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Preface

Strong dynamics constitutes one of the pillars of the standard model of particle
interactions, and it accounts for the bulk of the visible matter in the universe. It is
therefore a well-posed question to ask if the rest of the universe can be described in
terms of new highly natural four-dimensional strongly coupled theories. The goal
is to provide a coherent overview of how new strong dynamics can be employed to
address the relevant challenges in particle physics and cosmology from composite
Higgs dynamics to dark matter and inflation. We will first introduce the topic of
dynamical breaking of the electroweak symmetry also known as technicolor. The
knowledge of the phase diagram of strongly coupled theories plays a fundamental
role when trying to construct viable extensions of the standard model. Therefore,
we present the state-of-the-art of the phase diagram for gauge theories as function
of the number of colors, flavors, matter representation, and gauge group. Recent
extensions of the standard model featuring minimal technicolor theories are then
introduced as relevant examples. We finally show how technicolor or in general
new strongly coupled theories can lead to natural candidates of composite dark
matter and inflation.

Odense, June 2012 Francesco Sannino
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Chapter 1
Technicolor Prelude

Abstract The energy scale at which the Large Hadron Collider experiment (LHC)
operates is determined by the need to complete the standard model of particle interac-
tions. In particular LHC is set to unveil the origin of mass of any known elementary
particle, i.e. the Higgs mechanism. Together with classical general relativity the
standard model constitutes one of the most successful models of nature. We shall,
however, argue that experimental results and theoretical arguments call for a more
fundamental description of nature. Technicolor offers a physical mechanism underly-
ing the Higgs sector of the standard model. We will review strengths and weaknesses
of technicolor calling for novel type of strong dynamics.

1.1 The Need to go Beyond

In the first figure we schematically represent, in green, the known forces of nature. The
standard model of particle physics describes the strong, weak and electromagnetic
forces. The yellow region represents the energy scale around the TeV scale and being
explored directly at the LHC, while the red part of the diagram is speculative Fig. 1.1.

All of the known elementary particles constituting the standard model fit on the
postage stamp shown in Fig. 1.2. Interactions among quarks and leptons are carried
by gauge bosons. Massless gluons mediate the strong force among quarks while the
massive gauge bosons, i.e. the Z and W , mediate the weak force and interact with
both quarks and leptons. Finally, the massless photon, the quantum of light, interacts
with all of the electrically charged particles. The standard model Higgs does not feel,
directly, strong interactions. The interactions emerge naturally by invoking a gauge
principle. It is intimately linked with the underlying symmetries relating the various
particles of the standard model.

The asterisk on the Higgs boson in the postage stamp indicates that the discovery of
a new state with properties similar to the standard model Higgs has been announced
on the 4th of July 2012 by the ATLAS and CMS experimental collaborations at
CERN. More details and physical implications can be found in the next section.

F. Sannino, Dynamical Stabilization of the Fermi Scale, SpringerBriefs in Physics, 1
DOI: 10.1007/978-3-642-33341-5_1, © The Author(s) 2013



2 1 Technicolor Prelude

Fig. 1.1 Cartoon representing the various forces of nature. At very high energies one may imagine
that all the low-energy forces unify in a single force

Fig. 1.2 Postage stamp rep-
resenting all of the elementary
particles which constitute
the standard model. The
forces are mandated with the
SU(3) × SU(2) × U(1) gauge
group

Intriguingly the standard model Higgs is the only fundamental scalar of the standard
model.

The standard model can be viewed as a low-energy effective theory valid up to
an energy scale Λ, as schematically represented in Fig. 1.3. Above this scale new
interactions, symmetries, extra dimensional worlds or any other extension could
emerge. At sufficiently low energies with respect to this scale one expresses the
existence of new physics via effective operators. The success of the standard model
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Fig. 1.3 The standard model
can be viewed as a low-energy
theory valid up to a high
energy scale Λ

is due to the fact that most of the corrections to its physical observables depend
only logarithmically on this scale Λ. In fact, in the standard model there exists only
one operator which acquires corrections quadratic in Λ. This is the squared mass
operator of the Higgs boson. Since Λ is expected to be the highest possible scale, in
four dimensions the Planck scale, it is hard to explain naturally why the mass of the
Higgs is of the order of the electroweak scale. This is the hierarchy problem. Due
to the occurrence of quadratic corrections in the cutoff this standard model sector is
most sensitive to the existence of new physics.

1.2 The Higgs and its Scent

It is a fact that the standard model Higgs allows for a direct and economical way of
spontaneously breaking the electroweak symmetry. It generates simultaneously the
masses of the quarks and leptons without introducing flavor changing neutral currents
at the tree level. The Higgs sector of the standard model possesses, when the gauge
couplings are switched off, an SUL(2)×SUR(2) symmetry. The full symmetry group
can be made explicit when re-writing the Higgs doublet field

H = 1√
2

(
π2 + iπ1
σ − iπ3

)
(1.1)

as the right column of the following two by two matrix:

1√
2

(σ + iτ · π) ≡ M. (1.2)
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The first column can be identified with the column vector τ2H∗ while the second
with H and τ2 is the second Pauli matrix. The SUL(2) × SUR(2) group acts linearly
on M according to:

M → gLMg†
R and gL/R ∈ SUL/R(2) . (1.3)

One can verify that:

M

(
1 − τ3

)
2

= [0, H] . M

(
1 + τ3

)
2

= [
i τ2H∗, 0

]
. (1.4)

With [0, H] we mean that this is a two by two matrix with the first column made
by zeros and the second column is made by the H entries. Similarly for

[
iτ2H∗, 0

]
.

The SUL(2) symmetry is gauged by introducing the weak gauge bosons Wa with
a = 1, 2, 3. The hypercharge generator is taken to be the third generator of SUR(2).
The ordinary covariant derivative acting on the Higgs, in the present notation, is:

DμM = ∂μM − igWμM + ig′MBμ, with Wμ = Wa
μ

τa

2
, Bμ = Bμ

τ3

2
.

(1.5)

The Higgs Lagrangian is

L = 1

2
Tr

[
DμM†DμM

]
− m2

2
Tr

[
M†M

]
− λ

4
Tr

[
M†M

]2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and
this leads to the electroweak symmetry breaking. Except for the Higgs mass term
the other standard model operators have dimensionless couplings meaning that the
natural scale for the standard model is encoded in the Higgs mass.1

At the tree level, when taking m2 negative and the self-coupling λ positive, one
determines:

〈σ〉2 ≡ v2
weak = |m2|

λ
and σ = vweak + h, (1.7)

where h is the Higgs field. The global symmetry breaks to its diagonal subgroup:

SUL(2) × SUR(2) → SUV (2) . (1.8)

To be more precise the SUR(2) symmetry is already broken explicitly by our choice
of gauging only an UY (1) subgroup of it and hence the actual symmetry breaking
pattern is:

1 The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.
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SUL(2) × UY (1) → UQ(1) , (1.9)

with UQ(1) the electromagnetic abelian gauge symmetry. According to the Nambu-
Goldstone’s theorem three massless degrees of freedom appear, i.e. π± and π0. In
the unitary gauge these Goldstones become the longitudinal degree of freedom of
the massive elecetroweak gauge-bosons. Substituting the vacuum value for σ in the
Higgs Lagrangian the gauge-bosons quadratic terms read:

v2
weak

8

[
g2

(
W1
μWμ,1 + W2

μWμ,2
)

+
(

gW3
μ − g′ Bμ

)2
]

. (1.10)

The Zμ and the photon Aμ gauge bosons are:

Zμ = cos θW W3
μ − sin θW Bμ ,

Aμ = cos θW Bμ + sin θW W3
μ , (1.11)

with tan θW = g′/g while the charged massive vector bosons are W±
μ = (W1 ±

iW2
μ)/

√
2. The bosons masses M2

W = g2 v2
weak/4 due to the custodial symmetry

satisfy the tree level relation M2
Z = M2

W/ cos2 θW . Holding fixed the EW scale vweak

the mass squared of the Higgs boson is 2λv2
weak and hence it increases with λ. We

recall that the Higgs Lagrangian has a familiar form since it is identical to the linear
σ Lagrangian which was introduced long ago to describe chiral symmetry breaking
in QCD with two light flavors. We will discuss this formal similarity in the next
sections.

Besides breaking the electroweak symmetry dynamically the ordinary Higgs
serves also the purpose to provide mass to all of the standard model particles via
the Yukawa terms of the type:

− Yij
d Q̄i

LHdj
R − Yij

u Q̄i
L(iτ2H∗)uj

R + h.c. , (1.12)

where Yq is the Yukawa coupling constant, QL is the left-handed Dirac spinor of
quarks, H the Higgs doublet and q the right-handed Weyl spinor for the quark and
i, j the flavor indices. The SUL(2) weak and spinor indices are suppressed.

When considering quantum corrections the Higgs mass acquires large quantum
corrections proportional to the scale of the cutoff squared.

MH
2
ren − M2

H = kg2Λ2

16π2 . (1.13)

Here g is and electroweak constant and k a numerical factor depending on the specific
model, expected to be O(1). Λ is the highest energy above which the standard model
is no longer a valid description of nature and a large fine tuning of the parameters
of the Lagrangian is needed to offset the effects of the cutoff. This large fine tuning
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Fig. 1.4 Values of the Higgs
mass from the standard fit
(which does not take into
account direct Higgs searches)
obtained by excluding differ-
ent electroweak observables.
The green band represent the
1σ error range around the best
fit value of MH
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is needed because there are no symmetries protecting the Higgs mass operator from
large corrections which would hence destabilize the Fermi scale (i.e. the electroweak
scale). This problem is the one we referred above as the hierarchy problem of the
standard model Fig. 1.4.

The constant value of the Higgs field evaluated on the ground state is determined
by the measured mass of the W boson. On the other hand, the value of the standard
model Higgs mass (MH ) is constrained only indirectly by the electroweak precision
data. The preferred value of the Higgs mass (obtained by the standard fit which
excludes direct Higgs searches at LEP and Tevatron) is MH = 95.7+30.6

−24.2 GeV at
68 % confidence level (CL) with a 95 % CL upper limit MH < 171.5 GeV, as given
by the generic fitting package Gfitter [1]. The corresponding results obtained by
a fit including the direct Higgs searches produces MH = 120.6+17.9

−5.2 GeV at 68 %
confidence level (CL) with a 95 % CL upper limit MH < 155.3 GeV, as reported on
http://gfitter.desy.de/GSM/ by the Gfitter Group.2

2 All the plots and numerical results we use in this section are reported by the Gfitter Group and
can be found at the web-address: http://gfitter.desy.de/GSM/.

http://gfitter.desy.de/GSM/
http://gfitter.desy.de/GSM/
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68%, 95%, 99% CL fit contours
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Fig. 1.5 The 68, 95, and 99 % CL contours of the electroweak parameters S and T determined from
different observables derived from a fit to the electroweak precision data. The gray area gives the
standard model prediction with mt and MH varied as shown. MH = 120 GeV and mt = 173.1 GeV
defines the reference point at which all oblique parameters vanish

The final result of the average of all of the measures, however, has a Pearson’s chi-
square (χ2) test of 17.5 for 14 degrees of freedom. A Higgs heavier than 155.3 GeV
is compatible with precision tests if we allow simultaneously new physics to com-
pensate for the effects of the heavier value of the mass. The precision measurements
of direct interest for the Higgs sector are often reported using the S and T parameters
as shown in Fig. 1.5. From this graph one deduces that a heavy Higgs is compatible
with data at the expense of a large value of the T parameter. Actually, even the lower
direct experimental limit on the Higgs mass can be evaded with suitable extensions
of the standard model Higgs sector.

Direct searches results, updated July 2012, from the Large Hadron Collider (LHC)
experimental collaborations exclude the standard model Higgs mass in the following
mass ranges 111.7–121.8 and 130.7–523 GeV at the 99 % confidence level [2, 3] in
agreement with the latest Fermilab Tevatron results [4]. See also for earlier published
results [5–10] while the combined LEP2 results exclude it below 114.5 GeV at the
95 % confidence level [11].

Excitingly in the low mass window for the Higgs, not excluded by experiments,
both ATLAS and CMS collaborations at LHC have independently reported the dis-
covery3 of a new particle [2, 3] with properties close to the standard model Higgs.
In Fig. 1.6 are shown the ATLAS results, updated to July 2012, for the two relevant
decay channels of the Higgs which have driven the discovery of the new particle.

The burning question is clearly whether the new particle state is indeed the stan-
dard model Higgs. In fact, given the current experimental status it is not yet possible
to establish with certainty that the newly established state is the missing Higgs boson

3 Corresponding to, at least, a 5σ deviation from the background.
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H

The scent of the Higgs

Fig. 1.6 ATLAS results [2] for the two processes associated to the searches for Higgs decaying in
two photons (upper left) and four leptons (bottom right). Both plots corresponds to the associated
number of events as function of the final state invariant mass measured in GeV. The shaded ellipses
indicate the correlated excesses in the two processes allowing to determine the mass of the new
particle state. Similar results have been reported by the CMS collaboration [3]

although it does smell like it. To determine the nature of the new state the experiments
are studying how it is produced and how it decays into standard model particles.

As for the implications of this discovery on our understanding of Nature we
can already say that albeit the nature of the new particle is not fully determined its
presence is related to the puzzle of the origin of mass of every elementary particle.
One can envision, at least, two major logical possibilities: (i) The new state is a
fundamental boson as predicted within the Higgs sector of the standard model or
its supersymmetric extensions. By fundamental here we mean that it is not made
out of something else. If this were confirmed it would be important given that no
other elementary spin zero boson has ever been discovered in Nature. (ii) The other
possibility is that the new state is not elementary but composed of more fundamental
objects. As the proton and neutron are composed by quarks likewise this state may
be composed by new type of quarks. In this scenario experiments at CERN have the
chance to discover many more new composite particles built from rearranging the
new type of quarks in different combinations. More exotic possibilities have been
envisioned by theorists and are not yet excluded by the current experimental results.
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Therefore the new discovers begs the questions: Is the new state composite? How
many Higgs fields are there in nature? Are there hidden sectors? Is the standard
model written in magnetic or electric variables [12]?

1.3 Riddles

Why do we expect that there is new physics awaiting to be discovered? Of course
the discovery of the presumed Higgs is an extraordinary feat for our understanding
of Nature but leaves us with a standard model which has both conceptual problems
and phenomenological shortcomings. In fact, theoretical arguments indicate that the
standard model cannot constitute the ultimate description of nature:

• Hierarchy Problem: The Higgs sector is highly fine-tuned. We have no natural
separation between the Planck and the electroweak scale.

• Strong CP Problem: There is no natural explanation for the smallness of the
electric dipole moment of the neutron within the standard model. This problem is
also known as the strong CP problem.

• Origin of Patterns: The standard model can fit, but cannot explain the number of
matter generations and their mass texture.

• Unification of the Forces: Why do we have so many different interactions? It
is appealing to imagine that the standard model forces could unify into a single
Grand Unified Theory (GUT). We could imagine that at very high energy scales
gravity also becomes part of a unified description of nature.

There is no doubt that the standard model is incomplete since we cannot even account
for a number of basic observations:

• Neutrino Physics: Only recently it has been possible to have some definite answers
about properties of neutrinos. We now know that they have a tiny mass, which can
be naturally accommodated in extensions of the standard model, featuring for
example a see-saw mechanism. We do not yet know if the neutrinos have a Dirac
or a Majorana nature.

• Origin of Bright and Dark Matter: Leptons, quarks and the gauge bosons mediat-
ing the weak interactions possess a rest mass. Within the standard model this mass
can be accounted for by the Higgs mechanism, which constitutes the electroweak
symmetry breaking sector of the standard model. However, the associated Higgs
particle has not yet been discovered. Besides, the standard model cannot account
for the observed large fraction of dark mass of the universe. What is interesting is
that in the universe the dark matter (DM) is about five times more abundant than
the known baryonic matter, i.e. bright matter. We do not know why the ratio of
dark to bright matter is of order unity.

• Matter-Antimatter Asymmetry: From our everyday experience we know that
there is very little bright antimatter in the universe. The standard model fails to
predict the observed excess of matter.
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These arguments do not imply that the standard model is necessarily incorrect,
but it must certainly be extended to answer any of the questions raised above. The
truth is that we do not have an answer to the basic question: What lies beneath the
standard model?

A number of possible generalizations of the standard model have been introduced
based on one or more guiding principles or prejudices (see for technical reviews and
the associated LHC phenomenology [13, 14]).

In the models we will consider here the electroweak symmetry breaks via a fermion
bilinear condensate. The Higgs sector of the standard model becomes an effective
description of a more fundamental fermionic theory. This is similar to the Ginzburg-
Landau theory of superconductivity. If the force underlying the fermion condensate
driving electroweak symmetry breaking is due to a strongly interacting gauge theory
these models are termed technicolor.

Technicolor, in brief, is an additional non-abelian and strongly interacting gauge
theory augmented with (techni)fermions transforming under a given representation
of the gauge group. The Higgs Lagrangian is replaced by a suitable new fermion
sector interacting strongly via a new gauge interaction (technicolor). Schematically:

LHiggs → −1

4
FμνFμν + iQ̄γμDμQ + · · · , (1.14)

where, to be as general as possible, we have left unspecified the underlying nonabelian
gauge group and the associated technifermion (Q) representation. The dots represent
new sectors which may even be needed to avoid, for example, anomalies introduced
by the technifermions. The intrinsic scale of the new theory is expected to be less
or of the order of a few TeVs. The chiral-flavor symmetries of this theory, as for
ordinary QCD, break spontaneously when the technifermion condensate Q̄Q forms. It
ispossible tochoose the fermioncharges in suchaway that there is, at least, aweak left-
handed doublet of technifermions and the associated right-handed one which is a weak
singlet.Thecovariantderivativecontains thenewgaugefieldaswellas theelectroweak
ones. The condensate spontaneously breaks the electroweak symmetry down to the
electromagnetic and weak interactions. The Higgs is now interpreted as the lightest
scalar field with the same quantum numbers of the fermion-antifermion composite
field.TheLagrangianpartresponsiblefor themass-generationoftheordinaryfermions
will also be modified since the Higgs particle is no longer an elementary object.

Models of electroweak symmetry breaking via new strongly interacting theories
of technicolor type [15, 16] are a mature subject (for recent reviews see [17–19]).
One of the main difficulties in constructing such extensions of the standard model
is the very limited knowledge about generic strongly interacting theories. This has
led theorists to consider specific models of technicolor which resemble ordinary
quantum chromodynamics and for which the large body of experimental data at low
energies can be directly exported to make predictions at high energies. Unfortunately
the simplest version of this type of models are at odds with electroweak precision
measurements. New strongly coupled theories with dynamics very different from the
one featured by a scaled up version of QCD are needed [20].
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We will review models of dynamical electroweak symmetry breaking making
use of new type of four dimensional gauge theories [20–22] and their low energy
effective description [23] useful for collider phenomenology. The phase structure
of a large number of strongly interacting nonsupersymmetric theories, as function
of number of underlying colors will be uncovered with traditional nonperturbative
methods [24] as well as novel ones [25]. We will discuss possible applications to
cosmology as well. These lectures should be integrated with earlier reviews [17–19,
26–31] on the various subjects treated here.

1.4 Superconductivity: The Condensed Matter
Template

It is a fact that the standard model does not fail, when experimentally tested, to
describe all of the known forces to a very high degree of experimental accuracy. This
is true even if we include gravity. Why is it so successful? The standard model is a low
energy effective theory valid up to a scale Λ above which new interactions, symme-
tries, extra dimensional worlds or any possible extension can emerge. At sufficiently
low energies with respect to the cutoff scale Λ one expresses the existence of new
physics via effective operators. The success of the standard model is due to the fact
that most of the corrections to its physical observable depend only logarithmically
on the cutoff scale Λ. Superrenormalizable operators are very sensitive to the cut off
scale. In the standard model there exists only one operator with naive mass dimension
two which acquires corrections quadratic in Λ. This is the squared mass operator of
the Higgs boson. Since Λ is expected to be the highest possible scale, in four dimen-
sions the Planck scale, it is hard to explain naturally why the mass of the Higgs is of
the order of the electroweak scale. Due to the occurrence of quadratic corrections in
the cutoff this is the standard model sector highly sensitive to the existence of new
physics. In nature we have already observed Higgs-type mechanisms. Ordinary super-
conductivity and chiral symmetry breaking in QCD are two time-honored examples.
In both cases the mechanism has an underlying dynamical origin with the Higgs-like
particle being a composite object of fermionic fields. We will start from these two
time-honored examples to motivate technicolor extensions of the standard model.

The breaking of the electroweak theory is a relativistic screening effect. It is useful
to parallel it to ordinary superconductivity which is also a screening phenomenon
albeit non-relativistic. The two phenomena happen at a temperature lower than a
critical one. In the case of superconductivity one defines a density of superconductive
electrons ns and to it one associates a macroscopic wave function ψ such that its
modulus squared

|ψ|2 = nC = ns

2
, (1.15)

is the density of Cooper’s pairs. That we are describing a nonrelativistic system is
manifest in the fact that the macroscopic wave function squared, in natural units, has
mass dimension three while the modulus squared of the Higgs wave function evalu-
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ated at the minimum is equal to < |H|2 >= v2
weak/2 and has mass dimension two,

i.e. is a relativistic wave function. One can adjust the units by considering, instead of
the wave functions, the Meissner-Mass of the photon in the superconductor which is

M2 = q2ns/(4me) , (1.16)

with q = −2e and 2me the charge and the mass of a Cooper pair which is consti-
tuted by two electrons. In the electroweak theory the Meissner-Mass of the photon
is compared with the relativistic mass of the W gauge boson

M2
W = g2v2

weak/4 , (1.17)

with g the weak coupling constant and vweak the electroweak scale. In a superconduc-
tor the relevant scale is given by the density of superconductive electrons typically
of the order of ns ∼ 4 × 1028 m−3 yielding a screening length of the order of
ξ = 1/M ∼ 10−6 cm. In the weak interaction case we measure directly the mass of
the weak gauge boson which is of the order of 80 GeV yielding a weak screening
length ξW = 1/MW ∼ 10−15 cm.

For a superconductive system it is clear from the outset that the wave function
ψ is not a fundamental degree of freedom, however for the Higgs we are not yet
sure about its origin. The Ginzburg-Landau effective theory in terms of ψ and the
photon degree of freedom describes the spontaneous breaking of the UQ(1) electric
symmetry and it is the equivalent of the Higgs Lagrangian.

If the Higgs is due to a macroscopic relativistic screening phenomenon we expect
it to be an effective description of a more fundamental system with possibly an
underlying new strong gauge dynamics replacing the role of the phonons in the
superconductive case. A dynamically generated Higgs system solves the problem of
the quadratic divergences by replacing the cutoff Λ with the weak energy scale itself,
i.e. the scale of compositeness. An underlying strongly coupled asymptotically free
gauge theory, a la QCD, is an example.

1.5 From Color to Technicolor

Does the electroweak symmetry break in the complete absence of the standard model
Higgs sector? The answer is Yes. QCD already breaks the electroweak symmetry
spontaneously as we shall momentarily show. In fact, in QCD with two light quarks
(up and down) the quantum global symmetry group is exactly SUL(2)×SUR(2) up to
the baryon number UB(1). A matrix MQCD of composite fields formally identical to
the one introduced in the ordinary Higgs mechanism (e.g. (1.2)) can be constructed
using the quarks bilinears which, in a suggestive form, reads

σQCD ∼ q̄q , πQCD ∼ iq̄τγ5q, (1.18)
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building the QCD meson matrix MQCD. This symmetry is known as the chiral sym-
metry of QCD which experiments have first indicated to break spontaneously to an
unbroken subgroup SUV (2). In this case, when setting to zero the up and down quark
masses, there are three Goldstone modes (π).

Turning on the electroweak interactions is done by simply recalling that the quarks
up and down form a weak doublet. Therefore the SU(2)L symmetry is gauged by
introducing the weak gauge bosons Wa with a = 1, 2, 3. The hypercharge generator
is taken to be the third generator of SU(2)R. The ordinary covariant derivative acting
on the standard model Higgs (M) acts identically on the QCD matrix MQCD and we
have:

DμMQCD = ∂μMQCD − igWμMQCD + ig′MQCD Bμ, with Wμ = Wa
μ
τa

2
, Bμ = Bμ

τ3

2
.

(1.19)

Recalling the fact that chiral symmetry is dynamically broken in QCD we have:

〈σQCD〉2 ≡ v2
QCD and σQCD = vQCD + hQCD , (1.20)

where hQCD is a QCD scalar meson. It is a bilinear, in the quarks, excitation around
the vacuum expectation value of σQCD and remains heavy.4

In this way we have achieved that the global symmetry breaks dynamically to its
diagonal subgroup:

SUL(2) × SUR(2) → SUV (2). (1.21)

To be more precise the SU(2)R symmetry is already broken explicitly by our choice
of gauging only an UY (1) subgroup of it and hence the actual symmetry breaking
pattern is:

SUL(2) × UY (1) → UQ(1), (1.22)

4 The nature of this scalar state constitutes a phenomenological important puzzle in QCD. This is
so since this state possesses the quantum numbers of the vacuum and therefore mixes with several
other states of the theory made of higher quark and glue Fock states [32–36]. However there is a
simple and clear limit in which some light can be shed. This is the ’t Hooft mathematical large
number of colors limit. In this limit all the mesons made by quark bilinears become stable and non-
interacting. Therefore we expect this state to exist also when reducing the number of colors to three.
One possibility is to identify it with f0(1300). Of course this state at any finite number of colors
will never be a pure bilinear one. There is much confusion in the literature about this quark bilinear
which is often erroneously identified with the f0(600) resonance. This state is not (mostly) a quark
bilinear but its nature and physical properties are closer to the ones expected from a multi-quark
state nature [32–34, 36]. f0(600) is, however, a crucial ingredient in the unitarization of pion-pion
scattering at low energies and this fact is not directly related to the composition of the scalar meson
but simply with its overall quantum numbers [32–34, 36] under space-time symmetries and the
unbroken SUV (2) global symmetry.
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with UQ(1) the electromagnetic abelian gauge symmetry. According to the Nambu-
Goldstone’s theorem three massless degrees of freedom appear, i.e. π±

QCD and π0
QCD.

In the unitary gauge these Goldstones become the longitudinal degree of freedom of
the massive elecetroweak gauge-bosons. Substituting the vacuum value for σQCD in
the Higgs Lagrangian the gauge-bosons quadratic terms read:

v2
QCD

8

[
g2

(
W1
μWμ,1 + W2

μWμ,2
)

+
(

g W3
μ − g′ Bμ

)2
]

. (1.23)

The Zμ and the photon Aμ spectral relations are identical to the case of the standard
model Higgs sector, and the masses are now M2

W = g2 v2
QCD/4 which also due to

the custodial symmetry (now naturally identified with the QCD isospin symmetry)
satisfy the tree level relation M2

Z = M2
W/ cos2 θW .

What is missing to have a phenomenologically successful explanation of the
observed spontaneous breaking of the electroweak gauge symmetry?

