V1, λ, Eg2 ,�2, ny, nz)]′
]+ a2 sin

[
a0e1(V1, λ, Eg1 ,�1, ny, nz)

− boe2(V1, λ, Eg2 ,�2, ny,nz)
] · [a0[e1(V1, λ, Eg1 ,�1, ny, nz)]

− bo[e2(V1, λ, Eg2 ,�2, ny, nz)]′
]

and
[
ei (V1, λ, Egoi ,�i , ny, nz)

]′ = mciβi50(V1, λ, Egoi ,�i )

�2ei (V1, λ, Egoi ,�i , ny, nz)
.

In accordance with the perturbed two-band model of Kane the electron concen-
tration per unit length is given by,

n0 = 2gv

π

nymax∑
ny=1

nzmax∑
nz=1

[
Q25(V1, λ, ny, nz)+ Q26(V1, λ, ny, nz)

]
(6.156)

where

Q25(V1, λ, ny, nz) =
[√
ω20(V1, λ, ny, nz)

]
,

Q26(V1, λ, ny, nz) =
R=R0∑
R=1

L(R)
[
Q25(V1, λ, ny, nz)

]
,

ω20(V1, λ, ny, nz) =
[

1

L2
0

[
cos−1 f 4(V1, λ, ny, nz)

]2 − H(ny, nz)

]
,

f 4(V1, λ, ny, nz) = [
a1 cos

[
a0g1(V1, λ, Eg1, ny, nz)− b0g2(V1, λ, Eg2, ny, nz)

]
−a2 cos

[
a0g1(V1, λ, Eg1, ny, nz)− b0g2(V1, λ, Eg2, ny, nz)

]]

and g2
i (V1, λ, Egoi , ny, nz) =

[
2mci
�2 ωi50(V1, λ, Egoi )− H(ny, nz)

]
.

The EEM in this case can be expressed as

m∗(V1, λ, ny, nz) = (�2/2)
[
ω20(V1, λ, ny, nz)

]′ (6.157)
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where

[ω20(V1, λ, ny, nz)]′ = 2[ f 4(V1, λ, ny, nz)]′
[
cos−1 f 4(V1, λ, ny, nz)

]
√

1 − f
2
4(V1, λ, ny, nz)

,

[ f 4(V1, λ, ny, nz)]′=−a1 sin[a0g1(V1, λ, Eg1, ny, nz)+ b0g2(V1, λ, Eg2, ny, nz)]
× [

a0[g1(V1, λ, Eg1, ny, nz)]′ + b0[g2(V1, λ, Eg2, ny, nz)]′
]

− a2 sin
[
a0g1(V1, λ, Eg1, ny, nz)− b0g2(V1, λ, Eg2, ny, nz)

]
× [

a0[g1(V1, λ, Eg1, ny, nz)]′ − b0[g2(V1, λ, Eg2, ny, nz)]′
]
,

and [gi (V1, λ, Egoi , ny, nz)]′ = mci [ωi50(V1, λ, Egoi )]′
�2gi (V1, λ, Egoi , ny, nz)

.

In accordance with the perturbed parabolic energy bands, the electron concentra-
tion per unit length is given by,

n0 = 2gv

π

nymax∑
ny=1

nzmax∑
nz=1

[
Q251(V1, λ, ny, nz)+ Q261(V1, λ, ny, nz)

]
(6.158)

where

Q251(V1, λ, ny, nz) =
[√
ω201(V1, λ, ny, nz)

]
,

Q261(V1, λ, ny, nz) =
R=R0∑
R=1

L(R)
[
Q251(V1, λ, ny, nz)

]
,

ω201(V1, λ, ny, nz) =
[

1

L2
0

[
cos−1 f 41(V1, λ, ny, nz)

]2 − H(ny, nz)

]
,

f 41(V1, λ, ny, nz)

= [a1 cos[a0g11(V1, λ, Eg1, ny, nz)− b0g21(V1, λ, Eg2, ny, nz)]
−a2 cos[a0g11(V1, λ, Eg1, ny, nz)− b0g21(V1, λ, Eg2, ny, nz)]]

and g2
i1(V1, λ, Egoi , ny, nz) =

[
2mci
�2 ρi50(V1, Egoi , λ)− H(ny, nz)

]
.

The EEM in this case can be expressed as

m∗(V1, λ, ny, nz) = (�2/2)
[
ω201(V1, λ, ny, nz)

]′ (6.159)
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where

[ω201(V1, λ, ny, nz)]′ = 2[ f 41(V1, λ, ny, nz)]′
[
cos−1 f 41(V1, λ, ny, nz)

]
√

1 − f
2
41(V1, λ, ny, nz)

,

[ f 41(V1, λ, ny, nz)]′
= −a1 sin

[
a0g11(V1, λ, Eg1, ny, nz)+ b0g21(V1, λ, Eg2, ny, nz)

]
[a0[g11(V1, λ, Eg1, ny, nz)]′ + b0[g21(V1, λ, Eg2, ny, nz)]′]
− a2 sin

[
a0g11(V1, λ, Eg1, ny, nz)− b0g21(V1, λ, Eg2, ny, nz)

]
[
a0[g11(V1, λ, Eg1, ny, nz)]′ − b0[g21(V1, λ, Eg2, ny, nz)]′

]
,

and [gi1(V1, λ, Egoi , ny, nz)]′ = mci [ρi50(V1, Egoi , λ)]′
�2gi1(V1, λ, Egoi, ny, nz)

.

6.17 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for the ny = 1 and nz = 1 as a function of the film thickness at T = 4.2 K by
taking nano wire effective mass super lattices of optoelectronic materials in accor-
dance with the perturbed three [using (6.154) and (6.155)], two [using (6.156) and
(6.157)] band models of Kane and that of perturbed parabolic energy bands [using
(6.158) and (6.159)] respectively in Fig. 6.32. Figure 6.32 exhibits the variation of
EEM in the nano wire effective mass superlattices of GaAs/AlGaAs by considering
the quantum limit approximation. The EEM is greatest for the lowest sub-bands and
for higher sub-bands the numerical values of the EEMs will be less. It appears that
the EEM in such structure decreases with the increase in the film thickness in a
non-linear way for the three- and the two-band energy models. Although, it appears
that the EEM in case of parabolic energy band is linear; however, it depends on the
photo-excitation factor, which makes the slow variation of EEM with both intensity
and wavelength.

6.18 The EEM in Superlattices of Optoelectronic
Semiconductors with Graded Interfaces Under Magnetic
Quantization in the Presence of External Photo-Excitation

6.18.1 Introduction

We note that all the aforementioned SLs have been proposed with the assumption that
the interfaces between the layers are sharply defined, of zero thickness, i.e., devoid

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 6.32 Plot of the nor-
malized EEM (ny = 1 and
nz = 1) as a function of lateral
film thickness of nano wire
effective mass superlattices of
GaAs/AlGaAs in the presence
of light waves in accordance
with the three, the two-band
models of Kane and parabolic
energy band model in the
presence of external photo-
excitation

of any interface effects. The SL potential distribution may be then considered as a
one dimensional array of rectangular potential wells. The aforementioned advanced
experimental techniques may produce SLs with physical interfaces between the two
materials crystallo-graphically abrupt; adjoining their interface will change at least
on an atomic scale. As the potential form changes from a well (barrier) to a barrier
(well), an intermediate potential region exists for the electrons. The influence of finite
thickness of the interfaces on the electron dispersion law is very important, since;
the electron energy spectrum governs the electron transport in SLs [60, 61].

We shall study the EEM in superlattices of optoelectronic semiconductors with
graded interfaces under magnetic quantization in the presence of photo excitation
in Sect. 6.18.2 of theoretical background and the Sect. 6.19 explores the result and
discussions pertaining to Sect. 6.18.2.

6.18.2 Theoretical Background

The energy spectrum in superlattices of III–V compounds with graded interfaces in
the presence of light waves whose constituent materials are defined by perturbed
three-band model of Kane can be written following [60, 61] as

cos(Lok) = 1

2
�115(E, ks) (6.160)
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where

�115(E, ks) = [2 cosh {X215(E, ks)} cos {Y215(E, ks)}

+ ε215(E, ks) sinh {X215(E, ks)} sin {Y215(E, ks)} +�21

[(
K 2

215(E, ks)

K225(E, ks)

−3K225(E, ks)

)
cosh {X215(E, ks)} sin {Y215(E, ks)} +

(
3K215(E, ks)

−{K225(E, ks)}2

K215(E, ks)

)
sinh {X215(E, ks)} cos {Y215(E, ks)}

]

+�21

[
2
(
{K215(E, ks)}2 − {K225(E, ks)}2

)
cosh {X215(E, ks)} cos {Y215(E, ks)}

+ 1

12

[
5 {K225(E, ks)}3

K215(E, ks)
+ 5 {K215(E, ks)}3

K225(E, ks)

−34K225(E, ks)K215(E, ks)

]
sinh {X215(E, ks)} sin {Y215(E, ks)}

]]

X215(E, ks) = K215(E, ks) [a0 −�21] ,

K215(E, ks) ≡
[
−2mc2

�2 β150(E − V0, λ, Ego2,�2)+ k2
s

]1/2

,

ε(E, ks) ≡
[

K215(E, ks)

K225(E, ks)
− K225(E, ks)

K215(E, ks)

]
, k2

s = k2
x + k2

y

Y215(E, ks) = K225(E, ks) [b0 −�21] and

K225(E, ks) =
[

2mc1β150(E, λ, Ego1,�1)

�2 − k2
s

]1/2

.

In the presence of a quantizing magnetic field B along z-direction, the simplified
magneto-dispersion relation can be written as

k2
z = ω215(E, λ, n) (6.161)

where

ω215(E, λ, n) =
[

1

L2
0

[
cos−1

[
1

2
f215(E, λ, n)

]]2

− 2 |e| B

�

(
n + 1

2

)]
,

f215(E, λ, n) = [2 cosh {M215(n, E)} cos {N215(n, E)} + Z215(n, E)

sinh {M215(n, E)} sin {N215(n, E)}
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+�21

[(
{I215(n, E)}2

I225(n, E)
− 3I225(n, E)

)
cosh {M215(n, E)}

× sin {N215(n, E)} +
(

3I215(n, E)− {I225(n, E)}2

I215(n, E)

)

× sinh {M215(n, E)} cos {N215(n, E)}] +�21

× [
2({I215(n, E)}2 −{I225(n, E)}2) cosh {M215(n, E)} cos {N215(n, E)}

+ 1

12

(
5 {I225(n, E)}3

I215(n, E)
+5 {I215(n, E)}3

I225(n, E)
−{34I225(n, E)I215(n, E)}

)

sinh {M215(n, E)} sin {N215(n, E)}]
]
,

Z215(n, E) ≡
[

I215(n, E)

I225(n, E)
− I225(n, E)

I215(n, E)

]
,M215(n, E) = I215(n, E) [a0 −�21] ,

I215(n, E) =
[
−2mc2

�2 β250(E − V0, λ, Ego2,�2)+ 2 |e| B

�

(
n + 1

2

)]1/2

N215(n, E) = I225(n, E) [b0 −�21] and

I225(n, E) ≡
[

2mc1

�2 β150(E, λ, Ego1,�1)−
{

2 |e| B

�

(
n + 1

2

)}]1/2

.

The electron concentration is given by

no = gveB

π2�

[
nmax∑
n=0

[Q27(V2, λ, n)+ Q28(V2, λ, n)]
]

(6.162)

where Q27(V2, λ, n) = [ω215(V2, λ, n)]1/2. V2 is the Fermi energy in the present
case,

Q28(V2, λ, n) =
R=R0∑
R=1

L(R)
[
Q27(V2, λ, n)

]
and

L(R) = 2(kB T )2R(1 − 21−2R)ξ(2R)
∂2R

∂V 2R
2

.

The EEM along the z-direction in this case can be expressed as

m∗(V2, λ, n) = (�2/2) [ω215(V2, λ, n)]′ (6.163)
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where

ω′
215(V2, λ, n) = [

2M ′
215(n, V2)sinh {M215(n, V2)} cos {N215(n, V2)}

+ Z215(n, V2)M
′
215(n, V2)cosh {M215(n, V2)} sin {N215(n, V2)}

− 2N ′
215(n, V2) sin {N215(n, V2)} cosh {M215(n, V2)}

+ Z ′
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2I215(n, V2)I ′

215(n, V2)
}

I225(n, V2)
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{

I 2
215(n, V2)I ′

225(n, V2)
}

I 2
225(n, V2)

− 3I ′
225(n, V2)

)

× cosh {M215(n, V2)} sin {N215(n, V2)} +
(

−3I225(n, V2)+ {I215(n, V2)}2

I225(n, V2)

)

× {
M ′

215(n, V2)sinh {M215(n, V2)} sin {N215(n, V2)}
+N ′

215(n, V2)cosh {M215(n, V2)} cos {N215(n, V2)}
}

+
(

− {
2I225(n, V2)I ′

225(n, V2)
}

I215(n, V2)
+
{

I 2
225(n, V2)I ′

215(n, V2)
}

I 2
215(n, V2)

+ 3I ′
215(n, V2)

)

× sinh {M215(n, V2)} cos {N215(n, V2)} +
(

+3I215(n, V2)− {I225(n, V2)}2

I215(n, V2)

)

× {
M ′

215(n, V2)cosh {M215(n, V2)} cos {N215(n, V2)}
−N ′

215(n, V2) sin {N215(n, V2)} sinh {M215(n, V2)}
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4(
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′
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}
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215(n, V2)

× sinh {M215(n, V2)} cos {N215(n, V2)}
− N ′

215(n, V2) cosh {M215(n, V2)} sin {N215(n, V2)}
+ 1

12

(
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I 2
225(n, V2)
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I ′
225(n, V2)
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− 5 {I225(n, V2)}3 I ′
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I 2
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+ 15
{

I 2
215(n, V2)
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I ′
215(n, V2)
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− 5 {I215(n, V2)}3 I ′
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I 2
225(n, V2)

− {
34I ′

225(n, V2)I215(n, V2)
}

−34I225(n, V2)I
′
215(n, V2)

)
sinh {M215(n, V2)} sin {N215(n, V2)}

+
(

5 {I225(n, V2)}3

I215(n, V2)
+ 5 {I215(n, V2)}3

I225(n, V2)
− {34I225(n, V2)I215(n, V2)}

)

{
M ′

215(n, V2) cosh {M215(n, V2)} sin {N215(n, V2)}
+N ′

215(n, V2)sinh {M215(n, V2)} cos {N215(n, V2)}
}] ]

,
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M ′
215(n, V2) = I ′

215(n, V2) [a0 −�21] , I ′
215(V2, n) = mc2β

′
250(V2, λ, Ego2,�2)

−�2 I215(V2, n)
,

I ′
225(V2, n) = mc1β

′
150(V2, λ, Ego1,�1)

�2 I225(V2, n)
,

I215(V2, n) =
[

2eB

�

(
n + 1

2

)
− 2mc2

�2 β250(V2, λ, Ego2,�2)

]1/2

,

N215(V2, n) = I225(V2, n) [b0 −�21] ,

I225(V2, n) =
[

2mc1β150(V2, λ, Ego1,�1)

�2 − 2eB

�

(
n + 1

2

)]1/2

,

Z ′
215(V2, n) =

[−Z215(V2, n)I ′
215(V2, n)

I215(V2, n)
− Z215(V2, n)I ′

225(V2, n)

I225(V2, n)

+(I215(V2, n)I225(V2, n))−1 [2I ′
215(V2, n)I215(V2, n)− 2I ′

225(V2, n)I225(V2, n)
]]
.

For perturbed two-band model of Kane the forms of the electron concentration
and the EEM remain same where

I215(V2, n) =
[

2eB

�

(
n + 1

2

)
− 2mc2

�2 ω250(V2, λ, Ego2)

]1/2

,

I225(V2, n) =
[

2mc1ω150(V2, λ, Ego1)

�2 − 2eB

�

(
n + 1

2

)]1/2

,

I ′
215(V2, n) = mc2ω

′
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�2 I215(V2, n)
, and

I ′
225(V2, n) =

[
mc1ω

′
150(V2, λ, Ego1)

�2 I225(V2, n)

]
.

For perturbed parabolic energy bands, the forms of the electron concentration,
and the EEM remain same where

I215(V2, n) =
[

2eB

�

(
n + 1

2

)
− 2mc2

�2 ρ250(V2, λ, Ego2)

]1/2

,

I225(V2, n) =
[
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�

(
n + 1

2

)]1/2

,

I ′
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′
250(V2, λ, Ego2)

�2 I215(V2, n)
and

I ′
225(V2, n) =

[
mc1ρ

′
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]
.
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Fig. 6.33 Plot of the normal-
ized EEM as a function of
light intensity for superlattices
of GaAs/AlGaAs with graded
interfaces in the presence of
light waves in accordance with
the two-band model of Kane
in the presence of external
photo-excitation

6.19 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for the first subband as functions of light intensity as shown in Fig. 6.33 at
T = 4.2 K by taking superlattices of optoelectronic materials with graded interfaces
under magnetic quantization in accordance with the perturbed three [using (6.162)
and (6.163)] band model of Kane. It appears that with the increase in the light
intensity, the EEM increases sharply as the wavelength varies for the present case.

With the incorporation of different subbands, discontinuous behavior in the EEM
would be expected due to the generation of the Landau subbands. Incidentally, in this
case, we have limited ourselves with the lowest energy subband at low temperatures
where the electrons will be mostly occupied for prominent quantum effects.

6.20 The EEM in Quantum Wire Superlattices of Optoelectronic
Semiconductors with Graded Interfaces in the Presence
of External Photo-Excitation

6.20.1 Introduction

We shall study the EEM in quantum wire superlattices of optoelectronic semicon-
ductors with graded interfaces in the presence of photo excitation in Sect. 6.20.2 of
theoretical background and the Sect. 6.21 explores the result and discussions pertain-
ing to Sect. 6.20.2.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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6.20.2 Theoretical Background

The dispersion relation in accordance with the perturbed three-band model of Kane,
in this case, is given by

k2
x = ω225(E, λ, ny, nz) (6.164)

where

ω225(E, λ, ny, nz) =
[

1

L2
0

[
cos−1 1

2
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]2

− H(ny, nz)

]
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[
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}
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{
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}
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{
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{
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{
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(
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]]
,
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[
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]
,
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,
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.

The electron concentration per unit length is given by

n0 = 2gv

π

nymax∑
ny=1

nzmax∑
nz=1

[
Q29(V3, λ, ny, nz)+ Q30(V3, λ, ny, nz)

]
(6.165)
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where

Q29(V3, λ, ny, nz) =
[√
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]
,
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R=R0∑
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L(R)
[
Q29(V3, λ, ny, nz)

]
,

L(R) = 2(kB T )2R(1 − 21−2R)ξ(2R)
∂2R

∂V 2R
3

and V3 is the Fermi energy in the present case.
The EEM along x-direction in this case can be expressed as

m∗(V3, λ, ny, nz) = (�2/2)
[
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]′ (6.166)
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315(ny, nz, V3) cosh{M315(ny, nz, V3)} sin{N315(ny, nz, V3)}

+ N ′
315(ny, nz, V3) sinh{M315(ny, nz, V3)} cos{N315(ny, nz, V3)}}

]]
,

M ′
315(ny, nz, V3) = I ′

315(ny, nz, V3) [a0 −�21] ,

I ′
315(V3, ny, nz) = mc2β

′
250(V3, λ, Ego2,�2)

�2 I315(V3, ny, nz)
,

N ′
315(ny, nz, V3) = I ′

325(ny, nz, V3) [b0 −�21] ,

I ′
325(V3, ny, nz) = mc1β

′
150(V3, λ, Ego2,�2, ny, nz)

�2 I325(V3, ny, nz)
,
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I315(ny, nz, V3) =
[
−2mc2

�2 β250(V3, λ, Ego2,�2)+ H(ny, nz)

]1/2

,

N315(ny, nz, V3) = I325(ny, nz, V3) [b0 −�21] ,

I325(ny, nz, V3) =
[

2mc1

�2 β150(V3, λ, Ego1,�1)− H(ny, nz)

]1/2

and

Z ′
315(V3, ny, nz) =

[−Z315(V3, ny, nz)I ′
315(V3, ny, nz)

I315(V3, ny, nz)

− Z315(V3, ny, nz)I ′
325(V3, ny, nz)

I325(V3, ny, nz)
+ (I315(V3, ny, nz)I325(V3, ny, nz))

−1

[2I ′
315(V3, ny, nz)I315(V3, ny, nz)− 2I ′

325(V3, ny, nz)I325(V3, ny, nz)]
]
.

For perturbed two-band model of Kane, the form of electron concentration per
unit length and the field emitted current remain same where

I315(ny, nz, V3) =
[

H(ny, nz)− 2mc2

�2 ω250(V3, λ, Ego2)

]1/2

,

I ′
315(V3, ny, nz) = mc2ω

′
250(V3, λ, Ego2)

�2 I315(V3, ny, nz)
,

I325(ny, nz, V3) =
[
−H(ny, nz)+ 2mc1

�2 ω150(V3, λ, Ego1)

]1/2

,

I ′
325(V3, ny, nz) = mc1ω

′
150(V3, λ, Ego1)

�2 I325(V3, ny, nz)
.

For perturbed parabolic energy bands, the form of electron concentration per unit
length and the field emitted current remain same where

I315(ny, nz, V3) =
[

H(ny, nz)− 2mc2

�2 ρ250(V3, λ, Ego2)

]1/2

,

I ′
315(V3, ny, nz) = mc2ρ

′
250(V3, λ, Ego2)

�2 I315(V3, ny, nz)
,

I325(ny, nz, V3) =
[
−H(ny, nz)+ 2mc1

�2 ρ150(V3, λ, Ego1)

]1/2

,

I ′
325(V3, ny, nz) = mc1ρ

′
150(V3, λ, Ego1)

�2 I325(V3, ny, nz)
.



6.21 Results and Discussion 305

Fig. 6.34 Plot of the normal-
ized EEM as a function of
linear electron concentration
of quantum wire superlattices
of GaAs/AlGaAs with graded
interfaces in the presence of
light waves in accordance with
the two-band model of Kane
in the presence of external
photo-excitation

6.21 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for ny = 1 and nz = 1 as a function of electron concentration at T = 4.2 K by
taking quantum wire super lattices of optoelectronic materials with graded interfaces
in accordance with the perturbed two-band model of Kane. In Fig. 6.34, we have
plotted the EEM as function of electron concentration per unit length in quantum
wires of GaAs/AlGaAs superlattices with graded interfaces. It appears from Fig. 6.34
that the effect of a single subband linearly increases the EEM for low value of
wavelength.

It may be noted that with the increase in the wavelength, the EEM tends to coincide
with that of the lower wavelength values at higher carrier concentration. For the
purpose of condensation, the electron statistics and the EEM for this chapter has
been presented in Table 6.1.

6.22 Open Research Problems

(R6.1) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for
the bulk materials whose respective dispersion relations of the carriers in
the absence of any field is given in Chap. 1 in the presence of strong light
waves which change the original band structure and consider its effect in
the subsequent: study in each case.

(R6.2) Investigate the same set of masses as defined in (R6.1) in the presence
of an arbitrarily oriented non-uniform light waves for all the materials as
considered (R6.1).

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R6.3) Investigate the same set of masses as defined in (R6.1) in the presence of
an arbitrarily oriented non-quantizing alternating non-uniform light waves
for all the cases of (R6.1).

(R6.4) Investigate the same set of masses as defined in (R6.1) for the heavily
doped materials in the presence of Gaussian, exponential, Kane, Halperin,
Lax, and Bonch-Bruevich types of band tails for all materials whose unper-
turbed carrier energy spectra are defined in (R6.1).

(R6.5) Investigate the same set of masses as defined in (R6.1) for all the materials
in the presence of arbitrarily oriented non-quantizing non-uniform light
waves for all the appropriate cases of problem (R6.4).

(R6.6) Investigate the same set of masses as defined in (R6.1) for all the materials
in the presence of arbitrarily oriented non-quantizing alternating light
waves for all the appropriate cases of problem (R6.4).

(R6.7) Investigate the same set of masses as defined in (R6.1) for the negative
refractive index, organic, magnetic, and other advanced optical materials
in the presence of arbitrarily oriented light waves.

(R6.8) Investigate the same set of masses as defined in (R6.1) in the presence of
alternating non-quantizing light waves for all the problems of (R6.7).

(R6.9) Investigate the same set of masses as defined in (R6.1) for all the quan-
tum confined materials (i.e., multiple quantum wells and wires) whose
unperturbed carrier energy spectra are defined in (R6.1) in the presence
of arbitrary oriented quantizing magnetic field by including the effects of
spin and broadening respectively.

(R6.10) Investigate the same set of masses as defined in (R6.1) in the presence
of an additional arbitrarily oriented alternating quantizing magnetic field,
respectively, for all the problems of (R6.9).

(R6.11) Investigate the same set of masses as defined in (R6.1) in the presence
of arbitrarily oriented alternating quantizing magnetic field and arbitrary
oriented non-quantizing non-uniform light waves, respectively, for all the
problems of (R6.9).

(R6.12) Investigate the same set of masses as defined in (R6.1) in the presence
of arbitrary oriented alternating non- uniform quantizing magnetic field
and additional arbitrary oriented non-quantizing alternating light waves
respectively for all the problems of (R6.9).

(R6.13) Investigate the same set of masses as defined in (R6.1) in the presence
of arbitrary oriented and crossed quantizing magnetic and electric fields
respectively for all the problems of (R6.9).

(R6.14) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate low-dimensional systems of this chapter in the presence of finite
potential wells.

(R6.15) Investigate the same set of masses as defined in (R6.1) for all the appropri-
ate low-dimensional systems of this chapter in the presence of parabolic
potential wells.

(R6.16) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate systems of this chapter forming quantum rings.
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(R6.17) Investigate the same set of masses as defined in (R6.1) for all the above
appropriate problems in the presence of elliptical Hill and quantum square
rings respectively.

(R6.18) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes.

(R6.19) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes in the presence of non-quantizing non-uniform alter-
nating light waves.

(R6.20) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes in the presence of non-quantizing non-uniform alter-
nating magnetic field.

(R6.21) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes in the presence of crossed electric and quantizing mag-
netic fields.

(R6.22) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nano-tubes for all the materials whose unperturbed carrier
dispersion laws are defined in Chap. 1.

(R6.23) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating
light waves for all the materials whose unperturbed carrier dispersion
laws are defined in Chap. 1.

(R6.24) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating
magnetic field for all the materials whose unperturbed carrier dispersion
laws are defined in Chap. 1.

(R6.25) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nano-tubes in the presence of non-uniform light waves for
all the materials whose unperturbed carrier dispersion laws are defined in
Chap. 1.

(R6.26) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of alternating quantizing mag-
netic fields for all the materials whose unperturbed carrier dispersion laws
are defined in Chap. 1.

(R6.27) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of crossed electric and quantiz-
ing magnetic fields for all the materials whose unperturbed carrier disper-
sion laws are defined in Chap. 1.

(R6.28) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1.

(R6.29) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1, in the presence of an arbitrarily oriented
non-quantizing non-uniform additional electric field.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R6.30) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of non-quantizing alternating
additional magnetic field.

(R6.31) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of quantizing alternating
additional magnetic field.

(R6.32) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of crossed electric and quan-
tizing magnetic fields.

(R6.33) Investigate the same set of masses as defined in (R6.1) for heavily doped
nipi structures for all the appropriate cases of all the above problems.

(R6.34) Investigate the same set of masses as defined in (R6.1) for the appro-
priate accumulation layers of all the materials whose unperturbed carrier
energy spectra are defined in Chap. 1 in the presence of crossed electric and
quantizing magnetic fields by considering electron spin and broadening
of Landau levels.

(R6.35) Investigate the same set of masses as defined in (R6.1) for quantum
confined III–V, II–VI, IV–VI, HgTe/CdTe effective mass superlattices
together with short period, strained layer, random, Fibonacci, poly-type
and sawtooth superlattices.

(R6.36) Investigate the same set of masses as defined in (R6.1) in the presence of
quantizing magnetic field, respectively, for all the cases of (R6.35).

(R6.37) Investigate the same set of masses as defined in (R6.1) in the presence of
non-quantizing non-uniform additional electric field, respectively, for all
the cases of (R6.35).

(R6.38) Investigate the same set of masses as defined in (R6.1) in the presence of
non-quantizing alternating light waves, respectively, for all the cases of
(R6.35).

(R6.39) Investigate the same set of masses as defined in (R6.1) in the presence of
crossed electric and quantizing magnetic fields, respectively, for all the
cases of (R6.35).

(R6.40) Investigate the same set of masses as defined in (R6.1) for heavily doped
quantum confined superlattices for all the problems of (R6.35).

(R6.41) Investigate the same set of masses as defined in (R6.1) in the presence of
quantizing non-uniform magnetic field, respectively, for all the cases of
(R6.40).

(R6.42) Investigate the same set of masses as defined in (R6.1) in the presence of
crossed electric and quantizing magnetic fields, respectively, for all the
cases of (R6.40).

(R6.43) Investigate the same set of masses as defined in (R6.1) for all the systems
in the presence of strain.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R6.44) Investigate all the problems of this chapter by removing all the mathemati-
cal approximations and establishing the respective appropriate uniqueness
conditions.
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Part III
Influence of Intense Electric Field on the

EEM in Optoelectronic Semiconductors



Chapter 7
The EEM in the Presence of Intense
Electric Field

7.1 Introduction

With the advent of modern nanodevices, there has been considerable interest in
studying the electric field-induced processes in semiconductors having different
band structures. It appears from the literature that the studies have been made on the
assumption that the carrier dispersion laws are invariant quantities in the presence of
intense electric field, which is not fundamentally true. In this chapter, we shall study
the EEM in quantum confined optoelectronic semiconductors under strong electric
field. In Sect. 7.2.1, the EEM in the bulk specimens said compounds under strong
electric field has been investigated. In Sect. 7.2.2, the EEM in the presence of an arbi-
trarily oriented quantizing magnetic field whose unperturbed electron energy spectra
are, respectively, defined by the three- and two-band models of Kane together with
parabolic energy bands has been studied. In Sects. 7.2.3, 7.2.4 and 7.2.5, the EEM
in quantum wells, inversion layers, and nipi structures of optoelectronic materials
under strong electric field has been explored. Section 7.2.6 contains the investiga-
tion of the EEM in quantum wires of optoelectronic semiconductors. In Sect. 7.2.7,
the EEM in field effective mass superlattices of optoelectronic semiconductors in
the presence of strong electric field under magnetic quantization has been studied.
In Sect. 7.2.7 we have investigated the EEM in quantum wire effective mass super-
lattices of Kane-type semiconductors. In Sect. 7.2.8 the EEM in superlattices of
Kane- type compounds with graded interfaces under magnetic quantization has been
investigated. In Sect. 7.2.9 the EEM in quantum wire superlattices of optoelectronic
semiconductors with graded interfaces has been studied. Section 7.3 contains the
results and discussion pertinent to this chapter. Section 7.4 presents open research
problems.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 319
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_7, © Springer-Verlag Berlin Heidelberg 2013
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7.2 Theoretical Background

7.2.1 The EEM in Bulk Optoelectronic Semiconductors Under
Strong Electric Field

The E − k dispersion relation in the presence of an external electric field Fs along
x-axis for III-V, ternary and quaternary materials whose unperturbed energy band
structures are defined by the well-known three band model of Kane can be expressed
as [1]

k2
x

2mc

�2

[
I11(E)

1+�(E,F)
] + k2

y

2mc

�2 I11(E)
+ k2

z

2mc

�2 I11(E)
= 1 (7.1)

where,

�(E, F) =
(

mc

2m2
r

)[
F2

�
2 E2

g(Eg − δ′)2
] 1

η3
1(E)

1

(η1(E)+ δ′)4
,

×
⎡
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(
η1(E)+ Eg

η1(E)− E ′
g

)1/2
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(
η1(E)− Eg

η1(E)+ Eg

)1/2
⎤
⎦

2

,

F = eFs , δ
′ = E2

g�

χ
, χ = 6E2

g + 9Eg .�+ 4�2, η1(E) =
[

E2
g + 2mc Eg I11(E)

mr

]1/2

,

P = r2
0

2

(
Eg − δ′

Eg + δ′

)
, r0 =

{
6.

(
Eg + 2�

3

)
.(Eg +�)

χ

}1/2

,

E
′
g = Eg(Eg − 3δ′)

Eg + δ′
, Q = t2/2. and t =

{
6
(
Eg + 2�

3

)
χ

}1/2

In (7.1), the coefficients of kx , ky and kz are not same and for this reason, this
basic equation is “anisotropic” in nature together with the fact that the anisotropic
dispersion relation is the ellipsoid of revolution in the k-space.

From (7.1) the expressions of the effective electron masses along x, y, and z
directions can, respectively, be written as

m∗
x (E, F) = �

2kx
∂kx

∂E

∣∣∣∣
ky=0,kz=0

= mc [1 +�(E, F)]−2 [[1 +�(E, F)] [I11(E)]
′ − [I11(E)]�

′(E, F)
]

(7.2)
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m∗
y(E, F) = �

2ky
∂ky
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= mc [I11(E)]
′ (7.3)

m∗
z (E, F) = �

2kz
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∂E
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= mc [I11(E)]
′ (7.4)

where,
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η1(E)
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η1(E)+ δ′
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+
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⎩

1√
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⎤
⎦
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(η1(E))′ = (η1(E))−1
(

mc Eg

mr

)
[I11(E)]′and [I11(E)]′ has already been defined

in Chap. 1.
It may be noted from (7.2) that the effective mass along x- direction is a function

of both electron energy and electric field, respectively, whereas from (7.3) and (7.4)
we can infer the expressions of the effective masses along y and z directions are same
and they depend on the electron energy only. Thus, in the presence of an electric field,
the mass anisotropy for Kane-type semiconductors depends both on electron energy
and electric field, respectively.

Therefore, it appears that the study of the EEM at the Fermi level requires an
expression of the electron concentration which inturn needs the expression for the
DOS function. The DOS function in this case can be written as

N (E) = 4πgv

(
2mc

h2

)3/2
[√

I11(E) [I11(E)]′√
1 +�(E, F)

− �′(E, F)

3

{
I11(E)

1 +�(E, F)

}3/2
]

(7.5)
Combining (7.5) with the Fermi Dirac occupation probability factor and applying
the generalized Sommerfeld’s lemma, the electron statistics in this case assumes the
form

n0 = C7L [M1L(EFF, F)+ N1L(EFF , F)] (7.6a)

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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where

C7F = gv

3π2

(
2mc

�2

)3/2

, M1F (EFF, F) = [I11(EFF)]3/2

√
1 +�(EFF, F)

,

EFF is the Fermi energy in the presence of electric field as measured from the edge
of the conduction band in the vertically upward direction in the absence of any field,

N1F (EF L , F) =
s∑

r=1

XrF [M1F (EFF, F)]

and XrF = 2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
FF

,

Under the condition � → 0, the (7.1) assumes the form
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2mc
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[
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1+�1(E,F)

] + k2
y

2mc
�2 γ0(E)

+ k2
z

2mc
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= 1 (7.6b)

where γ0(E) = E(1 + αE) and �1(E, F) = �2 F2

4mr E2
gγ0(E)

[
1 + 2mc

mr

γ0(E)
Eg

]−5/2
.

Equation (7.8) represents the electron energy spectrum of III-V, ternary and qua-
ternary materials in the presence of an external electric field whose unperturbed band
structures are defined by the two-band model of Kane.

From (7.5) the expressions of the effective electron masses along x , y, and z
directions can, respectively, be written as

m∗
x (EFF, F) = mc [1 +�1(EFF , F)]−2 [[1 +�1(EFF , F)] [1 + 2αEFF]

− [EFF(1 + αEFF)]�
′
1(EFF, F)

]
(7.6c)

m∗
y(EFF, F) = mc [1 + 2αEFF] (7.7)

m∗
z (EFF, F) = mc [1 + 2αEFF] (7.8)

where

�′
1(EFF, F) = − [(1 + 2αEFF)�1(EFF, F)][

1 + 5

[
1 + 2mc

mr

EFF(1 + αEFF)

Eg

]−1 mc

mr

1

Eg

]
,

The DOS function assumes the form
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N (E) = 4πgv

(
2mc

h2

)3/2
[√
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1 +�1(E, F)
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1(E, F)

3

{
E(1 + αE)

1 +�1(E, F)

}3/2
]

(7.9)
Combining (7.9) with the Fermi Dirac occupation probability factor and applying the
generalized Sommerfeld’s lemma, the electron statistics in this case can be written as

n0 = C7L [M2L(EFF, F)+ N2L(EFF, F)] (7.10)

where

C7F = gv

3π2

(
2mc

�2

)3/2

, M2F (EFF, F) = [EFF(1 + αEFF)]3/2

√
1 +�1(EFF, F)

and

N2F (EF L , F) =
s∑

r=1
Xr F [M2F (EFF, F)]

7.2.2 The Magneto EEM in Optoelectronic Semiconductors
Under Strong Electric Field

The electron dispersion law in the presence of an arbitrarily oriented quantizing
magnetic field B which makes an angle � with kx axis and lies in the kx , kz plane
can be formulated in the following simplified way in this case:

The area of cross-section of the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 by the plane lx +
my + nz = p is given by [2]

A = πabc

(a2l2 + b2m2 + c2n2)1/2

[
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]
(7.11)

In our case, the ellipsoid of the revolution can be written from equation (7.1) as
k2
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a2
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Therefore, the use of (7.11) leads to the expression for the area of cross-section
in this case as
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The Landau area quantization rule is given by [6]

A(E, kz1) = 2π |e| B

�

(
n + 1

2

)
(7.13)

Therefore, combining (7.12) and (7.13), the dispersion relation of the conduction
electrons in optoelectronic materials under electric field can be written in presence
of an arbitrarily oriented quantizing magnetic field B whose unperturbed electron
energy spectrum is defined by the three band model of Kane as
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+ 3
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and EF F B is the Fermi energy under magnetic quantization in this case. The DOS is
given by

NB(E) = eB

2π2�
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where E7 is the lowest positive root of the equation
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The electron concentration can be written as

n0 = eB

π2�
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where
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and
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The electron dispersion relation in the presence of an arbitrarily oriented quan-
tizing magnetic field, the EEM , the density-of-states function, and the electron
concentration in the presence of strong electric field for the materials where unper-
turbed condition electron obey the two-band model of Kane can, respectively, be
expressed as

(k
′
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2 = A71(E, F, θ)− 2eB

�

(
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2

)
B71(E, F, θ) (7.19)
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and
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E8 is the lowest positive root of the equation
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A71(E, F, θ)− 2eB
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] 1
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and
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7.2.3 The EEM in UFs of Optoelectronic Semiconductors
Under Strong Electric Field

In the presence of quantization along x direction we can write
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(
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)2 1
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]
(7.24)

where k2
s = k2

y + k2
z , nx = 1, 2, 3. . .. . . is the size quantum number and dx is the

thickness along x direction.
The density-of-states function is given by
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where E9 is the root of the equation

1 =
(
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)2

(a7(E9, F))−2 (7.26a)

The EEM is given by

m∗(EF F S, F, nx ) = �
2

2
φ100 (7.26b)

where EF F S is the Fermi Energy in this case and
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The electron concentration per unit area is given by
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The electron dispersion relation to the effective electron mass, the density-of-states
function and the surface electron concentration in ultrathin films in the presence
of strong electron field where unperturbed conduction electrons obey the two-band
model of Kane can, respectively, be expressed as
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where,
E10 is the lowest positive root of the equation

1 =
(

nxπ

dx

)2 1

a2
71(E10, F)

(7.31)

n0 = gv
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where
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7.2.4 The EEM in NIPI Structures of Optoelectronic
Semiconductors Under Strong Electric Field

The dispersion relation of the conduction electrons in NIPI structures of
optoelectronic semiconductors under strong electric field whose unperturbed con-
duction electrons obey the three-band model of Kane can be written as

k2
y + k2

z = b2
7(E)

[
1 − 2�a′

7(E)

a7(E)

(
ni + 1

2

)]
(7.33)

where, ni = 1, 2, 3. . . is the mini-band index in this structure
The density of states function is given by

N (E) = gv
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where, E11 is the lowest positive root of the equation
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(
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2

)
(7.35)
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The EEM is given by
m∗(ĒFn, F, ni ) = �

2φ102 (7.36)

where, ĒFn is the Fermi energy in this case and

φ102 =
[

b7(ĒFn)b
′
7(ĒFn)

[
1 − 2�a′

7(ĒFn)

a7(ĒFn)

(
ni + 1

2

)]

+ b2
7(ĒFn)

(
ni + 1

2

)
�

{
−a′′

7 (ĒFn)

a7(ĒFn)
+ (a′

7(ĒFn))
2

a2
7(ĒFn)

}]

The electron concentration can be expressed as

n0 = gv

2π

nimax∑
ni =1

[
M7(ĒFn, F, ni )+ N7(ĒFn, F, ni )

]
(7.37)

where

M7(ĒFn, F, ni ) = b2
7(ĒFn)

[
1 − 2�a′

7(ĒFn)

a7(ĒFn)

(
ni + 1

2

)]

and

N7(ĒFn, F, ni ) =
s∑

r=1

Zr
[
M7(ĒFn, F, ni )

]

The electron dispersion relation, the effective electron mass, the density-of-states
function, and the surface electron concentration in NIPI structures in the presence
of strong electron field where unperturbed conduction electrons obey the two-band
model of Kane can, respectively, be expressed as

k2
y + k2

z = b2
71(E)

[
1 − 2�a′

71(E)

a71(E)

(
ni + 1

2

)]
(7.38)

m∗(ĒFn, F, ni ) = �
2φ103 (7.39)

where,

φ103 =
[

b71(ĒFn)b
′
71(ĒFn)

[
1 − 2�a′

71(ĒFn)

a71(ĒFn)

(
ni + 1

2

)]

+ b2
71(ĒFn)

(
ni + 1

2

)
�

{
−a′′

71(ĒFn)

a71(ĒFn)
+ (a′

71(ĒFn))
2

a2
71(ĒFn)

}]
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N (E) = gv

π

ni max∑
ni =0

[
2b71(E)b

′
71(E)

[
1 − 2�a′

71(E)

a71(E)

(
ni + 1

2

)]

+ b2
71(E)

(
ni + 1

2

)
2�

{
−a′′

71(E)

a71(E)
+ (a′

71(E))
2

a2
71(E)

}]
H(E − E12)

(7.40)

E12 is the lowest positive root of the equation

1 = 2�a′
71(E12)

a71(E12)

(
ni + 1

2

)
(7.41)

n0 = gv

2π

nimax∑
ni =1

[
M8(ĒFn, F, ni )+ N8(ĒFn, F, ni )

]
(7.42)

where

M8(ĒFn, F, ni ) = b2
71(ĒFn)

[
1 − 2�a′

71(ĒFn)

a71(ĒFn)

(
ni + 1

2

)]

and

N8(ĒFn, F, ni ) =
s∑

r=1

Zr
[
M8(ĒFn, F, ni )

]

7.2.5 The EEM in n-Channel Inversion Layers of Optoelectronic
Semiconductors

(a) The 2D dispersion relation of the conduction electrons in n-channel inversion
layers of optoelectronic semiconductors under weak electric field limit whose unper-
turbed conduction electrons obey the three-band model of Kane can be written as

k2
s = J7(E, F, i) (7.43)

where

J7(E, F, i) =

⎡
⎢⎢⎢⎣

t17(E, F)−Si [eFst ′17(E, F)]2/3

t27(E, F)− 2
3 Si (eFs)2/3

t ′27(E, F)

[t ′17(E, F)]1/3

⎤
⎥⎥⎥⎦ , t17(E, F) = a2

7(E, F),

t27(E, F) = t17(E, F)

b2
7(E)

, t ′17(E, F) = 2a7(E, F)a′
7(E, F),
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t ′27(E, F) =
[

t ′17(E, F)

b2
7(E)

−2t17(E, F)b′
7(E)

b3
7(E)

]

a′
7(E, F) = mc

�2a7(E, F)
[1+φ(E, F)]−2 [(1+φ(E, F))I ′

11(E)−I11(E)φ
′(E, F)

]

The EEM at the Fermi level (EFs) in the present case is given by

m∗(EFs, F, i) = �
2

2
J ′

7(E, F, i)
∣∣
E=EFs

(7.44)

where

J ′
7(E, F, i) = [α7(E, F, i)β ′

7(E, F, i)− α′
7(E, F, i)β7(E, F, i)]{α7(E, F, i)}−2,

α7(E, F, i) = [t17(E, F)− Si [eFs t ′17(E, F)]2/3],

β7(E, F, i) =
[

t27(E, F)− 2

3
Si (eFs)

2/3 t ′27(E, F)

[t ′17(E, F)]2/3
]
,

α′
7(E, F, i) = [t ′17(E, F)− Si (eFs)

2/3 2

3
[t ′17(E, F)]−1/3[t ′′17(E, F)]],

t ′′17(E, F) = [2[a′
7(E, F)]2 + 2a7(E, F)a′′

7 (E, F)],
a′

7(E, F) = mc

�2a7(E, F)
[1+φ(E, F)]−2 [(1+φ(E, F))I ′

11(E)−I11(E)φ
′(E, F)

]
,

a′′
7 (E, F) = −a′

7(E, F)

a7(E, F)
− 2[1 + φ(E, F)]−1φ′(E, F)a′

7(E, F)

+ mc

�2a7(E, F)
[1 + φ(E, F)]−2 [I ′′

11(E)− I11(E)φ
′′(E, F)

]
,

I ′′
11(E) =

[
(I ′

11(E))
2

I11(E)
− 2I11(E)

[
1

E2 + 1

(E + Eg)2
+ 1

(E + Eg +�)2

− 1

(E + Eg + 2
3�)

2

]]
,

β ′
7(E, F, i) = t ′27(E, F)−

{
2

3
Si (eFs)

2/3 t ′′27(E, F)

[t ′17(E, F)]1/3
}

+2

3
Si (eFs)

2/3 {t ′27(E, F)t ′′17(E, F)}
3[t ′17(E, F)]4/3 ,

t ′′27(E, F) =
[

t ′′17(E, F)

b2
7(E)

− 4
t ′17(E, F)b′

7(E)

b3
7(E)

+ 6
t17(E, F)[b′

7(E)]2
b4

7(E)

−2t17(E, F)b′′
7(E)

b3
7(E)

]
,

b′
7(E) = mc

�2

I ′
11(E)

b7(E)
, b′′

7(E) = 1

b7(E)

[
mc

�2 I ′
11(E)− (b7(E))

2
]
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�′′(E, F) =
[
(�′(E, F))2

�(E, F)
+ η′′

1(E)�
′(E, F)

η′
1(E)

−�(E, F)(η1(E))
′

×
[( −3

η1(E))2
+ −4

(η1(E)+ δ′)2
)

−
[

P

(
η1(E)+ Eg

η1(E)− (Eg)′
)1/2

+Q

(
η1(E)− Eg

η1(E)+ Eg

)1/2
]−2

+ η′
1(E)

2

×
[

P

{
1√

η1(E)+ Eg
√
η1(E)− (Eg)′

− (η1(E)+ Eg)
1/2

(η1(E)− (Eg)′)3/2

}

+Q

⎧⎨
⎩

1√
η2

1(E)− E2
g

− (η1(E)− Eg)
1/2

(η1(E)+ Eg)3/2

⎫⎬
⎭
⎤
⎦+

[
−�(E, F)(η1(E))

′

×
[(

3

η1(E)
+ 4

η1(E)+ δ′
)

+
[

P

(
η1(E)+ Eg

η1(E)− (Eg)′
)1/2

+Q

(
η1(E)− Eg

η1(E)+ Eg

)1/2
]−1

η′
1(E)

2

[
P

{
−1

(η1(E)+ Eg)3/2(η1(E)− E ′
g)

1/2

− 1

(η1(E)− Eg)3/2(η1(E)+ E ′
g)

1/2

− (η1(E)+ Eg)
−1/2

(η1(E)− Eg)3/2
+ 3(η1(E)− E ′

g)(η1(E)+ Eg)
1/2

}

−Q

{
2η1(E)

[(η1(E))2 + E2
g]3/2 + (η1(E)− Eg)

−1/2

(η1(E)+ Eg)3/2

−3
(η1(E)− Eg)

1/2

(η1(E)+ Eg)5/2

}]]

η′′
1(E) = (η1(E))

−1
[

mc Eg

mr
I ′
11(E)− (η′

1(E))
2
]
.

The electron concentration is given by

n0 = gv

2π

imax∑
i=0

[J7(EFs, F, i)+ H7(EFs, F, i)] (7.45)

where H7(EFs, F, i) =
s∑

r=1
Zr [J7(EFs, F, i)]

(b) The 2D dispersion relation of the conduction electrons in n-channel inver-
sion layers of optoelectronic semiconductors under weak electric field limit whose
unperturbed conduction electrons obey the two-band model of Kane can be written as

k2
s = J71(E, F, i) (7.46)
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where

J71(E, F, i) =
⎡
⎢⎣ t171(E, F)− Si [eFst ′171(E, F)]2/3

t271(E, F)− 2
3 Si (eFs)2/3

t ′271(E,F)
[t ′171(E,F)]1/3

⎤
⎥⎦ ,

t171(E, F) = a2
71(E, F), t271(E, F) = t171(E, F)

b2
71(E)

,

t ′171(E, F) = 2a71(E, F)a′
71(E, F),

a′
71(E, F) = [1 + φ1(E, F)]−1

[
−a71(E, F)φ2(E, F)+

(
2mc

�2

)
(1 + 2αE)

]

t ′271(E, F) =
[

t ′171(E, F)

b2
71(E)

− 2t171(E, F)b′
71(E)

b3
71(E)

]
,

b′
71(E) =

(mc

�2

)
(1 + 2αE)[b71(E)]−1

The EEM at the Fermi level (EFs) in the present case is given by

m∗(EFs, F, i) = �
2

2
J ′

71(E, F, i)
∣∣
E=EFs

(7.47)

where

J ′
71(E, F, i) = [α71(E, F, i)β ′

71(E, F, i)

− α′
71(E, F, i)β71(E, F, i)]{α71(E, F, i)}−2,

α71(E, F, i) = [t171(E, F)− Si [eFst ′171(E, F)]2/3],
β71(E, F, i) = [t271(E, F)− 2

3
Si (eFs)

2/3 t ′271(E, F)

[t ′171(E, F)]1/3 ],

α′
71(E, F, i) = [t ′171(E, F)− Si (eFs)

2/3 2

3
[t ′171(E, F)]−1/3[t ′′171(E, F)]],

β ′
71(E, F, i) = t ′271(E, F)−

{
2

3
Si (eFs)

2/3 t ′′271(E, F)

[t ′171(E, F)]1/3

}

+ 2

9
Si (eFs)

2/3 {t ′271(E, F)t ′′171(E, F)}
[t ′171(E, F)]4/3

t ′′271(E, F) =
[

t ′′171(E, F)

b2
71(E)

− 4
t ′171(E, F)b′

71(E)

b3
71(E)

+ 6
t171(E, F)[b′

71(E)]2

b4
71(E)

−2t171(E, F)b′′
71(E)

b3
71(E)

]

t ′′171(E, F) = [2[a′
71(E, F)]2 + 2a71(E, F)a′′

71(E, F)]
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b′′
71(E) = [b71(E)]

−1
[
(b′

71(E))
2 − 2mcα

�2

]

a′′
71(E, F) = [1 + φ1(E, F)]−1

[
− a′

71(E, F)φ2(E, F)+ 4mcα

�2

− a71(E, F)φ3(E, F)

]
,

φ3(E, F) =
[[

−φ2(E, F)(1 + 2αE)

γ7(E)
+ φ1(E, F)(1 + 2αE)2

γ 2
7 (E)

− 2αφ1(E, F)

γ7(E)

]

×
[

1 + 5

2

{
1 +

(
2mc

mr Eg

)
E(1 + αE)

}−1 (
2mc

mr Eg

)
γ7(E)

]

×
[−φ1(E, F)(1 + 2αE)

γ7(E)

][
−5

2

{
1 +

(
2mc

mr Eg

)
E(1 + αE)

}−2

×
(

2mc

mr Eg

)2

(1 + 2αE)γ7(E)+
((

5mc

mr Eg

)
(1 + 2αE)

)

×
{

1 +
(

2mc

mr Eg

)
E(1 + αE)

}−1
]]

The electron concentration per unit area in this case is given by

n0 = gv

2π

imax∑
i=0

[J71(EFs, F, i)+ H71(EFs, F, i)] (7.48)

where

H71(EFs, F, i) =
s∑

r=1

Zr [J71(EFs, F, i)]

7.2.6 The EEM in Nano Wires of Optoelectronic
Semiconductors

The one-dimensional motion of the electron for quantum wires of optoelectronic
materials can be expressed as

G(ny,nz)+ �
2k2

x

2mc
= β11(E, F) (7.49)

G(ny,nz)+ �
2k2

x

2mc
= β12(E, F) (7.50)
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where

G(ny, nz) = �
2π2

2mc

[(
ny

dy

)2

+
(

nz

dz

)2
]

β11(E, F) =
[

I11(E)− C1.