• The scale of the QCD condensate is too small to be able to account for the observed
mass of the electroweak gauge bosons. In fact if QCD would be the only source con-
tributing to the spontaneous breaking of the electroweak symmetry one would have

MW = gFπ
2

∼ 29 MeV, (1.24)

with Fπ = vQCD � 93 MeV the pion decay constant. This contribution is very
small with respect to the actual value of the MW mass that one typically neglects it.

• We observed experimentally three light (pseudo) Goldstone bosons identified with
the QCD pions.

• The quarks themselves have masses which means that another mechanism is in
place for giving masses to the standard model fermions.

The first two issues can be resolved by postulating the existence of yet another
strongly coupled theory with a dynamical scale taken to be the electroweak one
(vQCD → vweak), while the third one requires yet another sector. Weinberg [15] and
Susskind [16] considered a new copy of QCD by simply rescaling the invariant mass
of the theory, e.g. the new proton mass, and dubbed the model technicolor. How-
ever this model is at odds with experiments while the idea of dynamical breaking
of the electroweak theory is very much alive. Whatever the new sector responsible
for dynamical electroweak symmetry breaking is it will mix with the QCD one.
In fact, the observed QCD physical pions are linear combination of the QCD pion
eigenstates and the ones emerging from the new sector. The mixing is of the order of
vQCD/vweak ∼ 10−3. Through this mixing the physical pion wave function, if mea-
sured with great accuracy, should be able to reveal the mechanism behind electroweak
symmetry breaking using low energy data.

If the new gauge dynamics contains only fermionic matter than quantum correc-
tions lead, at most, to logarithmic corrections to the bare parameters of the theory,
and therefore the theory is said to be technically natural. A layman version of this
statement is that: small parameters stay small under renormalization.
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Therefore, according to the original idea of technicolor [15, 16] one augments
the standard model with another gauge interaction similar to QCD but with a new
dynamical scale of the order of the electroweak one. It is sufficient that the new gauge
theory is asymptotically free and has global symmetry able to contain the standard
model SUL(2)×UY (1) symmetries. It is also required that the new global symmetries
break dynamically in such a way that the embedded SUL(2) × UY (1) breaks to the
electromagnetic abelian charge UQ(1). The dynamically generated scale will then
be fit to the electroweak one.

Note that, except in certain cases, dynamical behaviors are typically nonuniver-
sal which means that different gauge groups and/or matter representations will, in
general, possess very different dynamics.

The simplest example of technicolor theory is the scaled up version of QCD, i.e. an
SU(NTC) nonabelian gauge theory with two Dirac Fermions transforming according
to the fundamental representation or the gauge group. We need at least two Dirac
flavors to realize the SUL(2) × SUR(2) symmetry of the standard model discussed
in the standard model Higgs section. One simply chooses the scale of the theory to
be such that the new pion decaying constant is:

FTC
π = vweak � 246 GeV . (1.25)

The flavor symmetries, for any NTC larger than 2 are SUL(2) × SUR(2) × UV (1)

which spontaneously break to SUV (2)×UV (1). It is natural to embed the electroweak
symmetries within the present technicolor model in such a way that the hypercharge
corresponds to the third generator of SUR(2). This simple dynamical model correctly
accounts for the electroweak symmetry breaking. The new technibaryon number
UV (1) can break due to not yet specified new interactions. In order to get some
indication on the dynamics and spectrum of this theory one can use the ’t Hooft large
N limit [37–39]. For example the intrinsic scale of the theory is related to the QCD
one via:

ΛTC ∼
√

3

NTC

FTC
π

Fπ
ΛQCD . (1.26)

At this point it is straightforward to use the QCD phenomenology for describing the
experimental signatures and dynamics of a composite Higgs.

1.6 Constraints from Electroweak Precision Data

The relevant corrections due to the presence of new physics trying to modify the
electroweak breaking sector of the standard model appear in the vacuum polariza-
tions of the electroweak gauge bosons. These can be parameterized in terms of
the three quantities S, T , and U (the oblique parameters) [40–43], and confronted
with the electroweak precision data. Recently, due to the increase precision of the
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measurements reported by LEP II, the list of interesting parameters to compute has
been extended [44, 45]. We show below also the relation with the traditional one
[40]. Defining with Q2 ≡ −q2 the Euclidean transferred momentum entering in a
generic two point function vacuum polarization associated to the electroweak gauge
bosons, and denoting derivatives with respect to −Q2 with a prime we have [45]:

Ŝ ≡ g2 Π ′
W3B(0), (1.27)

T̂ ≡ g2

M2
W

[
ΠW3W3(0) − ΠW+W−(0)

]
, (1.28)

W ≡ g2M2
W

2

[
Π ′′

W3W3(0)
]
, (1.29)

Y ≡ g′2M2
W

2

[
Π ′′

BB(0)
]
, (1.30)

Û ≡ −g2 [
Π ′

W3W3(0) − Π ′
W+W−(0)

]
, (1.31)

V ≡ g2 M2
W

2

[
Π ′′

W3W3(0) − Π ′′
W+W−(0)

]
, (1.32)

X ≡ gg′ M2
W

2
Π ′′

W3B(0). (1.33)

Here ΠV (Q2) with V = {W3B, W3W3, W+W−, BB} represents the self-energy of
the vector bosons. The electroweak couplings are the ones associated to the physical
electroweak gauge bosons:

1

g2 ≡ Π ′
W+W−(0),

1

g′2 ≡ Π ′
BB(0) , (1.34)

while GF is
1√
2GF

= −4ΠW+W−(0) , (1.35)

as in [46]. Ŝ and T̂ lend their name from the well known Peskin-Takeuchi parameters
S and T which are related to the new ones via [45, 46]:

αS

4s2
W

= Ŝ − Y − W , αT = T̂ − s2
W

1 − s2
W

Y . (1.36)

Hereα is the electromagnetic structure constant and sW = sin θW is the weak mixing
angle. Therefore in the case where W = Y = 0 we have the simple relation

Ŝ = αS

4s2
W

, T̂ = αT . (1.37)
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Fig. 1.7 T versus S for
SU(3) technicolor with one
technifermion doublet (the
black point) versus precision
data for a one TeV composite
Higgs mass (the shaded area)
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The result of the fit is shown in Fig. 1.5. If the value of the Higgs mass increases the
central value of the S parameter moves to the left towards negative values.
In technicolor it is easy to have a vanishing T parameter while typically S is positive.
Besides, the composite Higgs is typically heavy with respect to the Fermi scale, at
least for technifermions in the fundamental representation of the gauge group and
for a small number of techniflavors. The oldest technicolor models featuring QCD
dynamics with three technicolors and a doublet of electroweak gauged technifla-
vors deviate a few sigma from the current precision tests as summarized in Fig. 1.7.
Clearly it is desirable to reduce the tension between the precision data and a possible
dynamical mechanism underlying the electroweak symmetry breaking. It is possible
to imagine different ways to achieve this goal and some of the earlier attempts have
been summarized in [47].

The computation of the S parameter in technicolor theories requires the knowledge
of nonperturbative dynamics making difficult the precise knowledge of the contribu-
tion to S. For example, it is not clear what is the exact value of the composite Higgs
mass relative to the Fermi scale and, to be on the safe side, one typically takes it to
be quite large, of the order at least of the TeV. However in certain models it may be
substantially lighter due to the intrinsic dynamics. We will discuss the electroweak
parameters later in this chapter.

It is, however, instructive to provide a simple estimate of the contribution to S
which allows to guide model builders. Consider a one-loop exchange of ND doublets
of techniquarks transforming according to the representation RTC of the underlying
technicolor gauge theory and with dynamically generated mass Σ(0) assumed to be
larger than the weak intermediate gauge bosons masses. Indicating with d(RTC) the
dimension of the techniquark representation, and to leading order in MW/Σ(0) one
finds:

Snaive = ND
d(RTC)

6π
. (1.38)
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This naive value provides, in general, only a rough estimate of the exact value of
S. However, it is clear from the formula above that, the more technicolor matter is
gauged under the electroweak theory the larger is the S parameter and that the final
S parameter is expected to be positive.

Attention must be paid to the fact that the specific model-estimate of the whole S
parameter, to compare with the experimental value, receives contributions also from
other sectors. Such a contribution can be taken sufficiently large and negative to com-
pensate for the positive value from the composite Higgs dynamics. To be concrete:
Consider an extension of the standard model in which the Higgs is composite but we
also have new heavy (with a mass of the order of the electroweak) fourth family of
Dirac leptons. In this case a sufficiently large splitting of the new lepton masses can
strongly reduce and even offset the positive value of S. We will discuss this case in
detail when presenting the Minimal Walking technicolor (MWT) model. The contri-
bution of the new sector (SNS) above, and also in many other cases, is perturbatively
under control and the total S can be written as:

S = STC + SNS . (1.39)

The parameter T will be, in general, modified and one has to make sure that the cor-
rections do not spoil the agreement with this parameter. From the discussion above it
is clear that technicolor models can be constrained, via precision measurements, only
model by model and the effects of possible new sectors must be properly included. We
presented the constraints coming from S using the underlying gauge theory informa-
tion. However, in practice, these constraints apply directly to the physical spectrum.
To be concrete we will present in Sect. 3.3.7 a model of walking technicolor passing
the precision tests.

1.7 Standard Model Fermion Masses

Since in a purely technicolor model the Higgs is a composite particle the Yukawa
terms, when written in terms of the underlying technicolor fields, amount to four-
fermion operators. The latter can be naturally interpreted as a low energy operator
induced by a new strongly coupled gauge interaction emerging at energies higher
than the electroweak theory. These type of theories have been termed Extended
technicolor (ETC) interactions [48, 49].

In the literature various extensions have been considered and we will mention
them later in the text. Here we will describe the simplest ETC model in which the
ETC interactions connect the chiral symmetries of the techniquarks to those of the
standard model fermions (see left panel of Fig. 1.8).

When technicolor chiral symmetry breaking occurs it leads to the diagram in
the right panel of Fig. 1.8. Let’s start with the case in which the ETC dynamics is
represented by a SU(NETC) gauge group with:

NETC = NTC + Ng , (1.40)

http://dx.doi.org/10.1007/978-3-642-33341-5_3
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Fig. 1.8 Left panel ETC
gauge boson interaction
involving techniquarks and
standard model fermions.
Right panel diagram contribu-
tion to the mass to the standard
model fermions

and Ng is the number of standard model generations. In order to give masses to all
of the standard model fermions, in this scheme, one needs a condensate for each
standard model fermion. This can be achieved by using as technifermion matter
a complete generation of quarks and leptons (including a neutrino right) but now
gauged with respect to the technicolor interactions.

The ETC gauge group is assumed to spontaneously break Ng times down to
SU(NTC) permitting three different mass scales, one for each standard model family.
This type of technicolor with associated ETC is termed the one family model [50].
The heavy masses are provided by the breaking at low energy and the light masses
are provided by breaking at higher energy scales. This model does not, per se, explain
how the gauge group is broken several times, neither is the breaking of weak isospin
symmetry accounted for. For example we cannot explain why the neutrino have
masses much smaller than the associated electrons. See, however, [51] for progress
on these issues. Schematically one has SU(NTC + 3) which breaks to SU(NTC + 2)

at the scale Λ1 providing the first generation of fermions with a typical mass m1 ∼
4π(FTC

π )3/Λ2
1. At this point the gauge group breaks to SU(NTC +1) with dynamical

scale Λ2 leading to a second generation mass of the order of m2 ∼ 4π(FTC
π )3/Λ2

2.
Finally the last breaking SU(NTC) at scale Λ3 leading to the last generation mass
m3 ∼ 4π(FTC

π )3/Λ2
3.

Without specifying an ETC one can write down the most general type of four-
fermion operators involving technicolor particles Q and ordinary fermionic fields ψ.
Following the notations of Hill and Simmons [17] we write:

αab
Q̄γμTaQψ̄γμTbψ

Λ2
ETC

+ βab
Q̄γμTaQQ̄γμTbQ

Λ2
ETC

+ γab
ψ̄γμTaψψ̄γμTbψ

Λ2
ETC

, (1.41)

where the Ts are unspecified ETC generators. After performing a Fierz rearrangement
one has:

αab
Q̄TaQψ̄Tbψ

Λ2
ETC

+ βab
Q̄TaQQ̄TbQ

Λ2
ETC

+ γab
ψ̄Taψψ̄Tbψ

Λ2
ETC

+ · · · , (1.42)

The coefficients parameterize the ignorance on the specific ETC physics. To be more
specific, the α-terms, after the technicolor particles have condensed, lead to mass
terms for the standard model fermions

mq ≈ g2
ETC

M2
ETC

〈Q̄Q〉ETC, (1.43)
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Fig. 1.9 Leading contribution
to the mass of the technicolor
pseudo Goldstone bosons via
an exchange of an ETC gauge
boson

where mq is the mass of e.g. a standard model quark, gETC is the ETC gauge coupling
constant evaluated at the ETC scale, METC is the mass of an ETC gauge boson and
〈Q̄Q〉ETC is the technicolor condensate where the operator is evaluated at the ETC
scale. Note that we have not explicitly considered the different scales for the different
generations of ordinary fermions but this should be taken into account for any realistic
model.

The β-terms of Eq. (1.42) provide masses for pseudo Goldstone bosons and also
provide masses for techniaxions [17], see Fig. 1.9. The last class of terms, namely
the γ-terms of Eq. (1.42) induce FCNCs. For example it may generate the following
terms:

1

Λ2
ETC

(s̄γ5d)(s̄γ5d) + 1

Λ2
ETC

(μ̄γ5e)(ēγ5e) + · · · , (1.44)

where s, d,μ, e denote the strange and down quark, the muon and the electron,
respectively. The first term is a ΔS = 2 flavor-changing neutral current interaction
affecting the KL−KS mass difference which is measured accurately. The experimental
bounds on these type of operators, together with the very naive assumption that ETC
will generate γ-terms with coefficients of order one, leads to a constraint on the ETC
scale to be of the order of or larger than 103 TeV [48]. This should be the lightest ETC
scale which in turn puts an upper limit on how large the ordinary fermionic masses
can be. The naive estimate is that one can account up to around 100 MeV mass for
a QCD-like technicolor theory, implying that the top quark mass value cannot be
achieved.

The second term of Eq. (1.44) induces flavor changing processes in the leptonic
sector such as μ → eēe, eγ which are not observed.It is clear that, both for the
precision measurements and the fermion masses, a better theory of the flavor is
needed. For the ETC dynamics interesting developments recently appeared in the
literature [52–55]. We note that nonperturbative chiral gauge theories dynamics is
expected to play a relevant role in models of ETC since it allows, at least in principle,
the self breaking of the gauge symmetry. Recent progress on the phase diagrams of
these theories has appeared in [56].

In Fig. 1.10 we show the ordering of the relevant scales involved in the generation
of the ordinary fermion masses via ETC dynamics, and the generation of the fermion
masses (for a single generation and focussing on the top quark) assuming QCD-like
dynamics for technicolor.
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Fig. 1.10 Cartoon of the expected ETC dynamics starting at high energies with a more fundamental
gauge interaction and the generation of the fermion masses assuming QCD-like dynamics

1.8 Walking

To better understand in which direction one should go to modify the QCD dynamics,
we analyze the technicolor condensate. The value of the TC condensate used when
giving mass to the ordinary fermions should be evaluated not at the technicolor scale
but at the ETC one. Via the renormalization group one can relate the condensate at
the two scales via:

〈Q̄Q〉ETC = exp

(∫ ΛETC

ΛTC

d(ln μ)γ(α(μ))

)
〈Q̄Q〉TC , (1.45)

where γ is the anomalous dimension of the techniquark mass-operator. The bound-
aries of the integral are at the ETC scale and the technicolor one. For technicolor
theories with a running of the coupling constant similar to the one in QCD, i.e.

α(μ) ∝ 1

ln μ
, for μ > ΛTC , (1.46)

this implies that the anomalous dimension of the techniquark masses γ ∝ α(μ).
When computing the integral one gets
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Fig. 1.11 Top left panel QCD-like behavior of the coupling constant as function of the momen-
tum (Running). Top right panel walking-like behavior of the coupling constant as function of the
momentum (Walking). Bottom right panel cartoon of the beta function associated to a generic
walking theory

〈Q̄Q〉ETC ∼ ln

(
ΛETC

ΛTC

)γ
〈Q̄Q〉TC , (1.47)

which is a logarithmic enhancement of the operator. We can hence neglect this
correction and use directly the value of the condensate at the technicolor scale when
estimating the generated fermionic mass:

mq ≈ g2
ETC

M2
ETC

Λ3
TC, 〈Q̄Q〉TC ∼ Λ3

TC . (1.48)

The tension between having to reduce the FCNCs and at the same time provide a
sufficiently large mass for the heavy fermions in the standard model as well as the
pseudo-Goldstones can be reduced if the dynamics of the underlying technicolor the-
ory is different from the one of QCD. The computation of the technicolor condensate
at different scales shows that if the dynamics is such that the technicolor coupling
does not run to the UV fixed point but rather slowly reduces to zero one achieves a
net enhancement of the condensate itself with respect to the value estimated earlier.
This can be achieved if the theory has a near conformal fixed point. This kind of
dynamics has been denoted as of walking type. In Fig. 1.11 the comparison between
a running and walking behavior of the coupling is qualitatively represented.

In the walking regime:
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〈Q̄Q〉ETC ∼
(

ΛETC

ΛTC

)γ(α∗)
〈Q̄Q〉TC , (1.49)

which is a much larger contribution than in QCD dynamics [57–60]. Here γ is
evaluated at the would be fixed point value α∗. Walking can help resolving the
problem of FCNCs in technicolor models since with a large enhancement of the
〈Q̄Q〉 condensate the four-Fermi operators involving standard model fermions and
technifermions and the ones involving technifermions are enhanced by a factor of
ΛETC/ΛTC to the γ power while the one involving only standard model fermions is
not enhanced.

We note that walking is not a fundamental property for a successful model of
the origin of mass of the elementary fermions featuring technicolor. In fact several
alternative ideas already exist in the literature (see [61–64] for recent models while
for earlier models we refer to [65–75]). However, a near conformal theory would
still be useful to reduce the contributions to the precision data and, possibly, provide
a light composite Higgs of much interest to LHC physics [21].

1.9 Ideal Walking

There are several issues associated with the original idea of walking:

• Since the number of flavors cannot be changed continuously it is not possible to
get arbitrarily close to the lower end of the conformal window. This applies to the
technicolor theory in isolation i.e. before coupling it to the standard model and
without taking into account the ETC interactions.

• It is hard to achieve large anomalous dimensions of the fermion mass operator
even near the lower end of the conformal window for ordinary gauge theories.

• It is not always possible to neglect the interplay of the four fermion interactions
on the technicolor dynamics.

• There exist the logical possibility that, as function of the number of flavors, the
theory jumps out of the conformal window rather than walk out of it. Jumping
dynamics [76] will be discussed in the next chapter.

In [77] it has been argued that it is possible to address simultaneously the problems
above, expect for the possibility of jumping, by taking into account the effects of the
four-fermion interactions on the phase diagram of strongly interacting theories for
any matter representation as function of the number of colors and flavors. A positive
effect is that the anomalous dimension of the mass increases beyond the unity value
at the lower boundary of the new conformal window and can get sufficiently large to
yield the correct mass for the top quark. It has also been shown that the conformal
window, for any representation, shrinks with respect to the case in which the four-
fermion interactions are neglected. This analysis derives from the study of the gauged
Nambu-Jona-Lasinio phase diagram [78].

It has been made the further discovery that when the extended technicolor sector,
responsible for giving masses to the standard model fermions, is sufficiently strongly
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coupled, the technicolor theory, in isolation, must feature an infrared fixed point in
order for the full model to be phenomenologically viable and correctly break the
electroweak symmetry [77].

1.10 Walking Spectrum

Any strongly coupled dynamics, even of walking type, will generate a spectrum of
resonances whose natural splitting in mass is of the order of the intrinsic scale of
the theory which in this case is the Fermi scale. In order to extract predictions for
the composite vector spectrum and couplings in presence of a strongly interacting
sector and an asymptotically free gauge theory, we make use of the time-honored
Weinberg sum rules [79] but we will also use the results found in [80] allowing us
to treat walking and running theories in a unified way.

1.10.1 Weinberg Sum Rules

The Weinberg sum rules are linked to the two point vector–vector minus axial–axial
vacuum polarization which is known to be sensitive to chiral symmetry breaking.
We define

iΠa,b
μν (q) ≡

∫
d4x e−iqx

[
< Ja

μ,V (x)Jb
ν,V (0) > − < Ja

μ,A(x)Jb
ν,A(0) >

]
, (1.50)

within the underlying strongly coupled gauge theory, where

Πa,b
μν (q) =

(
qμqν − gμνq2

)
, δabΠ(q2). (1.51)

Here a, b = 1, . . . , n2
f − 1, label the flavor currents and the SU(Nf ) generators

are normalized according to Tr
[
TaTb

] = (1/2)ab. The function Π(q2) obeys the
unsubtracted dispersion relation

1

π

∫ ∞

0
ds

ImΠ(s)

s + Q2 = Π(Q2) , (1.52)

where Q2 = −q2 > 0, and the constraint −Q2Π(Q2) > 0 holds for 0 < Q2 < ∞
[81]. The discussion above is for the standard chiral symmetry breaking pattern
SU(Nf )× SU(Nf )→SU(Nf ) but it is generalizable to any breaking pattern.

Since we are taking the underlying theory to be asymptotically free, the behavior
of Π(Q2) at asymptotically high momenta is the same as in ordinary QCD, i.e. it



1.10 Walking Spectrum 25

scales like Q−6 [82]. Expanding the left hand side of the dispersion relation thus
leads to the two conventional spectral function sum rules

1

π

∫ ∞

0
dsImΠ(s) = 0 and

1

π

∫ ∞

0
ds s ImΠ(s) = 0 . (1.53)

Walking dynamics affects only the second sum rule [80] which is more sensitive to
large but not asymptotically large momenta due to fact that the associated integrand
contains an extra power of s.

We now saturate the absorptive part of the vacuum polarization. We follow refer-
ence [80] and hence divide the energy range of integration in three parts. The light
resonance part. In this regime, the integral is saturated by the Nambu-Goldstone
pseudoscalar along with massive vector and axial–vector states. If we assume, for
example, that there is only a single, zero-width vector multiplet and a single, zero-
width axial vector multiplet, then

ImΠ(s) = πF2
Vδ

(
s − M2

V

)
− πF2

Aδ
(

s − M2
A

)
− πF2

πδ (s) . (1.54)

The zero-width approximation is valid to leading order in the large N expansion
for fermions in the fundamental representation of the gauge group and it is even
narrower for fermions in higher dimensional representations. Since we are working
near a conformal fixed point the large N argument for the width is not directly
applicable. We will nevertheless use this simple model for the spectrum to illustrate
the effects of a near critical IR fixed point.

The first Weinberg sum rule implies:

F2
V − F2

A = F2
π , (1.55)

where F2
V and F2

A are the vector and axial mesons decay constants. This sum rule holds
for walking and running dynamics. A more general representation of the resonance
spectrum would, in principle, replace the left hand side of this relation with a sum
over vector and axial states. However the heavier resonances should not be included
since in the approach of [80] the walking dynamics in the intermediate energy range
is already approximated by the exchange of underlying fermions. The walking is
encapsulated in the dynamical mass dependence on the momentum dictated by the
gauge theory. The introduction of heavier resonances is, in practice, double counting.
Note that the approach is in excellent agreement with the Weinberg approximation for
QCD, since in this case, the approximation automatically returns the known results.

The second sum rule receives important contributions from throughout the near
conformal region and can be expressed in the form of:

F2
V M2

V − F2
AM2

A = a
8π2

d(R)
F4
π, (1.56)
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where a is expected to be positive and O(1) and d(R) is the dimension of the rep-
resentation of the underlying fermions. We have generalized the result of reference
[80] to the case in which the fermions belong to a generic representation of the gauge
group. In the case of running dynamics the right-hand side of the previous equation
vanishes.

We stress that a is a non-universal quantity depending on the details of the under-
lying gauge theory. A reasonable measure of how large a can be is given by a function
of the amount of walking which is the ratio of the scale above which the underlying
coupling constant start running divided by the scale below which chiral symmetry
breaks. The fact that a is positive and of order one in walking dynamics is supported,
indirectly, also via the results of Kurachi and Shrock [83]. At the onset of conformal
dynamics the axial and the vector will be degenerate, i.e. MA = MV = M, using the
first sum rule one finds via the second sum rule a = d(R)M2/(8π2F2

π) leading to a
numerical value of about 4–5 from the approximate results in [83]. We will however
use only the constraints coming from the generalized Weinberg sum rules expecting
them to be less model dependent. The S parameter is related to the absorptive part
of the vector–vector minus axial–axial vacuum polarization as follows:

S = 4
∫ ∞

0

ds

s
ImΠ̄(s) = 4π

[
F2

V

M2
V

− F2
A

M2
A

]
, (1.57)

where ImΠ̄ is obtained from ImΠ by subtracting the Goldstone boson contribution.
Other attempts to estimate the S parameter for walking technicolor theories have

been made in the past [84] showing reduction of the S parameter. S has also been eval-
uated using computations inspired by the original AdS/CFT correspondence [85] in
[86–91]. Recent attempts to use AdS/CFT inspired methods can be found in [92–96].

Kurachi, Shrock and Yamawaki [97] have further confirmed the results presented
in [80] with their computations tailored for describing four dimensional gauge theo-
ries near the conformal window. The present approach [80] is more physical since it
is based on the nature of the spectrum of states associated directly to the underlying
gauge theory.

Note that we will be assuming a rather conservative approach in which the S
parameter, although reduced with respect to the case of a running theory, is bounded
by the naive S parameter [98–100]. After all, other sectors of the theory such as new
leptons further reduce or completely offset a positive value of S due solely to the
technicolor theory.
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Chapter 2
Conformal Dynamics Interlude

Abstract We have seen that models of dynamical breaking of the electroweak
symmetry are theoretically appealing and constitute one of the best motivated natural
extensions of the standard model. These are also among the most challenging models
to work with since they require deep knowledge of gauge dynamics in a regime where
perturbation theory fails. In particular, it is of utmost importance to gain information
on the nonperturbative dynamics of non-abelian four dimensional gauge theories. In
this chapter we elucidate the physics of non-Abelian gauge theories as function of
the gauge group, number of flavors, colors and matter representation.

2.1 Phases of Gauge Theories

Non-abelian gauge theories exist in a number of distinct phases which can be classi-
fied according to the characteristic dependence of the potential energy on the distance
between two well separated static sources. The collection of all of these different
behaviors, when represented, for example, in the flavor-color space, constitutes the
phase diagram of the given gauge theory. The phase diagram of SU (N ) gauge
theories as functions of number of the gauge group, flavors, colors and matter repre-
sentation has been investigated in [1–14].

The analytical tools we will use for such an exploration are: (i) Precise results
from higher order perturbation theory [14–16]; (ii) The conjectured all orders beta
function for nonsupersymmetric gauge theories with fermionic matter in arbitrary
representations of the gauge group [4, 6]; (ii) The truncated Schwinger-Dyson equa-
tion (SD) [17–19] (referred also as the ladder approximation in the literature).

We wish to study the phase diagram of any asymptotically free non-
supersymmetric theories with fermionic matter transforming according to a generic
representation of an SU(N ) gauge group as function of the number of colors
and flavors.

F. Sannino, Dynamical Stabilization of the Fermi Scale, SpringerBriefs in Physics, 31
DOI: 10.1007/978-3-642-33341-5_2, © The Author(s) 2013
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We start by characterizing the possible phases via the potential V (r) between two
electric test charges separated by a large distance r. The list of possible potentials is
given below:

Coulomb : V (r) ∝ 1

r
(2.1)

Free electric : V (r) ∝ 1

r log(r)
(2.2)

Free magnetic : V (r) ∝ log(r)

r
(2.3)

Higgs : V (r) ∝ constant (2.4)

Confining : V (r) ∝ σr . (2.5)

A nice review of these phases can be found in [20] which here we reconsider for
completeness. In the Coulomb phase, the electric charge e2(r) is a constant while in
the free electric phase massless electrically charged fields renormalize the charge to
zero at long distances as, i.e. e2(r) ∼ 1/ log(r). QED is an abelian example of a free
electric phase. The free magnetic phase occurs when massless magnetic monopoles
renormalize the electric coupling constant at large distance with e2(r) ∼ log(r).

In the Higgs phase, the condensate of an electrically charged field gives a mass gap
to the gauge fields by the Anderson-Higgs-Kibble mechanism and screens electric
charges, leading to a potential which, up to an additive constant, has an exponential
Yukawa decay to zero at long distances. In the confining phase, there is a mass gap
with electric flux confined into a thin tube, leading to the linear potential with string
tension σ .

We will be mainly interested in finding theories possessing a non-Abelian
Coulomb phase or being close in the parameter space to these theories. In this phase
we have massless interacting quarks and gluons exhibiting the Coulomb potential.
This phase occurs when there is a non-trivial, infrared fixed point of the renormal-
ization group. These are thus non-trivial, interacting, four dimensional conformal
field theories. In the Coulomb phase the situation is actually more involved since
for strong electrical charges the nonperturbative physical spectrum is much more
involved.

To guess the behavior of the magnetic charge, at large distance separation, between
two test magnetic charges one uses the Dirac condition:

e(r)g(r) ∼ 1 . (2.6)

Then it becomes clear that g(r) is constant in the Coulomb phase, increases with
log(r) in the free electric phase and decreases as 1/ log(r) in the free magnetic phase.
In these three phases the potential goes like g2(r)/r . A linearly rising potential in



2.1 Phases of Gauge Theories 33

Fig. 2.1 A generic gauge theory has different Knobs one can tune. For example by changing the
number of flavors one can enter in different phases. The pink region is the conformal region, i.e.
the one where the coupling constant freezes at large distances (small energy). The region above the
pink one corresponds to a non-abelian QED like theory and below to a QCD-like region. We have
also plotted the cartoon of the running of the various coupling constants in the regions away from
the boundaries of the conformal window. The diagram above is the qualitative one expected for a
gauge theory with matter in the adjoint representation

the Higgs phase for magnetic test charges corresponds to the Meissner effect in the
electric charges.

Confinement does not survive the presence of massless matter in the fundamen-
tal representation, such as light quarks in QCD. This is so since it is more con-
venient for the underlying theory to pop from the vacuum virtual quark-antiquark
pairs when pulling two electric test charges apart. The potential for the confining
phase will then change and there is no distinction between Higgs and confining
phase.

Under electric-magnetic duality one exchanges electrically charged fields with
magnetic ones then the behavior in the free electric phase is mapped in that of
the free magnetic phase. The Higgs and confining phases are also expected to be
exchanged under duality. Confinement can then be understood as the dual Meissner
effect associated with a condensate of monopoles.

There is one more phase to consider which occurs when a given gauge theory
at very high energies reaches an ultraviolet fixed point. The theory, in this case,
is said to be asymptotically safe. Although there is not rigorous proof Weinberg
[21] speculated that even the properly quantum corrected gravitational theory might
develop such an ultraviolet fixed point which would save gravity from invalidating
itself at and above the Planck scale. We refer to [22] for an up-to-date review and a
list of relevant references on the subject (Fig. 2.1).
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2.2 UV and IR Fixed Points of Gauge Theories
at the Four Loops and Beyond

To gain a quantitative analytic understanding of the phase structure of different gauge
theories we investigate the zeros of the perturbative beta function to the maximum
known order and for one of the zeros also the limit of large number of flavors to
all-orders.

We consider the perturbative expression of the beta function and the fermion mass
anomalous dimension for a generic gauge theory with only fermionic matter in the
MS scheme to four loops which was derived in [23, 24]:

da

d ln μ2 = β(a) = −β0a2 − β1a3 − β2a4 − β3a5 + O(a6) , (2.7)

− d ln m

d ln μ2 = γ (a)

2
= γ0a + γ1a2 + γ2a3 + γ3a4 + O(a5) , (2.8)

where m = m(μ2) is the renormalized (running) fermion mass and μ is the renor-
malization point in the MS scheme and a = α/4π = g2/16π2 where g = g(μ2) is
the renormalized coupling constant of the theory.

The explicit expression of the coefficients above are reported in the Appendix A.2
for completeness. Note also that the beta function is gauge independent, order by
order in perturbation theory [23]. The same also holds for the anomalous dimension
of the fermion mass γ .

Here we report the investigation of the structure of the zeros of the four-loops beta
function for any matter representation and gauge group [11, 15, 16]. Interestingly in
[15] we found a universal classification of the behavior of the zeros as function of
the number of flavors n f .

To exemplify the various possible topologies emerging to this order, we plot the
real nontrivial zeros as function of the number of flavors normalized to the one above
which asymptotic freedom is lost (n f ) in Fig. 2.2. The solid black lines represent
the location of the ultraviolet (UV) zeros while the red-ones to the infrared (IR)
stable fixed points, and finally the shaded areas are the regions where the β function
is positive. To help visualizing the different regions the vertical axis is rescaled
[15] according to the function a∗ = 2 arctan (5a)/π , mapping [−∞,+∞] into the
interval [−1, 1].

A straight vertical line corresponds to a fixed value of n f and the intersection
of this line with the solid curves determines the number of the zeros, the color
of the curves the type of zeros (if red is IR and if black is UV), and finally the
corresponding horizontal value is the coupling location. The landscape of the zeros
was termed zerology in [15].

We investigated also the negative values of α since this is the most natural math-
ematical setting. In fact, the properties of the pure Yang-Mills theory at negative
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(a) (b)

(c) (d)

Fig. 2.2 The four different topologies displayed above classify the entire zerology landscape. We
show, in each plot, the regions of positive (gray) and negative (white) values of the beta function
for different gauge theories. The solid lines, per each figure, are the locations of the zeros of
the beta functions. The lines of UV fixed points are in black while the IR ones in red. We have

defined a∗ = 2

π
arctan (5a). The vertical dashed red-lines correspond to the location where one

zero approaches infinity: a first kind of topology, b second kind of topology, c third kind of topology,
d fourth kind of topology

α were studied on the lattice by Li and Meurice in [25] showing interesting relations
between the positive and negative regions of α.

By explicit enumeration [15] it is possible to identify just four distinct topologies
covering the full available zerology for any gauge group and matter representation
reported in Fig. 2.2.

The four-loop analysis tells us that [15]:

• At small number of flavors there is only a negative ultraviolet zero.
• At around and above n f we observe the existence of three zeros, two ultraviolets

and one infrared. The infrared one, near n f , is the Banks-Zaks [26] point. Above
n f , the IR fixed point is now at a negative value of α and at a new critical number
of flavors collides with the UV fixed point zero at a negative value of the coupling,
forming a double zero. At this point the beta function is positive for any negative
alpha.
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• At very large number of flavors the UV fixed point, for positive values of alpha,
always exists and approaches zero asymptotically as n−2/3

f . The explicit derivation
is provided in Sect. 2.4.3.

• By increasing n f from zero there is always a critical number of flavors above
which an IR fixed point emerges for positive α.

The distinguishing feature of different topologies is how the zeros merge or disappear
as function of n f .

The topology A (Fig. 2.2a) is characterized by the fact that the zeros always remain
at finite values of the coupling. This means that when a zero disappear it has to
annihilate with another one. This happens at two distinct locations. One at a positive
value of the coupling and the other at a negative one occurring after asymptotic
freedom is lost.

In the topology B, represented in Fig. 2.2b, as for the previous case, we still observe
the merging of the IR and UV zeros at two different number of flavors. In this case,
however, there is a region in the number of flavors, where the UV fixed point located
at positive couplings reaches infinity at finite n f and appears on the negative axis as
an IR fixed point. The region where the new IR fixed point appears (on the negative
coupling constant axis) ends before asymptotic freedom is lost.

The defining feature shown in Fig. 2.2c for topology C is that the appearance of
two more merging points at negative values of α.

In Fig. 2.2d, topology D, one observes that the IR zero at a positive value of the
coupling reachers infinity at a finite value of the number of flavors, which is the
distinctive feature of this topology.

A new feature at the four-loop order is that two positive nontrivial zeros, one IR
and the other UV, can emerge simultaneously and can annihilate at a particular value
of n f . At the two-loop level this feature does not exist and, in particular, no nontrivial
ultraviolet fixed point is seen.

As an example where these topologies arise we consider SU (N ) with fundamental
fermions as function of N . For N = 2 and 3 the topology A occurs. Increasing N the
maximum value reached by the positive UV zero increases and for N = 4 it reaches
infinity and therefore it enters topology B. Increasing N further the local maximum
of the IR negative zero-curve increases till it pinches the UV negative zero line for
N = 11 entering topology C. Topology D is not realized in this case. On the other
hand any SU (N ) gauge theory with N ≥ 2 fermions and fermions in the adjoint
representation lead to topology D.

In Table 2.1 we provide a catalogue of the four-loop zerology for SU (N ), SO(N )

and S P(2N ) gauge theories with fermions transforming according to the fundamen-
tal and the 2-index representations.
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Table 2.1 Catalogue of the four-loop zerology for SU (N ), SO(N ) and S P(2N ) gauge theories
with fermions transforming according to the fundamental and the 2-index representations

Rep. Top. A Top. B Top. C Top. D

SU (N )

FUND N = 2, 3 4 ≤ N ≤ 11 N ≥ 12 –
ADJ – – – N ≥ 2
2-SYM – – – N ≥ 2
2-ASY N = 3, 4, 5 N = 6, 7 8 ≤ N ≤ 26 N ≥ 27

SO(N )

FUND – N ≤ 6 N = 5 N = 3, 4
ADJ – – – N ≥ 3
2-SYM – – – N ≥ 3

S P(2N )

FUND N = 1, 2 3 ≤ N ≤ 4 N ≥ 5 –
ADJ – – – N ≥ 1
2-ASY N = 3, 4 N = 2, 5 6 ≤ N ≤ 14 N ≥ 15

2.3 Conformal Window

The conformal window is defined as the region in theory space, as function of number
of flavors and colors where the underlying gauge theory displays large distance
conformality for a positive value of the coupling α. n f constitutes the upper boundary
of the conformal window and the lower boundary here is estimated by identifying
for which number of flavors the theory looses the infrared fixed point at a given
number of colors. Several methods have been used to constrain the conformal window
for non-supersymmetric gauge theories. We will review only a few here which has
been proven to be useful either to guide lattice simulations or that have been shown
effective in producing relevant physical quantities.

2.4 Four-Loop Conformal Window

Having at our disposal the four-loops beta function we use it to estimate the lower
boundary of the conformal window. However, due to the fact that it is obviously a
truncated beta function the true window can be quantitatively different.

The results for the SU (N ) gauge groups are presented in Fig. 2.3 for the funda-
mental, two-index symmetric, two-index antisymmetric and adjoint representation.
The conformal window at the four-loop level is considerably wider, for any represen-
tation, when compared with the Schwinger-Dyson results [1, 2] or the one obtained
using the critical number of flavors where the free energy changes sign, as suggested
in [11]. For completeness the conformal window for the orthogonal and symplectic



38 2 Conformal Dynamics Interlude

2 3 4 5 6 7 8

2

4

6

8

10

12

14

16

18

N

n
f

Fig. 2.3 Conformal window for SU (N ) groups for the fundamental representation (upper light-
blue), two-index antisymmetric (next to the highest light-green), two-index symmetric (third win-
dow from the top light-brown) and finally the adjoint representation (bottom light-pink). The lower
boundary corresponds to the point where the infrared fixed point disappears at four loops. The solid
thick lines correspond to the number of flavors for which the all-orders beta function predicts an
anomalous dimension equal to unity
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Fig. 2.4 Conformal window for SO(N ) groups for the fundamental representation (upper light-
blue), two-index antisymmetric (which is the adjoint and second from the top (pink-region)), two-
index symmetric (bottom window in light-brown)

gauge groups is also shown respectively in Figs. 2.4 and 2.5. There is a universal
trend towards the widening of the conformal regions with respect to earlier estimates
using other nonperturbative methods.
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Fig. 2.5 Conformal window for S P(2N ) groups for the fundamental representation (upper light-
blue), two-index antisymmetric (next to the highest light-green), two-index symmetric, i.e. the
adjoint, (bottom window in light-pink)

2.4.1 All-Orders Beta Function Comparison

We have recently argued for the existence of a scheme in which an all-orders beta
function [6] assumes the form:

β(a)

a
= −a

3

11C2(G) − 2T (r) n f (2 + ΔFγ )

1 − 2a 17
11 C2(G)

, (2.9)

with

ΔF = 1 + 7

11

C2(G)

C2(r)
. (2.10)

The group invariants defined in Appendix A.2. The scheme independent analytical
expression of the anomalous dimension of the mass at the IR positive zero is:

γ = 11C2(G) − 4T (r)n f

2n f T (r)
(

1 + 7
11

C2(G)
C2(r)

) . (2.11)

We plot, for reference, in Figs. 2.3, 2.4 and 2.5 the lines corresponding to this anom-
alous dimension equal to unity. These are the solid thick curves for the different
representations. These lines could be viewed as the lower boundary of the conformal
window if it is marked by the anomalous dimension to be unity. The size of these
regions are consistent with the ones derived via gauge dualities in [27, 28].
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Fig. 2.6 Anomalous dimension of the mass, at the infrared fixed point, for SU (3) as function of
the number of fundamental flavors at two loops (upper brown-curve), three-loops (second curve
from the top in magenta), all-orders (dashed-curve in black), four-loops (bottom curve in blue)

2.4.2 Four-Loop Anomalous Dimensions

In Fig. 2.6 we plot the anomalous dimension of the mass for the SU (3) gauge theory,
as function of the number of fundamental flavors, at the IR fixed point as derived in
[15, 16]. The three solid lines correspond respectively, from top to bottom, to the
two-, three- and four-loop results. Of course, perturbation theory is reliable only in
a small range of flavors near n f . A similar behavior is observed for any other gauge
group, matter representation and different number of colors.

Having at hand an all-order scheme-independent result, we compare it with the
perturbative one. The dashed line, in Fig. 2.6, is the all-order anomalous dimension
from Eq. (2.11). It is striking that the all-order result is much more well behaved than
the four-loop predictions which, in this example, reach large and negative values
long before loosing the IR positive zero.

Due to the phenomenological interest in models of minimal walking technicolor
[1, 29, 30] we report the anomalous dimension at the fixed point also for the SU (2)

gauge theory with two-adjoint fermions in Fig. 2.7. These theories are being subject
to intensive numerical investigations via lattice simulations [31–59].
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Fig. 2.7 Anomalous dimension of the mass, at the infrared fixed point, for SU (2) as function of
the number of adjoint Dirac flavors at two loops (up green-curve), three-loops (second curve from
the top), four-loops (third curve in blue), all-orders (dashed curve in black)

2.4.3 Asymptotic Safety at Large nf : A New Phase

To the four-loop order a positive UV zero appears for a sufficiently large number
of flavors. We observed that the value of the zero as function of number of flavors
decreases monotonically as n−2/3

f at four loops. In fact, it is possible to generalize
this behavior to any finite order in perturbation theory. Consider the equation for the
zeros of the beta function in which the leading powers in the number of flavors are
made explicit:

b0n f +
∞∑

k=1

bk nk
f αk = 0 , (2.12)

where b0 = β0/n f and bk = βk/nk
f . We used the fact that the first and second

coefficient of the beta function are linear in the number of flavors and, in general, the
successive coefficients have one extra power of nf [60]. Therefore the coefficients
bk are finite at large number of flavors.

We define:
x = nf α , (2.13)

and the equation at any fixed perturbative order P reads:

b0n f +
P∑

k=1

bk xk = 0 . (2.14)
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At large n f the solution approaches:

x =
(

−b0n f

bP

) 1
P −→ α =

(
− b0

bP

) 1
P

n f
1−P

P . (2.15)

There are P complex solutions for x lying on a circle in the complex plane. A positive
solution exists only if bP is positive at large n f . This is indeed the case, at the four-

loop order, for any gauge theory showing that the UV positive zero vanishes as n−2/3
f .

If this UV zero persists to higher orders its location will change albeit will vanish
faster as a function of n f when increasing P , i.e. the exponent (1 − P)/P increases

in absolute value. The case n−2/3
f is recovered for P = 3.

Interestingly it is possible to sum exactly the perturbative infinite sum for the beta
function, at large of number of flavors given that the leading coefficients are known.
The result is:

3

4n f TF

β(a)

a2 = 1 + H(x)

n f
+ O

(
n−2

f

)
. (2.16)

The explicit form of H(x) can be found in [60]. The important feature, here, is that
H(x) possesses a negative singularity at x = 3π/TF . This demonstrates that there
always is a solution for the existence of a nontrivial UV fixed point at the leading
order in n f for the following positive value of the coupling:

αUV = 3π

TF n f
. (2.17)

The function H(x) has also other singularities which might signal the presence of
new zeros which we will not consider here, but that would be worth exploring.

Higher order terms in n−1
f can, in principle, modify the result if the singularity

structure is such to remove or modify its location.
A more complete discussion of the singularity structure of the coefficients of the

n−1
f expansion has appeared in [60] also for QED. It seems plausible that the smallest

UV fixed point is an all-orders feature.

2.4.4 Schwinger-Dyson in the Rainbow Approximation

For nonsupersymmetric theories an old way to get quantitative estimates is to use
the rainbow approximation to the Schwinger-Dyson equation [61, 62], see Fig. 2.8.
Here the full nonperturbative fermion propagator in momentum space reads

i S−1(p) = Z(p)
(
/p − Σ(p)

)
, (2.18)

and the Euclidianized gap equation in Landau gauge is given by
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Fig. 2.8 Rainbow approxi-
mation for the fermion self
energy function. The boson is
a gluon

Σ(p) = 3C2(r)

∫
d4k

(2π)4

α
(
(k − p)2

)
(k − p)2

Σ(k2)

Z(k2)k2 + Σ2(k2)
, (2.19)

where Z(k2) = 1 in the Landau gauge and we linearize the equation by neglect-
ing Σ2(k2) in the denominator. Upon converting it into a differential equation and
assuming that the coupling α(μ) ≈ αc is varying slowly (β(α) 
 0) one gets the
approximate (WKB) solutions

Σ(p) ∝ p−γ (μ), Σ(p) ∝ pγ (μ)−2 . (2.20)

The critical coupling is given in terms of the quadratic Casimir of the representation
of the fermions

αc ≡ π

3C2(r)
. (2.21)

The anomalous dimension of the fermion mass operator is

γ (μ) = 1 −
√

1 − α(μ)

αc
∼ 3C2(r)α(μ)

2π
. (2.22)

The first solution corresponds to the running of an ordinary mass term (hard mass) of
nondynamical origin and the second solution to a soft mass dynamically generated.
In fact in the second case one observes the 1/p2 behavior in the limit of large
momentum.

Within this approximation spontaneous symmetry breaking occurs whenα reaches
the critical couplingαc given in Eq. (2.21). From Eq. (2.22) it is clear that αc is reached
when γ is of order unity [17, 18, 63]. Hence the symmetry breaking occurs when
the soft and the hard mass terms scale as function of the energy scale in the same
way. In Ref. [17], it was noted that in the lowest (ladder) order, the gap equation
leads to the condition γ (2 − γ ) = 1 for chiral symmetry breaking to occur. To all
orders in perturbation theory this condition is gauge invariant and also equivalent
nonperturbatively to the condition γ = 1. However, to any finite order in pertur-
bation theory these conditions are, of course, different. Interestingly the condition
γ (2 − γ ) = 1 leads again to the critical coupling αc when using the perturbative
leading order expression for the anomalous dimension which is γ = 3C2(r)

2π
α.

To summarize, the idea behind this method is simple. One simply compares the
two couplings in the infrared associated to (i) an infrared zero in the β function, call it
α∗ with (ii) the critical coupling, denoted with αc, above which a dynamical mass for
the fermions generates nonperturbatively and chiral symmetry breaking occurs. If α∗
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is less than αc chiral symmetry does not occur and the theory remains conformal in
the infrared, viceversa if α∗ is larger than αc then the fermions acquire a dynamical
mass and the theory cannot be conformal in the infrared. The condition α∗ = αc

provides the desired nSD
f as function of N . In practice to estimate α∗ one uses the

two-loop beta function while the truncated SD equation to determine αc as we have
done before. This corresponds to when the anomalous dimension of the quark mass
operator becomes approximately unity.

The two-loop fixed point value of the coupling constant is:

α∗

4π
= −β0

β1
. (2.23)

with the following definition of the two-loop beta function

β(g) = − β0

(4π)2 g3 − β1

(4π)4 g5 , (2.24)

where g is the gauge coupling and the beta function coefficients are given by

β0 = 11

3
C2(G) − 4

3
T (r)n f (2.25)

β1 = 34

3
C2

2 (G) − 20

3
C2(G)T (r)n f − 4C2(r)T (r)n f . (2.26)

To this order the two coefficients are universal, i.e. do not depend on which renormal-
ization group scheme one has used to determine them. The perturbative expression
for the anomalous dimension reads:

γ (g2) = 3

2
C2(r)

g2

4π2 + O(g4) . (2.27)

with γ = −d ln m/d ln μ and m the renormalized fermion mass.
For a fixed number of colors the critical number of flavors for which the order of

α∗ and αc changes is defined by imposing α∗ = αc, and it is given by

nSD
f = 17C2(G) + 66C2(r)

10C2(G) + 30C2(r)

C2(G)

T (r)
. (2.28)

Comparing with the previous results obtained using the four-loop approximation or
the conjectured all orders beta function the striking differences is that the anomalous
dimension of the fermion mass operator, for the same number of flavors, is typically
overestimated by the SD analysis while the conformal window is smaller, i.e. critical
number of flavors is predicted to be higher than other methods.
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2.5 Gauge Duals and Conformal Window

One of the most fascinating possibilities is that generic asymptotically free gauge
theories have magnetic duals. In fact, in the late nineties, in a series of ground breaking
papers Seiberg [64, 65] provided strong support for the existence of a consistent
picture of such a duality within a supersymmetric framework. Supersymmetry is,
however, quite special and the existence of such a duality does not automatically
imply the existence of nonsupersymmetric duals. One of the most relevant results
put forward by Seiberg has been the identification of the boundary of the conformal
window for supersymmetric QCD as function of the number of flavors and colors. The
dual theories proposed by Seiberg pass a set of mathematical consistency relations
known as ’t Hooft anomaly conditions (in [66]). Another important tool has been the
knowledge of the all orders supersymmetric beta function [67–69].

Arguably the existence of a possible dual of a generic nonsupersymmetric asymp-
totically free gauge theory able to reproduce its infrared dynamics must match the
’t Hooft anomaly conditions [66].

We have exhibited several solutions of these conditions for QCD in [27] and for
certain gauge theories with higher dimensional representations in [28]. An earlier
exploration already appeared in the literature [70]. The novelty with respect to these
earlier results are: (i) The request that the gauge singlet operators associated to the
magnetic baryons should be interpreted as bound states of ordinary baryons [27];
(ii) The fact that the asymptotically free condition for the dual theory matches the
lower bound on the conformal window obtained using the all orders beta function [4].
These extra constraints help restricting further the number of possible gauge duals
without diminishing the exactness of the associate solutions with respect to the
’t Hooft anomaly conditions.

We will briefly summarize here the novel solutions to the ’t Hooft anomaly condi-
tions for QCD and the theories with higher dimensional representations. The result-
ing magnetic dual allows to predict the critical number of flavors above which the
asymptotically free theory, in the electric variables, enters the conformal regime as
predicted using the all orders conjectured beta function [4].

2.5.1 QCD Duals

The underlying gauge group is SU (3) while the quantum flavor group is

SUL(n f ) × SUR(n f ) × UV (1) , (2.29)

and the classical UA(1) symmetry is destroyed at the quantum level by the Adler-Bell-
Jackiw anomaly. We indicate with Qi

α;c the two component left spinor where α = 1, 2
is the spinor index, c = 1, . . . , 3 is the color index while i = 1, . . . , n f represents
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Table 2.2 Field content of an SU(3) gauge theory with quantum global symmetry SUL (n f ) ×
SUR(n f ) × UV (1)

Fields [SU (3)] SUL (n f ) SUR(n f ) UV (1)

Q 1 1
Q̃ 1 −1

Gμ Adj 1 1 1

Fig. 2.9 The ’t Hooft anomaly matching conditions are related to the saturation of the global
anomalies stemming out of the one-loop triangle diagrams represented, for the theory of interest,
here. According to ’t Hooft both theories, i.e. the electric and the magnetic ones, should yield the
same global anomalies

the flavor. Q̃α;c
i is the two component conjugated right spinor. We summarize the

transformation properties in Table 2.2.
The global anomalies are associated to the triangle diagrams featuring at the ver-

tices three SU (n f ) generators (either all right or all left), or two SU (n f ) generators
(all right or all left) and one UV (1) charge. We indicate these anomalies for short
with:

SUL/R(n f )
3 , SUL/R(n f )

2 UV (1) . (2.30)

For a vector like theory there are no further global anomalies (Fig. 2.9). The cubic
anomaly factor, for fermions in fundamental representations, is 1 for Q and −1 for
Q̃ while the quadratic anomaly factor is 1 for both leading to

SUL/R(n f )
3 ∝ ±3 , SUL/R(n f )

2UV (1) ∝ ±3 . (2.31)

If a magnetic dual of QCD does exist one expects it to be weakly coupled near
the critical number of flavors below which one breaks large distance conformality in
the electric variables. This idea is depicted in Fig 2.10.