[
I11(E)

φ3(E)

][
T 2

1 (E)

(φ(E)+ δ
′
)4

]]
,

C1 =
[

mc(�eF Eg)
2(Eg − δ

′
)2

6m2
r

]
,

φ2(E) =
[

E2
g + Eg

mc

mr
I11(E)

]
,

T1(E) =
⎡
⎣P

(
φ(E)+ Eg

φ(E)− E ′
g

)1/2

+ Q

(
φ(E)− Eg

φ(E)+ Eg

)1/2
⎤
⎦
,

β12(E, F) =
[

E(1 + αE)− δ5

[
E(1 + αE)+ mr Eg

2mc

]− 5
2
]

δ5 =
[

�
2 F2m3/2

r E1/2
g

12.(2mc)5/2

]

The EEMs in this case can be expressed as

m∗(EF1D, F) = mcβ
′
11(EF1D, F) (7.51)

m∗(EF1D, F) = mcβ̄
′
12(EF1D, F) (7.52)

β ′
11(EF1D, F) =

[
γ ′(EF1D)− C̄1γ

′(EF1D)

φ3(EF1D)
· T 2

1 (EF1D)

[φ(EF1D)+ δ′]4

+ 2C̄1γ (EF1D)T1(EF1D)T ′
1(EF1D)

φ3(EF1D)[φ(EF1D)+ δ′]4

− 4C̄1γ (EF1D)T 2
1 (EF1D)φ

′(EF1D)

φ3(EF1D)[φ(EF1D)+ δ′]5

+ 4C̄1γ (EF1D)T 2
1 (EF1D)φ

′(EF1D)

φ3(EF1D)[φ(EF1D)+ δ′]5

]
,

γ ′(EF1D) = γ (EF1D)

[
1

EF1D
+ 1

EF1D + Eg
+ 1

EF1D + Eg +�

− 1

EF1D + Eg + 2
3�

]
,

φ′(EF1D) =
[

Egmcγ
′(EF1D)

2mrφ(EF1D)

]
, φ′(EF1D) =

(
φ′(EF1D)

2

)
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× 2QEg[φ(EF1D)− Eg]−1/2

[φ(EF1D)+ Eg]3/2

− (E ′
g + Eg)P[φ(EF1D)+ Eg]−1/2

[φ(EF1D)− E ′
g
]3/2 and [β̄12(EF1D, F)]′

= (1 + 2α(EF1D)×
[

1 + 5

2
δ5

[
EF1D(1 + αEF1D)+ mr Eg

2mc

]−7
2
]

The electron concentration per unit length assumes the forms

n0 = 2gv

π

nzmax∑
nz=1

nymax∑
ny=1

[Q15(EF1D, F, ny, nz)+ Q16(EF1D, F, ny, nz)] (7.53)

n0 = 2gv

π

nzmax∑
nz=1

nymax∑
ny=1

[Q17(EF1D, F, ny, nz)+ Q18(EF1D, F, ny, nz)] (7.54)

where

Q15(EF1D, F, ny, nz) =
√
ω15(EF1D, F, ny, nz), ω15(EF1D, F, ny, nz)

= 2mc

�2 [β11(EF1D, F)− G(ny, nz)],

Q16(EF1D, F, ny,nz) =
R0∑

R=1

Z(R1D)[Q15(EF1D, F, ny,nz)], Z(R1D)

= 2(kB T )2R(1 − 21−2R)ξ(2R)
∂2R

∂E2R
F1D

,

EF1D is the Fermi energy for one-dimensional system in the present case as measured
from the edge of the conduction band in vertically upward direction in absence of
any quantization,

Q17(EF1D, F, ny, nz) =
√
ω16(EF1D, F, ny, nz),

ω16(EF1D, F, ny, nz) = 2mc

�2 [β̄12(EF1D, F)− G(ny, nz)],

Q18(EF1D, F, ny,nz) =
R0∑

R=1

Z(R1D)[Q17(EF1D, F, ny,nz)].
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7.2.7 The EEM in Effective Mass Superlattices of Optoelectronic
Semiconductors Under Magnetic Quantization

The dispersion relation of the conduction electrons in effective mass superlattices of
optoelectronic semiconductors can be expressed following Sasaki [3] as

a1 × cos[c1(E, F, Eg1,�1)a0 + c2(E, F, Eg2,�2)b0]
− a2 × cos[c1(E, F, Eg1,�1)a0 − c2(E, F, Eg2,�2)b0] = cos(L0k) (7.55)

where

a1 =
⎡
⎣
[

1 +
√

mc2

mc1

]2

×
[

4

(√
mc2

mc1

)1/2
]−1

⎤
⎦ ,

a2 =
⎡
⎣
[
−1 +

√
mc2

mc1

]2

×
[

4

(√
mc2

mc1

)1/2
]−1

⎤
⎦ ,

c2
i (E, F, Egi ,�i ) = 2mci

�2 [β1i (E, F, Egi ,�i )− k2⊥], i = 1, 2,

k2⊥ = k2
y + k2

z , β1i (E, F, Egi ,�i ) =
[

I11(E, Egi ,�i )

−
[

L(Egi ,�i ,mri )I11(E, Egi ,�i )T 2
i (E, Egi ,�i )

φ3
i (E, Egi ,�i )[φi (E, Egi ,�i )+ δ

/
i ]4

]]
,

I11(E, Egi ,�i ) = E(E + Egi )(E + Egi +�i )(Egi + 2
3�i )

Egi (Egi +�i )(E + Egi + 2
3�i )

,

L(Egi ,�i ,mri ) = (�eF)2(Egi − δ
/
i )

2mci

6m2
ri

, δ′i = (Egi )
2�i

χi
,

χi = [
6(Egi )

2 + 9Egi .�i + 4�2
i

]
,

1

mri
=
(

1

mci
+ 1

mvi

)
,

Ti (E, Egi ,�i ) =
⎡
⎣Pi

[
{φi (E, Egi ,�i )+ Egi }
{φi (E, Egi ,�i )− E ′

gi }

]1/2

+Qi

[ {φi (E, Egi ,�i )− Egi }
{φi (E, Egi ,�i )+ Egi }

]1/2
]

Pi = r2
0i

2

(
Egi−δ′i
Egi+δ′i

)
, r2

oi =
[

6

(
Egi + 2

3
�i

) (
Egi +�i

)]
[χi ]

−1

φ2
i (E, Egi ,�i ) = [E2

gi + Egi (mci/mri )I11(E, Egi ,�i )],

E ′
gi =

[
Egi (Egi − 3δ′i )
(Egi + δ′i )

]
, Qi = t2

i

2
and t2

i =
[

6(Egi + 2
3�i )

χi

]
.
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In the presence of a quantizing magnetic field B, along z-direction the magneto-
energy spectrum assumes the form

k2
z = ω17(E,F, n) (7.56)

where

ω17(E, F, n) = 1

L2
o
[cos−1{ f1(E, F, n)}]2 − 2eB

�

(
n + 1

2

)
,

f1(E, F, n) = [a1 cos[c1(E, F, Eg1 ,�1, n)ao + boc2(E, F, Eg2 ,�2, n)]
− a2 cos[c1(E, F, Eg1 ,�1, n)ao − boc2(E, F, Eg2 ,�2, n)]]

and

c2
i (E, F, Egi ,�i , n) =

[(
2mci

�2

)
[β1i (E, F, Egi ,�i )] − 2eB

�

(
n + 1

2

)]
.

The EEM in this case can be written as

m∗(EF B, F, n) = (�2/2)ω′
17(EF B, F, n) (7.57)

EFB is the Fermi energy in this case,

ω′
17(EF B, F, n)=[2 f ′

1(EF B, F, n) cos−1[ f1(EF B, F, n)][1− f 2
1 (EF B, F, n)]−1/2]

f ′
1(EF B, F, n) = [−a1 sin[c1(EF B, F, Eg1 ,�1, n)ao + boc2(EF B, F, Eg2 ,�2, n)]
× [c′

1(EF B, F, Eg1 ,�1, n)ao + boc′
2(EF B, F, Eg2 ,�2, n)]

+ a2 sin[c1(EF B, F, Eg1 ,�1, n)ao − boc2(EF B, F, Eg2 ,�2, no)].
× [c′

1(EF B, F, Eg1 ,�1, n)ao − boc′
2(EF B, F, Eg2 ,�2, no)]]

c′
i (EF B, F, Egi ,�i ) =

(mci

�2

)
[ci (EF B, F, Egi ,�i )]−1[β ′

1i (EF B, F, Egi ,�i )]
β

′
1i (EF B, F, Egi ,�i ) = [I ′

11(EF B, Egi ,�i )

− L(Egi ,�i ,mri )I
′
11(EF B, Egi ,�i )T 2

i (EF B, Egi ,�i )

φ3
i (EF B, Egi ,�i )[φi (EF B, Egi ,�i )+ δ

′
i ]4

− 2L(Egi ,�i ,mri )I11(EF B, Egi ,�i )Ti (EF B, Egi ,�i )T ′
i (EF B, Egi ,�i )

φ3
i (EF B, Egi ,�i )[φi (EF B, Egi ,�i )+ δ

′
i ]4

+ 3L(Egi ,�i ,mri )I11(EF B, Egi ,�i )T 2
i (EF B, Egi ,�i )φ

′
i (EF B, Egi ,�i )

φ4
i (EF B, Egi ,�i )[φi (EF B, Egi ,�i )+ δ

′
i ]4

+ 4L(Egi ,�i ,mri )I11(EF B, Egi ,�i )T 2
i (EF B, Egi ,�i )φ

′
i (EF B, Egi ,�i )

φ3
i (EF B, Egi ,�i )[φi EF B, Egi ,�i + δ

′
i ]5



340 7 The EEM in the Presence of Intense Electric Field

I ′
11(EF B, Egi ,�i ) = I11(EF B, Egi ,�i )

[
1

EF B
+ 1

EF B + Egi

+ 1

EF B + Egi +�i

− 1

EF B + Egi + 2
3�i

]
φ′

i (EF B, Egi ,�i ) = Egi mci I ′
11(EF B, Egi ,�i )

2mriφi (EF B, Egi ,�i )

T ′
i (EF B, Egi ,�i ) =

[
φ′

i (EF B, Egi ,�i )

2

] [
2Egi Qi [φi (EF B, Egi ,�i )− Egi ]−1/2

[φi (EF B, Egi ,�i )− Egi ]3/2

−(E ′
gi

+ Egi )Pi [φi (EF B, Egi ,�i )− Egi ]−1/2[φi (EF B, Egi ,�i )− E ′
gi

]−3/2
]

The electron concentration assumes the form

no = gveB

π2�Lo

[
nmax∑
n=0

[Q19(EF B, F, n)+Q20(EF B, F, n)]
]

(7.58)

where
Q19(EF B, F, n) = [ω17(EF B, F, n)]1/2

and

Q20(EF B, F, n) =
R=Ro∑
R=1

Z(R)[Q19(EF B, F, n)]

The electron concentration and the EEM in this case when the dispersion relations
of the constituent materials are defined by the perturbed two-band model of Kane
can, respectively, be expressed as

no = gveB

π2�Lo

[
nmax∑
n=0

[Q21(EFB, F, n)+Q22(EFB, F, n)]
]

(7.59)

and
m∗(EFB, F, n) = (�2/2)ω′

18(EFB, F, n) (7.60)

where

Q21(EFB, F, n) = [ω18(EFB, F, n)]1/2,

Q22(EFB, F, n) =
R=Ro∑
R=1

Z(R)[Q21(EFB, F, n)]

ω18(EFB, F, n) =
[

1

L2
o
[cos−1{ f2(EFB, F, n)}]2 − 2eB

�

(
n + 1

2

)]
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f2(EFB, F, n) = [a1 cos[D1(EFB, F, Eg1 , n)ao + bo D2(EFB, F, Eg2 , n)]
− a2 cos[D1(EFB, F, Eg1 , n)ao − bo D2(EFB, F, Eg2 , n)]]

D2
i (EFB, F, Egi , n) =

[
2mci

�2 ρ1i (EFB, F, Egi )− 2eB

�

(
n + 1

2

)]
,

ρ1i (EFB, F, Egi ) =
[

EFB(1+αi EFB)−δ5i

[
EFB(1+αi EFB)+mri Egi

2mci

]− 5
2
]
,

δ5i =
[
(�eF)2m3/2

ri (Egi )
1/2

12(2mci )5/2

]

ω′
18(EFB, F, n) = [2 f ′

2(EFB, F, n) cos−1[ f2(EFB, F, n)]
× [1 − f 2

2 (EFB, F, n)]−1/2]
f2

′(EFB, F, n) = [−a1 sin[D1(EFB, F, Eg1 , n)ao + bo D2(EFB, F, Eg2 , n)]
× [D1

′(EFB, F, Eg1 , n)ao + bo D′
2(EFB, F, Eg2 , n)]

+ a2 sin[D1(EFB, F, Eg1 , n)ao − bo D2(EFB, F, Eg2 , no)].
× [D′

1(EFB, F, Eg1 , n)ao − bo D′
2(EFB, F, Eg2 , no)]],

D′
i (EFB, F, Egi , n) =

[
mciρ

′
1i (EFB, F, Egi )

�2 Di (EFB, F, Egi , n)

]

and

ρ′
1i (EFB, F, Egi ) =

[
1 + 2EFB

Egi

][
1 + 5

2
δ5i

[
EFB(1 + αi EFB)+ mri Egi

2mci

]−7/2
]

7.2.8 The EEM in Nano Wire Effective Mass Superlattices
of Optoelectronic Semiconductors

The dispersion relation of the conduction electrons for nanowire effective mass super-
lattices in accordance with the perturbed three-band model of Kane is given by

k2
x = ω19(E, F, ny, nz) (7.61)

where

ω19(E, F, ny, nz) =
[

1

L2
0

[
cos−1{ f3(E, F, ny, nz)}

]2 − H(ny, nz)

]

f3(E, F, ny, nz) = [a1 cos[e1(E, F, Eg1 ,�1, ny, nz)ao
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+ boe2(E, F, Eg2 ,�2, ny, nz)]
− a2 cos[e1(E, F, Eg1 ,�1, ny, nz)ao

− boe2(E, F, Eg2 ,�2, ny,nz)]]
e2

i (E, F, Egi ,�i , ny, nz) =
[(

2mci

�2

)
[β1i (E, F, Egi ,�i )] − H(ny, nz)

]

and H(ny, nz) =
[(

nyπ

dy

)2

+
(

nzπ

dz

)2
]

The expression of the electron concentration in this case can be written as

n0 = 2gv

π
φ104 (7.62)

where

φ104 =
nymax∑
ny=1

nzmax∑
nz=1

[Q23(EF I DE M SL , F, ny, nz)+ Q24(EFIDEMSL, F, ny, nz)],

Q23(EFIDEMSL, F, ny, nz) =
√
ω19(EFIDEMSL, F, ny, nz),

Q24(EFIDEMSL, F, ny, nz) =
R=R0∑
R=1

Z(RIDEMSL)Q23(EFIDEMSL, F, ny, nz),

EFIDEMSL is the Fermi energy in the present case and

Z(RIDEMSL) = 2(kB T )2R(1 − 21−2R)ξ(2R)
∂2R

∂EFIDEMSL
.

The EEM in this case can be expressed as

m∗(EFIDEMSL, F, ny, nz) = (�2/2)ω′
19(EFIDEMSL, F, ny, nz) (7.63)

where

ω′
19(EFIDEMSL, F, ny, nz) =

[
1 − f 2

3 (EFIDEMSL, F, ny, nz)
]−1/2

× [
2 f ′

3(EFIDEMSL, F, ny, nz)
]

×
[
cos−1 { f3(EFIDEMSL, F, ny, nz)

}]
,

f ′
3(EFIDEMSL, F, ny, nz) = −a1 sin[a0e1(EFIDEMSL, F, Eg1 ,�1, ny, nz)
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+ boe2(EFIDEMSL, F, Eg2 ,�2, ny, nz)].
× [

a0e′
1(EFIDEMSL, F, Eg1 ,�1, ny, nz)

+ boe′
2(EFIDEMSL, F, Eg2 ,�2, ny, nz)

]
+ a2 sin

[
a0e1(EFIDEMSL, F, Eg1 ,�1, ny, nz)

−boe2(EFIDEMSL, F, Eg2 ,�2, ny,nz)
]
.

× [
a0e′

1(EFIDEMSL, F, Eg1 ,�1, ny, nz)

−boe′
2(EFIDEMSL, F, Eg2 ,�2, ny, nz)

]

and

e′
i (EFIDEMSL, F, Egi ,�i , ny, nz) = mciβ1i (EFIDEMSL, F, Egi ,�i )

�2ei (EFIDEMSL, F, Egi ,�i , ny, nz)
.

In accordance with the perturbed two-band model of Kane the electron concentration
per unit length is given by,

n0 = 2gv

π
φ105 (7.64)

where,

φ105 =
nymax∑
ny=1

nzmax∑
nz=1

[
Q25(EFIDEMSL, F, ny, nz)+ Q26(EFIDEMSL, F, ny, nz)

]
,

Q25(EFIDEMSL, F, ny, nz) =
[√
ω20(EFIDEMSL, F, ny, nz)

]
,

Q26(EFIDEMSL, F, ny, nz) =
R=R0∑
R=1

Z(RIDEMSL)
[
Q25(EFIDEMSL, F, ny, nz)

]
,

ω20(EFIDEMSL, F, ny, nz) =
[

1

L2
0

[
cos−1 f4(EFIDEMSL, F, ny, nz)

]2

−H(ny, nz)

]
,

f4(EFIDEMSL, F, ny, nz) =
[

a1 cos[a0g1(EFIDEMSL, F, Eg1, ny, nz)

− b0g2(EFIDEMSL, F, Eg2, ny, nz)]
− a2 cos

[
a0g1(EFIDEMSL, F, Eg1, ny, nz)

−b0g2(EFIDEMSL, F, Eg2, ny, nz)
] ]
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and

g2
i (EFIDEMSL, F, Egi , ny, nz) =

[
2mci

�2 θ1i (EFIDEMSL, F, Egi )− H(ny, nz)

]

The EEM in this case can be expressed as

m∗(EFIDEMSL, F, ny, nz) = (�2/2)ω′
20(EFIDEMSL, F, ny, nz) (7.65)

where

ω′
20(EFIDEMSL, F, ny, nz)

= 2 f ′
4(EFIDEMSL, F, ny, nz)

[
cos−1 f4(EFIDEMSL, F, ny, nz)

]
√

1 − f 2
4 (EFIDEMSL, F, ny, nz)

,

f ′
4(EFIDEMSL, F, ny, nz)

= −a1 sin
[
a0g1(EFIDEMSL, F, Eg1, ny, nz)

+ b0g2(EFIDEMSL, F, Eg2, ny, nz)
]

× [
a0g′

1(EFIDEMSL, F, Eg1, ny, nz)+ b0g′
2(EFIDEMSL, F, Eg2, ny, nz)

]
− a2 sin

[
a0g1(EFIDEMSL, F, Eg1, ny, nz)−b0g2(EFIDEMSL, F, Eg2, ny, nz)

]
× [

a0g1(EFIDEMSL, F, Eg1, ny, nz)− b0g2(EFIDEMSL, F, Eg2, ny, nz)
]
,

and

g′
i (EFIDEMSL, F, ny, nz) = mciθ

′
1i (EFIDEMSL, F, Egi )

�2gi (EFIDEMSL, F, Egi , ny, nz)
.

7.2.9 The EEM in Superlattices of Optoelectronic Semiconductors
with Graded Interfaces Under Magnetic Quantization

The energy spectrum in superlattices of optoelectronic compounds with graded
interfaces in the presence of electric field whose constituent materials are defined by
perturbed three-band model of Kane can be written following [4] as

cos(Lok) = 1

2
�11(E, ks) (7.66)

where

�11(E, ks) =
[

2 cosh {X21(E, ks)} cos {Y21(E, ks)}
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+ ε21(E, ks) sinh {X21(E, ks)} sin {Y21(E, ks)}

+�21

[(
K 2

21(E, ks)

K22(E, ks)
− 3K22(E, ks)

)
cosh {X21(E, ks)}

× sin {Y21(E, ks)} +
(

3K21(E, ks)− {K22(E, ks)}2

K21(E, ks)

)

× sinh {X21(E, ks)} cos {Y21(E, ks)}
]

+�21

[
2({K21(E, ks)}2 − {K22(E, ks)}2)

× cosh {X21(E, ks)} cos {Y21(E, ks)}

+ 1

12

[
5 {K22(E, ks)}3

K21(E, ks)
+ 5 {K21(E, ks)}3

K22(E, ks)

−34K22(E, ks)K21(E, ks)

]
sinh {X21(E, ks)} sin {Y21(E, ks)}

]]
,

X21(E, ks) = K21(E, ks) [a0 −�21] ,

K21(E, ks) ≡
[
−2mc2

�2 β012(E − V0, F, Eg2,�2)+ k2
s

]1/2

β012(E − V0, F, Eg2,�2) = [γ (E − V0, Eg2,�2)

− L(Eg2,�2,mr2)γ (E − V0, Eg2,�2)T 2
2 (E − V0, Eg2,�2)

φ3
2(E − V0, Eg2,�2)[φ2(E − V0, Eg2,�2)+ δ′2]4

],

ε(E, ks) ≡
[

K1(E, ks)

K2(E, ks)
− K2(E, ks)

K1(E, ks)

]
,

k2
s = k2

x + k2
y,Y21(E, ks) = K22(E, ks) [b0 −�21] and

K22(E, ks) =
[

2mc1β11(E, F, Eg1,�1)

�2 − k2
s

]1/2

.

In the presence of a quantizing magnetic field B along z-direction, the simplified
magneto-dispersion relation can be written as

k2
z = ω21(E, F, n) (7.67)
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where, ω21(E, F, n) =
[

1
L2

0
[cos−1[ 1

2 f11(E, F, n)]]2 − 2|e|B
�

(
n + 1

2

)]
,

f11(E, F, n) = [2 cosh {M21(n, E)} cos {N21(n, E)} + Z21(n, E) sinh {M21(n, E)}

× sin {N21(n, E)} +�21

[(
{I21(n, E)}2

I22(n, E)
− 3I22(n, E)

)
cosh {M21(n, E)}

× sin {N21(n, E)}+
(

3I21(n, E)− {I22(n, E)}2

I21(n, E)

)
sinh {M21(n, E)} cos {N21(n, E)}

]

+�21
[
2({I21(n, E)}2 − {I22(n, E)}2) cosh {M21(n, E)} cos {N21(n, E)}

+ 1

12

(
5 {I22(n, E)}3

I21(n, E)
+ 5 {I21(n, E)}3

I22(n, E)
− {34I22(n, E)I21(n, E)}

)

× sinh {M21(n, E)} sin {N21(n, E)}]]
Z21(n, E) ≡

[
I21(n, E)

I22(n, E)
− I22(n, E)

I21(n, E)

]
,M21(n, E) = I21(n, E) [a0 −�21] ,

I21(n, E) =
[
−2mc2

�2 β012(E − V0, F, Eg2,�2)+ 2 |e| B

�

(
n + 1

2

)]1/2

N21(n, E) = I22(n, E) [b0 −�21] and I22(n, E)

≡
[

2mc1

�2 β11(E, F, Eg1,�1)−
{

2 |e| B

�

(
n + 1

2

)}]1/2

.

The electron concentration is given by

no = gveB

π2�
φ106 (7.68)

where,

φ106 = [
nmax∑
n=0

[Q27(EF BG I SL , F, n)+Q28(EF BG I SL , F, n)]],

Q27(EF BG I SL , F, n) = [ω21(EF BG I SL , F, n)]1/2,

EF BG I SL is the Fermi energy in the present case,

Q28(EF BG I SL , F, n) =
R=R0∑
R=1

Z(RBG I SL) [Q27(EF BG I SL , F, n)]

and

Z(RBG I SL) = 2(kB T )2(1 − 21−2R)ξ(2R)
∂2R

∂EF BG I SL
.
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The EEM in this case can be expressed as

m∗(EF BG I SL , F, n) = (�2/2)ω′
21(EF BG I SL , F, n) (7.69)

where

ω21
′(EF BG I SL , F, n) = f11

′(EF BG I SL , F, n) cos−1
[ 1

2 f11(EF BG I SL , F, n)
]

√
1 − 1

4 f 2
11(EF BG I SL , F, n)

,

f ′
11(EF BG I SL , F, n) = [

2M ′
21(n, EF BG I SL ) sinh {M21(n, EF BG I SL )} cos {N21(n, EF BG I SL )}

+ Z21(n, EF BG I SL )M
′
21(n, EF BG I SL ) cosh {M21(n, EF BG I SL )}

× sin {N21(n, EF BG I SL )} − 2N ′
21(n, EF BG I SL )

× sin {N21(n, EF BG I SL )} cosh {M21(n, EF BG I SL )}
+ Z ′

21(n, V0) sinh {M21(n, EF BG I SL )} sin {N21(n, EF BG I SL )}
+ Z21(n, EF BG I SL )N

′
21(n, EF BG I SL )

× cos {N21(n, EF BG I SL )} sinh {M21(n, EF BG I SL )}

+�21

[({
2I21(n, EF BG I SL )I

′
21(n, EF BG I SL )

}
I22(n, EF BG I SL )

−
{

I 2
21(n, EF BG I SL )I

′
22(n, EF BG I SL )

}

I 2
22(n, EF BG I SL )

−3I ′
22(n, EF BG I SL )

)]

× cosh {M21(n, EF BG I SL )} sin {N21(n, EF BG I SL )}

+
(

−3I22(n, EF BG I SL )+ {I21(n, EF BG I SL )}2

I22(n, EF BG I SL )

)

×{M ′
21(n, EF BG I SL )sinh {M21(n, EF BG I SL )}} sin {N21(n, EF BG I SL )}

+{N ′
21(n, EF BG I SL )cosh {M21(n, EF BG I SL )} cos {N21(n, EF BG I SL )}

+
(− {

2I22(n, EF BG I SL )I
′
22(n, EF BG I SL )

}
I21(n, EF BG I SL )

+
{

I 2
22(n, EF BG I SL )I

′
21(n, EF BG I SL )

}

I 2
21(n, EF BG I SL )

+3I ′
21(n, EF BG I SL )

)
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× sinh {M21(n, EF BG I SL )} cos {N21(nEF BG I SL )}

+
(

+3I21(n, EF BG I SL )− {I22(n, EF BG I SL )}2

I21(n, EFBGISL)

)

× {M ′
21(n, EF BG I SL ) cosh {M21(n, EF BG I SL )}} cos {N21(n, EF BG I SL )}

− N ′
21(n, EF BG I SL ) sin {N21(n, EF BG I SL )} sinh {M21(n, EF BG I SL )}}]

+�21
[
4(
{

I21(n, EF BG I SL )I
′
21(n, EF BG I SL )

}
− {

I22(n, EF BG I SL )I
′
22(n, EF BG I SL )

}
)
] ·

× cosh {M21(n, EF BG I SL )} cos {N21(n, EF BG I SL )}
+ 2({I21(n, EF BG I SL )}2 − {I22(n, EF BG I SL )}2)

× {M ′
21(n, EF BG I SL ) sinh {M21(n, EF BG I SL )} cos {N21(n, EF BG I SL )}

− N ′
21(n, EF BG I SL ) cosh {M21(n, EF BG I SL )} sin {N21(n, EF BG I SL )}}

+ 1

12

(
15
{

I 2
22(n, EF BG I SL )

}
I ′
22(n, EF BG I SL )

I21(n, EF BG I SL )

−5 {I22(n, EF BG I SL )}3 I ′
21(n, EF BG I SL )

I 2
21(n, EF BG I SL )

+ 15
{

I 2
21(n, EF BG I SL )

}
I ′
21(n, EF BG I SL )

I22(n, EF BG I SL )

− 5 {I21(n, EF BG I SL )}3 I ′
22(n, EF BG I SL )

I 2
22(n, EF BG I SL )

− {
34I ′

22(n, EF BG I SL )I21(n, EF BG I SL )
}

− 34I22(n, EF BG I SL )I
′
21(n, EF BG I SL ))

× sinh {M21(n, EF BG I SL )} sin {N21(n, EF BG I SL )}

+
(

5 {I22(n, EF BG I SL )}3

I21(n, EF BG I SL )
+ 5 {I21(n, EF BG I SL )}3

I22(n, EF BG I SL )

−{34I22(n, EF BG I SL )I21(n, EF BG I SL )}
)

{M ′
21(n, EF BG I SL ) cosh {M21(n, EF BG I SL )} sin {N21(n, EF BG I SL )}
+ N ′

21(n, EF BG I SL ) sinh {M21(n, EF BG I SL )} cos {N21(n, EF BG I SL )}}]],

M ′
21(n, EF BG I SL) = I ′

21(n, EF BG I SL) [a0 −�21] ,

I ′
21(EF BG I SL , n) = mc2β

′
012(EF BG I SL − V̄0, F, Eg2,�2)

−�2 I21(EF BG I SL , n)
,
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β ′
012(EF BG I SL − V̄0, F, Eg2,�2) =

[
(I ′

11(EF BG I SL − V̄0, Eg2,�2))

− L(Eg2 ,�2,mr2)I ′
11(EF BG I SL − V̄0, Eg2,�i )T 2

i (EF BG I SL − V̄0, Eg2,�2)

φ3
i (EF BG I SL − V̄0, Eg2 ,�2)[φ2(EF BG I SL − V̄0, Eg2 ,�2)+ δ

′
2]4

− 2L(Eg2 ,�2,mr2 )I11(EF BG I SL − V̄0, Eg2 ,�2)T2(EF BG I SL − V̄0, Eg2 ,�2)T ′
2(EF BG I SL − V̄0, Eg2 ,�2)

φ3
2 (EF BG I SL − V̄0, Eg2 ,�2)[φ2(EF BG I SL − V̄0, Eg2 ,�2)+ δ

′
2]4

+ 3L(Eg2 ,�2,mr2 )I11(EF BG I SL − V̄0, Eg2 ,�2)T 2
2 (EF BG I SL − V̄0, Eg2 ,�2)φ

′
2(EF BG I SL − V̄0, Eg2 ,�2)

φ4
i (EF BG I SL − V̄0, Eg2 ,�2)[φ2(EF BG I SL − V̄0, Eg2 ,�2)+ δ

′
2]4

+ 4L(Eg2 ,�2,mr2 )I11(EF BG I SL − V̄0, Eg2 ,�2)T 2
2 (EF BG I SL − V̄0, Eg2 ,�2)φ

′
2(EF BG I SL − V̄0, Eg2 ,�2)

φ3
2 (EF BG I SL − V̄0, Eg2 ,�2)[φ2(EF BG I SL − V̄0, Eg2 ,�2)+ δ

′
2]5

]

γ ′(EF BG I SL − V̄0, Eg2 ,�2) = I11(EF BG I SL − V̄0, Eg2 ,�2)

×
[

1

EF BG I SL − V̄0
+ 1

EF BG I SL − V̄0 + Eg2

+ 1

EF BG I SL − V̄0 + Eg2 +�2

− 1

EF BG I SL − V̄0 + Eg2 + 2
3�2

]
,

I11(EF BG I SL − V̄0, Eg2 ,�2)

= (EF BG I SL − V̄0)(EF BG I SL − V̄0 + Eg2 )(EF BG I SL − V̄0 + Eg2 +�2)
(
Eg2 + 2

3�2
)

Eg2 (Eg2 +�2)
(
EF BG I SL − V̄0 + Eg2 + 2

3�2
) ,

L(Eg2 ,�2,mr2) = (�eF)2(Eg2 − δ
/
2)

2mc2

6m2
r2

,

δ
/
2 = (Eg2)

2�2

χ2
,

χ2 = [6(Eg2)
2 + 9Eg2 .�2 + 4�2

2],
1

mr2

=
(

1

mc2

+ 1

mv2

)
,

T2(EF BG I SL − V̄0, Eg2 ,�2) =
⎡
⎣P2

[
{φ2(EF BG I SL − V̄0, Eg2 ,�2)+ Eg2}
{φi (EF BG I SL − V̄0, Eg2 ,�2)− E ′

g2
}

]1/2

+ Q2

[
{φ2(EFBGISL − V̄0, Eg2 ,�2)− Eg2}
{φ2(EF BG I SL − V̄0, Eg2 ,�2)+ Eg2}

]1/2
⎤
⎦
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P2 = r2
02

2

(
Eg2 − δ′2
Eg2 + δ′2

)
, r2

o2
=
[

6

(
Eg2 + 2

3
�2

)
(Eg2 +�2)

]
[χ2]−1,

φ2
2(EF BG I SL −V̄0, Eg2 ,�2) = [E2

g2
+Eg2(mc2/mr2)I11(EF BG I SL −V̄0, Eg2 ,�2)],

E ′
g2

=
[

Eg2(Eg2 − 3δ′2)
(Eg2 + δ′2)

]
, Q2 = t2

2

2
, t2

2 =
[

6
(
Eg2 + 2

3�2
)

χ2

]
,

φ2
′(EF BG I SL − V̄0, Eg2 ,�2) = Eg2 mc2 I ′

11(EF BG I SL − V̄0, Eg2 ,�2)

2mr2φ2(EF BG I SL − V̄0, Eg2 ,�2)
,

T2
′(EF BG I SL − V̄0, Eg2 ,�2) =

[
φ′

2(EF BG I SL − V̄0, Eg2 ,�2)

2

]

×
[

2Eg2 Q2[φ2(EF BG I SL − V̄0, Eg2 ,�2)− Eg2]−1/2

[φ2(EF BG I SL − V̄0, Eg2 ,�2)− Eg2 ]3/2

−(E ′
g2

+ Eg2 )P2[φ2(EF BG I SL − V̄0, Eg2 ,�2)− Eg2 ]−1/2

×[φ2(EF BG I SL − V̄0, Eg2 ,�2)− E ′
g2

]−3/2

]
,

I ′
22(EF BG I SL , n) = mc1β

′
11(EF BG I SL , F, Eg1,�1)

�2 I22(EF BG I SL , n)
,

I21(EF BG I SL , n) =
[

2eB

�

(
n + 1

2

)
− 2mc2

�2 β012(EF BG I SL − V̄0, F, Eg2,�2)

] 1
2

,

N21(EF BG I SL , n) = I22(EF BG I SL , n) [b0 −�21] ,

I22(EF BG I SL , n) =
[

2mc1β11(EF BG I SL , F, Eg1,�1)

�2 − 2eB

�

(
n + 1

2

)] 1
2

,

Z ′
21(EF BG I SL , n) =

[−Z21(EF BG I SL , n)I ′
21(EF BG I SL , n)

I21(V0, n)

− Z21(EF BG I SL , n)I ′
22(EF BG I SL , n)

I22(V0, n)
+(I21(EF BG I SL , n)I22(EF BG I SL , n))−1

× [
2I ′

21(EF BG I SL , n)I21(EF BG I SL , n)

−2I ′
22(EF BG I SL , n)I22(EF BG I SL , n)

] ]

For perturbed two-band model of Kane the forms of the electron concentration
and field emitted current density remain same where

I21(E, n) =
[

2eB

�

(
n + 1

2

)
− 2mc2

�2 ρ012(E − V̄0, F, Eg2)

] 1
2

,
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ρ012(E − V̄0, F, Eg2) =
[
(E − V̄0)

[
1 + α2(E − V̄0)

]

−δ52

[
(E − V0)

[
1 + α2(E − V̄0)

]+ mr2 Eg2

2mc2

]5/2
]

δ52 =
[
(�eF)2m3/2

r2 (Eg2)
1/2

12(2mc2)5/2

]
,

I22(E, n) =
[

2mc1ρ11(E, F, Eg1)

�2 − 2eB

�

(
n + 1

2

)] 1
2

,

ρ11(E, F, Eg1) =
[

E(1 + α1 E)− δ51

[
E(1 + α1 E)+ mr1 Eg1

2mc1

] 5
2
]
,

αi = 1

Egi
,

δ51 =
[
(�eF)2m3/2

r1 (Eg1)
1/2

12(2mc1)5/2

]
,

I ′
21(EF BG I SL , n) = mc2ρ

′
012(EF BG I SL − V̄0, F, Eg2)

�2 I21(EF BG I SL , n)
,

ρ′
012(EF BG I SL − V̄0, F, Eg2) =

[ [
1 + 2α2(EF BG I SL − V̄0)

]

×
[

1 − 5

2
δ52(EF BG I SL − V̄0)

× [
1 + α2(EF BG I SL − V̄0)

]+ mr2 Eg2

2mc2

]3/2
]

I ′
22(EF BG I SL , n) =

[
2mc1ρ

′
11(EF BG I SL , F, Eg1)

�2 I22(EF BG I SL , n)

]
and

ρ′
11(EF BG I SL , F, Eg1) =

[
[1 + 2α2(EF BG I SL )]

×
[
1 − 5

2
δ51(EF BG I SL ) [1 + α1(EF BG I SL )] + mr1 Eg1

2mc1

]3/2
]
.

7.2.10 The EEM in Quantum Wire Superlattices of Optoelectronic
Semiconductors with Graded Interfaces

The dispersion relation in accordance with the perturbed three-band model of Kane,
in this case is given by

k2
x = ω22(E, F, ny, nz) (7.70)

where

ω22(E, F, ny, nz) =
[

1

L2
0

[
cos−1 1

2
f13(E, F, ny, nz)

]2

− H(ny, nz)

]
,
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f13(E, F, ny, nz) = [
2 cosh

{
M31(ny, nz, E)

}
cos

{
N31(ny, nz0, E)

}
+ Z31(ny, nz, E) sinh

{
M31(ny, nz, E)

}

sin
{

N31(ny, nz, E)
}+�21

[({
I31(ny, nz, E)

}2

I32(ny, nz, E)
− 3I32(ny, nz, E)

)
cosh

{
M31(ny, nz, E)

}

sin
{

N31(ny, nz, E)
}+

(
3I31(ny, nz, E)− {I32(ny ,nz ,E)}2

I31(ny ,nz ,E)

)

× sinh
{

M31(ny, nz, E)
}

cos
{

N31(ny, nz, E)
}]

+�21

[
2
({

I31(ny, nz, E)
}2 − {

I32(ny, nz, E)
}2
)

cosh
{

M31(ny, nz, E)
}

× cos
{

N31(ny, nz, E)
}

+ 1
12

(
5{I32(ny ,nz ,E)}3

I31(ny ,nz ,E)
+ 5{I31(ny ,nz ,E)}3

I32(ny ,nz ,E)
− {

34I32(ny, nz, E)I31(ny, nz, E)
})

sinh
{

M31(ny, nz, E)
}

sin
{

N31(ny, nz, E)
}]]

Z31(ny, nz, E) ≡
[

I31(ny ,nz ,E)
I32(ny ,nz ,E)

− I32(ny ,nz ,E)
I31(ny ,nz ,E)

]
,M31(ny, nz, E) = I31(ny, nz, E) [a0 −�21] ,

I31(ny, nz, E) =
[
− 2mc2

�2 β012(E − V0, F, Eg2,�2)+ H(ny, nz)
]1/2

,

N31(ny, nz, E) = I32(ny, nz, E) [b0 −�21] and

I32(ny, nz, E) ≡
[

2mc1

�2 β11(E, F, Eg1,�1)− H(ny, nz)

]1/2

The electron concentration per unit length is given by

n0 = 2gv

π
φ107 (7.71)

where

φ107 =
nymax∑
ny=1

nzmax∑
nz=1

[
Q29(EF QW G I SL , F, ny, nz)+ Q30(EF QW G I SL , F, ny, nz)

]
,

Q29(EF QW G I SL , F, ny, nz) =
[√
ω22(EF QW G I SL , F, ny, nz)

]
,

Q30(EF QW G I SL , F, ny, nz) =
R=R0∑
R=1

Z(RF QW G I SL)
[
Q29(EF QW G I SL , F, ny, nz)

]
,

Z(RF QW GSL) = 2(kB T )2R(1 − 21−2R)ξ(2R)
∂2R

∂EF QW GSL
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and EF QW GSL is the Fermi energy in the present case.
The EEM in this case can be expressed as

m∗(EFQWGSL, F, ny, nz) = (�2/2)ω′
22(EFQWGSL, F, ny, nz) (7.72)

where

ω′
22(EF QW GSL , F, ny , nz) = 2 f ′

13(EF QW GSL , F, ny , nz)
[
cos−1

{ 1
2 f13(EF QW GSL , F, ny , nz)

}]
√

4 − f 2
13(EF QW GSL , F, ny , nz)

,

f ′
13(EF QW GSL , F, ny, nz) = [

2M ′
31(ny, nz, EF QW GSL )

× sinh
{

M31(ny, nz, EF QW GSL )
}

cos
{

N31(ny, nz, EF QW GSL )
}

+Z31(ny, nz, EF QW GSL )M
′
31(ny, nz, EF QW GSL ) cosh

{
M31(ny, nz, EF QW GSL )

}
× sin

{
N31(ny, nz, V0)

}− 2N ′
31(ny, nz, V0) sin

{
N31(ny, nz, V0)

}
cosh

{
M31(ny, nz, V0)

}
+Z ′

31(ny, nz,V0) sinh
{

M31(ny, nz, V0)
}

sin
{

N31(ny, nz,V0)
}

+Z31(ny, nz, EF QW GSL )N
′
31(ny, nz, EF QW GSL ) cos

{
N31(ny, nz, EF QW GSL )

}
× sinh

{
M31(ny, nz,EF QW GSL )

}
+�21

[
(
{
2I31(ny, nz, EF QW GSL )I

′
31(ny, nz, EF QW GSL )

}
(I32(ny, nz, EF QW GSL ))

−1

−
{

I 2
31(ny, nz, EF QW GSL )I

′
32(ny, nz, EF QW GSL )

}

× (I 2
32(ny, nz, EF QW GSL ))

−1 − 3I ′
32(ny, nz, EF QW GSL ))

]
·

cosh
{

M31(ny, nz, EF QW GSL )
}

sin
{

N31(ny, nz, EF QW GSL )
}

+ (−3I32(ny, nz, EF QW GSL )+
{

I 2
31(ny, nz, EF QW GSL )

}
(I32(ny, nz, EF QW GSL ))

−1)

{M ′
31(ny, nz, EF QW GSL ) sinh

{
M31(ny, nz, EF QW GSL )

}
sin

{
N31(ny, nz, EF QW GSL )

}
+ {N ′

31(ny, nz, EF QW GSL ) cosh
{

M31(ny, nz, EF QW GSL )
}

cos
{

N31(ny, nz, EF QW GSL )
}

+
(

− {
2I32(ny, nz, EF QW GSL )I ′

32(ny, nz, EF QW GSL )
}

I31(ny, nz, EF QW GSL )

+
{

I 2
32(ny, nz, EF QW GSL )I ′

31(ny, nz, EF QW GSL )
}

I 2
31(ny, nz, EF QW GSL )

+ 3I ′
31(ny, nz, EF QW GSL )

)
·

sinh
{

M31(ny, nz, EF QW GSL )
}

cos
{

N31(ny, nz, EF QW GSL )
}

+
(

+3I31(ny, nz, EF QW GSL )−
{

I32(ny, nz, EF QW GSL )
}2

I31(ny, nz, EF QW GSL )

)

× {M ′
31(ny, nz, EF QW GSL ) cosh

{
M31(ny, nz, EF QW GSL )

} ·
cos

{
N31(ny, nz, EF QW GSL )

}− N ′
31(ny, nz, EF QW GSL ) sin

{
N31(ny, nz, EF QW GSL )

}
× sinh

{
M31(ny, nz, EF QW GSL )

}}]
+�21

[
4
({

I31(ny, nz, EF QW GSL )I
′
31(ny, nz, EF QW GSL )

}
− {

I32(ny, nz, EF QW GSL )I
′
32(ny, nz, EF QW GSL )

}) ·
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cosh
{

M31(ny, nz, EF QW GSL )
}

cos
{

N31(ny, nz, EF QW GSL )
}

+ 2
({

I31(ny, nz, EF QW GSL )
}2 − {

I32(ny, nz, EF QW GSL )
}2
)

× {M ′
31(ny, nz, EF QW GSL ) sinh

{
M31(ny, nz, EF QW GSL )

}

cos
{

N31(ny, nz, EF QW GSL )
}− N ′

31(ny, nz, EF QW GSL )

× cosh
{

M31(ny, nz, EF QW GSL )
}

sin
{

N31(ny, nz, EF QW GSL )
}}

+ 1
12

(
15
{

I 2
32(ny ,nz ,EF QW GSL )

}
I ′
32(ny ,nz ,EF QW GSL )

I21(n,EF QW GSL )
− 5{I32(ny ,nz ,EF QW GSL )}3 I ′

31(ny ,nz ,EF QW GSL )

I 2
31(ny ,nz ,EF QW GSL )

+ 15
{

I 2
31(ny ,nz ,EF QW GSL )

}
I ′
31(ny ,nz ,EF QW GSL )

I32(ny ,nz ,EF QW GSL )
− 5{I31(ny ,nz ,EF QW GSL )}3 I ′

32(ny ,nz ,EF QW GSL )

I 2
32(ny ,nz ,EF QW GSL )

− {
34I ′

32(ny, nz, EF QW GSL )I31(ny, nz, EF QW GSL )
}

−34I32(ny, nz, EF QW GSL )I ′
31(ny, nz, EF QW GSL ))·

sinh
{

M31(ny, nz, EF QW GSL )
}

sin
{

N31(ny, nz, EF QW GSL )
}

+
(

5
{

I32(ny, nz, EF QW GSL )
}3

I31(ny, nz, EF QW GSL )
+ 5

{
I31(ny, nz, EF QW GSL )

}3

I32(ny, nz, EF QW GSL )

− {
34I32(ny, nz, EF QW GSL )I31(ny, nz, EF QW GSL )

})

{M ′
31(ny, nz, EF QW GSL ) cosh

{
M31(ny, nz, EF QW GSL )

}
sin

{
N31(ny, nz, EF QW GSL )

}
+ N ′

31(ny, nz, EF QW GSL ) sinh
{

M31(ny, nz, EF QW GSL )
}

cos
{

N31(ny, nz, EF QW GSL )
}}]],

M ′
31(ny, nz, EF QW GSL ) = I ′

31(ny, nz, EF QW GSL ) [a0 −�21] ,

I ′
31(EF QW GSL , ny, nz) = mc2β

′
012(EF QW GSL − V̄0, F, Eg2,�2)

−�2 I31(EF QW GSL , ny, nz)
,

N ′
31(ny, nz, EF QW GSL ) = I ′

32(ny, nz, EF QW GSL ) [b0 −�21] ,

I ′
32(EF QW GSL , ny, nz) = mc1β

′
11(EF QW GSL , F, Eg2,�2, ny, nz)

�2 I32(EF QW GSL , ny, nz)
,

I31(ny, nz, EF QW GSL ) =
[
−2mc2

�2 β012(EF QW GSL − V0, F, Eg2,�2)+ H(ny, nz)

]1/2

,

N31(ny, nz, EF QW GSL ) = I32(ny, nz, EF QW GSL ) [b0 −�21] ,

I32(ny, nz, EF QW GSL ) =
[

2mc1
�2 β012(EF QW GSL , F, Eg1,�1)− H(ny, nz)

]1/2
and

Z ′
31(EF QW GSL , ny, nz) =

[−Z31(EF QW GSL , ny, nz)I ′
31(EF QW GSL , ny, nz)

I31(EF QW GSL , ny, nz)

− Z31(EF QW GSL , ny, nz)I ′
32(EF QW GSL , ny, nz)

I32(V0, ny, nz)

+ (I31(EF QW GSL , ny, nz)I32(EF QW GSL , ny, nz))
−1

× [
2I ′

31(EF QW GSL , ny, nz)I31(EF QW GSL , ny, nz)

−2I ′
32(EF QW GSL , ny, nz)I32(EF QW GSL , ny, nz)

] ]
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For perturbed two band model of Kane, the form of electron concentration per unit
length and the EEM remain same where

I31(ny, nz, E) =
[

H(ny, nz)− 2mc2

�2 ρ012(E − V̄0, F, Eg2)

]1/2

,

I ′
31(EF QW GSL , ny, nz) = mc2ρ

′
012(EF QW GSL−V̄0,F,Eg2)

�2 I31(EF QW GSL ,ny ,nz)
,

I32(ny, nz, EF QW GSL) =
[
−H(ny, nz)+ 2mc1

�2 ρ11(EF QW GSL , F, Eg1)
]1/2

,

and I ′
32(EF QW GSL , ny, nz) = mc1ρ

′
11(EF QW GSL ,F,Eg1)

�2 I32(EF QW GSL ,ny ,nz)
.

7.3 Results and Discussion

The effect of an intense electric field on the EEM of the III-V materials has been
exhibited in Figs. 7.1 and 7.2 by taking n-InSb as an example. Using (7.2) and (7.6c),
the variation of the EEM along kx direction has been demonstrated in Fig. 7.1 at
different field strengths. It appears that the EEM at higher field strength becomes a
linear function of carrier concentration, thus exhibiting an exponential dependency
of the Fermi energy on the degeneracy. However, at lower field strengths, the EEM
approaches the corresponding bulk variation. It also appears from the same figure
that the EEM at different field strengths converges at higher carrier degeneracy zone
rather than at non-degeneracy zone. This variation is opposite to that exhibited in
Fig. 7.2 for the EEM along the rest other two directions using Eqs. (7.3) and (7.4).
It appears that the EEM departs from their bulk isotropic value to almost 4 times, a
significant increment due to the carrier degeneracy, where the electric field changes
the EEM at the higher degeneracy level to almost 33%.

The effect of film thickness under the presence of a strong electric field in quantum
wells of n-InSb has been exhibited in Fig. 7.3 for the two lowest subbands due to the
size quantization. Quantized variations in EEM are exhibited at both the subband
levels which marks a quantum number-dependent EEM. It appears that as the field
strength increases, the response of the EEM increases however at slow rate. A close
inspection reveals that for a particular subband the EEM has a tendency to decrease as
also exhibited in Fig. 1.4 of Chap. 1. However, the presence of the electric field raises
the subbands when the former crosses with the Fermi energy. The negative values
of the EEM at the second subband in Fig. 7.3 is of interest and specify the validity
region of the band structure formalism at such high field. It appears that the EEM
becomes negative in the sub-15 nm film thickness and thus questioning the validity
of the quantum number- dependent EEM in this regime.

We have already written a lot and still we have to move an infinitely long path
in the direction to reach the creative knowledge temple. We leave all the computer
programming and related graphs together with the inside physics for all the remaining
materials of this chapter to the able shoulders of our readers whom we believe are
creatively fur superior than that of us. As usual, for the last time the summary of this
chapter has been presented in Table 7.1.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 7.1 Plot of the EEM
along the kx direction as func-
tion of carrier concentration in
bulk n-InSb at different field
strengths

7.4 Open Research Problems

(R.7.1) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for the
bulk materials whose respective dispersion relations of the carriers in the
absence of any field is given in Chap. 1 in the presence of intense electric
field which change the original band structure and consider its effect in the
subsequent: study in each case.

(R7.2) Investigate the same set of masses as defined in (R7.1) in the presence
of an arbitrarily oriented non-uniform light waves for all the materials as
considered R7.1.

(R7.3) Investigate the same set of masses as defined in (R7.1) in the presence of
an arbitrarily oriented non-quantizing alternating non-uniform electric field
for all the cases of R7.1.

(R7.4) Investigate the same set of masses as defined in (R7.1) for the heavily doped
materials in the presence of Gaussian, exponential, Kane, Halperin, Lax,
and Bonch-Bruevich types of band tails for all materials whose unperturbed
carrier energy spectra are defined in R7.1

(R7.5) Investigate the same set of masses as defined in (R7.1) for all the materials
in the presence of arbitrarily oriented non-quantizing non-uniform electric
field for all the appropriate cases of problem R7.4.

(R7.6) Investigate the same set of masses as defined in (R7.1) for all the materials in
the presence of arbitrarily oriented non-quantizing alternating electric field
for all the appropriate cases of problem R7.4.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 7.2 Plot of the EEM
along the ky and kz directions
as function of carrier con-
centration in bulk n-InSb at
different field strengths

Fig. 7.3 Plot of the EEM at
the lowest two subbands as
function of film thickness in
quantum wells of n-InSb at
different field strengths and at
an extreme carrier degeneracy
of 1018 m−2
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Ē
F

n
,

F
,
n i
)
=

�
2
φ

10
2
(7
.3

6)
n 0

=
g v 2π

n i
m

ax ∑ n i
=1
[ M

7
(Ē
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(R7.7) Investigate the same set of masses as defined in (R7.1) for the negative
refractive index, organic, magnetic, and other advanced optical materials in
the presence of arbitrarily oriented electric field.

(R7.8) Investigate the same set of masses as defined in (R7.1) in the presence of
alternating non-quantizing electric field for all the problems of R7.7.

(R7.9) Investigate the same set of masses as defined in (R7.1) for all the quantum
confined materials (i.e, multiple quantum wells and wires) whose unper-
turbed carrier energy spectra are defined in R7.1 in the presence of arbi-
trary oriented quantizing magnetic field by including the effects of spin and
broadening respectively.

(R7.10) Investigate the same set of masses as defined in (R7.1) in the presence
of an additional arbitrarily oriented alternating quantizing magnetic field,
respectively, for all the problems of R7.9.

(R7.11) Investigate the same set of masses as defined in (R7.1) in the presence
of arbitrarily oriented alternating quantizing magnetic field and arbitrary
oriented non-quantizing non-uniform electric field, respectively, for all the
problems of R7.9.

(R7.12) Investigate the same set of masses as defined in (R7.1) in the presence
of arbitrary oriented alternating non- uniform quantizing magnetic field
and additional arbitrary oriented non-quantizing alternating electric field
respectively for all the problems of R7.9.

(R7.13) Investigate the same set of masses as defined in (R7.1) in the presence
of arbitrary oriented and crossed quantizing magnetic and electric fields
respectively for all the problems of R7.9.

(R7.14) Investigate the same set of masses as defined in (R7.1) for all the appropriate
low-dimensional systems of this chapter in the presence of finite potential
wells.

(R7.15) Investigate the same set of masses as defined in (R7.1) for all the appro-
priate low-dimensional systems of this chapter in the presence of parabolic
potential wells.

(R7.16) Investigate the same set of masses as defined in (R7.1) for all the appropriate
systems of this chapter forming quantum rings.

(R7.17) Investigate the same set of masses as defined in (R7.1) for all the above
appropriate problems in the presence of elliptical Hill and quantum square
rings respectively.

(R7.18) Investigate the same set of masses as defined in (R7.1) for multiple wall
carbon nano-tubes. .

(R7.19) Investigate the same set of masses as defined in (R7.1) for multiple wall car-
bon nano-tubes in the presence of non-quantizing non-uniform alternating
light waves.

(R7.20) Investigate the same set of masses as defined in (R7.1) for multiple wall
carbon nanotubes in the presence of non-quantizing non-uniform alternating
magnetic field.

(R7.21) Investigate the same set of masses as defined in (R7.1) for multiple wall
carbon nanotubes in the presence of crossed electric and quantizing magnetic
fields.

(R7.22) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nano-tubes for all the materials whose unperturbed carrier
dispersion laws are defined in Chap. 1.

http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R7.23) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating light
waves for all the materials whose unperturbed carrier dispersion laws are
defined in Chap. 1.

(R7.24) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating mag-
netic field for all the materials whose unperturbed carrier dispersion laws
are defined in Chap. 1.

(R7.25) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nanotubes in the presence of non-uniform light waves for
all the materials whose unperturbed carrier dispersion laws are defined in
Chap. 1.

(R7.26) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nano-tubes in the presence of alternating quantizing mag-
netic fields for all the materials whose unperturbed carrier dispersion laws
are defined in Chap. 1.

(R7.27) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nano-tubes in the presence of crossed electric and quantizing
magnetic fields for all the materials whose unperturbed carrier dispersion
laws are defined in Chap. 1.

(R7.28) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra are
defined in Chap. 1.

(R7.29) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra are
defined in Chap. 1, in the presence of an arbitrarily oriented non-quantizing
non-uniform additional electric field.

(R7.30) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra are
defined in Chap. 1 in the presence of non-quantizing alternating additional
magnetic field.

(R7.31) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra
are defined in Chap. 1. in the presence of quantizing alternating additional
magnetic field.

(R7.32) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra
are defined in Chap. 1 in the presence of crossed electric and quantizing
magnetic fields.

(R7.33) Investigate the same set of masses as defined in (R7.1) for heavily doped
nipi structures for all the appropriate cases of all the above problems.

(R7.34) Investigate the same set of masses as defined in (R7.1) for the appropriate
accumulation layers of all the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of crossed electric and quantiz-
ing magnetic fields by considering electron spin and broadening of Landau
levels.

(R7.35) Investigate the same set of masses as defined in (R7.1) for quantum confined
III-V, II-VI, IV-VI, HgTe/CdTe effective mass super-lattices together with

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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short period, strained layer, random, Fibonacci, poly-type and sawtooth
super-lattices

(R7.36) Investigate the same set of masses as defined in (R7.1) in the presence of
quantizing magnetic field, respectively, for all the cases of R7.35.

(R7.37) Investigate the same set of masses as defined in (R7.1) in the presence of
non-quantizing non-uniform additional electric field, respectively, for all
the cases of R7.35.

(R7.38) Investigate the same set of masses as defined in (R7.1) in the presence of
non-quantizing alternating electric field, respectively, for all the cases of
R7.35

(R7.39) Investigate the same set of masses as defined in (R7.1) in the presence of
crossed electric and quantizing magnetic fields, respectively, for all the cases
of R7.35.

(R7.40) Investigate the same set of masses as defined in (R7.1) for heavily doped
quantum confined superlattices for all the problems of R7.35.

(R7.41) Investigate the same set of masses as defined in (R7.1) in the presence of
quantizing non-uniform magnetic field, respectively, for all the cases of
R7.40.

(R7.42) Investigate the same set of masses as defined in (R7.1) in the presence of
crossed electric and quantizing magnetic fields respectively for all the cases
of R7.40.

(R7.43) Investigate the same set of masses as defined in (R7.1) for all the systems
in the presence of strain.

(R7.44) Investigate all the problems of this chapter by removing all the mathemat-
ical approximations and establishing the respective appropriate uniqueness
conditions.
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Chapter 8
Applications and Brief Review
of Experimental Results

8.1 Introduction

In this monograph, we have investigated many aspects of the effective masses of
the carriers based on the dispersion relations of the semiconductor nanostructures
of different technologically important quantum confined materials having different
band structures. In this chapter, we shall discuss few applications in this context in
Sect. 8.2 and also present a very brief review of the experimental investigations in
Sect. 8.3. The Sect. 8.4 contains the single experimental open research problem.

8.2 Applications

The investigations as presented in this monograph find nine different applications in
the realm of modern quantum effect devices.

8.2.1 Thermoelectric Power:

In recent years, with the advent of Quantum Hall Effect (QHE) [1, 2], there has been
considerable interest in studying the thermoelectric power under strong magnetic
field (TPSM) in various types of nanostructured materials having quantum confine-
ment of their charge carriers in one, two, and three dimensions of the respective
wave vector space leading to different carrier energy spectra [3–44]. The classical
TPSM equation is valid only under the condition of carrier non-degeneracy, being
independent of carrier concentration and reflects the fact that the signature of the
band structure of any material is totally absent in the same.
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Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_8, © Springer-Verlag Berlin Heidelberg 2013



366 8 Applications and Brief Review of Experimental Results

Zawadzki [9] demonstrated that the TPSM for electronic materials having degen-
erate electron concentration is essentially determined by their respective energy band
structures. It has, therefore, different values in different materials and changes with
the doping, magnitude of the reciprocal quantizing magnetic field under magnetic
quantization, quantizing electric field as in inversion layers, nanothickness as in
quantum wells, wires and dots, with superlattice period as in quantum confined semi-
conductor superlattices with graded interfaces having various carrier energy spectra
and also in other types of field assisted nanostructured materials.

The magnitude of the thermoelectric power G can be written as [10]

G = 1

|e| T n0

∞∫
−∞

(E − EF)R(E)

[
−∂ f0

∂E

]
dE, (8.1)

where R(E) is the total number of states. The (8.1) can be written under the condition
of carrier degeneracy [4] as

G =
(
π2k2

B T

3 |e| n0

)(
∂n0

∂EF

)
. (8.2)

For inversion layers, heavily doped semiconductors and their nanostructures and
the nipi superlattices, under the condition of electric quantum limit, (8.1) assumes
the form

G =
(
π2k2

B T

3 |e| n̄0

)[
dn̄0

d(ĒF0 − Ē0)

]
. (8.3)

Thus, we can use the carrier statistics for different low dimensional materials to
investigate the TPSM in such compounds and for the purpose of completeness we
present few results of TPSM for bulk specimens as written below:

(i) Nonlinear optical materials and Cd3As2
The electron concentration of bulk specimens in this case can be expressed
following [1, 2] as

n0 = gv(3π
2)−1 [M1a(EFb)+ N1a(EFb )

]
, (8.4)

where M1a(EFb ) ≡
[ [

γ (EFb )
] 3

2

f1(EFb )
√

f2(EFb )

]
, EFb is the Fermi energy as measured

from the edge of the conduction band in the vertically upward direction in the
absence of any quantization, N1a(EFb ) ≡ ∑s

r=1 Z1a(r)M1a(EFb )

and Z1a(r) ≡ [
2(kB T )2r (1 − 21−2r )ξ(2r)

] [
∂2r

∂E2r
Fb

]
.

Using (8.4) and (8.2), the TPSM in this case is given by
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G0 = π2k2
B T

3e

[
M ′

1a(EFb )+ N ′
1a(EFb )

] [
M1a(EFb )+ N1a(EFb )

]−1
. (8.5)

(ii) III–V materials

(a) Three band model of Kane
In accordance with this model the electron concentration can be expressed as

n0 = gv

3π2

(
2m∗

�2

)3/2 [
M̄A(EFb )+ N̄A(EFb )

]
, (8.6)

where

M̄A(EFb) =
[

EFb (EFb + Eg)(EFb + Eg +�)
(
Eg + 2

3�
)

Eg
(
Eg +�

) (
EFb + Eg + 2

3�
)

]3/2

and

N̄A(EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
M̄A(EFb)

]

Using (8.6) and (8.2), the TPSM in this case can be written as

G0 =
(
π2k2

B T

3e

)[
(M̄A(EFb ))

′ + (N̄A(EFb ))
′

M̄A(EFb )+ N̄A(EFb )

]
(8.7)

(b) The model of Stillman et al.
The expression of electron concentration in this case can be written as

n0 = gv

3π2

(
2m∗

�2

)3/2 [
MA10(EFb )+ NA10(EFb )

]
, (8.8)

where
MA10(EFb) = [I11(EFb )]3/2

and

NA10(EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
MA10(EFb )

]

Using (8.8) and (8.2), the TPSM can be expressed as
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G0 =
(
π2k2

B T

3e

)[
M ′

A10
(EFb )+ N ′

A10
(EFb)

MA10(EFb )+ NA10(EFb)

]
(8.9)

(c) The model of Palik et al.
In accordance with this model the electron concentration can be expressed as

n0 = gv

3π2

(
2m∗

�2

)3/2 [
M̄12Ab(EFb )+ N̄12Ab (EFb )

]
, (8.10)

where
M̄12Ab(EFb ) = [

I12(EFb)
]3/2

and

N̄12AB (EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
M̄12Ab(EFb )

]

Using (8.2) and (8.10), the TPSM in this case can be written as

G0 =
(
π2k2

B T

3e

)[
(M̄12Ab (EFb))

′ + (N̄12Ab (EFb ))
′

M̄12Ab(EFb )+ N̄12Ab (EFb )

]
(8.11)

(d) Model of Johnson and Dicley
The expressions of the electron concentration and the TPSM for this model
are given by

n0 = gv

3π2

[
M13Ab

(EFb )+ N13Ab
(EFb )

]
(8.12)

and

G0 =
(
π2kB

2T

3e

)[M ′
13Ab

(EFb )+ N ′
13Ab

(EFb)

M13Ab
(EFb )+ N13Ab

(EFb)

]
, (8.13)

where

M13Ab
(EFb ) = [

ē8
(
EFb

)]3/2
,

N13Ab
(EFb ) =

s∑
r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂EFb
2r

[
M13Ab

(EFb )
]
,



8.2 Applications 369

ē8(EFb ) =
[
(Eg0 + 2EFb )e7 + E2

g0

4
e8(EFb )

−
[

E2
g0

[
e2

7 + E2
g0

16
e2

8(EFb )+ EFb e7e8(EFb )+ e7 Eg0

2
e8(EFb )

]]1/2
⎤
⎦ .(2e2

7)
−1

e7 = �
2

2

[
1

m∗ − 1

m0

]
, e8(EFb ) = 2�

2ϕA1(EFb )

Eg0 m∗ ,

ϕA1(EFb) = (Eg0 +�)
(
EFb + Eg0 + 2

3�
)

(Eg0 + 2
3�)

(
EFb + Eg0 +�

)

(iii) n-type Gallium Phosphide
In this case, the electron concentration and the TPSM can, respectively, be
written as

n0 = 2gv

4π2

[
MA1(EFb)+ NA1(EFb )

]
(8.14)

G0 =
(
π2k2

B T

3e

)[
M ′

A1
(EFb )+ N ′

A1
(EFb )

MA1(EFb )+ NA1(EFb )

]
, (8.15)

where

MA1(EFb ) =
[
(tA1) · (EFb )θ−(EFb )+ tA2θ−(EFb)− tA3(θ−(EFb))

3

3

− tA4θ−(EFb )

2

[
(θ−(EFb))

2 + tA5(EFb )
] 1

2

+ tA4 tA5(EFb )

2
ln

∣∣∣∣∣
θ−(EFb )+√

(θ−(EFb))
2 + tA5(EFb )√

tA5(EFb )

∣∣∣∣∣
]

tA1 = 1

a
, a =

(
�

2

2m∗⊥
+ A

�
2

2m∗‖

)
, b = �

2

2m∗‖
, c = �

2k2
0

m∗2

‖
, D = |VG |2 ,

tA2 =
[ g1

2a2

]
, tA3 =

(
b

a

)
, tA4 =

(√
g3

2a2

)
,

g1 = (2aD − c), g2 =
[
4a2b2 + c2 − 4acD

]
, g3 =

[
4abc + 4a2c

]

tA5(EFb) =
[

g2 − (4ac).(EFb )

g3

]
, tA6 = (t2

A4
+ 2tA2 tA3), tA7 = (2tA1 tA3),
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tA8 =
[
t4
A4

+ 4t2
A4

tA2 tA3 + (4t2
A3

t2
A4

g2/g3)
]
,

tA9 =
[
4tA1 tA3 t2

A4
+ 8tA1 tA2 t2

A3
− (16t2

A3
t2
A4

ac/g3)
]

and θ−(EFb ) = (tA3 .
√

2)−1
[
tA6 + (EFb).(tA7)− (tA8 + (tA9).(EFb ))

1/2
]

(iv) II–VI materials
The expressions of electron concentration and the TPSM for II–VI materials
assume the forms

n0 = 1

2

(
kB T

πb′
0

)3/2 (b′
0

a′
0

)[
F1

2
(η)+ λ̄2

0

2a′
0kB T

F−1
2
(η)

]
(8.16)

G0 =
(
π2kB

3e

)[ F−1
2
(η)+ (λ̄2

0/2a′
0kB T )F−3

2
(η)

F1
2
(η)+ (λ̄2

0/2a′
0kB T )F−1

2
(η)

]
(8.17)

(v) Stressed Materials
In this case electron concentration and TPSM assume the forms

n0 = gv(3π
2)−1 [MA2(EFb )+ NA2(EFb)

]
(8.18)

G0 =
(
π2k2

B T

3e

)[
M ′

A2
(EFb )+ N ′

A2
(EFb )

MA2(EFb )+ NA2(EFb )

]
, (8.19)

where
MA2(EFb) = [

a∗(EFb)b
∗(EFb)c

∗(EFb )
]

and

NA2(EFb) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
MA2(EFb )

]
.

(vi) IV–VI Semiconductors

(a) Bangert and Kästner model
In this case electron concentration and the TPSM can, respectively, be
expressed as

n0 =
( gv

3π2

) [
MA3(EFb)+ NA3(EFb )

]
(8.20)

and

G0 =
(
π2k2

B T

3e

)[
M ′

A3
(EFb )+ N ′

A3
(EFb )

MA3(EFb )+ NA3(EFb )

]
, (8.21)
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where

MA3(EFb ) = [
τA(EFb )

]3/2 [
F̄1(EFb )

√
F̄2(EFb )

]−1

, τA(EFb ) = 2EFb

and

NA3(EFb) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
MA3(EFb )

]
.

(b) Cohen Model
In this case electron concentration and the TPSM can, respectively, be written
as

n0 =
(

gv
√

m1m3

π2�

) [
MA3(EFb )+ NA3(EFb)

]
(8.22)

G0 =
(
π2k2

B T

3e

)[
M ′

A3
(EFb )+ N ′

A3
(EFb )

MA3(EFb )+ NA3(EFb

]
, (8.23)

where

MA3(EFb ) = τA1(EFb )

[
EFb (1 + αEFb )− τ 4

A1
(EFb )

20m2m′
2

+ αEFbτ
2
A1
(EFb )

6m′
2

−τ
2
A1
(EFb )(1 + αEFb )

6m2

]

τA1(EFb ) =
[

α

2m2m′
2

]−1/2 [
−
[

1 + αEFb

2m2
− αEFb

2m′
2

]

+
[[

1 + αEFb

2m2
− αEFb

2m′
2

]2

+ αEFb (1 + αEFb )

m2m′
2

]1/2
⎤
⎦

1/2

and

NA3(EFb) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
MA3(EFb )

]
.

(c) Dimmock Model
In this case electron concentration and the TPSM assume the forms

n0 =
( gv

2π2

) [
MA4(EFb )+ NA4(EFb )

]
(8.24)
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G0 =
(
π2k2

B T

3e

)[
M ′

A4
(EFb )+ N ′

A4
(EFb )

MA4(EFb )+ NA4(EFb )

]
, (8.25)

where

MA4(EFb ) =
[
α5 JA1(EFb )− α3(EFb )τ̄A1(EFb )− α4

3

[
τ̄A1(EFb )

]3]
,

α5 =
[

2m+
t m−

t

α�2 ωA1

]
,

ωA1 =
⎡
⎣α2

16

[
1

m−
t m+

l

+ 1

m−
l m+

t

]2

− α2

4m+
l m−

t m−
l m+

t

⎤
⎦ ,

JA1(EFb) = AA(EFb )

3

[
−(A2

A(EFb )+ B2
A(EFb ))E(λ, q)

+2B2
A(EFb )F(λ, q)

]
+ τ̄A1(EFb )

3

[
(τ̄A1(EFb))

2 + A2
A(EFb )+ 2B2

A(EFb )
] [

A2
A(EFb)+ τ̄ 2

A1
(EFb)

]1/2

×
[

B2
A(EFb)+ τ̄ 2

A1
(EFb )

]−1/2

λ = tan−1 τ̄A(EFb )

BA(EFb)
, q =

⎡
⎣
√

A2
A(EFb )− B2

A(EFb )

AA(EFb )

⎤
⎦ ,

AA(EFb ) =
[
τA2(EFb )+

√
τ 2

A2
(EFb)− 4τA3(EFb)

]1/2/√
2,

BA(EFb ) =
[
τA2(EFb )−

√
τ 2

A2
(EFb )− 4τA3(EFb )

]1/2/√
2,

τA2(EFb ) = ωA2(EFb )

ω2
A1

, τA3(EFb ) = ωA3(EFb)

ω2
A1

,



8.2 Applications 373

ωA2(EFb ) =
[
α

2

[
1

2m∗
t

− α.EFb

2m+
t

+ 1 + α.EFb

2m−
t

]
.

[
1

m−
t m+

l

+ 1

m−
l m+

t

]

− α

m+
t m−

t

[
1

2m∗
l

+ α.EFb

2m+
l

+ 1 + α.EFb

2m−
l

]]

ωA3(EFb) =
[
α.EFb (1 + α.EFb )

m+
t m−

t
+
[

1

2m∗
t

− α.EFb

2m+
t

+ 1 + α.EFb

2m−
t

]2
]
,

α2(EFb) =
[

1

2m∗
t

− α.EFb

2m+
t

+ 1 + α.EFb

2m−
t

]
,

α3 = α�
2

4

[
1

m−
t m+

l

+ 1

m−
l m+

t

]
,

τA1(EFb ) =
[

2m+
l m−

l

α�2

]1/2 [
−
[

1

2m∗
l

+ 1 + α.EFb

m−
l

− α.EFb

2m+
l

]

+
⎡
⎣
[

1

2m∗
l

+ 1 + α.EFb

m−
l

− α.EFb

2m+
l

]2

+ α.EFb (1 + α.EFb )

m−
l m+

l

⎤
⎦

1/2
⎤
⎥⎦

1/2

E(λ, q) =
λ∫

0

[
1 − q2 sin2 α

]1/2
dα is the complete Elliptic integral of second kind,

F(λ, q) =
λ∫

0

dα√
1 − q2 sin2 α

is the complete Elliptic integral of first kind

and NA4(EFb ) = ∑s
r=1 2(kB T )2r (1 − 21−2r )ζ(2r) ∂

2r

∂E2r
Fb

[
MA4(EFb )

]
(d) Foley and Langenberg Model

In this case electron concentration and the TPSM can, respectively, be
expressed as

n0 =
(

2gv

4π2

) [
h A6(EFb )+ h A7(EFb )

]
(8.26)

G0 =
(
π2k2

B T

3e

)[
h′

A6
(EFb)+ h′

A7
(EFb )

h A6(EFb)+ h A7(EFb )

]
, (8.27)
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where

h A6(EFb ) =
[

1

3
δA5 h3

A3
(EFb )− δA4(EFb )h A3(EFb)+ δA10 JA6(EFb )

]
,

δA6 =
[

�
4

2

(
1

(m+
⊥)2

− 1

(m−
⊥)2

)]−1

,

δA4(EFb ) = δA6

[
�

2

2m−
⊥
(Eg0 + 2EFb )+ P2⊥ + �

2 Eg0

2m+
⊥

]
,

δA7 = �
8

[
1

4(m+
⊥m+

‖ )2
− 1

2m+
⊥m−

⊥m+
‖ m−

‖
+ 1

4(m−
⊥m−

‖ )2

]
,

δA5 = δA6�
4

[
1

2m−
⊥m−

‖
− 1

2m+
⊥m+

‖

]
,

δA8(EFb ) =
[

�
6 Eg0

2(m+
⊥)2m−

‖
+ �

6(Eg0 + 2EFb )

2m+
⊥m−

⊥m+
‖

− �
6 Eg0

2m+
⊥m−

⊥m−
‖

− �
4 P2⊥

m−
⊥m−

‖

−�
6(Eg0 + 2EFb )

2(m−
⊥)2m−

‖
− �

6(Eg0 + 2EFb )

2m−
‖ (m

+
⊥)2

− �
6 Eg0

2m+
‖ (m

+
⊥)2

− P2‖ �
4

(m+
⊥)2

+ �
6(Eg0 + 2EFb )

2m−
‖ (m

−
⊥)2

+ �
6 Eg0

2m+
‖ (m

−
⊥)2

+ �
4 P2‖

(m+
⊥)2

]
,

δA9 (EFb ) =
[

P4⊥ + �
4 E2

g0

4(m+
⊥)2

+ �
4(Eg0 + 2EFb)

4(m−
⊥)2

+ Eg0 �
2 P2⊥

m+
⊥

+ �
2 P2⊥(Eg0 + 2EFb )

m−
⊥

]

+
[

Eg0 �
4(Eg0 + 2EFb )

2m+
⊥m−

⊥
+ �

4 EFb
2

(m+
⊥)2

+ �
4 EFb Eg0

(m+
⊥)2

− �
4 EFb

2

(m−
⊥)2

− �
4 EFb Eg0

(m−
⊥)2

]

δA10 = δA6(δA7)
1/2, δA11(EFb ) = [

δA8(EFb )δA7

]
,

h A2(EFb) = �
2

2

[
2EFb + Eg0

m−
‖

+ Eg0

m+
‖

+ P2‖

]

h A3(EFb ) = (2h A1)
1/2

[√
h2

A2
(EFb )+ 4h A1 EFb (EFb + Eg0 )− h A2 (EFb )

]1/2
,
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JA6(EFb ) = h A4(EFb )

3

[
−E(λ1, q1)

[
h2

A4
(EFb )+ h2

A5
(EFb)

]

+ 2h2
A5
(EFb )F(λ1, q1)+ h A4(EFb )

3

×
[
h2

A3
(EFb )+ h2

A4
(EFb )+ 2h2

A5
(EFb )

]

×
[
(h2

A4
(EFb)+ h2

A5
(EFb))

] / [
(h2

A5
(EFb)+ h2

A3
(EFb))

]]1/2
,

λ1 = tan−1 [h A3(EFb )
/

h A5(EFb )
]
, q1 =

[
h2

A4
(EFb )− h2

A5
(EFb )

h A4(EFb )

]

and

h A7(EFb ) =
s0∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
h A6(EFb )

]

(vii) n-Ge

(a) Model of Cardona et al.
The expressions for the electron concentration and the TPSM can be
written as

n0 = Nc0

[
F1

2
(η)+ ᾱ2 F3

2
(η)− ᾱ3 F7

2
(η)
]

(8.28)

G0 =
(
π2kB

3e

)[ F−1
2
(η)+ ᾱ2 F1

2
(η)− ᾱ3 F5

2
(η)

F1
2
(η)+ ᾱ2 F3

2
(η)− ᾱ3 F7

2
(η)

]
, (8.29)

where

Nc0 = 2gv(2πm∗
DkB T

/
h2)3/2, m∗

D = ((m∗⊥)2m∗‖)1/3, ᾱ2 = 45αkB T

24

and

ᾱ3 = 189

8
α(kB T )2

(
kB T (m∗‖)2

�4

)
.

(b) Model of Wang and Ressler
The expressions for the electron concentration and the TPSM assume the
forms

n0 =
(

m∗⊥gv

π2�2

) [
MA5(EFb)+ NA5(EFb )

]
(8.30)
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G0 =
(
π2k2

B T

3e

)[
M ′

A5
(EFb )+ N ′

A5
(EFb )

MA5(EFb )+ NA5(EFb )

]
, (8.31)

where

MA5(EFb) =
[
ᾱ8ρA1(EFb )− ᾱ9

3
ρ3

A1
(EFb )− ᾱ10 JA2(EFb)

]
,

ᾱ4 = β4(2m∗⊥
/

�
2)2 ,

β4 = 1.4β5, β5 = 1

4

(
α�

4
/
(m∗⊥)2

)
.

(
1 − m∗⊥

m0

)2

,

ᾱ5 = ᾱ7(4m∗⊥m∗‖/�4), ᾱ7 = 0.8β5,

ᾱ6 = (0.005β5)(2m∗‖/�2)2,

ᾱ10 =
(

1

2ᾱ4

)
.

(
�

2

2m∗‖

)[
ᾱ2

5 − 4ᾱ4ᾱ6

]1/2
,

ᾱ11 =
(

2m∗‖
�2

)[
4ᾱ4 − 2ᾱ5

ᾱ2
5 − 4ᾱ4ᾱ6

]
,

ᾱ12(EFb ) =
(

2m∗‖
�2

)2 [
(1 − 4ᾱ4 EFb)

ᾱ2
5 − 4ᾱ4ᾱ6

]
,

ρA1(EFb ) = 1

�

(
m∗‖
ᾱ6

)1/2 [
1 −√

1 − 4ᾱ6(EFb)
]1/2

⎤
⎦ ,

Ā2
A1
(EFb ) = 1

2

[
ᾱ11 +

[
ᾱ2

11 − 4ᾱ12(EFb )
]1/2

]
,

B̄2
A1
(EFb ) = 1

2

[
ᾱ11 −

[
ᾱ2

11 − 4ᾱ12(EFb )
]1/2

]
,

JA2(EFb ) = ĀA1(EFb )

3

[
−E(λ3, q3)

[
Ā2

A1
(EFb )+ B̄2

A1
(EFb)

]

+2B̄2
A1
(EFb )F(λ3, q3)

]
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+ ĀA1(EFb)

3

[
ρ̄2

A1
(EFb )+ Ā2

A1
(EFb )+ 2B̄2

A1
(EFb)

]

×
[

Ā2
A1
(EFb )+ ρ2

A1
(EFb)

B̄2
A1
(EFb)+ ρ2

A1
(EFb )

]1/2

,

λ3 = tan−1 ρA1(EFb)

B̄A1(EFb )
, q3 =

[
Ā2

A1
(EFb)− B̄2

A1
(EFb )

ĀA1(EFb)

]

and

NA5(EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
MA5(EFb )

]

(viii) Platinum Antimonide
The expressions for the electron concentration and the TPSM can be written as

n0 =
( gv

2π2

) [
MA6(EFb )+ NA6(EFb )

]
(8.32)

G0 =
(
π2k2

B T

3e

)[
M ′

A6
(EFb )+ N ′

A6
(EFb )

MA6(EFb )+ NA6(EFb )

]
, (8.33)

where

MA6(EFb ) =
[

TA9(EFb )ρA2(EFb)− TA10(EFb )
ρ3

A2
(EFb )

3
− TA11 JA3(EFb )

]
,

TA1 = [I1 + ω1ω3] ,

TA2(EFb ) = [−EFbω3 + ω1(EFb + δ0)
]
,

TA3 = [2I1 + ω2ω4 + ω3ω2] ,

TA4 = [I1 + ω2ω4] ,

TA5(EFb ) = ω2(EFb + δ0),

TA6(EFb ) = [
EFb (EFb + δ0)− EFbω4

]
,

T̄A6 =
[
T 2

A3
− 4TA1 TA4

]
,

TA7(EFb ) = [
2TA3 TA2(EFb )− 4TA1 TA5(EFb )

]
,

TA8(EFb ) =
[
T 2

A2
(EFb )+ 4TA1 TA6(EFb)

]
,

TA9(EFb ) = TA2(EFb )

2TA1

, TA10 = [
TA3

/
2TA1

]
,

TA11 =
√

T̄A6

2TA1

, TA12(EFb ) = [
TA7(EFb )

/
T̄A6

]
,
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TA13(EFb ) = TA8(EFb )
/

T̄A6 ,

ρA2(EFb ) =
[[

TA5(EFb )−
√

T 2
A5
(EFb)+ 4TA4 TA6(EFb )

] /
(2TA4)

]1/2
,

A2
A3
(EFb ) = 1

2

[
TA12(EFb)+

√
T 2

A12
(EFb )− 4TA13(EFb )

]
,

B2
A3
(EFb ) = 1

2

[
TA12(EFb)−

√
T 2

A12
(EFb )− 4TA13(EFb )

]
,

JA3(EFb ) = ρA2(EFb )

3

[[
A2

A3
(EFb )+ B2

A3
(EFb )

]
× E(η1, t1)− [

A2
A3
(EFb )− B2

A3
(EFb )

]
F(η1, t1)

]
+ ρA2(EFb )

3

[[
A2

A3
(EFb )− ρ2

A2
(EFb )

] [
B2

A3
(EFb )− ρ2

A2
(EFb )

]]1/2

η1 = tan−1 [ρA2(EFb )
/

BA3(EFb )
]
, t1 = [

BA3(EFb)
/

AA3(EFb)
]

and

NA6(EFb) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
MA6(EFb )

]
.

(ix) n-GaSb
In accordance of model of Mathur and Jain, the electron concentration and the
TPSM can be expressed as

n0 = gv

3π2

(
2m∗

�2

)3/2 [
δA2(EFb )+ δA3(EFb )

]
(8.34)

G0 =
(
π2k2

B T

3e

)[
δ′A2
(EFb )+ δ′A3

(EFb )

δA2(EFb )+ δA3(EFb )

]
, (8.35)

where
δA2(EFb ) = [

δA1(EFb )
]3/2

,
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δA1(EFb ) =
[

EFb + Eg1 − m∗

m0

Eg1

2
−
[(

Eg1

2

)2

+
[

Eg1

2

(
1 − m∗

m0

)]2

+ (Eg1)
2

2

(
1 − m∗

m0

)
+ EFb Eg1

(
1 − m∗

m0

)]1/2
⎤
⎦

and

δA3(EFb) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
δA2(EFb )

]

(x) n-Te
The electron concentration and TPSM in n-Te in accordance with the model
of Bouat et al. can be written as

n0 = gv

3π2

[
MA9(EFb )+ NA9(EFb )

]
(8.36)

G0 =
(
π2k2

B T

3e

)[
M ′

A9
(EFb )+ N ′

A9
(EFb)

MA9(EFb )+ NA9(EFb)

]
(8.37)

MA9(EFb ) =
[
3ψ5(EFb )�3(EFb)− ψ6�

3
3(EFb )

]
, ψ5(EFb ) =

[
EFb

ψ2
+ ψ2

4

2ψ2
2

]
,

�3(EFb) = [2ψ1]−1
[√
ψ2

3 + 4ψ1 EFb − ψ3

]
, ψ6 = (ψ1

/
ψ2) ,

NA9(EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

× [
MA9(EFb )

]
, ψ1 = A6, ψ2 = A7, ψ2

3 = A8

and ψ2
4 = A9

(xi) Bismuth

(a) McClure and Choi model
The electron concentration and TPSM in Bi in accordance with this model
can be written as

n0 =
( gv

4π3

)
h A8

[
h A10(EFb )+ h A11(EFb )

]
(8.38)
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G0 =
(
π2k2

B T

3e

)[
h′

A10
(EFb)+ h′

A11
(EFb )

h A10(EFb)+ h A11(EFb )

]
, (8.39)

where

h A8 = 4π2√m1m3

�2θA4

, θA4 = α�
2

2m2
, θA3 = α�

4

4m2m′
2
,

θA2(EFb ) = (αEFb�
4 /2m2)

[
1 − m2

m′
2

]
, θ2

A5
= 1

θA4

,

h A10(EFb) =
[

h A9(EFb )

2θA5

ln

∣∣∣∣θA5 + h̄ A4(EFb )

θA5 − h̄ A4(EFb )

∣∣∣∣+ (θA5(EFb )

+θA3θ
2
A5
)h̄ A4(EFb )+ θA3

3

[
h̄ A4(EFb)

]3]
,

h A9(EFb ) =
[

EFb(1 + αEFb )− θA5(EFb)θ
2
A5

− θA3θ
4
A5

]
,

h̄ A4(EFb ) =
√

2m2m′
2√

α�2

[−αEFb �
2

2m2

(
1 − m2

m′
2

)

+
[
α2 E2

Fb
�

4

4m2
2

(
1 − m2

m′
2

)2

+ αE(1 + αEFb )�
4

m2m′
2

]1/2
⎤
⎦

1/2

and

h A11(EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
h A10(EFb )

]

(b) Hybrid model
In accordance with Hybrid model, the expressions for n0 and G0 are given by

n0 =
( gv

2π2

) [
h A12(EFb )+ h A13(EFb)

]
(8.40)

G0 =
(
π2k2

B T

3e

)[
h′

A12
(EFb )+ h′

A13
(EFb )

h A12(EFb )+ h A13(EFb )

]
, (8.41)

where
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h A12(EFb ) =
[

EFb (1 + αEFb )− L A1(EFb )�
2 I 2

A4
(EFb )

6M2
− L A2�

4 I 5
A5
(EFb )

20M2
2 Eg0

]
,

L A1(EFb ) = [
1 + L A3 + αEFb (1 − L A2)

]
, L A3 = M2/m2, L A2 = M2/M ′

2

IA4 (EFb ) =
[

L A2

2Eg0 M2
2

]−1/2
⎡
⎣−L A1 (EFb )

2M2
+
[

L2
A1
(EFb )

4M2
2

+ L A2 EFb (1 + αEFb )

4Eg0 M2
2

]1/2
⎤
⎦

1/2

and

h A13(EFb ) =
s∑

r=1

2(kB T )2r (1 − 21−2r )ζ(2r)
∂2r

∂E2r
Fb

[
h A12(EFb )

]

8.2.2 Debye Screening Length:

The Debye screening length (DSL) of the carriers in the semiconductors is a fun-
damental quantity, characterizing the screening of the Coulomb field of the ionized
impurity centers by the free carriers. It affects many special features of the modern
semiconductor devices, the carrier mobility under different mechanisms of scattering,
and the carrier plasmas in semiconductors [45–58].

The DSL (L D) can, in general, be writ ten as [48–58]

L D =
(

|e|2
εsc

∂n0

∂EF

)−1/2

, (8.42)

where n0 and EF are applicable for bulk samples.
Using (8.42) and (8.2), one obtains

L D =
(

3 |e|3 n0G
/
εscπ

2k2
B T
)−1/2

. (8.43)

Therefore, we can experimentally determine L D by knowing the experimental curve
of G versus carrier concentration at a fixed temperature. It is evident that the DSL
for a system can be investigated if the functional dependence between the electron
concentration and the Fermi energy of that particular material is known. For the
purpose of completeness we present few results of DSL as written below:

(i) In the presence of external light waves, the DSL in optoelectronic materials
whose unperturbed conduction electrons obey the three and two band models of
Kane together with parabolic energy bands can, respectively, be expressed as
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L D =
[(

e2

3π2εsc

)(
2mc

�2

)3/2
]−1/2

× [
G ′

70(EFl, λ, Eg0,�)+ H ′
70(EFl, λ, Eg0,�)

]1/2 (8.44)

L D =
[(

e2

3π2εsc

)(
2mc

�2

)3/2
]−1/2

× [
G ′

71(EFl, λ, Eg0)+ H ′
71(EFl, λ, Eg0)

]−1/2 (8.45)

L D =
[(

e2

3π2εsc

)(
2mc

�2

)3/2
]−1/2

× [
G ′

72(EFl, λ, Eg0)+ H ′
72(EFl, λ, Eg0)

]−1/2
, (8.46)

where the primes indicate the differentiation of the differentiable functions with
respect to the Fermi energy, G70(EFl, λ, Eg0,�) = [β0(EFl, λ)]3/2,
H70(EFl, λ, Eg0,�) = ∑s

r=1 zt (r)G70(EFl, λ, Eg0,�)

zt (r) = 2(kB T )2r (1 − 21−2r )ξ(2r) ∂
2r

∂E2r
Fl
, t = l or Fs , EFl is the Fermi energy

as measured in the presence of light waves as measured from the edge of the
conduction band in the vertically upward direction in the absence of any field,

H71(EFl, λ, Eg0) =
s∑

r=1

zt (r)G71(EFl, λ),

G71(EFl, λ, Eg0) = [ω0(EFl, λ)]
3/2 ,

G72(EFl, λ, Eg0) = [ρ0(EFl, λ)]
3/2 ,

H72(EFl, λ, Eg0) =
s∑

r=1

zt (r)G72(EFl, λ, Eg0)

n0 = 1

3π2

(
2mc

�2

)3/2 [
G70(EFl, λ, Eg0,�)+ H70(EFl, λ, Eg0,�)

]
,

n0 = 1

3π2

(
2mc

�2

)3/2 [
G71(EFl, λ, Eg0)+ H71(EFl, λ, Eg0)

]

and

n0 = 1

3π2

(
2mc

�2

)3/2 [
G72(EFl, λ, Eg0)+ H72(EFl, λ, Eg0)

]
.

(ii) In the presence of intense electric field, the DSL in optoelectronic semiconduc-
tors in accordance with the perturbed three and two band models of Kane can,
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respectively, be expressed as

L D =
[(

e2

3π2εsc

)(
2mc

�2

)3/2
]−1/2 [

g′
70(EFs, F)+ h′

70(EFs, F)
]−1/2

(8.47)

L D =
[(

e2

3π2εsc

)(
2mc

�2

)3/2
]−1/2 [

g′
71(EFs, F)+ h′

71(EFs, F)
]−1/2

(8.48a)

g70(EFs, F) = [β(EFs, F)]3/2 , h70(EFs, F) =
s∑

r=1

zt (r)g70(EFs, F)

β(EFs, λ) =
[

1 + φ(EFs, F)

3I11(EFs)
+ 2

3I11(EFs)

]−1

EFs is the Fermi energy as measured in the presence of intense electric field as
measured from the edge of the conduction band in the vertically upward direction
in the absence of any field g71(EFs, F) = [β1(EFs, F)]3/2, h71(EFs, F) =∑s

r=1 zt (r)g71(EFs, F),

β1(EFs, λ) =
[

1 + φ1(EFs, F)

3γ0(EFs)
+ 2

3γ0(EFs)

]−1

n0 = 1

3π2

(
2mc

�2

)3/2

[g70(EFs, F)+ h70(EFs, F)] , (8.48b)

n0 = 1

3π2

(
2mc

�2

)3/2

[g71(EFs, F)+ h71(EFs, F)] (8.48c)

In the absence of any field, the expressions for the DSL and the electron
concentration for optoelectronic semiconductors whose energy band structures
are defined by the unperturbed two band model of Kane, under the condition
(EF E−1

g0 ) 	 1 , assume the well-known forms as [52]

L D =
[

e2

εsc
NckB T

[
F−1/2(η)+ 15αkB T

4
F1/2(η)

]]−1/2

(8.49)

n0 = Nc

[
F1/2(η)+ 15αkB T

4
F3/2(η)

]
, (8.50)

where η = EF

kB T
.
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8.2.3 Carrier Contribution to the Elastic Constants:

The knowledge of the carrier contribution to the elastic constants is important in
studying the mechanical properties of the materials and has been investigated in the
literature [59–81]. The electronic contribution to the second- and third-order elastic
constants can be written as [59–81]

�C44 = − (G0)
2

9

∂n0

∂EF
, (8.51)

and

�C456 = (G0)
3

27

∂2n0

∂E2
F

, (8.52)

where G0 is the deformation potential constant. Thus, using (8.2), (8.51), and (8.52),
we can write

�C44 =
[
−n0(G0)

2 |e| G0

/
(3π2k2

B T )
]

(8.53)

and

�C456 = (n0 |e| (G0)
3G2

0

/
(3π4k3

B T ))(1 + n0

G0

∂G0

∂n0
) (8.54)

Thus, again the experimental graph of G0 versus n0 allows us to determine the
electronic contribution to the elastic constants for materials having arbitrary spectra.
We present a few results in this context:

The expressions for �C44 and �C456 in quantum wires of nonlinear optical
materials, III–V, II–VI, Bismuth, IV–VI, stressed semiconductors, Te, n-GaP, PtSb2,
Bi2Te3, n-Ge, and II–V can, respectively, be expressed as

(a) Nonlinear optical materials:

�C44 = −
(

2(Ḡ0)
2gv

9π

) nxmax∑
nx =1

nymax∑
ny=1

[B ′
11(EF1D, nx , ny)+ B ′

12(EF1D, nx , ny)],

(8.55)

�C456 =
(

2(Ḡ0)
3gv

27π

) nxmax∑
nx =1

nymax∑
ny=1

[
B ′′

11(EF1D, nx , ny)+ B ′′
12(EF1D, nx , ny)

]
.

(8.56)
(b) III–V materials:

1. Three band model of Kane:



8.2 Applications 385

�C44 = −
(

2(Ḡ0)
2gv

9π

) nxmax∑
nx =1

nymax∑
ny=1

[T ′
63(EF1D, nx , ny)+ T ′

64(EF1D, nx , ny)],

(8.57)

�C456 =
(

2(Ḡ0)
3gv

27π

) nxmax∑
nx =1

nymax∑
ny=1

[T ′′
63(EF1D, nx , ny)+ T ′′

64(EF1D, nx , ny)].

(8.58)
2. Two band model of Kane:

�C44 = −
(

2(Ḡ0)
2gv

9π

) nxmax∑
nx =1

nymax∑
ny=1

[T ′
65(EF1D, nx , ny)+ T ′

66(EF1D, nx , ny)],

(8.59)

�C456 =
(

2(Ḡ0)
3gv

27π

) nxmax∑
nx =1

nymax∑
ny=1

[T ′′
65(EF1D, nx , ny)+ T ′′

66(EF1D, nx , ny)].

(8.60)
3. The model of Stillman et al.:

�C44 = −
(

2(Ḡ0)
2gv

9π

) nxmax∑
nx =1

nymax∑
ny=1

[B′
17(EF1D, nx , ny)+ B′

18(EF1D, nx , ny)],

(8.61)

�C456 =
(

2(Ḡ0)
3gv

27π

) nxmax∑
nx =1

nymax∑
ny=1

[B′′
17(EF1D, nx , ny)+ B′′

18(EF1D, nx , ny)].

(8.62)
4. The model of Newson and Kurobe:

�C44 = −
(

2(Ḡ0)
2gv

9π

) nxmax∑
nx =1

nymax∑
ny=1

[B′
19(EF1D, nx , ny)+ B′

20(EF1D, nx , ny)],

(8.63)

�C456 =
(

2(Ḡ0)
3gv

27π

) nxmax∑
nx =1

nymax∑
ny=1

[B′′
19(EF1D, nx , ny)+ B′′

20(EF1D, nx , ny)].

(8.64)
5. The model of Palik et al.:

�C44 = −
(

2(Ḡ0)
2gv

9π

) nxmax∑
nx =1

nymax∑
ny=1

[B′
21(EF1D, nx , ny)+ B′

22(EF1D, nx , ny)],

(8.65)
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�C456 =
(

2(Ḡ0)
3gv

27π

) nxmax∑
nx =1

nymax∑
ny=1

[
B′′

21(EF1D, nx , ny)+ B′′
22(EF1D, nx , ny)

]
.

(8.66)

(b) II–VI materials:

�C44 = − (Ḡ0)
2gv

9π
√

B0

nxmax∑
nx =1

nymax∑
ny=1

[
t ′7(EF1D, nx , ny)+ t ′8(EF1D, nx , ny)

]
, (8.67)

�C456 = (Ḡ0)
3gv

27π
√

B0

nxmax∑
nx =1

nymax∑
ny=1

[
t ′′7(EF1D, nx , ny)+ t ′′8(EF1D, nx , ny)

]
.

(8.68)
(c) Bismuth:

1. The model of McClure and Choi:

�C44 = −2(Ḡ0)
2gv

9π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′27(EF1D, ny, nz)+ t ′28(EF1D, ny , nz)

]
,

(8.69)

�C456 = 2(Ḡ0)
3gv

27π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′′27(EF1D, ny, nz)+ t ′′28(EF1D, ny , nz)

]
.

(8.70)
2. Hybrid model:

�C44 = −2(Ḡ0)
2gv

9π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′31(EF1D, ny, nz)+ t ′32(EF1D, ny , nz)

]
,

(8.71)

�C456 = 2(Ḡ0)
3gv

27π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′′31(EF1D, ny, nz)+ t ′′32(EF1D, ny, nz)

]
.

(8.72)
3. Cohen model:

�C44 = −2(Ḡ0)
2gv

9π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′35(EF1D, ny, nz)+ t ′36(EF1D, ny , nz)

]
,

(8.73)

�C456 = 2(Ḡ0)
3gv

27π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′′35(EF1D, ny, nz)+ t ′′36(EF1D, ny, nz)

]
.

(8.74)
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4. Lax model:

�C44 = −2(Ḡ0)
2gv

9π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′37(EF1D, ny, nz)+ t ′38(EF1D, ny , nz)

]
,

(8.75)

�C456 = 2(Ḡ0)
3gv

27π

√
2m1

�

nymax∑
ny=1

nzmax∑
nz=1

[
t ′′37(EF1D, ny, nz)+ t ′′38(EF1D, ny, nz)

]
.

(8.76)

(d) IV–VI materials:
Dimmock model:

�C44 = −2(Ḡ0)
2gv

9π

nxmax∑
nx =1

nymax∑
ny=1

[B ′
32(EF1D, nx , ny)+ B ′

33(EF1D, nx , ny)],

(8.77)

�C456 = 2(Ḡ0)
3gv

27π

nxmax∑
nx =1

nymax∑
ny=1

[B ′′
32(EF1D, nx , ny)+ B ′′

33(EF1D, nx , ny)].

(8.78)
(e) Stressed materials:

�C44 = −2(Ḡ0)
2gv

9π

nymax∑
ny=1

nzmax∑
nz=1

[
B ′

34(EF1D, ny, nz)+ B ′
35(EF1D, ny, nz)

]
,

(8.79)

�C456 = 2(Ḡ0)
3gv

27π

nymax∑
ny=1

nzmax∑
nz=1

[
B ′′

34(EF1D, ny, nz)+ B ′′
35(EF1D, ny, nz)

]
.

(8.80)
(f) Tellurium:

�C44 = − (Ḡ0)
2gv

9π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′

36,±(EF1D, nx , ny)+ θ ′
5,±
]
, (8.81)

�C456 = (Ḡ0)
3gv

27π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′′

36,±(EF1D, nx , ny)+ θ ′′
5,±
]
. (8.82)

(e) Gallium phosphide:

�C44 = −2(Ḡ0)
2gv

9π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′

38(EF1D, nx , ny)+ B ′
39(EF1D, nx , ny)

]
,

(8.83)
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�C456 = 2(Ḡ0)
3gv

27π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′′

38(EF1D, nx , ny)+ B ′′
39(EF1D, nx , ny)

]
.

(8.84)
(f) Platinum Antimonide:

�C44 = −2(Ḡ0)
2gv

9π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′

40(EF1D, nx , ny)+ B ′
41(EF1D, nx , ny)

]
,

(8.85)

�C456 = 2(Ḡ0)
3gv

27π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′′

40(EF1D, nx , ny)+ B ′′
41(EF1D, nx , ny)

]
.

(8.86)
(g) Bismuth Telluride:

�C44 = −2(Ḡ0)
2gv

9π

nzmax∑
nz=1

nymax∑
ny=1

[
B ′

42(EF1D, nz, ny)+ B ′
43(EF1D, nz, ny)

]
,

(8.87)

�C456 = 2(Ḡ0)
3gv

27π

nzmax∑
nz=1

nymax∑
ny=1

[
B ′′

42(EF1D, nz, ny)+ B ′′
43(EF1D, nz, ny)

]
.

(8.88)
(h) Germanium:

1. The model of Cardona et al.:

�C44 = −2(Ḡ0)
2gv

9π

nxmax∑
nx =1

nzmax∑
nz=1

[
B ′

44(EF1D, nx , nz)+ B ′
45(EF1D, nx , nz)

]
,

(8.89)

�C456 = 2(Ḡ0)
3gv

27π

nxmax∑
nx =1

nzmax∑
nz=1

[
B′′

44(EF1D, nx , nz)+ B′′
45(EF1D, nx , nz)

]
.

(8.90)
2. The model of Wang and Ressler:

�C44 = −2(Ḡ0)
2gv

9π

nxmax∑
nx =1

nzmax∑
nz=1

[
B ′

46(EF1D, nx , nz)+ B ′
47(EF1D, nx , nz)

]
,

(8.91)

�C456 = 2(Ḡ0)
3gv

27π

nxmax∑
nx =1

nzmax∑
nz=1

[
B′′

46(EF1D, nx , nz)+ B′′
47(EF1D, nx , nz)

]
.

(8.92)
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(i) Gallium Antimonide:

�C44 = −2(Ḡ0)
2gv

9π

nxmax∑
nx =1

nymax∑
ny=1

[
B′

48(EF1D, nx , ny)+ B′
49(EF1D, nx , ny)

]
,

(8.93)

�C456 = 2(Ḡ0)
3gv

27π

nxmax∑
nx =1

nymax∑
ny=1

[
B′′

48(EF1D, nx , ny)+ B′′
49(EF1D, nx , ny)

]
.

(8.94)
(j) II–V materials:

�C44 = − (Ḡ0)
2gv

9π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′

49(EF1D, nx , ny)+ B ′
50(EF1D, nx , ny)

]
,

(8.95)

�C456 = (Ḡ0)
3gv

27π

nxmax∑
nx =1

nymax∑
ny=1

[
B ′′

49(EF1D, nx , ny)+ B ′′
50(EF1D, nx , ny)

]
.

(8.96)

8.2.4 Diffusivity-Mobility Ratio:

The diffusivity (D) tomobility (µ) ratio (DMR) of the carriers in semiconductor
devices is known to be very useful [82] since the diffusion constant (a quantity often
used in device analysis but whose exact experimental determination is rather difficult)
can be obtained from this ratio by knowing the experimental values of the mobility.
In addition, it is more accurate than any of the individual relation for the diffusivity
or the mobility, which are the two widely used quantities of carrier transport of
modern nanostructured materials and devices. The classical DMR equation is valid
for both types of carriers. In its conventional form, it appears that, the DMR increases
linearly with the temperature T being independent of the carrier concentration. This
relation holds only under the condition of carrier non-degeneracy although its validity
has been suggested erroneously for degenerate materials [83]. The performance of
the electron devices at the device terminals and the speed of operation of modern
switching transistors are significantly influenced by the degree of carrier degeneracy
present in these devices [84]. The simplest way of analyzing them under degenerate
condition is to use the appropriate DMR to express the performance of the devices at
the device terminals and the switching speed in terms of the carrier concentration [84].

It is well known from the fundamental work of Landsberg [85–87] that the DMR
for electronic materials having degenerate electron concentration is essentially deter-
mined by their respective energy band structures. This relation is useful for semicon-
ductor homostructures [88, 89], semiconductor–semiconductor heterostructures [90,
91], metals-semiconductor heterostructures [92–95], and insulator-semiconductor
heterostructures [96–99]. It has different values in different materials and varies with
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the doping, with the magnitude of the reciprocal quantizing magnetic field under
magnetic quantization, with the quantizing electric field as in inversion layers, with
the nanothickness as in quantum wells and quantum well wires, and with superlattice
period as in the quantum confined superlattices of small gap semiconductors with
graded interfaces having various carrier energy spectra [100–112]. It can, in general,
be proved that for bulk specimens the DMR is given by [101]

D

µ
=
(

n0

|e|
)/(

∂n0

∂EF

)
. (8.97)

The electric quantum limit as in inversion layers and nipi structures refers to the
lowest electric sub-band and (8.97) assumes the form [101]

D

µ
=
(

n̄0

|e|
)/(

∂ n̄0

∂(ĒF0 − Ē0)

)
, (8.98)

where n̄0, ĒF0,and Ē0 are the electron concentration, the energy of the electric sub-
band and the Fermi energy in the electric quantum limit.

Using the appropriate equations one obtains

D

µ
=
(
π2k2

B T

3 |e|2 G

)
(8.99)

Thus, the DMR for degenerate materials can be determined by knowing the experi-
mental values of G.

The suggestion for the experimental determination of the DMR for degenerate
semiconductors having arbitrary dispersion laws as given by (8.99) does not contain
any energy band constants. For a fixed temperature, the DMR varies inversely as
G. Only the experimental values of G for any material as a function of electron
concentration will generate the experimental values of the DMR for that range of n0
for that system. Since G decreases with increasing n0, from (8.99) one can infer that
the DMR will increase with increase in n0. This statement is the compatibility test
so far as the suggestion for the experimental determination of DMR for degenerate
materials is concerned.

Although the DMR has extensively been investigated in the literature [100–112]
nevertheless it appears that the influence of electric field on the DMR in optoelectronic
semiconductors together with its various quantum confined counterpart has yet to be
reported. We present few results in this context.

(a) In the presence of intense electric field, the DMR in III–V, ternary and quaternary
materials in accordance perturbed three and two band models of Kane can,
respectively, be expressed as

D

µ
= 1

e

[
M1L(EFF, F)+ N1L(EFF, F)

M ′
1L(EFF, F)+ N ′

1L(EFF, F)

]
, (8.100)
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D

µ
= 1

e

[
M2L(EFF, F)+ N2L(EFF, F)

M ′
2L(EFF, F)+ N ′

2L(EFF, F)

]
. (8.101)

In the absence of any field, the expressions for the DMR for optoelectronic
materials whose energy band structures are defined by the unperturbed two band
model of Kane, under the condition (EF E−1

g0 ) 	 1 assume the well-known forms
as [100]

D

µ
= kB T

e

[
F1/2(η)+ 15αkB T

4 F3/2(η)

F−1/2(η)+ 15αkB T
4 F1/2(η)

]
(8.102)

(b) In the presence of intense electric field, the DMR in III–V, ternary, and quaternary
materials in accordance perturbed three and two band models of Kane can,
respectively, be expressed under arbitrarily oriented quantizing magnetic field as

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nmax∑
n=0

[M3(EFFB, F, θ, n)+ N3(EFFB, F, θ, n)]
nmax∑
n=0

[M ′
3(EFFB, F, θ, n)+ N ′

3(EFFB, F, θ, n))]

⎤
⎥⎥⎥⎦ (8.103)

and

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nmax∑
n=0

[M4(EFFB, F, θ, n)+ N4(EFFB, F, θ, n)]
nmax∑
n=0

[M ′
4(EFFB, F, θ, n)+ N ′

4(EFFB, F, θ, n)]

⎤
⎥⎥⎥⎦ . (8.104)

(c) In the presence of intense electric field, the DMR in quantum wells of optoelec-
tronic semiconductors in accordance perturbed three and two band models of
Kane can, respectively, be expressed as

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nx max∑
nx =1

[M5(EFFS, F, nx )+ N5(EFFS, F, nx )]
nx max∑
nx =1

[M ′
5(EFFS, F, nx )+ N ′

5(EFFS, F, nx )]

⎤
⎥⎥⎥⎦ , (8.105)

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nx max∑
nx =1

[M6(EFFS, F, nx )+ N6(EFFS, F, nx )]
nx max∑
nx =1

[M ′
6(EFFS, F, nx )+ N ′

6(EFFS, F, nx )]

⎤
⎥⎥⎥⎦ . (8.106)
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(d) In the presence of intense electric field, the DMR in quantum wires of III–V,
ternary, and quaternary materials in accordance perturbed three and two band
models of Kane can, respectively, be expressed as

D

µ
= 1

e

⎡
⎢⎢⎢⎢⎣

nz max∑
nz=1

ny max∑
ny=1

[Q15(EF1D, F, ny, nz)+ Q16(EF1D, F, ny, nz)]
nz max∑
nz=1

ny max∑
ny=1

[Q′
15(EF1D, F, ny, nz)+ Q′

16(EF1D, F, ny, nz)]

⎤
⎥⎥⎥⎥⎦ ,

(8.107)

D

µ
= 1

e

⎡
⎢⎢⎢⎢⎣

nz max∑
nz=1

ny max∑
ny=1

[Q17(EF1D, F, ny, nz)+ Q18(EF1D, F, ny, nz)]
nz max∑
nz=1

ny max∑
ny=1

[Q′
17(EF1D, F, ny, nz)+ Q′

18(EF1D, F, ny, nz)]

⎤
⎥⎥⎥⎥⎦ .

(8.108)
(e) In the presence of intense electric field, the DMR in effective mass super lattices

of optoelectronic materials in accordance perturbed three and two band models
of Kane can, respectively, be expressed under magnetic quantization as

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nmax∑
n=0

[Q19(EFB, F, n)+ Q20(EFB, F, n)]
nmax∑
n=0

[Q′
19(EFB, F, n)+ Q′

20(EFB, F, n)]

⎤
⎥⎥⎥⎦ (8.109)

and

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nmax∑
n=0

[Q21(EFB, F, n)+ Q22(EFB, F, n)]
nmax∑
n=0

[Q′
21(EFB, F, n)+ Q′

22(EFB, F, n)]

⎤
⎥⎥⎥⎦ . (8.110)

(f) In the presence of intense electric field, the DMR in quantum wire effective mass
super lattices of optoelectronic materials in accordance perturbed three and two
band models of Kane can, respectively, be expressed as

D

µ
= 1

e

⎡
⎢⎢⎢⎢⎣

nz max∑
nz=1

ny max∑
ny=1

[Q23(EFIDEMSL, F, ny, nz)+ Q24(EFIDEMSL, F, ny, nz)]
nz max∑
nz=1

ny max∑
ny=1

[Q′
23(EFIDEMSL, F, ny, nz)+ Q′

24(EFIDEMSL, F, ny, nz)]

⎤
⎥⎥⎥⎥⎦ ,

(8.111)
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D

µ
= 1

e

⎡
⎢⎢⎢⎢⎣

nz max∑
nz=1

ny max∑
ny=1

[Q25(EFIDEMSL, F, ny, nz)+ Q26(EFIDEMSL, F, ny, nz)]
nz max∑
nz=1

ny max∑
ny=1

[Q′
25(EFIDEMSL, F, ny, nz)+ Q′

26(EFIDEMSL, F, ny, nz)]

⎤
⎥⎥⎥⎥⎦ .

(8.112)
(g) In the presence of intense electric field, the DMR in super lattices of optoelec-

tronic materials with graded interfaces in accordance with perturbed three band
model of Kane can be expressed under magnetic quantization as

D

µ
= 1

e

⎡
⎢⎢⎢⎣

nmax∑
n=0

[Q27(EFBGISL, F, n)+Q28(EFBGISL, F, n)]
nmax∑
n=0

[Q′
27(EFBGISL, F, n)+Q′

28(EFBGISL, F, n)]

⎤
⎥⎥⎥⎦ . (8.113)

(h) In the presence of intense electric field, the DMR in quantum wire super lattices
of optoelectronic materials with graded interfaces in accordance with perturbed
three band model of Kane can be expressed as

D

µ
= 1

e

⎡
⎢⎢⎢⎢⎣

nz max∑
nz=1

ny max∑
ny=1

[Q29(EFQWGISL, F, ny , nz)+ Q30(EFQWGISL, F, ny, nz)]
nz max∑
nz=1

ny max∑
ny=1

[Q′
29(EFQWGISL, F, ny , nz)+ Q′

30(EFQWGISL, F, ny, nz)]

⎤
⎥⎥⎥⎥⎦

(8.114)

With the advent of ultra-small devices, the influence of electric field is of crucial
importance in the whole spectrum of nano-science and technology. In this par-
ticular section, we have formulated the DMR in optoelectronic semiconductors
and their nanostructures in the presence of intense electric field.