Determining a possible unique dual theory for QCD is, however, not simple given
the few mathematical constraints at our disposal, as already observed in [70]. The
saturation of the global anomalies is an important tool but is not able to select out a
unique solution. We shall see, however, that one of the solutions, when interpreted
as the QCD dual, leads to a prediction of a critical number of flavors corresponding
exactly to the one obtained via the conjectured all orders beta function.
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Fig. 2.10 Schematic representation of the phase diagram as function of number of flavors and
colors. For a given number of colors by increasing the number flavors within the conformal window
we move from the lowest line (violet) to the upper (black) one. The upper black line corresponds to
the one where one looses asymptotic freedom in the electric variables and the lower line where chiral
symmetry breaks and long distance conformality is lost. In the magnetic variables the situation is
reverted and the perturbative line, i.e. the one where one looses asymptotic freedom in the magnetic
variables, correspond to the one where chiral symmetry breaks in the electric ones

We seek solutions of the anomaly matching conditions for a gauge theory SU (X)

with global symmetry group SUL (n f )×SUR(n f )×UV (1) featuring magnetic quarks
q and q̃ together with SU (X) gauge singlet states identifiable as baryons built out of
the electric quarks Q. Since mesons do not affect directly global anomaly matching
conditions we could add them to the spectrum of the dual theory. We study the case in
which X is a linear combination of number of flavors and colors of the type αn f +3β

with α and β integer numbers.
We add to the magnetic quarks gauge singlet Weyl fermions which can be identi-

fied with the baryons of QCD but massless. The generic dual spectrum is summarized
in Table 2.3.

The wave functions for the gauge singlet fields A, C and S are obtained by
projecting the flavor indices of the following operator

εc1c2c3 Qi1
c1

Qi2
c2

Qi3
c3

, (2.32)

over the three irreducible representations of SUL(n f ) as indicated in the Table 2.3.
These states are all singlets under the SUR(n f ) flavor group. Similarly one can

construct the only right-transforming baryons Ã, C̃ and S̃ via Q̃. The B states are

made by two Q fields and one right field Q̃ while the D fields are made by one Q and

two Q̃ fermions. y is the, yet to be determined, baryon charge of the magnetic quarks
while the baryon charge of composite states is fixed in units of the QCD quark one.
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Table 2.3 Massless spectrum of magnetic quarks and baryons and their transformation properties
under the global symmetry group

Fields [SU (X)] SUL (n f ) SUR(n f ) UV (1) # of copies

q 1 y 1
q̃ 1 −y 1

A 1 1 3 
A

S 1 1 3 
S

C 1 1 3 
C

BA 1 3 
BA

BS 1 3 
BS

DA 1 3 
DA

DS 1 3 
DS

Ã 1 1 −3 
 Ã

S̃ 1 1 −3 
S̃

C̃ 1 1 −3 
C̃

The last column represents the multiplicity of each state and each state is a Weyl fermion

The 
s count the number of times the same baryonic matter representation appears
as part of the spectrum of the theory. Invariance under parity and charge conjugation
of the underlying theory requires 
J = 
 J̃ with J = A, S, . . . , C and 
B = −
D .

Having defined the possible massless matter content of the gauge theory dual to
QCD we compute the SUL(n f )

3 and SUL(n f )
2 UV (1) global anomalies in terms of

the new fields:

SUL(n f )
3 ∝ X + (n f − 3)(n f − 6)

2

A

+ (n f + 3)(n f + 6)

2

S + (n2

f − 9) 
C

+ (n f − 4)n f 
BA + (n f + 4)n f 
BS + n f (n f − 1)

2

DA

+ n f (n f + 1)

2

DS = 3 , (2.33)

SUL(n f )
2 UV (1) ∝ y X + 3

(n f − 3)(n f − 2)

2

A

+ 3
(n f + 3)(n f + 2)

2

S + 3(n2

f − 3) 
C

+ 3(n f − 2)n f 
BA + 3(n f + 2)n f 
BS + 3
n f (n f − 1)

2

DA

+ 3
n f (n f + 1)

2

DS = 3 . (2.34)

The right-hand side is the corresponding value of the anomaly for QCD.
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Table 2.4 Massless spectrum of magnetic quarks and baryons and their transformation properties
under the global symmetry group

Fields
[
SU (2n f − 5N )

]
SUL (n f ) SUR(n f ) UV (1) # of copies

q 1
N (2n f −5)

2n f −5N 1

q̃ 1 − N (2n f −5)

2n f −5N 1

A 1 1 3 2

BA 1 3 −2

DA 1 3 2

Ã 1 1 −3 2

The last column represents the multiplicity of each state and each state is a Weyl fermion

2.5.2 A Realistic QCD Dual

We have found several solutions to the anomaly matching conditions presented above.
Some were found previously in [70]. Here we start with a new solution in which the
gauge group is SU (2n f −5N ) with the number of colors N equal to 3. It is, however,
convenient to keep the dependence on N explicit.

The solution above corresponds to the following value assumed by the indices
and y baryonic charge in Table 2.4.

X = 2n f − 5N , 
A = 2 , 
DA = −
BA = 2 ,


S = 
BS = 
DS = 
C = 0 , y = N
2n f − 5

2n f − 15
, (2.35)

with N = 3. X must assume a value strictly larger than one otherwise it is an abelian
gauge theory. This provides the first nontrivial bound on the number of flavors:

n f >
5N + 1

2
, (2.36)

which for N = 3 requires n f > 8.

2.5.3 Conformal Window from the Dual Magnetic Theory

Asymptotic freedom of the newly found theory is dictated by the coefficient of the
one-loop beta function:
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β0 = 11

3
(2n f − 5N ) − 2

3
n f . (2.37)

To this order in perturbation theory the gauge singlet states do not affect the magnetic
quark sector and we can hence determine the number of flavors obtained by requiring
the dual theory to be asymptotic free. i.e.:

n f ≥ 11

4
N = 2.75 Dual Asymptotic Freedom . (2.38)

Quite remarkably this value is close to the one predicted by means of the all orders
conjectured beta function for the lowest bound of the conformal window, in the
electric variables, when taking the anomalous dimension of the mass to be γ = 1.
I.e. at large N1

nB F
f |γ=1 
 2.57N . (2.39)

For N = 3 duality would seem to require the critical number of flavors to be 8.25.2

We consider this a nontrivial and interesting result.
To investigate the decoupling of each flavor at the time one needs to introduce

bosonic degrees of freedom. These are not constrained by anomaly matching condi-
tions. Interactions among the mesonic degrees of freedom and the fermions in the dual
theory cannot be neglected in the regime when the dynamics is strong. The simplest
mesonic operator M j

i transforming simultaneously according to the antifundamental
representation of SUL(n f ) and the fundamental representation of SUR(n f ) leads to
the following type of interactions for the dual theory:

LM = Yqq̃ q M q̃ + YABA AM B A + YC BA C M B A

+ YC BS C M BS + YSBS SM BS

+ YBA DA BA M D A + YBA DS BA M DS

+ YBS DA BS M D A + YBS DS BS M DS + h.c. (2.40)

The coefficients of the various operators are matrices taking into account the mul-
tiplicity with which each state occurs. The number of operators drastically reduces
if we consider only the ones linear in M . The dual quarks and baryons interact via
mesonic exchanges. We have considered only the meson field for the bosonic spec-
trum because it is the one with the most obvious interpretation in terms on the electric
variables. One can also envision adding new scalars charged under the dual gauge
group [70] and in this case one can have contact interactions between the magnetic
quarks and baryons. We expect these operators to play a role near the lower bound
of the conformal window of the magnetic theory where QCD is expected to become
free. It is straightforward to adapt the terms above to any anomaly matching solution.

1 This result differs from the one found in the original paper [27] and reported in the earlier review
[71] because, in the meanwhile, the all-orders beta function was corrected in [6].
2 Actually given that X must be at least 2 we must have n f ≥ 8.5 rather than 8.25.
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Fig. 2.11 We propose the above correspondence between the gauge singlet operators of the mag-
netic theory and the electric ones. The novelty introduced in [27] with respect to any of the earlier
approaches is the identification of the magnetic baryons, i.e. the ones constructed via the magnetic
quarks, with bound states of baryons in the electric variables

In Seiberg’s analysis it was also possible to match some of the operators of the
magnetic theory with the ones of the electric theory. The situation for QCD is, in
principle, more involved although it is clear that certain magnetic operators match
exactly the respective ones in the electric variables. These are the meson M and
the massless baryons, A, Ã, . . . , S shown in Table 2.3. The baryonic type operators
constructed via the magnetic dual quarks have baryonic charge which is a multiple
of the ordinary baryons and, hence, we propose to identify them, in the electric
variables, with bound states of QCD baryons. We summarize the proposed operator
matching constraints in Fig. 2.11.

The generalization to a generic number of colors is currently under investigation.
It is an interesting issue and to address it requires the knowledge of the spectrum of
baryons for arbitrary number of colors. It is reasonable to expect, however, a possible
nontrivial generalization to any number of odd colors3. A relevant application of
gauge duality has been to determine the left-right vector two-point function correlator
at the lower boundary of the conformal window [72].

2.6 Walking Versus Jumping Dynamics

We concentrated our efforts mostly on the size of the conformal window neglecting,
almost entirely, what happens at the boundary between the conformally intact phase
and the broken one. However, despite much efforts we do not yet know the physical

3 For an even number of colors the baryons are bosons and a the analysis must modify.
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properties at the boundary between a conformally broken and a conformally restored
phase for generic gauge theories. This problem remains an important mystery to
solve. A famous conjecture has been put forward some time ago [19, 73] and it
is known as Miransky scaling. In [74] it was argued for the potential existence of
another intriguing possibility leading to a radically different near-conformal behavior.
For setting up the stage we start with a brief review of the Miransky scaling and
modeling. Following [74] we then introduce the alternative scenario and deduce the
consequences for models of dynamical electroweak symmetry breaking.

2.6.1 Miransky Scaling and Walking Dynamics

This scaling arises under the following assumptions: (i) A given gauge theory pos-
sesses simultaneously, at least, a non-trivial infrared (IR) fixed point and an ultraviolet
(UV) one; (ii) Upon changing an external parameter of the theory, e.g. the number
of flavors, at a critical value of this parameter the IR fixed point merges with the UV
fixed point; (iii) This merging is sufficiently smooth that the nearby conformal phase
is felt, in the conformally broken phase, for values of the external parameter near the
phase transition.

Without loss of generality it is possible to model the beta function near the critical
number of flavors as follows:

βMY = −α2
(
α − 1 − √

δ
) (

α − 1 + √
δ
)

= −α2((α − 1)2 − δ) . (2.41)

The double zero at the origin embodies asymptotic freedom and δ = n f − nc
f . For

positive values of δ the beta function possesses a non-trivial IR and UV fixed point
at the following values of the coupling:

αIR = 1 − √
δ, and αUV = 1 + √

δ . (2.42)

At n f = nc
f the fixed points merge and for n f < nc

f the beta function looses the
non-trivial fixed points. For negative δ within the following range:

− 1

8
< δ ≤ 0 (2.43)

there is a global maximum of the beta function at the origin, a local minimum at
α = 1

4 (3 − √
1 + 8δ) and a local maximum at α = 1

4 (3 + √
1 + 8δ). For illustration

we plot the beta function for different values of δ in Fig. 2.12. It is possible to find
an analytical solution to the RG equation:

d ln μ = dα

βMY
, (2.44)
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Fig. 2.12 βMY for different values of δ = n f − nc
f

reading:

ln
μ

μ0
=

α(1 + δ)ArcTanh
[−1+α√

δ

]
+ √

δ
(

1 − δ + α ln
[

(α−1)2−δ

α2

])

α(−1 + δ)2
√

δ

∣∣∣α(μ)

α(μ0)
.

(2.45)
If we were to consider the case of δ positive, but smaller than unity so that asymptotic
freedom is kept, we would discover that there are three distinct branches. The one to
the left of the IR fixed point, the one where α is in between the nontrivial IR and UV
fixed point, and the one to the right of the nontrivial UV fixed point. To the left of
the IR fixed point one starts the flow from any μ0 sufficiently close to the trivial UV
fixed point and one ends up at the attractive IR fixed point. Another asymptotically
safe theory is defined in between the two non-trivial fixed points. In this region the
coupling runs at low energies to the IR fixed point and raises at high energies till the
non-trivial UV fixed point is reached. Finally, to the right of the non-trivial UV fixed
point the theory, and hence beta function, runs in the deep infrared to increasingly
large values of the coupling.

We turn now our attention to negative values of δ corresponding to the phase in
which the beta function features no non-trivial fixed points. To elucidate the near-
conformal dynamics we investigate the region −1/8 < δ < 0. In particular we will
consider the limit −δ = nc

f − n f → 0. In the deep infrared the coupling constant
runs to infinity and we start the running in the UV near α = 1 at μ0. With these
boundary conditions we find:

ΛMY = μ0

nc
f − nf

exp

⎡
⎣− π

2
√

nc
f − n f

⎤
⎦ , n f → nc

f , n f ≤ nc
f . (2.46)



54 2 Conformal Dynamics Interlude

− 120 − 100 − 80 − 60 − 40 − 20 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ln μ

α
(

)
μ

=−1 8

=−0.01

=−0.002

=−0.001

=0.0005δ
δ
δ
δ
δ

Fig. 2.13 Running of the coupling constant coming from βMY for different values of δ = n f − nc
f

within the walking regime. All the solutions are normalized at μ0 such that α(μ0) = 0.1 and μ is
normalized to μ0

Here ΛMY is the infrared scale to be identified, for example, with a physical scale
of the theory such as the mass of a hadron. This scale vanishes exponentially
fast when approaching the critical number of flavors above which the infrared
fixed point is generated. This exponential behavior is the essence of the Miransky
scaling.

In Fig. 2.13 we plot the running of the coupling constant for different negative
values of δ with the normalization condition α(μ0) = 0.1. The figure visualizes the
idea of walking dynamics introduced by Holdom [75, 76] and further crystallized
in [63, 77]. In lay terms the coupling constant runs slowly, i.e. walks, towards the
infrared value remaining near constant over a range of energies becoming wider and
wider as one approaches, as function of δ, the double fixed point. Further assuming
that the beta function corresponds to an underlying gauge theory featuring fermions
we now determine the scaling behavior of the chiral condensate of the theory in
the walking regime. Defining with γ the anomalous dimension of the mass of the
Dirac fermion Q in a given representation of an underlying gauge group we have the
following well-known RG equation:

〈Q̄ Q〉μ = exp

(∫ μ

Λ

d(ln μ)γ (α(μ))

)
〈Q̄ Q〉Λ

= exp

(∫ α(μ)

α(Λ)

dα
γ (α)

β(α)

)
〈Q̄ Q〉Λ (2.47)
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relating the condensate at two different energies. Using βMY case in the walking
region we have

〈Q̄ Q〉μ = exp

(∫ α(μ)

α(Λ)

dα
γ (α)

−α2((α − 1)2 + |δ|)

)
〈Q̄ Q〉Λ


 exp

(
γ (1)

∫ α(μ)

α(Λ)

dα
1

βMY

)
〈Q̄ Q〉Λ =

( μ

Λ

)γ (1) 〈Q̄ Q〉Λ . (2.48)

In the last passage we have used the definition of the beta function and, in the
first step, assumed that the anomalous dimension of the mass operator is smooth
across the phase transition. γ (1) = γ (αIR = αUV ) is the value of the anomalous
dimension at the merger. We have re-derived the power-law enhancement of the chiral
condensate with the energy distinctive of walking dynamics. Since γ is evaluated at
the fixed point its value is scheme-independent [6]. If we further model γ = α we
haveγ (αIR/UV ) = 1 ∓ √

δ, with γ (αIR) + γ (αUV ) = 2.

2.6.2 Jumping Dynamics

The previous section embodies the standard paradigm of walking dynamics. However
this picture is far from established analytically or via first principle lattice simulations
in four dimensions, while lower dimensional examples exist [78]. It is therefore
relevant to consider other theoretical scenarios and their impact on particle physics
phenomenology. We start by observing that there is the logical possibility that the
full beta function of the theory develops, at least, a zero in the denominator. This
occurs exactly for supersymmetric gauge theories [67] and the all-orders beta function
conjectured to be valid also for non-supersymmetric gauge theories with fermionic
matter [4, 6]. Moreover it is reasonable to expect that the full perturbative and non-
perturbative contributions to the beta function conspire to generate a non-trivial
pole structure [79]. Whatever the pole structure is, if the underlying theory displays
conformality, there will be also zeros in the numerator of the beta function associated
to the non-trivial fixed point structure of the theory. Here we consider the simplest
example in which the beta function has a simple nontrivial zero in the numerator and
a simple pole. We will always assume the existence of the trivial double zero at the
origin so that the beta function contains information about the asymptotically free
nature of the theory. Without loss of generality we write:

βJump = −α2 1 − δ − α

1 − α
. (2.49)

By construction this beta function has a zero in the numerator for any δ which is to
the left of the pole value αpole = 1 for δ positive and to the right for δ negative. Here
we take again δ = n f − nc

f . It is straightforward to show that this zero corresponds
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Fig. 2.14 βJump for different values of δ = n f − nc
f

to an IR (UV) fixed point for δ > 0 (δ < 0):

αIR(UV) = 1 − δ, δ > 0 (δ < 0) and |δ| ≤ 1 . (2.50)

Because of the presence of the pole the beta function describes two disconnected
theories. One which is continuously connected to the asymptotically free underlying
gauge theory and the other which is not. We plot the beta function for positive and
negative values of delta in Fig. 2.14. At exactly δ = 0 the numerator and denominator
of the beta function cancel and we are left with βδ=0

Jump = −α2 which is the red curve
in Fig. 2.14. What happens at the phase boundary? We will demonstrate that there is
a sudden jump as we drop the number of flavors below the critical number of flavors
(i.e. at δ = 0) of the intrinsic physical scale of the theory.

We start by constructing the analytical solution for the RG equation of the coupling
which reads:

ln
μ

μ0
= 1

α(1 − δ)

∣∣∣α(μ)

α(μ0)
+ δ

(1 − δ)2 ln

[
1 − δ − α

α

] ∣∣∣α(μ)

α(μ0)
. (2.51)

Holding fixed, as done for the Miransky scaling case, the coupling constant at a given
renormalization scale one observes that the newly generated scale increases with
decreasing the number of flavors below the conformal window in the following way:

ΛJump = Λc

[
1 − (nc

f − n f ) ln
(

nc
f − n f

)]
, n f → nc

f , n f ≤ nc
f . (2.52)

Λc = μ0 exp
[

ln α0
α0

]
is the renormalization group invariant scale of the theory at the

critical number of flavors. However for n f > nc
f no infrared scale is generated and

necessarily there must be a jump in the spectrum from Λc to zero (Fig. 2.15). This
result shows that βMY and βJump describe two distinct physical systems. For illus-
tration we summarize in Fig. 2.16 the behavior of the physical scale of the theory,
as function of number of flavors, for Miransky scaling and jumping dynamics. To
compare the two scaling laws we normalized the two scales at a given value of n f .
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Can jumping dynamics be used for models of dynamical electroweak symmetry
breaking? At the conformal boundary the dynamics is QCD like and therefore one
observes only a logarithmic enhancement of the condensate of the type 〈Q̄ Q〉μ 

γ (1) ln

(
μ
Λ

) 〈Q̄ Q〉Λ. The jumping dynamics does not lead to power-law
enhancement of the chiral condensate required for walking technicolor. Furthermore
the S-parameter in the jumping scenario automatically respects the lower bound put
forward in [80] given that, opportunely normalized, at the phase boundary is as small
as the one for QCD. Henceforth the answer to the original question is that one can
break the electroweak theory via jumping dynamics but cannot accommodate the
generation of the standard model fermion masses following the walking paradigm
nor drastically reduce the QCD-like S-parameter.

We have shown that it is possible to devise a simple framework according to which
the approach to the long distance conformality does not display any sign of walking
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dynamics. All the current lattice investigations of the conformal window are not able
to differentiate walking from jumping. The reasons being that: (i) The lattice results,
for the moment, are performed for a fixed number of flavors and therefore either there
is a nonzero infrared scale or the theory is conformal; (ii) The precise determination
of the chiral condensate is not a simple task making harder to disentangle a power-law
from a logarithmic enhancement of the condensate as function of the renormalization
scale as well as the number of flavors; (iii) Even if the underlying dynamics is of
walking type (with or without the introduction of four-fermion interactions) the
extension of the region in the number of flavors and four-fermion coupling is not
known and might be tiny; (iv) Measuring a large anomalous dimension of the mass is
encouraging but alone insufficient to demonstrate the existence of walking dynamics.

Because of the discontinuity of the order parameter at the conformal phase tran-
sition, i.e. of the vacuum expectation value of the trace of the improved energy
momentum tensor which is proportional to the intrinsic scale of the theory, jumping
dynamics corresponds to a first order conformal phase transition. First order phase
transitions are common in nature and therefore we expect jumping dynamics to con-
stitute a likely scenario with inevitable important consequences on a large number of
research fields ranging from a better understanding of strong dynamics and its holo-
graphic engineering to the construction of sensible extensions of the standard model.
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Chapter 3
Minimal Technicolor Models: Toccata
and Fugue

Abstract In the prelude we introduced the basic concepts about technicolor and
argued for the need of new strongly coupled dynamics. In the previous interlude
section we argued for the existence of such a new type of dynamics. Here we construct
a few explicit model examples. The associated LHC phenomenology is reported in
the Discovering Technicolor report [1].

3.1 Minimal Technicolor

We start by making the observation that the simplest technicolor models has NT f

Dirac fermions in the fundamental representation of SU (N ). These models, when
extended to accommodate the fermion masses through the extended technicolor inter-
actions, suffer from large flavor changing neutral currents. This problem is alleviated
if the number of flavors is sufficiently large such that the theory is almost conformal.
This is estimated to happen for NT f ∼ 4N [2] as also summarized in the section ded-
icated to the Phase Diagram of strongly interacting theories. This, in turn, implies a
large contribution to the oblique parameter S (within naive estimates) [3]. Although
near the conformal window [4, 5] the S parameter is reduced due to non-perturbative
corrections, it is still too large if the model has a large particle content. In addi-
tion, such models may have a large number of pseudo Nambu-Goldstone bosons. By
choosing a higher dimensional technicolor representation for the new technifermions
one can overcome these problems [3, 6].

To have a very low S parameter one would ideally have a technicolor theory which
with only one doublet breaks dynamically the electroweak theory but at the same
time being walking to reduce the S parameter. The walking nature then also enhances
the scale responsible for the fermion mass generation.

According to the phase diagram exhibited earlier the promising candidate theories
with the properties required are either theories with fermions in the adjoint repre-
sentation or two index symmetric one. In Table 3.1 we present the generic S-type
theory.

F. Sannino, Dynamical Stabilization of the Fermi Scale, SpringerBriefs in Physics, 61
DOI: 10.1007/978-3-642-33341-5_3, © The Author(s) 2013



62 3 Minimal Technicolor Models: Toccata and Fugue

Table 3.1 Schematic representation of a generic nonsupersymmetric vector like SU (N ) gauge
theory with matter content in the two-index representation

The relevant feature, found first in [6] using the ladder approximation, is that the
S-type theories can be near conformal already at NT f = 2 when N = 2 or 3. This
should be contrasted with theories in which the fermions are in the fundamental
representation for which the minimum number of flavors required to reach the con-
formal window is eight for N = 2. This last statement is supported by the all order
beta function results [7] as well as lattice simulations [8–11]. The critical value of
flavors increases with the number of colors for the gauge theory with S-type matter:
the limiting value is 4.15 at large N .

The situation is different for the theory with A-type matter. Here the critical
number of flavors increases when decreasing the number of colors. The maximum
value of about NTf = 12 is obtained—in the ladder approximation—for N = 3,
i.e. standard QCD. In Ref. [3] it has been argued that the nearly conformal A-type
theories have, already at the perturbative level, a very large S parameter with respect
to the experimental data. These theories can be re-considered if one gauges under
the electroweak symmetry only a part of the flavor symmetries as we shall see in the
section dedicated to partially gauged technicolor.

3.2 Minimal Walking Technicolor (MWT)

The dynamical sector we consider, which underlies the Higgs mechanism, is an
SU(2) technicolor gauge theory with two adjoint technifermions [6]. The theory is
asymptotically free if the number of flavors n f is less than 2.75 according to the ladder
approximation. Lattice results support the conformal or near conformal behavior of
this theory. In any event the symmetries and properties of this model make it ideal
for a comprehensive study for LHC physics. The all order beta function prediction
is that this gauge theory is, in fact, conformal. In this case we can couple another
non-conformal sector to this gauge theory and push it away from the fixed point.

The two adjoint fermions are conveniently written as

Qa
L =

(
U a

Da

)
L

, U a
R , Da

R , a = 1, 2, 3, (3.1)
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with a being the adjoint color index of SU(2). The left handed fields are arranged
in three doublets of the SU(2)L weak interactions in the standard fashion. The con-
densate is 〈ŪU + D̄D〉 which correctly breaks the electroweak symmetry as already
argued for ordinary QCD.

The model as described so far suffers from the Witten topological anomaly [12].
However, this can easily be solved by adding a new weakly charged fermionic doublet
which is a technicolor singlet [13]. Schematically:

L L =
(

N
E

)
L

, NR, ER . (3.2)

In general, the gauge anomalies cancel using the following generic hypercharge
assignment

Y (QL) = y

2
, Y (UR, DR) =

(
y + 1

2
,

y − 1

2

)
, (3.3)

Y (L L) = −3
y

2
, Y (NR, ER) =

(−3y + 1

2
,
−3y − 1

2

)
, (3.4)

where the parameter y can take any real value [13]. In our notation the electric
charge is Q = T3 + Y , where T3 is the weak isospin generator. One recovers the SM
hypercharge assignment for y = 1/3 (Fig. 3.1).

To discuss the symmetry properties of the theory it is convenient to use the Weyl
basis for the fermions and arrange them in the following vector transforming accord-
ing to the fundamental representation of SU(4)

Q =

⎛
⎜⎜⎝

UL

DL

−iσ 2U∗
R−iσ 2 D∗
R

⎞
⎟⎟⎠ , (3.5)

where UL and DL are the left handed techniup and technidown, respectively and
UR and DR are the corresponding right handed particles. Assuming the standard
breaking to the maximal diagonal subgroup, the SU(4) symmetry spontaneously
breaks to SO(4). Such a breaking is driven by the following condensate

〈Qα
i Qβ

j εαβ Ei j 〉 = −2〈U RUL + DR DL〉 , (3.6)

where the indices i, j = 1, . . . , 4 denote the components of the tetraplet of Q, and
the Greek indices indicate the ordinary spin. The matrix E is a 4 × 4 matrix defined
in terms of the 2-dimensional unit matrix as

E =
(

0 1

1 0

)
. (3.7)
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Fig. 3.1 Cartoon of the minimal walking technicolor model extension of the SM

Here εαβ = −iσ 2
αβ and 〈Uα

L UR
∗βεαβ〉 = −〈U RUL〉. A similar expression holds

for the D techniquark. The above condensate is invariant under an SO(4) symmetry.
This leaves us with nine broken generators with associated Goldstone bosons.