8.2.5 Measurement of Band Gap in the Presence of Light Waves:

Using (6.41), (6.42), and (6.43), the normalized incremental band gap (�Eg)has been
plotted as a function of normalized I0 (for a given wavelength and considering red
light for which λ = 660 nm) at T = 4.2 K in Figs. 8.1 and 8.2 for n-Hg1−x Cdx Te
and n-In1−x Gax AsyP1−y lattice matched to InP in accordance with the perturbed
three and two band models of Kane and that of perturbed parabolic energy bands
respectively. In Figs. 8.3 and 8.4, the normalized incremental band gap has been plot-
ted for the aforementioned optoelectronic compounds as a function of λ. It is worth
remarking that the influence of an external photoexcitation is to change radically
the original band structure of the material. Because of this change, the photon field

http://dx.doi.org/10.1007/978-3-642-31248-9_6
http://dx.doi.org/10.1007/978-3-642-31248-9
http://dx.doi.org/10.1007/978-3-642-31248-9
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Fig. 8.1 Plots of the normalized incremental band gap (�Eg) for n-Hg1−x Cdx Te as a function
of normalized light intensity in which the curves a and b represent the perturbed three and two
band models of Kane respectively. The curve c represents the same variation in n-Hg1−x Cdx Te in
accordance with the perturbed parabolic energy bands

causes to increase the band gap of semiconductors. We propose the following two
experiments for the measurement of band gap of semiconductors under photoexci-
tation.

(A) A white light with color filter is allowed to fall on a semiconductor and the opti-
cal absorption coefficient (α0) is being measured experimentally. For different
colors of light, α0 is measured and α0 versus �ω (the incident photon energy) is
plotted and we extrapolate the curve such that α0 → 0 at a particular value �ω1.
This �ω1 is the unperturbed band gap of the semiconductor. During this process,
we vary the wavelength with fixed I0. From our present study, we have observed
that the band gap of the semiconductor increases for various values of λ when
I0 is fixed (from Figs. 8.3 and 8.4). This implies that the band gap of the semi-
conductor measured (i.e., �ω1 = Eg) is not the unperturbed band gap Eg0 but
the perturbed band gap Eg; where Eg = Eg0 +�Eg,�Eg is the increased band
gap at �ω1. Conventionally, we consider this Eg as the unperturbed band gap of
the semiconductor and this particular concept needs modification. Furthermore,
if we vary I0 for a monochromatic light (when λ is fixed) the band gap of the
semiconductor will also change consequently (Figs. 8.1 and 8.2). Consequently,
the absorption coefficient will change with the intensity of light [77]. For the
overall understanding, the detailed theoretical and experimental investigations
are needed in this context for various materials having different band structures.
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Fig. 8.2 Plots of the normalized incremental band gap (�Eg) for In1−x Gax AsyP1−y lattice matched
to InP as a function of normalized light intensity for all cases of Fig. 8.1

(B) The conventional idea for the measurement of the band gap of the semiconduc-
tors is the fact that the minimum photon energy hv(v is the frequency of the
monochromatic light) should be equal to the band gap Eg0 (unperturbed) of the
semiconductor, i.e.,

hv = Eg0 . (8.115)

In this case, λ is fixed for a given monochromatic light and the semiconductor
is exposed to a light of wavelength λ. Also the intensity of the light is fixed. From
Figs. 8.3 and 8.4, we observe that the band gap of the semiconductor is not Eg0 (for
a minimum value of hv) but Eg, the perturbed band gap. Thus, we can rewrite the
above equality as

hv = Eg. (8.116)

Furthermore, if we vary the intensity of light (Figs. 8.1 and 8.2) for the study of
photoemission, the minimum photon energy should be

hv1 = Eg1, (8.117)

where Eg1 is the perturbed band gap of the semiconductor due to various intensity
of light when v and v1 are different.
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Fig. 8.3 Plots of the normalized incremental band gap (�Eg) for Hg1−x Cdx Te as a function of
wavelength for all cases of Fig. 8.1

Thus, we arrive at the following conclusions:

(a) Under different intensity of light, keeping λ fixed, the condition of band gap
measurement is given by

hv1 = Eg1 = Eg0 +�Eg1 . (8.118)

(b) Under different color of light, keeping the intensity fixed, the condition of band
gap measurement assumes the form

hv = Eg = Eg0 +�Eg (8.119)

and not the conventional result as given by (8.115).

8.2.6 Diffusion Coefficient of the Minority Carriers:

This particular coefficient in quantum confined lasers can be expressed [85] as

Di
/

D0 = dEFi
/

dEF, (8.120)



8.2 Applications 397

Fig. 8.4 Plots of the normalized incremental band gap (�Eg) for In1−x Gsx AsyP1−y lattice matched
to InP as a function of wavelength for all cases of Fig. 8.2

where Di and D0 are the diffusion coefficients of the minority carriers both in the
presence and absence of quantum confinements and EFi and EF are the Fermi energies
in the respective cases. It appears then that, the formulation of the above ratio requires
a relation between EFi and EF, which, in turn, is determined by the appropriate carrier
statistics. Thus, our present study plays an important role in determining the diffusion
coefficients of the minority carriers of quantum confined lasers with materials having
arbitrary band structures. Therefore in the investigation of the optical excitation
of the optoelectronic materials which lead to the study of the ambipolar diffusion
coefficients the present results contribute significantly.

8.2.7 Nonlinear Optical Response:

The nonlinear response from the optical excitation of the free carriers is given by
[113]

Z0 = −e2

ω2�2

∫ ∞

0

(
kx
∂kx

∂E

)−1

f (E) N (E)dE, (8.121)

whereω is the optical angular frequency, N (E) is the density-of-states function. From
the various E-k relations of different materials under different physical conditions,
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we can formulate the expression of N (E) and from band structure we can derive the

term
(

kx
∂kx
∂E

)
and thus by using the density-of-states function as formulated, we can

study the Z0 for all types of materials as considered in this monograph.

8.2.8 Third-Order Nonlinear Optical Susceptibility:

This particular susceptibility can be written as [114]

χNP(ω1, ω2, ω3) = n0e4
〈
ε4
〉

24ω1ω2ω3(ω1 + ω2 + ω3)�4 , (8.122)

where

n0

〈
ε4
〉
=
∫ ∞

0

∂4 E

∂k4
z

N (E) f (E) dE

and the other notations are defined in [114]. The term
(
∂4 E
∂k4

z

)
can be formulated by

using the dispersion relations of different materials as given in appropriate sections
of this monograph. Thus one can investigate the χNP(ω1, ω2, ω3) for all materials as
considered in this monograph.

8.2.9 Generalized Raman Gain:

The generalized Raman gain in optoelectronic materials can be expressed as [115]

RG = I

(
16π2c2

�ωρgω2
s nsn p

)(
�ρ

�

)((
e2

mc2

)2

m2 R2

)
, (8.123)

where I = ∑
n.tz

[
f0(n, kz ↑)− f0(n, kz ↓)], f0(n, kz ↑) is the Fermi factor for

spin-up Landau levels, f0(n, kz ↓) is the Fermi factor for spin down Landau levels, n
is the Landau quantum number and the other notations are defined in [115]. It appears
then the formulation of RG is determined by the appropriate derivation requires
the magneto-dispersion relations. By using the different appropriate formulas as
formulated in various chapters of this monograph RG can, in general, be investigated.

8.2.10 Einstein’s Photo-Electric Effect

It is well known that the Einstein’s photoelectric effect occupies a singular position
in the whole arena of materials science and related disciplines in general together
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with the fact that the photoemission from the electronic materials is also a vital phys-
ical phenomena from the viewpoint of modern optoelectronics and photoemission
spectroscopy [116, 117]. The classical equation of the photoemitted current den-
sity is [118] J = [

4πemcgv(kB T )2
/

h3
]

exp
[
(hv − ϕ)

/
(kB T )

]
, where hυ and φ

are incident photon energy along z-axis and work function respectively. The afore-
mentioned equation is valid for both the charge carriers and in this conventional form
it appears that, the photoemission changes with the effective mass, temperature, work
function, and the incident photon energy, respectively. This relation holds only under
the condition of carrier non-degeneracy.

The Einstein’s photoemission has different values for different materials and varies
with doping and with external fields which creates quantization of the wave vector
space of the carriers leading to various types of quantized structures. The nature of
these variations has been studied in [118–154] and some of the significant features
are as follow:

1. The photoemission from bulk materials increases with the increase in doping.
2. The photoemission exhibits oscillatory dependence with inverse quantizing mag-

netic field because of the Shubnikov de Haas (SdH) effect.
3. The photoemission changes significantly with the magnitude of the externally

applied quantizing electric field in electronic materials.
4. The photoemission from quantum confined Bismuth, nonlinear optical, III–V,

II–VI, and IV–VI materials oscillate with nano-thickness in various manners
which are totally band structure dependent.

5. The nature of variations is significantly influenced by the energy band constants
of various materials having different band structures.

6. The photoemission has significantly different values in quantum confined semi-
conductor superlattices and various other quantized structures.

It is important to note that, in the methods as given in the literature, the physics of
photoemission has been incorporated in the lower limit of the photoemission inte-
gral and assuming that the band structure of the bulk materials becomes an invariant
quantity in the presence of photo-excitation necessary for Einstein’s photoelectric
effect. The basic band structure of optoelectronic materials changes in the presence
of external light waves in a fundamental way, which has been incorporated mathe-
matically through the expressions of the DOS function and the velocity along the
direction of photoemission respectively in addition to the appropriate fixation of
the lower limit of the photoemission integral for the purpose of investigating the
Einstein’s photoemission from bulk specimens of optoelectronic compounds.

The consequence of the photoelectric effect is the creation of the concept of photo-
electric current density (J )which, can, in turn, be written through the photoemission
integral (PI ) as [118]

J = α0e

4
(PI ), (8.124)

where α0 is the probability of photoemission,
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PI =
∞∫

E0

N (E ′)vz(E
′) f (E)dE ′ (8.125)

in which, E0 ≡ W − hυ, W is the electron affinity, E ′ ≡ E − E0, N (E ′) is the
density-of-states function at E = E ′, vz(E ′) is the velocity of the emitted electron
along z-axis when, E = E ′ and f (E) is the Fermi Dirac occupation probability
factor

Using (6.41), vz(E ′) and N (E ′) for optoelectronic materials in the presence of
light waves whose unperturbed conduction electrons obey the three band model of
Kane can be written as

vz(E
′) =

√
2√

mc

[
β0(E ′, λ)

]1/2
β ′

0(E
′, λ)

(8.126)

and

N (E ′) =
[

4π

(
2mc

h2

)3/2

.gv

]√
β0(E ′, λ)β ′

0(E
′, λ), (8.127)

where

β ′
0(E, λ) ≡ ∂

∂E
[β0(E, λ)] .

Using (8.124–8.127), the photoemitted current density in this case can be written
using the generalized Sommerfield’s lemma as

JL =
[

4πemc(kB T )2α0gv

h3

][[(
1 + 2

3α�
)

(+α�)

][
2αkB T F2(ηL )+

(
1 + 2αE0 + 1

3
α�

)
F1(ηL )

+ E0 + αE2
0 + 1

3α�E0

kB T
F−1(ηL )+ a0

[
ln

∣∣∣∣a0 + ηL

a0

∣∣∣∣+ φ5(ηL )

]]
−
{

B51

(kB T )2

}
I2

]

(8.128)

ηL ≡ (EFL − E0)(kB T )−1, EFL is the Fermi energy in the presence of light
waves as measured from the edge of the conduction band in the absence of any field,
a0 ≡ (E0 + Eg0 + 2

3�)(kB T )−1
,

φ(ηL) ≡
s0∑

r=1

2(1 − 21−2r )ξ(2r)
(−1)2r−1(2r − 1)!
(a0 + ηL)2r

,

B51 ≡ e2

48mrπc3

I0λ
2

√
εscε0

Eg0(Eg0 +�)

(Eg0 + 2
3�)

β2

4

(
t + ρ√

2

)2

,

I2 ≡
∫ ∞

E0

f1(E
′) f (E)dE ′

http://dx.doi.org/10.1007/978-3-642-31248-9_6
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and

f1(E
′) ≡ 1

φ0(E ′)

{
(1 + Eg0 − δ′

φ0(E ′)+ δ′
)+ (Eg0 − δ′)

[
1

φ0(E ′)+ δ′
− 1

Eg0 + δ′

]1/2

×
[

1

φ0(E ′)+ δ′
− Eg0 + δ′

(Eg0 − δ′)2

]1/2
}2

.

The expression of JL for optoelectronic materials in the presence of light waves
whose unperturbed conduction electrons obey the two band model of Kane can be
written following (6.42) as

JL =
[

4πemc(kB T )2α0gv

h3

][
F1(ηL)+ 2αkB T F2(ηL)−

(
B51α

kB T

)
F0(ηL)

−
(

3C51

2

)
kB T F1(ηL) +2C52(kB T )2 F2(ηL)

]]
,

(8.129)

where

B51 ≡ e2

192mrπc3

I0λ
2 Eg0√
εscε0

, C51 ≡ 2mcα

mv
, C52 ≡

[
15(C51)

2

8
−
(

3

2
α(C51)

)]
.

The expression of JL for optoelectronic materials in the presence of light waves
whose unperturbed conduction electrons obey the parabolic energy bands can be
expressed as

JL =
[

4πemc(kB T )2α0gv

h3

] [
F1(ηL )−

(
B53

kB T

)[
F0(ηL )− 3αkB T

(
1 + mc

mv

)
F1(ηL )

]]
,

(8.130)
where

B53 ≡ e2

8mrπ(mc)2c3

I0λ
2

√
εscε0

.

Special Case:

Formulation of current density for unperturbed three and two band models of
Kane for optoelectronic materials:

(i) The expression of J in accordance with the unperturbed three band model of
Kane assume the forms

J =
[

4πemc(kB T )2α0gv

h3

]

http://dx.doi.org/10.1007/978-3-642-31248-9_6
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×
[(

1 + 2
3α�

)
(1 + α�)

[
2αkB T F2(η0)+

(
1 + 2αE0 + 1

3
α�

)
F1(η0)

+ E0 + αE2
0 + 1

3α�E0

kB T
F−1(η0)+ a0

[
ln

∣∣∣∣a0 + η0

a0

∣∣∣∣+ ϕ(η0)
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,

(8.131)where

a0 = E0 + Eg0 + 2
3�

kB T
, a0 = 2

9

�2

(kB T )2

(
1 + 2

3
α�

)
,

φ(η0) =
S0∑

r=1

2(1 − 21−2r )ζ(2r)
(−1)2r−1(2r − 1)!

(a0 + η0)2r
.

(ii) In accordance with the unperturbed two band model of Kane, the corresponding
expression of J is given by

J =
[

4πemc(kB T )2α0gv

h3

]
[F1(η0)+ 2αkB T F2(η0)] (8.132)

For α → 0, (8.132) gets simplified as.

J = 4πα0emcgv(kB T )2

h3 F1(η0), (8.133)

where η0 ≡ hv − φ

kB T

Under the condition of non-degeneracy (8.133) gets transform to the well-known
form as states already.

8.3 Brief Review of Simulation and Experimental Results

The experimental aspect of the effective mass is very wide and it is not possible
to highlight even the major developments in a single chapter. For the purpose of
condensed presentation the experimental aspect of the effective mass for different
technologically important materials are given below.

Using (1.2) of Chap. 1, the density-of-states effective mass for bulk specimens of
nonlinear optical materials and n-Cd3As2 can, respectively be expressed as

m∗
D = h2

2
(12π3)−2/3(EFb )

−1/3

×
[

3

2
f1(EFb)

√
f2(EFb)γ (EFb ).γ

′(EFb )− (γ (EFb ))
3/2

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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Fig. 8.5 Plot of concentration dependence of the density-of-states effective mass in bulk specimens
of n-Cd3As2 by using (8.134) where the circular points exhibit the experimental results as given in
[155]

[ f ′
1(EFb )

√
f2(EFb)+ f ′

2(EFb ) f1(EFb )

2
√

f2(EFb )
]/( f 2

1 (EFb ) f2(EFb ))]3/2. (8.134)

Using (8.134) and (8.4) and the energy band constants of n-Cd3As2 from Table 1.1
of Chap.1, the plot of the density-of-states effective mass as a function of electron
concentration in bulk specimens of n-Cd3As2 (which is an example of tetragonal
material, the conduction electrons of which obey the generalized energy-wave vec-
tor dispersion relation for nonlinear optical compounds as formulated in ((1.2) of
Chap. 1) is shown in Fig. 8.5, where the circular points exhibit the experimental
result [155]. It appears from the Fig. 8.5 that the density-of-states effective mass
in bulk specimens of n-type Cadmium Arsenide increases with increasing electron
concentration in the whole range of the carrier degeneracy as considered here and
the theoretical plot is in good agreement with the experimental data as given in the
above reference. It is worth remarking to note that the generalized theoretical for-
mulation of the EEM for different materials, defined by the respective carrier energy
spectrum, as formulated in Appendices together with the open research problem as
given there and the consequent experimental verification in each case will constitute
very important experimental study in this particular arena.

The EEM in GaNx As1−x /GaAs quantum wells (QWs) has been investigated, and
detected by cyclotron resonance technique by P. N. Hai et al. [156]. The values
of EEM are 0.12m0 and 0.19m0 which are directly determined for the 70-Å-thick
QWs with N composition of 1.2 % and 2.0 %, respectively. This sizable increase in
the EEM is consistent with the earlier theoretical predictions based on the strong
interaction of the lowest conduction band states with the upper lying band states or
impurity band induced by the incorporation of N. DiVincenzo et al. [157] formulated
the self-consistent effective mass theory for intralayer screening in graphite interca-
lation compounds. The effective mass approximation (EMA) differential equations

http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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appropriate for impurities in a graphite host are constructed and are used to solve
self-consistently for the screening response surrounding a single intercalant atom.
The screening cloud is found to have a very slow algebraic decay with a character-
istic length of 0.38 nm which is due to both the semimetallic and two dimensional
character of graphite. The transferred charge in alkali-metal-graphite intercalation
compounds is distributed nearly homogeneously on a carbon plane.

Perlin et al. [158] performed infrared reflectivity and Hall effect measurements on
highly conducting n-type GaN (n ≈ 6 × 1019 cm3) bulk crystals grown by the high-
pressure high-temperature method for the purpose of the experimental determination
of the EEM of GaN. Values of electron-plasma frequency and free-electron concen-
tration were determined for each sample of the set of seven crystals. It enabled them to
calculate the perpendicular EEM in the wurtzite structure of GaN as m∗ = 0.22±0.02
m0 and the effects of nonparabolicity together with the difference between parallel
and perpendicular components of the effective mass are small and do not exceed the
experimental error. The EEM has been determined by magnetophotoluminescence
in as-grown and hydrogenated GaAs1−x Nx samples for a wide range of nitrogen
concentrations (from x < 0.01 % to x = 1.78 %) by the group of Masia et al. [159].
A modified k · p model, which takes into account hybridization effects between N
cluster states and the conduction band reproduces quantitatively the experimental
me values up to x ≤ 0.6 %. Experimental and theoretical evidence is provided for
the N complexes responsible for the nonmonotonic and initially puzzling composi-
tional dependence of the EEM. Sewall et al. [160] investigated the experimental tests
of EEM and atomistic approaches to quantum dot electronic structure. The overall
symmetry of the envelope functions for the four lowest energy excitonic states in col-
loidal CdSe quantum dots are assigned using excitonic state-resolved pump/probe
spectroscopy.

G.E. Smith [161] performed the experimental determination of the EEM’s in
Bismuth-Antimony alloy. It was found that the EEM’s in Bi95Sb5 are smaller by about
a factor of two than that of pure Bi and the hole masses are essentially unchanged.
SdH investigations on n-InP are presented by the group of Schneider et al. [162] and
EEM as a function of carrier concentration has been determined. The experiments
were carried out with bulk and liquid phase epitactically grown material and carrier
concentrations between n0 = 1020 m−3 and 1022 m−3 within the ranges of temper-
ature between 2–77 K and magnetic field B = 22 Tesla. The experimental result
agrees very well the theoretical relations. The values of the EEM in Cd3As2 were
obtained from low temperature SdH, magneto-seeback and Hall measurements by
Caron et al. [163]. The theoretical estimation of the variation of the energy gap at �
as a function of temperature and pressure have been obtained. There is a band rever-
sal in Cd3−x Znx As2 and Cd3Asx P2−x alloys. Bhattacharya et al. [164] evaluated
the EEM in compound semiconductor films of CdSx Te1−x and CdSx Se1−x which
showed bowing phenomena similar to those for optical bandgaps for the above alloy
films.

B. Slomski et al. [165] has investigated the in-plane EEM of quantum well states in
thin Pb films on a Bi reconstructed Si (111) surface by angle-resolved photoemission
spectroscopy. It is found that this EEM is a factor of 3 lower than the unusually high
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values reported for Pb films grown on a Pb reconstructed Si (111) surface. Through a
quantitative low-energy electron diffraction analysis the change in EEM as a function
of coverage and for the different interfaces is linked to a change of about 2 % in the
in-plane lattice constant. To corroborate this correlation, density functional theory
calculations are performed on freestanding Pb slabs with different in-plane lattice
constants. These calculations show an anomalous dependence of the EEM on the
lattice constant including a change of sign for values close to the lattice constant of
Si (111). This unexpected relation is due to a combination of reduced orbital overlap
of the 6pz states and altered hybridization between the 6pz and the 6pxy derived
quantum well states. Furthermore, it is shown by core-level spectroscopy that the Pb
films are structurally and temporally stable at temperatures below 100 K.

The EEM’s for spin-up and spin-down electrons of a partially spin-polarized
Fermi liquid are theoretically different as proposed by L.M. Wei et al. [166]. They
extracted the spin-up and spin-down EEM’s from magneto transport measurements
at different temperatures for a 2D electron gas in an In 0.65Ga0.35As/In0.52 Al0.48
As quantum well exhibiting zero-field spin splitting. Two analytical methods are
used, one involving the simultaneous fitting of fast Fourier transform (FFT) spectra
and the other involving inverse FFT (IFFT) analysis. Both methods confirm that the
EEM’s for spin-up and spin-down are different, consistent with theoretical expecta-
tions. The group of Karra et al. [167] performed Cyclotron-resonance measurements
for wide (100–300 nm) modulation-doped Alx Ga1−x As graded parabolic quantum
wells for electron areal densities 109/cm2–2.5x1011/cm2. A clear dependence of
the cyclotron frequency on Ns is observed in the extreme quantum limit which is
understood in terms of alloy effects. Self-consistent calculations that include the x
dependence of the local effective mass and exchange–correlation effects in a local
density approximation are in quantitative agreement with the measurements for high
densities. At low densities a pinning of the cyclotron frequency is observed that is
not predicted by the model.

Rößner et al. [168] reported the dependence of the effective masses on hole
density in remotely doped strained Ge layers on relaxed Si0.3Ge0.7 buffers with
sheet densities from 2.9x1011 cm−2 to 1.9x1012 cm−2. The masses have been deter-
mined using temperature dependent Shubnikov–de Haas oscillations. No noticeable
dependence of the mass on the magnetic field has been found. The extrapolated
G point effective mass has been found to be 0.080 times the free electron mass.
From the measured data the variation of the mass with kinetic energy and the shape
of the topmost heavy hole subband have been calculated. The results are in good
agreement with theoretical predictions. The determination of the EEM of the two-
dimensional electron gas (2DEG) and nonparabolicity effects in modulation-doped
In0.65Ga0.35As/In0.52Al0.48As single quantum well were investigated by T. M. Kim
et al. [169] by performing temperature-dependent Shubnikov-de Haas (SdH) mea-
surements and FFT and the IFFT analyses. The result of the angular dependent SdH
measurements clearly demonstrated the occupation of two subbands in the quantum
wells by the 2DEGs. The EEM’s determined from temperature-dependent S±dH
measurements and the FFT and IFFT analyses were 0.05869 and 0.05385me for the
first and zeroth subbands, respectively. The EEM’s obtained from the S-dH mea-
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surements and the FFT and IFFT analyses measurements qualitatively satisfy the
nonparabolicity behavior in the In0.65Ga0.35As single quantum well.

The nonparabolic EEM’s in InGaAs quantum wells (QWs), sandwiched by thick
InAlAs barriers of 0.52-eV band offset, were studied by N. Kotera et al. [170] in
normal and parallel directions to the QW plane. The normal mass was experimentally
obtained by observing interband photocurrent spectra of undoped InGaAs multi-QW
structures. The mass increased by more than 50 % from the bulk band edge mass,
0.041 m0. Electron eigenenergies were calculated in QWs based on Kane’s three-level
band theory. The calculated ‘apparent’ normal mass as a function of kinetic energy
up to 0.5 eV agreed well with experiments. The parallel mass in n-type modulation-
doped InGaAs QWs was experimentally obtained by pulse cyclotron resonance up
to 100 T. The analysis in quantizing magnetic fields, modified for 2D QWs, fits well
with cyclotron energy. The ‘apparent’ parallel mass as a function of energy was
obtained consistently. Interband optical transitions of In0.53Ga0.47As/In0.52Al0.48As
multi-quantum wells have been observed Tanaka et al. [171] in photocurrent spectra.
Interband transitions were assigned from the spectral structures. Eigenenergies of
conduction band were not proportional to the square of quantum numbers. An EEM
normal to the quantum well plane was 50’ %-heavier than the bulk bandedge mass
of InGaAs.

The electronic structures of Bi2Te3 and Sb2Te3 were computed and related to the
thermoelectric properties of Bi2Te3 and Sb2Te3 superlattices by Wang and Cagin
[172]. They found that the similarity of the electronic structure of the two materials
permits the Bi2Te3 and Sb2Te3 superlattices inherit high band edge degeneracy, and
thus have high electrical conductivity. From the calculated EEM along the super-
lattice growth direction, they infer that presence of more Sb2Te3than Bi2Te3 in the
superlattice leads to a smaller EEM and enhanced carrier mobility. Furthermore,
their results suggest that external tensile strain parallel to the interface may further
improve the thermoelectric performance of the Bi2Te3 and Sb2Te3 superlattices.
Engineered energy-wave-vector dispersion relations of either electrons or holes hold
great promise for realizing fundamental oscillators at terahertz frequencies if they
contain sections with a negative EEM at appropriate energy levels as suggested by
Gribnikov et al. [173], although, neither bulk semiconductor materials nor quantum
wells or quantum wires exhibit such negative EEM sections in the dispersion relations
at favorable energy levels. Therefore, the novel use of a nanostructure is proposed to
create an NEM section of electrons at suitable energy levels. This structure utilizes
a heterojunction with a QW channel grown perpendicular to a superlattice. At small
values of the wave vector k; the electron wave function ψ resides mostly in the QW
channel and, as k increases, ψ extends further into the superlattice. This spread of
ψ induces an negative EEM section in the energy dispersion relation and several
combinations of suitable material systems are considered by them.

Chen and Bajaj [174] have shown that the nonparabolicity and spin splitting
enhance the EEM appreciably in a quantum wire. In bulk materials, these effects are
usually small since electrons are near the conduction band edges. In nanowires,
strong confinement puts the electrons far from the conduction-band edge giv-
ing rise to large nonparabolicity effects. They derive a simple expression for the
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EEM parallel to the transport direction in the nanowire, taking into account the
band nonparabolicity, anisotropy, and spin splitting. They apply their formalism to
Ga As/Al0.3Ga0.7 Asnanowires with the conclusion that the parallel mass could be
50 % more than the bulk value for a wire width of 50 Å. The space dependence of
the EEM in nanowires results in the appearance of an additional momentum depen-
dent potential has been considered by Borovitskaya and Shur [175]. If the EEM is
anisotropic (as in silicon or germanium), this effect strongly depends on the trans-
verse mass for a given sub-band and they consider Si-Ge p-type nanowires, where
the impact ionization by holes should be determined by the impact ionization rates
in silicon and not in SiGe. Dacal et al. [176] investigated the conductance of 3D
semiconductor nano wires considering different EEM’s in the contacts and in the
channel. They have shown that, with respect to the case with equal masses in the
channel and in the contacts, the amplitude of the conductance oscillations increases
if the EEM in the channel is larger and decreases if it is smaller than in the contacts.
Effects on the density of probability are also considered and these effects of the
EEM discontinuity are explained in terms of kinetic confinement and transmission
coefficient modulation. Candidate materials for strained-layer EEM superlattices are
investigated by Sasaki [177], and sixteen combinations of III–V semiconductor lay-
ers are presented. Among these In0.69Ga0.31As/InP possesses the smallest lattice
mismatch, 1.1 %. The electronic subband of In0.69Ga0.31 As/InP layers is calculated
through the Kronig-Penny approach. The energy gap obtained for the conduction
band of composite semiconductors is, for example, 52 mcV for one period of alter-
nating layer thickness of 40Å/27Å. Maan et al. [178] investigated the far infrared
radiation transmission of a highly doped InAs-GaSb superlattice as a function of
the magnetic field, exhibiting helicon wave propagation. The EEM and the carrier
density are determined from an analysis of the results as a function of frequency to be
0.082 ± 0.005m0 and 3.4 × 1018 cm−3. The carrier density is equal to that obtained
from Hall measurements. The EEM is significantly higher than the value expected
from the InAs conduction band nonparabolicity (0.063m0).

Synthesizing single-walled carbon nanotubes (SWCNTs) with accurate structural
control has been widely acknowledged as an exceedingly complex task culminating
in the realization of CNT devices with uncertain electronic behavior. El Shabrawy
et al. [179] applied a statistical approach in predicting the SWCNT band gap and
EEM variation for typical uncertainties associated with the geometrical structure.
They carried out the same by proposing a simulation-efficient analytical model which
evaluates the bandgap of an isolated SWCNT with a specified diameter and chirality.
They developed an SWCNT EEM model, which is applicable to CNTs of any chiral-
ity and diameters >1 nm. A Monte Carlo method has been adopted to simulate the
bandgap and effective mass variation for a selection of structural parameter distrib-
utions. They established analytical expressions that separately specify the bandgap
and EEM variability with respect to the CNT mean diameter and standard deviation
which offer insight from a theoretical perspective on the optimization of diameter-
related process parameters with the aim of suppressing bandgap and effective mass
variation.
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Effective electron mass in nanowires of Si and Ge
The study of energy band constants of Silicon nanowire (SiNW) in past few years

has emerged as a building block for the next generation nano-electronic devices as
it can accommodate multiple gate transistor architecture with excellent electrostatic
integrity. As the experimental extraction of its various energy band constants at the
nanoscale regime is an extremely challenging task, it is customary to adopt atomic
level simulations, the results of which are at par with the experimental data.

In recent years, there have been extensive investigations on the variation of band
gap and EEM along different channel orientations in both relaxed [180–183] and
strained [184–186] respectively. The physics of SiNWs, are based on numerical
methods like the first principle, pseudo-potential, semi-empirical, etc. Although there
exists a large number of empirical relations of the band gap in relaxed SiNW [183,
187], there is a growing demand for the development of a physics based analytical
model to standardize different energy band constants which particularly demands its
application in TCAD software for predicting different electrical characteristics of
novel devices like SiNW-based relaxed tunnel field effect transistors and its strained
counterpart [188].

The main challenge involved in the formulation of the analytical method for these
two quantities (i.e., the band gap and the EEM’s) comes from the transition of the
indirect energy band gap of bulk Si near X point of the Brillouin zone to direct
energy band gap at �point of SiNW. Due to this, the direct energy band gap starts
depending on the conduction subband EEM’s at the �point, which in turn depends
on the conduction and valance subband energies. This conduction subband energy
is again dependent on the subband EEM’s, thus making it a coupled relation. This
results in a parallel variation of all the constants of an intrinsic Si which are entangled
to each other.

An intrinsic relaxed bulk Si crystal consists of six equivalent conduction band
minima located symmetrically along 〈100〉 at a distance of approximately k0 =
0.815(2π

/
a0) from the � point along X line in a 3D Brillioun zone, in which a0 is

the relaxed lattice constant of Si. The non-parabolic energy dispersion relation of the
bulk conduction band electrons can then be written following the EMA formalism
as [189]

E(1 + αE) = �
2

2ml
(kz − k0)

2 + �
2k2

x

2mt
+ �

2k2
y

2mt
(8.135)

in which ml = 0.91m0 and mt = 0.19m0 are the longitudinal and transverse EEM’s
respectively and α = 0.5(eV)−1 [189]. At this point, it should be noted that this
relation is isotropic in (001) plane and fails to describe the conduction band wrapping
and the subband structure correctly in (110) oriented Si films [189, 190].

In particular, to correlate a complete analytical conduction band dispersion rela-
tion with the advanced empirical tight binding model like sp3d5s∗, a two band degen-
erate k.p model should be used where a second conduction band close to the first
conduction band must be taken into account, the two of which becomes degenerate
just at the X point [189] as exhibited in Fig. 8.6. These are generally called as primed
(�2′) and unprimed (�1) bands respectively.



8.3 Brief Review of Simulation and Experimental Results 409

Fig. 8.6 Band structure if
bulk Si from the empiri-
cal pseudo-potential (EPM)
method (solid) and from the
sp3d5s∗ model (dashed), [189]

The band structure of relaxed SiNW whose electron transport is along [107]
direction is an involved task. The sp3d5s∗ model exhibits the fact that the symmetry
between the six equivalent conduction band minima is now displaced due to the
difference in the effective mass as a result of the quantum confinement of the carriers
along y and z directions. Because of this, the six conduction band valleys are now
grouped in four in-plane (�4) along y and z directions and two out of plane (�2)

valleys along x direction (Fig. 8.7). The former is projected at the � point of the
1D Brillioun zone, while the later is zone folded to kx = ±0.37π

/
a0 [180, 191].

Due to the lighter EEM in the �4 valley, the corresponding energy minimum is
at a lower position than that of the �2 valley, thus making the NW to be a direct
band gap. This chronological transition of the energy-wave vector minimum from
an indirect to a direct band gap as a result of the corresponding change from the bulk
Si structure to its [107] NW depends not only on the effective masses at the band
minima but also onto the subband energies along the confinement directions. This
phenomena is, however, not exhibited in the simple non-parabolic EMA relation as
given in (8.134), but since the electron energy in a state of the art MOSFET is of few
tenths of electron-volts [192] within which the energy diagram from (8.134) and the
sp3d5s∗ are almost same (Fig. 8.6) [189], one can use (8.134) safely for a simplified
analytical solution of the band gap and EEM without affecting the electron transport
mechanism.

As seen from Fig. 8.8, (a) represents a schematic diagram of a [107] oriented
SiNW, the atomistic cross-sectional view along y and z of which is exhibited in (b).
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Fig. 8.7 E(k) plot for a 3-nm [107] rectangular wire exhibiting the conduction band valleys at
�(direct band gap) and off-�points (in direct band gap), where Efs is the source Fermi level. The
valley splitting is clearly exhibited using the sp3d5s∗ model [180]

This has been carried out using the Atomistix Tool Kit (ATK) simulator [193] after
a cleaved [107] fully relaxed atomic configured SiNW, the dangling bonds on the
Si surface are sp3 passivated with hydrogen atoms to dissolve any surface states
in the band gap region [194]. The nearest Si–Si and Si–H bond lengths have been
considered to be 0.235 nm and 0.152 nm respectively [195]. For the band structure
computation, the semi-empirical extended Ḧuckel method has been instead of the
usual ATK-Density Functional Theory (DFT) method. This has been used due to two
main reasons: first, the DFT calculation does not provide a good estimation of the
energy band gap and second, the extended Ḧuckel approach is more computationally
efficient with a simultaneous good convergence [196]. The Ḧuckel basis set used for
the computations were Cerda Silicon (GW Diamond) [197] and Hoffman Hydrogen
having a vacuum energy level of −7.67 eV and 0 eV respectively with a Wolfsberg
weighting scheme. The tolerance parameter being 10-5 with a maximum steps of 100
and a Pulay mixer algorithm [198] were used as the iteration control parameters. In
addition, the k-point sampling of 1×1×11 grid were used with a mesh cut-off energy
of 20 Hatree. Figure 8.8c exhibits the energy band structure of the [107] SiNW for
a square cross-section of width 1.5 nm. It can be seen from (c) that using the Hückel
basis set, the lifting of the valley degeneracy due to the difference in EEM is not
captured which has already been stated earlier. As the valley splitting energy even
in room temperature is relatively small in [107] and [1, 2] SiNWs, one can ignore
its contribution to the modification of the carrier transport mechanism [180, 182,
199]. Further, as the band gap for a 1.5 nm width SiNW exhibited as a direct one,
one can ignore this lifting of the valley degeneracy for the present relaxed case and
can concentrate on the lowest valley at the � point which essentially determines the
band gap.

Figure 8.9 exhibits the variation of [107] relaxed SiNW band gap as function
of wire width of equal thickness as exhibited by [194]. The effect of the carrier
confinement along the [1, 2] and [12] directions lead to the discrete subband energy
levels for both the electrons and holes. In case of valance bands, the heavy hole
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Fig. 8.8 a Schematic diagram of [107] oriented channel of SiNW with cross-sectional thicknesses
dy and dz along y and z directions respectively. b ATK built an sp3 Hydrogen passivated (100)
SiNW plane. c Energy band structure exhibiting a direct band gap in a [107] Hydrogen passivated
SiNW of square cross-sectional area using ATK builder which uses an extended Hückel approach
[194]

Fig. 8.9 Plot of the band gap using in relaxed [107] SiNW as function of lateral wire width
dy = dz = d. The symbols are the simulation data which has been obtained by using the ATK
by passivating the Si atoms at the surface of the wire using Hydrogen atoms as shown in Fig. 8.6b
followed by the use of semi-empirical extended Hückel method. The line exhibits the analytical
result [194]

(HH) and light hole (LH) forms separate energy subband levels due to the difference
in their energies. Using this, the first subband of HH in a 1.5×1.5 nm2 SiNW is
lies about 0.1 eV below compared to that of the maxima point of the HH in case of
bulk. However, for the LH subband, this is about 2.2 eV below the same. Thus, the
energy band gap difference in case of SiNW should be considered from the lowest
conduction subband to the lowest HH subband. Figure 8.10 exhibits the variations
of the transport and subband effective mass as a function of wire width. It appears
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Fig. 8.10 Analytical plot of the electron a transport effective mass and b subband effective mass
as function of wire thickness for [107] oriented SiNW. The symbol represents the extracted data
from the energy band structure obtained using ATK simulation [194]

that transport effective mass decreases with the increase in width and as d → ∞ it
decreases tends to its non-parabolic bulk value which is 0.32 m0. In case of subband
effective mass, the variation is divided into two parts. Roughly below 5 nm, it appears
that both my and mz increase with decrease in wire thickness. This is due to the
reason that the contribution of conduction band wave vector at the band minima
approaches the � point. As the thickness increases, both the subband masses starts
increasing and reaches their corresponding non-parabolic bulk effective mass which
is precisely 0.38 m0 and 1.81 m0 respectively. It should be noted that these bulk values
are measured with respect to the valance band maxima at � point. If the origin is
shifted to k0, the value of these masses converges to 0.19 m0 and 0.91 m0 respectively.

Using this approach, the maximum error between the analytical formulation and
simulation data are within 3 %. The main reason behind this error is due to the
complete negligence of the spin–orbit interaction between the split-off holes and
HH/LH in our model. The other part of the error comes due to the omission of the
At large wire cross-sections, the [107] and [118] located at � approach the bulk
mt = 0.19 m0. The mass of the [119] wire is larger because it combines mt and
ml = 0.89 m0. As the wire dimensions shrink, the mass of the [118] wire is reduced,
whereas the masses of the other two wires increase. (c) Off-�valley masses for the
cases of the [118] and [107] wires. Both increase as the dimensions decrease. (The
bulk mass values for every orientation are denoted.) The percentage change denoted
is the change in the effective masses between the 1.5-nm mass value (mostly scaled
wire) and the 7.1-nm wire [180].
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Fig. 8.11 〈100〉 Silicon nanowires with different cross-sectional shapes—Square, Circular, and
Triangular [200]

Interaction of the plane waves of Hydrogen on the Si-atoms due to which the
band structure of ultra-small thin SiNW gets affected. The analytical model in [194]
can also be compared to the band gap of circular SiNW under identical conditions.
For other different cross-sectional shapes like circular and triangular [107] SiNW as
shown in Fig. 8.11 following Sajjad et al. [200], the band gap in Fig. 8.12 exhibits
almost zero deviations from each other when plotted against the cross-sectional
area, whereas, if plotted against cross-sectional dimension, both the transport effec-
tive mass and band gap exhibits slight deviations [4, 182]. An excellent simulation
observation has been studied by Lundstrom group [192] as shown in Fig. 8.13.

The EEM’s mz , mle, and mte have been obtained as explained in [201] from the
longitudinal and the transverse masses of the bulk crystal energy dispersion by using
the values 0.916m0 and 0.19m0 for the � valleys of the bulk silicon, 1.6m0 and
0.093m0 for the λ valleys, 0.888m0 and 0.194m0 for the � valleys, and 0.05m0 for
the � valley of the bulk Germanium [202] (Fig. 8.14).

The validity of the parabolic EMA, which is almost universally used to describe
the size and bias-induced quantization in n-MOSFETs has been exhibited by Steen,
et al. [202]. In particular, the EMA results has been compared with a full-band
quantization approach based on the linear combination of bulk bands (LCBB) and
has been studied for the most relevant quantities for the modeling of the mobility
and of the on-current of the devices, namely, the minima of the 2-D subbands, the
transport masses, and the density-of-states function of carriers. The study deals with
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Fig. 8.12 Bandgap variation with a dimension, b cross-section area [200]

Table 8.1 Parameters of the EMA model for parameters of the EMA model for different materials
and quantization directions

Quantization directions Valley nv �E [eV] mte mle mz

Si (001) D0.916 2 0 0.190 0.190 0.916
D0.19 4 0 0.190 0.916 0.190

(110) D0.315 4 0 0.190 0.553 0.315
D0.19 2 0 0.190 0.916 0.190

(111) D0.268 6 0 0.190 0.674 0.268
Ge (110) L0.25 2 0 0.093 0.595 0.25

L0.093 2 0 0.093 1.60 0.093
D0.318 4 0.189 0.194 0.541 0.318
D0.194 2 0.189 0.194 0.888 0.194
�0.268 1 0.145 0.05 0.05 0.05

For each valley, nv is the degeneracy, mz is the quantization mass, and mle and mte are the longi-
tudinal and transverse mass of the elliptic energy dispersion around the minimum (in unit of m0),
respectively and �E denotes the energy split between the valleys in the bulk semiconductor

both silicon and germanium n-MOSFETs with different crystal orientations and
shows that, in most cases, the validity of the EMA is quite satisfactory. The LCBB
approach is then used to calculate the values of the effective masses that help to
improve the EMA accuracy. Table 8.1 exhibits the summary of the EEM at different
valleys of Si and Ge.



8.3 Brief Review of Simulation and Experimental Results 415

Fig. 8.13 a The three equivalent pairs of ellipsoids in the conduction band of Si are described
by the longitudinal and transverse masses. Combining these masses results in the quantization
and transport masses of nanowires under arbitrary orientations. b Transport masses oriented in
[107, 118], and [119] versus the wire dimension as calculated from Tight Binding (TB)

Fig. 8.14 Transverse (mte) and longitudinal (mle) effective masses versus the semiconductor thick-
ness for some valleys of the Si (100) and the Ge (110) inversion layers. a Si (100), D0.19, mte; Ge
(110), L0.25, mte; Si (110), D0.315, mte. b Ge(110), L0.25,mle; Ge (110), D0.318, mte, in which D
and L are the�and L valleys respectively and the subscripts denotes the minima value of the wave
vector space at those valleys

These effective masses exhibit a nonnegligible dependence on semiconductor
thickness TSCT and deviate from the values reported in Table 8.1 for very small
semiconductor thicknesses [202]. The effect of uniaxial strain and quantum con-
finement on the effective mass of electrons and holes and band gap of Ge NWs has
been demonstrated using the DFT-based first-principles simulations by Logan et al.
[203] along the [118] direction as shown in Figs. 8.15, 8.16, 8.17, 8.18, and 8.19.
The diameters of the nanowires being studied are up to 50 Å. As shown in [203], the
Ge [118] nanowires possess a direct band gap, in contrast to the nature of an indirect
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Fig. 8.15 Snapshots of Ge nanowires with size of 18 Å (top) and 30 Å (bottom) viewed from the
wire cross-section (left) and the side (eight contiguous simulation cells along the axial z direction).
Blue dots are Ge atoms, white are H atoms [203]

band gap in bulk. They discovered that the band gap and the effective masses of
charge carries can be modulated by applying uniaxial strain to the nanowires. These
strain modulations are size dependent. For a smaller wire ∼12 Å, the band gap is
almost a linear function of strain; compressive strain increases the gap while tensile
strain reduces the gap. For a larger wire (∼20–50 Å), the variation in the band gap
with respect to strain shows nearly parabolic behavior: compressive strain beyond
−1 % also reduces the gap. In addition, their studies showed that strain affects effec-
tive masses of the electron and hole very differently. The effective mass of the hole
increases with a tensile strain while the EEM increases with a compressive strain.
Our results suggested both strain and size can be used to tune the band structures
of nanowires, which may help in design of future nanoelectronic devices. We also
discussed our results by applying the tight-binding model.

Bulk Ge is an indirect band gap material with the conduction band minima located
at L along the [119] direction. However, if the Ge nanowires are along the [118]
direction, they exhibits a direct band gap at �[203]. In Fig. 8.16, Logan et al. pre-
sented the band structures of Ge nanowires with varied diameters. It clearly demon-
strates a direct band gap—both Conduction band minimum (CBM) and valance band
maximum (VBM) located at �.

It is also interesting to observe that the band structures are modulated by strain.
For example, in Fig. 8.17a, we compared the band structures of the Ge nanowire
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Fig. 8.16 The band structures of Ge nanowires with varied diameter along [118] direction. They
show a direct band gap located at � [203]

Fig. 8.17 a The band structures of Ge [118] nanowires with a diameter of 18 Å, with and without
strain. Black solid lines are the band structure without strain; red dashed lines are under tensile
uniaxial strain; blue dotted lines are under compressive uniaxial strain. The energy variations of the
bottom of the conduction band b and the top of the valence band c in Ge nanowires of 18 Å with
uniaxial strain. The uniaxial strain has a dominant effect of shifting energies on the conduction and
valence bands near � [203]

with a diameter of 18 Å, with and without strain. Black solid lines are the band struc-
ture without strain; dashed lines are under tensile uniaxial strain; dotted lines are
under compressive uniaxial strain. Generally, strain has dominant effects on the band
structure near � (i.e., energy is shifted evidently with strain, see the dashed
pink ovals), while it has negligible effects on wave vectors far away from �
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Fig. 8.18 The change in the DFT predicted band gap in Ge wires as a function of uniaxial strain
at different size. Positive strain refers to uniaxial expansion while negative strain corresponds to its
compression [203]

Fig. 8.19 The change in effective masses of the electron (left) and hole (right) are plotted as a func-
tion of uniaxial strain for nanowires at different size. It shows that the effective mass of the electron
increases rapidly with compressive uniaxial strain, while decreasing mildly with tensile strain.
Although, the effective mass of the hole reduces under compression, while enhanced dramatically
with tensile strain [203]

(i.e., minimal energy shift under strain, see the solid green ovals). Most electronic
properties are related to the bottom of the conduction band and the top of the valence
band. Therefore, the energy variation in these two edges was particularly singled
out and presented in Figs. 8.17b, c. From those two figures we can clearly see that
strain modifies the energies of CBE and VBE dramatically near�, and has negligible
energy shifts on wave vectors far away from �.

The influence of strain on bulk Si crystal has different effects along different
directions and has been extensively studied in past few decades [204, 205]. Recently
using the density functional theory, the effect of both uniaxial and biaxial strain on
the band structure of a [107] oriented SiNW has been shown, where the modification
of the positions of already lifted�4 and�2 valleys due to the quantum confinement
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Fig. 8.20 Band alignment of the lowest conduction and valance subband using the EMA formula-
tion under an application of a biaxial strain on [107] SiNW for a tensile and b compressive strain.
�2 and �4 in relaxed SiNW. The average of the HH and LH subband (as shown by the horizontal
dotted line below lowest HH subband (Ep (HH)) is assumed to coincide with the Ep (HH) for both
the tensile and compressive cases due to higher effective mass of the former [194]

effects has been considered [186]. For the present quantitative analysis, we take into
consideration of a uniaxial and hydrostatic strain along [107] and [1, 2] directions
respectively. Figure 8.20 schematically exhibits this situation on the conduction and
valance bands for both tensile (Fig. 8.20a) and compressive (Fig. 8.20b) strains on a
[107] oriented SiNW. In case of a bulk Si, an application of a tensile hydrostatic strain
shifts up the average energy of the conduction band with respect to its six equivalent
valleys. In addition, a uniaxial strain along [107] splits this conduction band into
�2 and �4. The position of these valleys about their bulk relaxed value, however,
strictly depends whether the strain is tensile or compressive. For example, in a 〈110〉
uniaxial tensile strain, the position of�4 is higher in energy than�2 [206]. As shown
in Fig. 8.20a for a relaxed SiNW, the two valleys�4 (lower in energy) and�2 (higher
in energy) are the set of subbands as a result of ky = nyπ

/
dy and kz = nzπ

/
dz . The

average energy of these set of subbands under a tensile hydrostatic strain along [1,
2] shifts up by the same amount. The presence of a uniaxial compressive strain along
[107] direction makes �4 to be higher in energy than that of �2 [186] as shown in
Fig. 8.20b. In case of valance bands, the HH and LH split as subband energy levels
in which a tensile hydrostatic strain shifts up their respective average position, while
a uniaxial tensile strain shifts up the HH subbands over LH subbands (Fig. 8.20a)
[194].

The effect of strain on the band gap in [107] SiNW has been exhibited in Fig. 8.21
[194]. It appears that band gap decreases as the uniaxial tensile and compressive
strain increases, the rate of decrement are different due to the difference in subband
energies in both the regime. It should be noted that an increase in the tensile strain
decreases the energy of�4 subbands while the HH subbands shifts toward the valance
band maxima position of the bulk Si. This marks a reduction of the band gap as the
tensile strain increases. In case of uniaxial compressive strain, it is the �2 which
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Fig. 8.21 Band gap as function of uniaxial strain along [107] direction and biaxial strain for [107]
oriented SiNW. Symbols are the results of the ATK simulations [194]

shifts down and LH shifts up, thus decreasing the band gap. The scenario changes
when the uniaxial strain is combined with the [1, 2] hydrostatic strain. Under this
biaxial strain condition, the band gap increases along the tensile strain while decreases
with compressive strain at a rate much faster than that of the corresponding uniaxial
case. The sp3d5s∗ model predicts the direct to indirect transition of the band gap
in a 〈100〉 uniaxially strained SiNW occurring inside the compressive zone [186,
207]. The reason for this is the asymmetric splitting of the six equivalent valleys in
bulk Si into �4 and �2 due to the quantum confinement of the carriers in SiNW.
Since �4 lies lower at the �2point axis than �2 which lies at higher energy at the
off-� axis, it takes certain amount of compressive strain to bring the �2 subband
(at the same off-�axis) lower than the �4. Since this confinement splitting is not
arrested in EMA formalism, Fig. 8.21 exhibits that the band gap from the beginning
of the compressive strain starts becoming indirect. An increase in the tensile strain
decreases the �4 subband at the same � axis, whereby the band gap remains direct
always.

The variation of the transport and subband effective mass as function of strain
has been exhibited in Fig. 8.22 It appears from Fig. 8.22a that with the increase in
both uniaxial tensile and compressive strain, the transport effective mass follows
the same rate of decrement as exhibited by its corresponding band gap variation. It
appears that the subband effective mass along the z direction has larger variation due
to the application of the hydrostatic strain than that of the y direction. Further above
0 strain, the effective masses are due to the direct band gap and below 0 strain, the
effective masses are due to the indirect band gap [194], a reason which has already
been stated earlier.

In this monograph, we have studied the EEM in quantum confined nonlinear
optical, III–V, II–VI, GaP, Ge, PtSb2, stressed materials, Bismuth, GaSb, IV–VI,
Tellurium, II–V, Bi2Te3, III–V, II–VI, IV–VI, and HgTe/CdTe quantum wire super-
lattices with graded interfaces, III–V, II–VI, IV–VI, and HgTe/CdTe effective mass
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Fig. 8.22 Plot of the electron a transport effective mass and b subband effective mass as function of
uniaxial and biaxial strain. The symbol represents the extracted data from the energy band structure
obtained using ATK simulation [194]

superlattices under magnetic quantization, quantum confined effective mass super-
lattices, and superlattices of optoelectronic materials under intense electric field and
light waves with graded interfaces on the basis of appropriate carrier energy spectra.
Finally it may be noted that although we have considered the EEM in a plethora
of quantized materials having different band structures theoretically, the detailed
experimental works are still needed for an in-depth study of the EEM from such
low-dimensional systems as functions of externally controllable quantities which,
in turn, will add new physical phenomenon in the regime of the electron motion in
nanostructured materials and related topics.

8.4 Open Research Problem

(R8.1) Investigate experimentally the EEM for all the systems as discussed in this
monograph.
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Chapter 9
Conclusion and Future Research

This monograph deals with the EEM in various types of low-dimensional materials,
effective mass superlattices, and superlattices with graded interfaces under different
physical conditions, in the presence of quantizing magnetic field and external photo
excitation and also under strong electric field altering profoundly the basic band
structures which, in turn, generate pin-pointed knowledge regarding EEM in various
semiconductors and their nanostructures having different carrier energy spectra. The
in-depth experimental investigations covering the whole spectrum of solid state and
allied science in general are extremely important to uncover the underlying physics
and the related mathematics. The EEM is basically a motion-dependent phenomena
and we have formulated the simplified expressions of EEM for few quantized struc-
tures together with the fact that our investigations are based on the simplified k.p
formalism of solid state science without incorporating the advanced field theoretic
techniques. In spite of such constraints, the role of band structure behind the curtain,
which generates, in turn, new concepts are discussed throughout the text.

Finally, we present the last set of open research problems in this particular area
of materials science.

(R9.1) Investigate the EEM in the presence of a quantizing magnetic field under
exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [1] for
all the problems of this monograph of all the materials whose unperturbed
carrier energy spectra are defined in Chap. 1 by including spin and broad-
ening effects.

(R9.2) Investigate all the appropriate problems after proper modifications intro-
ducing new theoretical formalisms for the problems as defined in (R8.1) for
negative refractive index, macro molecular, nitride, and organic materials.

(R9.3) Investigate all the appropriate problems of this monograph for all types of
quantum-confined p-InSb, p-CuCl, and semiconductors having diamond
structure valence bands whose dispersion relations of the carriers in bulk
materials are given by Cunningham [2], Yekimov et. al. [3] and Roman
et. al. [4], respectively.
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(R9.4) Investigate the influence of defect traps and surface states separately on
the EEM, for all the appropriate problems of all the chapters after proper
modifications

(R9.5) Investigate the EEM under the condition of nonequilibrium of the carrier
states for all the appropriate problems of this monograph.

(R9.6) Investigate the EEM for all the appropriate problems of this monograph
for the corresponding p-type semiconductors and their nanostructures.

(R9.7) Investigate the EEM for all the appropriate problems of this monograph
for all types of semiconductors and their nanostructures under mixed con-
duction in the presence of strain.

(R9.8) Investigate the EEM for all the appropriate problems of this monograph
for all types of semiconductors and their nanostructures in the presence of
hot electron effects.

(R9.9) Investigate the EEM for all the appropriate problems of this monograph for
all types of semiconductors and their nanostructures for nonlinear charge
transport.

(R9.10) Investigate the EEM for all the appropriate problems of this monograph
for all types of semiconductors and their nanostructures in the presence of
strain in an arbitrary direction.

(R9.11) Investigate all the appropriate problems of this monograph for semicon-
ductor clathrates in the presence of strain.

(R9.12) Investigate all the appropriate problems of this monograph for quasi-
crystalline materials in the presence of strain.

(R9.13) Investigate all the appropriate problems of this monograph for strongly
correlated electron systems in the presence of strain.

(R9.14) Investigate EEM for all the appropriate problems of this monograph for
all types of transition metal silicides in the presence of strain.

(R9.15) Investigate EEM for all the appropriate problems of this monograph for
all types of electrically conducting organic materials in the presence of
strain.

(R9.16) Investigate EEM for all the appropriate problems of this monograph for
all types of functionally graded materials in the presence of strain.

(R9.17) Investigate the EEM in all types of available super conductors in the pres-
ence of strain.

(R9.18) Investigate all the appropriate problems of this chapter in the presence of
arbitrarily oriented photon field and strain.

(R9.19) Investigate all the appropriate problems of this monograph for paramag-
netic semiconductors in the presence of strain.

(R9.20) Investigate all the appropriate problems of this monograph for Boron
Carbides in the presence of strain.

(R9.21) Investigate all the appropriate problems of this monograph for all types of
Argyrodites in the presence of strain.

(R9.22) Investigate all the appropriate problems of this monograph for layered
cobalt oxides and complex chalcogenide compounds in the presence of
strain.
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(R9.23) Investigate all the appropriate problems of this monograph for all types of
nanotubes in the presence of strain.

(R9.24) Investigate all the appropriate problems of this monograph for various
types of half-Heusler compounds in the presence of strain.

(R9.25) Investigate all the appropriate problems of this monograph for various
types of pentatellurides in the presence of strain.

(R9.26) Investigate all the appropriate problems of this monograph for Bi2Te3-
Sb2Te3 superlattices in the presence of strain.

(R9.27) Investigate the influence of temperature-dependent energy band constants
for all the appropriate problems of this monograph.

(R9.28) Investigate EEM for Ag(1−x)Cu(x)TITe for different appropriate physical
conditions as discussed in this monograph in the presence of strain.

(R9.29) Investigate EEM for p-type SiGe under different appropriate physical con-
ditions as discussed in this monograph in the presence of strain.

(R9.30) Investigate EEM for different metallic alloys under different appropriate
physical conditions as discussed in this monograph in the presence of
strain.

(R9.31) Investigate EEM for different intermetallic compounds under different
appropriate physical conditions as discussed in this monograph in the pres-
ence of strain.

(R9.32) Investigate EEM for GaN under different appropriate physical conditions
as discussed in this monograph in the presence of strain.

(R9.33) Investigate EEM for different disordered conductors under different appro-
priate physical conditions as discussed in this monograph in the presence
of strain.

(R9.34) Investigate EEM for various semimetals under different appropriate phys-
ical conditions as discussed in this monograph in the presence of strain.

(R9.35) Investigate all the appropriate problems of this monograph for Bi2Te3−x Sex

and Bi2−x Sbx Te3 respectively in the presence of strain.
(R9.36) Investigate all the appropriate problems of this monograph for all types of

skutterudites in the presence of strain.
(R9.37) Investigate all the appropriate problems of this monograph in the presence

of crossed electric and quantizing magnetic fields.
(R9.38) Investigate all the appropriate problems of this monograph in the presence

of crossed alternating electric and quantizing magnetic fields.
(R9.39) Investigate all the appropriate problems of this monograph in the presence

of crossed electric and alternating quantizing magnetic fields.
(R9.40) Investigate all the appropriate problems of this monograph in the presence

of alternating crossed electric and alternating quantizing magnetic fields.
(R9.41) Investigate all the appropriate problems of this monograph in the presence

of arbitrarily oriented pulsed electric and quantizing magnetic fields.
(R9.42) Investigate all the appropriate problems of this monograph in the presence

of arbitrarily oriented alternating electric and quantizing magnetic fields.
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(R9.43) Investigate all the appropriate problems of this monograph in the presence
of crossed inhomogeneous electric and alternating quantizing magnetic
fields.

(R9.44) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented electric and alternating quantizing magnetic fields
under strain.

(R9.45) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented electric and alternating quantizing magnetic fields
under light waves.

(R9.46) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented pulsed electric and alternating quantizing magnetic
fields under light waves.

(R9.47) Investigate all the appropriate problems of this monograph in the pres-
ence of arbitrarily oriented inhomogeneous electric and pulsed quantizing
magnetic fields in the presence of strain and light waves.

(R9.48) (a) Investigate the EEM for all the problems of this monograph in the
presence of many body effects, strain, and arbitrarily oriented light
waves, respectively.

(b) Investigate the influence of the localization of carriers for all the appro-
priate problems of this monograph.

(c) Investigate all the appropriate problems of this chapter for the Dirac
electron.

(d) Investigate all the problems of this monograph by removing all the phys-
ical and mathematical approximations and establishing the respective
appropriate uniqueness conditions.

The EEM is the consequence of motion-induced phenomena of solid state science
and all the assumptions behind the said phenomena are also applicable to EEM. The
formulation of EEM for all types of semiconductors and their quantum-confined
counterparts after removing all the assumptions is, in general, a challenging problem.
Totally 250 open research problems have been presented in this monograph and we
hope that the readers will not only solve them but also will generate new concepts,
both theoretically and experimentally. Incidentally, we can easily infer how little is
presented and how much more is yet to be investigated in this exciting topic which
is the signature of coexistence of new physics, advanced mathematics combined
with the inner fire for performing creative researches in this context from the young
scientists since like Kikoin [5] we firmly believe that “A young scientist is no good
if his teacher learns nothing from him and gives his teacher nothing to be proud of”.
In the mean time our research interest has been shifted and we are leaving this
particular topic with the hope that (R9.48) alone is sufficient to draw the attention
of the researchers from diverse fields and our readers are in tune with the fact that
“Exposition, criticism, appreciation is the work for second-rate minds” [6].
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Appendix A
The EEM in Compound Semiconductors
and Their Nano-Structures Under
Cross-Fields Configuration

A1.1 Introduction

The influence of crossed electric and quantizing magnetic fields on the transport
properties of semiconductors having various band structures are relatively less
investigated as compared with the corresponding magnetic quantization, although
the cross-fields are fundamental with respect to the addition of new physics and the
related experimental findings. It is well known that in the presence of electric field
ðEoÞ along x-axis and the quantizing magnetic field ðBÞ along z-axis, the dispersion
relations of the conduction electrons in semiconductors become modified and for
which the electron moves in both the z and y directions. The motion along
y-direction is purely due to the presence of E0 along x-axis and in the absence of
electric field, the effective electron mass along y-axis tends to infinity which
indicates the fact that the electron motion along y-axis is forbidden. The effective
electron mass of the isotropic, bulk semiconductors having parabolic energy bands
exhibits mass anisotropy in the presence of cross-fields and this anisotropy
depends on the electron energy, the magnetic quantum number, the electric, and
the magnetic fields respectively, although, the effective electron mass along z-axis
is a constant quantity. In 1966, Zawadzki and Lax [1] formulated the electron
dispersion law for III–V semiconductors in accordance with the two band model of
Kane under cross-field configuration which generates the interest to study this
particular topic of semiconductor science in general [2–29].

In Sect. A1.2.1 of theoretical background, the EEM in nonlinear optical
materials in the presence of crossed electric and quantizing magnetic fields has
been investigated by formulating the electron dispersion relation. The Sect. A1.2.2
reflects the study of the EEM in III–V, ternary, and quaternary compounds as a
special case of Sect. A1.2.1. In the same section, the well-known result for the
EEM in relatively wide gap materials in the absence of electric field as a limiting
case has been discussed for the purpose of compatibility. The Sect. A1.2.3
contains the study of the EEM for the II-VI semiconductors in the present case.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9, � Springer-Verlag Berlin Heidelberg 2013
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In Sect. A1.2.4, the EEM under cross-field configuration in Bismuth has been
investigated in accordance with the models of the McClure and Choi, the Cohen,
the Lax nonparabolic ellipsoidal, and the parabolic ellipsoidal, respectively. In
Sect. A1.2.5, the study of the EEM in IV-VI materials has been presented. In the
Sect. A1.2.6, the EEM for the stressed Kane type semiconductors has been
investigated. The Sects. A1.2.7, A1.2.8, A1.2.9, A1.2.10, A1.2.11, and A1.2.12
discuss the EEMs’ in ultrathin films of the above semiconductors in the presence
of cross-field configuration, respectively. The last Sect. A1.3 contains the open
research problems.

A1.2 Theoretical Background

A1.2.1 Nonlinear Optical Materials

The (1.2) of Chap. 1 can be expressed as

UðEÞ ¼ p2
s

2M?
þ

p2
z

2Mk
VðEÞ ðA1:1Þ

where

UðEÞ � Eð1þ aEÞ ðE þ EgÞðE þ Eg þ DkÞ þ d E þ Eg þ
2
3

Dk

� �
þ 2

9
ðD2
k � D2

?Þ
� �� �

� ðE þ EgÞ þ E þ Eg þ
2
3

Dk

� �
þ d E þ Eg þ

1
3
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9
ðD2
k � D2
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ps ¼ �hks; Mk ¼
m�k Eg þ 2

3 Dk
� �
Eg þ Dk
� � ; M? ¼

m�? Eg þ 2
3 D?

� �
Eg þ D?
� � ; pz ¼ �hkz

and
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3

Dk
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1
3
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� �
þ 1

9
ðD2
k � D2

?Þ
��1

We know that from electromagnetic theory that,

B
!¼ r� A

! ðA1:2Þ

where, A
!

is the vector potential. In the presence of quantizing magnetic field
B along z direction, the Eq. A1.2 assumes the form
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where î; ĵ and k̂ are orthogonal triads. Thus, we can write

oAz

oy
� oAy

oz
¼ 0

oAx

oz
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¼ 0

oAy

ox
� oAx

oy
¼ B

ðA1:3Þ

This particular set of equations is being satisfied for Ax ¼ 0; Ay ¼ Bx and
Az ¼ 0.

Therefore, in the presence of the electric field Eo along x-axis and the
quantizing magnetic field B along z-axis for the present case following of (A1.1)
one can approximately write,

UðEÞ þ ej jEox̂qðEÞ ¼ p̂2
x

2M?
þ

p̂y � ej jBx̂
� �2

2M?
þ p̂2

z

2aðEÞ ðA1:4Þ

where
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and aðEÞ � Mk½VðEÞ��1

Let us define the operator ĥ as

bh ¼ �bpy þ ej jBbx �M?EoqðEÞ
B

ðA1:5Þ

Eliminating the operator x̂; between Eqs. (A1.4) and (A1.5) the dispersion
relation of the conduction electron in tetragonal semiconductors in the presence of
cross-field configuration is given by

UðEÞ ¼
	

nþ 1
2



�hx01

� �
þ ½�hkzðEÞ�2

2aðEÞ

 !
� Eo�hkyqðEÞ

B

� �
� M?q2ðEÞE2

o

2B2

� �" #

ðA1:6Þ
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where x01 �
ej jB
M?

:

Therefore, the EMMs along z and y directions can, respectively, be expressed as
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where

a0 �EFBð Þ ¼ �a �EFBð Þ
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;

�EFB is the Fermi energy in the presence of cross-field configuration as measured
from the edge of the conduction band in the vertically upward direction in the
absence of any quantization,
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When E0 ! 0; m�y �EFB; n;E0;Bð Þ ! 1; which is a physically justified result. The
dependence of the EMM along y direction on the Fermi energy, electric field,
magnetic field, and the magnetic quantum number is an intrinsic property of cross-
fields. Another characteristic feature of cross-fields is that various transport
coefficients will be sampled dimension dependent. These conclusions are valid for
even isotropic parabolic energy bands and cross-fields introduce the index
dependent anisotropy in the effective mass.

The formulation of EEM requires the expression of the electron concentration
which can, in general, be written excluding the electron spin as

no ¼
�gv

Lxp2

Xnmax

n¼0

Z1
�E0

I Eð Þ ofo
oE

dE ðA1:9Þ

where Lx is the sample length along x direction, �E0 is determined by the equation

I �E0ð Þ ¼ 0

where
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in which,

xl Eð Þ � �E0M?q Eð Þ
�hB

and
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Using Eqs. (A1.6) and (A1.10), we get
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Combining (A1.9) and (A1.11), the electron concentration is given by
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and �EFB

is the Fermi energy in the present case.

A1.2.2 Special cases for III–V, Ternary, and Quaternary
Materials

(a) Under the conditions d ¼ 0; Djj ¼ D? ¼ D and m�k ¼ m�? ¼ mc, (A1.6)

assumes the form
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The use of (A1.13) leads to the expressions of the EMMs along z and y directions as
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The electron concentration in this case assume the forms
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(b) Under the condition D� Eg; (A1.13) assumes the well-known form [1]
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The use of (A1.17) leads to the expressions of the EMMs along z and y directions
as
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m�y �EFB; n;E0;Bð Þ ¼ B

E0

� �2 1
1þ 2a�EFB½ �

�EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx0 þ

mcE2
0 1þ 2a�EFBð Þ½ �2

2B2

" #

� �2a

1þ 2a�EFBð Þ½ �2
�EFB 1þ a�EFBð Þ � nþ 1

2

� �
�hx0 þ

mcE2
0 1þ 2a�EFBð Þ½ �2

2B2

" #"
þ1þ 2amcE2

0

B2

#

ðA1:19Þ

The expressions for n0 in this case assume the forms

n0 ¼
2gvB

ffiffiffiffiffiffiffiffi
2mc
p

3Lxp2�h2E0

Xnmax

n¼0

T45 n; �EFBð Þ þ T46 n; �EFBð Þ½ � ðA1:20Þ

where

T45ðn; �EFBÞ � �EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx0 þ ej jE0Lx 1þ 2a�EFBð Þ � mcE2

0

2B2
1þ 2a�EFBð Þ2

� �3=2
"

� �EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx0 �

mcE2
0

2B2
1þ 2a�EFBð Þ2

� �3=2#
1þ 2a�EFB½ ��1

and T46 n; �EFBð Þ �
Xs

r¼0

L rð Þ T45 n; �EFBð Þ½ �

.
(c) For parabolic energy bands, a! 0 and we can write,

E ¼ nþ 1
2

� �
�hx0 þ

�hkz Eð Þ½ �2

2mc
� 1

2
mc

E0

B

� �2

�E0

B
�hky ðA1:21Þ

Using Eq. (A1.21), the expressions of the EMMs along y and z directions can be
written as

m�z �EFB; n;E0;Bð Þ ¼ mc ðA1:22Þ

and

m�y �EFB; n;E0;Bð Þ ¼ B

E0

� �2
�EFB � nþ 1

2

� �
�hx0 þ

mcE2
0

2B2

� �
ðA1:23Þ

The electron concentration in this case can, respectively, be expressed as

n0 ¼ Nchgv
kBT

ej jE0Lx

� �Xnmax

n¼0

F1
2

g1ð Þ � F1
2

g2ð Þ
h i

ðA1:24Þ
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where

g1 �
�EFB � h1

kBT
; h1 � nþ 1

2

� �
�hx0 þ

1
2

mc
E0

B

� �2

� ej jE0Lx

" #
;

g2 �
�EFB � h2
� �

kBT
; h2 � h1 þ ej jE0Lx

In the absence of electricfield E0 ! 0 and the application of L’ Hospital’s rule
transforms the (A.24) into the well-known form of electron concentration under
magnetic quantization as given by (4.24b) of Chap. 4.

A1.2.3 II–VI Semiconductors

In the presence of electric field along x-axis and the quantizing magnetic field
B along z-axis, from (1.42) of Chap. 1 we can write

Ê þ ej jE0x̂ ¼ p̂2
x

2m�?
þ

p̂y � ej jBx̂2
� �

2m�?
þ

p̂2
z

2m�jj
þ D

p̂2
x

2m�?
þ

p̂y � ej jBx̂
� �2

2m�?

" #1=2

ðA1:25Þ

where,

D � �
�k0

ffiffiffiffiffiffiffiffiffi
2m�?

p
�h

:

Let us define the operator bh as

bh ¼ �p̂y þ ej jBx̂� E0m�?
B

ðA1:26Þ

Eliminating x̂ between (A1.25) and (A1.26), one obtains

Ê þ E0

B
bh þ E0

B
p̂y þ

E0

B

� �2

m�? ¼
p̂2

x

2m�?
þ ĥ2

2m�?
þ E2

0m�?
2B2

þ ĥE0

B

þ D
p̂2

x

2m�?
þ ĥ2

2m�?
þ E2

0m�?
2B2

" #1=2

þ
p̂2

z

2m�k
ðA1:27Þ

Thus, the electron energy spectrum in this case can be expressed as

E ¼ b1 n;E0ð Þð Þ þ �hkz Eð Þ½ �2

2m�k

 !
� E0

B
�hky

� �
ðA1:28Þ

where
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b1 n;E0ð Þ � nþ 1
2

� �
�hx02 �

E2
0m�?
2B2

� �
þ D nþ 1

2

� �
�hx02 þ

E2
0m�?
2B2

� �� 1=2" #

and

x02 �
ej jB
m�?

The use of (A1.28) leads to the expressions of the EMMs along z and
y directions as

m�z �EFB; n;E0;Bð Þ ¼ m�jj ðA1:29Þ

m�y �EFB; n;E0;Bð Þ ¼ B

E0

� �2
�EFB � b1 n;E0ð Þ½ � ðA1:30Þ

In this case

xi ¼
�E0

B�h
m�? þ

2D

�h

m�?
2

� �1
2

; xh ¼
ej jBLx

�h
þ xl

and kz Eð Þ ¼

ffiffiffiffiffiffiffiffi
2m�k

q
�h

E � b1 n;E0ð Þ þ E0

B
�hky

� �1=2
ðA1:31Þ

The (A1.10) for II–VI semiconductors the cross-field configuration assumes the form

I Eð Þ ¼
Zxh

xl

ffiffiffiffiffiffiffiffi
2m�k

q
�h

E � b1 n;E0ð Þ þ E0

B
�hky

� �1
2

dky

Therefore,

I Eð Þ ¼

ffiffiffiffiffiffiffiffi
2m�k

q
�h

2
3

B

E0�h
E � b1 n;E0ð Þ þ E0

B
�hxh

� 3=2
� E � b1 n;E0ð Þ þ E0

B
�hxl

� 3
2

" #

ðA1:32Þ

The electron concentration, from (A1.9) can be expressed as

n0 ¼ �
2gvB

ffiffiffiffiffiffiffiffi
2mk

p
3Lxp2�h2Eo

Xnmax

n¼0

Z1

h1

E � h1½ �
3
2
ofo

oE
dE �

Z1

h2

E � h2½ �
3
2
ofo
oE

dE

2
64

3
75 ðA1:33Þ

where

h1 � b1 n;E0ð Þ � E0

B
�hxh
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and

h2 � b1 n;E0ð Þ � E0

B
�hxl

Substituting

E � h1

kBT
¼ x1;

E � h2

kBT
¼ x2; g3 ¼

�EFB � h1

kBT

and

g4 ¼
�EFB � h2

kBT
;

from (A1.33), we can write

n0¼
2gvB

ffiffiffiffiffiffiffiffi
2m�k

q
3E0Lx�h

2p2
kBTð Þ

3
2

Xnmax

n¼0

Z1

0

x3=2
1 expðx1�g3Þ

1þ expðx1�g3Þ½ �2
dx1�

Z1

0

x3=2
2 expðx2� g4Þ

1þ expðx2�g4Þ½ �2
dx2

2
4

3
5

ðA1:34Þ

Differentiating both sides of (1.22) with respect to g, one can write,

Cðjþ 1ÞFj�1 gð Þ ¼
Z1

0

x j expðx� gÞ
1þ expðx� gÞ½ �2

dx ðA1:35Þ

Using (A1.34) and (A1.35), the electron concentration in this case can be
written as

n0 ¼
gvB

ffiffiffiffiffiffiffiffiffiffiffi
2m�kp

q
2E0Lx�h

2p2
kBTð Þ

3
2

Xnmax

n¼0

F1
2

g3ð Þ � F1
2

g4ð Þ
h i

ðA1:36Þ

A.1.2.4 Formulation of EEM in Bi

(a) The McClure and Choi Model

In the presence of an electric field E0 along trigonal-axis (z direction) and the
quantizing magnetic field B along bisectrix axis (y direction) from (1.49), we can
write
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E 1þ aEð Þ þ ej jE0bz 1þ 2aEð Þ

¼ bpx � ej jBbzð Þ2

2m1
þ

p̂2
y

2m2
þ

p̂2
z

2m3
þ

p̂2
y

2m2
aE 1� m2

m02

� �
� a

p̂2
y p̂2

z

4m2m3
þ a

p̂4
y

4m2m02

� a
p̂2

x � ej jBbz� �2
p̂2

y

4m1m2
ðA1:37Þ

Let us define the operator bh as

bh ¼ ej jBbz � p̂x �
m1E0

B
1þ 2aEð Þ ðA1:38Þ

Eliminating ẑ between (A1.37) and (A1.38), one obtains

Eð1þ aEÞ þ E0

B
1þ 2aEð Þbh þ E0

B
1þ 2aEð Þbpx þ m1

E0

B

� �2

1þ 2aEð Þ2

¼
bh2

2m1
þ

p̂2
z

2m3

 !
þ

p̂2
y

2m2
þ

p̂2
y

2m2
aE 1� m2

m02

� �
þ

ap̂4
y

4m2m02
�

ap̂2
y

2m2

bh2

2m1
þ

p̂2
z

2m3

" #

�
ap̂2

ym1E2
0

4m2B2
1þ 2aEð Þ2þE0

B
bh 1þ 2aEð Þ þ 1

2
m1

E0

B

� �2

1þ 2aEð Þ2 ðA1:39Þ

Therefore, the required dispersion relation is given by

E 1þ aEð Þ ¼ nþ 1
2

� �
�hx03 þ

�hky Eð Þ
� �2

2m2
� E0

B
1þ 2aEð Þ�hkx �

1
2

m1
E0

B

� �2

� 1þ 2aEð Þ2 þ
�hky Eð Þ
� �2

2m2
aE 1� m2

m02

� �
þ

a �hky Eð Þ
� �4
4m2m02

�
a �hky Eð Þ
� �2

2m2

� nþ 1
2

� �
�hx03 �

a �hky Eð Þ
� �2

m1E2
0

4m2B2
1þ 2aEð Þ2 ðA1:40Þ

where

x03 �
ej jBffiffiffiffiffiffiffiffiffiffiffi
m1m3
p :

When a! 0; from (A1.40), we can write

E ¼ nþ 1
2

� �
�hx03 þ

�hky Eð Þ
� �2

2m2
� E0

B
�hkx �

1
2

m1
E0

B

� �2

ðA1:41Þ

The use of (A1.40) leads to the equations of the EMMs along x and y direction as
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m�x �EFB; n;E0;Bð Þ ¼ B

E0

� �2

1þ 2a�EFBð Þ�3

� �EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx03 þ

1
2

m1
E0

B

� �2

1þ 2a�EFBð Þ2
" #

� 1þ 2a�EFBð Þ 1þ 2a�EFB þ 2am1 1þ 2a�EFBð Þ E0

B

� �2
( )"

� 2a �EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx03 þ

1
2

m1
E0

B

� �2

1þ 2a�EFBð Þ2
( )#

ðA1:42Þ

and

m�y �EFB; n;E0;Bð Þ ¼ 1
4
½h4ðn;EFBÞ�0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4ðn;EFB

p
Þ
� ½h1ðn;EFBÞ�0

" #
ðA1:43Þ

where

h4 n; �EFBð Þ � h2
1 n; �EFBð Þ þ 4h2 n; �EFBð Þ

� �
;

h1 n; �EFBð Þ � 4m2m02
a

�a
2m2

nþ 1
2

� �
�hx03 �

am1E2
0

4m2B2
1þ 2a�EFBð Þ2þ 1

2m2
þ a�EFB

2m2
1� m2

m02

� �� �

and h2 n; �EFBð Þ � 4m2m02
a

�EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx03 þ

1
2

m1
E03

B

� �2

1þ 2a�EFBð Þ2
" #

In this case,

xlðEÞ ¼ �
m1E0

B�h
1þ 2aEð Þ and xh Eð Þ ¼ ej jBLz

�h
þ xl Eð Þ ðA1:44Þ

where, Lz is the sample length along z-direction.
The electron concentration in this case can be written as

n0 ¼
gv

Lzp2

Xnmax

n¼0

Z1
�E01

J Eð Þ � ofo

oE

� �
dE ðA1:45Þ

in which �E01 is the root of the equation J �E01ð Þ ¼ 0 where J Eð Þ is given by

JðEÞ ¼
ZxhðEÞ

xlðEÞ

kyðEÞdkx ðA1:46Þ

The term ky Eð Þ in (A1.46) satisfies the following equation
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ky Eð Þ ¼ �h1 n;Eð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4 n;Eð Þ þ h5 Eð Þkx

ph i1=2
�hð Þ

ffiffiffi
2
ph i�1

ðA1:47Þ

where,

h5 Eð Þ � 16m2m02
a

� �
E0

B
1þ 2aEð Þ�h

� �

Using (A1.46) and (A1.47), we get,

JðEÞ ¼ 2
ffiffiffi
2
p

3�h

h1ðn;EÞ
h5ðn;EÞ

� �
�h1ðn;EÞ þ h7ðn;EÞf g3=2� �h1ðn;EÞ þ h6ðn;EÞf g3=2

h i�

þ 3
5h5ðn;EÞ

� �
�h1ðn;EÞ þ h7ðn;EÞf g5=2� �h1ðn;EÞ þ h6ðn;EÞf g5=2

h i�

ðA1:48Þ

where,

h6 n;Eð Þ � h4 n;Eð Þ þ h5 Eð Þxl Eð Þ½ �1=2

and

h7 n;Eð Þ � h4 n;Eð Þ þ xh Eð Þh5 n;Eð Þ½ �

Combining (A1.45) and (A1.48), the electron concentration in this case can be
written as

n0 ¼
gv

Lzp2

2
ffiffiffi
2
p

3�h

Xnmax

n¼0

T47 n;EFB

� �
þ T48 n;EFB

� �� �
ðA1:49Þ

where,

T47 n;EFB

� �
�

h1 n;EFB

� �
h5 n;EFB

� �
 !

�h1 n;EFB

� �
þ h7 n;EFB

� �� �3
2� �h1 n;EFB

� �
þ h6 n;EFB

� �� �3
2

h i

þ 3

5h5 n;EFB

� �
 !

�h1 n;EFB

� �
þ h7 n;EFB

� �� �5
2� �h1 n;EFB

� �
þ h6 n;EFB

� �� �5
2

h i

and T48 n;EFB

� �
�
Xs

r¼1

L rð Þ T47 n;EFB

� �� �

(b) The Cohen Model

In the presence of an electric field Eo along trigonal axis and the quantizing
magnetic field B along bisectrix axis for this case, the (1.65) assumes the form
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E 1þ aEð Þ þ ej jEobz 1þ 2aEð Þ ¼ bpx � ej jBbzð Þ2

2m1
þ
bp2

z

2m3
�

aEbp2
y

2m02
þ
bp2

y

2m2

� 1þ aEð Þ þ
abp4

y

4m2m02
ðA1:50Þ

Using the same operator ĥ as defined by (A1.38) and eliminating ẑ between the
(A1.50) and (A1.38), one can write

E 1þ aEð Þ ¼
bh2

2m1
þ
bp2

z

2m3

 !
� Eo

B
bpx 1þ 2aEð Þ � E2

0m1

2B2
1þ 2aEð Þ2�

aEbp2
y

2m02

þ
bp2

y

2m2
1þ aEð Þ þ

abp4
y

4m2m02
ðA1:51Þ

Thus, the electron energy spectrum can be expressed as

E 1þ aEð Þ ¼ nþ 1
2

� �
�hx03 �

E0

B
�hkx 1þ 2aEð Þ � 1

2
m1

E0

B

� �2

1þ 2aEð Þ2
"

� aE½�hkyðEÞ�2

2m02

 !
þ ½�hkyðEÞ�2

2m2
1þ aEð Þ þ a½�hkyðEÞ�4

4m2m02

" ##

ðA1:52Þ

The use of (A1.52) leads to the same expression of EMM along the x direction
as given by (A1.42) for the McClure and Choi model and the EMM along
y direction is given by

m�y �EFB; n;E0;Bð Þ ¼ 1
4

H5 n; �EFBð Þ
� �0
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H5 n; �EFBð Þ

p � H1 n; �EFBð Þ
� �0" #

ðA1:53Þ

where

H5 n; �EFBð Þ � H
2
1

�EFBð Þ þ 4H3 n; �EFBð Þ
h i

; H1 �EFBð Þ � 4m2m02
a

� �
1þ a�EFB

2m2
� a�EFB

2m02

� �

and H3 n; �EFBð Þ � 4m2m02
a

�EFB 1þ a�EFBð Þ � nþ 1
2

� �
�hx03 þ

1
2

m1
E03

B

� �2

1þ 2a�EFBð Þ2
" #

:

The term ky Eð Þ of (A1.52) in this case can be determined from the following
equation

�hky Eð Þ
� �4þ �hky Eð Þ

� �2 4m2m02
a

� �
�aE

2m02
þ 1þ aE

2m2

� �

� E 1þ aEð Þ � nþ 1
2

� �
�hx03 þ

E0

B
�hkx 1þ 2aEð Þ þ E2

0m1

2B2
1þ 2aEð Þ2

� �
4m2m02

a

� �
¼ 0

ðA1:54Þ
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Therefore,

ky Eð Þ ¼ �H1 Eð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H5 n;Eð Þ þ H6 Eð Þkx

q� �1=2

�h
ffiffiffi
2
p	 
�1

ðA1:55Þ

where

H6 Eð Þ � 4H4 Eð Þ

and

H4 Eð Þ � E0

B
�h 1þ 2aEð Þ

� �
4m2m02

a

� �
:

The expression of J Eð Þ in this case can be written as

JðEÞ ¼
ffiffiffi
2
p

�h

H1 Eð Þ
H6ðEÞ

2
3

(
H8ðn;EÞ � H1ðEÞ
� �3=2� H7ðn;EÞ � H1ðEÞ

� �3=2

" )

þ 1

H6ðEÞ
2
5

H8ðn;EÞ � H1ðEÞ
� �� �5=2� H7ðn;EÞ � H1ðEÞ

� �� �5=2
h i#

ðA1:56Þ

where
H8 n;Eð Þ � H5 n;Eð Þ þ H6 Eð Þxh Eð Þ

� �1=2
;

H5 n;Eð Þ � H1 n;Eð Þ
� �2þ4H3 n;Eð Þ
h i

;

xh Eð Þ � ej jBLz

�h
þ xl Eð Þ;

xl Eð Þ � �Eo

B

m1

�h
1þ 2aEð Þ

and H7 n;Eð Þ � H5 n;Eð Þ þ H6 Eð Þxl Eð Þ
� �1=2

:

The expression of the electron concentration for the Cohen model in the present
case is given by

n0 ¼
2gv

ffiffiffi
2
p

3Lzp2�h

Xnmax

n¼0

T49 n;EFB

� �
þ T410 n;EFB

� �� �
ðA1:57Þ

where,

T49 n;EFBð Þ � H1 �EFBð Þ
H6 �EFBð Þ

H8 n; �EFBð Þ � H1 �EFBð Þ
� �3=2� H7 n; �EFBð Þ � H1 �EFBð Þ

� �3=2
n o�

þ 1

H6 �EFBð Þ
3
5

H8 n; �EFBð Þ � H1 �EFBð Þ
� �� �5=2� H7 n; �EFBð Þ � H1 �EFBð Þ

� �� �5=2
h i

and T410 n; �EFBð Þ �
Xs

r¼1

L rð ÞT49 n; �EFBð Þ
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(c) The Lax Model

Under cross-field configuration from the (1.71) of Chap. 1, one can write

E 1þ aEð Þ þ ej jEoẑ 1þ 2aEð Þ ¼ px � ej jBẑð Þ2

2m1
þ

p̂2
y

2m2
þ

p̂2
z

2m3
ðA1:58Þ

Using the same operator bh as used for McClure and Choi model, we get

Eð1þ aEÞ þ E0

B
1þ 2aEð Þbh þ E0

B
1þ 2aEð Þbpx þ m1

E0

B

� �2

1þ 2aEð Þ2

¼
bh2

2m1
þ
bp2

z

2m3
þ m1

2
E0

B

� �2

1þ 2aEð Þ2þ
bhE0

B
1þ 2aEð Þ þ

bp2
y

2m2
ðA1:59Þ

Therefore, the electron dispersion relation assumes the form

E 1þ aEð Þ ¼ nþ 1
2

� �
�hx03 �

E0

B
1þ 2aEð Þ�hkx þ

�hky

� �2
2m2

� m1

2
E0

B

� �2

1þ 2aEð Þ2

ðA1:60Þ

The EMM along x direction in this case is given by (A1.42) and the EMM along
y direction is given by

m�y �EFB; n;E0;Bð Þ ¼ m2 1þ 2a�EFB þ 2m1a
E0

B

� �2

1þ 2a�EFBð Þ
" #

ðA1:61Þ

From (A1.60), we can write

ky Eð Þ ¼
ffiffiffiffiffiffiffiffi
2m2
p

�h
�G1 n;Eð Þ þ �G2 Eð Þkx½ �1=2

where

�G1 n;Eð Þ � Eð1þ aEÞ � nþ 1
2

� �
�hx03 þ

m1

2
E0

B

� �2

1þ 2aEð Þ2
" #

and �G2 Eð Þ � E0

B
1þ 2aEð Þ�h :

Therefore, the integral JðEÞ in this case assumes the form

J Eð Þ ¼
ffiffiffiffiffiffiffiffi
2m2
p

�h

2
3

�G2 Eð Þ½ ��1 �G1 n;Eð Þ þ �G2 Eð Þxh Eð Þ½ �3=2
h

� �G2 Eð Þ½ ��1 �G1 n;Eð Þ þ �G2 Eð Þxl Eð Þ½ �3=2
i

ðA1:62Þ

where,

xl Eð Þ � �Eo

B

m1

�h
1þ 2aEð Þ
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and

xh Eð Þ � ej jBLz

�h
þ xl Eð Þ:

The use of (A1.45) and (A1.62), the expression of the electron concentration for
the Lax model in the present case can be written as

n0 ¼
2gv

ffiffiffiffiffiffiffiffi
2m2
p

3Lzp2�h

Xnmax

n¼0

T411 n; �EFBð Þ þ T412 n; �EFBð Þ½ � ðA1:63Þ

where

T411 n; �EFBð Þ � �G2 �EFBð Þ½ ��1 �G1 n; �EFBð Þ þ �G2 �EFBð Þxh �EFBð Þ½ �3=2�
h

� �G1 n; �EFBð Þ þ �G2 �EFBð Þxlð�EFBÞ½ �3=2�;

xh �EFBð Þ � ej jBLz

�h

� �
þ xl �EFBð Þ;

xl �EFBð Þ � �Eo

B

m1

�h
1þ 2a�EFBð Þ and

T412 n; �EFBð Þ �
Xs

r¼1

L rð ÞT411 n; �EFBð Þ :

(d) The Parabolic Ellipsoidal model

For this model, the electron dispersion relation for the present case assumes the
form

E ¼
	

nþ 1
2



�hx03 �

E0

B
�hkx þ

�h2k2
y

2m2
� m1

2
E0

B

� �2

ðA1:64Þ

The EMMs along y and x directions can respectively be expressed as
m�y �EFB; n;E0;Bð Þ ¼ m2 ðA1:65Þ

m�x �EFB; n;E0;Bð Þ ¼ B

E0

� �2
�EFB � nþ 1

2

� �
�hx03 þ

m1

2
E0

B

� �2
" #

ðA1:66Þ

For this case, the electron concentration assumes the form

n0 ¼
gvB

ffiffiffiffiffiffiffiffiffiffiffi
2pm2
p

kBTð Þ3=2

2E0Lzp2�h2

Xnmax

n¼0

F1=2ð�e1Þ � F1=2ð�e2Þ
� �

ðA1:67Þ

where,

�e1 � kBTð Þ�1 �EFB � �e3ð Þ; �e3 � nþ 1=2ð Þ�hx03 þ
m1

2
E0

B

� �2

� ej jE0Lz

" #
;

�e2 � kBTð Þ�1 �EFB � �e4ð Þ and �e4 � �e3 þ ej jE0Lz:
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A1.2.5 IV–VI Materials

The conduction electrons of IV–VI semiconductors obey the Cohen model of
bismuth and the Eqs. (A1.53) and (A1.57) should be used for the electron
concentration and the EEM in this case along with the appropriate change of
energy band constants.

A1.2.6 Stressed Kane Type Semiconductors

The use of (1.98) can be written as

ðE � a1Þk2
x þ ðE � a2Þk2

y þ ðE � a3Þk2
z ¼ t1E3 � t2E2 þ t3E þ t4 ðA1:68Þ

where

a1 � Eg � C1e� ð�a0 þ C1Þeþ
3
2

�b0exx �
�b0

2
eþ

ffiffiffi
3
p .

2

	 

exy

�d0

� �
;

a2 � Eg � C1e� ð�a0 þ C1Þeþ
3
2

�b0exx �
�b0

2
e�

ffiffiffi
3
p .

2

	 

exy

�d0

� �
;

a3 � Eg � C1e� ð�a0 þ C1Þeþ
3
2

�b0ezz �
�b0

2
e

� �
; t1 � 3�

2B2
2

	 

;

t2 � 1�
2B2

2

	 

6ðEg � C1eÞ þ 3C1e
� �

;

t3 � 1�
2B2

2

	 

3ðEg � C1eÞ2 þ 6C1eðEg � C1eÞ � 2C2

2e
2
xy

h i

and t4 � 1�
2B2

2

	 

�3C1eðEg � C1eÞ2 þ 2C2

2e
2
xy

h i
:

In the presence of quantizing magnetic field B along z direction and the electric
field along x-axis, from (A1.68) one obtains

p̂2
x

2MkðEÞ
þ ðp̂y � ej jBx̂Þ2

2M?ðEÞ
þ RðEÞp̂2

z ¼ q5ðEÞ þ ej jE0x̂ q5 Eð Þ½ �0 ðA1:69Þ

where

MkðEÞ �
1

2PðEÞ ; PðEÞ � 1

�h2 ðE � a1Þ; M?ðEÞ �
1

2QðEÞ ; QðEÞ � 1

�h2 ðE � a2Þ;

RðEÞ � 1

�h2 ðE � a3Þ and q5ðEÞ � t1E3 � t2E2 þ t3E þ t4
� �

:

Let us define the operator ĥ as

ĥ ¼ �p̂y þ ej jBx̂�M?ðEÞE0 q5 Eð Þ½ �0

B
ðA1:70Þ
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Combining Eqs. (A1.69) and (A1.70), we can write

p̂2
x

2MkðEÞ
þ ĥ2

2M?ðEÞ
þ

M?ðEÞE2
0 q5 Eð Þ½ �0
� �2

2B2
þ ĥ

E0 q5 Eð Þ½ �0

B
þ RðEÞp̂2

z

¼ q5ðEÞ þ
E0 q5 Eð Þ½ �0ĥ

B
þ E0

B
q5 Eð Þ½ �0p̂y þ

E2
0

B2
M?ðEÞ q5 Eð Þ½ �0

� �2 ðA1:71Þ

Therefore, the electron dispersion relation in stressed Kane type semiconductors in
the presence of cross-field configuration can be expressed as

q5ðEÞ ¼ nþ 1=2

	 

�h�xðEÞ þ RðEÞ �hkzðEÞ½ �2�E0

B
q5 Eð Þ½ �0�hkyðEÞ

�
M?ðEÞE2

0 q5 Eð Þ½ �0
� �2

2B2

( )
ðA1:72Þ

where

�x Eð Þ � ej jBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MkðEÞM?ðEÞ

p
The use of (A1.72) leads to the expressions of EMMs along z and y directions as

m�z ð�EFB; n;E0;BÞ ¼
1
2
½Rð�EFBÞ��2 Rð�EFBÞ

"
½q5ð�EFBÞ�0 � nþ 1

2

� �
�h½�xð�EFBÞ�0

(

þM?ð�EFBÞE2
0½q5ð�EFBÞ�0½q5ð�EFBÞ�00

B2
þ
fM?ð�EFBÞg0E2

0 ½q5ð�EFBÞ�0
� �2

2B2

#

� fRð�EFBÞg0 q5ð�EFBÞ � nþ 1
2

� �
�h�xð�EFBÞ þ

M?ð�EFBÞE2
0 ½q5ð�EFBÞ�0
� �2

2B2

" #)
ðA1:73Þ

and

m�y �EFB; n;E0;Bð Þ ¼ B

E0

� �2

q5
�EFBð Þ½ �0

� ��3

� q5
�EFBð Þ � nþ 1

2

� �
�h�x �EFBð Þ þ

M? �EFBð ÞE2
0 q5

�EFBð Þ½ �0
� �2

2B2

" #

� q5
�EFBð Þ½ �0 q5

�EFBð Þ½ �0� nþ 1
2

� �
�h �x �EFBð Þ½ �0þM? �EFBð ÞE2

0 q5
�EFBð Þ½ �0 q5

�EFBð Þ½ �00

B2

��

þ
M? �EFBð Þ½ �0E2

0 q5
�EFBð Þ½ �0

� �2

2B2

#
� q5

�EFBð Þ½ �00

� q5
�EFBð Þ � nþ 1

2

� �
�h�x �EFBð Þ þ

M? �EFBð ÞE2
0 q5

�EFBð Þ½ �0
� �2

2B2

" ##
ðA1:74Þ
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For this case,

xlðEÞ ¼
�M?ðEÞE0 q5

�EFBð Þ½ �0

B
; xhðEÞ ¼

ej jBLx

�h
þ xlðEÞ ðA1:75Þ

The integral IðEÞfor stressed Kane type semiconductors in the presence of
crossed electric and quantizing magnetic fields assumes the form

IðEÞ ¼ 1

�h
ffiffiffiffiffiffiffiffiffiffi
RðEÞ

p B

E0�h q5
�EFBð Þ½ �0

 ! ZxhðEÞ

xlðEÞ

T5ðn;EÞ þ
E0 q5

�EFBð Þ½ �0

B
�hky

� �1=2

dky

ðA1:76Þ

where

T5ðn;EÞ � q5ðEÞ � nþ 1=2

	 

�h�xðEÞ þ

M?ðEÞE2
0 q5

�EFBð Þ½ �0
� �2

2B2

" #
:

From (A1.76), we get,

IðEÞ ¼ 1

�h
ffiffiffiffiffiffiffiffiffiffi
RðEÞ

p B

E0�h q5
�EFBð Þ½ �0

� 2
3

T5ðn;EÞ þ
E0

B
q5

�EFBð Þ½ �0�hxhðEÞ�3=2� T5ðn;EÞ þ
E0

B
q5

�EFBð Þ½ �0�hxlðEÞ�3=2
��� �#

ðA1:77Þ

Therefore, the electron concentration can be written as

n0 ¼
2B

3Lxp2�h2E0

Xnmax

n¼0

T413 n; �EFBð Þ þ T414 n; �EFBð Þ½ � ðA1:78Þ

where

T413ðn; �EFBÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R �EFBð Þ
p	 


q5
�EFBð Þð Þ0

2
4

3
5 T5ðn; �EFBÞ þ

E0

B
q5

�EFBð Þ½ �0�hxhð�EFBÞ
� �3=2
"

� T5ðn; �EFBÞ þ
E0

B
q5

�EFBð Þ½ �0�hxlð�EFBÞ
� �3=2

#

and T414 n; �EFBð Þ �
Xs

r¼1

L rð ÞT413 n; �EFBð Þ:
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A1.2.7 Ultrathin Films of Nonlinear Optical Materials

The dispersion relation of the conduction electrons in ultrathin films of nonlinear
optical material in the presence of cross-field configuration can be written as

UðEÞ ¼ ðnþ 1
2
Þ�hx01

� �
þ ½�h�2

2aðEÞ

 !
pnz

dz

� �2

� Eo�hkyqðEÞ
B

� �
� M?q2ðEÞE2

o

2B2

� �" #

ðA1:79Þ

From (A1.79), the EEM along ky direction can be expressed as

m�y efA1;E0; n; nz

� �
¼ B

E0q efA1
� �

" #2

nþ 1
2

� ��
�hx01 þ

�h2

2a efA1
� � nzp

dz

� �2

�
M2
?q

2 efA1
� �

E2
0

2B2

�U0 efA1
� �� q0 efA1

� �
q efA1
� �

"
U efA1
� �

þ
(

M2
?q

2 efA1
� �

E2
0

2B2
� nþ 1

2

� �
�hx01�

�h2

2a efA1
� � nzp

dz

� �2
)

� U0 efA1
� �

�
M2
?q efA1
� �

q0 efA1
� �

E2
0

B2
�

�h2a0 efA1
� �

2a2 efA1
� � nzp

dz

� �2
#

ðA1:80Þ
where efA1 is the Fermi energy in the present case. It appears then that the EEM is a
function of the Fermi energy, Landau quantum number, size quantum number and the
electric field due to the presence of electric field only. The investigation of the EEM in
this case requires an expression of electron statistics which, in turn, can be written as

n0 ¼
gveB

p�h

Xnmax

n¼0

Xnzmax

nz¼1

F�1 gA1ð Þ
ðA1:81Þ

where gA1 ¼
efA1 � eA1

kBT
, efA1 is the Fermi energy in this case and efA1 is the lowest

positive root of the equation.

UðeA1Þ ¼
	

nþ 1
2



�hx01

� �
þ ½�h�2

2aðeA1Þ

 !
pnz

dz

� �2

� M?q2ðeA1ÞE2
o

2B2

� �" #
ðA1:82Þ

A1.2.8 Special Cases for Ultrathin Films of III–V, Ternary,
and Quaternary Materials

(a) Under the conditions d ¼ 0; Djj ¼ D? ¼ D and m�k ¼ m�? ¼ mc, (A1.79)

assumes the form
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I11 Eð Þ ¼ nþ 1
2

� �
�hx0 þ

�h2

2mc

pnz

dz

� �2

�E0

B
�hky I11 Eð Þf g0�

mcE2
0 I11 Eð Þf g0
� �2

2B2

ðA1:83Þ

From (A1.83), the EEM assumes the form

m�yðefA1;E0; n; nzÞ ¼
B

E0I
0
11ðefA1Þ

� �2
"

I
0

11ðefA1Þ þ
mcE2

0

B2

�
I
0

11ðefA1Þ½I11ðefA1Þ�
00

� 
� I

00
11ðefA1Þ

I
0
11ðefA1Þ

� �

� I11ðefA1Þ � nþ 1
2

� �
�hx0 �

�h2

2mc

nzp
dz

� �2

þmcE2
0

2B2
½I 011ðefA1Þ�2

( )#

ðA1:84Þ

where

I
0

11 efA1
� �

¼ I11 efA1
� � 1

efA1
þ 1

efA1 þ Eg
þ 1

efA1 þ Eg þ D
� 1

efA1 þ Eg þ 2
3 D

" #

and I
00

11 efA1
� �

¼
I
0

11 efA1
� �� �2

I11 efA1
� � � I11 efA1

� � 1

efA1
� �2 þ

1

efA1 þ Eg

� �2 þ
1

efA1 þ Eg þ D
� �2

"" �

� 1

efA1 þ Eg þ 2
3 D

� �2

##

The electron concentration is given by

n0 ¼
gveB

p�h

Xnmax

n¼0

Xnzmax

nz¼1

F�1 gA2ð Þ ðA1:85Þ

where gA2 ¼
efA1�eA2

kBT and eA2 is the lowest positive root of the equation

I11 eA2ð Þ ¼ nþ 1
2

� �
�hx0 þ

�h2

2mc

pnz

dz

� �2

�
mcE2

0 I11 eA2ð Þf g0
� �2

2B2

(b) Two band model of Kane

Under the condition D� Eg, (A1.83) assumes the form

E 1þ aEð Þ ¼ nþ 1
2

� �
�hx0 �

E0

B
1þ 2aEð Þ�hky

þ �h2

2mc

pnz

dz

� �2

�mc

2
E0

B

� �2

1þ 2aEð Þ2 ðA1:86Þ
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m�y efA1;E0; n; nz

� �
¼ B

E0 1þ 2aefA1
� �

" #2

1þ 2aefA1
� �

: 1þ mcE2
0

B2

� ��� 
� 2a

1þ 2aefA1
� �
" #"

� 1þ aefA1
� �

efA1 � nþ 1
2

� �
�hx0 �

�h2

2mc

nzp
dz

� �2

þmcE2
0

2B2
1þ 2aefA1
� �� �2( )

ðA1:87Þ

The electron concentration is given by

n0 ¼
gveB

p�h

Xnmax

n¼0

Xnzmax

nz¼1

F�1 gA3ð Þ ðA1:88Þ

where gA3 ¼
efA1 � eA3

kBT
and eA3 is the lowest positive root of the equation

eA3 1þ aeA3ð Þ ¼ nþ 1
2

� �
�hx0 þ

�h2

2mc

pnz

dz

� �2

�mc

2
E0

B

� �2

1þ 2aeA3ð Þ2 ðA1:89Þ

(c) Parabolic Energy Bands

The dispersion relation, the EEM, and the electron statistics for this model
under this condition a! 0 can be written as

E ¼ nþ 1
2

� �
�hx0 �

E0

B
�hky þ

�h2

2mc

pnz

dz

� �2

�mc

2
E0

B

� �2

ðA1:90Þ

m�y efA1;E0; n; nz

� �
¼ E0

B

� ��2

efA1 � nþ 1
2

� �
�hx0 �

�h2

2mc

pnz

dz

� �2

þmc

2
E0

B

� �2
" #

ðA1:91Þ

n0 ¼
gveB

p�h

Xnmax

n¼0

Xnzmax

nz¼1

F�1 gA4ð Þ ðA1:92Þ

where gA4 ¼
efA1�eA4

kBT and eA4 is given by

eA4 ¼ nþ 1
2

� �
�hx0 þ

�h2

2mc

pnz

dz

� �2

�mc

2
E0

B

� �2

ðA1:93Þ
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A.1.2.9 Ultrathin Films of II–VI Materials

The dispersion relation in this case in ultrathin films of II–VI semiconductors can
be written as

E ¼ b1 n;E0ð Þð Þ þ pnz=dz½ �2�h2

2m�k

 !
� E0

B
�hky

� �
ðA1:94Þ

The EEM can be expressed as

m�y efA1;E0; n; nz

� �
¼ E0

B

� ��2

EfA1 � b1 n;E0ð Þð Þ � pnz=dz½ �2�h2

2m�k

 !" #
ðA1:95Þ

The electron concentration per unit area in this case assumes the form

n0 ¼
gveB

p�h

Xnmax

n¼0

Xnzmax

nz¼1

F�1 gA5ð Þ ðA1:96Þ

where gA5 ¼
efA1 � eA5

kBT
and eA5 is determined from the equation

eA5 ¼ b1 n;E0ð Þð Þ þ pnz=dz½ �2�h2
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A.1.2.10 The Formulation of EEM in Ultrathin Films
of Bismuth

(a) The McClure and Choi model

The electron dispersion law in this case assumes the form
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The EEM can be expressed from (A1.98) as
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The electron concentration per unit area in this case assumes the form

n0 ¼
gveB

p�h

Xnmax

n¼0

Xnzmax

nz¼1

F�1 gA6ð Þ ðA1:100Þ

where gA6 ¼
efA1�eA6

kBT and eA6 is the lowest positive root of the equation

eA6 1þ aeA6ð Þ ¼ nþ 1
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(b) The Cohen Model

The electron dispersion law in this case assumes the form

E 1þ aEð Þ ¼ nþ 1
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The EEM can be expressed from (A1.102) as
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The electron concentration per unit area in this case assumes the form

n0 ¼
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where gA7 ¼
efA1�eA7

kBT and eA7 is the lowest positive root of the equation
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(c) The Lax Model

The electron dispersion law in this case assumes the form
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The EEM can be expressed from (A1.106) as
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The electron concentration per unit area in this case assumes the form where

gA8 ¼
efA1 � eA8

kBT
and eA8 is the lowest positive root of the equation
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(d) The Parabolic Ellipsoidal Model

The dispersion relation, the EEM and the electron statistics for this model under
this condition a! 0 can be written as
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where gA9 ¼
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kBT
and eA9 is given by
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A1.2.11 Ultrathin Films of IV–VI Materials

The carriers of IV–VI materials obey the Cohen model. Thus, all the results of the
Cohen model as derived earlier are perfectly valid for IV–VI materials with the
change in energy band constants.

A1.2.12 Ultrathin Films of Stressed Semiconductors

The electron dispersion relation in stressed Kane type semiconductors in the
presence of cross-field configuration can be expressed as
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The EEM can be written as
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The surface electron concentration is given by
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and eA10 is the lowest positive root of the equation
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A1.3 Open Research Problems

R.A1.1 Investigate the EEM in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields in tetragonal semiconductors by
including broadening and the electron spin. Study all the special cases
for III–V, ternary, and quaternary materials in this context.

R.A1.2 Investigate the EEMs for all models of Bi, IV–VI, II–VI, and stressed
Kane type compounds in the presence of an arbitrarily oriented
quantizing magnetic and crossed electric fields by including broadening
and electron spin.

R.A1.3 Investigate the EEM for all the materials as stated in R.2.1 of Chap. 2 in
the presence of an arbitrarily oriented quantizing magnetic and crossed
electric fields by including broadening and electron spin.
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Appendix B
The EEM in Heavily Doped Compound
Semiconductors

B1.1 Introduction

It is well known that the band tails are being formed in the forbidden zone of
heavily doped semiconductors and can be explained by the overlapping of the
impurity band with the conduction and valence bands [30]. Kane [31, 32] and
Bonch Bruevich [33] have independently derived the theory of band tailing for
semiconductors having unperturbed parabolic energy bands. Kane’s model [31,
32] was used to explain the experimental results on tunneling [34] and the optical
absorption edges [35, 36] in this context. Halperin and Lax [37] developed a model
for band tailing applicable only to the deep tailing states. Although Kane’s concept
is often used in the literature for the investigation of band tailing [38, 39], it may
be noted that this model [31, 32, 40] suffers from serious assumptions in the sense
that the local impurity potential is assumed to be small and slowly varying in space
coordinates [39]. In this respect, the local impurity potential may be assumed to be
a constant. In order to avoid these approximations, we have developed in this
chapter the electron energy spectra for heavily doped semiconductors for studying
the EEM based on the concept of the variation of the kinetic energy [30, 39] of the
electron with the local point in space coordinates. This kinetic energy is then
averaged over the entire region of variation using a Gaussian type potential energy.
On the basis of the E–k dispersion relation, we have obtained the electron statistics
for different heavily doped materials for the purpose of numerical computation of
the respective EEMs. It may be noted that, a more general treatment of many-body
theory for the density-of-states of heavily doped semiconductors merges with one-
electron theory under macroscopic conditions [30]. Also, the experimental results
for the Fermi energy and others are the average effect of this macroscopic case. So,
the present treatment of the one-electron system is more applicable to the

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9, � Springer-Verlag Berlin Heidelberg 2013
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experimental point-of-view and it is also easy to understand the overall effect in
such a case [41]. In a heavily doped semiconductor, each impurity atom is
surrounded by the electrons, assuming a regular distribution of atoms, and it is
screened independently [38, 40, 42].