Replacing the Higgs sector of the SM with the MWT the Lagrangian now reads:

LH → −1

4
F a

μνF
aμν + i Q̄Lγ μDμQL + iŪRγ μ DμUR + i D̄Rγ μ DμDR

+i L̄ Lγ μDμL L + i N̄Rγ μ DμNR + i ĒRγ μDμER (3.8)

with the technicolor field strengthF a
μν = ∂μA a

ν −∂νA a
μ +gT CεabcA b

μ A c
ν , a, b, c =

1, . . . , 3. For the left handed techniquarks the covariant derivative is:

DμQa
L =

(
δac∂μ + gT CA b

μ εabc − i
g

2
Wμ · τδac − ig′ y

2
Bμδac

)
Qc

L . (3.9)

Aμ are the techni gauge bosons, Wμ are the gauge bosons associated to SU(2)L and
Bμ is the gauge boson associated to the hypercharge. τ a are the Pauli matrices and
εabc is the fully antisymmetric symbol. In the case of right handed techniquarks the
third term containing the weak interactions disappears and the hypercharge y/2 has



3.2 Minimal Walking Technicolor (MWT) 65

to be replaced according to whether it is an up or down techniquark. For the left-
handed leptons the second term containing the technicolor interactions disappears
and y/2 changes to −3y/2. Only the last term is present for the right handed leptons
with an appropriate hypercharge assignment.

3.3 Low Energy Theory for MWT

We construct the effective theory for MWT including composite scalars and vector
bosons, their self interactions, and their interactions with the electroweak gauge fields
and the SM fermions.

3.3.1 Scalar Sector

The relevant effective theory for the Higgs sector at the electroweak scale consists,
in our model, of a composite Higgs σ and its pseudoscalar partner Θ , as well as
nine pseudoscalar Goldstone bosons and their scalar partners. The recent discovery
of a Higgs-like state would naturally fit within this framework.1 These states can be
assembled in the matrix

M =
[
σ + iΘ

2
+ √

2(iΠa + Π̃a)Xa
]

E , (3.10)

which transforms under the full SU (4) group according to

M → uMuT , with u ∈ SU (4) . (3.11)

The Xa’s, a = 1, . . . , 9 are the generators of the SU (4) group which do not leave
the Vacuum Expectation Value (VEV) of M invariant

〈M〉 = v

2
E . (3.12)

Note that the notation used is such that σ is a scalar while the Πa’s are pseudoscalars.
It is convenient to separate the fifteen generators of SU (4) into the six that leave the
vacuum invariant, Sa , and the remaining nine that do not, Xa . Then the Sa generators
of the SO(4) subgroup satisfy the relation

Sa E + E Sa T = 0, with a = 1, . . . , 6, (3.13)

1 In fact the original name for this model was Light Composite Higgs where the lightness of the
composite Higgs was argued on the near-conformal nature of the model [13].
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so that uEuT = E , for u ∈ SO(4). The explicit realization of the generators and
the embedding of the electroweak generators in the SU (4) algebra are shown in
Appendix A.3. With the tilde fields included, the matrix M is invariant in form under
U (4) ≡ SU (4)×U (1)A, rather than just SU (4). However the U (1)A axial symmetry
is anomalous, and is therefore broken at the quantum level.

The connection between the composite scalars and the underlying techniquarks
can be derived from the transformation properties under SU (4), by observing that
the elements of the matrix M transform like techniquark bilinears:

Mi j ∼ Qα
i Qβ

j εαβ with i, j = 1 . . . 4 . (3.14)

Using this expression, and the basis matrices given in Appendix A.3, the scalar fields
can be related to the wavefunctions of the techniquark bound states. This gives the
following charge eigenstates:

v + H ≡ σ ∼ UU + DD , Θ ∼ i
(

Uγ 5U + Dγ 5 D
)

,

A0 ≡ Π̃3 ∼ UU − DD, Π0 ≡ Π3 ∼ i
(

Uγ 5U − Dγ 5 D
)

,

A+ ≡ Π̃1 − iΠ̃2

√
2

∼ DU, Π+ ≡ Π1 − iΠ2

√
2

∼ i Dγ 5U , (3.15)

A− ≡ Π̃1 + iΠ̃2

√
2

∼ U D, Π− ≡ Π1 + iΠ2

√
2

∼ iUγ 5 D ,

for the technimesons, and

ΠUU ≡ Π4 + iΠ5 + Π6 + iΠ7

2
∼ U T CU,

ΠDD ≡ Π4 + iΠ5 − Π6 − iΠ7

2
∼ DT C D,

ΠU D ≡ Π8 + iΠ9

√
2

∼ U T C D,


̃UU ≡ Π̃4 + iΠ̃5 + Π̃6 + iΠ̃7

2
∼ iU T Cγ 5U, (3.16)

Π̃DD ≡ Π̃4 + iΠ̃5 − Π̃6 − iΠ̃7

2
∼ i DT Cγ 5 D,

Π̃U D ≡ Π̃8 + iΠ̃9

√
2

∼ iU T Cγ 5 D,

for the technibaryons, where U ≡ (UL , UR)T and D ≡ (DL , DR)T are Dirac tech-
nifermions, and C is the charge conjugation matrix, needed to form Lorentz-invariant
objects. To these technibaryon charge eigenstates we must add the corresponding
charge conjugate states (e.g. ΠUU → ΠUU ).
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Three of the nine Goldstone bosons (Π±,Π0) associated with the relative broken
generators become the longitudinal degrees of freedom of the massive weak gauge
bosons, while the extra six Goldstone bosons will acquire a mass due to ETC interac-
tions as well as the electroweak interactions per se. Using a bottom up approach we
will not commit to a specific ETC theory but limit ourself to introduce the minimal
low energy operators needed to construct a phenomenologically viable theory. The
new Higgs Lagrangian is

LHiggs = 1

2
Tr

[
DμM DμM†

]
− V (M) + LETC, (3.17)

where the potential reads

V (M) = −m2
M

2
Tr[M M†] + λ

4
Tr

[
M M†

]2 + λ′Tr
[

M M† M M†
]

− 2λ′′ [Det(M) + Det(M†)
]
, (3.18)

and LETC contains all terms which are generated by the ETC interactions, and not
by the chiral symmetry breaking sector. Notice that the determinant terms (which
are renormalizable) explicitly break the U(1)A symmetry, and give mass to Θ , which
would otherwise be a massless Goldstone boson.

In order to give masses to the remaining uneaten Goldstone boson we add this
term which is generated in the ETC sector:

LETC ⊃ m2
ETC

4
Tr

[
M B M† B + M M†

]
, (3.19)

and B ≡ 2
√

2S4 is a specific generator in the SU (4) algebra.
The potential V (M) produces a VEV which parameterizes the techniquark con-

densate, and spontaneously breaks SU (4) to SO(4). In terms of the model parameters
the VEV is

v2 = 〈σ 〉2 = m2
M

λ + λ′ − λ′′ , (3.20)

while the Higgs mass is
M2

H = 2 m2
M . (3.21)

The linear combination λ+λ′ −λ′′ corresponds to the Higgs self coupling in the SM.
The three pseudoscalar mesons Π±, Π0 correspond to the three massless Goldstone
bosons which are absorbed by the longitudinal degrees of freedom of the W ± and
Z boson. The remaining six uneaten Goldstone bosons are technibaryons, and all
acquire tree-level degenerate mass through the ETC interaction in (3.19):

M2
ΠUU

= M2
ΠU D

= M2
ΠDD

= m2
ETC . (3.22)
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The remaining scalar and pseudoscalar masses are

M2
Θ = 4v2λ′′

M2
A± = M2

A0 = 2v2 (
λ′ + λ′′) (3.23)

for the technimesons, and

M2
Π̃UU

= M2
Π̃U D

= M2
Π̃DD

= m2
ETC + 2v2 (

λ′ + λ′′) , (3.24)

for the technibaryons. To gain insight on some of the mass relations one can use [3].

3.3.2 Vector Bosons

The composite vector bosons of a theory with a global SU (4) symmetry are conve-
niently described by the four-dimensional traceless Hermitian matrix

Aμ = Aaμ T a, (3.25)

where T a are the SU (4) generators: T a = Sa , for a = 1, . . . , 6, and T a+6 = Xa ,
for a = 1, . . . , 9. Under an arbitrary SU (4) transformation, Aμ transforms like

Aμ → u Amuu†, where u ∈ SU (4). (3.26)

Equation (3.26), together with the tracelessness of the matrix Aμ, gives the connection
with the techniquark bilinears:

Aμ, j
i ∼ Qα

i σ
μ

αβ̇
Q̄β̇, j − 1

4
δ

j
i Qα

k σ
μ

αβ̇
Q̄β̇,k . (3.27)

Then we find the following relations between the charge eigenstates and the wave-
functions of the composite objects:

v0μ ≡ A3μ ∼ Ūγ μU − D̄γ μD, a0μ ≡ A9μ ∼ Ūγ μγ 5U − D̄γ μγ 5 D

v+μ ≡ A1μ − i A2μ

√
2

∼ D̄γ μU, a+μ ≡ A7μ − i A8μ

√
2

∼ D̄γ μγ 5U (3.28)

v−μ ≡ A1μ + i A2μ

√
2

∼ Ūγ μ D, a−μ ≡ A7μ + i A8μ

√
2

∼ Ūγ μγ 5 D

v4μ ≡ A4μ ∼ Ūγ μU + D̄γ μD,
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for the vector mesons, and

xμ
UU ≡ A10μ + i A11μ + A12μ + i A13μ

2
∼ U T Cγ μγ 5U,

xμ
DD ≡ A10μ + i A11μ − A12μ − i A13μ

2
∼ DT Cγ μγ 5 D, (3.29)

xμ
U D ≡ A14μ + i A15μ

√
2

∼ DT Cγ μγ 5U,

sμ
U D ≡ A6μ − i A5μ

√
2

∼ U T Cγ μ D,

for the vector baryons.
There are different approaches on how to introduce vector mesons at the effective

Lagrangian level. At the tree level they are all equivalent.
Based on this premise, the minimal kinetic Lagrangian is:

Lkinetic = −1

2
Tr

[
W̃μνW̃ μν

]
− 1

4
Bμν Bμν − 1

2
Tr

[
Fμν Fμν

]
+ m2Tr

[
CμCμ

]
,

(3.30)
where W̃μν and Bμν are the ordinary field strength tensors for the electroweak gauge
fields. Strictly speaking the terms above are not only kinetic ones since the Lagrangian
contains a mass term as well as self interactions. The tilde on W a indicates that the
associated states are not yet the SM weak triplets: in fact these states mix with the
composite vectors to form mass eigenstates corresponding to the ordinary W and Z
bosons. Fμν is the field strength tensor for the new SU (4) vector bosons,

Fμν = ∂μ Aν − ∂ν Aμ − i g̃
[
Aμ, Aν

]
, (3.31)

and the vector field Cμ is defined by

Cμ ≡ Aμ − g

g̃
Gμ . (3.32)

and Gμ is given by
Gμ = gW a

μ La + g′BμY , (3.33)

where La and Y are the generators of the left-handed and hypercharge transforma-
tions, as defined in Appendix A.3, with Y . The parameter g̃ represents the coupling
among the vectors and the ratio g

g̃ is phenomenologically very important because

it sets the mixing among gauge eigenstates and composite vectors eigenstates. The
mass term in Eq. (3.30) is gauge invariant, and gives a degenerate mass to all com-
posite vector bosons, while leaving the actual gauge bosons massless. (The latter
acquires mass as usual from the covariant derivative term of the scalar matrix M ,
after spontaneous symmetry breaking.)
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The Cμ fields couple with M via gauge invariant operators. Up to dimension four
operators the Lagrangian is

LM−C = g̃2 r1Tr
[
CμCμM M†

]
+ g̃2 r2 Tr

[
CμMCμT M†

]

+ i g̃
r3

2
Tr

[
Cμ

(
M(DμM)† − (DμM)M†

)]

+ g̃2 s Tr
[
CμCμ

]
Tr

[
M M†

]
. (3.34)

The dimensionless parameters r1, r2, r3, s parameterize the strength of the inter-
actions between the composite scalars and vectors in units of g̃, and are therefore
naturally expected to be of order one. However, notice that for r1 = r2 = r3 = 0
the overall Lagrangian possesses two independent SU (2)L ×U (1)R ×U (1)V global
symmetries. One for the terms involving M and one for the terms involving Cμ.2

The Higgs potential only breaks the symmetry associated with M , while leaving the
symmetry in the vector sector unbroken. This enhanced symmetry guarantees that all
r -terms are still zero after loop corrections. Moreover if one chooses r1, r2, r3 to be
small the near enhanced symmetry will protect these values against large corrections
[14, 15].

3.3.3 Fermions and Yukawa Interactions

The fermionic content of the effective theory consists of the SM quarks and leptons,
the new lepton doublet L = (N , E) introduced to cure the Witten anomaly, and a
composite techniquark-technigluon doublet.

We now consider the limit according to which the SU (4) symmetry is, at first,
extended to ordinary quarks and leptons. Of course, we will need to break this
symmetry to accommodate the SM phenomenology. We start by arranging the SU (2)

doublets in SU (4) multiplets as we did for the techniquarks in Eq. (3.5). We therefore
introduce the four component vectors qi and li ,

qi =

⎛
⎜⎜⎝

ui
L

di
L

−iσ 2ui
R

∗

−iσ 2di
R

∗

⎞
⎟⎟⎠ , li =

⎛
⎜⎜⎝

νi
L

ei
L

−iσ 2νi
R

∗

−iσ 2ei
R

∗

⎞
⎟⎟⎠ , (3.35)

where i is the generation index. Note that such an extended SU (4) symmetry auto-
matically predicts the presence of a right handed neutrino for each generation. In
addition to the SM fields there is an SU (4) multiplet for the new leptons,

2 The gauge fields explicitly break the original SU (4) global symmetry to SU (2)L×U (1)R×U (1)V,
where U (1)R is the T 3 part of SU (2)R, in the SU (2)L × SU (2)R × U (1)V subgroup of SU (4).
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L =

⎛
⎜⎜⎝

NL

EL

−iσ 2 NR
∗

−iσ 2 ER
∗

⎞
⎟⎟⎠ , (3.36)

and a multiplet for the techniquark-technigluon bound state,

Q̃ =

⎛
⎜⎜⎝

ŨL

D̃L

−iσ 2Ũ∗
R−iσ 2 D̃∗
R

⎞
⎟⎟⎠ . (3.37)

The techniquark-technigluon states, Q̃, being bound states of the underlying MWT
model, have a dynamical mass.

With this arrangement, the electroweak covariant derivative for the fermion fields
can be written

Dμ = ∂μ − i g Gμ(YV) , (3.38)

where YV = 1/3 for the quarks, YV = −1 for the leptons, YV = −3y for the new
lepton doublet, and YV = y for the techniquark-technigluon bound state. Based on
this matter content, we write the following gauge part of the fermion Lagrangian:

Lfermion = i qi
α̇σμ,α̇β Dμqi

β + i l
i
α̇σμ,α̇β Dμli

β

+ i L α̇σμ,α̇β DμLβ + i Q̃α̇σμ,α̇β Dμ Q̃β

+ x Q̃α̇σμ,α̇βCμ Q̃β. (3.39)

We now turn to the issue of providing masses to the SM fermions. In the first chapter
the simplest ETC model has been briefly reviewed. Many extensions of TC have
been suggested in the literature to address this problem. Some of the extensions
use another strongly coupled gauge dynamics, others introduce fundamental scalars.
Many variants of the schemes presented above exist and a review of the major models
is the one by Hill and Simmons [16]. At the moment there is not yet a consensus on
which is the correct ETC. In our phenomenological approach will we parameterize
our ignorance about a complete ETC theory by simply coupling the fermions to our
low energy effective Higgs throughout the ordinary effective SM Yukawa interac-
tions and we assume that any dangerous FCNC operator is strongly suppressed and
therefore negligible.
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3.3.4 Phenomenological Use of the Modified Weinberg Sum Rules

In order to make contact with the underlying gauge theory, and discriminate between
different classes of models, we make use of the modified Weinberg sum rules dis-
cussed already in the first chapter. In [4] it was argued that the zeroth Weinberg sum
rule—which is nothing but the definition of the S parameter

S = 4π

[
F2

V

M2
V

− F2
A

M2
A

]
, (3.40)

and the first sum rule,

F2
V − F2

A = F2
π , (3.41)

do not receive significant contributions from the near conformal region, and are
therefore unaffected. In these equations MV (MA) and FV (FA) are mass and decay
constant of the vector-vector (axial-vector) meson, respectively, in the limit of zero
electroweak gauge couplings. Fπ is the decay constant of the pions: since this is
a model of dynamical electroweak symmetry breaking, Fπ = 246 GeV. The heavy
vector boson masses are:

M2
V = m2 + g̃2 (s − r2) v2

4
,

M2
A = m2 + g̃2 (s + r2) v2

4
, (3.42)

and

FV =
√

2MV

g̃
,

FA =
√

2MA

g̃
χ ,

F2
π = (1 + 2ω) F2

V − F2
A , (3.43)

where

ω ≡ v2 g̃2

4M2
V

(1 + r2 − r3) , χ ≡ 1 − v2 g̃2 r3

4M2
A

. (3.44)

Then Eqs. (3.40) and (3.41) give

S = 8π

g̃2

(
1 − χ2

)
, (3.45)

r2 = r3 − 1 . (3.46)



3.3 Low Energy Theory for MWT 73

Fig. 3.2 The ellipses represent the 90 % confidence region for the S and T parameters. The ellipses,
from lower to higher, are obtained for a reference Higgs mass of 117, 300 GeV, and 1 TeV, respec-
tively. The contribution from the TC sector of the MWT theory per se and from the new leptons
is expressed by the green region. The left panel has been obtained using a SM type hypercharge
assignment while the right one is for y = 1

The second sum rule, corresponding to a zero on the right hand side of the following
equation, does receive important contributions from the near conformal region, and
is modified to

F2
V M2

V − F2
A M2

A = a
8π2

d(R)
F4

π , (3.47)

where a is expected to be positive and O(1), and d(R) is the dimension of the
representation of the underlying fermions [4]. For each of these sum rules a more
general spectrum would involve a sum over all the vector and axial states.

In the effective Lagrangian we codify the walking behavior in a being positive
and O(1), and the minimality of the theory in S being small. A small S is both due
to the small number of flavors in the underlying theory and to the near conformal
dynamics, which reduces the contribution to S relative to a running theory [4].

3.3.5 Passing the Electroweak Precision Tests

We have studied the effects of the lepton family on the electroweak parameters in
[13], we summarize here the main results in Fig. 3.2. The ellipses represent the 90 %
confidence region for the S and T parameters. The ellipses, from lower to higher, are
obtained for a reference Higgs mass of 117 300 GeV, and 1 TeV, respectively. The
contribution from the MWT theory per se and of the new leptons [17] is expressed
by the green region. The left panel has been obtained using a SM type hypercharge
assignment while the right one is for y = 1. In both pictures the regions of over-
lap between the theory and the precision contours are achieved when the upper
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component of the weak isospin doublet is lighter than the lower component. The
opposite case leads to a total S which is larger than the one predicted within the new
strongly coupled dynamics per se. This is due to the sign of the hypercharge for the
new leptons. The mass range used in the plots is MZ � m E,N � 10 MZ . The plots
have been obtained assuming a Dirac mass for the new neutral lepton (in the case of
a SM hypercharge assignment). The analysis for the Majorana mass case has been
performed in [18] where one can again show that it is possible to be within the 90 %
contours.

3.3.6 The Next to Minimal Walking Technicolor Theory (NMWT)

The theory with three technicolors contains an even number of electroweak doublets,
and hence it is not subject to a Witten anomaly. The doublet of technifermions, is
then represented again as:

Q{C1,C2}
L =

(
U {C1,C2}
D{C1,C2}

)
L

, Q{C1,C2}
R =

(
U {C1,C2}

R , D{C1,C2}
R

)
. (3.48)

Here Ci = 1, 2, 3 is the technicolor index and QL(R) is a doublet (singlet) with
respect to the weak interactions. Since the two-index symmetric representation of
SU (3) is complex the flavor symmetry is SU (2)L × SU (2)R × U (1). Only three
Goldstones emerge and are absorbed in the longitudinal components of the weak
vector bosons.

Gauge anomalies are absent with the choice Y = 0 for the hypercharge of the
left-handed technifermions:

Q(Q)
L =

(
U (+1/2)

D(−1/2)

)
L
. (3.49)

Consistency requires for the right-handed technifermions (isospin singlets):

Q(Q)
R =

(
U (+1/2)

R , D−1/2
R

)
,

Y = + 1/2,−1/2 . (3.50)

All of these states will be bound into hadrons. There is no need for an associated fourth
family of leptons, and hence it is not expected to be observed in the experiments.

Here the low-lying technibaryons are fermions constructed with three techni-
quarks in the following way:

B f1, f2, f3;α = Q{C1,C2}
L;α, f1

Q{C3,C4}
L;β, f2

Q{C5,C6}
L;γ, f3

εβγ εC1C3C5εC2C4C6 . (3.51)
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where fi = 1, 2 corresponds to U and D flavors, and we are not specifying the flavor
symmetrization which in any event will have to be such that the full technibaryon
wave function is fully antisymmetrized in technicolor, flavor and spin. α, β, and γ

assume the values of one or two and represent the ordinary spin. Similarly we can
construct different technibaryons using only right-handed fields or a mixture of left-
and right-handed ones.

This model has also been recently investigated on the lattice and found to break
chiral symmetry [19].

3.4 Beyond Minimal Technicolor

When going beyond MWT one finds new and interesting theories able to break the
electroweak symmetry while featuring a walking dynamics and yet not at odds with
precision measurements, at least when comparing with the naive S parameter. A
compendium of these theories can be found in [20]. Here we will review only the
principal type of models one can construct.

3.4.1 Partially Gauged Technicolor

A small modification of the traditional TC approach, which neither involves addi-
tional particle species nor more complicated gauge groups, allows constructing sev-
eral other viable candidates. It consists in letting only one doublet of techniquarks
transform non-trivially under the electroweak symmetries with the rest being elec-
troweak singlets, as first suggested in [13] and later also used in [21]. Still, all techni-
quarks transform under the TC gauge group. Thereby only one techniquark doublet
contributes directly3 to the oblique parameter which is thus kept to a minimum for
theories which need more than one family of techniquarks to be quasi-conformal. It
is the condensation of that first electroweakly charged family that breaks the elec-
troweak symmetry. The techniquarks which are uncharged under the electroweak
gauge group are natural building blocks for components of DM.

3.4.2 Split Technicolor

We summarize here also another possibility [13] according to which we keep the
technifermions gauged under the electroweak theory in the fundamental representa-
tion of the SU (N ) TC group while still reducing the number of techniflavors needed

3 Via TC interactions all of the matter content of the theory will affect physical observables associated
to the sector coupled to the electroweak symmetry.
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to be near the conformal window. Like for the partially gauged case described above
this can be achieved by adding matter uncharged under the weak interactions. The
difference to Sect. 3.4.1 is that this part of matter transforms under a different rep-
resentation of the TC gauge group than the part coupled directly to the electroweak
sector. For example, for definiteness let’s choose it to be a massless Weyl fermion in
the adjoint representation of the TC gauge group. The resulting theory has the same
matter content as N f -flavor super QCD but without the scalars; hence the name Split
Technicolor. The matter content of Split Technicolor lies between that of super QCD
and QCD-like theories with matter in the fundamental representation. We note that
a split TC-like theory has been used in [22], to investigate the strong CP problem.

In [23] one can find an explicit example of (near) conformal TC with two types
of technifermions, i.e. transforming according to two different representations of the
underlying TC gauge group [20, 24]. The model possesses a number of interest-
ing properties to recommend it over the earlier models of dynamical electroweak
symmetry breaking:

• Features the lowest possible value of the naive S parameter [25, 26] while pos-
sessing a dynamics which, if not jumping, is walking.

• Contains, overall, the lowest possible number of fermions.
• Yields natural DM candidates.

Due to the above properties we term this model Ultra Minimal near conformal
Technicolor (UMT). It is constituted by an SU (2) technicolor gauge group with two
Dirac flavors in the fundamental representation also carrying electroweak charges, as
well as, two additional Weyl fermions in the adjoint representation but singlets under
the SM gauge groups. Recently the SU (2) dynamics with two Dirac flavors in the
fundamental representation was investigated on the lattice in [27]. Here it was shown
that the pattern of chiral symmetry breaking is indeed SU (4) breaking to Sp(4).

By arranging the additional fermions in higher dimensional representations, it
is possible to construct models which have a particle content smaller than the one
of partially gauged technicolor theories. In fact instead of considering additional
fundamental flavors we shall consider adjoint flavors. Note that for two colors there
exists only one distinct two-indexed representation.

3.5 Vanilla Technicolor

Despite the different envisioned underlying gauge dynamics it is a fact that the
SM structure alone requires the extensions to contain, at least, the following chiral
symmetry breaking pattern (insisting on keeping the custodial symmetry of the SM):

SU (2)L × SU (2)R → SU (2)V . (3.52)

We will call this common sector of any technicolor extension of the SM, the
vanilla sector. The reason for such a name is that the vanilla sector is common
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to old models of technicolor featuring running and walking dynamics. It is worth
mentioning that the vanilla sector is common not only to technicolor extensions but to
several extensions, even of extra-dimensional type, in which the Higgs sector can be
viewed as composite. In fact, the effective Lagrangian we are about to introduce can
be used for modeling several extensions with a common vanilla sector respecting the
same constraints spelled out in [28]. The natural candidate for a walking technicolor
model featuring exactly this global symmetry is NMWT [6].

Based on the vanilla symmetry breaking pattern we describe the low energy spec-
trum in terms of the lightest spin one vector and axial-vector iso-triplets V ±,0, A±,0

as well as the lightest iso-singlet scalar resonance H . In QCD the equivalent states
are the ρ±,0, a±,0

1 and the f0(600) [29]. It has been argued in [3, 30], using Large N
arguments, and in [13, 20], using the saturation of the trace of the energy momentum
tensor, that models of dynamical electroweak symmetry breaking featuring (near)
conformal dynamics contain a composite Higgs state which is light with respect to
the new strongly coupled scale (4 π v with v � 246 GeV). These indications have
led to the construction of models of technicolor with a naturally light composite
Higgs. Recent investigations using Schwinger-Dyson [31] and gauge-gravity duali-
ties [32] also arrived to the conclusion that the composite Higgs can be light.4 The
three technipions Π±,0 produced in the symmetry breaking become the longitudinal
components of the W and Z bosons.