The interaction energy between electrons and impurities is known as the
impurity screening potential. This energy is determined by the inter-impurity
distance and the screening radius, which is known as the screening length. The
screening radius grows with the electron concentration and the effective mass.
Furthermore, these entities are important for heavily doped materials in
characterizing the semiconductor properties [43, 44] and the devices [38, 45].
The works on Fermi energy and the screening length in an n-type GaAs have
already been initiated in the literature [46–48], based on Kane’s model.
Incidentally, the limitations of Kane’s model [39], as mentioned above, are also
present in their studies.

At this point, it may be noted that many band tail models are proposed using the
Gaussian distribution of the impurity potential variation [31, 32, 39]. In this
chapter, we have used the Gaussian band tails to obtain the exact E-k dispersion
relations for heavily doped tetragonal, III–V, II–VI, IV–VI, and stressed Kane type
compounds. Our method is not at al related with the density-of-states (DOS)
technique as used in the aforementioned works. From the electron energy
spectrum, one can obtain the DOS but the DOS technique, as used in the literature
cannot provide the E–k dispersion relation. Therefore, our study is more
fundamental than those in the existing literature, because the Boltzmann
transport equation, which controls the study of the charge transport properties of
the semiconductor devices, can be solved if and only if the E–k dispersion relation
is known. We wish to note that the Gaussian function for the impurity potential
distribution has been used by many authors. It has been widely used since 1963
when Kane first proposed it. We will also use the Gaussian distribution for the
present study.

In Sect. B1.2.1, of the theoretical background, the EEM in heavily doped
tetragonal materials has been investigated. The Sect. B1.2.2 contains the results
for heavily doped III–V, ternary, and quaternary compounds whose undoped
conduction electrons obeys the three and the two band models of Kane together
with parabolic energy bands and they form the special cases of Sect. B1.2.1. The
Sects. B1.2.3, B1.2.4 and B1.2.5 contain the study of the EEM for heavily doped
II–VI, IV–VI and stressed Kane type semiconductors, respectively. The last Sect.
B1.3 contains the open research problems.
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B1.2 Theoretical Background

B1.2.1 Study of the EEM in Heavily Doped Tetragonal
Materials Forming Gaussian Band Tails

The generalized unperturbed electron energy spectrum for the bulk specimens of
the tetragonal materials in the absence of any doping can be expressed following
(1.2) of Chap. 1 as
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The Gaussian distribution F(V) of the impurity potential is given by [31, 32]
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where, gg is the impurity scattering potential. It appears from (B1.2) that the
variance parameter gg is not equal to zero, but the mean value is zero. Further, the
impurities are assumed to be uncorrelated and the band mixing effect has been
neglected in this simplified theoretical formalism.

We have to average the Kinetic energy in the order to obtain the E-k dispersion
relation in tetragonal materials including the band tailing effect. Using the (B1.1)
and (B1.2), we get
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(B1.3) can be rewritten as [49–53]
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Let us substitute E � V � x and x=gg � t0; we get from (B1.5)
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After computing this simple integration, one obtains thus,
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From (B1.8), we can write
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g2
g

	 

dV

aðE � VÞ þ 1½ � ðB1:11Þ

when, V ! �1; 1
aðE � VÞ þ 1½ � ! 0 and exp �V2

.
g2

g

	 

! 0; therefore, using

(B1.11) one can write

I að Þ ¼ 1ffiffiffiffiffiffiffi
pg2

g

q
Zþ1

�1

exp �V2
.

g2
g

	 

dV

aE þ 1� aV½ � ðB1:12Þ

The (B1.12) can be expressed as

I að Þ ¼ 1
�
agg

ffiffiffi
p
p� � Z1

�1

exp �t2
� �

u� tð Þ�1dt ðB1:13Þ
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where, V
gg
� t and u � 1þaE

ag

	 

.

It is well known that [54, 55]

WðZÞ ¼ i=pð Þ
Z1

�1

ðZ � tÞ�1
expð�t2Þdt ðB1:14Þ

in which i ¼
ffiffiffiffiffiffiffi
�1
p

and Z is, in general, a complex number. We also know [54, 55],

W Zð Þ ¼ exp �Z2
� �

Erfc �iZð Þ ðB1:15Þ

where

Erfc Zð Þ � 1� Erf Zð Þ

Thus

Erfc �iuð Þ ¼ 1� Erf �iuð Þ

Since,

Erf �iuð Þ ¼ �Erf iuð Þ

Therefore,

Erfc �iuð Þ ¼ 1þ Erf iuð Þ:

Thus,

IðaÞ ¼ �i
ffiffiffi
p
p �

agg

� �
exp �u2
� �

1þ Erf ðiuÞ½ � ðB1:16Þ

We also know that [54]

Erf xþ iyð Þ ¼ Erf xð Þ þ e�x2

2px

 !
1� cos 2xyð Þð Þ þ i sin 2xyð Þ þ 2

p
e�x2

X1
p¼1

exp �p2
�

4
� �

p2 þ 4x2ð Þ

" #

� fp x; yð Þ þ igp x; yð Þ þ e x; yð Þ
� �

ðB1:17Þ

where

fp x; yð Þ � 2x� 2x cosh pyð Þ cos 2xyð Þ þ p sinh pyð Þ sin 2xyð Þ½ �;
gp x; yð Þ � 2x cosh pyð Þ sin 2xyð Þ þ p sinh pyð Þ cos 2xyð Þ½ �;
e x; yð Þj j 	 10�16 Erf xþ iyð Þj j

Substituting x ¼ 0 and y ¼ u in (B1.17), one obtains,

Erf iuð Þ ¼ 2i

p

� �X1
p¼1

exp �p2
�

4
� �

p
sinh puð Þ

� 
ðB1:18Þ
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Therefore, one can write

I að Þ ¼ C21 a;E; gg

� �
� iD21 a;E; gg

� �
ðB1:19Þ

where

C21 a;E; gg

� �
� 2

agg

ffiffiffi
p
p

" #
exp �u2
� � X1

p¼1

exp �p2
�

4
� �

p
sinh puð Þ

� " #

and

D21 a;E; gg

� �
�

ffiffiffi
p
p

agg
exp �u2
� �" #

:

The (B1.19) has both real and imaginary parts, and therefore IðaÞ is complex,
which can also be prove by using the method of analytic continuation. The integral
I3 cjj
� �

in (B1.6) can be written as

I3 cjj
� �

¼
abjj
cjj

� �
I 5ð Þ þ

acjj þ bjjcjj � abjj
c2
jj

 !
Ið4Þ þ 1

cjj
1� a

cjj

� �
1�

bjj
cjj

� �
I 1ð Þ

� 1
cjj

1� a
cjj

� �
1�

bjj
cjj

� �
I cjj
� �� 

ðB:1:20Þ

where

I 5ð Þ �
ZE

�1

ðE � VÞ2FðVÞdV ðB1:21Þ

From (B1.21), one can write

I 5ð Þ ¼ 1ffiffiffiffiffiffiffi
pg2

g

q E2
ZE

�1

exp
�V2

g2
g

 !
dV � 2E

ZE

�1

V exp
�V2

g2
g

 !
dV þ

ZE

�1

V2 exp
�V2

g2
g

 !
dV

2
4

3
5

The evaluations of the component integrals lead us to write

I 5ð Þ ¼
ggE

2
ffiffiffi
p
p exp

�E2

g2
g

 !
þ 1

4
g2

g þ 2E2
	 


1þ Erf
E

gg

 !" #
¼ h0 E; gg

� �
ðB1:22Þ

Thus, combining the aforementioned equations, I3 cjj
� �

can be expressed as

I3 cjj
� �

¼ A21 E; gg

� �
þ iB21 E; gg

� �
ðB1:23Þ

where
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A21 E; gð Þ �
abjj
cjj

ggE

2
ffiffiffi
p
p exp

�E2

g2
g

 !
þ 1

4
g2

g þ 2E2
	 


1þ Erf
E

gg

 !( )" #"

þ
acjj þ bjjcjj � abjj

c2
jj

" #
E

2
1þ Erf E=gð Þ½ � þ

gg exp �E2
.

g2
g

	 

2
ffiffiffi
p
p

8<
:

9=
;

þ 1
cjj

1� a
cjj

� �
1�

bjj
cjj

� �
1
2

1þ Erf E=gð Þ½ �

� 2
c2
jjgg

ffiffiffi
p
p 1� a

cjj

� �
1�

bjj
cjj

� �
expð�u2

1Þ
( ) X1

p¼1

exp �p2
�

4
� �

p
sinh pu1ð Þ

� " #
;

u1 �
1þ cjjE

cjjgg

" #
and B21 E; gg

� �
�

ffiffiffi
p
p

c2
jjgg

1� a
cjj

� �
1�

bjj
cjj

� �
expð�u2

1Þ:

Therefore, the combination of all the appropriate equations together with the
algebraic manipulations lead to the dispersion relation of the conduction electrons
of heavily doped tetragonal materials forming Gaussian band tails as

�h2k2
z

2m�jjT21 E; gg

� �þ �h2k2
s

2m�?T22 E; gg

� � ¼ 1 ðB1:24Þ

where T21 E; gg

� �
and T22 E; gg

� �
have both real and complex parts and they are

given by

T21 E; gg

� �
� T27 E; gg

� �
þ iT28 E; gg

� �� �
; T27 E; gg

� �
�

T23 E; gg

� �
T5 E; gg

� �
" #

;

T23ðE; ggÞ � A21ðE; ggÞ þ
abjj
cjj

dc0ðE; ggÞ þ
1
9
ðD2
jj � D2

?Þ½1þ Erf ðE=ggÞ�
� ��

� 2
9

abjj
cjj

� �
ðD2
jj � D2

?ÞG21ðcjj;E; ggÞ
� �

;

G21 E; gg

� �
� 2

cjjgg

ffiffiffi
p
p exp �u2

1

� �X1
p¼1

exp �p2
�

4
� �

p
sinh pu1ð Þ

� 
;

T5 E; gg

� �
� 1

2
1þ Erf E

�
gg

� �� �
;

T28 E; gg

� �
�

T24 E; gg

� �
T5 E; gg

� �
" #

;

T24 E; gg

� �
� B21 E; gg

� �
þ 2

9

abj j
cjj

D2
jj � D2

?

	 

H21 cjj;E; gg

� �� �
;



H21ðcjj;E; ggÞ �
ffiffiffi
p
p

ggcjj
expð�u2

1Þ
" #

;

T22 E; gg

� �
� T29 E; gg

� �
þ iT30 E; gg

� �� �
;

T29 E; gg

� �
�

T23 E; gg

� �
T25 E; gg

� �
� T24 E; gg

� �
T26 E; gg

� �
T25 E; gg

� �� �2þ T26 E; gg

� �� �2
h i ;

T25 E; gg

� �
�

bjj
b?

c?
cjj

� �
1
2

1þ Erf
E

gg

 !" #
þ

bj j
b?

c?
cj j

� �
d
2
þ

D2
jj � D2

?
6Dj j

" # !"

� akC21 ak;E; gg

� �
þ

bj jc?
b?

� �
d
2
�

D2
jj � D2

?
6Dj j

" # !
G21 ak;E; gg

� �#
;

C21 a;E; gg

� �
� 2

a
ffiffiffi
p
p

gg
expð�u2Þ

X1
p¼1

expð�p2=4Þ
p

sinhðpuÞ
" #" #

;

T26 E; gg

� �
�

bjj
b?

c?
cjj

� �
d
2
�

D2
k � D2

?
6Djj

 !
aD21 a;E; gg

� �

þ
bjjc?
b?

d
2
�

D2
k � D2

?
6Djj

 !
H21 cjj;E; gg

� �
;

and

T30 E; gg

� �
�

T24 E; gg

� �
T25 E; gg

� �
þ T23 E; gg

� �
T26 E; gg

� �
T25 E; gg

� �� �2þ T26 E; gg

� �� �2
h i :

From (B1.24), it appears that the energy spectrum in heavily doped tetragonal
semiconductors is complex. The complex nature of the electron dispersion law in
heavily doped semiconductors occurs from the existence of the essential poles in
the corresponding undoped electron energy spectrum. It may be noted that the
complex band structures have already been studied for bulk semiconductors and
superlattices without heavy doping [56, 57] and bears no relationship with the
complex electron dispersion law as indicated by (B1.24). The physical picture
behind the formulation of the complex energy spectrum in heavily doped
tetragonal semiconductors is the interaction of the impurity atoms in the tails with
the splitting constants of the valance bands. More is the interaction causes more
prominence of the complex part than the other case. When there is no heavy
doping, gg ! 0; and there is no interaction of the impurity atoms in the tails with
the spin–orbit constants. As a result, there exist no complex energy spectrum and
(B1.24) gets converted into (B1.2) when gg ! 0: Besides, the complex spectra are
not related to same evanescent modes in the band tails and the conduction bands.
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The transverse and the longitudinal EEMs at the Fermi energy EFhð Þ of heavily
doped tetragonal materials can be expressed respectively as

m�? EFh ; gg

� �
¼ m�? T29 E; gg

� �� �0���
E¼EFh

ðB1:25Þ

and

m�jj EFh ; gg

� �
¼ m�jj T27 E; gg

� �� �0���
E¼EFh

ðB1:26Þ

In the absence of band tailing effects gg ! 0 and we get

m�? EF ; 0ð Þ ¼ �h2

2
w2 Eð Þ w1 Eð Þf g0�w1 Eð Þ w2 Eð Þf g0

w2 Eð Þf g2

" #�����
E¼EF

ðB1:27Þ

and

m�jj EF ; 0ð Þ ¼ �h2

2
w3 Eð Þ w1 Eð Þf g0� w1 Eð Þf g w3 Eð Þf g0

w3 Eð Þf g2

" #�����
E¼EF

ðB1:28Þ

Comparing the aforementioned equations, one can infer that the effective
masses exist in the forbidden zone, which is impossible without the effect of band
tailing. For undoped semiconductors, the effective mass in the band gap is infinity.
The density-of-states function is given by

NHD E; gg

� �
¼

2gvm�?
ffiffiffiffiffiffiffiffi
2m�jj

q
3p2�h3 R11 E; gg

� �
cos w11 E; gg

� �� �
ðB1:29Þ

where

R11ðE; ggÞ � fT29ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
þ

T29ðE; ggÞfxðE; ggÞg0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
2
64
2
64

� fT30ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
�

T30ðE; ggÞfyðE; ggÞg0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
3
75

2

þ fT29ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
þ

T29ðE; ggÞfyðE; ggÞg0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
2
64

þfT30ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
�

T30ðE; ggÞfxðE; ggÞg0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
3
75

2
#1=2

;
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xðE; ggÞ �
1
2

T27ðE; ggÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT27ðE; ggÞg2 þ fT28ðE; ggÞg2

q� �
;

yðE; ggÞ �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT27ðE; ggÞg2 þ fT28ðE; ggÞg2

q
� T27ðE; ggÞ

� �

and w11ðE; ggÞ � tan�1 fT29ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
þ

T29ðE; ggÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
2
64
2
64

þ fT30ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
þ

T30fxðE; ggÞg
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
3
75

� fT29ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
þ

T29ðE; ggÞfxðE; ggÞg
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðE; ggÞ

q
2
64

� fT30ðE; ggÞg0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
þ

T30fyðE; ggÞg0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðE; ggÞ

q
3
75
�13
75:

The oscillatory nature of the DOS for heavily doped tetragonal materials is
apparent from (B1.29). For, w11 E; gg

� �

 p; the cosine function becomes negative

leading to the negative values of the DOS. The electrons cannot exist for the
negative values of the DOS, and therefore this reason is forbidden for electrons,
which indicates that in the band tail, there appears a new forbidden zone in
addition to the normal band gap of the semiconductor. The use of (B1.29) the
electron concentration at low temperatures can be expressed as

n0 ¼
2gvm�?

ffiffiffiffiffiffiffiffiffi
2m�j j

q
3p2�h3 I11 EFh ; gg

� �� �
ðB1:30Þ

where,

I11 EFh ; gg

� �
� T29 EFh ; gg

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x EFh ; gg

� �q
� T30 EFh ; gg

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y EFh ; gg

� �q� �
:

For heavily doped tetragonal semiconductors, �Ehd is the smallest negative root
of the equation

T27 �Ehd; gg

� �
T29 �Ehd; gg

� �
� T28 �Ehd; gg

� �
T30 �Ehd; gg

� �� �
¼ 0 ðB1:31Þ

Appendix B: The EEM in Heavily Doped Compound Semiconductors 473



B1.2.2 Study of the EEM in Heavily Doped III–V, Ternary
and Quaternary Materials Forming Gaussian Band Tails

(a) Under the conditions, d ¼ 0; m�jj ¼ m�? ¼ m� and Djj ¼ D? ¼ D; the electron

dispersion law in this case assumes the form

�h2k2

2m�
¼ T31 E; gg

� �
þ iT32 E; gg

� �
ðB1:32Þ

where,

T31 E; gg

� �
� 2
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�
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� �
 !
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c
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� �
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� �
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� ��

þ 1
c
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1� b
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� �
1
2

1þ Erf
E
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 !" #

� 1
c
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c

	 

1� b

c

� �
2

cgg

ffiffiffi
p
p exp �u2

2

� � X1
p¼1

exp �p2
�

4
� �

p
sinh pu2ð Þ

" ##
;

b � 1
Eg þ D

� �
; c � 1

Eg þ 2
3 D

 !
; u2 �

1þ cE

cgg
and

T32 E; gg

� �
� 2

1þ Erf E
�
gg

� �
 !

1
c

1� a
c

	 

1� b

c

� � ffiffiffi
p
p

cgg
exp �u2

2

� �
:

Thus, the complex energy spectrum occurs due to the term T32 E; gg

� �
and this

imaginary band is quite different from the forbidden energy band.
The EEM at the Fermi level is given by

m� EFh ; gg

� �
¼ m� T31 E; gg

� �� �0���
E¼EFh

ðB1:33Þ

Thus, the EEM in heavily doped III–V, ternary and quaternary materials exists in
the band gap, which is the new attribute of the theory of band tailing. In the
absence of band tailing, gg ! 0 and the EEM assumes the form

m� EFð Þ ¼ m� I Eð Þf g0
��
E¼EF

ðB1:34Þ

The density-of-states function in this case assumes the form

NHD E; gg

� �
¼ gv

3p2

2m�

�h2

� �3=2

R21 E; gg

� �
cos #21 E; gg

� �� �
ðB1:35Þ
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where

R21 E; gg

� �
�

a11 E; gg

� �� �0h i2
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3
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;
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� �
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þ
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� �� �2þ T34 E; gg

� �� �2
q� �

;

T33 E; gg

� �
� T31 E; gg

� �� �3�3T31 E; gg

� �
T32 E; gg

� �� �2
h i

;

T34 E; gg

� �
� 3T32 E; gg

� �
T31 E; gg

� �� �2� T32 E; gg

� �� �3
h i

;

b11 E; gg
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� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T33 E; gg

� �� �2þ T34 E; gg

� �� �2
q

� T33 E; gg
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and

#21 E; gg

� �
� tan�1 b11 E; gg

� �� �0
a11 E; gg

� �� �0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 E; gg

� �
b11 E; gg

� �
s" #

:

Thus, the oscillatory density-of-states function becomes negative for #21 E; gg

� �

 p and a new forbidden zone will appear in addition to the normal band gap. The
electron concentration in the zone of low temperatures can be written as

n0 ¼
gv

3p2

2m�

�h2

� �3=2 1ffiffiffi
2
p T33 EFh ; gg

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T33 EFh ; gg

� �� �2þ T34 EFh ; gg

� �� �2
q� �

ðB1:36Þ

In this case, �Ehd is given by
T31 �Ehd; gg

� �
¼ 0 ðB1:37Þ

(b) The dispersion relation in heavily doped III-V, ternary, and quaternary
materials whose undoped energy spectrum obeys the two band model of Kane
is given by

�h2k2

2m�
¼ c2 E; gg

� �
ðB1:38Þ

where

c2 E; gg

� �
� 2

1þ Erf E
�
gg

� �
" #

c0 E; gg

� �
þ ah0 E; gg

� �� �
:

Since, the original two band Kane model is an all zero and no pole function,
therefore, the heavily doped counterpart will be totally real and the complex band
vanishes. The EEM in this case can be written as
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m� EFh ; gg

� �
¼ m� c2 E; gg

� �� �0���
E¼EFh

ðB1:39Þ

Thus, one again observes that the EEM in this case exists in the band gap. In the
absence of band tailing, gg ! 0 and the EEM assumes the form

m� EFð Þ ¼ m� 1þ 2aEf gjE¼EF
ðB1:40Þ

The density-of-states function in this case can be written as

NHD E; gg

� �
¼ gv

2p2

2m�

�h2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 E; gg

� �q
c2 E; gg

� �� �0 ðB1:41Þ

Since, the original two band Kane model is an all zero and no pole function,
therefore, the heavily doped counterpart will be totally real and the complex band
vanishes.
The electron concentration at low temperatures is given by

n0 ¼
gv

3p2

2m�

�h2

� �3=2

c2 EFh ; gg

� �� �3=2 ðB1:42Þ

In this case, �Ehd is given by

c2
�Ehd; gg

� �
¼ 0 ðA1:43Þ

(c) The dispersion relation in heavily doped semiconductors whose unperturbed
conduction electrons obeys parabolic energy bands is given by

�h2k2

2m�
¼ c3 E; gg

� �
ðB1:44Þ

where

c3 E; gg

� �
� 2

1þ Erf E
�
gg

� �� �
" #

c0 E; gg

� �
:

Since, the original parabolic energy band is no pole function, therefore, the heavily
doped counterpart will be totally real, which is also apparent form the expression
(B1.44).
The EEM in this case can be written as
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m� EFh ; gg

� �
¼ m� c3 E; gg

� �� �0���
E¼EFh

ðB1:45Þ

In the absence of band tailing, gg ! 0 and the EEM assumes the form

m� EFð Þ ¼ m� ðB1:46Þ

It is well known that the EEM in undoped parabolic energy bands is a constant
quantitity in general excluding cross-field configuration. But, the same mass in the
corresponding heavily doped bulk counterpart is complicated functions of Fermi
energy and the impurity potential together with the fact that the EEM also exists in
the band gap.

The density-of-states function in this case can be written as

NHD E; gg

� �
¼ gv

2p2

2m�

�h2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �q
c3 E; gg

� �� �0 ðB1:47Þ

Since, the original parabolic energy band model is a no pole function, therefore,
the heavily doped counterpart will be totally real and the complex band
vanishes.The electron concentration at low temperatures is given by

n0 ¼
gv

3p2

2m�

�h2

� �3=2

c3 EFh ; gg

� �� �3=2 ðB1:48Þ

In this case, �Ehd is given by

c3
�Ehd; gg

� �
¼ 0 ðB1:49Þ

B1.2.3 Study of the EEM in Heavily Doped II–VI
Materials Forming Gaussian Band Tails

Using (1.42) and (A1.2), the dispersion relation of the carriers in heavily doped
II–VI materials in the presence of Gaussian band tails can be expressed as

c3 E; gg

� �
¼ a00k2

s þ b00k2
z � �k0ks ðB1:50Þ

Thus, the energy spectrum in this case is real since the corresponding undoped
case as given by (1.42) is a no pole function.

The transverse and the longitudinal EEMs masses are respectively given by

m�? EFh ; gg

� �
¼ m�? c3 E; gg

� �� �0
1�

�k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k0
� �2þ4a00c3 E; gg

� �q
0
B@

1
CA

2
64

3
75
�������
E¼EFh

ðB1:51Þ
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and

m�jj EFh ; gg

� �
¼ m�jj c3 E; gg

� �� �0���
E¼EFh

ðB1:52Þ

In the absence of band tailing effects gg ! 0, we get

m�? EFð Þ ¼ m�? 1�
�k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k0

� �2þ4a00E
q

0
B@

1
CA

2
64

3
75
�������
E¼EF

ðB1:53Þ

and

m�jj EFð Þ ¼ m�jj ðB1:54Þ

Thus, the in heavily doped II–VI materials, both the transverse and the
longitudinal EEM exist in the band gap.

The volume in k-space can be enclosed by the (B1.50) can be expressed as

V E; gg

� �
¼ 4p

3a00
ffiffiffiffiffi
b00

p c3 E; gg

� �� �3=2þ 3
8

�k0
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �q
a00

2
4

� 3
4

�k0ffiffiffiffiffi
a00

p
 !

c3 E; gg

� �
þ

�k0
� �2

4a00

 !
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �
þ

�k0ð Þ2
4a00

r
2
664

3
775
3
775

ðB1:55Þ

Using (B1.55), the density-of-states function in this case can be written as

NHD E; gg

� �
¼ gv

2p2a00
ffiffiffiffiffi
b00

p c3 E; gg

� �� �1=2
c3 E; gg

� �� �0þ 1
8

�k0
� �2

c3 E; gg

� �� �0
4a00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �q
2
64

� 1
2

�k0ffiffiffiffiffi
a00

p
 !

c3 E; gg

� �� �0
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �
þ

�k0ð Þ2
4a00

r
2
664

3
775

�
c3 E; gg

� �� �0
2

c3 E; gg

� �
þ

�k0
� �2

4a00

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c3 E; gg

� �q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 E; gg

� �q

c3 E; gg

� �
þ

�k0ð Þ2
4a00

� �
2
664

3
775
3
775

ðB1:56Þ

Therefore, the electron concentration in the zone of low temperatures can be
expressed as
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n0 ¼
gv

3p2a00
ffiffiffiffiffi
b00

p c3 EFh ; gg

� �� �3=2þ 3
8

�k0
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 EFh ; gg

� �q
a00

2
4

� 3
4

�k0ffiffiffiffiffi
a00

p
 !

c3 EFh ; gg

� �
þ

�k0
� �2

4a00

 !
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 EFh ; gg

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3 EFh ; gg

� �
þ

�k0ð Þ2
4a00

r
2
664

3
775
3
775

ðB1:57Þ

In this case, �Ehd is given by

c3
�Ehd; gg

� �� �
¼ 0 ðB1:58Þ

B1.2.4 Study of the EEM in Heavily Doped IV–VI Materials
Forming Gaussian Band Tails

From (1.83), we can write

a�h4k4
s

4mþt m�t
þ �h2k2

s

1
2m�t
� 1

2m�t

� �
þ aE

1
2m�t

� 1
2mþt

� �
þ

a�h2k2
z

4m�l mþt

� �

þ �h2k2
z

2m�l
þ

�h2k2
z

2m�l

� �
þ aE

2
�h2k2

z

1
m�l
� 1

mþl

� �
þ

a�h4k4
z

4mþl m�t
� E 1þ aEð Þ

� �
¼ 0

ðB1:59Þ

Using (B1.59) and (B1.2), the dispersion relation of the conduction electrons in
heavily doped IV–VI materials can be expressed as

a�h4k4
s

4mþt m�l
Z0 E; gg

� �
þ �h2k2

s k71 E; gg

� �
k2

z þ k72 E; gg

� �� �

þ k73 E; gg

� �
k2

z þ k74 E; gg

� �
k4

z � k75 E; gg

� �� �
¼ 0 ðB1:60Þ

where

Z0 E; gg

� �
� 1

2
1þ Erf

E

gg

 !" #
; k70 E; gg

� �
� a

4mþt m�t
Z0 E; gg

� �
;

k71 E; gg

� �
� a�h2

4m�t mþl
Z0 E; gg

� �
þ a�h2

4m�l mþt
Z0 E; gg

� �� �
;

k72 E; gg

� �
� 1

2m�t
� 1

2m�t

� �
Z0 E; gg

� �
þ a

1
2m�t

� 1
2mþt

� �
c0 E; gg

� �� �
;
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k73 E; gg

� �
� �h2

2m�l
þ �h2

2m�l

� �
Z0 E; gg

� �
þ a�h2

2
1

m�l
� 1

2mþl

� �
c0 E; gg

� �� �
;

k74 E; gg

� �
� a�h4Z0 E;ggð Þ

4mþl m�l

and

k75 E; gg

� �
� c0 E; gg

� �
þ ah0 E; gg

� �� �
:

Thus, the energy spectrum in this case is real since the corresponding undoped
material as given by (B1.59) is a pole-less function.

The respective transverse and the longitudinal EEM in this case can be written as

m�? EFh ; gg

� �
¼ 2Z0 E; gg

� �� ��2
Z0 E; gg

� �
� k72 E; gg

� �� �0þ k78 E; gg

� �� �0
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k78 E; gg

� �q
2
64

3
75

2
64

� Z0 E; gg

� �� �0
: �k72 E; gg

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k78 E; gg

� �q� �#�����
E¼EFh

ðB1:61Þ

where, k78 E; gg

� �
� 4k70 E; gg

� �
k75 E; gg

� �� �
and

m�j j EFh ; gg

� �
¼ �h2

4
� k84 E; gg

� �� �0þ k84 E; gg

� �� �0
k84 E; gg

� �
þ 2 k85 E; gg

� �� �0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k84 E; gg

� �� �2þ4k85 E; gg

� �q
2
64

3
75
�������
E¼EFh

ðB1:62Þ

in which

k84 E; gg

� �
�

k73 E; gg

� �
k74 E; gg

� �
and

k85 E; gg

� �
�

k75 E; gg

� �
k74 E; gg

� � :
Thus, we can see that the both the EEMs in this case exist in the band gap.In the

absence of band tailing effects gg ! 0, we get
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m�? EFð Þ ¼ �h2

2
� a11 Eð Þf g0þ a511 T311 Eð Þf g0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T311 Eð Þ

p
" #�����

E¼EF

ðB1:63Þ

where,

a11 Eð Þ � 2mþt m�t
a�h2 a211 Eð Þ; a211 Eð Þ � 1

2m�t
� aE

2mþt
þ 1þ aE

2m�t

� �
;

a511 �
2mþt m�t

a�h2 x11;

x11ð Þ � a2

16
1

m�t mþl
þ 1

m�l mþt

� �2

� a2

4m�t mþt m�l mþl

" #1=2

; T311 Eð Þ � x311 Eð Þ
x11ð Þ2

;

x311 Eð Þ � aE 1þ aEð Þ
mþt m�t

þ 1
2m�t
� aE

2mþt

� �
þ 1þ aEð Þ

2m�t

� �2
" #

:

and

m�j j EFð Þ ¼ mþt m�l
a

� �
a

2mþl
� a

2m�l

� �
þ 1

2

2
1

2m�l
þ 1þ aE

2m�l
� aE

2mþl

� �
a

2m�l
� a

2mþl

� �
þ a 1þ 2aEð Þ

m�l mþl

1
2m�l
þ 1þ aE

2m�l
� aE

2mþl

� �2

þ aE 1þ aEð Þ
m�l mþl

" #1=2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

�����������
E¼EF

ðB1:64Þ

The volume in k-space can be enclosed by the (B1.60) can be written through
the integral as

V E; gg

� �
¼ 2p

Zk86 E;ggð Þ

0

� k79 E; gg

� �
k2

z þ k80 E; gg

� �� ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k81 E; gg

� �
k4

z þ k82 E; gg

� �
k2

z þ k83 E; gg

� �q
�dkz ðB1:65Þ

where

k86 E; gg

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k84 E; gg

� �� �2þ4k85 E; gg

� �q
� k84 E; gg

� �
2

2
4

3
5

1=2

;

k79 E; gg

� �
�

k71 E; gg

� �
2�h2Z0 E; gg

� � ;

k80 E; gg

� �
�

k72 E; gg

� �
2�h2Z0 E; gg

� � ; k81 E; gg

� �
�

k76 E; gg

� �
4�h4 Z0 E; gg

� �� �2 ;
k76 E; gg

� �
� k71 E; gg

� �� �2
;
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k82 E; gg

� �
�

k77 E; gg

� �
9�h4 Z0 E; gg

� �� �2
k77 E; gg

� �
� 2k71 E; gg

� �
k72 E; gg

� �
� 4k70 E; gg

� �
k73 E; gg

� �
� 4k70 E; gg

� �
k74 E; gg

� �� �
;

k83 E; gg

� �
�

k78 E; gg

� �
9�h4 Z0 E; gg

� �� �2 and k78 E; gg

� �
� 4k70 E; gg

� �
k75 E; gg

� �� �
:

Thus,

V E; gg

� �
¼ k87 E; gg

� �� � Zk86 E;ggð Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

z þ k88 E; gg

� �
k2

z þ k89 E; gg

� �q
� k90 E; gg

� �� �
dkz

ðB1:66Þ

where

k87 E; gg

� �
� 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k81 E; gg

� �q
; k88 E; gg

� �
�

k82 E; gg

� �
k81 E; gg

� � ;
k89 E; gg

� �
�

k83 E; gg

� �
k81 E; gg

� �
and

k90 E; gg

� �
� 2p

k79 E; gg

� �
k86 E; gg

� �� �3

3
þ k80 E; gg

� �
k89 E; gg

� �" #
:

Using (B1.20), (B1.66) can be written as

V E; gg

� �
¼ k87 E; gg

� �
k95 E; gg

� �
� k90 E; gg

� �� �
ðB1:67Þ

in which,

k95 E; gg

� �
�

k91 E; gg

� �
3

�Ei k93 E; gg

� �
; k94 E; gg

� �� ��"

� k91 E; gg

� �� �2þ k92 E; gg

� �� �2þ2 k92 E; gg

� �� �2
Fi k93 E; gg

� �
; k94 E; gg

� �� �h i

þ
k86 E; gg

� �� �
3

 !
k86 E; gg

� �� �2þ k91 E; gg

� �� �2þ2 k92 E; gg

� �� �2
h i

� k91 E; gg

� �� �2þ k86 E; gg

� �� �2
h i1=2

k92 E; gg

� �� �2þ k86 E; gg

� �� �2
h i�1=2

� �#
;
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k91 E; gg

� �� �2� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k88 E; gg

� �� �2�4k89 E; gg

� �q
þ k88 E; gg

� �� �
;

Ei k93 E; gg

� �
; k94 E; gg

� �� �
is the incomplete elliptic integral of the 2nd kind and is given by [55],

Ei k93 E; gg

� �
; k94 E; gg

� �� �
�

Zk93 E;ggð Þ

0

1� k94 E; gg

� �� �2
sin2n

n o1=2
� �

dn;

n is the variable of integration in this case k93 E; gg

� �
� tan�1 k86 E;ggð Þ

k92 E;ggð Þ

� �
,

k92 E; gg

� �� �2� 1
2

k88 E; gg

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k88 E; gg

� �� �2�4k89 E; gg

� �q� �
;

k94 E; gg

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k91 E; gg

� �� �2� k92 E; gg

� �� �2
q

k91 E; gg

� � ;

Fi k93 E; gg

� �
; k94 E; gg

� �� �
is the incomplete elliptic integral of the 2nd kind and is

given by [55],

Fi k93 E; gg

� �
; k94 E; gg

� �� �
�

Zk93 E;ggð Þ

0

1� k94 E; gg

� �� �2
sin2n

n o�1=2
� �

dn:

Using (2.3a) and (7.66), the density-of-states function is given by

NHD E; gg

� �
¼ gv

4p3
k87 E; gg

� �� �0
k95 E; gg

� �
þ k95 E; gg

� �� �0
k87 E; gg

� �
� k90 E; gg

� �� �0h i

ðB1:68Þ

Therefore, the electron concentration at low temperature can be expressed as

n0 ¼
gv

4p3
k87 EFh ; gg

� �� �
k95 EFh ; gg

� �
� k90 EFh ; gg

� �� �� �
ðB1:69Þ

In this case, �Ehd is given by

k75 �Ehd; gg

� �� �
¼ 0 ðB1:70aÞ

B1.2.5 Study of the EEM in Heavily Doped Stressed
Materials Forming Gaussian Band Tails

The use of (1.98) leads us to write

ðE � a1Þk2
x þ ðE � a2Þk2

y þ ðE � a3Þk2
z ¼ t1E3 � t2E2 þ t3E þ t4 ðB1:70bÞ
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where

a1 � Eg � C1e� ð�a0 þ C1Þeþ
3
2

�b0exx �
�b0

2
eþ

ffiffiffi
3
p .

2

	 

exy

�d0

� �
;

a2 � Eg � C1e� ð�a0 þ C1Þeþ
3
2

�b0exx �
�b0

2
e�

ffiffiffi
3
p .

2

	 

exy

�d0

� �
;

a3 � Eg � C1e� ð�a0 þ C1Þeþ
3
2

�b0ezz �
�b0

2
e

� �
; t1 � 3�

2B2
2

	 

;

t2 � 1�
2B2

2

	 

6ðEg � C1eÞ þ 3C1e
� �

;

t3 � 1�
2B2

2
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:

Using (B1.70b) and (B1.2), we can write,

I 4ð Þk2 � T17I 1ð Þk2
x � T27I 1ð Þk2

y � T37k2
z I 1ð Þ

¼ q67I 6ð Þ � R67I 5ð Þ þ V67I 4ð Þ þ q67I 1ð Þ½ � ðB1:70cÞ

where T17 ¼ a1; T27 ¼ a2; T37 ¼ a3; t1 ¼ q67; t2 ¼ R67; t3 ¼ V67; t4 ¼ q67 and

I 6ð Þ ¼
ZE

�1

E � Vð Þ3F Vð ÞdV ðB1:71Þ

(B1.71) can be written as

I 6ð Þ ¼ E3I 1ð Þ � 3E2I 7ð Þ þ 3EI 8ð Þ � I 9ð Þ ðB1:72Þ

In which,

I 7ð Þ ¼
ZE

�1

VF Vð ÞdV ðB1:73Þ

I 8ð Þ ¼
ZE

�1

V2F Vð ÞdV ðB1:74Þ

I 9ð Þ ¼
ZE

�1

V3F Vð ÞdV ðB1:75Þ

Using (B1.2) and successively (B1.73), (B1.74), and (B1.75) together with
simple algebraic manipulations, one obtains
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�gg
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ffiffiffi
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p exp

�E2
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 !
ðB1:76Þ
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4
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 !" #
ðB1:77Þ

and

I 9ð Þ ¼
�g3

g

2
ffiffiffi
p
p exp

�E2
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 !
1þ E2

g2
g

" #
ðB1:78Þ

Thus, (B1.72) can be written as

I 6ð Þ ¼ E

2
1þ Erf

E

gg

 !" #
E2 þ 3

2
g2

g

� �
þ

gg

2
ffiffiffi
p
p exp

�E2

g2
g

 !
4E2 þ g2

g

h i" #

ðB1:79Þ

Thus, combining the appropriate equations, the dispersion relations of the
conduction electrons in heavily doped stressed materials can be expressed as

P11 E; gg

� �
k2

x þ Q11 E; gg

� �
k2

y þ S11 E; gg

� �
k2

z ¼ 1 ðB1:80Þ

where

P11 E; gg

� �
�

c0 E; gg

� �
� T17=2ð Þ 1þ Erf E=gg

� �� �
D14 E; gg

� �
" #

;

D14ðE; ggÞ � q67
E

2
1þ Erf

E

gg

 !" #
E2 þ 3

2
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g

� �
þ

gg

2
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�E2
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 !
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( )"

�R67h0ðE; ggÞ þ V67c0ðE; ggÞ þ
q67

2
½1þ Erf ðE=ggÞ�

i
;

Q11 E; gg

� �
�

c0 E; gg

� �
� T27=2ð Þ 1þ Erf E=gg

� �� �
D14 E; gg

� �
" #

and

S11 E; gg

� �
�

c0 E; gg

� �
� T37=2ð Þ 1þ Erf E=gg

� �� �
D14 E; gg

� �
" #

:

Thus, the energy spectrum in this case is real since the corresponding undoped
material as given by (1.98) is a pole-less function.

The EEMs along x, y, and z directions in this case can be written as
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� �
¼ �h2

2

"
c0 EFh ; gg

� �
� T17=2ð Þ 1þ Erf EFh=gg

� �" #" #�2

:

D14 EFh ; gg

� �� �0"
c0 EFh ; gg

� �
� T17=2ð Þ

"
1þ Erf EFh=gg

� �##" #

�D14 EFh ; gg

� � 1
2

1þ Erf
EFh

gg

 !" #
� T17

gg

ffiffiffi
p
p exp

�E2
Fh

g2
g

 !( )" ##
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and
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ðB1:83Þ

Thus, we can see that the EEMs in this case exist within the band gap.
In the absence of band tailing effects gg ! 0; we get

m�xx EFð Þ ¼ �h2�a0 EFð Þ �a0 EFð Þf g0 ðB1:84Þ

m�xx EFð Þ ¼ �h2�b0 EFð Þ �b0 EFð Þ
� �0 ðB1:85Þ

and

m�xx EFð Þ ¼ �h2�c0 EFð Þ �c0 EFð Þf g0 ðB1:86Þ

The density-of-states function in this case can be written as
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NHD E; gg

� �
¼ gv

3p2
D15 E; gg

� �� ��2

3
2

D15 E; gg

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �q
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where
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hh
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Using Eq. B1.87, the electron concentration at low temperatures can be written as

n0 ¼
gv

3p2

D14 EFh ; gg

� �� �3=2

D15 EFh ; gg

� �
" #

ðB1:88Þ

In this case, �Ehd is given by

D14 �Ehd; gg

� �� �
¼ 0 ðB1:89Þ

B1.3 Open Research Problems

R.B1.1 Investigate the EEM for all the materials as given in problems in R. 1.1
of Chap. 1 in the presence of the Gaussian type band tails.

R.B1.2 Investigate the EEM in the presence of an arbitrarily oriented
quantizing magnetic field in heavily doped tetragonal semiconductors
by including broadening and the electron spin. Study all the special
cases for heavily doped III–V, ternary, and quaternary materials in this
context.

R.B1.3 Investigate the EEMs for heavily doped IV–VI, II–VI, and stressed
Kane type compounds in the presence of an arbitrarily oriented
quantizing magnetic field by including broadening and electron spin.

R.B1.4 Investigate the EEM for all the materials as stated in R.1.1 of Chap. 1
in the presence of an arbitrarily oriented quantizing magnetic field by
including broadening and electron spin under the condition of heavily
doping.

R.B1.5 Investigate the EEM in the presence of an arbitrarily oriented
quantizing magnetic field and crossed electric fields in heavily doped
tetragonal semiconductors by including broadening and the electron
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spin. Study all the special cases for heavily doped III–V, ternary, and
quaternary materials in this context.

R.B1.6 Investigate the EEMs for heavily doped IV–VI, II–VI, and stressed
Kane type compounds in the presence of an arbitrarily oriented
quantizing magnetic field and crossed electric fields by including
broadening and electron spin.

R.A1.7 Investigate the EEM for all the materials as stated in R.1.1 of Chap. 1
in the presence of an arbitrarily oriented quantizing magnetic field and
crossed electric fields by including broadening and electron spin under
the condition of heavy doping.

R.B1.8 Investigate the 2D EEM in ultrathin films of heavily doped tetragonal,
III–V, II–VI, IV–VI, and stressed Kane type semiconductors.

R.B1.9 Investigate the 2D EEM for heavily doped ultrathin films of all the
materials as considered in problems R.1.1.

R.B1.10 Investigate the 2D EEM in the presence of an arbitrarily oriented non-
quantizing magnetic field for the ultrathin films of heavily doped
tetragonal semiconductors by including the electron spin. Study all the
special cases for III–V, ternary and quaternary materials in this context.

R.B1.11 Investigate the EEMs in ultrathin films of heavily doped IV–VI, II–VI
and stressed Kane type compounds in the presence of an arbitrarily
oriented non-quantizing magnetic field by including the electron spin.

R.B1.12 Investigate the 2D EEM for heavily doped ultrathin films of all the
materials as stated in R.1.1 of Chap. 1 in the presence of an arbitrarily
oriented magnetic field by including electron spin and broadening.

R.B1.13 Investigate the EEM for all the problems of R1.1 under an additional
arbitrarily oriented electric field in the presence of heavy doping.

R.A1.14 Investigate the EEM for all the problems of R1.1 under the arbitrarily
oriented crossed electric and magnetic fields in the presence of heavy
doping.

R.B1.15 Investigate the 2D EEM for all the problems in R1.1 the presence of
finite potential well under the condition of heavy doping.

R.B1.16 Investigate the 2D EEM for all the problems in R1.1 the presence of
parabolic potential well under the condition heavy doping.

R.B1.17 Investigate the 2D EEM for all the problems in R1.1 the presence of
circular potential well under the condition of heavy doping.

R.B1.18 Investigate the 2D EEM for accumulation layers of heavily doped
tetragonal, III–V, IV–VI, II–VI, and stressed Kane type semiconduc-
tors in the presence of an arbitrary electric quantization.

R.B1.19 Investigate the 2D EEM in accumulation layers of all the materials as
stated in R. 1.1 of Chap. 1 under the condition of heavy doping and in
the presence of electric quantization along arbitrary direction.

R.B1.20 Investigate the 2D EEM in the presence of an arbitrarily oriented
electric quantization for accumulation layers of heavily doped tetrag-
onal semiconductors. Study all the special cases for III–V, ternary, and
quaternary materials in this context.
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R.B1.21 Investigate the 2D EEMs in accumulation layers of heavily doped IV–
VI, II–VI, and stressed Kane type compounds in the presence of an
arbitrarily oriented electric quantization.

R.B1.22 Investigate the 2D EEM in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented
quantizing electric field under the condition of heavy doping.

R.B1.23 Investigate the 2D EEM in the presence of an arbitrarily oriented
magnetic field in accumulation layers of heavily doped tetragonal
semiconductors by including the electron spin. Study all the special
cases for heavily doped III–V, ternary, and quaternary materials in this
context.

R.A1.24 Investigate the 2D EEMs in accumulation layers of heavily doped IV–
VI, II–VI, and stressed Kane type compounds in the presence of an
arbitrarily oriented non-quantizing magnetic field by including the
electron spin.

R.B1.25 Investigate the 2D EEM in accumulation layers of all the materials as
stated in R1.1 of Chap. 1 in the presence of an arbitrarily oriented non-
quantizing magnetic field by including electron spin and heavy doping.

R.B1.26 Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of an additional arbitrarily
oriented electric field.

R.B1.27 Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of arbitrarily oriented crossed
electric and magnetic fields.

R.B1.28 Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of surface states.

R.B1.29 Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of hot electron effects.

R.B1.30 Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 by including the occupancy of the electrons
in various electric subbands.

R.B1.31 Investigate the 2D EEM in nipi structures of heavily doped tetragonal,
III–V, II–VI, IV–VI, and stressed Kane type materials.

R.B1.32 Investigate the 2D EEM in nipi structures of all types of materials as
discussed in problem R.1.1 as given in Chap. 1 under the condition of
heavy doping.

R.B1.33 Investigate the 2D EEM in the presence of an arbitrarily oriented non-
quantizing magnetic field for nipi structures of heavily doped
tetragonal semiconductors by including the electron spin. Study all
the special cases for heavily doped III–V, ternary, and quaternary
materials in this context.

R.B1.34 Investigate the 2D EEMs in nipi structures of heavily doped IV–VI, II–
VI, and stressed Kane type compounds in the presence of an arbitrarily
oriented non-quantizing magnetic field by including the electron spin.
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R.B1.35 Investigate the 2D EEM for nipi structures of all the materials as stated
in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented non-
quantizing magnetic field by including electron spin under the condi-
tion of heavy doping.

R.B1.36 Investigate the 2D EEM for all the problems from R B1.32 to R B1.35
in the presence of an additional arbitrarily oriented non-quantizing
electric field.

R.B1.37 Investigate the 2D EEM for all the problems from R B1.32 to R B1.35
in the presence of arbitrarily oriented crossed electric and magnetic
fields.

R.B1.38 Investigate all the problems from R. B1.1 to R. B1.37, in the presence
of light waves.

R.B1.39 Investigate all the problems from R. B1.1 up to R. B1.37 in the
presence of exponential, Kane, Halperin and Lax and Bonch-Bruevich
band tails [42].

R.B1.40 Investigate all the problems of this chapter by removing all the
mathematical approximations and establishing the uniqueness condi-
tions in each case.
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Appendix C
The EEM in Superlattices of Heavily
Doped Non-Parabolic Semiconductors

C1.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new
dimension in the arena of quantum effect devices through the experimental
realization of an important artificial structure known as semiconductor superlattice
(SL) by growing two similar but different semiconducting compounds in alternate
layers with finite thicknesses. The materials forming the alternate layers have the
same kind of band structure but different energy gaps. The concept of SL was
developed for the first time by Keldysh [58] and was successfully fabricated by
Esaki and Tsu [59–62]. The SLs are being extensively used in thermal sensors [63,
64], quantum cascade lasers [65–67], photodetectors [68, 69], light emitting
diodes [70–73], multiplication [74], frequency multiplication [75], photocathodes
[76, 77], thin film transistor [78], solar cells [79, 80], infrared imaging [81],
thermal imaging [82, 83], infrared sensing [84], and also in other microelectronic
devices.

The most extensively studied III-V SL is the one consisting of alternate layers
of GaAs and Ga1-xAlxAs owing to the relative easiness of fabrication. The GaAs
and Ga1-xAlxAs layers form the quantum wells and the potential barriers,
respectively. The III–V SLs are attractive for the realization of high speed
electronic and optoelectronic devices [85]. In addition to SLs with usual structure,
other types of SLs such as II–VI [86], IV–VI [87], and HgTe/CdTe [88] SLs have
also been investigated in the literature. The IV–VI SLs exhibit quite different
properties as compared to the III–V SL due to the specific band structure of the
constituent materials [89]. The epitaxial growth of II–VI SL is a relatively recent
development and the primary motivation for studying the mentioned SLs made of

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9, � Springer-Verlag Berlin Heidelberg 2013
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materials with the large band gap is in their potential for optoelectronic operation in
the blue [89]. HgTe/CdTe SLs have raised a great deal of attention since 1979,
when as a promising new materials for long wavelength infrared detectors and other
electro-optical applications [60]. Interest in Hg-based SLs has been further
increased as new properties with potential device applications were revealed [90,
91]. These features arise from the unique zero band gap material HgTe [92] and the
direct band gap semiconductor CdTe which can be described by the three band
mode of Kane [93]. The combination of the aforementioned materials with
specified dispersion relation makes HgTe/CdTe SL very attractive, especially
because of the tailoring of the material properties for various applications by
varying the energy band constants of the SLs.

We note that all the aforementioned SLs have been proposed with the
assumption that the interfaces between the layers are sharply defined, of zero
thickness, i.e., devoid of any interface effects. The SL potential distribution may be
then considered as a one-dimensional array of rectangular potential wells. The
aforementioned advanced experimental techniques may produce SLs with physical
interfaces between the two materials crystallographically abrupt; adjoining their
interface will change at least on an atomic scale. As the potential form changes
from a well (barrier) to a barrier (well), an intermediate potential region exists for
the electrons. The influence of finite thickness of the interfaces on the electron
dispersion law is very important; since, the electron energy spectrum governs the
electron transport in SLs. In addition to it, for effective mass SLs [94]. The
electronic subbands appear continually in real space [95].

In this chapter, we shall study the EEM under magnetic quantization in III–V,
II–VI, IV–VI, HgTe/CdTe, and strained layer, heavily doped SLs with graded
interfaces in Sects. C1.2.1–C1.2.5, respectively. From Sects. C1.2.6–C1.2.10, we
shall investigate the same in III–V, II–VI, IV–VI, HgTe/CdTe, and strained layer,
heavily doped effective mass SLs The last Sect. C1.3 contains open research
problems.

C1.2 Theoretical Background

C1.2.1 Study of EEM in Heavily Doped III–V Superlattices
with Graded Interfaces

The electron dispersion law in bulk specimens of the heavily doped constituent
materials of III–V SLs whose undoped energy band structures are defined by three
band model of Kane can be expressed as
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Therefore, the dispersion law of the electrons of heavily doped III–V SLs with
graded interfaces can be expressed as

k2
z ¼ G8 þ iH8 ðC1:2Þ

where
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q6 ¼ ðq2
3 þ q2

4Þ
�1½q1q4 þ q2q3�;

H2 ¼ ½ðsinðh1ÞÞðcoshðh2ÞÞðsinðg2ÞÞðcoshðg1ÞÞ � ðcosðh1ÞÞðsinhðh2ÞÞðsinhðg1ÞÞðcosðg2ÞÞ�;

q7 ¼ ½ðe2
1 þ e2

2Þ
�1½e1ðd2

1 � d2
2Þ � 2d1d2e2� � 3e1�;

G3 ¼ ½ðsinðh1ÞÞðcoshðh2ÞÞðcoshðg1ÞÞðcosðg2ÞÞ þ ðcosðh1ÞÞðsinhðh2ÞÞðsinhðg1ÞÞðsinðg2ÞÞ�;

q8 ¼ ½ðe2
1 þ e2

2Þ
�1½e2ðd2

1 � d2
2Þ þ 2d1d2e1� þ 3e2�;

H3 ¼ ½ðsinðh1ÞÞðcoshðh2ÞÞðsinðg2ÞÞðsinhðg1ÞÞ � ðcosðh1ÞÞðsinhðh2ÞÞðcoshðg1ÞÞðcosðg2ÞÞ�;

q9 ¼ ½ðd2
1 þ d2

2Þ
�1½d1ðe2

2 � e2
1Þ þ 2e2d2e1� þ 3d1�;

G4 ¼ ½ðcosðh1ÞÞðcoshðh2ÞÞðcosðg2ÞÞðsinhðg1ÞÞ � ðsinðh1ÞÞðsinhðh2ÞÞðcoshðg1ÞÞðsinðg2ÞÞ�;

q10 ¼ ½�ðd2
1 þ d2

2Þ
�1½d2ð�e2

2 þ e2
1Þ þ 2e2d2e1� þ 3d2�;

H4 ¼ ½ðcosðh1ÞÞðcoshðh2ÞÞðcoshðg1ÞÞðsinðg2ÞÞ þ ðsinðh1ÞÞðsinhðh2ÞÞðsinhðg1ÞÞðcosðg2ÞÞ�;

q11 ¼ 2½d2
1 þ e2

2 � d2
2 � e2

1�;
G5 ¼ ½ðcosðh1ÞÞðcoshðh2ÞÞðcosðg2ÞÞðcoshðg1ÞÞ � ðsinðh1ÞÞðsinhðh2ÞÞðsinhðg1ÞÞðsinðg2ÞÞ�;
q12 ¼ 4½d1d2 þ e1e2�;
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H5 ¼ ½ðcosðh1ÞÞðcoshðh2ÞÞðsinhðg1ÞÞðsinðg2ÞÞ þ ðsinðh1ÞÞðsinhðh2ÞÞðcoshðg1ÞÞðcosðg2ÞÞ�;

q13 ¼ ½f5ðd1e3
1 � 3e1e2

2d1Þ þ 5d2ðe3
1 � 3e2

1e2Þgðd2
1 þ d2

2Þ
�1 þ ðe2

1 þ e2
2Þ
�1f5ðe1d3

1 � 3d2e2
1d1Þ

þ 5ðd3
2e2 � 3d2

1d2e2Þg � 34ðd1e1 þ d2e2Þ�;
G6 ¼ ½ðsinðh1ÞÞðcoshðh2ÞÞðsinhðg1ÞÞðcosðg2ÞÞ þ ðcosðh1ÞÞðsinhðh2ÞÞðcoshðg1ÞÞðsinðg2ÞÞ�;

q14 ¼ ½f5ðd1e3
2 � 3e2e2

1d1Þ þ 5d2ð�e3
1 þ 3e2

2e1Þgðd2
1 þ d2

2Þ
�1 þ ðe2

1 þ e2
2Þ
�1f5ð�e1d3

2 þ 3d2
1d2e1Þ

þ 5ð�d3
1e2 þ 3d2

2d1e2Þg þ 34ðd1e2 � d2e1Þ�;
H6 ¼ ½ðsinðh1ÞÞðcoshðh2ÞÞðcoshðg1ÞÞðsinðg2ÞÞ � ðcosðh1ÞÞðsinhðh2ÞÞðsinhðg1ÞÞðcosðg2ÞÞ�;
H7 ¼ ½H1 þ ðq5H2=2Þ þ ðq6G2=2Þ þ ðD0=2Þfq8G3 þ q7H3 þ q10G4 þ q9H4

þ q12G5 þ q11H5 þ ð1=12Þðq14G6 þ q13H6Þg�;
H1 ¼ ½ðsinðh1ÞÞðsinhðh2ÞÞðcoshðg1ÞÞðcosðg2ÞÞ þ ðcosðh1ÞÞðcoshðh2ÞÞðsinhðg1ÞÞðsinðg2ÞÞ�;

D7 ¼ sinh�1ðx7Þ; H8 ¼ ð2C7D7=L2
0Þ

The simplified dispersion relation of heavily doped III–V superllatices with
graded interfaces under magnetic quantization can be expressed as

k2
z ¼ G8E;n þ iH8E;n ðC1:3Þ

where

G8E;n ¼
C2

7E;n � D2
7E;n

L2
0

� 2eB

�h
nþ 1

2

� �� " #
; C7E;n ¼ cos�1ðx7E;nÞ;

x7E;n¼ ð2Þ
�1
2 ð1� G2

7E;n � H2
7E;nÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� G2

7E;n � H2
7E;nÞ

2 þ 4G2
7E;n

q� �1
2

G7E;n ¼½G1E;n þ ðq5E;nG2E;n=2Þ � ðq6E;nH2E;n=2Þ þ ðD0=2Þ

� fq6E;nH2E;n � q8E;nH3E;n þ q9E;nH4E;n � q10E;nH4E;n

þ q11E;nH5E;n � q12E;nH5E;n þ ð1=12Þðq12E;nG6E;n � q14E;nH6E;nÞg�;

G1E;n ¼½ðcosðh1E;nÞÞðcoshðh2E;nÞÞðcoshðg1E;nÞÞðcosðg2E;nÞÞ
þ ðsinðh1E;nÞÞðsinhðh2E;nÞÞðsinhðg1E;nÞÞðsinðg2E;nÞÞ�;

h1E;n ¼ e1E;nðb0 � D0Þ; e1E;n ¼ 2
�1
2 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1E;n þ t2

2

q
þ t1E;nÞ

1
2;

t1E;n ¼ ð2m�c1=�h2Þ � T11ðE;Eg1;D1; gg1Þ �
2eB

�h
nþ 1

2

� �� � �
;

t2 ¼ ½ð2m�c1=�h2ÞT21ðE;Eg1;D1; gg1Þ�;
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h2E;n ¼ e2E;nðb0 � D0Þ; e2E;n ¼ 2
�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1E;n þ t2

2

q
� t1E;n

	 
1
2

;

g1E;n ¼ d1E;nða0 � D0Þ; d1E;n ¼ 2
�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1E;n þ y2
1

q
þ x1E;n

	 
1
2

;

x1E;n ¼ �ð2m�c2=�h2Þ � T11ðE � V0;Eg2;D2; gg2Þ þ
2eB

�h
nþ 1

2

� �� � �
;

y1 ¼ ½ð2m�c2=�h2ÞT22ðE � V0;Eg2;D2; gg2Þ�; g2E;n ¼ d2E;nða0 � D0Þ;

d2E;n ¼ 2
�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1E;n þ y2
1

q
� x1E;n

	 
1
2

;

q5E;n ¼ ðq2
3E;n þ q2

4E;nÞ
�1½q1E;nq3E;n � q2E;nq4E;n�; q1E;n

¼ ½d2
1E;n þ e2

2E;n � d2
2E;n � e2

1E;n�;
q3E;n ¼ ½d1E;ne1E;n þ d2E;ne2E;n�;
q2E;n ¼ 2½d1E;nd2E;n þ e1E;ne2E;n�; q4E;n ¼ ½d1E;ne2E;n � e1E;nd2E;n�;

G2E;n ¼ ½ðsinðh1E;nÞÞðcoshðh2E;nÞÞðsinhðg1E;nÞÞðcosðg2E;nÞÞ
þ ðcosðh1E;nÞÞðsinhðh2E;nÞÞðcoshðg1E;nÞÞðsinðg2E;nÞÞ�;

q6E;n ¼ ðq2
3E;n þ q2

4E;nÞ
�1½q1E;nq4E;n þ q2E;nq3E;n�;

H2E;n ¼ ½ðsinðh1E;nÞÞðcoshðh2E;nÞÞðsinðg2E;nÞÞðcoshðg1E;nÞÞ
� ðcosðh1E;nÞÞðsinhðh2E;nÞÞðsinhðg1E;nÞÞðcosðg2E;nÞÞ�;

q7E;n ¼ ½ðe2
1E;n þ e2

2E;nÞ
�1½e1E;nðd2

1E;n � d2
2E;nÞ � 2d1E;nd2E;ne2E;n� � 3e1E;n�;

G3E;n ¼ ½ðsinðh1E;nÞÞðcoshðh2E;nÞÞðcoshðg1E;nÞÞðcosðg2E;nÞÞ þ ðcosðh1E;nÞÞ
ðsinhðh2E;nÞÞðsinhðg1E;nÞÞðsinðg2E;nÞÞ�;

q8E;n ¼ ½ðe2
1E;n þ e2

2E;nÞ
�1½e2E;nðd2

1E;n � d2
2E;nÞ þ 2d1E;nd2E;ne1E;n� þ 3e2E;n�;

H3E;n ¼ ½ðsinðh1E;nÞÞðcoshðh2E;nÞÞðsinðg2E;nÞÞðsinhðg1E;nÞÞ
� ðcosðh1E;nÞÞðsinhðh2E;nÞÞðcoshðg1E;nÞÞðcosðg2E;nÞÞ�;

q9E;n ¼ ½ðd2
1E;n þ d2

2E;nÞ
�1½d1E;nðe2

2E;n � e2
1E;nÞ þ 2e2E;nd2E;ne1E;n� þ 3d1E;n�;

G4E;n ¼ ½ðcosðh1E;nÞÞðcoshðh2E;nÞÞðcosðg2E;nÞÞðsinhðg1E;nÞÞ
� ðsinðh1E;nÞÞðsinhðh2E;nÞÞðcoshðg1E;nÞÞðsinðg2E;nÞÞ�;

q10E;n ¼ ½�ðd2
1E;n þ d2

2E;nÞ
�1½d2E;nð�e2

2E;n þ e2
1E;nÞ þ 2e2E;nd2E;ne1E;n� þ 3d2E;n�;

H4E;n ¼ ½ðcosðh1E;nÞÞðcoshðh2E;nÞÞðcoshðg1E;nÞÞðsinðg2E;nÞÞ
þ ðsinðh1E;nÞÞðsinhðh2E;nÞÞðsinhðg1E;nÞÞðcosðg2E;nÞÞ�;

q11E;n ¼ 2½d2
1E;n þ e2

2E;n � d2
2E;n � e2

1E;n�;
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G5E;n ¼ ½ðcosðh1E;nÞÞðcoshðh2E;nÞÞðcosðg2E;nÞÞðcoshðg1E;nÞÞ
� ðsinðh1E;nÞÞðsinhðh2E;nÞÞðsinhðg1E;nÞÞðsinðg2E;nÞÞ�;

q12E;n ¼ 4½d1E;nd2E;n þ e1E;ne2E;n�;
H5E;n ¼ ½ðcosðh1E;nÞÞðcoshðh2E;nÞÞðsinhðg1E;nÞÞðsinðg2E;nÞÞ

þ ðsinðh1E;nÞÞðsinhðh2E;nÞÞðcoshðg1ÞÞðcosðg2ÞÞ�;
q13E;n ¼ ½f5ðd1E;ne3

1E;n � 3e1E;ne2
2E;nd1E;nÞ þ 5d2E;nðe3

1E;n � 3e2
1E;ne2E;nÞg

� ðd2
1E;n þ d2

2E;nÞ
�1 þ ðe2

1E;n þ e2
2E;nÞ

�1f5ðe1E;nd3
1E;n � 3d2E;ne2

1E;nd1E;nÞ
þ 5ðd3

2E;ne2E;n � 3d2
1E;nd2E;ne2E;nÞg � 34ðd1E;ne1E;n þ d2E;ne2E;nÞ�;

G6E;n ¼ ½ðsinðh1E;nÞÞðcoshðh2E;nÞÞðsinhðg1E;nÞÞðcosðg2E;nÞÞ þ ðcosðh1E;nÞÞ
ðsinhðh2E;nÞÞðcoshðg1ÞÞðsinðg2ÞÞ�;

q14E;n ¼ ½f5ðd1E;ne3
2E;n � 3e2E;ne2

1E;nd1E;nÞ
þ 5d2E;nð�e3

1E;n þ 3e2
2E;ne1E;nÞgðd2

1E;n þ d2
2E;nÞ

�1

þ ðe2
1E;n þ e2

2E;nÞ
�1f5ð�e1E;nd3

2E;n þ 3d2
1E;nd2E;ne1E;nÞ

þ 5ð�d3
1E;ne2E;n þ 3d2

2E;nd1E;ne2E;nÞg
þ 34ðd1E;ne2E;n � d2E;ne1E;nÞ�;

H6E;n ¼ ½ðsinðh1E;nÞÞðcoshðh2E;nÞÞðcoshðg1E;nÞÞðsinðg2E;nÞÞ
� ðcosðh1E;nÞÞðsinhðh2E;nÞÞðsinhðg1E;nÞÞðcosðg2E;nÞÞ�;

H7E;n ¼ ½H1E;n þ ðq5E;nH2E;n=2Þ þ ðq6E;nG2E;n=2Þ þ ðD0=2Þfq8E;nG3E;n

þ q7E;nH3E;n þ q10E;nG4E;n þ q9E;nH4E;n

þ q12E;nG5E;n þ q11E;nH5E;n þ ð1=12Þðq14E;nG6E;n þ q13E;nH6E;nÞg�;
H1E;n ¼ ½ðsinðh1E;nÞÞðsinhðh2E;nÞÞðcoshðg1E;nÞÞðcosðg2E;nÞÞ

þ ðcosðh1E;nÞÞðcoshðh2E;nÞÞðsinhðg1E;nÞÞðsinðg2E;nÞÞ�;
D7E;n ¼ sinh�1ðx7E;nÞ; H8E;n ¼ ð2C7E;nD7E;n=L2

0Þ

Therefore, the EEM in this case assumes the form

m� EF1; nð Þ ¼ �h2

2
G08E;n

����
E¼EF1 ðC1:4Þ

where EF1 is the Fermi energy in this case and the prime denotes the differentiation
with respect to E. The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/1C EF1; nð Þ þ /2C EF1; nð Þ½ �
ðC1:5Þ

Appendix C: Heavily Doped Non-Parabolic Semiconductors 497



where /1C EF1; nð Þ ¼ G8EF1;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

8EF1;n
� H8EF1;n

q	 
.
2

h i1=2
;

/2C EF1; nð Þ ¼
Ps
r¼1

h2r;1 /1C EF1; nð Þ½ �; h2r;i ¼ 2 kBTð Þ2r 1� 21�2rð Þf 2rð Þ o2r

oE2r
Fi

and i ¼ 1; 2; 3;. . .. . . ðC1:5Þ

C.1.2.2 Study of EEM in Heavily Doped II–VI Superlattices
with Graded Interfaces

The electron energy spectra of the heavily doped constituent materials of II-VI
SLs are given by

c3ðE; gg1Þ ¼
�h2k2

s

2m�?;1
þ

�h2k2
z

2m�k;1
� C0ks ðC1:6Þ

and
�h2k2

2m�c2

¼ T12 E;D2;Eg2; gg2

� �
þ iT22 E;D2;Eg2; gg2

� �
ðC1:7Þ

where m�?;1 and m�k;1 are the transverse and longitudinal effective electron masses

respectively at the edge of the conduction band for the first material. The energy-
wave vector dispersion relation of the conduction electrons in heavily doped II–VI
SLs with graded interfaces can be expressed as

k2
z ¼ G19 þ iH19 ðC1:8Þ

where

G19 ¼
C2

18 � D2
18

L2
0

� k2
s

� �
;

C18 ¼ cos�1ðx18Þ;x18¼ ð2Þ
�1
2 ð1� G2

18 � H2
18Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� G2

18 � H2
18Þ

2 þ 4G2
18

q� �1
2

;

G18 ¼
1
2
½G11 þ G12 þ D0ðG13 þ G14Þ þ D0ðG15 þ G16Þ�;

G11 ¼ 2ðcosðg1ÞÞðcosðg2ÞÞðcos c11ðE; ksÞÞ
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c11ðE; ksÞ ¼ k21ðE; ksÞðb0 � D0Þ; k21ðE; ksÞ ¼ c3ðE; gg1Þ �
�h2k2

s

2m�?;1
� C0ks

" #
2m�k;1

�h2

( )1=2

;

G12 ¼ ð½X1ðE; ksÞðsinh g1Þðcos g2Þ � X2ðE; ksÞðsin g2Þðcosh g1Þ�ðsin c11ðE; ksÞÞÞ

X1ðE; ksÞ ¼
d1

k21ðE; ksÞ
� k21ðE; ksÞd1

d2
1 þ d2

2

� �
and X2ðE; ksÞ ¼

d2

k21ðE; ksÞ
þ k21ðE; ksÞd2

d2
1 þ d2

2

� �

G13 ¼ ð½X3ðE; ksÞðcosh g1Þðcos g2Þ � X4ðE; ksÞðsinh g1Þðsin g2Þ�ðsin c11ðE; ksÞÞÞ

X3ðE; ksÞ ¼
d2

1 � d2
2

k21ðE; ksÞ
� 3k21ðE; ksÞ

� �
; X4ðE; ksÞ ¼

2d1d2

k21ðE; ksÞ

� �

G14 ¼ ð½X5ðE; ksÞðsinh g1Þðcos g2Þ � X6ðE; ksÞðsin g1Þðcosh g2Þ�ðcos c11ðE; ksÞÞÞ:

X5ðE; ksÞ ¼ 3d1 �
d1

d2
1 þ d2

2

k2
21ðE; ksÞ

� �
; X6ðE; ksÞ ¼ 3d2 þ

d2

d2
1 þ d2

2

k2
21ðE; ksÞ

� �

G15 ¼ ð½X9ðE; ksÞðcosh g1Þðcos g2Þ � X10ðE; ksÞðsinh g1Þðsin g2Þ�ðcos c11ðE; ksÞÞÞ
X9ðE; ksÞ ¼ ½2d2

1 � 2d2
2 � k2

21ðE; ksÞ�; X10ðE; ksÞ ¼ ½2d1d2�;
G16 ¼ ð½X7ðE; ksÞðsinh g1Þðcos g2Þ � X8ðE; ksÞðsin g1Þðcosh g2Þ�ðsin c11ðE; ksÞ=12ÞÞ;

X7ðE; ksÞ ¼
5d1

d2
1 þ d2

2

k3
21ðE; ksÞ þ

5ðd3
1 � 3d2

2d1Þ
k21ðE; ksÞ

� 34k21ðE; ksÞd1

� �
;

X8ðE; ksÞ ¼
5d2

d2
1 þ d2

2

k3
21ðE; ksÞ þ

5ðd3
2 � 3d2

2d1Þ
k21ðE; ksÞ

þ 34k21ðE; ksÞd2

� �

H18 ¼
1
2

H11 þ H12 þ D0ðH13 þ H14Þ þ D0ðH15 þ H16Þ½ �;

H11 ¼ 2ðsinh g1 sin g2 cos c11ðE; ksÞÞ;
H12 ¼ ð½X2ðE; ksÞðsinh g1Þðcos g2Þ þ X1ðE; ksÞðsin g2Þðcosh g1Þ�ðsin c11ðE; ksÞÞÞ;
H13 ¼ ð½X4ðE; ksÞðcosh g1Þðcos g2Þ þ X3ðE; ksÞðsinh g1Þðsin g2Þ�ðsin c11ðE; ksÞÞÞ;
H14 ¼ ð½X6ðE; ksÞðsinh g1Þðcos g2Þ þ X5ðE; ksÞðsin g1Þðcosh g2Þ�ðcos c11ðE; ksÞÞÞ;
H15 ¼ ð½X10ðE; ksÞðcosh g1Þðcos g2Þ þ X9ðE; ksÞðsinh g1Þðsin g2Þ�ðcos c11ðE; ksÞÞÞ;
H16 ¼ ð½X8ðE; ksÞðsinh g1Þðcos g2Þ þ X7ðE; ksÞðsin g1Þðcosh g2Þ�ðsin c11ðE; ksÞ=12ÞÞ;

H19 ¼
2C18D18

L2
0

� �

and D18 ¼ sinh�1ðx18Þ

The simplified dispersion relation in heavily doped II–VI superllatices with
graded interfaces under magnetic quantization can be expressed as

k2
z ¼ G19E;n þ iH19E;n ðC1:9Þ
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where

G19E;n ¼
C2

18E;n � D2
18E;n

L2
0

� 2eB

�h
nþ 1

2

� �� �" #
;

C18E;n ¼ cos�1ðx18E;nÞ;x18E;n

¼ ð2Þ
�1
2 ð1� G2

18E;n � H2
18E;nÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� G2

18E;n � H2
18E;nÞ

2 þ 4G2
180D

q� �1
2

;

G18E;n ¼
1
2

G11E;n þ G12E;n þ D0ðG13E;n þ G14E;nÞ þ D0ðG15E;n þ G16E;nÞ
� �

;

G11E;n ¼ 2ðcosðg1E;nÞÞðcosðg2E;nÞÞðcos c11ðE; nÞÞ; c11ðE; nÞ ¼ k21ðE; nÞðb0 � D0Þ;

k21ðE; nÞ ¼ c3ðE; gg1Þ �
�h2

2m�?;1

2eB

�h
nþ 1

2

� �� 
� C0

2eB

�h
nþ 1

2

� �� 1=2
" #

2m�k;1
�h2

( )1=2

;

G12E;n ¼ ð½X1ðE; nÞðsinh g1E;nÞðcos g2E;nÞ � X2ðE; nÞðsin g2E;nÞðcosh g1E;nÞ�ðsin c11ðE; nÞÞÞ

X1ðE; nÞ ¼
d1E;n

k21ðE; nÞ
� k21ðE; nÞd1E;n

d2
1E;n þ d2

2E;n

" #
; X2ðE; nÞ ¼

d2E;n

k21ðE; nÞ
þ k21ðE; nÞd2E;n

d2
1E;n þ d2

2E;n

" #
;

G13E;n ¼ ð½X3ðE; nÞðcosh g1E;nÞðcos g2E;nÞ � X4ðE; nÞðsinh g1E;nÞðsin g2E;nÞ�ðsin c11ðE; nÞÞÞ

X3ðE; nÞ ¼
d2

1E;n � d2
2E;n

k21ðE; nÞ
� 3k21ðE; nÞ

" #
; X4ðE; nÞ ¼

2d1E;nd2E;n

k21ðE; nÞ

� �
;

G14E;n ¼ ð½X5ðE; nÞðsinh g1E;nÞðcos g2E;nÞ � X6ðE; nÞðsin g1E;nÞðcosh g2E;nÞ�ðcos c11ðE; nÞÞÞ:

X5ðE; nÞ ¼ 3d1E;n �
d1E;n

d2
1E;n þ d2

2E;n

k2
21ðE; nÞ

" #
; X6ðE; nÞ ¼ 3d2E;n þ

d2E;n

d2
1E;n þ d2

2E;n

k2
21ðE; nÞ

" #

G15E;n ¼ ð½X9ðE; nÞðcosh g1E;nÞðcos g2E;nÞ � X10ðE; nÞðsinh g1E;nÞðsin g2E;nÞ�ðcos c11ðE; nÞÞÞ

X9ðE; nÞ ¼ 2d2
1E;n � 2d2

2E;n � k2
21ðE; nÞ

h i
; X10ðE; nÞ ¼ ½2d1E;nd2E;n�;

G16E;n ¼ ð½X7ðE; nÞðsinh g1E;nÞðcos g2E;nÞ � X8ðE; nÞðsin g1E;nÞðcosh g2E;nÞ�ðsin c11ðE; nÞ=12ÞÞ;

X7ðE; nÞ ¼
5d1E;n

d2
1E;n þ d2

2E;n

k3
21ðE; nÞ þ

5ðd3
1E;n � 3d2

2E;nd1E;nÞ
k21ðE; nÞ

� 34k21ðE; nÞd1E;n

" #

X8ðE; nÞ ¼
5d2E;n

d2
1E;n þ d2

2E;n

k3
21ðE; nÞ þ

5ðd3
2E;n � 3d2

2E;nd1E;nÞ
k21ðE; nÞ

þ 34k21ðE; nÞd2E;n

" #

H18E;n ¼
1
2
½H11E;n þ H12E;n þ D0ðH13E;n þ H14E;nÞ þ D0ðH15E;n þ H16E;nÞ�;

H11E;n ¼ 2ðsinh g1E;nÞðsin g2E;nÞðcos c11ðE; nÞÞÞ
H12E;n ¼ ð½X2ðE; nÞðsinh g1E;nÞðcos g2E;nÞ þ X1ðE; nÞðsin g2E;nÞðcosh g1E;nÞ�ðsin c11ðE; nÞÞÞ;
H13E;n ¼ ð½X4ðE; nÞðcosh g1E;nÞðcos g2E;nÞ þ X3ðE; nÞðsinh g1E;nÞðsin g2E;nÞ�ðsin c11ðE; nÞÞÞ;
H14E;n ¼ ð½X6ðE; nÞðsinh g1E;nÞðcos g2E;nÞ þ X5ðE; nÞðsin g1E;nÞðcosh g2E;nÞ�ðcos c11ðE; nÞÞÞ;
H15E;n ¼ ð½X10ðE; nÞðcosh g1E;nÞðcos g2E;nÞ þ X9ðE; nÞðsinh g1E;nÞðsin g2E;nÞ�ðcos c11ðE; nÞÞÞ;
H16E;n ¼ ð½X8ðE; nÞðsinh g1E;nÞðcos g2E;nÞ þ X7ðE; nÞðsin g1E;nÞðcosh g2E;nÞ�ðsin c11ðE; nÞ=2ÞÞ;

H19E;n ¼
2C18E;nD18E;n

L2
0

� �
and D18E;n ¼ sinh�1ðx18E;nÞ
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Therefore, the EEM in this case assumes the form

m� EF2; nð Þ ¼ �h2

2
G019E;n

����
E¼EF2

ðC1:10Þ

where EF2 is the Fermi energy in this case.
The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/3C EF2; nð Þ þ /4C EF2; nð Þ½ � ðC1:11Þ

where /3C EF2; nð Þ ¼ G19EF2;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

19EF2;n
� H19EF2;n

q	 
.
2

h i1=2

and /4C EF2; nð Þ ¼
Xs

r¼1

h2r;2 /3C EF2; nð Þ½ �

C1.2.3 Study of EEM in Heavily Doped IV–VI Superlattices
with Graded Interfaces

The E–k dispersion relation of the conduction electrons of the heavily doped
constituent materials of the IV-VI SLs can be expressed as

k2
z ¼ ½2�p9;i��1½��q9;iðE; ks;ggiÞ þ ½½�q9;iðE; ks;ggiÞ�2 þ 4�p9;i�R9;iðE; ks;ggiÞ�

1
2� ðC1:12Þ

where

�p9;i ¼ ðai�h
4Þ=ð4m�l;im

þ
li Þ; i = 1,2, �q9;iðE; ks;ggiÞ ¼ ½ð�h2=2Þðð1=m�liÞ þ ð1=m�li ÞÞ

þ aið�h4=4Þk2
s ðð1=mþli m�ti Þ þ ð1=mþti m�li ÞÞ � aic3ðE; ggiÞðð1=mþli Þ � ð1=m�li Þ�

and

�R9;iðE; ks;ggiÞ ¼ ½c2ðE; ggiÞ þ c3ðE; ggiÞ½ð�h2=2Þaik
2
s ðð1=m�tiÞ

� ð1=m�ti ÞÞ� � ½ð�h2=2Þk2
s ðð1=m�tiÞ þ ð1=m�ti ÞÞ� � aið�h6=4Þk4

s ðð1=mþti m�ti ÞÞ�

The electron dispersion law in heavily doped IV–VI SLs with graded interfaces
can be expressed as

cos Lokð Þ ¼ 1
2
U2 E; ksð Þ ðC1:13Þ
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Where

U2 E; ksð Þ � 2 cosh b2 E; ksð Þf g cos c2 E; ksð Þf g þ e2 E; ksð Þ sinh b2 E; ksð Þf g sin c22 E; ksð Þf g½

þ D0
K112 E; ksð Þf g2

K212 E; ksð Þ � 3K212 E; ksð Þ
 !"

cosh b2 E; ksð Þf g sin c22 E; ksð Þf g

þ 3K112 E; ksð Þ � K212 E; ksð Þf g2

K112 E; ksð Þ

 !
sinh b2 E; ksð Þf g cos c22 E; ksð Þf g

#

þ D0 2 K112 E; ksð Þf g2� K212 E; ksð Þf g2
	 
h

cosh b2 E; ksð Þf g cos c22 E; ksð Þf g

þ 1
12

5 K112 E; ksð Þf g3

K212 E; ksð Þ þ 5 K212 E; ksð Þf g3

K112 E; ksð Þ � 34K212 E; ksð ÞK112 E; ksð Þ
" #

sinh b2 E; ksð Þf g sin c22 E; ksð Þf g
##
;

b2 E; ksð Þ � K112 E; ksð Þ a0 � D0½ �;
k2

112ðE; ksÞ ¼ ½2�p9;2��1½��q9;2ðE � V0; ks;gg2Þ

� ½�q9;2ðE � V0; ks;gg2Þ�2 þ 4�p9;2�R9;2ðE � V0; ks;gg2Þ�
1
2

h i
;

c22 E; ksð Þ ¼ K212 E; ksð Þ b0 � D0½ �;
k2

212ðE; ksÞ ¼ ½2�p9;1��1½��q9;1ðE; ks;gg1Þ

þ ½�q9;1ðE; ks;gg1Þ�2 þ 4�p9;1�R9;1ðE; ks;gg1Þ�
1
2

h i

and

e2 E; ksð Þ � K112 E; ksð Þ
K212 E; ksð Þ �

K212 E; ksð Þ
K112 E; ksð Þ

� �
:

The simplified dispersion relation in heavily doped IV-VI superllatices with
graded interfaces under magnetic quantization can be expressed as

k2
z ¼

1
L2

0

cos�1 1
2
U2 E; nð Þ

� � �2

� 2eB

�h
nþ 1

2

� �
ðC1:14Þ

where

U2ðE; ksÞ �
"

2 coshfb2ðE; nÞg cosfc2ðE; nÞg þ e2ðE; nÞ sinhfb2ðE; nÞg sinfc22ðE; nÞg

þ D0 fK112ðE; nÞg2=K212ðE; nÞ � 3K212ðE; nÞ
	 


coshfb2ðE; nÞg sinfc22ðE; nÞg
h

þ 3K112ðE; nÞ �
fK212ðE; nÞg2

K112ðE; nÞ

 !
sinhfb2ðE; nÞg cosfc22ðE; nÞg

#

þ D0

"
2 fK112ðE; nÞg2 � fK212ðE; nÞg2
	 


: coshfb2ðE; nÞg cosfc22ðE; nÞg

þ 1
12

5fK112ðE; nÞg3

K212ðE; nÞ
þ 5fK212ðE; nÞg3

K112ðE; nÞ
� 34K212ðE; nÞK112ðE; nÞ

" #
sinhfb2ðE; nÞg sinfc22ðE; nÞg

##
;
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b2 E; nð Þ � K112 E; nð Þ a0 � D0½ �;
k2

112ðE; nÞ ¼ ½2�p9;2n��1½��q9;2nðE � V0; gg2Þ

� ½�q9;2nðE � V0; gg2Þ�2 þ 4�p9;2n�R9;2nðE � V0; gg2Þ�
1
2

h i
;

�q9;2nðE � V0; gg2Þ ¼ ½ð�h2=2Þðð1=m�l2Þ þ ð1=m�l2ÞÞ þ a2ð�h4=4Þ 2eB

�h
nþ 1

2

� �
ðð1=mþl2m�t2Þ

þ ð1=mþt2m�l2ÞÞ � a2c3ðE � V0; gg2Þðð1=mþl2Þ � ð1=m�l2Þ�;

�R9;2nðE; gg2Þ ¼
"
c2ðE � V0; gg2Þ þ c3ðE � V0; gg2Þ½ð�h2=2Þa2

2eB

�h
nþ 1

2

� �
ðð1=m�t2Þ

� ð1=m�t2ÞÞ� � ½ð�h2=2Þk2
s0ðð1=m�t2Þ þ ð1=m�t2ÞÞ� � a2ð�h6=4Þ

� 2eB

�h
nþ 1

2

� �� �2

ðð1=mþt2m�t2ÞÞ
i
;

c2 E; nð Þ ¼ K212 E; nð Þ b0 � D0½ �; k2
212ðE; nÞ ¼ ½2�p9;1n��1½��q9;1nðE; gg1Þ

þ ½�q9;1nðE; gg1Þ�
2 þ 4�p9;1n�R9;1nðE; gg1Þ�

1
2

h i

�q9;1nðE; gg1Þ ¼ ½ð�h2=2Þðð1=m�l1Þ þ ð1=m�l1ÞÞ þ a1ð�h4=4Þ 2eB

�h
nþ 1

2

� �
ðð1=mþl1m�t1Þ

þ ð1=mþt1m�l1ÞÞ � a1c3ðE; gg1Þðð1=mþl1Þ � ð1=m�l1Þ�;

�R9;1ðE; gg1Þ ¼½c2ðE; gg1Þ þ c3ðE; gg1Þ½ð�h2=2Þa1ð2eB=�hÞðnþ 1
2
Þðð1=m�t1Þ

� ð1=m�t1ÞÞ� � ½ð�h2=2Þk2
s0ðð1=m�t1Þ þ ð1=m�t1ÞÞ� � a1ð�h6=4Þ

� ð2eB=�hÞ nþ 1
2

� �� �2

ðð1=mþt1m�t1ÞÞ�

and

e2 E; nð Þ � K112 E; nð Þ
K212 E; nð Þ �

K212 E; nð Þ
K112 E; nð Þ

� �
:

Therefore, the EEM in this case assumes the form

m� EF3; nð Þ ¼ �h2

2

� �
U02 EF3; nð Þ cos�1 1

2
U2 EF3; nð Þ

� �� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=4ÞU2

2 EF3; nð Þ
q� �

ðC1:15Þ

where EF3 is the Fermi energy in this case.
The electron concentration is given by
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n0 ¼
gveB

p2�h

Xnmax

n¼0

/5C EF3; nð Þ þ /6C EF3; nð Þ½ �

where /5C EF3; nð Þ ¼ 1
L2

0

cos�1 1
2

U2 EF3; nð Þ
� � �2

� 2eB

�h
nþ 1

2

� �" #1=2

and /6C EF3; nð Þ ¼
Xs

r¼1

h2r;3 /6C EF3; nð Þ½ � ðC1:16Þ

C1.2.4 Study of EEM in Heavily Doped HgTe/CdTe
Superlattices with Graded Interfaces

The electron energy spectra of the constituent materials of HgTe/CdTe SLs are
given by

k2 ¼ B2
01 þ 4A1E � B01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

01 þ 4A1E
p

2A2
1

" #
ðC1:17Þ

and
�h2k2

2m�c2

¼ T12 E;D2;Eg2; gg2

� �
þ iT22 E;D2;Eg2; gg2

� �
ðC1:18Þ

where

B01 ¼ 3 ej j2
.

128esc1

	 

; A1 ¼ �h2

�
2m�c1

� �
: esc1

is the semiconductor permittivity of the first material. The energy-wave vector
dispersion relation of the conduction electrons in heavily doped HgTe/CdTe SLs
with graded interfaces can be expressed as

k2
z ¼ G192 þ iH192 ðC1:19Þ

where G192 ¼ ½ððC2
182 � D2

182Þ=L2
0Þ � k2

s �;
C182 ¼ cos�1ðx182Þ;

x182¼ ð2Þ
�1
2 ð1� G2

182 � H2
182Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� G2

182 � H2
182Þ

2 þ 4G2
182

q� �1
2

;

G182 ¼
1
2
½G112 þ G122 þ D0ðG132 þ G142Þ þ D0ðG152 þ G162Þ�;

G112 ¼ 2ðcosðg12ÞÞðcosðg22ÞÞðcos c8ðE; ksÞÞ
c8ðE; ksÞ ¼ k8ðE; ksÞðb0 � D0Þ;

k8ðE; ksÞ ¼
B2

01 þ 4A1E � B01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

01 þ 4A1E
p

2A2
1

� k2
s

" #1=2

;
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G122 ¼ ð½X12ðE; ksÞðsinh g12Þðcos g22Þ � X22ðE; ksÞðsin g22Þðcosh g12Þ�ðsin c8ðE; ksÞÞÞ

X12ðE; ksÞ ¼
d12

k8ðE; ksÞ
� k8ðE; ksÞd12

d2
12 þ d2

22

� �
; X22ðE; ksÞ ¼

d22

k8ðE; ksÞ
þ k8ðE; ksÞd22

d2
12 þ d2

22

� �
;

G132 ¼ ð½X32ðE; ksÞðcosh g12Þðcos g22Þ � X42ðE; ksÞðsinh g12Þðsin g22Þ�ðsin c8ðE; ksÞÞÞ;

X32ðE; ksÞ ¼
d2

12 � d2
22

k8ðE; ksÞ
� 3k8ðE; ksÞ

� �
; X42ðE; ksÞ ¼

2d12d12

k8ðE; ksÞ

� �
;

G142 ¼ ð½X52ðE; ksÞðsinh g12Þðcos g22Þ � X62ðE; ksÞðsin g12Þðcosh g22Þ�ðcos c8ðE; ksÞÞÞ;

X52ðE; ksÞ ¼ 3d12 �
d12

d2
12 þ d2

22

k2
8ðE; ksÞ

� �
; X62ðE; ksÞ ¼ 3d22 þ

d22

d2
12 þ d2

22

k2
8ðE; ksÞ

� �
;

G152 ¼ ð½X92ðE; ksÞðcosh g12Þðcos g22Þ � X102ðE; ksÞðsinh g12Þðsin g22Þ�ðcos c8ðE; ksÞÞÞ;

X92ðE; ksÞ ¼ ½2d2
12 � 2d2

22 � k2
8ðE; ksÞ�; X102ðE; ksÞ ¼ ½2d12d22�;

G162 ¼ ð½X72ðE; ksÞðsinh g12Þðcos g22Þ � X82ðE; ksÞðsin g12Þðcosh g22Þ�ðsin c8ðE; ksÞ=12ÞÞ;

X72ðE; ksÞ ¼
5d12

d2
12 þ d2

22

k3
8ðE; ksÞ þ

5ðd3
12 � 3d2

22d12Þ
k8ðE; ksÞ

� 34k8ðE; ksÞd12

� �
;

X82ðE; ksÞ ¼
5d22

d2
12 þ d2

22

k3
8ðE; ksÞ þ

5ðd3
22 � 3d2

22d12Þ
k8ðE; ksÞ

þ 34k8ðE; ksÞd22

� �

H182 ¼
1
2
½H112 þ H122 þ D0ðH132 þ H142Þ þ D0ðH152 þ H162Þ�;

H112 ¼ 2ðsinh g12 sin g22 cos c8ðE; ksÞÞ;
H122 ¼ ð½X22ðE; ksÞðsinh g12Þðcos g22Þ þ X12ðE; ksÞðsin g22Þðcosh g12Þ�ðsin c8ðE; ksÞÞÞ;
H132 ¼ ð½X42ðE; ksÞðcosh g12Þðcos g22Þ þ X32ðE; ksÞðsinh g12Þðsin g22Þ�ðsin c8ðE; ksÞÞÞ;
H142 ¼ ð½X62ðE; ksÞðsinh g12Þðcos g22Þ þ X52ðE; ksÞðsin g12Þðcosh g22Þ�ðcos c8ðE; ksÞÞÞ;
H152 ¼ ð½X102ðE; ksÞðcosh g12Þðcos g22Þ þ X92ðE; ksÞðsinh g12Þðsin g22Þ�ðcos c8ðE; ksÞÞÞ;
H162 ¼ ð½X82ðE; ksÞðsinh g12Þðcos g22Þ þ X72ðE; ksÞðsin g12Þðcosh g22Þ�ðsin c8ðE; ksÞ=12ÞÞ;
H192 ¼ ½ðð2C182D182Þ=L2

0Þ�
and D182 ¼ sinh�1ðx182Þ

The simplified dispersion relation in heavily doped HgTe/CdTe superlattices
with graded interfaces under magnetic quantization can be expressed as

ðkzÞ2 ¼ G192E;n þ iH192E;n ðC1:20Þ

where
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G192E;n ¼
C2

182E;n � D2
182E;n

L2
0

� ð2eB=�hÞðnþ ð1=2ÞÞ
" #

;

C1820D ¼ cos�1ðx182E;nÞ;

x182E;n¼ ð2Þ
�1
2 ð1� G2

182E;n � H2
182E;nÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� G2

182E;n � H2
182E;nÞ

2 þ 4G2
182E;n

q� �1
2

;

G182E;n ¼
1
2
½G112E;n þ G122E;n þ D0ðG132E;n þ G142E;nÞ þ D0ðG152E;n þ G162E;nÞ�

G112E;n ¼ 2ðcosðg12ÞÞðcosðg22ÞÞðcos c8ðE; nÞÞ; c8ðE; nÞ ¼ k8ðE; nÞðb0 � D0Þ;

k8ðE; nÞ ¼
B2

01 þ 4A1E � B01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

01 þ 4A1E
p

2A2
1

� ð2eB=�hÞðnþ ð1=2ÞÞ
" #1=2

;

G120D ¼ ð½X12ðE; nÞðsinh g12E;nÞðcos g22E;nÞ

� X22ðE; nÞðsin g22E;nÞðcosh g12E;nÞ�ðsin c8ðE; nÞÞÞ;

X12ðE; nÞ ¼
d12E;n

k8ðE; nÞ
� k8ðE; nÞd12E;n

d2
12E;n þ d2

22E;n

" #
;

X22ðE; nÞ ¼
d22E;n

k8ðE; nÞ
þ k8ðE; nÞd22E;n

d2
12E;n þ d2

22E;n

" #
;

G1320D ¼ ð½X32ðE; nÞðcosh g12E;nÞðcos g22E;nÞ

� X42ðE; nÞðsinh g12E;nÞðsin g22E;nÞ�ðsin c8ðE; nÞÞÞ;

X32ðE; nÞ ¼
d2

12E;n � d2
2E;n

k8ðE; nÞ
� 3k8ðE; nÞ

" #
; X42ðE; nÞ ¼

2d12E;nd22E;n

k8ðE; nÞ

� �
;

G1420D ¼ ð½X52ðE; nÞðsinh g12E;nÞðcos g22E;nÞ

� X62ðE; nÞðsin g12E;nÞðcosh g22E;nÞ�ðcos c8ðE; nÞÞÞ;

X52ðE; nÞ ¼ 3d12E;n �
d12E;n

d2
12E;n þ d2

22E;n

k2
8ðE; nÞ

" #
;
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X62ðE; nÞ ¼ 3d22E;n þ
d22E;n

d2
12E;n þ d2

22E;n

k2
8ðE; nÞ

" #
;

G1520D ¼ ð½X92ðE; nÞðcosh g12E;nÞðcos g22E;nÞ
� X102ðE; nÞðsinh g12E;nÞðsin g22E;nÞ�ðcos c8ðE; nÞÞÞ;

X92ðE; nÞ ¼ ½2d2
12E;n � 2d2

22E;n � k2
8ðE; nÞ�; X102ðE; nÞ ¼ ½2d12E;nd22E;n�;

G162E;n ¼ ð½X72ðE; nÞðsinh g12E;nÞðcos g22E;nÞ � X82ðE; nÞðsin g12E;nÞðcosh g22E;nÞ�
� ðsin c80DðE; nÞ=12ÞÞ;

X72ðE; nÞ ¼
5d12E;n

d2
12E;n þ d2

22E;n

k3
8ðE; nÞ þ

5ðd3
12E;n � 3d2

22E;nd12E;nÞ
k8ðE; nÞ

� 34k8ðE; nÞd12E;n

" #
;

X82ðE; nÞ ¼
5d22E;n

d2
12E;n þ d2

22E;n

k3
8ðE; nÞ þ

5ðd3
22E;n � 3d2

22E;nd12E;nÞ
k8ðE; nÞ

þ 34k8ðE; nÞd22E;n

" #
;

H182E;n ¼
1
2
½H112E;n þ H122E;n þ D0ðH132E;n þ H142E;nÞ þ D0ðH152E;n þ H162E;nÞ�;

H112E;n ¼ 2ðsinh g12E;nÞðsin g22E;nÞðcos c8ðE; nÞÞÞ;
H1220D ¼ ð½X22ðE; nÞðsinh g12E;nÞðcos g22E;nÞ þ X12ðE; nÞðsin g22E;nÞðcosh g12E;nÞ�

� ðsin c8ðE; nÞÞÞ;
H132E;n ¼ ð½X42ðE; nÞðcosh g12E;nÞðcos g22E;nÞ þ X32ðE; nÞðsinh g12E;nÞðsin g22E;nÞ�

� ðsin c8ðE; nÞÞÞ;
H142E;n ¼ ð½X62ðE; nÞðsinh g12E;nÞðcos g22E;nÞ þ X52ðE; nÞðsin g12E;nÞðcosh g22E;nÞ�

� ðcos c8ðE; nÞÞÞ;
H1520D ¼ ð½X102ðE; nÞðcosh g12E;nÞðcos g22E;nÞ þ X92ðE; nÞðsinh g12E;nÞðsin g22E;nÞ�

� ðcos c8ðE; nÞÞÞ;
H162E;n ¼ ð½X82ðE; nÞðsinh g12E;nÞðcos g22E;nÞ þ X72ðE; nÞðsin g12E;nÞðcosh g22E;nÞ�

� ðsin c8ðE; nÞ=2ÞÞ;
H192E;n ¼ ½ðð2C182E;nD182E;nÞ=L2

0Þ� and D182E;n ¼ sinh�1ðx182E;nÞ

Therefore, the EEM in this case assumes the form

m� EF4; nð Þ ¼ �h2

2
G0192E;n

����
E¼EF4

ðC1:21Þ

where EF4 is the Fermi energy in this case.
The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/7C EF4; nð Þ þ /8C EF4; nð Þ½ � ðC1:22Þ
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where /7C EF4; nð Þ ¼ G192EF4;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

192EF4;n
� H192EF4;n

q	 
.
2

h i1=2

and /8C EF4; nð Þ ¼
Xs

r¼1

h2r;4 /7C EF4; nð Þ½ �

C1.2.5 Study of EEM in Heavily Doped Strained Layer
Superlattices with Graded Interfaces

The dispersion relation of the conduction electrons of the constituent materials of
the strained layer superlattices can be expressed as

E � T1i½ �k2
x þ E � T2i½ �k2

y þ E � T3i½ �k2
z ¼ qiE

3 � RiE
2 þ ViE þ fi ðC1:23Þ

where

T1i ¼ hi; hi ¼ Egi � Cc
1iei � ai þ Cc

1i

� �
ei þ

3
2

biexxi �
biei

2
þ

ffiffiffi
3
p

diexyi

2

� �
;

T2i ¼ xi; xi ¼ Egi � Cc
1iei � ai þ Cc

1i

� �
ei þ

3
2

biexxi �
biei

2
�

ffiffiffi
3
p

diexyi

2

� �
;

T3i¼di; di ¼ Egi � Cc
1iei þ ai þ Cc

1i

� �
ei þ

3
2

biezzi �
biei

2

� �

Ri ¼ qi 2Ai þ Cc
1iei

� �
; qi ¼

3

2B2
2i

; Ai ¼ Egi � Cc
1iei;

Vi ¼ qi A2
i �

2C2
2iexyi

3
þ 2AiC

c
1iei

� �
; fi ¼ qi

2C2
2iexyi

3
� Cc

1ieiA
2
i

� �

Therefore, the electron energy spectrum in heavily doped stressed materials can
be written as

Pi E; ggi

� �
k2

x þ Qi E; ggi

� �
k2

y þ Si E; ggi

� �
k2

z ¼ 1 ðC1:24Þ
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where Pi E; ggi

� �
¼

c0 E; ggi

� �
� I0T1i

� �
Di E; ggi

� � ;

Di E; ggi

� �
¼
�qig3

gi

2
ffiffiffi
p
p

"
exp

�E2

g2
gi

 !
1þ E2

g2
gi

" #
� Rih0 E; ggi

� �

þ Vic0 E; ggi

� �
þ fi

2
1þ Erf

E

ggi

 !" ##
;

I0 ¼
1
2

1þ Erf ðE
�
ggiÞ

� �
; Qi E; ggi

� �
¼

c0 E; ggi

� �
� I0T2i

� �
Di E; ggi

� �

and Si E; ggi

� �
¼

c0 E; ggi

� �
� I0T3i

� �
Di E; ggi

� �
The energy-wave vector dispersion relation of the conduction electrons in

heavily doped strained layer SLs with graded interfaces can be expressed as

cos L0kð Þ ¼ 1
2
/6 E; ksð Þ ðC1:25Þ

where

/6 E; ksð Þ ¼ 2 cosh T4 E; gg2

� �� �
cos T5 E; gg1

� �� �� �
þ T6 E; ksð Þ½ � sinh T4 E; gg2

� �� �
sin T5 E; gg1

� �� �

þ D0
k2

0 E; gg2

� �
k0 E; gg1

� � � 3k0 E; gg1

� � !
cosh T4 E; gg2

� �� �
sin T5 E; gg1

� �� �"

þ 3k0 E; gg2

� �
�

k02 E; gg1

� �
k0 E; gg2

� �
 !

sinh T4 E; gg2

� �� �
cos T5 E; gg1

� �� �#

þ D0 2 k2
0 E; gg2

� �
� k02 E; gg1

� �� �
cosh T4 E; gg2

� �� �
cos T5 E; gg1

� �� �� �

þ 1
12

5k3
0 E; gg2

� �
k0 E; gg1

� �
 

þ
5k03 E; gg1

� �
k0 E; gg2

� � �34k0 E; gg2

� �
k0 E; gg1

� ��
sinh T4 E; gg2

� �� �
sin T5 E; gg1

 !" ##

T4 E; gg2

� �� �
¼ k0 E; gg2

� �
a0 � D0½ �;

k0 E; gg2

� �
¼ S2 E � V0; gg2

� �� ��1=2
P2 E � V0; gg2

� �
k2

x þ Q2 E � V0; gg2

� �
k2

y � 1
h i1=2

;

T5 E; gg1

� �
¼ k0 E; gg1

� �
b0 � D0½ �;

k0 E; gg1

� �
¼ S1 E; gg1

� �� ��1=2
1� P1 E; gg1

� �
k2

x � Q1 E; gg1

� �
k2

y

h i1=2
and

T6 E; ksð Þ ¼
k0 E; gg2

� �
k0 E; gg1

� � � k0 E; gg1

� �
k0 E; gg2

� �
" #

Therefore, the dispersion relation of the conduction electrons in heavily doped
strained layer QDSLs with graded interfaces can be expressed as
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cos L0k0ð Þ ¼ 1
2
/6 E; nð Þ ðC1:26Þ

where

/6ðE; nÞ ¼ ½2 cosh½T4ðE; n; gg2Þ� cos½T5ðE; n; gg1Þ��
þ ½T6ðE; nÞ� sinh½T4ðE; n; gg2Þ�
� sin½T5ðE; n; gg1Þ�

þ D0
k2

0ðE; n; gg2Þ
k00ðE; n; gg1Þ

� 3k00ðE; n; gg1Þ
 !

cosh½T4ðE; n; gg2Þ� sin½T5ðE; n; gg1Þ�
"

þ 3k0ðE; n; gg2Þ �
k
02
0 ðE; n; gg1Þ

k0ðE; n; gg2Þ

 !
sinh½T4ðE; n; gg2Þ� cos½T5ðE; n; gg1Þ�

#

þ D0 2ðk2
0ðE; n; gg2Þ � k

02
0DðE; n; gg1ÞÞ cosh½T4ðE; n; gg2Þ� cos½T5ðE; n; gg1Þ�

h i

þ 1
12

5k3
0ðE; n; gg2Þ

k00ðE; n; gg1Þ
þ

5k
03
0 ðE; n; gg1Þ

k0ðE; n; gg2Þ
�34k0ðE; n; gg2Þk00ðE; n; gg1Þ

 !

� sinh½T4ðE; n; gg2Þ� sin½T5ðE; n; gg1Þ�

T4 E; n; gg2

� �� �
¼ k0 E; n; gg2

� �
a0 � D0½ �;

k0 E; n; gg2

� �
¼ S2 E � V0; gg2

� �� ��1=2
: ðnþ 1=2Þ�heB=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðEÞq2ðEÞ

p
Þ

h i
� 1

h i1=2
;

q1ðEÞ ¼ �h2= 2P2 E � V0; gg2

� �� �
; q2ðEÞ ¼ �h2= 2Q2 E � V0; gg2

� �� �
T5 E; n; gg1

� �
¼ k00 E; n; gg1

� �
b0 � D0½ �;

k00 E; n; gg1

� �
¼ S1 E; n; gg1

� �� ��1=2
1� ðnþ 1=2Þ�heB=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3ðEÞq4ðEÞ

p
Þ

h ih i1=2
q3ðEÞ ¼ �h2= 2P1 E; gg1

� �� �
; q4ðEÞ ¼ �h2= 2Q1 E; gg1

� �� �

T6 E; nð Þ ¼
k0 E; n; gg2

� �
k00 E; n; gg1

� �� k00 E; n; gg1

� �
k0 E; n; gg2

� �
" #

Therefore, the EEM in this case assumes the form

m� EF6; nð Þ ¼ �h2

2

� �
�U06 EF6; nð Þ cos�1 1

2
�U6 EF6; nð Þ

� �� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=4Þ�U2

6 EF6; nð Þ
q� �

ðC1:27Þ

where EF6 is the Fermi energy in this case.
The electron concentration is given by
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n0 ¼
gveB

p2�h

Xnmax

n¼0

/9C EF6; nð Þ þ /10C EF6; nð Þ½ �

where /9C EF6; nð Þ ¼ 1
L2

0

cos�1 1
2

�U6 EF6; nð Þ
� � �2

� 2eB

�h
nþ 1

2

� �" #1=2

ðC1:28Þ

and /8C EF6; nð Þ ¼
Xs

r¼1

h2r;6 /7C EF6; nð Þ
" #

C.1.2.6 Study of EEM in Heavily Doped Effective
Mass III–V Superlattices

Following Sasaki [94], the electron dispersion law in III–V heavily doped effective
mass superlattices (EMSLs) can be written as

k2
x ¼

1

L2
0

cos�1 f21 E; ky; kz

� �� �� �2�k2
?

� �
ðC1:29Þ

in which

f21 E; ky; kz

� �
¼ a1 cos a0C21 E; k?; gg1

� �
þ b0D21 E; k?; gg2

� �� �
� a2 cos a0C21 E; k?; gg1

� �
� b0D21 E; k?; gg2

� �� �
;

k2
? ¼ k2

y þ k2
z ;

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 0; gg2

� �
M1 0; gg1

� �
s

þ 1

" #2

4
M2 0; gg2

� �
M1 0; gg1

� �
 !1=2

2
4

3
5
�1

;

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 0; gg2

� �
M1 0; gg1

� �
s

� 1

" #2

4
M2 0; gg2

� �
M1 0; gg1

� �
 !1=2

2
4

3
5
�1

;

Mi 0; ggi

� �
¼m�ci

�2ffiffiffi
p
p
�

T 0; ggi

� �
þ 2

aibi

ci

ggiffiffiffi
p
p

�
þ 1

2
aici þ cibi � aibi

c2
i

� �

þ 1ffiffiffi
p
p

ci
1� ai

ci

� �
1� bi

ci

� �
� 1

ci
1� ai

ci

� �
1� bi

ci

� �
2

ciggi

ffiffiffi
p
p

� �2

cig2
gi

(
exp

�1

c2
i g

2
gi

 ! Xa

p¼1

exp
�p2

4

� �� �
1
p

sinh
p

ciggi

 ! !

þ exp
�1

c2
i g

2
gi

 ! Xa

p¼1

exp
�p2

4

� �
1
ggi

cosh
p

ciggi

 ! !)##
;
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T 0; ggi

� �
¼ 2

aibi

ci

�
g2

gi

4
þ aici þ bici � aibi

c2
i

� �
ggi

2
ffiffiffi
p
p þ 1

2ci
1� ai

ci

� �
1� bi

ci

� �

� 1
ci

1� ai

ci

� �
1� bi

ci

� �
2

ciggi

ffiffiffi
p
p exp

�1

c2
i g

2
gi

 !Xa

p¼1

exp �p2
�

4
� �

p
sinh

p

ciggi

 !#
;

C21 E; k?; gg1

� �
¼ e1 þ ie2; D21 E; k?; gg2

� �
¼ e3 þ ie4;

e1 ¼
"  ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
1 þ t2

2

q
þ t1

!
=2

!#1
2

; e2 ¼
"  ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
1 þ t2

2

q
� t1

!
=2

!#1
2

;

t1 ¼
2m�c1

�h2 T11 E;D1; gg1;Eg1
� �

� k2
?

� �
; t2 ¼

2m�c1

�h2 T21 E;D1; gg1;Eg1
� �

;

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
3 þ t2

4

p
þ t3

2

" #1=2

; e4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
3 þ t2

4

p
� t3

2

" #1=2

t3 ¼
2m�c2

�h2 T12 E;D2; gg2;Eg2
� �

� k2
?

� �
; t4 ¼

2m�c2

�h2 T22 E;D2; gg2;Eg2
� �

;

Therefore, (C1.29) can be expressed as

k2
x ¼ d7 þ id8 ðC1:30Þ

where

d7 ¼
1

L2
0

d2
5 � d2

6

� �
� k2

?