The composite spin one and spin zero states and their interaction with the SM
fields are described via the following effective Lagrangian in which we developed,
first for minimal models of walking technicolor [15, 28]:

Lboson = −1

2
Tr

[
W̃μν W̃μν

] − 1

4
B̃μν B̃μν − 1

2
Tr

[
FLμν Fμν

L + FRμν Fμν
R

]

+ m2 Tr
[
C2

Lμ + C2
Rμ

]
+ 1

2
Tr

[
DμM DμM†

]
− g̃2 r2 Tr

[
CLμMCμ

R M†
]

− i g̃ r3

4
Tr

[
CLμ

(
M DμM† − DμM M†

)
+ CRμ

(
M† DμM − DμM† M

)]

+ g̃2s

4
Tr

[
C2

Lμ + C2
Rμ

]
Tr

[
M M†

]
+ μ2

2
Tr

[
M M†

]
− λ

4
Tr

[
M M†

]2
,

(3.53)

where W̃μν and B̃μν are the ordinary electroweak field strength tensors, FL/Rμν are
the field strength tensors associated to the vector meson fields AL/Rμ,5 and the CLμ

and CRμ fields are

CLμ ≡ ALμ − g

g̃
W̃μ, CRμ ≡ ARμ − g′

g̃
B̃μ . (3.54)

4 The Higgs boson here is identified with the lightest 0++ state of the theory saturating the trace of
the energy momentum tensor of the theory.
5 In [28], where the chiral symmetry is SU (4), there is an additional term whose coefficient is
labeled r1. With an SU (N ) × SU (N ) chiral symmetry this term is just identical to the s term.
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The 2 × 2 matrix M is

M = 1√
2

[
v + H + 2 i πa T a]

, a = 1, 2, 3 (3.55)

where πa are the Goldstone bosons produced in the chiral symmetry breaking, v =
μ/

√
λ is the corresponding VEV, H is the composite Higgs, and T a = σ a/2, where

σ a are the Pauli matrices. The covariant derivative is

DμM = ∂μM − igW̃ a
μT a M + ig′M B̃μT 3. (3.56)

When M acquires a VEV, the Lagrangian of Eq. (3.53) contains mixing matrices for
the spin one fields. The mass eigenstates are the ordinary SM bosons, and two triplets
of heavy mesons, of which the lighter (heavier) ones are denoted by R±

1 (R±
2 ) and

R0
1 (R0

2). These heavy mesons are the only new particles, at low energy, relative to
the SM.

Now we must couple the SM fermions. The interactions with the Higgs and the
spin one mesons are mediated by an unknown ETC sector, and can be parametrized at
low energy by Yukawa terms, and mixing terms with the CL and CR fields. Assuming
that the ETC interactions preserve parity and do not generate extra flavor violation
beyond the SM like Yukawa terms, the most general form for the quark Lagrangian is6

Lquark = q̄i
L i /Dqi L + q̄i

R i /Dqi R

−
[

q̄ i
L (Yu)

j
i M

1 + τ 3

2
q j R + q̄i

L (Yd)
j
i M

1 − τ 3

2
q j R + h.c.

]
, (3.57)

where i and j are generation indices, i = 1, 2, 3, qi L/R are electroweak doublets,
Yu and Yd are 3 × 3 complex matrices. The covariant derivatives are the ordinary
electroweak ones,

/Dqi L =
(
/∂ − i g /̃W

a
T a − i g′ /̃BYL

)
qi L ,

/Dqi R = (
/∂ − i g′ /̃BYR

)
qi R, (3.58)

where YL = 1/6 and YR = diag(2/3,−1/3). One can exploit the global symmetries
of the kinetic terms to reduce the number of physical parameters in the Yukawa
matrices. Thus we can take

Yu = diag(yu, yc, yt ), Yd = V diag(yd , ys, yb), (3.59)

and

6 The lepton sector works out in a similar way, the only difference being the possible presence of
Majorana neutrinos.
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qi
L =

(
ui L

V j
i d j L

)
, qi

R =
(

ui R

di R

)
, (3.60)

where V is the CKM matrix.
It is possible to further reduce the number of independent couplings using the

Weinberg sum rules discussed above. For example in NMWT, featuring technifermi-
ons with three technicolors transforming according to the two-index symmetric
representation of the technicolor gauge group, the naive one-loop S parameter is
S = 1/π � 0.3: this is a reasonable input for S in Eq. (3.40).

With S = 0.3 the remaining parameters are MA, g̃, s and MH , with s and MH

having a sizable effect in processes involving the composite Higgs.7

3.6 WW: Scattering in Technicolor and Unitarity

The simplest argument often used to predict the existence of yet undiscovered par-
ticles at the TeV scale comes from unitarity of longitudinal gauge boson scattering
amplitudes. If the electroweak symmetry breaking sector (EWSB) is weakly inter-
acting, unitarity implies that new particle states must show up below one TeV, being
these spin zero isosinglets (the Higgs boson) or spin one isotriplets (e.g. Kaluza-
Klein modes). A strongly interacting EWSB sector can however change this picture,
because of the strong coupling between the pions (eaten by the longitudinal compo-
nents of the SM gauge bosons) and the other bound states of the strongly interacting
sector. An illuminating example comes from QCD. In [33] it was shown that for six
colors or more, the 770 GeV ρ meson is enough to delay the onset of unitarity viola-
tion of the pion-pion scattering amplitude up to well beyond 1 GeV. Here the ’t Hooft
large N limit was used, however an even lower number of colors is needed to reach
a similar delay of unitarity violation when an alternative large N limit is used [34].
Scaling up to the electroweak scale, this translates in a 1.5 TeV technivector being
able to delay unitarity violation of longitudinal gauge boson scattering amplitudes up
to 4 TeV or more. As we discussed in the previous sections such a model, however,
would not be realistic for other reasons: a large contribution to the S parameter [25],
and large FCNC if the ordinary fermions acquire mass via an old fashioned ETC,
to mention the most relevant ones. It is therefore interesting to analyze the pion-
pion scattering in generic models of walking technicolor. We follow the analyses
performed in [35, 36].

In the effective theory for technicolor the scattering amplitudes for the longitu-
dinal SM gauge bosons approach at large energies the scattering amplitudes for the
corresponding eaten pions. We mainly analyze the contribution to the ππ scattering
amplitude from a spin zero isosinglet and a spin one isotriplet, and consider the case
in which a spin two isosinglet contributes as well.

7 The information on the spectrum alone is not sufficient to constrain s, but it can be measured
studying other physical processes.
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Fig. 3.3 I = 0 J = 0 partial wave amplitude for the ππ scattering. Here a Higgs with mass MH =
200 GeV, and a spin-one vector meson with mass MV = 1 TeV contribute to the full amplitude. The
different groups of curves correspond, from top to bottom, to gV ππ = 2, 2.5, 3, 3.5, 4. The different
curves within each group correspond, from top to bottom, to h = 0, 0.1, 0.15, 0.2. Nonzero values
of gV ππ and h give negative contributions to the linear term in s in the amplitude, and may lead to
a delay of unitarity violation

3.6.1 Spin Zero+Spin One

The isospin invariant amplitude for the pion-pion elastic scattering is [37]:

A(s, t, u) =
(

1

F2
π

− 3g2
V ππ

M2
V

)
s − h2

M2
H

s2

s − M2
H

− g2
V ππ

[
s − u

t − M2
V

+ s − t

u − M2
V

]
.

(3.61)
Note that our normalization for gV ππ , which is the heavy vector to two-pions effective
coupling, differs by a factor of

√
2 from that of Ref. [37]. The scalar H contribution

is proportional to the coupling h. These couplings are simply related to the ones of
the Vanilla technicolor Lagrangian, but the specific relation is not relevant here.

The amplitude of Eq. (3.61) has an s-channel pole in the Higgs exchange. In the
vicinity of this pole the propagator should be modified to include the Higgs width.
In order to catch the essential features of the unitarization process we will take the
Higgs to be a relatively narrow state, and consider values of

√
s far away from MH ,

where the finite width effects can be neglected. If the Higgs or any other state is not
sufficiently narrow to be treated at the tree level, it would be relevant to investigate
the effects due to unitarity corrections using specific unitarization schemes as done
for example in [38]. In order to study unitarity of the ππ scattering the most general
amplitude should be expanded in its isospin I and spin J components, aI

J . However
the I = 0 J = 0 component,

a0
0(s) = 1

64π

∫ 1

−1
d cos θ [3A(s, t, u) + A(t, s, u) + A(u, t, s)] , (3.62)
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has the worst high energy behavior, and is therefore sufficient for our analysis. Since
we are interested in testing unitarity at few TeVs in presence of a light Higgs, we set
MH = 200 GeV as a reference value, and study the regions in the (MV , gV ππ ) plane
in which a0

0 is unitary up to 3 TeV, for different values of h. If the Higgs mass is larger
than 200 GeV but still smaller than or of the same size of MV , we expect our results
to be qualitatively similar, even though finite width effects might be important due
to the pole in the s-channel. If the Higgs mass is much larger than MV the theory is
Higgsless at low energies. This case was studied in Ref. [35], and applies also to the
light Higgs scenario if H is decoupled from the pions, i.e. h = 0.

In order to study the effect of the Higgs exchange on the scattering amplitude,
consider the high energy behavior of A(s, t, u),

A(s, t, u) ∼
(

1

F2
π

− 3g2
V ππ

M2
V

− h2

M2
H

)
s . (3.63)

This shows that the Higgs exchange provides an additional negative contribution at
large energies, which, together with the vector meson, contributes to delay unitarity
violation to higher energies. In Fig. 3.3 a0

0 is plotted as a function of
√

s for MV =
1 TeV, MH = 200 GeV, and different values of gV ππ and h. The different groups of
curves from top to bottom correspond to gV ππ = 2, 2.5, 3, 3.5, and 4. For comparison,
the QCD value that follows from Γ (ρ → ππ) � 150 MeV would be gV ππ � 5.6.8

Within each group, the top curve corresponds to the Higgsless case, h = 0, while
the remaining ones correspond, from top to bottom, to h = 0.1, 0.15, and 0.2. For
small values of gV ππ the presence of a light Higgs delays unitarity violation to higher
energies: if the partial wave amplitude has a maximum near 0.5 the delay is dramatic.

For a given value of MV , the presence of a light Higgs enlarges the interval of
values of gV ππ for which the theory is unitary, provided that |h| is not too large.

3.6.2 Spin Zero+Spin One+Spin Two

In addition to spin-zero and spin-one mesons, the low energy spectrum can contain
spin two mesons as well [37]. The contribution of a spin-two meson F2 to the invariant
amplitude is

A2(s, t, u) = g2
2

2(M2
F2

− s)

[
− s2

3
+ t2 + u2

2

]
− g2

2s3

12M4
F2

, (3.64)

where MF2 and g2 are mass and coupling with the pions, respectively. A refer-
ence value for g2 can be obtained from QCD: m f2 � 1275 MeV and Γ ( f2 →

8 Figure 3.3 does not reproduce a scaled up version of QCD ππ scattering. For the latter to occur,
the vector resonance should be as large as (246 GeV/93 MeV)×770 MeV � 2 TeV. However in a
theory with walking dynamics the resonances are expected to be lighter than in a running setup.
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Fig. 3.4 Left contribution from the spin-two exchanges to the I = 0 J = 0 partial wave amplitude
of the ππ scattering. The different groups of curves correspond, from left to right, to MF2 =
2, 3, 4 TeV. Within each group, the different curves correspond, from smaller to wider, to g2 =
2, 2.5, 3, 3.5, 4 TeV−1. Right I = 0 J = 0 partial wave amplitude with all channels included (spin-
zero, -one, and -two). The dashed curves reproduce Fig. 3.3, with just the spin-zero and the spin-one
channels included. The solid curves contain also the spin-two exchanges, for MF2 = 3 TeV, and
g2 = 4 TeV−1. If unitarity is violated at negative values of a0

0 , the spin-two exchanges may lead to
a delay of unitarity violation

ππ) � 160 MeV give |g2| � 13 GeV−1 so that |g2|Fπ � 1.2. Scaling up to the
eletroweak scale results in |g2| � 4 TeV−1. The contribution of F2 to the I = 0
J = 0 partial wave amplitude is given in Fig. 3.4 (left) for different values of MF2

and g2. Notice that the amplitude is initially positive, and then becomes negative at
large values of

√
s. If MF2 is large enough, the positive contribution can balance the

negative contribution from the spin-zero and spin-one channels, shown in Fig. 3.3.
This can lead to a further delay of unitarity violation, as shown in Fig. 3.4 (right).
Here the curves of Fig. 3.3 are redrawn dashed, while the full contribution from
spin-zero, spin-one, and spin-two is shown by the solid lines, for MF2 = 3 TeV and
g2 = 4 TeV−1. If unitarity is violated at negative values of a0

0 , then the spin-two
contribution delays the violation to higher energies.

The unitarity analysis presented here is for generic Vanilla technicolor theories,
or any other model, featuring spin zero, one, and two resonances. The specialization
to running and walking technicolor is described in detail in [35, 36]. The bottom
line is that it is possible to delay the onset of unitarity violation, at the effective
Lagrangian level, for phenomenologically viable values of the couplings and masses
of the composite spectrum.

3.6.3 Introducing and Constraining Custodial Technicolor

We now constrain also models proposed in [15, 39] which, at the effective Lagrangian
level, possess an explicit custodial symmetry for the S parameter. We will refer to
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this class of models as custodial technicolor (CT) [40] . The new custodial symmetry
is present in the BESS models [14, 41, 42] which will therefore be constrained as
well. In this case we expect our constraints to be similar to the ones also discussed
in [43].

Custodial technicolor corresponds to the case for which MA = MV = M and
χ = 0. The effective Lagrangian acquires a new symmetry, relating a vector and an
axial field, which can be interpreted as a custodial symmetry for the S parameter [15,
39]. The only non-zero parameters are now:

W = g2

g̃2

M2
W

M2 , (3.65)

Y = g′2

2g̃2

M2
W

M2 (2 + 4y2) . (3.66)

A CT model cannot be achieved in walking dynamics and must be interpreted as a new
framework. In other words CT does not respect the Weinberg sum rules and hence it
can only be considered as a phenomenological type model in search of a fundamental
strongly coupled theory. To make our point clearer note that a degenerate spectrum
of light spin-one resonances (i.e. M < 4π Fπ ) leads to a very large Ŝ = g2 F2

π/4M2.
We needed only the first sum rule together with the statement of degeneracy of the
spectrum to derive this Ŝ parameter. This statement is universal and it is true for WT
and ordinary technicolor. The Eichten and Lane [44] scenario of almost degenerate
and very light spin-one states can only be achieved within a near CT models. A
very light vector meson with a small number of techniflavors fully gauged under the
electroweak can be accommodated in CT. This scenario was considered in [45, 46]
and our constraints apply here.

We find that in CT it is possible to have a very light and degenerate spin-one
spectrum if g̃ is sufficiently large, of the order say of 8 or larger as in the WT case.

We constrained the electroweak parameters intrinsic to WT or CT, however, in
general other sectors may contribute to the electroweak observables, an explicit
example is the new heavy lepton family introduced above [13].

To summarize we have suggested in [40] a way to constrain WT theories with any
given S parameter. We have further constrained relevant models featuring a custodial
symmetry protecting the S parameter. When increasing the value of the S parameter
while reducing the amount of walking we recover the technicolor constraints [25]. We
found bounds on the lightest spectrum of WT and CT theories with an intrinsically
small S parameter. Our results are applicable to any dynamical model of electroweak
symmetry breaking featuring near conformal dynamics á la walking technicolor.
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3.6.4 An ETC Example for MWT Versus Top Mass

It is instructive to present a simple model [47] which shows how one can embed
MWT in an extended technicolor model capable of generating the top quark mass.

When the techni-quarks are not in the fundamental representation of the techni-
color group it can be hard to feed down the electroweak symmetry breaking conden-
sate to generate the SM fermion masses [21, 24]. Here, following [47], we wish to
highlight that the minimal model can be recast as an SO(3) theory with fundamental
representation techni-quarks. The model can therefore rather easily be enlarged to
an extended technicolor theory [24] in the spirit of many examples in the literature.
We will concentrate on the top quark sector—the ETC gauge bosons in this sector
violate weak isospin and one must be careful to compute their contribution to the
T parameter [48].

We start by recognizing that adjoint multiplets of SU(2) can be written as fun-
damental representations of SO(3). This trick will now allow us to enact a standard
ETC pattern from the literature—it is particularly interesting that for this model of
the higher dimensional representation techniquarks there is a simple ETC model. We
will follow the path proposed in [49] where we gauge the full flavor symmetry of the
fermions.

If we were simply interested in the fourth family then the enlarged ETC symmetry
is a Pati-Salam type unification. We stack the doublets

[(
U a

Da

)
L

,

(
N
E

)
L

]
,

[
U a

R, NR
]
,

[
Da

R, ER
]

(3.67)

into 4 dimensional multiplets of SU(4). One then invokes some symmetry breaking
mechanism at an ETC scale (we will not speculate on the mechanism here though
see Fig. 3.1)

SU (4)ET C → SO(3)T C × U (1)Y (3.68)

The technicolor dynamics then proceeds to generate a techniquark condensate
〈ŪU 〉 = 〈D̄D〉 
= 0. The massive gauge bosons associated with the broken ETC
generators can then feed the symmetry breaking condensate down to generate fourth
family lepton masses

m N = m E � 〈ŪU 〉
Λ2

ET C

(3.69)

One could now naturally proceed to include the third (second, first) family by
raising the ETC symmetry group to SU(8) (SU(12), SU(16)) and a series of appro-
priate symmetry breakings. This would generate masses for all the SM fermions but
no isospin breaking mass contributions within fermion doublets. The simplest route
to generate such splitting is to make the ETC group chiral so that different ETC
couplings determine the isospin +1/2 and −1/2 masses. Let us only enforce such
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a pattern for the top quark and fourth family here since the higher ETC scales are far
beyond experimental probing.

We can, for example, have the SU(7) multiplets

[(
U a

Da

)
L

,

(
N
E

)
L

,

(
tc

bc

)
L

]
,

[
U a

R , NR , tc
R

]
(3.70)

here a will become the technicolor index and c the QCD index. We also have a right
handed SU(4) ETC group that only acts on

[
Da

R, ER
]

(3.71)

The right handed bottom quark is left out of the ETC dynamics and only has proto-
QCD SU(3) dynamics. The bottom quark will thus be left massless. The symmetry
breaking scheme at, for example, a single ETC scale would then be

SU (7) × SU (4) × SU (3) → SO(3)T C × SU (3)QC D (3.72)

The top quark now also acquires a mass from the broken gauge generators naively
equal to the fourth family lepton multiplet. Walking dynamics has many features
though that one would expect to overcome the traditional small size of the top
mass in ETC models. Firstly the enhancement of the techniquark self energy at
high momentum enhances the ETC generated masses by a factor potentially as large
as ΛET C/Σ(0).

The technicolor coupling is near conformal and strong so the ETC dynamics
will itself be quite strong at its breaking scale which will tend to enhance light
fermion masses [50]. In this ETC model the top quark will also feel the effects of
the extra massive octet of axial gluon-like gauge fields that may induce a degree of
top condensation a là top color models [51]. We conclude that a 4–8 TeV ETC scale
for generating the top mass is possible. In this model the fourth family lepton would
then have a mass of the same order and well in excess of the current search limit
MZ/2.
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Chapter 4
Composite Dark Matters: Coda

Abstract The dark side holds the 96 % share of the Universe. Given that to describe
the remaining 4 % we need at least three forces it is very likely that the dark side
of the Universe hides many new forces. We will suggest few possibilities yield-
ing candidates for composite dark matter and inflation making use of new strong
dynamics.

4.1 Composite Dark Matter

Experimental observations strongly indicate that the universe is flat and predomi-
nantly made of unknown forms of matter. Defining with Ω the ratio of the density
to the critical density, observations indicate that the fraction of matter amounts to
Ωmatter ∼ 0.3 of which the normal baryonic one is only Ωbaryonic ∼ 0.044. The
amount of non-baryonic matter is termed dark matter. The total Ω in the universe
is dominated by dark matter and pure energy (dark energy) with the latter giving a
contribution ΩΛ ∼ 0.7 (see for example [1, 2]). Most of the dark matter is “cold”
(i.e. non-relativistic at freeze-out) and significant fractions of hot dark matter are
hardly compatible with data. What constitutes dark matter is a question relevant for
particle physics and cosmology. A WIMP (Weakly Interacting Massive Particles)
can be the dominant part of the non-baryonic dark matter contribution to the total Ω .
Axions can also be dark matter candidates but only if their mass and couplings
are tuned for this purpose. It would be theoretically very pleasing to be able to
relate the dark matter and the baryon energy densities in order to explain the ratio
ΩDM/ΩB ∼ 5 [3]. We know that the amount of baryons in the universe ΩB ∼ 0.04
is determined solely by the cosmic baryon asymmetry nB/nγ ∼ 6 × 10−10. This is
so since the baryon–antibaryon annihilation cross section is so large, that virtually all
antibaryons annihilate away, and only the contribution proportional to the asymmetry
remains. This asymmetry can be dynamically generated after inflation. We do not
know, however, if the dark matter density is determined by thermal freeze-out, by an
asymmetry, or by something else. Thermal freeze-out needs a σv ≈ 3 10−26 cm3/s
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which is of the electroweak scale, suggesting a dark matter mass in the TeV range.
If ΩDM is determined by thermal freeze-out, its proximity to ΩB is just a fortuitous
coincidence and is left unexplained.

If instead ΩDM ∼ ΩB is not accidental, then the theoretical challenge is to define a
consistent scenario in which the two energy densities are related. Since ΩB is a result
of an asymmetry, then relating the amount of dark matter to the amount of baryon
matter can very well imply that ΩDM is related to the same asymmetry that determines
ΩB . Such a condition is straightforwardly realized if the asymmetry for the dark
matter particles is fed in by the non-perturbative electroweak sphaleron transitions,
that at temperatures much larger than the temperature T∗ of the electroweak phase
transition equilibrates the baryon, lepton and dark matter asymmetries. Implementing
this condition implies the following requirements:

1. Dark matter must be (or must be a composite state of) a fermion, chiral (and
thereby non-singlet) under the weak SU (2)L , and carrying an anomalous (quasi)-
conserved quantum number B ′.

2. Dark matter (or its constituents) must have an annihilation cross section much
larger than electroweak σann � 3 10−26cm3/s, to ensure that ΩDM is determined
dominantly by the B ′ asymmetry.

The first condition ensures that a global quantum number corresponding to a linear
combination of B, L and B ′ has a weak anomaly, and thus dark matter carrying B ′
charge is produced in anomalous processes together with left-handed quarks and
leptons [4, 5]. At temperatures T � T∗ electroweak anomalous processes are in
thermal equilibrium, and equilibrate the various asymmetries YΔB = cL YΔL =
cB′YΔB′ ∼ O(10−10). Here the YΔ’s represent the difference in particle number
densities n − n̄ normalized to the entropy density s, e.g. YΔB = (nB − n̄B)/s.
These are convenient quantities since they are conserved during the Universe thermal
evolution.

At T � MDM all particle masses can be neglected, and cL and cB′ are order one
coefficients, determined via chemical equilibrium conditions enforced by elemen-
tary reactions faster than the Universe expansion rate [6]. These coefficients can be
computed in terms of the particle content, finding e.g. cL = −28/51 in the standard
model and cL = −8/15 in the Minimal Supersymmetric Standard Model.

At T � MDM, the B ′ asymmetry gets suppressed by a Boltzmann exponential
factor e−MDM/T . A key feature of sphaleron transitions is that their rate gets suddenly
suppressed at some temperature T∗ slightly below the critical temperature at which
SU(2)L starts to be spontaneously broken. Thereby, if MDM < T∗ the B ′ asymmetry
gets frozen at a value of O(YΔB), while if instead MDM > T∗ it gets exponentially
suppressed as YΔB′/YΔB ∼ e−MDM/T .

More in detail, the sphaleron processes relate the asymmetries of the various
fermionic species with chiral electroweak interactions as follows. If B ′, B and L are
the only quantum numbers involved then the relation is:

YΔB′

YΔB
= c · S

(
MDM

T∗

)
, c = c̄B′ + c̄L

YΔL

YΔB
, (4.1)
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where the order-one c̄L ,B′ coefficients are related to the cL ,B′ above in a simple way.
The explicit numerical values of these coefficients depend also on the order of the
finite temperature electroweak phase transition via the imposition or not of the weak
isospin charge neutrality. In [7, 8] the dependence on the order of the electroweak
phase transition was studied in two explicit models, and it was found that in all cases
the coefficients remain of order one. The statistical function S is:

S (z) =

⎧⎪⎨
⎪⎩

6
4π2

∫ ∞
0 dx x2 cosh−2

(
1
2

√
x2 + z2

)
for fermions ,

6
4π2

∫ ∞
0 dx x2 sinh−2

(
1
2

√
x2 + z2

)
for bosons .

(4.2)

with S(0) = 1(2) for bosons (fermions) and S(z) 
 12 (z/2π)3/2e−z at z � 1. We
assumed the standard model fields to be relativistic and checked that this is a good
approximation even for the top quark [7, 8]. The statistic function leads to the two
limiting results:

YΔB′

YΔB
= c ×

{
S (0) for MDM � T∗

12 (MDM/2πT∗)3/2 e−MDM/T∗ for MDM � T∗
. (4.3)

Under the assumption that all antiparticles carrying B and B ′ charges are annihilated
away we have YΔB′/YΔB = nB′/nB . The observed dark matter density

ΩDM

ΩB
= MDM nB′

m p nB
≈ 5 (4.4)

(where m p ≈ 1 GeV) can be reproduced for two possible values of the dark matter
mass:

i) MDM ∼ 5 GeV if MDM � T∗, times model dependent order one coefficients.
ii) MDM ≈ 8 T∗ ≈ 2 TeV if MDM � T∗, with a mild dependence on the model-

dependent order unity coefficients.

The first solution is well known [4] and corresponds to a light dark matter candidate.
While the second condition would lead to a dark matter candidate with a mass of the
order of the electroweak scale. This is the asymmetric dark matter paradigm. Many
related properties (valid also for symmetric type scenarios) are not yet constrained by
our current knowledge of dark matter, for example the specific dark matter candidate
may or may not be a stable particle [9] and it may or may not be identified with
its antiparticle [10]. However, very recently it was shown that there is a neat way
to discover the existence asymmetric dark matter by studying the cosmic sum rules
introduced in [11, 12].

Asymmetric dark matter candidates were put forward in [10] as technibaryons,
in [13] as Goldstone bosons, and subsequently in many diverse forms [7, 14–19].
There is also the possibility of mixed dark matter [20], i.e. having both a thermally-
produced symmetric component and an asymmetric one.
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4.2 Dark Matter in Technicolor

If dark matter is an elementary particle, the asymmetric scenario needs dark matter
to be a chiral fermion with SU(2)L interactions, which is very problematic. Bounds
from direct detection are violated. Furthermore, a Yukawa coupling λ of dark matter
to the Higgs gives the desired dark matter mass MDM ∼ λv ∼ 2 TeV if λ ∼ 4π is
non-perturbative, hinting to a dynamically generated mass associated to some new
strongly interacting dynamics [5, 7, 8, 10]. This assumption also solves the problem
with direct detection bounds, which are satisfied if dark matter is a composite SU(2)L -
singlet state, made of elementary fermions charged under SU(2)L .