� �
; d5 ¼ cos�1 p5;

p5 ¼
1� d2

3 � d2
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

3 � d2
4

� �2þ4d2
4

q
2

2
4

3
5

1=2

;

d3 ¼ a1 cos D1 cosh D2 � a2 cos D3 cosh D4ð Þ;
d4 ¼ a1 sin D1 sinh D2 � a2 sin D3 sinh D4ð Þ;
D1 ¼ a0e1 þ b0e3ð Þ; D2 ¼ a0e2 þ b0e4ð Þ; D3 ¼ a0e1 � b0e3ð Þ;
D4 ¼ a0e2 � b0e4ð Þ; d6 ¼ sinh�1 p5 and d8 ¼ 2d5d6

�
L2

0

� �
Therefore, the electron dispersion relation in heavily doped III–V QDSL

assumes the form

kzð Þ2¼ d7E;n þ id8E;n ðC1:31Þ

where

512 Appendix C: Heavily Doped Non-Parabolic Semiconductors



d7E;n ¼
1

L2
0

d2
5E;n � d2

6E;n

	 

� 2eB

�h
ðnþ 1

2
Þ

� � �
; d5E;n ¼ cos�1 p5E;n;

p5E;n ¼
1� d2

3E;n � d2
4E;n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

3E;n � d2
4E;n

	 
2
þ4d2

4E;n

r

2

2
664

3
775

1=2

;

d3E;n ¼ a1 cos D1E;n cosh D2E;n � a2 cos D3E;n cosh D4E;n

� �
;

d4E;n ¼ a1 sin D1E;n sinh D2E;n � a2 sin D3E;n sinh D4E;n

� �
;

D1E;n ¼ a0e1E;n þ b0e3E;n

� �
; D2E;n ¼ a0e2E;n þ b0e4E;n

� �
;

D3E;n ¼ a0e1E;n � b0e3E;n

� �
; D4E;n ¼ a0e2E;n � b0e4E;n

� �
;

d6E;n ¼ sinh�1 p5E;n and d8E;n ¼ 2d5E;nd6E;n

�
L2

0

� �
;

e1E;n ¼ ½ðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1E;n þ t2

2

q
þ t1E;nÞ=2Þ�

1
2; e2E;n ¼ ½ðð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1E;n þ t2

2

q
� t1E;nÞ=2Þ�

1
2;

e3E;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
3E;n þ t2

4

q
þ t3E;n

2

2
4

3
5

1=2

; e4E;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
3E;n þ t2

4

q
� t3E;n

2

2
4

3
5

1=2

;

t1E;n ¼
2m�c1

�h2 T11 E;D1; gg1;Eg1
� �

� 2eB

�h
nþ 1

2

� �� �
;

t3E;n ¼
2m�c2

�h2 T12 E;D2; gg2;Eg2
� �

� 2eB

�h
nþ 1

2

� �� �

Therefore, the EEM in this case assumes the form

m� EF7; nð Þ ¼ �h2

2
d07E;n

����
E¼EF7

ðC1:32Þ

where EF7 is the Fermi energy in this case.
The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/11 EF7; nð Þ þ /12 EF7; nð Þ½ � ðC1:33Þ

where

/11 EF7; nð Þ ¼ d7EF7;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

7EF7;n
� d8EF7;n

q� ��
2

� �1=2

and /12 EF7; nð Þ ¼
Xs

r¼1

h2r;7 /11 EF7; nð Þ½ �
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C.1.2.7 Study of EEM in Heavily Doped Effective
Mass II–VI Superlattices

Following Sasaki [95], the electron dispersion law in heavily doped II–VI EMSLs
can be written as

k2
z ¼ D13 þ iD14; ðC1:34Þ

where D13 ¼
1
L2

0

D2
11 � D2

12

� �
� k2

s

� �

D11 ¼ cos�1 p6; p6 ¼
1� D2

9 � D2
10 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

9 � D2
10

� �2þ4D2
10

q
2

2
4

3
5

1=2

;

D9 ¼ a1 cos D6 cosh D7 � a2 cos D8 cosh D7ð Þ;
D10 ¼ a1 sin D6 sinh D7 þ a2 sin D8 sinh D7ð Þ;
D6 ¼ a0C22 E; ks; gg1

� �
þ b0e3

� �
; D7 ¼ b0e4;

D8 ¼ a0C22 E; ks; gg1

� �
� b0e3

� �
;

C22 E; ks; gg1

� �
¼

2m�k;1
�h2 c3 E; gg1

� �
� �h2k2

s

2m�?;1
� C0ks

( )" #1=2

;

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 0; gg2

� �
M1 0; gg1

� �
s

þ 1

" #2

4
M2 0; gg2

� �
M1 0; gg1

� �
 !1=2

2
4

3
5
�1

;

M1 0; gg1

� �
¼ m�c1 1� 2

p

� �
;

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 0; gg2

� �
M1 0; gg1

� �
s

� 1

" #2

4
M2 0; gg2

� �
M1 0; gg1

� �
 !1=2

2
4

3
5
�1

D12 ¼ cos�1 p6; D14 ¼
2D11D12

L2
0

The electron dispersion law in heavily doped II–VI QDSL can be written as

kzð Þ2¼ D13E;n þ iD14E;n; ðC1:35Þ
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where D13E;n ¼
1

L2
0

D2
11E;n � D2

12E;n

	 

� 2eB

�h
nþ 1

2

� �� � �

D11E;n ¼ cos�1 p6E;n;

p6E;n ¼
1� D2

9E;n � D2
10E;n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

9E;n � D2
10E;n

	 
2
þ4D2

10E;n

r

2

2
664

3
775

1=2

;

D9E;n ¼ a1 cos D6E;n cosh D7E;n � a2 cos D8E;n cosh D7E;n

� �
;

D10E;n ¼ a1 sin D6E;n sinh D7E;n þ a2 sin D8E;n sinh D7E;n

� �
;

D6E;n ¼ a0C22E;n EE;n; gg1

� �
þ b0e3E;n

� �
; D7E;n ¼ b0e4E;n;

D8E;n ¼ a0C22E;n EE;n; gg1

� �
� b0e3E;n

� �
;

C22E;n EE;n; gg1

� �
¼

2m�k;1
�h2 c3 EE;n; gg1

� �
� �h2

2m�?;1

2eB

�h
nþ 1

2

� �� ("

�C0
2eB

�h
nþ 1

2

� �� � �1=2
g
#1=2

;

D12E;n ¼ cos�1 p6E;n; D14E;n ¼
2D11E;nD12E;n

L2
0

;

Therefore, the EEM in this case assumes the form

m� EF8; nð Þ ¼ �h2

2
D013E;n

����
E¼EF8

ðC1:36Þ

where EF8 is the Fermi energy in this case.
The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/13 EF8; nð Þ þ /14 EF8; nð Þ½ � ðC1:37Þ

where

/13 EF8; nð Þ ¼ D13EF8;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

13EF8;n
� D14EF8;n

q� ��
2

� �1=2

and /14 EF8; nð Þ ¼
Xs

r¼1

h2r;7 /13 EF8; nð Þ½ �
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C1.2.8 Study of EEM in Heavily Doped Effective
Mass IV–VI Superlattices

Following Sasaki [95], the electron dispersion law in IV–VI, EMSLs can be
written as

k2
z ¼

1

L2
0

cos�1 f23 E; kx; ky

� �� �� �2�k2
s

� �
ðC1:38Þ

where
f23 E; kx; ky

� �
¼ a3 cos a0C23 E; kx; ky; gg1

� �
þ b0D23 E; kx; ky; gg1

� �� �
� a4 cos a0C23 E; kx; ky; gg2

� �
� b0D23 E; kx; ky; gg2

� �� �
;

a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3 0; gg2

� �
M3 0; gg1

� �
s

þ 1

" #2

4
M3 0; gg2

� �
M3 0; gg1

� �
 !1=2

2
4

3
5
�1

;

a4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3 0; gg2

� �
M3 0; gg1

� �
s

� 1

" #2

4
M3 0; gg2

� �
M3 0; gg1

� �
 !1=2

2
4

3
5
�1

M3ð0; ggiÞ ¼ ð4p9;iÞ�1 ai 1� 2
p

� �
1

mþl;i
� 1

m�l;i

 !( )
þ ½q9;ið0; ggiÞ�2
h"

þð4p9;iÞR9;ið0; ggiÞ
��1=2

ai 1� 2
p

� �
1

mþl;i
� 1

m�l;i

 !
q9;ið0; ggiÞ þ 2p9;i 1� 2

p
þ

aiggiffiffiffi
p
p

� �" ##
;

p9;i ¼
ai�h

4

4mþl;im
�
l;i

; q9;ið0; ggiÞ ¼
�h2

2
1

mþl;i
þ 1

m�l;i

 !
�

aiggiffiffiffi
p
p 1

mþl;i
� 1

m�l;i

 !" #
;

R9;ið0; ggiÞ ¼
ggiffiffiffi

p
p þ

aig2
gi

2

" #
; C23ðE; kx; ky; gg1Þ ¼ ½2p9;1��1 �½

h
q9;1ðE; kx; ky; gg1Þ

þ fq9;1ðE; kx; ky; gg1Þg2
h

þ ð4p9;1ÞR9;1ðE; kx; ky; gg1Þ
�1=2
ii1=2

;

D23ðE; kx; ky; gg2Þ ¼ ½2p9;2��1 �½
h

q9;2ðE; kx; ky; gg2Þ þ fq9;2ðE; kx; ky; gg2Þg2
h

þð4p9;2ÞR9;2ðE; kx; ky; gg2Þ
�1=2
ii1=2

;

q9;iðE; kx; ky; ggiÞ ¼
�h2

2
1

m�l;i
þ 1

m�l;i

 !
þ

"
ai

�h4

4
k2

s

1
mþl;im

�
t;i

þ 1
mþt;im

�
l;i

 !

�aic3ðE; ggiÞ
1

mþl;i
� 1

m�l;i

 !#
;

R9;iðE; kx; ky; ggiÞ ¼ c2ðE; ggiÞþ
�

c3ðE; ggiÞai
�h2

2
k2

s

1
mþt;i
� 1

m�t;i

 !

� �h2

2
k2

s

1
m�t;i
� 1

m�t;i

 !
� a�h6

4
k4

s

m�t;im
þ
t;i

#
; a5 ¼

ffiffiffiffiffiffi
m�2
m�1

s
þ 1

" #2

4
m�2
m�1

� �1=2
" #�1
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Therefore, the electron dispersion law in heavily doped IV–VI, EMSLs under
magnetic quantization can be written as

ðkzÞ2 ¼ ½½1=L2
0�fcos�1ðf23ðE; nÞÞg2 � ð2eB

�h
ðnþ 1

2
ÞÞ� ðC1:39Þ

where

f23 E; nð Þ ¼ a3 cos a0C23E;n E; n; gg1

� �
þ b0D23E;n E; n; gg1

� �� �
� a4 cos a0C23E;n E; n; gg2

� �
� b0D23E;n E; n; gg2

� �� �
;

C23ðE; n; gg1Þ ¼ ½2p9;1��1 �½
h

q9;1ðE; n; gg1Þ þ fq9;1ðE; n; gg1Þg2
h

þð4p9;1ÞR9;1ðE; n; gg1Þ
�1=2
ii1=2

;

D23ðE; n; gg2Þ ¼ ½2p9;2��1 �½
h

q9;2ðE; n; gg2Þ þ fq9;2ðE; n; gg2Þg2
h

þð4p9;2ÞR9;2ðE; n; gg2Þ
�1=2
ii1=2

;

q9;iðE; n; ggiÞ ¼
�h2

2
1

m�l;i
þ 1

m�l;i

 !
þ

"
ai

�h4

4
2eB

�h
nþ 1

2

� �� �
1

mþl;im
�
t;i

þ 1
mþt;im

�
l;i

 !

�aic3ðE; ggiÞ
1

mþl;i
� 1

m�l;i

 !#
;

R9;iðE; n; ggiÞ ¼

"
c2ðE; ggiÞþc3ðE; ggiÞai

�h2

2
2eB

�h
nþ 1

2

� �� �
1

mþt;i
� 1

m�t;i

 !

� �h2

2
2eB

�h
nþ 1

2

� �� �
1

m�t;i
� 1

m�t;i

 !
� a�h6

4

2eB

�h
nþ 1

2

� �� �2

m�t;im
þ
t;i

3
7775;

Therefore, the EEM in this case assumes the form

m� EF9; nð Þ ¼ �h2

2

� �
f 023 EF9; nð Þ cos�1 1

2
f23 EF9; nð Þ

� �� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=4Þf 2

23 EF9; nð Þ
q� �

ðC1:40Þ

where EF9 is the Fermi energy in this case.
The electron concentration is given by
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n0 ¼
gveB

p2�h

Xnmax

n¼0

/15 EF9; nð Þ þ /16 EF9; nð Þ
" #

ðC1:41Þ

where /15 EF9; nð Þ ¼ 1

L2
0

cos�1 1
2

f23 EF9; nð Þ
� � �2

� 2eB

�h
nþ 1

2

� �" #1=2

and /16 EF9; nð Þ ¼
Xs

r¼1

h2r;6 /15 EF9; nð Þ
" #

C1.2.9 Study of EEM in Heavily Doped Effective
Mass HgTe/CdTe Superlattices

Following Sasaki [95], the electron dispersion law in heavily doped HgTe/CdTe
EMSLs can be written as

k2
z ¼ D13H þ iD14H ðC1:42Þ

where

D13H ¼
1
L2

0

D2
11H � D2

12H

� �
� k2

s

� �

D11H ¼ cos�1 p6H ;

p6H ¼
1� D2

9H � D2
10H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

9H � D2
10H

� �2þ4D2
10H

q
2

2
4

3
5

1=2

;

D9H ¼ a1H cos D5H cosh D6H � a2H cos D7H cosh D6Hð Þ;
D10H ¼ a1H sin D5H sinh D6H þ a2H sin D7H sinh D6Hð Þ;
D5H ¼ a0C22H E; ks; gg1

� �
þ b0e3

� �
; D6H ¼ b0e4;

D7H ¼ a0C22H E; ks; gg1

� �
� b0e3

� �
;

C22H E; ks; gg1

� �
¼ B2

01 þ 2A1E � B01ðB2
01 þ 4A1EÞ

2A2
1

� k2
s

� �1=2
;

a1H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 0; gg2
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m�c1

s
þ 1

2
4

3
5
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4
M2 0; gg2

� �
m�c1
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3
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;

a2H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 0; gg2

� �
m�c1

s
� 1

2
4

3
5

2

4
M2 0; gg2

� �
m�c1

 !1=2
2
4

3
5
�1

D12H ¼ cos�1 p6H ; D14H ¼
2D11HD12H

L2
0



The electron dispersion law in heavily doped HgTe/CdTe EMSLs under
magnetic quantization can be written as

ðkzÞ2 ¼ D13HE;n þ iD14HE;n ðC1:43Þ

where

D13HE;n ¼ ð1=L2
0Þ D2

11HE;n � D2
12HE;n

	 

� 2eB

�h
nþ 1

2

� �� �

D11HE;n ¼ cos�1 p6HE;n;

p6HE;n ¼ 1� D2
9HE;n � D2

10HE;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� D2
9HE;n � D2

10HE;n

	 
2
þ4D2

10HE;n

r !
=2

 !" #1
2

D9HE;n ¼ a1H cos D5HE;n cosh D6HE;n � a2H cos D7HE;n cosh D6HE;n

� �
;

D10HE;n ¼ a1H sin D5HE;n sinh D6HE;n þ a2H sin D7HE;n sinh D6HE;n

� �
;

D5HE;n ¼ a0C22HE;n EE;n; gg1

� �
þ b0e3

� �
; D6HE;n ¼ b0e4;

D7HE;n ¼ a0C22HE;n EE;n; gg1

� �
� b0e3

� �
;

C22HE;n EE;n; gg1

� �
¼ B2

01 þ 2A1EE;n � B01ðB2
01 þ 4A1EE;nÞ

2A2
1

� 2eB

�h
nþ 1

2

� �� �� �1=2
;

D12HE;n ¼ cos�1 p6HE;n; D14HE;n ¼
2D11HE;nD12HE;n

L2
0

Therefore, the EEM in this case assumes the form

m� EF10; nð Þ ¼ �h2

2
D013HE;n

����
E¼EF10

ðC1:44Þ

where EF10 is the Fermi energy in this case.
The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/17 EF10; nð Þ þ /18 EF10; nð Þ½ � ðC1:45Þ

where

/17 EF10; nð Þ ¼ D13HEF10;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

13HEF10;n
� D14HEF10;n

q� ��
2

� �1=2

and /18 EF10; nð Þ ¼
Xs

r¼1

h2r;7 /17 EF10; nð Þ½ �
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C.1.2.10 Study of EEM in Heavily Doped Strained Layer
Effective Mass Superlattices

The dispersion relation of the constituent materials of heavily doped III–V super
lattices can be written as

�PiðE; ggiÞk2
x þ �QiðE; ggiÞk2

y þ �SiðE; ggiÞk2
z ¼ 1 ðC1:46Þ

where

�PiðE; ggiÞ ¼ ðc0ðE; ggiÞ � I0T1iÞð�DiðE; ggiÞ
�1; I0 ¼ ð1=2Þ½1þ Erf ðE=ggiÞ�;

T1i ¼ Egi � Cc
1iei � ðai þ Cc

1iÞei þ ð3=2Þbiexxi � ðbiei=2Þ þ ð
ffiffiffi
3
p

diexyi=2Þ
h i

;

�DiðE; ggiÞ ¼½ð�qig
3
gi=2

ffiffiffi
p
p
Þ expð�ðE2=g2

giÞÞ½1þ ðE2=g2
giÞ� � Rih0ðE; ggiÞ þ Vic0ðE; ggiÞ

þ ðfi=2Þ½1þ Erf ðE=ggiÞ��; qi ¼ ð3=2B2
2iÞ; Ri ¼ qi½2Ai þ Cc

1iei�;
Ai ¼ Egi � Cc

1iei;Vi ¼ qi½A2
i � ð2C2

2iexyi=3Þ þ 2AiC
c
1iei�;

fi ¼ qi½ð2C2
2iexyi=3Þ � Cc

1ieiA
2
i �; �QiðE; ggiÞ ¼ ðc0ðE; ggiÞ � I0T2iÞð�DiðE; ggiÞ�1;

T2i ¼ ½Egi � Cc
1iei � ðai þ Cc

1iÞei þ ð3=2Þbiexxi � ðbiei=2Þ � ð
ffiffiffi
3
p

diexyi=2Þ�;
�SiðE; ggiÞ ¼ ðc0ðE; ggiÞ � I0T3iÞð�DiðE; ggiÞ�1;

T3i ¼ ½Egi � Cc
1iei þ ðai þ Cc

1iÞei þ ð3=2Þbiezzi � ðbiei=2Þ�;

The electron energy spectrum in heavily doped strained layer effective mass
superlattices can be written as

k2
z ¼

1

L2
0

cos�1 f40 E; kx; ky

� �� �� �2�k2
s

� �
ðC1:47Þ

where

f40 E; kx; ky

� �
¼ a20 cos a0C40 E; kx; ky; gg1

� �
þ b0D40 E; kx; ky; gg1

� �� �
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;

Msi 0; ggi

� �
¼ ð�h=2ÞqiðggiÞ

520 Appendix C: Heavily Doped Non-Parabolic Semiconductors



qiðggiÞ ¼ ggi=2
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C40ðE; kx; ky; gg1Þ ¼ ½1� �P1ðE; gg1Þk2
x � �Q1ðE; gg1Þk2

y �
1=2½�S1ðE; gg1Þ��1=2

D40ðE; kx; ky; gg2Þ ¼ ½1� �P2ðE; gg2Þk2
x � �Q2ðE; gg2Þk2

y �
1=2½�S2ðE; gg2Þ��1=2

Therefore, the electron dispersion law in heavily doped strained layer effective
mass superlattices can be expressed as [96–108]

ðkzÞ2 ¼
1

L2
0

cos�1 f40 E; nð Þð Þ
� �2� 2eB

�h
nþ 1

2

� �� �� �
ðC1:48Þ

where f40 E; nð Þ ¼ a20 cos a0C40 E; n; gg1

� �
þ b0D40 E; n; gg1

� �� �
� a21 cos a0C40 E; n; gg2

� �
� b0D40 E; n; gg2

� �� �
;

C40ðE; n; gg1Þ ¼ 1� �heB
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2

� �" #1=2
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q
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�h2
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2

� �" #1=2
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w501ðE; gg2Þw511ðE; gg2Þ

q

w501ðE; gg2Þ ¼
�h2
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Therefore, the EEM in this case assumes the form

m� EF9; nð Þ ¼ �h2

2

� �
f 040 EF11; nð Þ cos�1 1

2
f40 EF11; nð Þ

� �� �, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=4Þf 2

40 EF11; nð Þ
q� �

ðC1:49Þ

where EF11 is the Fermi energy in this case.
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The electron concentration is given by

n0 ¼
gveB

p2�h

Xnmax

n¼0

/19 EF11; nð Þ þ /20 EF11; nð Þ½ �

where /19 EF11; nð Þ ¼ 1

L2
0

cos�1 1
2

f40 EF11; nð Þ
� � �2

� 2eB

�h
nþ 1

2

� �" #1=2

and /20 EF11; nð Þ ¼
Xs

r¼1

h2r;6

"
/19 EF11; nð Þ

#
ðC1:50Þ

C1.3 Open Research Problem

Investigate the concentration dependence of the effective acceleration mass (EAM),
density-of-state effective mass (DEM), concentration effective mass (CEM),
conductivity effective mass (CoEM), Faraday rotation effective mass (FREM), and
Optical effective mass (OEM) for bulk specimens for all the materials whose carrier
energy spectra are described in this book.

References

1. W. Zawadzki, B. Lax, Phys. Rev. Lett. 16, 1001 (1966)
2. M.J. Harrison, Phys. Rev. A 29, 2272 (1984)
3. J. Zak, W. Zawadzki, Phys. Rev. 145, 536 (1966)
4. W. Zawadzki, Q.H. Vrehen, B. Lax, Phys. Rev. 148, 849 (1966)
5. Q.H. Vrehen, W. Zawadzki, M. Reine, Phys. Rev. 158, 702 (1967)
6. M.H. Weiler, W. Zawadzki, B. Lax, Phys. Rev. 163, 733 (1967)
7. W. Zawadzki, J. Kowalski, Phys. Rev. Lett. 27, 1713 (1971)
8. C. Chu, Phys. Rev. Lett. 41, 653 (1978)
9. P. Hu, C.S. Ting, Phys. Rev. B 36, 9671 (1987)

10. E.I. Butikov, A.S. Kondratev, A.E. Kuchma, Sov. Phys. Sol. State 13, 2594 (1972)
11. K.P. Ghatak, J.P. Banerjee, B. Goswami, B. Nag, Nonlinear Opt. Quant. Opt. 16, 241 (1996)
12. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. A133, K67 (1986)
13. M. Mondal, N. Chattopadhyay, K.P. Ghatak, J. Low Temp. Phys. 66, 131 (1987)
14. K.P. Ghatak, M. Mondal, Z. Phys. B 69, 471 (1988)
15. M. Mondal, K.P. Ghatak, Phys. Lett. A 131A, 529 (1988)
16. M. Mondal, K.P. Ghatak, Phys. Status Solidi B Germany 147, K179 (1988)
17. B. Mitra, K.P. Ghatak, Phys. Lett. 137A, 413 (1989)
18. B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. B 154, K147 (1989)
19. B. Mitra, K.P. Ghatak, Phys. Stat. Sol. B 164, K13 (1991)
20. K.P. Ghatak, B. Mitra, Int. J. Electron. 70, 345 (1991)

522 Appendix C: Heavily Doped Non-Parabolic Semiconductors



21. K.P. Ghatak, B. Goswami, M. Mitra, B. Nag, Nonlinear Opt. 16, 9 (1996)
22. K.P. Ghatak, M. Mitra, B. Goswami, B. Nag, Nonlinear Opt. 16, 167 (1996)
23. K.P. Ghatak, J.P. Banerjee, B. Goswami, B. Nag, Nonlinear Opt. Quant. Opt. 16, 241 (1996)
24. K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Sol. 58, 133 (1997)
25. K.P. Ghatak, N. Chattopadhyay, S. N. Biswas, Optoelectronic materials, devices, packaging

and interconnects. Proc. SPIE 836, 203 (1988)
26. K.P. Ghatak, M. Mondal, S. Bhattacharyya, SPIE 1284, 113 (1990)
27. K.P. Ghatak, Photonic materials and optical bistability. SPIE 1280, 53 (1990)
28. K.P. Ghatak, S.N. Biswas, Growth and characterization of materials for infrared detectors

and nonlinear optical switches. SPIE 1484, 149 (1991)
29. K.P. Ghatak, Fiber optic and laser sensors IX. SPIE 1584, 435 (1992)
30. R.K. Willardson, A.C. Beer (eds.), Semiconductors and Semimetal, vol 1 (Academic, New

York 1966), p. 102
31. E.O. Kane, Phys. Rev. 131, 79 (1963)
32. E.O. Kane, Phys. Rev. 139, 343 (1965)
33. V.L. Bonch Bruevich, Sov. Phys. Solid State 4, 1953 (1963)
34. R.A. Logan, A.G. Chynoweth, Phys. Rev. 131, 89 (1963)
35. C.J. Hwang, J. Appl. Phys. 40, 3731 (1969)
36. J.I. Pankove, Phys. Rev. A 130, 2059 (1965)
37. B.I. Halperin, M. Lax, Phys. Rev. 148, 722 (1966)
38. R.A. Abram, G.J. Rees, B.L.H. Wilson, Adv. Phys. 27, 799 (1978)
39. B.I. Shklovskii, A.L. Efros, Electronics properties of doped semiconductors, vol. 45

(Springer, Berlin, 1984)
40. E.O. Kane, Solid State Electron. 28, 3 (1985)
41. P.K. Chakraborty, J.C. Biswas, J. Appl. Phys. 82, 3328 (1997)
42. B.R. Nag, Electron transport in compound semiconductors (Springer, New York, 1980)
43. P.E. Schmid, Phys. Rev. B 23, 5531 (1981)
44. Jr. G. E. Jellison, F. A. Modine, C. W. White, R. F. Wood and R. T. Young, Phys. Rev.

Lett., 46 1414, 1981.
45. V.I. Fistul, Heavily doped semiconductors, Chapter 7 (Plenum, New York, 1969)
46. C.J. Hwang, J. Appl. Phys. 41, 2668 (1970)
47. W. Sritrakool, H.R. Glyde, V. Sa Yakanit, Can. J. Phys 60, 373 (1982)
48. H. Ikoma, J. Phys. Soc. Jpn. 27, 514 (1969)
49. P.K. Chakraborty, A. Sinha, S. Bhattacharya, K.P. Ghatak, Phys. B 390, 325 (2007)
50. K.P. Ghatak, G.C. Datta, K.P. Ghatak, Phys. Scr. 68, 368 (2003)
51. P.K. Chakraborty, K.P. Ghatak, J. Phys. Chem. Solids 62, 1061 (2001)
52. P.K. Chakraborty, K.P. Ghatak, Phys. Letts. A 288, 335 (2001)
53. P.K. Chakraborty, K.P. Ghatak, Phys. D Appl. Phys. 32, 2438 (1999)
54. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs

and Mathematical Tables (Wiley, New York, 1964)
55. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic, New

York, 1965)
56. V. Heine, Proc. Phys. Soc. 81, 300 (1963)
57. J.N. Schulman, Y.C. Chang, Phys. Rev. B 24, 4445 (1981)
58. L.V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962)
59. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)
60. G. Bastard, Wave Mechanics Applied to Heterostructures (Editions de Physique, Les Ulis,

France, 1990)
61. E.L. Ivchenko, G. Pikus, Superlattices and Other Heterostructures (Springer, Berlin, 1995)
62. R. Tsu, Superlattices to Nanoelectronics (Elsevier, The Netherlands, 2005)
63. P. Fürjes, Cs Dücs, M. Ádám, J. Zettner, I. Bársony, Superlattices Microstruct. 35, 455

(2004)

Appendix C: Heavily Doped Non-Parabolic Semiconductors 523



64. T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H–W. Ren, C–H. Lin, S.S. Pei,
Microscale Thermophys. Eng. 5, 225 (2001)

65. B.S. Williams, Nat. Photonics 1, 517 (2007)
66. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, F. Tittel, R.F. Curl, Appl. Phys.

B 90, 165 (2008)
67. M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Appl.

Phys. Lett. 92, 201101 (2008)
68. G.J. Brown, F. Szmulowicz, R. Linville, A. Saxler, K. Mahalingam, C–H. Lin, C.H. Kuo,

W.Y. Hwang, IEEE Photonics Technol. Lett. 12, 684 (2000)
69. H.J. Haugan, G.J. Brown, L. Grazulis, K. Mahalingam, D.H. Tomich, Physica E 20, 527

(2004)
70. S.A. Nikishin, V.V. Kuryatkov, A. Chandolu, B.A. Borisov, G.D. Kipshidze, I. Ahmad,

M. Holtz, H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003)
71. Y–K. Su, H–C. Wang, C–L. Lin, W–B. Chen, S–M. Chen, Jpn. J. Appl. Phys. 42, L751

(2003)
72. C.H. Liu, Y.K. Su, L.W. Wu, S.J. Chang, R.W. Chuang, Semicond. Sci. Technol. 18, 545

(2003)
73. S-B. Che, I. Nomura, A. Kikuchi, K. Shimomura, K. Kishino, Phys. Status Solidi B 229,

1001 (2002)
74. C.P. Endres, F. Lewen, T.F. Giesen, S. Schlemmer, D.G. Paveliev, Y.I. Koschurinov,

V.M. Ustinov, A.E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007)
75. F. Klappenberger, K.F. Renk, P. Renk, B. Rieder, Y.I. Koshurinov, D.G. Pavelev,

V. Ustinov, A. Zhukov, N. Maleev, A. Vasilyev, Appl. Phys. Lett. 84, 3924 (2004)
76. X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto,

Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato,
T. Yasue, T. Koshikawa, J. Cryst. Growth 310, 5039 (2008)

77. X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda,
S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue,
T. Koshikawa, Appl. Phys. Express 1, 045002 (2008)

78. B.H. Lee, K.H. Lee, S. Im, M.M. Sung, Org. Electron. 9, 1146 (2008)
79. P-H. Wu, Y-K. Su, I-L. Chen, C-H. Chiou, J-T. Hsu, W-R. Chen, Jpn. J. Appl. Phys. 45,

L647 (2006)
80. A.C. Varonides, Renewable Energy 33, 273 (2008)
81. M. Walther, G. Weimann, Phys. Status Solidi B 203, 3545 (2006)
82. R. Rehm, M. Walther, J. Schmitz, J. Fleibner, F. Fuchs, J. Ziegler, W. Cabanski, Opto-

Electron. Rev. 14, 19 (2006)
83. R. Rehm, M. Walther, J. Scmitz, J. Fleissner, J. Ziegler, W. Cabanski, R. Breiter, Electron.

Lett. 42, 577 (2006)
84. G.J. Brown, F. Szmulowicz, H. Haugan, K. Mahalingam, S. Houston, Microelectron. J. 36,

256 (2005)
85. K.V. Vaidyanathan, R.A. Jullens, C.L. Anderson, H.L. Dunlap, Solid State Electron. 26, 717

(1983)
86. B.A. Wilson, IEEE. J. Quant. Electron. 24, 1763 (1988)
87. M. Krichbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE. J. Quant. Electron. 24, 717 (1988)
88. J.N. Schulman, T.C. McGill, Appl. Phys. Lett. 34, 663 (1979)
89. H. Kinoshita, T. Sakashita, H. Fajiyasu, J. Appl. Phys. 52, 2869 (1981)
90. L. Ghenin, R.G. Mani, J.R. Anderson, J.T. Cheung, Phys. Rev. B 39, 1419 (1989)
91. C.A. Hoffman, J.R. Mayer, F.J. Bartoli, J.W. Han, J.W. Cook, J.F. Schetzina,

J.M. Schubman, Phys. Rev. B 39, 5208 (1989)
92. V.A. Yakovlev, Sov. Phys. Semicond. 13, 692 (1979)
93. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)
94. H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624 (1987)
95. H. Sasaki, Phys. Rev. B 30, 7016 (1984)

524 Appendix C: Heavily Doped Non-Parabolic Semiconductors



96. G.M.T. Foley, P.N. Langenberg, Phys. Rev. B 15B, 4850 (1977)
97. N. Miura, Physics of Semiconductors in High Magnetic Fields, Series on Semiconductor

Science and Technology (Oxford University Press, USA, 2007)
98. K.H.J Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Springer,

New York, 2003)
99. D. Sellmyer, R. Skomski (eds.), Advanced Magnetic Nanostructures (Springer, New York,

2005)
100. J.A.C. Bland, B. Heinrich (eds.), Ultrathin Magnetic Structures III: fundamentals of

nanomagnetism (Pt. 3) (Springer-Verlag, Germany, 2005)
101. B.K. Ridley, Quantum Processes in Semiconductors, 4th edn. (Oxford publications, Oxford,

1999)
102. J.H. Davies, Physics of Low Dimensional Semiconductors (Cambridge University Press,

UK, 1998)
103. S. Blundell, Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter

Physics (Oxford University Press, USA, 2001)
104. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: fundamentals and

applications (Academic Publishers, USA, 1991)
105. D. Ferry, Semiconductor Transport (CRC, USA, 2000)
106. M. Reed (ed.), Semiconductors and Semimetals: nanostructured systems (Academic Press,

USA, 1992)
107. T. Dittrich, Quantum Transport and Dissipation (Wiley-VCH Verlag GmbH, Germany,

1998)
108. A.Y. Shik, Quantum Wells: physics and electronics of twodimensional systems (World

Scientific, USA, 1997)

Appendix C: Heavily Doped Non-Parabolic Semiconductors 525



Index

2D, 20
area, 20
density-of-states, 39
density-of-states function, 113
electron dispersion, 15
electron dispersion law, 21, 23
electron energy spectrum, 29
electron statistics, 23
polar coordinates, 25
total density-of-states, 105
wave vector, 25

A
Absence of spin, 132
Absence of stress, 30
Activity coeficient, 56
Additional arbitrarily oriented electric field,

122
Advanced mathematics, 430
Aerage thermal energy, 205
Airy function, 98
Alloy composition, 44, 88, 165, 241, 249
Alternating electric field, 65, 172
Alternating quantizing magnetic fields, 430
Angle of orientation, 163, 168
Anisotropic, 84
Anisotropic spin orbit splitting constant, 127
Annular infinite potential wells, 221
Antcliffe et al., 105
Antimony, 63
Arbitrarily oriented

alternating electric, 429
alternating quantizing magnetic field, 172

crossed electric, 122
inhomogeneous electric, 430
non-uniform light waves, 305
photon field, 428
pulsed electric, 429
quantizing magnetic field, 325
quantizing magnetic field B, 323

Arbitrary band nonparabolicity, 3
Arbitrary orientation, 273
Area quantization, 153, 384
Arm chair nano tube, 203
Asymmetric infinite, 221
ATK builder, 411
ATK simulation, 420

B
Band, 28, 60–62, 64, 366

deformation potential, 28
edge g-factor, 130
non-parabolicity, 11, 21, 35, 37, 81, 135,

199
Band gap, 205, 209

energy, 7
measurement, 455

Band structure, 125, 252
II–VI compound, Hopfield model, 16, 79,

106, 135, 183
IV–VI compounds, 24, 80, 107, 143, 188
bismuth, 17, 136, 184
bismuth telluride, 34, 151, 196
carbon nanotube, 202
gallium antimonide, 38, 153, 199
gallium phosphide, 31, 148 , 193, 369
germanium, 35, 113, 152, 197, 407

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9, � Springer-Verlag Berlin Heidelberg 2013

527



B (cont.)
Newson and Kurobe, 181
nonlinear optical, 7, 76, 98, 126, 176
Palik model, 14, 134, 183
parabolic band, 12, 78, 104, 132, 180
platinum antimonide, 32, 149, 194
silicon, 408
Stillman model, 13, 133, 180
strain, germanium, 418
stressed materials, 29, 82, 90, 146, 190
tellurium, 30, 147, 191
three band Kane, 10, 78, 101, 128, 178,

238, 320
two band Kane, 11, 78, 129, 179, 238, 322

Bangert and Kastner model, The, 144
Bi, 21, 166
Bi2Te3, 169
Bi2Te3-Sb2Te3, 429
Binomial expansion, 131
Bismuth, 399
Bismuth telluride, 34, 151
Bohr Magneton, 130, 158
Bonch-Bruevich, 172, 221, 311, 427
Brillouin zone, The, 62, 229
Broadening, 172
Bulk longitudinal normalized value, 87
Bulk specimens, 20
Burstien Moss shift, 252

C
Cabon nano-tubes, 176, 202, 312
Cardona et al., 35, 375
Cardona model, 215
Carrier

concentration, 206, 389
degeneracy, 3, 163, 242
mobility, 40
statistics, 56

Cd3As2, 39, 83, 163
CdGeAs2, 85, 163
CdS, 87
Characteristic feature, 33, 78, 195
Characteristics, 30
Charge transport, 251
Chemical sensors, 202
Chiral indices, 202
Classical DMR, 389
CNTs, 204
Cohen, 22, 126, 139–142, 166
Cohen model, 21, 47, 139, 371
Complex contour integral, 12
Compounds, 30
Computer analysis, 273

Computer simulations, 55
Concentration, 242

dependence, 164
zone, 163

Conduction band, 8, 187
Conduction band minimum, 416
Conduction electron, 17, 25, 31, 37, 38, 152,

338
Confirmatory test, 187
Core-level spectroscopy, 405
Coulomb field, 381
Cross fields, 506
Crossed alternating electric field, 172
Cross-section, 205
Cross-sectional dimension, 215
Crystal field splitting, 49, 84, 127
Crystal field splitting constant, 99, 163
Crystallo-graphically abrupt, 295
CuCl, 63
Cunningham, 172
Cyclotron, 125
Cyclotron resonance, 153

D
de Haas-Van Alphen oscillations, 125, 153
Debye screening length (DSL), 56, 381, 438
Degeneracy, 87, 355
Degenerate materials, 390
Density functional theory, 405
Density-of-states (DOS), 4–12, 14, 16, 17, 19,

20, 39, 75, 77–79, 81, 82, 99, 101–105,
107, 109, 111, 113, 115, 177, 179, 239,
254–257, 260, 262, 265, 267–270, 274–
276, 279, 281

effective mass, 56, 402
function, 9, 114, 129, 131, 257, 325

Diamagnetic resonance, 125
Different band structures, 319
Diffusion coefficient, 459
Diffusivity-mobility ratio, 449
Dimensional character of graphite, 404
Dimensional quantization, 16
Dimmock, 24
Dimmock model, 143, 167, 371
Dirac electron, 430
Direct band gap semiconductor, 283
Direct signature of the light wave, 247
Direction normal, 41
Discontinuities, 39
Discontinuity, 156, 257
Dispersion, 56, 60–63, 126, 128, 135, 139,

142, 163, 305, 356
relation, 8, 10, 109, 139, 152, 166, 190, 194

528 Index



under magnetic quantization, 147
Distant bands, 60
DMR, 75, 126, 163, 164, 180
Dominant energy spectrum parameters, 166
Doping concentration, 75, 87
Dots, 366

E
Effective

electron masses, 8
gap, 75
mass, 41, 402
mass SLs, 283
mass theory, 134
momentum mass, 3

Eigen value, 74
Einstein’s photoemission, 399
E-k dispersion relation, 251, 320
Elastic constants, 441
Electric field, 116, 311, 355, 380
Electric field limit, 271
Electric sub-band index, 272
Electromagnetic wave, 229
Electron

concentration, 41, 129, 131, 132, 142, 145,
149, 150, 204, 274, 281, 305, 321, 325,
367, 373, 375

dispersion law, 13, 323
mobility, 257, 44
spin, 91, 119, 129, 137, 172
statistics, 185, 204, 239
transport, 409
wave function, 406

Electron energy, 321
spectrum, 133, 295
spectrum constants, 144

Electronic contribution, 384
Ellipse, 34
Ellipsoid, 41
Ellipsoid of the revolution, 323
Ellipsoidal, 24
Ellipsoidal parabolic model, 24
Elliptic integral of the first and second kinds,

108
Elliptic integral, 19, 108
EMM, 5–17, 19–24, 27, 29, 39, 99–103, 105–

109, 111, 112, 114, 115, 127–130, 132,
133, 136, 137, 140, 147, 177–179, 254–
256, 259, 260, 264–270, 274–276

Energy
band gap, 40, 48, 88
band structures, 11
models, 294

spectrum constants, 79, 205
Experimental

curve, 381
data, 252
determination, 390

Exponential, 64, 93
External

fields, 125
light waves, 242, 243, 382
photo excitation, 227

Extreme carrier degeneracy, 83
Extreme degeneracy, 79

F
Faraday rotation effective mass, 56
Fast Fourier transformation, 405
Fermi energy, 9, 11, 12, 14–16, 19, 22, 23, 27,

29, 36, 39, 81, 82, 99, 101, 102, 105,
109, 127, 129, 130, 135, 137, 140, 147,
148, 156, 178, 179, 185, 195, 198, 199,
204, 245, 254, 260, 274, 366, 381

Fermi level, 281
Fermi- Dirac

integral, 12, 132
occupation, 128
occupation probability factor, 20, 254
probability factor, 12

Fiber optic communications, 5
Fibonacci, 362
Field emission displays, 202
Film thickness, 41, 262
Film thickness in non-oscillatory manner, 281
Finite circular, 221
First sub band, 300
Foley and Landenberg, 145
Foley et al., 60
Formidable problem, 273
Free electron, 60
FREM, 119

G
Ga1-xAlxAs, 283
GaAs, 85, 117, 283
GaAs/AlGaAs, 289
Gallium Antimonide, 38
Gallium Phosphide, 31
GaSb, 114
Gaussian, 64
Ge, 37, 113, 198
Ge nanowires (Ge NWs), 221
Generalized

analysis, 116

Index 529



G (cont.)
energy band model, 116
Raman gain, 398

Germanium, 7, 35
Graded interfaces, 305
Graphite, 62
Ground state, 85

H
Hückel approach, 410
Halperian, 64, 172, 221, 311
Hamiltonian, The, 136, 228
Hats, 135
Heavily doped nipi structures, 313, 362
Heavily doped semiconductor nano-tubes, 312
Heaviside step function, 9
Heavy doped semiconductors, 543
Heavy hole, 14, 183, 230, 468, 476
Hg1-xCdxTe, 86
HgTe, 60
HgTe/CdTe, 283, 420
HH subbands, 419
High

electric field limit, 105, 112
mobility, 42
temperature thermoelectrics, 6

Higher fields, 117
Holes, 154
Hot electron effects, 122
Hybrid Model, 20
Hydrogen, 413

I
III–V, 44

materials, 13, 281, 355, 367
semiconductors, 134, 274, 283
SL, 283
ternary and quaternary, 77

II–V semiconductors, 155
II–VI

materials, 16, 370
semiconductors, 5, 106, 183
SL, 283

In1-xGaxAs1-yPy, 86
In1-xGaxAsyP1-y, 164
InAs, 85, 117, 271, 277
Increased band gap, 238
Indirect energy band gap, 408
Infrared sensing, 283
InSb, 119

Integration, 26
Inter-band transition, 230
Intercalant atom, 404
Intermetallic, 429
Inverse magnetic field, 156
Inverse mass band parameters, 64
Inversion asymmetry, 61
Inversion layers, 97–102, 104, 106, 107, 110,

112–115, 119–122, 271, 273
Ionized impurity centers, 381
Introcate computer programming, The, 56
Isotropic

bulk effective mass, 116
effective electron mass, 187
momentum matrix element, 61
spin orbit splitting constant, 10

IV–VI, 119
compounds, 80
materials, 27, 47, 167
semiconductors, 6, 24, 370

K
K.p formalism, 427
K.p model, 408
Kane, 30, 126, 129, 130, 137, 146, 147, 162,

163, 179, 221, 263
Kikoin, 430
Kurobe, 178

L
Landau, 125, 127, 156, 324

levels, 313
quantum number, 127, 135, 144, 398
sub-bands, 125, 300
subbands/levels, 153, 156

Lattice constant, 32
Lax, 23, 126, 142, 221
Lax model, 23, 60
Light

emitting diodes, 4
hole, 14, 183
intensity, 245, 300
waves, 227, 228, 238, 239, 243, 257, 265,

267
Linear combination of bulk bands, 413
Linear way, 165
Longitudinal

and transverse effective electron masses, 8
and transverse effective masses, 35, 152
direction, 41

530 Index



effective electron mass, 107
hole masses, 107

Low dimensional materials, 427
Low temperatures, 273
Lower valley, 46
Lowest

positive root, 22
subband level, 168

Lundstrom group, 413

M
Magnetic field, 125–128, 132, 133, 135, 136,

139–141, 146, 156, 163, 171, 253, 296,
345

Magnetic field/quantization, 153
Magnetic freeze out
Magnetic, 361

quantization, 127, 130, 137, 140
quantum limit, 183
quantum number, 137
subband index, 166

Magneto
dispersion, 153
dispersion law, 153, 155, 254, 255
dispersion relation, 135, 142, 151, 398

Magneto electron energy spectrum, 148
Magneto-Cohen model, 141
Magneto-EEM, 126
Magnetophotoluminescence, 404
Magnetotransport, 405
Mass anisotropy, 41
Mass both quantum number, 148
Material constants, 78
Materials, 163, 205, 384
McClure and Choi model, 136, 138
McClure and Choi, 17, 20, 126, 136–140, 142,

184, 166
Mean diameter, 407
Mechanical properties, 384
Metal-oxide-semiconductor, 97
Miniband index, 76
Mini-bands, 75
Mobility, 127
Model of

Cardona et al., 152
Wang and Ressler, 375
Kane, 10

Momentum
matrix element, 215
matrix, 28

Monochromatic light, 395
Monotonic, 281

MOSFET, 409

N
n-type Cadmium Arsenide, 403
Nano structured materials, 421
Nano

tube, 203
wire effective mass super lattices, 294, 291

Nanocantilever, 202
Nanoelectronic devices, 416
Nanologic gates, 175
Nanomaterials, 202
Nano-photonics, 227
Nano-scale transistors, 252
Nanoswitches, 175
Nanotransistors, 175
Nanowire superlattices, 337
Nanowires, 281, 406, 415, 175, 183, 209, 415,

416
n-CdGeAs2, 41
n-channel inversion layers, 110, 112, 331
n-channel inversion, 98
Nearest neighbor C-C bonding, 203
Negative, 355

quantity, 167
refractive index, 361
values, 116

Newson, 178
n-GaSb, 60
n-Hg1-xCdxTe, 163, 241
n-In1-xGaxAsyP1-y, 241
n-InSb, 271
Nipi, 73, 75–82, 89, 91, 92, 274, 277

structure, 76, 277, 319, 329
subband index, 81
XE subband index, 78

n-MOSFETs, 413
Nonconvergence, 116
Nonequilibrium of the carrier states, 428
Nonlinear

optical, 44
optics, 4
optical compounds, 7
optical materials, 4, 77, 83
optical response, 459

Nonnegligible, 415
Nonparabolic bulk effective mass, 412
Nonparabolic semiconductors, 4
Nonparabolic, 126
Nonparabolicity, 103
Nonquantizing magnetic field, 89
Nonuniform additional electric field, 362

Index 531



N (cont.)
Nonuniform light waves, 312
n-type Pb1-xGaxTe, 62
Numerical computations, 170, 262
Numerically independent, 246

O
Occupancy, 40
Occupation probability, 115
One

dimensional Brillioun zone, 409
dimensional potential, 97

Optical
effective mass, 56
matrix element (OME), 230, 231
susceptibility, 398

Optoelectronic materials, 11, 391, 399
Optoelectronic semiconductors, 329, 333, 338
Orbital overlap, 405
Organic, 65, 361
Oscillatory dependence, 257

P
Palik et al., 126, 368
Parabolic EMA, 413
Paramagnetic semiconductors, 428
Particle-in-a-box, 205
Pb1-xGaxTe, 62
PbTe, 88
p-CdS, 45
Peak of oscillation, 257
Peaks, 156
Period

bandwidth, 87
oscillatory, 164
potential, 73

Perturbations, 24
Photo-detectors, 283
Photoemission, 399
Photo-excitation, 238, 243, 254, 255, 260, 280
Photon energy, 395
Photon, 228, 230, 231, 238
Physical properties of semiconductors, 247
Planck’s constant, 8
Plasma frequency, 56
Platinum Antimonide, 32, 194
Poisson’s equation, 74
Poly-type, 362
Potential well, 97, 273, 311, 361
Presence of many body effects, strain, 430

Presence of strain, 428
Probability factor, 128

Q
Quantization, 125–130, 136, 137, 140, 147,

324
Quantized

levels, 33
magnetic field, 257
materials, 56

Quantizing alternating additional magnetic
field, 362

Quantizing magnetic field, 125, 132, 134, 168,
311, 429

Quantum
cascade lasers, 283
confined materials, 365
confined optoelectronic semiconductors,

319
confinements, 263
dots, 404
Hall Effect, 365
limit approximation, 294
limit, 156, 257, 272
material, 176
number, 33, 36, 147, 189, 195
rings, 65
size effect, 3
wells (QWs), 179, 180, 283, 366
wire, 211

Quasi-crystalline materials, 428
Quaternary , 126, 128, 165

material, 44, 101, 238
semiconductors, 255, 274

R
Radiative energy, 125
Raman gain, 460
Reciprocal lattice vector, 229
Rectangular potential wells, 295
Red light, 393
Reduced effective mass, 272
Relaxed SiNW, 419
Residue theorem, 27
Rossler, 61

S
Sawtooth super-lattices, 313, 362
SdH

532 Index



effect, 4
oscillations, 289

Second order model of Kane, 205
Segmentation fashion, 272
Semiconductor

detector gamma camera, 5
nanostructures, 365
permittivity, 74, 100
super-lattice (SL), 282, 294

Shubnikov de Haas (SdH), 153
effect, 399
measurements, 405

Shubnikov-de Haas oscillations, 125, 257
SiGe, 429
Silicon nanowire, 206, 408
Single ellipsoid , 41
Single-walled carbon nanotubes, 407
SiNW, 413
Size quantum number, 4, 19, 22, 39, 185, 198,

199
Skutterudites, 429
Slight mismatch, 116
Sommerfeld’s lemma, 128, 254, 321
Sp3 passivated with hydrogen atoms, 410
Spectrum constants, 115
Spikes, 50
Spin, 127, 129, 130, 132, 135–141, 162, 169,

138, 230, 231, 255, 256
and broadening, 311
effects, 136
orbit splitting, 127, 129, 162, 246
orbit splitting constant, 99, 177, 262

Split-off holes, 14, 183
Stillman et al., 126, 178, 367
Strain, 215
Strained quantum wells, 48
Strained silicon transistors, 6
Strained-layer EEM, 407
Stress, 29, 30, 63, 63, 82, 147
Stressed, 126, 146, 147

compounds, 82
Kane type compounds, 120
Kane type semiconductors, 28, 146
Kane, 147
materials, 29, 370
semiconductors, 98, 190

Strong electric field, 100, 101, 116, 329
Strong electric field limit, 102, 109, 113
Strong inversion regime, 118
Strongly correlated electron systems, 428
Sub-15 nm film thickness, 355
Sub-5 nm regime, 210

Subband
energies, 9, 11, 15, 39, 73, 78, 79, 81, 111,

255, 256, 259–261, 274, 276, 279, 280
energy, 4–7, 9, 10, 12, 19, 20, 31, 99–102,

104, 105, 107, 114, 115, 178, 193, 265,
266, 268–270

index, 103
index number, 109
level, 87, 355
quantum number, 156

Subhnikov-de Hass oscillations, 156
Superlattice period, 83
Superlattices, 73, 75, 92, 337, 396, 575, 289,

305, 338, 406, 420
Surface electric field, 6–9, 19, 20, 98, 101–

104, 114, 115, 101–103, 114, 265, 266,
268–272

Surface, 109, 111, 114, 262, 330
Switching transistors, 389
System constant, 32

T
Tellurium, 176, 30
Tensile hydrostatic strain shifts up, 419
Tensor component, 17
Ternary, 126, 128

materials, 277
semiconductors, 274

Tetragonal materials, 100
Tetragonal, 9
Thermal imaging, 283
Thermoelectric material, 47
Thermoelectric power, 125, 425
Third order Kane model, 87
Third order nonlinear optical susceptibility,

459
Three band model of Kane, 102
Three band model, 263
Tight-binding model, 416
Topic, 430
Total 2D density-of-states, 12
Total density-of-states (DOS) function, 36,

104
Transition point, 62
Transition zone, 51
Transport direction, 215, 205
Transverse and longitudinal effective electron

masses, 145
Transverse effective electron mass, 107
Triangular potential well, 273
Tunnel field effect transistors, 408

Index 533



T (cont.)
Tunneling devices, 73
Two band model of Kane, 78, 116
Two dimensional electron gas, 97, 405
Two-band model, 179, 263

U
UFs of Bi, 21
Ultrafast optical switch, 7
Ultrathin films (UFs), 2, 22
Uniaxial

compressive strain, 419
strain, 416, 417
tensile strain, 419

Uniqueness conditions, 172
Unperturbed

band structure, 258
carrier energy spectra, 312
conduction electrons, 240
three band model of Kane, 238

V
Valance, 62
Valley degeneracy, 9, 240
Van Hove singularity, 39
Vector potential, 228
Very low temperatures, 55

W
Wang and Ressler, 37
Wave vector space, 27
Wavelength, 393
Weak electric field, 101
Weak electric field limit, 4–6, 12, 15, 19, 98,

99, 101, 102, 107, 111, 114, 115, 265,
266, 270

Weak inversion energy band model, 116
Wide bandgap, 239
Wide gap semiconductors, 133
Wire, 366

dimensions shrink, 412
thickness, 205, 206

Wurtzite structure, 404

Y
Yekimov et al., 427

Z
Zero carriers, 230
Zero thickness, 294
Zero-gap semiconductors, 60
Zig-zag nanotube, 204
Zigzag, 202
Zone, 213

534 Index



About the Authors

Dr. Sitangshu Bhattacharya obtained his MSc and PhD degrees in 2003 and
2009, respectively. He is the co-author of more than 50 scientific research papers
in electro-thermal transport phenomena in semiconductor nanostructures in
international peer reviewed journals and four research monographs among them,
two from Springer series in Materials Science (Vols. 116 and 137), one from
Springer Series in Nanostructure Science and Technology and one from Springer
series in Solid-State Sciences (Vol. 170), respectively. His present research interest
is in electro-thermal management in quantum effect devices and interconnects.

Prof. Dr. Eng. Kamakhya Prasad Ghatak is the first recipient of the degree of
Doctor of Engineering of Jadavpur University in 1991 since the University inception
in 1955. He is the principal co-author of more than 250 scientific research papers in
international peer reviewed journals and the said four research monographs. He is the
invited speaker of SPIE, MRS etc. and is the supervisor of more than two dozens of
PhD candidates. His teaching interests are nonlinear circuit theory, electron devices,
and nonlinear control theory. His present research interests are nano science and
technology besides number theory. Presently He is the Professor and Head of the
Electronics and Communication Engineering Department of National Institute of
Technology, Agartala, India and for more details please visit http://www.amazon.
com/Kamakhya-Prasad-Ghatak/e/B003B09OEY.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9, � Springer-Verlag Berlin Heidelberg 2013

535

http://www.amazon.com/Kamakhya-Prasad-Ghatak/e/B003B09OEY
http://www.amazon.com/Kamakhya-Prasad-Ghatak/e/B003B09OEY

	Effective Electron Massin Low-Dimensional Semiconductors
	Preface
	Contents
	Part I Influence of Quantum Confinement on the Effective Electron Mass (EEM) in Non-Parabolic Semiconductors
	Part II Influence of Light Waves on the EEM in Optoelectronic Semiconductors
	Part III Influence of Intense Electric Field on the EEM in Optoelectronic Semiconductors
	Appendix AThe EEM in Compound Semiconductorsand Their Nano-Structures UnderCross-Fields Configuration
	Appendix B The EEM in Heavily Doped CompoundSemiconductors
	Appendix C The EEM in Superlattices of HeavilyDoped Non-Parabolic Semiconductors
	References
	Index