This can be realized by introducing a strongly-interacting ad-hoc ‘hidden’ gauge
group. A more interesting identification comes from Technicolor. In such a scenario,
dark matter would be the lightest (quasi)-stable composite state carrying a B ′ charge
of a theory of dynamical electroweak breaking featuring a spectrum of technibaryons
(B ′) and technipions (Π). The TIMP (Technicolor Interacting Massive Particle) can
have a number of phenomenologically interesting properties.

i) A traditional TIMP mass can be approximated by m B′ = MDM ≈ nQΛTC
where nQ is the number of techniquarks Q bounded into B ′ and ΛTC is the
constituent mass, so that MDM/m p ≈ nQΛTC/3ΛQCD. Denoting by fπ (FΠ )
the(techni)pion decay constant, we have FΠ/ fπ = √

D/3ΛTC/ΛQCD where DQ

is the dimension of the constituent fermions representation (D = 3 in QCD).1

Finally, the electroweak breaking order parameter is obtained as v2 = ND F2
Π ,

from the sum of the contribution of the ND electroweak techni-doublets. Putting
all together yields the estimate:

MDM ≈ n
nQ√

3DQ ND

v

fπ
m p = 2.2 TeV (4.5)

where the numerical value corresponds to the smallest number of constituents
and of techniquarks nQ = DQ = 2 and ND = 1.

ii) A generic dynamical origin of the breaking of the electroweak symmetry can
lead to several natural interesting dark matter candidates (see [21] for a list of
relevant references). A very interesting case is the one in which the TIMP is a
pseudo-Goldstone boson [7, 8]. In this case one can observe these states also at
colliders experiments [14].

According to [22] the sphaleron contribution to the technibaryon decay rate is
negligible because exponentially suppressed, unless the technibaryon is heavier than
several TeV.

1 The large-N counting relevant for a generic extension of TC type can be found in Appendix F
of [21].
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Grand unified theories (GUTs) suggest that the baryon number B is violated by
dimension-6 operators suppressed by the GUT scale MGUT ∼ 2 ·1016 GeV, yielding
a proton life-time [23]

τ (p → π0e+) ∼ M4
GUT

m5
p

∼ 1041 s. (4.6)

If B ′ is similarly violated at the same high scale MGUT, our TIMP would decay with
life-time

τ ∼ M4
GUT

M5
DM

∼ 1026 s, (4.7)

which falls in the ball-park required by the phenomenological analysis to explain
the PAMELA anomaly [9]. Models of unification of the standard model couplings in
the presence of a dynamical electroweak symmetry breaking mechanism have been
recently explored [24, 25]. Interestingly, the scale of unification suggested by the
phenomenological analysis emerges quite naturally [25].

Low energy TIMP and nucleon (quasi)-stability imply that, in the primeval Uni-
verse, at temperatures T � MGUT perturbative violation of the B ′ and B global
charges is strongly suppressed. Since this temperature is presumably larger than
the reheating temperature, it is unlikely that ΩB and ΩDM result directly from an
asymmetry generated in B ′ or B. More likely, the initial seed yielding ΩDM and
ΩB could be an initial asymmetry in lepton number L that, much along the lines of
well studied leptogenesis scenarios [26], feeds the B and B ′ asymmetries through
the sphaleron effects.Indeed, it has been shown that it is possible to embed seesaw-
types of scenarios in theories of dynamical symmetry breaking,while keeping the
scale of the L-violating Majorana masses as low as ∼ 103 TeV [27]. In Minimal
Walking Technicolor [28, 29], one additional (technisinglet) SU(2)-doublet must be
introduced to cancel the odd-number-of-doublets anomaly [30]. An asymmetry in
the L ′ global charge associated with these new states can also serve as a seed for the
B and B ′ asymmetries. In [31] it has been shown that is possible to embed a low
energy see-saw mechanism for the fourth family Leptons in the Minimal Walking
Technicolor extension of the standard model.

Assuming that TIMP decays is dominantly due to effective four-fermion operators,
its decay modes significantly depend on the technicolor gauge group. In the following
L generically denotes any standard model fermion, quark or lepton, possibly allowed
by the Lorentz and gauge symmetries of the theory.

• If the technicolor group is SU(3), the situation is analogous to ordinary QCD: the
TIMP is a fermionic Q Q Q state, and effective Q Q QL operators gives T I M P →
Π−�+ decays. This leads to hard leptons, but together with an excess of p̄, from
the Π− → c̄ decay (in view of Π− 
 W −

L ).
• If the technicolor group is SU(4) the situation is that the TIMP is a bosonic Q Q Q Q

state, and effective Q Q Q Q operators lead to its decay into techni-pions.
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• Finally, if the technicolor gauge group is SU(2) the TIMP is a bosonic Q Q state,
(as put forward in [7]), and effective Q QL L operators lead to TIMP decays into
two L . Since the fundamental representation of SU(2) is pseudoreal, one actually
gets an interesting dynamics analyzed in detail in [7]. Here the TIMP is a pseudo-
Goldstone boson of the underlying gauge theory.

An SU(2) technicolor model compatible with the desired features is obtained
assuming that the left component of the Dirac field Q has zero hypercharge and
is a doublet under SU(2)L , so that the TIMP is a scalar Q Q with no overall weak
interactions, and the four-fermion operator (Q Q)∂μ(L̄γμL) allows it to decay. Such
operator is possible for both standard model leptons and quarks, so that the TIMP
branching ratios into �+�− and qq̄ is a free parameter.

4.2.1 Current Experimental Status

From the experimental point of view null results from several experiments, such
as CDMS [32] and Xenon10/100 [33, 34], have placed stringent constraints on
WIMP-nucleon cross sections. Interestingly DAMA [35] and CoGeNT [36] have
both produced evidence for an annual modulation signature for dark matter, as
expected due to the relative motion of the Earth with respect to the dark matter
halo. These results support a light WIMP with mass of order a few GeV, which
offers the attractive possibility of a common mechanism for baryogenesis and dark
matter production. At first glance it seems that the WIMP-nucleon cross sections
required by DAMA and CoGeNT have been excluded by CDMS and Xenon upon
assuming spin-independent interactions between WIMPs and nuclei (with protons
and neutrons coupling similarly to WIMPs), however a number of resolutions for
this puzzle have been proposed in the literature [37–43]. Interestingly, also recent
results from the CRESST-II experiment report signals of light dark matter [44].

A composite origin of dark matter, along the lines detailed above, is therefore quite
an intriguing possibility given that the bright side of the universe, constituted mostly
by nucleons, is also composite. Thus a new strongly-coupled theory could be at the
heart of dark matter. Furthermore for the first time on the lattice, a technicolor-type
extension of the standard model, expected to naturally yield a light dark matter candi-
date, as introduced in [7] and used in [42] to reconcile the experimental observations,
has been investigated [45]. Here it was shown that strongly interacting theories can,
indeed, support electroweak symmetry breaking while yielding natural light dark
matter candidates.

Models of dynamical breaking of the electroweak symmetry do support the
possibility of generating the experimentally observed baryon (and possibly also the
technibaryon/dark matter) asymmetry of the universe directly at the electroweak
phase transition [46–48]. Electroweak baryogenesis [49] is, however, impossible in
the standard model [50].
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4.3 Composite Inflation

Another prominent physics problem is inflation [51–56], the mechanism responsi-
ble for an early rapid expansion of our universe. Inflation, similar to the standard
model Higgs mechanism, is also modeled traditionally via the introduction of new
scalar fields. However, field theories featuring fundamental scalars are unnatural.
The reason being that typically these theories lead to the introduction of symmetry-
unprotected super-renormalizable operators, such as the scalar quadratic mass oper-
ator. Quantum corrections, therefore, introduce untamed divergencies which have to
be fine-tuned away. Following the composite Higgs section [17, 57] one can imagine
a new natural strong dynamics underlying the inflationary mechanism [58]. In [59]
we spelled out the setup for generic models of composite inflation. Another logi-
cal possibility is that theories with scalars are gauge-dual to theories featuring only
fermionic degrees of freedom [60–63].

We briefly review here the general setup for strongly coupled inflation [58, 59]. We
start by identifying the inflaton with one of the lightest composite states of a generic
strongly coupled theory and denote it with Φ. This state has mass dimension d. This
is the physical dimension coming from the sum of the engineering dimensions of the
elementary fields constituting the inflaton augmented by the anomalous dimensions
due to quantum corrections in the underlying gauge theory. We concentrate [58] on
the non-Goldstone sector of the theory.2

We then consider the following coupling to gravity in the Jordan frame:

SC I,J =
∫

d4x
√−g

[
−M 2 + ξΦ

2
d

2
gμνRμν + LΦ

]
,

LΦ = gμνΦ
2−2d

d ∂μΦ∂νΦ − V (Φ), (4.8)

with LΦ the low energy effective Lagrangian for the field Φ constrained by the
symmetries of the underlying strongly coupled theory. In this framework M is not
automatically the Planck constant MPl . The non-minimal coupling to gravity is
controlled by the dimensionless coupling ξ. The non-analytic power of Φ emerges
because we are requiring a dimensionless coupling with the Ricci scalar. Abandoning
the conformality requirement allows for operators with integer powers of Φ when
coupling to the Ricci scalar. However a new energy scale must be introduced to match
the mass dimensions. We diagonalize the gravity-composite dynamics model via the
conformal transformation:

gμν → g̃μν = Ω(Φ)2gμν, Ω(Φ)2 = M 2 + ξΦ
2
d

M2
p

, (4.9)

2 The Goldstone sector, if any, associated to the potential dynamical spontaneous breaking of some
global symmetries of the underlying gauge theory will be investigated elsewhere.
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such that
g̃μν = Ω−2gμν,

√−g̃ = Ω4√−g. (4.10)

We use both the Palatini and the metric formulation. The difference between the two
formulations resides in the fact that in the Palatini formulation the connection Γ is
assumed not to be directly associated with the metric gμν . Hence the Ricci tensor
Rμν does not transform under the conformal transformation. Applying the conformal
transformation we arrive at the Einstein frame action:

SCI,E =
∫

d4x
√−g

[
− 1

2
M2

p gμν Rμν + Ω−2
(
Φ

2−2d
d + f · 3M2

pΩ ′2) gμν∂μΦ∂νΦ − Ω−4V (Φ)

]
.

(4.11)

Primes denote derivatives with respect to Φ and tildes are dropped for convenience.
f = 1 signifies the metric formulation [64–67] and f = 0 the Palatini one [68].

We introduce a canonically normalized field χ related to Φ via

1

2
g̃μν∂μχ(Φ)∂νχ(Φ) = 1

2

(
dχ

dΦ

)2

g̃μν∂μΦ∂νΦ , (4.12)

with

1

2

(
dχ

dΦ

)2

= Ω−2
(
Φ

2−2d
d + f · 3M2

pΩ
′2)

= Ω−2

(
1 + f · 3ξ2

d2 M2
p
Ω−2Φ

2
d

)
Φ

2−2d
d . (4.13)

In terms of the canonically normalized field we have:

SCI,E =
∫

d4x
√−g

[
−1

2
M2

pgμνRμν + 1

2
gμν∂μχ∂νχ− U (χ)

]
. (4.14)

With
U (χ) ≡ Ω−4V (Φ). (4.15)

Within this framework we determined in [59] useful expressions for the slow-roll
parameters for composite inflation and provided the explicit example in which the
inflaton emerges as the lightest glueball field associated to, in absence of gravity,
a pure Yang-Mills theory. This theory constitutes the archetype of any composite
model in flat space and consequently of models of composite inflation. We showed
that it is possible to achieve successful glueball inflation. Furthermore the natural
scale of compositeness associated to the underlying Yang-Mills gauge theory, for the
consistence of the model, turns to be of the order of the grand unified scale. This
result is in agreement with the scale of compositeness scale determined in [58] for a
very different underlying model of composite inflation.
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One can also show that, in the metric formulation, that unitarity-cutoff for
inflaton–inflaton scattering is well above the energy scale relevant for composite
inflation. It is now possible to envision a large number of new avenues to explore
within this class of models.

4.4 Finale

Circa 96 % of the universe is made by unknown forms of matter and energy, while to
describe the remaining 4 % one needs at least three fundamental forces, i.e. Quantum
Electrodynamics (QED), Weak Interactions and QCD. Furthermore strong interac-
tions are responsible for creating the bulk of the bright mass, i.e. the 4 %. It is
therefore natural to expect that to correctly describe the rest of our universe while
providing a sensible link to the visible component new forces will soon emerge. Here
we have suggested three primary areas of research where new strong dynamics can
occur. The first is the sector responsible for breaking spontaneously the electroweak
symmetry. The standard model Higgs, or perhaps the entire standard model [61],
could be replaced by new strongly interacting dynamics. We have also seen that
another relevant physical application of new strong dynamics is in the construction
of composite dark matter candidates with very interesting phenomenology. Last but
not the least we have also envisioned the possibility that even the mechanism behind
inflation can find its roots in new strong dynamics. It is therefore of the utmost impor-
tance to gain a deeper understanding of the nonperturbative regime of gauge theories
of fundamental interactions. Quite excitingly we are only at the very beginning of
the theoretical understanding and phenomenological impact and discovery of new
strongly interacting theories.
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Appendix

A.1 Basic Group Theory Relations

The Dynkin indices label the highest weight of an irreducible representation and
uniquely characterise the representations. The Dynkin indices for some of the most
common representations are given in Tab. A.1. For details on the concept of Dynkin
indices see, for example [1, 2].

For a representation, R, with the Dynkin indices (a1, a2, . . . , aN−2, aN−1) the
quadratic Casimir operator reads [3]

2N C2(r) =
N−1∑
m=1

[N (N − m)mam + m(N − m)am
2

+
m−1∑
n=0

2n(N − m)anam] (A.1)

and the dimension of R is given by

d(r) =
N−1∏
p=1

⎧⎨
⎩

1

p!
N−1∏
q=p

⎡
⎣ p∑

z=q−p+1

(1 + az)

⎤
⎦

⎫⎬
⎭ , (A.2)

which gives rise to the following structure

d(r) = (1 + a1)(1 + a2) . . . (1 + aN−1)×
× (1 + a1+a2

2 ) . . . (1 + aN−2+aN−1
2 )×

× (1 + a1+a2+a3
3 ) . . . (1 + aN−3+aN−2+aN−1

3 )×
× · · · ×
× (1 + a1+···+aN−1

N−1 ). (A.3)
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Table A.1 Examples for
Dynkin indices for some
common representations

Representation Dynkin indices

Singlet (000…00)
Fundamental (F) (100…00)
Antifundamental (F̄) (000…01)
Adjoint (G) (100…01)
n-index symmetric (Sn) (n00…00)
2-index antisymmetric (A2) (010…00)

The Young tableau associated to a given Dynkin index (a1, a2, . . . , aN−2, aN−1) is
easily constructed. The length of row i (that is the number of boxes per row) is given
in terms of the Dynkin indices by the expression ri = ∑N−1

i ai . The length of each
column is indicated by ck ; k can assume any positive integer value. Indicating the
total number of boxes associated to a given Young tableau with b one has another
compact expression for C2(r),

2NC2(r) = N

[
bN +

∑
i

r2
i −

∑
i

c2
i − b2

N

]
, (A.4)

and the sums run over each column and row.

A.2 Group factors and perturbative coefficients

The four-loop beta function coefficients are [4]:

β0 = 11

3
C2(G) − 4

3
T (r)n f , (A.5)

β1 = 34

3
C2(G)2 − 4C2(r)T (r)n f − 20

3
C2(G)T (r)n f , (A.6)

β2 = 2857

54
C2(G)3 + 2C2(r)2T (r)n f − 205

9
C2(r)C2(G)T (r)n f (A.7)

− 1415

27
C2(G)2T (r)n f + 44

9
C2(r)T (r)2n2

f + 158

27
C2(G)T (r)2n2

f ,

β3 = C2(G)4
(

150653

486
− 44

9
ζ3

)
+ C2(G)3T (r)n f

(
−39143

81
+ 136

3
ζ3

)
(A.8)

+ C2(G)2C2(r)T (r)n f

(
7073

243
− 656

9
ζ3

)

+ C2(G)C2(r)2T (r)n f

(
−4204

27
+ 352

9
ζ3

)
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+ 46C2(r)3T (r)n f + C2(G)2T (r)2n2
f

(
7930

81
+ 224

9
ζ3

)

+ C2(r)2T (r)2n2
f

(
1352

27
− 704

9
ζ3

)

+ C2(G)C2(r)T (r)2n2
f

(
17152

243
+ 448

9
ζ3

)

+ 424

243
C2(G)T (r)3n3

f + 1232

243
C2(r)T (r)3n3

f

+ dabcd
G dabcd

G
NG

(
−80

9
+ 704

3
ζ3

)
+ n f

dabcd
G dabcd

r

NG

(
512

9
− 1664

3
ζ3

)

+ n2
f

dabcd
r dabcd

r
NG

(
−704

9
+ 512

3
ζ3

)
.

The coefficients of the anomalous dimension to four-loops are [5]:

γ0 = 3C2(r) (A.9)

γ1 = 3

2
C2(r)2 + 97

6
C2(r)C2(G) − 10

3
C2(r)T (r)n f (A.10)

γ2 = 129

2
C2(r)3 − 129

4
C2(r)2C2(G) + 11413

108
C2(r)C2(G)2 (A.11)

+ C2(r)2T (r)n f (−46 + 48ζ3) + C2(r)C2(G)T (r)n f

(
−556

27
− 48ζ3

)

−140

27
C2(r)T (r)2n2

f

γ3 = C2(r)4
(

−1261

8
− 336ζ3

)
+ C2(r)3C2(G)

(
15349

12
+ 316ζ3

)
(A.12)

+ C2(r)2C2(G)2
(

−34045

36
− 152ζ3 + 440ζ5

)

+ C2(r)C2(G)3
(

70055

72
+ 1418

9
ζ3 − 440ζ5

)

+ C2(r)3T (r)n f

(
−280

3
+ 552ζ3 − 480ζ5

)

+ C2(r)2C2(G)T (r)n f

(
−8819

27
+ 368ζ3 − 264ζ4 + 80ζ5

)

+ C2(r)C2(G)2T (r)n f

(
−65459

162
− 2684

3
ζ3 + 264ζ4 + 400ζ5

)

+ C2(r)2T (r)2n2
f

(
304

27
− 160ζ3 + 96ζ4

)

+ C2(r)C2(G)T (r)2n2
f

(
1342

81
+ 160ζ3 − 96ζ4

)
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+ C2(r)T (r)3n3
f

(
−664

81
+ 128

9
ζ3

)

+ dabcd
r dabcd

G

Nr
(−32 + 240ζ3) + n f

dabcd
r dabcd

r

Nr
(64 − 480ζ3)

In the above expressions ζx is the Riemann zeta-function evaluated at x , T a
r with

a = 1, . . . , Nr are the generators for a generic representation r with dimension Nr .
The generators are normalized via tr(T a

r T b
r ) = T (r)δab and the quadratic Casimirs

are [T a
r T a

r ]i j = C2(r)δi j . The representation r = G refers to the adjoint representa-
tion. The number of fermions is indicated by n f .

The symbols dabcd
r are the fourth-order group invariants expressed in terms of

contractions between the following fully symmetrical tensors:

dabcd
r = 1

6
Tr

[
T a

r T b
r T c

r T d
r + T a

r T b
r T d

r T c
r + T a

r T c
r T b

r T d
r

+T a
r T c

r T d
r T b

r + T a
r T d

r T b
r T c

r + T a
r T d

r T c
r T b

r

]
(A.13)

The contractions can be written purely in terms of group invariants:

dabcd
r dabcd

r ′ = I4(r)I4(r
′)dabcddabcd + 3NG

NG + 2
T (r)T (r ′)

×
(

C2(r) − 1

6
C2(G)

) (
C2(r

′) − 1

6
C2(G)

)
. (A.14)

The expressions for the relevant group invariants are given in the main text. As
mentioned there, I4(r) vanished for all exceptional groups and for SO(3) and SO(4).
The tensor dabcd is representation independent, but not group independent, and the
value of its contraction for the groups SU (N ), SO(N ) and Sp(N ) was given in [4].
Here it is only relevant to quote the SO(N ) case:

dabcddabcd = NG(NG − 1)(NG − 3)

12(NG + 2)
. (A.15)

The relevant group factors for SU (N ), SO(N ) and S P(2N ) can be found in Table
II of [6].

A.3 Realization of the generators for MWT

It is convenient to use the following representation of SU(4)

Sa =
(

A B
B† −AT

)
, Xi =

(
C D
D† CT

)
, (A.16)
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where A is hermitian, C is hermitian and traceless, B = −BT and D = DT . The S
are also a representation of the SO(4) generators, and thus leave the vacuum invariant
Sa E + E Sa T = 0 . Explicitly, the generators read

Sa = 1

2
√

2

(
τ a 0
0 −τ aT

)
, a = 1, . . . , 4, (A.17)

where a = 1, 2, 3 are the Pauli matrices and τ 4 = 1. These are the generators of
SUV (2)× UV (1).

Sa = 1

2
√

2

(
0 Ba

Ba† 0

)
, a = 5, 6, (A.18)

with
B5 = τ 2, B6 = iτ 2. (A.19)

The rest of the generators which do not leave the vacuum invariant are

Xi = 1

2
√

2

(
τ i 0
0 τ iT

)
, i = 1, 2, 3, (A.20)

and

Xi = 1

2
√

2

(
0 Di

Di† 0

)
, i = 4, . . . , 9, (A.21)

with

D4 = 1, D6 = τ 3, D8 = τ 1,

D5 = i1, D7 = iτ 3, D9 = iτ 1. (A.22)

The generators are normalized as follows

Tr
[

Sa Sb
]

= 1

2
δab, , Tr

[
Xi X j

]
= 1

2
δi j , Tr

[
Xi Sa

]
= 0. (A.23)

A.4 Vector Mesons as Gauge Fields

We show how to rewrite the vector meson Lagrangian in a gauge invariant way. We
assume the scalar sector to transform according to a given but otherwise arbitrary
representation of the flavor symmetry group G. This is a straightforward generaliza-
tion of the Hidden Local Gauge symmetry idea [7, 8], used in a similar context for
the BESS models [9]. At the tree approximation this approach is identical to the one
introduced first in [10, 11].
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Table A.2 Field content G G ′

M R 1
N
Aμ 1 Adj

A.4.1 Introducing Vector Mesons

Let us start with a generic flavor symmetry group G under which a scalar field M
transforms globally in a given, but generic, irreducible representation R. We also
introduce an algebra valued one-form A = Aμdxμ taking values in a copy of the
algebra of the group G, call it G ′, i.e.

Aμ = Aa
μT a, with T a ∈ A (G ′). (A.24)

At this point the full group structure is the semisimple group G × G ′. M does not
transform under G ′. Given that M and A belong to two different groups we need
another field to connect the two. We henceforth introduce a new scalar field N
transforming according to the fundamental of G and to the antifundamental of G ′.
We then upgrade A to a gauge field over G ′.

The covariant derivative for N is:

DμN = ∂μN + i g̃ N Aμ. (A.25)

We now force N to acquire the following vacuum expectation value

〈N i
j 〉 = δi

j , v′, (A.26)

which leaves the diagonal subgroup—denoted with GV - of G×G ′ invariant. Clearly
GV is a copy of G. Note that it is always possible to arrange a suitable potential term
for N leading to the previous pattern of symmetry breaking. v/v′ is expected to be
much less than one and the unphysical massive degrees of freedom associated to the
fluctuations of N will have to be integrated out. The would-be Goldstone bosons
associated to N will become the longitudinal components of the massive vector
mesons.

To connect A to M we define the one-form transforming only under G via N
which—in the deeply spontaneously broken phase of N—reads:

Tr[N N †]
dim(F)

Pμ = DμN N † − N DμN †

2i g̃
, Pμ → u Pμu†, (A.27)

with u being an element of G and dim(F) the dimension of the fundamental rep-
resentation of G. When evaluating Pμ on the vacuum expectation value for N we
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recover Aμ:
〈Pμ〉 = Aμ. (A.28)

At this point it is straightforward to write the Lagrangian containing N , M and A
and their self-interactions. Being in the deeply broken phase of G × G ′ down to
GV we count N as a dimension zero field. This is consistent with the normalization
for Pμ.

The simplest1 kinetic term of the Lagrangian is:

Lkinetic = −1

2
Tr

[
Fμν Fμν

] + 1

2
Tr

[
DN DN †

]
+ 1

2
Tr

[
∂ M∂ M†

]
. (A.29)

The second kinetic term will provide a mass to the vector mesons. Besides the
potential terms for M and N there is another part of the Lagrangian which is of
interest to us. This is the one mixing P and M . Up to dimension four and containing
at most two powers of P and M this is:

L P−M = g̃2 r1 Tr
[
Pμ PμM M†] + g̃2 r2 Tr

[
PμM PμT M†

]

+ i g̃ r3 Tr
[
Pμ

(
M(DμM)† − (DμM)M†)] + g̃2 sTr

[
Pμ Pμ

]
Tr

[
M M†] .

(A.30)

The dimensionless parameters r1, r2, r3, s parameterize the strength of the interactions
between the composite scalars and vectors in units of g̃, and are therefore expected
to be of order one. We have assumed M to belong to the two index symmetric
representation of a generic G= SU(N). It is straightforward to generalize the previous
terms to the case of an arbitrary representation R with respect to any group G. Further
higher derivative interactions including N can be included systematically.

A.4.2 Further Gauging of G

In this case we add another gauge field Gμ taking values in the algebra of G. We
then define the correct covariant derivatives for M and N . For N , for example, we
have:

DμN = ∂μN − i g Gμ N + i g̃, N Aμ. (A.31)

Evaluating the previous expression on the vacuum expectation value of N we recover
the field Cμ introduced in the text. To be more precise we need to use Pμ again but
with the covariant derivative for N replaced by the one in the equation above.

1 Another nonminimal term is Tr
[
N F N † M(N F N †)T M†

]
.
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Table A.3 Field content G G ′

M R 1
N
Aμ 1 Adj
Gμ Adj 1

A.5 The Topological Terms and Massive Spin
One States

In the previous section we introduced the vector mesons as gauge bosons of a fake
new gauge symmetry and provided a mass term resorting to an Higgsing procedure.
In fact this symmetry does not exist and there is no notion of a minimal way to break
it. If all the terms are included correctly one recovers, de facto, a non-renormalizable
Lagrangian for vector mesons preserving only the correct global flavor symmetries
of the problem. This, of course, is true also for the terms involving vectors, pions and
the space-time εμνρσ structure. This correct way to proceed was already suggested
some time ago in [12]. We will review here the salient points on the analysis done in
[12].

A.5.1 The ε terms for SU(n f ) × SU(n f )

We construct an effective Lagrangian which manifestly possesses the global symme-
try SUL(n f ) × SUR(n f ) of the underlying theory. We assume that chiral symmetry
is broken according to the standard pattern SUL(n f ) × SUR(n f ) → SUV (n f ). The
n2

f −1 Goldstone bosons are encoded in the n f ×n f matrix U transforming linearly
under a chiral rotation

U → uLUu†
R, (A.32)

with uL/R ∈ SUL/R(n f ). U satisfies the non linear realization constraint UU † = 1.
We also require detU = 1. In this way we avoid discussing the axial UA(1) anomaly
at the effective Lagrangian level (see Ref. [10, 11, 13] for a general discussion of
anomalies). We have

U = ei �
v , (A.33)

with � = √
2�aT a representing the N 2

f −1 Goldstone bosons. T a are the generators

of SU (N f ), with a = 1, . . . , N 2
f − 1 and Tr

[
T aT b

]
= 1

2
δab. v is the vacuum

expectation value.
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As done above we enlarge the spectrum of massive particles including vector and
axial-vector fields Aμ

L/R = Aμ,a
L/R T a .2

The Wess-Zumino [14] action is the first example of ε term. It can be compactly
written using the language of differential forms. It is useful to introduce the Maurer-
Cartan one forms:

α = (
∂μU

)
U−1 dxμ ≡ (dU ) U−1, β = U−1dU = U−1αU. (A.34)

α and β are algebra valued one forms and transform, respectively, under the left and
right SU (n f ) flavor group. The Wess-Zumino effective action is

ΓW Z [U ] = C
∫

M5
Tr

[
α5

]
. (A.35)

The price to pay in order to make the action local is to augment by one the space
dimensions. Hence the integral must be performed over a five-dimensional manifold
whose boundary (M4) is the ordinary Minkowski space. The constant C is fixed
to be

C = −i
N

240π2 , (A.36)

by comparing the current algebra prediction for the time honored process π0 → 2γ

with the amplitude predicted using Eq. (A.35) once we gauge the electromagnetic
sector of the Wess-Zumino term, and N is the number of colors.

We now consider ε type terms involving the vector and axial vector particles.
As for the non ε part of the Lagrangian we first gauge the WZ term under the
SUL(n f )× SUR(n f ) chiral symmetry group. This procedure automatically induces
new ε terms [15, 16, 10, 11, 13], leading to the following Lagrangian,

ΓW Z [U, AL , AR] = ΓW Z [U ] + 5Ci
∫

M4
Tr

[
ALα3 + ARβ3

]

− 5C
∫

M4
Tr [(d AL AL + ALd AL)α

+(d AR AR + ARd AR)β]

+ 5C
∫

M4
Tr

[
d AL dU ARU−1 − d ARdU−1 ALU

]

+ 5C
∫

M4
Tr

[
ARU−1 ALUβ2 − ALU ARU−1α2

]

+ 5C

2

∫
M4

Tr
[
(ALα)2 − (ARβ)2

]

+ 5Ci
∫

M4
Tr

[
A3

Lα + A3
Rβ

]

2 We rescale A by the coupling constant g̃.
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+ 5Ci
∫

M4
Tr

[
(d AR AR + ARd AR)U−1 ALU

−(d AL AL + ALd AL)U ARU−1
]

+ 5Ci
∫

M4
Tr

[
ALU ARU−1 ALα + ARU−1 ALU ARβ

]

+ 5C
∫

M4
Tr

[
A3

RU−1 ALU − A3
LU ARU−1

+1

2
(U ARU−1 AL)2

]

− 5Cr
∫

M4
Tr

[
FLU FRU−1

]
. (A.37)

Here the two-forms FL and FR are defined as FL = d AL−i A2
L and FR = d AR−i A2

R
with the one form AL/R = Aμ

L/Rdxμ. The previous Lagrangian, when identifying
the vector fields with true gauge vectors, correctly saturates the underlying global
anomalies.

The last term in Eq. (A.37) is a gauge covariant term which can always be added
if parity is not imposed. The last term in Eq.(A.37) is not invariant under parity, so
the parameter r must vanish. All the other terms are related by gauge invariance.

Imposing just global chiral invariance, together with P and C , the previous
Lagrangian has ten unrelated terms [12]:

ΓW Z [U, AL , AR] = ΓW Z [U ] + 5c1 i
∫

M4
Tr

[
ALα3 + ARβ3

]

+ 5c2

∫
M4

Tr [(d AL AL + ALd AL)α

+(d AR AR + ARd AR)β]

− 5c3

∫
M4

Tr
[
d ALdU ARU−1 − d ARdU−1 ALU

]

− 5c4

∫
M4

Tr
[

ARU−1 ALUβ2 − ALU ARU−1α2
]

− 5c5

2

∫
M4

Tr
[
(ALα)2 − (ARβ)2

]

+ 5c6 i
∫

M4
Tr

[
A3

Lα + A3
Rβ

]

+ 5c7 i
∫

M4
Tr

[
(d AR AR + ARd AR)U−1 ALU

−(d AL AL + ALd AL)U ARU−1
]

+ 5c8 i
∫

M4
Tr

[
ALU ARU−1 ALα + ARU−1 ALU ARβ

]
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− 5c9

∫
M4

Tr
[

A3
RU−1 ALU − A3

LU ARU−1
]

− 5c10

2

∫
M4

Tr
[
(U ARU−1 AL)2

]
, (A.38)

where the c-coefficients are imaginary. We see that while the gauging procedure of
the Wess Zumino term automatically generates a large number of ε terms, it does
not guarantee that we have uncovered all terms consistent with chiral, P and C
invariance. Indeed there is still one new single trace term [12] to add to the action:

c11i
∫

M4
Tr

[
A2

L

(
U ARU−1α − αU ARU−1

)
+ A2

R

(
U−1 ALUβ − βU−1 ALU

)]
,

(A.39)
and c11 is an imaginary coefficient. Imposing invariance under C P has been very
useful to reduce the number of possible ε terms. For example it is easy to verify that

a term of the type Tr
[
d AL

(
U ARU−1

)2
]

is C P odd.

In Appendix A of [12] we provided a general proof that all the dimension four
(i.e. 4-derivative) terms involving the Lorentz tensor εμνρσ , which are consistent
with global chiral symmetries as well as C and P invariance, are the ones presented
in Eq. (A.38) and Eq. (A.39).

A.5.2 The ε terms for SU(2N f )

We consider now fermions in a pseudoreal representation, for example SU (2)

TC with n f fermions in the fundamental representation. The global symmetry
group is SU (2n f ) and if chiral symmetry breaking occurs we expect it to break
to Sp(2n f ). We divide the generators T of SU (2n f ), normalized according to

Tr
[
T aT b

]
= 1

2
δab, into two classes. We call the generators of Sp(2n f ) {Sa} with

a = 1, . . . , 2n2
f + n f , and the remaining SU (2N f ) generators (parameterizing the

quotient space SU (2N f )/Sp(2N f )) {Xi } with i = 1, . . . , 2n2
f − n f − 1.

This breaking pattern gives 2N 2
f − n f − 1 Goldstone bosons, encoded in the

antisymmetric matrix Ui j and i, j = 1, . . . , 2n f as follows:

U = ei Π i Xi
v E, (A.40)

where the n f × n f matrix E is

E =
(

0 1
−1 0

)
. (A.41)
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U transforms linearly under a chiral rotation

U → uUuT , (A.42)

with u ∈ SU (2n f ). The non linear realization constraint, UU † = 1, is automatically
satisfied.

The generators of the Sp(2n f ) satisfy the following relation,

ST E + E S = 0, (A.43)

while the Xi generators obey,
X T = E X ET , (A.44)

Using this last relation we can easily demonstrate that U T = −U . We also require

Pf U = 1, (A.45)

avoiding in this way to consider the explicit realization of the underlying axial anom-
aly at the effective Lagrangian level.

We define the following vector field

Aμ = Aa
μT a, (A.46)

which formally transforms under a SU (2N f ) rotation as

Aμ → u Aμu† − i∂μuu†. (A.47)

We generate the ε terms following the same procedure used for the SUL(N f ) ×
SUR(N f ) global symmetry case. First we introduce the one form

α = (dU ) U−1. (A.48)

It is sufficient to define only α since the analog of β = U−1dU = αT is now not an
independent form. The Wess-Zumino action term is:

Γ̃W Z [U ] = C
∫

M5
Tr

[
α5

]
, (A.49)

where again we are integrating on a five dimensional manifold and C = −i 2
240π2 for

N = 2. We are considering here an SU (2) underlying gauge theory with fermions
in the fundamental representation.

We now gauge the Wess-Zumino action under the SU (2n f ) chiral symmetry
group. This procedure provides single trace ε-terms involving vector, axial and
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Goldstones with an universal coupling C . The gauged C P invariant Wess-Zumino
term is

Γ̃W Z [U, A] = Γ̃W Z [U ] + 10Ci
∫

M4
Tr[Aα3]

− 10C
∫

M4
Tr[(d AA + Ad A)α]

− 5C
∫

M4
Tr[d AdU AT U−1 − d AT dU−1 AU ]

− 5C
∫

M4
Tr[U AT U−1(Aα2 + α2 A)]

+ 5C
∫

M4
Tr[(Aα)2] + 10C i

∫
M4

Tr[A3α]

+ 10C i
∫

M4
Tr[(d AA + Ad A)U AT U−1]

− 10C i
∫

M4
Tr[AαAU AT U−1]

+ 10C
∫

M4
Tr

[
A3U AT U−1 + 1

4
(AU AT U−1)2

]
, (A.50)

where A = Aμdxμ. The previous Lagrangian must be generalized to be only globally
invariant under a chiral rotation and invariant under C P and one obtains [12].

Γ̃W Z [U, A] = Γ̃W Z [U ] + C1i
∫

M4
Tr

[
Aα3

]

− C2

∫
M4

Tr [(d AA + Ad A)α]

− C3

∫
M4

Tr
[
d AdU AT U−1 − d AT dU−1 AU

]

− C4

∫
M4

Tr[U AT U−1(Aα2 + α2 A)]

+ C5

∫
M4

Tr
[
(Aα)2

]
+ C6 i

∫
M4

Tr
[

A3α
]

+ C7 i
∫

M4
Tr

[
(d AA + Ad A)U AT U−1

]

− C8i
∫

M4
Tr

[
AαAU AT U−1

]
+ C9

∫
M4

Tr[A3U AT U−1]

+ C10

∫
M4

Tr[(AU AT U−1)2]

+ C11i
∫

M4
Tr[A2(αU AT U−1 − U AT U−1α)], (A.51)
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where Ci are imaginary. The last term is a new term not generated by gauging the
Wess-Zumino effective action.

At this point the application to extensions of the SM featuring chiral dynamics is
straightforward. Summarizing, the SM gauge bosons, being true gauge fields, must be
introduced via the correct gauging of the Wess-Zumino term. Any other spin one field
which is not a gauge degree of freedom must be introduced in the manner presented
above, i.e. allowing for a very general form of the interactions with the Goldstone
bosons featuring an ε tensor. Often, in literature, spin-one non-gauge degrees of
freedom are introduced again as gauge degrees of freedom (see for example [17]).
This latter procedure can be considered as a simple phenomenological approach.

A.6 Spectrum of Strongly Coupled Theories: Higgsless
Versus Higgsful theories

Often, in the literature, a number of incorrect statements are made when discussing
the spectrum of TC theories. Here we will try to clarify first the situation in QCD
and then show how to use new analytic means to gain control over the spectrum of
strongly coupled theories with fermions in higher dimensional representations.

One approach is based on studying the theory in the large number of colors (N)
limit [18, 19]. At the same time one may obtain more information by requiring the
theory to model the (almost) spontaneous breakdown of chiral symmetry [20, 21].
A standard test case, for ordinary QCD, is pion pion scattering in the energy range
up to about 1 GeV. Some time ago, an attempt was made [22, 23] to implement this
combined scenario. We used pion pion scattering to provide some insight on the low
lying hadronic spectrum of QCD.

Before turning to the spectrum of the lightest composite states in QCD we offer a
simple definition of Higgsless theory: If the composite state with the same quantum
numbers of the Higgs is not the lightest particle in the spectrum after the Goldstones
then the theory is Higgsless. In practice we will use the massive spin one states to
compare the mass of the composite Higgs with.

A.6.1 The Lightest Composite Scalars in QCD

The scalar sector of QCD and any TC theory constitutes a complicated sector. For
QCD, in [24], using the ’t Hooft large N limit, chiral dynamics and unitarity con-
straints the f0(600) resonance mass was found to be around 550 MeV. Other authors
[25–27] have found similar results. Such a low value would make it different from a
p-wave quark-antiquark state, which is expected to be in the 1000–1400 MeV range.
We assume then that it is a four quark state (glueball states are expected to be in the
1.5 GeV range from lattice investigations). Four quark states of diquark-quark type
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[28, 29] and meson-meson type [30] have been discussed in the literature for many
years. Accepting this picture, however, poses a problem for the accuracy of the large
N inspired description of the scattering since four quark states are predicted not to
exist in the large N limit of QCD. We shall take the point of view that a four quark
type state is present since it allows a natural fit to the low energy data. In practice,
since the parameters of the pion contact and rho exchange contributions are fixed,
the sigma is the most important one for fitting and fits may even be achieved [31] if
the vector meson piece is neglected. However the well established, presumably four
quark type, f0(980) resonance must be included to achieve a fit in the region just
around 1 GeV.

There is by now a fairly large literature on the effect of light “exotic” scalars in
low energy meson meson scattering. There seems to be a consenesus, arrived at using
rather different approaches (keeping however, unitarity), that the sigma exists.

Here we use two large N limits of QCD as well as our information on the low lying
spectrum of QCD to extract information on the spectrum of the lightest states for
strongly coupled theories with fermions in various representations of the underlying
strongly coupled gauge group. Lifting the strongly coupled scale to the electroweak
one for theories with underlying fermions in two index representations we will show
that the light scalar with the same quantum numbers of the Higgs is lighter than the
lightest techni-vector meson.

A.6.2 Scalars in the ’t Hooft Large N: Higgsless Theories

We concentrate on the lightest scalar f0(600) and on the vector meson ρ(770). The
qq̄ nature of the vector meson is clear. This means that its mass does not scale with
the number of colors while its width decrease as 1/N . We argued above that f0(600)

is a multiquark state. In this case its mass scales with a positive power of N and its
width remains constant or grows with N. In formulae:

m2
ρ ∼ Λ2

QC D, Γρ ∼ 1

N
(A.52)

m2
f0

∼ N pΛ2
QC D, Γ f0 ∼ N q , (A.53)

with p > 0 and q > −1.
Scaling up these results to the electroweak theory is straightforward. We first

generalize the number of technidoublets gauged under the electroweak theory as
well the number of TCs NT C , holding fixed the weak scale we have:

MTρ =
√

2vweak

Fπ

√
3√

ND NT C
mρ (A.54)

MT f0 =
√

2vweak

Fπ

√
ND

(
NT C√

3

) p−1
2

m f0 , (A.55)
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where ND is the number of doublets, vweak is the electroweak scale and the extra√
2 is due to our normalization of the pion decay constant. Note that for p = 0

and q = −1 the f0(600) would scale like the ρ and would then be regarded as a
quark-antiquark meson at large N . However, as we mentioned, there are, by now,
strong indications that this state is not of qq̄ nature and hence p > 0 and q > −1.

Let us choose for definitiveness p = 1. Already for NT C ∼ 6, for any ND

the scalar is heavier than the vector meson. Hence for fermions in the fundamental
representation of the TC theory we expect no scalars lighter than the respective
vector mesons for any NT C larger than or about 6 TCs. It is hence fair to call these
theories Higgsless. Note that the previous statements may be altered if the theory
features walking dynamics.

A.6.3 Alternative Large N Limits

The previous results are in agreement with the common lore about the light spectrum
of QCD-like theories. Interestingly even if for N = 3 one has a scalar state lighter than
the lightest vector meson it becomes heavier already for N>6. Clearly the reason
behind this is that, due to its multiquark nature, the lightest state possesses different
scaling properties than the vector meson. The situation changes when we consider
alternative extensions of QCD using higher dimensional representations. At large N
different extensions capture different dynamical properties of QCD.

A.6.3.1 The Two Index Antisymmetric Fermions—Link
to QCD

Consider redefining the N = 3 quark field with color index A (and flavor index not
written) as

qA = 1

2
εABC q[B,C], q[B,C] = −q[C,B], (A.56)

so that, for example, q1 = q23 and similarly for the adjoint field, q̄1 = q̄23 etc. This
is just a trivial change of variables. However for N > 3 the resulting theory will be
different since the two index antisymmetric quark representation has N (N − 1)/2
rather than N color components. As was pointed out by Corrigan and Ramond [32],
who were mainly interested in the problem of the baryons at large N, this shows
that the extrapolation of QCD to higher N is not unique. Further investigation of the
properties of the alternative extrapolation model introduced in [32] was carried out
by Kiritsis and Papavassiliou [33].

It may be worthwhile to remark that gauge theories with two index quarks have
gotten a great deal of attention. Armoni, Shifman and Veneziano [34] have proposed
an interesting relation between certain sectors of the two index antisymmetric (and
symmetric) theories at large number of colors and sectors of super Yang-Mills (SYM).
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Fig. A.1 Two index
fermion—gluon vertex

Fig. A.2 Diagram for Fπ

for the two index quark

Using a supersymmetric inspired effective Lagrangian approach 1/N corrections
were investigated in [35].

Besides these two limits a third one for massless one-flavor QCD, which is in
between the ’t Hooft and Corrigan Ramond ones, has been been proposed in [36].
Here one first splits the QCD Dirac fermion into the two elementary Weyl fermions
and afterwards assigns one of them to transform according to a rank-two antisym-
metric tensor while the other remains in the fundamental representation of the gauge
group. For three colors one reproduces one-flavor QCD and for a generic number
of colors the theory is chiral. The generic N is a particular case of the generalized
Georgi-Glashow (gGG) model [37]. The finite temperature phase transition and its
relation with chiral symmetry has been investigated in [38] while the effects of a
nonzero baryon chemical potential were pioneered in [39]. More recent work in this
direction has appeared in the literature [40, 41]. In particular in [41] the authors have
shown that one of the high density QCD phases investigated in [39], i.e. the color
superconductive one, seem to be favored at large N. This is a very interesting result
which modifies and improves on the results in [39]. On the validity of the large N
equivalence between different theories we refer the reader to [42, 43].

To illustrate the large N counting when quarks are designated to transform accord-
ing to the two index antisymmetric representation of color SU(3) one may employ
[18] the mnemonic where each tensor index of this group is represented by a directed
line. Then the quark-quark gluon interaction is pictured as in Fig. A.1.

The two index quark is pictured as two lines with arrows pointing in the same
direction, as opposed to the gluon which has two lines with arrows pointing in
opposite directions. The coupling constant representing this vertex is taken to be
gt/

√
N , where gt does not depend on N and is kept fixed.

A “one point function”, like the pion decay constant, Fπ has as it’s simplest
diagram, Fig. A.2

The X represents a pion insertion and is associated with a normalization factor
for the color part of the pion’s wavefunction,
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Fig. A.3 Diagram for the scattering amplitude, A with the 2 index quark

Fig. A.4 Diagram for the scattering amplitude, A including an internal 2 index quark loop

√
2√

N (N − 1)
, (A.57)

which scales for large N as 1/N . The two circles each carry a quark index so their
factor scales as N 2 for large N; more precisely, taking the antisymmetry into account,
the factor is

N (N − 1)

2
. (A.58)

The product of Eqs. (A.57) and (A.58) yields the N scaling for Fπ :

F2
π (N ) = N (N − 1)

6
F2

π (3). (A.59)

For large N, Fπ scales proportionately to N rather than to
√

N as in the case of the
’t Hooft extrapolation.

Using this scaling the ππ scatttering amplitude, A scales as,

A(N ) = 6

N (N − 1)
A(3), (A.60)

which, for large N scales as 1/N 2 rather than as 1/N in the ’t Hooft extrapolation.
This scaling law for large N may be verified from the mnemonic in Fig. A.3, where
there is an N 2 factor from the two loops multiplied by four factors of 1/N from the
X’s.
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There is still another different feature with respect to the ’t Hooft expansion;
consider the typical ππ scattering diagram with an extra internal (two index) quark
loop, as shown in Fig. A.4.

In this diagram there are four X’s (factor from Eq.(A.57)), five index loops (factor
from Eq.(A.58)) and six gauge coupling constants. These combine to give a large
N scaling behavior proportional to 1/N 2 for the ππ scattering amplitude. We see
that diagrams with an extra internal 2 index quark loop are not suppressed compared
to the leading diagrams. This is analogous, as pointed out in [33], to the behavior
of diagrams with an extra gluon loop in the ’t Hooft extrapolation scheme. Now,
Fig. A.4 is a diagram which can describe a sigma particle exchange. Thus in the 2
index quark scheme, “exotic” four quark resonances can appear at the leading order
in addition to the usual two quark resonances. The possibility of a sigma-type state
appearing at leading order means that one can construct a unitary ππ amplitude
already at N = 3 in the 2 antisymmetric index scheme. From the point of view of
low energy ππ scattering, it seems to be unavoidable to say that the 2 index scheme
is more realistic than the ’t Hooft scheme given the existence of a four quark type
sigma.

Of course, the usual ’t Hooft extrapolation has a number of other things to rec-
ommend it. These include the fact that nearly all meson resonances seem to be of
the quark- antiquark type, the OZI rule predicted holds to a good approximation and
baryons emerge in an elegant way as solitons in the model.

A fair statement is that each extrapolation emphasizes different aspects of N = 3
QCD. In particular, the usual scheme is not really a replacement for the true theory.
That appears to be the meaning of the fact that the continuation to N > 3 is not
unique.

A.6.3.2 Quarks in Two Index Symmetric Color Representation

Clearly the assignment of femions to the two index symmetric representation of color
SU(3) is very similar to the previous case. We denote the fields as,

q{AB} = q{B A}. (A.61)

There will be N (N +1)/2 different color states for the two index symmetric quarks.
This means that there is no value of N for which the symmetric theory can be
made to correspond to true QCD. On the other hand, for large N we can make the
approximation

Asym(N ) ≈ Aasym(N ), (A.62)

for the ππ scattering amplitude.
As far as the large N counting goes, the mnemonics in Figs. A.1–A.4 are still

applicable to the case of quarks in the two index symmetric color representation. For
not so large N, the scaling factor for the pion insertion is
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Fig. A.5 Diagram for meson
decay into two glueballs

√
2√

N (N + 1)
, (A.63)

and the pion decay constant scales as

Fsym
π (N ) ∝

√
N (N + 1)

2
. (A.64)

With the identification AQC D = Aasym(3), the use of Eq. (A.62) enables us to
estimate the large N scattering amplitude as,

Asym(N ) ≈ 6

N 2 AQC D . (A.65)

In applications to minimal walking TC theories this formula is useful for making
estimates involving weak gauge bosons via the Goldstone boson equivalence theorem
[44].

Finally we remark on the large N scaling rules for meson and glueball masses and
decays in either the two index antisymmetric or two index symmetric schemes. Both
meson and glueball masses scale as (N )0. Furthermore, all six reactions of the type

a → b + c, (A.66)

where a,b and c can stand for either a meson or a glueball, scale as 1/N . This is
illustrated in Fig. A.5 for the case of a meson decaying into two glueballs; note that
the glueball insertion scales as 1/N and that two interaction vertices are involved.

A.6.4 Spectrum for Higher Dimensional Representations:
Higgsful Theories

Combining our knowledge of the QCD spectrum together with the rules above for
the two index antisymmetric representation we deduce the following large N scaling:
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m2
ρ ∼ Λ2

QC D Γρ ∼ 2

N (N − 1)
(A.67)

m2
f0

∼ Λ2
QC D Γ f0 ∼ 2

N (N − 1)
. (A.68)

The fact that in QCD the state f0(600) is not narrow indicates that the unknown
coefficient in the expression for the width, expected to be order one, is large. However,
as we increase the number of colors we expect this state to become quickly narrow.
Scaling up these results for a TC theory with NT C colors and fermions in the two
index antisymmetric representation we have:

MTρ =
√

2vweak

Fπ

√
3
√

2√
ND NT C (NT C − 1)

mρ (A.69)

MT f0 =
√

2vweak

Fπ

√
3
√

2√
ND NT C (NT C − 1)

m f0 . (A.70)

The input values here are the QCD masses for f0(600) and ρ(770). Differently from
the ’t Hooft case the scalar will remain lighter than the associate technivector meson
for any number of TCs. Finally, increasing the number of TCs and techniflavors
we can achieve a very light scalar, lighter then its own technivector. Since in these
theories one cannot differentiate a fermion-antifermion state from a multi fermion
states we map the lightest scalar into the composite Higgs.

So, even without invoking walking dynamics, higher dimensional representations
provide a composite Higgs lighter than the technivector meson. These theories are
Higgsful for any number of colors.

One can pass from the two index antisymmetric to the two index symmetric by
replacing NT C −1 with NT C +1 in the expressions above and matching the result at
infinite number of colors. In Fig. A.6 the physical spectrum of spin one vector bosons
and the lightest scalar is reported in TeV units in the case of two doublets (ND = 2 )
of technifermions for different number of colors. At N = 3 we match the spectrum
to QCD for the two index antisymmetric representation. On the left panel we draw
the spectrum for the two index antisymmetric extension of QCD while on the right
we consider the two index symmetric representation normalized at large N with the
two index antisymmetric one. For any ND and NT C the scalar is always lighter than
the associated vector meson. In the case of the two index symmetric on approaches
light masses a little faster when increasing the number of colors.

Above we demonstrated that i) It is possible to have composite theories which
are Higgsful ii) the resulting composite Higgs is light with respect to the TeV scale.
The comparison with precision data must then be revised for these theories since the
associated S parameter constraint changes. Note that in the proof we used only a
straightforward geometrical scaling.

What happens to the mass of the composite Higgs in the case of walking? By
increasing the number of flavors all of the composite states from the chiral-symmetric
broken side become massless when reaching the fixed point since the only invariant
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Fig. A.6 Mass of the lightest vector meson (higher curve) and scalar meson (lower curve) as
function of the number of colors in TeV units. At N = 3 we match the spectrum to QCD for the two
index antisymmetric representation. Here we use ND = 2. On the left panel we draw the spectrum
for the two index antisymmetric extension of QCD while on the right we consider the two index
symmetric representation. Note that now for any ND and NT C the scalar is always lighter than the
associated vector meson

scale of the theory vanishes there [45]. This is supported by lattice simulations [46].
We are, however, interested in the ratio between the masses of the various states to the
pion decaying constant which is fixed to be the electroweak scale. Simple arguments
suggest that if the transition is second order then there will be a light composite
Higgs or else its mass to decay constant ratio will not vanish near the conformal
point. In any event one can write a low energy effective action for the composite
scalar with the quantum numbers of the Higgs—treating it as a dilaton—using trace
and axial anomaly as well as chiral symmetry as done in [47]. A similar analysis
using trace anomaly has been also discussed in [48]. The resulting action contains,
by construction, non-analitc powers of the composite Higgs field [47] and must be
treated as generating functional for the anomalous transformations of the underlying
dynamics.

The possibility of a light composite Higgs in (walking) TC was first advocated in
[49–52] and also proposed in [48] and [53]. Since, as shown above using standard
scaling arguments, it is possible to construct TC theories with a light composite
Higgs it is relevant to study its phenomenological signatures [54, 55].
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